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ABSTRACT 

 

IMPACTS OF DISTANT DRIVERS ON LANDSCAPES AND BIODIVERSITY 

 

By 

 

Ciara Layne Hovis 

 

Global biodiversity is increasingly impacted by distant drivers. With societies more 

connected than ever before, natural resource consumption has expanded beyond administrative 

and political boundaries. International food trade in particular has profound impacts on land-use 

and socioeconomic and environmental outcomes. At the same time, global biodiversity is 

threatened at an unprecedented scale, with many of the causes obfuscated by complexities of 

distant, interacting socioecological systems. Understanding the ultimate drivers of biodiversity 

change and translating them to local biodiversity outcomes is integral to addressing conservation 

challenges in the age of globalization. This dissertation analyzes the impacts of international 

trade on biodiversity in an agroecosystem undergoing land-use change driven by global markets. 

Chapter 1 provides background on the study region, Heilongjiang Province, and describes 

disruption of soybean production in the area due to changes in global trade. Chapter 2 is a 

systematic review of studies on distant drivers of biodiversity change. Across all taxa, harmful 

impacts on biodiversity were the most frequent outcome reported, with distant impacts of trade 

and tourism most frequently studied. In Chapter 3, satellite imagery was classified into landcover 

classes to create high-fidelity maps of the agriculture-dominated study landscape. By utilizing 

phenological, synthetic aperture radar, and vegetation/soil index data, accuracies of 91%- 80% 

were achieved. In Chapter 4 these landcover maps were used to calculate landscape metrics. 

These metrics were then used to analyze relationships between landscape structure (i.e., 

composition and configuration) and bird communities. Functional biodiversity indices derived 



 

from life history and morphological traits were examined in addition to taxonomic measures. 

Though no discernable differences between taxonomic and functional community metrics were 

observed, several significant relationships between landscape structure and biodiversity metrics 

were found. Crop diversity, natural landcover, and edge metrics, were positively correlated with 

bird richness. Aggregation of patches, corn area, and soybean area were negatively correlated. 

We also compared landscape structure and biodiversity between two regions impacted by global 

soybean trade. Despite the more impacted region having lower crop diversity and natural area, 

there was no difference in biodiversity between the two regions. The more impacted region also 

had more rice area, demonstrating that negative biodiversity impacts may be mitigated by rice 

cultivation. Chapter 5 built on the previous chapter by modeling bird occupancy to assess 

species-specific relationships with landscape structure. Results indicated that increased crop 

diversity significantly increased occupancy of birds at both the taxonomic and functional level, 

particularly for birds belonging to less common functional groups. Percentage of natural area 

was not as important as expected, while metrics related to landscape configuration had very few 

significant impacts on occupancy. Increases in rice area were not as detrimental to bird 

occupancy as increases in corn and soybean. In fact, soybean area exhibited more significant 

negative relationships with bird occurrence than corn, suggesting that decreases in soybean area 

due to global trade may have benefitted bird biodiversity in the case of a monocultural landscape. 

However, due to the prevalence of small-scale farming practices, the more likely outcome would 

be a decrease in crop diversity due to soybean fields being converted to more profitable crops 

(e.g., corn, rice). By linking global trade, changes in landcover/use, landscape structure, and 

local bird communities in the same context, the results of this dissertation highlight the need for 

integrated biodiversity studies that place ecosystems in the broader context of globalization.   
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This dissertation is dedicated to the common and unexciting species of birds that have adapted to 

living in human-modified landscapes and contribute to the health of the ecosystems we all rely 

on. I’ll still refer to you as ‘trash birds’, but it is from a place of love and respect (and a force of 

habit). I hope you continue to fill everyday life with color and song 

 for generations to come. 
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1 

 

CHAPTER 1: INTRODUCTION 



2 

 

1.1 Overview 

As the world continues to develop, boundaries between natural and human systems become 

less clear and more complicated (J. Liu et al., 2013). Today’s global trade market blurs these 

boundaries even further by connecting distant, coupled human and natural systems (CHANS) all 

around the globe. This presents new challenges for sustainability, as many countries now 

consume resources far beyond their borders, with consequences felt not by the consumers but the 

unseen ecosystems and individuals that provide these resources (Chaudhary & Kastner, 2016; 

Prell et al., 2017; Weinzettel et al., 2013; Xu et al., 2020).  

Concurrently, the human population is growing exponentially, thereby exacerbating resource 

demand. As of 2019, the world population was approximately 7.56 billion (U.S. Census Bureau, 

2019). As many countries find their domestic resources inadequate to meet basic human needs, 

such as food, they turn to global trade (Odorico et al., 2014). Additionally, types of commodities 

demanded by countries is shifting to more animal-based products as development results in more 

affluent populations (Robinson & Pozzi, 2011). The combination of these factors has led to sky-

rocketing demands in the food trade which subsequently impacts the CHANS that produce these 

highly traded commodities (Tilman et al., 2011).  

Importing countries often obtain environmental benefits (e.g., increased land allocation for 

biodiversity conservation and restoration rather than food production) (De Fraiture et al., 2004; 

Lenzen et al., 2012; Nimubona, 2012; Walz & Wellisch, 1997), whereas exporting countries 

experience environmental degradation (e.g., from converting land for food production) (Lambin 

& Meyfroidt, 2011; Lenzen et al., 2012). However, little empirical evidence on the 

environmental impacts of global trade in importing countries is available (but see Sun et al. 

2018) as most research has been conducted on exporting countries (J. Sun et al., 2018). The 
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assumption that importing countries always receive environmental benefits from global trade 

must be further tested (J. Liu, 2020), for it is crucial to identify environmental costs and benefits 

borne by both importing and exporting countries to secure global environmental sustainability 

and food security (Tanentzap et al., 2015). 

1.2 Global Soybean Trade 

One of the most globally traded crops is soybean (Glycine max). The soybean trade network 

is among the largest in the world (Leff et al., 2004). The three largest nodes within this network 

are the United States (US), Brazil, and China (Reenberg & Fenger, 2011; Schaffer-Smith et al., 

2018). Soybeans are mainly used for human consumption, livestock feed, and industrial 

purposes. Soybeans are also valued for their ability to fix atmospheric nitrogen and are 

commonly grown in rotation with other crops to maintain soil fertility (Hymowitz, T., Newell, 

1981). Soybeans are one of the only commodity crops to significantly increase in acreage, 

increasing 45% from 1980-2009 (Reenberg & Fenger, 2011). For comparison, corn acreage 

increased by 21% during the same time period. Acceleration of the soybean trade is 

unprecedented in terms of scale and consequences of this rapid growth are still unclear.     

Despite domesticating the soybean over 3000 years ago (Hymowitz, 1970), China is now the 

world’s largest importer of soybeans; importing more than 84 million tons of soybeans in 2015 

or 64% of total global soybean imports (Figure 1) (FAOSTAT Database, 2017). The rise in 

soybean imports to China can be attributed to two major factors: reduction of the soybean tariff 

in 2001, when China joined the World Trade Organization (L. Li et al., 2017); and for livestock 

feed to meet the rising demand for animal products as China’s population becomes more affluent 

(Gale, 2015). The majority of China’s soybean imports are from Brazil and the US where 

climate, vast field sizes, and genetically modified varieties lower cost of production significantly 
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(Yao et al., 2018). The majority of domestically grown soybeans, however, are grown in 

northeast China where growing seasons are short and farms are small, with non-contiguous fields 

of various crops (L. Li et al., 2017). Additionally, cultivation of genetically modified soybeans 

(and other crops) is explicitly outlawed by the Chinese government (Reenberg & Fenger, 2011).  

 

In addition to socioeconomic effects, soybean production for global trade has numerous 

environmental impacts. Research identified threats in Brazil to both the Cerrado (savannah) and 

Amazonian forests as well as spillover feedbacks driving cattle expansion (Fearnside, 2002; le 

Polain de Waroux et al., 2017; Vanwey et al., 2013). However, less research has been conducted 

on environmental effects in soybean importing countries. The assumption of increased 

environmental benefits may not hold true in China due to the disruption of its domestic soybean 

production and the subsequent impact on the agroecosystem.  

Figure 1: Chinese soybean imports from 1960-2020 (FAOSTAT) 
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1.3 Agroecosystems 

Agricultural landscapes are oftentimes overlooked with regards to biodiversity conservation. 

This is largely due to the patch-matrix paradigm that has dominated the field of landscape 

ecology for the greater part of the field’s history (Lausch et al., 2015). Briefly, the patch-matrix 

model is that habitat is fragmented by disturbance, usually human driven, which breaks up the 

habitable areas into patches, which are then separated by unsuitable areas (i.e. the matrix, often 

human-dominated lands) (Rutledge, 2003). The patch-matrix model was conceptualized with the 

inhospitable (to terrestrial animals) ocean as the matrix separating hospitable islands  

(MacArthur & Wilson, 1967). However, terrestrial landscapes oftentimes offer a more subtle 

gradient between hospitable and inhospitable habitats. There is a growing body of work 

demonstrating that matrix habitats can play important roles in how species utilize and move 

about landscapes, and this literature calls for more comprehensive approaches to landscape 

characterization (Fahrig, 2001; Prugh et al., 2008).  Recently, landscape ecologists have 

espoused treating the “matrix”, or non-habitat areas of the landscape, as part of the functioning 

ecosystem landscape mosaic, rather than disregarding it as barren a wasteland (Fahrig et al., 

2011; Vasseur et al., 2013).  

Agricultural land is a prime example of a heavily human-modified landscape. Many natural 

elements persist, but humans manage a majority of the inputs and outputs as well as 

configuration and composition. Using the PMM framework, farmland would be treated as matrix 

for wildlife, while considering uncultivated forest or grassland areas as habitat patches.  

However, agricultural lands can house a multitude of species assemblages. The question remains, 

what kind of agricultural landscapes offer the greatest habitat potential? There is consensus that 

landscape heterogeneity positively contributes to biodiversity, however, widespread 
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intensification of farming operations has reduced heterogeneity of farmlands (i.e. larger fields, 

more agrichemicals, bigger machinery, mono-cropping etc.)  (Benton et al., 2003).   

The fields of agroecology and landscape ecology are simultaneously moving towards 

functional views of ecosystem and biodiversity characteristics. Functional views consider the 

role an organism or habitat plays within the broader ecosystem. By utilizing mainstay landscape 

pattern and composition metrics, relationships between landscape, species diversity, and 

ecosystem services can be quantified to aid in comprehending mechanistic patterns and processes 

of human-modified landscapes (Fahrig et al., 2011). These concepts have been applied to both 

theoretical and empirical situations (Gil-Tena et al., 2015; Vasseur et al., 2013). Vasseur et al.’s 

(2013) approach demonstrated how the oftentimes hidden landscape mosaic (i.e., temporal 

changes or chemical inputs) affects arthropod habitat suitability in farmland.  Gil-Tena et al. 

(2015) evaluated bird occurrence and landscape heterogeneity within and among landscape 

patches, and focused on functional biodiversity rather than taxonomic biodiversity (e.g. 

insectivorous, seed eating, raptors etc.) (Gil-Tena et al., 2015). Both studies found that higher 

heterogeneity across the landscape resulted in higher biodiversity opportunity (Gil-Tena et al., 

2015; Vasseur et al., 2013).  

1.4 Conceptual Framework  

In this dissertation, I utilized the telecoupling framework to guide my research questions, as 

the concept is well suited to understanding and quantifying complex interactions between 

coupled human and natural systems (J. Liu et al., 2013). The framework distinguishes sending, 

receiving, and spillover systems with defined boundaries as well as relevant environmental and 

socioeconomic causes, effects and agents (Figure 2). Systems are connected by flows which can 

be tangible (e.g., people, materials, organisms) or intangible (e.g., knowledge, technology, 
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capital).  The role a system plays (i.e., sending, receiving, or spillover) depends on the flow of 

interest (e.g., soybeans) and direction(s) of said flow. Sending systems have outward direction of 

flow (e.g., origin, source, exporter) while receiving systems flow inward (e.g., destination, 

recipient, importer). Spillover systems affect or are being affected by flows between sending and 

receiving systems (e.g., stopover, third party). Agents are defined as decision-makers in a system 

and can have either direct or indirect impacts on flows. Causes and effects of a system are often 

linked via feedbacks, and they are defined as components that influence emergence/dynamics of 

telecouplings and as consequences of telecouplings, respectively. 

In the context of this dissertation, we focus on flow of soybeans from Brazil to China. On 

that basis, Brazil as the sending system and China is the receiving system. and the United States 

is the spillover system. For our purposes, the US is defined as a spillover system as it is a major 

competitor to Brazil in the soybean market and exports a large share of its soybeans to China, 

however it is not the focus of this specific study. Cause and effect linked to soybean price in 

China (i.e., low priced Brazil soybeans outcompete domestically grown soybeans in China) and 

Figure 2: Conceptual Framework Diagram of Telecoupling (Taken from Liu et al. 2013) 
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land use change (i.e., farmers in China shift crop types because they cannot compete with 

soybeans), respectively. A multitude of other cause and effects exist for this system, but this 

dissertation centers on soybean price and land use change. In this system, farmers are a primary 

agent as they make decisions on growing soybeans based on market prices. Land use change 

causes a secondary effect on biodiversity. The magnitude and significance of relationships 

between crop price, farmers, land use, and biodiversity are the focus of this dissertation.   

1.5 Study System 

The study site is Heilongjiang province in northeast China (Figure 3). Heilongjiang’s biome 

is temperate broadleaf/mixed forests with a climate characterized by long, harsh winters and 

short, mild summers which allow for a single-crop growing season (Olson et al., 2001; Weather 

and Climate, 2016). Heilongjiang is the top agrarian producer in China. Until recently, the main 

crop was soybean, accounting for up to one third of total national production (Survey Office of 

the National Bureau of Statistics in Heilongjiang, 2013). Soybeans (Glycine max) are a nitrogen-

fixing legume belonging to Fabaceae that typically grow to be ~50cm on average. The other two 

main crops are corn and paddy rice. Corn (Zea mays; Poaceae) is a tall cereal grass (2-3m) that 

produces 1-3 ears of corn per plant. Rice (Oryza sativa; Poaceae) is also a cereal grass 

traditionally grown in paddies that are flooded with 10cm or more of water throughout their 

growing cycle to limit competition from weeds. 

In recent years, this region has undergone significant changes in land use/cover change 

(LULCC) as influence of global trade grows in the Chinese agriculture market. Due to cheap 

soybean imports from abroad, Heilongjiang’s small-scale farmers struggle to sell their soybean 

harvests for profit. From 2009-2013, soybean cultivation in Heilongjiang dropped from 4 million 

ha to 2.4 million ha as farmers switched to growing more profitable crops such as corn and 
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paddy rice (J. Sun et al., 2015; Survey Office of the National Bureau of Statistics in 

Heilongjiang, 2013).  

As previously stated, Heilongjiang’s primary industry is agriculture therefore the majority of 

land is dedicated to cultivation. The only remnants of primary forest, once home to Siberian 

tigers, exist in the northwest of the province where the main industry is forestry (Muldavin, 

1997). Despite being dominated by farmland, Heilongjiang is a unique agroecosystem, 

dominated by small-scale farmers. These farmers tend to manage 3-10 ha and are quick to 

respond to changing crop markets. The landscape is typified by villages scattered across the 

landscape, with fields of varying crop type and size in the surrounding vicinity (Figure 3). This 

type of agricultural landscape creates a diverse crop mosaic landscape, which can host a number 

of species that support overall biodiversity of the region (Y. Liu et al., 2013). Under current 

trends of crop conversion, it is not clear what impacts on biodiversity will be.  

Figure 3: Map of Heilongjiang Province (left), Google Earth Image showing village and 

cropland juxtaposition (top right), and example of typical farmland (bottom right) 
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1.6  Dissertation Objectives 

Chapter 2 synthesizes empirical evidence from scientific publications over the past decade 

that measured impacts of different telecoupling flows on biodiversity.  

Chapter 3 describes the process of producing high fidelity landcover maps of the study region 

using satellite imagery and machine learning. 

Chapter 4 evaluates relationships between structure (i.e., composition and configuration) of 

an agricultural landscape and taxonomic and functional biodiversity for birds at the community-

level.   

Chapter 5 evaluates species-specific relationships between agricultural landscape structure 

and bird occupancy at taxonomic and functional levels.  
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Abstract 

As the world becomes more interconnected, underlying causes of the global biodiversity 

crisis often extend beyond local systems. Human-nature interactions over distances (i.e., 

telecouplings, which expand and integrate disciplinary concepts such as trade and tourism) are 

increasing in magnitude and complexity, yet knowledge about their impacts on biodiversity is 

scattered and fragmented.  Here, we synthesized empirical evidence from scientific publications 

in the past decade that specifically measured impacts of telecouplings on biodiversity. Impacts 

reported as significant were categorized as “beneficial”, “harmful”, or “changed” based on 

direction of the biodiversity-telecoupling relationship (e.g., increased tourist disturbance linked 

to decreased species richness). Results indicated that harmful impacts were the most frequent 

outcome across all taxa (51%), though there were also beneficial impacts (11%). Among the 10 

types of telecouplings, the most common telecouplings connected to observed impacts were 

tourism (46%) and trade (26%). We also found few studies occurring in Africa and Oceania, 

despite being the locations of many important biodiversity hotspots. Our study provides the first 

integrated assessment of evidence for impacts of telecouplings on biodiversity, and sheds light 

on how telecoupling-mediated mechanisms have complex cascading consequences for 

biodiversity. Further efforts to study telecoupling impacts on biodiversity will be critical for 

addressing the biodiversity crisis post-2020. 
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2.1 Introduction 

Global biodiversity is threatened at an unprecedented scale and addressing the causes of 

these threats is essential to slow or reverse biodiversity declines. Modern species extinctions are 

occurring 1,000 times more frequently than historical background extinction rates (Díaz et al., 

2019; S. L. Pimm et al., 2014) with species declines extending across taxa (Alroy, 2015; 

Arthington et al., 2016; Bek et al., 2017; Böhm et al., 2013; Ceballos et al., 2015; Darwall & 

Freyhof, 2015; S. Pimm et al., 2006; Sodhi et al., 2008; van Klink et al., 2020; Wake & 

Vredenburg, 2008). Approximately one million species of plants and animals are currently facing 

extinction due to human activity (Díaz et al., 2019). Understanding the underlying mechanisms 

that cause biodiversity loss is a key priority for assuring and enhancing the wellbeing of both 

humans and nature (Hooper et al., 2012; Mace et al., 2012; Oliver et al., 2015). Ultimate causes 

of biodiversity loss may originate locally and/or emerge from distant regions. Traditionally, 

research has focused on local causes of biodiversity loss, such as deforestation and habitat 

fragmentation. However, globalization has drastically altered the use of natural resources as well 

as patterns of resource consumption (Chaudhary & Kastner, 2016; Dorninger et al., 2021). As the 

world becomes more interconnected, resources and goods are increasingly consumed outside 

production systems. For example, local farming in many places is predominantly driven by 

international demand for commodity crops rather than local food requirements (Headey, 2011). 

Identifying only the local causes of biodiversity loss will oftentimes not provide enough 

information to discern or address the mechanisms ultimately driving reductions in biodiversity 

(Carrasco et al., 2017). Understanding the impacts of globalization on biodiversity requires an 

integrated approach that includes both local and distant interactions between humans and nature. 

The telecoupling framework is such an integrated tool (J. Liu et al., 2013). The term 

‘telecoupling’ refers to human-nature interactions over distances (J. Liu et al., 2013). It expands 
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and integrates disciplinary concepts such as trade, tourism, migration, and investment (Figure 4). 

It encompasses local and distant systems as well as underlying mechanisms driving biodiversity 

impacts. In the context of this paper, we consider the location experiencing biodiversity impacts 

as the ‘local’ system. Telecoupling types are categorized by the content of the flows transferred 

between systems (Figure 4). Many different types of telecouplings have been associated with 

threats to biodiversity. In rural areas, for example, waste transfer in the form of agricultural run-

off results in distance effects on distant and biodiverse regions, such as the “dead zone” in the 

Gulf of Mexico (Del Giudice et al., 2020; Osterman et al., 2009). Similarly, wild species in 

southeast Asia are increasingly threatened by the palm oil trade as their habitats are destroyed 

and converted to plantations to meet global demand (Fitzherbert et al., 2008). The role of 

telecouplings in global biodiversity changes is increasingly recognized (Chan et al., 2020) and 

has been highlighted in important international venues and publications (e.g., 2021 Nobel Prize 

Summit and 2019 Global Assessment Report on Biodiversity and Ecosystem Services sponsored 

by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). 

However, knowledge about the impacts of telecoupling on biodiversity is fragmented and 

scattered, and research synthesizing impacts is lacking.  
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A global overview assessing the relationships between telecoupling and biodiversity is 

urgently needed. Previous studies have examined the influence of single telecouplings (e.g., trade 

(Green et al., 2019); tourism (Brandt & Buckley, 2018) on biodiversity or on specific taxa (e.g., 

birds (Marques et al., 2019)), yet no studies have synthesized the influence of telecouplings 

across taxa, telecoupling types, and geographic regions. Given the potentially unique responses 

of specific taxa to different telecouplings, understanding these relationships is crucial to more 

effectively conserve biodiversity (J. Liu, 2021; J. Liu et al., 2016). This issue is particularly 

salient and timely as scientists and stakeholders around the world are developing the Post-2020 

Biodiversity Framework (Convention on Biological Diversity, 2020), which will serve as a 

global biodiversity conservation blueprint for the next decade. Establishing the degree to which 

telecouplings impact biodiversity across taxa, telecoupling types, and geographic regions is 

essential to inform the next era of conservation in a globalized world. 

To address this need, we conducted a global synthesis of telecoupling impacts on 

biodiversity. Our review assessed empirical studies from 2010 to 2019 that quantified the 

Figure 4: Overview of telecoupling types (bold) with examples. 
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impacts of telecouplings on biodiversity, defined here as the variety of organisms across levels of 

biological organization. Of the 7,306 unique articles resulting from our initial search, 131 articles 

(1.8%) reported biodiversity indicators and their relationship with telecouplings. From this 

synthesis, we assessed the impacts of telecouplings on biodiversity and highlighted knowledge 

gaps to inform future research and conservation efforts. 

2.2 Methods 

We synthesized studies that quantified biodiversity change in the context of telecoupling 

published between 2010 and 2019. We curated studies for our synthesis by first conducting a 

literature search, then implementing multiple rounds of abstract and full text screenings to check 

that each study met our inclusion criteria. Once the initial screenings were complete, each article 

underwent a full-text assessment to extract data on the type of biodiversity and telecoupling 

studied, the study location, the metrics researchers reported, direction of the biodiversity impact, 

and significance of the impact.  Overall impact was then determined for each article by taking 

the mode of all reported impact directions (e.g., beneficial, harmful) reported for each taxon. 

Each step of our research process – literature search, inclusion criteria, data extraction and 

analysis – is detailed below.  

2.2.1 Literature Search 

We implemented a systematic review by adapting the workflow of PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses) (Moher et al., 2010; Sato et al., 

2013). To synthesize impacts of telecouplings on biodiversity using information from peer-

reviewed literature, we focused on research articles published within the past decade (2010-

2019) and written in English. The literature search was conducted with Web of Science on 

December 20, 2019, using terms pertaining to four primary categories: biodiversity, impact, 

scale, and telecoupling. We used several keywords for each primary category. For example, 
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terms such as “impact”, “effect”, “consequence”, and “influence” were included for the impact 

category, and “trade”, “migration”, “technology transfer” were for the telecoupling category 

(Hull & Liu, 2018). We finalized the search string based on different combinations of keywords, 

while excluding potentially ambiguous ones (see Box 1 in appendix for search string).  

2.2.2 Inclusion Criteria  

To only include articles relevant to the research objectives, we conducted two rounds of 

screening (title/abstract screening and full-text assessment) based on specific inclusion criteria 

we developed (Box 2 in appendix). We only included articles that met all five of the following 

criteria: (1) measured impacts on biodiversity of animal and plant species (excluding other taxa 

such as fungi, bacteria); (2) investigated the study species in relation to a particular telecoupling 

process; (3) reported direct outcomes in the form of a quantitative relationship, (4) were 

observational or experimental studies; and (5) were written in English. Subsequently, synthesis 

efforts, such as meta-analyses and literature reviews, fell outside the scope of this review. For 

example, a review by Scheele et al. provides strong evidence of the negative impacts of disease 

spread (chytridiomycosis) facilitated by humans but was not included in our synthesis due to the 

difficulty of identifying specific telecoupling processes related to species decline and the fact 

that many of the articles used to inform their meta-analysis were published prior to 2010 

(Scheele et al., 2019).  

For the first round of screening, we checked only the title and abstract for these criteria 

using the metagear package in R (Lajeunesse, 2016). Articles that were immediately identified 

as missing one or more of our criteria were removed prior to the full-text assessment. If it was 

unclear whether an article met the five criteria from the abstract, a full-text assessment was 

conducted to provide more context prior to deciding on inclusion or exclusion.  
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2.2.3 Data extraction and analysis 

Once all articles were assessed for inclusion/exclusion criteria, each eligible paper was 

coded to extract information on study characteristics (e.g., telecoupling types, region; see Table 2 

in appendix for codebook) and each biodiversity value reported (e.g., metric type, impact, 

significance; see Table 2 in appendix for codebook). To enhance inter-coder reliability (i.e., the 

concordance rate of individuals coding the same articles), all coders were initially trained by 

reading common abstracts and then having group discussions to determine an article’s eligibility 

based on inclusion and exclusion criteria. Group decisions were made on articles with unclear 

eligibility; three additional coders independently assessed them, and a majority rule was used for 

the article’s eligibility decision. 

After all eligible articles were coded, we documented number of biodiversity values 

reported for a given taxa (e.g., occurrence values for multiple species, composition changes for 

multiple community structures) and their relationship with the telecoupling studied (i.e., impact). 

Impacts reported as significant were categorized as “beneficial”, “harmful”, or “changed” based 

on direction of the biodiversity-telecoupling relationship. Statistically insignificant relationships, 

neutral relationships, or cases of model disagreement were categorized as “unclear” impacts. The 

category with the greatest number of relationships determined overall impact for a given article. 

Articles with equal numbers in one or more categories were considered ‘mixed’. All data were 

synthesized and visualized using R, version 4.1.0716 . 

