GREATEST COMMON DIVISORS NEAR ๐‘†-UNITS, APPLICATIONS, AND CONJECTURES ON ARITHMETIC ABELIAN SURFACES By Zheng Xiao A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematics โ€“ Doctor of Philosophy 2022 ABSTRACT We bound the greatest common divisor of two coprime multivariable polynomials evaluated at algebraic numbers, generalizing the work of Levin by thickening the group of ๐‘†-units to allow for points that are merely โ€œclose" to ๐‘†-units. Our inequalities make progress towards conjectured GCD inequalities of Silverman and towards Vojtaโ€™s conjecture for blowups. The proofs rely on Schmidtโ€™s Subspace Theorem. As an application, we prove results on the greatest common divisors of terms from two general linear recurrence sequences, extending the results of Levin, who considered the case where the linear recurrences are simple. In particular, we improve on recent results of Grieve and Wang for general linear recurrences, and bound the exceptional set to a logarithmic region. An example shows that the logarithmic region is necessary. On abelian surfaces which come from the Jacobians of hyperelliptic curves, we establish a connection between GCD conjectures on the abelian surface and conjectures on the arithmetic discriminant for quadratic points on the associated hyperelliptic curve. It predicts, in particular situations, a stronger inequality than Vojtaโ€™s theorem on the arithmetic discriminant. We give some examples of extreme values of the arithmetic discriminant. ACKNOWLEDGEMENTS As the author of the thesis, I would like to thank Aaron Levin for many helpful comments on several proofs of the main theorems as well as helping polish the thesis. I would also thank Nathan Grieve and Joseph Silverman for advice on writing and making the reference list. As a PhD student at Michigan State University, I thank all the staff, faculty and colleagues for creating such a good atmosphere of studying and researching. In particular, I would like to thank my academic committee members: Aaron Levin, George Pappas, Micheal Shapiro and Rajesh Kulkarni not only for offering great graduate courses but also for caring me on both academic and bureaucratic affairs throughout my PhD period. In the end I would like to thank my parents for their unconditional trust and support. I would like to thank my girlfriend, Siqi Wang, for her timely encouragement, endless patience and love despite the long distance between us. I would like to thank my best friend, Zhihao Zhao, for his company during all these years. I would like to thank my supervisor, Aaron Levin, for not just teaching me math, but also teaching me the attitude towards research and starting me up in my early career. I also thank all my friends, Chuangtian (Armstrong) Guan, Yizhen Zhao, Chen Zhang, Keping Huang, and all other friends,for giving me a happy and unforgettable experience at Michigan State University. iii TABLE OF CONTENTS CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Diophantine approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Linear recurrence sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Arithmetic discriminant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 CHAPTER 2 ABSOLUTE VALUES AND HEIGHTS . . . . . . . . . . . . . . . . . 12 2.1 Absolute values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Height functions on projective spaces . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Height functions on projective varieties . . . . . . . . . . . . . . . . . . . . . 13 2.4 Local height functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Generalized greatest common divisors . . . . . . . . . . . . . . . . . . . . . . 17 CHAPTER 3 DIOPHANTINE APPROXIMATION . . . . . . . . . . . . . . . . . . . 19 3.1 Rothโ€™s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Wirsingโ€™s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.3 Schmidtโ€™s subspace theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 CHAPTER 4 ARITHMETIC DISCRIMINANT . . . . . . . . . . . . . . . . . . . . . 22 4.1 Arithmetic varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Arithmetic discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 CHAPTER 5 TOOLS IN LINEAR RECURRENCE SEQUENCES . . . . . . . . . . . 26 CHAPTER 6 ALMOST ๐‘†-UNITS AND ALMOST ๐‘†-UNIT EQUATIONS . . . . . . . 29 6.1 Compatible definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.2 Almost ๐‘†-unit equation theorem . . . . . . . . . . . . . . . . . . . . . . . . . 30 CHAPTER 7 PROOFS OF DIOPHANTINE APPROXIMATION THEOREMS . . . . 32 CHAPTER 8 PROOFS OF LINEAR RECURRENCE SEQUENCES THEOREMS . . 48 CHAPTER 9 QUADRATIC POINTS ON ABELIAN SURFACES . . . . . . . . . . . 63 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 iv CHAPTER 1 INTRODUCTION 1.1 Diophantine approximation Upper bounds for the greatest common divisor of integers of the form ๐‘Ž ๐‘› โˆ’ 1 and ๐‘ ๐‘› โˆ’ 1 were first studied by Bugeaud, Corvaja, and Zannier in [3], where they proved the following inequality: Theorem 1.1.1 (Bugeaud, Corvaja, Zannier [3]). Let ๐‘Ž, ๐‘ be multiplicatively independent integers, and let ๐œ– > 0. Then, provided ๐‘› sufficiently large, we have log gcd(๐‘Ž ๐‘› โˆ’ 1, ๐‘ ๐‘› โˆ’ 1) < ๐œ–๐‘›. Note that even though the statement is simple, the proof requires Schmidtโ€™s Subspace The- orem from Diophantine approximation. Actually, for most of the following works, it is the fundamental ingredient in their proofs. Corvaja, Zannier [5] and Hernรกndez, Luca [12] subsequently extended Theorem 1.1.1 to ๐‘†-unit integers: Theorem 1.1.2 (Corvaja, Zannier [5] and Hernรกndez, Luca [12]). Let ๐‘ 1 , . . . , ๐‘ ๐‘ก โˆˆ Z be prime numbers and let ๐‘† = {โˆž, ๐‘ 1 , . . . , ๐‘ ๐‘ก }. Then for every ๐œ– > 0, log gcd(๐‘ข โˆ’ 1, ๐‘ฃ โˆ’ 1) โ‰ค ๐œ– max{log |๐‘ข|, log |๐‘ฃ|} for all but finitely many multiplicatively independent ๐‘†-unit integers ๐‘ข, ๐‘ฃ โˆˆ Zโˆ—๐‘† . More generally, Corvaja and Zannier proved an inequality in the case of bivariate polynomi- als. Theorem 1.1.3 (Corvaja, Zannier [6]). Let ฮ“ โŠ‚ G2๐‘š ( Qฬ„) be a finitely generated group. Let ๐‘“ (๐‘ฅ, ๐‘ฆ), ๐‘”(๐‘ฅ, ๐‘ฆ) โˆˆ Qฬ„[๐‘ฅ, ๐‘ฆ] be nonconstant coprime polynomials such that not both of them 1 vanish at (0, 0). For all ๐œ– > 0, there exists a finite union ๐‘ of translates of proper algebraic subgroups of G2๐‘š such that log gcd( ๐‘“ (๐‘ข, ๐‘ฃ), ๐‘”(๐‘ข, ๐‘ฃ)) < ๐œ– max{โ„Ž(๐‘ข), โ„Ž(๐‘ฃ)} for all (๐‘ข, ๐‘ฃ) โˆˆ ฮ“ \ ๐‘. In recent work of Levin [14], the following result was proven, giving an inequality for greatest common divisors of polynomials evaluated at ๐‘†-unit points, which is a higher-dimensional version of Corvaja-Zannierโ€™s theorem: Theorem 1.1.4 (Levin [14]). Let ๐‘› be a positive integer. Let ฮ“ โŠ‚ G๐‘›๐‘š ( Qฬ„) be a finitely generated group. Let ๐‘“ (๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ), ๐‘”(๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ) โˆˆ Qฬ„[๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] be non-constant coprime polynomials such that not both of them vanish at (0, . . . , 0). Let โ„Ž(๐›ผ) denote the (absolute logarithmic) height of an algebraic number ๐›ผ. For all ๐œ– > 0, there exists a finite union ๐‘ of translates of proper algebraic subgroups of G๐‘›๐‘š such that log gcd( ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› ), ๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )) < ๐œ– max{โ„Ž(๐‘ข 1 ), . . . , โ„Ž(๐‘ข ๐‘› )} for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ฮ“ \ ๐‘. In particular, ฮ“ in Theorem 1.1.4 can be taken as the full set of ๐‘›-tuples of ๐‘†-units in a num- ber field ๐‘˜, where ๐‘† is a finite set places of ๐‘˜ containing the archimedean places. In the above statement, log gcd is the generalized logarithmic greatest common divisor, which is defined in Section 2.5. In a slightly different direction, Luca [15] extended Theorem 1.1.2 to rational numbers ๐‘ข and ๐‘ฃ that are โ€œclose" to being an ๐‘†-unit. Let ๐‘ข be a non-zero rational number, and ๐‘† a fixed finite set of primes. We may write ๐‘ข uniquely, up to a sign, in the form ๐‘ข = ๐‘ข ๐‘† ยท ๐‘ข ๐‘†ยฏ , where ๐‘ข ๐‘† is a rational number in reduced form having both its numerator and denominator composed of primes in ๐‘†, 2 and ๐‘ข ๐‘†ยฏ is a rational number in reduced form having both its numerator and denominator free of primes from ๐‘†. Luca proved the following: Theorem 1.1.5 (Luca [15]). Let ๐‘† be a finite set of places of Q. For ๐œ– > 0, there exist three positive constants ๐พ1 , ๐พ2 , ๐พ3 depending on ๐‘† and ๐œ–, such that for any rational numbers ๐‘ข and ๐‘ฃ satisfying log gcd(๐‘ข โˆ’ 1, ๐‘ฃ โˆ’ 1) โ‰ฅ ๐œ– max{โ„Ž(๐‘ข), โ„Ž(๐‘ฃ)}, one of the following three conditions holds: (i) max{โ„Ž๐‘Ÿ๐‘Ž๐‘ก (๐‘ข), โ„Ž๐‘Ÿ๐‘Ž๐‘ก (๐‘ฃ)} < ๐พ1 , (ii) ๐‘ข๐‘– = ๐‘ฃ ๐‘— with max{|๐‘–|, | ๐‘— |} < ๐พ2 , โ„Ž (iii) max{โ„Ž ๐‘†ยฏ (๐‘ข), โ„Ž ๐‘†ยฏ (๐‘ฃ)} > ๐พ3 , log โ„Ž     ๐‘ฅ โ„Ž(๐‘ฅ) โ„Ž(๐‘ฆ) where โ„Ž ๐‘†ยฏ (๐‘ข) = โ„Ž(๐‘ข ๐‘†ยฏ ), โ„Ž๐‘Ÿ๐‘Ž๐‘ก = max , and โ„Ž = max{โ„Ž(๐‘ข), โ„Ž(๐‘ฃ)}. ๐‘ฆ โ„Ž(๐‘ฆ) โ„Ž(๐‘ฅ) This shows the GCD of two rational integers ๐‘ข โˆ’ 1 and ๐‘ฃ โˆ’ 1 cannot be large unless ๐‘ข and ๐‘ฃ are multiplicatively dependent or have large non-๐‘† height. One main theorem of this thesis (Corollary 7.0.4) can also be viewed as a generalization of Theorem 1.1.4 along the lines of Lucaโ€™s theorem. It is studied as follows. We want to generalize Theorem 1.1.4 beyond the setting of ๐‘†-units points. To achieve this goal, we introduce the definition of almost ๐‘†-units: Roughly speaking, an almost (๐‘†, ๐›ฟ)-unit for some set of places ๐‘† in a number field ๐‘˜ is an element ๐‘ข โˆˆ ๐‘˜ whose dominant part of its height is due to an ๐‘†-unit. Definition 1.1.6. For a fixed ๐›ฟ > 0 and a fixed set of places ๐‘†, if ๐‘ข โˆˆ ๐‘˜ โˆ— , then we say ๐‘ข is an almost (๐‘†, ๐›ฟ)-unit if   โˆ‘๏ธ 1 โ„Ž ๐‘†ยฏ (๐‘ข) := ๐œ† ๐‘ฃ (๐‘ข) + ๐œ† ๐‘ฃ โ‰ค ๐›ฟโ„Ž(๐‘ข) ๐‘ฃโˆ‰๐‘† ๐‘ข 3 (see Section 2.1 for the definition of ๐œ† ๐‘ฃ ). We denote the set of all almost (๐‘†, ๐›ฟ)-units by ๐‘˜ ๐‘†,๐›ฟ . More generally, let G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ := {u โˆˆ G๐‘›๐‘š (๐‘˜)|โ„Ž ๐‘†ยฏ (u) โ‰ค ๐›ฟโ„Ž(u)}, where   โˆ‘๏ธ 1 โ„Ž ๐‘†ยฏ (u) = ๐œ† ๐‘ฃ (u) + ๐œ† ๐‘ฃ . ๐‘ฃโˆ‰๐‘† u With Definition 1.1.6, we prove the following generalization of Theorem 1.1.4, which shows that ฮ“ = (O๐‘˜,๐‘† โˆ— ) ๐‘› may be โ€œthickened" to G๐‘› (๐‘˜) ๐‘š ๐‘†,๐›ฟ for some positive ๐›ฟ (depending on ๐œ–). Theorem 1.1.7. (Corollary 7.0.7) Let ๐‘› be a positive integer and ๐‘˜ a number field, ๐‘“ (๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ), ๐‘”(๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ) โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] be nonconstant coprime polynomials such that not both of them vanish at (0, . . . , 0). For all ๐œ– > 0, there exists ๐›ฟ > 0 and a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that: log gcd( ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› ), ๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )) < ๐œ– max{โ„Ž(๐‘ข 1 ), . . . , โ„Ž(๐‘ข ๐‘› )} for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘. By Theorem 5 of [8], we may further choose ๐‘ so that it is a (possibly infinite) union of positive-dimensional torus cosets. In fact, we prove the following refinement of Theorem 1.1.7. Theorem 1.1.8. (Theorem 7.0.6) Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] be coprime polynomials that donโ€™t both vanish at the origin (0, . . . , 0). For all 0 < ๐›ฟ < 1, there exists a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that ๐‘› โˆ‘๏ธ 1/2 log gcd( ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› ), ๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )) < ๐ถ๐›ฟ โ„Ž(๐‘ข๐‘– ) ๐‘–=1 for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘ satisfying โ„Ž ๐‘†ยฏ (u) < ๐›ฟโ„Ž(u), where ๐ถ = 6(deg ๐‘“ + deg ๐‘”)๐‘›2 is a constant. 4 Theorem 7.0.6 extends Levinโ€™s Theorem 1.1.4 from integral points to rational points, and may be viewed as progress towards Vojtaโ€™s conjecture for certain blown-up varieties. This The- orem gives a GCD inequality of the form similar to what Vojtaโ€™s Conjecture predicts. Assuming Vojtaโ€™s Conjecture, Silverman obtained an upper bound for the polynomial GCD in [18]. By properly extending the notions from Q to a number field, we can compare Silvermanโ€™s conjec- tural upper bound with our inequality. More precisely, in Remark 7.0.8 we discuss the relation of Theorem 7.0.6 with conjectured inequalities of Silverman based on Vojtaโ€™s conjecture. We also note work of Grieve [10] in this direction. 1.2 Linear recurrence sequences On the other hand, Levin [14] also gave a classification (Theorem 1.2.2) of large GCDs among terms from simple linear recurrence sequences (see also earlier work of Fuchs [9]). A primary goal of our work is to study the case of general linear recurrences (i.e., without the assumption that the linear recurrence is simple). In the case of binary linear recurrences, Luca [15] showed: Theorem 1.2.1 (Luca [15]). Let ๐‘Ž and ๐‘ be non-zero integers which are multiplicatively inde- pendent, and let ๐‘“ , ๐‘”, ๐‘“1 and ๐‘”1 be non-zero polynomials with integer coefficients. For every positive integer ๐‘› set ๐‘ข ๐‘› = ๐‘“ (๐‘›)๐‘Ž ๐‘› + ๐‘”(๐‘›) and ๐‘ฃ ๐‘› = ๐‘“1 (๐‘›)๐‘ ๐‘› + ๐‘”1 (๐‘›). Then, for every fixed ๐œ– > 0 there exists a positive constant ๐ถ๐œ– > 0 depending on ๐œ– and on the given data ๐‘Ž, ๐‘, ๐‘“ , ๐‘“1 , ๐‘” and ๐‘”1 , such that log gcd(๐‘ข ๐‘› , ๐‘ฃ ๐‘š ) < ๐œ– max{๐‘š, ๐‘›} holds for all pairs of positive integers (๐‘š, ๐‘›) with max{๐‘š, ๐‘›} > ๐ถ๐œ– . 