
TENSOR LEARNING WITH STRUCTURE, GEOMETRY AND MULTI-MODALITY

By

Seyyid Emre Sofuoglu

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Electrical Engineering – Doctor of Philosophy

2022

ABSTRACT

TENSOR LEARNING WITH STRUCTURE, GEOMETRY AND MULTI-MODALITY

By

Seyyid Emre Sofuoglu

With the advances in sensing and data acquisition technology, it is now possible to collect data from different

modalities and sources simultaneously. Most of these data are multi-dimensional in nature and can be

represented by multiway arrays known as tensors. For instance, a color image is a third-order tensor defined

by two indices for spatial variables and one index for color mode. Some other examples include color video,

medical imaging such as EEG and fMRI, spatiotemporal data encountered in urban traffic monitoring, etc.

In the past two decades, tensors have become ubiquitous in signal processing, statistics and computer

science. Traditional unsupervised and supervised learning methods developed for one-dimensional signals

do not translate well to higher order data structures as they get computationally prohibitive with increasing

dimensionalities. Vectorizing high dimensional inputs creates problems in nearly all machine learning tasks

due to exponentially increasing dimensionality, distortion of data structure and the difficulty of obtaining

sufficiently large training sample size.

In this thesis, we develop tensor-based approaches to various machine learning tasks. Existing tensor

based unsupervised and supervised learning algorithms extend many well-known algorithms, e.g. 2-D

component analysis, support vector machines and linear discriminant analysis, with better performance and

lower computational and memory costs. Most of these methods rely on Tucker decomposition which has

exponential storage complexity requirements; CANDECOMP-PARAFAC (CP) based methods which might

not have a solution; or Tensor Train (TT) based solutions which suffer from exponentially increasing ranks.

Many tensor based methods have quadratic (w.r.t the size of data), or higher computational complexity, and

similarly, high memory complexity. Moreover, they are not always designed with the particular structure of

the data in mind. Many of these methods use purely algebraic measures as the objective which might not

capture the local relations within data. Thus, there is a need to develop newmodels with better computational

and memory efficiency, with the particular structure of the data and problem in mind. Finally, as tensors

represent the data with more faithfulness to the original structure compared to the vectorization, they also

allow coupling of heterogeneous data sources where the underlying physical relationship is known. Still,

most of the work on coupled tensor decompositions does not explore supervised problems.

In order to address the issues around computational and storage complexity of tensor based machine

learning, in Chapter 2, we propose a new tensor train decomposition structure, which is a hybrid between

Tucker and Tensor Train decompositions. The proposed structure is used to implement Tensor Train based

supervised and unsupervised learning frameworks: linear discriminant analysis (LDA) and graph regularized

subspace learning. The algorithm is designed to solve extremal eigenvalue-eigenvector pair computation

problems, which can be generalized to many other methods. The supervised framework, Tensor Train

Discriminant Analysis (TTDA), is evaluated in a classification task with varying storage complexities with

respect to classification accuracy and training time on four different datasets. The unsupervised approach,

Graph Regularized TT, is evaluated on a clustering task with respect to clustering quality and training time

on various storage complexities. Both frameworks are compared to discriminant analysis algorithms with

similar objectives based on Tucker and TT decompositions.

In Chapter 3, we present an unsupervised anomaly detection algorithm for spatiotemporal tensor data.

The algorithm models the anomaly detection problem as a low-rank plus sparse tensor decomposition

problem, where the normal activity is assumed to be low-rank and the anomalies are assumed to be sparse

and temporally continuous. We present an extension of this algorithm, wherewe utilize a graph regularization

term in our objective function to preserve the underlying geometry of the original data. Finally, we propose a

computationally efficient implementation of this framework by approximating the nuclear norm using graph

total variation minimization. The proposed approach is evaluated for both simulated data with varying levels

of anomaly strength, length and number of missing entries in the tensor as well as urban traffic data.

In Chapter 4, we propose a geometric tensor learning framework using product graph structures for

tensor completion problem. Instead of purely algebraic measures such as rank, we use graph smoothness

constraints that utilize geometric or topological relations within data. We prove the equivalence of a Cartesian

graph structure to TT-based graph structure under some conditions. We show empirically, that introducing

such relaxations due to the conditions do not deteriorate the recovery performance. We also outline a fully

geometric learning method on product graphs for data completion.

In Chapter 5, we introduce a supervised learning method for heterogeneous data sources such as simul-

taneous EEG and fMRI. The proposed two-stage method first extracts features taking the coupling across

modalities into account and then introduces kernelized support tensor machines for classification. We illus-

trate the advantages of the proposed method on simulated and real classification tasks with small number of

training data with high dimensionality.

ACKNOWLEDGEMENTS

Õ
�
æ

k�

��QË
�
@ 	á

�

�
Ô

�
g��QË

�
@ é�

��
<Ë

�
@ Õ

�
æ
�
��.�

All praise be to Allah, the Lord of universe(s). Peace be upon the prophet of Allah, Muhammad (s.a.w.),

who is the guide and the best example to all humanity, especially for those who are in search of the truth and

wisdom. My thesis is but a miniscule result of the guidance of the prophet of Allah in the way of knowledge.

First and foremost, I would like to thank my advisor, Dr. Aviyente, for her guidance, patience, encour-

agement, and warm support throughout my research. Without her, the quality of my work would not have

been a percent of what it is. She has been a role model, and motivation for me due to her deep dedication,

firm discipline, and caring attentiveness to the work of her students.

I am deeply grateful to my wife, who sacrificed so much along this process and has been there for me

through thick and thin. No amount of thanks could be enough. I would like to also thank my mother, who

deserves more credit than any one person for any achievement or success of mine. Also, to my father, in

light of whom, I have considered a PhD is possible for me, who always supported me with his wisdom, and

who never lost his belief in me. To my mother-in-law and father-in-law, who have always been there for us,

kept us in their prayers, and sincerely interested in my work. Finally, I thank my little son, who was my

motivation, happiness, and emotional support.

There are too many people that were a support to me in writing this thesis for me to be able to mention

each one of them. I ask for the forgiveness of any of my benefactors, to whom I could not thank in name.

May Allah shower all who helped me with success and honour in both their lives.

iv

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

LIST OF ALGORITHMS . xi

CHAPTER 1 INTRODUCTION . 1
1.1 Background and Notation . 2
1.2 Robust Principal Component Analysis . 6
1.3 Geometric Learning . 7

1.3.1 Robust PCA on Graphs . 8
1.3.2 Spectral Geometric Matrix Completion . 8

1.4 Tensor Decompositions . 8
1.4.1 Tucker Decomposition (TD) . 9
1.4.2 Canonical/Polyadic (CP) Decomposition . 9
1.4.3 Tensor Train Decomposition (TT) . 10

1.5 Robust PCA for Tensors . 11
1.6 Linear Discriminant Analysis (LDA) for Tensors . 12
1.7 Organization and Contributions of the Thesis . 13

CHAPTER 2 MULTI-BRANCH TENSOR TRAIN STRUCTURE FOR SUPERVISED AND
UNSUPERVISED LEARNING . 16

2.1 Introduction . 16
2.2 Tensor Train Discriminant Analysis . 19
2.3 Multi-Branch Tensor Train Discriminant Analysis . 21

2.3.1 Two-way Tensor Train Discriminant Analysis (2WTTDA) 22
2.3.2 Three-way Tensor Train Discriminant Analysis (3WTTDA) 24

2.4 Analysis of Storage, Training Complexity and Convergence 24
2.4.1 Computational Complexity . 26
2.4.2 Convergence . 27

2.5 Experiments . 28
2.5.1 Data Sets . 29
2.5.2 Classification Accuracy . 30
2.5.3 Training Complexity . 34
2.5.4 Convergence . 35
2.5.5 Effect of Sample Size on Accuracy . 35
2.5.6 Summary of Experimental Results . 36

2.6 Graph Regularized Tensor Train Decomposition . 37
2.6.1 Problem Statement . 37
2.6.2 Optimization . 38
2.6.3 Convergence . 41

2.7 Experiments . 41
2.7.1 MNIST . 42
2.7.2 COIL . 43

v

2.8 Conclusions . 44

CHAPTER 3 TENSOR METHODS FOR ANOMALY DETECTION ON SPATIOTEMPORAL
DATA . 45

3.1 Introduction . 45
3.2 Related Work . 47
3.3 Robust Low-Rank Tensor Decomposition for Anomaly Detection 49

3.3.1 Problem Statement . 49
3.3.2 Optimization . 51
3.3.3 Computational Complexity . 55

3.4 Low-rank On Graphs Plus Temporally Smooth Sparse Decomposition 56
3.4.1 Optimization . 56
3.4.2 Computational Complexity of LOGSS . 58

3.5 Convergence . 58
3.6 Anomaly Scoring . 60
3.7 Experiments . 60

3.7.1 Data Description . 62
3.7.2 Parameter Selection: . 63
3.7.3 Experiments on Synthetic Data . 65
3.7.4 Experiments on Real Data . 68

3.8 Conclusions . 72

CHAPTER 4 GEOMETRIC TENSOR LEARNING . 74
4.1 Introduction . 74
4.2 Tensor Train Robust PCA on Graphs . 75

4.2.1 Kronecker Structured Graphs . 75
4.2.2 Optimization . 77
4.2.3 Computation and Memory Complexity for Graphs 78

4.3 Experiments . 79
4.3.1 Synthetic Data . 80
4.3.2 Real Data . 81

4.4 Conclusions . 81

CHAPTER 5 COUPLED SUPPORT TENSOR MACHINE . 83
5.1 Introduction . 83
5.2 Related Work . 86

5.2.1 Coupled Matrix Tensor Factorization . 86
5.2.2 CP-STM for Tensor Classification . 87
5.2.3 Multiple Kernel Learning . 88

5.3 Methods . 89
5.3.1 Multimodal Tensor Factorization . 90
5.3.2 Coupled Support Tensor Machine (C-STM) . 90

5.4 Model Estimation . 92
5.5 Experiments . 94

5.5.1 Parameter Selection . 94
5.5.1.1 Multimodal Tensor Factorization . 94
5.5.1.2 C-STM . 95

5.5.2 Simulated Data . 95

vi

5.5.2.1 Kernel Selection . 99
5.5.3 EEG-fMRI Data . 100

5.6 Conclusion . 103

CHAPTER 6 CONCLUSIONS . 106
6.1 Future Work . 108

6.1.1 Multi-Branch Tensor Learning . 108
6.1.2 Tensor Methods for Anomaly Detection . 109
6.1.3 Geometric Tensor Learning . 109
6.1.4 Supervised Coupled Tensor Learning . 110

BIBLIOGRAPHY . 111

vii

LIST OF TABLES

Table 2.1: Storage Complexities of Different Tensor Decomposition Structures 25

Table 2.2: Computational complexities of various algorithms. The number of iterations to find
the subspaces are denoted as C2 for CMDA and CC for TT-based methods. �B = 2� .
(A << �, CCA (A + #/ 5 − 1) << �B, and �# / 5 >> A6) . 26

Table 2.3: Classification accuracy (top) and training time (bottom) with standard deviation for
various methods and datasets. 35

Table 3.1: Properties of anomaly detection methods used in the experiments. The acronyms refer
to the different attributes of the cost function: (LR) low-rank, (SP) sparse, (WLR)
weighted low-rank, (SR) smoothness regularization. 61

Table 3.2: Mean and standard deviation of AUC values for for various 2 and %. On experiments of
each variable, the rest of the variables are fixed at 2 = 2.5, % = 0%, ; = 7 and< = 2.3%.
The proposed methods, outperform the other algorithms in all cases significantly with
? < 0.001. 67

Table 3.3: Mean and standard deviation of run times (seconds) for various methods. 67

Table 3.4: Events of Interest for NYC in 2018. 69

Table 3.5: Results for 2018 NYC Yellow Taxi Data. Columns indicate the percentage of selected
points with top anomaly scores. The table entries correspond to the number of events
detected at the corresponding percentage. 70

Table 3.6: Results on 2018 NYC Bike Trip Data. 71

Table 4.1: Denoising performance for synthetic data against varying levels of gross noise 2% for
various methods. 79

Table 4.2: Denoising performance for real data against varying levels of gross noise 2% for various
methods. 80

Table 5.1: Distribution Specifications for Simulation Study; MVN stands for multivariate normal
distribution. I are identity matrices. Bold numbers are vectors whose elements are all
equal to the numbers. 96

Table 5.2: Various kernel combination schemes. Note that (2)2 =
(3)
1 100

Table 5.3: Classification accuracy using different kernel combinations. 100

Table 5.4: Real Data Result: Simultaneous EEG-fMRI Data Trial Classification (Mean of Perfor-
mance Metrics with Standard Deviations in Subscripts) 103

viii

LIST OF FIGURES

Figure 1.1: Illustration of tensors and tensor merging product using tensor network notations. Each
node represents a tensor and each edge represents a mode of the tensor. (a) Tensor A,
(b) Tensor B, (c) Tensor Merging Product between modes (=, <) and (= + 1, < − 1). . . . 4

Figure 1.2: Tensor network notation for Tucker decomposition. 9

Figure 1.3: Tensor Train Decomposition of Y using tensor merging products. 11

Figure 2.1: Tensor A= is formed by first merging U'
= , U!

=−1 and S and then applying trace
operation across 4Cℎ and 8Cℎ modes of the resulting tensor. The green line at the
bottom of the diagram refers to the trace operator. 21

Figure 2.2: Illustration of the proposed methods (Compare (a) and (b) with Figures 1.2 and 1.3):
(a) The proposed tensor network structure for 2WTT; (b) The proposed tensor network
structure for 3WTT; (c) The flow diagram for 2WTTDA (Algorithm 2.2); (d) The flow
diagram for 3WTTDA . 25

Figure 2.3: Comparisons with a BTT based Ritz pair computation algorithm. a) Classification
accuracy and b) Training time with respect to normalized storage cost. 31

Figure 2.4: Classification accuracy vs. Normalized storage cost of the different methods for: a)
COIL-100, b) Weizmann Face, c) Cambridge Hand Gesture and d) UCF-101. All TD
based methods are denoted using ’x’, TT based methods are denoted using ’+’ and
proposed methods are denoted using ’*’. STTM and LDA are denoted using ’4’ and
’o’, respectively. 32

Figure 2.5: Training complexity vs. Normalized storage cost of the different methods for: a)
COIL-100, b) Weizmann Face, c) Cambridge Hand Gesture, and d) UCF-101. 33

Figure 2.6: Convergence curve for TTDA on COIL-100. Objective value vs. the number of
iterations is shown. 36

Figure 2.7: Comparison of classification accuracy vs. training sample size for Weizmann Face
Dataset for different methods. 36

Figure 2.8: (a) Normalized Mutual Information vs. Storage Complexity of different methods for
MNIST dataset. (b) Computation Time vs. Storage Complexity of different methods
for MNIST dataset. 42

Figure 2.9: (a) Normalized Mutual Information vs Storage Complexity of different methods for
COIL dataset. (b) Computation Time vs Storage Complexity of different methods for
COIL dataset. 43

ix

Figure 3.1: Mean AUC values for various choices of: (a) _ and W, (b) \ and k1, (c) k2 and k4.
Mean AUC values across 10 random experiments are reported for each hyperparameter
pair. For each set of experiments, the remaining hyperparameters are fixed. 64

Figure 3.2: AUC of ROC w.r.t. ; and < with 2 = 2.5, % = 0%. 66

Figure 3.3: ROC curves for various amplitudes of anomalies. Higher amplitude means more
separability. 2 = (a) 1.5, (b) 2, (c) 2.5. (% = 0%, ; = 7, < = 2.3%) 67

Figure 3.4: ROC curves for varying percentage of missing data, (a) % = 20%, (b) % = 40%, (c)
% = 60%. (2 = 2.5, ; = 7, < = 2.3%) . 68

Figure 3.5: Bike Activity data, the extracted sparse part and low-rank part across for July 4th
Celebrations at Hudson River banks. (a) Real Data where the traffic for 52Wednesdays
is shown along with the traffic on Independence Day and average traffic; (b) Sparse
tensor where the curve corresponding to the anomaly is highlighted; (c) Low-rank
tensor with the curve corresponding to the Independence Day highlighted. 71

Figure 4.1: Phase diagrams for missing data recovery. 80

Figure 5.1: Illustration of Coupled Tensor Matrix Model . 86

Figure 5.2: C-STM Model Pipeline . 89

Figure 5.3: Simulation Result: Average accuracy rates shown in bar plots; Standard deviation of
accuracy rates shown by error bars . 98

Figure 5.4: Region of Interest (ROI) . 105

x

LIST OF ALGORITHMS

Algorithm 2.1: Tensor Train Discriminant Analysis (TTDA) . 22

Algorithm 2.2: Two-Way Tensor Train Discriminant Analysis (2WTTDA) 24

Algorithm 2.3: Graph Regularized Tensor Train-ADMM(GRTT-ADMM) 41

Algorithm 3.1: GLOSS . 54

Algorithm 3.2: LOGSS . 58

Algorithm 4.1: TTRPCA-G/nG . 79

Algorithm 5.1: ACMTF Decomposition . 93

Algorithm 5.2: Coupled Support Tensor Machine . 94

xi

CHAPTER 1

INTRODUCTION

With the advance of sensing and data acquisition technology, it is now possible to collect data from different

modalities and sources simultaneously. Some examples include medical imaging data such as fMRI, hyper-

spectral images, computer vision data such as multiview camera recordings, liquid-chromatography/mass

spectrometry data in chemometrics, large scale gene expression data in bioinformatics. Most of these data

are multi-dimensional in nature and can be represented by multiway arrays known as tensors [48]. For

instance, a color image is a third-order tensor defined by two indices for spatial variables and one index for

color mode. Similarly, a video comprised of color images is a fourth-order tensor, time being the fourth

dimension besides spatial and spectral.

In order to efficiently process large datasets, there is an increasing interest in near real-time processing

methods, especially in the case of multimedia, remote-sensing and biological data. Another challenge is to

come up with methods that are scalable with the size of data. Although computational power and memory

sizes of modern systems keep increasing, traditional methods are exponentially expensive. As the data

collected are not always clean and complete, there is also a need for methods that are robust against missing

data and outliers, and can account for the underlying structure or the topology of the data. Finally, there is also

an emerging interest in extracting information from multiple heterogenous modalities simultaneously. As

tensor decompositions are natural, sparse and distributed representations of big data, all the aforementioned

problems spurred an interest in efficient tensor algorithms suitable for massive datasets.

Traditional unsupervised and supervised learning methods developed for one-dimensional signals, or

vectors, do not translate well to higher order data structures as they get computationally prohibitive with

increasing dimensionalities, namely, ’curse of dimensionality’. Vectorizing high dimensional inputs creates

problems in nearly all machine learning tasks also due to the difficulty of obtaining sufficiently large training

sample size. Moreover, important information about the structure of the high-dimensional space that data lie

in is lost through vectorization which reduces the effectiveness of these methods. Therefore, there is a need

for extracting compact representations from the original tensor data that result in accurate and interpretable

models.

Tensor decompositions can be defined as structures which represent higher order data as a set of low-

1

order core tensors, thus allowing for better interpretability and computational advantages [45]. Tensor

decompositions are natural extensions of matrix decompositions or factorizations such as singular value

decomposition (SVD), principal component analysis (PCA) and non-negative matrix factorization (NMF)

to higher order data. However, there are various advantages of tensor decompositions compared to matrix

factorizations, such as the ability to efficiently parameterize high dimensional spaces and account for intrinsic

multidimensional and distributed patterns present in data. Thus, they allow for models to capture multiple

interactions and couplings in data, in a more structured and interpretable manner. Tensors first started to

gain attention in psychometrics [174, 175] and then chemometrics [27, 160]. After being introduced to many

fields such as signal processing [48, 47, 46, 18, 183], statistics and computer science [38, 43, 96], tensors

have received great attention. The work on tensors is too diverse and numerous to be covered in this thesis,

so we refer the interested reader to survey papers [93, 44, 45, 159, 81].

Recent years have also seen a growth in the development of tensor decomposition methods for machine

learning. Various extensions of unsupervised methods such as PCA, robust PCA, SVD, NMF, neighborhood

preserving embedding (NPE), locally linear embedding (LLE), Canonical Component Analysis (CCA) [48,

70, 154, 106, 78, 91] and supervised methods such as linear discriminant analysis (LDA), Support Vector

Machines (SVM), regression, deep neural networks [195, 196, 168, 112, 104, 74, 38, 97, 137, 96, 95] to

tensors have been explored. Some applications include face recognition, object classification, dimensionality

reduction, clustering, anomaly detection, learning latent variable models and prediction.

Although most tensor based methods are developed as extensions of existing vector based methods, it is

possible to develop new approaches with structures specific to tensors. By utilizing tensors, one can introduce

structural models in many different ways such as deep tensor network structures, Kronecker or Cartesian

structured product graphs, and multi-modal coupling of data collected from different physical sensors, that

are otherwise not relevant or applicable. Tensor based methods also often have milder requirements for

theoretical performance analysis such as convergence, sample size, and recovery guarantees [70, 44, 45].

1.1 Background and Notation

In this thesis, we denote numbers and scalars with letters such as G, H, # . Vectors are denoted by boldface

lowercase letters, e.g. x, y. Matrices are denoted by italic capital letters like -,. . Multi-dimensional tensors

are denoted by calligraphic capital letters such as X,Y. The order of a tensor is the number of dimensions

of the data hypercube, also known as ways or modes. For example, a scalar can be regarded as a zeroth-order

2

tensor, a vector as a first-order tensor, and a matrix as a second-order tensor.

Let A ∈ R�1×···×�# be a tensor. Vectors obtained by fixing all indices of the tensor except the one that

corresponds to =th mode are called mode-= fibers and denoted as a81,...8=−1,8=+1,...8# ∈ R�= .

Definition 1. (Vectorization, Matricization and Reshaping) V(.) is a vectorization operator such that

V(A) ∈ R�1�2...�#×1. T= (.) is a tensor-to-matrix reshaping operator defined as T= (A) ∈ R�1...�=×�=+1...�#

and the inverse operator is denoted as T−1
= (.).

Definition 2. (Mode-= unfolding and canonical unfolding, [197]) The mode-= unfolding of a tensor A is

defined asA (=) ∈ R�=×
∏#
=′=1,=′≠= �=′ where the mode-n fibers of the tensorA are the columns ofA (=) and the

remaining modes are organized accordingly along the rows.

Mode-= canonical unfolding, or mode-1, 2, . . . , = unfolding, of a tensor Y is defined as Y[=] ∈

R
∏=
8=1 �8×

∏#
8==+1 �8 .

Definition 3. (Left and right unfolding) The left unfolding operator creates a matrix from a tensor by taking

all modes except the last mode as row indices and the last mode as column indices, i.e.,L(A) ∈ R�1�2...�#−1×�#

which is equivalent to T#−1(A). Right unfolding transforms a tensor to a matrix by taking all the first mode

fibers as column vectors, i.e. R(A) ∈ R�1×�2�3...�# which is equivalent to T1(A). The inverse of these

operators are denoted as L−1(.) and R−1(.), respectively. A tensor is defined to be left (right)-orthogonal if

its left (right) unfolding is orthogonal.

Definition 4. (Tensor trace) Tensor trace is defined on slices of a tensor and contracts them to scalars. Let

A ∈ R�1×�2×···×�# with �:′ = �: , then the trace operator on modes : ′ and : is defined as:

D = CA::′ (A) =
�:∑

8:′=8:=1
A(:, . . . , 8:′, :, . . . , 8: , :, . . . , :),

where D ∈ R�1×···×�:′−1×�:′+1×···×�:−1×�:+1×···×�# is a # − 2-mode tensor.

Definition 5. (Tensor Merging Product) Tensor merging product connects two tensors along some given sets

of modes. For two tensors A ∈ R�1×�2×···×�# and B ∈ R�1×�2×···×�" where �= = �< and �=+1 = �<−1 for

some = and <, tensor merging product is given by [45]:

C = A ×<,<−1
=,=+1 B.

3

�1

�2�#

�#−1

. . .

A

..
.

. .
.

(a)

�1

�2�"

. . .

B

..
.

. .
.

(b)

�#

�1

�2

. . .

A

..
.

...

. .
.

�1
�"

. . .

B

..
.. .
.

. . .

�=, �<

�=+1, �<−1

=

�1�"

�=−1

�=+2

�#�1

�<−2
�<+1

C

..
.

. .
.

...

. . .
(c)

Figure 1.1: Illustration of tensors and tensor merging product using tensor network notations. Each node
represents a tensor and each edge represents a mode of the tensor. (a) Tensor A, (b) Tensor B, (c) Tensor
Merging Product between modes (=, <) and (= + 1, < − 1).

C ∈ R�1×···×�=−1×�=+2×···×�#×�1×···×�<−2×�<+1×···×�" is a (# + " − 4)-mode tensor that is calculated as:

C(81, . . . , 8=−1, 8=+2, . . . , 8# , 91, . . . , 9<−2, 9<+1, . . . , 9") =
�=∑
C1=1

�<−1∑
C2=1

[
A(81, . . . , 8=−1, 8= = C1, 8=+1 = C2, 8=+1, . . . , 8#)

B(91, . . . , 9<−2, 9<−1 = C2, 9< = C1, 9<+1, . . . , 9")
]
.

A graphical representation of tensors A and B and the tensor merging product defined above is given in

Figure 1.1.

A special case of the tensor merging product can be considered for the case where �= = �< for all

=, < ∈ {1, . . . , # − 1}, " ≥ # . In this case, the tensor merging product across the first # − 1 modes is

defined as:

C′ = A ×1,...,#−1
1,...,#−1 B, (1.1)

where C′ ∈ R�#×�#×···×�" . This can equivalently be written as:

R(C′) = L(A)>T#−1(B), (1.2)

where R(C′) ∈ R�#×
∏"
<=# �< .

Definition 6. (Mode-= product) The mode-= product of tensorA and a matrix U ∈ R�×�= is denoted as B =

A ×= U and defined as 181,...,8=−1, 9 ,8=+1...,8# =
∑�=
8==1 081...,8= ,...,8# D 9 ,8= , where B ∈ R

�1×...×�=−1×�×�=+1×...×�# .

Notice that this is equivalent to a tensor merging product B = A ×2
= U.

Definition 7. (Mode-= Graph Laplacian) Mode-= adjacency matrix,= corresponding to mode-= similarity

graph of a tensor Y is defined as:

,=
BB′ =

4
−
‖y(=) ,B−y(=) ,B′ ‖

2
�

2f2 , if y(=) ,B ∈ N: (y(=) ,B′) or y(=) ,B′ ∈ N: (y(=) ,B)

0, otherwise
,

4

where N: (y(=) ,B) is the Euclidean :-nearest neighborhood of the Bth row of Y(=) , y(=) ,B ∈ R
∏#

8=1,8≠= �8 . The

mode-= graph Laplacian Φ= is then defined as Φ= = �= −,=, where �= is a diagonal degree matrix with

�=
8,8
=

∑�=
8′=1,

=
8,8′. The eigendecomposition of Φ= can be written as Φ= = %=Λ=%>= , where %= is the matrix

of eigenvectors and Λ= is a diagonal matrix with the eigenvalues on the diagonal, in a non-descending order.

Definition 8. (Product Graphs) Let {G=} be a set of # graphs, where G= = {+=, �=} where += are the

vertices and �= are the edges of G=. Let Φ= ∈ R�= × �= be the graph Laplacian for �=. A product graph G

is created by unifying {G=}, in a special manner. A Kronecker product graph, or Kronecker graph is defined

as [151]:

G = G# ⊗ G#−1 ⊗ · · · ⊗ G1, (1.3)

and has a Laplacian defined as:

Φ = Φ# ⊗ Φ#−1 ⊗ · · · ⊗ Φ1. (1.4)

A Cartesian product graph, on the other hand is defined as [151]:

G = G# ⊗ I∏#−1
==1 �=

+ I�# ⊗ G#−1 ⊗ I∏#−2
==1 �=

+ · · · + I∏#
==2 �=

⊗ G1, (1.5)

with Laplacian:

Φ = Φ# ⊗ I∏#−1
==1 �=

+ I�# ⊗ Φ#−1 ⊗ I∏#−2
==1 �=

+ · · · + I∏#
==2 �=

⊗ Φ1. (1.6)

The graph smoothness objective defined over all modes of a tensor X ∈ R�1×�2×···×�# :

#∑
==1

CA (X>(=)Φ=X(=)), (1.7)

is equivalent to:

V(X)>ΦV(X), (1.8)

where Φ is the graph Laplacian of the Cartesian product graph.

Definition 9. (Mode-= Concatenation) Mode-= concatenation unfolds the input tensors along mode-= and

stacks the unfolded matrices across rows:

cat= (A,A) =
[
A>(=) A

>
(=)

]>
. (1.9)

5

If the input is a set of tensors, e.g. {A} = {A1,A2, . . . ,A" }, where A< ∈ R�1×···×�# ,∀< ∈ {1, . . . , "},

then cat= ({A}) stacks all mode = unfoldings of tensors {A} across rows into a matrix of size "�= ×∏#
=′=1,=′≠= �=′.

Definition 10. (Tensor norms) In this thesis, we employ three different tensor norms. Frobenius norm

of a tensor is defined as ‖A‖� =

√∑
81,82,...,8# H

2
81,82,...,8#

. ℓ1 norm of a tensor is defined as ‖A‖1 =∑
81,82,...,8# |H81,82,...,8# |. In this thesis, the nuclear norm of a tensor is defined as the weighted sum of the

nuclear norms of all mode-n unfoldings of a tensor, namely ‖A‖∗ =
∑#
==1 k=‖A (=) ‖∗, where k=s are the

weights corresponding to each mode [173, 70].

Definition 11. (Support Set) LetΩ be a support set defined for tensorA, i.e. Ω ∈ {1, . . . , �1}× {1, . . . , �2}×

· · · × {1, . . . , �# }. The projection operator on this support set, PΩ, is defined as:

PΩ [A]81,82,...,8# =

A81,82,...,8# , (81, 82, . . . , 8#) ∈ Ω,

0, otherwise.
(1.10)

The orthogonal complement of the operator PΩ is defined in a similar manner as:

PΩ⊥ [A]81,82,...,8# =

A81,82,...,8# , (81, 82, . . . , 8#) ∉ Ω,

0, otherwise.
(1.11)

1.2 Robust Principal Component Analysis

Principal component analysis (PCA) is one of the most common algorithms for dimensionality reduction

[30]. The aim of PCA is to find a subspace with smaller dimension, in which the projected data has the highest

variance among all possible subspaces with the same dimension. This model is based on the assumption

that the data has an i.i.d. Gaussian distribution. Thus, with grossly corrupted, or partially observed data,

PCA fails to estimate the best subspace, or the best low-rank approximation to data. To alleviate the issues

with these outliers, robust PCA methods [30, 35] have been proposed where the aim is to separate the data

into a low-rank part, corresponding to the clean part, and a sparse part, corresponding to gross corruptions,

or outliers.

In [30, 35], this problem is formulated as:

minimize!,(‖!‖∗ + _‖(‖1, ! + (= . (1.12)

6

where the observed data is . and _ is a regularization parameter. It was proven that under some conditions

on the true ! and (, an alternating minimization based approach can recover the true !. This algorithm can

also be used for matrix completion [30].

Although very successful in recovering low-rank data from gross corruptions, RPCA has some short-

comings. First, the algorithm requires an SVD at every step of the optimization which gets intractable with

increasing data size. Second, the underlying assumption of incoherence is not always easy to satisfy as in

many real data, the underlying, clean data is structured and can be sparse. Finally, the outliers themselves

could be structured, which violates the randomness of the support of the sparse part.

1.3 Geometric Learning

In this thesis, we explore a variety of approaches to supervised and unsupervised learning where underlying

geometric or topological relations between each modes rows. Such relations are common in many types

of real data, e.g. recommendation systems, drug-target interaction, genomics. Usually, such relations are

represented by a graph, or a set of graphs with relationships across these graphs. We unite these approaches

under the term geometric learning.

Such geometric structures within data are often not taken into account in many methods as purely

algebraic terms, such as rank, cannot account for them [22]. In many modern signal processing applications,

graph-based priors have been used to extract low-dimensional structure from high dimensional data [57, 83,

170]. Representation of a signal on a graph is also motivated by the emerging field of signal processing

on graphs, based on notions of spectral graph theory [155, 154, 146]. The underlying assumption is that

high-dimensional data samples lie on or close to a smooth low-dimensional manifold, represented by a graph

�. In this section, we explore several extensions of wide-known algorithms for dimensionality reduction

using geometric learning concepts.

In the specific case of manifold learning, geometric learning is utilized as follows. Tensor samples for a

data set with no labels are denoted as YB ∈ R�1×···×�# where B ∈ {1, . . . , (}. For two tensor samples, YB and

YB′ and their respective low-dimensional projections, -B and -B′, regularization that is employed to preserve

the underlying geometry can be formulated as:

(∑
B=1

(∑
B′=1
B′≠B

‖-B − -B′ ‖2�FBB′, (1.13)

7

where -B is the projection of YB to a lower dimensional manifold and FB,B′ is the mode-# + 1 adjacency or

similarity graph. One can also equivalently rewrite (1.13) as tr
(
-BΦ

#+1->B
)
.

1.3.1 Robust PCA on Graphs

In [155], it was shown that a low-rank approximation,*, to a data matrix, - , can be obtained by solving the

following optimization problem:

min
*
‖- −*‖1 + W1CA (*Φ1*)) + W2CA (*)Φ2*), (1.14)

where Φ1 and Φ2 are the graph Laplacians corresponding to graphs connecting the samples (rows) of - and

the features (columns) of - , respectively. The above formulation assumes that the data is low-rank on graphs,

i.e. lies on a smooth low-dimensional manifold. This can be quantified by a graph stationarity measure,

BA (Γ=) = ‖diag(Γ=) ‖2
‖Γ= ‖� , where Γ= = %>=�=%= with �= being the covariance matrix of each mode-= unfolding,

i.e., = = 1 or 2 in the case of data matrices [146, 154].

1.3.2 Spectral Geometric Matrix Completion

In [84, 22], it was shown that using two graphs that encode the relationships between the rows, G1 and the

columns G2 of a matrix, it is possible to extract a signal - that is band-limited on the Cartesian product

graph G = G2 ⊗ I + I ⊗ G1 from data . with missing entries and corruption. The problem is formulated as:

minimize- ‖PΩ [- − .] ‖2� + CA (->Φ1-) + CA (-Φ2->), (1.15)

where the last two terms are called the graph smoothness terms, and Φ1 and Φ2 are graph Laplacians

corresponding to the rows and columns of the matrix, respectively. Φ = Φ2 × I + I × Φ1 is the Laplacian

matrix associated with G.

1.4 Tensor Decompositions

In many machine learning problems, low-rank decompositions or matrix factorizations are the main compu-

tational bottleneck as they are often O(=3), i.e. cubic, in computational complexity. Tensor decompositions

provide alternative factorization models preserving the original multiway structure of the data which de-

crease both the computational complexity and the storage cost of the factors. In this section, we review

8

�1

�2�#

�#−1

. . .

Y

..
.

. .
.

=

*1

�1

*2

�2

*#

�#

*#−1�#−1

. . .

X

..
.

. .
.

Figure 1.2: Tensor network notation for Tucker decomposition.

three well-known tensor decomposition approaches: Tucker Decomposition (TD), Canonical Decomposition

(CANDECOMP/PARAFAC, CP) and Tensor Train Decomposition (TT).

