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ABSTRACT 
 

CLIMATIC VARIABILITY AND CHANGE IN THE MIDWESTERN UNITED STATES: 
IMPLICATIONS FOR NITROGEN LEACHING IN AGRICULTURAL SYSTEMS 

 
By 

 
William James Baule 

 
How has the background climate of the Midwestern United States changed over recent 

decades and how has this affected nitrate leaching? These are the core questions addressed in this 

dissertation, through three self-contained studies focused on different aspects of the climate-

agriculture interface in the Midwestern United States. In Chapter 2, statistical methods are used 

to quantify the solar radiation biases present in a widely used reanalysis-based 

hydrometeorological dataset over space, implement statistical bias correction and interpolation to 

address the spatial nature of this bias, and quantify the impacts of the solar radiation bias and 

proposed correction on simulated maize yields and water stress. Correction of reanalysis solar 

radiation alone brought simulated yield and water usage more in line with simulations forced 

with in-situ solar radiation. Chapter 3 examines changes in precipitation, utilizing a unique 

approach to station screening during the period 1951-2019 over a region encompassing the Great 

Lakes and broader Midwestern regions, of the United States. A multiple tier procedure was 

utilized to identify high quality input data series from the Global Historical Climatology 

Network-Daily dataset. Temporal and spatial trends were analyzed for a broad range of related 

annual and seasonal indicators ranging from accumulated totals and frequency of threshold 

events to event duration and potential linkages with total precipitable water. Our analyses 

confirm the results of previous studies while providing unique insights to data quality and 

seasonality. The trends of the indicators in our study exhibited more cohesive spatial patterns and 

temporal similarities when compared with studies with different quality control criteria, 



illustrating the importance of quality control of observations in climatic studies and highlighting 

the complexity of the changing character of precipitation. In Chapter 4, System Approach to 

Land Use Sustainability, a process-based crop model was applied with gridded soil and 

meteorological data using a yield stability zone concept to simulate corn and soybean production 

in 14 Midwestern states at the sub-field scale during the 1989-2019 period. Five zones based on 

multi-year yield stability were simulated for each field at 30m x 30m resolution, with zones 

being relative to each individual field. Outputs were evaluated using a nitrogen balance approach 

to establish zone-specific statistical distributions of nitrate leaching across the 14 states, 

specifically highlighting periods with changing and highly variable precipitation. Results 

indicate that low stable, unstable hill tops, and unstable slope zones are associated with an 

outsized contribution to overall nitrate leaching and that unstable zones exhibit variable year-to-

year response to weather tied to their position in the landscape. Spatial analysis of the results 

suggests leaching is tied to precipitation variability, water stress, and total precipitation amount. 

In aggregate, the chapters presented here highlight the interconnectedness of the soil-plant-

atmosphere continuum to changes in hydrologic regime and sensitivity to the biases in the data 

used to conduct analyses, run models, and from which conclusions are drawn. The study findings 

shed light on the potential for improved management of agricultural fields and illustrate how 

process-based crop models can be useful for designing management practices to reduce 

environmental pollution and increase profits to producers.  
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Research Context  

Climate change, climate variability, and the underlying quality of observed climate data 

are all critical to our understanding and interpretation of climatic phenomena and their impacts. 

This is particularly true when considering processes that use climate information as inputs to 

models or in decision making processes (Briley et al. 2015; Winkler 2016). The quality and 

completeness of the data available, the methods by which they were observed/generated, and 

inherent nature of the climatic variables under consideration can all influence the conclusions 

drawn from analysis. This extends from primary atmospheric variables of temperature and 

precipitation to less frequently observed data such as daily solar radiation. The nature of each 

individual variable presents unique challenges to observation/quality-control.   

One of the climatic variables with far fewer available observations over the period of 

instrumental records is solar radiation (Perdinan et al. 2020; Kiefer et al. 2019; Slater 2016). It is 

not regularly included in routine measurements taken by the two largest in-situ climate and 

observing networks in the USA (i.e. the Cooperative Observer Program (COOP) and the 

Automated Surface Observing System (ASOS)), and until recently, with the advent of the 

Climate Reference Network (CRN), was restricted to specialty networks such as those focused 

on agricultural or emergency management (Mahmood et al. 2017; Diamond et al. 2013). Given 

the paucity of in-situ observations over space and time, remotely sensed, reanalysis based, or 

modeled solar observation values are frequently used in-lieu of observations. The biases 

introduced by each of these methods are different, with reanalysis displaying some of the largest 

biases (Perdinan et al. 2020). Reanalyses are desirable for modeling applications as their outputs 

are usually serially complete, both spatially and temporally, and are informed by in-situ 

observations and representations of physical processes. However, due to the sparse nature of the 
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observational record of solar radiation, both spatially and temporally, many open questions 

remain regarding biases and their treatment in modeled solar radiation values. 

Changes in total annual precipitation and the intensity and frequency of heavy 

precipitation  have occurred across many areas of the United States and around the world during 

the twentieth century and early twenty-first centuries (Baule et al., 2022; Konrad 2001; Pryor et 

al. 2009; Pryor 2009; Walsh et al. 2014; Westra et al. 2013). These trends are directly associated 

with many impacts including increases in crop damage and large financial losses related to the 

resultant flooding (Rosenzweig et al. 2002; Pielke et al. 2000). Establishing a quantitative, cause 

and effect relationship between changing precipitation and crop-losses over time has proven 

difficult due to heterogeneities in agricultural practices (i.e. fertilizer form/rate) and crop genetics 

over several decades (Rosenzweig et al. 2002). Loss of nutrients, particularly nitrogen, is one 

such risk related to heavy precipitation and can represent a substantial financial liability to 

producers depending on crop fertility requirements, fertilizer application rates and operation size 

(Robertson et al. 2013). 

Precipitation patterns in the Midwestern region of North America have exhibited 

substantial changes in recent decades, particularly the intensity and timing of heavy precipitation 

events. However, there has been substantially less documentation in the literature on moderate 

and light accumulation events (e.g. Roque-Malo and Kumar 2017), especially during the cooler 

seasons. The recently observed changes in the precipitation regime of the Midwest have also 

resulted in changes in the nitrogen cycle, as precipitation and soil moisture act as the primary 

physical drivers of nitrogen cycling in terrestrial ecosystems. (Bernot et al. 2006; Galloway et al. 

2004). Changes in the timing, intensity, and form of precipitation have the potential to 

substantially change the cycling of nitrogen fertilizer in the location where it’s applied (e.g. 
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mineralization, immobilization, uptake, leaching, denitrification, etc.) and in sources downstream 

of the agricultural fields from where it is transported via surface runoff and leaching through the 

soil profile (Kalkhoff et al. 2016). This is particularly true during times of the year prior to the 

establishment of the crop before it can be taken up by the crop, during heavy precipitation 

events, or in fields where nitrogen fertilizers have been applied in excess of the needs of the 

planted crop (Di and Cameron 2002). All three factors mentioned are important in the Midwest, 

however the excessive use of nitrogen fertilizers is the most frequently discussed of the three 

factors in the literature and the target of management practices aimed at reducing nitrate 

pollution of the surrounding environment. It has been shown through extensive field trials in the 

state of Michigan that the uptake of applied nitrogen in grain crops on average is only about 50% 

of the total amount applied to the field (Robertson 1997; Syswerda et al. 2012). Globally the 

amount of nitrogen lost to the environment is estimated to be higher, near 2/3rds of the total 

applied (Liu et al. 2010).   The result of excessive nitrogen application is the potential loss of 

these nutrients to the larger environment, often through leaching into groundwater or transported 

to surface waters through drainage tile (Basso and Ritchie 2005).  In addition to heavy 

precipitation, excessive irrigation is also a major contributor to the leaching of excess to nitrogen 

in areas where irrigation is prevalent (Letey and Vaughan 2013), although this plays less of a 

role in the Midwest where the majority of crops are produced under rainfed conditions (Green et 

al., 2018). Excess nitrogen has been shown to interfere with various ecosystem processes 

downstream of agricultural lands under cultivation and has potential as a significant pollutant of 

ground and surface waters, especially in the form of nitrate (NO3-) (Lin et al. 2001).  

Given the observed and projected changes in precipitation and the intricate linkages of 

the climate system to nitrogen cycling, Bowles et al. (2018) outlined several potential impacts of 
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drier summers with more consecutive dry days, more intense rainfall when rain does occur 

(which is projected for much of the Midwest in the future (Hayhoe et al., 2018)), and low soil 

moisture on nitrogen cycling in the central United States. Soil moisture impacts microbial redox 

reactions that transform nitrogen (Bowles et al. 2018), and also affects the movement of 

substrates and products during decomposition Low soil moisture reduces overall microbial 

activity, and slows organic nitrogen breakdown, nitrogen mineralization and especially 

nitrification, denitrification, and nitrate leaching. Low soil moisture also affects microbial uptake 

of inorganic nitrogen and reduces plant uptake as growth and nitrogen transport to roots both 

slow. Conversely, as soil becomes saturated and oxygen availability is reduced, denitrification 

accelerates losses of nitrous oxide. Leaching losses are also increased when saturated soils allow 

the movement of nitrate below the root zone, ultimately polluting the ground or surface water. 

Thus, rainfall and soil water dynamics directly influence N transformations critical for crop 

nitrogen availability, and also drive the process of leaching and denitrification that release 

nitrogen into surrounding ecosystems.  

Changing climatic conditions and weather variability have been shown to have impacts 

on crop yields and the fate of nutrients at the regional and field scales in different regions across 

the globe both in observational (e.g. Zhou and Butterbach-Bahl 2014) and simulation studies 

(e.g. Congreves et al. 2016). In these studies, individual fields have often been treated as 

homogenous land units, and management has been uniform across the field. However, 

substantial variability occurs at sub-field scales, and management can be tailored to specific 

zones within a field based on a variety of methods (e.g.  historical yield, soil type, position in the 

landscape, yield stability). Knowledge and management of yield stability zones are one such 

methodological approach that incorporates georeferenced grain yield data from yield monitors or 



 6 

remotely sensed imagery and delineates zones based on inter-annual variability of crop yields 

(Basso et al. 2019; Jin et al. 2019; Maestrini and Basso 2018a,b; Basso et al. 2007). Once 

identified, these zones can be utilized to prescriptively manage that field to optimize yields, 

profits, and reduce negative environmental effects from excess fertilization. These zones can also 

be used to better understand the influence of weather variability and climate on different crops in 

non-homogenous zones at the sub-field scale (Maestrini and Basso 2018a). Unanswered 

questions remain regarding the behavior of these zones over time in terms of nitrogen related 

variables and how the zones respond to weather/climate variability. 

Dissertation Focus and Organization 

The goal of this work is to address questions regarding the spatial and temporal nature of 

climatic data quality, climatic trends/variability, and how this affects simulating the impacts of 

climate on nitrogen loss in a diverse regional landscape. Chapters 2 through 4 are self-contained 

studies, each with their own unique but interrelated questions. The following research questions 

are addressed in Chapters 2 through 4. 

(1) Is it possible to correct a known spatially-variable bias in modeled solar radiation 

values, given a paucity of observational data? 

(2) How has precipitation changed across the Midwestern and Great Lakes Regions of the 

United States from 1951-2019, and how does data quality affect interpretation of 

hydroclimatic trends? 

(3) Given background hydroclimatic trends, how has sub-field nitrogen loss associated with 

corn production responded across the Midwestern United States from 1989-2019? 
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In Chapter 2, statistical methods are used to quanitfy the solar radiation biases across 

space present in a widely-used reanlysis-based hydrometeorological dataset, implement 

statistical bias correction and interpolation to address the spatial nature of this bias, and quantify 

the impacts of bias and the proposed correction to solar radiation on simulated maize yields and 

water stress. Impacts of the bias correction are illustrated using SALUS at multiple locations 

across the study region. Correction of the reanalysis solar radiation alone brought simulated yield 

and water usage more in line with simulations forced with in-situ solar radiation, although the 

effect of differences in temperature between in-situ observations and reanalysis has substantial 

effect of simulated yields and water usage. 

Chapter 3 identifies and examines changes in precipitation, utilizing a unique approach to 

station screening during the period 1951-2019 over a region encompassing the Great Lakes and 

broader Midwestern region of the United States. A multiple tier procedure was utilized to 

identify high quality input data series from the Global Historical Climatology Network-Daily 

dataset. Annual and seasonal time series of precipitation indicators were calculated and subjected 

to breakpoint analysis as further quality control. Temporal and spatial trends were analyzed for a 

broad range of related indicators ranging from accumulated totals and frequencies of threshold 

events to event duration and linkages of trends in precipitation indicators with trends in total 

precipitable water. Results indicate that precipitation has generally increased across the region in 

terms of magnitude, although there is substantial variation across the study domain in 

significance and magnitude of trends by indicator. Trends were spatially most consistent across 

eastern areas of the study domain while relatively greater site to site variability in precipitation 

and trends was observed across northern and western portions. Trends in the seasonal indicators 

were generally fewer in number and less spatially coherent. The greatest numbers and most of 
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the significant trends of the seasonal indicators occurred in the fall with the fewest in the spring. 

Correlation of indicator trends with annual and seasonal trends of mean total precipitable water 

suggests weak correlations annually and moderate correlations at the seasonal level. Our results 

confirm the results of previous studies while providing unique insights to data quality and 

seasonality. The trends of the indicators in our study generally exhibited more cohesive spatial 

patterns and temporal similarities when compared with studies with different quality control 

criteria, illustrating the importance of quality control of observations in climatic studies and 

highlight the complexity of the changing character of precipitation. 

In Chapter 4, the SALUS (System Approach to Land Use Sustainability) process-based 

crop model was applied with gridded soil and meteorological data using a yield stability zone 

concept (Basso et al. 2019) to simulate corn and soybean production in 14 Midwestern states at 

the sub-field scale during the 1989-2019 period. Five zones based on multi-year yield stability 

were simulated for each field at ~30m x 30m resolution. Individual fields were delineated by 

Common Land Unit (CLU). Outputs were evaluated using a nitrogen balance approach to 

establish zone-specific statistical distributions of nitrate leaching across the 14 states, specifically 

highlighting periods with changing and highly variable precipitation. Results indicate that areas 

of the field with low and/or unstable yields are associated with an outsized contribution to 

overall nitrate leaching and that unstable zones exhibit variable year-to-year response to weather 

tied to their position in the landscape. Spatial analysis of the results suggests leaching is tied to 

precipitation variability, water stress, and total precipitation amount. Three tillage regimes were 

simulated, with the increase in nitrogen cycling increasing with the depth of tillage. When 

constrained to individual soil type, relationships to water stress, precipitation, nitrogen uptake, 

soil nitrogen, and leaching become clearer. At larger spatial scales inherent variability tied to soil 
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type, soil organic matter (SOM), and intensity of production dominate the aggregate responses in 

nitrate leaching. The regional analysis conducted here, focused on the relative behavior of the 

yield stability zones, gives abundant directions for further analysis to potentially shed light on 

the role of Plant Available Water (PAW) and SOM in regional nitrogen dynamics in relation to 

climate variability.  

Chapter 5 summarizes and discusses these results from the three preceding chapters, 

offers directions for future research, and highlights the intellectual merit and broader impacts of 

this research, both to the research community and society at large.  
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Abstract 

Daily solar radiation data are an essential input to many modeling applications in the 

agricultural and ecological sectors. Aside from specialized networks it is often infrequently 

measured directly. Reanalysis data are often used in lieu of in-situ observations, despite known 

biases that vary across space. This study presents a method to correct mean and quantile specific 

biases in growing season solar radiation data from reanalysis, based on available in-situ 

observations and interpolated the correction to reanalysis solar radiation data across space. In the 

dataset implemented, biases were evident in both the mean and variance of the reanalysis solar 

radiation prior to correction. Following correction, reanalysis data displayed a better fit with in-

situ observations. Impacts of the bias correction are illustrated using a process-based crop 

simulation model at multiple locations across the study region. Correction of reanalysis solar 

radiation alone brought simulated yield and water usage more in line with simulations forced 

with in-situ solar radiation, though the effect of differences in temperature between in-situ 

observations and reanalysis has substantial effect of simulated yields and water usage.  

Introduction 

Solar irradiance is one of the key components of the surface energy balance and credible 

solar radiation data are essential for many activities in our current society. One example is in 

agriculture, where water availability and usage are major constraints in crop production in many 

areas and assessing these often requires solar radiation data. Accurate solar radiation data are key 

for activities related to crop water availability such as irrigation scheduling and are key in both 

humid and arid environments (Ramírez et al. 2005). In model-based applications where solar 

radiation data is required, biases may lead to greater uncertainty and potential errors in 
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simulation of potential evapotranspiration (PET), evapotranspiration (ET), and crop biomass, 

among other modeled outputs.  

In lieu of in-situ observations of solar radiation, which are not typically included in most 

federally-managed observing networks over much of the observed meteorological record 

(Perdinan et al. 2020), gridded observational and reanalysis datasets have become very useful in 

operations that require solar radiation data due to their spatial and temporal completeness. There 

have been numerous studies evaluating gridded observational and reanalysis datasets for biases. 

The majority of these (e.g. Briley et al. 2021; Cucchi et al. 2020; Briley et al. 2017; Dee et al. 

2011) considered the principal variables of air temperature and precipitation and examined 

various methods for correcting the uncovered biases. Far fewer studies have examined the biases 

present in lesser observed variables such as solar radiation, or their suitability as inputs for 

impact models (Perdinan et al. 2020; Kiefer et al. 2019; Slater 2016; Weedon et al. 2011; Battisti 

et al. 2019). In many cases (e.g. Weedon et al. 2011, Kiefer et al. 2019), studies attempted to 

correct the biases inherent in these datasets. The corrective methods developed and employed for 

solar radiation data series vary in complexity and by the study area examined and include 

approaches ranging from simple factor scaling (Cosgrove et al. 2003; Ngo-Duc et al. 2005) to 

more complex regression-based methods. The more complex methods typically involve a 

regression based empirical model trained on a proxy variable or a more complex scaling method. 

Examples of proxy variables implemented include: observed cloud cover (Weedon et al. 2011), a 

multi-variate atmospheric driver approach (Wei et al. 2014), scaling to over/under estimation of 

cloudiness with clear sky radiation. Kiefer et al. (2019) used regression and hourly in-situ 

observations to correct hourly gridded data. These studies document different radiation biases, 

which are dataset dependent.  
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A number of recent studies have examined the impacts of historical climate variability 

and change on the spatial and temporal distributions of crop production across the Midwestern 

United States (Hunt et al. 2020; Jin et al. 2019; Zhang and Villarini 2019; Maestrini and Basso 

2018). Biases in temperature and precipitation and their impacts on crop production have been 

well studied (Mourtzinis et al. 2017; Liu et al. 2020). However, few studies to date have directly 

considered the impact of bias in gridded solar radiation on crop production in the Midwest. 

Examining these biases and their impacts are essential as these data are often used to drive 

impact models used by decision-makers. Perdinan et al. (2020) evaluated multiple approaches to 

estimate solar radiation and their impacts on simulated maize and soybean yields, leaf area index 

(LAI), and crop evapotranspiration from process-based crop models for one location in 

Wisconsin. The authors found little difference in simulated yields between the datasets for 

maize, while soybeans showed significant differences. However, substantial differences in daily 

values within the maize simulations were apparent with different solar estimates. Overall, 

smaller biases were observed at Hancock, WI in satellite derived, mechanistic models, and 

empirical estimates of solar radiation, while reanalysis were found to be biased high in most 

months which supports findings from Slater (2016).  

Slater (2016) highlighted the spatial variability in the bias in multiple gridded solar 

radiation datasets across the Midwest. Daily biases in the gridded solar observations varied 

across the region in both sign and magnitude. Kiefer et al. (2019) noted, in a sub-daily analysis 

of ET for the Great Lakes region, that NLDAS-2 was biased high during the peak daytime hours 

for solar radiation and developed hourly correction procedures. Both studies illustrate the 

complicated spatial and temporal nature of biases in the region and attempts to correct any 

biases. Studies from other regions (e.g. Battisti et al. 2019) indicate that gridded solar 
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observations may be appropriate for ingestion in process-based crop simulations and other 

impact models but again biases inherent in gridded datasets contribute to errors in modeled 

outputs and increase uncertainty in predictions. 

The primary goal of this study is to further develop the existing body of work on solar 

radiation bias correction across the Midwest and demonstrate the potential impacts of such work 

on process-based crop model simulations. In particular we focus on correcting the known solar 

radiation bias during the growing season in NLDAS-derived solar radiation products (e.g. 

Abatzoglou, 2013) and develop a flexible, individual-variable, site-based method for correcting 

this behavior in gridded solar radiation datasets that can be applied to other regions and other 

datasets. In addition to the correction method outlined below, a process-based crop model 

simulation was implemented to illustrate the impacts of different combinations of weather data 

and known biases on simulated crop production and water use across the Midwestern United 

States.  

