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ABSTRACT

We bound the greatest common divisor of two coprime multivariable polynomials evaluated at

algebraic numbers, generalizing the work of Levin by thickening the group of 𝑆-units to allow

for points that are merely “close" to 𝑆-units. Our inequalities make progress towards conjectured

GCD inequalities of Silverman and towards Vojta’s conjecture for blowups. The proofs rely on

Schmidt’s Subspace Theorem.

As an application, we prove results on the greatest common divisors of terms from two

general linear recurrence sequences, extending the results of Levin, who considered the case

where the linear recurrences are simple. In particular, we improve on recent results of Grieve

and Wang for general linear recurrences, and bound the exceptional set to a logarithmic region.

An example shows that the logarithmic region is necessary.

On abelian surfaces which come from the Jacobians of hyperelliptic curves, we establish a

connection between GCD conjectures on the abelian surface and conjectures on the arithmetic

discriminant for quadratic points on the associated hyperelliptic curve. It predicts, in particular

situations, a stronger inequality than Vojta’s theorem on the arithmetic discriminant. We give

some examples of extreme values of the arithmetic discriminant.
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CHAPTER 1

INTRODUCTION

1.1 Diophantine approximation

Upper bounds for the greatest common divisor of integers of the form 𝑎𝑛−1 and 𝑏𝑛−1 were first

studied by Bugeaud, Corvaja, and Zannier in [3], where they proved the following inequality:

Theorem 1.1.1 (Bugeaud, Corvaja, Zannier [3]). Let 𝑎, 𝑏 be multiplicatively independent

integers, and let 𝜖 > 0. Then, provided 𝑛 sufficiently large, we have

log gcd(𝑎𝑛 − 1, 𝑏𝑛 − 1) < 𝜖𝑛.

Note that even though the statement is simple, the proof requires Schmidt’s Subspace The-

orem from Diophantine approximation. Actually, for most of the following works, it is the

fundamental ingredient in their proofs.

Corvaja, Zannier [5] and Hernández, Luca [12] subsequently extended Theorem 1.1.1 to

𝑆-unit integers:

Theorem 1.1.2 (Corvaja, Zannier [5] and Hernández, Luca [12]). Let 𝑝1, . . . , 𝑝𝑡 ∈ Z be prime

numbers and let 𝑆 = {∞, 𝑝1, . . . , 𝑝𝑡}. Then for every 𝜖 > 0,

log gcd(𝑢 − 1, 𝑣 − 1) ≤ 𝜖 max{log |𝑢 |, log |𝑣 |}

for all but finitely many multiplicatively independent 𝑆-unit integers 𝑢, 𝑣 ∈ Z∗
𝑆
.

More generally, Corvaja and Zannier proved an inequality in the case of bivariate polynomi-

als.

Theorem 1.1.3 (Corvaja, Zannier [6]). Let Γ ⊂ G2
𝑚 (Q̄) be a finitely generated group. Let

𝑓 (𝑥, 𝑦), 𝑔(𝑥, 𝑦) ∈ Q̄[𝑥, 𝑦] be nonconstant coprime polynomials such that not both of them
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vanish at (0, 0). For all 𝜖 > 0, there exists a finite union 𝑍 of translates of proper algebraic

subgroups of G2
𝑚 such that

log gcd( 𝑓 (𝑢, 𝑣), 𝑔(𝑢, 𝑣)) < 𝜖 max{ℎ(𝑢), ℎ(𝑣)}

for all (𝑢, 𝑣) ∈ Γ \ 𝑍 .

In recent work of Levin [14], the following result was proven, giving an inequality for greatest

common divisors of polynomials evaluated at 𝑆-unit points, which is a higher-dimensional

version of Corvaja-Zannier’s theorem:

Theorem 1.1.4 (Levin [14]). Let 𝑛 be a positive integer. Let Γ ⊂ G𝑛𝑚 (Q̄) be a finitely generated

group. Let 𝑓 (𝑥1, . . . , 𝑥𝑛), 𝑔(𝑥1, . . . , 𝑥𝑛) ∈ Q̄[𝑥1, . . . , 𝑥𝑛] be non-constant coprime polynomials

such that not both of them vanish at (0, . . . , 0). Let ℎ(𝛼) denote the (absolute logarithmic)

height of an algebraic number 𝛼. For all 𝜖 > 0, there exists a finite union 𝑍 of translates of

proper algebraic subgroups of G𝑛𝑚 such that

log gcd( 𝑓 (𝑢1, . . . , 𝑢𝑛), 𝑔(𝑢1, . . . , 𝑢𝑛)) < 𝜖 max{ℎ(𝑢1), . . . , ℎ(𝑢𝑛)}

for all (𝑢1, . . . , 𝑢𝑛) ∈ Γ \ 𝑍 .

In particular, Γ in Theorem 1.1.4 can be taken as the full set of 𝑛-tuples of 𝑆-units in a num-

ber field 𝑘 , where 𝑆 is a finite set places of 𝑘 containing the archimedean places. In the above

statement, log gcd is the generalized logarithmic greatest common divisor, which is defined in

Section 2.5.

In a slightly different direction, Luca [15] extended Theorem 1.1.2 to rational numbers 𝑢 and

𝑣 that are “close" to being an 𝑆-unit. Let 𝑢 be a non-zero rational number, and 𝑆 a fixed finite set

of primes. We may write 𝑢 uniquely, up to a sign, in the form 𝑢 = 𝑢𝑆 · 𝑢𝑆, where 𝑢𝑆 is a rational

number in reduced form having both its numerator and denominator composed of primes in 𝑆,
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and 𝑢𝑆 is a rational number in reduced form having both its numerator and denominator free of

primes from 𝑆. Luca proved the following:

Theorem 1.1.5 (Luca [15]). Let 𝑆 be a finite set of places of Q. For 𝜖 > 0, there exist three

positive constants 𝐾1, 𝐾2, 𝐾3 depending on 𝑆 and 𝜖 , such that for any rational numbers 𝑢 and 𝑣

satisfying

log gcd(𝑢 − 1, 𝑣 − 1) ≥ 𝜖 max{ℎ(𝑢), ℎ(𝑣)},

one of the following three conditions holds:

(i) max{ℎ𝑟𝑎𝑡 (𝑢), ℎ𝑟𝑎𝑡 (𝑣)} < 𝐾1,

(ii) 𝑢𝑖 = 𝑣 𝑗 with max{|𝑖 |, | 𝑗 |} < 𝐾2,

(iii) max{ℎ𝑆 (𝑢), ℎ𝑆 (𝑣)} > 𝐾3
ℎ

log ℎ
,

where ℎ𝑆 (𝑢) = ℎ(𝑢𝑆), ℎ𝑟𝑎𝑡
(
𝑥

𝑦

)
= max

{
ℎ(𝑥)
ℎ(𝑦) ,

ℎ(𝑦)
ℎ(𝑥)

}
and ℎ = max{ℎ(𝑢), ℎ(𝑣)}.

This shows the GCD of two rational integers 𝑢 − 1 and 𝑣 − 1 cannot be large unless 𝑢 and

𝑣 are multiplicatively dependent or have large non-𝑆 height. One main theorem of this thesis

(Corollary 7.0.4) can also be viewed as a generalization of Theorem 1.1.4 along the lines of

Luca’s theorem. It is studied as follows.

We want to generalize Theorem 1.1.4 beyond the setting of 𝑆-units points. To achieve this

goal, we introduce the definition of almost 𝑆-units: Roughly speaking, an almost (𝑆, 𝛿)-unit for

some set of places 𝑆 in a number field 𝑘 is an element 𝑢 ∈ 𝑘 whose dominant part of its height

is due to an 𝑆-unit.

Definition 1.1.6. For a fixed 𝛿 > 0 and a fixed set of places 𝑆, if 𝑢 ∈ 𝑘∗, then we say 𝑢 is an

almost (𝑆, 𝛿)-unit if

ℎ𝑆 (𝑢) :=
∑︁
𝑣∉𝑆

𝜆𝑣 (𝑢) + 𝜆𝑣
(

1
𝑢

)
≤ 𝛿ℎ(𝑢)
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(see Section 2.1 for the definition of 𝜆𝑣). We denote the set of all almost (𝑆, 𝛿)-units by 𝑘𝑆,𝛿.

More generally, let

G𝑛𝑚 (𝑘)𝑆,𝛿 := {u ∈ G𝑛𝑚 (𝑘) |ℎ𝑆 (u) ≤ 𝛿ℎ(u)},

where

ℎ𝑆 (u) =
∑︁
𝑣∉𝑆

𝜆𝑣 (u) + 𝜆𝑣
(

1
u

)
.

With Definition 1.1.6, we prove the following generalization of Theorem 1.1.4, which shows

that Γ = (O∗
𝑘,𝑆

)𝑛 may be “thickened" to G𝑛𝑚 (𝑘)𝑆,𝛿 for some positive 𝛿 (depending on 𝜖).

Theorem 1.1.7. (Corollary 7.0.7) Let 𝑛 be a positive integer and 𝑘 a number field, 𝑓 (𝑥1, . . . , 𝑥𝑛),

𝑔(𝑥1, . . . , 𝑥𝑛) ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be nonconstant coprime polynomials such that not both of them

vanish at (0, . . . , 0). For all 𝜖 > 0, there exists 𝛿 > 0 and a proper Zariski closed subset 𝑍 of

G𝑛𝑚 such that:

log gcd( 𝑓 (𝑢1, . . . , 𝑢𝑛), 𝑔(𝑢1, . . . , 𝑢𝑛)) < 𝜖 max{ℎ(𝑢1), . . . , ℎ(𝑢𝑛)}

for all (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 .

By Theorem 5 of [8], we may further choose 𝑍 so that it is a (possibly infinite) union of

positive-dimensional torus cosets.

In fact, we prove the following refinement of Theorem 1.1.7.

Theorem 1.1.8. (Theorem 7.0.6) Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘

containing the archimedean places. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be coprime polynomials that don’t

both vanish at the origin (0, . . . , 0). For all 0 < 𝛿 < 1, there exists a proper Zariski closed

subset 𝑍 of G𝑛𝑚 such that

log gcd( 𝑓 (𝑢1, . . . , 𝑢𝑛), 𝑔(𝑢1, . . . , 𝑢𝑛)) < 𝐶𝛿1/2
𝑛∑︁
𝑖=1

ℎ(𝑢𝑖)

for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \𝑍 satisfying ℎ𝑆 (u) < 𝛿ℎ(u), where𝐶 = 6(deg 𝑓 +deg 𝑔)𝑛2

is a constant.
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Theorem 7.0.6 extends Levin’s Theorem 1.1.4 from integral points to rational points, and

may be viewed as progress towards Vojta’s conjecture for certain blown-up varieties. This The-

orem gives a GCD inequality of the form similar to what Vojta’s Conjecture predicts. Assuming

Vojta’s Conjecture, Silverman obtained an upper bound for the polynomial GCD in [18]. By

properly extending the notions from Q to a number field, we can compare Silverman’s conjec-

tural upper bound with our inequality. More precisely, in Remark 7.0.8 we discuss the relation

of Theorem 7.0.6 with conjectured inequalities of Silverman based on Vojta’s conjecture. We

also note work of Grieve [10] in this direction.

1.2 Linear recurrence sequences

On the other hand, Levin [14] also gave a classification (Theorem 1.2.2) of large GCDs among

terms from simple linear recurrence sequences (see also earlier work of Fuchs [9]). A primary

goal of our work is to study the case of general linear recurrences (i.e., without the assumption

that the linear recurrence is simple). In the case of binary linear recurrences, Luca [15] showed:

Theorem 1.2.1 (Luca [15]). Let 𝑎 and 𝑏 be non-zero integers which are multiplicatively inde-

pendent, and let 𝑓 , 𝑔, 𝑓1 and 𝑔1 be non-zero polynomials with integer coefficients. For every

positive integer 𝑛 set

𝑢𝑛 = 𝑓 (𝑛)𝑎𝑛 + 𝑔(𝑛)

and

𝑣𝑛 = 𝑓1(𝑛)𝑏𝑛 + 𝑔1(𝑛).

Then, for every fixed 𝜖 > 0 there exists a positive constant 𝐶𝜖 > 0 depending on 𝜖 and on the

given data 𝑎, 𝑏, 𝑓 , 𝑓1, 𝑔 and 𝑔1, such that

log gcd(𝑢𝑛, 𝑣𝑚) < 𝜖 max{𝑚, 𝑛}

holds for all pairs of positive integers (𝑚, 𝑛) with max{𝑚, 𝑛} > 𝐶𝜖 .
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The essential assumption is that 𝑎 and 𝑏 are multiplicatively independent integers, which

gives a contradiction to condition (ii) of Theorem 1.1.5. Note that Theorem 1.2.1 is proved

without the assistance of Schmidt’s Subspace Theorem, so one should expect that a stronger

result can be proved with the Subspace Theorem applied to general linear recurrence sequences.

In fact, a recent result due to Grieve and Wang [11] on general linear recurrences generalized

Luca’s binary case, and recovered Levin’s result 1.2.2 at the same time. We will give an alter-

native proof of this theorem later.

Levin [14] applied Theorem 1.1.4 to terms from simple linear recurrence sequences, giving

a classification of when two such terms may have a large GCD.

Theorem 1.2.2 (Levin [14]). Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑐𝑖𝛼
𝑚
𝑖 ,

𝐺 (𝑛) =
𝑡∑︁
𝑗=1

𝑑 𝑗 𝛽
𝑛
𝑗 ,

define two algebraic simple linear recurrence sequences. Let 𝑘 be a number field such that

𝑐𝑖, 𝛼𝑖, 𝑑 𝑗 , 𝛽 𝑗 ∈ 𝑘 for 𝑖 = 1, . . . , 𝑠, 𝑗 = 1, . . . , 𝑡. Let 𝑀𝑘 be the canonical set of places in 𝑘 . Let

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Let 𝜖 > 0. All but finitely many solutions (𝑚, 𝑛) of the inequality∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} > 𝜖 max{𝑚, 𝑛}

satisfy one of finitely many linear relations

(𝑚, 𝑛) = (𝑎𝑖𝑡 + 𝑏𝑖, 𝑐𝑖𝑡 + 𝑑𝑖), 𝑡 ∈ Z, 𝑖 = 1, . . . , 𝑟,

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ∈ Z, 𝑎𝑖𝑐𝑖 ≠ 0, and the linear recurrences 𝐹 (𝑎𝑖 • +𝑏𝑖) and 𝐺 (𝑐𝑖 • +𝑑𝑖) have a

nontrivial common factor for 𝑖 = 1, . . . , 𝑟 .
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Grieve and Wang [11] have extended Theorem 1.2.2 to general linear recurrence sequences.

Theorem 1.2.3 (Grieve, Wang [11]). Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖 ,

𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗 ,

for 𝑛 ∈ N, be algebraic linear recurrence sequences, defined over a number field 𝑘 , such that

their roots generate together a torsion-free multiplicative subgroup Γ of 𝑘×. Suppose that

max
𝑖, 𝑗

{|𝛼𝑖 |𝑣, |𝛽 𝑗 |𝑣} ≥ 1,

for any 𝑣 ∈ 𝑀𝑘 . Let 𝜖 > 0 and consider the inequality

log gcd(𝐹 (𝑛), 𝐺 (𝑛)) < 𝜖 max{𝑚, 𝑛} (†)

for pairs of positive integers (𝑚, 𝑛) ∈ N2. The following two assertions hold true.

1. Consider the case that 𝑚 = 𝑛. If the inequality (†) is valid for infinitely many positive

integers (𝑛, 𝑛) ∈ N2, then 𝐹 and 𝐺 have a non-trivial common factor.

2. Consider the case that 𝑚 ≠ 𝑛. If the inequality (†) is valid for infinitely many pairs of

positive integers (𝑚, 𝑛) ∈ N2, with 𝑚 ≠ 𝑛, then the roots of 𝐹 and 𝐺 are multiplicatively

dependent (see Def 8.0.7). Further, in this case, there exist finitely many pairs of integers

(𝑎, 𝑏) ∈ Z2 such that

|𝑚𝑎 + 𝑛𝑏 | = 𝑜(max{𝑚, 𝑛}).

The proof of Theorem 1.2.3 in [11] is based on a “moving targets" version of Theorem 1.1.4.

We will give an alternative proof of Theorem 1.2.3 and also give a quantitative improvement

in which the error term 𝑜(max{𝑚, 𝑛}) can be controlled as a constant multiple of log max{𝑚, 𝑛}.
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As an application of the polynomial GCD inequality, we state our main result on linear

recurrence sequences:

Theorem 1.2.4. Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖 ,

𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗 ,

define two algebraic linear recurrence sequences. Let 𝑘 be a number field such that all coeffi-

cients of 𝑝𝑖 and 𝑞 𝑗 and 𝛼𝑖, 𝛽 𝑗 are in 𝑘 , for 𝑖 = 1, . . . , 𝑠, 𝑗 = 1, . . . , 𝑡. Let

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Then all but finitely many solutions (𝑚, 𝑛) of the inequality:

∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} < 𝜖 max{𝑚, 𝑛}

are of the form:

(𝑚, 𝑛) = (𝑎𝑖𝑡, 𝑏𝑖𝑡) + (𝜇1, 𝜇2), 𝜇1, 𝜇2 ≪ log 𝑡, 𝑡 ∈ N, 𝑖 = 1, . . . , 𝑟

with finitely many choices of nonzero integers (𝑎𝑖, 𝑏𝑖) .

Moreover, if the roots of 𝐹 and 𝐺 are independent (see Def 8.0.7), then the solutions (𝑚, 𝑛)

satisfy one of the finitely many linear relations:

(𝑚, 𝑛) = (𝑎𝑖𝑡 + 𝑏𝑖, 𝑐𝑖𝑡 + 𝑑𝑖), 𝑡 ∈ N, 𝑖 = 1, . . . , 𝑟

where 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ∈ N, 𝑎𝑖𝑐𝑖 ≠ 0, and the linear recurrences 𝐹 (𝑎𝑖 • +𝑏𝑖) and 𝐺 (𝑐𝑖 • +𝑑𝑖) have a

nontrivial common factor for 𝑖 = 1, . . . , 𝑟 .

Example 1.2.5. Under the set up of Theorem 1.2.4, we give an example illustrating the necessity

of (𝜇1, 𝜇2) in the statement:

8



Define the two linear recurrence sequences as: 𝐹 (𝑚) = 𝑚𝑝𝑚 + 1, 𝐺 (𝑛) = 𝑝𝑛 + 1, where 𝑝

is a prime. In the notations of Theorem 1.2.4, 𝑆0 = ∅. Let 𝜖 < log 2. It is easily seen that for

(𝑚, 𝑛) = (𝑝𝑘 , 𝑝𝑘 + 𝑘), ∀𝑘 ∈ Z>0, 𝐹 (𝑚) = 𝑝𝑝𝑘+𝑘 + 1 = 𝐺 (𝑛), so the inequality

log gcd{|𝐹 (𝑚) |, |𝐺 (𝑛) |} = log(𝑝𝑝𝑘+𝑘 + 1) > 𝜖 (𝑝𝑘 + 𝑘) = 𝜖 max{𝑚, 𝑛}

holds for infinitely many 𝑘 and hence infinitely many (𝑚, 𝑛). It is easily seen that such pairs

(𝑚, 𝑛) do not lie on finitely many lines, but do lie in a logarithmic region around the line 𝑥 = 𝑦,

i.e., for such pairs we may write (𝑚, 𝑛) = (𝑡, 𝑡) + (𝜇1, 𝜇2) with 𝜇1, 𝜇2 ≪ log 𝑡 in agreement with

Theorem 1.2.4.

