
SUPERVISED DIMENSION REDUCTION TECHNIQUES FOR HIGH-DIMENSIONAL
DATA

By

Dylan Molho

A DISSERTATION

Submitted to
Michigan State University

in partial fulfillment of the requirements
for the degree of

Computational Mathematics, Science, and Engineering – Doctor of Philosophy

2022

ABSTRACT

SUPERVISED DIMENSION REDUCTION TECHNIQUES FOR HIGH-DIMENSIONAL
DATA

By

Dylan Molho

The data sets arising in modern science and engineering are often extremely large, befitting the

era of big data. But these data sets are not only large in the number of samples they have, they

may also have a large number of features, placing each data point in a high-dimensional space.

However, unique problems arise when the dimension of the data has the same or even greater order

than the sample size. This scenario in statistics is known as the High Dimension, Low Sample Size

problem (HDLSS). In this paradigm, many standard statistical estimators are shown to perform

sub-optimally and in some cases can not be computed at all.

This dissertation develops two novel algorithms that successfully operate in the paradigm of

HDLSS. We first propose the Generalized Eigenvalue (GEV) estimator, a unified sparse projection

regression framework for estimating generalized eigenvector problems. Unlike existing work, we

reformulate a sequence of computationally intractable non-convex generalized Rayleigh quotient

optimization problems into a computationally efficient simultaneous linear regression problem,

padded with a sparse penalty to deal with high-dimensional predictors. We showcase the applica-

tions of our method by considering three iconic problems in statistics: the sliced inverse regression

(SIR), linear discriminant analysis (LDA), and canonical correlation analysis (CCA). We show the

reformulated linear regression problem is able to recover the same projection space obtained by

the original generalized eigenvalue problem. Statistically, we establish the nonasymptotic error

bounds for the proposed estimator in the applications of SIR and LDA, and prove these rates are

minimax optimal. We present how the GEV is applied to the CCA problem, and adapt the method

for a robust Huber-loss based formulation for noisy data. We test our framework on both synthetic

and real datasets and demonstrate its superior performance compared with other state-of-the-art

methods in high dimensional statistics.

The second algorithm is the scJEGNN, a graphical neural network (GNN) tailored to the task of

data integration for HDLSS single-cell sequencing data. We show that with its unique model, the

GNN is able to leverage structural information of the biological data relations in order to perform

a joint embedding of multiple modalities of single-cell gene expression data. The model is applied

to data from the NeurIPS 2021 competition for Open Problems in Single-Cell Analysis, and we

demonstrate that our model is able to outperform top teams from the joint embedding task.

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. Yuying Xie. Since the start of my time

with him, he has shown commitment and passion to research while also being endlessly patient

and adaptive. His knowledge of a diverse range of applied and theoretical techniques has been

invaluable. He has been the perfect combination of professional and personable. I also want to

thank my co-advisor, Dr. Qiang Sun. His depth of expertise in statistics and mathematics has been

inspiring and served as constant motivation for my own work. His insight and clarity in our work

has helped guide both my research and development as a scholar. I regret Covid taking away an

opportunity to have worked with him more in person.

I would also like to thank my other committee members, Dr. Ming Yan and Dr. Rongrong

Wang for their knowledgeable feedback and suggestions into further research directions.

I also want to thank the CMSE community, Lisa Roy, Heather Williams, etc. They are always

there to offer help.

Lastly, thank you to friends and family for providing so much support during this time.

iv

TABLE OF CONTENTS

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ALGORITHMS . ix

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND . 8
2.1 Mathematical Preliminaries . 8
2.2 Deep Learning . 11
2.3 Single-Cell Data . 18

CHAPTER 3 THEORETICAL PROPERTIES OF THE GEV ESTIMATOR 22
3.1 General Error Bound . 23

3.1.1 Proof of Lemma 2 . 24
3.1.2 Proof of Lemma 3 . 25
3.1.3 Proof of Theorem 6 . 27

3.1.3.1 Proof of Lemma 7 . 27
3.1.3.2 Proof of Lemma 8 . 30

3.2 Sliced Inverse Regression . 31
3.2.1 Consistency for SIR . 33
3.2.2 Proof of Theorem 11 . 35

3.3 Linear Discriminant Analysis . 40
3.3.1 Consistency for LDA . 42

3.3.1.1 Proof of Theorem 19 . 43
3.3.1.2 Proof of Theorem 22 . 45

3.4 Minimax Rate . 46
3.4.1 Proof of Theorem 23 . 47
3.4.2 Proof of Corollary 25 . 48

3.5 Canonical Correlation Analysis . 49

CHAPTER 4 EMPIRICAL RESULTS OF THE GEV ESTIMATOR 52
4.1 Implementation . 52

4.1.1 Robust Modification . 54
4.2 Sliced Inverse Regression . 55

4.2.1 Heavy Noise Slice Inverse Regression . 59
4.3 Linear Discriminant Analysis . 61
4.4 Canonical Correlation Analysis . 62
4.5 Application to Tumor-Infiltrating Lymphocytes Data 64
4.6 Application to Single-Cell RNAseq Data . 66

v

CHAPTER 5 GRAPHICAL NEURAL NETWORKS FOR MULTI-MODAL DATA IN-
TEGRATION . 68

5.1 Problem Statement . 69
5.2 Method . 71

5.2.1 Data Preprocessing . 71
5.2.2 Graph Construction . 72
5.2.3 Graph Convolution . 74
5.2.4 Autoencoder . 77

5.3 Experimental Results . 79

CHAPTER 6 CONCLUSION . 81
6.1 Future Work . 81

BIBLIOGRAPHY . 84

vi

LIST OF TABLES

Table 4.1: Summary of estimation accuracy for categorical response in low and high di-
mensions. We report the means of three accuracy metrics (CCA, FD and TC)
with their standard deviations in parentheses. The results are based on 100
replications. 57

Table 4.2: Summary of estimation accuracy for continuous response in low dimensions.
We report the means of three accuracy metrics (CCA, FD and TC) with their
standard deviations in parentheses. The results are based on 100 replications. . . 58

Table 4.3: Summary of estimation accuracy for continuous response in high dimensions.
We report the means of three accuracy metrics (CCA, FD and TC) with their
standard deviations in parentheses. The results are based on 100 replications. . . 59

Table 4.4: Summary of estimation accuracy for Huber loss estimation in low dimensions
with high noise. We report the means of three accuracy metrics (CCA, FD
and TC) with their standard deviations in parentheses. The results are based
on 100 replications. 60

Table 4.5: Summary of estimation accuracy for Huber loss estimation in high dimensions
with high noise. We report the means of three accuracy metrics (CCA, FD
and TC) with their standard deviations in parentheses. The results are based
on 100 replications. 61

Table 4.6: Summary statistics reporting performance of the GEV, LDA−ℓ1, Direct and
Oracle methods. We report the means of the FD with its standard deviation in
parentheses. The results are based on 100 replications 62

Table 4.7: Summary statistics reporting performance of the GEV and PMA methods.
We report the means of the FD with its standard deviation in parentheses. The
results are based on 100 replications . 64

Table 5.1: Performances for Joint Embedding Task . 79

vii

LIST OF FIGURES

Figure 1.1: Unlabeled 2-dimensional data. 2

Figure 1.2: Labeled 2-dimensional data. 3

Figure 1.3: Data projection on the x and y axis. 3

Figure 1.4: The LDA decision boundary between samples from Class 1 and Class2.
White x’s mark the sample means, and the yellow x gives the midpoint be-
tween the two. 4

Figure 2.1: A simple graph with adjacency matrix. 11

Figure 2.2: The architecture of a feedforward network. The nodes represent the coordinates of
each layer, and the edges represent the weights of the linear transformations. 13

Figure 2.3: The general framework of an autoencoder. The hidden layer gives the code of the
encoder, and the lower dimension of the code constrains the representation. 15

Figure 2.4: An example matrix for single-cell data. 19

Figure 4.1: Comparison of convergence rates of different algorithms. 53

Figure 4.2: Relationship between plasma cells and GEV-SIR direction. The left panel shows the
distribution of eigenvalues of Ω̂. The scatter plots in the middle and right panels
show the relationship between the tumor infiltrated plasma cell and the GEV-SIR
direction. 65

Figure 4.3: GEV-SIR analysis of embryoid body scRNAseq data. 67

Figure 5.1: scJEGNN graph construction process. The input data determines the value
of the weighted edges between the cell nodes and feature nodes, values of
zero indicate no edge. 73

Figure 5.2: scJEGNN graph convolution. Multiple convolution layers propagate infor-
mation from the weighted edges to update cell and feature nodes. 76

Figure 5.3: scJEGNN Autoencoder architecture. Each layer is fully connected, and the
encoder layers feature drop out and batch normalization steps. 79

viii

LIST OF ALGORITHMS

Algorithm 4.1 A fast iterative shrinkage-thresholding algorithm for GEV. 52

Algorithm 4.2 Huber loss algorithm for robust GEV. 55

ix

:

:

CHAPTER 1

INTRODUCTION

In the past twenty years, we have witnessed an explosion of data from different domain areas,

including medical imaging, finance, and genomics. The data sets arising in modern science and

engineering are often extremely large, befitting the era of big data. But these data sets are not only

large in the number of samples they have, they may also have a large number of features, plac-

ing each data point in a high-dimensional space. Data like this is common in fields like biology,

where for instance measurements of the gene expression of cells can have tens of thousands or

even hundreds of thousands features. This enrichment of data offers promises of solutions to many

challenging goals, including detecting genes underlying complex diseases and designing novel

drug treatments. However, unique problems arise when the dimension of the data has the same

order as or even greater than the sample size. This scenario in statistics is known as a High Dimen-

sion, Low Sample Size problem (HDLSS) [HMN05, SSZM16]. In such a regime, many classical

statistical methods no longer have guarantees of success, and standard asymptotic theory often fails

to provide useful predictions. As well, in high dimensions, our intuitions on basic concepts such

as the distance between points begins to break down. As a result of the “curse of dimensionality”,

higher dimensional versions of the cube no longer have the majority of their mass near the center of

the cube, but instead the vast majority of volume is found near the corners. Similarly, multivariate

normal distributions more and more act like uniform distributions on hyperspheres, and estimators

like k-nearest neighbors become unreliable due to distances being very similar between points in

the high-dimensional data set.

To better illustrate this behavior, we give a simple example of Linear Discriminant Analysis

(LDA), a classical machine learning technique that trains a classifier for the data. The classifier

is determined based on finding a linear projection of the data to a lower dimensional space that

best separates the data based on its class. In Figure 1.1 we see unlabeled data in 2-dimensions

that have a high spread along the x-axis, with very little variation along the y-axis. If we sought

1

to simplify the data to a one-dimensional representation, we could simply project the data to the

x-axis, preserving most of the variation of the data.

Figure 1.1: Unlabeled 2-dimensional data.

Once the data is given additional class information, we see that most of the pertinent informa-

tion about how the classes are separated would be lost upon projection to the x-axis. We see in

Figure 1.3 that the projection of the data on the x-axis mixes much of the class data, making it

nearly impossible to find a good point to separate the classes. On the other hand, projection on

y-axis does a good job of separating the class information, despite being more compactly spaced

after projection. It is not too surprising that this is case: the data is generated from two multivariate

normal distributions with mean µ1 = (13,1) for class 1 and mean µ2 = (21,2), with both classes

sharing a diagonal covariance of

Σ =

 25 0

0 .1

 .

2

Figure 1.2: Labeled 2-dimensional data.

Figure 1.3: Data projection on the x and y axis.

3

While the projection of the data on the y-axis fared well in distinguishing the class information,

we can do even better. The solution provided by LDA takes into account the location of the sample

means, and corrects for the covariance of the data to make a more optimal separation of the data.

Let µ̂1 and µ̂2 be our estimated class means from the data, marked by the white x’s in Figure 1.4,

and let Σ̂ be our estimated covariance. Then the linear discriminant function applied to a new data

point x ∈ R2 is given by the inner product

Ψ̂(x) = ⟨µ̂1 − µ̂2,Σ̂−1
(

x− µ̂1 + µ̂2

2

)
⟩.

If this value is less than 0, label the point x as belonging to class 1, and if it is greater than 0, then

it is labeled belonging to class 2. This provides a linear decision boundary in the plane, given by

the yellow dotted line in Figure 1.4, where the values of Ψ̂(x) = 0. The decision boundary shows

how the LDA classifier labels new points, and if we wanted to project the data to best separate

the samples by classes, we would project the points to a line that is orthogonal to this decision

boundary.

Figure 1.4: The LDA decision boundary between samples from Class 1 and Class2. White x’s
mark the sample means, and the yellow x gives the midpoint between the two.

4

If we assume that both classes are equally likely, then we can calculate the error probability

using the LDA decision boundary as

Err(Ψ̂) =
1
2
P1[Ψ̂(x′)≤ 0]+

1
2
P2[Ψ̂(x′′)> 0],

where x′ and x′′ are samples drawn independently from probability distributions P1 and P2 of

class 1 and 2 respectively. We can analyze the behavior of the error asymptotically, i.e. look at

the limiting behavior as our sample size n increases to infinity. Define the value γ = ∥µ1 − µ2∥2,

the distance between the two class means, and let us simplify the problem further by assuming the

covariance Σ is the identity matrix. Then the random error Err(Ψ̂) converges in probability to the

fixed number

Err(Ψ̂Id)
prob.−−−→ Φ

(
−γ

2

)
,

where Φ(t) = P[Z ≤ t] is the cumulative distribution function of the standard normal variable.

Thus the error behaves purely as a function of the distance of the class means as n increases: as the

means grow in distance, the amount of error goes down. But this is assuming that the dimension of

the data remains fixed. If instead we had the dimension of the data d at a fixed ratio with the sample

size n, we would see a different picture emerge. In many cases this fixed ratio is more realistic for

applications where the dimension is high and collecting much larger samples is infeasible. Assume

the ratio d/n converges to some non-negative fraction α > 0. Under this high-dimensional scaling,

our error converges to a different sub-optimal value

Err(Ψ̂Id)
prob.−−−→ Φ

(
− γ2

2
√

γ2 +2α

)
.

In this case the classical prediction Φ(−γ/2) drastically underestimates the error rate. Our example

application of LDA was applied to data that is only 2-dimensional with a sample size of 80. We

would see a quick deterioration in performance if the dimension was much higher, e.g. d = 40. At

the point d > n, we are unable to even calculate our estimator, since estimates for the covariance

Σ̂ are no longer full rank, which makes computing its inverse impossible.

These HDLSS phenomena necessitates the development of new theory as well as new meth-

ods in order to manage these difficult problems, and achieve the desired outcomes for downstream

5

data science tasks. To overcome the barriers found in HDLSS scenarios, one must make addi-

tional assumptions on the data, either with explicit formulations or with implicit beliefs about

the behavior of the data. The first type of research leads to structural assumptions placed on the

probability model that generates the data, which allow for alterations to classical methods to yield

theoretically optimal estimators for the chosen well-defined tasks. The second type of research, in

contrast, makes general assumptions usually based on the the causal nature of chosen real-world

data application, where the data is assumed to have dependencies between the various parameters.

While there are no theoretical guarantees for such methods, the strength of the estimator is

instead demonstrated empirically on simulated or real data sets. We explore ideas from both of

these fields, and develop two novel algorithms that successfully operate in the paradigm of HDLSS.

In the first case, we develop an estimator for high-dimensional data with response variables

with the assumption that the data has an underlying low-rank structure, and that the lower-dimensional

representation is obtained with sparse projection directions. Sparsity and low rank representations

are natural assumptions to make on high-dimensional data due to the likelihood of having very

few of the potential thousands of variables contribute meaningfully to a response variable. Data

exhibiting this structure can be found in a diverse collection of applications, ranging from ge-

nomics to economics. Our estimator produces a supervised linear dimension reduction of the data

that attempts to maximally preserve the relationship between the covariate data and the response

variables. We achieve this through finding vectors that relate the covariance of the covariates with

the covariance between the data and response variables, solving a type of generalized eigenvalue

optimization problem. We name the method the Generalized Eigenvalue (GEV) Estimator, and

show that this method is able to solve three separate classical statistical problems in the HDLSS

paradigm: Linear Discriminant Analysis (LDA), Sliced Inverse Regression (SIR), and Canoni-

cal Correlation Analysis (CCA). We give theoretical guarantees of convergence that are shown

to be minimax optimal for both LDA and SIR, and give empirical results of GEV outperforming

competitor methods in all three applications on simulated data, as well as applications of GEV to

real-world data analysis tasks on gene expression data.

6

For the second case, we design a method for multi-modal data integration using deep learning.

We tailor a graphical neural network (GNN) for use on single-cell sequencing data, a rich new data

source in biology that has revolutionized the field. Single-cell sequencing data produces matrices

where each row represents a cell, and each column gives a value corresponding to the expression

of some gene. This data often falls in the HDLSS regime, since sequencing cells is an expensive

process, but can produce for each cell potentially hundreds of thousands of features given by

different genes. We show that by using a bipartite graphical model of the data that represents both

cell and genes as nodes, we are able to leverage the causal structure of the gene expression data

to create a low-dimensional representation that preserves important biological information. The

GNN is combined with an autoencoder model in order to train a low-dimensional representation

through latent feature regularization. We apply our model named scJEGNN to the task for single-

cell multi-modality data integration in the NeurIPS 2021 special competition for Open Problems

in Single-Cell Analysis, and we demonstrate our model is able to outperform the best performing

competitor models.

The structure of this dissertation is as follows: in Chapter 2 we go over some preliminary

mathematical background leading up to the GEV estimator, introduce the basics of neural networks

and the specific models we use from deep learning, and give some description of single-cell data,

which features prominently in our applications. In Chapter 3 we develop the formal theory of

the GEV estimator, including the nonasymptotic convergence theorems and minimax bounds. In

Chapter 4 we give the computational algorithm for the GEV estimator, and show the application of

the estimator to simulated and real data problems. In Chapter 5 we detail the scJEGNN architecture

and show its performance on the single-cell sequencing data integration task.

7

CHAPTER 2

BACKGROUND

In this chapter we develop the necessary mathematical background to understand the work. We

assume some familiarity with linear algebra, multivariate calculus, and probability theory, but

we first review some relevant concepts from these below. Then we review the basics of neural

networks, including feedforward networks, autoencoder, and graphical neural networks. Lastly we

introduce single-cell data and its structure and behavior.

2.1 Mathematical Preliminaries

Probability. Let X be a continuous real-valued random variable with probability distribution P.

If one wishes to understand how spread out X is from its mean E[X] = µ , then we can look at the

tail probabilities P(|X−µ| ≥ t) for t > 0. This value gives us a concentration inequality, which tells

us how likely it is for X to be a distance of t from its mean µ . Often it is beneficial to have random

variables that concentrate around its mean. A common example is when we have a population

parameter we are trying to estimate with a function of the data, which is a random variable, and

the function has mean equal to the population parameter. If X ∼ N(µ,σ2) is normally distributed,

then we can show that X has quick decay of probability in its tails:

P[|X −µ| ≥ t]≤ 2e−
t2

2σ2 for all t ∈ R. (2.1)

This quick rate of decay as a function of t is a general property that we wish to generalize. To that

end we call a random variable X sub-Gaussian if there is a positive number σ such that equation

(2.1) holds for X . A similar but weaker property that we define is as follows: X is sub-exponential

with parameters (ν ,α) if for all t ∈ R

P[|X −µ| ≥ t]≤

 2e−
t2

2ν2 if 0 ≤ t ≤ ν2

α

2e−
t

2α if t > ν2

α
.

(2.2)

8

For sub-exponential variables, when t is small enough, the concentration inequality is sub-Gaussian

in nature (i.e. with the exponent quadratic in t), but for larger t, the exponential component of the

bound scales linearly in t. The location of this shift in behavior is then controlled by the parameter

α , and in the limit α → 0, we get back sub-Gaussian inequalities.

If we have two continuous random variables X and X ′′ with probability distributions P and Q

respectively, then the Kullback-Leibler divergence (KL divergence) between the distributions is

defined to be

DKL(P||Q) =
∫

∞

−∞

p(x) log
(

p(x)
q(x)

)
dx

where p and q denote the probability densities functions of P and Q. For simplicity denote [n] =

{1, . . . ,n} as the discrete set from 1 to n. Lastly if we have a collection of random variables

X1, . . . ,Xn, we define the first order statistic X(1) to be the minimum value of the collection {Xi}i∈[n],

the second order statistic X(2) to be the second smallest value of the collection, and so on to the nth

order statistic X(n), which is the largest value of the collection.

Linear Algebra. Let A ∈ Rm×n be a real m by n matrix, and assume that m > n and that A has

full rank. The singular value decomposition of A is defined to be the identity

A = UΣV⊤ =
n

∑
i=1

σiuiv⊤i

where Σ = diag(σ1,σ2, . . . ,σn) ∈ Rn×n is a diagonal matrix with positive real numbers on the

diagonal and 0’s elsewhere, U = [u1|u2| · · · |un] ∈ Rm×n is a orthonormal matrix with columns

ui ∈ Rm, and V = [v1|v2| · · · |vn] ∈ Rn×n is a orthonormal matrix with columns vi ∈ Rn. If A is a

square symmetric matrix in Rn×n, then the eigendecomposition of A is the identity

A = VΛV⊤ =
n

∑
i=1

λiviv⊤i

where Λ = diag(λ1,λ2, . . . ,λn) ∈ Rn×n is a diagonal matrix and V = [v1|v2| · · · |vn] ∈ Rn×n is a

orthogonal matrix where each (vi,λi) is an eigenvector/eigenvalue-pair of A satisfying Avi = λivi.

For two matrices A,B ∈Rd×d , we define the vector/scalar pair (v,ρ) with v ∈Rd and ρ ∈R to be

9

a generalized eigenpair if

Av = ρBv.

In the case that B is nonsingular, the pairs (v,ρ) correspond to the eigenpairs of the matrix B−1A.

Alternatively, finding these eigenpairs is equivalent to finding the vectors that are critical points of

Rayleigh quotient
v⊤Av
v⊤Bv

with the corresponding generalized eigenvalue ρ equal to the value of the quotient. This framework

occurs commonly in statistics; when seeking a linear projection of the data many classic methods

solve a form of the above generalized eigenvalue problem with A and B acting as covariance

matrices of the data.

