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ABSTRACT

DETERMINISTIC AND SEMI-STOCHASTIC CC(P;Q) APPROACHES: NEW
DEVELOPMENTS AND APPLICATIONS TO SPECTROSCOPY AND

PHOTOCHEMISTRY

By

Stephen Haniel Yuwono

The development of electronic structure methods that can accurately describe ground and

excited states of molecular systems with manageable computational costs and in a system-

atically improvable manner continues to be the central theme of quantum chemistry. This

dissertation focuses on some of the recent developments in the coupled-cluster (CC) the-

ory and its equation-of-motion (EOM) extension to excited electronic states. One of the

key challenges in the development of the CC and EOMCC methodologies is the incorpora-

tion of many-electron correlation effects due to higher-rank components of the cluster and

EOM excitation operators without incurring significant increase in the computational costs,

while avoiding failures of perturbative methods of the CCSD(T) type in multireference sit-

uations, such as bond breaking and excited states dominated by two-electron transitions,

and in certain weakly bound systems. Among the best ways to address these issues is the

CC(P;Q) framework, which provides robust and computationally affordable noniterative en-

ergy corrections to lower-order CC/EOMCC calculations. In this dissertation, we discuss the

different CC(P;Q) variants relying on both the conventional and unconventional truncations

in the cluster and EOM excitation operators. The advantages of the CC(P;Q) hierarchy

are illustrated using a few examples ranging from small molecule spectroscopy to photo-

chemistry of large organic species in solution. In particular, we discuss the computational

investigations of the novel super photobase FR0-SB, which exhibits a drastic increase in

basicity upon photoexcitation, including the energetics and properties of its excited states,

the steric effects governing the excited-state proton transfer involving FR0-SB and alco-

hols, and the enhanced photoreactivity of FR0-SB resulting from two-photon excitations,



where the δ-CR-EOMCC(2,3) approach that belongs to the CC(P;Q) hierarchy played a

key role. Furthermore, we demonstrate that the relatively inexpensive CC(t;3) and CC(q;4)

approaches derived from the CC(P;Q) framework are as accurate in describing the challeng-

ing weakly bound magnesium dimer, including its ground-state potential and vibrational

levels supported by it, as the much more demanding CCSDT and CCSDTQ parent theo-

ries. We also show how the highly accurate ground- and excited-state ab initio potentials

obtained in the state-of-the-art CCSDT, CR-EOMCCSD(T), and full configuration inter-

action (CI) computations allowed us to resolve the existing laser-induced fluorescence and

photoabsorption spectra of the magnesium dimer and find the missing high-lying vibrational

states of Mg2 that have eluded scientists for half a century. Last, but not least, we dis-

cuss our recent extension of the semi-stochastic CC(P;Q) framework, which combines the

deterministic CC(P;Q) theory with stochastic CI quantum Monte Carlo (QMC), to excited

electronic states, providing rapid convergence to the parent high-level EOMCC methods,

such as EOMCCSDT, out of the early stages of QMC propagations. The advantages of

the semi-stochastic CC(P;Q) approach targeting EOMCCSDT are illustrated by examining

vertical excitations in CH+ and adiabatic excitations in the CH and CNC species.
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in the various valence CC calculations with up to quadruply excited
clusters using the A(T+d)Z basis set. Adapted from Ref. [1]. . . . . . . . 110

Table 3.16: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1),
and equilibrium bond lengths re (in Å) for the magnesium dimer obtained
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Å are identical and set at 0 hartree. Adapted from Ref. [1]. . . . . . . . . 111

Figure 4.1: Convergence of the EOMCC(P ) [panels (a) and (c)] and CC(P;Q) [pan-
els (b) and (d)] energies toward EOMCCSDT for the three lowest-energy
excited states of the 1Σ+ symmetry, two lowest states of the 1Π sym-
metry, and two lowest 1∆ states of the CH+ ion, as described by the
[5s3p1d/3s1p] basis set of Ref. [258], at the C–H internuclear distance R
set at Re = 2.13713 bohr [panels (a) and (b)] and 2Re = 4.27426 bohr
[panels (c) and (d)]. Adapted from Ref. [113]. . . . . . . . . . . . . . . . 144

Figure 4.2: The distributions of the differences between the R
(MC)
µ,3 amplitudes and

their EOMCCSDT counterparts resulting from the EOMCC(P ) com-
putations at (a) 4000, (b) 10,000, and (c) 50,000 MC iterations using
τ = 0.0001 a.u. for the 21Σ+ state of CH+ at R = 2Re with the analogous
distribution characterizing the Rµ,3 amplitudes obtained with the EOM-
CCSDt approach employing the 3σ, 1πx, 1πy, and 4σ active orbitals to
define the corresponding triples space [panel (d)]. All vectors Rµ needed
to construct panels (a)–(d) were normalized to unity. Adapted from Ref.
[113]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

xvii



Figure A.1: The 17 nonoriented skeletons of Γp(CCSDT)
q . . . . . . . . . . . . . . . . . 152

Figure A.2: Oriented skeletons of Γp(CCSDT)
q corresponding to the oo block (γj

i ), or-
dered according to increasing many-body rank. . . . . . . . . . . . . . . 152

Figure A.3: Oriented skeletons of Γp(CCSDT)
q corresponding to the uu block (γb

a), or-
dered according to increasing many-body rank. . . . . . . . . . . . . . . 153

Figure A.4: Oriented skeleton of Γp(CCSDT)
q corresponding to the ou block (γa

i ). . . . . 153

Figure A.5: Oriented skeletons of Γp(CCSDT)
q corresponding to the uo block (γi

a), or-
dered according to increasing many-body rank. . . . . . . . . . . . . . . 153

xviii



CHAPTER 1

INTRODUCTION

The goal of quantum chemistry is to solve the electronic Schrödinger equation for molecular

systems. Although the analytical solution of this equation can only be obtained for nothing

more than one-electron systems, such as the hydrogen atom or the H+
2 molecule, numerically

exact solutions can still be obtained by designing suitable basis sets and computer algorithms.

Indeed, since the time the Schrödinger equation was proposed, decades of advancement in

computer technologies have allowed for the calculations of increasingly complex and large

molecular systems, ranging from the spectroscopically accurate ab initio description of weakly

bound diatomics in the gas phase [1, 2] to the computations of excitation energies and one-

electron properties of solvated organic chromophores [3–8], to name a few examples from

my own work. Nevertheless, current quantum chemical calculations are still wrought with

problems, especially when the target chemical systems suffer from a significant multireference

(MR) character, which is a main issue in situations such as potential energy surfaces along

bond breaking coordinates, electronic spectra of radicals and biradicals, and excited states

dominated by two- and other many-electron transitions.

The brute-force solution to this problem exists in the form of full configuration inter-

action (FCI), where the electronic wave function is expressed as a linear combination of

all possible Slater determinants that can be obtained from a given basis set of one-particle

functions. By inserting this expansion into the electronic Schrödinger equation, one obtains

an eigenvalue problem which is equivalent to diagonalizing the Hamiltonian matrix in the

many-electron Hilbert space spanned by Slater determinants. In doing so, the FCI method

provides the numerically exact solution of the many-electron Schrödinger equation in a given

basis and all that remains to be done is to perform FCI computations in larger basis sets

and extrapolate the complete basis set (CBS) limit to obtain the numerically exact solu-

tion of the Schrödinger equation. While this entire procedure seems straightforward, it is
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almost of no practical use because the dimensionality of the FCI eigenvalue problem scales

factorially with respect to the system size (i.e., the number of electrons and the size of the

basis set) [9, 10]. Indeed, this scaling is so steep that it can hardly be overcome by relying

on the growth of computer processing speed alone, making the routine application of FCI

in quantum chemistry impractical for systems with more than a few electrons. This issue

motivates one of the core efforts of quantum chemistry research, namely, the development

of alternative approaches that are computationally much more efficient than FCI without

compromising accuracy too much.

Since using all Slater determinants that a given basis set provides is generally imprac-

tical, one might consider the simplest possible alternative, namely, employing only a single

Slater determinant to describe the many-electron wave function. This is exactly what is

done in the well-known Hartree–Fock (HF) procedure [11–15], where one applies the varia-

tional principle to a single Slater determinant via the procedure which is usually called the

self-consistent field (SCF) approach. While the HF method is much more affordable than

FCI, it treats inter-electronic repulsion in an averaged manner and, thus, fails to capture

the many-electron correlation effects that are fundamental in describing most of chemical

problems of interest. For example, when we consider the potential energy curve (PEC) of

the F2 molecule, the restricted HF (RHF) approach, in which each molecular orbital can be

occupied by a pair of electrons with opposite spins, significantly overestimate the binding

energy due to RHF overemphasizing the ionic character at the dissociation limit (i.e., RHF

predicts F2 → F+ + F−) [16]. On the other hand, the unrestricted HF (UHF) method, in

which the alpha and beta spin orbitals are allowed to have different spatial components,

does not bind the molecule at all [16], in addition to introducing various symmetry-broken

solutions (see, e.g., Refs. [17, 18] for the classification of the various symmetry-broken UHF

solutions). Furthermore, the HF approximation also fails to describe the binding interaction

in systems such as the dimers of alkaline earth metal and noble gas atoms, because the un-

derlying dispersion interactions require explicit treatment of the many-electron correlation
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effects, which are neglected in HF computations, as already mentioned above. Nevertheless,

despite all its shortcomings, the HF approach provides a convenient starting point for various

correlated electronic structure methods.

Among the numerous quantum chemistry approaches that have been developed so far to

capture the many-electron correlation effects, methods based on the exponential wave func-

tion ansatz of coupled-cluster (CC) [19–24] theory offer the best balance between accuracy

and computational costs, thus providing an excellent alternative to FCI. Historically, the CC

theory emerged as an infinite-order generalization of the finite-order many-body perturba-

tion theory (MBPT), which is achieved by summing the linked wave function and connected

energy diagrams to infinite order with the help of the linked [25–28] and connected [27, 28]

cluster theorems, respectively. As a result of this construction, CC methods satisfy several

important conditions characterizing the exact theory. First of all, CC approaches are size

extensive, i.e., the energy is expressed in terms of connected diagrams only. In practice,

size extensivity means that the results of CC calculations do not lose accuracy as the size

of the system is increased. Furthermore, the exponential form of the CC wave function

allows for separability or size consistency of the wave function in the noninteracting limit,

provided the reference function is also separable, enabling CC methods to properly describe

fragmentation phenomena. These properties, among others that will be discussed further in

this dissertation, establish the CC theory as the de facto standard in high-accuracy ab initio

quantum chemistry calculations, even those involving larger molecular systems.

Within the CC framework, the seemingly natural way of dealing with MR situations is by

using a genuine MRCC formalism. In the MRCC theory, one constructs a multi-dimensional

model space consisting of multiple reference determinants such that a proper zeroth-order

description of the problem of interest is attained when a single Slater determinant, obtained,

for example, from a HF calculation, is a poor reference state. Then, the remaining, mostly

dynamical, correlation effects are captured through particle–hole excitations from each ref-

erence determinant included in the model space. There are various ways to achieve this,
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leading to a number of MRCC formulations (see, e.g., Refs. [29–33] for selected reviews),

which, unfortunately, also means that there is no unambiguous way of writing the exponential

ansatz of the CC wave function within this framework. The situation is further complicated

by the fact that the genuine MRCC methodologies cannot compete with the ease of use and

implementation of their single-reference (SR) counterparts, which are capable of recovering

the relevant dynamical and nondynamical correlation effects in a dynamical manner, namely,

through conventional particle–hole excitations from a single reference determinant, as long

as the underlying cluster operator contains the many-body components of the sufficiently

high rank. Thus, this dissertation will focus on the more straightforward SRCC formalism

and for the remainder of this document the term SRCC and CC will be used interchangeably,

unless the explicit distinction is required for clarity.

In the SRCC framework, the exact ground-state N -electron wave function |Ψ0⟩ is ex-

pressed using the exponential ansatz, |Ψ0⟩ = eT |Φ⟩, where T is the cluster operator, which

is expressed in terms of its many-body components as T = ∑N
n=1 Tn, and |Φ⟩ is the Fermi

vacuum, usually a HF determinant. When Tn acts on |Φ⟩, it creates all possible connected

n-tuply excited components of the exact ground-state wave function |Ψ0⟩, while powers of Tn

in eT produce the remaining, disconnected but linked, contributions to |Ψ0⟩. One can extend

the CC formalism to excited states in a relatively straightforward manner through the use

of, for example, the equation-of-motion (EOM) [31, 34–36] and linear response (LR) [37–40]

formalisms, as well as their symmetry-adapted-cluster (SAC) CI counterpart [41], where one

applies a linear excitation operator Rµ to the ground-state CC wave function |Ψ0⟩, thus pro-

ducing the µ-th excited-state wave function |Ψµ⟩ = RµeT |Φ⟩. The Rµ operator, in analogy

to T , is expressed in terms of a many-body expansion, namely, Rµ = rµ,01 + ∑N
n=1 Rµ,n, with

1 representing the unit operator and rµ,0 and Rµ,n being the zero- and n-body components

of Rµ, respectively. It is worth mentioning that the CC and EOMCC formalisms described

above, where the T and Rµ operators contain up to N -tuple excitations, are equivalent to

FCI and, thus, they are numerically exact, albeit computationally intractable. Therefore, in
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practice, one truncates T and Rµ at a particular excitation rank mA < N (usually mA ≪ N).

For example, by truncating the many-body expansions of T and Rµ at mA = 2, i.e., by set-

ting T ≈ T1 + T2 and Rµ ≈ rµ,01 + Rµ,1 + Rµ,2, one obtains the basic CC approach with

singles and doubles (CCSD) [42, 43] and its excited-state EOMCCSD [34, 35, 44] counter-

part. One could, of course, incorporate the higher-order components of T and Rµ to define

higher-level CC and EOMCC schemes, such as the CC approach with singles, doubles, and

triples (CCSDT) [45, 46] and its EOMCCSDT [47–51] extension, where mA = 3, the CC ap-

proach with singles, doubles, triples, and quadruples (CCSDTQ) [52–55] and EOMCCSDTQ

[49, 50, 56, 57], where mA = 4, and so on. One of the main appeals of the SRCC theory, as

described above, is that the CCSD/EOMCCSD, CCSDT/EOMCCSDT, CCSDTQ/EOM-

CCSDTQ, etc. hierarchy rapidly converges to the exact, FCI limit (see, e.g., Ref. [31] and

references therein). As long as the number of strongly correlated electrons is not too large,

this remains true even when the system of interest suffers from substantial MR character.

As already alluded to above, the flexibility and ease of implementation of the CC and

EOMCC theories make them attractive choices for handling quantum chemical problems

with significant MR character, since one can account for MR correlation effects by the ex-

plicit inclusion of higher–than–doubly excited components of T and Rµ. Unfortunately, the

computational cost of CC/EOMCC methods quickly becomes prohibitively expensive as one

goes from CCSD/EOMCCSD to CCSDT/EOMCCSDT, CCSDTQ/EOMCCSDTQ, and so

on. For example, the CPU time scalings of CCSDT/EOMCCSDT and CCSDTQ/EOM-

CCSDTQ are n3
on

5
u (N 8) and n4

on
6
u (N 10), respectively, where no (nu) is the number of corre-

lated occupied (unoccupied) orbitals and N is a measure of the system size. These scalings

are much higher than the n2
on

4
u, or N 6, CPU time scaling characterizing the basic CCSD/

EOMCCSD approach. Therefore, the key challenge in the development of CC/EOMCC ap-

proaches is the incorporation of many-electron correlation effects brought by the Tn and Rµ,n

components with n > 2 without incurring the computational costs of the parent CCSDT/

EOMCCSDT, CCSDTQ/EOMCCSDTQ, etc. methods.
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Traditionally, one can include the correlation effects due to the higher–than–two-body

components of T and Rµ through MBPT arguments, either iteratively, as in the CCSDT-n

[58–61] and CCSDTQ-n [62] approaches, or through the use of noniterative corrections, re-

sulting in ground-state methods such as CCSD[T] [63], CCSD(T) [64], and CCSD(TQf) [65],

and their various excited-state extensions based on EOMCC or LRCC [66–72] (see Ref. [31]

for a review). Although these methods reduce the prohibitive costs of the full CCSDT/EOM-

CCSDT and CCSDTQ/EOMCCSDTQ approaches, while offering high accuracies near the

equilibrium geometries of molecules or for excited states dominated by one-electron transi-

tions, they fail at properly describing bond breaking and doubly excited states due to the

perturbative nature of the employed approximations. Furthermore, while it is well-known

that perturbative corrections of the CCSD(T) type fail to properly describe the dissociation

of a closed-shell system into its constituent open-shell fragments, it is worth pointing out

that such methods are also far from being accurate in describing certain classes of weakly

bound dimers that dissociate into closed-shell atoms, such as Be2 [73] and Mg2 [1, 2], and

we will further discuss the latter example in this dissertation.

Among the most successful remedies to failures of perturbative CC/EOMCC approxi-

mations, such as CCSD(T) and its EOM extensions, in MR situations, within the SRCC

framework is the CC(P;Q) [73–77] formalism developed by the Piecuch group, which will

be the main focus of this dissertation. The key idea behind the CC(P;Q) theory is to first

solve the CC/EOMCC problem in a subspace of the N -electron Hilbert space designated as

the P space and correct the resulting CC/EOMCC energies using the suitably generalized

form of the method of moments of CC equations (MMCC) [74, 78–93], with the help of de-

terminants residing on another subspace of the N -electron Hilbert space called the Q space.

The CC(P;Q) formalism is very versatile owing to the flexibility in defining the P and Q

spaces. For example, if the P and Q spaces are defined following the conventional trunca-

tion of the cluster and EOM excitation operators, the resulting CC(P;Q) approaches become

equivalent to the left-eigenstate completely renormalized (CR) CC/EOMCC approaches and
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related schemes [74, 89–95]. Examples of methods in those categories include the ground-

state CR-CC(2,3) [89–92] and CR-CC(2,4) [89, 90, 94, 96] approaches, which correct the

CCSD energy for the correlation effects due to connected triples or triples and quadruples,

respectively, and their excited-state extensions, including CR-EOMCC(2,3) [91, 93] and its

rigorously size-intensive modification designated as δ-CR-EOMCC(2,3) [95], to name a few

examples. The CR-CC/EOMCC methods have shown considerable successes in recover-

ing the correlation effects due to the higher–than–two-body components of T and Rµ at a

reasonable cost, while avoiding the failures of CCSD(T)-type approaches. However, the CR-

CC/EOMCC computations may fail in situations where higher–than–two-body components

of T and Rµ become large and strongly coupled to their low-rank T1, T2, Rµ,1, and Rµ,2

counterparts. In the CR-CC(2,3)/CR-EOMCC(2,3) approach, for example, one uses the T1

and T2 as well as Rµ,1 and Rµ,2 components obtained in CCSD/EOMCCSD calculations

to determine the noniterative triples corrections, even though one should relax the T1, T2,

Rµ,1, and Rµ,2 amplitudes in the presence of their T3 and Rµ,3 counterparts, which become

prominent in MR situations, affecting the one- and two-body components or T and Rµ.

One can address the issue of coupling the lower- and higher-rank Tn and Rµ,n components

by turning to the active-space CC/EOMCC ideas [47, 48, 55, 81, 97–101], where the cluster

and excitation amplitudes defining the Tn and Rµ,n components with n > 2 are downse-

lected by introducing a set of active orbitals relevant to the MR problem of interest, which

in most cases are much fewer than the total number of orbitals, allowing the active-space

CC/EOMCC schemes to capture most of the relevant nondynamical and dynamical correla-

tion effects with relatively low computational costs. The resulting unconventional truncations

include methods such as CCSDt (the CC approach with all singles, all doubles, and a subset

of triples defined through active orbitals), CCSDtq (the CC method with all singles and dou-

bles, and active-space triples and quadruples), and CCSDTq (the CC scheme with all singles,

doubles, and triples and active-space quadruples), as well as their EOMCC extensions. Com-

bined with the CC(P;Q) moment corrections, they yield the CC(t;3), CC(t,q;3), CC(t,q;3,4),
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CC(q;4), etc. hierarchy, in which the energies obtained in the active-space CC/EOMCC cal-

culations, such as CCSDt/EOMCCSDt, CCSDtq/EOMCCSDtq, or CCSDTq/EOMCCS-

DTq, are corrected for the missing, mostly dynamical, correlations due to the remaining

triples [CC(t;3), CC(t,q;3)], triples and quadruples [CC(t,q;3,4)], or quadruples [CC(q;4)]

that cannot be captured with active orbitals, and the relevant lower-rank components of T

and Rµ are relaxed in the presence of their higher-rank counterparts. As shown in Refs.

[1, 73–77]), this leads to substantial improvements to their corresponding CR-CC results, es-

pecially when the higher–than–two-body cluster components become large, and the CC(t;3),

CC(t,q;3), CC(t,q;3,4), and CC(q;4) approaches accurately reproduce the parent CCSDT

and CCSDTQ energetics, but performing CC(P;Q) computations in this way requires chem-

ical intuition regarding the choice of the appropriate set of active orbitals, needed to select

the dominant triply, triply and quadruply, or quadruply excited determinants in the wave

function for the inclusion in the P space defining the CC(P;Q) expansions. Therefore, the

natural next step in the development of novel CC(P;Q) approaches is to search for possible

avenues for automating the selection of higher–than–doubly excited determinants entering

the P space in a CC(P;Q) computation. If such an automated protocol exists, it needs

to be designed in such a way that the resulting CC(P;Q) energies rapidly converge to their

CCSDT/EOMCCSDT, CCSDTQ/EOMCCSDTQ, etc. parents, even when the higher–than–

two-body T and Rµ,n components become substantial, at the fraction of the computational

costs.

To that end, the Piecuch group has recently proposed a new class of hybrid CC(P;Q)

methods that can be loosely categorized into two different approaches. The first one arose

from the merger of the deterministic CC(P;Q) theory with the stochastic quantum Monte

Carlo (QMC) wave function propagations in the many-electron Hilbert space defining the

CIQMC [102–106] and CC Monte Carlo (CCMC) [107–110] methods, culminating in the

“semi-stochastic” or “QMC-driven” CC(P;Q) schemes [111–114]. The second strategy re-

sulted from combining CC(P;Q) with deterministic or largely deterministic ways of sampling
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many-electron wave functions carried out with the help of selected CI [115–131] diagonaliza-

tions, which led to the selected-CI-driven CC(P;Q) framework [132]. These hybrid CC(P;Q)

approaches combine the strengths of CIQMC, CCMC, and selected CI, especially their effec-

tiveness in identifying the leading determinants in the many-electron wave function, with the

robustness of the CC(P;Q) moment corrections. One of the main topics of this dissertation

is the extension of the semi-stochastic CC(P;Q) methodology of Refs. [111, 114] to excited

electronic states, but before discussing the key concepts behind it, let us take a moment to

review some background information pertaining to QMC.

The idea behind QMC methods dates back to the 1949 work of Metropolis and Ulam

[133], which resulted in stochastic sampling procedures to numerically integrate various forms

of differential equations [133–135]. This, in turn, inspired the simplest form of QMC method-

ology, namely, the variational MC (VMC) method [136, 137], where one optimizes a trial

wave function, while applying stochastic sampling to compute the required expectation val-

ues of the Hamiltonian operator. Although VMC calculations are computationally efficient,

their results depend heavily on the quality of the trial wave function. An improvement to

VMC was found in the diffusion MC (DMC) approach [138–140], which works by treating

the Schrödinger equation in the imaginary time as a diffusion equation and letting a trial

wave function evolve to the exact wave function by adopting a projection technique (see,

e.g., Refs. [141–143] for further details). Thus, as long as the trial wave function is not or-

thogonal to the exact wave function, the DMC propagation is guaranteed to project out the

exact solution of the Schrödinger equation in the infinite imaginary time limit. In addition,

DMC (and its VMC predecessor) is appealing due to its capability to circumvent the need

for finite one-particle basis sets, because one can perform the propagation in the real space

of 3N electronic coordinates instead. The DMC and VMC algorithms are also easily paral-

lelizable across many multi-core nodes, further increasing their popularity in the quantum

chemistry community. Nevertheless, despite the advantages that DMC propagation offers, it

is plagued by the fact that if the wave function propagation is run without any constraint,
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it will produce the bosonic solution to the many-electron Schrödinger equation, which is the

true ground state of the spin-free Hamiltonian violating the Pauli exclusion principle, result-

ing in the so-called “boson catastrophe” or “fermion sign problem”. The most common way

to circumvent this issue has been to employ the so-called fixed-node approximation [144–

147], where one imposes the nodal structure of the wave function obtained in an inexpensive

quantum chemistry calculation, such as HF or multiconfigurational SCF, but in doing so the

DMC propagation can no longer produce the exact solution of the Schrödinger equation.

A novel way to tackle the fermion sign problem plaguing the DMC methodology is given

by the full CIQMC (FCIQMC) approach and its truncated CIQMC analogs [102, 103], where

one replaces the wave function propagation in the real space of 3N electronic coordinates

by the propagations of CI expansions in the N -electron Hilbert space spanned by Slater

determinants. Because Slater determinants are antisymmetric with respect to the exchange

of any pair of electronic coordinates by construction, the many-electron wave functions pro-

duced by the FCIQMC and other CIQMC propagations are guaranteed to be antisymmetric

as well. FCIQMC and its truncated CIQMC analogs use stochastic walker population dy-

namics in the wave function propagations, where the more important Slater determinants

are populated by larger walker numbers. If all possible Slater determinants are allowed to

be populated throughout the CIQMC simulation, as in FCIQMC, then at the infinite imagi-

nary time limit one is guaranteed to converge the FCI solution within the employed basis set.

Similar to the fully deterministic CI computations, one could also converge the truncated

CISD, CISDT, CISDTQ, etc. results by limiting the space in which the propagation is being

performed to be spanned by determinants of up to a certain excitation rank (e.g., including

up to triply excited Slater determinants in the sampled subspace means that the CIQMC

propagation will converge to CISDT). While the rate of convergence of CIQMC can be slow,

there exist modifications, such as the initiator approximation [103] or its newer adaptive

shift modification [105, 106], that serve to accelerate the convergence of the CIQMC prop-

agations. One can also develop the CC analogs of the CIQMC methods, resulting in the
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CCMC approaches of Refs. [107–110], by replacing the CI expansions, when propagating the

wave functions in the many-electron Hilber space, by the CC ansatz.

Although the FCIQMC algorithm is guaranteed to provide the exact solution to the

Schrödinger equation within a given basis set and truncated CIQMC methods converge the

corresponding truncated CI results, one has to deal with the stochastic noise inherent to

these methodologies. To reduce the numerical noise to acceptable levels, one usually needs

to run the propagation for a very long time, namely, tens or hundreds of thousands of

MC imaginary time steps called “MC cycles” or “MC iterations”. Furthermore, if excited

states of the same symmetry as the ground state are of interest, one has to resort to highly

complex protocols by adopting, for example, a Gram–Schmidt procedure to orthogonalize

higher-energy states against the lower-energy ones, so that the collapse of the dynamically

propagated excited states on the lower-energy states within the same irreducible represen-

tation is avoided [148, 149]. Nevertheless, FCIQMC and its truncated counterparts are able

to identify the leading determinants in the many-electron wave functions in the early stages

of the QMC propagation. This observation is the basis of the semi-stochastic CC(P;Q)

approach, where one uses the information about the leading determinants populated in

the early stages of CIQMC (or CCMC) simulations to build a P space for the CC(P;Q)

considerations, while accounting for the remaining determinants using the CC(P;Q) nonit-

erative corrections. In this way, one can do what is done using the aforementioned CC(t;3),

CC(t,q;3), CC(t,q;3,4), etc. hierarchy, but without relying on system- and user-dependent

active orbitals or any other a priori knowledge of the wave function to capture the dominant

higher–than–two-body components of the cluster and excitation operators of CC/EOMCC.

In other words, by combining the stochastic CIQMC and CCMC ideas with the deterministic

CC(P;Q) framework, one can achieve an objective construction of the P and Q spaces for the

CC(P;Q) considerations because the identification of the leading triply excited, quadruply

excited, etc. determinants does not depend on any input from the user. Recent studies in

the Piecuch group have demonstrated that this new paradigm shows a lot of promise in the
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ground-state considerations [111, 114]. In this dissertation, we will discuss our efforts in ex-

tending the semi-stochastic CC(P;Q) algorithm to excited electronic states [112, 113], where

we do not have to rely on the complicated excited-state CIQMC propagations described in

Refs. [148, 149].

The overall goal of this dissertation is to survey different variants of the CC(P;Q) theory

defined using conventional and unconventional truncations in the cluster and EOM excitation

operators. This includes several molecular applications of the CR-CC/EOMCC methodolo-

gies and active-space CC(P;Q) approaches and our work on extending the semi-stochastic

CC(P;Q) formalism to excited electronic states. The molecular examples illustrating the

accuracies of the various CC(P;Q) methods include chemical problems relevant to spec-

troscopy and photochemistry. We will begin with the discussion of the salient features of the

CC and EOMCC theories. This will be followed by the sophisticated quantum chemistry

and spectroscopic computations for the weakly bound magnesium dimer, where we utilized

high-level CC and EOMCC approaches including up to triple excitations and FCI to describe

the PECs of Mg2 in its ground and excited states relevant to experimental measurements,

demonstrating that we can achieve spectroscopic accuracy when comparing the theoretical

results with the experimentally observed spectral lines. This allowed us to provide infor-

mation about the unresolved high-lying vibrational states of the magnesium dimer in the

ground-state potential. We will then discuss the key concepts behind the CC(P;Q) formal-

ism and examine the conventional ways of using it via the CR-CC/EOMCC formalism and

the unconventional active-space CC(P;Q) approaches. The efficacy of the CR-CC/EOMCC

methods will be illustrated by examining the super photobase FR0-SB, which is a molecule

exhibiting a drastic increase in pKa, of about 14 units, upon photoexcitation [3–8, 150].

We will also return to the discussion of the magnesium dimer, focusing on its ground elec-

tronic state, to demonstrate how the active-space-based CC(P;Q) approaches can improve

the results obtained using their CR-CC predecessors. Last, but not least, we will discuss

the semi-stochastic CC(P;Q) theory, especially its extension to excited electronic states that
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resulted from this dissertation research [112, 113]. The usefulness of the semi-stochastic

CC(P;Q) methodology in excited-state applications will be illustrated by examining vertical

excitations in the CH+ ion and adiabatic excitations in the CH and CNC radicals.
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CHAPTER 2

SINGLE-REFERENCE COUPLED-CLUSTER THEORY AND ITS
EQUATION-OF-MOTION EXTENSION TO EXCITED ELECTRONIC

STATES

2.1 Theory

In the SRCC formalism, the exact ground-state wave function of an N -electron system is

expressed as

|Ψ0⟩ = eT |Φ⟩ , T =
N∑

n=1
Tn, (2.1)

where |Φ⟩ is an independent-particle–model (e.g., HF) reference determinant defining the

Fermi vacuum and T is the cluster operator. In Eq. (2.1), Tn is the n-body component of T

and is defined as

Tn =
∑

i1<···<in
a1<···<an

ti1...in
a1...an

Ea1...an
i1...in

, (2.2)

where ti1...in
a1...an

are the cluster amplitudes and Ea1...an
i1...in

= aa1 . . . aanain . . . ai1 are the particle–

hole excitation operators, with ap (ap) representing the usual creation (annihilation) oper-

ators associated with the spin-orbital basis set {|p⟩}, which excite electrons from the occu-

pied spin-orbitals, indicated by i1, i2, . . . (or i, j, . . . ), to the unoccupied ones, designated by

a1, a2, . . . (or a, b, . . . ). In practice, one usually truncates the cluster operator at a low exci-

tation rank mA < N , thus replacing T with its approximation T (A) = ∑mA
n=1 Tn. In this way,

we obtain a hierarchy of CC methods, which includes approaches such as CCSD (mA = 2),

CCSDT (mA = 3), CCSDTQ (mA = 4), and so on.

As mentioned in the Introduction, one can extend the CC formalism as described above

to excited electronic states using, for example, the EOM framework, where the EOMCC

ansatz is defined as

|Ψµ⟩ = Rµ |Ψ0⟩ = RµeT |Φ⟩ , (2.3)
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in which |Ψµ⟩ is the µ-th excited-state wave function and Rµ is a CI-like linear excitation

operator, defined as

Rµ = rµ,01 +
N∑

n=1
Rµ,n, (2.4)

with

Rµ,n =
∑

i1<···<in
a1<···<an

r i1...in
µ,a1...an

Ea1...an
i1...in

(2.5)

being the n-body component of Rµ and 1 denoting the unit operator. As in the case of

the ground-state CC formalism, one truncates the Rµ operator at a particular rank mA

corresponding to the truncation of T , resulting in approaches such as EOMCCSD (mA = 2),

where T (CCSD) = T1 + T2 and R(EOMCCSD)
µ = rµ,01 + Rµ,1 + Rµ,2, EOMCCSDT (mA = 3), in

which T (CCSDT) = T1 + T2 + T3 and R(EOMCCSDT)
µ = rµ,01 + Rµ,1 + Rµ,2 + Rµ,3, etc.

Once the ground-state CC and excited-state EOMCC wave functions are defined, we

proceed to the derivation of equations for the unknown cluster and excitation amplitudes,

ti1...in
a1...an

and r i1...in
µ,a1...an

, respectively. In the case of the ground state, we start by inserting the

exponential ansatz, Eq. (2.1), into the Schrödinger equation, H|Ψ0⟩ = E0|Ψ0⟩, approximat-

ing T by T (A), and multiplying from the left by e−T (A) , to obtain the connected cluster form

of the Schrödinger equation

H
(A) |Φ⟩ = E

(A)
0 |Φ⟩ , (2.6)

where H
(A) = e−T (A)

HeT (A) = (HeT (A))C is the similarity-transformed Hamiltonian of the

truncated CC method A, in which subscript C indicates the connected operator product

and E
(A)
0 is the corresponding ground-state energy. Subsequently, we project Eq. (2.6) on

the excited determinants
∣∣∣Φa1...an

i1...in

〉
= Ea1...an

i1...in
|Φ⟩ with n ≤ mA, which leads to a system of

nonlinear equations

〈
Φa1...an

i1...in

∣∣∣H(A)∣∣∣Φ〉
= 0, i1 < · · · < in, a1 < · · · < an, n = 1, . . . , mA, (2.7)
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for the cluster amplitudes ti1...in
a1...an

defining T (A). Once the cluster amplitudes defining T (A)

are known, we calculate the ground-state CC energy E
(A)
0 by taking the expectation value

of H
(A) with respect to the reference determinant |Φ⟩,

E
(A)
0 = ⟨Φ|H(A)|Φ⟩ . (2.8)

After the ground-state cluster amplitudes ti1...in
a1...an

and energy E
(A)
0 are obtained, we proceed

to the determination of the excited-state energies, E(A)
µ , and wave functions,

∣∣∣Ψ(A)
µ

〉
, using

the EOMCC ansatz given by Eq. (2.3) in which we have also approximated Rµ by R(A)
µ . By

inserting this ansatz into the electronic Schrödinger equation, H |Ψµ⟩ = Eµ |Ψµ⟩, multiplying

the resulting eigenvalue problem from the left by e−T (A) , and projecting on the excited

determinants
∣∣∣Φa1...an

i1...in

〉
with n ≤ mA, we obtain the eigenvalue problem

〈
Φa1...an

i1...in

∣∣∣(H(A)
openR(A)

µ,open)C

∣∣∣Φ〉
= ω(A)

µ r i1...in
µ,a1...an

, (2.9)

where H
(A)
open = H

(A) −H
(A)
closed = H

(A) −E
(A)
0 1 and R(A)

µ,open = R(A)
µ −rµ,01 are the open parts of

H
(A) and R(A)

µ , respectively, which are represented by diagrams possessing external Fermion

lines, and ω(A)
µ = E(A)

µ − E
(A)
0 is the corresponding vertical excitation energy. The zero-body

component of the EOM excitation operator is calculated a posteriori as

rµ,0 = ⟨Φ|(H(A)
openR(A)

µ,open)C |Φ⟩ /ω(A)
µ . (2.10)

If one is only interested in the electronic energies of the system, then one does not need

to go further in the CC/EOMCC computations. However, if properties other than energy,

such as dipole moment, transition dipole moment, or polarizability are desired, then an

extra step has to be taken. This is because the similarity-transformed Hamiltonian H
(A)

is not Hermitian, which means that the left (“bra”) CC/EOMCC states are not the same

as the right (“ket”) CC/EOMCC states given by Eqs. (2.1) and (2.3). In the CC/EOMCC

framework, one obtains the left CC/EOMCC states in a straightforward manner using the

ansatz

〈
Ψ̃µ

∣∣∣ = ⟨Φ| Lµe−T , (2.11)
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where the hole–particle de-excitation operator Lµ satisfies the biorthonormality condition

〈
Ψ̃µ

∣∣∣Ψν

〉
= ⟨Φ|LµRν |Φ⟩ = δµν , (2.12)

with δµν representing the Kronecker delta. The de-excitation operator Lµ is defined as

Lµ = δµ01 +
N∑

n=1
Lµ,n, (2.13)

where

Lµ,n =
∑

i1<···<in
a1<···<an

l a1...an
µ,i1...in

(Ea1...an
i1...in

)† (2.14)

is the n-body component of Lµ. As in the case of T and Rµ, in practice, we approximate

Lµ by L(A)
µ , in which the summation in Eq. (2.13) is truncated at an excitation rank mA

corresponding to the previously discussed CC/EOMCC calculations for T (A) and R(A)
µ . The

de-excitation amplitudes defining the left CC/EOMCC states, l a1...an
µ,i1...in

, are obtained by solv-

ing the left eigenvalue problem

δµ0
〈
Φ

∣∣∣H(A)
open

∣∣∣Φa1...an
i1...in

〉
+

〈
Φ

∣∣∣L(A)
µ,openH

(A)
open

∣∣∣Φa1...an
i1...in

〉
= ω(A)

µ l a1...an
µ,i1...in

, (2.15)

where, in analogy to the R(A)
µ operator, L(A)

µ,open = L(A)
µ − δµ01 is the open part of L(A)

µ .

One can then use the bra and ket CC/EOMCC states to calculate expectation values

and transition matrix elements of quantum-mechanical operators (observables) involving the

CC and EOMCC ground and excited states as

〈
Ψ̃(A)

µ

∣∣∣Θ∣∣∣Ψ(A)
ν

〉
= ⟨Φ|L(A)

µ Θ(A)
R(A)

ν |Φ⟩ , (2.16)

where Θ(A) = e−T (A)ΘeT (A) = (ΘeT (A))C represents a similarity-transformed form of the

observable of interest, Θ, which could be, for example, the dipole moment operator if we

are interested in determining the dipole moments in various electronic states or transition

dipole moments between different states. In writing Eq. (2.16), we combine the ground- and

excited-state formalisms into a compact notation by defining R
(A)
ν=0 to be the unit operator

1. While Eq. (2.16) seems straightforward to evaluate, determining properties in this way
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requires forming Θ(A) for each desired property, which may become impractical. One could

instead consider an alternative route by precomputing the CC and EOMCC reduced density

matrix (RDM). If one-electron properties, which are of interest in this dissertation, are to

be computed, one construct the CC/EOMCC one-body RDM (1-RDM), γp(A)
q (µ, ν), as

γp(A)
q (µ, ν) = ⟨Φ|L(A)

µ e−T (A)Γp
qeT (A)

R(A)
ν |Φ⟩ = ⟨Φ|L(A)

µ Γp(A)
q R(A)

ν |Φ⟩ , (2.17)

where Γp
q = apaq and Γp(A)

q = e−T (A)Γp
qeT (A) = (Γp

qeT (A))C (one can generalize the above

expression to obtain the CC and EOMCC n-body reduced density matrices by replac-

ing Γp
q by the corresponding string of n creation and n annihilation operators, namely,

Γp1...pn
q1...qn

= aq1 . . . aqnapn . . . ap1). Note that the 1-RDM computed for a particular state µ,

γp(A)
q (µ, µ) ≡ γp(A)

q (µ), can be used to compute the one-electron properties for that state,

while the corresponding 1-body transition matrix γp(A)
q (µ, ν), µ ̸= ν gives us access to transi-

tion properties coupling two different electronic states. By calculating the 1-RDM of ground

and excited states and the corresponding transition density matrices, γp(A)
q (µ, ν), we can

determine all one-electron properties and the corresponding transition matrix elements in-

volving one-electron properties using a single mathematical expression〈
Ψ̃(A)

µ

∣∣∣Θ∣∣∣Ψ(A)
ν

〉
=

∑
p,q

θq
pγp(A)

q (µ, ν), (2.18)

where θq
p are matrix elements of the one-body operator Θ in a basis set of molecular spin-

orbitals |p⟩ used in the calculations. Indeed, the calculation of 1-RDMs provides the most

convenient way of calculating CC and EOMCC properties of ground and excited states, since

by having these matrices around we can calculate all kinds of one-electron properties in a

single calculation. In addition, 1-RDMs allow one to compute the CC and EOMCC electron

densities,

ρ(A)
µ (x) =

∑
p,q

γp(A)
q (µ)ϕ∗

q(x)ϕp(x), (2.19)

where ϕp(x) and ϕq(x) are molecular spin-orbitals and x represents the electronic (spatial

and spin) coordinates. By diagonalizing γp(A)
q (µ), one can determine the natural occupation

numbers and natural orbitals for the CC or EOMCC state
∣∣∣Ψ(A)

µ

〉
.
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Because of the non-Hermitian nature of the CC and EOMCC theories, there is one caveat

that we have to keep in mind, which is that the RDMs originating from CC and EOMCC

calculations are not symmetric. Thus, if we, for example, want to calculate the x component

of the dipole strength between states µ and ν, namely,
∣∣∣ 〈

Ψ(A)
µ

∣∣∣µx

∣∣∣Ψ(A)
ν

〉∣∣∣2, we must write

∣∣∣ 〈
Ψ(A)

µ

∣∣∣µx

∣∣∣Ψ(A)
ν

〉∣∣∣2 =
〈
Ψ̃(A)

µ

∣∣∣µx

∣∣∣Ψ(A)
ν

〉 〈
Ψ̃(A)

ν

∣∣∣µx

∣∣∣Ψ(A)
µ

〉
, (2.20)

where each matrix element in the above expression is evaluated using the expression for〈
Ψ̃(A)

µ

∣∣∣Θ∣∣∣Ψ(A)
ν

〉
shown in Eq. (2.18). In other words, both matrix elements

〈
Ψ̃(A)

µ

∣∣∣µx

∣∣∣Ψ(A)
ν

〉
and

〈
Ψ̃(A)

ν

∣∣∣µx

∣∣∣Ψ(A)
µ

〉
have to be evaluated, since they are not identical.