2.3 Results 

Overall, telecouplings were more frequently associated with statistically significant 

harmful (51%) rather than beneficial (11%) impacts on biodiversity, and several impacts showed 

statistically significant changes in species communities (6%). There were, however, articles 

where telecoupling impacts on biodiversity were not straightforward, with 25% of articles 
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resulting in ‘unclear’ (non-significant, neutral, disagreement) and 7% ‘mixed’ impacts (articles 

with equal numbers in one or more categories of impacts). The scale of the studies in our review 

ranged from local landscapes (Amira et al., 2018) to global assessments (Nishijima et al., 2016). 

We found biodiversity impacts driven by a wide array of complex mechanisms that ultimately 

affected many indicators of biodiversity (see Table 2 in appendix for list of indicator types). 

Some examples of impacted biodiversity indicators included changes in distribution (e.g., 

avoidance of recreation infrastructure in habitat (Coppes et al., 2017), density (e.g., trampling 

disturbance due to tourists (Sarmento & Santos, 2012), abundance (e.g., declining populations 

due to trapping for pet trade (Harris et al., 2017), and productivity (e.g., altered species 

interactions via alien species introduction (Nobre et al., 2019). Across the 131 articles, we 

recorded 788 cases of biodiversity indicators impacted by telecoupling (Figure 7, Table 3 in 

appendix).  

2.3.1 Impacts across taxa 

Harmful impacts on biodiversity were more frequent than beneficial impacts across all 

taxa (Table 4 in appendix). Mammals had the largest proportion of harmful impacts reported 

(80%), followed by invertebrates (48%), birds and plants (both 46%), and fish (40%). We found 

4 studies recorded for reptiles and amphibians with harmful impacts (3 and 1 respectively).  

Similarly, most (75%) studies using indicators combining multiple taxa found harmful impacts. 

Birds were the most studied taxon (28%), followed by invertebrates (24%), vascular plants 

(21%), mammals (11%), and fish (11%; Table 3 in appendix). A much smaller set of articles 

studied reptiles and amphibians (4% and 1% of articles, respectively). Only four articles (3%) 

analyzed telecoupling impacts on more than one taxon simultaneously. Our assessment also 

revealed that there were relatively more beneficial impacts on birds and plants, potentially 

because conservation initiatives usually contribute to creation or bolstering of habitats at smaller 
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scales, rather than those with large or restrictive habitat requirements (Balduino et al., 2017; Dale 

et al., 2017; Sanderson et al., 2016). 

Birds experienced more harmful (46%) and unclear (22%) impacts than beneficial (16%) 

(Figure 5, Table 4 in appendix). Harmful impacts to birds were associated with trade (9 articles; 

e.g., impact of trade agreements and farming intensification (Reif & Vermouzek, 2019)) in 

addition to knowledge transfer and human migration. Tourism was also associated with harmful 

impacts to birds (7 articles; e.g., effects of road or trail use (Wolf et al., 2013)). Beneficial 

impacts for birds were mainly associated with knowledge transfer (50% of beneficial bird 

impacts [3 articles]; e.g., biodiversity-friendly farming practices (Martín et al., 2012)), tourism 

(e.g., disturbed park areas had higher abundances for some species (Huhta & Sulkava, 2014)), 

and species dispersal (e.g., non-native shrub offered more food resources for woodland bird 

species (Arizaga et al., 2013)). Instances of trade interacting with other telecouplings also 

resulted in beneficial impacts: knowledge transfer (conservation policy informed by prices of 

crops for trade (Hyun et al., 2013)) and energy transfer (forest fragmentation for transferring 

natural gas increased abundances of some bird species (Farwell et al., 2016)). 
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Invertebrates were found to be most associated with harmful (48%) and unclear (39%) 

impacts, with only one study demonstrating beneficial impacts of telecouplings (Figure 5, Table 

4 in appendix). Studies reporting harmful impacts were most often related to tourism (11 articles; 

e.g., impact of trampling on reef communities (Santos et al., 2015)), as well as species dispersal 

(e.g., release of popular aquarium corals that outcompete native species (Mantelatto et al., 2018)) 

and trade (e.g., decreased soil fauna diversity in tropical forest converted to rubber plantations 

Figure 5: Reported impacts of telecouplings on biodiversity for each taxon in the examined 

articles. Each pie chart shows the relative proportion of impacts found across articles for each 

taxon and telecoupling type (Figure 2.1). Beneficial, harmful, and changed impacts indicate a 

significant relationship between biodiversity and telecoupling was found. Unclear impacts 

indicate non-significant, neutral, or disagreeing results within a study and mixed impacts mean 

an article had equal numbers of indicators in one or more categories (e.g., increased abundance 

of one species, decreased for another).  The background of the pie chart indicates the number of 

articles in a given category (white to black). Articles that considered multiple telecoupling types 

were counted for each type reported. 
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for trade (Singh et al., 2019)). The single instance of beneficial impacts was related to species 

dispersal (e.g., benthic community benefitting from the introduction of a non-native fish that 

altered the functioning of the lakes’ trophic and increased productivity (Nobre et al., 2019)). 

Plant biodiversity was associated more with harmful (46%) and unclear (29%) impacts 

than beneficial (14%) (Figure 5, Table 4 in appendix). Tourism was frequently associated with 

harmful impacts to plant biodiversity (7 plant articles, e.g., plant community disturbance due to 

tourist activity (Šilc et al., 2016)). In addition to tourism, plants were negatively impacted by 

telecouplings related to species dispersal (2 plant articles, non-native plants inhibiting native 

species diversity (Fukami et al., 2013)) as well as knowledge transfer (dissemination of 

information regarding mismatch between habitat needed and habitat protected (Assédé et al., 

2018)), trade (e.g., community market access and local plant richness (Oldekop et al., 2018)), 

water transfer and waste transfer (run-off contaminants inhibit growth of saltmarsh plant species 

and allow for the encroachment of exotic and mangrove species (Geedicke et al., 2018)). For 

plants, most beneficial associations occurred with tourism (e.g., intermediate disturbance caused 

by tourists (Czortek et al., 2018)), investment, and knowledge transfer (policy and incentives to 

start game farms decreased vegetation loss (Mokotjomela & Nombewu, 2020)) with one instance 

related to trade (e.g., wood pellet trade resulted in improved overall forest condition (Dale et al., 

2017)).  

For mammals, the majority of telecoupling impacts were harmful (80%), with remaining 

impacts being 7% beneficial and 13% unclear (Figure 5, Table 4 in appendix). Harmful impacts 

on mammal biodiversity were associated with tourism (e.g., tourist presence deterring species 

with low tolerance for human activity (Zhou et al., 2013)), trade (e.g., impact of commercial 

livestock on local species (Moraga et al., 2015)), human migration (e.g., increased hunting 

resulting from migrant populations increasing demand for bushmeat (Remis & Jost Robinson, 
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2012)), and energy transfer (e.g., effect of oil-spills on marine mammals (Balmer et al., 2018)). 

The only instance of beneficial impacts was related to tourism (more visitors increased wildlife 

protections resulting in higher elephant numbers (Selier et al., 2016)). 

Fish experienced mostly harmful impacts (40%) with some instances of significant 

community changes (20%) and even fewer beneficial outcomes (13%) (Figure 5, Table 4 in 

appendix). Harmful impacts on fish biodiversity were the most frequent (40%) and associated 

with trade (3 articles; e.g., unmanaged harvest for the aquarium trade(Santos et al. 2015)) as well 

as species dispersal (e.g., introduced aquaculture species led to a reduction of native species 

(Cuvin-Aralar, 2016)), energy transfer, and water transfer (e.g., cascaded dams and reservoirs 

impeded movement of eggs, larvae and young fish more than a single dam (Yang et al., 2017)). 

Most studies reporting significant changes to fish communities were associated with 

hydroelectric dams (i.e., water and energy transfer) and physical barriers to movement they 

created (Lima et al., 2018; Sá-Oliveira et al., 2015). Additionally, one study demonstrated 

significant changes to fish behavior due to tourist activity (Lima et al., 2014). Beneficial impacts 

on fish biodiversity were recorded for tourism (e.g., tourist feeding fish resulted in high fish 

abundance (Balduino et al., 2017)), water transfer, and investment (e.g., investment in restoration 

efforts for dam removal increased number of lamprey nests (Lasne et al., 2015)).  

Although reptiles and amphibians were studied in relatively fewer articles, some 

significant impacts of telecoupling were found (Figure 5, Table 4 in appendix). Impacts on 

reptile biodiversity were either harmful (60%; 3 articles) or unclear (40%; 2 articles). The three 

cases of harmful impacts were associated with species dispersal (e.g., spread of parasite from 

invasive turtle species to native species (Meyer et al., 2015)), tourism (e.g., tourism development 

resulted in reptile populations (Krawczyk et al., 2019)), and trade (e.g., population declines due 

to the pet trade (Flecks et al., 2012)). For amphibians, while we had a small sample size that 
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prevented us from assessing impacts adequately, one study related trade to harmful impacts on 

amphibian communities (e.g., community market access and frog richness (Oldekop et al., 

2018)). 

2.3.2 Impacts across telecoupling types 

Most articles investigated changes in biodiversity associated with impacts of tourism 

(46%) and trade (26%). Species dispersal and knowledge transfer were the next most common 

telecouplings studied, representing 13% and 10% of articles, respectively. The remaining 

telecouplings (energy transfer, investment, human migration, water transfer, and waste transfer) 

were each studied in <10 articles (Table 5 in appendix). No studies looked at the impact of 

technology transfers. Some articles studied impacts of multiple, interacting telecouplings on 

biodiversity (18%). In these cases, we attributed the impacts to all telecoupling types mentioned 

in the article.  

In general, biodiversity was negatively impacted by telecouplings. Over half of the 

articles for trade and tourism showed harmful impacts. Trade was reported as harmful in 64% of 

the articles (e.g., biodiversity loss due to human consumption of traded goods (Wilting et al., 

2017)). For tourism, 53% were categorized as harmful (e.g., human trampling at tourist 

destinations (Farris et al., 2013)). Species dispersal, the third most frequent telecoupling studied, 

was associated with harmful impacts in 44% of the articles (e.g., impacts of invasive species on 

local species communities (Van Bocxlaer & Albrecht, 2015)).  

Some types of telecouplings had relatively more beneficial impacts on biodiversity. 

Compared to other telecoupling types, investment and knowledge transfer had higher proportions 

of beneficial impacts on biodiversity (43% and 21% respectively; Table 5 in appendix). 

Beneficial impacts on biodiversity were mostly linked with policy initiatives committed to 

halting biodiversity loss by driving conservation investments (Waldron et al., 2017), knowledge 
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transfer to promote ecological restoration efforts (Sieges et al., 2014), transitions from intensive 

production to ecological production methods (e.g., agro-environmental schemes (Gamero et al., 

2017)), and the creation of protected areas (Kleijn et al., 2014).  

In some articles, we also observed mixed impacts (i.e., equal contributions of beneficial, 

harmful, changed, or unclear impacts). For example, tourism was sometimes beneficial (e.g., 

income from tourism funding conservation efforts (Selier et al., 2016)) or harmful (e.g., tourism 

disturbance (Coppes et al., 2017)). Differential impacts may also reflect different tolerance levels 

among species (Shochat et al., 2010), with sensitive species being lost (e.g., Bronze‐tailed 

Peacock‐pheasant [Polyplectron chalcurum] or capercaillie [Tetrao urogallus] avoiding roads 

and other infrastructure (Coppes et al., 2017; Harris et al., 2017)), less sensitive species resisting, 

and some non-native, introduced species thriving (e.g., the highly invasive snail, Melanoides 

tuberculata, in Lake Malawi (Van Bocxlaer & Albrecht, 2015)). Thus, depending on the relative 

proportion of declining, resisting, and thriving species within a focal system, telecouplings may 

change local species assemblages (Reyes-Martínez et al., 2015), leading to biotic 

homogenization or a loss of community uniqueness (Thomas et al., 2014). Likewise, 

conservation policies involving knowledge transfer and investment can also result in mixed 

impacts. For example, a review of the European Union’s agriculture policy showed that despite 

the intended beneficial biodiversity impacts of farmland conservation incentives, harmful 

impacts also occurred due to agricultural intensification encouraged by policymakers (Gamero et 

al., 2017). 

2.3.3 Impacts across regions 

There was a bias in distribution of locations for studies regarding telecoupling impacts on 

biodiversity. Studies most commonly occurred in Brazil (15%), the United States (10%), and 

China (8%). However, when aggregated to the continental scale, Europe (23%) was the most 
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frequent study continent. The remaining articles were distributed across South America (20%), 

Asia (19%), North America (17%), Africa (8%), Oceania (8%), and Antarctica (2%), with global 

studies representing 4% of all the articles. The relative scarcity of studies in Africa and Oceania 

is concerning, as they are home to many of the world’s most valuable (and threatened) 

biodiversity hotspots (Habel et al., 2019). The distribution of studies across habitats was also 

biased. Most articles investigated impacts on biodiversity in terrestrial habitats (57%), whereas 

19% and 17% of articles examined impacts on biodiversity in marine and freshwater habitats, 

respectively (Table 6 in appendix). 

The direction of telecoupling impacts on biodiversity also varied geographically. Harmful 

impacts were most frequent across all continents, apart from North America, where 50% of the 

impacts were unclear. Europe had the largest number of beneficial impacts compared to other 

Figure 6: Reported impacts of telecouplings on biodiversity by continent. Each pie chart shows 

the relative proportion of impacts (i.e., beneficial, harmful, changed, mixed, unclear) found 

across articles for each continent and telecoupling type (Figure 4). The background of the pie 

chart and the color of each continent indicates the number of articles in each category (white to 

black). Articles that consider multiple telecoupling types are replicated for each type’s pie chart. 
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continents. Of the five global studies, four reported harmful impacts of telecoupling while the 

remaining one demonstrated beneficial impacts (Figure 6, Table 7 in appendix). 

The types of telecouplings studied in the context of biodiversity impacts differed by 

continent as well. Tourism studies occurred mostly in Europe, Asia, and South America and 

trade studies were mainly concentrated in Asia and South America. Trade and tourism were also 

common telecouplings in North America, in addition to species dispersal, knowledge transfer, 

and energy transfers. For Africa, tourism, trade, species dispersal, and knowledge transfer were 

equally studied, whereas studies in Oceania focused on tourism and trade. The two studies that 

looked at telecoupling impacts on biodiversity in Antarctica were related to tourism and human 

migration. Finally, studies conducted on a global scale mostly focused on trade with one study 

each related to investment and human migration. Across all continents, investment, human 

migration, and waste transfer were the least studied (Figure 6, Table 7 in appendix). 

2.4 Research Challenges & Recommendations 

Telecouplings are increasing in magnitude and scope as the world becomes more 

interconnected and populations grow (Borrelli et al., 2020; Powers & Jetz, 2019; Stehfest et al., 

2019). They will likely continue to have significant impacts on global biodiversity. In our 

analysis, we found abundant evidence of telecouplings driving biodiversity change. However, the 

percentage of studies that explicitly acknowledged, identified, and quantified relevant 

telecouplings and their impacts on biodiversity was small in the literature (1.8%). Thus, more 

extensive and empirical studies on telecoupling impacts and mechanisms are urgently needed. 

Additionally, there is a need for studies that link environmental changes driven by telecoupling 

to specific indicators of biodiversity. Finally, of the studies that considered telecouplings as a 

driver of biodiversity changes, the majority were biased towards certain taxa, locations, and 

metrics. 
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2.4.1 Mechanisms behind impacts of telecoupling on biodiversity 

This study provides evidence demonstrating the profound impacts of telecoupling on 

biodiversity.  However, the specific mechanisms that led to these impacts were less studied and 

thus are less clear. Here, we define mechanisms as the processes driving biodiversity impacts 

involved in a particular flow of materials, energy, people, products, capital, information, and 

organisms. Other important components of the telecoupling framework are factors influencing 

emergence and dynamics of flows (causes), socioeconomic and environmental consequences of 

the telecoupling (effects, which includes cascading impacts on biodiversity), and the relevant 

systems (local and distant) (Table 1). 

 

Table 1: Examples of biodiversity impacts present in our sample and their potential telecoupled 

mechanisms 

Telecoupling 

type 
Trade Tourism 

Species 

Dispersal 

Knowledge 

Transfer 

Energy 

Transfer 

Distant 

System 

Food importing 

countries 

Country with 

eco-tourists 

Native range 

of introduced 

species 

International 

regulators 

Energy 

company 

Local  

System 

Food exporting 

country 

Country with 

eco-tourism 

attractions 

Region species 

introduced to 

Nation under 

regulation 

Location of 

energy 

extraction 

Causes High global 

food demand 

Eco-tourism 

industry 

established 

Economic 

need in local 

community 

Alternative 

production 

encouraged by 

regulators 

Increased 

energy demand 

Effects Deforestation 

for more 

cropland and 

habitat loss 

Tourist 

spending 

reinforcing 

wildlife 

protections 

Non-native 

species 

introduced for 

production, 

altered species 

community 

Widespread 

use of practice 

improves 

habitat quality 

Contamination 

event leading to 

habitat 

degradation 

Biodiversity 

Impact 

Increased 

extinction risk 

Increased 

wildlife 

abundance 

Decreased 

native species 

dominance 

Increased 

wildlife 

populations 

Displacement of 

wildlife 

populations 

 (Green et al., 

2019) 

(Selier et al., 

2016) 

(Cuvin-Aralar, 

2016) 

(Martín et al., 

2012) 

(Balmer et al., 

2018) 

   

More studies should connect observed changes in biodiversity to both local and distant 

drivers so that the mechanisms can be better understood. To illustrate the full application of the 
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telecoupling framework, we outlined potential mechanisms of telecoupling impacts on 

biodiversity in five articles with examples for each component (Table 1). In general, mechanisms 

vary greatly across telecoupling types. For example, agricultural trade caused by international 

demand can result in harmful biodiversity impacts by increasing the need for land conversion 

and thus habitat loss in the local system. In the case of tourism, biodiversity often benefits from 

the economic incentives to preserve wildlife. It should be noted that, due to the inherent 

complexity of telecouplings, accurately identifying and quantifying each component of the 

telecoupling framework can be challenging. Thus, after an initial mechanism is established, 

further investigations should take place to validate the proposed model and uncover new research 

avenues. This holistic approach is necessary to fully understand biodiversity dynamics. 

2.4.2 Explicitly identify and define potential telecouplings  

Many of the studies we found did not directly examine telecoupling impacts, with most 

telecouplings being briefly mentioned or inferred by us. For example, we classified studies 

involving production of globally traded commodities in the local system as influenced by trade, 

even if authors did not directly identify the regions that ultimately received the commodities. 

Explicit links between observed biodiversity changes due to telecouplings are essential to 

understand the mechanisms and achieve more effective management and sustainability 

interventions with less trade-offs. For instance, policies to mitigate deforestation in the Amazon 

for soybean production and trade have resulted in increased deforestation and threats to 

biodiversity in another biodiversity hotspot, the Brazilian Cerrado region (Dou et al., 2018). 

Findings from research like this can help avoid similar spillover effects on biodiversity in other 

systems. Whenever possible and appropriate, researchers should identify all relevant human-

nature interactions in their local system and those relevant distant systems (Table 1). Doing so 
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ensures that all important drivers of change are accounted for and may also lead to unexpected 

avenues for further investigation.   

2.4.3 Connect environmental change to biodiversity indicators 

There is a pressing need to bridge the gap between studies connecting telecouplings to 

environmental change and those quantifying biodiversity’s relationship to environmental 

variables. Many studies on telecouplings quantified direct and local environmental impacts, but 

rarely included biodiversity indicators in their assessment. Research that simultaneously 

measures telecouplings’ impact on the environment and biodiversity should be a priority for 

future research. To overcome logistical challenges of such an undertaking, researchers can also 

use existing studies, datasets, and/or models to link telecouplings with biodiversity. For example, 

researchers have successfully combined socioeconomic models for material flow and economic 

trade with biodiversity models to quantify extinction risk for species of concern in the Brazilian 

Cerrado (Green et al., 2019). Such innovative approaches to telecoupling and biodiversity 

research can play a large role in future biodiversity conservation. 

2.4.4 Apply the telecoupling framework to understudied taxa and geographic regions 

More studies need to be conducted on those taxa and geographic regions 

underrepresented in the current literature. The scientific literature assessing telecoupling impacts 

on biodiversity focused on certain locations, taxa, and biodiversity metrics. Most articles focused 

on birds, plants, and invertebrates in terrestrial habitats. Amphibians, reptiles, fishes, and 

mammals were comparatively under-studied, which may have implications for understanding 

threatened species and conservation prioritization. Moreover, only four studies used biodiversity 

indicators including more than one taxon (Marquardt et al., 2019; Seshadri & Ganesh, 2011; 

Waldron et al., 2017; Wilting et al., 2017). Bridging this research gap with multi-taxa studies 

may facilitate more comprehensive conservation policies to limit biodiversity loss. Additionally, 
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many studies were concentrated in Brazil, the United States, and China. In contrast, studies 

rarely occurred in Africa, the Middle East, and South and Southeast Asia. The disproportionately 

low number of scientific studies on these regions is concerning, as they are forecasted to 

experience increased rates of development in the coming decades (Bren d’Amour et al., 2017). 

This limited number of studies could lead policy makers to underappreciate the importance of 

telecouplings in those regions. Finally, our study revealed differential use of various biodiversity 

metrics. Most articles reported compositional and structural components of biodiversity, using 

metrics such as species presence or absence, richness, and abundance. In contrast, impacts on 

movement, population dynamics, or functional metrics were rarely assessed. Assessments of 

biodiversity should be conducted using a wide variety of indicators to better understand 

telecoupling impacts on ecological processes that in turn shape biodiversity. Studies addressing 

one or more of these gaps will be essential for informing biodiversity conservation. 

2.5 Conclusions 

This paper synthesizes impacts of 10 different types of telecoupling on 7 major taxa 

across all continents. It is also timely as the world is developing the Post-2020 Global 

Biodiversity Framework. Impacts of telecoupling are often beyond the control of local people, 

highlighting greater challenges in biodiversity conservation and the increasing need for global 

collective actions.  

Slowing the trajectory of biodiversity loss requires an integrative approach to 

conservation. Amid the current biodiversity crisis, it is imperative that policy and intervention 

strategies be tailored to the ultimate causes of species loss. The causes of biodiversity decline are 

often intertwined with both local drivers and telecouplings. Our synthesis demonstrates the need 

for more research that empirically assesses biodiversity change in the context of distant system 

interactions.  Of the studies that identified telecouplings linked to biodiversity change, impacts 
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varied widely across taxa, regions, and telecoupling types. Despite some instances where 

telecouplings benefitted biodiversity, it was clear that most impacts of telecouplings were 

overwhelmingly harmful.  This further highlights the importance of understanding the dynamics 

and interactions of the human and natural components of telecoupled systems if leverage points 

for intervention are to be found. Policy aiming to reduce biodiversity declines needs to consider 

telecouplings in addition to local drivers. Collaboration among governments, industries, and 

communities in local and distant systems will be essential. Halting biodiversity loss is a global 

challenge that will require system-based solutions. Utilizing integrated and interdisciplinary 

approaches, such as the telecoupling framework, will bring us closer to these solutions and a 

more sustainable future in a telecoupled world. 
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APPENDIX 
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2A.1 Supplemental Methods 

 

Box 1: Search string 

(TS = ((Biodiversity OR "Biological diversity") AND (abundan* OR densit* OR "population 

size" OR "population-level" OR "species distribution" OR *diversity OR "species richness" 

OR "species composition" OR "species evenness" OR "number of species" OR biomass) AND 

(impact* OR effect$ OR affect* OR influenc*) AND (transboundary OR intercontinental OR 

distal OR teleconnection$ OR telecoupl* OR "far away" OR external OR trade OR touris* OR 

migrat* OR "information dissemination" OR "technology transfer" OR "knowledge transfer" 

OR "foreign investment" OR "international aid" OR "international cash transfer" OR 

"international remittance" OR "payment for ecosystem services" OR "virtual land" OR "virtual 

water" OR "virtual energy" OR "human migration" OR refugee$ OR immigra* OR “disease 

spread” OR “foreign direct investment” OR “labor migration”)) NOT TS=(trade-off$ OR 

simulation))(TS = ((Biodiversity OR "Biological diversity") AND (abundan* OR densit* OR 

"population size" OR "population-level" OR "species distribution" OR *diversity OR "species 

richness" OR "species composition" OR "species evenness" OR "number of species" OR 

biomass) AND (impact* OR effect$ OR affect* OR influenc*) AND (transboundary OR 

intercontinental OR distal OR teleconnection$ OR telecoupl* OR "far away" OR external OR 

trade OR touris* OR migrat* OR "information dissemination" OR "technology transfer" OR 

"knowledge transfer" OR "foreign investment" OR "international aid" OR "international cash 

transfer" OR "international remittance" OR "payment for ecosystem services" OR "virtual 

land" OR "virtual water" OR "virtual energy" OR "human migration" OR refugee$ OR 

immigra* OR “disease spread” OR “foreign direct investment” OR “labor migration”)) NOT 

TS=(trade-off$ OR simulation)) 
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Box 2: Inclusion and Exclusion Criteria 

1. BIODIVERSITY: Does it measure impacts on biodiversity? Here, our definition of biodiversity 

refers to the variety of organisms across levels of biological organization. This includes any animal and 

plant species, at any life stage, at terrestrial, freshwater, or marine realms. EXCLUDE (irrelevant) if 

there is no measurement of impacts on biodiversity or impacts are assessed for other taxa (e.g., fungi, 

bacteria). If unclear from the information provided in the title/abstract, answer YES (full paper to be 

screened). INCLUDE papers that look at proxy measures (e.g., land-use change or habitat) if it is in the 

context of a specific species or group of species.  

2. INTERVENTION: Does the study investigate the impacts of telecouplings on the study species? 

(i.e., Effect/Impact of ______ on biodiversity). This includes “trade, tourism, species dispersal, human 

migration, the spread of diseases, knowledge transfer, information dissemination, technology transfer, 

international investments, international cash transfer, international remittance, payments for ecosystem 

services, virtual land or water or energy”… or direct mention of telecoupling INCLUDE papers that 

have inferred telecoupings (e.g. a paper discussed local biodiversity variation due to tourism without 

specifying tourist source; a paper mentioned local landscape change impact on biodiversity because of 

agricultural food trade in general). EXCLUDE (teleconnections) papers analyzing the impacts of 

teleconnections (e.g., natural long-distance seed dispersal) as this revision focuses only on human-

nature interactions (couplings). EXCLUDE papers focused on “ecosystem services” generally (if no 

biodiversity metric is mentioned).  