1.4.1 Tucker Decomposition (TD)

Tucker decomposition represents a tensor Y ∈ R�1×�2×···×�# as:

Y = X ×1 *1 ×2 *2 · · · ×# *# ,

where*= ∈ R�=×'= with '= < �= are called the low-rank factor matrices and X ∈ R'1×'2×···×'# is the core

tensor. This decomposition is illustrated in Figure 1.2. Instead of mode-= product, Tucker Decomposition

can also be represented by tensor merging product as:

Y = X ×2
1 *1 ×2

2 *2 · · · ×2
*# ,

1.4.2 Canonical/Polyadic (CP) Decomposition

CP is a special case of Tucker Decomposition where the core tensor X is superdiagonal:

G81,82,...,8# =

A81,82,...,8# , if 81 = 82 = · · · = 8# ,

0, otherwise.
(1.16)

where A81,82,...,8# ∈ ' is a constant. CP is often defined equivalently as the sum of rank one tensors computed

by the outer products of the columns of the factor matrices*=:

Y =

'∑
8=1

u1,8 ◦ u2,8 ◦ · · · ◦ u# ,8 , (1.17)

9

where ' is the CP rank of Y. The above equation is also denoted as:

Y = [[*1,*2, . . . ,*#]] (1.18)

The above representation is called Kruskal tensor (see [99]), which is a convenient representation for CP

tensors. We denote a Kruskal tensor by Y = [[U1, ...,U#]] or Y = [[Z ; U1, ...,U#]] where Z ∈ RA is

a vector whose entries are the weights of rank one tensor components. In the special case of matrices, Z

corresponds to singular values of a matrix. In general, it is assumed that the rank ' is small so that equation

(1.18) is also called low-rank approximation of a tensor Y.

1.4.3 Tensor Train Decomposition (TT)

Most of the existing work in both unsupervised and supervised learning have utilized Tucker or CP decom-

positions. The matrix product state (MPS) or Tensor Train is one of the best understood tensor networks, or

tensor decompositions, for which efficient algorithms have been developed [140, 139]. TT is a special case

of a tensor decomposition where a tensor with # indices is factorized into a chain-like product of low-rank,

three-mode tensors. TT model has been employed in various applications such as PCA [18], manifold

learning [183] and deep learning [137].

Tensor Train decomposition represents each element of Y using a series of matrix products as:

Y(81, 82, . . . , 8#) = U1(1, 81, :)U2(:, 82, :) . . .U# (:, 8# , :)x, (1.19)

where U= ∈ R'=−1×�=×'= are the three mode low-rank tensor factors, '= < �= are the TT-ranks of the

corresponding modes and x ∈ R'#×1 is the projected sample vector. Using tensor merging product form,

(1.19) can be rewritten as

Y = U1 ×1
3U2 ×1

3 · · · ×
1
3U# ×

1
3 x. (1.20)

A graphical representation of (1.20) can be seen in Figure 1.3. If Y is vectorized, another equivalent

expression for (1.19) in terms of matrix projection is obtained as:

V(Y) = L(U1 ×1
3U2 ×1

3 · · · ×
1
3U#)x.

Another widely used form of Tensor Train, called Matrix Product States (MPS) [18] is defined as:

Y = U1 ×1
3U2 ×1

3 · · · ×
1
3U: ×

1
3 - ×

1
3U:+1 ×

1
3 · · · ×

1
3U# . (1.21)

10

�1

�2�#

�#−1

. . .

Y

..
.

. .
.

= U1

�1

U2

�2

. . . U#−1

�#−1

U# x

�#

'0 = 1

Figure 1.3: Tensor Train Decomposition of Y using tensor merging products.

Note that the low dimensional projected samples in MPS are matrices while for TT, they are vectors.

Let*≤: = L(U1 ×1
3U2 ×1

3 · · · ×
1
3U:) ∈ R

�1�2...�:×A: and*>: = R(U:+1 ×1
3 · · · ×

1
3U#) ∈ R

A:+1×�:+1...�# .

When L(U=)s for = ≤ : are left orthogonal, *≤: is also left orthogonal [80], i.e. L(U=)>L(U=) =

I'=−1�= ,∀= implies *>* = I� , � =
∏#
==1 �= where I� ∈ R�×� is the identity matrix. Similarly, when R(U=)s

for = > : are right orthogonal, *>: is right orthogonal. When Y is reshaped into a matrix, (1.21) can be

equivalently expressed as a matrix projection T: (Y) =
[
I�= ⊗ *≤:

]
-*>: .

1.5 Robust PCA for Tensors

In order to separate the low-rank part from sparse outliers in tensors, many extensions of RPCA to tensors

have been proposed [70, 120, 208, 197]. Although utilizing tensor structures have proven to be useful in

many tasks, quantifying the low rankness of tensors is an open ended problem as there is no clear definition

of rank for a tensor. Similarly, the nuclear norm of a tensor, which is a convex measure of the rank, is not

clearly defined. Depending on the definition of the rank, different nuclear norms are used such as Tucker

rank (sum of nuclear norms (SNN) of mode-= unfoldings), tubal rank (tensor nuclear norm (TNN)), TT rank

(Schatten norm (TTNN)), etc.

In [120, 70], Tucker rank was used to quantify the rank of a tensor. This interpretation resulted in a SNN

based objective as:

minimizeL,S
#∑
==1
‖L (=) ‖∗ + ‖S‖1, (1.22)

where ‖.‖1 is the ℓ1 norm of a tensor, defined as the sum of the absolute values of all entries of a tensor. There

are many extensions to this formulation such as reformulating the objective function for tensor completion,

using other definitions of nuclear norm, and weighting the nuclear norms of different modes.

11

1.6 Linear Discriminant Analysis (LDA) for Tensors

Let Y ∈ R�1×···×�#× ×� be the collection of samples of training tensors. For a given Y with � classes and

 samples per class, defineY:2 ∈ R�1×···×�# as the sample tensors where : ∈ {1, . . . , } is the sample index

and 2 ∈ {1, . . . , �} is the class index. LDA for tensor data initially applies a vectorization to tensor samples

and then finds an orthogonal projection* that maximizes the discriminability of projections by solving1:

* = argmin
*̂

[
CA (*̂>(, *̂) − _CA (*̂>(�*̂)

]
=

argmin
*̂

CA (*̂>((, − _(�)*̂) = argmin
*̂

CA (*̂>(*̂), (1.23)

where (= (, −_(�, _ is the regularization parameter that controls the trade-off between (, and (� which

are within-class and between-class scatter matrices, respectively, defined as:

(, =

�∑
2=1

 ∑
:=1
V(Y:2 −M2)V(Y:2 −M2)>, (1.24)

(� =

�∑
2=1

 ∑
:=1
V(M2 −M)V(M2 −M)>, (1.25)

whereM2 =
1

∑
:=1Y:2 is the mean for each class 2 andM = 1

�

∑�
2=1

∑
:=1Y:2 is the total mean of all

samples. Since * is an orthogonal projection, (1.23) is equivalent to minimizing the within-class scatter

and maximizing the between class scatter of projections. This can be solved by the matrix* ∈ R
∏#
==1 �=×'#

whose columns are the eigenvectors of (∈ R
∏#
==1 �=×

∏#
==1 �= corresponding to the lowest '# eigenvalues.

Multilinear Discriminant Analysis (MDA):

MDAextends LDA to tensors using TD by finding a subspace*= ∈ R�=×'= for eachmode = ∈ {1, . . . , #}

that maximizes the discriminability along that mode [112, 168, 195]. When the number of modes # is equal

to 1, MDA is equivalent to LDA. In the case of MDA, within-class scatter along each mode = ∈ {1, . . . , #}

is defined as:

(
(=)
,

=

�∑
2=1

 ∑
:=1

(Y
:
2 −M2)

∏
<∈{1,...,# }

<≠=

×1
<*<

 (=)
(Y

:
2 −M2)

∏
<∈{1,...,# }

<≠=

×1
<*<

 (=)
>

. (1.26)

1The original formulation optimizes the trace ratio. Prior work showed the equivalence of trace ratio to trace difference used in
this thesis [63].

12

Between-class scatter ((=)
�

is found in a similar manner. Using these definitions, each *= is found by

optimizing [168]:

*= = argmin
*̂=

CA (*̂>= ((
(=)
,
− _((=)

�
)*̂=). (1.27)

Different implementations of the multilinear discriminant analysis have been introduced including Dis-

criminant Analysis with Tensor Representation (DATER), Direct Generalized Tensor Discriminant Analysis

(DGTDA) and ConstrainedMDA (CMDA). DATERminimizes the ratio CA (*>= (
(=)
,
=)/CA (>= (

(=)
�
*=) [195]

instead of (1.27). Direct Generalized Tensor Discriminant Analysis (DGTDA), on the other hand, computes

scatter matrices without projecting inputs on *<, where < ≠ = and finds an optimal *=[112]. Constrained

MDA (CMDA) finds the solution in an iterative fashion [112], where each subspace is found by fixing all

other subspaces.

1.7 Organization and Contributions of the Thesis

In this thesis, we present novel algorithms for learning from tensor data for different applications including

discriminative and multi-modal supervised learning, data recovery, and anomaly detection from spatiotem-

poral data. In all of the proposed methods, important design challenges such as keeping the storage and

computational complexity low while maintaining high performance accuracy are taken into account. The re-

sulting cost functions are formulated as optimization problems and efficient algorithms are presented to solve

them. We have also provided analysis of the proposed algorithms in terms of convergence, computational

and storage complexity. The algorithms were applied to classification, clustering and anomaly detection

tasks.

In Chapter 2, we introduce a tensor decomposition structure that provides computational and storage

efficiency while providing high accuracy for both supervised and unsupervised applications. The structure

is akin to a hybrid between Tensor Train and Tucker decompositions using the flexibility of tensor networks,

and named as multi-branch tensor train decomposition. This new structure is useful for extending existing

machine learning methods to tensor type data. This structure is employed in a supervised learning setting for

extending LDA to tensor data. We also present an unsupervised learning method that relies on the proposed

structure, namely graph regularized tensor train decomposition. The proposed supervised and unsupervised

algorithms are compared to state-of-the-art tensor decompositions with similar objectives in, respectively,

classification and clustering settings on various data sets.

13

In Chapter 3, we address the problem of unsupervised anomaly detection in spatiotemporal data. In

this chapter, we develop an anomaly detection method by taking the structure of anomalies into account.

In particular, we model the spatiotemporal data as a tensor where the underlying data is low-rank and the

anomalies are sparse and temporally continuous. In other words, anomalies appear as spatially contiguous

groups of locations that show anomalous values consistently for a short duration of time. We present different

methods based on these assumptions: LOw-rank plus temporally Smooth Sparse decomposition (LOSS),

Graph regularized LOSS (GLOSS) and LOw-rank on Graphs plus temporally Smooth Sparse decomposition

(LOGSS). LOSS and GLOSS use the same objective functions except for the graph regularization term

included in GLOSS. By including a graph regularization term in the objective, we preserve the local geometry

of the data. In LOGSS, different from the previous two, graph regularization is employed to approximate the

nuclear norm minimization problem to reduce the computational complexity. As the proposed methods use

a tensor completion framework, they are robust against missing entries in the observed spatiotemporal data.

In Chapter 4, we study geometric tensor learning, a framework that explores the effectiveness of product

graph structure on tensors. This framework is utilized for a tensor recovery task where the aim is to

reconstruct the underlying data from grossly corrupted and partially observed data. We present a new

method with Tensor Train structure to model the data. Using TT changes the definition of the product graph

as the tensor factorization is not Kronecker structured. We propose two new algorithms to model product

graphs for TT decomposition, where in the first approach, we propose using a graph for each canonical mode

unfolding, and in the second model, we show the equivalence of canonical unfolding to mode-= unfolding

when each mode-= graph has a Kronecker structure.

In Chapter 5, we present a coupled support tensor machine framework for classification. The framework

extends a supervised learning task to multiple, possibly heterogenous, data sources such as simultaneous

EEG and fMRI. Starting from a kernelized support tensor machine (STM) framework formulated for single

modality, we propose a multiple kernel approach. In particular, we estimate latent factors from Advanced

Coupled Matrix Tensor Factorization (ACMTF) [3] jointly across modalities. This algorithm decomposes

multiple tensors with CP decomposition, where some sets of factors from different modes are coupled

together, i.e. has similarity conditions, to account for the same underlying physical phenomenon that affects

these factors. A Coupled Support Tensor Machine (C-STM) combines individual and shared latent factors

with multiple kernels and estimates a maximal-margin classifier for coupled matrix tensor data.

Finally, Chapter 6 summarizes the main contributions of this thesis and discuss potential future research

14

directions.

15

CHAPTER 2

MULTI-BRANCH TENSOR TRAIN STRUCTURE FOR SUPERVISED AND UNSUPERVISED
LEARNING

2.1 Introduction

Tensor decompositions have been proposed for various tasks including dimensionality reduction, classifi-

cation and clustering. In the area of unsupervised learning, many vector or matrix based methods such as

PCA, SVD and NMF have been extended to tensors using various tensor decomposition structures including

PARAFAC/CP, Tucker decomposition and TT [159, 42, 93, 26, 48, 49, 43, 106, 18, 181]. Tensors have also

gained attention in supervised learning literature. Vectorizing high dimensional inputs may result in poor

classification performance due to overfitting when the training sample size is relatively small compared to

the feature vector dimension [159, 112, 169, 168, 196]. Another issue brought forth by vectorization is small

sample size (SSS) problem. This problem is considered to be the main drawback of linear discriminant

analysis (LDA) as the objective function becomes ill-defined due to the singularity of the estimated scatter

matrices [63]. For this and many other reasons, a variety of supervised tensor learning methods for feature

extraction, selection, regression and classification have been proposed [126, 168, 97, 75, 112, 74]. These

include extensions of Linear Discriminant Analysis (LDA) to Multilinear Discriminant Analysis (MDA) for

face and gait recognition [196, 168, 112]; Discriminant Non-negative Tensor Factorization (DNTF) [202];

Supervised Tensor Learning (STL) where one projection vector along each mode of a tensor is learned [169,

76]. More recently, the linear regression model has been extended to tensors to learn multilinear mappings

from a tensorial input space to a continuous output space [73, 201]. Finally, a framework for tensor-based

linear large margin classification was formulated as Support Tensor Machines (STMs), in which the param-

eters defining the separating hyperplane form a tensor [97, 75, 74]. However, most of these methods are

based on CP or Tucker decomposition which have various problems.

CP decomposition is very efficient in terms of storage complexity and has useful properties such as

uniqueness and interpretability, which is not true for TD or TT. However, finding the correct CP rank is

challenging and often is done by iterating over different values. For noisy tensor data, CP decomposition may

find false rank. Moreover, there may not be a low-rank approximation, which is referred to as degeneracy

[93] and the problem is often ill-posed [44].

16

Tucker Decomposition is an extension of SVD and a widely used tensor decomposition. Also, it is more

numerically stable compared to CP and most of the time, a low-rank approximation exists in Tucker form.

However, Tucker representation can be exponential in storage requirements since even when each mode is

low-rank with rank A , the dimensionality of a sample core tensor X:2 will be A# [182, 32]. It was also shown

in [17] that learning a low-rank approximation using Tucker Decomposition requires a truncated SVD on a

fat matrix, which hinders the quality of the low-rank approximation as fat or tall matrices are usually full

rank.

TT format exhibits both stability and low storage complexity compared to Tucker format [42]. It was also

suggested as a possible solution to the imbalance of unfolding problem encountered in Tucker decomposition

in [17]. However, the ranks of the core tensors in the Tensor Train decomposition are frequently not low

for real data [45] and increase exponentially with the number of modes. In [204], a solution was proposed

by limiting the maximum ranks of tensor factors and optimizing accordingly. This limitation requires

the original data to be low TT rank, which is not true for most real data [45, 204], and results in lower

approximation accuracy. A widely used solution to these problem with TT or MPS [18] is to start the

Tensor Train decomposition from the left, i.e. first mode, and the right, i.e. last mode, simultaneously which

decreases the computational complexity significantly.

Even though early applications of TT decomposition focused on compression and dimensionality re-

duction [139, 140], more recently TT has been used in machine learning applications. In [18], MPS is

implemented in an unsupervised manner to first compress the tensor of training samples and then the re-

sulting lower dimensional core tensors are used as features for subsequent classification. In [182], TT

decomposition is associated with a structured subspace model, namely the Tensor Train subspace. Learning

this structured subspace from training data is posed as a non-convex problem referred to as TT-PCA. Once the

subspaces are learned from the training data, the resulting low-dimensional subspaces are used to project and

classify the test data. [183] extends TT-PCA to manifold learning by proposing a Tensor Train neighborhood

preserving embedding (TTNPE). The classification is conducted by first learning a set of tensor subspaces

from the training data and then projecting the training and testing data onto the learned subspaces. Apart

from employing TT for subspace learning, recent work has also considered the use of TT in classifier design.

In [38], a support tensor train machine (STTM) is introduced to replace the rank-1 weight tensor in Support

Tensor Machine (STM) [169] by a Tensor Train that can approximate any tensor with a scalable number of

parameters.

17

In order to address the issues of exponential storage requirements and high computational complexity, in

this chapter, we introduce supervised and unsupervised subspace learning approaches based on the Tensor

Train (TT) structure. Building on the idea of starting the decomposition from the first and last modes

simultaneously, we show that using a number of branches in the decomposition, a hybrid between TT and

Tucker Decomposition structure can be achieved which in turn can provide a balanced structure and low

ranks. When the number of branches is equal to one, the decomposition is equivalent to a standard TT

decomposition. When the number of branches is equal to the number of modes, the decomposition is

equivalent to Tucker Decomposition. As a special case, when the number of branches is two, the structure

is still denoted as TT in previous work[98, 204, 18, 45]. However, the formulation is different from one-

way TT as the orthogonality requirements of some factors become right-orthogonality instead of left. By

generalizing the proposed idea to different number of branches, we show that our structure is a hybrid tensor

decomposition that includes TT and Tucker decomposition as special cases. The significance of the number

of branches becomes more apparent for high dimensional data with large number of modes as for these data,

the TT ranks tend to get large. The proposed structure is closely related to recent work in the computation

of extremal eigenvalue-eigenvector pairs of large Hermitian matrices [45]. Since the main objective is to

compute extremal eigenpairs, i.e. Ritz pairs, of a large-scale structured matrix, the proposed multi-branch

approach is similar to the previously introduced block TT (BTT) format [56, 98, 204].

In particular, we present a discriminant subspace learning approach using the TT model, namely the

Tensor Train Discriminant Analysis (TTDA). The proposed approach is based on linear discriminant analysis

(LDA) and learns a Tensor Train subspace (TT-subspace) [183, 182] that maximizes the linear discriminant

function. Although this approach provides an efficient structure for storing the learned subspaces, it is com-

putationally prohibitive. For this reason, we propose the multi-branch structure for efficient implementations

of TTDA. In the second part of this chapter, we apply the multi-branch structure to an unsupervised learning

problem that can be posed as an extremal eigenvalue-eigenvector problem. This problem is a combination

of manifold learning and linear subspace learning which is posed as a graph regularized dimensionality

reduction algorithm.

The contributions of the chapter can be summarized as follows:

• A new tensor network structure is introduced to provide a better trade-off between computational

complexity and storage cost. The proposed multi-branch structure is akin to a hybrid between tensor-

18

train and Tucker decompositions using the flexibility of tensor networks. This structure can also be

utilized within other subspace learning tasks, as was done in both supervised and unsupervised settings

in this chapter.

• This chapter is the first that uses tensor-train decomposition to formulate LDA for supervised subspace

learning. Unlike recent work on TT-subspace learning [17, 18, 182, 183] which focuses on dimension-

ality reduction, the proposed work learns discriminative TT-subspaces to extract features that optimize

the linear discriminant function.

• A theoretical analysis of storage and computational complexity of this new framework is presented. A

method to find the optimal implementation of the multi-branch TT model given the dimensions of the

input tensor is provided.

The rest of the chapter is organized as follows. In Section 2.2, we introduce an optimization problem

to learn the TT-subspace structure that maximizes the linear discriminant function, named as Tensor Train

Discriminant Analysis (TTDA). In Section 2.3, we introduce multi-branch implementations of TTDA to

address the issue of high computational complexity. In Section 2.4, we provide an analysis of storage

cost, computational complexity and convergence of the proposed algorithms. We also provide a procedure

to determine the optimal TT structure for minimizing storage complexity. In Section 2.5, we compare the

proposed methods with state-of-the-art tensor based discriminant analysis and subspace learning methods for

classification applications. In Section 2.6, we discuss graph regularized unsupervised learning on tensors,

then, propose an implementation using the two-way structure using an ADMM based optimization, and

discuss the convergence properties. In Section 2.7, we compare the proposed method with unsupervised

tensor learning methods for clustering applications on two data sets.

2.2 Tensor Train Discriminant Analysis

When the data samples are tensors, traditional LDA first vectorizes them and then finds an optimal projection

as shown in (1.23). This creates problems as the intrinsic structure of the data is destroyed. Even though

MDA addresses this problem, it is inefficient in terms of storage complexity as it relies on TD [45, 32]. Thus,

we propose to solve (1.23) by constraining * = L(U1 ×1
3 U2 ×1

3 · · · ×
1
3 U#) to be a TT-subspace to reduce

the computational and storage complexity and obtain a solution that will preserve the inherent data structure.

19

The goal of TTDA is to learn left orthogonal tensor factors U= ∈ R'=−1×�=×'= , = ∈ {1, . . . , #} using

TT-model such that the discriminability of projections x:2 ,∀2, : is maximized. First,U=s can be initialized

using TT decomposition proposed in [140]. To optimize U=s for discriminability, we need to solve (1.23)

for eachU=, which can be rewritten using the definition of* as:

U= = argmin
Û=

CA

[
L(U1 ×1

3 · · · ×
1
3 Û= ×

1
3 · · · ×

1
3U#)

>(L(U1 ×1
3 · · · ×

1
3 Û= ×

1
3 · · · ×

1
3U#)

]
. (2.1)

Using the definitions presented in (1.1) and (1.2), we can express (2.1) in terms of tensor merging
product:

U= = argmin
Û=

CA

[
(U1 ×1

3 · · · ×
1
3 Û= ×

1
3 · · · ×

1
3 U#) ×

1,...,#
1,...,# S ×

1,...,#
#+1,...,2# (U1 ×1

3 · · · ×
1
3 Û= ×

1
3 · · · ×

1
3 U#)

]
, (2.2)

where S = T−1
#
(() ∈ R�1×···×�#×�1×···×�# . LetU≤=−1 = U1×1

3U2×1
3 · · · ×

1
3U=−1 andU>= = U=+1×1

3 · · · ×
1
3

U# . By rearranging the terms in (2.2), we can first compute all merging products and trace operations that

do not involveU= as:

A= = CA8
4

[
U≤=−1 ×1,...,=−1

1,...,=−1

(
U>= ×=+1,...,#1,...,#−=

(
U≤=−1 ×#+1,...,#+=−1

1,...,=−1 (U>= ×#+=+2,...,2#1,...,#−= S)
))]

, (2.3)

where A= ∈ R'=−1×�=×'=×'=−1×�=×'= (refer to Figure 2.1 for a graphical representation of (2.3)). Then, we

can rewrite the optimization in terms ofU=:

U= = argmin
Û=

(
Û= ×1,2,3

1,2,3

(
A= ×1,2,3

4,5,6 Û=
))
. (2.4)

Let �= = T3(A=) ∈ R'=−1�='=×'=−1�='= , then (2.4) can be rewritten as:

U= = argmin
Û=

V(Û=)>�=V(Û=), L(Û=)>L(Û=) = I'= . (2.5)

This is a non-convex function due to unitary constraints and can be solved by the algorithm proposed in

[189]. The algorithm employs a curvilinear line search method to solve minimizations with orthogonality

constraints such as eigenvalue decompositions or matrix rank minimization. The procedure described above

to find the subspaces is computationally expensive as the complexity of finding each A= [183] is at least

quadratic in the number of elements, i.e. O(�2#).

When = = # , (2.5) does not apply asU># is not defined and the trace operation is defined on the third

mode ofU# . To updateU# , the following can be used:

U# = argmin
Û#

CA

(
Û# ×1,2

1,2

(
A# ×1,2

3,4 Û#
))
,

20

S

�1

�2

. . .

�=

. . .

�#−1

�#

�1

�2

. . .

�=

. . .

�#−1

�#

U!
=−1

'=−1

U'
=

'=

'#

U!
=−1

'=−1

U'
=

'=

'#

Figure 2.1: TensorA= is formed by first mergingU'
= ,U!

=−1 and S and then applying trace operation across
4Cℎ and 8Cℎ modes of the resulting tensor. The green line at the bottom of the diagram refers to the trace
operator.

whereA# = U≤#−1×1,...,#−1
1,...,#−1

(
U≤#−1×#+1,...,2#−1

1,...,#−1 S
)
. Once all of theU=s are obtained, they can be used

to extract low-dimensional, discriminative features by the projection operation *>V(Y:2). The pseudocode

for TTDA is given in Algorithm 1.

TTDA algorithm described above is computationally expensive as it requires the computation of tensor

A= through tensor merging products. Also, the size of A= grows significantly with increasing '=, e.g.

$ (�4#), which has exponentially growing memory cost. Moreover, since the ranks of TT are bounded by

'= ≤
∏=
8=1 �8 , the size of �= may increase up to

∏=
8=1 �

2
8
×∏=

8=1 �
2
8
. Thus, �= might end up being larger

than the original scatter matrix (, making TT approximation worse than LDA in terms of computational

complexity.

2.3 Multi-Branch Tensor Train Discriminant Analysis

In this section, we introduce tensor decomposition structures to reduce computational complexity of TTDA.

In particular, instead of using the whole scatter tensor S for the update of each U=, we aim to partition

tensor factors into several sets where each set will approximate a lower dimensional TT subspace. For the

update of each factor set, the original data will be projected to the remaining sets, and then the corresponding

scatter matrix will be formed from these low dimensional projections. To further reduce the complexity,

tensor merging products between sets will be removed. These collection of sets form a Kronecker structure,

approximating* in (1.23).

21

Algorithm 2.1: Tensor Train Discriminant Analysis (TTDA)

Input: Input tensors Y:2 ∈ R�1×�2×···×�# where 2 ∈ {1, . . . , �} and : ∈ {1, . . . , }, initial tensor factors
U=, = ∈ {1, . . . , #}, _, '1, . . . , '# , "0G�C4A

Output: U=, = ∈ {1, . . . , #}, and x:2 , ∀2, :
1: S ← T−1

#
((, − _(�), see eqns.(1.24), (1.25).

2: while 8C4A < "0G�C4A do
3: for = = 1 : # − 1 do
4: Compute A= using (2.3).
5: V(U=) ← argmin

Û= ,L(Û=)>L(Û=)=I'=
V(Û=)>T3(A=)V(Û=).

6: end for

7: A# ←U!
#−1 ×

1,...,#−1
1,...,#−1

(
U!
#−1 ×

#+1,...,2#−1
1,...,#−1 S

)
8: L(U#) ← argmin

Û# ,L(Û=)>L(Û#)=I'#

CA

(
L(Û#)>T2(A#)L(Û#)

)
.

9: 8C4A ← 8C4A + 1.
10: end while
11: * = L(U1 ×1

3U2 ×1
3 · · · ×

1
3U#)

12: x:2 ← *>V(Y:2), ∀2, : .

2.3.1 Two-way Tensor Train Discriminant Analysis (2WTTDA)

As LDA tries to find a subspace * which maximizes discriminability for vector-type data, 2D-LDA tries to

find two subspaces +1, +2 such that these subspaces maximize discriminability for matrix-type data [198]. If

one considers thematricized version ofY:2 alongmode 3, i.e. T3 (Y:2) ∈ R
∏3
8=1 �8×

∏#
8=3+1 �8 , where 1 < 3 < # ,

the equivalent orthogonal projection can be written as:

T3 (Y:2) = +1-
:
2+
>
2 , (2.6)

where +1 ∈R
∏3
8=1 �8×'3 , +2 ∈R

∏#
8=3+1 �8×'̂3 , - :2 ∈R'3×'̂3 .

In TTDA, since the projections x:2 are considered to be vectors, the subspace* = L(U1 ×1
3U2 ×1

3 · · · ×
1
3

U#) is analogous to the solution of LDA with the constraint that the subspace admits a TT model. If we

consider the projections and the input samples as matrices, now we can impose a TT structure to the left and

right subspaces analogous to solution of 2D-LDA. In other words, one can find two sets of TT representations

corresponding to +1 and +2 in (2.6). Using this structural approximation, (2.6) can be rewritten as:

T3 (Y:2) = L(U1 ×1
3 · · · ×

1
3U3)-

:
2R(U3+1 ×1

3 · · · ×
1
3U#), (2.7)

which is equivalent to the following representation:

Y:2 = U1 ×1
3 · · · ×

1
3U3 ×

1
3 -

:
2 ×1

2U3+1 ×
1
3 · · · ×

1
3U# .

22

This formulation is graphically represented in Figure 2.2a where the decomposition has two branches, thus

we refer to it as Two-way Tensor Train Decomposition (2WTT).

In prior work, decompositions with this structure was also called Tensor Train [204] or Matrix Product

States [18] but the formulation is different and some properties of Tensor Train such as ranks, computational

and storage complexities change when this structure is employed. Thus, this is a different decomposition

than the conventional Tensor Train and the differences will be more higlighted when the number of branches

increase. The differences between the two-way structure and TT are:

• In the two-way structure, factors after mode-3 are not linearly dependent to the ones before mode-3.

This can be viewed easily in 2D-LDA problem, which is a two-way structure with only two modes, or

from the representation in Figure 2.2a.

• In 2WTT, modes before mode-3 are left-orthogonal, similar to TT, but the modes after mode-3 are

right orthogonal. This fact with the previous one allow a reduced computational cost in the ALS

optimization scheme by a simple linear independence assumption.

• In TT, ranks grow from the first mode to the last mode as the upper bound of each rank, '= ≤

�='=−1 ≤
∏=
=′=1 �=′, keeps increasing. On the other hand, for 2WTT ranks with = > 3 are bounded

by '= ≤ �='=+1 ≤
∏#
=′==+1 �=′. As a quantitative measure, the upper bound of the maximum rank is∏#

==1 �= for TT, and
√∏#

==1 �= for 2WTT.

To maximize discriminability using 2WTT, an optimization scheme that alternates between the two sets

of TT-subspaces can be utilized. When forming the scatter matrices for a set, projections of the data to the

other set can be used instead of the full data which is similar to (1.26). This will reduce computational

complexity as the cost of computing scatter matrices and the number of matrix multiplications to findA= in

(2.3) will decrease. We propose the procedure given in Algorithm 2.2 to implement this approach and refer

to it as Two-way Tensor Train Discriminant Analysis (2WTTDA) as illustrated in Figure 2.2c. To determine

the value of 3 in (2.7), we use a center of mass approach and find the 3 that minimizes |∏3
8=1 �8 −

∏#
9=3+1 � 9 |.

In this manner, the problem can be separated into two parts which have similar computational complexities.

23

Algorithm 2.2: Two-Way Tensor Train Discriminant Analysis (2WTTDA)

Input: Input tensors Y:2 ∈ R�1×�2×···×�# where 2 ∈ {1, . . . , �} and : ∈ {1, . . . , }, initial tensor factors
U=, = ∈ {1, . . . , #}, 3, _, '1, . . . , '# , "0G�C4A , !>>?�C4A

Output: U=, = ∈ {1, . . . , #}, and - :2 , ∀2, :
1: while 8C4A < !>>?�C4A do
2: Y! ← Y ×2,...,#−3+1

3+1,...,# (U3+1 ×1
3 · · · ×

1
3U#).

3: [U8] ←))��(Y! , _, '8 , "0G�C4A)∀8 ∈ {1, . . . , 3}.
4: Y' ← Y ×2,...,3+1

1,...,3 (U1 ×1
3 · · · ×

1
3U3).

5: [U8] ←))��(Y', _, '8 , "0G�C4A)∀8 ∈ {3 + 1, . . . , #}.
6: 8C4A = 8C4A + 1.
7: end while
8: X:2 ← L(U1 ×1

3 · · · ×
1
3U3)

>T3 (Y:2)R(U3+1 ×1
3 · · · ×

1
3U#)

>.

2.3.2 Three-way Tensor Train Discriminant Analysis (3WTTDA)

Elaborating on the idea of 2WTTDA, one can increase the number of modes of the projected samples

which will increase the number of tensor factor sets, or the number of subspaces to be approximated

using TT structure. For example, one may choose the number of modes of the projections as three,

i.e. X:2 ∈ R'31×'32×'̂32 , where 1 < 31 < 32 < # . This model, named as Three-way Tensor Train

Decomposition (3WTT), is given in (2.8) and represented graphically in Figure 2.2b.

Y:2 =
((
X:2 ×

#−32+2
3

(
U32+1 ×1

3 · · · ×
1
3U#

))
×32−31+2

2

(
U31+1 ×1

3 · · · ×
1
3U32

))
×31+2

1
(
U1 ×1

3 · · · ×
1
3U31

)
. (2.8)

To maximize discriminability using 3WTT, one can utilize an iterative approach as in Algorithm 2.2,

where inputs are projected on all tensor factor sets except the set to be optimized, then TTDA is applied to the

projections. The flowchart for the corresponding algorithm is illustrated in Figure 2.2d. This procedure can

be repeated until a convergence criterion is met or a number of iterations is reached. The values of 31 and

32 are calculated such that the product of dimensions corresponding to each set is as close to (∏#
8=1 �8)1/3 as

possible. It is important to note that 3WTT will only be meaningful for tensors of order three or higher. For

three-mode tensors, 3WTT is equivalent to Tucker Decomposition. When there are more than four modes,

the number of branches can be increased accordingly which makes 4W, 5W and #WTT possible.

2.4 Analysis of Storage, Training Complexity and Convergence

In this section, we derive the storage and computational complexities of the aforementioned algorithms as

well as providing a convergence analysis for TTDA.

24

�1

�2�#

�#−1

. . .

Y:
2

..
.

. .
.

= U1

�1

. . . U3

�3

U3+1

�3+1

. . . U#- :2

�#

(a)

�1

�2�#

�#−1

. . .

Y:
2

..
.

. .
.

= X:2

U31+1

�31+1

. . . U32

�32

U32+1

�32+1

. . . U#

�#

U1

�1

. . . U31

�31

(b)

Y, _, 3

Apply TT
in [140]

U1, . . . ,U3 U3+1, . . . ,U#

Project Y
according
to line 4.

Apply
TTDA

Project Y
according
to line 2.Y! Y'

(c)

Y, _, 3

Apply TT
in [140]

U1, . . . ,U31

U31+1, . . . ,U32

U32+1, . . . ,U#

Project Y Apply
TTDA

Y!