2.2 Application: Resolving a Half-Century-Old Enigma: The
Elusive v′′ = 14–18 Vibrational Levels of Mg2

In order to demonstrate the effectiveness of high-level CC and EOMCC calculations, let us

consider the intriguing example of the magnesium dimer. Specifically, in this section, we

summarize the ab initio investigation of Mg2 reported in Ref. [2]. Mg2 is one of the weakly

bound alkaline-earth dimers (AE2), which have emerged as probes of fundamental physics

relevant to ultracold collisions [151], doped helium nanodroplets [152], coherent control of

binary reactions [153], and even fields rarely associated with molecular science, such as optical

lattice clocks [154] and quantum gravity [155]. The magnesium dimer is especially important,

since it has several desirable characteristics that can be useful in the above applications, such

as the absence of hyperfine structure in the most abundant 24Mg isotope that facilitates the

analysis of binary collisions involving laser-cooled and trapped atoms, it helps us understand

heavier AE2 diatomics, and, unlike its lighter Be2 analog, it is nontoxic [156]. Unfortunately,

the status of Mg2 as a prototype heavier AE2 species is complicated by the fact that its

high-lying vibrational levels and, consequently, the long-range part of its ground-state PEC

have eluded experimental characterization for half a century. In this regard, the magnesium

dimer is even more challenging than its celebrated beryllium counterpart, whose elusive

12th vibrational level near the dissociation threshold [157, 158], which was also found by
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the Piecuch group in Ref. [73], was confirmed in 2014 [159] after reanalyzing the spectra

obtained in stimulated emission pumping experiments [160].

Experimentally, probing vibrational manifold of the magnesium dimer in its ground,

X 1Σ+
g , electronic state has to involve excited electronic states, since Mg2, being a homonu-

clear diatomic, is infrared inactive. The first high-resolution photoabsorption spectra of Mg2,

corresponding to a transition from the ground state to the electronically excited A 1Σ+
u state,

were reported in 1970 by Balfour and Douglas [161]. Their spectroscopic analysis resulted

in 285 G(v′′, J ′′) and 656 G(v′, J ′) rovibrational term values of 24Mg2 involving 13 (v′′ = 0

to 12) X 1Σ+
g and 24 (v′ = 1 to 24) A 1Σ+

u vibrational levels, respectively. In this section, we

are using the notation in which the vibrational, v, and rotational, J , quantum numbers in

the ground electronic state are designated by a double prime, whereas those corresponding

to the excited A 1Σ+
u state are marked with a prime. In their pioneering work, Balfour and

Douglas constructed a Rydberg–Klein–Rees (RKR) [162–165] X 1Σ+
g PEC in the 3.25 to 7.16

Å range and located the last experimentally resolved v′′ = 12 level about 25 cm−1 below the

dissociation threshold, pointing to the existence of extra vibrational states with v′′ > 12.

It did not take long to detect one of such states. In 1973, Li and Stwalley [166] identified

X 1Σ+
g → A 1Σ+

u transitions involving the v′′ = 13 level in the spectra reported in Ref. [161].

They accomplished this by extending the original RKR PEC of Balfour and Douglas to the

asymptotic region beyond 7.16 Å using theoretical values of C6 and C8 van der Waals coef-

ficients [167, 168]. The resulting PEC supported 19 vibrational levels, i.e., five levels more

than what was observed experimentally [166]. Four decades later, in an effort to character-

ize states with v′′ > 13, Knöckel et al. [169, 170] examined the A 1Σ+
u → X 1Σ+

g transition

using laser-induced fluorescence (LIF), repeating and refining the earlier LIF experiment by

Scheingraber and Vidal [171]. They improved and expanded the original 24Mg2 dataset of

Balfour and Douglas by reporting a total of 333 G(v′′, J ′′) and 1,351 G(v′, J ′) rovibrational

term values involving v′′ = 0–13 and v′ = 1–46, respectively, and constructed a few experi-

mentally derived analytical forms of the X 1Σ+
g PEC, extrapolated to the asymptotic region
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using the theoretical C6 [172], C8 [173], and C10 [173] coefficients, which support the discrete

spectral data in the 3.27 to 8.33 Å range [169]. Although these refined PECs supported 19
24Mg2 vibrational levels, reinforcing the initial prediction of Li and Stwalley [166], Knöckel

et al. [169] were unable to identify A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′) transitions involving the

elusive high-lying vibrational levels with v′′ > 13 in their LIF spectra.

Typically, high-lying vibrational states near dissociation constitute a small fraction of

the entire vibrational manifold, but this is not the case for the weakly bound magnesium

dimer, which has a shallow minimum on the ground-state PEC at re = 3.89039 Å [169] and

a tiny dissociation energy De of 430.472(500) cm−1 [169, 170]. If the five extra levels, which

have been speculated about, truly existed, they would represent more than a quarter of

the entire vibrational manifold in the ground electronic state. Furthermore, without precise

knowledge of the ground-state PEC of Mg2, especially its long-range part that determines

the positions of the high-lying vibrational states near the dissociation threshold, one can-

not accurately interpret the aforementioned ultracold and collisional phenomena involving

interacting magnesium atoms. It is intriguing why a seemingly docile main group diatomic

continues to challenge state-of-the-art spectroscopic techniques. The experimental difficul-

ties in detecting the elusive v′′ > 13 states of the magnesium dimer originate from several

factors, including small energy gaps between high-lying vibrations that are comparable to

rotational spacings [161, 174], resulting in overlapping spectral lines, and unfavorable signal-

to-noise ratio in the existing LIF spectra [169]. Rotational effects complicate the situation

even more, since, in addition to affecting line intensities [169, 171, 174], they may render the

high-lying vibrational states of Mg2 unbound. All of these and similar difficulties prompted

Knöckel et al. [169, 170] to conclude that experimental work alone is insufficient and that ac-

curate theoretical calculations are needed to guide further analysis of the ground-state PEC

and rovibrational states of Mg2, especially the elusive v′′ > 13 levels near the dissociation

threshold.

Unfortunately, there have only been a handful of theoretical investigations attempting
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to determine the entire vibrational manifold of the magnesium dimer. This is, at least

in part, related to the intrinsic complexity of the underlying electronic structure and dif-

ficulties with obtaining an accurate representation of the ground-state PEC using purely

ab initio quantum-chemical means. As already mentioned above, at the HF theory level,

which neglects electron correlation and dispersion interactions, Mg2 remains unbound. As

demonstrated below, one needs to go to much higher theory levels, incorporate high-order

many-electron correlation effects, including valence as well as inner-shell electrons, and use

large, carefully calibrated, one-electron basis sets to accurately capture the relevant physics

and obtain a reliable description of the X1Σ+
g potential and of the corresponding rovibrational

manifold (see Ref. [1] for a detailed discussion and historical account, including references to

the earlier quantum chemistry computations for the magnesium dimer). Ab initio quantum

mechanical calculations for the A 1Σ+
u PEC, the rovibrational states supported by it, and

the X 1Σ+
g − A 1Σ+

u electronic transition dipole moment function, needed to interpret and

aid the photoabsorption and LIF experiments using purely theoretical means, are similarly

challenging, and this investigation shows this too [2].

The initial theoretical estimates of the number of vibrational states supported by the

X1Σ+
g potential ranged from 18 to 20 [175], while the more recent ab initio quantum chemistry

computations based on the various levels CC theory, reported in Refs. [1, 176], suggested that

the highest vibrational level of 24Mg2 is v′′ = 18. Among the previous theoretical studies,

only Amaran et al. [176] considered the A 1Σ+
u state involved in the photoabsorption and

LIF experiments and included rotational effects, but they have not provided any information

about the calculated rovibrational term values other than the root mean square deviations

(RMSDs) relative to the experimental data of Balfour and Douglas [161]. Furthermore, as

demonstrated in our earlier benchmark study [1], which will be summarized in a later chapter

in this dissertation as well, where a large number of CC methods were tested using the X1Σ+
g

PEC of the magnesium dimer and the rotationless term values of 24Mg2 as examples, and

consistent with the earlier calculations [177, 178], the popular CCSD(T) approximation
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exploited in Ref. [176] could not possibly produce the small RMSD value reported in Ref.

[176], of 1.3 cm−1, for the rovibrational manifold of Mg2 in its ground electronic state; the

value on the order of a dozen cm−1 would be more appropriate [1]. Similar remarks apply

to the A 1Σ+
u state, which was treated in Ref. [176] using the LRCCSD approach, resulting

in noticeable deviations from the experimentally derived A 1Σ+
u potential shown in Fig. 4 of

Ref. [170]. To simulate and properly interpret the A 1Σ+
u → X 1Σ+

g LIF spectra obtained

in Ref. [169] using purely theoretical means, one needs much higher accuracy levels in the

computations of line positions and robust information about line intensities, which has not

been obtained in the previous quantum chemistry studies.

The goal of the ab initio electronic structure calculations performed in Ref. [2] and sum-

marized here is to obtain highly accurate X 1Σ+
g and A 1Σ+

u PECs of the magnesium dimer

and the corresponding X 1Σ+
g − A 1Σ+

u transition dipole moment function µX-A
z (r) involved

in the photoabsorption and LIF experiments reported in Refs. [161, 169–171]. In the case of

the ground-state PEC, we combined the numerically exact description of the valence electron

correlation effects provided by FCI with the high-level description of subvalence correlations

involving all electrons but the 1s shells of Mg atoms obtained using CCSDT. Thus, the X1Σ+
g

PEC of Mg2 reported in this work was obtained by adopting the composite scheme

EX 1Σ+
g

= E
CCSDT/AwCQZ
X 1Σ+

g
+

(
E

FCI/A(Q+d)Z
X 1Σ+

g
− E

CCSDT/A(Q+d)Z
X 1Σ+

g

)
. (2.21)

The first term on the right-hand side of Eq. (2.21) denotes the total electronic energy ob-

tained in the full CCSDT calculations correlating all electrons other than the 1s shells of

the Mg monomers and using the aug-cc-pwCVQZ basis set developed in Ref. [179], abbre-

viated as AwCQZ. The second and third terms on the right-hand side of Eq. (2.21), which

represent the difference between the frozen-core FCI and CCSDT energies obtained using

the aug-cc-pV(Q+d)Z basis of [179], abbreviated as A(Q+d)Z, correct the nearly all-electron

CCSDT/AwCQZ energy for the valence correlation effects beyond CCSDT. The A(Q+d)Z

and AwCQZ basis sets were taken from the Peterson group’s website [180]. We used these

bases rather than their standard aug-cc-pVnZ and aug-cc-pCVnZ counterparts, since it has
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been demonstrated that the aug-cc-pV(n+d)Z and aug-cc-pwCVnZ basis set families, includ-

ing A(Q+d)Z and AwCQZ, accelerate the convergence of bond lengths, dissociation energies,

and spectroscopic properties of magnesium compounds [1, 179]. We will comment on the

convergence of our computational scheme in Eq. (2.21) with respect to the size of the basis

set and the level of theory employed later.

In principle, one could extend the above composite scheme, given by Eq. (2.21), to the

electronically excited A 1Σ+
u state by replacing CCSDT in Eq. (2.21) with its EOMCCSDT

counterpart, but the nearly all-electron full EOMCCSDT calculations using the large AwCQZ

basis set turned out to be prohibitively expensive for us. To address this problem, we

resorted to one of the CR-EOMCCSD(T) approximations to EOMCCSDT, namely, CR-

EOMCCSD(T),IA [85], which is capable of providing highly accurate excited-state PECs of

near-EOMCCSDT quality at the small fraction of the cost. Thus, our composite scheme for

the calculations of the A 1Σ+
u PEC was defined as

EA 1Σ+
u

= E
CR-EOMCCSD(T),IA/AwCQZ
A 1Σ+

u
+

(
E

FCI/A(Q+d)Z
A 1Σ+

u
− E

CR-EOMCCSD(T),IA/A(Q+d)Z
A 1Σ+

u

)
, (2.22)

where the first term on the right-hand side of Eq. (2.22) is the total electronic energy of

the A 1Σ+
u state obtained in the CR-EOMCCSD(T),IA/AwCQZ calculations correlating all

electrons other than the 1s shells of the Mg monomers and the next two terms correct the

nearly all-electron CR-EOMCCSD(T),IA/AwCQZ calculations for the valence correlation

effects beyond the CR-EOMCCSD(T),IA level using the difference of the FCI and CR-

EOMCCSD(T),IA energies obtained with the A(Q+d)Z basis. Before deciding on the use

of CR-EOMCCSD(T),IA, we tested other CR-EOMCC schemes by comparing the resulting

A1Σ+
u potentials obtained using Eq. (2.22) and the corresponding rovibrational term G(v′, J ′)

values with the available experimentally derived data reported in Refs. [169, 181]. Although

all of these schemes worked well, the computational protocol defined by Eq. (2.22), with the

CR-EOMCCSD(T),IA approach serving as a baseline method, turned out to produce the

smallest maximum unsigned errors and RMSD values relative to experiment.
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All electronic structure calculations for Mg2 performed in this study were based on the

tightly converged RHF reference functions (the convergence criterion for the RHF density

matrix was set up at 10−9). The valence FCI calculations for the X 1Σ+
g and A 1Σ+

u states

were performed using the GAMESS package [182–184], whereas the valence and subvalence

CCSDT computations for the X1Σ+
g state were carried out with NWChem [185]. The valence

and subvalence CR-EOMCCSD(T),IA calculations for the A 1Σ+
u state were executed using

the RHF-based CR-EOMCCSD(T) routines developed in [85], which take advantage of the

underlying ground-state CC codes described in [186] and which are part of GAMESS as

well. The GAMESS RHF-based CC routines [186] were also used to perform the CCSD(T)

calculations needed to explore the basis set convergence and the viability (or the lack thereof)

of the alternative to the CCSDT-based composite scheme given by Eq. (2.21) (vide infra).

The convergence thresholds used in the post-RHF steps of the CC and EOMCC computations

reported in this work were set up at 10−7 for the relevant excitation amplitudes and 10−7

hartree (0.02 cm−1) for the corresponding electronic energies. The default GAMESS input

options that were used to define our FCI calculations guaranteed energy convergence to 10−10

hartree.

The grid of Mg–Mg separations r, at which the electronic energies of the X1Σ+
g and A1Σ+

u

states determined were determined, was as follows: 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0,

3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.4, 6.8,

7.2, 7.6, 8.0, 8.4, 8.8, 9.2, 9.6, 10.0, 11.0, 12.0, 13.0, 15.0, 20.0, 25.0, 30.0, and 100.0 Å [2].

We adopted the same set of r values to determine the electronic transition dipole moment

function µX-A
z (r) between the X 1Σ+

g and A 1Σ+
u electronic states, needed to calculate LIF

line intensities using the Einstein coefficients. The µX-A
z (r) calculations reported in this work

were performed using the valence FCI approach, as implemented in GAMESS, adopting the

A(Q+d)Z basis set of Ref. [179].

The rovibrational term values, including bound and quasi-bound states supported by

our ab initio X 1Σ+
g and A 1Σ+

u PECs defined by Eqs. (2.21) and (2.22), were computed
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by numerically integrating the radial Schrödinger equation from 2.2 to 100.0 Å using the

Numerov–Cooley algorithm [187] available in the LEVEL16 code [188] (LEVEL16 uses the

Airy function approach described in Ref. [189] to locate quasi-bound states). The widths

and the tunneling lifetimes for predissociation by rotation characterizing the quasi-bound

rovibrational states supported by the X 1Σ+
g potential were calculated using LEVEL16 as

well. In this case, we followed the semiclassical procedure described in Ref. [188] and im-

plemented in LEVEL16, which requires numerical integrations between turning points in

the classically allowed and classically forbidden regions of the relevant effective potentials

including centrifugal barriers (see Ref. [188] for further details).

We also used LEVEL16 to determine the rovibrational term values characterizing the

experimentally derived analytical X-representation potential developed in [169], which we

used to assess the accuracy of our ab initio–determined X 1Σ+
g PEC. To be consistent with

our LEVEL16 calculations for the ground-state PEC resulting from the ab initio protocol

based on Eq. (2.21), we first determined the energies corresponding to the X-representation

potential on the grid of 47 internuclear distances r adopted in our ab initio work. We then

followed the same numerical procedure as described above for the X 1Σ+
g PEC resulting from

the ab initio quantum chemistry calculations.

Last, but not least, we used LEVEL16 to compute the line positions of all allowed

A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′) rovibronic transitions and, with the help of our ab initio

transition dipole moment function µX-A
z (r), the corresponding line intensities, as defined by

the Einstein coefficients. The only adjustment that we had to make to be able to compare

our calculated line positions and intensities for the allowed A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′)

transitions with the LIF data reported in Refs. [169, 170] was a uniform downward shift of

the entire A 1Σ+
u PEC resulting from our ab initio computations by 1,543.2 cm−1, needed

to match the experimentally determined adiabatic electronic gap Te of 26,068.9 cm−1 [170].

Other than that, all of the calculated spectroscopic properties, including the De, re, and rovi-

brational term values corresponding to the X 1Σ+
g and A 1Σ+

u states and the line positions
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and intensities characterizing the A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′) transitions reported in this

study, rely on the raw ab initio data combined with the LEVEL16 processing, as described

above.

The most essential numerical information, generated using the computational protocol

described above, is summarized in Tables 2.1–2.3 and Figs. 2.1–2.5. In describing and dis-

cussing our results, we begin with the PECs and rovibrational term values characterizing

the X 1Σ+
g and A 1Σ+

u states of the magnesium dimer, focusing on a comparison of our ab

initio calculations with the available experimental and experimentally derived data reported

in Refs. [161, 169, 170]. Next, we compare the experimental LIF spectra reported in Refs.

[169, 170] with those resulting from our computations and suggest potential avenues for

detection of the elusive v′′ > 13 levels of the magnesium dimer. Lastly, we also discuss fur-

ther observation on the convergence of the computational protocol described in Eqs. (2.21)

and (2.22). Additional information that complements the discussion in this section, includ-

ing further comments on the accuracy and convergence characteristics of the computational

protocol used in the present study, the effect of isotopic substitution on the calculated rovi-

brational term values, the discussion of the validity of the Franck–Condon analysis adopted

in Ref. [169] to examine the LIF spectra reported in Refs. [169, 170], and the lifetimes for

predissociation by rotation characterizing quasi-bound rovibrational states supported by the

X 1Σ+
g potential, can be found in Ref. [2] and the accompanying Supplementary Materials.

As shown in Table 2.1, our ab initio X 1Σ+
g PEC reproduces the experimentally derived

dissociation energy De and equilibrium bond length re of Mg2 [169, 170] to within 0.9 cm−1

(0.2%) and 0.003 Å (0.07%), respectively. These high accuracies in describing De and re

are reflected in our calculated rovibrational term values of 24Mg2 and its isotopologs, which

are in very good agreement with the available experimental information [161, 169, 170].

Indeed, the RMSDs characterizing our ab initio G(v′′, J ′′) values for 24Mg2 relative to their

experimentally determined counterparts, reported in Ref. [161] for v′′ < 13 and Refs. [169,

170] for v′′ < 14, are 1.1 cm−1, when the spectroscopic data from Ref. [161] are used, and 1.5
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cm−1, when we rely on Refs. [169, 170] instead [2]. At the same time, the maximum unsigned

errors in our calculated G(v′′, J ′′) values relative to the experiment do not exceed ∼2 cm−1,

even when the quasi-bound states above the potential asymptote arising from centrifugal

barriers are considered. Although the experimental information about the G(v′′, J ′′) values

characterizing other Mg2 isotopologs is limited to 24Mg25Mg, 24Mg26Mg, and 26Mg2 and

includes very few v′′ values [169, 170], the RMSDs relative to the experiment resulting from

our calculations are similarly small (see the Supplementary Materials to Ref. [2] for more

details).

Further insights into the quality of our ab initio calculations for the ground-state PEC

can be obtained by comparing the resulting rovibrational term values with their counterparts

determined using the most accurate, experimentally derived, analytical forms of the X 1Σ+
g

potential to date constructed in Ref. [169]. In the discussion below, we focus on the so-

called X-representation of the ground-state PEC developed in Ref. [169], which the authors

of Ref. [169] regard as a reference potential in their analyses (see Table 2.2). We recall

that the X-representation of the ground-state PEC of the magnesium dimer was obtained by

simultaneously fitting the X 1Σ+
g and A 1Σ+

u PECs to a large number of the experimentally

determined A1Σ+
u (v′, J ′) → X1Σ+

g (v′′, J ′′) rovibronic transition frequencies and extrapolating

the resulting X1Σ+
g PEC to the asymptotic region using the theoretical C6 [172], C8 [173], and

C10 [173] coefficients. As shown in Table 2.2, our ab initio G(v′′, J ′′) energies characterizing

the most abundant 24Mg2 isotopolog are in very good agreement with those generated using

the X-representation of the ground-state PEC developed in Ref. [169]. When all of the

rovibrational bound states supported by both potentials are considered, the RMSD and the

maximum unsigned error characterizing our ab initio G(v′′, J ′′) values for 24Mg2 relative

to their counterparts arising from the X-representation are 1.3 and 2.0 cm−1, respectively

[2]. What is especially important in the context of the present study is that our ab initio

ground-state PEC and the state-of-the-art analytical fit to the experimental data defining the

X-representation, constructed in Ref. [169], bind the v′′ = 18 level if the rotational quantum
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number J ′′ is not too high (see the discussion below).

The high quality of our calculated G(v′′, J ′′) values and spacings between them, which

can also be seen in Tables 2.1 and 2.2 and Fig. 2.1, allows us to comment on the existence

of the v′′ > 13 levels that have escaped experimental detection for decades. As already

alluded to above and as shown in Table 2.2 and Fig. 2.1, our ab initio X 1Σ+
g PEC supports

the same number of rotationless vibrational levels as the latest experimentally derived PEC

defining the X-representation [169], which for the most abundant 24Mg2 isotopolog is 19.

Table 2.1, which compares the rovibrational term values of 24Mg2 resulting from our ab

initio calculations for the representative rotational quantum numbers ranging from 0 to 80

with the available experimental data, shows that the elusive high-lying states with v′′ > 13

quickly become unbound as J ′′ increases, so by the time J ′′ = 20, the v′′ = 15 to 18 levels are

no longer bound. This is demonstrated in Fig. 2.2, where we show a graphical representation

of the J ′′ = 20, 40, 60, and 80 effective potentials including centrifugal barriers characterizing

the rotating 24Mg2 molecule, along with the corresponding vibrational wave functions and

information about the lifetimes for predissociation by rotation associated with tunneling

through centrifugal barriers characterizing quasi-bound states. In fact, according to our ab

initio data [2], the maximum rotational quantum number that allows for at least one bound

rovibrational state decreases with v′′, from J ′′ = 68 for v′′ = 0 to J ′′ = 4 for v′′ = 18, with

all states becoming quasi-bound or unbound when J ′′ ≥ 70, when the most abundant 24Mg2

isotopolog is considered. In general, as exemplified in Fig. 2.2 (cf., also, the lifetime data

compiled in the Supplementary Materials to Ref. [2]), the mean lifetimes for predissociation

by rotation characterizing quasi-bound states with a given J ′′ rapidly decrease as v′′ becomes

larger. They decrease equally fast when J ′′ increases and v′′ is fixed. These observations

imply that the spectroscopic detection of the high-lying vibrational states of Mg2 can only

be achieved if the molecule does not rotate too fast (cf. Table 2.1 and Fig. 2.2).

As shown in Fig. 2.1, where we plot the wave functions of the high-lying, purely vibra-

tional, states of 24Mg2, starting with the last experimentally observed v′′ = 13 level, along

29



with the X 1Σ+
g PEC obtained in our ab initio calculations, the v′′ = 18 state, located only

0.2 cm−1 below the potential asymptote, is barely bound (see also Table 2.1). This makes

the existence of an additional, v′′ = 19, level for the most abundant isotopolog of the magne-

sium dimer unlikely. Further insights into the number of purely vibrational bound states of
24Mg2 supported by the X 1Σ+

g PEC are provided by the inset in Fig. 2.1, where we plot the

rotationless G(v′′ + 1) − G(v′′) energy differences, resulting from the ab initio calculations

reported in this work and the experiment, as a function of v′′ + 1/2 (the Birge–Sponer plot).

Fitting the experimental data to a line, i.e., assuming a Morse potential, results in v′′ = 16

being the last bound vibrational level of 24Mg2. Although the deviation from the Morse

potential, as predicted by our ab initio calculations, is not as severe as in the case of Be2

[73], it is large enough to result in the v′′ = 17 and 18 states becoming bound, emphasizing

the importance of properly describing the long-range part of the PEC.

As shown in Table 2.1 and Fig. 2.1, the G(v′′ + 1) − G(v′′) vibrational spacings rapidly

decrease with increasing v′′, from 47.7 cm−1 or 68.6 K for v′′ = 0 to 11.7 cm−1 or 16.8 K for

v′′ = 12, and to 0.8 cm−1 or 1.2 K for v′′ = 17, when 24Mg2 is considered. This means that at

regular temperatures all vibrational levels of the magnesium dimer, which is a very weakly

bound system, are substantially populated, making selective probing of the closely spaced

higher-energy states, including those with v′′ > 13, virtually impossible, since practically

every molecular collision (e.g., with another dimer) may result in a superposition of many

rovibrational states, with some breaking the dimer apart. At room temperature, for example,

the cumulative population of the v′′ > 13 states of 24Mg2, determined using the normalized

Boltzmann distribution involving all rotationless levels bound by the X 1Σ+
g potential, of

about 12%, is comparable to the populations of the corresponding low-lying states (16% for

v′′ = 0, 13% for v′′ = 1, and 10% for v′′ = 2). The situation changes in the cold/ultracold

regime, where the available thermal energies, which are on the order of millikelvin or even

microkelvin, are much smaller than the vibrational spacings, even when the high-lying states

with v′′ > 13 near the dissociation threshold are considered, suppressing collisional effects
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and allowing one to probe the long-range part of the ground-state PEC, where the v′′ > 13

states largely localize (cf. Fig. 2.1). This makes the accurate characterization of the v′′ > 13

bound and quasi-bound states provided by the high-level ab initio calculations reported in

this work relevant to the applications involving cold/ultracold Mg atoms separated by larger

distances in magneto-optical traps (see, e.g., Ref. [156]).

The accuracy of our ab initio description of the more strongly bound A 1Σ+
u electronic

state (De = 9414 cm−1 and re = 3.0825 Å [170]; cf. Fig. 2.3 for the corresponding PEC),

which we need to consider to simulate the LIF spectra, is consistent with that obtained for

the weakly bound ground state. For example, the errors relative to the experiment [170]

resulting from our calculations of the dissociation energy De and equilibrium bond length

re are 0.91% (86 cm−1) and 0.2% (0.006 Å), respectively [2]. This high accuracy of our ab

initio A 1Σ+
u PEC, obtained using Eq. (2.22), is reflected in the excellent agreement between

the 24Mg2 G(v′, J ′) values obtained in Ref. [2] and their experimentally derived counterparts

reported in Refs. [161, 170]. In particular, the RMSDs characterizing our rovibrational term

values in the A 1Σ+
u state relative to the data of Balfour and Douglas [161] and Knöckel

et al. [170] are only 3.2 and 4.5 cm−1, respectively, which is a major improvement over the

RMSD of 30 cm−1 reported in Ref. [176]. According to our ab initio calculations using the

computational protocol described above, the total number of vibrational states supported

by the A 1Σ+
u potential well for the most abundant 24Mg2 species is 169 [2].

The most compelling evidence for the predictive power of our ab initio electronic structure

and rovibrational calculations is the nearly perfect reproduction of the experimental A1Σ+
u →

X 1Σ+
g LIF spectrum reported in Refs. [169, 170], shown in Fig. 2.4 and Table 2.3 (The

theoretical line intensities shown in Fig.2.4 were normalized such that the tallest peaks in the

calculated and experimental LIF spectra corresponding to the v′′ = 5 P12 line representing

the A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′ = 5, J ′′ = 12) transition match). Figure 2.3 uses our

calculated X 1Σ+
g and A 1Σ+

u PECs and the corresponding rovibrational wave functions to

illustrate the photoexcitation and fluorescence processes that resulted in the experimental
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LIF spectrum shown in Fig. 3 of Ref. [169], which is reproduced in Fig. 2.4(a). This particular

spectrum represents the fluorescence progression from the A 1Σ+
u (v′ = 3, J ′ = 11) state of

24Mg2, populated by laser excitation from the X 1Σ+
g (v′′ = 5, J ′′ = 10) state, to all accessible

X 1Σ+
g (v′′, J ′′) rovibrational levels, resulting in the P12/R10 doublets that correspond to

J ′′ = 12 for the P branch and J ′′ = 10 for the R branch. Figure 2.4 and Table 2.3 compare

the experimentally observed A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′, J ′′ = 10, 12) transitions

with the corresponding line positions (Fig. 2.4 and Table 2.3) and intensities (Fig. 2.4)

resulting from our ab initio calculations. As already mentioned earlier, the only adjustment

that we made to produce the theoretical LIF spectrum shown in Fig. 2.4 and Table 2.3 was

a uniform shift of the entire A 1Σ+
u PEC obtained in our ab initio computations to match the

experimentally determined adiabatic electronic excitation energy Te of 26,068.9 cm−1 [170].

Other than that, the theoretical LIF spectrum in Fig. 2.4 and Table 2.3 relies on the raw ab

initio electronic structure and rovibrational data. Note that in order to produce Fig. 2.4, we

superimposed our theoretical A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′ = 10, 12) LIF spectrum on top of

the experimental one reported in Fig. 3 of Ref. [169]. The theoretical line intensities shown

in Fig. 3 were normalized such that the tallest peaks in the calculated and experimental LIF

spectra corresponding to the v′′ = 5 P12 line representing the A 1Σ+
u (v′ = 3, J ′ = 11) →

X 1Σ+
g (v′′ = 5, J ′′ = 12) transition match.

The notable agreement between the theoretical and experimental LIF spectra shown in

Fig. 2.4(a) and Table 2.3, with differences in line positions not exceeding 1 to 1.5 cm−1 and

with virtually identical intensity patterns, suggests that our predicted transition frequencies

involving the elusive v′′ > 13 states are very accurate, allowing us to provide guidance for

their potential experimental detection in the future. Before discussing our suggestions in this

regard, we note that owing to our ab initio calculations, we can now locate the previously

unidentified P12/R10 doublets involving the v′′ > 13 states within the experimental LIF

spectrum reported in Fig. 3 of Ref. [169]. Indeed, as shown in Fig. 2.4 and Table 2.3,

the LIF spectrum corresponding to the A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′, J ′′ = 10, 12)
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transitions contains the P12/R10 doublets involving the v′′ = 0 to 16 states and the R10

line involving the v′′ = 17 state. It is worth mentioning that the A 1Σ+
u (v′ = 3, J ′ = 11) →

X 1Σ+
g (v′′ = 17, J ′′ = 12) and A 1Σ+

u (v′ = 3, J ′ = 11) → X 1Σ+
g (v′′ = 18, J ′′ = 10, 12)

transitions are absent, since the v′′ = 17, J ′′ = 12 and v′′ = 18, J ′′ = 10 and 12 states are

unbound, but they could potentially be observed if one used different initial A 1Σ+
u (v′, J ′)

states (see the discussion below).

As one can see by inspecting Fig. 2.4, and consistent with the remarks made by Knöckel et

al. in Ref. [169], the experimental detection of the P12/R10 doublets involving v′′ > 13, when

transitioning from the A 1Σ+
u (v′ = 3, J ′ = 11) state, was hindered by the unfavorable signal-

to-noise ratio (transitions to the v′′ = 16 and 17 states exhibit low Einstein coefficients) and

the presence of overlapping lines outside the P12/R10 progression, originating from collisional

relaxation effects [169] and having similar (v′′ = 15) or higher (v′′ = 14) intensities. To fully

appreciate this, in Fig. 2.4(b), we magnified the region of the LIF spectrum recorded in Ref.

[169] that contains the calculated A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′ = 13 to 16, J ′′ =

10, 12) and A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′ = 17, J ′′ = 10) transitions. As shown

in Fig. 2.4 and Table 2.3, the identification of the P12/R10 doublets corresponding to the

A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′ = 0 to 13, J ′′ = 10, 12) transitions is unambiguous. The

observed and calculated line positions and intensities and line intensity ratios within every

doublet match each other very closely. Figure 2.4(b) demonstrates that the identification

of the remaining doublets in the P12/R10 progression is much harder. On the basis of our

ab initio work and taking into account the fact that our calculated line positions may be

off by about 1 cm−1 (cf. Table 2.3), the v′′ = 14 P12/R10 doublet, marked in Fig. 2.4(b)

by the blue arrows originating from the v′′ = 14 label, is largely hidden behind the higher-

intensity feature that does not belong to the P12/R10 progression and that most likely

originates from collisional relaxation [169]. Because of our calculations, we can also point to

the most likely location of the v′′ = 15 P12/R10 doublet in the LIF spectrum recorded in

Ref. [169] [see the blue arrows originating from the v′′ = 15 label in Fig. 2.4(b)]. Doing this
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without backing from the theory is virtually impossible due to the presence of other lines

near the A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′ = 15, J ′′ = 10, 12) transitions having similar

intensities. As shown in Fig. 2.4(b), the situation with the remaining A 1Σ+
u (v′ = 3, J ′ =

11) → X 1Σ+
g (v′′ = 16, J ′′ = 10, 12) and A 1Σ+

u (v′ = 3, J ′ = 11) → X 1Σ+
g (v′′ = 17, J ′′ = 10)

transitions is even worse, since they have very low Einstein coefficients that hide them in the

noise.

In general, our ab initio calculations carried out in this work indicate that under the

constraints of the LIF experiments reported in Refs. [169, 170], where the authors populated

the A 1Σ+
u (v′, J ′) states with v′ = 1 to 46, the X 1Σ+

g (v′′, J ′′) states with v′′ = 14 to 18

cannot be realistically detected because of very small Franck–Condon factors and Einstein

coefficients characterizing the corresponding A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′, J ′′) transitions [2].

As shown in Fig. 2.1, the v′′ = 14 to 18 states are predominantly localized in the long-

range r = 8 to 16 Å region. At the same time, as illustrated in Fig. 2.3, the potential

well characterizing the electronically excited A 1Σ+
u state is much deeper and shifted toward

shorter internuclear separations compared to its X 1Σ+
g counterpart. Thus, the only way

to access the X 1Σ+
g (v′′, J ′′) states with v′′ = 14 to 18 via fluorescence from A 1Σ+

u is by

populating the high-lying A 1Σ+
u (v′, J ′) levels with v′ ≫ 46.

In an effort to assist the experimental community in detecting the elusive v′′ = 14 to 18

vibrational levels, we searched for the A 1Σ+
u (v′, J ′) → X 1Σ+

g (v′′ = 14 to 18, J ′′ = J ′ ± 1)

transitions in the most abundant isotopolog of the magnesium dimer, 24Mg2, that would

result in spectral lines of maximum intensity based on the computed Einstein coefficients.

To ensure the occurrence of allowed transitions involving the last, v′′ = 18, level, which

for 24Mg2 becomes unbound when J ′′ > 4, we focused on the J ′′ values not exceeding 4,

i.e., the fluorescence from the A 1Σ+
u (v′, J ′) states with J ′ = 1, 3, and 5. According to

our calculations, the optimum v′ values for observing the v′′ = 14 to 18, J ′′ ≤ 4 states

via the LIF spectroscopy are in the neighborhood of v′ = 60, 66 to 69, and 74 to 84 for

v′′ = 14; 72 to 75 and 80 to 91 for v′′ = 15; 79 to 82 and 88 to 100 for v′′ = 16; 88, 89,
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and 97 to 111 for v′′ = 17; and 109 to 129 for v′′ = 18 [see Ref. [2] for the details of all

allowed rovibronic transitions in 24Mg2 involving the X 1Σ+
g and A 1Σ+

u states, including, in

particular, the relevant X1Σ+
g (v′′, J ′′ ≤ 4) → A1Σ+

u (v′, J ′) pump and A1Σ+
u (v′, J ′ = 1, 3, 5) →

X 1Σ+
g (v′′ = 14 to 18, J ′′ ≤ 4) fluorescence processes]. In determining these optimum v′

values, we chose the cutoff value of 1.0 × 107 Hz in the Einstein coefficients, which is similar

to the Einstein coefficients calculated for the most intense v′′ = 5 P12/R10 doublet in the

experimental LIF spectrum shown in Fig. 3 of Ref. [169], reproduced in Fig. 2.4(a). Our

predicted A 1Σ+
u (v′, J ′ = 1, 3, 5) → X 1Σ+

g (v′′ = 14to18, J ′′ ≤ 4) fluorescence frequencies

resulting from the aforementioned optimum v′ ranges, which might allow one to detect the

v′′ = 14 to 18 states of 24Mg2 via a suitably designed LIF experiment, are estimated at about

33,360, 33,740 to 33,910, and 34,150 to 34,530 cm−1 for v′′ = 14; 34,050 to 34,190 and 34,390

to 34,710 cm−1 for v′′ = 15; 34,350 to 34,460 and 34,640 to 34,880 cm−1 for v′′ = 16; 34,630

to 34,660 and 34,830 to 35,000 cm−1 for v′′ = 17; and 34,990 to 35,100 cm−1 for v′′ = 18

[given the 86 cm−1 error in the calculated De characterizing the A 1Σ+
u state and the RMSD

of ∼3 to 5 cm−1 in our 24Mg2 G(v′, J ′) values relative to the spectroscopic data of Refs.

[169, 170], the above frequency ranges may have to be shifted by a dozen or so cm−1].

As shown by the results reported in Ref. [2] and summarized above, the results of our

high-level CC/EOMCC and FCI computations show an unprecedented level of accuracy

relative to the available experimental data of the magnesium dimer. Thus, we are now

well positioned to comment on the convergence of our computational protocol employed

in Ref. [2]. In particular, let us focus on the ground X 1Σ+
g PEC of Mg2, where the De

and vibrational term values characterizing the 24Mg2 isotopolog are accurate to within ∼1

cm−1 relative to experimentally available data. In our discussion, we rely on the results

of the auxiliary calculations reported in Ref. [2] employing the aug-cc-pV(T+d)Z, aug-cc-

pwCVTZ, and aug-cc-pwCV5Z bases of Ref. [179], taken from the Peterson group’s website

[180], which we abbreviate as A(T+d)Z, AwCTZ, and AwC5Z, respectively.

To begin with, as shown in Ref. [2], the valence FCI correction on top of CCSDT in
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Eq. (2.21), i.e., the E
FCI/A(Q+d)Z
X 1Σ+

g
− E

CCSDT/A(Q+d)Z
X 1Σ+

g
contribution to the X 1Σ+

g energetics, are

well converged with respect to the size of the basis set. Indeed, if we compare the valence

FCI correction in Eq. (2.21) with its less saturated counterpart, in which we replace the

A(Q+d)Z basis set used in Ref. [2] by its smaller A(T+d)Z counterpart, i.e., E
FCI/A(T+d)Z
X 1Σ+

g
−

E
CCSDT/A(T+d)Z
X 1Σ+

g
, the changes in the valence FCI correction are ∼1 cm−1 or less throughout

the entire 3.2–1.00 Å range of Mg–Mg separations considered in our computations. One

could instead consider improving Eq. (2.21) by extrapolating, for example, the nearly all-

electron CCSDT energetics to the CBS limit. Unfortunately, a widely used two-point CBS

extrapolation [190, 191] based on the subvalence CCSDT/AwCTZ and CCSDT/AwCQZ

data, which are the only CCSDT data of this type available to us, to determine the CBS

counterpart of the first term on the right-hand side of Eq. (2.21) would not be reliable

enough. As demonstrated in Ref. [1] and as elaborated on in the Supplementary Materials

to Ref. [2], a CBS extrapolation using the AwCTZ and AwCQZ basis sets worsens, instead of

improving, the De, re, and vibrational term values of the magnesium dimer compared to the

unextrapolated results using the AwCQZ basis. The CBS extrapolation using the AwCQZ

and AwC5Z basis sets would be accurate enough, but the CCSDT/AwC5Z calculations for

the magnesium dimer correlating all electrons but the 1s shells of Mg atoms turned out to

be prohibitively expensive for us.