Further notation we use is as follows. For two matrices A and B, let ⟨A,B⟩= tr
(
A⊤B

)
denotes

the trace inner product. For a vector u ∈ Rd and q ∈ [0,∞], ∥u∥q =
(

∑
d
j=1 |u j|q

)1/q is the ℓq norm

if 0 ≤ q ≤ ∞; when q = 0, ∥u∥0 is the number of nonzero entries of u; when q = ∞, ∥u∥∞ =

max1≤ j≤d |u j|. For a matrix A ∈ Rm×n, we use tr(A) to denote its trace and Ai j for the (i, j)-th

element, and for q ∈ (0,∞), ∥A∥q is ℓq operator norm, while ∥A∥F and ∥A∥max are used to denote

the Frobenius norm and the entry-wise maximum norm, respectively. For q1,q2 ∈ [0,∞], the matrix

(q1,q2)-pseudonorm ∥A∥q1,q2 of A is defined as
∥∥(∥A∗1∥q2,∥A∗2∥q2, . . . ,∥A∗m∥q2

)∥∥
q1

, where A∗i

denotes the ith column of A. If J ∈ [m] is a subset of indices of size j, AJ ∈ R j×n is the submatrix

given by the j rows with indices in J. We use ρmax(A) and ρmin(A) to denote the maximum

eigenvalue and minimum eigenvalue, respectively. C,C1, and C2 are constants that may vary in

different instances of usage.

Graphs. A graph, denoted G = {V ,E}, is a set of nodes V = {v1, . . . ,vn}, and a set of edges E =

{e1, . . . ,em}. Nodes commonly represent entities in a data science problem, while the edges give

the relations between them, e.g. social media users as nodes and edges representing friendships, or

chemical atoms as nodes, and chemical bonds as edges. An edge e ∈ E connects two nodes v1
e ,v

2
e ,

thus e can be represented as (v1
e ,v

2
e), an element of V×V . A node vi is adjacent to another node v j

10

Figure 2.1: A simple graph with adjacency matrix.

if and only if there exists an edge between them. We define the (first-order) neighbors of a node vi,

denoted N (vi), as the set of nodes that are adjacent to vi. A graph G can be equivalently represented

as an adjacency matrix which describes the connectivity between the nodes. Let A ∈ {0,1}n×n be

a matrix where Ai, j = 1 if vi is adjacent to v j, and equal to 0 otherwise. The degree of a node vi is

the number of nodes adjacent to vi,

d(vi) = ∑
v j∈V

1v j∈N (vi)

where 1v j∈N (vi) = 1 in the event v j ∈ N (vi) and 0 otherwise. The degree matrix D is a diagonal

matrix defined as Di,i = d(vi), Di, j = 0 if i ̸= j.

2.2 Deep Learning

Deep learning is a class of machine learning algorithms that are built from artificial neural net-

works. Originating to a linear model in [MP43], it was further developed into the perceptron in

[Ros58], which can learn parameters for the function given training samples. Neural networks

(NNs) had a renaissance of interest and research in the early 2000s with the advent of “big data”

sources and more powerful computational machines to train the models. Since then deep learn-

ing models have consistently proven to outperform state-of-the-art traditional methods in a large

11

number of applications. The power and flexibility of different deep learning models has firmly

established the popularity of the models in machine learning tasks. We introduce the basics of

common NN models that we use in our work. A fuller treatment of the subject of deep learn-

ing can be found in [GBC16], and [MT21] provides an excellent reference for graphical neural

networks.

Feedforward Networks. A feedfoward network is simply a special type of function that is made

by composing a collection of simpler functions. As in all machine learning tasks, the feedfoward

network is an approximation of a sought after function f ∗()b, for instance if the task is classifi-

cation, one wishes to find a mapping f (x|Θ) that best approximates the ideal classifier f ∗(x) = y.

The values of the parameters Θ that determine the feedforward network f (x|Θ) are learned during

training.

In feedfoward networks, the function f : Rd → Rk given by the network is a composition of

simpler functions that are referred to as the layers of the network. The output dimension k is chosen

to suit the chosen application of the network. A single layer generally has an affine transformation

followed by a nonlinear “activation function” applied pointwise. This means for the input vector

x, the first layer would produce

h1 = σ
(
b1 +W1x

)
,

where W1 ∈ Rd×d1,b1 ∈ Rd1 , and σ : Rd1 → Rd1 is the activation function. The output h1 is the

first “hidden layer” of the network, and the depth of the network is determined by the number of

layers. In general if a network has depth m, then the network function would be

f (x) = bm +Wm
σ(bm−1 +Wm

σ(· · ·σ(b1 +Wmx)))),

where Wi ∈Rdi×di−1 and b ∈Rdi , and our output dimension k would be equal to dm. The values of

the weights of Wi and bi, i ∈ [m] give the collection of parameters Θ that determine the function,

and are learned during training. These transformations between layers are depicted in Figure 2.2

as bipartite graphs, where the coordinates before and after are given as left and right nodes, and

the edges between them represent the weights of the matrix Wi.

12

Figure 2.2: The architecture of a feedforward network. The nodes represent the coordinates of each layer,
and the edges represent the weights of the linear transformations.

Activation functions were originally designed to recreate the behaviors of biological neurons,

which receive a signal and either kill it or propagate it to further neurons. These functions introduce

non-linearity into the neural network which leads to strong theorems guaranteeing the function’s

approximation capabilities under certain conditions. There are a collection of commonly used

functions, and one of the most used is the Rectified Linear Unit (ReLU). The ReLU function is

linear (identity) for all positive inputs and 0 for all negative values;

ReLU(z) = max(0,z).

Many variants of the function exist, many of which attempt to address the lack of gradient the

function has for negative inputs, like the LeakyReLU, ELU, and GELU. Prior to the use of ReLU,

using sigmoid functions were the norm, like the logisitic sigmoid

σ(z) =
1

1+ exp(−z)

due to the belief that activation functions had to be continuous to properly train the model.

The output of the function is run through a chosen loss function that allows for optimization

methods like gradient descent to learn the parameters. If the task is regression, so that each training

13

sample has the pair (x,y),y∈Rk, the output f (x)= ŷ∈Rk could be run through the simple squared

loss function to measure the difference between the predicted ŷ and ground truth y:

L(y, ŷ) =
k

∑
i=1

(yi − ŷi)
2.

If the task is classification, the neural network needs to output the class label of the input. Instead

of a discrete output from a finite set of labels, probabilities are given for each class of C possible

classes, so that the output ŷ would be a vector in RC. The softmax function is used to output values

between 0 and 1 so that the total adds up to 1:

ŷi = softmax(z)i =
exp(zi)

∑ j exp(z j)
, i ∈ [C],

where zi is the ith element of the vector z. Then with the predicted ŷ the loss function of cross-

entropy is used to measure the difference from the truth

L(y, ŷ) =−
C

∑
i=1

yi log(ŷi).

Here yi = 1 if the class of x is i, and 0 otherwise. During inference, an unlabeled input is given

label i if ŷi is the largest value among all the coordinates of ŷ.

Autoencoders. An autoencoder is a special type of neural network that tries to reproduce its input

as its output. The autoencoder consists of two components: an encoder h = f (x), which encodes

x into a hidden representation (called a code) h, and a decoder g which attempts to reconstruct x

from h, represented g(h) = x̂. The network is trained to minimize the reconstruction error

L(x, x̂) = L(x,g(f (x))),

where L(x, x̂) measures the difference between x and x̂. The utility of an autoencoder comes from

its limitations; perfectly recreating the input is made to be impossible, so good approximations

x̂ are trained by encoding only important information in the code h. This limitation is achieved

through the creation of a bottleneck that the input x is forced through. As seen in Figure 2.3, this

bottleneck occurs at the code layer that constrains its representation in some manner.

14

Figure 2.3: The general framework of an autoencoder. The hidden layer gives the code of the encoder, and
the lower dimension of the code constrains the representation.

There are two main ways this constraint in the autoencoder is implemented, by making the di-

mension of the code smaller than the input, or by placing certainly penalties on the latent represen-

tation that discourages memorization between input and output. The first leads to undercomplete

autoencoders, which forces the lower dimension code h to preserve the most important features of

the input. The second leads to regularized autoencoders, which have additional terms added to the

loss function

L(x,g(f (x)))+η ·Ω(h),

where Ω(h) is the regularization term applied to the code h and η is a hyperparameter controlling

the amount of penalty. One regularization is the ℓ1-regularization

Ω(h) = ∥h∥1

which promotes sparsity in the code h. Other regularizations may explicitly promote certain fea-

tures that are data specific to be preserved in the hidden representation, such as the cell type of of

single-cell gene expression data.

15

Graphical Neural Networks. Graph neural networks (GNNs) are a collection of deep learning

architectures that are designed to deal with graph-structured data. Other architectures like feedfor-

ward networks or convolutional neural networks (not covered) are more amenable to data that is

structured as a regular grid, like vectors or matrices. GNNs expand the functionality of neural net-

works to to this more multifarious data, and allow for both node-based and graph-based learning

tasks. These models are quite recent innovations, as the first GNN model was published as recently

as 2005 in [SYG+05].

Like all neural networks, GNNs act as a type of representation learning of its input data, and it is

through learning a good representation of its input data that it is able to perform well in designated

tasks. Since the input data for GNNs are graphs, there are two ways to go about this representation.

For node-based tasks, the GNN learns good features for each node, using the graph structure to

facilitate the calculation of this representation. For graph-based tasks, the GNN aims to learn

features to represent the entire graph, and learning node features occurs only as an intermediate

ancillary step.

To learn updated node features on the graph, the GNN takes in both the input node features and

the graph structure given by the adjacency matrix A ∈ Rn×n, where n gives the number of nodes.

If the nodes features are given by vectors in Rd , the collection of features can be given by a matrix

F ∈ Rn×d , and the update takes the form

F1 = h(A,F)

for some function h called the “graph filter”. For node-based tasks, the graph filtering operation is

usually sufficient, and the GNN consists of multiple graph filters stacked consecutively to generate

final node features. Other operations are necessary for graph-based tasks to generate the features

for the entire graph from the node features. Tailored functions that take into account the graph

structure like graph pooling operations are used to generate global features. We forego further

discussion of graph-based task models, since our applications are node-based only.

Like feedforward networks, the general framework for node-based GNNs is a composition of

multiple steps of graph filtering followed by a non-linear activation. If the network has depth m,

16

then the collection of operations would be denoted

Fm = hm(A,σ(hm−1(A, · · ·σ(h1(A1,F))))).

The final output Fm is then used for a downstream task related, e.g. classification on the nodes.

The non-linear activation functions come from the same collection of activation functions used

for other neural networks, but they can be combined with the graph filterings in novel ways. The

spectral filtering process, for instance, has the nodes transformed via a Graph Fourier Transform,

applies the activation function to the transformed coefficients, and then reconstructs the nodes from

the spectral representation. While there are a large collection of graph filters, including a whole

class of spectral-based filters, we focus here on the simplest spatial-based graph filter.

Let our filter hi, followed by the activation function σ , be defined as

σ(hi(A,Fi−1)) = σ
(
AFi−1Wi) ,

for Wi ∈ Rdi−1×di . This transformation is the same as the feedforward network with the exception

of the multiplication by A. This product AFi−1 means that for every node, we sum up all the feature

vectors of all the neighboring nodes but not the node itself (unless there are self-loops in the graph.)

This allows the topology of the graph to be taken into account during these transformations, but

one generally wishes for a node to propagate its own features into its next updated representation.

To correct for this, the adjacency matrix is replaced by Â = A+ I for I the identity matrix in Rn,

so that Â supplies self-loops to the graph. Furthermore, since A is typically not normalized, the

product AFi−1 can change the scale of the feature nodes based on the number of neighbors a node

has. One can normalize A via multiplication with the inverse degree matrix D−1, but more often a

symmetric normalization is used giving D−1/2AD−1/2. Combining these two we get

σ(hi(A,Fi−1)) = σ

(
D̂−1/2ÂD̂−1/2Fi−1Wi

)
,

for D̂ the degree matrix of Â.

Training. The training of deep learning models occurs through the minimization of a loss func-

tion L with respect to the parameters of the models – the weights of the affine transformations. We

17

denote the loss function as L(Θ) where Θ denotes all the parameters to be optimized. Gradient

descent, a first-order iterative optimization algorithm, is often used to minimize the loss function.

At each iteration the parameters Θ are updated by shifting them in the direction of the negative

gradient (the direction the loss function decreases the most at that location):

Θ
′ = Θ−η ·∇ΘL(Θ),

where ∇ΘL(Θ) denotes the gradient of L at Θ, and η > 0 is the learning rate, which is usually

fixed at a small constant. The gradient is usually averaged over a collection of training samples in

a batch, which provides greater statistical consistency and computational efficiency. The process

is iterated until convergence or some condition is met.

2.3 Single-Cell Data

In the biological sciences, the advent of single-cell technologies has revolutionized the investiga-

tion of cellular behavior in the context of its microenvironment. Single-cell sequencing is able

to measure multiple molecular features in multiple modalities in a cell, such as gene expressions,

protein abundance and chromatin accessibility. Measurements at the single-cell level allow for

unprecedented resolution for studying cell-to-cell heterogeneity. Such data sheds new insights

across biological disciplines including oncology [LYS18], neurology [RWM+18], and immunol-

ogy [SDB+18]. Technologies like single-cell transcriptome sequencing (scRNA-seq) and single-

cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) provide data on the

RNA and DNA gene expression of individual cells respectively. scRNA-seq data makes it possible

to measure transcriptome-wide gene expression, and enables researchers to distinguish different

cell types based on their gene expression, organize cell populations, and identify cells transition-

ing between states [AHB+16, HBR+17, Con18]. Similarly, scATAC-seq studies can reveal somatic

clonal structures such as those found in cancer [ZNC+19], helping monitor cell lineage develop-

ment.

The technologies that produce these data sources are very interesting in their own right, but

for our purposes it suffices to understand the format this data is presented to us after the sampling

18

Figure 2.4: An example matrix for single-cell data.

takes place. For both scRNA-seq and scATAC-seq, the data can be simply represented as a n× d

matrix where n gives the number of cells sampled and d gives the “sequencing depth”, i.e. the

number of genes tested for in the study. Then each row of the matrix gives a unique cell, and each

column give a unique gene. The values of the matrix consist of non-negative integers giving the

count data of how many times the gene expressed for a particular cell. These matrices can have

further information supplementing the data, such as cell type annotations assigning a class to each

cell, or cell-cycle scores quantifying the developmental stage of the cell. The cell-cycle scoring

is based on the expression of G2/M and S phase markers, where S is the synthesis phase for the

replication of the chromosomes (also part of interphase), G2 is the gap 2 phase representing the

end of interphase, prior to entering the mitotic phase, and the M phase is the nuclear division of

the cell (consisting of prophase, metaphase, anaphase and telophase) [NHS+16]. This additional

information would be included as a collection of additional columns at the end of the matrix,

indicating the appropriate labels or scores. An example matrix giving the gene expression data of

a single-cell experiment is given in Figure 2.4.

There are two important aspects of single-cell data that are necessary to understand before using

it for analysis: batch effects and dropout. In single-cell sequencing methods, data is organized

19

into separate batches, where large groups of cells are potentially sampled in multiple laboratories

using different cell dissociation and handling protocols, library preparation technologies and/or

sequencing platforms. These different factors result in batch effects [TBH+17] that can change

the expression of genes systematically from one batch to another. Such differences can mask

underlying biology or introduce spurious structure in the data, and must be corrected prior to

further analysis to avoid misleading conclusions [AHMM18]. Since becoming a standard data

preprocessing step for singe-cell analysis, there have been many advanced techniques developed

to address batch effect removal, including techniques based on CCA [ZWT19] and a number of

deep learning models [LWL+20, SSZ+17].

Dropout is the name given to the technical error that occurs when performing single-cell sam-

pling, which leads to artificial counts of zero in the gene expression read outs. The error occurs

during library preparation – a technical step that duplicates a gene many times in order to be

counted during sampling – and occurs more frequently for genes that express at low levels in their

respective cell types [Qui20]. This leads to sequencing data that is notoriously sparse, where the

vast majority of features may be zero in a typical dataset due to dropout [SNL+17], which can be

even more pronounced in multi-modal data [LHH20]. Dropout events lead to increased technical

variability and noise in the single-cell data, and makes it difficult to differentiate “true” zero counts

from “false” ones. Here, true zero counts indicate that a gene is not expressed in a particular cell

type, which could act as important information to differentiate cell types. Addressing dropout

requires specialized data processing methods such as imputation. Imputation takes in data and at-

tempts to replace artificial zero counts with realistic count values, hopefully while preserving true

zero counts. A diverse collection of methods exist for imputation, most of which rely on gaining

information about cell behaviors from similar cells in the dataset, or by transferring knowledge of

cell behaviors from other datasets. Methods like Phenograph [LSB+18], MAGIC [vDSN+18], and

Seurat [BHS+18] use K-nearest neighbor (KNN) graphs to model relationship between cells, but

the high sparsity of the data may cause these neighborhood estimates to be unreliable, and may

over-simplify the complex cell and gene relationships of cell population. Deep learning methods

20

have improved on these [WAH+19, APYG19], with the top performing methods using GNNs, such

as GraphSCI [RZL+21] and scGNN [WMC+21].

21

CHAPTER 3

THEORETICAL PROPERTIES OF THE GEV ESTIMATOR

Let x be a d-dimensional random vector of covariates with covariance matrix Σ. Let y be a one-

dimensional continuous response and let x | y be a d-dimensional random vector of covariates and

Ω= cov(E[x|y]). It is advantageous to find a linear projection of x to a subspace of dimension K ≪

d such that the population centroids, E[x|y], separate the most in the projected space. This amounts

to finding the vectors that maximize v⊤Ωv, but minimize overlap of the data after projection; i.e.

minimize v⊤cov(x|y)v. Assuming cov(x|y) is the same for all y, we can consider the following

optimization procedure by maximizing a sequence of Rayleigh quotients:

v∗k = argmax
vk

v⊤k Ωvk

v⊤k Σvk
, s.t. v⊤k Σv j=0, for all 1 ≤ j < k ≤ K. (3.1)

where, in classification problems with y taking discrete values (such as LDA), Ω and Σ are fre-

quently referred to as the “between-class” and “within-class” covariance matrices, respectively.1

It is easily verified that the quotient v⊤k Ωvk

v⊤k Σvk
has critical points for each generalized eigenvector

of (Ω,Σ), so that v∗k is a critical point if Ωv∗k = ρΣv∗k for some ρ ∈ R. If Σ is invertible, the

problem reduces to finding eigenvectors of Σ−1Ω, but since estimates of Σ are singular in the

high-dimensional regime, other means of solving the problem have to be used.

Thus the first projection vector is sought to maximize the between-class covariance relative

to the within-class covariance. Then it seeks the second projection vector that maximizes the

between-class covariance subject to the constraint that it is orthogonal to the first projection di-

rection with respect to Σ. This procedure is then continued up to K times, where K is chosen

to fully capture the signal. In this work we focus on the case K = rank(Ω), where in the ap-

1Note that the actual within-class covariance would be cov(x|y) = Σx|y. However, with the assumption of ho-
moscedasticity, that Σx|y = Σx|y′ for all y,y′, we have the pooled covariance ΣP equal to any within-class covariance,
and with the law of total covariance Σ = ΣP +Ω we have the equivalence of

argmax
vk

v⊤k Ωvk

v⊤k Σvk
= argmax

vk

v⊤k Ωvk

v⊤k ΣPvk +v⊤k Ωvk
= argmax

vk

1
v⊤k ΣPvk

v⊤k Ωvk
+1

= argmax
vk

v⊤k Ωvk

v⊤k Σx|yvk
.

22

plications we consider rank(Ω) ≪ d. Then the K projection vectors are concatenated to obtain

VK = {v∗1, . . . ,v
∗
K}, and the projection space, VK , is obtained by setting VK = span{VK}, the space

spanned by the linear combinations of the K projection vectors.

However as it stands, the above approach is undesirable from both a computational standpoint

as well as from an estimation perspective. Each subsequent projection vector relies on all es-

timates of previous projection directions. Thus, propagation of the estimation error is possible.

In addition, the corresponding optimization problems are nonconvex, hence, the convergence of

any optimization algorithms to the global optima is not assured. This computational intractability

poses additional theoretical challenges and thus, most methods that are based on (3.1) do not have

theoretical guarantees. We reformulate (3.1) such that the projection space VK can be recovered

in a simultaneous manner via a convex optimization problem we call the Generalized EigenValue

(GEV) projection. Using a sparsity assumption, we formulate the proposed GEV procedure into

an optimization analogous to a type of matrix lasso regression problem.

3.1 General Error Bound

Without loss of generality, we assume that µ̄ ≡ E(x) = 0. If µ̄ ̸= 0, we can center the data via

x′ ≡ x−E(x), taking x′ as our centralized data with mean 0. Let Ω have an eigendecomposition

Ω = var{E[x|y]}=
K

∑
k=1

ρkuku
⊤
k = UU⊤

where U = (
√

ρ1u1, . . . ,
√

ρKuK) ∈ Rd×K . Let W∗ be the solution to the following optimization

problem

W∗ = argmin
W∈Rd×K

{
1
2

∥∥Σ1/2W−Σ−1/2U
∥∥2

F

}
. (3.2)

Theorem 1. Let W = span{W∗}. Then we have VK =W .

Proof. Let Q(W) = 1
2

∥∥Σ1/2W−Σ−1/2U
∥∥2

F. Then W∗ is the minimizer of Q(W) and W∗ satisfies

∇Q(W∗) = ΣW∗−U = 0,

which yields W∗ = Σ−1U.

23

To proceed, we need the following two lemmas. Our first lemma concerns the relation between

the eigenpairs of Σ−1/2AΣ−1/2 and those of Σ−1A.

Lemma 2. Let A be a symmetric matrix, Σ symmetric positive definite. If (ρ,v) is an eigenpair of

Σ−1/2AΣ−1/2, then (ρ,Σ−1/2v) is an eigenpair of Σ−1A; and vice versa.

Our next lemma connects the sequential optimization problem (3.1) to the eigenpairs of Σ−1Ω.

Lemma 3. The eigenvectors of Σ−1Ω corresponding to the nonzero eigenvalues solves (3.1).

Using Lemma 3, we only need to show that W∗ is equal to the eigenvectors of Σ−1Ω up to an

orthogonal transformation. Suppose we have the following eigendecomposition of U⊤Σ−1U:

U⊤Σ−1U = PΛP⊤.

Then left-multiplying both sides by Σ−1U and right-multiplying P, we have

Σ−1UU⊤Σ−1UP = Σ−1UPΛ,

or equivalently

Σ−1ΩW∗P = W∗PΛ.

Using the fact that V = span{W∗P}= span{W∗}=W finishes the proof.

