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ABSTRACT

VARIATIONAL BAYES INFERENCE OF ISING MODELS AND THEIR
APPLICATIONS

By

Minwoo Kim

Ising models originated in statistical physics have been widely used in modeling spatial

data and computer vision problems. However, statistical inference of this model and its

application to many practical fields remain challenging due to intractable nature of the

normalizing constant in the likelihood. This dissertation consists of two main themes, (1)

parameter estimation of Ising model and (2) structured variable selection based on the Ising

model using variational Bayes (VB).

In Chapter 1, we review the background, research questions and development of Ising

model, variational Bayes, and other statistical concepts. An Ising model basically deal with

a binary random vector in which each component is dependent on its neighbors. There exist

various versions of Ising model depending on parameterization and neighboring structure.

In Chapter 2, with two-parameter Ising model, we describe a novel procedure for the pa-

rameter estimation based on VB which is computationally efficient and accurate compared

to existing methods. Traditional pseudo maximum likelihood estimate (PMLE) can pro-

vide accurate results only for smaller number of neighbors. A Bayesian approach based on

Markov chain Monte Carlo (MCMC) performs better even with a large number of neighbors.

Computational costs of MCMC, however, are quite expensive in terms of time. Accordingly,

we propose a VB method with two variational families, mean-field (MF) Gaussian family

and bivariate normal (BN) family. Extensive simulation studies validate the efficacy of the

families. Using our VB methods, computing times are remarkably decreased without dete-

rioration in performance accuracy, or in some scenarios we get much more accurate output.

In addition, we demonstrates theoretical properties of the proposed VB method under MF

family. The main theoretical contribution of our work lies in establishing the consistency of



the variational posterior for the Ising model with the true likelihood replaced by the pseudo-

likelihood. Under certain conditions, we first derive the rates at which the true posterior

based on the pseudo-likelihood concentrates around the εn- shrinking neighborhoods of the

true parameters. With a suitable bound on the Kullback-Leibler distance between the true

and the variational posterior, we next establish the rate of contraction for the variational pos-

terior and demonstrate that the variational posterior also concentrates around εn-shrinking

neighborhoods of the true parameter.

In Chapter 3, we propose a Bayesian variable selection technique for a regression setup

in which the regression coefficients hold structural dependency. We employ spike and slab

priors on the regression coefficients as follows: (i) In order to capture the intrinsic structure,

we first consider Ising prior on latent binary variables. If a latent variable takes one, the

corresponding regression coefficient is active, otherwise, it is inactive. (ii) Employing spike

and slab prior, we put Gaussian priors (slab) on the active coefficients and inactive coefficients

will be zeros with probability one (spike).
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CHAPTER 1

INTRODUCTION

In this Chapter, we briefly introduce basic concepts without complete details related to our

work, Ising model and its pseudo-likelihood (Section 1.1), variational Bayes (Section 1.2),

Adam learning rates (Section 1.3), variable selection (Section 1.4), and posterior consistency

(Section 1.5). In addition, previous studies that have produced significant results in those

fields are introduced.

1.1 Ising model

A popular way of modeling a binary vector x = (x1, . . . , xn)
⊤, xi ∈ {−1, 1}, in which elements

are pairwise dependent is to take advantage of Ising model named after the physicist Ernst

Ising Ising (1924) which has been used in a wide range of applications including spatial data

analysis and computer vision. Many different versions of Ising model have emerged in the

literature. Among them, the probability mass function of a general Ising model is of the

form:

P(n)(X = x) =
1

Zn(Kn, B1, . . . , Bn)
exp

(
x⊤Knx+

n∑
i=1

Bixi

)
,

where Kn ∈ Rn×n and (B1, . . . , Bn) ∈ Rn are model parameters and Zn(Kn, B1, . . . , Bn)

is the normalizing constant that makes the sum of the probability mass function over all

possible combinations of x equal to 1:

Zn(Kn, B1, . . . , Bn) =
∑

x∈{−1,1}n
exp

(
x⊤Knx+

n∑
i=1

Bixi

)
.

The general Ising model can be reduced to two-parameter Ising model, assuming that all

nonzero entries of Kn take the same value and Bi = B for all i, which has an inverse

temperature parameter β > 0 (also known as interaction parameter) and a magnetization

parameter B ̸= 0 (also known as threshold parameter). With a specified symmetric coupling
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matrix An ∈ Rn×n, a probability mass function of two-parameter Ising model is:

P(n)
β,B(X = x) =

1

Zn(β,B)
exp

(
β

2
x⊤Anx+B

n∑
i=1

xi

)
, (1.1)

In the two-parameter Ising model, β characterizes the strength of interactions among xi’s

and B represents external influence on x. In the first place, Ising model has been introduced

for the relations between atom spins with the domain {−1, 1}n (Brush, 1967). While we

work with the domain {−1, 1}n, in many current applications, Ising model has been defined

with another domain {0, 1}n. One can read Haslbeck et al. (2021) for more details on two

different domains.

An Ising model is usually represented by an undirected graph. Consider an undirected

graph which has n vertices (nodes) xi, i = 1, . . . , n. Each vertex of the graph takes a value

either -1 or 1, i.e., xi ∈ {−1, 1}, and let E = {(i, j) | i ∼ j, 1 ≤ i, j ≤ n} represent the set

of edges in the graph where i ∼ j denotes that the vertices i and j are connected. Then,

one common choice of the coupling matrix An is a scaled adjacency matrix of the underlying

graph whose all diagonal elements are zeros and the other elements are non-negative:

Definition 1 (Scaled adjacency matrix). A scaled adjacency matrix for a graph Gn with n

vertices is defined as:

An(i, j) :=


n

2|Gn| if (i, j) ∈ E

0 otherwise.
,

where |Gn| denotes the number of edges in the graph Gn.

For a simple example, consider three nodes (x1, x2, x3) and two edges between x1 and x2,

and between x2 and x3 as in Figure 1.1. Then, n = 3, |Gn| = 2, and the scaled adjacency

matrix is:

An =


0 0.75 0

0.75 0 0.75

0 0.75 0

 .

2



Figure 1.1: An undirected graph with three nodes

1.1.1 Pseudo-likelihood

One of the largest challenges in using Ising model is the unknown normalizing constant

Zn(β,B) in the likelihood (1.1):

Zn(β,B) =
∑

x∈{−1,1}n
exp

(
β

2
x⊤Anx+B

n∑
i=1

xi

)

One can notice that the exact calculation of the normalizing constant involves sum of 2n

terms, which is available only for small n. Due to the intractable nature of the normalizing

constant, standard statistical methodologies based on the true likelihood are infeasible. One

way to approximate the normalizing constant is importance sampling, see Geyer (1994);

Gelman and Meng (1998); Molkaraie (2014). Another approach to handling the normalizing

constant is to use a pseudo-likelihood. The conditional probability of xi is easily calculated

because xi is binary:

P(n)
β,B

(
Xi = 1|Xj, j ̸= i

)
=

eβmi(x)+B

eβmi(x)+B + e−βmi(x)−B
,

3



where mi(x) =
∑n

j=1 An(i, j)xj. The pseudo-likelihood of Ising model corresponding to the

true likelihood in (1.1), is defined as the product of one dimensional conditional distributions:

n∏
i=1

P(n)
β,B (Xi = xi | Xj, j ̸= i)

= 2−n exp

(
n∑

i=1

(βximi(x) +Bxi − log cosh(βmi(x) +B))

)
. (1.2)

Fauske (2009) is an example on empirical study using pseudo-likelihood and Ghosal et al.

(2020) provides theoretical justification on use of pseudo-likelihood. For v,w ∈ [−1, 1]n ,

defining a function g as:

g(v,w) =
n∑

i=1

1 + vi
2

log
1 + wi

2
+

1− vi
2

log
1− wi

2
,

we point out that the pseudo-likelihood can be written as:

n∏
i=1

P(n)
β,B (Xi = xi | Xj, j ̸= i) = eg(x,b(x)), (1.3)

where b(x) = (b1(x; θ), · · · , bn(x; θ))⊤ and

bi(x) = E(Xi | Xj, j ̸= i) = tanh(βmi(x) +B), i = 1, . . . , n.

1.2 Variational Bayes (VB)

Let θ be the set of parameters of interest with a prior distribution p(θ). In a Bayesian

inference, a typical objective is to obtain posterior distribution given data D. We can derive

the exact posterior distribution π(θ | D) using Bayes’ theorem:

π(θ | D) = p(θ)p(D | θ)∫
θ
p(θ)p(D | θ)dθ

, (1.4)

where p(D | θ) is a likelihood given parameter θ. The exact posterior in (1.4), however, is not

typically available except for a few well-known examples. To get an approximated posterior,

many statisticians have widely used sampling based Markov chain Monte Carlo (MCMC)

methods but it is hardly scalable to high-dimensional cases. Beyond sampling methods,
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variational Bayes (VB) also called variational inference or variational approximation (Jordan

et al., 1999) has been popularized as an efficient alternative to MCMC. VB recasts the

sampling problem as an optimization problem minimizing Kullback-Leibler (KL) divergence

between a surrogate distribution (called a variational distribution) and the true posterior

distribution (Blei et al., 2017).

Definition 2 (Kullback-Leibler (KL) divergence). For two probability measures P1 and P2

over a set Ω, the KL divergence between P1 and P2 is defined as:

KL (P1, P2) = Ep1 (log p1 − log p2) (1.5)

=

∫
Ω

log

(
p1(ω)

p2(ω)

)
dP1 (1.6)

where p1 and p2 are corresponding densities to P1 and P2 respectively.

As the first step in building a VB algorithm, we need to define a family of distributions

(called variational family) denoted byQ which contains candidates of the best approximation

to the true posterior (1.4):

Q = {q(θ;ν) : q is a probability density function that can be easily handled.},

where ν is a set of parameters (called variational parameters) that characterize variational

distributions. For instance, if Q is a Gaussian family, then ν includes mean (µ) and stan-

dard deviation (σ) of a Gaussian distribution. After an appropriate variational family is

chosen, VB seeks the best surrogate function (called variational posterior) by minimizing

KL divergence with the true posterior:

q∗ = argmin
q∈Q

KL (Q,Π(· | D)) . (1.7)

Observe that:

KL (Q,Π(· | D)) = Eq (log q(θ)− log π (θ | D))

= −Eq (log p (θ,D)− log q(θ)) + logm (D) , (1.8)

5



where m (D) is the marginal distribution of data which does not depend on θ. So, we can

find the minimizer of KL divergence by maximizing Eq (log p (θ,D)− log q(θ)) which is called

evidence lower bound (ELBO).

1.2.1 Black box variational inference (BBVI)

Black box variational inference (BBVI) is an stochastic gradient optimization technique

suggested by Ranganath et al. (2014) to maximize ELBO using unbiased gradients. Consider

the ELBO as a function of variational parameters ν:

L(ν) = Eq (log p (θ,D)− log q(θ)) . (1.9)

In each BBVI iteration, a variational parameter ν ∈ ν is updated in the direction that the

objective function L(ν) increases as follows:

ν(t+1) ← ν(t) + ηt∇νL(ν), (1.10)

where ν(t) is the variational parameter at t-th iteration and ηt’s, t = 1, 2, . . . , are learning

rates which satisfy Robbin-Monro conditions (Robbins and Monro, 1951):

∞∑
t=1

ηt =∞ and
∞∑
t=1

η2t <∞.

A closed form of the gradient ∇νL(ν) is not always available. Ranganath et al. (2014)

proposed an unbiased Monte Carlo estimate. Observe that:

∇νL(ν) = ∇ν

∫
q(θ) (log p (θ,D)− log q(θ)) dθ

=

∫
∇νq(θ) (log p (θ,D)− log q(θ)) dθ −

∫
q(θ)∇ν log q(θ)dθ

=

∫
∇νq(θ) (log p (θ,D)− log q(θ)) dθ

=

∫
q(θ)∇ν log q(θ) (log p (θ,D)− log q(θ)) dθ

= Eq (∇ν log q(θ) (log p (θ,D)− log q(θ))) (1.11)

6



The third equality is the fact that the expectation of a score function is zero. From the last

expectation form in (1.11), we can induce a Monte Carlo estimate as follow:

∇̂νL(ν) =
1

S

S∑
s=1

∇ν log q(θs) (log p (θs,D)− log q(θs)) , (1.12)

where θs is a draw from the current q(θ;ν). Also, we define an empirical ELBO as the Monte

Carlo estimate:

L̂(ν) = 1

S

S∑
s=1

(log p (θs,D)− log q(θs)) , (1.13)

Replacing ∇νL(ν) in (1.10) with the unbiased estimate in (1.12), even though the closed

forms of ELBO and its gradients are not exactly computable, we can update variational

parameters until the empirical ELBO (1.13) converges.

1.3 Adaptive learning rates

To optimize the objective function (1.9), appropriate learning rates ηt in (1.10) can vary

widely between variational parameters. Instead of a single learning rate, one can use an

adaptive learning rate method. Kingma and Ba (2014) proposed an algorithm for first-order

gradient-based optimization based on adaptive estimates of lower-order moments named

Adam. Adam computes individual adaptive learning rates for different parameters from

estimates of first and second moments of the gradients. Algorithm 1.1 outlines the Adam

algorithm.

Adam algorithm updates exponential moving averages of the gradient (mt) and the

squared gradient (ut) where α1, α2 ∈ [0, 1) control the exponential decay rates of these mov-

ing averages. Kingma and Ba (2014) suggested good default settings α0 = 0.001, α1 = 0.9,

α0 = 0.999, and ϵ = 10−8. We use Adam learning rates in Chapter 3 for our variable selection

algorithm.
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Algorithm 1.1 Adam learning rates.
Initialize: α0: Stepsize
Initialize: α1, α2 ∈ [0, 1): Exponential decay rates for the moment estimates
Initialize: The hyper parameters m0 ← 0 and u0 ← 0
1: while ELBO increases do
2: Draw θ(s) ∼ q

(
θ;ν(t)

)
, s = 1, . . . , S;

3: Get ∇̂νL(ν) based on the S sample points;
4: mt ← α1mt−1 + (1− α1) ·

(
∇̂νL(ν)

)
;

5: ut ← α2ut−1 + (1− α2) ·
(
∇̂νL(ν)

)2
;

6: m̂t ← mt/(1− αt
1), where αt

1 denotes α1 to the power of t;
7: ût ← ut/(1− αt

2), where αt
2 denotes α2 to the power of t;

8: Update the parameter of interest: ν(t) ← ν(t−1) + α0 · m̂t/
(√

û+ ϵ
)
;

9: end while
Output: Optimal variational parameters ν∗

1.4 Variable selection

Statistical methodologies are well-established if the set of variables to consider is fixed and

small. However, in high-dimensional setup in which the number of covariates (p) are much

larger than the number of observations (n), classical models do not perform well, which leads

statisticians to develop various variable selection methods. Variable selection in statistics

means selecting among many variables which to include in a statistical model. From a

total list of variables, significant variables are selected by removing irrelevant or redundant

variables. In this section, we introduce a Bayesian variable selection method based on a

spike and slab prior which was first suggested by Mitchell and Beauchamp (1988).

In a linear regression model, consider a sparse vector of the regression coefficients β =

(β1, . . . , βp)
⊤ ∈ Rpn :

y = Xβ + e, (1.14)

where p > n, y ∈ Rn, X ∈ Rn×p, and e ∈ Rn. We assume that only a few number of βi is

nonzero and define an activation set of nonzero coefficients:

A := {βi : βi ̸= 0}. (1.15)
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To select explanatory variables corresponding to the nonzero coefficients, it is desirable that

a tall and narrow function around zero is assigned to βi’s in Ac. We call the tall and narrow

function a "Spike" distribution. Whereas, for βi’s in A, we use a flatter and diffused function

called a "Slab" distribution. Plus, given that it is not known a priori which covariates should

be included in a model, we introduce a latent binary vector γ = (γ1, . . . , γp)
⊤ ∈ {−1, 1}pn .

If γi = −1, a spike distribution is used as a prior of βi. If γi = 1, for a prior of βi, a slab

distribution is used as follows:

p(β | γ) =
p∏

i=1

p(βi | γi),

βi | γi ∼
1− γi

2
f1(βi) +

1 + γi
2

f2(βi),

where f1 and f2 denote a spike distribution and a slab distribution respectively. One simple

choice of a prior distribution of γ is independent Bernoulli:

p(γ) =

p∏
i=1

ϕ
(1+γi)/2
i (1− ϕi)

(1−γi)/2, (1.16)

where ϕi is the probability that γi = 1.

Various versions of spike and slab priors have emerged in the past literature. Mitchell

and Beauchamp (1988) used a mixture of a point mass at zero (spike) and a diffuse uniform

distribution (slab). With a point mass spike distribution, many previous studies used a

Gaussian slab distribution which include but not limited to Li and Zhang (2010), Andersen

et al. (2014), Xi et al. (2016) and Andersen et al. (2017). Another group of previous researches

which includes but not limited to Johnstone and Silverman (2004), Castillo and Roquain

(2020), and Ray and Szabó (2021) used a Laplace (double exponential) slab with a point mass

spike. Two continuous distributions have been also considered as spike and slab distributions.

George and McCulloch (1993) used a mixture Gaussian prior as follows:

βi | γi ∼
1− γi

2
N(0, τ 2i ) +

1 + γi
2

N(0, c2i τ
2
i ),

where ci is set to be large. Park et al. (2022) used similar mixture Gaussian priors with

applications to educational data. In a series of studies Ročková and George (2016), Ročková
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(2018), and Ročková and George (2018), they have developed spike and slab LASSO priors

using two Laplace distributions as follows:

p(β | γ) =
p∏

i=1

(
1− γi

2

)
λ0

2
exp (−λ0|βi|) +

(
1 + γi
2

)
λ1

2
exp (−λ1|βi|) ,

where λ0 is a large scale parameter and λ1 is a smaller scale parameter. Under the spike

and slab LASSO priors, Gan et al. (2019) proposed an approach for precision matrix estima-

tion called BAGUS, short for “Bayesian regularization for Graphical models with Unequal

Shrinkage”.

We can simply use the independent Bernoulli prior distributions on γ in (1.16) assum-

ing that there is no inter-dependence between covariates or between regression coefficients.

Dependent data, however, are now routinely analyzed. Some previous researches have used

combination of an Ising model and a spike and slab prior to facilitate the catch of depen-

dence. Li and Zhang (2010) considered Ising prior on γ and suggested a MCMC method

with known structure among the covariates. Li et al. (2015) proposed a joint Ising and

DiriChlet process for grouping and selecting significant voxels in functional magnetic reso-

nance imaging (fMRI) data. In Chapter 3, using a spike and slab prior with Ising model

on γ, we will describe a VB algorithm for simultaneously selecting significant explanatory

variables and estimating the regression coefficients when there exists structural dependence

among the regression coefficients.

1.5 Posterior consistency

Establishing posterior consistency with contraction rates of a statistical method has been

a fundamental research topic for a Bayesian to provide theoretical justification. In an esti-

mation problem, the basic idea of posterior consistency is that the posterior distribution is

concentrated around the true parameter. Many previous studies have constructed a theoret-

ical basis for Bayesian methodology by dealing with posterior consistency. For example, in

a high-dimensional linear regression setup, the posterior consistency of the regression coeffi-

cients with popular shrinkage priors under mild conditions was proved. More specifically, in
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the high-dimensional linear model, y = Xβ + e, posterior distribution satisfies:

π (β : ||β − β0|| > ϵ | y)→ 0,

where ϵ is any positive constant and β0 are the true regression coefficients (See Armagan

et al. (2013) for detailed statements and proof). As other examples, Sriram et al. (2013)

provided a justification to use of (misspecified) asymmetric Laplace density for the response

in Bayesian quantile regression by proving posterior consistency. More recently, Ghosh et al.

(2018) considered a VAR model with two priors for the coefficient matrix and showed pos-

terior consistency. Cao et al. (2019), for a covariance estimation and selection problem,

established strong graph selection consistency and posterior convergence rates for estima-

tion using Gaussian directed acyclic graph model. For VB, there are a few theoretical

results. Wang and Blei (2019) established frequentist consistency and asymptotic normality

of VB methods by proving a variational Bernstein–von Mises theorem. Bhattacharya and

Maiti (2021) established the mean-field variational posterior consistency for a feed-forward

artificial neural network model.

In our two-parameter Ising model estimation problem, we say the posterior is consistent

if

π
(
θ ∈ N c

n |X(n)
)
→ 0 in P(n)

0 probability,

where Nn is a shrinking neighborhood of the true parameter (β0, B0), P(n)
0 is the distribution

induced by the true likelihood (1.1) with (β0, B0), and X(n) is a sample vector from the

Ising model with (β0, B0). Analogous to the true posterior, we say the variational posterior

is consistent if

q∗ (θ ∈ N c
n)→ 0 in P(n)

0 probability.