Y'
Y"

(d)

Figure 2.2: Illustration of the proposed methods (Compare (a) and (b) with Figures 1.2 and 1.3): (a) The
proposed tensor network structure for 2WTT; (b) The proposed tensor network structure for 3WTT; (c) The
flow diagram for 2WTTDA (Algorithm 2.2); (d) The flow diagram for 3WTTDA

Table 2.1: Storage Complexities of Different Tensor Decomposition Structures

Methods Subspaces (U=s) (O(.)) Projections X:2 (O(.))
TT (# − 1)A2� + A � A�

2WTT (# − 2)A2� + 2A � A2�
3WTT (# − 3)A2� + 3A � A3�
TD #A� A#�

Storage Complexity Let �= = �, = ∈ {1, 2, . . . , #} and '; = A, ; ∈ {2, . . . , # − 1}. Assuming # is a

multiple of both 2 and 3, total storage complexities are:

• O((# − 1)A2� + A � + A�) for TT Decomposition, where '1 = 1, '# = A;

• O((# − 2)A2� + 2A � + A2�) for Two-Way TT Decomposition, where '1 = '# = 1;

• O((# − 3)A2� + 3A � + A3�) for Three-Way TT Decomposition, where '1 = '31 = '# = 1;

• O(#A� + A#�) for Tucker Decomposition, where '1 = '# = A .

These results show that when the number of modes for the projected samples is increased, the storage cost

increases exponentially for X:2 while the cost of storing U=s decreases quadratically. Using the above, one

25

Table 2.2: Computational complexities of various algorithms. The number of iterations to find the subspaces
are denoted as C2 for CMDA and CC for TT-based methods. �B = 2� . (A << �, CCA (A + #/ 5 − 1) << �B,
and �# / 5 >> A6)

Methods Order of Complexity (O(.))
LDA �B �

2# + �3#

DGTDA 3�3 + #�B �#+1
CMDA 2C2 �3 + C2#2�B �

#

TTDA �B �
2#

2WTTDA (A/2 + 2)�B �#
3WTTDA (A �# /3/2 + 3)�B �2# /3

can easily find the optimal number of modes for the projected samples that minimizes storage complexity.

Let the number of modes of X:2 be denoted by 5 . The storage complexity of the decomposition is then

O((# − 5)A2� + 5 A � + A 5 �). The optimal storage complexity is achieved by taking the derivative of the

complexity in terms of 5 and equating it to zero. In this case, the optimal 5 is given by

5̂ = A>D=3

(
logA

(
A2� − A �
� ln(A)

))
,

where A>D=3 (.) is an operator that rounds to the closest positive integer.

2.4.1 Computational Complexity

For all of the decompositions mentioned except for DGTDA and LDA, the U=s and X:2 depend on each

other which makes these decompositions iterative. The number of iterations will be denoted as C2 and CC for

CMDA and TT-based methods, respectively. For the sake of simplicity, we also define �B = 2� . The total

cost of findingU=s and X:2 ∀=, 2, : , where A << � is in the order of:

• O
(
�#

[
(�B + CCA (A + # − 1))�# + CCA4(� + A2�−1)

])
for TTDA;

• O
(
A �#

�B
2 + 2�# /2

[
(�B + CCA (A + #/2 − 1))�# /2 + CCA4� + CCA6�−1]) for 2WTTDA;

• O
(
A �#

�B
2 + 3�# /3

[
(�B + CCA (A + #/3 − 1))�# /3 + CCA4� + CCA6�−1]) for 3WTTDA.

If convergence criterion ismet with a small number of iterations, i.e. CCA (A+#/ 5 −1) << �B, and �# / 5 >> A6

for all 5 , the reduced complexities are as given in Table 2.2.

We can see from Table 2.2 that with increasing number of branches, TT-based methods become more

efficient if the algorithm converges in a few number of iterations. This is especially the case if the ranks of

tensor factors are low as this reduces the dimensionalities of the search space and the search algorithm finds

26

a solution to (2.5) faster. When this assumption holds true, the complexity is dominated by the formation

of scatter matrices. Note that the ranks are assumed to be much lower than dimensionalities and number of

modes is assumed to be sufficiently high. When these assumptions do not hold, the complexity of computing

A= might be dominated by terms with higher powers of A . This indicates that TT-based methods are more

effective when the tensors have higher number of modes and when the TT-ranks of the tensor factors are

low. DGTDA has an advantage over all other methods as it is not iterative and the solution for each mode

is not dependent on other modes. On the other hand, the solution of DGTDA is not optimal and there are

no convergence guarantees except when the ranks and initial dimensions are equal to each other, i.e. when

there is no compression.

2.4.2 Convergence

To analyze the convergence of TTDA, we must first establish a lower bound for the objective function of

LDA, as (2.1) is lower bounded by the objective value of (1.23).

Lemma1. Given that_ ∈ R+, i.e. a nonnegative real number, the lower bound of CA (*>(,*)−_CA (*>(�*)

is achieved when* ∈ R
∏#
==1 �=×A satisfies the following two conditions, simultaneously:

1. The columns of* are in the null space of (, : u 9 ∈ =D;; ((,),∀ 9 ∈ {1, . . . , A}.

2. {u1, u2, . . . , uA } are the top-A eigenvectors of (�.

In this case, the minimum of CA (*>(,*) − _CA (*>(�*) = −_
∑A
8=1 f8 , where f8s are the eigenvalues of

(�.

Proof. Since (, is positive semi-definite,

0 ≤ min
*
CA (*>(,*),

which implies that when the columns of* are in the null space of (, , i.e. u 9 ∈ =D;; ((,),∀ 9 ∈ {1, . . . , A},

the minimum value will be achieved for the first part of the objective function.

To minimize the trace difference, we need to maximize CA (*>(�*) which is bounded from above as:

max
*

CA (*>(�*) ≤
A∑
8=1

f8 .

27

CA (*>(�*) is maximized when the columns of * are the top-A eigenvectors of (�. Therefore, the trace

difference achieves the lower-bound when u 9 ∈ =D;; ((,),∀ 9 ∈ {1, . . . , A} and {u1, u2, . . . , uA } are the top-A

eigenvectors of (� and this lower-bound is equal to −_∑A
8=1 f8 .

As shown above, the objective function of LDA is lower bounded. Thus, the solution to (2.1) is also

lower-bounded.

Let 5 (U1,U2, . . . ,U#) = CA (*>(*), where* = L(U1 ×1
3 · · · ×

1
3U#) and (is defined as in (1.23). If

the function 5 is non-increasing with each update ofU=s, i.e.

5 (UC
1,U

C
2, . . . ,U

C−1
= , . . . ,UC−1

) ≥

5 (UC
1,U

C
2, . . . ,U

C
=, . . . ,UC−1

), ∀C, = ∈ {1, 2, . . . , #},

then we can claim that Algorithm 2.1 converges to a fixed point as C −→ ∞ since 5 (.) is lower-bounded.

In [189], an approach to regulate the step sizes in the search algorithm was introduced to guarantee global

convergence. In this chapter, this approach is used to update U=s. Thus, (2.5) can be optimized globally,

and the objective value is non-increasing. As Multi-Branch extensions utilize TTDA on the update of each

branch, proving the convergence of TTDA is sufficient to prove the convergence of 2WTTDA or 3WTTDA.

2.5 Experiments

The proposed TT based discriminant analysis methods are evaluated in terms of classification accuracy,

storage complexity, training complexity and sample size. We compared our methods1 with both linear

supervised tensor learning methods including LDA, DGTDA and CMDA[112]2 as well as other Tensor

Train based learning methods such as MPS [18], TTNPE [183]3 and STTM [38]4. The experiments were

conducted on four different data sets: COIL-100, Weizmann Face, Cambridge and UCF-101. For all data

sets and all methods, we evaluate the classification accuracy and training complexity with respect to storage

complexity.

In this chapter, classification accuracy is evaluated using a 1-NN classifier and quantified as #CAD4/#C4BC ,

where #CAD4 is the number of test samples which were assigned the correct label and #C4BC is the total number

of test samples. Normalized storage complexity is quantified as the ratio of the total number of elements in

1Our code is in https://github.com/mrsfgl/mbttda
2https://github.com/laurafroelich/tensor_classification
3https://github.com/wangwenqi1990/TTNPE.
4https://github.com/git2cchen/KSTTM

28

the learnt tensor factors (U=,∀=) and projections (X:2 ,∀2, :) of training data, $B, to the size of the original

training data (Y:2 ,∀2, :):
$B

�
∏#
==1 �=

.

Training complexity is the total runtime in seconds for learning the subspaces. All experiments were repeated

10 times with random selection of the training and test sets and average classification accuracies are reported.

The regularization parameter, _, for each experiment was selected using a validation set composed of all

of the samples in the training set and a small subset of each class from the test set (10 samples for COIL-100,

5 samples for Weizmann, 1 sample for Cambridge, and 10 samples for UCF-101). Utilizing a leave-B-out

approach, where B is the aforementioned subset size, 5 random experiments were conducted. The optimal _

was selected as the value that gave the best average classification accuracy among a range of values from 0.1

to 1000 increasing in a logarithmic scale. CMDA, TTNPE and MPS do not utilize the _ parameter while

DGTDA utilizes eigendecomposition to find _ [112]. STTM has an outlier fraction parameter which was set

to 0.02 according to the original paper [38].

2.5.1 Data Sets

COIL-100

The dataset consists of 7,200 RGB images of 100 objects of size 128 × 128. Each object has 72 images,

where each image corresponds to a different pose angle ranging from 0 to 360 degrees with increments of 5

degrees [133]. For our experiments, we downsampled the grayscale images of all objects to 64 × 64. Each

sample image was reshaped to create a tensor of size 8 × 8 × 8 × 8. Reshaping the inputs into higher order

tensors is common practice and was studied in prior work [90, 140, 209, 45, 17]. 20 samples from each class

were selected randomly as training data, i.e. Y ∈ R8×8×8×8×20×100, and the remaining 52 samples were used

for testing.

Weizmann Face Database

The dataset includes RGB face images of size 512×352 belonging to 28 subjects taken from 5 viewpoints,

under 3 illumination conditions, with 3 expressions [188]. For our experiments, each image was grayscaled,

and downsampled to 64 × 44. The images were then reshaped into 5-mode tensors of size 4 × 4 × 4 × 4 × 11

as in [183]. For each experiment, 20 samples were randomly selected to be the training data, i.e. Y ∈

R4×4×4×4×11×20×28, and the remaining 25 samples were used in testing.

29

Cambridge Hand-Gesture Database

The dataset consists of 900 image sequences of 9 gesture classes, which are combinations of 3 hand

shapes and 3 motions. For each class, there are 100 image sequences generated by the combinations of 5

illuminations, 10 motions and 2 subjects [91]. Sequences consist of images of size 240 × 320 and sequence

length varies. In our experiments, we used grayscaled versions of the sequences and we downsampled all

sequences to length 30. We also included 2 subjects and 5 illuminations as the fourth mode. Thus, we

have 10 samples for each of the 9 classes from which we randomly select 4 samples as the training set, i.e.

Y ∈ R30×40×30×10×4×9, and the remaining 6 as test set.

UCF-101 Human Action Dataset

UCF-101 is an action recognition dataset [162]. There are 13320 videos of 101 actions, where each

action category might have different number of samples. Each sample is an RGB image sequence with frame

size 240 × 320 × 3. The number of frames differs for each sample. In our experiments, we used grayscaled,

downsampled frames of size 30 × 40. From each class, we extracted 100 samples to balance the class sizes

where each sample consists of 50 frames obtained by uniformly sampling each video sequence. 60 randomly

selected samples from each class were used for training, i.e. Y ∈ R30×40×50×60×101, and the remaining 40

samples were used for testing.

2.5.2 Classification Accuracy

We first evaluate the classification accuracy of the different methods with respect to normalized storage

complexity. The varying levels of storage cost are obtained by varying the ranks, '8s, in the implementation

of the tensor decomposition methods. Varying the truncation parameter g ∈ (0, 1], the singular values

smaller than g times the largest singular value are eliminated. The remaining singular values are used to

determine the ranks '8s for both TT-based and TD-based methods. For TT-based methods, the ranks are

selected using TT-decomposition proposed in [140], while for TD-based methods truncated HOSVD was

used. We also limit the upper bounds of the ranks to '= ≤ �= to reduce the memory cost associated with

storing �=. With this limitation, the maximum dimension of projected samples x:2 becomes �# which is a

fraction of the original sample size
∏#
8=1 �8 .

In Fig. 2.3, we present comparisons of BTT based eigenpair computation algorithm [56] with the

proposed method. The experiments were conducted on COIL-100 data set. BTT performs similarly to

30

(a)

(b)

Figure 2.3: Comparisons with a BTT based Ritz pair computation algorithm. a) Classification accuracy and
b) Training time with respect to normalized storage cost.

31

(a) (b)

(c) (d)

Figure 2.4: Classification accuracy vs. Normalized storage cost of the different methods for: a) COIL-100,
b) Weizmann Face, c) Cambridge Hand Gesture and d) UCF-101. All TD based methods are denoted using
’x’, TT based methods are denoted using ’+’ and proposed methods are denoted using ’*’. STTM and LDA
are denoted using ’4’ and ’o’, respectively.

TTDA with slightly lower accuracy and higher training time for increasing storage complexity. As BTT

has adaptive ranks, the factor sizes increase more compared to TTDA which results in a much higher

computational cost. Although the scatter tensor is approximated using a TT structure, BTT does not provide

better computational complexity than TTDA as the approximation itself has $ (�2#) complexity. Multi-

branch extensions of TTDA outperform BTT both in terms of classification accuracy and computational

complexity.

Figure 2.4a illustrates the classification accuracy of the different methods with respect to normalized

storage complexity for COIL-100 data set. For this particular dataset, we implemented all of the methods

mentioned above. It can be seen that the proposed discriminant analysis framework in its original form,

TTDA, gives the highest accuracy results followed by TTNPE. However, these two methods only operate

at very low storage complexities since the TT-ranks of tensor factors are constrained to be smaller than the

corresponding mode’s input dimensions. We also implemented STTM, which does not provide compression

rates similar to other TT-based methods. This is due to the fact that STTM needs to learn � (�−1)
2 classifiers

32

(a) (b)

(c) (d)

Figure 2.5: Training complexity vs. Normalized storage cost of the different methods for: a) COIL-100, b)
Weizmann Face, c) Cambridge Hand Gesture, and d) UCF-101.

with TT structure. Moreover, these methods have very high computational complexity as will be shown in

Section 2.5.3. For this reason, they will not be included in the comparisons for the other datasets. For a wide

range of storage complexities, MPS and 2WTTDA perform the best and have similar accuracy. It can also

be seen that the storage costs of MPS and 2WTTDA stop increasing after some point due to rank constraints.

This is in line with the theoretical storage complexity analysis presented in Section 2.4. Tucker based

methods, such as CMDA and DGTDA, along with the original vector based LDA have lower classification

accuracy.

Figure 2.4b similarly illustrates the classification accuracy of the different methods on the Weizmann

Face Database. For all storage complexities, the proposed 2WTTDA and 3WTTDA perform better than the

other methods, including TT based methods such as MPS.

Figure 2.4c illustrates the classification accuracy for the Cambridge hand gesture database. In this case,

3WTTDA performs the best for most storage costs. As the number of samples for training, validation

and testing is very low for Cambridge dataset, the classification accuracy fluctuates with respect to the

dimensionality of the features at normalized storage cost of 0.02. Similar fluctuations can also be seen in the

33

results of [183].

Finally, we tested the proposed methods on a more realistic, large sized dataset, UCF-101. For this

dataset, TT-based methods perform better than the Tucker based methods. In particular, 2WTTDA performs

very close to MPS at low storage costs, whereas 3WTTDA performs well for a range of normalized storage

costs and provides the highest accuracy overall.

Even though our methods outperform MPS for most datasets, the classification accuracies get close for

UCF-101 and COIL-100. This is due to the high number of classes in these datasets. As the number of

classes increases, the number of scatter matrices that needs to be estimated also increases which results in a

larger bias given limited number of training samples. This improved performance of MPS for datasets with

large number of classes is also observed when MPS is compared to CMDA. Therefore, the reason that MPS

and the proposed methods perform similarly is a limitation of discriminant analysis rather than the proposed

tensor network structure.

2.5.3 Training Complexity

In order to compute the training complexity, for TT-based methods, each set of tensor factors is optimized

until the change in the normalized difference between consecutive tensor factors is less than 0.1 or 200

iterations is completed. After updating the factors in a branch, no further optimizations are done on that

branch in each iteration. CMDA iteratively optimizes the subspaces for a given number of iterations (which

is set to 20 to increase the speed in our experiments) or until the change in the normalized difference between

consecutive subspaces is less than 0.1.

Figs. 2.5a, 2.5b, 2.5c, 2.5d illustrate the training complexity of the different methods with respect to

normalized storage cost for the four different datasets. In particular, Figure 2.5a illustrates the training

complexity of all the methods including TTNPE, TTDA and STTM for COIL-100. It can be seen that STTM

has the highest computational complexity among all of the tested methods. This is due to the fact that for a

100-class classification problem, STTM implements (100) (99)/2 one vs. one binary classifiers, increasing

the computational complexity. Similarly, TTNPE has high computational complexity as it tries to learn the

manifold projections which involves eigendecomposition of the embedded graph. Among the remaining

methods, LDA has the highest computational complexity as it is based on learning from vectorized samples

which increases the dimensionality of the covariance matrices. For the tensor based methods, the proposed

34

2WTTDA and 3WTTDA have the lowest computational complexity followed by MPS and DGTDA. In

particular, for large datasets like UCF-101 the difference in computational complexity between our methods

and existing TT-based methods such as MPS is more than a factor of 102.

Table 2.3: Classification accuracy (top) and training time (bottom) with standard deviation for various
methods and datasets.

Accuracy (%) 3WTTDA 2WTTDA MPS[18] CMDA[112] DGTDA[112]

COIL-100 95.6 ± 0.4 94.8 ± 0.5 94.2 ± 0.2 86.3 ± 0.7 76.6 ± 0.9
Weizmann 93.6 ± 2 97.6 ± 1.2 87.5 ± 2.3 96.4 ± 1.03 69.9 ± 1.8
Cambridge 98.2 ± 1.7 89.1 ± 16.7 56.2 ± 9.8 95 ± 2.8 35.4 ± 8.7
UCF-101 68.6 ± 0.8 67.7 ± 0.9 67.9 ± 0.6 67.7 ± 0.8 57.3 ± 2.7

(s)

COIL-100 0.09 ± 0.005 0.24 ± 0.06 1.4 ± 0.13 12.2 ± 6.6 0.7 ± 0.06
Weizmann 0.05 ± 0.02 0.09 ± 0.02 0.13 ± 0.01 2.6 ± 0.3 0.16 ± 0.02
Cambridge 0.11 ± 0.01 1.7 ± 1.5 2.07 ± 0.25 12.6 ± 0.3 0.7 ± 0.04
UCF-101 0.67 ± 0.02 0.853 ± 0.13 56.4 ± 1.9 413.5 ± 24.1 35.3 ± 2.9

2.5.4 Convergence

In this section, we present an empirical study of convergence for TTDA in Figure 2.6 where we report the

objective value of TTDA, i.e. the expression inside argmin operator in (2.5), with random initialization of

projection tensors. This figure illustrates the convergence of the TTDA algorithm, which is at the core of

both 2WTTDA and 3WTTDA, on COIL-100 dataset. It can be seen that even for random initializations of

the tensor factors, the algorithm converges in a small number of steps. The convergence rates for 2WTTDA

and 3WTTDA are faster than that of TTDA as they update smaller sized projection tensors as shown in

Section 2.4.

2.5.5 Effect of Sample Size on Accuracy

We also evaluated the effect of training sample size on classification accuracy for Weizmann Dataset. In

Figure 2.7, we illustrate the classification accuracy with respect to training sample size for different methods.

It can be seen that 3WTTDA provides a high classification accuracy even for small training datasets, i.e., for

15 training samples it provides an accuracy of 96%. This is followed by CMDA and 2WTTDA. It should

also be noted that DGTDA is the most sensitive to sample size as it cannot even achieve the local optima and

more data allows it to learn better classifiers.

35

Figure 2.6: Convergence curve for TTDA on COIL-100. Objective value vs. the number of iterations is
shown.

Figure 2.7: Comparison of classification accuracy vs. training sample size for Weizmann Face Dataset for
different methods.

2.5.6 Summary of Experimental Results

In Table 2.3, we summarize the performance of the different algorithms for the four different datasets

considered in this chapter. In the left half of this table, we report the classification accuracy (mean ± std) of

the different methods for a fixed normalized storage cost of about 2.10−2 for COIL-100, 6.10−3 forWeizmann

Face, 2.10−4 for Cambridge Hand Gesture and 10−3 for UCF-101 datasets. At the given compression rates,

for all datasets the proposed 3WTTDA and 2WTTDA perform better than the other tensor based methods.

In some cases, the improvement in classification accuracy is significant, e.g. for Weizmann and Cambridge

data sets. These results show that the proposed method achieves the best trade-off, i.e. between normalized

storage complexity and classification accuracy.

Similarly, the right half of Table 2.3 summarizes the average training complexity for the different

36

methods for the same normalized storage cost. From this Table, it can be seen that 3WTTDA is the

most computationally efficient method for all datasets. This is followed by 2WTTDA. The difference

in computational time becomes more significant as the size of the dataset increases, e.g. for UCF-101.

Therefore, even if the other methods perform well for some of the datasets, the proposed methods provide

higher accuracy at a computational complexity reduced by a factor of 102.

2.6 Graph Regularized Tensor Train Decomposition

The geometric relationship between data samples has been shown to be important for learning low-

dimensional structures from high-dimensional data [171, 183]. Recently, motivated by manifold learning,

dimensionality reduction of tensor objects has been formulated to incorporate the geometric structure [115].

The goal is to learn a low dimensional representation for tensor objects that incorporates the geometric

structure while maintaining a low reconstruction error in the tensor decomposition. This idea of manifold

learning for tensors has been mostly implemented for the Tucker method, including Graph Laplacian Tucker

Decomposition (GLTD) [82] and nonnegative Tucker factorization (NTF). However, this line of work suffers

from the limitations of Tucker decomposition mentioned early in the chapter [45].

Earlier in this chapter, we proposed a TT model, called multi-branch Tensor Train, such that the features

can be matrices and higher-order tensors. In this way, the computational efficiency could be improved.

Utilizing this structure, specifically the two-way approach, we propose a graph-regularized TT decomposition

for unsupervised dimensionality reduction.

2.6.1 Problem Statement

Our goal is to find a TT projection such that the geometric structure of the samples YB ∈ R�1×···×�# is

preserved, i.e. the distance between the samples, YB, should be similar to that between the projections -B,

while the reconstruction error of the low-rank TT decomposition is minimized. This goal can be formulated

37

through the following cost function as:

5$ ({U},X) =
(∑
B=1
‖YB −U1 ×1

3 · · · ×
1
3U: ×

1
3 -B ×

1
2U:+1 ×

1
3 · · · ×

1
3U# ‖

2
�

+_
2

(∑
B=1

(∑
B′=1
B′≠B

‖-B − -B′ ‖2�FBB′, L(U=)>L(U=) = IA= ,∀=

where {U} denotes the set of tensor factorsU=,∀= ∈ {1, . . . , #}, X ∈ RA:×(×A:+1 is the tensor whose slices

are -B and FBB′ is the similarity between tensor samples defined by:

FBB′ =

1, if YB ∈ N: (YB′) or YB′ ∈ N: (YB)

0, otherwise
, (2.9)

where N: (YB) is the k-nearest neighborhood of YB.

The objective function can equivalently be expressed as:

5$ ({U},X) = ‖0:+1(Y) − U1 ×1
3 · · · ×

1
3U: ×

1
3 X ×

1
3U:+1 ×

1
3 · · · ×

1
3U# ‖

2
� + _tr

(
(X ×1

2 Φ) ×
1,2
1,3 X

)
,

L(U=)>L(U=) = IA= , for = ≤ : and R(U=)R(U=)> = IA= , for = > :,

where 0:+1(Y) ∈ R�1×···×�:×(×�:+1×···×�# is the permuted version of Y such that the last mode is moved to

the (: + 1)th mode and all modes larger than : are shifted by one mode,, ∈ R(×(is the adjacency matrix

and Φ = � −, ∈ R(×(is the graph Laplacian where � is a diagonal degree matrix with, 3BB =
∑(
B′=1 FBB′.

2.6.2 Optimization

The goal of obtaining low-rank tensor train projections that preserve the data geometry can be achieved by

minimizing the objective function as follows:

argmin
{U},X

5$ ({U},X), s.t. L(U=)>L(U=) = IA= , for = ≤ :, (2.10)

and R(U=)R(U=)> = IA= , for = > :.

As we want our tensor factors to be orthogonal, the solutions lie in the Stiefel manifold S= , i.e. L(U=) ∈ S=

for = ≤ : and R(U=)> ∈ S= for = > : . Although the function 5$ (.) is convex, the optimization problem is

nonconvex due to the manifold constraints onU=s.

38

The solution to the optimization problem can be obtained by Alternating DirectionMethod ofMultipliers

(ADMM). In order to solve the optimization problem we define {V}, as the set of auxiliary variables

V=,∀= ∈ {1, . . . , #} and rewrite the objective function as:

argmin
{U}, {V},X

5$ ({V},X) subject to U= = V= ,∀=

L(U=) ∈ S=,∀= ≤ : and R(U=)> ∈ S=,∀= > :.

The partial augmented Lagrangian is given by:

L ({U}, {V},X, {Z}) = 5$ ({V},X) −
#∑
==1
Z= ×1,2,3

1,2,3 (V= −U=) +
W

2

#∑
==1
‖V= −U=‖2� , (2.11)

whereZ=s are the Lagrange multipliers and W is the penalty parameter.

As each tensor factor is independent from the others, we update the variables for each mode = using the

corresponding part of the augmented Lagrangian:

L= (U=,V=,Z=) = 5$ (V=) − Z= ×1,2,3
1,2,3 (V= −U=) +

W

2
‖V= −U=‖2� , (2.12)

where 5$ (V=) denotes the objective function where all variables other than V= are fixed. The solution for

each variable at iteration C + 1 can then be found using a step-by-step approach as:

V C+1
= = argmin

V=
L=

(
UC
=,V=,ZC=

)
, (2.13)

UC+1
= = argmin

U=

L=

(
U=,V C+1

= ,ZC=
)
,L(*=) ∈ S= for = ≤ :,

L=
(
U=,V C+1

= ,ZC=
)
,R(*=)> ∈ S= for = > :,

ZC+1= = ZC= − W(V C+1
= −UC+1

=). (2.14)

OnceV=,U=,Z= are updated for all =, samples X are computed using:

XC+1 = argmin
X
L

(
{UC+1}, {V C+1},X, {ZC+1}

)
. (2.15)

Solution forV=: For = ≤ : , the solution forV C+1
= can be written explicitly as:

V C+1
= = argmin

V=
‖0:+1(Y) − V C+1

1 ×1
3 · · · ×

1
3 V= ×

1
3 · · · ×

1
3 V

C
: ×

1
3 X

C ×1
3 V

C
:+1 ×

1
3 · · · ×

1
3 V

C
‖

2
�

−ZC= ×1,2,3
1,2,3 (V= −U

C
=) +

W

2
‖V= −UC

=‖2� . (2.16)

39

We can equivalently convert this equation into matrix form as:

V C+1
= = argmin

V=
‖�L(V=)% − T= (0:+1(Y))‖2� − tr

(
L(ZC=)>L(V= −UC

=)
)
+ W

2
‖L(V=) − L(UC

=)‖2� ,

(2.17)

where � =
[
I�= ⊗ + C+1≤=−1

]
, % = R(V C

=+1 ×
1
3 · · · ×

1
3V

C
:
×1

3 X
C ×1

3 · · · ×
1
3V

C
#
). The analytical solution is found

by taking the derivative with respect to L(V=) and setting it to zero:

2�>
(
�L(V C+1

=)% − �
)
%> − L(ZC=) + WL(V C+1

=) − WL(UC
=) = 0,

T3(V C+1
=) =

(
2(%%> ⊗ �>�) + WIA=−1�=A=

)−1 (
T3(WUC

= + ZC=) + 2T2(�>�%>)
)
, (2.18)

where � = T= (0:+1(Y)). Note that the inverse in the solution will always exist given W > 0 as the inverse

of a sum of a Hermitian matrix and an identity matrix always exists.

When = > : , following (2.17) the solution for V= can be written in the same manner but with different

�,� and %, where � = + C≤=−1, % =
[
+ C+1>= ⊗ I�=

]
and � = T=+1(0:+1(Y)).

Solution forU=: For = ≤ : , we can solve (2.12) forU= using:

UC+1
= = argmin

U=:L(U=) ∈S=
−tr

(
L(ZC=)>L(V C+1

= −U=)
)
+ W

2
‖L(V C+1

=) − L(U=)‖2�

= argmin
U=:L(U=) ∈S=

‖L(V C+1
=) −

1
W

L(ZC=) − L(U=)‖2� , (2.19)

which is found by applying a singular value decomposition to L(V C+1
=) − 1

W
L(ZC=). When = > : , the optimal

solution is similarly found by applying SVD to R(V C+1
=) − 1

W
R(ZC=).

Solution for X: Let 02(X) ∈ RA:×A:+1×(be the permutation of X, (2.15) can equivalently be rewritten in

matrix form as:

argmin
X

[+ C+1>:

> ⊗ + C+1≤:
]

L(02(X)) − T# (Y)
2

�
+ _tr

(
L(02(X))ΦL(02(X))>

)
. (2.20)

The solution for XC+1 does not have any constraints, thus it is solved analytically by setting the derivative of

(2.20) to zero:

2�>(�L(02(XC+1)) − �) + 2_L(02(XC+1))Φ = 0,

�>�L(02(XC+1)) + _L(02(XC+1))Φ = �>�, (2.21)

where � = + C
>:

> ⊗ + C+1≤: and � = T# (Y). (2.21) is a Sylvester equation which can be solved efficiently

[14]. Similar to the case forV=, the solution to this problem always exists.

Solution forZ=: Finally, we update the Lagrange multipliersZC= using (2.14).

40

Algorithm 2.3: Graph Regularized Tensor Train-ADMM(GRTT-ADMM)

Input: Input tensors YB ∈ R�1×�2×···×�# where B ∈ {1, . . . , (}, initial tensor factors {U1}, = ∈ {1, . . . , #},
: , _, A1, . . . , A# , !>>?�C4A, �>=E)ℎA4Bℎ

Output: U=, = ∈ {1, . . . , #}, and -B, ∀B
1: {V1} ← {U1}.
2: {Z1} ← 0.
3: while C < !>>?�C4A or 2 > �>=E)ℎA4B do
4: for = = 1 : # do
5: FindV C+1

= using (2.18).
6: FindUC+1

= using SVD to solve (2.19).
7: FindZC+1= using (2.14).
8: end for
9: Find XC+1 using (2.21).
10: 2 ← 1

#

∑#
==1

‖VC+1= −VC= ‖2�
‖VC= ‖2�

11: C = C + 1.
12: end while

2.6.3 Convergence

Convergence ofADMM is guaranteed for convex functions but there is no theoretical proof of the convergence

of ADMM for nonconvex functions. Recent research has provided some theoretical guarantees for the

convergence of ADMM for a class of nonconvex problems under some conditions [187].

Our objective function is nonconvex due to unitary constraints. In [187], it has been shown that this type

of nonconvex optimization problems, i.e. convex optimization on a Stiefel manifold, converge under some

conditions. We show that these conditions hold for each optimization problem corresponding to mode =.

The gradient of 5$ with respect toV= is Lipschitz continuous with Lipschitz constant ! ≥ ‖%%> ⊗ �>�‖2,

which fulfills the conditions given in [187]. Thus, L= convergences to a set of solutionsV C
= ,UC

=,ZC=, given

that W ≥ 2!+1. The solution forX is found analytically. As the iterative solutions for each variable converge

and the optimization function is nonnegative, i.e. bounded from below, the algorithm converges to a local

minimum.

2.7 Experiments

The proposedmethod is evaluated for clustering and compared to existing tensor clusteringmethods including

k-means, MPS [18], TTNPE [183] and GLTD [82] for Weizmann Face Database and MNIST Dataset.

Clustering quality is quantified by Normalized Mutual Information (NMI). Average accuracy with respect to

both storage complexity and computation time over 20 experiments are reported for all methods.

41

In the following experiments, the storage complexity is quantified as the size of the tensor factors (U=,∀=)

and projections (XB,∀B). The varying levels of storage cost are obtained by varying A=s in the implementation

of the tensor decomposition methods. Using varying levels of a truncation parameter g ∈ (0, 1], the singular

values smaller than g times the largest singular value are discarded. The rest are used to determine ranks

A= for both TT based and TD based methods. For GRTT and TTNPE, the ranks are selected using TT

decomposition proposed in [140], while for GLTD truncated HOSVD was used. Computational complexity

is quantified as the time it takes to learn the tensor factors. In order to compute the run time, for TT

based methods, each set of tensor factors is optimized until the change in the normalized difference between

consecutive tensor factors is less than 0.01 or 50 iterations are completed.

The regularization parameter, _, for each experiment was selected using a validation set composed of a

small batch of samples not included in the experiments. 5 random experiments were conducted and optimal

_ was selected as the value that gave the best average NMI for a range of _ values from 0.001 to 1000

increasing in a logarithmic scale. The similarity graphs were constructed using k-nearest neighbor method

with : = ;>6(() following [177].

2.7.1 MNIST

MNIST is a database of grayscale handwritten digit images where each image is of size 28 × 28. We

transformed each of the images to a 4 × 7 × 4 × 7 tensor. Reshaping the inputs into higher order tensors is

common practice and was employed in prior work [90, 140, 209, 45, 17]. In our experiments, we used a

subset of 500 images with 50 images from each class. 50 samples with 5 samples from each class are used

as validation set to determine _.

(a) (b)

Figure 2.8: (a) Normalized Mutual Information vs. Storage Complexity of different methods for MNIST
dataset. (b) Computation Time vs. Storage Complexity of different methods for MNIST dataset.

42

In Figure 2.8a, we can see that at all storage complexity levels, our approach gives the best clustering

result in terms of NMI. The dotted purple line represents the accuracy of k-means clustering on original

tensor data. Even though the performance of TTNPE is the closest to our method, it is computationally

inefficient. In Figure 2.8b, we can see that our approach is faster than GLTD and TTNPE at all storage

complexities. MPS is the most efficient in terms of speed but it provides poor clustering quality.

2.7.2 COIL

The dataset consists of 7,200 RGB images of 100 objects of size 128 × 128. Each object has 72 images,

where each image corresponds to a different pose angle ranging from 0 to 360 degrees with increments of 5

degrees [133]. We used a subset of 20 classes and 32 randomly selected, downsampled, grayscale samples

from each class. Each image was converted to an 8 × 8 × 8 × 8 tensor. 8 samples from each class are used

as validation set.

(a) (b)

Figure 2.9: (a) NormalizedMutual Information vs Storage Complexity of different methods for COIL dataset.
(b) Computation Time vs Storage Complexity of different methods for COIL dataset.

From Figure 2.9a, we can see that the proposed method provides the best clustering results compared to

all other methods. The results for GLTD seem to deteriorate with increasing ranks, which is a result of using

orthonormal tensor factors. TTNPE gives results closest to the proposed method but it is computationally

inefficient and gets very slow with increasing A=s. From Figure 2.9b, we can see that MPS provides best

results in terms of run time but the proposed method has a similar computational complexity while providing

better clustering accuracy.

43

2.8 Conclusions

In this chapter, we propose a new Tensor Train implementation structure and two associated learning tasks.