3.1.1 Proof of Lemma 2

Proof. Suppose (ρ,v) is an eigenpair of Σ−1/2AΣ−1/2, then

Σ−1/2AΣ−1/2v = ρv. (3.3)

Multiplying both sides in (3.3) by Σ−1/2, we obtain that (ρ,Σ−1/2v) is an eigenpair of Σ−1A; and

vice versa. Since Σ−1/2AΣ−1/2 and Σ−1A have the same rank (since Σ is full rank), we further

conclude that the eigenpairs of Σ−1/2AΣ−1/2 and those of Σ−1A have a one-to-one correspon-

dence with the same eigenvalues.

24

3.1.2 Proof of Lemma 3

Proof. We rewrite problem (3.1) as:

u∗
1 = argmax

u⊤
1 Σ−1/2ΩΣ−1/2u1

u⊤
1 u1

,

u∗
k = argmax

u⊤
k Σ−1/2ΩΣ−1/2uk

u⊤
k uk

s.t. uk ⊥ u j = 0,∀1 ≤ j < k,∀1 ≤ k ≤ K,

v∗k = Σ−1/2u∗
k ,

Applying Lemma 2 finishes the proof of Lemma 3.

Formulation (3.2) resembles the least square loss in linear models, and the loss function in (3.2)

can be regarded as the matrix version of least square loss. Despite its simpleness, it recovers the

same projection space as produced by (3.1). Note that any estimator function Q(W) that satisfies

∇Q(W) = ΣW−U will recover V . We will exploit this later for an alternative algorithm that

makes use of Huber norm regularlization for noisy data. As it stands, however, the estimator

Q(W) is not able to statistically recover W∗ in the paradigm of high-dimensional data. To handle

high-dimensional features, we impose an assumption of sparsity on the structure on W and propose

to solve the following penalized regression problem:

argmin
W

{1
2

tr
(
W⊤ΣW

)
− tr

(
W⊤U

)
+λ∥W∥1,1

}
. (3.4)

The first two terms above are just an expansion of 1
2

∥∥Σ1/2W−Σ−1/2U
∥∥2

F.

Let Σ̂ and Û be the estimates of Σ and U, respectively. Plugging these estimates into (3.4)

above, we obtain the sample version

Ŵ = argmin
W

{1
2

tr
(
W⊤Σ̂W

)
− tr

(
W⊤Û

)
+λ∥W∥1,1

}
. (3.5)

Let S = {(i, j) : w∗
i, j ̸= 0} be the total support set of W∗ and assume W∗ is s-sparse, that

is |S | = s. To give the main theoretical result for the estimation error, we need the following

definition of the generalized restricted eigenvalue (GRE) for matrices and the corresponding GRE

condition.

25

Definition 4 (Generalized Restricted Eigenvalue for Matrices). Let K,m ∈ N, and γ ∈ R. The

generalized restricted eigenvalue (GRE) for matrices is defined as

κ+(K,m,γ) = supV

{
tr
(
V⊤Σ̂V

)/
∥V∥2

F : V ∈ C(K,m,γ)
}
,

κ−(K,m,γ) = infV

{
tr
(
V⊤Σ̂V

)/
∥V∥2

F : V ∈ C(K,m,γ)
}
,

(3.6)

where C(K,m,γ) =
{

V ∈ Rd×K : S ⊆ J, |J| ≤ m,∥VJc∥1,1 ≤ γ∥VJ∥1,1
}

and J ⊂ [d].

Assumption 5. There exists K,m ∈ N and γ ∈ R and constants κ∗,κ
∗ ∈ R such that

0 < κ∗ ≤ κ−(K,m,γ)≤ κ+(K,m,γ)≤ κ
∗ < ∞.

The assumption above is necessary for our theoretical development and was first proposed

by [BRT09] for the vector case and various versions are standard in high-dimensional estimation

literature. Our definition is a direct extension of theirs to the matrix case.

Define L(W) ≡ 1
2 tr
(
W⊤Σ̂W

)
− tr

(
W⊤Û

)
as our cost function without the regularization

term. As well, assume that there exists M,ρ > 0 such that 1/M ≤ ρmin(Σ) ≤ ρmax(Σ) ≤ M and

ρ ≤ ρK(Ω). We are ready to state our first result on the estimation error, which concerns the

performance of Ŵ, under the event that
{
∥∇L(W∗)∥∞,∞ ≤ λ/2

}
.

Theorem 6. Assume that Assumption 5 holds with k=K, m= s, γ = 3. Suppose that
∥∥∇L(W∗)

∥∥
∞,∞

≤

λ/2. Then we have ∥∥PŴ −PW∗
∥∥

F ≤ 3Mκ
−1
∗ ρ

−1
λ
√

s. (3.7)

Remark. The theorems above follow a general method of giving error bounds on M-estimators.

M-estimators are a family of estimators that combine a cost function with a regularizer, which

require two properties for consistency in high dimensions: the decomposibility of the regular-

izer and restricted strong convexity of their respective cost function. See [Wai19] chapter 9

for an explanation of these methods. Note that by conditioning on the random event G(λ) ={
∥∇L(W∗)∥∞,∞ ≤ λ/2

}
these theorems give deterministic bounds; it is by further specifying the

application-dependent structure of Ω and Σ that leads to probabilistic bounds. In all applications

this will yield a statement of the form G(λ) holds with high probability which identifies λ = f (n,d)

with a function of the sample size and dimension of the data.

26

3.1.3 Proof of Theorem 6

Proof. Let S =
⋃d

j=1S j be the union of supports for each projection direction. We first need the

following lemma.

Lemma 7. Suppose that ∥∇L(W∗)∥∞ ≤ λ/2. For a E such that S ⊆ E and ∥E∥0 ≤ 2s, we have

∥∥(Ŵ−W∗)
E c

∥∥
1,1 ≤ 3

∥∥(Ŵ−W∗)E
∥∥

1,1.

3.1.3.1 Proof of Lemma 7

Proof. By the mean value theorem, there exists a W̃, some convex combination of Ŵ and W∗,

such that ∇L
(
Ŵ
)
−∇L

(
W∗)= H(Ŵ−W∗), where H = ∇2L(W̃) ∈ Rp×K×p×K is a forth-order

tensor

H =


∇

∂L(W̃)
∂w11

· · · ∇
∂L(W̃)
∂w1K

...
...

∇
∂L(W̃)
∂wd1

· · · ∇
∂L(W̃)
∂wdK

 .

The tensor-matrix product is defined as HW = (ai j)p×K ∈Rd×K , with ai j = ⟨∇∂L(W̃)/∂wi j,W⟩.

Let Γ̂ be some sub-gradient matrix of ∥W∥1,1 evaluated at Ŵ. The Karush-Tuhn-Tucker (KKT)

conditions of Ŵ imply

0 =
〈
∇L
(
Ŵ
)
+λ Γ̂,Ŵ−W∗〉

=
〈
∇L
(
Ŵ
)
−∇L

(
W∗)+∇L

(
W∗)+λ Γ̂,Ŵ−W∗〉

=
〈
H
(
Ŵ−W∗)+∇L

(
W∗)+λ Γ̂,Ŵ−W∗〉

Using the positive semi-definiteness of the quadratic form
〈
H
(
Ŵ−W

)
,Ŵ−W∗〉, we further have

0 ≤−
〈
∇L(W∗),Ŵ−W∗〉︸ ︷︷ ︸

I1

−
〈
λ Γ̂,Ŵ−W∗〉︸ ︷︷ ︸

I2

. (3.8)

Next, we bound I1 and I2 respectively. Applying Hölder inequality to I1 obtains us that

〈
∇L(W∗),Ŵ−W∗〉≥−

∥∥∇L(W∗)
∥∥

∞,∞

∥∥Ŵ−W∗∥∥
1,1.

27

For I2, separating the support of Γ̂ and Ŵ−W∗ into E and E c, using the assumption E c ∩S = /0,

we have W∗
E c = 0 and thus

〈
Γ̂E c ,(Ŵ−W∗)E c

〉
=
〈
1E c ,

∣∣ŴE c
∣∣〉

=
〈
1E c ,

∣∣(Ŵ−W∗)E c
∣∣〉

= ∥(Ŵ−W∗)E c∥1,1

since Γ̂i j = sign(Ŵi j) when Ŵi j ̸= 0. On the other hand, we have

⟨Γ̂E ,(Ŵ−W∗)E ⟩ ≥ −∥Γ̂E∥∞,∞∥(Ŵ−W∗)E∥1,1

= ∥(Ŵ−W∗)E∥1,1

by the Hölder inequality and the identity ∥Γ̂E∥∞,∞ = 1. Plugging the derived inequalities above,

we obtain

〈
λ Γ̂,Ŵ−W∗〉= 〈λ Γ̂E c,(Ŵ−W∗)E c

〉
+
〈
λ Γ̂E ,(Ŵ−W∗)E

〉
≥ λ

∥∥(Ŵ−W∗)E c
∥∥

1,1 −λ
∥∥(Ŵ−W∗)E

∥∥
1,1.

Plugging the bounds for I1 and I2 back into (3.8) yields that

0 ≤
∥∥∇L(W∗)

∥∥
∞,∞

∥∥Ŵ−W∗∥∥
1,1 −λ

∥∥(Ŵ−W∗)E c
∥∥

1,1 +λ
∥∥(Ŵ−W∗)E

∥∥
1,1

≤−
(
λ −

∥∥∇L(W∗)
∥∥

∞,∞

)∥∥(Ŵ−W∗)E c∥1,1

+
(
λ +

∥∥∇L(W∗)
∥∥

∞,∞

)∥∥(Ŵ−W∗)
E
∥∥

1,1,

which further yields that

∥∥(Ŵ−W∗)
E c

∥∥
1,1 ≤

λ +
∥∥∇L

(
W∗)∥∥

∞,∞

λ −
∥∥∇L

(
W∗
)∥∥

∞,∞

∥∥(Ŵ−W∗)
E
∥∥

1,1 ≤ 3
∥∥(Ŵ−W∗)E

∥∥
1,1,

which completes the proof.

Taking E = S in Lemma 7 and using the restrictive eigenvalue condition with lower bound

κ−(K,s,3)≥ κ∗, we obtain

κ∗
∥∥Ŵ−W∗∥∥2

2,2 ≤
〈
∇L
(
Ŵt
)
−∇L

(
W∗),Ŵt −W∗〉.

28

since ∇L(W) = ΣW−U . We note that, for any matrix A, we have ∥A∥F = ∥A∥2,2, that is the

Frobenius norm and the ℓ2,2-norm coincides.

Let Γ̂ be defined as above as a sub-gradient matrix of ∥W∥1,1 evaluated at Ŵ. To bound the

right hand side of the inequality above, we add
〈
λ Γ̂,Ŵ−W∗〉 to both sides and obtain

κ∗
∥∥Ŵ−W∗∥∥2

2,2 +
〈
∇L(W∗)+λ Γ̂,Ŵ−W∗〉≤ 〈∇L

(
Ŵ
)
+λ Γ̂,Ŵ−W∗〉. (3.9)

Since we have 〈
∇L
(
Ŵ
)
+λ Γ̂,Ŵ−W∗〉= 0,

plugging the above equality back into (3.9), we obtain

κ∗
∥∥Ŵ−W∗∥∥2

1,2 ≤−
〈
∇L(W∗),Ŵ−W∗〉︸ ︷︷ ︸

II1

+−
〈
λ Γ̂,Ŵ−W∗〉︸ ︷︷ ︸

II2

. (3.10)

In a similar argument to the proof of Lemma 7 above, applying Hölder inequality to both II1 and

II2, we obtain

−
〈
∇L(W∗),Ŵ−W∗〉≤ ∥∥∇L(W∗)

∥∥
∞,∞

∥∥Ŵ−W∗∥∥
1,1

=
∥∥∇L(W∗)

∥∥
∞,∞

(∥∥(Ŵ−W∗)
S +

∥∥(Ŵ−W∗)
Sc

)
≤ 4
∥∥∇L(W∗)

∥∥
∞,∞

∥∥(Ŵ−W∗)
S
∥∥

1,1,

and

−
〈
λΓ,Ŵ−W∗〉≤−λ

∥∥(Ŵ−W∗)
Sc

∥∥
1,1 +λ

∥∥(Ŵ−W∗)
S
∥∥

1,1,

where we use Lemma 7 in the first displayed inequality. Plugging the bounds above for II1 and II2

back into (3.10) and then applying the Cauchy-Schwartz inequality to the term
∥∥(Ŵ−W∗)

S
∥∥

1,1 =〈
1S ,
∣∣(Ŵ−W∗)S

∣∣〉, we further obtain

κ∗
∥∥Ŵ−W∗∥∥2

F ≤
(
4
∥∥∇L

(
W∗)∥∥

∞,∞
+λ

)∥∥(Ŵ−W∗)
S
∥∥

1,1 −λ
∥∥(Ŵ−W∗)

Sc

∥∥
1,1

≤
(
4λ/2+λ

)∥∥(Ŵ−W∗)
S
∥∥

1,1

≤ 3λ
∥∥(Ŵ−W∗)

S
∥∥

1,1

≤ 3λ
√

s
∥∥(Ŵ−W∗)

S
∥∥

F

≤ 3λ
√

s
∥∥Ŵ−W∗∥∥

F

29

Canceling the term
∥∥Ŵ−W∗∥∥

F on both sides, we obtain

∥∥Ŵ−W∗∥∥
F ≤ 3κ

−1
∗ λ

√
s. (3.11)

We need the following lemma.

Lemma 8. Let ρK,W∗ be the K-th largest singular value of W∗. Then we must have

∥∥PŴ −PW∗
∥∥

F ≤
√

2ρ
−1
K,W∗

∥∥Ŵ−W∗∥∥
F.

3.1.3.2 Proof of Lemma 8

Proof. Let W∗ have the singular value decomposition that W∗ = EDF⊤, F ∈ RK×K , E ∈ Rp×K

are orthogonal, and D ∈ RK×K is a diagonal matrix. Then we have PW∗ = PE. Looking at the

regression problem infQ
∥∥E−ŴQ

∥∥2
F, the least squares solution is

Q = (Ŵ⊤Ŵ)−1Ŵ⊤E, giving

inf
Q

∥∥E−ŴQ
∥∥2

F =
∥∥E−PŴE

∥∥2
F

= tr
(
EE⊤−PŴEE⊤−EE⊤PŴ +PŴEE⊤PŴ

)
= tr

[(
I−PŴ

)
PE
]

using identities PŴ = Ŵ(Ŵ⊤Ŵ)−1Ŵ⊤, P2
Ŵ

= PŴ, EE⊤ = PE, and the cylic property of trace.

tr
[(

I−PŴ
)
PE
]
= K − tr

(
PŴPE

)
≥ 1

2
tr(PE)− tr

(
PŴPE

)
+

1
2

tr
(
PŴ
)

=
1
2

∥∥PE −PŴ

∥∥2
F

=
1
2

∥∥PW∗ −PŴ

∥∥2
F,

30

where the first equality and first inequality uses the fact that PE is rank K and PŴ is at most rank

K. Therefore, taking Q = FD−1, we can bound
∥∥PŴ −PW∗

∥∥2
F as

∥∥PŴ −PW∗
∥∥

F ≤
√

2inf
Q

∥∥ŴQ−E
∥∥

F

≤
√

2
∥∥ŴFD−1 −EDF⊤FD−1∥∥

F

≤
√

2
∥∥Ŵ−W∗∥∥

F∥D−1∥2

≤
√

2ρ
−1
K,W∗

∥∥Ŵ−W∗∥∥2
F.

Now using Lemma 8, we obtain that

∥∥PŴ −PW∗
∥∥

F ≤ 3
√

2ρ
−1
K,W∗κ

−1
∗ λ

√
s.

Then it remains to lower bound ρK(W∗). We start by writing W∗(W∗)⊤ = Σ−1ΩΣ−1. We need

the following lemma, which can be proved by the min-max theorem and thus the proof is omitted.

Lemma 9. Let A ∈ Rd×d be a symmetric positive definite matrix and B ∈ Rd×d a symmetric

positive semidefinite matrix. Then for any 1 ≤ k ≤ d, we have

ρmin(A)ρk(B)≤ ρk(AB)≤ ρmax(A)ρk(B).

Applying Lemma 9, we obtain that

ρ
2
K,W∗ ≥ ρK(Σ−1/2ΩΣ−1/2)ρ−1

max(Σ)≥ ρK(Ω)ρ−2
max(Σ).

Therefore, we complete the proof of desired statement by plugging the bound above.

3.2 Sliced Inverse Regression

Supervised dimension reduction that preserves the conditional dependence of the data has a history

in Sufficient Dimension Reduction (SDR), [Coo98]. As a method for performing SDR, the SIR

method first developed in [Li91]. For a random vector x with elliptic distribution and univariate

31

response variable y = f (x), the goal of finding a low-dimensional representation of x should take

into account the relationship of the data to y, ideally without losing any information which is es-

sential in predicting y. The objective of SDR methods is to find, without knowing f , a subspace

V ⊆ Rd such that y ⊥ x|PVx. A subspace that satisfies this property is called an effective dimen-

sion reduction (EDR) space. Under some minor conditions, the intersection of all EDR spaces is

also an EDR space with minimum dimension, called the central space. The minimal model for

SDR methods is to assume the multiple index model where the link function takes the form

y = f (v⊤1 x, . . . ,v⊤K x,ε)

for vi ∈ Rd for i = 1, . . . ,K and the error ε is independent of x and E[ε] = 0. Thus, under this

model it suffices to find span{v1, . . . ,vK} to determine the central space.

The SIR estimator was one of many techniques developed for SDR, but was favored due to

its simplicity and computational efficiency. The name Sliced Inverse Regression comes from

both the use of the “inverse regression curve” E[x|y] as well as the sliced estimator of Ω =

cov(E[x|y]) to determine the central space. As proved in [Li91], since the column space col(Ω) =

Σspan{v1, . . . ,vK}, the central space can be estimated via Σ̂−1col(Ω̂). The additional linearity

condition that ∀b,vi ∈ Rd, E[b⊤x|v⊤1 x, . . . ,v⊤K x] = c0 +∑
K
i=1 civ⊤k x, where c0, . . . ,cK ∈ R, is re-

quired, but this is automatically satisfied assuming x is elliptically distributed. [?] proves the

consistency of SIR holds if and only if limd/n = 0, motivating high dimension methods.

For the application of SDR, numerous competing procedures have been developed in the past

couple decades, including [CL98, LN06, Li07]. While many approaches built flexible semi-

parametric models such as projection pursuit regression [FS81], and MAVE [XTLZ02], none of

these function in HDLSS scenarios. A major breakthrough was achieved in regularlized SDR

methods proposed by [LZL19] using the Lasso SIR method for the HDLSS under the sparsity

assumption. The GEV method is closely related to the Lasso SIR method, but has important dif-

ferences from their own that leads to performance improvements in scenarios that have significant

eigengaps, and has consistent performance that is as good or better elsewhere. A closely related

method to the GEV estimator can be found in [WCZZ18] which stems from similar motivations

32

but attempts only to compute the optimal projected coordinates of the data instead of determining

the projection explicitly. Their regularization uses a group lasso approach in contrast to the GEV

estimator, and the non asymptotic rates of error they demonstrated are suboptimal.

3.2.1 Consistency for SIR

The space Σ−1col(Ω) is given by the span of the generalized eigenvectors of (Ω,Σ), justifying

the GEV estimator. As in the original SIR estimation technique, we use the sliced estimator of Ω,

defined as follows. Given the samples (xi,yi), i ∈ [n], for a chosen constant H ∈ N,K < H < n,

divide the data into H groups determined by the order statistics of y(i) that give H “slices” of

the domain of y in the form of intervals (y(hi),y(hi+1)], i ∈ {2, . . . ,H − 1}, with (−∞,y(h1)] and

(y(hH−1),∞) at the tails. In general these may lead to different sized groups, but without loss of

generality we may assume n = cH so that each slice is chosen to consist of c points. We may

relabel the data as (xh, j,yh, j) for the j-th sample in slice number h, i.e., yh, j = y(c(h−1)+ j) and

xh, j = x(c(h−1)+ j). Then the sample mean in h-th slice is x̄h ≡ 1
c ∑

c
j=1 xh, j, allowing us to estimate

Ω̂H = 1
H ∑

H
h=1 x̄hx̄⊤

h = 1
H XHX⊤

H , where XH =(x̄1, . . . , x̄H) is the d×H matrix with the slice means

as columns.

Here, the intuition for the estimate Ω= cov(E[x|y]) is that each sample slice mean x̄h serves as

a local estimate of E[x|y ∈ Ih] for Ih = (yh−1,c,yh,c]. First, it is worth noting that it is not immediate

that the samples
⋃

j∈[c]xh, j can be treated as coming from the distribution x|(y ∈ Ih); this is proven

to be the case in [LZL18]. Furthermore, given the estimate 1
H ∑H E[x|y ∈ Ih]E[x|y ∈ Ih]

⊤ of Ω, it is

not guaranteed to be consistent. We can compare this estimate with the classic consistent estimator

1
n ∑iE[x|yi]E[x|yi]

⊤ of Ω. A necessary condition for the sliced based estimate to be consistent is

the average loss of variance in each slice decreases to zero as H increases. This holds automatically

if E[x|y] is smooth and y is compactly supported. In general though, one needs a basic assumption

on the smoothness and tail distribution of E[x|y]. We give that assumption below, ϑ -stability

([LZL19]), which is minimal and holds for many distributions. Note that while an estimate based

on samples of E[x|yi] is possible, the estimate would fair very poorly, since each mean E[x|yi]

33

would have at best a single point estimate given by xi from the pair (xi,yi).

Given this structure of Ω̂ and the usual estimator for Σ̂= 1
n ∑xix

⊤
i , we show consistency of the

GEV estimator given the assumption of the Stability condition. To do so, given a decomposition of

∥∇L(W∗)∥∞,∞ into terms involving estimation error of Σ̂ and Û, we will use standard techniques

to bound the former, but the latter will require extra work. We will show that while ∥Û−U∥∞,∞

has inherent difficulties in controlling an upper bound, if one instead uses ∥Û− Ũ∥∞,∞ there is a

direct way to control the upper bound with high probability, where Ũ = PU(Û) is the projection

of the estimated eigenvectors on the span of U. As we will see, this avoids any cumbersome

eigengap assumptions, but requires rank(Ũ) = rank(U). To make this substitution one needs to

guarantee that an estimator that uses Ũ instead of U will recover the desired subspace. This is

proven showing lower bounds on the norms of projected eigenvectors hold with high probability

given the assumption of the stability condition. It is important to note that our parameter U =(√
ρ1u1, . . . ,

√
ρKud

)
with the additional coefficients of the square roots of estimated eigenvalues

makes this easier to bound than if there was no coefficients as found in the [LZL19] model.

