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ABSTRACT
TENSOR LEARNING WITH STRUCTURE, GEOMETRY AND MULTI-MODALITY
By
Seyyid Emre Sofuoglu
With the advances in sensing and data acquisition technology, it is now possible to collect data from different
modalities and sources simultaneously. Most of these data are multi-dimensional in nature and can be
represented by multiway arrays known as tensors. For instance, a color image is a third-order tensor defined
by two indices for spatial variables and one index for color mode. Some other examples include color video,
medical imaging such as EEG and fMRI, spatiotemporal data encountered in urban traffic monitoring, etc.

In the past two decades, tensors have become ubiquitous in signal processing, statistics and computer
science. Traditional unsupervised and supervised learning methods developed for one-dimensional signals
do not translate well to higher order data structures as they get computationally prohibitive with increasing
dimensionalities. Vectorizing high dimensional inputs creates problems in nearly all machine learning tasks
due to exponentially increasing dimensionality, distortion of data structure and the difficulty of obtaining
sufficiently large training sample size.

In this thesis, we develop tensor-based approaches to various machine learning tasks. Existing tensor
based unsupervised and supervised learning algorithms extend many well-known algorithms, e.g. 2-D
component analysis, support vector machines and linear discriminant analysis, with better performance and
lower computational and memory costs. Most of these methods rely on Tucker decomposition which has
exponential storage complexity requirements; CANDECOMP-PARAFAC (CP) based methods which might
not have a solution; or Tensor Train (TT) based solutions which suffer from exponentially increasing ranks.
Many tensor based methods have quadratic (w.r.t the size of data), or higher computational complexity, and
similarly, high memory complexity. Moreover, they are not always designed with the particular structure of
the data in mind. Many of these methods use purely algebraic measures as the objective which might not
capture the local relations within data. Thus, there is a need to develop new models with better computational
and memory efficiency, with the particular structure of the data and problem in mind. Finally, as tensors
represent the data with more faithfulness to the original structure compared to the vectorization, they also
allow coupling of heterogeneous data sources where the underlying physical relationship is known. Still,

most of the work on coupled tensor decompositions does not explore supervised problems.



In order to address the issues around computational and storage complexity of tensor based machine
learning, in Chapter 2, we propose a new tensor train decomposition structure, which is a hybrid between
Tucker and Tensor Train decompositions. The proposed structure is used to implement Tensor Train based
supervised and unsupervised learning frameworks: linear discriminant analysis (LDA) and graph regularized
subspace learning. The algorithm is designed to solve extremal eigenvalue-eigenvector pair computation
problems, which can be generalized to many other methods. The supervised framework, Tensor Train
Discriminant Analysis (TTDA), is evaluated in a classification task with varying storage complexities with
respect to classification accuracy and training time on four different datasets. The unsupervised approach,
Graph Regularized TT, is evaluated on a clustering task with respect to clustering quality and training time
on various storage complexities. Both frameworks are compared to discriminant analysis algorithms with
similar objectives based on Tucker and TT decompositions.

In Chapter 3, we present an unsupervised anomaly detection algorithm for spatiotemporal tensor data.
The algorithm models the anomaly detection problem as a low-rank plus sparse tensor decomposition
problem, where the normal activity is assumed to be low-rank and the anomalies are assumed to be sparse
and temporally continuous. We present an extension of this algorithm, where we utilize a graph regularization
term in our objective function to preserve the underlying geometry of the original data. Finally, we propose a
computationally efficient implementation of this framework by approximating the nuclear norm using graph
total variation minimization. The proposed approach is evaluated for both simulated data with varying levels
of anomaly strength, length and number of missing entries in the tensor as well as urban traffic data.

In Chapter 4, we propose a geometric tensor learning framework using product graph structures for
tensor completion problem. Instead of purely algebraic measures such as rank, we use graph smoothness
constraints that utilize geometric or topological relations within data. We prove the equivalence of a Cartesian
graph structure to TT-based graph structure under some conditions. We show empirically, that introducing
such relaxations due to the conditions do not deteriorate the recovery performance. We also outline a fully
geometric learning method on product graphs for data completion.

In Chapter 5, we introduce a supervised learning method for heterogeneous data sources such as simul-
taneous EEG and fMRI. The proposed two-stage method first extracts features taking the coupling across
modalities into account and then introduces kernelized support tensor machines for classification. We illus-
trate the advantages of the proposed method on simulated and real classification tasks with small number of

training data with high dimensionality.
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CHAPTER 1

INTRODUCTION

With the advance of sensing and data acquisition technology, it is now possible to collect data from different
modalities and sources simultaneously. Some examples include medical imaging data such as fMRI, hyper-
spectral images, computer vision data such as multiview camera recordings, liquid-chromatography/mass
spectrometry data in chemometrics, large scale gene expression data in bioinformatics. Most of these data
are multi-dimensional in nature and can be represented by multiway arrays known as tensors [48]. For
instance, a color image is a third-order tensor defined by two indices for spatial variables and one index for
color mode. Similarly, a video comprised of color images is a fourth-order tensor, time being the fourth
dimension besides spatial and spectral.

In order to efficiently process large datasets, there is an increasing interest in near real-time processing
methods, especially in the case of multimedia, remote-sensing and biological data. Another challenge is to
come up with methods that are scalable with the size of data. Although computational power and memory
sizes of modern systems keep increasing, traditional methods are exponentially expensive. As the data
collected are not always clean and complete, there is also a need for methods that are robust against missing
data and outliers, and can account for the underlying structure or the topology of the data. Finally, there is also
an emerging interest in extracting information from multiple heterogenous modalities simultaneously. As
tensor decompositions are natural, sparse and distributed representations of big data, all the aforementioned
problems spurred an interest in efficient tensor algorithms suitable for massive datasets.

Traditional unsupervised and supervised learning methods developed for one-dimensional signals, or
vectors, do not translate well to higher order data structures as they get computationally prohibitive with
increasing dimensionalities, namely, *curse of dimensionality’. Vectorizing high dimensional inputs creates
problems in nearly all machine learning tasks also due to the difficulty of obtaining sufficiently large training
sample size. Moreover, important information about the structure of the high-dimensional space that data lie
in is lost through vectorization which reduces the effectiveness of these methods. Therefore, there is a need
for extracting compact representations from the original tensor data that result in accurate and interpretable
models.

Tensor decompositions can be defined as structures which represent higher order data as a set of low-



order core tensors, thus allowing for better interpretability and computational advantages [45]. Tensor
decompositions are natural extensions of matrix decompositions or factorizations such as singular value
decomposition (SVD), principal component analysis (PCA) and non-negative matrix factorization (NMF)
to higher order data. However, there are various advantages of tensor decompositions compared to matrix
factorizations, such as the ability to efficiently parameterize high dimensional spaces and account for intrinsic
multidimensional and distributed patterns present in data. Thus, they allow for models to capture multiple
interactions and couplings in data, in a more structured and interpretable manner. Tensors first started to
gain attention in psychometrics [174, 175] and then chemometrics [27, 160]. After being introduced to many
fields such as signal processing [48, 47, 46, 18, 183], statistics and computer science [38, 43, 96], tensors
have received great attention. The work on tensors is too diverse and numerous to be covered in this thesis,
so we refer the interested reader to survey papers [93, 44, 45, 159, 81].

Recent years have also seen a growth in the development of tensor decomposition methods for machine
learning. Various extensions of unsupervised methods such as PCA, robust PCA, SVD, NMF, neighborhood
preserving embedding (NPE), locally linear embedding (LLE), Canonical Component Analysis (CCA) [48,
70, 154, 106, 78, 91] and supervised methods such as linear discriminant analysis (LDA), Support Vector
Machines (SVM), regression, deep neural networks [195, 196, 168, 112, 104, 74, 38, 97, 137, 96, 95] to
tensors have been explored. Some applications include face recognition, object classification, dimensionality
reduction, clustering, anomaly detection, learning latent variable models and prediction.

Although most tensor based methods are developed as extensions of existing vector based methods, it is
possible to develop new approaches with structures specific to tensors. By utilizing tensors, one can introduce
structural models in many different ways such as deep tensor network structures, Kronecker or Cartesian
structured product graphs, and multi-modal coupling of data collected from different physical sensors, that
are otherwise not relevant or applicable. Tensor based methods also often have milder requirements for

theoretical performance analysis such as convergence, sample size, and recovery guarantees [70, 44, 45].

1.1 Background and Notation

In this thesis, we denote numbers and scalars with letters such as x, y, N. Vectors are denoted by boldface
lowercase letters, e.g. X, y. Matrices are denoted by italic capital letters like X, Y. Multi-dimensional tensors
are denoted by calligraphic capital letters such as X, Y. The order of a tensor is the number of dimensions

of the data hypercube, also known as ways or modes. For example, a scalar can be regarded as a zeroth-order



tensor, a vector as a first-order tensor, and a matrix as a second-order tensor.

Let A € RI*XIN be a tensor. Vectors obtained by fixing all indices of the tensor except the one that
corresponds to nth mode are called mode-n fibers and denoted as a;, . i, | ipsi....in € Rln.
Definition 1. (Vectorization, Matricization and Reshaping) V(.) is a vectorization operator such that
V(A) € RiL-InX1 T, () is a tensor-to-matrix reshaping operator defined as T,,(A) € RN-InXInsi-In
and the inverse operator is denoted as T),' ().
Definition 2. (Mode-n unfolding and canonical unfolding, [197]) The mode-n unfolding of a tensor A is
defined as A, € R/t wren o' where the mode-n fibers of the tensor A are the columns of A(ny and the
remaining modes are organized accordingly along the rows.

Mode-n canonical unfolding, or mode-1,2,...,n unfolding, of a tensor Y is defined as J/[n] €
RITE, EXTIN, . I
Definition 3. (Left and right unfolding) The left unfolding operator creates a matrix from a tensor by taking
all modes except the last mode as row indices and the last mode as column indices, i.e., L(A) € R/1/2-In-1xIn
which is equivalent to T _ (A). Right unfolding transforms a tensor to a matrix by taking all the first mode
fibers as column vectors, i.e. R(A) € RI*LL-IN which is equivalent to T{(A). The inverse of these
operators are denoted as L™'(.) and R™!(.), respectively. A tensor is defined to be left (right)-orthogonal if
its left (right) unfolding is orthogonal.
Definition 4. (Tensor trace) Tensor trace is defined on slices of a tensor and contracts them to scalars. Let
A € RIXXXIN with [}, = I}, then the trace operator on modes k’ and k is defined as:

Iy
D:tr,’:,(ﬂ): Z NV (G T YO R F S N

ir=ig=1
where D € RN XXl XXl X XIN - jg 9 N — 2-mode tensor.

Definition 5. (Tensor Merging Product) Tensor merging product connects two tensors along some given sets
of modes. For two tensors A € RIXXXIN and B € RI2XXIm where I, = J,, and I,,41 = J—; for

some n and m, tensor merging product is given by [45]:
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Figure 1.1: Illustration of tensors and tensor merging product using tensor network notations. Each node
represents a tensor and each edge represents a mode of the tensor. (a) Tensor A, (b) Tensor B, (¢) Tensor
Merging Product between modes (n,m) and (n + 1, m — 1).

C € RIPG Xln1XlnsaX e XIN XX XX i1 XXM g 9 (N + M — 4)-mode tensor that is calculated as:

Clits v sin=1sIn42s - s INS J1s + o s Jm=2s Jmt1s -+ -5 JM) =
In Jm-1
Z Z [ﬂ(il’-~-3in—lsin = tl’in+1 = tz’in+ls---’iN)
=1 n=1
B(jh'-‘aji’n*z,jin*l =t2’jm=t1’jm+1""’jM)]-

A graphical representation of tensors ‘A and B and the tensor merging product defined above is given in
Figure 1.1.

A special case of the tensor merging product can be considered for the case where I, = J,, for all
n,m € {l,...,N —1},M > N. In this case, the tensor merging product across the first N — 1 modes is

defined as:
C'=Axb-N-1g (1.1)
where C’ € RIN*/NXXIm This can equivalently be written as:
R(C’) = L(A) " Ty-1(8B), (1.2)

where R(C’) € RINXTTn Jm
Definition 6. (Mode-n product) The mode-n product of tensor A and a matrix U € R’/*/ is denoted as B =

I
A X, U and defined as by, i 1 jvinoin = 20—t Qir.oosipnin U i s Where B € RIX- X1 X XIN,

in=1
Notice that this is equivalent to a tensor merging product 8 = A x2 U.

Definition 7. (Mode-n Graph Laplacian) Mode-n adjacency matrix W” corresponding to mode-# similarity

graph of a tensor Y is defined as:

1Y) Y5 I

wn 4 202 , if Yn).s € Nk (Y(n),s’) Or'Y(n),s’ € Nk (Y(n),s)
ss’ = ’

0, otherwise



I;

N
where N (¥(n),s) is the Euclidean k-nearest neighborhood of the sth row of Y(,,), y(n).s € RHi:l’#" . The

mode-n graph Laplacian @, is then defined as ®,, = D" — W", where D" is a diagonal degree matrix with
D?’i = Zf,": q Wl.’fl.,. The eigendecomposition of ®” can be written as ®" = P, A, P,}, where P, is the matrix
of eigenvectors and A,, is a diagonal matrix with the eigenvalues on the diagonal, in a non-descending order.
Definition 8. (Product Graphs) Let {G,} be a set of N graphs, where G,, = {V,, E,,} where V,, are the
vertices and E, are the edges of G,,. Let ®, € RI, X I, be the graph Laplacian for G,. A product graph G
is created by unifying {G, }, in a special manner. A Kronecker product graph, or Kronecker graph is defined

as [151]:
G=GN®GN-1® B G, (1.3)
and has a Laplacian defined as:
P=0DOyDN_ Q- D). (1.4)
A Cartesian product graph, on the other hand is defined as [151]:
G=GnN® Infl\]:—ll L+ I, ®Gn-1 ® Inrz:/;lz Lt +IHVI>/:21n ® G1, (1.5)
with Laplacian:
D=0y ® Il—['Il\]:—ll r, tly ® PN ® IHLV:]ZIn +- Iﬁn]\,iz 1, ® P (1.6)

The graph smoothness objective defined over all modes of a tensor X € RI*2xxIn .

N
Z tr (X[ @nXin))- (1.7)
n=1
is equivalent to:
V(X)T®V(X), (1.8)

where @ is the graph Laplacian of the Cartesian product graph.
Definition 9. (Mode-n Concatenation) Mode-n concatenation unfolds the input tensors along mode-n and

stacks the unfolded matrices across rows:

.
cat, (A, A) = [ﬂ(Tn) ﬂ(Tn)} . (1.9



If the input is a set of tensors, e.g. {A} = {A, A, ..., Ap}, where A,, € RIXIN vm e {1,..., M},

then cat, ({A}) stacks all mode n unfoldings of tensors {A} across rows into a matrix of size M1, X

N
n’=1,n"#n I"' :

Definition 10. (Tensor norms) In this thesis, we employ three different tensor norms. Frobenius norm

of a tensor is defined as ||A||F = \/Zil’iz ,,,,, in yl?l’iz 7777 in- ©1 norm of a tensor is defined as [|A|l1 =
2irige.in |Viria,....in |- In this thesis, the nuclear norm of a tensor is defined as the weighted sum of the
nuclear norms of all mode-n unfoldings of a tensor, namely ||A||. = Z,Zlvzl Yl A |+, where ¢, s are the
weights corresponding to each mode [173, 70].

Definition 11. (Support Set) Let Q be a support set defined for tensor A, i.e. Q€ {1,...,I1}x{1,...,L}X
---x{1,...,In}. The projection operator on this support set, Pq, is defined as:

Aivin,ins U1,02,...,IN) € Q,
¢)Q[‘?{]il,iz ..... iN — (110)

0, otherwise.

The orthogonal complement of the operator Pgq is defined in a similar manner as:

Aisigeoins ([{1502,...,IN) € Q,
Par[Aliis,...in = (1.11)

0, otherwise.

1.2 Robust Principal Component Analysis

Principal component analysis (PCA) is one of the most common algorithms for dimensionality reduction
[30]. The aim of PCA is to find a subspace with smaller dimension, in which the projected data has the highest
variance among all possible subspaces with the same dimension. This model is based on the assumption
that the data has an i.i.d. Gaussian distribution. Thus, with grossly corrupted, or partially observed data,
PCA fails to estimate the best subspace, or the best low-rank approximation to data. To alleviate the issues
with these outliers, robust PCA methods [30, 35] have been proposed where the aim is to separate the data
into a low-rank part, corresponding to the clean part, and a sparse part, corresponding to gross corruptions,
or outliers.

In [30, 35], this problem is formulated as:

minimize; s||L|ls + AIS|l;, L+S=Y (1.12)



where the observed data is Y and A is a regularization parameter. It was proven that under some conditions
on the true L and S, an alternating minimization based approach can recover the true L. This algorithm can
also be used for matrix completion [30].

Although very successful in recovering low-rank data from gross corruptions, RPCA has some short-
comings. First, the algorithm requires an SVD at every step of the optimization which gets intractable with
increasing data size. Second, the underlying assumption of incoherence is not always easy to satisfy as in
many real data, the underlying, clean data is structured and can be sparse. Finally, the outliers themselves

could be structured, which violates the randomness of the support of the sparse part.

1.3 Geometric Learning

In this thesis, we explore a variety of approaches to supervised and unsupervised learning where underlying
geometric or topological relations between each modes rows. Such relations are common in many types
of real data, e.g. recommendation systems, drug-target interaction, genomics. Usually, such relations are
represented by a graph, or a set of graphs with relationships across these graphs. We unite these approaches
under the term geometric learning.

Such geometric structures within data are often not taken into account in many methods as purely
algebraic terms, such as rank, cannot account for them [22]. In many modern signal processing applications,
graph-based priors have been used to extract low-dimensional structure from high dimensional data [57, 83,
170]. Representation of a signal on a graph is also motivated by the emerging field of signal processing
on graphs, based on notions of spectral graph theory [155, 154, 146]. The underlying assumption is that
high-dimensional data samples lie on or close to a smooth low-dimensional manifold, represented by a graph
G. In this section, we explore several extensions of wide-known algorithms for dimensionality reduction
using geometric learning concepts.

In the specific case of manifold learning, geometric learning is utilized as follows. Tensor samples for a
data set with no labels are denoted as Y, € R/ >IN where s € {1, ..., S}. For two tensor samples, Y; and
Y, and their respective low-dimensional projections, X and X, regularization that is employed to preserve
the underlying geometry can be formulated as:

s S

Z 1Xs = Xy [ Wss, (1.13)

s=1 s’ '=1
s'£s



where X; is the projection of Y to a lower dimensional manifold and wj ¢ is the mode-N + 1 adjacency or

similarity graph. One can also equivalently rewrite (1.13) as tr (X SOV XT ).

1.3.1 Robust PCA on Graphs

In [155], it was shown that a low-rank approximation, U, to a data matrix, X, can be obtained by solving the

following optimization problem:
min [|X = U[l; +y1tr(UD'UT) + yotr (UT @2U), (1.14)

where @' and ®? are the graph Laplacians corresponding to graphs connecting the samples (rows) of X and
the features (columns) of X, respectively. The above formulation assumes that the data is low-rank on graphs,
i.e. lies on a smooth low-dimensional manifold. This can be quantified by a graph stationarity measure,
sr(Tp) = W, where I',, = P, C,, P,, with C,, being the covariance matrix of each mode-n unfolding,

i.e., n = 1 or 2 in the case of data matrices [146, 154].

1.3.2 Spectral Geometric Matrix Completion

In [84, 22], it was shown that using two graphs that encode the relationships between the rows, G| and the
columns G, of a matrix, it is possible to extract a signal X that is band-limited on the Cartesian product

graph G = G, ® I + I ® Gy from data Y with missing entries and corruption. The problem is formulated as:
minimizey || Po[X — Y]||3 + tr(XT®'X) + tr(XD*X "), (1.15)

where the last two terms are called the graph smoothness terms, and ®' and ®? are graph Laplacians
corresponding to the rows and columns of the matrix, respectively. @ = ®> x I+ I x ®' is the Laplacian

matrix associated with G.

1.4 Tensor Decompositions

In many machine learning problems, low-rank decompositions or matrix factorizations are the main compu-
tational bottleneck as they are often O(n°), i.e. cubic, in computational complexity. Tensor decompositions
provide alternative factorization models preserving the original multiway structure of the data which de-

crease both the computational complexity and the storage cost of the factors. In this section, we review



In- Y '.= In-y Un-1 X
AN RN
Iy I Uy U,
I / U \
Iy L
I

Figure 1.2: Tensor network notation for Tucker decomposition.

three well-known tensor decomposition approaches: Tucker Decomposition (TD), Canonical Decomposition

(CANDECOMP/PARAFAC, CP) and Tensor Train Decomposition (TT).

1.4.1 Tucker Decomposition (TD)
Tucker decomposition represents a tensor Y € RI¥BXXIN gq:
Y =Xx1Uyx2Up-- Xy Up,

where U,, € RI"*Rn with R,, < I,, are called the low-rank factor matrices and X € RR1XR2X"XRN jg the core
tensor. This decomposition is illustrated in Figure 1.2. Instead of mode-n product, Tucker Decomposition

can also be represented by tensor merging product as:

Y=Xx2U; x50y xx Un,

1.4.2 Canonical/Polyadic (CP) Decomposition
CP is a special case of Tucker Decomposition where the core tensor X is superdiagonal:

Yiy,ia,..., iN> if i1=i2="’=iN,
xil’iz ..... iN = (1‘16)
0, otherwise.

.....

by the outer products of the columns of the factor matrices U,:

R
J=Zu1,iou2,io---ou1\/,i, (117)
i=1



where R is the CP rank of Y. The above equation is also denoted as:
Y =[[U1,Us,....Un]] (1.18)

The above representation is called Kruskal tensor (see [99]), which is a convenient representation for CP
tensors. We denote a Kruskal tensor by 9 = [[Uy,...,Un]] or Y = [[{;Uy,...,Un]] where £ € R” is
a vector whose entries are the weights of rank one tensor components. In the special case of matrices, ¢
corresponds to singular values of a matrix. In general, it is assumed that the rank R is small so that equation

(1.18) is also called low-rank approximation of a tensor Y.

1.4.3 Tensor Train Decomposition (TT)

Most of the existing work in both unsupervised and supervised learning have utilized Tucker or CP decom-
positions. The matrix product state (MPS) or Tensor Train is one of the best understood tensor networks, or
tensor decompositions, for which efficient algorithms have been developed [140, 139]. TT is a special case
of a tensor decomposition where a tensor with N indices is factorized into a chain-like product of low-rank,
three-mode tensors. TT model has been employed in various applications such as PCA [18], manifold
learning [183] and deep learning [137].

Tensor Train decomposition represents each element of YV using a series of matrix products as:
Y(ir i, .. in) = U (L i, )Un iz, 1) . Un Gin, 2)X, (1.19)

where U,, € RERn-1XInXRn are the three mode low-rank tensor factors, R, < I, are the TT-ranks of the
corresponding modes and x € RR~N*! is the projected sample vector. Using tensor merging product form,
(1.19) can be rewritten as

Y = U Xy Uy x5 - x4 Uy X5 x. (1.20)

A graphical representation of (1.20) can be seen in Figure 1.3. If Y is vectorized, another equivalent

expression for (1.19) in terms of matrix projection is obtained as:
V(Y) = L(Uy x5 U x5 - X3 Uy ).
Another widely used form of Tensor Train, called Matrix Product States (MPS) [18] is defined as:
Y = U x3 Uy X3+ x5 Uy X3 X X3 Upp1 X3+ X3 Un . (1.21)

10
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Figure 1.3: Tensor Train Decomposition of Y using tensor merging products.

Note that the low dimensional projected samples in MPS are matrices while for TT, they are vectors.

Let U<k = L(Uy x} Uy X} - X3 Uy) € RV Tk and U o = R(Upar X5 -+ - x4 Uy ) € R -In,
When L(U,)s for n < k are left orthogonal, U<y is also left orthogonal [80], i.e. L(U,) "'L(U,) =
Ig, ,1,,Ynimplies UTU =1;,1 = ]_[nN:1 I, where I; € R™! is the identity matrix. Similarly, when R(U,,)s
for n > k are right orthogonal, Us, is right orthogonal. When Y is reshaped into a matrix, (1.21) can be

equivalently expressed as a matrix projection Ty (Y) = [I[,n ®U< k] XUsp.

1.5 Robust PCA for Tensors

In order to separate the low-rank part from sparse outliers in tensors, many extensions of RPCA to tensors
have been proposed [70, 120, 208, 197]. Although utilizing tensor structures have proven to be useful in
many tasks, quantifying the low rankness of tensors is an open ended problem as there is no clear definition
of rank for a tensor. Similarly, the nuclear norm of a tensor, which is a convex measure of the rank, is not
clearly defined. Depending on the definition of the rank, different nuclear norms are used such as Tucker
rank (sum of nuclear norms (SNN) of mode-n unfoldings), tubal rank (tensor nuclear norm (TNN)), TT rank
(Schatten norm (TTNN)), etc.
In [120, 70], Tucker rank was used to quantify the rank of a tensor. This interpretation resulted in a SNN
based objective as:
N
minimize £.s Y || Lol + 1S, (1.22)
n=1
where ||.||1 is the £; norm of a tensor, defined as the sum of the absolute values of all entries of a tensor. There
are many extensions to this formulation such as reformulating the objective function for tensor completion,

using other definitions of nuclear norm, and weighting the nuclear norms of different modes.