3. OUTCOME: Does this study report direct outcomes in the form of a quantitative effect of the 

intervention? Studies should quantify the relationship between couplings and biodiversity responses at 

metacommunity, community, population or species levels. This can include population abundance, 

species presence/absence, species richness/abundance among other response variables. We will include 

all outcomes (beneficial, harmful, direct and indirect) associated with any aspect of couplings. 

EXCLUDE studies that report qualitative outcomes or do not report outcomes at all. 

4. STUDY CLASS: Is this an observational study? This can include manipulated experiments (i.e., 

researcher has control over the variable of interest and the response to/ manipulating it is measured), or 

non-manipulative studies (sometimes called observational or natural experiments) occur when the 

researcher takes advantage of changes that have happened (by using existing data) or are about to 

happen (by taking measurements, i.e. making observations) to understand its effect.  If the study is a 

simulation study (i.e., individual-based models or population viability analysis) = EXCLUDE 

(modeling study); unless the study contains potentially useful field-collected data that was used to 

validate the model. Also, any recent reviews that you deem to have potentially relevant references (i.e., 

the review is relevant but simply not primary literature = EXCLUDE (relevant review) but write down 

the title, to screen later at full-text; time permitting, we will go through those references to ensure we’re 

capturing all relevant papers. Similarly, if the item is an entire conference proceeding including 

multiple abstracts of potential relevance = EXCLUDE. All other situations = EXCLUDE (i.e., policy 

discussions, conceptual frameworks, strictly modeling, or irrelevant reviews, or the coder determined 

the study is not relevant at all). 

5. LANGUAGE: Is the full text written in English? 
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Table 2: Codebook 

Category 
Variable 

Name 
Variable 

Type 
Type of 

Question 
Response Options Description 

Screening 

Confirmation 

Biodiversity 

Impact 

Text Short 

answer, text 

- What is the specific "biodiversity" being studied in 

this article? (e.g., Polar bear population dynamics) 

Telecoupling Text Short 
answer, text 

- In your own words, what is the external process that 
is impacting biodiversity in the focal system(s)? 

Quantitative Text Short 

answer, text 

- What are the specific quantitative variables that were 

collected/analyzed in relation to the impact of the 
telecoupling on the studied biodiversity metric? 

Study Type Text Multiple 

choice 

(single 
response) 

True 

False 

This study is based on observations and/or 

experiments. It is not a simulation study (e.g., climate 

forecasting) or review paper. 

Identifiers 

Paper ID 

Code 

Text Short 

answer, 
numerical 

- NA 

Coder Name Text Short 

answer, text 

- NA 

Year 

Published 

Continuous 

(Integer) 

Short 

answer, 

numerical 

2010-2020 NA 

First 

Author's 

Last Name 

Text Short 

answer, text 

- NA 

Biodiversity 

Taxonomic 

Focus 

Text Checkboxes Bird 

Mammal 

Reptile 
Amphibian 

Fish 

Invertebrate 
Plant 

Other 

Check the boxes for the taxonomic groups for which 

data were collected, analyzed, and/or synthesized 

during the study. 

Biodiversity 
Indicator 

(single 

species) 

Text Multiple 
choice 

(single 

response) 

Abundance/Density 
Occurrence 

Within-Species 

diversity 
Population 

dynamics 

NA 

Abundance/Density – number of individuals, 
individuals/unit area, biomass 

 

Occurrence – presence, range, persistence, NOT 
detections (if separate from occurrence) 

 

Within species diversity – genetic diversity, age 
structure, etc. 

 

Population dynamics – survival, fitness, reproduction, 
mortality, etc. 

 

If indicator is at multiple or habitat level, select NA 
 

Biodiversity 

Indicator 
(multiple 

species) 

Text Multiple 

choice 
(single 

response) 

Diversity index 

Richness 
Evenness 

Composition 

Abundance/Density 
Occurrence 

NA 

Diversity index – Shannon-wiener, Simpson’s, 

Inverse Simpson’s, etc. 
 

Richness – number of species 

 
Evenness – relative abundance 

 

Composition – what species make up the community? 
 

Abundance/Density - number of individuals, 

individuals/unit area, biomass 
 

Occurrence - presence, range, persistence, NOT 

detection (if separate from occurrence) 
 

If indicator is at single or habitat level, select NA 

 
Biodiversity 

Indicator 
(habitat)  

Text Multiple 

choice 
(single 

response) 

Amount 

Quality 

Amount – e.g. land use change from non-habitat to 

habitat (must be in the context of specific species) 
 

Quality – pollution, connectance, disturbance, etc. 

 
If indicator is at single or multiple level, select NA 
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Table 2 (cont’d) 

 

Telecoupling 

Variables 

Specific 
Telecoupled 

Flow 

Type(s) 

Text Short 
answer, text 

- State the specific external flow(s) that were analyzed 
in relation to their impact on focal system 

biodiversity. 

 
For example, if international trade data were 

analyzed, which commodities were used to evaluate 

trade?  
 

Telecoupled 

Flow 
Category 

Text Checkboxes Trade 

Migration (human) 
Migration (non-

human) 

Species Dispersal 
Tourism 

Knowledge 

Transfer 

Technology 

Transfer 

Investment 
Water Transfer 

Waste Transfer 

Other 

Check the boxes for the variables that were analyzed 

as they flowed between countries, multi-country 
regions, or continents. 

 

 

Impact of 

Telecoupling  

Text Multiple 

choice 

(single 
response) 

Beneficial 

Neutral 

Harmful 
Changed 

Unclear 

Beneficial = Biodiversity improved as a result of the 

telecoupling process 

Neutral = Biodiversity did not change a result of the 
telecoupling process 

Harmful = Biodiversity declined as a result of the 

telecoupling process 
Changed = Biodiversity changed but no 

determination of direction could be made (e.g., 

change in community composition) 
 

Impact of 

Telecoupling 

(Unclear) 

Text Short 

answer, text 

- If you selected "Unclear" above, please briefly state 

the situation. 

 

Otherwise, leave blank. 

Significance 
of 

telecoupling  

Text Multiple 
choice 

(single 

response) 

True 
False 

Not evaluated 

The impact of the telecoupling process on 
biodiversity was statistically significant (p<= 0/5). 

Study 

Characteristics 

Habitat Text Checkboxes Terrestrial 

Freshwater 

Marine 
Not 

specified/Global 

study 

For descriptions, see 

https://askabiologist.asu.edu/explore/biomes 

Number of 

Countries 

Analyzed 

Continuous 

(Integer) 

Short 

answer, 

numerical 

1-200 State the total number of countries included in the 

analysis (regardless of the number of focal countries 

listed in the "Scale of Analysis" section). 
Countries 

Analyzed 

Text Short 

answer, text 

- If <10 countries were analyzed, please write the 

country names here. Otherwise, leave blank. 

Continent(s) 
represented 

Text Checkboxes North America 
South America 

Asia 

Europe 
Africa 

Antarctica 

Australia 
Unclear/unknown 

Check boxes for all continents from which data were 
collected/analyzed. 
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2A.2 Supplemental Results 

 

2A.2.1 Total vs Overall Impacts 

 

We documented a total of 788 telecoupling impacts on biodiversity within the 131 

eligible articles from our review (Figure 7). Telecouplings were more frequently associated with 

statistically significant harmful (30%) rather than beneficial (10%) impacts with biodiversity, 

and a considerable number of impacts showed statistically significant changes in species 

communities (13%). However, most articles (70%) reported multiple cases of biodiversity 

impacts (e.g., occurrence values for multiple species, composition changes for multiple 

community structures). Furthermore, the total number of impacts per article was highly variable 

(range of 1-162). Therefore, we also evaluated the overall impact (see methods for details). 

When aggregated to the article level, the relative frequency of harmful impacts increased from 

30% to 51%, while the proportion of beneficial impacts remained almost the same (from 10% to 

11%). The percentage of unclear impacts decreased from 47% to 25%, indicating that there were 

some articles reporting many relationships associated with unclear biodiversity impacts. When 

these results were aggregated into an overall impact value for each study, the relative 

contribution of unclear relationships decreased (Table 3). 
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Figure 7: The impact of different telecoupling types on biodiversity across taxa (n=788). For 

articles that considered multiple telecoupling types, their relationships appear in >1 column. 
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Table 3: Taxa proportion at individual indicator level and article level (n = number of studies) 

  
Taxa 

Indicators  

(n = 788) 

Articles  

(n = 131*) 

 n % n % 

Birds 361 47.07% 37 28.24% 

Invertebrates 165 21.51% 31 23.66% 

Fish 92 11.99% 15 11.45% 

Plants 88 11.47 28 21.37% 

Mammals 55 07.17% 15 11.45% 

Reptiles 10 1.30% 5 3.82% 

Amphibians 1 0.13% 1 0.76% 

Multiple 16 2.09% 4 3.05% 

*some articles reported on more than one taxon 
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Table 4: Percentage of telecoupling impacts across taxa (n = number of studies) 

Taxa (n) Beneficial Harmful Changed Mixed Unclear 

Birds (37) 16% (6) 46% (17) 5% (2) 11% (4) 22% (8) 

Plants (28) 14% (4) 46% (13) 4% (1) 7% (2) 29% (8) 

Invertebrates (31) 3% (1)   48% (15) 6% (2) 3% (1) 39% (12) 

Fish (15) 13% (2) 40% (6) 20% (3) 13% (2) 13% (2) 

Mammals (15) 7% (1) 80% (12) - - 13% (2) 

Reptiles (5) - 60% (3) - - 40% (2) 

Amphibians (1) - - 100% (1) - - 

Multiple (4) 25% (1) 75% (3) - - - 

 

Table 5: Percentage of telecoupling impacts across telecoupling types (n = number of studies) 

Telecoupling (n) Beneficial Harmful Changed Mixed Unclear 

Tourism (62) 8% (5) 53% (33) 5% (3) 6% (4) 27% (17) 

Trade (36) 8% (3) 64% (23) 3% (1) 3% (1) 22% (8) 

Spp. Dispersal (18) 11% (2) 44% (8) 6% (1) 6% (1) 33% (6) 

Investment (7) 43% (3) - - 29% (2) 29% (2) 

Knowledge Transfer (14) 29% (4) 29% (4) 7% (1) 14% (2) 21% (3) 

Water Transfer (9) 11% (1) 33% (3) 22% (2) 22% (2) 11% (1) 

Energy Transfer (9) 11% (1) 33% (3) 22% (2) 11% (1) 22% (2) 

 

Table 6: Percentage of telecoupling impacts across habitats (n = number of studies) 

Habitat (n) Beneficial Harmful Changed Mixed Unclear 

Terrestrial (75) 13% (10) 55% (41) 3% (2) 7% (5) 23% (17) 

Marine (25) 4% (1) 56% (14) 8% (2) 4% (1) 28% (7) 

Freshwater (22) 14% (3)   36% (8) 14% (3) 9% (2) 27% (6) 

Terrestrial/Freshwater (4) - - 25% (1) - 75% (3) 

Terrestrial/Marine (2) - 100% (2) - - - 

Freshwater/Marine (1) 100% (1) - - - - 

Not specified /Global study (2) 100% (1) 100% (1) - - - 

 

Table 7: Percentage of telecoupling impacts across regions (n = number of studies) 

Region (n) Beneficial Harmful Changed Mixed Unclear 

Europe (31) 19% (6) 42% (13) 3% (1) 10% (3) 26% (8) 

Asia (27) 4% (1) 67% (18) 4% (1) 7% (2) 19% (5) 

S. America (28) 7% (2) 61% (17) 11% (3) 7% (2) 14% (4) 

N. America (22) 9% (2) 32% (7) - 9% (2) 50% (11) 

Oceania (11) 9% (1) 55% (6) 9% (1) - 27% (3) 

Africa (11) 18% (2) 46% (5) 18% (2) - 18% (2) 

Antarctica (2) - 50% (1) - - 50% (1) 

Global (5) 20% (1) 80% (4) - - - 
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CHAPTER 3:  LANDCOVER CLASSIFICATION OF A HETEROGENEOUS 

AGROECOSYSTEM 
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Abstract 

The global food trade drives changes, both environmental and economical, all over the 

world. China is the world’s largest importer of soybeans, importing over half of the world’s 

traded supply annually. However, their domestic soybean farmers have struggled to compete in 

the global market. This has resulted in a rapid conversion of land to other crops, and the complex 

landscape created by small-scale farming has made characterizing and understanding this change 

challenging. The ability to accurately map this region is the first step to understanding the 

environmental and social consequences of this globally driven change. By using high-resolution 

imagery across different periods of the growing season and utilizing a random forest classifier 

with an object-based approach, we were able to generate highly accurate landcover maps (91% 

training, 80% testing).  Furthermore, merging similar landcover classes (e.g., rain-fed crop, 

natural area) increased the accuracy substantially. We found that most important parameters in 

our analysis consisted mainly of both synthetic aperture radar (SAR) and short-wave infrared 

(SWIR) indices from earlier in the growing season. The resulting map from this customizable 

and transferable workflow will be vital for understanding the impact of landscape change on 

biodiversity.  
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3.1 Introduction 

3.1.1 Background 

 Agricultural landscapes can oftentimes be overlooked in terms of biodiversity 

conservation efforts (Norris, 2008). This is largely due to the patch-matrix paradigm dominating 

the field of landscape ecology for the greater part of its history (Forman & Godron, 1981; Wiens, 

1976). More recently, the “matrix”, or non-habitat areas of the landscape, is increasingly being 

treated as part of the functioning ecosystem, rather than disregarded as a barren wasteland. This 

has inspired numerous theories and frameworks in the fields of agro- and landscape ecology that 

aim to examine the biodiversity potential of agricultural landscapes that were traditionally 

labeled as part of the ‘matrix’(Benton et al., 2003; Fahrig et al., 2011; Perfecto & Vandermeer, 

2010).   

In order to quantify the effects of landscape structure (i.e., composition and 

configuration) on ecological processes, a variety of landscape metrics have been developed, 

however they require reliable landcover/use maps to produce meaningful measures. Advances in 

remote-sensing technology and processing software have enabled researchers to produce more 

detailed analyses of heterogeneous landscapes. However, those advances are now at a point 

where the scale of images is so fine that traditional remote sensing methods are ineffective. Now, 

many scientists are looking to object-based remote sensing, which is a classification method 

based on objects rather than pixels.  

 With the advent of widely available satellite imagery at fine spatial resolutions, 

researchers have the ability to characterize heterogeneous landscapes at resolutions that could not 

be achieved previously (Lausch et al., 2015). For instance, a commonly used resolution is 

NASA’s 30m/pixel Landsat mission (USGS US Dept of the Interior, 2017). Up until recently, 
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this was considered a fine spatial resolution. However, today there are many satellites, such as 

Sentinel-2, offering finer resolutions (10m/pixel) (European Space Agency, 2017).  This is 

particularly relevant for regions with high landscape heterogeneity, like small-scale agriculture 

(Figure 8). In this example, farmers may grow multiple crops within a 30x30m area and wildlife 

species often utilize even smaller areas. However, increased resolution does present a challenge 

during classification due to increased pixel variation (Fahrig et al., 2011).  

The area of GEOgraphic-Object-Based Image Analysis (GEOBIA) emerged as an 

alternative to pixel-based image analysis methods. Pixel-based methods of image classification 

treat each pixel as separate from its neighbors and leaves out the context of the pixel entirely. 

Pixel-based methods are still widely used and are extremely applicable when the target of an 

image is less than or equal to pixel size. However, there are many applications where this is not 

the case, and the recent onset of accessible and extremely high-resolution imagery has made 

GEOBIA more popular among geographers. When using an object-based approach, the image 

first goes through a process where similar pixels are grouped into objects based on their 

attributes. The same classification methods used for pixel-based methods can then be applied to 

these objects. The main benefit of segmenting the image first is that it retains its context and 

Figure 8: Typical farmland structure in the United States (left) versus Heilongjiang (right). For 

comparison, the red point in the center of the image is surrounded by a buffer of 1000m.  
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there is less misclassification within objects due to pixel-pixel variation (i.e., salt and pepper 

effect).  

Machine-learning algorithms are commonly applied to GEOBIA. Duro et al. compared 

three different algorithms, decision tree (DT), random forest (RF), and support vector machine 

(SVM), using both pixel and object-based classification. They found that pixel-based showed no 

significant difference across the three algorithms, though object based showed a significantly 

different result with DT. Also, classifications using either RF or SVM gave the most valuable 

depiction of cropland, regardless of pixel or object based, though, the pixel-based method took 

less computational time. However, they concluded that there was no obvious advantage over the 

other when it comes to pixel or object based (Duro et al., 2012).  

Random forest is a machine learning method of classification that has shown to be one of 

the more reliable methods of classification due to it using both decision trees and sub-setting 

(similar to bootstrapping) to improve prediction while controlling for over-fitting  (Belgiu & 

Drǎguţ, 2014; Gislason et al., 2006).  The algorithm is trained on a subset of validated data (i.e., 

ground truth) and produces multiple decision trees for each observation, which then assign a 

class based on the majority outcome. Many studies and reviews have tested RF against other 

classification methods, and it reliably performs the best. Its superior performance is attributed to 

the fact that it can deal with both high data dimensionality as well as multicollinearity, things 

that are extremely common in large data sets. However, RF can be sensitive to sample design 

and tends to favor classes with a large number of training samples. It is also preferred because 

there are only two parameters that are user defined (number of trees and the number of features 

used to split a node), whereas other methods have much more ambiguity for the user to define. 
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Researchers have also explored and examined current methods strictly within the object-

based sphere. After examining a case study in China, Li et al determined that among seven 

GEOBIA methods, they found that RF was the most accurate classifier when varying the 

different segmentation variables (M. Li et al., 2016). In fact, RF is one of the most commonly 

used methods in GEOBIA classification, and it is a promising avenue as more high quality and 

high-volume data are created. For example, satellite programs like Sentinel offer unprecedented 

ability to further discriminate landcover types as spectral differences can be parsed more easily. 

This is expected to be extremely useful for mapping agriculture (Lebourgeois et al., 2017).  

An example of a study that merged these two methods, did so by mapping irrigation in 

Africa (Vogels et al., 2019). By using a higher spatial resolution than would be allowed for 

pixel-based methods, they showed that there was more irrigation in the region than one would 

infer from maps made using coarser resolutions. This result brings into question our 

understanding of the world through the lens of these potentially inaccurate data products, and we 

should expect many of them to be challenged or corrected in the future.  

3.1.2 Objectives 

Recent research, including empirical remote sensing studies in our study region of 

Heilongjiang, China, have indicated cropland conversions in importing countries in response to 

international trade (J. Sun et al., 2015; van Vliet et al., 2015). Farmer land-use decisions are 

affected by multiple factors such as climate, resources, and crop prices, among others (Lutz, 

1998; S. A. Wood et al., 2014). As global trade increases, small farmers struggle to compete 

when their markets are flooded with cheap imports (Tilt, 2008). Crop price plays a large part in 

determining what small-scale farmers choose to grow from one year to another and whether they 

plant a single crop type or diversify (Di Falco & Perrings, 2005; Michler & Josephson, 2017; D. 
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Wood & Lenné, 1999). Additionally, as small farmers in developing countries become integrated 

in a global commodity market, they have to consider risk and market uncertainty more than ever 

before (Hao, 2010). With more farmers reacting to global markets by altering their cultivation 

strategies, the structure of agroecosystems changes as well.   

 While some global landcover maps exist, they are not at the resolution needed to 

accurately capture the heterogeneity of the study region nor do they differentiate between crop 

types (Figure 8). The inherent inaccuracies and limitations of these products are also difficult to 

ascertain. Furthermore, accurately classifying crop types can be challenging as they often have 

very similar spectral characteristics, and many crop classification methods focus on using single-

source optical data. However, recent advances in sensor capabilities and data processing 

techniques have enabled the use of both optical and radar data, which enhances the performance 

of crop classification, particularly in the context of crop identification (C. Liu et al., 2019; 

Orynbaikyzy et al., 2019). Additionally, many crop classification methods leave out non-crop 

classes which limits their applicability to landscape-level analyses (Kang et al., 2018; You et al., 

2021; Zhang et al., 2020; Zhong et al., 2016). Therefore, the main objective of this analysis is to 

create high fidelity landcover maps of our study region that distinguish between the region’s 

major crops (soybean, corn, and rice) as well as other non-crop classes (wetland, forest, 

grassland, built-up) at a fine spatial resolution to facilitate calculation of landscape metrics 

relevant to agricultural structure and biodiversity.  
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  3.2 Methods 

Excluding field data collection, the entire process of creating landcover maps occurred in 

Google Earth Engine (GEE). To see each step of the workflow, see the diagram in Figure 9.  The 

accessibility of imagery in GEE as well as their ever-growing library of processing and analysis 

tools makes it an ideal platform to create custom landcover maps for many applications.  

Figure 9: Workflow diagram for the landcover classification in Google Earth Engine. 



50 

3.2.1 Study System 

Heilongjiang province in northeast China produces much of the country’s grain (Figure 

10). With a climate characterized by long, harsh winters and short, mild summers, only a single 

crop growing season is possible (Figure 11) (Olson et al., 2001; Weather and Climate, 2016). 

The three main crops grown in the region are soybean, corn, and paddy rice. However, with the 

growing influence of global trade and cheap imports of soybeans, farmers have switched to 

growing more corn and rice in recent years.  From 2009-2013, soybean cultivation decreased by 

nearly 40% (4 million to 2.4 million ha) (J. Sun et al., 2015; Survey Office of the National 

Bureau of Statistics in Heilongjiang, 2013). 

As previously stated, Heilongjiang’s main industry is agriculture therefore the majority of 

land is dedicated to agriculture. Heilongjiang is primarily cultivated by smallholder farmers 

(farm sizes around 3-10 ha). The landscape is typified by villages scattered across the landscape, 

with fields of varying crop type, size, and shape in the surrounding vicinity (Figure 8).  

 

Figure 10: Map of Heilongjiang Province, China. 
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3.2.2 Ground Truth Data Collection 

In the summer of 2018, we collected ground truth data across Heilongjiang (Figure 12). 

Points were selected in areas with at least 100m2 of a single landcover class for nine classes:  

built up, corn, forest, grassland, ‘other crop’, rice, soybean, water, & wetland (Table 8). Due to 

accessibility and logistical constraints, most points were collected along roadsides to increase the 

overall sample size for each class. In addition to ground truth points collected in the field, 

additional points were collected using satellite imagery to supplement the non-crop classes that 

were under-represented in the field data. Of the points collected, 30% were withheld as testing 

data for classification accuracy assessment. The number of samples per land class can be found 

in the table below (Table 8). 

 

 

 

 

 

 

Figure 11: Climate of Heilongjiang Province from 1970-2000 (mean temperature in dark blue, 

min/max in light blue, and average precipitation in orange. 
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Table 8: Class definitions and ground truth totals 

 

3.2.3 Imagery Acquisition & Processing 

Shapefiles of each bird point location (collected in 2017 & 2018, see Chapter 4) as well 

as ground truth points (collected in 2018) with 2000m buffers were used to filter Sentinel-2 

Level-1C (i.e., top of atmosphere, orthorectified) imagery in Google Earth Engine. 

Unfortunately, Level-2A (i.e., surface reflectance) images were not available in our study area 

for either year. Three time periods throughout the growing season were used to create the filtered 

Class Training Testing Total Description 

Corn 1365 535 1900 Rain-fed cropland planted with corn (Zea mays) 

Soybean 855 390 1245 Rain-fed cropland planted with soybeans (Glycine max) 

Rice 1095 492 1587 Flooded paddy rice (Oryza sativa) 

‘Other crop’ 117 71 188 
Cropland planted with an alternative crop (e.g., potato, tobacco, 

rapeseed, cucumber, watermelon, etc.) 

Forest 351 149 500 
Forestland, typically early successional. Either mixed species 

stands for single planted stands 

Grassland 362 143 505 
Both scrub and grassland (vegetation no taller than 3 m) in dry 

soil. 

Wetland 183 86 269 Saturated land with some vegetation cover 

Water 188 63 251 Body of water >1m deep 

Built-up 332 167 499 Villages, roads, greenhouses, etc. 

Total 4848 2096 6944  

Figure 12: Map of Heilongjiang and location of field ground truth points 
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collections:  early (5/1-6/30), mid (7/1-8/31), and late (9/1-10/31). The ground truth collection 

(the collection with the largest extent) contained around 35 Sentinel-2 tiles. Only images with 

<20% cloudy pixel percentages were included1. The resulting size of the image collections for 

2017 and 2018 are presented in the table below (Table 9). Since Sentinel-2B was not launched 

until March 2017, there were significantly fewer images available in 2017 as the satellite was 

still in the ramp-up phase during most of the growing season (Sudmanns et al., 2020).  The 

Sentinel-1 collections were filtered using the same workflow as the optical imagery (Table 9).  

Table 9: Total number of images in for each collection (2017 samples, 2018 samples, and 

ground truth samples) that were used for the image mosaicking process. 

 Sentinel - 2 Sentinel - 1 

 

2017 2018 

Ground 

truth  

(2018) 

2017 2018 

Ground 

truth 

(2018) 

Early 36 176 284 101 90 97 

Mid 42 103 171 67 63 69 

Late 76 187 293 70 48 53 

 

Five vegetation indices were calculated for all images in each collection before 

calculating the median value for all pixels (see Table 10 for specific band designations and index 

definitions). In addition to the commonly used vegetation (NDVI)(Rouse & Haas, 1974) and 

water indices (NDWI)(Gao, 1996), we also derived three additional indices known to aid in crop 

type separation, particularly between corn and soybean (Kang et al., 2018; Zhang et al., 2020; 

Zhong et al., 2016). The first two combined the visible and SWIR bands to provide information 

on vegetation senescence (NDSVI)(Qi et al., 2002) and residue (NDRI)(Gelder et al., 2009). The 

final index was calculated using bands just in the SWIR region to provide information on the 

tillage state of a pixel/object (NDTI)(Van Deventer et al., 1997). 