In Chapter 3, we derive variational posterior consistency with contraction rates obtained

under the pseudo-likelihood and Gaussian mean-field variational family.
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CHAPTER 2

A VARIATIONAL BAYES ALGORITHM AND POSTERIOR
CONSISTENCY FOR TWO-PARAMETER ISING MODEL ESTIMATION

In this chapter, we describe a VB algorithm for Ising model estimation under pseudo-

likelihood along with numerical studies for assessing performances.

2.1 Introduction

Estimation of Ising model parameters has received considerable attention in statistics and

computer science literature. The existing literature can be broadly divided into two groups.

Some literature assume that i.i.d. (independently and identically distributed) copies of data

are available for inference; see Anandkumar et al. (2012), Bresler (2015), Lokhov et al.

(2018), Ravikumar et al. (2010), and Xue et al. (2012). Another category of literature

assumes that only one sample is observable; see Bhattacharya et al. (2018), Chatterjee et al.

(2007), Comets (1992), Comets and Gidas (1991), Ghosal et al. (2020), Gidas (1988), and

Guyon and Künsch (1992). In this dissertation, using variational Bayes (VB), we provide a

new Bayesian methodology for model parameter estimation when one observes the data only

once. Under the assumption of only one observation, Comets and Gidas (1991) showed that

the MLE of β > 0 for Curie-Weiss model is consistent if B ̸= 0 is known, and vice versa. They

also proved that the joint MLE does not exist when neither β nor B is given. In this regard,

Ghosal et al. (2020) addressed joint estimation of (β,B) using pseudo-likelihood and showed

that the pseudo-likelihood estimator is consistent under some conditions on coupling matrix

An. We also assume only one observation of x and provide a variational Bayes algorithm for

model parameter estimation with its posterior consistency.

One of the main challenges in the Bayesian estimation of Ising models lies in the in-

tractable nature of the normalizing constant in the likelihood. Following the works of Ghosal

et al. (2020), Bhattacharya et al. (2018) and Okabayashi et al. (2011), we replace the true
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likelihood of the Ising model by a pseudo-likelihood and we establish that the posterior based

on the pseudo-likelihood is consistent for a suitable choice of the prior distribution. Further,

we use variational Bayes (VB) approach which has recently become a popular and compu-

tationally powerful alternative to MCMC. In order to approximate the unknown posterior

distribution using VB, we propose a Gaussian mean field family and general bivariate nor-

mal family with transformation of the parameters to (log β,B). For implementation of VB,

we consider a black box variational inference (BBVI), Ranganath et al. (2014). In BBVI,

we need to be able to evaluate the likelihood to compute the gradient estimates, but the

existence of an unknown normalizing constant in likelihood of Ising model prevents us using

BBVI directly. So, as mentioned above, we use pseudo-likelihood as in Ghosal et al. (2020).

Replacing the true likelihood of Ising model with pseudo-likelihood, we are able to compute

all the quantities needed for implementing BBVI. Our VB algorithm based on optimiza-

tion is computationally more powerful than the sampling based MCMC methods (Møller

et al., 2006). Also, use of PyTorch’s automatic differentiation enables us to further reduce

computational costs.

2.2 VB algorithm

Let θ = (β,B) be the parameter set in a two-parameter Ising model. To develop vari-

ational Bayes algorithm, we consider the following independent prior distribution p(θ) =

pβ(β)pB(B), with pβ(β) as a log-normal prior for β and pB(B) as a normal prior for B as

follows:

pβ(β) =
1

β
√
2π

e−
(log β)2

2 , pB(B) =
1√
2π

e−
B2

2 . (2.1)

The assumption of log-normal prior on β is to ensure the positivity of β. Let L(θ) be

the pseudo-likelihood function given by (1.2), then the above prior structure leads to the

following posterior distribution

Π(A | X(n)) =

∫
A π(θ,X(n))dθ

m (X(n))
=

∫
A L(θ)p(θ)dθ∫
L(θ)p(θ)dθ

, (2.2)
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for any set A ⊆ Θ where Θ denotes the parameter space of θ. Note, π(θ,X(n)) is the joint

density of θ and the data X(n) and m
(
X(n)

)
=
∫
L(θ)p(θ)dθ is the marginal density of X(n)

which is free from the parameter set θ. Next, we provide a variational approximation to the

posterior distribution (2.2) considering two choices of the variational family in order to obtain

approximated posterior distribution (variational posterior). One candidate of our variational

family, for the virtue of simplicity, is a mean-field (MF) Gaussian family as follows:

QMF =

{
q(θ) | q(θ) = qβ(β)qB(B), log β ∼ N(µ1, σ

2
1), B ∼ N(µ2, σ

2
2)

}
. (2.3)

The above variational family is the same as a lognormal distribution on β and normal

distribution on B. Also, we point out that β and B are independent in QMF and each

q(θ) ∈ QMF is governed by its own parameter set, νMF = (µ1, µ2, σ
2
1, σ

2
2)

⊤. νMF denotes

the set of variational parameters which will be updated to find the optimal variational

distribution closest to the true posterior (2.2).

In addition, we suggest a bivariate normal (BN) family to exploit the interdependence

among the parameters (β,B) as follows:

QBN =

{
q(θ) | q(θ) = q(β,B), (log β,B) ∼MVN(µ,Σ)

}
, (2.4)

where µ =

µ1

µ2

 and Σ =

σ11 σ12

σ12 σ22

.

QMF can also be represented as (independent) bivariate normal family. The variational

parameters of BN family are νBN = (µ1, µ2, σ11, σ22, σ12)
⊤. Once a variational family is se-

lected, one can find the variational posterior by maxiimizing the ELBO between a variational

distribution q ∈ Q and the true posterior (2.2). Recall the updates in (1.10) and the Monte

Carlo estimates of the gradients in (1.12):

ν(t+1) ← ν(t) + ηt∇̂νL(ν),

∇̂νL(ν) =
1

S

S∑
s=1

∇ν log q(θs) (log p (θs,D)− log q(θs)) .
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Starting with initial values ν(0), we update the variational parameters in the direction of

increasing ELBO using BBVI. The summary of BBVI algorithm is shown in Algorithm 2.1.

Algorithm 2.1 Black box variational inference (BBVI)

Initialize: p(θ), q(θ;ν(0)) and learning rate sequence ηt.
1: while ELBO increases do
2: Draw θ(s) ∼ q

(
θ;ν(t)

)
, s = 1, . . . , S;

3: Get ∇̂νL(ν) based on the S sample points;
4: Update ν(t+1) ← ν(t) + ηt∇̂νL(ν);
5: end while

Output: Optimal variational parameters ν∗

In the next subsection, we discuss more details of implementing BBVI with the mean-field

family (2.3).

2.2.1 VB algorithm with MF family

In the mean-field family, we have four variational parameters (µ1, µ2, σ1, σ2). For each vari-

ational parameter ν, we should compute ∇ν log q(θ) to evaluate the Monte Carlo gradients.

Although one can simply use PyTorch’s automatic differentiation without manual calcula-

tion, it is worth manually calculating the gradients to fully understand a BBVI algorithm.

First, for µi, i = 1, 2, the gradients are:

∇µ1 log q(θ;ν) =
log β − µ1

σ2
1

,

∇µ2 log q(θ;ν) =
B − µ2

σ2
2

.

For σi, i = 1, 2, we need to be more careful because σi must be always positive. During

the updates, it may occur that σi takes a negative value. In order to preclude this issue,

we consider a reparametrization σi = log
(
1 + eσ

′
i

)
and update the quantity σ′

i, as a free
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parameter, instead of updating σi. Then,

∇σ′
1
log q(θ;ν) =

eσ
′
1

1 + eσ
′
1

(
(log β − µ1)

2

σ3
1

− 1

σ1

)
,

∇σ′
2
log q(θ;ν) =

eσ
′
2

1 + eσ
′
2

(
(B − µ2)

2

σ3
2

− 1

σ2

)
.

In the next subsection, we discuss more details with the bivariate normal family (2.4).

2.2.2 VB algorithm with BN family

In addition to the positivity condition on some variational parameters, we should control

postive definiteness of the covariance matirx Σ in (2.4). To guarantee the positive defi-

niteness, we use Cholesky decomposition such that Σ = LLT , where L =
(
l11 0
l12 l22

)
. We

update the elements of the lower triangular matrix (l11, l12, l22) in place of directly updating

(σ11, σ12, σ22) to avoid the cases of negative definite Σ. Computation of ∇ν log q(θ;ν) with

BN family is as follows:

∇µ1 log q(θ;ν) =
1

l222

(
(l222 + l212)(log β − µ1)

l11
− l12(B − µ2)

l11

)
,

∇µ2 log q(θ;ν) =
1

l222

(
B − µ2 −

l12(log β − µ1)

l11

)
,

∇l′11
log q(θ;ν)

=
el

′
11

1 + el
′
11

(
− 1

l11
+

1

l222

(
(l222 + l212)(log β − µ1)

2

l311
− l12(log β − µ1)(B − µ2)

l211

))
,

∇l′22
log q(θ;ν)

=
el

′
22

l22(1 + el
′
22)

(
1

l222

(
(l222 + l212)(log β − µ1)

2

l211
− 2l12(log β − µ1)(B − µ2)

l11

)

+

(
(B − µ2))

l22

)2

−
(
log β − µ1

l11

)2

− 1

)
,

∇l12 log q(θ;ν) =
1

l222

(
(log β − µ1)(B − µ2)

l11
− l12(log β − µ1)

2

l211

)
,

where lii = log
(
1 + el

′
ii

)
for i = 1, 2.
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2.3 PMLE and MCMC

We compare our VB algorithm with two other methods, a PMLE method (Ghosal et al.,

2020) and a MCMC based method (Møller et al., 2006). In thid section, we briefly introduce

the two competitors.

PMLE: Let h(β,B) denote the pseudo-likelihood in (1.2). Ghosal et al. (2020) used

grid search to find pseudo maximum likelihood estimate (PMLE) for Ising parameters which

simultaneously satisfies ∂
∂β

log h(β,B) = 0 and ∂
∂B

log h(β,B) = 0.

∂

∂β
log h(β,B) =

n∑
i=1

mi(x) (xi − tanh (βmi(x) +B)) = 0,

∂

∂B
log h(β,B) =

n∑
i=1

(xi − tanh (βmi(x) +B)) = 0.

We create a grid such that the search space for β contains all points from 0.1 to 2 in

increments of 0.01 and the search space for B increases from -1 to 1 by 0.01.

MCMC: Let p(θ) be a prior distribution of θ and p(x | θ) be the true likelihood in

(1.1). The closed form of the true posterior (1.4) is not available because the integral in the

denominator is not analytically tractable. Instead, one can use a sampling method. Consider

a Metropolis-Hastings ratio given by:

MH(θ′ | θ) = p(θ′)fθ′(x)u(θ | θ′)
p(θ)fθ(x)u(θ′ | θ)

× Zn(θ)

Zn(θ′)
, (2.5)

where u(θ′ | θ) is the proposal density and fθ(x) is an unnormalized density of Ising model,

i.e, p(θ | x) = Zn(θ)
−1fθ(x). Obtaining the Metropolis-Hastings ratio, however, is still lim-

ited because we cannot compute the normalizing constant in p(x | θ) even with a moderate

amount of n. In order to remove the ratio of normalizing constants in (2.5), Møller et al.

(2006) proposed an alternative approach using an auxiliary variable z with conditional dis-

tribution g(z | θ,x). Targeting π(θ, z | x) ∝ p(θ)g(z | θ,x) 1
Zn(θ)

fθ(x) instead of π(θ | x)

and taking the proposal density for z′ to be an Ising likelihood depending on θ′, that is,

z′ ∼ 1
Zn(θ′)

fθ′(z
′), we can cancel the normalizing constants in the Metropolis-Hastings ratio

17



(2.5) as follows:

MH(θ′, z′ | θ, z) = g(z′ | θ′,x)p(θ′)fθ′(x)fθ(z)u(θ | θ′)
g(z | θ,x)p(θ)fθ(x)fθ′(z′)u(θ′ | θ)

. (2.6)

As suggested by Møller et al. (2006), the conditional density g(z | θ,x) is approximated

by fθ̃(z)/Zn(θ̃) which does not depend on θ, where θ̃ is PMLE. Also, using independent

log-normal and normal distributions so that u(θ | θ′)/u(θ′ | θ) = 1, the ratio (2.6) further

reduces to:

MH(θ′, z′ | θ, z) = 1 (θ ∈ Θ)
fθ̃(z

′)fθ′(x)fθ(z)

fθ̃(z)fθ(x)fθ′(z
′)
. (2.7)

We accept the proposal (θ′, z′) as a new state with probability min{1,MH(θ′, z′ | θ, z)}.

Although Møller et al. (2006)’s approach intelligently controls the normalizing constant,

the algorithm is still computationally expensive because it involves sampling from an Ising

likelihood at each Metropolis-Hastings iteration.

2.4 Numerical experiments

2.4.1 Generating observed data

For numerical experiments, we need a coupling matrix An and an observed vector xobserved

from (1.1). First, for generating a random d-regular graph and its scaled adjacency matrix,

we use a python package NetworkX. Using the scaled adjacency matrix as our coupling matrix

An, we facilitate Metropolis-Hastings algorithm to generate an observed vector xobserved with

true parameters (β0, B0) as follows:

0. Define H(x) = β0

2
x⊤Anx + B0

∑n
i=1 xi and start with a random binary vector x =

(x1, . . . , xn)
⊤.

1. Randomly choose a spin xi, i ∈ {1, . . . , n}.

2. Flip the chosen spin, i.e. xi = −xi, and calculate ∆H = H(xnew) − H(xold) due to

this flip.
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3. The probability that we accept xnew is:

P(accept xnew) =


1, if∆H > 0,

exp (∆H) , otherwise.

4. If rejected, put the spin back, i.e. xi = −xi.

5. Go to 1 until the maximum number of iterations (L) is reached.

6. After L = 1, 000, 000 iterations, the last result is a sample xobserved we use.

One can read Izenman (2021) for more details of sampling from Ising model.

2.4.2 Performance Comparison

We compare the performance of the parameter estimation methods for two-parameter Ising

model (1.1) under various combinations of (d, n) and (β0, B0). Using the given coupling

matrix An for each scenario, we repeat the following steps R times:

• Generate an observed vector x from (1.1) with true parameters (β0, B0).

• Using the proposed BBVI algorithm with MF family or BN family, obtain the optimal

variational parameters ν∗.

• We get the estimates θ̂ = (log β̂, B̂)⊤ = (µ∗
1, µ

∗
2)

⊤.

We use S = 20 or S = 200 as the Monte Carlo sample size in (1.12). Figure 2.1 describes

ELBO convergences for the two different sample sizes with MF family and BN family. The

figure indicates that the ELBO converges well with a moderate choice of S. Further, for

more stable convergence, one might choose higher S and BN family over MF family.

We use Mean squared error (MSE) as the measurement for assessing the performances

with R = 50 pairs of estimates (β̂1, B̂1), . . . , (β̂R, B̂R):

MSE =
1

R

R∑
r=1

((
β̂r − β0

)2
+
(
B̂r −B0

)2)
. (2.8)
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Figure 2.1: Left: ELBO convergence with two variational families (BN and MF) and S = 20.
Right: ELBO convergence with two variational families (BN and MF) and S = 200. Blue
lines represent BN family and orange lines represent MF family in each plot.

For each pair of (β0, B0) we take d = 10, 50. The two numbers in each cell of the tables,

Table 2.1, 2.2, 2.3, and 2.4, represent MSE values or convergence time when n = 100 and

n = 500 respectively. First, we consider a small value of β0 = 0.2 with B0 = ±0.2, ±0.5. In

these cases, as shown in Table 2.1 and 2.2, PMLE is the fastest but less accurate especially

for d = 50. MCMC achieves smaller MSEs but it has the highest runtimes. Our VB methods

notably reduce the runtimes without compromising accuracy.

Second, for higher interaction parameter β0 = 0.7 with B0 = ±0.2, ±0.5, our VB algo-

rithms are more accurate than the others (See Table 2.3 and 2.4). The numerical studies

validate the superiority of our proposed VB methods. For more practical applications, we

used our algorithm to regenerate an image in the next subsection.

2.4.3 Image reconstruction

Ising model can be used for constructing an image in computer vision field. In particular,

the Bayesian procedure facilitate the reconstruction easily by using the posterior predictive

distribution Halim (2007). Consider an image in which each pixel represents either−1(white)

or 1(black). For choice of coupling matrix An, we use twelve-nearest neighbor structure and

construct corresponding scaled adjacency matrix Hurn et al. (2003). Then, we generate such

images following the steps in the subsection 2.4.1 with a true parameter pair (β0, B0) and use
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Table 2.1: Mean squared errors and computation times for each pair of (β0, B0) when n = 100
(left numbers) and n = 500 (right numbers) given the degree of underlying graph (d).

Degree of Method Monte Carlo (0.2, 0.2) (0.2,−0.2) Convergence
graph (d) samples (S) time (sec)

10 PMLE1 - 0.119 / 0.049 0.091 / 0.022 3.2 / 3.6
MCMC2 - 0.098 / 0.194 0.097 / 0.146 165.2 / 675.8

MF3 family 20 0.059 / 0.018 0.057 / 0.014 6.3 / 10.3
200 0.037 / 0.027 0.032 / 0.013 10.7 / 15.9

BN4 family 20 0.064 / 0.021 0.061 / 0.018 7.0 / 12.3
200 0.041 / 0.026 0.035 / 0.009 12.3 / 17.8

50 PMLE - 0.369 / 0.105 0.299 / 0.170 3.1 / 3.6
MCMC - 0.165 / 0.084 0.144 / 0.110 168.1 / 678.0

MF family 20 0.072 / 0.027 0.073 / 0.030 6.4 / 10.1
200 0.070 / 0.023 0.070 / 0.027 10.8 / 15.9

BN family 20 0.081 / 0.045 0.082 / 0.049 7.1 / 12.1
200 0.073 / 0.058 0.067 / 0.067 12.2 / 17.5

1PMLE, pseudo maximum likelihood estimate (Ghosal et al., 2020); 2MCMC, markov chain
monte carlo (Møller et al., 2006); 3MF, mean-field; 4BN, bivariate normal

it as our given data xobserved. With the generated image xobserved and coupling matrix An, we

obtain (β̂, B̂) after implementing the parameter estimation procedure based on BN family.

The estimates (β̂, B̂) are used for data regeneration following the steps in the subsection

2.4.1 again. In Figure 2.2, we plot two original images in the left column. The first original

image was generated with β0 = 1.2, B0 = 0.2 (left top) and we use β0 = 1.2, B0 = −0.2

for the second one (left bottom). Also, in the right column, there are two corresponding

images regenerated with (β̂ = 1.071, B̂ = 0.357) (right top) and (β̂ = 0.982, B̂ = −0.326)

(right bottom) respectively. It seems that, using two-parameter Ising model and our VB

method, we can reconstruct the overall tendency of black and white images fairly well. For

more precise pixel-by-pixel reconstruction, one can utilize multiple threshold parameters,

B = (B1, . . . , Bn)
⊤ (See the section 2.6).
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Table 2.2: Mean squared errors and computation times for each pair of (β0, B0) when n = 100
(left numbers) and n = 500 (right numbers) given the degree of underlying graph (d).

Degree of Method Monte Carlo (0.2, 0.5) (0.2,−0.5) Convergence
graph (d) samples (S) time (sec)

10 PMLE - 0.270 / 0.053 0.126 / 0.068 3.1 / 3.5
MCMC - 0.228 / 0.275 0.174 / 0.255 164.9 / 673.5

MF family 20 0.075 / 0.017 0.075 / 0.017 6.5 / 10.2
200 0.071 / 0.015 0.070 / 0.014 10.8 / 16.1

BN family 20 0.090 / 0.039 0.091 / 0.038 7.1 / 12.0
200 0.088 / 0.033 0.087 / 0.032 12.3 / 17.1

50 PMLE - 0.792 / 0.197 0.653 / 0.251 3.2 / 3.5
MCMC - 0.407 / 0.153 0.380 / 0.169 166.1 / 675.1

MF family 20 0.088 / 0.023 0.089 / 0.024 6.3 / 10.2
200 0.082 / 0.019 0.080 / 0.021 10.4 / 16.4

BN family 20 0.090 / 0.065 0.112 / 0.072 7.2 / 12.1
200 0.110 / 0.081 0.102 / 0.096 12.2 / 17.2

2.5 Real data analysis

In two-parameter Ising model, higher value of β implies stronger interactions between con-

nected nodes and the threshold parameter B controls the model size (number of 1s), where

the model size is greater for B > 0, smaller for B < 0. In this section, applying our meth-

ods to a real data set, we obtain the estimated interaction parameter and the threshold

parameter (β̂, B̂).

2.5.1 Data description

Stanford Network Analysis Project (SNAP) provides a Facebook network data set (Leskovec

and Krevl, 2014) available at http://snap.stanford.edu/data/ego-Facebook.html. The

Facebook network consists of 4,039 nodes and 88,234 edges. Each node represents a Facebook

user and there is an edge between two nodes if corresponding users are friends. The data

set also contains user features such as birthday, school, gender and location. The features

are fully anonymized. For instance, while the original data may include a feature “location
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Table 2.3: Mean squared errors and computation times for each pair of (β0, B0) when n = 100
(left numbers) and n = 500 (right numbers) given the degree of underlying graph (d).