11



1.6 Linear Discriminant Analysis (LDA) for Tensors

Let Y € R/ XINXKXC e the collection of samples of training tensors. For a given Y with C classes and
K samples per class, define YX € R >IN a5 the sample tensors where k € {1,..., K} is the sample index
and ¢ € {1,...,C} is the class index. LDA for tensor data initially applies a vectorization to tensor samples
and then finds an orthogonal projection U that maximizes the discriminability of projections by solving!:
U = argmin [tr(UTSWlA]) - /ltr(UTSBlj)] =
U

argmin 17 (U (Sw — ASg)U) = argmin tr(U" SU), (1.23)
U U

where S = Sy — ASp, 4 is the regularization parameter that controls the trade-off between Sy and Sp which

are within-class and between-class scatter matrices, respectively, defined as:

VY -~ MOVYE-M)T, (1.24)

Sw

1M
M TD»

V(M= M)V(M:-M)T, (1.25)

9%)
o]
I
ANgly

o
Il
—_
x~
I
—_

where M. = £ Y&, YX is the mean for each class ¢ and M = % >C 2K YK is the total mean of all
samples. Since U is an orthogonal projection, (1.23) is equivalent to minimizing the within-class scatter
and maximizing the between class scatter of projections. This can be solved by the matrix U € RITn5 xRy
whose columns are the eigenvectors of S € RIS XTI corresponding to the lowest Ry eigenvalues.
Multilinear Discriminant Analysis (MDA):

MDA extends LDA to tensors using TD by finding a subspace U,, € R/*Rn foreachmoden € {1,..., N}
that maximizes the discriminability along that mode [112, 168, 195]. When the number of modes N is equal

to 1, MDA is equivalent to LDA. In the case of MDA, within-class scatter along each mode n € {1,..., N}

is defined as:

.
C K
Sw =D > |k - [T >wUn| |WE-M [ x0WUa| (1.26)
c=1 k=1 me{l ..... N} me{l,....,N}
m¥£n (n) m#n (n)

IThe original formulation optimizes the trace ratio. Prior work showed the equivalence of trace ratio to trace difference used in
this thesis [63].

12



Between-class scatter Sg') is found in a similar manner. Using these definitions, each U, is found by
optimizing [168]:

U, = argmintr (O} (S\) — A55)0.,). (1.27)

Uy

Different implementations of the multilinear discriminant analysis have been introduced including Dis-
criminant Analysis with Tensor Representation (DATER), Direct Generalized Tensor Discriminant Analysis
(DGTDA) and Constrained MDA (CMDA). DATER minimizes the ratio tr(U; S& U, ) /tr (U S W U,,) [195]
instead of (1.27). Direct Generalized Tensor Discriminant Analysis (DGTDA), on the other hand, computes
scatter matrices without projecting inputs on U,,, where m # n and finds an optimal U,[112]. Constrained
MDA (CMDA) finds the solution in an iterative fashion [112], where each subspace is found by fixing all

other subspaces.

1.7 Organization and Contributions of the Thesis

In this thesis, we present novel algorithms for learning from tensor data for different applications including
discriminative and multi-modal supervised learning, data recovery, and anomaly detection from spatiotem-
poral data. In all of the proposed methods, important design challenges such as keeping the storage and
computational complexity low while maintaining high performance accuracy are taken into account. The re-
sulting cost functions are formulated as optimization problems and efficient algorithms are presented to solve
them. We have also provided analysis of the proposed algorithms in terms of convergence, computational
and storage complexity. The algorithms were applied to classification, clustering and anomaly detection
tasks.

In Chapter 2, we introduce a tensor decomposition structure that provides computational and storage
efficiency while providing high accuracy for both supervised and unsupervised applications. The structure
is akin to a hybrid between Tensor Train and Tucker decompositions using the flexibility of tensor networks,
and named as multi-branch tensor train decomposition. This new structure is useful for extending existing
machine learning methods to tensor type data. This structure is employed in a supervised learning setting for
extending LDA to tensor data. We also present an unsupervised learning method that relies on the proposed
structure, namely graph regularized tensor train decomposition. The proposed supervised and unsupervised
algorithms are compared to state-of-the-art tensor decompositions with similar objectives in, respectively,

classification and clustering settings on various data sets.
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In Chapter 3, we address the problem of unsupervised anomaly detection in spatiotemporal data. In
this chapter, we develop an anomaly detection method by taking the structure of anomalies into account.
In particular, we model the spatiotemporal data as a tensor where the underlying data is low-rank and the
anomalies are sparse and temporally continuous. In other words, anomalies appear as spatially contiguous
groups of locations that show anomalous values consistently for a short duration of time. We present different
methods based on these assumptions: LOw-rank plus temporally Smooth Sparse decomposition (LOSS),
Graph regularized LOSS (GLOSS) and LOw-rank on Graphs plus temporally Smooth Sparse decomposition
(LOGSS). LOSS and GLOSS use the same objective functions except for the graph regularization term
included in GLOSS. By including a graph regularization term in the objective, we preserve the local geometry
of the data. In LOGSS, different from the previous two, graph regularization is employed to approximate the
nuclear norm minimization problem to reduce the computational complexity. As the proposed methods use
a tensor completion framework, they are robust against missing entries in the observed spatiotemporal data.

In Chapter 4, we study geometric tensor learning, a framework that explores the effectiveness of product
graph structure on tensors. This framework is utilized for a tensor recovery task where the aim is to
reconstruct the underlying data from grossly corrupted and partially observed data. We present a new
method with Tensor Train structure to model the data. Using TT changes the definition of the product graph
as the tensor factorization is not Kronecker structured. We propose two new algorithms to model product
graphs for TT decomposition, where in the first approach, we propose using a graph for each canonical mode
unfolding, and in the second model, we show the equivalence of canonical unfolding to mode-» unfolding
when each mode-n graph has a Kronecker structure.

In Chapter 5, we present a coupled support tensor machine framework for classification. The framework
extends a supervised learning task to multiple, possibly heterogenous, data sources such as simultaneous
EEG and fMRI. Starting from a kernelized support tensor machine (STM) framework formulated for single
modality, we propose a multiple kernel approach. In particular, we estimate latent factors from Advanced
Coupled Matrix Tensor Factorization (ACMTF) [3] jointly across modalities. This algorithm decomposes
multiple tensors with CP decomposition, where some sets of factors from different modes are coupled
together, i.e. has similarity conditions, to account for the same underlying physical phenomenon that affects
these factors. A Coupled Support Tensor Machine (C-STM) combines individual and shared latent factors
with multiple kernels and estimates a maximal-margin classifier for coupled matrix tensor data.

Finally, Chapter 6 summarizes the main contributions of this thesis and discuss potential future research
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directions.
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CHAPTER 2

MULTI-BRANCH TENSOR TRAIN STRUCTURE FOR SUPERVISED AND UNSUPERVISED
LEARNING

2.1 Introduction

Tensor decompositions have been proposed for various tasks including dimensionality reduction, classifi-
cation and clustering. In the area of unsupervised learning, many vector or matrix based methods such as
PCA, SVD and NMF have been extended to tensors using various tensor decomposition structures including
PARAFAC/CP, Tucker decomposition and TT [159, 42, 93, 26, 48, 49, 43, 106, 18, 181]. Tensors have also
gained attention in supervised learning literature. Vectorizing high dimensional inputs may result in poor
classification performance due to overfitting when the training sample size is relatively small compared to
the feature vector dimension [159, 112, 169, 168, 196]. Another issue brought forth by vectorization is small
sample size (SSS) problem. This problem is considered to be the main drawback of linear discriminant
analysis (LDA) as the objective function becomes ill-defined due to the singularity of the estimated scatter
matrices [63]. For this and many other reasons, a variety of supervised tensor learning methods for feature
extraction, selection, regression and classification have been proposed [126, 168, 97, 75, 112, 74]. These
include extensions of Linear Discriminant Analysis (LDA) to Multilinear Discriminant Analysis (MDA) for
face and gait recognition [196, 168, 112]; Discriminant Non-negative Tensor Factorization (DNTF) [202];
Supervised Tensor Learning (STL) where one projection vector along each mode of a tensor is learned [169,
76]. More recently, the linear regression model has been extended to tensors to learn multilinear mappings
from a tensorial input space to a continuous output space [73, 201]. Finally, a framework for tensor-based
linear large margin classification was formulated as Support Tensor Machines (STMs), in which the param-
eters defining the separating hyperplane form a tensor [97, 75, 74]. However, most of these methods are
based on CP or Tucker decomposition which have various problems.

CP decomposition is very efficient in terms of storage complexity and has useful properties such as
uniqueness and interpretability, which is not true for TD or TT. However, finding the correct CP rank is
challenging and often is done by iterating over different values. For noisy tensor data, CP decomposition may
find false rank. Moreover, there may not be a low-rank approximation, which is referred to as degeneracy

[93] and the problem is often ill-posed [44].
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Tucker Decomposition is an extension of SVD and a widely used tensor decomposition. Also, it is more
numerically stable compared to CP and most of the time, a low-rank approximation exists in Tucker form.
However, Tucker representation can be exponential in storage requirements since even when each mode is
low-rank with rank r, the dimensionality of a sample core tensor X* will be V' [182, 32]. It was also shown
in [17] that learning a low-rank approximation using Tucker Decomposition requires a truncated SVD on a
fat matrix, which hinders the quality of the low-rank approximation as fat or tall matrices are usually full
rank.

TT format exhibits both stability and low storage complexity compared to Tucker format [42]. It was also
suggested as a possible solution to the imbalance of unfolding problem encountered in Tucker decomposition
in [17]. However, the ranks of the core tensors in the Tensor Train decomposition are frequently not low
for real data [45] and increase exponentially with the number of modes. In [204], a solution was proposed
by limiting the maximum ranks of tensor factors and optimizing accordingly. This limitation requires
the original data to be low TT rank, which is not true for most real data [45, 204], and results in lower
approximation accuracy. A widely used solution to these problem with TT or MPS [18] is to start the
Tensor Train decomposition from the left, i.e. first mode, and the right, i.e. last mode, simultaneously which
decreases the computational complexity significantly.

Even though early applications of TT decomposition focused on compression and dimensionality re-
duction [139, 140], more recently TT has been used in machine learning applications. In [18], MPS is
implemented in an unsupervised manner to first compress the tensor of training samples and then the re-
sulting lower dimensional core tensors are used as features for subsequent classification. In [182], TT
decomposition is associated with a structured subspace model, namely the Tensor Train subspace. Learning
this structured subspace from training data is posed as a non-convex problem referred to as TT-PCA. Once the
subspaces are learned from the training data, the resulting low-dimensional subspaces are used to project and
classify the test data. [183] extends TT-PCA to manifold learning by proposing a Tensor Train neighborhood
preserving embedding (TTNPE). The classification is conducted by first learning a set of tensor subspaces
from the training data and then projecting the training and testing data onto the learned subspaces. Apart
from employing TT for subspace learning, recent work has also considered the use of TT in classifier design.
In [38], a support tensor train machine (STTM) is introduced to replace the rank-1 weight tensor in Support
Tensor Machine (STM) [169] by a Tensor Train that can approximate any tensor with a scalable number of

parameters.
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In order to address the issues of exponential storage requirements and high computational complexity, in
this chapter, we introduce supervised and unsupervised subspace learning approaches based on the Tensor
Train (TT) structure. Building on the idea of starting the decomposition from the first and last modes
simultaneously, we show that using a number of branches in the decomposition, a hybrid between TT and
Tucker Decomposition structure can be achieved which in turn can provide a balanced structure and low
ranks. When the number of branches is equal to one, the decomposition is equivalent to a standard TT
decomposition. When the number of branches is equal to the number of modes, the decomposition is
equivalent to Tucker Decomposition. As a special case, when the number of branches is two, the structure
is still denoted as TT in previous work[98, 204, 18, 45]. However, the formulation is different from one-
way TT as the orthogonality requirements of some factors become right-orthogonality instead of left. By
generalizing the proposed idea to different number of branches, we show that our structure is a hybrid tensor
decomposition that includes TT and Tucker decomposition as special cases. The significance of the number
of branches becomes more apparent for high dimensional data with large number of modes as for these data,
the TT ranks tend to get large. The proposed structure is closely related to recent work in the computation
of extremal eigenvalue-eigenvector pairs of large Hermitian matrices [45]. Since the main objective is to
compute extremal eigenpairs, i.e. Ritz pairs, of a large-scale structured matrix, the proposed multi-branch
approach is similar to the previously introduced block TT (BTT) format [56, 98, 204].

In particular, we present a discriminant subspace learning approach using the TT model, namely the
Tensor Train Discriminant Analysis (TTDA). The proposed approach is based on linear discriminant analysis
(LDA) and learns a Tensor Train subspace (TT-subspace) [183, 182] that maximizes the linear discriminant
function. Although this approach provides an efficient structure for storing the learned subspaces, it is com-
putationally prohibitive. For this reason, we propose the multi-branch structure for efficient implementations
of TTDA. In the second part of this chapter, we apply the multi-branch structure to an unsupervised learning
problem that can be posed as an extremal eigenvalue-eigenvector problem. This problem is a combination
of manifold learning and linear subspace learning which is posed as a graph regularized dimensionality
reduction algorithm.

The contributions of the chapter can be summarized as follows:

* A new tensor network structure is introduced to provide a better trade-off between computational

complexity and storage cost. The proposed multi-branch structure is akin to a hybrid between tensor-
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train and Tucker decompositions using the flexibility of tensor networks. This structure can also be
utilized within other subspace learning tasks, as was done in both supervised and unsupervised settings

in this chapter.

* This chapter is the first that uses tensor-train decomposition to formulate LDA for supervised subspace
learning. Unlike recent work on TT-subspace learning [17, 18, 182, 183] which focuses on dimension-
ality reduction, the proposed work learns discriminative TT-subspaces to extract features that optimize

the linear discriminant function.

* A theoretical analysis of storage and computational complexity of this new framework is presented. A
method to find the optimal implementation of the multi-branch TT model given the dimensions of the

input tensor is provided.

The rest of the chapter is organized as follows. In Section 2.2, we introduce an optimization problem
to learn the TT-subspace structure that maximizes the linear discriminant function, named as Tensor Train
Discriminant Analysis (TTDA). In Section 2.3, we introduce multi-branch implementations of TTDA to
address the issue of high computational complexity. In Section 2.4, we provide an analysis of storage
cost, computational complexity and convergence of the proposed algorithms. We also provide a procedure
to determine the optimal TT structure for minimizing storage complexity. In Section 2.5, we compare the
proposed methods with state-of-the-art tensor based discriminant analysis and subspace learning methods for
classification applications. In Section 2.6, we discuss graph regularized unsupervised learning on tensors,
then, propose an implementation using the two-way structure using an ADMM based optimization, and
discuss the convergence properties. In Section 2.7, we compare the proposed method with unsupervised

tensor learning methods for clustering applications on two data sets.

2.2 Tensor Train Discriminant Analysis

When the data samples are tensors, traditional LDA first vectorizes them and then finds an optimal projection
as shown in (1.23). This creates problems as the intrinsic structure of the data is destroyed. Even though
MDA addresses this problem, it is inefficient in terms of storage complexity as it relies on TD [45, 32]. Thus,
we propose to solve (1.23) by constraining U = L(U; X; Uu, xé e xé Uy ) to be a TT-subspace to reduce

the computational and storage complexity and obtain a solution that will preserve the inherent data structure.

19



The goal of TTDA is to learn left orthogonal tensor factors U, € RRw-1XInxRn e {1 N} using
TT-model such that the discriminability of projections x¥, V¢, k is maximized. First, U,,s can be initialized
using TT decomposition proposed in [140]. To optimize U,,s for discriminability, we need to solve (1.23)
for each U,,, which can be rewritten using the definition of U as:

U, = argmin tr
Uy

L(U; X3+ X3 Uy x5 - X3 Un) TSL(Uy X5 -+ X5 Uy X4 -+ X (L{N)]. 2.1

Using the definitions presented in (1.1) and (1.2), we can express (2.1) in terms of tensor merging

product:

‘L(n=argmintr[(‘L(1 ><§~-~><§‘L7n xé-~~><%"LIN)><} """ N g xloesN o (Ui xé~-~x§ﬂnx%-~~xéﬂ1\/)], 2.2)
U,

where S = Ty} (8) € RICC >IN XIN Lot Yoy = Uy Xy Up X5 -+ XS Upoy and Usyy = Upgr X5 - -+ X4
Uy . By rearranging the terms in (2.2), we can first compute all merging products and trace operations that

do not involve U,, as:

Ay, =trs . (23)

1,..., n-1 n+l,..., N N+1,..., N+n-1 N+n+2,...,2N
7/{Sn—l Xl _ ((L{>n Xl _ ((LISn—l X -1 (7/[>n Xl —n S)) )

e RR"*I XTIy XRy XRy 1 X I XR

where A, n (refer to Figure 2.1 for a graphical representation of (2.3)). Then, we

can rewrite the optimization in terms of U,,:

U,, = argmin ((LA{,, X

,2,3 1,2,3 47
o 23 (AT ). 2.4)

—_—

Let A, = T3(A,) € RR-1InRnXRn1lnRn then (2.4) can be rewritten as:
U, = argmin V(U,) A, V(U,), L(U,)"L(U,) =g, . (2.5)
Uy

This is a non-convex function due to unitary constraints and can be solved by the algorithm proposed in
[189]. The algorithm employs a curvilinear line search method to solve minimizations with orthogonality
constraints such as eigenvalue decompositions or matrix rank minimization. The procedure described above
to find the subspaces is computationally expensive as the complexity of finding each ‘A,, [183] is at least
quadratic in the number of elements, i.e. O(I*V).

When n = N, (2.5) does not apply as U- n is not defined and the trace operation is defined on the third
mode of Uy . To update Uy, the following can be used:

Uy = argmin tr (([/A{N Xi’% (ﬂN Xé’i ([:{N)) ,
i , ,
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Figure 2.1: Tensor A, is formed by first merging UR, U nL_l and S and then applying trace operation across
4t and 8" modes of the resulting tensor. The green line at the bottom of the diagram refers to the trace
operator.

where Ay = U<n_1 xloees %j (‘LlsN_l ><11V+1""_’2N_1 S). Once all of the U,,s are obtained, they can be used
to extract low-dimensional, discriminative features by the projection operation UTV(YX). The pseudocode
for TTDA is given in Algorithm 1.

TTDA algorithm described above is computationally expensive as it requires the computation of tensor
A, through tensor merging products. Also, the size of A, grows significantly with increasing R,, e.g.
O(I*), which has exponentially growing memory cost. Moreover, since the ranks of TT are bounded by
R, < [1i, I, the size of A,, may increase up to [, Il.2 x [1i, 11.2. Thus, A, might end up being larger
than the original scatter matrix S, making TT approximation worse than LDA in terms of computational

complexity.

2.3 Multi-Branch Tensor Train Discriminant Analysis

In this section, we introduce tensor decomposition structures to reduce computational complexity of TTDA.
In particular, instead of using the whole scatter tensor S for the update of each U,,, we aim to partition
tensor factors into several sets where each set will approximate a lower dimensional TT subspace. For the
update of each factor set, the original data will be projected to the remaining sets, and then the corresponding
scatter matrix will be formed from these low dimensional projections. To further reduce the complexity,
tensor merging products between sets will be removed. These collection of sets form a Kronecker structure,

approximating U in (1.23).
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Algorithm 2.1: Tensor Train Discriminant Analysis (TTDA)

Input: Input tensors Y X € RI*2XXIN where ¢ € {1,...,C} and k € {1,...,K}, initial tensor factors
U,,ne{l,..., N}, ,R,...,Ry, MaxlIter
Output: U,,n€{l,...,N},andxk, Vc,k
I: 8 « Ty (Sw — ASp), see eqns.(1.24), (1.25).
2: while iter < MaxlIter do
3: forn=1: N-1do

4: Compute A, using (2.3).

5: V(U,) argmin V(U,) " T3(A,)V(U,).
6:  end for Uy L(Up) TL(Up)=IR,,

o An e U (U ) S)

$:  L(Uy)—  argmin tr(L(faN)TTz(ﬂN)L((aN)).
Uy L(Uy,) "L(Un)=Ig

9: iter « iter + 1.

10: end while

11: U= L(ﬂl Xé U, Xé s Xé WN)
12: Xk — UTV(YF), Ve, k.

2.3.1 Two-way Tensor Train Discriminant Analysis QWTTDA)

As LDA tries to find a subspace U which maximizes discriminability for vector-type data, 2D-LDA tries to
find two subspaces Vi, V; such that these subspaces maximize discriminability for matrix-type data [198]. If
one considers the matricized version of yf alongmode d, i.e. Ty (Mck ) € RITEL) 1XTT g L ,wherel <d < N,

the equivalent orthogonal projection can be written as:
T, (YY) =vixkv], (2.6)

1 N ) 5
where V; e RILZ ixRa 7, e RITiZas liXRa Xk eRRaxRa,

k

C

1

In TTDA, since the projections X 3

are considered to be vectors, the subspace U = L(U| x; U, xé -ee X
Uy ) is analogous to the solution of LDA with the constraint that the subspace admits a TT model. If we
consider the projections and the input samples as matrices, now we can impose a TT structure to the left and
right subspaces analogous to solution of 2D-LDA. In other words, one can find two sets of TT representations

corresponding to V; and V; in (2.6). Using this structural approximation, (2.6) can be rewritten as:
Ta(Y) = L(U x5 - X5 U) XER(Ugsr X5 -+ X3 Uy), 2.7)
which is equivalent to the following representation:

k 1 1 1 vk I 1 1
Y =Up X5 X3 Ug X3 X Xy Uger X5 -+ X3 Un.
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This formulation is graphically represented in Figure 2.2a where the decomposition has two branches, thus
we refer to it as Two-way Tensor Train Decomposition 2WTT).

In prior work, decompositions with this structure was also called Tensor Train [204] or Matrix Product
States [18] but the formulation is different and some properties of Tensor Train such as ranks, computational
and storage complexities change when this structure is employed. Thus, this is a different decomposition
than the conventional Tensor Train and the differences will be more higlighted when the number of branches

increase. The differences between the two-way structure and TT are:

* In the two-way structure, factors after mode-d are not linearly dependent to the ones before mode-d.
This can be viewed easily in 2D-LDA problem, which is a two-way structure with only two modes, or

from the representation in Figure 2.2a.

* In 2WTT, modes before mode-d are left-orthogonal, similar to TT, but the modes after mode-d are
right orthogonal. This fact with the previous one allow a reduced computational cost in the ALS

optimization scheme by a simple linear independence assumption.

* In TT, ranks grow from the first mode to the last mode as the upper bound of each rank, R, <
InR,-1 < [1,,_, Lv, keeps increasing. On the other hand, for 2WTT ranks with n > d are bounded

by R, < IRy < ]_[,Zl\f:n +1 L. As a quantitative measure, the upper bound of the maximum rank is

[TV, 1, for TT, and /T, 1,, for 2WTT.

To maximize discriminability using 2WTT, an optimization scheme that alternates between the two sets
of TT-subspaces can be utilized. When forming the scatter matrices for a set, projections of the data to the
other set can be used instead of the full data which is similar to (1.26). This will reduce computational
complexity as the cost of computing scatter matrices and the number of matrix multiplications to find A, in
(2.3) will decrease. We propose the procedure given in Algorithm 2.2 to implement this approach and refer
to it as Two-way Tensor Train Discriminant Analysis (2WTTDA) as illustrated in Figure 2.2¢c. To determine
the value of d in (2.7), we use a center of mass approach and find the d that minimizes | Hle I; — H;VZ a1 Lil-

In this manner, the problem can be separated into two parts which have similar computational complexities.
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Algorithm 2.2: Two-Way Tensor Train Discriminant Analysis 2WTTDA)

Input: Input tensors yf e RIIXXIN where ¢ € {1,...,C} and k € {1,...,K}, initial tensor factors
U,,ne{l,...,N},d, A, Ry,...,Rn, MaxIter, Looplter
Output: U,,n€ {1,...,N},and X¥, Ve, k
1: while iter < Looplter do

2, N—d+l | i
Yo =Y 3y (Ui X5 %3 Un).

.....

[U;] —« TTDA(YR, A, R;, MaxIter)Vie {d+1,...,N}.
iter =iter + 1.

7: end while

8: XE — L(U X+ X Ua) TTa(YOR(Ugsr X5 -+ x5 Un) .

AN L B~ W N
=
T
S
X
=
AR

+
Py
EN
X
LY —
X
L) —
s
~

2.3.2 Three-way Tensor Train Discriminant Analysis 3WTTDA)

Elaborating on the idea of 2WTTDA, one can increase the number of modes of the projected samples
which will increase the number of tensor factor sets, or the number of subspaces to be approximated
using TT structure. For example, one may choose the number of modes of the projections as three,
ie. Xk e RR"IXRdZXR"Z, where 1 < d; < d, < N. This model, named as Three-way Tensor Train

Decomposition (3WTT), is given in (2.8) and represented graphically in Figure 2.2b.

k _ k  N—-dy+2 1 1 dy—d|+2
Y= ((XC X3 (Ugy1 X5 -+ X5 ‘L(N))xz

(Uaon X3+ g Wdz)) X2 (U < x5 Ugy). (2.8)

To maximize discriminability using 3WTT, one can utilize an iterative approach as in Algorithm 2.2,
where inputs are projected on all tensor factor sets except the set to be optimized, then TTDA is applied to the
projections. The flowchart for the corresponding algorithm is illustrated in Figure 2.2d. This procedure can
be repeated until a convergence criterion is met or a number of iterations is reached. The values of d; and
d; are calculated such that the product of dimensions corresponding to each set is as close to (Hf.\:’ | 1) as
possible. It is important to note that 3WTT will only be meaningful for tensors of order three or higher. For
three-mode tensors, 3WTT is equivalent to Tucker Decomposition. When there are more than four modes,

the number of branches can be increased accordingly which makes 4W, 5W and NWTT possible.

2.4 Analysis of Storage, Training Complexity and Convergence

In this section, we derive the storage and computational complexities of the aforementioned algorithms as

well as providing a convergence analysis for TTDA.
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Figure 2.2: Illustration of the proposed methods (Compare (a) and (b) with Figures 1.2 and 1.3): (a) The

proposed tensor network structure for 2W'TT; (b) The proposed tensor network structure for 3WTT; (c) The
flow diagram for 2WTTDA (Algorithm 2.2); (d) The flow diagram for 3WTTDA

Table 2.1: Storage Complexities of Different Tensor Decomposition Structures

Methods ‘ Subspaces (U,s) (O(.)) ‘ Projections Xck O(.)
TT (N =1Dr’I+rI

rCK

2WTT (N =2)r*I +2r] r’CK
3WTT (N =3)r’I +3r1 rCK
TD Nrl rNCK

Storage Complexity Let I,, = I,n € {1,2,...,N}and R; = r,l € {2,...,N — 1}. Assuming N is a
multiple of both 2 and 3, total storage complexities are:

* O((N = D)r*I +rI + rCK) for TT Decomposition, where R; = 1, Ry =r;
o O((N =2)r*I +2r1 + r>*CK) for Two-Way TT Decomposition, where R| = Ry = 1;
* O((N = 3)r?I +3rI + r*CK) for Three-Way TT Decomposition, where R; = Ry, = Ry = 1;

* O(NrI +r" CK) for Tucker Decomposition, where R = Ry = r.