5 The essential assumption is that ๐‘Ž and ๐‘ are multiplicatively independent integers, which gives a contradiction to condition (ii) of Theorem 1.1.5. Note that Theorem 1.2.1 is proved without the assistance of Schmidtโ€™s Subspace Theorem, so one should expect that a stronger result can be proved with the Subspace Theorem applied to general linear recurrence sequences. In fact, a recent result due to Grieve and Wang [11] on general linear recurrences generalized Lucaโ€™s binary case, and recovered Levinโ€™s result 1.2.2 at the same time. We will give an alter- native proof of this theorem later. Levin [14] applied Theorem 1.1.4 to terms from simple linear recurrence sequences, giving a classification of when two such terms may have a large GCD. Theorem 1.2.2 (Levin [14]). Let โˆ‘๏ธ๐‘  ๐น (๐‘š) = ๐‘๐‘– ๐›ผ๐‘–๐‘š , ๐‘–=1 โˆ‘๏ธ๐‘ก ๐บ (๐‘›) = ๐‘‘ ๐‘— ๐›ฝ๐‘›๐‘— , ๐‘—=1 define two algebraic simple linear recurrence sequences. Let ๐‘˜ be a number field such that ๐‘๐‘– , ๐›ผ๐‘– , ๐‘‘ ๐‘— , ๐›ฝ ๐‘— โˆˆ ๐‘˜ for ๐‘– = 1, . . . , ๐‘ , ๐‘— = 1, . . . , ๐‘ก. Let ๐‘€๐‘˜ be the canonical set of places in ๐‘˜. Let ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Let ๐œ– > 0. All but finitely many solutions (๐‘š, ๐‘›) of the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } > ๐œ– max{๐‘š, ๐‘›} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 satisfy one of finitely many linear relations (๐‘š, ๐‘›) = (๐‘Ž๐‘– ๐‘ก + ๐‘๐‘– , ๐‘๐‘– ๐‘ก + ๐‘‘๐‘– ), ๐‘ก โˆˆ Z, ๐‘– = 1, . . . , ๐‘Ÿ, where ๐‘Ž๐‘– , ๐‘๐‘– , ๐‘๐‘– , ๐‘‘๐‘– โˆˆ Z, ๐‘Ž๐‘– ๐‘๐‘– โ‰  0, and the linear recurrences ๐น (๐‘Ž๐‘– โ€ข +๐‘๐‘– ) and ๐บ (๐‘๐‘– โ€ข +๐‘‘๐‘– ) have a nontrivial common factor for ๐‘– = 1, . . . , ๐‘Ÿ. 6 Grieve and Wang [11] have extended Theorem 1.2.2 to general linear recurrence sequences. Theorem 1.2.3 (Grieve, Wang [11]). Let โˆ‘๏ธ๐‘  ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š , ๐‘–=1 โˆ‘๏ธ ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— , ๐‘—=1 for ๐‘› โˆˆ N, be algebraic linear recurrence sequences, defined over a number field ๐‘˜, such that their roots generate together a torsion-free multiplicative subgroup ฮ“ of ๐‘˜ ร— . Suppose that max{|๐›ผ๐‘– | ๐‘ฃ , |๐›ฝ ๐‘— | ๐‘ฃ } โ‰ฅ 1, ๐‘–, ๐‘— for any ๐‘ฃ โˆˆ ๐‘€๐‘˜ . Let ๐œ– > 0 and consider the inequality log gcd(๐น (๐‘›), ๐บ (๐‘›)) < ๐œ– max{๐‘š, ๐‘›} (โ€ ) for pairs of positive integers (๐‘š, ๐‘›) โˆˆ N2 . The following two assertions hold true. 1. Consider the case that ๐‘š = ๐‘›. If the inequality (โ€ ) is valid for infinitely many positive integers (๐‘›, ๐‘›) โˆˆ N2 , then ๐น and ๐บ have a non-trivial common factor. 2. Consider the case that ๐‘š โ‰  ๐‘›. If the inequality (โ€ ) is valid for infinitely many pairs of positive integers (๐‘š, ๐‘›) โˆˆ N2 , with ๐‘š โ‰  ๐‘›, then the roots of ๐น and ๐บ are multiplicatively dependent (see Def 8.0.7). Further, in this case, there exist finitely many pairs of integers (๐‘Ž, ๐‘) โˆˆ Z2 such that |๐‘š๐‘Ž + ๐‘›๐‘| = ๐‘œ(max{๐‘š, ๐‘›}). The proof of Theorem 1.2.3 in [11] is based on a โ€œmoving targets" version of Theorem 1.1.4. We will give an alternative proof of Theorem 1.2.3 and also give a quantitative improvement in which the error term ๐‘œ(max{๐‘š, ๐‘›}) can be controlled as a constant multiple of log max{๐‘š, ๐‘›}. 7 As an application of the polynomial GCD inequality, we state our main result on linear recurrence sequences: Theorem 1.2.4. Let โˆ‘๏ธ ๐‘  ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š , ๐‘–=1 โˆ‘๏ธ ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— , ๐‘—=1 define two algebraic linear recurrence sequences. Let ๐‘˜ be a number field such that all coeffi- cients of ๐‘๐‘– and ๐‘ž ๐‘— and ๐›ผ๐‘– , ๐›ฝ ๐‘— are in ๐‘˜, for ๐‘– = 1, . . . , ๐‘ , ๐‘— = 1, . . . , ๐‘ก. Let ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Then all but finitely many solutions (๐‘š, ๐‘›) of the inequality: โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } < ๐œ– max{๐‘š, ๐‘›} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 are of the form: (๐‘š, ๐‘›) = (๐‘Ž๐‘– ๐‘ก, ๐‘๐‘– ๐‘ก) + (๐œ‡1 , ๐œ‡2 ), ๐œ‡1 , ๐œ‡2 โ‰ช log ๐‘ก, ๐‘ก โˆˆ N, ๐‘– = 1, . . . , ๐‘Ÿ with finitely many choices of nonzero integers (๐‘Ž๐‘– , ๐‘๐‘– ) . Moreover, if the roots of ๐น and ๐บ are independent (see Def 8.0.7), then the solutions (๐‘š, ๐‘›) satisfy one of the finitely many linear relations: (๐‘š, ๐‘›) = (๐‘Ž๐‘– ๐‘ก + ๐‘๐‘– , ๐‘๐‘– ๐‘ก + ๐‘‘๐‘– ), ๐‘ก โˆˆ N, ๐‘– = 1, . . . , ๐‘Ÿ where ๐‘Ž๐‘– , ๐‘๐‘– , ๐‘๐‘– , ๐‘‘๐‘– โˆˆ N, ๐‘Ž๐‘– ๐‘๐‘– โ‰  0, and the linear recurrences ๐น (๐‘Ž๐‘– โ€ข +๐‘๐‘– ) and ๐บ (๐‘๐‘– โ€ข +๐‘‘๐‘– ) have a nontrivial common factor for ๐‘– = 1, . . . , ๐‘Ÿ. Example 1.2.5. Under the set up of Theorem 1.2.4, we give an example illustrating the necessity of (๐œ‡1 , ๐œ‡2 ) in the statement: 8 Define the two linear recurrence sequences as: ๐น (๐‘š) = ๐‘š ๐‘ ๐‘š + 1, ๐บ (๐‘›) = ๐‘ ๐‘› + 1, where ๐‘ is a prime. In the notations of Theorem 1.2.4, ๐‘†0 = โˆ…. Let ๐œ– < log 2. It is easily seen that for ๐‘˜ +๐‘˜ (๐‘š, ๐‘›) = ( ๐‘ ๐‘˜ , ๐‘ ๐‘˜ + ๐‘˜), โˆ€๐‘˜ โˆˆ Z>0 , ๐น (๐‘š) = ๐‘ ๐‘ + 1 = ๐บ (๐‘›), so the inequality ๐‘˜ +๐‘˜ log gcd{|๐น (๐‘š)|, |๐บ (๐‘›)|} = log( ๐‘ ๐‘ + 1) > ๐œ– ( ๐‘ ๐‘˜ + ๐‘˜) = ๐œ– max{๐‘š, ๐‘›} holds for infinitely many ๐‘˜ and hence infinitely many (๐‘š, ๐‘›). It is easily seen that such pairs (๐‘š, ๐‘›) do not lie on finitely many lines, but do lie in a logarithmic region around the line ๐‘ฅ = ๐‘ฆ, i.e., for such pairs we may write (๐‘š, ๐‘›) = (๐‘ก, ๐‘ก) + (๐œ‡1 , ๐œ‡2 ) with ๐œ‡1 , ๐œ‡2 โ‰ช log ๐‘ก in agreement with Theorem 1.2.4. 1.3 Arithmetic discriminant Vojta defined the arithmetic discriminant ๐‘‘ ๐‘Ž in the proofs of [23] and [21], and an alternative definition is given in the other paper [22] under arithmetic geometry. In [23], he obtained a first estimate of ๐‘‘ ๐‘Ž . Later, Vojta successfully proved the Vojtaโ€™s conjecture [24] replacing ๐‘‘ (๐‘ƒ), the usual logarithmic discriminant, by ๐‘‘ ๐‘Ž (๐‘ƒ) in the curve case. Theorem 1.3.1 (Theorem 4.2.4). Let ๐ถ be a curve over a numerb field ๐‘˜ and let ๐œ‹ : ๐‘‹ โ†’ ๐ต be a regular model, where ๐ต is the arithmetic curve corresponding to SpecO ๐‘˜ . Fix an integer ๐œˆ โ‰ฅ 1, a real number ๐œ– > 0, an effective divisor ๐ท on ๐‘‹ with no multiple components, and a divisor ๐ด on ๐‘‹ which is ample on the generic fibre. Then for all points ๐‘ƒ โˆˆ ๐ถ (๐‘˜) \ Supp(๐ท) with [๐‘˜ (๐‘ƒ) : ๐‘˜] โ‰ค ๐œˆ, ๐‘š(๐ท, ๐‘ƒ) + โ„Ž ๐พ (๐‘ƒ) โ‰ค ๐‘‘ ๐‘Ž (๐‘ƒ) + ๐œ– โ„Ž ๐ด (๐‘ƒ) + ๐‘‚ (1), where the constant in ๐‘‚ (1) depends on ๐‘‹, ๐ท, ๐œˆ, ๐ด and ๐œ–. The proof gives a deep and extraordinary construction, which somehow has the similar flavor of the proof of Rothโ€™s theorem. However this result is not applied widely and needs more attention. 9 A follow up theorem, proven in [22], gives a finiteness statement for points of bounded degree on curves. Theorem 1.3.2. Let ๐‘“ : ๐ถ โ†’ P1 be a dominant morphism, let ๐‘  โˆˆ N, and let ๐‘” be the genus of ๐ถ. Assume also that ๐‘” โˆ’ 1 > (deg ๐‘“ )(๐‘  โˆ’ 1). Then the set ยฏ {๐‘ƒ โˆˆ ๐ถ ( ๐‘˜)|[๐‘˜ (๐‘ƒ) : ๐‘˜] โ‰ค ๐‘  and ๐‘˜ ( ๐‘“ (๐‘ƒ)) = ๐‘˜ (๐‘ƒ)} is finite. Using well-known upper bounds for the gonality of a curve, one immediately finds, Corollary 1.3.3. If ๐‘” โ‰ฅ 6 then there exists a dominant morphism ๐‘“ : ๐ถ โ†’ P1 such that the set ยฏ {๐‘ƒ โˆˆ ๐ถ ( ๐‘˜)|[๐‘˜ (๐‘ƒ) : ๐‘˜] โ‰ค 2 and ๐‘˜ ( ๐‘“ (๐‘ƒ)) = ๐‘˜ (๐‘ƒ)} is finite. Song-Tucker [19] gave a general version of Theorem 1.3.2. Proposition 1.3.4. Let ๐ถ and ๐ถ โ€ฒ be curves of genus ๐‘” and ๐‘”โ€ฒ, respectively, defined over a number field ๐‘˜, let ๐œˆ be a positive integer, and let ๐‘“ : ๐ถ โ†’ ๐ถ โ€ฒ be a dominant ๐‘˜-morphism. Assume that ๐‘” โˆ’ 1 > (๐œˆ + ๐‘”โ€ฒ โˆ’ 1) deg ๐‘“ . Then the set ยฏ {๐‘ƒ โˆˆ ๐ถ ( ๐‘˜)|[๐‘˜ (๐‘ƒ) : ๐พ] = ๐œˆ and ๐‘˜ ( ๐‘“ (๐‘ƒ)) = ๐‘˜ (๐‘ƒ)} is finite. As an application, they obtained a stronger Castelnuovoโ€™s genus inequality under certain conditions. 10 In here, we continue study the connection between the arithmetic discriminant and the GCD conjecture, giving an equivalence of conjectures for quadratic points. In later chapters, we will give the proofs of the main Diophantine approximation results and the application to linear recurrence sequences, respectively. We will also develope the connection between the GCD conjecture and the conjecture on arithmetic discriminant on quadratic points. 11 CHAPTER 2 ABSOLUTE VALUES AND HEIGHTS 2.1 Absolute values Let ๐‘˜ be a number field, ๐‘€๐‘˜ the set of places of ๐‘˜ and O๐‘˜ the ring of integers of ๐‘˜. For ๐‘ฃ โˆˆ ๐‘€๐‘˜ , let ๐‘˜ ๐‘ฃ denote the completion of ๐‘˜ with respect to ๐‘ฃ. Throughout the thesis, we normalize the absolute value | ยท | ๐‘ฃ corresponding to ๐‘ฃ โˆˆ ๐‘€๐‘˜ as follows: If ๐‘ฃ is archimedean and ๐œŽ is the corresponding embedding ๐œŽ : ๐‘˜ โ†’ C, then for ๐‘ฅ โˆˆ ๐‘˜ โˆ— , |๐‘ฅ| ๐‘ฃ = |๐œŽ(๐‘ฅ)| |๐‘˜ ๐‘ฃ :R|/|๐‘˜:Q| ; if ๐‘ฃ is non- archimedean corresponding to a prime ideal ๐’ซ in O๐‘˜ which lies above a rational prime ๐‘, then it is normalized so that | ๐‘| ๐‘ฃ = ๐‘ โˆ’|๐‘˜ ๐‘ฃ :Q ๐‘ |/|๐‘˜:Q| . In this notation, we have the product formula: ร– |๐‘ฅ| ๐‘ฃ = 1 ๐‘ฃโˆˆ๐‘€๐‘˜ for all ๐‘ฅ โˆˆ ๐‘˜ โˆ— . Let ๐‘† be a finite set of places in ๐‘€๐‘˜ . The ring of ๐‘†-integers and the group of ๐‘†-units are denoted by O๐‘˜,๐‘† and O๐‘˜,๐‘† โˆ— respectively. 2.2 Height functions on projective spaces We will define height functions as in [13]. For a point ๐‘ƒ = (๐›ผ0 : ๐›ผ1 : ยท ยท ยท : ๐›ผ๐‘› ) โˆˆ P๐‘› (๐‘˜), we define its height to be โˆ‘๏ธ โ„Ž(๐‘ƒ) = log max{|๐›ผ0 | ๐‘ฃ , . . . , |๐›ผ๐‘› | ๐‘ฃ } ๐‘ฃโˆˆ๐‘€๐‘˜ and for any ๐‘ฅ โˆˆ ๐‘˜, its height โ„Ž(๐‘ฅ) is defined to be the height of the point (1 : ๐‘ฅ) in P1 (๐‘˜). Lemma 2.2.1. We have the following properties of height functions: 1. The height โ„Ž(๐‘ƒ) is independent of the choice of homogeneous coordinates for ๐‘ƒ. 12 2. โ„Ž(๐‘ƒ) โ‰ฅ 0 for all ๐‘ƒ โˆˆ P๐‘› (๐‘˜). Proposition 2.2.2. The action of the Galois group on P๐‘› ( Qฬ„) leaves the height invariant. The following finiteness theorem is of fundamental importance for the application of height functions in Diophantine geometry. Theorem 2.2.3 (Northcott property). For any numbers ๐ต, ๐ท โ‰ฅ 0, the set {๐‘ƒ โˆˆ P๐‘› ( Qฬ„)|โ„Ž(๐‘ƒ) โ‰ค ๐ต, [Q(๐‘ƒ) : ๐‘„] โ‰ค ๐ท} is finite. In particular, for any fixed number field ๐‘˜, the set {๐‘ƒ โˆˆ P๐‘› (๐‘˜)|โ„Ž(๐‘ƒ) โ‰ค ๐ต} is finite. 2.3 Height functions on projective varieties Weilโ€™s โ€œHeight Machine" constructs a height function associated to every divisor on a projective variety. These height functions satisfy the following properties. Theorem 2.3.1. Let ๐‘˜ be a number field. For every smooth projective variety ๐‘‰/๐‘˜ there exists a map โ„Ž๐‘‰ : Div(๐‘‰) โ†’ {functions ๐‘‰ ( ๐‘˜ยฏ โ†’ R)} with the following properties: 1. (Normalization) Let ๐ป โŠ‚ P๐‘› be a hyperplane, and let โ„Ž(๐‘ƒ) be the absolute logarithmic height on P๐‘› . Then โ„ŽP๐‘› ,๐ป (๐‘ƒ) = โ„Ž(๐‘ƒ) + ๐‘‚ (1) ยฏ for all ๐‘ƒ โˆˆ P๐‘› ( ๐‘˜). 13 2. (Functoriality) Let ๐œ™ : ๐‘‰ โ†’ ๐‘Š be a morphism and let ๐ท โˆˆ Div(๐‘Š). Then โ„Ž๐‘‰,๐œ™โˆ— ๐ท (๐‘ƒ) = โ„Ž๐‘Š,๐ท (๐œ™(๐‘ƒ)) + ๐‘‚ (1), ยฏ for all ๐‘ƒ โˆˆ ๐‘‰ ( ๐‘˜) 3. (Additivity) Let ๐ท, ๐ธ โˆˆ Div(๐‘‰). Then โ„Ž๐‘‰,๐ท+๐ธ (๐‘ƒ) = โ„Ž๐‘‰,๐ท (๐‘ƒ) + โ„Ž๐‘‰,๐ธ (๐‘ƒ) + ๐‘‚ (1) ยฏ for all ๐‘ƒ โˆˆ ๐‘‰ ( ๐‘˜). 4. (Linear Equivalence) Let ๐ท, ๐ธ โˆˆ Div(๐‘‰) with ๐ท linearly equivalent to ๐ธ. Then โ„Ž๐‘‰,๐ท (๐‘ƒ) = โ„Ž๐‘‰,๐ธ (๐‘ƒ) + ๐‘‚ (1) ยฏ for all ๐‘ƒ โˆˆ ๐‘‰ ( ๐‘˜). 5. (Positivity) Let ๐ท โˆˆ Div(๐‘‰) be an effective divisor, and let ๐ต be the base locus of the linear system |๐ท|. Then โ„Ž๐‘‰,๐ท (๐‘ƒ) โ‰ฅ ๐‘‚ (1) ยฏ for all ๐‘ƒ โˆˆ (๐‘‰ \ ๐ต)( ๐‘˜). 6. (Algebraic Equivalence) Let ๐ท, ๐ธ โˆˆ Div(๐‘‰) with ๐ท ample and ๐ธ algebraically equivalent to 0. Then โ„Ž๐‘‰,๐ธ (๐‘ƒ) lim = 0. ยฏ ๐‘‰ ,๐ท (๐‘ƒ)โ†’โˆž ๐‘ƒโˆˆ๐‘‰ ( ๐‘˜),โ„Ž โ„Ž๐‘‰,๐ท (๐‘ƒ) 7. (Finiteness) Let ๐ท โˆˆ Div(๐‘‰) be ample. Then for every finite extension ๐‘˜ โ€ฒ/๐‘˜ and every constant ๐ต, the set {๐‘ƒ โˆˆ ๐‘‰ (๐‘˜ โ€ฒ)|โ„Ž๐‘‰,๐ท (๐‘ƒ) โ‰ค ๐ต} is finite. 8. The height functions โ„Ž๐‘‰,๐ท are determined, up to ๐‘‚ (1), by normalization, functoriality for embeddings ๐œ™ : ๐‘‰ โ†’ P๐‘› , and additivity. 14 2.4 Local height functions We now define local height functions. Let ๐‘‰ be a projective variety over a number field ๐‘˜. Let ๐ท be a Cartier divisor on ๐‘‰ and ๐‘ฃ โˆˆ ๐‘€๐‘˜ . First we define the support of a Cartier divisor ๐ท = (๐‘ˆ๐›ผ , ๐‘“๐›ผ )๐›ผโˆˆ๐ผ to be ร˜ โˆ— supp(๐ท) := {๐‘ฅ โˆˆ ๐‘ˆ๐›ผ | ๐‘“๐›ผ โˆ‰ O๐‘‰,๐‘ฅ }, ๐›ผ where โˆ— O๐‘‰,๐‘ฅ is the group of units in the local ring O๐‘‰,๐‘ฅ . For notation convenience, we write ๐‘‰๐ท = ๐‘‰ \ supp(๐ท) for the complement of the support of ๐ท. We would like to associate to each place ๐‘ฃ โˆˆ ๐‘€๐‘˜ a function ๐œ† ๐ท,๐‘ฃ : ๐‘‰๐ท (๐‘˜ ๐‘ฃ ) โ†’ R so that the sum โˆ‘๏ธ ๐œ† ๐ท,๐‘ฃ = โ„Ž ๐ท ๐‘ฃโˆˆ๐‘€๐‘˜ for all points in ๐‘‰๐ท (๐‘˜). Moreover, the local height functions should be additive in ๐ท. If ๐ท is a prime divisor, then ๐œ† ๐ท,๐‘ฃ should be geometric in the following intuitive sense ๐œ† ๐ท,๐‘ฃ (๐‘ƒ) = โˆ’ log(๐‘ฃ-adic distance from ๐‘ƒ to ๐ท). To make things precise, we need some definitions. We define an ๐‘€๐‘˜ -constant to be a map ๐›พ : ๐‘€๐‘˜ โ†’ R with the property that ๐›พ(๐‘ฃ) = 0 for all but finitely many ๐‘ฃ โˆˆ ๐‘€๐‘˜ . We say that a real-valued function ๐œ™ on a subset ๐‘Œ of ๐‘‰ (๐‘˜) ร— ๐‘€๐‘˜ is ๐‘€๐‘˜ -bounded if there is an ๐‘€๐‘˜ constant ๐›พ such that |๐œ™(๐‘ƒ, ๐‘ฃ)| โ‰ค ๐›พ(๐‘ฃ) for all (๐‘ƒ, ๐‘ฃ) โˆˆ ๐‘Œ . We will write ๐‘‚ ๐‘ฃ (1) for an ๐‘€๐‘˜ -bounded function. We say a subset ๐‘Œ of ๐‘‰ (๐‘˜) ร— ๐‘€๐‘˜ is affine ๐‘€๐‘˜ -bounded if there is an affine open subset ๐‘‰0 of ๐‘‰ with affine coordinates 15 ๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› such that ๐‘Œ โŠ‚ ๐‘‰0 ร— ๐‘€๐‘˜ and such that the function ๐‘‰0 (๐‘˜) ร— ๐‘€๐‘˜ โ†’ R, ๐‘ƒ โ†ฆโ†’ max |๐‘ฅ๐‘– (๐‘ƒ)| ๐‘ฃ , 1โ‰ค๐‘–โ‰ค๐‘› is ๐‘€๐‘˜ -bounded on ๐‘Œ . We say the set ๐‘Œ is ๐‘€๐‘˜ -bounded if it is a finite union of affine ๐‘€๐‘˜ -bounded sets. We are ready to state the local height machine. For ๐‘ฃ โˆˆ ๐‘€๐‘˜ , let ๐‘ฃ(๐‘ฅ) = โˆ’ log |๐‘ฅ| ๐‘ฃ . Theorem 2.4.1. Let ๐‘‰/๐‘˜ be a smooth projective variety. For each ๐ท โˆˆ Div(๐‘‰) it is possible to assign a function รž ๐œ†๐ท : ๐‘‰๐ท (๐‘˜ ๐‘ฃ ) โ†’ R, ๐‘ฃโˆˆ๐‘€๐‘˜ called the local height function with respect to ๐ท, such that the following properties hold: 1. (Normalization) Let ๐‘“ โˆˆ ๐‘˜ (๐‘‰) โˆ— be a rational function on ๐‘‰, and let ๐ท = div( ๐‘“ ) be the divisor of ๐‘“ . Then the difference ๐œ† ๐ท,๐‘ฃ (๐‘ƒ) โˆ’ ๐‘ฃ( ๐‘“ (๐‘ƒ)) is an ๐‘€๐‘˜ bounded function on every ๐‘€๐‘˜ bounded subset of ๐‘‰๐ท (๐‘˜) ร— ๐‘€๐‘˜ . 2. (Additivity) For all ๐ท 1 , ๐ท 2 โˆˆ Div(๐‘‰), ๐œ† ๐ท 1 +๐ท 2 ,๐‘ฃ = ๐œ† ๐ท 1 ,๐‘ฃ + ๐œ† ๐ท 2 ,๐‘ฃ + ๐‘‚ ๐‘ฃ (1). 3. (Functoriality) Let ๐œ™ : ๐‘‰ โ†’ ๐‘Š be a morphism of smooth varieties. Then ๐œ† ๐œ™โˆ— ๐ท,๐‘ฃ = ๐œ† ๐ท,๐‘ฃ โ—ฆ ๐œ™ + ๐‘‚ ๐‘ฃ (1). 4. (Positivity) Let ๐ท โ‰ฅ 0 be an effective divisor. Then ๐œ† ๐ท,๐‘ฃ โ‰ฅ ๐‘‚ ๐‘ฃ (1). 5. (Local/Global Property) Let ๐ท โˆˆ Div(๐‘‰), and let โ„Ž ๐ท be a Weil height attached to ๐ท. Then โˆ‘๏ธ โ„Ž ๐ท (๐‘ƒ) = ๐œ† ๐ท,๐‘ฃ (๐‘ƒ) + ๐‘‚ (1) ๐‘ฃโˆˆ๐‘€๐‘˜ for all ๐‘ƒ โˆˆ ๐‘‰๐ท (๐‘˜). 