Degree of Method Monte Carlo (0.7, 0.2) (0.7,−0.2) Convergence
graph (d) samples (S) time (sec)

10 PMLE - 0.439 / 0.074 0.393 / 0.083 3.1 / 3.6
MCMC - 0.114 / 0.080 0.111 / 0.064 170.3 / 678.1

MF family 20 0.109 / 0.135 0.095 / 0.144 6.3 / 10.0
200 0.116 / 0.140 0.100 / 0.148 10.5 / 16.0

BN family 20 0.085 / 0.074 0.080 / 0.081 6.9 / 11.9
200 0.087 / 0.080 0.080 / 0.088 12.3 / 17.0

50 PMLE - 0.718 / 0.333 0.730 / 0.386 3.2 / 3.8
MCMC - 0.170 / 0.107 0.172 / 0.120 171.0 / 673.6

MF family 20 0.093 / 0.185 0.093 / 0.178 6.2 / 10.2
200 0.101 / 0.191 0.103 / 0.184 10.4 / 16.1

BN family 20 0.068 / 0.107 0.071 / 0.086 7.0 / 12.2
200 0.068 / 0.117 0.075 / 0.110 12.5 / 17.3

= Michigan", the anonymized data would simply contain“location = anonymized location

A". Thus, using the anonymized data, we can determine whether two users stay in the same

location, but we do not know where.

Among the 4, 039 users, we select only users who disclose gender information to create a

sub-graph such that there are 3, 948 nodes and 84, 716 edges in the sub-graph. Later we used

the gender information for binary observations. Each node has different number of neighbors

(degree). The maximum degree of the sub-graph is 1, 024, and the minimum is 1, with an

average degree 42.92 (Figure 2.3 shows the nodes and edges in the reduced network).

2.5.2 Parameter estimation

We utilize the selected users (n = 3, 948) as a real data set to apply our VB algorithm

with the features school and gender as observed binary vectors. For the school feature, we

encode 1 if a user (node) belongs to an anonymized school A, otherwise −1. For the gender

feature, we encode a group by 1 and the other group by −1. The model sizes are 114 and

2, 417 for school and gender respectively. Note that, no matter which feature is used, the
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Table 2.4: Mean squared errors and computation times for each pair of (β0, B0) when n = 100
(left numbers) and n = 500 (right numbers) given the degree of underlying graph (d).

Degree of Method Monte Carlo (0.7, 0.5) (0.7,−0.5) Convergence
graph (d) samples (S) time (sec)

10 PMLE - 0.603 / 0.228 0.788 / 0.233 3.2 / 3.7
MCMC - 0.143 / 0.113 0.178 / 0.121 170.0 / 678.5

MF family 20 0.083 / 0.184 0.078 / 0.193 6.3 / 10.1
200 0.103 / 0.188 0.096 / 0.199 10.4 / 16.2

BN family 20 0.049 / 0.074 0.047 / 0.079 7.8 / 12.3
200 0.059 / 0.077 0.056 / 0.083 12.5 / 17.5

50 PMLE - 0.893 / 0.638 0.804 / 0.781 3.1 / 3.8
MCMC - 0.144 / 0.154 0.126 / 0.255 171.9 / 677.1

MF family 20 0.080 / 0.219 0.071 / 0.209 6.2 / 10.0
200 0.095 / 0.225 0.091 / 0.219 10.6 / 16.0

BN family 20 0.044 / 0.080 0.040 / 0.074 7.7 / 12.1
200 0.051 / 0.085 0.048 / 0.079 12.4 / 17.3

connectivity among nodes does not change. One can expect that the interaction parameter

β is higher when we use the school feature because people from the same school are more

likely to be Facebook friends with each other. Also, we expect the threshold parameter B

will be negative for school and positive for gender because of the model sizes. Table 2.5

summarizes the estimated parameters with standard errors (SE) (for VB and MCMC) and

runtimes.

Table 2.5: The estimated parameters with standard errors (SE) in parentheses and time
costs for the features gender and school.

Feature Method Monte Carlo β̂ B̂ Convergence
samples (S) (SE) (SE) time (sec)

Gender PMLE - 0.250(-) 0.180(-) 5.9
MCMC - 0.112(0.066) 0.210(0.031) 27109.2

MF family 200 0.132(0.070) 0.189(0.027) 173.3
BN family 200 0.106(0.089) 0.248(0.033) 271.2

School PMLE - 0.260(-) -1.560(-) 6.0
MCMC - 0.203(0.087) -1.610(0.093) 27059.3

MF family 200 0.252(0.061) -1.445(0.049) 173.4
BN family 200 0.299(0.092) -1.602(0.103) 265.3
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Figure 2.2: Original images (left) and the estimated images (right).

SEs of MCMC in Table 2.5 are calculated based on 10,000 draws after the burn-in period

of 10,000 iterations. For our VB methods, to calculate SEs, we sample the same amount

of β and B (10,000 draws) from the optimal variational distributions and calculate sample

standard deviations. Figure 2.4 indicate density plots of the draws from BN family, MF

family, and MCMC for the features gender and school.

Computational gain is very clear from the figures in Table 2.5. While estimated parame-

ters are comparable for all the methods, the MCMC implementation takes about fifty times

more time compared to VB to achieve similar level of accuracy. The PMLE approach does

not produce SE and thus limited for statistical inference.

25



Figure 2.3: Visualization of Facebook network data where the size of circle represents the
degree of the node.

2.6 Extension to multi threshold parameters

Beyond the two-parameter Ising model which is a main material of this paper, we can extend

the parameter estimation procedure using VB to more general Ising model. Allowing multi-

threshold parameters, that is, B = (B1, . . . , Bn), the likelihood is:

P(n)
β,B(X = x) =

1

Zn(β,B)
exp

(
β

2
x⊤Anx+

n∑
i=1

Bixi

)
. (2.9)

Note, there are n + 1 unknown parameters in the likelihood (2.9) and the corresponding

pseudo-likelihood is:

n∏
i=1

P(n)
β,B (Xi = xi | Xj, j ̸= i)

= 2−n exp

(
n∑

i=1

(βximi(x) +Bixi − log cosh(βmi(x) +Bi))

)
. (2.10)

We introduce a VB algorithm for estimating the parameters θ := (log β,B1, . . . , Bn) given

An and x. As a natural extension, consider the following multivariate Gaussian variational
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Figure 2.4: Density plots for the estimated parameters (left: β, right: B) from VB with BN
family (red), VB with MF family (green), and MCMC (blue) for the features gender and
school.

family:

QMG =

{
q(θ) | q(θ) = q(β,B), (log β,B) ∼MVN(µ,Σ)

}
, (2.11)

where µ ∈ Rn+1 and Σ ∈ R(n+1)×(n+1). Without any assumption on Σ, updating all the vari-

ational parameters and finding variational posterior require quite demanding computaional

costs because the total number of updated parameters is (n+1)+(n+1)(n+2)/2. If we as-

sume Σ is a diagonal matrix, that is, the variational family (2.11) is mean-field, the number

of parameters to be updated reduces to 2(n+1). Under the pseudo-likelihood (2.10) and mul-

tivariate Gaussian family (2.11) with a diagonal covariance matrix Σ = diag(σ2
1, . . . , σ

2
n), we

can easily compute the gradients (1.12) for updating the variational parameters and develop
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a VB algorithm for multi-threshod parameter Ising model.

2.7 Posterior consistency

The main theoretical contribution of this work lies in establishing the consistency of the

variational posterior for the Ising model with the true likelihood replaced by the pseudo-

likelihood. In this direction, we first establish the rates at which the true posterior based

on the pseudo-likelihood concentrates around the εn- shrinking neighborhoods of the true

parameters. With a suitable bound on the Kulback-Leibler distance between the true pos-

terior (under pseudo-likelihood) and the variational posterior, we next establish the rate of

contraction for the variational posterior and demonstrate that the variational posterior also

concentrates around εn-shrinking neighborhoods of the true parameter. These results have

been derived under three set of assumptions on the coupling matrix An. Indeed, we demon-

strate that the variational posterior consistency holds for the same set of assumptions on

An as those needed for the convergence of the maximum likelihood estimates based on the

pseudo-likelihood. One of the main caveats in establishing the posterior contraction rates

under the pseudo-likelihood structure is in ensuring that the concentration of the variational

posterior occurs in P(n)
0 probability where P(n)

0 is the distribution induced by the true like-

lihood and not the pseudo-likelihood. Indeed, we could show that in P(n)
0 probability, the

contraction of variational posterior happens at the rate 1 − 1/Mn in contrast to the faster

rate 1 − exp(−Cnε2n), C > 0 for the true posterior. As a final theoretical contribution, we

establish that the variational Bayes estimator convergences to the true parameters at the

rate 1/εn where εn can be chosen n−δ, 0 < δ < 1/2 provided the An matrix satisfies certain

regularity assumptions.

2.7.1 Sketch of Proof

In this subsection, we states main theorem and provide a sketch of proof for consistency

of the variational posterior (1.7). In this direction, we establish the variational posterior
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contraction rates to evaluate how well the posterior distribution of β and B under the

variational approximation concentrates around the true values β0 and B0. Towards the

proof, we make the following assumptions:

Assumption 1 (Bounded row sums of An). The row sums of An are bounded above

max
i∈[n]

n∑
j=1

An(i, j) ≤ γ,

for a constant γ independent of n.

Assumption 1 is the same as (1.2) in Ghosal et al. (2020). As a consequence of Assumption

1, it can be shown |mi(x)| ≤ γ, i = 1 . . . , n.

Assumption 2 (Mean field assumption on An). Let ϵn → 0 and nϵ2n →∞ such that

(i)
n∑

i=1

n∑
j=1

An(i, j) = O(nϵ2n), (ii)
n∑

i=1

n∑
j=1

An(i, j)
2 = o(nϵ2n).

Assumption 2-(i) is the same as condition (1.4) in Ghosal et al. (2020) on An for ϵn = 1.

Assumption 2-(ii) is the same as (1.6) in Ghosal et al. (2020) with ϵn = 1. For more details

on the mean field assumption, we refer to Definition 1.3 in Basak and Mukherjee (2017).

Assumption 3 (Bounded variance of An). Let Ān = (1/n)
∑n

i=1

∑n
j=1 An(i, j),

lim inf
n→∞

1

n

n∑
i=1

(
n∑

j=1

An(i, j)− Ān)
2 > 0.

Finally, the Assumption 3 corresponds to (1.7) in Ghosal et al. (2020). The validity

of Assumption 3 ensures that Tn(x) = (1/n)
∑n

i=1(mi(x) − m̄(x))2 is bounded below and

above in probability, an essential requirement towards the proof of contraction rates of the

variational posterior.

Let θ = (β,B) be the model parameter and θ0 = (β0, B0) be the true parameter from

which the data are generated. Let L(θ) and L(θ0) denote the pseudo-likelihood as in (1.2)

under the model parameters and true parameters respectively. Further, let L0 denote the

true probability mass function from which X(n) is generated. Thus, L0 is as in (1.1) with
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θ = θ0. We shall use the notations E(n)
0 and P(n)

0 to denote expectation and probability mass

function with respect to L0.

We next present the main theorem which establishes the contraction rate for the varia-

tional posterior. Following the proof, we next establish the contraction rate of the variational

Bayes estimator as a corollary. We shall use the term with dominating probability to imply

that under P(n)
0 , the probability of the event goes to 1 as n→∞.

Theorem 1 (Posterior Contraction). Let Uεn = {θ : ∥θ − θ0∥2 ≤ εn} be neighborhood of the

true parameters. Suppose ϵn satisfies Assumption 2, then in P(n)
0 probability

Q∗(U c
εn)→ 0, n→∞,

where εn = ϵn
√
Mn log n for any slowly increasing sequence Mn →∞ satisfying εn → 0.

The above result establishes that the posterior distribution of β and B concentrates

around the true value β0 and B0 at a rate slight larger than ϵn. The proof of the above

theorem rests on following lemmas, whose proofs have been deferred to the Section 2.10,

2.11, and 2.12.

Lemma 1. There exists a constant C0 > 0, such that for any ϵn → 0, nϵ2n →∞,

P(n)
0

(
log

∫
Uc
ϵn

L(θ)

L(θ0)
p(θ)dθ ≤ −C0nϵ

2
n

)
→ 1, n→∞.

Lemma 2. Let ϵn be the sequence satisfying the Assumption 2, then for any C > 0,

P(n)
0

(∣∣∣ log ∫ L(θ)

L(θ0)
p(θ)dθ

∣∣∣ ≤ Cnϵ2n log n

)
→ 1.

Lemma 3. Let ϵn be the sequence satisfying Assumption 2, then for some Q ∈ QMF and

any C > 0,

P(n)
0

(∫
log

L(θ0)

L(θ)
q(θ)dθ ≤ Cnϵ2n log n

)
→ 1.

Lemma 1 and Lemma 2 taken together suffice to establish the posterior consistency of the

true posterior based on the pseudo-likelihood L(θ) as in (2.2). Lemma 3 on the other hand
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is the additional condition which needs to hold to ensure the consistency of the variational

posterior. We next state an important result which relates the variational posterior to the

true posterior.

Formula for KL divergence: By Corollary 4.15 in Boucheron et al. (2013),

KL(P1, P2) = sup
f

[∫
fdP1 − log

∫
efdP2

]
.

Using the above formula in the context of variational distributions, we get∫
fdQ∗ ≤ KL(Q∗,Π(| X(n))) + log

∫
efdΠ(| X(n)). (2.12)

The above relation serves as an important tool towards the proof of Theorem 1. Next, we

provide a brief sketch of the proof. Further details on the proof have been deferred to Section

2.13.

Sketch of proof of Theorem 1: Let f = (C0/2)nε
2
n1[θ ∈ U c

εn ], then

(C0/2)nε
2
nQ

∗(U c
εn) ≤ KL(Q∗,Π(| X(n))) + log(e(C0/2)nε2nΠ(U c

εn | X
(n)) + Π(Uεn | X(n)))

=⇒ Q∗(U c
εn) ≤

2

C0nε2n
KL(Q∗,Π(| X(n))) +

2

C0nε2n
log(1 + e(C0/2)nε2nΠ(U c

εn | X
(n))).

By Lemma 2 and 3, it can be established with dominating probability for any C > 0, as

n→∞

KL
(
Q∗,Π(| X(n))

)
≤ Cnϵ2n log n.

By Lemma 1 and 2, it can be established with dominating probability, as n→∞

Π(U c
εn | X

(n)) ≤ e−C1nε2n , (2.13)

for any C1 > C0/2. Therefore, with dominating probability

Q∗(U c
εn) ≤

2C

C0Mn

+
2

C0nε2n
log
(
1 + e−(C1−C0/2)nε2n

)
∼ 2C

C0Mn

+
e−(C1−C0/2)nε2n

C0nε2n
→ 0. (2.14)

This completes the proof.
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Note that (2.13) gives the statement for the contraction of the true posterior. Similarly

the contraction rate for the variational posterior follows as a consequence of (2.14). An

important difference to note is that Q∗(U c
εn) goes to 0 at the rate 1/Mn in contrast to the

faster rate e−C1nε2n for the true posterior.

Note, Theorem 1 gives the contraction rate of the variational posterior. However, the

convergence of the of variational Bayes estimator to the true values of β0 and B0 is not

immediate. The following corollary gives the convergence rate for the variational Bayes

estimate as long as Assumptions 1, 2 and 3 hold.

Corollary 1 (Variational Bayes Estimator Convergence). Let εn be as in Theorem 1, then

in P(n)
0 probability,

1

εn
EQ∗(∥θ − θ0∥2)→ 0, as n→∞.

Next, we provide a brief sketch of the proof. Further details of the proof have been

deferred to Section 2.14.

Sketch of proof of Corollary 1: Let f = (C2/2)nεn∥θ − θ0∥2, then

(C2/2)nεn

∫
∥θ − θ0∥2dQ∗(θ)

≤ KL(Q∗,Π(| X(n))) + log

(∫
eC2nεn∥θ−θ0∥2/2dΠ(θ | X(n))

)
.

By Lemma 2 and 3, it can be established with dominating probability, for any C > 0

KL(Q∗,Π(| X(n))) ≤ Cnϵ2n log n.

By Lemma 1, and 2, it can be established with dominating probability, for some C2 > 0∫
e(C2/2)nεn∥θ−θ0∥2dΠ(θ | X(n)) ≤ 1

(C2/2)nε2n
eCnϵ2n logn. (2.15)

Therefore, with dominating probability∫
∥θ − θ0∥2dQ∗(θ) ≤ 2Cεn

C2Mn

− 2 log(C2/2)

C2nεn
− 2εn log(nε

2
n)

C2nε2n
+

2Cεn
C2Mn

≤ εno(1).

This completes the proof.
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(2.15) follows as a consequence of convergence of the true posterior. An important thing

to note that if εn can be made arbitrarily close to n−δ for 0 < δ < 1/2, it guarantees close

to
√
n convergence.

2.8 Preliminary notations and Lemmas

Let θ = (β,B). Define Wn := (W1n,W2n) where

W1n(θ | x) =
n∑

i=1

mi(x) (xi − tanh(βmi(x) +B)) ,

W2n(θ | x) =
n∑

i=1

(xi − tanh(βmi(x) +B)) .

(2.16)

Also, define

Hn(θ | x) :=


∑n

i=1mi(x)
2Si(θ | x)

∑n
i=1mi(x)Si(θ | x)∑n

i=1 mi(x)Si(θ | x)
∑n

i=1 Si(θ | x)

 , (2.17)

R1n(θ | x) :=


∑n

i=1 mi(x)
3 (hi(θ | x)− h3

i (θ | x))
∑n

i=1 mi(x)
2 (hi(θ | x)− h3

i (θ | x))∑n
i=1 mi(x)

2 (hi(θ | x)− h3
i (θ | x))

∑n
i=1mi(x) (hi(θ | x)− h3

i (θ | x))

 ,

(2.18)

and

R2n(θ | x) :=


∑n

i=1mi(x)
2 (hi(θ | x)− h3

i (θ | x))
∑n

i=1mi(x) (hi(θ | x)− h3
i (θ | x))∑n

i=1mi(x) (hi(θ | x)− h3
i (θ | x))

∑n
i=1 (hi(θ | x)− h3

i (θ | x))

 ,

(2.19)

where Si(θ | x) = sech2 (βmi(x) +B) and hi(θ | x) = tanh (βmi(x) +B).

Lemma 4. Let W1n and W2n be as in (2.16), then

1

n
E(n)

0 (W1n(θ0 | x))2 <∞
1

n
E(n)

0 (W2n(θ0 | x))2 <∞

Proof. See the lemma 2.1 in Ghosal et al. (2020).
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Lemma 5. Let p1 and p2 be any two density functions. Then,

EP1

(∣∣∣∣log p1
p2

∣∣∣∣) ≤ KL(P1, P2) +
2

e

Proof. See the lemma 4 in Lee (2000).

Lemma 6. Let Tn(x) =
1
n

∑n
i=1

(
mi(x)− 1

n

∑n
i=1 mi(x)

)2. Suppose Assumptions 1, 2 and

3 hold, then

Tn(x) = Op(1), 1/Tn(x) = Op(1)

Proof. See the theorem 1.4 in Ghosal et al. (2020).

2.9 Taylor expansion for log-likelihood

Lemma 7. Consider the term (θ−θ0)
⊤Hn(θ0 | x)(θ−θ0) where Hn is the same as in (2.17).

Then, for some C1, C2 > 0, we have

P(n)
0

(
C1n∥θ − θ0∥22 ≤ (θ − θ0)

⊤Hn(θ0 | x)(θ − θ0) ≤ C2n∥θ − θ0∥22
)
→ 1, n→∞

Proof. For some M1,M2 > 0, let A1n = {x : Tn(x) ≤ M1}, A2n = {x : Tn(x) ≥ M2}, and

An = A1n ∩ A2n, then P(n)
0 (An)→ 1.

This is because by Lemma 6, there exists M1 and M2 such that

P(n)
0 (Tn > M1) = P(n)

0 (1/Tn < 1/M1)→ 0

P(n)
0 (Tn < M2) = P(n)

0 (1/Tn > 1/M2)→ 0

The remaining part of the proof works with only x ∈ An. Let eH1 ≥ eH2 be the eigenvalues

of Hn(θ0 | x). The trace of Hn(θ0 | x), is

tr (Hn(θ0 | x)) = eH1 + eH2 =
n∑

i=1

sech2 (β0mi(x) +B0)
(
m2

i (x) + 1
)
≤ n(1 + γ2)

where we used |mi(x)| ≤ γ based on Assumption 1. Note (2.7) in Ghosal et al. (2020) gives

a lower bound of eH2 :

eH2 ≥
sech4(β0γ + |B0|)

1 + γ2
nTn(x), (2.20)
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where Tn(x) is as in the Lemma 6. By spectral decomposition of Hn(θ0 | x),

(θ − θ0)
⊤Hn(θ0 | x)(θ − θ0) ≤ eH1

{
(β − β0)

2 + (B −B0)
2
}

≤
(
n(1 + γ2)− eH2

) {
(β − β0)

2 + (B −B0)
2
}

≤ n

(
(1 + γ2)− sech4(β0γ + |B0|)

1 + γ2
Tn(x)

){
(β − β0)

2 + (B −B0)
2
}

(2.21)

Also,

(θ − θ0)
⊤Hn(θ0 | x)(θ − θ0) ≥ eH2

{
(β − β0)

2 + (B −B0)
2
}

≥ sech4(β0γ + |B0|)
1 + γ2

nTn(x)
{
(β − β0)

2 + (B −B0)
2
}

(2.22)

Since M2 ≤ Tn(x) ≤M1 for every x ∈ An, the proof follows.