Assumption 10 (Stability). For positive constants α1 < 1 < α2 let AH(α1,α2) be the collection of

all partitions −∞ = a0 < a1 < · · ·< aH = ∞ of R satisfying

α1

H
≤ P(ai ≤ y < ai+1)≤

α2

H
.

The inverse regression curve E[x|y] is ϑ -sliced stable with respect to y for some ϑ > 0 if ∃α1,α2,α3

such that for any v ∈ Rd and partition AH(α1,α2)

1
H

∣∣∣∣∣H−1

∑
h=0

var(v⊤E[x|y]|ah ≤ y ≤ ah+1)

∣∣∣∣∣≤ α3

Hϑ
var(v⊤E[x|y])

for sufficiently large H. The curve is stable if it is ϑ -sliced stable for some positive constant ϑ .

Theorem 11. Assume that assumption (10) holds for E[x|y], x is sub-Gaussian with variance

proxy σ , n = ρKdα for some α > 1/2, and λ =C
√

log(d)
n for some constant C. Then, there exists

constants C1,C2 such that with probability at least 1−C1 exp(−C2 log(d))

∥∇L(W∗)∥∞,∞ ≤C

√
log(d)

n
.

34

Corollary 12. There exist constants C,C1,C2 such that

∥∥PŴ −PW∗
∥∥

F ≤CMκ
−1
∗ ρ

−1

√
s log(d)

n

holds with probability at least 1−C1 exp(−C2 log(d)) .

3.2.2 Proof of Theorem 11

Proof. We have

∥∥∇L(W∗)
∥∥

∞,∞
≤
∥∥Σ̂W∗−ΣW∗∥∥

∞,∞︸ ︷︷ ︸
I1

+
∥∥ΣW∗− Û

∥∥
∞,∞︸ ︷︷ ︸

I2

.

We first bound I1. Since we have ∥AB∥∞,∞ ≤ ∥A∥∞,∞∥B∥1 where the latter is the operator norm,

since

∥AB∥∞,∞ = max
i, j

(
∑
k

Ai,kBk, j

)

≤ max
i, j

|Ai, j|max
ℓ

∑
k
|Bk,ℓ|

= ∥A∥∞,∞∥B∥1

Then I1 ≤ ∥Σ̂−Σ∥∞,∞∥W∗∥1, where the second factor may be treated as a constant. It suffices to

bound the estimation error of Σ.

Lemma 13. Let M̃ = maxi
√

Σii. Suppose that n > 6logd. Then, for some universal constant C,

with probability at least 1− exp(− log(d/4)), we must have

∥Σ̂−Σ∥∞,∞ ≤C

√
M̃ logd

n
.

Proof of Lemma 13. Using a similar argument to the proof of Lemma 1 in [RWRY11], which is

omitted for simplicity, we obtain, for all t ∈
(
0,C1

√
M̃
)
,

P
(∣∣∣Σ̂i j −Σi j

∣∣∣≥ t
)
≤ 4exp

{
− nt2

C2M̃

}
,

35

where C1 = 3200 and C2 = 40 are two universal constants. Therefore, taking t =
√

3C2M̃n−1 logd

such that t <C1

√
M̃ and applying union bound over the d2 entries gives

P

(∥∥Σ̂−Σ
∥∥

∞,∞
≥

√
3C2M̃ logd

n

)
≤ 4d−1

Observing that t =
√

3C2M̃n−1 logd <C1

√
M̃ implies n > 6logd and this finishes the proof.

What remains is bounding I2. Using identity ΣW∗ = U, we have I2 = ∥U− Û∥∞,∞. Let V̂ ≡

[û1, . . . , ûK] and Λ̂ = diag(ρ̂1, . . . , ρ̂K). Then let A = 1√
H

X⊤
HV̂ be a H ×K matrix. Let x = z+w

be the orthogonal decomposition with respect to col(Ω) and its complement. Then we have the

decomposition XH = ZH +WH . This leads to the identity

Û =

(
1
H

XHX⊤
HV̂
)

Λ̂−1/2

=

(
1√
H

ZHA+
1√
H

WHA
)

Λ̂−1/2

and

Ũ = PU(Û) =
1√
H

ZHAΛ̂−1/2.

Then Û− Ũ = 1√
H

WHAΛ̂−1/2 and

∥ 1√
H

WHAΛ̂−1/2∥∞,∞ ≤ ∥ 1√
H

WH∥∞,∞∥AΛ̂−1/2∥1,∞

Note that ∥Λ̂−1/2A∥1,∞ ≤
√

H∥Λ̂−1/2A∥2,∞ by the basic inequality ∥v∥1 ≤
√

H∥v∥2 for any v ∈

RH . Then ∀i ∈ [d], we have ∥A∗,i∥2 =
√

1
H V̂⊤

∗,iXHX⊤
HV̂∗,i =

√
ρ̂i, thus

∥ 1√
H

WHAΛ̂−1/2∥∞,∞ ≤ ∥WH∥∞,∞. (3.12)

The benefit of having U in our model appears – if we had taken V̂ as our parameter and not

Û, we would have had the above bound times maxi
√

ρ̂i. Instead we merely need to bound the

behavior of WH to give an upper bound on I2 given the legitimacy of the substitution of Ũ for U,

which we will see is very manageable.

36

To show the substitution of Ũ is legitimate, define W∗∗ as

W∗∗ = argmin
W

{
1
2
∥Σ1/2W−Σ−1/2Ũ∥2

F

}
(3.13)

We show with high probability that this model recovers the desired reduction space. It is trivial to

show that assuming Ũ is of rank K, span(W∗) = span(W∗∗). To show that the rank is K, it suffices

to show that none of the projected vectors of ũi = PU(ûi) are 0, and that the projection of the K

vectors are injective. Thus we give a positive lower bound on the norms ∥ũ∥2 , and lower bounds

on the angles between ∠(ũi, ũ j) ∀i, j ∈ [K], i ̸= j.

These important results come directly from [LZL19].

Theorem 14. If nρK = dα for some α > 1/2, there exists positive constants C1, C2, C3, C4, such

that

1. for j = 1, . . . ,K

∥ũ j∥2 ≥C1

√
ρK

ρ̂ j

2. for j = K +1, . . . ,H

∥ũ j∥2 ≤C2

√
d log(d)
nρK

√
ρK

ρ̂ j

hold with probability at least 1−C3 exp(−C4 log(d)) .

Its the first inequality that matters for our purposes; it not only gives us the lower bound on

projected norms, it is also used in the next theorem:

Theorem 15. The angles between any two vectors in {ũ1, . . . , ũd} are nearly π/2 with high prob-

ability. In particular there exist constants C1,C2,C3 such that

|cos(∠(ũi, ũ j))| ≤C1

√
d log(d)
nρK

holds with probability at least 1−C2 exp(−C3 log(d)) . for any i ̸= j.

Both proofs above are done in the case that x is Gaussian. The proofs rely on two core lemmas

to show their claims hold with high probability. The first was proven in [?] and is already done in

37

the case that x is sub-Gaussian. The other lemma gives basic tail bounds for χ2 variables and can

be extended to the case of sub-exponential random variables.

Lemma 16. Let c1, . . . ,cp be positive constants. We have the following statements:

1. For d sub-Gaussian random variables x1, . . . ,xd , there exist constants C1 and C2 such that

for any sufficiently small a we have

P

(∣∣∣∣∣1d ∑
i

ci(x2
i −E[x2

i])

∣∣∣∣∣> a

)
≤C1 exp

(
− d2a2

C2 ∑ j c2
j

)
. (3.14)

2. For 2d sub-Gaussian random variables x1, . . . ,xp,y1, . . . ,yp with E[xi] = E[yi] = 0 for all

i ∈ [d], there exist constants C1 and C2 such that for any sufficiently small a, we have

P

(∣∣∣∣∣1d ∑
i

cixiyi

∣∣∣∣∣> a

)
≤C1 exp

(
− d2a2

C2 ∑ j c2
j

)
. (3.15)

Proof. If xi is sub-Gaussian with parameter σ , then trivially x2
i is sub-exponential since ∀t > 0 we

have P
(
x2

i ≥ t
)
= P

(
|xi| ≥

√
t
)
≤ 2exp(−t

2σ2) where the inequality comes from the sub-Gaussian

property. It is straightforward to show that x2
i has sub-exponential parameters (νi,σ) for any ν2

i >

E[x4
i]. As well for any ci ∈R, cix2

i is sub-exponential with parameters (ciνi,ciσ) since we have the

tail bound

P(cix2
i ≥ t) = P(x2

i ≥ t/ci)≤ exp
(

−t2

2c2
i ν2

i

)
for all 0≤ t/ci ≤ ν2

i /σ ⇔ 0≤ t ≤ c2
i ν2

i
ciσ

. Then 1
d ∑i cix2

i is sub-exponential with parameters (
√

∑i c2
i ν2

i
d , σ(maxi ci)

d).

Then for a ≤ ∑i c2
i ν2

i
dσ maxi ci

we have

P

(∣∣∣∣∣1d ∑
i

ci(x2
i −E[x2

i])

∣∣∣∣∣> a

)
≤ 2exp(− c2a2

∑ j c2
jν

2
i
). (3.16)

The second statement follows likewise since xiy j =
(xi+y j)

2−x2
i −y2

j
2 is sub-exponential.

Corollary 17. Let Σ1 ≡ cov(w) and IH the identity on RH . Then if
√

d log(d)
n is sufficiently small,

the event

Ω =

{
ω

∣∣∣∣∥ 1
H

W⊤
HWH − tr(Σ1)

n
IH∥F

}
≤ a

√
d log(d)

n

38

happens with probability at least

1−C1 exp(−C2 log(d)) .

Proof. Since x is sub-Gaussian, XH has columns that are averages of c independent sub-Gaussians,

and under linear projection each entry of WH is likewise sub-Gaussian. The term inside the Frobe-

nius norm is a matrix with entries that are a sum of sub-exponential random variables, with the

subtraction of the means for the squared terms. In particular if Wi j is the i j-th entry of WH and δi j

is the usual Kronecker delta,

1
H

W⊤
HWH − tr(Σ1)

n
IH =

(
d

∑
k

WkiWk j

H
−δi j

tr(Σ1)

n

)
i j

.

Since every Wki =
1
c ∑

c
e=1 wki

e for c = n/H,

d

∑
k

WkiWk j

H
=

1
c2n

d

∑
k

[
c

∑
e=1

wki
e

][
c

∑
e=1

wk f
e

]
.

When i = j we have E
[
∑

p
k

W 2
ki

H

]
= tr(Σ1)

n . Then each WkiWk j is sub-exponential and

P

(
∥ 1

H
W⊤

HWH − tr(Σ1)

n
IH∥F ≤ a

√
d log(d)

n

)

=P
(
∥ 1

c2 W⊤
HWH − tr(Σ1)IH∥F ≤ a

√
d log(d)

)

=P

 1
c2

i=H, j=H

∑
i j

[
d

∑
k

WkiWk j −δi j tr(Σ1)

]2

≤ a2d log(d)


≤H2P

(
1
c2

d

∑
k

WkiWk j −δi j tr(Σ1)≤
a
√

d log(d)
H

)

≤C1 exp
(
− log(d)a2

C2

)
where the last inequality comes from the application of (16) to 1

c2 ∑
d
k WkiWk j − δi j tr(Σ1) with

first sub-exponential parameter being O(d).

Given the above, the proof of Theorem 14 goes through exactly as in [LZL19]. The proof of

Theorem 15 uses a transformation of XH via an orthogonal matrix T such that 1√
H

T ZH = (A⊤,0)⊤

39

and 1√
H

T WH = (0,B⊤)⊤, where A ∈ RK×H and B ∈ R(d−K)×H . Then via this transformation the

proof depends on the following events happening with high probability: (i) ρmin(AA⊤) ≥ λ , (ii)

∥PT ZH (T û j)∥2 ≥ C
√

ρK
ρ̂ j

for all j ∈ [K], and (iii) ∥B⊤B− λ IH∥F ≤ C
√

d log(d)
n for some scalar

λ > 0. (i) follows from the Sine-Theta Theorem, (ii) follows from Theorem 14, and (iii) follows

from Lemma 16.

Lemma 18 (Bounding WH). Assume λ = C
√

log(d)
n for some constant C. Then there exist con-

stants C1,C2 such that

∥ 1√
H

WHAΛ̂−1/2∥∞,∞ ≤ λ/2

with probability at least 1−C1 exp(−C2 log(d)).

Proof. Using the bound in (3.12), it suffices to bound ∥WH∥∞,∞. As a linear function of a sub-

Gaussian variable, each entry Wi j =
1
c ∑

c
k=1 wk

i j of WH is sub-Gaussian with parameter σw/
√

c, for

some σw ∈ R, i ∈ [d] and j ∈ [H]. Then using a union bound we have

P

(
max

i, j
|Wi j| ≥

√
CH log(dH)

4n

)
≤ dHP

(
|
√

cWi j| ≥
√

C log(dH)
)

≤ 2e−(C−1) log(dH)

Combining the bounds for I1 and I2 we may seek bounds

P
(
∥∇L(W∗)∥∞,∞ ≤ λ

2

)
≤ P

(∥∥Σ̂W∗−ΣW∗∥∥
∞,∞

≤ λ

4

)
+P

(∥∥ΣW∗− Û
∥∥

∞,∞
≤ λ

4

)

Setting λ = 2∥W∗∥1C
√

log(d)
n yields the desired probabilities, with a change of constants. This

completes the proof of the bound.

3.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a classification technique, that assumes x∈Rd is a random

vector and y ∈ {1, . . . ,K+1} is a discrete random variable over K+1 classes, such that x|y = k ∼

40

N(µk,Σ) for k ∈ {1, . . . ,K +1}. Given the normal model, the Bayes rule for estimating y can be

explicitely derived as

ŷ = argmax
k

v⊤k (x− µk

2
)+ log(πk),

where πk = P(y = k) and vk = Σ−1µk for k ∈ [K +1]. Alternatively, LDA can be viewed from the

perspective of dimensionality reduction, given by Fisher’s discriminant problem where one seeks

a low dimensional projection of the data such that the between-class variance is large relative to

the within class variance. This problem is formulated as

max
vk

v⊤k Ωvk subject to v⊤k Σvk ≤ 1, v⊤k Σvi = 0 ∀i < k.

where Ω ≡ cov(E[x|y]) as before.

It is simple to show that this gives us exactly the same problem that motivates the GEV esti-

mator for the case of a discrete response variable y. Note here that Σ is the homoskedastic within-

class covariance, and not cov(x). However, it is straightforward to show using the law of total

covariance that the generalized eigenvectors of (Ω,Σ) are the same as those of (Ω,cov(x)) (with

different eigenvalues). Thus we can treat Σ above as cov(x) without affecting the problem. The

vectors vk determined by the optimization are called the discriminant vectors, and for a d ×n data

matrix X a classification rule is obtained by computing the projection V⊤X for V ≡ [v1, . . . ,vK],

and then assigning each observation to the nearest V⊤µk.

In recent years, several references have extended LDA to the high dimensional setting using

sparsity, most of which use a lasso penalty [THNC03, Len08, CHWE11]. The derivation of LDA

using Fisher’s Discriminant is leveraged in the well-known method found in [WT11], that uses

a group lasso regularization with a diagonal estimate for the covariance of the data. A powerful

technique called MSDS for multiclass sparse discriminant analysis is given in [ZMY18], which

has both theoretical and empirical justification. This estimator attempts to find sparse discriminant

vectors from the Bayes rule of the normal model for LDA, whereas our own method uses the

Fisher’s Discriminant derivation. The authors also show the estimators of ROAD [FFT12], and

DSDA [MZY12], occur as special cases of MSDS up to particular constants. While error bounds

41

are given on the estimator, they are not in the form of a function of the data dimension and sample

size. We show our estimator performs better empirically and has strong error bounds in terms of

the data dimension and sample size.

3.3.1 Consistency for LDA

Fisher’s Discriminant problem in many ways can be seen as a special case of SIR for a discrete

output of y. With Ω as defined above and with the assumption that E[x] = 0, its estimator simplifies

to Ω̂ = 1
K+1 ∑

K+1
k=1 x̄kx̄

⊤
k where x̄k =

1
nk

∑
n
i=1 xi1(yi = k). Here we use 1(yi = k) as the indicator

variable that xi is of class k, and nk = ∑
n
i=1 1(yi = k) is the number of samples that are of class

k. Let Û = (
√

ρ̂1û1, . . . ,
√

ρ̂KûK) be columns using the eigenpairs (ρ̂k, ûk) of Ω̂. Then the GEV

solution Ŵ of (3.5) using Σ̂ and Û gives us K estimated discriminant vectors which can be used

for LDA classification.

Due to the similarity of LDA to SIR, much of the proof of consistency of the discriminant

vectors can proceed analogously to that of SIR. Here, the Stability assumption (10) takes the form

of a “balanced clusters” assumption. Since the Stability assumption holds for any H sufficiently

large, we may take H = K + 1 so that for γ1 = K + 1mink∈[K+1]πk and γ2 = K maxk∈[K]πk, any

partition AH(γ1,γ2) will separate the support values of y into intervals [ak−1,ak], k− 1 < ak−1 <

k < ak < k+1. Thus for k ∈ [K +1], the random vector

(
E[x|y]

∣∣ak−1 ≤ y ≤ ak
)
= E[x|y = k]

is a constant. Then var(v⊤E[x|y]
∣∣ak−1 ≤ y ≤ ak) = 0 for all v ∈ Rd , k ∈ [K +1]. The existence of

positive constants γ1 < 1 < γ2 that serve as bounds to the probabilities of the classes of x guarantee

that there are no asymptotic behaviors of the form limd→∞ πk = 0 as a function of dimensionality

of x. For the sake of simplicity, we assume all probabilities πk are equal, with the extension to the

general case being straightforward.

Theorem 19. Let x be multivariate Gaussian, n = ρKdα for some α > 1/2, and y = f (x) has

finite support along with assumption (10) holding for E[x|y]. Then, with probability at least 1−

42

C1 exp(−C2 log(d)), we have

∥∇L(W∗)∥∞,∞ ≤C

√
log(d)

n
.

Corollary 20. Assume that 1/M ≤ ρmin(Σ) ≤ ρmax(Σ) ≤ M and ρ ≤ ρK(Ω). Then there exist

constants C,C1,C2 such that

∥∥PŴ −PW∗
∥∥

F ≤CMκ
−1
∗ ρ

−1

√
s log(d)

n

holds with probability at least 1−C1 exp(−C2 log(d)) .

3.3.1.1 Proof of Theorem 19

Proof. For the sake of simplicity, we assume all probabilities πk are equal, with the extension to

the general case being straightforward. As earlier, we have

∥∥∇L(W∗)
∥∥

∞,∞
≤
∥∥Σ̂W∗−ΣW∗∥∥

∞,∞︸ ︷︷ ︸
I1

+
∥∥U− Û

∥∥
∞,∞︸ ︷︷ ︸

I2

.

The bound on I1 follows from the theorem used earlier in [RWRY11]. What remains is bound-

ing I2.

Let V̂= [û1, . . . , ûK], Λ̂= diag(ρ̂1, . . . , ρ̂K), and XK+1 =(x̄1, . . . , x̄K+1). Then let A= 1√
K+1

X⊤
K+1V̂

be a (K +1)×K matrix. Using the same decomposition x = z+w with respect to col(Ω) and its

complement we get XK+1 = ZK+1 +WK+1. Since 1
K+1XK+1X⊤

K+1 = Ω̂, we get the identity

Û =

(
1√

K +1
ZK+1A+

1√
K +1

WK+1A
)

Λ̂−1/2

and

Ũ = PΩ(Û) =
1√
H

ZK+1AΛ̂−1/2.

Then Û− Ũ = 1√
K+1

WK+1AΛ̂−1/2 and

∥ 1√
K +1

WK+1AΛ̂−1/2∥∞,∞ ≤ ∥ 1√
K +1

WK+1∥∞,∞∥AΛ̂−1/2∥1,∞.

43

Since ∥Λ̂−1/2A∥1,∞ ≤
√

K +1∥Λ̂−1/2A∥2,∞, ∀i ∈ [d], and

∥A∗,i∥2 =

√
1

K +1
V̂⊤
∗,iXK+1X⊤

K+1V̂∗,i =
√

ρ̂i,

we have

∥ 1√
K +1

WK+1AΛ̂−1/2∥∞,∞ ≤ ∥WK+1∥∞,∞.

As in the SIR application, we are able to use Ũ in a substitute model (3.13) that recovers

the desired reduction space with high probability. All that needs to be shown is that with high

probability Ũ is of rank K. We may directly use the results of (14) and (15), since all assumptions of

SIR hold in the LDA application, with the only requirement being a similar simplifying assumption

that ∃c > 0 such that c(K + 1) = n. Thus we get that Ũ is of rank K with probability at least

1−C1 log(−C2d) for constants C1,C2.

Lemma 21 (Bounding WK+1). Assume λ = C
√

log(d)
n for some constant C. Then there exist

constants C1,C2 such that

∥ 1√
K +1

WK+1AΛ̂−1/2∥∞,∞ ≤ λ/2

with probability at least 1−C1 exp(−C2 log(d)).

Proof. Without loss of generality, each entry Wi j =
1
c ∑

c
k=1 wk

i j of WH is Gaussian with variance

var(w)/c2, assuming each wk
i j is Gaussian with variance var(w) for i ∈ [d] and j ∈ [K +1]. Then

using a union bound we have

P

(
max

i, j
|Wi j| ≥

√
C(K +1) log(d(K +1))

4n

)

≤ d(K +1)P
(
|c2Wi j| ≥

√
C log(d(K +1))

)
≤ 2e−(C−1) log(d(K+1))

This completes the proof.

44

Given the consistency of Ŵ, it is straightforward to show the consistency of the classification

rate of the estimated classifier. The classifier ŶŴ gives the label k to a new point x′ if µk is the

nearest class centroid to x′ after projection by Ŵ:

ŶŴ(X)≡ argmin
k

∥Ŵ⊤x′−Ŵ⊤µ̂k∥2
2.

Let the misclassification error rate be given by Rn ≡ P(Ŷ ̸=Y |observed data) where Y is the true la-

bel. Likewise define R as the misclassification rate of the population classifier using the parameters

W∗ and µk. Then we have the following.

Theorem 22. There exist constants C,C1,C2 such that

|Rn −R| ≤Cκ
−1
∗ ρ

−1

√
s log(d)

n

with probability at least 1−C1 exp(−C2 log(d)) .

3.3.1.2 Proof of Theorem 22

Proof. Let Y be the classifier using the population parameters of W∗ and µk. Define lk = ∥W∗⊤X−

W∗⊤µk∥2
2 and l̂k = ∥Ŵ⊤X−Ŵ⊤µ̂k∥2

2. For any ε > 0, we have

Rn −R ≤ P(Ŷ ̸= Y)

≤ 1−P(|l̂k − lk|< ε/2, |lk − lk′|> ε, for any k,k′)

≤ P(|l̂k − lk| ≥ ε/2 for some k)+P(|lk − lk′| ≤ ε for some k,k′).

