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ABSTRACT

DYNAMICAL SYSTEMS ANALYSIS USING TOPOLOGICAL SIGNAL PROCESSING

By

Audun Myers

Topological Signal Processing (TSP) is the study of time series data through the lens of Topological

Data Analysis (TDA)—a process of analyzing data through its shape. This work focuses on

developing novel TSP tools for the analysis of dynamical systems. A dynamical system is a term

used to broadly refer to a system whose state changes in time. These systems are formally assumed

to be a continuum of states whose values are real numbers. However, real-life measurements of

these systems only provide finite information from which the underlying dynamics must be gleaned.

This necessitates making conclusions on the continuous structure of a dynamical system using noisy

finite samples or time series. The interest often lies in capturing qualitative changes in the system’s

behavior known as a bifurcation through changes in the shape of the state space as one or more of

the system parameters vary. Current literature on time series analysis aims to study this structure

by searching for a lower-dimensional representation; however, the need for user-defined inputs, the

sensitivity of these inputs to noise, and the expensive computational effort limit the usability of

available knowledge especially for in-situ signal processing.

This research aims to use and develop TSP tools to extract useful information about the under-

lying dynamical system’s structure. The first research direction investigates the use of sublevel set

persistence—a form of persistent homology from TDA—for signal processing with applications

including parameter estimation of a damped oscillator and signal complexity measures to detect

bifurcations. The second research direction applies TDA to complex networks to investigate how

the topology of such complex networks corresponds to the state space structure. We show how

TSP applied to complex networks can be used to detect changes in signal complexity including

chaotic compared to periodic dynamics in a noise-contaminated signal. The last research direction

focuses on the topological analysis of dynamical networks. A dynamical network is a graph whose



vertices and edges have state values driven by a highly interconnected dynamical system. We show

how zigzag persistence—a modification of persistent homology—can be used to understand the

changing structure of such dynamical networks.
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PREFACE

Dynamical systems is a term used to broadly refer to systems whose state changes in time. These

systems are formally assumed to be a continuum of states whose values are real numbers. However,

real-life measurements of systems only provide finite information from which the underlying

dynamics must be gleaned. This necessitates making conclusions on the continuous structure of

a dynamical system using noisy finite samples or time series. The interest often lies in capturing

qualitative changes in the system behavior as one or more of the system parameters vary. For

example, a shift in surface pressure characteristics on airfoils as a function of the angle of attack

from regular to aperiodic can indicate significant loss of lift and possibly stall conditions. Recent

advances in sensor technology and computer hardware has also led to a shift towards data-driven

analysis and modeling of engineered and natural systems. The datasets are obtained through either

numerical simulations or experiments and often contain complex dynamics hidden in some high-

dimensional structure. Current literature on time series analysis aims to study this structure by

searching for a lower dimensional representation; however, the need for user-defined inputs, the

sensitivity of these inputs to error, and the expensive computational effort limit the usability of

available knowledge, especially for in-situ signal analysis. Additionally, many current TSA methods

are sensitive to additive noise, which is common in experimental data.

An emerging collection of tools breathing new life into this discipline is the nascent field of

Topological Signal Processing (TSP), which leverages the power of Topological Data Analysis

(TDA) [157] for analyzing complex signals [42,147,159,160,163,175–177,202,229,230,233,243,

246]. Some of the attractive features of using TDA for signal processing include its noise-robustness,

compact visualization tools, and conduciveness to machine learning. Therefore, enriching signal

processing using TDA has the potential to reveal information that is currently not possible by

existing, standard dynamic systems methods. There has been exciting preliminary results in this

field including showing empirically that the novel tools created have potential to revolutionize the

field. However, despite the success shown in prior works, the fundamental science that connects

vi



TDA to the underlying dynamic systems theory remains largely unexplored. In my work I am

focused on four main chapters: (1) Implementing sublevel set persistence for parameter estimation

and time series analysis, (2) choosing optimal parameters for both state space reconstruction and

permutations to be used for topological signal processing, (3) the persistent homology of complex

networks, and (4) applying novel tools from TDA for analyzing dynamical networks. Each of these

will be introduced in the following paragraphs. In each chapter a thorough introduction to each

subject is provided.

The first chapter of my research is based in sublevel set persistence of single variable time

series—a tool from TDA that can be applied to the time series directly. The goal of this chapter

is to use the sublevel set persistence for directly estimating damping parameters of the underlying

one-dimensional oscillator from the positional output time series. While sublevel set persistence

is robust to additive noise, it does have noise artifacts that need to be accounted for to accurately

estimate system parameters from the signal. Therefor, my first contribution to this field was to

develop a statistical analysis of the resulting persistence to separate out the significant features

which hold information about the damping characteristics and parameter values of the underlying

oscillator.The third contribution of this chapter is my development of methods for calculating

time series complexity using sublevel set persistence and information theory. These complexity

measures are shown to provide an avenue for bifurcation detection through an increased complexity

of the signal’s sublevel set entropy.

The second chapter of my research studies parameter selection techniques for both state space

reconstruction and permutation formations. The two parameters needed are the dimension 𝑛 and

delay 𝜏. Both permutations and state spaace reconstruction are vital prerequisite data processing

techniques used to apply TDA to study a signal in the next chapter. In this chapter we also

develop novel parameter selection methods based on a topological analysis of the data through both

reconstructions from sliding windows and sublevel set persistence.

In contrast to classical tools for representing time series as a point cloud, chapter three of my

work studies network representations of the underlying dynamics. One of the advantages of this
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approach is that the size of the representation can be better controlled as a finite set, and I can

leverage graph theory to research faster methods for quantifying the topology based on the resulting

network. However, the representation of time series as a graph—especially in the presence of

noise—is a largely open field of research, and efficient TDA computation on the resulting graphs is

still in need of a solid mathematical footing. For example, questions related to the optimal parameter

choices of the representation, types of detectable bifurcations, and mathematical guarantees that

govern successful bifurcation identification are all wide open. Many of these optimal parameters are

associated with the parameters of both permutation entropy as a time series information measure

and state space reconstruction. In chapter two (section 2) I introduce information theory and

specifically permutation entropy with some of the most successful optimal parameter estimation

methods for time series as well as develop several novel methods based on tools from TDA. This

initial research provided the needed foundations for many of the network representation tools I

later use in chapter three. I also contribute to the field of complex network analysis through TDA

by investigating methods for implementing weight information and complex network formation

methods that best perform for the dynamic state analysis task.

The fourth chapter of research in Section 4 focuses on novel applications of topological data

analysis for studying interconnected dynamical systems represented as temporal graphs using

topological data analysis. In this chapter I first show how a transportation system as a dynamical

system can be represented as a temporal graph. I then develop a framework for applying zigzag

persistence to detect structural changes in the temporal graph over time. This is done using zigzag

persistence. I make comparisons to the persistence diagram results using standard shape summary

statistics from graph theory literature. In this chapter I also develop a method for the analysis of

complex dynamical systems using temporal graphs when only a one-dimensional signal is available.

This is done using a sliding window approach with each window represented as a complex network

(e.g., the ordinal partition network). I then show how zigzag persistence can be used to study

the changing structure of these graphs to detect changes in the signal and underlying dynamical

system. Specifically, I show how periodic and chaotic windows can be detected for the Lorenz

viii



system exhibiting intermittency dynamic (i.e., irregular transitions from a regular to chaotic state).

I have also included a fifth auxiliary chapter, which describes the experimental data sets and

software developed in my research. Specifically, two main experimental data sets are used. The

firth is the magnetic pendulum which has transitions from periodic to chaotic dynamics with a

change in base excitation frequency and amplitude making it useful for testing TSP methods used

for characterizing the dynamic state of a system. The second data set is from a double pendulum

tracked using a high-speed camera [165]. Many of the methods developed through my research are

programmed into the TSP python software teaspoon. The various available modules for teaspoon

are discussed in Section 5.2.
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CHAPTER 1

SUBLEVEL SET PERSISTENCE FOR TIME SERIES ANALYSIS

This chapter overviews my work on studying how sublevel set persistence, a tool from topological

data analysis, can be leveraged for signal processing. The first application is to estimate damping

parameters of a single degree of freedom system with a noisy time series as an input. The second

application is for bifurcation and signal complexity analysis. First, in Section 1.1 I introduce

sublevel set persistence and the novel and computationally efficient algorithm for applying it to

one-dimensional signals, Section 1.2 develops the statistical analysis to separate sublevel sets

associated to noise from signal is developed, Section 1.3 shows how sublevel set persistence can be

leveraged for damping parameter estimation, and in section 1.4 I apply sublevel set persistence to

signals for complexity and bifurcation detection.

Figure 1.1: Overview of research chapters with past, current, and future works.

r

1.1 Sublevel Set Persistence

I now provide a basic introduction to sublevel set persistence so the reader has a sufficient under-

standing of the method. Let us begin with the single variable function 𝑓 : R→ R. Given 𝑟 ∈ R, I

define the sublevel set below 𝑟 as 𝑓 −1(−∞, 𝑟]. As the filtration parameter 𝑟 increases, the sublevel

sets may grow but remain the same (up to homology) until a local extrema (i.e., a local minimum

or maximum) is reached. If the extrema is a local minima, then a new set is born at 𝑟𝐵; I label that

1



set with the value 𝑟𝐵. On the other hand, if the extrema is a local maxima, two previously-existing

sets are combined. If the two sets were labeled 𝑟𝐵 and 𝑟′
𝐵
, with 𝑟𝐵 ≤ 𝑟′𝐵 and the maximum attained

at 𝑟𝐷 , then, by the Elder Rule [70, p. 150], I say that the component born at 𝑟′
𝐵

dies going into 𝑟𝐷 .

The pair (𝑟′
𝐵
, 𝑟𝐷) is called a persistence pair. As 𝑟 ranges from −∞ to ∞, the persistence diagram

is the collection of all 𝑛 such pairs, dgm 𝑓 = {(𝑏𝑖, 𝑑𝑖)}𝑛𝑖=1. Any unpaired births are called essential

classes and are paired with a death coordinate of∞; thus, dgm 𝑓 is embedded in the extended plane

R
2. The lifetime or persistence of a point (𝑏𝑖, 𝑑𝑖) ∈ dgm 𝑓 is defined as ℓ𝑖 = 𝑑𝑖−𝑏𝑖. In this work, the

functions are only sampled on a finite domain, with the first sample at time 𝑡𝑎 and the last sample

at time 𝑡𝑏. I obtain a continuous function over [𝑡𝑎, 𝑡𝑏] by using a piecewise linear interpolation

between consecutive samples, and extending the function to ±∞ by extending the first (resp., last)

edges to rays. Doing so allows us to define a persistence diagram that does not have critical points

on the boundary of the time series. As such, I study the persistence points where both coordinates

are finite, and omit persistence points that contain an unbounded coordinate.

To demonstrate persistence diagrams and sublevel set persistence, I demonstrate a simple

example for the function shown in 1.2. This function has thirteen sample points, two local minima,

and two local maxima. The lowest critical value of the function occurs at height 𝑣0. For all 𝑟 < 𝑣0,

Figure 1.2: Example 0D sublevel set persistence from function 𝑓 (𝑡) over finite domain 𝑡 ∈ [𝑡𝑎, 𝑡𝑏]
with the resulting persistence diagram on the right.

𝑓 −1(−∞, 𝑟] is the ray [ 𝑓 −1(𝑟),∞). This connected component is labeled with −∞, since it is

“born” at −∞. Then, at height 𝑟 = 𝑣0, a second connected component is born. The next topological

change occurs at height 𝑟 = 𝑣1, where a third connected component is born. The next extrema is

reached when 𝑟 = 𝑝0. At this extrema, the sublevel set that was born at 𝑟 = 𝑣1 dies, while the

sublevel set born at 𝑟 = 𝑣0 persists based on the Elder Rule. This pair (𝑣1, 𝑝0) is recorded in the
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persistence diagram. From here, the next change happens at 𝑟 = 𝑝1, where the second sublevel set

dies and is recorded in the persistence diagram as (𝑣0, 𝑝1). Then, no further topological changes

occur, but this sublevel set continues to grow as 𝑟 grows. This essential class is recorded in the

persistence diagram as (−∞,∞) and is not studied in the analysis. As shown in the persistence

diagram, the point (𝑣1, 𝑝0) is close to the diagonal (the line 𝑦 = 𝑥), which signifies that the sublevel

set only persisted for a short range of heights (𝑟); on the other hand, the point (𝑣0, 𝑝1) is far from

the diagonal, suggesting it was from a significant sublevel set.

The idea of persistence can be extended to higher dimensions allowing for the analysis of

the shape of high-dimensional data sets. However, for my work, we only need to analyze the

zero-dimensional features (i.e., connected components) of a one-dimensional function. A more

thorough background on TDA, and persistent homology specifically, can be found in [69,157,174].

Other common ways for studying time series with a similar perspective is through merge trees or

dendograms [37, 46, 128].

1.1.1 Sublevel Set Persistence with Additive Noise

I now investigate the stability of sublevel set persistence diagrams to additive noise for single

variable functions. To illustrate the stability, I first take an example time series with additive noise

as 𝑥(𝑡) + 𝜖 , where 𝑥(𝑡) is sampled at a uniform rate 𝑓𝑠 and 𝜖 is additive noise from the noise model

N . An example of a persistence diagram from the time series with additive noise dgm𝑥 + 𝜖 is shown

in 1.3, along with the diagram without the additive noise dgm𝑥. This example also demonstrates

how a cutoff 𝐶𝛼 can be used to separate the significant points in the persistence diagram and those

associated to the additive noise.

This example demonstrates that the addition of noise does not have a large effect on the position

of significant sublevel sets in the persistence diagram with the distances between significant points

(𝑑1 and 𝑑2) all being relatively small. This is no surprise due to the stability theorem of the

bottleneck distance for persistence diagrams [49], where the bottleneck distance is defined as the

minimum distance to match two persistence diagrams. For example, if I assume 𝑑1 > 𝑑2 > 𝑑3 > 𝑑4,

3



Figure 1.3: Sublevel set persistence applied to 𝑥(𝑡) of a single variable function or time series with
and without additive noise 𝜖 from N , shown in red and blue, respectively. This demonstrates the
stability of persistent homology with the time series (left) with and without additive noise and the
small effect on the resulting persistence diagrams (right). In addition, the light red region separates
the significant features from those associated to additive noise.

then the bottleneck distance would be 𝑑2. However, additive noise does introduce several points

in the persistence diagram located near the diagonal with relatively small lifetimes. These noise-

artifact persistence pairs are formed from the peak-valley pairs in the additive noise. This work

focuses on a statistical analysis of these lifetimes to develop a method for separating the significant

persistence diagram points from those of additive noise, shown in as light red region in example

persistence diagram of 1.3, through a cutoff 𝐶𝛼 with 𝛼 ∈ [0, 1] as the given confidence level.

As mentioned previously, there are currently methods for developing confidence sets and

associated cutoffs for persistence diagrams [40, 73]. However, these methods are specific to

distance-like filtrations or require a high sampling rate. Moreover, boostrap-based techniques

can be costly Additionally, methods such as persistent entropy [10] for separating noise from

significant features in a persistence diagram may not properly distinguish between the noise and

significant points if the number of significant data points in the persistence diagram is relatively

large compared to the amount of noise. To address all of these issues, I introduce a new statistical

method for developing a confidence interval and corresponding cutoff 𝐶𝛼.

The aforementioned statistical analysis is discussed in the proceeding sections as follows. First,

in 1.2.1, I introduce my novel analysis of the statistics of the lifetimes in the persistence diagram

from the sublevel set persistence of additive noise with a probability distribution 𝑓 (𝑥). I then apply

this analysis in 1.2.3 to several noise models commonly used or seen in real-world applications.
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Following this, in 1.2.4, I introduce a method using the persistence diagram to estimate the needed

distribution parameters for calculating the cutoff. Finally, in Section 1.2.5, I investigate the use of

a compensation term on the distribution parameter estimation.

1.2 Statistical Analysis of Sublevel Set Persistence

1.2.1 Statistics of Additive Noise in the Persistence Diagram

Before studying a time series with additive noise, 𝑥 + 𝜖 : R→ R, I analyze the statistics of sublevel

set persistence diagrams of the noise alone. Our goal is to leverage this analysis in order to generate

a cutoff in the persistence diagram to separate out these noise-artifact points in the persistence

diagram for D(𝑥 + 𝜖).

Relating Statistics Background I start with the noise, which can be thought of as a (sampled)

function 𝜖 : R→ R, where, for each 𝑥 ∈ R, the value 𝜖 (𝑥) is a random variable sampled indepen-

dently and identically distributed (iid) from some predefined noise distribution N . In our noise

model, there is no covariance structure between these random variables. The first step in devel-

oping a cutoff based on the persistence diagram statistics of additive noise D(𝜖) is to determine

a relationship between the descriptive additive noise distribution parameters and the distribution

of the lifetimes. To do this, I develop an expression for the expected lifetime of points in D(𝜖).

Let 𝑓 : R→ R and 𝐹 : R→ R be the probability density function and cumulative density function

of N , respectively. Let 𝑓𝐵 : R → R and 𝑓𝐷 : R → R be the probability density functions for

the local minima and maxima or birth and death times of the sublevel sets from N , respectively.

Let 𝐹𝐵 and 𝐹𝐷 be the corresponding cumulative density functions. Based on the commutative

property of addition and the definition of a lifetime being the difference between the death and

birth times, respectively, the expected or mean lifetime 𝜇𝐿 is the difference between the expected

birth times 𝜇𝐵 := E(𝐵) and death times 𝜇𝐷 := E(𝐷), where 𝐵 and 𝐷 are the sets of birth and death

values, as

𝜇𝐿 := 𝜇𝐷 − 𝜇𝐵 =

∫ ∞

−∞
𝑥 [ 𝑓𝐷 (𝑥) − 𝑓𝐵 (𝑥)] 𝑑𝑥. (1.1)

5



A formal proof of this relationship is provided in Theorem B.1.1 of Appendix B.1. From Eq. (1.1),

I can move forward knowing that 𝜇𝐿 can be defined using only expressions for 𝑓𝐵 (𝑥) and 𝑓𝐷 (𝑥).

In other words, only the distribution of birth and death times is needed, not of the lifetimes, which

would require knowing how the births and deaths are paired.

I next compute the local maxima density distribution 𝑓𝐷 (𝑥). Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} 𝑖𝑖𝑑∼ N .

Ordering the samples by their index, I look at the probability of a given sample 𝑥𝑖 being a local

maximum in this sequence. Because 𝑥𝑖−1, 𝑥𝑖, and 𝑥𝑖+1 are all iid from 𝑓 (𝑥), I can state that

𝑓𝐷 (𝑥) = 𝑝(𝑥𝑖)𝑝(𝑥𝑖−1 < 𝑥𝑖)𝑝(𝑥𝑖+1 < 𝑥𝑖)

= 𝑓 (𝑥)𝐹2(𝑥),
(1.2)

where 𝑝(𝑥𝑖) = 𝑓 (𝑥) and 𝑝(𝑥𝑖−1 < 𝑥𝑖) = 𝑝(𝑥𝑖+1 < 𝑥𝑖) = 𝐹 (𝑥) based on the definition of a cumulative

probability function. Similarly, it shows that the local minima distribution is described as

𝑓𝐵 (𝑥) = 𝑝(𝑥𝑖)𝑝(𝑥𝑖−1 > 𝑥𝑖)𝑝(𝑥𝑖+1 > 𝑥𝑖)

= 𝑓 (𝑥) [1 − 𝐹 (𝑥)]2,
(1.3)

where 𝑝(𝑥𝑖−1 > 𝑥𝑖) = 𝑝(𝑥𝑖+1 > 𝑥𝑖) = 1 − 𝐹 (𝑥). To use the expectation function 𝐸 (𝑔(𝑥)) =∫ ∞
−∞ 𝑥𝑔(𝑥)𝑑𝑥 on a continuous probability density function 𝑔(𝑥), it is required that 𝑔(𝑥) is a proper

density function with
∫ ∞
−∞ 𝑔(𝑥)𝑑𝑥 = 1. This requirement is used to normalized both 𝑓𝐵 (𝑥) and

𝑓𝐷 (𝑥) as

𝑓𝐵 (𝑥) =
𝑓 (𝑥) [1 − 𝐹 (𝑥)]2

𝑁𝐵
,

𝑓𝐷 (𝑥) =
𝑓 (𝑥)𝐹2(𝑥)

𝑁𝐷
,

(1.4)

where 𝑁𝐵 =
∫ ∞
−∞ 𝑓 (𝑥) [1− 𝐹 (𝑥)]

2𝑑𝑥 and 𝑁𝐷 =
∫ ∞
−∞ 𝑓 (𝑥)𝐹

2(𝑥)𝑑𝑥. I can further reduce 𝑁𝐵 and 𝑁𝐷

from Eq. (1.4) by substituting 𝑓 (𝑥) = 𝐹′(𝑥), which reduces the 𝑁𝐷 equation to

𝑁𝐷 =

∫ ∞

−∞
𝐹′(𝑥)𝐹2(𝑥)𝑑𝑥 =

∫ ∞

−∞

1
3
(𝐹3(𝑥))′𝑑𝑥

=
1
3
𝐹3(𝑥) |∞−∞ =

1
3
,

(1.5)
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since it is assumed that 𝐹 (∞) = 1 and 𝐹 (−∞) = 0. Similarly,

𝑁𝐵 =

∫ ∞

−∞
𝑓 (𝑥) [1 − 𝐹 (𝑥)]2𝑑𝑥 =

∫ ∞

−∞
𝑓 (𝑥) [1 − 2𝐹 (𝑥) + 𝐹2(𝑥)]𝑑𝑥 = 𝑁𝐷 +

∫ ∞

−∞
𝑓 (𝑥) [1 − 2𝐹 (𝑥)]𝑑𝑥

= 𝑁𝐷 +
∫ ∞

−∞
𝐹′(𝑥)𝑑𝑥 −

∫ ∞

−∞
(𝐹2(𝑥))′𝑑𝑥 = 𝑁𝐷 +

[
𝐹 (𝑥) − 𝐹2(𝑥)

]
|∞−∞ = 𝑁𝐷 =

1
3
.

(1.6)

This can now reduce Eq. (1.4) to

𝑓𝐵 (𝑥) = 3 𝑓 (𝑥) [1 − 𝐹 (𝑥)]2,

𝑓𝐷 (𝑥) = 3 𝑓 (𝑥)𝐹2(𝑥),
(1.7)

I now assume 𝑓 (𝑥) is of a Gaussian distribution to validate our expressions in Eq. (1.4).

Specifically, I define the Gaussian (normal) probability distribution as

𝑓 (𝑥) = 1
√

2𝜋𝜎2
𝑒
− (𝑥−𝜇)

2

2𝜎2 , (1.8)

with a cumulative distribution

𝐹 (𝑥) = 1
2

[
1 + erf

(
𝑥 − 𝜇
𝜎
√

2

)]
. (1.9)

To validate the resulting expressions for 𝑓𝐵 (𝑥) and 𝑓𝐷 (𝑥) in (1.4), a numerical simulation of a

normal distribution N𝑛 (𝜇 = 0, 𝜎2 = 1) of length 𝑛 = 10𝐸5 was used (see Fig. 1.4). This analysis

shows a very similar result between the histograms ℎ(∗) and distributions. From the numerical

simulation, I also found the ratio 𝐿̄ ≈ 1.686, where 𝐿̄ is the sample mean of the lifetimes from

N (0, 𝜎2 = 1). Additionally I found that 𝐷̄ − 𝐵̄ ≈ 1.689 ≈ 𝐿̄. These results suggest that Eq. (1.1)

and Eq. (1.4) are correct. I now move on to determine a suitable cutoff with unknown probability

𝑓 (𝑥) and cumulative probability density 𝐹 (𝑥) functions.

Now that I have shown that our expressions for the probability distribution of the minima and

maxima are correct, I proceed to correlate the mean lifetime 𝜇𝐿 to the additive noise distribution

parameters. From our results in (1.7) I can now calculate the mean lifetime as

𝜇𝐿 = 3
∫ ∞

−∞
𝑥 𝑓 (𝑥)

[
𝐹2(𝑥) − (1 − 𝐹 (𝑥))2

]
𝑑𝑥 = 3

∫ ∞

−∞
𝑥
[
(𝐹2(𝑥))′ − 𝐹′(𝑥)

]
𝑑𝑥, (1.10)

which can then be simplified using integration by parts as

𝜇𝐿 = 3
∫ ∞

−∞
𝐹 (𝑥) [1 − 𝐹 (𝑥)] 𝑑𝑥. (1.11)
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Figure 1.4: Histograms ℎ(∗) of the zero mean normal distriubtion N (0, 𝜎2 = 1) and the resulting
birth times 𝐵 and death times 𝐷, which are compared to the density distributions from Eq. (1.4).

1.2.2 Cutoff Background

To determine a suitable cutoff, I again start by assuming I have 𝑛 random samples from our

noise distribution: x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} 𝑖𝑖𝑑∼ N with a cumulative probability function 𝐹 (𝑥). The

probability that the minimum of x is less than the value 𝑎 is equivalent to

𝑃(min(x) < 𝑎) = 1 − 𝑃(𝑥1 > 𝑎, 𝑥2 > 𝑎, . . . , 𝑥𝑛 > 𝑎), (1.12)

where 𝑃(𝑥𝑖 > 𝑎) = 1 − 𝐹 (𝑎). If this relationship is extended to all 𝑛 realizations, the probability is

𝑃(min(x) < 𝑎) = 1 − (1 − 𝐹 (𝑎))𝑛. (1.13)

Similarly, an expression for the probability of an element of x being greater than 𝑏, where 𝑏 > 𝑎, is

𝑃 (max(x) > 𝑏) = 1 − (𝐹 (𝑏))𝑛. (1.14)

If I now take both of these probabilities, I can extend them to the maximum lifetime as max(𝐿) ⪅

max(x) −min(x). we can use to generate a probability of a lifetime being greater than 𝑏 − 𝑎 as

𝛼 = 𝑃(max(𝐿) > 𝑏−𝑎) ⪆ 𝑃
(
max(x) > 𝑏,min(x) < 𝑎

)
= (1−[𝐹 (𝑏)]𝑛) (1−[1−𝐹 (𝑎)]𝑛), (1.15)

where 𝛼 is the confidence of this event occurring. If the 𝑓 (𝑥) associated to 𝐹 (𝑥) of Eq. (1.15) is

symmetric about some mean 𝜇 such that 𝑐 = 𝑏 − 𝜇 = 𝜇 − 𝑎, I can reduce Eq. (1.15) to

𝛼 = (1 − [𝐹 (𝑐)]𝑛)2 (1.16)
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since 𝐹 (𝑏) = 1 − 𝐹 (𝑎) for the symmetric case. (1.16) can be then solved for 𝑐 as

𝑐 = 𝐹−1
[ (

1 −
√
𝛼
)1/𝑛]

. (1.17)

Additionally, I know that a cutoff should be set such that 𝐶𝛼 = 𝑏 − 𝑎 = 2𝑐 for a symmetric

distribution about some mean 𝜇, which result in a cutoff equation as

𝐶𝛼 = 2𝐹−1
[ (

1 −
√
𝛼
)1/𝑛]

. (1.18)

On the other hand, if there is no symmetry in the distribution then I need a new cutoff equation.

To do this, I return to our probability equation as

𝛼 = 𝑃(max(𝐿) > 𝑏−𝑎) ⪆ 𝑃(min(x) < 𝑎,max(x) > 𝑏) = (1−[1 − 𝐹 (𝑎)]𝑛) (1−[𝐹 (𝑏)]𝑛), (1.19)

However, unlike Eq. (1.18), I can not solve Eq. (1.15) for a parameter 𝑐 due to their being no

symmetry between 𝑎 and 𝑏 about a mean 𝜇 which means I must simplify Eq. (1.19) in some way.

To do this, I assume that 𝑃(min(x) < 𝑎) = 𝑃(max(x) > 𝑏) or 1− [1 − 𝐹 (𝑎)]𝑛 = 1− [𝐹 (𝑏)]𝑛 =
√
𝛼.

I can then solve for 𝑎 and 𝑏 separately as

𝑎 = 𝐹−1
[
1 − (1 −

√
𝛼)1/𝑛

]
(1.20)

and

𝑏 = 𝐹−1
[
(1 −
√
𝛼)1/𝑛

]
. (1.21)

With 𝐶𝛼 = 𝑏 − 𝑎 and the values of 𝑎 and 𝑏 from (1.20) and Eq. (1.21), respectively, I can solve

for our general cutoff expression as

𝐶𝛼 = 𝐹−1
[
(1 −
√
𝛼)1/𝑛

]
− 𝐹−1

[
1 − (1 −

√
𝛼)1/𝑛

]
. (1.22)

For our application I want to have a high confidence level that no outliers occur and that the

cutoff accurately captures all of the noise, so I suggest a confidence level of 𝛼 = 0.1%, which is

equivalent to a 0.1% chance that an outlier greater than the persistence diagram lifetime cutoff 𝐶𝛼

(see Fig. 1.5) exists given 𝑛 samples.
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Figure 1.5: Example cutoff 𝐶𝛼 for a persistence diagram and time order lifetimes of sublevel set
persistence from 𝑥(𝑡) +N .

(1.18) and (1.22) are only dependent on the desired confidence 𝛼, the signal length 𝑛 and

the cumulative probability distribution 𝐹 (𝑥) with the cumulative probability distribution having

another distribution parameter (e.g. 𝜎 for the Gaussian distribution). I address how to estimate this

parameter, if it is unknown, in Section 1.2.4. Before this, in Section 1.2.3 I demonstrate how to

apply Eq. (1.18) and Eq. (1.22) for the Gaussian, uniform, Rayleigh, and exponential distribution.

1.2.3 Cutoff for Noise Models

For applying noise models to the confidence levels in Equations (1.15) and (1.16), I need to be either

given the additive noise parameters, or estimate them from the lifetimes. However, before this can

be done, I need to understand which parameters are needed given the additive noise distribution

𝑓 (𝑥). I do this analysis for Gaussian (normal), Uniform, Rayleigh, and exponential distributions as

shown in Fig. 1.6.
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Figure 1.6: Additive noise probability distributions 𝑓 (𝑥) for the four models realized in this work:
uniform, Gaussian, Rayleigh, and exponential.
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Cutoff for Gaussian Noise I start our analysis with the commonly used Gaussian distribution

model. The Gaussian (normal) probability distribution function is defined as

𝑓 (𝑥) = 1
√

2𝜋𝜎2
𝑒
− (𝑥−𝜇)

2

2𝜎2 , (1.23)

with a cumulative distribution function

𝐹 (𝑥) = 1
2

[
1 + erf

(
𝑥 − 𝜇
𝜎
√

2

)]
. (1.24)

I start by solving for the inverse of Eq. (1.24) as

𝐹−1(𝑢) =
√

2𝜎erf−1 (2𝑢 − 1) + 𝜇. (1.25)

Since the mean shift 𝜇 has no effect on the sublevel set lifetimes I can ignore it and apply Eq. (1.25)

with 𝜇 = 0 to solve for the cutoff from Eq. (1.18) as

𝐶𝛼 = 23/2𝜎 erf−1
[
2(1 −

√
𝛼)1/𝑛 − 1

]
. (1.26)

With a full development of the statistics of sublevel set persistence for Gaussian (normal) additive

noise I are able to determine a suitable cutoff for i.i.d. noise with only the distribution parameter 𝜎

needed.

Cutoff for Uniform Noise Let 𝑎 < 𝑏 ∈ R. The uniform distribution over the interval [𝑎, 𝑏] has

a probability density function defined as

𝑓 (𝑥) =


1
𝑏−𝑎 𝑥 ∈ [𝑎, 𝑏]

0 otherwise
(1.27)

with a cumulative distribution function

𝐹 (𝑥) =


0 𝑥 < 𝑎

𝑥−𝑎
𝑏−𝑎 𝑥 ∈ [𝑎, 𝑏]

1 𝑥 > 𝑏.

(1.28)
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By assuming a symmetric distribution about zero (this assumptions does not influence the resulting

cutoff due to the properties sublevel set persistence lifetime) such that 𝑎 = −𝑏 and Δ = 𝑏 − 𝑎. This

changes 𝐹 (𝑥) to

𝐹 (𝑥) =


0 𝑥 < −Δ

2

2𝑥+Δ
2Δ 𝑥 ∈ [−Δ

2 ,
Δ
2 ]

1 𝑥 > Δ
2

(1.29)

If I now apply Eq. (1.18) to the inverse of the cumulative probability distribution in Eq. (1.29), I

can calculate 𝐶𝛼 as

𝐶𝛼 = Δ

[
2
(
1 −
√
𝛼
)1/𝑛 − 1

]
. (1.30)

Equation (1.30) only requires the distribution parameter Δ as both 𝛼 and 𝑛 are chosen as desired

and the length of the time series, respectively.

Cutoff for Rayleigh Noise The Rayleigh distribution has a probability density function over the

domain 𝑥 ∈ [0,∞) and is defined as

𝑓 (𝑥) = 𝑥

𝜎2 𝑒
− 𝑥2

2𝜎2 , (1.31)

with a cumulative distribution function

𝐹 (𝑥) = 1 − 𝑒−
𝑥2

2𝜎2 . (1.32)

Since this distribution is asymmetric I use Eq. (1.22) to calculate 𝐶𝛼 as

𝐶𝛼 = 𝜎

(√︃
−2 ln

(
[1 −
√
𝛼]1/𝑛

)
−

√︃
−2 ln

(
1 − [1 −

√
𝛼]1/𝑛

) )
, (1.33)

where 𝜎 is the only parameter that needs to be provided to calculate the cutoff.

Cutoff for Exponential Noise The exponential distribution has a probability density function

over the domain 𝑥 ∈ [0,∞) and is defined as

𝑓 (𝑥) = 𝜆𝑒−𝜆𝑥 , (1.34)

12



with a cumulative distribution function

𝐹 (𝑥) = 1 − 𝑒−𝜆𝑥 , (1.35)

where 𝜆 is the distribution parameter with 𝜆 > 0. This this distribution is also asymmetric, so I use

Eq. (1.22) to calculate 𝐶𝛼 as

𝐶𝛼 = −1
𝜆

ln
(
[1 −
√
𝛼]1/𝑛 − [1 −

√
𝛼]2/𝑛

)
, (1.36)

where 𝜆 is the only parameter that needs to be provided to calculate the cutoff.

1.2.4 Cutoff and Distribution Parameter Estimation Method

If the distribution parameter is know (𝜎 for Gaussian distributions, Δ for uniform distributions, 𝜎

for Rayleigh distributions, and 𝜆 for exponential distributions), then the cutoff 𝐶𝛼 can be calculated

simply with the use of the correct cutoff equation in Section 1.2.3 and the subsequent analysis may

be skipped. However, in most real-world time series it is uncommon to know what this parameter

is and thus it needs to be estimated. While there are some methods for estimating the additive noise

parameters [54, 95, 234], I introduce a new method utilizing the relationship between the sublevel

set lifetimes from both the signal and noise and the additive noise distribution parameters.

To generate a theoretical relationship between the mean lifetime 𝜇𝐿 and the distribution param-

eters, I recall Eq. (1.11):

𝜇𝐿 = 3
∫ ∞

−∞
𝐹 (𝑥) [1 − 𝐹 (𝑥)] 𝑑𝑥.

In the subsequent subsections, I show how this relationship is used for each of the four noise models

analyzed in this work. However, when the signal is not pure noise, which would be the case for

any informative time series, the mean lifetime is heavily influenced from the lifetimes associated

to significant features. To address this issue, I instead calculate the median of the lifetimes as it

is robust up to 50% outliers (or signal in our application) and apply a signal compensation. This

brings up an assumption for this distribution parameter estimation method to function correctly:

the number of persistence diagram features associated with noise 𝑁𝑛 must be equal to or greater
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than the number of features from the signal 𝑁𝑠. Additionally, when 𝑁𝑛 approaches 𝑁𝑠 the cutoff

becomes more conservative due to the robustness limitation of the median. To minimize this effect,

in Section 1.2.5, I develop a numeric compensation multiplier which uses the persistence pairs

associated to both additive noise and signal. In general, the condition for 𝑁𝑠 < 𝑁𝑛 is met if the

time series is sampled at a rate sufficiently higher than the Nyquist sampling criteria 𝑓Nyquist and,

of course, the time series has some additive noise. If these conditions are not met, I suggest the use

of an alternative method to estimate the distribution parameter of the additive noise and apply its

associated cutoff equation in Section 1.2.3.

For a symmetric distribution of the lifetimes, the median would be an accurate estimate of

the mean. However, for most additive noise distributions (e.g. Gaussian), the distribution of the

resulting sublevel set persistence lifetimes is not symmetric. Therefore, I resort to approximating

the relationship between the mean and median numerically. While there are methods to estimate

the mean using the median and Inter-Quartile Range (IQR) as described in [236]. This method

is only robust for up to 25% outliers (or signal in our application) due to the 𝑄3 upper quartile.

Therefore, I use the numerically approximated ratios of 𝜌 = 𝐿̄/𝐿̃ as provided in Table 1.1 for each

of the four distributions investigated, where 𝐿̄ is the sample mean lifetime and 𝐿̃ is the sample

median lifetime. For each of these numeric estimates a time series of length 105 was used. This

numeric experiment was repeated ten times to provide a mean 𝜌 with uncertainty. This ratio can

be used to estimate the mean lifetime as 𝐿̄ ≈ 𝜌𝐿̃.

Table 1.1: Ratios 𝜌 = 𝐿̄/𝐿̃ for estimating sample mean from the sample median with uncertainty
as three standard deviations

Distribution Gussian Uniform Rayleigh Exponential
𝜌 = 𝐿̄/𝐿̃ 1.154 ± 0.012 1.000 ± 0.010 1.136 ± 0.013 1.265 ± 0.016

Relating The distribution Statistic to the Median Lifetime I now apply Eq. (1.11) and 𝜌 from

Table 1.1 to find relationships between the median lifetime 𝑀𝐿 and the distribution parameter used

in each distribution’s cutoff equation.
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Normal Distribution: For estimating 𝜎 of the Gaussian distribution, I use (1.11) and the

Gaussian cumulative distribution to estimate 𝜇𝐿 as a function of 𝜎. Specifically, by numerically

approximating the integral in Eq. (1.11) using 𝑥 ∈ [−10, 10] with len(𝑥) = 106, I found the

relationship

𝜎 ≈ 𝜇𝐿

1.692
. (1.37)

I then used 𝜌 to have Eq. (1.37) as a function of the median lifetime 𝑀𝐿 as

𝜎 ≈ 𝜌𝑀𝐿

1.692
≈ 0.680𝑀𝐿 , (1.38)

where 𝑀𝐿 is the median lifetime. Applying this result to (1.26) allows for a cutoff to be calculate

as

𝐶𝛼 ≈ 1.923𝐿̃ erf−1
[
2(1 −

√
𝛼)1/𝑛 − 1

]
, (1.39)

where 𝐿̃ is the sample median lifetime.

Uniform Distribution Next, I apply Eq. (1.11) to the uniform cumulative distribution to

estimate 𝜇𝐿 as a function of Δ. Substituting (1.29) into Eq. (1.11) results in

𝜇𝐿 = 3
∫ Δ/2

−Δ/2

2𝑥 + Δ
2Δ

[
1 − 2𝑥 + Δ

2Δ

]
𝑑𝑥.

Expanding and solving this integral results in the relationship

𝜇𝐿 =
Δ

2
=⇒ Δ = 2𝜇𝐿 = 2𝑀𝐿 . (1.40)

Applying this result to Eq. (1.30) allows for a cutoff to be calculate as

𝐶𝛼 = 2𝐿̃
[
2
(
1 −
√
𝛼
)1/𝑛 − 1

]
. (1.41)

Rayleigh Distribution For estimating 𝜎 of the Rayleigh distribution, I again use (1.11) with

the cumulative Rayleigh distribution to numerically estimate the relationship between 𝜇𝐿 and 𝜎 as

𝜎 ≈ 𝜇𝐿

1.102
≈ 𝜌𝑀𝐿

1.102
≈ 1.025𝑀𝐿 , (1.42)

where the integral in Eq. (1.11) was numerically approximated using 𝑥 ∈ [0, 20] with len(𝑥) = 106.

Applying this result to Eq. (1.33) allows for a cutoff to be calculate as

𝐶𝛼 ≈ 1.025𝐿̃
(√︃
−2 ln

(
[1 −
√
𝛼]1/𝑛

)
−

√︃
−2 ln

(
1 − [1 −

√
𝛼]1/𝑛

) )
. (1.43)

15



Exponential Distribution Next, I apply Eq. (1.11) to the exponential cumulative distribution

function to estimate 𝜇𝐿 as a function of 𝜆. Substituting Eq. (1.35) into Eq. (1.11) results in

𝜇𝐿 = 3
∫ ∞

0

(
1 − 𝑒−𝜆𝑥

)
𝑒−𝜆𝑥𝑑𝑥, (1.44)

which was solved using a 𝑢-substitution as

𝜇𝐿 =
3

2𝜆
→ 𝜆 =

3
2𝜇𝐿

. (1.45)

By then using the appropriate 𝜌 from Table 1.1 to use 𝑀𝐿 instead of 𝜇𝐿 , I approximate 𝜆 from the

median lifetime:

𝜆 ≈ 1.875
𝑀𝐿

. (1.46)

Applying this result to Eq. (1.36) allows for a cutoff to be calculate as

𝐶𝛼 ≈ −0.533𝐿̃ ln
(
[1 −
√
𝛼]1/𝑛 − [1 −

√
𝛼]2/𝑛

)
. (1.47)

1.2.5 Signal Compensation for the Cutoff and Distribution Parameter

In this section, I discuss the effects of signal on the cutoff estimation methods described. In

Section 1.2.4 I assumed that the time series was of the form 𝑥(𝑡) = {𝑥1, 𝑥2, . . . , 𝑥𝑛} 𝑖𝑖𝑑∼ N , however

in practice, I typically have some underlying informative signal 𝑠 : R → R and have a time series

of the form 𝑥(𝑡) = 𝑠(𝑡) + 𝜖 with a finite domain as 𝑡 ∈ [𝑡𝑎, 𝑡𝑏]. The resulting sublevel sets from

𝑠(𝑡) + 𝜖 are assumed to have some lifetimes from 𝑠(𝑡) with the slope of the signal having an effect

on the lifetimes associated with N . Because of these effects, I attempt to compensate the cutoff

calculation and distribution parameter estimations for these effects for a general signal. Since a

general signal is, in practice, rather subjective, I move away from a theoretical analysis of the signal

and rather analyze the effects of the signal experimentally. I have partially addressed this issue of

signal compensation by implementing the median lifetime 𝑀𝐿 instead of the mean lifetime 𝜇𝐿 with

the median being an outlier (signal in our case) robust statistic for up to 50% outliers. Even with

the use of the median, I need to further develop a signal compensation procedure to improve the

accuracy of the suggested cutoff.
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Figure 1.7: Example time series showing sample 𝛿𝑖.

To fully understand the effects of signal on estimating the cutoff, I do a numeric study to develop

a method for adjusting the median lifetime such that 𝑀𝐿 (𝑠(𝑡) +𝜖) ≈ 𝑀𝐿 (N ). This analysis requires

a new variable which I term 𝛿 as simply the median of step sizes defined as 𝛿𝑖 = 𝑥(𝑡𝑖+1) − 𝑥(𝑡𝑖) as

shown in Fig. 1.7, where 𝑥(𝑡) is a discretely and uniformly sampled signal with a constant sampling

rate 𝑓𝑠. I now experimentally approximate the effects of signal on the median lifetime by using

three “generic" signals suggested by [241] as

𝑓1(𝑡) = 𝑡 − 𝑡3/3, (1.48)

with 𝑡 ∈ [3.1, 20.4] and sampling rate 𝑓𝑠 = 20 Hz,

𝑓2(𝑡) = sin(𝑡) + sin(2𝑡/3), (1.49)

with 𝑡 ∈ [3.1, 20.4] and sampling rate 𝑓𝑠 = 20 Hz, and

𝑓3(𝑡) = −
5∑︁
𝑖=1

sin((𝑖 + 1)𝑡 + 𝑖), (1.50)

with 𝑡 ∈ [−10, 10] and sampling rate 𝑓𝑠 = 20 Hz. Additionally, additive noise is included in the

signal with 𝑠(𝑡) = 𝐴 𝑓 (𝑡) + 𝜖 with the additive noise distribution parameter set to one (e.g. 𝜎 = 1

for Gaussian) and signal amplitude 𝐴 increment by unit steps starting from zero such that the 𝛿 is

also incremented until reaching a value 𝛿/𝜎 = 2. At each 𝛿 I calculate the median lifetime 𝐿̃ for

100 trials to provide a mean 𝐿̃ with uncertainty 𝑢𝐿 as one standard deviation (see Fig. 1.8 for the

Gaussian additive noise example).