1.3 Arithmetic discriminant

Vojta defined the arithmetic discriminant 𝑑𝑎 in the proofs of [23] and [21], and an alternative

definition is given in the other paper [22] under arithmetic geometry. In [23], he obtained a first

estimate of 𝑑𝑎. Later, Vojta successfully proved the Vojta’s conjecture [24] replacing 𝑑 (𝑃), the

usual logarithmic discriminant, by 𝑑𝑎 (𝑃) in the curve case.

Theorem 1.3.1 (Theorem 4.2.4). Let 𝐶 be a curve over a numerb field 𝑘 and let 𝜋 : 𝑋 → 𝐵

be a regular model, where 𝐵 is the arithmetic curve corresponding to SpecO𝑘 . Fix an integer

𝜈 ≥ 1, a real number 𝜖 > 0, an effective divisor 𝐷 on 𝑋 with no multiple components, and a

divisor 𝐴 on 𝑋 which is ample on the generic fibre. Then for all points 𝑃 ∈ 𝐶 (𝑘) \ Supp(𝐷)

with [𝑘 (𝑃) : 𝑘] ≤ 𝜈,

𝑚(𝐷, 𝑃) + ℎ𝐾 (𝑃) ≤ 𝑑𝑎 (𝑃) + 𝜖ℎ𝐴 (𝑃) +𝑂 (1),

where the constant in 𝑂 (1) depends on 𝑋, 𝐷, 𝜈, 𝐴 and 𝜖 .

The proof gives a deep and extraordinary construction, which somehow has the similar

flavor of the proof of Roth’s theorem. However this result is not applied widely and needs more

attention.
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A follow up theorem, proven in [22], gives a finiteness statement for points of bounded

degree on curves.

Theorem 1.3.2. Let 𝑓 : 𝐶 → P1 be a dominant morphism, let 𝑠 ∈ N, and let 𝑔 be the genus of

𝐶. Assume also that

𝑔 − 1 > (deg 𝑓 ) (𝑠 − 1).

Then the set

{𝑃 ∈ 𝐶 ( 𝑘̄) | [𝑘 (𝑃) : 𝑘] ≤ 𝑠 and 𝑘 ( 𝑓 (𝑃)) = 𝑘 (𝑃)}

is finite.

Using well-known upper bounds for the gonality of a curve, one immediately finds,

Corollary 1.3.3. If 𝑔 ≥ 6 then there exists a dominant morphism 𝑓 : 𝐶 → P1 such that the set

{𝑃 ∈ 𝐶 ( 𝑘̄) | [𝑘 (𝑃) : 𝑘] ≤ 2 and 𝑘 ( 𝑓 (𝑃)) = 𝑘 (𝑃)}

is finite.

Song-Tucker [19] gave a general version of Theorem 1.3.2.

Proposition 1.3.4. Let𝐶 and𝐶′ be curves of genus 𝑔 and 𝑔′, respectively, defined over a number

field 𝑘 , let 𝜈 be a positive integer, and let 𝑓 : 𝐶 → 𝐶′ be a dominant 𝑘-morphism. Assume that

𝑔 − 1 > (𝜈 + 𝑔′ − 1) deg 𝑓 .

Then the set

{𝑃 ∈ 𝐶 ( 𝑘̄) | [𝑘 (𝑃) : 𝐾] = 𝜈 and 𝑘 ( 𝑓 (𝑃)) = 𝑘 (𝑃)}

is finite.

As an application, they obtained a stronger Castelnuovo’s genus inequality under certain

conditions.
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In here, we continue study the connection between the arithmetic discriminant and the GCD

conjecture, giving an equivalence of conjectures for quadratic points.

In later chapters, we will give the proofs of the main Diophantine approximation results and

the application to linear recurrence sequences, respectively. We will also develope the connection

between the GCD conjecture and the conjecture on arithmetic discriminant on quadratic points.
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CHAPTER 2

ABSOLUTE VALUES AND HEIGHTS

2.1 Absolute values

Let 𝑘 be a number field, 𝑀𝑘 the set of places of 𝑘 and O𝑘 the ring of integers of 𝑘 . For 𝑣 ∈ 𝑀𝑘 ,

let 𝑘𝑣 denote the completion of 𝑘 with respect to 𝑣. Throughout the thesis, we normalize the

absolute value | · |𝑣 corresponding to 𝑣 ∈ 𝑀𝑘 as follows: If 𝑣 is archimedean and 𝜎 is the

corresponding embedding 𝜎 : 𝑘 → C, then for 𝑥 ∈ 𝑘∗, |𝑥 |𝑣 = |𝜎(𝑥) | |𝑘𝑣 :R|/|𝑘:Q|; if 𝑣 is non-

archimedean corresponding to a prime ideal 𝒫 in O𝑘 which lies above a rational prime 𝑝, then

it is normalized so that |𝑝 |𝑣 = 𝑝−|𝑘𝑣 :Q𝑝 |/|𝑘:Q|. In this notation, we have the product formula:∏
𝑣∈𝑀𝑘

|𝑥 |𝑣 = 1

for all 𝑥 ∈ 𝑘∗.

Let 𝑆 be a finite set of places in 𝑀𝑘 . The ring of 𝑆-integers and the group of 𝑆-units are

denoted by O𝑘,𝑆 and O∗
𝑘,𝑆

respectively.

2.2 Height functions on projective spaces

We will define height functions as in [13]. For a point 𝑃 = (𝛼0 : 𝛼1 : · · · : 𝛼𝑛) ∈ P𝑛 (𝑘), we

define its height to be

ℎ(𝑃) =
∑︁
𝑣∈𝑀𝑘

log max{|𝛼0 |𝑣, . . . , |𝛼𝑛 |𝑣}

and for any 𝑥 ∈ 𝑘 , its height ℎ(𝑥) is defined to be the height of the point (1 : 𝑥) in P1(𝑘).

Lemma 2.2.1. We have the following properties of height functions:

1. The height ℎ(𝑃) is independent of the choice of homogeneous coordinates for 𝑃.
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2. ℎ(𝑃) ≥ 0 for all 𝑃 ∈ P𝑛 (𝑘).

Proposition 2.2.2. The action of the Galois group on P𝑛 (Q̄) leaves the height invariant.

The following finiteness theorem is of fundamental importance for the application of height

functions in Diophantine geometry.

Theorem 2.2.3 (Northcott property). For any numbers 𝐵, 𝐷 ≥ 0, the set

{𝑃 ∈ P𝑛 (Q̄) |ℎ(𝑃) ≤ 𝐵, [Q(𝑃) : 𝑄] ≤ 𝐷}

is finite. In particular, for any fixed number field 𝑘 , the set

{𝑃 ∈ P𝑛 (𝑘) |ℎ(𝑃) ≤ 𝐵}

is finite.

2.3 Height functions on projective varieties

Weil’s “Height Machine" constructs a height function associated to every divisor on a projective

variety. These height functions satisfy the following properties.

Theorem 2.3.1. Let 𝑘 be a number field. For every smooth projective variety 𝑉/𝑘 there exists

a map

ℎ𝑉 : Div(𝑉) → {functions 𝑉 ( 𝑘̄ → R)}

with the following properties:

1. (Normalization) Let 𝐻 ⊂ P𝑛 be a hyperplane, and let ℎ(𝑃) be the absolute logarithmic

height on P𝑛. Then

ℎP𝑛,𝐻 (𝑃) = ℎ(𝑃) +𝑂 (1)

for all 𝑃 ∈ P𝑛 ( 𝑘̄).
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2. (Functoriality) Let 𝜙 : 𝑉 → 𝑊 be a morphism and let 𝐷 ∈ Div(𝑊). Then

ℎ𝑉,𝜙∗𝐷 (𝑃) = ℎ𝑊,𝐷 (𝜙(𝑃)) +𝑂 (1),

for all 𝑃 ∈ 𝑉 ( 𝑘̄)

3. (Additivity) Let 𝐷, 𝐸 ∈ Div(𝑉). Then

ℎ𝑉,𝐷+𝐸 (𝑃) = ℎ𝑉,𝐷 (𝑃) + ℎ𝑉,𝐸 (𝑃) +𝑂 (1)

for all 𝑃 ∈ 𝑉 ( 𝑘̄).

4. (Linear Equivalence) Let 𝐷, 𝐸 ∈ Div(𝑉) with 𝐷 linearly equivalent to 𝐸 . Then

ℎ𝑉,𝐷 (𝑃) = ℎ𝑉,𝐸 (𝑃) +𝑂 (1)

for all 𝑃 ∈ 𝑉 ( 𝑘̄).

5. (Positivity) Let 𝐷 ∈ Div(𝑉) be an effective divisor, and let 𝐵 be the base locus of the

linear system |𝐷 |. Then

ℎ𝑉,𝐷 (𝑃) ≥ 𝑂 (1)

for all 𝑃 ∈ (𝑉 \ 𝐵) ( 𝑘̄).

6. (Algebraic Equivalence) Let 𝐷, 𝐸 ∈ Div(𝑉) with 𝐷 ample and 𝐸 algebraically equivalent

to 0. Then

lim
𝑃∈𝑉 ( 𝑘̄),ℎ𝑉,𝐷 (𝑃)→∞

ℎ𝑉,𝐸 (𝑃)
ℎ𝑉,𝐷 (𝑃)

= 0.

7. (Finiteness) Let 𝐷 ∈ Div(𝑉) be ample. Then for every finite extension 𝑘′/𝑘 and every

constant 𝐵, the set

{𝑃 ∈ 𝑉 (𝑘′) |ℎ𝑉,𝐷 (𝑃) ≤ 𝐵}

is finite.

8. The height functions ℎ𝑉,𝐷 are determined, up to 𝑂 (1), by normalization, functoriality for

embeddings 𝜙 : 𝑉 → P𝑛, and additivity.
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2.4 Local height functions

We now define local height functions. Let 𝑉 be a projective variety over a number field 𝑘 .

Let 𝐷 be a Cartier divisor on 𝑉 and 𝑣 ∈ 𝑀𝑘 . First we define the support of a Cartier divisor

𝐷 = (𝑈𝛼, 𝑓𝛼)𝛼∈𝐼 to be

supp(𝐷) :=
⋃
𝛼

{𝑥 ∈ 𝑈𝛼 | 𝑓𝛼 ∉ O∗
𝑉,𝑥},

where O∗
𝑉,𝑥

is the group of units in the local ring O𝑉,𝑥 . For notation convenience, we write

𝑉𝐷 = 𝑉 \ supp(𝐷)

for the complement of the support of 𝐷. We would like to associate to each place 𝑣 ∈ 𝑀𝑘 a

function

𝜆𝐷,𝑣 : 𝑉𝐷 (𝑘𝑣) → R

so that the sum ∑︁
𝑣∈𝑀𝑘

𝜆𝐷,𝑣 = ℎ𝐷

for all points in 𝑉𝐷 (𝑘). Moreover, the local height functions should be additive in 𝐷. If 𝐷 is a

prime divisor, then 𝜆𝐷,𝑣 should be geometric in the following intuitive sense

𝜆𝐷,𝑣 (𝑃) = − log(𝑣-adic distance from 𝑃 to 𝐷).

To make things precise, we need some definitions. We define an 𝑀𝑘 -constant to be a map

𝛾 : 𝑀𝑘 → R

with the property that 𝛾(𝑣) = 0 for all but finitely many 𝑣 ∈ 𝑀𝑘 . We say that a real-valued

function 𝜙 on a subset 𝑌 of 𝑉 (𝑘) × 𝑀𝑘 is 𝑀𝑘 -bounded if there is an 𝑀𝑘 constant 𝛾 such that

|𝜙(𝑃, 𝑣) | ≤ 𝛾(𝑣)

for all (𝑃, 𝑣) ∈ 𝑌 . We will write 𝑂𝑣 (1) for an 𝑀𝑘 -bounded function. We say a subset 𝑌 of

𝑉 (𝑘) ×𝑀𝑘 is affine 𝑀𝑘 -bounded if there is an affine open subset 𝑉0 of 𝑉 with affine coordinates
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𝑥1, . . . , 𝑥𝑛 such that 𝑌 ⊂ 𝑉0 × 𝑀𝑘 and such that the function

𝑉0(𝑘) × 𝑀𝑘 → R, 𝑃 ↦→ max
1≤𝑖≤𝑛

|𝑥𝑖 (𝑃) |𝑣,

is 𝑀𝑘 -bounded on𝑌 . We say the set𝑌 is 𝑀𝑘 -bounded if it is a finite union of affine 𝑀𝑘 -bounded

sets. We are ready to state the local height machine. For 𝑣 ∈ 𝑀𝑘 , let 𝑣(𝑥) = − log |𝑥 |𝑣.

Theorem 2.4.1. Let 𝑉/𝑘 be a smooth projective variety. For each 𝐷 ∈ Div(𝑉) it is possible to

assign a function

𝜆𝐷 :
∐
𝑣∈𝑀𝑘

𝑉𝐷 (𝑘𝑣) → R,

called the local height function with respect to 𝐷, such that the following properties hold:

1. (Normalization) Let 𝑓 ∈ 𝑘 (𝑉)∗ be a rational function on 𝑉 , and let 𝐷 = div( 𝑓 ) be the

divisor of 𝑓 . Then the difference

𝜆𝐷,𝑣 (𝑃) − 𝑣( 𝑓 (𝑃))

is an 𝑀𝑘 bounded function on every 𝑀𝑘 bounded subset of 𝑉𝐷 (𝑘) × 𝑀𝑘 .

2. (Additivity) For all 𝐷1, 𝐷2 ∈ Div(𝑉),

𝜆𝐷1+𝐷2,𝑣 = 𝜆𝐷1,𝑣 + 𝜆𝐷2,𝑣 +𝑂𝑣 (1).

3. (Functoriality) Let 𝜙 : 𝑉 → 𝑊 be a morphism of smooth varieties. Then

𝜆𝜙∗𝐷,𝑣 = 𝜆𝐷,𝑣 ◦ 𝜙 +𝑂𝑣 (1).

4. (Positivity) Let 𝐷 ≥ 0 be an effective divisor. Then

𝜆𝐷,𝑣 ≥ 𝑂𝑣 (1).

5. (Local/Global Property) Let 𝐷 ∈ Div(𝑉), and let ℎ𝐷 be a Weil height attached to 𝐷. Then

ℎ𝐷 (𝑃) =
∑︁
𝑣∈𝑀𝑘

𝜆𝐷,𝑣 (𝑃) +𝑂 (1)

for all 𝑃 ∈ 𝑉𝐷 (𝑘).
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In particular, if𝐷 is a hypersurface inP𝑛 given by a homogeneous polynomial𝐹 (𝑥0, . . . , 𝑥𝑛) =

0 of degree 𝑑, we have a choice of local height function

𝜆𝐷,𝑣 (𝑃) = log max
𝑖=0,...,𝑛

|𝛼𝑖 |𝑑𝑣
|𝐹 (𝑃) |𝑣

= log
|𝑃 |𝑑𝑣

|𝐹 (𝑃) |𝑣

where 𝑃 is written in coordinates (𝛼0 : · · · : 𝛼𝑛) ∈ P𝑛 (𝑘) \ Supp(𝐷) and |𝑃 |𝑣 = max𝑖 |𝛼𝑖 |𝑣.

For any 𝑥 ∈ 𝑘 and 𝑣 ∈ 𝑀𝑘 , we define the local height of 𝑥 with respect to 𝑣 to be 𝜆𝑣 (𝑥) =

log max{1, |𝑥 |𝑣}.

For a point 𝑃 = (𝛼1, · · · , 𝛼𝑛) ∈ G𝑛𝑚 (𝑘) and a place 𝑣 ∈ 𝑀𝑘 , we define its height and local

height as ℎ(𝑃) =
∑︁
𝑣∈𝑀𝑘

log max{1, |𝛼1 |𝑣, . . . , |𝛼𝑛 |𝑣} and 𝜆𝑣 (𝑃) = log max{1, |𝛼1 |𝑣, . . . , |𝛼𝑛 |𝑣},

respectively.

For a finite set of places 𝑆, we define the proximity function associated to 𝐷 to be the

𝑚(𝐷, 𝑆, 𝑃) =
∑︁
𝑣∈𝑆

𝜆𝐷,𝑣 (𝑃).

2.5 Generalized greatest common divisors

One can extend the notion of log gcd(𝑎, 𝑏) to all algebraic numbers. Note that for 𝑎 and 𝑏

integers, we calculate their greatest common divisor as:

log gcd(𝑎, 𝑏) =
∑︁

𝑝 prime
min{ord𝑝 (𝑎), ord𝑝 (𝑏)} log 𝑝

= −
∑︁

𝑣∈𝑀Q,fin

log max{|𝑎 |𝑣, |𝑏 |𝑣}

= −
∑︁

𝑣∈𝑀Q,fin

log− max{|𝑎 |𝑣, |𝑏 |𝑣}

where 𝑀Q,fin is the set of nonarchimedean places of Q and log− 𝑧 = min{0, log 𝑧}. Similarly we

define log+ 𝑧 = max{0, log 𝑧}. With this observation, by adding contributions of archimedean

places, the generalized greatest common divisor is defined as:
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Definition 2.5.1. Let 𝑎, 𝑏 ∈ Q̄ be two algebraic numbers, not both zero. We define the

generalized logarithmic greatest common divisors of 𝑎 and 𝑏 by

log gcd(𝑎, 𝑏) = −
∑︁
𝑣∈𝑀𝑘

log− max{|𝑎 |𝑣, |𝑏 |𝑣}

where 𝑘 is any number field containing both 𝑎 and 𝑏.

We will work with this generalized definition in the following chapters.
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CHAPTER 3

DIOPHANTINE APPROXIMATION

3.1 Roth’s theorem

The fundamental problem in Diophantine approximation is how closely an irrational number

can be approximated by a rational number. Precisely, let 𝑎 ∈ R be a given real number, and let

𝑒 > 0 be a given exponent. We ask whether or not the inequality���� 𝑝𝑞 − 𝑎
���� ≤ 1

𝑞𝑒

can have infinitely many solutions in rational numbers 𝑝/𝑞 ∈ Q.

Dirichlet, in 1842, showed that we can find rational numbers that are fairly close to a given

real number.

Proposition 3.1.1 (Dirichlet). Let 𝑎 ∈ R with 𝑎 ∉ Q. Then there are infinitely many rational

numbers 𝑝/𝑞 ∈ Q satisfying ���� 𝑝𝑞 − 𝑎
���� ≤ 1

𝑞2 .

Next result, due to Liouville in 1844, gives an estimate in the other direction.

Proposition 3.1.2 (Liouville). Let 𝑎 ∈ Q̄ be an algebraic number of degree 𝑑 = [Q(𝑎) : Q] ≥ 2.

Fix a constant 𝜖 > 0. Then there are only finitely many rational numbers 𝑝/𝑞 ∈ Q satisfying���� 𝑝𝑞 ���� ≤ 1
𝑞𝑑+𝜖

.

Later, Thue (1909) improved 𝑑 to 𝑑/2 + 1, Siegel (1921) improved to 2
√
𝑑, Gelfand, Dyson

(1947) improved to
√

2𝑑, and finally Roth (1955) improved to 2. In fact, the exponent 2 + 𝜖 is

essentially best possible since we already have Dirichlet’s result.
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Theorem 3.1.3 (Roth). For every algebraic number 𝑎 and every 𝜖 > 0, the inequality���� 𝑝𝑞 − 𝑎
���� ≤ 1

𝑞2+𝜖

has only finitely many rational solutions 𝑝/𝑞 ∈ Q.