16 In particular, if ๐ท is a hypersurface in P๐‘› given by a homogeneous polynomial ๐น (๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ) = 0 of degree ๐‘‘, we have a choice of local height function |๐›ผ๐‘– | ๐‘ฃ๐‘‘ |๐‘ƒ| ๐‘ฃ๐‘‘ ๐œ† ๐ท,๐‘ฃ (๐‘ƒ) = log max = log ๐‘–=0,...,๐‘› |๐น (๐‘ƒ)| ๐‘ฃ |๐น (๐‘ƒ)| ๐‘ฃ where ๐‘ƒ is written in coordinates (๐›ผ0 : ยท ยท ยท : ๐›ผ๐‘› ) โˆˆ P๐‘› (๐‘˜) \ Supp(๐ท) and |๐‘ƒ| ๐‘ฃ = max๐‘– |๐›ผ๐‘– | ๐‘ฃ . For any ๐‘ฅ โˆˆ ๐‘˜ and ๐‘ฃ โˆˆ ๐‘€๐‘˜ , we define the local height of ๐‘ฅ with respect to ๐‘ฃ to be ๐œ† ๐‘ฃ (๐‘ฅ) = log max{1, |๐‘ฅ| ๐‘ฃ }. For a point ๐‘ƒ = (๐›ผ1 , ยท ยท ยท , ๐›ผ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) and a place ๐‘ฃ โˆˆ ๐‘€๐‘˜ , we define its height and local โˆ‘๏ธ height as โ„Ž(๐‘ƒ) = log max{1, |๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘› | ๐‘ฃ } and ๐œ† ๐‘ฃ (๐‘ƒ) = log max{1, |๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘› | ๐‘ฃ }, ๐‘ฃโˆˆ๐‘€๐‘˜ respectively. For a finite set of places ๐‘†, we define the proximity function associated to ๐ท to be the โˆ‘๏ธ ๐‘š(๐ท, ๐‘†, ๐‘ƒ) = ๐œ† ๐ท,๐‘ฃ (๐‘ƒ). ๐‘ฃโˆˆ๐‘† 2.5 Generalized greatest common divisors One can extend the notion of log gcd(๐‘Ž, ๐‘) to all algebraic numbers. Note that for ๐‘Ž and ๐‘ integers, we calculate their greatest common divisor as: โˆ‘๏ธ log gcd(๐‘Ž, ๐‘) = min{ord ๐‘ (๐‘Ž), ord ๐‘ (๐‘)} log ๐‘ ๐‘ prime โˆ‘๏ธ =โˆ’ log max{|๐‘Ž| ๐‘ฃ , |๐‘| ๐‘ฃ } ๐‘ฃโˆˆ๐‘€Q,fin โˆ‘๏ธ =โˆ’ logโˆ’ max{|๐‘Ž| ๐‘ฃ , |๐‘| ๐‘ฃ } ๐‘ฃโˆˆ๐‘€Q,fin where ๐‘€Q,fin is the set of nonarchimedean places of Q and logโˆ’ ๐‘ง = min{0, log ๐‘ง}. Similarly we define log+ ๐‘ง = max{0, log ๐‘ง}. With this observation, by adding contributions of archimedean places, the generalized greatest common divisor is defined as: 17 Definition 2.5.1. Let ๐‘Ž, ๐‘ โˆˆ Qฬ„ be two algebraic numbers, not both zero. We define the generalized logarithmic greatest common divisors of ๐‘Ž and ๐‘ by โˆ‘๏ธ log gcd(๐‘Ž, ๐‘) = โˆ’ logโˆ’ max{|๐‘Ž| ๐‘ฃ , |๐‘| ๐‘ฃ } ๐‘ฃโˆˆ๐‘€๐‘˜ where ๐‘˜ is any number field containing both ๐‘Ž and ๐‘. We will work with this generalized definition in the following chapters. 18 CHAPTER 3 DIOPHANTINE APPROXIMATION 3.1 Rothโ€™s theorem The fundamental problem in Diophantine approximation is how closely an irrational number can be approximated by a rational number. Precisely, let ๐‘Ž โˆˆ R be a given real number, and let ๐‘’ > 0 be a given exponent. We ask whether or not the inequality ๐‘ 1 โˆ’๐‘Ž โ‰ค ๐‘’ ๐‘ž ๐‘ž can have infinitely many solutions in rational numbers ๐‘/๐‘ž โˆˆ Q. Dirichlet, in 1842, showed that we can find rational numbers that are fairly close to a given real number. Proposition 3.1.1 (Dirichlet). Let ๐‘Ž โˆˆ R with ๐‘Ž โˆ‰ Q. Then there are infinitely many rational numbers ๐‘/๐‘ž โˆˆ Q satisfying ๐‘ 1 โˆ’ ๐‘Ž โ‰ค 2. ๐‘ž ๐‘ž Next result, due to Liouville in 1844, gives an estimate in the other direction. Proposition 3.1.2 (Liouville). Let ๐‘Ž โˆˆ Qฬ„ be an algebraic number of degree ๐‘‘ = [Q(๐‘Ž) : Q] โ‰ฅ 2. Fix a constant ๐œ– > 0. Then there are only finitely many rational numbers ๐‘/๐‘ž โˆˆ Q satisfying ๐‘ 1 โ‰ค ๐‘‘+๐œ– . ๐‘ž ๐‘ž โˆš Later, Thue (1909) improved ๐‘‘ to ๐‘‘/2 + 1, Siegel (1921) improved to 2 ๐‘‘, Gelfand, Dyson โˆš (1947) improved to 2๐‘‘, and finally Roth (1955) improved to 2. In fact, the exponent 2 + ๐œ– is essentially best possible since we already have Dirichletโ€™s result. 19 Theorem 3.1.3 (Roth). For every algebraic number ๐‘Ž and every ๐œ– > 0, the inequality ๐‘ 1 โˆ’ ๐‘Ž โ‰ค 2+๐œ– ๐‘ž ๐‘ž has only finitely many rational solutions ๐‘/๐‘ž โˆˆ Q. A general formulation of Rothโ€™s theorem is the following. Theorem 3.1.4. Let ๐‘˜ be a number field, let ๐‘† โŠ‚ ๐‘€๐‘˜ be a finite set of places on ๐‘˜, and assume that each place extends in some way to ๐‘˜. ยฏ Let ๐‘Ž โˆˆ ๐‘˜ยฏ and ๐œ– > 0 be given. Then there are only finitely many ๐‘ โˆˆ ๐‘˜ satisfying the inequality ร– 1 min{|๐‘ โˆ’ ๐‘Ž| ๐‘ฃ , 1} โ‰ค . ๐‘ฃโˆˆ๐‘† ๐ป ๐‘˜ (๐‘) 2+๐œ– As an application, we have Siegelโ€™s famous theorem on integral points on curves [16]. Let ๐ถ be a geometrically irreducible affine curve over a number field ๐‘˜ and let ๐‘† be a finite set of places containing archimedean places. We assume that ๐ถ is given as a closed subvariety of A๐‘›๐‘˜ . Let ๐œ‹ : ๐ถหœaff โ†’ ๐ถ be the normalization of ๐ถ and we extend the affine curve ๐ถหœaff to a smooth projective curve ๐ถ, หœ which is unique up to isomorphism. The points in ๐ถหœ \ ๐ถหœaff are called the points of ๐ถ at โˆž. Then Siegelโ€™s theorem on integral points on curves states: Theorem 3.1.5 (Siegel). If ๐ถหœ has genus ๐‘” > 0 or ๐ถ has at least three distinct points at โˆž, then ๐ถ has only finitely many ๐‘†-integral points. 3.2 Wirsingโ€™s theorem Instead of taking the approximating elements from a fixed number field, another direction to generalize Rothโ€™s theorem is to consider approximation by algebraic numbers of bounded degree. Toward this end, Wirsing [25] proved a generalization of Rothโ€™s theorem, which we state in a general form. 20 Theorem 3.2.1 (Wirsing). Let ๐‘† be a finite set of places of a number field ๐‘˜. Let ๐‘ƒ1 , . . . , ๐‘ƒ๐‘ž โˆˆ P1 (๐‘˜) be distinct points and let ๐ท = ๐‘–=1 ๐‘ƒ๐‘– . Let ๐œ– > 0 and let ๐‘‘ be a positive integer. Then for ร๐‘ž all but finitely many points ๐‘ƒ โˆˆ P1 ( ๐‘˜) ยฏ \ Supp๐ท satisfying [๐‘˜ (๐‘ƒ) : ๐‘˜] โ‰ค ๐‘‘, we have ๐‘š(๐ท, ๐‘†, ๐‘ƒ) < (2๐‘‘ + ๐œ–)โ„Ž(๐‘ƒ). Remark 3.2.2. When ๐‘‘ = 1, Wirsingโ€™s theorem recovers Rothโ€™s theorem. It itself is also a special case of Vojtaโ€™s inequality of arithmetic discriminant (Theorem 4.2.4), with ๐‘” = 0 and ๐œˆ arbitrary. 3.3 Schmidtโ€™s subspace theorem A powerful tool in Diophantine Approximation is the famous Schmidtโ€™s Subspace Theorem, which will be the primary tool used in the proofs of this thesis. Theorem 3.3.1 (Schmidtโ€™s Subspace Theorem). Let ๐‘˜ be a number field and ๐‘† โŠ‚ ๐‘€๐‘˜ a finite set of places, ๐‘› โˆˆ N and ๐œ– > 0. For every ๐‘ฃ โˆˆ ๐‘†, let {๐ฟ 0๐‘ฃ , . . . , ๐ฟ ๐‘›๐‘ฃ } be a linearly independent set of linear forms in the variables ๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› with coefficients in ๐‘˜. Then there are finitely many hyperplanes ๐‘‡1 , . . . , ๐‘‡โ„Ž of P๐‘›๐‘˜ such that the set of solutions x = (๐‘ฅ0 : . . . : ๐‘ฅ ๐‘› ) โˆˆ P๐‘›๐‘˜ (๐‘˜) of ๐‘› โˆ‘๏ธ ร– |x| ๐‘ฃ log โ‰ฅ (๐‘› + 1 + ๐œ–)โ„Ž(x) + ๐‘‚ (1) ๐‘ฃโˆˆ๐‘† ๐‘–=0 |๐ฟ ๐‘– (x)| ๐‘ฃ ๐‘ฃ is contained in ๐‘‡1 โˆช ยท ยท ยท โˆช ๐‘‡โ„Ž . If we take ๐ท ๐‘ฃ to be the sum of divisors defined by ๐ฟ ๐‘–๐‘ฃ , ๐‘– = 0, . . . , ๐‘› and let ๐พP๐‘› be the canonical divisor of P๐‘› , then this inequality can be written as โˆ‘๏ธ ๐œ† ๐ท ๐‘ฃ ,๐‘ฃ (x) + โ„Ž ๐พP๐‘› (x) โ‰ฅ ๐œ– โ„Ž(x) + ๐‘‚ (1). ๐‘ฃโˆˆ๐‘† If ๐ป๐‘–๐‘ฃ is the hyperplane defined by ๐ฟ ๐‘–๐‘ฃ , then the left-hand side of the inequality may be written โˆ‘๏ธ โˆ‘๏ธ ๐‘› as ๐œ† ๐ป๐‘–๐‘ฃ ,๐‘ฃ (๐‘ฅ) up to ๐‘‚ (1). ๐‘ฃโˆˆ๐‘€๐‘˜ ๐‘–=0 Remark 3.3.2. A direct application of the Subspace Theorem is the unit equation. We will give a more general version of it later in 6.2.2. 21 CHAPTER 4 ARITHMETIC DISCRIMINANT 4.1 Arithmetic varieties In this section, we will deal with arithmetic objects and we will follow Vojtaโ€™s [22] notations under the general settings of Arakelov geometry. Definition 4.1.1. An arithmetic variety X consists of the following: 1. The finite part is a reduced scheme Xfin which is projective and flat over SpecZ and whose generic fibre is smooth. Write Xโˆž = Xfin ร—SpecZ SpecC. 2. The arithmetic part of X consists of a smooth function ฮ›X = ฮ› : Xโˆž ร— Xโˆž โ†’ Rโ‰ฅ0 , such that ฮ›(๐‘ƒ1 , ๐‘ƒ2 ) = 0 if and only if ๐‘ƒ1 = ๐‘ƒ2 , ฮ›(๐‘ƒ1 , ๐‘ƒ2 ) = ฮ›(๐‘ƒ2 , ๐‘ƒ1 ), and ฮ›(๐‘ƒ1 , ๐‘ƒ2 ) โ‰ซโ‰ช |๐‘ง1 (๐‘ƒ1 ) โˆ’ ๐‘ง1 (๐‘ƒ2 )| 2 + ยท ยท ยท + |๐‘ง ๐‘› (๐‘ƒ1 ) โˆ’ ๐‘ง ๐‘› (๐‘ƒ2 )| 2 in a neighborhood of the diagonal, where ๐‘ง1 , . . . , ๐‘ง ๐‘› are local coordinates on some open subset of Xโˆž . Thus ฮ› will be called a distance function. We also require that the form ๐œ” := ๐‘‘1 ๐‘‘1๐‘ ฮ›(๐‘ƒ, ๐‘ƒ) be a Kยฅahler form on Xโˆž (where ๐‘‘1 and ๐‘‘1๐‘ apply only to the first coordinate). Moreover, let ๐œ†(๐‘ƒ, ๐‘„) = โˆ’ log ฮ›(๐‘ƒ, ๐‘„), ๐‘ƒ โ‰  ๐‘„. 22 A morphism ๐‘“ of arithmetic varieties is a morphism ๐‘“fin of their finite parts. Arithmetic curves and arithmetic surfaces are arithmetic varieties of relative dimension zero and one, respectively. For a number field ๐‘˜, let ๐‘… be its ring of integers, and let ๐ต be the arithmetic scheme with ๐ตfin = Spec๐‘… and ฮ›๐ต (๐œŽ, ๐œ) = 0 if ๐œŽ = ๐œ and 1 otherwise, with ๐œŽ, ๐œ โˆˆ ๐ตโˆž . Note that ๐ตโˆž = {๐œŽ : ๐‘˜ โ†ฉโ†’ C}. We define the arithmetic curve corresponding to ๐‘… as the arithmetic curve obtained by using this choice of ฮ›. An arithmetic variety X over ๐ต is an arithmetic variety X, together with a morphism ๐œ‹ : X โ†’ ๐ต. For ๐œŽ : ๐‘˜ โ†ฉโ†’ C, let X๐œŽ = Xfin ร—๐œŽ C, so ร that Xโˆž = ๐œŽโˆˆ๐ตโˆž X๐œŽ . Also, we may refer to fibres of ๐œ‹ ๐‘“ ๐‘–๐‘› as (non-archimedean) fibres of ๐œ‹. More generally, one should view an arithmetic scheme as a scheme with an additional fibre over the archimedean absolute value of Q. Therefore we inherit the notions of local rings and (non-archimedean and generic) fibres from Xfin . We also have the arithmetic version of divisors and sheaves. Definition 4.1.2. An arithmetic divisor ๐ท on X is a divisor ๐ท fin on Xfin , together with a smooth function ๐‘” ๐ท : Xโˆž \ |๐ท โˆž | โ†’ R, such that if for all open sets ๐‘ˆ โŠ‚ Xโˆž on which ๐ท โˆž := ๐ท fin |๐‘ˆ is locally represented by a function ๐‘“ , the function ๐‘” ๐ท (๐‘ƒ) + log | ๐‘“ (๐‘ƒ)| 2 , ๐‘ƒ โˆ‰ Supp(๐ท โˆž ) extends to a continuous function of ๐‘ƒ on all of ๐‘ˆ. Definition 4.1.3. An invertible sheaf L on X is an invertible sheaf Lfin on Xfin , provided with a metric on Lโˆž := Lfin | Xโˆž compatible with the action of complex conjugation. 4.2 Arithmetic discriminants ยฏ be an algebraic point on a regular arithmetic surface ๐‘‹. Let ๐น = ๐‘˜ (๐‘ƒ). Let ๐ต be Let ๐‘ƒ โˆˆ ๐‘‹ ( ๐‘˜) the arithmetic curve corresponding to Spec(O๐น ), and let ๐‘– : ๐ต โ†’ ๐ธ ๐‘ƒ be the prime horizontal divisor corresponding to ๐‘ƒ. 23 Definition 4.2.1. The arithmetic discriminant ๐‘‘ ๐‘Ž (๐‘ƒ) of ๐‘ƒ on ๐‘‹ is defined by the formula deg ๐‘– โˆ— ฮฉ๐ธ ๐‘ƒ /๐ต ๐‘‘ ๐‘Ž (๐‘ƒ) = . [๐น : Q] An alternative characterization of ๐‘‘ ๐‘Ž is the following. Definition 4.2.2. Let ๐พ ๐‘‹/๐ต be a divisor corresponding to ๐œ” ๐‘‹/๐ต . Then we define (๐ธ ๐‘ƒ .๐ธ ๐‘ƒ + ๐พ ๐‘‹/๐ต ) ๐‘‘ ๐‘Ž (๐‘ƒ) := . [๐น : Q] Note that under this sense, we could write height functions as (๐ธ ๐‘ƒ .๐ท) โ„Ž ๐ท (๐‘ƒ) = . [๐น : Q] The arithmetic discriminant was initially defined in [23] or [21] using the alternative def- inition. It is clear that in the function field case, ๐‘‘ ๐‘Ž is a function of the arithmetic genus ๐‘ ๐‘Ž (๐ธ ๐‘ƒ ): 2๐‘ ๐‘Ž (๐ธ ๐‘ƒ ) โˆ’ 2 ๐‘‘ ๐‘Ž (๐‘ƒ) = โˆ’ (2๐‘”(๐ต) โˆ’ 2). [๐น : ๐‘˜] Compared to the discriminant defined in [20], log |๐ท ๐น/Q | deg ฮฉNor(๐ธ ๐‘ƒ )/๐ต ๐‘‘ (๐‘ƒ) = = , [๐น : Q] [๐น : Q] where Nor(๐ธ ๐‘ƒ ) is the normalization of ๐ธ ๐‘ƒ . In the function field case, we have 2๐‘”(Nor(๐ธ ๐‘ƒ )) โˆ’ 2 ๐‘‘ (๐‘ƒ) = โˆ’ (2๐‘”(๐ต) โˆ’ 2). [๐น : ๐‘˜] So the difference between ๐‘‘ ๐‘Ž (๐‘ƒ) and ๐‘‘ (๐‘ƒ) is related to the difference between the arithmetic and geometric genera. There are some elementary properties of ๐‘‘ ๐‘Ž . Lemma 4.2.3. Let ๐‘‹, ๐ต, ๐น defined as before. The following hold: ยฏ corresponding 1. If ๐‘‹ โ€ฒ is another model birational to ๐‘‹, and if ๐‘ƒโ€ฒ denotes the point in ๐‘‹ โ€ฒ ( ๐‘˜) ยฏ then to ๐‘ƒ โˆˆ ๐‘‹ ( ๐‘˜), ๐‘‘ ๐‘Ž (๐‘ƒโ€ฒ) = ๐‘‘ ๐‘Ž (๐‘ƒ) + ๐‘‚ ([๐น : Q]). 24 2. If ๐‘‹ โ€ฒ is the model obtained from ๐‘‹ by a base change and desingularizing, if ๐‘ƒโ€ฒ is similarly defined, and if the base change is linearly disjoint from ๐น, then ๐‘‘ ๐‘Ž (๐‘ƒโ€ฒ) = ๐‘‘ ๐‘Ž (๐‘ƒ) + ๐‘‚ ([๐น : Q]). 3. If ๐‘‹ = P1 , then ๐‘‘ ๐‘Ž (๐‘ƒ) = (2[๐น : ๐‘˜] โˆ’ 2)โ„Ž(๐‘ƒ) + ๐‘‚ (1). 4. If ๐‘“ : ๐‘‹ โ†’ ๐‘Œ is a morphism of arithmetic surfaces over ๐ต, and if ๐‘“ | ๐ธ ๐‘ƒ is generically injective, then ๐‘‘ ๐‘† (๐‘ƒ) โ‰ค ๐‘‘ ๐‘Ž ( ๐‘“ (๐‘ƒ)). A celebrated result on the arithmetic discriminant by Vojta [24], which can be regarded as a proven weak version of Vojtaโ€™s conjecture. Theorem 4.2.4. Fix an integer ๐œˆ โ‰ฅ 1, a real number ๐œ– > 0, an effective divisor ๐ท on ๐‘‹ with no multiple components, and a divisor ๐ด on ๐‘‹ which is ample on the generic fibre. Then for all points ๐‘ƒ โˆˆ ๐ถ (๐‘˜) \ Supp(๐ท) with [๐‘˜ (๐‘ƒ) : ๐‘˜] โ‰ค ๐œˆ, ๐‘š(๐ท, ๐‘ƒ) + โ„Ž ๐พ (๐‘ƒ) โ‰ค ๐‘‘ ๐‘Ž (๐‘ƒ) + ๐œ– โ„Ž ๐ด (๐‘ƒ) + ๐‘‚ (1), where the constant in ๐‘‚ (1) depends on ๐‘‹, ๐ท, ๐œˆ, ๐ด and ๐œ–. 25 CHAPTER 5 TOOLS IN LINEAR RECURRENCE SEQUENCES Here we give some basic definitions and results involving linear recurrence sequences. Definition 5.0.1. A linear recurrence is a sequence ๐‘Ž = (๐‘Ž(๐‘–)) of complex numbers satisfying a homogeneous linear recurrence relation ๐‘Ž(๐‘– + ๐‘›) = ๐‘ 1 ๐‘Ž(๐‘– + ๐‘› โˆ’ 1) + ยท ยท ยท + ๐‘ ๐‘›โˆ’1 ๐‘Ž(๐‘– + 1) + ๐‘ ๐‘› ๐‘Ž(๐‘–), ๐‘– โˆˆ N with constant coefficients ๐‘  ๐‘— โˆˆ C. Definition 5.0.2. The polynomial ๐‘“ (๐‘‹) = ๐‘‹ ๐‘› โˆ’ ๐‘ 1 ๐‘‹ ๐‘›โˆ’1 โˆ’ ยท ยท ยท โˆ’ ๐‘ ๐‘›โˆ’1 ๐‘‹ โˆ’ ๐‘ ๐‘› associated to the relation in Definition 5.0.1 is called its characteristic polynomial and the roots of this polynomial are said to be its roots. Definition 5.0.3. A generalized power sum is a finite polynomial-exponential sum ๐‘š โˆ‘๏ธ ๐‘Ž(๐‘–) = ๐ด ๐‘— (๐‘–)๐›ผ๐‘–๐‘— , ๐‘– โˆˆ N ๐‘—=1 with polynomial coefficients ๐ด ๐‘— (๐‘ง) โˆˆ C[๐‘ง]. The ๐›ผ ๐‘— are the roots of the sequence ๐‘Ž(๐‘–). It is a well-known fact that every linear recurrence sequence ๐‘Ž(๐‘ฅ) can be written in the form of a generalized power sum and in fact these two forms are equivalent, see [7]. Through- out this thesis, linear recurrence sequences are presented in the form of a generalized power sum. The linear recurrence sequence ๐‘Ž(๐‘–) is called degenerate if it has a pair of distinct roots whose ratio is a root of unity. Otherwise, it is called non-degenerate. 