F r e d e r i c k c v d o c t o r . f o o f ; ± . of ' i t "t'i i l f l u e i I F . i e d l e c r i - . i i o r e o e o f . y lo: o r. .v i■■^ •■ _r o i■^ ^ ..e u lr-j.‘w ,a 9 - kM>L\\\.- ’ 1 - c, .. ■i • >o * I?o ? • " ( to )> 10 -iJC",tVi ^ tv w , • _ k ;■ x-:l ,n c o : 1 9 /. ■,•'f 7 V tj ... • I* "■ tax it, ,\V CO .•I-:l s t a n t , L..1cii" ■*.■'i !* Lo Jo 1 lo •1 1.:. 1 X -1 o /• -'* fa- r o t e ... ■ . ^9 . tv 1*'~ L• 0-194 ?■, go far <.-■1 1 1 lo ■ ^ 111 1 ' t O , I Xt'- uc Jol?.-:. ye, 1 9 ,. - 1 9 . O, In tr-uc j -■\ : 4-. to Colic C, 100 0 -1 9 01 * '*> 1 ^ /» >i ^ t■• LC ;.1 . j '].]. . > 1 O ^ . c. * 'v.■;.tv v i* -1 4'C; of II "i1 ;■>1 ^ > 1 f-> *• -1 o ; 1 ich tj • >: It'. to 0 '>1 1 <- ♦-> 1 W! •'~V^ J - tiiG vOCLCt ' O.. I.iy sico.l loci o : 4---r i : ■- .A. „ vX Oi .x icrl <■an u.ij j.l . l .._ .'. OB' jti. Iji.-P..Ih ij.t ± ~. i,'C.c.*., »i'IOi‘< ■ — 'I’Oi'-'viL i'ivi'i OB' 1 0 0 0 V O iff «.J .ui’.iO:.w !-• — IA 'ey I'TCut ric’c '.7111 lain Oix, tl'ci* ,, x, Oulnii b to <•_ bo lii the Oc]i ■>•j'1 o f oall e0 o o f 10 Gi'j'du-tu s t u d i e s o f .-.ji•1 e u 1 tiu h ; ‘;tio A p p l i e s ■v b1•1 fill.run „ix.-lb or til-.' IX. lir for tlo. lL:0 ;-c<. of i>0Cr0d OF B'HILOoOr • ' •’ /■„ '■ I-! •■A. of ri,•sics 1051 0c1 .fLc. ■i ^n r> >c e Tlib AVx.U;L>iOF iiii .UliJuD FOxv T L L F O K & A T I O H .AN I O N — P A I R B Y TLx, T O T A L AB-OIIFTIOK O F l O O O V O L T i.L-CT'AOITL IN .IR By Frederick A i l 1 1 am Kuether _iN A B o T R a OT ubm i fctca to the S t ?<.1 e Co H e r e in p a r t i a l uciiool of dradufl.te 0t idies of L i d > of A g r i c u l t u r e a n a Arno lie a Sc 1 o nc e f\ilflll:ru nt of the r. - ao i rcrr.n t s f o r the d e c r e e of rOG lOu OF F A I L O ,..'0 1 'A Y ijep- rl;.i'.nt o f 1951 -roved Physics x’xiL, iWjLiiu.Gii j_,•-.iuK-.fY U h OF ,-.i; I O k - F A l u B Y l'-Oti TILL FORk-VI'ION 1 i'ii T O T A L .u3;_ O R F T I O F O F l O O O VOl_T ^ L u C T n O f b Frcderick the c o n s t r u e ted ionization properties Preliain&ry totally measurements absorbed average. This enei’ijy r e q u i r e d f o r 3 8 . 5 ev * 4 . 5 (. f o r absorbed of indicate of ev e l e c t r o n s on the the d e t e r m i n a t i o n of '.V, the a v e r a g e the f o r m a t i o n of a n i o n - p a i r , the particular a c o m p s r i £o n of r e m o v e u f r o m the with ionization case of l O O O chamber. The c a nnot be m e a s u r e u to ratio to be ev e l e c t r o n s electron. low eneryy the prouuces K ion-pairs for these formeu s i mple, to p o s i t i v e the e l e c t r o n s of --uite suitable entering the w h i c h of y i e l d s K, pe r i n i t i a l ions electric currents, simultaneously, ion-pairs r&^uircu c u r r e n t due ionization chamber by the c u r r e n t uue If which appears the aver-.ye n u m b e r o f enerjy n:as. in air. consists course t h at 1 0 3 1 in 2 7 * 5 * 3,j i o n - p a i r s The m e t h o d o f m e a s u r e m e n t , fields -for the m e a s u r e m e n t sl o w e l e c t r o n s in air produce allows .iIR '.Villiam K u e b h e r nn instrument has been of IF the low cnerjy e l e c t r o n w i t h e n e r g y L ev per* i n i t i a l electron, the f o r m a t i o n of an ;V, the ion-pair avers, ye is y i v o n by th e ra t.io h / K • The present instrument r- n_ c of e l e c t r o n s , as w e l l t w e e n 200 e v anti. R O O O ev. experimentally known per unit me a sure track s, f u n c t i o n of the Initial as of m e a s u r i n g .7 f o r e l e c t r o n s '.Vith this specific l e nyth, total is c a p a b l e of information ionization ion—pair electron and the formation m a y be d e t e r m i n e d cnoru. the oneryy be ­ the e x p e r i m e n t a l l y d i f f i c u l t track lenyth, R, to as a TABLE OP CONTENTS Section Pa^e Ionization Processes 1 Ionization Measurements 0 The I m p o r t a n c e Experimental of d e l t a - r u y Ionization Observations on electrons 9 In Air Design Considerations 19 V a c u u m R e q u i r e m e n t s of Chamber the Vacuum Reruiremcats the d u n C h a m b e r of Ionization 91 E l e c t r i c a l an d j^lectronic the E l e c t r o n Gu n Other electronic 14 25 Components for 97 and E l e c t r i c a l Components 40 p r e s s u r e M e a s u r i n g ampul :.mv nt 51 Vacuum ^e-ls 51 Vapor Traps 52 Clcariin 0 of V a c u u m s u r f a c e s 52 Operational details 54 E v a c u a t i o n of I o n i z a t i o n aim G u n Chamber's 54 Care o f the anu d i f f u s i o n P u m p s 55 P o s i t i o n i n g a n d F o c u s i n u of B e a m o n d m a l l Orifice 56 d e t e r m i n e t i o n of the m t r ^ y d i s t r i b u t i o n of e l e c t r o n s F a c s i n p t h r o u g h the dm a l l O r i f i c e i n to the I o n i z a t i o n C h a m b e r 58 The 67 Pore p u m p s . T u i t i o n of the Aemoval of p t o p ; in 0 Gas tn«, I o n i z a t i o n d e t e r m i n e tion of Products the b a t u r n t i o n C o n d i t i o n diffusion and ueconibimtion effects 68 77 80 Ice s u i t s 81 3u 20 ^£ited I m p r o v e m e n t s 86 Conclusion an^ 90 Bibliography acknowledgments 91 L I S T O F FIGUiUiS I^ure I'a^e 16 1 6 A 3 Interior 4 S e c t i o n of L o o r 5 Electron G u n I.iounted o n A n d pi ate 28 6 electron Gun 31 7 3 0 0 v Iie^ula ted T o w e r S The o Oeneral Surface Control P] e u\' — View of x - - — ■*• tlie Lqaixraent of the 20' 1 by 20 3 0 :t D o o r S e al 23 and V o l t a j c SuppGlea Supply 32 iunel \j 38 ■ c • t: «nd - 10 retail 11 An Ion C o l l e c t o r 12 C u r r e n t Lea c u r i n s 13 jj. c. 22 Oe r’no n 0j2 f'lce — of V a c u u m I n t e r f a c e 41 43 44 network Curre.it ^ q l i l ' i c r Curve 49 14 j_ncn-i_y 15 An Io n C o l l e c t i o n Ca r ve 69 16 An Ion C o l l e c t i o n C u r v e 72 17 An Ion C o l l e c t i o n Curve 74 18 Liotribetion 47 63 78 LIST OF TABLES Table I II III IV Pa ^e L e i ta — ray s rjtcocdi;\; l O O e v L n e r j y Prouu.ced by e l e c t r o n a, P r o t o n s , anti Alp!ia-pa rtlclos 11 F r e q u e n c y of I o n - C l u s t e r s containing; Various Numb e r s of Ion i z a t i o n s 12 Felc-itive I o n Y i e l d Lxnerimental Values of K of Clusters 13 in tbe Tietcnniiv: t i o n • 84 THIi A V L R A G L CF aK jA ^ R G T Y R L JJlRLd F O R Tlid N O R k A T I O N ION-P^IR BY ILL T OT A L ABSORPTION O F l O O O V O L T L L jiO T R O N S IN A I R IONIZATION PAOCLSSrL Various protons, pax*ticles, electrons, s u c h as alpha-particlos, gamma-rays, x-rays, etc. neutrons, are o f t e n t h o u g h t o f as p o s s e s s i n g d i f f e r e n t o v e r - a l l p a t t e r n s I o n i z a t i o n as ences the p a r t i c l e s in t h e s e p a t t e r n s their common features. i ng s e c t i on s , a very i o n i z a t i o n c a u s e d bp rays. .delta-rays are o r less) electrons fly through matter. are m o r e frequently As w i l l b e indicated significant f r a c t i o n of the particle initial the l o w ejected by energy the of T he d i f f e r ­ emphasized than i n the f o l l o w ­ the t o ta l Is d u e to d e l t a - (a f e w h u n d r e d v o l t s initial particle from the m o l e c u l e s w i t h w h i c h It c o l l i d e s . W h e n the energy equal there initial particle to the is a f i n i t e all its energy b y an inelastic will be e j e c t e d f r o m the atom or molecule grouna have that the m e d i u m , the p a r t i c l e will y i e l d c o l l i s i o n and a n e l e c t r o n target atom or molecule with It Is v a s t l y m o r e p r o b a b l e t ha t is m e r e l y e x c i t e d state b y r a d i a t i o n . It s k i n e t i c a m e d i u m with Ionization potential of probability negligible velocity. traverses The and later returns the to It s a t o m o r m o l e c u l e m a y a l so energy increased by the collision. 2 As the e n e r g y o f the p a r t i c l e ability of i o n i z a t i o n Increases greatly. (electron ejection, W h e n the the i o n i z a t i o n p o t e n t i a l to be f o r m e u b y the initial for of the f i r s t to cause e n e r g y is i n c r e a s e d particle. Ion or more i o n - p a i r m a y be ionization by and p a r t i c u l a r l y of delta-ray which contributes n om ena, e n e r g y of the to the the the total particle second the electron sufficient I t Is n o t energy only al s o the t h os e slow e l e c t r o n or incident ray or p a r ti cl e becomes the p o s s i b i l i t i e s in Ionization become very numerous. ionization ion-pairs the o b s e r v e d c o l l i s i o n p h e ­ l arge e n o u g h to f o r m m a n y I o n - p a i r s , the s e q u e n c e the the I n i t i a l p a r t i c l e b u t of the p o s i t i v e As hence twice two initial probably ejected with collision, b e h a v i o r In c o l l i s i o n o f The formation) to for Involved In forming the p o s i t i v e the p r o b ­ Ion-pair it b e c o m e s p o s s i b l e is i t s e l f n o t n e c e s s a r i l y ion-pair, Is increased., can o nly be due for However to the i o n i z a t i o n c a u s e d b y the c o m p o n e n t s . For an a l p h a - p a r t i c l e phenomena must be due positive ions, by attachment etc. Ions. Ionization ejected Th e n e g a t i v e electrons, i o n is f o r m e d o f a n e l e c t r o n to a n e u t r a l m o l e c u l e o r a tom. e l e c t r o - n e g a t i v e ,25 the n e g a t i v e air w o u l d b e Og, are f u r t h e r of m u l t i p l y ai r the to the a l p h a - p a r t i c l e , and negative Since o x y g e n is there traversing etc. For some complicating target atoms effects c h a r g e d Ions of mercury, which m a y be In and molecules s u c h as Hg^, Ions the creation Hg"*"*, H g ’4'4'*, K g ’4"*"4”4, formed b y relatively low energy collisions. Ionization by electro-negative u i ssociation of the target molecule, secondary importance i,ven in the absence constructed. as the The to following is roblem is This of cannot the tne e n e r g y I = f(V ). Obviously where naiss the the of or for a par t i c l e the u n k n o w n accuracy Let o r we m a y w r i t e F r o m tlx., fli-st i n t e g r a l fox- the above s and s » i (V ) = J (R ), T * (R ) dR. these track as a f u n c t i o n relation exists between energy are i o n i s a t i o n I ca n electron, s t a t e d in average ion-pairs e x p r e s s i o n f o r Ky. specific d s ■ H f(V) u.V = for K y can be W is the experimental some track of electron. this of tine e l e c t r o n . ca n be d e n o t e d : Integral some range of anu energy anu range as to i n t e g r a t e However be d e t e r m i n e d w i t h of energy of generally be done b e c a u s e electron. the The l i m i t s V the some obtained: formed p e r cm of total Hence the then the forms: f o r m a t i o n of an io na n u a kno vdod, e o f f(V), o func 11o ince f ( V ) J * ( K ) L f (V) V R In in a n i n d i r e c t m a n n e r s can be the to m e a s u r e ^ i v e n energy. of k n o w l e d g e the b e h a v i o r o f I be difficult dV 5 P r o v i d i n g we write T he g o a l o f to m e a s u r e b o t h ion-pair, W, energy of the the d R = L*(V) the e q u i p m e n t w h i c h is the a v e r a g e a n d the aspects of H = L(V); range, electrons# energy Tor R, to b e d e s c r i b e d the the discussion returns the m o r e general The case of an with th e d e t e r m i n a t i o n o f the f o r m a t i o n o f a n i o n - p a i r . is initial The p r e s e n t w ork dea l s o n l y energy for p henomena of a particle. formation of as a f u n c t i o n o f the f i r s t p r o b l e m , to dV the following the i o n i z a t i o n 6 I ON IZ AT I O N lu^ASUKALIhNTS The a v e r a g e energy, has often b e e n assumed energy of W, Tor to b e a c o n s t a n t i n d e p e n d e n t of the i n c i d e n t p a r t i c l e . c o n u i t l o n h o l d s o n l y as l o n g is c o m p a r a b l e electrons. as I n the c a s e the v e l o c i t y o f the p a r t i c l e to l O O e v e l e c t r o n s , relative numbers of e x c i t a t i o n ization collisions of (in w h i c h the Below theoretical with electrons, x:>r'°'ko n s is n o t a c o n s t a n t b u t c o l l i s i o n s and of l i g h t i o n ­ are p r a c t i c a l l y i n d e p e n d e n t the m o v i n g p a r t i c l e . but the v e l o c i t y of o r b i t a l guide. Howev er , indicates particle the n u m b e r o f into t ha t W i n c r e a s e s w i t h d e c r e a s i n g e nergy. the themselves total electrons experimental work and alpha-particles k n o w l e d g e of divide The this is r e l a t i v e l y u n i m p o r t a n t . experimentally the d e t e r m i n a t i o n of W r e q u i r e s for t h at the e n e r g y is u l t i m a t e l y d i s s i p a t e d i n l i g h t collisions. there is no the c o l l i s i o n s w i l l o f co u r s e d e p e n d u p o n the p a r t i c l e v e l o c i t y , as n e a r l y a l l a nd the e n e r g y l o s s e s are o f the and v e l o c i t y of frequency of more violent ionizing theoretical result ionization potential) the n a t u r e 0,2 i.iev p r o t o n s , Y;/illiams^ p o i n t s ou t t h a t c o n s t a n c y o f W is i m p l i e d i n the the It is n o w k n o w n t h a t t h is t h a n the v e l o c i t y of o r b i t a l _ 18 o f air, this is a b o u t 6 x 1 0 c m / sec alpha-particles. o r d e r of the to o r g r e a t e r which corresponds 0.8 Mev the f o r m a t i o n of an i o n - p a i r the e n e r g y d i s s i p a t e d b y the m o v i n g ions formed. two g r o u p s . The d e t e r m i n a t i o n s Absol u te deteimiinations in which the n u m b e r known f r o m w i t h i n formou p e r &rxcx tine ubsox-bed. cloud c l u m b e r e n e r g y g> ^ x ^ t i c X o ox* (as In i o n i s a t i o n c l ifu-abu r determinations v/liich an ionizing a g e n t i s the moving particles are e x p e i ' i : u f ' n t - and. the number of ion-pairs s.tuuic; s ) in of is s observed directly (as in can average of many particles : .invicli c;s ) • for* Secondly, relative ooco.mule, the effectiveness of comi^aroo with the da G 1 al;ha-particle ionization • The 11a G * a.X p b a . - p a r t . i c l e determinations • ing to i..ano^° rately k n o w n Tire anei bo a c c e p tod *'7 • b G oc a c c u r a t e l y the number o f a 1 jplis.