One could try to address the above concern by replacing CCSDT in Eq. (2.21) by the

more affordable CCSD(T) approach, resulting in

ẼX 1Σ+
g

= E
CCSD(T)/AwCQZ
X 1Σ+

g
+

(
E

FCI/A(Q+d)Z
X 1Σ+

g
− E

CCSD(T)/A(Q+d)Z
X 1Σ+

g

)
, (2.23)

but the computational protocol defined by Eq. (2.23) is not sufficiently accurate for the

spectroscopic considerations reported in this work due to the inadequate treatment of triples

by the baseline CCSD(T) approximation. Indeed, this is demonstrated in Fig. 2.5, where

we compare the rotationless vibrational term values for the X 1Σ+
g state obtained from

our ab initio computations employing Eqs. (2.21) and (2.23) against their experimental

counterparts [161, 166] (see the Supplementary Materials to Ref. [2] for further details on
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how the experimental G(v′′ = 0 to 13, J ′′ = 0) data were obtained). As shown in Fig. 2.5,

our computational protocol based on the nearly all-electron CCSDT/AwCQZ and valence

CCSDT/A(Q+d)Z and FCI/A(Q+d)Z calculations, as in Eq. (2.21), produces the G(v′′, J ′′ =

0) values that can hardly be distinguished from their experimentally derived counterparts,

with errors not exceeding 1.4 cm−1 or 0.5%, when all experimentally observed v′′ = 0–13

states are considered. What is especially important, errors in the G(v′′, J ′′ = 0) values

resulting from the computational protocol based on Eq. (2.21) relative to experiment remain

small for all v′′ values. They slightly increase in the v′′ = 0–9 region, from 0.0 cm−1 for

v′′ = 0 to 1.4 cm−1 for v′′ = 8 and 9, but then they decrease again, to 0.7 cm−1 when the last

experimentally observed v′′ = 13 level is considered. These observations should be contrasted

with the results obtained using Eq. (2.23), where full CCSDT is replaced by CCSD(T). As

demonstrated in Fig. 2.5, errors in the G(v′′, J ′′ = 0) energies obtained for the X1Σ+
g potential

resulting from Eq. (2.23) steadily grow with v′′, from 0.7 cm−1 for v′′ = 0 to 14.7 cm−1 for

v′′ = 13, representing 3–4% of the corresponding experimentally derived G(v′′, J ′′ = 0)

values. This clearly implies that it is not sufficient to run the CCSD(T) calculations for

the purpose of capturing the bulk of many-electron correlation effects, assuming that one

can incorporate the missing correlations with the help of valence FCI. If one is interested

in attaining the nearly spectroscopic (1 cm−1-type) accuracy, the bulk of the correlation

effects must be captured by the more complete treatment of the connected triply excited

clusters, beyond CCSD(T), which in the case of the X 1Σ+
g PEC is represented in this

study by full CCSDT, prior to applying the FCI-based correction. Otherwise, there is a

significant risk of introducing substantial errors in the calculated vibrational term values.

Given the nearly linear error growth characterizing the G(v′′, J ′′ = 0) values corresponding

to the X 1Σ+
g potential obtained using Eq. (2.23), seen in Fig. 2.5, one should not use

CCSD(T) as a substitute for CCSDT in Eq. (2.21) in calculations involving higher-energy

vibrational levels. In particular, the CCSD(T)-based composite approach defined by Eq.

(2.23) is unsuitable for locating the elusive v′′ = 14–18 states of the magnesium dimer. One
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can see this by comparing, for example, the nearly 15 cm−1 error in the G(v′′ = 13, J ′′ = 0)

energy obtained using the X 1Σ+
g PEC resulting from Eq. (2.23), which, according to Fig.

2.5, is expected to become even larger for v′′ > 13 (cf., also, Ref. [1]), with the small

spacings between the consecutive vibrational levels in the v′′ = 14–18 region. Indeed, based

on our best ab initio calculations summarized in Table 2.1, these spacings decrease from

about 6 cm−1 for the G(v′′ = 15, J ′′ = 0) − G(v′′ = 14, J ′′ = 0) difference to ∼1 cm−1

when the gap between the rotationless v′′ = 17 and v′′ = 18 states is considered. For all

these reasons, we have to rely on Eq. (2.21) in our calculations for the magnesium dimer,

in which we use CCSDT, not CCSD(T), and finite (albeit large and carefully optimized)

AwCQZ and A(Q+d)Z basis sets rather than the poor-quality CBS extrapolation from the

CCSDT/AwCTZ and CCSDT/AwCQZ information. This analysis also highlights the need

for robust approximations to high-level CC methods, such as CCSDT and CCSDTQ, which

is exactly the main focus of the following chapters.
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Table 2.1: Comparison of the ab initio (Calc.) and experimentally derived (Expt) rovi-
brational G(v′′, J ′′) energies for selected values of J ′′ characterizing 24Mg2 in the ground
electronic state (in cm−1), along with the corresponding dissociation energies De (in cm−1)
and equilibrium bond lengths re (in Å). The G(v′′, J ′′) energies calculated using the ab initio
X 1Σ+

g PEC defined by Eq. (2.21) are reported as errors relative to experiment, whereas De
and re are the actual values of these quantities. If the experimental G(v′′, J ′′) energies are not
available, we provide their calculated values in square brackets. Quasi-bound rovibrational
levels are given in italics. Horizontal bars indicate term values not supported by the X 1Σ+

g

PEC. Adapted from Ref. [2].

v′′ G(v′′, J ′′ = 0) G(v′′, J ′′ = 20) G(v′′, J ′′ = 40) G(v′′, J ′′ = 60) G(v′′, J ′′ = 80)
Calc. Expta Calc. Exptb Calc. Exptb Calc. Exptb Calc. Exptb

0 0.0 25.2 −0.2 63.3 −0.4 171.2 −0.9 340.4 −1.8 552.8
1 −0.2 73.0 −0.4 109.7 −0.7 213.1 −1.2 374.6 −2.2 573.2
2 −0.5 117.8 −0.7 153.0 −1.0 252.0 −1.6 405.4 [585.0 ]
3 −0.7 159.4 −1.0 193.2 −1.3 287.7 −1.9 432.9 —
4 −0.9 198.0 −1.3 230.3 −1.6 320.3 −2.1 456.7 —
5 −1.1 233.6 −1.5 264.4 −1.8 349.7 −2.1 476.5 —
6 −1.2 266.2 −1.7 295.5 −1.9 375.9 −1.7 491.7 —
7 −1.3 295.8 −1.8 323.6 −1.9 398.8 — —
8 −1.4 322.5 −1.7 348.5 −1.7 418.1 — —
9 −1.4 346.2 −1.6 370.3 −1.4 433.9 — —
10 −1.3 366.8 −1.4 389.0 [444.5 ] — —
11 −1.2 384.4 −1.2 404.4 [451.6 ] — —
12 −0.9 398.8 −0.9 416.6 — — —
13 −0.7 410.3 −0.5 425.5 — — —
14 [418.4] [431.1] — — —
15 [424.6] — — — —
16 [428.4] — — — —
17 [430.4] — — — —
18 [431.2] — — — —
De 431.4 430.472c

re 3.893 3.89039c

aExperimentally derived values for v′′ = 0 to 12 taken from Ref. [161]. The v′′ = 13 value is calculated
as G(v′′ = 13, J ′′ = 14) − 210B(v′′ = 13, J ′′ = 14) with the information about G(v′′ = 13, J ′′ = 14) and
B(v′′ = 13, J ′′ = 14) taken from Ref. [166].

bExperimentally derived values taken from the supplementary material of Ref. [169].
cExperimentally derived values taken from Ref. [169, 170] assuming the X-representation of the X 1Σ+

g

potential developed in Ref. [169].
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Table 2.2: Comparison of the rovibrational G(v′′, J ′′) energies obtained using the ab initio
X 1Σ+

g PEC (Calc.) and its X-representation counterpart constructed in Ref. [169] (X-rep.)
for selected values of J ′′ characterizing 24Mg2 in the ground electronic state (in cm−1), along
with the corresponding dissociation energies De (in cm−1) and equilibrium bond lengths re
(in Å). The G(v′′, J ′′) energies calculated using the ab initio X 1Σ+

g PEC defined by Eq.
(2.21) are reported as errors relative to experiment, whereas De and re are the actual values
of these quantities. If the experimental G(v′′, J ′′) energies are not available, we provide their
calculated values in square brackets. Quasi-bound rovibrational levels are given in italics.
Horizontal bars indicate term values not supported by the X 1Σ+

g PEC. Adapted from Ref.
[2].

v′′ G(v′′, J ′′ = 0) G(v′′, J ′′ = 20) G(v′′, J ′′ = 40) G(v′′, J ′′ = 60) G(v′′, J ′′ = 80)
Calc. X-rep. Calc. X-rep. Calc. X-rep. Calc. X-rep. Calc. X-rep.

0 −0.1 25.2 −0.2 63.3 −0.4 171.2 −0.9 340.4 −1.8 552.8
1 −0.3 73.1 −0.4 109.7 −0.7 213.1 −1.2 374.6 −2.2 573.2
2 −0.6 117.9 −0.7 153.0 −1.0 252.0 −1.6 405.4 [585.0 ]
3 −0.9 159.6 −1.0 193.2 −1.3 287.7 −1.9 432.9 —
4 −1.1 198.2 −1.2 230.3 −1.6 320.3 −2.1 456.7 —
5 −1.4 233.9 −1.5 264.4 −1.8 349.7 −2.1 476.5 —
6 −1.5 266.5 −1.6 295.5 −1.9 375.9 −1.7 491.7 —
7 −1.7 296.2 −1.7 323.5 −1.9 398.8 — —
8 −1.7 322.8 −1.7 348.5 −1.7 418.1 — —
9 −1.6 346.4 −1.6 370.3 −1.4 433.8 — —
10 −1.5 367.0 −1.4 389.0 −1.0 [445.5 ] — —
11 −1.3 384.5 −1.2 404.4 [451.6 ] — —
12 −1.0 399.0 −0.9 416.6 — — —
13 −0.7 410.4 −0.5 425.5 — — —
14 −0.5 418.9 −0.2 431.2 — — —
15 −0.2 424.7 — — — —
16 0.2 428.3 — — — —
17 0.5 429.9 — — — —
18 0.8 430.4 — — — —
De 431.4 430.472
re 3.893 3.89039
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Table 2.3: Comparison of the theoretical line positions of the A 1Σ+
u (v′ = 3, J ′ = 11) →

X 1Σ+
g (v′′, J ′′ = 10, 12) fluorescence progression in the LIF spectrum of 24Mg2 calculated in

this work with experiment. All line positions are in cm−1. The available experimental values
are the actual line positions, whereas our calculated results are errors relative to experiment.
If the experimentally determined line positions are not available, we provide their calculated
values in square brackets. Horizontal bars indicate term values not supported by the X 1Σ+

g

PEC. Adapted from Ref. [2].

v′′ P12 R10
Calc. Expt.a Calc. Expt.a

0 −1.5 26,701.9 −1.5 26,706.0
1 −1.2 26,654.5 −1.3 26,658.5
2 −1.0 26,610.3 −1.0 26,614.1
3 −0.7 26,569.2 −0.7 26,572.8
4 −0.4 26,531.1 −0.5 26,534.6
5 −0.2 26,496.0 −0.2 26,499.3b

6 0.0 26,463.9 [26,467.1]
7 0.1 26,434.9 0.1 26,437.9
8 0.1 26,408.8 0.1 26,411.7
9 0.0 26,385.9 0.0 26,388.5
10 −0.2 26,366.0 −0.2 26,368.4
11 −0.4 26,349.2 −0.4 26,351.4
12 −0.7 26,335.6 −0.6 26,337.5
13 −1.0 26,325.0 −0.9 26,326.7
14 [26,316.2] [26,317.7]
15 [26,311.1] [26,312.2]
16 [26,308.4] [26,309.1]
17 — [26,308.0]
18 — —

aDifferences between the experimental X 1Σ+
g (v′′, J ′′ = 10, 12) and A 1Σ+

u (v′ = 3, J ′ = 11) term values
reported in the supplementary material of Ref. [170] (see the Supplementary Materials of Ref. [2] for
further details), unless stated otherwise.

bThe X 1Σ+
g (v′′ = 5, J ′′ = 10) → A 1Σ+

u (v′ = 3, J ′ = 11) pump frequency reported in Fig. 3 of Ref. [169].
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Figure 2.1: The wave functions of the high-lying, purely vibrational, states of 24Mg2 and
the underlying X 1Σ+

g potential. The last experimentally observed v′′ = 13 level is marked in
blue, the predicted v′′ = 14 to 18 levels are marked in green, and the ab initio X 1Σ+

g PEC
obtained in this study is marked by a long-dashed black line. The inset is a Birge–Sponer
plot comparing the rotationless G(v′′ + 1) − G(v′′) energy differences as functions of v′′ + 1/2

obtained in this work (black circles) with their experimentally derived counterparts (red
open squares) based on the data reported in Refs. [161] (v′′ = 0 to 12) and [166] (v′′ = 13;
cf. also Table 2.1). The red solid line is a linear fit of the experimental points. Adapted from
Ref. [2].
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(a) (b)

(c) (d)

Figure 2.2: The VJ ′′(r) effective potentials including centrifugal barriers characterizing the
rotating 24Mg2 molecule at selected values of J ′′, along with the corresponding vibrational
wave functions and information about the lifetimes for predissociation by rotation, τ(v′′),
characterizing quasi-bound states. The selected values of J ′′ used to construct the effec-
tive potentials VJ ′′(r) (black curves) and determine the corresponding bound (blue lines)
and quasi-bound (red lines) vibrational wave functions are (a) 20, (b) 40, (c) 60, and (d)
80. The black dashed line represents the rotationless, purely electronic, X 1Σ+

g potential
V (r) = VJ ′′=0(r) calculated using the ab initio composite scheme defined by Eq. (2.21). The
horizontal black dotted line at 431.4 cm−1 marks the dissociation threshold of the ab initio
X 1Σ+

g potential. Adapted from Ref. [2].
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Figure 2.3: Schematics of the pump, X 1Σ+
g (v′′ = 5, J ′′ = 10) → A 1Σ+

u (v′ = 3, J ′ = 11),
and fluorescence, A 1Σ+

u (v′ = 3, J ′ = 11) → X 1Σ+
g (v′′, J ′′ = 10, 12), processes resulting in

the LIF spectrum for 24Mg2 shown in Fig. 3 of Ref. [169]. The A 1Σ+
u and A 1Σ+

u PECs
and the corresponding X 1Σ+

g (v′′ = 5, J ′′ = 10) and A 1Σ+
u (v′ = 3, J ′ = 11) rovibrational

wave functions were calculated in this work. The A 1Σ+
u PEC was shifted to match the

experimentally determined adiabatic electronic excitation energy Te of 26,068.9 cm−1 [170].
Adapted from Ref. [2].
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(a) (b)

Figure 2.4: The A 1Σ+
u (v′ = 3, J ′ = 11) → X 1Σ+

g (v′′, J ′′ = 10, 12) LIF spectrum of
24Mg2. (a) Comparison of the experimental A 1Σ+

u (v′ = 3, J ′ = 11) → X 1Σ+
g (v′′, J ′′ =

10, 12) fluorescence progression (black solid lines; adapted from Fig. 3 of Ref. [169] with
the permission of AIP Publishing) with its ab initio counterpart obtained in this work (red
dashed lines). The theoretical line intensities were normalized such that the tallest peaks in
the calculated and experimental spectra corresponding to the v′′ = 5 P12 line match. (b)
Magnification of the low-energy region of the LIF spectrum shown in (a), with red solid lines
representing the calculated transitions. The blue arrows originating from the v′′ = 13 label
indicate the location of the experimentally observed v′′ = 13 P12/R10 doublet. The blue
arrows originating from the v′′ = 14 and 15 labels point to the most probable locations of
the corresponding P12/R10 doublets. Spectral lines involving v′′ = 16 and 17 are buried in
the noise (see also Table 2.3). Adapted from Ref. [2].

45



-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12
-1

0

1

2

3

4

X1 +
g

CCSDT-based scheme
CCSD(T)-based scheme

CCSDT-based scheme
CCSD(T)-based scheme

G
ca

lc
(v

")
 

 G
ex

pt
(v

")
 (c

m
1 )

X1 +
g

 

 

[G
ca

lc
(v

")
 

 G
ex

pt
(v

")
]/G

ex
pt
(v

")
 (%

)

v"

Figure 2.5: Comparison of the vibrational term values characterizing 24Mg2 supported
by the ab initio X 1Σ+

g potential calculated in Ref. [2] with their experimentally derived
counterparts. The top and bottom panels show the errors and relative errors, respectively,
in the G(v′′, J ′′ = 0) vibrational energies corresponding to the X 1Σ+

g PECs obtained using
the CCSDT-based composite scheme defined by Eq. (2.21) and its CCSD(T)-based analog
defined by Eq. (2.23) relative to the experimentally derived data [161, 166]. Adapted from
Ref. [2].
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CHAPTER 3

THE CC(P;Q) FORMALISM

3.1 Introduction to the CC(P;Q) Methodology

As mentioned in the Introduction, the CC(P;Q) approach provides a robust way of sys-

tematically approaching the energetics obtained using high-level CCSDT/EOMCCSDT,

CCSDTQ/EOMCCSDTQ, etc. parent methods, while avoiding failures of perturbative ap-

proaches, without resorting to the full computational costs. The idea behind the CC(P;Q)

formalism dates back to the original MMCC expansions of Refs. [78–80] (see Refs. [83] and

[84] for reviews), where one applies a nonperturbative, noniterative correction to the energy

obtained in a lower-order CC/EOMCC computation. While the MMCC ideas can be used

in a plethora of ways, we will focus on the form of CC(P;Q) energy correction which resulted

from generalization of the biorthogonal formulation of MMCC [74, 89–91]. In this section,

we will summarize the key concepts and equations behind the CC(P;Q) theory relevant to

the works described in this dissertation.

The key component of the CC(P;Q) theory is the identification of two disjoint subspaces

of the N -electron Hilbert space, H , which are designated as the P and Q spaces or H (P )

and H (Q), respectively. The P space is spanned by excited Slater determinants |ΦK⟩, which

together with the reference determinant |Φ⟩ dominates the many-electron wave function.

On the other hand, the Q space is spanned by the excited determinants that are utilized

to construct the noniterative correction to the electronic energy obtained by solving the

CC/EOMCC equations in the P space.

Once the P and Q spaces are appropriately defined, we then proceed as follows. In the

first, iterative, part of a CC(P;Q) computation, designated as CC(P )/EOMCC(P ), we begin

47



by approximating the T , Rµ, and Lµ operators, used in Eqs. (2.1), (2.3), and (2.11), as

T ≈ T (P ) =
∑

|ΦK⟩∈H (P )

tKEK , (3.1)

Rµ ≈ R(P )
µ = rµ,01 +

∑
|ΦK⟩∈H (P )

rµ,KEK , (3.2)

and

Lµ ≈ L(P )
µ = δµ01 +

∑
|ΦK⟩∈H (P )

lµ,K(EK)†, (3.3)

respectively, where EK is the usual particle–hole excitation operator that generates the

excited Slater determinants |ΦK⟩ = EK |Φ⟩. Note that in Eqs. (3.1)–(3.3), we explicitly

restrict the many-body expansion of T , Rµ, and Lµ to the P space.

We then proceed to solving the CC/EOMCC equations in the P space. In the case of

the ground state, we insert the CC(P ) wave function
∣∣∣Ψ(P )

0

〉
= eT (P ) |Φ⟩ into the Schrödinger

equation to form the connected cluster form of the Schrödinger equation in the P space,

H
(P ) |Φ⟩ = E

(P )
0 |Φ⟩, and projecting it onto excited determinants in the P space to obtain

the system of nonlinear equations

⟨ΦK |H(P )|Φ⟩ = 0 ∀ |ΦK⟩ ∈ H (P ), (3.4)

where H
(P ) = e−T (P )

HeT (P ) = (HeT (P ))C is the similarity-transformed Hamiltonian in the

P space and E
(P )
0 is the ground-state CC(P ) energy. After solving Eq. (3.4) for the cluster

amplitudes tK in the usual way, the CC(P ) energy is computed as

E
(P )
0 = ⟨Φ| H

(P ) |Φ⟩ . (3.5)

Subsequently, the excitation amplitudes rµ,K and excitation energies ω(P )
µ = E(P )

µ − E
(P )
0

associated with the EOMCC(P ) wave function
∣∣∣Ψ(P )

µ

〉
= R(P )

µ eT (P ) |Φ⟩ are determined by

diagonalizing the similarity-transformed Hamiltonian H
(P ) in the P space (for simplicity, we

assume that the excited state of interest has the same symmetry as the ground state; we
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will discuss the necessary adjustment for excited states having different symmetries from the

ground state later), which correspond to solving the eigenvalue problem

⟨ΦK |(H(P )
openR(P )

µ,open)C |Φ⟩ = ω(P )
µ rµ,K ∀ |ΦK⟩ ∈ H (P ), (3.6)

where H
(P )
open = H

(P ) − E
(P )
0 1 and R(P )

µ,open = R(P )
µ − rµ,01. The zeroth-body component of

R(P )
µ is computed a posteriori in the usual way as

rµ,0 = ⟨Φ|(H(P )
openR(P )

µ,open)C |Φ⟩ /ω(P )
µ . (3.7)

In addition to the above CC(P )/EOMCC(P ) steps, we also solve the corresponding left

CC/EOMCC system of equations in the P space,

δµ0 ⟨Φ|H(P )
open|ΦK⟩ + ⟨Φ|L(P )

µ,openH
(P )
open|ΦK⟩ = ω(P )

µ lµ,K ∀ |ΦK⟩ ∈ H (P ), (3.8)

for the lµ,K amplitudes defining the EOMCC(P ) bra state
〈
Ψ̃(P )

µ

∣∣∣ = ⟨Φ| L(P )
µ e−T (P ) , which

are necessary to construct the CC(P;Q) energy correction (vide infra), while enforcing the

biorthonormality condition ⟨Φ|L(P )
µ R(P )

ν |Φ⟩ = δµν as described earlier.

Once the iterative CC(P )/EOMCC(P ) procedure is completed, we proceed to the sec-

ond key step in the CC(P;Q) calculation, namely, the noniterative determination of energy

correction for the many-electron correlation effects of interest with the help of the Q-space

determinants. The CC(P;Q) energy correction used in this dissertation has the form [74, 75]

δµ(P ; Q) =
∑

|ΦK⟩∈H (Q)

ℓµ,K(P )Mµ,K(P ), (3.9)

where

Mµ,K(P ) = ⟨ΦK |H(P )
R(P )

µ |Φ⟩ (3.10)

is the generalized moments of CC/EOMCC equations corresponding to projection of the

connected cluster form of Schrödinger equation containing the CC/EOMCC wave function

in the P space onto excited Slater determinants residing in the Q space. Note that in writing

Eq. (3.10) we combined the ground- and excited-state cases, denoted with µ = 0 and µ > 0,
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respectively, into a single formalism by setting R
(P )
µ=0 = 1. In defining the ℓµ,K(P ) amplitudes

that multiply the Mµ,K(P ) quantities in Eq. (3.9), we adopt the quasi-perturbative formula

ℓµ,K(P ) =
⟨Φ| L(P )

µ H
(P ) |ΦK⟩

Dµ,K(P ) , (3.11)

where the denominator Dµ,K(P ) is defined via the Epstein–Nesbet partitioning,

Dµ,K(P ) = E(P )
µ − ⟨ΦK | H

(P ) |ΦK⟩ . (3.12)

Note that one has the option to use the approximate Møller–Plesset form of Dµ,K(P ) (see

below for details), but, as shown in Refs. [1, 73, 76, 77, 114], among others, and as illustrated

by example calculations shown in this dissertation, the Epstein–Nesbet form is generally more

accurate. The final CC(P;Q) energy is given by

E(P +Q)
µ = E(P )

µ + δµ(P ; Q). (3.13)

At this point, the only thing that remains to be decided is how to define the P and

Q spaces underlying the CC(P;Q) calculation. As already mentioned in the Introduction,

the CC(P;Q) formalism is very versatile due to the flexibility it grants the user in defining

the P and Q spaces. For example, the simplest manner of defining the P and Q spaces

is by following the traditional truncation scheme in the many-body expansion of T , Rµ,

and Lµ, i.e., partitioning the two subspaces based on the excitation ranks of determinants.

In doing so, the resulting CC(P;Q) schemes become equivalent to their CR-CC/EOMCC

precursors. One could also turn to defining the P and Q spaces based on active-space ideas,

or turn to hybrid schemes relying on CIQMC wave function sampling or selected CI runs.

For the remainder of this chapter, we will focus on the CR-CC/EOMCC methodology and

active-space CC(P;Q) approaches.
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3.2 The Completely Renormalized CC/EOMCC Framework

3.2.1 Theory

Let us begin our survey of the many forms of CC(P;Q)-based approaches by discussing

the most straightforward way of defining the P and Q spaces, namely, by relying on the

traditional truncation level defining the CC/EOMCC hierarchy as done in the left-eigenstate

CR-CC/EOMCC methods [82–84, 89–91, 93, 95]. Within the CR-CC/EOMCC methodology,

we define the P space to be spanned by n-tuply excited Slater determinants with n =

1, . . . , mA, while the complementary Q space is spanned by m-tuply excited determinants

with m = mA + 1, . . . , mB. In other words, we are correcting the conventional CC/EOMCC

calculations where T and Rµ are truncated at mA, as described in Section 2.1, with the

many-electron correlation effects described by the remaining Tn and Rµ,n components with

n = mA + 1, . . . , mB.

To illustrate how the CR-CC/EOMCC methodologies work, let us focus on the triples

correction to CCSD/EOMCCSD, defining the CR-CC(2,3) and CR-EOMCC(2,3) approaches

that are of interest in this dissertation. In these cases, we set mA = 2 and mB = 3, which

means that the P space is spanned by all singly and doubly excited determinants and the

Q space is populated by all triply excited determinants in the language of the CC(P;Q)

theory. Thus, the initial CC(P )/EOMCC(P ) step in a CR-CC/EOMCC(2,3) calculation is

none other than performing CCSD/EOMCCSD iterations as usual, in addition to solving for

left CCSD/EOMCCSD amplitudes needed to construct the noniterative moment corrections.

After the CCSD/EOMCCSD energy E[(EOM)CCSD]
µ and the cluster and EOM excitation and

de-excitation amplitudes are obtained, the noniterative triples correction is determined as

δµ(2, 3) =
∑

i<j<k
a<b<c

ℓ abc
µ,ijk(2)M abc

µ,ijk(2), (3.14)

where

M abc
µ,ijk(2) =

〈
Φabc

ijk

∣∣∣ H
(CCSD)

R(EOMCCSD)
µ |Φ⟩ (3.15)
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is the projection of the connected cluster form of the Schrödinger equation containing the

CCSD/EOMCCSD wave function onto the triply excited determinants
∣∣∣Φabc

ijk

〉
, assuming

R
(EOMCCSD)
µ=0 = 1, and

ℓ abc
µ,ijk(2) =

〈
Φ

∣∣∣L(EOMCCSD)
µ H

(CCSD)∣∣∣Φabc
ijk

〉
D abc

µ,ijk (2)
. (3.16)

In Eqs. (3.15) and (3.16), H
(CCSD) is the CCSD similarity-transformed Hamiltonian. The

denominator in Eq. (3.16) is defined as

D abc
µ,ijk (2) = E[(EOM)CCSD]

µ −
〈
Φabc

ijk

∣∣∣ H
(CCSD) ∣∣∣Φabc

ijk

〉
(3.17)

for the full Epstein–Nesbet variant of CR-CC/EOMCC(2,3), which is commonly designated

as CR-CC/EOMCC(2,3),D or simply CR-CC/EOMCC(2,3). As mentioned above, one can

evoke the Møller–Plesset approximation, where the denominator becomes

D abc
µ,ijk (2) = ω(EOMCCSD)

µ − [ϵa + ϵb + ϵc − (ϵi + ϵj + ϵk)] , (3.18)

in which ϵp is the orbital energy of the spin orbital |p⟩. In this case, one obtains the CR-

CC(2,3),A and CR-EOMCC(2,3),A approaches, which are equivalent to CCSD(2)T [192] and

EOMCC(2)PT(2) [193, 194], respectively. Once the δµ(2, 3) correction is determined, the

final CR-CC/EOMCC(2,3) energy is given by

E[CR-CC/EOMCC(2,3)]
µ = E[(EOM)CCSD]

µ + δµ(2, 3). (3.19)

It is worth mentioning that there is one caveat when excited-state computations are

considered within the CC(P;Q) methodology, namely, the violation of strict size intensivity in

the CR-EOMCC(2,3) and similar methods. In the context of excitation energy calculations,

one can view size intensivity as the correct description of a given many-electron system that

is separated into noninteracting fragments, in which only a single fragments is excited while

the remaining ones continue to be in their respective ground state. The consequences of

violating strict size intensivity, while being typically small compared to other sources of
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error (e.g., the neglect of higher–than–two-body cluster and excitation components) when

small- to medium-sized molecules are considered, may become substantial for larger systems,

such as the FR0-SB photobase that is of interest in this dissertation work. As shown in

Refs. [93, 95], one can identify the cause of this issue by analyzing the various contributions

to the CR-EOMCC(2,3) vertical excitation energy,

ω[CR-EOMCC(2,3)]
µ = E[CR-EOMCC(2,3)]

µ − E
[CR-CC(2,3)]
0 = ω(EOMCCSD)

µ + αµ(2, 3) + βµ(2, 3),

(3.20)

where ω(EOMCCSD)
µ is the underlying EOMCCSD vertical excitation energy,

αµ(2, 3) =
∑

i<j<k
a<b<c

ℓ abc
µ,ijk(2)M̃ abc

µ,ijk(2) (3.21)

is the contribution of the triply excited moment of EOMCCSD due to Rµ,1 and Rµ,2, namely,

M̃ abc
µ,ijk(2) =

〈
Φabc

ijk

∣∣∣H(CCSD)(Rµ,1 + Rµ,2)
∣∣∣Φ〉

, and

βµ(2, 3) =
∑

i<j<k
a<b<c

[
rµ,0ℓ

abc
µ,ijk(2) − ℓ abc

0,ijk(2)
]
M abc

0,ijk(2), (3.22)

is a size-extensive or approximately size-extensive term due to the presence of the ground-

state moment M abc
0,ijk(2) in it. Note that the complete moment M abc

µ,ijk(2) is a sum of M̃ abc
µ,ijk(2)

in Eq. (3.21) and rµ,0M
abc

0,ijk(2). Because the EOMCCSD vertical excitation energy and the

αµ(2, 3) contribution, which does not contain any size-extensive term, are size intensive, one

could then define a rigorously size-intensive modification to CR-EOMCC(2,3) by eliminating

the βµ(2, 3) term, which grows with the system size [93, 194], from Eq. (3.20). In doing so,

one obtains a method designated as δ-CR-EOMCC(2,3).

As already mentioned above, the CR-CC/EOMCC family of methods are very power-

ful. For example, focusing on excited-state computations relevant to photochemistry and

spectroscopy that are of interest in this dissertation work, in a report [195] where about 200

excited states of 28 organic molecules were examined by using a variety of EOMCC meth-

ods, it was shown that one needs triples corrections, such as those of the δ-CR-EOMCC(2,3)
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approach, on top of EOMCCSD to obtain a quantitative description (errors reduced to ∼0.1–

0.2 eV; EOMCCSD produces errors on the order of 0.5 eV or higher). Furthermore, these

results are achievable with considerable savings in the computational costs. Indeed, the

computational time of performing a CR-CC(2,3) or CR-EOMCC(2,3) scales as n2
on

4
u in the

iterative CCSD/EOMCCSD steps and n3
on

4
u for the determination of the noniterative δµ(2, 3)

correction. This means that CR-CC(2,3) and CR-EOMCC(2,3) have reduced computational

costs compared to the parent CCSDT/EOMCCSDT calculations, which have iterative steps

that scale as n3
on

5
u.

3.2.2 Application: Photochemistry of the Novel Super Photobase FR0-SB

To illustrate the effectiveness of the CR-CC/EOMCC approaches belonging to the CC(P;Q)

methodology, we proceed to the description of our work in the investigation of the super

photobase FR0-SB. This work has been part of an ongoing collaboration at Michigan State

University involving synthesis, theory, and experiments, and so far has resulted in several

publications [3–8] (see, also, Ref. [150]). In this section, we will discuss the computational and

theoretical portions of Refs. [3–5], where we rely on the CR-CC(2,3) and δ-CR-EOMCC(2,3)

energetics, along with one-electron properties obtained using EOMCCSD, to shed light on

the origin of the photobasicity of FR0-SB, the enhancement in excited-state proton transfer

(ESPT) reaction using two-photon excitation (TPE), and the steric effect that govern the

extent of the ESPT reaction in alcohol solvents.

The FR0-SB molecule is benign in its ground electronic state, having a pKa of about 7,

i.e., neutral [3, 150], but upon photoexcitation to its excited state FR0-SB* it becomes a

very strong base with pKa of about 21 units. Such behavior is useful in precision chemistry,

where the ability to activate chemical reagents to perform spatially and temporally localized

reactions is desirable. Among the best method to achieve such precision is through the use

of photoactivated chemical reagents, with the most common type being super photoacids

[196, 197]. Such species exhibit a very large negative shift in pKa upon photoexcitation,
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typically to the first excited electronic state. While there have been a large number of

photoacids investigated to date (see, e.g., Refs. [198–211]), only a handful of their photobase

counterparts have been studied. While there are other compounds, primarily quinoline

derivatives, which are able to undergo ESPT in methanol, with 5-methoxyquinoline being

able to attain a pKa of about 16 in its excited state [212–219], here we focus on the fluorene-

based FR0-SB, which is the much stronger photobase.

The structure of FR0-SB is shown in Fig. 3.1. Upon photoexcitation from its ground S0

state to the first excited singlet S1 state, FR0-SB is able to abstract proton from the sur-

rounding alcohol solvent molecules. This behavior is shown in Fig. 3.1, adapted from Figure

2 of Ref. [150] where the results of absorption and fluorescence spectroscopy measurements

of FR0-SB in protic and aprotic solvents were reported. To be precise, when FR0-SB is

dissolved in acetonitrile, which is an aprotic solvent, the absorption and fluorescence maxima

of the chromophore in the visible region are located at 369 and 479 nm, respectively [150].

These two bands corresponds to the excitation of FR0-SB to the excited FR0-SB* species

and the subsequent emission from the relaxed FR0-SB* back to the ground electronic state.

However, when FR0-SB is dissolved in ethanol, which is a protic solvent, two overlapping

emission bands were observed with maxima at 463 and 628 nm [150], while the absorption

spectrum practically stays unchanged. To verify the identity of the extra peak at 628 nm

that is not observed in acetonitrile, the authors of Ref. [150] performed an additional set of

measurements for FR0-SB in ethanol, but now acidified using HClO4. In doing so, one could

then observe the absorption spectrum corresponding to the excitation of FR0-HSB+, which

is the protonated form of FR0-SB, and the subsequent emission of the relaxed FR0-HSB+*

back to the ground state in the fluorescence spectrum. Indeed, as seen in Fig. 3.1, the

emission peak at 630 nm observed for the acidified species matches perfectly the secondary

emission peak observed for FR0-SB in ethanol, which is missing in acetonitrile. Thus, the

authors of Ref. [150] were able to conclude that there is indeed proton transfer from the

alcohol solvent environment to the FR0-SB chromophore, and this reaction has to happen
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in the excited state, not in the ground state. Furthermore, by using the 0–0 transition

frequencies of FR0-SB and FR0-HSB+, which can be approximated from the crossings of

the respective absorption and emission curves, one can construct a thermodynamic cycle

involving FR0-SB, FR0-SB*, FR0-HSB+, and FR0-HSB+* and use the Förster equation

[220, 221] to estimate the change in the pKa of FR0-SB upon photoexcitation. Using the

measured pKa in the ground state, of ∼7, and the predicted increase of 14 units determined

using the Förster equation, the authors of Ref. [150] noted that the excited-state pKa of

FR0-SB is on the order of 21, which makes FR0-SB the strongest known photobase to date

[3, 150].

Our initial task in this collaborative project was to investigate the driving force behind the

photobasicity of FR0-SB [3]. To that end, we performed electronic structure calculations

to determine some of the key properties of the ground (S0) and low-lying excited singlet

electronic (Sn, n > 0) states of the isolated FR0-SB molecule, including the ground-state

geometry, the excitation energies and oscillator strengths characterizing the vertical S0 → Sn

transitions, and the electronic dipole moments of the calculated states. With the exception of

the molecular geometry, which was optimized using the Kohn–Sham formulation [222] of the

density functional theory (DFT) [223], all of the characteristics of the calculated electronic

states were obtained by using high-level ab initio methods of quantum chemistry based on

the CC theory and its EOM extension to excited states. Given the relatively large size of

the FR0-SB molecule, which consists of 58 atoms and 190 electrons, to use the CC and

EOMCC methods as fully as possible and to make sure that the higher-order many-electron

correlation effects beyond the basic EOMCCSD level are properly accounted for we used the

following composite approach to determine the vertical excitation energies corresponding to

the S0 → Sn transitions:

ω(EOMCC)
n = ω(EOMCCSD/6-31+G*)

n +
[
ω(δ-CR-EOMCC(2,3)/6-31G)

n − ω(EOMCCSD/6-31G)
n

]
. (3.23)

The first term on the right-hand side of Eq. (3.23) denotes the vertical excitation energy

obtained in the EOMCCSD calculations using the 6-31+G* basis set [224–226], which was
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the largest basis set we could afford in such computations. The next two terms on the right-

hand side of Eq. (3.23), which represent the difference between the δ-CR-EOMCC(2,3) and

EOMCCSD vertical excitation energies obtained by using a smaller 6-31G basis [224], correct

the EOMCCSD/6-31+G* results for the higher-order many-electron correlation effects due to

triple excitations. The size intensivity of the EOMCCSD and δ-CR-EOMCC(2,3) excitation

energies entering our composite computational protocol defined by Eq. (3.23), combined with

the size extensivity of the underlying CCSD and CR-CC(2,3) approaches, is important, too,

since without reinforcing these formal theory features one risks losing accuracy with growing

molecular size.

The CCSD/6-31+G* and EOMCCSD/6-31+G* calculations were also used to determine

the dipole moments in the ground and excited states and the oscillator strengths character-

izing the vertical S0 → Sn (in general, Sm → Sn) transitions. As usual, this was done by

solving both the right and left EOMCCSD eigenvalue problems and constructing the relevant

one-electron reduced density and transition density matrices. While triples corrections, such

as those of CR-CC(2,3) and δ-CR-EOMCC(2,3), are important to improve the energetics,

the description of one-electron properties, such as dipole moments and oscillator strengths

characterizing one-electron transitions examined in this study, by the CCSD and EOMCCSD

approaches is generally quite accurate.

All single-point CC and EOMCC calculations reported in our initial investigation [3] and

summarized here relied on the ground-state geometry of FR0-SB, which we optimized using

the analytic gradients of the CAM-B3LYP [227] DFT approach employing the 6-31+G*

basis set. We chose the CAM-B3LYP functional because the extension of this functional

to excited states using the time-dependent (TD) DFT formalism [228] provided vertical

excitation energies closest to those obtained with EOMCC. Furthermore, the ground-state

geometry of the FR0-SB molecule resulting from the CAMB3LYP/6-31+G* calculations

turned out to be virtually identical (to within 0.004 Å on average and not exceeding 0.02

Å for the bond lengths) to that obtained with the second-order Møller–Plesset perturbation
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theory (MP2) approach using the same basis. All of the electronic structure calculations

for the FR0-SB molecule reported in Ref. [3] and summarized here, including the CAM-

B3LYP and MP2 geometry optimizations and the CC/EOMCC single-point calculations,

were performed by using the GAMESS package [182–184]. The relevant CCSD, EOMCCSD,

and δ-CR-EOMCC(2,3) computations using the RHF determinant as a reference and the

corresponding left-eigenstate CCSD and EOMCCSD calculations, which were needed to

determine the triples corrections of δ-CR-EOMCC(2,3) and the one-electron properties of

interest, including the dipole moments and oscillator strengths, were performed by using the

CC/EOMCC routines developed by the Piecuch group [183], which form part of the GAMESS

code. In all of the post-RHF calculations, the core orbitals associated with the 1s shells of C

and N atoms were kept frozen; i.e., we correlated 138 electrons. In the calculations employing

the 6-31+G* basis set, we used spherical d-type polarization functions. The visualization of

the optimized structure of FR0-SB in its ground and excited electronic states shown in Fig.

3.2 was accomplished by using VMD software [229].

We show in Table 3.1 some of the key properties of the low-lying singlet electronic states of

the FR0-SB molecule obtained in the ab initio EOMCC calculations described above. They

include the excitation energies and oscillator strengths characterizing the vertical S0 → Sn

(n = 1–4) transitions and the electronic dipole moments of the calculated ground and excited

states. To verify the reliability of our EOMCC-based computational protocol defined by Eq.

(3.23), we compared our theoretical gas-phase value of the S0 → S1 vertical excitation en-

ergy of FR0-SB with the corresponding experimental photoabsorption energy characterizing

FR0-SB dissolved in hexane, which is the least polar solvent considered in our experiments

that will be reported in a future publication. Our best ab initio EOMCC value based on

Eq. (3.23), of 3.70 eV, matches closely the experimentally derived S0 → S1 transition energy

corresponding to the maximum of the photoabsorption band characterizing FR0-SB dis-

solved in hexane, which is 3.52 eV. If we did not correct the EOMCCSD/6-31+G* excitation

energy for the triples using Eq. (3.23), we would obtain 4.10 eV, which shows that high-order
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many-electron correlation effects beyond the EOMCCSD level, estimated in this study with

the help of the δ-CR-EOMCC(2,3) approach, are significant. We should also mention that

our best TD-DFT result for the S0 → S1 vertical excitation energy of FR0-SB, obtained

using the CAM-B3LYP functional, of 3.92 eV, is not as good as the EOMCC value shown in

Table 3.1. Moving to our main theoretical findings summarized in Table Eq. (3.23), we can

see that of the four lowest-energy singlet excited states of FR0-SB calculated in this study,

two, namely, S1 and S2, can be accessed by photoabsorption. The remaining two states, S3

and S4, are characterized by negligible oscillator strengths. What is most important for this

study are the observations that both S1 and S2 have similar peak positions and intensities

on the same order, resulting in broadening of the FR0-SB → FR0-SB* photoabsorption

band, and that the electronic dipole moment of FR0-SB increases significantly upon pho-

toexcitation, from 2.6 D in the ground electronic state to 8.6 D for S1 and to 6.7 D for

S2. This more-or-less 3-fold increase in the dipole moment as a result of the S0 → S1 and

S0 → S2 optical transitions in FR0-SB, observed in our EOMCC calculations and shown

in Fig. 3.2 for S1, demonstrates that the deprotonation of protic solvent molecules by the

photoactivated FR0-SB species is indeed possible, since there is an accumulation of the net

negative charge on the imine nitrogen that is accompanied by a decrease of electron density

on the amine nitrogen. This very small charge transfer, of about 0.1e, occurs over a very

large distance of >10 Å, which is made possible by the central fluorene linker, and this is ex-

actly what is causing the very large increase in the dipole moment of FR0-SB upon S0 → S1

photoexcitation.
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Table 3.1: Orbital character, vertical excitation energies ω(EOMCC)
n (in eV and nm), oscillator

strengths, and electronic dipole moment values µn (in D) of the four lowest-energy excited
singlet electronic states Sn of FR0-SB as obtained in the EOMCC calculations described in
the text. Adapted from Ref. [3].