These results show that when the number of modes for the projected samples is increased, the storage cost

increases exponentially for X* while the cost of storing U,,s decreases quadratically. Using the above, one
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Table 2.2: Computational complexities of various algorithms. The number of iterations to find the subspaces
are denoted as 7. for CMDA and ¢, for TT-based methods. Cy = 2CK. (r << I, t;,r(r+ N/f — 1) << Cs,
and IN/T >> r0)

Methods | Order of Complexity (O(.))
LDA C, N + PPN
DGTDA 317 + NC IV
CMDA 2t +t.N*CyIN
TTDA C,I*N
2WTTDA (r/2+2)C,IN
3WTTDA (rINB 2 +3)C P73

can eagsily find the optimal number of modes for the projected samples that minimizes storage complexity.
Let the number of modes of X* be denoted by f. The storage complexity of the decomposition is then
O((N - f)r*1 + frl +r/ CK). The optimal storage complexity is achieved by taking the derivative of the

complexity in terms of f and equating it to zero. In this case, the optimal f is given by

A rA—rl
f = round (IOgr (CTH(}"))) s

where round(.) is an operator that rounds to the closest positive integer.

2.4.1 Computational Complexity

For all of the decompositions mentioned except for DGTDA and LDA, the U,s and X* depend on each
other which makes these decompositions iterative. The number of iterations will be denoted as ¢, and ¢, for
CMDA and TT-based methods, respectively. For the sake of simplicity, we also define Cy = 2CK. The total

cost of finding U,,s and XCk Vn, ¢, k, where r << [ is in the order of:
. O(IN [(Cy +tir(r + N = D)V + 1,741 + r21—1)]) for TTDA:
. O(rIN S L 2UNR(Cy+ 1 (r + NJ2 = IV 41,4 + ttrf’l_l]) for ZWTTDA;
. O(rIN% +3IVB[(Cy +t,r(r + NJ3 = D)IVB 1,047 + ttr61‘1]) for SWTTDA.

If convergence criterion is met with a small number of iterations, i.e. #,7(r+N/f—1) << Cg,and IN/f >> 76

for all f, the reduced complexities are as given in Table 2.2.
We can see from Table 2.2 that with increasing number of branches, TT-based methods become more
efficient if the algorithm converges in a few number of iterations. This is especially the case if the ranks of

tensor factors are low as this reduces the dimensionalities of the search space and the search algorithm finds
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a solution to (2.5) faster. When this assumption holds true, the complexity is dominated by the formation
of scatter matrices. Note that the ranks are assumed to be much lower than dimensionalities and number of
modes is assumed to be sufficiently high. When these assumptions do not hold, the complexity of computing
A, might be dominated by terms with higher powers of r. This indicates that TT-based methods are more
effective when the tensors have higher number of modes and when the TT-ranks of the tensor factors are
low. DGTDA has an advantage over all other methods as it is not iterative and the solution for each mode
is not dependent on other modes. On the other hand, the solution of DGTDA is not optimal and there are
no convergence guarantees except when the ranks and initial dimensions are equal to each other, i.e. when

there is no compression.

2.4.2 Convergence

To analyze the convergence of TTDA, we must first establish a lower bound for the objective function of

LDA, as (2.1) is lower bounded by the objective value of (1.23).

Lemma 1. Giventhat A € Ry, i.e. anonnegative real number, the lower bound of tr(UT Sy U)—Atr (U SgU)

is achieved when U € RIln=1 1" sqatisfies the following two conditions, simultaneously:

. The columns of U are in the null space of Sw: u; € null(Sw),Vj € {1,...,r}.

. {uy,up, ..., u,} are the top-r eigenvectors of Sp.

In this case, the minimum of tr(UT SwU) — Atr(UTSgU) = —A Y)I_, 0y, where ;s are the eigenvalues of

Sa.
Proof. Since Sw is positive semi-definite,
0< rrgn tr(UTSwU),

which implies that when the columns of U are in the null space of Sw,i.e. u; € null(Sw),Vj e {1,...,r},
the minimum value will be achieved for the first part of the objective function.

To minimize the trace difference, we need to maximize tr(U T SgU) which is bounded from above as:

.
max tr(UTSgU) < Zl ;.
i=
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tr(UTSgU) is maximized when the columns of U are the top-r eigenvectors of Sg. Therefore, the trace
difference achieves the lower-bound whenu; € null(Sw),Vj € {1,...,r}and {u;,uy, ..., u,} are the top-r

eigenvectors of Sp and this lower-bound is equal to -1 3,7 _, 05. ]

As shown above, the objective function of LDA is lower bounded. Thus, the solution to (2.1) is also
lower-bounded.
Let f(U, Uy, ..., Uy) =tr (UTSU), where U = L(U,; X} - - - X3 Uy) and S is defined as in (1.23). If

the function f is non-increasing with each update of U,s, i.e.

fal Ut Ut 2

fu,u, .U, U, Vi,n € {1,2,...,N},

then we can claim that Algorithm 2.1 converges to a fixed point as ¢t — oo since f(.) is lower-bounded.
In [189], an approach to regulate the step sizes in the search algorithm was introduced to guarantee global
convergence. In this chapter, this approach is used to update U,s. Thus, (2.5) can be optimized globally,
and the objective value is non-increasing. As Multi-Branch extensions utilize TTDA on the update of each

branch, proving the convergence of TTDA is sufficient to prove the convergence of 2WTTDA or 3WTTDA.

2.5 Experiments

The proposed TT based discriminant analysis methods are evaluated in terms of classification accuracy,
storage complexity, training complexity and sample size. We compared our methods® with both linear
supervised tensor learning methods including LDA, DGTDA and CMDA[112]? as well as other Tensor
Train based learning methods such as MPS [18], TTNPE [183]3 and STTM [38]“. The experiments were
conducted on four different data sets: COIL-100, Weizmann Face, Cambridge and UCF-101. For all data
sets and all methods, we evaluate the classification accuracy and training complexity with respect to storage
complexity.

In this chapter, classification accuracy is evaluated using a 1-NN classifier and quantified as Ny, ye / Nyests
where N;,,. is the number of test samples which were assigned the correct label and N, is the total number

of test samples. Normalized storage complexity is quantified as the ratio of the total number of elements in

LOur code is in https://github.com/mrsfgl/mbttda
Zhttps://github.com/laurafroelich/tensor_classification
3https://github.com/wangwenqi 1990/TTNPE.
4https://github.com/ git2cchen/KSTTM
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the learnt tensor factors (U, Vr) and projections (Xf, Ve, k) of training data, Oy, to the size of the original
training data (Y, Ve, k):
Os
CKTIN, 1,

Training complexity is the total runtime in seconds for learning the subspaces. All experiments were repeated
10 times with random selection of the training and test sets and average classification accuracies are reported.

The regularization parameter, A, for each experiment was selected using a validation set composed of all
of the samples in the training set and a small subset of each class from the test set (10 samples for COIL-100,
5 samples for Weizmann, 1 sample for Cambridge, and 10 samples for UCF-101). Utilizing a leave-s-out
approach, where s is the aforementioned subset size, 5 random experiments were conducted. The optimal A
was selected as the value that gave the best average classification accuracy among a range of values from 0.1
to 1000 increasing in a logarithmic scale. CMDA, TTNPE and MPS do not utilize the A parameter while
DGTDA utilizes eigendecomposition to find A [112]. STTM has an outlier fraction parameter which was set

to 0.02 according to the original paper [38].

2.5.1 Data Sets

COIL-100

The dataset consists of 7,200 RGB images of 100 objects of size 128 x 128. Each object has 72 images,
where each image corresponds to a different pose angle ranging from 0O to 360 degrees with increments of 5
degrees [133]. For our experiments, we downsampled the grayscale images of all objects to 64 x 64. Each
sample image was reshaped to create a tensor of size 8§ X 8 X 8 X 8. Reshaping the inputs into higher order
tensors is common practice and was studied in prior work [90, 140, 209, 45, 17]. 20 samples from each class

were selected randomly as training data, i.e. Y € R¥>®x8x8x20x100

, and the remaining 52 samples were used
for testing.
Weizmann Face Database

The dataset includes RGB face images of size 512x 352 belonging to 28 subjects taken from 5 viewpoints,
under 3 illumination conditions, with 3 expressions [188]. For our experiments, each image was grayscaled,
and downsampled to 64 x 44. The images were then reshaped into 5-mode tensors of size 4 X 4 x4 x4 x 11
as in [183]. For each experiment, 20 samples were randomly selected to be the training data, i.e. YV €

R @AXT20x28 “and the remaining 25 samples were used in testing.
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Cambridge Hand-Gesture Database

The dataset consists of 900 image sequences of 9 gesture classes, which are combinations of 3 hand
shapes and 3 motions. For each class, there are 100 image sequences generated by the combinations of 5
illuminations, 10 motions and 2 subjects [91]. Sequences consist of images of size 240 X 320 and sequence
length varies. In our experiments, we used grayscaled versions of the sequences and we downsampled all
sequences to length 30. We also included 2 subjects and 5 illuminations as the fourth mode. Thus, we
have 10 samples for each of the 9 classes from which we randomly select 4 samples as the training set, i.e.
Y € RIA030XI0XI " and the remaining 6 as test set.
UCF-101 Human Action Dataset

UCF-101 is an action recognition dataset [162]. There are 13320 videos of 101 actions, where each
action category might have different number of samples. Each sample is an RGB image sequence with frame
size 240 x 320 x 3. The number of frames differs for each sample. In our experiments, we used grayscaled,
downsampled frames of size 30 x 40. From each class, we extracted 100 samples to balance the class sizes
where each sample consists of 50 frames obtained by uniformly sampling each video sequence. 60 randomly

ie. y c R3O><40><50><60><101

selected samples from each class were used for training, , and the remaining 40

samples were used for testing.

2.5.2 Classification Accuracy

We first evaluate the classification accuracy of the different methods with respect to normalized storage
complexity. The varying levels of storage cost are obtained by varying the ranks, R;s, in the implementation
of the tensor decomposition methods. Varying the truncation parameter 7 € (0, 1], the singular values
smaller than 7 times the largest singular value are eliminated. The remaining singular values are used to
determine the ranks R;s for both TT-based and TD-based methods. For TT-based methods, the ranks are
selected using TT-decomposition proposed in [140], while for TD-based methods truncated HOSVD was
used. We also limit the upper bounds of the ranks to R,, < I, to reduce the memory cost associated with
storing A,,. With this limitation, the maximum dimension of projected samples x* becomes Iy which is a
fraction of the original sample size || f\:’ i

In Fig. 2.3, we present comparisons of BTT based eigenpair computation algorithm [56] with the

proposed method. The experiments were conducted on COIL-100 data set. BTT performs similarly to
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Figure 2.3: Comparisons with a BTT based Ritz pair computation algorithm. a) Classification accuracy and

b) Training time with respect to normalized storage cost.
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Figure 2.4: Classification accuracy vs. Normalized storage cost of the different methods for: a) COIL-100,
b) Weizmann Face, c¢) Cambridge Hand Gesture and d) UCF-101. All TD based methods are denoted using
’x’, TT based methods are denoted using ’+’ and proposed methods are denoted using **’. STTM and LDA
are denoted using *A’ and ’0’, respectively.

TTDA with slightly lower accuracy and higher training time for increasing storage complexity. As BTT
has adaptive ranks, the factor sizes increase more compared to TTDA which results in a much higher
computational cost. Although the scatter tensor is approximated using a TT structure, BTT does not provide
better computational complexity than TTDA as the approximation itself has O (") complexity. Multi-
branch extensions of TTDA outperform BTT both in terms of classification accuracy and computational
complexity.

Figure 2.4a illustrates the classification accuracy of the different methods with respect to normalized
storage complexity for COIL-100 data set. For this particular dataset, we implemented all of the methods
mentioned above. It can be seen that the proposed discriminant analysis framework in its original form,
TTDA, gives the highest accuracy results followed by TTNPE. However, these two methods only operate
at very low storage complexities since the TT-ranks of tensor factors are constrained to be smaller than the
corresponding mode’s input dimensions. We also implemented STTM, which does not provide compression

classifiers

rates similar to other TT-based methods. This is due to the fact that STTM needs to learn C(g_l)
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Figure 2.5: Training complexity vs. Normalized storage cost of the different methods for: a) COIL-100, b)
Weizmann Face, ¢) Cambridge Hand Gesture, and d) UCF-101.

with TT structure. Moreover, these methods have very high computational complexity as will be shown in
Section 2.5.3. For this reason, they will not be included in the comparisons for the other datasets. For a wide
range of storage complexities, MPS and 2WTTDA perform the best and have similar accuracy. It can also
be seen that the storage costs of MPS and 2WTTDA stop increasing after some point due to rank constraints.
This is in line with the theoretical storage complexity analysis presented in Section 2.4. Tucker based
methods, such as CMDA and DGTDA, along with the original vector based LDA have lower classification
accuracy.

Figure 2.4b similarly illustrates the classification accuracy of the different methods on the Weizmann
Face Database. For all storage complexities, the proposed 2WTTDA and 3WTTDA perform better than the
other methods, including TT based methods such as MPS.

Figure 2.4c illustrates the classification accuracy for the Cambridge hand gesture database. In this case,
3WTTDA performs the best for most storage costs. As the number of samples for training, validation
and testing is very low for Cambridge dataset, the classification accuracy fluctuates with respect to the

dimensionality of the features at normalized storage cost of 0.02. Similar fluctuations can also be seen in the

33



results of [183].

Finally, we tested the proposed methods on a more realistic, large sized dataset, UCF-101. For this
dataset, TT-based methods perform better than the Tucker based methods. In particular, 2WTTDA performs
very close to MPS at low storage costs, whereas 3WTTDA performs well for a range of normalized storage
costs and provides the highest accuracy overall.

Even though our methods outperform MPS for most datasets, the classification accuracies get close for
UCF-101 and COIL-100. This is due to the high number of classes in these datasets. As the number of
classes increases, the number of scatter matrices that needs to be estimated also increases which results in a
larger bias given limited number of training samples. This improved performance of MPS for datasets with
large number of classes is also observed when MPS is compared to CMDA. Therefore, the reason that MPS
and the proposed methods perform similarly is a limitation of discriminant analysis rather than the proposed

tensor network structure.

2.5.3 Training Complexity

In order to compute the training complexity, for TT-based methods, each set of tensor factors is optimized
until the change in the normalized difference between consecutive tensor factors is less than 0.1 or 200
iterations is completed. After updating the factors in a branch, no further optimizations are done on that
branch in each iteration. CMDA iteratively optimizes the subspaces for a given number of iterations (which
is set to 20 to increase the speed in our experiments) or until the change in the normalized difference between
consecutive subspaces is less than 0.1.

Figs. 2.5a, 2.5b, 2.5¢, 2.5d illustrate the training complexity of the different methods with respect to
normalized storage cost for the four different datasets. In particular, Figure 2.5a illustrates the training
complexity of all the methods including TTNPE, TTDA and STTM for COIL-100. It can be seen that STTM
has the highest computational complexity among all of the tested methods. This is due to the fact that for a
100-class classification problem, STTM implements (100)(99)/2 one vs. one binary classifiers, increasing
the computational complexity. Similarly, TTNPE has high computational complexity as it tries to learn the
manifold projections which involves eigendecomposition of the embedded graph. Among the remaining
methods, LDA has the highest computational complexity as it is based on learning from vectorized samples

which increases the dimensionality of the covariance matrices. For the tensor based methods, the proposed
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2WTTDA and 3WTTDA have the lowest computational complexity followed by MPS and DGTDA. In
particular, for large datasets like UCF-101 the difference in computational complexity between our methods

and existing TT-based methods such as MPS is more than a factor of 102

Table 2.3: Classification accuracy (top) and training time (bottom) with standard deviation for various
methods and datasets.

Accuracy (%) ‘ 3WTTDA 2WTTDA MPS[18] CMDA[112] DGTDA[112]

COIL-100 956+04  948+05 942+02 863+07  76.6+0.9
Weizmann 93.6+2 976+12 87.5+23 964+1.03  69.9+18
Cambridge 982+17 89.1+£167 562+98  95+28 35.4+8.7
UCF-101 686+08 67.7+09 679+06 67.7+£08 57327
(s) |

COIL-100 0.09+£0.005 024+006 14+013 122+66  0.7+0.06
Weizmann 005+£0.02 009+002 0.13£001 26+03  0.16+0.02
Cambridge 011001 17+15 207+025 126+03  0.7+0.04
UCF-101 0.67+0.02 0853+0.13 564+1.9 4135+24.1 353+29

2.54 Convergence

In this section, we present an empirical study of convergence for TTDA in Figure 2.6 where we report the
objective value of TTDA, i.e. the expression inside argmin operator in (2.5), with random initialization of
projection tensors. This figure illustrates the convergence of the TTDA algorithm, which is at the core of
both 2WTTDA and 3WTTDA, on COIL-100 dataset. It can be seen that even for random initializations of
the tensor factors, the algorithm converges in a small number of steps. The convergence rates for 2WTTDA
and 3WTTDA are faster than that of TTDA as they update smaller sized projection tensors as shown in

Section 2.4.

2.5.5 Effect of Sample Size on Accuracy

We also evaluated the effect of training sample size on classification accuracy for Weizmann Dataset. In
Figure 2.7, we illustrate the classification accuracy with respect to training sample size for different methods.
It can be seen that 3WTTDA provides a high classification accuracy even for small training datasets, i.e., for
15 training samples it provides an accuracy of 96%. This is followed by CMDA and 2WTTDA. It should
also be noted that DGTDA is the most sensitive to sample size as it cannot even achieve the local optima and

more data allows it to learn better classifiers.

35



104§

10%: 3

Objective Value

0 10 20 30 40 50 60 70 80 920 100
Number of Iterations

Figure 2.6: Convergence curve for TTDA on COIL-100. Objective value vs. the number of iterations is
shown.

1 R
0.9 LRI PFFPTYs ' CTTLT PPRPRR = FEPPLEITILILD
- 7/ Srearennee ;"*'H"-'—'"— e Salaienier, SRR
) u.o‘-_'_-.._-_--* i o
s 2 S ST
g b
[v] e
§0.7 “““““
S e +
PO PPt LA
§0.6pc
&
]
805
1Y)
0.4
03 |

L L
10 15 20 25 30
Number of Training Samples

Figure 2.7: Comparison of classification accuracy vs. training sample size for Weizmann Face Dataset for
different methods.

2.5.6 Summary of Experimental Results

In Table 2.3, we summarize the performance of the different algorithms for the four different datasets
considered in this chapter. In the left half of this table, we report the classification accuracy (mean =+ std) of
the different methods for a fixed normalized storage cost of about 2.1072 for COIL-100, 6.1073 for Weizmann
Face, 2.10~* for Cambridge Hand Gesture and 1073 for UCF-101 datasets. At the given compression rates,
for all datasets the proposed 3WTTDA and 2WTTDA perform better than the other tensor based methods.
In some cases, the improvement in classification accuracy is significant, e.g. for Weizmann and Cambridge
data sets. These results show that the proposed method achieves the best trade-off, i.e. between normalized
storage complexity and classification accuracy.

Similarly, the right half of Table 2.3 summarizes the average training complexity for the different
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methods for the same normalized storage cost. From this Table, it can be seen that 3WTTDA is the
most computationally efficient method for all datasets. This is followed by 2WTTDA. The difference
in computational time becomes more significant as the size of the dataset increases, e.g. for UCF-101.
Therefore, even if the other methods perform well for some of the datasets, the proposed methods provide

higher accuracy at a computational complexity reduced by a factor of 107,

2.6 Graph Regularized Tensor Train Decomposition

The geometric relationship between data samples has been shown to be important for learning low-
dimensional structures from high-dimensional data [171, 183]. Recently, motivated by manifold learning,
dimensionality reduction of tensor objects has been formulated to incorporate the geometric structure [115].
The goal is to learn a low dimensional representation for tensor objects that incorporates the geometric
structure while maintaining a low reconstruction error in the tensor decomposition. This idea of manifold
learning for tensors has been mostly implemented for the Tucker method, including Graph Laplacian Tucker
Decomposition (GLTD) [82] and nonnegative Tucker factorization (NTF). However, this line of work suffers
from the limitations of Tucker decomposition mentioned early in the chapter [45].

Earlier in this chapter, we proposed a TT model, called multi-branch Tensor Train, such that the features
can be matrices and higher-order tensors. In this way, the computational efficiency could be improved.
Utilizing this structure, specifically the two-way approach, we propose a graph-regularized TT decomposition

for unsupervised dimensionality reduction.

2.6.1 Problem Statement

Our goal is to find a TT projection such that the geometric structure of the samples Y, € R >IN g
preserved, i.e. the distance between the samples, Y, should be similar to that between the projections Xj,

while the reconstruction error of the low-rank TT decomposition is minimized. This goal can be formulated
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through the following cost function as:

Jo{U}, X) =

S
1 1 1 1 1 1 2
Z”ys—ﬂl X3~~‘X37/[kX3Xs xz([/(kﬂ X3‘--X3(LIN||F

s S
/1
+3 20 2 X = Xollpwaw, L(U)TL(Uy) =1, ¥
s=1 s'=1
’qt
where {1} denotes the set of tensor factors U,,Vn € {1,...,N}, X € R"**SX7&+1 s the tensor whose slices

are X and wy is the similarity between tensor samples defined by:

1, if Y;eNe(Yy) or Yy e Ni(Yy)
Wy = , (2.9)

0, otherwise

where N (Y;) is the k-nearest neighborhood of Y.

The objective function can equivalently be expressed as:
So U}, X) = lImeat (V) = Uy b -+ X} U X U xb - Un I+ e (X <L @) %173 X).
L(U,) "L(U,) =1,,, forn < k and R(U,)R(U,)" =1, forn > k,
where 7,1 (Y) € RIXXIxSXlnxXIN ig the permuted version of Y such that the last mode is moved to

the (k + 1)th mode and all modes larger than k are shifted by one mode, W € R5*S is the adjacency matrix

and ® = D — W € R5*S is the graph Laplacian where D is a diagonal degree matrix with, ds = Zf,: | Wss'-

2.6.2 Optimization

The goal of obtaining low-rank tensor train projections that preserve the data geometry can be achieved by

minimizing the objective function as follows:

argmin fo ({U}, X), s.t. L(U,)"L(U,) =1,,, forn <k, (2.10)
{ur.x

and R(U,)R(U,)" =1,,, forn > k.

As we want our tensor factors to be orthogonal, the solutions lie in the Stiefel manifold S,, ,i.e. L(U,) € S,
forn < k and R(U,)" € S, for n > k. Although the function fo(.) is convex, the optimization problem is

nonconvex due to the manifold constraints on U,,s.
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The solution to the optimization problem can be obtained by Alternating Direction Method of Multipliers
(ADMM). In order to solve the optimization problem we define {V}, as the set of auxiliary variables

V,,¥n € {1,..., N} and rewrite the objective function as:

argmin  fo ({V},X) subjectto U, =V, ,Vn
{Ur{vh)x

L(U,) € S,,Vn < kand R(U,)" € S,,,V¥n > k.
The partial augmented Lagrangian is given by:

N N
LUUYAVELXAZY) = foUVEX) - le X3 Va = U) + 23 Vo= Uallf 21D

n=1
where Z,,s are the Lagrange multipliers and vy is the penalty parameter.
As each tensor factor is independent from the others, we update the variables for each mode n using the

corresponding part of the augmented Lagrangian:
Lo (Un.Vas Zo) = fo(Va) = Zu X33 (V= U) + S1Ve = s 2.12)

where fo (V) denotes the objective function where all variables other than V,, are fixed. The solution for

each variable at iteration 7 + 1 can then be found using a step-by-step approach as:

V* = argmin £, (UL, Vo, ZL), (2.13)
Va

o | Ln (U VL ZE) L(Un) €Sy forn <k,
n = argmin

U L (U, VI, Z) RU,)T €S, forn >k,

Z = Zn -y (Vi -, (2.14)
Once V,,, U, Z, are updated for all n, samples X are computed using:
X'*! = argmin £ w1y vty x, 2. 2.15)
Solution for V,: For n < k, the solution for V/*! can be written explicitly as:
Vit = angmin e () = V{7 R e VXV )V I

~Zh X2 (V- Ul + %II(Vn —U|2. (2.16)

39



We can equivalently convert this equation into matrix form as:
r+l _ . 2 T t Y NI
Vit = argmin | HL(Va) P = Tu(mien (D) = 0(L(Z) TL(Va = 1)) + ZIL(Va) — LU 7,
Va

2.17)

where H = [I;, ® VIH |, P=R(V/, X} -+ X} VI X} X' X} -+ x5 V). The analytical solution is found

by taking the derivative with respect to L(V},) and setting it to zero:

2HT (HL((V,f” )P — G |PT —L(Z.) + yL(V/*") — yL(U!) = 0,

T3(V/*') = (2(PPT @ HTH) +y1,,_1,) " (T3(yU. + Z) +2To(H GPT)), (2.18)

where G = T, (741 (Y)). Note that the inverse in the solution will always exist given y > 0 as the inverse
of a sum of a Hermitian matrix and an identity matrix always exists.
When n > k, following (2.17) the solution for V,, can be written in the same manner but with different

H,Gand P,where H=V. . P= [V ®I,|and G = Tpy(m41(Y)).

n—-1°

Solution for U,,: For n < k, we can solve (2.12) for U,, using:

U = argmin —tr(L(ZH) LV = 1)) + ZILVE) - Lt 11
UpL(Uy) €S, 2

1
= argmin [L(V/) - —L(Z)) - L(U)II%, (2.19)
U, L(U,)ES, Y

which is found by applying a singular value decomposition to L(V/*!) — %L(Z,’l). When n > k, the optimal
solution is similarly found by applying SVD to R(V/*!) — %R(Z{l).
Solution for X: Let m5(X) € R"**"%+1%S be the permutation of X, (2.15) can equivalently be rewritten in

matrix form as:

Hv;;” & V| L (X)) - Ty (y)HZF + 2tr (L(72(X))@L(m2(X))7) . (2.20)

argmin
X
The solution for X’*! does not have any constraints, thus it is solved analytically by setting the derivative of

(2.20) to zero:

2HT (HL (7 (X™") = G) + 2AL(m2 (X))@ = 0,

HTHL (7 (X™) + AL(7 (X))@ = H™ G, (2.21)

where H = V! kT ® V;’;(l and G = Ty (Y). (2.21) is a Sylvester equation which can be solved efficiently
[14]. Similar to the case for V,, the solution to this problem always exists.