— p a r t i c l 1-cnovwrx ization o f waG* calculated, for the measured w h e n wiae rzigc to tlie "o e e m it t ed per second per gram b • 71 V • C3G e n e r g y tlie xc l O ^ oc 10-^. of* ev tlx ex i n i t i a l .0 monoenor^o t i c e l e c t x"*o r* s of* tlie with c o n s i u e r a b l e loo is i.immured, V« may alpha-particle. jo u r t i c l e o Hence when the ion­ be The variation i n i t i a l particle is more easily c n c r g i e s , be totally Ida). G ’ is in equilibrium, and al g )ha - p a r t i c l e s a The strength of a source b e nun of tin. ja,mua-rsy activity *.•s of It s h o u l o ev. in with of „ with \vhich Chadwick anu bills'''® is accu­ X 0° of i.a (C -f D) of rauium i s e n e r g y of the particle accord­ R n t h c . r f o z*d , Too may be m e a s u r e c i i s. most suitable for absolute iro the can be generated over a case of electrons where d o sired energy can bo formed o r_» a o . o m e d i a s 1 z e cl absorbed the sole, c r i t e r i o n If total a b s o i ' p t i o n if* o f ibex brio d o e s fcixa t the initial particle must initial -w m ; r g y n o t u w r j is to be used as dissipated by the particle. occur, some measurement of the r e s i d u a l e n e r g y o f the pa rticle m u s t be made the e n e r g y e x p e n d e d in ionization* to d e t e r m i n e The l a t t e r p r o c e d u r e of c o u r s e i n t r o d u c e s error* I 9 THii I M P O R T A N C E O F D E L T A - R A Y I O N I Z A T I O N In 1 9 1 6 b y photogi*aphing In h y d r o g e n at a l o w p r e s s u r e Bumstead® became the f i r s t electrons radiating estimated 2000e v electrons or delta-rays* to b e t r a c k s of* a l p h a - p a r t i c l e s in a W i l s o n to o b t a i n d e f i n i t e to b e to e m e r g e d i s t i n c t l y , edge* In 1 9 2 2 C* T. distribution of delta-rays experiments maximum range had a nd n o t along theory w o u l a o ut t h a t the f i r s t c au s e o f to a velocity that angle 40 that about twice to be the l i n e o f m o t i o n indicate* In 1 9 2 6 small velo c­ studied a f u n c t i o n of however, th e re track giving it a the angular their energy. the d e l t a - r a y o f t h at o f the al p ha - e j e c t e d n e a r l y at the d i r e c t i o n o f m o t i o n o f the as the Chadwick alpha-particle, s i mp l e collision Q and L m e l e u s 0 p o i n t e d the r e s u l t s o b t a i n e d b y W i l s o n w e r e m i s l e a d i n g 0.2 m m the of delta-ray ionization In h y d r o g e n at n o r m a l out as Wilson estimated It a p p e a r e d ; right a n g l e s R. W i l s o n s l ow electrons but large numbers of delta-rays with ragged Bumstead these Only a few exceptional w h i c h f o r m e d p r o j e c t i o n s o n the particle* evidence of track* the m a x i m u m e n e r g y o f ities, In h i s cloud chamber, f r o m an a l p h a - p a r t i c l e had su ff ic ie nt v e l o c i t y appeared the track cannot be obse r v e d b e ­ surrounding temperature the alpha-particle and pressure than fortp five degrees o f a 2 m m d e l t a — r a y Is 0*V a n d I n the In track* they point the m o s t p r o b a b l e n u m b e r of d e f l e c t i o n s greater since t h r o u g h an the f i r s t 0.2 m m first 0*3 m m of a 0*6 m m 10 d e l t a — ray, It Is 5.4. a forward, d i r e c t i o n . range o f Hence This the l o n g e r was o b s e r v e d . should have Since in a i r the a d e l t a - r a y o f a g i v e n e n e r g y is o n l y o n e - f i f t h that i n h y d r o g e n ; a nd the n u m b e r o f and the the n u c l e u s great, tracks charge on the scattering electrons are r o u g h l y s e v e n t i m e s as chances of d e f l e c t i o n t h r o u g h a large so g r e a t l y i n c r e a s e d the a l p h a - t r a c k that the d e l t a - r a y s w i l l at r a n d o m . argon w i t h this su m m a r y ; emerge f r o m Chadwick and Emeleus their s t u d y o f a l p h a - t r a c k s in h y d r o g e n , a n g l e are helium, conclude air, and 9 MAs f a r as o u r o b s e r v a t i o n s go, the r e s u l t s are in a c c o r d w i t h the v i e w t h a t the d e l t a - r a y a r i s e s f r o m the c o l l i s i o n o f the a l p h a - p a r t i c l e w i t h a n e l e c t r o n i n the a t o m s t h r o u g h w h i c h it p a s s e s . We a s s u m e that, f o r the d i s t a n c e s i n v o l v e d in t h e s e c o l l i s i o n s , the a l p h a - p a r t i c l e a n d the e l e c t r o n b e h a v e as p o i n t charges, a n a t h a t the l a w o f f o r c e b e t w e e n t h e m is that o f the inverse square." H ence i t h a s b e e n e s t a b l i s h e d a straight forward manner m at t e r . t ha t d e l t a - r a y s are f o r m e d in as the i n i t i a l p a r t i c l e traverses H o w e v e r the i o n i z a t i o n p h e n o m e n o n o f p a r t i c l e s n ot be p r o p e r l y u n d e r s t o o d u n t i l tion d u e d i r e c t l y established. can­ the m a g n i t u d e o f the i o n i z a ­ to the d e l t a - r a y e l e c t r o n s h a s b e e n The follo w i n g s e c t i o n s w i l l d e a l w i t h this po i n t . There appears to b e l i t t l e question tha t a m a j o r p o r t i o n of the i o n i z a t i o n c a u s e d b y the i n c i d e n t p a r t i c l e the s e c o n d a r y i o n i z a t i o n o f the d e l t a - r a y . series o f experimental observations on t i o n o n l i v i n g c e l l s L e a 25 r e p o r t s is due to In an e x t e n s i v e the e f f e c t s o f r a d i a ­ the f o l l o w i n g i m p o r t a n c e 11 TABLE I 26 D j^ L T A - K A Y S E X C E L L I N G l O O e v iiUERGY P R O D U C E D B Y ELECTRONS, PROTONS, Electron Energy Kev 0.5 1.5 3.0 6.0 24.0 96.0 192.0 584.0 AND*ALPHA-PARTICLES ^ N u m b e r of Ions P r o d u c e d b y Delta-rays per Primary Ionization 0.225 0.504 0.597 0.672 0.780 0.856 0.891 0.920 Alpha-particle Energy Mev 1.0 4.0 5.0 6.0 8.0 0.718 0.907 0.925 0.939 0.959 Proton Energy kev 1.0 2.0 5.0 4.0 6.0 8.0 10.0 0.905 0.956 0.978 0.981 1.006 1.013 1 .018 ■H-Including t e r t i a r y e l e c t r o n s , delta-rays produced by deltarays 12 of d e l t a - r a y Indicates ionisation. the at the r i g h t formed by e n e r g y of The the Indies-.'tes the the d e l t a - r a y s c o l u m n at the l e f t o f T a b l e incident particle. ratio of of greater t h a n 100 e v e n e r g y Ion-pairs particle. f o r a 5 ilev a l p h a - p a r t i c l e Ions are p r o d u c e d b^ as b y the delta-rays and all n u m b e r o f g iv e s less formed directly by At the same t h a n 1 0 0 ev en e r g y . 0 . 9 2 5 as m a n y These experimental low energy increase created by uelta-rays. the f o l l o w i n g the I n i t i a l time m a n y d e l t a - r a y s their ionization products ions compared d e l t a - r a y s o f e n e r g y e x c e e d i n g 100 ev alpha-particle. are f o r m e d w i t h column the n u m b e r of I o n - p a i r s to the n u m b e r o f Hence The I C. T. the o v e r il. W i l s o n data for a reasonably 42 fast alpha-particle• TABLL II OF ION-CLUSTANS VAKIGoS No. of I o n - p a i r s Fre '.uoncy o f tions in shoals b e N ’UIJBuRS O F I O N I Z A T I O N S In the Cluster of Let us a ssume t ha t Cluster this Size t e n is the the g r o u p h a v i n g m o r e aueouatel^r particles because of h i g h e n e r g y of large the 1 2 3 4 >4 .43 .22 .12 .10 .13 average than f o u r for even the rapid decrease ionizations. Ioni ze t i o n y i e l d o f CONTAINING One the v a r i o u s can Tota] 1.0C n u m b e r of i o n i z a ­ ionizations. fastest Tills initial in the p r o b a b i l i t y t he n agproximi'te the i o n - c l n sters • I 13 TABLE III RELATIVE ION YIKLi) OF CLUSTERS No, of Ion-Pairs In the Cluster 1 2 3 4 >4 Relative Ion Y i e l d of this Cluster ,43 *44 ,36 #40 1,30 Since a lOOev electron can on the average yield about three ion-pairs, approximately forty-two per cent of the Ionization due to delta-rays is accomplished b y delta-rays of lOOev energy or less. their importance. This is probably a lower limit of One can tnen show that 1.5«5 ion-pairs are formed by delta-rays for every ion-pair formed directly by tne alpha-particle. Hence a little more than sixty per cent of the total ionization is due to delta-rays. For protons of the same energy this percentage is apparently somewhat higher. Thus the ionization due to moving electrons is an important fact in the total ionization of heavy particles• 14 iiJtPA AI hLI'lTi'iL O B S E R V A T I O N S ON L L e C T R O N S IN A I R A great amount of work h a s b e e n done by m a n y o b s e rvers with considerable d i s a g r e e m e n t b e t w e e n investigators 1927; PI Johnson^* , 1917; are: S c h m i t z 5 1 , 1928; son^, 1931; K, the n u m b e r of Some o f the Lehmann and Osgood B u c h m a n n 5 , 192 8; F r e u n d 1 5 , 1 93 5 ; and O s g o o d p r o p o s e d them* E i s l 1 4 , 1929; a n d G e r b e s 1 6 , 19 3 5, the f o l l o w i n g e m p i r i c a l P7 , Thom­ Lehmann relation for i o n - p a i r s f o r m e d i n ai r b y a n e l e c t r o n o f energy V electron volts, K = 0.0225 The a c c u r a c y of (V - 17) 200ev - V - lOOOev the d e t e r m i n a t i o n w a s p r o b a b l y of tlie o r d e r of ten p e r cent. In 1 9 3 1 this r e l a t i o n was c o n f i r m e d b y T h o m s o n f o r 50 to 2 7 0 ev e l e c t r o n s , energy electrons. Thomson changed K * 0.0270 and u p o n of all the a s s u m p t i o n energies, the e n e r g y f o r with In 1935, following (V - 17) the l i n e a r i t y h o l d s fo r e l e c t r o n s the o b s e r v a t i o n s of F re u nd . the f o r m a t i o n of an I o n - p a i r 57 ev f or 10 ev e l e c t r o n s , the v a l i d i t y of to: 57 57 ev (V - 1 7 ) / V 1-17/V relations disagree ae f o u n d the c o n s t a n t V* b e c o m e s : W » These th at as w e l l as f o r h i g h however th e re is r e a s o n to this result. G c r b e 3, a st u d e n t of eIsI, empirical r e l a t i o n f o r '-V: 7» = 5 1 . 6 2 -f 5.27 proposed x ( V - V i ) “ a~ * O . O S e v the to be question 15 Vi Is tlie I o n i z a t i o n p o t e n t i a l relation upon which he in Kev. the w o r k o f E i s l theoretically (9 to corrected Tor collection potentials Eisl used, P igge^-^ w i t h The p l u s 200 ev or minus the a b s o l u t e magnitude error. is The vary by subject Gerbes* the o b s e r v a t i o n s relation of Freund. o f ',Y f o r 1000 e v technical ports earlier of instrument has dividual some a c c u r a c y of individual determina­ c e nt . Further, to the errors i f n o t for W does eouivalent serious not h o l d for Apparently W has not yet accuracy improvements so an accuracy expressions Lehmann anu 200 a n a 2000 ev. this investigators b^en will be in to d e t e r m i n e absorbed since a established in air. 1955 as a g u i d e , constructed and the a .Yith re­ the p r e s e n t that ul ti ma te ly in­ o f \Y as a f u n c t i o n o f V m a y b e of p l u s adequate to or minus one ascertain which have bten Osgood, thesis has electrons determinations with accuracy the the in n i t r o g e n sufficient work described the m a n y made in nitrogen. r e l a t i o n b e t w e e n V/ a n d V. The value the large th e w o r k o f about five per to l e a s t been determined with valid and u p o n for the c o n v e r s i o n o f P i g g e 1s w o r k in oxygen the u n u s u a l l y ev can h a r d l y be o f W, this 60 K e v e l e c t r o n s ) to l O O O e v e l e c t r o n s 0.08 tions of W b y Eisl Gerbes based cent. This the v a l i d i t y of advanced by for electrons per having Gerbes and energies between 16 IZiiTiiOD O F oj-TLAi.I-inTIO:; 01” W Tlie m e thou. u s e d Vi will f i r s t of the be tills w o r k explained constructi-m experiment, in which will in b r oau be appears vtrj f r o m ripurfc 1. Tire b e a m o f c h a m b e r is through where the sent enerpy of i o n - p a i r s formeu of is m e a s u r e ! incoming and electrons formed per initial the e n e r g y of the the f o r m a t i o n o f reli t i o n W = V / K . is electron, initial an formed into K. of in the g u n v.ith the ion-pairs number of n umber’ o f .as molecules; one m i c r on -l it er equals a liter of gas at a pressure of one micron, gas at one -t en t h micron, etc. or ten liters of The D is ti l la ti on Products Inc, VMF-260 three-stage oil d i f f u s i o n pump was chosen because it ha d an adequate p u m p i n g speed. The choice of pumps is restricted to oil d i f f u s i o n pumps because of the slow pumping speed of m e r c u r y di f fusion pumps of comparable co s t • The V M F - 2 60 requires a forepressure or exhaust pressure of one-tenth xmn, of m e r c u r y or l o we r for satisfactory o p e r a ­ tion. The pum pi ng action stalls if the pressure differential over the pump becomes too large. chosen for this task. The A Cenco—Kyp er va c— 25 was Cenco — Hyp':-rvac— n5 has a pumping apeeu of about twenty-five m ic ron-liters per second at oxueb'.iijth mm. of mercury and hence it is capable of creating a sufficiently low fox*epressure for the Vx.