In the first part of the chapter, i.e. Tensor Train Disciminant Analysis, we introduce a novel approach

for Tensor Train based discriminant analysis for tensor object classification. The proposed approach first

formulated linear discriminant analysis such that the learnt subspaces have a TT structure. The resulting

framework, TTDA, reduces storage complexity at the expense of high computational complexity. This

increase in computational complexity is then addressed by reshaping the projection vector into matrices and

third-order tensors, resulting in 2WTTDA and 3WTTDA, respectively. A theoretical analysis of storage and

computational complexity illustrated the tradeoff between these two quantities and suggest a way to select

the optimal number of modes in the reshaping of TT structure. The proposed methods were compared with

the state-of-the-art TT based subspace learning methods as well as tensor based discriminant analysis for

four datasets. While providing reduced storage and computational costs, the proposed methods also yield

higher or similar classification accuracy compared to state-of-the art tensor based learning methods such as

CMDA, STTM, TTNPE and MPS.

In the second part of the chapter, i.e. Graph Regularized Tensor Train Decomposition we proposed a

unsupervised graph regularized tensor train decomposition for dimensionality reduction. To the best of our

knowledge, this is the first tensor train based dimensionality reduction method that incorporates manifold

information through graph regularization. The proposed method also utilizes a multi-branch structure to

implement tensor train decomposition which increases the computational efficiency. An ADMM based

algorithm is proposed to solve the resulting optimization problem. The proposed method was compared to

GLTD, TTNPE and MPS for unsupervised learning in two different datasets.

The proposed multi-branch structure can also be extended to other unsupervised methods such as

dictionary learning, subspace learning, denoising, data recovery, and compression applications. The structure

can also be optimized by permuting the modes in a way that the dimensions are better balanced than the

original order.

44

CHAPTER 3

TENSOR METHODS FOR ANOMALY DETECTION ON SPATIOTEMPORAL DATA

3.1 Introduction

Large volumes of spatiotemporal data are ubiquitous in a diverse range of applications including climate

science, social sciences, neuroscience, epidemiology [20], transportation systems [55], mobile health, and

Earth sciences [207]. One emerging application of interest in spatiotemporal data is anomaly detection. De-

tecting anomalies from these large data volumes is important for identifying interesting but rare phenomena,

e.g. traffic congestion or irregular crowd movement in urban areas, or hot-spots for monitoring outbreaks in

infectious diseases. Traditionally, the problem of anomaly detection has been approached mainly through

statistical and machine learning techniques [34, 59, 79]. However, these techniques are not as effective on

spatiotemporal data as anomalies are highly correlated across time and space, they can no longer be modeled

as i.i.d.

The definition of anomaly and the suitability of a particular method is determined by the application. In

this chapter, we focus on urban anomaly detection [206, 205, 117, 118, 203], where anomalies correspond to

incidental events that occur rarely, such as irregularity in traffic volume, unexpected crowds, etc. Urban data

are spatiotemporal data collected by mobile devices or distributed sensors in cities and are usually associated

with timestamps and location tags. Detecting and predicting urban anomalies are of great importance to

policymakers and governments for understanding city-scale human mobility and activity patterns, inferring

land usage and region functions and discovering traffic problems [206, 31].

Urban anomalies are usually modeled as group anomalies within spatiotemporal data. This type of

anomalies exhibit themselves as spatially contiguous groups of locations that show anomalous values con-

sistently for a short duration of time stamps. Early approaches to detecting these anomalies decompose the

anomaly detection problem by first treating the spatial and temporal properties of the outliers independently

using univariate vector modeling frameworks, and then merging together in a post-processing step [58, 191].

Some examples are dynamic linearmodels (DLMs) [108] including time-varying autoregressive (TVAR) [24,

25] and switching Kalman filtering/smoothing (SKF/SKS) [131, 134]. However, as the number of sensors

increases, scalability becomes a critical issue and these methods become inefficient and unreliable [59]. For

45

these reasons, one natural approach to address ST anomaly detection has been to use tensor decomposition

to capture the multiway structure of the data.

While there has been a growing number of papers in low-rank tensor models for anomaly detection [60,

186, 193, 185, 205, 117], most of the existing methods are not particularly suited to the complex structure of

anomalies in urban traffic data and the unique challenges associated with them. These challenges include:

1) scarcity of anomalies; 2) the contextual dependency of what constitutes an anomaly, i.e., the criteria

for anomaly may vary for different regions and time windows due to external influences such as weather

patterns; 3) long-term periodicity across time, e.g., one day or one week and 4) strong short-term temporal

correlations.

In this chapter, we address these challenges by proposing temporally regularized, locally consistent,

robust low-rank plus sparse tensor models to decompose the urban traffic data into normal and anomalous

components. The key contributions of the proposed methods are:

• Modeling Temporal Persistence: The traditional low-rank plus sparse tensor decomposition model

is modified to account for the characteristics of urban traffic data. As anomalies tend to last for periods

of time, i.e., have strong short-term dependencies, we impose temporal smoothness on the sparse part

of the tensor through total variation regularization. This regularization ensures that instantaneous

changes in the data, which may be due to errors in sensing, are not mistaken for actual anomalies.

This formulation leads to our first algorithm; low-rank plus temporally smooth sparse (LOSS) tensor

decomposition.

• Incorporating Local Structure: We introduce additional structure to the solution of LOSS by

enforcing the low-rank tensor corresponding to normal activity to be smooth on manifolds across each

mode. These smoothness terms are added to LOSS as graph regularization across each mode yielding

GLOSS. While the low-rank structure in LOSS captures the global structure, GLOSS further reduces

redundancy in the representation and incorporates the local geometric structure. This new framework

exploits the joint structures and correlations across the modes to more accurately model and process

ST signals.

• Using Local Structure for Efficiency: We reduce the computational cost incurred by the nuclear

norm minimization in GLOSS and LOSS by utilizing the graph smoothness term to estimate normal

46

activity. This allows an efficient algorithm that is still effective in extracting anomalies with some mild

constraints on data.

• Robustness to Missing and Heterogenous Data: Our optimization framework is formulated in

a flexible manner such that it solves a tensor completion problem in conjunction with anomaly

detection. This framework takes into account the missing data and fits a structure to the observed

part when estimating the underlying structure. Thus, it provides robustness against missing data.

The heterogeneity of traffic data is taken into account through the use of weighted nuclear norm

minimization to emphasize the difference in low-rank structure across modes.

The rest of the chapter is organized as follows. In Section, 3.2, we review some of the related work in

spatiotemporal anomaly detection, in particular tensor based anomaly detection methods. In Section 3.3, we

formulate the optimization problems of LOSS and GLOSS, propose ADMM based solutions and analyze

the computational complexity of these solutions. In Section 3.4, we formulate the optimization problem of

LOGSS, propose an ADMM based solution and analyze the computational complexity. In Section 3.5 we

provide an analysis of convergence of all proposed algorithms. In Section 3.6, we explain how the anomaly

scores for each element in the data is generated. In Section 3.7, we describe the experimental settings both

with synthetic and real data and compare the proposed methods with baseline anomaly detection methods

as well as other tensor based methods. Finally, we conclude the chapter in Section 3.8, by discussing the

proposed algorithms, experimental results and future work.

3.2 Related Work

Anomaly detection in spatiotemporal data is usually studied under three categories: point anomalies; tra-

jectory anomalies and group anomalies. Point anomalies are defined as spatiotemporal outliers that break

the natural ST autocorrelation structure of the normal points. Most ST point anomaly detection algorithms

such as ST-DBSCAN [100] assume homogeneity in neighborhood properties across space and time, which

can be violated in the presence of ST heterogeneity. Trajectory anomalies are usually detected by computing

pairwise similarities among trajectories and identifying trajectories that are spatially distant from the others

[105]. Finally, group anomalies appear in ST data as spatially contiguous groups of locations that show

anomalous values consistently for a short duration of time stamps. Most approaches for detecting group

anomalies decompose the anomaly detection problem by first treating the spatial and temporal properties

47

of the outliers independently, and then merging together in a post-processing step [58, 191]. However, as

the number of sensors increases, scalability becomes a critical issue and these methods become unreliable.

For these reasons, one natural approach to address ST group anomaly detection has been to use tensor

decomposition.

Low-rank tensor decomposition and completion have been proposed as suitable approaches to anomaly

detection in spatiotemporal data as these methods are a natural extension of spectral anomaly detection

techniques to multi-way data [59, 113, 68, 207, 39, 118, 117, 193]. These models project the original

spatiotemporal data into a low-dimensional latent space, in which the normal activity is represented with

better spatial and temporal resolution. The learned features, i.e., factor matrices or core tensors, are then

used to detect anomalies by monitoring the reconstruction error at each time point [144, 143, 166, 193]

or by applying well-known statistical tests to the extracted multivariate features [60, 207]. For example,

Zhang et al. [207] proposed a tensor-based method to detect targets in hyperspectral imaging data with both

spectral and spatial anomaly characteristics. Shi et al. [158] proposed an incremental tensor decomposition

algorithm for online anomaly detection. In [60], a hybrid model is constructed from a topology tensor and

a flow tensor and Tucker decomposition with an adjustable core size is used to detect anomalies. Xu et al.

[193] proposed a sliding-window tensor factorization to detect anomalies. Wang et al. [185] expanded the

traditional Tucker decomposition in a probabilistic manner to detect abnormal activity behaviors.

Although these low-rank tensor models are powerful in identifying abnormal traffic activity, they have

multiple shortcomings. First, they rely on well-known factorization models such as Tucker [60, 207, 193]

and CP [117]. These methods obtain a low-dimensional projection of the data without taking the particular

structure of anomalies, i.e., sparsity, into account. The proposed method incorporates the sparsity of

anomalies into the model by assuming that the anomalies lie in the sparse part of the tensor rather than

in the low-rank part. Second, prior work on higher order robust principal component analysis (HoRPCA)

within the framework of anomaly detection [113, 68] does not ensure temporal smoothness of the detected

anomalies. However, in urban data, anomalies typically last for some time and are not instantaneous.

Recently, temporally regularized matrix factorization models [149, 50, 200] and their extensions to tensors

[199, 179, 184, 88] have been implemented to capture the temporal dynamics. While the smoothness term

included in these papers is very similar to ours, in these papers the smoothness is enforced on the factor

matrices corresponding to the temporal mode while in our approach temporal regularization is applied

directly to the sparse tensor.

48

Finally, the existing tensor based anomaly detection methods are limited to modeling anomalies that lie

in linear subspaces. The proposed method utilizes a simultaneously structured model [84] for robust tensor

decomposition. This model structures the low-rank tensor by the proximities within each mode and forces

the solution to be smooth on manifolds constructed from each mode. This goal is achieved by adding graph

regularization across each mode of the tensor. Although graph regularized tensor decomposition has been

used before [115, 135, 82, 148, 13, 180, 192, 51], it is usually with respect to one mode of the tensor and it

was not utilized for anomaly detection in urban traffic data. Yet, for many tensors, correlations exist across

all modalities. Several recent papers [67, 84, 156, 135, 155, 128, 127] exploit this coupled relationship to

co-organize matrices and infer underlying row and column embeddings. The methods GLOSS and LOGSS

in this chapter are direct extensions of this work to tensors where we consider graph regularization across all

modes to capture the coupled correlation structure in spatiotemporal data.

3.3 Robust Low-Rank Tensor Decomposition for Anomaly Detection

In the following discussions, we model spatiotemporal data as a four mode tensorY ∈ R�1×�2×�3×�4 . The first

mode corresponds to hours in a day. The second mode corresponds to the days of a week as urban traffic

activity shows highly similar patterns on the same days of different weeks. The third mode corresponds to

the different weeks and the last mode corresponds to the spatial locations, such as stations for metro data,

sensors for traffic data or zones for other urban data.

3.3.1 Problem Statement

Assuming that anomalies are rare events, our goal is to decomposeY into a low-rank part,L, that corresponds

to normal activity and a sparse part,S, that corresponds to the anomalies. Thismodel relies on the assumption

that normal activity can be embedded into a lower dimensional subspace while anomalies are outliers. We

also take into account the existence of missing elements in the data, i.e., the observed data is PΩ [Y]. This

goal can be formulated as:

min
L,S
‖L‖∗ + _‖S‖1, s.t. PΩ [L + S] = PΩ [Y], (3.1)

where _ is the regularization parameter for sparsity.

Since urban anomalies tend to be temporally continuous, i.e., smooth in the first mode, this assumption

49

can be incorporated into the above formulation as:

min
L,S
‖L‖∗ + _‖S‖1 + W‖S ×1 Δ‖1, s.t. PΩ [L + S] = PΩ [Y], (3.2)

where W is the regularization parameter for temporal smoothness and ‖S ×1 Δ‖1 quantifies the sparsity of

the projection of the tensor S onto the discrete-time differentiation operator along the first mode where Δ is

defined as:

Δ =

1 −1 0 . . . 0

0 1 −1 . . . 0

.

0 0 . . . 1 −1

−1 0 . . . 0 1

. (3.3)

It is common to incorporate the relationships among data points as auxiliary information in addition

to the low-rank assumption to improve the quality of tensor decomposition and to capture the local data

structure [132, 164]. This approach, also known as manifold learning, is an effective dimensionality

reduction technique leveraging geometric information. The intuitive idea behind manifold learning is that

if two objects are close in the intrinsic geometry of data manifold, they should be close to each other after

dimensionality reduction. For tensors, this usually reduces to forcing two similar objects to behave similarly

in the projected low-dimensional space through a graph Laplacian term. In this section, since we are trying

to learn anomalies from a single tensor, we do not have tensor samples and their projections. Instead, we

preserve the relationships between each mode unfolding of the tensor data as each mode corresponds to a

different attribute of the data.This goal can be achieved through graph regularization across each mode as

follows:

min
L,S
‖L‖∗ +

\

2

4∑
==1

�=∑
8=1

�=∑
8′=1
8′≠8

‖L (=) ,8 − L (=) ,8′ ‖2�F=88′ + _‖S‖1+

W‖S ×1 Δ‖1, B.C. PΩ [L + S] = PΩ [Y],

where \ is the weight parameter for graph regularization.

The above optimization problem can equivalently be rewritten using trace norm to represent the graph

50

regularization and total variation (TV) norm across the temporal mode to describe temporal smoothness as:

min
L,S
‖L‖∗ + \

4∑
==1

tr
(
L>(=)Φ

=L (=)
)
+ _‖S‖1+

W
∑
82,83,84

‖s82,83,84 ‖TV, PΩ [L + S] = PΩ [Y], (3.4)

where ‖.‖TV denotes the total variation norm. The solution to the optimization problems (3.2) and (3.4)

are referred to as LOw-rank plus temporally Smooth Sparse (LOSS) decomposition, and Graph regularized

LOw-rank plus temporally Smooth Sparse (GLOSS) decomposition, respectively.

3.3.2 Optimization

The proposed objective function is convex. In prior work, ADMM has been shown to be effective at solving

similar optimization problems in an iterative fashion [70, 7]. Thus, we follow a similar approach for solving

the optimization problemgiven in (3.4). To separate theminimization of TV, ℓ1 norm and graph regularization

from each other, we introduce auxiliary variablesZ,W, {L} := {L1,L2,L3,L4}, {G} := {G1,G2,G3,G4}

such that the optimization problem becomes:

min
L, {L}, {G},S,Z,W

4∑
==1

(
k=‖L=(=) ‖∗ + \6(G

=,Φ=)
)
+ _‖S‖1+

W‖Z‖1, s.t. W = S, Z =W ×1 Δ,

PΩ [L + S] = PΩ [Y],L= = L,G= = L, = ∈ {1, 2, 3, 4}, (3.5)

where 6(G=,Φ=) = tr
(
G=(=)

>
Φ=G=(=)

)
is the graph regularization term for each auxiliary variable G=. To

solve the above optimization problem, we propose using ADMM with partial augmented Lagrangian:

4∑
==1

(
k=‖L=(=) ‖∗ + \6(G

=,Φ=)
)
+ _‖S‖1 + W‖Z‖1+

V1
2
‖PΩ [L + S − Y − Γ1] ‖2� +

V2
2

4∑
==1
‖L= − L − Γ=2 ‖

2
�+

V3
2

4∑
==1
‖L −G= − Γ=3 ‖

2
� +

V4
2
‖W ×1 Δ −Z − Γ4‖2�+

V5
2
‖S −W − Γ5‖2� , (3.6)

where Γ1, Γ
=
2 , Γ

=
3 , Γ4, Γ5 ∈ R�1×�2×�3×�4 are the Lagrange multipliers.

51

1. L update: The low-rank variable L can be updated using:

LC+1 = argmin
L

V1
2
‖PΩ [L + SC − Y − ΓC1] ‖

2
�+

4∑
==1

(
V2
2
‖L=,C − L − Γ=,C2 ‖

2
� +

V3
2
‖L −G=,C − Γ=,C3 ‖

2
�

)
, (3.7)

which has the analytical solution:

PΩ [LC+1] =
PΩ [V1T1 + V2T2 + V3T3]

V1 + 4(V2 + V3)
, (3.8)

PΩ⊥ [LC+1] =
PΩ⊥ [V2T2 + V3T3]

4(V2 + V3
, (3.9)

where T1 = Y − SC + ΓC1, T2 =
∑4
==1 L

=,C − Γ=,C2 and T3 =
∑4
==1G

=,C + Γ=,C3 .

2. L= update: The variables L= can be updated using:

L=,C+1 = argmin
L=

k=‖L=(=) ‖∗ +
V2
2
‖L= − LC+1 − Γ=,C2 ‖

2
� , (3.10)

which is solved by a soft thresholding operator on singular values of
(
LC+1 + Γ=,C2

)
(=) with a threshold of

k=/V2.

3. G= update: The variables G= can be updated using:

G=,C+1 = argmin
G=

\tr
(
G=(=)

>
Φ=G=(=)

)
+

V3
2
‖LC+1 −G= − Γ=,C3 ‖

2
� , (3.11)

which is solved by:

G
=,C+1
(=) = V3�8=E

(
LC+1 − Γ=,C3

)
(=)
, (3.12)

where �8=E = (2\Φ= + V3I)−1 always exists and can be computed outside the loop for faster update.

4. S update: The variable S can be updated using:

SC+1 = argmin
S

_‖S‖1 +
V1
2
‖PΩ [S + LC+1 − Y − ΓC1] ‖

2
�+

V5
2
‖S −WC − ΓC5‖

2
� , (3.13)

where the Frobenius norm terms can be combined and the expression can be simplified into:

PΩ [SC+1] = argmin
PΩ [S]

‖PΩ [S]‖1 +
V1 + V5

2_
‖PΩ [S − TB] ‖2� , (3.14)

PΩ⊥ [SC+1] = argmin
PΩ⊥ [S]

‖PΩ⊥ [S]‖1 +
V5
2_
‖PΩ⊥ [S − TB]‖2� , (3.15)

52

where

PΩ [TB] = PΩ

[
V1(Y − LC+1 + ΓC1) + V5(WC + ΓC5)

V1 + V5

]
PΩ⊥ [TB] = PΩ⊥ [WC + ΓC5]

The above is solved by settingPΩ [SC+1] = B> 5 C_CℎA4Bℎ(PΩ [TB], _
V1+V5
) andPΩ⊥ [SC+1] = B> 5 C_CℎA4Bℎ(PΩ⊥ [TB], _V5

),

where B> 5 C_CℎA4Bℎ(a, q) = B86=(a) � <0G(|a| − q, 0) and � is elementwise or Hadamard product.

5. W update: The auxiliary variableW can be updated using:

WC+1 = argmin
W

V4
2
‖W ×1 Δ −ZC − ΓC4‖

2
�+

V5
2
‖SC+1 −W − ΓC5‖

2
� , (3.16)

which is solved analytically by taking the derivative of the expression given above and setting it to zero which

results in:

WC+1
(1) = ,8=E

(
V5(SC+1 − ΓC5) (1) + V4Δ

>(ΓC4 + Z
C) (1)

)
, (3.17)

where,8=E = (V5I + V4Δ
>Δ)−1 always exists and can be computed outside the loop for faster update.

6. Z update: The auxiliary variableZ, can be updated using:

ZC+1 = argmin
Z

W‖Z‖1 +
V4
2
‖WC+1 ×1 Δ −Z − ΓC4‖

2
� (3.18)

which is solved by B> 5 C_CℎA4Bℎ(WC+1 ×1 Δ − ΓC4, W/V4).

7. Dual updates: Finally, dual variables Γ1, Γ
=
2 , Γ

=
3 , Γ4, Γ5 are updated using:

ΓC+11 = ΓC1 − PΩ [L
C+1 + SC+1 − Y], (3.19)

Γ
=,C+1
2 = Γ

=,C

2 − (L
=,C+1 − LC+1), (3.20)

Γ
=,C+1
3 = Γ

=,C

3 − (L
C+1 −G=,C+1), (3.21)

ΓC+14 = ΓC4 − (W
C+1 ×1 Δ −ZC+1), (3.22)

ΓC+15 = ΓC5 − (S
C+1 −WC+1). (3.23)

The pseudocode for the proposed algorithm, GLOSS, is given in Algorithm 3.1. The optimization for LOSS

can be similarly computed without the updates on graph regularization and related variables {G}, {Γ3}.

53

Algorithm 3.1: GLOSS
Input: Y ∈ R�1×�2×�3×�4 , Ω, Φ, parameters _, W, \, {k}, V1, V2, V3, V4, V5, max_iter.
Output: L : Low-rank tensor; S: Sparse tensor.

Initialize S0 = 0,Z0 = 0, L=,0 = 0,G=,0 = 0, Γ0
1 = 0, Γ=,02 = 0, Γ=,03 = 0, Γ0

4 = 0, Γ0
5 = 0, ∀8 ∈ {1, . . . , 4}.

,8=E ← (V5I + V4Δ
>Δ)−1

�8=E ← (2\Φ= + V3I)−1

for C = 0 to max_iter do
T1 ← Y − SC + ΓC1
T2 ←

∑4
==1 L

=,C − Γ=,C2
T3 ←

∑4
==1G

=,C + Γ=,C3
PΩ [LC+1] ← PΩ [V1T1 + V2T2 + V3T3] /(V1 + 4(V2 + V3))
PΩ⊥ [LC+1] ← PΩ⊥ [V2T2 + V3T3] /4(V2 + V3)
for = = 1 to 4 do
[*,Σ, +] ← SVD

(
LC+1 + Γ=,C2

)
(=)

f̂8,8 ← max (f8,8 − k=
V2
, 0) ∀8 ∈ {1, . . . , �=}

L
=,C+1
(=) ← *Σ̂+>

G
=,C+1
(=) ← V3�8=E

(
LC+1 − Γ=,C3

)
(=)

end for
PΩ [TB] ← PΩ

[
V1 (Y−LC+1+ΓC1)+V5 (WC+ΓC5)

V1+V5

]
PΩ⊥ [TB] ← PΩ⊥ [WC + ΓC5]
PΩ [SC+1] ← B> 5 C_CℎA4Bℎ(PΩ [TB], _

V1+V5
)

PΩ⊥ [SC+1] ← B> 5 C_CℎA4Bℎ(PΩ⊥ [TB], _V5
)

WC+1
(1) ←,8=E

(
V5(SC+1−ΓC5) (1)+ V4Δ

>(ΓC4 + Z
C) (1)

)
ZC+1 ← B> 5 C_CℎA4Bℎ(WC+1 ×1 Δ − ΓC4,

W

V4
)

ΓC+11 ← ΓC1 − PΩ [L
C+1 + SC+1 − Y]

ΓC+14 ← ΓC4 − (W
C+1 ×1 Δ −ZC+1)

ΓC+15 ← ΓC5 − (S
C+1 −WC+1)

for = = 1 to 4 do
Γ
=,C+1
2 ← Γ

=,C

2 − (L
=,C+1 − LC+1)

Γ
=,C+1
3 ← Γ

=,C

3 − (L
C+1 −G=,C+1)

end for
end for

54

3.3.3 Computational Complexity

Let Y be a mode # tensor with dimensions �1 = �2 = · · · = �# = �. The computational complexity of each

iteration of ADMM is computed as follows:

1. The update of L only involves element-wise operations, thus the contribution to computational com-

plexity is not significant.

2. The computational complexity of updating each L= is O
(
�2#−1) . Thus, the total computational

complexity is O(#�2#−1). However, it is possible to reduce the effect of this cost by parallelizing

the updates across modes, hence the complexity becomes quadratic in the number of elements, i.e.

O
(
�2#−1) .

3. The update of each G= requires the computation of a matrix inverse with complexity $ (�3) and a

matrix multiplication with complexity O(�#+1). As mentioned before, the inverse always exists and

can be computed outside the loop. Similar to the updates of L=, the total complexity is O(#�#+1).

This can be reduced by parallelizing across modes.

4. The second update requires a soft thresholding, which has linear complexity, i.e., O(�#).

5. The computational complexity of updating W is governed by matrix multiplication resulting in

O(�#+1) complexity.

6. The update of Z consists of a matrix product followed by soft thresholding, which results in a total

complexity of O((� + 1)�#).

7. The updates of the dual variables do not require any additional multiplication operations. Thus, the

computational complexity is negligible.

It can be concluded that the complexity of each loop is governed by the updates of L=. Therefore, the

total computational complexity of the algorithm is O(max_iter#�2#−1). Since the complexity is driven by

nuclear norm minimization, in the following section, we propose another method which utilizes graph total

variation regularization for low-rank approximation instead of nuclear norm.

55

3.4 Low-rank On Graphs Plus Temporally Smooth Sparse Decomposition

As mentioned in Section 1.3.1, we will approximate the low-rank tensor, L, through # graph total variation

terms corresponding to each mode similar to FRPCAG in (1.14). To this end, the first �= eigenvectors ofΦ=,

%̂= corresponding to the �= lowest eigenvalues, are used to quantify the total variation of the low-rank tensor

across mode-= with respect to its corresponding similarity graph. As these first �= eigenvectors capture

the low-frequency information of the signal, they can capture the normal activity in the data. Thus, the

optimization problem can be written as:

min
L,S

\

#∑
==1

tr
(
L>(=)Φ̂

=L (=)
)
+ _‖S‖1 + W‖S ×1 Δ‖1,

B.C. PΩ [Y] = PΩ [L + S], (3.24)

where Φ̂= = %̂=Λ̂=%̂
>
= and Λ̂= ∈ R�=×�= is the leading principal submatrix of Λ=. If we define the

projections of each mode-= unfolding of L to the graph eigenvectors (low frequency graph Fourier basis) as

G=(=) = %̂
>
=L (=) , then (3.24) can be rewritten as:

min
L, {G}S

\

#∑
==1

tr
(
G=(=)

>
Λ=G=(=)

)
+ _‖S‖1 + W‖S ×1 Δ‖1,

B.C. PΩ [Y] = PΩ [L + S], G=(=) = %̂
>
=L (=) , (3.25)

where {G} := {G1, . . . ,G# }. The solution to (3.25) will be called LOw-rank on Graphs plus temporally

Smooth Sparse Decomposition (LOGSS).

3.4.1 Optimization

The optimization problem was solved using ADMM. We introduce auxiliary variablesW andZ similar to

LOSS to separate sparsity and temporal smoothness regularization. The problem is then rewritten as:

min
L, {G},S,W,Z

\

#∑
==1

tr
(
G=(=)

>
Λ=G=(=)

)
+ _‖S‖1 + W‖S ×1 Δ‖1,

s.t. PΩ [Y] = PΩ [L + S], G=(=) = %̂
>
=L (=) ,S =W, Z =W ×1 Δ. (3.26)

56

The corresponding augmented Lagrangian is given by:

\

#∑
==1

tr
(
G=(=)

>
Λ=G=(=)

)
+ _‖S‖1 + W‖Z‖1 +

V1
2
‖PΩ [L + S − Y] − Γ1‖2�+

V2
2
‖W ×1 Δ −Z − Γ2‖2� +

V3
2
‖S −W − Γ3‖2� +

V4
2

#∑
==1
‖L − G= ×= %̂= − Γ=4 ‖

2
� , (3.27)

where Γ1, Γ2, Γ3, Γ
=
4 ∈ R

�1×�2×�3×�4 are the Lagrange multipliers. Using (3.27) each variable can be updated

alternately.

1. L update: The update of low-rank variable L is given by:

PΩ [LC+1] = PΩ [V1T1 + V4T2] /(V1 + 4V4),

PΩ⊥ [LC+1] = PΩ⊥ [T2]/4, (3.28)

where T1 = Y − SC + ΓC1, T2 =
∑#
==1 G=,C ×= %̂= + Γ

=,C

4 .

2. G= update: The variables G= can be updated using:

G=,C+1 = (2 \
V4
Λ̂= + I)−1(LC+1 ×= %̂>= − Γ=,C4), (3.29)

where I ∈ R�=×�= is an identity matrix.

3. S update: The variable S can be updated using:

PΩ [SC+1] = T_(PΩ [V1T3 + V3T4])/(V1 + V3)

PΩ⊥ [SC+1] = T _
V3
(PΩ⊥ [T4]), (3.30)

where T3=Y−LC+1+ΓC1, T4=W
C+ΓC3, Tq (a) = B86=(a) � <0G(|a| − q, 0) and � is Hadamard product.

4. W update: The auxiliary variableW can be updated using:

WC+1
(1) = ,8=E

(
V3(SC+1 − ΓC3) (1) + V2Δ

>(ΓC2 + Z
C) (1)

)
, (3.31)

where,8=E = (V3I + V2Δ
>Δ)−1 always exists and can be computed outside the loop for faster update.

5. Z update: The auxiliary variableZ, can be updated using:

ZC+1 = argmin
Z

W‖Z‖1 +
V2
2
‖WC+1 ×1 Δ −Z − ΓC2‖

2
� , (3.32)

which is solved by T W

V2
(WC+1 ×1 Δ − ΓC2).

57

6. Dual updates: Finally, dual variables Γ1, Γ2, Γ3, Γ
=
4 are updated using:

ΓC+11 = ΓC1 − PΩ [L
C+1 + SC+1 − Y], (3.33)

ΓC+12 = ΓC2 − (W
C+1 ×1 Δ −ZC+1), (3.34)

ΓC+13 = ΓC3 − (S
C+1 −WC+1), (3.35)

Γ
=,C+1
4 = Γ

=,C

4 − (L
C+1 − G=,C+1 ×= %̂=). (3.36)

The pseudocode for the optimization is given in Algorithm 3.2.

Algorithm 3.2: LOGSS
Input: Y, Ω, Φ=, parameters \, _, W, V1, V2, V3, V4, max_iter.
Output: L : Low-rank tensor; S: Sparse tensor.
Initialize S0 = 0, W0 = 0, Z0 = 0, G=,0 = 0, Γ0

1 = 0, Γ0
2 = 0, Γ0

3 = 0, Γ=,04 = 0, ∀8 ∈ {1, . . . , 4},
,8=E = (V3I + V2Δ

>Δ)−1.
for C = 1 to max_iter do

Update L using (3.28).
Update G=s using (3.29).
Update S using (3.30).
UpdateW using (3.31).
UpdateZ using (3.32).
Update Lagrange multipliers using (3.33), (3.34), (3.35) and (3.36).

end for

3.4.2 Computational Complexity of LOGSS

Assume �1 = �2 = · · · = �# = �. The complexity of the proposed algorithm is dominated by matrix

multiplications which are the updates of L,W, Z and Γ=4 . The updates of G
= require are multiplications

since Λ̂=s are diagonal. The computational complexity of the matrix multiplications are: O(#�#) for the

update of L, O(�#) for the updates ofW,Z, Γ=4 . Since the updates of L and Γ=4 can be parallelized, the

complexity of the algorithm is O(max_iter�#), hence, linear in the number of elements. Thus, using graph

total variation regularization instead of nuclear norm we reduce the complexity of LOSS from quadratic to

linear.

3.5 Convergence

In this subsection, we analyze the convergence of the proposed algorithms. First, we show that the proposed

optimization problem (3.4) can be written as a two-block ADMM. In previous work, linear and global

58

convergence of ADMM is proven for two-block systems [52] with no dependence on the hyperparameters.

We use this proof to derive the convergence of GLOSS. Convergence of LOSS and LOGSS follow as they

have similar objective functions and similar operations can be applied to rewrite their objective as two-block

ADMM.

In the following discussion, we will assume that there is no missing data, i.e. PΩ [Y] = Y, to

simplify the notation. Let ℎ(S) = _‖S‖1, 9 (Z) = W‖Z‖1, 5 ({L}) =
∑4
==1 k=‖L=(=) ‖∗, 6({G}) =∑4

==1 tr
(
G=(=)

>
Φ=G=(=)

)
, (3.5) can be rewritten as:

min
{L}, {G},S,Z

ℎ(S) + 9 (Z) + 5 ({L}) + \6({G}),

�1L (1) + �2S(1) + �3cat1({L}) + �4cat1({G})+

�5Z(1) + �6W(1) = cat1({Y, 0, . . . , 0}), (3.37)

where

�1 =

I

I

I

I

I

I

I

I

I

0

0

, �2 =

I

0

0

0

0

0

0

0

0

I

0

, �3 =

0 0 0 0

−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 −I

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

, �4 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−I 0 0 0

0 −I 0 0

0 0 −I 0

0 0 0 −I

0 0 0 0

0 0 0 0

, �5 =

0

0

0

0

0

0

0

0

0

−I

Δ

, �6 =

0

0

0

0

0

0

0

0

0

0

−I

.

From this reformulation, it is easy to see that �>1 �5 = 0 and �2, �3, �4, �6 are all orthogonal to each other,

i.e. �>
8
� 9 = 0 where 8, 9 ∈ {2, 3, 4, 6} and 8 ≠ 9 .

In thismanner, the optimization problem reduces to a special case of two-blockADMMas follows. Define

variables +1 = [L (1) ,W(1)] and +2 = [X(1) , cat1({L}), cat1({G}),Z(1)], and matrices �1 = [�1, �5] and

�2 = [�2, �3, �4, �6]. When we create the variable +1, the order of updating S andW needs to change in

the new formulation as �2 and �5 are not orthogonal. Updates of {L} and {G} have no effect on the update

59

ofW but this is not true for S, so updatingW before S might affect the solution. However, it was proven

in [194] that the change in order gives the equivalent solution if either one of the functions of the variables

S andW is affine. In our formulation, this is true as the function corresponding toW is a constant. Thus,

the problem reduces to the two-block form:

min
+1,+2

51(+1) + 52(+2), s.t. �1+1 + �2+2 = �, (3.38)

where 51(+1) = 0 and 52(+2) = ℎ(S)+ 9 (Z)+ 5 ({L})+\6({G}) are both convex and� = cat1({Y, 0, . . . , 0}).

It can easily be shown using Kronecker products and vectorizations that the objective functions (3.2),

(3.25) can also be converted into a two-block form. Thus, LOSS and LOGSS also converge using the above

results.

3.6 Anomaly Scoring

The methods proposed in this chapter focus on extracting spatiotemporal features for anomaly detection.

After extracting the features, i.e. the sparse part, a baseline anomaly detector can be applied to obtain an

anomaly score. In this chapter, we evaluated three anomaly detection methods: Elliptic Envelope (EE)

[150], Local Outlier Factor (LOF) [23] and One Class SVM (OCSVM) [153]. These three methods are

used to assign an anomaly score to each element of the sparse tensor. Each method was applied to all third

mode fibers which correspond to different weeks’ traffic activity. This is equivalent to fitting a univariate

distribution to each of the third mode fibers of the tensor. The anomaly scores were used to create an anomaly

score tensor. Finally, the elements with the highest anomaly scores were selected as anomalous while the

rest were determined to be normal.