Methodology 

This study primarily builds upon the methodology developed by Kiefer et al. (2019) that 

focused on the bias-correction of hourly downward solar radiation data during the April-

September warm season period for the Great Lakes region. Kiefer et al. (2019) implements a 

“one-size fits all” bias/variance correction approach based on pooled downward shortwave solar 

radiation data from the Climate Reference Network [CRN] (Hubbard et al. 2005). Given the 

complexities of hourly solar radiation data and correcting its behavior, one uniform correction 

for the region was deemed appropriate by the authors. However, for most model-based 

applications, daily data are often required, as opposed to hourly. Several modifications of the 

methods outlined in Kiefer et al. (2019) were needed to develop a similar method for daily data 
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that could account for spatial differences in the behavior of solar radiation biases in our larger 

study region.  

For this study, we obtained CRN downward solar radiation data from twenty-six 

individual observing sites (Figure 2.1) to evaluate the biases of the NLDAS-derived gridMET 

solar radiation data (Abatzoglou 2013). Fewer locations from the CRN network were available 

across the study domain for evaluation prior to 2008 and after 2015 due to a number of station 

closures and moves, so the years from 2008-2015 were chosen as the period of record due to the 

relatively higher spatial and temporal coverage of the network during that time.  

 

Figure 2.1 Location of CRN stations with acceptable temporal coverage, including solar 
radiation data from 2008-2015 over the study region. Sites are overlaid on map of thirty-meter 
pixels, identifying locations, with at least 3 years of corn or soybean production during 2008-

2018 (NASS CDL). 
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CRN is widely considered to be one of the highest quality and most spatially consistent 

climate observing networks for solar radiation in the United States. Even though the data are 

generally high quality, we noticed some exceptionally large values that are beyond the range of 

plausible values at that location/time of year on individual days. Given this, we decided a quality 

control measure, in addition to those performed by National Centers for Environmental 

Information (NCEI), was needed. We calculated estimated clear-sky solar radiation based on 

Allen et al. (1998) as follows: 

'! = (0.75 + 2 ∗ 10"# ∗ .) ∗ 	'$																						(1) 

where Rs is estimated incoming clear-sky solar radiation (MJm-2d-1); E is elevation above sea 

level (m), and Ra is calculated extraterrestrial solar radiation (MJm-2d-1). If a daily observation 

exceeded the estimated clear-sky value by more than 5%, the observed value was replaced with 

the estimated clear-sky radiation value for that day from Equation 1.  

Bias Correction 

Following the filtering/QC procedure outlined above, we then evaluated and corrected the 

growing season mean bias and the variance of the tails.  The procedure outlined here is a 

modification on the method developed by Kiefer et al. (2019) that uses only observed solar 

radiation data to correct the gridded data, rather than multiple in-situ or remotely sensed data 

(e.g. Slater 2016). Our method differs significantly from Kiefer et al. (2019) in that we are 

correcting daily (as opposed to hourly) data and our methods are site-dependent as opposed to a 

“one-size-fits-all” approach for correction.  

To determine the mean bias of the gridded solar radiation data relative to the in-situ solar 

radiation data, we calculated 2008-2013 average values of solar radiation for each day of the 

growing season (April-September). Following Kiefer et al. (2019), we estimated two linear 
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regression equations for each CRN site and their associated gridMET pixel value to yield a series 

corrected for mean bias: 

1% = 2 + 3 ∗ 1&											(2) 

where So is the eight-year day of year mean solar radiation for an individual station, a is the 

intercept coefficient, b is the slope of the regression line, and Sn is the gridded eight-year day of 

year mean solar radiation from the gridMET dataset. Using the a and b coefficients, we then 

applied the following regression equation to yield a mean bias corrected gridded solar radiation 

data series:  

1'( = 2 + 3 ∗ 1&												(3) 

where a, b, and Sn are the same as equation 2, and Sbc is the resulting mean bias-corrected 

gridMET solar radiation data. This correction was only applied to growing season dates, as at the 

latitudes in the study region, most of the solar radiation is received during the growing season 

and biases appeared concentrated during the growing season.  

Distribution Fit Correction 

Following the mean bias correction, another step is required to correct the overestimation 

of values at the lower end of the growing season distribution and the underestimation of high 

values at the higher end of the distribution following the mean bias-correction. This bias is 

evident in the raw gridMET data and is further amplified by the mean bias correction. To better 

fit the distribution of gridded solar radiation values, a distribution fitting method was developed 

and implemented to correct this behavior in gridded solar radiation values. From the bias 

corrected DOY gridMET solar means and the in-situ CRN means, the differences were binned 

into percentiles (n) spanning the 2.5th, 5th, 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th, 95th, 97.5th 

percentiles. This can be difference can be expressed as a ratio for each percentile bin: 
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													(4) 

where Pn gridmet is the individual percentile value from the bias corrected gridmet dataset and Pn CRN 

is the individual percentile bin from the in-situ CRN data. The difference was noted and applied 

as a multiplier to the daily gridded values that fell within each percentile bin for the gridded 

dataset, yielding a dataset that is corrected for both mean bias and the over/underestimation 

behavior evident in gridMET solar radiation data at the site level.  

IDW Interpolation 

To increase the utility of this method across space we used an Inverse Distance 

Weighting (IDW) scheme in ArcGIS to develop a 4-km gridded surface to interpolate the 

regression coefficients and percentile correction ratios across space. IDW methods often require 

a priori knowledge of the characteristics of the data to make appropriate decisions on parameters. 

In the case of ArcGIS, the Power/Distance Weighting Parameter is key in determining the 

characteristics of the resulting surface. Weights between 1 and 6, incremented by one, were 

tested and based on the relative sparseness of the CRN stations relative to the grid spacing a 

Power/Distance Weighting of 4 was selected (Figure 2.2).  
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Figure 2.2 IDW surfaces of the regression slope in the bias correction step with different distance 

weight/power values. 
 

Kiefer et al. (2019) also noted a distinct bias in solar radiation NLDAS-2 surrounding the 

Great Lakes, which presents as abnormally high solar radiation values that follow political 

boundaries in areas adjacent to the Great Lakes. In the case of our derived surfaces, we 

implemented a filtering algorithm to identify pixels in a bounding box around the Great Lakes 

(latitude > 40.96°N, longitude < 92.3°W) that exhibit the behavior of the additional bias. To 

identify pixels in the artifact, we standardized the bias corrected gridMET mean gride by z-

scores and identified pixels with standardized growing season solar radiation means were greater 

than +0.20. Pixels identified as part of the bias were filled with values from their longitudinal 

nearest neighbor that fell under the +0.20 normalized threshold.  
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SALUS Experiments 

To evaluate the effects of the correction on crop growth and water use we implemented a 

process based agricultural model, System for Agricultural Land Use Sustainability (SALUS) 

(Basso and Ritchie 2015) to conduct a series of simulations to examine the different 

combinations of climatic data inputs on simulated dry grain weight (GWAD), ET, Drought 

Stress (Drght_Fac). These experiments were performed at five locations within our study region 

that exhibit different energy balance regimes ranging from moisture-limited environments in the 

western areas of the region to more energy-limited environments in the east. Simulations were 

performed using several combinations of weather data as inputs for the simulations (Table 2.1). 

Each combination of weather data has standing in the literature and are common practice in 

agricultural modeling studies. Particularly for solar radiation, it is common practice, in lieu of in-

situ solar observations, to substitute gridded solar radiation data and combine this with in-situ 

temperature and precipitation data (Baule et al. 2017; Gunn et al. 2018; Battisti et al. 2019). 

Table 2.1 Combinations of weather inputs used in SALUS simulations. 

Dataset Abbreviation Temperature Dataset Precipitation Dataset Solar Dataset 
CRN CRN CRN CRN 
GM raw gridMET raw gridMET raw gridMET 

GM_BC_DF raw gridMET raw gridMET BC/DF gridMET 
GM_CRN CRN CRN BC/DF gridMET 
 

The experiment setup simulated continuous corn at both locations from 2009-2015. 

Simulations were conducted with water-stress and no-nutrient stress, to better simulate a well-

managed cropping system. Cultivar parameters were obtained from model developers (Basso 

2019, personal communication). Parameters used are representative of county-level maize 

cultivars across the Midwestern United States. Representative county soils were obtained from 

gSSURGO, and the majority soil type associated with agricultural production in the county was 
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used. Planting date was determined by the model as a date during a specified planting window, 

where certain soil temperature and moisture thresholds are met. Spring tillage prior to planting 

was also simulated.  

Results 

Dataset Quality of Control of CRN Observations 

Of the twenty-six stations shown in Figure 2.1, only 6 stations had a substantial number 

(>= 100 days from 2008-2015) of datapoints that exceeded the +5% of estimated clear sky 

radiation (Table 2.2). An example from the Sandstone, MN CRN site is shown in Figure 2.3a. In 

general, the problematic data points at each location occurred prior to 2012 and were 

concentrated in a specific block of time at each location. Data points that exceeded the estimated 

5% threshold were excluded from the calculations for the bias correction procedure. Otherwise, 

the CRN data were not changed from their original values. As seen in the Figure 2.3, the point 

values generally show a larger daily range and annual cycle when compared to gridded solar 

radiation data. This difference is notable but is expected due to the difference between a 4km 

grid cell and a point in-situ observation. Despite the differences, the annual cycle and daily 

variability of solar radiation is well represented across the region by gridMET when compared to 

in-situ CRN observations. CRN and gridMET solar radiation time series post-filtering are shown 

in Figure 2.3b.  
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Table 2.2 Stations with more than 100 days where observed radiation was greater than 5 percent 
above estimated clear sky radiation and number of days at each location. 

 
Site Days > 5% above 

estimated clear sky 
radiation 

Aberdeen, SD 193 
Sandstone, MN 189 
Necedah, WI 169 

Champaign, IL 139 
Bowling Green, KY 136 

Goodridge, MN 121 
 

 

Figure 2.3. Time series from Sandstone, MN (92.99°W, 46.11°N) of solar radiation from 
unfiltered CRN station observations (blue) and closest gridMET data point (orange). The left 

side (a) plot shows all days, and the right side (b) shows all days following filtering. 
 
Bias in the gridMET Long-Term Mean 

Following the filtering of anomalously high solar radiation values at the CRN stations, 

the differences in between the means of the annual, growing season, and non-growing season 

solar radiation were calculated for both gridMET and CRN solar radiations values (Figure 2.4). 

Across the region, twenty five of the twenty six stations showed a positive bias in gridMET solar 

radiation values when compared to the CRN observations . The maximum positive gridMET bias 
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in annual solar radiation was at Gaylord, MI (+1.49 MJ m-2 d-1). The only location in the study 

region that showed a negative (-0.26 MJ m-2 d-1) annual gridMET bias (where CRN was higher 

than gridMET) was Whitman, NE in the west-central area of the study region. All stations 

showed a positive bias in the mean difference during the growing season, though the magnitude 

varied geographically, with Batesville, AR (+2.37 MJ m-2 d-1) showing the largest growing 

season mean bias and Whitman, NE (+0.01 MJ m-2 d-1) showing the smallest. Geographically, the 

differences are scattered station to station, however the three largest differences between the 

CRN observations and gridMET values are observed at stations in Arkansas and Missouri, while 

the stations with the smallest differences in the growing season means occurred in Minnesota, 

South Dakota, and Nebraska. Although the differences in the non-growing season means are not 

the primary focus of this study, there are substantial regional differences that should be 

commented on. The largest positive differences between the two datasets for non-growing season 

solar radiation were observed at Gaylord, MI (+1.66 MJ m-2 d-1) and Goodridge, MN (+1.10 MJ 

m-2 d-1). Negative biases, where the gridded data are biased low compared to the observations 

were located in the Great Plains states, with the largest negative biases being observed at 

Whitman, NE (-0.54 MJ m-2 d-1) and Oakley, KS (-0.40 MJ m-2 d-1). Other stations with negative 

biases during the non-growing season are located in Kansas, Nebraska, and South Dakota. Still, 

the majority (19/26) of stations during the non-growing season also exhibit positive biases. The 

only stations where positive non-growing season biases were larger in magnitude than growing 

season biases were Gaylord, MI and Goodridge, MN. The stations where negative non-growing 

season biases are larger than the magnitude of the bias during growing season were Harrison, 

NE, Oakley, KS, and Whitman, NE. 
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Figure 2.4 Mean differences (MJ m-2 d-1) between filtered CRN solar radiation observations and 
gridMET solar radiation values for the period from 2008-2015. Blue bars indicate the Annual 

(January-December), orange bars indicate Growing Season (April-September), and yellow bars 
indicate Non-Growing Season (October-March) differences in solar radiation. 

 
Bias Correction/Distribution Fit Correction  
 

As shown here, the growing-season means obtained from gridMET were biased high at 

all 26 CRN locations. This bias varied substantially between stations (Figure 2.4) and our first 

step is to correct the mean bias following equations 1 and 2 for growing season days. A visual 

example of the nature of the correction is shown in Figures 2.5 and 2.6 for Coshocton, OH 

(81.78°W, 40.37°N).  
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Figure 2.5 Scatterplots and regression statistics of gridMET (y-axis) and CRN (x-axis) solar 
radiation growing season DOY means for Coshocton, OH at each stage in the correction process. 

Black line is the 1:1 line and the red line is the least-squares regression fit for the data. 

 
Figure 2.6 Percent differences between gridMET and CRN for Coshocton, OH growing season 
solar radiation across the selected percentile bins. Percentile values are shown for gridMET data 

with no correction (blue bars), only the bias correction is performed (red bars), and data after 
bias correction and distribution fit (yellow bars). 

 
The sign of the growing season solar radiation bias across the region was similar among 

locations, though the magnitude of the biases varied from location to location. In general, during 

the growing season, gridMET solar radiation values are biased high not only at the mean, but the 

behavior of the biases also depends on the strength of the incoming solar radiation. Days with 
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lower mean solar radiation values tend to be overestimated more frequently at the lower tail of 

the distribution than the mean. Higher solar radiation values are underestimated in gridMET 

when compared to the CRN observations, although the magnitude is generally smaller than the 

overestimation at the low end of the distribution. When a standard bias correction is applied to 

gridMET data to match those of the mean of the CRN observations, the result is a dataset with a 

matched mean (note: elimination of Bias between the left and middle plot of Figure 2.5). 

However, the behavior of the tails is modified as well, generally forcing the smaller values closer 

to the mean, but still overestimated. At the high end of the distribution, the application of the 

mean correction further amplifies or introduces underestimation bias in values (Figure 2.5, 

middle).  In terms of fit statistics, the R2 is essentially unchanged, S is improved, the RMSE is 

degraded slightly, and the mean Bias (as previously mentioned) is essentially eliminated. 

 

Figure 2.7 Differences in coefficient of determination (R2), slope fit (S), root mean squared error 
(RMSE), mean bias (Bias) between the mean distribution fit/bias corrected (DF) dataset and the 

mean bias correction (BC) only dataset. Stations are roughly ordered from west to east. 
 

To correct the behavior across the distribution of growing season solar radiation, the 

distribution fitting technique outlined in Eqn. 4 was implemented to further adjust the gridMET 

data to fit the nature of the CRN observations (Figure 2.6 & 2.7). In the case of the Coshocton, 
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OH site, distribution fitting of the chosen percentiles results in a dataset that is much closer to a 

1:1 slope (S) with the CRN observations than the uncorrected or simply mean bias corrected 

dataset. The R2 is degraded slightly at some locations by the distribution fitting, a slight mean 

bias is reintroduced at all locations and RMSE is slightly increased. However, the dataset is a 

much better fit (S) across the range of data following correction than the untreated data. 

Geographically the largest changes between the DF and BC data series are at locations where 

there were large biases evident at the tails of the solar radiation distribution. This behavior was 

more evident at locations in southern and eastern sections of the study region. 

IDW Interpolation of Bias Correction and Distribution Fit Method 

Eighteen surfaces (using a power weighting of 4) were generated across the study region 

(Ex. Figure 2.2). These surfaces are based on the regression coefficients and percentile 

corrections as determined in Eqns. 2-4 from the CRN and gridMET data for the individual 

station locations. Interpolated corrections were then applied on a daily basis to each grid cell 

within the study region to create daily time series of corrected solar radiation from 1979-2019. 

Surface plots of mean growing season radiation from both the uncorrected gridMET and the 

BC/DF gridMET data are shown for comparison (Figure 2.8).  
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Figure 2.8 (a) Mean growing season radiation from 1979-2018 for the study region obtained 
from daily uncorrected gridMET values and (b) bias-corrected/distribution fit gridMET based on 

the corrections derived from 2008-2015 CRN observations. 
 

Visually, between the two plots, the BC/DF gridMET solar radiation shows lower solar 

radiation values across the study region when compared to the uncorrected gridMET solar 

radiation. As expected with IDW interpolation, the largest differences in terms of MJm-2d-1 are in 

the southern and eastern portions of the study region. Percentage differences between the two 

surfaces are shown in Figure 2.9. As with any interpolation with a relatively sparse spatial 

network of observations, there appears to be some artifacts relative to station density (e.g. 

southern Ohio, Kentucky, Arkansas). Due to the sparseness of the CRN network in some areas of 

the study region, it is difficult to discern whether these are artifacts introduced by the 

interpolation or if these corrections are amplifying already existing features in the dataset (Figure 

2.9).  
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Figure 2.9 Percentage difference between BC/DF gridMET and uncorrected gridMET growing 

season mean solar radiation from 1979-2018. 
 

In Figure 2.8, the artifact around the Great Lakes region that exhibits anomalously high 

solar radiation values is visually evident in both the uncorrected and BC/DF gridMET data. 

Following the identification and nearest neighbor interpolation outlined to reduce the impact of 

this artifact on data in the impacted cells, the growing season solar radiation grids show a 

substantially reduced artifact around the lakes (Figure 2.10) and the resulting grid is more in line 

with geographical expectations of highest solar radiation values observed in the southwest 

portion of the grid decreasing eastward and northward across the region.  
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Figure 2.10 Mean growing season solar radiation from BC/DF gridMET with Great Lakes 

artifact filled. 
 
SALUS Crop Model Experiments 

The use of process-based crop simulation models allows us to evaluate the effects of 

different combinations of weather inputs on a range of potential crop production system impacts 

including yield and water use/stress. As a variable in the numerator of the equations that 

estimated PET, such as the Penman-Monteith or Priestly Taylor estimation methods, solar 

radiation plays a direct, linear role through the net radiation variable in determining potential 

evapotranspiration in most crop simulation models (Basso and Ritchie, 2018). Theoretically, 

each additional Megajoule per square meter of net radiation incident on the surface results in up 

to 0.4mm of additional potential evapotranspiration per square meter, which in turn impacts the 

amount of water available for a number of other crop growth and production cycles and 

processes. In Figure 2.1,1 simulated crop yields and growing season temperature differences 

between CRN and gridMET from 2009 through 2015 are shown. Since the goal of this research 
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does not directly include the bias correction of gridded temperature data, the variable behavior of 

the temperature differences between point and grid are important to note as they may also 

influence the simulated yields and water use. Still, the effect of the solar correction is evident at 

both locations shown in Figure 2.11.  

 

Figure 2.11 Simulated dry grain weight for maize simulations using different combinations of 
gridded and point-based temperature solar radiation and temperature observations and 

differences between gridMET values and CRN temperature observations. Data Key: CRN = 
CRN Temp, Precip, Solar; GM = raw gridmet Temp, Precip, & Solar; GM_BC = raw gridmet, 
Temp, Precip, corrected Solar, GM _CRN = gridmet Temp & Precip with CRN solar directly 

substituted for gridMET. 
 

We see that yields can vary substantially with different combinations of weather inputs. 

Using the four combinations of weather series, we can isolate the effect of solar radiation on crop 

yield. There are differences between simulated crop yields for all four input series, the largest 

differences appearing in 2012, which was a significant drought year at both locations. At 
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Lincoln, NE (a more moisture-limited location), the yields simulated in 2012 were lower than all 

previous and subsequent simulation years. With Lincoln’s solar radiation being overestimated by 

gridMET and a substantial warm bias in the 2012 season, simulations run with raw gridMET 

output showed the lowest yields in 2012 (4265 kg/ha). Simulations run with the corrected 

gridMET solar radiation (4594 kg/ha) and CRN solar radiation with gridMET temperature and 

precipitation were similar (4745 kg/ha). Data run with CRN in-situ observations yielded highest 

in 2012 (5414 kg/ha). In the case of Bedford and Lincoln, the temperature biases led to larger 

yield differences than the differences in solar radiation. However, simulations forced with 

corrected gridMET solar radiation are in relatively good agreement with runs forced with 

gridMET temperature and precipitation and CRN solar radiation, suggesting that our correction 

method does improve results when corrected gridded solar radiation are used in place of raw 

gridMET data. As these results demonstrate, individual bias correction of other key variables 

needed in crop models is also important to ensuring accurate results and caution must be 

exercised by modelers incorporating gridded meteorological data in lieu of in-situ observations.  