-F— 210 diffusion pump, Sullivan^*'1 (IP m B) gives a fine account of modern p '.iLpin_ techniques. 27 The d e s i g n of a v a c u u m p u m p in g syst em is quite like the design of a plum bi ng system except for the c o m p l i c a t i o n caused by the c om pr es si bi l it y of the gas. The tubing c o n ­ necting the gun chamber, d i f f u s i o n pump and f o r e p u m p must be adequate to handle the ex pected flow. The g u n c h a m be r ana a iffusion pump were connected b y f o u r -i nc h tubing; b e ­ cause of the co nsiderably h i g h e r pressure b e t w e e n the d i f ­ fusion pump and the forepump a one -i n ch tube was adequate there. A v a c u u m valve was inserted b e t w e e n the d i f f u s i o n pump and the forepump so that the forepump., w h e n not in operation, could be returned to atmospheric p ressure with ou t bringing the rest of the system to atmospheric pressure. Thu gun chamber and pum pi ng system are shown at the right of the tank in Figure 2. Electrical and Electronic Components for the E l e c tr on Gun The work of N i s l e 29 and particularly of Barnes4 h a d indicated that the local facilities v.ere not adequate to form high l y u n i f o r m electron guns. This p r o b l e m was e lim­ i n a t e d b y the use of the electron gun from a conventional 3GF1 cathode ray tube, a port i on of whose glass envelope had been removed. The 3GP1 tube wi t h its original socket was inserted i i an e l e v e n — prong ceramic socket which was m o u n t e d rigidly on chamber• the e, .dplate of T'ig'.i.re b. the The e n d p l a t e gun seals the This is lijfit h a n d illustrated in e n d of T tne 28 Figure 5. Electron Gun Mounted on Endplote 59 shapee. pu-v'cinj ster; I l l u s t r a t e d connector is s e e n fastt n e d to in Fi rare the e n d p l s t e :-n e ivi: t - c o n c u c tor c a b l e d e l i v e r i n g vices necessary the the j u n . end l a t e An o c t a l the cutsivle the end of the elght-conauctor cable connection and -iscopj e c t i o n o f the oT for wall on each other- b y a call services eight copper buss f it tin- the the the sa m e figure electrical ser­ socket m o u n t e d f r o m an o c t a l of oiug joinea to ellov.ed c o n v e n i e n t electrical services bakelite wes such as polystyrene, satisfactorily Further, to d r y at the in this surface exposer the q u a l i t y of of the surface to In service x-.s is Cot- one raw the fire v a c u u m a cracking s e al i ng . seal depenas s h o w n In F i g u r e is b r o k e n upon fhe b a k e l i t e S, by melt­ ana stand up Flicene. a tendency crazing very of the troublesome the condition insulator has be en signs o f d e t e r i o r a t i o n . the g l a s s at a b o u t that insul: tors, showed T h is w a s and thrust of b a k e l i t e not or so the for melting polystyrene tv.o y e a r s w i t h o u t Lube will temperature needed develop wires was made than b e t t e r for polystyrene snugly the b a k e l i t e supported s ea l from holes the b u s s oints of c o n t a c t used rather tdoe v a c u u m insulated oakelite. the b a k e l i t e a vacuum for of e a c h of to the v a c u u m . as fo r with on experiment, in v a c u u m and through were ^.rillea t h r o u g h pressure. to c o v e r passed wires, v u d c h w e r e was p l a c e d in c o n t a c t at wo s p h e r i c metal. wires solder I-licene were a quarter-inch wise the b u s s the- s o l d e r ing in ran. Tire e l e c t r i c a l of an d Th e h e a v y 2. envelope o. the- l e v e l o ± tne ^ne 30 deflection plates* serves after The r e m a i n i n g p o r t i o n of as a s u p p o r t fo r removal of the the g l a s s tube e l e m e n t s . envelope o p e n to the appear to b e reason to h u r r y results air of are lOOO shown can th was t is, voltages regulating change If aays the A well r e g u l a t e d v o l t a g e t h an the n e c e s s a r y c ur r en t t h i r t y p e r c e n t of n e w V R tubes are noisy; w i t h i n the tube VR their o p e r a t i n g It seems that the d i s ­ ca u s i n g the v a r i a t i o n in tubes h a v e b e e n u s e d before, complicated by their b e ­ th eir p a st operat ion. Th is c a n u s u a l l y be a v o i d e d b y o p e r a t i n g the tubes at should b e to the e l e c t r o n this m a n n e r if the V R tubes are chosen about uesireu. l e v e l tubes tubes. in a r andom manner. is f u r t h e r uifficulty The a u t h o r ' s A n e g a t i v e p o t e n t i a l of t h e i r ’ c o n d u c t i o n p a t t e r n anu h e n c e voltage. the About moves havior a n e w tube. s t a b i l i z e d in a s t r a i g h t f o r w a r d w ay b y a b e obtained, i n charge 6 anu 7. c a p a b l e of providing more carefully. there was l i t t l e c i r c u i t s eux>loyed to o p e r a t e in Figures of v o l t a g e s u p p ly, tubes w h i c h a g r e e m e n t w i t h those of B ac h man^. v or l e s s series Hence the i n s t a l l a t i o n o f The e l e c t r o n i c gun Ho w ev er , to a the l a b o r a t o r y for two w ee k s d i d n o t a p p r e c i a b l y effected. are i n envelope The e l e c t r o n g u n co u lu be r e t u r n e d r e a s o n a b l e v a c u u m w i t h i n f iv e m i n u t e s * were the gl a ss see i f 3<_st r e s u l t s f o r a period, of a week or so. o p e r a t e d at u v e n ne w the u e s i r e d level for several t h e y will d e v e l o p a stable mode of discharge. were o b t a i n e d if the VR tubes are kept in continuous operation. jam IIO V AC O -C O N TR O L ORK) A ,-1s t ANODE R7- 2 O H M P O T V,- V# - VR 15 0 \^ - VR 105 V^- 2 X 2 RP-REGULATED R * - 135 K R * - IOO K P O T . POWER SUPPLY C ' 8m f Dfc-DEFL. PLATE T|“ 2 0 0 OV TRANSF R ,J V 5 0 0 K POT Rt ,R4 - 5 0 K POT R 8,R« 200 K A ? 2 no ANODE Di -D E F L . PLATE ELECTRON GUN S VOLTAGE SUPPLIES Figure 6 V 1 b*" o f /r 300V REGULATED POWER SUPPLY °|.C,fii 8mf 400V C, • Ct L.L* R, • I5K «Y« Rt* 470 K Olmf 200V •SJ7 R,* IO K .Imf 300V VR 105 .Ihf 2 0 0 V C4 ’ C. 60 • * 4«f 400V 12k IOW IOOK 2W IW IW R| * IOOK POT. R.' IOOK IW 33 An exc e l l e n t Is g i v e n toy H u n t negative account of and Hickman2 0 , voltage, constant exceedingly good, work wi t h g o o d measurement o f 5 ma, of A ''mu” t y pe success. "mu" tube n e t w o r k regulator but has quent v o l t a g e of h i g h e r regul cl voltage ar e for somewhat current regul? ted. ohms C4 . A series supply for of the o r d e r sixty of d r y tubes. capacity. Subse­ made with equipment the "mu" type low voltage This impedance cycles. of power employed of the p o w e r T he o u t p u t of impedance the c o n — sometimes used plates the and v a r y i n g line the p r e s e n c e cells were the d e f l e c t i o n of ten microamps. regulated The o u tp ut at currents current requirements the o r u e r o f tne in early inferior voltage i n v/hich c a s e the is f r e q u e n c y d e p e n d e n t b e c a u s e voltage a for* the d e f l e c t i o n v o l t a g e s . three r e g u l a t i o n is requirements on r e g u l a t i o n in w h i c h v a r y i n g loads supply w a s uensor currents should be impedance, Figure V illustrates gate-type type high the m e t h o d o f v o l t a g e excessive shown makes tion m a y be used, supply u s e d "mu" regulation cannot deliver of is o f the required measurements the e l e c t r o n g u n regulators regulator was used the n e c e s s a r y internal voltage For low current, However, type this o r d e r b e c a u s e The V R load w h i c h was u s e d The electronic to a v o i d as a sixty cycle hum. The great was n e c e s s a r y stability to o b t a i n of c o n s t a n t m a g n i t u d e . re u i r e d in th e se two p o w e r supplies a sufficiently mono-energetic beam The accelerating voltage, of co urse, hau to be c o n s t a n t in time* e n t e r i n g the The m a g n i t u d e ionization chamber from u p o n the p o s i t i o n of carbon orifice. The p o s i t i o n o f the constant initial t he and the b e a m to the depends the a c c e l e r a t i o n accelerating voltage the c u r r e n t chamber depends the b e a m w i t h r e s p e c t the d e f l e c t i o n v o l t a g e importance of of in s ma l l on bo t h voltage. The maintaining electron current i n c r e a s e s a with increasing deflection voltage. The d e f l e c t i o n sensitivity of celerating potential (of the o r u e r of the p o s i t i o n of cent o f e rable If in the the m a g n i t u d e as w a s f o u n d to be of the the the case, more vdthout small s e c t i o n of the beam, less c r i t i c a l entering the f u n c t i o n of small o r i f i c e , l e ss the c u r r e n t ionization chamber. b e a m c o u l d be m a d e woulu be the p o s i t i o n small of the the r e q u i r e m e n t s o n the comparable to the u i m e n s i o n s which were used of over the w h o l e electrons if the focus of (dimen si o ns of having the o r i f i c u . were not c a p a b l e of f o r m i n g in the b e a m is a m u c h position th a n in the ca s e of a b e a m the f o c u s density Initial Finally, comporee. to stream enter­ current of a consid­ carbon orifice the e l e c t r o n b e a m is a p p r o x i m a t e l y c o n s t a n t cross t h a n a few p e r o bluer h a n d the The the b e a m is electron If o n the to of inch. blue small or i f i c e ) small o r i f i c e the b e a m is U r u e c o m p a r e d and if, of at 1 0 0 0 v a c­ per foetus the b e a m m a y n o t v a r y b y ing the i o n i z a t i o n c h a m b e r . of the the u i m e n s i o n s the d i a m e t e r of change 3GrPl is a b o u t f o r t y v o l t s d e f l e c t i o n is e l e c t r o s t a t i c . sharp th e the of the b e a m a fo cus Trie e l e c t r o n s a focus small the 35 compared to w as p a r t l y system. the d i m e n s i o n s aue However, centrations mutual to quality of to radius formed in certainly electron optical that the b e a m o f the This charge the g u n formation of con­ such that a focus small the o r i f i c e . According to B a c h m a n 2 , the o u t ­ d e f l e c t i o n of the outer electrons of a b e a m of rQ c m accele r a t e d by V volts anu carrying a current I ampere3 along 1 ? ro ^ * let L be the the should he m e n tioned could he ward radial of it the o r i f i c e . repulsion would prevent compared V the of For lOOOev 2 0 cm, small flection of comparable a distance L c m is g i v e n b y 0 . 