State Orbital character ω(EOMCC)
n Oscillator strength µn

a

(eV) (nm)
S1 π → π∗ 3.70 335 0.74 8.6
S2 π → π∗ 3.96 313 0.35 6.7
S3 π → π∗ 4.23 293 0.02 5.4
S4 π → π∗ 4.45 279 0.03 4.3

aThe CCSD value of the dipole moment in the ground electronic state S0 is 2.6 D.
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Figure 3.1: The molecular structure of FR0-SB with a representation of the excited-state
proton transfer (ESPT) process. The bottom left panel, adapted from Ref. [150], shows the
absorption (unshaded) and fluorescence (shaded) spectra of FR0-SB dissolved in acetonitrile
(ACN, blue), ethanol (EtOH, black), and ethanol acidified with HClO4 (EtOH/HClO4, red).
The hν1 and hν2 labels correspond to the approximate 0–0 transition wavelengths of FR0-
SB and FR0-HSB+, respectively. The bottom right panel provides a simplified illustration
of the excitation and emission processes involving the unprotonated and protonated forms of
FR0-SB, with labels corresponding to the maxima observed in the absorption and emission
spectra.

61



Figure 3.2: The minimum-energy geometry of the ground electronic state of FR0-SB along
with the EOMCCSD/6-31+G* electronic densities and dipole moment vectors characterizing
the S0 (orange) and S1 (magenta) states. The S1–S0 electronic density difference, adapted
from Ref. [4], is shown in the bottom, in which areas shaded with red (blue) indicate an
increase (decrease) in the electronic density upon S1 → S0 photoexcitation. The change
in Mulliken charges of the amine and imine nitrogens of the FR0-SB chromophore upon
photoexcitation are also indicated.
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Once we understood the origin of photobasicity of FR0-SB, our experimental collabora-

tors performed experiments where chromophore is excited via TPE instead of the conven-

tional one-photon excitation (OPE) process and observed an interesting phenomenon. This

is demonstrated in Fig. 3.3, adapted from Fig. 2 of Ref. [5], where we show the steady-state

fluorescence spectra following OPE and TPE of FR0-SB dissolved in methanol, ethanol,

n-propanol, and i-propanol. Focusing on the spectra in methanol shown in Fig. 3.3(a), it is

clear that the emission peak area corresponding to the protonated FR0-SB species is larger

for the TPE-induced fluorescence than in the OPE-induced fluorescence after normalizing

for the unprotonated emission peak area. In fact, ESPT between FR0-SB and methanol is

enchanced by a factor of ∼62%. Interestingly, we also observe a solvent-dependent behav-

ior in this TPE enhancement of ESPT of FR0-SB, where the enhancement decreases from

methanol to ethanol to n-propanol and there is no observed enhancement at all in i-propanol.

To investigate this phenomenon, we begin by looking at the OPE and TPE absorption

cross sections arising from the first- and second-order time-dependent perturbation theory,

respectively (see, e.g., Ref. [230]). The 0 → f OPE absorption cross section, with 0 and f

denoting the initial and final electronic states, respectively, is [230]

σ
(1)
f0 (ω) = A |µf0|2 gM1(ω), (3.24)

where ω is the frequency of the exciting photon (in our case, the frequency of a 400 nm

laser), A is a constant, µf0 denotes the magnitude of the transition dipole moment between

the ground and excited electronic states, and gM1(ω) is the OPE distribution function or

linewidth associated with the molecular systenm of interest. In presenting Eq. (3.24), we

have assumed an isotropic averaging over the directions of the transition dipole moment

vector µf0. To arrive at an expression for the absorption cross section associated with the

isoenergetic one-color TPE, where the laser frequency is half of its OPE counterpart, we

take advantage of the fact that no resonance at 800 nm is observed in our experiments, in

agreement with our electronic structure calculations. Under these conditions, the absorption
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cross section for TPE becomes [231]

σ
(2)
f0 (ω) = B

∣∣∣∣∣∑
ν

µfνµν0

ων0 − ω/2 + iΓν(ω/2)

∣∣∣∣∣
2

gM2(ω), (3.25)

where B is a constant, ων0 is the frequency needed to reach the intermediate state ν from the

ground state 0, iΓν(ω/2) is a damping factor that is inversely proportional to the lifetime of

a given intermediate state ν, and gM2(ω) is the TPE line shape function. In analogy to the

OPE absorption cross section, we have performed an isotropic averaging over the directions

of the transition dipole moment vectors µfν and and µν0.

Equation (3.25) is useful, but in this work we are interested in relating the TPE absrption

cross section with the change in the dipole moment upon 0 → f photoexcitation. One can

derive such a relationship if we perform the following mathematical manipulations [232].

First, we separate the ν = 0 and ν = f terms from the sum over states in Eq. (3.25). Next,

we take advantage that, in our case, 0 and f correspond to the elctronically bound S0 and

S1 states of FR0-SB, respectively. This allows us to eliminate the iΓν(ω/2) term in the

ν = 0 and ν = f denominators in Eq. (3.25). In the final step, we replace ωf0 in the ν = f

denominator by ω and combine the ν = 0 and ν = f contributions to obtain [232]

σ
(2)
f0 (ω) = B

∣∣∣∣∣∣
∑

ν ̸=0,f

µfνµν0

ων0 − ω/2 + iΓν(ω/2) + µf0∆µf0

ω/2

∣∣∣∣∣∣
2

gM2(ω). (3.26)

It is customary to refer to the first term in Eq. (3.26) as the “virtual” pathway and to the

second one, which relies on the transition dipole moment µf0 and the difference between the

permanent ground- and excited-state dipoles ∆µf0 ≡ µff − µ00, as the “dipole” pathway

[233]. Equation (3.26) shows that for centrosymmetric molecules, for which ∆µf0 vanishes

identically, the virtual pathway is the only contributing term to the TPE absorption cross

section. However, FR0-SB is not centrosymmetric and, thus, it is interesting to examine

the extent to which each pathway contributes to the S0 → S1 one-color TPE considered

here. For the first term in Eq. (3.26) to be large, the following three conditions would

have to be satisfied: (i) the ων0 frequency characterizing the 0 → ν transition would have

to be close to the frequency ω/2 of each of the two photons associated with TPE, (ii)
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the iΓν(ω/2) damping factor would have to be very small, i.e., the intermediate state ν

would have to be sufficiently long-lived, and (iii) the 0 → ν and ν → f transitions would

have to be allowed, giving rise to larger µν0 and µfν transition dipole moments. In the

case of the TPE experiments performed in Ref. [5], it is unlikely that conditions (i)–(iii)

can be simultaneously satisfied. Indeed, since there are no dipole-allowed electronic states

between S0 and S1, the intermediate state ν satisfying condition (i) would have to be a

rovibrational resonance supported by the ground-state electronic potential. It is unlikely

that such resonances are long-lived and characterized by large 0 → ν and ν → f transition

dipole moments. It is possible that the intermediate states ν characterized by larger µν0

and µfν values exist, but those would have to be electronic states higher in energy than S1,

which cannot satisfy the resonant condition (i). Furthermore, as demonstrated in Ref. [3]

and summarized above, the low-lying electronically excited states above S1 are characterized

by small or even negligible transition dipole moments from the ground state. In other

words, while the virtual pathway contributes to the TPE cross section, the probability that

it dominates it seems low, especially when we realize that there are reasons for the dipole

pathway to play a substantial role in the case of the molecular systems considered in this

work. Indeed, as shown in Refs. [3, 4] and as further elaborated on below, the S0 → S1

excitations in the isolated and solvated FR0-SB are characterized by large transition dipole

moments and significant changes in the permanent dipoles. This suggests that the second

term in Eq. (3.26) plays a major role, which is consistent with the well-established fact

that the dipole pathway becomes critical when TPE involves charge transfer associated with

substantial change in the permanent dipole upon photoexcitation [234–240]. Although the

S0 → S1 transition in FR0-SB is accompanied by a migration of a small amount of charge

[3, 4], this migration happens over a very large distance, giving rise to more than a threefold

increase in dipole moment and a substantial enhancement of the second term in Eq. (3.26).

Given the above analysis, from this point on, we focus on the dipole pathway and assume

that we can approximate the TPE absorption cross section by the second term in Eq. (3.26),
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i.e. [238],

σ
(2)
f0 (ω) ≈ B′ |µf0|2 |∆µf0|2 gM2(ω), (3.27)

where B′ = 4B/ω2. Furthermore, by forming the ratio of Eqs. (3.24) and (3.27), we can

obtain a new expression that summarizes the difference between OPE and TPE, in which

the change in permanent dipole moment acts as an amplification factor,

σ
(2)
f0 (ω/2)
σ

(1)
f0 (ω)

= B′

A

|µf0|2 |∆µf0|2 gM2(ω)
|µf0|2 gM1(ω)

= C
|∆µf0|2 gM2(ω)

gM1(ω) , (3.28)

where C = B′/A.

As illustrated in the mathematical derivation above, the absorption cross sections for

both one- and two-photon excitation processes depend on the square of the absolute value

of the transition dipole moment µf0 characterizing the 0 → f vertical electronic excitation,

which, in our case, is the transition dipole µ10 corresponding to the S0 → S1 photoabsorption

for the FR0-SB system in various solvents. However, in the case of TPE, the absorption

cross section also depends on the difference between the electronic dipole moments of the f

and 0 states, ∆µf0, which, in our case, is the difference ∆µ10 ≡ µ1 − µ0 between the dipole

moment µ1 characterizing the first excited singlet S1 state of FR0-SB and its S0 counterpart

µ0. Consequently, ∆µ10 and its dependence on the solvent environment hold the key to

understanding the enhancement of the ESPT reactions between the FR0-SB photobase and

alcohol solvents observed in the case of TPE. To provide insights into the effect of solvation

on ∆µ10 and other properties characterizing the S0 and S1 states of the solvated FR0-SB

chromophore and transitions between them, we performed electronic structure calculations

using the following CC/EOMCC-based composite approach.

In the computations reported in Ref. [5] and summarized here, we focus on analyzing the

role of solvation effects on the S0–S1 vertical and adiabatic transition energies and vertical

transition dipole moments, along with the electronic dipoles characterizing the individual S0

and S1 states of FR0-SB, which are key quantities in comparing the one- and two-photon

S0 → S1 absorption cross sections. The solvent dependence of the enhancement nessecitates
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the incorporation of solvation effects in the CC/EOMCC computations, which our protocol

described in Ref. [3] and summarized above does not take into account. As explained in

Ref. [5], in modeling the solvated FR0-SB chromophore, we considered the complex of

FR0-SB hydrogen-bonded to a cluster of three alcohol solvent molecules, designated as

[FR0-SB· · · HOR], which, according to our earlier investigation of the steric effects on the

ESPT process involving FR0-SB and n- and i-propanol, is the minimum number of explicit

solvent molecules required for the proton transfer to occur [4]. Following Ref. [4], we used

the “branched” arrangement of the three alcohol solvent molecules treated in our modeling

explicitly, with one of them hydrogen-bonded to FR0-SB and the other two solvating it, since

such an arrangement leads to the lowest energy barriers for the ESPT reactions involving

FR0-SB (see Ref. [4] and the discussion below for further details). The remaining, bulk,

solvation effects were described using the continuum solvation model based on the solute

electron density (SMD) approach [241]. The alcohol solvents considered in our computations

were methanol, ethanol, n-propanol, and i-propanol.

For each of the alcohol solvents considered in our calculations, the geometry optimiza-

tion of the [FR0-SB· · · HOR] complex in its S0 state, used in the subsequent CC/EOMCC

calculations, was performed employing the Kohn–Sham formulation of DFT. To obtain the

corresponding minimum-energy structures of the [FR0-SB· · · HOR] species in the S1 state,

we used the TD-DFT extension to excited electronic states. Following Refs. [3, 4], in car-

rying out these geometry optimizations we used the CAM-B3LYP functional. All geometry

optimizations of the [FR0-SB· · · HOR] complex employed the 6-31+G* basis and accounted

for the bulk solvation effects using the aforementioned SMD model.

To provide accurate information about the transition energies and transition dipole mo-

ments characterizing the absorption (S0 → S1) and emission (S1 → S0) processes involving

the solvated FR0-SB species and the corresponding dipoles in the S0 and S1 states, which

are all needed to model the one- and two-photon cross sections for each of the alcohol sol-

vents considered in our calculations, we performed the following series of single-point CC
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and EOMCC computations at the aforementioned CAM-B3LYP/6-31+G*/SMD optimized

geometries. First, we determined the S0–S1 electronic transition energies,

ω
(EOMCC)
10 = E

(EOMCC)
S1 − E

(CC)
S0 , (3.29)

corresponding to the [FR0-SB· · · HOR] complex in the absence of the SMD continuum

solvation, where the total electronic energies of the S0 and S1 states entering Eq. (3.29) were

computed as

E
(CC)
S0 = E

(CCSD/6-31+G*)
S0 +

[
E

(CR-CC(2,3)/6-31G)
S0 − E

(CCSD/6-31G)
S0

]
(3.30)

for the ground state and

E
(EOMCC)
S1 = E

(EOMCCSD/6-31+G*)
S1 +

[
E

(δ-CR-EOMCC(2,3)/6-31G)
S1 − E

(EOMCCSD/6-31G)
S1

]
(3.31)

for the first excited singlet state. The first term on the right-hand side of Eq. (3.31) denotes

the total electronic energy of the S0 state computed at the CCSD level utilizing the largest

basis set considered in this study, namely, 6-31+G*. The term in the square brackets on

the right-hand side of Eq. (3.31) corrects the CCSD/6-31+G* energy for the many-electron

correlation effects due to triply excited clusters obtained in the CR-CC(2,3) calculations

employing the smaller and more affordable 6-31G basis. Similarly, the first term on the

right-hand side of Eq. (3.31) designates the EOMCCSD/6-31+G* energy of the S1 state

and the expression in the square brackets represents the triples correction to EOMCCSD

obtained in the δ-CR-EOMCC(2,3)/6-31G calculations. Ideally, one would like to use basis

sets larger than 6-31+G* and, in particular, incorporate polarization and diffuse functions

on hydrogen atoms, but such calculations at the CC/EOMCC levels used in this work turned

out to be prohibitively expensive. Nevertheless, we tested the significance of the polarization

and diffuse functions on hydrogen atoms by performing the CAM-B3LYP/6-31++G**/SMD

calculations for the [FR0-SB· · · HOR] complexes that show that neither the excitation ener-

gies nor the dipole and transition dipole moment values change by more than 1% compared

to the CAM-B3LYP/6-31+G*/SMD results.
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Before describing the remaining elements of our computational protocol, it is important

to emphasize that the composite approach defined by Eqs. (3.29)–(3.31) is more general than

the analogous expressions shown in Eq. (3.23) [3], where we focused on the vertical excitation

processes only. Equations (3.29)–(3.31) encompass both the vertical and adiabatic transition

energies. Indeed, if E
(CC)
S0 and E

(EOMCC)
S1 are calculated at the minimum on the S0 potential

energy surface, ω
(EOMCC)
10 given by Eqs. (3.29)–(3.31) becomes the vertical excitation energy

ω
(EOMCC)
10 (abs.) characterizing the S0 → S1 absorption defined by Eq. (3.23). If E

(CC)
S0 and

E
(EOMCC)
S1 are determined at the minimum characterizing the [FR0-SB· · · HOR] complex

in the S1 state, we obtain the vertical transition energy ω
(EOMCC)
10 (em.) corresponding to

the S0 → S1 emission. The ω
(EOMCC)
10 energy defined by Eq. (3.29) becomes the adiabatic

transition energy, abbreviated as ω
(EOMCC)
10 (ad.), when E

(CC)
S0 and E

(EOMCC)
S1 are computed at

their respective minima. As far as the transition dipole moments characterizing the vertical

absorption and emission processes involving the solvated FR0-SB species are concerned, they

were calculated from the one-electron transition density matrices obtained at the EOMCCSD

level of theory employing the 6-31+G* basis set. Similarly, we used the CCSD/6-31+G*

and EOMCCSD/6-31+G* one-electron reduced density matrices to determine the dipole

moments of the S0 and S1 states at each of the two potential minima.

Given the large computational costs associated with the EOMCCSD and

δ-CR-EOMCC(2,3) calculations for the [FR0-SB· · · HOR] system, which consists of three

alcohol molecules bound to the FR0-SB chromophore and requires correlating as many as

216 electrons and 758 molecular orbitals in the case of the n- or i-propanol solvents when the

6-31+G* basis set is employed, we replaced the three explicit alcohol molecules with the cor-

responding effective fragment potentials (EFPs) [242]. We were able to do this because, based

on our CAM-B3LYP/6-31+G*/SMD calculations for the [FR0-SB· · · HOR] complexes, the

S0–S1 electronic transition does not involve charge transfer between the photobase and its

solvent environment. Indeed, the S0–S1 transition in the bare and solvated FR0-SB species

has a predominantly π–π* character with the π and π* orbitals localized on the FR0-SB
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chromophore, i.e., the alcohol solvent molecules are mere spectators to this excitation process

(see the supplementary material of Ref. [5] for further details). The use of EFPs to represent

the cluster of three alcohol molecules bonded to FR0-SB in our CC/EOMCC computa-

tions allowed us to reduce the system size to that of the bare FR0-SB species embedded in

the external potential providing a highly accurate description of the intermolecular interac-

tions between FR0-SB and solvent molecules in the [FR0-SB· · · HOR] complex, including

electrostatic, polarization, dispersion, and exchange repulsion effects [242].

Once the electronic transition energies and the corresponding one-electron properties of

the [FR0-SB· · · HOR] complex were determined, we proceeded to the second stage of our

modeling protocol, which was the incorporation of the remaining bulk solvation effects that

turned out to be nonnegligible as well. As in the case of the aforementioned geometry opti-

mizations, the bulk solvation effects were calculated with the help of the implicit solvation

SMD approach. Due to the limitations of the computer codes available to us, we could not

perform the CC/EOMCC computations in conjunction with the SMD model, so we estimated

the SMD effects using the a posteriori corrections δ
(SMD)
X to the various CC/EOMCC prop-

erties X of the [FR0-SB· · · HOR] complex, such as transition energies and dipole moments,

using DFT and TD-DFT. These corrections were constructed in the following way. First, for

each of the four alcohol solvents considered in our calculations, we performed single-point

DFT/TD-DFT calculations for the [FR0-SB· · · HOR] complex at the previously optimized

S0 and S1 geometries accounting for the bulk solvation effects using SMD. As in the case of

the geometry optimizations, we used the CAM-B3LYP functionals and the 6-31+G* basis

set and, in analogy to the CC/EOMCC computations, replaced the cluster of three explicit

alcohol solvent molecules bound to FR0-SB by the corresponding EFPs. We then repeated

the analogous calculations without SMD. This allowed us to determine the desired δ
(SMD)
X

corrections using the formula

δ
(SMD)
X = X(CAM-B3LYP/6-31+G*/SMD) − X(CAM-B3LYP/6-31+G*), (3.32)

where the first and second terms on the right-hand side of Eq. (3.32) designate property X
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obtained in the CAM-B3LYP/6-31+G* calculations with and without SMD, respectively.

The final SMD-corrected EOMCC electronic transition energies were computed as

ω10 = ω
(EOMCC)
10 + δ(SMD)

ω10 , (3.33)

where ω
(EOMCC)
10 is the transition energy for the [FR0-SB· · · HOR] complex defined by Eqs.

(3.29)–(3.31), whereas the SMD-corrected one-electron properties were determined using the

formula

X = X [(EOM)CCSD/6−31+G∗] + δ
(SMD)
X , (3.34)

with X [(EOM)CCSD/6−31+G∗] denoting the value of property X calculated at the (EOM)CCSD/6-

31+G* level. If the property of interest was a vector, such as dipole or transition dipole

moment, we used Eq. (3.34) for each of the Cartesian components of the vector.

Finally, to gauge the effects of solvation on the various calculated properties, including

transition energies and dipole and transition dipole moments, we also performed single-point

CC/EOMCC calculations for the bare super photobase, i.e., FR0-SB without the presence

of explicit solvent molecules or equivalent EFPs and SMD implicit solvation, at the gas-

phase geometry of the S1 state optimized using CAM-B3LYP/6-31+G*. In the case of

the S0 minimum-energy structure, we relied on our previous gas-phase CC/EOMCC results

reported in Ref. [3] and summarized earlier.

All of the electronic structure calculations reported in Ref. [5] and summarized here,

including the CAM-B3LYP geometry optimizations with and without the SMD continuum

solvation, the CC and EOMCC single-point calculations without implicit SMD solvation, and

the CAM-B3LYP single-point calculations with and without SMD, needed to estimate the

SMD corrections to CC/EOMCC properties, were performed using the GAMESS package

(specifically, we used the 2019 R2 version of GAMESS for our works in Ref. [5] and discussed

here). In the case of the S0 → S1 absorption process, whenever the SMD implicit solvation

model was utilized, we incorporated the nonequilibrium solvation effects associated with

the solvent relaxation delay, as implemented in GAMESS [243]. In all of our CC/EOMCC
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calculations, the core orbitals associated with the 1s shells of C and N atoms of FR0-SB were

kept frozen. The EFPs that were used to replace the cluster of three explicit alcohol solvent

molecules bound to FR0-SB in the CC/EOMCC single-point calculations and the CAM-

B3LYP computations aimed at determining the SMD solvation effects were generated using

the RHF approach and the 6-31+G* basis set. Thanks to the use of EFPs, our frozen-core

CC/EOMCC calculations for the [FR0-SB· · · HOR] complex correlated only 138 electrons

of the FR0-SB system. In all of the calculations employing the 6-31+G* basis set, we used

spherical components of d orbitals.

In Table 3.2, we report the vertical transition energies ω10(abs.) and transition dipole

moments µ10 characterizing the S0 → S1 photoabsorption process, along with the dipoles

corresponding to the S0 and S1 states, µ0 and µ1, respectively, and their ratios resulting

from our calculations for FR0-SB in the gas phase and in the aforementioned four solvents

determined at the minima on the respective S0 potential energy surfaces. The analogous

information for the S1 → S0 emission and the dipole moment values of the S0 and S1 states

determined at the S1 minima characterizing the isolated and solvated FR0-SB is presented

in Table 3.3. We begin our discussion of computational results by comparing the vertical

absorption and emission energies characterizing the solvated FR0-SB species obtained with

the CC/EOMCC-based protocol adopted in this work against their experimental counter-

parts. The vertical excitation energies for the [FR0-SB· · · HOR] complexes calculated at

the respective S0 minima, shown in Table 3.2, are essentially identical to the locations of

the peak maxima in the corresponding experimental photoabsorption spectra reported in

Ref. [4], which are 3.32 eV, 3.33 eV, 3.32 eV, and 3.34 eV for methanol, ethanol, n-propanol,

and i-propanol, respectively. The same accuracies are also seen in the case of the vertical

emission energies calculated at the S1 minima of the [FR0-SB· · · HOR] species reported in

Table 3.3, which can hardly be distinguished from the maxima in the experimental emission

peaks for FR0-SB in methanol, ethanol, n-propanol, and i-propanol of 2.57 eV, 2.61 eV, 2.62

eV, and 2.65 eV, respectively [4]. These observations corroborate the accuracy of the com-
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putational protocol used in this study to model the interactions of the FR0-SB photobase

with the various alcohol solvents. The observed good agreement between the theoretical ver-

tical transition energies reported in Tables 3.2 and 3.3 and the corresponding experimental

data can largely be attributed to the use of high-level ab initio CC/EOMCC approaches in

describing the [FR0-SB· · · HOR] complexes. This becomes apparent when one considers the

errors relative to the experiment characterizing the vertical transition energies obtained in

the single-point CAM-B3LYP/6-31+G*/SMD computations, which are about 0.2 eV–0.3 eV

(9%–11%).

Having established the accuracy of our quantum chemistry protocol, we proceed to the

discussion of our computational findings regarding the dipole moments of the S0 and S1

states and the transition dipoles between them, which are the key quantities for the one-

and two-photon absorption cross sections given by Eqs. (3.24) and (3.27), respectively. In

the absence of direct experimental information, our computations provide insights into the

effects of solvation on these quantities. To begin with, as reported in our earlier work for the

bare FR0-SB species [3], and as shown in Table 3.2, there is a large, by a factor of more than

3, increase in the electronic dipole moment following S0 → S1 photoabsorption, giving rise

to the superbase character of FR0-SB*. Upon solvation, both S0 and S1 dipole moments of

the FR0-SB chromophore are significantly enhanced, becoming approximately twice as large

as their gas-phase counterparts. This can be attributed to the polarization of the electron

cloud of the FR0-SB photobase by the alcohol molecules surrounding it. Furthermore, the

fact that the electronic dipole moment characterizing the S1 state is much larger than its S0

counterpart translates into a stronger stabilization of the S1 state relative to S0, leading to

lower S0 → S1 vertical excitation energies in the case of FR0-SB in alcohol solvents when

compared to the bare FR0-SB system. The transition dipole moment characterizing the

S0 → S1 photoabsorption process is amplified by solvation as well (by about 40%), which

results in larger OPE and TPE absorption cross sections for the solvated FR0-SB species

relative to their gas-phase values. Similar trends are observed when we examine the dipoles
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and transition dipoles shown in Table 3.3. It is also interesting to note that the dipole

moments characterizing the S0 and S1 states and the corresponding transition dipoles increase

upon geometrical relaxation from the S0 to S1 minima, with a concomitant red shift in the

vertical transition energies. This bathochromic shift is more pronounced in the case of the

solvated FR0-SB species as a consequence of µ1 being much larger than µ0, implying a

stronger stabilization of the S1 state due to the polar solvent environment compared to the

S0 state.

As already alluded to above, the transition dipole moments characterizing the S0–S1 ab-

sorption and emission processes and the S0 and S1 dipoles at the respective potential minima

could not be determined from our experiments. However, by analyzing the solvatochromic

shift of the absorption and fluorescence bands in 16 different solvents as a function of solvent

dielectric constant and index of refraction, we could estimate the magnitude of the transition

dipole moment µ10 and the change in the dipole moment, ∆µ10, associated with the S0 → S1

adiabatic excitation [244, 245]. Based on our analysis, we found ∆µ10 of FR0-SB in the

alcohol solvents considered in our experiments to be ∼15 D, a magnitude usually associated

with substantial charge transfer, and µ10 to be about 10 D. The procedure outlining how the

experimental values of µ10 and ∆µ10 were derived is given in the supplementary material of

Ref. [5]. Having access to the dipole moments characterizing the S0 and S1 states at their

respective minimum-energy structures and the vertical transition dipole moments associated

with the S0–S1 transitions resulting from our quantum chemistry computations (see Tables

3.2 and 3.3) allowed us to assess the quality of our experimentally derived values of µ10 and

∆µ10. As shown in Tables 3.2 and 3.3, the vertical transition dipole moments µ10 charac-

terizing the FR0-SB chromophore in the alcohol solvents included in our calculations range

from 9.4 D to 11.8 D, in very good agreement with the experimentally derived value of about

10 D. According to the data collected in Table 3.4, the calculated and experimentally derived

changes in the dipole moment associated with the S0 → S1 adiabatic transition, which are

about 15 D in both cases, are virtually identical. Given that both theory and experiment
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point to the large values of µ10 and ∆µ10 as a result of solvation and that the dipole pathway

defined by the second term in Eq. (3.26) is anticipated to be the dominant TPE pathway, as

discussed above, we can conclude that using Eq. (3.27) in approximating the TPE absorption

cross section of FR0-SB in alcohol solvents is justified.

We are now well-situated to rely on our computational data to help interpret the exper-

imental findings of Ref. [5]. Indeed, as shown in Tables 3.2–3.4, there is a massive increase

in permanent dipole moment as FR0-SB undergoes S0 → S1 excitation, which is further en-

hanced by the presence of polar solvent environment enveloping the FR0-SB chromophore.

We also know from Eq. (3.28) that the TPE absorption cross section is enhanced by a signif-

icant ∆µ10 value, while OPE absorption cross section does not take such contribution into

account. Therefore, in Ref. [5], we hypothesized that by using TPE, one can selectively excite

[FR0-SB· · · H-OR] configurations which would result in considerable increase in permanent

dipole moment. Such configurations may then be characterized by energetically favorable

ESPT reaction pathways toward the formation of protonated FR0-SB in the excited state,

especially considering the magnitude of the dipole moment in the excited state. This could be

confirmed by performing, for example, molecular dynamics simulations of FR0-SB in various

alcohol solvent environment, taking snapshots of different solvent configurations around the

FR0-SB chromophore, and performing the same solvation-corrected EOMCC calculations

described above, which we will consider in our future works.
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Table 3.2: The vertical transition energies ω10(abs.) (in eV) and transition dipole moments
µ10 (in D) corresponding to the S0 → S1 absorption, along with the µ0 and µ1 dipoles
characterizing the S0 and S1 states (in D) and their ratios for FR0-SB in the gas phase and
in selected alcohol solvents calculated at the respective S0 minima following the CC/EOMCC-
based protocol described in the text. Adapted from Ref. [5].

Solventa ω10(abs.) µ10 µ0 µ1 µ1/µ0

None (gas phase)b 3.70 6.9 2.6 8.6 3.3
MeOH 3.30 9.6 4.4 16.4 3.8
EtOH 3.32 9.5 4.3 15.9 3.7

n-PrOH 3.32 9.5 4.2 15.9 3.7
i-PrOH 3.33 9.4 4.2 15.7 3.7

aAbbreviations: MeOH = methanol, EtOH = ethanol, n-PrOH = n-propanol, and i-PrOH = i-propanol.
bTaken from our previous gas-phase CC/EOMCC calculations reported in Ref. [3].

Table 3.3: The vertical transition energies ω10(em.) (in eV) and transition dipole moments
µ10 (in D) corresponding to the S1 → S0 emission, along with the µ0 and µ1 dipoles char-
acterizing the S0 and S1 states (in D) and their ratios for FR0-SB in the gas phase and in
selected alcohol solvents calculated at the respective S1 minima following the CC/EOMCC-
based protocol described in the text. Adapted from Ref. [5].

Solventa ω10(em.) µ10 µ0 µ1 µ1/µ0

None (gas phase) 3.26 8.9 3.4 10.9 3.2
MeOH 2.68 11.8 6.6 20.0 3.0
EtOH 2.69 11.8 6.5 19.7 3.0

n-PrOH 2.70 11.8 6.5 19.6 3.0
i-PrOH 2.72 11.7 6.4 19.1 3.0

aAbbreviations: MeOH = methanol, EtOH = ethanol, n-PrOH = n-propanol, and i-PrOH = i-propanol.
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Table 3.4: A comparison of the calculated S0–S1 adiabatic transition energies without
[ω10(ad.)] and with [ω10(0-0)] zero-point energy (ZPE) vibrational corrections (in eV), along
with the differences and ratios of the µ0 and µ1 dipoles characterizing the S0 and S1 states
at the respective minima (in D) for FR0-SB in the gas phase and in selected alcohol sol-
vents obtained following the CC/EOMCC-based protocol described in the text with the
corresponding experimentally derived data. Adapted from Ref. [5].

Theory Experiment
Solventa ω10(ad.) ω10(0-0)b ∆µ10

c µ1/µ0
c Solventa ω10(0-0) ∆µ10

d µ1/µ0
d

None (gas phase) 3.42 3.33 8.3 4.2 c-Hexane 3.4 — —
MeOH 2.88 2.80 15.6 4.6 MeOH 2.9 15.2 ± 0.2 4.4 ± 0.1
EtOH 2.89 2.80 15.4 4.6 EtOH 3.0 15.3 ± 0.3 4.6 ± 0.1

n-PrOH 2.89 2.81 15.3 4.6 n-PrOH 3.0 15.3 ± 0.3 4.6 ± 0.1
i-PrOH 2.88 2.80 14.9 4.5 i-PrOH 3.0 15.5 ± 0.5 4.7 ± 0.1

aAbbreviations: MeOH = methanol, EtOH = ethanol, n-PrOH = n-propanol, i-PrOH = i-propanol, and
c-Hexane = cyclohexane.

bCalculated as ω10(ad.) + ∆ZPE, where ∆ZPE is the difference between the zero-point vibrational energies
characterizing the S1 and S0 electronic states of the bare FR0-SB molecule in the gas phase computed at
the CAM-B3LYP/6-31+G∗ level of theory. Our calculations with and without solvent indicate that the
effect of solvation on ∆ZPE is negligible (less than 0.01 eV).

cCalculated using the µ0 values reported in Table 3.2 and the µ1 values reported in Table 3.3.
dCalculated using the theoretical values of µ0 reported in Table 3.2 and the procedure based on the analysis
of the experimental solvatochromic shifts described in the supplementary material of Ref. [5].
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Figure 3.3: OPE and TPE steady-state fluorescence spectra obtained for FR0-SB in (a)
methanol, (b) ethanol, (c) n-propanol, and (d) i-propanol. In each of the panels, OPE
(blue line) is compared with TPE (red line). The fluorescence spectra are normalized to the
nonprotonated emission intensity. The ratio between the areas for FR0-HSB+* (∼15,000
cm−1) and FR0-SB* (∼21,000 cm−1) emission following OPE and TPE is determined by
fits to log-normal functions (thin black lines). Adapted from Ref. [5].
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As already alluded to above and as shown in the experimental data reported in Refs.

[3–5], there are various effects that govern the extent of ESPT between the alcohol solvent

environment and the FR0-SB chromophore. Among these effects, one that could significantly

affect the ESPT reaction is steric effects due to the structure of the alcohol solvent molecules.

We have seen this behavior in the OPE- and TPE-induced fluorescence spectra of FR0-

SB in i-propanol, which do not differ from each other. Furthermore, when steady-state

OPE-induced fluorescence measurements were performed on FR0-SB dissolved in various

alcohol solvents, including primary, secondary, and tertiary alcohols, one observe varying

degrees of proton transfer occurring. As shown in Fig. 3.4, adapted from Fig. 2 of Ref.

[4], where each fluorescence spectrum is normalized with respect to the tallest peak in the

spectrum, the extent of ESPT reaction, represented by the ratio between the emission peak

areas of the protonated and unprotonated FR0-SB*, is considerably lower in secondary

alcohols (represented by i-propanol and cyclopentanol in the figure) than in primary alcohol

(represented by n-propanol in the figure). In fact, the ESPT reaction is not observed at

all in tertiary alcohols, such as t-amyl alcohol, which exhibits very similar spectrum to the

aprotic acetonitrile solvent. Thus, we set out to provide insights into the effect of solvent

steric factors on the ESPT process. Specifically, we report the details of the ESPT reaction

pathways between FR0-SB and representative primary and secondary alcohols predicted by

quantum chemistry calculations.

To address this issue and to provide deeper insights into the role of steric effects in the

proton transfer reactions between the excited FR0-SB* chromophore and alcohol solvent

molecules, we augmented the experimental effort by performing electronic structure calcula-

tions focusing on the ground, S0, and first-excited singlet, S1, electronic states of the solvated

FR0-SB system. In the calculations reported in this work, we focused on the reactions of

FR0-SB* with n- and i-propanol. The n- and i-propanol molecules are the smallest alcohol

species in the primary and secondary categories considered in our experiments that permit

structural isomerism.
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In modeling the ESPT process, we considered the interaction between FR0-SB* and a

cluster of three alcohol molecules, which, according to our computations, is the minimum

number of explicit solvent molecules necessary for the proton transfer to occur. In trying

to use complexes consisting of FR0-SB* bound to fewer alcohol molecules, our calculations

could not detect the presence of the second minimum corresponding to ESPT. The remaining,

i.e., bulk, solvation effects were incorporated using the SMD continuum solvation model.

In constructing the reaction pathways characterizing the proton transfer between FR0-

SB* and n- and i-propanol, the following protocol was adopted. For each of the two alcohols,

the geometries of the electronically excited reactant and product complexes were optimized.

The reactant complex is the FR0-SB* chromophore hydrogen-bonded to the cluster of three

solvent molecules, i.e., the [FR0-SB*· · · HOR] species with two ROH molecules attached

to the alcohol bonded to FR0-SB*. The product of the proton transfer reaction is the

[FR0-HSB+*· · · −OR] complex with two ROH molecules attached to it. Having established

the internuclear distances between the proton being transferred and the imine nitrogen of

FR0-SB* in the reactant and the product complexes, designated in Fig. 3.5 as r1 and r2,

respectively, we probed the [FR0-SB*· · · HOR]→[FR0-HSB+*· · · −OR] reaction pathway by

introducing an equidistant grid of N–H separations using the step size defined as (r1 −r2)/10.

The molecular structure at each point along the above ESPT reaction pathway was obtained

by freezing the N–H distance at the respective grid value and reoptimizing the remaining

geometrical parameters. We also optimized the geometry of FR0-SB hydrogen-bonded to

the cluster of three alcohol molecules in the ground electronic state, needed to calculate the

S0 → S1 vertical excitation energy.

All of the geometry optimizations relied on the Kohn–Sham formulation of DFT using,

in the case of the structures along the ESPT reaction pathway, the TD-DFT extension to

excited states combined with the SMD continuum solvation model to account for the bulk

solvation effects (the analogous protocol employing SMD was used in the DFT ground-

state optimizations). All of the calculations reported for this work [4] employed the 6-
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31+G* basis set using spherical components of d functions and the CAM-B3LYP functional.

All of the electronic structure calculations reported in this study were performed using

the GAMESS package. As in the case of the OPE vs TPE study discussed above, when

considering the optimized ground-state geometries, the S0 → S1 vertical excitation energies,

which, from the fundamental physics perspective, correspond to a very fast process resulting

in an abrupt change in the solute electron density, were computed by taking advantage of the

nonequilibrium solvation effects associated with the solvent relaxation delay, incorporating a

fast component of the solvent dielectric constant in addition to its bulk value, as implemented

in GAMESS.

The results of our quantum chemistry computations, shown in Figs. 3.6–3.8, reveal the

intricacies of the excited-state proton abstraction process initiated by the formation of the

[FR0-SB*· · · HOR] complex. In Fig. 3.6, we present the calculated minimum-energy path-

ways characterizing the ESPT reactions involving FR0-SB in its first-excited singlet S1

state and the n- and i-propanol molecules along the internuclear distance between the imine

nitrogen of FR0-SB and the proton being transferred. For completeness, the energetics

characterizing the corresponding S0 ground states as well as the S0 and S1 energies obtained

at the optimized ground-state structures of the relevant [FR0-SB*· · · HOR] complexes are

also provided (the leftmost points in Fig. 3.6). As shown in Fig. 3.6, the ground-state energy

monotonically increases as the alcohol proton approaches the imine nitrogen of FR0-SB,

indicating that the proton abstraction occurs in the excited state of FR0-SB, not in the

ground state, in agreement with the experimental observations. As elaborated on above, in

the experiments reported in this work, the excited state of FR0-SB is populated by pho-

toabsorption from the ground electronic state. Our calculated S0 → S1 excitation energies

of FR0-SB in n- and i-propanol of ∼3.6 eV agree quite well with their corresponding ex-

perimental values of ∼3.3 eV (see Fig. 3.4 and 3.6–3.8). Upon relaxing the excited-state

geometries (see the dashed lines in Fig. 3.6), the difference in the behavior of the bulkier

i-propanol species in the [FR0-SB*· · · HOR] complex relative to its n-propanol counterpart
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becomes apparent already in the early stages of the deprotonation process. In particular, the

internuclear distance between the imine nitrogen of FR0-SB and the alcohol proton that is

hydrogen-bonded to it is ∼0.1 Å larger in i-propanol than in n-propanol (cf. Fig. 3.6–3.8).

Furthermore, Fig. 3.6 reveals that even though the ESPT process takes place in both n-

and i-propanol, the barrier height characterizing the reaction involving the secondary alco-

hol i-propanol species is ∼50% higher than the analogous barrier associated with its primary

alcohol n-propanol counterpart, consistent with the larger distance between the proton being

transferred and the oxygen of the alcohol in i-propanol relative to that in n-propanol in the

corresponding transition states (see Figs. 3.7 and 3.8). At the same time, the barrier for the

reverse process, i.e., deprotonation of FR0-HSB+*, in i-propanol is about 35% lower than

that characterizing the analogous process in n-propanol.

Our calculations summarized in Figs. 3.7 and 3.8 imply that there is a need for a complex

with two hydrogen bonds to the –OH group of the alcohol that transfers the proton. This

“branched” arrangement is unusual; X-ray diffraction structures of the n-alkanols ethanol

and butanol, congeners of n-propanol, show only linear structures of –OH moieties, in which

each oxygen accepts only one hydrogen bond [246, 247]. However, the “structure” of n-

propanol in the liquid phase has been studied and consists of chains of various lengths with

modest amounts (a few percent) of branching [248–250]. For i-propanol, which has a stronger

preference for cyclic clusters, such configurations are unlikely and again, are not observed in

the crystal structure of the pure solvent [251].