A general formulation of Roth’s theorem is the following.

Theorem 3.1.4. Let 𝑘 be a number field, let 𝑆 ⊂ 𝑀𝑘 be a finite set of places on 𝑘 , and assume

that each place extends in some way to 𝑘̄ . Let 𝑎 ∈ 𝑘̄ and 𝜖 > 0 be given. Then there are only

finitely many 𝑏 ∈ 𝑘 satisfying the inequality∏
𝑣∈𝑆

min{|𝑏 − 𝑎 |𝑣, 1} ≤
1

𝐻𝑘 (𝑏)2+𝜖 .

As an application, we have Siegel’s famous theorem on integral points on curves [16]. Let

𝐶 be a geometrically irreducible affine curve over a number field 𝑘 and let 𝑆 be a finite set of

places containing archimedean places. We assume that 𝐶 is given as a closed subvariety of A𝑛
𝑘
.

Let 𝜋 : 𝐶̃aff → 𝐶 be the normalization of 𝐶 and we extend the affine curve 𝐶̃aff to a smooth

projective curve 𝐶̃, which is unique up to isomorphism. The points in 𝐶̃ \ 𝐶̃aff are called the

points of 𝐶 at ∞.

Then Siegel’s theorem on integral points on curves states:

Theorem 3.1.5 (Siegel). If 𝐶̃ has genus 𝑔 > 0 or 𝐶 has at least three distinct points at ∞, then

𝐶 has only finitely many 𝑆-integral points.

3.2 Wirsing’s theorem

Instead of taking the approximating elements from a fixed number field, another direction to

generalize Roth’s theorem is to consider approximation by algebraic numbers of bounded degree.

Toward this end, Wirsing [25] proved a generalization of Roth’s theorem, which we state in a

general form.
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Theorem 3.2.1 (Wirsing). Let 𝑆 be a finite set of places of a number field 𝑘 . Let 𝑃1, . . . , 𝑃𝑞 ∈

P1(𝑘) be distinct points and let 𝐷 =
∑𝑞

𝑖=1 𝑃𝑖. Let 𝜖 > 0 and let 𝑑 be a positive integer. Then for

all but finitely many points 𝑃 ∈ P1( 𝑘̄) \ Supp𝐷 satisfying [𝑘 (𝑃) : 𝑘] ≤ 𝑑, we have

𝑚(𝐷, 𝑆, 𝑃) < (2𝑑 + 𝜖)ℎ(𝑃).

Remark 3.2.2. When 𝑑 = 1, Wirsing’s theorem recovers Roth’s theorem. It itself is also a

special case of Vojta’s inequality of arithmetic discriminant (Theorem 4.2.4), with 𝑔 = 0 and 𝜈

arbitrary.

3.3 Schmidt’s subspace theorem

A powerful tool in Diophantine Approximation is the famous Schmidt’s Subspace Theorem,

which will be the primary tool used in the proofs of this thesis.

Theorem 3.3.1 (Schmidt’s Subspace Theorem). Let 𝑘 be a number field and 𝑆 ⊂ 𝑀𝑘 a finite

set of places, 𝑛 ∈ N and 𝜖 > 0. For every 𝑣 ∈ 𝑆, let {𝐿𝑣0, . . . , 𝐿
𝑣
𝑛} be a linearly independent set

of linear forms in the variables 𝑥0, . . . , 𝑥𝑛 with coefficients in 𝑘 . Then there are finitely many

hyperplanes 𝑇1, . . . , 𝑇ℎ of P𝑛
𝑘

such that the set of solutions x = (𝑥0 : . . . : 𝑥𝑛) ∈ P𝑛𝑘 (𝑘) of∑︁
𝑣∈𝑆

log
𝑛∏
𝑖=0

|x|𝑣
|𝐿𝑣
𝑖
(x) |𝑣

≥ (𝑛 + 1 + 𝜖)ℎ(x) +𝑂 (1)

is contained in 𝑇1 ∪ · · · ∪ 𝑇ℎ. If we take 𝐷𝑣 to be the sum of divisors defined by 𝐿𝑣
𝑖
, 𝑖 = 0, . . . , 𝑛

and let 𝐾P𝑛 be the canonical divisor of P𝑛, then this inequality can be written as∑︁
𝑣∈𝑆

𝜆𝐷𝑣 ,𝑣 (x) + ℎ𝐾P𝑛 (x) ≥ 𝜖ℎ(x) +𝑂 (1).

If 𝐻𝑣
𝑖

is the hyperplane defined by 𝐿𝑣
𝑖
, then the left-hand side of the inequality may be written

as
∑︁
𝑣∈𝑀𝑘

𝑛∑︁
𝑖=0

𝜆𝐻𝑣
𝑖
,𝑣 (𝑥) up to 𝑂 (1).

Remark 3.3.2. A direct application of the Subspace Theorem is the unit equation. We will give

a more general version of it later in 6.2.2.
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CHAPTER 4

ARITHMETIC DISCRIMINANT

4.1 Arithmetic varieties

In this section, we will deal with arithmetic objects and we will follow Vojta’s [22] notations

under the general settings of Arakelov geometry.

Definition 4.1.1. An arithmetic variety X consists of the following:

1. The finite part is a reduced scheme Xfin which is projective and flat over SpecZ and whose

generic fibre is smooth. Write X∞ = Xfin ×SpecZ SpecC.

2. The arithmetic part of X consists of a smooth function

ΛX = Λ : X∞ × X∞ → R≥0,

such that Λ(𝑃1, 𝑃2) = 0 if and only if 𝑃1 = 𝑃2,

Λ(𝑃1, 𝑃2) = Λ(𝑃2, 𝑃1),

and

Λ(𝑃1, 𝑃2) ≫≪ |𝑧1(𝑃1) − 𝑧1(𝑃2) |2 + · · · + |𝑧𝑛 (𝑃1) − 𝑧𝑛 (𝑃2) |2

in a neighborhood of the diagonal, where 𝑧1, . . . , 𝑧𝑛 are local coordinates on some open

subset of X∞. Thus Λ will be called a distance function. We also require that the form

𝜔 := 𝑑1𝑑
𝑐
1Λ(𝑃, 𝑃)

be a K¥ahler form on X∞ (where 𝑑1 and 𝑑𝑐1 apply only to the first coordinate). Moreover,

let

𝜆(𝑃,𝑄) = − logΛ(𝑃,𝑄), 𝑃 ≠ 𝑄.
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A morphism 𝑓 of arithmetic varieties is a morphism 𝑓fin of their finite parts. Arithmetic

curves and arithmetic surfaces are arithmetic varieties of relative dimension zero and one,

respectively.

For a number field 𝑘 , let 𝑅 be its ring of integers, and let 𝐵 be the arithmetic scheme

with 𝐵fin = Spec𝑅 and Λ𝐵 (𝜎, 𝜏) = 0 if 𝜎 = 𝜏 and 1 otherwise, with 𝜎, 𝜏 ∈ 𝐵∞. Note that

𝐵∞ = {𝜎 : 𝑘 ↩→ C}. We define the arithmetic curve corresponding to 𝑅 as the arithmetic

curve obtained by using this choice of Λ. An arithmetic variety X over 𝐵 is an arithmetic

variety X, together with a morphism 𝜋 : X → 𝐵. For 𝜎 : 𝑘 ↩→ C, let X𝜎 = Xfin ×𝜎 C, so

that X∞ =
∐
𝜎∈𝐵∞ X𝜎 . Also, we may refer to fibres of 𝜋 𝑓 𝑖𝑛 as (non-archimedean) fibres of 𝜋.

More generally, one should view an arithmetic scheme as a scheme with an additional fibre

over the archimedean absolute value of Q. Therefore we inherit the notions of local rings and

(non-archimedean and generic) fibres from Xfin.

We also have the arithmetic version of divisors and sheaves.

Definition 4.1.2. An arithmetic divisor 𝐷 on X is a divisor 𝐷fin on Xfin, together with a smooth

function 𝑔𝐷 : X∞ \ |𝐷∞ | → R, such that if for all open sets 𝑈 ⊂ X∞ on which 𝐷∞ := 𝐷fin |𝑈 is

locally represented by a function 𝑓 , the function

𝑔𝐷 (𝑃) + log | 𝑓 (𝑃) |2, 𝑃 ∉ Supp(𝐷∞)

extends to a continuous function of 𝑃 on all of𝑈.

Definition 4.1.3. An invertible sheaf L on X is an invertible sheaf Lfin on Xfin, provided with a

metric on L∞ := Lfin |X∞ compatible with the action of complex conjugation.

4.2 Arithmetic discriminants

Let 𝑃 ∈ 𝑋 ( 𝑘̄) be an algebraic point on a regular arithmetic surface 𝑋 . Let 𝐹 = 𝑘 (𝑃). Let 𝐵 be

the arithmetic curve corresponding to Spec(O𝐹), and let 𝑖 : 𝐵 → 𝐸𝑃 be the prime horizontal

divisor corresponding to 𝑃.
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Definition 4.2.1. The arithmetic discriminant 𝑑𝑎 (𝑃) of 𝑃 on 𝑋 is defined by the formula

𝑑𝑎 (𝑃) =
deg 𝑖∗Ω𝐸𝑃/𝐵
[𝐹 : Q] .

An alternative characterization of 𝑑𝑎 is the following.

Definition 4.2.2. Let 𝐾𝑋/𝐵 be a divisor corresponding to 𝜔𝑋/𝐵. Then we define

𝑑𝑎 (𝑃) :=
(𝐸𝑃 .𝐸𝑃 + 𝐾𝑋/𝐵)

[𝐹 : Q] .

Note that under this sense, we could write height functions as

ℎ𝐷 (𝑃) =
(𝐸𝑃 .𝐷)
[𝐹 : Q] .

The arithmetic discriminant was initially defined in [23] or [21] using the alternative def-

inition. It is clear that in the function field case, 𝑑𝑎 is a function of the arithmetic genus

𝑝𝑎 (𝐸𝑃):

𝑑𝑎 (𝑃) =
2𝑝𝑎 (𝐸𝑃) − 2

[𝐹 : 𝑘] − (2𝑔(𝐵) − 2).

Compared to the discriminant defined in [20],

𝑑 (𝑃) =
log |𝐷𝐹/Q |
[𝐹 : Q] =

degΩNor(𝐸𝑃)/𝐵
[𝐹 : Q] ,

where Nor(𝐸𝑃) is the normalization of 𝐸𝑃. In the function field case, we have

𝑑 (𝑃) = 2𝑔(Nor(𝐸𝑃)) − 2
[𝐹 : 𝑘] − (2𝑔(𝐵) − 2).

So the difference between 𝑑𝑎 (𝑃) and 𝑑 (𝑃) is related to the difference between the arithmetic

and geometric genera. There are some elementary properties of 𝑑𝑎.

Lemma 4.2.3. Let 𝑋, 𝐵, 𝐹 defined as before. The following hold:

1. If 𝑋′ is another model birational to 𝑋 , and if 𝑃′ denotes the point in 𝑋′( 𝑘̄) corresponding

to 𝑃 ∈ 𝑋 ( 𝑘̄), then

𝑑𝑎 (𝑃′) = 𝑑𝑎 (𝑃) +𝑂 ( [𝐹 : Q]).
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2. If 𝑋′ is the model obtained from 𝑋 by a base change and desingularizing, if 𝑃′ is similarly

defined, and if the base change is linearly disjoint from 𝐹, then

𝑑𝑎 (𝑃′) = 𝑑𝑎 (𝑃) +𝑂 ( [𝐹 : Q]).

3. If 𝑋 = P1, then

𝑑𝑎 (𝑃) = (2[𝐹 : 𝑘] − 2)ℎ(𝑃) +𝑂 (1).

4. If 𝑓 : 𝑋 → 𝑌 is a morphism of arithmetic surfaces over 𝐵, and if 𝑓 |𝐸𝑃
is generically

injective, then

𝑑𝑆 (𝑃) ≤ 𝑑𝑎 ( 𝑓 (𝑃)).

A celebrated result on the arithmetic discriminant by Vojta [24], which can be regarded as a

proven weak version of Vojta’s conjecture.

Theorem 4.2.4. Fix an integer 𝜈 ≥ 1, a real number 𝜖 > 0, an effective divisor 𝐷 on 𝑋 with

no multiple components, and a divisor 𝐴 on 𝑋 which is ample on the generic fibre. Then for all

points 𝑃 ∈ 𝐶 (𝑘) \ Supp(𝐷) with [𝑘 (𝑃) : 𝑘] ≤ 𝜈,

𝑚(𝐷, 𝑃) + ℎ𝐾 (𝑃) ≤ 𝑑𝑎 (𝑃) + 𝜖ℎ𝐴 (𝑃) +𝑂 (1),

where the constant in 𝑂 (1) depends on 𝑋, 𝐷, 𝜈, 𝐴 and 𝜖 .
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CHAPTER 5

TOOLS IN LINEAR RECURRENCE SEQUENCES

Here we give some basic definitions and results involving linear recurrence sequences.

Definition 5.0.1. A linear recurrence is a sequence 𝑎 = (𝑎(𝑖)) of complex numbers satisfying a

homogeneous linear recurrence relation

𝑎(𝑖 + 𝑛) = 𝑠1𝑎(𝑖 + 𝑛 − 1) + · · · + 𝑠𝑛−1𝑎(𝑖 + 1) + 𝑠𝑛𝑎(𝑖), 𝑖 ∈ N

with constant coefficients 𝑠 𝑗 ∈ C.

Definition 5.0.2. The polynomial

𝑓 (𝑋) = 𝑋𝑛 − 𝑠1𝑋
𝑛−1 − · · · − 𝑠𝑛−1𝑋 − 𝑠𝑛

associated to the relation in Definition 5.0.1 is called its characteristic polynomial and the roots

of this polynomial are said to be its roots.

Definition 5.0.3. A generalized power sum is a finite polynomial-exponential sum

𝑎(𝑖) =
𝑚∑︁
𝑗=1

𝐴 𝑗 (𝑖)𝛼𝑖𝑗 , 𝑖 ∈ N

with polynomial coefficients 𝐴 𝑗 (𝑧) ∈ C[𝑧]. The 𝛼 𝑗 are the roots of the sequence 𝑎(𝑖).

It is a well-known fact that every linear recurrence sequence 𝑎(𝑥) can be written in the

form of a generalized power sum and in fact these two forms are equivalent, see [7]. Through-

out this thesis, linear recurrence sequences are presented in the form of a generalized power sum.

The linear recurrence sequence 𝑎(𝑖) is called degenerate if it has a pair of distinct roots

whose ratio is a root of unity. Otherwise, it is called non-degenerate.
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Fix a number field 𝑘 . Let us define two linear recurrence sequences 𝐹 (𝑛) and 𝐺 (𝑛) by

generalized power sums

𝐹 (𝑛) =
𝑚∑︁
𝑖=1

𝐴𝑖 (𝑛)𝛼𝑛𝑖

𝐺 (𝑛) =
𝑙∑︁
𝑖=1

𝐵𝑖 (𝑛)𝛽𝑛𝑖

where 𝐴(𝑛), 𝐵(𝑛) are polynomials over 𝑘 and𝛼𝑖 and 𝛽𝑖 are roots in 𝑘∗. Let Γ be the multiplicative

group generated by all 𝛼𝑖 and 𝛽𝑖 with a set of generators {𝑢1, . . . , 𝑢𝑟}. Then we can write 𝐹 (𝑛)

and 𝐺 (𝑛) as

𝐹 (𝑛) = 𝑓 (𝑛, 𝑢𝑛1, . . . , 𝑢
𝑛
𝑟 )

𝐺 (𝑛) = 𝑔(𝑛, 𝑢𝑛1, . . . , 𝑢
𝑛
𝑟 )

where 𝑓 and 𝑔 are rational functions in 𝑥0, . . . , 𝑥𝑟 of the form:

𝑓 (𝑥0, . . . , 𝑥𝑟) =
𝑓 (𝑥0, . . . , 𝑥𝑟)
𝑥
𝑎1
1 · · · 𝑥𝑎𝑟𝑟

𝑔(𝑥0, . . . , 𝑥𝑟) =
𝑔̃(𝑥0, . . . , 𝑥𝑟)
𝑥
𝑏1
1 · · · 𝑥𝑏𝑟𝑟

with 𝑓 , 𝑔̃ polynomials, i.e., 𝑓 , 𝑔 ∈ 𝑘 [𝑥0, 𝑥
−1
0 , . . . , 𝑥𝑟 , 𝑥

−1
𝑟 ] are Laurent polynomials. In particular,

the ring of such Laurent polynomials is a localization of 𝑘 [𝑥0, . . . , 𝑥𝑟], so it is a UFD.

It is obvious that linear recurrence sequences are closed under term-wise sum and product

from the generalized power sum point of view, hence we can talk about the sum and product of

two recurrence sequences. Let HΓ (𝑘) be the ring of linear recurrence sequences whose coeffi-

cient polynomials are over 𝑘 and roots belonging to a torsion-free multiplicative group Γ ⊂ 𝑘∗.

We say 𝐹 (𝑛), 𝐺 (𝑛) ∈ HΓ (𝑘) are coprime if there does not exist a non-unit 𝐻 (𝑛) ∈ HΓ (𝑘) such

that 𝐹 (𝑛) = 𝐻 (𝑛)𝐹0(𝑛) and 𝐺 (𝑛) = 𝐻 (𝑛)𝐺0(𝑛) with 𝐹0(𝑛), 𝐺0(𝑛) ∈ HΓ (𝑘). Recall that for

𝐹 (𝑛), 𝐺 (𝑛) ∈ HΓ (𝑘) and a choice of generators of the torsion-free group Γ, there are associated

Laurent polynomials 𝑓 and 𝑔 respectively; if two such recurrence sequences are coprime then
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the two associated Laurent polynomials are also coprime.

We also need a well-known theorem on the structure of the zeros of a linear recurrence:

Theorem 5.0.4 (Skolem-Mahler-Lech). The set of indices of the zeros of a linear recurrence

sequence comprises a finite set together with a finite number of arithmetic progressions. If the

linear recurrence sequence is nondegenerate, then there are only finitely many zeros.
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CHAPTER 6

ALMOST 𝑆-UNITS AND ALMOST 𝑆-UNIT EQUATIONS

6.1 Compatible definitions

The definition of almost 𝑆, 𝛿-units was already given as in Definition 1.1.6. Here are some

remarks about this definition and its properties.

Remark 6.1.1. Silverman has defined “quasi-𝑆-integers" in [17]. For a number field 𝑘 , a finite

set of places 𝑆 and 𝜖 > 0, the set of quasi-𝑆-integers are defined as

𝑅𝑆 (𝜖) := {𝑥 ∈ 𝑘 :
∑︁
𝑣∈𝑆

max{|𝑥 |𝑣, 0} ≥ 𝜖ℎ(𝑥)}.

Silverman’s notion of quasi-𝑆-integers can be compared with our notion of almost (𝑆, 𝛿)-units

as follows: if 𝑥 ∈ 𝑘𝑆,1−𝜖 then 𝑥 ∈ 𝑅𝑆 (𝜖), and if 𝑥 ∈ 𝑅𝑆 (𝜖) then 𝑥 ∈ 𝑘𝑆,2−𝜖 .

Remark 6.1.2. We note that 𝑘𝑛
𝑆,𝛿

⊂ G𝑛𝑚 (𝑘)𝑆,𝑛𝛿 and when 𝛿 = 0 we recover 𝑛-tuples of 𝑆-units,

𝐺𝑛
𝑚 (𝑘)𝑆,0 = (O∗

𝑘,𝑆
)𝑛.