 
1 One site was filtered at 60% cloudy pixels to ensure image availability in the early season for 2017. Before adding 

them to the entire collection, we checked that no cloudy pixels occurred within the 2km sample area.  
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Table 10: Data layers used for classification  

Sensor (res.) Abbrev. Name 
Approx. Band 

Center/Calculation 

Sentinel-2 

(10 m) 

B2 Blue 490 nm 

B3 Green 560 nm 

B4 Red 660 nm 

B8 Near infrared (NIR) 830 nm 

NDVI Normalized difference 

vegetation index 

(B8-B4)/B8+B4 

NDWI Normalized difference 

water index 

(B3-B8)/B3+B8 

Sentinel-2 

(20 m) 

B5 Red edge 1 700 nm 

B6 Red edge 2 740 nm 

B7 Red edge 3 780 nm 

B8A Near infrared 

narrowband 

860 nm 

B11 Short wave infrared 1 

(SWIR) 

1610 nm 

B12 Short wave infrared 2 

(SWIR) 

2200 nm 

NDTI Normalized differential 

tillage index 

(B11-B12)/(B11+B12) 

Sentinel-2 

(10m & 20m)* 

NDSVI Normalized difference 

senescent vegetation 

index 

(B11-B4)/(B11+B4) 

NDRI Normalized difference 

residue index 

(B4-B12)/(B4+B12) 

Sentinel-1 

C-band SAR 

(10 m) 

VV Single co-polarization, 

vertical transmit/vertical 

receive 

5.4 GHz 

(~5.5 cm wavelength 

C-band) 

VH Dual-band cross-

polarization, vertical 

transmit/horizontal 

receive 

5.4 GHz 

(~5.5 cm wavelength 

C-band) 

*Final resolution of indices is 20m 

 

 

Since Sentinel data are collected at a relatively fine spatial resolution (10 and 20m), we 

segmented the images into objects prior to classification rather than just classifying individual 

pixels. Doing so reduces error due to spectral variability within a landcover class and preserves 

features such as field borders/margins. Before initializing segmentation, we stacked the early, 

mid, and late mosaics for each sample (2017, 2018, GT). To initiate the clustering algorithm, we 
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set a seed grid over the mosaics with 20 pixels between each seed and used B2, B3, B4, B8, 

NDVI, NDWI, NDSVI, NDRI, and NDTI as clustering variables.  Finally, the target bands for 

classification were extracted. The 60m resolution bands (B1, B9, B10) and the SAR layers (HH, 

HV) were excluded.  We then ran the mosaics through an image segmentation algorithm based 

on simple non-iterative clustering (Figure 13). The parameters used can be found in the table 

below (Table 11). After the segmentation, the band and index means were calculated for each 

segment. In GEE, composite (i.e., mosaicked) images do not have a specific resolution until it is 

specified by the user. For this application, we exported the final rasters at 10m for all data layers. 

  

Figure 13: Example result from the simple non-iterative clustering algorithm 
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 Table 11: Parameters for simple non-iterative clustering algorithm in GEE 

3.2.4 Landcover Classification 

For the classification of image segments, we used a RF classifier trained on ground truth 

(GT) points collected during the 2018 field season. The data layers used for the image segment 

classification were the mean value for bands 2-8, 8A, 11, 12, NDVI, NDWI, NDSVI, NDRI, 

NDTI, VV, & VH (17 for each time period, total of 51) in each cluster (Table 10). Seventy 

percent of the points were randomly chosen to train the RF classifier with the remaining 30% set 

aside for training. The number of trees was set to 450, with all other parameters set to default 

(Table 12). The trained classifier was then run on the 2018 and 2017 samples. To assess the 

performance of the classifier, we calculated overall, user, and producer accuracies for both the 

training and testing ground truth points as well as F- score metrics for each class. We also 

derived variable importance for the RF algorithm in GEE to compare across the bands used in 

the classifier.  

Argument Value Details 

image image The input image for clustering. 

size 5 The superpixel seed location spacing, in pixels. If 'seeds' 
image is provided, no grid is produced. Default = 5 

compactness 1 Compactness factor. Larger values cause clusters to be 
more compact (square). Setting this to 0 disables spatial 
distance weighting. Default = 1 

connectivity 8 Connectivity. Either 4 or 8. Default = 8 

neighborhoodSize 64 Tile neighborhood size (to avoid tile boundary artifacts). 
Defaults to 2 * size. Default = null 

seeds defined by 
seed grid 

If provided, any non-zero valued pixels are used as seed 
locations. Pixels that touch (as specified by 'connectivity') are 
considered to belong to the same cluster. Default = null 
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 Table 12: Parameters for Random Forest Classifier in Google Earth Engine 

3.3 Results & Discussion 

3.3.1 Accuracy Assessment 

The re-substitution and validation accuracies (i.e., training and testing accuracies) were 

assessed for the final classified image. Overall training accuracy was 91% whereas the testing 

accuracy was 80%. The kappa value for the training data was 0.89 for the training data, 

reflecting a high level of agreement, and the testing data’s kappa value of 0.76, while slightly 

lower, still indicates a substantial level of agreement (Table 13).  

The accuracy of each class varied somewhat. For the training data, both the producer and 

user accuracies of built-up, forest, grassland, rice, water, and wetland were above 90%.  

Corn had a producer’s relatively high producer accuracy at 92%, but a lower user accuracy 

(83%) due to a higher number of commission errors (false positives). The soybean and ‘other 

crop’ class had low producer accuracies (76.7% and 76.9%) with slightly better user accuracies 

(86.8% and 90.6%) due to a higher number of omission errors (false negatives).  

For the testing data, wetland was the only class with both user and producer accuracies 

above 90%. Rice was relatively accurate with a producer and user accuracy of 92.9% and 89.9%, 

Argument Type Details 

numberOfTrees Integer, default: 
1 

The number of Rifle decision trees to create per class. 

variablesPerSplit Integer, default: 
0 

The number of variables per split. If set to 0 (default), 
defaults to the square root of the number of variables. 

minLeafPopulation Integer, default: 
1 

The minimum size of a terminal node. 

bagFraction Float, default: 
0.5 

The fraction of input to bag per tree. 

outOfBagMode Boolean, 
default: false 

Whether the classifier should run in out-of-bag mode. 

seed Integer, default: 
0 

Random seed. 
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respectively. Similarly, water had a producer and user accuracy of 85.7% and 92.1%. The forest, 

grassland, and built-up classes had moderate levels of accuracy with user accuracies all around 

78% and producer accuracies ranging from 83-88%. In contrast, the three rain-fed -crop classes 

all performed relatively poorly. Corn, soybean, and ‘other crop’ had a producer’s accuracy of 

78.3%, 62.1%, and 52.1% and a user accuracy of 68.6%, 77.9%, and 81.7%. Similar to the 

testing data, the difference in producer and user accuracies can be attributed to higher numbers of 

commission errors in corn and omission errors in soybean and ‘other crop’. 

Looking at the confusion matrices (Table 14,Table 15) for the training and testing data, 

we can see the majority of commission errors for corn occurred in the soybean class, with most 

omission errors in soybean being incorrectly classified as corn. The ‘other crop’ class was most 

often confused with both corn and soybean. The ‘other crop’ class’s low performance can also be 

attributed to the fact that it had a low number of ground truth points compared to the rest of the 

classes. Ground truth supplementation was conducted by visually inspecting satellite imagery so 

identifying pixels containing crops other than rice, corn, and soybean was not feasible. That 

being said the performance of this classification method to correctly identify the crops in 

Heilongjiang performs similarly to (if not better than) recent mapping efforts (You et al., 2021).  
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Table 13: Accuracy assessment for training data: producer accuracy (PA), user accuracy (UA) 

 

 Table 14: Training confusion matrix 

 
 

 Table 15: Testing confusion matrix 

 

  

 Training Testing  
PA UA PA UA 

built-up 95.783 93.373 82.635 78.443 

corn 92.015 83.223 78.318 68.598 

forest 97.443 98.580 87.919 85.906 

grassland 93.094 96.685 86.014 78.322 

othercrop 76.923 90.560 52.113 81.690 

rice 96.986 97.260 92.886 89.837 

soybean 76.725 86.784 62.051 77.949 

water 96.277 100 85.714 92.063 

wetland 100 99.454 93.023 94.186 

OVERALL 91.277 - 80.2 - 

KAPPA 0.893 - 0.759 - 

 Predicted  

R
ef

er
en

ce
 

 built-up corn forest grassland othercrop rice soy water wetland TOTAL 

built-up 318 3 1 1 0 5 4 0 0 332 

corn 6 1256 1 3 1 4 94 0 0 1365 

forest 1 7 343 0 1 0 0 0 0 352 

grassland 5 14 0 337 0 4 1 0 1 362 

othercrop 1 13 1 0 90 4 8 0 0 117 

rice 6 15 0 5 2 1062 5 0 0 1095 

soybean 2 175 2 3 7 10 656 0 0 855 

water 1 2 0 0 0 3 1 181 0 188 

wetland 0 0 0 0 0 0 0 0 183 183 

ALL          4849 

 

Predicted  

R
ef

er
en

ce
 

 built-up corn forest grassland  othercrop rice soy water wetland TOTAL 

built-up 138 7 3 5 1 9 2 1 1 167 

corn 12 419 9 6 4 21 64 0 0 535 

forest 7 3 131 1 0 4 3 0 0 149 

grassland 2 10 2 123 0 2 1 0 3 143 

othercrop 3 18 1 0 37 0 12 0 0 71 

rice 6 9 3 8 4 457 4 1 0 492 

soybean 5 118 3 8 4 10 242 0 0 390 

water 0 2 0 2 0 4 0 54 1 63 

wetland 1 1 0 1 0 0 0 3 80 86 

ALL          2096 
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To improve the overall accuracy and quality of data derived from the classification map, 

the rain-fed crop classes (i.e., corn, soybean, and ‘other crop’) were merged into one class (Table 

16). The original landcover maps that contained 9 landcover classes were also re-classified to 

just three classes (built-up, cropland, and natural landcover) to facilitate calculation of various 

landscape metrics (e.g., percent of natural landcover).  

 Table 16: Merged classification schemes 

 

For the rain-fed crop classification, overall training and testing accuracies increased 

substantially to 97.38% (+6.08%) and 90.70% (+10.5%) respectively (Table 17). The 

reclassification of just 3 classes (built-up, cropland, and natural) resulted in even more accurate 

classifications with a training accuracy of 98.23% (+6.93%) and a testing accuracy of 93.61% 

(+13.41%) (Table 18).   

For both reclassified maps, the producer and user’s accuracy for the training data was 

above 90% across all landcover classes. For the testing data, the merged rain-fed crop map had 

the highest accuracies in the wetland, rain-fed crop, and rice classes (accuracies ≥90%). The 

remaining classes all had accuracies at 78% or higher (Table 17). The accuracy assessment of the 

testing data for the simple reclassification found cropland class to be the most accurate, followed 

by natural and built-up classes (Table 18). The confusion matrices for each reclassification can 

be found in Table 19-Table 22. 

Original Classes Rain-fed crop Reclassified 

n = 9 n = 7 n = 3 

built-up built-up built-up 

rice rice cropland 

corn rain-fed crop cropland 

soybean rain-fed crop cropland 

‘other crop’ rain-fed crop cropland 

forest forest natural 

grassland grassland natural 

water water natural 

wetland wetland natural 
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Table 17: Accuracy assessment for training and testing data of rain-fed crop reclassification 

 

 Table 18: Accuracy assessment for training and testing data of reclass reclassification 

 

 Table 19: Rain-fed crop training confusion matrix 

 

 Table 20: Rain-fed crop testing confusion matrix 

 
 

 Training Testing 
 PA UA PA UA 

built-up 97.853 92.638 82.635 78.443 

forest 97.443 98.580 87.919 85.906 

grassland 93.094 96.685 86.014 78.322 

rain-fed crop 98.373 97.945 92.169 95.281 

rice 96.986 97.260 92.886 89.837 

water 95.767 100.000 85.714 92.063 

wetland 100.000 99.454 93.023 94.186 

OVERALL 97.381 - 90.697 - 

 Training Testing 
 PA UA PA UA 

built-up 95.796 92.793 82.635 78.443 
natural 96.225 98.435 90.930 88.889 

cropland 99.096 98.688 95.632 96.707 

OVERALL 98.227 - 93.607 - 

  Predicted  

  built-up forest grassland rain-fed crop rice water wetland TOTAL 

R
ef

er
en

ce
 

built-up 319 1 1 7 5 0 0 333 

forest 1 343 0 8 0 0 0 352 

grassland 5 0 337 15 4 0 1 362 

rain-fed crop 10 4 6 2298 18 0 0 2336 

rice 6 0 5 22 1062 0 0 1095 

water 2 0 0 3 3 181 0 189 

wetland 0 0 0 0 0 0 183 183 

ALL        4850 

  Predicted  

  built-up forest grassland rain-fed crop rice water wetland TOTAL 

R
ef

er
en

ce
 

built-up 138 3 5 10 9 1 1 167 

forest 7 131 1 6 4 0 0 149 

grassland 2 2 123 11 2 0 3 143 

rain-fed crop 20 13 14 918 31 0 0 996 

rice 6 3 8 17 457 1 0 492 

water 0 0 2 2 4 54 1 63 

wetland 1 0 1 1 0 3 80 86 

ALL        2096 
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 Table 21: Reclass training confusion matrix 

 
 

 Table 22: Reclass testing confusion matrix 

 
 

We also calculated the F-score for each of the original and merged classes. F-score is a 

metric that combines both precision and recall performance of a classifier and ranges from 

‘worst’ to ‘best’ using values between 0 and 1 (Table 23). The majority of classes exhibited high 

F-score values, for both the training and testing data (>0.8). The classes with the lowest F-scores 

were corn, soybean, and ‘other crop’ classes in the original classified map. However, the F-

scores of the merged rain-fed crop class for both training and testing data were above 0.9.  

 

 Table 23: F-scores for each class 

 

  

  Predicted  

  built-up natural cropland TOTAL 

R
ef

er
en

ce
 built-up 319 2 12 333 

natural 8 1045 33 1086 

cropland 16 15 3400 3431 

ALL    4850 

  Predicted  

  built-up natural cropland TOTAL 

R
ef

er
en

ce
 built-up 138 10 19 167 

natural 10 401 30 441 

cropland 26 39 1423 1488 

ALL    2096 

All classes built-up corn soy other rice forest grass- wetland water 

Train 0.944 0.881 0.807 0.826 0.971 0.980 0.948 0.997 0.978 

Test 0.809 0.747 0.674 0.612 0.915 0.870 0.828 0.936 0.885 

Rain-fed crop built-up rain-fed crop rice forest grassland wetland water   

Train 0.944 0.980 0.971 0.980 0.948 0.997 0.978   

Test 0.809 0.936 0.915 0.870 0.828 0.936 0.885   

Reclassified built-up cropland natural       

Train 0.944 0.989 0.973       

Test 0.809 0.961 0.900       
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3.3.2 Variable Importance 

Two variables were distinctly important compared to the rest of the variables used in the 

RF classifier (Figure 14, Table 24). The top-ranking variable was the Sentinel-1 C-band cross 

polarized VH data for the early time period. The next most important variable was NDTI 

(normalized difference tillage index) from the early time period. The next two variables in the 

ranking were also indices from the early period:  NDWI (normalized difference water index and 

NDSVI (normalized difference senescent vegetation index). The NDTI for both the late and mid 

time periods were the next highest ranked, resulting in all three phenological periods for the 

same metric ranking in the top ten ranked variables. It is also notable that the seven of the top ten 

variables were derived from the early time period, highlighting the importance of indices from 

early in the growing season.   

Comparing two of the top data layers, VH and NDTI, across all three time periods one 

can see there is significant variability (Figure 15). For the VH data, the peak occurs early in the 

season, decreases significantly during the height of the growing season and the increases slightly 

around harvest time (Figure 15, a-c). NDTI showed a similar pattern, though not as pronounced 

(Figure 15, d-f). You can also observe the relatively constant values for the water (dark blue) and 

built-up (gray) regions in each image band image when comparing to the classified image 

(Figure 15, g).   
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Figure 14: Bar graph of data layer importance for random forest classification 
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Table 24: Data layer ranked by variable importance 

 

  

rank band importance  rank band importance 

1 VH_early 724.016  27 B4_mid 575.268 

2 NDTI_early 691.432  28 B2_early 574.638 

3 NDWI_early 640.533  29 B3_mid 573.473 

4 NDSVI_early 639.248  30 B11_mid 568.819 

5 NDTI_late 638.017  31 NDWI_late 568.045 

6 NDTI_mid 636.149  32 B8A_early 567.087 

7 VH_mid 628.957  33 NDVI_mid 563.617 

8 NDVI_early 628.829  34 NDVI_late 558.595 

9 VV_early 628.559  35 B12_late 551.397 

10 NDRI_early 623.969  36 B6_mid 549.361 

11 VV_mid 623.755  37 B8A_late 547.822 

12 B5_mid 622.738  38 B7_mid 546.712 

13 VH_late 619.534  39 B7_late 546.118 

14 B11_early 602.069  40 B4_late 545.718 

15 VV_late 600.015  41 B7_early 542.923 

16 B12_mid 598.964  42 B6_early 540.137 

17 NDSVI_late 593.742  43 B8_late 539.084 

18 B2_late 592.968  44 B8_mid 531.535 

19 NDRI_mid 590.811  45 B4_early 530.072 

20 B12_early 585.410  46 B8_early 526.940 

21 NDSVI_mid 583.504  47 B6_late 524.495 

22 B2_mid 582.286  48 B3_early 522.843 

23 NDWI_mid 581.532  49 B5_early 519.542 

24 B3_late 581.379  50 B8A_mid 508.663 

25 NDRI_late 580.274  51 B11_late 507.015 

26 B5_late 576.418     
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Figure 15: Phenological difference between two of the most important data layers, VH (a-c) and 

NDTI (d-f) for all three time periods compared to the final classification (g).  
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3.4 Conclusions 

This chapter demonstrates a workflow that produces high fidelity landcover classification 

for a heterogeneous agricultural landscape. By utilizing fine spatial resolution data from both 

optical and SAR sensors at multiple points during the growing season and using an object-based 

approach, we were able to achieve an accuracy of >80% on the validation data. Merging the rain-

fed crop classes further increased the accuracy to >90%. Evaluating the performance of each data 

layer in our RF classifier solidified the importance of phenological data, as many of the top 

bands were from earlier in the growing season. We also found that indices involving the SWIR 

region were among the top-ranking variables. This entire process was performed in Google Earth 

Engine and could easily be transferred to other regions and time periods, so long as the user 

supplies the appropriate amount of ground truth data for each target class. The final classified 

maps can be used for several applications, including landcover dynamics and inventories as well 

as the calculation of landscape metrics for landscape-level analyses. 
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CHAPTER 4:  LANDSCAPE STRUCTURE AND BIRD DIVERSITY IN 

AGROECOSYSTEMS OF NORTHEAST CHINA 
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Abstract 

International food trade drives land use/cover change, having consequences for wildlife 

that utilize agroecosystems. To explore this, we assessed bird communities and landscape 

structure in the agricultural region of Heilongjiang Province in northeastern China. We examined 

the relationship between functional and taxonomic measures of bird diversity and landscape 

metrics (both compositional and configurational). We found that several landscape metrics 

significantly related to bird metrics, though there was little difference in the relationships of 

between bird diversity and landscape structure when comparing taxonomic versus functional 

diversity. Crop diversity as well as natural landcover and edge metrics positively correlated with 

bird richness, while patch aggregation and rain-fed crop (e.g., corn, soybean) percentage were 

negatively related. We also found that paddy rice in our study region supported functionally 

different bird species compared to soybean and corn.  Finally, we compared regions in 

Heilongjiang impacted by global trade and found that those with a larger decrease in soybean 

cultivation had lower levels of crop diversity as well as higher amounts of rice area. There were 

no significant regional differences in bird diversity, however, which indicates that negative 

impacts to bird diversity due to soybean conversion (and a decrease in crop diversity) may be 

mitigated by increases in rice cultivation rather than corn.  
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4.1 Introduction 

4.1.1 Background 

Agroecosystems are a multi-functional landscapes that not only can be utilized for food 

production, but also serve as habitat for a multitude of species that provide ecosystem services 

and support robust ecosystems (Godfray & Garnett, 2014). To understand species’ contributions 

to ecosystem function in agroecosystems, research is undergoing a shift that focuses on 

functional, rather than purely taxonomic diversity. This provides a more holistic perspective as 

functional diversity often serves as an indicator of the wide range of ecosystem services on 

which humans and food production rely (S. A. Wood et al., 2015).  

Scientists often study ecosystems using taxonomic definitions to group or separate 

species. However, taxonomic metrics alone may not provide insight about the functioning of an 

ecosystem  (Cadotte et al., 2011). Many common functional biodiversity metrics are trait-based, 

though they can also be based on environmental gradients, biotic interactions, and 

energetic/reproductive performance (Mcgill et al., 2006). Furthermore, studies that examine both 

functional and taxonomic biodiversity often find contrasting results (Edie Stewart M. et al., 

2018; Jacoboski & Hartz, 2020; W. Li et al., 2021).  

To understand landscape characteristics that promote biodiversity, we often use metrics 

to quantify various aspects of landscape heterogeneity. Here, we focus on structural landscape 

heterogeneity, which distinguishes landcover types by their geographic characteristics.  

Alternatively, some researchers classify landcover based on species-specific resource needs 

(Fahrig et al., 2011). There are two components of structural landscape heterogeneity that are 

typically considered:  composition and configuration. Composition refers to the identity of 

landcover types found in a landscape while configuration is defined by the spatial layout of 

various landcover types (Fahrig & Nuttle, 2005). There are numerous metrics that can be used to 
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characterize a landscape, but care must be taken to avoid using correlated and redundant metrics 

simultaneously (Frazier & Kedron, 2017). Additionally, in the context of biodiversity, it remains 

unclear which spatial resolution is the most appropriate to apply, and what extent to calculate 

landscape metrics for the most informative results (Fahrig et al., 2011). 

There is a need to understand and quantify characteristics of agricultural landscapes that 

bolster biodiversity. There have been some attempts to create and assess habitat descriptors, 

mainly in Europe (Herzog et al., 2017). They recommend seven descriptors (richness, diversity, 

patch size, linearity, crop richness, shrub habitat amount, and tree habitat amount) as well as a 

semi-natural habitat descriptor which is interpreted differently across farm type.  However, these 

descriptors only assess potential habitat quality and do not address realized biodiversity in terms 

of number of species (or functional groups) of a landscape. Other studies have found that general 

heterogeneity mediates farmland bird diversity rather than crop diversity (Redlich et al., 2018). 

However this does not seem to be true in regions that also farm paddy rice (M. B. Lee & 

Goodale, 2018). 

4.1.2 Research Questions 

Using geo-located samples of bird diversity and landcover maps, we aim to determine the 

relationship between agricultural landscape characteristics and bird diversity in taxonomic and 

functional contexts in our study region of Heilongjiang Province in northeastern China. Our 

research questions are listed below.  

Q1: What is the impact of global trade on landscape structure? 

Q2: What is the relationship between landscape structure and bird diversity? 

Q3:  What is the relationship between crop diversity and functional/taxonomic bird biodiversity? 

Q4: What is the relationship between landscape structure and functional bird community traits? 
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 4.2 Methods 

4.2.1 Bird Data Collection 

In the summer of 2017 and 2018, we collected bird data at 37 sites across Heilongjiang. 

At each site, we conducted a series of point counts (2-9 per site depending on conditions) for a 

total of 207 bird samples (Figure 16). These geolocated data were collected using a point count 

method (Bibby, 2000; Hutto, 1986). All birds seen or heard were recorded (both species and 

abundance) within 50m (2017) or 100m (2018) for three, three-minute intervals. Only those birds 

seen within a 50m range were used for this analysis. Additionally, birds flying over the sample 

point were not counted unless they were actively using the air space (e.g., swallows feeding over 

a field, kestrel hovering while hunting). Birds recorded as present in previous time intervals were 

re-recorded since each interval was treated as a separate sample.   

4.2.2 Biodiversity Indices 

We calculated taxonomic richness (TR) at the family-level as many species were difficult 

to distinguish in the field (e.g., swallow species often occurred in mixed flocks). The taxonomic 

diversity metrics we examined were richness (i.e., number of families) and the Shannon index. 

Figure 16: Map of Heilongjiang and location of sites where bird biodiversity was sampled. 

Counties in the Qiqihar (west) and Jiamusi (east) prefectures are outlined in black.  
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As seen in ( 1.1 ), the Shannon index (H) is based on the summation across species abundances, 

where 𝑝𝑖 is the proportional abundance of species 𝑖 and 𝑏 is the log base (natural log), which 

balances the importance of both abundant and rare species (Morris et al., 2014). The vegan 

package in R was used for this calculation (Oksanen et al., 2020; R Core Team, 2021).  

 𝐻 =  − ∑ 𝑝𝑖𝑙𝑜𝑔𝑏𝑝𝑖
𝑖

 ( 1.1 ) 

Before calculating functional diversity indices, we created a trait matrix for all families 

present in our sample (Table 34). In addition to average body mass, we also collected 

information on different suites of binary traits:  habitat preference (wetland, water, grassland, 

open woodland, forest, and forest edge), diet (insects, fish, small mammals, small birds, other 

invertebrates, grains, nestlings/eggs, herps, plant matter, fruits, and carrion), foraging behavior 

(stalking, bark gleaning, hovering, hawking, scanning, foliage gleaning, continuous aerial 

feeding, ground foraging, sallying diving, dabbling, and probing [see Table 33 for definitions]), 

nesting behavior (ground nester), and migratory status (summer, winter, resident, migration 

route, and scarce). The majority of the information was gathered from the Birds of the World 

database as well as field guides (Billerman et al., 2020; Brazil, 2009). The final trait frequency 

for each family is listed in Table 25.  