7 6 x 1 0 ^ electrons, a n d let r0 be 0.005 carbon orifice), the o u t e r to r Q • then let cm 10”^ if a h i g h amperes, ( o n e - f i f t h the the o u t w a r d electrons becomes Therefore I be 0.002 radial cm, quality I radius de­ w h i c h is electron optical less the system were used, for lOOOev electrons, currents ry than 10 a m p e r e s s h o u l d b e u s e d to p r e v e n t m a s k i n g o f quality of the system. If c u r r e n t s o f at w h i c h m u t u a l the o r d e r r e p u l s i o n w o u l d no current m u s t be r e a d ( f or o n e 10”^ in amperes. use d i n t he meet more stringent the v e l o c i t y the This i s o l a t i o n of cage n e t w o r k , wire re re per l o n g e r be cent turn would the as h i g h d i s t r i b u t i o n of as the the a leakage wi r e a c o r r e c t i o n o f to in this about insulation carrying networks For example lOOO a factor, accuracy) require current conditions. ionization chamber, ano would of 10 ” 9 amperes were used, the to Faraday v is applied, to d e t e r m i n e electron current stream entering as small as 1 0 the o b s e r v e d d a t a . To 56 a conduction current o b t a i n so s m a l l the i n s u l a t i o n r e q u i r e d T o r must be 10^ ^ ohms. of m o i s t glass air b e c o m e s conducts For these reasons, impedance carrying r e g i o n of 1 0 ^ oiims, wood becomes surface all of network the conduction a conductor, even f i l m of m o i s t u r e . i n s t e a d of f o r m i n g system and meeting a high the m o r e quality stringent In­ requirements, at c u r r e n t s o f operated the c u r r e n t a factor, through a electron optical sulation I n the the about a conventional electron g u n was used O 5 x 10” amperes. The g u n was u s u a l l y v.Ith a b r o a d f o c u s to m i n i m i z e deflection require­ ments • It d i d moved in through not appear slightly convergent the o r i f i c e . it \,o.du s e e m t h a t e ra ble, since t he r e b y b e As the the to b e special a slightly e n e r g y of importance study of electrons as t h e y p a s s e d the p r o b l e m c o n v e r g e n t b e a m w o u l d be f r o m the w a l l s o f of the incident the m u t u a l F o r tun-- te ly tne u i f J'iC'dty o n e expects bhe. b is, for l o w e r energy pressure is required burn a l l o w s the inn l za t Ion c h a m b e r effe.hve or d i v e r g e n t paths Without scattering the the o r i f i c e pref­ could reduced. came g r e a t e r • in important whether for use of anu flow beyond electrons r e p u l s i o n of another due to effect the tenas tolerable a b s o r p t i o n of cancel the a lower connecting oe am; ta? -a the b e a m ; chamber without limits. to s p r e a d i n g of a larger orifice bile g u n reduced, the e l e c t r o n s b e ­ incident electrons total was t h is the increasing the voltage Tor* the electron gun was supplied 2Sie t*3 i u i s c n cell 'The voltage 1.1 v s teps -a iill s t ^.o o; ..stat::* w i t u i r these was available ;ip. hi s tab 1 e re si s t v.rice for cteps, -■c.i^oi cells retain their rge for a coasil-: nr lie length of tine with In re p-lrei by the electron lity leal, storage v^ge« (C .6 amps). the low current A go o d cell t o v .11 :;?.intain s. aore constant Zhe ccr.etiv.ev cf the ever.ter voltage is Important, any variation in erission of the filanent will cause a lespoaliag v & r i c ti cv in the electron current passing ■u.g~ the snail orifice • Ihe conti’o ls Tor the elecu'or. gun were centralised on card illustre ted in Figure S • The functions controlled u this board include Tine and corrse vertical and horit&l deflection voltcges, control grid bias Tor the gun, hue 31F1 cathode ray tube shown in Figure 8 was otrically in parallel vith the unit sounted vrithin the chruber. Its purpose was to simplify the problem of iticr.ing the stream o f electrons o n the small orifice .ecti.g one gun chamber and the ionisation chamber. It particularly useful to indicate the focus o f the gun racing ithin the gu n chamber. . 11 sued by placing This condition was ac- the orifice in the gun chamber at tire lcl:n formerly occupied by the fluorescent screen of the here ray tube. ,.hile the commercial cathode imy tubes s.it _b cly in or crating con.itir:s, r.tic tl, tct; arc a:::hsi:nly =nu one is never far frmi a shi rp focus condition Figure 8. The C o n tro l Ponel 39 on the gun in the g u n chamber if the monitoring sharply focused. tube is As long as the focus on the g u n in the Uun chamber was It rger than the orifice, a sharper focus could be accomplished by m i n i m i z i n g the deflec ti on voltage required for the el ectron b e a m to sweep the orifice. The Faraday cage or the c o ll ection plate was used as a detector. The m on itoring tube f ur nished a visual account of the deflections applied to the gun; beam on the orifice. this aided in locating the Once the orifice is located for a particular gun inserted in the g u n chamber, the location of the image formed on the m o n i t o r i n g tube was used to return the electron b e a m to the orifice as long as the gun had not changed or been disturbed. To compensate for the de­ terioration of the emission of the gun in the gun chamber without burning the fluorescent screen of the monitoring tube, the monitoring tube was supplied b y an independent filament sup ply consisting of 6.3 V transformer whose primary voltage was controlled by a variac. The emission of the monitoring tube was set to correspond to that of the 0un in the gun chamber. The use of the m o n i t o ri ng tube provided a means of visualizing the operation of the g u n in the gun chamber without the need of more complicated measures which might be taken to view the o p e r a t io n of the gun directly. was more It satisfactory than a bank of meters indicating the voltages or currents delivered to the gun. The monitoring tube was placed in a location convenient for continual observation. 40 Other Electronic and Electrical Components A Faraday cage. Figure 9, was used to determine the magnitude and the energy distrib u ti on of the electron stream entering the ionization chamber f rom the gun chamber* The dimensions of the entrance to the Faraday cage were such as to predict capture of 99*7 per cent of the charge entering the cage* The Faraday cage was adjustable f r o m outside the v a c uu m system* Hence the electron stream enter­ ing the ionization chamber coula be captured or allowed to ujienu itself on the gas in the ionization chamber. the position of the Faraday cage for capturing s t r e a m w a s exactly reni'odu ceable • electrical circuit F a r a d a y cage was of removing Further, the electron The F a r a d a y ca g e a n d the c h a r g e collected from the the shielded to prevent any charge from the gas the tank to be included with le the current of the electrons captured by the Faraday cage as they entered the ionization chamber through the small orifice. these The system satisfying conditions is shown in Figure 9* The Faraday cage rotated about a vertical axis; m o t io n was transmitted by a flexible solid spring brass rod. This motion was transmitted through the vac uu m wall b y use of an O-ring seal^^* bearing The large surfaces and close tolerances used on the hinge on v.'i'i cli the Faraday cage rotated maintained an accurate vertical :-r•<:. horizontal position of the Faraday cage with respect to Lai small orifice. Along the line of flight of the electron stream enterin^ the ionization c h a m b e r , the small o r i f i c e m u the F a r a d a y the separation of ca ge wa s a e t e r lined by a Figure 9. The Faraday Coge 8 C arbon O rific e 42 suitable stop against which t e n s i o n f r o m the spring brass The p o r t i o n o f i s it f r o m the the stray charge stray charge. ionization from tential. The s ma l l g l a s s entering the and was retarding entering th e portance to ..-gle cage the to p r o t e c t shield was the at g r o u n d tubular the the inch lengths carbon orifice C .100 i n c h e s . capture were the a l l the certainty applied f and this the the F a r a w a y cage o r w a s i f i the ■ , p. l^von-inct e d e c r e e O : ; u s ef u l rs h^rlcal . tha t im­ ioniza­ increased c e w a i f large • s i i b - the electrons entering th is of region It w a s o f p r i m a r y aoing sm all the o r i f i c e to the s h o w n i n F i g u r e 10. It is o v e r electrons o as the r 1 to g i v e to c a p t u r e spacing of cage was ionization chamber. c po­ conductor was in p o s i t i o n tank, Faraday subtenaed by ; that shielded from conductor the 9 conductor carrying also in one-half the potentials tion c h a m b e r j : . i « c of The tubular c ag e w a s into The- s e p a r a t i o n of cage Faraday in Figure flexibility. carbon orifice Farauay rested under visible cage was inside tubing broken the F a r a u a y electrons the ground. a flexible insulation the n e c e s s a r y hhen chamber, cage rod. The pote nt ia l the F a r a d a y charge by Farauay the F a r a d a y cage shiela w h ich fitted over a of the t e n u ■- 1 e d o• o oil: c ■•2■ ssown Oi in Fi_ i n n : ■_ r e --es m i ’ 11. colic ctor i l l u s t r a t e d in F i g u r e The 2 43 — e le c t r o n s tb p a u R^T O R IFIC E OF FARADAY CAGE CARBON O RIFICE S C A LE !" • . 0 5 0 " -.1 2 7 c m D E T A IL O F VACUUM IN TER FA C E Figure 10. Figure II. An Ion C o lle c to r 45 consisted of two stainless steel h e m i s p h e r i c a l f r o m which. h a n d l e s and base supported by insulated a im a roa extending through as an e l e c t r i c a l the had been f r o m the to the collector was useful spherical shape calculate to a O o o d isting in any portion of collector illustrated in Figure larger surface chamber wall chamber at the the ions the such (an e l e c t r o n time the fielas J. J. fielus by became a rate are assumption mean free that path the are ionization lost by within that these the is anu the five differed recombination This the m e a n is fields calculated fr e e centimeters* p r e s sure strongest I«len s u r e m c n t s at e l e c t r i c twenty ioniza­ conditions electrons at 0 * 6 m i c r o n s such the that path* a nd of f o r m i n g more inuicated free recom­ ion); removed with a f a c t o r of one h u n d r e d • v per mean ex­ ionization to the capable satisfy both for then The a positive gas molecules collector electron in T h o m s o n 38 discov e r e u negligible than 0*01 fields the normal with that that roughly could chamber. that none not be th e spherical electrons ions m u s t they serve a considerably formeu recombining almost spherical of a l O O O e v of approximately to the One i n s u l .teu f r o m of in m a g n i t u d e the 11 h a s collection at with electric ionization incident a nu w e a k e s t on was the the tion chamber* greater It collision with ..ith the the This chamber* of high electric losses approximation chamber c h a m b e r wall concentric ionization They were ioniuetlan sphere. flight same ions b y the area. must be bination if m o u n t e d in a p l a n e direction of The of removed. ionization connection colanders path Th e p r o a u c t is a p p r o x i m a t e l y a 46 constant, increasing The m e a n f r e e p a t h tha t o f an slightly of an e l e c t r o n ion-pairs the c o l l e c t o r . were Since collector could not be a nd still collect The electric all fields must fall b e t w e e n formed b y the fields tion than fifty i n the and only everywhere 0.01 edge fields effects. sheet To reduce performance of the section on operation. s cale ion these the a detectable migrating the applied to ionization to ions being ionization in m a g n i t u d e allows the formed. chamber sphere these edge effects, of the will be currents made the in F i g u r e 11 mainly due to the e d g e s o f steel rods. described in f r o m the F a r a d a y with h'Arsonval read c ag e wall galvanom­ a s e n s i t i v i t y o f 1 0 ^amp, is i n d i c a t e d 2 th i rt y , three— eighths— inch collectors two v a r i a ­ in F i gure about illustrated i n the by a factor a factor of The d e f l e c t i o n f o r 1 0 “ 6a m p system used in factor, The g a l v a n o m e t e r h a d electrical charge s a me collector were (25 cm) path, the rolled over T he m e a s u r e m e n t s the a factor of differing by The eter. times a fa c t o r of one h u n d r e d in collector sheet were the 4/5 which uoes not f o r m fields and hence the a nd electron. v and 1. 0 v per mea n free path. differing by steel free the all collector potential. formed fields formeu the approximately developed varied by c o l l e c t o r is o n e stainless energy of the v o l t a g e s ionization chamber which differ greater Is volt per mean chamber were never uniform, A usable the ion. A t a field, o f o n e number of with to * mm. schematically a full The in F i g u r e 12. 