Solution for Z,: Finally, we update the Lagrange multipliers Z}, using (2.14).

40



Algorithm 2.3: Graph Regularized Tensor Train-ADMM(GRTT-ADMM)

Input: Input tensors Y, € RI*2XXIN where s € {1,...,S}, initial tensor factors {U'},n € {1,...,N},
k,A,r1,...,rn, Looplter, ConvT hresh
Output: U,,ne {1,...,N},and X5, Vs
AV — {U'y.
2: {.Z]} «— 0.

3: while ¢ < Looplter or ¢ > ConvT hres do

4: forn=1: Ndo

5: Find V!*! using (2.18).

6: Find ULt using SVD to solve (2.19).
7: Find Z/*! using (2.14).

8: end for

9: Find X’*! using (2.21).
10: e LyN V=Vl

N &n=l Vi3
11: t=t+1.
12: end while

2.6.3 Convergence

Convergence of ADMM is guaranteed for convex functions but there is no theoretical proof of the convergence
of ADMM for nonconvex functions. Recent research has provided some theoretical guarantees for the
convergence of ADMM for a class of nonconvex problems under some conditions [187].

Our objective function is nonconvex due to unitary constraints. In [187], it has been shown that this type
of nonconvex optimization problems, i.e. convex optimization on a Stiefel manifold, converge under some
conditions. We show that these conditions hold for each optimization problem corresponding to mode n.
The gradient of fp with respect to V,, is Lipschitz continuous with Lipschitz constant L > ||PPT ® H" H||»,
which fulfills the conditions given in [187]. Thus, £,, convergences to a set of solutions V!, U}, Z!, given
thaty > 2L +1. The solution for X is found analytically. As the iterative solutions for each variable converge
and the optimization function is nonnegative, i.e. bounded from below, the algorithm converges to a local

minimum.

2.7 Experiments

The proposed method is evaluated for clustering and compared to existing tensor clustering methods including
k-means, MPS [18], TTNPE [183] and GLTD [82] for Weizmann Face Database and MNIST Dataset.

Clustering quality is quantified by Normalized Mutual Information (NMI). Average accuracy with respect to

both storage complexity and computation time over 20 experiments are reported for all methods.
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In the following experiments, the storage complexity is quantified as the size of the tensor factors (U,,, Vn)
and projections (Xj, Vs). The varying levels of storage cost are obtained by varying r, s in the implementation
of the tensor decomposition methods. Using varying levels of a truncation parameter T € (0, 1], the singular
values smaller than 7 times the largest singular value are discarded. The rest are used to determine ranks
ry for both TT based and TD based methods. For GRTT and TTNPE, the ranks are selected using TT
decomposition proposed in [140], while for GLTD truncated HOSVD was used. Computational complexity
is quantified as the time it takes to learn the tensor factors. In order to compute the run time, for TT
based methods, each set of tensor factors is optimized until the change in the normalized difference between
consecutive tensor factors is less than 0.01 or 50 iterations are completed.

The regularization parameter, A, for each experiment was selected using a validation set composed of a
small batch of samples not included in the experiments. 5 random experiments were conducted and optimal
A was selected as the value that gave the best average NMI for a range of A values from 0.001 to 1000
increasing in a logarithmic scale. The similarity graphs were constructed using k-nearest neighbor method

with k = log(S) following [177].

2.71 MNIST

MNIST is a database of grayscale handwritten digit images where each image is of size 28 x 28. We
transformed each of the images to a 4 X 7 X 4 X 7 tensor. Reshaping the inputs into higher order tensors is
common practice and was employed in prior work [90, 140, 209, 45, 17]. In our experiments, we used a
subset of 500 images with 50 images from each class. 50 samples with 5 samples from each class are used

as validation set to determine A.

Clustering Qualities for MNIST Data (o] jonal Cc lexities for MNIST Data
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Figure 2.8: (a) Normalized Mutual Information vs. Storage Complexity of different methods for MNIST
dataset. (b) Computation Time vs. Storage Complexity of different methods for MNIST dataset.
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In Figure 2.8a, we can see that at all storage complexity levels, our approach gives the best clustering
result in terms of NMI. The dotted purple line represents the accuracy of k-means clustering on original
tensor data. Even though the performance of TTNPE is the closest to our method, it is computationally
inefficient. In Figure 2.8b, we can see that our approach is faster than GLTD and TTNPE at all storage

complexities. MPS is the most efficient in terms of speed but it provides poor clustering quality.

2.7.2 COIL

The dataset consists of 7,200 RGB images of 100 objects of size 128 x 128. Each object has 72 images,
where each image corresponds to a different pose angle ranging from 0 to 360 degrees with increments of 5
degrees [133]. We used a subset of 20 classes and 32 randomly selected, downsampled, grayscale samples
from each class. Each image was converted to an 8 X 8 X 8 X 8§ tensor. 8§ samples from each class are used
as validation set.
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Figure 2.9: (a) Normalized Mutual Information vs Storage Complexity of different methods for COIL dataset.
(b) Computation Time vs Storage Complexity of different methods for COIL dataset.

From Figure 2.9a, we can see that the proposed method provides the best clustering results compared to
all other methods. The results for GLTD seem to deteriorate with increasing ranks, which is a result of using
orthonormal tensor factors. TTNPE gives results closest to the proposed method but it is computationally
inefficient and gets very slow with increasing r,s. From Figure 2.9b, we can see that MPS provides best
results in terms of run time but the proposed method has a similar computational complexity while providing

better clustering accuracy.
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2.8 Conclusions

In this chapter, we propose a new Tensor Train implementation structure and two associated learning tasks.
In the first part of the chapter, i.e. Tensor Train Disciminant Analysis, we introduce a novel approach
for Tensor Train based discriminant analysis for tensor object classification. The proposed approach first
formulated linear discriminant analysis such that the learnt subspaces have a TT structure. The resulting
framework, TTDA, reduces storage complexity at the expense of high computational complexity. This
increase in computational complexity is then addressed by reshaping the projection vector into matrices and
third-order tensors, resulting in 2WTTDA and 3WTTDA, respectively. A theoretical analysis of storage and
computational complexity illustrated the tradeoff between these two quantities and suggest a way to select
the optimal number of modes in the reshaping of TT structure. The proposed methods were compared with
the state-of-the-art TT based subspace learning methods as well as tensor based discriminant analysis for
four datasets. While providing reduced storage and computational costs, the proposed methods also yield
higher or similar classification accuracy compared to state-of-the art tensor based learning methods such as
CMDA, STTM, TTNPE and MPS.

In the second part of the chapter, i.e. Graph Regularized Tensor Train Decomposition we proposed a
unsupervised graph regularized tensor train decomposition for dimensionality reduction. To the best of our
knowledge, this is the first tensor train based dimensionality reduction method that incorporates manifold
information through graph regularization. The proposed method also utilizes a multi-branch structure to
implement tensor train decomposition which increases the computational efficiency. An ADMM based
algorithm is proposed to solve the resulting optimization problem. The proposed method was compared to
GLTD, TTNPE and MPS for unsupervised learning in two different datasets.

The proposed multi-branch structure can also be extended to other unsupervised methods such as
dictionary learning, subspace learning, denoising, data recovery, and compression applications. The structure
can also be optimized by permuting the modes in a way that the dimensions are better balanced than the

original order.

44



CHAPTER 3

TENSOR METHODS FOR ANOMALY DETECTION ON SPATIOTEMPORAL DATA

3.1 Introduction

Large volumes of spatiotemporal data are ubiquitous in a diverse range of applications including climate
science, social sciences, neuroscience, epidemiology [20], transportation systems [55], mobile health, and
Earth sciences [207]. One emerging application of interest in spatiotemporal data is anomaly detection. De-
tecting anomalies from these large data volumes is important for identifying interesting but rare phenomena,
e.g. traffic congestion or irregular crowd movement in urban areas, or hot-spots for monitoring outbreaks in
infectious diseases. Traditionally, the problem of anomaly detection has been approached mainly through
statistical and machine learning techniques [34, 59, 79]. However, these techniques are not as effective on
spatiotemporal data as anomalies are highly correlated across time and space, they can no longer be modeled
as i.i.d.

The definition of anomaly and the suitability of a particular method is determined by the application. In
this chapter, we focus on urban anomaly detection [206, 205, 117, 118, 203], where anomalies correspond to
incidental events that occur rarely, such as irregularity in traffic volume, unexpected crowds, etc. Urban data
are spatiotemporal data collected by mobile devices or distributed sensors in cities and are usually associated
with timestamps and location tags. Detecting and predicting urban anomalies are of great importance to
policymakers and governments for understanding city-scale human mobility and activity patterns, inferring
land usage and region functions and discovering traffic problems [206, 31].

Urban anomalies are usually modeled as group anomalies within spatiotemporal data. This type of
anomalies exhibit themselves as spatially contiguous groups of locations that show anomalous values con-
sistently for a short duration of time stamps. Early approaches to detecting these anomalies decompose the
anomaly detection problem by first treating the spatial and temporal properties of the outliers independently
using univariate vector modeling frameworks, and then merging together in a post-processing step [58, 191].
Some examples are dynamic linear models (DLMs) [108] including time-varying autoregressive (TVAR) [24,
25] and switching Kalman filtering/smoothing (SKF/SKS) [131, 134]. However, as the number of sensors

increases, scalability becomes a critical issue and these methods become inefficient and unreliable [59]. For
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these reasons, one natural approach to address ST anomaly detection has been to use tensor decomposition
to capture the multiway structure of the data.

While there has been a growing number of papers in low-rank tensor models for anomaly detection [60,
186, 193, 185, 205, 117], most of the existing methods are not particularly suited to the complex structure of
anomalies in urban traffic data and the unique challenges associated with them. These challenges include:
1) scarcity of anomalies; 2) the contextual dependency of what constitutes an anomaly, i.e., the criteria
for anomaly may vary for different regions and time windows due to external influences such as weather
patterns; 3) long-term periodicity across time, e.g., one day or one week and 4) strong short-term temporal
correlations.

In this chapter, we address these challenges by proposing temporally regularized, locally consistent,
robust low-rank plus sparse tensor models to decompose the urban traffic data into normal and anomalous

components. The key contributions of the proposed methods are:

* Modeling Temporal Persistence: The traditional low-rank plus sparse tensor decomposition model
is modified to account for the characteristics of urban traffic data. As anomalies tend to last for periods
of time, i.e., have strong short-term dependencies, we impose temporal smoothness on the sparse part
of the tensor through total variation regularization. This regularization ensures that instantaneous
changes in the data, which may be due to errors in sensing, are not mistaken for actual anomalies.
This formulation leads to our first algorithm; low-rank plus temporally smooth sparse (LOSS) tensor

decomposition.

* Incorporating Local Structure: We introduce additional structure to the solution of LOSS by
enforcing the low-rank tensor corresponding to normal activity to be smooth on manifolds across each
mode. These smoothness terms are added to LOSS as graph regularization across each mode yielding
GLOSS. While the low-rank structure in LOSS captures the global structure, GLOSS further reduces
redundancy in the representation and incorporates the local geometric structure. This new framework
exploits the joint structures and correlations across the modes to more accurately model and process

ST signals.

» Using Local Structure for Efficiency: We reduce the computational cost incurred by the nuclear

norm minimization in GLOSS and LOSS by utilizing the graph smoothness term to estimate normal
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activity. This allows an efficient algorithm that is still effective in extracting anomalies with some mild

constraints on data.

* Robustness to Missing and Heterogenous Data: Our optimization framework is formulated in
a flexible manner such that it solves a tensor completion problem in conjunction with anomaly
detection. This framework takes into account the missing data and fits a structure to the observed
part when estimating the underlying structure. Thus, it provides robustness against missing data.
The heterogeneity of traffic data is taken into account through the use of weighted nuclear norm

minimization to emphasize the difference in low-rank structure across modes.

The rest of the chapter is organized as follows. In Section, 3.2, we review some of the related work in
spatiotemporal anomaly detection, in particular tensor based anomaly detection methods. In Section 3.3, we
formulate the optimization problems of LOSS and GLOSS, propose ADMM based solutions and analyze
the computational complexity of these solutions. In Section 3.4, we formulate the optimization problem of
LOGSS, propose an ADMM based solution and analyze the computational complexity. In Section 3.5 we
provide an analysis of convergence of all proposed algorithms. In Section 3.6, we explain how the anomaly
scores for each element in the data is generated. In Section 3.7, we describe the experimental settings both
with synthetic and real data and compare the proposed methods with baseline anomaly detection methods
as well as other tensor based methods. Finally, we conclude the chapter in Section 3.8, by discussing the

proposed algorithms, experimental results and future work.

3.2 Related Work

Anomaly detection in spatiotemporal data is usually studied under three categories: point anomalies; tra-
jectory anomalies and group anomalies. Point anomalies are defined as spatiotemporal outliers that break
the natural ST autocorrelation structure of the normal points. Most ST point anomaly detection algorithms
such as ST-DBSCAN [100] assume homogeneity in neighborhood properties across space and time, which
can be violated in the presence of ST heterogeneity. Trajectory anomalies are usually detected by computing
pairwise similarities among trajectories and identifying trajectories that are spatially distant from the others
[105]. Finally, group anomalies appear in ST data as spatially contiguous groups of locations that show
anomalous values consistently for a short duration of time stamps. Most approaches for detecting group

anomalies decompose the anomaly detection problem by first treating the spatial and temporal properties
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of the outliers independently, and then merging together in a post-processing step [58, 191]. However, as
the number of sensors increases, scalability becomes a critical issue and these methods become unreliable.
For these reasons, one natural approach to address ST group anomaly detection has been to use tensor
decomposition.

Low-rank tensor decomposition and completion have been proposed as suitable approaches to anomaly
detection in spatiotemporal data as these methods are a natural extension of spectral anomaly detection
techniques to multi-way data [59, 113, 68, 207, 39, 118, 117, 193]. These models project the original
spatiotemporal data into a low-dimensional latent space, in which the normal activity is represented with
better spatial and temporal resolution. The learned features, i.e., factor matrices or core tensors, are then
used to detect anomalies by monitoring the reconstruction error at each time point [144, 143, 166, 193]
or by applying well-known statistical tests to the extracted multivariate features [60, 207]. For example,
Zhang et al. [207] proposed a tensor-based method to detect targets in hyperspectral imaging data with both
spectral and spatial anomaly characteristics. Shi er al. [158] proposed an incremental tensor decomposition
algorithm for online anomaly detection. In [60], a hybrid model is constructed from a topology tensor and
a flow tensor and Tucker decomposition with an adjustable core size is used to detect anomalies. Xu et al.
[193] proposed a sliding-window tensor factorization to detect anomalies. Wang et al. [185] expanded the
traditional Tucker decomposition in a probabilistic manner to detect abnormal activity behaviors.

Although these low-rank tensor models are powerful in identifying abnormal traffic activity, they have
multiple shortcomings. First, they rely on well-known factorization models such as Tucker [60, 207, 193]
and CP [117]. These methods obtain a low-dimensional projection of the data without taking the particular
structure of anomalies, i.e., sparsity, into account. The proposed method incorporates the sparsity of
anomalies into the model by assuming that the anomalies lie in the sparse part of the tensor rather than
in the low-rank part. Second, prior work on higher order robust principal component analysis (HORPCA)
within the framework of anomaly detection [113, 68] does not ensure temporal smoothness of the detected
anomalies. However, in urban data, anomalies typically last for some time and are not instantaneous.
Recently, temporally regularized matrix factorization models [149, 50, 200] and their extensions to tensors
[199, 179, 184, 88] have been implemented to capture the temporal dynamics. While the smoothness term
included in these papers is very similar to ours, in these papers the smoothness is enforced on the factor
matrices corresponding to the temporal mode while in our approach temporal regularization is applied

directly to the sparse tensor.

48



Finally, the existing tensor based anomaly detection methods are limited to modeling anomalies that lie
in linear subspaces. The proposed method utilizes a simultaneously structured model [84] for robust tensor
decomposition. This model structures the low-rank tensor by the proximities within each mode and forces
the solution to be smooth on manifolds constructed from each mode. This goal is achieved by adding graph
regularization across each mode of the tensor. Although graph regularized tensor decomposition has been
used before [115, 135, 82, 148, 13, 180, 192, 51], it is usually with respect to one mode of the tensor and it
was not utilized for anomaly detection in urban traffic data. Yet, for many tensors, correlations exist across
all modalities. Several recent papers [67, 84, 156, 135, 155, 128, 127] exploit this coupled relationship to
co-organize matrices and infer underlying row and column embeddings. The methods GLOSS and LOGSS
in this chapter are direct extensions of this work to tensors where we consider graph regularization across all

modes to capture the coupled correlation structure in spatiotemporal data.

3.3 Robust Low-Rank Tensor Decomposition for Anomaly Detection

In the following discussions, we model spatiotemporal data as a four mode tensor Y € RI>*12xIX1s  The first
mode corresponds to hours in a day. The second mode corresponds to the days of a week as urban traffic
activity shows highly similar patterns on the same days of different weeks. The third mode corresponds to
the different weeks and the last mode corresponds to the spatial locations, such as stations for metro data,

sensors for traffic data or zones for other urban data.

3.3.1 Problem Statement

Assuming that anomalies are rare events, our goal is to decompose Y into a low-rank part, £, that corresponds
to normal activity and a sparse part, S, that corresponds to the anomalies. This model relies on the assumption
that normal activity can be embedded into a lower dimensional subspace while anomalies are outliers. We
also take into account the existence of missing elements in the data, i.e., the observed data is Pg[Y]. This

goal can be formulated as:
Igig 1Ll + S, st Pa[L+S] =PalY], (3.1

where A is the regularization parameter for sparsity.

Since urban anomalies tend to be temporally continuous, i.e., smooth in the first mode, this assumption
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can be incorporated into the above formulation as:
min [ L[| + ISl + vl <1 Ally s.t. Pol L +S] = PalY], (3.2)

where 7 is the regularization parameter for temporal smoothness and ||S X; A||; quantifies the sparsity of

the projection of the tensor S onto the discrete-time differentiation operator along the first mode where A is

defined as:
1 -1 0 0
0o 1 -1 0
A=.. .o oo (3.3)
0 0 1 -1
-r 0 ... 0 1]

It is common to incorporate the relationships among data points as auxiliary information in addition
to the low-rank assumption to improve the quality of tensor decomposition and to capture the local data
structure [132, 164]. This approach, also known as manifold learning, is an effective dimensionality
reduction technique leveraging geometric information. The intuitive idea behind manifold learning is that
if two objects are close in the intrinsic geometry of data manifold, they should be close to each other after
dimensionality reduction. For tensors, this usually reduces to forcing two similar objects to behave similarly
in the projected low-dimensional space through a graph Laplacian term. In this section, since we are trying
to learn anomalies from a single tensor, we do not have tensor samples and their projections. Instead, we
preserve the relationships between each mode unfolding of the tensor data as each mode corresponds to a
different attribute of the data.This goal can be achieved through graph regularization across each mode as

follows:

I, 1,

4
. 0
min | £ + 5 ZZZ 1L, = Low i lEwi + AUSTh+
':#

=
S

n=1 i=

YIS x1 Ally, sit. PolL+S8]=PaolY],

where 6 is the weight parameter for graph regularization.

The above optimization problem can equivalently be rewritten using trace norm to represent the graph
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regularization and total variation (TV) norm across the temporal mode to describe temporal smoothness as:
min [ ] + 0 Z tr ( Ty @ L) + US|+

y Z I8t iyiillrv.  PalL+S]=PalY], (3.4)

17,13,14
where ||.||rv denotes the total variation norm. The solution to the optimization problems (3.2) and (3.4)
are referred to as LOw-rank plus temporally Smooth Sparse (LOSS) decomposition, and Graph regularized

LOw-rank plus temporally Smooth Sparse (GLOSS) decomposition, respectively.

3.3.2 Optimization

The proposed objective function is convex. In prior work, ADMM has been shown to be effective at solving
similar optimization problems in an iterative fashion [70, 7]. Thus, we follow a similar approach for solving
the optimization problem given in (3.4). To separate the minimization of TV, £; norm and graph regularization
from each other, we introduce auxiliary variables Z, W, {2} := {2', £2, 83, 2%}, {6} := {6, 62, 6>, G*}
such that the optimization problem becomes:

4
D (wall€p Il + 0g(6",0M)) + 4] Sll1+

n=1

min
L,{8},{6},8,Z,W
YII<Zlh, st. W=8, Z=WxA,

PolL+S]=PalVY],&"=L,6" = L,ne{l,2,3,4}, (3.5)

where g(®",®") = tr ( @?n)Td)”@’zn)) is the graph regularization term for each auxiliary variable ®". To

solve the above optimization problem, we propose using ADMM with partial augmented Lagrangian:

4
D (wall€l 1+ 02(6", @) + AUSIl + ¥ Z I+

n=1

Plipal £ +8 - Y - Tl + Znﬁ" LT3

Boiw x - Z ~Tulfr

B s
n n 2
7;n£—® T3+
s - w -yl (.6

where ', I7,17%,T4,T's € RIXELXIXI gre the Lagrange multipliers.
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1. £ update: The low-rank variable £ can be updated using:

L = argmin’%HPg[L +S8'-Y —F’1]||2F+
L

S (B B3
> (jnﬁ"’f - LT3+ 5L - 6" T (3)
n=1
which has the analytical solution:
Pa [B1T1 + 272 + B3 T3]
Pol L] = , 3.8
ol L] Bi+4(B2+ B3) G:9
Paor [B2T2 + B3T3]

t+17 _
T/ G

where 77 =Y - S" + T, 7> = oo ent — )" and 73 = PO ULy +I27

2. £" update: The variables £" can be updated using:

B

S e - L7 =T, (3.10)

@1 = argminy, |27, [l +
Qn

which is solved by a soft thresholding operator on singular values of (Lt“ + F;l” )., with a threshold of

(n)
wn/ng-
3. &" update: The variables " can be updated using:
S+l _ : T
G = ar%ﬁriun otr ((Y)?n) CD”G’)?n)) +

%”L”l —G" - F;l,tHZ ’ 3.11)

which is solved by:

g+l 1 St
6oy = BsGin (L7 =T5) (3.12)
where G,y = (200" + 331)7! always exists and can be computed outside the loop for faster update.
4. S update: The variable S can be updated using:
SH.[ _ inA S ﬂl 7) S t+1 y Ft 2
= argmin ISl + S M1PalS + L7 =Y = T]1lE+
Bs\g_aur _tp2 3.13
2 || - 13 ”F’ ( . )
where the Frobenius norm terms can be combined and the expression can be simplified into:
. +
PalS"*1] = argmin [PalS]ll + EoEE2 o8 - 112 (3.14)
PalS] 24
Po. (8] = argmin [Pa: (S]]l + 22 1P0. [ - T (3.15)
Por [S] 22
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where

Bi(Y — L1 +T)) + Bs (W' +T%)
B1+PBs

PalTs] = Pa
Paor[T5] = Por [ W' +T%]

The above is solved by setting Po[S**!] = so ft_thresh(Pq[T5] Yand Po. [S™!] = so ft_thresh(Par [T5], 'Bis),

_4_
> Bi+Ps
where so ft_thresh(a, ¢) = sign(a) © max(|a| — ¢,0) and © is elementwise or Hadamard product.

S. W update: The auxiliary variable ‘W can be updated using:
Wil = argminﬂll(w X1 A—Z" =T[5+
w2
Bs s —aw -2 3.16

which is solved analytically by taking the derivative of the expression given above and setting it to zero which

results in:
W = Winy (/35(3”1 ~T9) ) + A (T + Z’)m) : (3.17)

where Wi, = (B51+ ,84ATA)_1 always exists and can be computed outside the loop for faster update.

6. Z update: The auxiliary variable ZZ, can be updated using:
Z™ = argminy || Z||; + %nw”l x1A-Z -T%% (3.18)
Z

which is solved by so ft_thresh(W'*! x; A =T, v/B4).

7. Dual updates: Finally, dual variables I';, I, I'?, 4, I'5 are updated using:

2°7 3
I =T — P L + 8™ - V], (3.19)
R B € AL SAL N (3.20)
=t — (L - e, (3:21)
O =T — (W x A-Z, (3.22)
it =1L — (8™ -, (3.23)

The pseudocode for the proposed algorithm, GLOSS, is given in Algorithm 3.1. The optimization for LOSS

can be similarly computed without the updates on graph regularization and related variables {®}, {I'3}.
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Algorithm 3.1: GLOSS

Input: YV € RI*DXExXL O &, parameters A, v, 0, {}, B1, B2, 53, B4, B5, max_iter.
Output: £ : Low-rank tensor; S: Sparse tensor.
Initiali 0_ 0 _ n,0 _ n,0 _ 0 _ n,0 _ n,0 _ 0 _ 0 _ .
nitialize S’ =0, Z° =0, %Y =0, ® =0,I7=0,T} —O,F3 —O,F4—0,F5—0,\7’z e{l,...,4}.
Winy < (BsI+B4ATA) ™!
Giny — (200" + B3I)7!
for + = 0 to max_iter do
<Y -8+ Fﬁ
Ty — Ty 81— '
T3 — Yoy G+ T
Pol L] — Po [B1T1 + 2T + B3T3l | (B1 +4(B2 + B3))
Por [LM] — Par [B2Tz + B3 T3] /4(B2 + B3)
forn=1to4do
1 ,t
[U,Z,V] — SVD (L1 +T5)
Gy = max (07— 54,0) Vie{l,... 1}
gl ysvT
(n)
G« BiGiny (£ - T5)

end for
B (Y= LH14T)+85 ((WETE)
PalT5] « Po [ : . ]

Por[Ts] «— Par [ W'+ Fg]
PalS™*'] «— soft_thresh(PaolTs], ﬁ)
P [S™*] «— soft_thresh(Por[T5], Bis)
Wi Wi (B5(ST1 =T )+ B4AT (T + Z0) 1))
Z™ e soft_thresh(W™! x; A=T}, )
le+1 — Ftl _ PQ[.LHI +St+l _y]
1—~2+1 — Fft _ ((Wt+l X A — Zt+1)
Fg+1 — Fg _ (St+1 _ (Wz+1)
forn=1to4do

F;l’l“ - l—‘g,t _ (2n,t+1 _ £z+1)

1";1’1” - l—‘gl,t — (L = Gt
end for

end for

(n)
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3.3.3 Computational Complexity

Let Y be a mode N tensor with dimensions I} = I, = --- = Iy = I. The computational complexity of each

iteration of ADMM is computed as follows:

1. The update of L only involves element-wise operations, thus the contribution to computational com-

plexity is not significant.