Drought Stress Days  

Simulation results indicate that each location experienced substantial drought stress 

across the region during the study period of record. Results showing annual and cumulative 

totals over the 5 simulation growing seasons are shown in Figure 2.12. The geographical pattern 

of drought stress over the 5 years simulations window (Figure 2.12b) with the highest drought 

stress values at the two westernmost locations (Aberdeen and Lincoln) decreasing to the east 

across the region with lowest values at Necedah, Bedford, and Chillicothe. Though the means 

follow geographical expectations with a general decrease of mean annual precipitation from east 

to west across the region, there is substantial interannual variability at all locations (Figure 
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2.12a). Maximum annual values of drought stress occurred in 2012 at all locations. The overall 

range of drought stress days among all locations and years was from 0 days to 50 days of 

simulated drought stress in a given growing season. 

 

Figure 2.12 Annual (a) and Cumulative Totals (b) of Drought Stress Days as simulated by 
SALUS with various combinations of meteorological data used as inputs. 

 
  The weather series used to force the SALUS simulations also had a substantial impact on 

simulated drought stress. At four out of the five locations, simulated drought stress was lower 

when CRN observations were used than the raw gridMET data. At all five locations the relative 

difference between simulations forced CRN only and raw gridMET in simulated drought stress 

was similar in magnitude to the difference in solar radiation between the two datasets. At 

Aberdeen, where gridMET solar radiation was not biased high during growing season, drought 

stress under CRN conditions is accordingly higher than under raw gridMET conditions. The 

effect of the solar radiation correction on simulated drought stress is such that, without additional 

bias correction for temperature and precipitation, the corrected gridMET solar radiation falls in 

the middle between the two unaltered datasets.  
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Table 2.3 Difference in cumulative simulated Eta and Etp at Lincoln, NE using different 
combinations of gridded and point-based temperature and solar radiation data. 

 
Station Dataset 

Temp/Precip 
Dataset 
Solar 

Difference 
gridded vs 
raw CRN 

% 

Différence 
gridMET 
T/P CRN 
Solar % 

Difference 
gridded 
vs raw 

CRN % 

Difference 
gridMET T/P 

with CRN Solar 
% 

Lincoln, 
NE 

  
Eta Eta Etp Etp 

 
CRN CRN 0.00 -1.48 0.00 -1.32 

 
gridMET raw gridMET 

raw 
5.36 3.81 6.42 5.02 

 
gridMET raw gridMET 

BC/DF 
3.29 1.77 2.06 0.72 

 
gridMET raw CRN 1.50 0.00 1.33 0.00 

 

Simulated potential and actual evapotranspiration for Lincoln, NE are shown in Table 

2.3. With additional bias correction of temperature and precipitation simulations, the gridded 

data results could be brought closer in line with in-situ observations. Although the percentage 

improvements in terms of simulated actual evapotranspiration and potential evapotranspiration 

are modest in percentage terms, the differences are consistent and over long simulation windows 

(i.e. 10 + years) could compound and result in differences in simulated water balances over time. 

Ideally, additional bias correction of temperature and precipitation is not a trivial task and the 

method employed in additional bias correction would likely need to be multivariate and consider 

the interactions between the driving meteorological variables not simply addressing each bias on 

its own (Maraun et al. 2017).  

Discussion/Conclusions 

Solar radiation is one of the key variables in understanding the water and energy balance 

of a wide array of systems across a range of scales. As shown by previous research, gridded 

meteorological data often contains several biases when compared to observations that can alter 
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the conclusions drawn from impact models used by researchers and decision-makers. Each 

gridded dataset is unique and biases need to be assessed prior to incorporation in impact models. 

This study examines the bias in gridMET solar radiation data in comparison to point stations 

from the CRN network. The majority of the twenty-six stations analyzed for bias against 

gridMET solar radiation showed a positive bias in the gridMET solar radiation, with greater 

biases in the south and east of the study region.  

A flexible bias correction/distribution fit correction method was incorporated on a site-

by-site basis and applied to gridded growing season solar radiation values only. The bias at each 

CRN station location was first corrected through a mean-bias correction, which improved the 

statistics towards the mean/median of the dataset but introduced or exacerbated existing biases in 

the tails of the distribution. To correct the bias in the tails following mean-bias correction, a 

distribution fit procedure was developed to correct the behavior. Following the distribution fit 

procedure, the fit at each site was better across the whole distribution of solar radiation values 

(S), with the improvements in S ranging from 0.06 at Coshocton, Ohio to 0.13 at Necedah, 

Wisconsin. As these corrections are location specific, IDW was used to generate regional grids 

of the correction coefficients and applied corrections were applied on a grid cell by grid cell 

basis across the region. Following interpolation, cleaning procedures were applied to handle 

anomalously high radiation values in an artifact affecting the Great Lakes region. As NARR-

derived datasets are well-represented in the body of literature regarding agriculture and climate 

in the United States (Perdinan et al. 2020; Kiefer et al. 2019; Slater 2016; Ho et al. 2018), 

gridMET seems an ideal illustrative example though conceptually this approach could be 

extended to any number of gridded datasets. Ideally, efforts to correct meteorological data such 

as solar radiation include a cross-validation (e.g. Wang et al. 2018) to evaluate the effectiveness 
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of bias correction methodology by subjecting data not used in the training to the correction 

model and evaluating the performance of the model on independent data. While the authors 

understand the importance of this in most cases, the authors determined that the period of record 

available for CRN with sufficient spatial density was too short for a true cross-validation 

approach to be used. When compared with other studies that deal with correction of gridded solar 

radiation data in our study region (namely Kiefer et al. 2019; Slater 2016), our corrected grids 

are similar in appearance and improvement over uncorrected grids. If a more spatially robust and 

homogenous network of solar radiation observations were to exist across the study region, our 

approach would likely produce a closer fit to observations than previous methods applied to 

correct growing season solar radiation in our region. However, current limitations regarding solar 

radiation observations and heterogeneities between existing observing networks make this an 

ongoing and difficult task.  

Incorporating the corrected weather data into a process-based crop model (SALUS) 

illustrates the sensitivity of crop models to different combinations of weather data. The warm 

bias in many growing seasons from 2009-2015, particularly 2012 and 2013, and the high bias in 

the raw gridMET data typically led to lower yields and the highest water use over the seasons 

simulated. CRN was generally associated with the highest yields and lower water demands in the 

crop model simulations, while the corrected gridMET was generally in between simulations 

forced with in-situ CRN or raw gridMET data. Simulations forced with CRN solar and gridMET 

temperature and precipitation were closest to simulations forced with BC/DF gridMET solar. If 

simulations were to be run over longer time horizons (i.e. 10+ years), the difference in water use 

between simulations could amount to approximately one-year’s worth of precipitation at many 

locations. Uncertainty in crop models, gridded meteorological data, and climate projections are 
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all common sources of frustration for researchers and end-users in a broad array of sectors 

(Asseng et al. 2015; Basso et al. 2015; Xiong et al. 2020; Tao et al. 2020). In this regard, many 

previous studies have addressed uncertainties associated with temperature input data and to a 

lesser extent precipitation. Much less research has concerned solar radiation. Our method 

provides an examination of the relative effects of solar radiation on crop yield and drought stress; 

temperature and precipitation biases also need to be considered before results from crop models 

are used in an operational capacity.  

Looking towards the future there are several opportunities for additional research. 

Incorporating additional observational sites from non-Federal networks (i.e. state mesonets) that 

observe solar radiation would improve the spatial representativeness of the observational sites 

from which the correction coefficients are generated (e.g. Slater 2016). In addition, testing of this 

method on other gridded solar radiation datasets would provide more a comprehensive 

understanding of the biases present in gridded meteorological observations in our study region 

and their potential impacts on agricultural systems.  
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Abstract 
 

Changes in precipitation can have broad and significant societal impacts. A number of 

previous studies that analyzed changes in precipitation across the Great Lakes and Midwest for a 

variety of time periods and using a range of quality-control standards and methods observed 

increased precipitation rates and totals, although there was considerable site-to-site variability, 

even for sites in close physical proximity. Biases and discontinuities in precipitation observations 

may contribute to this variability. This study identifies and examines changes in precipitation 

utilizing a unique approach to observation series screening over a region encompassing the Great 

Lakes and broader Midwestern region of the United States for the period 1951-2019. A multiple 

tier procedure was utilized to identify high quality input data series from the Global Historical 

Climatology Network-Daily dataset. Annual and seasonal time series of precipitation indicators 

were calculated and subjected to breakpoint analysis as further quality control. Trends were 

analyzed across a broad range of related indicators, from totals and frequencies of threshold 

events to event duration and potential linkages with total precipitable water. Results indicate that 

annual precipitation has generally increased across the region in terms of totals, although there is 

substantial variation across the study domain in the significance and magnitude of annual trends 

by indicator. Annual trends were spatially most consistent across eastern areas of the study 

domain while relatively greater station-to-station variability in trend significance and magnitude 

was observed across northern and western portions. Significant trends were generally fewer in 

number for seasonal precipitation indicators and less spatially coherent. The greatest number of 

significant trends occurred in fall with the fewest in spring. Correlation of indicator trends with 

trends of mean total precipitable water suggests weak correlations annually and moderate 

correlations at the seasonal scale. The trends of the precipitation indicators in our study exhibited 
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more coherent spatial patterns when compared with studies with different quality control criteria, 

illustrating the importance of quality control of observations in climatic studies and highlighting 

the complexity of the changing character of precipitation. 

Introduction 

Precipitation is the longest observed and most widely reported meteorological variable 

and is an essential component of the Earth’s hydrologic cycle (Legates and Willmott, 1990). 

Precipitation is commonly defined as “the amount, usually expressed in millimeters or inches of 

liquid water depth, of the water substance that has fallen at a given point over a specified period 

of time” (Huschke, 1959, p.438). Although precipitation accumulation at daily, monthly, 

seasonal and annual scales has received the most attention in the climatological literature (e.g., 

Contractor et al. 2021), other precipitation characteristics such as frequency, intensity, and 

duration are as much, if not more, of a concern for many natural and human systems (Trenberth 

et al., 2003; Bartels et al., 2020). Moreover, changes in one or more precipitation characteristics 

can have substantial societal implications impacting many sectors, including, among others, 

agriculture (e.g., Pielke et al., 2000; Rosenzweig et al., 2002; Hunt et al. 2020; Kiefer et al., 

2021), transportation (e.g., Attavanich et al., 2013; Talukder & Hipel, 2020), and tourism (e.g., 

Chin et al., 2018). 

Changes in precipitation characteristics are a particular concern for the Midwest and 

Great Lakes region of the United States given the region’s unique hydrology (Gronewold et al., 

2021) and its agricultural importance and contribution to regional, national and global food 

security (Angel et al., 2018; Takle & Gutowski, 2020). Not surprisingly, a number of studies 

have investigated temporal trends in precipitation characteristics either specifically for the region 

(e.g., Zhang & Villarini, 2019) or as part of larger analyses of precipitation trends in the United 



 51 

States (e.g., Kunkel et al., 2020a). For the most part, these analyses have focused on trends in 

annual and seasonal precipitation totals (e.g., Schoof et al., 2010), extreme precipitation (e.g., 

Pryor et al., 2009; Walsh et al., 2014), and/or the frequency of wet days (e.g., Roque-Malo & 

Kumar 2017; Bartels et al. 2018). In general, precipitation frequency and total accumulation 

appear to have increased across the region over the last several decades (Higgins et al., 2007; Dai 

et al., 2016; Contractor et al, 2021). In addition, the amount of precipitation falling during the 

heaviest events has increased at a greater rate in the Midwest and Great Lakes region compared 

to the national average (Angel et al. 2018). Extended dry periods have become less frequent, but 

their intensity (i.e. length) has increased slightly in recent decades (Groisman & Knight, 2008).  

One constraint to comprehensive and accurate analysis of temporal trends in precipitation 

characteristics at the regional scale is the availability and quality of precipitation observations 

(Costa and Soares, 2009). Although numerous authors have examined the homogeneity of time 

series for various climatic variables including daily precipitation (Winkler, 2004; Daly et al., 

2007; Wang et al., 2010), many studies employing in-situ climate observations fail to take data 

quality, other than data completeness, into account, even though the magnitude and sign of 

temporal trends can be biased by changes in technology, station siting, observing practices and 

other inhomogeneities that are not necessarily captured by station record completeness or 

recorded in standard metadata archives (Wang et al., 2010; Williams et al., 2012; Baule and 

Shulski, 2014). Recent progress in the development of spatial and temporal interpolation 

schemes and gridded datasets, the integration of radar and satellite derived precipitation 

estimates with in-situ observations, the development of atmospheric reanalysis products, and the 

availability of simulations from regional and global climate models have only partially alleviated 

concerns about data quality (Zhang et al., 2011). The limited periods of record for radar and 



 52 

satellite precipitation estimates constrain their use for estimating temporal trends, and gridded 

datasets can inherit the inhomogeneities of the underlying station observations, with developers 

of these datasets often advising against their use for time series analysis (e.g., Daly et al. 2010). 

Consequently, station-based climatologies, in spite of their limitations, remain the benchmark for 

the assessment of long-term trends (Kiefer et al., 2021), although caution in their application is 

critical to guard against misinterpreting temporal trends. Earlier studies of precipitation trends 

for the Midwest and Great Lakes region frequently used station-level daily precipitation 

observations from the Global Historical Climatology Network-Daily (GHCN-D) database 

(Menne et al. 2012) for trend estimation (e.g., Villarini et al. 2011; Janssen et al. 2014; Guilbert 

et al. 2015; Wu 2015; Hoerling et al. 2016; Roque-Malo and Kumar 2017; Huang et al. 2017, 

2018; Kunkel et al. 2020a, b). For the most part, quality-control procedures have been limited to 

those applied by the GHCN-D dataset developers to identify and/or correct for errors and 

inhomogeneities in the precipitation data (Durre et al. 2008, 2010), supplemented by an 

evaluation of data completeness (e.g., Kunkel et al. 2002b).  

Other studies have investigated the synoptic-scale drivers of precipitation, particularly 

those associated with extreme precipitation, finding that extreme precipitation events across the 

Midwest and Great Lakes region are often associated with a westward expansion and 

strengthening of subtropical high pressure across the western Atlantic Basin (Gutowski et al. 

2008) as well as the advection of low-level moisture from the Gulf of Mexico ahead of slow 

moving tropospheric waves (Winkler 1988; Zhang and Villarini 2019), with the latter being more 

prevalent in the western portions of the region and the former in the eastern areas (Bell and 

Janowiak 1995; Konrad 2001; Weaver and Nigam 2008). Consistent with these findings, Kunkel 

et al. (2020a) showed that extreme daily precipitation events across the contiguous United States, 
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including the Midwest and Great Lakes region, are directly related to total precipitable water. 

Specifically, Kunkel et al. (2020b) examined the relationship between regional trends in total 

precipitable water and regional trends in extreme precipitation as calculated from GHCN-D 

station-level time series. These large-scale drivers of precipitation are often amplified or 

suppressed by regional and local climate drivers such as topography, water bodies, and land 

use/land cover (Myhre et al., 2016; Kunkel et al., 2020a), which can introduce considerable 

spatial variability in the temporal trends of precipitation characteristics, especially in the 

Midwest and Great Lakes region with its large water bodies and varied land use/land cover. For 

the most part, quality control of the precipitation observations employed in these studies of the 

synoptic, regional and local drivers of precipitation and their contribution to temporal trends in 

precipitation was confined to an assessment of data completeness of the precipitation time series.  

This study provides a comprehensive assessment of the temporal trends in precipitation 

characteristics for the Midwest and Great Lakes region that focuses on the quality of available 

precipitation time series. We employ a three-step quality-control procedure that evaluates the 

GHCN-D precipitation time series for data completeness, possible observer bias, and potential 

breakpoints (i.e., discontinuities) with the goal of identifying those GHCN-D stations in which 

we have the greatest confidence for precipitation trend analysis, thereby increasing confidence in 

the sign, magnitude, significance, and spatial coherence of precipitation trends. We include a 

range of precipitation indicators that capture the frequency and persistence of high frequency, 

low magnitude and low frequency, high magnitude events. Furthermore, we examine the 

associations between temporal trends in the quality-controlled suite of precipitation indicators 

and trends in atmospheric moisture. The study findings provide the region’s many stakeholders 

with needed information on long-term trends in precipitation characteristics of concern to them, 
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greater certainty in incorporating these data in planning processes and a high-quality baseline for 

assessing future trends.  

Methods 

For this study, the Midwest and Great Lakes region was defined as the states of 

Pennsylvania, Ohio, Indiana, Michigan, Illinois, Wisconsin, Minnesota, Iowa, Missouri, Kansas, 

Nebraska, South Dakota, New York, and North Dakota (Figure 3.1).  

 

Figure 3.1 Study region and the United States Historical Climate Network (USHCN) stations 
(green circles) within the study region that passed the quality control checks for data 

completeness and lack of observer bias as outlined in the methods. Stations that passed the data 
completeness check but failed at least one of the tests for lack of observer bias are shown as pink 
circles. The number of stations that passed the third quality control test (no breakpoints) is given 

in Table 3.2. 

We analyzed a subset of individual site climate series from the National Centers for 

Environmental Information’s (NCEI) GHCN-D collection (Menne et al. 2012). As a first step in 

selecting stations for the analysis, we examined the GHCN-D database for station series included 

in the United State Historical Climatology Network (USHCN; Easterling 2002) which had at 
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least 90% data completeness for daily precipitation during 1951-2019. Only USHCN sites were 

considered, as these stations were preselected by NCEI based on record length, data 

completeness, and historical stability (Menne & Williams, 2012). Data flagged by the GHCN-D 

quality control procedures as suspicious were marked as missing (Menne et al. 2012). The length 

of the study period allowed for trends in the second half of the 20th century and the early 21st 

century to be assessed while maintaining a relatively large pool of potential stations and 

reasonable spatial coverage. This first data quality control step led to an initial subset of 317 

stations over the study region. 

The next quality control step involved using tests proposed by Daly et al. (2007) to check 

for observer bias in precipitation time series, specifically the underreporting of light (1.26 mm) 

precipitation amounts and the overreporting of precipitation amounts evenly divisible by 5 and/or 

10 when expressed as inches. As these tests were designed for data originally measured in 

inches, they are described here using inches (in.) in place of millimeters. The under-reporting 

check consisted of calculating the ratio of counts between 0.06 -0.10 in. (C6-10) and 0.01-0.05 in. 

(C1-5) as follows: 

'4 =
85"67
86"#

,					 

where C6-10 is the total observation count in the 0.06-0.10-in. range, and C1-5 is the total 

observation count in the 0.01-0.05-in. range. If the ratio, RL, between C6-10 and C1-5 exceeded 

0.60, the station failed the check (Daly et al., 2007).  

The tests for errant reporting of values divisible by 5 or 10 were conducted by binning 

precipitation into 0.01 in. bins, fitting a gamma distribution to the data between 0.03 in. and 1.00 

in., and comparing the predicted (P) and observed (O) frequency of the binned observations with 

the residual (R) calculated as: 
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' = 100 ∗ (5 − ;)     

The test for biases in amounts divisible by 5 and amounts only divisible by 10 were 

carried out separately. For the divisible by 5 test, the first residual mean was calculated by 

averaging the residuals over all amounts except those divisible by 5 (R1) and the second residual 

(R5) consisted of the mean of residuals for only amounts divisible by 5 as follows: 

'<6 =	
∑ '6!
&"
,86
>6

; 	'<# =	
∑ '#
&#
,86
>#

								 

where n1 and n5 are the number of ones and fives bins and R1 and R5 are residuals calculated 

from equation 2. The means for the divisible by 10 bias were calculated similarly, instead using 

values only divisible by 10. The means were compared using a two-tailed t-test with an alpha 

level of 0.01.  