To find a function fitting to approximate this relationship between 𝛿 and 𝐿̃ for each distribution

type. By observation of the median lifetimes in Fig. 1.8, I experimentally found an approximate

functional template:

𝐿̃∗ = 𝐿̃0𝑒
−𝑐1

(
𝛿

𝛿+𝐿̃

)𝑐2

, (1.51)
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where 𝐿̃0 is the median lifetime when 𝛿 = 0 or when the signal is just additive noise N .
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Figure 1.8: Numeric function fitting of Eq. (1.51) to the mean of the median lifetime 𝐿̃ of 𝑓𝑖 (𝑡) for
𝑖 ∈ [1, 3] where N is unit variance Gaussian additive noise with 𝛿 ∈ [0, 2] being incremented to
understand the effects of signal on the median lifetime.

As shown in Fig. 1.8, the fitted function shows a very similar quality to the numerically simulated

means of the median lifetimes when the two constants in Eq. (1.51) were set to 𝑐1 ≈ 0.845 and

𝑐2 ≈ 0.809 for a Gaussian additive noise, which were chosen using the BFGS minimization of the

ℓ2 norm cost function on the residuals when fitting to 𝐿̃ for all three generic functions. Another

characteristic of these constants is that they are approximately independent of the additive noise

distribution parameter, sampling frequency, and time series, which makes them global constants.

The two constants from Eq. (1.51) are provided in Table 1.4 for the four distributions investigated

in this work. With these constants, I calculate a multiplication compensation term for the signal as

Table 1.2: Constants of Eq. (1.51) for each distribution type investigated in this work with associated
uncertainty from ten trials.

Distribution Gussian Uniform Rayleigh Exponential
𝑐1 0.845 ± 0.029 0.880 ± 0.017 0.726 ± 0.026 0.436 ± 0.036
𝑐2 0.809 ± 0.061 0.639 ± 0.026 0.605 ± 0.054 0.393 ± 0.075

𝑅, which is calculated from Eq. (1.51) as

𝑅 =
𝐿̃0

𝐿̃∗
= 𝑒

𝑐1

(
𝛿

𝛿+𝐿̃,

)𝑐2

(1.52)

which is used to compensate for the effects of signal with 𝐶∗𝛼 = 𝑅𝐶𝛼 and 𝜎∗ = 𝑅𝜎.
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Unfortunately, when 𝑠(𝑡) is unknown, the 𝛿 parameter used in (1.80) can no longer be directly

calculated from the time series or sublevel set persistence diagram. To approximate 𝛿 I use the

lifetimes greater than the initial uncompensated cutoff 𝐶𝛼 as

𝛿 ≈ 2
𝑛

∑︁
𝐿𝐶𝛼

, (1.53)

where 𝐿𝐶𝛼
are the lifetimes greater than 𝐶𝛼.

To validate the accuracy of Eq. (1.80) with 𝛿 approximated from (1.81) I estimate 𝜎 with and

without the signal compensation 𝑅 from Eq. (1.80), I use a new time series 𝑥(𝑡) = 𝐴 sin(𝜋𝑡) + 𝜖

with N being a Gaussian distribution with unit variance and 𝐴 incremented to change 𝛿 ∈ [0, 2] for

100 trials at each 𝛿. As shown in Fig. 1.9, the true 𝜎 = 1 and the estimated 𝜎 without compensation

from (1.38) shows an underestimate as 𝛿 increases until plateauing around 𝛿/𝜎 ≈ 1, which

would cause for a cutoff that may not capture all of the lifetimes associated with noise. However,

the signal compensated distribution parameter 𝜎∗ shows an accurate estimation of 𝜎 even as 𝛿

becomes significantly large. This example demonstrates the importance of signal compensation for

an accurate cutoff and distribution parameter estimation.

Figure 1.9: Demonstration of distribution parameter 𝜎 estimation of Gaussian additive noise in
𝑥(𝑡) = 𝐴 sin(𝜋𝑡) + N using the median lifetime with and without signal compensation as 𝜎 and
𝜎∗, respectively.

1.3 Damping Parameter Identification Using Sublevel Set Persistence

The study of damping mechanisms in the field of vibrations has always been a critical aspect of

understanding the way dynamical systems behave and has been leveraged for many real-world
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applications. While there have been data analysis methods for estimating these system parameters,

the ability of engineers and scientisits to use signal processing techniques to determine these

parameters is ever improving as new and more sophisticated data analysis techniques are discovered.

The identification of these damping mechanisms and their assocaited damping parameters

in a real-world dynamical system is a critical tool for analyzing and predicting the dynamics

[29, 84, 191, 192]. Specifically, methods for estimating the damping parameters have been used

extensively in signal processing engineering with application in structural health monitoring [32],

improved predictions of mechanical response [136], biological system analysis [88, 155], and the

analysis of Micro and Nano Electromechanical Systems (MEMS and NEMS) [187].

A common method for damping parameter identification is through a time domain analysis of

the amplitude decrement (i.e. the damping envelope). This form of analysis is often implemented

for viscous damping estimation through the logarithmic decrement of peaks. Unfortunately, many

systems do not have damping of this nature or they have some non-linearity causing the log

decrement method to not be suitable. Additionally, when significant noise is present in the signal,

the estimation of peak values takes a degree of expertise and human evaluation, which makes

damping parameter identification difficult to implement in an automatic scenario. These common

issues have pushed researchers to develop automatic, noise robust methods for estimating damping

parameters [102, 151]. In the past decade several of these methods have been developed for

identifying systems parameter for a single degree of freedom system, including damping constants.

These methods are typically based on either a time domain or frequency analysis (i.e. modal

analysis) of the oscillator. The time domain response methods for damping parameter estimation

are typically based on analyzing the envelope of the free response decrement or through an energy

balance approach. The envelope of the free response is commonly used for estimating either

viscous damping through an exponential envelope (viscous damping) or a constant decrement

envelope (Coulomb or dry friction damping). Additionally, systems with both coulomb and

viscous damping can be simulataneously analyzed using vibration decrements through the time

domain [132].
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As an alternative to analyzing the envelope, the energy loss can be studied to estimate the

damping parameters through least squares fitting for forced vibrations [133, 134]. However, this

approach does require a method of forcing the oscillator to estimate the damping parameters,

which is not always available or feasible. There are also energy-balance technqiues for parameter

identification that do not require forcing, but rather both the position and velcoity signals [142].

However, for this technique to function properly a filtration is needed (cubic spline fitting in [142]),

which is inherently computationally cumbersome. Another approach is to use the institaneous

energy dissipation [150], but this method requires a lightly damped system which is a significant,

yet common, limitation. There are also several other time domain methods including a method based

on areas [96], which requires viscous damping but could possible be extended to other damping

mechanisms. This method implements a numeric integration of the signal and zero crossing making

it noise robust and only requiring the position signal of the oscillator. While this could seem like an

easy solution for damping parameter estimation, the task of finding zero-crossings is not trivial and

typically requires a filtration method which can be computationally expensive. Another commonly

used method for parameter identification is to fit a function to the time series response based on

tuning parameters, but this requires an initial guess on all parameters and an optimization algorithm.

Another possible method for damping parameter estimation is based on solving a parabolic-type

partial differential equation for analysis of the inverse vibration problem to estimate both stiffness

and damping [138]. However, this method requires both the position and velocity data and is only

resilient to moderate amounts of noise.

As an alternative to a time domain analysis, frequency response methods are typically done by

externally forcing the oscillator and measuring the phase and amplitude of the response at resonance

(e.g. half-power method [172]). However, this assumes that the range of operation is within the

linear region of oscillations or that the damping mechanisms are ampltidue independent. This

method also requires a method of forcing the oscillator at multiple frequencies, which is not always

feasible. An alternative to this option is to analyze the frequency response of a damped oscillation

through the Fourier spectrum [245]. This method has been shown to be robust to some degree of
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additive Gaussian noise [193]. However, it requires a least-squares estimation algorithm applied to

the frequency domain of the signal, which is an additional computational expense.

To estimate the damping model that is most suitable, I have developed a new method that

implements zero-dimensional (0D) sub-level set persistence, a tool from topological data analysis,

to analyze the time domain response of a free vibration single degree of freedom oscillator with

viscous, coulomb, or quadratic damping. This novel method provides an extension of envelope

analysis methods through a unique and noise robust analysis of the time domain response. This

sublevel set persistnce analysis method also holds an advantage of not requiring a zero-mean for low

damping parameters and is robust to non-stationarity in the signal. This is in comparison to many

common damping parameter estimation techniques requiring these conditions [38]. I show that this

technique is robust for a wide range of damping parameters (including very high damping up to a

critically damped response), low sampling frequencies, and a high degree of noise contamination.

Additonally, the algorithm for calculating the sublevel set persistence for one dimensional signals

has a low computational cost with it being faster than the fast fourier spectrum [114].

Sublevel set persistence has recently been shown as a robust data analysis tool through appli-

cations ranging from step detection [114] to cancer histology [127]. One of the most attractive

features of sublevel set persistence is its robustness to perturbations (see stability theorem [49]).

Additionally, by using sublevel set persistence to analyze the time domain of the free responses of a

damped oscillator I will later be able to analyze the full domain (including non-lineary responses)

of the system similar to the work done in analyzing MEMS [187].

The results in this work will be generated from both experimental data and numerically simulated

single-degree-of-freedom spring-mass system with three common forms of damping (see Fig. 1.10):

Coulomb, viscous, and quadratic. The forces caused by each of the damping mechanisms are applied

to Newton’s law to generate an equation of motion as

𝑚 ¥𝑥 = −𝑘𝑥 − 𝜇𝑐𝑁 | ¤𝑥 |sgn( ¤𝑥) − 𝜇𝑣 ¤𝑥 − 𝜇𝑞 | ¤𝑥 | ¤𝑥, (1.54)

with a mass 𝑚, spring constant 𝑘 , and normal force 𝑁 = 𝑚𝑔. Here the normal force is constant,

but in many applications this will not be the case, which can leave 𝑁 = 𝑓 ( ¥𝑥, ¤𝑥, 𝑥) where 𝑥 is the
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position of the system and¤are its time derivatives.

Figure 1.10: Single degree of freedom oscillator with multiple modes of energy dissipation. Energy
dissipation mechanisms include Coulomb 𝜇𝑐, viscous 𝜇𝑣, and quadratic 𝜇𝑞 damping.

This work is ordered as follows. First, in Section 1.3.1 the closed form solutions (if applicable)

and background information for viscous, Coulomb and quadratic damping are summarized. Sec-

tion 1.3.1 also leverages the solutions to the damped responses for use with sublevel set persistence

for damping identification. With an introduction to the damping mechanisms and sublevel set

persistence, in Section 1.3.2 I begin an analysis of the effects of noise on damping parameter iden-

tification using sublevel set persistence. This analysis will introduce two methods for minimizing

the effects of noise. The first is based on a statistical analysis of additive noise in the persistence

domain and the second is based on a function fitting approach. In Section 1.3.5 I provide three

examples demonstrating each damping mechanism. Finally, in the results section (Section 4.3), the

method is applied to a wide range of damping parameters, noise levels, and sampling frequencies

to determine the limitations of the method. To make replicating this work easier for readers, the

Python code for automatically calculating the damping parameters and constants has been made

publicly available through GitHub (github.com/Khasawneh-Lab).

1.3.1 Sublevel Set Persistence of Damping Mechanisms

In this section I introduce three damping mechanisms commonly used: Coulomb, viscous, and

quadratic. For each form of damping, a theoretical relationship between the theoetical consecutive

persistence pairs is formulated and used to determine the underlying damping parameter of the

system.
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Viscous Damping If the system being analyzed is assumed to be dominated by viscous damping

then the system model is reduced from Eq. (1.54) to 𝑚 ¥𝑥 + 𝑘𝑥 + 𝜇𝑣 ¤𝑥 = 0. This linear differential

equation has the closed form solution as

𝑥(𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 cos(𝜔𝑑𝑡 − 𝜙), (1.55)

where the viscous damping can be summarized using the damping ratio 𝜁𝑣 = 𝜇𝑣/(2
√
𝑚𝑘), the

natural frequency 𝜔𝑛 =
√︁
𝑘/𝑚, the damped natural frequency 𝜔𝑑 = 𝜔𝑛

√︁
1 − 𝜁2, the phase shift 𝜙,

and the initial amplitude of the time series 𝐴. Typically, 𝜁 is estimated using local maxima and the

log decrement method as

𝜁𝑣 =

√√√√√√√√ 1

1 +
(

2𝜋𝑛
ln

(
𝑝𝑖+𝑛
𝑝𝑖

) )2 , (1.56)

where 𝑝𝑖+𝑛 and 𝑝𝑖 denote the (𝑖 + 𝑛)th and 𝑖th peaks, respectively. Unfortunately, this method for

estimating 𝜁𝑣 is difficult to implement in an automatic way when noise is present as the selection of

peaks becomes difficult. Additionally, if the time series is non-stationary or does not have a zero-

mean, the standard logarithmic decrement method will not provide accurate damping parameter

estimates. To help combat these issues I will implement sub-level set persistence to show how 𝜁𝑣

can be calculated from the resulting persistence diagram.

Let us begin with a toy example of the time series and the resulting persistence diagram for

viscous damping as shown in Fig. 1.11. The 𝑥 and 𝑦 coordinates in the persistence diagram

Figure 1.11: Example 0D sub-level set persistence from the viscously damped free response time
series 𝑥(𝑡).

correspond to the local minima 𝑣𝑛 and maxima 𝑝𝑛+1 in the time series 𝑥(𝑡). From the known,
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closed-form solution in Eq. (1.55), the values of the peaks and valleys are solved for as

𝑝𝑖 = 𝐴𝑒
−𝜁𝑣 (2𝑖𝜋+𝜙)/

√
1−𝜁2

𝑣 (1.57)

and

𝑣𝑖 = −𝐴𝑒−𝜁𝑣 (2𝑖𝜋+𝜋+𝜙)/
√

1−𝜁2
𝑣 , (1.58)

respectively. From the peaks and valleys or births and deaths for the persistence pairs, their lifetimes

are calculated as

𝐿𝑖 = 𝑝𝑖+1 − 𝑣𝑖 = 𝐴𝑒
−𝑖𝜁𝑣2𝜋√

1−𝜁 2
𝑣

(
𝑒

−𝜁𝑣2𝜋√
1−𝜁 2

𝑣 + 𝑒
−𝜁𝑣 𝜋√

1−𝜁 2
𝑣

)
, (1.59)

where 𝐿𝑖 is a lifetime of the sub-level set persistence pair (𝑣𝑖, 𝑝𝑖+1). repeating this lifetime

calculation for the (𝑖 + 𝑛)th peak-valley pair results in another lifetime 𝑖+𝑛, which is used to find the

ratio between lifetimes as
𝐿𝑖+𝑛
𝐿𝑖

= 𝑒−𝑛𝜁𝑣2𝜋/
√

1−𝜁2
𝑣 . (1.60)

By taking this ratio, the amplitude 𝐴 cancels out, which allows for Eq. 1.60 to be used to calculate

𝜁𝑣 as

𝜁𝑣 =

√√√√ 1

1 +
(

2𝑛𝜋
ln(𝐿𝑖+𝑛/𝐿𝑖)

)2 , (1.61)

From the damping ratio I can also calculate the viscous damping constant as 𝜇𝑣 = 2𝜁𝑣
√
𝑘𝑚 if the

other system parameters 𝑚 and 𝑘 are known. Another benefit of using sublevel set persistence

for estimating the damping ratio is that only a single lifetime is needed. The standard method for

estimating 𝜁𝑣 in Eq. (1.56) needs atleast two peaks to estimate the damping ratio, while only a

single lifetime is needed for estimating the damping constant with a slight variation of Eq. (1.61).

Specifically, if I assume the time series 𝑥(𝑡) is centered about zero such that lim𝑡→∞ 𝑥(𝑡) = 0, then

I use the 𝑣0 and 𝑝1 to calculate the damping ratio as

𝜁𝑣 =

√√√√ 1

1 +
(

𝜋
ln(−𝑝1/𝑣0)

)2 , (1.62)

It should be noted that this method does require a first valley, which results in a damping ratio

𝜁𝑣 < 1. If 𝜁𝑣 > 1, then the damping is considered over-damped and the method will not work to

estimate the damping ratio.
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Coulomb Damping To determine a method for relating the lifetimes to the Coulomb damping

constant 𝜇𝑐 and coulomb damping parameter 𝜁𝑐, I must first determine a theoretical expression for

the response of a spring mass damper with only Coulomb damping. To do this, I will implement

the method defined in [100]. However, I do acknowledge other methods for analyzing Coulomb

damping (i.e. an energy approach [74]). Let us begin by defining the equation of motion from

Eq (1.54) with 𝜇𝑣 = 𝜇𝑞 = 0, resulting in 𝑚 ¥𝑥 = −𝑘𝑥 − 𝜇𝑐𝑁sgn( ¤𝑥). The solution to this differential

equation is solved by breaking the system into two different states: (1) ¤𝑥 > 0 or (2) ¤𝑥 < 0, which

each result in a unique (linear) differential equation. By “stitching" these solutions together I can

get the solution as

𝑥(𝑡) = (𝐴 − 2𝜇𝑐𝑁𝜔𝑛
𝜋𝑘

𝑡) cos(𝜔𝑛𝑡 − 𝜙), (1.63)

which has a linear amplitude decrement while |𝐴(1 − 2𝜇𝑐𝑁𝜔𝑛

𝜋𝑘
𝑡) | > 𝜇𝑠𝑁/𝑘 with the phase shift 𝜙

introduced from other initial conditions. If the inequality is broken at sticking time 𝑡𝑠, then

𝑥(𝑡 > 𝑡𝑠) = (𝐴 −
2𝜇𝑐𝑁𝜔𝑛
𝜋𝑘

𝑡𝑠) cos(𝜔𝑛𝑡𝑠 − 𝜙) (1.64)

An example of this linear decrement and the sticking condition are shown in Fig. 1.12.

Figure 1.12: Example free vibration response of system with Coulomb damping.

I now leverage this closed form solution to be used with sublevel set persistence. To do this I

start by shifting Eq. 1.63 to have 𝑡 = 𝜏, where 𝜏 is the time at the first valley or 𝜏 = (𝜙 − 1)/𝜔𝑛,

which results in the shift form of the equation of motion as

𝑥(𝜏) = (𝐴 − 2𝜇𝑐𝑁𝜔𝑛
𝜋𝑘

𝜏) cos(𝜔𝑛𝜏). (1.65)
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From Eq. (1.65), the peaks 𝑝𝑖 occur at 𝜏 = 2𝑖𝜋/𝜔𝑛 and have values of 𝑝𝑖 = 𝐴 − 4𝑖𝜇𝑐𝑁/𝑘 , and the

valleys 𝑣𝑖 occur at 𝜏 = 𝜋(2𝑖 + 1)/𝜔𝑛 with values of 𝑣𝑖 = 2(2𝑖 + 1)𝜇𝑐𝑁/𝑘 − 𝐴. The lifetime of the

resulting persistence pairs are calculated as

𝐿𝑖 = 𝑝𝑖+1 − 𝑣𝑖 = 2𝐴 − (8𝑖 + 6)𝜇𝑐𝑁
𝑘

. (1.66)

Extending Eq. (1.66) to a second persistence pair results in the lifetime 𝐿𝑖+𝑛, which is used to cancel

the amplitudes with 𝐿𝑖+𝑛 − 𝐿𝑖 = −8𝑛𝜇𝑐𝑁
𝑘

. This difference is then used to solve for the Coulomb

damping constant as

𝜇𝑐 =
𝑘 (𝐿𝑖 − 𝐿𝑖+𝑛)

8𝑛𝑁
. (1.67)

With an expression for 𝜇𝑐, the coulomb damping parameter 𝜁𝑐 is estimated since it is independent

of other system parameters (𝑁 and 𝑘). This parameter is the magnitude of the slope of the decrement

and is solved for using Eq. (1.67) as

𝜁𝑐 =
2𝜇𝑐𝑁𝜔𝑛
𝜋𝑘

=
𝜔𝑛 (𝐿𝑖 − 𝐿𝑖+𝑛)

4𝑛𝜋
=
(𝐿𝑖 − 𝐿𝑖+𝑛)

2(𝑡𝐵𝑖+𝑛 − 𝑡𝐵𝑖 )
, (1.68)

where 𝑡𝐵𝑖 is the time when 𝐿𝑖 was born or at the time indice of the local minima. Similar to Viscous

damping, I can also use a single lifetime to estimate both 𝜇𝑐 and 𝜁𝑐. To do this, I again assume that

the time series 𝑥(𝑡) is zero centered. If so, the damping constant and parameter are calculated as

𝜇𝑐 = −
𝑘 (𝑣0 + 𝑝1)

2𝑁
(1.69)

and

𝜁𝑐 =
2𝜇𝑐𝑁𝜔𝑛
𝜋𝑘

= −𝜔𝑛 (𝑣0 + 𝑝1)
𝜋

=
𝑣0 + 𝑝1
𝑡𝑣0 − 𝑡𝑝1

, (1.70)

where 𝑡𝑝1 and 𝑡𝑣0 are the time indices at the local maxima and minima, respectively.

If the damping mechanism of a system is dominated by both viscous and coulomb damping I

suggest implementing the amplitude decrement described by Liang and Feeny [132] in combination

with sublevel set persistence.

Quadratic Damping For quadratic damping, Eq. (1.54) is reduced to 𝑚 ¥𝑥 = −𝑘𝑥 − 𝜇𝑞sgn( ¤𝑥) ¤𝑥2,

which is a non-linear differential equation that does not have a closed form solution. However, there
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is a solution for calculating the turning points of the solution 𝑥(𝑡) [75]. For estimating the damping

constant 𝜇𝑞 and the associated parameter 𝜁𝑞 I use these turning points, which are determined by

first splitting the equation of motion into two states as

0 =


¥𝑥 + 𝜇𝑞

𝑚
( ¤𝑥) ¤𝑥2 + 𝑘

𝑚
𝑥, ¤𝑥 > 0

¥𝑥 − 𝜇𝑞
𝑚
( ¤𝑥) ¤𝑥2 + 𝑘

𝑚
𝑥, ¤𝑥 < 0.

(1.71)

Similar to the solution method for coulomb damping, quadratic damping requires the solution to be

solved Iteratively between the two possible equations of motion in Eq. (1.71) as sgn( ¤𝑥) alternates.

Fay [75] uses an an integration multiplier to show that the differential equation

¥𝑥 + 𝑝(𝑥) ¤𝑥2 + 𝑓 (𝑥) = 0 (1.72)

has the solution form

𝜇(𝑥) 𝑦
2

2
+

∫ 𝑥

𝑥0

𝜇(𝜖) 𝑓 (𝜖)𝑑𝜖 =
𝑦2

0
2
𝜇(𝑥0), (1.73)

where 𝜇(𝑥) = 𝑒
∫

2𝑝(𝑥)𝑑𝑥 . By applying this solution to the equation of motion with 𝑝(𝑥) = ±𝜇𝑞 (the

± represents the two possible conditions with + if ¤𝑥 > 0), 𝜇(𝑥) = 𝑒±2𝜇𝑞𝑥/𝑚, and 𝑓 (𝑥) = 𝑘𝑥, I solve

the equation as
¤𝑥2

2
𝑒
±2𝜇𝑞
𝑚

𝑥 + 𝑘
𝑚

∫ 𝑥

𝑥0

𝑒
±2𝜇𝑞
𝑚

𝜖𝜖𝑑𝜖 =
¤𝑥2
0

2
𝑒
±2𝜇𝑞
𝑚

𝑥0 . (1.74)

The integral is then solved using the method of integration by parts as

©­­« ¤𝑥2 +
𝑘

(
𝑥 − 𝑚

±2𝜇𝑞

)
±𝜇𝑞

ª®®¬ 𝑒
±2𝜇𝑞
𝑚

𝑥 =

(
¤𝑥2
0 +

𝑘𝑥0
±𝜇𝑞
− 𝑘𝑚

2𝜇2
𝑞

)
𝑒
±2𝜇𝑞
𝑚

𝑥0 . (1.75)

Equation (1.75) is then numerically solved iteratively as the solution goes through ¤𝑥 = 0. However,

I would like to use an expression for the relationship between a valley and the following peak to

understand how the lifetimes decrease due to the quadratic damping mechanism. To do this I first

assume any initial condition [|𝑥0 |, | ¤𝑥0 |] ≠ 0, which will yield a solution 𝑥(𝑡) that will eventually go

to a valley. I then consider the new initial condition x′0 = [𝑣0, +0] at this first valley 𝑣0 (see fig. 1.13

for a sample response with non-zero initial conditions). The velocity is positive ( ¤𝑥 > 0) between
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Figure 1.13: Example free vibration response of system with quadratic damping.

this first valley 𝑣0 and until the next peak 𝑝1. Therefor, I can use Eq. (1.75) with +𝜇𝑞 to solve for

the relationship between any valley and peak pair as

𝑒
2𝜇𝑞
𝑚
𝑝𝑖+1

(
𝑝𝑖+1 −

𝑚

2𝜇𝑞

)
= 𝑒

2𝜇𝑞
𝑚
𝑣𝑖

(
𝑣𝑖 −

𝑚

2𝜇𝑞

)
. (1.76)

This relationship can be rearranged as

𝐿𝑖 = 𝑝𝑖+1 − 𝑣𝑖 =
𝑚

2𝜇𝑞
ln

( 2𝜇𝑞𝑣𝑖 − 𝑚
2𝜇𝑞𝑝𝑖+1 − 𝑚

)
. (1.77)

After applying sublevel set persistence and generating a persistent diagram, values for the

lifetimes, valleys, and peaks are known, which allows for the numerical estimation of 𝜇𝑞. This is

done by minimizing the cost function

𝐶 (𝜇𝑞) =
[
𝐿𝑖 −

𝑚

2𝜇𝑞
ln

( 2𝜇𝑞𝑣𝑖 − 𝑚
2𝜇𝑞𝑝𝑖+1 − 𝑚

)]2
. (1.78)

where 𝐶 (𝜇𝑞) is the cost as a function of 𝜇𝑞. I can now also introduce the quadratic damping

parameter 𝜁𝑞 = 𝜇𝑞/𝑚. Applying 𝜁𝑞 to Eqs. (1.78) results in

𝐶 (𝜁𝑞) =
[
𝐿𝑖 −

1
2𝜁𝑞

ln
( 2𝜁𝑞𝑣𝑖 − 1
2𝜁𝑞𝑝𝑖+1 − 1

)]2
. (1.79)

which now has no needed system parameters 𝑚 and 𝑘 . Equation (1.79) can also be numerically

minimized to estimate 𝜁𝑞.

1.3.2 Noise Compensation

While I have already developed expressions for estimating the damping parameters and constants

from sublevel set persistence in Section 1.3.1, I need to develop an automatic framework for the
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method to be applied to real-world signals with inherent noise. To illustrate the effects of noise,

let us return to the example sublevel set persistence from Fig. 1.2, but with additive noise as

𝑥(𝑡) + N . The resulting persistence diagrams from sublevel set persistence from the time series

without D(𝑥) and with additive noise D(𝑥 + N ) are shown in Fig. 1.14 as well as the resulting

time ordered lifetimes. This example shows that the addition of noise does not have a large effect

Birth

D
ea
th

Figure 1.14: Sub-level set persistence applied to sample time series 𝑥(𝑡) with and without additive
noise N . This demonstrates the robustness of persistent homology with the time series (top left)
with and without additive noise and the small effect on the resulting persistence diagrams (top
right) and the corresponding time ordered lifetimes (bottom left).

on the position of signficant sublevel sets in the persistence diagram with the distances between

signficant points (𝑑1, 𝑑2, 𝑑3, 𝑑4) all being relatively small. This is no surprise due to the stability

theorem of persistence diagrams [49]. However, additive noise does introduce several points in the

persistence diagram located near the diagonal with relatively small lifetimes. These noise-artifact

persistence pairs are formed from the peak-valley pairs in the additive noise. For the method of

damping parameter estimation to function correctly, I needed to develop a method for dealing with

these noise-artifact persistence pairs.

One way of removing the noise-artifact persistence pairs is to seperate signficant and insignficant

lifetimes through a confidence interval or cutoff. While there are methods for developing cutoffs

based on a confidence set for persistence diagrams [40, 73], these methods often require that

the time series sampling frequency is significantly higher than the highest dominate frequency

of the time series or that the persistence diagram is generated from persistent homology and

not sublevel set persistence. Both of these issues make implementing these methods difficult

for persistence diagrams generated from sublevel set persistence. Additionally, methods such as
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persistent entropy [10] for separating noise from significant features in a persistence diagram may

not properly distinguish between the noise and significant points if the number of significant data

points in the persistence diagram is relatively large compared to the amount of noise. To combat

both of these issues, I will introduce two methods for estimating the damping constant with additive

noise using sublevel set persistence.

Time 
Series

Sublevel Set
Persistence

Time Ordered 
Lifetimes

Statistical 
Analysis

Function 
Fitting

Damping
Parameters

Figure 1.15: Overview of method: starting with a time series, the sublevel set persistence is
calculated. The lifetimes from the persistence diagram are then plotted as a function of their birth
time. The resulting diagram is analyzed from both a statistical and function fitting perspective to
estimate the damping parameters.

The first method is based on generating a confidence level based cutoff for the persistence

diagram for sublevel set persistence, which is founded on the assumed theoretical probability

distribution 𝑓 (𝑥) of noise in the persistence diagram developed in [11]. This assumed distribution

allows for an accurate cutoff separating noise from features based on a desired confidence level 𝛼.

The second method uses a dual function fitting algorithm applied to the time ordered lifetimes

diagram.Specifically one curve is fit to the damping envelope of the lifetimes while the second is

fit to the additive noise lifetimes. However, this method is only viable for viscous and Coulomb

damping as the envelope function is unknown for quadratic damping.

The aforementioned methods will be developed and discussed in the proceeding sub-sections

as follows. First, in Section 1.3.3 I will provide an overview of the recently developed and novel

analysis of the statistics of the lifetimes in the persistence diagram [11] and how its resulting cutoff

can be used to separate significant persistence pairs from those associated to noise in the persistence

diagram. These significant persistence pairs can then be used to estimate the damping parameters
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as discussed in Section 1.3.1. In Section 1.3.4, I will introduce the method based on a dual curve

fitting procedure in the time ordered lifetimes diagram to estimate the damping parameters.

1.3.3 Method 1: Persistence Diagram Cutoff

The first method is based on calculating a suitable cutoff to seperate persistence pairs associated

to additive noise from those of signal. To do this, I implement the recently published work

on estimating a suitable cutoff for the persistence diagram (and time ordered lifetimes diagram)

by assuming an additive noise distribution [11]. I overview the key results from this work in

Section 1.3.3. I additionally develop a noise floor compensation term to minimize the effects

additive noise has on the accuracy of the estimated damping parameters in Section 1.3.3. Finally,

in Section 1.3.3 I show how the cutoff and noise floor are used to estimate the damping parameters.

Cutoff Equations For the method developed in [11], the cutoff equations require an assumed

probability distribution function for the additive noise. Due to this constraint, I have provided four,

commonly assumed probability distributions as Gaussian, uniform, Rayleigh, and Exponential

distributions with their associated cutoff equations and approximated distribution parameters as

shown in Table 1.3. From Table 1.3, 𝐿̃ is the median lifetime, 𝑛 is the number of samples in

the signal, 𝛼 is the confidence level (this is usually chosen as 0.001), and 𝜎, Δ, 𝜎, and 𝜆 are

the distribution parameters for the Gaussian, uniform, Rayleigh, and exponential distributions,

respectively.

To compensate for the effects of signal on the cutoff and parameter estimation equations, I

suggest the use of the multiplication compensation term for the signal as 𝑅. This term is used to

compensate for the effects of signal with 𝐶∗𝛼 = 𝑅𝐶𝛼 and 𝜎∗ = 𝑅𝜎 and is calculated as

𝑅 = 𝑒
𝑐1

(
𝛿

𝛿+𝐿̃

)𝑐2

, (1.80)

where the two constants 𝑐1 and 𝑐2 are provided in Table 1.4 and 𝛿 is approximated as

𝛿 ≈ 2
𝑛

∑︁
𝐿𝐶𝛼

, (1.81)
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Table 1.3: Cutoff and parameter estimation equations for the Gaussian, uniform, Rayleigh, and
exponential probability distribution functions.

Distribution Cutoff Equation C𝛼 Parameter Estimation

Gaussian 1.923𝐿̃ erf−1 [
2(1 −

√
𝛼)1/𝑛 − 1

]
𝜎 ≈ 0.680𝐿̃

Uniform 2𝐿̃
[
2
(
1 −
√
𝛼
)1/𝑛 − 1

]
Δ ≈ 2𝐿̃

Rayleigh 1.025𝐿̃
(√︃
−2 ln

(
[1 −
√
𝛼]1/𝑛

)
−

√︃
−2 ln

(
1 − [1 −

√
𝛼]1/𝑛

) )
𝜎 ≈ 1.025𝐿̃

Exponential −0.533𝐿̃ ln
(
[1 −
√
𝛼]1/𝑛 − [1 −

√
𝛼]2/𝑛

)
𝜆 ≈ 1.875

𝐿̃

with 𝐿𝐶𝛼
as the lifetimes greater than 𝐶𝛼.

Table 1.4: Constants of (1.80) for each distribution type investigated in this work with associated
uncertainty from ten trials.

Distribution Gussian Uniform Rayleigh Exponential

𝑐1 0.845 ± 0.029 0.880 ± 0.017 0.726 ± 0.026 0.436 ± 0.036

𝑐2 0.809 ± 0.061 0.639 ± 0.026 0.605 ± 0.054 0.393 ± 0.075

Noise Floor A secondary effect on the lifetimes associated to signal from additive noise is the

increase in the lifetimes, which I term as the “noise floor" 𝐹𝛽. For example, consider the sample

peak-valley pair shown in Fig. 1.16, which illustrates 𝑥(𝑡) as the original time series without

noise (blue dashed line), 𝑥(𝑡) +N (red dot data points), and an increase and decrease in the local

maxima and minima by approximately 𝜖𝑝𝑖 and 𝜖𝑣𝑖 , respectively. Additionally, from Fig. 1.16, I can

approximate the original noise-free lifetimes

𝐿
′
𝑖 ≈ 𝐿𝑖 − 𝜖𝐿𝑖 , (1.82)

where 𝐿𝑖 is the lifetime associated to the signal with additive noise and 𝜖𝐿𝑖 is the uncertainty in the

lifetime associated to signal from additive noise.
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Figure 1.16: Example section of sampled time series 𝑥(𝑡) with (black dots) and without (green
dashed line) additive noise to demonstrate effect of additive on increasing the lifetime of sublevel
set persistence by approximately 𝐿𝑖 − 𝐿

′
𝑖
= 𝜖𝑣𝑖 + 𝜖𝑝𝑖 ≈ F𝛽.

I attempt to approximate the increase in the lifetime from this uncertainty as the noise floor 𝐹𝛽 ≈

𝜖𝐿𝑖 . This uncertainty will generally increase the lifetime associated to signal and will consequently

alter the calculations for the damping constants. Therefore, I will attempt to approximate F𝛽 and

reduce the measure lifetimes accordingly as 𝐿𝑖 − F𝛽.

It is straightforward to realize that 𝜖𝐿 is distributed the same as the lifetimes associated to

additive noise. Therefore, the goal will be to approximate, on average, what the increase in 𝐿𝑖 from

additive noise using the previously derived statistics and resulting cutoff equations. Specifically,

the goal is to represent the value of 𝐹𝛽 as a function of the number of points near the local extrema

𝑛𝑒, the assumed additive noise model, and the approximate distribution parameter from the median

lifetime with signal compensation (e.g. 𝜎∗ for Gaussian additive noise). To estimate 𝐹𝛽 I will

recycle the previously derived expressions from [11] in Table 1.3 as shown in Table 1.5. However,

I must first develop a method to estimate 𝑛𝑒 and an appropriate confidence level 𝛽.

I first choose an appropriate confidence level 𝛽. To determine 𝛽 I consider the goal of the

calculation: estimate the average increase in the lifetimes associated to signal from the additive

noise near the extrema. Here, the key word is average. In comparison to the cutoff with 𝛼 = 0.01, I

need a much higher confidence level for 𝛽 due to the goal not being to provide a cutoff greater than

the max of lifetimes associated to noise, but rather the average max itself. Therefore, I chose to set

the probability as 50% or 𝛽 = 0.5 such that there is an equal probability of increase in the lifetime

being greater or less than the floor F𝛽.

With 𝛽 assumed as 0.5, I now need to determine 𝑛𝑒 as the average number of points near
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Table 1.5: Cutoff and parameter estimation equations for the Gaussian, uniform, Rayleigh, and
exponential probability distribution functions.

Distribution Noise Floor F𝛽

Gaussian 23/2𝜎∗ erf−1 [
2(1 −

√
𝛽)1/𝑛𝑒 − 1

]
Uniform Δ∗

[
2
(
1 −
√
𝛽
)1/𝑛𝑒 − 1

]
Rayleigh 𝜎∗

(√︃
−2 ln

(
[1 −
√
𝛽]1/𝑛𝑒

)
−

√︃
−2 ln

(
1 − [1 −

√
𝛽]1/𝑛𝑒

) )
Exponential − 1

𝜆∗ ln
(
[1 −
√
𝛽]1/𝑛𝑒 − [1 −

√
𝛽]2/𝑛𝑒

)
the extrema of a lifetime associated to signal. I do not use the total number of data points 𝑛

as only the points near the extrema have a significant probability of increasing 𝐿𝑖. Since I are

working with signals of the underlying form 𝑥(𝑡) = 𝐴 sin(𝑡 + 𝜙)𝑒(𝑡) for damped oscillators with a

damping envelope 𝑒(𝑡), I develop an expression for the number of samples near an extrema using

the approximate response of the signal for a lifetime 𝐿𝑖 > 𝐶∗𝛼 as

𝑓 (𝑥) = −𝐿𝑖
2
𝑒(𝑡𝐵𝑖 ) sin(𝑡) (1.83)

with the lifetime 𝐿𝑖 born at 𝑡𝐵𝑖 and 𝑡 ∈ [0, 2𝜋]. I consider points near an extrema when

| sin(𝑡) | ≥ 1 − 2
𝐶∗𝛼
𝐿𝑖
, (1.84)

where 𝑡 ∈ [0, 2𝜋]. I now calculate the ratio between all 𝑡 ∈ [0, 2𝜋] and the 𝑡 that satisfy Eq. (1.84)

as

𝑟𝑖 =
{max(𝑡) −min(𝑡), | sin(𝑡) | ≥ 1 − 2𝐶

∗
𝛼

𝐿𝑖
}

2𝜋
, (1.85)

where 𝑟𝑖 ∈ [0, 1] and 𝑡 ∈ [0, 2𝜋]. 𝑟𝑖 is estimated for each 𝐿𝑖 with the average approximated as

𝑟 = median(ri). (1.86)

35



The total number of points in the signal with the damped sinusoidal function satisfying 𝐴𝑒(𝑡) > 𝐶∗𝛼
is estimated as

𝑁 = 𝑓𝑠 (max(𝑡𝐵) −min(𝑡𝐵)), (1.87)

where 𝑓𝑠 is the sampling frequency and 𝑡𝐵 is the set of birth times associated to lifetimes with

𝐿𝑖 > 𝐶
∗
𝛼. Using the total number of points associated to signal 𝑁 and the ratio of those points near

the extrema, I now estimate the number of points near the extrema for a lifetime as

𝑛𝑒 =
𝑟𝑁

𝑛𝐿
, (1.88)

where 𝑛𝐿 is the number of lifetimes with 𝐿𝑖 > 𝐶∗𝛼.

I can now implement the results for 𝑛𝑒, 𝛽, and the distribution parameter into the cutoff

equations from Table 1.3 as shown in Table 1.5 to calculate a noise floor F𝛽. As a note, the noise

floor compensation does not have a major effect for relatively low levels of noise (e.g. SNR > 30

dB). However, for higher levels of noise the compensation can be critical for calculating an accurate

estimate of the damping constant. The importance of the noise floor compensation will be shown

in Section 4.3.

Damping Parameter Estimation The damping parameters are estimated using the cutoff and

noise floor as follows:

1. Calculate the lifetimes from the persistence diagram 𝐿 = 𝛼𝐷 − 𝛼𝐵 and match them with the

time indices of the lifetime minima as 𝑡𝐵. This allows for the time ordered lifetimes plot as

shown in Fig. 1.15.

2. With the cutoff𝐶𝛼 known, separate the lifetimes and birth times based on the 𝐿 > 𝐶𝛼. Adjust

the lifetime above the cutoff using the noise floor by substituting 𝐿𝑖 with 𝐿𝑖 − 𝐹𝛽, 𝑝𝑖 with

𝑝𝑖 − 𝐹𝛽/2, and 𝑣𝑖 with 𝑣𝑖 + 𝐹𝛽/2.

3. Using the noise floor adjusted lifetimes above the cutoff and their time indices 𝑡𝐵, use the

appropriate equation for estimating the damping constant for Coulomb, viscous, or quadratic
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damping (see equation reference in Table 1.6). Additionally, I suggest using 𝑖 = 0 and 𝑛

as the lifetime closest to 0.3211max(𝐿) to minimize the effect of additive noise as shown

in [137].

Table 1.6: Quick reference to equations (or cost functions) for using sublevel set persistence to
estimate damping parameters and constants.

Coulomb Viscous Quadratic

Parameter 𝜁 : (𝐿𝑖−𝐿𝑖+𝑛)
2(𝑡𝐵𝑖+𝑛−𝑡𝐵𝑖 )

√︂
1

1+
(

2𝑛𝜋
ln(𝐿𝑖+𝑛/𝐿𝑖)

)2 𝐶 (𝜁𝑞) =
[
𝐿𝑖 − 1

2𝜁𝑞 ln
(

2𝜁𝑞𝑣𝑖−1
2𝜁𝑞 𝑝𝑖+1−1

)]2

Constant 𝜇: 𝑘 (𝐿𝑖−𝐿𝑖+𝑛)
8𝑛𝑁

2𝜁𝑣𝑘
𝜔𝑛

𝐶 (𝜇𝑞) =
[
𝐿𝑖 − 𝑚

2𝜇𝑞 ln
(

2𝜇𝑞𝑣𝑖−𝑚
2𝜇𝑞 𝑝𝑖+1−𝑚

)]2

1.3.4 Method 2: Function Fitting to the Persistence Space

The second method is based on function fitting to the time ordered lifetimes. As mentioned

previously, when calculating the sublevel set persistence diagram for a time series with additive

noise, the persistence pairs associated to noise populate the region near the diagonal. Similarly, for

the time-ordered lifetime plot the lifetimes of the persistence pairs associated to noise 𝐿𝑁 will be

near the 𝑥-axis and the lifetimes from the persistence pairs associated to signal 𝐿𝑆 will capture the

damping envelope as shown in the example signal in Fig. 1.17. I leverage this result as a method of

filtering the noise in time series such that I can apply a function fitting to the lifetimes associated

to signal.

Using all the lifetimes 𝐿 = 𝐿𝑁∪𝐿𝑆, I fit two functions of the form 𝑓𝑁 (𝑡) = 𝑏 and 𝑓𝑆 (𝑡) = 𝑒(𝑡)+𝑏,

where 𝑒(𝑡) is the envelope function for the lifetimes based on the damping type (Coulomb or viscous)

with 𝑏 as a constant to account for the noise offset. 𝑓𝑁 and 𝑓𝑆 are fit to 𝐿𝑁 and 𝐿𝑆, respectively. In

Fig. 1.17 I demonstrate this dual function fitting method. Based on this methodology, I can use the

fitting parameters of 𝑒(𝑡) to determine the damping constants.

For viscous damping I estimate the envelope function as 𝑒(𝑡) = 𝑎e−𝑐𝑡 , where 𝑎 and 𝑐 are

constant parameters. The exponent parameter 𝑐 correlates with Eq. (1.59) and Eq. (1.55) with

𝜁𝑣 = 𝑐/𝜔𝑛 =
𝑛𝑐(𝑡𝐵𝑖+𝑛 − 𝑡𝐵𝑖 )

2𝜋
. (1.89)
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Figure 1.17: Example demonstrating process of going from a time series 𝑥(𝑡) with amplitude
decrement and additive noise to the time ordered lifetimes of the persistence diagram with dual
function fitting.

Additionally, 𝜇𝑣 = 2𝑚𝑐. For Coulomb damping I estimate the envelope function as 𝑒(𝑡) = −𝑎𝑡 + 𝑑,

where 𝑎 is the magnitude of the slope of the linear function and 𝑑 is the intercept. I use the

relationship in Eq. 1.65 to calculate the coulomb damping ratio as 𝜁𝑐 = 𝑎/2, which is extended to

𝜇𝑐 =
𝜁𝑐𝜋𝑘

2𝑁𝜔𝑛
=

𝑎𝜋𝑘

4𝑁𝜔𝑛
. (1.90)

I have now demonstrated how the function fitting method can easily be used to estimate the

damping parameters from the lifetime plot (example illustrated in Fig. 1.17). This methods has the

benefit of not needed a statistical analysis of the noise in the persistence diagram. However, the

method does require an extra computational step of function fitting.