Lemma 8. For R1n and R2n as in (2.18) and (2.19) respectively, let

3Rn(θ̃, θ − θ0 | x) (2.23)

= (β − β0)(θ − θ0)
⊤R1n(θ̃ | x)(θ − θ0) + (B −B0)(θ − θ0)

⊤R2n(θ̃ | x)(θ − θ0) (2.24)

where Rn = Rn(θ̃, θ − θ0 | x) and θ̃ = θ0 + c(θ − θ0) 0 < c < 1. Then, as n → ∞ for some

C1, C2 > 0 we have

P(n)
0 (M1n∆

∗ ≤ Rn ≤M2n∆
∗)→ 1,

where ∆∗ = ((β − β0)γ + (B −B0))∥θ0 − θ∥22.

Proof. For some M1,M2 > 0, let A1n = {x : Tn(x) ≤M1}, A2n = {x : Tn(x) ≥M2}.

Let An = A1n ∩ A2n, then P(n)
0 (An)→ 1.

This is because by Lemma 6, there exists M1,M2 > 0 such that

P(n)
0 (Tn > M1) = P(n)

0 (1/Tn < 1/M1)→ 0

P(n)
0 (Tn < M2) = P(n)

0 (1/Tn > 1/M2)→ 0
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The remaining part of the proof works with only x ∈ An.

The determinant of R1n(θ̃ | x) is:

det(R1n(θ̃ | x))

=
1

2

n∑
i,j=1

mi(x)mj(x)
(
hi(x)− h3

i (x)
) (

hj(x)− h3
j(x)

)
(mi(x)−mj(x))

2

where hi(x) = tanh(β̃mi(x)+ B̃). Since tanh(·)− tanh3(·) has maximum value 0.38 at
√
3/3

and mi(x) ≤ γ by Assumption 1. Therefore,

|det(R1n(θ̃ | x))| ≤
1

2
γ2(0.38)2

n∑
i=1

n∑
j=1

(mi(x)−mj(x))
2 = γ2(0.38)2n2Tn(x).

The trace of R1n(θ̃ | x) is:

tr(R1n(θ̃ | x)) =
n∑

i=1

mi(x)(hi(x)− h3
i (x))

(
m2

i (x) + 1
)
≤ n0.38γ(1 + γ2).

Let eR1n
1 ≥ eR1n

2 be eigenvalues of R1n(θ̃ | x).

eR1n
2 ≥ eR1n

1 eR1n
2

eR1n
1 + eR1n

2

=
det(R1n(θ̃ | x))
tr(R1n(θ̃ | x))

≥ −γ2(0.38)2n2Tn(x)

n0.38γ(1 + γ2)
= − 0.38γ

1 + γ2
nTn(x).

Therefore,

(θ − θ0)
⊤R1n(θ̃ | x)(θ − θ0) ≥ eR1n

2 ||θ − θ0||22 ≥ −
0.38γ

1 + γ2
nTn(x)||θ − θ0||22 (2.25)

and

(θ − θ0)
⊤R1n(θ̃ | x)(θ − θ0) ≤ eR1n

1 ||θ − θ0||22 = (tr(R1n(θ̃ | x))− eR1n
2 ))||θ − θ0||22

≤ 0.38γn

(
(1 + γ2) +

Tn(x)

1 + γ2

)
||θ − θ0||22. (2.26)

With the same argument, we can get:

(θ − θ0)
⊤R2n(θ̃ | x)(θ − θ0) ≥ −

0.38

1 + γ2
nTn(x)||θ − θ0||22, (2.27)

(θ − θ0)
tR2n(θ̃ | x)(θ − θ0) ≤ 0.38n

(
(1 + γ2) +

Tn(x)

1 + γ2

)
||θ − θ0||22 (2.28)

Using (2.25), (2.26), (2.27) and (2.28) and noting M2 ≤ Tn(x) ≤ M1 for every x ∈ An, the

proof follows.
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Lemma 9. Let q(θ) ∈ QMF with µ1 = log β0, µ2 = B0, and σ2
1 = σ2

2 = 1/n, then

1

nϵ2n log n
KL(Q,P )→ 0, n→∞

Proof. Using the same notation in (2.3), the KL divergence is:

KL(Q,P ) = Eqβ(β)qB(B) (log qβ(β) + log qB(B)− log pβ(β)− log pB(B))

= KL (Qβ, Pβ) +KL (QB, PB)

=
1

2

(
(log β0)

2 +
1

n
+B2

0 +
1

n
− 2

)
+ log n = o(nϵ2n log n), since nϵ2n →∞

2.10 Technical details of Lemma 1

Proof of Lemma 1. Let Vϵn = {|β − β0| < ϵn, |B − B0| < ϵn}. Then Vϵn ⊆ U√2ϵn
which

implies U c√
2ϵn
⊆ Vc

ϵn which further implies

log

∫
Uc√

2ϵn

L(θ)

L(θ0)
p(θ)dθ ≤ log

∫
Vc
ϵn

L(θ)

L(θ0)
p(θ)dθ (2.29)

We shall now establish for some C0 > 0

P(n)
0

(
log

∫
Vc
ϵn

L(θ)

L(θ0)
p(θ)dθ ≤ −C0nϵ

2
n

)
→ 1, n→∞,

which in lieu of (2.29) completes the proof.

Define A1n = {x : W1n(θ0 | x)2 + W1n(θ0 | x)2 ≤ n2/3} and A2n = {x : Tn(x) ≥ M} for

some M > 0. Define An = A1n ∩ A2n.

Here P(n)
0 (An)→ 1. This because by Markov’s inequality and Lemma 4,

P(n)
0

(
W1n(θ0 | x)2 +W2n(θ0 | x)2 > n2/3ε

)
≤ 1

n4/3
E(n)
0

(
W1n(θ0 | x)2 +W2n(θ0 | x)2

)
→ 0.

and by Lemma 6 P(n)
0 (Tn < M) = P(n)

0 (1/Tn > 1/M)→ 0.
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We shall show for x ∈ An, L(θ)/L(θ0) ≤ e−C0nϵ2n , ∀ θ ∈ Vc
ϵn which implies ∀ x ∈ An,

log

∫
Vc
ϵn

(L(θ)/L(θ0))p(θ)dθ = log

∫
Vc
ϵn

(L(θ)/L(θ0))p(θ)dθ

≤ log

(
e−C0nϵ2n

∫
Vc
ϵn

p(θ)dθ

)
≤ −C0nϵ

2
n, (2.30)

since p(Vϵcn) ≤ 1. This completes the proof since P(n)
0 (An)→ 1 as n→∞.

Next, note that Vc
ϵn is given by the union of the following terms

V1n = {(β,B) : β − β0 ≥ ϵn, B ≥ B0}, V2n = {(β,B) : β − β0 ≥ ϵn, B < B0}

V3n = {(β,B) : β − β0 < −ϵn, B ≥ B0}, V4n = {(β,B) : β − β0 < −ϵn, B < B0}

V5n = {(β,B) : β ≥ β0, B −B0 ≥ ϵn}, V6n = {(β,B) : β < β0, B −B0 ≥ ϵn}

V7n = {(β,B) : β ≥ β0, B −B0 < −ϵn}, V8n = {(β,B) : β < β0, B −B0 < −ϵn}

We shall now show for x ∈ An and θ ∈ V1n, L(θ)/L(θ0) ≤ e−C0nϵ2n . The proof of other parts

follow similarly.

(a) Let θ = (β,B) and θ′0 = (β0 + ϵ, B0), where β ≥ β0 + ϵ and B ≥ B0. Also, define

θt = θ′0 + t(θ − θ′0) where 0 < t < 1.

Consider a function g:

g(t) = f(θt) = logL(θt)− logL(θ′0)−∆n(θ
′
0)

⊤(θt − θ′0),

where ∆n(θ) = (∇β logL(θ),∇B logL(θ))⊤. Note that g(t) is a function of t. We want to

show g(t) ≤ g(0) provided t > 0. We shall instead show g′(t) ≤ 0. By Taylor expansion,

g′(t) = g′(0) + g′′(t̃)t.

for some t̃ ∈ [0, t]. Here, g′(0) = 0 and g′′(t̃) = −(θ− θ′0)
⊤Hn(θt̃ | x)(θ− θ′0) ≤ 0 where Hn as

in (2.17) is a positive definite matrix (by (2.22) in 7 and Tn(x) ≥ 0). Since g(t) is decreasing

for 0 < t < 1, thus

g(1) ≤ g(0) =⇒ f(θ) ≤ f(θ′0)
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(b) Similarly, let θ = (β,B) θ′′0 = (β0, B0 + ϵ), where β ≥ β0 and B ≥ B0 + ϵ. Define

θt = θ′0 + t(θ − θ′′0) where 0 < t < 1.

h(t) = f(θt) = logL(θt)− logL(θ′′0)−∆n(θ
′′
0)

⊤(θt − θ′′0).

With similar argument in (a), we conclude that h(1) ≤ h(0) =⇒ f(θ) ≤ f(θ′′0). Therefore,

sup
θ∈V1n

(logL(θ)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B≥B0}

(logL(θ)− logL(θ0)) + sup
{β>β0+ϵ,B≥B0}

(logL(θ)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B≥B0}

(logL(θ)− logL(θ0)) + (logL(θ′0)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

(logL(θ)− logL(θ0)) + sup
{β−β0∈[ϵn,ϵ],B>B0+ϵ}

(logL(θ)− logL(θ0))

+ logL(θ′0)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

(logL(θ)− logL(θ0)) + sup
{β≥β0,B>B0+ϵ}

(logL(θ)− logL(θ0))

+ logL(θ′0)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

(logL(θ)− logL(θ0)) + logL(θ′′0)− logL(θ0)

+ logL(θ′0)− logL(θ0)

≤ sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

3(logL(θ)− logL(θ0)) ≤ −C0nϵ
2
n (2.31)

where the second inequality follows from (a) and fifth inequality follows from (b) above.

Finally for the last inequality, consider Taylor expansion for logL(θ) upto the second order

logL(θ)− logL(θ0) = Wn(θ0 | x)⊤(θ − θ0)−
1

2
(θ − θ0)

⊤Hn(θ̃ | x)(θ − θ0)

where θ̃ = θ0 + c(θ − θ0), 0 < c < 1 and Wn and Hn are as defined in (2.16) and (2.17)

respectively.

By Cauchy Schwarz inequality,

|Wn(θ0 | x)⊤(θ − θ0))| ≤ (
(
W1n(θ0 | x)2 +W2n(θ0 | x)2

)
∥θ − θ0∥22 + 1)

≤ n2/3∥θ − θ0∥22 + 1
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for every x ∈ An. Further

logL(θ)− logL(θ0) ≤ n2/3∥θ − θ0∥22 + 1− 1

2
(θ − θ0)

⊤Hn(θ̃ | x)(θ − θ0)

≤ n2/3∥θ − θ0∥22 + 1− sech4(β̃γ + |B̃|)
1 + γ2

nTn(x)∥θ − θ0∥22

≤

(
n2/3 +

1

||θ − θ0||22
− sech4(β̃γ + |B̃|)

1 + γ2

n

M

)
∥θ − θ0∥22

where the second inequality is a consequence of the lower bound (2.20) and the third in-

equality holds since x ∈ An. Taking sup over the set {β − β0 ∈ [ϵn, ϵ], B − B0 ∈ [0, ϵ]} on

both sides,

sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

(logL(θ)− logL(θ0))

≤ sup
{β−β0∈[ϵn,ϵ],B−B0∈[0,ϵ]}

(
n2/3 +

1

ϵ2n
− sech4((β0 + ϵ)γ + (B0 + ϵ))

1 + γ2

n

M

)
∥θ − θ0∥22

≤ −C0nϵ
2
n (2.32)

for some C0 > 0 as n→∞ since n2/3 and 1/ϵ2n = o(n). This completes the proof.

2.11 Technical details of Lemma 2

Lemma 10. Let L0 and L(θ0) represent the true likelihood (1.1) and the pseudo-likelihood

(1.2) with the true parameters θ0, respectively. Then,

1

nϵ2n
E(n)

0 (logL0 − logL(θ0))→ 0, n→∞.

Proof.

L0 =
efθ0 (x)∑

x∈{−1,1}n e
fθ0 (x)

=
efθ0 (x)

Zn(θ0)

where fθ0(x) = (β0/2)x
⊤Anx+B0x

⊤1. Define b(x; θ) = (b1(x; θ), · · · , bn(x; θ)) where

bi(x; θ) = E(Xi | Xj, j ̸= i) = tanh(βmi(x) +B).

Then L(θ) = eg(x,b(x;θ)) where the function g for v,w ∈ [−1, 1]n is defined as

g(v,w) =
n∑

i=1

1 + vi
2

log
1 + wi

2
+

1− vi
2

log
1− wi

2
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Also, define I(v) = g(v,v). Now, observe that

E(n)
0 (logL0 − logL(θ0)) = E(n)

0 (fθ0(x)− g(x, b(x; θ0))− logZn(θ0))

= E(n)
0 (fθ0(x)− fθ0(b(x; θ0)) + E(n)

0 (fθ0(b(x; θ0))− I(b(x; θ0)))

+ E(n)
0 (I(b(x; θ0))− g(x, b(x; θ0)))− logZn(θ0)

≤ (E(n)
0 (fθ0(x)− fθ0(b(x; θ0)))

2)1/2 + (E(n)
0 (I(b(x; θ0))− g(x, b(x; θ0)))

2)1/2

+ E(n)
0 (fθ0(b(x; θ0))− I(b(x; θ0)))− logZn(θ0), (2.33)

where the last step is due to Hölder’s inequality.

Under Assumption 2, mimicking the proof of Lemmas 3.2 and 3.3 in Basak and Mukherjee

(2017) with n replaced by nϵ2n, we get

(E(n)
0 (fθ0(x)− fθ0(b(x; θ0)))

2)1/2 = o(nϵ2n) (2.34)

(E(n)
0 (I(b(x; θ0))− g(x, b(x; θ0)))

2)1/2 = o(nϵ2n) (2.35)

Also for rn = supv∈[−1,1]n(fθ0(v)− I(v)), we have

E(n)
0 (fθ0(b(x, θ0))− I(b(x, θ0))) ≤ rn

By Theorem 1.6 in Chatterjee and Dembo (2016) with the fact ∂2fθ0/∂x
2
i = 0, i = 1, · · · , n,

we have − logZn(θ0) ≤ −rn. Therefore,

E(n)
0 (fθ0(b(x; θ0))− I(b(x; θ0))− logZn(θ0)) ≤ 0. (2.36)

Using (2.34), (2.35) and (2.36) in (2.33) completes the proof.

Lemma 11. Note that L(θ) is not a valid density function. So, we consider L̃(θ) =

L(θ)/Jn(θ) where Jn(θ) =
∑

x∈{−1,1}n L(θ) such that
∑

x∈{−1,1}n L̃(θ) = 1. Then for ev-

ery θ,

Jn(θ) ≤ βϵn
√

n(1 + γ2)/2 + o(nϵ2n)
(
log 3
√
2− log ϵn

)
.

41



Proof. Let Nn(ϵn) := {i ∈ [n] : |λi(An)| > ϵn/
√
2} and with the mean field condition in the

Assumption 2, it is easy to note that

|Nn(ϵn)|
n

≤ 2

nϵ2n

∑
i∈[n]

λi (An)
2 =

2

nϵ2n

n∑
i,j=1

An(i, j)
2 → 0, n→∞ (2.37)

Set kn = |Nn(ϵn)| and let Dn,0(ϵn) be a ϵn
√

n/2 net of the set {f ∈ Rkn :
∑

f 2
i ≤ n} of size

at most (3
√
2/ϵn)

kn . The existence of such a net is standard (see for example Lemma 2.6 in

Milman and Schechtman (1986)).

Let {p1, · · · ,pn} be the eigen vectors of An. Then setting

Dn,1(ϵn) :=

 ∑
i∈Nn(ϵn)

ciλi(An)pi, c ∈ Dn,0(ϵn)


We claim Dn,1(ϵn) is ϵn

√
n(1 + γ2)/2 of the set {Anx : x ∈ {−1, 1}n}. Indeed any x ∈

{−1, 1}n can be written as
∑n

i=1 fipi where
∑n

i=1 f
2
i =

∑
x2
i = n. In particular, it means∑

i∈Nn(ϵn)
fi ≤ n, which implies there exists a c ∈ Dn,0(ϵn) such that ||c− f || ≤ ϵn

√
n/2.

Let
∑

i∈Nn(ϵn)
ciλi(An)pi ∈ Dn,1(ϵn), then

||Anx−
∑

i∈Nn(ϵn)

ciλi(An)pi||22 =
∑

i∈Nn(ϵn)

(ci − fi)
2λi(An)

2 +
∑

i/∈Nn(ϵn)

λi(An)
2f 2

i

≤ γ2nϵ2n
2

+
nϵ2n
2

where the last inequality is a consequence of maxi∈[n] |λi(An)| ≤ maxi∈[n]
∑n

j=1 |An(i, j)| ≤ γ

and the definition of the set Nn(ϵn).

In particular for any x ∈ {−1, 1}n, there exists at least one p ∈ Dn,1(ϵn) such that

||p−m(x)|| ≤ ϵn
√

n(1 + γ2)/2. For any p ∈ Dn,1(ϵn), let

P(p) :=
{
x ∈ {−1, 1}n : ||p−m(x)|| ≤ ϵn

√
n(1 + γ2)/2

}
.

Therefore, ∑
x∈{−1,1}n

eg(x,b(x;θ)) =
∑

p∈Dn,1(ϵn)

∑
x∈P(p)

eg(x,b(x;θ))
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Setting u(p) := tanh(βp+B) if ||p−m(x)|| ≤ ϵn
√

n(1 + γ2)/2, then we have

|g(x, b(x; θ))− g(x,u(p))| ≤ 2β
n∑

i=1

|mi(x)− pi| ≤ 2βϵn
√

n(1 + γ2)/2

Finally,

∑
x∈{−1,1}n

eg(x,b(x;θ)) ≤ e2βϵn
√

n(1+γ2)/2
∑

p∈Dn,1(ϵn)

∑
x∈P(p)

eg(x,u(p))

≤ e2βϵn
√

n(1+γ2)/2
∑

p∈Dn,1(ϵn)

∑
x∈{−1,1}n

eg(x,u(p)) = e2βϵn
√

n(1+γ2)/2|Dn,1(ϵn)|

where the last equality follows since
∑

x∈{−1,1}n e
g(x,u) = 1 for any u ∈ [−1, 1]n. Therefore,

log Jn(θ) ≤ βϵn
√

n(1 + γ2)/2 + log |Dn,1(ϵn)|

Since |Dn,1(ϵn)| = |Dn,0(ϵn)|, therefore

log |Dn,1(ϵn)| ≤ |Nn(ϵn)|(log 3
√
2− log ϵn)

The proof follows since |Nn(ϵn)| = o(nϵ2n).

Lemma 12. Define Vϵn := {θ : |β − β0| < ϵn, |B −B0| < ϵn}. Then,

Vϵn ⊆ Kϵn , for n sufficiently large

where Kϵn := {θ : E(n)
0 (log(L(θ0)/L(θ))) < 3nϵ2n}.

Proof. For any θ ∈ Vϵn , using the decomposition in (2.43), we get

E(n)
0 (logL(θ0)− logL(θ)) = E(n)

0

(
− 1 − 2 + 3 − 4

)
≤ 3nϵ2n

where the last inequality is justified next.