Indeed, for both n- and i-propanol, our computations predict the linear alcohol clusters to

be about 8–12 kJ mol−1 lower in energy compared to the branched arrangements, not only for

the ground-state [FR0-SB· · · HOR] species, but also in the case of the [FR0-SB*· · · HOR]

ESPT reactant. Nevertheless, the situation changes dramatically, in favor of the branched

alcohol conformations, when one considers the [FR0-HSB+*· · · −OR] product of the ESPT

reaction. In the case of n-propanol, for example, the branched [FR0-HSB+*· · · −OR] struc-

ture is lower in energy than the linear one by about 2 kJ mol−1. This is related to the fact that
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the branched alcohol arrangement solvates the RO− species more effectively. Consequently,

the Eproduct − Ereactant energy difference in the case of the linear n-propanol configuration, of

14.3 kJ mol−1, is higher than the 13.1 kJ mol−1 activation barrier characterizing the branched

conformation (see Fig. 3.7), implying that the activation energy characterizing the linear ar-

rangement is even larger. The difference between the branched and linear conformations is

pronounced even more when one considers i-propanol. In this case, the Eproduct − Ereactant

energy difference in the linear cluster is about 8 kJ mol−1 higher than the activation barrier

characterizing the branched arrangement (cf. Fig. 3.8). Based on our calculations we can

conclude that the branched structures adopted in modeling of the ESPT reactions, while

unusual in the case of the pure solvents, are a more realistic representation of the [FR0-

SB*· · · HOR]→[FR0-HSB+*· · · −OR] process, since they lead to smaller activation energies

compared to the linear arrangements of alcohol molecules bound to FR0-SB*. Last, but

not least, the difficulty in achieving the configurations shown in Fig. 3.8 is consistent with

the greatly diminished protonation yield observed for i-propanol and the lack of protonation

observed for tertiary alcohols.
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Figure 3.4: The absorption and emission spectra of FR0-SB in various solvents to compare
steric hindrance. The long wavelength emission near 630 nm (∼15,870 cm−1) corresponds to
FR0-HSB+*, while the short wavelength emission near 460 nm (∼21,740 cm−1) corresponds
to FR0-SB*. Adapted from Ref. [4].

Figure 3.5: Schematic representation of the r1 and r2 N–H internuclear distances needed to
create the grid defining the ESPT reaction pathway.

84



Figure 3.6: Results from the reaction pathway calculations showing ground- and excited-
state energy differences as a function of proton abstraction. The CAM-B3LYP/6-
31+G*/SMD ground-state (S0) and excited-state (S1) reaction pathways corresponding to
the proton abstraction from n-propanol (blue) and i-propanol (orange) by FR0-SB along
the internuclear distance between the imine nitrogen and the alcohol proton being trans-
ferred. The energies ∆E are shown relative to the ground-state minimum of the respective
pathways. The dashed line in each pathway indicates the excited-state geometry relaxation
following the S0–S1 excitation of FR0-SB. Adapted from Ref. [4].
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0.0 kJ/mol
(3.22 eV)
[2.94 eV]

rO–H = 1.01 Å
rN–H = 1.71 Å

13.1 kJ/mol
(3.36 eV)
[2.80 eV]

rO–H = 1.25 Å
rN–H = 1.26 Å

3.4 kJ/mol
(3.26 eV)
[2.66 eV]

rO–H = 1.71 Å
rN–H = 1.06 Å

E

[FR0-SB*⋯HOR] [FR0-SB*⋯H⋯OR] [FR0-HSB+*⋯−OR]

Figure 3.7: Snapshots of the proton abstraction process from n-propanol. The CAM-
B3LYP/6-31+G*/SMD optimized geometries of the reactant ([FR0-SB*· · · HOR]), transi-
tion state ([FR0-SB*· · · H· · · OR]), and product ([FR0-HSB+*· · ·−OR]) of the ESPT process
between FR0-SB in its S1 electronic state and three n-propanol molecules. The ∆E values
in kJ mol−1 are given relative to the reactant energy. The energies inside parentheses, in eV,
are given relative to the [FR0-SB· · · HOR] minimum in the ground electronic state S0, while
those inside square brackets correspond to the S0–S1 vertical transitions at each respective
geometry. The rO–H and rN–H distances at each geometry represent the internuclear sepa-
rations between the proton being transferred and the oxygen of n-propanol and the imine
nitrogen of FR0-SB, respectively. Adapted from Ref. [4].
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0.0 kJ/mol
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[2.97 eV]

rO–H = 1.01 Å
rN–H = 1.76 Å

19.0 kJ/mol
(3.44 eV)
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Figure 3.8: Snapshots of the proton abstraction process from i-propanol. The CAM-
B3LYP/6-31+G*/SMD optimized geometries of the reactant ([FR0-SB*· · · HOR]), tran-
sition state ([FR0-SB*· · · H· · · OR]), and product ([FR0-HSB+*· · ·−OR]) of the ESPT pro-
cess between FR0-SB in its S1 electronic state and three i-propanol molecules. The ∆E
values in kJ mol−1 are given relative to the reactant energy. The energies inside parentheses,
in eV, are given relative to the [FR0-SB· · · HOR] minimum in the ground electronic state
S0, while those inside square brackets correspond to the S0–S1 vertical transitions at each
respective geometry. The rO–H and rN–H distances at each geometry represent the internu-
clear separations between the proton being transferred and the oxygen of i-propanol and the
imine nitrogen of FR0-SB, respectively. Adapted from Ref. [4].
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3.3 Active-Space CC/EOMCC Approaches and Their CC(P;Q)
Extensions

3.3.1 Theory

In the previous section, we discussed the simplest forms of CC(P;Q) formalism, namely,

the CR-CC and CR-EOMCC schemes. As shown by applying the CR-CC(2,3) and δ-CR-

EOMCC(2,3) methods to the FR0-SB photobase, the CR-CC/EOMCC approaches can

be very accurate. However, as mentioned in the Introduction, there are certain problems

where CR-CC/EOMCC methods fail. In such situation, there usually exists a large coupling

between the lower-order components of the cluster and EOM excitation operators, such as

T1 and T2 in the former case and Rµ,1 and Rµ,2 in the latter case, and their higher-order

counterparts, e.g., T3 (Rµ,3), T4 (Rµ,4), etc. Within the CR-CC/EOMCC way of performing

CC(P;Q) calculations, the P space is defined by relying on traditional truncations of the

cluster and EOM excitation operators and, thus, the aforementioned coupling is neglected.

This becomes an issue when the higher-order Tn and Rµ,n components with n > 2 become

large. However, one can rely on “unconventional” partitioning of the P and Q spaces to

allow for the relaxation of T1 and T2, as well as Rµ,1 and Rµ,2 if EOMCC computations are

concerned, in the presence of their dominant higher-order counterparts. One way to do this

is via the use of active-space CC and EOMCC methodology, where one downselects T3, T4,

etc. and their Rµ,n counterparts using a set of predefined active orbitals. Here, we focus

on the ground-state approaches relevant to this dissertation work, namely, active-space CC

methods with up to quadruply excited clusters and their CC(P;Q) extension.

In the active-space CC/EOMCC approaches, we divide the spin-orbitals used in the

CC/EOMCC calculations into four separate categories, namely core, active occupied, active

unoccupied, and virtual spin-orbitals, and approximate the higher-order cluster and exci-

tation operators with the help of active orbitals, while treating the lower-order ones fully.

This provides us with a mechanism to relax the T1, T2, Rµ,1, and Rµ,2 amplitudes in the
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presence of the dominant, higher-order cluster and excitation amplitudes, which is absent

in the CR-CC/EOMCC framework, while avoiding the steep computational costs of the full

CCSDT/EOMCCSDT and CCSDTQ/EOMCCSDTQ approaches.

The active-space methods employed in this dissertation are CCSDt and CCSDTq, where

we follow a general recipe how to design the active-space CC methods at any level of trun-

cation in the cluster operator laid down in Refs. [99, 101]. Thus, in CCSDt, we approximate

the cluster operator T as

T ≈ T (CCSDt) = T1 + T2 + t3, (3.35)

where T1 and T2 are the standard one- and two-body components of T , treated fully, and

t3 =
∑

i<j<K
A<b<c

tijK
AbcE

Abc
ijK (3.36)

is an approximate form of T3 defined using active orbitals. We use a convention where upper-

case bold letters I, J, K, L, . . . are the active occupied spin-orbitals, whereas A, B, C, D, . . .

designate the active unoccupied spin-orbitals. We continue using the lower-case italic indices,

i, j, . . . for the occupied and a, b, . . . for the unoccupied spin-orbitals, if the active/inactive

character is not specified. Adopting the same convention, in the CCSDTq approach we

approximate the cluster operator T using

T ≈ T (CCSDTq) = T1 + T2 + T3 + t4, (3.37)

where T3 is the normal three-body component of T , treated fully, and

t4 =
∑

i<j<k<L
A<b<c<d

tijkL
AbcdEAbcd

ijkL . (3.38)

The corresponding cluster amplitudes, ti
a, tij

ab, and tijK
Abc in the CCSDt case and ti

a, tij
ab,

tijk
abc, and tijkL

Abcd in the case of CCSDTq, are obtained by solving the CC amplitude equa-

tions, Eq. (2.7), projected on the excited determinants corresponding to the definitions of

T (CCSDt) and T (CCSDTq). For example, in CCSDt we project Eq. (2.6), in which T is re-

placed by T (CCSDt) as defined in Eq. (3.35), on the excited determinants |Φa
i ⟩,

∣∣∣Φab
ij

〉
, and
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∣∣∣ΦAbc
ijK

〉
, i.e., on all singly and doubly excited determinants, and on a subset of triply excited

determinants defined using active orbitals. This and other similar simplifications in the

CC amplitude equations result in significant CPU time savings. The computational costs

associated with the CCSDt and CCSDTq methods equal to those of CCSD and CCSDT,

respectively, multiplied by small prefactors that depend on the numbers of active occupied

(No) and active unoccupied (Nu) orbitals. To be precise, the most expensive CPU steps of

the CCSDt and CCSDTq calculations scale as NoNun2
on

4
u and NoNun3

on
5
u, respectively. Once

the corresponding cluster amplitudes are determined, the CCSDt and CCSDTq energies are

obtained, in direct analogy with the conventional SRCC methods, by projecting Eq. (2.6)

on the reference determinant, i.e., we continue using Eq. (2.8), where T is approximated by

T (CCSDt) and T (CCSDTq), respectively.

After the cluster amplitudes and ground-state energy are determined, we can then employ

the CC(P;Q) formalism to correct the active-space CC energy for the remaining correlation

effects of interest. To do so, we simply have to design the suitable Q space, which should not

contain the higher–than–doubly excited determinants already incorporated in the P space.

This is shown in Table 3.5, which displays the key elements of the various ground-state

CC(P;Q) methodologies that we have discussed so far, i.e., the CR-CC approaches and the

active-space-based CC(P;Q) schemes, summarized using the language of the CC(P;Q) along

with the corresponding CPU time scalings. As shown in Table 3.5, we obtain the CC(t;3)

energy by solving the CCSDt equations in the P space H (P ) = G (SD) ⊕ G (t) and correcting

the resulting CCSDt energy for the triples outside the active set using the δ0(P ; Q) correction

defined in the Q space H (Q) = G (T) ⊖ G (t), where G (SD) = span
{
|Φa

i ⟩, |Φab
ij ⟩

∣∣∣ i < j, a < b
}

,

G (t) = span
{
|ΦAbc

ijK⟩
∣∣∣ i < j < K, A < b < c

}
, and G (T) = span

{
|Φabc

ijk⟩
∣∣∣ i < j < k, a < b < c

}
.

Similarly, we obtain the CC(q;4) energy by solving the CCSDTq equations in the P space

H (P ) = G (SD) ⊕ G (T) ⊕ G (q) and correcting the resulting CCSDTq energy for the subsets

of quadruply excited determinants in H (Q) = G (Q) ⊖ G (q), where G (q) = span
{
|ΦAbcd

ijkL ⟩
∣∣∣ i <

j < k < L, A < b < c < d
}

and G (Q) = span
{
|Φabcd

ijkl ⟩
∣∣∣ i < j < k < l, a < b < c < d

}
.
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Table 3.5: The key elements of the various deterministic CC methodologies employed in
this work summarized using the language of the CC(P;Q) formalism, including the P spaces
H (P ) adopted in the iterative CC calculations and the Q spaces H (Q) and D0,K(P ) denom-
inators defining the appropriate noniterative δ0(P ; Q) corrections (if any), along with the
corresponding CPU time scalings.a Adapted from Ref. [1].

Method H (P ) spaceb H (Q) spaceb D0,K(P ) typec CPU time scaling
Iterative Noniterative

CCSD G (SD) {∅} — n2
on

4
u —

CCSD(2)T G (SD) G (T) MP n2
on

4
u n3

on
4
u

CR-CC(2,3) G (SD) G (T) EN n2
on

4
u n3

on
4
u

CCSDt G (SD) ⊕ G (t) {∅} — NoNun2
on

4
u —

CC(t;3) G (SD) ⊕ G (t) G (T) ⊖ G (t) EN NoNun2
on

4
u n3

on
4
u

CCSDT G (SD) ⊕ G (T) {∅} — n3
on

5
u —

CCSDTq G (SD) ⊕ G (T) ⊕ G (q) {∅} — NoNun3
on

5
u —

CC(q;4) G (SD) ⊕ G (T) ⊕ G (q) G (Q) ⊖ G (q) MP NoNun3
on

5
u n2

on
5
u

CCSDTQ G (SD) ⊕ G (T) ⊕ G (Q) {∅} — n4
on

6
u —

aThe conventional CCSD(T) approach is not included, since CCSD(T) is an approximation to CCSD(2)T
and CR-CC(2,3). The relationships between the CCSD(T) approach and the CCSD(2)T and CR-CC(2,3)
methods have been discussed in Refs. [89, 90, 92].

bThe P and Q spaces are defined in terms of subsets of Slater determinants in the many-electron Hilbert
space referred to as G (SD), G (t), G (T), G (q), and G (Q). The corresponding definitions can be found in the
text.

cEN stands for the Epstein–Nesbet-like form of the D0,K(P ) denominator, Eq. (3.12). MP stands for the
Møller–Plesset-type approximation to Eq. (3.12), obtained by replacing H

(P ) by the Fock operator, assuming
a canonical RHF basis.

3.3.2 Application: Ground-State Potential Curve and Vibrational Term Values
of Mg2

To demonstrate the power of the active-space-based CC(P;Q) schemes, we now return to

the example of the challenging weakly bound Mg2 dimer. As explained in Section 2.2, one

needs to go to at least CCSDT correlating nearly all electrons and correcting for valence FCI

correlation effects to achieve spectroscopic, i.e., ∼1 cm−1, accuracy relative to experiment.

We have also discussed the failure of CCSD(T) to capture the entire vibrational manifold

supported by the X1Σ+
g state of Mg2. Therefore, in this section we will summarize the results

reported in Ref. [1], where we benchmarked various CC methods including up to triples and

quadruples against the parent CCSDT and CCSDTQ schemes, respectively.
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All of the CCSD, CCSD(T), CCSD(2)T, and CR-CC(2,3) computations reported here

were performed using the CC routines developed by the Piecuch group and described in

Refs. [89, 90, 186], which are available in the GAMESS package as standard options. The

remaining CCSDt, CC(t;3), CCSDT, CCSDTq, CC(q;4), and CCSDTQ calculations were

carried out using our group’s codes as well, although in this case we relied on the routines

developed in Refs. [73–77], which, with the exception of CCSDt and CC(t;3), are still outside

GAMESS (they are interfaced with the GAMESS HF and integral transformation routines

though). To facilitate our CCSDTQ calculations, in which we froze the core electrons, we

took advantage of the GAMESS determinantal FCI code, since CCSDTQ and FCI become

equivalent when only four electrons are correlated and FCI in GAMESS can take advantage

of the spatial symmetry, which our CCSDTQ routines cannot do. As in the case of the

earlier study of the beryllium dimer [73], all of the CC calculations for Mg2 reported in

this work used the restricted HF (RHF) references. The active-space CCSDt and CCSDTq

computations and the CC(t;3) and CC(q;4) corrections to CCSDt and CCSDTq used two

active occupied and six active unoccupied orbitals corresponding to the 3s and 3p valence

shells of the magnesium atoms.

To enrich our analysis of the performance of the various methods and to enable appropri-

ate basis set extrapolations, we used four different atomic orbital basis sets. In the case of the

frozen-core CC calculations correlating the 3s valence shells of the magnesium atoms, we used

the A(T+d)Z (all methods) and A(Q+d)Z (all methods up to full CCSDT) bases developed

in Ref. [179] and taken from the Peterson group’s website [180]. The A(n+d)Z family of basis

sets incorporates an additional tight d function in comparison to its more commonly used

aug-cc-pVnZ counterpart, which has been shown to help accelerate the convergence of bond

lengths and dissociation energies [179]. For methods with up to triply excited clusters, we es-

timated the subvalence correlation effects by correlating all electrons other than the 1s shells

of the Mg monomers. In these calculations, we used the augmented weighted core-valence

AwCTZ and AwCQZ basis sets, which were constructed by augmenting the cc-pwCVTZ and
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cc-pwCVQZ bases with the diffuse functions of the corresponding aug-cc-pVTZ and aug-cc-

pVQZ basis sets, respectively [179]. Prascher et al. [179] have demonstrated that the use of

the aug-cc-pwCVnZ basis sets over their standard aug-cc-pCVnZ counterparts is generally

beneficial in determining dissociation energies and spectroscopic properties of magnesium

compounds. We took these basis sets from the Peterson group’s website [180] as well.

In analogy to the earlier Be2 work [73], the J = 0 vibrational term values of 24Mg2 (the

most abundant isotopolog of the magnesium dimer) corresponding to the various CC PECs

obtained in this study were determined by numerically integrating the radial Schrödinger

equation from 3.2 to 15.0 Å. To do this, we used the Numerov–Cooley algorithm [187]

available in the LEVEL16 code [188]. The list of internuclear separations r, at which the

electronic energies were calculated, is as follows: 3.2, 3.3, 3.4, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2,

4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 6.4, 6.8, 7.2, 7.6, 8.0, 8.4, 8.8, 9.2, 9.6, 10.0, 11.0, 12.0,

13.0, and 15.0 Å. The De and re values corresponding to the various PECs obtained in this

work were determined using LEVEL16 as well. There was only one situation where we had

to extend the radius for integrating the radial Schrödinger equation beyond 15.0 Å, namely,

the determination of the barely bound v = 18 state found in our extrapolated highest-level

CC(q;4)- and CCSDTQ-type computations, and we will return to this issue later when we

compare our best results with experiment.

Our calculations for Mg2 are summarized in Tables 3.6–3.17 and Figs. 3.9 and 3.10. We

split our discussion into the following three parts: (i) the valence and nearly all-electron

calculations using CCSD(T), CCSD(2)T, CR-CC(2,3), CCSDt, CC(t;3), and CCSDT, i.e.,

the CC methods with connected triples and (ii) the valence calculations using CCSDTq,

CC(q;4), and CCSDTQ, i.e., the CC methods with connected triples and quadruples, and

(iii) comparisons of two kinds of composite calculations, in which the valence CC(q;4) and

CCSDTQ computations are combined with the nearly all-electron CCSDT energetics, both

with each other and with experiment.

In this section, we compare the CCSD(T), CCSD(2)T, CR-CC(2,3), CCSDt, and CC(t;3)

93



results for the magnesium dimer, using the A(T+d)Z and A(Q+d)Z basis sets in the frozen-

core calculations and the AwCTZ and AwCQZ bases in the subvalence computations cor-

relating all electrons but the 1s shells of the Mg atoms, with the parent full CCSDT data.

The ground-state electronic energies at selected values of r are shown in Tables 3.6–3.9 and

Fig. 3.9. The De, re, and vibrational term values can be found in Tables 3.10–3.13.

As shown in Tables 3.6–3.13 and Fig. 3.9, the relative accuracy patterns observed in the

calculations for the previously studied beryllium dimer [73] apply to its larger Mg2 counter-

part as well. In particular, in analogy to Be2, the CR-CC(2,3) method works better than the

other employed triples corrections to CCSD. This can be seen by inspecting the mean un-

signed error (MUE) and, especially, the nonparallelity error (NPE) values relative to CCSDT

characterizing the CCSD(T), CCSD(2)T, and CR-CC(2,3) PECs. For example, when the

A(T+d)Z basis set is employed and the core electrons of Mg2 are frozen in post-RHF calcula-

tions, the MUE and NPE values relative to CCSDT characterizing the CCSD(T), CCSD(2)T,

and CR-CC(2,3) PECs of Mg2 are 0.185 and 0.559 millihartree, respectively, in the case of

CCSD(T), 0.268 and 0.805 millihartree, respectively, in the case of CCSD(2)T, and 0.085

and 0.237 millihartree, respectively, in the CR-CC(2,3) case (see Table 3.6). When the

larger A(Q+d)Z basis set is employed or when all but the 1s electrons of the Mg atoms are

correlated, the CR-CC(2,3) approach offers similar improvements. For example, when the

valence A(T+d)Z basis set is replaced by its core-valence AwCTZ counterpart and all but

the 1s electrons of the magnesium monomers are correlated, the CR-CC(2,3) method reduces

the NPE values relative to CCSDT characterizing the CCSD(T) and CCSD(2)T potentials

from 0.415 and 0.687 millihartree, respectively, to 0.185 millihartree (see Table 3.7). The

MUE value resulting from the CR-CC(2,3)/AwCTZ calculations, of 0.331 millihartree, is

somewhat larger than the 0.190 millihartree obtained with CCSD(T)/AwCTZ, and a similar

pattern is observed when the AwCQZ basis set is considered, but the overall shapes of the

CR-CC(2,3) PECs are always closer to those obtained in the CCSDT calculations than the

shapes of the corresponding CCSD(T) and CCSD(2)T PECs, independent of the basis set
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and independent of the number of correlated electrons (cf. Fig. 3.9). The more accurate

description of the X 1Σ+
g potential of Mg2 by the CR-CC(2,3) method, when compared to

its CCSD(T) and CCSD(2)T counterparts, can also be seen by comparing the corresponding

dissociation energies De. For the four basis sets used in this study, the CR-CC(2,3) calcu-

lations recover 92–97% of the parent CCSDT De values, which is considerably better than

the 84–89% obtained with CCSD(T) and 77–82% obtained with CCSD(2)T.

Similarly to the smaller beryllium dimer [73], the improvements in the CCSD(T) and

CCSD(2)T PECs of Mg2 offered by CR-CC(2,3) result in the improved vibrational term val-

ues G(v) (see Tables 3.10–3.13). In the frozen-core calculations correlating valence electrons

only, summarized in Tables 3.10 and 3.12, the CR-CC(2,3) approach reduces the deviations

from CCSDT characterizing the CCSD(T) and CCSD(2)T G(v) values by factors of 1.8–

2.4 and 2.7–3.4, respectively. When all but the 1s electrons of the magnesium atoms are

correlated, each CR-CC(2,3) PEC supports one extra vibrational level compared to the cor-

responding CCSDT potential, but other than that the CR-CC(2,3) method is considerably

more accurate than its CCSD(T) and CCSD(2)T counterparts, reducing errors in the G(v)

values relative to CCSDT by factors of 1.6–2.8 and 2.7–4.3, respectively.

We can conclude this part of our discussion by stating that the CR-CC(2,3) approach

improves the results obtained with the other noniterative triples corrections to the CCSD

energies examined in this work, overcoming major deficiencies in the underlying CCSD poten-

tials, which display unphysically shallow minima, but when compared to the full treatment

of triples by CCSDT, the CR-CC(2,3) calculations for Mg2 are still not as accurate as de-

sired. For example, the CR-CC(2,3) PECs, although better than those obtained with the

CCSD(T) and CCSD(2)T methods, remain too shallow compared to their parent CCSDT

counterparts (by 15–36 cm−1 or 3–8%, when the dissociation energies De are examined).

As a result, as shown in Table 3.13, when the last, v = 17, vibrational level supported

by the CCSDT/AwCQZ potential is examined, the difference between the corresponding

CR-CC(2,3)/AwCQZ and CCSDT/AwCQZ G(v) values, which is 19.7 cm−1 or 5%, is still
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quite large. The CR-CC(2,3)/AwCQZ calculations improve the corresponding CCSD(T) and

CCSD(2)T potentials, which do not even support the v = 17 bound state in this case, but it

would be useful to improve the CR-CC(2,3) description of Mg2, while retaining the simplic-

ity of the idea of noniterative triples corrections. The opportunity to do this is provided by

the CC(t;3) approach, in which instead of correcting the CCSD energies for all triples, as in

CCSD(T), CCSD(2)T, and CR-CC(2,3), one corrects the CCSDt energies for the subset of

triples outside the G (t) subspace defined above, missing in CCSDt. Although, as shown in

Tables 3.6–3.13 and Fig. 3.9, the CCSDt method using small numbers of active orbitals to

select the leading triply excited (T3) clusters is incapable of producing an accurate PEC for

the magnesium dimer, it does improve the CCSD results and, as emphasized in the earlier

works reporting CC(P;Q) calculations [73–77], it also improves the quality of the singly and

doubly excited clusters, T1 and T2, respectively, compared to their CCSD values, since in

CCSDt they are iterated in the presence of the dominant T3 contributions captured using

active orbitals. As a result, we can anticipate further improvements in the description of

the ground-state PEC of the magnesium dimer, when the triples corrections to CCSD are

replaced by the CC(t;3) correction to CCSDt.

Direct inspection of the CC(t;3) results in Tables 3.6–3.13 and Fig. 3.9 confirms our

expectations. Indeed, we see a significant improvement in the description of the Mg2 X 1Σ+
g

potential by the CCSD-based CR-CC(2,3) and underlying CCSDt approaches. As shown in

Fig. 3.9, the CC(t;3) method always deepens the minimum and brings the resulting PECs

to an excellent agreement with their CCSDT counterparts. As a result, the MUE and NPE

values relative to CCSDT characterizing the CC(t;3) potentials are tiny, ranging from 0.038

to 0.369 millihartree in the case of MUEs and 0.039 to 0.131 millihartree for NPEs (see

Tables 3.6–3.9). To appreciate the degree of improvement offered by the CC(t;3) approach,

we should compare the MUE and NPE values relative to CCSDT characterizing the CC(t;3)

calculations with the MUEs and NPEs obtained with CR-CC(2,3), which are 0.085–0.448 and

0.185–0.282 millihartree, respectively, not to mention the much worse MUE and NPE values
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obtained with CCSDt, which can be as large as 9.159 millihartree for the MUEs and 2.057

millihartree for the NPEs. The above improvements in the description of the ground-state

PEC of Mg2 offered by the CC(t;3) correction to CCSDt result in the excellent agreements

between the CC(t;3) and full CCSDT data for the binding energies De, the equilibrium

bond lengths re, and the vibrational term values G(v), which parallel those observed for the

beryllium dimer [73]. As shown in Tables 3.10–3.13, the CC(t;3) calculations replace the

15–36 cm−1 and 0.025–0.035 Å errors relative to CCSDT in the De and re values obtained

with CR-CC(2,3) by the substantially smaller 1–19 cm−1 and 0.006–0.013 Å errors, and we

observe similarly impressive improvements when the vibrational term values are examined.

For example, when the subvalence electrons are included in the post-RHF calculations and

the largest basis set employed in this study, namely, AwCQZ, is considered, the CC(t;3)

approach reduces the 1–21 cm−1 or 4–5% errors relative to CCSDT obtained in the CR-

CC(2,3) calculations for the v = 0–17 vibrational states supported by the CCSDT potential

to 0.5–7 cm−1 or 1–2% (see Table 3.13). Even though the CC(t;3)/AwCQZ potential, just

like its CR-CC(2,3)/AwCQZ counterpart, captures an additional, v = 18, vibrational level,

which is not supported by the corresponding CCSDT PEC, the v = 17 vibrational state

obtained with the CC(t;3)/AwCQZ approach, which the full CCSDT/AwCQZ calculation

places at 411.3 cm−1, is only 4.2 cm−1 away from the parent CCSDT/AwCQZ value, in

contrast to the much larger 19.7 cm−1 deviation from CCSDT/AwCQZ obtained using CR-

CC(2,3)/AwCQZ.

Based on the above analysis, and consistent with our earlier findings for the beryllium

dimer [73], we can conclude this subsection by stating that the CC(t;3) correction to the

CCSDt energy produces the results of the nearly CCSDT quality when the larger and sim-

ilarly challenging Mg2 species is examined. By replacing the nonrelaxed T1 and T2 cluster

components obtained with CCSD in defining the triples energy correction by the T1 and T2

clusters iterated in the presence of the leading T3 contributions captured by CCSDt and by

using the CC(P ;Q)-based CC(t;3) correction δ0(P ; Q) to describe the remaining rather than
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all T3 correlations, we generate PECs that are much closer to their CCSDT parents than the

analogous PECs obtained using the CCSD(T), CCSD(2)T, and CR-CC(2,3) corrections to

CCSD. We now proceed to the examination of the effectiveness of the CC(q;4) correction to

the CCSDTq energy in reproducing the results of the full CCSDTQ calculations for Mg2.

Table 3.6: Electronic energies of the magnesium dimer at selected internuclear separations
r (in Å) obtained in the various valence CC calculations with up to triply excited clusters
using the A(T+d)Z basis set.a Adapted from Ref. [1].

r CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
3.2 2.796 0.559 0.805 0.237 1.870 0.092 −0.293121
3.4 2.395 0.490 0.702 0.208 1.626 0.085 −0.294880
3.6 2.023 0.421 0.603 0.185 1.389 0.079 −0.295699
3.8 1.689 0.356 0.511 0.162 1.168 0.072 −0.296013
3.9 1.537 0.325 0.469 0.151 1.066 0.068 −0.296061
4.0 1.396 0.296 0.429 0.140 0.969 0.064 −0.296062
4.2 1.145 0.244 0.357 0.120 0.796 0.056 −0.295976
4.8 0.610 0.130 0.197 0.072 0.419 0.036 −0.295464
5.4 0.317 0.068 0.106 0.043 0.212 0.022 −0.294986
6.0 0.166 0.036 0.057 0.025 0.107 0.013 −0.294664
6.8 0.073 0.016 0.026 0.012 0.045 0.007 −0.294429
7.6 0.035 0.008 0.013 0.006 0.021 0.003 −0.294318
8.8 0.013 0.003 0.005 0.003 0.008 0.001 −0.294251
10.0 0.006 0.001 0.002 0.001 0.003 0.001 −0.294228
11.0 0.003 0.001 0.001 0.001 0.002 0.000 −0.294219
15.0 0.000 0.000 0.000 0.000 0.000 0.000 −0.294209

MUEb 0.888 0.185 0.268 0.085 0.606 0.038 —
NPEc 2.795 0.559 0.805 0.237 1.870 0.092 —

a The CCSDT energies E
(CCSDT)
0 are reported as E

(CCSDT)
0 + 399.0 hartree, whereas all of the remaining

energies are errors relative to CCSDT in millihartree.
b Mean unsigned error relative to CCSDT.
c Non-parallelity error relative to CCSDT.
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Table 3.7: Electronic energies of the magnesium dimer at selected internuclear separations r
(in Å) obtained in the various subvalence CC calculations with up to triply excited clusters
correlating all electrons other than the 1s shells of the Mg atoms and using the AwCTZ basis
set.a Adapted from Ref. [1].

r CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
3.2 9.244 0.468 1.189 0.460 7.760 0.272 −0.774474
3.4 8.840 0.417 1.094 0.424 7.544 0.263 −0.776080
3.6 8.481 0.365 1.005 0.401 7.341 0.261 −0.776824
3.8 8.168 0.317 0.926 0.380 7.157 0.257 −0.777101
3.9 8.028 0.294 0.890 0.369 7.072 0.255 −0.777137
4.0 7.899 0.272 0.856 0.359 6.993 0.252 −0.777128
4.2 7.671 0.234 0.795 0.342 6.851 0.248 −0.777023
4.8 7.193 0.150 0.662 0.306 6.540 0.238 −0.776469
5.4 6.934 0.104 0.588 0.288 6.366 0.235 −0.775962
6.0 6.801 0.080 0.548 0.279 6.274 0.233 −0.775620
6.8 6.719 0.065 0.523 0.275 6.219 0.234 −0.775358
7.6 6.684 0.059 0.513 0.275 6.200 0.235 −0.775223
8.8 6.664 0.056 0.506 0.278 6.197 0.241 −0.775141
10.0 6.657 0.054 0.504 0.283 6.205 0.246 −0.775113
11.0 6.655 0.054 0.503 0.286 6.212 0.250 −0.775101
15.0 6.651 0.053 0.503 0.296 6.217 0.259 −0.775080

MUEb 7.456 0.190 0.725 0.331 6.697 0.249 —
NPEc 2.592 0.415 0.687 0.185 1.563 0.039 —

a The CCSDT energies E
(CCSDT)
0 are reported as E

(CCSDT)
0 + 399.0 hartree, whereas all of the remaining

energies are errors relative to CCSDT in millihartree.
b Mean unsigned error relative to CCSDT.
c Non-parallelity error relative to CCSDT.
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Table 3.8: Electronic energies of the magnesium dimer at selected internuclear separations
r (in Å) obtained in the various valence CC calculations with up to triply excited clusters
using the A(Q+d)Z basis set.a Adapted from Ref. [1].

r CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
3.2 2.870 0.509 0.766 0.282 2.058 0.131 −0.295534
3.4 2.464 0.447 0.668 0.243 1.799 0.118 −0.297255
3.6 2.085 0.385 0.575 0.209 1.543 0.105 −0.298027
3.8 1.742 0.326 0.489 0.179 1.303 0.093 −0.298294
3.9 1.586 0.298 0.448 0.166 1.191 0.087 −0.298321
4.0 1.441 0.271 0.411 0.154 1.086 0.082 −0.298303
4.2 1.182 0.224 0.342 0.131 0.895 0.071 −0.298185
4.8 0.630 0.121 0.190 0.078 0.477 0.045 −0.297618
5.4 0.327 0.064 0.103 0.045 0.245 0.027 −0.297119
6.0 0.171 0.034 0.056 0.027 0.124 0.017 −0.296787
6.8 0.075 0.015 0.025 0.013 0.052 0.008 −0.296545
7.6 0.035 0.008 0.012 0.007 0.024 0.004 −0.296434
8.8 0.013 0.003 0.005 0.003 0.009 0.002 −0.296367
10.0 0.006 0.001 0.002 0.001 0.004 0.001 −0.296344
11.0 0.003 0.001 0.001 0.001 0.002 0.000 −0.296336
15.0 0.000 0.000 0.000 0.000 0.000 0.000 −0.296327

MUEb 0.914 0.169 0.256 0.096 0.676 0.050 —
NPEc 2.870 0.509 0.765 0.282 2.057 0.131 —

a The CCSDT energies E
(CCSDT)
0 are reported as E

(CCSDT)
0 + 399.0 hartree, whereas all of the remaining

energies are errors relative to CCSDT in millihartree.
b Mean unsigned error relative to CCSDT.
c Non-parallelity error relative to CCSDT.
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Table 3.9: Electronic energies of the magnesium dimer at selected internuclear separations r
(in Å) obtained in the various subvalence CC calculations with up to triply excited clusters
correlating all electrons other than the 1s shells of the Mg atoms and using the AwCQZ basis
set.a Adapted from Ref. [1].

r CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
3.2 11.615 0.381 1.248 0.621 10.284 0.426 −0.882431
3.4 11.208 0.335 1.157 0.574 10.061 0.411 −0.884063
3.6 10.843 0.289 1.073 0.533 9.848 0.395 −0.884805
3.8 10.525 0.245 0.998 0.503 9.653 0.385 −0.885071
3.9 10.382 0.225 0.963 0.489 9.563 0.380 −0.885102
4.0 10.251 0.206 0.931 0.476 9.479 0.375 −0.885090
4.2 10.020 0.171 0.874 0.454 9.327 0.366 −0.884986
4.8 9.538 0.097 0.751 0.417 8.998 0.355 −0.884460
5.4 9.278 0.057 0.681 0.396 8.812 0.348 −0.883988
6.0 9.144 0.036 0.644 0.384 8.714 0.343 −0.883670
6.8 9.063 0.024 0.620 0.379 8.651 0.341 −0.883438
7.6 9.030 0.018 0.610 0.379 8.627 0.343 −0.883332
8.8 9.012 0.015 0.604 0.383 8.621 0.349 −0.883268
10.0 9.005 0.014 0.602 0.388 8.628 0.355 −0.883245
11.0 9.003 0.013 0.601 0.391 8.636 0.359 −0.883237
15.0 9.001 0.013 0.600 0.403 8.648 0.371 −0.883228

MUEb 9.807 0.134 0.810 0.448 9.159 0.369 —
NPEc 2.615 0.368 0.648 0.242 1.663 0.085 —

a The CCSDT energies E
(CCSDT)
0 are reported as E

(CCSDT)
0 + 399.0 hartree, whereas all of the remaining

energies are errors relative to CCSDT in millihartree.
b Mean unsigned error relative to CCSDT.
c Non-parallelity error relative to CCSDT.
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Table 3.10: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the various valence
CC calculations with up to triply excited clusters using the A(T+d)Z basis set.a Adapted
from Ref. [1].

vb CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
0 −10.8 −2.5 −3.5 −1.0 −8.0 −0.5 24.1
1 −31.8 −7.4 −10.3 −3.1 −23.5 −1.3 69.8
2 −52.0 −12.0 −16.8 −5.0 −38.4 −2.2 112.5
3 −71.7 −16.5 −23.2 −7.0 −52.7 −3.0 152.3
4 −90.9 −20.8 −29.4 −8.9 −66.6 −3.9 189.2
5 −109.9 −25.0 −35.4 −10.8 −80.2 −4.7 223.2
6 −128.6 −29.1 −41.4 −12.7 −93.5 −5.5 254.3
7 −147.0 −33.2 −47.3 −14.6 −106.5 −6.4 282.5
8 −165.2 −37.2 −53.2 −16.5 −119.3 −7.3 307.8
9 −182.9 −41.2 −59.0 −18.4 −131.7 −8.2 330.1
10 −199.6 −45.0 −64.7 −20.3 −143.8 −9.0 349.5
11 —c −48.8 −70.3 −22.2 −155.4 −9.9 365.9
12 —c −52.5 −75.7 −24.1 −166.1 −10.8 379.3
13 —c −56.0 −80.8 −25.9 −175.2 −11.7 389.8
14 —c −59.2 −85.3 −27.7 —c −12.5 397.6
15 —c −61.8 −88.2 −29.1 —c −13.2 402.8
16 —c —c —c −30.3 —c −13.8 405.8
17 —c —c —c —c —c —c 407.4
De 151.1 342.2 314.3 376.2 214.7 393.2 407.7
re 4.492 4.034 4.069 3.982 4.286 3.963 3.952

a The CCSDT vibrational energies are total G(v) values, whereas all of the remaining vibrational term values
are errors relative to CCSDT.

b Vibrational quantum number.
c PEC is too shallow to support this vibrational level.
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Table 3.11: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the various subva-
lence CC calculations with up to triply excited clusters using the AwCTZ basis set.a Adapted
from Ref. [1].

vb CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
0 −9.4 −1.8 −2.8 −0.8 −6.5 −0.3 24.7
1 −27.8 −5.3 −8.2 −2.3 −19.1 −0.8 71.8
2 −45.5 −8.6 −13.4 −3.8 −31.3 −1.2 115.9
3 −62.9 −11.9 −18.5 −5.2 −43.2 −1.6 157.2
4 −79.8 −15.1 −23.5 −6.5 −54.8 −1.9 195.7
5 −96.3 −18.2 −28.5 −7.8 −66.1 −2.2 231.4
6 −112.4 −21.2 −33.3 −9.1 −77.3 −2.5 264.3
7 −128.0 −24.2 −38.1 −10.3 −88.1 −2.8 294.3
8 −143.0 −27.1 −42.8 −11.5 −98.5 −3.0 321.6
9 −157.5 −29.9 −47.3 −12.7 −108.4 −3.3 346.0
10 −171.6 −32.6 −51.7 −13.7 −117.7 −3.5 367.7
11 −185.5 −35.2 −55.8 −14.7 −126.5 −3.6 386.6
12 −198.8 −37.6 −59.8 −15.6 −134.8 −3.7 403.0
13 −210.5 −39.9 −63.7 −16.4 −142.5 −3.8 416.8
14 —c −42.3 −67.6 −17.1 −149.1 −3.7 428.0
15 —c −44.7 −71.5 −17.6 −154.1 −3.5 436.7
16 —c −46.7 −74.4 −17.9 −157.2 −3.0 442.7
17 —c −47.9 −76.1 −17.7 −159.2 −2.4 446.5
18 —c −48.6 —c −17.3 —c −1.6 449.1
19 —c —c —c −16.8 —c −0.9 450.9
20 —c —c —c [435.9]d —c [451.9]d —c

De 207.9 401.3 371.9 436.3 287.5 452.7 451.6
re 4.362 3.982 4.018 3.951 4.171 3.932 3.926

a The CCSDT vibrational energies are total G(v) values, whereas all of the remaining vibrational term values
are errors relative to CCSDT.

b Vibrational quantum number.
c PEC is too shallow to support this vibrational level.
d The actual term value, as this PEC supports an extra vibrational level which is not bound by the CCSDT
potential.
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Table 3.12: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the various valence
CC calculations with up to triply excited clusters using the A(Q+d)Z basis set.a Adapted
from Ref. [1].

vb CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
0 −11.9 −2.4 −3.5 −1.1 −9.5 −0.5 25.5
1 −34.7 −7.0 −10.2 −3.4 −27.6 −1.6 73.8
2 −56.6 −11.4 −16.7 −5.6 −44.9 −2.7 118.9
3 −77.8 −15.7 −22.9 −7.8 −61.6 −3.8 160.9
4 −98.4 −19.7 −29.0 −10.0 −77.6 −4.9 199.8
5 −118.5 −23.7 −35.0 −12.1 −93.3 −6.0 235.8
6 −138.3 −27.6 −40.8 −14.2 −108.6 −7.1 268.8
7 −157.9 −31.4 −46.6 −16.3 −123.5 −8.2 298.8
8 −177.1 −35.2 −52.3 −18.4 −138.3 −9.3 325.9
9 −196.0 −38.9 −58.0 −20.5 −152.7 −10.4 349.9
10 −214.2 −42.5 −63.5 −22.7 −166.8 −11.5 371.0
11 —c −46.1 −69.1 −24.8 −180.3 −12.7 389.0
12 —c −49.6 −74.4 −27.0 −192.8 −13.9 404.0
13 —c −53.0 −79.6 −29.1 —c −15.0 415.9
14 —c −56.1 −84.4 −31.1 —c −16.1 424.9
15 —c −58.8 −88.4 −32.8 —c −17.1 431.2
16 —c −61.0 —c −34.3 —c −18.0 435.0
17 —c —c —c —c —c —c 437.0
De 158.1 374.3 343.5 401.6 212.1 418.5 437.5
re 4.439 3.972 4.005 3.935 4.260 3.917 3.904

a The CCSDT vibrational energies are total G(v) values, whereas all of the remaining vibrational term values
are errors relative to CCSDT.

b Vibrational quantum number.
c PEC is too shallow to support this vibrational level.