Examples of output from the second quality control procedures are shown in Figure 3.2 

for two locations, Manhattan, KS HCN which passed all the bias tests at p ≤ 0.01 or RL ≤ 0.6 

despite showing a small divisible by 10 bias, and Lamar 7N, MO HCN which failed the bias tests 

showing a strong under reporting bias, a strong divisible by 5 bias, and a strong divisible by 10 

bias. Stations that failed any of the tests were removed from the analysis, leaving a subset of 114 

long-term climate series across the Midwest and Great Lakes region for the period from 1951-

2019 for precipitation indicators.  
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Figure 3.2 Histograms from two example stations in the study region showing precipitation 
frequency (blue bars) over the period from 1951-2019 binned in 0.01” increments and a gamma 

distribution (red line) fit to the data following Daly et al. (2007). Manhattan, KS HCN (left) 
passes (p ≤ .01) the tests for underreporting of daily precipitation amounts less than 0.05 in. (1.26 
mm) and for overreporting of daily precipitation amounts (in inches) evenly divisible by 5 or 10 
despite showing a small divisible by 10 bias. Lamar 7N, MO HCN (right) fails all three tests (p 

≤0 .01), showing a strong under reporting bias, a strong divisible by 5 bias, and a strong divisible 
by 10 bias. 

The third quality control step involved checking the time series of the precipitation 

indicators for breakpoints. Possible sources of discontinuities in the time series include, among 

others, instrument changes, station moves, and changes in observation protocols including time 

of observation (Winkler 2004). Following Mallakpour and Villarini (2016), the Pettitt test (Pettitt 

1979) was applied to identify years when a breakpoint is likely, indicating a non-homogenous 

time series. A breakpoint was considered significant at p ≤ 0.01, and the time series for that 

station was excluded from further analysis. This resulted in a variable number of stations per 

indicator, with the number of excluded stations ranging from none to a maximum of 17.  The 

description of the Pettitt test, following Jaiswal et al. (2015) is: a method that detects a 

significant change in the mean of a time series, where the exact time of the change (i.e. 

breakpoint) is unknown, According to the Pettit test, if x1,x2,x3,…xn is a series of observed data 

which has a break point at t  so that x1,x2,x3,…xt has a distribution (F1(x)) which is different from 



 58 

the distribution (F2(x))  of the second part of the series xt+1,xt+2,xt+3,…xn. The non-parametric test 

statistic is described as follows: 

@0 =	A A BC>(D, − D9

&

980:6
)

0

,86
 

BC>ED, − D9F = 	G

1, HIED, − D9F > 0		

0, HIED, − D9F = 0	

−1, HIED, − D9F < 0	

 

The test statistic K and the associated confidence level (r) for the sample length (n) is described 

as:  

L = M2D|@0| 

O = P(
"<

&$:&%) 

When r is smaller than the specified confidence level (p), a breakpoint is considered significant.  

Precipitation Indicators 

This study included a range of precipitation indicators. Several indicators were used to 

characterize the frequency of non-extreme precipitation, including the number of days with 

measurable precipitation (e.g. Pryor et al. 2009) and the probabilities of wet-wet day and dry-dry 

day sequences (e.g., Ines et al., 2011). A wet day was defined as a precipitation total ≥ 1.26mm 

(0.05 in.) (Groisman et al. 1999). Extreme precipitation was represented in the analysis by 

indices developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) 

(Donat et al. 2013) and annual values were calculated using the software packages provided by 

the ETCCDI Working Group (available at http://www.climdex.org). The extreme precipitation 

indicators include 10 wet indices and 1 dry index that can be further grouped into percentile-

based indices (2), threshold indices (3), absolute value indices (2), duration indices (2), annual 

accumulation, and “simple” intensity (annual total precipitation divided by the number of wet 
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days). For the percentile-based indices, the base period for defining the percentile value was the 

30-year climate normal period of 1981-2010. Descriptions of each of the non-extreme and 

extreme precipitation indicators are provided in Table 3.1. 

All precipitation indicators were also defined for the climatological seasons of spring 

(MAM), summer (JJA), fall (SON), and winter (DJF). This is in contrast to most previous studies 

where precipitation indicators were calculated for annual time steps, with less attention paid to 

the seasonal variations in the precipitation indicators beyond the frequency of high intensity 

daily precipitation events (e.g. Mallakpour and Villarini, 2017). Given the importance of 

precipitation timing and sequencing for numerous regional applications, such as soil moisture 

and nitrogen movement in agricultural systems (Bowles et al., 2018; Riha et al., 1996) and plant 

disease risk (Komoto et al. 2021), this study extended the precipitation indicators to the seasonal 

time step. Additionally, the seasonal analyses provide greater context to more clearly interpret 

annual trends.  
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Table 3.1 Precipitation indicators included in the analysis. All indicators were calculated 
annually and seasonally except those marked with an asterisk (*) were only calculated annually. 

 
Index Name ID Definition Units 

Accumulation/Simple Intensity 
Annual total wet day 

precipitation 
PRCPTOT Total precipitation on 

wet days (PRCP ≥ 
1.26mm) 

mm 

Simple daily intensity index SDII Total precipitation 
divided by the number 

of wet days 

mm day-1 

Duration 
Consecutive wet days CWD Maximum number of 

consecutive days with 
PRCP ≥1.26 mm 

days 

Consecutive dry days CDD Maximum number of 
consecutive days with 

PRCP < 1.26 mm 

days 

Percentile (Percentile values were calculated for the period 1951-1980) 
Precipitation on very wet 

days 
R95pTOT Total precipitation on 

days when PRCP ≥ 95th 
percentile 

mm 

Precipitation on extremely 
wet days 

R99pTOT Total precipitation on 
days when PRCP ≥ 99th 

percentile 

mm 

Threshold 
Number of days with 

measurable precipitation 
R1.26mm Number of days with 

PRCP ≥ 1.26mm 
days 

Number of heavy 
precipitation days 

R10mm Number of days with 
precipitation ≥ 10mm 

days 

Number of very heavy 
precipitation days 

R20mm Number of days with 
precipitation ≥ 20mm 

days 

Number of days with 
consecutive days with 

measurable precipitation 

WW Annual count of days 
when PRCP ≥ 1.26 mm 

on consecutive days 

days 

Number of days with 
consecutive days without 
measurable precipitation 

DD Annual count of days 
when PRCP < 1.26 mm 

on consecutive days 

days 

Absolute 
Maximum 1-day 

precipitation* 
Rx1day Maximum 1-day 

precipitation 
mm 

Maximum 5-day 
precipitation* 

Rx5day Maximum consecutive 
5-day precipitation 

mm 

 

Following the lead of numerous recent studies (e.g., Alexander et al., 2006; Pryor et al., 

2009; Shulski et al., 2015; Dai et al., 2016; Roque-Malo and Kumar, 2017), non-parametric 
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statistical methods were employed to estimate the significance and magnitude of temporal trends 

in the precipitation indicators at the study locations. While a number of potential non-parametric 

methods were available (e.g. Sneyers, 1990; Şen, 2015; Onyutha,2021), we chose the two-tailed 

Mann-Kendall trend test (Mann, 1945; Kendall, 1955;1975) to test for the significance of 

potential temporal trends due to its prevalence in previously mentioned studies across the region 

to allow for intercomparison of results. A strength of the Mann-Kendall method is its ability to 

assess the significance of trends that are monotonic but not necessarily linear in character. For 

those locations with significant trends as identified by the Mann-Kendall test, the nonparametric 

Kendall’s tau-based slope estimator (Sen, 1968) was used to obtain a numerical estimate of the 

temporal trend. All analyses were conducted using three significance levels (p ≤ 0.05, p ≤ 0.10, 

and p ≤ 0.20) to examine how significance level affects the number of significant trends and their 

spatial representation. The equations describing the Mann-Kendall test are as follows: 

1 = 	AABC>(D, − D9

,"6

986
)

&

,86
 

where n is the total length of data, xi and xj are two generic sequential data values, and the 

following function assumes the values: 

BC>ED, − D9F = 	G

1, HI	ED, − D9F > 0

0, HI	ED, − D9F = 0	

−1, HI	ED, − D9F < 	0

 

The mean of S is E[S] = 0 and the variance s2 is  

Q> =
1

>
R>(> − 1)(2> + 5) −	A S(S − 1)(2S + 5))

0
T 
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where n is the length of the time series and t is the extent of any given ties and St denotes the 

summation over all tied values. The statistic S is approximately normally distributed provided 

that the following Z-transformation is employed: 

U = 	

⎩
⎪
⎨

⎪
⎧
1 − 1

Q
		HI	1 < 0	

0							HI	1 = 0
1 + 1

Q
			HI	1 > 0

 

The Sen’s (1968) slope was calculated as follows: first, a set of linear slopes is calculated 

Z? =	
[9 − [,
\ − H

 

for (1 £ i < j £ n), where d is the slope, X denotes the variable, n is the sample length, and i, j, 

and k are indices. Sen’s slope is then calculated as the median from all slopes (dk).    

Total Precipitable Water 

Daily values of total precipitable water (TOTPRCPWAT) were obtained from the 

NCEP/NCAR I Reanalysis (Kalnay et al., 1996) at a 2.5°x2.5° spatial resolution. The daily 

values were used to calculate mean daily annual and seasonal total precipitable water for each 

year during the 1951-2019 study period for a bounding box ranging from 106°W - 69°W 

longitude and 34°N - 54°N latitude. Only grid cells that contained observing sites used in our 

analyses were subjected to analysis. Pearson correlation coefficients (r) and non-parametric 

Kendall rank correlation coefficients (t) were calculated between the trend value of four 

representative precipitation indicators (WW, PRCPTOT, R1.26mm, R95pTOT) at each station 

considered previously and the trend of total precipitable water of the nearest reanalysis grid cell. 

Pettitt tests were conducted on the NCEP NCAR time series of precipitable water for each grid 

cell to examine for potential heterogeneities prior to the satellite era (e.g. Kunkel et al. 2020b.). 
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Significant breakpoints (p < 0.01) were evident at some grid cells, however they were not 

clustered in time. Given the noted strength of the NCEP-NCAR reanalysis in areas where 

radiosonde observations are available (Trenberth et al. 2005), as in our study region, we deemed 

the data appropriate for our analyses.  

Results 

Trends in Precipitation Indicators 

Annual Indicators 

For the annually-derived precipitation indictors, the number of stations with statistically-

significant (p ≤ 0.10) trends varied substantially among the different indicators, ranging from 

67% of the station sites for annual total precipitation (PRCPTOT) to only 20% of the stations for 

the maximum number of consecutive wet days per year (CWD) (Table 3.2). With the exception 

of the maximum number of consecutive dry days (CDD) and the number of dry-dry day 

sequences (DD), more than 90% of the statistically significant trends over time when summed 

across the indicator variables are positive, indicating a generally wetter climate. The negative 

trends observed for CDD and DD are also indicative of a wetter climate. In addition to 

PRCPTOT, the majority of the locations display significant upward trends for the simple 

intensity index (PRCPTOT divided by the number of days with precipitation ≥ 1 mm; SDII), the 

number of days per year with precipitation ≥ 10mm (R10mm), the number of days per year with 

precipitation ≥ 20 mm (R20mm), and the total precipitation on days with daily precipitation ≥ 

95th percentile (R95pTOT). A majority (54%) of stations also have statistically significant 

negative trends for DD, whereas only 39% of the locations have statistically significant positive 

trends in the annual number of wet-wet day sequences (WW). A considerably smaller number of 

stations displayed significant trends for several of the other indicators, with the fraction of 
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stations with significant trends falling below 30% for CDD, CWD, total precipitation on days 

with daily precipitation ≥ 99th percentile (R99pTOT), maximum one-day precipitation amount 

(Rx1day) and maximum consecutive 5-day precipitation (Rx5day). With the exception of CDD 

and DD, statistically significant negative trends were infrequent for the various indicators, 

ranging from no significant negative trends for CWD, SDII, R95pTOT, R99pTOT, SDII, 

Rx1day, and Rx5day to 6% of the locations for WW.  The number of stations exhibiting 

significant breakpoints was greatest for PRCPTOT (14) and R.126MM (17). Rx1day, Rx5day, 

CDD, and CWD showed no significant breakpoints.  
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Table 3.2 Number of stations exhibiting statistically significant trends (Mann Kendall, p £ 0.05 
two-tailed, p £ 0.10 two-tailed, p £ 0.20, two-tailed) from 1951-2019 in the annual precipitation 
indicators. Indicators where more than 50% of stations analyzed showed a significant trend are 
shown in bold. See Table 3.1 for definition of the abbreviations for the precipitation indicators. 

 
Precipitation 

Indicator 
Total 

number of 
stations 

after 
breakpoint 

analysis 

Number 
of stations 

with 
significant 

positive 
trends 

(p£0.05) 

Number 
of stations 

with 
significant 

positive 
trends 

(p£0.10) 

Number 
of stations 

with 
significant 

positive 
trends 

(p£0.20) 

Number 
of stations 

with 
significant 
negative 
trends 

(p£0.05) 

Number 
of stations 

with 
significant 
negative 
trends 

(p£0.10) 

Number 
of stations 

with 
significant 
negative 
trends 

(p£0.20) 
PRCPTOT 100 47 75 79 1 1 1 

R1.26mm 97 42 53 61 1 3 5 

SDII 112 42 52 62 0 0 3 

CWD 114 17 23 36 0 0 0 

CDD 113 0 2 2 16 28 44 

WW 105 27 44 51 5 7 9 

DD 107 2 3 3 41 61 65 

R10mm 104 42 60 72 0 1 1 

R20mm 101 35 58 59 1 1 1 

R95pTOT 104 38 62 63 0 0 0 

R99pTOT 108 11 33 39 0 0 0 

Rx1day 114 13 29 43 0 0 0 

Rx5day 114 23 33 47 0 0 2 

 

A subset of indicators that encompass the range of precipitation characteristics included 

in the analysis, namely PRCPTOT, WW, the number of wet days with precipitation ≥ 1.26 mm 

(R1.26mm), and R95pTOT, is used to illustrate the spatial variability across the study region in 

the temporal trends for the annual indicators (Figure 3.3). For all four indicators, statistically 

significant positive trends are distributed across the study region, although the magnitude of 

these trends is generally larger in the eastern two-thirds of the study area, including in the 

vicinity of the Great Lakes. In the western third of the study region, although the trends in the 

selected indicators are generally positive, the magnitude of the trends is smaller with relatively 
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fewer stations meeting the threshold for statistical significance. Regardless of precipitation 

indicator, negative trends are evident for only a few stations and are insignificant. Significance of 

the same indicators but with a weaker significance threshold (p£0.20) is shown in Figure 3.4. 

When the significance level is lowered, the number of significant positive trends increases 

substantially with no or very little increase in the number of significant negative trends and the 

stations with significant positive trends are more spatially coherent. When a stricter (p£0.05) 

threshold is used, the number of stations exhibiting significant trends decreases when compared 

to the moderate (p£0.10) and weak (p£0.20) thresholds. Spatially, when the strict threshold is 

used, the largest groupings of sites with significant trends are in the central and eastern portions 

of the study region (Figure 3.5). The number and spatial coherence of significant positive trends 

in the western areas of the study region are reduced under the strict criterion.  
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Figure 3.3 Trends for 1951-2019 in representative annual indicators of precipitation 

characteristics at locations in the Midwest and Great Lakes region that passed the quality control 
checks described in the methods section: a) annual counts of wet-wet day sequences (ANN WW; 
days; count year-1; upper left), b) annual total precipitation on wet days (PRCPTOT; mm year-1; 

upper right), c) number of days with precipitation ≥ 1.26 mm (R1.26mm; days year-1; lower left), 
and d) total precipitation on days when precipitation is  ≥  95th percentile (R95pTOT; mm year-1; 

lower right). 
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Figure 3.4 Trends (units year-1) for 1951-2019 in representative annual indicators of precipitation 
characteristics at locations in the Midwest and Great Lakes region that passed the quality control 
checks described in the methods section: a) annual counts of wet-wet day sequences (ANN WW; 

days; upper left), b) annual total precipitation on wet days (PRCPTOT; mm; upper right), c) 
number of days with precipitation ≥ 1.26 mm (R1.26mm; days; lower left), and d) total 

precipitation on days when precipitation is  ≥  95th percentile (R95pTOT; mm; lower right). 
Significance threshold was reduced to p≤ 0.20. 
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Figure 3.5 Trends (units year-1) for 1951-2019 in representative annual indicators of precipitation 
characteristics at locations in the Midwest and Great Lakes region that passed the quality control 
checks described in the methods section: a) annual counts of wet-wet day sequences (ANN WW; 

days; upper left), b) annual total precipitation on wet days (PRCPTOT; mm; upper right), c) 
number of days with precipitation ≥ 1.26 mm (R1.26mm; days; lower left), and d) total 

precipitation on days when precipitation is  ≥  95th percentile (R95pTOT; mm; lower right). 
Significance threshold was increased to p≤ 0.05. 

 
We also evaluated the ratio of the trend estimates for the annual indicators of R95pTOT 

and PRCPTOT for stations with a significant positive trend in PRCPTOT, as an indicator of the 

relative contribution of precipitation on very wet days to trends in total precipitation (Figure 3.6). 

In general, precipitation on very wet days has contributed the most (ratios >0.60 and at some 

locations >1.0) to annual total precipitation in eastern New York/Pennsylvania, Indiana, southern 

Wisconsin/eastern Iowa, and eastern Nebraska/Kansas, compared to elsewhere in the study 

region. The modest (<0.60) ratios at many locations elsewhere suggest that the overall increase 

in total precipitation is not exclusively, or even primarily, tied to increases in the frequency of 
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higher intensity events. Rather, changes in the frequency of lighter accumulations are also 

contributing to the trends in total precipitation.  

 
Figure 3.6 Ratio of the trend in annual total precipitation on days when precipitation is ≥ 95th 

percentile (R95pTOT) to the trend in annual total precipitation on all wet days (PRCPTOT) for 
those stations with statistically significant positive trends in PRCPTOT. 

 

To better understand the consistency at individual locations of the trends across 

precipitation indicators, a four-sided Venn diagram was used to plot the number of significant 

positive trends and the percentage of significant positive trends for all possible combinations of 

the four representative precipitation indicators, PRCPTOT, WW, R1.26mm, and R95pTOT, 

recognizing that the number of available stations varies among indicators due to differing 

frequency of breakpoints identified in the time series (Figure 3.7). The number of locations with 

significant positive trends for multiple indicators is substantial, with 16.3% of the stations with 
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positive trends for all the indicators considered and 19.8% stations with positive trends for the 

two accumulation indicators PRCPTOT and R95pTOT. The number of stations with significant 

trends for the three variable combinations and the other two variable combinations is relatively 

small.  

 

Figure 3.7 Venn Diagram of the number of stations with significant positive trends for all 
possible combinations of four representative annual precipitation indicators: the probability of 

wet-wet days (WW), total annual precipitation (PRCPTOT), the number of wet days (R1.26mm), 
total precipitation on days with precipitation ≥ 95th percentile (R95pTOT). Percentages are 

relative to largest number of significant positive trends which was 86. Percentage of significant 
(p ≤ 0.10) positive trends falling in each category is shown in parentheses. 
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Seasonal Indicators 

For brevity, seasonal results are shown only for PRCPTOT, R95pTOT, WW, and 

R1.26mm, which capture the breadth of the different precipitation indicators. As for the annual 

precipitation characteristics, we observe that in all seasons the number of significant positive 

trends at all significance thresholds considered substantially exceeds the number of significant 

negative trends for the selected indicators (Table 3.3). However, the proportion of stations with 

significant trends varies by season. The seasonal trends for PRCPTOT indicate that no single 

season is solely responsible for the annual increase in precipitation observed at the majority of 

the stations. Significant (p ≤ 0.10) positive trends are observed at over 35% of the stations in fall 

and winter, 30% of the stations in summer, and 20% of stations in spring. With the exception of 

one location in winter, no significant negative trends in seasonal PRCPTOT are evident. For 

R95pTOT, significant positive trends are evident at 33% of the stations in fall but at only 

approximately 20% of stations in the other seasons. For WW, over 24% percent of the station 

locations have significant positive trends in summer, fall, and winter, whereas only 15% of all 

stations observed in spring have positive trends. When the threshold for significance is weaker (p 

< 0.20), the number of significant trends increases substantially for most indicators in most 

seasons. Almost all of the additional significant trends that emerge by lowering the threshold are 

positive in sign. The number of significant trends in any one season is typically less than the 

number of significant trends for the corresponding annual indicator. Under the weak (p £ 0.20) 

threshold, no individual seasonal indicator presents significantly positive trends at more than 

50% of stations, with the exception of R1.26mm in fall Similar to the annual indicators, when the 

threshold for significance is stricter (p £ 0.05), fewer stations exhibit statistically positive trends, 

while the number of statistically significant negative trends remains largely unchanged.  
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Table 3.3 Number of stations exhibiting statistically significant trends (Mann Kendall, p £ 0.05 
two-tailed, p £ 0.10 two-tailed, p £ 0.20, two-tailed) from 1951-2019 in four representative 

seasonal indicators: total seasonal precipitation (PRCPTOT), the number of wet days 
(R1.26mm), the count of wet-wet days (WW), and the total precipitation on days with 

precipitation ≥ 95th percentile (R95pTOT). Indicators where more than 50% of stations analyzed 
showed a significant trend are shown in bold. 