2. The computational complexity of updating each £" is O (12N ‘1).

Thus, the total computational
complexity is O(NI?N~1). However, it is possible to reduce the effect of this cost by parallelizing

the updates across modes, hence the complexity becomes quadratic in the number of elements, i.e.

O (I*N71).

3. The update of each " requires the computation of a matrix inverse with complexity O(I°) and a
matrix multiplication with complexity O(IN*!). As mentioned before, the inverse always exists and
can be computed outside the loop. Similar to the updates of £”, the total complexity is O(NIV*1).

This can be reduced by parallelizing across modes.
4. The second update requires a soft thresholding, which has linear complexity, i.e., O(IV).

5. The computational complexity of updating ‘W is governed by matrix multiplication resulting in

O(IN*1) complexity.

6. The update of Z consists of a matrix product followed by soft thresholding, which results in a total

complexity of O((1 + 1)IV).

7. The updates of the dual variables do not require any additional multiplication operations. Thus, the

computational complexity is negligible.

It can be concluded that the complexity of each loop is governed by the updates of £". Therefore, the
total computational complexity of the algorithm is O(max_iterNI*V~1). Since the complexity is driven by
nuclear norm minimization, in the following section, we propose another method which utilizes graph total

variation regularization for low-rank approximation instead of nuclear norm.
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3.4 Low-rank On Graphs Plus Temporally Smooth Sparse Decomposition

As mentioned in Section 1.3.1, we will approximate the low-rank tensor, £, through N graph total variation
terms corresponding to each mode similar to FRPCAG in (1.14). To this end, the first J,, eigenvectors of ®”,
P,, corresponding to the J,, lowest eigenvalues, are used to quantify the total variation of the low-rank tensor
across mode-n with respect to its corresponding similarity graph. As these first J,, eigenvectors capture
the low-frequency information of the signal, they can capture the normal activity in the data. Thus, the
optimization problem can be written as:

N
. T AN
min® 3 tr (L3, 9" Lo ) + IS + 1S 1 Al

n=1

st. PalY]=PalL+S], (3.24)

where ®" = ﬁn[\np; and An € R/ s the leading principal submatrix of A,. If we define the
projections of each mode-n unfolding of L to the graph eigenvectors (low frequency graph Fourier basis) as
QE’H) = ISZ L), then (3.24) can be rewritten as:

N
min 0" tr(G, TA"G, ) + ST+ VIS x1 All,

L1618

n=1

st. PalYl=PolL+S],  Giy=PrLw, (3.25)

where {G} = {G!,...,G"}. The solution to (3.25) will be called LOw-rank on Graphs plus temporally

Smooth Sparse Decomposition (LOGSS).

3.4.1 Optimization

The optimization problem was solved using ADMM. We introduce auxiliary variables ‘W and Z similar to
LOSS to separate sparsity and temporal smoothness regularization. The problem is then rewritten as:
N
min 60" t(Gp, TAGL, |+ AUSI + IS xi Al

L4618 W.Z

n=1

st. Po[¥]=PalL+S]. G =PiLm,S=W, Z=Wx A (3.26)
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The corresponding augmented Lagrangian is given by:

N
03 (G MGl ) + US4 NZ I + B IPal £ +8 - Y1 - Tulfr

n=1

N
Plwx A~ Z-Tally + 20S - W =T33+ 2 3 L - 6" % By - TR, G20)
n=1

where I'1, 1,173, 17 € RIXELXEXI are the Lagrange multipliers. Using (3.27) each variable can be updated
alternately.

1. £ update: The update of low-rank variable £ is given by:

Pal L] = Pa [B1T1 + BaTa] | (B1 +4B4),

Par[ L] = Po:[T:]/4, (3.28)

where 71 = Y -8t +Fll, T = ZnNzl gn,t Xn Pn +FZJ'

2. G" update: The variables G" can be updated using:
0 - R
gm”l:CﬁiAn+D_%£“4anZ—Ffﬁ, (3.29)

where I € R/»*/ is an identity matrix.

3. S update: The variable S can be updated using:

PalS"] = Ta(PalBi T + B37a1)/ (B1 + B3)

Po.[S™] = T 1 (Po: 7)), (3.30)

where 75:3/—L”1+F§, Ta=W'+T%, Ty(a) = sign(a) © max(|a| - ¢,0) and © is Hadamard product.

4. W update: The auxiliary variable ‘W can be updated using:
Wi = Winy (B5(S"™ =T 1) + BAT (T + Z 1) (3.31)

where W;,,, = (B3I + BzATA)_l always exists and can be computed outside the loop for faster update.

5. Z update: The auxiliary variable Z, can be updated using:
ZH=M@Mﬂmm+%mw“mA—z—qﬁ, (3.32)
Z

which is solved by Tﬁl (W% A-TY).
2
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6. Dual updates: Finally, dual variables I'j, 1,13, FZ are updated using:

I = - P [ L1+ 8™ - Y, (3.33)
O =10 — (W x; A= ZM), (3.34)
F§+1 _ Fg _ (S”l _ (Wt"'l)’ (3.35)
Fz,m _ Fz,z (L - gntt kP, (3.36)

The pseudocode for the optimization is given in Algorithm 3.2.

Algorithm 3.2: LOGSS

Input: Y, Q, ®,, parameters 0, A, v, B1, B2, B3, B4, max_iter.
Output: £ : Low-rank tensor; S: Sparse tensor.
Initialize S® = 0, W =0,Z°=0,6"" =0, 10 =0,T9=0,TY =0, 17" =0, Vi € {I,...,4},
Winy = (Bs1+B2ATA) .
for r = 1 to max_iter do
Update £ using (3.28).
Update G"s using (3.29).
Update S using (3.30).
Update W using (3.31).
Update Z using (3.32).
Update Lagrange multipliers using (3.33), (3.34), (3.35) and (3.36).
end for

3.4.2 Computational Complexity of LOGSS

Assume I} = I, = --- = Iy = I. The complexity of the proposed algorithm is dominated by matrix
multiplications which are the updates of £, ‘W, Z and I'j. The updates of G" require are multiplications
since A,s are diagonal. The computational complexity of the matrix multiplications are: O(NIV) for the
update of £, O(IV) for the updates of ‘W, Z, ;. Since the updates of £ and I} can be parallelized, the
complexity of the algorithm is O (max_iter/" ), hence, linear in the number of elements. Thus, using graph
total variation regularization instead of nuclear norm we reduce the complexity of LOSS from quadratic to

linear.

3.5 Convergence

In this subsection, we analyze the convergence of the proposed algorithms. First, we show that the proposed

optimization problem (3.4) can be written as a two-block ADMM. In previous work, linear and global
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convergence of ADMM is proven for two-block systems [52] with no dependence on the hyperparameters.
We use this proof to derive the convergence of GLOSS. Convergence of LOSS and LOGSS follow as they
have similar objective functions and similar operations can be applied to rewrite their objective as two-block
ADMM.

In the following discussion, we will assume that there is no missing data, i.e. Po[Y] = VY, to
simplify the notation. Let h(S) = IS, j(Z) = ¥IZIh, FULY = Zoo ¥all€, Nl e({6)) =

Zizl tr (@Z‘H)T@” (ﬁ?n)), (3.5) can be rewritten as:

{2},1{1(233,2 h(S) +j(2) + f({8}) +g({6}),

A1.£(1) + AZS(l) + Ascaty ({8}) + Agcat; ({6 })+

AsZq) + As Wy =cat;({Y,0,...,0}), 3.37)
where
I I -O 0 O O- _O 0 O O- -0- -0-
I 0 -1 0 0 O 0O 0 0 O 0 0
I 0 0O -1 0 O 0O 0 0 O 0 0
I 0 0O 0 -1 O 0O 0 0 O 0 0
I 0 0 0 0 -I 0O 0 0 O 0 0
A= |If,A2=10-43=[0 0 O Of.A=|-T 0 0 O0|.-As=|0[.A=]|0
I 0 0O 0 0 O 0O -1 0 O 0 0
I 0 0 0 0 O 0O 0 -I O 0 0
I 0 0O 0 0 O 0O 0 0 -I 0 0
0 I 0O 0 0 O 0O 0 0 O -1 0
0 0 0O 0 0 O 0 0 0 O A -1

From this reformulation, it is easy to see that A]TA5 =0 and A, A3z, A4, Ag are all orthogonal to each other,
ie. ATAj =0wherei,j € {2,3,4,6} andi # ;.

In this manner, the optimization problem reduces to a special case of two-block ADMM as follows. Define
variables Vi = [L(1), W(1)] and Vo = [X(y), cat; ({8}), cat; ({®}), Z(1)], and matrices By = [Aj, As] and
By = [As, A3, A4, Ag]. When we create the variable Vi, the order of updating S and ‘W needs to change in

the new formulation as A; and As are not orthogonal. Updates of {£} and {®} have no effect on the update
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of W but this is not true for S, so updating ‘W before S might affect the solution. However, it was proven
in [194] that the change in order gives the equivalent solution if either one of the functions of the variables
S and ‘W is affine. In our formulation, this is true as the function corresponding to ‘W is a constant. Thus,

the problem reduces to the two-block form:
‘1/ni‘r/1 i)+ £2(V2), st BiVi+BV,=C, (3.38)
1, V2

where f1(V1) = 0and f2(V,) = h(S)+j(Z)+f ({L})+0g({®}) are both convex and C = cat; ({Y, 0, ...,0}).
It can easily be shown using Kronecker products and vectorizations that the objective functions (3.2),
(3.25) can also be converted into a two-block form. Thus, LOSS and LOGSS also converge using the above

results.

3.6 Anomaly Scoring

The methods proposed in this chapter focus on extracting spatiotemporal features for anomaly detection.
After extracting the features, i.e. the sparse part, a baseline anomaly detector can be applied to obtain an
anomaly score. In this chapter, we evaluated three anomaly detection methods: Elliptic Envelope (EE)
[150], Local Outlier Factor (LOF) [23] and One Class SVM (OCSVM) [153]. These three methods are
used to assign an anomaly score to each element of the sparse tensor. Each method was applied to all third
mode fibers which correspond to different weeks’ traffic activity. This is equivalent to fitting a univariate
distribution to each of the third mode fibers of the tensor. The anomaly scores were used to create an anomaly
score tensor. Finally, the elements with the highest anomaly scores were selected as anomalous while the

rest were determined to be normal.

3.7 Experiments

In this chapter, we evaluated the proposed method on both real and synthetic datasets. We compared our
method to regular HORPCA and weighted HORPCA (WHoRPCA) where the nuclear norm of each unfolding
is weighted. In addition to Tucker based algorithms we compare with two CP based anomaly detection
methods: low rank plus sparse CP (LRSCP) [88] and Bayesian augmented tensor factorization (BATF) [40].
In the case of LRSCP, a low rank plus sparse CP model is used for anomaly detection. While the original
algorithm is implemented in an online manner, in this chapter, it is modified to be applicable to the whole
ST data for comparability against other methods. BATF is a CP based tensor completion/imputation model

with smoothness constraints designed for urban traffic data. BATF utilizes bias vectors for all mode-n slices

60



which enforces smoothness across each mode. To evaluate the effect of graph regularization term in (3.4),
we also compared with LOSS corresponding to the objective function in (3.2). As our method is focused
on feature extraction for anomaly detection, we also compared our method to baseline anomaly detection
methods such as EE, LOF and OCSVM applied to the original tensor. After the feature extraction stage,
unless noted otherwise, such as "GLOSS-LOF", EE was used as the default anomaly scoring method for
all tensor feature extraction methods, e.g., HORPCA, WHoRPCA, BATF, etc. LRSCP scores the anomalies
by ordering the magnitude of the elements of the sparse tensor [88]. The number of neighbors for LOF is
selected as 10 as this is the suggested lower-bound in [207]. The outlier fraction of OCSVM is set to 0.1 as
only the anomaly scores, not labels, generated by OCSVM are used in the experiments. The methods used

for comparison and their properties are summarized in Table 3.1.

Table 3.1: Properties of anomaly detection methods used in the experiments. The acronyms refer to
the different attributes of the cost function: (LR) low-rank, (SP) sparse, (WLR) weighted low-rank, (SR)
smoothness regularization.

LR SP WLR SR

GLOSS + + + +
LOGSS - + - +
Tucker Based LOSS N N N N
WHoRPCA + + + -
HoRPCA + + - -
BATF + + - +
CP Based LRSCP N N i X
EE N/A N/A N/A N/A
LOF N/A N/A N/A N/A

OCSVM N/A N/A NA N/A

For each data set, a varying K percent of the elements with highest anomaly scores are determined to
be anomalous. With varying K, ROC curves were generated for synthetic data and the mean area under
the curve (AUC) was computed for 10 random experiments. For real data, number of detected events were
reported for varying K.

The number of neighbors for LOF is selected as 10 as this is the suggested lower-bound in [207]. Finally,
the outlier fraction of OCSVM is set to 0.1 as only the anomaly scores, not labels, generated by OCSVM is

used in the experiments.
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3.7.1 Data Description

To evaluate the proposed framework, we use two publicly available datasets as well as synthetic data.
Real Data:
The first dataset is NYC yellow taxi trip records! for 2018. This dataset consists of trip information such as
the departure zone and time, arrival zone and time, number of passengers, tips for each yellow taxi trip in
NYC. In the following experiments, we only use the arrival zone and time to collect the number of arrivals
for each zone aggregated over one hour time intervals. We selected 81 central zones to avoid zones with
very low traffic [205]. Thus, we created a tensor Y of size 24 X 7 x 52 x 81 where the first mode corresponds
to hours within a day, the second mode corresponds to days of a week, the third mode corresponds to weeks
of a year and the last mode corresponds to the zones. The data is suitable for low-rank on graphs model as
graph stationarity measure s, (I'), given in Section 1.3.1, for each mode is 0.83, 0.98, 0.99, 0.56, respectively.
This implies that the data is mostly low-rank on the temporal modes as there is strong correlation among the
different days, hours and weeks, while it is less low-rank across space.

The second dataset is Citi Bike NYC bike trips? for 2018. This dataset contains the departure and arrival
station numbers, arrival and departure times and user id. In our experiments, we aggregated bike arrival data
for taxi zones imported from the NYC yellow taxi trip records dataset, instead of using the original stations,

to reduce the dimensionality and to avoid data sparsity. The resulting data tensor is of size 24 X 7 X 52 x 81.

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
Zhttps://www.citibikenyc.com/system-data
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Synthetic Data Generation:

Evaluating urban events in a real-world setting is an open challenge, since it is difficult to obtain urban
traffic data sets with ground truth information, i.e. anomalies are not known a priori and what constitutes
an anomaly depends on the nature of the data and the specific problem. To be able to evaluate our method
quantitatively, we generate synthetic data and inject anomalies. Following [205], we generated a synthetic
data set by taking the average of the NYC taxi trip tensor, Y, along the third mode, i.e. across weeks of
a year. We then repeat the resulting three-mode tensor such that for each zone, average data for a week is
repeated 52 times. We multiply each element of the tensor by a Gaussian random variable with mean 1 and
variance 0.5 to create variation across weeks.

We generate anomalies on randomly selected m% of the first mode fibers. For each fiber, we set a random
time interval of length /, which corresponds to / hours in a day, as anomalous. We multiply the average
value of each randomly selected anomalous interval by a parameter ¢ and the modify the entries by adding
or subtracting this value from the interval. When c is low, the anomalies will be harder to detect and may be

perceived as noise.

3.7.2 Parameter Selection:

In this section, we will discuss how the different parameters in (3.4) are selected. Following [70], we set

A =1/y/max(Iy,...,Iy) for HORPCA and g = m, where vec(Y) € RI2+IN s the vectorization
of Y and std(.) is the standard deviation. The other 8 parameters for all methods are set to be the same as
B1. The selection of B8 parameters does not affect the algorithm performance but changes the convergence
rate as mentioned in Section 3.5. In GLOSS, the neighboorhood size for each of the k-NN graphs is selected
tobe k = log(Zfi | I,) following [177]. The o value in k-NN graphs is selected to be proportional to the
Frobenius norm of each mode to ensure similar density levels for all graphs. The ranks for LRSCP and
BATF are selected from {1,2, ..., 11} as the rank with the best result. Increasing the rank to higher values
does not improve the results while increasing complexity.

An important observation about the selection of the parameters is that depending on the data, the optimal
values of hyperparameters might be different. This is due to the properties of the data such as size, variance
and sparsity level. Moreover, the different hyperparameters are dependent on each other. Hence, a search

over the whole parameter space may be costly. Thus, we perform a sensitivity analysis for the different
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hyperparameters. In Figure 3.1, we present the average AUC for various ranges of the hyperparameters for
GLOSS applied on the synthetic data generated with ¢ = 2.5. It can be seen from Figure 3.1a that while
low values of A always provide the best results, y values are optimized around 107>, Increasing the sparsity
penalty A above 1073 results in a sparse tensor that is mostly zero. At this A value, AUC becomes equal
to 0.5 which is equivalent to randomly guessing the anomalous points. On the other hand, when vy is too
large, it smooths out all mode-1 fibers and generates the same anomaly score for each fiber. This is akin to
identifying anomalous days, rather than time intervals. From these observations, it can be seen that there is
not a strong dependence between y and A. For the weight parameters, y/,,, when one of them is set to 1 and
the others are varied across a wide range of values as shown in Figures 3.1c and 3.1b, the accuracy does not
change significantly. Similarly, changing the value of § does not seem to affect the optimal value of ;.

We repeated this analysis for different ¢ values and observed similar results indicating that the proposed
method is not sensitive to the selection of hyperparameters as long as they are selected following the guidelines
given below. In particular, the choice of A affects the accuracy more than any of the other hyperparameters.
This realization reduces the computational complexity of finding the best set of parameters as the search can
be implemented in parallel.

Based on these empirical observations, we select A =y = 1/||Pa(M)|lo, where ||Pa(Y)||o is the number
of nonzero elements of Y for GLOSS and A = y = 1/max(Iy,...,Iy) for LOSS and WHoRPCA similar
to [70]. Since the ranks across each mode are closely related to the variance of the data within that mode,

weights for each mode in the definition of nuclear norm, ¥, s, are selected to be inversely proportional to

p

the trace of the square root of the covariance of mode-n, i.e. ¢, = P
YO

, where p is selected such that

min, () = 1. The parameter 6 is set to be the geometric mean of s, i.e. § = Hi: | 1//,11/ +,

3.7.3 Experiments on Synthetic Data

Effect of anomaly length and percentage:

First, we evaluated the effect of the length / and the percentage m, i.e. denseness, of anomalies in synthesized
data. For these experiments, we set ¢ = 2.5 and P = 0%. From Table 3.2 and Fig. 3.2, it can be seen
that as [/ increases, the performance of LOGSS and LOSS improves while HORPCA'’s performance does not
show a significant change. This is due to the fact that the temporal total variation regularization will become

more suited to the observed data as the anomalies become more temporally persistent, i.e. when [ increases.
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Figure 3.2: AUC of ROC w.r.t. [ and m with ¢ = 2.5, P = 0%.

Although LOSS performs slightly better than LOGSS when [ is large, for low [, it drastically underperforms
which is not the case for LOGSS. With increasing m, all methods perform worse due to the assumption of
sparsity for the anomalies.
Robustness against noise:
We first evaluated the effect of c, i.e. the strength of the anomaly, on the accuracy of the proposed method.
Low c values imply that the amplitudes of anomalies are low and they may be indistinguishable from noise.
From Fig. 3.3 and Table 3.2, it can be seen that for varying ¢ values, our method (GLOSS-EE) achieves the
highest AUC values compared to both baseline methods and HORPCA, WHoRPCA, LRSCP, BATF, LOSS
and LOGSS. Among the remaining methods, LOSS performs better than WHoRPCA, especially when the
anomaly strength is small. CP based methods generally underperform compared to all other methods. The
proposed methods have higher anomaly detection accuracy compared to EE and HoRPCA which illustrates
the benefit of tailoring the optimization problem to anomaly structure. In fact, HORPCA does not perform
better than EE in most cases which means that extracting anomalies using HORPCA does not have a significant
improvement compared to using the original data. It is also important to note that the choice of the anomaly
scoring method does not change the performance of GLOSS significantly.

In terms of time complexity, it can be seen from Table 3.3 that LOGSS is up to 10 times faster than

both GLOSS and LOSS. BATF, on the other hand, has higher run time compared to the proposed methods
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Figure 3.3: ROC curves for various amplitudes of anomalies. Higher amplitude means more separability.
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(LOSS and GLOSS) with lower accuracy. Although other methods such as EE, LOF, LRSCP and HoRPCA
outperform LOSS and GLOSS, the proposed methods outperform them in anomaly detection accuracy as
mentioned earlier.

Table 3.2: Mean and standard deviation of AUC values for for various ¢ and P. On experiments of each
variable, the rest of the variables are fixed at ¢ = 2.5, P = 0%, [ =7 and m = 2.3%. The proposed methods,
outperform the other algorithms in all cases significantly with p < 0.001.

| c=15 c=2 c=25 | P=20%  P=40%  P=60%
EE 0.70+£0.004 0.81£0.004 0.87+£0.003 | 0.81+0.004 0.61+0.008 0.53+0.01
LOF 0.68+£0.003 0.78+£0.004  0.84:£0.004 | 0.79+0.005 0.78+0.005 0.73+0.007
OCSVM 0.65+£0.005 0.73£0.004  0.77+0.005 | 0.81+0.004 0.81+0.005 0.76+0.006
HoRPCA 0.74£0.004  0.81+0.004 0.87+0.003 | 0.8+0.004 0.73+0.006 0.79+0.005
WHORPCA | 0.7+0.004 0.81+0.004  0.87+0.003 | 0.8+0.003 0.73+0.006 0.8+0.005
LRSCP 0.51£0.02  0.53£0.03  0.54+£0.05 | 0.61+0.007 0.7+0.01  0.8+0.006
BATF 0.59£0.005 0.65+£0.005  0.69+0.005 | 0.67+0.005 0.64+0.006 0.61+0.006
LOSS 0.81+£0.005  0.9+£0.004  0.94+£0.0035 | 0.85+0.003 0.73+0.009 0.74£0.009
LOGSS 0.8+£0.005 0.9+£0.003  0.94+0.002 | 0.86+0.004 0.74+0.008 0.76:+0.005
GLOSS-EE | 0.83+0.005 0.92+0.003  0.95+0.002 | 0.88+0.004 0.77+0.008 0.76+0.006
GLOSS-SVM | 0.81+0.006  0.9+£0.004  0.95+0.002 | 0.83+0.006 0.81+0.007 0.82+0.007
GLOSS-LOF | 0.8+£0.006 0.91+0.004  0.95+0.002 | 0.81+0.01 0.80+0.007 0.86+0.007

Table 3.3: Mean and standard deviation of run times (seconds) for various methods.

EE LOF OCSVM HoRPCA WHoRPCA LRSCP BATF LOSS LOGSS GLOSS
12.1+03 17.0+£03 1016.2+56.1 75+04 135+05 0.66+0.17 658+0.16 44.7+27 5.0+0.27 46.7+1.5

Robustness against missing data:

In addition to injecting synthetic anomalies, we also remove varying number of days at random from the
tensor to evaluate the robustness of the proposed method to missing data. After generating the synthetic data,
a percentage P of the mode-1 fibers is set to zero to simulate missing data, where the number of mode-1

fibers is equal to the total number of days, i.e. 7 X 52 % 81. The accuracy of anomaly detection for varying
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Figure 3.4: ROC curves for varying percentage of missing data, (a) P = 20%, (b) P = 40%, (c) P = 60%.
(c=25,1=7,m=2.3%)

levels of missing data is illustrated in Fig. 3.4 and the corresponding AUC values (mean + std) are given in
Table 3.2.

While the performance of all the methods degrades with increasing levels of missing data, GLOSS
provides the best anomaly detection performance and is robust against missing data compared to the rest of the
methods. It is interesting to see that with increasing percentage of missing data, the performance of OCSVM
does not degrade too much, and some of the methods such as HORPCA, WHoRPCA, LRSCP, GLOSS-SVM
and GLOSS-LOF have a better performance. This phenomenon occurs partially due to increasing percentage
of anomalous points. As some of the false positives are replaced by missing data, and anomalous points
are higher in percentage, newly identified data might have more true positives with increasing percentage of
missing data. Incorporating temporal smoothness for the anomalies in the objective function lowers the false
detection rate by penalizing instantaneous changes in traffic that do not constitute an actual anomaly. We note
that while LOSS performs comparable to GLOSS for varying anomaly strength, the performance of LOSS
degrades quickly with increasing missing data. Therefore, even though both WHoRPCA and LOSS are
equipped to handle missing data, GLOSS is more robust as it uses side information in the form of similarity
graphs. Similar to the previous experiments, LOGSS provide the best results in terms of computational

efficiency with the expense of a small amount of AUC compared to GLOSS.

3.74 Experiments on Real Data

To evaluate the performance of the proposed methods on real data, we compiled a list of 20 urban events,
which are listed in Table 3.4, that took place in the important urban activity centers such as city squares,
parks, museums, stadiums and concert halls, during 2018. We used the same set of urban events for both taxi

and bike data. To detect the activities, top-K percent, with varying K, of the highest anomaly scores of the
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Table 3.4: Events of Interest for NYC in 2018.