For the first term

|l̂k − lk| ≤ |(ŴŴ⊤µ̂k −W∗W∗⊤
µk)

⊤X|+ |µ̂⊤
k ŴŴ⊤µ̂k −µ

⊤
k W∗W∗⊤

µk|.

It is straightforward to show given (3.11) that bounds ∥Ŵ−W∗∥F ≤ 3κ−1
∗ λ

√
s, we have ∥ŴŴ⊤−

W∗W∗⊤∥2 ≤Cκ−1
∗ λ

√
s and given a standard error bound on sample mean estimation we get |l̂k −

lk| ≤Cκ−1
∗

√
s log(d)

n with probability 1−C1 exp(−C2 log(d)). The expression |lk − lk′ | is normally

distributed with mean (µk−µk′)
⊤W∗W∗⊤(µk+µk′) and variance (µk−µk′)

⊤W∗W∗⊤ΣW∗W∗⊤(µk−

45

µk′), and since we have the assumption (5) which implies (µk−µk′) is bounded away from 0, with

high probability |lk− lk′|>Cκ−1
∗

√
s log(d)

n . Applying a union bound over k,k′ for both terms yields

the result.

3.4 Minimax Rate

We show that both the error rates for SIR and LDA fall under a model which achieve minimax rates.

The setup closely follows [TSY20]. Define the GEV parameter space as follows: let {J1, . . . ,JH}

for H > K be a measurable partition of the sample space of y, and define ỹ = ∑
H
c=1 c · 1(y ∈ Jc)

as the discretized version of y. Then we may define the corresponding conditional covariance

Ω̃ ≡ cov[E(x|ỹ)]. Let F(s,d,K, γ̃;κ,M) be the set of all pairs of matrices (Σ,Ω̃) with generalized

eigenpairs (γ̃i, ṽi), γ̃i ∈ R, ṽi ∈ Rd for i ∈ [K], such that

1. ∑
K
i=1 ∥ṽi∥0 = s.

2. 1/M ≤ ρmin(Σ)≤ ρmax(Σ)≤ M.

3. κγ̃ ≥ γ̃1 ≥ ·· · ≥ γ̃K ≥ γ̃ > 0 for a fixed constant κ > 1.

For simplicity denote F(s,d,K, γ̃;κ,M) by F . Let L(x) denote the distribution of a random

variable x. Then the probability spaces for the GEV problem are

P(n,H,s,d,K, γ̃;κ,M) = {L((x1, ỹ1), . . . ,(xn, ỹn)) :

(xi, ỹi)’s are i.i.d. such that (cov[E(xi|ỹi)],cov(xi)) ∈ F},

where n is the sample size, and parameters s,d, and γ̃ may depend on n, while κ,M are fixed

constants. Note that this framework gives a fixed slicing scheme where H is treated as a bounded

integer, so that K is also bounded above by H − 1. Denote Ṽ ∈ Rd×K as the matrix where each

column is one of the generalized eigenvectors of (Σ,Ω̃) with nonzero eigenvalue. Let V̂ be any

estimator for Ṽ. The following provides a lower bound on the minimax rate among all estimators.

46

Theorem 23. Assume nγ̃2 ≥ C log ed
s for some sufficiently large constant C0. Then there exist

positive constants C1 and C2 such that

inf
V̂

sup
P∈P

P
{
∥PV̂ −PṼ∥

2
F ≥C1

s log(ed/s)
nγ̃2 ∧C2

}
≥ 0.8,

where P = P(n,H,s,d,K, γ̃;κ,M).

3.4.1 Proof of Theorem 23

The proof follows from [TSY20], for completeness we include the outline of the proof and the

relevant papers for intermediate steps. Since any special case of the estimation problem yields a

lower bound for the general case, we are able to specify further that the data distribution has an

assumption of normality on the conditional distribution x|ỹ.

We specify a subset of the parameter space as follows: let K = 1, H = 2, and for i = 1,2, let

xi|(ỹi = 1)∼ Nd((1−α)v, Id − Ω̃), P(ỹ = 1) = α,

xi|(ỹi = 2)∼ Nd(−αv, Id − Ω̃), P(ỹ = 2) = 1−α.

Here we have v ∈O(d,1), (unit length d-vectors), and for 0 < α < 1 and γ = α we have E[x] = 0,

Ω̃ = cov(E[x|ỹ]) = γvv⊤, and Σ = cov(x) = Id for Id the identity matrix on Rd .

The minimax results are derived using Fano’s Lemma found in [Yu97] (Lemma 3).

Lemma 24 (Fano’s Lemma). Let (Θ,ρ) be a metric space and {Pθ : θ ∈ Θ} a collection of proba-

bility measures. For any totally bounded T ⊂ Θ, denote by M(T,ρ,ε) the ε-packing number of T

with respect to ρ , that is, the maximimal number of points in T whose pairwise minimum distance

in ρ is at least ε . Define the Kullback-Leibler diameter of T by

dKL(T)≡ sup
θ ,θ ′∈T

D(Pθ∥Pθ ′)

for D(Pθ ||Pθ ′) the KL divergence between distributions Pθ and Pθ ′ . Then

inf
θ̂

sup
θ∈Θ

Eθ [ρ
2(θ̂(x),θ)]≥ sup

T⊂Θ

sup
ε>0

ε2

4

(
1− dKL(T)+ log2

logM(T,ρ,ε)

)

47

and equivalently,

inf
θ̂

sup
θ∈Θ

Pθ

(
ρ

2(θ̂(x),θ)≥ ε2

4

)
≥ 1− dKL(T)+ log2

logM(T,ρ,ε)
.

Then two steps are required, first determining the Kullback-Leibler divergence between the

data distributions in T , and second determining the ε-packing of T .

The first task is straightforward. For i = 1,2, let Σ = Id and Ω̃i = γviv⊤i , for γ ∈ (0,1), vi ∈

O(d,1). Then let P(Ω̃i,Σ) denote the distribution of a random i.i.d. sample of size n from the

mixture Guassian distribution P(Ω̃i,Σ) = αP1(Ω̃i,Σ)+ (1−α)P2(Ω̃i,Σ), where P1(Ω̃i,Σ) and

P2(Ω̃i,Σ) denote multivariate normal distributions Nd((1−α)vi, Id − Ω̃i) and Nd(−αvi, Id − Ω̃i),

respectively. Then using convexity of the K-L divergence, for two mixture-Gaussian distributions

P(Ω̃1,Σ) and P(Ω̃2,Σ) we have

D(P(Ω̃1,Σ)||P(Ω̃2,Σ))≤ αD(P1(Ω̃1||Σ),P1(Ω̃2,Σ))+(1−α)D(P2(Ω̃1,Σ)||P2(Ω̃2,Σ)),

thus it is sufficient to bound the K-L divergence between two Gaussian distributions.

Using the explicit formula for the K-L divergence between Gaussian distributions and the prop-

erties of the chosen parameters, the authors of [TSY20] determine the upper bound

D(P(Ω̃1,Σ)||P(Ω̃2,Σ))≤ 3γ2

1− γ2 ·n∥v1 −v2∥2
2.

Once the K-L divergence is determined, the second task proceeds according to a well estab-

lished packing argument that can be found in [CGRZ13] or [CMW13].

Corollary 25. Assume that ρ is a lower bound of both ρK and MγK , where γK is the K-th general-

ized eigenvalue of the pair (Ω,Σ). Then GEV estimator obtains the minimax rate up to constants.

3.4.2 Proof of Corollary 25

Proof. The assumption that ∑
K
i=1 ∥ṽi∥0 = s is equivalent to the sparsity assumptions on W∗. We

have ∃γ > 0 such that γ < γK for generalized eigenpair (vK,γK) of (Ω,Σ). It is simple to show

that with the assumption ρ < MγK , then we may substitute γ with ρ/M for a lower bound on γK .

48

One needs to compare γ with γ̃ . We can do this with the stability theorem and Weyl’s theorem.

Let P(y ∈ Jh) = Ph and µh = E[x|y ∈ Jh]. We need the following from [?] (Lemma 11 in

supplementary materials).

Lemma 26. Define the event E(ε) = {ω
∣∣|Ph− 1

H |> ε,∀H}. There exist a positive constant C such

that, for any ε > 4
Hc−1 , we have

P(E(ε))<CH2√Hc+1exp(−(Hc+1)
ε2

32
)

for sufficiently large H and c.

Then for any v ∈ Rd we have

|v⊤Ωv⊤−v⊤Ω̃v⊤|= |v⊤cov(E[x|y])v−v⊤cov(E[x|ỹ])v|

=

∣∣∣∣∣v⊤ H

∑
h
Phcov(E[x|y]|y ∈ Jh)v−v⊤

H

∑
h
Phµhµ

⊤
h v

∣∣∣∣∣
=

H

∑
h
Ph

∣∣∣v⊤cov(E[x|y]|y ∈ Jh)v−v⊤µhµ
⊤
h v
∣∣∣

≤
(

1
H

+ ε

)
∑
h

v⊤cov(E[x|y]|y ∈ Jh)v

≤ (1+Hε)
α3

Hϑ
v⊤Ωv

where the last inequality follows from the Stability Assumption (10). Taking maximum over

norm 1 vectors yields ∥Ω− Ω̃∥2 ≤ (1+Hε) α3
Hϑ ρ1. From Weyl’s inequality we have |ρK(Ω)−

ρK(Ω̃)| ≤ ∥Ω− Ω̃∥2. Thus ρ − (1+Hε) α3
Hϑ ρ1 < ρK(Ω̃), and serves as a lower bound. Then we

can replace γ̃ with
ρ−(1+Hε)

α3
Hϑ

M . This completes the proof.

3.5 Canonical Correlation Analysis

The GEV estimator can also be applied to the Canonical Correlation Analysis problem [Hot33],

which has also had a number of techniques proposed in the past two decades for performing the

task under HDLSS conditions where sparsity is assumed on the canonical directions [WKI08,

WTH09, PTB09, HST11]. [CGRZ13] first gives the characterization of the probabilistic CCA

49

model for sparse canonical directions, and presents the CAPIT method for the problem. Rates

of convergence are given that depend on an independent estimate of the precision matrices of the

two data sources, which can often be difficult to compute even diagonal approximations of. A

modern standard for estimation in this problem is Penalized Multivariate Analysis (PMA) method

[WTH09] that estimates a regularized version of the singular value decomposition. Our estimator

is shown to perform better empirically on simulations for sparse CCA.

Canonical Correlation Analysis is a classical technique that finds the linear combination of two

sets of random variables with maximal correlation. It has been applied to a number of different

fields, including pyschology, neurology, genomics and economics. Let x ∈ Rd1 and y ∈ Rd2 be

zero-mean random vectors with joint covariance matrix

Σ =

 Σx Σxy

Σyx Σy

 ,

where Σx = (Σx,kℓ) and Σy = (Σy,kℓ) are the covariance matrices for x and y , respectively, and

Σxy = (Σxy,kℓ) = Σ⊤
yx is the cross-covariance matrix between x and y. Then CCA determines the

K canonical direction vectors by solving

maxv⊤xkΣxyvyk, subject to v⊤xkΣxvxk = v⊤ykΣyvyk = 1, v⊤xkΣxvx j = v⊤ykΣyvy j = 0 (3.17)

for k ∈ [K] and j < k. The optimization problem can be solved by applying singular value decom-

position on the matrix Σ−1/2
x ΣxyΣ

−1/2
y , and a sample version is given by replacing the covariances

with their usual estimators. This leads to consistent estimation of the canonical directions when

the dimensions d1 and d2 are fixed and the sample size n increases.

In the high-dimensional setting, when the dimensions exceed the sample size, one cannot com-

pute the inverse sample covariances. This leads to the structural assumption of sparsity in the

canonical directions, which allows for successful estimation. As shown in [CGRZ13], the set of

(vxk,vyk) are solutions to 3.17 if and only if

Σxy = Σx

(
K

∑
k=1

λkvxkv⊤yk

)
Σy

50

for some λk > 0, giving the correlation weights. We show that (3.17) is a special case of the

generalized eigenvalue problem (3.1) with

Ω =

 0 Σxy

Σyx 0

 , Σ =

 Σx 0

0 Σy

 , and vk =

 vxk

vyk

 .

Substituting the above into (3.1), we yield

v∗k = argmax
vxk,vyk

2v⊤xkΣxyvyk

v⊤xkΣxvxk +v⊤ykΣyvyk

It is straightforward to show this is equivalent to (3.17).

Now if we assume that the Σxy has the following singular value decomposition

Σxy =
K

∑
k=1

σkux,kν
⊤
y,k

so that Σxy = OxDO⊤
y . Then we have

Ω =

 0 OxDO⊤
y

OxDO⊤
y 0

 .

We need the following lemma which gives the eigendecomposition of Ω.

Lemma 27. We have Ω = QΛQ⊤, where

Q =

 Ox Ox

Oy −Oy

 and Λ =

 D 0

0 −D

 .

Proof. The proof of this lemma follows from direct calculation.

Using Lemma 27, we observe that U in (3.4) can be taken as (O⊤
x ,O⊤

y)
⊤/

√
2. An esti-

mator of U can be obtained by concatenating the top rank-K left and right singular matrix of

Σ̂xy = n−1
∑

n
i=1 XiY⊤

i , where Xi’s and Yi’s are independent and identically distributed samples of

x and y, respectively. Thus we may apply the GEV estimator (3.5) to the CCA problem with

the estimates for Û and Σ̂ defined above, and recover the spaces given by span{vx1, . . . ,vxK} and

span{vy1, . . . ,vyK}.

51

CHAPTER 4

EMPIRICAL RESULTS OF THE GEV ESTIMATOR

4.1 Implementation

To efficiently solve for W from (3.5), we implement from [BT09] the Fast Iterative Shrinkage-

Thresholding Algorithm (FISTA). FISTA is an alteration of the iterative first order method ISTA

used to solve ℓ1-regularized convex optimization problems. The alteration uses a version of Nes-

terov acceleration [Nes83] to achieve a convergence rate of O(1/k2). Define Sλ (·), a element-wise

soft thresholding operator, the gradient of the (3.4), as follows:

(
Sλ (A)

)
i j =

 sgn(ai j)|ai j −λ |, if|ai j|> λ

0 otherwise.

Algorithm 4.1: A fast iterative shrinkage-thresholding algorithm for GEV.

Input: U , Σ, and λ . Initialization: take W (0)
X ∈ Rd×K , ρ−1 = 1/ρ1(Σ), t(0) = 1, and k = 0

Output: W
1 repeat
2 W (k+1)

Y = Sρ−1λ

(
W (k)

X −ρ−1(ΣW (k)
X −U)

)
;

3 t(k+1) =
1+
√

1+4(t(k))2

2 ;

4 W (k+1)
X =W (k+1)

Y + t(k)−1
t(k+1) (W

(k+1)
Y −W (k)

Y)

5 until converge;

Since the GEV problem estimator acts like a matrix version of Lasso regression, there are many

algorithms one could potentially apply to a ℓ1-regularized optimization problem. We sought a

comparison of the following methods to solve the problem for a fixed choice of the hyper-parameter

λ giving the regularization weight: Subgradient [Nes04, Chapter 3.1], Proximal method [Roc70],

FISTA, ADMM [BPC+11], and Chambolle-Pock [CP11]. The model used to test the convergence

is taken from the SIR simulations below, using Model 1 in the continuous responses, with Gaussian

features and noise, and d = 50,n = 200.

52

Figure 4.1: Comparison of convergence rates of different algorithms.

As expected, in Figure (4.1) we see the subgradient method was suboptimal compared to all

other methods, with a very slow convergence rate. However, due to the incredibly low number

of iterations required to reach a stable critical point, empirically all the other methods performed

equivalently in terms of iterations, with the exception of Chambolle-Pock, which had problems

with convergence after the first iteration. As well, important differences occurred in run-time;

ADMM in particular requires the computation of a matrix inverse, which drastically increases its

run-time. Due to the simplicity of implementation, the speed of convergence and quick run-time,

we maintained the FISTA implementation of the GEV method above.

53

4.1.1 Robust Modification

This algorithm is sufficient for most applications of the GEV algorithm, but an important case

arises for data that comes from heavy noise distributions or data with outliers. In many applica-

tions, the assumption of sub-Gaussian tails is unrealistic; applications using functional magnetic

resonance imaging (fMRI) [ENK16] or microarray data giving gene expression level [WPL15]

have been observed to have heavy tails and large kurtosis, regardless of normalization meth-

ods used. The kurtosis of a random variable X is defined as the fourth centralized moment

E
[(

X−µ

σ

)4
]

, and high values indicate either that the probability mass is concentrated around the

mean and the data-generating process produces occasional values far from the mean (i.e. outliers),

or that the probability mass is concentrated in the tails of the distribution.

To that end, we robustify the matrix square loss by introducing the following matrix Huber loss

as a substitute to the Frobenius loss term in (3.2)

Lα = ∑
i j
ℓα

(
[ΣW]i j −Ui j

)
where

ℓα(x) =

 x2, if|x| ≤ 1
α

2α−1|x|−α−2 otherwise.

The Huber loss [Hub73], ℓα(x) is quadratic for small values of x, and becomes linear when x gets

larger. The parameter α controls the blending of quadratic and linear loss. The least square loss

and least absolute deviation (LAD) loss can be regarded as two extremes of the Huber loss for

α = 0 and α = ∞, respectively. Using this loss in the ℓ1-regularized scheme, we get the estimate

Ŵα,λ = argmin
W∈Rd×K

{
∑
i j
ℓα

(
[Σ̂W]i j − Ûi j

)
+λ∥W∥1,1

}
(4.1)

Notice however that the term (Σ1/2W−Σ−1/2U) has been replaced in the Huber loss for the

term (ΣW−U). As noted after the proof of Theorem 1, either expression when used in the Frobe-

nius norm loss yields the same solution for the space of V , but will give different models when

combined with the ℓ1-regularization term and used in (3.4). Computationally, if the expression

54

(ΣW−U) is used in Algorithm ??, the gradient of the expression requires computation of Σ2,

which leads to greater run-time and worse performance likely due to floating point error in com-

pared to the performance of the expression (Σ1/2W−Σ−1/2U). However, when using the Huber

loss, the gradient computation of this model will lead to the computation of Σ−1/2 if we use ex-

pression (Σ1/2W−Σ−1/2U). This is statistically and computationally undesirable, especially in

the case of d > n where Σ̂ is singular. Then with Dα as the gradient of the Huber loss, we define

the algorithm below.

(
Dα(A)

)
i j =

 2ai j if|ai j| ≤ α−1

2α−1sgn(ai j), otherwise.

Algorithm 4.2: Huber loss algorithm for robust GEV.

Input: U , Σ, λ and α . Initialization: take W (0)
X ∈ Rd×K , ρ−1 = 1/ρ1(Σ), t(0) = 1, and

k = 0
Output: W

1 repeat
2 W (k+1)

Y = Sαλ

(
W (k)

X −ρ−2ΣDα(ΣW (k)
X −U)

)
;

3 t(k+1) =
1+
√

1+4(t(k))2

2 ;

4 W (k+1)
X =W (k+1)

Y + t(k)−1
t(k+1) (W

(k+1)
Y −W (k)

Y)

5 until converge;

4.2 Sliced Inverse Regression

We compare our method of applying GEV to the sliced inverse regression problem against the

classical method we label SIR [Li91], and the modern method LassoSIR (LSIR) [LZL19], used for

high dimensional problems. To facilitate a fair comparison with SIR and LSIR, all the simulation

studies are generated under forward models including both categorical and continuous responses

for low (d = 100) and high (d = 1000) dimensional predictors. Throughout the simulations, we

use a K-fold cross-validation (CV) to select the tuning parameters and quantify the estimation

accuracy using three different metrics defined as follows: the canonical correlation (CCA) between

55

x⊤Ŵ and x⊤W; the Frobenius norm distance (FD) between PW and its estimate PŴ; the trace

correlation (TC) defined as tr(PWPŴ)/K with K being the structural dimensions. Let Σ=(σi j)d×d ,

where σi j = 0.5|i− j| and d is taken to be 50 or 500. To demonstrate the robustness of SDR for

categorical response, we consider two simulation scenarios for generating the predictor variables

x: 1) from N (0,Σ) and 2) from t5(0,Σ). Let β1 and β2 be the d−dimensional vectors with their

first six elements being (1,1,1,1,1,1)/
√

6 and (1,−1,1,−1,1,−1)/
√

6 and the rest being zero.

The response Y is generated from the multinomial distribution with

Pr(y = k) =
fk(x)

1+∑
K−1
j=1 f j(x)

, k = 1, . . . ,k−1,

where K is the number of categories and fk(x) is the component connecting x with y. We consider

the following two different models of fk(x):

1. Model 1: fk(x) = sin(x⊤βk/4)+1;

2. Model 2: fk(x) = exp(x⊤βk).

For both models, the fk(x) components are monotone within the domain of x, so they are favorable

to SIR. Moreover, we can see that model 2 is actually the multinomial logistic regression.

The simulation includes comparing all combination of the two scenarios, two models and the

two configurations (n,d) = (200,50) and (500,1000) with 100 replicates. As shown in Table 4.1,

GEV-SIR dominates SIR and LSIR for all three metrics.

56

Table 4.1: Summary of estimation accuracy for categorical response in low and high dimensions.
We report the means of three accuracy metrics (CCA, FD and TC) with their standard deviations
in parentheses. The results are based on 100 replications.

Sample and Error Type Model Method (d,n) FD TC CCA

Gaussian-X

Model 1 GEV 50, 200 3.38 (.359) .154 (.09) .602 (.188)
SIR 50, 200 3.75 (.137) .062 (.034) .393 (.098)
LSIR 50, 200 3.49 (.397) .127 (.099) .562 (.232)

Model 2 GEV 50, 200 2.06 (.321) .484 (.08) .950 (.035)
SIR 50, 200 2.90 (.237) .276 (.059) .811 (.042)
LSIR 50, 200 2.26 (.386) .436 (.096) .945 (.034)

Model 1 GEV 1000, 500 3.61 (.319) .097 (.08) .209 (.120)
LSIR 1000, 500 3.71 (.326) .073 (.082) .305 (.206)

Model 2 GEV 1000, 500 1.97 (.379) .507 (.095) .495 (.146)
LSIR 1000, 500 2.08 (.432) .479 (.108) .718 (.178)

Elliptical-X

Model 1 GEV 50, 200 3.31 (.383) .174 (.096) .652 (.192)
SIR 50, 200 3.73 (.165) .068 (.041) .420 (.100)
LSIR 50, 200 3.43 (.424) .143 (.106) .620 (.218)

Model 2 GEV 50, 200 1.87 (.385) .534 (.096) .954 (.034)
SIR 50, 200 2.83 (.275) .292 (.069) .813 (.035)
LSIR 50, 200 2.10 (.400) .474 (.101) .951 (.029)

Model 1 GEV 1000, 500 3.41 (.436) .149 (.109) .353 (.182)
LSIR 1000, 500 3.48 (.416) .131 (.104) .443 (.208)

Model 2 GEV 1000, 500 1.88 (.461) .530 (.115) .618 (.169)
LSIR 1000, 500 1.89 (.486) .527 (.121) .727 (.167)

For continuous response, we consider the following four scenarios for both low (d = 50) and

high (d = 1000) dimensional data with either

1 : Gaussian predictors and Gaussian noise.