3.7 Experiments

In this chapter, we evaluated the proposed method on both real and synthetic datasets. We compared our

method to regular HoRPCA and weighted HoRPCA (WHoRPCA) where the nuclear norm of each unfolding

is weighted. In addition to Tucker based algorithms we compare with two CP based anomaly detection

methods: low rank plus sparse CP (LRSCP) [88] and Bayesian augmented tensor factorization (BATF) [40].

In the case of LRSCP, a low rank plus sparse CP model is used for anomaly detection. While the original

algorithm is implemented in an online manner, in this chapter, it is modified to be applicable to the whole

ST data for comparability against other methods. BATF is a CP based tensor completion/imputation model

with smoothness constraints designed for urban traffic data. BATF utilizes bias vectors for all mode-= slices

60

which enforces smoothness across each mode. To evaluate the effect of graph regularization term in (3.4),

we also compared with LOSS corresponding to the objective function in (3.2). As our method is focused

on feature extraction for anomaly detection, we also compared our method to baseline anomaly detection

methods such as EE, LOF and OCSVM applied to the original tensor. After the feature extraction stage,

unless noted otherwise, such as "GLOSS-LOF", EE was used as the default anomaly scoring method for

all tensor feature extraction methods, e.g., HoRPCA, WHoRPCA, BATF, etc. LRSCP scores the anomalies

by ordering the magnitude of the elements of the sparse tensor [88]. The number of neighbors for LOF is

selected as 10 as this is the suggested lower-bound in [207]. The outlier fraction of OCSVM is set to 0.1 as

only the anomaly scores, not labels, generated by OCSVM are used in the experiments. The methods used

for comparison and their properties are summarized in Table 3.1.

Table 3.1: Properties of anomaly detection methods used in the experiments. The acronyms refer to
the different attributes of the cost function: (LR) low-rank, (SP) sparse, (WLR) weighted low-rank, (SR)
smoothness regularization.

LR SP WLR SR

Tucker Based

GLOSS + + + +
LOGSS - + - +
LOSS + + + +
WHoRPCA + + + -
HoRPCA + + - -

CP Based BATF + + - +
LRSCP + + - -
EE N/A N/A N/A N/A
LOF N/A N/A N/A N/A
OCSVM N/A N/A N/A N/A

For each data set, a varying percent of the elements with highest anomaly scores are determined to

be anomalous. With varying , ROC curves were generated for synthetic data and the mean area under

the curve (AUC) was computed for 10 random experiments. For real data, number of detected events were

reported for varying .

The number of neighbors for LOF is selected as 10 as this is the suggested lower-bound in [207]. Finally,

the outlier fraction of OCSVM is set to 0.1 as only the anomaly scores, not labels, generated by OCSVM is

used in the experiments.

61

3.7.1 Data Description

To evaluate the proposed framework, we use two publicly available datasets as well as synthetic data.

Real Data:

The first dataset is NYC yellow taxi trip records1 for 2018. This dataset consists of trip information such as

the departure zone and time, arrival zone and time, number of passengers, tips for each yellow taxi trip in

NYC. In the following experiments, we only use the arrival zone and time to collect the number of arrivals

for each zone aggregated over one hour time intervals. We selected 81 central zones to avoid zones with

very low traffic [205]. Thus, we created a tensorY of size 24× 7× 52× 81 where the first mode corresponds

to hours within a day, the second mode corresponds to days of a week, the third mode corresponds to weeks

of a year and the last mode corresponds to the zones. The data is suitable for low-rank on graphs model as

graph stationarity measure BA (Γ), given in Section 1.3.1, for each mode is 0.83, 0.98, 0.99, 0.56, respectively.

This implies that the data is mostly low-rank on the temporal modes as there is strong correlation among the

different days, hours and weeks, while it is less low-rank across space.

The second dataset is Citi Bike NYC bike trips2 for 2018. This dataset contains the departure and arrival

station numbers, arrival and departure times and user id. In our experiments, we aggregated bike arrival data

for taxi zones imported from the NYC yellow taxi trip records dataset, instead of using the original stations,

to reduce the dimensionality and to avoid data sparsity. The resulting data tensor is of size 24 × 7 × 52 × 81.

1https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2https://www.citibikenyc.com/system-data

62

Synthetic Data Generation:

Evaluating urban events in a real-world setting is an open challenge, since it is difficult to obtain urban

traffic data sets with ground truth information, i.e. anomalies are not known a priori and what constitutes

an anomaly depends on the nature of the data and the specific problem. To be able to evaluate our method

quantitatively, we generate synthetic data and inject anomalies. Following [205], we generated a synthetic

data set by taking the average of the NYC taxi trip tensor, Y, along the third mode, i.e. across weeks of

a year. We then repeat the resulting three-mode tensor such that for each zone, average data for a week is

repeated 52 times. We multiply each element of the tensor by a Gaussian random variable with mean 1 and

variance 0.5 to create variation across weeks.

We generate anomalies on randomly selected<% of the first mode fibers. For each fiber, we set a random

time interval of length ;, which corresponds to ; hours in a day, as anomalous. We multiply the average

value of each randomly selected anomalous interval by a parameter 2 and the modify the entries by adding

or subtracting this value from the interval. When 2 is low, the anomalies will be harder to detect and may be

perceived as noise.

3.7.2 Parameter Selection:

In this section, we will discuss how the different parameters in (3.4) are selected. Following [70], we set

_ = 1/
√

max(�1, . . . , �#) for HoRPCA and V1 =
1

5std(E42 (Y)) , where E42(Y) ∈ R
�1�2...�# is the vectorization

of Y and std(.) is the standard deviation. The other V parameters for all methods are set to be the same as

V1. The selection of V parameters does not affect the algorithm performance but changes the convergence

rate as mentioned in Section 3.5. In GLOSS, the neighboorhood size for each of the :-NN graphs is selected

to be : = ;>6(∑#
8=1 �=) following [177]. The f value in :-NN graphs is selected to be proportional to the

Frobenius norm of each mode to ensure similar density levels for all graphs. The ranks for LRSCP and

BATF are selected from {1, 2, . . . , 11} as the rank with the best result. Increasing the rank to higher values

does not improve the results while increasing complexity.

An important observation about the selection of the parameters is that depending on the data, the optimal

values of hyperparameters might be different. This is due to the properties of the data such as size, variance

and sparsity level. Moreover, the different hyperparameters are dependent on each other. Hence, a search

over the whole parameter space may be costly. Thus, we perform a sensitivity analysis for the different

63

(a)

(b)

(c)

Figure 3.1: Mean AUC values for various choices of: (a) _ and W, (b) \ and k1, (c) k2 and k4. Mean AUC
values across 10 random experiments are reported for each hyperparameter pair. For each set of experiments,
the remaining hyperparameters are fixed.

64

hyperparameters. In Figure 3.1, we present the average AUC for various ranges of the hyperparameters for

GLOSS applied on the synthetic data generated with 2 = 2.5. It can be seen from Figure 3.1a that while

low values of _ always provide the best results, W values are optimized around 10−5. Increasing the sparsity

penalty _ above 10−3 results in a sparse tensor that is mostly zero. At this _ value, AUC becomes equal

to 0.5 which is equivalent to randomly guessing the anomalous points. On the other hand, when W is too

large, it smooths out all mode-1 fibers and generates the same anomaly score for each fiber. This is akin to

identifying anomalous days, rather than time intervals. From these observations, it can be seen that there is

not a strong dependence between W and _. For the weight parameters, k=, when one of them is set to 1 and

the others are varied across a wide range of values as shown in Figures 3.1c and 3.1b, the accuracy does not

change significantly. Similarly, changing the value of \ does not seem to affect the optimal value of k1.

We repeated this analysis for different 2 values and observed similar results indicating that the proposed

method is not sensitive to the selection of hyperparameters as long as they are selected following the guidelines

given below. In particular, the choice of _ affects the accuracy more than any of the other hyperparameters.

This realization reduces the computational complexity of finding the best set of parameters as the search can

be implemented in parallel.

Based on these empirical observations, we select _ = W = 1/‖PΩ(Y)‖0, where ‖PΩ(Y)‖0 is the number

of nonzero elements of Y for GLOSS and _ = W = 1/<0G(�1, . . . , �#) for LOSS and WHoRPCA similar

to [70]. Since the ranks across each mode are closely related to the variance of the data within that mode,

weights for each mode in the definition of nuclear norm, k=s, are selected to be inversely proportional to

the trace of the square root of the covariance of mode-=, i.e. k= = ?

) A (
√
Σ.(=))

, where ? is selected such that

min= (k=) = 1. The parameter \ is set to be the geometric mean of k=s, i.e. \ =
∏4
==1 k

1/4
= .

3.7.3 Experiments on Synthetic Data

Effect of anomaly length and percentage:

First, we evaluated the effect of the length ; and the percentage<, i.e. denseness, of anomalies in synthesized

data. For these experiments, we set 2 = 2.5 and % = 0%. From Table 3.2 and Fig. 3.2, it can be seen

that as ; increases, the performance of LOGSS and LOSS improves while HoRPCA’s performance does not

show a significant change. This is due to the fact that the temporal total variation regularization will become

more suited to the observed data as the anomalies become more temporally persistent, i.e. when ; increases.

65

Figure 3.2: AUC of ROC w.r.t. ; and < with 2 = 2.5, % = 0%.

Although LOSS performs slightly better than LOGSS when ; is large, for low ;, it drastically underperforms

which is not the case for LOGSS. With increasing <, all methods perform worse due to the assumption of

sparsity for the anomalies.

Robustness against noise:

We first evaluated the effect of 2, i.e. the strength of the anomaly, on the accuracy of the proposed method.

Low 2 values imply that the amplitudes of anomalies are low and they may be indistinguishable from noise.

From Fig. 3.3 and Table 3.2, it can be seen that for varying 2 values, our method (GLOSS-EE) achieves the

highest AUC values compared to both baseline methods and HoRPCA, WHoRPCA, LRSCP, BATF, LOSS

and LOGSS. Among the remaining methods, LOSS performs better than WHoRPCA, especially when the

anomaly strength is small. CP based methods generally underperform compared to all other methods. The

proposed methods have higher anomaly detection accuracy compared to EE and HoRPCA which illustrates

the benefit of tailoring the optimization problem to anomaly structure. In fact, HoRPCA does not perform

better than EE inmost caseswhichmeans that extracting anomalies usingHoRPCAdoes not have a significant

improvement compared to using the original data. It is also important to note that the choice of the anomaly

scoring method does not change the performance of GLOSS significantly.

In terms of time complexity, it can be seen from Table 3.3 that LOGSS is up to 10 times faster than

both GLOSS and LOSS. BATF, on the other hand, has higher run time compared to the proposed methods

66

(a) (b) (c)

Figure 3.3: ROC curves for various amplitudes of anomalies. Higher amplitude means more separability.
2 = (a) 1.5, (b) 2, (c) 2.5. (% = 0%, ; = 7, < = 2.3%)

(LOSS and GLOSS) with lower accuracy. Although other methods such as EE, LOF, LRSCP and HoRPCA

outperform LOSS and GLOSS, the proposed methods outperform them in anomaly detection accuracy as

mentioned earlier.

Table 3.2: Mean and standard deviation of AUC values for for various 2 and %. On experiments of each
variable, the rest of the variables are fixed at 2 = 2.5, % = 0%, ; = 7 and < = 2.3%. The proposed methods,
outperform the other algorithms in all cases significantly with ? < 0.001.

2 = 1.5 2 = 2 2 = 2.5 % = 20% % = 40% % = 60%

EE 0.70±0.004 0.81±0.004 0.87±0.003 0.81±0.004 0.61±0.008 0.53±0.01
LOF 0.68±0.003 0.78±0.004 0.84±0.004 0.79±0.005 0.78±0.005 0.73±0.007
OCSVM 0.65±0.005 0.73±0.004 0.77±0.005 0.81±0.004 0.81±0.005 0.76±0.006
HoRPCA 0.7±0.004 0.81±0.004 0.87±0.003 0.8±0.004 0.73±0.006 0.79±0.005
WHoRPCA 0.7±0.004 0.81±0.004 0.87±0.003 0.8±0.003 0.73±0.006 0.8±0.005
LRSCP 0.51±0.02 0.53±0.03 0.54±0.05 0.61±0.007 0.7±0.01 0.8±0.006
BATF 0.59±0.005 0.65±0.005 0.69±0.005 0.67±0.005 0.64±0.006 0.61±0.006
LOSS 0.81±0.005 0.9±0.004 0.94±0.0035 0.85±0.003 0.73±0.009 0.74±0.009
LOGSS 0.8 ± 0.005 0.9±0.003 0.94±0.002 0.86±0.004 0.74±0.008 0.76±0.005
GLOSS-EE 0.83±0.005 0.92±0.003 0.95±0.002 0.88±0.004 0.77±0.008 0.76±0.006
GLOSS-SVM 0.81±0.006 0.9±0.004 0.95±0.002 0.83±0.006 0.81±0.007 0.82±0.007
GLOSS-LOF 0.8±0.006 0.91±0.004 0.95±0.002 0.81±0.01 0.80±0.007 0.86±0.007

Table 3.3: Mean and standard deviation of run times (seconds) for various methods.

EE LOF OCSVM HoRPCA WHoRPCA LRSCP BATF LOSS LOGSS GLOSS

12.1 ± 0.3 17.0 ± 0.3 1016.2 ± 56.1 7.5 ± 0.4 13.5 ± 0.5 0.66 ± 0.17 65.8 ± 0.16 44.7 ± 2.7 5.0±0.27 46.7 ± 1.5

Robustness against missing data:

In addition to injecting synthetic anomalies, we also remove varying number of days at random from the

tensor to evaluate the robustness of the proposed method to missing data. After generating the synthetic data,

a percentage % of the mode-1 fibers is set to zero to simulate missing data, where the number of mode-1

fibers is equal to the total number of days, i.e. 7 × 52 × 81. The accuracy of anomaly detection for varying

67

(a) (b) (c)

Figure 3.4: ROC curves for varying percentage of missing data, (a) % = 20%, (b) % = 40%, (c) % = 60%.
(2 = 2.5, ; = 7, < = 2.3%)

levels of missing data is illustrated in Fig. 3.4 and the corresponding AUC values (mean ± std) are given in

Table 3.2.

While the performance of all the methods degrades with increasing levels of missing data, GLOSS

provides the best anomaly detection performance and is robust against missing data compared to the rest of the

methods. It is interesting to see that with increasing percentage of missing data, the performance of OCSVM

does not degrade too much, and some of the methods such as HoRPCA, WHoRPCA, LRSCP, GLOSS-SVM

and GLOSS-LOF have a better performance. This phenomenon occurs partially due to increasing percentage

of anomalous points. As some of the false positives are replaced by missing data, and anomalous points

are higher in percentage, newly identified data might have more true positives with increasing percentage of

missing data. Incorporating temporal smoothness for the anomalies in the objective function lowers the false

detection rate by penalizing instantaneous changes in traffic that do not constitute an actual anomaly. We note

that while LOSS performs comparable to GLOSS for varying anomaly strength, the performance of LOSS

degrades quickly with increasing missing data. Therefore, even though both WHoRPCA and LOSS are

equipped to handle missing data, GLOSS is more robust as it uses side information in the form of similarity

graphs. Similar to the previous experiments, LOGSS provide the best results in terms of computational

efficiency with the expense of a small amount of AUC compared to GLOSS.

3.7.4 Experiments on Real Data

To evaluate the performance of the proposed methods on real data, we compiled a list of 20 urban events,

which are listed in Table 3.4, that took place in the important urban activity centers such as city squares,

parks, museums, stadiums and concert halls, during 2018. We used the same set of urban events for both taxi

and bike data. To detect the activities, top- percent, with varying K, of the highest anomaly scores of the

68

Table 3.4: Events of Interest for NYC in 2018.

Event Name Location Date and Time

New Year’s Times Square 1/1 12-2AM
Blackhawks vs. Rangers Madison Square Garden 1/3 4-8PM
Armory Show Piers 92/94 1/14 9AM-5PM
Woman’s March Central Park West 1/20 8AM-12PM
Big Ten Basketball Final Madison Square Garden 3/4 3-10PM
Big East Quarter Finals Madison Square Garden 3/8 3-10PM
St. Patricks Day Parade 5th Avenue, btw 44th and 79th 3/17 11AM-5PM
Nor’easter Storm Citywide 3/20 11AM-5PM
NIT Quarterfinal Utah vs. St.Mary’s Madison Square Garden 3/21 5 PM- 10PM
U2 Concert Madison Square Garden 7/1 5-10PM
July 4th Celebrations Citywide 7/4 5-11PM
UN General Assembly United Nation Headquarters 9/25 12-5PM
Comic Con Javits Center 11/4 8 AM-3PM
NYC Marathon Colombus Circle 11/04 12-5PM
Elton John Concert Madison Square Garden 11/9 7-11PM
Macy’s Thanksgiving Parade Herald Square 11/22 9PM-12AM
Christmas Tree Lighting Bryant Park 12/4 7PM-12AM
Golden Knights vs. Rangers Madison Square Garden 12/16 12-3PM
Phish Concert Madison Square Garden 12/28 4-8PM
New Year’s Eve Times Square 12/31 8PM-12AM

extracted sparse tensors are selected as anomalies and compared against the compiled list of urban events.

In previous work, similar case studies were presented for experiments on real data [206, 39, 203, 205].

Detection performance for allmethods is given in Tables 3.5 and 3.6 for the taxi and bike data, respectively.

From Table 3.5, it can be seen that anomaly scoring methods applied to the spatiotemporal features extracted

by GLOSS perform the best for the NYC Taxi data. The performance of GLOSS is followed by LOSS as

temporal smoothness allows for detection of events at lower by removing anomalies resulting from noise.

LOSS performs the best initially but as more points are considered GLOSS finds more cases. Although

LOGSS performs better than baseline methods most of the time it does not perform as good as GLOSS or

LOSS. In the case of CP based methods, although the performance of LRSCP is not good, BATF shows

results competitive with GLOSS especially for Taxi data. Although BATF extracts the anomalies well, it has

a high computational complexity. Among the baseline methods, EE performs the best while LOF performs

the worst. However, when the features extracted from GLOSS are input to LOF and EE, their performances

69

become very similar. This shows that GLOSS is effective at separating anomalous entries from noise and

normal traffic activity and thus, improves the performance of both LOF and EE. It is important to note that

most of the anomalies cannot be detected at low values by most methods because events such as New

Year’s Eve or July 4th celebrations change the activity pattern in the whole city and constitute the majority

of the anomalies detected at low values for Taxi Data.

The performance of all methods is significantly reduced in Bike Data as can be seen from Table 3.6.

This is because Bike Data is very noisy with a large number of days, or points that would be considered

anomalous. Also, some of the selected events do not produce significant changes in Bike Data such as

New Year’s Eve as usage of bikes at midnight is low even though it’s a significant event for taxi traffic.

Changes in the weather also affect the performance by increasing the variance of the data, especially across

the third mode, which corresponds to the weeks of the year. We see some fluctuations in the performance

comparisons as well, such as LOGSS performing better than all methods at higher , i.e. percentages. Still,

the proposed methods are better than HoRPCA, WHoRPCA, and baseline methods overall, which shows the

improvements brought by the extracted features.

It is important to note that event selection is done manually and the selected events may not correspond

to the most significant anomalies. Thus, although it is a widely utilized tool in analyzing the performance on

real data, the case study approach might not reflect the true performance of the anomaly detection method

as effectively as synthetic data.

Table 3.5: Results for 2018 NYC Yellow Taxi Data. Columns indicate the percentage of selected points with
top anomaly scores. The table entries correspond to the number of events detected at the corresponding
percentage.

% 0.014 0.07 0.14 0.3 0.7 1 2 3

EE 0 0 1 3 9 9 16 18
LOF 0 0 0 1 1 2 4 5
OCSVM 0 0 2 5 8 11 15 16
HoRPCA 0 5 11 14 20 20 20 20
WHoRPCA 0 0 1 3 9 9 16 18
LRSCP 0 1 1 1 5 7 10 11
BATF 0 1 5 9 14 15 20 20
LOSS 3 9 12 15 16 17 19 20
LOGSS 0 0 1 6 10 12 18 18
GLOSS-EE 1 8 13 15 18 18 19 20
GLOSS-LOF 2 8 12 14 18 18 19 19
GLOSS-SVM 0 3 3 9 17 18 20 20

In Fig. 3.5, we illustrate the bike data for July 4th at Hudson River banks, and the low-rank and sparse

70

Table 3.6: Results on 2018 NYC Bike Trip Data.

% 0.3 1 2 3 4.2 7 9.7 12.5

EE 0 0 0 1 2 2 2 3
LOF 1 1 1 1 2 2 4 6
OCSVM 0 0 1 2 2 2 3 3
HoRPCA 2 3 4 4 6 8 11 14
WHoRPCA 1 1 2 7 11 12 12 12
LRSCP 0 1 2 3 3 4 6 10
BATF 2 3 4 6 9 10 11 13
LOSS 0 1 1 1 4 13 15 16
LOGSS 1 3 4 6 9 11 14 17
GLOSS-EE 0 0 3 7 9 11 15 16
GLOSS-LOF 1 2 2 2 2 6 8 11
GLOSS-SVM 1 2 5 8 10 15 15 15

(a) (b) (c)

Figure 3.5: Bike Activity data, the extracted sparse part and low-rank part across for July 4th Celebrations
at Hudson River banks. (a) Real Data where the traffic for 52 Wednesdays is shown along with the traffic
on Independence Day and average traffic; (b) Sparse tensor where the curve corresponding to the anomaly is
highlighted; (c) Low-rank tensor with the curve corresponding to the Independence Day highlighted.

parts extracted by GLOSS. It can be seen that as the data varies across different weeks, the low-rank part can

explain this variance well by fitting a pattern to days with varying amplitudes. Thus, the proposed method

does not get affected by events such as the weather as it can capture both low and high traffic days in the

low-rank part which can be seen in Fig 3.5c. The deviations from the daily pattern, rather than the actual

traffic volume, is captured by the sparse part, which is then input to the anomaly scoring algorithms. Thus,

our method is able to extract the events at a fairly low .

71

3.8 Conclusions

In this chapter, we proposed robust tensor decomposition based anomaly detection methods for urban traffic

data. The proposed methods extract a low-rank component using a weighted nuclear norm and imposes the

sparse component to be temporally smooth to better model the anomaly structure. In one of the methods,

graph regularization is employed to preserve the geometry of the data and to account for nonlinearities in

the anomaly structure. In another, low-rank tensor recovery is implemented through minimizing graph total

variation on similarity graphs constructed across each mode. This approximation circumvents the need

for computing a computationally expensive nuclear norm minimization. ADMM based computationally

efficient and scalable algorithms are proposed to solve the resulting optimization problems. As the proposed

methods focus on spatiotemporal feature extraction, the resulting features can be input towell-known anomaly

detection methods such as EE, LOF and OCSVM for anomaly scoring.

The proposed methods are evaluated on both synthetic and real urban traffic data. Results on synthetic

data illustrate the robustness of our methods to varying levels of missing data and their sensitivity to even low

amplitude anomalies. In particular, our methods outperforms HoRPCA and WHoRPCA thanks to temporal

smoothness assumption on the sparse part. Moreover, the graph regularization improves the accuracy further

by ensuring that the low-rank projections preserve local geometry of the data. In real data, our methods

begin to detect anomalies earlier, i.e. the top anomaly scores usually correspond to events of interest, than

existing methods. GLOSS provides further improvement over LOSS as more events are detected for a given

number of selected points. Furthermore, the results from real data show how the extracted sparse component

highlights the anomalous activities. For both synthetic and real data, LOGSS outperforms other methods in

terms of computational efficiency with some loss in AUC compared to GLOSS. Experiments on synthetic

data reveal that when anomalies are longer in duration, the proposed methods perform better. LOGSS also

outperforms LOSS when anomalies are shorter in duration. Although LOSS and GLOSS perform better in

real data, LOGSS shows similar performance with shorter run time.

In future work, a statistical tensor anomaly scoring method will be explored instead of scoring each fiber

individually by a separate algorithm. In recent years, deep learning based methods have also provided a

promising new direction for anomaly detection [33, 28]. Some examples include long short-term memory

(LSTM) neural network used to predict traffic flow and detect anomalies [94] and fully connected neural

networks used to decompose traffic data into normal and anomalous parts [205]. Future work will consider

72

extensions to tensor type data and application of 3D-CNNs [33]. Another possible extension of the proposed

work is online anomaly detection. The method proposed in this paper cannot achieve real-time anomaly

detection as for the current application the data has been collected and stored offline. However, it is possible

to extend low-rank tensor models to an online setting. Recently, methods for online tensor subspace tracking

have been introduced [87, 141, 8, 110]. Our method can be extended to the online setting using the methods

outlined in these papers. Applications and extensions of the proposed method on network data and other

spatiotemporal data with different characteristics such as fMRI will also be considered.

73

CHAPTER 4

GEOMETRIC TENSOR LEARNING

4.1 Introduction

Most high-dimensional data have a low-dimensional structure and principal component analysis (PCA) is

the fundamental approach to extract this low-dimensional structure. A major drawback of PCA is that it

is sensitive to grossly corrupted or outlying observations, which are ubiquitous in real-world data. Robust

PCA (RPCA) addresses this issue by decomposing the observed data matrix into a low-rank and sparse part

[30]. However, RPCA can only handle two-way matrix data while real data is usually multi-way in nature

and stored in arrays known as tensors. In recent years, different extensions of RPCA have been introduced

to deal with tensor type data based on the different tensor models. Some examples include simple low-rank

tensor completion (SiLRTC) [120], higher-order RPCA (HoRPCA) based on the Tucker model [70], tensor

RPCA (TRPCA) based on the t-SVD model [125] and tensor-train based tensor RPCA [53, 197].

Different tensor models employ different definitions of rank and result in different interpretations of

what a low-rank tensor is. Tucker rank, optimized by minimizing sum of nuclear norms (SNN), cannot

appropriately capture the global correlation in a tensor as each mode represents the matrix row in an

unbalanced matricization scheme [17]. Tensor tubal rank, optimized by minimizing tensor nuclear norm

(TNN), on the other hand, characterizes the correlations along the first and second modes while that along

the third mode is encoded by the embedded circular convolution. Moreover, definition of TNN is usually

limited to third-order tensors [210]. Tensor-train rank, optimized using tensor train nuclear norm (TTNN),

can capture the global correlation of all tensor entries, by providing the mean of the correlation between two

sets of modes as it is based on a canonical unfolding [17].

While the robust low-rank tensor representations capture the global structure of tensor data, they do not

preserve the local geometric structure. Manifold learning addresses this issue and has been successfully

implemented for tensors [164, 161]. However, current manifold learning approaches typically focus on only

one mode of the data. Yet for many data matrices and tensors, correlations exist across all modalities. Several

recent papers [67, 156, 155, 128, 127, 157, 22] exploit this coupled relationship to co-organize matrices and

infer underlying row and column embeddings.

74

Inspired by the success of low-rank embedding and manifold learning, in this chapter, we propose to

integrate them into a unified framework for simultaneously capturing the global low-rank and the local geo-

metric structure. In particular, we propose a graph regularized robust low-rank tensor-train decomposition.

The proposed model is based on robust tensor-train decomposition introduced in [197]. Unlike previous

graph regularized tensor decompositions, the proposed method introduces graph regularization across each

canonical unfolding to leverage the underlying geometry on each tensor mode. The resulting optimization

problem is shown to be computationally expensive due to the size of the graphs across each canonical unfold-

ing. An equivalence between these computationally expensive graph regularization terms and regular tensor

unfolding is derived and a computationally efficient implementation of graph regularized robust tensor-train

decomposition is proposed.

4.2 Tensor Train Robust PCA on Graphs

Given an observed tensor with missing entries and gross corruption PΩ [Y], the objective of tensor RPCA

is to extract a low-rank tensor, X, and a sparse tensor, S, corresponding to gross outliers such that PΩ [Y] =

PΩ [X + S]. Robust tensor-train PCA model was proposed in [197] as follows:

minimizeX,S
#−1∑
==1

U=‖X[=] ‖∗ + _‖S‖1, s.t. PΩ [X + S] = PΩ [Y] .

While nuclear norm minimization can capture the global structure of the tensor, incorporating graph

regularization can capture the local geometry and non-linear structures within the data. Adding graph

regularization on the mode-= canonical unfoldings of the low-rank part,X[=] ∈ R�1...�=×�=+1...�# , the modified

objective can be rewritten as:

minimize
X,S

#−1∑
==1

U=‖X[=] ‖∗ +
#∑
==1

\=tr(X>[=]Φ=X[=])+_‖S‖1, s.t. PΩ [X + S] = PΩ [Y], (4.1)

where Φ= ∈ R�1...�=×�1...�= is the mode-= graph Laplacian. The solution to (4.1) will be referred to as tensor

train robust PCA with graph regularization (TTRPCA-G).

4.2.1 Kronecker Structured Graphs

For each mode =, the graph regularization proposed in (4.1) computes the similarity over all the modes

from the first to the =th mode. Thus, it potentially utilizes the same local geometric information multiple

times. In this section, we propose modeling each Φ= with a Kronecker structure where Φ= = Φ̂= ⊗ I with

75

Φ̂= ∈ R�=×�= . This structure imposes a manifold on only mode =, rather than the set of all modes =′ with

=′ ≤ =. In the following, we show that solving such a system is equivalent to replacing the trace norm of the

canonical unfolding with the trace norm of mode-= unfolding. Moreover, this structure highly reduces the

computational complexity of TTRPCA-G.

Lemma 2. Let � ∈ R�×� , � ∈ R ×� and � ∈ R!×� , then

vec(���>) = (� ⊗ �)vec(�),

where vec(.) stacks all elements of a tensor into a vector.

Lemma 3. Given a third-order tensor B ∈ R�×�×M , and its third mode slices �8 ∈ R�×� ,

‖�B(2) ‖2� = ‖(� ⊗ I)B[2] ‖2� ,

where � ∈ R!×� is any matrix and I ∈ R�×� is the identity.

Proof. Let b8 = vec(�8) ∈ R� �×1, then,

vec(B>(2)�
>) =

vec(�1�
>)

vec(�2�
>)

...

vec(�"�>)

=

(� ⊗ I)b1

(� ⊗ I)b2
...

(� ⊗ I)b"

= (I ⊗ (� ⊗ I)) [b>1 , b

>
2 , . . . , b

>
"]>= (I ⊗ (� ⊗ I))vec(B[2]) = vec((� ⊗ I)B[2]),

where the second equality follows from Lemma 1. Thus,

‖�B(2) ‖2� = ‖B>(2)�
>‖2� = ‖vec(B>(2)�

>)‖2� = ‖vec((� ⊗ I)B[2])‖2� = ‖(� ⊗ I)B[2] ‖2� .

By reshaping any tensor with # modes to third-order tensors, where mode = is mapped to the second

mode , it can be shown that this result can be generalized for any mode = and order # .

Theorem1. LetΦ= = Φ̂=⊗I, where Φ̂= ∈ R�=×�= and I ∈ R�1�2...�=−1×�1�2...�=−1 . The term
∑#
==1 \=tr(X>[=]Φ=X[=])

is equivalent to
∑#
==1 \=tr(X>(=)Φ̂=X(=)).

76

Proof. Since Φ̂= is symmetric, let Φ̂= = %̂>= %̂=. Then Φ= = (%̂>= %̂=) ⊗ I = %>=%=, where %= = (%̂= ⊗ I).

Thus, the following equalities hold:

tr(X>[=]Φ=X[=]) = ‖%=X[=] ‖
2
� = ‖(%̂= ⊗ I)X[=] ‖2� = ‖%̂=X(=) ‖2� = tr(X>(=) %̂

>
= %̂=X(=))

= tr(X>(=)Φ̂=X(=)),

where the third equality follows from Lemma 2.

By Theorem 1, the graph regularization term in (4.1) is equivalent to
∑#
==1 \=tr(X>(=)Φ̂=X(=)). Thus, we

can rewrite (4.1) as:

minimize
X,S

#−1∑
==1

U=‖X[=] ‖∗ +
#∑
==1

\=tr(X>(=)Φ̂=X(=)) + _‖S‖1, s.t. PΩ [X + S] = PΩ [Y] . (4.2)

The solution to (4.2) will be referred to as tensor train robust PCA with mode-= graph regularization

(TTRPCA-nG).

4.2.2 Optimization

The objective functions (4.1) and (4.2) are optimized using an Alternating Direction Method of Multipliers

(ADMM) scheme as ADMM has been previously utilized for solving similar convex problems [70, 154,

156]. In this section, we will give a detailed derivation of the update steps for optimizing (4.1). While the

update steps will be similar for (4.2), we will note when they differ.

To separate the nuclear norm and graph regularization terms and to isolate functions of each mode, we

introduce auxiliary variables L= and G=. (4.1) is then rewritten as:

minimize
{L}, {G},X,S

#−1∑
==1

U=‖L=[=] ‖∗+
#∑
==1

\=tr(G=>[=]Φ=G
=
[=]) + _‖S‖1,

s.t. PΩ [X + S] = PΩ [Y], X = L=, X = G=.

The corresponding augmented Lagrangian is given by:

#−1∑
==1

U=‖L=[=] ‖∗ +
#∑
==1

\=tr(G=>[=]Φ=G
=
[=]) + _‖S‖1+

V1
2
‖PΩ [Y − X − S − Λ1] ‖2� +

V2
2

#−1∑
==1
‖X − L= − Λ=2 ‖

2
� +

V3
2

#∑
==1
‖X −G= − Λ=3 ‖

2
� , (4.3)

77

where Λ1,Λ
=
2 ,Λ

=
3 ∈ R

�1×�2×···×�# are the Lagrange multipliers. Using (4.3), each variable can be updated

iteratively.

1. X update: The update of low-rank variable X is given by:

PΩ [XC+1] = PΩ [V1T1 + T2] /(V1 + (# − 1)V2 + #V3),

PΩ⊥ [XC+1] = PΩ⊥ [T2]/((# − 1)V2 + #V3), (4.4)

where T1 = Y − SC − ΛC1, T2 = V2
∑#−1
==1 (L=,C + Λ

=,C

2) + V3
∑#
==1(G=,C + Λ

=,C

3).

2. L= update: The update of L= is solved by a soft thresholding operator on singular values of(
XC+1 − Λ=,C2

)
[=] with a threshold of U=/V2.

3. G= update: The variables G= can be updated by:

G
=,C+1
[=] = V3�8=E

(
XC+1 − Λ=,C3

)
[=]
, (4.5)

where �8=E = (2\=Φ= + V3I)−1 exists for any Φ= for which the set of eigenvalues do not contain V3
2\= , and

can be computed outside the loop for faster update.

The update rule for (4.2) is given by:

G
=,C+1
(=) = V3�8=E

(
XC+1 − Λ=,C3

)
(=)
, (4.6)

where �8=E =
(
2\=Φ̂= + V3I

)−1
.

4. S update: The variable S can be updated by soft thresholding PΩ [Y − XC+1 − ΛC1] with a threshold of
_
V1
.

5. Dual updates: Finally, dual variables Λ1,Λ
=
2 ,Λ

=
3 are updated using:

ΛC+11 = ΛC1 + PΩ [X
C+1 + SC+1 − Y], (4.7)

Λ
=,C+1
2 = Λ

=,C

2 + (L
=,C+1 − XC+1), (4.8)

Λ
=,C+1
3 = Λ

=,C

3 + (G
=,C+1 − XC+1). (4.9)

The algorithms for both TTRPCA-G and TTRPCA-nG are outlined in Algorithm 4.1.