47 TO C O LLE C TO R —i CURRENT i~T O MEASURING F ig u re 12. FARADAY NETWORK CAGE 48 The at collector or th e with to s am e p o t e n t i a l . tnis the Faraday arrangement collector or conventional no u n u s u a l cage The chan w i t h Faraday be the be the To e x t e n u amps, is e a c h d i f f e r i n g bv other a m p l i f i e r was the grid of the known grid the the of limited ten, circuit for five and The of the the Bince the- r a t i o ion co ll e c t i o n current could also of the the amplifier s c al e s, consistent calibration of with the the d e f l e c t i o n o f the v o l t a g e applied From this to 6SN7• the current generating and a accompanying galvanometer response in to 1 0 “ the r e g i o n of o peration, in and n e g a ­ p e r m i t t e d m e a s u r e m e n t of the arnxolifier w a s of the could amplication scales were cent. triode voltage linearity i n t e r e s t onlj' potentials electrons that of the g a l v a n o m e t e r The resistances c a u s e d no d l f f i c u l t ^ • thu of The per the g a i n o f the either as a f u n c t i o n o f first particular grid cause to v e r i f y accomplished by determining the g a l v a n o m e t e r deflection, in order series of range. to o n e - h a l f latter more cage. a fa c t o r of currents of a wine each A the Retarding potentials sensitivity 13. simpler applied only the h i g h p o t e n t i a l a DC amplifier was used* shown in Figure were However, and negative io n s . Farauay the to c o l l e c t i o n of ions or positive apxjlied to tried exist due Both positive t iv e the p o t e n t i a l cage, galvanometer. applied for the g a l v a n o m e t e r operated, insulation problems or ientation was effects and small this the of ca l cu l i. t ed • the grid tube o v e r leakage experiment Faraday accuracy of ca ge Be­ currents thore current is to axnplification 49 6SN7 6 G - D’ARSONVAL R(- 9 8 9 4 .T l ±4 % W A LL GALVANOM ETER r 8- io k p o t . R9- 4 0 Q A - POT. R2- 9 8 9 . 4 A . i t 4 % R^- IO O K A 4°/< R 3- 9 8 9 4 R* - SHORT R |i * Rs - 9 8 . 9 4 K A = t 4 °/ *o C, -lO O O ^ i , 15V DC R6 - 9 8 9 4 K R7 - 484A DC A ±4 % DAMPING B, m -ZZk V DRY CELL RES. Ba - 6 V STORAGE CELL CURRENT Figure A M P L IF IE R 13. 50 I'C -ire^ o_ the amplifier is satisfied by precision resistances Rp t:.rouc h Eg, and the linearity of tiie amplifier. from tube to tube nnu vari 1 1 ons in the operation of a tube uurinj its life .:ie not affect tiu scales the lifier of tiie amplifier, cii&:nta e x c e p t rents ueveloreu. lniv.c c n u n _ e s to Laip;e in the because v a n o m e ter, of the !,- e r o !l o f a nu reduce A ..ore i. .rort'v t :.;e a ss o f re d u c i n _ about r e r a o r c n e a tines as full s c al e d o Y. e r a s if it y la t e resista/.ce c f . ; r r - ~ -).• : i t t . ^ c o s f w n a t h - : l v n = u o - . - . o f b e t Cr. t.,c; ot-i^r js. nu, 1 If c i. the ^r-_ ■ tly of — t h e v . a s : r , the to t u b ih e * e c s t i h ; s o o n t , h ...icro p h r t r o t t if lsrw e c ^ y ; u e u b o a , . t b c .induction. c a r re nt o f s u ; :: l h u to the were tube cer o the it i t c nois c i u j f r acted ' o m tt i e o e t c a ’ u . t e r e excc u n i r e d ive. l.lie tioe m u s t be iu<-- ja.lv no..:*. ter not (loss to e h a n j e of l i n e a r i t y serve,, as f in e walvunometer. sensitive; n turn- cnn^Aic ti m tiie ..-.icropiionic n o i s e of currents, . Strong*-'^. bru s h or tetrachloride rinse w a s with which were s teel wool used hetal anu anu acetone, acetone, as are carbon essentially surfaces were then washeu down in t h a t o r u e r . tetrachloride those scoured ..i t h ihe f i n ^ l leaves a 53 slight used residue. to h o l d vapor S a n d p a p e r w a s n o t used, b e c a u s e the g r a i n s pressure. sanded. u i c h r o m a te c l e a n i n g speed as i n solution, ca s e o f frequently has a high to the m e t a l surfaces cleaned with potassium r in s e d , anu thoroughly washed the g l a s s w a s w e t w i t h a l c o h o l Rubber unless more the clings Glass was Frecuently the u r y i n r . acetone abrasive The b i n u e r which hav e b e e n with water. of the b i n d e r wa s washed elaborate rubber with a solvent precautions had tubing to b e to be to s u ch as taken u s e d in c o n t a c t w i t h mercury• It w a s obtained cleaned that of if found that the m e t a l considerably surfaces rather frequently auliered o r w e r e rough metal exposed to (six m o n t h s o r loosely surface cleaner vacuums a v a c u u m were so). The v a p o r s absorbeu on fifty re.uired are considerable square feet time to p u m p * out (much l o n g e r re u i r e d )• than the rather tedious cleaning process 54 OirLRATIONAL D A T A I L S e v a c u a t i o n of The quite small carbon orifice, fragile. a lar^e I o n i z a t i o n anu Because pressure of two v a c u u m c h a m b e r s u n l e s s rapidly. V.Ith the chamber, the mercury. air was chamber rapidly, l o n L as the lar^e air was for f i f t e e n m i n u t e s d i^ no t a f f e c t duce a i r at the ^_.un chamber^eu^e thinness was t h r o u g h the sma ll o r i f i c e u lu n o t d e v e l o p b e t w e e n the allowed the ir e s s u r e w a s c h a n g e d v e r y differentiul f o r the never exceeded to r e e n t e r Ionization R5 c m o f the I o n i z a t i o n pressure differentials occured. allowed to or lonper, the o r i f i c e . a more of its t w o - h o u r p u m — d o w n time pressure when because the l e a k ulfferentisl Gun Chambers rapid enter the the p r e s s u r e If it was rate, ionisation some chamber differential necessary air was to e u a l i :,e tne p r e s s u r e , As to Intro­ i:itrouuceu to asin0 tiie L c L e o d n s a b uiue • The forepump usual on technique the in evacuation ionization chamber until cha,,ibv;r px*essure h a d b e e n r e d u c e u the f oreeu-.ip f o r volume of was the p u n the p a n c h a m b e r the s t ar t ed . the h i p h the ionization to TO c m of m e r c u r y , chamber was siu to use o n l y s p e e d of then '.Vith the small tiie p u m p , pl'f Jo ieX‘tp Li .e xl- forep'Ump t i .ie • f’ i. n chamber ..ere tu r ne d o n at 55 Care of tiie F o r e p u m p s The V1.IF— 2 6 0 I' . f l u i u a,.io nt cue in of re ;uired a b o u t 3 5 0 cc which was fluiu is cbv n g e d w h e n not: v e r y ..,ip p a r t i c u l a r l y '-a p map • u.oes no t The tor for, > to j. the the upon use, puinp • ill ^ i s c o l o r s th. floor of ..iO•itxis o f continuous its ano nunt the was fluid pump while checked the >— > Vhi-hSO. p:.,v ^ 0 — pwts of the tiw by . pu. a av u s e f u l a safety fac­ ip is on the u e f e a t e a by the re- i t. to two pui.ip f r o m Tiie oi l ionisation sebacate, was claufxr diffusion this p u m p chon. as to fluiu and the the c h a r r e d - i th a total o f 3 0 0 to the oil relis. ole . t the a baffle le v el frequently. re ;uireci ebovit (C'.nco f D O u O ) • not layer a y;.r. at'-ply to th-ui c h e c k q> o i l a in o p e r a t l o o . re ,.ov 1 ow is r e l a t i v e l y cost, (/'win! the oil ) six vw cks x it a little thin it is cc o f b u t y l *•<->s i t .1o n o u 'otential. the F a r a a a y the foc u s w a s was as the o r i f i c e ionisation Once the ink dot area w h i c h formed by sensitive found, It w a s the t he m in ions. the o r i f i c e the o r i f i c e in the changed the g u n w a s d e f o c u s e d through ion products iiiethod was m o r e may over collecting the of the in d i a m e t e r systematically As w i t h i n th e tube, in operation, to served location. same not necessity ink aot monitoring small o r i f i c e tube the the p r o p e r approximately site o f a c c i d e n t or altered, to the velocity s t r e a m was of defle c t i o n 58 potential, o ne could, no t, f r o m the o r i f i c e by o p e n i n g and as w a s and. r e i n s t a t e closing convenient, tween a p a i r o f d e f l e c t i o n p l a t e s . the mad e b y the p r o b a b i l i t y eye, recuired was axis of the satisfyingly have b e e n us e d e o u a l l y the b e a m the b e a m to i t s f o r m e r p o s i t i o n a switch which d irection of remove c o m p l e t e d a short b e ­ If the a d j u s t m e n t of g u n m o u n t e d o n the the endplate was t ha t n o d e f l e c t i o n v o l t a g e w a s s mall. .In a u x i l i a r y v o l t a g e c o u l d sucessfully for the above purpose. 0 As m e n t i o n e d earlier the focus ir.oijitorlng tube a nu tire U u n m o u n t e d nearly due to th e orifice i n the p l a n e screen. moanted same T he exact i n the g u n tire v a r i a t i o n o f tire b e a m a c r o s s long as the conditions of in chamber wore tire g u n location of the small formerly occupied by conditions for fine focus chamber were the o r i f i c e is This smaller carbon the f l u o r e s c e n t of the g u n d e t e r m i n e d by minimizing the d e f l e c t i o n v o l t a g e the o r i f i c e . the than re paired technique the c ro s s to d e f l e c t a p p l i e s as s e c t i o n of the b e a m . x > e t e r mi n at i on of the A n e r g y d i s t r i b u t i o n o f jilectrons P a s s i n g Orifice The into filament a.y r o x i n a t o l y sec 'nd u u o u e of of l.he faa e l e c t r o n s I.i*• -v... rra. u the field-free with Chamber at tin respect same ci a.Tier, leavin^ space grnall e l e c t r o n g i n v, s o p e r a t e d -n w as gun the Ionization 1O00 v ne_'tive I'n.'iz- L I o n ci •• ebcr, ice the through the to O r o u n u . potential o r i f ice; as namely, The tire O ro .aid • un ; <-c ui o x c e L t fo e at tiro s- 59 fields due to uue earth. to the i'arauc.jf c a ^ e the d e f l e c t i o n v o l t a g e s escape traveling at axis o f t he y the v.icte t i g l e tance of at a p r e s s u r e at The consiuer enter the small average free to the tank Of the o r i f i c e collisions i -i t h e s e lies course or just take some but t ak e into in the the tiie I o n i z a t i o n transi­ chamber. that electrons side the as they tiie i o n i z a t i o n collision within chamber but most ionization cage error chamber reason suffer it s m e a n Ionization This of deflection Faraday where the g u n the ionization angle the Inches. i nch. then dis­ path of a lOOOev inches within the further uegrees, may uo small even in a gas to at the Such a c a n v.ith s mall place electrons the the 0.1 0.1 one O ne 0.08 within collisions tiia.n f o r t y - f i v e Ir.eir e n t r y p a th Is c o l l i s i o n of about place electrons, 2.5 meters, carbon orifice. they were degrees with the g u n chambex*, continuous, transition electrons the o r i f i c e . The m e a n f ree of the or have been unlikely over from l o c a t i o n of f i r s t chembei*. If its me an course of cage, Is a p p r o x i m a t e l y oraer the of gas molecules b e t w e e n walls 50 microns;, the that field exceedingly unlikely unless Ftraday is v e r y 50 m i c r o n s it. o f t i o n is o f the the electron passes path was inch with lOOOev of cjii.iiibor w n e r e of from so the o r i f i c e than forty-five with the 10 the m a g n e t i c Fax'suay c a g e u n l e s s This ana deflection 0.100 electron the a collision scattered situateo. wreater system. carbon orifice sharply free enterin0 an angle suffered small shown in Figure ’was lsi*gc a n d could not the As and will chamber. is g r e a t e r not register If the p o s i t i o n of 60 the f i r s t collision occurred further within the tank, a n g u l a r r e f l e c t i o n m u s t "be e v e n g r e a t e r to e s c a p e ca0 e • acceptance of The r rauay the experimental cage as a n e f f e c t i v e ionization chamber was During periods operation (after p.m.) cage u i u not vary '.VIth ionization for the was swung After t o ta l th e ten hours the current collected of hal f the electrons, c h a m b e r w as of d r i e u air to r a i s e pressure to f i f t y m i c r o n s test w a s i n t e r r u p t e d b y one the b e a m c u r r e n t obtained, in w h i c h cage u i u n ot v a r y b y rurtherinore, enc e f o r the they these of of current one per variations appeared e l e c t i o n s by to b e the c u r r e n t b e i n g Th e ionization pumping and collected by many Faraday t hi s which runs were the F a r a d a y I ts o r i g i n a l v alue, show a pressure d e p e n d ­ random fluctuations. that a sample chamber Frequently However, aid not electrons. the I o n i z a t i o n the m a n y v a r i a b l e s verified the to f i f t y m i c r o n s then closed cent of Faraday ■u i c k l y as p o s s i b l e admitted. to v a r y . series of o b s e r v a t i o n s capture was the entering t i me the usually the F a r a d a y c a g e c a g e w a s o ’o s e r v e u . the i o n i z a t i o n sufficient as which stem for cause the was measured, during stable an h o u r o r l o n g e r . adjusted to 0 . 1 m i c r o n s Farauay the entering in u n u s u a l l y collected by to I n t e r c e p t (about f i f t e e n m i n u t e s ) electrons of operation, chamber pressure position the s y s t e m is periods evacuated collected by trap for the electron for current chamber was to the the F a r a d a y as f o l l o w s : a b s o r p t i o n of into the when eight a f t e r 11 the support for the This the e f f i c i e n c y of the cac e was not pressure 61 uependent over l e g i t i m s te the region to a s s u m e fer C,nt of 0.1 the t n o t m o r e th-. e l e c t r o n s c rbori o r i f i c e an u to 50 m i c r o n s . in u n a e r 0o in- the the after .rif ty n d c r o n s , u s f vi.i' 7 taut i n s beau i.i r k e u r rn- ’• ra.asy -ulna teS cc w e a i d n o t .sea re t o r n the ourreni ;,rt. ■; ure by the the tube CU thouc • ir- s but 1 .1'Voi-, ••. ice bj >m ium nnex* A.-re s.ouro value. lo-est vrluc the The ttaint.u v.