2 : Gaussian predictors and elliptical noise.

3 : Elliptical predictors and Gaussian noise.

We randomly generate n = 500 predictors x from either a multivariate normal or elliptical

distribution with mean zero and and the same covariance matrix as in categorical cases. For the

continuous responses, we then generate the responses variable according to the following three

models:

1. Model 1: y = (x⊤β1)/{0.5+(x⊤β2 +1.5)2}+0.5ε;

2. Model 2: y = x⊤β1 +2+ exp(x⊤β2)+0.5∗ ε|x⊤β1 +2|,

57

3. Model 3: y = (x⊤β1 +1)2 +(x⊤β2 +1)2 +0.5∗ ε ,

The ε’s are independently generated from either standard normal or t5 distribution. Here we set

β1 = (1, . . . ,1,0, . . . ,0)⊤/
√

6 and β2 = (1,−1,1,−1,1,−1,0, . . . ,0)⊤/
√

6 with the first 6 elements

of both vectors being nonzero. The results are found in tables 4.2 and 4.3.

Table 4.2: Summary of estimation accuracy for continuous response in low dimensions. We
report the means of three accuracy metrics (CCA, FD and TC) with their standard deviations in
parentheses. The results are based on 100 replications.

Sample and Error Type Model Method (d,n) FD TC CCA

Gaussian-X, Gaussian-Error

Model 1 GEV 50, 200 2.27 (.247) .433 (.062) .974 (.018)
SIR 50, 200 3.22 (.293) .196 (.073) .793 (.061)
LSIR 50, 200 2.16 (.220) .460 (.055) .973 (.017)

Model 2 GEV 50, 200 2.08 (.120) .478 (.030) .985 (.014)
SIR 50, 200 2.66 (.225) .335 (.056) .859 (.049)
LSIR 50, 200 2.11 (.136) .474 (.034) .971 (.019)

Model 3 GEV 50, 200 2.11 (.179) .472 (.045) .982 (.020)
SIR 50, 200 3.19 (.348) .202 (.087) .733 (.138)
LSIR 50, 200 2.19 (.199) .452 (.050) .965 (.030)

Gaussian-X, Elliptical-Error

Model 1 GEV 50, 200 2.38 (.303) .404 (.076) .962 (.027)
SIR 50, 200 3.47 (.237) .131 (.059) .683 (.111)
LSIR 50, 200 2.30 (.262) .424 (.065) .961 (.024)

Model 2 GEV 50, 200 2.08 (.183) .478 (.046) .983 (.018)
SIR 50, 200 2.82 (.243) .296 (.061) .813 (.060)
LSIR 50, 200 2.13 (.171) .469 (.043) .965 (.023)

Model 3 GEV 50, 200 2.18 (.278) .456 (.070) .972 (.068)
SIR 50, 200 3.21 (.351) .199 (.088) .734 (.128)
LSIR 50, 200 2.24 (.278) .439 (.070) .958 (.056)

Elliptical-X, Gaussian-Error

Model 1 GEV 50, 200 2.11 (.290) .473 (.072) .978 (.016)
SIR 50, 200 3.21 (.299) .199 (.075) .786 (.070)
LSIR 50, 200 2.04 (.310) .490 (.077) .961 (.017)

Model 2 GEV 50, 200 2.25 (.261) .437 (.065) .953 (.056)
SIR 50, 200 2.99 (.327) .253 (.082) .770 (.094)
LSIR 50, 200 2.33 (.300) .418 (.075) .929 (.060)

Model 3 GEV 50, 200 2.75 (.434) .312 (.108) .828 (.137)
SIR 50, 200 3.50 (.286) .126 (.067) .558 (.154)
LSIR 50, 200 2.85 (.437) .287 (.109) .801 (.144)

58

Table 4.3: Summary of estimation accuracy for continuous response in high dimensions. We
report the means of three accuracy metrics (CCA, FD and TC) with their standard deviations in
parentheses. The results are based on 100 replications.

Sample and Error Type Model Method (d,n) FD TC CCA

Gaussian-X, Gaussian-Error
Model 1 GEV 1000, 500 3.06 (.133) .236 (.033) .898 (.028)

LSIR 1000, 500 3.13 (.123) .217 (.031) .889 (.029)

Model 2 GEV 1000, 500 2.69 (.164) .329 (.041) .907 (.027)
LSIR 1000, 500 2.79 (.152) .303 (.038) .895 (.027)

Model 3 GEV 1000, 500 3.13 (.256) .216 (.064) .828 (.076)
LSIR 1000, 500 3.23 (.223) .194 (.056) .812 (.084)

Gaussian-X, Elliptical-Error
Model 1 GEV 1000, 500 3.25 (.238) .187 (.060) .827 (.133)

LSIR 1000, 500 3.31 (.235) .171 (.059) .813 (.137)

Model 2 GEV 1000, 500 2.84 (.291) .291 (.073) .879 (.058)
LSIR 1000, 500 2.97 (.247) .259 (.062) .851 (.085)

Model 3 GEV 1000, 500 3.19 (.296) .203 (.074) .817 (.078)
LSIR 1000, 500 3.25 (.232) .186 (.058) .804 (.088)

Elliptical-X, Gaussian-Error
Model 1 GEV 1000, 500 3.12 (.176) .220 (.044) .866 (.036)

LSIR 1000, 500 3.11 (1.01) .183 (.044) .830 (.068)

Model 2 GEV 1000, 500 3.37 (.193) .158 (.048) .777 (.070)
LSIR 1000, 500 3.49 (.174) .127 (.044) .743 (.088)

Model 3 GEV 1000, 500 3.87 (.088) .032 (.022) .417 (.138)
LSIR 1000, 500 3.91(.081) .023 (.020) .353 (.159)

4.2.1 Heavy Noise Slice Inverse Regression

Here we show our adapted Huber loss GEV method when applied to the SIR problem with in-

creased noise. We use the same models in the continuous response section with all the same

conditions, with the exception of the coefficient of the noise term being raised from 0.5 to 1. As

well we included an additional model

Model 4: y = (x⊤
β1 +3)2 +2|x⊤

β2 +3|+ ε|x⊤
β2|;

and the scenario of having elliptical features for x and elliptical noise. We compare this to both

SIR and LSIR.

59

Table 4.4: Summary of estimation accuracy for Huber loss estimation in low dimensions with
high noise. We report the means of three accuracy metrics (CCA, FD and TC) with their standard
deviations in parentheses. The results are based on 100 replications.

Sample and Error Type Model Method (d,n) FD TC CCA

Gaussian-X, Gaussian-Error

Model 1 GEV 50, 200 3.25 (.321) .188 (.080) .699 (.153)
SIR 50, 200 3.83 (.125) .04 (.031) .286 (.114)
LSIR 50, 200 3.56 (.318) .108 (.080) .573 (.167)

Model 2 GEV 50, 200 2.00 (.238) .498 (.080) .992 (.047)
SIR 50, 200 2.27 (.346) .432 (.087) .979 (.102)
LSIR 50, 200 2.01 (.234) .497 (.058) .997 (.041)

Model 3 GEV 50, 200 2.41 (.332) .397 (.083) .992 (.075)
SIR 50, 200 3.55 (.249) .111 (.062) .560 (.131)
LSIR 50, 200 2.43 (.398) .390 (.100) .915 (.089)

Model 4 GEV 50, 200 2.43 (.376) .391 (.094) .913 (.158)
SIR 50, 200 3.61 (.227) .099 (.058) .523 (.178)
LSIR 50, 200 2.53 (.434) .367 (.108) .900 (.176)

Gaussian-X, Elliptical-Error

Model 1 GEV 50, 200 3.28 (.374) .181 (.096) .651 (.176)
SIR 50, 200 3.84 (.116) .040 (.029) .290 (.096)
LSIR 50, 200 3.60 (.303) .100 (.076) .545 (.159)

Model 2 GEV 50, 200 2.02 (.260) .493 (.065) .991 (.046)
SIR 50, 200 2.38 (.356) .406 (.089) .971 (.093)
LSIR 50, 200 2.02 (.270) .492 (.068) .995 (.040)

Model 3 GEV 50, 200 2.47 (.309) .381 (.077) .915 (.097)
SIR 50, 200 3.62 (.242) .096 (.061) .511 (.159)
LSIR 50, 200 2.54 (.364) .366 (.091) .911 (.105)

Model 4 GEV 50, 200 2.59 (.416) .353 (.104) .890 (.169)
SIR 50, 200 3.71 (.250) .073 (.063) .431 (.180)
LSIR 50, 200 2.69 (.489) .329 (.122) .874 (.193)

Elliptical-X, Gaussian-Error

Model 1 GEV 50, 200 3.17(.389) .207 (.097) .727 (.203)
SIR 50, 200 3.83 (.117) .043 (.029) .309 (.097)
LSIR 50, 200 3.44 (.249) .141 (.062) .666 (.176)

Model 2 GEV 50, 200 2.17 (.072) .456 (.018) .955 (.006)
SIR 50, 200 2.75 (.148) .312 (.037) .887 (.008)
LSIR 50, 200 2.19 (.045) .451 (.011) .966 (.002)

Model 3 GEV 50, 200 2.58 (.301) .355 (.075) .881 (.065)
SIR 50, 200 3.54 (.302) .114 (.075) .621 (.170)
LSIR 50, 200 2.63 (.419) .341 (.105) .888 (.117)

Model 4 GEV 50, 200 2.96 (.341) .261 (.085) .742 (.103)
SIR 50, 200 3.68 (.248) .080 (.062) .463 (.192)
LSIR 50, 200 3.06 (.429) .234 (.107) .741 (.136)

Elliptical-X, Elliptical-Error

Model 1 GEV 50, 200 3.27 (.368) .183 (.092) .670 (.188)
SIR 50, 200 3.84 (.112) .041 (.028) .287 (.092)
LSIR 50, 200 3.51 (.275) .121 (.069) .621 (.175)

Model 2 GEV 50, 200 2.19 (.070) .454 (.017) .953 (.006)
SIR 50, 200 2.81 (.187) .296 (.047) .878 (.011)
LSIR 50, 200 2.20 (.071) .450 (.018) .964 (.003)

Model 3 GEV 50, 200 2.66 (.268) .334 (.067) .860 (.062)
SIR 50, 200 3.61 (.237) .097 (.059) .553 (.161)
LSIR 50, 200 2.73 (.334) .317 (.084) .871 (.078)

Model 4 GEV 50, 200 3.00 (.337) .249 (.084) .725 (.088)
SIR 50, 200 3.70 (.198) .076 (.049) .447 (.172)
LSIR 50, 200 3.12 (.434) .218 (.108) .712 (.127)

60

Table 4.5: Summary of estimation accuracy for Huber loss estimation in high dimensions with
high noise. We report the means of three accuracy metrics (CCA, FD and TC) with their standard
deviations in parentheses. The results are based on 100 replications.

Sample and Error Type Model Method (d,n) FD TC CCA

Gaussian-X, Gaussian-Error
Model 1 GEV 1000, 500 3.55 (.100) .112 (.025) .282 (.113)

LSIR 1000, 500 3.65 (.116) .087 (.029) .464 (129)

Model 2 GEV 1000, 500 2.12 (.042) .470 (.010) .670 (.157)
LSIR 1000, 500 2.22 (.079) .445 (.020) .448 (.152)

Model 3 GEV 1000, 500 2.68 (.160) .329 (.040) .647 (.110)
LSIR 1000, 500 2.92 (.192) .271 (.048) .389 (.130)

Model 4 GEV 1000, 500 3.13 (.215) .216 (.054) .578 (.102)
LSIR 1000, 500 3.31 (.177) .173 (.044) .320 (.130)

Gaussian-X, Elliptical-Error
Model 1 GEV 1000, 500 3.67 (.107) .082 (.027) .384 (.108)

LSIR 1000, 500 3.80 (.112) .050 (028) .266 (.114)

Model 2 GEV 1000, 500 2.13 (.044) .467 (.011) .665 (.159)
LSIR 1000, 500 2.23 (.080) .441 (.022) .472 (.160)

Model 3 GEV 1000, 500 2.79 (.167) .302 (.042) .614 (.105)
LSIR 1000, 500 3.03 (.191) .234 (.048) .377 (.125)

Model 4 GEV 1000, 500 3.17 (.208) .206 (.052) .586 (.097)
LSIR 1000, 500 3.32 (.188) .170 (.047) .327 (.137)

Elliptical-X, Gaussian-Error
Model 1 GEV 1000, 500 3.52 (.151) .121 (.038) .519 (.106)

LSIR 1000, 500 3.61 (.134) .098 (.034) .337 (.125)

Model 2 GEV 1000, 500 2.66 (.240) .334 (.060) .572 (.123)
LSIR 1000, 500 3.10 (.249) .224 (.062) .385 (.139)

Model 3 GEV 1000, 500 3.40 (.188) .149 (.047) .476 (.099)
LSIR 1000, 500 3.59 (.164) .101 (.041) .334 (.115)

Model 4 GEV 1000, 500 3.84 (.083) .040 (.021) .228 (.075)
LSIR 1000, 500 3.94 (.064) .015 (.016) .236 (.118)

Elliptical-X, Elliptical-Error

Model 1 GEV 1000, 500 3.68 (.116) .083 (.023) .420 (.085)
LSIR 1000, 500 3.76 (123) .059 (.031) .309 (.125)

Model 2 GEV 1000, 500 2.68 (.213) .330 (.053) .589 (.116)
LSIR 1000, 500 3.14 (.225) .216 (.064) .456 (.135)

Model 3 GEV 1000, 500 3.44 (.193) .138 (.048) .495 (.080)
LSIR 1000, 500 3.61 (.153) .097 (.038) .394 (.108)

Model 4 GEV 1000, 500 3.84 (.087) .039 (022) .228 (.076)
LSIR 1000, 500 3.94 (.070) .015 (.018) .230 (.123)

4.3 Linear Discriminant Analysis

In this section, we investigated the performance of GEV method under high-dimensional Linear

Discriminant Analysis (LDA) framework for both binary and multi-class classification problems

by applying them to simulated data generated under two types of within group covariance matri-

ces: block Toeplitz suggested by [WT11] and Sparse precision matrix as described above. For

comparison, we also included the ℓ1−penalized linear discriminant analysis (LDA-ℓ1) [WT11] us-

61

ing R package penalizedLDA and the direct approach for discriminant analysis [MZY12, ZMY18]

implemented in R packages dsda and msda for binary or multi-class cases respectively. To serve

as a benchmark, we also included the Oracle classifier derived from the population parameters Σw

and Σb. For each simulation, we generate 100K samples with d = 500 features, where K is the

number of classes. We consider simulation settings for binary and multi-class cases as follows:

• Binary case: we set µ1 = 0 and µ2 j ∼ N(0.3,0.5) for j ∈ {1, . . . ,20} and µ2 j = 0 otherwise.

For the block Toeplitz, the block diagonal matrix, Σw, consists five equal size blocks with

the (i, j)th element of each block equals to 0.7|i− j|. In term of the sparse precision matrix,

we simulated the K-nearest-neighbor networks as describe above. Both the covariance struc-

tures were used to mimic the biological gene networks with sparse conditional dependency

structure [WT11, XLV16]. We then simulate xi ∼ N(µk,Σw) for i ∈Ck.

• Multi-class case: we consider K = 3 classes and set µ1 = 0, µ2 j = 0 ∼ N(0.3,0.5) for j ∈

{1, . . . ,20}, µ3 j = N(−0.5,0.5) for j ∈ {21, . . . ,40} and µk j = 0 otherwise. With the same

covariance structure as in the binary cases, we simulate the data as xi ∼ N(µk,Σw) for i ∈Ck.

In Table 4.6, we reported the prediction accuracy based on 100 replicates.

Table 4.6: Summary statistics reporting performance of the GEV, LDA−ℓ1, Direct and Oracle
methods. We report the means of the FD with its standard deviation in parentheses. The results are
based on 100 replications

Σw Type LDA-ℓ1 Direct GEV Orcal

Binary Toeplitz Error 75.12 (23.36) 31.96 (16.61) 30.58 (17.04) 14.54 (9.77)
NN Error 60.12 (8.53) 54.88 (13.73) 52.70 (11.71) 23.08 (4.64)

Multi-class Toeplitz Error 155.88 (24.26) 70.14 (31.54) 60.02 (28.30) 27.34 (14.09)
NN Error 103.1 (7.60) 83.3 (7.90) 40.68 (24.46) 35.06 (17.04)

4.4 Canonical Correlation Analysis

In this subsection, we assess the performance of GEV under sparse CCA framework by applying

it to several simulated datasets. In all settings, we let X and Y have same dimension d = q, Σx =

62

Σy = Σ. Following the formulation in [CGRZ13], we model Cov(X ,Y) = Σxy as

Σxy = ΣxUΛV ′
Σy, (4.2)

where U = (U1,U2) and V = (V1,V2) are d × 2 matrices, and Λ is a 2× 2 diagonal matrix with

λ1 = 1 and λ2 = 0.7. We set the nonzero rows of U1, U2, V1 and V2 at {1,2, . . . ,6},{7, . . . ,12},{d−

5, . . . ,d} and {d − 11, . . . ,d − 6}. The values at the nonzero rows are sampled uniformly from

(−1,−0.5)∪ (0.5,1) and then are normalized with respect to Σ such that U ′ΣU = I and V ′ΣV = I.

To capture different dependency structures, we consider the following three settings.

• Identity with Σ = Ip.

• Toeplitz with Σ = (σi j) where σi j = 0.3|i− j| for all i, j ∈ [d].

• Sparse precision matrix with Ω = Σ−1 being sparse. Specifically, we generated the sparse

precision matrix through nearest-neighbour networks algorithm in [LG06] with number of

neighbors, m = 5.

We compared the performance of our methods and the Penalized Multivariate Analysis method

(PMA) proposed by [WTH09] via examining the Frobenius norm distance (FD) measuring the

distance between the true and estimated subspaces. The sparsity tuning parameters in PMA were

chosen using permutation as suggested by the R package PMA, while the tuning parameter λ

in GEV was selected by cross-validation. Results of the simulations are reported in Table 4.7.

Summary statistics are based on 100 replicate trails under each of the six conditions. In general,

the GEV method results in smaller Frobenius norm distance for both U and V . Under all settings,

the GEV method outperforms the PMA methods yielding greater improvements as the dependence

structures become more complicated.

63

Table 4.7: Summary statistics reporting performance of the GEV and PMA methods. We report
the means of the FD with its standard deviation in parentheses. The results are based on 100
replications

(p,q,n) Σ U−PMA V−PMA U−GEV V−GEV

(50, 50, 300)
Identity 0.589 (0.085) 0.543 (0.126) 0.515 (0.120) 0.496 (0.116)
Toeplitz 0.839 (0.089) 0.833 (0.080) 0.623(0.106) 0.607 (0.099)

NN 1.365 (0.132) 1.353 (0.141) 0.774 (0.137) 0.778 (0.171)

(500, 500, 2000)
Identity 0.255 (0.076) 0.399 (0.043) 0.208 (0.074) 0.297 (0.071)
Toeplitz 0.696 (0.030) 0.745 (0.023) 0.426 (0.059) 0.424 (0.060)

NN 1.031 (0.152) 1.031 (0.076) 0.433 (0.079) 0.420 (0.090)

4.5 Application to Tumor-Infiltrating Lymphocytes Data

To demonstrate our approach’s potential utility, we apply the GEV-SIR algorithm to the Tumor-

Infiltrating Lymphocytes (TILs) data inferred from The Cancer Genome Atlas (TCGA) Ovarian

serous cystadenocarcinoma (Ovarian Cancer) and Lung Squamous Cell Carcinoma (Lung cancer)

using CIBERSORT [NLG+15]. Compelling clinical evidence suggests that the presence of effec-

tor immune cells, such as CD8+ T cells and plasma cells, is positively associated with superior

survival in patients with ovarian cancer. Notably, an inflamed tumor microenvironment, which

is characterized by the infiltration of CD8+ T cells, also attracts plasma cells. A higher percent-

age of plasma cell infiltration is significantly correlated with the highest levels of CD8+, CD4+,

and CD20+ TILs, and superior clinical outcomes in patients with ovarian cancer [SJ15]. Indeed,

a pan-cancer analysis also identified plasma cells as a novel prognostic factor for superior sur-

vival [WN18]. However, the mechanism of plasma cell homing to the tumor bed remains unclear.

Identifying oncogenic signaling pathways that shape the plasticity of plasma cell recruitment and

differentiation holds promise to better classify patients based on their immune-editing profiles.

We extracted the expression of 2,000 genes with the largest variance among samples. We first

determine the number of dimensions using eigen decomposition. As shown in Figure 1, GEV-

SIR favors d = 1 because of a large gap between the first and the second largest eigenvalue. The

tuning parameter λ is then selected via the cross-validation procedure. Figure 4.2 shows a strong

monotonic relationship between the GEV-SIR score and the plasma cell abundances. To validate

64

the derived GEV-SIR score’s predictability, we used the TCGA Lung cancer data as a test set.

Specifically, we selected the same 2,000 genes as in Ovarian cancer and projected them into the

estimated Ovarian cancer GEV-SIR direction. The right panel in Figure 1 demonstrates a similar

monotonically decreasing pattern between the GEV-SIR direction and plasma cell recruitment in

the Lung cancers.

Figure 4.2: Relationship between plasma cells and GEV-SIR direction. The left panel shows the distribu-
tion of eigenvalues of Ω̂. The scatter plots in the middle and right panels show the relationship between the
tumor infiltrated plasma cell and the GEV-SIR direction.