4.2.3 Computation and Memory Complexity for Graphs

In (4.1), the size of each Φ= is
∏=
8=1 �8 ×

∏=
8=1 �8 . Thus, the memory requirement for TTRPCA-G is O(�2),

where � =
∏#
8=1 �8 . On the other hand, TTRPCA-nG requires only O(�2

=) parameters for each Φ̂=.

78

Algorithm 4.1: TTRPCA-G/nG
Input: Y, Ω, Φ=, parameters \=, U=, W, V1, V2, V3, T.
Output: X : Low-rank tensor; S: Sparse tensor.
Initialize S0 = 0, L=,0 = 0, G=,0 = 0, Λ0

1 = 0, Λ=,02 = 0, Λ=,03 = 0, ∀= ∈ {1, . . . , #},
�8=E ← (2\=Φ= + V3I)−1 (TTRPCA-G) or

�8=E ←
(
2\=Φ̂= + V3I

)−1
(TTRPCA-nG).

for C = 1 to T do
Update X using (4.4).
Update L=s using optimization step 2.
Update G=s using (4.5) (for TT-PCA-G) or (4.6) (for TT-PCA-nG).
Update S using optimization step 4.
Update Lagrange multipliers using (4.7), (4.8) and (4.9).

end for

Computation of �8=E in (4.5), for = = # has O
(
�4) complexity. On the other hand, the computational

complexity of �8=E in TTRPCA-nG is O(�2
=). Overall, the computational complexities for TTRPCA-G and

TTRPCA-nG are O(�4) and O(�3/2), respectively.

4.3 Experiments

The proposed method was compared against Tucker based HoRPCA [70] and TT based TTRPCA [197] on

data completion and denoising tasks, on both synthetic and real tensor data 1. The results are reported in

terms of peak signal to noise ratio (PSNR), structural similarity index measure (SSIM), and residual squared

error (RSE), i.e., ‖Ŷ−Y0 ‖�
‖Y0 ‖� , where Y0 corresponds to the true underlying low-rank data.

Table 4.1: Denoising performance for synthetic data against varying levels of gross noise 2% for various
methods.

5 20 35 50
RSE PSNR SSIM RSE PSNR SSIM RSE PSNR SSIM RSE PSNR SSIM

Observed 1.95 17.78 0.71 3.91 11.73 0.24 5.18 9.3 0.07 6.22 7.71 0.01
HoRPCA 0.44 31.15 0.86 0.63 28.12 0.59 0.86 25.42 0.29 0.98 24.29 0.26
TTRPCA 0.07 47.52 0.99 0.23 36.86 0.96 0.44 31.22 0.81 0.93 24.77 0.30
TTRPCA-G 0.04 50.06 0.99 0.15 40.08 0.97 0.33 32.82 0.87 0.86 25.67 0.35
TTRPCA-nG 0.04 50.11 0.99 0.15 40.07 0.97 0.33 32.81 0.87 0.87 25.67 0.35

Following [17], we set U: = X:∑#−1
:′=1 X:′

, where X: = min(∏:
==1 �=,

∏#−1
==:+1 �=). \:s are set proportional to

the size of the corresponding mode �:∏#
:′=1 �

′
:

for TTRPCA-nG, and are set proportional to U: for TTRPCA-G.

The remaining parameters are optimized for all methods such that the best results for each method are

reported.

1You can find our code in github.com/mrsfgl/ttrpca_g

79

Table 4.2: Denoising performance for real data against varying levels of gross noise 2% for various methods.

5 20 35 50
RSE PSNR SSIM RSE PSNR SSIM RSE PSNR SSIM RSE PSNR SSIM

Observed 0.414 17.57 0.785 0.8276 11.56 0.392 1.09 9.13 0.205 1.306 7.59 0.11
HoRPCA 0.105 29.53 0.928 0.211 23.42 0.791 0.288 20.74 0.667 0.383 18.25 0.53
TTRPCA 0.106 29.42 0.929 0.199 23.49 0.83 0.277 21.07 0.747 0.378 18.37 0.63
TTRPCA-nG 0.103 29.89 0.926 0.164 25.63 0.852 0.237 22.42 0.77 0.331 19.52 0.65

(a) HoRPCA (b) TTRPCA

(c) TTRPCA-G (d) TTRPCA-nG

Figure 4.1: Phase diagrams for missing data recovery.

4.3.1 Synthetic Data

Tensors with TT structure were generated by simulating each tensor factor U=∀= ∈ {1, . . . , #}, as i.i.d.

Gaussian with mean 0 and covariance I, and merging them. For the sake of simplicity, all modes have the

same size and rank, i.e., �= = �,∀=, A= = A,∀= ≠ # . In our experiments, # is selected to be 4 and � = 10,

i.e., Y ∈ R10×10×10×10 and A is varied in the range of 1 to 9.

After generating synthetic data, we simulate missing data by setting <% of the entries to zero. In

80

Fig. 4.1, we demonstrate the phase diagrams for tensor completion with various methods. By varying the

rank A of the simulated tensors and <, we illustrate the robustness of all of the methods against increasing

ranks and missing data. It can be seen that TTRPCA outperforms HoRPCA as the underlying structure is

better explained by TTNN. The proposed TTRPCA-G and TTRPCA-nG further improve the performance

by incorporating the underlying manifold information.

Next, we evaluate the robustness of the proposed method against sparse outliers by replacing a constant

2% of the entries by random values sampled uniformly from [0, 1]. For this set of experiments, < = 0%

and A = 4. In Table 4.1, we summarize the results. It can be seen that graph regularization improves the

performance at all outlier levels. In particular, TTRPCA is better than HoRPCA as TTNN captures the

low-rank structure better than SNN and graph regularization further improves the results by taking the local

geometry into account. Moreover, the results show that the performances of TTRPCA-G and TTRPCA-nG

are close to each other which indicates that the two methods capture the same geometry.

4.3.2 Real Data

The algorithms are also tested on a subset of 40 objects from COIL dataset [133]. The color images are

converted to grayscale and downsampled to a size of 16×16. For each object, each sample image corresponds

to a different pose angle ranging from 0 to 360 degrees with increments of 10 degrees [133]. Thus, we create

tensors of size 16 × 16 × 36 × 40. We then corrupt the tensor by randomly selecting 2% of all entries and

setting them to 0 or 1. Note that when using this data the adjacency matrix of the fourth mode canonical

graph is of size 368640 × 368640. This makes TTRPCA-G computationally expensive, so we only use

TTRPCA-nG.

From Table 4.2, it can be seen that the proposed method outperforms other methods in denoising for

varying levels of gross noise. TTRPCA-nG can capture the data structure better than the other methods as it

simultaneously minimizes TTNN and considers the underlying manifold across each mode.

4.4 Conclusions

In this chapter, we proposed two graph regularized robust tensor train principal component analysis methods.

In the first method, we utilized canonical unfoldings to construct the mode-= graphs while in the second

method mode-= unfoldings are used. We derived an equivalence between mode-= and canonical graphs with

the assumption that the canonical graph has a specific Kronecker structure.

81

The proposed methods outperformed both robust Tucker and tensor-train decomposition methods in

denoising and completion tasks. Experiments on synthetic data show that the performances of graph

regularization with canonical unfolding and mode-= unfolding were similar to each other while mode-

= graphs provided much lower memory requirements and computational complexity. Future work will

consider capturing low-rank structure through graph total variation minimization as suggested in [154] to

reduce the computational complexity of low-rank tensor recovery task.

82

CHAPTER 5

COUPLED SUPPORT TENSOR MACHINE

5.1 Introduction

Advances in clinical neuroimaging and computational bioinformatics have dramatically increased our under-

standing of various brain functions using multiple modalities such as Magnetic Resonance Imaging (MRI),

functional Magnetic Resonance Imaging (fMRI), electroencephalogram (EEG), and Positron Emission To-

mography (PET). Their strong connections to the patients’ biological status and disease pathology suggest

the great potential of their predictive power in disease diagnostics. Numerous studies using vector- and

tensor-based statistical models illustrate how to utilize these imaging data both at the voxel- and Region-of-

Interest (ROI) level and develop efficient biomarkers that predict disease status. For example, [9] proposes

a classification model using functional connectivity MRI for autism disease and reaches 89% diagnostic

accuracy for subjects under 20. [152] utilizes network models and brain imaging data to develop novel

biomarkers for Parkinson’s disease. Many works in Alzheimer’s disease research such as [129, 122, 89,

66, 124, 54, 116] use EEG, MRI and PET imaging data to predict patient’s cognition and detect early-stage

Alzheimer’s diseases. Although these studies have provided impressive results, utilizing imaging data from

a single modality such as individual MRI sequences are known to have limited predictive capacity, especially

in the early phases of the disease. For instance, [116] uses brain MRI volumes from regions of interest to

identify patients in early-stage Alzheimer’s disease. They use one-year MRI data from Alzheimer’s Disease

Neuroimaging Initiative (ADNI) and obtain 77% prediction accuracy. Although such a performance is

favorable compared to other existing approaches, the diagnostic accuracy is relatively low due to the limited

information fromMRI data. In recent years, it has been common to acquiremultiple neuroimagingmodalities

in clinical studies such as simultaneous EEG-fMRI or MRI and fMRI. Even though each modality measures

different biological signals, they are interdependent and mutually informative. Learning from multimodal

neuroimaging data may help integrate information from multiple sources and facilitate biomarker develop-

ments in clinical studies. It also raises the need for novel supervised learning techniques for multimodal data

in statistical learning literature.

Existing statistical approaches to multimodal data science are dominated by unsupervised learning

83

methods. These methods analyze multimodal neuroimaging data by performing joint matrix decomposition

and extracting common information across differentmodalities. During optimization, the decomposed factors

bridging two or more modalities are estimated to interpret the connections between different modalities.

Examples of these methods include matrix-based joint Independent Component Analysis (jICA) [29, 72,

107, 121, 165, 6] which assume bilinear correlations between factors in different modalities. However, these

matrix-vector based models cannot preserve the multilinear nature of original data and the spatiotemporal

correlations across modes as most neuroimaging modalities are naturally in tensor format. Recently, various

coupled matrix-tensor decomposition methods have been introduced to address this issue [4, 5, 6, 37, 36,

86, 130]. These methods impose different soft or hard multilinear constraints between factors from different

modalities providing more flexibility in data modeling.

Current supervised learning approaches for multimodal data mostly concatenate data modalities as extra

features without exploring their interdependence. For example, [211, 114] build generalized regression mod-

els by appending tensor and vector predictors linearly for image prediction and classification. [142] develops

a discriminant analysis by including tensor and vector predictors in a linear fashion. [111] proposes an

integrative factor regression for multimodal neuroimaging data assuming that data from different modalities

can be decomposed into latent factors. More recently, [65] proposed multiple tensor-on-tensor regression

for multimodal data, which combines tensor-on-tensor regression from [123] with traditional additive linear

model. Another type of integration utilizes kernel tricks and combines information from multimodal data

with multiple kernels. [71] provides a survey on various multiple kernel learning techniques for multimodal

data fusion and classification with support vector machines. Combining kernels linearly or non-linearly

instead of original data in different modalities provides more flexibility in information integration. [12]

proposed a multiple kernel regression model with group lasso penalty, which integrates information by

multiple kernels and selects the most predictive data modalities.

Despite these accomplishments, the current approaches have several shortcomings. First, they mainly

focus on exploring the interdependence between multimodal imaging data, ignoring the representative and

discriminative power of the learned components. Thus, the methods cannot further bridge the imaging data

to the patients’ biological status, which is not helpful in biomarker development. Second, the supervised

techniques such as integrate information primarily by data or feature concatenation without explicitly consid-

ering the possible correlations between different modalities. This lack of consideration of interdependence

may cause issues like overfitting and parameter identifiability. Third, even though methods from [111,

84

65] have considered latent structures for multimodal data, these models are designed primarily for linear

regression and are not directly applicable to classification problems. Fourth, the aforementioned multimodal

analysis methods are mainly vector based methods, which cannot handle large-size multi-dimensional data

encountered in contemporary data science. As discussed in [21], tensors provide a powerful tool for analyz-

ing multi-dimensional data in statistics. As a result, developing a novel multimodal tensor-based statistical

framework for supervised learning can be of great interest. Finally, although many empirical studies demon-

strate the success of using multimodal data, there is a lack of mathematical and statistical clarity to the extent

of generalizability and associated uncertainties. The absence of a solid statistical framework for multimodal

data analysis makes it impossible to interpret the generalization ability of a certain statistical model.

In this chapter, we propose a two-stage Coupled Support TensorMachine (C-STM) formultimodal tensor-

based neuroimaging data classification. The proposed model addresses the current issues in multimodal data

science and provides a sound statistical framework to interpret the interdependence between modalities and

quantify the model consistency and generalization ability. The major contributions of this chapter are:

1. Individual and common latent factors are extracted from multimodal tensor data, for each sample

or subject, using Advanced Coupled Matrix Tensor Factorization (ACMTF) [4, 3]. The extracted

components are then utilized in a statistical framework. Most of the work on ACMTF do not focus

on each subject separately and the extracted factors are utilized for a signal analysis rather than a

subsequent statistical learning framework. Specifically, the work on supervised approaches with

CMTF is limited.

2. Building a novel Coupled Support Tensor Machine with both the coupled and non-coupled tensor CP

factors for classification. In this regard, multiple kernel learning approaches are adopted to integrate

components from multi-modal data.

3. For the validation of our work, we provide both theoretical and empirical evidence. We provide

theoretical results such as classification consistency for statistical guarantee. A thorough numerical

study has been conducted, including a simulation study and experiments on real data to illustrate the

usefulness of the proposed methodology.

A Matlab package is also provided in the supplemental material, including all functions for C-STM classifi-

85

cation. The source codes are available at our Github repository 1.

5.2 Related Work

In this section, we review some background and prior work on coupled tensor decomposition and multiple

kernel learning.

5.2.1 Coupled Matrix Tensor Factorization

X1

�2
� 3

�1

"

-2

Figure 5.1: Illustration of Coupled Tensor Matrix Model

Motivated by the fact that joint analysis of data frommultiple sources can potentially unveil complex data

structures and provide more information, Coupled Matrix Tensor Factorization (CMTF) [2] was proposed

for multimodal data fusion. CMTF estimates the underlying latent factors for both tensor and matrix data

simultaneously by taking the coupling between tensor and matrix data into account. This feature makes

CMTF a promising model in analyzing heterogeneous data, which generally have different structures and

modalities.

During latent factor estimation, CMTF solves an objective function that approximates aCP decomposition

for the tensor modality and a singular value decomposition for the second modality with the assumption that

the factors from one mode of each modality are the same. Given X1 ∈ R�1×�2×...×�3 and -2 ∈ R�1×�2 , without

loss of generality assume that the factors from the first mode of the tensor X1 span the column space of the

matrix -2. CMTF then tries to estimate all factors by minimizing:

Q(U1,V) =
1
2
‖X1 − [[- (1)1 , -

(2)
1 , . . . -

(3)
1]] ‖

2
� +

1
2
‖-2 − - (1)2 -

(2))
2 ‖2� , s.t. - (1)1 = -

(1)
2 , (5.1)

where - (<)? are the factor matrices for modality ? and mode <. The factor matrices - (1)1 = -
(1)
2 are

the coupled factors between tensor and matrix data. An illustration of this coupling is given in Figure

1https://github.com/PeterLiPeide/Coupled_MatrixTensor_SupportTensor_Machine

86

https://github.com/PeterLiPeide/Coupled_MatrixTensor_SupportTensor_Machine

5.1. These factor matrices can also be represented in Kruskal form, U1 = [[- (1)1 , -
(2)
1 , . . . -

(3)
1]] and

U2 = [[- (1)2 , -
(2)
2]]. By minimizing the objective function Q(U1,U2), CMTF estimates latent factors for

the tensor and matrix data jointly which allows it to utilize information from both modalities. [2] uses a

gradient descent algorithm to optimize the objective function (5.1). Although this model is formulated for

the joint decomposition of a 3th order tensor and a matrix, extensions to two or more tensors with couplings

across multiple modes are possible.

In real data, couplings across different modalities might include shared or modality-specific (individual)

components. Shared components correspond to those columns of the factor matrices that contribute to the

decomposition of both modalities, while individual components carry information unique to the correspond-

ing modality. Although CMTF provides a successful framework for joint data analysis, it often fails to obtain

a unique estimation for shared or individual components. As a result, any further statistical analysis and

learning from CMTF estimation will suffer from the uncertainty in latent factors. To address this issue, [3]

proposed Advanced Coupled Matrix Tensor Factorization (ACMTF) by introducing a sparsity penalty to the

weights of latent factors in the objective function (5.1), and restricting the norm of the columns of the factors

to be unity to provide uniqueness up to a permutation. This modification provides a more precise estimation

for latent factors compared to CMTF ([3, 5]). In our framework, we utilize ACMTF to extract the latent

factors which are in turn used to build a classifier for multimodal data.

5.2.2 CP-STM for Tensor Classification

CP-STM has been previously studied by [169, 76, 77] and uses CP tensor to construct STM types of model.

Assume there is a collection of data)= = {(X1, H1), (X2, H2), . . . , (X=, H=)}, where XC ∈ X ⊂ R�1×�2×···×�3

are 3-way tensors. X is a compact tensor space, which is a subspace of R�1×�2×···×�3 . HC ∈ {−1, 1} are binary

labels. CP-STM assumes the tensor predictors are in CP format, and can be classified by the function which

minimizes the objective function

min
5

_ | |f | |2 + 1
=

=∑
C=1
L(f (XC), HC). (5.2)

By using tensor kernel function

 (X1,X2) =
A∑

;,<=1

3∏
9=1

 (9) (x(9)1,; , x
(9)
2,<), (5.3)

87

where X1 =
A∑
;=1

x(1)1; ◦ · · · ◦ x(3)1; and X2 =
A∑
;=1

x(1)2; ◦ · · · ◦ x(3)2; . The STM classifier can be written as

f (X) =
=∑
C=1

UC HC (XC ,X) = U)DHK(X) (5.4)

where X is a new 3-way rank-A tensor, U = [U1, . . . , U=]) is the coefficient vector, DH is a diagonal matrix

whose diagonal elements are H1, .., H= and K(X) = [(X1,X), . . . , (X=,X)]) is a column vector, whose

values are kernel values computed between training and test data. We denote the collection of functions

in the form of (5.4) with H , which is a functional space also known as Reproducing Kernel Hilbert Space

(RKHS). The optimal classifier CP-STM f ∈ H can be estimated by plugging function (5.4) into objective

function (5.2), and minimize it with Hinge or Squared Hinge loss. The coefficients of the optimal CP-STM

model is denoted by U∗. The classification model is statistically consistent if the tensor kernel function

satisfying the universal approximating property, which is shown by [109].

5.2.3 Multiple Kernel Learning

Multiple kernel learning (MKL) creates new kernels using a linear or non-linear combination of single kernels

to measure inner products between data. Statistical learning algorithms such as support vector machine and

kernel regression can then utilize the new combined kernels instead of single kernels to obtain better learning

results and avoid the potential bias from kernel selection ([71]). A more important and related reason for

using MKL is that different kernels can take inputs from various data representations possibly from different

sources or modalities. Thus, combining kernels and using MKL is one possible way of integrating multiple

information sources.

Given a collection of kernel functions { 1(·, ·), . . . <(·, ·)}, a new kernel function can be constructed

by

 (·, ·) = f[({ 1(·, ·), . . . <(·, ·)}|[) (5.5)

where f[is a linear or non-linear function and [is a vector whose elements are the weights for the kernel

combination. Linear combination methods are the most popular in multiple kernel learning, where the kernel

function is parameterized as

 (·, ·) = f[({ 1(·, ·), . . . <(·, ·)}|[)

=

<∑
;=1

[; ; (·, ·).
(5.6)

88

The weight parameters [; can be simply assumed to be the same (unweighted) ([145, 16]), or be determined

by looking at some performance measures for each kernel or data representation ([167, 147]). There are few

more advanced approaches such as optimization-based, Bayesian approaches, and boosting approaches that

can also be adopted ([103, 64, 176, 92, 69, 41, 19]). In this chapter, we only consider linear combination

(5.6), and select the weight parameters in a heuristic data-driven way to construct our C-STM model.

5.3 Methods

Let)= = {(X1,1, -1,2, H1), . . . , (X=,1, -=,2, H=)} be training data, where each sample C ∈ {1, . . . , =} has two

data modalities XC ,1, -C ,2 and a corresponding binary label HC ∈ {1,−1}. In this chapter, following [2],

we assume that the first data modality is a third-order tensor, XC ,1 ∈ R�1×�2×�3 , and the other is a matrix,

-C ,2 ∈ R�4×�3 . The third mode of XC ,1 and the second mode of -C ,2 are assumed to be coupled for each C,

i.e. the factor matrix is assumed to be fully or partially shared across these modes. Utilizing this coupling,

one can extract factors that better represent the underlying structure of the data, and preserve and utilize the

discriminative power of the factors from both modalities. Our approach, C-STM, consists of two stages:

Multimodal tensor factorization, i.e., ACMTF, and coupled support tensor machine as illustrated in Figure

5.2. In this section, we present both stages and the corresponding procedures.

X1

�2
� 3

�1

"

---2

+..+

Individual Factors (Tensor Modality)

+..+

Shared Factors

+..+

Individual Factors (Matrix Modality)

(1)
1 (·, ·)

(2)
1 (·, ·)

(3)
1 (·, ·)

(1)
2 (·, ·)

 (·, ·) H

Figure 5.2: C-STM Model Pipeline

89

5.3.1 Multimodal Tensor Factorization

In this chapter, the first aim is to perform a joint factorization across two modalities for each training sample,

C. Let UC ,1 = [[Z ; - (1)
C ,1 , -

(2)
C ,1 , -

(3)
C ,1]] denote the Kruskal tensor of XC ,1, and UC ,2 = [[f; - (1)

C ,2 , -
(2)
C ,2]] denote

the singular value decomposition of -C ,2. The weights of the columns of each factor matrix - (<)C , ? , where ?

is the index for modality and < denotes the mode, are denoted by Z and f and the norms of these columns

are constrained to be 1 to avoid redundancy. The objective function of ACMTF [4, 3] is then given by:

Q(UC ,1,UC ,2) = W‖XC ,1 − [[Z ; - (1)
C ,1 , -

(2)
C ,1 , -

(3)
C ,1]] ‖

2
� + W‖-C ,2 − -

(1)
C ,2 �-

(2)>
C ,2 ‖

2
�

+ V‖Z ‖0 + V‖f‖0

s.t. -
(3)
C ,1 = -

(2)
C ,2

‖x(1)
C ,1,: ‖2 = ‖x

(2)
C ,1,: ‖2 = ‖x

(3)
C ,1,: ‖2 = ‖x

(1)
C ,2,: ‖2 = ‖x

(2)
C ,2,: ‖2 = 1,

∀: ∈ {1, . . . , A}

(5.7)

where � is a diagonal matrix whose elements are the singular values f of the matrix -C ,2 and x(9)
C ,<,:

∈ R� 9

denotes the columns of the factor matrices for the objectXC ,<. The objective function in (5.7) includes penal-

ties for the number of non-zero weights in both tensor and matrix decomposition. Thus, the model identifies

the shared and individual components. These factors are then considered as different data representations

for multimodal data, and used to predict the labels HC in C-STM classifier.

5.3.2 Coupled Support Tensor Machine (C-STM)

C-STM uses the idea of multiple kernel learning and considers the coupled and uncoupled factors from

ACMTF decomposition as various data representations. As a result, we use three different kernel functions

to measure their similarity, i.e., inner products. One can think of these three kernels inducing three different

feature maps transforming multimodal factors into different feature spaces. In each feature space, the

corresponding kernel measures the similarity between factors in this specific data modality. The similarities

ofmultimodal factors are then integrated by combining the kernelmeasures through a non-linear combination.

This combination should be able to take individual and shared components into account separately for better

adaptability depending on the size and corruptions on the data as the coupled modes are likely to be better

estimated than the individual modes. Thus, we use tensor kernels for individual modes of each modality and

combine these with the kernels of the coupled modes as illustrated in Figure 5.2. The kernel function for

90

C-STM is defined as

(
(XC ,1, -C ,2), (X8,1, -8,2)

)
=

(
(UC ,1,UC ,2), (U8,1,U8,2)

)
=

A∑
:,;=1

F1
(1)
1 (x

(1)
C ,1,: , x

(1)
8,1,;)

(2)
1 (x

(2)
C ,1,: , x

(2)
8,1,;) + F2

(3)
1 (x

(3)∗
C ,1,: , x

(3)∗
8,1,;) + F3

(1)
2 (x

(1)
C ,2,: , x

(1)
8,2,;) (5.8)

for two pairs of decomposed tensor matrix factors (UC ,1,UC ,2) and (U8,1,U8,2). x(3)∗
C ,1,: is the average of the

estimated shared factors 1
2 [x
(3)
C ,1,: + x(2)

C ,2,:]. This kernel is inspired by the idea of Multiple Kernel Learning

with linear combination of multiple kernels for multimodal data. Few more details regarding chosing such

kernel combination are provided in the section 5.5.2.1. F1, F2, and F3 are the three weight parameters

combining the three kernel functions. As discussed in [71], there is no unique choice for determining these

weights, in this chapter, we adopt a cross-validation approach as explained in the Appendix C.2.

With the kernel function in (5.8), C-STM model tries to estimate a bivariate decision function f from a

collection of functionsH such that

f = arg min _ · | |f | |2 + 1
=

=∑
C=1
L(f (XC), HC), (5.9)

where L(XC , HC) = max
(
0, 1− f (XC) · HC

)
is Hinge loss. H is defined as the collection of all functions in the

form of

f (X1, -2) =
=∑
C=1

UC HC ((XC ,1, -C ,2), (X1, -2))

= U)DHK(X1, -2)

(5.10)

due to the well-known representer theorem ([10]) for any pair of testing data (X1, -2) and for U ∈ R=. For

all possible values of U, equation (5.10) defines the data collection H . DH is a diagonal matrix whose

diagonal elements are labels from the training data)=. K(X1, -2) is a = × 1 vector whose C-th element is

(
(XC ,1, -C ,2), (X1, -2)

)
. The optimal C-STM decision function, denoted by fn = U

∗)DHK(X1, -2), can be

estimated by solving the quadratic programming problem

min
U∈R=

1
2
U)DHKDHU − 1) U,

S.T. U) y = 0,

0 � U � 1
2=_

,

(5.11)

where K is the kernel matrix constructed by function (5.8). Problem (5.11) is the dual problem of (5.9), and

its optimal solution U∗ also minimizes the objective function (5.9) when plugging functions in the form of

(5.10). For a new pair of test points (X1, -2), the class label is predicted as sign (fn(X1, -2)).

91

5.4 Model Estimation

In this section, we first present the estimation procedure for coupled tensor matrix decomposition (5.7), and

then combine it with the classification procedure to summarize the algorithm for C-STM.

To satisfy the constraints in the objective function (5.7), the function Q(UC ,1,UC ,2) is converted to a

differentiable and unconstrained form given by:

Q(UC ,1,UC ,2) =W‖XC ,1 − [[Z ; - (1)
C ,1 , -

(2)
C ,1 , -

(3)
C ,1]] ‖

2
� + W‖-C ,2 − -

(1)
C ,2 �-

(2)>
C ,2 ‖

2
�

+ b‖- (3)
C ,1 − -

(2)
C ,2 ‖

2
�

+
A∑
:=1

[
V

√
Z2
A + n + V

√
f2
A + n + \

[
(‖x(1)

C ,1,: ‖2 − 1)2 + (‖x(2)
C ,1,: ‖2 − 1)2

+ (‖x(3)
C ,1,: ‖2 − 1)2 + (‖x(1)

C ,2,: ‖2 − 1)2 + (‖x(2)
C ,2,: ‖2 − 1)2

]]
,

(5.12)

where ℓ1 norm penalties in (5.7) are replaced with differentiable approximations; b and \ are Lagrange

multipliers and n > 0 is a very small number. This unconstrained optimization problem can be solved by

nonlinear conjugate gradient descent ([2, 4, 130]).

Let TC be the full (created by converting Kruskal tensor, or the factor matrices into multidimensional

array form) tensor of UC ,1, and MC = -
(1)
C ,2 �-

(2)>
C ,2 , the partial derivative of each latent factor can be derived

as follows:
XQ(UC ,1,UC ,2)

X-
(1)
C ,1

= W(TC − XC ,1) (1) (Z> � - (3)C ,1 � -
(2)
C ,1) + \ (-

(1)
C ,1 − -̄

(1)
C ,1), (5.13)

W
XQ(UC ,1,UC ,2)

X-
(2)
C ,1

= (TC − XC ,1) (2) (Z> � - (3)C ,1 � -
(1)
C ,1) + \ (-

(2)
C ,1 − -̄

(2)
C ,1), (5.14)

W
XQ(UC ,1,UC ,2)

X-
(3)
C ,1

= (TC − XC ,1) (3) (Z> � - (2)C ,1 � -
(1)
C ,1) + b (-

(3)
C ,1 − -

(2)
C ,2) + \ (-

(3)
C ,1 − -̄

(3)
C ,1), (5.15)

W
XQ(UC ,1,UC ,2)

X-
(1)
C ,2

= (MC − -C ,2)- (2)C ,2 � + \ (-
(1)
C ,2 − -̄

(1)
C ,2), (5.16)

W
XQ(UC ,1,UC ,2)

X-
(2)
C ,2

= (MC − -C ,2)>- (1)C ,2 � + g(-
(2)
C ,2 − -

(3)
C ,1) + \ (-

(2)
C ,2 − -̄

(2)
C ,2), (5.17)

XQ(UC ,1,UC ,2)
Xf:

= x(1)>
C ,2,: (MC − -C ,2)x(2)C ,2,: +

V

2
f:√
f2
:
+ n

, : ∈ {1, . . . , A}, (5.18)

XQ(UC ,1,UC ,2)
XZ:

= vec(TC − XC ,1)>
(
x(3)
C ,1,: � x(2)

C ,1,: � x(1)
C ,1,:

)
+ V

2
Z:√
Z2
:
+ n

, : ∈ {1, . . . , A}, (5.19)

92

Algorithm 5.1: ACMTF Decomposition
1: Input: Multimodal data (X1, -2), r, [, S (Upper limit for the number of iterations)
2: Output: U∗

C ,1,U
∗
C ,2

3: UC ,1,UC ,2 = U0
C ,1,U

0
C ,2 ⊲ Initial value

4: �0 = −OQ(U0
C ,1,U

0
C ,2)

5: i0 = arg mini Q
[
(U0
C ,1,U

0
C ,2) + i�0

]
6: U1

C ,1,U
1
C ,2 = (U

0
C ,1,U

0
C ,2) + i0�0

7: g0 = �0
8: while s < S and ‖Q(UB

C ,1,U
B
C ,2) −Q(UB−1

C ,1 ,U
B−1
C ,2)‖ > [do

9: �B+1 = −OQ(UB
C ,1,U

B
C ,2)

10: gB+1 = �B+1 +
�>
B+1 (�B+1−�B)
−g>B (�B+1−�B)

gB
11: iB+1 = arg mini Q

[
(UB
C ,1,U

B
C ,2) + igB+1

]
12: UB+1

C ,1 ,U
B+1
C ,2 = (UB

C ,1,U
B
C ,2) + iB+1gB+1

13: end while

where (E42(.)) is a vectorization operator that stacks all elements of the operand in a column vector, T(9)

denotes the mode- 9 unfolding of a tensor T , and � denotes Khatri-Rao product. M̄ is a normalized matrix

whose columns have unit ℓ2 norms.

By combining all of the partial derivatives, the partial derivative of the objective function is given by:

OQ(UC ,1,UC ,2) =
[
XQ(UC ,1,UC ,2)

X-
(1)
C ,1

,
XQ(UC ,1,UC ,2)

X-
(2)
C ,1

,
XQ(UC ,1,UC ,2)

X-
(3)
C ,1

,

XQ(UC ,1,UC ,2)
X-
(2)
C ,2

,
XQ(UC ,1,UC ,2)

XZ1
, . . .

XQ(UC ,1,UC ,2)
Xf1

, . . .

]> (5.20)

which is a 2A + 5 dimensional vector. As mentioned in [4], a nonlinear conjugate gradient method with

Hestenes-Stiefel updates is used to optimize (5.12). The procedure is described in Algorithm 5.1.

Once the factors for all data pairs in the training set)= are extracted, we can create the kernel matrix

using the kernel function in (5.8). By solving the quadratic programming problem (5.11), we can obtain the

optimal decision function fn. This two-stage procedure for C-STM estimation is summarized in Algorithm

5.2.

93

Algorithm 5.2: Coupled Support Tensor Machine
1: procedure C-STM
2: Input: Training set)= = {(X1,1, -1,2, H1), . . . , (X=,1, -=,2, H=)}, y, kernel function , A, _, [, S
3: for t = 1, 2,. . . n do
4: U∗

C ,1,U
∗
C ,2 = ACMTF

(
(XC ,1, -C ,2), A, [, S

)
5: end for
6: Create initial matrix K ∈ R=×=
7: for t = 1,. . . ,n do
8: for i = 1,. . . ,n do

9: K[8, C] =
(
(UC ,1,UC ,2), (U8,1,U8,2)

)
⊲ Kernel values

10: K[8, C] = K[C, 8]
11: end for
12: end for
13: Solve the quadratic programming problem (5.11) and find the optimal U∗.
14: Output: U∗
15: end procedure

5.5 Experiments

5.5.1 Parameter Selection

5.5.1.1 Multimodal Tensor Factorization

The proposed model requires the selection of three different parameters, namely, W, V, and rank A . To select

these parameters, we closely follow best practices outlined in previous work on CMTF [2], ACMTF [4] and

CCMTF [130]. First of all, one of these parameter can be set to 1 as a pivot, and following previous work,

we set W = 1. The selection of rank A is directly related to the selection of V. As V enforces sparsity over

the singular values, it directly minimizes the rank. With sufficiently large A , we can estimate the low-rank

part through optimization. For the selection of A in real data, we set A = 5 following the work of [130] where

it was shown through CORCONDIA tests [85] that A = 3 is sufficiently large for oddball data. In the case

of the simulation study, A = 5 is again sufficiently large as the data were generated from rank A = 3 factors.

Finally, based on our empirical results and the results presented in [130] we set V = 0.001 using k-fold cross

validation.

94

5.5.1.2 C-STM

The parameters in C-STM include kernel weights F1, F2, F3 and regularization parameter _ in the optimiza-

tion. The weight parameters, normalized such that the ℓ2-norm is equal to 1, and _ are selected using 5 fold

cross-validation. The overall classification accuracy in our validation set serves as the performance metric

and helps us determine the best combination of weights and _.

The selection of weight parameters F1, F2, F3 is indeed a problem of how to combine kernels from

different modalities. It is straightforward to calculate kernels from every data modality, however, combining

them appropriately and effectively would be challenging unless we can find out the weight for each kernel.

This problem has been widely studied in the literature of Multiple Kernel Learning. In [71], the authors

summarize that the existing methods of kernel weight selection can be divided into five categories, including

fixed rules, heuristic approaches, optimization approaches, Bayesian approaches, and boosting approaches.