 
Precipitation 

Indicator 
Season Total 

number of 
stations 

after 
breakpoint 

analysis 

Number 
of stations 

with 
significant 

positive 
trends 

(p≤0.05) 

Number of 
stations 

with 
significant 

positive 
trends 

(p≤0.10) 

Number of 
stations 

with 
significant 

positive 
trends 

(p≤0.20) 

Number 
of stations 

with 
significant 
negative 
trends 

(p≤0.05) 

Number of 
stations 

with 
significant 
negative 
trends 

(p≤0.10) 

Number 
of stations 

with 
significant 
negative 
trends 

(p≤0.20) 
PRCPTOT   

 

Annual 100 47 75 79 1 1 1 
Spring 112 12 21 31 0 0 5 

Summer 111 20 31 49 0 0 2 
Fall 114 34 42 50 0 0 0 

Winter 104 22 32 44 0 0 1 
R1.26mm   

 

Annual 97 42 53 61 1 3 5 
Spring 114 10 15 21 4 6 12 

Summer 113 21 31 37 0 1 3 
Fall 111 25 33 66 0 0 1 

Winter 110 23 27 35 1 2 5 
WW   

 

Annual 105 27 44 51 5 7 9 
Spring 113 8 17 26 4 5 9 

Summer 111 16 24 35 4 6 9 
Fall 111 18 27 41 0 1 1 

Winter 106 18 25 39 0 0 1 
R95pTOT   

 

Annual 104 47 62 63 0 0 0 
Spring 111 12 22 37 0 0 0 

Summer 114 15 22 37 0 0 3 
Fall 114 28 38 56 0 0 0 

Winter 111 15 22 37 0 0 0 

 

Seasonal variations in the spatial patterns in trends over time are shown for PRCPTOT, 

R95pTOT, and WW. The spatial distributions for R1.26mm are not shown as they are similar to 

those for WW. Large between season differences in the spatial variability of the temporal trends 
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are evident. For instance, locations with significant (p ≤ 0.10) positive trends in seasonal 

PRCPTOT are distributed across the study area in fall but are largely confined to the vicinity of 

the Great Lakes (Wisconsin, the Lower Peninsula of Michigan, northeastern Ohio, western 

Pennsylvania, western New York) in winter (Figure 3.8). In spring, most of the significant 

positive trends are found in the western two thirds of the study region with few significant trends 

in New York, Pennsylvania, and Ohio, whereas in summer the greatest density of significant 

trends along with the largest trend magnitudes are found in the eastern and central portions of the 

study region. For most stations, significant positive trends are observed in only one or two 

seasons. A significant negative trend across all seasons is observed at only one location.  

 

Figure 3.8 Trends (mm year-1) in seasonal total precipitation (PRCPTOT) for: a) spring, b) 
summer, c) fall, and d) winter. 
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The seasonal trends of R95pTOT display less spatial coherence when compared to 

seasonal PRCPTOT and to annual R95pTOT, with locations with significant positive trends 

often surrounded by locations with insignificant positive, and sometimes insignificant negative, 

trends (Figure 3.9). The number of locations in winter with significant positive trends is 

relatively small and these locations are mostly found in the vicinity of the western Great Lakes. 

The spatial extent of significant positive trends expands in spring to include most of the southern 

and eastern portions of the study area, with few significant trends evident in the northwestern 

portion of the study area. In summer, locations with significant positive trends are clustered in 

New York/Pennsylvania, Ohio/Indiana, and southern Wisconsin. The largest magnitude trends in 

R95pTOT are generally observed during the summer months. Significant positive trends are 

evident in fall across much of the area except for the extreme western portion of the study region 

and in the Lower Peninsula of Michigan. Although negative trends are evident for a number of 

locations in all seasons for R95pTOT, these trends are significant at only one location in spring 

and two locations in winter.  
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Figure 3.9 Trends (mm year-1) in the seasonal amount of total precipitation falling on days with 
precipitation ≥ 95th percentile (R95pTOT) for a) spring, b) summer, c) fall, and d) winter. 

Significant trends in seasonal WW are less spatially coherent than the annual WW 

indicator (Figure 3.10). As with seasonal R95pTOT, significant positive trends are often 

surrounded by insignificant trends or in a few cases significant negative trends. In general, 

stations with significant positive trends are more clustered for WW than for seasonal R95pTOT 

but less so than for seasonal PRCPTOT. The number of stations with significant positive trends 

is small in spring, and there are several (5) significant negative trends. The stations with 

significant positive trends are relatively dispersed, although some clustering is evident near the 

center of the study region. A more distinct spatial pattern is present in summer. Stations with 

significant positive trends are concentrated in Iowa, Indiana, Wisconsin, Ohio, Pennsylvania, and 

New York. In contrast, mostly insignificant trends are evident throughout the Plains states and 

east across Minnesota and northern Wisconsin, and the few significant trends in this area are 



 77 

negative. In fall, significant positive trends in WW are found across the northern half of the study 

region, whereas mostly insignificant trends of mixed sign are observed for the southern half of 

the region with the exception of Illinois. Little spatial coherence is evident in the wintertime 

trends of WW, other than some clustering of significant positive trends in the central and 

extreme northeast sections of the study region. 

 

Figure 3.10 Trends (days year-1) in the seasonal count of wet-wet-day sequences (WW) for a) 
spring, b) summer, c) fall, and d) winter. 

When compared to annual indicators, the Venn diagrams of seasonal indicators show that 

the groupings of indicators are more dispersed among the possible combinations of the four 

representative indicators. (Figure 3.11). In fall and winter the three-indicator combination of 

PRCPTOT, WW, and R1.26MM and the two-indicator combination of PRCPTOT and R95pTOT 

are more frequent, while in summer the most common combination is PRCPTOT and R1.26MM. 
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In spring, locations are less likely compared to the other seasons to experience significant 

positive trends for two or more of the representative precipitation indicators, in part a reflection 

the smaller number of significant trends. For all seasons except spring a substantial number of 

stations display a significant trend only for R95pTOT. Venn diagrams can also be used to assess 

whether individual locations are likely to experience significant trends in a particular indicator 

during more than one season. Our results indicate that, regardless of the indicator type, 

significant positive trends are most likely to be observed during only one season (Figure 3.12). 

 

 

Figure 3.11 Venn diagram of the number of stations with significant (p ≤ 0.10) positive trends 
for all possible combinations of four representative seasonal precipitation indicators (the 

probability of wet-wet days (WW), total precipitation (PRCPTOT), the number of wet days 
(R1.26mm), and total precipitation on days with precipitation ≥ 95th percentile (R95pTOT) for a) 

spring, (b) summer, c) fall, and d) winter. 
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Figure 3.12 Venn diagram of the number of stations with significant (p ≤ 0.10) positive trends 
during one or more seasons for four representative seasonal precipitation indicators: a) the 

probability of wet-wet days (WW), b) total precipitation (PRCPTOT), c) the number of wet days 
(R1.26mm), and the total precipitation on days with precipitation≥ 95th percentile (R95pTOT). 

 
Total Precipitable Water 

Trends in annual daily mean TOTPRCPWAT during the 1951-2019 study period are 

positive in sign and significant over the southern two-thirds of the study region (Figure 3.13). 

The largest trends are in the south-central portion of the study region with the smallest trends 

located over the central and western Great Lakes. A significant increase in TOTPRCPWAT is 

also evident over the Great Plains, with the magnitude of the trend decreasing from south to 

north. Correlations between the trends in annual TOTPRCPWAT and the trends in the annual 

values of the four representative precipitation indicators are weak to moderate (Table 3.4; Figure 

3.14), as indicated by the parametric Pearson’s r and non-parametric Kendall’s t correlation 
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coefficients. Correlations for the annual trends are insignificant (p ≤ 0.05) and negative for WW 

and R1.26mm, and insignificant but positive for PRCPTOT. Only the correlation between the 

annual trends in TOTPRCPWAT and those in R95pTOT is significant, with the sign of the 

correlation indicating a positive association between the annual trends of these two variables.  

 

Figure 3.13 a) Significance (p ≤ 0.05) and b) Sen’s slope (kg m-2 yr-1) of the trend in annual 
mean daily total precipitable water for the study region from 1951-2019. The stations with 

quality-controlled precipitation time series are shown on both maps as dots. 
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Figure 3.14 Scatter plots of annual trends (1951-2019) in mean total precipitable water and 

annual trends in WW (a), PRCPTOT (b), R1.26MM (c), R95pTOT (d). Significant (p ≤ 0.05) 
trends in mean total precipitable water are shown in orange, insignificant trends are shown in 

green. Estimated least squares regression line shown in black. 
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Table 3.4. Pearson correlation coefficients (r) and Kendall rank correlation coefficients (t) 
between annual and seasonal trends from 1951-2019 in precipitation indicators and total 

precipitable water. Significant correlations (p £ 0.05) are noted in bold. P-values for Pearson’s r 
are noted in pr and Kendall’s t are noted under pt. 

 
Indicator Season r pr t pt 

WW Spring 0.11 0.26 0.062 0.33 
Summer 0.37 < 0.01 0.23 <0.01 

Fall -0.18 0.06 -0.10 0.13 
Winter 0.036 0.71 0.03 0.68 
Annual -0.089 0.37 -0.023 0.73 

PRCPTOT Spring 0.33 < 0.01 0.21 <0.01 

Summer 0.4 < 0.01 0.26 <0.01 

Fall -0.14 0.15 -0.13 0.05 

Winter 0.25 0.01 0.18 0.01 

Annual 0.13 0.20 0.097 0.15 
R1.26MM Spring 0.2 0.04 0.15 0.02 

Summer 0.42 < 0.01 0.27 <0.01 

Fall -0.086 0.36 -0.04 0.55 
Winter 0.058 0.55 0.01 0.85 
Annual -0.076 0.45 -0.015 0.82 

R95pTOT Spring 0.19 0.05 0.06 0.33 
Summer 0.26 0.01 0.17 0.01 

Fall -0.13 0.16 -0.16 0.014 

Winter 0.32 < 0.01 0.22 <0.01 

Annual 0.21 0.03 0.15 0.03 
 

Assessment of the possible contribution of seasonal trends in TOTPRCPWAT to seasonal 

trends in the representative precipitation indicators is complicated by seasonal variations in the 

significance of the TOTPRCPWAT trends, although in general correlation coefficients at the 

seasonal time scale are larger than those at the annual scale. Significant (p ≤ 0.05) positive trends 

in TOTPRCPWAT (Figure 3.15) are evident during spring, summer, and fall for portions of the 

study area, although insignificant trends are observed for a substantial number of the reanalysis 

grid cells, with the location of the insignificant trends varying by season. In contrast, trends in 

TOTPRCPWAT are insignificant for all grid cells in winter. Most of the significant (p = 0.05) 
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correlations between the seasonal trends in TOTPRCPWAT and the season trends in the 

precipitation indicators are positive, although the significance of the trends varies by season and 

indicator. Correlations between the seasonal trends are significant in spring (PRCPTOT, 

R1.26mm, R95pTOT), summer (WW, PRCPTOT, R1.26mm, R95pTOT), and winter 

(PRCPTOT and R95pTOT), although the significant winter trends should be treated cautiously 

given the weak trends in TOTPRCPWAT at this time of year. No significant correlations were 

observed in the fall under Pearson’s r. When Kendall’s t is used, correlations for fall are 

significant and negative for PRCPTOT and R95pTOT. 
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Figure 3.15 Significance (p<0.05) of seasonal trend in mean daily total precipitable water (kg m-2 

yr-1) for 1951-2019: a) spring, b) summer, c) fall, and d) winter. The stations with quality-
controlled precipitation time series are shown on both maps as dots. 

 
Discussion/Conclusion 

The impact of the additional quality control measures on the number of stations available 

for precipitation trend analysis is striking. Of the 317 stations in the Midwest and Great Lakes 

region that met the initial criterion of 90% completeness, 203 stations were removed at the 

second step because they failed the tests for observer bias (underreporting of precipitation ≤ 1.26 

mm and overreporting of precipitation amounts divisible by 5 or 10 when precipitation is 

recorded in inches). In contrast, the breakpoint analyses, which were conducted separately for 

each precipitation indicator in recognition that discontinuities can impact the indicators 

differently, removed only a small portion of the remaining stations (17 or fewer, depending on 

the indicator). This is a somewhat surprising result given the well documented discontinuities in 
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observations from the United States Cooperative Observer Network (Karl & Williams 1987; 

Winkler 2004; Menne et al., 2010), which is the largest source of precipitation data for the 

United States in the GHCN-D database (Menne et al. 2012). One interpretation is that many of 

the precipitation time series were affected by both observer bias and discontinuities and were 

removed following the tests for observation bias. The number of stations with breakpoints was 

largest for the “accumulation” and “threshold” precipitation indicators, suggesting the tests for 

observation bias did not remove all afflicted time series for these indicators. The final suite of 

quality-controlled time series has a much coarser station density than the datasets used in 

previous studies, and, while not suitable for investigating local-scale variations in precipitation 

trends, provides high confidence in the estimation of regional-scale variations. The quality-

control routines implemented here also allow for more confidence in trends across the range of 

indicators from high frequency light events to low frequency extreme events, as observer bias 

affects various indicators differently and may not be captured in studies relying solely on data 

completeness and documented changes for data screening. 

One finding from the use of the carefully quality-controlled time series is that the 

estimated trends for 1951-2019 in the Midwest and Great Lakes region are predominantly 

positive for all the “wet” precipitation indicators and negative for the “dry” precipitation 

indicators. In fact, there is a near absence of significant negative trends across the region for all 

indicators, with the exception of DD and CDD, and for all seasons and at all three significance 

levels included in the analysis. On the other hand, the proportion of stations with significant 

positive trends varies by precipitation indicator, season, and significance level. In general, 

significant trends at the moderate (p ≤ 0.10) significance level are most likely for the indicators 

involving precipitation accumulation and counts of days with precipitation above specified 
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thresholds, and less likely for indicators of maximum reported precipitation and the indictors 

defined in terms of the sequencing of precipitation. Thus, users need to be cautious of inferring 

from significant trends in common precipitation characteristics, such as total precipitation, that 

significant trends are also occurring in other precipitation characteristics at a particular location. 

The larger number of significant positive trends for the “wet” indicators under the weak (p ≤ 

0.20) significant level obviously need to be interpreted cautiously because of the greater 

probability of a Type I error (rejecting the null hypothesis of no trend when it is true). However, 

the greater spatial coherence of the locations with significant trends for the weak significance 

level compared to the moderate and stringent levels is consistent with a regional-scale trend 

toward a wetter climate that is emerging from interannual variability. 

Our results also confirm that precipitation indicators that are defined annually often mask 

strong seasonal variations in the temporal trends of both high frequency, low magnitude events 

and low frequency, high magnitude events. For almost all locations, one cannot assume based on 

the trends in an annual precipitation indicator that a location is experiencing similar trends 

seasonally. Instead, a significant trend in a particular precipitation indicator typically is observed 

during only one season.  

While the low spatial density of the stations that met all three of the quality control 

criteria somewhat constrains inferences regarding subregional variations in precipitation trends, 

our results, especially those using the weaker and moderate significance levels, suggest that the 

character of precipitation is not changing uniformly across the Midwest and Great Lakes region. 

In terms of the annual values of four representative precipitation indicators (PRCPTOT, 

R1.26mm, WW, R95pTOT), significant positive trends are observed across the central and 

eastern portions of the study region for all four indicators, whereas in the west there is a notable 
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absence of significant positive trends for R1.26mm events. Seasonal differences in the spatial 

distribution of significant trends are also evident, particularly for winter when significant trends 

for the four representative indicators are largely confined to western Great Lakes portion of the 

study region. The smaller number of significant trends present under the strict criteria, highlights 

the strength and relative cohesiveness of trends in precipitation in the central and eastern portions 

of the region, where most of the significant (p £ 0.05) trends are located. 

The quality-controlled time series are also useful for evaluating relationships between 

trends in the precipitation characteristics and physical processes potentially contributing to these 

trends.  Expanding on the intriguing findings of Kunkel et al. 2020b who found a significant 

positive correlation between regionally-averaged trends in extreme precipitation and trends in 

precipitable water for the contiguous United States, we correlated, at annual and seasonal 

temporal scales, the trends in PRCPTOT, R1.26mm, WW, and R95pTOT for the quality-

controlled station time series with trends in average daily precipitable water at a 2.5° latitude x 

2.5° longitude resolution from the NCEP/NCAR reanalysis (Kalnay et al. 1996). The correlations 

for R95pTOT support for the Midwest and Great Lakes region the coarser-scale findings from 

Kunkel et al 2020a that the trend in extreme precipitation increases with an increasing trend in 

precipitable water, but also point to a more complex interpretation of the relationship between in 

trends in precipitation characteristics and trends in precipitable water for the study region. In 

particular, significant (p ≤ 0.05) correlations are evident during spring and summer for 

PRCPTOT and R1.26mm and in summer for WW, suggesting that increases in precipitable water 

may also contribute to positive trends in high frequency precipitation events and even to the 

sequencing of wet days. Also, the correlation between the trend in R95pTOT and that for 

precipitable water is insignificant in fall for the parametric correlation coefficient and significant 
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but negative for the non-parametric correlation coefficient, suggesting that changes in 

atmospheric lifting mechanisms (e.g. fronts, extratropical cyclones) rather than increased 

atmospheric humidity may be more important for explaining the positive trend in R95pTOT in 

the Midwest and Great Lakes region in fall. Our findings of insignificant trends in precipitable 

water for large portions of the study area, especially in winter when the precipitable water trends 

are insignificant for the entire NCEP/NCAR grid over the study area, point to the need for 

cautious interpretation of the relationship between trends in precipitable water and trends in 

precipitation characteristics.  

We have demonstrated the usefulness of quality-controlled precipitation time series for 

evaluating trends in precipitation characteristics and for investigating their relationship with 

processes. However, the limitations of the quality-controlled dataset should also be considered in 

interpreting the findings presented here and when applying the time series in future work. A key 

limitation is the coarse spatial resolution of the quality-controlled time series, limiting their 

usefulness in investigating potential contributions of local-scale features such as lake surfaces or 

topography on trends in precipitation characteristics. Another concern is that identified 

breakpoints in the time series that are attributed to changes in instrumentation, station moves or 

observation protocols may instead be caused by changes in circulation regimes. Also, some types 

of precipitation indicators may be less sensitive to observer bias than others, and a less stringent 

protocol for removing time series for consideration would be appropriate. Moreover, for any 

quality control routine that is not manual, there are almost always time series with data issues 

relevant to a particular analysis that pass through filters and checks and those without data issues 

that are incorrectly removed.   
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In sum, our analysis focused on quality control of station time series to improve the 

quality of data prior to analysis. As a result of this effort, the trends in our study tended to exhibit 

a more cohesive spatial and temporal similarities when compared with studies with different 

quality control criteria, illustrating the importance of quality control of observations in climatic 

studies. Also, our results indicate, at least for the Midwest and Great Lakes region, that not only 

is extreme precipitation increasing but the entire distribution of precipitation has been shifting 

upward over time. 
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Abstract               

Agricultural fields traditionally have been treated as a uniform unit in terms of 

management. Recent studies have highlighted the sub-field variability of yield over time and 

potential benefits of variable management. Here we take a novel process-based simulation 

approach to simulate maize-soy production, while incorporating sub-field variability over 

millions of fields in the Midwestern United States. Simulations suggest that nitrate leaching has 

multiple drivers across the region and that these vary over space. The largest sources of nitrate 

leaching appear to be low stable and unstable yield zones within the states of Iowa, Illinois, and 

Indiana. Relative behavior of the zones at the sub-field spatial scale reveals that unstable zones 

are more sensitive to climate and weather than stable zones and suggest in-season management 

may be more effective in these areas. Analysis of climate trends in conjunction with model 

output suggests that precipitation regime and frequency of water stress are climatic variables 

most correlated with nitrate loss in all zones, with the strongest correlations present in unstable 

zones. While climatic trends and forcing have a substantial impact on nitrate leaching result, with 

increased precipitation and increased water stress resulting in greater leaching, these numbers are 

greatly affected by management, physical/biogeochemical properties of the soil, and position in 

the topography of the region. This novel approach to sub-field simulation of yield and nitrate 

leaching provides a framework to advance regional knowledge of potential sources of nitrate loss 

and the development of management strategies aimed at sustaining yields and reducing nitrogen 

loss. 