Event Name

Location

Date and Time

New Year’s

Blackhawks vs. Rangers
Armory Show

Woman’s March

Big Ten Basketball Final
Big East Quarter Finals

St. Patricks Day Parade
Nor’easter Storm

NIT Quarterfinal Utah vs. St.Mary’s
U2 Concert

July 4th Celebrations

UN General Assembly
Comic Con

NYC Marathon

Elton John Concert

Macy’s Thanksgiving Parade
Christmas Tree Lighting
Golden Knights vs. Rangers
Phish Concert

New Year’s Eve

Times Square

Madison Square Garden
Piers 92/94

Central Park West

Madison Square Garden
Madison Square Garden
5th Avenue, btw 44th and 79th
Citywide

Madison Square Garden
Madison Square Garden
Citywide

United Nation Headquarters
Javits Center

Colombus Circle

Madison Square Garden
Herald Square

Bryant Park

Madison Square Garden
Madison Square Garden
Times Square

1/1 12-2AM

1/3 4-8PM

1/14 9AM-5PM
1/20 8AM-12PM
3/4 3-10PM

3/8 3-10PM

3/17 11AM-5PM
3/20 11AM-5PM
3/21 5 PM- 10PM
7/1 5-10PM

7/4 5-11PM

9/25 12-5PM
11/4 8 AM-3PM
11/04 12-5PM
11/9 7-11PM
11/22 9PM-12AM
12/4 7TPM-12AM
12/16 12-3PM
12/28 4-8PM
12/31 8PM-12AM

extracted sparse tensors are selected as anomalies and compared against the compiled list of urban events.
In previous work, similar case studies were presented for experiments on real data [206, 39, 203, 205].
Detection performance for all methods is given in Tables 3.5 and 3.6 for the taxi and bike data, respectively.
From Table 3.5, it can be seen that anomaly scoring methods applied to the spatiotemporal features extracted
by GLOSS perform the best for the NYC Taxi data. The performance of GLOSS is followed by LOSS as
temporal smoothness allows for detection of events at lower K by removing anomalies resulting from noise.
LOSS performs the best initially but as more points are considered GLOSS finds more cases. Although
LOGSS performs better than baseline methods most of the time it does not perform as good as GLOSS or
LOSS. In the case of CP based methods, although the performance of LRSCP is not good, BATF shows
results competitive with GLOSS especially for Taxi data. Although BATF extracts the anomalies well, it has
a high computational complexity. Among the baseline methods, EE performs the best while LOF performs

the worst. However, when the features extracted from GLOSS are input to LOF and EE, their performances
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become very similar. This shows that GLOSS is effective at separating anomalous entries from noise and
normal traffic activity and thus, improves the performance of both LOF and EE. It is important to note that
most of the anomalies cannot be detected at low K values by most methods because events such as New
Year’s Eve or July 4th celebrations change the activity pattern in the whole city and constitute the majority
of the anomalies detected at low K values for Taxi Data.

The performance of all methods is significantly reduced in Bike Data as can be seen from Table 3.6.
This is because Bike Data is very noisy with a large number of days, or points that would be considered
anomalous. Also, some of the selected events do not produce significant changes in Bike Data such as
New Year’s Eve as usage of bikes at midnight is low even though it’s a significant event for taxi traffic.
Changes in the weather also affect the performance by increasing the variance of the data, especially across
the third mode, which corresponds to the weeks of the year. We see some fluctuations in the performance
comparisons as well, such as LOGSS performing better than all methods at higher K, i.e. percentages. Still,
the proposed methods are better than HORPCA, WHoRPCA, and baseline methods overall, which shows the
improvements brought by the extracted features.

It is important to note that event selection is done manually and the selected events may not correspond
to the most significant anomalies. Thus, although it is a widely utilized tool in analyzing the performance on
real data, the case study approach might not reflect the true performance of the anomaly detection method

as effectively as synthetic data.

Table 3.5: Results for 2018 NYC Yellow Taxi Data. Columns indicate the percentage of selected points with
top anomaly scores. The table entries correspond to the number of events detected at the corresponding
percentage.

%o 0.014 0.07 0.14 03 07 1 2 3

EE 0 0 1 3 9 9 16 18
LOF 0 0 0 1 1 2 4 5

OCSVM 0 0 2 5 8§ 11 15 16
HoRPCA 0 5 11 14 20 20 20 20
WHoRPCA 0 0 1 3 9 9 16 18
LRSCP 0 1 1 1 5 7 10 11
BATF 0 1 5 9 14 15 20 20
LOSS 3 9 12 15 16 17 19 20
LOGSS 0 0 1 6 10 12 18 18
GLOSS-EE 1 8 13 15 18 18 19 20
GLOSS-LOF 2 8 12 14 18 18 19 19
GLOSS-SVM 0 3 3 9 17 18 20 20

In Fig. 3.5, we illustrate the bike data for July 4th at Hudson River banks, and the low-rank and sparse
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Table 3.6: Results on 2018 NYC Bike Trip Data.

%o 03 1 2 3 42 7 97 125
EE 0O 0 0 1 2 2 2 3
LOF 1 1 1 1 2 2 4 6
OCSVM 0o o0 1 2 2 2 3 3
HoRPCA 2 3 4 4 6 8§ 11 14
WHoRPCA 1 1 2 7 11 12 12 12
LRSCP o 1 2 3 3 4 6 10
BATF 2 3 4 6 9 10 11 13
LOSS 0O 1 1 1 4 13 15 16
LOGSS 1 3 4 6 9 11 14 17
GLOSS-EE o o 3 7 9 11 15 16
GLOSS-LOF 1 2 2 2 2 6 8 11
GLOSS-SVM 1 2 5 8 10 15 15 15
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Figure 3.5: Bike Activity data, the extracted sparse part and low-rank part across for July 4th Celebrations
at Hudson River banks. (a) Real Data where the traffic for 52 Wednesdays is shown along with the traffic
on Independence Day and average traffic; (b) Sparse tensor where the curve corresponding to the anomaly is
highlighted; (c) Low-rank tensor with the curve corresponding to the Independence Day highlighted.

parts extracted by GLOSS. It can be seen that as the data varies across different weeks, the low-rank part can
explain this variance well by fitting a pattern to days with varying amplitudes. Thus, the proposed method
does not get affected by events such as the weather as it can capture both low and high traffic days in the
low-rank part which can be seen in Fig 3.5c. The deviations from the daily pattern, rather than the actual
traffic volume, is captured by the sparse part, which is then input to the anomaly scoring algorithms. Thus,

our method is able to extract the events at a fairly low K.
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3.8 Conclusions

In this chapter, we proposed robust tensor decomposition based anomaly detection methods for urban traffic
data. The proposed methods extract a low-rank component using a weighted nuclear norm and imposes the
sparse component to be temporally smooth to better model the anomaly structure. In one of the methods,
graph regularization is employed to preserve the geometry of the data and to account for nonlinearities in
the anomaly structure. In another, low-rank tensor recovery is implemented through minimizing graph total
variation on similarity graphs constructed across each mode. This approximation circumvents the need
for computing a computationally expensive nuclear norm minimization. ADMM based computationally
efficient and scalable algorithms are proposed to solve the resulting optimization problems. As the proposed
methods focus on spatiotemporal feature extraction, the resulting features can be input to well-known anomaly
detection methods such as EE, LOF and OCSVM for anomaly scoring.

The proposed methods are evaluated on both synthetic and real urban traffic data. Results on synthetic
data illustrate the robustness of our methods to varying levels of missing data and their sensitivity to even low
amplitude anomalies. In particular, our methods outperforms HoORPCA and WHoRPCA thanks to temporal
smoothness assumption on the sparse part. Moreover, the graph regularization improves the accuracy further
by ensuring that the low-rank projections preserve local geometry of the data. In real data, our methods
begin to detect anomalies earlier, i.e. the top anomaly scores usually correspond to events of interest, than
existing methods. GLOSS provides further improvement over LOSS as more events are detected for a given
number of selected points. Furthermore, the results from real data show how the extracted sparse component
highlights the anomalous activities. For both synthetic and real data, LOGSS outperforms other methods in
terms of computational efficiency with some loss in AUC compared to GLOSS. Experiments on synthetic
data reveal that when anomalies are longer in duration, the proposed methods perform better. LOGSS also
outperforms LOSS when anomalies are shorter in duration. Although LOSS and GLOSS perform better in
real data, LOGSS shows similar performance with shorter run time.

In future work, a statistical tensor anomaly scoring method will be explored instead of scoring each fiber
individually by a separate algorithm. In recent years, deep learning based methods have also provided a
promising new direction for anomaly detection [33, 28]. Some examples include long short-term memory
(LSTM) neural network used to predict traffic flow and detect anomalies [94] and fully connected neural

networks used to decompose traffic data into normal and anomalous parts [205]. Future work will consider
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extensions to tensor type data and application of 3D-CNNs [33]. Another possible extension of the proposed
work is online anomaly detection. The method proposed in this paper cannot achieve real-time anomaly
detection as for the current application the data has been collected and stored offline. However, it is possible
to extend low-rank tensor models to an online setting. Recently, methods for online tensor subspace tracking
have been introduced [87, 141, 8, 110]. Our method can be extended to the online setting using the methods
outlined in these papers. Applications and extensions of the proposed method on network data and other

spatiotemporal data with different characteristics such as fMRI will also be considered.
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CHAPTER 4

GEOMETRIC TENSOR LEARNING

4.1 Introduction

Most high-dimensional data have a low-dimensional structure and principal component analysis (PCA) is
the fundamental approach to extract this low-dimensional structure. A major drawback of PCA is that it
is sensitive to grossly corrupted or outlying observations, which are ubiquitous in real-world data. Robust
PCA (RPCA) addresses this issue by decomposing the observed data matrix into a low-rank and sparse part
[30]. However, RPCA can only handle two-way matrix data while real data is usually multi-way in nature
and stored in arrays known as tensors. In recent years, different extensions of RPCA have been introduced
to deal with tensor type data based on the different tensor models. Some examples include simple low-rank
tensor completion (SiLRTC) [120], higher-order RPCA (HoRPCA) based on the Tucker model [70], tensor
RPCA (TRPCA) based on the t-SVD model [125] and tensor-train based tensor RPCA [53, 197].

Different tensor models employ different definitions of rank and result in different interpretations of
what a low-rank tensor is. Tucker rank, optimized by minimizing sum of nuclear norms (SNN), cannot
appropriately capture the global correlation in a tensor as each mode represents the matrix row in an
unbalanced matricization scheme [17]. Tensor tubal rank, optimized by minimizing tensor nuclear norm
(TNN), on the other hand, characterizes the correlations along the first and second modes while that along
the third mode is encoded by the embedded circular convolution. Moreover, definition of TNN is usually
limited to third-order tensors [210]. Tensor-train rank, optimized using tensor train nuclear norm (TTNN),
can capture the global correlation of all tensor entries, by providing the mean of the correlation between two
sets of modes as it is based on a canonical unfolding [17].

While the robust low-rank tensor representations capture the global structure of tensor data, they do not
preserve the local geometric structure. Manifold learning addresses this issue and has been successfully
implemented for tensors [164, 161]. However, current manifold learning approaches typically focus on only
one mode of the data. Yet for many data matrices and tensors, correlations exist across all modalities. Several
recent papers [67, 156, 155, 128, 127, 157, 22] exploit this coupled relationship to co-organize matrices and

infer underlying row and column embeddings.
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Inspired by the success of low-rank embedding and manifold learning, in this chapter, we propose to
integrate them into a unified framework for simultaneously capturing the global low-rank and the local geo-
metric structure. In particular, we propose a graph regularized robust low-rank tensor-train decomposition.
The proposed model is based on robust tensor-train decomposition introduced in [197]. Unlike previous
graph regularized tensor decompositions, the proposed method introduces graph regularization across each
canonical unfolding to leverage the underlying geometry on each tensor mode. The resulting optimization
problem is shown to be computationally expensive due to the size of the graphs across each canonical unfold-
ing. An equivalence between these computationally expensive graph regularization terms and regular tensor
unfolding is derived and a computationally efficient implementation of graph regularized robust tensor-train

decomposition is proposed.

4.2 Tensor Train Robust PCA on Graphs

Given an observed tensor with missing entries and gross corruption Pg[Y], the objective of tensor RPCA
is to extract a low-rank tensor, X, and a sparse tensor, S, corresponding to gross outliers such that Po[Y] =

Pal[X + S]. Robust tensor-train PCA model was proposed in [197] as follows:

N-1
minimizex s Z nl| X1l + IS, s.t. PolX +S] =PalY].

n=1
While nuclear norm minimization can capture the global structure of the tensor, incorporating graph
regularization can capture the local geometry and non-linear structures within the data. Adding graph
regularization on the mode-n canonical unfoldings of the low-rank part, X[,j € RIt--InXln+1--IN 'the modified

objective can be rewritten as:

N-1 N
.. . T —
m1r)1<1,n§126 n; | X Il + n; Ontr(Xp, PnX(n)) + US|, s.t. PolX +8] =PalV], 4.1)

where ®,, € Rl Inxli--In s the mode-n graph Laplacian. The solution to (4.1) will be referred to as tensor

train robust PCA with graph regularization (TTRPCA-G).

4.2.1 Kronecker Structured Graphs

For each mode n, the graph regularization proposed in (4.1) computes the similarity over all the modes
from the first to the nth mode. Thus, it potentially utilizes the same local geometric information multiple

times. In this section, we propose modeling each ®,, with a Kronecker structure where ®,, = ®, ® I with
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®, € RI»*In_ This structure imposes a manifold on only mode 7, rather than the set of all modes n’ with
n’ < n. In the following, we show that solving such a system is equivalent to replacing the trace norm of the
canonical unfolding with the trace norm of mode-n unfolding. Moreover, this structure highly reduces the

computational complexity of TTRPCA-G.

Lemma 2. Let B € R, A € RK*I and C € RF* | then
vec(ABCT) = (C ® A)vec(B),
where vec(.) stacks all elements of a tensor into a vector.

Lemma 3. Given a third-order tensor 8 € RI>*>*Mand its third mode slices B; € R/,
ICBw)lI7 = I(C @ DBz,
where C € R is any matrix and 1 € R is the identity.
Proof. Letb; = vec(B;) € RI/*! then,
-Vec(BlCT)- -(C®I)b1-
vec(B,CT) (C®I)b,

Vec(B(Tz)CT) = : =

vec(Bpy CT) (C ® )by,

=(I®(C®ID)[b{,by,....b;, 1= I® (C&I)vec(By)) = vec((C ®1)B2)),
where the second equality follows from Lemma 1. Thus,
ICB) I = 185, CTIIE = lIvec(B5, CHIIE = llvec((C @ DBl = I1(C @ DBz O

By reshaping any tensor with N modes to third-order tensors, where mode 7 is mapped to the second

mode , it can be shown that this result can be generalized for any mode »n and order N.

Theorem 1. Ler ®,, = ®,,®L where ®,, € RIn*In qnd1 € RIL--In1Xhibdn-t The term ZnN:1 Gntr(X[Tn]d)nX[n])

is equivalent to 2,11\]:1 Hntr(X(Tn) @nX(n)).
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Proof. Since ®,, is symmetric, let ®, = P P,. Then ®, = (P]P,) ® I = P]P,, where P, = (P, ®I).

Thus, the following equalities hold:

tr(X [ Pn&Xn)) = 1P X I3 = 1(Pr @ DX 117 = 1PnXim I3 = (X P Pai(n))

= tr({\’(—;)(i)nX(n)),
where the third equality follows from Lemma 2. 0

By Theorem 1, the graph regularization term in (4.1) is equivalent to Z,I:j:l Ontr(X (Tn ) ﬁDnX(n)). Thus, we

can rewrite (4.1) as:

N-1
minimize ; @l Xyl + ; Ontr(X (5 DnX(n) + US|, st PolX +8] =PaolY]. (4.2)

The solution to (4.2) will be referred to as tensor train robust PCA with mode-n graph regularization

(TTRPCA-nG).

4.2.2 Optimization

The objective functions (4.1) and (4.2) are optimized using an Alternating Direction Method of Multipliers
(ADMM) scheme as ADMM has been previously utilized for solving similar convex problems [70, 154,
156]. In this section, we will give a detailed derivation of the update steps for optimizing (4.1). While the
update steps will be similar for (4.2), we will note when they differ.

To separate the nuclear norm and graph regularization terms and to isolate functions of each mode, we

introduce auxiliary variables £" and ®”. (4.1) is then rewritten as:

N
minimize Zan||2[n]||*+2 0,tr(6" T @, 6" )+ S|,
n=1

{2).{6}.X ]

s.t. Po[X +S] =PalV], X =2", X =6".

The corresponding augmented Lagrangian is given by:

2

-1
an||53 || +ZH tr((ﬁ”TCD (5" )+/l||S||1+

Il
—_

n:

Pl Paly - X -8 - Al + an 0 - AL+ ﬁ32||x 6" - A, (43)
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where A1, A5, A% € RIxBx-XIN are the Lagrange multipliers. Using (4.3), each variable can be updated
iteratively.

1. X update: The update of low-rank variable X is given by:

PolX™*] = Po [B1T1 + T] /(B1 + (N = 1)B2 + NB3),

Por [X™] = P [T2]/((N = 1)B2 + NB3), (4.4)

where Ty =Y = S" = AL, T3 = B TN Q™M + ADY) + B3 TN (™ + ALY).
2. £" update: The update of £" is solved by a soft thresholding operator on singular values of
(X — AZT) n) With a threshold of @, /B>.

3. ®" update: The variables " can be updated by:

Gt = BsGins (X = A7) (45)

where G, = (20,0, + ﬁ3I)_1 exists for any @,, for which the set of eigenvalues do not contain 2’%, and

can be computed outside the loop for faster update.

The update rule for (4.2) is given by:

n, 1 _ n,
G)r t+ —ﬁ3Ginv (Xt+l —A3 t) (46)

(m) m’

. -1
where Giny = (29nc1>,, + /331) :

4. S update: The variable S can be updated by soft thresholding Pq[Y — X'*! — Al] with a threshold of

a
B’
5. Dual updates: Finally, dual variables A, A5, A% are updated using:

A = AL+ PolX + S - Y], 4.7)
Ar21,t+1 — A;,t + (Qn,t+1 _Xt+l)’ (4.8)
Agz,z+l _ A;l’l L (G xry, 4.9)

The algorithms for both TTRPCA-G and TTRPCA-nG are outlined in Algorithm 4.1.

4.2.3 Computation and Memory Complexity for Graphs

In (4.1), the size of each @, is [, I; X [[/, I;. Thus, the memory requirement for TTRPCA-G is O(1 2,

where [ = Hf.\:’ { 1i- On the other hand, TTRPCA-nG requires only O(/ 2) parameters for each ®,.
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Algorithm 4.1: TTRPCA-G/nG

Input: VY, Q, ®,,, parameters 6,,, an, ¥, B1, B2, B3, T.

Output: X : Low-rank tensor; S: Sparse tensor.
Initialize S* = 0, 20 =0, 6™0 =0, A% =0, A7* =0, A7* =0,Vn € {1,..., N},
Giny — (26,®, + 531)—11 (TTRPCA-G) or

Giny — (20,®y + f31)  (TTRPCAG).
forr=1 to Tdo
Update X using (4.4).
Update £"s using optimization step 2.
Update ®"s using (4.5) (for TT-PCA-G) or (4.6) (for TT-PCA-nG).
Update S using optimization step 4.
Update Lagrange multipliers using (4.7), (4.8) and (4.9).
end for

Computation of G, in (4.5), for n = N has O (14) complexity. On the other hand, the computational
complexity of G;,,, in TTRPCA-nG is O(I?). Overall, the computational complexities for TTRPCA-G and
TTRPCA-nG are O(I*) and O(I°/?), respectively.

4.3 Experiments

The proposed method was compared against Tucker based HoORPCA [70] and TT based TTRPCA [197] on
data completion and denoising tasks, on both synthetic and real tensor data !. The results are reported in
terms of peak signal to noise ratio (PSNR), structural similarity index measure (SSIM), and residual squared

error (RSE), i.e., % where Y, corresponds to the true underlying low-rank data.

Table 4.1: Denoising performance for synthetic data against varying levels of gross noise c% for various
methods.

5 \ 20 35 \ 50
RSE PSNR SSIM | RSE PSNR SSIM | RSE PSNR SSIM | RSE PSNR  SSIM
Observed 195 1778 071 | 391 1173 024 | 518 93 007 | 622 771 0.0l
HoRPCA 044 3115 086 | 0.63 2812 059 | 0.86 2542 029 | 098 2429 026
TTRPCA 0.07 4752 099 | 023 3686 096 | 044 3122 081 [ 093 2477 030

TTRPCA-G 0.04 50.06 0.99 0.15  40.08 0.97 0.33 32.82 0.87 0.86  25.67 0.35
TTRPCA-nG  0.04 50.11 0.99 0.15  40.07 0.97 033 3281 0.87 0.87  25.67 0.35

Following [17], we set ay = 5 iv";{‘ 5 where 6 = min(ﬂfl:1 L, ,’X:;Ll I,). Ois are set proportional to
the size of the corresponding mode i le I for TTRPCA-nG, and are set proportional to @ for TTRPCA-G.
k'=1"k

The remaining parameters are optimized for all methods such that the best results for each method are

reported.

You can find our code in github.com/mrsfgl/ttrpca_g
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Table 4.2: Denoising performance for real data against varying levels of gross noise ¢% for various methods.

5 \ 20 35 50
RSE PSNR SSIM | RSE PSNR SSIM | RSE PSNR SSIM | RSE  PSNR  SSIM
Observed 0414 1757 0785 | 0.8276 1156 0392 | 1.09 9.3 0205 | 1.306 759 0.1
HoRPCA 0105 2953 0928 | 0211 2342 0791 | 0288 2074  0.667 | 0.383 1825  0.53
TTRPCA 0.106 2942 0929 | 0199 2349 083 | 0277 2107 0747 | 0.378 1837  0.63

TTRPCA-nG  0.103 29.89 0926 | 0.164 25.63 0.852 | 0.237 2242 0.77 0331 19.52 0.65

5 0 5 0
gzo 0.2 gzo 0.2
o )

B 35 04 %K 35 0.4
DOC’ 50 ﬂé 50 1
% 65 0.6 % 65 ‘Boe6
é’ 80 0.8 é 80 0.8
95 ] 95 ]
1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9
Rank Rank
(a) HORPCA (b) TTRPCA
0 0

5 5
X 20 0.2 X 20 0.2
o o
= 35 04 E3I 0.4

& 50 ® 50
% 65 0.6 % 65 ‘Mo.6
é’ 80 0.8 é 80 0.8
95 ] 95 ]
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
Rank Rank
(c) TTRPCA-G (d) TTRPCA-nG

Figure 4.1: Phase diagrams for missing data recovery.

4.3.1 Synthetic Data

Tensors with TT structure were generated by simulating each tensor factor U, Vn € {1,...,N}, as i.i.d.
Gaussian with mean O and covariance I, and merging them. For the sake of simplicity, all modes have the

same size and rank, i.e., I, = I,Vn, r, = r,Vn # N. In our experiments, N is selected to be 4 and I = 10,

ie., Y € RIOIXI0XI0 apd 1 is varied in the range of 1 to 9.

After generating synthetic data, we simulate missing data by setting m% of the entries to zero. In
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Fig. 4.1, we demonstrate the phase diagrams for tensor completion with various methods. By varying the
rank r of the simulated tensors and m, we illustrate the robustness of all of the methods against increasing
ranks and missing data. It can be seen that TTRPCA outperforms HoRPCA as the underlying structure is
better explained by TTNN. The proposed TTRPCA-G and TTRPCA-nG further improve the performance
by incorporating the underlying manifold information.

Next, we evaluate the robustness of the proposed method against sparse outliers by replacing a constant
¢% of the entries by random values sampled uniformly from [0, 1]. For this set of experiments, m = 0%
and r = 4. In Table 4.1, we summarize the results. It can be seen that graph regularization improves the
performance at all outlier levels. In particular, TTRPCA is better than HORPCA as TTNN captures the
low-rank structure better than SNN and graph regularization further improves the results by taking the local
geometry into account. Moreover, the results show that the performances of TTRPCA-G and TTRPCA-nG

are close to each other which indicates that the two methods capture the same geometry.

4.3.2 Real Data

The algorithms are also tested on a subset of 40 objects from COIL dataset [133]. The color images are
converted to grayscale and downsampled to a size of 16X 16. For each object, each sample image corresponds
to a different pose angle ranging from 0 to 360 degrees with increments of 10 degrees [133]. Thus, we create
tensors of size 16 x 16 X 36 x 40. We then corrupt the tensor by randomly selecting c% of all entries and
setting them to 0 or 1. Note that when using this data the adjacency matrix of the fourth mode canonical
graph is of size 368640 x 368640. This makes TTRPCA-G computationally expensive, so we only use
TTRPCA-nG.

From Table 4.2, it can be seen that the proposed method outperforms other methods in denoising for
varying levels of gross noise. TTRPCA-nG can capture the data structure better than the other methods as it

simultaneously minimizes TTNN and considers the underlying manifold across each mode.

4.4 Conclusions

In this chapter, we proposed two graph regularized robust tensor train principal component analysis methods.
In the first method, we utilized canonical unfoldings to construct the mode-n graphs while in the second

method mode-n unfoldings are used. We derived an equivalence between mode-n and canonical graphs with

the assumption that the canonical graph has a specific Kronecker structure.
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The proposed methods outperformed both robust Tucker and tensor-train decomposition methods in
denoising and completion tasks. Experiments on synthetic data show that the performances of graph
regularization with canonical unfolding and mode-n unfolding were similar to each other while mode-
n graphs provided much lower memory requirements and computational complexity. Future work will
consider capturing low-rank structure through graph total variation minimization as suggested in [154] to

reduce the computational complexity of low-rank tensor recovery task.
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CHAPTER 5

COUPLED SUPPORT TENSOR MACHINE

5.1 Introduction

Advances in clinical neuroimaging and computational bioinformatics have dramatically increased our under-
standing of various brain functions using multiple modalities such as Magnetic Resonance Imaging (MRI),
functional Magnetic Resonance Imaging (fMRI), electroencephalogram (EEG), and Positron Emission To-
mography (PET). Their strong connections to the patients’ biological status and disease pathology suggest
the great potential of their predictive power in disease diagnostics. Numerous studies using vector- and
tensor-based statistical models illustrate how to utilize these imaging data both at the voxel- and Region-of-
Interest (ROI) level and develop efficient biomarkers that predict disease status. For example, [9] proposes
a classification model using functional connectivity MRI for autism disease and reaches 89% diagnostic
accuracy for subjects under 20. [152] utilizes network models and brain imaging data to develop novel
biomarkers for Parkinson’s disease. Many works in Alzheimer’s disease research such as [129, 122, 89,
66, 124, 54, 116] use EEG, MRI and PET imaging data to predict patient’s cognition and detect early-stage
Alzheimer’s diseases. Although these studies have provided impressive results, utilizing imaging data from
a single modality such as individual MRI sequences are known to have limited predictive capacity, especially
in the early phases of the disease. For instance, [116] uses brain MRI volumes from regions of interest to
identify patients in early-stage Alzheimer’s disease. They use one-year MRI data from Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and obtain 77% prediction accuracy. Although such a performance is
favorable compared to other existing approaches, the diagnostic accuracy is relatively low due to the limited
information from MRI data. In recent years, it has been common to acquire multiple neuroimaging modalities
in clinical studies such as simultaneous EEG-fMRI or MRI and fMRI. Even though each modality measures
different biological signals, they are interdependent and mutually informative. Learning from multimodal
neuroimaging data may help integrate information from multiple sources and facilitate biomarker develop-
ments in clinical studies. It also raises the need for novel supervised learning techniques for multimodal data
in statistical learning literature.