Remark 6.1.3. We use projective height to define almost 𝑆-units inG𝑛𝑚 (𝑘)𝑆,𝛿. In other references

standard height is frequently used, where for a point 𝑃 = (𝑥1, . . . , 𝑥𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿,

ℎ𝑠𝑡𝑎𝑛𝑑 (𝑃) :=
𝑛∑︁
𝑖=1

ℎ(𝑥𝑛).

Local heights are defined similarly as

𝜆𝑠𝑡𝑎𝑛𝑑,𝑣 (𝑃) :=
𝑛∑︁
𝑖=1

𝜆𝑣 (𝑥𝑛).

One can verify that if 𝑃 ∈ G𝑛𝑚 (𝑘) is an (𝑆, 𝛿)-unit under the projective height, then it is an
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(𝑆, 𝑛𝛿)-unit under the standard height. Indeed, in this case we have∑︁
𝑣∉𝑆

𝜆𝑠𝑡𝑎𝑛𝑑,𝑣 (𝑃) + 𝜆𝑠𝑡𝑎𝑛𝑑,𝑣 (1/𝑃) =
∑︁
𝑣∉𝑆

(
𝑛∑︁
𝑖=1

𝜆𝑣 (𝑥𝑖) + 𝜆𝑣 (1/𝑥𝑖))

≤ 𝑛
∑︁
𝑣∉𝑆

𝜆𝑣 (𝑃) + 𝜆𝑣 (1/𝑃)

≤ 𝑛𝛿ℎ(𝑃) ≤ 𝑛𝛿ℎ𝑠𝑡𝑎𝑛𝑑 (𝑃).

6.2 Almost 𝑆-unit equation theorem

Before the main proof, we need a generalized version of the unit equation.

Lemma 6.2.1. Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘 containing all

archimedean places. Let 0 < 𝛿 < 1/((𝑛 + 1) (𝑛 + 2)). Let 𝜒 be the set of solutions of

𝑥0 + · · · + 𝑥𝑛 = 1, (𝑥0, . . . , 𝑥𝑛) ∈ 𝑘𝑛+1
𝑆,𝛿 ,

such that no proper subsum of 𝑥0 + · · · + 𝑥𝑛 vanishes. Then 𝜒 is a finite set.

Proof. Let (𝑎0, . . . , 𝑎𝑛) be a solution in 𝑘𝑛+1
𝑆,𝛿

and 𝑃 = (𝑎0 : . . . : 𝑎𝑛) ∈ P𝑛. Let 𝐻𝑖, 𝑖 = 0, . . . , 𝑛

be hyperplanes defined by 𝑥𝑖 = 0, 𝐻𝑛+1 be the hyperplane defined by 𝑥0 + · · · + 𝑥𝑛 = 0. Let

𝑃′ = (𝑎0, . . . , 𝑎𝑛). Note that every coordinate of 𝑃′ is in 𝑘𝑆,𝛿, and by easy calculations and

Remark 6.1.2, we know 𝑃′ ∈ G𝑛+1
𝑚 (𝑘)𝑆,(𝑛+1)𝛿. By triangle inequalities, for any 𝑣 ∈ 𝑀𝑘,∞,

|1|𝑣 = |𝑎0 + · · · + 𝑎𝑛 |𝑣 ≤ (𝑛 + 1) max
𝑖

|𝑎𝑖 |𝑣,

and for 𝑣 ∉ 𝑀𝑘,∞

|1|𝑣 = |𝑎0 + · · · + 𝑎𝑛 |𝑣 ≤ max
𝑖

|𝑎𝑖 |𝑣 .

It follows that for all 𝑣 ∈ 𝑀𝑘

ℎ(𝑃′) = ℎ(𝑃) +𝑂 (1) and 𝜆𝑣 (𝑃′) = 𝜆𝑣 (𝑃) +𝑂 (1).
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Hence we get
𝑛+1∑︁
𝑖=0

∑︁
𝑣∈𝑆

𝜆𝐻𝑖 ,𝑣 (𝑃) ≥ (𝑛 + 2 − (𝑛 + 1) (𝑛 + 2)𝛿)ℎ(𝑃) +𝑂 (1).

Applying the Subspace theorem, we have

(𝑛 + 2 − (𝑛 + 1) (𝑛 + 2)𝛿)ℎ(𝑃) ≤ (𝑛 + 1 + 𝜖)ℎ(𝑃) +𝑂 (1)

unless 𝑃 lies in some certain proper linear subspaces of P𝑛. For a fixed 𝛿 < 1/((𝑛 + 1) (𝑛 + 2)),

taking 𝜖 sufficiently small, the above implies such 𝑃 is contained in a finite union of hyperplanes

in P𝑛. If 𝑛 = 1, we are done. Otherwise, we proceed by induction as in the proof of the standard

unit equation [2, Theorem 7.4.2]. □

Corollary 6.2.2. Let 0 < 𝛿 < 1/((𝑛 + 1) (𝑛 + 2)). Let 𝜒 be the set of solutions of

𝑥0 + · · · + 𝑥𝑛 = 1

such that (𝑥0, . . . , 𝑥𝑛) ∈ 𝑘𝑛+1
𝑆,𝛿

. Then there is a finite set F ⊂ 𝑘∗ such that every x ∈ 𝜒 has at

least one coordinate in F .

Proof. The proof follows from Lemma 6.2.1 and induction.

□

Lemma 6.2.1 and Corollary 6.2.2 together give the generalized unit equation for 𝑘𝑛
𝑆,𝛿

, which

allows us to obtain finiteness of solutions in several of the following theorems.
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CHAPTER 7

PROOFS OF DIOPHANTINE APPROXIMATION THEOREMS

In this section, our main goal is to give the proof of Theorem 1.1.7.

In the following we will use the notation u and i for 𝑛-tuples (𝑢1, . . . , 𝑢𝑛) and (𝑖1, . . . , 𝑖𝑛),

respectively, with |i| = 𝑖1 + · · · + 𝑖𝑛 and denote by ui the multi-variable monomial 𝑢𝑖11 · · · 𝑢𝑖𝑛𝑛 . Let

𝑚 be a positive integer. For a subset 𝑇 ⊂ 𝑘 [𝑥1, . . . , 𝑥𝑛], we let

𝑇𝑚 = {𝑝 ∈ 𝑇 | deg 𝑝 ≤ 𝑚},

and

𝑇[𝑚] = {𝑝 ∈ 𝑇 |𝑝 is homogeneous of degree 𝑚}.

For 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛], we let

( 𝑓 , 𝑔)(𝑚) = { 𝑓 𝑝 + 𝑔𝑞 | deg 𝑓 𝑝, deg 𝑔𝑞 ≤ 𝑚},

where deg denotes the (total) degrees of the polynomials.

Before the proof, we need a combinatorial lemma.

Lemma 7.0.1. Let 𝑚 be a positive integer. Let 𝐼 = {i = (𝑖0, . . . , 𝑖𝑛)} be the set of (𝑛 + 1)-tuples

in N𝑛+1 with 𝑖0 + · · · + 𝑖𝑛 = 𝑚. Then∑︁
i∈𝐼

i =
𝑚
(𝑛+𝑚
𝑛

)
𝑛 + 1

(1, . . . , 1)

where addition and scalar multiplication are coordinate-wise.

We also need Lemma 2.1 from [Corvaja et al.].
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Lemma 7.0.2. Let 𝐹1, 𝐹2 ∈ 𝑘 [𝑥0, . . . , 𝑥𝑛] be coprime homogeneous polynomials of degrees 𝑑1

and 𝑑2, respectively. Let 𝐵 ⊂ 𝑘 [𝑥0, . . . , 𝑥𝑛] [𝑚] be a set of monomials of degree 𝑚 whose images

are linearly independent in 𝑘 [𝑥0, . . . , 𝑥𝑛] [𝑚]/(𝐹1, 𝐹2)[𝑚] . Then∑︁
xj∈𝐵

ord𝑥𝑖x
j ≤

(
𝑚 + 𝑛
𝑛 + 1

)
−
(
𝑚 + 𝑛 − 𝑑1
𝑛 + 1

)
−
(
𝑚 + 𝑛 − 𝑑2
𝑛 + 1

)
+
(
𝑚 + 𝑛 − 𝑑1 − 𝑑2

𝑛 + 1

)
≤ 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

)
for 𝑖 = 0, . . . , 𝑛.

Proof. Let 𝑆 = 𝑘 [𝑥0, . . . , 𝑥𝑛]. For an 𝑙 ∈ N and a graded module 𝑀 over 𝑆, let 𝑑𝑀 (𝑙) =

dim𝑘 𝑀[𝑙] . Let 𝐼 be an ideal generated by a homogeneous polynomial of degree 𝑖. By the

well-known theory of Hilbert polynomials, 𝑑𝑆/𝐼 (𝑙) = 𝑑𝑆 (𝑙) − 𝑑𝑆 (𝑙 − 𝑖). In this case,

dim(𝑆[𝑙]/(𝐹1, 𝐹2)[𝑙]) = 𝑑𝑆/(𝐹1) (𝑙) − 𝑑𝑆/(𝐹1) (𝑙 − 𝑑2)

= 𝑑𝑆 (𝑙) − 𝑑𝑆 (𝑙 − 𝑑1) − (𝑑𝑆 (𝑙 − 𝑑2) − 𝑑𝑆 (𝑙 − 𝑑1 − 𝑑2))

=

(
𝑙 + 𝑛
𝑛

)
−
(
𝑙 + 𝑛 − 𝑑1

𝑛

)
−
(
𝑙 + 𝑛 − 𝑑2

𝑛

)
+
(
𝑙 + 𝑛 − 𝑑1 − 𝑑2

𝑛

)
.

Let 𝑖 ∈ {0, . . . , 𝑛}, let 𝑆′[𝑙] be the image of 𝑥𝑙
𝑖
𝑘 [𝑥0, . . . , 𝑥𝑛] [𝑚−𝑙] in 𝑆[𝑚]/(𝐹1, 𝐹2)[𝑚] . Notice that

∑︁
xj∈𝐵

ord𝑥𝑖x
j ≤

𝑚∑︁
𝑗=1

𝑗 (dim 𝑆′[ 𝑗] − dim 𝑆′[ 𝑗+1]) =
𝑚∑︁
𝑗=1

dim 𝑆′[ 𝑗] ,

and that dim 𝑆′[𝑙] ≤ dim 𝑆[𝑚−𝑙]/(𝐹1, 𝐹2)[𝑚−𝑙] , hence we have

∑︁
xj∈𝐵

ord𝑥𝑖x
j ≤

𝑚−1∑︁
𝑗=0

dim 𝑆[ 𝑗]/(𝐹1, 𝐹2)[ 𝑗] .

Using Pascal’s identity for binomial coefficients,∑︁
xj∈𝐵

ord𝑥𝑖x
j ≤

(
𝑚 + 𝑛
𝑛 + 1

)
−
(
𝑚 + 𝑛 − 𝑑1
𝑛 + 1

)
−
(
𝑚 + 𝑛 − 𝑑2
𝑛 + 1

)
+
(
𝑚 + 𝑛 − 𝑑1 − 𝑑2

𝑛 + 1

)
≤ 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

)
.

□
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Theorem 7.0.3. Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘 containing the

archimedean places. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be coprime polynomials. For all 0 < 𝛿 < 1, there

exists a proper Zariski closed subset 𝑍 of G𝑛𝑚 such that

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣, |𝑔(𝑢1, . . . , 𝑢𝑛) |𝑣} < 𝐶𝛿1/2

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖)

for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 , where 𝐶 = 2(𝑛2 deg 𝑓 + 𝑛 deg 𝑔) is a constant.

Proof. This proof is modeled on the proof of Theorem 3.2 of [14].

Consider the ideal ( 𝑓 , 𝑔) ⊂ 𝑘 [𝑥1, . . . , 𝑥𝑛]. We first assume that ( 𝑓 , 𝑔)(𝑚) ≠ 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚.

It follows that the 𝑘-vector space 𝑉𝑚 = 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚/( 𝑓 , 𝑔)(𝑚) is not trivial. Let u =

(𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿. For 𝑣 ∈ 𝑆, we construct a basis 𝐵𝑣 for 𝑉𝑚 as follows. Choose a mono-

mial xi1 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚 so that |ui1 |𝑣 is minimal subject to the condition xi1 ∉ ( 𝑓 , 𝑔)(𝑚) . Sup-

pose now that xi1 , . . . , xi 𝑗 have been constructed and are linearly independent modulo ( 𝑓 , 𝑔)(𝑚) ,

but don’t span 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚 modulo ( 𝑓 , 𝑔)(𝑚) . Then we let xi 𝑗+1 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚 be a

monomial such that |ui 𝑗+1 |𝑣 is minimal subject to the condition that xi1 , . . . , xi 𝑗+1 are linearly

independent modulo ( 𝑓 , 𝑔)(𝑚) . In this way, we construct a basis of 𝑉𝑚 with monomial represen-

tatives xi1 , . . . , xi𝑁 ′ , where 𝑁′ = 𝑁′
𝑚 = dim𝑉𝑚. Let 𝐼𝑣 = {i1, . . . , i𝑁 ′}. We also choose a basis

𝜙1, . . . , 𝜙𝑁 of the vector space ( 𝑓 , 𝑔)(𝑚) , where 𝑁 = 𝑁𝑚 = dim( 𝑓 , 𝑔)(𝑚) . Now for i, |i| ≤ 𝑚, we

have that

xi +
𝑁 ′∑︁
𝑗=1
𝑐i, 𝑗xi 𝑗 ∈ ( 𝑓 , 𝑔)(𝑚)

for some choice of coefficients 𝑐i, 𝑗 ∈ 𝑘 . Then for each such i there is a linear form 𝐿𝑣i over 𝑘

such that

𝐿𝑣i (𝜙1, . . . , 𝜙𝑁 ) = xi +
𝑁 ′∑︁
𝑗=1
𝑐i, 𝑗xi 𝑗 .
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Note that {𝐿𝑣i (𝜙1, . . . , 𝜙𝑁 ) : |i| ≤ 𝑚, i ∉ 𝐼𝑣} is a basis for ( 𝑓 , 𝑔)(𝑚) , and {𝐿𝑣i : |i| ≤ 𝑚, i ∉ 𝐼𝑣} is

a set of 𝑁 linearly independent forms in 𝑁 variables. Let

𝑃 = 𝜙(u) := (𝜙1(u), . . . , 𝜙𝑁 (u)) ∈ 𝑘𝑁 .

We may additionally assume that 𝜙(u) ≠ 0 (by enlarging the set 𝑍). From the triangle inequality

and the definition of xi1 , . . . , xi𝑁 ′ , for any i with |i| ≤ 𝑚, i ∉ 𝐼𝑣, we have the key inequality

log |𝐿𝑣i (𝑃) |𝑣 ≤ log |ui |𝑣 + 𝐶𝑣

where the constant 𝐶𝑣 depends only on 𝑣 ∈ 𝑆 and the set {i1, . . . , i𝑁 ′} (and not on u).

We will apply the Subspace Theorem with the choice of linear forms 𝐿𝑣i , |i| ≤ 𝑚, i ∉ 𝐼𝑣, for

each 𝑣 ∈ 𝑆. We want to estimate the sum∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉𝐼𝑣

log
|𝑃 |𝑣

|𝐿𝑣i (𝑃) |𝑣
.

Towards this end, we estimate the sums

−
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉𝐼𝑣

log |𝐿𝑣i (𝑃) |𝑣 and
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉𝐼𝑣

log |𝑃 |𝑣

separately.

We have

−
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |𝐿𝑣i (𝑃) |𝑣 ≥ −
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |ui |𝑣 − 𝐶𝑁

where 𝐶 =
∑︁
𝑣∈𝑆

𝐶𝑣. By the product formula,

∑︁
𝑣∈𝑆

log |ui |𝑣 +
∑︁

𝑣∈𝑀𝑘\𝑆
log |ui |𝑣 =

∑︁
𝑣∈𝑀𝑘

log |ui |𝑣 = 0.

It follows that,

−
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |ui |𝑣 = −
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚

log |ui |𝑣 +
∑︁
𝑣∈𝑆

∑︁
i∈I𝑣

log |ui |𝑣

=
∑︁
𝑣∈𝑆

∑︁
i∈I𝑣

log |ui |𝑣 +
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
|i|≤𝑚

log |ui |𝑣 .
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Let 𝑑1 = deg 𝑓 and 𝑑2 = deg 𝑔. By Lemma 7.0.2, we have

−
∑︁
𝑣∈𝑆

∑︁
i∈I𝑣

log |ui |𝑣 ≤ 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖),

we find that,

−
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |𝐿𝑣i (𝑃) |𝑣 ≥ − 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖) − 𝐶𝑁

+
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
|i|≤𝑚

log |ui |𝑣 .

By Lemma 7.0.1, ∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
|i|≤𝑚

log |ui |𝑣 =
∑︁
|i|≤𝑚

∑︁
𝑣∈𝑀𝑘\𝑆

log |ui |𝑣

=
𝑚
(𝑛+𝑚
𝑛

)
𝑛 + 1

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

log |𝑢𝑖 |𝑣

≥ −
𝑚
(𝑛+𝑚
𝑛

)
𝑛 + 1

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣

(
1
𝑢𝑖

)
.

So we estimate,

−
∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |𝐿𝑣i (𝑃) |𝑣 ≥ −𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖) −
𝑚
(𝑛+𝑚
𝑛

)
𝑛 + 1

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣

(
1
𝑢𝑖

)
− 𝐶𝑁.

On the other hand,∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |𝑃 |𝑣 = 𝑁
∑︁
𝑣∈𝑆

log |𝑃 |𝑣 = 𝑁 (ℎ(𝑃) −
∑︁

𝑣∈𝑀𝑘\𝑆
log |𝑃 |𝑣).

Now since 𝜙𝑖 = 𝑓 𝑝𝑖 + 𝑔𝑞𝑖, deg 𝑓 𝑝𝑖, deg 𝑔𝑞𝑖 ≤ 𝑚, we have for 𝑣 ∈ 𝑀𝑘 \ 𝑆,

log |𝜙𝑖 (u) |𝑣 = log | 𝑓 𝑝𝑖 (u) + 𝑔𝑞𝑖 (u) |𝑣

≤ log max{| 𝑓 𝑝𝑖 (u) |𝑣, |𝑔𝑞𝑖 (u) |𝑣} +𝑂𝑣 (1)

≤ log− max{| 𝑓 𝑝𝑖 (u) |𝑣, |𝑔𝑞𝑖 (u) |𝑣} + 𝑚𝜆𝑣 (u) +𝑂𝑣 (1)

≤ log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} + 𝑚𝜆𝑣 (u) +𝑂𝑣 (1),
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where 𝑂𝑣 (1) = 0 for all but finitely many 𝑣.

Then for 𝑣 ∈ 𝑀𝑘 \ 𝑆,

log |𝑃 |𝑣 ≤ log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} + 𝑚𝜆𝑣 (u) + 𝐶𝑣 .

Now we sum over 𝑣 ∈ 𝑀𝑘 \ 𝑆 to get:

∑︁
𝑣∈𝑀𝑘\𝑆

log |𝑃 |𝑣 ≤
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} + 𝑚

∑︁
𝑣∈𝑀𝑘\𝑆

𝜆𝑣 (u) +𝑂 (1).

Then we find the estimate:∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log |𝑃 |𝑣 ≥𝑁 (ℎ(𝑃) −
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣}

− 𝑚
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣 (𝑢𝑖)) +𝑂 (1).

One also has the easy estimate

ℎ(𝑃) ≤ 𝑚ℎ(u) +𝑂 (1).