26 Fix a number field ๐‘˜. Let us define two linear recurrence sequences ๐น (๐‘›) and ๐บ (๐‘›) by generalized power sums ๐‘š โˆ‘๏ธ ๐น (๐‘›) = ๐ด๐‘– (๐‘›)๐›ผ๐‘–๐‘› ๐‘–=1 โˆ‘๏ธ๐‘™ ๐บ (๐‘›) = ๐ต๐‘– (๐‘›) ๐›ฝ๐‘–๐‘› ๐‘–=1 where ๐ด(๐‘›), ๐ต(๐‘›) are polynomials over ๐‘˜ and ๐›ผ๐‘– and ๐›ฝ๐‘– are roots in ๐‘˜ โˆ— . Let ฮ“ be the multiplicative group generated by all ๐›ผ๐‘– and ๐›ฝ๐‘– with a set of generators {๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ }. Then we can write ๐น (๐‘›) and ๐บ (๐‘›) as ๐น (๐‘›) = ๐‘“ (๐‘›, ๐‘ข 1๐‘› , . . . , ๐‘ข๐‘Ÿ๐‘› ) ๐บ (๐‘›) = ๐‘”(๐‘›, ๐‘ข 1๐‘› , . . . , ๐‘ข๐‘Ÿ๐‘› ) where ๐‘“ and ๐‘” are rational functions in ๐‘ฅ0 , . . . , ๐‘ฅ๐‘Ÿ of the form: ๐‘“หœ(๐‘ฅ 0 , . . . , ๐‘ฅ๐‘Ÿ ) ๐‘“ (๐‘ฅ 0 , . . . , ๐‘ฅ๐‘Ÿ ) = ๐‘ฅ 1๐‘Ž1 ยท ยท ยท ๐‘ฅ๐‘Ÿ๐‘Ž๐‘Ÿ หœ 0 , . . . , ๐‘ฅ๐‘Ÿ ) ๐‘”(๐‘ฅ ๐‘”(๐‘ฅ0 , . . . , ๐‘ฅ๐‘Ÿ ) = ๐‘ฅ1๐‘1 ยท ยท ยท ๐‘ฅ๐‘Ÿ๐‘๐‘Ÿ with ๐‘“หœ, ๐‘”หœ polynomials, i.e., ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ 0 , ๐‘ฅ0โˆ’1 , . . . , ๐‘ฅ๐‘Ÿ , ๐‘ฅ๐‘Ÿโˆ’1 ] are Laurent polynomials. In particular, the ring of such Laurent polynomials is a localization of ๐‘˜ [๐‘ฅ0 , . . . , ๐‘ฅ๐‘Ÿ ], so it is a UFD. It is obvious that linear recurrence sequences are closed under term-wise sum and product from the generalized power sum point of view, hence we can talk about the sum and product of two recurrence sequences. Let Hฮ“ (๐‘˜) be the ring of linear recurrence sequences whose coeffi- cient polynomials are over ๐‘˜ and roots belonging to a torsion-free multiplicative group ฮ“ โŠ‚ ๐‘˜ โˆ— . We say ๐น (๐‘›), ๐บ (๐‘›) โˆˆ Hฮ“ (๐‘˜) are coprime if there does not exist a non-unit ๐ป (๐‘›) โˆˆ Hฮ“ (๐‘˜) such that ๐น (๐‘›) = ๐ป (๐‘›)๐น0 (๐‘›) and ๐บ (๐‘›) = ๐ป (๐‘›)๐บ 0 (๐‘›) with ๐น0 (๐‘›), ๐บ 0 (๐‘›) โˆˆ Hฮ“ (๐‘˜). Recall that for ๐น (๐‘›), ๐บ (๐‘›) โˆˆ Hฮ“ (๐‘˜) and a choice of generators of the torsion-free group ฮ“, there are associated Laurent polynomials ๐‘“ and ๐‘” respectively; if two such recurrence sequences are coprime then 27 the two associated Laurent polynomials are also coprime. We also need a well-known theorem on the structure of the zeros of a linear recurrence: Theorem 5.0.4 (Skolem-Mahler-Lech). The set of indices of the zeros of a linear recurrence sequence comprises a finite set together with a finite number of arithmetic progressions. If the linear recurrence sequence is nondegenerate, then there are only finitely many zeros. 28 CHAPTER 6 ALMOST ๐‘†-UNITS AND ALMOST ๐‘†-UNIT EQUATIONS 6.1 Compatible definitions The definition of almost ๐‘†, ๐›ฟ-units was already given as in Definition 1.1.6. Here are some remarks about this definition and its properties. Remark 6.1.1. Silverman has defined โ€œquasi-๐‘†-integers" in [17]. For a number field ๐‘˜, a finite set of places ๐‘† and ๐œ– > 0, the set of quasi-๐‘†-integers are defined as โˆ‘๏ธ ๐‘…๐‘† (๐œ–) := {๐‘ฅ โˆˆ ๐‘˜ : max{|๐‘ฅ| ๐‘ฃ , 0} โ‰ฅ ๐œ– โ„Ž(๐‘ฅ)}. ๐‘ฃโˆˆ๐‘† Silvermanโ€™s notion of quasi-๐‘†-integers can be compared with our notion of almost (๐‘†, ๐›ฟ)-units as follows: if ๐‘ฅ โˆˆ ๐‘˜ ๐‘†,1โˆ’๐œ– then ๐‘ฅ โˆˆ ๐‘…๐‘† (๐œ–), and if ๐‘ฅ โˆˆ ๐‘…๐‘† (๐œ–) then ๐‘ฅ โˆˆ ๐‘˜ ๐‘†,2โˆ’๐œ– . Remark 6.1.2. We note that ๐‘˜ ๐‘†,๐›ฟ ๐‘› โŠ‚ G๐‘› (๐‘˜) ๐‘š ๐‘†,๐‘›๐›ฟ and when ๐›ฟ = 0 we recover ๐‘›-tuples of ๐‘†-units, โˆ— )๐‘›. ๐บ ๐‘›๐‘š (๐‘˜) ๐‘†,0 = (O๐‘˜,๐‘† Remark 6.1.3. We use projective height to define almost ๐‘†-units in G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ . In other references standard height is frequently used, where for a point ๐‘ƒ = (๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ , ๐‘› โˆ‘๏ธ โ„Ž ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘ (๐‘ƒ) := โ„Ž(๐‘ฅ ๐‘› ). ๐‘–=1 Local heights are defined similarly as ๐‘› โˆ‘๏ธ ๐œ† ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘,๐‘ฃ (๐‘ƒ) := ๐œ† ๐‘ฃ (๐‘ฅ ๐‘› ). ๐‘–=1 One can verify that if ๐‘ƒ โˆˆ G๐‘›๐‘š (๐‘˜) is an (๐‘†, ๐›ฟ)-unit under the projective height, then it is an 29 (๐‘†, ๐‘›๐›ฟ)-unit under the standard height. Indeed, in this case we have โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ ๐‘› ๐œ† ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘,๐‘ฃ (๐‘ƒ) + ๐œ† ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘,๐‘ฃ (1/๐‘ƒ) = ( ๐œ† ๐‘ฃ (๐‘ฅ๐‘– ) + ๐œ† ๐‘ฃ (1/๐‘ฅ๐‘– )) ๐‘ฃโˆ‰๐‘† ๐‘ฃโˆ‰๐‘† ๐‘–=1 โˆ‘๏ธ โ‰ค๐‘› ๐œ† ๐‘ฃ (๐‘ƒ) + ๐œ† ๐‘ฃ (1/๐‘ƒ) ๐‘ฃโˆ‰๐‘† โ‰ค ๐‘›๐›ฟโ„Ž(๐‘ƒ) โ‰ค ๐‘›๐›ฟโ„Ž ๐‘ ๐‘ก๐‘Ž๐‘›๐‘‘ (๐‘ƒ). 6.2 Almost ๐‘†-unit equation theorem Before the main proof, we need a generalized version of the unit equation. Lemma 6.2.1. Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing all archimedean places. Let 0 < ๐›ฟ < 1/((๐‘› + 1)(๐‘› + 2)). Let ๐œ’ be the set of solutions of ๐‘›+1 ๐‘ฅ 0 + ยท ยท ยท + ๐‘ฅ ๐‘› = 1, (๐‘ฅ0 , . . . , ๐‘ฅ ๐‘› ) โˆˆ ๐‘˜ ๐‘†,๐›ฟ , such that no proper subsum of ๐‘ฅ0 + ยท ยท ยท + ๐‘ฅ ๐‘› vanishes. Then ๐œ’ is a finite set. Proof. Let (๐‘Ž 0 , . . . , ๐‘Ž ๐‘› ) be a solution in ๐‘˜ ๐‘†,๐›ฟ ๐‘›+1 and ๐‘ƒ = (๐‘Ž : . . . : ๐‘Ž ) โˆˆ P๐‘› . Let ๐ป , ๐‘– = 0, . . . , ๐‘› 0 ๐‘› ๐‘– be hyperplanes defined by ๐‘ฅ๐‘– = 0, ๐ป๐‘›+1 be the hyperplane defined by ๐‘ฅ 0 + ยท ยท ยท + ๐‘ฅ ๐‘› = 0. Let ๐‘ƒโ€ฒ = (๐‘Ž 0 , . . . , ๐‘Ž ๐‘› ). Note that every coordinate of ๐‘ƒโ€ฒ is in ๐‘˜ ๐‘†,๐›ฟ , and by easy calculations and Remark 6.1.2, we know ๐‘ƒโ€ฒ โˆˆ G๐‘›+1 ๐‘š (๐‘˜) ๐‘†,(๐‘›+1)๐›ฟ . By triangle inequalities, for any ๐‘ฃ โˆˆ ๐‘€ ๐‘˜,โˆž , |1| ๐‘ฃ = |๐‘Ž 0 + ยท ยท ยท + ๐‘Ž ๐‘› | ๐‘ฃ โ‰ค (๐‘› + 1) max |๐‘Ž๐‘– | ๐‘ฃ , ๐‘– and for ๐‘ฃ โˆ‰ ๐‘€๐‘˜,โˆž |1| ๐‘ฃ = |๐‘Ž 0 + ยท ยท ยท + ๐‘Ž ๐‘› | ๐‘ฃ โ‰ค max |๐‘Ž๐‘– | ๐‘ฃ . ๐‘– It follows that for all ๐‘ฃ โˆˆ ๐‘€๐‘˜ โ„Ž(๐‘ƒโ€ฒ) = โ„Ž(๐‘ƒ) + ๐‘‚ (1) and ๐œ† ๐‘ฃ (๐‘ƒโ€ฒ) = ๐œ† ๐‘ฃ (๐‘ƒ) + ๐‘‚ (1). 30 Hence we get ๐‘›+1 โˆ‘๏ธ โˆ‘๏ธ ๐œ† ๐ป๐‘– ,๐‘ฃ (๐‘ƒ) โ‰ฅ (๐‘› + 2 โˆ’ (๐‘› + 1)(๐‘› + 2)๐›ฟ)โ„Ž(๐‘ƒ) + ๐‘‚ (1). ๐‘–=0 ๐‘ฃโˆˆ๐‘† Applying the Subspace theorem, we have (๐‘› + 2 โˆ’ (๐‘› + 1)(๐‘› + 2)๐›ฟ)โ„Ž(๐‘ƒ) โ‰ค (๐‘› + 1 + ๐œ–)โ„Ž(๐‘ƒ) + ๐‘‚ (1) unless ๐‘ƒ lies in some certain proper linear subspaces of P๐‘› . For a fixed ๐›ฟ < 1/((๐‘› + 1)(๐‘› + 2)), taking ๐œ– sufficiently small, the above implies such ๐‘ƒ is contained in a finite union of hyperplanes in P๐‘› . If ๐‘› = 1, we are done. Otherwise, we proceed by induction as in the proof of the standard unit equation [2, Theorem 7.4.2]. โ–ก Corollary 6.2.2. Let 0 < ๐›ฟ < 1/((๐‘› + 1)(๐‘› + 2)). Let ๐œ’ be the set of solutions of ๐‘ฅ0 + ยท ยท ยท + ๐‘ฅ๐‘› = 1 ๐‘›+1 . Then there is a finite set F โŠ‚ ๐‘˜ โˆ— such that every x โˆˆ ๐œ’ has at such that (๐‘ฅ0 , . . . , ๐‘ฅ ๐‘› ) โˆˆ ๐‘˜ ๐‘†,๐›ฟ least one coordinate in F . Proof. The proof follows from Lemma 6.2.1 and induction. โ–ก Lemma 6.2.1 and Corollary 6.2.2 together give the generalized unit equation for ๐‘˜ ๐‘†,๐›ฟ ๐‘› , which allows us to obtain finiteness of solutions in several of the following theorems. 31 CHAPTER 7 PROOFS OF DIOPHANTINE APPROXIMATION THEOREMS In this section, our main goal is to give the proof of Theorem 1.1.7. In the following we will use the notation u and i for ๐‘›-tuples (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) and (๐‘–1 , . . . , ๐‘– ๐‘› ), respectively, with |i| = ๐‘–1 + ยท ยท ยท + ๐‘– ๐‘› and denote by ui the multi-variable monomial ๐‘ข๐‘–11 ยท ยท ยท ๐‘ข๐‘–๐‘›๐‘› . Let ๐‘š be a positive integer. For a subset ๐‘‡ โŠ‚ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ], we let ๐‘‡๐‘š = {๐‘ โˆˆ ๐‘‡ | deg ๐‘ โ‰ค ๐‘š}, and ๐‘‡[๐‘š] = {๐‘ โˆˆ ๐‘‡ | ๐‘ is homogeneous of degree ๐‘š}. For ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ], we let ( ๐‘“ , ๐‘”) (๐‘š) = { ๐‘“ ๐‘ + ๐‘”๐‘ž| deg ๐‘“ ๐‘, deg ๐‘”๐‘ž โ‰ค ๐‘š}, where deg denotes the (total) degrees of the polynomials. Before the proof, we need a combinatorial lemma. Lemma 7.0.1. Let ๐‘š be a positive integer. Let ๐ผ = {i = (๐‘– 0 , . . . , ๐‘– ๐‘› )} be the set of (๐‘› + 1)-tuples in N๐‘›+1 with ๐‘–0 + ยท ยท ยท + ๐‘– ๐‘› = ๐‘š. Then  โˆ‘๏ธ ๐‘š ๐‘›+๐‘š ๐‘› i= (1, . . . , 1) iโˆˆ๐ผ ๐‘›+1 where addition and scalar multiplication are coordinate-wise. We also need Lemma 2.1 from [Corvaja et al.]. 32 Lemma 7.0.2. Let ๐น1 , ๐น2 โˆˆ ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ] be coprime homogeneous polynomials of degrees ๐‘‘1 and ๐‘‘2 , respectively. Let ๐ต โŠ‚ ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ] [๐‘š] be a set of monomials of degree ๐‘š whose images are linearly independent in ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ] [๐‘š] /(๐น1 , ๐น2 ) [๐‘š] . Then         โˆ‘๏ธ j ๐‘š+๐‘› ๐‘š + ๐‘› โˆ’ ๐‘‘1 ๐‘š + ๐‘› โˆ’ ๐‘‘2 ๐‘š + ๐‘› โˆ’ ๐‘‘1 โˆ’ ๐‘‘2 ord๐‘ฅ๐‘– x โ‰ค โˆ’ โˆ’ + j ๐‘›+1 ๐‘›+1 ๐‘›+1 ๐‘›+1 x โˆˆ๐ต   ๐‘š+๐‘›โˆ’2 โ‰ค ๐‘‘1 ๐‘‘2 ๐‘›โˆ’1 for ๐‘– = 0, . . . , ๐‘›. Proof. Let ๐‘† = ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ]. For an ๐‘™ โˆˆ N and a graded module ๐‘€ over ๐‘†, let ๐‘‘ ๐‘€ (๐‘™) = dim ๐‘˜ ๐‘€ [๐‘™] . Let ๐ผ be an ideal generated by a homogeneous polynomial of degree ๐‘–. By the well-known theory of Hilbert polynomials, ๐‘‘ ๐‘†/๐ผ (๐‘™) = ๐‘‘ ๐‘† (๐‘™) โˆ’ ๐‘‘ ๐‘† (๐‘™ โˆ’ ๐‘–). In this case, dim(๐‘† [๐‘™] /(๐น1 , ๐น2 ) [๐‘™] ) = ๐‘‘ ๐‘†/(๐น1 ) (๐‘™) โˆ’ ๐‘‘ ๐‘†/(๐น1 ) (๐‘™ โˆ’ ๐‘‘2 ) = ๐‘‘ ๐‘† (๐‘™) โˆ’ ๐‘‘ ๐‘† (๐‘™ โˆ’ ๐‘‘1 ) โˆ’ (๐‘‘ ๐‘† (๐‘™ โˆ’ ๐‘‘2 ) โˆ’ ๐‘‘ ๐‘† (๐‘™ โˆ’ ๐‘‘1 โˆ’ ๐‘‘2 ))         ๐‘™+๐‘› ๐‘™ + ๐‘› โˆ’ ๐‘‘1 ๐‘™ + ๐‘› โˆ’ ๐‘‘2 ๐‘™ + ๐‘› โˆ’ ๐‘‘1 โˆ’ ๐‘‘2 = โˆ’ โˆ’ + . ๐‘› ๐‘› ๐‘› ๐‘› Let ๐‘– โˆˆ {0, . . . , ๐‘›}, let ๐‘†โ€ฒ[๐‘™] be the image of ๐‘ฅ๐‘–๐‘™ ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ] [๐‘šโˆ’๐‘™] in ๐‘† [๐‘š] /(๐น1 , ๐น2 ) [๐‘š] . Notice that โˆ‘๏ธ ๐‘š โˆ‘๏ธ ๐‘š โˆ‘๏ธ j ord๐‘ฅ๐‘– x โ‰ค ๐‘— (dim ๐‘†โ€ฒ[ ๐‘—] โˆ’ dim ๐‘†โ€ฒ[ ๐‘—+1] ) = dim ๐‘†โ€ฒ[ ๐‘—] , xj โˆˆ๐ต ๐‘—=1 ๐‘—=1 and that dim ๐‘†โ€ฒ[๐‘™] โ‰ค dim ๐‘† [๐‘šโˆ’๐‘™] /(๐น1 , ๐น2 ) [๐‘šโˆ’๐‘™] , hence we have โˆ‘๏ธ ๐‘šโˆ’1 โˆ‘๏ธ ord๐‘ฅ๐‘– xj โ‰ค dim ๐‘† [ ๐‘—] /(๐น1 , ๐น2 ) [ ๐‘—] . xj โˆˆ๐ต ๐‘—=0 Using Pascalโ€™s identity for binomial coefficients,         โˆ‘๏ธ j ๐‘š+๐‘› ๐‘š + ๐‘› โˆ’ ๐‘‘1 ๐‘š + ๐‘› โˆ’ ๐‘‘2 ๐‘š + ๐‘› โˆ’ ๐‘‘1 โˆ’ ๐‘‘2 ord๐‘ฅ๐‘– x โ‰ค โˆ’ โˆ’ + j ๐‘›+1 ๐‘›+1 ๐‘›+1 ๐‘›+1 x โˆˆ๐ต   ๐‘š+๐‘›โˆ’2 โ‰ค ๐‘‘1 ๐‘‘2 . ๐‘›โˆ’1 โ–ก 33 Theorem 7.0.3. Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] be coprime polynomials. For all 0 < ๐›ฟ < 1, there exists a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ , |๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ } < ๐ถ๐›ฟ1/2 โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘, where ๐ถ = 2(๐‘›2 deg ๐‘“ + ๐‘› deg ๐‘”) is a constant. Proof. This proof is modeled on the proof of Theorem 3.2 of [14]. Consider the ideal ( ๐‘“ , ๐‘”) โŠ‚ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ]. We first assume that ( ๐‘“ , ๐‘”) (๐‘š) โ‰  ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š . It follows that the ๐‘˜-vector space ๐‘‰๐‘š = ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š /( ๐‘“ , ๐‘”) (๐‘š) is not trivial. Let u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ . For ๐‘ฃ โˆˆ ๐‘†, we construct a basis ๐ต๐‘ฃ for ๐‘‰๐‘š as follows. Choose a mono- mial xi1 โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š so that |ui1 | ๐‘ฃ is minimal subject to the condition xi1 โˆ‰ ( ๐‘“ , ๐‘”) (๐‘š) . Sup- pose now that xi1 , . . . , xi ๐‘— have been constructed and are linearly independent modulo ( ๐‘“ , ๐‘”) (๐‘š) , but donโ€™t span ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š modulo ( ๐‘“ , ๐‘”) (๐‘š) . Then we let xi ๐‘—+1 โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š be a monomial such that |ui ๐‘—+1 | ๐‘ฃ is minimal subject to the condition that xi1 , . . . , xi ๐‘—+1 are linearly independent modulo ( ๐‘“ , ๐‘”) (๐‘š) . In this way, we construct a basis of ๐‘‰๐‘š with monomial represen- tatives xi1 , . . . , xi ๐‘ โ€ฒ , where ๐‘ โ€ฒ = ๐‘๐‘šโ€ฒ = dim ๐‘‰๐‘š . Let ๐ผ๐‘ฃ = {i1 , . . . , i๐‘ โ€ฒ }. We also choose a basis ๐œ™1 , . . . , ๐œ™ ๐‘ of the vector space ( ๐‘“ , ๐‘”) (๐‘š) , where ๐‘ = ๐‘๐‘š = dim( ๐‘“ , ๐‘”) (๐‘š) . Now for i, |i| โ‰ค ๐‘š, we have that โˆ‘๏ธ๐‘โ€ฒ i x + ๐‘ i, ๐‘— xi ๐‘— โˆˆ ( ๐‘“ , ๐‘”) (๐‘š) ๐‘—=1 for some choice of coefficients ๐‘ i, ๐‘— โˆˆ ๐‘˜. Then for each such i there is a linear form ๐ฟ i๐‘ฃ over ๐‘˜ such that โˆ‘๏ธ๐‘โ€ฒ i ๐ฟ i๐‘ฃ (๐œ™1 , . . . , ๐œ™ ๐‘ ) =x + ๐‘ i, ๐‘— xi ๐‘— . ๐‘—=1 34 Note that {๐ฟ i๐‘ฃ (๐œ™1 , . . . , ๐œ™ ๐‘ ) : |i| โ‰ค ๐‘š, i โˆ‰ ๐ผ๐‘ฃ } is a basis for ( ๐‘“ , ๐‘”) (๐‘š) , and {๐ฟ i๐‘ฃ : |i| โ‰ค ๐‘š, i โˆ‰ ๐ผ๐‘ฃ } is a set of ๐‘ linearly independent forms in ๐‘ variables. Let ๐‘ƒ = ๐œ™(u) := (๐œ™1 (u), . . . , ๐œ™ ๐‘ (u)) โˆˆ ๐‘˜ ๐‘ . We may additionally assume that ๐œ™(u) โ‰  0 (by enlarging the set ๐‘). From the triangle inequality and the definition of xi1 , . . . , xi ๐‘ โ€ฒ , for any i with |i| โ‰ค ๐‘š, i โˆ‰ ๐ผ๐‘ฃ , we have the key inequality log |๐ฟ i๐‘ฃ (๐‘ƒ)| ๐‘ฃ โ‰ค log |ui | ๐‘ฃ + ๐ถ๐‘ฃ where the constant ๐ถ๐‘ฃ depends only on ๐‘ฃ โˆˆ ๐‘† and the set {i1 , . . . , i๐‘ โ€ฒ } (and not on u). We will apply the Subspace Theorem with the choice of linear forms ๐ฟ i๐‘ฃ , |i| โ‰ค ๐‘š, i โˆ‰ ๐ผ๐‘ฃ , for each ๐‘ฃ โˆˆ ๐‘†. We want to estimate the sum โˆ‘๏ธ โˆ‘๏ธ |๐‘ƒ| ๐‘ฃ log . ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰๐ผ ๐‘ฃ |๐ฟ i (๐‘ƒ)| ๐‘ฃ ๐‘ฃ Towards this end, we estimate the sums โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ’ log |๐ฟ i๐‘ฃ (๐‘ƒ)| ๐‘ฃ and log |๐‘ƒ| ๐‘ฃ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰๐ผ ๐‘ฃ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰๐ผ ๐‘ฃ separately. We have โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ’ log |๐ฟ i๐‘ฃ (๐‘ƒ)| ๐‘ฃ โ‰ฅ โˆ’ log |ui | ๐‘ฃ โˆ’ ๐ถ๐‘ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ โˆ‘๏ธ where ๐ถ = ๐ถ๐‘ฃ . By the product formula, ๐‘ฃโˆˆ๐‘† โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |ui | ๐‘ฃ + log |ui | ๐‘ฃ = log |ui | ๐‘ฃ = 0. ๐‘ฃโˆˆ๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ It follows that, โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ’ log |ui | ๐‘ฃ = โˆ’ log |ui | ๐‘ฃ + log |ui | ๐‘ฃ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š ๐‘ฃโˆˆ๐‘† iโˆˆI๐‘ฃ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ = log |ui | ๐‘ฃ + log |ui | ๐‘ฃ . ๐‘ฃโˆˆ๐‘† iโˆˆI๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† |i|โ‰ค๐‘š 35 Let ๐‘‘1 = deg ๐‘“ and ๐‘‘2 = deg ๐‘”. By Lemma 7.0.2, we have   โˆ‘๏ธ โˆ‘๏ธ i ๐‘š + ๐‘› โˆ’ 2 โˆ‘๏ธ โˆ’ log |u | ๐‘ฃ โ‰ค ๐‘‘1 ๐‘‘2 โ„Ž(๐‘ข๐‘– ), ๐‘ฃโˆˆ๐‘† iโˆˆI ๐‘›โˆ’1 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ฃ we find that,   โˆ‘๏ธ โˆ‘๏ธ ๐‘š + ๐‘› โˆ’ 2 โˆ‘๏ธ โˆ’ log |๐ฟ i๐‘ฃ (๐‘ƒ)| ๐‘ฃ โ‰ฅ โˆ’ ๐‘‘1 ๐‘‘2 โ„Ž(๐‘ข๐‘– ) โˆ’ ๐ถ๐‘ ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ ๐‘›โˆ’1 1โ‰ค๐‘–โ‰ค๐‘› โˆ‘๏ธ โˆ‘๏ธ + log |ui | ๐‘ฃ . ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† |i|โ‰ค๐‘š By Lemma 7.0.1, โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |ui | ๐‘ฃ = log |ui | ๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† |i|โ‰ค๐‘š |i|โ‰ค๐‘š ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†  ๐‘š ๐‘›+๐‘š๐‘› โˆ‘๏ธ โˆ‘๏ธ = log |๐‘ข๐‘– | ๐‘ฃ ๐‘›+1 ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› ๐‘›+๐‘š  โˆ‘๏ธ   ๐‘š ๐‘› โˆ‘๏ธ 1 โ‰ฅโˆ’ ๐œ†๐‘ฃ . ๐‘›+1 ๐‘ข๐‘– ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› So we estimate,   โˆ‘๏ธ ๐‘›+๐‘š  โˆ‘๏ธ   โˆ‘๏ธ โˆ‘๏ธ ๐‘š + ๐‘› โˆ’ 2 ๐‘š ๐‘› โˆ‘๏ธ 1 โˆ’ log |๐ฟ i๐‘ฃ (๐‘ƒ)| ๐‘ฃ โ‰ฅ โˆ’๐‘‘1 ๐‘‘2 โ„Ž(๐‘ข๐‘– ) โˆ’ ๐œ†๐‘ฃ ๐‘›โˆ’1 ๐‘› + 1 ๐‘ข๐‘– ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› โˆ’ ๐ถ๐‘. On the other hand, โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |๐‘ƒ| ๐‘ฃ = ๐‘ log |๐‘ƒ| ๐‘ฃ = ๐‘ (โ„Ž(๐‘ƒ) โˆ’ log |๐‘ƒ| ๐‘ฃ ). ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ ๐‘ฃโˆˆ๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Now since ๐œ™๐‘– = ๐‘“ ๐‘๐‘– + ๐‘”๐‘ž๐‘– , deg ๐‘“ ๐‘๐‘– , deg ๐‘”๐‘ž๐‘– โ‰ค ๐‘š, we have for ๐‘ฃ โˆˆ ๐‘€๐‘˜ \ ๐‘†, log |๐œ™๐‘– (u)| ๐‘ฃ = log | ๐‘“ ๐‘๐‘– (u) + ๐‘”๐‘ž๐‘– (u)| ๐‘ฃ โ‰ค log max{| ๐‘“ ๐‘๐‘– (u)| ๐‘ฃ , |๐‘”๐‘ž๐‘– (u)| ๐‘ฃ } + ๐‘‚ ๐‘ฃ (1) โ‰ค logโˆ’ max{| ๐‘“ ๐‘๐‘– (u)| ๐‘ฃ , |๐‘”๐‘ž๐‘– (u)| ๐‘ฃ } + ๐‘š๐œ† ๐‘ฃ (u) + ๐‘‚ ๐‘ฃ (1) โ‰ค logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } + ๐‘š๐œ† ๐‘ฃ (u) + ๐‘‚ ๐‘ฃ (1), 36 where ๐‘‚ ๐‘ฃ (1) = 0 for all but finitely many ๐‘ฃ. Then for ๐‘ฃ โˆˆ ๐‘€๐‘˜ \ ๐‘†, log |๐‘ƒ| ๐‘ฃ โ‰ค logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } + ๐‘š๐œ† ๐‘ฃ (u) + ๐ถ๐‘ฃ . Now we sum over ๐‘ฃ โˆˆ ๐‘€๐‘˜ \ ๐‘† to get: โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |๐‘ƒ| ๐‘ฃ โ‰ค logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } + ๐‘š ๐œ† ๐‘ฃ (u) + ๐‘‚ (1). ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Then we find the estimate: โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |๐‘ƒ| ๐‘ฃ โ‰ฅ๐‘ (โ„Ž(๐‘ƒ) โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† โˆ‘๏ธ โˆ‘๏ธ โˆ’๐‘š ๐œ† ๐‘ฃ (๐‘ข๐‘– )) + ๐‘‚ (1). ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› One also has the easy estimate โ„Ž(๐‘ƒ) โ‰ค ๐‘šโ„Ž(u) + ๐‘‚ (1). Schmidtโ€™s Subspace Theorem implies that there exists a finite union ๐‘ of proper subspaces of ๐‘˜ ๐‘ such that โˆ‘๏ธ โˆ‘๏ธ |๐‘„| ๐‘ฃ log โ‰ค (๐‘ + 1)โ„Ž(๐‘„) ๐‘ฃโˆˆ๐‘† |i|โ‰ค๐‘š,iโˆ‰I๐‘ฃ |๐ฟ i (๐‘„)| ๐‘ฃ ๐‘ฃ for all ๐‘„ โˆˆ ๐‘˜ ๐‘ \ ๐‘. Using the above estimates, if ๐‘ƒ = ๐œ™(u) โˆ‰ ๐‘, we find that up to an ๐‘‚ (1), โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ ๐‘ ยญ โ„Ž(๐‘ƒ) โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โˆ’ ๐‘š ๐œ† ๐‘ฃ (๐‘ข๐‘– ) ยฎ ยฉ ยช ยซ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› ยฌ   โˆ‘๏ธ ๐‘›+๐‘š  โˆ‘๏ธ   ๐‘š+๐‘›โˆ’2 ๐‘š ๐‘› โˆ‘๏ธ 1 โˆ’ ๐‘‘1 ๐‘‘2 โ„Ž(๐‘ข๐‘– ) โˆ’ ๐œ†๐‘ฃ โ‰ค (๐‘ + 1)โ„Ž(๐‘ƒ) + ๐ถ๐‘. ๐‘›โˆ’1 1โ‰ค๐‘–โ‰ค๐‘› ๐‘›+1 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ข๐‘– ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 37 Applying the estimate for โ„Ž(๐‘ƒ), combining terms, and dividing by ๐‘, we obtain up to an ๐‘‚ (1),  ๐‘š ๐‘›+๐‘š   โˆ‘๏ธ โˆ’ โˆ‘๏ธ โˆ‘๏ธ ๐‘› โˆ‘๏ธ โˆ‘๏ธ 1 โˆ’ log max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โˆ’ ๐‘š ๐œ† ๐‘ฃ (๐‘ข๐‘– ) โˆ’ ๐œ†๐‘ฃ ๐‘ (๐‘› + 1) ๐‘ข๐‘– ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘›  ๐‘š + ๐‘‘1 ๐‘‘2 ๐‘š+๐‘›โˆ’2 ๐‘›โˆ’1 โˆ‘๏ธ โ‰ค โ„Ž(๐‘ข๐‘– ). ๐‘ 1โ‰ค๐‘–โ‰ค๐‘› Since ๐‘“ and ๐‘” are coprime, the ideal ( ๐‘“ , ๐‘”) defines a closed subset of A๐‘› of codimension at least 2. Without loss of generality, assume ๐‘‘1 โ‰ฅ ๐‘‘2 . By Lemma 7.0.2, we find that 1 โˆ’๐‘‘ 2 ๐‘ โ€ฒ = ๐‘š+๐‘› โˆ’ ๐‘โ€ฒ โ‰ฅ       ๐‘› โˆ’ ๐‘š+๐‘›โˆ’๐‘‘๐‘› 1 โˆ’ ( ๐‘š+๐‘›โˆ’๐‘‘ ๐‘› 2 โˆ’ ๐‘š+๐‘›โˆ’๐‘‘ ๐‘› ) โ‰ค ๐‘‘1 ๐‘‘2 ๐‘š+๐‘›โˆ’2 ๐‘›โˆ’2 and that ๐‘ = ๐‘š+๐‘› ๐‘› ๐‘š+๐‘›   ๐‘› โˆ’ ๐‘‘1 ๐‘‘2 ๐‘š+๐‘›โˆ’2 ๐‘›โˆ’2 . We assume now ๐‘š โ‰ฅ ๐‘‘ 1 ๐‘›. Then we have the estimate        ๐‘š+๐‘› ๐‘š+๐‘›โˆ’2 ๐‘š+๐‘› ๐‘‘1 ๐‘‘2 ๐‘›(๐‘› โˆ’ 1) โˆ’ ๐‘‘1 ๐‘‘2 =1โˆ’ ๐‘› ๐‘›โˆ’2 ๐‘› (๐‘š + ๐‘›)(๐‘š + ๐‘› โˆ’ 1) ๐‘‘1 ๐‘‘2 ๐‘›(๐‘› โˆ’ 1) โ‰ฅ 1โˆ’ ๐‘‘12 ๐‘›2 ๐‘›โˆ’1 1 โ‰ฅ 1โˆ’ = . ๐‘› ๐‘› Therefore we have ๐‘š+๐‘›โˆ’2 โˆ‘๏ธ โˆ‘๏ธ ๐‘š + ๐‘‘ 1 ๐‘‘ 2 โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค ๐‘š+๐‘›  ๐‘›โˆ’1 โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1/๐‘› ๐‘› 1โ‰ค๐‘–โ‰ค๐‘› โˆ‘๏ธ โˆ‘๏ธ +๐‘š ๐œ† ๐‘ฃ (๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘›  ๐‘š ๐‘š+๐‘› ๐‘› /(๐‘› + 1)   โˆ‘๏ธ โˆ‘๏ธ 1 +  ๐œ†๐‘ฃ . 1/๐‘› ๐‘š+๐‘› ๐‘› ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ข๐‘– One shall notice that ๐‘š+๐‘›โˆ’2 ๐‘š + ๐‘‘1 ๐‘‘2 ๐‘›โˆ’1 2๐‘‘1 ๐‘‘2 ๐‘›2 ๐‘š+๐‘›  โ‰ค , 1/๐‘› ๐‘› ๐‘š+1 and that  ๐‘š ๐‘š+๐‘› ๐‘› ๐‘› + 1  โ‰ค ๐‘š. 1/๐‘› ๐‘š+๐‘› ๐‘› โˆ‘๏ธ โˆ‘๏ธ By Remark 6.1.3, hence the condition โ„Ž ๐‘†ยฏ (๐‘ข๐‘– ) โ‰ค ๐‘›๐›ฟ โ„Ž(๐‘ข๐‘– ) is satisfied, we get 1โ‰ค๐‘–โ‰ค๐‘› 1โ‰ค๐‘–โ‰ค๐‘› 2๐‘‘1 ๐‘‘2 ๐‘›2 โˆ‘๏ธ   โˆ‘๏ธ โˆ’ โˆ’ log max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค + ๐‘š๐‘›๐›ฟ โ„Ž(๐‘ข๐‘– ). ๐‘š+1 1โ‰ค๐‘–โ‰ค๐‘› ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 38   2๐‘‘1 ๐‘› Now letting ๐‘š = , it follows that ๐›ฟ1/2 โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค 2(๐‘‘1 ๐‘›2 + ๐‘‘2 ๐‘›)๐›ฟ1/2 โ„Ž(๐‘ข๐‘– ). ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› We can see this choice of ๐‘š satisfies the conditions ๐‘š โ‰ฅ ๐‘‘1 ๐‘› and ๐‘š โ‰ฅ max{๐‘‘1 , ๐‘‘2 }. Now letting ๐ถ (๐‘›, ๐‘‘1 , ๐‘‘2 ) = 2(๐‘‘1 ๐‘›2 + ๐‘‘2 ๐‘›), we have โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค ๐ถ (๐‘›, ๐‘‘1 , ๐‘‘2 )๐›ฟ1/2 โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› as long as u does not lie in the proper closed subset coming from the exceptional set in the application of the Subspace Theorem. Finally, we note that the choice of linear forms in the application of Schmidtโ€™s Subspace Theorem depends not on u, but on the choice of the monomial bases ๐ต๐‘ฃ , ๐‘ฃ โˆˆ ๐‘†. Since for fixed ๐‘š there are only finitely many monomials of degree at most ๐‘š, and hence only finitely many choices for these bases, we see that for fixed ๐‘š the given argument leads to only finitely many applications of Schmidtโ€™s Subspace Theorem (over all choices of u). Therefore there exists a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that the inequality is valid for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘. Now consider the case when ( ๐‘“ , ๐‘”) (๐‘š) = ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] ๐‘š . We can find polynomials ๐‘“หœ, ๐‘”หœ โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] such that ๐‘“ ๐‘“หœ + ๐‘” ๐‘”หœ = 1 with deg ๐‘“หœ, deg ๐‘”หœ โ‰ค ๐‘š. Hence for any ๐‘ฃ โˆˆ ๐‘€๐‘˜ and u โˆˆ G๐‘›๐‘š (๐‘ ) ๐‘†,๐›ฟ , we have 1 = |( ๐‘“ ๐‘“หœ + ๐‘” ๐‘”)(u)| หœ หœ ๐‘ฃ โ‰ค max{| ๐‘“ (u)| ๐‘ฃ | ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ | ๐‘”(u)| หœ ๐‘ฃ} โ‰ค max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } max{| ๐‘“หœ(u)| ๐‘ฃ , | ๐‘”(u)| หœ ๐‘ฃ }. Then we have max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ฅ min{|1/ ๐‘“หœ(u)| ๐‘ฃ , |1/๐‘”(u)| หœ ๐‘ฃ }. 39 Applying โˆ’ logโˆ’ on both sides and summing over ๐‘ฃ โˆˆ ๐‘€๐‘˜ \ ๐‘†, it follows that โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค โˆ’ logโˆ’ min{|1/ ๐‘“หœ(u)| ๐‘ฃ , |1/๐‘”(u)| หœ ๐‘ฃ} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† โˆ‘๏ธ =โˆ’ min{log |1/ ๐‘“หœ(u)| ๐‘ฃ , log |1/๐‘”(u)| หœ ๐‘ฃ , 0} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† โˆ‘๏ธ = max{log | ๐‘“หœ(u)| ๐‘ฃ , log | ๐‘”(u)| หœ ๐‘ฃ , 0}. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† โˆ‘๏ธ โˆ‘๏ธ Now since deg ๐‘“หœ, deg ๐‘”หœ โ‰ค ๐‘š, together with โ„Ž ๐‘†ยฏ (๐‘ข๐‘– ) โ‰ค ๐›ฟ โ„Ž(๐‘ข๐‘– ) (by Remark 6.1.3), we 1โ‰ค๐‘–โ‰ค๐‘› 1โ‰ค๐‘–โ‰ค๐‘› obtain โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (u)| ๐‘ฃ , |๐‘”(u)| ๐‘ฃ } โ‰ค ๐‘š๐‘›๐›ฟ โ„Ž(๐‘ข๐‘– ), ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 1โ‰ค๐‘–โ‰ค๐‘› which is an even better estimate according to the proof of the first case. โ–ก ๐œ–2 By letting ๐›ฟ = , we obtain an immediate result: 4๐‘›2 (๐‘›2 deg ๐‘“ + ๐‘› deg ๐‘”) 2 Corollary 7.0.4. Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] be coprime polynomials. For all ๐œ– > 0, there exist ๐›ฟ > 0 and a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ , |๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ } < ๐œ– max{โ„Ž(๐‘ข 1 ), . . . , โ„Ž(๐‘ข ๐‘› )} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘. The next theorem allows us to control the ๐‘†-part of the greatest common divisor in Theorem 1.1.7. Theorem 7.0.5. Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] be a polynomial of degree ๐‘‘ that doesnโ€™t vanish at the origin (0, . . . , 0). For all 0 < ๐›ฟ < 1, there exists a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ < 4๐‘›๐‘‘๐›ฟ โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘† 1โ‰ค๐‘–โ‰ค๐‘› 40 for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘. Proof. In the following proof we will not consider the points {(๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ : ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) = 0}. Since this set can be covered by a proper Zariski closed subset, by taking it into the exceptional set, we can ignore such points. For a subset ๐‘†โ€ฒ of ๐‘†, let ๐‘…๐‘† โ€ฒ consist of the set of points (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ such that ๐‘†โ€ฒ = {๐‘ฃ โˆˆ ๐‘† : log | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ < 0}. Then for (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ๐‘…๐‘† โ€ฒ , ๏ฃฑ ๐‘ฃ โˆˆ ๐‘†โ€ฒ, ๏ฃด ๏ฃฒ log | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ , ๏ฃด ๏ฃด โˆ’ ๏ฃด log | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ = ๐‘ฃ โˆˆ ๐‘† \ ๐‘†โ€ฒ . ๏ฃด ๏ฃด 0, ๏ฃด ๏ฃด ๏ฃณ ๐‘›+๐‘š๐‘‘  Let ๐‘‘ = deg ๐‘“ , ๐‘š โˆˆ N and ๐œ™ : P๐‘› โ†’ P๐‘ , ๐œ™ = (๐œ™0 , . . . , ๐œ™ ๐‘ ), ๐‘ = ๐‘› โˆ’ 1, be the ๐‘š๐‘‘-uple embedding of P๐‘› given by the set of monomials of degree ๐‘š๐‘‘ in ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ]. Let ๐น = ๐‘ฅ0๐‘‘ ๐‘“ (๐‘ฅ 1 /๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› /๐‘ฅ 0 ) be the homogenization of ๐‘“ in ๐‘˜ [๐‘ฅ0 , . . . , ๐‘ฅ ๐‘› ]. Let ๐‘‰๐‘š๐‘‘ be the vector space of homogeneous polynomials of degree ๐‘š๐‘‘, and let Mon๐‘š๐‘‘ consist of the set of all mono- mials in ๐‘˜ [๐‘ฅ 0 , . . . , ๐‘ฅ ๐‘› ] of degree ๐‘š๐‘‘. ord๐‘ฅ0 xi xi   If ๐‘ฃ โˆˆ ๐‘†โ€ฒ, we construct a basis for ๐‘‰๐‘š๐‘‘ as follows. Let ๐‘˜ i = and define ๐ตi๐‘ฃ = ๐‘˜ ๐‘‘ ๐น ๐‘˜ i . ๐‘‘ ๐‘ฅ0 i Let ๐ต๐‘ฃ be the set of all ๐ตi๐‘ฃ . Since ๐‘“ doesnโ€™t vanish at the origin, ๐‘ฅ 0๐‘‘ appears with a nonzero coefficient in ๐น, and thus itโ€™s clear that ๐ต๐‘ฃ is a basis for ๐‘‰๐‘š๐‘‘ . If ๐‘ฃ โˆˆ ๐‘† \ ๐‘†โ€ฒ, then we let ๐ต๐‘ฃ = Mon๐‘š๐‘‘ . Applying the Subspace Theorem on P๐‘ with appropriate linear forms, we find that for a fixed ๐œ– > 0 โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ log โ‰ค (๐‘ + 1 + ๐œ–)โ„Ž(๐œ™(๐‘ƒ)) ๐‘ฃโˆˆ๐‘† ๐‘„โˆˆ๐ต ๐‘ฃ |๐‘„(๐‘ƒ)| ๐‘ฃ 41 for all ๐‘ƒ โˆˆ P๐‘› (๐‘˜) \ ๐‘, where ๐‘ = ๐œ™โˆ’1 (๐‘ โ€ฒ) and ๐‘ โ€ฒ is a finite union of hyperplanes in P๐‘ . From the definition of ๐ต๐‘ฃ , we can rewrite the left-hand side of above as โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ โˆ‘๏ธ โˆ‘๏ธ |๐ตi (๐‘ƒ)| ๐‘ฃ log โˆ’ log i๐‘ฃ โ‰ค (๐‘ + 1 + ๐œ–)โ„Ž(๐œ™(๐‘ƒ)). ๐‘ฃโˆˆ๐‘† ๐‘„โˆˆMon๐‘š๐‘‘ |๐‘„(๐‘ƒ)| ๐‘ฃ i ๐‘ฃโˆˆ๐‘† โ€ฒ |x (๐‘ƒ)| ๐‘ฃ Suppose now that (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ๐‘…๐‘† โ€ฒ and let ๐‘ƒ = [1 : ๐‘ข 1 : . . . : ๐‘ข ๐‘› ] โˆˆ P๐‘› (๐‘˜). It follows immediately that for ๐ตi๐‘ฃ with ๐‘˜ i ๐‘‘ โ‰ค ord๐‘ฅ0 xi < (๐‘˜ i + 1)๐‘‘, โˆ‘๏ธ |๐ตi๐‘ฃ (๐‘ƒ)| ๐‘ฃ โˆ‘๏ธ โˆ’ log = โˆ’๐‘˜ i log | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ . ๐‘ฃโˆˆ๐‘† โ€ฒ |xi (๐‘ƒ)| ๐‘ฃ ๐‘ฃโˆˆ๐‘† โ€ฒ ร Letting ๐ผ = i ๐‘˜ i, โˆ‘๏ธ โˆ‘๏ธ |๐ตi๐‘ฃ (๐‘ƒ)| ๐‘ฃ โˆ‘๏ธ โˆ’ log i = โˆ’๐ผ log | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ i ๐‘ฃโˆˆ๐‘† โ€ฒ |x (๐‘ƒ)| ๐‘ฃ ๐‘ฃโˆˆ๐‘† โ€ฒ โˆ‘๏ธ = โˆ’๐ผ logโˆ’ | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ . ๐‘ฃโˆˆ๐‘† By an easy calculation, we find that        ๐‘›+๐‘‘ ๐‘› + (๐‘š โˆ’ 1)๐‘‘ ๐‘› + (๐‘š โˆ’ 2)๐‘‘ ๐ผ =1ยท๐‘š+ โˆ’ 1 (๐‘š โˆ’ 1) + ยท ยท ยท + โˆ’ ยท1 ๐‘› ๐‘› ๐‘›     ๐‘›+๐‘‘ ๐‘› + (๐‘š โˆ’ 1)๐‘‘ =1+ +ยทยทยท+ ๐‘› ๐‘›   ๐‘› + (๐‘š โˆ’ 1)๐‘‘ โ‰ฅ . ๐‘› Note that ๐œ™ induces a natural map G๐‘›๐‘š โ†’ G๐‘š ๐‘ and ๐œ™(G๐‘› (๐‘˜) ) โŠ‚ G ๐‘ (๐‘˜) . Indeed, ๐‘š ๐‘†,๐›ฟ ๐‘š ๐‘†,๐›ฟ โˆ‘๏ธ โˆ‘๏ธ โˆ‘๏ธ log |๐œ™(๐‘ƒ)| ๐‘ฃ = log max {|๐‘„(๐‘ƒ)| ๐‘ฃ } โ‰ค ๐‘š๐‘‘ log max |๐‘ข๐‘– | ๐‘ฃ . ๐‘„โˆˆMon๐‘š๐‘‘ ๐‘– ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Similarly, we have โˆ‘๏ธ 1 โˆ‘๏ธ 1 log โ‰ค ๐‘š๐‘‘ log max . ๐œ™(๐‘ƒ) ๐‘ฃ ๐‘– ๐‘ข๐‘– ๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Thus we have      โˆ‘๏ธ 1 โˆ‘๏ธ 1 ๐œ† ๐‘ฃ (๐œ™(๐‘ƒ)) + ๐œ† ๐‘ฃ โ‰ค ๐‘š๐‘‘ ๐œ† ๐‘ฃ (๐‘ƒ) + ๐œ† ๐‘ฃ โ‰ค ๐‘š๐‘‘๐›ฟโ„Ž(๐‘ƒ) โ‰ค ๐›ฟโ„Ž(๐œ™(๐‘ƒ)). ๐œ™(๐‘ƒ) ๐‘ƒ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 42 Now since ๐œ™(๐‘ƒ) โˆˆ G๐‘š ๐‘ (๐‘˜) ๐‘†,๐›ฟ and min |๐œ™๐‘– (๐‘ƒ)| ๐‘ฃ โ‰ค |๐‘„(๐‘ƒ)| ๐‘ฃ for all ๐‘„ โˆˆ Mon๐‘š๐‘‘ , then ๐‘– โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ log ๐‘ฃโˆˆ๐‘† ๐‘„โˆˆ๐‘€๐‘œ๐‘›๐‘š๐‘‘ |๐‘„(๐‘ƒ)| ๐‘ฃ โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ = log โˆ’ log |๐‘„(๐‘ƒ)| ๐‘ฃ |๐‘„(๐‘ƒ)| ๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ ๐‘„โˆˆ๐‘€๐‘œ๐‘›๐‘š๐‘‘ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘„โˆˆ๐‘€๐‘œ๐‘›๐‘š๐‘‘ โˆ‘๏ธ โˆ‘๏ธ |๐œ™(๐‘ƒ)| ๐‘ฃ = (๐‘ + 1)โ„Ž(๐œ™(๐‘ƒ)) โˆ’ log |๐‘„(๐‘ƒ)| ๐‘ฃ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘„โˆˆ๐‘€๐‘œ๐‘› ๐‘š๐‘‘ ยฉ โˆ‘๏ธ โˆ‘๏ธ 1 โ‰ฅ (๐‘ + 1)โ„Ž(๐œ™(๐‘ƒ)) โˆ’ (๐‘ + 1) ยญ log |๐œ™(๐‘ƒ)| ๐‘ฃ + log ยช ยฎ ๐œ™(๐‘ƒ) ๐‘ฃ ยซ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ยฌ โ‰ฅ (๐‘ + 1)(1 โˆ’ ๐›ฟ)โ„Ž(๐œ™(๐‘ƒ)). Therefore, we have โˆ‘๏ธ (๐‘ + 1)(1 โˆ’ ๐›ฟ)โ„Ž(๐œ™(๐‘ƒ)) โˆ’ ๐ผ logโˆ’ | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ โ‰ค (๐‘ + 1 + ๐œ–)โ„Ž(๐œ™(๐‘ƒ)) ๐‘ฃโˆˆ๐‘† for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ๐‘…๐‘† โ€ฒ outside of some proper Zariski closed subset ๐‘. It follows that for a sufficiently small ๐œ– โˆ‘๏ธ (๐‘ + 1 + ๐œ–/๐›ฟ) โˆ’ logโˆ’ | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ < ๐›ฟโ„Ž(๐œ™(๐‘ƒ)) ๐‘ฃโˆˆ๐‘† ๐ผ ๐‘›+๐‘š๐‘‘  ๐‘› < ๐‘›+(๐‘šโˆ’1)๐‘‘  ๐›ฟ๐‘š๐‘‘โ„Ž(๐‘ƒ) ๐‘› (๐‘› + (๐‘š โˆ’ 1)๐‘‘ + 1) ยท ยท ยท (๐‘› + ๐‘š๐‘‘) = ๐›ฟ๐‘š๐‘‘โ„Ž(๐‘ƒ) ((๐‘š โˆ’ 1)๐‘‘ + 1) ยท ยท ยท (๐‘š๐‘‘) for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ๐‘…๐‘† โ€ฒ outside of some proper Zariski closed subset ๐‘. Choose ๐‘š = ๐‘› โˆ’ 21/๐‘‘ + 1   + 1 , we have ๐‘‘ (21/๐‘‘ โˆ’ 1) ๐‘› + (๐‘š โˆ’ 1)๐‘‘ + 1 โ‰ค 21/๐‘‘ , (๐‘š โˆ’ 1)๐‘‘ + 1 (๐‘› + (๐‘š โˆ’ 1)๐‘‘ + 1) ยท ยท ยท (๐‘› + ๐‘š๐‘‘) hence โ‰ค 2. Also notice that ๐‘š โ‰ค 2๐‘›, we obtain ((๐‘š โˆ’ 1)๐‘‘ + 1) ยท ยท ยท (๐‘š๐‘‘) โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ | ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ < 2๐›ฟ๐‘š๐‘‘โ„Ž(๐‘ƒ) < 4๐‘›๐‘‘๐›ฟโ„Ž(๐‘ƒ) < 4๐‘›๐‘‘๐›ฟ โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘† 1โ‰ค๐‘–โ‰ค๐‘› 43 for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ ๐‘…๐‘† โ€ฒ outside of some proper Zariski closed subset ๐‘. In fact, since there are only finitely many choices of the subset ๐‘†โ€ฒ โŠ‚ ๐‘†, we find that the inequality holds for all ๐‘ƒ โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘, for some proper closed subset ๐‘. โ–ก From Theorem 7.0.5, the immediate result combined with Theorem 7.0.3 is Theorem 7.0.6. Let ๐‘˜ be a number field and let ๐‘† be a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ ๐‘› ] be polynomials that donโ€™t both vanish at the origin (0, . . . , 0). For all 0 < ๐›ฟ < 1, there exists a proper Zariski closed subset ๐‘ of G๐‘›๐‘š such that โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ , |๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ } < ๐ถ๐›ฟ1/2 โ„Ž(๐‘ข๐‘– ) ๐‘ฃโˆˆ๐‘€๐‘˜ 1โ‰ค๐‘–โ‰ค๐‘› for all u = (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘, where ๐ถ = 6(deg ๐‘“ + deg ๐‘”)๐‘›2 is a constant. Proof. With not loss of generality, assume deg ๐‘“ โ‰ค deg ๐‘” and ๐‘” doesnโ€™t vanish at the origin. Then applying Theorem 7.0.5 to ๐‘”, on the right hand side we obtain โˆ‘๏ธ โˆ‘๏ธ 4๐‘›๐›ฟ deg ๐‘” โ„Ž(๐‘ข๐‘– ) < 4๐‘›(deg ๐‘” + deg ๐‘“ )๐›ฟ โ„Ž(๐‘ข๐‘– ). 