For function fitting I use a unique cost function for fitting two curves simultaneously, which is

defined as

𝐶 =

𝑇∑︁
𝑖=0

min
(
[𝐿𝑖 − 𝑓𝑁 (𝑡𝐵𝑖 )]2, [𝐿𝑖 − 𝑓𝑆 (𝑡𝐵𝑖 )]2

)
, (1.91)

where the cost function 𝐶 is a function of the parameters 𝑎, 𝑏, 𝑐 for viscous damping and 𝑎, 𝑏, 𝑑 for

Coulomb damping. Additionally, the subscript 𝑖 of 𝐿𝑖 and 𝑡𝐵𝑖 denote the 𝑖th sublevel set lifetime of

all 𝑇 lifetimes such that 𝑖 ∈ [1, 𝑇]. I minimize Eq. (1.91) using Python’s scipy.optimize.minimize

implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization algorithm.

A required input for the BFGS algorithm is an initial guess of the unknown parameter values.

For viscous damping, I suggest the following estimations: 𝑎 = max(𝐿), 𝑏 = 𝑚𝑎𝑥(𝐿)/100, and 𝑐 =
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ln(1/0.3299)/𝑡opt, where 𝑡opt is the birth time of the lifetime nearest to 0.3299 max(𝐿) ≠ max(𝐿).

For Coulomb damping, I make the following estimations: 𝑏 = 0.1 max(𝐿), 𝑚 = max(𝐿)/𝑡𝑜𝑝𝑡, and

𝑑 = max(𝐿). Through simulations I have found that these initial guesses yield accurate results for

a wide range of parameter values as demonstrated in the Section 4.3.

1.3.5 Examples

I will now implement the method for three examples. The first example is a simulated viscously

damped oscillator, the second is an experimental single pendulum with damping dominated by the

Coulomb damping mechanism, and the third is a simulated quadratically damped oscillator.

Example 1: Viscously Damped Oscillator For the first example, the system analyzed is the free

response of the viscously damped oscillator described by 𝑚 ¥𝑥 + 𝑘𝑥 + 𝜇𝑣 ¤𝑥 = 0, where 𝑚 = 1 kg,

𝑘 = 20 N/m, and 𝜇𝑣 = 0.5 Ns/m. This system is solved as Eq. (1.92) with initial conditions 𝑥0 = 1

m and ¤𝑥0 = 0 m/s as

𝑥(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 cos(𝜔𝑑𝑡), (1.92)

where 𝜔𝑛 =
√︁
𝑘/𝑚 ≈ 4.472 rad/s, 𝜁 = 0.05590, and 𝜔𝑑 = 4.465 rad/s.

Figure 1.18: Time series 𝑥(𝑡) sampled at 20 Hz from Eq. (1.92) with and without additive noise
N from a normal distribution with standard deviation 𝜎 = 0.01.

The simulation was sampled at a rate of 𝑓𝑠 = 20 Hz for 20 seconds with additive noise N from

a Gaussian distribution with a standard deviation 𝜎 ≈ 0.01 m as shown in Fig. 1.18.

Sub-level set persistent homology is applied to the time series with and without additive noise

as P0(𝑥 + N ) and P0(𝑥). The lifetimes 𝐿 and their time indices 𝑡𝐵 are then calculated from
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the persistence diagram and time series, respectively. As mentioned previously, the persistence

diagrams with and without additive noise show only slight differences for the significant lifetimes.

I can then apply both the statistics based analysis (see left side of Fig. 1.19) and function fitting

analysis (see right side of Fig. 1.19) to the resulting lifetimes and time indices.

Figure 1.19: Resulting time-ordered lifetimes plot for the viscous damping mechanism example in
Fig. 1.18 with (left) the statistical analysis and (right) function fitting.

Using the lifetimes from the persistence diagram, a cutoff 𝐶𝛼 = 0.119 is calculated using

𝛼 = 1%. To calculate the damping constant, the lifetime indices are chosen as 𝑖 = 0 and 𝑛 = 3

so that 𝐿𝑛+𝑖/𝐿𝑖 ≈ 0.3211 (𝐿3/𝐿0 ≈ 0.583/1.542 ≈ 0.378) as suggested in [137]. Using these

lifetimes, 𝜁𝑣 is calculated from Eq. (1.61) as

𝜁𝑣 =

√√√√ 1

1 +
(

2𝑛𝜋
ln(𝐿𝑖+𝑛/𝐿𝑖)

)2 =

√√√√ 1

1 +
(

6𝜋
ln(𝐿3/𝐿0)

)2 ≈ 0.05480.

Using 𝜁𝑣 I can then calculate 𝜇𝑣 = 2𝜁𝑣
√
𝑘𝑚 ≈ 0.4901. As noticed, both of these values a slightly

below the theoretical values of 𝜁𝑣 = 0.05590 and 𝜇𝑣 = 0.5. To improve the estimation, I can

account for a noise floor in the calculation of 𝜁𝑣 as

𝜇𝑣 = 2
√√√√ 1

1 +
(

6𝜋
ln(𝐿3−F/𝐿0−F )

)2 ≈ 0.05611,

where F ≈ 0.018 was calculated as described in Section 1.3.3. I then calculate 𝜇𝑣 = 2𝜁𝑣
√
𝑘𝑚 ≈

0.5019, which is significantly closer to the actual 𝜇𝑣 = 0.5. Accounting for the noise floor becomes

more critical as the noise level increases, which will be investigated more thoroughly in section 4.3.

For the second method, I implement the dual function fitting analysis as shown on the right

side of Fig. 1.19. This analysis results in the constant 𝑐 ≈ 0.2475, which is used in Eq. (1.89)
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to calculate 𝜁 ≈ 0.4955. I then calculate 𝜇𝑣 ≈ 0.05540. This shows that the dual function fitting

method also work wells for estimating the damping constants, but the statistics based method with

a noise floor compensation is slightly more accurate.

Example 2: Experimental Single Pendulum The second example uses data collected from a

free drop experiment of a bench top pendulum within the linear range of oscillations. The pendulum

used has CAD and design documentation provided through GitHub1 with uncertainty analysis [183].

This single pendulum has an approximate system model of the form 𝐼 ¥𝜃 = −𝜇𝑐sgn( ¤𝜃) − 𝑚𝑔𝑟cm𝜃,

where 𝐼 = 𝐼cm + 𝑚𝑟2
cm with 𝑟cm as the radius to the center of mass and 𝐼cm as the inertia about the

center of mass. This equation can be compared to Eq. (1.54) with 𝜇𝑣 = 𝜇𝑞 = 0. This comparison

results in equivalence of 𝑚 = 𝐼 and 𝑘 = 𝑚𝑔𝑟cm.

Figure 1.20: Time series 𝑥(𝑡) sampled at 20 Hz from Eq. (1.92) with and without additive noise
N from a normal distribution with standard deviation 𝜎 = 0.01.

For the pendulum model it is assumed that the other damping mechanisms are negligible in

comparison to the Coulomb damping. To validate this assumption, I implemented the BFGS

algorithm for fitting a simulation of the model to collected free drop data, where the three damping

constants 𝜇𝑐, 𝜇𝑣, and 𝜇𝑞 were the only unknowns. This required acurate estimates for the 𝑚, 𝑟cm,

and 𝐼. These parameters were estimated with either a direct measurement or through SolidWorks’

mass properties tool with an accurate CAD model, which resulted in values of 𝑚 ≈ 0.1231 kg,

𝐼 ≈ 0.00295 kg m2, and 𝑟cm ≈ 0.128 m. From 5 free drops, the model fitting resulted in estimated

average damping parameters with uncertainties (one standard deviation) of 𝜇𝑐 = (2.56±0.09)×10−3,
1https://github.com/Khasawneh-Lab/simple_pendulum
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𝜇𝑣 = (1.20 ± 0.32) × 10−4, and 𝜇𝑞 = (6.0 ± 2.2) × 10−6. These parameter values show that a large

majority of the damping occurred through Coulomb damping, which substantiates the reduced

model for the pendulum.

Figure 1.21: Resulting time-ordered lifetimes plot for the experimental pendulum data (see
Fig. 1.20) having an approximate Coulomb damping mechanism in the linear range with (left)
the statistical analysis and (right) function fitting.

The collected angular data (in radians) is shown in Fig. 1.20. Next, similar to the first example,

the time ordered lifetimes are calculated using sublevel set persistence. I can then apply both the

statistics based analysis (see left side of Fig. 1.21) and function fitting analysis (see right side of

Fig. 1.21) to the resulting lifetimes and time indices.

I can now estimate the damping parameter (slope of decrement envelope) as 𝜁𝑐 = (𝐿𝑖 − 𝐿𝑖+𝑛)/2(𝑡𝐵𝑖+𝑛 − 𝑡𝐵𝑖 ),

where 𝑖 = 0 and 𝑛 = 5. This calculation results in 𝜁𝑐 ≈ 0.07909. Similarly, I can use the function

fitting method resulting in 𝑎 ≈ 0.1538, which is used to calculate 𝜁𝑐 = 𝑎/2 ≈ 0.07690. Using

𝜁𝑐 from the two methods, I can now calculate the damping constants as 𝜇𝑐 ≈ 2.65 × 10−3 and

𝜇𝑐 ≈ 2.58 × 10−3 for the statistics and function fitting methods, respectively. Both of these results

fall within the uncertainty of the parameter estimated from model fitting (𝜇𝑐 = (2.56±0.09)×10−3),

which suggests that this method for damping estimation is viable for experimental data.

Example 3: Quadratically Damped Oscillator For the last example, and completion of damping

types, I will again simulate a time series. However, I will now use quadratic damping as the

mechanism of energy dissipation. To do this, I simulated a response of 𝑚 ¥𝑥 + 𝑘𝑥 + 𝜇𝑞 ¤𝑥2sgn( ¤𝑥) = 0

with initial conditions 𝑥0 = 1 m and ¤𝑥0 = 0 m/s and parameters𝑚 = 1 kg, 𝑘 = 20 N/m, and 𝜇𝑞 = 0.5
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Ns2/m2. The solution was sampled for 20 seconds at a sampling rate of 20 Hz. Additionally, I

included additive noise N to the time series 𝑥(𝑡) from a Gaussian distribution with a standard

deviation 𝜎 ≈ 0.01 m as shown in Fig. 1.22.

Figure 1.22: Time series 𝑥(𝑡) sampled at 20 Hz from the simulation of a quadratically damped
oscillator with and without additive noise N from a normal distribution with standard deviation
𝜎 = 0.01.

Next, sublevel set persistence was applied to the time series with additive noise, and the

corresponding birth times 𝑡𝐵 and lifetimes 𝐿 were recorded. A statistical analysis of the lifetimes

was used to calculate a noise floor and cutoff as shown in Fig. 1.23. By minimizing the cost function

Figure 1.23: Resulting time-ordered lifetimes plot for the quadratic damping mechanism example
in Fig. 1.22 with (left) the statistical analysis and (right) function fitting.

in Eq. (1.78) and Eq. (1.79), I calculate the damping constant and parameter as 𝜇𝑞 ≈ 0.513 and

𝜁𝑞 ≈ 0.513, respectively. By comparing these values to the actual 𝜇𝑞 = 0.5 and 𝜁𝑞 = 0.5, I can see

that sublevel set persistence is an accurate an automatic method for estimating quadratic damping

parameters.
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1.3.6 Results

In this section I provide three main results of sublevel set persistence for damping parameter

identification: noise robustness, functionality at low sampling frequencies, and applicability for a

wide range of damping parameters. All three of these analyses are based on estimating damping

parameters from the three different damping mechanisms with damping parameters of 𝜇𝑐 = 0.05

N, 𝜇𝑣 = 0.5 Ns/m, 𝜇𝑞 = 0.5 Ns2/m2 for Coulomb, viscous, and quadratic damping, respectively.

The other system parameters are set as 𝑚 = 1 kg and 𝑘 = 20 N/m with initial conditions 𝑥0 = 1

m and ¤𝑥0 = 0 m/s. These systems are simulated for 20 seconds at a rate of 20 Hz unless specified

otherwise.

Noise Robustness For analyzing noise robustness, I implement a sweep of a Signal-to-Noise-

Ratio (SNR) from 15 to 40 dB, where a low SNR signifies a high level of noise. The SNR is defined

as

SNR = 20 log2

(
𝐴signal

𝐴noise

)
, (1.93)

where 𝐴signal = 1 m as the maximum value of the signal (based on initial conditions), and 𝐴noise =

𝜎
√

2 with 𝜎 as the standard deviation of the additive Gaussian noise. In signal processing an

SNR of 15 dB is considered the limit for extracting useful information from a time series. At

each SNR, I add Gaussian (normal distribution) noise with the specified SNR and estimate the

damping constant using all three methods: single lifetime, optimal lifetime ratio, and function

fitting. I compute these estimates for 100 samples at each SNR, which provide a mean and standard

deviation and is represented as a data point with standard deviation error bars as 𝜇 ± 𝜎𝜇 (see

Fig. 1.24). I also ran two variations of the parameter estimations: one with and one without noise

compensation. By noise compensation I are referring to a compensation of the noise floor in the

damping parameter estimation as described in Section 1.3.3.

the goal with this noise robustness analysis is to determine the functional limits of each method

with additive noise. On the left side of Fig. 1.24 I show the results with the automated noise
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Figure 1.24: Analysis of the noise robustness of sublevel set persistence for damping parameter
estimation of an oscillator with (top) coulomb, (middle) viscous, and (bottom) quadratic damping
mechanisms with (left) and without (right) noise compensation. For each damping mechanism I
estimate the damping parameters using a single lifetime (One), and optimal lifetime ratio (Opt.),
and function fitting (Fit.).

compensation with the parameter estimation for Coulomb, viscous, and quadratic damping, from

top to bottom.

On the top left I have the estimated coulomb parameters (actual 𝜇𝑐 = 0.05 N), which shows

that both the function fitting and optimal ratio methods accurately estimate the damping parameter

all the way down to an SNR of 15 dB. However, the damping estimation has a large uncertainty

when using only a single lifetime. This suggests that the single lifetime method should only be

used for low noise levels or a high SNR. Additionally, on the top right of Fig. 1.24 I see almost no

difference between the noise compensation and no noise compensation results suggesting that it is

unnecessary to do noise compensation for Coulomb damping parameter estimation. This is most

likely due to the approximately even increase in the lifetimes associated to additive noise on the

lifetimes associated to signal has a minimal effect on the slope of the damping envelope.

For the middle row of figures in Fig. 1.24 the results for viscous damping are shown. These

45



results demonstrate that only the optimal noise ratio with noise compensation accurately estimates

the damping parameter (𝜇𝑣 = 0.5 Ns/m) at high levels of noise. At slightly lower levels of noise

(SNR > 25), all three methods accurately estimate the damping parameters, but the function fitting

method shows parameter estimation with higher accuracy. Similarly, for the no noise compensation

case on the right, all three methods show accurate results when for SNR > 25 dB.

For the last damping parameter 𝜇𝑞 = 0.5 Ns2/m2 on the bottom row, there is no function

fitting method as there is currently no closed-form solution for the damping envelope function

for quadratic damping. This means only the single and optimal lifetime methods can be used.

Additionally, for improved accuracy I see that noise compensation is necessary for SNR values

less than approximately 30 dB. I also notice that quadratic damping estimation is more sensitive to

additive noise than Coulomb and viscous damping and only has a relatively high precision for low

noise levels with the SNR greater than approximately 30 dB.

Effects of Sampling Frequency The second analysis of sublevel set persistence for damping

parameter identification is based on the effects of sampling rate to determine the minimum sampling

rate at which the method will continue to function accurately. To do this analysis I scaled the

sampling frequency (originally 20 Hz) from 2 to 20 Hz. At frequencies lower than 4 Hz I are

approaching the Nyquist sampling rate with 𝑓Nyquist = 2𝜔𝑛 ≈ 1.42 Hz and expect the method to

fail. Additionally, I expect the accuracy will only improve for frequencies greater than 20 Hz. The

additive noise level was left at 50 dB. At each frequency an uncertainty was added to the sampling

frequency and the damping parameters were calculated for 100 samples. This allows for a mean

and standard deviation on the parameter values (See Fig. 1.25).

This analysis shows that for all three damping mechanisms low sampling frequencies approach-

ing the Nyquist sampling rate reduce the accuracy and precision of the parameter estimation. I also

conclude that both the function fitting and the optimal lifetime ratio methods have similar results.

However, both Coulomb and quadratic damping estimation show a a significantly higher level of

uncertainty for sampling rates less than 4 Hz, which suggests that the time series should be sampled
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Figure 1.25: Effect of low sampling frequencies for the damping parameter identification methods
based on sublevel set persistence for Coulomb (left), viscous (middle), and quadratic (right) damping
mechanisms. Analysis shows accurate results for sampling rate 𝑓𝑠 > 2 𝑓Nyquist, where 𝑓Nyquist ≈ 1.42
Hz is the Nyquist sampling rate.

at rates greater than twice the Nyquist rate. On the other hand, the viscous damping parameter

estimation showed accurate results up to the Nyquist sampling rate.

Effects of Damping Parameter Variation The last result and analysis is the effect of damping

parameters to determine at what parameters the methods fail. To do this analysis, there is no additive

noise and I will only consider significantly high damping parameters as small damping should not

decrease the accuracy of the optimal lifetime ratio and function fitting methods. However, at low

damping parameters and high noise levels, the accuracy of the method based on the first, single

lifetime will become inaccurate (I do not show this result).

For Coulomb damping the range of damping constants 𝜇𝑐 will vary from 0.001 to 0.55 N, where

at 𝜇𝑐 ≈ 0.4𝑁 the sticking effect has a significant influence on the damping parameter estimation and

causes the method to fail. For viscous damping I consider damping constants that result in damping

parameters up to 𝜁𝑣 = 1.0 or 𝜇𝑣 ∈ [0.01, 8.5] Ns/m (i.e. critically damped). At 𝜁𝑣 = 1.0 the

response has no oscillations, which results in no lifetimes and an upper limit for viscous damping.

Finally, for quadratic damping the damping constant does not have a large influence on the accuracy,

which is why I chose a large damping constant range 𝜇𝑞 = [0.01, 8.0] Ns2/m2.

Figure 1.26 shows the resulting damping constant estimates over the range of damping constants.

For Coulomb damping both the function fitting and optimal lifetime ratio begin to lose accuracy
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Figure 1.26: Effects of damping parameters of (left) Coulomb, (middle) viscous, and (right)
quadratic damping. These parameter values are ranged from very low damping to high or critical
damping values.

when the number of lifetimes decreases to one. This occurs at approximately 𝜇𝑐 = 0.2 N.

Additionally, at 𝜇𝑐 ≈ 0.4 N, the sticking effect of coulomb damping is effecting the single lifetime,

which reduces the accuracy of the method based on a single lifetime. For viscous damping in the

middle of Fig. 1.26, the function fitting method (Fit.) loses accuracy at approximately 𝜇𝑣 = 2.5

Ns/m or 𝜁𝑣 ≈ 0.3, the optimal lifetime ratio method loses accuracy at 𝜇𝑣 ≈ 6 Ns/m, and, finally, the

method based on a single lifetime accurately estimates the damping constant almost all the way to

𝜁𝑣 = 1.0. For quadratic damping on the right, the damping estimation method functions accurately

for the entire damping constant range. I theorize that the function fitting method loses accuracy

for high levels of damping due to a lack of data points or lifetimes associated to signal for the

function to fit to. This result shows the benefit of using the statistics based method for estimating

the damping ratio since it is functional for higher damping levels.

1.4 Sublevel Set Entropy

1.4.1 Information Entropy Statistics

Entropy is used as a summary statistic for measuring the predictability of a data source based on

the probability distribution across a set of discrete states. Information entropy was first realized as

Shannon entropy, which was introduced in 1948 [210]. Since then, several new forms of entropy
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have been popularized for time series analysis. Some examples include approximate entropy [185],

sample entropy [198], and permutation entropy [14]. Additionally, information entropy can be

applied to transition probability matrices from a Markov chain representation through the entropy

rate or conditional entropy. However, this application of entropy requires the time series to be

represented as a sequence of discrete states.

In this work we show how each of these entropy statistics can be used to analyze the sublevel set

persistence of a time series. The following paragraphs provide a brief introduction to each entropy

measurement.

Shannon Entropy Shannon entropy [210] is calculated using the probability distribution of a set

of possible states A from the sequence of states S. Each state has its probability calculated based

on frequency with state 𝑎𝑖 having probability 𝑝(𝑎𝑖). The Shannon entropy is calculated as

𝐻 (S) = −
∑︁
𝑖∈𝑁

𝑝(𝑎𝑖) log(𝑝(𝑎𝑖)), (1.94)

where 𝑁 is the number of possible states. Shannon entropy can be normalized as

ℎ(S) = −
∑
𝑖∈𝑁 𝑝(𝑎𝑖) log(𝑝(𝑎𝑖))

log(𝑁) , (1.95)

with ℎ ∈ [0, 1]. If each state is equiprobable over all possible states then the underlying dataset

has a high level of uncertainty and ℎ = 1. Conversely, if ℎ = 0 then only one state has probability

𝑝(𝑎𝑖) = 1, while all others have zero probability representing a perfectly regular dataset. A major

issue for Shannon entropy, as described in the introduction, is that it does not account for the order

in which the data is received. To alleviate this issue approximate entropy was created.

Approximate Entropy Unlike Shannon entropy, which can measure predictability using a prob-

ability distribution among the states, approximate entropy [185] measures the regularity of a signal

based on the sequence of states. Additionally, it does not require distinct states with the use of the

uncertainty or filtering level parameter 𝑟 when comparing sequence segments. Unfortunately the

choice of an appropriate 𝑟 value is not trivial and is dependent on the application. Therefor, using a
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Input: Signal 𝑥 = [𝑥(0), 𝑥(1), . . . , 𝑥(𝑁 − 1) with 𝑁 as length of signal, filter level 𝑟, and data
comparison length 𝑚.

Output: Approximate entropy ℎ𝑎
1 Form collection of vectors 𝑉𝑚 = [𝒗𝑚 (𝑖), . . . , 𝒗𝑚 (𝑁 − 𝑚)] with 𝒗𝑚 (𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 1), . . . , 𝑥(𝑖 +

𝑚 − 1)] ∈ R𝑚 for each 𝑖 ∈ [0, 𝑁 − 𝑚].
2 Calculate

𝐶𝑚𝑖 (𝑟) =
#{𝒗𝑚 ( 𝑗) ∈ 𝑉𝑚 | 𝑑 (𝒗𝑚 ( 𝑗), 𝒗𝑚 (𝑖)) ≤ 𝑟}

𝑁 − 𝑚 + 1
,

which measures the percent of vectors within a distance 𝑟 of vector 𝑣(𝑖) with the Chebyshev (or
𝐿∞) distance function as 𝑑 (𝒂, 𝒃) = max𝑖 ( |𝑎𝑖 − 𝑏𝑖 |) where 𝑎𝑖 ∈ 𝒂 and 𝑏𝑖 ∈ 𝒃.

3 Define

Φ𝑚 (𝑟) = 1
𝑁 − 𝑚 + 1

𝑁−𝑚∑︁
𝑖=0

log(𝐶𝑚𝑖 (𝑟)).

4 Calculate the approximate entropy as

ℎ𝑎 (𝑥) = Φ𝑚 (𝑟) −Φ𝑚+1(𝑟).

Algorithm 1.1: Approximate Entropy

sequence of states makes the choice of 𝑟 = 0 simple. The approximate entropy is calculated using

the Algorithm 1.1 as follows.

The algorithm calculates the regularity of a sequence of states by comparing how many unique

(with 𝑟 filtering level) sequences of states of length 𝑚 there are. For a periodic signal there would

be relatively few unique sequences and thus a low approximate entropy. In comparison, a chaotic

or patternless signal would have many unique sequences and a high approximate entropy.

Two major drawbacks exist for approximate entropy. The first is its high sensitivity to parameter

selection [152] and second is its need for sufficiently long data. To alleviate the latter, sample

entropy was devised.

Sample Entropy Sample entropy [198] is similar to approximate entropy in that it compares

sequences of length 𝑚 with filtration level 𝑟 . However, sample entropy ℎ𝑠 has the benefit of having

data length independence. Sample entropy is typically used for measuring signal complexity with
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applications in physiological time-series data [198], and it is calculated as

ℎ𝑠 (𝑥) = − log
𝐴

𝐵
, (1.96)

where

𝐴 = #{[𝒗𝑚 (𝑖), 𝒗𝑚 ( 𝑗)] ∈ [𝑉𝑚, 𝑉𝑚] | 𝑑 (𝒗𝑚 (𝑖), 𝒗𝑚 ( 𝑗)) ≤ 𝑟}

and

𝐵 = #{[𝒗𝑚+1(𝑖), 𝒗𝑚+1( 𝑗)] ∈ [𝑉𝑚+1, 𝑉𝑚+1] | 𝑑 (𝒗𝑚+1(𝑖), 𝒗𝑚+1( 𝑗)) ≤ 𝑟}.

In this work we use 𝑚 = 3 by default unless otherwise stated. Sample entropy is unfortunately still

sensitive to the filtering level parameter 𝑟 and is computationally demanding for large signals as

demonstrated in Section 1.4.5. For more details on approximate and sample entropy we guide the

reader to [61]

Permutation Entropy Permutation entropy [14] was developed as a more computationally effi-

cient method for calculating the complexity of a sequence in comparison to approximate and sample

entropies. Permutations are the ordinal partitions of sequences of time series data. Specifically, the

sequences (or state space reconstruction vectors) are defined as 𝑣𝑛,𝜏 (𝑖) = [𝑥(𝑖), 𝑥(𝑖 + 𝜏), . . . , 𝑥(𝑖 +

(𝑛−1)𝜏)], where the signal 𝑥 is discretely sampled from a data source that can be either continuous

or discrete, 𝑛 is the permutation dimension, and 𝜏 is the spacing between points in the signal.

Each vector 𝑣𝑛,𝜏 (𝑖) can be categorized as one of 𝑛! possible permutations. Applying this procedure

over all 𝑣𝑛,𝜏 (𝑖) allows calculating the probability of each permutation. The Shannon entropy from

Eq. (1.94) can then be used to calculate the permutation entropy as

ℎ𝑝 (𝜋) = −
∑
𝑖∈𝑛! 𝑝(𝜋𝑖) log(𝑝(𝜋𝑖))

log(𝑛!) , (1.97)

which is normalized to the range [0, 1] by using the number of possible states 𝑛!. While computa-

tionally efficient, permutation entropy does not account for amplitude as is done with sample and

approximate. It can therefor be sensitive to additive noise.
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Markov Chain Entropies: Entropy Rate and Average Conditional Entropy Markovian based

entropy statistics are calculated using a transition probability matrix. To create the transition

probability matrix, a sequence of states is used to track transitions through an adjacency matrix 𝐴.

For each transition from state 𝑎𝑖 to state 𝑎 𝑗 , 𝐴(𝑖, 𝑗) is incremented by one. The adjacency matrix

𝐴 is |𝑉 | × |𝑉 |, where |𝑉 | is the number of states observed. The adjacency matrix is used to form a

one-step transition probability matrix according to

𝑃(𝑖, 𝑗) = 𝐴(𝑖, 𝑗)∑|𝑉 |−1
𝑘=0 𝐴(𝑖, 𝑘)

. (1.98)

The probability matrix now represents the probability of transitioning from state 𝑎𝑖 to state 𝑎 𝑗 in one

step. This transition probability matrix serves as a stochastic model of the time series dynamics.

The goal is to then quantify the predictability of this stochastic Markov chain model to calculate its

complexity.

The first tool for calculating its predictability is the average condition entropy ℎ̄𝑐, which measures

the average normalized Shannon entropy of transitions for each states. It is calculated as

ℎ̄𝑐 (S) = −
1

log(𝑁) |𝑉 |

|𝑉 |−1∑︁
𝑖=0

|𝑉 |−1∑︁
𝑗=0

𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗)). (1.99)

The conditional entropy measures the models’ predictability and complexity by quantifying the

predictability of each state transition. If there is only one transition direction possible (e.g. from

state 𝑠𝑖 to state 𝑠 𝑗 ) then the conditional entropy of state 𝑠𝑖 would be zero. However, if it is possible to

transition from 𝑠𝑖 to many other states then the corresponding conditional entropy would be higher.

Similar to the average conditional entropy, the entropy rate ℎ𝑟 is calculated as the normalized

Shannon entropy of the transition probabilities for all states but with a weighting of each state’s

entropy based on its stationary distribution 𝜇. The entropy rate is calculated as

ℎ𝑟 (S) = −
1

log(𝑁)

|𝑉 |−1∑︁
𝑖=0

|𝑉 |−1∑︁
𝑗=0

𝜇𝑖𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗)), (1.100)

where we estimate 𝜇 based on the probability distribution over the states such that
∑
𝑖 𝜇𝑖 = 1. If

the distribution is equiprobable, then the average conditional entropy is equivalent to the entropy
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rate. A drawback of the entropy rate and conditional entropy is that only the single step transition

probability is investigated. In comparison, sample, approximate, and permutation entropy can

analyze sequences of larger dimensions.

1.4.2 Method

In this work, we implement the entropy tools discussed in Section 1.4.1 to the sublevel set per-

sistence diagram. Our method is outlined in the pipeline shown in Fig. 4.2. We begin with an

oscillatory signal in Fig. 4.2 (a) and calculate the 0D sublevel set persistence diagram in Fig. 4.2 (b).

Additionally, we separate persistence pairs associated with noise using a cutoff as described in Sec-

tion 1.2. Next, we calculate and bin the chronologically ordered lifetimes (based on the birth times

𝑡𝐵) as shown in Fig. 4.2 (c). The chronological lifetimes are sorted based on the time index at which

the persistence pair was born. At this stage, the approximate and sample entropy methods can be

directly applied to the chronologically ordered lifetimes above the cutoff 𝐶𝛼 with 𝑟 = 0.1 max(𝐿).

A benefit of using sublevel set persistence and associated lifetimes to apply approximate and sample

entropy is that it eliminates the need to analyze the multi-scale aspects of the signal. This is due to

the sublevel sets naturally partitioning the data using the critical points of the signal. Additionally,

using sublevel set persistence provides a much more compact representation of possibly lengthy

time series. This reduces the computational demand of approximate and sample entropy thus

enabling in-situ analysis even for long signals.
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Figure 1.27: Pipeline for applying entropy metrics to the sublevel set persistence homology. The
sublevel set persistence diagram in (b) is calculated from the signal in (a), which is used to calculate
the lifetimes that are ordered chronologically based on their birth index in (c). The lifetimes can
either be used to directly calculate the approximate and sample entropy as ℎ𝑎 (𝐿) and ℎ𝑠 (𝐿) or are
then digitized into states based on the binning procedure in (d) and (e) with bin edges shown in (c).
The probability of each state can be found to calculate the information entropy ℎ. Additionally, the
chronologically ordered states in (e) can be used to calculate the approximate and sample entropies
ℎ𝑎 (S) and ℎ𝑠 (S), where S is the state sequence composed of states 𝑎𝑖 ∈ A. The entropy rate ℎ𝑟
and average conditional entropy ℎ̄𝑐 can also be calculated from the Markov chain matrix in (f).

A procedure for mapping the lifetimes 𝐿 to a state sequence S is needed to implement the

remaining entropy statistics. We use an equi-sized partitioning of the lifetimes within [𝐶𝛼,max(𝐿)]

into B bins. This method allows us to represent a signal with a small set of discrete states. Using

the corresponding state sequence and each state’s abundance, the information entropy ℎ(S) is

calculated using the probabilities of each state as shown in Fig. 4.2 (d).

The state sequence S can also be used to calculate the approximate entropy ℎ𝑎 (S) and sample

entropy ℎ𝑠 (S) as shown in Fig. 4.2 (e). The benefit of applying approximate and sample entropies

to the state sequence is the simplicity of parameter selection with 𝑟 = 1, which works well for

B < 30. For larger B values we suggest setting 𝑟 = 0.1B. While not shown in Fig. 4.2, approximate

and sample entropy can also be applied directly to the signal in subfigure (a). However, this is

significantly more computationally demanding which will be demonstrated in Section 4.3.

We can also use the state sequence S from the ordered lifetimes 𝐿 to create a transition

probability matrix 𝑃 shown in Fig. 4.2 (f). The transition probability matrix or Markov chain

matrix is then used to calculate the entropy rate ℎ𝑟 and average conditional entropy ℎ̄𝑐.
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1.4.3 Example

To demonstrate the functionality of sublevel set entropy for dynamic state detection we use the

popular Lorenz dynamical system

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, 𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧, (1.101)

with 𝜎 = 10, 𝛽 = 8/3, and 𝜌 = 100 for periodic while 𝜌 = 105 for chaotic dynamics. For our

analysis, we only use the 𝑥-solution to Eq. (4.3) which was simulated for 100 seconds at a sampling

rate of 100 Hz. Only the last 20 seconds were used to avoid the transient response. The left column

of Fig. 1.28 shows the resulting periodic (top panel) and chaotic (bottom panel) time series.

Figure 1.28: Example demonstrating sublevel set persistence of periodic (top row of figures) and
chaotic (bottom row of figures) simulations of the Lorenz system. Each row shows the time series
𝑥(𝑡) (left), sublevel set persistence diagram (middle), and binned lifetimes (right).

In this example our goal is to identify periodic from chaotic dynamics through the sublevel set

persistence. The persistence diagram on the top row of Fig. 1.28 shows that periodic signals tend

to cluster points (persistence pairs) in a few locations on the persistence diagram (two points for

this example). The goal is to then quantify this regularity in the persistence diagram. To do this we

use the time ordered lifetimes which can easily be binned into B states that are above the cutoff 𝐶𝛼.

For periodic signals we would expect the clustering of points in the persistence diagram to translate

to a periodic sequence of states from the binned lifetimes as shown in the top-right subfigure of
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Fig. 1.28. On the other hand, the chaotic signal will not have the same properties in the resulting

state sequence as shown in the bottom-right subfigure of Fig. 1.28. The non-periodic behavior of a

chaotic signal causes the points in the persistence diagram to not repeat. However, there may still

be clusters in the persistence diagram from a chaotic signal due to the dynamics (strange attractor)

of the system as shown in the bottom-center subfigure of Fig. 1.28.

We now implement our entropy statistics to the resulting periodic and chaotic persistence

diagrams through the time-ordered lifetimes. For this example, we set B = 15 based on the

binning analysis done in Section 1.4.4. The information entropy is calculated from the probability

distribution of states in the state sequence S derived from the binned lifetimes as shown in the

frequency plot (see left column of Fig. 1.29). The entropy and associated probabilities result

in ℎ ≈ 0.2559 for periodic and ℎ ≈ 0.6522 for chaotic dynamics. The periodic entropy is not

zero since it is distributed over two states (4 and 15) and the chaotic is not one because it is not

equiprobable over all states. However, the large difference between the two scores shows that

entropy distinguishes between the two dynamic states.

Figure 1.29: Further diagrams for entropy analysis of example signals in Fig. 1.28. The top row is
again for the periodic signal and bottom for chaotic. The left column is the distribution of states,
the middle is the state sequence, and the right is the 1-step transition probability matrix.

The approximate and sample entropies are calculated using the state sequence shown in the

middle column of Fig. 1.29 as ℎ𝑎 ≈ 0.0004 and ℎ𝑠 ≈ 0.0308 for periodic and ℎ𝑎 ≈ 0.4921 and

ℎ𝑠 ≈ 0.7864 for chaotic dynamics. The approximate and sample entropy are near zero due to
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Table 1.7: Tabulated results for sublevel set entropy of Lorenz example

Entropy Periodic Chaotic
Information Entropy ℎ 0.2559 0.6522
Approximate Entropy ℎ𝑎 0.0004 0.4921
Sample Entropy ℎ𝑠 0.0308 0.7864
Entropy Rate ℎ𝑟 0 0.3832
Average Condition Entropy ℎ̄𝑐 0 0.3321

the regularity in the state sequence, while the chaotic signal results in significantly higher entropy

values. In Section 4.3 we will demonstrate typical approximate and sample entropy values for a

variety of chaotic systems.

The Markov chain transition probability matrix models the dynamics of the signal as a stochastic

system. This modeling approach allows periodic signals with very high transition probabilities

between specific states to have low state entropies and resulting entropy rate. Conversely, the

chaotic signal has a distribution of transition probabilities between multiple states with lower

probabilities. For example, the right column of Fig. 1.29 shows the transition probability matrix

for the periodic and chaotic time series, where the periodic signal results in only two non-zero

transitions with unit probability and the chaotic signal has transitions between multiple states with

lower probabilities. The resulting entropy rate and average conditional entropy are ℎ𝑟 = 0 and

ℎ̄𝑐 = 0 for periodic and ℎ𝑟 ≈ 0.3832 and ℎ̄𝑐 ≈ 0.3321 for chaotic dynamics. The entropy rate of 0

for the periodic signal is due to each state having unit probability.

The results for all of the entropy statistics are summarized in Table 1.7. Comparing the two

columns of Table 1.7 illustrates that the entropy statistics based on the sublevel set persistence can

identify periodic and chaotic dynamics for the Lorenz system.

In the next section, we further challenge our method using a large number of flows and maps, and

we show that the ability of the sublevel set entropy to distinguish periodic from chaotic dynamics

is evident for a variety of dynamical systems.
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1.4.4 Analysis on the Number of Bins

The first result needed is an analysis of the effects of the number of bins on the entropy values

for periodic and chaotic dynamics. To gain a universal understanding of these effects, we used 21

continuous dynamical systems and 15 maps (see Table C.1 in appendix), with each having periodic

and chaotic dynamics. We ranged the number of bins B from 2 to 50, which demonstrated several

characteristics as shown in Fig. 1.30.

Figure 1.30: Analysis on effect of number of bins or states on entropy values for 18 continuous and
12 discrete dynamical systems.

First, the separation between periodic and chaotic dynamics based on the entropy values tends to

plateau at approximately B = 15 bins. We also note that there seems to be very little differentiation

between the entropy distributions for maps and flows, suggesting that 15 bins are appropriate for

both. As such, we will use 15 bins when calculating the entropy statistics throughout the manuscript.
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1.4.5 Results

The main focus of this work is on dynamic state detection, including a bifurcation analysis and

robustness to noise. The first example in Section 1.4.3 uses the Lorenz system to demonstrate typical

entropy values for a system with periodic and chaotic behavior. However, a global understanding

of the typical distribution of entropy values for each statistic is necessary to draw conclusions on

the dynamic state detection abilities. To gain a better understanding of the distribution of entropy

values for identifying the dynamic state, we use box plots with no additive noise in Section 1.4.5

for both continuous (flows) and discrete (maps) binned states. For each system, we used B = 15

bins. For approximate and sample entropy we set 𝑚 = 3 and 𝑟 = 0.1B or 𝑟 = 0.1 max 𝐿.

To understand the noise robustness characteristics of the entropy statistics, in Section 1.4.5 we

empirically demonstrate the effects of additive noise on the Lorenz system. This was done for each

entropy value with Signal to Noise Ratios (SNRs) ranging from 10 dB to 60 dB. Note that in signal

processing, 15 dB is typically considered the SNR limit below which it becomes challenging to

extract any useful information from the signal. In Section 1.4.5 we provide a bifurcation analysis to

determine how well the entropy statistics can detect changes in a system as parameters change. We

show this bifurcation analysis for the logistic map and the Lorenz system. Lastly, in Section 1.4.5

we provide a computation speed analysis for the Lorenz system and logistic map to demonstrate

the benefits of applying the entropy statistics to the sublevel set persistence diagram in comparison

to directly applying them to the signal.

Dynamic state detection analysis Figures 1.31a and 1.31b use box-plots to demonstrate the

distributions of the entropy statistics for periodic and chaotic behavior, respectively. The analysis

was performed using 18 continuous and 12 discrete dynamical systems, which were simulated

using the MakeData module in the python package teaspoon [161] with the default parameters.

The box-plot distribution results show that the entropy statistics perform better for discrete

continuous systems than the flows with less overlap between distributions. However, there is still a

very clear distinction between the periodic and chaotic dynamics for both maps and flows. Further,
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(a) Flows

(b) Maps

Figure 1.31: Spread of entropy values for periodic and chaotic dynamics using 15 bins for 12
discrete dynamical systems (maps) and 18 continuous dynamical systems (flows). The green
dashed line seperates periodic and chaotic entropy sttistics based on a maximized accuracy for both
flows and maps.

the distributions for maps and flows align closely and are distributed over a specific range which

allow a cutoff parameter separating periodic from chaotic dynamics to be chosen for both maps

and flows. Based on the distributions we set cutoffs as 0.485 for ℎ(S), 0.100 for ℎ𝑎 (S), 0.105 for

ℎ𝑠 (S), 0.110 for ℎ𝑎 (𝐿), 0.120 for ℎ𝑠 (𝐿), 0.172 for ℎ𝑟 (S), and 0.130 for ℎ̄𝑐 (S) which are marked in

Fig. 1.31a and 1.31b using green dashed lines. These cutoffs were chosen to maximize the accuracy

of the dynamic state detection for each entropy statistic.

It can also be noted that the approximate or sample entropy applied to the lifetimes 𝐿 or

state sequence S make little difference in the entropy values. As such, there is no advantage in

applying approximate or sample entropy to either the lifetimes or state sequence from a performance

standpoint.

Robustness to Additive Noise The initial analysis in Section 1.4.5 provided a starting point for

dynamic state analysis through a cutoff based on the distribution of entropy statistics. However,

noise-robustness must be considered to apply the sublevel set entropy statistics to real-world data.
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In this subsection, we determine how well these cutoffs perform for dynamic state detection in the

presence of additive white noise.

To test the noise robustness, we use the Lorenz system with additive noise SNRs ranging from

10 dB (high noise) to 60 dB (low noise). Figure 1.32 shows ℎ𝑎 (S), ℎ𝑠 (S), ℎ𝑎 (𝐿), and ℎ𝑠 (𝐿) all

being the most noise robust down to an SNR of 20 dB. ℎ(S) is also moderately noise robust with

accurate separation between periodic and chaotic dynamics based on the cutoff down to an SNR of

23 dB. The Markov chain statistics, ℎ𝑟 and ℎ̄𝑐, are the least noise robust and only correctly separate

periodic from chaotic dynamics with SNR values greater than 26 dB.

Figure 1.32: Resilience of entropy statistics to additive noise for SNR values from 10 to 50 dB
for the periodic and chaotic Lorenz system simulation described in Eq. (4.3). Uncertainties are
reported as the standard deviation for each SNR repeated 20 times.

We observed that these noise robustness results hold for the other dynamical systems with similar

levels of noise robustness. We speculate that the noise robustness of these methods is mainly due

to the stability theorem for sublevel set persistence [49]. This theorem states that the persistence

diagram of a function with and without additive noise will only change linearly proportional to the

additive noise level. Therefore, if the noise-artifact persistence pairs are removed using the cutoff

𝐶𝛼, then the entropy statistics on the resulting persistence pairs should only be based on the noise
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robustness of the entropy statistics.

Bifurcation Analysis In our initial dynamic state analysis in Figures 1.31a and 1.31b we only

looked at a single realization of chaotic and periodic signals from each system. However, it is often

of interest to analyze the bifurcation behavior as one parameter varies. To determine the viability of

the sublevel set entropy statistics for bifurcation analysis, we study the bifurcations in the Logistic

map and the Lorenz system.

Logistic Map Our first bifurcation analysis uses the logistic map as an example discrete

dynamical system. The logistic map is defined as

𝑥𝑛+1 = 𝑟𝑥𝑛 (1 − 𝑥𝑛). (1.102)

For this system we increment the 𝑟 parameter from 3.2 to 4.0 in 10−3 step sizes. At each step, the

system is solved for 1000 map iterations but we only retain the last 300 iterations to avoid transients.

Figure 1.33 shows each of our sublevel set entropy statistics for each 𝑟 value, and it contrasts them to

permutation entropy ℎ(𝜋), sample entropy ℎ𝑠 (𝑥), and approximate entropy ℎ𝑎 (𝑥) computed directly

from the simulated signals. The permutations used in calculating the permutation entropy were

of dimension 𝑛 = 6 with time delay 𝜏 = 1. The sample and approximate entropy used dimension

𝑚 = 3 with filtering level of 0.2𝜎, where 𝜎 is the standard deviation of the signal.

62



Figure 1.33: Bifurcation analysis of entropy statistics for the logistic map dynamical system with
𝑟 ∈ [80, 190] with step sizes of Δ𝑟 = 0.001. Green highlighted regions are periodic.

Figure 1.33 demonstrates that the sublevel set entropy statistics outperform the standard entropy

tools. Specifically, all sublevel set entropies can locate the small periodic window at approximately

𝑟 ≈ 3.67, which is not identified by the standard tools. Further, permutation entropy does not

provide clear drops in its value for periodic windows, where the sublevel set entropy statistics are

at approximately zero for periodic dynamics.

When comparing the sublevel set entropy statistics, there is no clear distinction in performance.

The sample entropies are almost identical, suggesting that there is little benefit in applying it to the

lifetimes or the state sequence besides bypassing the complexity involved in parameter selection

when directly applying them to the sequences. It is also important to note that the Shannon entropy

of S provides more information in regards to signal complexity. Specifically, it more clearly shows

bifurcations. For example, at 𝑟 ≈ 3.45, there is a period-doubling bifurcation which increases

ℎ(S), while the other entropy statistics do not show any change.
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Lorenz System Our second bifurcation analysis used the Lorenz System defined in Eq. (4.3)

where the 𝜌 parameter was incremented from 80 to 190 in step sizes of 0.1. The same entropy

statistics from the logistic map bifurcation analysis were used for the Lorenz example. As shown in

Fig. 1.34, the entropy statistics can show bifurcations in the system with periodic dynamics having

low entropy values. Similar to the logistic map bifurcation, the standard entropy tools did not

identify all of the periodic windows (e.g., at 𝜌 ≈ 112 and 𝜌 ≈ 182). At the same time, the sublevel

set entropy methods show this as a periodic window. This example demonstrates the viability of

sublevel set entropy statistics to detect periodic from chaotic windows and bifurcations for both

maps and flows.