Schmidt’s Subspace Theorem implies that there exists a finite union 𝑍 of proper subspaces

of 𝑘𝑁 such that ∑︁
𝑣∈𝑆

∑︁
|i|≤𝑚,i∉I𝑣

log
|𝑄 |𝑣

|𝐿𝑣i (𝑄) |𝑣
≤ (𝑁 + 1)ℎ(𝑄)

for all 𝑄 ∈ 𝑘𝑁 \ 𝑍 .

Using the above estimates, if 𝑃 = 𝜙(u) ∉ 𝑍 , we find that up to an 𝑂 (1),

𝑁
©­«ℎ(𝑃) −

∑︁
𝑣∈𝑀𝑘\𝑆

log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} − 𝑚
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣 (𝑢𝑖)ª®¬
− 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 1

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖) −
𝑚
(𝑛+𝑚
𝑛

)
𝑛 + 1

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣

(
1
𝑢𝑖

)
≤ (𝑁 + 1)ℎ(𝑃) + 𝐶𝑁.
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Applying the estimate for ℎ(𝑃), combining terms, and dividing by 𝑁 , we obtain up to an 𝑂 (1),

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} − 𝑚

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣 (𝑢𝑖) −
𝑚
(𝑛+𝑚
𝑛

)
𝑁 (𝑛 + 1)

∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣

(
1
𝑢𝑖

)
≤
𝑚 + 𝑑1𝑑2

(𝑚+𝑛−2
𝑛−1

)
𝑁

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖).

Since 𝑓 and 𝑔 are coprime, the ideal ( 𝑓 , 𝑔) defines a closed subset of A𝑛 of codimension

at least 2. Without loss of generality, assume 𝑑1 ≥ 𝑑2. By Lemma 7.0.2, we find that

𝑁′ =
(𝑚+𝑛
𝑛

)
−
(𝑚+𝑛−𝑑1

𝑛

)
− (

(𝑚+𝑛−𝑑2
𝑛

)
−
(𝑚+𝑛−𝑑1−𝑑2

𝑛

)
) ≤ 𝑑1𝑑2

(𝑚+𝑛−2
𝑛−2

)
and that 𝑁 =

(𝑚+𝑛
𝑛

)
− 𝑁′ ≥(𝑚+𝑛

𝑛

)
− 𝑑1𝑑2

(𝑚+𝑛−2
𝑛−2

)
. We assume now 𝑚 ≥ 𝑑1𝑛. Then we have the estimate((

𝑚 + 𝑛
𝑛

)
− 𝑑1𝑑2

(
𝑚 + 𝑛 − 2
𝑛 − 2

)) / (
𝑚 + 𝑛
𝑛

)
= 1 − 𝑑1𝑑2𝑛(𝑛 − 1)

(𝑚 + 𝑛) (𝑚 + 𝑛 − 1)

≥ 1 − 𝑑1𝑑2𝑛(𝑛 − 1)
𝑑2

1𝑛
2

≥ 1 − 𝑛 − 1
𝑛

=
1
𝑛
.

Therefore we have

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤

𝑚 + 𝑑1𝑑2
(𝑚+𝑛−2
𝑛−1

)
1/𝑛

(𝑚+𝑛
𝑛

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖)

+ 𝑚
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣 (𝑢𝑖)

+
𝑚
(𝑚+𝑛
𝑛

)
/(𝑛 + 1)

1/𝑛
(𝑚+𝑛
𝑛

) ∑︁
𝑣∈𝑀𝑘\𝑆

∑︁
1≤𝑖≤𝑛

𝜆𝑣

(
1
𝑢𝑖

)
.

One shall notice that
𝑚 + 𝑑1𝑑2

(𝑚+𝑛−2
𝑛−1

)
1/𝑛

(𝑚+𝑛
𝑛

) ≤ 2𝑑1𝑑2𝑛
2

𝑚 + 1
,

and that
𝑚
(𝑚+𝑛
𝑛

)
𝑛 + 1

1/𝑛
(𝑚+𝑛
𝑛

) ≤ 𝑚.

By Remark 6.1.3, hence the condition
∑︁

1≤𝑖≤𝑛
ℎ𝑆 (𝑢𝑖) ≤ 𝑛𝛿

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖) is satisfied, we get

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤

(
2𝑑1𝑑2𝑛

2

𝑚 + 1
+ 𝑚𝑛𝛿

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖).
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Now letting 𝑚 =

⌊
2𝑑1𝑛

𝛿1/2

⌋
, it follows that

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤ 2(𝑑1𝑛

2 + 𝑑2𝑛)𝛿1/2
∑︁

1≤𝑖≤𝑛
ℎ(𝑢𝑖).

We can see this choice of 𝑚 satisfies the conditions 𝑚 ≥ 𝑑1𝑛 and 𝑚 ≥ max{𝑑1, 𝑑2}. Now

letting 𝐶 (𝑛, 𝑑1, 𝑑2) = 2(𝑑1𝑛
2 + 𝑑2𝑛), we have

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤ 𝐶 (𝑛, 𝑑1, 𝑑2)𝛿1/2

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖)

as long as u does not lie in the proper closed subset coming from the exceptional set in the

application of the Subspace Theorem.

Finally, we note that the choice of linear forms in the application of Schmidt’s Subspace

Theorem depends not on u, but on the choice of the monomial bases 𝐵𝑣, 𝑣 ∈ 𝑆. Since for fixed𝑚

there are only finitely many monomials of degree at most𝑚, and hence only finitely many choices

for these bases, we see that for fixed𝑚 the given argument leads to only finitely many applications

of Schmidt’s Subspace Theorem (over all choices of u). Therefore there exists a proper Zariski

closed subset 𝑍 of G𝑛𝑚 such that the inequality is valid for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 .

Now consider the case when ( 𝑓 , 𝑔)(𝑚) = 𝑘 [𝑥1, . . . , 𝑥𝑛]𝑚. We can find polynomials 𝑓 , 𝑔̃ ∈

𝑘 [𝑥1, . . . , 𝑥𝑛] such that

𝑓 𝑓 + 𝑔𝑔̃ = 1

with deg 𝑓 , deg 𝑔̃ ≤ 𝑚. Hence for any 𝑣 ∈ 𝑀𝑘 and u ∈ G𝑛𝑚 (𝑠)𝑆,𝛿, we have

1 = | ( 𝑓 𝑓 + 𝑔𝑔̃) (u) |𝑣 ≤ max{| 𝑓 (u) |𝑣 | 𝑓 (u) |𝑣, |𝑔(u) |𝑣 |𝑔̃(u) |𝑣}

≤ max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} max{| 𝑓 (u) |𝑣, |𝑔̃(u) |𝑣}.

Then we have

max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≥ min{|1/ 𝑓 (u) |𝑣, |1/𝑔̃(u) |𝑣}.
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Applying − log− on both sides and summing over 𝑣 ∈ 𝑀𝑘 \ 𝑆, it follows that

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤ −

∑︁
𝑣∈𝑀𝑘\𝑆

log− min{|1/ 𝑓 (u) |𝑣, |1/𝑔̃(u) |𝑣}

= −
∑︁

𝑣∈𝑀𝑘\𝑆
min{log |1/ 𝑓 (u) |𝑣, log |1/𝑔̃(u) |𝑣, 0}

=
∑︁

𝑣∈𝑀𝑘\𝑆
max{log | 𝑓 (u) |𝑣, log |𝑔̃(u) |𝑣, 0}.

Now since deg 𝑓 , deg 𝑔̃ ≤ 𝑚, together with
∑︁

1≤𝑖≤𝑛
ℎ𝑆 (𝑢𝑖) ≤ 𝛿

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖) (by Remark 6.1.3), we

obtain

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (u) |𝑣, |𝑔(u) |𝑣} ≤ 𝑚𝑛𝛿

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖),

which is an even better estimate according to the proof of the first case. □

By letting 𝛿 =
𝜖2

4𝑛2(𝑛2 deg 𝑓 + 𝑛 deg 𝑔)2 , we obtain an immediate result:

Corollary 7.0.4. Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘 containing the

archimedean places. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be coprime polynomials. For all 𝜖 > 0, there

exist 𝛿 > 0 and a proper Zariski closed subset 𝑍 of G𝑛𝑚 such that

−
∑︁

𝑣∈𝑀𝑘\𝑆
log− max{| 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣, |𝑔(𝑢1, . . . , 𝑢𝑛) |𝑣} < 𝜖 max{ℎ(𝑢1), . . . , ℎ(𝑢𝑛)}

for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 .

The next theorem allows us to control the 𝑆-part of the greatest common divisor in Theorem

1.1.7.

Theorem 7.0.5. Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘 containing the

archimedean places. Let 𝑓 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be a polynomial of degree 𝑑 that doesn’t vanish at

the origin (0, . . . , 0). For all 0 < 𝛿 < 1, there exists a proper Zariski closed subset 𝑍 of G𝑛𝑚

such that

−
∑︁
𝑣∈𝑆

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 < 4𝑛𝑑𝛿
∑︁

1≤𝑖≤𝑛
ℎ(𝑢𝑖)
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for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 .

Proof. In the following proof we will not consider the points {(𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 :

𝑓 (𝑢1, . . . , 𝑢𝑛) = 0}. Since this set can be covered by a proper Zariski closed subset, by taking it

into the exceptional set, we can ignore such points.

For a subset 𝑆′ of 𝑆, let 𝑅𝑆′ consist of the set of points (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 such that

𝑆′ = {𝑣 ∈ 𝑆 : log | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 < 0}.

Then for (𝑢1, . . . , 𝑢𝑛) ∈ 𝑅𝑆′,

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 =


log | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣, 𝑣 ∈ 𝑆′,

0, 𝑣 ∈ 𝑆 \ 𝑆′.

Let 𝑑 = deg 𝑓 , 𝑚 ∈ N and 𝜙 : P𝑛 → P𝑁 , 𝜙 = (𝜙0, . . . , 𝜙𝑁 ), 𝑁 =
(𝑛+𝑚𝑑

𝑛

)
− 1, be the

𝑚𝑑-uple embedding of P𝑛 given by the set of monomials of degree 𝑚𝑑 in 𝑘 [𝑥0, . . . , 𝑥𝑛]. Let

𝐹 = 𝑥𝑑0 𝑓 (𝑥1/𝑥0, . . . , 𝑥𝑛/𝑥0) be the homogenization of 𝑓 in 𝑘 [𝑥0, . . . , 𝑥𝑛]. Let 𝑉𝑚𝑑 be the vector

space of homogeneous polynomials of degree 𝑚𝑑, and let Mon𝑚𝑑 consist of the set of all mono-

mials in 𝑘 [𝑥0, . . . , 𝑥𝑛] of degree 𝑚𝑑.

If 𝑣 ∈ 𝑆′, we construct a basis for𝑉𝑚𝑑 as follows. Let 𝑘 i =

⌊
ord𝑥0xi

𝑑

⌋
and define 𝐵i

𝑣 =
xi

𝑥
𝑘 i𝑑
0

𝐹𝑘 i .

Let 𝐵𝑣 be the set of all 𝐵i
𝑣. Since 𝑓 doesn’t vanish at the origin, 𝑥𝑑0 appears with a nonzero

coefficient in 𝐹, and thus it’s clear that 𝐵𝑣 is a basis for 𝑉𝑚𝑑 .

If 𝑣 ∈ 𝑆 \ 𝑆′, then we let 𝐵𝑣 = Mon𝑚𝑑 . Applying the Subspace Theorem on P𝑁 with

appropriate linear forms, we find that for a fixed 𝜖 > 0∑︁
𝑣∈𝑆

∑︁
𝑄∈𝐵𝑣

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

≤ (𝑁 + 1 + 𝜖)ℎ(𝜙(𝑃))
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for all 𝑃 ∈ P𝑛 (𝑘) \ 𝑍 , where 𝑍 = 𝜙−1(𝑍′) and 𝑍′ is a finite union of hyperplanes in P𝑁 . From

the definition of 𝐵𝑣, we can rewrite the left-hand side of above as∑︁
𝑣∈𝑆

∑︁
𝑄∈Mon𝑚𝑑

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

−
∑︁

i

∑︁
𝑣∈𝑆′

log
|𝐵i
𝑣 (𝑃) |𝑣

|xi(𝑃) |𝑣
≤ (𝑁 + 1 + 𝜖)ℎ(𝜙(𝑃)).

Suppose now that (𝑢1, . . . , 𝑢𝑛) ∈ 𝑅𝑆′ and let 𝑃 = [1 : 𝑢1 : . . . : 𝑢𝑛] ∈ P𝑛 (𝑘). It follows

immediately that for 𝐵i
𝑣 with 𝑘 i𝑑 ≤ ord𝑥0xi < (𝑘 i + 1)𝑑,

−
∑︁
𝑣∈𝑆′

log
|𝐵i
𝑣 (𝑃) |𝑣

|xi(𝑃) |𝑣
= −𝑘 i

∑︁
𝑣∈𝑆′

log | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 .

Letting 𝐼 =
∑

i 𝑘 i,

−
∑︁

i

∑︁
𝑣∈𝑆′

log
|𝐵i
𝑣 (𝑃) |𝑣

|xi(𝑃) |𝑣
= −𝐼

∑︁
𝑣∈𝑆′

log | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣

= −𝐼
∑︁
𝑣∈𝑆

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 .

By an easy calculation, we find that

𝐼 = 1 · 𝑚 +
((
𝑛 + 𝑑
𝑛

)
− 1

)
(𝑚 − 1) + · · · +

((
𝑛 + (𝑚 − 1)𝑑

𝑛

)
−
(
𝑛 + (𝑚 − 2)𝑑

𝑛

))
· 1

= 1 +
(
𝑛 + 𝑑
𝑛

)
+ · · · +

(
𝑛 + (𝑚 − 1)𝑑

𝑛

)
≥

(
𝑛 + (𝑚 − 1)𝑑

𝑛

)
.

Note that 𝜙 induces a natural map G𝑛𝑚 → G𝑁𝑚 and 𝜙(G𝑛𝑚 (𝑘)𝑆,𝛿) ⊂ G𝑁𝑚 (𝑘)𝑆,𝛿. Indeed,∑︁
𝑣∈𝑀𝑘\𝑆

log |𝜙(𝑃) |𝑣 =
∑︁

𝑣∈𝑀𝑘\𝑆
log max

𝑄∈Mon𝑚𝑑

{|𝑄(𝑃) |𝑣} ≤ 𝑚𝑑
∑︁

𝑣∈𝑀𝑘\𝑆
log max

𝑖
|𝑢𝑖 |𝑣 .

Similarly, we have ∑︁
𝑣∈𝑀𝑘\𝑆

log
���� 1
𝜙(𝑃)

����
𝑣

≤ 𝑚𝑑
∑︁

𝑣∈𝑀𝑘\𝑆
log max

𝑖

���� 1
𝑢𝑖

����
𝑣

.

Thus we have∑︁
𝑣∈𝑀𝑘\𝑆

𝜆𝑣 (𝜙(𝑃)) + 𝜆𝑣
(

1
𝜙(𝑃)

)
≤

∑︁
𝑣∈𝑀𝑘\𝑆

𝑚𝑑

(
𝜆𝑣 (𝑃) + 𝜆𝑣

(
1
𝑃

))
≤ 𝑚𝑑𝛿ℎ(𝑃) ≤ 𝛿ℎ(𝜙(𝑃)).

42



Now since 𝜙(𝑃) ∈ G𝑁𝑚 (𝑘)𝑆,𝛿 and min
𝑖

|𝜙𝑖 (𝑃) |𝑣 ≤ |𝑄(𝑃) |𝑣 for all 𝑄 ∈ Mon𝑚𝑑 , then∑︁
𝑣∈𝑆

∑︁
𝑄∈𝑀𝑜𝑛𝑚𝑑

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

=
∑︁
𝑣∈𝑀𝑘

∑︁
𝑄∈𝑀𝑜𝑛𝑚𝑑

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

−
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
𝑄∈𝑀𝑜𝑛𝑚𝑑

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

= (𝑁 + 1)ℎ(𝜙(𝑃)) −
∑︁

𝑣∈𝑀𝑘\𝑆

∑︁
𝑄∈𝑀𝑜𝑛𝑚𝑑

log
|𝜙(𝑃) |𝑣
|𝑄(𝑃) |𝑣

≥ (𝑁 + 1)ℎ(𝜙(𝑃)) − (𝑁 + 1) ©­«
∑︁

𝑣∈𝑀𝑘\𝑆
log |𝜙(𝑃) |𝑣 +

∑︁
𝑣∈𝑀𝑘\𝑆

log
���� 1
𝜙(𝑃)

����
𝑣

ª®¬
≥ (𝑁 + 1) (1 − 𝛿)ℎ(𝜙(𝑃)).

Therefore, we have

(𝑁 + 1) (1 − 𝛿)ℎ(𝜙(𝑃)) − 𝐼
∑︁
𝑣∈𝑆

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 ≤ (𝑁 + 1 + 𝜖)ℎ(𝜙(𝑃))

for all (𝑢1, . . . , 𝑢𝑛) ∈ 𝑅𝑆′ outside of some proper Zariski closed subset 𝑍 . It follows that for a

sufficiently small 𝜖

−
∑︁
𝑣∈𝑆

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 <
(𝑁 + 1 + 𝜖/𝛿)

𝐼
𝛿ℎ(𝜙(𝑃))

<

(𝑛+𝑚𝑑
𝑛

)(𝑛+(𝑚−1)𝑑
𝑛

) 𝛿𝑚𝑑ℎ(𝑃)
=

(𝑛 + (𝑚 − 1)𝑑 + 1) · · · (𝑛 + 𝑚𝑑)
((𝑚 − 1)𝑑 + 1) · · · (𝑚𝑑) 𝛿𝑚𝑑ℎ(𝑃)

for all (𝑢1, . . . , 𝑢𝑛) ∈ 𝑅𝑆′ outside of some proper Zariski closed subset 𝑍 . Choose 𝑚 =⌈
𝑛 − 21/𝑑 + 1
𝑑 (21/𝑑 − 1)

+ 1
⌉
, we have

𝑛 + (𝑚 − 1)𝑑 + 1
(𝑚 − 1)𝑑 + 1

≤ 21/𝑑 ,

hence
(𝑛 + (𝑚 − 1)𝑑 + 1) · · · (𝑛 + 𝑚𝑑)

((𝑚 − 1)𝑑 + 1) · · · (𝑚𝑑) ≤ 2. Also notice that 𝑚 ≤ 2𝑛, we obtain

−
∑︁
𝑣∈𝑆

log− | 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣 < 2𝛿𝑚𝑑ℎ(𝑃) < 4𝑛𝑑𝛿ℎ(𝑃) < 4𝑛𝑑𝛿
∑︁

1≤𝑖≤𝑛
ℎ(𝑢𝑖)
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for all (𝑢1, . . . , 𝑢𝑛) ∈ 𝑅𝑆′ outside of some proper Zariski closed subset 𝑍 . In fact, since there

are only finitely many choices of the subset 𝑆′ ⊂ 𝑆, we find that the inequality holds for all

𝑃 ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 , for some proper closed subset 𝑍 .

□

From Theorem 7.0.5, the immediate result combined with Theorem 7.0.3 is

Theorem 7.0.6. Let 𝑘 be a number field and let 𝑆 be a finite set of places of 𝑘 containing the

archimedean places. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be polynomials that don’t both vanish at the origin

(0, . . . , 0). For all 0 < 𝛿 < 1, there exists a proper Zariski closed subset 𝑍 of G𝑛𝑚 such that

−
∑︁
𝑣∈𝑀𝑘

log− max{| 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣, |𝑔(𝑢1, . . . , 𝑢𝑛) |𝑣} < 𝐶𝛿1/2
∑︁

1≤𝑖≤𝑛
ℎ(𝑢𝑖)

for all u = (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 , where 𝐶 = 6(deg 𝑓 + deg 𝑔)𝑛2 is a constant.