 Next, we created functional groups based on the trait matrix by inspecting the 

dendrogram created by clustering the families using the Ward method (Petchey & Gaston, 2006; 

Ward, 1963). Each suite of traits was weighted as follows:  mass (1), habitat preference (1.25), 

diet (1.5), foraging behavior (1.5), ground nester (1), and migratory status (1). The diet and 

foraging traits were weighted the most to prioritize traits that may contribute to ecosystem 

services/disservices related to agriculture (e.g., pest-control, crop destruction, seed predation).  
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In addition to functional group richness, we calculated functional dispersal as well as the 

community weighted means (CWM) of each trait for each sample. Functional dispersion (FDis) 

is the mean distance in a functional space from the centroid, weighted towards the most abundant 

species (Laliberté & Legendre, 2010), and the CWM of each trait allowed us to assess 

community functional composition (Lavorel et al., 2008). All binary trait variables were treated 

as continuous, so higher values of CWM indicate higher frequencies of a given trait. The 

functional diversity metrics were calculated using the FD package in R (Laliberté et al., 2014; 

Laliberté & Legendre, 2010; R Core Team, 2021). 
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Table 25: Summary of trait frequency for families (n=30) 
 

 freq perc (%) 

H
ab

it
at

 P
re

fe
re

n
ce

 Wetland 20 66.7 

Open woodland 18 60.0 

Grassland 17 56.7 

Forest Edge 13 43.3 

Forest 11 36.7 

Water 8 26.7 

D
ie

t 

Insects 27 90.0 

Other invertebrates 27 90.0 

Grains & seeds 14 46.7 

Plant matter 12 40.0 

Small herps 11 36.7 

Fruits & berries 10 33.3 

Nestlings & eggs 8 26.7 

Fish 7 23.3 

Small mammals 5 16.7 

Small birds 5 16.7 

Carrion 2 6.7 

F
o

ra
g

in
g

 B
eh

av
io

r 

Ground foraging 17 56.7 

Foliage gleaning 15 50.0 

Sallying 6 20.0 

Hovering 5 16.7 

Diving 5 16.7 

Probing 5 16.7 

Hawking 4 13.3 

Scanning 3 10.0 

Continuous aerial 3 10.0 

Dabbling 2 6.7 

Stalking 1 3.3 

Bark gleaning 1 3.3 

N
es

ti
n

g
 &

 M
ig

ra
ti

o
n

 Ground nester 12 40.0 

Summer 23 76.7 

Migratory 23 76.7 

Resident 10 33.3 

Migration route 4 13.3 

Scarce 1 3.3 

Winter 0 0.0 
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4.2.3 Landscape Metrics 

The classified landcover rasters (see chapter 3) for 2017 and 2018 were exported at a 

GEE scale of 10 and used to calculate landscape metrics using the landscapemetrics R package 

(Hesselbarth et al., 2019; R Core Team, 2021).  Nineteen samples were removed from this 

analysis due to uncertainty in the land cover classification, resulting in a final sample size of 188. 

All metrics were calculated at three different extents:  250m, 500m, & 1000m (Figure 17). 

Different extents were used to identify the single extent, by landscape metric, that incorporated 

the greatest amount of variability.  

 

 

Six different metrics were calculated at each extent. Depending on the metric type, 

calculations were conducted at the landscape or class level (Table 26). For the crop diversity 

metric (MSIDI_crop), the input landscape contained only the four crop classes (corn, soybean, 

rice, and ‘other crop’) with the other classes masked (Figure 18).  

Figure 17: Comparison of the three extents chosen for landscape metric calculation at the same 

site 
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Table 26: Landscape metric definitions, input, equations, and descriptions (Hesselbarth et al., 

2019; Laliberté & Legendre, 2010). The ‘reclassified’ landcover input merged similar landcover 

classes so that there were only 3 classes contained in the raster (built-up, natural, and cropland). 

Metric Name 

Landcover 

input 

(level) 

Formula Description 

Modified Simpson’s 

diversity index 

(MSIDI)  
Crop classes 

(landscape) 

−𝑙𝑛 ∑ 𝑃𝑖
2

𝑚

𝑖=1

 

𝑃𝑖  = landscape area proportion 

of class 𝑖 
𝑚 = number of classes 

Value of 0 indicates only one patch in landscape. 

Metrics increases (no limit) as the number of patches 

(with equal proportions) increases. 

Mean patch area 

(AREA_MN) 
All classes 

(landscape) 
𝑚𝑒𝑎𝑛(𝐴𝑅𝐸𝐴[𝑝𝑎𝑡𝑐ℎ𝑖𝑗]) 

A landscape with all small patches has a value of 0 and 

increases (no limit) as patch areas increase. Unit in 
hectares.  

Aggregation index 

(AI) 
All classes 

(landscape) 

[∑ (
𝑔𝑖𝑖

max 𝑔𝑖𝑖

) 𝑃𝑖

𝑚

𝑖=1

] ∗ 100 

𝑔𝑖𝑖 = the number of like 

adjacencies 

 max 𝑔𝑖𝑖 = the max number  

of like adjacencies of class i  

Ranges from 0-100. Values of 0 indicate completely 

disaggregated classes. Values of 100 for completely 

aggregated classes in a landscape. Unit in percent.  

Total edge length 

(TE) 
All classes 

(landscape) 

∑ 𝑒𝑖𝑘

𝑚

𝑘=1

 

 𝑒𝑖𝑘= total edge length  

i = target class 

k = all other classes 

Value of 0 if all cells in a landscape raster are edge 

cells or if the landscape only contains one class. 

Increases (no limit) as landscape fragmentation 
increases. Unit in meters.  

Edge density (ED) 
All classes 

(landscape) 

𝐸

𝐴
∗ 10000 

𝐸 = total edge length  

 𝐴 = the total area 

Value of 0 indicates only one patch is present 

(landscape boundary not included). Value increases (no 
limit) as the number of patches increase. Unit in 

meters.  

Percent of landscape 

(PLAND) 
Reclassified 

All classes 

(class) 

∑ 𝑎𝑖𝑗
𝑛
𝑗=1

𝐴
∗ 100 

𝑎𝑖𝑗 = the area of patch 𝑗  

𝑛 = number of patches 

𝐴 = the total landscape area 

Value of 100 indicates only one patch of target class is 

present in landscape. Approaches 0 as class area 
decreases. Unit is percent. 

 
 

  

Figure 18: Example landscape input for crop diversity. All non-crop classes (i.e., built-up, 

forest, grassland, wetland, and water were masked (NA).  
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4.2.4 Prefecture Case Study 

To evaluate impacts of global trade on landscape and bird biodiversity in Heilongjiang, 

we compared two prefectures (Jiamusi and Qiqihar) with differing degrees of landcover change 

as portrayed by soybean planting area. Due to limited availability of Sentinel imagery during our 

study period, we used annual soybean maps derived from Landsat imagery created by another 

group of researchers to inform our selection of the regions (X. Li et al., 2021). The entire 

province experienced growth in soybean area beginning in 2002. However, around 2010, there 

was a sharp decrease in soybean area across all prefectures, though the degree of decline was not 

equal.  

Qiqihar is located in the western half of the province and covers over 42,000 km2. Prior 

to 2000, Qiqihar had the most soybean planted area in the province (X. Li et al., 2021). After the 

increase in the early 2000s, the planted area dropped slightly in Qiqihar resulting in another 

prefecture surpassing the planted soybean area of Qiqihar (X. Li et al., 2021). The Jiamusi 

prefecture is located on the eastern side of Heilongjiang and is slightly smaller than Qiqihar 

(~31,000 km2). Compared to Qiqihar, Jiamusi grew fewer soybeans between 2000-2018, though 

it did go from being the 5th largest grower in 2000 to the 3rd in 2009 (X. Li et al., 2021). 

However, Jiamusi experienced a more severe drop in soybean area compared to Qiqihar, with 

soybean planting area dropping below the pre-increase level in 2018 (Figure 19). Using soybean 

area decline as a proxy for the impact of soybean imports on landscape and bird diversity, we 

selected Jiamusi as an example of greater impact and Qiqihar as an example of the impact. Each 

prefecture has a similar number of samples, with 53 and 55 in Jiamusi and Qiqihar, respectively 

(Figure 20).  
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Figure 19: Soybean area decline for Jiamusi and Qiqihar prefectures. The orange lines highlight 

the difference in soybean area between 2000 and 2018.  

Area (% of prefecture) 
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Figure 20:  Soybean area in 2000 (a,d), 2009 (b,e), and 2018 (c,f) for Qiqihar (a-c) and Jiamusi (d-f). Data from X. Li et al. 2021. 

Bird/landscape samples are depicted by purple points.  

a) b) c) 

f) e) d) 
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4.3 Results  

4.3.1 Biodiversity results 

After inspecting the dendrogram created by clustering the families based on the trait 

matrix, we chose to assess functional group diversity using 15 groups (Figure 21). This value 

was determined based on inspection of a range of group number values. Though other grouping 

schemes could be argued, the 15 groups we created made ecological sense without masking 

functionally unique families and were therefore well-suited to our research objectives. The group 

membership for each family can be found in Table 27.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Cluster dendrogram of families based on functional traits 
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Table 27: Family membership to functional groups and occurrence for all sampled prefectures in 

Heilongjiang, Jiamusi, and Qiqihar (OW=old world). 

   

All 

(n=188) 

Jiamusi 

(n=53) 

Qiqihar 

(n=55) 

Group Family Description 
Fam  

Occ 

Grp  

Occ 

Fam  

Occ 
Grp Occ Fam Occ Grp Occ 

1 Acrocephalidae Reed warbs 63 65 26 26 14 14 

1 Muscicapidae OW Flycatchers 3   0   0   

2 Alcedinidae Kingfisher 1 1 0 0 0 0 

3 Anatidae Ducks 2 4 1 2 1 1 

3 Ardeidae Herons 3   1   1   

4 Campephagidae Cuckooshrike 1 14 1 3 0 7 

4 Cuculidae Cuckoos 7   1   5   

4 Oriolidae Orioles 3   1   2   

4 Turdidae Thrushes 3   0   0   

5 Charadriidae Shorebirds 5 5 3 3 0 0 

6 Columbidae Doves 17 45 7 13 3 5 

6 Emberizidae OW Buntings 29   7   1   

6 Phasianidae Pheasants 1   0   1   

7 Corvidae Crows & Jays 34 34 12 12 13 13 

8 Falconidae Falcons 10 20 4 8 2 2 

8 Laniidae Shrikes 10   4   0   

9 Hirundinidae Swallows 65 70 10 10 26 30 

9 Panuridae Reed Tits 1   0   1   

9 Remizidae Penduline Tits 7   0   6   

10 Laridae Gulls 1 4 0 2 1 2 

10 Phalacrocoracidae Cormorants 2   2   0   

10 Podicipedidae Grebes 2   0   2   

11 Motacillidae Wagtails & Pipits 3 3 0 0 0 0 

12 Paridae Tits 2 33 0 4 0 13 

12 Passeridae OW Sparrows 30   3   13   

12 Troglodytidae Wrens 1   1   0   

13 Picidae Woodpeckers 1 1 0 0 1 1 

14 Rallidae Rails 3 3 0 0 2 2 

15 Sturnidae Starlings 1 3 1 1 0 0 

15 Upupidae Hoopoe 2   0   0   
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Across all samples, the most frequently occurring families were Hirundinidae (swallows), 

Acrocephalidae (reed warblers), and Corvidae (corvids) (Table 27). These three families were 

the most common in Jiamusi and Qiqihar as well, with reedwarblers occurring more in Jiamusi 

and swallows occurring more in Qiqihar. The most common functional groups differed between 

the two prefecture. Across the entire sample area and in Qiqihar, swallows/reedtits (group 9) 

occurred more frequently while reedwarb/flycatchers (group 1) were more common in Jiamusi.  

We also investigated relative frequencies of bird communities based on functional 

groups. In general, many of the communities we found were unique, with only a couple of 

occurrences across all 188 points. The most common community only contained species from 

group 1 (reedwarb/flycatcher) followed by communities compromised solely of families from 

group 9 (swallow/reedtit) (Table 28). These two groups were also found in several other of the 

most common communities, including one where they co-occur. Unlike with the taxonomic 

frequency, Jiamusi had the same most common functional group as the rest of the region 

(reedwarb/flycatcher) while Qiqihar’s most common group was the swallow/reedtit group.  
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Table 28:  Most frequent communities.  

ALL (n=188) Jiamusi (n=53) Qiqihar (n=55) 

comm. Freq description comm. Freq description comm. Freq description 

group1 21 reedwarb/flycatcher group1 10 reedwarb/flycatcher group9 6 swallow/reedtit 

group9 13 swallow/reedtit group6 3 dove/bunting/pheasant group12 5 sparrow/tit 

group12 12 sparrow/tit group7 3 crow/magpie 
group1 

group9 
4 

reedwarb/flycatcher 

swallow/reedtit 

group6 10 dove/bunting/pheasant 

group1 

group5 

group6 

2 

reedwarb/flycatcher 

shorebird/lapwing 

dove/bunting/pheasant 

group9 

group12 
3 

swallow/reedtit 

sparrow/tit 

group1 

group9 
8 

reedwarb/flycatcher  

swallow/reedtit 

group1 

group8 
2 

reedwarb/flycatcher 

falcon/shrike 

group4 

group7 

group9 

2 

thrush/cuckoo/oriole 

crow/magpie 

swallow/reedtit 

group6 

group9 
8 

dove/bunting/pheasant 

swallow/reedtit 

group1 

group9 
2 

reedwarb/flycatcher 

swallow/reedtit 
group7 2 crow/magpie 

group9 

group12 
8 

swallow/reedtit 

sparrow/tit 

group9 

group12 
2 

swallow/reedtit 

sparrow/tit 

group7 

group9 

group12 

2 

crow/magpie 

swallow/reedtit 

sparrow/tit 

group7 6 crow/magpie       

group1 

group6 
5 

reedwarb/flycatcher 

dove/bunting/pheasant 
 
     

group8 4 falcon/shrike       

 

 

 The richness metrics were calculated by aggregating observations for all 3 intervals 

recorded for each point. TR ranged from 0-9 with a mean of 1.66 (Table 29). The number of 

functional groups (FGR) had a similar mean to TR (1.62) and ranged from 0-8 (Table 29). 

Finally, we mapped the richness metrics across the study region (Figure 23) and found no 

significant differences between Jiamusi and Qiqihar.  

 

Table 29:  Summary table of the richness metrics calculated at the point level for all 

Heilongjiang prefectures (n=188), Jiamusi (n=53), and Qiqihar (n=55) 

 

 

 All Prefectures Jiamusi (more impacted) Qiqihar (less impacted) 

 mean sd mean sd mean sd 

n.sp 1.66 1.37 1.60 1.55 1.73 1.58 

FGR* 1.62 1.28 1.58 1.52 1.64 1.32 
*Number of groups (15) determined based on visual inspection of dendrograms produced using the ward method 

of clustering. 
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Figure 22:  Histograms of the three richness metrics with the mean depicted by the red vertical 

line: number of families (n.sp) and functional group richness (FGR) 

Figure 23: Map of richness metrics:  number of families (n.sp) and unctional group richness 

(FGR). Counties in the Qiqihar (west) and Jiamusi (east) prefectures are outlined in black.  
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The abundance-weighted metrics were calculated at the interval level first, and then 

averaged at the point level. Comparing these two levels of analysis, the mean values of these 

metrics did not differ greatly (Table 30). Therefore, we will focus on the point-level results. 

Shannon (H) diversity ranged from 0-1.53 with a mean of 0.217 (Table 30) with a distribution 

clearly skewed to the right (Figure 24). For the 156 points where functional dispersal (FDis) 

could be calculated, many had a FDis value of zero, indicating the presence of a single species 

(Figure 24). The largest value of FDis in our sample was 0.221, with a mean of 0.043 (Table 31). 

Finally, we mapped the abundance-weighted metrics across the study region (Figure 25) and 

found no difference between the Qiqihar and Jiamusi (p-value > 0.05) (Table 31). 

 

Table 30: Summary table of the abundance-weighted biodiversity metrics averaged across all 

intervals (n=564) and at the point-level for all samples (n=188).   

 Intervals Points 

 mean sd mean sd 

H 0.198 0.354 0.217 0.309 

FDis* 0.047 0.066 0.043 0.052 
* Could not be calculated for communities with 0 species present (32 points) 

 

 

Table 31: Summary table of the abundance-weighted biodiversity metrics at the point-level for 

Jiamusi (n=53) and Qiqihar (n=55).   

 Jiamusi (more impacted) Qiqihar (less impacted) 

 mean sd mean sd 

H 0.22 0.34 0.22 0.31 

FDis* 0.04 0.06 0.04 0.05 
* Could not be calculated for communities with 0 species present (13 and 12 points for Jiamusi and Qiqihar 

respectively) 
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4.3.2 Landscape metric results 

A summary of the landscape metrics calculated for each extent can be found in Table 32. 

Crop diversity at the largest extent was significantly higher in Qiqihar. Percent natural area was 

also significantly higher at the 500m and 1000m extents in Qiqihar, while rice at the highest 

extent was significantly higher in Jiamusi. Though soybean area mean was not significantly 

different between the Jiamusi and Qiqihar samples, Qiqihar had more samples with higher 

soybean percentage (Figure 26).   

 

Figure 24: Map of abundance-weighted biodiversity indices at the point-level:  Shannon-Weiner 

index (shannon) and functional dispersion (FDis). Note that the gray points represent missing 

values (where 0 species are present for FDis. Counties in the Qiqihar (west) and Jiamusi (east) 

prefectures are outlined in black.  

 

Figure 25: Histograms of the abundance-weighted biodiversity metrics at the point-level with 

the mean depicted by the red vertical line: Shannon-Weiner index (shannon) and functional 

dispersion (FDis). 
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Table 32:  Summary table of all landscape metrics at the small (250m), medium (500m), and 

large (1000m) extents. Bold values indicate significant differences between Jiamusi and Qiqihar 

(p-value < 0.1). 

 All HLJ Jiamusi (more impacted) Qiqihar (less impacted) 

 mean sd mean sd mean sd 

msidi_crop_250m 0.30 0.33 0.35 0.37 0.35 0.32 

msidi_crop_500m 0.36 0.34 0.36 0.37 0.41 0.34 

msidi_crop_1000m 0.42 0.33 0.38 0.34 0.49 0.31 

mn_patch_250m 6.03 5.38 4.79 3.83 5.59 5.37 

mn_patch_500m 10.32 9.68 8.71 4.81 9.02 7.29 

mn_patch_1000m 14.11 6.45 13.61 6.90 12.98 5.41 

ai_250m 96.70 2.02 96.26 1.75 96.36 1.98 

ai_500m 96.82 1.51 96.50 1.45 96.55 1.39 

ai_1000m 96.82 1.21 96.70 1.24 96.58 1.19 

te_250m 2.51x103 1.51x103 2.86x103 1.37x103 2.72x103 1.51x103 

te_500m 9.30x103 4.23x103 1.01x104 4.19x103 1.01x104 3.92x103 

te_1000m 3.56x104 1.28x104 3.67x104 1.36x104 3.83x104 1.23x104 

ed_250m 99.54 60.11 113.52 54.43 107.81 60.22 

ed_500m 92.34 42.05 100.39 41.67 100.06 39.02 

ed_1000m 88.41 31.75 90.96 33.76 94.74 30.83 

p_nat_250m 15.35 22.22 10.78 12.72 14.29 20.00 

p_nat_500m 15.63 19.64 9.96 8.94 14.44 15.49 

p_nat_1000m 16.68 18.65 9.14 6.88 15.62 13.53 

p_soy_250m 15.86 26.25 11.31 14.24 11.83 24.19 

p_soy_500m 14.40 22.30 9.62 10.41 12.27 22.12 

p_soy_1000m 13.41 18.81 8.57 8.39 11.53 18.45 

p_corn_250m 29.35 32.02 32.55 34.91 37.19 32.51 

p_corn_500m 29.93 29.50 35.57 34.68 35.43 28.35 

p_corn_1000m 29.65 27.00 36.25 33.02 33.02 24.10 

p_rice_250m 33.35 36.71 37.23 35.53 31.43 34.69 

p_rice_500m 31.81 34.05 36.32 34.81 29.29 30.85 

p_rice_1000m 29.62 30.15 37.29 33.64 26.70 25.54 
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Figure 26: Histograms of percent soybean (p_soy) for Jiamusi (top) and Qiqihar (bottom).  
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4.3.3 Bird Diversity & Landscape Relationship 

  While examining relationships between landscape structure and bird diversity across all 

samples, we found little differences between taxonomic or functional measures of bird diversity. 

However, we observed some significant relationships (p-value < 0.1) between bird diversity and 

landscape structure. Taxonomic (n.sp) and functional group richness (FGR) exhibited similar 

relationships across all landscape metrics (Figure 27). Both were significantly and positively 

correlated with crop diversity and percent natural landcover for all extents, with the degree of 

correlation increasing slightly as extent decreased (Figure 28). Total edge and edge density were 

also positively correlated with these richness metrics (Figure 27).  For TR, the edge metric 

relationships were stronger at the largest extent while the FGR relationships were strongest at the 

smallest extent (Figure 29).    

On the other hand, aggregation was significantly and negatively correlated with 

taxonomic and functional group richness (Figure 27). Percent soybean and corn were also 

negatively correlated with TR and FGR (Figure 27). Soybean area was only moderately 

significant (p-values < 0.1) for the 500m and 1000m extents, while corn was significantly 

correlated for all extents (Figure 30). Neither mean patch size nor percent rice were significantly 

correlated with these biodiversity metrics (Figure 27).  

 

  



91 

  

Figure 27: Correlations between taxonomic richness (n.sp) and functional richness (function group richness). The size of each sign 

corresponds to the number of extents (250m, 500m 1000m) that were significantly positive (+) or negative (-). Metrics with no 

significant relationships are denoted by the null sign (∅). 
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Figure 28: Taxonomic richness (n.sp, red) and functional group richness (FGR, blue) relationships with crop diversity (left) and percent 

natural landcover (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each 

plot.  
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Figure 29: Taxonomic richness (n.sp, red) and functional group richness (FGR, blue) 

relationships with total edge (top left), edge density (top right) and aggregation index (bottom). 

Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left 

corner of each plot.  
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Figure 30: Taxonomic richness (n.sp, red) and functional group richness (FGR, blue) relationships with percent soybean (left) and 

percent corn (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each plot.  
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We found some significant correlations between the abundance-weighted bird diversity 

metrics, Shannon (H) and functional dispersion (FDis), and landscape structure (Figure 31). 

Unlike with richness, crop diversity was substantially less related to H and FDis, with just the 

500m extent being positively related to FDis (Figure 32). On the other hand, percent natural 

landcover, total edge, and edge density were all positively correlated across all extents (Figure 

31-Figure 33). Aggregation was negatively related across all extents for both H and FDis (Figure 

31, Figure 33). H and FDis were negatively correlated across all extents of soybean percentage 

while corn area was only negatively correlated with H at the 1000m extent (Figure 31, Figure 

34). Neither mean patch size nor percent rice were related to the H and FDis biodiversity metrics 

(Figure 31, Figure 40).  
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Figure 31: Correlations between Shannon’s diversity index (taxonomic) and functional dispersal (functional). The size of each sign 

corresponds to the number of extents (250m, 500m 1000m) that were significantly positive (+) or negative (-). Metrics with no 

significant relationships are denoted by the null sign (∅). 
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Figure 32: Shannon-Weiner (shannon, red) and functional dispersal (FDis, blue) relationships with crop diversity (left) and percent 

natural landcover (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each 

plot.  
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Figure 33: Shannon-Weiner (shannon, red) and functional dispersal (FDis, blue) relationships 

with total edge (top left), edge density (top right) and aggregation index (bottom). Pearson’s 

correlation (R) and p-value (p) for each relationship is also included in the top left corner of each 

plot.  
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Figure 34: Shannon-Weiner (shannon, red) and functional dispersal (FDis, blue) relationships with percent soybean (left) and percent 

corn (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each plot.  
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4.3.4 Community Weighted Means and Landscape 

We detected 29 significant correlations between crop diversity and various CWM values. 

Note that all these significant relationships were found to be positive except one. Average mass 

was positively correlated with crop diversity calculated at 250m and 500m (Table 35). Within 

the habitat preference traits, the forest trait was positively correlated with crop diversity at all 

extents (Table 35). The majority of the diet traits (6 out of 11) were positively related to crop 

diversity as well (Table 36). The impact of crop diversity was not as strong when considering the 

suite of foraging traits. Only bark gleaning, hawking, and scanning exhibited significant 

relationships in our sample (Table 37). The ground nesting trait was also correlated with crop 

diversity at the largest extent (Table 38). Finally, the presence of resident species was positively 

related with crop diversity at all extents, while those that passed through the region on migration 

were positively correlated at the medium and largest extents of crop diversity (Table 38). The 

relative relationships between the CWM for habitat, diet, foraging behavior, and migration and 

crop diversity at 1000m can be found in Figure 35.  
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Figure 35: Linear relationships of crop diversity at the 1000m extent and the habitat, diet, 

foraging behavior, and migration community weighted means.  
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Percentage of soybean, corn, and paddy rice was found to be significantly related to many 

of the CWM traits (26, 54, and 55 for soybean, corn, and rice area respectively). We found that 

there were many instances where percentage of rain-fed crops (soybean and corn) and rice paddy 

had opposite relationships with various CWMs. Both corn and rice percent were correlated with 

average body mass, positively and negatively respectively (Table 35). Every habitat preference 

trait, except for forest was negatively correlated with corn and positively correlated with rice. 

Additionally, forest preference was negatively correlated with paddy rice area and positively 

related to soybean (Table 35).   

As with habitat preference, the direction of the significant relationships of the rain-fed 

crops and rice paddy within the diet trait CWMs were often reversed. Percent corn crop was 

correlated with 6 of the diet traits we recorded, 7 significant relationships were found with rice 

percentage, and 2 diet traits were correlated with soybean area (Table 36). Fruit and carrion diets 

CWMs were positively correlated with corn and negatively correlated with rice. Additionally, 

diets that include nestlings/eggs were negatively correlated with rice. Insect, fish, and 

invertebrate diet CWMs were positively related to rice and negatively with corn. Seed diets were 

positively correlated with soybean area and negatively with rice area. Diets with plant matter 

were positively correlated with soybean area and negatively with corn. Herptiles (reptiles and 

amphibians), small birds, and mammal diet CWMs were not significantly related to either crop 

percentage (Table 36).  

 The significant foraging behavior CWMs that were positively correlated with rice (and 

negatively correlated with both corn and soybean) were hawking and ground foraging (Table 

37). Foliage gleaning was also positively correlated with rice but only negatively correlated with 

corn. Scanning behavior was negatively correlated with rice and positively corelated with corn. 