Figure 1.34: Bifurcation analysis of entropy statistics for the Lorenz dynamical system with
𝜌 ∈ [3.2, 4.0] with step sizes of Δ𝜌 = 0.1 and 𝜎 = 10 and 𝛽 = 8/3. Green highlighted regions are
periodic.

Computation Time We now investigate the computational speed benefits of using the sublevel

set persistence when calculating the sample entropy compared to its direct application to signals.
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When approximate, sample, and permutation entropy are applied directly to a signal of length 𝑁 ,

all 𝑁 −𝑚 sequences are used. However, the computational demand is significantly decreased when

using the sublevel set persistence diagram. This is due to the new lifetimes being shorter than the

original signal. Additionally, the length 𝑁 is proportionally increased by increasing the signal’s

sampling rate. However, the number of persistence pairs in the sublevel set persistence diagram

remains constant. We demonstrate the computational demand of each entropy statistic for both the

Lorenz system and logistic map in Fig. 1.35.

Figure 1.35: Computation Time Example for Lorenz system (A) and logistic map (B) for each
entropy statistic.

Our computation speed analysis shows that, as expected, approximate and sample entropy

applied directly to the signal as ℎ𝑎 (𝑥) and ℎ𝑠 (𝑥) are faster than when applied to the sequence S and

lifetimes 𝐿. Specifically, for the Lorenz system with𝑁 = 103, ℎ𝑎 (𝐿) is approximately 45 times faster

than ℎ𝑎 (𝑥) and ℎ𝑠 (𝐿) is approximately 9 times fast than ℎ𝑠 (𝑥). Further, ℎ𝑎 (𝐿) is approximately

twice as fast as ℎ𝑎 (S) and ℎ𝑠 (𝐿) and ℎ𝑠 (S) are approximately equivalent in computational speed.

For the logistic map, the computational times are generally larger for the same signal length 𝑁 of a

flow due to oscillations occurring more frequently with maps. We would also like to note that the

average conditional ℎ̄𝑐, entropy rate ℎ𝑟 and Shannon entropy ℎ(S) have the fastest computational

speed making them the most suitable for in-situ applications. The computational benefit of the
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sublevel set entropy statistics most likely stems from the 𝑂 (𝑁 log(𝑁)) algorithmic complexity of

the zero-dimensional sublevel set persistence of one-dimensional signals [164].
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CHAPTER 2

PARAMETER SELECTION FOR PERMUTATION ENTROPY AND STATE SPACE
RECONSTRUCTION

This chapter of my research is focused on choosing the optimal delay and dimension parameters

for both permutation entropy and state space reconstruction. This section will begin by intro-

ducing information entropy and then specifically permutation entropy as a time series analysis

tool. Following this introduction several delay and dimension parameter selection algorithms are

introduced and then compared in Section 2.3.4 to choose an optimal method. This work is based

on my publication “On the Automatic Parameter Selection for Permutation Entropy" [161]. The

future work section is based on work that will soon be published on relating permutation entropy

to state space reconstruction to allow for tools from TDA to be used for delay parameter selection

in permutation entropy.

2.1 Permutation Entropy

Permutation Entropy (PE) has its origins in information entropy, which is a tool to quantify

the uncertainty in an information-based system. Information entropy was first introduced by

Shannon [212] in 1948 as Shannon Entropy. Specifically, Shannon entropy measures the uncertainty

in future data given the probability distribution of the data types in the original, finite dataset.

Shannon entropy is calculated as 𝐻𝑠 (𝑛) = −
∑
𝑝(𝑥𝑖) log 𝑝(𝑥𝑖), where 𝑥𝑖 represents a data type, and

𝑝(𝑥𝑖) is the probability of that data type. In recent years information entropy has been heavily

applied to the time series of dynamical systems. Several new variations of information entropy

have been proposed to better accommodate these applications, e.g. approximate entropy [186],

sample entropy [199], and PE [15] with a timeline shown in Fig. 2.1. These methods measure the

predictability of a sequence through the entropy of the relative data types. However, PE considers

the ordinal position of the data through permutations, which has been shown to be effective for

analyzing the dynamic state and complexity of a time series [6, 16, 33, 62, 80, 81, 145]. PE is also
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Figure 2.1: Timeline of entropy measurements for time series analysis.

noise robust for time series of sufficient length and relatively high signal-to-noise ratios, which is

the ratio between useful signal and background noise. Alternatively, if the time series is relatively

short or has a low signal-to-noise ratio, it is suggested to use a different entropy measurement

such as coarse-grained entropies [190]. PE is quantified in a similar fashion to Shannon entropy

with only a change in the data type to permutations (see Fig. 2.3), which I symbolically represent

as 𝜋𝑖. PE has two parameters: the permutation dimension 𝑛 and embedding delay 𝜏, which

are used when selecting the permutation size and spacing, respectively. PE is sensitive to these

parameters [131, 201, 221] and there is no accurate selecting approach for all applications. This

introduces the motivation for this paper: investigate automatic methods for selecting both PE

parameters. There are currently three main methods for selecting PE parameters: (1) parameters

suggested by experts for a specific application, (2) trial and error to find suitable parameters, or (3)

methods developed for phase space reconstruction. I will now overview a simple example to better

understand these parameters.

Bandt and Pompe [15] defined PE according to

𝐻 (𝑛) = −
∑︁

𝑝(𝜋𝑖) log 𝑝(𝜋𝑖), (2.1)

where 𝑝(𝜋𝑖) is the probability of a permutation 𝜋𝑖 and𝐻 (𝑛) is the permutation entropy of dimension

𝑛with units of bits when the logarithm is of base 2. The permutation entropy parameters 𝜏 and 𝑛 are
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used when selecting the motif size, with 𝜏 determining the time difference between two consecutive

points in a uniformly sub-sampled time series and 𝑛 as the permutation length or motif dimension.

To form a permutation, begin with with an element 𝑥𝑖 of the series 𝑋 . Using this element, the

dimension 𝑛, and delay 𝜏, define the vector 𝑣𝑖 = [𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏, . . . , 𝑥𝑖+(𝑛−1)𝜏]. The corresponding

permutation 𝜋𝑖 of this vector is determined using its ordinal pattern. For example, consider the

third degree 𝑛 = 3 permutation shown in Fig. 2.2. The permutation type, which categorizes the

01
2

(1,0,2)

Figure 2.2: Sample permutation formation for 𝑛 = 3 and 𝜏 = 1.

permutation, is found by first ordering the 𝑛 values of the permutation smallest to largest, and then

accounting for the order received. For the given permutation in Fig. 2.2, the resulting permutation is

categorized as the sequence 𝜋𝑖 = (1, 0, 2), which is one of 𝑛! possible permutations for a dimension

𝑛, see Fig. 2.3 for the other possible permutations of 𝑛 = 3.

(0,1,2) (0,2,1) (1,0,2) (2,0,1) (1,2,0) (2,1,0)

Figure 2.3: All possible permutation configurations for n = 3.

I can normalize PE using the maximum possible PE value, which occurs when all 𝑛! possible

permutations are equiprobable according to 𝑝(𝜋1) = 𝑝(𝜋2) = . . . = 𝑝(𝜋𝑛!) = 1
𝑛! . The resulting

normalized PE is

ℎ𝑛 = −
1

log2 𝑛!

∑︁
𝑝(𝜋𝑖) log2 𝑝(𝜋𝑖). (2.2)

Many domain scientists who apply PE make general suggestions for 𝑛 and 𝜏 [76, 248], which

can be impractical for some applications. As an example, Popov et al. [189] showed the influence

of the sampling frequency on the proper selection of 𝜏. As for the dimension 𝑛, there are general

suggestions [201] on how to choose its value based on the vast majority of applications having an

appropriate permutation dimension in the range 3 < 𝑛 < 8. Additionally, Bandt and Pompe [15]
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suggest that 𝑁 ≫ 𝑛, where 𝑁 is the length of the time series. However, these general outlines for

the selection of 𝑛 (and 𝜏) do not allow for an application specific suggestions.

If I assume that suitable PE parameters correspond to optimal phase space reconstruction

parameters, then a common approach for selecting 𝜏 and 𝑛 is to implement one of the existing

methods for estimating the optimal Takens’ embedding [225] parameters. Hence, some of the

common methods for determining 𝜏 include the mutual information function approach [77], the first

folding time of the autocorrelation function [25, 86], and phase space methods [30]. Additionally,

some common phase space reconstruction methods for determining 𝑛 include box-counting [22],

correlation exponent method [86], and false nearest neighbors [110]. Although the parameters

in PE have similar names to their delay reconstruction counterpart, there are innate differences

between ordinal patterns and phase space reconstruction which can also lead to inaccurate 𝑛 or

𝜏 values. In spite of these differences, permutations can be viewed as symbolic representation

of regions in the phase space through a binning process. Permutations partition the phase space

based on the ordinal rankings of the embedded vectors. This relationship between phase space and

permutations opens up the potential for some of the classic phase space reconstruction methods for

selecting both 𝑛 and 𝜏 to be a plausible solution for selecting the same parameters for PE.

Even with the possibility that phase space reconstruction methods for selecting 𝜏 and 𝑛 may

work for choosing synonymous parameters of PE, there are a few practical issues that preclude using

parameters from time series reconstruction for PE. One issue stems from many of the methods (e.g.

false nearest neighbors and mutual information) still requiring some degree of user input through

either a parameter setting or user interpretation of the results. This introduces issues for practitioners

working with numerous data sets or those without enough expertise in the subject area to interpret

the results. Another issue that arises in practice is that the algorithmic implementation of existing

time series analysis tools is nontrivial. This hinders these tools from being autonomously applied

to large datasets. For example, the first minimum of the MI function is often used to determine 𝜏.

However in practice there are limitations to using mutual information to analyze data without the

operator intervention to sift through the minima and choose the first ’prominent’ one. This is due
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Figure 2.4: Some possible modes for failure for selecting 𝜏 for phase space reconstruction using
classical methods: (a) mutual information registering false minima as suitable delay generated from
a periodic Lorenz system, (b) mutual information being mostly monotonic and not having a distinct
local minimum to determine 𝜏 generated from EEG data [7], and (c) autocorrelation failing from a
moving average of ECG data provided by the MIT-BIH Arrhythmia Database [154].

to possibility that the mutual information function can have small kinks that can be erroneously

picked up as the first minimum. Figure 2.4a shows this situation, where the first minimum of

the mutual information function for a periodic Lorenz system is actually an artifact and the actual

delay should be at the prominent minimum with 𝜏 = 11. Further, the mutual information function

approach may also fail if the mutual information is monotonic. This is a possibility since there is

no guarantee that minima exist for mutual information [13]. An example of this mode of failure is

shown in Fig. 2.4b, which was generated using EEG data [7] from a patient during a seizure.

A mode of failure for the autocorrelation method can occur when the time series is non-linear

or has a moving average. In this case, the autocorrelation function may reach the folding time at

an unreasonably large value for 𝜏. As an example, Fig. 2.4c shows the autocorrelation not reaching

the folding time of 𝜌 = 1/𝑒 until a delay of 𝜏 = 283 for electrocardiogram data provided by the
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MIT-BIH Arrhythmia Database [154]. The last mode of failure concerns choosing the permutation

dimension 𝑛 to be equal to the embedding dimension optimized using delay embedding from time

series analysis. This can lead to an overly large embedding dimension [47] (𝑛 ≫ 8), which would

make the calculation of PE impractical because the number of possible permutations 𝑛! would

become too large. All of these possible modes of failure can make using classical phase space

methods for selecting 𝜏 and 𝑛 unreliable thus necessitating new tools or modifications to make

selecting 𝜏 and 𝑛 for PE more robust and less user-dependent.

These shortcomings lead us to the problem that I address in this chapter: Given a sufficiently

sampled/oversampled and noisy time series 𝑋 = {𝑥𝑡}R+ , how can I reliably and systematically

define appropriate dimension 𝑛 and time delay 𝜏 values for computing the corresponding PE?

The first contribution towards answering this question is detailed in Section 2.2, which addresses

the automatic selection of the time delay 𝜏. In Section 2.2.1 I combine the Least Median of Squares

(LMS) approach for outliers detection with Fourier transformation theorem to derive a formula

for the maximum significant frequency in the Fourier spectrum, with the assumption that 𝑋 is

contaminated by Gaussian measurement noise. This formula allows obtaining a cutoff value where

the only input, besides the time series, is a desired percentile from the Probability Density Function

(PDF) of the Fourier spectrum. Once this value is obtained, Nyquist’s sampling theorem is used to

compute an appropriate 𝜏 value.

The second contribution is through an approach that I develop in Section 2.2.2, which uses

Multi-scale Permutation Entropy (MPE) for finding 𝜏. I show how MPE can be used to find the

main period of oscillation for a time series derived from a periodic system. Building upon this, I

show how the method can be extended to find 𝜏 for a chaotic time series by using the first maxima

in the MPE as it satisfies the Nyquist’s sampling theorem.

The third contribution to the automatic selection of 𝜏 is through the analysis of Permutation

Auto-Mutual Information [135] (PAMI). PAMI is an existing method for measuring the mutual

information of permutations. However, I tailor this method to specifically select 𝜏 for PE.

The final contribution towards answering the posited question is our evaluation of the ability
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Figure 2.5: Overview of methods investigated for automatically calculating both the delay 𝜏 and
dimension 𝑛 for permutation entropy.

of existing tools for computing an embedding dimension to provide an appropriate value for the

PE parameter 𝑛. I compare dimension 𝑛 values computed from False Nearest Neighbors (FNN—

Section 2.3.1), Singular Spectrum Analysis (SSA—Section 2.3.2), and MPE (Section 2.2.2). While

I use existing methods for performing the FNN and the SSA analyses, for the MPE-based approach

I use a criteria established in prior works [201], which requires finding 𝜏 first. I made this process

automatic through the selection of 𝜏 from our second contribution.

This chapter is organized as follows. I first go into detail on some existing methods for selecting

both 𝜏 and 𝑛. Specifically, in Section 2.2 I provide a detailed explanation for selecting 𝜏 using

existing, automatic methods such as autocorrelation in Section 2.2.3 and Mutual Information (MI)

in Section 2.2.4. Additionally, I modify and develop/tailor methods to automatically select 𝜏.

These methods include a frequency approach in Section 2.2.1, MPE in Section 2.2.2, and PAMI in

Section 2.2.5. In Section 2.4.3 I expand on the process for selecting 𝑛 using False Nearest Neighbors

(FNN) in Section 2.3.1 and Singular Spectrum Analysis in Section 2.3.2. In Section 2.3.3, I

explain our algorithm for automatically selecting 𝑛 using MPE. After introducing each method, in

Section 2.3.4 I contrast all of these methods and make conclusions on their viability by comparing

the resulting parameters to those suggested by PE experts. An overview of the methods that will

be investigated for automatically calculating both 𝜏 and 𝑛 are shown in Fig. 2.5. All the functions

used and developed in this work are available in Python through GitHub [161].
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Figure 2.6: Overview of our frequency domain approach for finding the maximum significant
frequency 𝑓max using LMS for a signal contaminated with GWN.

2.2 Embedding Delay Parameter Selection Methods

The delay embedding parameter 𝜏 is used to uniformly subsample the original time series. To

elaborate, consider the time series 𝑋 = {𝑥𝑖 | 𝑖 ∈ N}. By applying the delay 𝜏 ∈ N, a new sub-

sampled series is defined as 𝑋 (𝜏) = [𝑥0, 𝑥𝜏, 𝑥2𝜏, . . .]. In order to obtain a stable and automatic

method for estimating an optimal value for 𝜏 I investigate: a novel frequency-based analysis that

I describe in Section 2.2.1, Multi-scale Permutation Entropy (MPE) (Section 2.2.2), autocorrela-

tion (Section 2.2.3), and Mutual Information function (MI) (Section 2.2.4). I recognize, but do

not investigate, some other methods for finding 𝜏 such as diffusion maps [20] and phase space

expansion [30].

2.2.1 Frequency Approach for Embedding Delay

In this section we develop a method for finding the noise floor in the Fourier spectrum using Least

Median of Squares (LMS) [143]. We then use the noise floor to find the maximum significant

frequency of a signal contaminated with additive Gaussian white noise (GWN). Our method is

based on finding the maximum significant frequency in the Fourier spectrum and the Nyquist

sampling frequency criteria. To motivate the development of this approach, I begin by working

with the frequency criteria developed by Melosik and Marszalek [148], which agrees with Nyquist

sampling theorem [124] for choosing a suitable sampling frequency 𝑓𝑠 as

2 𝑓max < 𝑓𝑠 < 4 𝑓max, (2.3)

where 𝑓max is the maximum significant frequency in the signal. Melosik and Marszalek [148]

showed that a sampling frequency within this range is appropriate for subsampling an oversampled
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signal, thus mitigating the effect of temporal correlations of neighboring points in densely sampled

signals. However, the automatic identification of 𝑓max from an oversampled signal is not trivial.

Melosik and Marszalek [148] selected a maximum significant frequency by inspecting the normal-

ized Fourier spectrum and using a threshold cutoff of approximately 0.01 for a noise-free chaotic

Lorenz system. This made visually finding the maximum frequency significantly easier but did not

provide guidance on how to algorithmically find 𝑓max. Further, attempting to algorithmically adopt

the approach suggested by Melosik and Marszalek [148] resulted in large errors especially in the

presence of a low signal to noise ratio. This motivated the search for an automatic and data-driven

approach for identifying the noise floor which could then be used to find the maximum significant

frequency. To do this I develop a method based on 1-D least median of squares applied to the

Fourier spectrum. The assumptions inherent to our method are

1. The time series is not undersampled. The purpose of the methods is to determine a suitable

delay parameter for subsampling the signal, which would be meaningless if the time series is

undersampled.

2. The Fourier transform of the time series needs to have less than 50% of the points with

significant amplitudes. This requirement stems from the limitations of the least median of

squares regression.

3. The noise in the signal is approximately GWN; otherwise, the ensuing statistical analysis

becomes inapplicable. Violating this assumption can yield false peak detections, which

would lead to an incorrect delay parameter.

We find suitable cutoffs for obtaining 𝑓max of the signal by using the noise floor determined

from the 1-D least median of squares, and compute a suitable embedding delay according to

𝜏 =
𝑓𝑠

𝛼 𝑓max
, (2.4)

where I set 𝛼 = 2, thus agreeing with the range in Eq. (2.3) and the Nyquist sampling criterion.
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Figure 2.6 summarizes the frequency approach for 𝜏 with the use of our 1-D LMS method

for finding a noise floor in the Fourier spectrum. This process begins with computing the Fourier

spectrum of the signal, which is followed by fitting an 0-D LMS regression line to the noise in the

Fourier spectrum. This provides statistical information about the Probability Distribution Function

(PDF) of the noise level. The PDF is used to determine the Cumulative Distribution Function

(CDF), which I use determine a meaningful noise cutoff in the Fourier spectrum. However, it is

assumed that the noise is approximately GWN for this method to hold statistical significance. This

cutoff is used to separate the highest significant frequency in the Fourier spectrum 𝑓max, which is

used to find a suitable embedding delay 𝜏 based on the frequency criteria in Eq. (2.4). In the

following paragraphs I review our use of the LMS and the derivation of the PDF of the Fourier

spectrum of GWN. I then show how to combine the LMS method with the resulting PDF expression

to find a suitable noise floor cutoff and the corresponding maximum significant frequency.

Least Median of Squares: LMS [143] is a robust regression technique used when up to 50% of

the data is corrupted by outliers. Outliers will be considered as anything other than noise in the

fourier spectrum for our application. In comparison to the widely used least sum of squares (LS)

algorithm, the LMS replaces the sum for the median which makes LMS resilient to outliers. The

difference between LS and LMS is highlighted as

𝐿𝑆 : min
∑︁
𝑖

𝑟2
𝑖 ,

𝐿𝑀𝑆 : min
(
median𝑖 (𝑟2

𝑖 )
)
,

(2.5)

where 𝑟 is the residual. Similar to the 𝑖 subscript in
∑
𝑖, the 𝑖 in median𝑖 signifies that the median is

of all residuals. Figure 2.7 shows an example application of the linear LMS regression.
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Figure 2.7: LMS linear regression with 45% outliers. Results match those found in [143].

Specifically, this figure shows 110 data points drawn from the line 𝑦 = 𝑥 + 1 with added GWN

of zero mean and 0.1 standard deviation. The data is corrupted with 90 outliers centered around

(3, 2) with a normal distribution of 1.0 along 𝑥 and 0.6 along 𝑦. Figure 2.7 shows that the linear

regression results closely match the actual trend line with the fitted line being 𝑦 = 0.998𝑥 + 1.012

in comparison to the actual 𝑦 = 𝑥 + 1.

PDF and CDF of the magnitude of the Fast Fourier Transform of GWN: This section reviews

the probability distribution function (PDF) and cumulative density function (CDF) for the Fourier

Transform (FT) of white noise. Additionally, this section derives the location of the theoretical

maximum of the PDF. The FT distribution of GWN [197] is described as

𝑃|𝑋 | ( |𝑋 |) =
2|𝑋 |
𝐸𝑤𝜎

2
𝑥

𝑒
−|𝑋 |2

𝐸𝑤𝜎2
𝑥 , (2.6)

where |𝑋 | is the magnitude of the FT of GWN, 𝑃|𝑋 | is the probability density function of |𝑋 |, 𝜎𝑥 is

the standard deviation of the GWN, and 𝐸𝑤 is the window energy or number of discrete transforms

taken during the FT. By setting the first derivative of 𝑃|𝑋 | with respect to |𝑋 | equal to zero, the

theoretical maximum of the PDF is

|𝑋 |max =

√︄
𝐸𝑤𝜎

2
𝑥

2
. (2.7)
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Figure 2.8: (a) Theoretical PDF for GWN. (b) CDF for GWN with an example cutoff at the 99%
𝐶𝑃.

We calculate the CDF corresponding to the PDF described in Eq. (2.7) by combining the PDF in

Eq. (2.6) with the CDF for a Rayleigh distribution as [173]

𝐶𝑃|𝑋 | ( |𝑋 |) = 1 − 𝑒
−|𝑋 |2

𝐸𝑤𝜎2
𝑥 , (2.8)

where 𝐶𝑃|𝑋 | is the cumulative probability of |𝑋 |.

Finding the Noise Floor: Our approach for finding the noise floor combines LMS with Eqs. (2.6)

and (2.7). Specifically, I utilize LMS to obtain a 0-D fit of the Fast Fourier Transform (FFT) of

the signal, which results in an approximate value of |𝑋 |max, which is |𝑋 | at the maximum of 𝑃|𝑋 |.

Using |𝑋 |max from the LMS fit, I then find the standard deviation of the distribution𝜎𝑥 from Eq. 2.7,

which is used to find a cutoff based on a set cumulative probability in Eq. (2.8).

We begin by showing the accuracy of the LMS fit for finding |𝑋 |max. Our example uses GWN

with a mean of zero and standard deviation of 0.035 with 1000 data points. Taking the FFT of

the GWN ( see Fig. 2.9A) results in the distribution shown in Fig. 2.9B. The distribution shows

a 1-D LMS fit of 8.215 compared to the theoretical maximum of the PDF from Eq. 2.7 of 7.826,

which is approximately 4.67% greater. This shows that the 1-D LMS fit accurately locates |𝑋 |max.

Additionally, the theoretical shape of the PDF in Fig. 2.9B is shown to be very similar to the actual

distribution.
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Figure 2.9: (A) FFT of GWN with 0.035 standard deviation and zero mean with the location of
the theoretical maximum of the PDF and one-dimensional LMS regression value. (B) Distribution
of GWN in the Fourier Spectrum with overlapped theoretical PDF and location of the theoretical
maximum of the PDF and one-dimensional LMS regression value.

Next, our approach utilizes Eq. (2.8) and 𝜎𝑥 derived from Eq. (2.7) for finding the cutoff value

|𝑋 |cutoff . The |𝑋 |cutoff for a desired cumulative probability 𝐶𝑃 is found by solving Eq. (2.8) for |𝑋 |

as

|𝑋 |cutoff =

√︃
−𝐸𝑤𝜎2

𝑥 ln(1 − 𝐶𝑃). (2.9)

In order to make |𝑋 |cutoff robust to normalization and scaling of the FFT I define the ratio𝐶 between

the suggested cutoff from Eq. (2.9) and the maximum of the PDF from Eq. (2.7) as

𝐶 =
|𝑋 |cutoff
|𝑋 |max

=
√︁
−2 ln(1 − 𝐶𝑃). (2.10)

Example Cutoff: An example of how Eqs. (2.7) and (2.9) are used is shown in Fig. 2.8,

where the maximum of the PDF and the cutoff for 𝐶𝑃 = 99% are marked in Fig. 2.8a and 2.8b,

respectively. For this example, I find the ratio C to be approximately 3.03 for a 99% probability. In

addition, I suggest a cutoff ratio 𝐶 = 6 to be used for signals with less than 104 data points. This
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yields an expected probability of ≈ 10−8% for a point in the FFT of the GWN attaining a magnitude

greater than |𝑋 |cutoff . Alternatively, Eq. (2.10) can be used to calculate a different value of C based

on the desired probability and length of the signal.

2.2.2 Multi-scale Permutation Entropy for Selecting Delay

In this section I develop a method based on Multi-scale Permutation Entropy (MPE) to find the

periodicity of a signal, which is then used to find a suitable delay parameter. MPE is a method of

applying permutation entropy over a range of delays for analyzing physiological time series [51].

Zunino et al. [252] showed how the first maxima in the MPE plot arises when 𝜏 matches the

characteristic time delay 𝜏𝑟 . Furthermore, the periodicity can be captured by the first dip in the

MPE plot as shown in Fig. 2.10 at the location d2 when the delay 𝜏 matches the characteristic time

delay 𝜏𝑟 .

f PE

d

d2

d1

d2d1d0 P

d0

t

P

Figure 2.10: (right) Resulting MPE plot for (left) 2𝑃 periodic time series with example embedding
delays d0, d1, and d2.

Figure 2.10 shows embedding delays 𝑑0, 𝑑1, and 𝑑2 calculated as 𝑑 = 𝜏
𝑓𝑠

as well as their

corresponding locations on a normalized MPE plot. This toy MPE plot shows that the normalized

MPE reaches its first maximum when the delay is roughly 𝑑1, which corresponds to approximately

an even distribution of permutations. A second observation, as mentioned previously, is that at 𝑑2

(or the first dip in the MPE plot) there is a resonance or aliasing effect caused by 𝜏 ≈ 𝜏𝑟 , which can

be used to determine the period of the time series. This is based on the embedding delay size at 𝑑2

causing the embedding vector size 𝑉 = 𝑑 (𝑛 − 1) to be approximately half the of the periodicity P,

which can be expressed as

𝑑2 =
1
2
𝑃 =

1
𝑓𝑠
𝜏𝑟 =

1
2 𝑓
, (2.11)
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where 𝑃 is the main period of oscillation, 𝑓 is the main frequency of the time series corresponding

to 𝑃, and 𝑓𝑠 is the sampling frequency. The reason for the dip in the permutation entropy (PE) when

the condition from Eq. (2.11) is met is caused from an aliasing effect, which reduces PE through

more regularity in the permutation distribution.

We use the criteria of Melosik and Marszalek [148] to determine a suitable delay from the

location of the first dip at 𝑑2. Their criteria states that the sampling frequency must fall within the

range shown in Eq. (2.3). This range led to Eq. (2.4), which is used to calculate 𝜏. However, for

MPE, I substitute 𝑓𝑠 and 𝑓max in Eq. (2.3) with 𝑓𝑠 = 2 𝑓 𝜏𝑟 from Eq. (2.11) and 𝑓max = 𝑓 . These

substitutions allow Eq. (2.4) to reduce to

𝜏 =
2
𝛼
𝜏𝑟 , (2.12)

where 𝛼 ∈ [2, 4]. These simplifications show that 𝜏 is only dependent on the delay which causes

resonance 𝜏𝑟 when applying MPE. However, for a chaotic time series, the dip at 𝜏𝑟 may not be

present due to non-linear trends. To address this issue, I will first investigate the three dominant

regions of the MPE plot, which will also be located for a chaotic time series example. I will then

propose a new, automatic method for selecting 𝜏 that agrees with the frequency criteria stated in

Eq. (2.12). Additionally, in Section A.1 of the appendix I investigate the robustness of the method

to noise and in Section C.1 of the appendix I provide the algorithm for finding 𝜏 using MPE.

MPE Regions Riedl et al. [201] showed that the MPE plot can be separated into three distinct

regions as described below and shown in Fig. 2.11. Region A shows a gradual increase in

the permutation entropy until reaching a maxima at the transition between regions A and B.

Oversampling or a low value of 𝜏 causes the motif distribution corresponding to the permutation

entropy to be heavily weighted on just increasing or decreasing motifs (motifs (0,1,2) and (2,1,0)

for 𝑛 = 3 from Fig. 2.3). This effect was coined as the “Redundancy Effect" by De Micco et al. [58],

which means sufficiently low values of 𝜏 result in redundant motifs. However, as 𝜏 increases, the

motif distribution becomes more equiprobable. Additionally, when the motif probability reaches a

maximum equiprobability, the permutation entropy is at a maxima, which is the point of transitions
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from region A to B. Region B shows a slight dip to the first minima. This reduction in permutation

entropy is caused by the aliasing or resonance from the value of 𝑑 approaching half the main period

length. At the transition from B to C, the resonance is reached, which provides information on

the main frequency and period of the time series. Region C has possible additional minima and

maxima from additional alignment of the embedding vector 𝑑 with multiples of the main period.

This region was referred to as the “Irrelevant Region" by De Micco et al. [58] due to effectively

large values of 𝜏 forcing the delayed sampling frequency to fall below the Nyquist sampling rate as

described by the lower bound in Eq. (2.3).

Figure 2.11: The three regions of the MPE plot for a periodic signal: (A) redundant, (B) resonant,
and (C) irrelevant.

MPE Example with Chaotic Time Series In Sections 2.2.2 and 2.2.2, I used a periodic time

series to show and explain the regions developed in an MPE plot as well as an MPE-based method

for determining a suitable embedding delay 𝜏. In this section I further show the applicability of this

approach to chaotic signals using the 𝑥-coordinate of the Lorenz System as an example. I simulate

the Lorenz equations

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, 𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧, (2.13)

with a sampling rate of 100 Hz and using the parameters 𝜌 = 28.0, 𝜎 = 10.0, and 𝛽 = 8.0/3.0.

This system was solved for 100 seconds and only the last 15 seconds from the time series are used.

Figure 2.12 shows the result of applying MPE to the simulated Lorenz system.

Figure 2.12 shows similarities to Fig. 2.11 with a clear maxima at the boundary between regions

A and B, albeit with no obvious minima. Therefore, a new distinct feature needs to be used to
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Figure 2.12: MPE plot for the 𝑥 coordinate of the Lorenz system. Additionally, points in the MPE
plot with their corresponding subsampled time series are shown for the redundant, resonant, and
irrelevant regions as described in Section 2.2.2.

determine 𝜏𝑟 . I suggest using the first maxima to find 𝜏 because this delay is likely to fall within

the region described by Eq. (2.12).

2.2.3 Autocorrelation for Embedding Delay

Autocorrelation is a traditional method for selecting 𝜏 for phase space reconstruction by using the

correlation coefficient between the time series and its 𝜏-lagged version. This method was first

introduced by Box et al. [25]. Typically, the autocorrelation function is computed as a function of

𝜏 and, as a rule of thumb, a suitable delay 𝜏 is found when the correlation between 𝑥(𝑡) and 𝑥(𝑡 + 𝜏)

reaches the first folding time, i.e., when 𝜌 ≤ 1/𝑒 [106]. The two prominent correlation techniques

that are commonly used when implementing an autocorrelation-based approach for finding 𝜏 are

Pearson Correlation (see Section A.2 of appendix) and Spearman’s Correlation (see Section A.2 of

appendix). Additionally, an example demonstrating how to calculate 𝜏 using autocorrelation and

the difference between the two correlation methods is provided in Section A.2 of the appendix.
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2.2.4 Mutual Information for Embedding Delay

Mutual information (MI) can be used to select the embedding delay 𝜏 based on a minimum in the

joint probability between two sequences. The mutual information between two discrete sequences

was first realized by Shannon et al. [211] as

𝐼 (𝑋;𝑌 ) =
∑︁
𝑥∈𝑋

∑︁
𝑦∈𝑌

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦) , (2.14)

where 𝑋 and 𝑌 are the two sequences, 𝑝(𝑥) and 𝑝(𝑦) are the probability of the element 𝑥 and

𝑦 separately, and 𝑝(𝑥, 𝑦) is the joint probability of 𝑥 and 𝑦. Fraser and Swinney [77] showed

that for a chaotic time series the MI between the original sequence 𝑥(𝑡) and and delayed version

𝑥(𝑡 + 𝜏) will decrease as 𝜏 increases until reaching a first minimum. At this minima, the delay 𝜏

allows for the individual data points to share a minimum amount of information, which indicates

sufficiently separated data points. While this delay value was specifically developed for phase space

reconstruction, it is also used for the selection of the PE parameter 𝜏. We would like to point out

that, in general, there is no guarantee that local minima exist in the mutual information, which is

a serious limitation for computing 𝜏 using this method. All MI methods can be applied to either

ranked or unranked data. We investigate four methods for estimating 𝜏 for PE using MI. These

methods include MI with equal-sized partitions, adaptive partitions, and two permutation-based

MI estimation methods. For details on these methods please reference the appendix in Section A.3.

To determine the optimal MI approximation method for selecting 𝜏 for PE, Fig. 2.13 shows a

comparison between the 𝜏 values computed from each of the MI methods and the corresponding

values suggested by experts. The table shows that the adaptive partitioning method of Section A.3

results in an accurate selection of 𝜏 for the majority of systems. We will use the adaptive partitioning

estimation method when making comparisons to other methods. For the exact values of 𝜏 from

each of the MI methods please reference Table A.1 in the appendix.
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Figure 2.13: A comparison between the calculated and suggested values for the delay parameter
𝜏 for multiple MI approximation methods. The methods investigated were equal-sized partition
method, Kraskov et al. methods 1 and 2, and the adaptive partitioning approach.

2.2.5 Permutation Auto-mutual Information for Selecting Delay

As shown in Section 2.2.4, Mutual information (MI) is a useful method for selecting 𝜏 for phase

space reconstruction. However, it does not account for the permutation distribution when selecting

𝜏, which can lead to inaccuracies in computing the PE. To circumvent this issue, we develop a

new method for selecting 𝜏 using Permutation Auto-Mutual Information (PAMI) [135], which was

developed to detect dynamic changes in brain activity. We are tailoring PAMI for its application in

the selection of the permutation entropy parameter 𝜏 for the first time. This is done by measuring

the joint probability between the original permutations formed when a delay of 𝜏 = 1 is used and

to the permutations when 𝜏 is incremented. PAMI is defined as

𝐼𝑝 (𝜏, 𝑛) = 𝐻𝑥(𝑡,𝑛) + 𝐻𝑥(𝑡+𝜏,𝑛) − 𝐻𝑥(𝑡,𝑛),𝑥(𝑡+𝜏,𝑛) , (2.15)

where 𝐻 is the permutation entropy described in Eq. (2.1). We suggest an optimal delay 𝜏 for

a given dimension 𝑛 when PAMI is at a minimum. This delay corresponds to minimum shared

information between the original permutations with 𝜏 = 1 and its time lagged permutations. By
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applying this method for the simple sinusoidal function, we can form Fig. 2.14 with 𝑛 ∈ [2, 5]

and 𝜏 ∈ [1, 50]. As shown, the window size is approximately independent of the dimension 𝑛,

Figure 2.14: PAMI results for the sinusoidal function with 𝑛 ∈ [2, 5] and 𝜏 ∈ [1, 50]. The figure
shows an optimal window size 𝜏(𝑛 − 1) ≈ 25.

with an optimal window 𝜏(𝑛 − 1) ≈ 25 for the example. Through our analysis of the minimum

PAMI as a function of the window size, we have developed a new method for selecting the optimal

embedding window. However, we need the embedding dimension to suggest an optimal delay.

Hence, we implement the common choice for 𝑛 ranging from 4 ≤ 𝑛 ≤ 6 for PE [201]. To reduce

the computational demand, we suggest using permutation dimensions 𝑛 = 2 to find an optimal

window size. In addition to the reduced computational demand of using 𝑛 = 2, we found that

𝐼𝑝 (𝑛 = 2) ≈ 0 at the first minima. This also helps making this first minima even more simple.

2.3 Embedding Dimension Parameter Selection Methods

The second parameter for permutation entropy that needs to be automatically identified is the

embedding dimension 𝑛. The methods for determining 𝑛 fall into one of two categories: (1)

independently determining 𝑛 and 𝜏, and (2) simultaneously determining 𝑛 and 𝜏 based on the

width of the embedding window. For the first category, we investigate using the method of False

Nearest Neighbors (FNN) [110] in Section 2.3.1, and Singular Spectrum Analysis (SSA) [26] in

Section 2.3.2. For the second category, we contribute to the selection of 𝑛 by developing an

automatic method using MPE from Section 2.3.3. This method combines the results for finding

𝜏 through MPE in Section 2.2.2 with the work of Riedl et al. [201]. We acknowledge that our

work does not include other commonly used methods for independently calculating 𝑛 such as
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box-counting [48], largest Lyapunov exponent [240], and Kolmogorov–Sinai entropy [182].

2.3.1 False Nearest Neighbors for Embedding Dimension

False Nearest Neighbors (FNN) is one of the most commonly used methods for geometrically

determining the minimum embedding dimension 𝑛 for state space reconstruction [110]. For this

method the time series is repeatedly embedded into a sequence of 𝑚-dimensional Euclidean spaces

for a range of increasing values of 𝑚. The idea is that when the minimum embedding dimension

𝑚 is reached or 𝑚 ≥ 𝑛, the distance between neighboring points does not significantly change as

we keep increasing 𝑚. In other words, the Euclidean distance 𝑑𝑚 (𝑖, 𝑗) between the point P𝑖 ∈ R𝑚

and its nearest neighbor P 𝑗 ∈ R𝑚 minimally changes when the embedding dimension increases

to 𝑚 + 1. If the dimension 𝑚 is not sufficiently high, then the points are false neighbors if their

pairwise distance significantly increases when incrementing 𝑚. This ratio of change in the distance

between nearest neighbors embedded in R𝑚 and R𝑚+1 is quantified using the ratio of false nearest

neighbors

𝑅𝑖 =

√︄
𝑑2
𝑚+1(𝑖, 𝑗) − 𝑑

2
𝑚 (𝑖, 𝑗)

𝑑2
𝑚 (𝑖, 𝑗)

. (2.16)

𝑅𝑖 is compared to the tolerance threshold 𝑅tol to distinguish false neighbors when 𝑅𝑖 > 𝑅tol. In

this paper, we select 𝑅tol = 15 as used by Kennel et al. [110]. By applying this threshold over all

points, we can find the number of false neighbors as a percent FNN 𝑃FNN. If there is no noise in

the system, 𝑃FNN should reach zero when a sufficient dimension is reached. However, with additive

noise present, 𝑃FNN may never reach zero. Thus, it is commonly suggested to use a percent FNN

cutoff for finding a sufficient dimension 𝑛. We use the typically chosen cutoff 𝑃FNN < 10%, which

is suitable for most applications when moderate noise is present.

2.3.2 Singular Spectrum Analysis for Embedding Dimension

The singular spectrum analysis method was first introduced as a tool to find trends and prominent

periods in a time series [26]. Leles et al. [129] summarized the SSA procedure as (1) immersion,
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(2) Singular Value Decomposition (SVD), (3) grouping, and (4) diagonal averaging. Specifically,

immersion embeds the time series into a dimension 𝐿 to form a Hankel matrix, SVD factors all

the matrices, grouping combines the matrices that are similar in structure, and diagonal averaging

reconstructs the time-series using the combined matrices. The needed embedding dimension is

determined from the SVD by calculating the ratio 𝐷

𝐷 =
𝑔𝐿

𝑔𝑟
(2.17)

of the sum of the 𝐿th diagonal entries 𝑔𝐿 to the sum of the total diagonal entries 𝑔𝑟 . When 𝐷

exceeds 0.9, we consider the dimension to be high enough and set 𝑛 = 𝐿, which can then be used

as the embedding dimension for permutation entropy.

2.3.3 Multi-scale Permutation Entropy for Permutation Dimension

Riedl et al. [201] showed how MPE can be used to determine an embedding dimension 𝑛. This

method requires the embedding delay 𝜏 to be set to the length of the main period of the signal as

shown in Section 2.2.2. The theory behind the method is based on normalizing the MPE according

to

ℎ′𝑛 =
−1
𝑛 − 1

𝐻 (𝑛), (2.18)

where ℎ′𝑛 is the PE normalized using the embedding dimension, and 𝐻𝑛 is the PE calculated from

Eq. (2.1). Riedl et al. [201] determine the embedding dimension by incrementing 𝑛 to find the

largest corresponding normalized PE ℎ′𝑛 with an embedding delay 𝜏 heuristically determined from

the main period length. They concluded that the ℎ′𝑛 with the highest entropy accurately accounts for

the needed complexity of the time series, and therefore suggests a suitable embedding dimension.

Rield et al. [201] show how this method provides an accurate embedding dimension for the Van-

der-Pol-oscillator, Lorenz system, and the logistic map. However, the method is not automatic due

to the reliance on a heuristically chosen 𝜏.

To make the process automatic, we introduce an algorithm based on Section 2.2.2 to automati-

cally select the correct 𝜏, which we then use in conjunction with Eq. (2.18) to find 𝑛 corresponding
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to the maximum ℎ′𝑛. Additionally, we suggest scaling 𝑛 from 3 to 8 as we have not yet found a

system requiring 𝑛 > 8 using this method.

2.3.4 Method Comparisons and Conclusions

To make conclusions about the described methods for determining 𝜏 and 𝑛, we made comparisons

to values suggested by experts. The majority of the suggested parameters are taken from the work of

Riedl et al. [201], while parameters for the Rossler system and sine wave are from Tao et al. [227].

Figures 2.15 and 2.16 show the calculated and suggested values for 𝜏 and 𝑛, respectively. For the

exact values of 𝜏 and 𝑛 from each of the parameter estimation methods please reference Tables A.2

and A.3 in the appendix, respectively. Additionally, script for reproducing the results found in this

paper are provided through the Mendeley.

Figure 2.15: A comparison between the calculated and suggested values for the delay parameter
𝜏. The methods investigated were MI with adaptive partitions, Spearman’s Autocorrelation (AC),
the frequency analysis, Multi-scale Permutation Entropy (MPE), and Permutation Auto-mutual
Information (PAMI) with 𝑛 = 5.
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Figure 2.16: A comparison between the calculated and suggested values for the embedding dimen-
sion 𝑛. The methods investigated were False Nearest Neighbors (FNN), Multi-scale Permutation
Entropy (MPE), and Singular Spectrum Analysis (SSA).

Embedding Delay Figure 2.15 shows the automatically computed 𝜏 in comparison to the expert-

identified values for a variety of systems. These systems fall within several categories including the

following: noise, chaotic differential equations, periodic systems, nonlinear difference equations,

and medical data. The methods presented in Fig. 2.15 include PAMI from Section 2.2.5, MI calcu-

lated using adaptive partitioning from Section A.3, Spearman’s Autocorrelation from Section 2.2.3,

MPE from Section 2.2.2, and the frequency approach from Section 2.2.1. For the noise category

we only investigated Gaussian white noise, and all the methods accurately suggest an embedding

delay. For the second category of chaotic differential equations, Mutual Information approximated

using adaptive partitions accurately provided suitable delay values. However, there are possible

modes of failure for MI. To validate that MI is accurately selecting a value for 𝜏, we recommend

also calculating 𝜏 using the frequency approach. For the third category, periodic systems, we only

investigated a simple sinusoidal function. This resulted in both MPE and the Frequency approach

providing accurate suggestions. Therefor, we suggest using both of these methods to calculate 𝜏
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for periodic systems. Additionally, we do not suggest the use of MI for periodic systems as it can

have early false minima resulting in inaccurate delay selection. For difference equations we found

that PAMI, autocorrelation, MPE, and the frequency approach provide accurate suggestions for the

delay. Finally, when testing each method on medical data with intrinsic noise, we found that the

noise-robust frequency approach yielded the optimal parameter selection for 𝜏. As a generalization

of the results found, we suggest the use of MI with adaptive partitioning when selecting 𝜏 for

chaotic differential equations. For periodic systems, nonlinear difference equations, and ECG/EEG

data we suggest the use of the frequency approach that we developed in this paper. However,

when applying the frequency approach to quasiperiodic time series with multiple harmonics of

decreasing amplitude, the method may fail due to the delay being selected based on an insignificant

high frequency. The use of either Spearman’s autocorrelation or MPE may be more suitable under

this condition. In general, multiple methods should be used for each system to validate that an

accurate delay is selected due to the possible modes of failure of each method. Specifically, The

frequency approach may fail if the noise does not have a Gaussian distribution, MI can fail if a

false minima occurs or the relationship is monotonic, and autocorrelation can fail if the time series

being analyzed does not oscillate about a fixed value.