Proof. With not loss of generality, assume deg 𝑓 ≤ deg 𝑔 and 𝑔 doesn’t vanish at the origin.

Then applying Theorem 7.0.5 to 𝑔, on the right hand side we obtain

4𝑛𝛿 deg 𝑔
∑︁

1≤𝑖≤𝑛
ℎ(𝑢𝑖) < 4𝑛(deg 𝑔 + deg 𝑓 )𝛿

∑︁
1≤𝑖≤𝑛

ℎ(𝑢𝑖).

Combining with the inequality from Theorem 7.0.3 finishes the proof. □

Now we are ready to show the desired result (Theorem 1.1.7):

Corollary 7.0.7. Let 𝑘 be a number field and 𝑆 a finite set of places of 𝑘 containing the

archimedean places. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑥1, . . . , 𝑥𝑛] be polynomials that don’t both vanish at the

origin (0, . . . , 0). For all 𝜖 > 0, there exist a 𝛿 > 0 and a proper Zariski closed subset 𝑍 ⊂ G𝑛𝑚
such that:

−
∑︁
𝑣∈𝑀𝑘

log− max{| 𝑓 (𝑢1, . . . , 𝑢𝑛) |𝑣, |𝑔(𝑢1, . . . , 𝑢𝑛) |𝑣} < 𝜖 max
𝑖
ℎ(𝑢𝑖)

for all (𝑢1, . . . , 𝑢𝑛) ∈ G𝑛𝑚 (𝑘)𝑆,𝛿 \ 𝑍 .
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Proof. By letting 𝛿 =
(

𝜖

6𝑛3(deg 𝑓 + deg 𝑔)

)2
, we obtain the inequality from Theorem 7.0.6. □

As discussed in the following remark, under a normal crossings assumption, a result of

Silverman shows that Vojta’s conjecture predicts an improvement to Theorem 7.0.6.

Remark 7.0.8. From Theorem 2 in [18, Silverman], if we assume Vojta’s Conjecture is true,

there is an improvement of the inequality as in Theorem 7.0.3. Let 𝑘 be a number field. Fix

𝜖 > 0. For 𝑓 and 𝑔 homogeneous coprime polynomials in 𝑘 [𝑥0, . . . , 𝑥𝑛] and 𝑌 = { 𝑓 = 𝑔 = 0}

that intersects the coordinate hyperplanes transversally, there is a proper closed subset 𝑍 such

that we have for all x ∈ P𝑛 (𝑘) \ 𝑍 ,

log gcd( 𝑓 (x), 𝑔(x)) ≤ 𝜖 max{ℎ(𝑥0), . . . , ℎ(𝑥𝑛)} +
1

1 + 𝛾𝜖
∑︁

1≤𝑖≤𝑛
ℎ𝑆 (𝑥𝑖)

where 𝛾 is a positive constant.

Suppose ℎ𝑆 (x) ≤ 𝛿ℎ(x). Using the estimate∑︁
1≤𝑖≤𝑛

ℎ𝑆 (𝑥𝑖) ≤ 𝑛ℎ𝑆 (x),

we get

log gcd( 𝑓 (x), 𝑔(x)) ≤
(
𝜖 + 𝑛𝛿

1 + 𝛾𝜖

) ∑︁
1≤𝑖≤𝑛

ℎ(𝑥𝑖) ≤
(
𝜖 + 𝛿

1 + 𝛾𝜖

)
𝑛

∑︁
1≤𝑖≤𝑛

ℎ(𝑥𝑖).
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Let 𝜖 =
−1 +

√︁
1 + 4𝛾𝛿

2𝛾
, we obtain a similar inequality as in Theorem 7.0.3,

log gcd( 𝑓 (x), 𝑔(x)) ≤
©­­­­«
−1 +

√︁
1 + 4𝛾𝛿

2𝛾
+ 𝛿

1 +
−1 +

√︁
1 + 4𝛾𝛿
2

ª®®®®¬
𝑛

∑︁
1≤𝑖≤𝑛

ℎ(𝑥𝑖)

= (−1 +
√︁

1 + 4𝛾𝛿)
(

1
2𝛾

+ 2𝛿
4𝛾𝛿

)
𝑛

∑︁
1≤𝑖≤𝑛

ℎ(𝑥𝑖)

≤
(
−1 + 1 + 4𝛾𝛿

2

)
1
𝛾
𝑛

∑︁
1≤𝑖≤𝑛

ℎ(𝑥𝑖)

= 2𝛿𝑛
∑︁

1≤𝑖≤𝑛
ℎ(𝑥𝑖).

Thus, under a normal crossings assumption, Vojta’s conjecture predicts a linear dependence on

𝛿 in place of the square root dependence in Theorem 7.0.6 (note, however, that without a normal

crossings assumption, the dependence on the degree of 𝑓 and 𝑔 in Theorem 7.0.6 is necessary,

as can be seen by taking high powers of appropriate polynomials).

Example 7.0.9. In this example we show that the predicted linear dependence on 𝛿 is sharp

(if true). Let Q be the field of rationals and 𝑆 = {𝑝,∞} be a finite set of places in 𝑀Q. Let

0 < 𝛿 < 1. Let 𝑥 = 𝑝𝑚, 𝑢 = 𝑝𝑛 for positive integers 𝑚 and 𝑛 such that 𝑃 := (𝑥, 𝑢(𝑥 + 1)) satisfies

1/2𝛿ℎ(𝑃) ≤ ℎ𝑆 (𝑃) ≤ 𝛿ℎ(𝑃). Let 𝑥1, 𝑥2 be the coordinates in G2
𝑚, then we take 𝑓 = 𝑥1 + 1,

𝑔 = 𝑥2. We make the estimate

log gcd( 𝑓 (𝑃), 𝑔(𝑃)) = −
∑︁
𝑣∉𝑆

log− max{|𝑥 + 1|𝑣, |𝑢(𝑥 + 1) |𝑣} −
∑︁
𝑣∈𝑆

log− max{|𝑥 + 1|𝑣, |𝑢(𝑥 + 1) |𝑣}

≥
∑︁
𝑣∉𝑆

𝜆𝑣

(
1

𝑥 + 1

)
= ℎ(𝑥 + 1).

One shall also notice that for 𝑥 ∈ O∗
𝑆,Q

, we have ℎ𝑆 (𝑃) = ℎ𝑆 (𝑥 + 1) = ℎ(𝑥 + 1). Then it follows

that

log gcd( 𝑓 (𝑃), 𝑔(𝑃)) ≥ 1/2𝛿ℎ(𝑃).
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It’s easily seen that one may choose infinitely many appropriate 𝑥 and 𝑢 such that the set of

resulting points 𝑃 forms a Zariski dense set in G2
𝑚. Therefore the dependence on 𝛿 has to be at

least linear.
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CHAPTER 8

PROOFS OF LINEAR RECURRENCE SEQUENCES THEOREMS

In this section our main goal is to give the proof of Theorem 1.2.4, which requires Corollary

7.0.4 from the previous section.

Lemma 8.0.1. Let

𝐹 (𝑛) =
𝑠∑︁
𝑖=0

𝑝𝑖 (𝑛)𝛼𝑛𝑖
define a nondegenerate algebraic linear recurrence sequence. Let | · | be an absolute value on

Q̄ such that |𝛼𝑖 | ≥ 1 for some 𝑖. Let 0 < 𝜖 < 1. Then

− log |𝐹 (𝑛) | < 𝜖𝑛

for all but finitely many 𝑛 ∈ N.

Proof. Let 𝑘 be a number field and 𝑆 a finite set of places of 𝑘 such that 𝑝𝑖 (𝑥) ∈ 𝑘 [𝑥], 𝛼𝑖 ∈ O∗
𝑘,𝑆

,

𝑖 = 0, . . . , 𝑠, and | · | restricted to 𝑘 is equivalent to | · |𝑣 for some 𝑣 ∈ 𝑆 (note that if | · | is trivial,

the lemma is obvious). The 𝑠 = 0 case is trivial and so we may assume that 𝑠 > 0. By taking

sufficiently large 𝑛, we can always assume that 𝑝𝑖 (𝑛) don’t vanish simultaneously. It suffices to

prove that

− log |𝐹 (𝑛) |𝑣 < 𝜖𝑛

for all but finitely many 𝑛 ∈ N.

Let 𝐻𝑖 be the coordinate hyperplane in P𝑠 defined by 𝑥𝑖 = 0, 𝑖 = 0, . . . , 𝑠. Let 𝐻𝑠+1 be the

hyperplane in P𝑠 defined by 𝑥0 + 𝑥1 + · · · + 𝑥𝑠 = 0. Note that the 𝑠 + 2 hyperplanes 𝐻0, . . . , 𝐻𝑠+1

48



are in general position. Let

𝑃 = [𝛼0 : · · · : 𝛼𝑠] ∈ P𝑠 (𝑘)

𝑃𝑛 = [𝑝0(𝑛)𝛼𝑛0 : · · · : 𝑝𝑠 (𝑛)𝛼𝑛𝑠 ] ∈ P𝑠 (𝑘), 𝑛 ∈ N

𝑄𝑛 = [𝑝0(𝑛) : · · · : 𝑝𝑠 (𝑛)] ∈ P𝑠 (𝑘), 𝑛 ∈ N.

Let ℎ = max{1, ℎ(𝑃)}. Then the Schmidt Subspace Theorem gives that for some finite union of

hyperplanes 𝑍 in P𝑠,
𝑠+1∑︁
𝑖=0

𝑚𝐻𝑖 ,𝑆 (𝑃𝑛) < (𝑠 + 1 + 𝜖/(4ℎ))ℎ(𝑃𝑛) (∗)

for all points 𝑃𝑛 ∈ P𝑠 (𝑘) \ 𝑍 . In fact, since 𝐹 is nondegenerate, by the Skolem-Mahler-Lech

theorem, only finitely many points 𝑃𝑛 belong to the given hyperplanes in P𝑠, and thus the

inequality holds for all but finitely many 𝑛. By taking 𝑛 to be sufficiently large, we can assume

that ℎ(𝑄𝑛) ≤ 𝛿ℎ(𝑃𝑛) with 𝛿 ≤ 𝜖

4(𝑠 + 1)ℎ , so that we assume 𝑃𝑛 ∈ G𝑛𝑚 (𝑘)𝑆,𝛿. Since 𝛼𝑖 ∈ O∗
𝑘,𝑆

for all 𝑖, 𝑚𝐻𝑖 ,𝑆 (𝑃𝑛) ≥ (1 − 𝛿)ℎ(𝑃𝑛), 𝑖 = 0, . . . , 𝑠. Note also that

ℎ(𝑃𝑛) ≤ 𝑛ℎ(𝑃) + ℎ(𝑄𝑛) ≤
𝑛

1 − 𝛿 ℎ(𝑃)

for all 𝑛 sufficiently large. Substituting in (∗), we have

𝑚𝐻𝑠+1,𝑆 (𝑃𝑛) < (𝜖/(4ℎ) + (𝑠 + 1)𝛿) 𝑛

1 − 𝛿 ℎ(𝑃) ≤
𝑛𝜖

2(1 − 𝛿) .

Note that 𝛿 =
𝜖

4(𝑠 + 1)ℎ ≤ 1
4(𝑠 + 1) ≤ 1/2, so we have 1 − 𝛿 > 1/2 and then

𝑚𝐻𝑠+1 (𝑃𝑛) < 𝜖𝑛.

Pick 𝛼 𝑗 with |𝛼 𝑗 |𝑣 ≥ 1. Then

max
𝑖

log |𝑝𝑖 (𝑛)𝛼𝑛𝑖 |𝑣 ≥ log |𝑝 𝑗 (𝑛) |𝑣 |𝛼 𝑗 |𝑛𝑣 ≥ log |𝑝 𝑗 (𝑛) |𝑣 .

To give 𝑝 𝑗 (𝑛) an estimate, we can take the inequality

log |𝑝 𝑗 (𝑛) |𝑣 ≥ −ℎ(𝑝 𝑗 (𝑛)).
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Then it follows that

log |𝑝 𝑗 (𝑛) |𝑣 ≥ − deg 𝑝 𝑗 log 𝑛 +𝑂 (1).

It follows that

𝜆𝐻𝑠+1,𝑣 (𝑃𝑛) = log
max𝑖 |𝑝𝑖 (𝑛)𝛼𝑛𝑖 |𝑣
|∑𝑠

𝑖=0 𝑝𝑖 (𝑛)𝛼𝑛𝑖 |𝑣
≥ − log |𝐹 (𝑛) |𝑣 − 𝐶′ log 𝑛

for some constant 𝐶′. Together with 𝑚𝐻𝑠+1,𝑆 (𝑃𝑛) ≥ 𝜆𝐻𝑠+1,𝑣 (𝑃𝑛) +𝑂 (1), we have for all 𝜖 > 0,

− log |𝐹 (𝑛) |𝑣 < 𝜖𝑛 + 𝐶′ log 𝑛 +𝑂 (1).

It follows that for all sufficiently large 𝑛,

− log |𝐹 (𝑛) |𝑣 < 𝜖𝑛.

□

Now we can state Theorem 1.8 (i) of Grieve-Wang [11] on the greatest common divisor

between the terms of two linear recurrence sequences with the same index and give an alternative

proof:

Theorem 8.0.2. Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖

𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗

define two algebraic linear recurrence sequences, where 𝑝𝑖 and 𝑞 𝑗 are polynomials. Let 𝑘 be

a number field such that all coefficients of 𝑝𝑖 and 𝑞 𝑗 and 𝛼𝑖, 𝛽 𝑗 are in 𝑘 , for 𝑖 = 1, . . . , 𝑠,

𝑗 = 1, . . . , 𝑡. Let

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Let 𝜖 > 0. Then all but finitely many solutions 𝑙 ∈ N of the inequality∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑙) |𝑣, |𝐺 (𝑙) |𝑣} > 𝜖𝑙
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lie in one of finitely many nontrivial arithmetic subprogressions:

𝑎𝑖𝑡 + 𝑏𝑖, 𝑡 ∈ N, 𝑖 = 1, . . . , 𝑟

where 𝑎𝑖, 𝑏𝑖 ∈ N, 𝑎𝑖 ≠ 0, and the linear recurrences 𝐹 (𝑎𝑖•+𝑏𝑖) and𝐺 (𝑎𝑖•+𝑏𝑖) have a nontrivial

common factor for 𝑖 = 1, . . . , 𝑟 . Furthermore, if 𝐹 and 𝐺 are coprime and their roots generate

a torsion-free group, then there are only finitely many solutions to the inequality above.

Proof. We begin with a couple of convenient reductions. First, by considering finitely many

arithmetic progressions in 𝑙, we may reduce to the case where the combined roots of 𝐹 and 𝐺

generate a torsion-free group Γ of rank 𝑟 (in particular, both 𝐹 and 𝐺 are nondegenerate). Let

𝑆 ⊃ 𝑆0 be a finite set of places of 𝑘 , containing the archimedean places, such that all coefficients

of 𝑝𝑖 and 𝑞 𝑗 and 𝛼𝑖, 𝛽 𝑗 are in O∗
𝑘,𝑆

for all 𝑖 and 𝑗 .

By Lemma 8.0.1, ∑︁
𝑣∈𝑆\𝑆0

− log− max{|𝐹 (𝑙) |𝑣, |𝐺 (𝑙) |𝑣} ≤
𝜖

2
𝑙

for all but finitely many 𝑙 ∈ N. Thus it suffices to prove the statement of the theorem with the

inequality: ∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑙) |𝑣, |𝐺 (𝑙) |𝑣} < 𝜖𝑙.

Let 𝑢1, . . . , 𝑢𝑟 be generators for Γ. Let 𝑓 , 𝑔 ∈ 𝑘 [𝑙, 𝑥1, . . . , 𝑥𝑟 , 𝑥
−1
1 , . . . , 𝑥−1

𝑟 ] be the Laurent

polynomials corresponding to 𝐹 and 𝐺. We may write

𝑓 (𝑙, 𝑥1, . . . , 𝑥𝑟) = 𝑥𝑖11 · · · 𝑥𝑖𝑟𝑟 𝑓0(𝑙, 𝑥1, . . . , 𝑥𝑟),

𝑔(𝑙, 𝑥1, . . . , 𝑥𝑟) = 𝑥 𝑗11 · · · 𝑥 𝑗𝑟𝑟 𝑔0(𝑙, 𝑥1, . . . , 𝑥𝑟)

where 𝑖1, . . . , 𝑖𝑟 , 𝑗1, . . . , 𝑗𝑟 ∈ Z and 𝑓0 ∈ 𝑘 [𝑙, 𝑥1, . . . , 𝑥𝑟], 𝑔0 ∈ 𝑘 [𝑙, 𝑥1, . . . , 𝑥𝑟] with 𝑥𝑖 ∤ 𝑓0𝑔0,

𝑖 = 1, . . . , 𝑟 . Let 𝐹0 and 𝐺0 be the linear recurrence sequences corresponding to 𝑓0 and 𝑔0,

respectively. Since 𝑢1, . . . , 𝑢𝑟 ∈ O∗
𝑘,𝑆

, it follows that

∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑙) |𝑣, |𝐺 (𝑙) |𝑣} =
∑︁

𝑣∈𝑀𝑘\𝑆
− log− max{|𝐹0(𝑙) |𝑣, |𝐺0(𝑙) |𝑣}.
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Then it suffices to prove the statement of the theorem with 𝐹 and 𝐺 replaced by 𝐹0 and 𝐺0,

respectively. Note that since 𝑥1, . . . , 𝑥𝑟 are units in 𝑘 [𝑥1, . . . , 𝑥𝑟 , 𝑥
−1
1 , . . . , 𝑥−1

𝑟 ], replacing 𝐹 and

𝐺 by 𝐹0 and 𝐺0 has no effect on coprimality statements. Thus, we now assume that 𝐹 and 𝐺

correspond to polynomials 𝑓 and 𝑔 in 𝑘 [𝑙, 𝑥1, . . . , 𝑥𝑟] .

Suppose now that 𝐹 and 𝐺 are coprime (equivalently, 𝑓 and 𝑔 are coprime). Let

𝑃𝑛 = (𝑛, 𝑢𝑛1, . . . , 𝑢
𝑛
𝑟 ).

Now for a fixed sufficiently small positive 𝛿 (coming from the proof of Corollary 7.0.4), take 𝑛

to be sufficiently large such that ℎ(𝑛) ≤ 𝛿𝑛min
𝑖
ℎ(𝑢𝑖), and so 𝑃𝑛 ∈ G𝑟+1

𝑚 (𝑘)𝑆,𝛿.

By Corollary 7.0.4,∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{| 𝑓 (𝑃𝑛) |𝑣, |𝑔(𝑃𝑛) |𝑣} < 𝜖 max{ℎ(𝑢𝑛1), . . . , ℎ(𝑢
𝑛
𝑟 )}

for all 𝑃𝑛 ∈ G𝑟+1
𝑚 (𝑘)𝑆,𝛿 outside a proper Zariski closed set 𝑍 . Noting that 𝑓 (𝑃𝑛) = 𝐹 (𝑛) and

𝑔(𝑃𝑛) = 𝐺 (𝑛), and also that max{ℎ(𝑢𝑛1), . . . , ℎ(𝑢
𝑛
𝑟 )} = 𝑛max{ℎ(𝑢1), . . . , ℎ(𝑢𝑟)}, after possibly

shrinking 𝜖 ,we can write the above inequality as∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑛) |𝑣, |𝐺 (𝑛) |𝑣} < 𝜖𝑛.