Finally, sallying was negatively correlated with corn while dabbling was positively related with 
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rice area. Birds that typically nest on the ground were positively associated with soybean area but 

negatively correlated with corn (Table 38). Finally, the migration statuses of bird communities 

were significantly correlated with crop area (Table 38). Corn was negatively correlated with both 

summer migrants and those that pass through the regions during their migration. Soybean was 

negatively related to summer migrants and positively correlated with migration route and 

resident species. Rice area negatively correlated with resident species and positively correlated to 

summer migrants. The relative relationships between the CWM for habitat, diet, foraging 

behavior, and migration and the different crop areas at 1000m can be found in (Figure 36-Figure 

38). 

The edge metrics, total edge and edge density were also significantly related to many 

CWM traits. The majority of the relationships were positive with a few negative relationships 

(Table 35-Table 38). Aggregation also had several significant relationships with a number of 

functional traits, with most of them being negative. Mean patch size and natural landcover area 

had relatively fewer significant correlations with CWM values, with mostly negative 

relationships for mean patch size (9 out of 10) and mostly positive for natural area (15 out of 16) 

(Table 35-Table 38).  
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Figure 36: Linear relationships of rice paddy percentage at the 1000m extent and the habitat, 

diet, foraging behavior, and migration community weighted means. 
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Figure 37: Linear relationships of soybean percentage at the 1000m extent and the habitat, diet, 

foraging behavior, and migration community weighted means. 
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Figure 38: Linear relationships of corn percentage at the 1000m extent and the habitat, diet, 

foraging behavior, and migration community weighted means. 
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4.4 Discussion 

This chapter examined the relationship between landscape structure (compositional and 

configurational) and bird diversity using both taxonomic and functional measures of biodiversity 

across multiple scales. For percent crop area, both soybean and corn had significant negative 

correlations with taxonomic and functional diversity while paddy rice had no significant 

relationships. This implies that landscapes with more rain-fed crop area (i.e., fields that are not 

flooded like with paddy rice) support fewer bird species/functional groups. This is further 

supported by studies reporting high levels of species diversity associated with paddy rice farming 

practices (Amira et al., 2018) and highlights the importance of considering crops separately as 

the resources they provide can differ by species/taxa (Gil-Tena et al., 2015).  

Soybean area positively correlated with some functional traits of birds. Soybean area was 

significantly positively correlated with ground nesting, while corn was negatively correlated (rice 

was not significant). Of the 30 families observed in our study, 40% have the ground nesting trait 

meaning soybean cultivation may be conducive to the breeding ecology for many species in this 

agroecosystem. Furthermore, there may be population-level consequences for these species if 

soybean area loss limits the amount of nesting habitat past a certain point. Additionally, both 

migratory (i.e., species that pass through during migration) and non-migratory traits positively 

correlated with soybean area, while summer migrants were positively correlated with rice area. 

In the context of these two important life history strategies, both soybean and rice area positively 

impact different bird groups, while corn decreases the frequency of these traits in the bird 

community. 

We also found that crop diversity and natural landcover were positively correlated with 

bird biodiversity. The fact that natural area has a positive relationship with biodiversity is 

expected, however the significant correlation of crop diversity with both taxonomic and 



108 

functional biodiversity is notable, as not all studies agree with this finding (Martin et al., 2020; 

Redlich et al., 2018). However there are a number of studies that produced similar results (M. B. 

Lee & Goodale, 2018; D. Li et al., 2020; Lindsay et al., 2013). A possible explanation for this 

discrepancy is the presence of paddy rice in our study region as it is able to support species that 

fields of rain-fed crops cannot (e.g., herons, ducks).  

Crop diversity also had several positive correlations with various functional traits which 

could have implications for various ecosystem services (Figure 35, Table 35-Table 38). For 

example, CWM for small mammal diet preference increased with crop diversity, which could 

help control local rodent populations (Fischer et al., 2018; Pejchar et al., 2018; O. M. Smith et 

al., 2021). Furthermore, five of the six significant traits were those associated with a carnivorous 

diet (e.g., small birds, carrion). Similar to soybean percentage, crop diversity was also 

significantly correlated with the ground nesting, migratory-route, and resident functional traits.  

Higher values of edge metrics (total edge and edge density) were correlated with 

biodiversity (both taxonomic and functional) while higher levels of aggregation were associated 

with lower biodiversity. This indicates that landscapes dominated by a small number of 

landcover classes do not support high levels of bird diversity, similar to our finding on crop 

diversity. It is interesting that both edge metrics were found to be important for biodiversity but 

not mean patch size despite the two being closely related (i.e., smaller patch size increases edge 

metrics) as well as other studies finding field size significantly related to species richness (Martin 

et al., 2020). However, the study by Martin et al. (2020) did not include natural landcover in their 

analysis. The semi-natural strips that occur in field margins are known to be beneficial to both 

bird and general biodiversity in a landscape (Blaix & Moonen, 2020; Kujawa et al., 2020; 

Meichtry-Stier et al., 2018). This disagreement may be evidence that semi-natural field edges 
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could mediate the effect of patch size on farmland biodiversity. However, it should be noted that 

we limited the potential effect of patch size by using a maximum extent of 1000m.  

In order to understand the impacts of global trade on Heilongjiang’s agroecosystem, this 

chapter links landcover change (i.e., soybean area loss) to landscape structure and bird 

biodiversity. From 2000-2018, cheap soybean imports drove many Chinese soybean farmers to 

switch to more profitable crops in our study region (Gale et al., 2019; X. Li et al., 2021; J. Sun et 

al., 2018). Using soybean area decrease as a proxy for global trade impact, we compared 

landscape and biodiversity metrics in two regions of Heilongjiang that experienced a decline in 

soybean area, with one exhibiting a greater degree of loss than the other.    

The samples in the more impacted region (Jiamusi) had significantly lower levels of crop 

diversity (i.e., number of crops and evenness of crop area). Additionally, the Jiamusi samples 

had less natural landcover percentage and higher rice percentage. However, the two regions had 

the same levels of both functional and taxonomic biodiversity.   

While the difference in crop diversity can be linked to the differing amounts of soybean 

area loss, the relationship between the amount of natural landcover and global trade is not as 

clear. From 2000-2018, cropland in Heilongjiang expanded substantially with most of the land 

being converted from wetland, grassland, and forests. However, the intensity of the expansion 

was not the same between our two case study prefectures. The more highly impacted region in 

our study, Jiamusi, is located in the Sanjiang plain, which experienced higher rates of cropland 

expansion (increase of 6.8%). In the Songnen plain where Qiqihar (the less impacted area) is 

located, cropland increased by 3.56% (Chen et al., 2022). The factors driving this expansion are 

linked to a number of factors including food security, economic pursuit, and national policies 

(Chen et al., 2022). The degree to which global soybean imports effects these factors is not yet 

clear. For example, the demand for the high-quality rice grown in Heilongjiang has recently 



110 

boomed within China while the profitability of soybeans has decreased due to global trade, 

pushing farmers towards rice cultivation rather than soybean. However, uncovering the causal 

link between these socioeconomic factors and landcover change is challenging and warrants 

further research.   

In the context of global trade, we observed that highly impacted regions (i.e., more 

soybean loss) had lower levels of crop diversity as well as lower levels of natural landcover. 

While we cannot say whether the difference of natural landcover amount is related to global 

trade, we would expect a region with less natural landcover and lower levels of crop diversity to 

have lower biodiversity based on the relationships we found. However, we did not find a 

significant difference for either taxonomic or functional biodiversity between the degrees of 

global trade impact. Therefore, it is possible that the higher amount of rice in the highly impacted 

region mitigated the expected decline in biodiversity due to global trade. In the typical 

heterogeneous landscape of Heilongjiang farmland, the conversion of soybean fields to another 

crop due to low prices, decreased the crop diversity of the landscape (i.e., reduced crop richness 

and/or evenness). However, if they were converted to rice instead of corn, the impact to bird 

communities was less detrimental.   

 In general, we saw little to no discernable differences in the significance, direction, or 

strength of the relationships when using taxonomic versus functional indicators (e.g., species 

richness versus functional group richness).  This finding does not agree with similar studies that 

do report differing relationships of taxonomic/functional diversity and landscape structure 

(Birkhofer et al., 2018; Flynn et al., 2009; M.-B. Lee & Martin, 2017; Morelli et al., 2018). This 

disparity could be related to the relatively small functional space due to environmental filtering 

inherent in our study region (Barragán et al., 2011; Duflot et al., 2014). Extending the amount of 
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time spent sampling (particularly for the abundance-weighted indices) may help reduce this 

issue.  

 A quick note on the impact of scale. We found that some relationships became significant 

at different scales in some cases. However, we also had many instances where scale did not 

matter (i.e., all scales were either significant or insignificant). Therefore, if researchers wish to 

use landscape metrics to model biodiversity, we suggest exploring a number of extents to select 

the appropriate extent to use (while also accounting for collinearity among landscape variables).  

There were some additional limitations to this study. First, there is a need for data from 

across the seasons. For example, this region serves as an important migratory route for many 

species, including some cranes (Austin et al., 2018). Exploring these landscape-biodiversity 

relationships during the harvest/fall season may uncover important temporal dynamics associated 

this agroecosystem (M.-B. Lee & Martin, 2017; Vasseur et al., 2013). Additionally, collecting 

more data across a wider range of landscape metric values (e.g., natural landcover) may help to 

confirm these relationships as well as performing additional analyses that include multiple 

variables and account for imperfect species detections.  

4.5 Conclusions 

This chapter helps contribute to our current understanding of how landscape structure 

mediates farmland biodiversity, which is necessary to promote the multi-functionality of 

agricultural systems.  We found that many aspects of landscape structure can influence both 

taxonomic and functional biodiversity. Additionally, the fact that our findings are not in 

complete agreement with some existing studies suggest that these relationships are dependent on 

the characteristics of a given agroecosystem, and that broad generalizations are not possible 

using these methods alone.  Finally, we show that global trade impacted regions growing 
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soybeans by decreasing crop diversity. This could translate to negative consequences for 

biodiversity but may be mitigated by rice cultivation.   
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APPENDIX 
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Table 33: Table of foraging behavior definitions (M.-B. Lee & Martin, 2017; Remsen & 

Robinson, 1990; Ruxton & Hansell, 2011) 

Behavior Definition 

stalking walking slowly or standing, waiting for prey/food to be 

within reach 

bark gleaning plucking or picking food from bark surface and underneath 

hovering aerial maneuver where bird maintains location while 

searching for prey, dives onto prey from aerial position 

hawking catching and feeding on prey in the air 

scanning watching an area before attacking prey 

foliage gleaning plucking or picking food from surface of leaves and other 

foliage 

continuous aerial feeding similar to hawking, but flies for much longer periods of time 

ground foraging plucking or picking food from the ground surface 

sallying catching prey in the air, then returning to perch to feed 

diving specific to aquatic locations, bird dives below surface for 

food (may dive from water surface or from the air) 

dabbling specific to aquatic locations, bird submerges head/neck 

below the surface to feed  

probing inserting bill into soft substrate to capture food underneath 
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Table 34: Trait matrix for families observed in study area (n=30).  
 Mass Habitat Preference Diet Forage Behavior Nesting & Migration 

M
as

s 
L

o
w

 (
g

) 

M
as

s 
H

ig
h
 (

g
) 

A
v

g
. 
M

as
s 

(g
) 

W
et

la
n

d
 

W
at

er
 

G
ra

ss
 

O
p

en
 W

o
o
d

la
n

d
 

F
o

re
st

 

F
o

re
st

 E
d

g
e 

In
se

ct
s 

F
is

h
 

S
m

al
l 

m
am

m
al

s 

S
m

al
l 

b
ir

d
s 

O
th

er
 i

n
v
er

te
b

ra
te

s 

G
ra

in
 &

 s
ee

d
s 

N
es

tl
in

g
s 

&
 e

g
g

s 

S
m

al
l 

h
er

p
s 

P
la

n
t 

m
at

te
r 

F
ru

it
s 

an
d
 b

er
ri

es
 

C
ar

ri
o

n
 

S
ta

lk
in

g
  

B
ar

k
 g

le
an

in
g
 

H
o

v
er

in
g
 

H
aw

k
in

g
 

S
ca

n
n
in

g
 

F
o

li
ag

e 
G

le
an

in
g
 

C
o
n

ti
n
u
o

u
s 

A
er

ia
l 

G
ro

u
n

d
 

S
al

ly
in

g
 

D
iv

in
g
 

D
ab

b
li

n
g
 

P
ro

b
in

g
 

G
ro

u
n

d
 N

es
te

r 

S
u

m
m

er
 

W
in

te
r 

R
es

id
en

t 

M
ig

ra
ti

o
n
 r

o
u

te
 

S
ca

rc
e 

M
ig

ra
to

ry
 

Acrocephalidae   18.25 29.5 23.88 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 

Alcedinidae 19 40 29.5 1 1 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 1 

Anatidae 750 1500 1125 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 

Ardeidae 649.4   1421.6   1035.5 1 1 0 0 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 

Campephagidae 20 28 24 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 1 

Charadriidae 80.5 665 372.75 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 

Columbidae 144.75 267 205.88 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 

Corvidae  245.33 354  299.67  0 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 

Cuculidae 106 133 119.5 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 

Emberizidae 14 25.4 19.7 1 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 0 1 

Falconidae 118.75 263.25 191 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 

Hirundinidae 17 27.33 22.167 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 

Laniidae 44.67 79 61.833 1 0 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 

Laridae 69.5 112.5 91 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 

Motacillidae 17.2 27.13 22.167 1 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1 

Muscicapidae 13 17 15 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 

Oriolidae 65 100 82.5 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 

Panuridae 12 18 15 1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 

Paridae 2 15 8.5 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 

Passeridae 17 30 23.5 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 

Phalacrocoracidae 1810 2810 2310 1 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 

Phasianidae 545 1990 1267.5 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 

Picidae 17 69 43 1 0 0 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 

Podicipedidae 130 236 183 1 1 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 

Rallidae 273 516 394.5 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 0 0 1 

Remizidae 7.5 12 9.75 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 

Sturnidae 55 100 77.5 0 0 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 

Troglodytidae 6 12 9 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 

Turdidae 60 72 66 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 

Upupidae 46 89 67.5 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 
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Figure 39: Taxonomic richness (n.sp, red) and functional group richness (FGR, blue) relationships with mean patch size (left) and 

percent rice (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each plot. 
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Figure 40: Shannon-Weiner (shannon, red) and functional dispersal (FDis, blue) relationships with mean patch size (left) and percent 

rice (right). Pearson’s correlation (R) and p-value (p) for each relationship is also included in the top left corner of each plot. 
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Table 35: Pearson’s correlation values between CWM for mass and habitat preference and landscape structure metrics. Positive and 

negative correlation values >|0.1| are highlighted in green and red, respectively. P-values ≤0.1 are highlighted in blue. 
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msidi_crop_250m 0.21 0.01 -0.08 0.29 0.11 0.15 -0.01 0.95 0.01 0.86 0.14 0.05 0.05 0.49 

msidi_crop_500m 0.15 0.06 -0.07 0.36 0.07 0.33 -0.02 0.82 0.04 0.58 0.15 0.03 0.06 0.45 

msidi_crop_1000m 0.10 0.20 -0.05 0.51 -0.01 0.90 -0.04 0.57 0.01 0.88 0.13 0.07 0.02 0.74 

mn_patch_250m -0.08 0.30 0.04 0.58 -0.11 0.13 0.04 0.61 0.05 0.48 -0.01 0.87 0.05 0.50 

mn_patch_500m -0.08 0.32 0.05 0.51 -0.08 0.25 0.03 0.70 0.00 0.98 0.00 0.95 0.04 0.58 

mn_patch_1000m -0.04 0.65 0.05 0.54 0.00 0.97 -0.01 0.88 0.05 0.50 -0.05 0.52 0.06 0.41 

ai_250m -0.14 0.09 0.07 0.35 -0.10 0.17 -0.01 0.88 -0.03 0.63 -0.01 0.91 0.00 0.99 

ai_500m -0.17 0.04 0.11 0.14 -0.12 0.09 0.01 0.91 -0.04 0.63 0.01 0.87 0.02 0.75 

ai_1000m -0.12 0.13 0.05 0.48 -0.01 0.88 -0.02 0.73 0.00 0.95 0.02 0.81 0.03 0.71 
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ed_500m 0.17 0.03 -0.10 0.19 0.15 0.05 0.00 0.99 0.04 0.60 0.01 0.91 -0.02 0.79 

ed_1000m 0.13 0.10 -0.05 0.48 0.02 0.76 0.02 0.74 0.00 0.95 0.00 0.98 -0.03 0.71 

p_nat_250m 0.05 0.55 0.07 0.37 0.03 0.70 0.06 0.39 0.05 0.53 0.19 0.01 0.08 0.28 
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p_rice_1000m -0.16 0.05 0.35 0.00 0.14 0.06 0.17 0.02 0.19 0.01 -0.15 0.04 0.26 0.00 
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Table 36: Pearson’s correlation values between CWM for diet preference and landscape structure metrics. Positive and negative 

correlation values >|0.1| are highlighted in green and red, respectively. P-values ≤0.1 are highlighted in blue. 
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msidi_crop_250m -0.03 0.73 0.04 0.57 0.20 0.01 0.20 0.01 0.03 0.67 0.07 0.37 0.22 0.00 0.21 0.00 0.05 0.46 0.19 0.01 0.20 0.01 

msidi_crop_500m -0.01 0.86 0.02 0.79 0.18 0.02 0.18 0.02 0.05 0.48 0.11 0.12 0.19 0.01 0.18 0.01 0.10 0.15 0.13 0.09 0.15 0.03 

msidi_crop_1000m -0.01 0.91 -0.04 0.55 0.12 0.11 0.12 0.11 0.00 0.96 0.10 0.16 0.12 0.10 0.12 0.09 0.10 0.16 0.06 0.41 0.09 0.20 
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ai_1000m -0.03 0.70 0.02 0.80 -0.19 0.01 -0.19 0.01 0.00 0.99 0.03 0.67 -0.18 0.02 -0.20 0.01 0.13 0.07 -0.07 0.37 -0.10 0.18 

te_250m 0.05 0.46 0.10 0.16 0.21 0.00 0.21 0.00 0.08 0.26 0.01 0.86 0.25 0.00 0.22 0.00 -0.09 0.20 0.13 0.07 0.15 0.04 

te_500m 0.04 0.63 0.11 0.15 0.23 0.00 0.23 0.00 0.08 0.28 0.03 0.67 0.24 0.00 0.25 0.00 -0.10 0.18 0.10 0.16 0.14 0.05 

te_1000m 0.03 0.65 -0.01 0.92 0.20 0.01 0.20 0.01 0.00 0.97 -0.01 0.87 0.18 0.01 0.21 0.00 -0.11 0.13 0.08 0.30 0.11 0.14 

ed_250m 0.05 0.47 0.10 0.16 0.21 0.00 0.21 0.00 0.08 0.26 0.01 0.86 0.25 0.00 0.23 0.00 -0.09 0.21 0.13 0.07 0.15 0.04 

ed_500m 0.03 0.64 0.10 0.15 0.23 0.00 0.23 0.00 0.08 0.30 0.03 0.70 0.24 0.00 0.25 0.00 -0.10 0.18 0.10 0.17 0.14 0.06 

ed_1000m 0.03 0.67 -0.01 0.91 0.20 0.01 0.20 0.01 0.00 0.99 -0.01 0.85 0.18 0.01 0.21 0.00 -0.11 0.13 0.07 0.31 0.10 0.15 

p_nat_250m 0.08 0.25 0.04 0.55 0.10 0.18 0.10 0.18 0.08 0.27 0.03 0.67 0.11 0.12 0.11 0.12 0.12 0.11 0.10 0.16 0.00 0.95 

p_nat_500m 0.04 0.55 0.03 0.69 0.03 0.65 0.03 0.65 0.03 0.65 0.03 0.69 0.04 0.55 0.05 0.53 0.14 0.05 0.09 0.22 -0.05 0.50 

p_nat_1000m 0.06 0.40 -0.01 0.93 -0.03 0.65 -0.03 0.65 -0.03 0.66 0.03 0.68 -0.02 0.82 -0.03 0.71 0.15 0.04 0.03 0.64 -0.09 0.21 

p_soy_250m -0.02 0.77 -0.06 0.42 -0.01 0.88 -0.01 0.88 0.01 0.93 0.25 0.00 -0.02 0.77 -0.02 0.84 0.20 0.01 0.01 0.89 0.06 0.39 

p_soy_500m -0.05 0.50 -0.06 0.43 0.02 0.78 0.02 0.78 0.00 0.97 0.23 0.00 0.01 0.93 0.02 0.81 0.14 0.06 0.00 0.97 0.07 0.31 

p_soy_1000m -0.10 0.18 -0.07 0.34 0.06 0.38 0.06 0.38 -0.01 0.93 0.21 0.00 0.04 0.56 0.06 0.39 0.11 0.14 0.03 0.71 0.08 0.27 

p_corn_250m -0.27 0.00 -0.13 0.08 0.06 0.38 0.06 0.38 -0.30 0.00 0.04 0.58 0.08 0.26 0.05 0.47 -0.18 0.01 0.12 0.11 0.11 0.15 

p_corn_500m -0.28 0.00 -0.12 0.09 0.10 0.17 0.10 0.17 -0.28 0.00 0.06 0.40 0.12 0.10 0.09 0.22 -0.12 0.09 0.15 0.04 0.12 0.09 

p_corn_1000m -0.31 0.00 -0.14 0.06 0.06 0.38 0.06 0.38 -0.25 0.00 0.06 0.41 0.08 0.29 0.05 0.48 -0.10 0.16 0.13 0.09 0.08 0.27 

p_rice_250m 0.17 0.02 0.10 0.18 -0.10 0.18 -0.10 0.18 0.19 0.01 -0.26 0.00 -0.12 0.10 -0.10 0.17 -0.08 0.27 -0.19 0.01 -0.14 0.06 

p_rice_500m 0.19 0.01 0.09 0.21 -0.11 0.15 -0.11 0.15 0.21 0.00 -0.24 0.00 -0.12 0.10 -0.11 0.14 -0.07 0.37 -0.18 0.01 -0.13 0.08 

p_rice_1000m 0.21 0.00 0.13 0.08 -0.08 0.28 -0.08 0.28 0.21 0.00 -0.24 0.00 -0.09 0.22 -0.08 0.27 -0.06 0.40 -0.17 0.02 -0.10 0.19 
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Table 37: Pearson’s correlation values between CWM for foraging behavior and landscape structure metrics. Positive and negative 

correlation values >|0.1| are highlighted in green and red, respectively. P-values ≤0.1 are highlighted in blue. 
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te_1000m 0.02 0.81 -0.02 0.77 0.18 0.01 -0.01 0.91 0.21 0.00 -0.13 0.09 0.06 0.41 -0.01 0.86 0.02 0.77 -0.03 0.69 -0.03 0.71 0.04 0.54 

ed_250m 0.11 0.14 0.08 0.29 0.13 0.08 0.02 0.79 0.19 0.01 -0.03 0.67 -0.02 0.79 -0.04 0.63 0.08 0.30 0.06 0.42 0.04 0.60 0.04 0.60 

ed_500m 0.08 0.27 0.01 0.84 0.18 0.01 0.00 0.95 0.20 0.00 -0.12 0.12 -0.04 0.59 -0.05 0.51 0.09 0.23 0.06 0.38 0.06 0.41 0.08 0.25 

ed_1000m 0.02 0.80 -0.02 0.78 0.18 0.01 -0.01 0.91 0.21 0.00 -0.13 0.08 0.06 0.41 -0.02 0.83 0.02 0.75 -0.03 0.68 -0.03 0.70 0.04 0.55 

p_nat_250m 0.06 0.42 -0.01 0.93 0.15 0.05 0.00 0.98 0.04 0.63 0.04 0.59 0.08 0.28 0.09 0.23 0.16 0.03 0.01 0.87 -0.02 0.84 -0.04 0.60 

p_nat_500m 0.02 0.74 -0.01 0.94 0.13 0.08 -0.07 0.34 -0.03 0.70 -0.02 0.80 0.10 0.16 0.06 0.41 0.23 0.00 0.01 0.91 -0.02 0.79 0.00 0.98 

p_nat_1000m -0.03 0.68 -0.01 0.86 0.09 0.20 -0.16 0.03 -0.06 0.43 -0.08 0.26 0.19 0.01 0.04 0.58 0.21 0.00 -0.01 0.92 -0.03 0.69 0.00 0.95 

p_soy_250m -0.05 0.50 0.00 0.99 -0.07 0.35 -0.29 0.00 0.04 0.56 -0.06 0.38 -0.05 0.47 -0.04 0.55 0.02 0.81 -0.05 0.51 -0.04 0.61 0.01 0.85 

p_soy_500m -0.05 0.53 0.00 0.97 -0.04 0.56 -0.27 0.00 0.09 0.24 -0.10 0.17 -0.08 0.26 -0.09 0.21 -0.02 0.83 -0.05 0.52 -0.04 0.56 0.00 0.98 

p_soy_1000m -0.03 0.63 -0.01 0.87 0.01 0.84 -0.25 0.00 0.12 0.12 -0.12 0.10 -0.11 0.12 -0.12 0.10 -0.01 0.94 -0.07 0.36 -0.06 0.43 -0.02 0.81 

p_corn_250m -0.10 0.16 0.06 0.40 -0.01 0.86 -0.31 0.00 0.16 0.03 -0.29 0.00 0.02 0.82 -0.32 0.00 -0.10 0.16 -0.10 0.16 -0.09 0.23 -0.07 0.34 

p_corn_500m -0.11 0.15 0.01 0.85 0.00 0.95 -0.31 0.00 0.17 0.02 -0.25 0.00 0.00 0.96 -0.30 0.00 -0.10 0.16 -0.10 0.19 -0.08 0.29 -0.08 0.29 

p_corn_1000m -0.09 0.23 0.01 0.90 -0.02 0.83 -0.29 0.00 0.13 0.07 -0.24 0.00 -0.03 0.64 -0.30 0.00 -0.12 0.09 -0.12 0.12 -0.10 0.19 -0.10 0.18 

p_rice_250m 0.05 0.54 -0.04 0.60 -0.02 0.78 0.49 0.00 -0.18 0.01 0.26 0.00 -0.04 0.55 0.21 0.00 -0.02 0.83 0.10 0.18 0.10 0.19 0.01 0.84 

p_rice_500m 0.08 0.30 0.00 0.98 -0.05 0.53 0.50 0.00 -0.18 0.02 0.30 0.00 -0.06 0.45 0.23 0.00 -0.04 0.63 0.08 0.25 0.09 0.22 0.02 0.83 

p_rice_1000m 0.08 0.25 0.03 0.70 -0.05 0.53 0.50 0.00 -0.17 0.02 0.31 0.00 -0.06 0.39 0.23 0.00 -0.02 0.76 0.12 0.10 0.13 0.07 0.05 0.47 
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Table 38: Pearson’s correlation values between CWM for the ground nesting trait/migration status and landscape structure metrics. 