-hile Occssion- as the 1 n ni y.n t ion cha.-iber cas e e id it a-, -roach its in current ivc s «'iue to v a r i a t i o n in the e m i s s i o n of tube w a s po s i t i v t fro-u; itly collected ion b o m b a ru.me nt oi returned ohe to its o r i g i n a l :,f la s h i n j " o r b y u s e o f o t h e r activating -ies. lerhni .Ji.'i u.^ i it 11 1:< s been. who v:n th' t the raeuy hhic the F i*h- t t-. .1 r i.'.to its o r i g i n a l in no the t. ie vsrii tios .r-obabl j c a u s e d by Th e collecti- j b,, to there t t .vo Iron -rsu .,iic r o n s • -r,,. ■n r e . tly Fa rs *:a y c a y c returned th e c u r r e n t colit e t u i 'ou r t the tiie chamber, IV,«. 1. ' 'i/a Liar' el'. •h e r to an u c o l l e c t e d by t fl incr./.t: cd a l i t t l e si s d e c r e e wed, value . initial chamber current in a rntlu-r m u tcrons, euri**. .it u siia.11 j 1‘ei.t?.i n e d -11,; the I'l-.an i.rs • to to f i f t y . 1 i-iza ii m in small caye. the i o n i z a t i o n tiie c u r r e n t v • the the o r i f i c e c h a m b e r w ••s n o t to b t c r - o we •:f tel* th e in bo tro bandrcc-. m i c r o n s , uecrei. se it w a s t e n t h s of o n e collisions the F n r a u a y tiie evacu;. t i o n o f ia'CHsure o f a few rejion between i-hruuay c n w e escaped, c a p t u r e by If, than Hence cuy's capture of electrons c Ire u m s te :ice uo o s not p r o v e is n o t that all e f " tcic nc^ o j one .re s sure d e p e n d e n t , tile e l e c t r o ns 62 entering Faraday rather the tank cage• rapiu the c a g e , from On the about cent do not remain orifice. effectiveness energy curve collected by potentials applied variables being F* r a u a y c a g e held with electrons having 100 v r e t a r d i n g ns Faraday the to currents with one may a retarding uue to the f or t h a t matter- i ng p o t e n t i a l ficant, b u t n o t collected. by to the th a t o f o f 1 0 0 v, not 8 0 0 v. In the (two per cent), m a y be of primary the due to cage. at captured none to are lost 200 v o r 50 to 1 0 0 v r e t a r d ­ cage there decrease was in with a signi­ the c u r r e n t s lo w e l e c t r o n s electrons o r i f i c e or w i t h the significantly virtually first large change Faraday cage tiie r e t a r u i n 0 p o t e n t i a l tire F a r a d a y small the the o f all of o v e r c o m i n g the e l e c t r o n s to tin. c o l l i s i o n walls of we re nega­ collected by the F a r a d a y potential plotting all o t h e r consists to e n t e r applied This at v a r i o u s current capable collected by of 14, potential energy conclude increase ca ge the f r o m the w a s o b t a i n e d by T he required potential concerning the: F a r a d a y cage, a kinetic which enter was obtained Faraday 100 v negative w al l o f scatter b a c k out in Figure constant. potential electrons curve the s c a t t e r i n g a nd the i n s i d e there b u t shown the l O O v an-i 2 0 0 v negative; oiffcrunt, the c a ge captured, b y random information energy distribution current tive of Further the distribution T he the of are striking, per of cage after 0*3 cage chamber a s s u m p t i o n of absorption tiie F n r a u a y the the g u n formed the c a r b o n the g a s m o l e c u l e s through 63 20 — CURRENT FARADAY FROM CAGE 1 8 -- 1 6- - l4'-*'*o o -----o--o— - o - --o--- O O' ~or 12- IO -- 8- 6 .. 4- - 2- - R ETA R D IN G H 6 00 400 A 200 ENERGY P O T E N T IA L 800 D IS T R IB U T IO N F ig u re IN ' VOLTS 1------- — £ 14. IOOO CURVE 1200 64 which the p r i m a r y appear the to h a v e electron electrons a electrons less than 7 5 e v stream. may have A considerably more to slow electrons tiian an a v e r a g e u as m o l e c u l e s in the , 1 constitute ion-pairs the p r e s e n t to these of the of flight conciuered 40 v to tank. This work. low energy tun p u r cent of 0 . 0 1 per* c en t . low energy of the or* so, The ret'..ruin0 p o t e n t i a l , The increase too in can be sm a ll for token zero as c e n t of vdiich are vsli*.'. to the o r d e r the current with 100 v retaiainw potential • the c u r r e n t collected by retaruin0 pobenllals between 300 v the Farrday and 1 0 0 0 v is not clour] j uau t r st uoe • Tiie e f f e c t m i ^ h t be vurioutily described in as a decrease in the >.h c tron electron an i n c r e a s e the p o s i t i v e the e l e c t r o n ions c u r r u n t lc a v i i p the F -*r a n a y f o r m a t i o n ) , or* a ... i n c r e a s e formeu v , i.rJuv/ within CO -e ana the the Faraway small current collected, collected, in e u n x i j t :..(.)viig a w a y f r o m t.io I*a r a u e y are the considered ie ent e r i n g the the i o n i z a t i o n du e e r r o r of current with formed hy to b e the maue an absolute electron w it h ion-pairs t h a n 0. 1 p e r Approximations leaving in c o l l i s i o n the error was electrons as a g r o u p h a d p r o b a b l y spend Hence ioni z a t i o n c h a m b e r must be ut the d i r e c t i o n of4 than 75ev energy along the li n e c on si d e r a b l y less formed. in ca ge along slow electrons s tr e a m . These los s energy These s m a l l percent'jge of* t h e s e direction perpendicular ulechon traverse. cape carbon a decrease cag e (s e c o n d a r y the p o s i t i v e cape (positive ion io ns and r e g i o n b e t w e e n orifice if in the the v a c u u m v;as 55 not icientlj V:-.;-0^'S j the pri’t i c u l s r l y o f oil —liere c ?ula h a r d l y b e electron as cleiin, current passing ---tnr-iny l u .'.3re« as f a r c .r u cu . the and lOOC f ew r u n s h a v e b e e n "he i n c r e a s e for in c u r r e n t e.n t e r i n w the t. .c s. .a13 electrons men caue densities of cubic t.-. nk. A the F n r a n a y mrbon orifice thep .ere stronjl" _oier_y d i s t r i b u t i o n tat 600 v a. : arent-ly c h a n g e oi-ifice • k c o n a t ry ere not fi- b i-a s a to c arbon p>.r ecu l iar effect c .rr-. t- .v.f•.eur 1 1 u e c u r s re s -on.siblc lips ■- ui l i k e c.ue to mot the l not formed for t h a t i l ? i ^n i - appear at of or sharp the curve to inntter it ci ti-red the l i p s of the t. x. c n/'cct - £ •• c u s n y e in t h e curve. ti.e c u r r o u t - c a m y i r . y or rplf 'r i s ..a^:u,reu in re u i r e s o a s hape o f - iv ~ru,e .•t as for no effect y th. a the h. ° t i ; n ro ..need no v-ri: A ion is n o t crrut; t electrons ithout focus b e a m -id was conv.-rw e t o r '•- re _ v v* c a n I It v. in a bro- to 1 0 0 C v r e g i o n . m<_ tn<=r tne b e a m ro 1'iie ci,0':pt a e to tiie ce n ti m e ter v.ere in ;u:.0 Atiaie in tiie c u r v e . f o c u s b .a m - i d n o t . of A ve b ee n take n o f b e a m cur-i-e ots ..iff:i l n p b y change n ..ere co:v tire e f f e c t w a s m i s . i n ^ . charje charges per fic: n t a vhich civ rpre tit.or j h of n e a r l y one t h o s a n d hack the e x p e r i m e n t inteu-it? beams »h e n -due e f f e c t w a s c o l l e c t e d by factor in carbon orifice ener~y uistributio~ obtained space It., u *_h dc-cclora twl small in the e v v.as not a c c u r a t e l y k n o w n . or-ci'- of 10 c e l e c t r o n i c for.:xu the re s u i t s o f V n f o r tun a t e 1 y the .as r.o t .:ue to an i n c r e a s e ;.otcntiil v.a s i n c r e a s e d , as b et . t e n o'“0 ev curves ohroa. y h and. n s r c u r v o r m e the r c u r pre-reocc y v a p o r s of m a y ;ne the b e 66 re s p o n s i b l e for conciensor In the of the 1 on i z -al i o n iov,tva' Ihe the u n u s u a l Ionization charaber tiie v a p o r s effect s't-ricteu • we re The of V. r i n t i o n s In t he a TOO e l e c t r o n be a m ev i-uso-t i i th; r he of 2„ro •v . r . of. ,. : i -1 to woula be seriously re­ c rve n e n s - rn to i -t I..- ; ’ v m b . c i.i. t • X"' c.j c-.% * , ; of the . nc . ev- : ■ re m ac e 1~ O • l0 , o1 ' ■-1 h o r: of c re h.st. ' • a ICO ciory ha. c th re- sp-o n s i b l e • the voles Faranay spreau 'h-om t tec .ua joi-lty CXCOCU- c n a -h. ;:in, . 1" to h - l f is this the s than its v a l u e at I C O • .1 •.c t 'a c -i"- .it, c t- as c r ■ f -’ v. r- L measured. i'l. ’• r •■• c • 1 c L;- :LCi of t' ; U i ’/'i.CO O'C o : c.s *• small th t th-. v a p o r s are p r "'bably 1 u .I c • fos ur f h ;h. the wl »tch \v- s m-.u.e o n c o l l e c t e d by !;.r*)Vj: h r i n u i c a te Tiie p r e s e n c e chamber this to indicate current ;;■ i .1_ of region of ch; r-p (abo.it fivo ’ the operation sensitivity se_ns the o- . ' r ■etf '. If the pressure. c n o n t); o'- *.h,. ,,1 cti'O I! trap •-i s t r i b n t i o n ..as ( . x c c t u h p l y ** the I" n i z a Lion cut-off ../L.uiu to 1 oi* a b s o r b e d i n in p r e s s u r e - m e a c -nri n j , v a p o r - s e n s ! ti ve the v a p o r tiie ciiuipj — i.ibe-r removed, any v c o o r s a.u s o r b eel vapor present :h in : I n lar^e vapor v.1 t h i n a m a t t e r o f m i n u t e s . opni^i.iunt o.i^ n o t xisve • ch The Fe.raa.ay c a 0 e anu. evolveu. uui*.inc j u n , the cr._s behavior. i :•">.■ c v ,ails col v is to .-r'•c i >C 1 .=■. •1 s rr- c ;;o r the -..I' C h . a '.'is. f cm; h •v a. -c , tshcr ’m-a b n I'-ctro 1 ^.xx. 0 as an „ the 67 scatterin^r at v.i^e an^lc-s, . ott:'.tials w o u l d s-/ravate c o 1 .> v C t c u raradsy cc. i w by cease icurrent Ihe tne all s re the arplicatior. of* r e t s r a i n y the situation caye effect, these should "but ir and the cun-er.t decrease. the Other ab sence con-i tions a u s t have fac :ors of* a d e c r e a s e ce en s i m u l t a n e o u s l y sa v1 s f i e d • -he e-.crj measurements distribution beam on and off potvntii.l comprisiny curve) the* s m a l l 2-ecorued. Hence bear, w e r e recorued. o on of electron - r..lrw p o t e n t i a l s to rommir. one of effects _nn by to renuce che fli_;iny for only of use^ the c h e c k s we r e r« t u r n I n ^ the 1-i (the electron ;r.ch re t a r d i n c to presence ria^e of tiie to : r e v i c as re- the small e . r b o n o r i f i c e bj the d e f l e c t i o n volt-; _e s of sto.-. iny yes laboratory. in T i u u r e t h •, c o n s i s t e n c y of r e s u l t s . The .addition of The aae Treouont check b.c b e a m w a s flip, ed o f f made b y cordon, o r i f i c e of' uhe t; were di© c u r v e the was dry 'The l a b o r s fcory h a s _ossitiliti; Sto. an in n air th<. y n . las taken from the a ^e - a - te c i r c u l a t i o n of c o nt a m i e -*•tio n uue to co.— .iO."x laboi-atory v a p o r s cam b o n te t r a c h l o r i a e , etc. t-.-e •- -.. a cetori-. t-rac o f tine a i th y e s bran filled t; ... i T'izatior. ch r h r hi-miu ns r e f ri The r-u c h to at a i r v.as ^ r i e a in a u r y a volu:..e, that atmospheric a areas .re o f air o r l i - u i d r.iti-opa'- -re e r a n t s f or Ol* S txie v o l u m e o f .res sure f i l l e a seventy-five not oo 1 . microns. satisfactory or' ;ne 68 ni t rogen in tlie sample freezes out o n the walls of the trap anti the sample chamber* is n o t of of gas air. The introduced necessity this ;:oint w a s d e m o n s t r a t e d b y tion. air '.Then a samj^le o f (presumably higher value at o f b, by remove The were the too the the for This value insul of the lost aue energetic consisted of collector* w h o s e to g r o u n d . The ra; -w e was extended by r e g i s t e r e d by 15 collectou; of the i o n s times the c o u l d be the that f ew none were formed the c o l l e c t o r . one, the i o n ­ second, an varied c o l l e c t e d by the with second v/ull g a l v a n o m e t e r w h o s e The current is i n d i c a t e d potential 'The u p p e r of cu rve, (electrons curves required such towara potential the were electrodes; galvanometer c rrent these ar.u y et and the lower* curve, the The o r d i n a t e s at a r a t e tire ±j0 a m p l i f i e r • to O r o u n u • trie e l e c t r o n two fields potential re^istereu by the w a l l of currents as a f u n c t i o n o f v.1 til re s pe c t electric movement were _;ives a p p r o x i m a t e l y 1.4 to r e c o m b i n a t i o n electrode figure was Ionization Products c h a m b e r at g r o u n d t ed respect a strikingly the f o r m a t i o n o f a n ion- ionization products system used ization through liguid temperature), energy control an i n c i d e n t a l o b s e r v a ­ vzas i n t r o d u c e d As h a s b e e n m e n t i o n e d , ions for careful air. Removal to the i o n i z a t i o n the o x y g e n pair was measureu, that of gas to and positive differ by the in collector as i n d i c a t e d , negative io n s ions) collected. tire m a g n i t u d e of 69 juA C O LL E C T IO N CURRENT PRESSURE IQOjft ✓ / / ,®' ✓ ✓ / — — © — ---- 0 © — Jt>' 0 — 0 / * I I I 1® <3 -© ♦ IO N CURRENT E LE C TR O N CURRENT '!> VOLTAGE BETWEEN COLLECTOR S TANK VOLTS Figure 15. 