Cover the exceptional set 𝑍 by a hypersurface defined by a polynomial 𝐸𝑥𝑐(𝑥1, . . . , 𝑥𝑟+1) in

𝑘 [𝑥1, . . . , 𝑥𝑟+1] such that if 𝑃𝑛 ∈ 𝑍 then 𝐸𝑥𝑐(𝑃𝑛) = 0. We can view 𝐸𝑥𝑐(𝑃𝑛) as terms of a

linear recurrence sequence 𝐸 (𝑛) with 𝐸 non-degenerate. By the Skolem-Mahler-Lech theorem,

there are only finitely many zeros for 𝐸 , which completes the proof.

□

Here we deal with a special case when 𝑚 and 𝑛 are algebraically related:

Lemma 8.0.3. Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖
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𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗

be two linear recurrence sequences over a number field 𝑘 and 𝑆 be a finite set of places in 𝑀𝑘

containing archimedean places and 𝑆0, where 𝑆0 is defined as

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Let𝐶 ⊂ A2 be an affine irreducible plane curve over 𝑘 . If there are infinitely many (𝑚, 𝑛) ∈ 𝐶 (Z)

satisfying the inequality∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} > 𝜖 max{𝑚, 𝑛}

then 𝐶 is a line over 𝑘 . In particular, if 𝑚(𝑡), 𝑛(𝑡) ∈ Z[𝑡] are polynomials that are not linearly

related, then the inequality∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑚(𝑡)) |𝑣, |𝐺 (𝑛(𝑡)) |𝑣} > 𝜖 max{𝑚(𝑡), 𝑛(𝑡)}

has only finitely many solutions 𝑡 ∈ Z.

Remark 8.0.4. Note that if 𝐶 is a line, the solutions are easily classified using Theorem 8.0.2

The following lemma is a basic fact from linear algebra, we state it without a proof.

Lemma 8.0.5. Let {𝑣1, . . . , 𝑣𝑛} be a linearly independent subset of a normed vector space 𝑋 .

Then there exists a constant 𝑐 > 0 such that for every set of scalars {𝛼1, . . . , 𝛼𝑛}:

|𝛼1𝑣1 + · · · + 𝛼𝑛𝑣𝑛 | ≥ 𝑐( |𝛼1 | + · · · + |𝛼𝑛 |).

Let 𝑇𝑜𝑟 (Q∗) denote the torsion subgroup of Q
∗
. Since the height ℎ gives Q

∗/𝑇𝑜𝑟 (Q∗) the

structure of a normed vector space over Q as in Allcock and Vaaler [1], we immediately find:

Lemma 8.0.6. Let 𝑢1, . . . , 𝑢𝑛 be multiplicatively independent elements of Q
∗
. Then there exists

a constant 𝑐 > 0 such that for all 𝑖1, . . . , 𝑖𝑛 ∈ Z,

ℎ(𝑢𝑖11 · · · 𝑢𝑖𝑛𝑛 ) ≥ 𝑐max
𝑗

|𝑖 𝑗 |.
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We now prove Lemma 8.0.3.

Proof. Using the same reduction as in the proof of Theorem 8.0.2, we can assume that the roots

of 𝐹 and 𝐺 are 𝑆-units, and by considering finitely many congruence classes, we can assume

that the roots of 𝐹 and 𝐺 generate a torsion free group. Let 𝐶 be the affine curve defined by the

algebraic relation 𝑅(𝑥1, 𝑥2) = 0, with 𝑅(𝑥1, 𝑥2) ∈ 𝑘 [𝑥1, 𝑥2] irreducible. If𝐶 is not geometrically

irreducible then 𝐶 (𝑘) (and hence 𝐶 (Z)) is finite, and so we further assume 𝐶 is geometrically

irreducible. By Siegel’s Theorem, 𝐶 (Z) is finite unless 𝐶 has genus 0 and 𝐶 has two or fewer

distinct points at infinity, which we now assume. After replacing 𝑘 by a suitable finite extension,

we can parametrize 𝐶 by Laurent polynomials 𝑚(𝑡), 𝑛(𝑡) ∈ 𝑘 [𝑡, 1/𝑡]. Assume that 𝐶 is not a

line, or equivalently, that 𝑚(𝑡) and 𝑛(𝑡) do not satisfy a linear relation.

Let Γ be the torsion free group generated by the roots of 𝐹 and 𝐺 and let {𝑢1, . . . , 𝑢𝑟} be

generators of Γ. Consider the points

𝑃𝑡 = (𝑡, 𝑢𝑚(𝑡)
1 , . . . , 𝑢

𝑚(𝑡)
𝑟 , 𝑢

𝑛(𝑡)
1 , . . . , 𝑢

𝑛(𝑡)
𝑟 ),

for 𝑡 ∈ 𝑘 where, as we implicitly assume from now on, we have 𝑚(𝑡), 𝑛(𝑡) ∈ Z. Then for some

Laurent polynomials

𝑓 (𝑥1, . . . , 𝑥𝑟+1), 𝑔(𝑥1, 𝑥𝑟+2, . . . , 𝑥2𝑟+1) ∈ 𝑘 [𝑥1, . . . , 𝑥2𝑟+1, 𝑥
−1
1 , . . . , 𝑥−1

2𝑟+1],

we have 𝐹 (𝑚(𝑡)) = 𝑓 (𝑃𝑡) and 𝐺 (𝑛(𝑡)) = 𝑔(𝑃𝑡). From the form of 𝑓 and 𝑔, we may write

𝑓 (𝑥1, . . . , 𝑥𝑟+1) = 𝑥𝑖12 · · · 𝑥𝑖𝑟
𝑟+1𝑐(𝑥1) 𝑓 (𝑥1, . . . , 𝑥𝑟+1),

𝑔(𝑥1, 𝑥𝑟+2, . . . , 𝑥2𝑟+1) = 𝑥 𝑗1𝑟+2 · · · 𝑥
𝑗𝑟
2𝑟+1𝑐(𝑥1)𝑔̄(𝑥1, 𝑥𝑟+2, . . . , 𝑥2𝑟+1)

where 𝑖1, . . . , 𝑖𝑟 , 𝑗1, . . . , 𝑗𝑟 ∈ Z, 𝑓 and 𝑔̄ are coprime polynomials in 𝑘 [𝑥1, . . . , 𝑥2𝑟+1], and 𝑐(𝑥1)

is a Laurent polynomial in 𝑥1.

By elementary properties of heights, if 𝑚(𝑡), 𝑛(𝑡) ∈ Z, then ℎ(𝑡) ≪ log max{|𝑚(𝑡) |, |𝑛(𝑡) |}

and ℎ(𝑃𝑡) ≫ max{|𝑚(𝑡) |, |𝑛(𝑡) |}. It follows that for any 𝛿 > 0, we have 𝑃𝑡 ∈ G2𝑟+1
𝑚 (𝑘)𝑆,𝛿 for all
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but finitely many 𝑡 ∈ 𝑘 (with 𝑚(𝑡), 𝑛(𝑡) ∈ Z). Then Corollary 7.0.4 applies to 𝑓 and 𝑔̄ and we

obtain that for any 𝜖 > 0 there exists a proper Zariski closed subset 𝑍 ⊂ G2𝑟+1
𝑚 such that∑︁

𝑣∈𝑀𝑘\𝑆
− log− max{| 𝑓 (𝑃𝑡) |𝑣, |𝑔̄(𝑃𝑡) |𝑣} < 𝜖 max

𝑖=1,...,𝑟
{ℎ(𝑢𝑚(𝑡)

𝑖
), ℎ(𝑢𝑛(𝑡)

𝑖
)}

for all points 𝑃𝑡 outside 𝑍 . By elementary estimates, for all but finitely many 𝑡 ∈ 𝑘 ,∑︁
𝑣∈𝑀𝑘\𝑆

− log− |𝑐(𝑡) |𝑣 ≤ ℎ(𝑐(𝑡)) < 𝜖 max
𝑖=1,...,𝑟

{ℎ(𝑢𝑚(𝑡)
𝑖

), ℎ(𝑢𝑛(𝑡)
𝑖

)}.

Using this inequality and that 𝑢1, . . . , 𝑢𝑟 ∈ O∗
𝑘,𝑆

, the inequality for 𝑓 and 𝑔̄ implies the

inequality for 𝑓 and 𝑔:∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{| 𝑓 (𝑃𝑡) |𝑣, |𝑔(𝑃𝑡) |𝑣} < 𝜖 max
𝑖=1,...,𝑟

{ℎ(𝑢𝑚(𝑡)
𝑖

), ℎ(𝑢𝑛(𝑡)
𝑖

)}

for all points𝑃𝑡 outside a proper Zariski closed subset 𝑍 ⊂ G2𝑟+1
𝑚 . Setting (𝑚, 𝑛) = (𝑚(𝑡), 𝑛(𝑡)) ∈

𝐶 (Z), note that 𝑓 (𝑃𝑡) = 𝐹 (𝑚), 𝑔(𝑃𝑡) = 𝐺 (𝑛), and

max{ℎ(𝑢𝑚1 ), . . . , ℎ(𝑢
𝑚
𝑟 ), ℎ(𝑢𝑛1), . . . , ℎ(𝑢

𝑛
𝑟 )} ≤ max{𝑚, 𝑛} max{ℎ(𝑢1), . . . , ℎ(𝑢𝑟)}.

Then we can write the above inequality as∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} < 𝜖 max{𝑚, 𝑛}.

It remains to show that there are only finitely many 𝑡 ∈ 𝑘 with 𝑚(𝑡), 𝑛(𝑡) ∈ Z and 𝑃𝑡 ∈ 𝑍 . Now

we cover 𝑍 by a hypersurface defined by an equation 𝑧(𝑥1, . . . , 𝑥2𝑟+1) = 0. Then every 𝑃𝑡 in 𝑍

satisfies an equation

𝑧(𝑃𝑡) =
𝐾∑︁
𝑤=1

𝑃𝑤 (𝑡)𝑢𝑚(𝑡)𝑠1,𝑤
1 · · · 𝑢𝑚(𝑡)𝑠𝑟 ,𝑤

𝑟 𝑢
𝑛(𝑡)𝑡1,𝑤
1 · · · 𝑢𝑛(𝑡)𝑡𝑟 ,𝑤𝑟 = 0,

where𝑃𝑤 ∈ 𝑘 [𝑡], 𝑤 = 1, . . . , 𝐾 are nonzero polynomials and the integer tuples (𝑠1,𝑤, . . . , 𝑠𝑟,𝑤, 𝑡1,𝑤, . . . , 𝑡𝑟,𝑤),

𝑤 = 1, . . . , 𝐾 , are distinct. If 𝐾 = 1 then 𝑡 must be one of the finitely many roots of the polyno-

mial 𝑃1(𝑡). Otherwise, dividing by the first term we find
𝐾∑︁
𝑤=2

𝑄𝑤 (𝑡)𝑢
𝑚(𝑡)𝑠′1,𝑤+𝑛(𝑡)𝑡

′
1,𝑤

1 · · · 𝑢𝑚(𝑡)𝑠′𝑟 ,𝑤+𝑛(𝑡)𝑡 ′𝑟 ,𝑤
𝑟 = 1, (8.1)
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where 𝑄𝑤 (𝑡), 𝑖 = 2, . . . , 𝐾, are rational functions in 𝑡 and 𝑠′
𝑖,𝑤

= 𝑠𝑖,𝑤 − 𝑠𝑖,1, 𝑡′
𝑖,𝑤

= 𝑡𝑖,𝑤 − 𝑡𝑖,1.

Note that

ℎ(𝑄𝑤 (𝑡)) = (deg𝑄𝑤)ℎ(𝑡) +𝑂 (1)

and by Lemma 8.0.6 (assuming 𝑚(𝑡), 𝑛(𝑡) ∈ Z as usual)

ℎ

(
𝑢
𝑚(𝑡)𝑠′1,𝑤+𝑛(𝑡)𝑡

′
1,𝑤

1 · · · 𝑢𝑚(𝑡)𝑠′𝑟 ,𝑤+𝑛(𝑡)𝑡 ′𝑟 ,𝑤
𝑟

)
≫ max

𝑖
{|𝑚(𝑡)𝑠′𝑖,𝑤 + 𝑛(𝑡)𝑡′𝑖,𝑤 |}

= 𝑒max𝑖 ℎ(𝑚(𝑡)𝑠′
𝑖,𝑤

+𝑛(𝑡)𝑡 ′
𝑖,𝑤

)

≫ 𝑒ℎ(𝑡) max𝑖 deg(𝑚𝑠′
𝑖,𝑤

+𝑛𝑡 ′
𝑖,𝑤

)

≫ 𝑒ℎ(𝑡)

since (𝑠′
𝑖,𝑤
, 𝑡′
𝑖,𝑤
) ≠ (0, 0) for some 𝑖, and in this case 𝑚𝑠′

𝑖,𝑤
+ 𝑛𝑡′

𝑖,𝑤
must be nonconstant by our

assumption that 𝑚 and 𝑛 aren’t linearly related.

Since the terms in the sum in (8.1) are 𝑆-units outside the factors 𝑄𝑤 (𝑡), it follows from the

height estimates above and the almost 𝑆-unit equation (Corollary 6.2.2) that there exists a finite

set F ⊂ 𝑘 such that every solution 𝑡 ∈ 𝑘 to (8.1) (with 𝑚(𝑡), 𝑛(𝑡) ∈ Z) satisfies

𝑄𝑤 (𝑡)𝑢
𝑚(𝑡)𝑠′1,𝑤+𝑛(𝑡)𝑡

′
1,𝑤

1 · · · 𝑢𝑚(𝑡)𝑠′𝑟 ,𝑤+𝑛(𝑡)𝑡 ′𝑟 ,𝑤
𝑟 ∈ F

for some 𝑤. By the height estimates above,

ℎ(𝑄𝑤 (𝑡)𝑢
𝑚(𝑡)𝑠′1,𝑤+𝑛(𝑡)𝑡

′
1,𝑤

1 · · · 𝑢𝑚(𝑡)𝑠′𝑟 ,𝑤+𝑛(𝑡)𝑡 ′𝑟 ,𝑤
𝑟 ) ≫ 𝑒ℎ(𝑡) ,

and Northcott’s Theorem implies that there are only finitely many solutions 𝑡 ∈ 𝑘 with

𝑚(𝑡), 𝑛(𝑡) ∈ Z satisfying (8.1). It follows that there are only finitely many pairs (𝑚, 𝑛) ∈ 𝐶 (Z)

satisfying the inequality of the theorem.

□

Definition 8.0.7. Let 𝐹 and 𝐺 be two linear recurrence sequences. Suppose that the roots of

𝐹 and 𝐺 generate multiplicative torsion-free groups of rank 𝑟 and 𝑠, respectively. We say that

the roots of 𝐹 and 𝐺 are multiplicatively independent if the combined roots generate a group of

rank 𝑟 + 𝑠. Otherwise, we say they are multiplicatively dependent.
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The following result is a generalization of Theorem 8.0.2 under a multiplicative independence

assumption, which was proved by Grieve-Wang [11]. Here we give an alternative proof:

Theorem 8.0.8. Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖

𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗

define two algebraic linear recurrence sequences, where 𝑝𝑖 and 𝑞 𝑗 are polynomials. Let 𝑘 be

a number field such that all coefficients of 𝑝𝑖 and 𝑞 𝑗 and 𝛼𝑖, 𝛽 𝑗 are in 𝑘 , for 𝑖 = 1, . . . , 𝑠,

𝑗 = 1, . . . , 𝑡. Let

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Let 𝜖 > 0. If we assume further the roots of 𝐹 and 𝐺 are independent, then all but finitely many

(𝑚, 𝑛) ∈ N2 satisfy the inequality∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} < 𝜖 max{𝑚, 𝑛}.

In particular, if 𝑆0 = ∅, then all but finitely many (𝑚, 𝑛) satisfy the inequality

log gcd(𝐹 (𝑚), 𝐺 (𝑛)) < 𝜖 max{𝑚, 𝑛}

Proof. Notice that∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} ≤ min{ℎ(𝐹 (𝑚)), ℎ(𝐺 (𝑛))}

≤ K min{𝑚, 𝑛}

for some constant K. Hence for the inequality in the statement to be true, for a fixed 𝜖 > 0,

K min{𝑚, 𝑛} ≥ 𝜖 max{𝑚, 𝑛}.

The combined roots of 𝐹 and𝐺 generate a torsion-free group Γ of rank 𝑟+𝑠whose generators

are {𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠} where 𝑢1, . . . , 𝑢𝑟 generate the roots 𝛼𝑖 and 𝑣1, . . . , 𝑣𝑠 generate the
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roots 𝛽 𝑗 . By the same reduction step in the previous proof, assume all the coefficients of the

polynomials 𝑝𝑖 and 𝑞 𝑗 and all of the roots of 𝐹 and 𝐺 are 𝑆-units. We can also assume the

Laurent polynomials 𝑓 and 𝑔 corresponding to 𝐹 and 𝐺 with respect to the roots 𝑢1, . . . , 𝑢𝑟 and

𝑣1, . . . , 𝑣𝑠, respectively, are polynomials.

Let 𝑓 , 𝑔̂ ∈ 𝑘 [𝑥1, . . . , 𝑥𝑟+𝑠+2] be polynomials such that

𝑓 (𝑥1, . . . , 𝑥𝑟+𝑠+2) = 𝑓 (𝑥1, . . . , 𝑥𝑟+1)

𝑔̂(𝑥1, . . . , 𝑥𝑟+𝑠+2) = 𝑔(𝑥𝑟+2, . . . , 𝑥𝑟+𝑠+2).

Note that 𝑓 and 𝑔̂ are coprime since they involve disjoint sets of variables.

For 𝑚, 𝑛 ∈ N, let

𝑃𝑚,𝑛 = (𝑚, 𝑢𝑚1 , . . . , 𝑢
𝑚
𝑟 , 𝑛, 𝑣

𝑛
1, . . . , 𝑣

𝑛
𝑠 ).

Let 𝜖 > 0 and let 𝛿 > 0 be the quantity from Corollary 7.0.4 for 𝑓 , 𝑔̂, and 𝜖 . After excluding

finitely many pairs (𝑚, 𝑛), we can always assume that

ℎ(𝑚) + ℎ(𝑛) < 𝛿(𝑟 + 𝑠 + 2) max
𝑖, 𝑗

{ℎ(𝑢𝑚𝑖 ), ℎ(𝑣𝑛𝑗 )}.

Therefore 𝑃𝑚,𝑛 ∈ G𝑟+𝑠+2
𝑚 (𝑘)𝑆,𝛿. Applying Corollary 7.0.4,∑︁

𝑣∈𝑀𝑘\𝑆
− log− max{| 𝑓 (𝑃𝑚,𝑛) |𝑣, |𝑔̂(𝑃𝑚,𝑛) |𝑣} < 𝜖 max{ℎ(𝑢𝑚1 ), . . . , ℎ(𝑢

𝑚
𝑟 ), ℎ(𝑣𝑛1), . . . , ℎ(𝑣

𝑛
𝑠 )}

for all 𝑃𝑚,𝑛 ∈ G𝑟+𝑠+2
𝑚 (𝑘)𝑆,𝛿 outside a proper Zariski closed set 𝑍 ⊂ G𝑟+𝑠+2

𝑚 . Noting that

𝑓 (𝑃𝑚,𝑛) = 𝐹 (𝑚), 𝑔̂(𝑃𝑚,𝑛) = 𝐺 (𝑛), and

max
1≤𝑖≤𝑟,1≤ 𝑗≤𝑠

{ℎ(𝑢𝑚𝑖 ), ℎ(𝑣𝑛𝑗 )} ≤ max{𝑛, 𝑚} max
1≤𝑖≤𝑟,1≤ 𝑗≤𝑠

{ℎ(𝑢𝑖), ℎ(𝑣 𝑗 )},

we can write the above inequality as∑︁
𝑣∈𝑀𝑘\𝑆

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} < 𝜖 max{𝑛, 𝑚}.
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As in the 𝑚 = 𝑛 case, we cover 𝑍 by a hypersurface defined by a polynomial equation:

𝐸𝑥𝑐(𝑥1, . . . , 𝑥𝑟+𝑠+2) = 0.