Embedding Dimension Figure 2.16 shows the automatically computed parameter 𝑛 in com-

parison to the expert-identified values. It can be seen that both MPE and FNN commonly had

parameters within the range specified for all categories. However, SSA failed to provide a con-

sistently suitable embedding dimension 𝑛. This leads to the conclusion that either MPE or FNN

are sufficient methods for determining the embedding dimension for the majority of the considered

applications. However, FNN may fail if the effects of noise are not correctly accounted for, which

can lead to overly large embedding dimensions. These results also show that the dimension 𝑛 = 6

works well for almost all applications.
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2.4 Topological Methods for Delay Parameter Selection

The main thrust for this work is on parameter selection for permutation entropy and state space

reconstruction using topological methods. To do this, a goal of this work is to relate the distribution

of permutations formed from a given delay 𝜏 to the state space reconstruction with the same delay

𝜏. This connections will show the time delay for both permutations and state space reconstruction

are related. Establishing this relationship allows for tools from TDA to be used for delay parameter

selection.

Figure 2.17: Example formation of a permutation sequence from the time series 𝑥(𝑡) = 2 sin(𝑡)
with sampling frequency 𝑓𝑠 = 20 Hz, permutation dimension 𝑛 = 3 and delay 𝜏 = 40. The
corresponding time-delay embedded vectors from 𝑥(𝑡) with the permutation binnings (𝜋1, . . . , 𝜋6)
in the state space are shown in the bottom figure.

Let me first start by redescribing the process for state space reconstruction and its similarity to

permutations. As described by Takens’ [226], I can reconstruct an attractor that is topologically

equivalent to the original original attractor of a dynamical system by embedding a 1-D signal

into R𝑛 by forming a cloud of delayed vectors as 𝑣𝑖 = [𝑥(𝑡𝑖), 𝑥(𝑡𝑖+𝜏), 𝑥(𝑡𝑖+2𝜏), . . . , 𝑥(𝑡𝑖+(𝑛−1)𝜏)] for

𝑖 ∈ [0, 𝐿 − 𝑛𝜏], where 𝐿 is the length of the discretely and uniformly sampled signal. Permutation

are formed in a very similar fashion where I take our vectors 𝑣𝑖 and find its symbolic representation
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based on its ordinal ranking as explained in Section 2.1. The different permutations types can be

viewed as a inequality-based binning of theR𝑛 vector space of the reconstructed dynamics as shown

in Fig. 2.17 for dimension 𝑛 = 3. This provides a first intuitive understanding of the connection

between permutation and state space reconstruction, however, I need to determine some connection

between the optimal 𝜏 parameter used in 𝑣𝑖 and determine if it is also an optimal delay 𝜏 PE.

Takens’ embedding theorem explains that, technically, any delay 𝜏 would be suitable for recon-

structing the original topology of the attractor, however, this has the requirement of unrestricted

signal length and no additive noise in the signal [226]. Since this is rarely a condition found in

real-world signals, a 𝜏 is chosen to unfold the attractor such that the effects of noise have a minimal

effect on the topology of the reconstructed dynamics.

Let us now explain what I mean by the correspondence between 𝜏 and the unfolding of the

dynamics and what effect this has on the corresponding permutations. If the delay 𝜏 is too small

(e.g. 𝜏 = 1 for a continuous dynamical system with a high smapling rate) the delay embedded

reconstructed attractor will be clustered around the hyper-diagonal in R𝑛 space. Additionally,

the corresponding permutations will be overwhelmingly dominated by the permutation types 𝜋1

and 𝜋𝑛! with these two permutations being of the all increasing and decreasing ordinal patterns,

respectively. The dominance of these two permutations for a delay 𝜏 that is too small was termed

by De Micco et al. [59] as the “redundancy effect." For an example of this see the permutation

distribution and clustering about the hyper-diagonal in R3 as shown in Fig. 2.18. This example

is based on the x-solution to the periodic Rossler dynamical system as described in Section C.1.

As the delay increases pass the redundancy effect, the reconstructed attractor begins to unfold to

have a similar shape and topology as the true attractor. Corresponding with this unfolding, as the

delay increase the permutation distribution tends towards a more equiprobable distribution (See

Fig. 2.18 at 𝜏 ≈ 14). A way of summarizing the permutation probability distribution is actually

through PE itself and more specifically the analysis of Multi-scale Permutation Entropy (MsPE).

Riedl et al. [200] showed how after the redundancy effect there is a suitable delay for PE, which

I related to the first maxima of the MsPE plot [161]. The MsPE plot for our periodic Rossler
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example is shown in Fig. 2.18. Let us also look at the MI plot as a comparison. The theory behind

MI states that at the first minima of the mutual information between 𝑥(𝑡𝑖) and 𝑥(𝑡𝑖+𝜏) the delay 𝜏

accurately provides a suitable delay for state space reconstruction. By a quick investigation of the

MI function I can observe that there is a high degree of correlation between the MI function and

the MsPE function with the first maxima of MsPE being approximately at the same 𝜏 as the first

minima of MI. When the delay becomes signficantly larger than the first minima of MI or maxima

of MsPE, the permutation distribution begins to fluctuate as shown in Fig. 2.18. This effect was

termed as the “irrelevance" effect by De Micco et al. [59]. This increasing of 𝜏 beyond the the first

minima also correlates with, as described by Kantz and Schreiber [105], the reconstruction filling

an overly large space with the vectors already being independent. Additionally, at a minima beyond

the first minima, Fraser and Swinney [78] showed how the reconstructed attractor shape will no

longer qualitatively match the shape of the true state space.

Figure 2.18: Example comparing first minima of mutual information and first maxima of multi-scale
permutation entropy, which demonstrates the correspondance between the two. On the left are the
𝑛 = 3 time delayed state space reconstructions with an inaccurately chosen 𝜏 = 1 and appropriate
𝜏 = 14. On the right shows the permutation distribution as 𝜏 increases and the associated multi-
scale permutation entropy and mutual information plots.

I have now shown with both an example and a qualitative analysis that the optimal 𝜏 for

permutation entropy and the state space reconstruction are correlated with the unfolding of the
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reconstructed attractor. While I do not provide a proof that PE and state space reconstruction

use the same 𝜏, it has recently been shown that there is a connection between co-homology,

information theory, and probability does exist [18], which strengthens our qualitative analysis of

this connection. In the future sections I will leverage tools from TDA to determine the optimal 𝜏

associated with the unfolding of the attractor. Some of the methods that I have researched are an

adaptation of SW1PerS [177] for the delay parameter selection and two methods to estimate the

dominate frequency in a signal using sublevel set persistence which can be used for delay parameter

selection.

2.4.1 Finding 𝜏 Using SW1PerS

In this section I develop a novel method implementing persistent homology for estimating an

appropriate delay for permutations and state space reconstruction. Specifically, we investigate the

effects of varying 𝜏 ∈ [1, 𝜏max] on the calculation of the maximum persistence and the periodicity

score from SW1PerS [180]. Perea and Harer developed SW1PerS as a TDA method for measuring

periodicity in a time series; however, our goal is to leverage this method for use in determining a

suitable selection of 𝜏 for permutation entropy and state space reconstruction based on the unfolding

of an attractor and the associated 1-D persistent homology.

SW1PerS uses 1-D persistent homology to measure how periodic or significant the circular shape

of an embedded time series (point cloud) is as 𝜏 increases, which corresponds to the embedding

window size increasing as 𝑤 = 𝑚𝜏 with 𝑚 as the embedding dimension of the sliding window

vector. Specifically, the sliding window 𝑆𝑊 for SW1PerS is defined as

𝑆𝑊𝑚,𝜏 𝑓 (𝑁) (𝑡) = [ 𝑓 (𝑁) (𝑡), 𝑓 (𝑁) (𝑡 + 𝜏), . . . , 𝑓 (𝑁) (𝑡 + 𝑚𝜏)], (2.19)

where 𝑓 (𝑁) (𝑡) is a truncated Fourier series of the signal and 𝜏 and 𝑚 are, respectively, SW1PerS’

embedding delay and dimension. Applying Eq. (2.19) to a sliding window of width 𝑤 across the

domain of the time series results in a collection of vectors known as a point cloud, which live in

an 𝑚-dimensional Euclidean space. However, it may not be desirable to use all of the embedded
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Figure 2.19: Example showing three sample windows with 𝑚 = 2 of increasing size, which is
slid across the entire time series (periodic Rossler system) resulting in the embedded time series
in R2. The window size is defined as 𝑤 = 𝑚𝜏 with (left) 𝑤𝑠𝑚𝜏𝑠 being too small with 𝜏𝑠 = 1
and an embedding shape concentrated on the diagonal line and a high periodicity score 𝑠 and low
L, (middle) 𝑤𝑜 is properly sized and results in a minimum periodicity score 𝑠 and maximum L
suggesting an optimal delay 𝜏𝑜 = 10, and (right) 𝑤ℓ with 𝜏 = 17 is too large and results in a high
periodicity score 𝑠 and low L.

vectors from (2.19) due to the 𝑂 (𝑛3) time complexity of calculating the persistent homology of

a point cloud via the Vietoris-Rips complex. To improve the calculation time we chose to use a

sparse version of the point cloud through a subsampling to have 𝑛𝑇 windows from the original point

cloud. We chose to set the number of sliding windows as 𝑛𝑇 = 200 to be sufficiently high to detect

circular structure in the embedding.

For SW1PerS,𝑚 is determined based on the theory developed by Perea et al. [180], which showed

the necessary value of 𝑚 for reconstruction is bounded by 𝑚 ≥ 2𝑁 (here we use 𝑚 = 2𝑁), where N

is the number of Fourier terms necessary for reconstructing the signal to some desired accuracy. In

this work we automate choosing 𝑁 by approximating the Fourier series using the discrete Fourier

transform. To do this we compute the normalized ℓ2 norm between the reconstructed time series

from the truncated Fourier series and the original signal. The ℓ2 norm is used to obtain the value

of 𝑁 that yields an error within a desired threshold of ℓ2(𝑁) < 0.25. Specifically, if we let the time

series 𝑋 be a discrete time sampling of a piece-wise smooth signal 𝑥(𝑡), then the 𝑁-partial sum of

the Fourier series of 𝑥(𝑡) can be approximated according to

𝑓 (𝑁) (𝑡) = 1
|𝑋 |

𝑁∑︁
𝑘=0

( |𝑋 |∑︁
𝑗=0

𝑋 ( 𝑗)𝑒−2𝜋𝑖 𝑗 𝑘/𝑇
)
𝑒2𝜋𝑖𝑘𝑡/𝑇 , (2.20)
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where 𝑋 is the original signal that has been point-wise centered and normalized with |𝑋 | as the

length of the signal. As a rule of thumb 𝑁 ≈ |𝑋 |/8 yields an accurate reconstruction of 𝑥(𝑡) [8],

which we use as an upper bound of 𝑁 . The relative ℓ2 norm that measures the error between time

series 𝑋 and its reconstruction 𝑓 (𝑁) (𝑡) is given by

ℓ2(𝑁) =

( ∑|𝑋 |
𝑗=0

[
𝑋 ( 𝑗) − 𝑓 (𝑁) ( 𝑗)

]2
)1/2

( ∑|𝑋 |
𝑗=0 𝑋

2( 𝑗)
)1/2 . (2.21)

For our application, we consider 𝑓 (𝑁) (𝑡) as sufficiently close to 𝑥(𝑡) when we find a value of 𝑁

for which ℓ2(𝑁) < 0.25. We chose 0.25 as it provides dimension 𝑚 which are not overly large

(𝑚 < 10 typically) and it deals with the possibility of moderate additive noise in the signal. Using

the truncated Fourier series we are also able to determine an upper bound for 𝜏 using the Nyquist

sampling criteria as

𝜏max =
𝑓𝑠

2min( 𝑓sig)
, (2.22)

where 𝑓sig are the 𝑁 significant frequencies from the truncated fast Fourier transform. We now

have all the components we need to apply SW1PerS.

To determine the optimal delay using persistent homology, we investigated two summaries of

the resulting persistence diagrams from SW1PerS: (1) the maximum lifetime as

L = max(pers(D̃1) (2.23)

with D̃ as the SW1PerS persistence diagram and (2) the periodicity score, which was defined

in [178] as

𝑠 = 1 −
𝑟2
𝐵
− 𝑟2

𝐷

3
, (2.24)

where 𝑟𝐵 and 𝑟𝐷 are the birth and deaths times associated to max(pers(D̃1). We then calculate

these point summaries for each 𝜏 as we vary 𝜏 ∈ [1, 𝜏max] to generate ®𝑠 and ®L for the periodicity

scores 𝑠 and persistence maximums L, respectively.

To demonstrate the functionality of this method, let us implement a simple example using the

periodic Rossler system (see Fig. 2.19). This example shows three different window sizes for
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embedding dimension 𝑚 = 2 (this dimension was chosen for visualization purposes)and 𝜏 = 1, 10,

and 17, to show the resulting scores for a small, optimal and overly large window size, respectively.

Figure 2.19 shows that the optimal window size at 𝜏𝑜 = 10 results in a maximum L and minimum 𝑠

over the range 𝜏 ∈ [1, 𝜏max], where 𝜏max = 20 from the truncated Fourier spectrum. This suggests

that an appropriate delay for both state space reconstruction via Takens’ embedding and permutation

entropy is 𝜏 = 10.

Figure 2.20: Example periodicity 𝑠 and max persistence L plots for the chaotic Rossler system with
associated cutoffs to determine the average 𝜏.

For a chaotic time series, choosing 𝜏 from the minimum or maximum of 𝑠 and L is not as trivial

as the example shown in Fig. 2.19. Specifically, due to the non-linear behavior of a chaotic time

series there may not always be a clear, single minima as shown in the example periodic Rossler

system, but rather two or more local minima with similar prominence. To accurately approximate

the average minima and select an associated delay 𝜏, we will use heuristic cutoffs 𝐶𝑠 and 𝐶L,

where these cutoffs are defined as 𝐶𝑠 = 1
2 [max(𝑠) +min(𝑠)] and 𝐶L = 1

2 [max(L) +min(L)].

Specifically, we will choose 𝜏 based on the average 𝜏 such that 𝑠 ≥ 𝐶𝑠 or L ≥ 𝐶L. To demonstrate

this method we use a chaotic response of the Rossler system and calculate the two cutoffs as shown

in Fig. 2.20. This example results in an average delay greater than 𝐶L as 𝜏 = 12 and less than 𝐶𝑠 as

𝜏 = 12. This example demonstrated that the method of selecting the average 𝜏 greater or less than

the cutoffs results in a similar 𝜏 for both periodic and chaotic time series.
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2.4.2 Finding 𝜏 Using Sublevel Set Persistence

In this section our goal will be to leverage sublevel set persistence for the selection of 𝜏 for both state

space reconstruction and permutation entropy. Specifically, our goal is to automate the frequency

analysis method [149] for selecting 𝜏 for state space reconstruction by analyzing both the time and

frequency domain of the signal using sublevel set persistence. The method developed by Melosik

and Marszalek [149] uses the maximum significant frequency 𝑓max and the sampling frequency 𝑓𝑠

to select an appropriate 𝜏 as

𝜏 =
𝑓𝑠

𝛼 𝑓max
, (2.25)

where 𝛼 ∈ [2, 4] with an 𝛼 = 2 associated to the Nyquist sampling rate and 𝛼 > 4 producing

an oversampling. Since this method was developed using the Nyquist sampling rate, we will first

include its associated assumptions as a continuous, bandlimited signal. This frequency based

approach was founded on the requirements for suitable delays for the 0/1 test on chaos and the

a heuristic comparison between the Lorenz attractor and a delay-reconstruction of the Lorenz

attractor. The heuristic comparison showed that this frequency approach actually provided more

accurate delay parameter selections for state space reconstruction than the mutual information

function when trying to replicate the shape of the attractor. Unfortunately, a major drawback of

this method is the non-trivial selection of 𝑓max. In Melosik’s and Marszalek’s original work [149]

the maximum frequency was manually selected using a normalized, such that ∈ [0, 1], Fast Fourier

Spectrum (FFT) cutoff of approximately 0.01, which does not address the possibility of additive

noise.

In our previous work [161] we approximated the maximum “significant" frequency in a time

series using the FFT and defining a power spectrum cutoff based on the statistics of additive noise

in the FFT. An issue with this method for non-linear time series is that the Fourier spectrum does

not easily yield itself to selecting the maximum “significant" frequency for chaotic time series even

with an appropriately selected cutoff to ignore additive noise. Additionally, the method was only

developed for Gaussian White Noise (GWN) contamination of the original time series.

To improve the selection of the maximum frequency in this section we developed two novel
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methods based on 0-D sublevel set persistence. We chose to use 0-D sublevel set persistence due

to its computational efficiency and stability for true peak selection [49, 115]. The first method is

based on a time domain analysis of the sublevel set lifetimes (see Section 2.4.2) and the second

implements a frequency domain analysis using sublevel set persistence and the modified 𝑧-score

(see Section 2.4.2).

Time Domain Approach The first approach we implement for estimating the maximum signif-

icant frequency of a signal is based on a time domain analysis of the sublevel set persistent. This

process uses the time ordered lifetimes from sublevel set persistence diagram. We previously intro-

duced time ordered lifetimes and a cutoff separating the sublevel sets associated with noise in [11].

Here we use those methods and results to find the time 𝑡𝐵 in which all the significant sublevel sets

are born. Fig. 2.21 shows a resulting time order lifetimes plot where the time between two adjacent

lifetimes is defined as 𝑇𝐵𝑖 . If we use 𝑇𝐵𝑖 as an approximation of a period in the time series, then

Figure 2.21: Example demonstrating process from time series 𝑥 (periodic Rossler system) to
sublevel set persistence diagram to time ordered lifetimes on the bottom left. Additionally, on the
bottom left shows a sample time periodic between sublevel sets as 𝑇𝐵𝑖 .

we can calculate the associated frequencies as 𝑓𝑖 = 1/𝑇𝐵𝑖 Hz. If we then look at the distribution

of 𝑓𝑖, the maximum “significant" frequency can be approximated using the 75% quantile of the

distribution of the frequencies as 𝑓max ≈ 𝑄75( 𝑓 ). This quantile allows for a few outlying high

frequencies to occur without having a significant effect on the estimate of the maximum frequency.

Applying this method to the periodic Rossler system results in a 𝜏 = 10 with the corresponding
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Figure 2.22: Example demonstrating the time delay 𝜏 = 10 result for the periodic Rossler example
time series shown in the top figure and the resulting 𝑛 = 2 Takens’ embedding.

state space reconstructions for 𝑛 = 2 shown in Fig. 2.22. This suggested delay is very similar to that

of mutual information (𝜏 = 12). This result suggests that the time-domain analysis for selecting the

maximum frequency and corresponding delay functions should accurately suggest an appropriate

delay for permutation entropy and state space reconstruction.
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Figure 2.23: Overview of procedure for finding maximum significant frequency using 0-
dimensional sublevel set persistence and the modified 𝑧-score for a signal contaminated with
noise.

Fourier Spectrum Approach In this section we present a novel TDA based approach for finding

the noise floor in the Fourier spectrum for selecting the maximum significant frequency 𝑓max to

be used for selecting 𝜏 for PE through Eq. (2.25). Specifically, we show how the 0-dimensional

sublevel set persistence, a tool from TDA discussed in Section 1.1, can be used to find the significant

lifetimes and associated frequencies the frequency spectrum. while it would then be ideal to analyze

the theoretical distribution of the sublevel set lifetimes of the FFT of a random process, this would
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not be a trivial task. There have been studies on pushing forward probability distributions into the

persistence domain [3, 4, 104], but it is difficult to obtain a theoretical cutoff value in persistence

space. Therefor, without doing an in depth statistical analysis of the distributions, we will calculate

a instead use the modified 𝑧-score. Specifically, we separate the noise lifetimes from significant

lifetimes through the use of the modified 𝑧-score, which allows us to find the noise floor and

maximum significant frequency via a cutoff. This process for finding the cutoff and associated

maximum frequency is illustrated in Fig. 2.23. The following paragraphs give an overview of the

modified 𝑧-score and cutoff analysis.

Modified 𝑧-score The modified 𝑧-score 𝑧𝑚 is essential to understanding the techniques used for

isolating noise from a signal [209]. The standard score, commonly known as the 𝑧-score, uses the

mean and the standard deviation of a dataset to find an associated 𝑧-score for each data point and

is defined as

𝑧 =
𝑥 − 𝜇
𝜎

, (2.26)

where 𝑥 is a data point, 𝜇 is the mean, and 𝜎 is the standard deviation of the dataset, respectively.

The 𝑧-score value is commonly used to identify outliers in the dataset by rejecting points that are

above a set threshold, which is set in terms of how many standard deviations away from the mean

are acceptable. Unfortunately, the 𝑧-score is susceptible to outliers itself with both the mean and

the standard deviation not being robust against outliers [130]. This led Hampel [91] to develop

the modified 𝑧-score as an outlier detection method that is robust to outliers. The logic behind

the modified 𝑧-score or median absolute deviation (MAD) method is grounded on the use of the

median instead of the mean. The MAD is calculated as

MAD = median( |𝑥 − 𝑥 |), (2.27)

where 𝑥 is a data set and 𝑥 is the median of the dataset. The MAD is substituted for the standard

deviation in Eq. (2.26). To complete the modified 𝑧-score, Iglewicz and Hoaglin [99] suggested to

additionally substitute the mean with the median. The resulting equation for the modified 𝑧-score
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is then quantified as

𝑧𝑚 = 0.6745
𝑥 − 𝑥
MAD

, (2.28)

where the value 0.6745 was suggested from [99]. We can now use the modified 𝑧-score 𝑧𝑚 for

evaluating the “significance" of each point in the sublevel set persistence diagram of the Fourier

spectrum. A threshold for separating noise in the persistence domain is discussed in the following

paragraph.

Threshold and Cutoff Analysis To determine the noise floor in the normalized Fast Fourier

Transform (FFT) spectrum, we compute the 0-dimensional persistence of the FFT. This provides

relatively short lifetimes for the noise, while the prominent peaks, which represent the actual signal,

have comparatively long lifetimes or high persistence. To separate the noise from the outliers we

calculate the modified 𝑧-score for the lifetimes in the persistence diagram. We can then determine

if the lifetime is associated to noise or signal based on a 𝑧𝑚 cutoff as 𝐷, where we can label a

lifetime as signficant (an outlier) if 𝑧𝑚 > 𝐷. Iglewicz and Hoaglin [99] suggest a 𝑧𝑚 threshold of

𝐷 = 3.5 based on an analysis of 10,000 random-normal observations. However, we apply both the

FFT and 0-D sublevel set persistence to the original signal so it would be appropriate to determine

if this cutoff is suitable for our application. To do this we used a signal of 10,000 random-normal

observations and applied a FFT and then calculated 0-D sublevel set lifetimes as our signal to

analyze using the modified z-score 𝑧𝑚. For an accurate cutoff we would expect to label all of the

lifetimes as noise with 𝑧𝑚 < 𝐷 since the signal is observations are composed of pure noise. As

shown in Fig. 2.24, a threshold of approximately 𝐷 = 4.8 labels all of the lifetimes as noise. This

threshold was rounded up to 5 for simplicity. We can now simply define a cutoff based on the

labeling of of each lifetime from the modified 𝑧-score with Cutoff = max(lifetimenoise.

We can now find the maximum significant frequency 𝑓max as the highest frequency in the

Fourier spectrum with an amplitude greater than the specified cutoff. For this method to accurately

function, it is required that there is some additive noise in the time series. To accommodate this,

additive Gaussian noise with Signal-to-Noise Ratio of 30 dB is added to the time series before
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Figure 2.24: Percent of the persistence points from 0-D sublevel set persistence of the FFT of GWN
using the modified 𝑧-score with the provided threshold ranging from 0 to 5.

calculating the FFT. If we apply this method to the example periodic Rossler system time series

we find a suggest delay of 𝜏 = 5. In comparison to mutual information this delay is approximately

half as large as it should be. However, we will investigate its accuracy on several other systems in

Section 4.3 to make conclusions on the functionality of this method for selecting 𝜏.

2.4.3 Permutation Dimension

In this section we will show that, contrary to the delay selection, the dimension for permutation

entropy is not related to that of Takens’ embedding. Additionally, we will provide a simple method

for selecting an appropriate permutation dimension based on the permutation distribution.

The goal of permutation entropy is to differentiate between the complexity of a time series

when there is a dynamic state change (e.g. periodic compared to chaotic), so the dimension should

be chosen such that it is large enough to capture these changes. To accomplish this we suggest

that permutations of the time series do not occupy all of the possible permutations, but rather

only a fraction of the permutations when an appropriate delay is selected. This criteria is set so

that a change can be captured by an increase/decrease in the number of permutations and their

associated probabilities. Because of this, we suggest a dimension where, at most, only 50% of

the permutations are used. However, it may be more suitable to select a dimension where a lower

percent are used (e.g. 10%).

To begin this method for determining if the dimension is high enough to capture the time series
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complexity we will define 𝑁𝜋 as the number of permutation types where the probability of that

permutation type is significant. Specifically, we will consider the probability of that permutation

to be significant if the number of occurrences of permutation 𝜋 is greater than 10 percent of the

maximum number of occurrences of any permutation type from dimension 𝑛. The permutation

delay 𝜏 was selected from the expert suggested values provided in [161,200]. We can now express

our needed dimension as the ratio and inequality

𝑁𝜋

𝑛!
≤ 𝑅, (2.29)

where 𝑅 = 0.50 for the suggested maximum 50% criteria.

To compare this dimension to stand Takens’ embedding tools for selecting 𝑛 we will implement

four examples:

𝑥1(𝑡) =
𝑡

10

𝑥2(𝑡) = sin(𝑡)

𝑥3(𝑡) = sin(𝑡) + sin(𝜋𝑡)

𝑥4(𝑡) = N (𝜇 = 0, 𝜎2 = 1),

(2.30)

where 𝑡 ∈ [0, 100] with a sampling rate of 20 Hz and N is Gaussian additive noise. By applying

Eq. (2.29) to the time series in Eq. (2.30), we can suggest dimensions of 2, 4, 6, and 7 for time

series 𝑥𝑖 (𝑡) with 𝑖 ∈ [1, 4] as shown in Fig. 2.25, respectively.

In comparison to Takens’ embedding, for time series 𝑥2(𝑡) dimension 𝑛 = 2 would be sufficient,

but if this was used for permutation entropy, no increase in complexity could be detected. Addi-

tionally, this result suggests an upper bound on the dimension for permutation entropy as 𝑛 ≈ 9

as the ratio in Eq. (2.29) is approximately 0 for dimensions 𝑛 > 9. As a rule of thumb from this

result, a dimension of 8 would be suitable for almost all applications, but it would be optimal to

minimize the dimension to reduce the computation time of PE. In Section 4.3 we will show the

resulting suggested dimensions using this method for a wide variety of dynamical systems.
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Figure 2.25: Percent of permutations used 𝑅 = 𝑁𝜋/𝑛! for each example time series (see Eq. (2.30))
as the dimension is incrmented.

2.4.4 Results for Topological Data Analysis Methods

In this section we will provide the results of the parameter selection methods. First, in Section 2.4.4,

we calculate the delay parameter for a wide variety of dynamical systems and data sets using mutual

information and the the automatic TDA-based methods described in this manuscript. Unfortunately,

the optimal parameters can not be decided based on a simple entropy value comparison since

there is no direct equivalence between PE and other entropy approximations of a signal such as

Kolmogorov-Sinai (KS) entropy with only a bounding between the two as KS ≤ PE [107]. Therefor,

to determine the accuracy of the automatically selected PE parameters we implement two other

methods of comparison. The first comparison is to expert suggested parameters for a wide variety

of systems (see Section 2.4.4). The second approach is a comparison to optimal parameters based

on having a significant difference between the PE of two different states for each system. Of course

the second method has the requirement that we have a system model or data set with two different

states for comparison, which is not typically the case, but does allow for an approximation of
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optimal PE parameters for these systems. These comparisons are discussed in Section 2.4.4.

The second half of the results, in Sections 2.4.4 and 2.4.4, is based on analyzing the robustness

of the automatic TDA-based PE parameter selection methods to additive noise contamination and

signal length requirements, respectively.

Parameter Value Comparison for Common Dynamical systems To determine a range of

approximately optimal PE parameters we will quantify the difference between PE values for a wide

range of delays and dimensions with the difference for a given 𝜏 and 𝑛 calculated as

Δℎ𝑛 (𝜏) = ℎ(Ch.)
𝑛 (𝜏) − ℎ(Pe.)

𝑛 (𝜏), (2.31)

where the superscripts Ch. and Pe. represent the PE calculation on the chaotic and periodic

time series for the given dynamical system. The specific parameters used to generate periodic

and chaotic responses for each system are described in the Appendix Section C.1. If we apply

Eq. (2.31) to the Rossler system for 𝜏 ∈ [1, 15] and 𝑛 ∈ [3, 10] we find that Δℎ𝑛 (𝜏) is significant

when 𝜏 ∈ [9, 15] and 𝑛 ∈ [6, 10] as shown in Fig. 2.26. However, as mentioned previously in

section 2.4.3, dimensions greater than 8 can be computationally expensive. We consider this range

Figure 2.26: Example showing difference in PE (see Eq. (2.31)) for periodic and chaotic dynamic
states of the Rossler system for a wide range of PE parameters.

where Δℎ𝑛 (𝜏) is relatively large as the range of optimal PE parameters to be compared to. We
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repeated this process for finding the optimal parameter ranges for PE using a similar procedure to

this Rossler example as shown in Table A.2.

Table 2.1: A comparison between the calculated and suggested values for the delay parameter 𝜏.
The shaded (red) cells highlight the methods that failed to provide a close match to the suggested
delay.

Delay Dim.
1-D Pers.
Homol.

Sublevel
Set Pers. R

Exp. Sugg.
Parameters

Opt. Param.
RangeCat. system State

s L t f MI 0.5 0.1 𝜏 n Ref. 𝜏 n
Gauss. - 1 1 1 1 3 7 8 1 3-6 [200] - -

Uniform - 1 1 1 1 3 7 8 - - - - -
Rayleigh - 1 1 1 1 2 7 8 - - - - -

Noise
Models

Expon. - 1 1 1 1 2 7 8 - - - - -
Per. 13 11 11 7 11 5 6Lorenz Cha. 12 13 12 9 12 5 7 10 5-7 [200] 8-17 5-10

Per. 10 10 10 8 11 5 6Rossler Cha. 12 12 12 10 12 5 6 9 6 [228] 9-15 6-10

Per. 19 17 16 9 15 5 6Bi-direct.
Rossler Cha. 18 16 16 15 17 5 6 15 6-7 [200] 11-22 6-10

Per. 7 7 6 3 8 5 6Mackey
Glass Cha. 7 7 7 4 9 5 7 10 4-8 [253] 6-12 4-8

Per. 16 17 17 11 19 5 6Chua
Circuit Cha. 37 52 17 19 19 5 7 20 5 [213] 16-24 5-10

Per. 8 8 8 7 9 4 6Coupled
Ross.-Lor. Cha. 12 10 8 5 10 5 7 8 3-10 [222] 5-11 4-9

Per. 16 16 17 11 18 4 5

Cont.
Flows

Double
Pendul. Cha. 13 12 10 8 14 6 7 - - - 8-20 5-10

Periodic - 12 12 13 24 16 4 5 15 4 [228] - -Period.
Funct. Quasi - 45 46 25 49 26 6 7 - - - - -

Per. 1 1 1 1 3 4 5Logistic Cha. 1 1 1 1 16 4 6 1-5 4-7 [200] 1-4 3-6

Per. 2 2 1 1 3 4 5Maps
Henon Cha. 1 1 1 1 16 6 7 1-2 2-16 [200] 1-5 5-8

Cont. 9 9 22 7 17 5 6ECG Arrh. 13 13 15 6 15 5 6 10-32 3-7 [139] 6-23 5-7

Cont. 19 18 1 3 6 8 8
Med.
Data EEG Seiz. 10 4 12 4 10 5 7 1-3 3-7 [200] 2-6 4-7

To verify our TDA-based methods for determining 𝜏, Table A.2 compares our results to the

values from a wide variety of systems for both the first minima of the mutual information function

and from expert suggestions, including several listed by Riedl et al. [200]. The table also shows

the resulting permutation dimensions suggested from the permutation statistics as described in

Section 2.4.3 for both 𝑅 = 0.1 and 𝑅 = 0.5 from Eq. (2.29). For these systems we have also

included, where applicable, the delay and dimension parameter estimates for both periodic and
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chaotic responses to validate each methods robustness to chaos and non-linearity. However, for

the medical data section we instead we included a healthy/control and unhealthy (arrhythmia for

ECG and seizure for EEG) as a substitute for a periodic and chaotic response, respectively. A

detailed description of each dynamical system or data set used, including parameters for periodic

and chaotic responses, is provided in the Appendix.

In table A.2 we have highlighted the methods that failed to provide an accurate delay 𝜏 in red.

We will now go through the methods and highlight the advantages and drawbacks as well as general

suggestions for which method to use based on the category.

Noise Models: We only have one expert suggestion of parameters for the noise models category,

which is for Gaussian white noise (Gauss.) as 𝜏 = 1 and 𝑛 ∈ [3, 6]. In regards to the delay, all TDA

based methods show an accurate selection of 𝜏 = 1, however the suggestion of 𝜏 = 3 from Mutual

Information (MI)is slightly higher than suggested. We found that the expert suggested dimensions

of 3 to 6 is significantly lower than the minimum dimension suggested by our permutation statistics

method of 𝑛 = 7. As mentioned in Section 2.4.3, we believe it is necessary to have the number of

permutation used to be atleast less than 50% of all the permutation available, which corresponds to

a dimension 𝑛 = 7 for Gaussian noise. From this logic we can conclude that a suitable dimension

should actually be atleast 𝑛 = 7 if any increase in the time series complexity is expected. If only

decreases in complexity are expected, then a dimension of 𝑛 = 6 may be suitable.

Continuous Flows: The next category is of continuous flows described by systems of non-linear

differential equations. As shown in Table A.2, both the time domain analysis via sublevel set

persistence and mutual information provide accurate delay suggestions for all of the examples.

However, the 1-D persistent homology methods discussed in Section 2.4.1 also provide an accurate

delay for every systems besides for the chaotic Chua circuit. This failure was most likely due to

an inaccurate selection of the maximum significant frequency and associated 𝜏max. We can also

conclude that the frequency domain analysis using sublevel set persistence consistently provided

delays that were too small. In regards to the dimension, the suggested dimensions from the

permutation statistics agreed with the delay suggested by experts for all of the continuous flow
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systems. This suggests that the method of selecting a dimension for permutation entropy using the

method described in Section 2.4.3 is accurate for simulations of continuous differential equations.

Periodic Functions: For periodic functions, including a simple sinuisodal function (periodic)

and two incommensurate sinuisoidal functions (quasiperiodic), our results in Table A.2 show that

all methods, including mutual information, provide accurate selections of 𝜏 except the Fourier

spectrum analysis via sublevel sets. This method results in a significantly high suggestion for 𝜏. In

regards to the dimension selection, our results using the permutation statistics method described in

Section 2.4.3 agree with the expert suggested minimum dimension of 𝑛 = 4.

Maps: When selecting the delay parameter for permutations and takens’ embedding for maps we

found that all of the topological methods suggested accurate delay parameters, while the standard

mutual information methods selected overly large delay parameters when the maps are exhibiting

a chaotic state. Therefor, we suggest the use of one of the topological methods when estimating

the delay parameter for maps. For the permutation dimension we found a suggested dimension

from 𝑛 ∈ [4, 7], in comparison to the expected suggested dimension ranging from 2 to 16. While

the range suggested from the permutations statistics as described in Section 2.4.3 falls within the

range suggested by experts, their range is too broad. Specifically, a dimension greater than 9 can be

computationally cumbersome, and a dimension lower than 4 would not show significant differences

for dynamic state changes. Therefor, we suggest the user of our narrower range of dimension from

𝑛 ∈ [5, 6] for maps which agrees with our optimal PE parameter range.

Medical Data: The medical data used in this study Inherently has some degree of additive noise,

which provides a first glimpse into the noise robustness of the delay parameter selection methods

investigated. However, a more thorough investigation will be provided in Section 2.4.4. From

our analysis, we disagree with the delay from experts suggested as 𝜏 ∈ [1, 3], but rather the delay

selected from either mutual information or the time domain analysis of sublevel set persistence.

The general selection for delays between 1 and 3 does not account for the large variation in possible

sampling rates. If the small delay is used in conjunction with a high sampling rate, an inaccurate

delay could be selected resulting in indistinguishable permutation entropy values as the dynamic
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state changes. In regards, to the permutation dimension 𝑛, we believe that a more appropriate

dimension, in comparison to the values suggested by experts, should range between 5 and 7 for

medical data applications.

Robustness to Additive Noise To determine the noise robustness of the delay parameter selection

methods investigated in this work we will use an example time series. Specifically, we will use the

𝑥 solution to the periodic Rossler system. We will use additive Gasussian noise N (𝜇 = 0, 𝜎2),

where 𝜎 is determined from the Signal-to-Noise Ratio (SNR). The SNR is a measurement of how

much noise there is in the signal with units of decibels (dB)and is calculated as

SNRdB = 20 log10

(
𝐴signal

𝐴noise

)
, (2.32)

where 𝐴signal and 𝐴noise are the Root-Mean-Square (RMS) amplitudes of the signal and additive

noise, respectively. If we manipulate Eq. (2.32) we can solve for 𝐴noise as

𝐴noise = 𝐴signal10−
SNRdB

20 . (2.33)

Because 𝑥(𝑡) is a discrete sampling from a continous system with 𝑡 = [𝑡1, 𝑡2, . . . , 𝑡𝑁 ], we calculate

𝐴signal as

𝐴signal =

√√√
1
𝑁

𝑁∑︁
𝑖=1
[𝑥(𝑡𝑖) − 𝑥]2, (2.34)

where 𝑥 is the mean of 𝑥 and is subtracted from 𝑥(𝑡) to center the signal about zero. with 𝐴noise

calculated, we set the additive noise standard deviation as 𝜎 = 𝐴noise.

We applied a sweep of the SNR from 1 to 40 in increments of 1 with each SNR being repeated

for 30 unique realizations of the noise N (0, 𝐴2
noise). For each realization of 𝑥(𝑡) +N (0, 𝐴2

noise) the

delay parameters were calculated using all 5 methods: sublevel set persistence of the frequency

domain 𝜏SLf , sublevel set persistence of the time domain 𝜏SLt , the minima of SW1PerS score 𝜏PHs ,

the maxima of the maximum persistence 𝜏PHL , and mutual information 𝜏MI. The mean and standard

deviation of the 30 trials at each SNR were calulcated for each method as shown in Fig. 2.27.

Figure 2.27 shows that the sublevel set persistence methods fail to provide an accurate delay 𝜏 in

comparison to the expert suggested delay 𝜏exp. = 9 when SNR < 10 dB. While this does show a limit
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Figure 2.27: Noise robustness analysis of the delay parameter selection using the Rossler system
with incriminating additive noise. The mean and standard deviation as error bars of the delay
parameters from 30 trials at each SNR were calculated using sublevel set persistence of the frequency
domain 𝜏SLf , sublevel set persistence of the time domain 𝜏SLt , the minima of SW1PerS score 𝜏PHs ,
the maxima of the maximum persistence 𝜏PHL , and mutual information 𝜏MI.

for the sublevel set persistence methods, SNR values below 10 dB are uncommon since this level

of noise contamination is not considered acceptable for a signal with a rule-of-thumb requirement

of SNR > 15 dB. However, the 1-D Persistent homology methods and mutual information provide

accurate delay parameter selection down to an SNR of 2 dB.

Robustness to Signal Length A common issue with signal processing and time series analysis

methods is their limited functionality with smaller sets of data available, which has been used to

analyze the sentitivty of the delay parameter selection [63]. Here we will investigate the limitations

of these methods in the face of short time series. We will do this analysis by incrementing the

length of the time series with the PE parameters calculated at each increment. For our analysis

we will again use the Rossler system. Specifically, we incremented the length of the signal from

𝐿 = 75 to 1000 in steps of 25 (see Fig. 2.28. However, if this type of analysis is not available for

the data set being analyzed, for time series analysis applications it is commonly suggested to have

a data length of 𝐿 = 4000 for continuous dynamical systems and and 𝐿 = 500 for maps [250].

In Fig. 2.28 we see that all of the methods reach an accurate value of 𝜏, in comparison to the

expert suggested 𝜏 = 9 when the time series is atleast 125 data points long. An important note to

make is that this result is not general for all continuous dynamical systems. The required length
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Figure 2.28: Signal length robustness analysis of the delay parameter selection using the Rossler
system with incrementing signal length from 75 to 1000 in steps of 25. The delay parameters were
calculated at each 𝐿 using set persistence of the frequency domain 𝜏SLf , sublevel set persistence of
the time domain 𝜏SLt , the minima of SW1PerS score 𝜏PHs , the maxima of the maximum persistence
𝜏PHL , and mutual information 𝜏MI.

of the signal is going to vary depending on the sampling rate of the time series. To determine

a general requirement for the methods we repeated this analysis method for all of the systems

shown in Table A.2. Our result from this analysis found that, in general, 𝐿 ≥ 15𝜏 for selecting an

appropriate PE and state space reconstruction delay 𝜏 using the TDA-based methods described in

this manuscript.
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CHAPTER 3

PERSISTENT HOMOLOGY OF COMPLEX NETWORKS

This chapter of my research investigates methods for mapping time series data in discrete complex

networks whose topology can be used to infer meaningful characteristics about the underlying

dynamics of the system. The topology of these complex networks is measured using persistent

homology.
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Figure 3.1: Comparison between ordinal partition networks generated from 𝑥-solution of R¥ossler
system for both periodic (a) and chaotic (b) time series.

These networks have the potential to provide new insights into the systems driving the time series

outputs. For instance, periodic time series tend to create transitional networks with overarching

circular structure, while those arising from chaotic systems have a seemingly unorganized state

transition entanglement (see, for example, the OPNs in 3.1). Further, networks can provide an

efficient approach for approximating topological entropy of low-dimensional chaotic systems [205].

However, practitioners often only have access to standard network analysis tools to quantify the

resulting outputs such as centrality measures or average path length, and these measures can only

do so much to quantify the overarching structure of the graph. The power of combining network

approaches to signal processing with TDA is that there is the potential for novel methods for

encoding the overall structure of the network in a quantifiable, robust manner.

My work is the first to bring the tools of TDA to these networks. My work [162] provides a

novel combination of persistent homology and network methods to yield a compressed, multi-scale

representation of complex networks that can distinguish between dynamic states such as periodic

and chaotic behavior. Applying a filtration of the simplicial complex enables us to track the changes
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in homology classes over the course of the filtration through a persistence diagram. The persistence

diagram encodes information about the loop structures and corresponding periodicity of the signal.

I then extract existing as well as new geometric and entropy based point summaries from the

persistence diagram. I can also make direct comparisons between persistence diagrams using

distance measures and multi-scale projections. In [162], I showed that persistence-based point

summaries yield a clearer distinction, compared to traditional statistics, of the dynamic behavior

for a variety of simulated dynamical systems and electrocardiogram and electroencephalogram data

sets. Additionally, I showed that the persistence-based point summaries are more robust to noise

than existing graph-based scores.

In section 3.1 I introduce the field of complex network representation of signals and the complex

networks I use. Section 3.2 overviews how persistent homology is applied to the resulting networks

including the various distances that can be used as well as summary statistics. Several examples are

provided in Section 3.3 to demonstrate the procedure for forming the complex networks as well as

the correct application of persistent homology per application. In section 3.4, I provide the results

from analyzing the complex networks using persistent homology.

3.1 Complex Networks

Network representations of time series generally fall within three categories: proximity networks,

visibility graphs, and transitional networks. These types of complex networks are discussed in the

following paragraphs.

Proximity networks are formed from proximity conditions in the reconstructed state space.

Examples include the 𝑘-Nearest Neighbors (𝑘-NN) [118] and recurrence networks [68] (which are

essentially the network underlying the Vietoris-Rips complex of the point cloud). For proximity

networks, the graph representation includes all points in the state space reconstruction as part of the

vertex set. When studying the shape of these networks with TDA based tools, careful consideration

is needed in the selection of 𝑘 or 𝜖 to generate a graph with the expected topology. Additionally,

due to each point in the state space serving as a vertex, there are no speed gains in computing
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persistent homology in comparison to the original state space reconstruction since the size of the

simplicial complex remains the same in both representations. While proximity networks encode

the dynamics of the signal into its structure, they do not store temporal information.