70 the Initial where are all electron current and only all the voltage e xist, end of the region of formeu by impart enough In so me the p l a t e a u , the i n i t i a l At v o l t a g e s the the above Ionization energy to the collision excited molecules, and the c u r v e (at electrons the l o w a sufficient field does parts of may f o r m i o n - p a i r s b y Ionization by "knee” of Ionization products recombination* parts of the the p l a t e a u ) at l e a s t to r e m o v e the y ions th e collected# At v o l t a g e s b e l o w some over ionization without chamber, some l o s s d u e to the p l a t e a u , at l e a s t chamber have fields which i o n i z a t i o n -products collision in air not with re u i r e s so that the g a s m o l e c u l e s . a b o u t 17 v f o r u n ­ c o r r e sponu.in._ly l o s s if the m o l e c u l e is e x c i t e d * T he curves wo re b a s e d , V'loclty were measurements not ..ge to _i-oo mu. c u r r e u t , of" we- re :naci e in the sa me m a n n e r the o r i f i c e plates*' F ro - u c n t fa c i,o r y o n curves• of the b e a n of switch To r e m o v e of ration of ti :C same the uric LC it, collection as v/ex-e i.nuo electron Used .-I.-, n t (back- on cuxu'c; t was sv/i tci.ied two c h n u b n rs w i t h • p a i r of n P L to uotoi-iifjo j m • which electrons iocid-. nt e l e c t r o n s th - the effects h ':c w a.1 v a no i,-ieter separating chocks all tne i n i t i a l co-v'-: c toCi b.. tao-m .i.o t h o d , -wnilc c o n v o c r r o x* Ionization ze r o d r i f t shorting obt.Tu i.1^ the the p r e s e n c e ,.:p l i f iei*, et c .) on a which uistrtbutlon on a chon ane satis— utixcr notjiods of to -'SC!U'tain intro-■n e e any that this systematic I 71 ,71 th the a i d was p o s s i b l e whe n f i e l d s to of* e no u g h was everywhere v two f i e l u s to p r e v e n t just w e a k that of tial, 30 v, The smaller just c a p a b l e of r e m o v i n g i o n s fast r e c o m b i n a t i o n and collection the l a r g e r f i e l d the f o r m a t i o n of a n o t i c e ­ by migration this the i o n i z a t i o n the Ion the i o n s and e l e c t r o n s in to e i t h e r c o l l e c t o r . Ko t i c e plateau extends over a twelve­ collection plateau from approximately occurred, u n u e r w h i c h uevelooea o b t a i n e d if t h e of* the effect chamber troublesome ionization products. Figure by laaynitule showiny of the e l e c t i o n k e p t c o ns t a n t . pear ed, yocs without pause an d o n e Lons are l o s t by formed in the i-e c o m b i n e tlon represents pier stconu, surface This of c o u r s e ten. to a r e g i o n w h e r e The ion-pairs r e j i o n s do no t two m i c r o a m p s of r o u y h l y 10^*^ e l e c t r o n i c area of r.ll f r o m a r e g i o n in w h I c h A c o l l e c t i o n c u r r e n t of a collection Tire te n -folu. The p l a t e a u h a s d i s a p ­ c o l l e c t i o n process. t h e v, o v e r l a p , stream entering current by a factor of y/cji*o 13 the c o l l e c t i o n c ur v e was i n c r e a s e d collection space ch a r g e uotentials which were other variables join; sh ould b e o b t a i n e d 1 v p e r m e a n free path. to p r e v e n t easily collection illustrates are It a f o u r * — f o l u ranye. concentrations increased 2, f r o m ap;_ r - o x i m a t o ly 5 v to 30 v c o l l e c t i o n p o t e n ­ Conditions to the was their* the p o s i t i v e TO v to that a p l a t e a u ion-pairs the- e l e c t r o n fold r a n r e and enough s h o w n In F i g u r e i n the i o n i z a t i o n c h a m b e r w e r e w i t h i n their able p r o p o r t i o n o f the c o u r s e collector calculate the l i m i t s o f 0 , 0 1 of these the the c o l l e c t o r charges shown in UA C O LLEC TIO N CURRENT PRESSURE IQ O ^ . o ,©• — ® e / > * 9 ® / 9 ti / * ,• •9 *.• a i © W © O ION C U R R EN T ELECTRON CURRENT VOLTAGE B ETW EEN COLLECTOR S T A N K 140 160 80 IOO 120 60 20 40 VOLTS Figure 16. 73 Figure H Is o f collected, p e r electronic the o r d e r o f square charges centimeter per 0,1 v of a few centimeter charge to b e density oraer of 10^ high the o r d e r o f to m a s k This with the 1 v per difficulty rise space which the unmistakable plateau positive Ions eleven-inch were with respect did not to develop was of that space the ion on the the charge space sphere• charge the more but when when the concentrations the Ion ions electrons for the a re a tv/enty-five times electron collection symmetrical ionisation an the the p o s i t i v e roughly The existed surface of chamber wall was electron a result, The p ositive conditions Ionization of conditions small electron. collection become areas Initial electrons, the l o w m o b i l i t y o f eleven-inch surface charge formed for cbambt.r w a l l positive The f o r e l e c t r o n s , • As of the In F i g u r e s pa c e the t h at o f the c o l l e c t o r * taken ww,re c o l l e c t e d o n the i o n i z a t i o n of sufficient 17 w e r e collector, of than 1 5 and IS, collected spherical developed because not This Figures that but the d e m o n s t r a t e d by I n Figux*e 2, I on s , Is o f the p o t e n t i a l s of poteen tial collector visible for p o s i t i v e the centimeter. is m o r e the so the o r u e r charges, charge simvm reduceu a positive Assuming cubic collection carves was charge is o f collector The current as path electronic the to centimeter clearly the mobility of per generated by Is hence second. single charges gives fielus as per charges near electronic concentration T he per m e a n free transported of pos i t i v e cm^, Is a p p r o x i m a t e l y 1 0 9 second. i on I n a f i e l a o f thousand 6000 to c h a m b e r w a ll and each other and uhe 74 ^ q .u A C O L L E C T IO N ______________ P R E S S U R E 7 0 ^ CURRENT $ f> 3 2 1 ELECTRON CURRENT— * / © # .28 .© .2 4 * * “ - - ® -® * ♦ .20 .16 |2 f .0 8 ♦ IO N © ✓ ✓ CURRENT ✓ 04 OO VOLTAGE B E T W E E N 20 40 60 80 Figure COLLECTOR IO O 120 17 ft T A N K 140 160 V O LTS 75 collector become advantageous f ac e on As l O O O e v electrons to ry c o l l e c t i o n This a fac t o r of three the ization u ield. quired for c ^ n t of T and For t en p e r c e n t of an c x s q l e , the for the potential remain the t c . i sur­ themselves i I s the v, i c the h _ i s ionin products o n at pressure reauceu by the So source the on sm a ll of the ion­ ores, are re­ electrons, the order i used l n c i d e of n ma y h a v e \ o r of one per been f e r e u e n particle• t bOOOev lOOO that uisl satisfac­ electrons, of i the a this could be initial the o n o r q y t at potential was o f of ionization the p l a t e a u . p r e s e n t v.ork, enoiw; the a treacherous collection re m i r e d t on abso rb author believes smaller 50 m i c r n n s , saturation a b s o r p t i o n of o on is j e n e r a lly stepped, w i t h i n removed the the o r i g i n a l p It to n e u t r a l i z e the o r d e r o f still of pot*.." ti a l collection i l e ions collection effect total collection of potential e rr o rs same. electrons were potential w a s 1 0 * 5 v* the c h a m b e r wall* at p r e s s u r e s a collection the the p o s i t i v e ionization chamber nearly to c o l l e c t an d a l l o w the more t l y As electrons v potential r e g u t red to u s e these conui tion s The n u m b e r o f of i tiie e l e c t i o n of hi v i e o ova n n i z;., t i o n mean .free p a tth h ss re a yi v o n the - ' i * o d u tin r w y is nu-.ber o f m e a n c ts m u s t b e aired for r -» qhi.j tne a constant f re c. p - th s o v o r collected i s to tipi:iq, . c for­ w 1cn row i iri• t cl y 76 the same n u m b e r o f m e a n f r e e initial electron. p er m e a n free electrons prouucts to Hence p a t h the the paths renuired r atio o f the e n e r g y o f approximately V/ithin b r o a d l i m i t s of the (vdiich a f f e c t s •therefore it ;alte p o t e n t i a l s Y.ei'e w a ue dote th at the particle the p r e s s u r e is thi: n v;e re re o u i r e d f o r the space charge appLimtly moves to validity of per- c e n t Is to the ri^lrt space charge the is v. likely collection collection conditions, ion collection curve more potentials coriultions. "knee". the As "knee" th a t emor for lack of tlie fo r largge in tlie k n o w l e d g e potentials is, the t r i s l dhatever correction absolute small; serious It is p r o b a b l e if lov/er c o l l e c t i o n Is absorption), (higher potential s ) until can be used. a c o r r e c t i o n of o •6 re u i r e d in U f o r 9 0 c O e v i n c i d e n t e l e c t r o xo.s v;iioto I o n i z a t i o n p r o d u c t s w er e of l O O C sp ace c h a r g e conuitlon becomes G c r b e s » correction t ot a l at c o n s i d e r a b l y higgher f i e l d s Gex-bes ’16 t h e o r e t i c a l .* is r e d u c e d is i n d e p e n d e n t the e l e c t r o n c o l l e c t i o n coltfcctton p o t e n t i a l s , of for the p o s i t i v e .se iiig;ii c o l l e c t i o n c o m i d e m tion of roughly ecual t h a t j^isl f s la r g e tiit p l a t e a u f i n a l l y d i s a p p e a r s . \/f l d r i v e n thi s rc u i r e d n e c e s b u r y by s h o w n in FIggure l b a p : e a r s the i n c i d e n t a n d d i m e n s i o n s of the c h a m b e r probable "knee" o f the fox- t h e i r i o n i z a t i o n a constant, to one h u n d r e d . the onerggy of stop for a g i v e n c o l l e c t i o n voltage collection potential s h o u l d be to as Gcrbes was t ha t _,isl w a s potentials■ co l recteu. a,, p s r e n t l y conscious of ..Ith a po t e nt Lai a s t u u c n t of m s l , the o b j e c t i o n it to higyh 77 lie t o r m i n a t io n o f tlie S a t u r a t i o n C o n d i t i o n To a s c e r t a i n the p r e s s u r e tiuCC s p l a c e , well in below- the will limits of may coming be f o r m ; ition o f cnei*w y of av n r ^e should the with a net lo ss in the u as, fo r me d p e r totally i n it i al ch-.r e units: o 1t v a t e u electron the p re s su r e expects electron total f o r m e r per until absorption, initial the electron p re s.su re . of i o n - p a i r s f o rm e d p e r i ni tial p l o t t e d as a f u n c t i o n of the pr e s s u r e of the i o n i z a t i o n c n a m o e r p re ssure rl with ( F i n ire 13). tii>, a v e r a g e the v a l u e of li r o a c h e s a i c i p y of is in a 0rceand others. a li m it i ng v a l u e dote n n i n e d the i n c i d e n t u ;> r o c i a b l y f r o m this va l ue the The l i n e a r tiie o b s e r v a t i o n s of .Lehmann s u e 0 s 0oou,‘^ *i.s i.rouic tod, m e Vi: te in the s t opping yas • l u c r e a sc o f by in the the initial in micro os with may the n e t loss of io t« Lz.&Lio n c h a m b e r m c :;t el ec­ s e c o n d a r y ef Cectc ore p r o d u c e d by avcrf'jo number-, K, is ns a b s o r b e d wi thin the nu:.ibei- of i o n - p a i r s The el e ctrons The i n it i al in the e n e r g y expen d ed p re s s a re re 'aired f or not the initial d e c r e a s e d an a as a r e s u l t a n e t i n c r e a s e d n umber are the e l e c t r o n s with s e c o n d a r y electrons, c h a m b e r is i n c r e a s e d one ion-pairs 3cyonu in itial the i o n i z a t i o n c h a m b e r wall may produce ion-pairs to b e electrons the spent all of t h e i r energy. in c o n t a c t w i t h etc. ionization stop the i o n i z a t i o n ch- mber, neutralized, s c !1L ter, to At p r e s s u r e s at the i o n i z a t i o n c h a m b e r wall or o t h e r limit •ithout having tions total a b s o r p t i o n the f o l l o w i n g rco.sonln^ is usedj t ha t r e o u i r e d arrive at w h i c h olectx-ons a m >oes not ..Itf. i n cr e as i ng ior.ization 78 K 30 HH 27 4- ION T>0 “ " 0 0 BEAM ---- O " 0 24 f*> I / / / / 21 / / / P / 18 / 0 t / / 15 / I / 0 I / / 12 / t t / O 9- / / / / 0 6 t / 3 O TANK PRESSURE IN MICRONS H -------50 75 25 Figure 18- IOC 79 chamber pressure* Notice the apinarent decrease in the ac­ curacy of the d e t e r m i n a t i o n s of K V/ith advancing pressure. This scatter of o b s e r v a t i o n s resulted chiefly from the increased i nstability of the electron 0un as the ionization chamber pressure b e c o m e s large. Since even with the in­ creased effusive flow, the pressure of the gun chamber remaineu satisfactory, it is b e l i e v e d thst positive ions foimieu in the region of the small carbon orifice follow the trajectory of the el e c t r o n b e a m in the opposite uirection to bombard the filament of the wun, cannot be removed in other ways, If this difficulty a magnetic ion ejector such as used in mod e r n television tubes will certainly remove the bombardment. Vuithin the accuracy of measuremei it, no variation has b een found in the value of K wlt.li increasing pre s t.i.re • If the Incident electrons were scattcreu upon entering the io Isa tion chamber through such v.iue angles that an appreciable n u m b e r of tnem collided with tlie ionization chamber wall near produced bj the incident electrons T-ois i'fcuuction p.re s s u r e • To of envelope their port of entry the total ionization I ionization n visualize t i n . , f i r t k s t only la t i o n i n the d i r e c t i o n o f s ^ m . e t z g electrons). of in til,, s y s t e m In th, should situation, size b u t wltn i n c r e a s i n g increase p e n e t r a t i o n of as n o t of shrinking e the should have decreased. al so one t l i e can t h i n k of i n c i d e nt elc ctrons a tra ns- suffering the e l e c t r o n w un - l o n j (the l i n e o h absence of the ['] i g i t any m o c s u r e a b l e tlie a x i s of c t . m h n incident e g e I" the 80 value o f Iv os cludes then a function of that few C-'ptured b y tne increasing pressure, if a n y o f the incident ioniz-ation c h a m b e r w a l l near on e con­ electrons are t h e i r port of entry• bith was not diffusion and th e l a r y e volume used surprising diffusion and/or to Recombination Effects encounter i n the p r e s e n t exponential r e c o m b i n a t i o n of the oiui.ll e f f e c t s were observed h a v i n 0 a two iiiliiUUs. A careful stuuy of w o r k it decays due to ionisation prouucts. time this h a s c o n s t a n t of 34 about no t b e e n uncle. 