Existing statistical approaches to multimodal data science are dominated by unsupervised learning
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methods. These methods analyze multimodal neuroimaging data by performing joint matrix decomposition
and extracting common information across different modalities. During optimization, the decomposed factors
bridging two or more modalities are estimated to interpret the connections between different modalities.
Examples of these methods include matrix-based joint Independent Component Analysis (jJICA) [29, 72,
107, 121, 165, 6] which assume bilinear correlations between factors in different modalities. However, these
matrix-vector based models cannot preserve the multilinear nature of original data and the spatiotemporal
correlations across modes as most neuroimaging modalities are naturally in tensor format. Recently, various
coupled matrix-tensor decomposition methods have been introduced to address this issue [4, 5, 6, 37, 36,
86, 130]. These methods impose different soft or hard multilinear constraints between factors from different
modalities providing more flexibility in data modeling.

Current supervised learning approaches for multimodal data mostly concatenate data modalities as extra
features without exploring their interdependence. For example, [211, 114] build generalized regression mod-
els by appending tensor and vector predictors linearly for image prediction and classification. [142] develops
a discriminant analysis by including tensor and vector predictors in a linear fashion. [111] proposes an
integrative factor regression for multimodal neuroimaging data assuming that data from different modalities
can be decomposed into latent factors. More recently, [65] proposed multiple tensor-on-tensor regression
for multimodal data, which combines tensor-on-tensor regression from [123] with traditional additive linear
model. Another type of integration utilizes kernel tricks and combines information from multimodal data
with multiple kernels. [71] provides a survey on various multiple kernel learning techniques for multimodal
data fusion and classification with support vector machines. Combining kernels linearly or non-linearly
instead of original data in different modalities provides more flexibility in information integration. [12]
proposed a multiple kernel regression model with group lasso penalty, which integrates information by
multiple kernels and selects the most predictive data modalities.

Despite these accomplishments, the current approaches have several shortcomings. First, they mainly
focus on exploring the interdependence between multimodal imaging data, ignoring the representative and
discriminative power of the learned components. Thus, the methods cannot further bridge the imaging data
to the patients’ biological status, which is not helpful in biomarker development. Second, the supervised
techniques such as integrate information primarily by data or feature concatenation without explicitly consid-
ering the possible correlations between different modalities. This lack of consideration of interdependence

may cause issues like overfitting and parameter identifiability. Third, even though methods from [111,
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65] have considered latent structures for multimodal data, these models are designed primarily for linear
regression and are not directly applicable to classification problems. Fourth, the aforementioned multimodal
analysis methods are mainly vector based methods, which cannot handle large-size multi-dimensional data
encountered in contemporary data science. As discussed in [21], tensors provide a powerful tool for analyz-
ing multi-dimensional data in statistics. As a result, developing a novel multimodal tensor-based statistical
framework for supervised learning can be of great interest. Finally, although many empirical studies demon-
strate the success of using multimodal data, there is a lack of mathematical and statistical clarity to the extent
of generalizability and associated uncertainties. The absence of a solid statistical framework for multimodal
data analysis makes it impossible to interpret the generalization ability of a certain statistical model.

In this chapter, we propose a two-stage Coupled Support Tensor Machine (C-STM) for multimodal tensor-
based neuroimaging data classification. The proposed model addresses the current issues in multimodal data
science and provides a sound statistical framework to interpret the interdependence between modalities and

quantify the model consistency and generalization ability. The major contributions of this chapter are:

1. Individual and common latent factors are extracted from multimodal tensor data, for each sample
or subject, using Advanced Coupled Matrix Tensor Factorization (ACMTF) [4, 3]. The extracted
components are then utilized in a statistical framework. Most of the work on ACMTF do not focus
on each subject separately and the extracted factors are utilized for a signal analysis rather than a
subsequent statistical learning framework. Specifically, the work on supervised approaches with

CMTF is limited.

2. Building a novel Coupled Support Tensor Machine with both the coupled and non-coupled tensor CP
factors for classification. In this regard, multiple kernel learning approaches are adopted to integrate

components from multi-modal data.

3. For the validation of our work, we provide both theoretical and empirical evidence. We provide
theoretical results such as classification consistency for statistical guarantee. A thorough numerical
study has been conducted, including a simulation study and experiments on real data to illustrate the

usefulness of the proposed methodology.

A Matlab package is also provided in the supplemental material, including all functions for C-STM classifi-
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cation. The source codes are available at our Github repository !.

5.2 Related Work

In this section, we review some background and prior work on coupled tensor decomposition and multiple

kernel learning.

5.2.1 Coupled Matrix Tensor Factorization

Figure 5.1: Illustration of Coupled Tensor Matrix Model

Motivated by the fact that joint analysis of data from multiple sources can potentially unveil complex data
structures and provide more information, Coupled Matrix Tensor Factorization (CMTF) [2] was proposed
for multimodal data fusion. CMTF estimates the underlying latent factors for both tensor and matrix data
simultaneously by taking the coupling between tensor and matrix data into account. This feature makes
CMTF a promising model in analyzing heterogeneous data, which generally have different structures and
modalities.

During latent factor estimation, CMTF solves an objective function that approximates a CP decomposition
for the tensor modality and a singular value decomposition for the second modality with the assumption that
the factors from one mode of each modality are the same. Given X| € RI*/2%--*la and X, € R/™/2 without
loss of generality assume that the factors from the first mode of the tensor X; span the column space of the

matrix X,. CMTF then tries to estimate all factors by minimizing:
1 ) (2 d 1 1) v (2T I 1
Q. V) = 11X - (X" )X VNI + 5 1% - VTR sexV =X 6

where X;,m) are the factor matrices for modality p and mode m. The factor matrices Xl(l) = Xz(l) are

the coupled factors between tensor and matrix data. An illustration of this coupling is given in Figure

1 https://github.com/PeterLiPeide/Coupled_MatrixTensor_SupportTensor_Machine
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5.1. These factor matrices can also be represented in Kruskal form, U; = [[Xl(l),Xl(z), .. .Xl(d)]] and
U, = [[Xz(l), Xz(z)]]. By minimizing the objective function Q(, U,), CMTF estimates latent factors for
the tensor and matrix data jointly which allows it to utilize information from both modalities. [2] uses a
gradient descent algorithm to optimize the objective function (5.1). Although this model is formulated for
the joint decomposition of a dth order tensor and a matrix, extensions to two or more tensors with couplings
across multiple modes are possible.

In real data, couplings across different modalities might include shared or modality-specific (individual)
components. Shared components correspond to those columns of the factor matrices that contribute to the
decomposition of both modalities, while individual components carry information unique to the correspond-
ing modality. Although CMTF provides a successful framework for joint data analysis, it often fails to obtain
a unique estimation for shared or individual components. As a result, any further statistical analysis and
learning from CMTF estimation will suffer from the uncertainty in latent factors. To address this issue, [3]
proposed Advanced Coupled Matrix Tensor Factorization (ACMTF) by introducing a sparsity penalty to the
weights of latent factors in the objective function (5.1), and restricting the norm of the columns of the factors
to be unity to provide uniqueness up to a permutation. This modification provides a more precise estimation
for latent factors compared to CMTF ([3, 5]). In our framework, we utilize ACMTF to extract the latent

factors which are in turn used to build a classifier for multimodal data.

5.2.2 CP-STM for Tensor Classification

CP-STM has been previously studied by [169, 76, 77] and uses CP tensor to construct STM types of model.
Assume there is a collection of data T}, = {(X1, y1), (X2, 2), ..., (Xu, yn)}, where X; € X < RIxxxla
are d-way tensors. X is a compact tensor space, which is a subspace of R11*2%"*la_y e {1, 1} are binary
labels. CP-STM assumes the tensor predictors are in CP format, and can be classified by the function which

minimizes the objective function

. 1<
min A7+ = > LEX), y). (5.2)
Y i
By using tensor kernel function
r d ) ) )
KX, %) = > [ [k )%, (5.3)
I,m=1 j=1
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where X = Z x(l) (d) and X, = Z X(l) e x;). The STM classifier can be written as

F(X) = )" ey K(X,, X) = " DyK(X) (5.4)

1=1
where X is a new d-way rank-r tensor, @ = [ay, ..., a,]7 is the coefficient vector, D, is a diagonal matrix
whose diagonal elements are yy, .., v, and K(X) = [K(X[,X), ..., K(X,, X)]T is a column vector, whose
values are kernel values computed between training and test data. We denote the collection of functions
in the form of (5.4) with H, which is a functional space also known as Reproducing Kernel Hilbert Space
(RKHS). The optimal classifier CP-STM f € H can be estimated by plugging function (5.4) into objective
function (5.2), and minimize it with Hinge or Squared Hinge loss. The coeflicients of the optimal CP-STM
model is denoted by a*. The classification model is statistically consistent if the tensor kernel function

satisfying the universal approximating property, which is shown by [109].

5.2.3 Multiple Kernel Learning

Multiple kernel learning (MKL) creates new kernels using a linear or non-linear combination of single kernels
to measure inner products between data. Statistical learning algorithms such as support vector machine and
kernel regression can then utilize the new combined kernels instead of single kernels to obtain better learning
results and avoid the potential bias from kernel selection ([71]). A more important and related reason for
using MKL is that different kernels can take inputs from various data representations possibly from different
sources or modalities. Thus, combining kernels and using MKL is one possible way of integrating multiple
information sources.
Given a collection of kernel functions {K;(-,-), ... K,,(:,-)}, a new kernel function can be constructed
by
K(,) =f,({Ki( ), ... Km (o) ) (5.5)

where f;, is a linear or non-linear function and 7 is a vector whose elements are the weights for the kernel
combination. Linear combination methods are the most popular in multiple kernel learning, where the kernel

function is parameterized as
K(-.-) =£,({Ki (), .. K (5 )} )

=3 k).
I=1

(5.6)
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The weight parameters 17; can be simply assumed to be the same (unweighted) ([145, 16]), or be determined
by looking at some performance measures for each kernel or data representation ([167, 147]). There are few
more advanced approaches such as optimization-based, Bayesian approaches, and boosting approaches that
can also be adopted ([103, 64, 176, 92, 69, 41, 19]). In this chapter, we only consider linear combination

(5.6), and select the weight parameters in a heuristic data-driven way to construct our C-STM model.

5.3 Methods

LetT, = {(X1.,1, X1.2, Y1), - - -» (X1, Xn.2, yn) } be training data, where each sample ¢ € {1,...,n} has two
data modalities X; 1, X;» and a corresponding binary label y, € {1,—1}. In this chapter, following [2],
we assume that the first data modality is a third-order tensor, X; | € RIXEXI3 and the other is a matrix,
X0 € RI*53 The third mode of X:,1 and the second mode of X;; are assumed to be coupled for each ¢,
i.e. the factor matrix is assumed to be fully or partially shared across these modes. Utilizing this coupling,
one can extract factors that better represent the underlying structure of the data, and preserve and utilize the
discriminative power of the factors from both modalities. Our approach, C-STM, consists of two stages:
Multimodal tensor factorization, i.e., ACMTF, and coupled support tensor machine as illustrated in Figure

5.2. In this section, we present both stages and the corresponding procedures.

Individual Factors (Tensor Modality)

/4 /4 Kl(l)(" ')Kl(z)(',')

L 1 +.+ [

X, I
_’H - H KO = K(,-) —

Shared Factors

1 +.+ ] Kz(l)(-, )
Individual Factors (Matrix Modality)

Figure 5.2: C-STM Model Pipeline
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5.3.1 Multimodal Tensor Factorization

In this chapter, the first aim is to perform a joint factorization across two modalities for each training sample,
t. Let U, | = [[{; Xt(ll), XZ(Z]), Xt(31)]] denote the Kruskal tensor of X; j, and W, » = [[o; Xt(lz), Xt(zz)]] denote

the singular value decomposition of X; 5. The weights of the columns of each factor matrix X,(z), where p
is the index for modality and m denotes the mode, are denoted by £ and o and the norms of these columns

are constrained to be 1 to avoid redundancy. The objective function of ACMTF [4, 3] is then given by:

1 2 3 1 2)T
QM 1. U, 2) = YIIXey = [ X X XENIZ + 71X, 2 - X 2XT |12

1,127,172 771,1
+BlZllo +Bliollo
3 _ x®@
st. X5 =x2 (5.7)

1 2 3 1 2
Ix) lla = 1x o = 1) = 11k Ll = 1%, 1l = 1,

Vke{l,...,r}

where X is a diagonal matrix whose elements are the singular values o of the matrix X; » and xt(jri © € RLi
denotes the columns of the factor matrices for the object X; ,,,. The objective function in (5.7) includes penal-
ties for the number of non-zero weights in both tensor and matrix decomposition. Thus, the model identifies

the shared and individual components. These factors are then considered as different data representations

for multimodal data, and used to predict the labels y; in C-STM classifier.

5.3.2 Coupled Support Tensor Machine (C-STM)

C-STM uses the idea of multiple kernel learning and considers the coupled and uncoupled factors from
ACMTF decomposition as various data representations. As a result, we use three different kernel functions
to measure their similarity, i.e., inner products. One can think of these three kernels inducing three different
feature maps transforming multimodal factors into different feature spaces. In each feature space, the
corresponding kernel measures the similarity between factors in this specific data modality. The similarities
of multimodal factors are then integrated by combining the kernel measures through a non-linear combination.
This combination should be able to take individual and shared components into account separately for better
adaptability depending on the size and corruptions on the data as the coupled modes are likely to be better
estimated than the individual modes. Thus, we use tensor kernels for individual modes of each modality and

combine these with the kernels of the coupled modes as illustrated in Figure 5.2. The kernel function for
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C-STM is defined as

K((Xl‘,l’ Xt,2)7 (Xi,la Xi,Z)) = K((ul‘,l’ ut,Z)a (ui,h ui,Z))

,
1), (1 1 2) (2 2 3, 3 () 1, (1 1
= Z W1K1( )(Xfl)k’ 1(1)1)K( '(x t(1)k () D Ew2 K( )(Xt( 1),1<’ 1(1)1)+W K( )(Xt(Z)k’ (2),1 5-8)
k=1

(3)x

for two pairs of decomposed tensor matrix factors (U 1, W, 2) and (U; 1, Wi 2). X,7

x )
Lk T2k

is the average of the

estimated shared factors 5[ +x.7 ,]. This kernel is inspired by the idea of Multiple Kernel Learning
with linear combination of multiple kernels for multimodal data. Few more details regarding chosing such
kernel combination are provided in the section 5.5.2.1. wj, w,, and w3 are the three weight parameters
combining the three kernel functions. As discussed in [71], there is no unique choice for determining these
weights, in this chapter, we adopt a cross-validation approach as explained in the Appendix C.2.

With the kernel function in (5.8), C-STM model tries to estimate a bivariate decision function f from a

collection of functions H such that
1 n
f=argmin  A-[[f]P+~ > LEX). ). (5.9)
=1

where £L(X;,y,) = max (0,1 —f(X;) - y,) is Hinge loss. H is defined as the collection of all functions in the

form of

n
£(X1, X2) = Z @y K((X;1, X1 2), (X1, X2))
1=1 (5.10)
= a" D, K(X1, X2)
due to the well-known representer theorem ([10]) for any pair of testing data (X;, X) and for @« € R". For
all possible values of @, equation (5.10) defines the data collection H. Dy is a diagonal matrix whose
diagonal elements are labels from the training data 7,,. K(X, X») is a n X 1 vector whose ¢-th element is
K((X:.1,X;2), (X1, X2)). The optimal C-STM decision function, denoted by f = @7 D, K(X], X2), can be

estimated by solving the quadratic programming problem

1
min EaTI)yKDya -1"q,

aeR"

ST. o'y=0, (5.11)
1

2na’

where K is the kernel matrix constructed by function (5.8). Problem (5.11) is the dual problem of (5.9), and

0<ac=x

its optimal solution @* also minimizes the objective function (5.9) when plugging functions in the form of

(5.10). For a new pair of test points (X}, X»), the class label is predicted as sign (f,(X], X3)).
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5.4 Model Estimation

In this section, we first present the estimation procedure for coupled tensor matrix decomposition (5.7), and
then combine it with the classification procedure to summarize the algorithm for C-STM.
To satisfy the constraints in the objective function (5.7), the function Q(, ;, U, ) is converted to a

differentiable and unconstrained form given by:

1 2 3 1 2)T
QU1 W) =yl Xy — ([ X1 X5 XV 1E + v X2 - X DEx ) |13

3 2
+ é:”Xz(,l) - Xz(,z) ”%‘

r (5.12)
- [/3\/53 et ot +er o[ - D2+ (K o - 172
k=1

3 1 2
(XD = D2+ A 1l = D2+ (x5l - D?] |

where ¢; norm penalties in (5.7) are replaced with differentiable approximations; ¢ and 6 are Lagrange
multipliers and € > 0 is a very small number. This unconstrained optimization problem can be solved by
nonlinear conjugate gradient descent ([2, 4, 130]).

Let 77 be the full (created by converting Kruskal tensor, or the factor matrices into multidimensional

array form) tensor of W, ;, and M; = X t(lz)ZX t(22)T’ the partial derivative of each latent factor can be derived
as follows:
oQ(U; 1, U 2) 3 . 0 e
S =T - X e X e X)) v e - X)), (5.13)
(5Xt ]
oQ(U; 1, U; 2) . y -0
—— 5 = (- X o XY ox ) +ox ) - XD, (5.14)
6Xt’1
oQ(U; 1, U, ») )
‘ - L2 - T =X 3T ox? ox ) +ex®) - x2) +ox) - x9), (5.15)
6Xt 1 ’ ’ ’ ’ i ’
oQQU; 1, U, 2) 2 N el
SR = (M - X)X T 0(x () - X)), (5.16)
(SXZ’2
0Q(Uy,1, Uy 2) 5 3 S
t (2) t — (Mt - Xt,Z)TXt(,QZ + T(Xt(’z) _ Xt(’l)) + G(Xt(,z) _ Xt(,z)), (517)
6Xt y
oQU; 1, U
QU 1. U, 2) _ x DT (M, - X, 2)x%) | + B_ 9% e (... (5.18)
ok ; T2 Jorve
k
oQ(U; 1, U
Q( (;; ) _ vee(T; — Xep) T (xﬁ) L ox7 oxflfk) +§ Sk te (,...,r} (5.19)
k -1 .1 1,

§]%+e

92



Algorithm 5.1: ACMTF Decomposition

10:
11:

12:
13:

R A O S > i e

Input: Multimodal data (X1, X3), 1, , S (Upper limit for the number of iterations)
Output: U7 |, U7,

W, Wy p = 11? Tt II? 2 > Initial value

Ao = -vQ(u) ,u),)

o = argmin,, Q[(II?’I, II?,Z) + gvo]
utl,l’ uzl,z = (u?,l’ u?,z) +@oAo

g0 =Ao

while s < S and [|QUS |, 2 ,) — QU S| > do

1,1° t,1°

As+1 = —VQ(lIf’l, Hf’z)
AT_,_ (Ax+ _As)
8oi1 = Agp + ——A:gf(Asﬂl—As) g
Ps+1 = AIgming Q[(uf,l’ uf’z) + ‘pgs+1]
uij-ll’ ufle = (ui,l’ uf’z) + Qs+18s+1
end while

where (vec(.)) is a vectorization operator that stacks all elements of the operand in a column vector, 7(;)

denotes the mode-j unfolding of a tensor 7-, and ® denotes Khatri-Rao product. M is a normalized matrix

whose columns have unit ¢, norms.

By combining all of the partial derivatives, the partial derivative of the objective function is given by:

0Q(U;,1, Us2) 6QUs,1, Urp) 0QQU1, Uy )

vQ(I'Il,l’ ut,Z) =

sxV T sx® T sx
’ ’ ’ (5.20)
QU 1, Wep) QU1 Wp ) 0QU,1, Uy 2) !
6Xt(22) s 64,1 PRI 60‘1 P

which is a 2r + 5 dimensional vector. As mentioned in [4], a nonlinear conjugate gradient method with

Hestenes-Stiefel updates is used to optimize (5.12). The procedure is described in Algorithm 5.1.

Once the factors for all data pairs in the training set 7}, are extracted, we can create the kernel matrix

using the kernel function in (5.8). By solving the quadratic programming problem (5.11), we can obtain the

optimal decision function f,. This two-stage procedure for C-STM estimation is summarized in Algorithm

5.2.
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Algorithm 5.2: Coupled Support Tensor Machine

1
2
3
4:
5:
6
7
8

9:

10:
11:
12:
13:
14:
15: end procedure

: procedure C-STM

Input: Training set 7,, = {(X1,1, X12,¥1), - ., (Xu,1, Xn.2, ¥n) }, ¥, kernel function K, r, 4,17, S

fort=1,2,...ndo
uj,l’ u:,z = ACMTF((XI‘,I’ Xt,Z), r, n’ S)
end for

Create initial matrix K € R

fort=1,... ndo

fori=1,...,ndo
K[l9 t] = K((ut,l’ ut,2)7 (ui,h ui,2)

K[i, 7] = K[t,i]
end for
end for
Solve the quadratic programming problem (5.11) and find the optimal «*.
Output: o*

> Kernel values

5.5 Experiments

5.5.1 Parameter Selection

5.5.1.1 Multimodal Tensor Factorization

The proposed model requires the selection of three different parameters, namely, y, 8, and rank r. To select

these parameters, we closely follow best practices outlined in previous work on CMTF [2], ACMTF [4] and

CCMTF [130]. First of all, one of these parameter can be set to 1 as a pivot, and following previous work,

we set ¥ = 1. The selection of rank r is directly related to the selection of 8. As 8 enforces sparsity over

the singular values, it directly minimizes the rank. With sufficiently large r, we can estimate the low-rank

part through optimization. For the selection of r in real data, we set r = 5 following the work of [130] where

it was shown through CORCONDIA tests [85] that r = 3 is sufficiently large for oddball data. In the case

of the simulation study, » = 5 is again sufficiently large as the data were generated from rank r = 3 factors.

Finally, based on our empirical results and the results presented in [130] we set 8 = 0.001 using k-fold cross

validation.

94



55.1.2 C-STM

The parameters in C-STM include kernel weights wy, w,, w3 and regularization parameter A in the optimiza-
tion. The weight parameters, normalized such that the {,-norm is equal to 1, and A are selected using 5 fold
cross-validation. The overall classification accuracy in our validation set serves as the performance metric
and helps us determine the best combination of weights and A.

The selection of weight parameters wi, w, w3 is indeed a problem of how to combine kernels from
different modalities. It is straightforward to calculate kernels from every data modality, however, combining
them appropriately and effectively would be challenging unless we can find out the weight for each kernel.
This problem has been widely studied in the literature of Multiple Kernel Learning. In [71], the authors
summarize that the existing methods of kernel weight selection can be divided into five categories, including
fixed rules, heuristic approaches, optimization approaches, Bayesian approaches, and boosting approaches.
As there is no consensus on the best way to choose the weights, we adopt a cross-validation approach as
explained in the Appendix of the revised manuscript to identify the kernel weights. The overall classification
accuracy in our validation set serves as the performance metric and helps us determine the best combination
of weights.

The generalization of our method to more than two modalities would be straightforward for tuning the
weights. This is because the tuning problem has been widely studied in multiple kernel learning (MKL)
research. There is no restriction on the number of kernels one can include in MKL framework. The weight
selection techniques in MKL can be adapted to our framework.

The optimization problem defined in (5.9) is an ordinary SVM problem once the kernel values are
calculated through equation (5.8). Thus, for more information about the estimation procedure, A selection,

as well as the consistency results readers are referred to existing Support Vector Machine literature [163].

5.5.2 Simulated Data

We present a simulation study to demonstrate the benefit of utilizing C-STM with multimodal data in
classification problems. To show the advantage of using multi-modalities in C-STM, we include CP-STM
from [76], Constrained Multilinear Discriminant Analysis (CMDA), and Direct General Tensor Discriminant
Analysis (DGTDA) from [112] as competitors. These existing approaches can only take a single tensor /

matrix as the feature for classification. As a result, they are not able to enjoy the multi-modalities in the
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simulated data. We apply these approaches on every single data modality in our simulated data, and compare
their classification performance with C-STM which uses multimodal data.
We generate synthetic data using the idea from [61]. Suppose the two data modalities in our classification

problems are

3
_ (1 (2) (3)
X1 = Z X1 © Xpr1 © Xpr

k=1
3
_ (1) (2)
X1 = Z X2 %Xk
k=1

where X; | are three-way tensors in the size of 30 by 20 by 10. X;» are matrices in the size of 50 by 10.

(5.21)

Both of them have CP ranks equal to 3. To generate data for the simulation study, we first generate the
latent factors (vectors) from various multivariate normal distributions, and then convert these factors into
full tensors X;,; and matrices X; » using equation (5.21). The multivariate normal distributions we used to
generate columns of the latent factors in equation (5.21) are specified in Table 5.1 below. In Table 5.1, we
use ¢ = 1,2 to denote data from two different classes.

Table 5.1: Distribution Specifications for Simulation Study; MVN stands for multivariate normal distribution.
I are identity matrices. Bold numbers are vectors whose elements are all equal to the numbers.