Transitional networks partition a time series {𝑥(𝑡)} such that it has a vertex set of states {𝑠𝑖}

for each visited state and an edge for temporal transitions between states. The resulting transitional

network constitutes a finite state space 𝐾 = {𝑠𝑖}𝑖∈N, where 𝐾 is compact and every map 𝜙 : 𝐾 → 𝐾

is continuous. One interpretation of a topological system on a finite state space is as a finite graph

where the edges describe the action of 𝜙, i.e., if there is a directed edge from vertex 𝑖 to vertex 𝑗 , then

𝜙(𝑖) = 𝑗 . Therefore, the transitional networks I obtain from a time series are topological systems,

and they yield themselves to further analysis within the framework of topological dynamics. The

two most common transitional networks for time series analysis are the ordinal partition network

(OPN) [146] and the Coarse Grained State Space Network (CGSSN) [31, 237, 239]. Both of these

transitional networks are formed by first reconstructing the state space through Takens’ embedding

as 𝜒 = {Xi = (𝑥𝑖, 𝑥𝑖+𝜏, . . . , 𝑥𝑖+(𝑑−1)𝜏)} ⊂ R𝑑 . The OPN is generated by defining states from the

lexicographic order of the ordinal ranking of Xi. This method of partitioning the state space

results in the vertex set of states as the 𝑑! possible permutations Π = (𝜋1, . . . 𝜋𝑑!) representing

the regions of R𝑑 separated by hyperplanes; see the example across the top of 3.7. Similarly,

using the same example signal, the CGSSN is shown along the bottom of 3.7. The CGSSN is

formed by defining a set of states as 𝑑-orthotopes that partition the state space occupied by Xi in a

data-driven manner. For the example shown in Fig. 3.7 I defined 8 equal sized cubes (3-orthotopes)

that represent the possible states, where the temporal transitions between states are tracked to add

edges in the corresponding network. Both of these examples demonstrate the periodic structure of

the embedding being encoded into a cyclic network structure.

The visibility graph [5,89,120–123,140,141,167,242,249], an idea taken from computational

geometry [57], is defined by including a vertex for each data point, and including an edge between

vertices if a line can be drawn between the two which does not pass below any other data point;

see [168] for a review. The visibility graph is closely related to the sublevelset persistence computed
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directly on the time series rather than on the Takens embedding. As my focus for this work is related

to building upon the strong theory developed for the Takens embedding, I do not expect to utilize

these constructions at this stage of the work. Additionally, visibility graphs, unfortunately, do not

yield themselves well to be analyzed with persistent homology due to the lack of periodic cycle

structure (e.g., loops) associated to regular dynamics. As such, I will not be investigating them.

3.1.1 Background

State Space Reconstruction Takens’ theorem forms one of the theoretical foundations for the

analysis of time series corresponding to nonlinear, deterministic dynamical systems [226] and is

often used to form complex networks. It basically states that in general it is possible to obtain an

embedding of the attractor of a deterministic dynamical system from one-dimensional measure-

ments of the system’s evolution in time. The embedding of the signal is commonly known as the

State Space Reconstruction (SSR).

An embedding is a smooth map Ψ : 𝑀 → 𝑁 between the manifolds 𝑀 and 𝑁 that diffeomor-

phically maps 𝑀 to 𝑁 . Specifically, assume that the state of a system is described for any time

𝑡 ∈ R by a point x on an 𝑚-dimensional manifold 𝑀 ⊆ R𝑑 . The flow for this system is given by

a map 𝜙𝑡 (x) : 𝑀 × R → 𝑀 which describes the evolution of the state x for any time 𝑡. In reality,

I typically do not have access to x, but rather have measurements of x via an observation function

𝛽(x) : 𝑀 → R. The observation function has a time evolution 𝛽(𝜙𝑡 (x)), and in practice it is often

a one-dimensional, discrete and equi-spaced time series of the form {𝛽𝑛}𝑛∈N.

Although the state x can lie in a higher dimension, the time series {𝛽𝑛} is one-dimensional.

Nevertheless, Takens’ theorem states that by fixing an embedding dimension 𝑑 ≥ 2𝑚 + 1, where 𝑚

is the dimension of a compact manifold 𝑀 , and a time lag 𝜏 > 0, then the map Φ𝜙,𝛽 : 𝑀 → R𝑑

given by

Φ𝜙,𝛽 = (𝛽(x), 𝛽(𝜙(x)), . . . , 𝛽(𝜙𝑑−1(x)))

= (𝛽(x𝑡), 𝛽(x𝑡+𝜏), 𝛽(x𝑡+2𝜏), . . . , 𝛽(x𝑡+(𝑑−1)𝜏)),
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is an embedding of 𝑀 , where 𝜙𝑑−1 is the composition of 𝜙 𝑑 − 1 times and x𝑡 is the value of x at

time 𝑡.

Theoretically, any time lag 𝜏 can be used if the noise-free data is of infinite precision; however,

in practice, the choice of 𝜏 is important in the delay reconstruction. The other component in Takens’

embedding is the embedding dimension 𝑑, which must be large enough to unfold the attractor. If

this dimension in not sufficient, then some points can falsely appear to be neighbors at a smaller

dimension due to the projection of the attractor onto a lower dimension. The appropriate method

for selecting both of these parameters is thoroughly described in Chapter 2.

3.1.2 Graphs

A graph 𝐺 = (𝑉, 𝐸) is a collection of vertices 𝑉 with edges 𝐸 = {𝑢𝑣} ⊆ 𝑉 × 𝑉 . In this paper, I

assume all graphs are simple (no loops or multiedges) and undirected. The complete graph on the

vertex set 𝑉 is the graph with all edges included, i.e. 𝐸 = {𝑢𝑣 | 𝑢 ≠ 𝑣 ∈ 𝑉}.

I will reference a few special graphs. The cycle graph on 𝑛 vertices is the graph 𝐺 = (𝑉, 𝐸)

with 𝑉 = {𝑣1, · · · , 𝑣𝑛}, and 𝐸 = {𝑣𝑖𝑣𝑖+1 | 1 ≤ 𝑖 < 𝑛} ∪ {𝑣𝑛𝑣1}; i.e. it forms a closed path (cycle)

where no repetition occurs except for the starting and ending vertex. The complete graph on 𝑛

vertices is the graph 𝐺 = (𝑉, 𝐸) with 𝑉 = {𝑣1, · · · , 𝑣𝑛}, and 𝐸 = {𝑣𝑖𝑣 𝑗 | 𝑖 ≠ 𝑗}. That is, it is the

graph with 𝑛 vertices and all possible edges are included.

I will also work with weighted graphs, 𝐺 = (𝑉, 𝐸, 𝜔) where 𝜔 : 𝐸 → R gives a weight for each

edge in the graph. In this paper, I assume all weights are non-negative, 𝜔 : 𝐸 → R≥0. Given an

ordering of the vertices 𝑉 = {𝑣1, · · · , 𝑣𝑛}, a graph can be stored in an adjacency matrix A where

entry A𝑖 𝑗 = 1 if there is an edge 𝑣𝑖𝑣 𝑗 ∈ 𝐸 and 0 otherwise. This can be edited to store the weighting

information by setting A𝑖 𝑗 = 𝜔(𝑣𝑖𝑣 𝑗 ) if 𝑣𝑖𝑣 𝑗 ∈ 𝐸 and 0 otherwise.

A path 𝛾 in a graph is an ordered collection of non-repeated vertices 𝛾 = 𝑢0𝑢1 · · · 𝑢𝑘 where

𝑢𝑖𝑢𝑖+1 ∈ 𝐸 for every 𝑖. The length of the path is the number of edges used, namely len(𝛾) = 𝑘 in

the above notation. The distance between two vertices 𝑢 and 𝑣 is the minimum length of all paths

from 𝑢 to 𝑣 and is denoted 𝑑 (𝑢, 𝑣). Given an ordering of the vertices, this information can be stored
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in a distance matrix D where D𝑖 𝑗 = 𝑑 (𝑣𝑖, 𝑣 𝑗 ). Thus an unweighted graph 𝐺 = (𝑉, 𝐸) gives rise to

a weighted complete graph on the vertex set 𝑉 by setting the weight 𝜔(𝑢𝑣) = 𝑑 (𝑢, 𝑣).

3.1.3 Proximity and Transition Networks

Proximity Network: 𝑘-Nearest Neighbor Graph Given a collection of points in R𝑑 , the 𝑘-

nearest neighbor graph, or 𝑘-NN, is a commonly used method to build a graph. Fix 𝑘 ∈ Z≥0. The

(undirected) 𝑘-NN graph has a vertex set in 1-1 correspondence with the point cloud, so I abuse

notation and write 𝑣𝑖 for both the point 𝑣𝑖 ∈ R𝑑 , and for the vertex 𝑣𝑖 ∈ 𝑉 . An edge 𝑣𝑖𝑣 𝑗 is included

if 𝑣𝑖 is among the 𝑘th nearest neighbors of 𝑣 𝑗 . When required, I can give a weighting for this graph

by setting 𝜔(𝑣𝑖𝑣 𝑗 ) = ∥𝑣𝑖 − 𝑣 𝑗 ∥.

Transition Networks: Ordinal Partition and Coarse Grained State Space Networks For a

graph 𝐺 = (𝑉, 𝐸) given an ordering of the vertices 𝑉 = {𝑣1, · · · , 𝑣𝑛}, the graph can be stored in an

adjacency matrix A where the weighting information is stored by setting A𝑖 𝑗 = 𝑤 (𝑣𝑖 ,𝑣 𝑗 ) if 𝑣𝑖𝑣 𝑗 ∈ 𝐸

and 0 otherwise.

Transitional networks are generated from a graph formation technique for time series data.

They are formed through a chronologically ordered sequence of symbols or states. For time series

analysis, these states are mapped from the measurement signal. Specifically, I first use a state

space reconstruction and then assign a symbolic representation for each vector in the SSR. Our

definition of the state space reconstruction is slightly different for discretely sampled time series

data 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝐿] with 𝐿 as the number of samples from the signal assuming the signal was

sampled at uniform time stamps 𝑡 = [𝑡1, 𝑡2, . . . , 𝑡𝐿] with sampling frequency 𝑓𝑠. An SSR vector of

a discrete sampled signal is defined as

𝑋𝑖 = [𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏, . . . , 𝑥𝑖+𝜏(𝑛−1)] (3.1)

with 𝑖 ∈ Z ∩ [1, 𝐿 − 𝜏(𝑛 − 1)], 𝜏 ∈ Z.

To form a symbolic sequence from the time series data we implement a function to map the

SSR to a set of symbols or an alphabet A of possible symbols as 𝑓 : 𝑣𝑖 → 𝑠 𝑗 , where 𝑠 𝑗 ∈ A is a
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symbol from the alphabet. In this work we consider the symbols from the alphabet as integers such

that 𝑠𝑖 ∈ A = Z∩ [1, 𝑁], where 𝑁 is the number of possible symbols. Applying this mapping over

all embedding vectors we get a symbol sequence as 𝑆 = [𝑠1, 𝑠2, . . . , 𝑠𝐿−𝜏(𝑛−1)].

The symbol sequence 𝑆 forms a transitional network by considering a graph 𝐺 = (𝑉, 𝐸). We

represent the graph using the adjacency matrix A data structure of size 𝑁 × 𝑁 . We add edges to

the graph via the symbolic transitions with an edge between row 𝑠𝑖 and column 𝑠 𝑗 when there is

a transition from 𝑠𝑖 to 𝑠 𝑗 . This is represented in the adjacency matrix structure by incrementing

the value of A𝑠𝑖 ,𝑠 𝑗 by one for each transition between 𝑠𝑖 and 𝑠 𝑗 , where A begins as a zero matrix.

We set the total number of transitions between two nodes 𝑠𝑖 and 𝑠 𝑗 as the edge weight 𝑤 (𝑠𝑖 ,𝑠 𝑗 ) .

To better illustrate this process take the example of a simple cycle shown in Fig. 3.2. In this

example we take the symbol or state sequence 𝑆 on the left side of Fig. 3.2 with symbols in the

alphabet A = [1, 2, 3, 4] and create a network in the middle of Fig. 3.2. This network is represented

as a directed and weighted adjacency matrix as shown on the right side of Fig. 3.2. With an

understanding of transitional networks and their formation. I next introduce two commonly used

method for assigning symbolic representations to the SSR vectors.

Figure 3.2: Example formation of a weighted transitional network as a graph (middle figure) and
adjacency matrix (right figure) given a state sequence 𝑆 (left figure).

The ordinal partition network [146,216] provides a relatively simple method to assign symbolic

representations for the SSR vectors to form a transition network. This construction arose as a

generalization of the concept of permutation entropy [14]. The basic idea of the OPN construction

is to replace each SSR vector 𝑋𝑖 with a permutation 𝜋 where the vector 𝑋𝑖 is assigned to a

permutation based on the sorted order of its coordinates. Specifically, the permutation 𝜋 is the one

in the set of 𝑛! possible permutations for which 𝑥(𝑡+𝜋(0)𝜏) ≤ 𝑥(𝑡+𝜋(1)𝜏) ≤ · · · ≤ 𝑥(𝑡+𝜋(𝑛−1)𝜏),
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where 𝜋(𝑖) is the permutation value at index 𝑖; see the top row (OP) of Fig. 3.3 for an example.

Then the OPN is built with a vertex set of encountered permutations in the sequence 𝑆 with an edge

included if the ordered point cloud passes from one permutation to the other.

Figure 3.3: Assignment of Ordinal Partition (OP) or Coarse Grained (CG) state for example
dimension 3 SSR vector.

The coarse grained state space network is created by partitioning the space occupied by the

SSR into discrete 𝑛-dimensional hypercubes. This is done by first digitizing the SSR vectors

using a digitization function 𝜓(𝜒𝑖, 𝐵), where 𝐵 = [𝐵(1), 𝐵(2), . . . , 𝐵(𝑏 − 1)] is the monotonically

increasing discrete binning of the vector’s coordinates into 𝑏 bins. We do this using an equal sized

binning method. Specifically, the binning 𝐵 is a vector of bin edges needs to encapsulate the entire

range of signal values such that max(𝑥) ≤ 𝐵(𝑏) and min(𝑥) ≥ 𝐵(1). Let us assume our binning

scheme has a total of 𝑏 bins such that our digitized 𝜒𝑖 is defined as

𝑝𝑖 = 𝜓(𝛿𝑖, 𝐵) = [𝑝𝑖 (1), 𝑝𝑖 (2), . . . , 𝑝𝑖 (𝑛 − 1)], (3.2)

where 𝑝𝑖 ( 𝑗) is the bin index that 𝜒𝑖 ( 𝑗) is bounded by with 𝐵(𝑝𝑖 ( 𝑗)) < 𝜒𝑖 ( 𝑗) ≤ 𝐵(𝑝𝑖 ( 𝑗) + 1). We
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now have our digitized SSR vectors 𝑝𝑖 which can be assigned a unique symbolic representation as

𝑠𝑖 =

𝑛−1∑︁
𝑗=1
(𝜒𝑖 ( 𝑗) − 1)𝑏𝑛−1− 𝑗 , (3.3)

where 𝑠𝑖 ∈ [0, 𝑏𝑛−1] for a total of 𝑏𝑛 possible states. This symbolic assignment is computationally

efficient since it does not require a comparison to a bank of possible states as is required with

ordinal partition networks. An example assignment is shown in the bottom CG row of Fig. 3.3 with

𝑏 = 8 and 𝑛 = 3.

3.2 Topological Analysis of Complex Networks

In order to analyze the shape of the constructed graphs, we turn to a generalization of the graph

known as a simplicial complex, and a measurement tool known as persistent homology. We direct

the interested reader looking for a more in depth discussion to [65,92,158,170]. I will first introduce

persistent homology in how it applies to a distance matrix, which is easily extended to graphs. I

will follow this introduction to some methods for generating a distance matrix from a graph.

3.2.1 Persistent Homology of Complex Networks

Simplicial complexes A simplicial complex can be thought of as a generalization of the concept

of a graph to higher dimensions. Given a vertex set 𝑉 , a simplex 𝜎 ⊆ 𝑉 is simply a collection of

vertices. The dimension of a simplex 𝜎 is dim(𝜎) = |𝜎 | − 1. The simplex 𝜎 is a face of 𝜏, denoted

𝜎 ⪯ 𝜏 if 𝜎 ⊆ 𝜏. A simplicial complex 𝐾 is a collection of simplices 𝜎 ⊆ 𝑉 such that if 𝜎 ∈ 𝐾

and 𝜏 ⪯ 𝜎, then 𝜏 ∈ 𝐾 . Equivalently stated, 𝐾 is a collection of simplices which is closed under

the face relation. The dimension of a simplicial complex is the largest dimension of its simplices,

dim(𝐾) = max𝜎∈𝐾 dim(𝜎). The 𝑑-skeleton of a simplicial complex is all simplices of 𝐾 with

dimension at most 𝑑, 𝐾 (𝑑) = {𝜎 ∈ 𝐾 | dim(𝜎) ≤ 𝑑}.

Given a graph 𝐺 = (𝑉, 𝐸), I can construct the clique complex

𝐾 (𝐺) = {𝜎 ⊆ 𝑉 | 𝑢𝑣 ∈ 𝐸 for all 𝑢 ≠ 𝑣 ∈ 𝜎}.
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This is sometimes called the flag complex. The clique complex of the complete graph on 𝑛 vertices

is called the complete simplicial complex on 𝑛 vertices.

A filtration is a collection of nested simplicial complexes

𝐾1 ⊆ 𝐾2 ⊆ · · · ⊆ 𝐾𝑁 .

See the bottom row of 3.4 for an example of a filtration. A weighted graph gives rise to a filtration

I will make use of extensively. Given a weighted graph 𝐺 = (𝑉, 𝐸, 𝜔) and 𝑎 ∈ R, I set

𝐾𝑎 = {𝜎 ∈ 𝐾 (𝐺) | 𝜔(𝑢𝑣) ≤ 𝑎 for all 𝑢 ≠ 𝑣 ∈ 𝜎}.

Since 𝐾𝑎 ⊆ 𝐾𝑏 for 𝑎 ≤ 𝑏, this can be viewed as a filtration

𝐾𝑎1 ⊆ 𝐾𝑎2 ⊆ · · · ⊆ 𝐾𝑎𝑁

for any collection 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑁 .

In particular, for this paper, I will build a filtration from an unweighted graph𝐺 by the following

procedure. First, construct the pairwise distance matrix for the vertices of 𝐺 using shortest paths.

This can be viewed as a weighting on the complete graph with the same vertex set as 𝐺. Thus,

it induces a filtration on the complete simplicial complex 𝐾 where the 1-skeleton of 𝐾𝑎 includes

edges between any pair of vertices 𝑢 and 𝑣 for which 𝑑 (𝑢, 𝑣) ≤ 𝑎. See 3.4 for an example.

Homology Traditional homology [92, 158] counts the number of structures of a particular di-

mension in a given topological space, which in our context will be a simplicial complex. In this

context, the structures measured can be connected components (0-dimensional structure), loops

(1-dimensional structure), voids (2-dimensional structure), and higher dimensional analogues as

needed.

For the purposes of this paper, I will only ever need 0- and 1-dimensional persistent homology

so I provide the background necessary in these contexts. Further, as a note for the expert, I always

assume homology with Z2 coefficients which removes the need to be careful about orientation.

I start by describing homology. Assume I are given a simplicial complex 𝐾 . Say the 𝑑-

dimensional simplices in 𝐾 are denoted 𝜎1, · · · , 𝜎ℓ. A 𝑑-dimensional chain is a formal sum of the
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𝑑-dimensional simplices 𝛼 =
∑ℓ
𝑖=1 𝑎𝑖𝜎𝑖. I assume the coefficients 𝑎𝑖 ∈ Z2 = {0, 1} and addition

is performed mod 2. For two chains 𝛼 =
∑ℓ
𝑖=1 𝑎𝑖𝜎𝑖 and 𝛽 =

∑ℓ
𝑖=1 𝑏𝑖𝜎𝑖, 𝛼 + 𝛽 =

∑ℓ
𝑖=1(𝑎𝑖 + 𝑏𝑖)𝜎𝑖.

The collection of all 𝑑-dimensional chains forms a vector space denoted 𝐶𝑑 (𝐾). The boundary of

a given 𝑑-simplex is

𝜕𝑑 (𝜎) =
∑︁

𝜏≺𝜎,dim(𝜏)=𝑑−1
𝜏.

That is, it is the formal sum of the simplices of exactly one lower dimension. If dim(𝜎) = 0, that is,

if 𝜎 is a vertex, then I set 𝜕𝑑 (𝜎) = 0. The boundary operator 𝜕𝑑 : 𝐶𝑑 (𝐾) → 𝐶𝑑−1(𝐾) is given by

𝜕𝑑 (𝛼) = 𝜕𝑑

(
ℓ∑︁
𝑖=1

𝑎𝑖𝜎𝑖

)
=

∑︁
𝑎𝑖𝜕𝑑 (𝜎𝑖).

A 𝑑-chain 𝛼 ∈ 𝐶𝑑 (𝐾) is a cycle if 𝜕𝑑 (𝛼) = 0; it is a boundary if there is a 𝑑 +1-chain 𝛽 such that

𝜕𝑑+1(𝛽) = 𝛼. The group of 𝑑-dimensional cycles is denoted 𝑍𝑑 (𝐾); the boundaries are denoted

𝐵𝑑 (𝐾).

In particular, any 0-chain is a 0-cycle since 𝜕0(𝛼) = 0 for any 𝛼. A 1-chain is a 1-cycle iff the

1-simplices (i.e., edges) with a coefficient of 1 form a closed loop. It is a fundamental exercise in

homology to see that 𝜕𝑑𝜕𝑑+1 = 0 and therefore that 𝐵𝑑 (𝐾) ⊆ 𝑍𝑑 (𝐾). The 𝑑-dimensional homology

group is 𝐻𝑑 (𝐾) = 𝑍𝑑 (𝐾)/𝐵𝑑 (𝐾). An element of 𝐻𝑑 (𝐾) is called a homology class and is denoted

[𝛼] for 𝛼 ∈ 𝑍𝑑 (𝐾) where [𝛼] = {𝛼 + 𝜕 (𝛽) | 𝛽 ∈ 𝐶𝑑+1(𝐾)}. I say that the class is represented by

𝛼, but note that any element of [𝛼] can be used as a representative so this choice is by no means

unique.

In the particular case of 0-dimensional homology, there is a unique class in 𝐻0(𝐾) for each

connected component of 𝐾 . For 1-dimensional homology, I have one homology class for each

“hole” in the complex.

Persistent homology We next look to a more modern viewpoint of homology which is particularly

useful for data analysis, persistent homology. In this case, we study a changing simplicial complex

and encode this information via the changing homology. In explaining persistence, we will follow

the example of Fig. 3.4 for the setting used in this work where the input data is a weighted network.
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Figure 3.4: Persistent homology of weighted complex network. Top left shows the weighted
network with corresponding adjacency matrix to its right. Third is the distance matrix and then at
the top right is the persistence diagram of one-dimensional features. The bottom row shows the
filtration at critical values.

A filtration of a simplicial complex 𝐾 is a collection of nested simplicial complexes

𝐾1 ⊆ 𝐾2 ⊆ · · · ⊆ 𝐾𝑁 = 𝐾.

See the bottom row of Fig. 3.4 for an example of a filtration. In this work, we will be focused on

the following filtration which arises from finite metric space; in our case, this is given as a pairwise

distance matrix D ∈ R𝑛×𝑛≥0 , obtained from a weighted graph as described in Sec. 3.2.2. Set the

vertex set to be 𝑉 = [1, · · · , 𝑛] and for a fixed 𝑎 ∈ R, let

𝐾𝑎 = {𝜎 ⊂ 𝑉 | D(𝑢, 𝑣) ≤ 𝑎 for all 𝑢 ≠ 𝑣 ∈ 𝜎}.

This can be thought of as the clique complex on the graph with edges given by all pairs of vertices

with distance at most 𝑎. Further, since 𝐾𝑎 ⊆ 𝐾𝑏 for 𝑎 ≤ 𝑏, this construction gives rise to a filtration

𝐾𝑎1 ⊆ 𝐾𝑎2 ⊆ · · · ⊆ 𝐾𝑎𝑁

for any collection 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑁 .

Fix a dimension 𝑑. For any inclusion of one simplicial complex to another 𝐿 ↩→ 𝐾 , there is an

induced map on the 𝑑-chains 𝜄 : 𝐶𝑑 (𝐿) → 𝐶𝑑 (𝐾) by simply viewing any chain in the small complex

as one in the larger. Less obviously, this extends to a map on homology 𝜄∗ : 𝐻𝑑 (𝐿) → 𝐻𝑑 (𝐾) by

sending [𝛼] ∈ 𝐻𝑑 (𝐿) to the class in 𝐻𝑑 (𝐾) with the same representative. That this is well defined
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is a non-trivial exercise in the definitions [92]. Putting this together, given a filtration

𝐾𝑎1 ⊆ 𝐾𝑎2 ⊆ · · · ⊆ 𝐾𝑎𝑁

there is a sequence of linear transformations on the homology

𝐻𝑑 (𝐾𝑎1) → 𝐻𝑑 (𝐾𝑎2) → · · · → 𝐻𝑑 (𝐾𝑎𝑁 ).

A class [𝛼] ∈ 𝐻𝑑 (𝐾𝑎𝑖 ) is said to be born at 𝑎𝑖 if it is not in the image of the map 𝐻𝑑 (𝐾𝑎𝑖−1) →

𝐻𝑑 (𝐾𝑎𝑖 ). The same class dies at 𝑎 𝑗 if [𝛼] ≠ 0 in 𝐻𝑑 (𝐾𝑎 𝑗−1) but [𝛼] = 0 in 𝐻𝑑 (𝐾𝑎 𝑗
). In the case of

0-dimensional persistence, this feature is encoding the appearance of a new connected component

at 𝐾𝑎𝑖 that was not there previously, and which merges with an older component entering 𝐾𝑎 𝑗
. For

1-dimensional homology, this is the appearance of a loop structure that likewise fills in entering

𝐾𝑎 𝑗
.

The persistence diagram encodes this information as follows. For each class that is born at

𝑎𝑖 and dies at 𝑎 𝑗 , the persistence diagram has a point in R2 at (𝑎𝑖, 𝑎 𝑗 ). Because several features

can appear and disappear at the same times, we allow for repeated points at the same location.

For this reason, a persistence diagram is often denoted as a multiset of its off-diagonal points,

𝐷 = {(𝑏1, 𝑑1), · · · , (𝑏𝑘 , 𝑑𝑘 )}. See the top right of Fig. 3.4 for an example. Note that the farther

a point is from the diagonal, the longer that class persisted in the filtration, which signifies large

scale structure. The lifetime or persistence of a point 𝑥 = (𝑏, 𝑑) in the diagram in a persistence

diagram 𝐷 is given by pers(𝑥) = |𝑏 − 𝑑 |. It is often of interest to investigate only a specific subset

of 𝑑 dimensional features from a persistence diagram, which we represent as 𝐷𝑑 .

3.2.2 Distance Measures for Graphs

We next look at four different ways to define a distance between pairs of vertices given an input

(weighted) graph. In each case, we generate a distance matrix D where entry D(𝑎, 𝑏) gives the

associated distance between vertices 𝑎 and 𝑏.
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Shortest Unweighted Path Distance The first method, the shortest unweighted path distance,

ignores the weighting information entirely, using only the number of edges to get from vertex 𝑎

to vertex 𝑏. Specifically, D(𝑎, 𝑏) is the number of steps it takes to transition from 𝑎 to 𝑏 through

the shortest path. See the example of Fig. 3.5. The shortest path distance is calculated using the

NetworkX implementation of Dĳkstra’s algorithm [66] with the unweighted adjacency matrix.

Figure 3.5: Example basic graph with corresponding shortest path distance matrix. Highlighted in
red is an example shortest path from node 2 to 5 with shortest path distance 2.

Shortest Weighted Path Distance The second method, the shortest weighted path, similarly only

uses the number of edges between vertex 𝑎 and 𝑏 as the path distance. However, the weighted

information is incorporated through the choice of the path. This is done by choosing the path with

the lowest summed weight of all paths between 𝑎 and 𝑏. To make it such that the path with the

largest weights is used, the inverse of the edge weights is used when calculating the shortest path.

Again, this distance is calculated using the NetworkX implementation of Dĳkstra’s algorithm [66]

but with the inverse of the weighted adjacency matrix.

Weighted Shortest Path The third method, the weighted shortest path is very similar to the

second method. The only variation is that the sum of the edge weights along the path is used as

the distance. The path used is found using the inverse of the edge weights similar to the second

method.

The fourth method for computing distances is the diffusion distance; for more details we direct

the reader to [50]. This is computed using the transition probability distribution matrix P of the

graph, where P(𝑎, 𝑏) is the probability of transitioning to vertex 𝑏 in the next step given you are
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currently at 𝑎. Given the weighted, undirected adjacency matrix A, the transitional probability

matrix is calculated as

P(𝑖, 𝑗) = A(𝑖, 𝑗)∑|𝑉 |
𝑘=1 A(𝑖, 𝑘)

.

This formulation of the probability matrix only has transition probabilities greater then zero for

one step neighbors of 𝑖. However, the transition probabilities for non-adjacent neighbors of node

𝑖 can be calculated using the random walk and the diffusion process. A random walk is the

sequences of nodes visited (𝑎1, 𝑎2, . . .) in 𝑡 steps, where the selection of the next node is based on

the transition probabilities. It is a classic exercise to show that, given P, the probability distribution

for transitioning to vertex 𝑏 from vertex 𝑎 in 𝑡 random walk steps is P𝑡 (𝑎, 𝑏).

Diffusion Distance The diffusion distance is a measure of the degree of connectivity of two nodes

in a connected graph after 𝑡 steps using the lazy transition probability P̃𝑡 based on the possible

random walks of length 𝑡 and is calculated as

𝑑𝑡 (𝑎, 𝑏) =
√︄∑︁
𝑐∈𝑉

1
d(𝑐)

[
P̃𝑡 (𝑎, 𝑐) − P̃𝑡 (𝑏, 𝑐)

]2 (3.4)

where d is the degree vector of the graph with d(𝑖) as the degree of node 𝑖 and P̃ is the lazy transition

probability matrix, where the initial zero diagonal of 𝑃 is set such that P̃ = 1/2(I + P). In other

words, there is an equal probability of staying and leaving at node 𝑖 in a single step. Applying the

diffusion distance to all node pairs results in the distance matrix D𝑡 .

Consider the diffusion distance with two nodes having a connected path with high transition

probability edges or many random walk paths connecting the two, then the diffusion distance

between them will be low. However, if two vertices are only connected through a single, low

probability edge transition from a possible perturbation in the graph, then their diffusion distance

will be large. A common example implementing the diffusion distance is based on assigning P

as a function of the proximity of nodes. Using this formulation of the transition probability, it is

possible to cluster the data based on the distances as demonstrated in [50]. However, due to the

natural transitions that occur in transitional complex networks, the diffusion distance is a natural

solution for incorporating edge weight data into the distance measurement.
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It is important to mention the sensitivity of the diffusion distance D𝑡 to the selection of the

number of walk steps 𝑡. We used an empirical study of 23 continuous dynamical systems to

determine the optimal 𝑡 such that a periodic signal creates a significant point in the persistence

diagram representing the cycle. More details on this analysis are available in the appendix in

Section D.2. We found an optimal value of 𝑑 < 𝑡 < 3𝑑, where 𝑑 is the diameter of the graph.

Specifically, the diameter is measured as the maximum shortest unweighted path between any two

vertices. Intuitively, this value of 𝑡 seems suitable since it allows for a transition probability between

all nodes in the graph. I.e., if 𝑡 ≥ 𝑑 then there is a probability of transitioning between every node

pair in a random walk of length 𝑡.

3.2.3 Point summaries of persistence diagrams

A common issue with persistence diagrams is that they are notoriously difficult to work with as a

summary of data. While they are quantitative in nature, determining differences in structure such

as “has a point far from the diagonal” is often a qualitative procedure. Metrics for persistence

diagrams exist, namely the bottleneck and 𝑝-Wasserstein1 distances, however these objects are not

particularly easy to work with in a statistical or machine learning context. Thus, I will pass to

working with the simplest of featurizations, namely point summaries of a given diagram, which I

also call scores.

Maximum persistence The first very simple but extremely useful point summary is maximum

persistence. Given a persistence diagram 𝐷, the maximum persistence is simply

maxpers(𝐷) = max
𝑥∈𝐷

pers(𝑥).

While this is obviously a very lossy point summary for a persistence diagram, it is quite useful in

that, particularly for applications where the existence of a large circle is of interest, it often does

what I need. See, e.g., [112, 232].

Periodicity Score
1This metric is closely related to but not the same as the eponymous metric from probability theory.
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Figure 3.6: Table of examples showing the lifetime 𝐿𝑛 of the single class (𝑟𝐵, 𝑟𝐷) in the persistence
diagram for the pipeline applied to a cycle with 𝑛 nodes.

Next, I set out to build a point summary which I can use to measure the similarity of our weighted

graph to a cycle graph which is independent of the number of nodes. If 𝐺′ is an unweighted cycle

graph with 𝑛 vertices, then following the procedure of Fig. 3.4 using the shortest path metric, I have

that there is exactly one cycle which is born at 1, and fills in at ⌈𝑛3⌉. See the examples of 3.6. This

means the persistence diagram 𝐷′ has exactly one point (1, ⌈𝑛3⌉), and so I denote the maximum

persistence of this diagram as

𝐿𝑛 = maxpers(𝐷′) =
⌈𝑛
3

⌉
− 1.

Then, assume I are given another unweighted graph 𝐺 with |𝑉 | = 𝑛 and persistence diagram 𝐷. I

define the network periodicity score

𝑃(𝐷) = 1 − maxpers(𝐷)
𝐿𝑛

. (3.5)

This score is an extension of the periodicity score in [177] to unweighted networks, and it has the

property that 𝑃(𝐷) ∈ [0, 1], with 𝑃(𝐷) = 0 iff the input graph 𝐺 is a cycle graph.

The ratio of the number of homology classes to the graph order The next point summary I

define is

𝑀 (𝐷) = |𝐷 ||𝑉 | , (3.6)

which is the reciprocal of the ratio between the number of vertices in the network |𝑉 |, i.e., the order

of the graph, and the number of classes in the persistence diagram |𝐷 |.
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I can think of this number as an approximation of the reciprocal of the number of vertices in each

class, however, this is only an approximation because some classes in 1-D persistence diagram may

share vertices in the network. Note that for a network with 𝑛 nodes, the 0-dimensional persistence

diagram will always have 𝑛 − 1 points, and so this metric is not particularly useful. In this paper, I

only use this summary for 1-dimensional persistence diagrams.

The logic behind this heuristic is that for a periodic signal I would expect to see a small number

of 1-D homology classes in comparison to a chaotic time series. Therefore, for two networks of

similar order but with different dynamic behavior, i.e., one is chaotic and one is periodic, the ratio

𝑀 (𝐷) for the periodic time series will be smaller than its chaotic counterpart.

Normalized Persistent Entropy Persistent entropy is a method for calculating the entropy from

the lifetimes of the points in a persistence diagram, inspired by Shannon entropy. This summary

function, first given by Chintakunta et al. [45], is defined as

𝐸 (𝐷) = −
∑︁
𝑥∈𝐷

pers(𝑥)
ℒ(𝐷) log2

(
pers(𝑥)
ℒ(𝐷)

)
, (3.7)

where ℒ(𝐷) = ∑
𝑥∈𝐷 pers(𝑥) is the sum of lifetimes of points in the diagram. I cannot easily

compare this value across different diagrams with different numbers of points. To deal with this

issue, I provide the following normalization heuristic. Specifically, I normalize 𝐸 as

𝐸′(𝐷) = 𝐸 (𝐷)
log2

(
ℒ(𝐷))

. (3.8)

This normalization allows for an accurate measurement of the entropy even when there are few

significant lifetimes.

3.3 Examples

This section overviews several examples applying transitional networks to time series data. Namely,

I provide applications of both ordinal partition and coarse grained state space networks that highlight

the limitations and benefits of each. Further, I show the benefits of incorporating weight information.

Lastly, I show how these networks can capture the topology of the underlying state space of the

time series. This is done for both synthetic and experimental data.
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r[h]
Figure 3.7: Example formation of the ordinal partition (top) and coarse grained state space (bottom)
networks for 𝑥(𝑡) = sin(𝑡) embedded into R3.

In this work we choose 𝜏 using the method of multi-scale permutation entropy as suggested

in [160] since we are forming permutations to construct the OPN. While an appropriate embedding

dimension 𝑛 for the state space reconstruction may be sufficient, it may not be a high enough

dimension to capture the complexity of the time series. To alleviate this issue, Bandt and Pompe [14]

suggested using higher dimensions (e.g. 𝑛 ∈ [4, 10]) to allow for 𝑛! different states to better capture

the complexity of the time series. In this work we will use a dimension 𝑛 = 6 unless otherwise

stated.

3.3.1 First Example: Ordinal Partition and Coarse Grained State Space Network Compar-
ison

This first example compares the ordinal partition and coarse grained state space networks in terns

of noise robustness.

Let us first start with a simple demonstrative example showing in Fig. 3.7 showing how the

ordinal partition and coarse grained state space networks are related. The example is from embed-

ding a simple sinusoidal function into dimension 𝑛 = 3 creating a circle structure in the state space

reconstruction.

Both network are created by covering the space occupied in the state space reconstruction. For
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ordinal partition networks, the set of all permutations of dimension 𝑛 gives a cover of R𝑛 with

permutation 𝜋𝑖 representing a subspace of R𝑛 given by the intersection of
(𝑑
2
)

inequalities. An

example of these inequality planes and their intersections for a three-dimensional embedding is

shown on the top OPN route of Fig. 3.7. Coarse grained state space networks create a cover using a

set of 𝑛-dimensional hypercubes. These eight cubes are equal-sized for the example in the bottom

of Fig. 3.7. Both network formation techniques capture the periodic structure of the state space

reconstruction with resulting cycle graphs.

Figure 3.8: Example illustrating issue with erraneous permutation transitions when there is additive
noise and a tracjectory close to the hyperplane intersection 𝐻. The three dimensional state space
reconstruction (D) from the signal 𝑥(𝑡) with and without additive noise (A) demonstrate that as the
distance to the hyperdiagonal 𝑑𝐻 (C) becomes small, undesired permutation transitions (B)–with
zoomed in section shown in (E)–occur as shown in the orange highlighted regions.

Robustness to Noise During my work with ordinal partition networks I discovered that they

are not particularly resilient to noise. Indeed, one can think of the ordinal partition network as

being the 1-skeleton of the nerve of a particular closed cover of the state space, delineated by the

hyperplanes 𝑥𝑖 ≤ 𝑥 𝑗 . Consequently, when noise is injected into the system, there are superfluous

transitions when nearing one of these boundaries. This effect becomes even more prominent near

an intersection of multiple hyperplanes. For example, consider the signal and its embedding into

R3 in Fig. 3.8.

As the distance to the hyperdiagonal 𝑑𝐻 becomes small, there is a significant increase in

seemingly superfluous transitions between permutations 𝜋 (highlighted in orange in Fig. 3.8). This
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issue is even more exaggerated when the embedded signal is consistently close to the hyperdiagonal,

which causes networks where no useful network topology can be extracted (e.g. see signal and far

right OPN in Fig. 3.9). This issue can be partly alleviated by including the weight information as

the most probable transition between permutations should still have the highest weight. However,

these superflous transitions can become to severe when the state space reconstruction passes near

the hyperdiagonal. For example, Fig. 3.9 shows the OPN and CGSSN for the signal with and

without noise. This example clearly demonstrates that the CGSSN is the best choice for this signal

with only very minor changes in its shape, while the OPN loses all resemblance of the noise free

network. This loss in structure is due to the nature of the signals reconstructuction passing along

the hyperdiagonl. While the OPN loses its structure, the ordinal partition network does not. This

stability is due to their being no hyperdiagonal between states. At most there are only 8 possible

states that intersection t a single point and no along an edge. This helps preserve the structure of

the network when there is additive noise as it is not possible for the state to superfluously transition

more than 8 states away if the amplitude of the noise is smaller than the edge length of the hypercube

states.

Figure 3.9: Example demonstrating importance of choosing an appropriate network formation
method when there is additive noise in the signal. The CGSSN retains the graph structure when
additive noise, but the OPN network quickly loses all resemblance of the noise free topological
structure even with a small amount of additive noise. 𝑥(𝑡) is the signal, N is additive noise and
𝐺 (𝑥) is the graph formation function of the signal 𝑥.

While this example highlighted a limitation of the OPN, the OPN does have benefits over the

coarse grained state space network. Specifically, the ordinal partition network does not need to be

adaptive to the amplitude of the data as does the CGSSN. Additionally, it has fewer parameters with

only 𝑛 and 𝜏 being selected with the CGSSN requiring an additional number of bins 𝑏 parameter.
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Figure 3.10: Two example weighted cycle graphs of weight 10 with the bottom row having an
additional edge of weight one connecting nodes 0 and 8. The persistence diagram associated to
each of the four distance methods are shown by column both both graphs.

3.3.2 Second Example: Distance Method Comparison

To compare my original [162] work done using the naive shortest unweighted path distance to

the weight incorporating shortest path and diffusion distances, let us look at a simple example that

highlights the issue previously mentioned with the unweighted shortest path not accounting for

weight information. In Fig. 3.10 there are two graphs: on the top is a cycle graph with edge weights

of 10 and on the bottom is the same cycle graph but with an additional single perturbation edge

added between nodes 0 and 8 with a weight of 1. This edge could be caused by additive noise, a

perturbation to the underlying dynamical system, or simply a falsely added state transition in the

OPN formation procedure. If we implement the shortest unweighted path distance for calculating the

persistent homology of the cycle graph we get a single significant point in the resulting persistence

diagram as shown in the top left persistence diagram of Fig. 3.10. However, adding the single,

low-weighted edge splits the graph with the persistence diagram using the shortest unweighted

path distance having two significant points in the persistence diagram (see bottom left diagram of

Fig. 3.10). This is due to the edge weight information being discarded when using the shortest path

distance.

In comparison to the shortest unweighted path distance, the second, third, and fourth columns of
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Fig. 3.10 show the persistence diagrams for both graphs using the shortest weighted path, weighted

shortest path, and diffusion distances, respectively. For all three of these distance methods there

is only a single one-dimensional point in the persistence diagrams for both graphs. Additionally,

both the shortest weighted path and weighted shortest path have identical persistence diagrams

for both graphs. This is due to the shortest weighted path between any two vertices never using

the edge between vertices 0 and 8. For the diffusion distance we also only have a single point in

the persistence diagram for one-dimensional features. This is caused by the weighted information

being used in the diffusion distance calculation where the change in distance from the nodes 0 and

8 is not significantly changed from the addition of the perturbation edge connecting them since it

has a low weight relative to the cycle and the transition probability distributions between vertices

0 and 8 are dissimilar. For calculating the diffusion distance in this example we used 𝑡 = 2𝑑 walk

steps with 𝑑 as the shortest path diameter of the graph.

This example demonstrates the importance of incorporating weight information when calculat-

ing the persistent homology of a complex network. The possibility of these low weight edges is

evident as shown in Fig. 3.8 where there are noise associated edge state transitions when near state

intersections.

3.3.3 Third Example: Periodic and Chaotic Dynamics

The third example qualitatively demonstrates that persistence of OPNs (similar results can be shown

for CGSSNs) can detect the dynamic state of a signal as either periodic or chaotic. The example

signal used here is from the Lorenz system defined as

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, 𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧. (3.9)

The system was simulated with a sampling rate of 100 Hz and system parameters 𝜎 = 10.0,

𝛽 = 8.0/3.0, and 𝜌 = 180.1 for a periodic response or 𝜌 = 181.0 for a chaotic response. This

system was solved for 100 seconds with only the last 20 seconds used to avoid transients.

Figure 3.11 shows the resulting Lorenz system simulation signals 𝑥(𝑡) for periodic (top row of
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Figure 3.11: A comparison of the resulting persistence diagrams for an OPN formed from a periodic
and chaotic signal from the Lorenz system.

figure) and chaotic (bottom row of figure) dynamics with the corresponding ordinal partition state

sequence 𝑆 using dimension 𝑛 = 6 and 𝜏 = 17 selected using multi-scale permutation entropy [160],

OPN, and persistence diagram. For this example I used the diffusion distance with 𝑡 = 2𝑑 walk

steps. This example result demonstrates that the persistence diagram for a periodic signals tend

to have one or few significant points in the persistence diagram of one dimensional features 𝐷1

representing the cyclic nature of the signal. On the other hand, the 𝐷1 for chaotic signal has

many significant points representing the entanglement of the OPN. The other distance methods also

demonstrate similar behavior when comparing the resulting persistence diagrams from periodic

and chaotic dynamics.