1โ‰ค๐‘–โ‰ค๐‘› 1โ‰ค๐‘–โ‰ค๐‘› Combining with the inequality from Theorem 7.0.3 finishes the proof. โ–ก Now we are ready to show the desired result (Theorem 1.1.7): Corollary 7.0.7. Let ๐‘˜ be a number field and ๐‘† a finite set of places of ๐‘˜ containing the archimedean places. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘ฅ1 , . . . , ๐‘ฅ ๐‘› ] be polynomials that donโ€™t both vanish at the origin (0, . . . , 0). For all ๐œ– > 0, there exist a ๐›ฟ > 0 and a proper Zariski closed subset ๐‘ โŠ‚ G๐‘›๐‘š such that: โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ , |๐‘”(๐‘ข 1 , . . . , ๐‘ข ๐‘› )| ๐‘ฃ } < ๐œ– max โ„Ž(๐‘ข๐‘– ) ๐‘– ๐‘ฃโˆˆ๐‘€๐‘˜ for all (๐‘ข 1 , . . . , ๐‘ข ๐‘› ) โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ \ ๐‘. 44  2 ๐œ– Proof. By letting ๐›ฟ = , we obtain the inequality from Theorem 7.0.6. โ–ก 6๐‘›3 (deg ๐‘“ + deg ๐‘”) As discussed in the following remark, under a normal crossings assumption, a result of Silverman shows that Vojtaโ€™s conjecture predicts an improvement to Theorem 7.0.6. Remark 7.0.8. From Theorem 2 in [18, Silverman], if we assume Vojtaโ€™s Conjecture is true, there is an improvement of the inequality as in Theorem 7.0.3. Let ๐‘˜ be a number field. Fix ๐œ– > 0. For ๐‘“ and ๐‘” homogeneous coprime polynomials in ๐‘˜ [๐‘ฅ0 , . . . , ๐‘ฅ ๐‘› ] and ๐‘Œ = { ๐‘“ = ๐‘” = 0} that intersects the coordinate hyperplanes transversally, there is a proper closed subset ๐‘ such that we have for all x โˆˆ P๐‘› (๐‘˜) \ ๐‘, 1 โˆ‘๏ธ log gcd( ๐‘“ (x), ๐‘”(x)) โ‰ค ๐œ– max{โ„Ž(๐‘ฅ 0 ), . . . , โ„Ž(๐‘ฅ ๐‘› )} + โ„Ž ยฏ (๐‘ฅ๐‘– ) 1 + ๐›พ๐œ– 1โ‰ค๐‘–โ‰ค๐‘› ๐‘† where ๐›พ is a positive constant. Suppose โ„Ž ๐‘†ยฏ (x) โ‰ค ๐›ฟโ„Ž(x). Using the estimate โˆ‘๏ธ โ„Ž ๐‘†ยฏ (๐‘ฅ๐‘– ) โ‰ค ๐‘›โ„Ž ๐‘†ยฏ (x), 1โ‰ค๐‘–โ‰ค๐‘› we get   โˆ‘๏ธ   โˆ‘๏ธ ๐‘›๐›ฟ ๐›ฟ log gcd( ๐‘“ (x), ๐‘”(x)) โ‰ค ๐œ– + โ„Ž(๐‘ฅ๐‘– ) โ‰ค ๐œ– + ๐‘› โ„Ž(๐‘ฅ๐‘– ). 1 + ๐›พ๐œ– 1โ‰ค๐‘–โ‰ค๐‘› 1 + ๐›พ๐œ– 1โ‰ค๐‘–โ‰ค๐‘› 45 โˆš๏ธ โˆ’1 + 1 + 4๐›พ๐›ฟ Let ๐œ– = , we obtain a similar inequality as in Theorem 7.0.3, 2๐›พ ยฉ โˆš๏ธ ยช โˆ‘๏ธ ยญ โˆ’1 + 1 + 4๐›พ๐›ฟ ๐›ฟ ยฎ log gcd( ๐‘“ (x), ๐‘”(x)) โ‰ค ยญ ยญ + โˆš๏ธ ยฎ๐‘› โ„Ž(๐‘ฅ๐‘– ) ยญ 2๐›พ โˆ’1 + 1 + 4๐›พ๐›ฟ ยฎ 1โ‰ค๐‘–โ‰ค๐‘› ยฎ 1+ ยซ   2 โˆ‘๏ธ ยฌ โˆš๏ธ 1 2๐›ฟ = (โˆ’1 + 1 + 4๐›พ๐›ฟ) + ๐‘› โ„Ž(๐‘ฅ๐‘– ) 2๐›พ 4๐›พ๐›ฟ 1โ‰ค๐‘–โ‰ค๐‘›   4๐›พ๐›ฟ 1 โˆ‘๏ธ โ‰ค โˆ’1 + 1 + ๐‘› โ„Ž(๐‘ฅ๐‘– ) 2 ๐›พ 1โ‰ค๐‘–โ‰ค๐‘› โˆ‘๏ธ = 2๐›ฟ๐‘› โ„Ž(๐‘ฅ๐‘– ). 1โ‰ค๐‘–โ‰ค๐‘› Thus, under a normal crossings assumption, Vojtaโ€™s conjecture predicts a linear dependence on ๐›ฟ in place of the square root dependence in Theorem 7.0.6 (note, however, that without a normal crossings assumption, the dependence on the degree of ๐‘“ and ๐‘” in Theorem 7.0.6 is necessary, as can be seen by taking high powers of appropriate polynomials). Example 7.0.9. In this example we show that the predicted linear dependence on ๐›ฟ is sharp (if true). Let Q be the field of rationals and ๐‘† = {๐‘, โˆž} be a finite set of places in ๐‘€Q . Let 0 < ๐›ฟ < 1. Let ๐‘ฅ = ๐‘ ๐‘š , ๐‘ข = ๐‘ ๐‘› for positive integers ๐‘š and ๐‘› such that ๐‘ƒ := (๐‘ฅ, ๐‘ข(๐‘ฅ + 1)) satisfies 1/2๐›ฟโ„Ž(๐‘ƒ) โ‰ค โ„Ž ๐‘†ยฏ (๐‘ƒ) โ‰ค ๐›ฟโ„Ž(๐‘ƒ). Let ๐‘ฅ 1 , ๐‘ฅ2 be the coordinates in G2๐‘š , then we take ๐‘“ = ๐‘ฅ 1 + 1, ๐‘” = ๐‘ฅ 2 . We make the estimate โˆ‘๏ธ โˆ‘๏ธ โˆ’ log gcd( ๐‘“ (๐‘ƒ), ๐‘”(๐‘ƒ)) = โˆ’ log max{|๐‘ฅ + 1| ๐‘ฃ , |๐‘ข(๐‘ฅ + 1)| ๐‘ฃ } โˆ’ logโˆ’ max{|๐‘ฅ + 1| ๐‘ฃ , |๐‘ข(๐‘ฅ + 1)| ๐‘ฃ } ๐‘ฃโˆ‰๐‘† ๐‘ฃโˆˆ๐‘†   โˆ‘๏ธ 1 โ‰ฅ ๐œ†๐‘ฃ = โ„Ž(๐‘ฅ + 1). ๐‘ฃโˆ‰๐‘† ๐‘ฅ+1 One shall also notice that for ๐‘ฅ โˆˆ O๐‘†,Q โˆ— , we have โ„Ž (๐‘ƒ) = โ„Ž (๐‘ฅ + 1) = โ„Ž(๐‘ฅ + 1). Then it follows ๐‘†ยฏ ๐‘†ยฏ that log gcd( ๐‘“ (๐‘ƒ), ๐‘”(๐‘ƒ)) โ‰ฅ 1/2๐›ฟโ„Ž(๐‘ƒ). 46 Itโ€™s easily seen that one may choose infinitely many appropriate ๐‘ฅ and ๐‘ข such that the set of resulting points ๐‘ƒ forms a Zariski dense set in G2๐‘š . Therefore the dependence on ๐›ฟ has to be at least linear. 47 CHAPTER 8 PROOFS OF LINEAR RECURRENCE SEQUENCES THEOREMS In this section our main goal is to give the proof of Theorem 1.2.4, which requires Corollary 7.0.4 from the previous section. Lemma 8.0.1. Let โˆ‘๏ธ ๐‘  ๐น (๐‘›) = ๐‘๐‘– (๐‘›)๐›ผ๐‘–๐‘› ๐‘–=0 define a nondegenerate algebraic linear recurrence sequence. Let | ยท | be an absolute value on Qฬ„ such that |๐›ผ๐‘– | โ‰ฅ 1 for some ๐‘–. Let 0 < ๐œ– < 1. Then โˆ’ log |๐น (๐‘›)| < ๐œ–๐‘› for all but finitely many ๐‘› โˆˆ N. Proof. Let ๐‘˜ be a number field and ๐‘† a finite set of places of ๐‘˜ such that ๐‘๐‘– (๐‘ฅ) โˆˆ ๐‘˜ [๐‘ฅ], ๐›ผ๐‘– โˆˆ O๐‘˜,๐‘† โˆ— , ๐‘– = 0, . . . , ๐‘ , and | ยท | restricted to ๐‘˜ is equivalent to | ยท | ๐‘ฃ for some ๐‘ฃ โˆˆ ๐‘† (note that if | ยท | is trivial, the lemma is obvious). The ๐‘  = 0 case is trivial and so we may assume that ๐‘  > 0. By taking sufficiently large ๐‘›, we can always assume that ๐‘๐‘– (๐‘›) donโ€™t vanish simultaneously. It suffices to prove that โˆ’ log |๐น (๐‘›)| ๐‘ฃ < ๐œ–๐‘› for all but finitely many ๐‘› โˆˆ N. Let ๐ป๐‘– be the coordinate hyperplane in P๐‘  defined by ๐‘ฅ๐‘– = 0, ๐‘– = 0, . . . , ๐‘ . Let ๐ป๐‘ +1 be the hyperplane in P๐‘  defined by ๐‘ฅ 0 + ๐‘ฅ 1 + ยท ยท ยท + ๐‘ฅ ๐‘  = 0. Note that the ๐‘  + 2 hyperplanes ๐ป0 , . . . , ๐ป๐‘ +1 48 are in general position. Let ๐‘ƒ = [๐›ผ0 : ยท ยท ยท : ๐›ผ๐‘  ] โˆˆ P๐‘  (๐‘˜) ๐‘ƒ๐‘› = [ ๐‘ 0 (๐‘›)๐›ผ0๐‘› : ยท ยท ยท : ๐‘ ๐‘  (๐‘›)๐›ผ๐‘ ๐‘› ] โˆˆ P๐‘  (๐‘˜), ๐‘› โˆˆ N ๐‘„ ๐‘› = [ ๐‘ 0 (๐‘›) : ยท ยท ยท : ๐‘ ๐‘  (๐‘›)] โˆˆ P๐‘  (๐‘˜), ๐‘› โˆˆ N. Let โ„Ž = max{1, โ„Ž(๐‘ƒ)}. Then the Schmidt Subspace Theorem gives that for some finite union of hyperplanes ๐‘ in P๐‘  , ๐‘ +1 โˆ‘๏ธ ๐‘š ๐ป๐‘– ,๐‘† (๐‘ƒ๐‘› ) < (๐‘  + 1 + ๐œ–/(4โ„Ž))โ„Ž(๐‘ƒ๐‘› ) (โˆ—) ๐‘–=0 for all points ๐‘ƒ๐‘› โˆˆ P๐‘  (๐‘˜) \ ๐‘. In fact, since ๐น is nondegenerate, by the Skolem-Mahler-Lech theorem, only finitely many points ๐‘ƒ๐‘› belong to the given hyperplanes in P๐‘  , and thus the inequality holds for all but finitely many ๐‘›. By taking ๐‘› to be sufficiently large, we can assume ๐œ– โˆ— that โ„Ž(๐‘„ ๐‘› ) โ‰ค ๐›ฟโ„Ž(๐‘ƒ๐‘› ) with ๐›ฟ โ‰ค , so that we assume ๐‘ƒ๐‘› โˆˆ G๐‘›๐‘š (๐‘˜) ๐‘†,๐›ฟ . Since ๐›ผ๐‘– โˆˆ O๐‘˜,๐‘† 4(๐‘  + 1)โ„Ž for all ๐‘–, ๐‘š ๐ป๐‘– ,๐‘† (๐‘ƒ๐‘› ) โ‰ฅ (1 โˆ’ ๐›ฟ)โ„Ž(๐‘ƒ๐‘› ), ๐‘– = 0, . . . , ๐‘ . Note also that ๐‘› โ„Ž(๐‘ƒ๐‘› ) โ‰ค ๐‘›โ„Ž(๐‘ƒ) + โ„Ž(๐‘„ ๐‘› ) โ‰ค โ„Ž(๐‘ƒ) 1โˆ’๐›ฟ for all ๐‘› sufficiently large. Substituting in (โˆ—), we have ๐‘› ๐‘›๐œ– ๐‘š ๐ป๐‘ +1 ,๐‘† (๐‘ƒ๐‘› ) < (๐œ–/(4โ„Ž) + (๐‘  + 1)๐›ฟ) โ„Ž(๐‘ƒ) โ‰ค . 1โˆ’๐›ฟ 2(1 โˆ’ ๐›ฟ) ๐œ– 1 Note that ๐›ฟ = โ‰ค โ‰ค 1/2, so we have 1 โˆ’ ๐›ฟ > 1/2 and then 4(๐‘  + 1)โ„Ž 4(๐‘  + 1) ๐‘š ๐ป๐‘ +1 (๐‘ƒ๐‘› ) < ๐œ–๐‘›. Pick ๐›ผ ๐‘— with |๐›ผ ๐‘— | ๐‘ฃ โ‰ฅ 1. Then max log | ๐‘๐‘– (๐‘›)๐›ผ๐‘–๐‘› | ๐‘ฃ โ‰ฅ log | ๐‘ ๐‘— (๐‘›)| ๐‘ฃ |๐›ผ ๐‘— | ๐‘›๐‘ฃ โ‰ฅ log | ๐‘ ๐‘— (๐‘›)| ๐‘ฃ . ๐‘– To give ๐‘ ๐‘— (๐‘›) an estimate, we can take the inequality log | ๐‘ ๐‘— (๐‘›)| ๐‘ฃ โ‰ฅ โˆ’โ„Ž( ๐‘ ๐‘— (๐‘›)). 49 Then it follows that log | ๐‘ ๐‘— (๐‘›)| ๐‘ฃ โ‰ฅ โˆ’ deg ๐‘ ๐‘— log ๐‘› + ๐‘‚ (1). It follows that max๐‘– | ๐‘๐‘– (๐‘›)๐›ผ๐‘–๐‘› | ๐‘ฃ ๐œ† ๐ป๐‘ +1 ,๐‘ฃ (๐‘ƒ๐‘› ) = log ร๐‘  โ‰ฅ โˆ’ log |๐น (๐‘›)| ๐‘ฃ โˆ’ ๐ถ โ€ฒ log ๐‘› | ๐‘–=0 ๐‘๐‘– (๐‘›)๐›ผ๐‘–๐‘› | ๐‘ฃ for some constant ๐ถ โ€ฒ. Together with ๐‘š ๐ป๐‘ +1 ,๐‘† (๐‘ƒ๐‘› ) โ‰ฅ ๐œ† ๐ป๐‘ +1 ,๐‘ฃ (๐‘ƒ๐‘› ) + ๐‘‚ (1), we have for all ๐œ– > 0, โˆ’ log |๐น (๐‘›)| ๐‘ฃ < ๐œ–๐‘› + ๐ถ โ€ฒ log ๐‘› + ๐‘‚ (1). It follows that for all sufficiently large ๐‘›, โˆ’ log |๐น (๐‘›)| ๐‘ฃ < ๐œ–๐‘›. โ–ก Now we can state Theorem 1.8 (i) of Grieve-Wang [11] on the greatest common divisor between the terms of two linear recurrence sequences with the same index and give an alternative proof: Theorem 8.0.2. Let โˆ‘๏ธ ๐‘  ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š ๐‘–=1 โˆ‘๏ธ ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— ๐‘—=1 define two algebraic linear recurrence sequences, where ๐‘๐‘– and ๐‘ž ๐‘— are polynomials. Let ๐‘˜ be a number field such that all coefficients of ๐‘๐‘– and ๐‘ž ๐‘— and ๐›ผ๐‘– , ๐›ฝ ๐‘— are in ๐‘˜, for ๐‘– = 1, . . . , ๐‘ , ๐‘— = 1, . . . , ๐‘ก. Let ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Let ๐œ– > 0. Then all but finitely many solutions ๐‘™ โˆˆ N of the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘™)| ๐‘ฃ , |๐บ (๐‘™)| ๐‘ฃ } > ๐œ–๐‘™ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 50 lie in one of finitely many nontrivial arithmetic subprogressions: ๐‘Ž๐‘– ๐‘ก + ๐‘๐‘– , ๐‘ก โˆˆ N, ๐‘– = 1, . . . , ๐‘Ÿ where ๐‘Ž๐‘– , ๐‘๐‘– โˆˆ N, ๐‘Ž๐‘– โ‰  0, and the linear recurrences ๐น (๐‘Ž๐‘– โ€ข+๐‘๐‘– ) and ๐บ (๐‘Ž๐‘– โ€ข+๐‘๐‘– ) have a nontrivial common factor for ๐‘– = 1, . . . , ๐‘Ÿ. Furthermore, if ๐น and ๐บ are coprime and their roots generate a torsion-free group, then there are only finitely many solutions to the inequality above. Proof. We begin with a couple of convenient reductions. First, by considering finitely many arithmetic progressions in ๐‘™, we may reduce to the case where the combined roots of ๐น and ๐บ generate a torsion-free group ฮ“ of rank ๐‘Ÿ (in particular, both ๐น and ๐บ are nondegenerate). Let ๐‘† โŠƒ ๐‘†0 be a finite set of places of ๐‘˜, containing the archimedean places, such that all coefficients of ๐‘๐‘– and ๐‘ž ๐‘— and ๐›ผ๐‘– , ๐›ฝ ๐‘— are in O๐‘˜,๐‘† โˆ— for all ๐‘– and ๐‘—. By Lemma 8.0.1, โˆ‘๏ธ ๐œ– โˆ’ logโˆ’ max{|๐น (๐‘™)| ๐‘ฃ , |๐บ (๐‘™)| ๐‘ฃ } โ‰ค ๐‘™ 2 ๐‘ฃโˆˆ๐‘†\๐‘†0 for all but finitely many ๐‘™ โˆˆ N. Thus it suffices to prove the statement of the theorem with the inequality: โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘™)| ๐‘ฃ , |๐บ (๐‘™)| ๐‘ฃ } < ๐œ–๐‘™. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Let ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ be generators for ฮ“. Let ๐‘“ , ๐‘” โˆˆ ๐‘˜ [๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ , ๐‘ฅ1โˆ’1 , . . . , ๐‘ฅ๐‘Ÿโˆ’1 ] be the Laurent polynomials corresponding to ๐น and ๐บ. We may write ๐‘“ (๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ) = ๐‘ฅ 1๐‘–1 ยท ยท ยท ๐‘ฅ๐‘Ÿ๐‘–๐‘Ÿ ๐‘“0 (๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ), ๐‘— ๐‘— ๐‘”(๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ) = ๐‘ฅ 11 ยท ยท ยท ๐‘ฅ๐‘Ÿ ๐‘Ÿ ๐‘”0 (๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ) where ๐‘–1 , . . . , ๐‘–๐‘Ÿ , ๐‘—1 , . . . , ๐‘—๐‘Ÿ โˆˆ Z and ๐‘“0 โˆˆ ๐‘˜ [๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ], ๐‘”0 โˆˆ ๐‘˜ [๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ] with ๐‘ฅ๐‘– โˆค ๐‘“0 ๐‘”0 , ๐‘– = 1, . . . , ๐‘Ÿ. Let ๐น0 and ๐บ 0 be the linear recurrence sequences corresponding to ๐‘“0 and ๐‘”0 , respectively. Since ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ โˆˆ O๐‘˜,๐‘† โˆ— , it follows that โˆ‘๏ธ โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘™)| ๐‘ฃ , |๐บ (๐‘™)| ๐‘ฃ } = โˆ’ logโˆ’ max{|๐น0 (๐‘™)| ๐‘ฃ , |๐บ 0 (๐‘™)| ๐‘ฃ }. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 51 Then it suffices to prove the statement of the theorem with ๐น and ๐บ replaced by ๐น0 and ๐บ 0 , respectively. Note that since ๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ are units in ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ , ๐‘ฅ1โˆ’1 , . . . , ๐‘ฅ๐‘Ÿโˆ’1 ], replacing ๐น and ๐บ by ๐น0 and ๐บ 0 has no effect on coprimality statements. Thus, we now assume that ๐น and ๐บ correspond to polynomials ๐‘“ and ๐‘” in ๐‘˜ [๐‘™, ๐‘ฅ1 , . . . , ๐‘ฅ๐‘Ÿ ] . Suppose now that ๐น and ๐บ are coprime (equivalently, ๐‘“ and ๐‘” are coprime). Let ๐‘ƒ๐‘› = (๐‘›, ๐‘ข 1๐‘› , . . . , ๐‘ข๐‘Ÿ๐‘› ). Now for a fixed sufficiently small positive ๐›ฟ (coming from the proof of Corollary 7.0.4), take ๐‘› to be sufficiently large such that โ„Ž(๐‘›) โ‰ค ๐›ฟ๐‘› min โ„Ž(๐‘ข๐‘– ), and so ๐‘ƒ๐‘› โˆˆ G๐‘Ÿ+1 ๐‘š (๐‘˜) ๐‘†,๐›ฟ . ๐‘– By Corollary 7.0.4, โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ƒ๐‘› )| ๐‘ฃ , |๐‘”(๐‘ƒ๐‘› )| ๐‘ฃ } < ๐œ– max{โ„Ž(๐‘ข 1๐‘› ), . . . , โ„Ž(๐‘ข๐‘Ÿ๐‘› )} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† for all ๐‘ƒ๐‘› โˆˆ G๐‘Ÿ+1 ๐‘š (๐‘˜) ๐‘†,๐›ฟ outside a proper Zariski closed set ๐‘. Noting that ๐‘“ (๐‘ƒ๐‘› ) = ๐น (๐‘›) and ๐‘”(๐‘ƒ๐‘› ) = ๐บ (๐‘›), and also that max{โ„Ž(๐‘ข 1๐‘› ), . . . , โ„Ž(๐‘ข๐‘Ÿ๐‘› )} = ๐‘› max{โ„Ž(๐‘ข 1 ), . . . , โ„Ž(๐‘ข๐‘Ÿ )}, after possibly shrinking ๐œ–,we can write the above inequality as โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘›)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } < ๐œ–๐‘›. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Cover the exceptional set ๐‘ by a hypersurface defined by a polynomial ๐ธ๐‘ฅ๐‘(๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ) in ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ] such that if ๐‘ƒ๐‘› โˆˆ ๐‘ then ๐ธ๐‘ฅ๐‘(๐‘ƒ๐‘› ) = 0. We can view ๐ธ๐‘ฅ๐‘(๐‘ƒ๐‘› ) as terms of a linear recurrence sequence ๐ธ (๐‘›) with ๐ธ non-degenerate. By the Skolem-Mahler-Lech theorem, there are only finitely many zeros for ๐ธ, which completes the proof. โ–ก Here we deal with a special case when ๐‘š and ๐‘› are algebraically related: Lemma 8.0.3. Let ๐‘  โˆ‘๏ธ ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š ๐‘–=1 52 โˆ‘๏ธ ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— ๐‘—=1 be two linear recurrence sequences over a number field ๐‘˜ and ๐‘† be a finite set of places in ๐‘€๐‘˜ containing archimedean places and ๐‘†0 , where ๐‘†0 is defined as ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Let ๐ถ โŠ‚ A2 be an affine irreducible plane curve over ๐‘˜. If there are infinitely many (๐‘š, ๐‘›) โˆˆ ๐ถ (Z) satisfying the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } > ๐œ– max{๐‘š, ๐‘›} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† then ๐ถ is a line over ๐‘˜. In particular, if ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z[๐‘ก] are polynomials that are not linearly related, then the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š(๐‘ก))| ๐‘ฃ , |๐บ (๐‘›(๐‘ก))| ๐‘ฃ } > ๐œ– max{๐‘š(๐‘ก), ๐‘›(๐‘ก)} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† has only finitely many solutions ๐‘ก โˆˆ Z. Remark 8.0.4. Note that if ๐ถ is a line, the solutions are easily classified using Theorem 8.0.2 The following lemma is a basic fact from linear algebra, we state it without a proof. Lemma 8.0.5. Let {๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘› } be a linearly independent subset of a normed vector space ๐‘‹. Then there exists a constant ๐‘ > 0 such that for every set of scalars {๐›ผ1 , . . . , ๐›ผ๐‘› }: |๐›ผ1 ๐‘ฃ 1 + ยท ยท ยท + ๐›ผ๐‘› ๐‘ฃ ๐‘› | โ‰ฅ ๐‘(|๐›ผ1 | + ยท ยท ยท + |๐›ผ๐‘› |). โˆ— โˆ— โˆ— โˆ— Let ๐‘‡ ๐‘œ๐‘Ÿ (Q ) denote the torsion subgroup of Q . Since the height โ„Ž gives Q /๐‘‡ ๐‘œ๐‘Ÿ (Q ) the structure of a normed vector space over Q as in Allcock and Vaaler [1], we immediately find: โˆ— Lemma 8.0.6. Let ๐‘ข 1 , . . . , ๐‘ข ๐‘› be multiplicatively independent elements of Q . Then there exists a constant ๐‘ > 0 such that for all ๐‘–1 , . . . , ๐‘– ๐‘› โˆˆ Z, โ„Ž(๐‘ข๐‘–11 ยท ยท ยท ๐‘ข๐‘–๐‘›๐‘› ) โ‰ฅ ๐‘ max |๐‘– ๐‘— |. ๐‘— 53 We now prove Lemma 8.0.3. Proof. Using the same reduction as in the proof of Theorem 8.0.2, we can assume that the roots of ๐น and ๐บ are ๐‘†-units, and by considering finitely many congruence classes, we can assume that the roots of ๐น and ๐บ generate a torsion free group. Let ๐ถ be the affine curve defined by the algebraic relation ๐‘…(๐‘ฅ 1 , ๐‘ฅ2 ) = 0, with ๐‘…(๐‘ฅ 1 , ๐‘ฅ2 ) โˆˆ ๐‘˜ [๐‘ฅ 1 , ๐‘ฅ2 ] irreducible. If ๐ถ is not geometrically irreducible then ๐ถ (๐‘˜) (and hence ๐ถ (Z)) is finite, and so we further assume ๐ถ is geometrically irreducible. By Siegelโ€™s Theorem, ๐ถ (Z) is finite unless ๐ถ has genus 0 and ๐ถ has two or fewer distinct points at infinity, which we now assume. After replacing ๐‘˜ by a suitable finite extension, we can parametrize ๐ถ by Laurent polynomials ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ ๐‘˜ [๐‘ก, 1/๐‘ก]. Assume that ๐ถ is not a line, or equivalently, that ๐‘š(๐‘ก) and ๐‘›(๐‘ก) do not satisfy a linear relation. Let ฮ“ be the torsion free group generated by the roots of ๐น and ๐บ and let {๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ } be generators of ฮ“. Consider the points ๐‘ƒ๐‘ก = (๐‘ก, ๐‘ข 1๐‘š(๐‘ก) , . . . , ๐‘ข๐‘Ÿ๐‘š(๐‘ก) , ๐‘ข 1๐‘›(๐‘ก) , . . . , ๐‘ข๐‘Ÿ๐‘›(๐‘ก) ), for ๐‘ก โˆˆ ๐‘˜ where, as we implicitly assume from now on, we have ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z. Then for some Laurent polynomials ๐‘“ (๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ), ๐‘”(๐‘ฅ1 , ๐‘ฅ๐‘Ÿ+2 , . . . , ๐‘ฅ 2๐‘Ÿ+1 ) โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ 2๐‘Ÿ+1 , ๐‘ฅ1โˆ’1 , . . . , ๐‘ฅ 2๐‘Ÿ+1โˆ’1 ], we have ๐น (๐‘š(๐‘ก)) = ๐‘“ (๐‘ƒ๐‘ก ) and ๐บ (๐‘›(๐‘ก)) = ๐‘”(๐‘ƒ๐‘ก ). From the form of ๐‘“ and ๐‘”, we may write ๐‘“ (๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ) = ๐‘ฅ 2๐‘–1 ยท ยท ยท ๐‘ฅ๐‘Ÿ+1 ๐‘–๐‘Ÿ ๐‘(๐‘ฅ 1 ) ๐‘“ยฏ(๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ), ๐‘— 1 ๐‘— ๐‘”(๐‘ฅ 1 , ๐‘ฅ๐‘Ÿ+2 , . . . , ๐‘ฅ 2๐‘Ÿ+1 ) = ๐‘ฅ๐‘Ÿ+2 ยท ยท ยท ๐‘ฅ 2๐‘Ÿ+1 ๐‘Ÿ ๐‘(๐‘ฅ 1 ) ๐‘”(๐‘ฅ ยฏ 1 , ๐‘ฅ๐‘Ÿ+2 , . . . , ๐‘ฅ 2๐‘Ÿ+1 ) where ๐‘–1 , . . . , ๐‘–๐‘Ÿ , ๐‘—1 , . . . , ๐‘—๐‘Ÿ โˆˆ Z, ๐‘“ยฏ and ๐‘”ยฏ are coprime polynomials in ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ 2๐‘Ÿ+1 ], and ๐‘(๐‘ฅ 1 ) is a Laurent polynomial in ๐‘ฅ1 . By elementary properties of heights, if ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z, then โ„Ž(๐‘ก) โ‰ช log max{|๐‘š(๐‘ก)|, |๐‘›(๐‘ก)|} and โ„Ž(๐‘ƒ๐‘ก ) โ‰ซ max{|๐‘š(๐‘ก)|, |๐‘›(๐‘ก)|}. It follows that for any ๐›ฟ > 0, we have ๐‘ƒ๐‘ก โˆˆ G2๐‘Ÿ+1 ๐‘š (๐‘˜) ๐‘†,๐›ฟ for all 54 but finitely many ๐‘ก โˆˆ ๐‘˜ (with ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z). Then Corollary 7.0.4 applies to ๐‘“ยฏ and ๐‘”ยฏ and we obtain that for any ๐œ– > 0 there exists a proper Zariski closed subset ๐‘ โŠ‚ G2๐‘Ÿ+1 ๐‘š such that โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ยฏ(๐‘ƒ๐‘ก )| ๐‘ฃ , | ๐‘”(๐‘ƒ ยฏ ๐‘ก )| ๐‘ฃ } < ๐œ– max {โ„Ž(๐‘ข๐‘–๐‘š(๐‘ก) ), โ„Ž(๐‘ข๐‘–๐‘›(๐‘ก) )} ๐‘–=1,...,๐‘Ÿ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† for all points ๐‘ƒ๐‘ก outside ๐‘. By elementary estimates, for all but finitely many ๐‘ก โˆˆ ๐‘˜, โˆ‘๏ธ โˆ’ logโˆ’ |๐‘(๐‘ก)| ๐‘ฃ โ‰ค โ„Ž(๐‘(๐‘ก)) < ๐œ– max {โ„Ž(๐‘ข๐‘–๐‘š(๐‘ก) ), โ„Ž(๐‘ข๐‘–๐‘›(๐‘ก) )}. ๐‘–=1,...,๐‘Ÿ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† Using this inequality and that ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ โˆˆ O๐‘˜,๐‘† โˆ— , the inequality for ๐‘“ยฏ and ๐‘”ยฏ implies the inequality for ๐‘“ and ๐‘”: โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ (๐‘ƒ๐‘ก )| ๐‘ฃ , |๐‘”(๐‘ƒ๐‘ก )| ๐‘ฃ } < ๐œ– max {โ„Ž(๐‘ข๐‘–๐‘š(๐‘ก) ), โ„Ž(๐‘ข๐‘–๐‘›(๐‘ก) )} ๐‘–=1,...,๐‘Ÿ ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† for all points ๐‘ƒ๐‘ก outside a proper Zariski closed subset ๐‘ โŠ‚ G2๐‘Ÿ+1 ๐‘š . Setting (๐‘š, ๐‘›) = (๐‘š(๐‘ก), ๐‘›(๐‘ก)) โˆˆ ๐ถ (Z), note that ๐‘“ (๐‘ƒ๐‘ก ) = ๐น (๐‘š), ๐‘”(๐‘ƒ๐‘ก ) = ๐บ (๐‘›), and max{โ„Ž(๐‘ข 1๐‘š ), . . . , โ„Ž(๐‘ข๐‘Ÿ๐‘š ), โ„Ž(๐‘ข 1๐‘› ), . . . , โ„Ž(๐‘ข๐‘Ÿ๐‘› )} โ‰ค max{๐‘š, ๐‘›} max{โ„Ž(๐‘ข 1 ), . . . , โ„Ž(๐‘ข๐‘Ÿ )}. Then we can write the above inequality as โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } < ๐œ– max{๐‘š, ๐‘›}. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† It remains to show that there are only finitely many ๐‘ก โˆˆ ๐‘˜ with ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z and ๐‘ƒ๐‘ก โˆˆ ๐‘. Now we cover ๐‘ by a hypersurface defined by an equation ๐‘ง(๐‘ฅ1 , . . . , ๐‘ฅ 2๐‘Ÿ+1 ) = 0. Then every ๐‘ƒ๐‘ก in ๐‘ satisfies an equation ๐พ โˆ‘๏ธ ๐‘š(๐‘ก)๐‘ 1,๐‘ค ๐‘š(๐‘ก)๐‘ ๐‘Ÿ ,๐‘ค ๐‘›(๐‘ก)๐‘ก1,๐‘ค ๐‘›(๐‘ก)๐‘ก๐‘Ÿ ,๐‘ค ๐‘ง(๐‘ƒ๐‘ก ) = ๐‘ƒ๐‘ค (๐‘ก)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ข1 ยท ยท ยท ๐‘ข๐‘Ÿ = 0, ๐‘ค=1 where ๐‘ƒ๐‘ค โˆˆ ๐‘˜ [๐‘ก], ๐‘ค = 1, . . . , ๐พ are nonzero polynomials and the integer tuples (๐‘ 1,๐‘ค , . . . , ๐‘ ๐‘Ÿ,๐‘ค , ๐‘ก1,๐‘ค , . . . , ๐‘ก๐‘Ÿ,๐‘ค ), ๐‘ค = 1, . . . , ๐พ, are distinct. If ๐พ = 1 then ๐‘ก must be one of the finitely many roots of the polyno- mial ๐‘ƒ1 (๐‘ก). Otherwise, dividing by the first term we find ๐พ โ€ฒ +๐‘›(๐‘ก)๐‘ก โ€ฒ ๐‘š(๐‘ก)๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›(๐‘ก)๐‘ก๐‘Ÿโ€ฒ ,๐‘ค โˆ‘๏ธ ๐‘š(๐‘ก)๐‘ 1,๐‘ค 1,๐‘ค ๐‘„ ๐‘ค (๐‘ก)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ = 1, (8.1) ๐‘ค=2 55 โ€ฒ = ๐‘  โ€ฒ where ๐‘„ ๐‘ค (๐‘ก), ๐‘– = 2, . . . , ๐พ, are rational functions in ๐‘ก and ๐‘ ๐‘–,๐‘ค ๐‘–,๐‘ค โˆ’ ๐‘ ๐‘–,1 , ๐‘ก๐‘–,๐‘ค = ๐‘ก๐‘–,๐‘ค โˆ’ ๐‘ก๐‘–,1 . Note that โ„Ž(๐‘„ ๐‘ค (๐‘ก)) = (deg ๐‘„ ๐‘ค )โ„Ž(๐‘ก) + ๐‘‚ (1) and by Lemma 8.0.6 (assuming ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z as usual)  ๐‘š(๐‘ก)๐‘  โ€ฒ +๐‘›(๐‘ก)๐‘ก โ€ฒ ๐‘š(๐‘ก)๐‘  โ€ฒ +๐‘›(๐‘ก)๐‘ก๐‘Ÿโ€ฒ ,๐‘ค  โ€ฒ โ€ฒ โ„Ž ๐‘ข 1 1,๐‘ค 1,๐‘ค ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘Ÿ ,๐‘ค โ‰ซ max{|๐‘š(๐‘ก)๐‘ ๐‘–,๐‘ค + ๐‘›(๐‘ก)๐‘ก๐‘–,๐‘ค |} ๐‘– โ€ฒ โ€ฒ = ๐‘’ max๐‘– โ„Ž(๐‘š(๐‘ก)๐‘ ๐‘–,๐‘ค +๐‘›(๐‘ก)๐‘ก๐‘–,๐‘ค ) โ€ฒ โ€ฒ โ‰ซ ๐‘’ โ„Ž(๐‘ก) max๐‘– deg(๐‘š๐‘ ๐‘–,๐‘ค +๐‘›๐‘ก๐‘–,๐‘ค ) โ‰ซ ๐‘’ โ„Ž(๐‘ก) โ€ฒ , ๐‘ก โ€ฒ ) โ‰  (0, 0) for some ๐‘–, and in this case ๐‘š๐‘ โ€ฒ + ๐‘›๐‘ก โ€ฒ must be nonconstant by our since (๐‘ ๐‘–,๐‘ค ๐‘–,๐‘ค ๐‘–,๐‘ค ๐‘–,๐‘ค assumption that ๐‘š and ๐‘› arenโ€™t linearly related. Since the terms in the sum in (8.1) are ๐‘†-units outside the factors ๐‘„ ๐‘ค (๐‘ก), it follows from the height estimates above and the almost ๐‘†-unit equation (Corollary 6.2.2) that there exists a finite set F โŠ‚ ๐‘˜ such that every solution ๐‘ก โˆˆ ๐‘˜ to (8.1) (with ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z) satisfies โ€ฒ +๐‘›(๐‘ก)๐‘ก โ€ฒ ๐‘š(๐‘ก)๐‘ 1,๐‘ค 1,๐‘ค ๐‘š(๐‘ก)๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›(๐‘ก)๐‘ก๐‘Ÿโ€ฒ ,๐‘ค ๐‘„ ๐‘ค (๐‘ก)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ โˆˆF for some ๐‘ค. By the height estimates above, โ€ฒ +๐‘›(๐‘ก)๐‘ก โ€ฒ ๐‘š(๐‘ก)๐‘ 1,๐‘ค 1,๐‘ค ๐‘š(๐‘ก)๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›(๐‘ก)๐‘ก๐‘Ÿโ€ฒ ,๐‘ค โ„Ž(๐‘„ ๐‘ค (๐‘ก)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ) โ‰ซ ๐‘’ โ„Ž(๐‘ก) , and Northcottโ€™s Theorem implies that there are only finitely many solutions ๐‘ก โˆˆ ๐‘˜ with ๐‘š(๐‘ก), ๐‘›(๐‘ก) โˆˆ Z satisfying (8.1). It follows that there are only finitely many pairs (๐‘š, ๐‘›) โˆˆ ๐ถ (Z) satisfying the inequality of the theorem. โ–ก Definition 8.0.7. Let ๐น and ๐บ be two linear recurrence sequences. Suppose that the roots of ๐น and ๐บ generate multiplicative torsion-free groups of rank ๐‘Ÿ and ๐‘ , respectively. We say that the roots of ๐น and ๐บ are multiplicatively independent if the combined roots generate a group of rank ๐‘Ÿ + ๐‘ . Otherwise, we say they are multiplicatively dependent. 56 The following result is a generalization of Theorem 8.0.2 under a multiplicative independence assumption, which was proved by Grieve-Wang [11]. Here we give an alternative proof: Theorem 8.0.8. Let โˆ‘๏ธ ๐‘  ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š ๐‘–=1 โˆ‘๏ธ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— ๐‘—=1 define two algebraic linear recurrence sequences, where ๐‘๐‘– and ๐‘ž ๐‘— are polynomials. Let ๐‘˜ be a number field such that all coefficients of ๐‘๐‘– and ๐‘ž ๐‘— and ๐›ผ๐‘– , ๐›ฝ ๐‘— are in ๐‘˜, for ๐‘– = 1, . . . , ๐‘ , ๐‘— = 1, . . . , ๐‘ก. Let ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Let ๐œ– > 0. If we assume further the roots of ๐น and ๐บ are independent, then all but finitely many (๐‘š, ๐‘›) โˆˆ N2 satisfy the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } < ๐œ– max{๐‘š, ๐‘›}. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 In particular, if ๐‘†0 = โˆ…, then all but finitely many (๐‘š, ๐‘›) satisfy the inequality log gcd(๐น (๐‘š), ๐บ (๐‘›)) < ๐œ– max{๐‘š, ๐‘›} Proof. Notice that โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } โ‰ค min{โ„Ž(๐น (๐‘š)), โ„Ž(๐บ (๐‘›))} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† โ‰ค K min{๐‘š, ๐‘›} for some constant K. Hence for the inequality in the statement to be true, for a fixed ๐œ– > 0, K min{๐‘š, ๐‘›} โ‰ฅ ๐œ– max{๐‘š, ๐‘›}. The combined roots of ๐น and ๐บ generate a torsion-free group ฮ“ of rank ๐‘Ÿ +๐‘  whose generators are {๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ , ๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘  } where ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ generate the roots ๐›ผ๐‘– and ๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘  generate the 57 roots ๐›ฝ ๐‘— . By the same reduction step in the previous proof, assume all the coefficients of the polynomials ๐‘๐‘– and ๐‘ž ๐‘— and all of the roots of ๐น and ๐บ are ๐‘†-units. We can also assume the Laurent polynomials ๐‘“ and ๐‘” corresponding to ๐น and ๐บ with respect to the roots ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ and ๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘  , respectively, are polynomials. Let ๐‘“ห†, ๐‘”ห† โˆˆ ๐‘˜ [๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+๐‘ +2 ] be polynomials such that ๐‘“ห†(๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+๐‘ +2 ) = ๐‘“ (๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+1 ) ห† 1 , . . . , ๐‘ฅ๐‘Ÿ+๐‘ +2 ) = ๐‘”(๐‘ฅ๐‘Ÿ+2 , . . . , ๐‘ฅ๐‘Ÿ+๐‘ +2 ). ๐‘”(๐‘ฅ Note that ๐‘“ห† and ๐‘”ห† are coprime since they involve disjoint sets of variables. For ๐‘š, ๐‘› โˆˆ N, let ๐‘ƒ๐‘š,๐‘› = (๐‘š, ๐‘ข 1๐‘š , . . . , ๐‘ข๐‘Ÿ๐‘š , ๐‘›, ๐‘ฃ 1๐‘› , . . . , ๐‘ฃ ๐‘›๐‘  ). Let ๐œ– > 0 and let ๐›ฟ > 0 be the quantity from Corollary 7.0.4 for ๐‘“ห†, ๐‘”, ห† and ๐œ–. After excluding finitely many pairs (๐‘š, ๐‘›), we can always assume that โ„Ž(๐‘š) + โ„Ž(๐‘›) < ๐›ฟ(๐‘Ÿ + ๐‘  + 2) max{โ„Ž(๐‘ข๐‘–๐‘š ), โ„Ž(๐‘ฃ ๐‘›๐‘— )}. ๐‘–, ๐‘— Therefore ๐‘ƒ๐‘š,๐‘› โˆˆ G๐‘Ÿ+๐‘ +2 ๐‘š (๐‘˜) ๐‘†,๐›ฟ . Applying Corollary 7.0.4, โˆ‘๏ธ โˆ’ logโˆ’ max{| ๐‘“ห†(๐‘ƒ๐‘š,๐‘› )| ๐‘ฃ , | ๐‘”(๐‘ƒ ห† ๐‘š,๐‘› )| ๐‘ฃ } < ๐œ– max{โ„Ž(๐‘ข 1๐‘š ), . . . , โ„Ž(๐‘ข๐‘Ÿ๐‘š ), โ„Ž(๐‘ฃ 1๐‘› ), . . . , โ„Ž(๐‘ฃ ๐‘›๐‘  )} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† for all ๐‘ƒ๐‘š,๐‘› โˆˆ G๐‘Ÿ+๐‘ +2 ๐‘š (๐‘˜) ๐‘†,๐›ฟ outside a proper Zariski closed set ๐‘ โŠ‚ G๐‘Ÿ+๐‘ +2 ๐‘š . Noting that ๐‘“ห†(๐‘ƒ๐‘š,๐‘› ) = ๐น (๐‘š), ๐‘”(๐‘ƒ ห† ๐‘š,๐‘› ) = ๐บ (๐‘›), and max {โ„Ž(๐‘ข๐‘–๐‘š ), โ„Ž(๐‘ฃ ๐‘›๐‘— )} โ‰ค max{๐‘›, ๐‘š} max {โ„Ž(๐‘ข๐‘– ), โ„Ž(๐‘ฃ ๐‘— )}, 1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค ๐‘— โ‰ค๐‘  1โ‰ค๐‘–โ‰ค๐‘Ÿ,1โ‰ค ๐‘— โ‰ค๐‘  we can write the above inequality as โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } < ๐œ– max{๐‘›, ๐‘š}. ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘† 58 As in the ๐‘š = ๐‘› case, we cover ๐‘ by a hypersurface defined by a polynomial equation: ๐ธ๐‘ฅ๐‘(๐‘ฅ 1 , . . . , ๐‘ฅ๐‘Ÿ+๐‘ +2 ) = 0. Hence all the points ๐‘ƒ๐‘š,๐‘› in ๐‘ must satisfy the above equation. Therefore, if ๐‘ƒ๐‘š,๐‘› โˆˆ ๐‘, after combining the terms with the same exponents on ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ , ๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘  , we obtain an equation in terms of ๐‘š, ๐‘›, ๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ , ๐‘ฃ 1 , . . . , ๐‘ฃ ๐‘  : ๐‘Š โˆ‘๏ธ ๐‘š๐‘ 1,๐‘ค ๐‘š๐‘ ๐‘Ÿ ,๐‘ค ๐‘›๐‘ก1,๐‘ค ๐‘›๐‘ก ๐‘ ,๐‘ค ๐ธ๐‘ฅ๐‘(๐‘š, ๐‘ข 1๐‘š , . . . , ๐‘ข๐‘Ÿ๐‘š , ๐‘›, ๐‘ฃ 1๐‘› , . . . , ๐‘ฃ ๐‘›๐‘  ) = ๐‘ƒ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  = 0, ๐‘ค=1 where ๐‘ƒ๐‘ค (๐‘š, ๐‘›) is a non-zero polynomial in ๐‘š and ๐‘›. It follows from Theorem 8.0.2 and Lemma 8.0.3 that after excluding finitely many pairs (๐‘š, ๐‘›) we can assume that (๐‘š, ๐‘›) is not a zero of any of the polynomials ๐‘ƒ๐‘ค . Dividing both sides by the negative of the first term, ๐‘š๐‘  ๐‘š๐‘  ๐‘›๐‘ก ๐‘›๐‘ก ๐‘Š โˆ‘๏ธ ๐‘ƒ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 1,๐‘ค ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘Ÿ ,๐‘ค ๐‘ฃ 1 1,๐‘ค ยท ยท ยท ๐‘ฃ ๐‘  ๐‘ ,๐‘ค ๐‘š๐‘ 1,1 ๐‘š๐‘ ๐‘Ÿ ,1 ๐‘›๐‘ก 1,1 ๐‘›๐‘ก ๐‘ ,1 = 1. ๐‘ค=2 โˆ’๐‘ƒ1 (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  ๐‘ƒ๐‘ค (๐‘š, ๐‘›) Let ๐‘„ ๐‘ค (๐‘š, ๐‘›) = (๐‘ค = 2, . . . , ๐‘Š), then โˆ’๐‘ƒ1 (๐‘š, ๐‘›) ๐‘Š โˆ‘๏ธ ๐‘š(๐‘ 1,๐‘ค โˆ’๐‘ 1,1 ) ๐‘š(๐‘ ๐‘Ÿ ,๐‘ค โˆ’๐‘ ๐‘Ÿ ,1 ) ๐‘›(๐‘ก1,๐‘ค โˆ’๐‘ก1,1 ) ๐‘›(๐‘ก ๐‘ ,๐‘ค โˆ’๐‘ก ๐‘ ,1 ) ๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  = 1. ๐‘ค=2 โ€ฒ = ๐‘  โ€ฒ Letting ๐‘ ๐‘–,๐‘ค ๐‘–,๐‘ค โˆ’ ๐‘ ๐‘–,1 , ๐‘ก๐‘–,๐‘ค = ๐‘ก๐‘–,๐‘ค โˆ’ ๐‘ก๐‘–,1 , we have ๐‘Š โ€ฒ โ€ฒ ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค ๐‘›๐‘ก 1,๐‘ค โ€ฒ โˆ‘๏ธ ๐‘š๐‘ 1,๐‘ค ๐‘›๐‘ก ๐‘ ,๐‘ค ๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  =1 ๐‘ค=2 โ€ฒ , ๐‘ก โ€ฒ fixed and only depending on ๐ธ๐‘ฅ๐‘. with ๐‘ ๐‘–,๐‘ค ๐‘–,๐‘ค As in the proof of Lemma 8.0.3, it follows from Lemma 8.0.6 that if min{๐‘š, ๐‘›} is sufficiently large, then Corollary 6.2.2 applies to the equation ๐‘Š โ€ฒ โ€ฒ ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค ๐‘›๐‘ก 1,๐‘ค โ€ฒ โˆ‘๏ธ ๐‘š๐‘ 1,๐‘ค ๐‘›๐‘ก ๐‘ ,๐‘ค ๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  = 1, ๐‘ค=2 59 and we conclude that one of the summands on the left-hand side belongs to a finite set F . But since โ€ฒ โ€ฒ ๐‘š๐‘ 1,๐‘ค ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค ๐‘›๐‘ก 1,๐‘ค โ€ฒ ๐‘›๐‘ก ๐‘ ,๐‘ค โ„Ž(๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ๐‘ฃ1 ยท ยท ยท ๐‘ฃ๐‘  ) โ†’ โˆž as min{๐‘š, ๐‘›} โ†’ โˆž, and min{๐‘š, ๐‘›} โ†’ โˆž also means ๐‘š๐‘Ž๐‘ฅ{๐‘š, ๐‘›} โ†’ โˆž by the remarks at the beginning of the proof, this implies that there are only finitely many possibilities for the pair (๐‘š, ๐‘›). โ–ก We now prove a result in the general case where the roots of ๐น and ๐บ are not necessarily independent. The following theorem gives an improvement to Theorem 1.8 (ii) of Grieve-Wang [11], who proved a similar result but with log max{๐‘š, ๐‘›} replaced by the weaker expression ๐‘œ(max{๐‘š, ๐‘›}). Theorem 8.0.9. Let โˆ‘๏ธ ๐‘  ๐น (๐‘š) = ๐‘๐‘– (๐‘š)๐›ผ๐‘–๐‘š ๐‘–=1 โˆ‘๏ธ ๐‘ก ๐บ (๐‘›) = ๐‘ž ๐‘— (๐‘›) ๐›ฝ๐‘›๐‘— ๐‘—=1 define two distinct algebraic linear recurrence sequences, where ๐‘๐‘– and ๐‘ž ๐‘— are polynomials. Let ๐‘˜ be a number field such that all coefficients of ๐‘๐‘– and ๐‘ž ๐‘— and ๐›ผ๐‘– , ๐›ฝ ๐‘— are in ๐‘˜, for ๐‘– = 1, . . . , ๐‘ , ๐‘— = 1, . . . , ๐‘ก. Let ๐‘†0 = {๐‘ฃ โˆˆ ๐‘€๐‘˜ : max{|๐›ผ1 | ๐‘ฃ , . . . , |๐›ผ๐‘  | ๐‘ฃ , |๐›ฝ1 | ๐‘ฃ , . . . , |๐›ฝ๐‘ก | ๐‘ฃ } < 1}. Then there are finitely many choices of nonzero integers (๐‘Ž๐‘– , ๐‘๐‘– , ๐‘๐‘– , ๐‘‘๐‘– ), ๐‘Ž๐‘– ๐‘๐‘– โ‰  0 such that all solutions (๐‘š, ๐‘›) โˆˆ N2 of the inequality โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } > ๐œ– max{๐‘š, ๐‘›} (โ–ณ) ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 are of the form: (๐‘š, ๐‘›) = (๐‘Ž๐‘– ๐‘ก + ๐‘๐‘– , ๐‘๐‘– ๐‘ก + ๐‘‘๐‘– ) + (๐œ‡1 , ๐œ‡2 ), |๐œ‡1 |, |๐œ‡2 | โ‰ช log ๐‘ก, ๐‘ก โˆˆ N, ๐‘– = 1, . . . , ๐‘Ÿ. 60 Proof. Now let {๐‘ข 1 , . . . , ๐‘ข๐‘Ÿ } be a set of generators which generates the roots of ๐น and ๐บ and assume that the ๐‘ข๐‘– โ€™s are multiplicatively independent (as in the proof of Theorem 8.0.2). It follows from the first part of the proof of Theorem 8.0.8 (using the points ๐‘ƒ๐‘š,๐‘› = (๐‘š, ๐‘ข 1๐‘š , ..., ๐‘ข๐‘Ÿ๐‘š , ๐‘›, ๐‘ข 1๐‘› , ..., ๐‘ข๐‘Ÿ๐‘› )) that all but finitely many pairs (๐‘š, ๐‘›) that fail the above inequality either satisfy finitely many linear relations (๐‘š, ๐‘›) = (๐‘Ž๐‘– ๐‘ก + ๐‘๐‘– , ๐‘๐‘– ๐‘ก + ๐‘‘๐‘– ) or satisfy an exponential-polynomial equation coming from Schmidtโ€™s Subspace Theorem: ๐‘Š โˆ‘๏ธ ๐‘š๐‘ 1,๐‘ค +๐‘›๐‘ก 1,๐‘ค ๐‘š๐‘ ๐‘Ÿ ,๐‘ค +๐‘›๐‘ก๐‘Ÿ ,๐‘ค ๐‘ƒ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ = 0, ๐‘ค=1 where ๐‘ƒ๐‘ค (๐‘š, ๐‘›) are non-zero polynomials in ๐‘š and ๐‘›. After ignoring finitely many arithmetic progressions, we can assume that (๐‘š, ๐‘›) is not a zero of any ๐‘ƒ๐‘ค by Lemma 8.0.3. Dividing by the first term, we need to study the solutions (๐‘š, ๐‘›) to the equation ๐‘Š โ€ฒ +๐‘›๐‘ก โ€ฒ ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›๐‘ก๐‘Ÿโ€ฒ ,๐‘ค โˆ‘๏ธ ๐‘š๐‘ 1,๐‘ค 1,๐‘ค ๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ =1 (โ–ฒ) ๐‘ค=2 where ๐‘„ ๐‘ค = โˆ’๐‘ƒ๐‘ค (๐‘š, ๐‘›)/๐‘ƒ1 (๐‘š, ๐‘›). As in Theorem 8.0.8, we can estimate the non-๐‘† contribution to the height of each term in (โ–ฒ) by โ„Ž(๐‘„ ๐‘ค (๐‘š, ๐‘›)) โ‰ค ๐‘…๐‘ค max{log ๐‘š, log ๐‘›} + ๐‘‚ (1) for some constant ๐‘…๐‘ค . On the other hand, we have the estimate โ€ฒ +๐‘›๐‘ก โ€ฒ ๐‘š๐‘ 1,๐‘ค 1,๐‘ค ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›๐‘ก๐‘Ÿโ€ฒ ,๐‘ค โ€ฒ โ€ฒ โ„Ž(๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ) โ‰ฅ ๐‘ ๐‘ค max{|๐‘š๐‘ ๐‘–,๐‘ค + ๐‘›๐‘ก๐‘–,๐‘ค |} โˆ’ ๐‘…๐‘ค log max{๐‘š, ๐‘›} + ๐‘‚ (1) ๐‘– for some constant ๐‘ ๐‘ค . In order to apply Corollary 6.2.2, we need each summand to be in ๐‘˜ ๐‘†,๐›ฟ for some ๐›ฟ < 1 . So it suffices to require, for every ๐‘ค, ๐‘Š (๐‘Š + 1) โ€ฒ โ€ฒ ๐ถ๐‘ค max{log ๐‘š, log ๐‘›} โ‰ค max{|๐‘š๐‘ ๐‘–,๐‘ค + ๐‘›๐‘ก๐‘–,๐‘ค |} (โ‹†) ๐‘– 61 4๐‘…๐‘ค ๐‘Š (๐‘Š + 1) where ๐ถ๐‘ค = . For those (๐‘š, ๐‘›) satisfying (โ‹†), we can apply Corollary 6.2.2 to ๐‘๐‘ค (โ–ฒ). But since โ€ฒ +๐‘›๐‘ก โ€ฒ ๐‘š๐‘ 1,๐‘ค 1,๐‘ค ๐‘š๐‘ ๐‘Ÿโ€ฒ ,๐‘ค +๐‘›๐‘ก๐‘Ÿโ€ฒ ,๐‘ค โ„Ž(๐‘„ ๐‘ค (๐‘š, ๐‘›)๐‘ข 1 ยท ยท ยท ๐‘ข๐‘Ÿ ) โ†’ โˆž as max{๐‘š, ๐‘›} โ†’ โˆž, this implies that there are only finitely many solutions (๐‘š, ๐‘›) of โˆ‘๏ธ โˆ’ logโˆ’ max{|๐น (๐‘š)| ๐‘ฃ , |๐บ (๐‘›)| ๐‘ฃ } > ๐œ– max{๐‘š, ๐‘›} ๐‘ฃโˆˆ๐‘€๐‘˜ \๐‘†0 satisfying (โ‹†). For pairs (๐‘š, ๐‘›) not satisfying (โ‹†), there exists some ๐‘ค 0 and ๐‘–0 such that (๐‘ ๐‘–โ€ฒ0 ,๐‘ค 0 , ๐‘ก๐‘–โ€ฒ0 ,๐‘ค 0 ) โ‰  (0, 0) and ๐ถ๐‘ค 0 max{log ๐‘š, log ๐‘›} โ‰ฅ |๐‘š๐‘ ๐‘–โ€ฒ0 ,๐‘ค 0 + ๐‘›๐‘ก๐‘–โ€ฒ0 ,๐‘ค 0 |. In fact, since as previously observed, min{๐‘š, ๐‘›} โ‰ซ max{๐‘š, ๐‘›} for solutions (๐‘š, ๐‘›) to (โ–ณ), we may assume ๐‘ ๐‘–โ€ฒ0 ,๐‘ค 0 ๐‘ก๐‘–โ€ฒ0 ,๐‘ค 0 โ‰  0. Fix such a pair (๐‘š, ๐‘›) and corresponding ๐‘ค 0 and ๐‘–0 . Let ๐‘Ž = ๐‘ ๐‘–โ€ฒ0 ,๐‘ค 0 , ๐‘ = ๐‘ก๐‘–โ€ฒ0 ,๐‘ค 0 , and ๐‘ก =     max ๐‘š๐‘ , โˆ’ ๐‘Ž๐‘› . Replacing (๐‘Ž, ๐‘) by (โˆ’๐‘Ž, โˆ’๐‘) if necessary, we may assume that ๐‘Ž < 0 and ๐‘ > 0. We set ๐œ‡1 = ๐‘š โˆ’ ๐‘๐‘ก and ๐œ‡2 = ๐‘› + ๐‘Ž๐‘ก, so that (๐‘š, ๐‘›) = (๐‘๐‘ก, โˆ’๐‘Ž๐‘ก) + (๐œ‡1 , ๐œ‡2 ). Then clearly min{|๐œ‡1 |, |๐œ‡2 |} โ‰ค max{|๐‘Ž|, |๐‘|} and so max{|๐œ‡1 |, |๐œ‡2 |} โ‰ช |๐‘Ž๐œ‡1 + ๐‘๐œ‡2 | = |๐‘Ž๐‘š + ๐‘๐‘›| โ‰ช max{log ๐‘š, log ๐‘›} โ‰ช log ๐‘ก as desired. โ–ก 62 CHAPTER 9 QUADRATIC POINTS ON ABELIAN SURFACES Let ๐ถ be a curve of genus 2 over a number field ๐‘˜, it is necessarily a hyperelliptic curve and we denote its hyperelliptic involution by ๐œŽ. Let ๐‘ƒ0 be a rational point on ๐ถ, after possibly enlarging the number field ๐‘˜, and consider the embedding ๐‘— : ๐ถ โ†’ ๐ฝ (๐ถ), ๐‘ƒ โ†ฆโ†’ [๐‘ƒ โˆ’ ๐‘ƒ0 ], where [๐‘ƒ โˆ’ ๐‘ƒ0 ] denote the divisor class of ๐‘ƒ โˆ’ ๐‘ƒ0 on ๐ถ. By Song-Tucker [19], Theorem 9.0.1. For any ๐œ– > 0, there exists a constant ๐‘‚ ๐œ– (1) such that for all ๐‘ƒ โˆˆ ๐ถ ( ๐‘˜) ยฏ of degree ๐‘‘ over ๐‘˜ with โ„Ž0 (๐ถ, ๐‘ƒ [1] + ยท ยท ยท + ๐‘ƒ [๐‘‘] ) = 1, we have ๐‘‘ ๐‘Ž (๐‘ƒ) โ‰ค โ„Ž ๐พ (๐‘ƒ) + (2๐‘‘ โˆ’ 2 + ๐œ–)โ„Ž(๐‘ƒ) + ๐‘‚ ๐œ– (1), where ๐‘ƒ๐‘– are the conjugates of ๐‘ƒ. Let ๐‘ƒ be a quadratic point over ๐‘˜ on ๐ถ with ๐œ the nontrivial element of the Galois group of ๐‘˜ (๐‘ƒ) over ๐‘˜, suppose that (๐‘ƒ, ๐œ๐‘ƒ) โ‰  (๐‘ƒ, ๐œŽ๐‘ƒ). Then ๐‘ƒ + ๐œ๐‘ƒ โ‰ 2๐‘ƒ0 , hence dim |๐‘ƒ + ๐œ๐‘ƒ| = 0. The above theorem tells us ๐‘‘ ๐‘Ž (๐‘ƒ) โ‰ค โ„Ž ๐พ (๐‘ƒ) + (2 + ๐œ–)โ„Ž(๐‘ƒ) + ๐‘‚ ๐œ– (1) โ‰ค (4 + ๐œ–)โ„Ž(๐‘ƒ). On the other hand, we have ๐œ™ : ๐ถ 2 โ†’ ๐ถ (2) โ†’ ๐ฝ (๐ถ) with the first map being the quotient by ๐‘†2 and the second map being the blow up along the point 0. In Silvermanโ€™s definition of generalized GCD [18], let ๐‘‹ be a variety and ๐‘Œ a subvariety of codimension at least 2, then let ๐‘‹หœ be the blow up of ๐‘‹ along Y and ๐‘Œหœ be the exceptional divisor. Let ๐‘ƒหœ be the preimage of ๐‘ƒ in ๐‘‹. หœ Then the generalized GCD of a point ๐‘ƒ โˆˆ (๐‘‹ \ ๐‘Œ ) with respect to ๐‘Œ is โ„Ž๐‘”๐‘๐‘‘ (๐‘ƒ; ๐‘Œ ) = โ„Ž ๐‘‹, หœ หœ ๐‘Œหœ ( ๐‘ƒ). 63 Followed by this definition, we can conjecture the GCD inequality on abelian surfaces, which is a consequence of Vojtaโ€™s conjecture. Conjecture 9.0.2. Let ๐‘‹ be an abelian surface and ๐ด an ample divisor on ๐‘‹, then for ๐‘ƒ โˆˆ ๐‘‹ we have โ„Ž๐‘”๐‘๐‘‘ (๐‘ƒ) โ‰ค ๐œ– โ„Ž ๐ด (๐‘ƒ) + ๐‘‚ (1) for all points outside a Zariski closed proper subset ๐‘ of ๐‘‹. It is well-known that all abelian varieties are quotients of Jacobian varieties, in particular, almost all abelian surfaces come from ๐ฝ (๐ถ) of a curve ๐ถ of genus 2. Then the question turns to whether the above inequality holds on ๐ฝ (๐ถ). If we consider the rational points on ๐ฝ (๐ถ), and they pull back to rational points on ๐ถ (2) and all but finitely many pull back to quadratic points on ๐ถ 2 . By pulling everything back to ๐ถ 2 , the conjecture is equivalent to the following inequality on ๐ถ, for {๐‘ƒ โˆˆ ๐ถ |[๐‘˜ (๐‘ƒ) : ๐‘˜] = 2, ๐œŽ๐‘ƒ โ‰  ๐œ๐‘ƒ}, โ„Žฮ” ๐›ผ (๐‘ƒ) โ‰ค ๐œ– โ„Ž ๐ด (๐‘ƒ) + ๐‘‚ (1) where ฮ”๐›ผ = {(๐‘ƒ, ๐œŽ๐‘ƒ)|๐‘ƒ โˆˆ ๐ถ}. Note that we have the relation between arithmetic discriminant and heights: ๐‘‘ ๐‘Ž (๐‘ƒ) = โ„Ž ๐พ (๐‘ƒ) + 4โ„Ž(๐‘ƒ) โˆ’ โ„Ž ๐œ™โˆ— ฮ˜ (๐‘ƒ [1] , ๐‘ƒ [2] ) + ๐‘‚ (1) (9.1) where ฮ˜ is the theta divisor defined by ฮ˜ = ๐‘— (๐ถ) with ๐‘— the map ๐‘— : ๐ถ โ†’ ๐ฝ (๐ถ) via ๐‘ƒ โ†ฆโ†’ [๐‘ƒโˆ’๐‘ƒ0 ]. Since ๐œ™โˆ— ฮ˜ = ฮ”๐›ผ + {๐‘ƒ0 } ร— ๐ถ + ๐ถ ร— {๐‘ƒ0 } then if one assumes Conjecture 9.0.2 is true, then ๐‘‘ ๐‘Ž (๐‘ƒ) = 4โ„Ž(๐‘ƒ) โˆ’ โ„Žฮ” ๐›ผ (๐‘ƒ [1] , ๐‘ƒ [2] ) + ๐‘‚ (1) โ‰ฅ 4โ„Ž(๐‘ƒ) โˆ’ ๐œ– โ„Ž(๐‘ƒ) + ๐‘‚ (1) โ‰ฅ (4 โˆ’ ๐œ–)โ„Ž(๐‘ƒ). Hence in this case one should expect the conjecture 64 Conjecture 9.0.3. Notations are as before. For all but finitely many quadratic points ๐‘ƒ with (๐‘ƒ, ๐œ๐‘ƒ) โ‰  (๐‘ƒ, ๐œŽ๐‘ƒ), then if the GCD conjecture is true, we have (4 โˆ’ ๐œ–)โ„Ž(๐‘ƒ) โ‰ค ๐‘‘ ๐‘Ž (๐‘ƒ) โ‰ค (4 + ๐œ–)โ„Ž(๐‘ƒ). Conjecture 9.0.3 is equivalent to Conjecture 9.0.2 in the case of Jacobians of genus two curves. Remark 9.0.4. For the quadratic points ๐‘ƒ with (๐‘ƒ, ๐œŽ๐‘ƒ) = (๐‘ƒ, ๐œ๐‘ƒ) (the quadratic points coming from pulling back ๐‘˜-rational points via the hyperelliptic map ๐œ“ : ๐ถ โ†’ P1 ), the inequality of Conjecture 9.0.3 does not hold. In fact, we can show that for such points (6 โˆ’ ๐œ–)โ„Ž(๐‘ƒ) โ‰ค ๐‘‘ ๐‘Ž (๐‘ƒ) โ‰ค (6 + ๐œ–)โ„Ž(๐‘ƒ). Consider ๐œ“ ร— ๐œ“ : ๐ถ ร— ๐ถ โ†’ P1 ร— P1 . Let ๐น1 and ๐น2 be fibers of the two natural projections on P1 ร—P1 . Indeed, since โ„Ž ๐œ™โˆ— ฮ˜ (๐‘ƒ, ๐œŽ๐‘ƒ) = โ„Žฮ˜ (0) is constant for such points, this follows immediately from (9.1). 65 BIBLIOGRAPHY 66 BIBLIOGRAPHY [1] Allcock, D. and Vaaler, J. D. (2009). A Banach space determined by the Weil height. Acta Arith., 136(3):279โ€“298. [2] Bombieri, E. and Gubler, W. (2006). Heights in Diophantine geometry, volume 4 of New Mathematical Monographs. Cambridge University Press, Cambridge. [3] Bugeaud, Y., Corvaja, P., and Zannier, U. (2003). An upper bound for the G.C.D. of ๐‘Ž ๐‘› โˆ’ 1 and ๐‘ ๐‘› โˆ’ 1. Math. Z., 243(1):79โ€“84. [Corvaja et al.] Corvaja, P., Levin, A., and Zannier, U. Greatest common divisors over charac- teristic zero function fields. preprint. [5] Corvaja, P. and Zannier, U. (2003). On the greatest prime factor of (๐‘Ž๐‘ + 1)(๐‘Ž๐‘ + 1). Proc. Amer. Math. Soc., 131(6):1705โ€“1709. [6] Corvaja, P. and Zannier, U. (2005). A lower bound for the height of a rational function at ๐‘†-unit points. Monatsh. Math., 144(3):203โ€“224. [7] Everest, G., van der Poorten, A., Shparlinski, I., and Ward, T. (2003). Recurrence sequences, volume 104 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI. [8] Evertse, J.-H. (2002). Points on subvarieties of tori. In A panorama of number theory or the view from Bakerโ€™s garden (Zรผrich, 1999), pages 214โ€“230. Cambridge Univ. Press, Cambridge. [9] Fuchs, C. (2003). An upper bound for the G.C.D. of two linear recurring sequences. Math. Slovaca, 53(1):21โ€“42. [10] Grieve, N. (2020). Generalized GCD for toric Fano varieties. Acta Arith., 195(4):415โ€“428. [11] Grieve, N. and Wang, J. T.-Y. (2020). Greatest common divisors with moving targets and consequences for linear recurrence sequences. Trans. Amer. Math. Soc., 373(11):8095โ€“8126. [12] Hernรกndez, S. and Luca, F. (2003). On the largest prime factor of (๐‘Ž๐‘ + 1)(๐‘Ž๐‘ + 1)(๐‘๐‘ + 1). Bol. Soc. Mat. Mexicana (3), 9(2):235โ€“244. [13] Hindry, M. and Silverman, J. H. (2000). Diophantine geometry, volume 201 of Graduate Texts in Mathematics. Springer-Verlag, New York. An introduction. 67 [14] Levin, A. (2019). Greatest common divisors and Vojtaโ€™s conjecture for blowups of algebraic tori. Invent. Math., 215(2):493โ€“533. [15] Luca, F. (2005). On the greatest common divisor of ๐‘ข โˆ’ 1 and ๐‘ฃ โˆ’ 1 with ๐‘ข and ๐‘ฃ near ๐’ฎ-units. Monatsh. Math., 146(3):239โ€“256. [16] Serre, J.-P. (1997). Lectures on the Mordell-Weil theorem. Aspects of Mathematics. Friedr. Vieweg & Sohn, Braunschweig, third edition. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, With a foreword by Brown and Serre. [17] Silverman, J. H. (1987). A quantitative version of Siegelโ€™s theorem: integral points on elliptic curves and Catalan curves. J. Reine Angew. Math., 378:60โ€“100. [18] Silverman, J. H. (2005). Generalized greatest common divisors, divisibility sequences, and Vojtaโ€™s conjecture for blowups. Monatsh. Math., 145(4):333โ€“350. [19] Song, X. and Tucker, T. J. (2001). Arithmetic discriminants and morphisms of curves. Trans. Amer. Math. Soc., 353(5):1921โ€“1936. [20] Vojta, P. (1987). Diophantine approximations and value distribution theory, volume 1239 of Lecture Notes in Mathematics. Springer-Verlag, Berlin. [21] Vojta, P. (1989). Mordellโ€™s conjecture over function fields. Invent. Math., 98(1):115โ€“138. [22] Vojta, P. (1991a). Arithmetic discriminants and quadratic points on curves. In Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr. Math., pages 359โ€“376. Birkhรคuser Boston, Boston, MA. [23] Vojta, P. (1991b). Siegelโ€™s theorem in the compact case. Ann. of Math. (2), 133(3):509โ€“548. [24] Vojta, P. (1992). A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. J. Amer. Math. Soc., 5(4):763โ€“804. [25] Wirsing, E. A. (1971). On approximations of algebraic numbers by algebraic numbers of bounded degree. In 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), pages 213โ€“247. 68