104



Table 3.13: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the various subva-
lence CC calculations with up to triply excited clusters using the AwCQZ basis set.a Adapted
from Ref. [1].

vb CCSD CCSD(T) CCSD(2)T CR-CC(2,3) CCSDt CC(t;3) CCSDT
0 −10.3 −1.7 −2.8 −1.1 −7.5 −0.5 24.4
1 −30.1 −5.1 −8.3 −2.8 −21.9 −1.2 70.7
2 −49.1 −8.2 −13.6 −4.4 −35.8 −1.6 113.9
3 −67.5 −11.3 −18.7 −5.9 −49.2 −2.1 154.1
4 −85.4 −14.2 −23.7 −7.5 −62.2 −2.6 191.3
5 −102.8 −17.1 −28.5 −9.0 −74.9 −3.1 225.6
6 −120.0 −19.9 −33.3 −10.6 −87.3 −3.7 257.0
7 −137.0 −22.6 −37.9 −12.1 −99.6 −4.3 285.4
8 −153.9 −25.3 −42.6 −13.6 −111.9 −4.8 311.0
9 −170.5 −27.9 −47.2 −15.1 −123.9 −5.3 333.6
10 −186.4 −30.5 −51.7 −16.5 −135.5 −5.8 353.3
11 −201.2 −33.1 −56.3 −17.8 −146.1 −6.3 369.9
12 —c −35.6 −60.7 −19.1 −155.0 −6.7 383.4
13 —c −38.0 −64.8 −20.1 −162.0 −6.9 394.0
14 —c −40.2 −68.5 −20.7 −166.9 −6.8 401.7
15 —c −42.0 −71.5 −20.8 −170.2 −6.3 406.8
16 —c −43.4 —c −20.5 —c −5.4 409.8
17 —c —c —c −19.7 —c −4.2 411.3
18 —c —c —c [393.1]d —c [408.8]d —c

De 169.1 366.7 336.0 393.4 236.8 409.6 411.4
re 4.397 3.969 4.007 3.952 4.200 3.930 3.917

a The CCSDT vibrational energies are total G(v) values, whereas all of the remaining vibrational term values
are errors relative to CCSDT.

b Vibrational quantum number.
c PEC is too shallow to support this vibrational level.
d The actual term value, as this PEC supports an extra vibrational level which is not bound by the CCSDT
potential.
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Figure 3.9: The ground-state PECs of Mg2 resulting from the CCSD and various CC calcu-
lations with up to triply excited clusters using the (a) A(T+d)Z, (b) AwCTZ, (c) A(Q+d)Z,
and (d) AwCQZ basis sets. All PECs have been aligned such that the corresponding elec-
tronic energies at the internuclear separation r = 15 Å are identical and set at 0 hartree.
Adapted from Ref. [1].
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The ground-state PECs of the magnesium dimer resulting from the CC calculations with

up to connected quadruply excited clusters, represented in this work by the active-space

CCSDTq approach, the CC(q;4) correction to CCSDTq, and their CCSDTQ parent, can be

found in Table 3.14 and Fig. 3.10. The corresponding De, re, and vibrational term values are

shown in Table 3.15. To appreciate the effect of connected quadruples on the ground-state

PEC and vibrational spectrum of Mg2, Tables 3.14 and 3.15 and Fig. 3.10 also contain the

CCSDT data. Due to enormous costs of the CCSDTQ computations, we used the A(T+d)Z

basis set and correlated valence electrons only. As a consequence, the CCSDTQ results

shown in Tables 3.14 and 3.15 and Fig. 3.10 are equivalent to the FCI/A(T+d)Z data.

Let us first consider the performance of the CCSDTq approximation to full CCSDTQ,

where, in contrast to CCSDT, which completely neglects T4 clusters, the dominant con-

nected quadruples are incorporated through the use of active orbitals. As shown in Table

3.14, the CCSDTq approach alone is already very accurate. Indeed, the MUE and NPE

values characterizing the CCSDTq calculations relative to CCSDTQ, of 0.032 and 0.091

millihartree, respectively, are not only very small, but they also reduce the corresponding

CCSDT values by a factor of about 2. The high quality of the CCSDTq PEC is further exem-

plified by its vibrational term values (see Table 3.15). Although the CCSDT and CCSDTq

zero-point energies, G(v = 0), do not differ too much and are both excellent, the situation

changes, in favor of CCSDTq, when the higher-energy vibrational states, especially those

with v ≥ 10, are considered. For example, as shown in Table 3.15, the 11.8 cm−1 difference

in the G(v = 17) vibrational energy between CCSDTq and CCSDTQ is smaller than the

corresponding CCSDT–CCSDTQ difference by a factor of 1.5.

In analogy to the previously studied beryllium dimer [73], the CC(q;4) correction to

CCSDTq improves the highly accurate CCSDTq energies even further. This can be seen

in Table 3.14, which shows that the already very small MUE and NPE values relative to

CCSDTQ characterizing the CCSDTq calculations for Mg2, of 0.032 and 0.091 millihartree,

respectively, reduce to the even smaller 0.022 millihartree for MUE and 0.061 millihartree
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for NPE, when the CC(q;4) approach is employed, making the CC(q;4) and CCSDTQ po-

tentials virtually indistinguishable. As a result, the CC(q;4) calculations capture 98% of

the CCSDTQ binding energy, reproduce the CCSDTQ equilibrium bond length to within

0.007 Å, and yield excellent vibrational term values that are very close to their full CCS-

DTQ counterparts. Indeed, as shown in Table 3.15, the CC(q;4) and CCSDTQ values of the

zero-point vibrational energies differ by a tiny 0.3 cm−1. For the last, v = 17, vibrational

level supported by the CC(q;4)/A(T+d)Z and CCSDTQ/A(T+d)Z potentials, the differ-

ence between the CC(q;4) and CCSDTQ data is only 8.1 cm−1 or 2%. This is a noticeable

improvement over the 11.8 cm−1 obtained in the corresponding CCSDTq calculations, and

the even more impressive improvement when compared to the 17.8 cm−1 difference between

the CCSDT/A(T+d)Z G(v = 17) value, ignoring T4 clusters, and its CCSDTQ/A(T+d)Z

counterpart. It is clear from Tables 3.14 and 3.15 and Fig. 3.10 that one cannot obtain a

fully quantitative description of the magnesium dimer without a highly accurate treatment

of the connected triply and quadruply excited clusters.

In summary, in analogy to the previously reported calculations for Be2 [73], the CC(q;4)

method provides an accurate representation of the ground-state PEC of the magnesium dimer

obtained in the considerably more expensive CCSDTQ calculations. This finding is further

examined below, where we combine the valence CC(q;4)/A(T+d)Z and CCSDTQ/A(T+d)Z

computations with the reasonably converged, nearly all-electron, CCSDT energetics to ex-

trapolate our best De, re, and G(v) values that can subsequently be compared with the

available experimental or experimentally derived information.
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Table 3.14: Electronic energies of the magnesium dimer at selected internuclear separations r
(in Å) obtained in the various valence CC calculations with up to quadruply excited clusters
using the A(T+d)Z basis set.a Adapted from Ref. [1].

r CCSDT CCSDTq CC(q;4) CCSDTQ
3.2 0.182 0.091 0.061 −0.293303
3.4 0.149 0.081 0.055 −0.295029
3.6 0.120 0.071 0.049 −0.295819
3.8 0.097 0.061 0.042 −0.296110
3.9 0.087 0.057 0.039 −0.296148
4.0 0.078 0.052 0.036 −0.296140
4.2 0.063 0.044 0.030 −0.296039
4.8 0.033 0.026 0.017 −0.295497
5.4 0.018 0.014 0.009 −0.295004
6.0 0.010 0.008 0.005 −0.294674
6.8 0.005 0.004 0.002 −0.294433
7.6 0.002 0.002 0.001 −0.294320
8.8 0.001 0.001 0.000 −0.294252
10.0 0.000 0.000 0.000 −0.294228
11.0 0.000 0.000 0.000 −0.294219
15.0 0.000 0.000 0.000 −0.294209

MUEb 0.053 0.032 0.022 —
NPEc 0.182 0.091 0.061 —

a The CCSDTQ energies E
(CCSDTQ)
0 , which are equivalent in this case to the energies obtained in the FCI

calculations, are reported as E
(CCSDTQ)
0 + 399.0 hartree, whereas all of the remaining energies are errors

relative to CCSDTQ in millihartree.
b Mean unsigned error relative to CCSDTQ.
c Non-parallelity error relative to CCSDTQ.
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Table 3.15: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the various va-
lence CC calculations with up to quadruply excited clusters using the A(T+d)Z basis set.a
Adapted from Ref. [1].

vb CCSDT CCSDTq CC(q;4) CCSDTQ
0 −0.6 −0.4 −0.3 24.7
1 −1.9 −1.2 −0.8 71.7
2 −3.1 −2.0 −1.4 115.6
3 −4.2 −2.7 −1.9 156.5
4 −5.3 −3.5 −2.4 194.5
5 −6.4 −4.2 −3.0 229.6
6 −7.5 −4.9 −3.5 261.8
7 −8.6 −5.6 −3.9 291.1
8 −9.7 −6.4 −4.4 317.5
9 −10.8 −7.1 −4.9 340.9
10 −11.8 −7.8 −5.4 361.3
11 −12.9 −8.5 −5.9 378.7
12 −13.9 −9.2 −6.3 393.2
13 −14.9 −9.8 −6.8 404.7
14 −15.8 −10.5 −7.2 413.4
15 −16.7 −11.0 −7.6 419.4
16 −17.3 −11.5 −7.9 423.2
17 −17.8 −11.8 −8.1 425.2
De 407.7 413.8 417.7 425.9
re 3.952 3.941 3.937 3.930

a The CCSDTQ vibrational energies, which are equivalent in this case to the energies obtained in the FCI
calculations, are total G(v) values, whereas all of the remaining vibrational term values are errors relative
to CCSDTQ.

b Vibrational quantum number.
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Figure 3.10: The ground-state PECs of Mg2 resulting from the CCSD, CCSDT, and various
CC calculations with up to quadruply excited clusters using the A(T+d)Z basis set. All
PECs have been aligned such that the corresponding electronic energies at the internuclear
separation r = 15 Å are identical and set at 0 hartree. Adapted from Ref. [1].

In this, final, part of our discussion of Mg2, we compare our best CC calculations with

the experimentally derived spectroscopic data for Mg2, reported in Refs. [161, 166, 169], and

provide additional comments on the performance of the highest-level CC(P;Q) methodology

considered in this work, which is the CC(q;4) correction to CCSDTq. We do this by ex-

amining the performance of two composite schemes, referred to, throughout the rest of this

section, as schemes A and B, in which the ground-state electronic energies are calculated as

follows:

E
(A)
0 = E

(CCSDT/AwCQZ)
0 +

(
∆E

(CC(q;4)/A(T+d)Z)
0 − ∆E

(CCSDT/A(T+d)Z)
0

)
, (3.39)
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for scheme A, and

E
(B)
0 = E

(CCSDT/AwCQZ)
0 +

(
∆E

(CCSDTQ/A(T+d)Z)
0 − ∆E

(CCSDT/A(T+d)Z)
0

)
, (3.40)

for scheme B. The first term on the right-hand side of each of the above two equations rep-

resents the total CCSDT energy obtained using the largest basis set employed in this work,

i.e., AwCQZ, and correlating all electrons other than the 1s shells of the Mg monomers. The

difference between schemes A and B is in the treatment of the many-electron correlation

effects associated with the connected quadruply excited clusters. In scheme A, they are

estimated by forming the difference between the CC(q;4)/A(T+d)Z and CCSDT/A(T+d)Z

valence correlation energies [see Eq. (3.39)]. In scheme B, they are calculated more accu-

rately by forming the difference between the valence correlation energies resulting from the

CCSDTQ/A(T+d)Z and CCSDT/A(T+d)Z calculations [see Eq. (3.40)]. Given the fact

that the CC(q;4) approach is an approximation to CCSDTQ, we can treat scheme B as a

parent method for judging the performance of scheme A.

Before going any further, we need to comment on the usage of the CCSDT/AwCQZ

energy in Eqs. (3.39) and (3.40). In principle, following the previous investigation of Be2

[73], one could think of extrapolating the subvalence CCSDT correlation energies to the

CBS limit and use the resulting CCSDT/CBS estimates instead of the CCSDT/AwCQZ

energies in Eqs. (3.39) and (3.40). Unfortunately, as demonstrated below, unlike in the

beryllium dimer, an extrapolation based on basis sets of triple- and quadruple-ζ quality does

not determine the CBS limit for the magnesium dimer in a correct manner and one is better

off by using the unextrapolated results obtained with the AwCQZ basis. This is, most likely,

related to the fact that Mg is a much larger atom than Be, having subvalence 2s and 2p

shells, which the Be atom does not have, that are correlated in our nearly all-electron CCSDT

calculations. As explained below, the AwCQZ–AwC5Z extrapolation would work well, but

we could not afford the full CCSDT calculations for Mg2 correlating valence and subvalence

electrons and using basis sets larger than AwCQZ, whereas, as already demonstrated above,

the use of the more affordable CCSD(T), CCSD(2)T, and CR-CC(2,3) approximations to
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CCSDT would result in additional accuracy losses due to the inadequate treatment of triples.

This forced us to use the unextrapolated CCSDT/AwCQZ energies in Eqs. (3.39) and (3.40)

instead of the CCSDT/CBS estimates resulting from the AwCTZ–AwCQZ extrapolation,

which would not be reliable enough for making comparisons with the experimentally derived

spectroscopic data reported in Refs. [161, 166, 169].

The problem with using the AwCTZ and AwCQZ basis sets to extrapolate the CBS limit

for Mg2 is explained in Table 3.16. We provide in this table the De, re, and vibrational term

values obtained in the subvalence CCSD(T) calculations using the AwCTZ, AwCQZ, and

AwC5Z basis sets, along with the two CBS extrapolation schemes, denoted as CBS-1 and

CBS-2, employing the two-point formula [190, 191]

∆E
(CCSD(T)/CBS)
0 = n3 ∆E

(CCSD(T)/AwCnZ)
0 − (n − 1)3 ∆E

(CCSD(T)/AwC(n−1)Z)
0

n3 − (n − 1)3 , (3.41)

where n and (n − 1) are the cardinal numbers of the AwCnZ and AwC(n − 1)Z basis sets,

respectively (the CCSD(T) approach is a lot less expensive than full CCSDT, so the nearly

all-electron CCSD(T)/AwC5Z calculations, correlating all electrons but the 1s shells of the

magnesium atoms, are affordable). The CBS-1 scheme is based on an AwCTZ–AwCQZ

extrapolation [n = 4 in Eq. (3.41)]. CBS-2 uses a much better extrapolation scheme based

on the AwCQZ and AwC5Z results [n = 5 in Eq. (3.41)]. In both cases, the extrapolated

CCSD(T) correlation energy is added to the RHF/AwC5Z result, which we treat as equivalent

to the RHF/CBS value due to the very fast (exponential) convergence of HF energies with

respect to the basis set (so fast that the RHF/AwCQZ and RHF/AwC5Z PECs are virtually

identical). As shown in Table 3.16, the CCSD(T)/AwCQZ De, re, and G(v) values faithfully

reproduce those obtained with the CBS-2 scheme, to within ∼5 cm−1 for De and G(v)

and 0.001 Å in the case of re. In contrast, the CBS-1 scheme not only has a large, ∼20

cm−1, error relative to CBS-2 when the corresponding De values are examined, but it also

fails to capture the last two vibrational levels resulting from the CBS-2 calculations. This

indicates that one is much better off by using the AwCQZ basis set alone, which gives results

similar to those obtained with AwC5Z and CBS-2, and not performing an AwCTZ–AwCQZ
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CBS extrapolation. Therefore, in the above schemes A and B, defined by Eqs. (3.39) and

(3.40), respectively, we use the CCSDT/AwCQZ results as replacements for the CBS-limit

CCSDT energetics, which we could not properly determine due to the prohibitive costs of the

CCSDT/AwC5Z calculations correlating all electrons but the 1s shells of the Mg monomers.

The results obtained with schemes A and B, as defined above, are compared with one

another and with the experimentally derived data reported in Refs. [161, 166, 169] in Table

3.17. To make sure that the entire vibrational manifold of Mg2 is captured and no vibrational

states near the dissociation threshold are lost as a result of the potential defects of the

numerical integration of the radial Schrödinger equation, we integrate the latter equation

from 3.2 to 100.0 Å by including four additional internuclear separations r, namely, 20.0, 25.0,

30.0, and 100.0 Å, in the grid described above, and determining the corresponding energies at

the nearly all-electron CCSDT/AwCQZ and valence CCSDT/A(T+d)Z, CC(q;4)/A(T+d)Z,

and CCSDTQ/A(T+d)Z (i.e., FCI/A(T+d)Z) levels required by Eqs. (3.39) and (3.40).

As demonstrated in Table 3.17, the results obtained with scheme A, which uses the

difference between the CC(q;4)/A(T+d)Z and CCSDT/A(T+d)Z correlation energies to

estimate the effect of the connected quadruply excited clusters, are very similar to those

determined with scheme B, in which CC(q;4) is replaced by CCSDTQ. This is particularly

true when the energy spacings between the successive vibrational levels, ∆Gv+1/2 ≡ G(v +

1) − G(v), are examined. The differences between the ∆Gv+1/2 values resulting from the

calculations using schemes A and B do not exceed 0.6 cm−1, when all of the vibrational

levels, including those near the dissociation threshold, are considered, being 0.5 cm−1 on

average. This is an improvement compared to the previously studied beryllium dimer case

[73], where the replacement of CCSDTQ by CC(q;4) in composite calculations similar to

schemes A and B used here had a larger effect on the resulting ∆Gv+1/2 values. In analogy

to Be2, the differences between the G(v) values obtained for the magnesium dimer using

the CC(q;4)-based scheme A and its CCSDTQ-based counterpart defining scheme B, which

range from 0.3 cm−1 for v = 0 to ∼8 cm−1 when the higher-energy vibrational states near the
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dissociation threshold are considered, are larger than the analogous differences characterizing

the corresponding ∆Gv+1/2 spacings, but once again they are smaller when compared to the

similar calculations for the beryllium dimer reported in Ref. [73]. This might be related

to the fact that the T4 effects in Be2, which change its dissociation energy De by about

17%, when the analog of scheme B used here is compared to the all-electron CCSDT/CBS

computations, are larger than those characterizing the magnesium dimer. Indeed, the effect

of T4 clusters on the De value characterizing Mg2, estimated by comparing the results of

the scheme B and nearly all-electron CCSDT/AwCQZ calculations, is only about 4%. As

shown in Table 3.17, both composite schemes examined in the present study give very similar

equilibrium bond lengths and binding energies that agree to within 0.008 Å and less than 9

cm−1 (2%), respectively. Thus, in analogy to the earlier Be2 work in our group [73], we can

conclude that the CC(q;4)-based scheme A is a reliable substitute for the more expensive

scheme B based on CCSDTQ. This is promising for the future applications of the CC(q;4)

approach, especially if we take into consideration savings in the computational effort offered

by CC(q;4) compared to CCSDTQ (cf. Table 3.5).

Now, after establishing the accuracy of the CC(q;4)-based scheme A relative to scheme

B, in which CC(q;4) is replaced by CCSDTQ, we move to a comparison of the De, re, G(v),

and ∆Gv+1/2 values determined using schemes A and B with the experimentally derived data

obtained in Refs. [161, 166, 169]. As shown in Table 3.17, the De and re values calculated

with scheme A agree with their experimentally derived counterparts reported in Ref. [169]

to within 8.1 cm−1 and 0.012 Å, respectively. Unsurprisingly, scheme B, being a parent

approach to scheme A, is more accurate in this regard, giving an almost exact binding

energy relative to experiment and a 0.004 Å error relative to the experimentally derived

equilibrium bond length, but scheme A performs very well too, especially if we keep in mind

that the calculations carried out in this benchmark study neglect relativistic and post-Born–

Oppenheimer effects (see the remarks below). The vibrational term values G(v) determined

using scheme A reproduce their experimental counterparts to within 7.7 cm−1, when the
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experimentally resolved, v = 0–13, part of the vibrational spectrum is examined, and 0.3–

3.5 cm−1 for the v = 0–4 states having energies below 200 cm−1. Again, similarly to De

and re, scheme B performs better, with errors relative to the available experimental G(v)

values not exceeding 1.3 cm−1, but scheme A is quite accurate too. As one might expect, the

agreement with experiment is even more impressive when the vibrational energy spacings

∆Gv+1/2 are examined. As shown in Table 3.17, the ∆Gv+1/2 values obtained with schemes

A and B agree with the available experimental data for these spacings to within 1 cm−1.

The excellent agreement between the G(v) and ∆Gv+1/2 values obtained for the magnesium

dimer with the composite schemes defined by Eqs. (3.39) and (3.40) and the corresponding

experimentally derived data, which is as good as that observed in the analogous calculations

for the smaller Be2 system [73], demonstrates that by developing the CC(P;Q) framework

and the resulting approximations, such as CC(q;4), we have come up with a new generation

of affordable ab initio methods that can accurately capture the physics necessary to describe

complex spectroscopic problems. Table 3.17 also reveals that both schemes A and B are

capable of predicting the existence of the additional v = 14–18 states initially postulated by

Li and Stwalley in Ref. [166], which shows that novel methods developed in our group, such

as CC(q;4), remain reliable even when the experimental data are unavailable or uncertain.

In analogy to the previously studied beryllium dimer [73], in commenting on the results in-

cluded in Table 3.17 and making comparisons with experiment, we should not ignore the fact

that in this methodological study focusing on testing the CC(P ;Q) approaches, we neglected

the post-Born–Oppenheimer and relativistic effects. The post-Born–Oppenheimer effects

in the magnesium dimer are negligible [169], but special relativity changes the dissociation

energy De in Mg2 by ∼4–5 cm−1 [177] and this will affect our calculated vibrational term

values, especially the G(v) values characterizing higher-energy states near the dissociation

threshold. The effect of relativity on the ∆Gv+1/2 spacings resulting from our nonrelativistic

calculations will likely be much smaller due to error cancellation, but we plan to reexamine

the De, re, G(v), and ∆Gv+1/2 values characterizing the magnesium dimer using the higher-
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level CC(P ;Q) and CC methods, such as CC(q;4) and CCSDTQ, correcting the resulting

potentials and spectroscopic properties for the post-Born–Oppenheimer and relativistic ef-

fects, in the future work. The ability of the CC(t;3) and CC(q;4) methods to accurately

reproduce the parent full CCSDT and CCSDTQ data encourages us to do so.

Table 3.16: Vibrational energies G(v) (in cm−1), dissociation energies De (in cm−1), and
equilibrium bond lengths re (in Å) for the magnesium dimer obtained in the subvalence
CCSD(T) calculations using the AwCnZ basis sets with n = T, Q, and 5 and two CBS
extrapolation schemes, designated as CBS-1 and CBS-2, described in the text.a Adapted
from Ref. [1].

vb AwCTZc AwCQZd AwC5Z CBS-1e CBS-2f

0 0.1 -0.1 0.0 -0.2 22.8
1 0.6 -0.2 -0.1 -0.7 65.9
2 1.2 -0.4 -0.2 -1.4 106.1
3 1.9 -0.6 -0.3 -2.3 143.5
4 2.7 -0.8 -0.5 -3.3 177.9
5 3.7 -1.0 -0.6 -4.3 209.5
6 4.9 -1.1 -0.6 -5.3 238.2
7 6.3 -1.0 -0.6 -6.3 263.8
8 8.1 -0.6 -0.4 -7.1 286.4
9 10.2 -0.1 -0.1 -8.0 305.8
10 12.8 0.5 0.2 -9.1 322.2
11 15.9 1.2 0.5 -10.8 335.6
12 19.4 1.8 0.8 -13.0 346.0
13 23.3 2.4 1.1 -15.1 353.6
14 27.4 3.2 1.5 —g 358.4
15 31.1 4.0 1.9 —g 360.9
De 401.3 366.7 364.1 341.5 361.7
re 3.982 3.969 3.968 3.960 3.968

aThe CBS-2 vibrational energies are total G(v) values, whereas all of the remaining vibrational term values
are errors relative to CBS-2.

bVibrational quantum number.
cPEC supports three extra levels, v = 16–18, which are not supported by the CBS-2 potential.
dPEC supports one extra level, v = 16, which is not supported by the CBS-2 potential.
eObtained by using Eq. (3.41) and the AwCTZ and AwCQZ bases.
fObtained by using Eq. (3.41) and the AwCQZ and AwC5Z bases.
gPEC is too shallow to support this vibrational level.

117



Table 3.17: Vibrational energies G(v) and spacings ∆Gv+1/2 ≡ G(v + 1) − G(v) (in cm−1),
dissociation energies De (in cm−1), and equilibrium bond lengths re (in Å) for the magnesium
dimer, as obtained with the two composite schemes discussed in the text and integrating the
radial Schrödinger equation from 3.2 to 100.0 Å to capture the barely bound v = 18 state.
Adapted from Ref. [1].

va Scheme Ab Scheme Bc Exptd

G(v)e ∆Gv+1/2
e G(v)f ∆Gv+1/2

f G(v) ∆Gv+1/2

0 −0.3 (−0.3) −0.8 (−0.6) 0.0 −0.3 25.2 47.9
1 −1.2 (−0.9) −0.8 (−0.6) −0.3 −0.3 73.0 44.7
2 −2.0 (−1.5) −0.8 (−0.5) −0.6 −0.2 117.8 41.6
3 −2.8 (−2.0) −0.7 (−0.5) −0.8 −0.2 159.4 38.6
4 −3.5 (−2.5) −0.7 (−0.5) −1.0 −0.1 198.0 35.6
5 −4.2 (−3.1) −0.6 (−0.5) −1.1 −0.1 233.6 32.6
6 −4.8 (−3.6) −0.6 (−0.5) −1.2 −0.1 266.2 29.6
7 −5.4 (−4.1) −0.5 (−0.5) −1.3 0.0 295.8 26.7
8 −5.9 (−4.6) −0.4 (−0.5) −1.3 0.0 322.5 23.7
9 −6.3 (−5.1) −0.4 (−0.5) −1.2 0.1 346.2 20.6
10 −6.7 (−5.6) −0.4 (−0.5) −1.1 0.1 366.8 17.6
11 −7.1 (−6.1) −0.3 (−0.5) −1.0 0.2 384.4 14.4
12 −7.4 (−6.5) −0.4 (−0.5) −0.8 0.1 398.8 11.5
13 −7.7 (−7.0) —g (−0.4) −0.8 [8.7]h 410.3i NRj

14 —g (−7.4) —g (−0.4) [418.2]h [6.0]h NRj NRj

15 —g (−7.8) —g (−0.3) [424.2]h [3.7]h NRj NRj

16 —g (−8.1) —g (−0.2) [427.9]h [1.9]h NRj NRj

17 —g (−8.3) —g (−0.1) [429.8]h [0.7]h NRj NRj

18 —g (−8.5) — — [430.6]h — NRj —
De 422.2 430.7 430.3
re 3.902 3.894 3.890

aVibrational quantum number.
bComposite scheme A defined by Eq. (3.39).
cComposite scheme B defined by Eq. (3.40).
dExperimentally derived values taken from Refs. [161] (G(v) and ∆Gv+1/2) and [169] (De and re), unless
otherwise noted (see footnote i).

eErrors relative to experiment and, in parentheses, relative to scheme B.
fErrors relative to experiment.
gErrors relative to experiment cannot be determined, since the experimental data for the G(v) values with
v = 14–18 are not available.

hPredicted value; no experimental data for comparison.
iValue obtained as G(v = 13) ≡ G(v = 13, J = 0) = G(v = 13, J = 14) − 210B(v = 13, J = 14) with the
information about G(v = 13, J = 14) and B(v = 13, J = 14) taken from Ref. [166].

jNot resolved experimentally.
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CHAPTER 4

THE SEMI-STOCHASTIC CC(P;Q) METHODOLOGY FOR EXCITED
ELECTRONIC STATES

In the previous chapter, we have discussed the CC(P;Q) theory and how it can be used in

the form of the CR-CC/EOMCC and active-space-based CC(P;Q) computations. We have

also seen how the inclusion of dominant higher–than–two-body cluster and EOM excitation

components through active orbitals can result in significant improvements over the CR-CC

and EOMCC calculations, where the lower-order Tn and Rµ,n components are decoupled

from their higher-order counterparts. However, as mentioned in the Introduction, such

schemes rely on the user- and system-dependent active orbitals, rendering these methods not

computational black boxes anymore. In this chapter, we discuss a novel way of addressing

this issue, which is produced by combining the deterministic CC(P;Q) formalism as described

earlier with the stochastic CIQMC wave function samplings. In particular, we focus on my

work on extending the semi-stochastic CC(P;Q) methodology to excited electronic states.

4.1 Theory

As mentioned in the Introduction, the main idea of the CIQMC methodology, including

FCIQMC and truncated CIQMC schemes, originally introduced in Ref. [102], is that of a

stochastic population dynamics of a set of walkers, which simulates the underlying imaginary-

time Schrödinger equation in the many-fermion Hilbert space spanned by Slater determi-

nants. In other words, instead of propagating the wavefunction |Ψ(τ)⟩ = e−(H−S)τ |Φ⟩,

where τ is the imaginary time and S is a suitable energy shift, in the coordinate space, as

in the conventional DMC approaches, knowing that

lim
τ→∞

|Ψ(τ)⟩ =



c0 |Ψ0⟩ for S = E0

∞ for S > E0

0 for S < E0

, (4.1)

119



i.e., knowing that the long time limit of such a propagation accompanied by S approaching

E0 projects out the desired ground state |Ψ0⟩, one propagates the CI (e.g., FCI) state

|Ψ(τ)⟩ = c0(τ) |Φ0⟩+∑
K cK(τ) |ΦK⟩ in the Slater determinant space, where the τ -dependent

CI coefficients satisfy the system of equations [102]

∂cK(τ)
∂τ

= −(HKK − S)cK(τ) −
∑

L(̸=K)
HKLcL(τ), (4.2)

which in the τ → ∞ limit and for S → E0 becomes equivalent to the conventional CI

eigenvalue problem

∑
L

HKLcL(∞) = E0cK(∞). (4.3)

A direct numerical integration of the system given by Eq. (4.2) would require the determi-

nation of the full set of cK(τ) coefficients at each time step, which is prohibitive. Instead, in

the spirit of DMC, in the FCIQMC and truncated CIQMC schemes introduced in Ref. [102],

one considers a population of walkers, denoted by α, which can carry positive or negative

signs, sα = ±1, and defines the cK(τ) amplitudes associated with determinants |ΦK⟩ to be

proportional to the signed sums of walkers, i.e.,

cK(τ) ∼ NK =
∑

α

sαδK,Kα , (4.4)

where Kα designates the determinant on which walker α is located. In other words, the

walkers inhabit the Slater determinant space, arriving at various determinants with positive

or negative signs and evolving according to simple rules that include, in every time step,

spawning and diagonal birth or death processes, which reflect on the content of Eq. (4.2),

and annihilation. Spawning walkers at different (“child”) determinants is associated with

the second term on the right-hand side of Eq. (4.2), which translates into

cK(τ + ∆τ) = cK(τ) − ∆τ
∑

L(̸=K)
HKLcL(τ, ) (4.5)

in which ∆τ is a propagation time step. The diagonal birth or death, which is a creation

or a destruction of a walker at a given determinant, is driven by the first term on the right
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hand side of Eq. (4.2), which represent the amplitude change

cK(τ + ∆τ) = [1 − (HKK − S)∆τ ]cK(τ). (4.6)

The annihilation step eliminates pairs of oppositely signed walkers at a given determinant.

The pattern of walker growth displays a characteristic plateau once a critical or sufficiently

large number of walkers is reached, at which point one begins to stabilize the correlation

energy and walker population using suitable energy shifts S [which in the long time limit ap-

proach the ground-state energy E0; cf. Eq. (4.1)]. Upon convergence, the FCIQMC propaga-

tion, where walkers are allowed to explore the entire Hilbet space, produces a FCI-level state

and the corresponding energy without any a priori knowledge of the nodal structure of the

wavefunction needed in traditional DMC considerations [140, 144, 145, 147, 252, 253], since

the population of walkers evolves in the space of Slater determinants, which have the proper

fermionic symmetry. Similarly, the truncated CIQMC approximations, such as CISDT-MC,

CISDTQ-MC, etc., where spawning walkers at determinants beyond the specified truncation

(i.e., determinants with higher than triples in the CISDT-MC case, determinants higher than

quadruples in the case of CISDTQ-MC, etc.) is not allowed, converge to the corresponding

truncated CI (CISDT, CISDTQ, etc.) states.

Several ideas have been explored to improve the original CIQMC methodology and accel-

erate its convergence [103, 254–257], including the initiator CIQMC (i-CIQMC) approach,

where only those determinants that acquire walker population exceeding a preset value (na)

are allowed to spawn new walkers onto empty determinants [103]. These determinants, called

the initiator determinants, are dynamically adjusted, i.e., they remain initiators as long as

their walker population exceeds na. One can begin the i-FCIQMC or truncated i-CIQMC

simulations using a fixed set of initiator determinants, following, for example, MR ideas,

or start from a single determinant, e.g., a RHF state, placing a certain, sufficiently large,

number of walkers on it, allowing the corresponding i-CIQMC algorithm to grow the walker

population capturing other determinants. The CIQMC ideas can be extended to other

many-body schemes [107, 258], including high-level CC (CCSDT, CCSDTQ, etc.) theories,
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resulting in the corresponding CCMC (CCSDT-MC, CCSDTQ-MC, etc.) methodologies, in

which instead of sampling determinants, one samples the space of excitation amplitudes (am-

plitudes of “excitors”) by “excips,” whose population dynamics converges to the desired CC

solution [107–109]. As in the case of CIQMC, one can use the initiator CCMC (i-CCMC)

algorithm, adopted in Ref. [111], to accelerate convergence [109]. Last, but not least, as

with other stochastic approaches, it is rather straightforward to parallelize the CIQMC and

CCMC techniques through partitioning of the relevant many-fermion Hilbert space across

multiple processors [255] and, to reduce the amount of communication among processors, by

running independent simulations on different processors and combining statistics gathered

in each calculation [257].

Although one may need longer propagation times τ to stabilize walker (CIQMC) or

excip (CCMC) populations to achieve the desired wavefunction and energy convergence

using purely stochastic means, the most important determinants or cluster amplitude types,

which significantly contribute to the wavefunction in the end, are captured already in the

early propagation stages, which require small computational effort relative to the target CC

calculation. In other words, it may take longer propagation times τ to come up with the

reasonably stable numbers of walkers/excips at the individual determinants/excitors, but the

leading determinants and cluster amplitude types are identified much sooner. The usefulness

of this idea has been demonstrated in Ref. [111], where one could use the information about

the leading determinants or excitations captured during the early stages of i-CIQMC or i-

CCMC propagations to create lists of determinants defining P spaces for CC(P ) calculations

and then use the CC(P;Q) correction δ0(P ; Q) to capture the remaining correlation effects

missing in the P -space CC calculations. In essence, the T operator in the P space is defined

as T (P ) = T1 + T2 + T
(MC)
3 + T

(MC)
4 + · · · , where T

(MC)
3 , T

(MC)
4 , etc., are the cluster operator

components defined using the lists of selected triples, quadruples, etc., identified via full or

truncated i-CIQMC or i-CCMC runs at a given imaginary time.

In the initial study of the semi-stochastic CC(P;Q) methodology [111], we demonstrated
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that the CIQMC methodology of Refs. [102, 103] is very good in identifying the leading

determinants and generating meaningful P spaces for the deterministic CC(P )/EOMCC(P )

calculations already in the early stages of QMC propagations without any a priori knowledge

of the states being calculated. We show in this work that the excited-state CC(P;Q) correc-

tions δµ(P ; Q), defined by Eq. (3.9), similarly to their µ = 0 ground-state counterparts exam-

ined in Ref. [111], are highly effective in accounting for the many-electron correlation effects

outside the stochastically determined P spaces. While the specific computations reported

in this work, which aim at recovering the EOMCCSDT energetics, rely on the FCIQMC

propagations to identify the dominant triply excited determinants for defining the relevant

P spaces, the algorithm summarized below is quite general, permitting the use of truncated

CIQMC and CCMC approaches and extensions to higher EOMCC levels than EOMCCSDT,

such as EOMCCSDTQ (not implemented yet). In the stochastic part of the excited-state

CC(P;Q) algorithm proposed in this work, we rely on the initiator CIQMC (i-CIQMC)

approach developed in Ref. [103], but we could certainly take advantage of improvements

in the original i-CIQMC and i-CCMC algorithms, such as those recently reported in Refs.

[104, 105, 259]. It is also worth pointing out that by combining the stochastic CIQMC and

deterministic EOMCC ideas via the CC(P;Q) methodology, we can extract highly accurate

excited-state information on the basis of relatively short CIQMC propagations for the ground

state or the lowest-energy state of a given symmetry, without having to resort to the more

complex excited-state CIQMC framework proposed in Refs. [148, 149], although exploring

the utility of the latter framework would be an interesting direction to pursue.

The key steps of the semi-stochastic CC(P;Q) algorithm proposed in Ref. [113], which

builds upon the semi-stochastic CC(P )/EOMCC(P ) framework suggested in Ref. [112] (steps

1–3 below) and which extends the previously developed merger of the ground-state CC(P;Q)

methodology with CIQMC or CCMC to excited states, are as follows:

1. Initiate a CIQMC (or CCMC) run for the ground state and, if the system of interest

has spin, spatial, or other symmetries, the analogous QMC propagation for the lowest

123



state of each irreducible representation (irrep) to be considered in the CC(P;Q) cal-

culations by placing a certain number of walkers (in CCMC, “excips” [108, 109]) on

the appropriate reference function(s) |Φ⟩ [e.g. the RHF or restricted open-shell HF

(ROHF) determinants].

2. At some propagation time τ > 0, i.e. after a certain number of CIQMC (or CCMC)

time steps, called MC iterations, extract a list or, if states belonging to multiple irreps

are targeted, lists of determinants relevant to the desired CC(P;Q) computations from

the QMC propagation(s) initiated in step 1 to determine the P space or spaces needed

to set up the ground-state CC(P ) and excited-state EOMCC(P ) calculations. If the

goal is to converge the CCSDT/EOMCCSDT-level energetics, the P space for the

CC(P ) calculations and the EOMCC(P ) calculations for excited states belonging to the

same irrep as the ground state is defined as all singly and doubly excited determinants

and a subset of triply excited determinants, where each triply excited determinant in

the subset is populated by a minimum of nP positive or negative walkers/excips (in

this work, nP = 1). For the excited states belonging to other irreps, the P space

defining the CC(P ) problem is the same as that used in the case of the ground state,

but the lists of triply excited determinants defining the EOMCC(P ) diagonalizations

are provided by the CIQMC (or CCMC) propagations for the lowest-energy states of

these irreps. One proceeds in a similar way when the goal is to converge other types of

high-level CC/EOMCC energetics. For example, if we want to obtain the results of the

CCSDTQ/EOMCCSDTQ quality, we also have to extract the lists of quadruples, in

addition to the triples, from the CIQMC (or CCMC) runs to define the corresponding

P spaces.

3. Solve the CC(P ) and EOMCC(P ) equations in the P space or spaces obtained in the

previous step. If we are targeting the CCSDT/EOMCCSDT-level energetics and the

excited states of interest belong to the same irrep as the ground state, we define T (P ) =
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T1+T2+T
(MC)
3 , R(P )

µ = rµ,01+Rµ,1+Rµ,2+R
(MC)
µ,3 , and L(P )

µ = δµ01+Lµ,1+Lµ,2+L
(MC)
µ,3 ,

where the list of triples in T
(MC)
3 , R

(MC)
µ,3 , and L

(MC)
µ,3 is extracted from the ground-state

CIQMC (or CCMC) propagation at time τ . For the excited states belonging to other

irreps, we construct the similarity-transformed Hamiltonian H
(P ), to be diagonalized in

the EOMCC steps, in the same way as in the ground-state computations, but then use

the CIQMC (or CCMC) propagations for the lowest states of these irreps to define the

lists of triples in R
(MC)
µ,3 and L

(MC)
µ,3 . We follow a similar procedure when targeting the

CCSDTQ/EOMCCSDTQ-level energetics, in which case T (P ) = T1+T2+T
(MC)
3 +T

(MC)
4 ,

R(P )
µ = rµ,01+Rµ,1+Rµ,2+R

(MC)
µ,3 +R

(MC)
µ,4 , and L(P )

µ = δµ01+Lµ,1+Lµ,2+L
(MC)
µ,3 +L

(MC)
µ,4 .

4. Correct the CC(P ) and EOMCC(P ) energies for the missing correlations of interest

that were not captured by the CIQMC (or CCMC) propagations at the time τ the

lists of the P -space excitations were created (the remaining triples if the goal is to

recover the CCSDT/EOMCCSDT energetics, the remaining triples and quadruples if

one targets CCSDTQ/EOMCCSDTQ, etc.) using the CC(P;Q) corrections δµ(P ; Q)

defined by Eq. (3.9).