3.3.4 Fourth Example: The Magnetic Pendulum

To demonstrate the method applied to experimental data, I will be using a time series obtained

from the angular position 𝜃 (𝑡) of the magnetic pendulum experiment shown in Fig. 5.1 described

in Section 5.1 with base excitation amplitude 𝐴 = 0.08 m and frequency 𝜔 = 1.5 Hz. This forcing

amplitude results in the periodic time series shown in Fig. 3.12-(a). The resulting permutation

sequence as well as the unweighted, undirected network are shown in Figs. 3.12-(b) and (c),
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Figure 3.12: Example of method applied to experimental data with a periodic response Fig. (a).
In Fig. (b) the sequence of permutations are shown for 𝑛 = 6 with the associated ordinal partition
network in Fig. (c). In Fig. (d) the distance matrix (using an unweighted network and short path
distance) is shown, which was used to compute a persistence diagram with multiplicity shown in
Fig. (e) and (f), respectively.

respectively. The network exhibits a rather simple structure with one large loop, two smaller loops,

and two insignificantly small loops. The distance between nodes is shown through a shortest-path

distance matrix (see Fig. 3.12-(d)). With the distance matrix known, the persistence diagram is

obtained, which summarizes the loops as 1-D features with lifetimes of [12, 8, 8, 1, 1]. Additionally,

a histogram is used to show the lifetime multiplicity, i.e., how many points are overlaid in each

location of the persistence diagram. The periodicity score was calculated as 𝑃(𝐷) ≈ 0.61 and the

persistent entropy was calculated as 𝐸′(𝐷) ≈ 0.45 using the lifetimes in Fig. 3.12-(f).

To make a fair comparison, the same process as shown in Fig. 3.12 is applied to a time series

generated from a base excitation with 𝐴 = 0.085 and frequency 𝜔 = 1.5𝐻𝑧, which results in a

chaotic response. The resulting network from the permutation sequence is shown in Fig. 3.13-(a). It

is clear that the network from the chaotic time series shows significantly more loops with, in general,

smaller loop sizes. The size and quantity of these loops are shown in the persistence diagram of

the network with the lifetimes (with multiplicity) shown in Fig. 3.13-(b) and (c), respectively. The

periodicity score was calculated as 𝑃(𝐷) ≈ 0.95 and the persistent entropy was calculated as

𝐸′(𝐷) ≈ 0.90. This examples show how persistent homology of complex networks can be used to

detect a change in complexity of the time series from experimental data.
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Figure 3.13: Example of method applied to experimental data with a chaotic response Fig. (a). In
Fig. (b) the sequence of permutations are shown for 𝑛 = 6 with the associated ordinal partition
network in Fig. (c). In Fig. (d) the distance matrix (using an unweighted network and short path
distance) is shown, which was used to compute a persistence diagram with multiplicity shown in
Fig. (e) and (f), respectively.

3.4 Results

This section compares the persistence-based point summaries and the standard network scores,

and illustrates the ability of these scores to detect dynamic state changes. Specifically, I compare

the point summaries 𝑀 (𝐷1), 𝑃(𝐷1), and 𝐸′(𝐷1) to some commonly used network quantitative

characteristics such as the mean out degree ⟨𝑘⟩, the out degree variance 𝜎2, and the number of

vertices 𝑁 . These comparisons are shown in Section 3.4.1 for a family of trajectories from the

Rössler system, while Section 3.4.1 tabulates the different scores for a variety of dynamical systems.

In Section 3.4.2 I contrast the noise robustness of our approach to the standard network scores for

ordinal partition networks.

3.4.1 Dynamic State Change Detection on the Rössler System

Letting the parameter 𝑎 in the Rossler system vary in the range 0.37 < 𝑎 < 0.43 in steps of

Δ𝑎 = 0.001 and setting 𝛽 = 2 and 𝛾 = 4, I obtain 1201 time series of length 1000 seconds for the
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state 𝑥. I only retain the last 400 seconds of the simulation to allow the trajectory to settle on an

attractor. For the construction of the corresponding 𝑘-NN networks, I sample the time series at 2 Hz

in order to capture a sufficient number of oscillations while avoiding overly large point clouds for

computing persistence. For the Takens’ embedding I use the mutual information function approach

and the nearest neighbor method, respectively, to choose the parameters 𝜏 = 4 and 𝑑 = 7.

For constructing the ordinal partition networks use the higher sampling frequency of 20 Hz,

and I use MPE to select 𝜏 = 40 and 𝑑 = 6. I found that a higher sampling rate for ordinal partition

networks and the resulting longer time series is not an issue due to the maximum number of vertices

not being dependent on the length of the time series, but rather on the motif dimension 𝑑 and time

series complexity. Furthermore, a higher sampling rate tends to improve the detection of periodic

and chaotic time series for ordinal partition networks.

The resulting point summaries were found for both ordinal partition networks (left column plots

of Fig. 3.14) and 𝑘-NN of Takens’ embedding networks (right column plots of Fig. 3.14). The top

two graphs in 3.14 show the bifurcation diagram depicting the local extrema of 𝑥 and the Lyapunov

exponent [19], respectively. The periodic regions (shown as the regions between vertical,dashed,

green lines with a solid green line below) were identified by investigating the bifurcation diagram

and the Lyapunov exponent plots.

For the ordinal networks, the left columns plots of Figure 3.14 show a significant drop in all

six scores for the large periodic window corresponding to approximately 0.409 ≤ 𝑎 ≤ 0.412.

There are also less pronounced drops in these scores for the other shorter periodic windows. These

drops are especially evident for ⟨𝑘⟩, 𝐸′(𝐷1), and 𝑃(𝐷1) where the scores significantly decrease

in comparison to their surrounding values. However, some scores such as ⟨𝑘⟩ are not normalized,

e.g., so that 0 ≤ ⟨𝑘⟩ ≤ 1. Given one time series, and not a parameterized set of series, this makes it

difficult or even impossible to distinguish between chaotic and periodic regions. On the other hand,

the normalized scores that I introduce in this paper, 𝐸′(𝐷1) and 𝑃(𝐷1), suggest periodic regions

when 𝐸′(𝐷1) < 0.5 and 𝑃(𝐷1) < 0.75. It should be noted that the difference between chaotic and

periodic regions, as shown in Section 3.4.2, starts degrading as noise levels are increased.
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Figure 3.14: Rössler system bifurcation for 0.37 < 𝑎 < 0.43 with steps of 0.001. Left column plots
include point summaries calculated from ordinal partition networks with parameters 𝜏 = 40 and
𝑑 = 6; Right column plots show the same results for the 𝑘-NN networks generated from Takens’
embedding with parameters 𝜏 = 4 and 𝑑 = 7. The figure compares point summaries 𝑃(𝐷1),
𝑀 (𝐷1), and 𝐸′(𝐷1) with the Lyapunov exponent 𝜆 [19] and some common network parameters
including the number of vertices 𝑁 , mean out degree ⟨𝑘⟩, and out degree variance 𝜎2.
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Table 3.1: A comparison between persistence diagram point summaries 𝑀 (𝐷1), 𝑃(𝐷1), and
𝐸′(𝐷1) for detecting differences in the networks generated from for periodic (Per.) and chaotic
(Ch.) time series using both 𝑘-NN graphs and ordinal partition graphs.

System/
Data Ref.

𝑘-NN Graph from
Takens’ Embedding Ordinal Partition Graph

𝐸′ (𝐷1 ) 𝑀 (𝐷1 ) 𝑃 (𝐷1 ) 𝐸′ (𝐷1 ) 𝑀 (𝐷1 ) 𝑃 (𝐷1 )
Per. Ch. Per. Ch. Per. Ch. Per. Ch. Per. Ch. Per. Ch.

Chua Circuit C.1 0.00 0.80 0.001 0.19 0.54 0.89 0.21 0.72 0.051 0.19 0.42 0.88
Lorenz C.1 0.04 0.84 0.005 0.16 0.64 0.93 0.18 0.95 0.026 0.36 0.28 0.96
Rossler C.1 0.00 0.85 0.001 0.18 0.50 0.94 0.00 0.89 0.036 0.28 0.33 0.85
Coupled

Lorenz-Rossler C.1 0.00 0.82 0.003 0.16 0.46 0.94 0.00 0.87 0.033 0.35 0.56 0.92

Bi-directional
Rossler C.1 0.00 0.76 0.004 0.13 0.55 0.87 0.25 0.91 0.064 0.29 0.40 0.92

Mackey-Glass C.1 0.00 0.67 0.001 0.07 0.56 0.93 0.30 0.96 0.077 0.37 0.25 0.93
Logistic Map C.1 NA 0.00 0.93 0.125 0.70 0.00 0.91
Henon Map C.1 0.00 0.88 0.111 0.48 0.00 0.96

ECG C.1 0.95 0.86 0.282 0.14 0.97 0.97 0.82 0.89 0.268 0.45 0.92 0.97
EEG C.1 0.96 0.94 0.627 0.33 0.99 0.98 0.89 0.84 0.513 0.31 0.97 0.93

For the 𝑘-NN Takens’ embedding networks, the right column plots of Figure 3.14 show a

significant drop in 𝑃(𝐷1), 𝑀 (𝐷1), and 𝐸′(𝐷1) during periodic windows. However, for the

traditional graph scores ⟨𝑘⟩ and 𝜎2 this drop does not clearly correspond to the beginning and end

of the periodic window. Further, for the smaller periodic windows interspersed with the chaotic

regions I found that ⟨𝑘⟩, 𝜎2, and 𝑀′(𝐷1) are too noisy to identity the dynamic state changes in

these areas. In contrast, our scores 𝑃(𝐷1) and 𝐸′(𝐷1) retain the ability to distinguish between

dynamics regimes, and for 𝑘-NN networks of Takens’ embedding I suggest tagging the time series

as periodic when 𝐸′(𝐷1) < 0.5 and 𝑃(𝐷1) < 0.7.

Tabulated Results This section uses a variety of dynamical systems to validate the observations

I made for the Rössler system in 3.4.1 related to the point summaries 𝐸′(𝐷1), 𝑀 (𝐷1), and 𝑃(𝐷1)

that I introduced in 3.2.3. The results for each system when using ordinal partition networks and

the 𝑘-NN network from Takens’ embedding are provided side by side in Table 3.1. The model and

time series information for all of these systems are provided in C.1. The table can be categorized

into three types of dynamical systems: (1) systems of differential equations (Chua circuit, Lorenz,

Rössler, coupled Lorenz-Rössler, bi-directional Rössler, and Mackey-Glass equations), (2) discrete-

time dynamical systems (Logistic map, and Hénon map), and (3) ECG and EEG signals. The

paragraphs below discuss the results for each one of these systems.
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Systems of differential Equations: As shown in Table 3.1, our point summaries from both

networks yield distinguishable differences between periodic and chaotic time series. The 𝑘-NN

graph results in Table 3.1 show that periodic time series have 𝐸′(𝐷1) < 0.5, 𝑀 (𝐷1) < 0.15, and

𝑃(𝐷1) < 0.7. Similarly, the ordinal partition graph scores in Table 3.1 show that periodic time

series have 𝐸′(𝐷1) < 0.5, 𝑀 (𝐷1) < 0.07, and 𝑃(𝐷1) < 0.75.

Discrete dynamical systems: The results for the discrete dynamical equations in Table 3.1

show distinguishable differences between periodic maps in comparison to chaotic maps when using

ordinal partition networks. Takens’ embedding was not applied to the discrete dynamical systems,

and only the ordinal partition network results are reported here because working with these networks

is more natural for maps.

EEG and ECG Results: The point summary results from real world data sets (ECG and EEG)

shown in Table 3.1 have inherent noise, which causes the differences between the compared states

to be less significant as shown in Fig. 3.18. The 𝑘-NN graph results in Table 3.1 do not show a

significant difference between the two groups for either ECG and EEG data. This is most likely

due to the sensitivity of Takens’ embedding to noise and perturbations. However, I did find a

difference between epileptic and healthy patients through the networks formed by ordinal partitions

for ECG [153] and EEG [7] data. 3.4.2 discusses the effect of additive noise on the point summaries

in more detail. As a note, there have been other methods for characterizing EEG data using TDA

and persistent entropy [184], but our method is different from prior works because I apply persistent

homology to the generated networks.

In this section we discuss the empirical results on the dynamic state detection capabilities and

stability of the persistent homology of ordinal partition networks using the distance methods for

incorporating weight information.

3.4.2 Dynamic State Detection Using Machine Learning on Persistence Diagrams

To determine the viability of the persistence diagram for categorizing the dynamic state of a signal

using the persistent homology of the shortest weighted path, weighted shortest path, and diffusion

143



distances compared to the shortest unweighted path distance we use the lower dimensional projection

of the persistence diagrams. Specifically, we implemented the Multi-Dimensional Scaling (MDS)

(a) Shortest unweighted path distance. (b) Shortest weighted path distance.

(c) Weighted shortest path distance (d) Diffusion distance

Figure 3.15: Comparison between the (a) shortest unweighted path, (b) shortest weighted path, (c)
weighted shortest path, and (d) lazy diffusion distances using a two dimensional MDS projection
(random seed 42) of the bottleneck distances between persistence diagrams of the OPN for chaotic
and periodic dynamics with an SVM radial bias function kernel separation.

projection to two dimensions using the bottleneck distance matrix for our 23 systems (see Table C.1

for a list). These systems were simulated from the dynamical systems module in the Python package

Teaspoon with details on the simulations provided in Appendix C. We then use a Support Vector

Machine (SVM) with a Radial Basis Function (RBF) kernel to delineate periodic and chaotic

dynamics based on the two dimensional MDS projection. The SVM fit was done using default

parameters for the SKLearn SVM package in Python.
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I generate results separating persistence diagrams from periodic and chaotic dynamic using

the following graph distances: shortest unweighted path, shortest weighted path, weighted shortest

path, and diffusion distance. These distance are used when defining the distance matrix that is used

to calculated the persistent homology of the complex network. In the following paragraphs I apply

this machine learning analysis to both the OPNs and CGSSNs.

Machine Learning on the Ordinal Partition Network’s Persistent Homology The results for

the OPN using the shortest unweighted path (Fig. 3.15 a), shortest weighted path (Fig. 3.15 b),

weighted shortest path (Fig. 3.15 c), and diffusion distance (Fig. 3.15 d) are shown in Fig. 3.15.

The average and standard deviation of the accuracy for each SVM kernel are provided as the

percent accuracy in Table 3.2. These accuracy statistics were generated using random seed 1 to

100.

Based on this initial analysis it is clear that the diffusion distance significantly outperforms

the other distance methods with an accuracy of 95.0% ± 0.9% in comparison to the second best

accuracy of 89.5% using the weighted shortest path. The worst performance was from the shortest

unweighted path distance, which has an accuracy of 80.3% for this random seed (42).

We theorize that one reason for the increased performance when using the diffusion distance is

in how it tends to normalize the scale of the persistence diagram. Specifically, when comparing

the 23 dynamical systems, the maximum lifetimes for 𝑡 = 2𝑑 walk steps ranges from 0.08 to 0.21

with a mean of 0.147 and standard deviation of 0.042 or 28.6% of the average. In comparison, the

maximum lifetimes for the shortest unweighted path distance range from 2 to 24 with an average of

9.38 and standard deviation of 6.36 or 67.8% of the average. This demonstrates that the persistence

diagrams from the diffusion distance calculation tends to be more consistent in magnitude. We can

further show this relationship using the cycle graph 𝐺cycle(𝑛), where 𝑛 as the number of nodes is

increased from 2 to 500 with the maximum persistence calculated for each graph (see Appendix

Section D.1). In comparison to the shortest path distances, this result shows that the persistence

of the cycle graph does not continue to grow with a larger cycle graph when using the diffusion
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distance and trends to a plateau.

Overall, none of the distances in combination with the ordinal partition networks were able to

accurately separate 100% of the periodic from chaotic persistence diagrams.

Table 3.2: Accuracies of the distance methods for both ordinal partition and coarse grained state
space networks.

Network Distance Method Percent Accuracy (%)
OPN Shortest unweighted path 80.7 ± 1.5
OPN Shortest weighted path 88.9 ± 0.0
OPN Weighted shortest path 88.9 ± 0.0
OPN Lazy diffusion distance 95.0 ± 0.9

CGSSN Shortest unweighted path 98.1 ± 0.0
CGSSN Shortest weighted path 100.0 ± 0.0
CGSSN Weighted shortest path 98.1 ± 0.0
CGSSN Lazy diffusion distance 100.0 ± 0.0

Machine Learning on the Coarse Grained State Space Network’s Persistent Homology I

next repeat the previous SVM analysis on the coarse grained state space network. As mentioned

previously, the CGSSN has better stability qualities than the OPN and thus may be able to better

distinguish between dynamic states. Further, the CGSSN takes into account the amplitude of the

state space vectors, which is discarded information when creating OPNs. For this analysis we used

𝑏 = 12 bins and 𝑛 = 4 for generating CGSSNs for all of the systems. An appropriate delay was

selected using the multi-scale permutation entropy method. The resulting SVM separations are

shown in Fig. 3.16 for random seed 42.

The average and standard deviation of the accuracy for each SVM kernel are provided as the

percent accuracy in Table 3.2. These accuracy statistics were generated using random seed 1 to

100.

These results show that all of the distances applied to the CGSSN outperformed the OPN

alternative. Specifically, both the shortest weighted path and diffusion distances were able to have

100% accuracy for seperating dynamics based on the persistence diagrams, while the shortest

unweighted path and weighted shortest path both had 98.1% accuracy. I again theorize this is due
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(a) Shortest unweighted path distance. (b) Shortest weighted path distance.

(c) Weighted shortest path distance (d) Diffusion distance

Figure 3.16: Comparison between the (a) shortest unweighted path, (b) shortest weighted path, (c)
weighted shortest path, and (d) lazy diffusion distances using a two dimensional MDS projection
(random seed 42) of the bottleneck distances between persistence diagrams of the CGSSN for
chaotic and periodic dynamics with an SVM radial bias function kernel separation.

to the CGSSN taking into account the state space vector amplitude information that is discarded by

the OPN.

Stability Analysis One drawback to using MDS in our setting is that it cannot be used for true

supervised learning as data points not in the original training set cannot be assigned a projection

after the fact. We can at least analyze how sensitive the bottleneck distance between persistence

diagrams is to differences in the input time series, showing that the results are resilient to noise.

While we would like to be able to provide a stability proof in the spirit of [49], such an investigation
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is outside the scope of this work.

Figure 3.17: Bottleneck distance stability analysis of the periodic Lorenz system (see Eq. (4.3))
with standard deviation normalized signal and bounded (𝜀 = 6𝜎) Gaussian additive noise. Analysis
shows stability results using Shortest Unweighted Path Distance (SUPD), Shortest Weighted Path
Distance (SWPD), Weighted Shortest Path Distance (WSPD), and Diffusion Distance (DD).

Instead we use an empirical study of the stability of the bottleneck distance using the same

systems with the periodic signals (both dissipative autonomous and driven). Specifically, we tested

the stability by adding bounded Gaussian noise to the signal. The noise had Signal to Noise Ratios

(SNR) from ∞ (no noise) to 15 dB (extremely noisy). The additive noise followed a zero-mean

Gaussian distribution that was truncated at three standard deviations from the mean and set 𝜖 = 6𝜎.

To make a fair comparison between each of the distance methods in terms of stability and sensitivity

to noise we normalize the bottleneck distance as

𝑑∗𝐵 (𝐷1, 𝐷
𝜖
1) =

𝑑𝐵 (𝐷1, 𝐷
𝜖
1)

1
2
∑
𝑥∈𝐷1 pers(𝑥)

, (3.10)

where 𝑑𝐵 is the bottleneck distance function and𝐷1 and𝐷𝜖
1 are the noise free and noise contaminated

one-dimensional persistence diagrams, respectively.

Figure 3.17 provides a demonstrative example of the effects of noise and the stability of the

persistence diagram for the Lorenz system. The persistence diagrams as 𝜖 is increased are drawn

overlaid in Fig.3.17 (b) In Fig.3.17, we see the bottleneck distance from the the noise free diagram

to the noise contaminated diagram as the noise amplitude 𝜖 is increased. In the case of Lorenz,

all four distance methods are stable with an approximately linear change in the bottleneck distance

with respect to the noise level 𝜖 for small levels of noise (less than 25 dB). Additionally, 𝑑∗
𝐵

tends
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r[h]
Figure 3.18: Average point summaries and network parameters for varying SNRs from Gaussian
noise added to time series generated from periodic and chaotic Rössler systems. For each SNR, 25
separate samples are taken to provide mean values and standard deviations, which are shown as the
error bars.

to plateau at noise levels greater than approximately 18 dB. This is due to the minimum pairing

between diagrams matching to the diagonal. It is also clear the shortest weighted path distance is

significantly less sensitive to additive noise with only slight changes in its normalized bottleneck

distance as 𝜖 is increased.

Some of these characteristics seen in the Lorenz systems seem to be consistent across all of

the other 22 systems; see Appendix for similar figures for the remaining systems. The shortest

weighted path distance tends to be the least sensitive to additive noise. Additionally, the bottleneck

distance tends to plateau at approximately 20 dB for most systems. Most importantly, all of the

distance methods tend to have an approximately linear relationship between 𝑑∗
𝐵

and 𝜖 for low levels

of noise (SNR ≤ 25 dB). These results empirically demonstrate that the persistence diagram is

stable in this setting for limited levels of additive noise.
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Some characteristics that tend to be highly dependent on the system is the sensitivity of the

shortest unweighted path, weighted shortest path, and diffusion distances to additive noise. For

some systems (e.g. the Rabinocih Frabrikant attractor), the weighted shortest path distance is the

least sensitive to high levels of additive noise, while in other systems (e.g. the Thomas cyclically

symmetric attractor) the weighted shortest path distance is the most sensitive to additive noise.

In most systems the diffusion distance and shortest unweighted path are comparably sensitive to

additive noise.

Effects of Additive Noise I investigate the noise robustness of the point summaries in comparison

to some common network parameters—mean out degree ⟨𝑘⟩, out degree variance 𝜎2, and the

number of vertices 𝑁 . The ordinal partition networks are based on time series from the Rössler

system with parameters 𝑏 = 2.0, 𝑐 = 4.0, and either 𝑎 = 0.41 or 𝑎 = 0.43 for a periodic or chaotic

response, respectively.

To make comparisons on the noise robustness I add Gaussian noise to the signal and calculate

the point summaries and network parameters at various Signal-to-Noise Ratios (SNR) for both

periodic and chaotic Rössler systems. The chosen SNR values were all the integers from 1 to 50,

and at each SNR value I obtain 25 realizations of noisy signals.

To determine the 68% confidence interval at each SNR, I repeat the calculation of the point

summaries and network parameters for all noise realizations at each SNR level, and I set our

confidence interval to 𝑥(𝑆𝑁𝑅) ± 𝑠(𝑆𝑁𝑅) where 𝑥(𝑆𝑁𝑅) and 𝑠(𝑆𝑁𝑅) are the sample average and

sample standard deviation, respectively, at a specific SNR value. Figure 3.18 shows the mean

values and confidence intervals for each SNR. To assess the ability of point summaries to assign a

distinguishing score to a periodic versus a chaotic system in the presence of noise, I check for an

overlap in the confidence intervals for the periodic and chaotic results at each SNR. If for a particular

point summary there is an overlap between the scores for periodic and the chaotic time series, then

that point summary is not effective in distinguishing the dynamics at that specific SNR. Table 3.3

summarizes the noise robustness by providing the lowest SNR at which each point summary and
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network parameter no longer has an overlap between the periodic and chaotic confidence intervals.

This result shows a lower capable SNR for the persistence based point summaries than the mean

out degree ⟨𝑘⟩ and variance 𝜎2. Another trend that should be noted is the reduction in difference

between periodic and chaotic time series for high levels of noise. This should be taken into account

when applying the point summaries to real world data with intrinsic noise.

Table 3.3: Noise robustness comparison for persistence diagram point summaries and network
parameters using ordinal partition network.

Point Summary Network Parameter Lowest Distinguishing SNR
𝐸′(𝐷1) 14
𝑀 (𝐷1) 19
𝑃(𝐷1) 20
⟨𝑘⟩ 29
𝜎2 29
𝑁 8
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CHAPTER 4

PERSISTENT HOMOLOGY OF DYNAMICAL NETWORKS

A dynamical system is any system whose future state is dependent on the current state. Many real-

world dynamical systems are simulated using approximate models. Standard dynamical system

models occupy a wide range of applications from population models [144] to aeronautical dynam-

ics [204]. A common characteristic of a dynamical system is that its behavior can change with a

system parameter, known as a bifurcation. For example, the airflow over an aircraft’s wing can

change from laminar to turbulent with a change in the angle of attack resulting in stall [208,251], the

load on a power-grid system can push a line to fail causing a cascade failure and black-out [206,207],

or a change in atmospheric chemistry can cause for severe weather [93]. Capturing the characteristic

changes of a dynamical system through a measurement signal is critical in detecting, predicting, and

possibly preventing some of these catastrophic failures. Outside of detecting imminent events, many

other important characteristics of a system are studied through the lens of dynamics. These include

population models transitioning from stable values to chaotic oscillations based on environmental

factors [144], economic bubbles showing dynamics with bimodal distribution bifurcations [67], or

chaotic fluctuations in power-grid dynamics through period-doubling [103].

A common avenue to study these systems is through time series or signals, which are widely

utilized to analyze real-world dynamical system bifurcations. For example, a change in measured

biophysical signals can indicate upcoming health problems [87,166,195] or a change in the vibratory

signals of machines or structures can be the harbinger of imminent failure [12, 218]. Time series

typically originate from real-life systems measurements, and they provide only finitely sampled

information from which the underlying dynamics must be gleaned. Time series analysis methods

have many useful foundational tools for bifurcation and dynamic state analysis, such as frequency

spectrum analysis [24, 64] and autocorrelation [194].

While time series analysis tools can be leveraged for bifurcation detection and dynamic state

analysis, many complex and high-dimensional dynamical systems and their corresponding mea-
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surements can more naturally natural be represented as complex networks. For example, there are

dynamical systems models for social networks [215], disease spread dynamics [98], manufacturer-

supplier networks [244], power grid network [206], transportation networks [56]. These dynamical

system models demonstrate how dynamical networks can be representative of highly complex

real-world systems. Many important characteristics of a dynamical network can be extracted from

the data. These include source and rate of disease spread as well as predictions on future infec-

tions [72], weak branches in supply chains and possible failures [169,244], changes in infrastructure

to avoid cascade failures in power grids [206,219], transportation network optimal routing (finding

an optimal minimum time route between) [17], fault analysis (detecting transportation disruptions)

in transportation networks [224], and flow pattern analysis (visualization) [90].

If the studied system only has a single one-dimensional signal output, we can still represent the

dynamical system as a temporal network. This is done using complex networks representations

of windowed sections of time series data to visualize how the graph structure of the windowed

time series data changes. Examples of graph formation techniques from time series include k-

nearest-neighbors networks [118], epsilon-recurrence networks [101], coarse-grained state-space

network [216,217], or ordinal partition networks [146].

We are only using the data to construct the evolving networks in this work. As such, we will

aptly refer to them as temporal graphs [94]. While a complex dynamical system typically drives

the temporal graphs, the underlying equations of motion are unknown. Temporal graph data is

commonly represented using attributed information on the edges for the time intervals or instances

in which the edges are active [41, 97]. Using this attributed information, we can represent the

graph in several ways [238]. In this work we will first represent the data in the standard attributed

temporal graph structure and then use the graph snapshots approach. The graph snapshots represent

the temporal graph as a sequence of static graphs 𝐺0, 𝐺1, . . . , 𝐺𝑛.

The standard network analysis tools for studying temporal networks often include measures

such as centrality or flow measures [23], temporal clustering for event detection [53, 156, 247],

and connectedness [108]. However, these tools do not account for higher-dimensional structures
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(e.g., loops as a one-dimensional structure). It may be important to account for evolving higher-

dimensional structures in temporal networks to understand the changing structure better. For

example, a highly connected network may only have one connected component with no clear

clusters, but the number of loops within the network may detect the change.

To study the evolving higher dimensional structures within a temporal network, we will leverage

zigzag persistence [35] from the field of Topological Data Analysis (TDA) [34]. TDA is typically

used to study point cloud data through the flagship tool persistent homology.

Persistent homology, colloquially referred to as persistence, encodes structure by analyzing the

changing shape of a simplicial complex (a higher dimensional generalization of a network) over

a filtration (a nested sequence of subcomplexes). It should be noted that the majority of these

applications utilize a relatively standard pipeline to construct this filtration. Namely, given point

cloud data embedded in R𝑛 as input, construct the Vietoris Rips (VR) at multiple distance filtration

values. The VR complex is generated for incremented filtration values such that the result is a nested

sequence of simplicial complexes. The homology of the point cloud data can then be measured for

each simplicial complex. The homologies that persist over a broader range of filtration values are

significant. We provide a more detailed introduction in Section 4.1. It is also possible to apply

this framework to graph data using geodesic distance measures such as the shortest path as done

in [162].

Unfortunately, the standard persistent homology pipeline does not account for temporal infor-

mation. To account for temporal changes, we use zigzag persistence. Instead of measuring the

shape of static point cloud data through a distance filtration, zigzag persistence measures how long

a structure persists through a sequence of changing simplicial complexes. For example, in [233]

the Hopf bifurcation is detected through zigzag persistence (i.e., a loop is detected through the

one-dimensional zigzag persistence diagram). The zigzag persistence algorithm incorporates the

two essential characteristics of temporal graphs we are looking to study—namely, the temporal and

structural information stored within a temporal network.

In this work, we will use zigzag persistence to visualize these changes. Zigzag persistence com-
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pactly represents both temporal and structural changes using a persistence diagram. The persistence

diagram is a two-dimensional summary of persistent homology. The resulting persistence diagram

is commonly analyzed through either a qualitative analysis, standard one-dimensional statistical

summaries, or machine learning via vectorizing the persistence diagram.

Organization We will start in section 4.1 with an introductory background on persistent homol-

ogy and zigzag persistence. Following this, we introduce the two systems we will study. The first

is a dataset collected over a week of the Great Britain transportation system. The second is an

intermittent Lorenz system simulation, where we generate a temporal network through complex

networks of sliding windows. Next, in Section 4.2, we overview the general pipeline for applying

zigzag persistence to temporal graph data. We couple this explanation with a demonstrative toy

example. In Section 4.3 we apply zigzag persistence to our two examples and show how the

resulting persistence diagrams help visualize the underlying dynamics in comparison to standard

temporal network analysis techniques.

4.1 Background

4.1.1 Zigzag Persistence

A problem with the standard application of persistent homology is that it requires each subsequent

simplicial complex to be a subset of the previous simplicial complex. This directionality problem

results in limited applications where new simplexes can not be included in the simplicial complex

filtration, which occurs in many real-world datasets. This issue was alleviated through zigzag

persistence [35, 36], which allows for a zigzagging of the subset directions as

𝐾0 ↔ 𝐾1 ↔ 𝐾2 ↔ . . .↔ 𝐾𝑛, (4.1)

where there isn’t necessarily a filtration parameter for the ordered simplicial complexes. The subset

direction is determined based on which is the subset. However, it is possible to force the direction

to zigzag if we can create a simplicial complexes 𝐾𝑖,𝑖+1 with both 𝐾𝑖 and 𝐾𝑖+1 as subset as shown
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in Eq. (4.2).

𝐾0 ↩→ 𝐾0,1 ←↪ 𝐾1 ↩→ 𝐾1,2 ←↪ 𝐾2 ↩→ . . .←↪ 𝐾𝑛−1 ↩→ 𝐾𝑛−1,𝑛 ←↪ 𝐾𝑛. (4.2)

We can now determine when homology features are born and die based on the zigzag persistence.

We again track this with a persistence diagram consisting of persistence pairs (𝑏𝑖, 𝑑𝑖). However, 𝑏𝑖

and 𝑑𝑖 are the times or indices when the homology was born and died instead of the filtration value.

If there are times associated with the indices, then the time value can be used in substitution of the

indices. Additionally, the complexes 𝐾𝑖,𝑖+1 have half step indices (e.g., 𝑖 + 0.5), or the average time

between the two can be used. This work will have times associated with the simplicial complexes

instead of indices. For more details, an example demonstrating zigzag persistence on a temporal

graph is provided in Section 4.2.1.

4.1.2 Temporal Graphs

A temporal graph is a graph structure that incorporates information on when edges and/or nodes

are present in the graph. We will only be using the case on temporal information attributed to the

edges in this work.

We apply zigzag persistence to two main temporal networks described in the subsequent subsec-

tions. The first is the Great Britain transportation network, and the second is the temporal ordinal

partition network.

Great Britain Multi-layered Temporal Transportation Network We use temporal networks

created from the Great Britain (GB) temporal transportation dataset [79] for the air, rail, and coach

transportation methods. This data provides the destinations (nodes) and connections (edges) for

public transportation in GB. Additionally, the departure and arrival times are provided to allow for

a temporal analysis. This temporal data was collected for one week.

The graphs constructed without the use of temporal information are shown in Fig. 4.1 where the

destinations are overlaid with a GB map. As shown, the network’s destination encompasses both

cities and remote towns as well as the connections between them. As such, the network’s structure
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(a) Air Travel Network (b) Coach Network (c) Rail Network

Figure 4.1: Transportation networks of Great Britain for air, coach, and rail travel.

encodes the transportation connectivity. In section 4.2 we introduce our method for generating

snapshots for different time intervals over the entire week period that the transportation data was

collected.

Temporal Ordinal Partition Network Ordinal partition networks [146] are a graph representa-

tion of time series data based on permutation transitions. As such, they encapsulate the state space

structure of the underlying system. While we only use the ordinal partition network in this work,

there are several other transitional complex networks from time-series data that a similar analysis

could be done. These include 𝑘-nearest-neighbors [118], epsilon-recurrence [101], coarse-grained

state-space networks [216,217].

The ordinal partition network is formed by first generating a sequence of permutations from the

time series 𝑥 = [𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛] using a permutation dimension 𝑚 and delay 𝜏. These are the

same permutations in the information statistic permutation entropy [14]. In this work we choose

𝑚 = 6 and 𝜏 using the multi-scale permutation entropy method as suggested in [160]. We generate

a sequence of permutation by assigning each vector embedding

𝑣𝑖 = [𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏, . . . , 𝑥𝑖+(𝑚−1)𝜏] = [𝑣𝑖 (0), 𝑣𝑖 (1) . . . , 𝑣𝑖 (𝑚 − 1)]

157



to one of the 𝑚! possible permutations. We assign the permutation 𝜋𝑖 = [𝜋𝑖 (0), . . . 𝜋𝑖 (𝑛−1)] ∈ Z𝑚

based on the ordinal pattern of 𝑣𝑖 such that 𝑣𝑖 (𝜋(0)) ≤ 𝑣𝑖 (𝜋(1)) ≤ 𝑣𝑖 (𝜋(2)) ≤ . . . ≤ 𝑣𝑖 (𝜋(𝑛 − 1)).

Using the sequence of permutations Π = [𝜋0, 𝜋1, . . . , 𝜋𝑛−𝑚−2𝜏] we can form a graph 𝐺 (𝐸,𝑉)

by sett the vertices 𝑉 as all permutations used and edges for transitions from 𝜋𝑖 to 𝜋𝑖 + 1. We will

not add weight or directionality to the graph for this formation. However, we will include the index

𝑖 and the corresponding time at which each edge is activated as temporal data for the graph. For

more details on the ordinal partition network, we direct the reader to [146,162].

4.2 Method

To apply zigzag persistence to study temporal graphs, we need a process as outlined in the pipeline

shown in Fig. 4.2. This process needs to take a temporal graph to a sequence of snapshot graphs,

which can then be represented as zigzagging subset simplicial complexes. This procedure then

allows for the application of zigzag persistence.

We begin with a dataset as a temporal graph where each edge has intervals or instances in time

representing when the edge is active.

Figure 4.2: Pipeline for applying zigzag persistence to temporal networks. Begin with an un-
weighted and undirected temporal graph where each edge is on at a point or interval of time.
Create graph snapshots using a sliding window interval over the time domain. Create a sequence
of simplicial complexes from the graphs and apply zigzag persistence to the union zigzag simpli-
cial complexes.

Graph snapshots 𝐺𝑖 are generated using a sliding window technique using the temporal in-

formation. The sliding window for graph snapshot 𝐺𝑖 is defined as 𝑆𝑊 𝑖 (𝑤, 𝑡𝑆𝑊𝑖 ) with width 𝛿

and centered at time 𝑡𝑆𝑊
𝑖

. The sliding windows can also be set to overlap by choosing window

times such that 𝑡𝑆𝑊
𝑖+1 − 𝑡

𝑆𝑊
𝑖
≤ 𝑤. We further need to include union windows for the use of zigzag
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persistence, which are defined as 𝐺𝑖,𝑖+1 and re-generated from the union of two adjacent sliding

windows 𝑆𝑊 𝑖 ∪ 𝑆𝑊 𝑖+1.

From the graph snapshots using the sliding windows and their unions, we create a sequence

of simplicial complexes using a Vietoris-Rips (VR) complex with distance filtration value 𝑟 . The

choice of an appropriate 𝑟 is dependent on the application, but in general, we suggest 1 ≤ 𝑟 ≤ 3. The

VR complex 𝐾𝑖 for each𝐺𝑖 is generated using the unweighted and undirected shortest path distance

between nodes and filtration value 𝑟. If 𝑟 = 1, the original graph is returned by filling in only

the edges as 1-dimensional simplices. Similarly, higher 𝑟 values fill in 𝑟-dimensional simplices.

Choosing higher 𝑟 values for generating simplicial complexes results in small higher-dimensional

features not being represented in the persistence. For example, if 𝑟 = 2 and there is a 3-node cycle

subgraph in the graph, the cycle would be filled with the 2-simplex. This would result in the cycle

not being present in the one-dimensional homology.

We use the resulting sequence of simplicial complexes to calculate zigzag persistence to study

the changing structure of the temporal graph. In the following simple example shown in Fig. 4.3,

we describe the method in more detail and show how to interpret the resulting zigzag persistence

diagram.

4.2.1 Example

In this example, we demonstrate how to use zigzag persistence to measure the changing structure

of a simple 5-node cycle graph as edges are added and removed based on the temporal information.

Figure 4.3a shows the temporal information of the simple cycle graph as the intervals on each edge.

The sliding windows for this example are created with width 𝑤 = 1 and 𝑡𝑆𝑊
𝑖

= 0.5 such that the

windows are the non-overlapping intervals 𝑆𝑊𝑖 = [𝑖, 𝑖 + 1]. For each window a graph snapshot 𝐺𝑖

is created, where 𝐺𝑖 is the edge induced subgraph with edges added if the window 𝑆𝑊 𝑖 overlaps

with the edge interval. The union graphs 𝐺𝑖,𝑖+1 are also created using the union of adjacent sliding

windows as 𝑆𝑊 𝑖 ∪ 𝑆𝑊 𝑖+1 = [𝑖, 𝑖 + 2]. By using the union subgraphs we have 𝐺𝑖 ⊂ 𝐺𝑖,𝑖+1 and

𝐺𝑖+1 ⊂ 𝐺𝑖,𝑖+1.
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(a) Edge intervals with sliding windows highlighted (alternating blue-
red) with corresponding graphs and union graphs above.

(b) Zigag persistence diagram for
both 𝐻0 and 𝐻1.

Figure 4.3: Example zigzag persistence applied to a simple temporal cycle graph.

To calculate the zigzag persistence for this example we created VR complexes 𝐾𝑖 and 𝐾𝑖,𝑖+1 for

each graph 𝐺𝑖 and union graph 𝐺𝑖,𝑖+1, respectively, using the unweighted and undirected shortest

path distance with distance filtration value 𝑟 = 1. Setting 𝑟 = 1 creates the graph equivalent

simplicial complex. At the end of the sliding windows, we consider the graph empty and set the

death of any remaining homology features as the end time of the last window (i.e., 𝑡 = 10 for this

example). The resulting zigzag persistence diagram is shown in Fig. 4.3b.

This persistence diagram shows the zero-dimensional and one-dimensional features as 𝐻0 and

𝐻1, respectively. There are two one-dimensional features at persistence pairs (1, 3) and (0.5, 10).

The persistence pair (0.5, 10) was born first at 𝐺0 which occurred at 𝑡 = 0.5 as the first connected

component. The second component and persistence pair appears in 𝐺0,1 at time 𝑡 = 1. Both

of these components persist until 𝐺2,3 at 𝑡 = 3, where, based on the elder’s rule, the first-born

feature persists with the later-born feature or component dying. This explains the persistence pair

(1, 3) with the component born at 𝐺0,1 and dying at the merging of components in 𝐺2,3. The

first-born component continues to persist until the last window. Based on our definition, we set

the death of this feature as the end interval of the last window, with the second persistence pair

at (0.5, 10). The one-dimensional feature (the cycle represented in 𝐻1) is present twice in the

persistence diagram. This is due to it first appearing in 𝐺3,4 and then disappearing at 𝐺4 with
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the first corresponding persistence pair at (4, 4.5). The cycle then reappears at 𝐺5,6 and again

disappears at 𝐺7 corresponding to the second persistence pair at (6, 8.5).

This example demonstrates how zigzag persistence captures the changing structure of temporal

graphs at multiple dimensions. We can also capture higher-dimensional structures using the

persistence diagram, but we do not investigate them in this work.

4.3 Results

To demonstrate the functionality of zigzag persistence for analyzing temporal graphs, we will

use two examples. The first is an analysis of transportation data from Great Britain discussed in

Section 4.1. The second is a simulated dataset from the Lorenz system that exhibits intermittency,

a dynamical system phenomenon where the dynamic state transition from periodic to chaotic in

irregular intervals.

We compare our results for both examples to some standard networks tools to analyze temporal

networks. Namely, we will compare two connectivity statistics and three centrality statistics.

The two connectivity statistics analyze the Connected Components (CCs). The first CC statistic

is the number of connected components 𝑁𝑐𝑐, which provides a simple shape summary of the graph

snapshots by understanding the number of disconnected subgraphs. The second statistic is the

average size of the connected components 𝑆𝑐𝑐. This statistic provides insight into how significant

the components are for each graph snapshot.

The second statistic type is on centrality measures. The three centrality measures we use are the

average and standardized degree centrality 𝐶̄𝑑 , betweenness centrality 𝐶̄𝑏, and closeness centrality

𝐶̄𝑐. The degree centrality measures the number of edges connected to a node, the betweenness

centrality measures how often a node is used all possible shortest paths, and the closeness centrality

measures how close the node is to all other nodes through the shortest path. For details on the

implementation of each centrality measure, we direct the reader to [125].
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4.3.1 Great Britain Temporal Transportation Network

From the Great Britain transportation data discussed in Section 4.1, we created temporal graphs

from the air, rail, and coach transportation methods. We created these temporal graphs using the

sliding window technique for graph snapshots introduced in Section 4.2. For the sake of brevity,

in this section, we will only show the results of applying zigzag persistence to the temporal rail

network. Results for the other two networks (air and coach) are provided in the appendix and show

similar behavior.

We set the sliding windows with width 𝑤 = 20 minutes. We chose this window size based

on the average weight time being 7 minutes and 7 seconds with a standard deviation of 7 minutes

and 24 seconds from a collected sample [235]. Additionally, we used an overlap of 50% between

adjacent windows. To create simplicial complexes from the graph snapshots, we used a distance

filtration of 𝑟 = 1.

Figure 4.4: Connectivity and centrality analysis on temporal Great Britain rail network.

As a first approach to understand the dynamics of this graph, we implement the standard

centrality and connectivity statistics as shown in Fig. 4.4. The standard tools show us the general

daily trends. Specifically, all the connectivity and centrality measures increase during peak travel

hours. However, further information is difficult to glean from these statistics. On the other hand, in
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(a) Full Rail Travel Network.
(b) Zero-dimensional zigzag persis-
tence.

(c) One-dimensional zigzag persis-
tence.

Figure 4.5: Zigzag persistence diagrams of the rail transportation network of Great Britain.

Fig. 4.5 the zigzag persistence provides us with much more information. It also shows daily trends,

but it also conveys through 𝐻0 that a main connected component persists for the first six days and

a second component for the last day. This provides an understanding of the long-term connectivity

of this component that was not present in the standard statistics. Further, the 𝐻1 encapsulates that

travel loops form during peak travel times and persist daily.

4.3.2 Temporal Ordinal Partition Network for Intermittency Detection

Using a sliding window technique, we can represent ordinal partition networks as temporal graphs.

However, instead of each edge having a set of intervals associated with it as in the example in

Section 4.2, they instead have time instances each edge is active. The instances are based on

when a transition between unique permutations occurs. For example, the transition from 𝜋𝑖 to 𝜋𝑖+1

occurring at time 𝑡𝑖 would be active for that moment in time 𝑡𝑖. If the sliding window overlaps with

an edge’s activation instance, we add that edge to the sliding windows graph.

We will show how this procedure can be used to detect chaotic and periodic windows in a signal

exhibiting intermittency (i.e., the irregular transitions from periodic to chaotic dynamics). The
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signal is 𝑥 solution to the simulated Lorenz system defined as

𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥), 𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, 𝑑𝑧

𝑑𝑡
= 𝑥𝑦 − 𝛽𝑧 (4.3)

with system parameters 𝜎 = 10.0, 𝛽 = 8.0/3.0, and 𝜌 = 166.15 for a response with type 1

intermittency [188]. We simulated the system with a sampling rate of 100 Hz for 500 seconds with

only the last 70 seconds used. We set the sliding windows for generating graph snapshots to have

a width of 𝑤 = 10𝜏 and 80% overlap between adjacent windows. For each window, we generated

ordinal partition networks using 𝜏 = 30 and 𝑛 = 6, where 𝜏 was selected using the multi-scale

permutation entropy method [160].