As there is no consensus on the best way to choose the weights, we adopt a cross-validation approach as

explained in the Appendix of the revised manuscript to identify the kernel weights. The overall classification

accuracy in our validation set serves as the performance metric and helps us determine the best combination

of weights.

The generalization of our method to more than two modalities would be straightforward for tuning the

weights. This is because the tuning problem has been widely studied in multiple kernel learning (MKL)

research. There is no restriction on the number of kernels one can include in MKL framework. The weight

selection techniques in MKL can be adapted to our framework.

The optimization problem defined in (5.9) is an ordinary SVM problem once the kernel values are

calculated through equation (5.8). Thus, for more information about the estimation procedure, _ selection,

as well as the consistency results readers are referred to existing Support Vector Machine literature [163].

5.5.2 Simulated Data

We present a simulation study to demonstrate the benefit of utilizing C-STM with multimodal data in

classification problems. To show the advantage of using multi-modalities in C-STM, we include CP-STM

from [76], ConstrainedMultilinear Discriminant Analysis (CMDA), and Direct General Tensor Discriminant

Analysis (DGTDA) from [112] as competitors. These existing approaches can only take a single tensor /

matrix as the feature for classification. As a result, they are not able to enjoy the multi-modalities in the

95

simulated data. We apply these approaches on every single data modality in our simulated data, and compare

their classification performance with C-STM which uses multimodal data.

We generate synthetic data using the idea from [61]. Suppose the two data modalities in our classification

problems are

XC ,1 =
3∑
:=1

x(1)
:,C ,1 ◦ x(2)

:,C ,1 ◦ x(3)
:,C ,1

-C ,2 =

3∑
:=1

x(1)
:,C ,2 ◦ x(2)

:,C ,2

(5.21)

where XC ,1 are three-way tensors in the size of 30 by 20 by 10. -C ,2 are matrices in the size of 50 by 10.

Both of them have CP ranks equal to 3. To generate data for the simulation study, we first generate the

latent factors (vectors) from various multivariate normal distributions, and then convert these factors into

full tensors XC ,1 and matrices -C ,2 using equation (5.21). The multivariate normal distributions we used to

generate columns of the latent factors in equation (5.21) are specified in Table 5.1 below. In Table 5.1, we

use 2 = 1, 2 to denote data from two different classes.

Table 5.1: Distribution Specifications for Simulation Study;MVN stands formultivariate normal distribution.
I are identity matrices. Bold numbers are vectors whose elements are all equal to the numbers.

Tensor Factors Shared Factors Matrix Factors

Simulation 2 x(1)
:,C ,1 x(2)

:,C ,1 x(3)
:,C ,1 = x(2)

:,C ,2 x(1)
:,C ,2

Case 1 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.25, I)

Case 2 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.5, I)

Case 3 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(1.75, I)

Case 4 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(2, I)

Case 5 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1.5, I) MVN(1, I) MVN(1, I) MVN(2.25, I)

Case 6 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(2, I) MVN(1, I) MVN(1, I) MVN(1, I)

Case 7 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1, I) MVN(1, I) MVN(1, I) MVN(2, I)

Case 8 1 MVN(1, I) MVN(1, I) MVN(1, I) MVN(1, I)
2 MVN(1, I) MVN(1, I) MVN(2, I) MVN(1, I)

96

There are eight different cases in our simulation study. In case 1 - 5, one of the tensor factors and the

matrix factors are generated from different multivariate normal distributions for data in different classes.

This means the tensor and matrix data both contain certain class information (discriminant power) which are

different in different data modalities. Notice that the discriminant power in one of the tensor factor remains

the same among case 1 - 5, while the power in the matrix factor increases. Case 6 and 7 assume the class

information exists only in a single data modality. In case 6, only one of the tensor factors are generated from

different distributions for data in different classes. This factor then becomes the matrix factor in class 7. In

case 8, the shared factors are sampled from different distributions, meaning that both tensor and matrix data

modalities have class information. However, such class information are from the shared factors are the same

between different modalities.

For each simulation case, we generate 50 pairs of tensor and matrix from both class, collecting 100 pairs

of observations in total. We then perform a random training and testing set separation by randomly choosing

20 samples as the testing set, and use the remaining data as the training set. The random selection of testing

set is conducted in a stratified sampling manner such that the proportion of samples from each class remains

the same in both training and testing sets. For all models, we report the model prediction accuracy, the

proportion of correct predictions over total predictions, on the testing set as the performance metric. The

random training and testing set separation is repeated for 50 times and the average prediction accuracy of

these 50 repetitions for all the cases are reported in Figure 5.3. Additionally, the standard deviations are

illustrated by the error bars in the figure. The results of CP-STM, CMDA, and DGTDA with tensor data are

denoted by CPSTM1, CMDA1, and DGTDA1 respectively in the figure. The results using matrix data are

denoted by CPSTM2, CMDA2, and DGTDA2.

From the Figure 5.3, we can conclude that our C-STM has a more favorable performance in this

multimodal classification problem comparing with other competitors. Its accuracy rates are significantly

larger than other methods in most cases. Particularly, we can see that the accuracy rates of C-STM (orange)

are increasing from case 1 to case 5, while the accuracy rates of CP-STM using tensor data remain the same.

This is because the difference between class mean vectors for the first tensor factor does not change from

case 1 to case 5. However, the gap between class mean vectors in matrix factor increases. Due to this fact,

both C-STM and CP-STM (yellow) which utilize matrix data are getting better performance from case 1

to case 5. More importantly, C-STM always outperforms CP-STM with matrix data as it enjoys the extra

class information from multimodalities. In case 6 and case 7 where class information are in single data

97

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 1

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 2

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 3

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 4

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 5

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 6

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 7

0.0

0.3

0.6

0.9

1.2

C−STM CMDA1 CMDA2 CPSTM1 CPSTM2 DGTDA1 DGTDA2

Method

A
c
c
u
ra

c
y

Case 8

Figure 5.3: Simulation Result: Average accuracy rates shown in bar plots; Standard deviation of accuracy
rates shown by error bars

modalities, the advantage of C-STM is not as significant as the previous cases, though its performances are

slightly better than CP-STM. This indicates C-STM can provide robust classification results even when extra

data modalities do not provide any other class information, as it can extract more accurate estimates of the

factors in the decomposition step. In case 8 where the class information is from the shared factors, C-STM

recovers the shared factors accurately and provides significantly better classification accuracy. Through this

simulation, we showed that C-STM has a clear advantage of usingmultimodal data in classification problems,

98

and is robust to redundant data modalities.

5.5.2.1 Kernel Selection

In this section, we evaluate and justify the choice of the kernel function presented in (5.8). In this formulation,

the individual and coupled modes for each modality are first separated and then the individual modes of each

modality are combined as a tensor kernel function. The kernels from the individual modes are then added

to those from the coupled modes to obtain the final form where the weights for the individual and coupled

parts can be optimized as discussed in the Appendix. This kernel formulation separates the coupled and

individual information and integrates them as a linear combination. Although this is not the only way to

integrate kernels, the relatively simple structure of such combination provides us with several benefits such

as interpretability, convenient parameter tuning, and generalizability for multimodal data. With equation

(5.8), it is possible to explain the contribution of different data modalities to discrimination power by looking

at the weights parameters. Further, with linear combination of kernels, the weight parameters can be tuned

with the different approaches introduced in [71] such as Group Lasso. Even though we do not adopt these

tuning techniques in this chapter, it still shows the advantage of choosing such a combination and can be the

foundation for future work. Lastly, this kernel combination can be extended for data with more modalities

easily since kernels are appended linearly.

Besides the aforementioned reasons, we also provide numerical experiments to illustrate the performance

of our choice against other kernel combination choices. In these experiments the factor sizes are the same

(X1 ∈ R40×40×40, and -2 ∈ R40×40, A = 3) so that the kernels are balanced across the modes. We consider

two cases, i.e., Case 8 in Table 5.1, and Case 9 where the columns of the latent factors corresponding to all

individual and coupled modes of the second class are from the distribution MVN(2, I). Although there can

be many different kernel combinations, we select four particular formulations for comparison as they can be

a basis for other choices. The particular formulations are the weighted combination of individual kernels

from all modes (K2), the weighted combination of the tensor kernels corresponding to the two modalities

(K3) and the tensor kernel corresponding to all modes across modalities (K4). The formulations for the

different kernels are given in Table 5.2. We report average classification accuracy across 50 simulations,

where the simulated tensors are randomly initialized.

In Table 5.3, we can see that the kernel selection schemes K1 and K2 perform the best. K3 performs

99

Table 5.2: Various kernel combination schemes. Note that (2)2 =
(3)
1 .

Combination Scheme

K1 F1
(1)
1

(2)
1 + F2

(3)
1 + F3

(1)
2

K2 F1
(1)
1 + F2

(2)
1 + F3

(3)
1 + F4

(1)
2

K3 F1
(1)
1

(2)
1

(3)
1 + F2

(1)
2

(2)
2

K4
(1)
1

(2)
1

(3)
1

(1)
2

slightly worse as it is not as flexible as the previous two. Finally, K4 performs the worst as it is affected

by all modes simultaneously, and cannot generalize well. While the difference in performance between the

kernels is not significant, K3 and K4 cannot determine whether the observed class differences are due to

an individual mode or a coupled mode. Thus, K1 and K2 are better in terms of explaining the results. For

Case 8, in most cases, cross-validation across a range of weight parameters for K1 and K2 yields F2 = 1

and F3 = 1, respectively, and the remaining weights are equal to zero. This directly identifies the source

of discriminability and allows for better interpretability, which is not possible for K3 and K4. Finally,

K1 has less number of parameters than K2 and this can be advantageous in cases with high number of

modalities. The smaller number of parameters make cross-validation simpler, while still allowing for some

interpretability.

Table 5.3: Classification accuracy using different kernel combinations.

K1 K2 K3 K4

Case 9 0.91 ± 0.036 0.9 ± 0.043 0.87 ± 0.038 0.82 ± 0.045
Case 8 0.90 ± 0.039 0.9 ± 0.038 0.88 ± 0.036 0.83 ± 0.06

5.5.3 EEG-fMRI Data

In this section, we present the application of the proposed method on simultaneous EEG-fMRI data. The

simultaneous electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is one of

the most popular non-invasive multimodal brain imaging techniques to study human brain function. EEG

records electrical activity from the scalp resulting from ionic current within the neurons of the brain. Its

millisecond temporal resolution makes it possible to record event-related potentials that occur in response

to visual, auditory and sensory stimuli ([172, 1]). While EEG provides high temporal resolution, its spatial

resolution is limited by the number of electrodes placed on the scalp and thus provides less spatial resolu-

100

tion compared to other neuroimaging modalities such as magnetic resonance imaging (MRI) and Positron

Emission Tomography (PET). As a result, it has been commonplace to record EEG data in conjunction

with a high spatial resolution modality. As another powerful tool in studying human brain function, blood

oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) provides signals with

much higher spatial resolution to reflect hemodynamic changes in blood oxygenation level at all voxels

related to neuronal activities ([138, 15, 101, 62]). Recording simultaneous EEG and fMRI can provide high

resolution information at both the spatial and temporal dimensions at the same time. Thus, developing novel

machine learning techniques to utilize such multimodal data is of great significance. In this application, we

apply our C-STM model to a binary trial classification problem on a simultaneous EEG-fMRI data.

The data is obtained from the study [178]. In this study, there are seventeen individuals (six females,

average age 27.7) participated in three runs each of analogous visual and auditory oddball paradigms. The

375 (125 per run) total stimuli per task were presented for 200 ms each with a 2-3 s uniformly distributed

variable inter-trial interval. A trial is defined as a time window in which subjects receive stimuli and

make responses. In the visual task, a large red circle on isoluminant gray backgrounds was considered as

the target stimuli, and a small green circle were the standard stimuli. For the auditory task, the standard

and oddball stimuli were, respectively, 390 Hz pure tones and broadband sounds which sound like "laser

guns". During the experiment, the stimuli were presented to all subjects, and their EEG and fMRI data are

collected simultaneously and continuously. We obtain the EEG and fMRI data from OpenNeuro website

(https://openneuro.org/datasets/ds000116/versions/00003). We utilize both EEG and fMRI in

this data set with our C-STM model to class stimulus types in all the trials. Through our numerical study,

we want to demonstrate the fact our C-STM model enjoys the advantage of data multimodality and provides

more accurate class predictions. The data from Subject 4 are dropped since its fMRI data are corrupted.

We pre-process both the EEG and fMRI data with Statistical Parametric Mapping (SPM 12) ([11]) and

Matlab. The EEG data is collected by a custom built MR-compatible EEG system with 49 channels. [178]

provides a version of re-referenced EEG data with 34 channels which are used in our experiment. This version

of EEG data are sampled at 1,000 Hz, and are downsampled to 200 Hz at the beginning of pre-processing.

We then remove both low-frequency and high-frequency noise in the data using SPM filter functions. As

the last step of EEG pre-processing, we define trials from Brain Imaging Data Structure (BIDS) files [136]

and extract EEG data epochs recorded within the trial-related time windows. The time window for each trial

is considered to go from 100 ms before the stimulus onset until 500 ms after the stimulus. For each trial,

101

https://openneuro.org/datasets/ds000116/versions/00003

we construct a three-mode tensor corresponding to the EEG data for all subjects where the modes represent

channel × time × subject. We denote it as XC ,1 ∈ R34×121×16. The fMRI data is collected by 3T Philips

Achieva MR Scanner with 170 volumes (TR = 2s) per session. Each 3D volume contains 32 slices. The

voxel size in the image is 3 x 3 x 4 mm. For each subject, we realign all the fMRI volumes from multiple

sessions to the mean volume, and co-register the participant’s T1 weighted anatomical scan to the mean fMRI

volume. Next, we normalize all the fMRI volumes to match the MNI brain template ([102]) by creating

segments from co-registered T1 weighted scan, and keep the voxel size as 3 x 3 x 4mm. All normalized fMRI

volumes are then smoothed by 3D Gaussian kernels with full width at half maximum (FWHM) parameter

being 8 × 8 × 8. After the pre-processing, we further perform a regular statistical analysis ([119, 190]) to

extract fMRI volumes from visual and auditory stimulus related voxels. Such data are also known as Region

of Interest (ROI) data. We extract fMRI volumes from 178 voxels (in Figure 5.4a) for auditory oddball tasks,

and 112 voxels for auditory tasks. As a result, fMRI data are modeled by matrices whose rows and columns

stand for voxels and subjects: XC ,2 ∈ R16×178 for auditory task data, and XC ,2 ∈ R16×112 for visual task data.

There is no time mode in fMRI data because the trial duration is less than the repetition time of fMRI (time

for obtaining a single 3D volume fMRI). For each trial, there is only one 3D scan of fMRI collected from a

single subject. The ROI data then becomes a vector for this subject in the trial as we extract volumes from

the regions of interest.

To classify trials with oddball and standard stimulus, we collect 140 multimodal data samples (XC ,1,XC ,2)

from auditory tasks, and 100 samples from visual tasks. For both types of tasks, the numbers of oddball and

standard trials are equal. We consider the trials with oddball stimulus as the positive class, and the trials with

standard stimulus as the negative class. Like the procedures in our simulation study, we select 20% of data

as testing set, and use the remaining 80% for model estimation and validation. The classification accuracy,

precision (positive predictive rate), sensitivity (true positive rate), and specificity (true negative rate) of

classifiers are calculated using the test set at each experiment. The experiment is repeated multiple times,

and the average accuracy, precision, sensitivity, and specificity, and their standard deviations (in subscripts)

are reported in Table 5.4. The single mode classifiers CPSTM, CMDA, and DGTDA are also applied on

either EEG or fMRI data as a comparison. The single mode classifiers applied on EEG data are denoted by

appending the number "1" after their names, and those applied on fMRI data are denoted by appending the

number "2". The area under the curve (AUC) for all the classifiers are also reported in Table 5.4.

The results in Table 5.4 show that the trial classification accuracy for C-STM using multimodal data

102

Table 5.4: Real Data Result: Simultaneous EEG-fMRI Data Trial Classification (Mean of Performance
Metrics with Standard Deviations in Subscripts)

Task Method Accuracy Precision Sensitivity Specificity AUC

Auditory

C-STM 0.890.05 0.830.07 1.000.00 0.770.11 0.890.06
CP-STM1 0.800.08 0.710.11 1.000.00 0.600.12 0.780.06
CP-STM2 0.830.06 0.760.07 0.990.05 0.650.11 0.820.05
CDMA1 0.550.10 0.510.09 0.960.09 0.200.21 0.550.06
CDMA2 0.670.09 0.610.11 0.920.07 0.460.14 0.700.08
DGTDA1 0.550.09 0.510.09 0.940.07 0.230.12 0.590.06
DGTDA2 0.670.09 0.600.10 0.900.09 0.460.13 0.680.08

Visual

C-STM 0.860.06 0.820.09 0.930.07 0.770.12 0.860.06
CP-STM1 0.760.08 0.660.11 1.000.00 0.540.12 0.780.05
CP-STM2 0.770.08 0.700.11 0.980.08 0.580.17 0.770.07
CDMA1 0.530.12 0.520.11 0.940.11 0.110.18 0.540.08
CDMA2 0.650.13 0.610.14 0.910.09 0.430.19 0.660.09
DGTDA1 0.560.11 0.540.11 0.940.06 0.170.12 0.560.07
DGTDA2 0.640.10 0.600.13 0.860.10 0.440.18 0.640.07

is better than any classifier based on single modality with a significant improvement in terms of average

accuracy rates and average AUC values. This improvement is observed for classification of both auditory and

visual tasks. This observation agrees to the conclusion from our simulation study. Similar to our simulation

study, the tensor discriminant analysis does not work as well as CP-STM and C-STM. In addition, it is

obvious that the performance of tensor discriminant analysis using fMRI data are better than using EEG

data. This is within our expectation, since the regions we extracted from fMRI data are identified by group

level fMRI statistical analysis. The data in these regions have already shown significant differences between

different trials in the traditional study, and thus are easy to classify. On the other hand, there is no prior

analysis and feature extraction procedure applied on EEG data, leaving a low signal to noise ratio in EEG

data. However, C-STM still can take advantage of using EEG data and further increase the classification

accuracy, highlighting its robustness and potential in processing noisy mulitmodal tensor data.

5.6 Conclusion

In this chapter, we have proposed a novel coupled support tensor machine classifier for multimodal data by

combining the advanced coupled matrix tensor factorization (ACMTF) and support tensor machine (STM).

The most distinctive feature of this classifier is its ability to integrate features across different modalities and

structures. The proposed approach can simultaneously take matrix- and tensor-shaped data for classification

103

and can be easily extended to inputs with more than two modality. The coupled tensor matrix decomposition

unveils the intrinsic correlation structure between data across different modalities, making it possible to

integrate information from multiple sources efficiently. Such a decomposition also makes the whole method

robust and applicable to large-scale noisy data with missing values. The newly designed kernel functions

in C-STM provide feature-level information fusion, combining discriminant information from different

modalities. Moreover, the kernel formulation makes it possible to utilize the most discriminative features

from each modality by tuning the weight parameters in the function.

The most important theoretical extension of our current approach would be the development of excess

risk for C-STM. In particular, we are looking for an explicit expression for the excess risk in terms of data

factors from multiple modalities to quantify the contribution of every single modality in minimizing the

excess risk. By doing so, we are able to interpret the importance of each data modality in classification

tasks. In addition, quantifying the uncertainty of tensor and matrix factors estimation and their impact on

the excess risk will build the foundation to the next level.

Future work will focus on learning the weight parameters in the kernel function via optimization. As [71]

introduced, the weights in the kernel function can be further estimated by including a group lasso penalty

in the objective function. This procedure allows the identification of the most significant components and

reduce the cost of parameter selection. Finally, the proposed method can be extended to multimodal data

with more than two modalities, and for regression problems.

In conclusion, we believe C-STM offers many encouraging possibilities for multimodal data integration

and analysis. Its capability of handling multimodal tensor inputs will make it appropriate in many advanced

data applications in neuroscience andmedical research. We anticipate that this method will play an important

role in a variety of applications.

104

(a) Auditory Task

(b) Visual Task

Figure 5.4: Region of Interest (ROI)

105

CHAPTER 6

CONCLUSIONS

In this thesis, we introduced new tensor based machine learning models using various data structures. In par-

ticular, we utilized tensor network structures, geometric models and multi-modal coupling for efficient tensor

based unsupervised and supervised learning. The proposed methods in the thesis contribute significantly to

the tensor learning literature by improving existing structures and using tensors to model new problems.

In Chapter 2, we proposed a tensor decomposition structure, i.e., Multi Branch Tensor Network, that

provides improved storage and computational efficiency compared to existing architectures, without sac-

rificing representation power of the low-dimensional approximations. We explored two applications of

multi-branch structure in supervised and unsupervised settings and provided theoretical analysis of conver-

gence, computational and storage complexities. In the supervised setting, a multi-branch implementation of

LDA was introduced. The proposed approach reduced the computational complexity by orders of magni-

tude, while improving the classification accuracy compared to vector-, Tucker- or TT-based methods. We

also demonstrated that the proposed approach is more general compared to Tucker based MDA methods,

TT-based BTT and MPS, and provided a way of selecting the optimal structure depending on data size.

The proposed methods show robustness against small-sample-size (SSS) problem, which is considered to

be the main drawback of LDA [63], as it learns smaller number of parameters due to the efficient multi-

branch structure. The proposed Multi-branch methods can be further utilized in any Ritz pair (extremal

eigenvalue-eigenvector pair) computation. In the unsupervised setting, the proposed structure was used for

a graph regularized optimization problem to reduce the computational complexity and learn more effective

subspaces for dimensionality reduction. Low-dimensional projections, or features of the data are then used

for clustering. Using multi branch structure reduced the computational complexity for the optimization by

orders of magnitude, especially when the projected space was larger in dimension. This is a crucial as,

often, using a small number of features does not provide acceptable clustering quality or other learning

objective functions. The proposed method outperformed Tucker-based graph regularized method in terms

of clustering quality, hence, suggesting that multi-branch decompositions could learn subspaces that better

fit the data compared to Tucker based methods even in a manifold learning setting.

In Chapter 3, we present a framework for robust tensor decomposition for anomaly detection in spa-

106

tiotemporal data. In particular, we focus on urban trafficmonitoring applications where the anomalies exhibit

themselves as temporally contiguous events. Motivated by this application, we model spatiotemporal data

as a low-rank plus sparse tensor where the low-rank part corresponds to underlying data and sparse part

corresponds to anomalies. The continuous nature of the anomalies are taken into account with the additional

constraint that the sparse part is temporally continuous (LOSS). We explore two extensions of this model.

First, to capture the underlying local geometric relations in the data, we consider graph regularization across

each mode (GLOSS). This type of regularization is motivated by the assumption that the data lies on a

product graph, which holds true for many real world scenarios, since real world data is often generated over

graphs with such structures. Specifically, for traffic data, this structure is fitting by design. Second, we

modify our objective function by minimizing the graph total variation instead of nuclear norm for low-rank

approximation to reduce the computational complexity (LOGSS). Finally, we incorporate a tensor comple-

tion framework in all of these methods to address missing data. The proposed methods are shown to improve

anomaly detection performance compared to baseline methods and have higher accuracy than existing robust

tensor decomposition methods. In particular, using graph regularization in the objective improves the results

significantly even when the nuclear norm penalties are dropped. This shows that using geometric structure

instead of global structure such as rank can be used to obtain highly accurate and low complexity tensor

models.

In Chapter 4, we propose incorporating geometric structure in addition to global structure into tensor

denoising and recovery formulations. Geometric tensor learning allows for better modeling of underlying

relations of data compared to purely algebraic measures. We propose a TT based robust PCA model where

a graph smoothness penalty is applied to each mode-= canonical unfolding. Since this formulation results

in computationally intractable matrix inversion problems, we propose an extension where we impose a

Kronecker structure on the mode-= canonical graph. This structure is designed such that the the redundancy

across the different mode unfoldings is minimized. We prove the equivalence between the proposed graph

smoothness penalty with mode-= unfolding based graph smoothness penalty. We show the advantage of

using geometric approaches by comparing these two methods with purely algebraic objective functions.

The proposed methods outperform the existing methods in missing data imputation, and denoising tasks.

Moreover, using the Kronecker structured graph rather than the canonical graph provided similar results with

improved computational efficiency. The results in this chapter illustrate that with additional regularizations

on topological structure, TT-based models can be further improved.

107

Finally, in Chapter 5, we utilize coupled tensor decomposition in a supervised setting. Heterogenous data

collected by sensing the same physical phenomena are generally coupled. Coupled tensor decomposition

methods have been utilized extensively for unsupervised learning tasks such as denoising, recovery and

clustering such heterogeneous data. In this chapter, we showed that these models can also be utilized in

supervised settings, for robust dimensionality reduction and feature extraction. To combine representations

from different sources, we proposed using multiple kernel learning methods. MKL uses a combination of

single kernels, that can take inputs from various data sources, to obtain better results and avoid potential

bias from kernel selection [71]. We propose a two-step model where in the first step, factor matrices for

all samples are extracted by coupling heterogeneous data sources. In the next step, we feed the extracted

features, i.e., factor matrices, to a kernelized support tensor machine. The proposed method shows better

classification accuracy compared to supervised learning based on the individual data sources. Coupled

decomposition extracts the features from each sample using information from both data sources, which

provides better features for the subsequent STM and improves the accuracy compared to STM trained on

the features of individual modalities. The proposed method also outperforms methods that specifically learn

discriminative factors from individual modalities, which illustrates the advantage of coupling.

6.1 Future Work

The work in this thesis suggests new research directions. In this section, we suggest areas of future work for

each chapter.

6.1.1 Multi-Branch Tensor Learning

The proposed tensor decomposition structure is a hybrid between Tucker and TT decompositions, hence,

is generally applicable in any tensor decomposition problem. Thus, the structure can be utilized in many

other supervised and unsupervised tasks, such as regression, STMs, dictionary learning, manifold learning,

data recovery and compression. It can also be utilized in improving tensor-based deep learning methods, by

either compressing the data, or the network parameters as it provides an optimal way of decomposing large

tensors.

Theoretical aspects of the representation power of this structure is also of interest as it would lead to

a deeper understanding of tensor decompositions. Since Tucker and TT decompositions are special cases

of the multi-branch structure, this analysis would also reveal a concrete reasoning for the choice of the

108

decomposition structure depending on the problem, and data at hand.

6.1.2 Tensor Methods for Anomaly Detection

Chapter 3 reveals the utility of tensor based robust learning architectures on the problem of anomaly detection,

specifically for spatiotemporal data. However, there are still some open questions regarding the theoretical

recovery guarantees for the proposed algorithms. Future work can explore recovery bounds for anomalies

depending on the data structure. Furthermore, the proposed methods rely on the proper selection of the

regularization parameters. Although we have shown empirically that the performance is robust within a

wide range of parameter choices, these methods still require some tuning for desirable performance. A fully

Bayesian extension of the proposed approach could be considered as future work to automatically estimate

these parameters depending on the data.

Anomaly detection part in this chapter was implemented by scoring each fiber individually by a separate

algorithm, which may result in loss of information. Future work will consider a statistical tensor anomaly

scoring method to avoid this simplification. Finally, since the specific application in this chapter is spatiotem-

poral data, a natural extension would be online anomaly detection. Online subspace tracking or functional

data analysis literature may provide the necessary tools for such an extension.

6.1.3 Geometric Tensor Learning

In Chapter 4, we illustrate how using geometric relations within data improve robust tensor learning. Future

work would quantify these improvements in terms of theoretical bounds for recovery when such a structure

is utilized. Although we utilize a combination of global and local structure in our methods, it is also of

interest to use only the local structure, i.e., geometric relations for data recovery. Recovery guarantees for

such an approach is also of great interest as it might allow milder conditions compared to algorithms that

use global structure. In this chapter, we estimated the underlying graphs using a k-NN approach. It is known

in graph learning literature that with noisy and missing data, this generally produces noisy estimates of the

underlying graph. As such, future work will focus on simultaneous graph learning with data recovery.

Finally, as the use of graphs corresponding to the canonical mode-= unfolding requires excessive memory

and computational resources, a multi-branch structure could be utilized to reduce these costs without

approximating the graphs with a Kronecker structure. This would also pave the way for a fully geometric

109

robust multi-branch decomposition.

6.1.4 Supervised Coupled Tensor Learning

In Chapter 5, coupled tensor factorization was utilized as a feature extraction step. However, without using

the class label information, the extracted features might not be suitable for the subsequent classification task.

In this approach, we propose to employ a supervised coupled factorization to address this. Specifically, we

extend Multilinear Discriminant Analysis to coupled factorization by solving:

minimize
*
(8)
= ∀=,8

2∑
8=1

38−1∑
==1

CA (* (8) ,>= (
8,=

,
*
(8)
=)

CA (* (8) ,>= (
8,=

�
*
(8)
=)
+

2∑
8=1

∑
=∈N
‖�8=*̂8 −+=‖2� , (6.1)

where (8,=
,
, (8,=

�
are within and between class scatters of modality 8 and mode-=; N is the set of coupled

modes, and �=’s are transformations through which the couplings are defined. The transformations are used

to explain the difference in properties and resolutions across different modalities even when they correspond

to similar phenomenon.

To classify a test sample, one can use Mahalanobis distance with respect to class means and covariance.

Another approach would be to train a classifier using the sample mode factors . that are learned through a

least squares optimization and similar procedures with Approach 1 can be utilized for test cases.

110

BIBLIOGRAPHY

111

BIBLIOGRAPHY

[1] Rodolfo Abreu, Alberto Leal, and Patrícia Figueiredo. “EEG-informed fMRI: a review of data
analysis methods”. In: Frontiers in human neuroscience 12 (2018), p. 29.

[2] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. “All-at-once optimization for coupled matrix
and tensor factorizations”. In: arXiv preprint arXiv:1105.3422 (2011).

[3] Evrim Acar et al. “ACMTF for fusion of multi-modal neuroimaging data and identification of
biomarkers”. In: 2017 25th European Signal Processing Conference (EUSIPCO). IEEE. 2017,
pp. 643–647.

[4] Evrim Acar et al. “Structure-revealing data fusion”. In: BMC bioinformatics 15.1 (2014), pp. 1–17.

[5] Evrim Acar et al. “Tensor-based fusion of EEG and FMRI to understand neurological changes in
schizophrenia”. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE.
2017, pp. 1–4.

[6] Evrim Acar et al. “Unraveling diagnostic biomarkers of schizophrenia through structure-revealing
fusion of multi-modal neuroimaging data”. In: Frontiers in neuroscience 13 (2019), p. 416.

[7] Hemant Kumar Aggarwal and Angshul Majumdar. “Hyperspectral image denoising using spatio-
spectral total variation”. In: IEEE Geoscience and Remote Sensing Letters 13.3 (2016), pp. 442–
446.

[8] Anima Anandkumar et al. “Tensor vs. matrix methods: Robust tensor decomposition under block
sparse perturbations”. In: Artificial Intelligence and Statistics. PMLR. 2016, pp. 268–276.

[9] Jeffrey S Anderson et al. “Functional connectivity magnetic resonance imaging classification of
autism”. In: Brain 134.12 (2011), pp. 3742–3754.

[10] Andreas Argyriou, Charles A Micchelli, and Massimiliano Pontil. “When is there a representer
theorem? Vector versus matrix regularizers”. In: The Journal of Machine Learning Research 10
(2009), pp. 2507–2529.

[11] John Ashburner et al. “SPM12 manual”. In: Wellcome Trust Centre for Neuroimaging, London, UK
2464 (2014).

[12] Francis R Bach. “Consistency of the group lasso and multiple kernel learning.” In: Journal of
Machine Learning Research 9.6 (2008).

[13] Mohammad Taha Bahadori, Qi Rose Yu, and Yan Liu. “Fast Multivariate Spatio-temporal Analysis
via Low Rank Tensor Learning.” In: NIPS. Citeseer. 2014, pp. 3491–3499.

[14] Richard H. Bartels and George W Stewart. “Solution of the matrix equation AX+ XB= C [F4]”. In:
Communications of the ACM 15.9 (1972), pp. 820–826.

112

[15] JWBelliveau et al. “Functional mapping of the human visual cortex bymagnetic resonance imaging”.
In: Science 254.5032 (1991), pp. 716–719.

[16] Asa Ben-Hur and William Stafford Noble. “Kernel methods for predicting protein–protein interac-
tions”. In: Bioinformatics 21.suppl_1 (2005), pp. i38–i46.

[17] Johann A Bengua et al. “Efficient tensor completion for color image and video recovery: Low-rank
tensor train”. In: IEEE Transactions on Image Processing 26.5 (2017), pp. 2466–2479.

[18] Johann ABengua et al. “Matrix product state for higher-order tensor compression and classification”.
In: IEEE Transactions on Signal Processing 65.15 (2017), pp. 4019–4030.

[19] Kristin P Bennett, Michinari Momma, and Mark J Embrechts. “MARK: A boosting algorithm
for heterogeneous kernel models”. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining. 2002, pp. 24–31.

[20] Gouri Sankar Bhunia et al. “Spatial and temporal variation and hotspot detection of kala-azar disease
in Vaishali district (Bihar), India”. In: BMC infectious diseases 13.1 (2013), p. 64.

[21] Xuan Bi et al. “Tensors in statistics”. In: Annual Review of Statistics and Its Application 8 (2020).

[22] Amit Boyarski, Sanketh Vedula, and Alex Bronstein. “Deep matrix factorization with spectral
geometric regularization”. In: arXiv preprint arXiv: 1911.07255 (2019).

[23] Markus M Breunig et al. “LOF: identifying density-based local outliers”. In: Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 2000, pp. 93–104.

[24] Laura F Bringmann et al. “Changing dynamics: Time-varying autoregressive models using general-
ized additive modeling.” In: Psychological methods 22.3 (2017), p. 409.

[25] Laura F Bringmann et al. “Modeling nonstationary emotion dynamics in dyads using a time-varying
vector-autoregressive model”. In: Multivariate behavioral research 53.3 (2018), pp. 293–314.

[26] Rasmus Bro. “PARAFAC. Tutorial and applications”. In: Chemometrics and Intelligent Laboratory
Systems 38.2 (1997), pp. 149–171.

[27] Rasmus Bro, Claus A Andersson, and Henk AL Kiers. “PARAFAC2—Part II. Modeling chro-
matographic data with retention time shifts”. In: Journal of Chemometrics: A Journal of the
Chemometrics Society 13.3-4 (1999), pp. 295–309.

[28] Saikiran Bulusu et al. “Anomalous example detection in deep learning: A survey”. In: IEEE Access
8 (2020), pp. 132330–132347.

[29] Vince D Calhoun et al. “Method for multimodal analysis of independent source differences in
schizophrenia: combining gray matter structural and auditory oddball functional data”. In: Human
brain mapping 27.1 (2006), pp. 47–62.

[30] E. J. Candès et al. “Robust principal component analysis?” In: Journal of the ACM (JACM) 58.3

113

(2011), p. 11.

[31] Clayson Celes, Azzedine Boukerche, and Antonio AF Loureiro. “Crowd Management: A New
Challenge for Urban Big Data Analytics”. In: IEEE Communications Magazine 57.4 (2019), pp. 20–
25.

[32] Mohammadhossein Chaghazardi and Shuchin Aeron. “Sample, computation vs storage tradeoffs for
classification using tensor subspace models”. In: arXiv preprint arXiv:1706.05599 (2017).