Positive and negative correlation values >|0.1| are highlighted in green and red, respectively. P-values ≤0.1 are highlighted in blue.  
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msidi_crop_250m 0.01 0.93 -0.05 0.50 NA NA 0.13 0.09 0.03 0.70 0.06 0.41 

msidi_crop_500m 0.09 0.20 -0.07 0.34 NA NA 0.18 0.01 0.13 0.07 0.07 0.32 

msidi_crop_1000m 0.14 0.05 -0.07 0.34 NA NA 0.16 0.03 0.18 0.01 0.05 0.48 

mn_patch_250m 0.06 0.44 0.06 0.41 NA NA 0.01 0.88 0.09 0.22 -0.05 0.49 

mn_patch_500m 0.00 0.96 0.05 0.48 NA NA -0.04 0.55 0.03 0.66 -0.05 0.53 

mn_patch_1000m 0.02 0.82 0.00 0.96 NA NA -0.06 0.45 0.00 0.95 -0.07 0.31 

ai_250m 0.16 0.03 0.06 0.44 NA NA -0.02 0.79 0.19 0.01 -0.09 0.20 

ai_500m 0.12 0.10 0.11 0.15 NA NA -0.07 0.37 0.15 0.05 -0.14 0.05 

ai_1000m 0.13 0.09 0.05 0.53 NA NA -0.05 0.53 0.11 0.12 -0.10 0.19 

te_250m -0.13 0.07 -0.04 0.57 NA NA 0.04 0.62 -0.16 0.03 0.10 0.18 

te_500m -0.10 0.19 -0.10 0.19 NA NA 0.08 0.26 -0.12 0.10 0.14 0.05 

te_1000m -0.11 0.13 -0.05 0.51 NA NA 0.06 0.39 -0.10 0.18 0.10 0.17 

ed_250m -0.13 0.07 -0.04 0.57 NA NA 0.04 0.61 -0.16 0.03 0.10 0.18 

ed_500m -0.10 0.19 -0.09 0.20 NA NA 0.08 0.27 -0.12 0.11 0.14 0.05 

ed_1000m -0.11 0.14 -0.05 0.51 NA NA 0.06 0.40 -0.10 0.19 0.10 0.17 

p_nat_250m 0.05 0.50 0.15 0.04 NA NA 0.05 0.51 -0.02 0.82 0.03 0.68 

p_nat_500m 0.12 0.11 0.13 0.07 NA NA 0.03 0.73 0.00 0.98 0.02 0.77 

p_nat_1000m 0.19 0.01 0.16 0.03 NA NA 0.03 0.67 0.07 0.31 -0.02 0.80 

p_soy_250m 0.32 0.00 -0.13 0.07 NA NA 0.25 0.00 0.33 0.00 -0.02 0.83 

p_soy_500m 0.25 0.00 -0.19 0.01 NA NA 0.25 0.00 0.27 0.00 -0.01 0.92 

p_soy_1000m 0.18 0.01 -0.23 0.00 NA NA 0.25 0.00 0.20 0.01 0.00 0.97 

p_corn_250m -0.21 0.00 -0.38 0.00 NA NA 0.06 0.42 -0.23 0.00 -0.07 0.36 

p_corn_500m -0.20 0.01 -0.34 0.00 NA NA 0.08 0.25 -0.19 0.01 -0.06 0.39 

p_corn_1000m -0.21 0.00 -0.34 0.00 NA NA 0.09 0.21 -0.18 0.01 -0.07 0.37 

p_rice_250m -0.09 0.20 0.31 0.00 NA NA -0.27 0.00 -0.05 0.52 -0.02 0.74 

p_rice_500m -0.07 0.35 0.31 0.00 NA NA -0.26 0.00 -0.02 0.76 0.00 0.97 

p_rice_1000m -0.04 0.54 0.30 0.00 NA NA -0.27 0.00 -0.01 0.89 0.03 0.71 
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CHAPTER 5: MODELING BIRD OCCUPANCY IN A CHANGING 

AGROECOSYSTEM 
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Abstract 

International food trade drives global land use change, with consequences for wildlife 

that utilize agroecosystems. Most studies on trade-driven land use change focus on conversion of 

natural habitats to cropland in countries that produce and export agricultural goods. Importing 

countries, however, undergo more indirect land use shifts. Imports have substantial effects on 

domestic crop prices, sometimes resulting in crop switching and abandonment by farmers in the 

importing country and altering the agricultural landscape. To explore these drivers shaping the 

landscape of agroecosystems, we analyzed relationships between bird species-level occupancy 

and agricultural landscape metrics in a region heavily impact by global trade. Our results 

indicated that increased crop diversity significantly increased occupancy of many birds at 

taxonomic and functional levels. Crop diversity was particularly important for less commonly 

surveyed functional groups. Percentage of natural landcover was not as important as expected, 

while metrics related to landscape configuration had few significant impacts on occupancy. 

Increases in rice area had fewer negative impacts to bird occupancy compared to increases in 

corn and soybean. Furthermore, we found more bird groups were negatively impacted by 

soybean area than corn, though this was more apparent at the taxonomic level. By combining 

remotely sensed landscape characteristics with bird diversity observations, this study provides a 

better understanding of how global trade and land use change may ultimately impact 

agroecosystems.  
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5.1 Introduction 

5.1.1 Background 

Environmental sustainability and food security are two of the greatest global challenges 

in modern times (Berry et al., 2014; Foley et al., 2005; Godfray & Garnett, 2014; Willett et al., 

2019). Up until the mid-20th century, food demands were met by local producers but are now 

increasingly satisfied through international trade (Porkka et al., 2013; Sandström et al., 2014; V. 

H. Smith & Glauber, 2020; Tarrant, 1985). Recent research indicates cropland conversions are 

occurring in importing countries in response to international trade (J. Sun et al., 2015; van Vliet 

et al., 2015). Farmer land-use decision making is affected by multiple factors such as climate, 

resources, and crop prices, among others (Lutz, 1998; S. A. Wood et al., 2014). As global trade 

increases, farmers with smaller operations struggle to compete when markets are flooded with 

cheap imports (Tilt, 2008). Crop price plays a large role in determining what small-scale farmers 

choose to grow and whether they plant a single crop type or diversify (Di Falco & Perrings, 

2005; Michler & Josephson, 2017; D. Wood & Lenné, 1999). Additionally, as small-scale 

farmers in developing countries become integrated in a global commodity market, they must 

consider risk and market uncertainty more than ever before (Hao, 2010). Responses of farmers to 

global markets contribute to socioeconomic drivers that ultimately shape landscapes of 

agroecosystems.  

Research that links global trade, changes in landcover/use, and local biodiversity in the 

same context is lacking. Due to challenges associated with linking social and ecological data, 

many studies default to measuring landcover change alone or using a species area relationship to 

evaluate biodiversity impacts (Chaudhary & Brooks, 2019; Estrada et al., 2019; Newbold et al., 

2015; Sala et al., 2000). While informative at broad scales, this approach often over-simplifies 
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the complex relationships species have with their habitat at the local scale (Souza et al., 2015). 

Moreover, many studies on landcover change focus on destruction of “natural” habitat to assess 

impacts on biodiversity. Subsequently, the biodiversity potential of farmland is often overlooked 

(Norris, 2008).  

The level of biodiversity that can be sustained in a predominantly agrarian region 

depends on farming practices that shape the landscape. For example, soil management (tilling), 

marginal land care (mowing), and chemical inputs (fertilizer and pesticide application) can all 

impact suitability of farmland for both animal and plant species (Billeter et al., 2008; Geiger et 

al., 2010; Humbert et al., 2012; Sapkota et al., 2012). It is also understood that landscape 

heterogeneity, in general, supports high levels of biodiversity (Fahrig et al., 2011; MacArthur & 

MacArthur, 1961; Tews et al., 2004) -- though too much heterogeneity can have negative 

impacts due to fragmentation or inadequate patch sizes of habitat (Allouche et al., 2012).  Studies 

in agriculture have found heterogeneity across all landcover classes, including semi-natural, 

natural, built-up, and other features can positively effect biodiversity (Benton et al., 2003; 

Firbank et al., 2008; M.-B. Lee & Martin, 2017). However, those measures of heterogeneity are 

often outside the scope of conservation strategies that could be employed to increased farmland 

biodiversity. In terms of landscape structure, farmers have control on the types of crops they 

grow, where they grow them on their land, and their management of marginal land/field edges 

(Aguilar et al., 2015; Hayden et al., 2021; Jupiter, 2020, 2020; Preissel et al., 2017). Unless they 

decide to take land out of production (which may not be ideal for either the farmer’s bottom line 

or food security (Garibaldi et al., 2017; Kremen & Merenlender, 2018; Tscharntke et al., 2012)), 

their control over other aspects of the landscape is restricted. However, if relationships between 

biodiversity and actionable landscape metrics (e.g., percentage of natural area to inform land 
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sparing amounts, crop diversity to inform how many crops to grow in a given area) were 

understood, they could be more easily translated to conservation strategies focused on farmers.  

5.1.2 Research Goal 

The goal of this study is to assess relationships between landscape structure (i.e., 

composition and configuration) and bird diversity in a region highly impacted by global trade. 

Specifically, this study looked at relationships between bird occupancy and landscape metrics 

using a multi-species occupancy modeling approach and assessed occupancy of taxonomic and 

functional bird groups. By gathering empirical wildlife data and linking it with landscape 

metrics, this chapter bridges the gap between landcover and a metric of local biodiversity that 

often exists in CHANS research and places it into context of the global interconnected CHANS 

encompassing the soybean trade. 

5.2 Methods 

5.2.1 Bird Data 

In the summer of 2017 and 2018, we collected bird biodiversity data at 207 different 

points across Heilongjiang. These geolocated data were collected using a point count method 

(Bibby, 2000; Hutto, 1986). All birds seen or heard were recorded within a 50m (2017) or 100m 

(2018) radius for three, three-minute intervals. The use of temporal intervals allows for the 

calculation of detection probabilities (Zipkin et al. 2010).  If individuals were not identifiable to 

the species, they were put into a non-specific category (e.g., crow spp, swallow spp). We also 

evaluated bird occurrence from a functional perspective by grouping each family into 15 

different groups based on morphological and life history traits (see chapter 3). The composition 

of the functional groups was a mixture of single-family groups as well those that combined 
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several similar families. Each group was also given an alias to aid in the interpretation of the 

results.  

5.2.2 Landscape Metrics 

To portray landcover around each bird survey point, landscape metrics were derived from 

classified landcover rasters (see chapters 3-4). Nineteen samples were removed from this 

analysis due to uncertainty in the land cover classification, resulting in a final sample size of 188. 

All metrics were calculated using the R package landscapemetrics at three different extents:  

250m, 500m, and 1000m (Hesselbarth et al., 2019). We calculated seven landscape metrics to 

use as predictors of bird occupancy in our model (Table 39). The landscape-level metrics we 

selected for our model included the modified Simpson’s diversity index of crop cover classes 

(msidi_crop), mean patch size (mn_patch), and aggregation index (ai). At the class level, we 

chose to include percent natural area, percent soybean, percent corn, and percent rice. These 

metrics were chosen based on previous work as well as our research goal of evaluating both 

landscape composition and configuration (Gil-Tena et al., 2015; M. B. Lee & Goodale, 2018; D. 

Li et al., 2020; Liao et al., 2020; C. Wood et al., 2017). To capture the largest range of variation 

for each metric, the extent which demonstrated the most variability (i.e., largest distance between 

end points of a boxplot) was identified for each metric. The correlations between each metric 

were also calculated to ensure the predictors in the model were not severely colinear (i.e., 

correlation > 0.7).  
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Table 39: Landscape metrics selected for model. The ‘Reclass’ input refers the landcover raster 

that merged crop classes (soybean, corn, rice, and other) into one ‘cropland’ class and the natural 

classes (forest, grassland, wetland, and water) into one ‘natural’ class.  

Metric Unit Level Type Input 

MSIDI none landscape diversity Crop classes only 

AREA_MN hectares landscape area & edge All classes 

AI percentage landscape aggregation All classes 

PLAND_Natural percentage class area & edge Reclass 

PLAND_Corn percentage class area & edge All classes 

PLAND_Soy percentage class area & edge All classes 

PLAND_Rice percentage class area & edge All classes 

 

5.2.3 Occurrence Model  

To assess relationship between landscape structure and bird diversity, we utilized a 

multispecies hierarchical occupancy model (M.-B. Lee & Martin, 2017; Zipkin et al., 2010) 

(Zipkin et al. 2010).  The model estimates occupancy using a Bayesian approach while 

accounting for imperfect detection.  All variables were standardized prior to running the model. 

Since the radius for point counts was increased from 50m to 100m in 2018, the detection and 

occurrence means were also calculated separately to account for unequal effort between the years 

(MacKenzie, 2018).  

Our model is structured as a typical hierarchical occupancy model with two connected 

regression models estimating the ecological and detection processes separately (Kéry & Schaub, 

2012). The occupancy state for species i at point j is a binary variable where a species occurs at 

point 𝑗  when 𝑂𝑐𝑐𝑖𝑗 = 1 and 𝑂𝑐𝑐𝑖𝑗 = 0, otherwise.  The occurrence state ( 1.1 ) was modeled as 

the outcome of a Bernoulli random variable where 𝑝𝑂𝑐𝑐𝑖𝑗 is the probability species 𝑖  occurs at 

point 𝑗. The analysis of the model used data augmentation to allow for estimations of the number 

of families (or groups) that were unobserved during sampling. As described in Royle et al. 2007 

and Zipkin et al. 2010, this is achieved by modifying the occurrence process with wi (Royle, 
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Dorazio, and Link 2007; Zipkin et al. 2010). For the taxonomic and functional level models, the 

dataset was augmented with 30 and 15 zeroes, respectively.  

 
𝑂𝑐𝑐𝑖𝑗~ 𝐵𝑒𝑟𝑛(𝑝𝑂𝑐𝑐𝑖𝑗 ∗ 𝑤𝑖) 

 

 ( 1.1 ) 

We modeled the detection state similarly ( 1.2 ), with detection being determined by 

detection probability for species 𝑖 at point 𝑗 during interval 𝑘 and occupancy state (i.e., whether 

or not species 𝑖 is actually at point 𝑗). 

 
𝐷𝑒𝑡(𝑖, 𝑗, 𝑘)~ 𝐵𝑒𝑟𝑛(𝑝𝐷𝑒𝑡𝑖𝑗𝑘 ∗ 𝑂𝑐𝑐𝑖𝑗) 

 
( 1.2 ) 

 Since we expected occurrence and detection probabilities to vary by species, landscape 

structure, and survey characteristics, a logit link function was used to incorporate these effects.  

We modeled occurrence probability ( 1.3 ) using a linear combination of crop diversity, 

aggregation index, mean patch size, percent natural landcover, percent rain-fed crop cover, and 

percent rice cover as well as longitude to account for underlying species distributions that 

differed from east to west. The 𝑂𝑐𝑐17𝑖 term is the occurrence probability for species 𝑖, when all 

other covariates are equal to their mean. The 𝑂𝑐𝑐18𝑖 term exists to modify occurrence 

probability for samples collected in 2018 (𝐼𝑛𝑑𝑗 = 1).  

 

logit(pOccij) = 𝑂𝑐𝑐17𝑖 + 𝑂𝑐𝑐18𝑖𝐼𝑛𝑑𝑗 + 𝑀𝑆𝐼𝐷𝐼𝑐𝑟𝑜𝑝𝑗𝛽1𝑖 + 𝑀𝑁𝑝𝑎𝑡𝑐ℎ𝑗𝛽2𝑖 +

𝐴𝐼𝑗𝛽3𝑖 + 𝑃𝐿𝐴𝑁𝐷𝑛𝑎𝑡𝑗𝛽4𝑖  +  𝑃𝐿𝐴𝑁𝐷𝑠𝑜𝑦𝑗𝛽5𝑖  + 𝑃𝐿𝐴𝑁𝐷𝑐𝑜𝑟𝑛𝑗𝛽6𝑖 +

𝑃𝐿𝐴𝑁𝐷𝑟𝑖𝑐𝑒𝑗𝛽7𝑖 + 𝐿𝑂𝑁𝐺𝑗𝛽8𝑖 

 

( 1.3 ) 

For detection probability ( 1.4 ), we included the time of the sample (calculated as the number of 

minutes after sunrise) as a predictor in addition to the 𝐷𝑒𝑡17𝑖 and 𝐷𝑒𝑡18𝑖 terms.  

 logit(pDetijk) = 𝐷𝑒𝑡17𝑖 + 𝐷𝑒𝑡18𝑖𝐼𝑛𝑑𝑗 + 𝑠𝑢𝑛𝑟𝑖𝑠𝑒𝑗𝑘  𝛼𝑖 

 

( 1.4 ) 

An important characteristic of this modeling approach links the species-level processes to 

a community-level component, where all species parameters are drawn from a shared 

distribution. This allows for the species-specific parameters to be treated as random effects that 
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are governed by community hyperparameters. These hyperparameters were assumed to be 

normally distributed with a parameter-specific mean of µ and standard deviation of σ. Similarly,  

µ and σ were also specified for all species-level parameters. 

We conducted a Bayesian analysis of the model using the programs R and WinBUGS 

(Lunn et al., 2000; R Core Team, 2021). We defined independent, diffuse prior distributions for 

the community hyperparameters (see appendix for model code) and ran the model with 3 chains 

of 75,000 iterations after a 75,000 burn-in and thinned by 10. Model convergence was evaluated 

using the Gelman diagnostic (Brooks & Gelman, 1998).  

5.3 Results 

5.3.1 Model data 

 A total of 2444 bird observations were made across all 188 point-count locations and 

intervals, spanning 13 orders and 30 families (Table 40). The majority of species were passerines 

from the Hirundinidae (swallow), Acrocephalidae (reed warbler), Corvidae (crow/magpie), 

Passeridae (old world sparrow), and Emberizidae (bunting) families (Table 40). At the species 

level, 46 unique species were identified. The most frequent group in our sample (group 9) 

consisted of swallows and reed tits (swallow/reedtit) followed by group 1 (reedwarb/flycather) 

and group 7 (crow/magpie) (Table 42).  
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Table 40: Frequency of bird order and family in sample 

Order #  Family #  

Passeriformes 2080  Hirundinidae 727  

Columbiformes 104  Acrocephalidae 468  

Charadriiformes 60  Corvidae 321  

Falconiformes 59  Passeridae 284  

Pelicaniformes 43  Emberizidae 118  

Anseriformes 28  Columbidae 104  

Cuculiformes 28  Falconidae 59  

Gruiformes 11  Remizidae 53  

Galliformes 9  Laniidae 42  

Phoenicopteriformes 4  Ardeidae 41  

Piciformes 4  Charadriidae 32  

Bucerotiformes 3  Anatidae 28  

Coraciiformes 1  Cuculidae 28  

   Laridae 28  

   Oriolidae 13  

   Rallidae 11  

   Muscicapidae 10  

   Panuridae 10  

   Motacillidae 9  

   Paridae 9  

   Phasianidae 9  

   Turdidae 8  

   Picidae 4  

   Podicipedidae 4  

   Sturnidae 3  

   Troglodytidae 3  

   Upupidae 3  

   Campephagidae 2  

   Phalacrocoracidae 2  

   Alcedinidae 1  
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Table 41: Functional group composition and species frequency 

  Group Spp Family Order Freq 

1 reed_warbler Acrocephalidae Passeriformes 351 

1 black_browed_reed_warbler Acrocephalidae Passeriformes 106 
1 thick-billed_warbler Acrocephalidae Passeriformes 6 

1 oriental_reed_warbler Acrocephalidae Passeriformes 5 

1 stonechat Muscicapidae Passeriformes 10 

2 common_kingfisher Alcedinidae Coraciiformes 1 

3 duck_spp Anatidae Anseriformes 28 

3 bittern_spp Ardeidae Pelicaniformes 18 

3 great_egret Ardeidae Pelicaniformes 10 
3 gray_heron Ardeidae Pelicaniformes 7 

3 purple_heron Ardeidae Pelicaniformes 5 
3 striated_heron Ardeidae Pelicaniformes 1 

4 ashy_minivet Campephagidae Passeriformes 2 

4 common_cuckoo Cuculidae Cuculiformes 28 

4 black_naped_oriole Oriolidae Passeriformes 13 
4 thrush_spp Turdidae Passeriformes 7 

4 siberian_thrush Turdidae Passeriformes 1 

5 shorebird_spp Charadriidae Charadriiformes 23 
5 northern_lapwing Charadriidae Charadriiformes 9 

6 dove_spp Columbidae Columbiformes 46 

6 pigeon Columbidae Columbiformes 45 

6 spotted_dove Columbidae Columbiformes 10 
6 oriental_turtle_dove Columbidae Columbiformes 3 

6 bunting_spp Emberizidae Passeriformes 76 

6 chestnut-earred_bunting Emberizidae Passeriformes 24 
6 black_faced_bunting Emberizidae Passeriformes 10 

6 meadow_bunting Emberizidae Passeriformes 7 

6 reed_bunting Emberizidae Passeriformes 1 
6 ring-neck_pheasant Phasianidae Galliformes 9 

7 eurasian_magpie Corvidae Passeriformes 308 

7 crow_spp Corvidae Passeriformes 12 

7 eurasian_jay Corvidae Passeriformes 1 

8 eurasian_kestrel Falconidae Falconiformes 36 

8 amur_falcon Falconidae Falconiformes 11 

8 eurasian_hobby Falconidae Falconiformes 7 
8 falcon_spp Falconidae Falconiformes 5 

8 brown_shrike Laniidae Passeriformes 33 
8 gray_shrike Laniidae Passeriformes 5 

8 shrike_spp Laniidae Passeriformes 4 

9 swallow_spp Hirundinidae Passeriformes 685 

9 red-rumped_swallow Hirundinidae Passeriformes 26 
9 barn_swallow Hirundinidae Passeriformes 16 

9 bearded_reedling Panuridae Passeriformes 10 

9 chinese_penduline_tit Remizidae Passeriformes 53 

10 white_wing_tern Laridae Charadriiformes 25 

10 tern_spp Laridae Charadriiformes 3 

10 great_cormorant Phalacrocoracidae Pelicaniformes 2 
10 little_grebe Podicipedidae Phoenicopteriformes 4 

11 white_wagtail Motacillidae Passeriformes 4 

11 pipit_spp Motacillidae Passeriformes 3 

11 olive-backed_pipit Motacillidae Passeriformes 2 

12 tit_spp Paridae Passeriformes 9 

12 eurasian_tree_sparrow Passeridae Passeriformes 284 

12 eurasian_wren Troglodytidae Passeriformes 3 

13 woodpecker_spp Picidae Piciformes 4 

14 common_moorhen Rallidae Gruiformes 8 

14 common_coot Rallidae Gruiformes 2 

14 crake_spp Rallidae Gruiformes 1 

15 common_starling Sturnidae Passeriformes 3 
15 common_hoopoe Upupidae Bucerotiformes 3 
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Table 42: Functional group frequency and group aliases.  

Group Aliases Group Freq 

swallow/reedtit group_9 790 

reedwarb/flycatcher group_1 478 

crow/magpie group_7 321 

sparrow/tit group_12 296 

dove/bunting/pheasant group_6 231 

falcon/shrike group_8 101 

heron/duck group_3 69 

thrush/cuckoo/oriole group_4 51 

tern/grebe group_10 34 

shorebird/lapwing group_5 32 

rail group_14 11 

pipit/wagtail group_11 9 

hoopoe/starling group_15 6 

woodpecker group_13 4 

kingfisher group_2 1 

 

 As expected, variation of each landscape metric varied among extents (Table 43). 

Two metrics had the greatest spread at the largest extent (mean patch and rice percentage). Crop 

diversity, aggregation, percent corn maximized variation at 500m and the percentage of natural 

landcover and soybean variation peaked at the smallest extent (250m). For the most part, none of 

the metrics were highly correlated, however, aggregation and mean patch size were moderately 

correlated (R = 0..57) as well as corn and rice area (R = -0.59) (Figure 41).  

Table 43:  Data variation for each metric across all extents (250m, 500m, and 1000m). 

 spread 250m 500m 1000m 

metric (standardized) max 250m 500m 1000m max min max min max min 

msidi_crop 500 3.35 3.58 3.37 2.43 -0.92 2.53 -1.06 2.07 -1.29 

mn_patch 1000 1.36 1.44 3.47 0.48 -0.89 0.69 -0.75 2.24 -1.23 

ai 500 4.20 4.42 3.94 1.61 -2.58 2.05 -2.37 1.81 -2.13 

pland_natural 250 3.05 2.32 2.53 2.12 -0.93 1.43 -0.89 1.62 -0.91 

pland_soybean 250 3.36 2.69 3.17 2.33 -1.03 1.82 -0.88 2.34 -0.83 

pland_corn 500 3.38 3.39 3.31 1.84 -1.54 2.09 -1.31 2.15 -1.16 

pland_rice 1000 2.95 3.04 3.11 1.43 -1.52 1.73 -1.31 2.02 -1.09 
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Figure 41: Correlogram for metrics selected as model predictors.  
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5.3.2 Taxonomic model results 

At the community-level, all landscape parameters had 90% Bayesian credible intervals 

(BCIs) that contained zero (Table 44). Crop diversity (msidi_crop) was the only variable 

indicating marginal significance, suggesting that greater crop diversity corresponded to higher 

bird occurrence probabilities (Table 44).  