81 Kj-iSULTS First ^iven a re accuracy it slioula b e not to b e o ex's tion. U ;e nor t all*. rerhays section, .'u c o n v e n i e n c e _ i-o s e n t 1 1 ...l . : re s o r t l *^ alon^ w i ll of is e a e i ' . L i i . e obtninln_ which the ccn-at, u .. 1•.r .1 . i.u:riziy v •riou s V. l u c of tin the su - e s t i o n s L l v c n in a c c u r a c y of the.m. the results y.i..lte .arbitrarily ter d. t Ion of ; Linn of b h a s i*i c )asl.. a raid e uc-t-v.il, di. r f u c toi'S of its the the p r e - u . ibLti.ou^ii the c >' •s : Cu Increase totally tlie e -uip mcnt and tlie li n e conr!u.erce n even over f i e l d o f 1000 e v e l e c t r o n s Xiaprovements i n to be the ultim*. te \,ith the p r o son t e q u i p m e n t restricted absorbed, i n tlie r e s u l t s t a k e n as i n d i c a t i v e o f obtainable tne h i g h l y era.>hasized t ha t it 1; ..mass • 'f1el mtrtienl* rly nrerr an t s a re h, the sire.'-'ey beer: uis- 'V to con si:, er the i x l b o u s la cor.ibi nei i to \ 1e 1e an ".r^y f->y tin format*on o r‘ an i o :i- p .1r • ihe elc c t r o n s c 1'i•re; a t essoci: teu. . tub by tl:■- F a r so.ay )'• ■ . 1 ■_c t x-Oiis , •.v 1 •y_. a n e n a y y n aa.i' the c.m r ^ oi'tlo.a.l to Ic.s. 7 the of 1 O 0 ■ uei'w y .is si; stem in u i s c s i a i y ■-.reci c:ye d'l s trlbut Lon c - r v c th.'.n 0.1 nei- cent. at '•i no ;v•i s tre.'i:! o f c n te ri'i,, the i o r i ^ u tion c h a m b e r enva-e.•t c o l l e c t e d i'lvolvcu the ely is m m:o lo;;-eni)yj .fill' f o r 800 ev -was, tak* -n ••••s ti e minus ev initial the snail n u m b e r or l e s s . a tn. r o x i m a t e l y pro ^ys, , 1 cti'ons tin. •-ra r^y a re a the mi, error .■ r, c. r e.,t j.1^ .Istributioa to 1 0 r'0 ev o l c c t r o n s , it is is 82 believea, with the support of meager elections with total energies betwe en Into the ionization chamber. v,1 tn the- accuracy in the of one half the initial ,vas c o m p a r e d electrons Ini tial with were the current the b a t t e r i e s electron muring results c u r r e n t of in the v a r i a t i o n the p e r i o d w h i l e obtained when the This variation m a l :ly f r o m the g u n f i l a m e n t supplying combined y i e l d a n uncertainty involved absorbed. electron current errors pass ce n t. ion current totally of above initial error was electron Ion b o m b a r d m e n t of the per Considerably more of The that few these limits the j a l v a n o m e t e r a e t e r m i n a t i o n of plus or minus evidence, ana the h e a t e r the it initial in the the positive slow discharge voltage for the g u n fIlameat• T he of value of K w as measurements. ursmu.nt o f the A Initial ana then once To a systematic tire b o a m c u r r e n t set w e r e varied of thirty tile i n t e r v a l sensitivity of the with election a^ala of noise source of the average was the time, current chiefly the time to f i v e resdtiig from difficulty. reading The a ineas- in each Intervals T h i s variation, the rnierophonlc Tlie s c s l e change sets ion for These changed between the the of steady decrease m'uutos. caused by twenty e l e c t r o n current. intcrv- Is. the JDC a m p l i f i e r . to be then I ritial the of consisted current, to seconds amplifier haa switch the error due t a k e n at c o n s t a n t from as set o f m e a s u r e m e n t s current, avoid taken of data usea ox each s c al e in amplification reaaingj was the the tire aeter. :i n a t i o n 83 of I-, is b^ shown 4. in T a b l e a horizontal left of the the two Initial ana f ollov/lng jwach set of d a t a line of numbers# column headed electron the Xn parentheses "Initial current ion current Electron readings At the right of the p a r e n t h e s e s tlie two Initial electron currents. Included negatively to the charged initial electron air u r a w n f r o m were values consistent. of A plus is the Ion average of current as w e l l as the l a b o r a t o r y ^.ach of taken on a fresh through i n the their of the i o n c u r r e n t Is K p l u s one. sets o f d a t a w e r e o f Iv p l u s T he p r o b a b l e one has b e e n cent of A plus one. i n d i c a t i v e of was tne h i r h l v current. in the n e x t a vapor ionization sa m p l e ti’ap. There chamber and co ll ec t i o n p ot en ti al s used. T he to b e the r a t i o are taken preceding the electrons current in t e n t i o n ; 1 d i f f e r e n c e s pressure u?t& initial products, of f o u r tlie g r o u p s of the As at the Current" reading given cohjin. measured is r e p r e s e n t e d reated numerical Tlie a u t h o r the in in T a b l e accuracy of the work has uoes 4 are err o r of c a l c u l a t e d to b e linear nature This on e the a v e r a g e 0 . 0 5 o r 0.2 p e r not b e l i e v e t hi s e r r o r the d e t e r m i n a t i o n . m a n n e r of T a b l e of surprisingly the d e c r e a s e The 4 to e m p h a s i z e of the I n i t i a l determined K - 27.5 i 3g ion-pairs The per Initial average as the potential i^ to o n e - h a l f lOOCev energy re the of uirea initial election. tne i :iciuent to reuucu current. electrons tlie F a r a d a y “ ecuuse of was cage the t«wcen current sha rp 84 TA B LA IV jeXPmRILANT/.L V A L b i -8 I N TilA DAl'AUAII'ATTIOK O P K Initial Electron Current Ion Current (Llectron) K 1 Deviation from Grand. A v e r a g e i o n i z a t i o n c h a m b e r p r e s s u r e - 50 m i c r o n s lositive collection potential - 4 v ( I D . 7, 1 3 . 3 ) 13.5 376 27.9 ( I D .0, 1 2 . 4 ) 12.7 354 27 . 8 11.2 (11.3, 11.1 ) 309 27.5 9.4) 9.7 10 0 271 28.0 Av 27 . 80 0.0 0.1 0.4 ( ., 0.1 I o n i z a t i o n cham b e r p r e s s u r e - bO m i c r o n s Positivecollection notontisl - IQ v (11.1, 1 0 . 9 ) 11.0 ‘ 3 11 28.25 27.55 (10.6, 9.8) 10.2 281 8.75 244 ( 0.3, 8.4) 27.9 7.6 211 ( 7 .8 5 , 7 . 35 ) 27.8 Av 27.87 0.4 0.4 0.0 0.1 I o n i z a t i o n c h a m b e r p r e s s u r e - 65 m i c r o n s Positive c o l l e c t i o n p otential - 40 v 13.6 380 27.9 13.3) 27.8 12.5 348 11.9) 27.4 307 10.75) 11.2 230 S .3 9.9 (1 0 . 9.5 ) Av 27 .85 0.0 0.1 0.5 0.5 I o n i z a t i o n c h a m b e r p r e s s u r e - 50 m i c r o n s P o s i t i v e c o l l e c t i o n p o t e n t i a l - 25 v 27 .7 270 9.75 (11.0, 8.5) 27.75 8 15 7.75 (8.2, 7.3) 27.5 140 5.1 ( 5.5, 4.7) 27 .3 260 9.53 (10. 05, 9.0) Av 27161 0.2 0.2 0.4 0.6 •jlo ni zn t i o n c ija m o o r p r e s s u r e — 50 m i c r o n s Fo j’ -’ ;,ivt, c o l l e c t i o n pot>. n tinl - 40 v 23.7 420 14.65* 1 4.3) (15.0 29 •2 420 14.4 1a . 3 ) 27 .8 3 8 7 1 5 . 9 15.1 ) 20.0 35 6 18.7 18. e ) 18 •4 Av li-a d Iiu aval* 1 correcteu .^V o n for op i n i t i a l e l e d r; -jo n- p a x r s l l o v j '■ iv = ;e t .o a. j,. •ob.ollo Iiumcrical e r r o r - 0 . 8 4 5 3Ed ~"n 7 n - T cut-off* o f is the v e l o c i t y d i s t r i b u t i o n introduced by ...ere m e a s u r e d ui Ui r e s p e c t a,n. also to b e to a v o l t a g e - d i v i d e r , energy of 1 0 5 2 v * !/a 'VCd : re owe conditions actustip o h n r s c t e r i e tics at amplifier th e se m e r i t s : n o w e v e r , >"ith ex. ■<,r 1e ace at the sen: si tive straight competent to n f r o m arriving lack of pub l i s h e d one the this f r o m more failings, ra n^c of remove scrubbed As t h er e h a s the w a l l s of the To ./itb the a d e -u-.tely cl e an . sensitive end ioniza ti on chamber. the v a c u u m vacuum to m e r c u r y v a p o r , bru •- v e;elif.\er frcoo; to 89 use one of aescribed of the m o r e in a current electrometer* strbiJ i ty o f of the complex but literature* amplifier This As an amplifiers frequently alternative, c a n b e bj'-passed b y will place the w u n b e c a u s e tlie e l e c t r o m e t e r * stable of a greater the the need the u s e o f p r e m i u m on an the I n t e g r a tin^j p r i n c i p l e 90 CONCLUSION A new the Instrument avernye electron!: has b e e n energy totally set f o r a n i o n - p a i r b^ AIlw ACKNOA'LiJd(Jh_NTS wa s c o n s t r u c t e d f o r the f o r m a t i o n o f a b s o r b e d i n ya s e s . tlie a v e r a g e 1000 ev electrons electron volts. of ueturui'Vir.io:-: is 4 . 5 p e r it sp. e a r s mime lively with an accuracy ti.it. f re r;uent h e l p f u l tion is d e c school of A of one preliminary value ap tlie f o r m a t i o n of totally Cent • At may per cent or to e x p r e s s h i s s.;'w U ct:t1 o n e the physic; hr • T h o m a s H. e n d f o r m e r iisae' o f : ■;at ay d e p a r t .ms t . Osyod, a uv c Appreciation do 1.1i*e-l 1 F und, whose financial i n air accuracy the prose; t time ultiu- te-ly be less. i*eci a tio n for discussion s offered Particular dean of t>'. V a c u u m Systems, Seals, Sci. I n s t r . , 19 ( 1948), pp. 4 8 5 - 4 9 3 . 25. Lea, jJ. u. A c t i o n s o f R a d i a t i o n s o n L i v i n g Ce l l s , The iuaci..illan C o m p a n y , N e w Y o r k , 1947, 40 2 pp. 26. Lea, 27. L e h m a n n , J. F. and T. R. O s g o o d The T o t a l I o n i s a t i o n d u e to the A b s o r p t i o n in A i r o f S l o w C a t h o d e R a y s . P ro c . Roy. joc. (L o n d o n ) A, 1 1 5 (1927), pp. 6 0 9 - 6 2 4 . ;o M an o , Ann. 29. N I s l e , R. G. A n .experimental e l e c t r o n A.S . t h esis, M i c h i g a n ijtate C o l l e g e , leaves, 6 figures. 50. R u the r f o r d , n.• R., J. C h a d w i c k , a n d C. L. H i l l s R a d i a t i o n f r o m r a d i o a c t i v e s u b s t a n c e s , e d . 1, C a m b r i d g e U n i v e r s i t y P r e s s , 1930, 5 8 8 pp. 51. Schmitz, • L i e to ta le T r a g e rb 11 u u n g l a n g s a m e r K a t h o d e n s t r a h l e n in Luft. physilc Z., 29 (1923), p p • 8 4 6 - 8 4 9 . S. A. u. reference reference 22, 25, page page 83. and Valves. Rev. ed. 1, 28. G. R e c h e r c h e s sur L 1A b s o r p t i o n p h y s . , 1 (1 9 54), pop. 4 0 7 - 5 5 1 . ues Rayons-^. Gun. U n p u b l i s h e d 1947, 1 8 numb, Y< trana than, J. u. The ‘'particle s o f M o d e r n P h y s i c s , ed. 1, The El ak is ton C o m p a n y , P h i l a d e l p h i a , 194"', 38 3 pop# 53. S fcrana than, J. D • r e f e r e n c e 38, ;;tge ao. 34. Stranathan, J. L. 32, pp. reference 28-29. 93 35, Strong, ed. 1, J. et al P r o c e d u r e s I n E x p e r i m e n t a l P h y s i c s . P r e n t i c e - H a l l , Inc., N e w Y o r k , 19 3 8, 642 pp. 36. S u l l i v a n , ii. b. Vacuum. P u m p i n g E q u i p m e n t a n d S ys t e m s . d ev . oci, I n s t r . , 19 (1948), pp. 1-1 5. 57. T h o m s o n , J. J. a n d 5. P. T h o m s o n C o n d u c t i o n o f j_1 c c t r i c i t y t h r o u g h G ases, ed. 3, V ol . I, C a m b r i d g e L'nlversity I rc s inj L o n u o n , u p l a n d , 1928, 4 9 1 pp. 38. T h o m s o n , J. 39. T h o m s o n , J. J. an.. G. P. T h o m s o n C o n d u c t i o n of e l e c t r i c i t y t h r o u g h Ga s e s , ed. 3, Vol. II, C a m b r i d g e U n i v e r s i t y p r e s s , L o n d o n , L n _ l s n u , 1928, 6 0 8 p p . 40. -J• a n u G. P. T h o m s o n r e f e r e n c e 37, page 17. T h o m s o n , -J. I o n i s l n _ E f f i c i e n c y o f e l e c t r o n i c I m p a c t s in m r . P r o c . .oy. hoc. ( T a i n t u r j i ) , 51 (1931), pp. 127-141. 41. .Villi e.ms, . J. TJie pa s s s w e of - and 0 - P a r t i c l e s t h r o u g h x..a ft or and T o r n * s Th< o±-y of C o l l i s i o n s . P r o c • ..oy. doc. (London) A, 1 5 5 (1952), pp. 1 0 8 - 1 3 1 . 4 ;. .VIIt on, e. T. ... On d o n e ot - r a y T r a c k s . 13.11. d)C., 1 ( 1 5 ' ) , pp. -03-4 09. -3. ..i 1 so n , C • I. s.. Ionize L:it Olouu :..i-LiiOU P'>I‘t X (1920) , p p . 1— US . 44. Lion b w S. a P r o c , o' ..Trri..w e -. u j • s nu ^ - n p ; p'PO C . .VO y • wO C . -X, 1 0 4 ail. on, e. T. A. l o n U tlon by X-V.ays C l o u a »._e Lat o a. p a r t x I Q — j s . X r o e •iO (19 2 3), pp. 19 2 - 12. nns j? - 3 !!VS b y the . do c . -x, 1 • ~ by