Introduction 
 

Since the late twentieth century through present, there has been an observed increase in 

annual precipitation throughout the Midwest region (Walsh et al. 2014) defined here as the 14-
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state region encompassing: North Dakota, South Dakota, Nebraska, Kansas, Arkansas, Missouri, 

Iowa, Minnesota, Wisconsin, Illinois, Indiana, Michigan, Ohio, and Pennsylvania. At the same 

time there has been a regional increase in the amount of corn (Zea mays L.) and soybeans 

(Glycine max) produced and in the area planted, particularly in the northern and western portions 

of the region and in areas that historically have been considered marginally-productive for these 

crops (Mladenoff et al. 2016; Hatfield 2012). Typically, soils on these marginal lands have 

relatively lower organic matter levels and textures less suitable for agricultural production. If the 

soils have a higher sand content and coarser texture, they are inherently more susceptible to 

nitrate leaching from inorganic fertilizers (Basso et al. 2016; Zotarelli et al. 2007). Given 

economic and environmental concerns regarding nitrate loss and pollution (Kalkhoff et al. 2016), 

it is important to understand how climate and its inherent variability with respect to precipitation 

impacts nitrate loss on soils that are particularly vulnerable to nitrate leaching. In addition to the 

expansion on marginal lands, the corn belt as a whole has geographically shifted and expanded to 

include areas in primary production areas previously dominated by small grain crops and 

grasslands in the northern Great Plains (Lin and Henry 2016; Wimberly et al. 2017). This is in 

addition to a general increase in the area within the corn belt region being planted in either corn 

or soybeans in recent decades (Johnston 2014; Lark et al. 2015). 

Given the recently observed trends in precipitation from multiple studies previously 

mentioned, our major objective is an exploration of the role of weather and climate in 

determining the spatial and temporal characteristics of nitrate loss and crop yields across the 

Midwest under historical climatic conditions. Our approach includes the application of a 

deterministic, process-based crop model that can help allow for a better understanding of the 
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complex relationships between weather, climate, agricultural management, production, and 

nutrient dynamics (Jones et al. 2016; Wallach et al. 2019).   

Traditionally, studies on nitrogen loss in the Midwest and adjacent regions have relied on 

field experiments and field-level based crop simulation studies focused on one or a few locations 

(with similar climatic characteristics) over a relatively short periods of time such as a few 

growing seasons (Basso and Ritchie 2005; Basso et al. 2007; Congreves et al. 2016; Gerakis et 

al. 2006; Iqbal et al. 2018; Smith et al. 2019; Syswerda et al. 2012) and focus on the impacts of 

different fertilizer treatments (i.e. rate, timing, form of application), differences in rotation, or 

differences between coarse or fine-textured soils. These studies have provided a substantial 

amount of evidence for the mechanistic drivers of nitrogen loss at the field and sub-field scales. 

Focusing less on nitrogen loss, Li et al. (2015) and Liu et al. (2011) carried out long-term 

validations of the DSSAT-CENTURY (Gijsman et al. 2002), a process-based crop model, on two 

long-term agricultural experiments with corn and wheat at a humid, semi-arid site in Canada and 

found that it satisfactorily simulated carbon, nitrogen, and water dynamics in areas with 

contrasting climatic regimes over long cropping sequences given adequate fertilization of the 

cropping systems considered.  

Fewer studies have directly assessed the impacts of weather and climate variability on 

nitrogen loss/leaching in agricultural systems using a process based modeling approach, which 

allows researchers to simulate sequences of a cropping system with weather and climatic 

conditions that may not have occurred at field locations during a period of time when 

observations were taken or to explore the potential impacts of climate change on a system. In 

most cases these studies have also been limited to one or two locations with similar climatic 

regimes and the use of a variety of approaches to evaluate linkages between weather, climate, 
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and nitrogen loss in a variety of field cropping agricultural systems. Two recent examples 

employing the DeNitrification and DeComposition (DNCD) biogeochemical model (Li 2000) 

examine the linkage between climate variability on corn production for grain (Congreves et al. 

2016) and silage (Smith et al. 2019) under conventional and best management practices at 

locations in Southeast Ontario and Iowa, respectively. In each study the authors noted that 

nitrogen dynamics varied substantially with different management practices, with respect to 

climate variability the seasons with the highest leaching events across different soils and 

management were associated with relatively higher daily temperatures, greater total 

precipitation, and more frequent and intense precipitation events. Similarly, Iqbal et al. (2017) 

used artificial sequences of extreme weather years in two-year sequences with the DAYCENT 

model in Boone County, IA to examine the effects of extreme interannual sequences of weather 

on nitrogen loss under different crop rotations and fertilizer rates. They found that regardless of 

crop rotation or cover crop, extreme sequences of weather transitioning from wet to dry, or dry to 

wet did not have identical effects on nitrogen loss (either through denitrification or nitrate 

leaching), even though the total amount of precipitation was identical in each scenario which 

suggested that the sequencing of precipitation is a key factor impacting nitrogen loss. The 

authors also found the largest total simulated loss events were associated with wet-wet scenarios 

at that location.  

Additionally, there have been multiple studies in recent years that examine the 

relationship between regional precipitation variability at interannual (Loecke et al. 2017; Sinha 

and Michalak 2016) and interdecadal (Ballard et al. 2019) time scales and the correlation with 

riverine nitrogen levels at the watershed scale.  These studies noted a strong relationship between 

interannual variability of precipitation (particularly wet springs following dry growing seasons) 
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and higher nitrogen concentrations in regional stream flow. Additionally, Ballard et al. (2019) 

noted an increase in stream nitrogen concentrations in and downstream from regions with  

general increases in the total amount and intensity of springtime precipitation. One weather-

related index that has been significantly correlated with riverine nitrogen levels is the Weather 

Whiplash Index (Loecke et al., 2017), which is defined as the total of January through June 

precipitation minus the total of July through December of the previous year divided by the total 

amount of precipitation over the 12-month period. Additionally, riverine nitrogen levels have 

been found to have significant relationships with annual precipitation, total March to May 

precipitation above the historical 95th percentile, net anthropogenic nitrogen inputs, percentage of 

water shed covered in wetlands, and percentage in forest, shrubland, or herbaceous cover 

(Ballard et al., 2019; Sinha and Michalak, 2016), and temperature in March, April, and May 

(Ballard et al., 2019).  

Regional approaches to process based crop simulations and statistical modeling exercises 

are not a new development in the field, however in many previous studies, fields were treated as 

individual homogenous units or aggregated to larger land units (e.g. Rosenzweig et al. 2018). In 

recent years, there have been several studies that have attempted to model/quantify sub-field 

variability within the context of large multi-state regions (Deines et al. 2021; Jin et al. 2019; 

Basso et al. 2019). Each study takes a unique approach to the quantification/representation of 

sub-field variability; however they share in common the idea that yield and process variability at 

sub-field scales is relevant at broad regional scales. Within these frameworks it is possible to 

begin asking question on scales that have policy-relevant implications within a region.   

The studies mentioned in the previous paragraphs provide evidence for mechanisms of 

nitrogen loss in agricultural systems and their reflection in riverine nitrogen levels using a 
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combination of field observations (Deines et al. 2021; Jin et al. 2019; Basso et al. 2019), process-

based agricultural systems models (Jin et al. 2019), and regression modeling (Deines et al. 2021). 

Field level studies provide mechanistic details and an understanding of nitrogen loss at the field 

scale. While the studies focused on riverine nitrogen loading provide a regional-scale perspective 

on the associations between weather and climatic variability and nitrogen loading, the 

climatology of nitrogen loss across the Midwest at the sub watershed scale and across space 

remain less clear. Using a combination of gridded climatological data and process based 

agricultural models run spatially over the Midwest, we can further elucidate the risks of nitrogen 

loss across the region and with varying climates and soil types, identifying areas where nitrogen 

losses are more or less likely to occur under observed climatological conditions (e.g. Bowles et 

al., 2018). 

Methods  

Study Region/CLU Delineation 

For this study, the Midwest and Great Lakes region was defined as the states of 

Pennsylvania, Ohio, Indiana, Michigan, Illinois, Wisconsin, Minnesota, Iowa, Missouri, 

Arkansas, Kansas, Nebraska, South Dakota, New York, and North Dakota. These states represent 

a relatively contiguous zone of intensive agricultural activity, particularly in the cultivation of 

field crops. Following the methodology developed by Basso et al. (2019) which used the 

Cropland Data Layer (CDL), Google Earth Engine Landsat 5,7, and 8 Imagery, and Common 

Land Unit (CLU) datasets compiled by the United States Department of Agriculture (USDA), 

fields within the region where corn or soy were grown for at least 3 years during the period from 

2010-2017 were identified, including fields with continuous corn, corn-soy, and less frequently-

used complex crop rotations. Utilizing the Normalized Difference Vegetation Index (NDVI) and 
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30 meter by 30 meter resolution data from the CDL, each CLU was subset into five Yield 

Stability Zones (YSZs) based on the year-to-year variability in NDVI. NDVI is used as a proxy 

for yield. The NDVI-based proxy estimates were then compared and validated (at 30-meter 

resolution) for corn and soy with observed crop yields at 2-meter resolution gathered from 

combine harvester yield monitors for 508 fields across the region. The majority of these fields 

were in a corn-soy rotation. NDVI-based yield stability maps were then generated for the entire 

region for the 2010-2017 study period. Following Basso et al. (2019), there are five yield 

stability zones identified and utilized in this study. Two zones representing areas of a field with 

relatively stable, less variable NDVI and yields: High Stable zones (HS) that exhibit consistently 

higher NDVI compared to the mean NDVI of the field and Low Stable zones (LS) where NDVI 

was consistently lower than the mean NDVI of the field. Three unstable zones where some years 

NDVI was above the field mean and in other years below the field mean were also identified and 

further delineated based on relative position in the landscape: Unstable zones within depressions 

are noted as Unstable-Depression (USD), on hilltops Unstable-Hill (USH), and sloping areas are 

noted as Unstable-Other (USO). 

SALUS Simulation Experiments 

Using the individual fields spatial dataset defined by CLU and the stability zone 

classifications from Basso et al.(Basso et al. 2019) as a framework, this study implements the 

process-based Systems Approach to Land Use Sustainability (Basso and Ritchie 2015) (SALUS) 

crop simulation model to examine the potential mechanisms responsible for nitrate leaching and 

the potential impacts of using traditional uniform field management on areas of a field that 

produce differing yields over time. Process-based crop models require daily weather data in the 

form of daily values for maximum temperature, minimum temperature, downward solar 
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radiation, and precipitation. In studies examining single sites or a collection of sites, weather data 

is often acquired from in-situ observations at or nearby the field being simulated. For daily crop 

simulations across space and time, the use of gridded meteorological data is often necessary. The 

gridMET(Abatzoglou 2013) dataset was used as the meteorological dataset to drive the model. 

This dataset provides temporally and spatially complete daily data over the study period from 

1989-2019 at 4-km spatial resolution. While the principal variables of temperature and 

precipitation have been validated by the producers and subsequent users of this dataset, solar 

radiation has received less attention and researchers have noted spatially variable biases (Kiefer 

et al. 2019). Solar radiation data were corrected for systemic biases on a grid-cell by grid-cell 

basis using the methodology outlined in Chapter 2. In addition to weather data, gridded soils data 

were also used. Baseline soils were acquired at 10-meter horizontal resolution for the 14-state 

region from the gridded version of the Soil Survey Geographic database gSSURGO (USDA 

NRCS, 2014). As Yield Stability Zone classifications used are unique to each field as designated 

by CLU, modifications to the soil depth and Soil Hospitality Factor (SHF) are relative to the 

majority soil type identified in each CLU. For each stability zone, modifications to soil depth, 

saturated hydraulic conductivity, and soil hospitality factor were necessary (Table 4.1).  
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Table 4.1 Table showing the general experimental setup and modifications required for SALUS 
to represent the Yield Stability Zones (YSZs). 

 
YSZ SHF Mods Soil Depth 

Mods 
SWCN 
Mods 

Plant 
Pop. 
Mods 

PRCP 
Mods 

HS + at depths 
below 30 cm 

Extend to 
100 cm if 

needed 

None Corn: 10 
plants/m^2 
Soy: 37.7 

plants/m^2 

None 

LS - at depths 
below 10 cm 

Restricted to 
41 cm 

Reduced at 
surface to 
simulate 

compaction 

Corn: 4 
plants/m^2 
Soy: 37.7 

plants/m^2 

None 

USD + at depths 
below 30cm 

Extend to 
100 cm if 

needed 

None Corn: 8 
plants/m^2 
Soy: 37.7 

plants/m^2 

Days > 
10mm of 

precipitation, 
increase 

daily 20%. 
Wet years 

reduce yield 
by 30% 

USH - at depths 
below 10 cm 

Restricted to 
41 cm 

Reduced at 
surface to 
simulate 

compaction 

Corn: 4 
plants/m^2 
Soy: 37.7 

plants/m^2 

Days > 
10mm of 

precipitation, 
decrease 

daily 20%. 
USO - at depths 

below 10 cm 
Restricted to 

41 cm 
Reduced at 
surface to 
simulate 

compaction 

Corn: 4 
plants/m^2 
Soy: 37.7 

plants/m^2 

Days > 
10mm of 

precipitation, 
decrease 

daily 20%. 
 

The agronomic assumptions and management set-up for the SALUS simulations were 

designed to represent historical management practices with respect to year on a county level 

assuming uniform management for YSZs. For computational efficiency, the entire region was 

simulated as all maize or all soy in alternation years. Maize and soy were chosen as the crops to 

be simulated as they represent the two largest crops in terms of acres planted in recent decades 

(Hunt et al. 2020), often in rotation with one another. Cultivar parameters for maize and 
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soybeans reflect historical cultivars used in the region and were validated against yield maps 

from Basso et al. 2019 over the years from 2008-2017. Planting, harvest dates, and fertilizer rates 

were determined from observed county level data from the National Agricultural Statistics 

Service (NASS). Crop planting dates were based on historical observations of the 50th percentile 

of reported dates of that county’s planted acreage for that particular crop in each year. Planting 

dates were weighted to the density of actual production in each year in each state rather than the 

geographic center of each county. For each year, the centroids for corn production were 

calculated for each state and using county centroids weighted by total land area planted under 

corn in each county. Interpolation between state-year centroids was achieved by fitting a 

generalized additive model (GAM) to date of planting using the following model: 

]5 = B(^2S, ^_>) + SH(^2S ∗ `P2a) + SH(b_> ∗ `P2a) 

Where DP is the date of planting at a given level (20, 50, and 80%), s(Lat,Lon), is the two-

dimensional smoothing function with latitude and longitude as covariates; ti(Lat*year) and 

ti(Lon*year) are tensor functions of the random effect of year, latitude, and longitude. For soy 

years, the process for determining planting date was simpler (as the soybean module in SALUS 

is less complex than corn) and consisted of the 50% plant date for soybeans in each county 

respectively. Applied fertilizer rates were prescribed based on state rate values from Basso et al. 

(2019) (Table 4.2). Corn crops were fertilized in a split application, with 1/3 applied at planting 

and 2/3 as a side-dress application 45 days after planting. Fertilizer was applied as Urea-

Ammonium Nitrate, broadcast and incorporated (100%) to a depth of 10.2 cm (4 in.) at planting 

and 5.1 cm (2 in.) at side-dress. The simulations were all run under rain-fed conditions across the 

region except for Nebraska and Kansas, where irrigation was simulated on all fields with 

sprinkler irrigation to maintain a range of 60-90% of maximum plant available water within a 
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managed soil layer in the top 30 cm of the profile. Harvest dates were prescribed based on the 

50% of harvest county reported dates from NASS for soy and corn crops. Three separate tillage 

scenarios were simulated: 1) a no-tillage system, 2) a minimum tillage of 10 cm with a tandem 

disk 2 days prior to planting, and 3) a conventional tillage of 20 cm with a chisel plow 7 days 

after harvest in the fall. To stabilize nutrient and soil moisture dynamics, a spin-up simulation of 

30 years from 1989-2018 was conducted and final conditions from the spin-up simulations were 

used to initialize the SALUS simulations at each pixel.  

 

Figure 4.1 Maps showing the locations of simulations indicated by yield stability zone (YSZ) at 
three disparate scales; a) 1:6500000, b) 1:250000, c) 1:10000. The pie chart shows the 

percentage breakdown of the total number of 30-meter simulations across the region broken 
down by YSZ. HS zones are shown as green, LS as red, USD as blue, USH as yellow, and USO 

as orange. 
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Table 4.2 Reported range of fertilizer recommendations from Basso et al. (2019) and amount 
applied in SALUS simulations to corn crops. * The maximum rate was used in Wisconsin, as 

manure is more frequently used and manure was not captured in fertilizer rate recommendations. 
** indicates Missouri rate used, *** indicates Iowa rate used, **** indicates Ohio rate used. 

 
State Range of Fertilizer N Rates 

(kg N/ha) 
N Amount Applied in 
Simulations (kg N/ha) 

IA 152-208 180 
IL 179-229 204 
IN 168-251 209.5 
MI 143-198 170.5 
MN 154-212 183 
MO 189-260 224.5 
ND 137-190 163.5 
OH 155-234 194.5 
SD 134-182 158 
WI* 111-155 155 
PA 155-234**** 194.5 
AR 189-260** 224.5 
NE 152-208*** 180 

 
Model Output Analysis Methodology 

SALUS and most process-based crop simulation models provide comprehensive output 

for a large number of variables on both a seasonal and daily basis. The total number of 30 meter 

simulations over the 16-state region broken down by YSZ are: HS (175,788,295), LS 

(93,222,151), USD (12,309,047), USH (13,689,920), and USO (30,735,605) for a total of 

325,745,018 simulations conducted at a daily timestep from 1989-2019. Due to the very large 

number of unique simulations (Figure 4.1), most of the regional spatial analyses of this study 

were restricted to seasonal analyses (i.e. cumulative seasonal values at harvest). In this case, 

seasonal refers to the period from the day after the harvest of one crop until the harvest of the 

following crop. County-level subsets were chosen for 5 representative counties across the study 

domain to examine the daily characteristics of the output for county-level aggregate analysis and 

single site analysis (Figure 4.2). Model outputs available for analysis from this framework 

focused on the primary drivers of the nitrogen balance and are shown in Table 4.3. As an indirect 
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validation, aside from reported values in the literature and the closure of the nitrogen balance 

within the modeling framework, output of Total NLC from harvest 2012-harvest 2013 were 

visually and statistically compared with stream measurements of nitrate and total nitrogen 

collected during the spring/summer of 2013 Van Metre et al., 2016). One of the driving variables 

tested was the Weather Whiplash Index (WWI) (Loecke et al. 2017). This index looks at the 

variability in precipitation in 6-month periods centered on July. The WWI is defined as follows 

ccd =
	∑ 5'85 − ∑ 5'85	5!

6!
6>!&"
@!&"

∑(∑ 5'85 + ∑ 5'85)	5!
6!

6>!&"
@!&"

 

Where PRCP refers to monthly precipitation accumulation, i refers to the current calendar year, 

the subscripts on summation operator indicate starting month of period of accumulation, and the 

superscripts on the summation operators indicate the end month of the period of accumulation.  
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Figure 4.2 Counties within the study region where daily SALUS outputs were available and 
single sites where additional seasonal/daily analyses were conducted. *The single site located in 

Worth County, IA only had seasonal outputs available. 
 

Table 4.3 SALUS output variables available for analysis. 
 

Variable Name [units] Description 
GWAD [kg/ha] Dry Grain Weight 

NLC [kg/ha] Nitrate Leached 
Nitrate_Bl [kg/ha] Nitrate below ground 
N_Plant [kg/ha] Plant nitrogen uptake 

ROF (mm) Cumulative runoff 
DRN (mm) Cumulative drainage 
EOA (mm) Evapotranspiration 

 
  Examining subsets of the data at differing spatial aggregations is helpful to elucidate the 

mechanics of nitrogen loss in this system. County-level analysis highlights the differing seasonal 

cycles present at different locations within our study region and identifies periods when nitrogen 

loss occurs relative to management. However, heterogeneities in soil type and intensity of 

production (i.e. number of simulations present in each county) obscure the individual 

contribution of each field and potential drivers of nitrogen loss are obscured. Analysis of the sub-
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field variability (e.g. YSZs) at the individual field level allows us to examine the potential 

mechanistic drivers responsible for the principal model outputs such as yield (GWAD) and 

nitrate leaching (NLC). Individual field sites (CLU) were selected based on largest mean corn 

yields in their respective counties. Once a field was selected, seasonal outputs were subjected to 

correlation analysis (Pearson’s r) to determine the general correlations between the various input 

and output variables and links with yield and nitrogen loss (Table 4.4). Correlations were 

performed both with the current season driving variables and the current seasons SALUS output  

and with the previous seasons driving variable and the current season SALUS output (i.e. lag-1). 

Correlation analyses were conducted for each stability zone available in the CLU considered. 

Correlations were conducted both for each crop individually and in aggregate.  