Table 44: Estimates of hyperparameters for the taxonomic occurrence model 

parameter mean sd lower upper 

occurrence 17 -5.04 2.49 -7.53 -2.56 

occurrence 18 0.42 0.93 -0.50 1.35 

detection 17 0.15 0.65 -0.50 0.80 

detection 18 0.15 0.35 -0.20 0.50 

msidi_crop 0.25 0.32 -0.06 0.57 

mn_patch -0.07 0.34 -0.41 0.26 

ai -0.08 0.39 -0.47 0.31 

pland_nat 0.19 0.36 -0.17 0.54 

pland_soy -0.34 0.46 -0.80 0.12 

pland_corn -0.28 0.47 -0.75 0.18 

pland_rice -0.16 0.53 -0.68 0.37 

long -0.10 0.65 -0.74 0.55 

sunrise -0.04 0.43 -0.47 0.38 

 

The number of bird families with significant and nearly significant coefficient estimates 

(i.e., BCI crossed zero by <0.1) varied across the different landscape metrics. At the family level, 

higher crop diversity significantly associated with higher occupancy probabilities for 5 of the 30 

families (Figure 43). Additionally, all but one family (Laridae) had positive mean estimates and 

several additional families had 90% credible intervals that crossed 0 by <0.1 (e.g., Remizidae, 

Charadriidae, Figure 43).  

Only one family, Hirundinidae, showed significant effects of mean patch size (positive) 

and no families were significant for aggregation (Figure 44). The means for patch size were 

mostly negative. For the aggregation parameter, family means were distributed more equally 
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between positive and negative effects (Figure 44). Panuridae and Anatidae were nearly 

significant, with a positive mean estimate.   

 

 

 

 

Figure 42: Number of bird families with significant and nearly significant coefficient estimate 

means (green, blue = positive, red, orange = negative) for each landscape metric: crop diversity 

(crop div), natural area (nat), rice area (rice), mean patch size (mn patch), aggregation of patches 

(ai), corn area (corn), and soybean area (soy).    
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Figure 43: Dot plot showing the family-specific mean estimates with 90% Bayesian credible 

intervals for crop diversity. Five families had positive estimates with BCIs that did not cross 0 

(Corvidae, Ardeidae, Anatidae, Rallidae, Paridae) 

crop diversity estimate 
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Figure 44: Dot plots showing the family-specific mean estimates with 90% credible intervals for 

mean patch area and aggregation index. 

mean patch size estimate 

aggregation index estimate 



139 

For the percent natural landcover area metric, Panuridae, Troglodytidae, and Phasianidae 

were the only families significantly more likely to occur as natural landcover increased, though 

most of the non-significant groups also had positive mean estimates (Figure 45). Some families 

had negative means (e.g., Corvidae and Campephagidae) but were not significant. For the crop 

percent area metrics, the majority of families exhibited negative associations (Figure 45). 

Soybean area was significantly and negatively associated with Hirundinidae, Corvidae, 

Passeridae, Remizidae, Ardeidae, and Laridae families. The Corvidae family was significantly, 

negatively related to corn planted area with Anatidae and Falconidae being nearly significant and 

negative. Rice paddy area was positively associated with Corvidae occurrence (Figure 45).   
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Figure 45: Dot plots showing the family-specific mean estimates with 90% Bayesian credible 

intervals for percent area natural landcover (forest, wetland, grassland), soybean, corn, and rice 

paddy. 

percent corn estimate percent rice estimate 

percent soybean estimate percent natural estimate 
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Longitude was included in the occurrence model as a covariate to address potential 

underlying regional differences of species distribution between eastern and western halves of the 

province. Families more likely to occur in the western half of the province include Musciapidae, 

Falconidae, Sturnidae, Columbidae, Campephagidae, Lariidae, and Rallidae. Those occurring 

more in the eastern side include Anatidae and Corvidae. The minutes after sunrise covariate for 

detection was only significant for species in the Columbidae family (Figure 46).  

No estimates for detection in 2018 have BCI’s that exclude zero, implying that the 

increase in radius between the two years did not impact detection significantly (Figure 47). Some 

of the families that occurred more often in 2018 due to the increased sample radius include 

Ardeidae, Hirundidae, Campephagidae, and Rallidae.   
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Figure 46: Dot plots showing the family-specific mean estimates with 90% credible intervals for 

longitude and minutes after sunrise, which were used as covariates in the occurrence and 

detection models respectively.  

longitude estimate 

minutes after sunrise estimate 



143 

  

Figure 47: Dot plots showing the family-specific mean estimates with 90% credible intervals for 

occurrence and detection. 

 

 occupancy_17 estimate 

  

occupancy_18 estimate 

detection_18 estimate detection_17 estimate 
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Most of the most abundant bird families (>30 observations) had occupancy probabilities 

higher than the mean across all crop diversity levels. Corvidae, Columbidae, and Ardeidae 

demonstrated the largest increases in occupancy probability as crop diversity increased (Figure 

48). The remaining five families (11 total) were less impacted by crop diversity and had 

relationships similar to the community mean. Hirundinidae demonstrated a substantial positive 

relationship with mean patch size. Most families had a neutral or slightly positive relationship 

with percent natural area, except Corvidae which decreased in occupancy probability as natural 

area increased.  

For the percent crop area metrics, most families had a negative relationship as the 

landscape becomes more dominated by a given class, especially in the case of corn and soybean 

area (all negative). The negative relationship between soybean area and occurrence was 

significant for 5 of the most common families while corn was only significant for one. Rice area 

had negative, non-significant relationships with Columbidae and Ardeidae occupancy and a 

significant, positive relationship in the case of Corvidae (Figure 48). 



145 

Figure 48: All landscape metric relationships with occurrence probability for the most abundant families (>30 observations) 
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5.3.3 Functional model results 

For the functional model, positive values of crop diversity (MSIDI_crop) corresponded to 

higher occurrence probabilities at the community-level, compared to the taxonomic model, 

which had a credible interval that crossed zero (Table 45). All other landscape covariates had 

90% credible intervals that contained zero.  

Table 45: Estimates of hyperparameters for the functional occurrence model 

parameter mean sd lower upper 

occurrence 17 -3.33 2.54 -5.88 -0.79 

occurrence 18 0.43 0.84 -0.41 1.26 

detection 17 0.27 0.60 -0.33 0.86 

detection 18 0.24 0.36 -0.12 0.59 

msidi_crop 0.35 0.34 0.01 0.69 

mn_patch -0.09 0.37 -0.46 0.27 

ai -0.08 0.48 -0.56 0.40 

pland_nat 0.16 0.35 -0.19 0.51 

pland_soybean -0.34 0.51 -0.85 0.16 

pland_corn -0.26 0.49 -0.76 0.23 

pland_rice -0.02 0.55 -0.57 0.53 

long -0.08 0.45 -0.53 0.37 

sunrise -0.13 0.44 -0.57 0.31 

 

The number of bird groups with significant and nearly significant coefficient estimates 

(i.e., BCI crossed zero by <0.1) varied across the different landscape metrics (Figure 49). At the 

group level, higher crop diversity was significantly associated with higher occupancy 

probabilities for 8 of the 15 groups (Figure 50). Additionally, all groups had positive mean 

estimates and several additional families had BCIs that barely crossed zero (e.g., 

reedwarb/flycatcher, woodpecker). Only the dove/bunting/pheasant group was significantly 

impacted by patch size. The majority of the groups had mean estimates that were negative, with 

the woodpecker and shorebird/lapwing groups being nearly significant (Figure 51). The 

shorebird/lapwing group was significantly, positively impacted by aggregation index with the 



147 

crow/magpie and hoopoe/starling groups being nearly significant with negative estimates (Figure 

51).  

 

 

 

  

Figure 49: Number of bird groups with significant and nearly significant coefficient estimate 

means (green, blue = positive, red, orange = negative) for each landscape metric: crop diversity 

(crop div), natural area (nat), rice area (rice), mean patch size (mn patch), aggregation of patches 

(ai), corn area (corn), and soybean area (soy).    



148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 50: Dot plot showing the group-specific mean estimates with 90% Bayesian credible 

intervals for crop diversity. Six groups had positive estimates with BCIs that did not cross 0 

(crow/magpie, shorebird/lapwing, rail, pipit/wagtail, hoopoe/starling, kingfisher) 

crop diversity estimate 
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Figure 51: Dot plots showing the group-specific mean estimates with 90% credible intervals for 

mean patch area and aggregation index. 

mean patch size estimate 

aggregation index estimate 
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For the percent natural landcover area metric, the falcon/shrike and shorebird/lapwing 

groups were significantly more likely to occur as natural landcover increased (Figure 52). For 

soybean and corn area, the majority of groups exhibited negative associations. Soybean area was 

significantly and negatively associated with the crow/magpie, dove/bunting/pheasant, and 

kingfisher groups with the thrush/cuckoo/oriole and falcon/shrike groups being nearly significant 

(Figure 52). Corn area was negatively related to the thrush/cuckoo/oriole and crow/magpie 

groups with the falcon/shrike also being nearly significant (Figure 52).  Rice paddy area was 

only positively related to the crow/magpie group (Figure 52).   
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Figure 52: Dot plots showing the group-specific mean estimates with 90% Bayesian credible 

intervals for percent area natural landcover (forest, wetland, grassland), soybean, corn, and rice 

paddy. 

percent natural estimate percent soybean estimate 

percent corn estimate percent rice estimate 
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Groups that were more likely to occur in the western half of the province included the 

woodpecker, swallow/reedtit, falcon/shrike, and hoopoe/starling groups (Figure 53). Those 

occurring more in the eastern side include the shorebird/lapwing, crow/magpie, 

dove/bunting/pheasant, and kingfisher groups. The minutes after sunrise covariate for detection 

was only significant for the kingfisher (negative) and woodpecker groups (positive) (Figure 53). 

  

Figure 53: Dot plots showing the group-specific mean estimates with 90% credible intervals for 

longitude and minutes after sunrise, which were used as covariates in the occurrence and 

detection models respectively. 

mins after sunrise estimate 

longitude estimate 
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As with the taxonomic model, the mean estimates for the occurrence and detection 

parameters demonstrate that the difference between the two years was most significant for 

occurrence (Figure 54). Some of the groups that occurred more often in 2018 due to the 

increased sample radius include the hoopoe/starling , kingfisher, dove/bunting/pheasant, , 

swallow/reedtit , and crow/magpie groups (Figure 54).  

  

Figure 54: Dot plots showing the group-specific mean estimates with 90% credible intervals for 

occurrence and detection. 

occupancy_17 estimate occupancy_18 estimate 

detection_17 estimate detection_18 estimate 



154 

Finally, we examined the relationship between occurrence probability for each functional 

group and the landscape metrics and found differing effects (Figure 55). Looking at the most 

abundant bird groups (>30), half of the groups had occupancy probabilities higher than the mean 

across all crop diversity levels. Crow/magpie and shorebird/lapwing in particular had the largest 

increases in occupancy probability as crop diversity increased. The dove/bunting/pheasant group 

occupancy increased with mean patch size and the other groups were negatively impacted. The 

aggregation index significantly increased occupancy for shorebird/lapwings, while the other 

groups had negative relationships. Percent natural landcover positively impacted the occupancy 

of the shorebird/lapwing, falcon/shrike, and dove/bunting/pheasant groups while negatively 

impacting the crow/magpie and swallow/reedtit groups. The relationships with soybean area and 

corn were similar, with the shorebird/lapwing group increasing in occupancy more with soybean 

percentage. Increasing rice area decreased occupancy probability for the swallow/reedtit, 

shorebird/lapwing, and falcon/shrike and increased for the dove/bunting/pheasant and 

crow/magpie groups (though the rice parameter was only significant for the crow/magpie group). 
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Figure 55: All landscape metric relationships with occurrence probability for the most abundant groups (>30 observations) 
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5.4 Discussion & Conclusion 

We found that different bird families and functional groups have different relationships to 

landscape structure. Our results show that crop diversity (MSIDI of corn, rice, soybean, and 

‘other crop’) had the most substantial impact on bird diversity. Higher crop diversity increased 

mean occupancy for nearly all bird families and functional groups and was significant for many 

of the rarer families and functional groups, particularly for the latter. Of the five groups that had 

fewer than 30 observations, four had significant, positive parameter estimates for crop diversity 

(rail, pipit/wagtail, hoopoe/starling, kingfisher).  

We saw differences between our taxonomic and functional groupings when modeling 

occupancy. For crop diversity, a majority of the functional groups were significantly more likely 

to occur as crop diversity increased compared to the taxonomic model. This disparity between 

taxonomic and functional highlights that fact that landscape-biodiversity relationships are both 

complex and context-dependent as well as heavily influenced by the method used to define 

functional diversity (Hevia et al., 2016; M.-B. Lee & Martin, 2017). Several studies corroborate 

our finding that a positive relationship between crop diversity and biodiversity exists (M. B. Lee 

& Goodale, 2018; D. Li et al., 2020; Lindsay et al., 2013) yet others found no effect in 

agricultural systems (Fahrig et al., 2015; Martin et al., 2020; Redlich et al., 2018).  

We also found the percent of natural area (i.e., forest, grassland, and wetland) was not 

nearly as important as we expected. The amount of natural landcover was significant in some 

cases, but the effect size was often similar to or smaller than the other percent area metrics. A 

few groups even had negative estimates for natural area (e.g., Corvids). Only a handful of bird 

groups had significantly positive parameter estimates/credible intervals. This may be due to an 

under sampling of natural habitat, though range of percent natural area (250m) was 0.027-100%.  
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The metrics in our model that were more configurational in nature (mean patch area & 

aggregation) were not as significant for the bird groups in our dataset. This is in contrast with 

several studies that report mean patch size as a significant predictor of biodiversity in agricultural 

landscapes (Fahrig et al., 2015; Martin et al., 2020). However, it should be noted that we limited 

the potential effect of patch size by using a maximum extent of 1000m. It is possible there would 

be a significant effect if mean patch size were calculated at a larger extent.  

All significant parameter estimates for percent corn and soybean were negative, while 

rice area only had a positive, significant estimate for Corvidae and the crow/magpie group. At 

the taxonomic level, soybean area had more significantly negative estimates (six families) 

compared to corn (one family). Furthermore, the six families that had significant, negative 

coefficient estimates for soybean area were some of the most commonly observed in our sample 

(i.e., >28 observations). The disparity between soybean and corn’s impact lessened when looking 

at functional group occupancy. Soybean was negatively associated with two groups and corn 

with one, as well as one shared between the two (crow/magpie). A possible explanation for this 

difference is that the lack of perching opportunities for birds in soybean fields. For example, 

shrikes (Laridae family) were often observed perching on corn stalks or trees while scanning for 

prey. That is not possible in a landscape dominated by soybean fields.  

Given that rice area had no negative parameter estimates, this implies landscapes 

completely dominated by rain-fed crops are substantially less habitable than those dominated by 

paddy rice, potentially due to some of the more biodiversity-friendly practices related to rice 

cultivation (e.g., flooding for weed control, rice-fish cultures)(Amira et al., 2018; Y. Sun et al., 

2015; C. Wood et al., 2017). Further validation of this model would enhance its predictive ability 
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as well as provide insight for agroecosystems with similar landscape characteristics (i.e., paddy 

rice, high heterogeneity).  

Overall, we found that different crop types support different bird families and groups and 

that, in general, landscapes that have high crop diversity (in terms of both number of crops and 

relative abundance) maximized occupancy for the most bird species. This suggests that 

monocultures, even at the relatively fine scale of 500m, decrease a landscape’s ability to support 

bird biodiversity.  

Therefore, in the context of global trade impacts, if a region that was only growing 

soybeans converted some land to different crops, then there may have been a benefit to bird 

biodiversity. However, we observed that the more highly impacted region had less crop diversity 

after experiencing soybean area loss. Given the prevalence of small-scale farming in 

Heilongjiang, it is more likely that soybean patches within a crop mosaic (with many crops and 

heterogenous crop field sizes) were converted to more profitable crops, thus decreasing overall 

crop diversity. In addition to decreasing occupancy for all bird families/groups, this likely had an 

outsized, negative impact on rarer bird functional groups (which may have consequences for the 

ecosystem as whole). That being said, if soybean area was converted to rice, the detrimental 

impacts to biodiversity may have been less severe compared to corn as rice had no significantly 

negative parameter estimates for occupancy.  

As these results show, cultivated land is more than capable of supporting a wide array of 

bird species. Furthermore, while many of the species in this agroecosystem are considered 

common, many are experiencing decreasing populations. For example, the Northern Lapwing 

(Vanellus vanellus) is a common sight in Heilongjiang landscapes growing rice, corn, and 

soybeans and is considered 'near threatened' by the IUCN red list. Bird conservation in this 
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region does not necessarily need to focus on increasing natural habitat, but rather, maintaining 

the heterogeneity of the landscape, including the diversity of crops grown, at a relatively fine 

scale. Challenges to the idea that farmland cannot be wildlife habitat are essential for the future 

sustainability of global food systems and biodiversity, in China and across the globe (Kremen & 

Merenlender, 2018; L. Li et al., 2020). As farmers become more involved in global markets, 

their practices often scale-up to reduce costs and maximize yields, resulting in more 

monocultural landscapes. Preserving the crop diversity of farmland, especially in the case of a 

landscape that combines rain-fed crops and paddy rice, will be vital for many of the bird species 

that rely on crop mosaics.   
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APPENDIX 
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Model Code for WinBUGS:  

 
model{ 

     

# Define prior distributions for community-level model parameters 

omega ~ dunif(0,1) 

 

# grand means     

mean ~ dunif(0,1) 

mu.u0 <- log(mean) - log(1-mean)  

 

mean2 ~ dunif(0,1) 

mu.u1 <- log(mean2) - log(1-mean2) 

 

mean3 ~ dunif(0,1) 

mu.v0 <- log(mean3) - log(1-mean3) 

 

mean4 ~ dunif(0,1) 

mu.v1 <- log(mean3) - log(1-mean3) 

 

mu.a1 ~ dnorm(0, 0.001) # MSIDI_CROP 

mu.a2 ~ dnorm(0, 0.001) # MN_PATCH_ALLCLASS 

mu.a3 ~ dnorm(0, 0.001) # AI_ALLCLASS 

mu.a4 ~ dnorm(0, 0.001) # PLAND_NATURAL 

mu.a5 ~ dnorm(0, 0.001) # PLAND_SOYBEAN 

mu.a6 ~ dnorm(0, 0.001) # PLAND_CORN 

mu.a7 ~ dnorm(0, 0.001) # PLAND_RICE 

mu.a8 ~ dnorm(0, 0.001) # LONGITUDE 

mu.b1 ~ dnorm(0, 0.001) # SUNRISE 

 

tau.u0 ~ dgamma(0.1,0.1)   

tau.u1 ~ dgamma(0.1,0.1)   

 

tau.v0 ~ dgamma(0.1,0.1)  

tau.v1 ~ dgamma(0.1,0.1)  

 

tau.a1 ~ dgamma(0.1,0.1) 

tau.a2 ~ dgamma(0.1,0.1) 

tau.a3 ~ dgamma(0.1,0.1) 

tau.a4 ~ dgamma(0.1,0.1)  

tau.a5 ~ dgamma(0.1,0.1) 

tau.a6 ~ dgamma(0.1,0.1)  

tau.a7 ~ dgamma(0.1,0.1)  

tau.a8 ~ dgamma(0.1,0.1)  

tau.b1 ~ dgamma(0.1,0.1)  

 

# Species loop (i) 

for (i in 1:(n+nzeroes)) {  

     

# Create priors for species i from the community level prior distributions 

    w[i] ~ dbern(omega) 

    u0[i] ~ dnorm(mu.u0, tau.u0) 

    u1[i] ~ dnorm(mu.u1, tau.u1) 

 

    v0[i] ~ dnorm(mu.v0, tau.v0)  

    v1[i] ~ dnorm(mu.v1, tau.v1)  
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    a1[i] ~ dnorm(mu.a1, tau.a1) 

    a2[i] ~ dnorm(mu.a2, tau.a2) 

    a3[i] ~ dnorm(mu.a3, tau.a3) 

    a4[i] ~ dnorm(mu.a4, tau.a4)     

    a5[i] ~ dnorm(mu.a5, tau.a5) 

    a6[i] ~ dnorm(mu.a6, tau.a6) 

    a7[i] ~ dnorm(mu.a7, tau.a7) 

    a8[i] ~ dnorm(mu.a8, tau.a8) 

     

    b1[i] ~ dnorm(mu.b1, tau.b1) 

     

## Likelihood ##    

 

# Create a loop to estimate the Z matrix (true occurrence for species i at 

point j) 

 

# Point loop (j) 

    for (j in 1:J) { 

  logit(psi[j,i]) <- u0[i] + u1[i] * Year[j] +   

  a1[i]*std.MSIDI_CROP[j] + a2[i]*std.MNPATCH_ALLCLASS[j] +  

  a3[i]*std.AI_ALLCLASS[j] + a4[i]*std.PLAND_NATURAL[j] +     

  a5[i]*std.PLAND_SOYBEAN[j] + a6[i]*std.PLAND_CORN[j] +   

  a7[i]*std.PLAND_RICE[j] + a8[i]*std.long[j]  

     

                    mu.psi[j,i] <- psi[j,i]*w[i] 

                    Z[j,i] ~ dbern(mu.psi[j,i]) 

     

#Create a loop to estimate detection for species i at point k during sampling 

period k       

        for (k in 1:K[j]) {   

                            logit(p[j,k,i]) <-  v0[i] + v1[i] * Year[j] +  

    b1[i]*std.sunrise[j,k]  

                             

    mu.p[j,k,i] <- p[j,k,i]*Z[j,i] 

                            X[j,k,i] ~ dbern(mu.p[j,k,i]) 

             

                } #k  

       } #j  

        

} #i 

     

# Sum all species observed (n) and unobserved species (n0) to find the  

# total estimated richness 

n0 <- sum(w[(n+1):(n+nzeroes)]) 

N <- n + n0 

     

# Create a loop to determine point level richness estimates for the  

# whole community and for subsets or assemblages of interest. 

for(j in 1:J){ 

Nsite[j]<- inprod(Z[j,1:(n+nzeroes)],w[1:(n+nzeroes)]) 

} #j 
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CHAPTER 6: SYNTHESIS
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This dissertation is part of a larger project aimed at investigating the socioeconomic and 

environmental impacts of global soybean trade across distances using the telecoupling 

framework. Broadly, the work in this dissertation explores biodiversity impacts of telecoupling. 

Furthermore, this study goes beyond quantifying environmental impacts solely as land use 

change with assumed biodiversity implications by translating landscape change due to global 

trade to explicit consequences for bird diversity. In chapter two, a systematic review of the 

distant drivers of global biodiversity change was conducted. After conducting full-text analyses 

of 131 studies and synthesizing impacts of ten types of distant drivers and seven taxonomic 

groups, negative impacts on biodiversity were found to be the most frequent outcome reported. 

Some instances of beneficial and species composition change were observed as well. The most 

common type of drivers studied were trade and tourism. Despite containing some of the world’s 

most important biodiversity hotspots, substantially fewer studies were conducted in Africa and 

Oceania, compared to other developed continents. This synthesis highlights the need for more 

biodiversity research that empirically assesses biodiversity change in the context of 

globalization. 

Chapter three reports on the process of creating the landcover maps used to inform the 

landscape variables used in later chapters.  Studies that use landscape characteristics to explain 

biodiversity patterns are only as good as the landcover maps input. Of the landcover maps 

available to researchers, many have significant limitations (coarse spatial resolution, limited 

temporal and geographic availability, class schemes that are too generalized) in addition to the 

inherent inaccuracies common to all remotely sensed products. The resulting landcover map had 

a fine enough spatial resolution to capture the heterogeneity of the farming landscape in 
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Heilongjiang and achieved a high level of accuracy by utilizing the large library of remotely 

sensed data and computing power of Google Earth Engine.  

 The fourth chapter contributes to the scientific community’s understanding of how 

landscape structure mediates the biodiversity of agroecosystems and places these relationships in 

the context of global trade impacts. In order to assess biodiversity and landscape relationships at 

the functional level, life history and morphological traits were collected for each bird family 

observed in this study, allowing for the calculation of community functional metrics as well as 

the creation of functional groups. After analyzing the relationships of several landscape metrics 

with taxonomic and functional bird community diversity metrics, significant correlations 

between landscape structure and biodiversity were found. Crop diversity, natural landcover, and 

edge metrics were positively correlated with richness while aggregation and rain-fed crop (i.e., 

corn and soybean) area were both negatively related. No relationship with mean patch size was 

found, contrary to other studies’ findings. This disagreement is likely due to inherent differences 

between agroecosystems that primarily cultivate rain-fed crops (i.e., corn, soybean) and those 

that farm paddy rice. In the context of global trade impact, crop diversity appears to be 

negatively impacted as farmers convert soybean fields to other crops, such as corn and rice. 

However, growing paddy rice versus a crop such as corn may be beneficial for functional 

diversity as different bird groups and community traits are associated with flooded rice paddies. 

As growing food security challenges necessitate the use of land for food production, 

understanding how to design these landscapes to bolster biodiversity will be necessary for the 

health of ecosystems across the world. 

The fifth and final chapter models the relationship between landscape structure and 

group-specific occupancy at both taxonomic and functional levels. Using a hierarchical modeling 
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structure and Bayesian analysis, estimates of landscape metric effects were obtained for each 

group and at the community-level.  Overall, crop diversity significantly increased occupancy of 

birds for taxonomic and functional groups. However, the percentage of natural landcover was not 

as important as expected, and metrics related to landscape configuration (i.e., mean patch size, 

aggregation index) had fewer significant impacts on occupancy. The effects of rice, corn, and 

soybean area differed as well. Increases in rice area were not detrimental to bird occupancy 

whereas increases in corn and soybean area had significant negative effects for a number of bird 

families and functional groups. Soybean area in particular exhibited more significant negative 

associations with bird families, which suggests that conversion away from soybean due to global 

trade in a soybean monoculture may have been beneficial for some bird species, especially when 

those fields were converted to paddy rice. However, in the typical heterogeneous landscape of 

Heilongjiang farmland, it is more likely that the conversion of soybean fields to another crop 

decreased the crop diversity of the landscape, which was a much more important contributor to 

bird occupancy. By combining remotely sensed landscape characteristics with biodiversity 

observations, this chapter provides a better understanding of how global trade and land use 

change may ultimately impact agroecosystems and can help inform farmland biodiversity 

conservation strategies. 
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