For some M > 0 using Lemma 4, we get

−E(n)
0 ( 1 ) = (β0 − β)E(n)

0 (W1n(θ0|x) ≤
√
n|β0 − β|

(
1

n
E(n)

0 (W1n(θ0|x))2
)1/2

≤M
√
nϵn
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−E(n)
0 ( 2 ) = (B0 −B)E(n)

0 (W2n(θ0|x) ≤
√
n|B0 −B|

(
1

n
E(n)

0 (W2n(θ0|x))2
)1/2

≤M
√
nϵn

By relation (2.21), we get

E(n)
0 ( 3 ) ≤ n||θ − θ0||22

(
(1 + γ2)− sech4(β0γ + |B0|)

1 + γ2
E(n)

0 (Tn(x))

)
≤ 2(1 + γ2)nϵ2n

By relation (2.44), we get

−E(n)
0 ( 4 ) ≤ 0.38n

3(1 + γ2)
E(n)

0 (Tn(x)) ||θ − θ0||22(|β − β0|γ + |B −B0|) ≤
0.38γ2(1 + γ)

3(1 + γ2)
nϵ3n

Lemma 13. With prior distribution p(θ) as in (2.1), we have∫
Vϵn

p(θ)dθ ≥ Cϵ2n, for some C > 0

Proof. By mean value theorem with β⋆ ∈ [β0 − ϵn, β0 + ϵn] and B⋆ ∈ [B0 − ϵn, B0 + ϵn],∫
Vϵn

p(θ)dθ =

∫ β0+ϵ

β0−ϵ

1

β
√
2π

e−
(log β)2

2 dβ

∫ B0+ϵ

B0−ϵ

1√
2π

e−
B2

2 dB

=
2ϵn

β⋆
√
2π

e−
(log β⋆)2

2
2ϵn√
2π

e−
(B⋆)2

2

= exp

(
−(log π − log 2− 2 log ϵn)−

1

2

(
2 log β⋆ + (log β⋆)2 + (B⋆)2

))
≥ exp

(
−(log π − log 2− 2 log ϵn)−

1

2
(2u1 + ũ1 + u2)

)
≥ Ce2 log ϵn = Cϵ2n

where the above result follow since ϵn → 0 implies u1 ≤ max(log(β0 + 1), log(β0 + 1)),

ũ1 ≤ max((log(β0 − 1))2, (log(β0 + 1))2), and u2 = max((B0 − 1)2, (B0 + 1)2).

Proof of Lemma 2. Let L∗ =
∫
L(θ)p(θ)dθ, J∗

n =
∑

x∈{−1,1}n L
∗. Then,

J∗
n =

∑
x∈{−1,1}n

∫
L(θ)p(θ)dθ.
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Since L(θ)p(θ) > 0, Tonelli’s theorem allows for interchange of the order of summation and

integral. Using Lemma 11 and − log ϵn = O(log n), we get

J∗
n =

∫ ∑
x∈{−1,1}n

L(θ)p(θ)dθ =

∫
Jn(θ)p(θ)dθ

= ϵn
√

n(1 + γ2)/2EP (β) + o(nϵ2n)(log 3
√
2− log ϵn)

= ϵn
√

ne(1 + γ2)/2 + o(nϵ2n)(log 3
√
2− log ϵn) = o(nϵ2n log n) (2.38)

Also, by Lemma 11 and − log ϵn = O(log n),

log Jn(θ0) = β0ϵn
√

n(1 + γ2)/2 + o(nϵ2n)(log 3
√
2− log ϵn) = o(nϵ2n log n) (2.39)

P n
0

(∣∣∣∣log ∫ (L(θ)/L(θ0))p(θ)dθ

∣∣∣∣ > Cnϵ2n log n

)
(2.40)

≤ 1

Cnϵ2n log n
E(n)

0

(∣∣∣∣log ∫ (L(θ)/L(θ0))p(θ)dθ

∣∣∣∣)
=

1

Cnϵ2n log n
E(n)

0 (|log (L∗/L(θ0))|)

≤ 1

Cnϵ2n log n

(
KL(L0, L̃

∗) +KL(L0, L̃(θ0)) +

∣∣∣∣log J∗
n

Jn(θ0)

∣∣∣∣+ 4

e

)
≤ 2

Cnϵ2n log n

(
E(n)

0 (logL0 − logL(θ0)) + E(n)
0 (logL(θ0)− logL∗)

+ 2(log J∗
n + log Jn(θ0)) +

4

e

)
(2.41)

where the second last step follows from Lemma 5.
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Then, using the set Kϵn in Lemma 12, we get

E(n)
0 (logL(θ0)− logL∗))

= E(n)
0 (logL(θ0)− log

∫
L(θ)p(θ)dθ)

≤ E(n)
0

(
log(L(θ0)/

∫
K

ϵ2n

L(θ)p(θ)dθ)

)

≤ E(n)
0

(
logL(θ0)− log

(
p(Kϵ2n

)

p(Kϵ2n)

∫
K

ϵ2n

L(θ)p(θ)dθ))

))

≤ E(n)
0 (logL(θ0))− log(p(Kϵ2n

) + E(n)
0

(
Ep|K

ϵ2n
(− logL(θ))

)
≤ − log(p(Kϵ2n

)) + E(n)
0

(
logL(θ0)−

∫
K

ϵ2n

logL(θ)p|Kϵ2n
(θ)dθ

)
Jensen’s Inequality

= − log(p(Kϵ2n
)) +

∫
K

ϵ2n

E(n)
0 (log(L(θ0)− L(θ))p|Kϵ2n

(θ)dθ

≤ −2 log(C ′ϵ2n) + 3nϵ2n = o(nϵ2n log n) (2.42)

where the last line follows from Lemma 12 and Lemma 13. The final order is because

− log ϵn = O(log n) and nϵ2n →∞ and log n→∞.

The proof follows by using relations (2.42), (2.39) and (2.38) in (2.40).

2.12 Technical details of Lemma 3

Lemma 14. Let q(θ) ∈ QMF with µ1 = log β0, µ2 = B0, and σ2
1 = σ2

2 = 1/n, then

1

nϵ2n

∫
E(n)

0 (logL(θ0)− logL(θ))q(θ)dθ ≲ 0, n→∞

Proof. Using the Taylor expansion of logL(θ) around θ = θ0, we get

logL(θ0)− logL(θ) = logL(θ0)− logL(θ0)− (β − β0)W1n(θ0|x)︸ ︷︷ ︸
1

−W2n(θ0|x)(B −B0)︸ ︷︷ ︸
2

+
1

2
(θ − θ0)

⊤Hn(θ0|x)(θ − θ0)︸ ︷︷ ︸
3

−Rn(θ̃, θ − θ0|x)︸ ︷︷ ︸
4

(2.43)

46



W1n, W2n is as in (2.16), Hn is as in (2.17) and Rn(θ̃, θ−θ0|x) is defined in (2.23). Therefore,∫
E(n)

0 (logL(θ0)− logL(θ)) q(θ)dθ

= −
∫

E(n)
0

(
1
)
q(θ)dθ −

∫
E(n)

0

(
2
)
q(θ)dθ

+

∫
E(n)

0

(
3
)
q(θ)dθ −

∫
E(n)

0

(
4
)
q(θ)dθ,

− 1

nϵ2n

∫
E(n)

0

(
1
)
q(θ)dθ =

1

nϵ2n

∫
(β0 − β)E(n)

0 (W1n(θ0|x)) q(θ)dθ

≤ 1

nϵ2n

∫
|β0 − β|

√
n

(
1

n
E(n)

0 (W1n(θ0|x))2
)1/2

q(β)dβ,

≤ M
√
n

nϵ2n

∫
|β − β0|qβ(β)dβ

≤ M
√
n

nϵ2n
(

∫
(β − β0)

2qβ(β)dβ)
1/2

=
M
√
n

nϵ2n
(e2 log β0(e2/n − 2e1/2n + 1))1/2 ∼ Melog β0

nϵ2n
→ 0

where the second inequality above above line holds by Hölder inequality and third inequality

holds by Lemma 4, for some constant M . Finally the last convergence to 0 is nϵ2n → ∞.

Similarly,

− 1

nϵ2n

∫
E(n)

0

(
2
)
q(θ)dθ =

1

nϵ2n

∫
(B0 −B)E(n)

0 (W2n(θ0|x)) q(θ)dθ

≤
√
n

nϵ2n

(
1

n
E(n)

0 (W2n(θ0|x))2
)1/2 ∫

|B −B0|qB(B)dB

M
√
n

nϵ2n
(

∫
(B −B0)

2q(B)dB)1/2 ∼ M

nϵ2n
→ 0

Using the upper bound (2.21) and nϵ2n →∞, we get

1

nϵ2n

∫
E(n)

0

(
3
)
q(θ)dθ

≤ 1

2ϵ2n

(
(1 + γ2)− sech4(β0γ + |B0|)

1 + γ2
E(n)

0 (Tn(x))

)∫ {
(β − β0)

2 + (B −B0)
2
}
q(θ)dθ

≤ (1 + γ2)

2ϵ2n

(
e2 log β0

(
e2/n − 2e1/2n + 1

)
+ 1/n

)
∼ (e2 log β0 + 1)(1 + γ2)

2nϵ2n
→ 0
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where the second inequality holds since Tn(x) = (1/n)
∑n

i=1 (mi(x)− (1/n)mi(x))
2 ≥ 0.

For the remainder term, using relations (2.25) and (2.27) in relation (2.23), we get

−E(n)
0

(
4
)
≤ 0.38n

3(1 + γ2)
E(n)

0 (Tn(x))
{
(β − β0)

2 + (B −B0)
2
}
{(β − β0)γ + (B −B0)}

(2.44)

Further,

n

∫ {
(β − β0)

2 + (B −B0)
2
}
{(β − β0)γ + (B −B0)} q(θ)dθ

= n

∫ {
(elog β − elog β0)2 + (B −B0)

2
}{

(elog β − elog β0)γ + (B −B0)
}
q(θ)dθ︸ ︷︷ ︸

5

5 = n

∫ (
e3 log β − 3e2 log β+log β0 + 3elog β+2 log β0 − e3 log β0

)
q(β)dβ (2.45)

+ n

∫ (
B3 − 3B0B

2 + 3B2
0B −B3

0

)
q(B)dB (2.46)

+ n

∫ (
e2 log β − 2elog β+log β0 + e2 log β0

)
(B −B0) q(β)q(B)dβdB (2.47)

+ nγ

∫
(B −B0)

2 (elog β − elog β0
)
q(β)q(B)dβdB (2.48)

(2.45) = ne3 log β0
(
e9/2n − 3e2/n + 3e1/2n − e0

)
∼ 0

(2.46) = n
(
B3

0 + 3B0/n− 3B0(B
2
0 + 1/n) + 3B3

0 −B3
0

)
= 0,

(2.47) = n
(
B0e

2 log β0
(
e2/n − 2e1/2n + e0

)
−B0e

2 log β0
(
e2/n − 2e1/2n + e0

))
= 0,

(2.48) = nelog β0

(γ
n
e1/2n − γ

n
e0
)
= γelog β0(e1/2n − e0) ∼ 0

− 1

nϵ2n

∫
E(n)

0

(
4
)
q(θ)dθ ≲ 0

since Tn(x) ≤ γ2 (since by Assumption 1, mi(x) ≤ γ) and nϵ2n →∞.
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Poof of Lemma 3. With the q as in Lemma 14, using Markov’s inequality,

P n
0

(∫
q(θ) log(L(θ0)/L(θ))dθ > Cnϵ2n log n

)
(2.49)

≤ 1

Cnϵ2n log n
E(n)

0

∣∣∣∣∫ q(θ) log(L(θ0)/L(θ))dθ

∣∣∣∣
≤ 1

Cnϵ2n log n
E(n)

0

(∫
q(θ) |log(L(θ0)/L(θ))| dθ

)
≤ 1

Cnϵ2n log n

∫
q(θ)E(n)

0 (|log(L(θ0)/L(θ))|) dθ Fubini’s theorem

=
1

Cnϵ2n log n

∫
q(θ)E(n)

0

(∣∣∣∣log( L0

L(θ)

L(θ0)

L0

)∣∣∣∣) dθ

=
1

Cnϵ2n log n

∫
q(θ)E(n)

0

(∣∣∣∣∣log
(

L0

L̃(θ)

L̃(θ0)

L0

Jn(θ0)

Jn(θ)

)∣∣∣∣∣
)
dθ

=
1

Cnϵ2n log n

∫
q(θ)E(n)

0

(∣∣∣∣∣log
(

L0

L̃(θ)

)
+ log

(
L̃(θ0)

L0

)
+ log

(
Jn(θ0)

Jn(θ)

)∣∣∣∣∣
)
dθ

≤ 1

Cnϵ2n log n

∫
q(θ)E(n)

0

(∣∣∣∣log( L0

L̃(θ)

)∣∣∣∣+
∣∣∣∣∣log

(
L̃(θ0)

L0

)∣∣∣∣∣+
∣∣∣∣log(Jn(θ0)

Jn(θ)

)∣∣∣∣
)
dθ

≤ 1

Cnϵ2n log n

∫
q(θ)

(
KL
(
L0, L̃(θ)

)
+ KL

(
L0, L̃(θ0)

)
+

∣∣∣∣log(Jn(θ0)

Jn(θ)

)∣∣∣∣+ 4

e

)
dθ (2.50)

Therefore,

P n
0

(∫
q(θ) log(L(θ0)/L(θ))dθ > Cnϵ2n log n

)
=

1

Cnϵ2n log n

(
2E(n)

0 (logL0 − logL(θ0)) +

∫
q(θ)E(n)

0 (logL(θ0)− logL(θ))dθ

)
+

1

Cnϵ2n log n

(
2 log Jn(θ0) + 2

∫
q(θ) log Jn(θ)dθ +

4

e

)
→ 0 (2.51)

where the inequality in second last step is due to Lemma 5. The last convergence to 0 is

explained next. By Lemma 10 and Lemma 14 respectively, we get

E(n)
0 (logL0 − logL(θ0)) = o(nϵ2n)∫

q(θ)E(n)
0 (logL(θ0)− logL(θ))dθ ≤ o(nϵ2n)

By (2.39), log Jn(θ0) = o(nϵ2n log n) and by Lemma 11 and − log ϵn = O(log n)∫
q(θ) log Jn(θ)dθ ≤ ϵn

√
n(1 + γ2)/2

∫
βq(β)dβ + o(nϵ2n)(log 3

√
2− log ϵn) = o(nϵ2n)

where we use EQ(β) = exp(log β0 + 1/n)→ β0
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2.13 Proof of Theorem 1

In this section, with dominating probability term is used to imply that under P(n)
0 , the

probability of the event goes to 1 as n→∞.

KL(Q,Π(|X(n))) =

∫
q(θ) log q(θ)dθ −

∫
q(θ) log π(θ|X(n))dθ

=

∫
q(θ) log q(θ)dθ −

∫
q(θ) log

L(θ)p(θ)∫
L(θ)p(θ)dθ

dθ

= KL(Q,P )−
∫

log(L(θ)/L(θ0))q(θ)dθ + log

∫
(L(θ)/L(θ0))p(θ)dθ

= KL(Q,P ) +

∫
log(L(θ0)/L(θ))q(θ)dθ + log

∫
(L(θ)/L(θ0))p(θ)dθ

(2.52)

By Lemma 9, KL(Q,P ) = o(nϵ2n log n) ≤ (C/3)nϵ2n log n. By Lemma 3, with dominating

probability ∫
log(L(θ0)/L(θ))q(θ)dθ ≤ (C/3)nϵ2n log n

for any C > 0. By Lemma 2, with dominating probability

log

∫
(L(θ)/L(θ0))p(θ)dθ ≤ (C/3)nϵ2n log n

Therefore, with dominating probability, for any C > 0,

KL(Q,Π(|X(n))) ≤ Cnϵ2n

Further,

Π(U c
εn|X

(n)) =

∫
Uc
εn
L(θ)p(θ)dθ∫

L(θ)p(θ)dθ
=

∫
Uc
εn
(L(θ)/L(θ0))p(θ)dθ∫

(L(θ)/L(θ0))p(θ)dθ

By Lemma 1, with dominating probability, for any C > 0, as n→∞∫
Uc
εn

(L(θ)/L(θ0))p(θ)dθ ≤ exp(−C0nε
2
n)

By Lemma 2, with dominating probability∫
(L(θ)/L(θ0))p(θ)dθ ≥ exp(−Cnϵ2n log n)
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Therefore, with dominating probability

Π(U c
εn|X

(n)) ≤ exp(−C0nε
2
n(1− C/Mn)) ≤ exp(−C1nε

2
n)

for any C0 > C1/2. This is because for n sufficiently large 1− C/Mn > 1/2.

This completes the proof.

2.14 Proof of Corollary 1

By Lemma 1, with dominating probability, there exists C0(r) > 0 such that as n→∞,∫
Uc
rεn

(L(θ)/L(θ0))p(θ)dθ ≤ exp(−C0(r)r
2nε2n)

Let us assume,

C0(r) ≥ C2/r for all r > 0 for some constant C2 > 0 (2.53)

Numerical evidence for validity of this assumption been provided in the section 2.14.1. How-

ever, the explicit theoretical derivation is technically involved and has been avoided in this

thesis. By Lemma 2, with dominating probability∫
(L(θ)/L(θ0))p(θ)dθ ≥ exp(−Cnϵ2n log n)

Note, that

Π(U c
rεn|X

(n)) =

∫
Uc
rεn

L(θ)p(θ)dθ∫
L(θ)p(θ)dθ

=

∫
Uc
rεn

(L(θ)/L(θ0))p(θ)dθ∫
(L(θ)/L(θ0))p(θ)dθ

Therefore, with dominating probability

Π(U c
rεn|X

(n)) ≤ exp(−C2rnε
2
n) exp(Cnϵ2n log n)

Following steps of proof of proposition 11 on page 2,111 in Van Der Vaart and Van Zanten

(2011), ∫
e(C2/2)nεn||θ−θ0||2dΠ(U c

εn|X
(n)) =

∫ ∞

0

e(C2/2)nε2nrΠ(||θ − θ0||2 ≥ rεn|X(n))dr
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Therefore, ∫
e(C2/2)nεn||θ−θ0||2dΠ(U c

εn|X
(n))

= exp(Cnϵ2n log n)

∫ ∞

0

exp((C2/2)rnε
2
n) exp(−C2rnε

2
n)dr

= exp(Cnϵ2n log n)

∫ ∞

0

exp(−(C2/2)rnε
2
n)dr =

2

C2nε2n
exp(Cnϵ2n log n)

This completes the proof.

2.14.1 Proof of Relation (2.53)

Lemma 15. With Urϵn same as in Lemma 1, we have for some C2 > 0,

P(n)
0

(
sup

θ∈Uc
rϵn

∫
L(θ)

L(θ0)
p(θ)dθ ≤ −C2rnϵ

2
n

)
→ 1, n→∞ (2.54)

Proof. Following the proof of Lemma 1, we relate Urϵn to Vrϵn = {|β − β0| < rϵn, |B−B0| <

rϵn}. Note, Vrϵn can be split into sets V1n, · · · , V8n as in the proof of Lemma 1. We study

the behavior of

sup
θ∈V1n

(logL(θ)− logL(θ0))

where V1n = {β ≥ β0 + rϵn, B ≥ B0}. The proof for other cases of V2n, · · · , V8n follows

similarly. The proof of (2.54) will then follow as a consequence of (2.30).

By a simple modification of the steps for the relation (2.31) used in the proof of Lemma 1,

it can be shown that

sup
θ∈V1n

(logL(θ)− logL(θ0)) ≤ O(logL((β0 + rϵn, B0))− logL(β0, B0))

Next, we numerically demonstrate that

logL((β0 + rϵn, B0))− logL(β0, B0)︸ ︷︷ ︸
LHS

≤ −Crnϵ2n︸ ︷︷ ︸
RHS

, n→∞
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where C = 0.01. Note, for computing LHS in the above relation, x is generated using relation

(1.1) with β = β0 and B = B0. For varying values of r ∈ (0, 1000), we consider two ratios

ρ1 = Proportion of r values where LHS > RHS

ρ2 = Proportion of r values where LHS > RHS provided LHS < 0

The reason for considering the two proportion ρ1 and ρ2 is because RHS is a negative quantity

and the upper bound is justified only when the LHS is als a negative quantity.

The tables below give the values of ρ1 and ρ2 for varying values of n, d and ϵn. It is evident

that both ρ1 and ρ2 approach zero as sample size increases. The fact that ρ1 approaches 0

as n → ∞ is also immediate from the proof of Lemma 1 which shows that LHS becomes

negative as n→∞,see relation (2.32).