Table 4.4 Driving variables subject to correlation analysis with SALUS outputs. 

Driving Variable Description 
PRCP_GS Growing Season (May-Sept.) 

Precipitation Accumulation (mm) 
WWI (Loecke et al. 2017) Weather Whiplash Index (see Eqn. 1) 

ET/PET Ratio of October-September totals of 
SALUS simulated Evapotranspiration to 

Penman-Monteith grass reference 
Potential Evapotranspiration 

MAXT GS Annual Growing Season Mean High 
Temperature 

PET WAT YR Water year (October-September) Penman-
Monteith grass reference Potential 

Evapotranspiration 
 

Results 

Background Hydroclimatic Environment/Trends 

In recent years, a number of studies regarding precipitation trends and variability in the 

Midwestern United States have generally concluded that precipitation totals and the amount of 

water available on landscapes has increased (Baule et al. 2022; Kunkel et al. 2020a; Hayhoe et 
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al. 2018; Pryor et al. 2009) although there is substantial variability in these trends across the 

region. Trends in the meteorological data implemented in this study are in agreement with these 

findings. However examination of potential evapotranspiration (PETref) series in the region 

suggests that PETref has been increasing at a more rapid rate than precipitation, both annually 

(Figure 4.3 a & c) and within the growing season. Trends in PETref are statistically significant 

and positive in regions east of the Mississippi River, and for much of Missouri and western 

Kansas (Figure 4.3 d.). A mix of insignificant trends and significant positive trends is observed 

in Iowa, southern Nebraska, and Minnesota, and production areas of North Dakota and South 

Dakota.  The larger trends in PETref compared to precipitation suggests that the increases in 

precipitation from 1989-2019 have been at least partially offset by increases in evaporative 

demand from 1989-2019 over portions of the region. Exceptions to this include swaths of Iowa, 

Indiana, Nebraska, and much of the Dakotas. Over much of the region positive trends in PET 

meet criteria for statistical significance, while negative slopes in PET are not statistically 

significant. Annual trends in precipitation were largely insignificant (Figure 4.3 b) from 1989-

2019, save for portions of Nebraska, Wisconsin, Illinois, Indiana, and Michigan, where they 

exceeded +6 mm/yr in isolated areas (Figure 4.3 a). 
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Figure 4.3 a) Sen’s slope in annual precipitation accumulation (mm/yr) from 1989-2019, b) 

significance of trend (p<0.05,Mann-Kendall,two-tailed) in annual precipitation from 1989-2019 
where a gray indicates significant positive trend, white is an insignificant (no-trend), and orange 

indicates a significant negative trend, c) Sen’s slope in annual potential evapotranspiration 
(mm/yr) from 1989-2019, and d) significance of trend (p<0.05,Mann-Kendall,two-tailed) in 
annual PETref from 1989-2019 where gray indicates a significant positive trend, white is an 

insignificant trend  (no-trend), and orange indicates a significant negative trend. 
 

The increase in potential evapotranspiration has been driven primarily by increasing 

growing season temperatures from 1989-2019 (Figure 4.4 a & c). During the period from 1989-

2019, maximum and minimum temperatures during the growing season increased at 

approximately the same rate over much of the region. Greater increases over time were evident 

in the eastern portions of the study region and were often associated with statistically significant 

positive trends (Figure 4.4 b and d). Exceptions to this pattern are largely restricted to the 

Dakotas, where minimum temperatures have increased, but more slowly than locations south and 

east, and maximum temperatures have been relatively flat or trending negative.  
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Figure 4.4 a) Trend in growing season maximum daily temperature (°C/yr) from 1989-2019, b) 

significance of trend (p<0.05,Mann-Kendall,two-tailed) in growing season maximum daily 
temperature from 1989-2019 where gray indicates a significant positive trend, white is an 

insignificant trend (no-trend), and orange indicates a significant negative trend, c) Trend in 
growing season minimum daily temperature (°C/yr) from 1989-2019, and d) significance of 

trend (p<0.05,Mann-Kendall,two-tailed) in growing season minimum daily temperature from 
1989-2019 where gray indicates a significant positive trend, white is an insignificant trend (no-

trend), and orange indicates a significant negative trend. 
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Regional Results 

 

 
Figure 4.5 a) Map of simulated mean corn GWAD from 1989-2019 for all YSZs, b) histograms 

of mean corn GWAD from 1989-2019 by YSZ, and c) histograms of mean soy GWAD from 
1989-2019 by YSZ. 

 
For clarity of discussion, the results presented in this section will refer to simulations run 

with the no-tillage option. The impacts of tillage will be discussed in a later section as it largely 

results in a modulation/amplification type effect in regard to soil nitrogen. With respect to YSZ 

across the region and based on total grain produced (kg/ha) over the 1989-2019 period, HS zones 

were responsible for 76.9% of total production, LS were responsible for 16.6%, while USD, 

USH, and USO were responsible for 3.89%, 2.27%, and 0.32% respectively (Figure 4.5). In 

terms of mean yield, irrespective of intensity, HS zones exhibited the highest mean yields 

(10,184 kg/ha corn; 3,150 kg/ha soy), followed by USD (7,263 kg/ha corn; 2,898 kg/ha soy), and 
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LS (4,099 kg/ha corn; 2,408 kg/ha soy), USH (4,063 kg/ha corn; 2,180 kg/ha soy), and USO 

(4,057 kg/ha corn; 2,136 kg/ha) were substantially lower than HS and USD. In terms of yields by 

zone across the region (Figure 4.6), the highest corn yields by state were simulated in Nebraska 

(irrigated), followed by Iowa and Indiana. For soy, the highest yields were simulated in 

Minnesota, Pennsylvania, and Nebraska (irrigated). The three lowest yielding states in terms of 

corn were Missouri, North Dakota, and Arkansas. For soy, the three lowest yielding states were 

Wisconsin, Illinois, and Arkansas. Relatively greater interannual yield variability for both corn 

and soybean were observed across northern and western regions of the study area, particularly 

portions of Iowa, Minnesota, South Dakota, and North Dakota (not shown). In terms of yield 

trend (not shown) over the study period, there was a mix of negative and positive trends, with a 

concentration of negative yield trends in the southwestern portions of the study region and 

positive yield trends across the northern areas. However, the majority of yield trends were not 

statistically significant (Mann-Kendall, two-tailed, p<0.05) and suggest a good match of crop 

parameters to the background climate. The three highest simulated yielding states in terms of 

combined corn and soy grain production were (in descending order) Iowa, Nebraska (irrigated), 

and Illinois while the three lowest total production states were North Dakota*, Pennsylvania, and 

Arkansas.  
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Figure 4.6 Bar plots of state level mean GWAD for corn (red) and soy (blue) from 1989-2019. 
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Figure 4.7 a) Map of simulated mean corn NLC from 1989-2019 for all YSZs, b) histograms of 
mean corn NLC from 1989-2019 by YSZ, and c) histograms of mean soy NLC from 1989-2019 

by YSZ. 
 

For Nitrate Leaching (NLC) with respect to YSZ, LS (26.96 kg/ha corn; 25.15 kg/ha 

soy), USH (26.96 kg/ha corn; 26.76 kg/ha soy), and USO (26.96 kg/ha corn; 30.18 kg/ha) were 

responsible for highest mean NLC values. HS (1.94 kg/ha corn; 8.31 kg/ha soy) and USD (4.58 

kg/ha corn; 5.74 kg/ha soy) zones were responsible for less NLC on average (Figure 4.7). NLC 

exhibited more relative pixel to pixel spatial variability across the region than yield (Figure 4.7). 

The states with the highest simulated NLC mean values during corn production years were, in 

descending order Arkansas, Indiana, and Kansas (irrigated) while the states with the lowest mean 

annual NLC were Nebraska (irrigated), South Dakota, and North Dakota. Despite the drastic 

differences in yields between soy and corn crops in our simulations, leaching was more evenly 
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distributed between soy and corn years. NLC in corn years was somewhat higher in most states, 

likely due to the timing of fertilization during the growing season (Figure 4.8). This references to 

the dominant sources of NLC in the simulations coming from the LS, USH, and USO zones of 

the field. In contrast, for the HS and USD zones, leaching was generally higher during soy years 

than corn years (Figure 4.8 a & c). Since these zones are considered well-managed and in deeper 

soil profiles within our framework, this suggests the NLC differences between HS/USD and 

LS/USH/USO are associated with the uniform management scheme. Over the study period, NLC 

increased over time in northwestern and eastern sections of the region but tended to decrease in 

central sections (Figure 4.9 a). In the areas where trends were statistically significant, the vast 

majority were positive and concentrated in areas of Iowa, Minnesota, South Dakota, and North 

Dakota. Statistically significant negative trends in nitrate leaching are evident in east central 

Illinois. As with GWAD, the majority of the trends in NLC across the region were insignificant. 

The top three states in terms of total nitrate leached over the simulation from 1989-2019 were 

Illinois, Iowa, and Indiana. The lowest three states in terms of total nitrate leached were, in 

descending order, North Dakota*, Arkansas, and Pennsylvania. The order of the states for total 

amount of nitrate lost are largely reflective of the intensity of production and not necessarily the 

most vulnerable locations for nitrogen loss on a field-by-field basis (Figure 4.10). The relatively 

high contribution of the LS zones to the state total highlights these stability zones as the primary 

contributors of leached nitrate. LS zones on average are responsible for 65% of the total nitrate 

leached on a state-by-state basis. 
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Figure 4.8 Bar plots of state level mean NLC for corn (red) and soy (blue) from 1989-2019. 

Order of states on the x-axis is in the same order as Figure 4.6. 
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Figure 4.9 a). Sen’s slope (kg ha-1yr-1) of seasonal Nitrate Leaching (NLC) over the period from 
1989-2019 for all crops. b). Statistically significant trends (p <0.05, Mann-Kendall, two-tailed) 

in NLC. 
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Figure 4.10 a) Bar plot of total simulated NLC (kg) from 1989-2019 with all YSZ considered. b). 

Bar plot of total simulated NLC (kg) from 1989-2019 with all zones except LS included. c). 
Percentage of NLC from all zones besides LS. 
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Nitrate below ground (Nitrate_Bl) at harvest is not a variable often measured across wide 

spatial scales for comparison. However, simulated model outputs of such variables can be useful 

for identifying the potential for subsequent nitrogen losses. On average across the region, the 

areas with the most nitrate remaining in the soil profile at the end of the corn production season 

were located in North Dakota, South Dakota, Minnesota, north central Iowa, and east central 

Illinois (Figure 4.11). The YSZs exhibit different distributions of mean Nitrate Bl depending on 

crop type. Under corn, USO zones have the highest mean Nitrate_Bl, followed by USH, LS, 

USD, and HS. Under soy, which is not unfertilized with nitrogen, USD has the highest mean 

Nitrate_Bl, followed by HS, USO, USH, and LS. Since Nitrate Bl is related to the depth of the 

profile, the impact of fertilization and management on these zones becomes more apparent in 

that deeper soil profiles contain more residual nitrate than those located on shallower soils, 

which lose nitrate more quickly through leaching (Zotarelli et al., 2007).  
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Figure 4.11 a) Map of simulated mean corn Nitrate_Bl from 1989-2019 for all YSZs, b) 

histograms of mean corn Nitrate_Bl from 1989-2019 by YSZ, and c) histograms of mean soy 
Nitrate_Bl from 1989-2019 by YSZ. 

 
Combining NLC and scaling it per unit of yield illustrates the differing potential 

economic impacts among the zones as related to leaching, particularly for corn (Table 4.5). In 

terms of NLC per GWAD, USH, LS, and USO exhibit higher values of NLC per GWAD than 

USD or HS zones. Based on state level simulation means, it suggests that Arkansas, 

Pennsylvania, and Michigan produce more NLC per GWAD (e.g., Arkansas LS NLC per 

GWAD was 0.021). The three states with lowest NLC per GWAD were South Dakota, North 

Dakota, and Nebraska (e.g., South Dakota LS NLC per GWAD was 0.005) Simulated N_Plant 

values were largely reflective of yield and show similar spatial patterns to GWAD by YSZ. 
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DRN, ROF, and EOA variables differed little by YSZ and are largely reflective of the 

background climate of the region on a seasonal basis.  

 

Figure 4.12 The impact of minimum spring tillage (10 cm) and conventional fall tillage (20 cm) 
on nitrate leaching expressed as the difference from the no-tillage treatment by yield stability 

zone: a) HS zones, b) LS zones, c) USD zones, d) USH zones, and e) USO zones. 
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Table 4.5 NLC per GWAD state level means for corn years by state. Unitless. 

State HS LS USD USH USO 

Arkansas 1.158E-03 0.021 1.520E-03 0.022 0.017 
Pennsylvania 2.167E-05 0.011 2.233E-04 0.011 0.007 

Michigan 2.238E-05 0.011 2.243E-04 0.009 0.007 
Missouri 9.854E-05 0.010 3.723E-04 0.012 0.009 
Indiana 1.153E-04 0.010 4.607E-04 0.010 0.008 
Kansas 9.604E-05 0.009 3.124E-04 0.011 0.010 
Illinois 5.608E-05 0.008 3.040E-04 0.008 0.007 

Minnesota 7.313E-05 0.007 5.394E-04 0.008 0.006 
Ohio 3.123E-05 0.006 1.719E-04 0.007 0.005 

Wisconsin 3.415E-05 0.006 2.208E-04 0.007 0.006 
Iowa 7.245E-05 0.005 5.624E-04 0.006 0.006 
South 

Dakota 
1.154E-05 0.005 1.129E-04 0.006 0.004 

North 
Dakota 

1.397E-05 0.005 2.776E-03 0.096 0.015 

Nebraska 2.112E-05 0.003 1.055E-04 0.003 0.003 
 
Impact of Tillage  

Under the three separate tillage scenarios, the impacts of tillage on the seasonal results 

are striking. SALUS simulates the breakdown of soil organic matter (SOM) and increased 

saturated hydraulic conductivity near the surface of the soil profile (Basso and Ritchie 2015). 

Over time, the impacts of tillage result in slightly lower yields, with generally larger yield 

reductions with increased intensity of tillage. The impacts of tillage on nitrogen-related variables 

are more complex. In general, there was more Nitrate_Bl at the end of the growing season under 

the tilled treatments. N_Plant is greater under the two tilled options than under no till and 

greatest under conventional tillage, but was not great enough to offset the increased Nitrate_Bl 

under the tilled treatments. As a result of relatively unstable yields, somewhat increased N_Plant 

and Nitrate_Bl, NLC also increased under both tillage scenarios with the largest changes under 
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conventional tillage (Figure 4.12). States with the largest increases in simulated leaching with 

increasing tillage were North Dakota, Minnesota, and Iowa.  

Comparison with Observed Stream Concentration Data 

Observed stream nitrate totals were plotted on top of 8-digit Hydrologic Unit Code 

(HUC) maps of total simulated nitrate leached within each unit from harvest 2012 through 

harvest 2013 (Figure 4.13 a). Despite the simplifications in our model regarding crop rotation, 

the inability to simulate all fields and sources of environmental nitrogen, and other unaccounted-

for processes there is a strong visual between both variables with agricultural intensity. There is 

also strong empirical evidence for a linkage between WWI and nitrate loss in the western Corn 

Belt. Loecke et al (2017) examined nitrate levels in streams following the 2012 Midwestern 

Drought, particularly in locations that experienced a large negative WWI over that period (from 

abnormally dry to abnormally wet). In our simulations, we see a similar response in the western 

HUC-8 zones in terms of nitrate leached and how it corresponds to measured stream nitrogen 

levels (Figure 4.13 b). In eastern sections of the study region (OH, eastern IN, and PA), leaching 

in the 2013 growing season appeared to be more related to the total movement of water, as these 

regions were not as affected by the 2012 drought. Overall correlation between simulated HUC-8 

total nitrate and observed stream nitrate is moderate across the region (Pearson’s r=0.34, not 

shown), though the complexity of the actual agricultural landscape versus the simulated 

landscape likely accounts for at least some of the weakness in the statistics.   
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Figure 4.13 a) Total NLC from harvest 2012 through harvest 2013 with each HUC-8 watersheds 
(green fill), Scaled purple dots indicate stream nitrate concentration. b) WWI for the study region 

for 2013. 
 
County Level Daily Results 

At the county level, the relationships between the YSZs behave similarly to the broader 

region in terms of relative yield and leaching differences (e.g. HS = low NLC, high GWAD; LS= 

high NLC, low GWAD) when the seasonal results are examined. However, daily plots of total 

NLC suggest that the timing of when leaching occurs has a geographic component associated 

with the character of precipitation within that given county (Figure 4.14). In western and 

northern locations in the region, the majority of the nitrate was leached between April and 

October, even in LS, USH, and USO zones. In the two eastern locations displayed, NLC is more 

consistent throughout the year, suggesting a linkage with the annual cycle of precipitation.  All 

zones and regions show a decrease in NLC on days of the year that correspond to peak crop N-

uptake (generally following side-dress nitrogen application 45 days after planting through days 

70-80 after planting), followed by an increase after this period. The large individual peaks within 

the histograms are reflective of individual heavy rain events, whereas the general shape 

displayed by the bar plots reveals the seasonal nature of leaching punctuated by large weather 
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events and appears to be more related to the annual cycle of total precipitation and the soil 

characteristics at a particular location. For example, Auglaize County, Ohio receives more 

precipitation on average (mean: 1009 mm/yr, stdev: 161 mm), while Boone County, Iowa 

receives less (mean: 908 mm/yr. stdev: 192 mm) precipitation but precipitation is more variable 

year to year and more concentrated (Figure 4.14 a)  during the growing season (July mean: 

137mm & December mean: 32 mm) than Auglaize County, Ohio (July mean: 109 mm & 

December mean: 66 mm) (Figure 12e). The more consistent supply of rainfall throughout the 

year suggests a longer potential leaching season and more consistent leaching throughout the 

year and year to year than the more variable precipitation regime in Boone County, IA.  The 

behavior of the individual zones at these locations, based on total NLC is: HS and USD zones 

exhibited few “spikes” on a given day of the year with a smoother, less variable seasonal cycle. 

In contrast, weather-related “spikes” were abundant across all locations in the LS, USH, and 

USO zones. At all locations displayed, the largest individual NLC events occurred during corn 

years following fertilization, again displaying the sensitivity of the LS, USH, and USO zones to 

weather. In soy years (not shown), NLC between the period of crop establishment and harvest is 

minimal when compared to corn years where fertilizer is applied. Attempts to parse out response 

by soil textural class, yielded little improvement in results, illustrating the complexity of 

interactions between physical and managed aspects of the agricultural system even at the county 

scale.  
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Figure 4.14 Total simulated NLC (kg) by numerical Day of Year (DOY) from 1989-2019 by 

YSZ for five counties: a) Boone County, Iowa; b) Redwood County, Minnesota; c) Grant 
County, Wisconsin; d) Jennings County, Indiana; and e) Auglaize County, Ohio. Blue bars 

represent LS zones, red bars USH, yellow bars USH, purple USD, and green HS. 
 
Single Site (CLU) Results 

Within the context of the effect of weather and climate directly on YSZs, it was helpful to 

conduct analyses of singular fields as the soil classification within our framework was assigned 

to the majority value for that CLU (e.g. soils are the same). This has the effect of eliminating 

variability based on soil type, aside from modifications due to the YSZ parameterization. The 3 

highest correlated driving variable/crop/lag combinations at single CLU locations are shown in 

Table 4.6. 
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Table 4.6 Three leading seasonal correlation coefficients (r) between SALUS model outputs and driving hydroclimatic variables at 
select single field locations. Current refers to driving variables in the current season, Lag1 refers to lagging the driving variable by one 
season when correlated with SALUS output. Below the count and state name for each location is a cell displaying YSZs present. 
 