To better understand the reduced dimensions’ biologic significance, we performed a GO path-

way enrichment analysis using GSEA [STM+05]. In the reduced dimension, gene clusters which

regulate immune cell differentiation (p value < 0.001), effector function such as enzyme ac-

tivity (p value < 0.001), regulation of apoptosis (p value < 0.05), and chemotaxis signaling (

p value < 0.05), are significantly enriched. Among the strongest pathways that are positively as-

sociated with plasma cell recruitment in the second GEV-SIR direction are the defense response

(p value < 0.001) and type 1 Interferon (IFN-I) network (p value < 0.05). The defense response

pathway is informed by immune detection of danger-associated molecular patterns (DAMPs) and

pathogen-associated molecular patterns (PAMPs). In the tumor immune detection, cancer cell

damage-associated DAMPs, such as DNA, could alert immune cells and promote an “inflamed”

tumor microenvironment [GGK10], which is amenable for plasma cell recruitment. IFN-I sig-

natures have been emerging as a central signaling pathway that facilitates anti-tumor immunity

[ID14]. IFN-I functions by binding to its receptor on target cells and launch a large transcriptome

65

consisting of interferon-stimulated genes (ISGs), among which are chemokines, such as CXCL9,

CXCL10, and CXCL12. CXCL9 and CXCL10 are essential mediators of effector immune cell

chemotaxis [SCR14]. Downregulation of these chemokines severely compromises anti-tumor im-

munity. Importantly, CXCL12 potently promotes plasma cell recruitment [DPN14].

4.6 Application to Single-Cell RNAseq Data

To demonstrate the ability of GEV-SIR handling noisy data, we next utilize GEV-SIR to analyze

a dataset of human embryonic stem cells grown over a 27-day time course from [MvDW+19].

The [MvDW+19] dataset comprises expression measurements of 33694 genes over 31,000 cells

through single-cell RNAseq (scRNAseq) technology, where cells were sampled at the following

differentiation time intervals: (Day 0-3), (Day 6-9), (Day 12-15), (Day 18-21), and (Day 24-27).

Unlike the measurement from bulk tissue as in the tumor-infiltrating lymphocytes data, the scR-

NAseq data suffers from high noise level, contamination with outliers, and large proportion of

missing values due to the limited initial mRNA in each cell. Taking the developmental time as

response and gene expression as predictors, we aim to reveal the driving factors/pathways for

the differentiating process of embryonic cells. Following the same preprocessing procedure as in

[MvDW+19], we applied our GEV-SIR method to the normalized scRNAseq data and showed the

two dimension embedding in Figure 4.3. Our analysis successfully captured the smooth transi-

tion of the embryonic differentiation process with GEV-SIR1 direction capturing the difference

between all developmental interval and GEV-SIR2 direction mainly reflecting the differences be-

tween the last two intervals and the first three.

66

−5

0

5

10

0 10 20 30 40
GEV_SIR1

G
E

V
_S

IR
2

0

5

10

15

20

Time

Figure 4.3: GEV-SIR analysis of embryoid body scRNAseq data.

67

CHAPTER 5

GRAPHICAL NEURAL NETWORKS FOR MULTI-MODAL DATA INTEGRATION

With the emergence of joint platforms for single-cell sequencing, the data produced by methods

like scRNA-seq and scATAC-seq can be combined for multi-modality cell sequencing, attributing

to each cell mRNA and DNA data. This new collection of data provides unique challenges in how

best to incorporate the large amount of multi-modal data for data analysis purposes. Both data

streams are very high dimension with sample sizes often on the same order or smaller than the

number of features, placing the data analysis problem in the HDLSS scenario. Furthermore, the

sequencing data is notoriously sparse, where the vast majority of features may be zero in a typical

dataset due to technical error from dropout [SNL+17], which can be even more pronounced in

multi-modal data [LHH20]. One main goal for multi-modal data is achieving data integration,

which is any method that combines the heterogeneous data better for downstream tasks. One way

to achieve this task is by performing a joint embedding of the features of the two modalities in a

shared low-dimensional space. Such an embedding ideally captures a meaningful representation

of the complex cellular states from different types of measurements.

Deep learning techniques have recently been used to solve the task of multi-modal date inte-

gration for single-cell data to great success [GZP21, AAB+20]. However, most of the current fail

to take into account high-order interactions among cells or different modalities, and instead treat

each cell as a separate input. This higher-order information is essential giving structure to the data

that allows for learning a proper low-dimensional representation of high-dimensional and sparse

cell features. Graph neural networks (GNNs) [LDJ+21, KW17] give unique tools for capturing the

desired higher-order information required for data integration. GNNs aggregate information from

neighborhoods to update node embeddings iteratively, which allow for the encoding high-order

structural information through multiple aggregation layers. In addition, GNNs smooth the features

by aggregating neighbors’ embedding, which provides an extra denoising mechanism [MLZ+21].

Hence, by modeling the interactions between cells and their features as a graph, we can adopt

68

GNNs to exploit the structural information.

We implement a GNN framework for multimodal data integration designed in concert with

[WDJ+22] called scJEGNN for single-cell Joint Embedding GNNs. We apply this model to bench-

mark datasets provided by NeurIPS 2021 [LBC+21] for a multimodal since-cell data integration

competition and compare its performance to competitor submissions.

5.1 Problem Statement

The two modalities we operate on are GEX as mRNA data, and ATAC as DNA data. Each modality

is represented as a matrix Xi ∈ Rn×di , i = 1,2, where n is the number of cells and di denotes the

feature dimension for each cell. In our application the GEX has dimension d1 = 13,431 while

the ATAC has dimension d2 = 116,490, while the total sample size is n = 42,492. The data is

also highly sparse; only 9.75% of GEX and 2.9% of ATAC features are nonzero on average. The

data has expert annotation giving cell type labels for each cell with a total of 22 different cell

type classes, and 2 different real values indicated cell-cycle developmental stages. As well, in our

application, two modalities are sequenced with a total of 10 batches, introducing the possibility of

large batch effects occurring.

The goal then is to learn an embedded representation of the cells in Rd3 that best leverages the

underlying information of the two modalities in order to preserve cell info and remove spurious

batch effects on the representations. This evaluation of how well the embedding represents per-

tinent biological information is calculated by a collection of metrics M : Rn×d3 → Rk,M(X) =

(m1(X), . . . ,mk(X)), where k metrics are given by mi : Rn×d3 → R, i ∈ [k], with higher values

indicating better performance of the embedding. The problem can be formally defined as

Given modality X1 ∈ Rn×d1 and modality X2 ∈ Rn×d2 , learn three mapping functions fθ1, fθ2

and fθ3 parameterized by θ1,θ2 and θ3 to learn a representation H ∈ Rn×d3

H = fθ3 (CONCAT(fθ1(X1), fθ2(X2))) (5.1)

that best maximizes the coordinates of M(H). Here fθ1(X1) ∈ Rn×d′
1 and fθ2(X2) ∈ Rn×d′

2 cor-

respond to new representations learned from modality X1 and X2, and for CONCAT : (Rn×d′
1 ×

69

Rn×d′
2)→ Rn×(d′

1+d′
2) the function that concatenates the rows of two matrices together.

For our application, we have k = 3 for the number of metrics measuring the performance of

the embedding H. The three measurements are are given by a cell-type conservation metric, a

cell-cycle conservation metric, and a batch removal metric:

• NMI cluster/label: The Normalized mutual information (NMI) [MGH11] compares the

overlap of two clusterings. The NMI is applied to the integrated data to compare the cell

type labels with an automated clustering (based on Louvain clustering). NMI scores of 0 or

1 correspond to uncorrelated clustering or a perfect match, respectively. Automated Louvain

clustering is performed at resolution ranges from 0.1 to 2 in steps of 0.1, and the clustering

output with the highest NMI with the label set is used.

• Cell-cycle conservation: The cell-cycle conservation score evaluates the amount of variance

explained by cell-cycle per batch prior to integration versus the amount of variance after

integration. The relative differences of varbe f orei and vara f teri per batch i are aggregated into

a final score between 0 and 1, via

CCconservation =
1
B

B

∑
i

(
1−

|varbe f orei −vara f teri|
varbe f orei

)
,

where B gives the number of batches. Values near 0 indicate little conservation of variance

explained by the cell-cycle, while values near 1 indicate nearly perfect conservation.

• Batch ASW: The Average Silhouette Distance (ASW) is used to quantify batch mixing

by taking into account the incompatibility of batch labels per cell type cluster. The Batch

ASW considers the absolute silhouette width, on batch labels per cell. Here, 0 indicates that

batches are thoroughly mixed, but any variation from 0 indicates the presence of a batch

effect. The metric re-scales this score so that higher values imply better batch mixing and

uses the equation below to determine the per-cell type label, j:

batchASWj =
1

|C j| ∑
i∈C j

1−|s(i)|

70

where C j is the set of cells with the cell label j and |C j| denotes the number of cells in that

set. To obtain the final batchASW score, the label-specific batchASWj scores are averaged:

batchASW =
1
C

C

∑
j

batchASWj

where C is the number of unique cell labels. A batchASW value of 1 indicates optimal batch

mixing, and a value of 0 indicates fully separated batch clusters.

5.2 Method

In this section, we introduce the scJEGNN framework for multimodal data integration. An illus-

tration of the framework is shown in Figure [ref fig]. Specifically, our framework can be divided

into four stages: data preprocessing, graph construction, cell-feature graph convolution, and an

autoencoder architecture for the final embedding.

5.2.1 Data Preprocessing

Both modalities, X1 for GEX and X2 for ATAC, go through some standard preprocessing steps

regularly done in single-cell sequencing tasks. The below sequence of operations describe both fθ1

and fθ2. First the matrices are ℓ1-normalized, meaning that each row vector (cell) is divided by the

total sum of the absolute values of all its features, normalizing the weight of each cell’s total gene

expression output. Then the data is log-transformed, so that each normalized value X̄i j is updated

to the value

log(X̄i j ∗104 +1).

These values are then divided by the standard deviation of each column, which normalizes the

variation of each feature. Lastly both modalities go through an initial dimension reduction using

the Latent Semantic Indexing (LSI), which is a type of transformation based on the SVD decom-

position. For some choice of k, the transformation simply chooses the top k left singular vectors,

and projects the data to dimension k where each coordinate is the inner product with the k vectors.

Here we choose different values for k giving d′
1 and d′

2 for X1 and X2. In our experiment, we found

71

choosing d′
1 = 100 for GEX and d′

2 = 65 for ATAC gave the best performance. Then the data is

concatenated giving an output X̂ ∈ Rn×(d′
1+d′

2). We simplify notation and denote d′ = d′
1 + d′

2 as

the combined feature dimension.

5.2.2 Graph Construction

Given the preprocessed X̂ , we construct a graph that the GNN can be applied to. We construct a

cell-feature bipartite graph, depicted in Figure 5.1, where the cells and their biological features are

treated as different nodes, giving us a collection of cell nodes and a collection of feature nodes.

The edges are designed to be strictly between the two collections, so that an edge connecting a

cell node i to a feature node j directly represents the value of the cell’s feature given by X̂i j. This

requires a weighted edge graph instead of the usual 0-1 adjacency matrices. As we will see, given

a proper choice of node embedding values, this graph will be able to propagate information from

cells to pertinent feature nodes, and likewise feature nodes can also propagate their information to

the cell nodes that express them highly.

We denote the bipartite graph as G = (U ,V ,E). In this graph U is the set of nodes representing

the n cells {u1, . . . ,un} and cV is the set of nodes representing the d′ features {v1, . . .vd′} with one

node for each feature dimension of the input data. The set E ⊆ U ×V gives the edges in the graph

between the nodes U and V which describe the relations between the cells and the features. The

graph can be denoted by the weighted adjacency matrix

A =

 0 X̂

X̂⊤ 0

 ∈ R(n+d′)×(n+d′)

where 0 is a matrix with all zeros, and X̂ ∈Rn×d′
is the input feature matrix of cells. A is designed

to give the structure of a bipartite graph since nodes of the cell or feature sets only have possible

edges between nodes of the other set, not within the same set. The initial embeddings of the

feature and cell nodes are given by matrices V and U respectively, where each row gives the vector

of one node embedding. The feature nodes {v1, . . . ,vd} ∈ Rd are initialized as one-hot vectors, so

that each vi has a one in index i and zeros elsewhere, making V ∈ Rd×d an identity matrix. The

72

cell nodes are initialized as zero vectors in the same dimension, so that U ∈ Rn×d has all zero

entries. The lack of prior information on the cells leads to this uniform initialization for those

nodes, and the one-hot embedding works well with the chosen graph convolution to recreate the

gene expression and propagate it into the cell node embeddings. Then our cell-feature graph can

be denoted G = (A,V,U).

Figure 5.1: scJEGNN graph construction process. The input data determines the value of the
weighted edges between the cell nodes and feature nodes, values of zero indicate no edge.

73

5.2.3 Graph Convolution

Given the constructed cell-feature graph, we wish to choose a graph convolution that captures

higher-order structural information from the links between nodes to create better cell node repre-

sentations. In each layer of a GNN, the embedding of a node is updated according to the propagated

value of its neighbor, given by the edge weight times the neighbor node. In the field of GNNs we

call this type of information propagation “message passing” [GSR+17] between neighbors. While

a the two different node types could yield different message passing methods for each type, we

use the same updates for both. To illustrate our method, we give notation of the updates applied

to nodes in U , and the updates for nodes in V are completely analogous. Let Hl = {hl
1, . . . ,h

l
n},

hl
i ∈ Rd′

be the input node embeddings in the lth layer, where hl
i corresponds to node ui. Then the

output embedding to the lth layer can be expressed as

hl+1
i = Update(hl

i,Agg(hl
j| j ∈Ni)),

where Ni is the set of first-order neighbors of node ui, Agg(·) indicates an aggregation function

on neighbor nodes’ embeddings, and Update(·) is an update function the generates a new node

embedding from the previous one and the aggregation output.

While there are many choices for both aggregation and update functions in GNNs, we choose

the common and simple Graph Convolution Network (GCN) [KW17] model for these layer up-

dates. In general the GCN creates a message mi,l for node i at layer l as follows:

mi,l = σ

(
bl + ∑

j∈Ni

e ji

c ji
hl

jW
l

)

where j varies over neighbors of ui in V , e ji denotes the edge weight between ui and v j, W l and bl

are trainable parameters, σ(·) is an activation function, and c ji is a normalization term defined as

c ji =

√
∑

k∈N j

e jk

√
∑

k∈Ni

eki.

After generating the messages from neighborhoods we update the embedding for nodes in U as

hl+1
i = hl

i +mi,l.

74

This simple residual mechanism adds the previous layer to the newly updated embedding, which

enhances self information, by combining the node embedding with its aggregated neighborhood

information.

We choose to decouple the propagation and transformation of the node embeddings. This

means that we set W l = Idd′ as the identity matrix and bl = 0 for all layers l. As well the activation

function σ is set to the identity. The choice to remove the learnable parameters and activation func-

tion may seem like a big limitation on the transformation, but recent work [WSZ+19, HDW+20]

has shown that if later transformations occur (as in our model), the the performance of the model

is often improved from the use of simplified GCN layers, and the computation efficiency is greatly

increased. [HDW+20] in particular found that if later transformations occur after simplified GCN

layers, they are able to produce representations with the same level or better performance than they

would with the earlier trainable parameters. This choice also means that the hidden layers keep

same dimension throughout, so the end output yields HL
U ∈ Rn×d′

where HL
U is the hidden layer

representation of the cell nodes in the last layer L. In our application we found L = 3 to have the

best performance. We take advantage of this consistent hidden layer size by completing the GNN

output with a weighted summation of all the hidden layers, giving

Ĥ =
L

∑
i=1

wi ·Hi
U .

Our GCN model is seen in Figure 5.2, showing the summation of the GCN layers Ĥ being used as

input for the final autoencoder layer.

It is worth noting that the simplified GCN computation and choice of node embeddings leads

to a recreation of each cell’s original representation for the first and second update. If a cell i has

features given by the ith row of X̂, then the cell node update would equal ui = ∑
d
k=1 X̂i,kek, where

ek the kth unit vector with 1 in coordinate k and 0’s elsewhere. This value is also the output of

the second layer for the cell nodes due to the lack of an update for the feature nodes on the first

layer from the all zero values of the initial cell node embeddings. After the second layer the cell

nodes update in a novel manner, weighing messages higher from features that are expressed at a

75

greater value in that cell. This leads to increasingly similar cell embeddings from cells that have

high coexpression of features.

Figure 5.2: scJEGNN graph convolution. Multiple convolution layers propagate information from
the weighted edges to update cell and feature nodes.

76

5.2.4 Autoencoder

In order to train the final cell embeddings, we use an autoencoder model, presented in Figure 5.3

to achieve desired joint embedding of the data. The autoencoder consists of an encoder layer E

and decoder layer D, both modeled as fully connected perceptions. The encoding layer E takes in

Ĥ and each layer except the last is computed as

Ĥl+1 = DO(BN(σ(ĤlW l)), p),

where Ĥl is the output of the lth layer, W lRdl×dl+1 is a trainable linear transformation, σ is an

activation function, BN is the batch normalization function [IS15], and DO is a dropout function

with parameter 0 < p < 1. Batch normalization operates by normalizing the empirical mean and

variance of each batch. The use of the batch normalization function is a well-established technique

in deep learning to improve training. The dropout function randomly zeroes some of the elements

of the input matrix with probability p using samples from a Bernoulli distribution, and also im-

proves training by forcing information redundancy in the connections between layers. The last

layer removes the batch normalization and dropout leaving

ĤL = σ(ĤL−1W L).

We choose L= 4, p= .2, and reduce the dimension of the input iteratively with d1 = 150, d2 = 120,

d3 = 100, to the final embedding dimension of 39. For all layers σ is chosen to be the ReLU

function, ReLU(x) = max(0,x). The decoder layer is a simple two-layer transformation of the

joint embedding back to the original dimension d′, giving

D(ĤL) = σ(σ(ĤLW 1)W 2)

where σ = ReLU and W 1 ∈ RL×d1 and W 2 ∈ Rd1×d′
.

The goal of the autoencoder is take in the GNN output Ĥ, and learn a low-dimensional repre-

sentation that properly captures the biological information we care about. In order to due so the

model is trained via latent feature regularization, which forces chosen latent features to predict for

77

cell type, cell-cycle phase score, and to blur the batch features in order to remove spurious batch

effects. We combine these with the usual reconstruction loss that is used to train autoencoders to

produce salient features in the encoder representation. Thus the autoencoder is trained with both

supervised and self-supervised losses: three supervised losses are applied to the output of the en-

coder that gives the final joint embedding, and one self-supervised loss is applied to the output of

the decoder. The hidden layer size of ĤL is specifically designed to accommodate enough features

for each of these supervised losses. We allocate 22 features for the number of cell types, 10 fea-

tures for the number of batches, 2 features for the cell-cycle score, and 5 extra features to allow for

additional pertinent information to improve the reconstruction loss, giving us the total of 39. The

losses are then summed to give us a total loss L. In detail we have

L = Lrecon +Lcell type +Lbatch +Lcell-cycle.

The reconstruction loss is simply mean squared error giving

Lrecon(D(E(Ĥ)) =
1
n

n

∑
i=1

(
X̂−D(E(Ĥ))

)2
.

The cell type loss is a cross-entropy loss function on the classification task; if ĤL
i,1:J gives us weights

corresponding to the J cell classes for input i, and Ci ∈ {1, . . . ,J} denotes class of cell i, then the

loss is

Lcell type(Ĥ) =
n

∑
i=1

J

∑
j=1

1Ci=c j log(Ŷj)

where 1Ci=c j is equal to 1 if Ci = c j and 0 otherwise, and

Ŷ j =
eĤL

i, j

∑
J
k=1 eĤL

i, j

is the softmax function. The loss function cLbatch for the batch effect is also a cross-entropy loss,

but it attempts to remove batch effects by training the classifier to learn random batch labels.

To do so we use a uniform distribution to generate batch labels for the input, and use the same

function above on the 10 batch features in ĤL. The last function Lcell-cycle is a simple mean

squared error loss on each cells cell-cycle phase score compared to the 2 allocated features in ĤL

that are supposed to capture the values.

78

Figure 5.3: scJEGNN Autoencoder architecture. Each layer is fully connected, and the encoder
layers feature drop out and batch normalization steps.

5.3 Experimental Results

Table 5.1: Performances for Joint Embedding Task

Model NMI Cluster/label Cell-Cycle Conservation Batch ASW Average Metric
Baseline .6502 .8259 .7178 .7313
GLUE .7754 .8355 .9100 .8403

Amateur (JAE) 0.7723 .9195 .8898 .8610
scJEGNN .8057 .9204 .9112 .8791

We demonstrate the effectiveness of our framework scJEGNN in the joint embedding task for GEX

and ATAC, and show that the model outperforms the competitor submissions to the competition

on the three evaluation metrics. Of the 25 teams that submitted models to be evaluated to the

NeurIPS 2021 Joint Embedding task competition, we choose the top two performing teams and

show their performance along side our own. Team Amateur submitted JAE, an autoencoder that

we designed our own autoencoder from, with the same latent feature regularization but additional

residual connections and layers, and no graphical component. GLUE was an autoencoder model as

well guided by an external knowledge graph. We additionally provide a baseline model provided

79

by simply evaluating a concatenation of the two modalities after dimension reduction by principle

component analysis (PCA). In Table 5.1 we can see that our model significantly outperforms the

other models, with an improvement over 0.1 according to the average metric.

80

CHAPTER 6

CONCLUSION

In this work we have developed two methods for finding low-dimensional representations of high-

dimension data. The first is given by a unified framework for generalized eigenvalue problems

in the GEV estimator. This sparse projection regression framework is a reformulation of an in-

tractable Rayleigh quotient problem and achieves great computational efficiency. We established

nonasymptotic error bounds on the proposed estimators for the applications of SIR and LDA, and

showed these rates are minimax optimal. We showed application of GEV to the CCA problem,

and adapted the algorithm for a robust Huber-loss based formulation. We tested our framework on

both synthetic and real datasets and demonstrated the algorithm’s superior performance compared

with other state-of-the-art methods in high dimensional data. The second method is the scJEGNN,

a graphical neural network tailored to data integration for HDLSS single-cell sequencing data. We

showed that with the unique model, the GNN is able to leverage structural information of the bi-

ological data relations in order to perform a joint embedding of multiple modalities of single-cell

gene expression data.

6.1 Future Work

GEV. One obvious goal is to show the same statistical consistency the GEV estimator obtains for

SIR and LDA is also true for the application of CCA. The adaptation of the GEV estimator to CCA

required changing the structure of U from a collection of products of eigenvalues and eigenvectors

of Ω = cov(E[x|y]), to the combination of the right and left singular vectors of Σxy = OxDO⊤
y .