ρ1 for d = 5 (ρ2 for d = 5)
ϵn β B n = 200 n = 1000 n = 5000

n−0.4 0.2 0.2 0.0(0.0) 0.0(0.0) 0.0(0.0)
-0.2 0.002(0.002) 0.0(0.0) 0.0(0.0)
0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)
-0.5 0.092(0.0) 0.0(0.0) 0.092(0.0)

0.5 0.2 0.092(0.0) 0.0(0.0) 0.0(0.0)
-0.2 0.0(0.0) 0.0(0.0) 0.0(0.0)
0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)
-0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)

n−0.2 0.2 0.2 0.091(0.0) 0.040(0.009) 0.0(0.0)
-0.2 0.0(0.0) 0.014(0.008) 0.0(0.0)
0.5 0.0(0.0) 0.056(0.008) 0.0(0.0)
-0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)

0.5 0.2 0.060(0.009) 0.0(0.0) 0.0(0.0)
-0.2 0.036(0.009) 0.0(0.0 0.0(0.0)
0.5 0.066(0.009) 0.018(0.006) 0.014(0.007)
-0.5 0.091(0.010) 0.021(0.007) 0.016(0.007)
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ρ1 for d = 30 (ρ2 for d = 30)
ϵn β B n = 200 n = 1000 n = 5000

n−0.4 0.2 0.2 0.0(0.0) 0.062(0.0) 0.0(0.0)
-0.2 0.026(0.017) 0.092(0.0) 0.0(0.0)
0.5 0.056(0.008) 0.023(0.009) 0.0(0.0)
-0.5 0.0(0.0) 0.025(0.008) 0.0(0.0)

0.5 0.2 0.091(0.0) 0.081(0.014) 0.091(0.0)
-0.2 0.067(0.014) 0.0(0.0) 0.093(0.0)
0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)
-0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)

n−0.2 0.2 0.2 0.028(0.028) 0.0(0.0) 0.0(0.0)
-0.2 0.091(0.0) 0.023(0.023) 0.0(0.0)
0.5 0.0(0.0) 0.021(0.008) 0.0(0.0)
-0.5 0.0(0.0) 0.0(0.0) 0.0(0.0)

0.5 0.2 0.039(0.015) 0.0(0.0) 0.004(0.004)
-0.2 0.044(0.013) 0.042(0.012) 0.0(0.0)
0.5 0.0(0.0) 0.046(0.009) 0.0(0.0)
-0.5 0.015(0.007) 0.0(0.0) 0.0(0.0)
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CHAPTER 3

BAYESIAN VARIABLE SELECTION IN A STRUCTURED REGRESSION
MODEL

In the history of statistics, estimation of β = (β1, . . . , βp)
⊤ in a regression model, y = Xβ+e,

has been one of the most popular research topics, where, X ∈ Rn×p is a given design matrix,

y ∈ Rn is a response vector, and e ∼ MVN(0, I) is an error term. We consider a high-

dimensional problem n < p, with sparse regression coefficients in which some βi’s are non-

zero and others are exactly zero. In this sparse high-dimensional setting, many previous

literatures have considered Bayesian approaches to variable selection (Ray and Szabó, 2021;

Ročková and George, 2018; Martin et al., 2017; Ročková and George, 2014; Carbonetto and

Stephens, 2012). In addition to the sparsity on β, we consider a structurally dependent

feature space. Dependent feature vector commonly occurs in genetics, neuroimaging, and

image analysis. For example, suppose that an image is given in which each pixel has a

value. There are signal areas in the image such that the pixels in the areas have non-zero

values and the others pixels are all zeros. The shape of the signal areas varies such as

rectangles, circles, or letters (See Figure 3.1). The image can be represented by a matrix and

corresponding β is the vectorization of the matrix. In such structured regression models,

Figure 3.1: Example of the structured regression coefficients. White pixels denote the cor-
responding βi’s are zeros and darker pixels denote the corresponding βi’s have larger values.

problems may arise with the classic variable selection methods. In order to use the structural

information and select signal features, Li and Zhang (2010) employed latent binary variables
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γ = (γ1, . . . , γp)
⊤ ∈ {0, 1}p with Ising prior on it and a spike and slab prior on β for

approximated the posterior selection probabilities by adapting Gibbs sampling which involves

a matrix inversion. Due to the computational cost of the matrix inversion, Li and Zhang

(2010)’s method are not scalable when p or the degree of the underlying graph is large.

Chang et al. (2018) proposed a Bayesian shrinkage approach via EM algorithm which is

scalable to high dimensional settings. We suggest a variational Bayes method (Jordan et al.,

1999) to simultaneously select signal coefficients and estimate the magnitudes of the signals

where a predetermined coupling matrix is considered to incorporate the network structure

of features. The coupling matrix in our method does not necessarily represent the true

connection between features, which allows us to utilize a common structure of a coupling

matrix such as k-nearest neighbor in image analysis.

3.1 Model and methodology

Throughout this chapter, we assume that pn is the number of covariates which depends

on the number of observations n. In a linear regression model, let β ∈ Rpn and σ2 > 0

denote the regression coefficients and the residual variance respectively. Since we consider

high-dimensional setup, we assume that pn > n and pn → ∞ as n → ∞. Then, the linear

regression model is written as:

y = Xβ + e, (3.1)

where y = (y1, . . . , yn)
⊤ is an observed response vector, X ∈ Rn×pn is a given design

matrix, and e = (e1, . . . , en)
⊤ ∼ MVN (0, σ2In). Since estimating σ2 is not of our in-

terest, with out loss of generality, we assume σ2 = 1. Our Bayesian variable selection

method is easily extendable to the case of unknown σ2 with an appropriate prior distribu-

tion. Now, there are pn unknown parameters in the regression model. In addition to the

high-dimensional regression setup, we further assume structured covariates for which it is

desirable to capture the intrinsic dependence among covariates. Introducing binary latent

variables γ = (γ1, . . . , γpn)
⊤ ∈ {−1, 1}pn , we perform Bayesian variable selection using a
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spike and slab method as follows:

p(γ) =
1

2pn
exp

(
pn∑
i=1

(b0γimi(γ) + a0γi − log cosh(b0mi(γ) + a0))

)
,

p(β | γ) =
pn∏
i=1

p(βi | γi),

p(βi | γi) ∼
(
1− γi

2

)
1(βi = 0) +

(
1 + γi
2

)
N
(
0, τ 2

)
,

(3.2)

where m(γ) := (m1(γ), . . . ,mpn(γ))
⊤ = Jnγ, Jn ∈ Rpn×pn is a coupling matrix, and N (0, τ 2)

denotes a Gaussian distribution with probability density function as follows:

p(βi | γi = 1) =
1√
2πτ 2

exp

(
− β2

i

2τ 2

)
.

One can notice that p(γ) is a pseudo-likelihood of Ising model. To approximate the unknown

posterior distributions, we define a variational family as follows:

q(γ) =
1

2pn
exp

(
pn∑
i=1

(bγimi(γ) + aiγi − log cosh(bmi(γ) + ai))

)
,

q(β | γ) =
pn∏
i=1

q(βi | γi),

q(βi | γi) ∼
(
1− γi

2

)
1(βi = 0) +

(
1 + γi
2

)
N
(
µi, σ

2
i

)
.

(3.3)

Note that we have 3pn + 1 variational parameters needed to be updated. We point out

that using the multiple threshold parameters a = (a1, . . . , apn)
⊤, the posterior inclusion

probability, that is, the probability that γi = 1 given y, can be different over i, which is

desirable for variable selection.
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3.1.1 ELBO optimization

Let ν = (a⊤, b,µ⊤,σ⊤) denote the set of variational parameters, where a = (a1, . . . , apn)
⊤,

µ = (µ1, . . . , µpn)
⊤, and σ = (σ1, . . . , σpn)

⊤. Then, the negative ELBO is:

L(ν) = Eq(β,γ) [log q(β,γ)− log p(β,γ,y)]

= Eq(β,γ) [− log p (y | β)]︸ ︷︷ ︸
1

+Eq(γ) [log q(γ)− log p(γ)]︸ ︷︷ ︸
2

+ Eq(β,γ) [log q(β | γ)− log p(β | γ)]︸ ︷︷ ︸
3

.

(3.4)

The first term is:

1 = Eq(β,γ)

[
1

2

(
β⊤X⊤Xβ − 2y⊤Xβ + y⊤y

)]
+ C

= Eq(β,γ)

1
2

 n∑
k=1

(
pn∑
i=1

Xkiβi

)2

− 2

pn∑
i=1

X⊤
·i yβi

+
1

2

(
y⊤y

)+ C

=
1

2
Eq(β,γ)

[
n∑

k=1

pn∑
i=1

X2
kiβ

2
i − 2

pn∑
i=1

X⊤
·i yβi +

n∑
k=1

∑
i ̸=l

XkiXklβiβl

]
+ C,

where X·i is i-th column of X. We compute the closed form of the above expectation:

Eq(β,γ)

[
n∑

k=1

pn∑
i=1

X2
kiβ

2
i − 2

pn∑
i=1

X⊤
·i yβi +

n∑
k=1

∑
i ̸=l

XkiXklβiβl

]

=
n∑

k=1

pn∑
i=1

X2
kiϕiEβi∼N (µi,σ2

i )
[β2

i ]− 2

pn∑
i=1

X⊤
·i yϕiEβi∼N (µi,σ2

i )
[βi]

+
n∑

k=1

∑
i ̸=l

XkiXklϕiϕlEβi∼N (µi,σ2
i )
[βi]Eβl∼N (µl,σ

2
l )
[βl]

=
n∑

k=1

pn∑
i=1

X2
kiϕi(µ

2
i + σ2

i )− 2

pn∑
i=1

X⊤
·i yϕiµi +

n∑
k=1

∑
i ̸=l

XkiXklϕiϕlµiµl,

where ϕi = eai+bmi(γ)/
(
eai+bmi(γ) + e−ai−bmi(γ)

)
is the marginal probability q(γi = 1). Sim-

ilarly, let ϕi0 = ea0+b0mi(γ)/
(
ea0+b0mi(γ) + e−a0−b0mi(γ)

)
denote the marginal probability in-

duced from the prior p(γ). The closed form of the second term in the negative ELBO (3.4)
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is:

2 = Eq(γ)

[
pn∑
i=1

(log ϕi − log ϕ0i)

]

=

p∑
i=1

ϕi (log ϕi − log ϕ0i) + (1− ϕi) (log(1− ϕi)− log(1− ϕ0i)) .

The last one is:

3 = Eq(β,γ)

[
pn∑
i=1

(log q(βi | γi)− log p(βi | γi))

]

=

pn∑
i=1

ϕiKL
(
N (µi, σ

2
i ),N (0, τ 2)

)
=

pn∑
i=1

ϕi

2

(
µ2
i + σ2

i

τ 2
− 1 + 2 log τ − 2 log σi

)
.

The last result of −( 1 + 2 + 3 ) provides the closed form of the ELBO. Let ϕ :=

(ϕ1, . . . , ϕpn)
⊤ and let ϕ0.5 := (

√
ϕ1, . . . ,

√
ϕpn)

⊤. Then, in a matrix notation, we write:

2 · 1 =
n∑

k=1

pn∑
i=1

X2
kiϕi(µ

2
i + σ2

i )− 2

p∑
i=1

X⊤
·i yϕiµi +

n∑
k=1

∑
i ̸=l

XkiXklϕiϕlµiµl + C

=
(
ϕ0.5 ◦ µ

)⊤ (
X⊤X ◦ Ipn

) (
ϕ0.5 ◦ µ

)
+
(
ϕ0.5 ◦ σ

)⊤ (
X⊤X ◦ Ipn

) (
ϕ0.5 ◦ σ

)
− 2y⊤X(ϕ ◦ µ) + (ϕ ◦ µ)⊤

(
X⊤X ◦ (1pn×pn − Ipn)

)
(ϕ ◦ µ) + C, (3.5)

where ◦ denote the element-wise product and 1pn×pn ∈ Rpn×pn is a matrix whose elements

are all ones. Define another vector ϕ0 := (ϕ01, . . . , ϕ0pn)
⊤ and let log(·) mean element-wise

logarithm when the input is a vector of a matrix. Then,

2 =

p∑
i=1

ϕi (log ϕi − log ϕ0i) + (1− ϕi) (log(1− ϕi)− log(1− ϕ0i))

= ϕ⊤ (logϕ− logϕ0) + (1− ϕ)⊤ (log (1− ϕ)− log (1− ϕ0)) ,

and

3 =

pn∑
i=1

ϕi

2

(
µ2
i + σ2

i

τ 2
− 1 + 2 log τ − 2 log σi

)
= 0.5ϕ⊤ (τ−2 (µ ◦ µ+ σ ◦ σ) + (2 log τ − 1) · 1− 2 logσ

)
.
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With the closed form of the ELBO, the gradients of the ELBO with respect to variational

parameters are also easily computable in closed forms. First, we compute the gradients∇aiϕi

and ∇bϕi:

∇aiϕi =
2e2(ai+bmi(γ))

(e2(ai+bmi(γ)) + 1)
2 ,

∇bϕi =
2mi(γ)e

2(ai+bmi(γ))

(e2(ai+bmi(γ)) + 1)
2 .

Observe that ∇aiϕj = 0 if i ̸= j. We define ∇aϕ :=
(
∇a1ϕ1, . . . ,∇apnϕpn

)⊤ and ∇bϕ :=

(∇bϕ1, . . . ,∇bϕpn)
⊤. Then, by chain rule, we can compute the closed forms of all the gradients

needed.

Gradients with respect to a:

2 · ∇a 1 =
(
X⊤X ◦ Ip

)
(µ ◦ µ ◦ ∇aϕ) +

(
X⊤X ◦ Ip

)
(σ ◦ σ ◦ ∇aϕ)

− 2
(
X⊤y

)
◦ µ ◦ ∇aϕ+ 2

((
X⊤X ◦ (1pn×pn − Ipn)

)
(ϕ ◦ µ)

)
◦ (µ ◦ ∇aϕ) ,

∇a 2 = ∇aϕ ◦ (logϕ− logϕ0)−∇aϕ (log (1− ϕ)− log (1− ϕ0)) ,

∇a 3 = 0.5∇aϕ ◦
(
τ−1 (µ ◦ µ+ σ ◦ σ) + (2 log τ − 1) · 1− 2 logσ

)
.

Gradients with respect to b:

0.5∇b 1

=
(
∇bϕ

0.5 ◦ µ
)⊤ (

X⊤X ◦ Ipn
) (
∇bϕ

0.5 ◦ µ
)
+
(
∇bϕ

0.5 ◦ σ
)⊤ (

X⊤X ◦ Ipn
) (
∇bϕ

0.5 ◦ σ
)

− 2y⊤X(∇bϕ ◦ µ) + (∇bϕ ◦ µ)⊤
(
X⊤X ◦ (1pn×pn − Ipn)

)
(ϕ ◦ µ)

+ (ϕ ◦ µ)⊤
(
X⊤X ◦ (1pn×pn − Ipn)

)
(∇bϕ ◦ µ),

∇b 2 = ∇bϕ
⊤ (logϕ− logϕ0)−∇bϕ

⊤ (log (1− ϕ)− log (1− ϕ0)) ,

∇b 3 = 0.5∇bϕ
⊤ (τ−1 (µ ◦ µ+ σ ◦ σ) + (2 log τ − 1) · 1− 2 logσ

)
.
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Gradients with respect to µ:

0.5∇µ 1 =
(
X⊤X ◦ Ip

)
(µ ◦ ϕ)− 2(X⊤y) ◦ ϕ

+ 2
((
X⊤X ◦ (1pn×pn − Ipn)

)
(ϕ ◦ µ)

)
◦ ϕ,

∇µ 3 = τ−2ϕ ◦ µ.

Gradients with respect to σ:

0.5∇σ 1 =
(
X⊤X ◦ Ip

)
(σ ◦ ϕ) ,

∇µ 3 = τ−2ϕ ◦ µ.

3.2 Implementation details

Starting with initial variational parameters ν(0), the first step for implementing the VB

algorithm is to draw a γ from the current q(γ; b(t),a(t)) using Gibbs sampling. Note that we

do not need to draw samples from q(β | γ). Given a γ, we can obtain the closed forms of

ELBO and all the gradients ∇̂νL(ν) described in the subsection 3.1.1. Then, we can update

the current variational parameters as follows:

ν(t+1) ← ν(t) + ηt(ν) · ∇̂νL(ν).

Note that, we allow that the learning rates ηt(ν) depend on variational parameters ν ∈ ν.

Since we have 3pn + 1 variational parameters, a single learning rate does not guarantee the

convergence of all the variational parameters. Therefore, we use adaptive learning rates

such as Adam described in Algorithm 1.1. After the optimal variational parameters ν∗ are

achieved, we can empirically compute the marginal probability that γi = 1, i = 1, . . . , pn

based on the samples:

γ1, . . . ,γS ∼ q(γ; b∗,a∗),
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where γs = (γs,1, . . . , γs,pn)
⊤, s = 1 . . . , S. Then the marginal probability of γi is:

q∗(γi = 1) =

∑S
s=1 1 (γs,i = 1)

S
.

Based on the empirical marginal probabilities, we select the i-th feature if:

q∗(γi = 1) > T,

where T is a threshold (it could be a fixed number such as 0.5, or it could be the M -th

largest marginal). For estimation of β, we use the (variational) posterior mode µ∗.

3.3 Numerical results

In this section, we numerically investigate our variable selection algorithm equipped with

two different adaptive learning rates, Adam (Kingma and Ba, 2014) and RMSprop which

is an unpublished algorithm first proposed in the Coursera course. “Neural Network for

Machine Learning” by Geoff Hinton. Also, we compare our method with a MCMC based

method (Li and Zhang, 2010). Li and Zhang (2010) approached the structural regression

problem through the Bayesian variable selection framework, where the covariates lie on an

undirected graph and formulate an Ising prior on the model space for incorporating structural

information. Li and Zhang (2010) adopt the Gibbs sampling algorithms, first suggested by

George and McCulloch (1993).

3.3.1 Li and Zhang (2010)’s Gibbs sampling scheme

For the formulation of Li and Zhang (2010)’s Gibbs sampling method, we define γ(−i) =

(γ1, . . . , γi−1, γi+1, . . . , γp)
⊤; let I(−i) be the set of indices {γj = 1 : j ̸= i}; I(i) = I(−i) ∪ {i};

p(i) = |I(i)| and p(−i) = |I(−i)|. With an Ising prior on γ ∈ {0, 1}p,

p(γ) =
1

Z(a0, b0)
exp

(
b0
2
γ⊤Jγ + a0

p∑
i=1

γi

)
,

the posterior distribution of γ given the data can be decomposed by Bayes formula as follows:

P
(
γi = 1 | γ(−i),y

)
=

P
(
γi = 1 | γ(−i)

)
P
(
γi = 1 | γ(−i)

)
+BF

(
i | γ(−i)

)−1 · P
(
γi = −1 | γ(−i)

) , (3.6)
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where BF
(
i | γ(−i)

)
=

P(y|γi=1,γ(−i))
P(y|γi=0,γ(−i))

is the Bayes factor, and

P
(
γi | γ(−i)

)
=

e
γi

(
a0+b0

∑
j∈I(−i)

γj

)

1 + e
a0+b0

∑
j∈I(−i)

γj
.

The Bayes factor can be explicitly computed under the spike and slab prior on β:

BF
(
i | γ(−i)

)
= τ−1

(
|K(−i)|
|K(i)|

)1/2
(
y⊤y − y⊤XI(−i)

K−1
(−i)X

⊤
I(−i)

y

y⊤y − y⊤XI(i)K
−1
(i) X

⊤
I(i)

y

)n/2

,

where K(i) = X⊤
I(i)

XI(i) + τ−2Ip(i) and K(−i) = X⊤
I(−i)

XI(−i)
+ τ−2Ip(−i)

. Based on Gibbs

samples from the posterior probabilities in (3.6), Li and Zhang (2010) calculated the marginal

posterior probabilities to find signal variables.

3.3.2 Hyper parameter selection

To implement the algorithm with the prior distributions (3.2), three hyper parameters are

needed to be selected. We follow Li and Zhang (2010) for the hyper parameter choices. Li

and Zhang (2010) considered reparametrizations for the hyper parameters (a0, b0) as follows:

a0 = log(r/w2
0) and b0 = log(w1 · w0),

where w0 = rw1 + 1 − r. Li and Zhang (2010) used fixed r = 0.03 and various w1. Table

3.1 shows examples of hyper parameter choices. Note that w1 = 1 corresponds to the

independent Bernoulli prior.

w1 a0 b0
1 -3.5066 0
5 -3.7332 1.7228
9 -3.9368 2.4123

Table 3.1: Examples of hyper parameter choices

3.3.3 ROC curve

In this subsection, we compute ROC curves to see how performance changes as hyper pa-

rameters change in two scenarios.
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Scenario 1: For the first scenario, we assume the γis are arranged on a circle clockwise.

Then, each γi has two neighbors, γi−1 and γi+1, where γ0 = γp and γp+1 = γ1, where

n = 100 and p = 2000. Figure 3.2 shows the connectivity among γ. For the true regression

coefficients, we use:

βi =


0.3, if i ∈ A and i is odd,

0.6, if i ∈ A and i is even,

0, otherwise,

where A = {i : i ∈ [245, 260] ∪ [745, 760] ∪ [1245, 1260] ∪ [1745, 1760]}.

Figure 3.2: γ on a circle

For design matrix X ∈ Rn×p, we first assume each component follows independent stan-

dard Gaussian distribution, i.e., Xij ∼ N (0, 1). Figure 3.3 demonstrates the ROC curves

corresponding to the hyper parameters w1 = 1 and w1 = 3. Figure 3.4 contains the results

for higher w1 with independent X.
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Figure 3.3: ROC curves for the three variable selection methods with the hyper parameter
w1 = 1 (left) and w1 = 3 (right) respectively when the covariates are independent.

Figure 3.4: ROC curves for the three variable selection methods with the hyper parameter
w1 = 5 (left), w1 = 7 (right), and w1 = 9 (bottom) respectively when the covariates are
independent.