The resulting signal 𝑥(𝑡) from simulating the Lorenz system in Eq. (4.3) is shown in Fig. 4.6

with example ordinal partition networks generated at a chaotic window highlighted in red and a

periodic window highlighted in blue. These sample graph snapshots show that the structure of the

ordinal partition network significantly changes depending on the dynamic state of the window’s

time-series segment. Further, we expect to see little change in the graph structure while the window

slides along a periodic region of 𝑥(𝑡) compared to significant changes when overlapping with a

chaotic region.

Figure 4.6: The 𝑥(𝑡) solution to simulation of Lorenz system from Eq. (4.3) exhibiting intermittency
with example sliding windows for both periodic (blue) and chaotic (red) dynamics with their
respective ordinal partition networks.
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We show the standard tools for connectivity and centrality measures of the graph snapshots

in Fig. 4.7. The number of components 𝑁𝑐𝑐 is constant due to the nature of the ordinal partition

network, where the sequence of permutation transitions creates a chain of connected edges. As

such, there is no structural information in the number of components. However, the size of the

components does increase during the chaotic windows. This increase is due to, in general, more

unique permutations and thus nodes used in a chaotic signal compared to periodic. Of the centrality

statistics, only the average closeness centrality shows an apparent increase during chaotic regions.

The increase in centrality is most likely due to the chaotic regions causing a more highly connected

graph as demonstrated in the chaotic window and corresponding network of Fig. 4.6. While these

statistics do provide some insight into the changing dynamics, they do not show how the higher-

dimensional structure of the graph evolves through the sliding windows and graph snapshots.

Figure 4.7: Connectivity and centrality analysis on temporal ordinal partition network with chaotic
regions of 𝑥(𝑡) highlighted in red.

In comparison to the standard statistics, the𝐻1 in Fig. 4.8 shows us a persistent loop structure that

persists between the chaotic windows, which is representative of the periodic nature. Further, the
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𝐻1 shows that the chaotic windows characteristically have many low-lifetime persistence pairs. This

Figure 4.8: One-dimensional zigzag persistence of the temporal ordinal partition network from the
𝑥 solution of the intermittent Lorenz system described in Eq. (4.3).

is in line with the results in [162] that showed ordinal partition networks from chaotic signals tend

to have persistence diagrams with many features in 𝐻1 in comparison to their periodic counterpart.

These additional insights through the zigzag persistence provide a helpful insight into analyzing

temporal graphs that is not possible with standard statistics.

4.4 Conclusion

In this work we studied how to effectively apply zigzag persistence to temporal graphs. Zigzag

persistence provides a unique perspective when studying the evolving structure of a temporal graph

by tracking the standard lower-dimensional features (e.g., connected components), but also higher-

dimensional features (e.g., loops and voids). We showed the benefits of using zigzag persistence

on two examples: the Great Britain transportation network and ordinal partition networks. Our

results showed that the informative zero and one-dimensional zigzag persistence provided insights

into the structure of the temporal graph that were not easily gleaned from standard centrality and

connectivity statistics.

We believe zigzag persistence could also be leveraged to study other temporal graphs including

flock behavior models (e.g., viscsek model) and the emergence of coordinated motion, power
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grid dynamics with the topological characteristics of a cascade failures, and supplier-manufacture

networks through the effects of trade failures on production and consumption.

Future work to improve this method would involve an analysis on deciding an optimal window

size and overlap, a method to incorporate edge weight and directionality, and temporal information

on both the nodes and edges. It would also be worth investigating higher-dimensional features (e.g.,

voids through 𝐻2).
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CHAPTER 5

PERSISTENT HOMOLOGY OF DYNAMICAL NETWORKS

This auxillary chapter of my research introduces some of the data sets used throughout my research

and the software packages developed. Namely, the two main experimental data sets are from

a magnetic single pendulum (see Section 5.1) and a tracked double pendulum [165]. I did not

include the extensive double pendulum documentation in this document. However, the open-

source publication is available [165]. Throughout my research project I have also been contributing

and developing the website documentation for teaspoon, which is an open source topological signal

processing package available through Python.

5.1 Experiment: Magnetic Pendulum

Note: a Computer Aided Design (CAD) model and design document for the pendulum used for the

experimental section of this manuscipt is available through GitHub at https://github.com/Khasawneh-

Lab/simple_pendulum.

The driven magnetic pendulum is a well known system to exhibit chaos [117,214,231]. There-

fore, I designed and built a magnetic pendulum apparatus, and utilized the ordinal partition embed-

ding and TDA to characterize the dynamics of the resulting signals.

In this section I derive a simplified equation of motion using Lagrange’s approach. The design,

manufacturing, and equipment used for the experiment are also explained. Additionally, I describe

our methods for estimating and measuring the constants that appear in the equation of motion.

5.1.1 Mathematical Model

I begin by deriving the equations of motion for the physical system shown in Fig. 5.1. Let the total

mass of the rotating components be 𝑀 , the distance from the rotation center 𝑂 to the mass center

of the rotating assembly 𝑟cm, and the mass moment of inertia of the rotating components about

their mass center be 𝐼cm. Further, assume that the magnetic interactions are well approximated by
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a dipole model with 𝑚1 = 𝑚2 = 𝑚 representing the magnitudes of the dipole moment. To develop

Base Excitation

Datum

Figure 5.1: Rendering of experimental setup in comparison to reduced model, where 𝑏(𝑡) =

𝐴 sin(𝜔𝑡) is the base excitation with frequency 𝜔 and amplitude 𝐴, 𝑟𝑐𝑚 is the effective center of
mass of the pendulum, 𝑑 is the minimum distance between magnets 𝑚1 = 𝑚2 = 𝑚 (modeled as
dipoles), and ℓ is the length of the pendulum.

the equation of motion, I use Lagrange’s equation (Eq. (5.9)), so the potential energy 𝑉 , kinetic

energy 𝑇 , and non-conservative moments 𝑅 are needed. In this analysis the damping moments

and the moments generated from the magnetic interaction are treated as non-conservative. The

potential and kinetic energy are defined as

𝑇 =
1
2
𝑀 |®𝑣𝑐𝑚 |2 +

1
2
𝐼𝑐𝑚 ¤𝜃2,

𝑉 = −𝑀𝑔𝑟𝑐𝑚 cos(𝜃),
(5.1)

where ®𝑣𝑐𝑚 is the velocity of the mass center given by

®𝑣𝑐𝑚 = 𝑟𝑐𝑚 ¤𝜃
[
cos(𝜃)𝜖𝑥 + sin(𝜃)𝜖𝑦

]
+ 𝐴 cos(𝜔𝑡)𝜖𝑥 . (5.2)

In Eq. (5.2), 𝐴 cos(𝜔𝑡) is introduced from the base excitation 𝑏(𝑡) = 𝐴 cos(𝜔𝑡) in the 𝑥

direction with 𝐴 as the amplitude and 𝜔 as the frequency and 𝜖𝑥 and 𝜖𝑦 are the unit vectors in the 𝑥

and 𝑦 directions, respectively.

The non-conservative moments are caused by the energy lost to damping. For our analysis, I

consider three possible mechanisms of energy dissipation: Coulomb damping 𝜏𝑐, viscous damping

𝜏𝑣, and quadratic damping 𝜏𝑞. I chose to use all three mechanisms of damping due to previous

work on damping estimation for a pendulum similar to the one I used [183]. These three moments
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are defined as

𝜏𝑐 = 𝜇𝑐sgn( ¤𝜃),

𝜏𝑣 = 𝜇𝑣 ¤𝜃,

𝜏𝑞 = 𝜇𝑞 ¤𝜃2sgn( ¤𝜃),

(5.3)

where 𝜇𝑐, 𝜇𝑣, and 𝜇𝑞 are the coefficient for Coulomb, viscous, and quadratic damping, respectively.

To begin the derivation of the torque induced from the magnetic interaction 𝜏𝑚, consider two,

in-plane magnets as shown on the left side of Fig. 5.2. The red side of the magnet in the figure

represents its north-pole. From this representation, the magnetic force acting on each magnet is

calculated as

𝐹𝑟 =
3𝜇𝑜𝑚2

4𝜋𝑟4 [2𝑐(𝜙 − 𝛼)𝑐(𝜙 − 𝛽) − 𝑠(𝜙 − 𝛼)𝑠(𝜙 − 𝛽)] ,

𝐹𝜙 =
3𝜇𝑜𝑚2

4𝜋𝑟4 [𝑠(2𝜙 − 𝛼 − 𝛽)] ,
(5.4)

where 𝑚1 and 𝑚2 are the magnetic moments, 𝜇𝑜 is the magnetic permeability of free space, and

𝑐(∗) = sin(∗) and 𝑠(∗) = sin(∗). Equation (5.4) assumes that the cylindrical magnets used in

the experiment can be approximated as a dipole. I later show that this assumption is satisfactory

in Fig. 5.4 of Section 5.1.3. These magnetic forces are then adapted to the physical pendulum as

Figure 5.2: A comparison between a generic, in-plane magnetic model in global coordinates and
the equivalent magnetic forces in the pendulum model 𝐹𝑟 and 𝐹𝜙 (see Eq. (5.4)).

shown on the right side of Fig. 5.2, with 𝛼 = 𝜋/2 and 𝛽 = 𝜋/2 − 𝜃. Additionally, 𝜙 and 𝑟 are
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calculated from 𝜃, 𝑑, and ℓ from Fig. 5.1 as

𝜙 =
𝜋

2
− arcsin

(
ℓ

𝑟
sin(𝜃)

)
, and (5.5)

𝑟 =

√︃
[ℓ sin(𝜃)]2 + [𝑑 + ℓ(1 − cos(𝜃))]2. (5.6)

The moment induced by the magnetic interaction is then

𝜏𝑚 = ℓ𝐹𝑟 cos(𝜙 − 𝜃) − ℓ𝐹𝜙 sin(𝜙 − 𝜃). (5.7)

Using 𝜏𝑚 from Eq. (5.7) and the non-conservative torques from Eq. (5.3), 𝑅 is defined as

𝑅 = 𝜏𝑐 + 𝜏𝑣 + 𝜏𝑞 + 𝜏𝑚 . (5.8)

Finally, the equation of motion for the base-excited magnetic single pendulum is found by substi-

tuting the above expressions into Lagrange’s equation and noting that 𝐿 = 𝑇 −𝑉

𝜕

𝜕𝑡

(
𝜕𝐿

𝜕 ¤𝜃

)
− 𝜕𝐿
𝜕𝜃
+ 𝑅 = 0. (5.9)

Equation (5.9) was symbolically manipulated to express it in state space format using Python’s

Sympy package. Then, the system was simulated at a frequency of 𝑓𝑠 = 60 Hz using Python’s

odeint function from the Scipy library.

5.1.2 Equipment and Experimental Design

The setup of the experiment was manufactured by extending the capabilities of a previously

manufactured simple pendulum [183]. To increase the non-linearity, in-plane magnets on the base

as well as at the end of the pendulum were added. To assume a permeability of free space 𝜇0,

any ferromagnetic material within the vicinity was removed, which made the use of 3D printed

components critical. In Fig. 5.3 an overview of the utilized, 3D-printed components are shown.

Specifically, Figs. 5.3 (a) and (b) show exploded views of the end mass of the pendulum, and the

linear stage for controlling the distance 𝑑, respectively. The magnets used are two, approximately

identical, rare-earth (neodymium) N52 permanent magnets with a radius and length of 6.35 mm

(1/4").
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N52 Magnet
10-32 Nylon Nut

3D PLA Print

N52 Magnet

10-32 Nylon Nut

3D PLA Print

10-32 Nylon Bolt

10-32 Nylon Nut

Figure 5.3: Manufacturing overview with experimental setup. In Fig. (a), an exploded view of the
end mass (100% infill 3D printed PLA components) is shown with the magnet press fit into end of
pendulum. In Fig. (b), an exploded view of the linear stage controlling the vertical position of the
lower magnet.

Table 5.1 provides a list of the item, description, and manufacturer for all of the experimental

equipment used to collect the rotational data from the magnetic single pendulum under base

excitation.

Table 5.1: Equipment used for experimental data collection.

Item Description Manufacturer
Shaker 113 Electro-Seis APS

DC Power Supply Model 1761 BK Precision
Accelerometer Model 352C22 Piezotronics
Rotary Encoder UCD-AC005-0413 Posital
Data Acquisition USB-6356 Nat. Inst.

PC OptiPlex 7050 Dell

5.1.3 Physical Parameters and Constants

To estimate the magnetic dipole moment 𝑚 of the cylindrical magnets used (see Fig. 5.3), I

performed an experiment similar to the one described in [85]. When the distance between the

magnets is less than a critical value 𝑟𝑐, modeling the magnets as dipoles can lead to large errors
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since the dipole model does not accurately approximate the repulsive force between the magnets.

This distance was estimated as 𝑟𝑐 = 0.035 m (see Fig. 5.4). Additionally, in the region where

𝑟 > 𝑟𝑐, the force curve, a function of scale 𝑟−4, was fit to the curve to estimate the magnetic dipole

moment as 𝑚 = 0.85 Cm.

Figure 5.4: Measured repulsion force as a function of distance compared to theoretical force in
Eq. (5.4) with 𝜃 = 0. The theoretical force 𝐹theory is based on dipole model with a dipole moment
𝑚 = 0.85 cm, which was estimated using a curve fit to the region where the magnetic thickness
𝑇 ≪ 𝑟. Region of poor fit is marked for 𝑟 < 0.035 m.

The other parameter values as well as their uncertainties (when applicable) are provided in

Table 5.2, which are in reference to Fig. 5.1. Most of these parameters were either estimated using

SolidWorks or by multiple direct measurements.

Table 5.2: Equation of motion parameters to simulated pendulum with associated uncertainty.

Parameter (units) Value Uncertainty (±𝜎)
𝑑 (m) 0.36 0.005
ℓ (m) 0.208 0.005
𝑔 (m/s2) 9.81 -
𝑀 (kg) 0.1038 0.005
𝑟cm (m) 0.188 -
𝜔 (rad/s) 3𝜋 -
𝜇0 (Cm) 1.257 × 10−6 -
𝑚 (Cm) 0.85 -
𝜇𝑐 (-) 0.002540 0.000020
𝜇𝑣 (-) 0.000015 0.000003
𝜇𝑞 (-) 0.000151 0.000020
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Figure 5.5: Free drop test between collect angular position data 𝜃data with encoder uncertainty 𝜎data
and the simulated response 𝜃sim. As shown in the zoomed-in region, the simulated response is
within the bounds of uncertainty of the actual response.

To validate the parameters, an experiment and simulation of a free drop of the pendulum

are compared. The resulting angle 𝜃 (𝑡) is shown in Fig. 5.5, which shows a very similar response

between simulation and experiment. Additionally, the simulation is within the bounds of uncertainty

of the encoder 𝜎data = 1◦ as shown in the zoomed in region of Fig. 5.5.

5.2 Teaspoon: A comprehensive python package for topological signal pro-
cessing

Topological signal processing is a newly emerging field with an ever growing collection of tools. Us-

ing Topological Data Analysis (TDA) for signal processing allows for an analysis of the underlying

shape of a time series. These methods are well backed by theory [177,203] and have shown success

in numerous application areas including machining dynamics [111–114,116], finance [82,83], and

gene expression [21, 179].

Here I present the python package, teaspoon, that provides state-of-the-art topological signal

processing tools as well as wrappers for available persistent homology software. While some

TDA based packages exist for python (e.g. Scikit-TDA and Giotto-TDA), the teaspoon package

specifically provides modules design to tackle questions related to signal processing and time series

analysis from the viewpoint of topology. In comparison, other existing packages are designed for

more general applications for TDA.

In the teaspoon package there are currently five main modules: dynamical systems, machine

learning, complex networks, information, and parameter selection with several sub-modules for each
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as shown in Fig. 5.6. The dynamical systems library is currently hosting 60 dynamical systems

including maps, flows, and collected data sets. The machine learning library contains code for

numerous persistence diagram featuriztion and kernel methods. Specifically, this module includes

the template function featurization methods described in [181,232] as well as persistence landscapes

[28], persistence images [1], Carlsson coordinates [2], persistence paths and signature [43,44] and

the multi-scale kernel method [196]. The complex networks module contains code to represent a

time series as a network using ordinal partitions [146] or 𝑘 nearest neighbors [118]. This module

also provides several methods for calculating distances between nodes based on the adjacency

matrix, which allows for the calculation of the persistent homology of the resulting networks. The

information theory module implements entropy based functions for signal processing persistence

diagram analysis. Lastly, the parameter selection module currently provides multiple algorithms

for the automatic selection of the delay 𝜏 and dimension 𝑛 parameters for state space reconstruction

and permutation entropy.

In this work, I outline the features available in each module as well as features that will be

added in the future. The goal of this package is to provide a range of topological signal processing

tools in one unified framework. Additionally, for most of these modules, further documentation

and examples of the functions are provided in the teaspoon documentation webpage1.

Figure 5.6: Tree structure of teaspoon.
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5.2.1 Dynamical Systems Library (DynSysLib)

The dynamical systems library (DynSysLib) is a teaspoon module that provides a wide selection

of dynamical system simulation models with many from [220]. Most of the available dynamical

systems are able to exhibit both periodic and chaotic responses. In general, these systems can

be separated into three categories: (1) flows, (2) Maps, and (3) Collected data. A full list of the

available dynamical systems are provided in tables C.2 and C.3 of the appendix. The module has a

single function DynamicSystems, which allows a wide range of the simulation control with the user

being able to control as little as the system of interest and the desired dynamical state (chaotic or

periodic) or provide detailed simulation parameters such as initial conditions, system parameters,

and solution time. The function output is the resulting time series response. For details on the

default parameters used, equations of motion, and examples, please see the teaspoon documentation

webpage1.

5.2.2 Machine Learning Module

In this section, I describe the machine learning module in teaspoon. Machine learning module

provides automated feature matrix generation and classification, and it is suitable for the applications

where persistence diagrams can be computed. There are three main files inside the module and

these are 𝐵𝑎𝑠𝑒.𝑝𝑦, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝑝𝑦, and 𝑃𝐷_𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛.𝑝𝑦. Here, I will explain the

necessary functions in each of these files and show how to use these functions to perform machine

learning using Topological Data Analysis (TDA).

Parameter Buckets The parameter bucket is a tool to hold all necessary parameters for the fea-

turization functions as well as the classification algorithms. This includes parameters such as the

classification algorithm, the size of the test set, as well as the desired persistence diagram featur-

ization method. The parameter buckets are implemented as classes in the 𝐵𝑎𝑠𝑒.𝑝𝑦 file. The basic

structure is implemented as a class 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐵𝑢𝑐𝑘𝑒𝑡, however there are two more specialized
1http://elizabethmunch.com/code/teaspoon
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classes, 𝐼𝑛𝑡𝑒𝑟𝑃𝑜𝑙𝑦𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 and 𝑇𝑒𝑛𝑡𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 that are dedicated for parameters to the

template functions introduced in Ref. [181]. These parameter buckets also have the functionality

to use the template function featurization on localized regions of the persistence diagrams, using

an adaptive partitioning method described in Ref. [232].

The rest of the parameter buckets are used for other featurization methods. The 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐵𝑢𝑐𝑘𝑒𝑡

is for persistence landscapes [28], which requires an input for the landscape number that will be used

to generate feature matrix. The 𝐶𝐿_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝐵𝑢𝑐𝑘𝑒𝑡 is used to set parameters for classification

using Persistence Images [1], Carlsoon Coordinates [2], persistence paths and signature [43, 44]

and kernel method [196].

Featurization The file 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒_ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠.𝑝𝑦 contains functions that compute the topological

features mentioned above. 𝐹_ and 𝐶𝐿_ suffixes indicate that corresponding functions are designed

for featurization and classification, respectively. First, for the template featurizations, there are

two main functions, 𝑡𝑒𝑛𝑡𝑠 and 𝑖𝑛𝑡𝑒𝑟 𝑝_𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙. These functions compute the collection of

template functions based on a grid formed using parameters from the corresponding parameter

buckets.

In addition to these, there is 𝑃𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 class that uses 𝑃𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠 function to compute

the persistence landscapes for a given persistence diagram [28]. This class has an option to define

𝐿_𝑛𝑢𝑚𝑏𝑒𝑟 which returns specific landscapes in an array. Output of 𝑃𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒𝑠 is a dictionary

that includes all landscapes, total number of landscapes and the desired landscapes if user defines

𝐿_𝑛𝑢𝑚𝑏𝑒𝑟. 𝑃𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 class can also plot persistence landscapes. If user does not define

the desired landscapes to plot, all landscapes will be plotted. 𝐹_𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒 uses persistence

landscapes to compute feature matrix as explained in Ref. [147]. The inputs of the function are

persistence landscapes, parameter bucket object that is explained in Sec. 5.2.2.

The second featurization method is persistence images. I utilized https://gitlab.com/csu-tda/PersistenceImagesPersistence

Images package to compute persistence images. 𝐹_𝐼𝑚𝑎𝑔𝑒 takes persistence diagrams, pixel size,

variance of the Gaussian distribution, the numbers of persistence diagrams whose image will be
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plotted, and transfer learning option. If transfer learning option is set to true, second set of per-

sistence diagrams should be provided. Then, it will compute feature matrices for both sets of

diagrams. Carlsson Coordinates is the third featurization method [2]. It has five coordinates that

depend on birth and death times of persistence diagrams. 𝐹_𝐶𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 takes persistence

diagrams and computes these five features. It has second input, 𝐹𝑁 that defines how many feature

will be computed. Feature vectors are generated using
𝐹𝑁∑
𝑖=1

(𝐹𝑁
𝑖

)
combinations of five coordinates.

𝐹_𝐶𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 will return these feature vectors, number of combinations and combinations in

a list.

Another featurization method is persistence path and signatures [43, 44]. 𝐹_𝑃𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒

function computes signatures on persistence landscapes. The first two levels of signatures are

currently coded in the function. The inputs are persistence landscapes and the number of the

landscape which will be used to compute the signatures. Then it returns the feature matrix to be

used in the classification. Final featurization method is kernel method for persistence diagrams.

𝐾𝑒𝑟𝑛𝑒𝑙𝑀𝑒𝑡ℎ𝑜𝑑 computes the kernel between given two persistence diagrams. It also has 𝑠𝑖𝑔𝑚𝑎

input which is a variable in the formula of the kernel given in Ref. [196]. After computing pairwise

kernels between the diagrams, it can be used as pre-defined kernel in Support Vector Machine

(SVM) algorithm for classification.

Classification Classification functions are embedded in 𝑃𝐷_𝐶𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛. Most of the func-

tions take feature functions and parameter bucket object as input. They divide the given feature

matrix into training set and test set with respect to test size defined in the parameter bucket. Clas-

sification can be performed using four classification algorithms: Support Vector Machine (SVM),

Logistic Regression (LR), Random Forest (RF) and Gradient Boosting (GB). For the kernel method,

LibSVM package [39] is utilized to insert pre-computed kernel matrix for classification. Addition-

ally, the featurization methods can be used to create feature vectors compatible with any scikit-learn

classification algorithm.

I also include the option of Transfer learning in classification for most of the featurization
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methods except kernel method. In this type of classification, a classifier is trained on a data set and

tested on another one. One can refer to Ref. [171] for more details about transfer learning. When

user defines the transfer learning as true in parameter bucket, feature functions will be computed

for training and test persistence diagrams separately. In both classification type, training and test

set will be generated 10 times randomly. Mean classification score, standard deviation for training

and test set and total runtime for the classification are given as output.

5.2.3 Complex Networks Module

The teaspoon module provides the Python implementation of the algorithms used in [162], which

provides methods for analyzing the dynamic state of a time series based on the persistent homology

of the network representations of time series. The general pipeline, as shown in Fig. 5.7, is as

follows: (1) represent a time series as a network as described in Section 5.2.3, (2) Generate a

distance matrix from the undirected and weighted adjacency matrix as described in section 5.2.3,

and (3) apply 1-D persistent homology to the distance matrix. The persistence diagram point

summaries can be generated to analyze the dynamic state of the underlying time series.

Figure 5.7: The persistent homology of complex networks pipeline.

Network Representations of Time Series There are currently two available algorithms in the

complex networks module to represent a time series as a complex network. Specifically, these

are 𝑘 Nearest Neighbor (𝑘-NN) networks [118] and ordinal partition networks [146]. For the

implementation of these algorithms I use the adjacency matrix as the graph data structure.

For the ordinal partition network a permutation sequence needs to be generated by using

the function permutation_sequence, which requires a time series and the permutation dimension
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𝑛 and delay 𝜏. For selecting the dimension and delay I suggest using the parameter selection

module. Using the permutation sequence, the resulting adjacency matrix is formed using the

AdjacenyMatrix_OP function, which creates edges in the graph based on permutation transitions.

Two steps are required to generate 𝑘-NN networks. First, the time series needs to have

its state space reconstructed through Takens’ embedding, which is done through the function

Takens_Embedding. This function requires the time series and the embedding dimension and

delay. The dimension and delay can be selected using the parameter selection module. Next, the

𝑘-NN are found using the k_NN function and specifying 𝑘 which has a default of 𝑘 = 4. Using

the list of neighbors, an adjacency matrix is formed using the Adjacency_KNN function by treating

each embedded vector as a node and adding edges when two nodes are 𝑘-NN.

The next step in the pipeline is to define algorithms to represent distances between nodes in the

network based on the adjacency matrix, which is discussed in the subsequent section.

Distance Matrix Two steps are required to assign distances between nodes in a network: (1)

apply an edge weight algorithm to represent distances for adjacent nodes and (2) implement a

distance algorithm for non-adjacent nodes.

For the first step I provide the following edge weight functions: unweighted, inverse, and

difference. Specifically, the unweighted option changes all the edge weights to 1, the inverse sets

the weight to the element-wise reciprocal, and the difference finds the maximum edge weight and

sets the new edge weight as the difference between the max edge weight and that edge’s weight.

The second step requires a method for defining distances between non-adjacent nodes. To do

this I offer two options: the shortest-path distance and effective network resistance [71]. Both of

these steps are implemented through the DistanceMatrix function.

5.2.4 Information Module

The information theory module currently provides three functions for information entropy calcula-

tions. The first two are the calculation of the permutation entropy [14] and multi-scale permutation
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entropy as PE and MsPE, respectively. Permutation entropy has been shown to be a useful tool for

analyzing signal complexity and has very few requirments for its application. The third function is

the persistent entropy [9] through the function PersistentEntropy, which calculates the entropy of a

persistence diagram given the lifetimes from the persistence diagram.

5.2.5 Parameter Selection Module

The parameter selection module provides code for the functions used in [161] and [11] for automat-

ically calculating the dimension 𝑛 and delay 𝜏 parameters for both permutation entropy and Takens’

embedding (state space reconstruction). For details on each of the methods please reference their

respective publications as some are more suitable for non-linear time series or have time series

requirements. A comprehensive list of the available methods are provided in Table C.4.
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APPENDIX A

PERMUTATION ENTROPY PARAMETER SELECTION

A.1 MPE Effects of Noise

Figure A.1: Region N is affected by noise in the MPE plot, and region S is unaffected.

Effects of Noise We found that the main advantage of using MPE for determining the embedding

delay is its robustness to noise. Noise on an MPE plot has minimal effects on regions B and C from

Fig. 2.11, while only significantly affecting region A as shown in Fig A.1. Furthermore, depending

on the signal to noise ratio, there will only be an effect at the beginning of region A. Figure A.1

shows the first region N where noise is affecting the permutation entropy. The effect of noise causes

the MPE plot to start at a maxima and decrease to a local minima. When the time delay becomes

large enough, the permutations are no longer influenced by the noise causing this minima. We

found that the location of the minima is based on the condition

𝑚avg𝜏𝑁 ≈ 𝐴noise 𝑓𝑠, (A.1)

where𝑚avg is the average of the absolute value of the slope and 𝐴noise is approximately the maximum

amplitude of the noise, 𝜏𝑁 is the value of 𝜏 great enough to surpass the noise amplitude. We derived

this condition from the need for, on average, | 𝑓 (𝑡) − 𝑓 (𝑡 + 𝜏) | > 𝐴noise. This shows that MPE is

robust to noise as long as the noise amplitude does not exceed the amplitude of the signal.
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A.2 Autocorrelation Methods and Example

Pearson Correlation The Pearson correlation coefficient 𝜌𝑥𝑦 ∈ [−1, 1] measures the linear

correlation of two time series 𝑥 and 𝑦. Using these two data sets the correlation coefficient is

calculated as

𝜌𝑥𝑦 =

∑𝑛
𝑖=1(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦̄)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)
2
√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̄)
2
. (A.2)

The possible values of 𝜌𝑥𝑦 represent the relationship between the two data sets, where 𝜌𝑥𝑦 = 1

represents a perfect positive linear correlation, 𝜌𝑥𝑦 = 0 represents no linear correlation, while 𝜌𝑥𝑦 =

−1 represents a perfect negative linear correlation. However, Pearson correlation is limited because

it only detects linear correlations. This limitation is somewhat alleviated by using Spearman’s

Correlation which operates on the ordinal ranking of the two time series instead of their numeric

values.

Spearman’s Correlation Spearman’s correlation is also calculated using Eq. (A.2) with the

substitution of 𝑥 and 𝑦 for their ordinal ranking. This substitution allows for detecting nonlinear

correlation trends to be represented as long as the correlation is monotonic. To demonstrate the

difference, Fig. A.2 shows two sequences 𝑥 and 𝑦 calculated from 𝑦 = 𝑥4 with 𝑥 ∈ [0, 10]. Using

this example, the Pearson correlation is calculated as 𝜌 ≈ 0.86, while Spearman’s ranked correlation

yields 𝜌 = 1.0. This result demonstrates how Spearman’s correlation coefficient accurately detects

the non-linear, monotonic correlation between 𝑥 and 𝑦 whereas Pearson correlation may miss it.

Figure A.2: A comparison between (left) unranked values and (right) ranked values for calculating
correlation coefficients. Using the ranked 𝑥 and 𝑦, Spearman’s correlation coefficient can be used
to accurately reveal existing nonlinear monotonic correlations.

184



Autocorrelation Example We can use the concept of correlation to select a delay 𝜏 by calculating

the correlation coefficient using Eq. (A.2) between a time series and its 𝜏-lagged version. As an

example, take the time series 𝑥(𝑡) = sin(2𝜋𝑡), with 𝑡 ∈ [0, 5] having a sampling frequency of 100

Hz. This results in a suggested delay 𝜏 = 20 at the first folding time using both Spearman’s and

Pearson correlation.

A.3 MI methods

MI using Equal-sized Partitions For the calculation of MI, the joint and independent proba-

bilities of the original 𝑥(𝑡) and time lagged 𝑥(𝑡 + 𝜏) time series are needed. However, since 𝑥 is

a discrete time series, we approximate these probabilities using bins, which segment the range of

the series into discrete groups. The simplest method for approximating the probabilities using this

discretization method is to use equal sized bins. However, the size of these bins is dependent on

the number of bins 𝑘 . We investigated various methods for estimating an appropriate number of

bins using the length of the time series 𝑁 . These methods include the common square-root choice

𝑘 = ⌈
√
𝑁⌉, Sturge’s formula [223] 𝑘 = ⌈log2(𝑁)⌉ + 1, and Rice Rule [126] 𝑘 = ⌈2𝑁1/3⌉. After

comparing each method using a variety of examples, we found that the use of Sturge’s formula

provided the best results for selecting 𝜏 for PE using MI.

MI using Adaptive Partitions Darbellay and Vajda [55] introduced a multistep, adaptive parti-

tioning scheme to select appropriate binning sizes in the observation space formed by the plane 𝑥(𝑡)

and 𝑥(𝑡+𝜏). Their method is often considered state-of-the-art for estimating the mutual information

function [119]. In this approach, the bins are recursively created where in the first function call,

the space of the signal and its 𝜏-lagged version is divided into an equal number of 2D bins. Then

a A chi-squared test is used to test the null hypothesis that the data within the newly created bins

are independent. Any segment that fails the test is further divided until the resulting sub-segments

contain independent data (or a certain number of divisions is satisfied). Using this partitioning

method, the MI is calculated using Eq. (2.14).
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Kraskov MI Kraskov et al. [119] developed a method for approximating the MI using entropy

estimates using partition sizes based on 𝑘-nearest neighbors. Specifically, the method begins by

first calculating the MI using entropy [52] as

𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ), (A.3)

where 𝐻 is the Shannon entropy. Next, an approximation of 𝐻 (𝑋) with digamma functions is done,

but the probability density of 𝑋 and𝑌 still needs to be estimated. To do this, adaptive partitions using

the 𝑘-nearest neighbor are formed. Specifically Kraskov et al. develop two different partitioning

methods with similar results. The first method uses the maximum Chebyshev distance to the 𝑘 = 1

nearest neighbor 𝑗 to form square bins as shown in Fig. A.3-a, and the second method in Fig. A.3-b

uses rectangular partitions using the horizontal and vertical distances to the 𝑘 = 1 nearest neighbor

𝑗 . To continue with the example shown in Fig. A.3, the density probability is estimated using the

(a) (b)

Figure A.3: Example showing two different partition methods for Mutual Information estimation
using 𝑘 = 1 nearest neighbor adaptive partitioning.

strips formed from these bins. To highlight the difference, Fig. A.3-a shows a horizontal strip of

width 𝜖 (𝑖) encapsulating 𝑛𝑥 (𝑖) = 2 points (strip does not include the point 𝑖), while in Fig. A.3-b

only 𝑛𝑥 (𝑖) = 1 point is enclosed. Using these probability density approximations and the digamma

function 𝜓, MI between 𝑋 and 𝑌 can be estimated. Using the partitioning method shown in

Fig. A.3-a the MI is estimated as

𝐼 (1) (𝑋;𝑌 ) = 𝜓(𝑘) − (𝜓(𝑛𝑥 + 1) + 𝜓(𝑛𝑦 + 1) + 𝜓(𝑁). (A.4)

Using the partitioning method shown in Fig. A.3-b the MI is estimated as

𝐼 (2) (𝑋;𝑌 ) = 𝜓(𝑘) − 1/𝑘 − [𝜓(𝑛𝑥) + 𝜓(𝑛𝑦)] + 𝜓(𝑁). (A.5)
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A.4 Tabulated PE parameters

Table A.1: A comparison between the calculated and suggested values for the delay parameter 𝜏
for multiple MI approximation methods. The cells in bold highlight the methods that yielded the
closest match to the suggested delay. The equal-sized partition method is described in Section A.3,
Kraskov et al. methods 1 and 2 in Section A.3, and the adaptive partitioning approach in Section A.3.

Mutual Information
System Equal-sized

Partitions
Kraskov et al.

Method 1
Kraskov et al.

Method 2
Adaptive
Partitions

Suggested
Delay tau Ref.

White Noise 1 3 3 1 1 [201]
Lorenz 13 9 9 9 10 [201]
Rossler 14 13 11 9 9 [227]

Bi-directional
Rossler 16 14 14 15 15 [201]

Mackey-Glass 7 8 7 7 1 to 700 [201]
Sine Wave 4 17 13 1 15 [227]

Logistic Map 5 8 11 5 1 to 5 [201]
Henon Map 12 15 13 8 1 to 5 [201]

ECG 22 16 9 8 1 to 4 [201]
EEG 6 5 5 5 1 to 3 [201]

Table A.2: A comparison between the calculated and suggested values for the delay parameter 𝜏.
The cells in bold show the methods that yielded the closest match to the suggested delay. The
following conditions or abbreviations were used in the table: the range under PAMI results is from
using the range (4 < 𝑛 < 6), AP under MI is an abbreviation for adaptive partitioning, and AC is
an abbreviation for autocorrelation.

Catagory System Traditional Methods Modified/Proposed Methods Suggested
Delay (𝜏) Ref.

MI using AP Spearman’s AC Freq. App. MPE PAMI
(4 ≤ n ≤ 6)

Noise White Noise 1 1 1 1 1 1 [201]

Chaotic
Differential
Equation

Lorenz 9 15 6 17 5 to 9 10 [201]
Rossler 9 12 7 19 6 to 10 9 [227]

Bi-directional
Rossler 15 12 7 20 6 to 10 15 [201]

Mackey-Glass 7 5 3 8 2 to 4 1 to 700 [201]
Periodic Sine Wave 1 10 21 16 5 to 8 15 [227]

Nonlinear
Difference Eq.

Logistic Map 5 1 1 1 1 1 to 5 [201]
Henon Map 8 1 1 1 1 1 to 5 [201]

Medical
Data

ECG 8 21 2 13 1 to 2 1 to 4 [201]
EEG 5 4 1 4 2 to 4 1 to 3 [201]
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Table A.3: A comparison between the calculated and suggested values for the embedding dimension
𝑛. The cells in bold show the methods that yielded the closest match to the suggested dimension.

Catagory System
Traditional
Methods

Modified
Method Suggested

Dim. (n) Ref.
FNN SSA MPE

Noise White
Noise 4 23 5 3 to 7 [201]

Chaotic
Differential
Equation

Lorenz 3 4 5 5 to 7 [201]
Rossler 4 4 4 6 [227]

Bi-directional
Rossler 4 4 4 6 to 7 [201]

Mackey-Glass 4 6 4 4 to 8 [201]

Periodic Sine
Wave 4 2 3 4 [227]

Nonlinear
Difference
Equation

Logistic
Map 4 3 5 2 to 16 [201]

Henon
Map 4 2 5 3 to 10 [201]

Medical
Data

ECG 7 8 5 3 to 7 [201]
EEG 5 11 6 3 to 7 [201]
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APPENDIX B

SUBLEVEL SET PERSISTENCE AND DAMPING PARAMETER ESTIMATION

In appendix B, we provide an omitted proof and algorithm. Specifically, we have included the

theorem showing the relationship between the mean lifetime and mean birth and death times of a

persistence diagram and the algorithm for calculating the sublevel set persistence diagram.

B.1 Proof of Expected Lifetime Equation

The following proof supports a claim made in 1.2.1. In what follows, we will use the notation 𝜇𝑆

to denote the expected value of the distribution over the multi-set 𝑆.

Theorem B.1.1 (Expected Lifetime). Let D = {(𝑏𝑖, 𝑑𝑖)}𝑛𝑖=1 be a persistence diagram. Let 𝐵, 𝐷,

and 𝐿 be the multi-sets of birth times, death times, and lifetimes, respectively. Then, the average

lifetime is:

𝜇𝐿 = 𝜇𝐷 − 𝜇𝐵.

Proof. By definition, 𝐵 = {𝑏𝑖}𝑛𝑖=1, 𝐷 = {𝑑𝑖}𝑛𝑖=1, and 𝐿 = {𝑑𝑖 − 𝑏𝑖}𝑛𝑖=1. By definition of mean and of

𝐿, the mean lifetime is

𝜇𝐿 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑑𝑖 − 𝑏𝑖). (B.1)

Expanding the sum to two separate sums and using the commutative property of addition, we get:

𝜇𝐿 =
1
𝑛

𝑛∑︁
𝑖=1
(𝑑𝑖 − 𝑏𝑖)

=
1
𝑛

𝑛∑︁
𝑖=1

𝑑𝑖 −
1
𝑛

𝑛∑︁
𝑖=1

𝑏𝑖

= 𝜇𝐷 − 𝜇𝐵,

(B.2)

where the last equality is by definition of 𝜇𝐷 and 𝜇𝐵. Thus, we conclude that 𝜇𝐿 = 𝜇𝐷 − 𝜇𝐵.
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APPENDIX C

DYNAMICAL SYSTEMS

C.1 Dynamic State Analysis System Models

The following 18 continuous and 12 discrete dynamical systems were used throughout this work.

For details on their equations of motion and system parameters we direct the reader to the MakeData

module in the python package teaspoon [161].

Table C.1: Continuous and discrete dynamical Systems used throughout manuscript.
Autonomous Continuous Dynamical Systems Driven Continuous Dynamical Systems Discrete Dynamical Systems
Lorenz Driven Van der Pol Oscillator Logistic Map
Rossler Shaw Van der Pol Oscillator Henon Map
Double Pendulum Forced Brusselator Sine Map
Diffusionless Lorenz Attractor Ueda Oscillator Tent Map
Complex Butterfly Duffing Van der Pol Oscillator Ricker’s Population Map
Chen’s System Base Excited Magnetic Pendulum Gauss Map
ACT Attractor Sine Circle Map
Rabinovich Frabrikant Attractor Lozi Map
Halvorsen’s Cyclically Symmetric Attractor Tinkerbell Map
Burke Shaw Attractor Holmes Cubic Map
Rucklidge Attractor Kaplan-Yorke Map
WINDMI Gingerbread Man Map

C.2 All Available Dynamic System Models
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Table C.2: Available flows and maps in dynamic systems library module.

Dissipative Flows Conservative Flows Driven Dissipative Flows Maps

Lorenz Att. Simple Driven Driven Pendulum Logistic
Rossler Att. Nose-Hoover Osc. Driven Van der Pol Osc. Henon
Chua Circuit Labyrinth Chaos Shaw Van der Pol Osc. Sine
Coupled Lorenz-Rossler Henon-Heiles Osc. Forced Brusselator Tent
Coupled Rossler-Rossler Ueda Osc. Linear Congruent
Double Pendulum Duffing’s Two-well Osc. Ricker’s Pop.
Diffusionless Lorenz Att. Duffing Van der Pol Osc. Gauss
Complex Butterfly Rayleigh-Duffing Osc. Cusp
Chen’s Att. Pincher’s
Hadley Att. Sine-circle
ACT Att. Lozi
Rabinovich-Fabrikant Att. Delayed Logistic
Rigid Body Feedback Tinkerbell
Moore-Spiegel Osc. Burgers
Thomas Att. Holmes
Halvorsen’s Att. Kaplan-Yorke
Burke-Shaw Att.
Rucklidge Att.
WINDMI
Simple Quadratic Flow
Simple Cubic Flow
Simple Piecewise Flow
Double Scroll

Table C.3: Available functions, noise models, and medical data in dynamical systems library
module.

Functions Noise Models Medical Data

Sine Gaussian Electrocardiogram
Incommensurate Sine Uniform Electroencephalogram

Rayleigh
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Table C.4: Parameter selection methods available in parameter selection module for both the delay
and dimension parameters.

Algorithm Reference(s) Dimension or Delay

Mutual Information [78, 161] Delay
Autocorrelation [25, 161] Delay

Frequency Analysis [11, 149, 161] Delay
Multi-scale Permutation Entropy [161,200] Delay

Permutation Auto-mutual Information [135,161] Delay
SW1PerS [11, 177] Delay

False Nearest Neighbors [109,161] Dimension
Multi-scale Permutation Entropy [161,200] Dimension

Singular Spectrum Analysis [27, 161] Dimension

192



APPENDIX D

ADDITIONAL DIFFUSION DISTANCE ANALYSIS

D.1 Persistence of Cycle Graph

The cycle graph on 𝑛 vertices is the graph𝐺 = (𝑉, 𝐸) with𝑉 = {𝑣1, · · · , 𝑣𝑛}, and 𝐸 = {𝑣𝑖𝑣𝑖+1 | 1 ≤

𝑖 < 𝑛} ∪ {𝑣𝑛𝑣1}; i.e. it forms a closed path (cycle) where no repetitions occur except for the starting

and ending vertices. If we increase the number of nodes from 2 to 500 and calculate the maximum

persistence or maximum lifetime, we find that it quickly reaches a maximum of 𝐿1 = 0.216 at

𝑛 = 32, and then steadily declines seeming to approach a plateau as shown in Fig. D.1. This is

Figure D.1: Numerical analysis of the maximum persistence of the cycle graph 𝐺cycle(𝑛) with size
𝑛 when using diffusion distance with 𝑡 = 2𝑑.

in comparison to the unweighted shortest path distance of the cycle graph which has a maximum

persistence of ⌈𝑛/3⌉ − 1 as shown in [162].

D.2 Analysis on Random Walk Steps

In this section we vary the number of random walk steps 𝑡 with respect to the graph diameter 𝑑 to

determine how many steps is suitable for calculating the persistent homology based on the diffusion

distance. We vary 𝑡/𝑑 from 1 to 5 as shown in Fig. D.2. To decide on the optimal 𝑡 we calculate

the maximum lifetime and number of persistence pairs in each resulting persistence diagram for

each of the 23 dynamical systems investigated in this work. Additionally, the average for both the
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maximum lifetime and number of lifetimes is plotted as shown in Fig. D.2.

Figure D.2: Comparison of max 𝐿1 and #{𝐿1} for each system and mean when varying 𝑡 in 𝑃𝑡 with
respect to the diameter (𝑡 ∈ [𝑑, 5𝑑]).

Based on the each systems maximum lifetimes, a suitable value for 𝑡 should be greater than 𝑑

based on having a 𝑡 large enough that each system reaches a maximum of the max(𝐿1). We can also

note that the number of persistence pairs or lifetimes in the persistence diagram does not stabalize

for the majority of systems until approximately 𝑡 = 2𝑑/3. This again supports a minimum suggest

𝑡 > 𝑑. The only downfall of larger values of 𝑡 is that the maximum lifetime tends to diminish as

shown in the max(𝐿1) figure. Therefor, we conclude that a suitable 𝑡 should be within the range

𝑑 < 𝑡 < 3𝑑. In this work we chose 𝑡 = 2𝑑.
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