5. Check the convergence of the resulting E(P +Q)
µ energies calculated using Eq. 3.13 by

repeating steps 2–4 at some later CIQMC (or CCMC) propagation time τ ′ > τ . If

the E(P +Q)
µ energies do not change within a given convergence threshold, we can stop

the calculations. One can also stop them if τ in steps 2–4 is chosen such that the

stochastically determined P space(s) contain sufficiently large fraction(s) of higher–

than–doubly excited determinants relevant to the target CC/EOMCC level. Our un-

published tests using the CC(t;3) corrections to the EOMCCSDt energies, the ground-

state semi-stochastic CC(P;Q) calculations reported in Ref. [113], and the excited-state

CC(P;Q) calculations using i-FCIQMC to generate the underlying P spaces performed

in this work indicate that one should be able to reach millihartree or sub-millihartree

accuracies relative to the parent CC/EOMCC computations, when the stochastically
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determined P spaces contain as little as ∼5–10% and no more than ∼30–40% of higher–

than–double excitations of interest, although this may need further study.

Similarly to the semi-stochastic form of the ground-state CC(P;Q) methodology intro-

duced in Ref. [111], the above algorithm offers significant savings in the computational effort

compared to the fully deterministic, high-level, EOMCC approaches it targets. These savings

originate from three factors. First, the computational times associated with the early stages

of the i-CIQMC or i-CCMC walker/excip propagations are very short compared to the corre-

sponding converged runs. Second, the CC(P ) calculations and the subsequent EOMCC(P )

diagonalizations offer significant speedups compared to their CC/EOMCC parents, when

the corresponding excitation manifolds contain small fractions of higher–than–doubly ex-

cited determinants. For example, as pointed out in Refs. [111, 112], when the most expensive〈
Φabc

ijk

∣∣∣[H, T3]
∣∣∣Φ〉

(or
〈
Φabc

ijk

∣∣∣[H(2)
, T3]

∣∣∣Φ〉
, where H

(2) = e−T1−T2HeT1+T2) and〈
Φabc

ijk

∣∣∣[H(P )
, Rµ,3]

∣∣∣Φ〉
terms in the CCSDT and EOMCCSDT equations are isolated and

reprogrammed using techniques similar to implementing selected CI approaches, combined

with sparse matrix multiplication and index rearrangement routines (rather than conven-

tional many-body diagrams that assume continuous excitation manifolds labelled by occupied

and unoccupied orbitals from the respective ranges of indices; generally, the stochastically

determined lists of excitations do not form continuous manifolds that could be a priori iden-

tified), one can speed up their determination by a factor of up to (D/d)2, where D and d

denote the number of all triples and stochastically determined triples in the P space, respec-

tively. Other terms, such as
〈
Φabc

ijk

∣∣∣[H, T2]
∣∣∣Φ〉

and
〈
Φabc

ijk

∣∣∣[H(P )
, Rµ,2]

∣∣∣Φ〉
or

〈
Φab

ij

∣∣∣[H, T3]
∣∣∣Φ〉

and
〈
Φab

ij

∣∣∣[H(P )
, Rµ,3]

∣∣∣Φ〉
, when treated in a similar manner, may offer additional speedups,

on the order of (D/d)2, too. Our current CC(P ) and EOMCC(P ) routines are not as efficient

yet, but the speedups that scale linearly with (D/d) in the most expensive
〈
Φabc

ijk

∣∣∣[H, T3]
∣∣∣Φ〉

and
〈
Φabc

ijk

∣∣∣[H(P )
, Rµ,3]

∣∣∣Φ〉
contributions are attainable. The third factor contributing to ma-

jor savings in the computational effort offered by the semi-stochastic CC(P;Q) approach is

the observation that the determination of the noniterative correction δµ(P ; Q) for a given
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electronic state µ is much less expensive than the time required to complete a single iteration

of the target CC/EOMCC calculation (in the case of the calculations aimed at the CCS-

DT/EOMCCSDT energetics, the computational time associated with each δµ(P ; Q) scales

no worse than ∼ 2n3
on

4
u, as opposed to the n3

on
5
u scaling of every CCSDT and EOMCCSDT

iteration).

There exists another interesting aspect of the semi-stochastic CC(P;Q) algorithm as out-

lined above if we examine how the CC(P )/EOMCC(P ) and CC(P;Q) runs behave as τ is

varied. For example, if we focus on the CCSDT and EOMCCSDT schemes that are of the

main interest in this chapter, at τ = 0, where the P space contains only singly and doubly ex-

cited determinants, the CC(P )/EOMCC(P ) run becomes equivalent to CCSD/EOMCCSD,

whereas the τ = 0 CC(P;Q) step corresponds to CR-CC(2,3) and CR-EOMCC(2,3). The

target CCSDT/EOMCCSDT method is equivalent to CC(P )/EOMCC(P ) at τ = ∞, where

all triply excited determinants have been captured by the QMC propagation and included

in the P space. Consequently, CCSDT/EOMCCSDT are also equivalent to the τ = ∞

CC(P;Q) runs, because at this point the Q space is empty and the δµ(P ; Q) correction be-

comes zero by definition. Thus, the variable τ serves to connect the τ = 0 and τ = ∞

limits of our CC(P )/EOMCC(P ) and CC(P;Q) computations, which is useful for checking

the correctness of our calculations.

4.2 Application: Electronic Excitation Spectra of CH+, CH, and
CNC

In order to assess the performance of the semi-stochastic CC(P;Q) approach to excited

described above and examine, in particular, the ability of the noniterative δµ(P ; Q) correc-

tions to accelerate the convergence of the CIQMC-driven EOMCC(P ) calculations toward

the desired EOMCC energetics, represented here by EOMCCSDT, we carried out bench-

mark calculations for the frequently studied vertical excitations in the CH+ molecule at

the equilibrium [Table 4.1 and Fig. 4.1(a) and (b)] and stretched [Table 4.2 and Fig. 4.1(c)
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and (d)] geometries and the adiabatic excitations in the challenging open-shell CH (Table

4.3) and CNC (Table 4.4) systems, which have low-lying excited states dominated by two-

electron transitions that require the EOMCCSDT theory level to obtain a reliable description

[56, 86, 93, 101, 260–263]. The CH+ ion was described by the [5s3p1d/3s1p] basis set of Ref.

[264] and we used the aug-cc-pVDZ [265, 266] and DZP[4s2p1d] [267, 268] bases for the CH

and CNC species, respectively. Following Refs. [111, 113] (cf., also, Ref. [269]), we used

the HANDE software package [270, 271] to execute the stochastic i-FCIQMC runs, needed

to generate the lists of triply excited determinants included in the CC(P ) and EOMCC(P )

calculations. Our standalone CC/EOMCC codes, interfaced with the RHF, ROHF, and

integral routines in the GAMESS package, were used to carry out the required CC(P ),

EOMCC(P ), CC(P;Q), and fully deterministic (CCSD/EOMCCSD and CCSDT/EOM-

CCSDT) computations [the Q spaces used to construct the CC(P;Q) corrections to the

CC(P ) and EOMCC(P ) energies consisted of the triples not captured by the i-FCIQMC

runs at the corresponding propagation times τ ]. It should be noted that the CC(P ) and

EOMCC(P ) energies at τ = 0 CC(P;Q) corrections are equivalent to those of CR-CC(2,3)

(the ground state) and CR-EOMCC(2,3) (excited states). It should also be noted that the

CC(P ) and EOMCC(P ) energies at τ = ∞ are identical to the energies obtained in the full

CCSDT and EOMCCSDT calculations. The semi-stochastic CC(P;Q) calculations recover

the CCSDT and EOMCCSDT energetics in this limit, too, although the τ = ∞ values of the

δµ(P ; Q) corrections are zero in this case, since the τ = ∞ P spaces contain all the triples,

i.e., the corresponding Q-space triples lists are empty. These relationships between the

semi-stochastic CC(P ), EOMCC(P ), and CC(P;Q) approaches and the fully deterministic

CCSD/EOMCCSD, CR-CC(2,3)/CR-EOMCC(2,3), and CCSDT/EOMCCSDT methodolo-

gies were helpful in examining the correctness of our codes. They also point to the ability

of the CC(P ), EOMCC(P ), and CC(P;Q) calculations driven by the information extracted

from CIQMC to offer a systematically improvable description as τ approaches ∞. Each

i-FCIQMC run was initiated by placing 1500 walkers on the relevant reference function (see
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Tables 4.1–4.4 for the details) and we set the initiator parameter na at 3. All of the i-

FCIQMC propagations used the time step τ of 0.0001 a.u. In the post-ROHF computations

for the CH and CNC species, the core electrons corresponding to the 1s shells of the carbon

and nitrogen atoms were kept frozen. In the case of CH+, we correlated all electrons.

We begin our discussion of the numerical results with the CH+ ion, where we investigated

the three lowest excited states of the 1Σ+ symmetry (labeled as 2 1Σ+, 3 1Σ+, and 4 1Σ+;

the ground state is designated as 1 1Σ+), two lowest states of the 1Π+ symmetry (1 1Π+ and

2 1Π+), and two lowest 1∆+ states (1 1∆+ and 1 1∆+). Two C–H internuclear separations

were considered, the equilibrium distance R = Re = 2.13713 bohr [Table 4.1 and Fig. 4.1(a)

and (b)] and the stretched R = 2Re geometry [Table 4.2 and Fig. 4.1(c) and (d)]. Following

the semi-stochastic CC(P;Q) algorithm, as described above, and our interest in converging

the CCSDT/EOMCCSDT energetics, the cluster and right and left EOM operators used

in the calculations for the states were approximated by T (P ) = T1 + T2 + T
(MC)
3 , R(P )

µ =

rµ,01 + Rµ,1 + Rµ,2 + R
(MC)
µ,3 , and L(P )

µ = δµ01 + Lµ,1 + Lµ,2 + L
(MC)
µ,3 , respectively, where

the list of triples defining the three-body components T
(MC)
3 , R

(MC)
µ,3 , and L

(MC)
µ,3 at a given

time τ was obtained from the ground-state i-FCIQMC propagation at the same value of

τ . The T
(MC)
3 component of T (P ) used in the CC(P;Q) computations of the 1Π and 1∆

states, needed to determine the similarity-transformed Hamiltonian H
(P ) to be diagonalized

in the subsequent EOMCC steps, was defined in the same way as in the case of the states,

but the lists of triples entering the R
(MC)
µ,3 and component of R(P )

µ and the L
(MC)
µ,3 component

of L(P )
µ were obtained differently. They were extracted from the i-FCIQMC runs for the

lowest states within the irreps of C2v relevant to the symmetries of interest, meaning the
1B1(C2v) component of 1 1Π for the 1Π states and the 1A2(C2v) component of 1 1∆ for the
1∆ states (C2v is the largest Abelian subgroup of the true point group of CH+, C∞v; our

codes cannot handle non-Abelian symmetries). As implied by Eq. (3.9), the corrections to

the CC(P ) and EOMCC(P ) energies at a given time τ were computed using the Mµ,K(P )

and ℓµ,K(P ) amplitudes corresponding to the triply excited determinants |ΦK⟩ not captured
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by i-FCIQMC at the same τ .

As pointed out in Refs. [47, 48, 112], the 2 1Σ+, 2 1Π, 1 1∆, and 2 1∆ states of CH+ at

R = Re and all of the excited states of the stretched CH+/R = 2Re system, which we

calculated in this work, are characterized by substantial MR correlations that originate from

large two-electron excitation contributions (the 2 1∆ state at R = 2Re also has significant

triple excitations [47, 48, 112]). It is, therefore, not surprising that the basic EOMCCSD

level, equivalent to the EOMCC(P ) calculations at τ = 0, performs poorly for all of these

states, producing very large errors relative to EOMCCSDT that are about 12, 20, and 34–35

millihartree for the 2 1Σ+, 2 1Π, and both 1∆ states, respectively, at R = Re and ∼14–144

millihartree when the excited states at R = 2Re are considered (see Tables 4.1 and 4.2).

The EOMCCSD energies for the 3 1Σ+, 4 1Σ+, and 1 1Π, states at the equilibrium geometry,

which are dominated by one-electron transitions, are more accurate, but errors on the order

of 3–6 millihartree still remain. As shown in Tables 4.1 and 4.2, the CR-EOMCC(2,3) triples

correction to EOMCCSD, equivalent to the CC(P;Q) calculations at τ = 0, offers substantial

improvements, as exemplified by the small errors, on the order of 1–3 millihartree, for the

majority of excited states of CH+ considered in this article, but there are cases, especially

the and states at R = 2Re, where the differences between the CR-EOMCC(2,3) and parent

EOMCCSDT energies, which are about 13 millihartree in the former case and more than

63 millihartree in the case of the latter state, remain very large. This is related to the

substantial coupling of the one- and two-body components of the cluster and EOM excitation

and de-excitation operators with their three-body counterparts, which the CR-EOMCC(2,3)

corrections to EOMCCSD neglect. Our older active-space EOMCCSDt calculations for CH+

reported in Refs. [47, 48] and the more recent semi-stochastic EOMCC(P ) calculations for

the same system described in Ref. [112] are telling us that the incorporation of the leading

triples in the relevant P spaces, which allows the one- and two-body components of T , Rµ,

and Lµ to relax in the presence of their three-body counterparts, is the key to improve the

results of the CR-EOMCC(2,3) calculations.
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This is exactly what we observe in Tables 4.1 and 4.2 and Fig. 4.1. In agreement with

Ref. [112], by enriching the P spaces used in the CC(P ) and EOMCC(P ) computations

with the subsets of triples captured during i-FCIQMC propagations, the results greatly

improve, allowing us to reach the millihartree or sub-millihartree accuracy levels for all the

calculated excited states of CH+ at both nuclear geometries considered in this work when

the stochastically determined P spaces contain about 20–30% of all triples. The CC(P;Q)

corrections to the EOMCC(P ) energies based on Eq. (3.9) accelerate the convergence toward

EOMCCSDT even further. As shown in Tables 4.1 and 4.2 and Fig. 4.1, these corrections

are so effective that we reach the millihartree or sub-millihartree accuracy levels relative to

the parent EOMCCSDT energetics almost instantaneously, i.e., out of the early stages of the

i-FCIQMC propagations, when no more than 5–10% of all triples are included in the relevant

P spaces. This is true even when the highly complex 4 1Σ+ and 2 1∆ states at R = 2Re, for

which the EOMCCSD calculations produce the massive, ∼33 and ∼144 millihartree, errors,

which remain large (about 13 and 63 millihartree, respectively) at the CR-EOMCC(2,3) level.

As shown in Table 4.2, the CC(P;Q) corrections to the EOMCC(P ) energies, which account

for the missing triples that the i-FCIQMC propagations at a given time τ did not capture,

allow us to reach the sub-millihartree accuracy levels with less than 5% (the 2 1∆ state) or

∼10% (the 4 1Σ+ state) of triples in the relevant P spaces. The uncorrected EOMCC(P )

calculations display the relatively fast convergence toward EOMCCSDT as well, but they

reach similar accuracies at later propagation times τ , when about 15% (the 2 1∆ state) or

25% (the 41Σ+ state) of triples are captured by i-FCIQMC. Obviously, the details of the rate

of convergence of the semi-stochastic CC(P;Q) calculations toward EOMCCSDT, especially

when one wants to tighten it, depend on the specific excited state being calculated, but,

as shown in Tables 4.1 and 4.2, once about 20% of triples are captured by the i-FCIQMC

propagations, we recover the EOMCCSDT energetics for all the calculated excited states of

CH+ at both geometries examined in this study to within 0.1 millihartree or better.

Interestingly, there is a great deal of consistency between the behaviour of the uncorrected
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semi-stochastic EOMCC(P ) approach, in which the lists of triples defining the relevant P

spaces are extracted from i-FCIQMC propagations, and the fully deterministic EOMCCSDt

calculations for CH+ reported in Refs. [47, 48], in which the leading triples were identified

using active orbitals. Indeed, once the stochastically determined P spaces extracted from i-

FCIQMC capture about 20–30% of all triples, which in the case of the CH+ system examined

here is achieved after 50,000 or fewer ∆τ = 0.0001 a.u. MC iterations, the energies resulting

from the EOMCC(P ) computations become very similar to those obtained with the EOM-

CCSDt method using the active space that consists of the highest-energy occupied (3σ) and

three lowest-energy unoccupied (1πx, 1πy, and 4σ) orbitals. Following the definitions of the

‘little t’ T3 and Rµ,3 operators adopted in EOMCCSDt, for the state symmetries considered

in this work, the active space consisting of the 3σ, 1πx, 1πy, and 4σ valence orbitals amounts

to about 26–29% of all triples included in the respective EOMCC diagonalization spaces

[47, 48]. This suggests that the types and values of the triply excited amplitudes defining

the components of the EOM operators , which characterize the EOMCCSDt computations

reported in Refs. [47, 48], and those that define the components obtained in the i-FCIQMC-

driven EOMCC(P ) calculations performed after 50,000 MC iterations using ∆τ = 0.0001

a.u. should be similar too. This is illustrated in Fig. 4.2, where we compare the distributions

of the differences between the R
(MC)
µ,3 amplitudes and their full EOMCCSDT counterparts

resulting from the EOMCC(P ) computations at 4000 [Fig. 4.2(a)], 10,000 [Fig. 4.2(b)], and

50,000 [Fig. 4.2(c)] MC iterations for the 2 1Σ+ state of CH+ at R = 2Re with the anal-

ogous distribution characterizing the amplitudes obtained with the EOMCCSDt approach

using the 3σ, 1πx, 1πy, and 4σ active orbitals to define the corresponding triples space [Fig.

4.2(d); all EOM vectors Rµ needed to construct Fig. 4.2, corresponding to the EOMCC(P ),

EOMCCSDt, and EOMCCSDT calculations, were normalized to unity]. As shown in Fig.

4.2 [cf. Fig. 4.2(c) and Fig. 4.2(d)], the small differences between the R
(P )
µ,3 amplitudes result-

ing from the EOMCC(P ) calculations performed after 50,000 MC iterations and the Rµ,3

amplitudes obtained with EOMCCSDT, including their numerical values and distribution,
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closely resemble those characterizing the active-space EOMCCSDt computations reported

in Refs. [47, 48]. This is in perfect agreement with the small errors relative to EOMCCSDT

characterizing the two calculations, which are 0.302 millihartree in the former case (cf. Table

4.2) and 0.576 millihartree in the case of EOMCCSDt [47, 48]. When we start using con-

siderably smaller fractions of triples and, as a consequence, significantly smaller P spaces in

the EOMCC(P ) calculations, which is what happens when the underlying i-FCIQMC prop-

agation is terminated too soon, the differences between the amplitudes resulting from the

EOMCC(P ) calculations and their EOMCCSDT counterparts, including their values and

distribution, and the errors in the EOMCC(P ) energies relative to EOMCCSDT increase.

This can be seen in Fig. 4.2, especially when one compares panel (a), which corresponds

to the EOMCC(P ) calculations performed after 4000 MC iterations that use only 7% of

triples, with panel (d) representing EOMCCSDt, which uses a much larger fraction of triple

excitations (∼30%), and in Table 4.2, where the error in the EOMCC(P ) energy of the state

of CH+ at R = 2Re relative to EOMCCSDT obtained after 4000 MC iterations, of 4.263

millihartree, is ∼14 times larger than the analogous error obtained after 50,000 MC steps.

The above analysis, which could be repeated for the remaining states of CH+, reach-

ing similar conclusions, has several interesting implications for the semi-stochastic CC(P;Q)

methodology pursued in this study, which will be examined by us in the future. It sug-

gests, for example, that the CC(P )/EOMCC(P ) and CC(P;Q) approaches using CIQMC

propagations to determine the lists of higher–than–double excitations in the correspond-

ing P spaces can be regarded as natural alternatives to the fully deterministic active-space

EOMCC methods, such as EOMCCSDt, and their CC(P;Q)-corrected counterparts, such as

CC(t;3), whose performance in excited-state calculations will be reported by us in a separate

study. It also suggests that the fractions of higher–than–double excitations used to define

the stochastically determined P spaces, needed to achieve high accuracies observed in the

semi-stochastic CC(P;Q) calculations discussed in this work, should decrease with the basis

set. We have already observed this in the previous ground-state work [111], and we anticipate
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that the same will remain true in the CIQMC-driven excited-state CC(P;Q) calculations.

While this remark requires a separate thorough study, beyond the scope of this initial work

on the excited-state CC(P;Q), we can rationalize it by referring to the analogies between

the semi-stochastic CC(P )/EOMCC(P ) and CC(P;Q) approaches and their deterministic

CCSDt/EOMCCSDt and CC(t;3) counterparts. Indeed, the aforementioned (D/d) ratio

that controls the speedups offered by the CC(P )/EOMCC(P ) and CC(P;Q) calculations

becomes (no/No)(nu/Nu) when the active-space CCSDt/EOMCCSDt and CC(t;3) calcula-

tions, based on the ideas laid down in Refs. [47, 48, 74, 75, 81, 101], are considered, where

No and Nu are the numbers of active occupied and active unoccupied orbitals, respectively,

which either do not grow with the basis set or grow with it very slowly compared to no and

nu.

Finally, before moving to the next molecular example, we would like to point out that,

in analogy to the CC(P;Q)-based CC(t;3), CC(t,q;3), and CC(t,q;3,4) calculations using

active orbitals to define the underlying P spaces (see, e.g., Ref. [77]), one is better off by

using smaller P spaces in the semi-stochastic CC(P )/EOMCC(P ) considerations, which can

be extracted out of the early stages of CIQMC propagations, and capturing the remain-

ing correlations using noniterative CC(P;Q) corrections, than by running long-time CIQMC

simulations to generate larger P spaces for the uncorrected CC(P )/EOMCC(P ) calcula-

tions. This can be seen in Tables 4.1 and 4.2 for CH+ and in the remaining Tables 4.3

and 4.4 discussed in the next two subsections. We illustrate this remark by inspecting the

EOMCC(P ) and CC(P;Q) calculations for the state of CH+. As shown in Table 4.1, one

needs to capture about 50% of triples in the P space to reach a 0.1 millihartree accuracy

relative to EOMCCSDT at R = Re using the uncorrected EOMCC(P ) approach. When the

CC(P;Q) correction is employed, only 15% of triples are needed to reach the same accuracy

level. At the more challenging R = 2Re geometry (Table 4.2), one reaches a ∼0.1 milli-

hartree accuracy level with about 40% of triples in the P space when using the uncorrected

EOMCC(P ) approach. This fraction reduces to about 20%, without any accuracy loss, when

134



the CC(P;Q) correction is added to the EOMCC(P ) energy. Based on the information pro-

vided in above, running the EOMCC(P ) calculations with a smaller fraction of triples in the

P space offers much larger savings in the computational effort than the additional time spent

on determining the CC(P;Q) correction, which is, as pointed out above, considerably less

expensive than a single EOMCCSDT iteration. For example, in the pilot implementation of

the excited-state EOMCC(P ) and CC(P;Q) approaches aimed at recovering EOMCCSDT

energetics, employed in this work, the uncorrected EOMCC(P ) run using 50% of triples in

the P space, needed to reach a ∼0.1 millihartree accuracy relative to EOMCCSDT for the

state of CH+ at R = Re, is about twice as fast as the corresponding EOMCCSDT calcu-

lation. The EOMCC(P ) diagonalization that forms part of the analogous CC(P;Q) run,

which needs only 15% of triples in the P space to reach the same accuracy level, is about 6

times faster than EOMCCSDT. The noniterative CC(P;Q) correction is so inexpensive here

that one can largely ignore the computational costs associated with its determination in this

context [cf. Ref. [73] for the analogous comments made in the context of comparing costs of

the CCSDt computations with those of CC(t;3)].

Similar convergence patterns in the semi-stochastic EOMCC(P ) and CC(P;Q) calcula-

tions are observed for the CH radical (see Table 4.3). In this case, following the earlier

deterministic EOMCC work, including the CR-EOMCC [86, 93] and electron-attachment

(EA) EOMCC [93, 260, 261] approaches, and a wide range of EOMCC computations, in-

cluding the high EOMCCSDT and EOMCCSDTQ levels, published by Hirata [56], along

with the X 2Π ground state, we examined the three low-lying doublet excited states, des-

ignated as A 2∆, B 2Σ−, and C 2Σ+, which belong to different irreducible representations

than that of the ground state. In analogy to the aforementioned EOMCC studies of CH

[56, 86, 93, 260, 261], the relevant CC(P ) (the X 2Π state) and EOMCC(P ) (excited states)

electronic energies and their CC(P;Q) counterparts were determined at the corresponding

experimentally derived equilibrium C–H distances, which are 1.1197868 Å for the X 2Π state

[272], 1.1031 Å for the A 2∆ state [272], 1.1640 Å for the B 2Σ− state [273], and 1.1143 Å
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for the C 2Σ+ state [274] (cf. Table 4.3). Since all of our CC(P )/EOMCC(P ) and CC(P;Q)

calculations, starting from the τ = 0 CCSD/EOMCCSD and CR-EOMCC(2,3) levels and

ending up with the larger values of τ needed to examine the convergence toward the parent

CCSDT/EOMCCSDT energetics, were performed using the ROHF reference determinant,

we also computed the ROHF-based CCSDT and EOMCCSDT energies, which formally cor-

respond to the τ = ∞ CC(P )/EOMCC(P ) and CC(P;Q) results. We had to do it, since

the previously published CCSDT/EOMCCSDT results [56] relied on the UHF rather than

the ROHF reference. In analogy to CH+, the lists of triples defining the T
(MC)
3 component of

the cluster operator T (P ) and the R
(MC)
µ,3 and L

(MC)
µ,3 components of the EOM excitation and

de-excitation operators, R(P )
µ and L(P )

µ , respectively, used in the CC(P ), EOMCC(P ), and

CC(P;Q) calculations for the CH radical, were extracted from the i-FCIQMC propagations

for the lowest-energy states of the relevant irreps of C2v, namely, the 2B2(C2v) component of

the X 2Π state, the lowest state of the 2A1(C2v) symmetry in the case of the A 2∆ and C 2Σ+

states, and the lowest 2A2(C2v) state when considering the B 2Σ− state (again, we used C2v,

which is the largest Abelian subgroup of the true point group of CH, C∞v).

As explained in Refs. [86, 93, 260, 261] and as shown in Ref. [56], all three excited states

of the CH radical considered here, especially B 2Σ− and C 2Σ+, which are dominated by

two-electron excitations (cf. the reduced excitation level (REL) diagnostic values in Tables

II and III of Ref. [93] or Table II of Ref. [86]), constitute a significant challenge, requiring

the full EOMCCSDT treatment to obtain a reliable adiabatic excitation spectrum. This

can be seen by inspecting the τ = 0 EOMCC(P ), i.e., EOMCCSD, energies for the A 2∆,

B 2Σ−, and C 2Σ+ states of CH shown in Table 4.3, which are characterized by the ∼13, ∼39,

and ∼44 millihartree errors relative to EOMCCSDT, respectively. The CR-EOMCC(2,3)

triples corrections to EOMCCSD, represented in Table 4.3 by the τ = 0 CC(P;Q) values,

help, especially in the case of the C 2Σ+ state, but the situation is far from ideal, since

errors on the order of 8 and 5 millihartree for the A 2∆ and B 2Σ− states, respectively,

remain. The situation considerably improves when we turn to the semi-stochastic CC(P;Q)
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calculations, which incorporate the leading triples in the relevant P spaces by extracting

them from the corresponding i-FCIQMC propagations and correct the resulting energies

for the remaining triple excitations that were not captured by i-FCIQMC at a given time

τ . As shown in Table 4.3, in the case of the A 2∆ and B 2Σ− states, which are not only

challenging to EOMCCSD, but also to CR-EOMCC(2,3), we can reach comfortable 1–2

millihartree errors relative to EOMCCSDT using the semi-stochastic CC(P;Q) corrections

developed in this work once the relevant P spaces contain about 20–40% of all triples. With

∼50% triples in the same P spaces, the CC(P;Q) energies of the A 2∆ and B 2Σ− states are

within fractions of a millihartree from EOMCCSDT. These are considerable improvements

relative to the purely deterministic EOMCCSD and CR-EOMCC(2,3) computations, which

give ∼13–39 and ∼5–8 millihartree errors, respectively, for the same two states, and the semi-

stochastic EOMCC(P ) calculations that reach 1–2 millihartree accuracy levels with about

70–80% triples in the respective P spaces. In the case of the C 2Σ+ state, which is a major

challenge to EOMCCSD, but not to CR-EOMCC(2,3), the behaviour of the EOMCC(P )

and CC(P;Q) approaches is different, since the CC(P;Q) corrections obtained with the help

of some triples in the P space captured by i-FCIQMC are no longer needed to obtain the

well-converged energetics, i.e., the τ = 0 CC(P;Q) result, where the P space is spanned

by singles and doubles only, is sufficiently accurate, but it is still interesting to observe that

one can tighten the convergence further, reaching stable <0.1 millihartree errors relative to

EOMCCSDT with about 50% of all triples in the P space. In analogy to the A2∆ and B2Σ−

states, it is also interesting to observe a reasonably smooth convergence of the uncorrected

EOMCC(P ) energies toward EOMCCSDT. It is clear from the results presented in Table

4.3 that the CC(P;Q) corrections to the semi-stochastic CC(P ) and EOMCC(P ) energies

offer considerable speedups compared to the uncorrected CC(P )/EOMCC(P ) calculations,

not only for the closed-shell molecules, such as CH+, but also when examining open-shell

species.

Our last example, which is also the largest many-electron system considered in the present
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study, is the linear, D∞h symmetric, CNC molecule. Following the earlier CR-CC(2,3)/CR-

EOMCC(2,3) and electron-attached (EA) EOMCC calculations for this challenging open-

shell molecular species [93, 262, 263], we considered the X2Πg ground state and two low-lying

doublet excited states, A 2∆u and B 2Σ+
u . The i-FCIQMC-driven CC(P ) ground-state and

EOMCC(P ) excited-state energies and the corresponding CC(P;Q) corrections, along with

their deterministic EOMCCSD, CR-EOMCC(2,3), and EOMCCSDT counterparts, were cal-

culated using the equilibrium C–N distances optimized in Ref. [262] with EA-SAC-CI. They

are 1.253 Å for the X 2Πg state, 1.256 Å for the A 2∆u state, and 1.259 Å for the B 2Σ+
u

state. As in the case of the CH radical, we used the ROHF reference determinant. Fol-

lowing the computational protocol adopted in this study, and in analogy to the CH+ and

CH species, the lists of triples defining the T
(MC)
3 , R

(MC)
µ,3 , and L

(MC)
µ,3 components used in

the semi-stochastic CC(P ), EOMCC(P ), and CC(P;Q) calculations for CNC were obtained

using the i-FCIQMC propagations for the lowest-energy states of the relevant irreps of the

largest Abelian subgroup of D∞h, i.e., D2h, meaning the 2B2g(D2h) component of the X 2Πg

state and the lowest state of the 2B1u(D2h) symmetry in the case of the A 2∆u and B 2Σ+
u

states.

As shown in Table 4.4 and in agreement with one of our previous studies [93], all three

states of CNC considered in this work, especially A 2∆u and B 2Σ+
u , are poorly described

by CCSD and EOMCCSD, which produce more than 18, 31, and 111 millihartree errors,

respectively, relative to the target EOMCCSDT energetics [see the τ = 0 CC(P ) and

EOMCC(P ) energies in Table 4.4]. The excessively large, >111 millihartree, error in the

EOMCCSD energy of the B 2Σ+
u state is related to its strongly MR character dominated

by two-electron excitations (cf. the REL values characterizing the excited states of CNC

in Table IV of Ref. [93]). In the case of the ground state and the B 2Σ+
u excited state,

the CR-CC(2,3) and CR-EOMCC(2,3) corrections to CCSD and EOMCCSD seem to be

quite effective, reducing the large errors relative to CCSDT/EOMCCSDT observed in the

CCSD and EOMCCSD calculations to a sub-millihartree level, but the ∼16 millihartree error
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resulting from the CR-EOMCC(2,3) calculations for the A2∆u state, while considerably lower

than the >31 millihartree error obtained with EOMCCSD, is still rather large (see the τ = 0

CC(P;Q) energies in Table 4.4). By incorporating the dominant triply excited determinants

captured by the i-FCIQMC propagations in the respective P spaces, the semi-stochastic

CC(P ) and EOMCC(P ) approaches help, allowing us to reach stable ∼1–2 millihartree

accuracy levels for the and states relative to the target CCSDT/EOMCCSDT energetics

with about 50–60% triples, but the CC(P;Q) corrections that account for the remaining

triples, missing in the i-FCIQMC wave functions, are considerably more effective. In the

case of the state, which poses problems to both EOMCCSD and CR-EOMCC(2,3), which

give about 31 and 16 millihartree errors relative to EOMCCSDT, respectively, we reach a

stable ∼1–2 millihartree accuracy level with about 30–40% triples in the corresponding P

space, as opposed to the aforementioned 50–60% needed in the uncorrected EOMCC(P ) run.

The benefits of using the semi-stochastic CC(P;Q) versus deterministic CR-EOMCC(2,3)

corrections for the X 2Πg and A 2∆u states are less obvious, but it is encouraging to observe

the rapid convergence toward the target CCSDT and EOMCCSDT energetics in the former

calculations. In particular, they allow us to lower the 0.4–0.5 millihartree errors obtained

with CR-EOMCC(2,3) to a 0.1 millihartree level with about 10% of all triples, identified

by i-FCIQMC, in the case of the state and with ∼30–40% triples in the P space when

the state is considered. Once again, the CC(P;Q) corrections to the energies resulting

from the semi-stochastic CC(P ) and EOMCC(P ) calculations speed up the uncorrected

CC(P )/EOMCC(P ) computations, while allowing us to improve the CR-CC(2,3) and CR-

EOMCC(2,3) energetics by bringing them very close to the CCSDT and EOMCCSDT levels

at the fraction of the cost.
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Table 4.1: Convergence of the CC(P )/EOMCC(P ) and CC(P;Q) energies toward CCSDT/EOMCCSDT for CH+, calculated
using the [5s3p1d/3s1p] basis set of Ref. [264], at the C–H internuclear distance R = Re = 2.13713 bohr. The P spaces used in
the CC(P ) and EOMCC(P ) calculations were defined as all singles, all doubles, and subsets of triples extracted from i-FCIQMC
propagations for the lowest states of the relevant symmetries. Each i-FCIQMC run was initiated by placing 1500 walkers on
the appropriate reference function [the RHF determinant for the 1Σ+

g states, the 3σ → 1π state of the 1B1(C2v) symmetry for
the 1Π states, and the 3σ2 → 1π2 state of the 1A2(C2v) symmetry for the 1∆ states], setting the initiator parameter na at 3,
and the time step ∆τ at 0.0001 a.u. The Q spaces used in constructing the CC(P;Q) corrections consisted of the triples not
captured by i-FCIQMC. Adapted from Ref. [113].

MC iter. (103) 1 1Σ+
g 2 1Σ+

g 3 1Σ+
g 4 1Σ+

g 1 1Π 2 1Π 1 1∆ 2 1∆
P a (P ;Q)b %Tc P a (P ;Q)b P a (P ;Q)b P a (P ;Q)b P a (P ;Q)b %Tc P a (P ;Q)b P a (P ;Q)b %Tc P a (P ;Q)b

0d 1.845 0.063 0 19.694 1.373 3.856 0.787 5.537 0.954 3.080 0.792 0 11.656 2.805 34.304 −0.499 0 34.685 0.350
2 1.071 0.024 7 11.004 0.909 3.248 0.587 4.826 −4.469 0.772 0.179 13 3.746 0.530 1.492 0.151 10 5.951 0.432
4 0.423 0.009 15 5.474 0.090 1.893 0.047 1.980 0.100 0.513 0.102 20 1.852 0.128 0.525 0.051 16 2.542 0.128
6 0.249 0.003 20 4.712 0.111 1.268 0.046 1.077 0.068 0.213 0.054 25 0.957 0.073 0.471 0.028 18 1.892 0.094
8 0.181 0.003 23 1.371 0.112 0.643 0.067 0.702 0.075 0.170 0.058 27 0.743 0.060 0.240 0.021 22 0.940 0.057
10 0.172 0.004 24 1.572 0.061 0.295 0.044 0.385 0.026 0.118 0.046 29 0.411 0.047 0.198 0.017 24 0.877 0.041
50 0.077 0.001 37 0.755 0.026 0.139 0.037 0.208 0.032 0.053 0.027 43 0.157 0.027 0.039 0.008 42 0.133 0.011
100 0.044 0.000 48 0.277 0.009 0.007 0.013 0.155 0.017 0.021 0.013 57 0.063 0.012 0.014 0.005 56 0.043 0.005
150 0.015 0.000 59 0.085 0.005 0.058 0.006 0.041 0.007 0.008 0.005 71 0.020 0.004 0.004 0.002 71 0.008 0.003
200 0.006 0.000 69 0.024 0.002 0.014 0.002 0.002 0.003 0.004 0.003 82 0.008 −0.001 0.003 0.002 82 0.003 0.002
∞e −38.019516 −37.702621 −37.522457 −37.386872 −37.900921 −37.498143 −37.762113 −37.402308

aErrors in the CC(P ) (the 1 1Σ+
g ground state) and EOMCC(P ) (excited states) energies relative to the corresponding CCSDT and EOMCCSDT

data, in millihartree.
bErrors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in millihartree.
cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest state of a given symmetry [the 1 1Σ+

g =
1 1A1(C2v) ground state for the 1Σ+

g states, the 1B1(C2v) component of the 1 1Π state for the 1Π states, and the 1A2(C2v) component of the 1 1∆
state for the 1∆ states].

dThe CC(P ) and EOMCC(P ) energies at τ = 0.0 a.u. are identical to the energies obtained in the CCSD and EOMCCSD calculations. The τ = 0.0
a.u. CC(P;Q) energies are equivalent to the CR-CC(2,3) (the ground state) and the CR-EOMCC(2,3) (excited states) energies.

eThe CC(P ) and EOMCC(P ) energies at τ = ∞ a.u. are identical to the energies obtained in the CCSDT and EOMCCSDT calculations.
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Table 4.2: Same as Table 4.1 for the stretched C–H internuclear distance R = 2Re = 4.27426 bohr. Adapted from Ref. [113].

MC iter. (103) 1 1Σ+
g 2 1Σ+

g 3 1Σ+
g 4 1Σ+

g 1 1Π 2 1Π 1 1∆ 2 1∆
P (P ;Q) %T P (P ;Q) P (P ;Q) P (P ;Q) P (P ;Q) %T P (P ;Q) P (P ;Q) %T P (P ;Q)

0 5.002 0.012 0 17.140 1.646 19.929 −2.871 32.639 12.657 13.552 2.303 0 21.200 −1.429 44.495 −4.526 0 144.414 −63.405
2 1.588 0.031 3 5.209 0.478 12.524 −2.079 33.400 14.297 1.398 0.306 7 1.644 −0.060 1.372 0.046 6 13.363 0.368
4 0.504 0.015 7 4.263 −1.741 6.383 −0.760 12.671 2.178 0.712 0.058 12 0.724 0.050 0.451 0.014 9 3.338 0.130
6 0.275 0.002 11 1.405 0.047 1.352 0.051 5.870 0.593 0.409 0.033 14 0.612 0.031 0.422 0.022 12 2.340 0.063
8 0.263 0.004 12 1.543 0.065 1.173 0.020 4.406 0.699 0.436 0.050 16 0.457 −0.002 0.253 0.007 13 2.088 0.021
10 0.148 0.003 14 0.792 0.094 0.613 0.047 2.331 0.342 0.227 0.039 17 0.220 0.014 0.122 −0.001 14 0.862 0.038
50 0.030 0.000 26 0.302 0.002 0.339 0.007 0.457 0.013 0.061 0.007 30 0.079 0.060 0.047 0.005 26 0.288 0.005
100 0.009 0.000 39 0.103 0.003 0.119 0.006 0.110 0.011 0.013 0.002 41 0.016 0.004 0.013 0.004 36 0.038 0.000
150 0.004 0.000 52 0.031 0.000 0.035 0.003 0.076 0.006 0.005 0.002 52 0.007 0.002 0.005 0.001 47 0.014 0.000
200 0.001 0.000 63 0.024 0.000 0.019 0.000 −0.006 0.001 0.002 0.001 65 0.001 0.000 0.001 0.000 57 0.003 0.000
∞ −37.900394 −37.704834 −37.650242 −37.495275 −37.879532 −37.702345 −37.714180 −37.494031
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Table 4.3: Convergence of the CC(P )/EOMCC(P ) and CC(P;Q) energies toward CCS-
DT/EOMCCSDT for CH, calculated using the aug-cc-pVDZ basis set. The P spaces used
in the CC(P ) and EOMCC(P ) calculations were defined as all singles, all doubles, and sub-
sets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant
symmetries. Each i-FCIQMC run was initiated by placing 1500 walkers on the appropriate
reference function [the ROHF 2B2(C2v) determinant for the X 2Π state, the 1π → 4σ state
of the 2A1(C2v) symmetry for the A 2∆ and C 2Σ+ states, and the 3σ → 1π state of the
2A2(C2v) symmetry for the B 2Σ− state], setting the initiator parameter na at 3, and the
time step ∆τ at 0.0001 a.u. The Q spaces used in constructing the CC(P;Q) corrections
consisted of the triples not captured by i-FCIQMC. Adapted from Ref. [113].