For the second type of X ∈ Rn×p, we consider correlated X. In the blocks [241, 265],

[741, 765], [1241, 1265], and [1741, 1765], we let corr (X·i, X·j) = 0.75−0.03|i−j|, where X·i is

i-th column of X. Also, as a noise, we let X be correlated as corr (X·i, X·j) = 0.4−0.02|i−j|,

in four blocks which do not include a signal, [41, 60], [941, 960], [1041, 1060], and [1941, 1960].
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With the hyper parameters w1 = 1, w1 = 3, w1 = 5, w1 = 7, and w1 = 9, the corresponding

ROC curves are demonstrated Figure 3.5 and Figure 3.6.

Figure 3.5: ROC curves for the three variable selection methods with the hyper parameter
w1 = 1 (left) and w1 = 3 (right) respectively when the covariates are correlated.

Figure 3.6: ROC curves for the three variable selection methods with the hyper parameter
w1 = 5 (left), w1 = 7 (right), and w1 = 9 (bottom) respectively when the covariates are
correlated.

Scenario 2: For the second scenario, we assume the γis are arranged on a lattice such that

each γi is connected with less then or equal to four neighbors. The four γis at the corner
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of the lattice have two neighbors each, the γis at the boundary of the lattice have three

neighbors, and the others have four neighbors. The connectivity is shown in Figure 3.7.

Figure 3.7: γ on a lattice.

For the true regression coefficients, we consider a vectorization of an image in which there

are three signal areas. Each pixel in the signal areas takes a nonzero value, βi ∈ {0.3, 0.6},

and all the other pixels are zeros. Figure 3.8 shows the signal areas in the image. The black

pixels represent larger value of nonzero βis (0.6), the grey pixels represent smaller value of

nonzero βis (0.3), and the white pixels represent zero βis. We use the vecotrization of the

image (matrix) as the vector of true regression coefficients in scenario 2.
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Figure 3.8: Signal areas in an image

For design matrix X ∈ Rn×p in this scenario, we also consider two types of X. We first use

independent standard Gaussian distribution as in the scenario 1. Figure 3.9 demonstrates

the ROC curves corresponding to the hyper parameters w1 = 1, w1 = 3, and w1 = 5.

Figure 3.9: ROC curves in scenario 2 for the three variable selection methods with the
hyper parameter w1 = 1 (left), w1 = 3 (right), and w1 = 5 (bottom) respectively when the
covariates are independent.
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When w1 is higher than 5, Li and Zhang (2010)’s approach does not work because of

a phase transition. A phase transition can occur when the space of γ is two-dimensional

(lattice). One can see Stanley (1971) for more details of phase transition in Ising model.

Figure 3.10 contains the results for higher w1 = 7 and w1 = 9 when X is independent.

Figure 3.10: ROC curves in scenario 2 for the two VB methods with the hyper parameter
w1 = 7 (left) and w1 = 9 (right) respectively when the covariates are independent.

For the second type of design matrix in scenario 2, we consider the same structure of γ,

that is, corr (X·i, X·j) > 0 if γi and γj are connected:

corr (X·i, X·j) =


0.3 if γi and γj are connected,

0, otherwise.

Using the correlated X, the ROC curves with w1 = 1, w1 = 3, and w1 = 5 are shown in

Figure 3.11 and the ROC curves for w1 = 7 and w1 = 9 are shown in Figure 3.12.
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Figure 3.11: ROC curves in scenario 2 for the three variable selection methods with the
hyper parameter w1 = 1 (left), w1 = 3 (right), and w1 = 5 (bottom) respectively when the
covariates are correlated.

Figure 3.12: ROC curves in scenario 2 for the two VB methods with the hyper parameter
w1 = 7 (left) and w1 = 9 (right) respectively when the covariates are correlated.

3.4 Theoretical results

In this section, we describe theoretical results. To establish the selection consistency of our

variational Bayes method, we first observe the true posterior with the true Ising prior on γ
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as follows:

p(γ) =
1

Zn(a0, b0)
exp

(
b0
2
γ⊤Jnγ + a0

p∑
i=1

γi

)
,

where Jn ∈ Rpn×pn is a given coupling matrix. We define an activation set Aγ = {i : γi = 1}

and, given γ = g, let βg be the vector of non-zero βi’s and Xg be the corresponding design

matrix of size n× |βg|. Defining |g| := |βg| = |Ag|, the joint posterior is:

π(β,γ = g | y)

∝ p(γ = g)p(β | γ = g)p(y | βg)

∝ exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jng

)
exp

(
−1

2

(
y −Xgβg

)⊤ (
y −Xgβg

))
×
∏
i∈Ag

p(βi | γi = 1)
∏
i∈Ac

g

p(βi | γi = −1)

∝ exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jng

)
exp

(
−1

2

(
y −Xgβg

)⊤ (
y −Xgβg

))
×
(
2πτ 2

)− |βg |
2 exp

(
− 1

2τ 2
β⊤

g βg

) ∏
i∈Ac

g

1 (βi = 0)

∝ exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jng

)(
2πτ 2

)− |βg |
2

∏
i∈Ac

g

1 (βi = 0)

× exp

(
−1

2

((
y −Xgβg

)⊤ (
y −Xgβg

)
+

1

τ 2
β⊤

g βg

))
∝ exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jng

)(
2πτ 2

)− |βg |
2

∏
i∈Ac

g

1 (βi = 0)

∝ exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jng

)(
2πτ 2

)− |βg |
2

∏
i∈Ac

g

1 (βi = 0)

× exp

(
−1

2

(
βg − β̃g

)⊤(
X⊤

g Xg +
1

τ 2
I

)(
βg − β̃g

))
× exp

(
−1

2

(
y⊤y − β̃g

(
X⊤

g Xg +
1

τ 2
I

)
β̃g

))
,

(3.7)
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where β̃g =
(
X⊤

g Xg +
1
τ2
I
)−1

X⊤
g y. To get the marginal posterior of γ = g, we integrate βg

out first:

π(β−g,γ = g | y)

=

∫
π(β,γ = g | y)dβg

∝ exp

(
− 1

2σ2
Rg

)
exp

(
a0

pn∑
i=1

gi +
bn
2
g⊤Jg

) ∏
i∈Ac

g

1 (βi = 0)

×
∫ (

2πσ2τ 2
)− |βg |

2 exp

(
− 1

2σ2

(
βg − β̃g

)⊤(
X⊤

g Xg +
1

τ 2
I

)(
βg − β̃g

))
dβg

∝ |X⊤
g Xg +

1

τ 2
I|−

1
2 exp

(
− 1

2σ2
Rg

)
exp

(
a0

pn∑
i=1

gi +
bn
2
g⊤Jg

) ∏
i∈Ac

g

1 (βi = 0) ,

where Rg = y⊤
(
I −Xg

(
X⊤

g Xg +
1
τ2
I
)−1

X⊤
g

)
y. Now, we integrate β−g out:

π(γ = g | y)

=

∫
π(β−g,γ = g | y)dβ−g

∝ |X⊤
g Xg +

1

τ 2
I|−

1
2 exp

(
− 1

2σ2
Rg

)
exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg

)∫ ∏
i∈Ac

g

1 (βi = 0) dβ−g

= |X⊤
g Xg +

1

τ 2
I|−

1
2 exp

(
− 1

2σ2
Rg

)
exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg

)
.

Let Qg =
∣∣X⊤

g Xg +
1
τ2
I
∣∣−1/2. Then, the posterior ratio is:

PR(g, t)

=
π(γ = g | y)
π(γ = t | y)

=
Qg

Qt︸︷︷︸
a

exp

(
− 1

2σ2
Rg +

1

2σ2
Rt

)
︸ ︷︷ ︸

b

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
︸ ︷︷ ︸

c

,

(3.8)

where t denotes the true model. Our first result is described in the following subsection.
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3.4.1 True posterior consistency with true Ising prior

We let λn
max denote the maximum eigenvalue of the Gram matrix X⊤X/n, and for ν > 0, as

like Narisetty and He (2014), we define:

mn(ν) = pn ∧
n

(2 + ν) log pn
and λn

min(ν) := inf
|g|≤mn(ν)

ϕ#
min

(
X⊤

g Xg

n

)
, (3.9)

where ϕ#
min (A) denotes the minimum nonzero eigenvalue of a matrix A. To establish the

selection consistency of the true posterior under the true Ising prior, we need following

regularity conditions (Yang and Shen, 2017):

Condition 1. (On dimension pn). pn = endn for some dn → 0 as n→∞, that is, log pn =

o(n).

Condition 2. (On prior parameters). nτ 2 ∼ (n ∨ p2+3δ
n ), for some δ > 0, a0 ∼ −ndn, and

b0 ∼ 1
kmaxpn

, where kmax is the maximum row sum of Jn, that is,

kmax = max
i∈{1,...,pn}

pn∑
j=1

Jn(i, j).

Condition 3. (On true model). y | X ∼ Nn (Xtβt +Xtcβtc , σ
2I), where the size of the

true model |t| is fixed. Besides, |t|/2 < rt < |t|, where rt is the rank of Xt.

For any fixed K > 0, define

∆n(K) := inf
{g:|g|<K|t|,g ̸⊃t}

||(I − Pg)Xtβt||22,

where Pg is the projection matrix onto the column space of Xg.

Condition 4. (Identifiability). There is K > 1 + 8/δ such that ∆n(K) > γn := 5σ2|t|(1 +

δ) log(
√
n ∨ pn).

Condition 5. (Regularity of the design). For some ν < δ, κ < (K − 1)δ/2,

λn
max ∼ O(1) and λn

min ⪰
(
n ∨ p2+2δ

nτ 2
∨ p−κ

n

)
.
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Theorem 2. Under the Conditions 1 - 5, the posterior probability of the true model goes to

1, that is,

∑
g ̸=t

PR(g, t)→ 0,

as n goes to infinity.

Narisetty and He (2014) separated the model space into four disjoint parts:

M1 = {g : rg > mn},

M2 = {g : g ⊃ t, rg ≤ mn},

M3 = {g : g ̸⊃ t, K|t| < rg ≤ mn},

M4 = {g : g ̸⊃ t, rg ≤ K|t|}.

To prove the Theorem 2, we show
∑

g PR(g, t)→ 0 in each subspace.

Lemma 16. For a universal constant c′ > 0,

Qg

Qt

≤ c′
(
nτ 2λn

min

)−(r∗g−|t|)/2
(λn

min)
−|t|/2

Proof. From Lemma 11.1 in Narisetty and He (2014), we have

Qg =

∣∣∣∣I + 1

τ 2
X⊤

g Xg

∣∣∣∣−1/2

=
∣∣I + τ 2XgX

⊤
g

∣∣−1/2

Note,

a =
Qg

Qt

=
Qg

Qg∧t
· Qg∧t

Qt

,
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Qg

Qg∧t
= |I + τ 2XgX

⊤
g |−1/2|I + τ 2Xg∧tX

⊤
g∧t|1/2

≤
(
1 + τ 2λn

g,min

)−rg/2 (
1 + τ 2λn

g∧t,max

)rt∧g/2

≤
(
τ 2λn

g,min

)−rg/2 (
1 + nτ 2λn

max

)rt∧g/2

≤
(
nτ 2λn

min

)−rg/2 (
1 + nτ 2λn

max

)rt∧g/2

≃
(
nτ 2λn

min

)−rg/2 (
nτ 2λn

max

)rt∧g/2 for sufficiently large n

=
(
nτ 2λn

min

)−(rg−rt∧g)/2
(
λn
max

λn
min

)rt∧g/2

≤
(
nτ 2λn

min

)−(r∗g−rt∧g)/2
(
λn
max

λn
min

)rt∧g/2

≤
(
nτ 2λn

min

)−(r∗g−rt)/2
(
λn
max

λn
min

)rt∧g/2

≤ C
(
nτ 2λn

min

)−(r∗g−rt)/2 (λn
min)

−rt∧g/2 ,

where r∗g = rg ∧mn.

Qg∧t

Qt

= |I + τ 2Xg∧tX
⊤
g∧t|−1/2|I + τ 2XtX

⊤
t |1/2

= |I + τ 2Xg∧tX
⊤
g∧t + τ 2Xgc∧tX

⊤
gc∧t|1/2|I + τ 2Xg∧tX

⊤
g∧t|−1/2

= |
(
I + τ 2Xg∧tX

⊤
g∧t + τ 2Xgc∧tX

⊤
gc∧t
)−1 (

I + τ 2Xg∧tX
⊤
g∧t
)
|−1/2

= |I + τ 2X⊤
gc∧t

(
I + τ 2Xg∧tX

⊤
g∧t
)−1

Xgc∧t|1/2

≤ |I + τ 2X⊤
gc∧tXgc∧t|1/2

= |I + τ 2Xgc∧tX
⊤
gc∧t|1/2

≤
(
1 + τ 2λn

gc∧t,max

)rt∧gc/2

≤
(
1 + τ 2λn

max

)rt∧gc/2

≃
(
nτ 2λn

max

)rt∧gc/2 for sufficiently large n

=
(
nτ 2λn

min

)rt∧gc/2
(
λn
max

λn
min

)rt∧gc/2

≤ C
(
nτ 2λn

min

)rt∧gc/2 (λn
min)

−rt∧gc/2 , λn
max ∼ O(1)
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From the above two inequalities,

a =
Qg

Qt

≤ c′
(
nτ 2λn

min

)−(r∗g−rt∧g−rt∧gc)/2
(
λn
max

λn
min

)(rt∧g+rt∧gc)/2

≤ c′
(
nτ 2λn

min

)−(r∗g−|t∧g|−|t∧gc|)/2
(
λn
max

λn
min

)(|t∧g|+|t∧gc|)/2

= c′
(
nτ 2λn

min

)−(r∗g−|t|)/2
(
λn
max

λn
min

)|t|/2

≤ c′
(
nτ 2λn

min

)−(r∗g−|t|)/2
(λn

min)
−|t|/2

Using the same argument of the Lemma A.1 in Narisetty and He (2014), we show that:

Rg = Rg = y⊤

(
I −Xg

(
X⊤

g Xg +
1

τ 2
I

)−1

X⊤
g

)
y

= y⊤ (I + τ 2XgX
⊤
g

)−1
y ≥ 0,∀g (3.10)

1. Models in M1. From (3.10) and the supplement to Narisetty and He (2014),

P
[
Rt −Rg > n(1 + 2s)σ2

]
≤ P

[
Rt > n(1 + 2s)σ2

]
≤ 2e−c′n, uniformly for all g (3.11)

Observe that on M1, r∗g = mn ≥ n/ log(p2+ν
n ) ≥ n/ log(p2+δ

n ). Therefore, on the high-
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probability event {Rt −Rg ≤ n(1 + 2s)σ2}, by (3.11) and the regularity Conditions,

∑
g∈M1

PR(g, t)

⪯
∑
g∈M1

(
nτ 2λn

min

)−(r∗g−|t|)/2
(
λn
max

λn
min

)|t|/2

exp

(
n(1 + 2s)

2

)

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯
∑
g∈M1

p−(1+δ)(mn−|t|)
n (λn

min)
−|t|/2 exp

(
n(1 + 2s)

2

)

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
, by Condition 2 and 5

=
∑
g∈M1

exp (−ndn(1 + δ)(mn − |t|)) (λn
min)

−|t|/2 exp

(
n(1 + 2s)

2

)

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
, by Condition 1

⪯
∑
g∈M1

exp

(
−n(1 + δ)

2 + δ

)
(λn

min)
−|t|/2 exp

(
n(1 + 2s)

2

)

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
, because mn ≥ n/ log(p2+δ

n )

⪯
∑
g∈M1

exp

(
−n(1 + δ)

2 + δ

)
pκ|t|/2n exp

(
n(1 + 2s)

2

)

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
, by Condition 5

⪯ exp

(
−n(1 + δ)

2 + δ
+

n(1 + 2s)

2

)
pκ|t|/2n exp

(
−a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)
∑
g∈M1

exp

(
a0

pn∑
i=1

gi +
b0
2
g⊤Jg

)
, by Condition 5.

Since the conditions on a0 and b0 bounds the summation term, we have

∑
g∈M1

PR(g, t) ⪯ w′ exp

(
ndnκ|t|

2

)
exp

(
−n(1 + δ)

2 + δ
+

n(1 + 2s)

2

)
, by Condition 1

⪯ exp

{
n

(
1 + 2s

2
− 1 + δ

2 + δ

)}
→ 0,
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when (1 + 2s)/2− (1 + δ)/(2 + δ)) < 0, i.e., s < δ/2(2 + δ).

2. Models in M2. Consider 0 < s ≤ δ/8, and define the events:

A(g) := {Rt −Rg > 2σ2(1 + 2s)(rg − rt) log pn},

U(d) := ∪{g:rg=d}A(g).

Let Pg = Xg(X
⊤
g Xg)

−1X⊤
g . Since Rg ≥ R∗

g = y⊤ (I − Pg)y, we have

P [U(d)] = P
[
∪{g:rg=d}{Rt −Rg > 2σ2(1 + 2s)(rg − rt) log pn}

]
≤ P

[
∪{g:rg=d}{Rt −R∗

g > 2σ2(1 + 2s)(rg − rt) log pn}
]

≤ P
[
∪{g:rg=d}{R∗

t −R∗
g > σ2(2 + 3s)(rg − rt) log pn}

]
+ P

[
Rt −R∗

t > sσ2(d− rt) log pn
]

≤ c′p−(1+s)(d−rt)
n p(d−rt)

n + exp (−c′n log pn)

≤ 2c′p−s(d−rt)
n .

Next, we consider the union of all such events U(d), that is,

P
[
∪{d>rt}U(d)

]
≤ 2c′

psn − 1
→ 0.

Observe that on M2, we have r∗g = rg, |t∧g| = |t|, and |t∧gc| = 0. On the high-probability
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event ∩{d>rt}U(d)c,

∑
k∈M2

PR(k, t)

⪯
∑
k∈M2

(
nτ 2λn

min

)−(r∗k−rt∧k)/2
(
λn
max

λn
min

)|t|/2

exp

(
− 1

2σ2
(Rk −Rt)

)

exp

(
an

pn∑
i=1

gi +
b0
2
k⊤Jk − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯
∑
k∈M2

(
nτ 2λn

min

)−(rk−rt)/2 p(1+2s)(rk−rt)
n (λn

min)
−|t|/2

exp

(
a0

pn∑
i=1

gi +
b0
2
k⊤Jk − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯
∑
k∈M2

(
p2+2δ
n ∨ n

)−(rk−rt)/2
p(1+2s)(rk−rt)
n pκ|t|/2n

exp

(
a0

pn∑
i=1

gi +
b0
2
k⊤Jk − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯
∑
k∈M2

(
p−1−δ
n ∧ 1/

√
n
)(rk−rt)

p(1+2s)(rk−rt)
n pκ|t|/2n

exp

(
a0

pn∑
i=1

gi +
b0
2
k⊤Jk − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯
∑
k∈M2

(
p−δ+2s
n ∧ p1+2s

n√
n

)(rk−rt)

pκ|t|/2n

exp

(
a0

pn∑
i=1

gi +
b0
2
k⊤Jk − a0

pn∑
i=1

ti −
b0
2
t⊤Jt

)

⪯

(
p−3δ/4
n ∧ p

1+δ/4
n√
n

)
pκ|t|/2n

exp

(
−a0

pn∑
i=1

ti −
b0
2
t⊤Jt

) ∑
k∈M2

exp

(
a0

pn∑
i=1

gi +
b0
2
k⊤Jk

)

⪯

p
κ|t|
2

− 3
4
δ

n ∧ p
κ|t|
2

+1+ δ
4

n√
n

→ 0, for some δ.
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3. Models in M3. We define:

B(k) := {Rt −Rk > 2σ2(1 + 2s)(rk − rt) log pn}.

Note that:

Rk = y⊤ (I + τ 2XkX
⊤
k

)−1
y, Rk∨t = y⊤ (I + τ 2XkX

⊤
k + τ 2Xkc∧tX

⊤
kc∧t
)−1

y.

Let A = I + τ 2XkX
⊤
k .

(
I + τ 2XkX

⊤
k + τ 2Xkc∧tX

⊤
kc∧t
)−1

=
(
A+ τ 2Xkc∧tX

⊤
kc∧t
)−1

= A−1 − A−1Xkc∧t
(
I +X⊤

kc∧tA
−1Xkc∧t

)
X⊤

kc∧tA
−1.

Therefore, Rk∨t ≤ Rk. Let V (d) := ∪{k:rk=d,k∈M3}B(k). From Narisetty and He (2014),

P [V (d)] ≤ P
[
∪{k:rk=d,k∈M3}

{
Rt −Rk∨t > 2σ2(1 + 2s)(rk − rt) log pn

}]
≤ c′p−w′d

n .