Tensor Factors Shared Factors Matrix Factors
Simulation ¢ x,(cl,i’l x](ji’l X](jz’l = X](fz’z x](cl’g’z
Case 1 1 MVN(1,I) MVN(,I MVN(1,1I) MVN(1,1I)
2 MVN(.5,I) MVN(1I MVN(L,1) MVN(1.25,1)
Case 2 1 MVN(,I) MVN(LI MVN(1,1) MVN(1,I)
2 MVN(.5,I) MVN(,I) MVN(1,I) MVN(1.5,1)
Case 3 1 MVN(1,I) MVN(I MVN(L,1) MVN(L,1)
2 MVN(1.5,I) MVN(1,I) MVN(1,1I) MVN(1.75,1)
Case 4 1 MVN(1,I) MVN(,I MVN(1,I) MVN(1,1I)
2 MVN(1.5,I) MVN(LI) MVN(L,1) MVN(2,I)
Case 5 1 MVN(,I) MVN(LI MVN(1,1I) MVN(1,1I)
2 MVN(1.5,I) MVN(1I) MVN(1,1) MVN(2.25,1)
Case 6 1 MVN(1,I) MVN(LI MVN(L,1) MVN(L,1)
2  MVN(2,I) MVN(,I MVN(1,1I) MVN(1,1I)
Case 7 1 MVN(1,I) MVN(,I MVN(1,1) MVN(1,1)
2  MVN(1,I) MVN(,I MVN(1,1I) MVN(2,1I)
Case 8 1 MVN(1,I) MVN(,I MVN(1,1I) MVN(1,1I)
2  MVN(1,I) MVN(LI MVN(2,1I) MVN(L,1I)

96



There are eight different cases in our simulation study. In case 1 - 5, one of the tensor factors and the
matrix factors are generated from different multivariate normal distributions for data in different classes.
This means the tensor and matrix data both contain certain class information (discriminant power) which are
different in different data modalities. Notice that the discriminant power in one of the tensor factor remains
the same among case 1 - 5, while the power in the matrix factor increases. Case 6 and 7 assume the class
information exists only in a single data modality. In case 6, only one of the tensor factors are generated from
different distributions for data in different classes. This factor then becomes the matrix factor in class 7. In
case 8, the shared factors are sampled from different distributions, meaning that both tensor and matrix data
modalities have class information. However, such class information are from the shared factors are the same
between different modalities.

For each simulation case, we generate 50 pairs of tensor and matrix from both class, collecting 100 pairs
of observations in total. We then perform a random training and testing set separation by randomly choosing
20 samples as the testing set, and use the remaining data as the training set. The random selection of testing
set is conducted in a stratified sampling manner such that the proportion of samples from each class remains
the same in both training and testing sets. For all models, we report the model prediction accuracy, the
proportion of correct predictions over total predictions, on the testing set as the performance metric. The
random training and testing set separation is repeated for 50 times and the average prediction accuracy of
these 50 repetitions for all the cases are reported in Figure 5.3. Additionally, the standard deviations are
illustrated by the error bars in the figure. The results of CP-STM, CMDA, and DGTDA with tensor data are
denoted by CPSTM1, CMDA1, and DGTDALI respectively in the figure. The results using matrix data are
denoted by CPSTM2, CMDA?2, and DGTDAZ2.

From the Figure 5.3, we can conclude that our C-STM has a more favorable performance in this
multimodal classification problem comparing with other competitors. Its accuracy rates are significantly
larger than other methods in most cases. Particularly, we can see that the accuracy rates of C-STM (orange)
are increasing from case 1 to case 5, while the accuracy rates of CP-STM using tensor data remain the same.
This is because the difference between class mean vectors for the first tensor factor does not change from
case 1 to case 5. However, the gap between class mean vectors in matrix factor increases. Due to this fact,
both C-STM and CP-STM (yellow) which utilize matrix data are getting better performance from case 1
to case 5. More importantly, C-STM always outperforms CP-STM with matrix data as it enjoys the extra

class information from multimodalities. In case 6 and case 7 where class information are in single data
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Figure 5.3: Simulation Result: Average accuracy rates shown in bar plots; Standard deviation of accuracy
rates shown by error bars

modalities, the advantage of C-STM is not as significant as the previous cases, though its performances are
slightly better than CP-STM. This indicates C-STM can provide robust classification results even when extra
data modalities do not provide any other class information, as it can extract more accurate estimates of the
factors in the decomposition step. In case 8 where the class information is from the shared factors, C-STM
recovers the shared factors accurately and provides significantly better classification accuracy. Through this

simulation, we showed that C-STM has a clear advantage of using multimodal data in classification problems,
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and is robust to redundant data modalities.

5.5.2.1 Kernel Selection

In this section, we evaluate and justify the choice of the kernel function presented in (5.8). In this formulation,
the individual and coupled modes for each modality are first separated and then the individual modes of each
modality are combined as a tensor kernel function. The kernels from the individual modes are then added
to those from the coupled modes to obtain the final form where the weights for the individual and coupled
parts can be optimized as discussed in the Appendix. This kernel formulation separates the coupled and
individual information and integrates them as a linear combination. Although this is not the only way to
integrate kernels, the relatively simple structure of such combination provides us with several benefits such
as interpretability, convenient parameter tuning, and generalizability for multimodal data. With equation
(5.8), it is possible to explain the contribution of different data modalities to discrimination power by looking
at the weights parameters. Further, with linear combination of kernels, the weight parameters can be tuned
with the different approaches introduced in [71] such as Group Lasso. Even though we do not adopt these
tuning techniques in this chapter, it still shows the advantage of choosing such a combination and can be the
foundation for future work. Lastly, this kernel combination can be extended for data with more modalities
easily since kernels are appended linearly.

Besides the aforementioned reasons, we also provide numerical experiments to illustrate the performance
of our choice against other kernel combination choices. In these experiments the factor sizes are the same
(X; € RAOX40x40 and X, € R¥40_ ;= 3) 5o that the kernels are balanced across the modes. We consider
two cases, i.e., Case 8 in Table 5.1, and Case 9 where the columns of the latent factors corresponding to all
individual and coupled modes of the second class are from the distribution MVN(2, I). Although there can
be many different kernel combinations, we select four particular formulations for comparison as they can be
a basis for other choices. The particular formulations are the weighted combination of individual kernels
from all modes (K2), the weighted combination of the tensor kernels corresponding to the two modalities
(K3) and the tensor kernel corresponding to all modes across modalities (K4). The formulations for the
different kernels are given in Table 5.2. We report average classification accuracy across 50 simulations,
where the simulated tensors are randomly initialized.

In Table 5.3, we can see that the kernel selection schemes K1 and K2 perform the best. K3 performs
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Table 5.2: Various kernel combination schemes. Note that Kz(z) =K 1(3).

Combination Scheme

Kl | wik"K? +wok” +wik(V
K2 | wik" + wak? + w3k +wyk (Y
K3 | wik"KPKD +wokVk?

2
K4 b e @l
1 1 1 2

slightly worse as it is not as flexible as the previous two. Finally, K4 performs the worst as it is affected
by all modes simultaneously, and cannot generalize well. While the difference in performance between the
kernels is not significant, K3 and K4 cannot determine whether the observed class differences are due to
an individual mode or a coupled mode. Thus, K1 and K2 are better in terms of explaining the results. For
Case 8, in most cases, cross-validation across a range of weight parameters for K1 and K2 yields w, = 1
and w3 = 1, respectively, and the remaining weights are equal to zero. This directly identifies the source
of discriminability and allows for better interpretability, which is not possible for K3 and K4. Finally,
K1 has less number of parameters than K2 and this can be advantageous in cases with high number of
modalities. The smaller number of parameters make cross-validation simpler, while still allowing for some
interpretability.

Table 5.3: Classification accuracy using different kernel combinations.

| K1 K2 K3 K4

Case9 | 0.91 £0.036 0.9+0.043 0.87+0.038 0.82+0.045
Case 8 | 0.90+0.039 0.9+0.038 0.88+0.036 0.83+0.06

5.5.3 EEG-fMRI Data

In this section, we present the application of the proposed method on simultaneous EEG-fMRI data. The
simultaneous electroencephalography (EEG) with functional magnetic resonance imaging (fMRI) is one of
the most popular non-invasive multimodal brain imaging techniques to study human brain function. EEG
records electrical activity from the scalp resulting from ionic current within the neurons of the brain. Its
millisecond temporal resolution makes it possible to record event-related potentials that occur in response
to visual, auditory and sensory stimuli ([172, 1]). While EEG provides high temporal resolution, its spatial

resolution is limited by the number of electrodes placed on the scalp and thus provides less spatial resolu-
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tion compared to other neuroimaging modalities such as magnetic resonance imaging (MRI) and Positron
Emission Tomography (PET). As a result, it has been commonplace to record EEG data in conjunction
with a high spatial resolution modality. As another powerful tool in studying human brain function, blood
oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) provides signals with
much higher spatial resolution to reflect hemodynamic changes in blood oxygenation level at all voxels
related to neuronal activities ([138, 15, 101, 62]). Recording simultaneous EEG and fMRI can provide high
resolution information at both the spatial and temporal dimensions at the same time. Thus, developing novel
machine learning techniques to utilize such multimodal data is of great significance. In this application, we
apply our C-STM model to a binary trial classification problem on a simultaneous EEG-fMRI data.

The data is obtained from the study [178]. In this study, there are seventeen individuals (six females,
average age 27.7) participated in three runs each of analogous visual and auditory oddball paradigms. The
375 (125 per run) total stimuli per task were presented for 200 ms each with a 2-3 s uniformly distributed
variable inter-trial interval. A trial is defined as a time window in which subjects receive stimuli and
make responses. In the visual task, a large red circle on isoluminant gray backgrounds was considered as
the target stimuli, and a small green circle were the standard stimuli. For the auditory task, the standard
and oddball stimuli were, respectively, 390 Hz pure tones and broadband sounds which sound like "laser
guns". During the experiment, the stimuli were presented to all subjects, and their EEG and fMRI data are
collected simultaneously and continuously. We obtain the EEG and fMRI data from OpenNeuro website
(https://openneuro.org/datasets/ds000116/versions/00003). We utilize both EEG and fMRI in
this data set with our C-STM model to class stimulus types in all the trials. Through our numerical study,
we want to demonstrate the fact our C-STM model enjoys the advantage of data multimodality and provides
more accurate class predictions. The data from Subject 4 are dropped since its fMRI data are corrupted.

We pre-process both the EEG and fMRI data with Statistical Parametric Mapping (SPM 12) ([11]) and
Matlab. The EEG data is collected by a custom built MR-compatible EEG system with 49 channels. [178]
provides a version of re-referenced EEG data with 34 channels which are used in our experiment. This version
of EEG data are sampled at 1,000 Hz, and are downsampled to 200 Hz at the beginning of pre-processing.
We then remove both low-frequency and high-frequency noise in the data using SPM filter functions. As
the last step of EEG pre-processing, we define trials from Brain Imaging Data Structure (BIDS) files [136]
and extract EEG data epochs recorded within the trial-related time windows. The time window for each trial

is considered to go from 100 ms before the stimulus onset until 500 ms after the stimulus. For each trial,
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we construct a three-mode tensor corresponding to the EEG data for all subjects where the modes represent
channel x time x subject. We denote it as X;; € R3**!121x16 The fMRI data is collected by 3T Philips
Achieva MR Scanner with 170 volumes (TR = 2s) per session. Each 3D volume contains 32 slices. The
voxel size in the image is 3 x 3 x 4 mm. For each subject, we realign all the fMRI volumes from multiple
sessions to the mean volume, and co-register the participant’s T1 weighted anatomical scan to the mean fMRI
volume. Next, we normalize all the fMRI volumes to match the MNI brain template ([102]) by creating
segments from co-registered T1 weighted scan, and keep the voxel size as 3 x 3 x4 mm. All normalized fMRI
volumes are then smoothed by 3D Gaussian kernels with full width at half maximum (FWHM) parameter
being 8 x 8 X 8. After the pre-processing, we further perform a regular statistical analysis ([119, 190]) to
extract fMRI volumes from visual and auditory stimulus related voxels. Such data are also known as Region
of Interest (ROI) data. We extract fMRI volumes from 178 voxels (in Figure 5.4a) for auditory oddball tasks,
and 112 voxels for auditory tasks. As a result, fMRI data are modeled by matrices whose rows and columns
stand for voxels and subjects: X; > € RIXI78 for auditory task data, and X; , € RI6X112 for visual task data.
There is no time mode in fMRI data because the trial duration is less than the repetition time of fMRI (time
for obtaining a single 3D volume fMRI). For each trial, there is only one 3D scan of fMRI collected from a
single subject. The ROI data then becomes a vector for this subject in the trial as we extract volumes from
the regions of interest.

To classify trials with oddball and standard stimulus, we collect 140 multimodal data samples (X; 1, X; 2)
from auditory tasks, and 100 samples from visual tasks. For both types of tasks, the numbers of oddball and
standard trials are equal. We consider the trials with oddball stimulus as the positive class, and the trials with
standard stimulus as the negative class. Like the procedures in our simulation study, we select 20% of data
as testing set, and use the remaining 80% for model estimation and validation. The classification accuracy,
precision (positive predictive rate), sensitivity (true positive rate), and specificity (true negative rate) of
classifiers are calculated using the test set at each experiment. The experiment is repeated multiple times,
and the average accuracy, precision, sensitivity, and specificity, and their standard deviations (in subscripts)
are reported in Table 5.4. The single mode classifiers CPSTM, CMDA, and DGTDA are also applied on
either EEG or fMRI data as a comparison. The single mode classifiers applied on EEG data are denoted by
appending the number "1" after their names, and those applied on fMRI data are denoted by appending the
number "2". The area under the curve (AUC) for all the classifiers are also reported in Table 5.4.

The results in Table 5.4 show that the trial classification accuracy for C-STM using multimodal data
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Table 5.4: Real Data Result: Simultaneous EEG-fMRI Data Trial Classification (Mean of Performance
Metrics with Standard Deviations in Subscripts)

Task Method Accuracy Precision Sensitivity Specificity =~ AUC

C-STM 0.890.05 0.830.07 1 .000.00 0-770,1 1 0.890.06
CP-STM1  0.80908  0.71¢.11 1.000.00 0.600.12  0.78p.06
CP-STM2 0.830‘06 0.760.07 0.990.05 0-650_1 1 0.820,05
Auditory CDMAL1 0.55¢.10 0.51¢.09 0.96¢ o9 0.209.21 0.55¢.06
CDMA2 0.670‘09 0.610,11 0.920,07 0.460.14 0-700.08
DGTDA1 0.55¢.09 0.51¢.09 0.94¢ o7 0.230.12 0.59¢ .06
DGTDA2  0.67¢.09 0.600.10 0.900.09 0.469.13  0.680.08

C-STM 0.860.06 0.820.09 0.930.07 0-770,12 0.860.06
CP-STM1 0.76908  0.66¢.11 1.000.00 0.5490.12  0.780.05
CP-STM2  0.77¢.08 0.700.11 0.98¢.03 0.58.17 0.770.07
Visual CDMA1 0.530.12 0.520'11 0.940.11 0-110.18 0-540.08
CDMA2 0.65¢.13 0.610.14 0.91¢.09 0.430.19 0.66¢.99
DGTDA1  0.56¢.1; 0.540.11 0.940.06 0.179.12  0.56¢ .7
DGTDA2 0.649.10 0.60¢.13 0.86¢.10 0.44¢ 13 0.64¢.97

is better than any classifier based on single modality with a significant improvement in terms of average
accuracy rates and average AUC values. This improvement is observed for classification of both auditory and
visual tasks. This observation agrees to the conclusion from our simulation study. Similar to our simulation
study, the tensor discriminant analysis does not work as well as CP-STM and C-STM. In addition, it is
obvious that the performance of tensor discriminant analysis using fMRI data are better than using EEG
data. This is within our expectation, since the regions we extracted from fMRI data are identified by group
level fMRI statistical analysis. The data in these regions have already shown significant differences between
different trials in the traditional study, and thus are easy to classify. On the other hand, there is no prior
analysis and feature extraction procedure applied on EEG data, leaving a low signal to noise ratio in EEG
data. However, C-STM still can take advantage of using EEG data and further increase the classification

accuracy, highlighting its robustness and potential in processing noisy mulitmodal tensor data.

5.6 Conclusion

In this chapter, we have proposed a novel coupled support tensor machine classifier for multimodal data by
combining the advanced coupled matrix tensor factorization (ACMTF) and support tensor machine (STM).

The most distinctive feature of this classifier is its ability to integrate features across different modalities and

structures. The proposed approach can simultaneously take matrix- and tensor-shaped data for classification

103



and can be easily extended to inputs with more than two modality. The coupled tensor matrix decomposition
unveils the intrinsic correlation structure between data across different modalities, making it possible to
integrate information from multiple sources efficiently. Such a decomposition also makes the whole method
robust and applicable to large-scale noisy data with missing values. The newly designed kernel functions
in C-STM provide feature-level information fusion, combining discriminant information from different
modalities. Moreover, the kernel formulation makes it possible to utilize the most discriminative features
from each modality by tuning the weight parameters in the function.

The most important theoretical extension of our current approach would be the development of excess
risk for C-STM. In particular, we are looking for an explicit expression for the excess risk in terms of data
factors from multiple modalities to quantify the contribution of every single modality in minimizing the
excess risk. By doing so, we are able to interpret the importance of each data modality in classification
tasks. In addition, quantifying the uncertainty of tensor and matrix factors estimation and their impact on
the excess risk will build the foundation to the next level.

Future work will focus on learning the weight parameters in the kernel function via optimization. As [71]
introduced, the weights in the kernel function can be further estimated by including a group lasso penalty
in the objective function. This procedure allows the identification of the most significant components and
reduce the cost of parameter selection. Finally, the proposed method can be extended to multimodal data
with more than two modalities, and for regression problems.

In conclusion, we believe C-STM offers many encouraging possibilities for multimodal data integration
and analysis. Its capability of handling multimodal tensor inputs will make it appropriate in many advanced
data applications in neuroscience and medical research. We anticipate that this method will play an important

role in a variety of applications.
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(a) Auditory Task
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(b) Visual Task

Figure 5.4: Region of Interest (ROI)
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CHAPTER 6

CONCLUSIONS

In this thesis, we introduced new tensor based machine learning models using various data structures. In par-
ticular, we utilized tensor network structures, geometric models and multi-modal coupling for efficient tensor
based unsupervised and supervised learning. The proposed methods in the thesis contribute significantly to
the tensor learning literature by improving existing structures and using tensors to model new problems.

In Chapter 2, we proposed a tensor decomposition structure, i.e., Multi Branch Tensor Network, that
provides improved storage and computational efficiency compared to existing architectures, without sac-
rificing representation power of the low-dimensional approximations. We explored two applications of
multi-branch structure in supervised and unsupervised settings and provided theoretical analysis of conver-
gence, computational and storage complexities. In the supervised setting, a multi-branch implementation of
LDA was introduced. The proposed approach reduced the computational complexity by orders of magni-
tude, while improving the classification accuracy compared to vector-, Tucker- or TT-based methods. We
also demonstrated that the proposed approach is more general compared to Tucker based MDA methods,
TT-based BTT and MPS, and provided a way of selecting the optimal structure depending on data size.
The proposed methods show robustness against small-sample-size (SSS) problem, which is considered to
be the main drawback of LDA [63], as it learns smaller number of parameters due to the efficient multi-
branch structure. The proposed Multi-branch methods can be further utilized in any Ritz pair (extremal
eigenvalue-eigenvector pair) computation. In the unsupervised setting, the proposed structure was used for
a graph regularized optimization problem to reduce the computational complexity and learn more effective
subspaces for dimensionality reduction. Low-dimensional projections, or features of the data are then used
for clustering. Using multi branch structure reduced the computational complexity for the optimization by
orders of magnitude, especially when the projected space was larger in dimension. This is a crucial as,
often, using a small number of features does not provide acceptable clustering quality or other learning
objective functions. The proposed method outperformed Tucker-based graph regularized method in terms
of clustering quality, hence, suggesting that multi-branch decompositions could learn subspaces that better
fit the data compared to Tucker based methods even in a manifold learning setting.

In Chapter 3, we present a framework for robust tensor decomposition for anomaly detection in spa-
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tiotemporal data. In particular, we focus on urban traffic monitoring applications where the anomalies exhibit
themselves as temporally contiguous events. Motivated by this application, we model spatiotemporal data
as a low-rank plus sparse tensor where the low-rank part corresponds to underlying data and sparse part
corresponds to anomalies. The continuous nature of the anomalies are taken into account with the additional
constraint that the sparse part is temporally continuous (LOSS). We explore two extensions of this model.
First, to capture the underlying local geometric relations in the data, we consider graph regularization across
each mode (GLOSS). This type of regularization is motivated by the assumption that the data lies on a
product graph, which holds true for many real world scenarios, since real world data is often generated over
graphs with such structures. Specifically, for traffic data, this structure is fitting by design. Second, we
modify our objective function by minimizing the graph total variation instead of nuclear norm for low-rank
approximation to reduce the computational complexity (LOGSS). Finally, we incorporate a tensor comple-
tion framework in all of these methods to address missing data. The proposed methods are shown to improve
anomaly detection performance compared to baseline methods and have higher accuracy than existing robust
tensor decomposition methods. In particular, using graph regularization in the objective improves the results
significantly even when the nuclear norm penalties are dropped. This shows that using geometric structure
instead of global structure such as rank can be used to obtain highly accurate and low complexity tensor
models.

In Chapter 4, we propose incorporating geometric structure in addition to global structure into tensor
denoising and recovery formulations. Geometric tensor learning allows for better modeling of underlying
relations of data compared to purely algebraic measures. We propose a TT based robust PCA model where
a graph smoothness penalty is applied to each mode-n canonical unfolding. Since this formulation results
in computationally intractable matrix inversion problems, we propose an extension where we impose a
Kronecker structure on the mode-n canonical graph. This structure is designed such that the the redundancy
across the different mode unfoldings is minimized. We prove the equivalence between the proposed graph
smoothness penalty with mode-n unfolding based graph smoothness penalty. We show the advantage of
using geometric approaches by comparing these two methods with purely algebraic objective functions.
The proposed methods outperform the existing methods in missing data imputation, and denoising tasks.
Moreover, using the Kronecker structured graph rather than the canonical graph provided similar results with
improved computational efficiency. The results in this chapter illustrate that with additional regularizations

on topological structure, TT-based models can be further improved.
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Finally, in Chapter 5, we utilize coupled tensor decomposition in a supervised setting. Heterogenous data
collected by sensing the same physical phenomena are generally coupled. Coupled tensor decomposition
methods have been utilized extensively for unsupervised learning tasks such as denoising, recovery and
clustering such heterogeneous data. In this chapter, we showed that these models can also be utilized in
supervised settings, for robust dimensionality reduction and feature extraction. To combine representations
from different sources, we proposed using multiple kernel learning methods. MKL uses a combination of
single kernels, that can take inputs from various data sources, to obtain better results and avoid potential
bias from kernel selection [71]. We propose a two-step model where in the first step, factor matrices for
all samples are extracted by coupling heterogeneous data sources. In the next step, we feed the extracted
features, i.e., factor matrices, to a kernelized support tensor machine. The proposed method shows better
classification accuracy compared to supervised learning based on the individual data sources. Coupled
decomposition extracts the features from each sample using information from both data sources, which
provides better features for the subsequent STM and improves the accuracy compared to STM trained on
the features of individual modalities. The proposed method also outperforms methods that specifically learn

discriminative factors from individual modalities, which illustrates the advantage of coupling.

6.1 Future Work

The work in this thesis suggests new research directions. In this section, we suggest areas of future work for

each chapter.

6.1.1 Multi-Branch Tensor Learning

The proposed tensor decomposition structure is a hybrid between Tucker and TT decompositions, hence,
is generally applicable in any tensor decomposition problem. Thus, the structure can be utilized in many
other supervised and unsupervised tasks, such as regression, STMs, dictionary learning, manifold learning,
data recovery and compression. It can also be utilized in improving tensor-based deep learning methods, by
either compressing the data, or the network parameters as it provides an optimal way of decomposing large
tensors.

Theoretical aspects of the representation power of this structure is also of interest as it would lead to
a deeper understanding of tensor decompositions. Since Tucker and TT decompositions are special cases

of the multi-branch structure, this analysis would also reveal a concrete reasoning for the choice of the
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decomposition structure depending on the problem, and data at hand.

6.1.2 Tensor Methods for Anomaly Detection

Chapter 3 reveals the utility of tensor based robust learning architectures on the problem of anomaly detection,
specifically for spatiotemporal data. However, there are still some open questions regarding the theoretical
recovery guarantees for the proposed algorithms. Future work can explore recovery bounds for anomalies
depending on the data structure. Furthermore, the proposed methods rely on the proper selection of the
regularization parameters. Although we have shown empirically that the performance is robust within a
wide range of parameter choices, these methods still require some tuning for desirable performance. A fully
Bayesian extension of the proposed approach could be considered as future work to automatically estimate
these parameters depending on the data.

Anomaly detection part in this chapter was implemented by scoring each fiber individually by a separate
algorithm, which may result in loss of information. Future work will consider a statistical tensor anomaly
scoring method to avoid this simplification. Finally, since the specific application in this chapter is spatiotem-
poral data, a natural extension would be online anomaly detection. Online subspace tracking or functional

data analysis literature may provide the necessary tools for such an extension.

6.1.3 Geometric Tensor Learning

In Chapter 4, we illustrate how using geometric relations within data improve robust tensor learning. Future
work would quantify these improvements in terms of theoretical bounds for recovery when such a structure
is utilized. Although we utilize a combination of global and local structure in our methods, it is also of
interest to use only the local structure, i.e., geometric relations for data recovery. Recovery guarantees for
such an approach is also of great interest as it might allow milder conditions compared to algorithms that
use global structure. In this chapter, we estimated the underlying graphs using a k-NN approach. It is known
in graph learning literature that with noisy and missing data, this generally produces noisy estimates of the
underlying graph. As such, future work will focus on simultaneous graph learning with data recovery.
Finally, as the use of graphs corresponding to the canonical mode-n unfolding requires excessive memory
and computational resources, a multi-branch structure could be utilized to reduce these costs without

approximating the graphs with a Kronecker structure. This would also pave the way for a fully geometric
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robust multi-branch decomposition.

6.1.4 Supervised Coupled Tensor Learning

In Chapter 5, coupled tensor factorization was utilized as a feature extraction step. However, without using
the class label information, the extracted features might not be suitable for the subsequent classification task.
In this approach, we propose to employ a supervised coupled factorization to address this. Specifically, we

extend Multilinear Discriminant Analysis to coupled factorization by solving:

2 Al (U TSETUY) &

minimizeU'(len’i Z Z + Z Z |ALT; - V%, 6.1)

i=1 n=1 tr(Ur(Ll)’TSlénUr(Ll)) i=l nen

where Siv"f, Sig’" are within and between class scatters of modality i and mode-n; 3t is the set of coupled
modes, and A,,’s are transformations through which the couplings are defined. The transformations are used
to explain the difference in properties and resolutions across different modalities even when they correspond
to similar phenomenon.

To classify a test sample, one can use Mahalanobis distance with respect to class means and covariance.
Another approach would be to train a classifier using the sample mode factors Y that are learned through a

least squares optimization and similar procedures with Approach 1 can be utilized for test cases.
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