Hence all the points 𝑃𝑚,𝑛 in 𝑍 must satisfy the above equation. Therefore, if 𝑃𝑚,𝑛 ∈ 𝑍 , after

combining the terms with the same exponents on 𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠, we obtain an equation

in terms of 𝑚, 𝑛, 𝑢1, . . . , 𝑢𝑟 , 𝑣1, . . . , 𝑣𝑠:

𝐸𝑥𝑐(𝑚, 𝑢𝑚1 , . . . , 𝑢
𝑚
𝑟 , 𝑛, 𝑣

𝑛
1, . . . , 𝑣

𝑛
𝑠 ) =

𝑊∑︁
𝑤=1

𝑃𝑤 (𝑚, 𝑛)𝑢𝑚𝑠1,𝑤
1 · · · 𝑢𝑚𝑠𝑟 ,𝑤𝑟 𝑣

𝑛𝑡1,𝑤
1 · · · 𝑣𝑛𝑡𝑠,𝑤𝑠 = 0,

where 𝑃𝑤 (𝑚, 𝑛) is a non-zero polynomial in𝑚 and 𝑛. It follows from Theorem 8.0.2 and Lemma

8.0.3 that after excluding finitely many pairs (𝑚, 𝑛) we can assume that (𝑚, 𝑛) is not a zero of

any of the polynomials 𝑃𝑤.

Dividing both sides by the negative of the first term,

𝑊∑︁
𝑤=2

𝑃𝑤 (𝑚, 𝑛)𝑢𝑚𝑠1,𝑤
1 · · · 𝑢𝑚𝑠𝑟 ,𝑤𝑟 𝑣

𝑛𝑡1,𝑤
1 · · · 𝑣𝑛𝑡𝑠,𝑤𝑠

−𝑃1(𝑚, 𝑛)𝑢𝑚𝑠1,1
1 · · · 𝑢𝑚𝑠𝑟 ,1𝑟 𝑣

𝑛𝑡1,1
1 · · · 𝑣𝑛𝑡𝑠,1𝑠

= 1.

Let 𝑄𝑤 (𝑚, 𝑛) =
𝑃𝑤 (𝑚, 𝑛)
−𝑃1(𝑚, 𝑛)

(𝑤 = 2, . . . ,𝑊), then

𝑊∑︁
𝑤=2

𝑄𝑤 (𝑚, 𝑛)𝑢𝑚(𝑠1,𝑤−𝑠1,1)
1 · · · 𝑢𝑚(𝑠𝑟 ,𝑤−𝑠𝑟 ,1)

𝑟 𝑣
𝑛(𝑡1,𝑤−𝑡1,1)
1 · · · 𝑣𝑛(𝑡𝑠,𝑤−𝑡𝑠,1)𝑠 = 1.

Letting 𝑠′
𝑖,𝑤

= 𝑠𝑖,𝑤 − 𝑠𝑖,1, 𝑡′
𝑖,𝑤

= 𝑡𝑖,𝑤 − 𝑡𝑖,1, we have

𝑊∑︁
𝑤=2

𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤
1 · · · 𝑢𝑚𝑠

′
𝑟 ,𝑤

𝑟 𝑣
𝑛𝑡 ′1,𝑤
1 · · · 𝑣𝑛𝑡

′
𝑠,𝑤

𝑠 = 1

with 𝑠′
𝑖,𝑤

, 𝑡′
𝑖,𝑤

fixed and only depending on 𝐸𝑥𝑐.

As in the proof of Lemma 8.0.3, it follows from Lemma 8.0.6 that if min{𝑚, 𝑛} is sufficiently

large, then Corollary 6.2.2 applies to the equation

𝑊∑︁
𝑤=2

𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤
1 · · · 𝑢𝑚𝑠

′
𝑟 ,𝑤

𝑟 𝑣
𝑛𝑡 ′1,𝑤
1 · · · 𝑣𝑛𝑡

′
𝑠,𝑤

𝑠 = 1,
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and we conclude that one of the summands on the left-hand side belongs to a finite set F . But

since

ℎ(𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤
1 · · · 𝑢𝑚𝑠

′
𝑟 ,𝑤

𝑟 𝑣
𝑛𝑡 ′1,𝑤
1 · · · 𝑣𝑛𝑡

′
𝑠,𝑤

𝑠 ) → ∞ as min{𝑚, 𝑛} → ∞,

and min{𝑚, 𝑛} → ∞ also means 𝑚𝑎𝑥{𝑚, 𝑛} → ∞ by the remarks at the beginning of the proof,

this implies that there are only finitely many possibilities for the pair (𝑚, 𝑛). □

We now prove a result in the general case where the roots of 𝐹 and 𝐺 are not necessarily

independent. The following theorem gives an improvement to Theorem 1.8 (ii) of Grieve-Wang

[11], who proved a similar result but with log max{𝑚, 𝑛} replaced by the weaker expression

𝑜(max{𝑚, 𝑛}).

Theorem 8.0.9. Let

𝐹 (𝑚) =
𝑠∑︁
𝑖=1

𝑝𝑖 (𝑚)𝛼𝑚𝑖

𝐺 (𝑛) =
𝑡∑︁
𝑗=1
𝑞 𝑗 (𝑛)𝛽𝑛𝑗

define two distinct algebraic linear recurrence sequences, where 𝑝𝑖 and 𝑞 𝑗 are polynomials. Let

𝑘 be a number field such that all coefficients of 𝑝𝑖 and 𝑞 𝑗 and 𝛼𝑖, 𝛽 𝑗 are in 𝑘 , for 𝑖 = 1, . . . , 𝑠,

𝑗 = 1, . . . , 𝑡. Let

𝑆0 = {𝑣 ∈ 𝑀𝑘 : max{|𝛼1 |𝑣, . . . , |𝛼𝑠 |𝑣, |𝛽1 |𝑣, . . . , |𝛽𝑡 |𝑣} < 1}.

Then there are finitely many choices of nonzero integers (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖), 𝑎𝑖𝑐𝑖 ≠ 0 such that all

solutions (𝑚, 𝑛) ∈ N2 of the inequality∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} > 𝜖 max{𝑚, 𝑛} (△)

are of the form:

(𝑚, 𝑛) = (𝑎𝑖𝑡 + 𝑏𝑖, 𝑐𝑖𝑡 + 𝑑𝑖) + (𝜇1, 𝜇2), |𝜇1 |, |𝜇2 | ≪ log 𝑡, 𝑡 ∈ N, 𝑖 = 1, . . . , 𝑟 .
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Proof. Now let {𝑢1, . . . , 𝑢𝑟} be a set of generators which generates the roots of 𝐹 and 𝐺 and

assume that the 𝑢𝑖’s are multiplicatively independent (as in the proof of Theorem 8.0.2). It follows

from the first part of the proof of Theorem 8.0.8 (using the points𝑃𝑚,𝑛 = (𝑚, 𝑢𝑚1 , ..., 𝑢
𝑚
𝑟 , 𝑛, 𝑢

𝑛
1, ..., 𝑢

𝑛
𝑟 ))

that all but finitely many pairs (𝑚, 𝑛) that fail the above inequality either satisfy finitely many

linear relations (𝑚, 𝑛) = (𝑎𝑖𝑡+𝑏𝑖, 𝑐𝑖𝑡+𝑑𝑖) or satisfy an exponential-polynomial equation coming

from Schmidt’s Subspace Theorem:

𝑊∑︁
𝑤=1

𝑃𝑤 (𝑚, 𝑛)𝑢𝑚𝑠1,𝑤+𝑛𝑡1,𝑤
1 · · · 𝑢𝑚𝑠𝑟 ,𝑤+𝑛𝑡𝑟 ,𝑤𝑟 = 0,

where 𝑃𝑤 (𝑚, 𝑛) are non-zero polynomials in 𝑚 and 𝑛. After ignoring finitely many arithmetic

progressions, we can assume that (𝑚, 𝑛) is not a zero of any 𝑃𝑤 by Lemma 8.0.3.

Dividing by the first term, we need to study the solutions (𝑚, 𝑛) to the equation

𝑊∑︁
𝑤=2

𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤+𝑛𝑡

′
1,𝑤

1 · · · 𝑢𝑚𝑠
′
𝑟 ,𝑤+𝑛𝑡 ′𝑟 ,𝑤

𝑟 = 1 (▲)

where 𝑄𝑤 = −𝑃𝑤 (𝑚, 𝑛)/𝑃1(𝑚, 𝑛).

As in Theorem 8.0.8, we can estimate the non-𝑆 contribution to the height of each term in

(▲) by

ℎ(𝑄𝑤 (𝑚, 𝑛)) ≤ 𝑅𝑤 max{log𝑚, log 𝑛} +𝑂 (1)

for some constant 𝑅𝑤. On the other hand, we have the estimate

ℎ(𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤+𝑛𝑡

′
1,𝑤

1 · · · 𝑢𝑚𝑠
′
𝑟 ,𝑤+𝑛𝑡 ′𝑟 ,𝑤

𝑟 ) ≥ 𝑐𝑤 max
𝑖

{|𝑚𝑠′𝑖,𝑤 + 𝑛𝑡′𝑖,𝑤 |} − 𝑅𝑤 log max{𝑚, 𝑛} +𝑂 (1)

for some constant 𝑐𝑤.

In order to apply Corollary 6.2.2, we need each summand to be in 𝑘𝑆,𝛿 for some 𝛿 <

1
𝑊 (𝑊 + 1) . So it suffices to require, for every 𝑤,

𝐶𝑤 max{log𝑚, log 𝑛} ≤ max
𝑖

{|𝑚𝑠′𝑖,𝑤 + 𝑛𝑡′𝑖,𝑤 |} (⋆)
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where 𝐶𝑤 =
4𝑅𝑤𝑊 (𝑊 + 1)

𝑐𝑤
. For those (𝑚, 𝑛) satisfying (⋆), we can apply Corollary 6.2.2 to

(▲). But since

ℎ(𝑄𝑤 (𝑚, 𝑛)𝑢
𝑚𝑠′1,𝑤+𝑛𝑡

′
1,𝑤

1 · · · 𝑢𝑚𝑠
′
𝑟 ,𝑤+𝑛𝑡 ′𝑟 ,𝑤

𝑟 ) → ∞ as max{𝑚, 𝑛} → ∞,

this implies that there are only finitely many solutions (𝑚, 𝑛) of∑︁
𝑣∈𝑀𝑘\𝑆0

− log− max{|𝐹 (𝑚) |𝑣, |𝐺 (𝑛) |𝑣} > 𝜖 max{𝑚, 𝑛}

satisfying (⋆).

For pairs (𝑚, 𝑛) not satisfying (⋆), there exists some 𝑤0 and 𝑖0 such that (𝑠′
𝑖0,𝑤0

, 𝑡′
𝑖0,𝑤0

) ≠

(0, 0) and

𝐶𝑤0 max{log𝑚, log 𝑛} ≥ |𝑚𝑠′𝑖0,𝑤0
+ 𝑛𝑡′𝑖0,𝑤0

|.

In fact, since as previously observed, min{𝑚, 𝑛} ≫ max{𝑚, 𝑛} for solutions (𝑚, 𝑛) to (△), we

may assume 𝑠′
𝑖0,𝑤0

𝑡′
𝑖0,𝑤0

≠ 0.

Fix such a pair (𝑚, 𝑛) and corresponding 𝑤0 and 𝑖0. Let 𝑎 = 𝑠′
𝑖0,𝑤0

, 𝑏 = 𝑡′
𝑖0,𝑤0

, and 𝑡 =

max
{⌊

𝑚
𝑏

⌋
,
⌊
− 𝑛
𝑎

⌋}
. Replacing (𝑎, 𝑏) by (−𝑎,−𝑏) if necessary, we may assume that 𝑎 < 0 and

𝑏 > 0. We set 𝜇1 = 𝑚 − 𝑏𝑡 and 𝜇2 = 𝑛 + 𝑎𝑡, so that (𝑚, 𝑛) = (𝑏𝑡,−𝑎𝑡) + (𝜇1, 𝜇2). Then clearly

min{|𝜇1 |, |𝜇2 |} ≤ max{|𝑎 |, |𝑏 |} and so

max{|𝜇1 |, |𝜇2 |} ≪ |𝑎𝜇1 + 𝑏𝜇2 | = |𝑎𝑚 + 𝑏𝑛| ≪ max{log𝑚, log 𝑛} ≪ log 𝑡

as desired. □
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CHAPTER 9

QUADRATIC POINTS ON ABELIAN SURFACES

Let 𝐶 be a curve of genus 2 over a number field 𝑘 , it is necessarily a hyperelliptic curve and we

denote its hyperelliptic involution by 𝜎. Let 𝑃0 be a rational point on𝐶, after possibly enlarging

the number field 𝑘 , and consider the embedding 𝑗 : 𝐶 → 𝐽 (𝐶), 𝑃 ↦→ [𝑃 − 𝑃0], where [𝑃 − 𝑃0]

denote the divisor class of 𝑃 − 𝑃0 on 𝐶.

By Song-Tucker [19],

Theorem 9.0.1. For any 𝜖 > 0, there exists a constant 𝑂𝜖 (1) such that for all 𝑃 ∈ 𝐶 ( 𝑘̄) of

degree 𝑑 over 𝑘 with ℎ0(𝐶, 𝑃[1] + · · · + 𝑃[𝑑]) = 1, we have

𝑑𝑎 (𝑃) ≤ ℎ𝐾 (𝑃) + (2𝑑 − 2 + 𝜖)ℎ(𝑃) +𝑂𝜖 (1),

where 𝑃𝑖 are the conjugates of 𝑃.

Let 𝑃 be a quadratic point over 𝑘 on 𝐶 with 𝜏 the nontrivial element of the Galois group of

𝑘 (𝑃) over 𝑘 , suppose that (𝑃, 𝜏𝑃) ≠ (𝑃, 𝜎𝑃). Then 𝑃 + 𝜏𝑃 ≁ 2𝑃0, hence dim |𝑃 + 𝜏𝑃 | = 0.

The above theorem tells us

𝑑𝑎 (𝑃) ≤ ℎ𝐾 (𝑃) + (2 + 𝜖)ℎ(𝑃) +𝑂𝜖 (1) ≤ (4 + 𝜖)ℎ(𝑃).

On the other hand, we have

𝜙 : 𝐶2 → 𝐶 (2) → 𝐽 (𝐶)

with the first map being the quotient by 𝑆2 and the second map being the blow up along the point

0. In Silverman’s definition of generalized GCD [18], let 𝑋 be a variety and 𝑌 a subvariety of

codimension at least 2, then let 𝑋̃ be the blow up of 𝑋 along Y and 𝑌 be the exceptional divisor.

Let 𝑃̃ be the preimage of 𝑃 in 𝑋̃ . Then the generalized GCD of a point 𝑃 ∈ (𝑋 \𝑌 ) with respect

to 𝑌 is

ℎ𝑔𝑐𝑑 (𝑃;𝑌 ) = ℎ𝑋̃,𝑌 (𝑃̃).
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Followed by this definition, we can conjecture the GCD inequality on abelian surfaces, which is

a consequence of Vojta’s conjecture.

Conjecture 9.0.2. Let 𝑋 be an abelian surface and 𝐴 an ample divisor on 𝑋 , then for 𝑃 ∈ 𝑋 we

have

ℎ𝑔𝑐𝑑 (𝑃) ≤ 𝜖ℎ𝐴 (𝑃) +𝑂 (1)

for all points outside a Zariski closed proper subset 𝑍 of 𝑋 .

It is well-known that all abelian varieties are quotients of Jacobian varieties, in particular,

almost all abelian surfaces come from 𝐽 (𝐶) of a curve 𝐶 of genus 2. Then the question turns

to whether the above inequality holds on 𝐽 (𝐶). If we consider the rational points on 𝐽 (𝐶), and

they pull back to rational points on 𝐶 (2) and all but finitely many pull back to quadratic points

on𝐶2. By pulling everything back to𝐶2, the conjecture is equivalent to the following inequality

on 𝐶, for {𝑃 ∈ 𝐶 | [𝑘 (𝑃) : 𝑘] = 2, 𝜎𝑃 ≠ 𝜏𝑃},

ℎΔ𝛼
(𝑃) ≤ 𝜖ℎ𝐴 (𝑃) +𝑂 (1)

where Δ𝛼 = {(𝑃, 𝜎𝑃) |𝑃 ∈ 𝐶}. Note that we have the relation between arithmetic discriminant

and heights:

𝑑𝑎 (𝑃) = ℎ𝐾 (𝑃) + 4ℎ(𝑃) − ℎ𝜙∗Θ(𝑃[1] , 𝑃[2]) +𝑂 (1) (9.1)

whereΘ is the theta divisor defined byΘ = 𝑗 (𝐶) with 𝑗 the map 𝑗 : 𝐶 → 𝐽 (𝐶) via 𝑃 ↦→ [𝑃−𝑃0].

Since

𝜙∗Θ = Δ𝛼 + {𝑃0} × 𝐶 + 𝐶 × {𝑃0}

then if one assumes Conjecture 9.0.2 is true, then

𝑑𝑎 (𝑃) = 4ℎ(𝑃) − ℎΔ𝛼
(𝑃[1] , 𝑃[2]) +𝑂 (1)

≥ 4ℎ(𝑃) − 𝜖ℎ(𝑃) +𝑂 (1)

≥ (4 − 𝜖)ℎ(𝑃).

Hence in this case one should expect the conjecture
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Conjecture 9.0.3. Notations are as before. For all but finitely many quadratic points 𝑃 with

(𝑃, 𝜏𝑃) ≠ (𝑃, 𝜎𝑃), then if the GCD conjecture is true, we have

(4 − 𝜖)ℎ(𝑃) ≤ 𝑑𝑎 (𝑃) ≤ (4 + 𝜖)ℎ(𝑃).

Conjecture 9.0.3 is equivalent to Conjecture 9.0.2 in the case of Jacobians of genus two

curves.

Remark 9.0.4. For the quadratic points 𝑃 with (𝑃, 𝜎𝑃) = (𝑃, 𝜏𝑃) (the quadratic points coming

from pulling back 𝑘-rational points via the hyperelliptic map 𝜓 : 𝐶 → P1), the inequality of

Conjecture 9.0.3 does not hold. In fact, we can show that for such points

(6 − 𝜖)ℎ(𝑃) ≤ 𝑑𝑎 (𝑃) ≤ (6 + 𝜖)ℎ(𝑃).

Consider 𝜓 × 𝜓 : 𝐶 × 𝐶 → P1 × P1. Let 𝐹1 and 𝐹2 be fibers of the two natural projections on

P1×P1. Indeed, since ℎ𝜙∗Θ(𝑃, 𝜎𝑃) = ℎΘ(0) is constant for such points, this follows immediately

from (9.1).
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