Then,

P
[
∪{d>K|t|}V (d)

]
≤ p−w′K|t|

n → 0, as n→∞.
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Restricting our attention to the high probability event ∩{d>rt}V (d)c,

∑
k∈M3

PR(k, t)

⪯
∑
k∈M3

(
nτ 2λn

min

)−(rk−rt∧k)/2
(
λn
max

λn
min

)|t|/2

exp

(
− 1

2σ2
(Rk −Rt)

)

exp

(
an

pn∑
i=1

gi +
bn
2
k⊤Jk − an

pn∑
i=1

ti −
bn
2
t⊤Jt

)

⪯
∑
k∈M3

(
p1+δ
n ∨

√
n
)−(rk−rt)

(λn
min)

−|t|/2 p(1+2s)(rk−rt)
n

exp

(
an

pn∑
i=1

gi +
bn
2
k⊤Jk − an

pn∑
i=1

ti −
bn
2
t⊤Jt

)

⪯
∑
k∈M3

(
pδ−2s
n ∨

√
np−1−2s

n

)−(rk−rt)
(λn

min)
−|t|/2

exp

(
an

pn∑
i=1

gi +
bn
2
k⊤Jk − an

pn∑
i=1

ti −
bn
2
t⊤Jt

)

⪯
∑
k∈M3

(
p−3δ/4
n ∨ p

1+δ/4
n√
n

)(rk−rt)

pκ|t|/2n

exp

(
an

pn∑
i=1

gi +
bn
2
k⊤Jk − an

pn∑
i=1

ti −
bn
2
t⊤Jt

)

⪯

(
p−3δ/4
n ∨ p

1+δ/4
n√
n

)(K−1)rt+1

pκ|t|/2n

exp

(
−an

pn∑
i=1

ti −
bn
2
t⊤Jt

) ∑
k∈M3

exp

(
an

pn∑
i=1

gi +
bn
2
k⊤Jk

)

⪯

(
p−3δ/4
n ∨ p

1+δ/4
n√
n

)(K−1)|t|/2

pδ(K−1)|t|/4
n exp (−an|t|)

∼

(
p−3δ/4
n ∨ p

1+δ/4
n√
n

)(K−1)|t|/2

exp (ndn|t|)

∼ exp

(
−ndn

3δ(K − 1)|t|
8

)
exp (ndn|t|)

= exp

(
−ndn|t|

(
3δ(K − 1)

8
− 1

))
→ 0.
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4. Models in M4. If c ∈ (0, 1),

P
[
∪{k∈M4}{Rk −Rt < ∆n(1− c)}

]
≤ P

[
∪{k∈M4}{Rk −Rk∨t < ∆n(1− c)}

]
≤ 2 exp (−c′∆n)→ 0.

Observe that:

exp

(
a0

pn∑
i=1

ki +
b0
2
k⊤Jnk − an

pn∑
i=1

ti −
b0
2
t⊤Jnt

)

= exp

(
a0

pn∑
i=1

k∗
i +

b0
2
(k∗)⊤ Jn (k

∗)− a0

pn∑
i=1

t∗i −
b0
2
(t∗)⊤ Jn (t

∗)

)

× exp
(
−b0k⊤Jn1+ b0t

⊤Jn1
)
,

where k∗ = k + 1 and t∗ = t + 1. By restricting to the high probability event Cn :=
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{Rk −Rt ≥ ∆n(1− c),∀k ∈M4},

∑
k∈M4

PR(k, t)

⪯
∑
k∈M4

(
nτ 2nλ

n
min

)|t|/2(λn
max

λn
min

)|t|/2

exp

(
− 1

2σ2
(Rk −Rt)

)

exp

(
an

pn∑
i=1

k∗
i +

bn
2
(k∗)⊤ Jn (k

∗)− an

pn∑
i=1

t∗i −
bn
2
(t∗)⊤ Jn (t

∗)

)

exp
(
−bnk⊤Jn1+ bnt

⊤Jn1
)

⪯
∑
k∈M4

(
nτ 2nλ

n
min

)|t|/2
(λn

min)
−|t|/2 exp

(
−∆n(1− c)/2σ2

)
exp

(
an

pn∑
i=1

k∗
i +

bn
2
(k∗)⊤ Jn (k

∗)− an

pn∑
i=1

t∗i −
bn
2
(t∗)⊤ Jn (t

∗)

)

⪯
(
p2+3δ
n ∨ n

)|t|/2
pδ|t|/2n exp

(
−∆n(1− c)/2σ2

)
exp

(
−an

pn∑
i=1

t∗i −
bn
2
(t∗)⊤ Jn (t

∗)

) ∑
k∈M4

exp

(
an

pn∑
i=1

k∗
i +

bn
2
(k∗)⊤ Jn (k

∗)

)

∼ exp

(
− 1

2σ2

(
∆n(1− c)− σ2|t| log

(
p2+3δ
n ∨ n

)
− σ2|t|δ log pn + 2σ2an

pn∑
i=1

t∗i

))

∼ exp

(
− 1

2σ2

(
∆n(1− c)− σ2|t| log

(
p2+3δ
n ∨ n

)
− σ2|t|(4 + δ) log pn

))
⪯ exp

(
− 1

2σ2

(
∆n(1− c)− σ2|t|(6 + 4δ) log pn

))
⪯ exp

(
− 1

2σ2

(
∆n(1− c)− σ2|t|(4 + 4δ) log pn

))
∼ exp

(
− 1

2σ2
(∆n(1− c)− w′γn)

)
→ 0,

where w′ ∈ (0, 1) and c < 1− w′.

3.4.2 True posterior consistency with pseudo Ising prior

In our variable selection algorithm, we used pseudo Ising prior on γ instead of the ture Ising

prior. Replacing the true Ising prior with the Ising prior we used, the posterior ratio is:
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P̃R(g, t) =
π̃(γ = g | X,y, σ2)

π̃(γ = t | X,y, σ2)
(3.12)

=
Qg

Qt︸︷︷︸
a

exp

(
− 1

2σ2
Rg +

1

2σ2
Rt

)
︸ ︷︷ ︸

b

× exp

(
a01

⊤g + b0g
⊤Jng − 1⊤ log cosh (b0Jng + a01) (3.13)

− a01
⊤t− b0nt

⊤Jnt+ 1⊤ log cosh (b0Jnt+ a01)

)
. (3.14)

Theorem 3 indicates the posterior above goes to zero for all g ̸= t:

Theorem 3. Under the Conditions 1 - 5, the posterior probability of the true model with

pseudo Ising prior goes to 1, that is,

∑
g ̸=t

P̃R(g, t)→ 0,

as n goes to infinity.

Note that the terms a and b in (3.12) are the same as in (3.8). Therefore, we need to

be albe to control the last exponential term. Observe that:

1⊤ log cosh (b0Jnt+ a01)− 1⊤ log cosh (b0Jng + a01)→ 0.

Above convergence is due to Condition 2. It allows us to use the same arguments to prove

Theorem 3.

3.4.3 Bounded KL divergence

In this subsection, we provide an upper bound of KL divergence between q̃(β,γ) and

π̃ (β,γ | y) with appropriate choices of variational parameters, where q̃(β,γ) is a variational

distribution with pseudo-Ising on γ and π̃ (β,γ | y) is the true posterior with pseudo-Ising
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on γ:

KL (q̃(β,γ) || π̃ (β,γ | y))

= KL (q̃(γ) || p̃ (γ)) + Eq̃(β,γ) [log q(β | γ)− log p(β | γ)]

− Eq̃(β,γ)

[
log

p(y | β)
p(y | βt)

]
+ C.

(3.15)

Theorem 4. There exists a variational distribution in the variational family (3.3) which

satisfies

KL (q̃(β,γ) || π̃ (β,γ | y)) = o(n).

To prove Theorem 4, observe the first term in (3.15):

KL (q̃(γ) || p̃ (γ))

=
∑

γ∈{−1,1}pn
q̃(γ) (log q̃(γ)− log p̃(γ))

=
∑

γ∈{−1,1}pn
q̃(γ)

(
pn∑
i=1

(ai − a0) γi

)

+
∑

γ∈{−1,1}pn
q̃(γ)

(
pn∑
i=1

(log cosh (b0mi(γ) + a0)− log cosh (bmi(γ) + ai))

)

+
∑

γ∈{−1,1}pn
q̃(γ)

(
bγ⊤Jnγ − b0γ

⊤Jnγ
)
.

(3.16)

We consider variational parameters below:

b =
1

pn
and ai =


ndn if i ∈ A,

−ndn if i ∈ Ac

. (3.17)

Lemma 17. For any g ̸= t, with the choices of variational parameters in (3.17),

q̃(γ = g)→ 0.
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Proof. Since b = 1
pn

, bg⊤Jng is bounded and bmi(g) is decreasing to zero at a rate 1
pn

.

Therefore,

q̃(γ = g) = 2−pn exp

(
bg⊤Jng +

pn∑
i=1

(aigi − log cosh (bmi(g) + ai))

)

= 2−pnC exp

(
pn∑
i=1

(aigi − log cosh (bmi(g) + ai))

)

≃ 2−pnC exp

(
pn∑
i=1

(aigi − log cosh (ai))

)

= 2−pnC exp

(∑
i∈A

aigi +
∑
i∈Ac

aigi −
pn∑
i=1

log cosh (ndn)

)

= 2−pnC exp

(∑
i∈A

aigi +
∑
i∈Ac

aigi −
pn∑
i=1

log cosh (ndn)

)

= 2−pnC exp

(∑
i∈A

ndngi −
∑
i∈Ac

ndngi −
pn∑
i=1

log cosh (ndn)

)
.

Observe that
∑

i∈A ndngi −
∑

i∈Ac ndngi = ndn(|B| − |Bc|) where B = {i : gi = ti}. When

|B| − |Bc| < 0, it is easy to show (3.18)→ 0. Provided g ̸= t, the upper bound of |B| − |Bc|

is pn − 2 such that:

2−pnC exp

(∑
i∈A

ndngi −
∑
i∈Ac

ndngi −
pn∑
i=1

log cosh (ndn)

)
(3.18)

≤ 2−pnC exp (ndn(pn − 2)− pn log cosh (ndn))

= 2−pnC exp (pn (ndn − log cosh (ndn))− 2ndn)

= C

(
endn−log cosh(ndn)

2

)pn

e−2ndn

≃ C

(
elog 2

2

)pn

e−2ndn → 0.

To derive above convergence, we use the fact u− log cosh(u) ≃ log 2 for large u.
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Using the Lemma 17,

∑
γ∈{−1,1}pn

q̃(γ)

(
pn∑
i=1

(ai − a0) γi

)

=
∑

γ∈{−1,1}pn
q̃(γ)

(∑
i∈A

(ai − a0n) γi +
∑
i∈Ac

(ai − a0n) γi

)

=
∑

γ∈{−1,1}pn
q̃(γ)

(∑
i∈A

(2ndn) γi +
∑
i∈Ac

(0) γi

)

≤ (2ndn|A|)

(
q̃(t) +

∑
γ ̸=t

q̃(γ)

)
= o(n).

For the second term in (3.16), note that

pn∑
i=1

(log cosh (b0mi(γ) + a0)− log cosh (bmi(γ) + ai))

∼
pn∑
i=1

log
exp

(
1
pn

+ a0

)
+ exp

(
1
pn
− a0

)
exp

(
1
pn

+ ai

)
+ exp

(
1
pn
− ai

) .
Combining the results above, we have:

KL (q̃(γ) || p̃ (γ)) = o(n).

Next, to control the other terms, we construct the variational parameters as follows:

σ2
i =


0, if gi = −1,

1/pn, if gi = 1,

(3.19)

and

µi =


= 0, if gi = −1,

= βt,i, if gi = 1 and ti = 1,

= 1/(n1/2pn), if gi = 1 and ti = −1.

(3.20)
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Observe the second term in (3.15):

Eq̃(β,γ) [log q(β | γ)− log p(β | γ)]

=
∑

γ∈{−1,1}pn
q̃(γ)Eq(β|γ) [log q(β | γ)− log p(β | γ)]

=
1

2

∑
g∈{−1,1}pn

q̃(γ = g)
(
tr (Σg)− |g|+ µ⊤

gµg − log |Σg|
)
, (3.21)

where µg is a vector of µis in (3.20), σg is a vector of σis in (3.19), and Σg = diag
(
σ2

g

)
.

With the variational parameters in (3.19) and (3.20), we can bound (3.21) by o(n) using the

Lemma 17. For the third term in (3.15), let L0 ∼ N (Xβt, σ
2I) and Lβ ∼ N (Xβ, σ2I).

Then,

KL (L0 || Lβ) = (β − βt)
⊤X⊤X (β − βt) ,

Eq̃(β,γ) [KL (L0 || Lβ)]

=
∑

γ∈{−1,1}pn

∫
(β − βt)

⊤X⊤X (β − βt) q̃(β,γ)dβ

=
∑

γ∈{−1,1}pn

∫
∥X (β − βt)∥

2
2 q̃(β,γ)dβ

=
∑

g∈{−1,1}pn
q̃(γ = g)Eq̃(β|γ=g)

[
(β − βt)

⊤X⊤X (β − βt)
]

=
∑

g∈{−1,1}pn
q̃(γ = g)

((
µg − βt

)⊤
X⊤X

(
µg − βt

)
+ tr

(
X⊤XΣg

))
.

Note,

∑
g∈{−1,1}pn

q̃(γ = g)
(
µg − βt

)⊤
X⊤X

(
µg − βt

)
= q̃(γ = t) (µt − βt)

⊤X⊤X (µt − βt) +
∑
g ̸=t

q̃(γ = g)
(
µg − βt

)⊤
X⊤X

(
µg − βt

)
.

Let w := µg − βt. Then,

X
(
µg − βt

)
= Xw =

pn∑
i=1

wixi,
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where xi is the i-th column of X.
pn∑
i=1

wixi =
∑

{i:gi=−1}

wixi +
∑

{i:gi=1 and ti=1}

wixi +
∑

{i:gi=1 and ti=−1}

wixi

= C +
∑

{i:gi=1 and ti=−1}

wixi.

The order of the above summation is o(n) due to (3.20).

3.4.4 Variational posterior consistency

In this subsection, we investigate a couple of ingredients for establishing variational posterior

consistency, which is our ultimate goal.

Theorem 5. Let q∗ be the variational posterior obtained under the prior (3.2) and variational

family (3.3). Then for any g ̸= t, we have

q∗(γ = g)→ 0.

as n goes to infinity.

First, we consider:

Z q̃ := Z q̃
n(a, b) =

∑
γ∈{−1,1}pn

q̃(γ),

Z p̃ := Z p̃
n(a0n, b0n) =

∑
γ∈{−1,1}pn

p̃(γ).

Z q̃ and Z p̃ are the normalizing constants of q̃(γ) and p̃(γ) respectively. We define two

valid probability mass functions qz(γ) =
1

Z q̃
n
q̃(γ) and pz(γ) =

1

Zp̃
n
p̃(γ). Then, the posterior

distribution with pz(γ) is:

πZ(γ,β | y) =
(
Z p̃
)−1

p̃(γ)p(β | γ)L(β)∑
γ

∫
β
(Z p̃)−1 p̃(γ)p(β | γ)L(β)dβ

=
p̃(γ)p(β | γ)L(β)∑

γ

∫
β
p̃(γ)p(β | γ)L(β)dβ

= π̃ (γ,β | y) .
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From the relation above, we have:

KL (qZ(γ,β) || πZ(γ,β | y))

=
∑

γ{−1,1}pn
qZ(γ)

∫
β

q(β | γ) (log qZ(γ) + log q(β | γ)− log πZ(γ,β | y)) dβ

=
∑

γ{−1,1}pn

1

Z q̃
q̃(γ)

∫
β

q(β | γ)
(
log q̃(γ)− logZ q̃ + log q(β | γ)− log π̃ (γ,β | y)

)
dβ

=
KL (q̃(γ,β) || π̃(γ,β | y))

Z q̃
− logZ q̃.

Next, using Corollary 4.15 in Boucheron et al. (2013), we have

KL (qZ(γ,β) || πZ(γ,β | y)) ≥
∫

fdQZ − log

∫
efdΠZ (| y)

=
1

Z q̃

∫
fdQ̃− log

∫
efdΠ̃ (| y) ,

where f is any function. Reorganizing the relation above, we have∫
fdQ̃ ≤ KL (q̃(γ,β) || π̃(γ,β | y))− Z q̃ logZ q̃ + Z q̃ log

∫
efdΠ̃ (| y) . (3.22)

We need show that a lower bound of Z q̃ is one to use the relation (3.22).

Proposition 1. Let q̃(γ) be a pseudo likelihood of Ising model characterized by parameters

a = (a1, . . . , apn) and b. Then,

∑
γ∈{−1,1}pn

q̃(γ) ≥ 1,

for any a and b.

We provide numerical evidences to Proposition 1 (See Table 3.2).
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Parameters
Z q̃(a, b) a = 0.2 · 1 b = 0.01 a = −0.2 · 1 b = 0.01
pn = 4 1.0004 1.0004
pn = 9 1.0011 1.0011
pn = 16 1.0022 1.0022

a = 1 b = 0.1 a = −1 b = 0.1
pn = 4 1.006 1.006
pn = 9 1.014 1.014
pn = 16 1.025 1.025

a = 0.2 · 1 b = 0.5 a = −0.2 · 1 b = 0.5
pn = 4 1.616 1.616
pn = 9 2.879 2.879
pn = 16 6.941 6.941

a = 0.5 · 1 b = 0.5 a = −0.3 · 1 b = 0.5
pn = 4 1.417 1.562
pn = 9 2.048 2.635
pn = 16 3.603 5.879

Table 3.2: Exact normalizing constants with varying a and b.

With f = 1 in (3.22), we get:

Z q̃ logZ q̃ ≤ KL (q̃(γ,β) || π̃(γ,β | y)) (3.23)

With f = n1(γ ̸= t) in (3.22) and (3.23), we complete the Theorem 5 under the Propo-

sition 1.

n1(γ ̸= t) ≤ KL (q̃(γ,β) || π̃(γ,β | y))− Z q̃ logZ q̃ + Z q̃ log

∫
en1(γ ̸=t)dΠ̃ (| y)

≤ KL (q̃(γ,β) || π̃(γ,β | y)) + Z q̃ log

∫
en1(γ ̸=t)dΠ̃ (| y)

≤ o(n) + Z q̃ log (1 + enπ̃ (γ ̸= t | y))

=⇒ 1(γ ̸= t)→ 0.
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CHAPTER 4

DISCUSSION AND FUTURE RESEARCH

4.1 Conclusion

Modeling discrete data is a basic problem in statistics and machine learning. Discrete data

are rarely independent and a fundamental modeling task is to model the dependencies among

variables. A graphical model is a flexible tool available for modeling such dependent discrete

data. In this dissertation, we focused on a well known graphical model, Ising model. We

provided a procesure for Ising model parameter estimation using variational Bayes meth-

ods. In order to tackle the issue of the intractable normalizing constant, we employed a

pseudo-likelihood and placed it wherever the true likelihood is needed. We suggested two

variational family choices and developed variational Bayes algorithms for each family of dis-

tributions under the pseudo-likelihood. In a variety of numerical studies, we compared our

VB methods and two other existing methods, PMLE and a MCMC based method. Notably,

the simulation results demonstrated the superiority of our VB methods in terms of accuracy

and computational costs. In addition, we found that a two-parameter Ising model is suitable

for characterizing a network data. Using the Facebook example, we applied the estimation

procedures to characterize an overall strength of interaction and an external influence of

the network. This thesis also provides a theoretical justification to the VB algorithm under

mean-field family. We showed that the variational posterior is consistent as the data size

increasing under three mild conditions on the coupling matrix An. Specifically, we estab-

lished that the variational posterior concentrates around shrinking neighborhoods of the true

parameter and we next establish the rate of contraction for the variational posterior with

a suitable bound on the Kulback-Leibler divergence between the variational and the true

posterior.

In addition to the Ising model parameter estimation, we developed a variable selection
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technique in a high dimensional setup when the feature space is structurally dependent. We

capture the structural dependencies using an pseudo-Ising prior and a pseudo-Ising vari-

ational distribution on latent binary variables with multiple threshold parameters in the

variational family, which enable us to perform variable selection. Providing numerical ex-

periments and some theoretical results, we validated the efficacy of the variable selection VB

algorithm.

4.2 Directions for future research

Multiple observations from an Ising model: While we considered only one observation

of x is available for the inference on two-parameter Ising model, another group of previous

researches assumed that multiple observations of x are available. With the i.i.d copies of x,

we will be able to develop a procedure to estimate the structure of the underlying graph,

i.e., we will be able to estimate all the edges in the graph. Besides, the multiple observations

will enable inferences on multi-parameter Ising model beyond only one interaction parameter

and only one threshold parameter.

Multivariate version of an Ising model: The Potts model is a versatile graphical model

for discrete data that naturally extends from the Ising model. Consider an undirected graph.

Without restricting to binary variables, each node of the graph represents a categorical

variable such as blood types, hair colors, education levels, etc. Variational Bayes would be

a useful tool for inference on a Potts model and its applications.

Multiresponse regression: If response variables in a regression model is multivariate, we

need to consider the additional dependencies among the response variables. A researcher

would use a graphical model to capture different types of dependencies in various ways.

Also, to approximate more complex posterior distribution, a variational Bayes method will

definitely help.
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