Setting U = (O⊤
x ,O⊤

y)
T/

√
2 requires additional work to show that the difference ∥U− Û∥∞,∞ is

bound above by the desired rate of C
√

log(d)
n . Similarly, the robust version of the GEV estimator

using the Huber loss also has the possibility of proving strong theoretical rates of convergence.

This work requires a new derivation of the bound on ∥∇L(W∗)∥∞,∞ ≤ λ/2 due to the change in the

gradient of the loss. The derivative of the Huber norm is more complicated than the Frobenius norm

81

and leads to a piecewise defined function with additional multiplications of Σ. Lastly an extension

of the GEV estimator to a nonlinear dimension reduction technique is also likely possible. An

arbitrary manifold can be approximated locally by linear spaces which can be estimated using K-

nearest neighbors from the sample data. Given these connected affine spaces, we can apply GEV

to each to get a collection of projections, which we can carefully combine to project the data to a

lower dimensional space. This likely requires much more stringent requirements about the sample

size in each portion of the linear approximation.

GNNs for single-cell tasks. The cell-gene graph of the scJEGNN has the means to be used

in a number of tasks in singe-cell data analysis. The representation gained for the cells after

going through multiple convolution layers may lead to much better estimates for methods like K-

nearest neighbors, which is relied on in many methods that perform imputation. If naively applied,

the KNN estimate on the initial highly sparse data is likely to be unreliable, and if the estimate

could be improved by applying to the updated cell representations, the downstream steps taken for

imputation could be drastically improved. In addition, these representations could be used for other

common node-based tasks like classification and clustering, which lead to cell annotation methods

and biological clustering in the single-cell world, or for graph-based tasks, which would lead to

methods for disease prediction given cell populations from distinct patients. The methods using

this graphical model can be further enhanced with some key alterations to the graph structure. The

bipartite graph structure can be extended to a fuller graph that has edges between the gene nodes

and edges between cell nodes. Gene node edges are important to represent gene pathways, which

indicate any number of gene causal relations including gene co-expression or regulatory networks.

In spatial transcriptomics data [Rus16], single-cell sequencing data is given new geometric context

so that each small cluster of cells is placed in a 2 or 3-dimensional grid. This spatial data can be

included in the cell-gene graph with additional edges between cells (or group of cells) indicating

adjacency relations. These collection of methods utilizing this GNN model seem promising for

the variety of applications listed, and are being actively developed together into a full GNN-based

82

package for single cell data analysis methods.

83

BIBLIOGRAPHY

84

BIBLIOGRAPHY

[AAB+20] Ricard Argelaguet, Damien Arnol, Danila Bredikhin, Yonatan Deloro, Britta Velten,
John Marioni, and Oliver Stegle. Mofa+: a statistical framework for comprehensive
integration of multi-modal single-cell data. Genome biology, 21(1):1–17, 2020.

[AHB+16] Benedict Anchang, Tom Hart, Sean Bendall, Peng Qiu, Zach Bjornson, Michael
Linderman, Garry Nolan, and Sylvia Plevritis. Visualization and cellular hierarchy
inference of single-cell data using spade. Nature Protocols, 11(7):1264–1279, 2016.

[AHMM18] Lun Aaron, Laleh Haghverdi, Michael Morgan, and John Marioni. Batch effects in
single-cell rna-sequencing data are corrected by matching mutual nearest neighbors.
Nature Biotechnology, 36(5):421–427, 2018.

[APYG19] Cédric Arisdakessian, Olivier Poirion, Xun Yunits, Breck Zhu, and Lana Garmire.
Deepimpute: an accurate, fast, and scalable deep neural network method to impute
single-cell rna-seq data. Genome Biology, 20:1–14, 2019.

[BHS+18] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija.
Integrating single-cell transcriptomic data across different conditions, technologies,
and species. Nature Biotechnology, 36(5):411–420, 2018.

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning, pages 1–122, 2011.

[BRT09] Peter J Bickel, Ya’acov Ritov, and Alexandre B Tsybakov. Simultaneous analysis
of lasso and dantzig selector. The Annals of Statistics, 37:1705–1732, 2009.

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[CGRZ13] Mengjie Chen, Chao Gao, Zhao Ren, and Harrison H. Zhou. Sparse CCA via Pre-
cision Adjusted Iterative Thresholding. arXiv:1311.6186 [math, stat], November
2013. arXiv: 1311.6186.

[CHWE11] Line Clemmensen, Trevor Hastie, Daniela Witten, and Bjarne Ersbøll. Sparse dis-
criminant analysis. Technometrics, 53(4):406–413, 2011.

[CL98] Chun-Houh Chen and Ker-Chau Li. Can SIR be as popular as multiple linear re-
gression? Statistica Sinica, 8:289–316, 1998.

[CMW13] Tianwen Tony Cai, Zongming Ma, and Yihong Wu. Sparse PCA: Optimal rates and

85

adaptive estimation. The Annals of Statistics, 41(6):3074–3110, 2013.

[Con18] Tabula Muris Consortium. Single-cell transcriptomics of 20 mouse organs creates a
tabula muris. Nature, 562(7727):367–372, 2018.

[Coo98] Ralph Dennis Cook. Regression graphics. Wiley Series in Probability and Statistics.
John Wiley & Sons, Inc., New York, 1998.

[CP11] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for con-
vex problems with applications to imaging. Journal of Mathematical Imaging and
Vision, (40):120–145, 2011.

[DPN14] Yvonne Döring, Christian Pawig, Lukas Weber, and Heidi Noels. The cxcl12/cxcr4
chemokine ligand/receptor axis in cardiovascular disease. Frontiers in Physiology,
5, 2014.

[ENK16] Anders Eklund, Thomas Nichols, and Hans Knutsson. Cluster failure: Why fmri
inferences for spatial extent have inflated false-positive rates. Proceedings of the
National Academy of Sciences, (113):7900–7905, 2016.

[FFT12] Jianqing Fan, Yang Feng, and Xin Tong. A road to classification in high dimensional
space: the regularized optimal affine discriminant. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 74(4):745–771, September 2012.

[FS81] Jerome Friedman and Werner Stuetzle. Projection pursuit regression. Journal of the
American Statistical Association, 76(376):817–823, 1981.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[GGK10] Sergei Grivennikov, Florian Greten, and Michael Karin. Immunity, inflammation,
and cancer. Cell, 140(6):883–899, 2010.

[GSR+17] Justin Gilmer, Samuel Schoenholz, Patrick Riley, Oriol Vinyals, and George Dahl.
Neural message passing for quantum chemistry. In Proceedings of the 34th
International Conference on Machine Learning, ICML, 2017.

[GZP21] Boying Gong, Yun Zhou, and Elizabeth Purdom. Cobolt: Joint analysis of multi-
modal single-cell sequencing data. bioRxiv, 2021.

[HBR+17] Adam Haber, Moshe Biton, Noga Rogel, Rebecca H Herbst, Karthik Shekhar,
Christopher Smillie, Grace Burgin, Toni M Delorey, Michael R Howitt, Yarden
Katz, Itay Tirosh, Semir Beyaz, Danielle Dionne, Mei Zhang, Raktima Raychowd-
hury, Wendy Garrett, Orit Rozenblatt-Rosen, Hai Ning Shi, Omer Yilmaz, Ramnik J
Xavier, and Aviv Regev. A single-cell survey of the small intestinal epithelium.

86

http://www.deeplearningbook.org

Nature, 551(7680):333–339, 2017.

[HDW+20] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng
Wang. LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation, page 639–648. Association for Computing Machinery, New
York, NY, USA, 2020.

[HMN05] Peter Hall, James Stephen Marron, and Amnon Neeman. Geometric representation
of high dimension, low sample size data. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 67(3):427–444, 2005.

[Hot33] Harold Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology, 24(6):417, 1933.

[HST11] David Hardoon and John Shawe-Taylor. Sparse canonical correlation analysis.
Machine Learning, 83(3):331–353, 2011.

[Hub73] Peter Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo. The
Annals of Statistics, 1(5):799–821, 1973.

[ID14] Lionel Ivashkiv and Laura Donlin. Regulation of type i interferon responses. Nature
Reviews Immunology, 14(1):36–49, 2014.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of the
32nd International Conference on International Conference on Machine Learning
- Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

[KW17] Thomas Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR, 2017.

[LBC+21] Malte Luecken, Daniel Bernard Burkhardt, Robrecht Cannoodt, Christopher Lance,
Aditi Agrawal, Hananeh Aliee, Ann Chen, Louise Deconinck, Angela Detweiler,
Alejandro Granados, et al. A sandbox for prediction and integration of dna, rna,
and proteins in single cells. In NeurIPS Datasets and Benchmarks Track (Round 2),
2021.

[LDJ+21] Xiaorui Liu, Jiayuan Ding, Wei Jin, Han Xu, Yao Ma, Zitao Liu, and Jiliang Tang.
Graph neural networks with adaptive residual. Advances in Neural Information
Processing Systems, 34, 2021.

[Len08] Chenlei Leng. Sparse optimal scoring for multiclass cancer diagnosis and biomarker
detection using microarray data. Computational Biology and Chemistry, 32(6):417–
425, 2008.

87

[LG06] Hongzhe Li and Jiang Gui. Gradient directed regularization for sparse Gaussian con-
centration graphs, with applications to inference of genetic networks. Biostatistics
(Oxford, England), 7(2):302–317, April 2006.

[LHH20] Jeongwoo Lee, Do Young Hyeon, and Daehee Hwang. Single-cell multiomics:
technologies and data analysis methods. Experimental Molecular Medicine,
52(9):1428—-1442, 2020.

[Li91] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86(414):316–327, 1991.

[Li07] Lexin Li. Sparse sufficeint dimension reduction. Biometrika, 94(3):603–613, 2007.

[LN06] Lexin Li and Christopher Nachtsheim. Sparse sliced inverse regression.
Technometrics, 48(4):503–510, 2006.

[LSB+18] Jacob Levine, Erin Simonds, Sean Bendall, Kara Davis, El ad Amir, Michelle D
Tadmor, Oren Litvin, Harris Fienberg, Astraea Jager, Eli Zunder, Rachel Finck,
Amanda Gedman, Ina Radtke, James R Downing, Dana Pe’er, and Garry Nolan.
Data-driven phenotypic dissection of aml reveals progenitor-like cells that correlate
with prognosis. Cell, 162(1):184–197, 2018.

[LWL+20] Xiangjie Li, Kui Wang, Yafei Lyu, Huize Pan, Jingxiao Zhang, Dwight Stambolian,
Katalin Susztak, Muredach P Reilly, Gang Hu, and Mingyao Li. Deep learning
enables accurate clustering with batch effect removal in single-cell rna-seq analysis.
Nature Communications, 11(1), 2020.

[LYS18] Hanna Levitin, Jinzhou Yuan, and Peter Sims. Single-cell transcriptomic analysis
of tumor heterogeneity. Trends Cancer, 4(4):264–268, 2018.

[LZL18] Qian Lin, Zhigen Zhao, and Jun Liu. On consistency and sparsity for sliced inverse
regression in high dimensions. The Annals of Statistics, 46(2):482–1492, 2018.

[LZL19] Qian Lin, Zhigen Zhao, and Jun S. Liu. Sparse sliced inverse regression via lasso.
Journal of the American Statistical Association, 114:1726–1739, 2019.

[MGH11] Aaron McDaid, Derek Greene, and Neil Hurley. Normalized mutual infor-
mation to evaluate overlapping community finding algorithms. arXiv preprint
arXiv:1110.2515, 2011.

[MLZ+21] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah. A uni-
fied view on graph neural networks as graph signal denoising. In Proceedings of
the 30th ACM International Conference on Information Knowledge Management,
pages 1202–1211, 2021.

88

[MP43] W.S. McCulloch and W Pitts. A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5:115–133, 1943.

[MT21] Yao Ma and Jiliang Tang. Deep Learning on Graphs. Cambridge University Press,
2021.

[MvDW+19] Kevin Moon, David van Dijk, Zheng Wang, Scott Gigante, Daniel Burkhardt,
William Chen, Kristina Yim, Antonia van den Elzen, Matthew Hirn, Ronald Coif-
man, Natalia Ivanova, Guy Wolf, and Smita Krishnaswamy. Visualizing struc-
ture and transitions in high-dimensional biological data. Nature Biotechnology,
37(12):1482–1492, 2019.

[MZY12] Qing Mai, Hui Zou, and Ming Yuan. A direct approach to sparse discriminant
analysis in ultra-high dimensions. Biometrika, 99(1):29–42, March 2012.

[Nes83] Yurii Nesterov. A method for solving the convex programming problem with conver-
gence rate o(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547,
1983.

[Nes04] Yu. Nesterov. Introductory Lectures on Convex Optimization. A Basic Course.
2004.

[NHS+16] Sonia Nestorowa, Fiona Hamey, Blanca Pijuan Sala, Evangelia Diamanti, Mairi
Shepherd, Elisa Laurenti, Nicola Wilson, David Kent, and Berthold Göttgens. A
single-cell resolution map of mouse hematopoietic stem and progenitor cell differ-
entiation. Blood, 128(8):20–31, 2016.

[NLG+15] Aaron Newman, Chih Long Liu, Michael Green, Andrew Gentles, Weiguo Feng,
Yue Xu, Chuong Hoang, Maximilian Diehn, and Ash Alizadeh. Robust enumeration
of cell subsets from tissue expression profiles. Nature Methods, (5):453–457, 2015.

[PTB09] Elena Parkhomenko, David Tritchler, and Joseph Beyene. Sparse canonical correla-
tion analysis with application to genomic data integration. Statistical Applications
in Genetics and Molecular Biology, 8(1):1–34, 2009.

[Qui20] Peng Qui. Embracing the dropouts in single-cell rna-seq analysis. Nature
Communications, 11(1), 2020.

[Roc70] Ralph Tyrell Rockafellar. Convex analysis. Princeton University Press, Princeton,
1970.

[Ros58] Frank Rosenblatt. The perceptron: A probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[Rus16] Nicole Rusk. Spatial transcriptomics. Nature Methods, 13(710), 2016.

89

[RWM+18] Bushra Raj, Daniel E Wagner, Aaron McKenna, Shristi Pandey, Allon M Klein,
Jay Shendure, James A Gagnon, and Alexander Schier. Simultaneous single-cell
profiling of lineages and cell types in the vertebrate brain. Nature Biotechnology,
36(5):442–450, 2018.

[RWRY11] Pradeep Ravikumar, Martin Wainwright, Garvesh Raskutti, and Bin Yu. High-
dimensional covariance estimation by minimizing l1-penalized log-determinant di-
vergence. Electronic Journal of Statistics, 5:935–980, 2011.

[RZL+21] Jiahua Rao, Xiang Zhou, Yutong Lu, Huiying Zhao, and Yuedong Yang. Imputing
single-cell rna-seq data by combining graph convolution and autoencoder neural
networks. iScience, 24(5):102393, 2021.

[SCR14] William Schneider, Meike Chevillotte, and Charles Rice. Interferon-stimulated
genes: a complex web of host defenses. Annual Review of Immunology, 32:513–
545, 2014.

[SDB+18] William Stephenson, Laura Donlin, Andrew Butler, Cristina Rozo, Bernadette
Bracken, Ali Rashidfarrokhi, Susan Goodman, Lionel Ivashkiv, Vivian Bykerk,
Dana Orange, Robert Darnell, Harold Swerdlow, and Rahul Satija. Single-cell rna-
seq of rheumatoid arthritis synovial tissue using low-cost microfluidic instrumenta-
tion. Nature Communications, 9(1):791, 2018.

[SJ15] Phillip Santoiemma and Daniel Powell Jr. Tumor infiltrating lymphocytes in ovarian
cancer. Cancer Biology Therapy, 16(6):807–820, 2015.

[SNL+17] Valentine Svensson, Kedar Natarajan, Lam-Ha Ly, Ricardo Miragaia, Charlotte La-
balette, Iain Macaulay, Ana Cvejic, and Sarah Teichmann. Power analysis of single-
cell rna-sequencing experiments. Nature Methods, 14:381–387, 2017.

[SSZ+17] Uri Shaham, Kelly Stanton, Jun Zhao, Huamin Li, Khadir Raddassi, Ruth Mont-
gomery, and Yuval Kluger. Removal of batch effects using distribution-matching
residual networks. Bioinformatics, 33(16):2539—-2546, 2017.

[SSZM16] Dan Shen, Haipeng Shen, Hongtu Zhu, and JS Marron. The statistics and mathemat-
ics of high dimension low sample size asymptotics. Statistica Sinica, 26(4):1747,
2016.

[STM+05] Aravind Subramanian, Pablo Tamayo, Vamsi Mootha, Sayan Mukherjee, Benjamin
Ebert, Michael Gillette, Amanda Paulovich, Scott Pomeroy, Todd Golub, Eric
Lander, and Jill Mesirov. Gene set enrichment analysis: a knowledge-based ap-
proach for interpreting genome-wide expression profiles. Proceeds of the National
Academy of Sciences of the United States of America, 102(43):15545–15550, 2005.

[SYG+05] Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner,

90

Ah Chung Tsoi, and Marco Maggini. Graph neural networks for ranking web
pages. Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web
Intelligence, pages 666–672, 2005.

[TBH+17] Po-Yuan Tung, John Blischak, Chiaowen Joyce Hsiao, David Knowles, Jonathan
Burnett, Jonathan Pritchard, and Yoav Gilad. Batch effects and the effective design
of single-cell gene expression studies. Scientific reports, 7, 2017.

[THNC03] Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan, and Gilbert Chu.
Class prediction by nearest shrunken centroids, with applications to dna microar-
rays. Statistical Science, 18(1):104–117, 2003.

[TSY20] Kai Tan, Lei Shi, and Zhou Yu. Sparse sir: Optimal rates and adaptive estimation.
The Annals of Statistics, 48(1):64–85, 2020.

[vDSN+18] David van Dijk, Roshan Sharma, Juozas Nainys, Kristina Yim, Pooja Kathail, Am-
brose Carr, Cassandra Burdziak, Kevin Moon, Christine L Chaffer, Diwakar Pat-
tabiraman, Brian Bierie, Linas Mazutis, Guy Wolf, Smita Krishnaswamy, and Dana
Pe’er. Recovering gene interactions from single-cell data using data diffusion. Cell,
174(3):716–729, 2018.

[WAH+19] Jingshu Wang, Divyansh Agarwal, Mo Huang, Gang Hu, Zilu Zhou, Chengzhong
Ye, and Nancy Zhang. Data denoising with transfer learning in single-cell transcrip-
tomics. Nature Methods, 16:875—-878, 2019.

[Wai19] Martin Wainright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint.
Cambridge University Press, 2019.

[WCZZ18] Tao Wang, Mengjie Chen, Hongyu Zhao, and Lixing Zhu. Estimating a sparse re-
duction for general regression in high dimensions. Statistics and Computing, 28:33–
46, 2018.

[WDJ+22] Hongzhi Wen, Jiayuan Ding, Wei Jin, Xie Yuying, and Jiliang Tang. Graph neural
networks for multimodal single-cell data integration, 2022.

[WKI08] Ami Wiesel, Mark Kliger, and Alfred Hero III. A greedy approach to sparse canon-
ical correlation analysis. arXiv preprint arXiv:0801.2748, 2008.

[WMC+21] Juexin Wang, Anjun Ma, Yuzhou Chang, Jianting Gong, Yuexu Jiang, Ren Qi,
Cankun Wang, Hongjun Fu, Qin Ma, and Dong Xu. scGNN is a novel graph neu-
ral network framework for single-cell RNA-seq analyses. Nature Communications,
12(1882), 2021.

[WN18] Maartje Wouters and Brad Nelson. Prognostic significance of tumor-infiltrating b
cells and plasma cells in human cancer. Clinical Cancer Research, 24(24):6125–

91

6135, 2018.

[WPL15] Lan Wang, Bo Peng, and Runze Li. A high-dimensional nonparametric multivariate
test for mean vector. Journal of the American Statistical Association, (110):1658–
1669, 2015.

[WSZ+19] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Wein-
berger. Simplifying graph convolutional networks. In Proceedings of the 36th
International Conference on Machine Learning, pages 6861–6871, 2019.

[WT11] D M Witten and R Tibshirani. Penalized classification using Fisher’s linear discrim-
inant. Journal of Royal Statistical Society, Series B, 73:753–772, 2011.

[WTH09] Daniela Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decom-
position, with applications to sparse principal components and canonical correlation
analysis. Biostatistics (Oxford, England), 10(3):515–534, 2009.

[XLV16] Yuying Xie, Yufeng Liu, and William Valdar. Joint estimation of multiple depen-
dent Gaussian graphical models with applications to mouse genomics. Biometrika,
103(3):493–511, September 2016.

[XTLZ02] Yingcun Xia, Howell Tong, W. K. Li, and Li-Xing Zhu. An adaptive estimation
of dimension reduction space. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 64(3):363–410, 2002.

[Yu97] Bin Yu. Assouad, Fano, and Le Cam. Festschrift for Lucien Le Cam: Research
Papers in Probability and Statistics, pages 423–435, 1997.

[ZMY18] Hui Zou, Qing Mai, and Yi Yang. Multiclass Sparse Discriminant Analysis.
Statistica Sinica, 2018.

[ZNC+19] Hamim Zafar, Nicholas Navin, Ken Chen, , and Luay Nakhleh. SiCloneFit:
Bayesian inference of population structure, genotype, and phylogeny of tumor
clones from single-cell genome sequencing data. Genome research, 29(11):1847–
1859, 2019.

[ZWT19] Feng Zhang, Yu Wu, and Weidong Tian. A novel approach to remove the batch
effect of single-cell data. Cell Discovery, 5(46), 2019.

92

	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Background
	Mathematical Preliminaries
	Deep Learning
	Single-Cell Data

	Theoretical Properties of the GEV Estimator
	General Error Bound
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 6
	Proof of Lemma 7
	Proof of Lemma 8

	Sliced Inverse Regression
	Consistency for SIR
	Proof of Theorem 11

	Linear Discriminant Analysis
	Consistency for LDA
	Proof of Theorem 19
	Proof of Theorem 22

	Minimax Rate
	Proof of Theorem 23
	Proof of Corollary 25

	Canonical Correlation Analysis

	Empirical Results of the GEV Estimator
	Implementation
	Robust Modification

	Sliced Inverse Regression
	Heavy Noise Slice Inverse Regression

	Linear Discriminant Analysis
	Canonical Correlation Analysis
	Application to Tumor-Infiltrating Lymphocytes Data
	Application to Single-Cell RNAseq Data

	Graphical Neural Networks for Multi-modal Data Integration
	Problem Statement
	Method
	Data Preprocessing
	Graph Construction
	Graph Convolution
	Autoencoder

	Experimental Results

	Conclusion
	Future Work

	Bibliography