[33] Raghavendra Chalapathy and Sanjay Chawla. “Deep learning for anomaly detection: A survey”. In:
arXiv preprint arXiv:1901.03407 (2019).

[34] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A survey”. In: ACM
computing surveys (CSUR) 41.3 (2009), pp. 1–58.

[35] Venkat Chandrasekaran et al. “Rank-sparsity incoherence for matrix decomposition”. In: SIAM
Journal on Optimization 21.2 (2011), pp. 572–596.

[36] Christos Chatzichristos et al. “Early soft and flexible fusion of EEG and fMRI via tensor decompo-
sitions”. In: arXiv preprint arXiv:2005.07134 (2020).

[37] Christos Chatzichristos et al. “Fusion of EEG and fMRI via soft coupled tensor decompositions”.
In: 2018 26th European Signal Processing Conference (EUSIPCO). IEEE. 2018, pp. 56–60.

[38] Cong Chen et al. “A support tensor train machine”. In: 2019 International Joint Conference on
Neural Networks (ĲCNN). IEEE. 2019, pp. 1–8.

[39] Longbiao Chen et al. “Fine-grained urban event detection and characterization based on tensor
cofactorization”. In: IEEE Transactions on Human-Machine Systems 47.3 (2016), pp. 380–391.

[40] Xinyu Chen et al. “Missing traffic data imputation and pattern discovery with a Bayesian augmented
tensor factorization model”. In: Transportation Research Part C: Emerging Technologies 104
(2019), pp. 66–77.

[41] Mario Christoudias, Raquel Urtasun, Trevor Darrell, et al. “Bayesian localized multiple kernel
learning”. In: Univ. California Berkeley, Berkeley, CA (2009).

[42] A. Cichocki. “Era of big data processing: A new approach via tensor networks and tensor decom-
positions”. In: arXiv preprint arXiv:1403.2048 (2014).

[43] A. Cichocki et al. “Tensor decompositions for signal processing applications: From two-way to
multiway component analysis”. In: IEEE Signal Processing Magazine 32.2 (2015), pp. 145–163.

[44] Andrzej Cichocki et al. “Tensor networks for dimensionality reduction and large-scale optimization:
Part 1 low-rank tensor decompositions”. In: Foundations and Trends® in Machine Learning 9.4-5
(2016), pp. 249–429.

[45] Andrzej Cichocki et al. “Tensor networks for dimensionality reduction and large-scale optimization:

114

Part 2 applications and future perspectives”. In: Foundations and Trends® in Machine Learning 9.6
(2017), pp. 431–673.

[46] Lieven De Lathauwer and Joséphine Castaing. “Blind identification of underdetermined mixtures
by simultaneous matrix diagonalization”. In: IEEE Transactions on Signal Processing 56.3 (2008),
pp. 1096–1105.

[47] Lieven De Lathauwer, Josphine Castaing, and Jean-Franois Cardoso. “Fourth-order cumulant-based
blind identification of underdetermined mixtures”. In: IEEE Transactions on Signal Processing 55.6
(2007), pp. 2965–2973.

[48] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “A multilinear singular value decom-
position”. In: SIAM journal on Matrix Analysis and Applications 21.4 (2000), pp. 1253–1278.

[49] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. “On the best rank-1 and rank-(r 1, r 2,...,
rn) approximation of higher-order tensors”. In: SIAM journal on Matrix Analysis and Applications
21.4 (2000), pp. 1324–1342.

[50] Dingxiong Deng et al. “Latent space model for road networks to predict time-varying traffic”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2016, pp. 1525–1534.

[51] Lei Deng et al. “Graph Spectral Regularized Tensor Completion for Traffic Data Imputation”. In:
IEEE Transactions on Intelligent Transportation Systems (2021).

[52] Wei Deng and Wotao Yin. “On the global and linear convergence of the generalized alternating
direction method of multipliers”. In: Journal of Scientific Computing 66.3 (2016), pp. 889–916.

[53] Renwei Dian, Shutao Li, and Leyuan Fang. “Learning a low tensor-train rank representation for
hyperspectral image super-resolution”. In: IEEE transactions on neural networks and learning
systems 30.9 (2019), pp. 2672–2683.

[54] Yiming Ding et al. “A deep learning model to predict a diagnosis of Alzheimer disease by using
18F-FDG PET of the brain”. In: Radiology 290.2 (2019), pp. 456–464.

[55] Youcef Djenouri et al. “A survey on urban traffic anomalies detection algorithms”. In: IEEE Access
7 (2019), pp. 12192–12205.

[56] Sergey VDolgov et al. “Computation of extreme eigenvalues in higher dimensions using block tensor
train format”. In: Computer Physics Communications 185.4 (2014), pp. 1207–1216.

[57] HaishunDu et al. “Sparse representation-based robust face recognition by graph regularized low-rank
sparse representation recovery”. In: Neurocomputing 164 (2015), pp. 220–229.

[58] James H Faghmous et al. “A parameter-free spatio-temporal pattern mining model to catalog global
ocean dynamics”. In: 2013 IEEE 13th International Conference on Data Mining. IEEE. 2013,
pp. 151–160.

115

[59] Hadi Fanaee-T and João Gama. “Tensor-based anomaly detection: An interdisciplinary survey”. In:
Knowledge-Based Systems 98 (2016), pp. 130–147.

[60] Hadi Fanaee-T and Joao Gama. “Event detection from traffic tensors: A hybrid model”. In:
Neurocomputing 203 (2016), pp. 22–33.

[61] Hadi Fanaee-T and Joao Gama. “SimTensor: A synthetic tensor data generator”. In: arXiv preprint
arXiv:1612.03772 (2016).

[62] Massimo Filippi, Roland Bammer, et al.MR imaging in white matter diseases of the brain and spinal
cord. Springer, 2005.

[63] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier, 2013.

[64] Glenn Fung et al. “A fast iterative algorithm for fisher discriminant using heterogeneous kernels”.
In: Proceedings of the twenty-first international conference on Machine learning. 2004, p. 40.

[65] Mostafa Reisi Gahrooei et al. “Multiple tensor-on-tensor regression: an approach for modeling
processes with heterogeneous sources of data”. In: Technometrics 63.2 (2021), pp. 147–159.

[66] Giovana Gavidia-Bovadilla et al. “Early prediction of Alzheimer’s disease using null longitudinal
model-based classifiers”. In: PloS one 12.1 (2017), e0168011.

[67] Matan Gavish and Ronald R Coifman. “Sampling, denoising and compression of matrices by
coherent matrix organization”. In: Applied and Computational Harmonic Analysis 33.3 (2012),
pp. 354–369.

[68] Xiurui Geng et al. “A high-order statistical tensor based algorithm for anomaly detection in hyper-
spectral imagery”. In: Scientific reports 4 (2014), p. 6869.

[69] Mark Girolami and Mingjun Zhong. “Data Integration for Classification Problems Employing
Gaussian Process Priors”. In: Advances in Neural Information Processing Systems 19: Proceedings
of the 2006 Conference. Vol. 19. MIT Press. 2007, p. 465.

[70] Donald Goldfarb and Zhiwei Qin. “Robust low-rank tensor recovery: Models and algorithms”. In:
SIAM Journal on Matrix Analysis and Applications 35.1 (2014), pp. 225–253.

[71] Mehmet Gönen and Ethem Alpaydın. “Multiple kernel learning algorithms”. In: The Journal of
Machine Learning Research 12 (2011), pp. 2211–2268.

[72] Adrian R Groves et al. “Linked independent component analysis for multimodal data fusion”. In:
Neuroimage 54.3 (2011), pp. 2198–2217.

[73] Weiwei Guo, Irene Kotsia, and Ioannis Patras. “Tensor learning for regression”. In: IEEE Transac-
tions on Image Processing 21.2 (2011), pp. 816–827.

[74] XianGuo et al. “Support tensormachines for classification of hyperspectral remote sensing imagery”.
In: IEEE Transactions on Geoscience and Remote Sensing 54.6 (2016), pp. 3248–3264.

116

[75] Zhifeng Hao et al. “A linear support higher-order tensor machine for classification”. In: IEEE
Transactions on Image Processing 22.7 (2013), pp. 2911–2920.

[76] Lifang He et al. “Dusk: A dual structure-preserving kernel for supervised tensor learning with
applications to neuroimages”. In: Proceedings of the 2014 SIAM International Conference on Data
Mining. SIAM. 2014, pp. 127–135.

[77] Lifang He et al. “Kernelized support tensor machines”. In: Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1442–1451.

[78] Xiaofei He, Deng Cai, and Partha Niyogi. “Tensor subspace analysis”. In: Advances in neural
information processing systems. 2006, pp. 499–506.

[79] Victoria Hodge and Jim Austin. “A survey of outlier detection methodologies”. In: Artificial
intelligence review 22.2 (2004), pp. 85–126.

[80] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. “On manifolds of tensors of fixed
TT-rank”. In: Numerische Mathematik 120.4 (2012), pp. 701–731.

[81] Yuwang Ji et al. “A Survey on Tensor Techniques and Applications in Machine Learning”. In: IEEE
Access 7 (2019), pp. 162950–162990.

[82] Bo Jiang et al. “Image representation and learningwith graph-laplacian tucker tensor decomposition”.
In: IEEE transactions on cybernetics 49.4 (2018), pp. 1417–1426.

[83] Taisong Jin et al. “Low-rank matrix factorization with multiple hypergraph regularizer”. In: Pattern
Recognition 48.3 (2015), pp. 1011–1022.

[84] Vassilis Kalofolias et al. “Matrix completion on graphs”. In: arXiv preprint arXiv:1408.1717 (2014).

[85] Maja H Kamstrup-Nielsen, Lea G Johnsen, and Rasmus Bro. “Core consistency diagnostic in
PARAFAC2”. In: Journal of Chemometrics 27.5 (2013), pp. 99–105.

[86] Esin Karahan et al. “Tensor analysis and fusion of multimodal brain images”. In: Proceedings of the
IEEE 103.9 (2015), pp. 1531–1559.

[87] Hiroyuki Kasai. “Fast online low-rank tensor subspace tracking by CP decomposition using recursive
least squares from incomplete observations”. In: Neurocomputing 347 (2019), pp. 177–190.

[88] Hiroyuki Kasai, Wolfgang Kellerer, and Martin Kleinsteuber. “Network volume anomaly detection
and identification in large-scale networks based on online time-structured traffic tensor tracking”.
In: IEEE Transactions on Network and Service Management 13.3 (2016), pp. 636–650.

[89] Ali Khazaee, Ata Ebrahimzadeh, and Abbas Babajani-Feremi. “Application of advanced machine
learning methods on resting-state fMRI network for identification of mild cognitive impairment and
Alzheimer’s disease”. In: Brain imaging and behavior 10.3 (2016), pp. 799–817.

[90] Boris N Khoromskĳ. “O (dlog N)-quantics approximation of N-d tensors in high-dimensional

117

numerical modeling”. In: Constructive Approximation 34.2 (2011), pp. 257–280.

[91] Tae-Kyun Kim, Shu-Fai Wong, and Roberto Cipolla. “Tensor canonical correlation analysis for
action classification”. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE. 2007, pp. 1–8.

[92] Marius Kloft et al. “Efficient and accurate lp-norm multiple kernel learning.” In: NIPS. vol. 22. 22.
2009, pp. 997–1005.

[93] Tamara G Kolda and Brett W Bader. “Tensor decompositions and applications”. In: SIAM review
51.3 (2009), pp. 455–500.

[94] Xiangjie Kong et al. “HUAD: Hierarchical urban anomaly detection based on spatio-temporal data”.
In: IEEE Access 8 (2020), pp. 26573–26582.

[95] Jean Kossaifi et al. “T-net: Parametrizing fully convolutional nets with a single high-order tensor”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 7822–7831.

[96] Jean Kossaifi et al. “Tensor regression networks”. In: arXiv preprint arXiv:1707.08308 (2017).

[97] Irene Kotsia, Weiwei Guo, and Ioannis Patras. “Higher rank support tensor machines for visual
recognition”. In: Pattern Recognition 45.12 (2012), pp. 4192–4203.

[98] Daniel Kressner, Michael Steinlechner, and André Uschmajew. “Low-rank tensor methods with
subspace correction for symmetric eigenvalue problems”. In: SIAM Journal on Scientific Computing
36.5 (2014), A2346–A2368.

[99] J. B. Kruskal. “Three-way arrays: rank and uniqueness of trilinear decompositions, with application
to arithmetic complexity and statistics”. In: Linear Algebra and its Applications 18.2 (1977),
pp. 95–138. issn: 0024-3795. doi: https://doi.org/10.1016/0024-3795(77)90069-6.
url: http://www.sciencedirect.com/science/article/pii/0024379577900696.

[100] Alp Kut and Derya Birant. “Spatio-temporal outlier detection in large databases”. In: Journal of
computing and information technology 14.4 (2006), pp. 291–297.

[101] Kenneth K Kwong et al. “Dynamic magnetic resonance imaging of human brain activity during
primary sensory stimulation.” In: Proceedings of the National Academy of Sciences 89.12 (1992),
pp. 5675–5679.

[102] Jack L Lancaster et al. “Bias between MNI and Talairach coordinates analyzed using the ICBM-152
brain template”. In: Human brain mapping 28.11 (2007), pp. 1194–1205.

[103] Gert RG Lanckriet et al. “Learning the kernel matrix with semidefinite programming”. In: Journal
of Machine learning research 5.Jan (2004), pp. 27–72.

[104] Gisela Lechuga et al. “Discriminant analysis for multiway data”. In: International Conference on
Partial Least Squares and Related Methods. Springer. 2014, pp. 115–126.

118

https://doi.org/https://doi.org/10.1016/0024-3795(77)90069-6
http://www.sciencedirect.com/science/article/pii/0024379577900696

[105] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. “Trajectory clustering: a partition-and-group
framework”. In: Proceedings of the 2007 ACM SIGMOD international conference on Management
of data. 2007, pp. 593–604.

[106] Namgil Lee et al. “Nonnegative Tensor Train Decompositions for Multi-domain Feature Extraction
and Clustering”. In: International Conference on Neural Information Processing. Springer. 2016,
pp. 87–95.

[107] Xu Lei, Pedro A Valdes-Sosa, and Dezhong Yao. “EEG/fMRI fusion based on independent com-
ponent analysis: integration of data-driven and model-driven methods”. In: Journal of integrative
neuroscience 11.03 (2012), pp. 313–337.

[108] Li Li et al. “Trend modeling for traffic time series analysis: An integrated study”. In: IEEE
Transactions on Intelligent Transportation Systems 16.6 (2015), pp. 3430–3439.

[109] Peide Li and Taps Maiti. “Universal Consistency of Support Tensor Machine”. In: 2019 IEEE
International Conference on Data Science and Advanced Analytics (DSAA). IEEE. 2019, pp. 608–
609.

[110] Ping Li et al. “Online robust low-rank tensor modeling for streaming data analysis”. In: IEEE
transactions on neural networks and learning systems 30.4 (2018), pp. 1061–1075.

[111] Quefeng Li and Lexin Li. “Integrative factor regression and its inference for multimodal data
analysis”. In: arXiv preprint arXiv:1911.04056 (2019).

[112] Qun Li and Dan Schonfeld. “Multilinear discriminant analysis for higher-order tensor data clas-
sification”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 36.12 (2014),
pp. 2524–2537.

[113] Shuangjiang Li et al. “Low-rank tensor decomposition based anomaly detection for hyperspectral
imagery”. In: 2015 IEEE International Conference on Image Processing (ICIP). IEEE. 2015,
pp. 4525–4529.

[114] Xiaoshan Li et al. “Tucker tensor regression and neuroimaging analysis”. In: Statistics in Biosciences
10.3 (2018), pp. 520–545.

[115] Xutao Li et al. “MR-NTD:Manifold regularization nonnegative tucker decomposition for tensor data
dimension reduction and representation”. In: IEEE transactions on neural networks and learning
systems 28.8 (2016), pp. 1787–1800.

[116] Yingjie Li et al. “Early prediction of Alzheimer’s disease using longitudinal volumetric MRI data
from ADNI”. in: Health Services and Outcomes Research Methodology 20.1 (2020), pp. 13–39.

[117] Ziyue Li et al. “Tensor completion for weakly-dependent data on graph for metro passenger flow
prediction”. In: arXiv preprint arXiv:1912.05693 (2019).

[118] Chaoguang Lin et al. “Anomaly detection in spatiotemporal data via regularized non-negative tensor
analysis”. In: Data Mining and Knowledge Discovery 32.4 (2018), pp. 1056–1073.

119

[119] Martin A Lindquist et al. “The statistical analysis of fMRI data”. In: Statistical science 23.4 (2008),
pp. 439–464.

[120] Ji Liu et al. “Tensor completion for estimating missing values in visual data”. In: IEEE transactions
on pattern analysis and machine intelligence 35.1 (2012), pp. 208–220.

[121] Jingyu Liu et al. “Combining fMRI and SNP data to investigate connections between brain function
and genetics using parallel ICA”. in: Human brain mapping 30.1 (2009), pp. 241–255.

[122] Siqi Liu et al. “Early diagnosis of Alzheimer’s disease with deep learning”. In: 2014 IEEE 11th
international symposium on biomedical imaging (ISBI). IEEE. 2014, pp. 1015–1018.

[123] Eric F Lock. “Tensor-on-tensor regression”. In: Journal of Computational and Graphical Statistics
27.3 (2018), pp. 638–647.

[124] Xiaojing Long et al. “Prediction and classification of Alzheimer disease based on quantification of
MRI deformation”. In: PloS one 12.3 (2017), e0173372.

[125] Canyi Lu et al. “Tensor robust principal component analysis with a new tensor nuclear norm”. In:
IEEE transactions on pattern analysis and machine intelligence 42.4 (2019), pp. 925–938.

[126] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venetsanopoulos. “MPCA: Multilinear
principal component analysis of tensor objects”. In: IEEE Transactions on Neural Networks 19.1
(2008), pp. 18–39.

[127] Gal Mishne, Eric Chi, and Ronald Coifman. “Co-manifold learning with missing data”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 4605–4614.

[128] Gal Mishne et al. “Data-driven tree transforms and metrics”. In: IEEE transactions on signal and
information processing over networks 4.3 (2017), pp. 451–466.

[129] John C Morris et al. “Pittsburgh compound B imaging and prediction of progression from cognitive
normality to symptomatic Alzheimer disease”. In: Archives of neurology 66.12 (2009), pp. 1469–
1475.

[130] Raziyeh Mosayebi and Gholam-Ali Hossein-Zadeh. “Correlated coupled matrix tensor factorization
method for simultaneous EEG-fMRI data fusion”. In: Biomedical Signal Processing and Control
62 (2020), p. 102071.

[131] Kevin P Murphy. “Switching kalman filters”. In: (1998).

[132] Atsuhiro Narita et al. “Tensor factorization using auxiliary information”. In: Data Mining and
Knowledge Discovery 25.2 (2012), pp. 298–324.

[133] Sameer A Nene, Shree K Nayar, and Hiroshi Murase. Columbia Object Image Library (COIL-100).

[134] Luong Ha Nguyen and James-A Goulet. “Anomaly detection with the switching kalman filter for
structural health monitoring”. In: Structural Control and Health Monitoring 25.4 (2018), e2136.

120

[135] Yongming Nie et al. “Graph-regularized tensor robust principal component analysis for hyperspectral
image denoising”. In: Applied optics 56.22 (2017), pp. 6094–6102.

[136] Guiomar Niso et al. “MEG-BIDS, the brain imaging data structure extended to magnetoencephalog-
raphy”. In: Scientific data 5.1 (2018), pp. 1–5.

[137] Alexander Novikov et al. “Tensorizing neural networks”. In: Advances in Neural Information
Processing Systems. 2015, pp. 442–450.

[138] SeĳiOgawa et al. “Brainmagnetic resonance imagingwith contrast dependent on blood oxygenation”.
In: proceedings of the National Academy of Sciences 87.24 (1990), pp. 9868–9872.

[139] Ivan VOseledets. “Approximation of 2ˆd\times2ˆd matrices using tensor decomposition”. In: SIAM
Journal on Matrix Analysis and Applications 31.4 (2010), pp. 2130–2145.

[140] Ivan V Oseledets. “Tensor-train decomposition”. In: SIAM Journal on Scientific Computing 33.5
(2011), pp. 2295–2317.

[141] Alp Ozdemir, Edward M Bernat, and Selin Aviyente. “Recursive tensor subspace tracking for
dynamic brain network analysis”. In: IEEE Transactions on Signal and Information Processing over
Networks 3.4 (2017), pp. 669–682.

[142] Yuqing Pan, Qing Mai, and Xin Zhang. “Covariate-Adjusted Tensor Classification in High Dimen-
sions”. In: Journal of the American Statistical Association (2018), pp. 1–15.

[143] Evangelos Papalexakis, Konstantinos Pelechrinis, and Christos Faloutsos. “Spotting misbehaviors in
location-based social networks using tensors”. In: Proceedings of the 23rd International Conference
on World Wide Web. 2014, pp. 551–552.

[144] Evangelos E Papalexakis, Alex Beutel, and Peter Steenkiste. “Network anomaly detection using
co-clustering”. In: 2012 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. IEEE. 2012, pp. 403–410.

[145] Paul Pavlidis et al. “Gene functional classification from heterogeneous data”. In: Proceedings of the
fifth annual international conference on Computational biology. 2001, pp. 249–255.

[146] Nathanaël Perraudin and Pierre Vandergheynst. “Stationary signal processing on graphs”. In: IEEE
Transactions on Signal Processing 65.13 (2017), pp. 3462–3477.

[147] Shibin Qiu and Terran Lane. “A framework for multiple kernel support vector regression and its
applications to siRNA efficacy prediction”. In: IEEE/ACM Transactions on Computational Biology
and Bioinformatics 6.2 (2008), pp. 190–199.

[148] Yuning Qiu et al. “A generalized graph regularized non-negative tucker decomposition framework
for tensor data representation”. In: IEEE transactions on cybernetics (2020).

[149] MatthewRoughan et al. “Spatio-temporal compressive sensing and internet trafficmatrices (extended
version)”. In: IEEE/ACM Transactions on Networking 20.3 (2011), pp. 662–676.

121

[150] Peter J Rousseeuw and Katrien Van Driessen. “A fast algorithm for the minimum covariance
determinant estimator”. In: Technometrics 41.3 (1999), pp. 212–223.

[151] Aliaksei Sandryhaila and Jose MF Moura. “Big data analysis with signal processing on graphs:
Representation and processing of massive data sets with irregular structure”. In: IEEE Signal
Processing Magazine 31.5 (2014), pp. 80–90.

[152] Katharina A Schindlbeck and David Eidelberg. “Network imaging biomarkers: insights and clinical
applications in Parkinson’s disease”. In: The Lancet Neurology 17.7 (2018), pp. 629–640.

[153] Bernhard Schölkopf et al. “Support vector method for novelty detection”. In: Advances in neural
information processing systems. 2000, pp. 582–588.

[154] Nauman Shahid, Francesco Grassi, and Pierre Vandergheynst. “Tensor Robust PCA on Graphs”.
In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2019, pp. 5406–5410.

[155] Nauman Shahid et al. “Fast robust PCA on graphs”. In: IEEE Journal of Selected Topics in Signal
Processing 10.4 (2016), pp. 740–756.

[156] Nauman Shahid et al. “Robust principal component analysis on graphs”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2015, pp. 2812–2820.

[157] Abhishek Sharma and Maks Ovsjanikov. “Geometric Matrix Completion: A Functional View”. In:
arXiv preprint arXiv:2009.14343 (2020).

[158] Lei Shi, Aryya Gangopadhyay, and Vandana P Janeja. “STenSr: Spatio-temporal tensor streams for
anomaly detection and pattern discovery”. In: Knowledge and Information Systems 43.2 (2015),
pp. 333–353.

[159] Nicholas D Sidiropoulos et al. “Tensor decomposition for signal processing and machine learning”.
In: IEEE Transactions on Signal Processing 65.13 (2017), pp. 3551–3582.

[160] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way analysis: applications in the chemical
sciences. John Wiley & Sons, 2005.

[161] Seyyid Emre Sofuoglu and Selin Aviyente. “Graph Regularized Tensor Train Decomposition”. In:
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2020, pp. 3912–3916.

[162] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101: A dataset of 101 human
actions classes from videos in the wild”. In: arXiv preprint arXiv:1212.0402 (2012).

[163] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business
Media, 2008.

[164] Yuting Su et al. “Graph regularized low-rank tensor representation for feature selection”. In: Journal
of Visual Communication and Image Representation 56 (2018), pp. 234–244.

122

[165] Jing Sui et al. “Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a
multimodal CCA+ joint ICA model”. In: Neuroimage 57.3 (2011), pp. 839–855.

[166] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. “Beyond streams and graphs: dynamic tensor
analysis”. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. 2006, pp. 374–383.

[167] Hiroaki Tanabe et al. “Simple but effectivemethods for combining kernels in computational biology”.
In: 2008 IEEE International Conference on Research, Innovation and Vision for the Future in
Computing and Communication Technologies. IEEE. 2008, pp. 71–78.

[168] Dacheng Tao et al. “General tensor discriminant analysis and gabor features for gait recognition”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 29.10 (2007).

[169] Dacheng Tao et al. “Supervised tensor learning”. In: Fifth IEEE International Conference on Data
Mining (ICDM’05). IEEE. 2005, 8–pp.

[170] Liang Tao et al. “Low rank approximation with sparse integration of multiple manifolds for data
representation”. In: Applied Intelligence 42.3 (2015), pp. 430–446.

[171] Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global geometric framework for
nonlinear dimensionality reduction”. In: science 290.5500 (2000), pp. 2319–2323.

[172] Michal Teplan et al. “Fundamentals of EEG measurement”. In: Measurement science review 2.2
(2002), pp. 1–11.

[173] Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima. “On the extension of trace norm to tensors”.
In: NIPS Workshop on Tensors, Kernels, and Machine Learning. Vol. 7. 2010.

[174] Ledyard R Tucker. “Implications of factor analysis of three-way matrices for measurement of
change”. In: Problems in measuring change 15 (1963), pp. 122–137.

[175] Ledyard R Tucker et al. “The extension of factor analysis to three-dimensional matrices”. In:
Contributions to mathematical psychology 110119 (1964).

[176] Manik Varma and Debajyoti Ray. “Learning the discriminative power-invariance trade-off”. In:
2007 IEEE 11th International Conference on Computer Vision. IEEE. 2007, pp. 1–8.

[177] Ulrike Von Luxburg. “A tutorial on spectral clustering”. In: Statistics and computing 17.4 (2007),
pp. 395–416.

[178] Jennifer M Walz et al. “Simultaneous EEG-fMRI reveals temporal evolution of coupling between
supramodal cortical attention networks and the brainstem”. In: Journal of Neuroscience 33.49
(2013), pp. 19212–19222.

[179] KaidongWang et al. “Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor
Decomposition and Spectral Unmixing”. In: IEEE Transactions on Geoscience and Remote Sensing
58.11 (2020), pp. 7654–7671.

123

[180] Qi Wang et al. “Robust bi-stochastic graph regularized matrix factorization for data clustering”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence (2020).

[181] Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. “Principal Component Analysis with Tensor
Train Subspace”. In: arXiv preprint arXiv:1803.05026 (2018).

[182] WenqiWang, Vaneet Aggarwal, and Shuchin Aeron. “Principal component analysis with tensor train
subspace”. In: Pattern Recognition Letters 122 (2019), pp. 86–91.

[183] Wenqi Wang, Vaneet Aggarwal, and Shuchin Aeron. “Tensor train neighborhood preserving embed-
ding”. In: IEEE Transactions on Signal Processing 66.10 (2018), pp. 2724–2732.

[184] Xudong Wang and Lĳun Sun. “Diagnosing spatiotemporal traffic anomalies with low-rank tensor
autoregression”. In: IEEE Transactions on Intelligent Transportation Systems (2021).

[185] Xudong Wang et al. “A probabilistic tensor factorization approach to detect anomalies in spatiotem-
poral traffic activities”. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE.
2019, pp. 1658–1663.

[186] Yao Wang et al. “Hyperspectral image restoration via total variation regularized low-rank tensor
decomposition”. In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 11.4 (2017), pp. 1227–1243.

[187] Yu Wang, Wotao Yin, and Jinshan Zeng. “Global convergence of ADMM in nonconvex nonsmooth
optimization”. In: Journal of Scientific Computing 78.1 (2019), pp. 29–63.

[188] Weizmann Facebase. http://www.wisdom.weizmann.ac.il/~/vision/FaceBase/.

[189] Zaiwen Wen and Wotao Yin. “A feasible method for optimization with orthogonality constraints”.
In: Mathematical Programming 142.1-2 (2013), pp. 397–434.

[190] Keith J Worsley et al. “A general statistical analysis for fMRI data”. In: Neuroimage 15.1 (2002),
pp. 1–15.

[191] Elizabeth Wu, Wei Liu, and Sanjay Chawla. “Spatio-temporal outlier detection in precipitation
data”. In: International Workshop on Knowledge Discovery from Sensor Data. Springer. 2008,
pp. 115–133.

[192] Kun Xie et al. “Graph based tensor recovery for accurate internet anomaly detection”. In: IEEE
INFOCOM 2018-IEEE Conference on Computer Communications. IEEE. 2018, pp. 1502–1510.

[193] Ming Xu et al. “Anomaly detection in road networks using sliding-window tensor factorization”. In:
IEEE Transactions on Intelligent Transportation Systems 20.12 (2019), pp. 4704–4713.

[194] Ming Yan and Wotao Yin. “Self equivalence of the alternating direction method of multipliers”. In:
Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, 2016, pp. 165–
194.

124

http://www.wisdom.weizmann.ac.il/~/vision/FaceBase/

[195] Shuicheng Yan et al. “Discriminant analysis with tensor representation”. In: Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp. 526–532.

[196] Shuicheng Yan et al. “Multilinear discriminant analysis for face recognition”. In: IEEE Transactions
on Image Processing 16.1 (2006), pp. 212–220.

[197] Jing-Hua Yang et al. “Low-rank tensor train for tensor robust principal component analysis”. In:
Applied Mathematics and Computation 367 (2020), p. 124783.

[198] Jieping Ye, Ravi Janardan, and Qi Li. “Two-dimensional linear discriminant analysis”. In: Advances
in Neural Information Processing Systems. 2005, pp. 1569–1576.

[199] Tatsuya Yokota, Qibin Zhao, and Andrzej Cichocki. “Smooth PARAFAC decomposition for tensor
completion”. In: IEEE Transactions on Signal Processing 64.20 (2016), pp. 5423–5436.

[200] Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. “Temporal Regularized Matrix Factorization for
High-dimensional Time Series Prediction.” In: NIPS. 2016, pp. 847–855.

[201] Rose Yu and Yan Liu. “Learning from multiway data: Simple and efficient tensor regression”. In:
International Conference on Machine Learning. PMLR. 2016, pp. 373–381.

[202] Stefanos Zafeiriou. “Discriminant nonnegative tensor factorization algorithms”. In: IEEE Transac-
tions on Neural Networks 20.2 (2009), pp. 217–235.

[203] Huichu Zhang, Yu Zheng, and Yong Yu. “Detecting urban anomalies using multiple spatio-temporal
data sources”. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 2.1 (2018), pp. 1–18.

[204] Junyu Zhang, ZaiwenWen, andYin Zhang. “Subspacemethodswith local refinements for eigenvalue
computation using low-rank tensor-train format”. In: Journal of Scientific Computing 70.2 (2017),
pp. 478–499.

[205] Mingyang Zhang et al. “A decomposition approach for urban anomaly detection across spatiotem-
poral data”. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence.
AAAI Press. 2019, pp. 6043–6049.

[206] Mingyang Zhang et al. “Urban Anomaly Analytics: Description, Detection and Prediction”. In:
IEEE Transactions on Big Data (2020).

[207] Xing Zhang, Gongjian Wen, and Wei Dai. “A tensor decomposition-based anomaly detection
algorithm for hyperspectral image”. In: IEEE Transactions on Geoscience and Remote Sensing
54.10 (2016), pp. 5801–5820.

[208] Zemin Zhang et al. “Novel Methods for Multilinear Data Completion and De-noising Based on
Tensor-SVD”. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). July 2014.

125

[209] Qibin Zhao et al. “Tensor ring decomposition”. In: arXiv preprint arXiv:1606.05535 (2016).

[210] Yu-Bang Zheng et al. “Tensor N-tubal rank and its convex relaxation for low-rank tensor recovery”.
In: Information Sciences 532 (2020), pp. 170–189.

[211] Hua Zhou, Lexin Li, and Hongtu Zhu. “Tensor regression with applications in neuroimaging data
analysis”. In: Journal of the American Statistical Association 108.502 (2013), pp. 540–552.

126

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background and Notation
	Robust Principal Component Analysis
	Geometric Learning
	Robust PCA on Graphs
	Spectral Geometric Matrix Completion

	Tensor Decompositions
	Tucker Decomposition (TD)
	Canonical/Polyadic (CP) Decomposition
	Tensor Train Decomposition (TT)

	Robust PCA for Tensors
	Linear Discriminant Analysis (LDA) for Tensors
	Organization and Contributions of the Thesis

	Multi-Branch Tensor Train Structure for Supervised and Unsupervised Learning
	Introduction
	Tensor Train Discriminant Analysis
	Multi-Branch Tensor Train Discriminant Analysis
	Two-way Tensor Train Discriminant Analysis (2WTTDA)
	Three-way Tensor Train Discriminant Analysis (3WTTDA)

	Analysis of Storage, Training Complexity and Convergence
	Computational Complexity
	Convergence

	Experiments
	Data Sets
	Classification Accuracy
	Training Complexity
	Convergence
	Effect of Sample Size on Accuracy
	Summary of Experimental Results

	Graph Regularized Tensor Train Decomposition
	Problem Statement
	Optimization
	Convergence

	Experiments
	MNIST
	COIL

	Conclusions

	Tensor Methods for Anomaly Detection on Spatiotemporal Data
	Introduction
	Related Work
	Robust Low-Rank Tensor Decomposition for Anomaly Detection
	Problem Statement
	Optimization
	Computational Complexity

	Low-rank On Graphs Plus Temporally Smooth Sparse Decomposition
	Optimization
	Computational Complexity of LOGSS

	Convergence
	Anomaly Scoring
	Experiments
	Data Description
	Parameter Selection:
	Experiments on Synthetic Data
	Experiments on Real Data

	Conclusions

	Geometric Tensor Learning
	Introduction
	Tensor Train Robust PCA on Graphs
	Kronecker Structured Graphs
	Optimization
	Computation and Memory Complexity for Graphs

	Experiments
	Synthetic Data
	Real Data

	Conclusions

	Coupled Support Tensor Machine
	Introduction
	Related Work
	Coupled Matrix Tensor Factorization
	CP-STM for Tensor Classification
	Multiple Kernel Learning

	Methods
	Multimodal Tensor Factorization
	Coupled Support Tensor Machine (C-STM)

	Model Estimation
	Experiments
	Parameter Selection
	Multimodal Tensor Factorization
	C-STM

	Simulated Data
	Kernel Selection

	EEG-fMRI Data

	Conclusion

	Conclusions
	Future Work
	Multi-Branch Tensor Learning
	Tensor Methods for Anomaly Detection
	Geometric Tensor Learning
	Supervised Coupled Tensor Learning

	Bibliography