 

 

 

 

 

 

 

 
NLC 

 
GWAD 

 
NitrateBl 

 
EOA 

 
DRN 

 

County, 
ST 

Combination r Combination r Combination r Combination r Combination r 

Clay, 
NE 

LS WWI Soy 
Lag1 

-0.61 HS ET/PET All 
Current 

0.78 LS ET/PET 
All Current 

0.69 HS PET WAT 
YR Soy Current 

0.97 LS ET/PET 
All Current 

0.69 

HS, LS LS WWI 
CORN Current 

0.54 LS_MAXT_GS 
Soy Current 

-0.74 HS 
MAXT_GS 

Corn Current 

0.56 LS PET WAT 
YR Soy Current 

0.96 HS 
MAXT_GS 

Corn Current 

0.56 

 
LS ET/PET 
Corn Lag1 

-0.49 LS ET/PET All 
Current 

0.70 LS WWI 
CORN 
Current 

-0.54 LS MAXT_GS 
Soy Current 

0.89 LS WWI 
Corn Current 

-0.54 

Worth, 
IA 

USD PRCP GS 
Corn Current 

0.77 HS MAXT_GS 
Soy Current 

-0.84 USO PET 
WAT YR 

Soy Current 

0.95 HS PET WAT 
YR Corn 
Current 

0.94 USO PRCP 
GS Corn 
Current 

0.93 

HS, LS, 
USD, 
USO 

USO PRCP GS 
Corn Current 

0.75 HS_ET/PET 
All Current 

0.84 USO 
MAXT_GS 
Soy Current 

0.92 USO PET WAT 
YR Soy Current 

0.93 LS PRCP GS 
Corn Current 

0.92 

 
USO PRCP GS 

Soy Lag1 
-0.70 HS PET WAT 

YR Soy 
Current 

-0.81 LS PET 
WAT YR 

Soy Current 

0.81 LS PET WAT 
YR Soy Current 

0.93 HS PRCP GS 
Corn Current 

0.91 

Grant, 
WI 

LS PET WAT 
YR Soy 
Current 

0.70 USO_ET/PET 
All Current 

0.81 HS 
MAXT_GS 

Corn Current 

0.88 USD PET WAT 
YR Soy Current 

0.95 USD PRCP 
GS Corn 
Current 

0.95 

HS, LS, 
USD 

LS ET/PET 
Soy Lag1 

0.63 HS ET/PET All 
Lag1 

0.85 USD 
MAXT_GS 

Corn Current 

0.85 HS PET WAT 
YR Soy Current 

0.94 HS PRCP GS 
Corn Current 

0.95 

 
LS_MAXT_GS 

Soy Lag1 
0.61 LS ET/PET All 

Current 
0.78 HS PET 

WAT YR 
Corn Current 

0.82 LS MAXT_GS 
Soy Current 

0.94 LS PRCP GS 
Corn Current 

0.94 

Henry, 
OH 

USH ET/PET 
Soy Lag1 

0.64 HS PET WAT 
YR Soy 
Current 

-0.67 HS ET/PET 
Corn Current 

0.75 USH 
MAXT_GS Soy 

Current 

0.93 LS ET/PET 
Soy Current 

-0.73 

HS, LS, 
USH, 
USO 

LS ET/PET 
Soy Lag1 

0.53 USH 
MAXT_GS 
Soy Current 

-0.67 USH ET/PET 
Corn Current 

0.72 LS_MAXT_GS 
Current Soy 

0.92 USH ET/PET 
Soy Current 

-0.73 

 
USH 

MAXT_GS 
Soy Lag1 

0.52 LS MAXT_GS 
Soy Current 

-0.66 HS ET/PET 
All Current 

0.72 USO 
MAXT_GS Soy 

Current 

0.92 USO ET/PET 
Soy Current 

-0.73 
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Across the selected sites, the strength of the correlations varied substantially by location, 

with the highest correlation values between the modeled output of EOA and DRN and driving 

variables, which is not surprising as these variables respond directly to weather within the model 

framework. The low correlation values present at the Clay County, NE CLU illustrate the 

decoupling effect of irrigation on these relationships. This holds across correlations with all 

modeled outputs with respect to irrigation, indicating lower correlations between hydroclimatic 

driving variables and model outputs. For EOA and DRN, YSZs display less sensitivity to the 

driving hydroclimatic variable than the other variables more directly related to management (e.g. 

NLC, GWAD, and NitrateBl). Besides EOA, the highest correlated driving variables across the 

region were mostly PET WAT YR, and MAXT GS mixed among the various YSZs and crops. 

Precipitation related variables played a more direct role for DRN with the highest correlations 

being ET/PET, MAXT GS, WWI, and PRCP GS. For both variables, all of the top 3 leading 

correlation coefficients were in the current season for both crop types, suggesting little carryover 

effect from the previous season on EOA or DRN.  

For GWAD and NitrateBl, most of the highest correlations were for the current season, 

suggesting again that there is little carryover from the previous crop that affects this outcome. 

Across all locations shown, HS zones were the most correlated with GWAD For NitrateBl, and 

correlations were strongest in zones other than HS. The LS, USH, and USO zones exhibited 

stronger correlations with driving variables that HS or USD zones. GWAD appears to be most 

correlated with ET/PET, MAXT GS, and PET WAT YR variables, illustrating the importance of 

moisture availability and supportive temperatures for higher crop yields. There is a notable drop-

off of the strength of correlations as one moves east in the region (from Worth County, IA to 

Grant County, WI, to Henry County, OH), suggesting that western locations, with less annual 
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and growing season precipitation and higher interannual variability in precipitation are more 

closely tied to these modeled outputs. For NitrateBl, the situation is similar but notably different. 

The LS, USO, and USH zones were predominant rather than HS YSZs in terms of strength of 

correlations with NitrateBl. With ET/PET, MAXT GS, PET WAT YR, and WWI being 

predominant among leading correlation coefficients and all were for corn seasons suggesting a 

relationship to fertilization. NitrateBl displayed similar constraints to GWAD though variables 

suggesting precipitation variability plays a more direct role, with WWI showing up as a leading 

coefficient at some locations (Table 4.6).   

The results for NLC are more nuanced than those for the other modeled variables 

presented. LS, USO, USH, and USD were the predominant YSZs present in the leading 

correlation coefficients. Soy and corn crops display dramatically different behavior than the 

other variables presented in that the previous year (e,g. Lag 1) plays a dominant role in the 

magnitude of nitrate leaching, particularly in true soy seasons. This relationship is dependent on 

the management of the crops and crop rotations present. As soy crops were unfertilized, NLC is 

dependent on the amount of residual NitrateBl from the previous corn crop, which is in turn 

related to the GWAD and individual YSZ behavior. The absence of the HS zone in leading 

correlation coefficients, illustrates the minimal contribution of HS zones (and to a lesser extent, 

USD zones) to NLC regardless of location or crop type. At the western locations, WWI and 

Growing Season Precipitation (PRCP_GS) were the leading driving variables related to NLC. 

Under rainfed conditions (Worth County, IA), PRCP_GS in the current season for corn or 

previous season (Lag1) for soy is the leading driving variable for NLC. Under irrigation (Clay 

County, NE), PRCP_GS isn’t as limiting since it’s supplemented by irrigation. At this location, 

WWI (which is relevant outside of the growing season, when no irrigation is applied) appears to 
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be the primary driver of NLC. At the two more eastern locations, the PET WAT YR, ET/PET, 

and MAXT_GS variables are the leading correlated driving variables suggesting that air 

temperature is the primary determinant in NLC for the current season. The strength of 

correlations between driving variables and model output also decreases as one moves east across 

the region or when supplemental irrigation is assumed (i.e. Clay County, NE), suggesting that 

precipitation variability at the eastern locations is less important for NLC and more dependent on 

the supportive thermal environment for the previous and current crop (Figure 4.15).  

 
Figure 4.15 a) Ratio of crop ET to PET for 4 single CLUs across the study region: Worth 

County, IA (blue), Henry County, OH (orange), Grant County, WI (yellow), and Clay County, 
NE (purple). b) Contour plot of mean annual PET from 1989-2019, red * on map indicate the 

location of the individual CLUs plotted in a. 
  

An example of this behavior is presented for Worth County, IA from 1989-2019 (Figure 

4.16). The maximum NLC year for this location occurred in 1990, which was planted as soy. The 

current growing season precipitation (Figure 4.16 a) had the leading correlation with NLC for 

this location, while WWI was also strongly correlated at the site. Fertilizer was applied in 1989 

(180 kg/ha) followed by the second driest growing season in the simulation timeline (Figure 4.16 
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a). which resulted in high NitrateBl at the end of the 1989 growing season. Given a relatively 

normal amount of GS_PRCP in 1990 (Figure 4.16 c), NLC was the largest seasonal total for this 

location (HS: 7.2 kg/ha, LS: 144 kg/ha, USD: 13.6 kg/ha, and USO: 167.9 kg/ha) over the 

simulation period. Subsequent droughts at this location, such as the 2012 Midwestern Drought, 

provide an example of the modulating effects of crop type and management. 2012 was planted as 

soy with no fertilizer applied, and while the 2013 season that followed was wet, the 2013 corn 

crop wasn’t fertilized until late-spring. This resulted in less overall NLC in the 2013 season, due 

to crop rotation and management, despite the drought being more severe at this location in 2012 

than in 1989. Scatter plots showing the relationship between PRCP_GS and NLC in the current 

growing season (Figure 4.16 b) and DRN and NLC in the current season (Figure 4.16 d) 

highlight the different strength of the correlations by model output variable, in this case NLC and 

DRN.   
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Figure 4.16 a) Time series of simulated NLC (left-axis) and observed PRCP_GS (green, right-

axis) by YSZ for single CLU in Worth County, IA from 1989-2019, b) scatter plot for USO YSZ 
for current season PRCP_GS and NLC (orange dots represent soy years and blue dots represent 
corn years), c) Observed WWI index for 1990, d) scatter plot of USO YSZ for current season 

PRCP_GS and DRN (orange dots represent soy years and blue dots represent corn years). 
 

Discussion/Conclusion 

On the regional level, HS YSZs represent the majority (54%) of pixels simulated across 

the region. These zones are characterized by above field-average grain production, high plant 

nitrogen uptake, and typically little nitrate left in the soil profile at harvest. As a result of this 

good match between crop requirements and needs, there is a relatively low amount of leaching 

from these zones in general and especially relative to the other YSZs. This is not to say these 

zones are not susceptible to leaching and do not contribute to excess nitrate present on the 

landscape. But our modeling framework suggests that their contribution is small relative to other 

YSZs at the same time and place. USD YSZs are low spots in the landscape and are a relatively 
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small portion of the pixels simulated (4%). These zones are characterized by deep soils and 

additional water supply during wet years. Due to the empirical yield penalty imposed for these 

zones during wet years (Table 4.1), these zones are characterized by more variable yields and on 

average are lower than HS but higher than other zones. They are responsible for more leaching 

than HS zones, however their contribution is also small relative to other YSZ and due to the 

small proportion of USDs present on the landscape do not contribute substantially to the regional 

excess of nitrogen in the system. For individual producers, the relatively unstable nature of these 

zones suggest opportunities for precision management (e.g. Paiao et al. 2020; Jin et al. 2019; 

Basso et al. 2011) for producers managing fields with a large presence of USD YSZs.  

The LS, USH, and USO YSZs in aggregate represent a substantial proportion of pixels 

simulated (42%) across the study region. These zones are characterized by lower yields than HS 

or USD YSZs, though the USH and USO YSZs display more variability than LS due to generally 

higher yields and plant populations, fewer shallower/compacted soils, greater plant nitrogen 

uptake, and less nitrate remaining in soil at harvest. This results in much less predictable and 

greater nitrate leaching than HS and USD YSZs (96% vs. 4%) under uniform management for 

the entire field. The large mismatch in nitrogen use in the LS, USH, and USO YSZs presents 

both a challenge and opportunity for producers. Our modeling results suggest that the USH and 

USO YSZs are prime targets for precision management in terms of nutrients applied due to their 

higher correlations with hydroclimatic drivers. The LS YSZs produce poorly in most years, 

regardless of the weather conditions in a given growing season. Our results suggests these zones 

may be better utilized both economically and environmentally by other crops or land uses rather 

than grain production (e.g. Basso et al. 2019). Though the nature and types of these 

adaptions/production changes is beyond the scope of this study, recent research suggests that 
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producer’s perceptions of profitability and environmental benefits are key to the adoption of 

precision agricultural practices, and more research is needed particularly on the perceptions of 

producers regarding environmental benefits in the Midwest (Kolady et al. 2021). 

 Our results suggest that tillage across the region has a negligible to negative effect on 

mean aggregate yields in most states, resulting in greater plant nitrogen uptake, higher nitrate 

below ground, and higher nitrate leaching overall. This generally increases with the invasiveness 

of the tillage and reflects the increased breakdown of soil organic matter and increased hydraulic 

conductivity in the surface layers of the soil profile (Maharjan et al. 2018). The greater plant 

nitrogen uptake is consistent with field studies but is not enough to offset the increased supply of 

nitrate sources from fertilizer and SOM. Nitrate leaching has also been shown in field studies in 

the Midwest to increase under tillage with increased rain intensification (Hess et al. 2020), 

suggesting that our model is capable of capturing these tillage dynamics. This also highlights the 

fact that the results presented for the no-tillage system in our case are, at best, a conservative 

estimate of the dynamics of the nitrogen balance on a regional scale. Correlation analyses similar 

to those conducted at the individual CLU sites were attempted for county and state level results, 

however the heterogeneity of soil type, weather, and crop response resulted in generally poor 

correlations. Hess et al. (2020) found that intensified rainfall led to increased extractable soil 

nitrate in soil when compared to a control plot, suggesting increased rainfall over the region (e.g. 

Baule et al. 2022; Kunkel et al. 2020; Hayhoe et al. 2018) may play a variable role over the time 

in regional nitrogen dynamics. Further study and exploration of our modeling results is needed to 

further understand this linkage and representation of this effect within our modeling framework. 

While nitrogen dynamics are complex and non-linear, our results in terms of leaching amounts 

compare well with plot studies and the ranges presented in the literature for the region for nitrate 
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leaching (Hess et al. 2020; Syswerda et al. 2012; Zhou and Butterbach-Bahl 2014; Basso and 

Ritchie 2005), even for the low stable and unstable YSZs.  

When soil variability is constrained, as is the case with single CLUs within our 

framework, the dynamics of the soil-plant-atmosphere continuum become clearer. Regionally 

there appears to be a spatial pattern in our results, with nitrate leaching at locations in western 

and northern sections of the study domain more strongly associated with precipitation variability, 

in the sense that enough water to move nitrate through the soil profile is present and suggests a 

tie to water stress being a driver for conditions susceptible to nitrate loss. In eastern sections of 

the region where precipitation is more consistent year to year, throughout the season, and often 

exceeds crop water requirements (Figure 4.15), leaching values over time are more consistent 

with less variability and fewer heavy precipitation-driven events. This suggests that precipitation 

variability isn’t the limiting constraint in these areas, but rather the availability of water and 

supportive thermal environment within the growing season that are better correlated with nitrate 

leaching. The unstable YSZs were better correlated overall with hydroclimatic drivers of nitrate 

leaching than the stable zones. 

In these simulations, management played a decisive role. The highest correlating 

variables with soy crops were often those from the season prior (e.g. Lag1), which were fertilized 

corn crops. This suggests that the management and the weather during the prior growing season 

has the largest effect on nitrate lost in years when soy is grown. With differing crop rotations and 

management practices (e.g. nutrient applications, tillage) the response of the system may be 

substantially different in magnitude and temporal characteristics than those presented here, 

illustrating the role of the producer in management and outcomes. Given the closer ties to in-

season weather, precision application of nutrients to unstable zones is one potential strategy for 
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controlling excessive nutrient losses from these zones. With more stable behavior, the HS and LS 

zones are likely appropriate for longer-term strategic management decisions. While the relative 

behavior of the zones and their differing responses is interesting and potentially valuable for 

producers in those locations, the role of production intensity in our simulations is also clear. 

While the largest individual seasonal totals of nitrate leaching were simulated in western sections 

of the region, the largest contributors of nitrate leached (60%) in bulk are the traditional corn belt 

states of Illinois, Indiana, and Iowa, where the density of production is most intense on the state 

level. 

This study presents several avenues for future research and follow up studies. Given 

computational constraints at the time of simulation, the uniform crop rotation by year could 

likely be improved upon, to improve the fidelity of the simulation when compared to the actual 

agricultural landscape. The current set of simulation uses only a corn-soy rotation, in addition to 

randomization of starting crops, simulation of more complex or simpler (i.e., continuous corn) 

crop rotations. One potentially valuable addition would be the inclusion of simulations with a 

cover crop, which have been shown to be an effective approach to reduce nitrogen loss during 

the non-growing season (Christopher et al, 2021). Simulations here were also conducted using a 

split nitrogen application, which is an approach designed to reduce nitrogen loss, which could 

suggest that our results are conservative in nature. Additional simulations conducted with other 

fertilizer application timings, such as a fall bulk application, could shed more light on sources 

and timing of nitrate leaching under more traditional management practices. These differences in 

rotation and fertilizer timing could result in substantially different results than those presented 

here, illustrating the essential role of management in management nitrogen leaching and 

achieving environmentally and economically sustainable yields. 
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Summary of Results 

The previous three chapters present several new findings and approaches to the treatment, 

analysis, and impact modeling of climate, its inherent variability, and change over observational 

record.  

The first two chapters are more directly focused on the climate system and the statistical 

behavior of climatic variables. Chapter 2 highlights the development of a method to bias-correct 

reanalysis-based solar radiation data over a 13-state region of the Midwestern United States 

during the April-September growing season. The impacts of the correction are illustrated through 

process-based modeling and illustrate the spatially variable nature of the bias. Chapter 3 

illustrates the effect of data quality and statistical confidence level on the spatial interpretation of 

precipitation indicators, using a novel multitiered approach to assess data completeness, detect 

observer bias, and unreported break points.  

Chapter 4 presents a novel approach to simulating sub-field yield variability and 

associated nitrate leaching using process-based crop simulation models. Analysis of nitrate 

leaching output suggests that drivers of nitrate leaching at a specific location (i.e., individual 

field) vary across a 14-state region of the broader Midwest, ranging from growing season 

precipitation to the frequency of water stress, and within the same field by YSZ. In aggregate, 

interaction between topography, soil variability, SOM, and background hydroclimatic appear to 

be responsible for the characteristics described by larger spatial aggregation (i.e., county, state, 

region). Results from this modeling exercise are calibrated to grain yields across the region and 

results are in line with many field studies meta-analyses of field results related to nitrate leaching 

(e.g., Basso et al., 2019; Syswerda et al., 2012; Zhou and Butterbach-Bahl, 2014, Basso and 

Ritchie 2005). The relative results between YSZs across the region suggest that management 
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does and can play a critical role in managing nutrients, generally suggesting precision 

approaches to nutrients are advantageous both economically and environmentally. While the 

approach to yield stability zones and their simulation is novel, there have been recent studies that 

have taken both statistical (Deines et al. 2021) and process-based (Jin et al. 2019) approaches to 

spatial simulations of Midwestern field crop agriculture that incorporate sub-field variability. 

The work here is primarily focused on nitrate leaching, while Jin et al. (2019) and Deines et al. 

(2021) were focused primarily on yield. All three studies mentioned, illustrate the utility and 

potential for developing management plans that address sub-field variability utilizing publicly 

available resources.  

This dissertation offers a collection of works each focused on a different aspect of the 

Midwestern agricultural-climate interface, rooted in classic geographical/climatological 

techniques and implementing cutting-edge simulation framework to increase understanding 

around the impacts fueled by both climate and management strategies. Suggestions for future 

research in the next section could solidify conclusions drawn from model outputs and offer 

insights into potential causes of observer bias in precipitation in the COOP network and increase 

understanding of the flexibility of the bias-correction method conducted in Chapter 2.  

Recommendations for Future Research 

Increased validation of different components of the YSZ framework would offer 

increased confidence in model outputs and potential for model improvements. In terms of field 

measurements, further field sampling of nitrate levels in various YSZs across the landscape or 

installation of lysimeters would increase confidence in the nitrate leaching outputs from Chapter 

4. Recent analyses of model outputs suggest a temporal connection to the frequency of water 

stress and organic matter content that needs further exploration that may aid in interpretation of 
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correlations with driving hydroclimatic variables (e.g., Shuai and Basso, 2022). Additionally, 

application of the YSZ approach to climate projections could be valuable for the design of 

management plans and crop genetics. This will be essential to sustain yields as climate 

projections indicate future growing seasons will include conditions outside of the observed 

envelope of historical growing season conditions (e.g., Baule et al., 2017, Basso et al., 2021, 

Tang et al., 2020). 

 While the question of trends in precipitation in the Midwestern United States is a topic 

well covered in the literature, questions remain regarding the stability of observer bias over time 

and the causes of observer bias. That is, “Are sources of observer-bias linked to how observers 

are trained?” The geographical representation of stations that Pass or Failed the observer bias 

tests in Chapter 3 (Figure 1, Ch 3.) suggests that something other than the climate and weather of 

a region may be responsible. Further investigation into how observers have been trained over 

time to conduct observations and how this presents itself in the data would be an interesting 

multidisciplinary follow up to the results presented in Chapter 3. 

 Broadening the application of the bias correction technique to other gridded solar 

radiation products from other sources (e.g., Slater, 2016) would greatly aid in the assessment of 

the flexibility of the correction method documented in Chapter 2. Additionally, explorations of 

corrections of bias in climate model outputs from the Coupled Model Intercomparison Project 

Phase 6 (CMIP6) and their potential impact on process-based crop model simulations of yield 

and water-stress. 
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