MC iter. (103) X 2Π A 2∆ B 2Σ− C 2Σ+

P a (P ;Q)b %Tc P a (P ;Q)b %Tc P a (P ;Q)b %Tc P a (P ;Q)b %Tc

0 2.987 0.231 0.0 13.474 7.727 0.0 38.620 −4.954 0.0 43.992 0.087 0.0
2 2.405 0.170 13.8 13.009 7.395 9.8 10.602 −1.848 18.5 40.700 −0.689 9.8
4 1.413 0.086 41.7 10.907 5.288 19.3 7.066 −1.259 38.9 31.017 −0.319 19.7
6 0.883 0.035 58.9 10.119 4.577 27.2 3.452 −0.371 53.2 26.364 −0.508 28.8
8 0.603 0.022 66.8 7.764 2.436 34.6 2.309 −0.149 61.4 20.545 −0.412 34.3
10 0.495 0.019 72.6 6.987 2.170 38.1 1.965 −0.024 64.8 17.180 0.435 38.3
12 0.445 0.015 76.5 6.640 1.981 42.3 1.832 −0.081 69.5 16.929 0.029 42.5
14 0.389 0.013 77.5 7.040 1.887 45.7 1.180 0.030 72.2 13.114 0.253 45.1
16 0.309 0.008 79.2 6.047 1.667 48.3 1.303 0.012 75.6 7.646 −0.041 48.7
18 0.292 0.008 80.3 4.646 0.875 49.8 1.349 −0.062 77.5 5.312 0.011 50.1
20 0.243 0.006 82.2 3.809 0.754 52.6 0.796 0.038 79.5 4.691 0.108 52.2
50 0.150 0.002 89.1 1.367 0.112 74.1 0.298 0.038 91.6 1.436 0.070 74.0
100 0.055 0.002 95.3 0.177 0.017 91.7 0.144 0.014 98.3 0.204 0.013 91.3
150 0.025 0.000 98.1 0.042 −0.003 98.0 0.010 0.007 99.6 0.063 0.010 98.2
200 0.010 0.000 99.2 0.007 0.001 99.7 −0.001 −0.001 99.9 0.010 0.001 99.7
∞e −38.387749 −38.276770 −38.267544 −38.238205

aErrors in the CC(P ) (the X 2Π ground state) and EOMCC(P ) (excited states) energies relative to the
corresponding CCSDT and EOMCCSDT data, in millihartree, calculataed at the experimentally obtained
equilibrium C–H distances used in Refs. [56, 86, 93], which are 1.1197868 Å for the X 2Π state [272], 1.1031
Å for the A 2∆ state [272], 1.1640 Å for the B 2Σ− state [273], and 1.1143 Å for the C 2Σ+ state [274]. The
lowest-energy core orbital was frozen in all correlated calculations.

bErrors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in milli-
hartree, calculated at the experimentally determined equilibrium C–H distances as used in Refs. [56, 86, 93]
(see footnote a for the C–H distances).

cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest
state of a given symmetry [the 2B2(C2v) component of the X 2Π ground state, the lowest 2A1(C2v) state
for the A 2∆ and C 2Σ+ states, and the lowest 2A2(C2v) state for the B 2Σ− state].

dThe CC(P ) and EOMCC(P ) energies at τ = 0.0 a.u. are identical to the energies obtained in the CCSD
and EOMCCSD calculations. The τ = 0.0 a.u. CC(P;Q) energies are equivalent to the CR-CC(2,3) (the
ground state) and the CR-EOMCC(2,3) (excited states) energies.

eThe CC(P ) and EOMCC(P ) energies at τ = ∞ a.u. are identical to the energies obtained in the ROHF-
based CCSDT and EOMCCSDT calculations.
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Table 4.4: Convergence of the CC(P )/EOMCC(P ) and CC(P;Q) energies toward CCS-
DT/EOMCCSDT for CNC, calculated using DZP[4s2p1d] basis set. The P spaces used in
the CC(P ) and EOMCC(P ) calculations were defined as all singles, all doubles, and sub-
sets of triples extracted from i-FCIQMC propagations for the lowest states of the relevant
symmetries. Each i-FCIQMC run was initiated by placing 1500 walkers on the appropriate
reference function [the ROHF 2B2g(D2h) determinant for the X 2Πg state and the 3σu → 1πg

state of the 2B1u(D2h) symmetry for the A 2∆u and B 2Σ+
u states], setting the initiator pa-

rameter na at 3, and the time step ∆τ at 0.0001 a.u. The Q spaces used in constructing
the CC(P;Q) corrections consisted of the triples not captured by i-FCIQMC. Adapted from
Ref. [113].

MC iter. (103) X 2Πg A 2∆u B 2Σ+
u

P a (P ;Q)b %Tc P a (P ;Q)b %Tc P a (P ;Q)b %Tc

0 18.458 −0.495 0.0 31.157 16.017 0.0 111.307 −0.433 0.0
2 10.331 −0.043 13.2 18.835 9.114 6.5 81.493 −2.496 6.5
4 4.424 −0.029 33.2 10.637 5.717 16.1 53.677 −2.526 16.0
6 2.824 −0.011 44.1 7.555 4.199 22.7 35.539 −1.254 22.8
8 1.818 −0.013 49.9 6.181 3.090 27.5 26.767 −0.864 27.9
10 1.306 −0.006 53.3 5.187 2.441 30.8 21.337 −0.284 31.5
12 1.092 −0.003 56.5 4.162 1.778 34.0 17.056 0.196 34.3
14 0.911 −0.005 58.7 3.529 1.418 37.0 12.843 0.046 37.5
16 0.820 −0.003 60.6 3.106 1.149 39.5 9.197 0.134 39.9
18 0.651 −0.003 62.5 2.510 0.811 41.7 8.879 −0.034 42.4
20 0.610 −0.001 63.9 2.395 0.785 44.4 7.548 0.151 44.7
50 0.077 0.000 79.7 0.172 0.058 70.9 0.732 0.055 70.7
100 0.002 0.000 94.5 0.002 0.001 92.3 0.005 0.003 91.9
150 0.000 0.000 99.3 0.000 0.000 99.1 0.000 0.000 99.1
∞e −130.421932 −130.276946 −130.252999

aErrors in the CC(P ) (X 2Πg state) and EOMCC(P ) (the remaining states) energies relative to the cor-
responding CCSDT and EOMCCSDT data, in millihartree, calculataed at the experimentally obtained
equilibrium C–N distances optimized in Ref. [262], which are 1.253 Å for the X 2Πg state, 1.256 Å for
the A 2∆u state, and 1.259 Å for the B 2Σ+

u state. The three lowest-energy core orbital was frozen in all
correlated calculations.

bErrors in the CC(P;Q) energies relative to the corresponding CCSDT and EOMCCSDT data, in milli-
hartree, calculated at the equilibrium C–N distances optimized in Ref. [262] (see footnote a for these C–N
distances).

cThe %T values are the percentages of triples captured during the i-FCIQMC propagations for the lowest
state of a given symmetry [the 2B2g(D2h) component of the X 2Πg ground state and the lowest 2B1u(D2h)
state for the A 2∆ and B 2Σ+

u states].
dThe CC(P ) and EOMCC(P ) energies at τ = 0.0 a.u. are identical to the energies obtained in the CCSD
and EOMCCSD calculations. The τ = 0.0 a.u. CC(P;Q) energies are equivalent to the CR-CC(2,3) (the
ground state) and the CR-EOMCC(2,3) (excited states) energies.

eThe CC(P ) and EOMCC(P ) energies at τ = ∞ a.u. are identical to the energies obtained in the ROHF-
based CCSDT and EOMCCSDT calculations.
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Figure 4.1: Convergence of the EOMCC(P ) [panels (a) and (c)] and CC(P;Q) [panels (b)
and (d)] energies toward EOMCCSDT for the three lowest-energy excited states of the 1Σ+

symmetry, two lowest states of the 1Π symmetry, and two lowest 1∆ states of the CH+ ion,
as described by the [5s3p1d/3s1p] basis set of Ref. [264], at the C–H internuclear distance R
set at Re = 2.13713 bohr [panels (a) and (b)] and 2Re = 4.27426 bohr [panels (c) and (d)].
Adapted from Ref. [113].
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Figure 4.2: The distributions of the differences between the R
(MC)
µ,3 amplitudes and their

EOMCCSDT counterparts resulting from the EOMCC(P ) computations at (a) 4000, (b)
10,000, and (c) 50,000 MC iterations using τ = 0.0001 a.u. for the 2 1Σ+ state of CH+ at
R = 2Re with the analogous distribution characterizing the Rµ,3 amplitudes obtained with
the EOMCCSDt approach employing the 3σ, 1πx, 1πy, and 4σ active orbitals to define the
corresponding triples space [panel (d)]. All vectors Rµ needed to construct panels (a)–(d)
were normalized to unity. Adapted from Ref. [113].
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CHAPTER 5

CONCLUDING REMARKS AND FUTURE OUTLOOK

This dissertation surveys the recent developments in the realms of CC and EOMCC method-

ologies. In particular, we have discussed the various CC and EOMCC approaches belonging

to the CC(P;Q) framework, in which one have the flexibility of defining the underlying P

and Q spaces to achieve the desired level of accuracy suitable to the system of interest.

In the first part of the dissertation, we have discussed the goal of quantum chemistry and

the issue of computational cost scaling that plagues the brute-force FCI approach to it. We

highlighted the CC theory as one of the best approximation to FCI, especially the CC(P;Q)

methodology when we contain the discussion to the realm of SRCC methodology. We have

also provided a brief summary of SRCC theory and its EOM extension to excited electronic

states and shown examples of high-level CC/EOMCC computations for Mg2 dimer, where

one has to include nearly all-electron correlation effects at the triples level and correct the

results for valence FCI correlation effects to obtain spectroscopic (∼1 cm−1) accuracy relative

to experiment. Furthermore, the case study of Mg2 also gives us the opportunity to see how

the CCSD(T) approximation to CCSDT fail to be quantitative when weakly bound diatomic

that dissociates into closed-shell fragments are examined. This gives us the motivation to

look into more robust alternatives to high-level CC and EOMCC schemes, which brings us

to the next part of this dissertation.

In the second part of this work, we have discussed the CC(P;Q) formalism, beginning

with a short summary of the key concepts and equations behind the CC(P;Q) methodology.

We proceeded by looking at the CR-CC and CR-EOMCC approaches, which is equivalent

to CC(P;Q) where the underlying P and Q spaces are defined by following the traditional

truncation schemes defining the cluster and EOM excitation operators. The usefulness of

the CR-CC/EOMCC method has been demonstrated by examining the performance of the

δ-CR-EOMCC(2,3) triples correction to EOMCCSD in the investigation of the super photo-
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base FR0-SB. In particular, we have shown that δ-CR-EOMCC(2,3) significantly improves

the results obtained from EOMCCSD. Our calculations for FR0-SB have also demonstrates

that δ-CR-EOMCC(2,3) has been applied to systems with >50 atoms and hundreds of elec-

trons, including solvation effects, resulting in quantitative accuracy relative to experimental

data (∼0.1–0.2 eV in terms of excitation energies). We have also examined the CC(P;Q)

approaches that rely on active orbitals for defining the P and Q spaces. We also demon-

strated the improvement that the resulting CC(t;3) and CC(q;4) schemes, where one corrects

CCSDt and CCSDTq energetics for the missing T3 [CC(t;3)] and T4 [CC(q;4)] correlation

effects not captured by active orbitals, respectively, offer compared to conventional CR-CC

schemes, by returning to the example of Mg2, where the results obtained in CC(t;3) and

CC(q;4) calculations are shown to faithfully reproduce the parent CCSDT and CCSDTQ

data, respectively.

In the third and last part of this dissertation, we discussed the novel way of performing

CC(P;Q) computations that results from the merger of the deterministic CC(P;Q) frame-

work with the stochastic CIQMC wave function samplings developed in the Piecuch group.

In particular, we have discussed my contribution to the extension of the semi-stochastic

CC(P;Q) methodology to excited electronic states, where we targeted EOMCCSDT ener-

getics. The benefit of the semi-stochastic CC(P;Q) scheme for excited state applications

were demonstrated using several test cases, including the closed-shell CH+ ion and the open-

shell CH and CNC radicals. In the future, it will be interesting to see how the EOMCC(P )

methodology underlying the semi-stochastic CC(P;Q) approaches can be used to compute

properties other than energy by constructing the appropriate RDM in the P space. For ex-

ample, one could also investigate how one-electron properties evolve when the EOMCCSD P

space is enriched with subsets of triply excited determinants captured in QMC propagations.

To that end, I have derived the equations for the EOMCCSDT 1-RDM and implemented a

pilot code for it, which is flexible enough to accept stochastically constructed T
(MC)
3 , R

(MC)
µ,3 ,

and L
(MC)
µ,3 amplitudes or their active-space counterparts. The derivation of the EOMCCSDT
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1-RDM equations using diagrammatic method, the resulting algebraic expressions, and the

spin-integrated equations can be found in the Appendix.

While this dissertation has explored a plethora of CC(P;Q) schemes relying on different

ways of defining the P and Q spaces, there exist more avenues that are still being explored.

Recent works employing the active-space [77] and QMC-driven [114] CC(P;Q) approaches

including up to quadruples excitation have shown promising results in the ground-state case,

so it would be interesting to extend them to excited states to converge EOMCCSDTQ ener-

getics. Furthermore, as already mentioned in the Introduction, one could turn to methods

belonging to the selected CI category, where one performs a sequence (or sequences) of Hamil-

tonian diagonalizations in a growing space of Slater determinants, to construct the P space

in an automated manner but without the risk of introducing stochasticity into the CC(P;Q)

computations. As shown in Ref. [132], the resulting selected-CI-driven CC(P;Q) compu-

tations produces energetics with comparable accuracy when compared to the QMC-driven

CC(P;Q) analogs in recovering the parent high-level CC energetics. Another appealing

aspect of the Hamiltonian diagonalizations in selected CI procedure is their capability of

naturally producing state-specific P spaces for use in excited-state CC(P;Q) calculations,

and, thus, it will be interesting to see how the results obtained in such computations would

compare with those of our current semi-stochastic CC(P;Q) methodology for excited states,

which relies on P spaces constructed for the lowest state of a given symmetry. Last, but

not least, it would also be interesting to extend the hybrid CC(P;Q) ideas to particle non-

conserving approaches, such as the electron-attachment (EA) and ionization-potential (IP)

EOMCC formalisms, or their double EA (DEA) and double IP (DIP) counterparts. In

these types of approaches, one uses EOM operators that formally add (EA and DEA) or

remove (IP and DIP) electron(s) from a closed-shell reference function. These methodolo-

gies are well-suited for studying open-shell systems, such as radicals and biradicals, because

they produce properly spin- and symmetry-adapted wave functions, unlike the conventional

CC/EOMCC calculations performed using open-shell reference functions. Earlier works in
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our group have utilized active-space ideas to downselect the higher-rank components of the

many-body expansions underlying the EA/IP- and DEA/DIP-EOMCC approaches, obtain-

ing computationally efficient approximations that are capable of faithfully reproducing the

results obtained with their parent methods [260, 261, 275–279]. Therefore, it would be in-

teresting to see if one could achieve the same by relying on CIQMC, CCMC, or selected CI

to construct the appropriate P space within the particle nonconserving methodologies.
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APPENDIX

DIAGRAMMATIC DERIVATION OF EOMCCSDT 1-BODY REDUCED
DENSITY MATRIX

This appendix provides the derivation of the 1-RDM at the CCSDT/EOMCCSDT level of

theory. The general formulation for γp(CCSDT)
q (µ, ν) is given and specific cases subsequently

examined. For simplicity, we refer to both γp(CCSDT)
q (µ), which describes the density of a

state µ, and γp(CCSDT)
q (µ, ν), which corresponds to the transition between to states µ and ν,

as 1-RDM regardless of the states µ and ν describing the CC bra and ket states, respectively.

We begin the derivation by defining the CCSDT/EOMCCSDT wavefunction, namely,∣∣∣Ψ(CCSDT)
µ

〉
= R(CCSDT)

µ eT (CCSDT) |Φ⟩ , (A.1)

where T (CCSDT) = T1 + T2 + T3 and R(CCSDT)
µ = rµ,01 + Rµ,1 + Rµ,2 + Rµ,3 (R(CCSDT)

µ = 1 for

the µ = 0 ground-state case). The corresponding left CCSDT/EOMCCSDT wavefunction

is defined as 〈
Ψ̃(CCSDT)

µ

∣∣∣ = ⟨Φ| L(CCSDT)
µ e−T (CCSDT)

, (A.2)

where L(CCSDT)
µ = δµ01 + Lµ,1 + Lµ,2 + Lµ,3.

We proceed to the definition of the CCSDT/EOMCCSDT 1-RDM. By inserting Eqs.

(A.1) and (A.2) into Eq. (2.17), we obtain the following expression:

γp(CCSDT)
q (µ, ν) = ⟨Φ|L(CCSDT)

µ Γp(CCSDT)
q R(CCSDT)

ν |Φ⟩ , (A.3)

where Γp(CCSDT)
q = (apaqe

T (CCSDT))C . Let us begin our derivation by analyzing terms that will

contribute to Eq. (A.3). We first focus on expanding the Γp(CCSDT)
q in terms of the allowed

nonoriented skeletons, which are presented in Fig. A.1. In constructing these diagrams, we

consider several factors that simplify the derivation. First, only up to two T vertices may

connect to apaq. Second, because Γp(CCSDT)
q can only contract with L(CCSDT)

µ from the left-

hand side, the Γp(CCSDT)
q diagrams can have a maximum of 6 external lines going to the

left.
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8 9 10 11 12 13

14 15 16 17

Figure A.1: The 17 nonoriented skeletons of Γp(CCSDT)
q

At this point, it is useful to start generating oriented skeletons and categorizing them

based on the spin orbital type associated with the indices p and q of Γp(CCSDT)
q . We know a

priori that the resulting CCSDT 1-RDM is a (no +nu) by (no +nu) matrix and, thus, we can

recognize 4 distinct blocks within the matrix, namely, the occupied-occupied (oo), occupied-

unoccupied (ou), unoccupied-occupied (uo), and unoccupied-unoccupied (uu) blocks. Based

on the orientation of the fermion lines of apaq, we can easily construct the oriented versions

of the 17 skeletons in Fig. A.1 and categorize them based on the occupancy character of the

indices, which are shown in Figs. A.2–A.5.

i
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i j
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i j

C

i j

D

i j

E

Figure A.2: Oriented skeletons of Γp(CCSDT)
q corresponding to the oo block (γj

i ), ordered
according to increasing many-body rank.
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Figure A.3: Oriented skeletons of Γp(CCSDT)
q corresponding to the uu block (γb

a), ordered
according to increasing many-body rank.
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Figure A.4: Oriented skeleton of Γp(CCSDT)
q corresponding to the ou block (γa

i ).
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Figure A.5: Oriented skeletons of Γp(CCSDT)
q corresponding to the uo block (γi

a), ordered
according to increasing many-body rank.
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Using the oriented skeletons of Γp(CCSDT)
q shown in Figs. A.2–A.5 and relying on the fact

that Eq. (A.3) corresponds to fully contracted diagrams, we can now proceed to analyze

the ranks of Lµ and Rν that may form contraction with Γp(CCSDT)
q . This information is

summarized in Table A.1. It is interesting to note that the skeletons labeled as A and K

in the oo and uo blocks, respectively, are closed diagrams, i.e., they do not have external

fermion lines. Thus, if we examine Eq. (A.3) for these closed diagrams, we end up with terms

of the form Γp(CCSDT)
q,closed ⟨Φ| L(CCSDT)

µ R(CCSDT)
ν |Φ⟩ = Γp(CCSDT)

q,closed δµν in the oo and uo blocks of

γp(CCSDT)
q (µ, ν).

Table A.1: Blocks of the CCSDT 1-RDM with the corresponding labels from Figs. A.2–A.5,
contraction types, and possible ranks of Lµ and Rν components.

Block Label Contraction type n

oo

Aa Lµ,nΓp(CCSDT)
q Rν,n 0, 1, 2, 3

B Lµ,nΓp(CCSDT)
q Rν,n 1, 2, 3

C Lµ,n+1Γp(CCSDT)
q Rν,n 0, 1, 2

D Lµ,n+2Γp(CCSDT)
q Rν,n 0, 1

E Lµ,n+3Γp(CCSDT)
q Rν,n 0

uu

F Lµ,nΓp(CCSDT)
q Rν,n 1, 2, 3

G Lµ,n+1Γp(CCSDT)
q Rν,n 0, 1, 2

H Lµ,n+2Γp(CCSDT)
q Rν,n 0, 1

I Lµ,n+3Γp(CCSDT)
q Rν,n 0

ou J Lµ,n+1Γp(CCSDT)
q Rν,n 0, 1, 2

uo

Ka Lµ,nΓp(CCSDT)
q Rν,n 0, 1, 2, 3

L Lµ,nΓp(CCSDT)
q Rν,n+1 0, 1, 2

M, N Lµ,nΓp(CCSDT)
q Rν,n 1, 2, 3

O, P Lµ,n+1Γp(CCSDT)
q Rν,n 0, 1, 2

Q, R Lµ,n+1Γp(CCSDT)
q Rν,n 1, 2

S, T, U Lµ,n+2Γp(CCSDT)
q Rν,n 0, 1

V, W Lµ,n+2Γp(CCSDT)
q Rν,n 1

X, Y, Z Lµ,n+3Γp(CCSDT)
q Rν,n 0

aCorresponds to a closed diagram; contraction with Lµ and Rν will produce δµν (see text).

We have now reached the stage where we can derive γp(CCSDT)
q (µ, ν) in the spin orbital
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basis. We do so by performing the contractions listed in Table A.1, obtaining

γ
j(CCSDT)
i (µ, ν) = δµνδij − (l e

µ,i t
j
e + 1

2 l ef
µ,in tjn

ef + 1
12 l efg

µ,ino tjno
efg)rν,0

− l e
µ,i r

j
ν,e − 1

2 l ef
µ,in r jn

ν,ef − 1
12 l efg

µ,ino r jno
ν,efg

− l ef
µ,in tj

er
n

ν,f − 1
4 l efg

µ,ino tj
er

no
ν,fg − 1

2 l efg
µ,ino tjn

ef r o
ν,g,

(A.4)

γb(CCSDT)
a (µ, ν) = (l b

µ,mtm
a + 1

2 l bf
µ,mntmn

af + 1
12 l bfg

µ,mnot
mno
afg )rν,0

+ l b
µ,mr m

ν,a + 1
2 l bf

µ,mnr mn
ν,af + 1

12 l bfg
µ,mnor

mno
ν,afg

+ l bf
µ,mntm

a r n
ν,f + 1

4 l bfg
µ,mnot

m
a r no

ν,fg + 1
2 l bfg

µ,mnot
mn
af r o

ν,g,

(A.5)

γ
a(CCSDT)
i (µ, ν) = l a

µ,i rν,0 + l ef
µ,in r n

ν,f + 1
4 l efg

µ,ino r no
ν,fg , (A.6)

and

γi(CCSDT)
a (µ, ν) = δµνti

a + (l e
µ,mtim

ae − l e
µ,mti

et
m
a + 1

4 l ef
µ,mntimn

aef

− 1
2 l ef

µ,mntmn
af ti

e − 1
2 l ef

µ,mntin
ef tm

a − 1
4 l efg

µ,mnot
mo
ag tin

ef

− 1
12 l efg

µ,mnot
mno
afg ti

e − 1
12 l efg

µ,mnot
ino
efgtm

a )rν,0

+ δµ0r
i

ν,a + l f
µ,nr in

ν,af + 1
4 l fg

µ,nor ino
ν,afg − l e

µ,mti
er

m
ν,a

− l e
µ,mtm

a r i
ν,e − 1

2 l ef
µ,mnti

er
mn

ν,af − 1
2 l ef

µ,mntm
a r in

ν,ef

− 1
12 l efg

µ,mnot
i
er

mno
ν,afg − 1

12 l efg
µ,mnot

m
a r ino

ν,efg + l ef
µ,mntim

ae r n
ν,f

+ 1
4 l efg

µ,mnot
im
ae r no

ν,fg − l ef
µ,mnti

et
m
a r n

ν,f − 1
4 l efg

µ,mnot
i
et

m
a r no

ν,fg

− 1
2 l ef

µ,mntin
efr m

ν,a − 1
2 l ef

µ,mntmn
af r i

ν,e − 1
4 l efg

µ,mnot
in
efr mo

ν,ag

− 1
4 l efg

µ,mnot
mn
af r io

ν,eg + 1
4 l efg

µ,mnot
imn
aef r o

ν,g − 1
2 l efg

µ,mnot
mn
af ti

er
o

ν,g

− 1
2 l efg

µ,mnot
in
ef ta

mr o
ν,g − 1

12 l efg
µ,mnot

ino
efgr m

ν,a − 1
12 l efg

µ,mnot
mno
afg r i

ν,e.

(A.7)

In writing the above expressions for γp(CCSDT)
q (µ, ν), we follow the convention for spin orbitals

explained in Section 2.1 when dealing with fixed labels. In the case of free labels, we use

m, n, o, . . . and e, f, g, . . . to indicate occupied and unoccupied spin orbitals, respectively.
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One can do an extra step by performing spin integration to obtain the 1-RDM in the

molecular orbital basis, γ
P (CCSDT)
Q (µ, ν), where we use capital letters to label spin orbitals

following the convention described above, and molecular orbitals that correspond to the β

electron spin are labeled with a tilde. Thus, we obtain, for the α spin case,

γ
J(CCSDT)
I (µ, ν) = δµνδIJ − (l E

µ,I tJ
E + 1

2 l EF
µ,IN tJN

EF + l EF̃

µ,IÑ
tJÑ
EF̃

+ 1
12 l EF G

µ,INO tJNO
EF G + 1

2 l EF G̃

µ,INÕ
tJNÕ
EF G̃ + 1

4 l EF̃ G̃

µ,IÑÕ
tJÑÕ
EF̃ G̃)rν,0

− l E
µ,I r J

ν,E − 1
2 l EF

µ,IN r JN
ν,EF − l EF̃

µ,IÑ
r JÑ

ν,EF̃

− 1
12 l EF G

µ,INO r JNO
ν,EF G − 1

2 l EF G̃

µ,INÕ
r JNÕ

ν,EF G̃
− 1

4 l EF̃ G̃

µ,IÑÕ
r JÑÕ

ν,EF̃ G̃

− l EF
µ,IN tJ

Er N
ν,F − l EF̃

µ,IÑ
tJ
Er Ñ

ν,F̃
− 1

4 l EF G
µ,INO tJ

Er NO
ν,F G

− l EF G̃

µ,INÕ
tJ
Er NÕ

ν,F G̃
− 1

4 l EF̃ G̃

µ,IÑÕ
tJ
Er ÑÕ

ν,F̃ G̃
− 1

2 l EF G
µ,INO tJN

EF r O
ν,G

− 1
2 l EF G̃

µ,INÕ
tJN
EF r Õ

ν,G̃
− l EF̃ G

µ,IÑO
tJÑ
EF̃ r O

ν,G − l EF̃ G̃

µ,IÑÕ
tJÑ
EF̃ r Õ

ν,G̃
,

(A.8)

γ
B(CCSDT)
A (µ, ν) = (l B

µ,M tM
A + 1

2 l BF
µ,MN tMN

AF + l BF̃

µ,MÑ
tMÑ
AF̃

+ 1
12 l BF G

µ,MNOtMNO
AF G + 1

2 l BF G̃

µ,MNÕ
tMNÕ
AF G̃ + 1

4 l BF̃ G̃

µ,MÑÕ
tMÑÕ
AF̃ G̃ )rν,0

+ l B
µ,Mr M

ν,A + 1
2 l BF

µ,MNr MN
ν,AF + l BF̃

µ,MÑ
r MÑ

ν,AF̃

+ 1
12 l BF G

µ,MNOr MNO
ν,AF G + 1

2 l BF G̃

µ,MNÕ
r MNÕ

ν,AF G̃
+ 1

4 l BF̃ G̃

µ,MÑÕ
r mÑÕ

ν,AF̃ G̃

+ l BF
µ,MN tM

A r N
ν,F + l BF̃

µ,MÑ
tM
A r Ñ

ν,F̃
+ 1

4 l BF G
µ,MNOtM

A r NO
ν,F G

+ l BF G̃

µ,MNÕ
tM
A r NÕ

ν,F G̃
+ 1

4 l BF̃ G̃

µ,MÑÕ
tM
A r ÑÕ

ν,F̃ G̃
+ 1

2 l BF G
µ,MNOtMN

AF r O
ν,G

+ 1
2 l BF G̃

µ,MNÕ
tMN
AF r Õ

ν,G̃
+ l BF̃ G

µ,MÑO
tMÑ
AF̃ r O

ν,G + l BF̃ G̃

µ,MÑÕ
tMÑ
AF̃ r Õ

ν,G̃
,

(A.9)

γ
A(CCSDT)
I (µ, ν) = l A

µ,I rν,0 + l AF
µ,IN r N

ν,F + l AF̃

µ,IÑ
r Ñ

ν,F̃

+ 1
4 l AF G

µ,INO r NO
ν,F G + l AF G̃

µ,INÕ
r NÕ

ν,F G̃
+ 1

4 l AF̃ G̃

µ,IÑÕ
r ÑÕ

ν,F̃ G̃
,

(A.10)

and
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γ
I(CCSDT)
A (µ, ν) = δµνtI

A + (l E
µ,M tIM

AE + l Ẽ

µ,M̃
tIM̃
AẼ − l E

µ,M tI
EtM

A

+ 1
4 l EF

µ,MN tIMN
AEF + l EF̃

µ,MÑ
tIMÑ
AEF̃ + 1

4 l ẼF̃

µ,M̃Ñ
tIM̃Ñ
AẼF̃

− 1
2 l EF

µ,MN tMN
AF tI

E − l EF̃

µ,MÑ
tMÑ
AF̃ tI

E − 1
2 l EF

µ,MN tIN
EF tM

A

− l EF̃

µ,MÑ
tIÑ
EF̃ tM

A − 1
4 l EF G

µ,MNOtMO
AG tIN

EF − 1
2 l EF G̃

µ,MNÕ
tMÕ
AG̃ tIN

EF

− 1
2 l EF̃ G

µ,MÑO
tMO
AG tIÑ

EF̃ − l EF̃ G̃

µ,MÑÕ
tMÕ
AG̃ tIÑ

EF̃ − 1
12 l EF G

µ,MNOtMNO
AF G tI

E

− 1
2 l EF G̃

µ,MNÕ
tMNÕ
AF G̃ tI

E − 1
4 l EF̃ G̃

µ,MÑÕ
tMÑÕ
AF̃ G̃ tI

E − 1
12 l EF G

µ,MNOtINO
EF GtM

A

− 1
2 l EF G̃

µ,MNÕ
tINÕ
EF G̃tM

A − 1
4 l EF̃ G̃

µ,MÑÕ
tIÑÕ
EF̃ G̃tM

A )rν,0

+ δµ0r
I

ν,A + l F
µ,Nr IN

ν,AF + l F̃

µ,Ñ
r IÑ

ν,AF̃
+ 1

4 l F G
µ,NOr INO

ν,AF G + l F G̃

µ,NÕ
r INÕ

ν,AF G̃
+ 1

4 l F̃ G̃

µ,ÑÕ
r IÑÕ

ν,AF̃ G̃

− l E
µ,M tI

Er M
ν,A − l E

µ,M tM
A r I

ν,E − 1
2 l EF

µ,MN tI
Er MN

ν,AF

− l EF̃

µ,MÑ
tI
Er MÑ

ν,AF̃
− 1

2 l EF
µ,MN tM

A r IN
ν,EF − l EF̃

µ,MÑ
tM
A r IÑ

ν,EF̃

− 1
12 l EF G

µ,MNOtI
Er MNO

ν,AF G − 1
2 l EF G̃

µ,MNÕ
tI
Er MNÕ

ν,AF G̃
− 1

4 l EF̃ G̃

µ,MÑÕ
tI
Er MÑÕ

ν,AF̃ G̃

− 1
12 l EF G

µ,MNOtM
A r INO

ν,EF G − 1
2 l EF G̃

µ,MNÕ
tM
A r INÕ

ν,EF G̃
− 1

4 l EF̃ G̃

µ,MÑÕ
tM
A r IÑÕ

ν,EF̃ G̃

+ l EF
µ,MN tIM

AEr N
ν,F + l EF̃

µ,MÑ
tIM
AEr Ñ

ν,F̃
+ l ẼF

µ,M̃N
tIM̃
AẼr N

ν,F + l ẼF̃

µ,M̃Ñ
tIM̃
AẼr Ñ

ν,F̃

+ 1
4 l EF G

µ,MNOtIM
AEr NO

ν,F G + 1
4 l ẼF G

µ,M̃NO
tIM̃
AẼr NO

ν,F G + l EF G̃

µ,MNÕ
tIM
AEr NÕ

ν,F G̃

+ 1
4 l EF̃ G̃

µ,MÑÕ
tIM
AEr ÑÕ

ν,F̃ G̃
+ l ẼF̃ G

µ,M̃ÑO
tIM̃
AẼr ÑO

ν,F̃ G
+ 1

4 l ẼF̃ G̃

µ,M̃ÑÕ
tIM̃
AẼr ÑÕ

ν,F̃ G̃

− l EF
µ,MN tI

EtM
A r N

ν,F − l EF̃

µ,MÑ
tI
EtM

A r Ñ

ν,F̃

− 1
4 l EF G

µ,MNOtI
EtM

A r NO
ν,F G − l EF G̃

µ,MNÕ
tI
EtM

A r NÕ

ν,F G̃
− 1

4 l EF̃ G̃

µ,MÑÕ
tI
EtM

A r ÑÕ

ν,F̃ G̃

− 1
2 l EF

µ,MN tIN
EF r M

ν,A − l EF̃

µ,MÑ
tIÑ
EF̃ r M

ν,A − 1
2 l EF

µ,MN tMN
AF r I

ν,E − l EF̃

µ,MÑ
tMÑ
AF̃ r I

ν,E

− 1
4 l EF G

µ,MNOtIN
EF r MO

ν,AG − 1
2 l EF G̃

µ,MNÕ
tIN
EF r MÕ

ν,AG̃
− 1

2 l EF̃ G

µ,MÑO
tIÑ
EF̃ r MO

ν,AG − l EF̃ G̃

µ,MÑÕ
tIÑ
EF̃ r MÕ

ν,AG̃

− 1
4 l EF G

µ,MNOtMN
AF r IO

ν,EG − 1
2 l EF G̃

µ,MNÕ
tMN
AF r IÕ

ν,EG̃
− 1

2 l EF̃ G

µ,MÑO
tMÑ
AF̃ r IO

ν,EG − l EF̃ G̃

µ,MÑÕ
tMÑ
AF̃ r IÕ

ν,EG̃

+ 1
4 l EF G

µ,MNOtIMN
AEF r O

ν,G + 1
4 l EF G̃

µ,MNÕ
tIMN
AEF r Õ

ν,G̃
+ l ẼF G

µ,M̃NO
tIM̃N
AẼF r O

ν,G

+ l EF̃ G̃

µ,MÑÕ
tIMÑ
AEF̃ r Õ

ν,G̃
+ 1

4 l ẼF̃ G

µ,M̃ÑO
tIM̃Ñ
AẼF̃ r O

ν,G + 1
4 l ẼF̃ G̃

µ,M̃ÑÕ
tIM̃Ñ
AẼF̃ r Õ

ν,G̃

− 1
2 l EF G

µ,MNOtMN
AF tI

Er O
ν,G − 1

2 l EF G̃

µ,MNÕ
tMN
AF tI

Er Õ

ν,G̃
− l EF̃ G

µ,MÑO
tMÑ
AF̃ tI

Er O
ν,G − l EF̃ G̃

µ,MÑÕ
tMÑ
AF̃ tI

Er Õ

ν,G̃

− 1
2 l EF G

µ,MNOtIN
EF tM

A r O
ν,G − 1

2 l EF G̃

µ,MNÕ
tIN
EF tM

A r Õ

ν,G̃
− l EF̃ G

µ,MÑO
tIÑ
EF̃ tM

A r O
ν,G − l EF̃ G̃

µ,MÑÕ
tIÑ
EF̃ tM

A r Õ

ν,G̃

− 1
12 l EF G

µ,MNOtINO
EF Gr M

ν,A − 1
2 l EF G̃

µ,MNÕ
tINÕ
EF G̃r M

ν,A − 1
4 l EF̃ G̃

µ,MÑÕ
tIÑÕ
EF̃ G̃r M

ν,A

− 1
12 l EF G

µ,MNOtMNO
AF G r I

ν,E − 1
2 l EF G̃

µ,MNÕ
tMNÕ
AF G̃ r I

ν,E − 1
4 l EF̃ G̃

µ,MÑÕ
tMÑÕ
AF̃ G̃ r I

ν,E.

(A.11)
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The β counterparts of Eqs. (A.8)–(A.11), namely, γ
P̃ (CCSDT)
Q̃

(µ, ν), can be obtained by simply

flipping the spins in each orbital in Eqs. (A.8)–(A.11). The CCSDT 1-RDM in the molecular

orbital basis has been implemented in a pilot code, written in Python. The correctness of the

code was checked numerically by performing CCSDT calculations for three-electron systems

and comparing the resulting 1-RDMs, natural orbitals, and computed one-electron properties

with those obtained in FCI computations.
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S. A. Kucharski, T. Kuś, and M. Musia l, Theor. Chem. Acc. 112, 349 (2004).

[85] K. Kowalski and P. Piecuch, J. Chem. Phys. 120, 1715 (2004).

[86] M. W loch, J. R. Gour, K. Kowalski, and P. Piecuch, J. Chem. Phys. 122, 214107
(2005).

[87] K. Kowalski and P. Piecuch, J. Chem. Phys. 122, 074107 (2005).

[88] P.-D. Fan, K. Kowalski, and P. Piecuch, Mol. Phys. 103, 2191 (2005).

[89] P. Piecuch and M. W loch, J. Chem. Phys. 123, 224105 (2005).

[90] P. Piecuch, M. W loch, J. R. Gour, and A. Kinal, Chem. Phys. Lett. 418, 467 (2006).

[91] M. W loch, M. D. Lodriguito, P. Piecuch, and J. R. Gour, Mol. Phys. 104, 2149 (2006),
104, 2991 (2006) [Erratum].

[92] M. W loch, J. R. Gour, and P. Piecuch, J. Phys. Chem. A 111, 11359 (2007).

[93] P. Piecuch, J. R. Gour, and M. W loch, Int. J. Quantum Chem. 109, 3268 (2009).

[94] P. Piecuch, M. W loch, and A. J. C. Varandas, in Topics in the Theory of Chemical and
Physical Systems, Progress in Theoretical Chemistry and Physics, Vol. 16, edited by
S. Lahmar, J. Maruani, S. Wilson, and G. Delgado-Barrio (Springer, Dordrecht, 2007)
pp. 63–121.

[95] G. Fradelos, J. J. Lutz, T. A. Weso lowski, P. Piecuch, and M. W loch, J. Chem. Theory
Comput. 7, 1647 (2011).

[96] M. Horoi, J. R. Gour, M. W loch, M. D. Lodriguito, B. A. Brown, and P. Piecuch,
Phys. Rev. Lett. 98, 112501 (2007).

[97] N. Oliphant and L. Adamowicz, J. Chem. Phys. 94, 1229 (1991).

164



[98] N. Oliphant and L. Adamowicz, J. Chem. Phys. 96, 3739 (1992).

[99] P. Piecuch, N. Oliphant, and L. Adamowicz, J. Chem. Phys. 99, 1875 (1993).

[100] P. Piecuch, S. A. Kucharski, and R. J. Bartlett, J. Chem. Phys. 110, 6103 (1999).

[101] P. Piecuch, Mol. Phys. 108, 2987 (2010).

[102] G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009).

[103] D. Cleland, G. H. Booth, and A. Alavi, J. Chem. Phys. 132, 041103 (2010).

[104] W. Dobrautz, S. D. Smart, and A. Alavi, J. Chem. Phys. 151, 094104 (2019).

[105] K. Ghanem, A. Y. Lozovoi, and A. Alavi, J. Chem. Phys. 151, 224108 (2019).

[106] K. Ghanem, K. Guther, and A. Alavi, J. Chem. Phys. 153, 224115 (2020).

[107] A. J. W. Thom, Phys. Rev. Lett. 105, 263004 (2010).

[108] R. S. T. Franklin, J. S. Spencer, A. Zoccante, and A. J. W. Thom, J. Chem. Phys.
144, 044111 (2016).

[109] J. S. Spencer and A. J. W. Thom, J. Chem. Phys. 144, 084108 (2016).

[110] C. J. C. Scott and A. J. W. Thom, J. Chem. Phys. 147, 124105 (2017).

[111] J. E. Deustua, J. Shen, and P. Piecuch, Phys. Rev. Lett. 119, 223003 (2017).

[112] J. E. Deustua, S. H. Yuwono, J. Shen, and P. Piecuch, J. Chem. Phys. 150, 111101
(2019).

[113] S. H. Yuwono, A. Chakraborty, J. E. Deustua, J. Shen, and P. Piecuch, Mol. Phys.
118, e1817592 (2020).

[114] J. E. Deustua, J. Shen, and P. Piecuch, J. Chem. Phys., 154, 124103 (2021).

[115] J. Whitten and M. Hackmeyer, J. Chem. Phys. 51, 5584 (1969).

[116] C. Bender and E. Davidson, Phys. Rev. 183, 23 (1969).

[117] B. Huron, J. P. Malrieu, and P. Rancurel, J. Chem. Phys. 58, 5745 (1973).

[118] R. Buenker and S. Peyerimhoff, Theor. Chim. Acta. 35, 33 (1974).

165



[119] J. Schriber and F. Evangelista, J. Chem. Phys. 144, 161106 (2016).

[120] J. Schriber and F. Evangelista, J. Chem. Theory Comput. 13, 5354 (2017).

[121] N. M. Tubman, J. Lee, T. Takeshita, M. Head-Gordon, and K. Whaley, J. Chem. Phys.
145, 044112 (2016).

[122] N. M. Tubman, C. Freeman, D. Levine, D. Hait, M. Head-Gordon, and K. Whaley, J.
Chem. Theory Comput. 16, 2139 (2020).

[123] W. Liu and M. Hoffmann, J. Chem. Theory Comput. 12, 1169 (2016), 12, 3000 (2016)
[Erratum].

[124] N. Zhang, W. Liu, and M. Hoffmann, J. Chem. Theory Comput. 16, 2296 (2020).

[125] A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J. Chem. Theory Comput. 12, 3674
(2016).

[126] S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar, J. Chem.
Theory Comput. 13, 1595 (2017).

[127] J. Li, M. Otten, A. A. Holmes, S. Sharma, and C. J. Umrigar, J. Chem. Phys. 149,
214110 (2018).

[128] Y. Garniron, A. Scemama, P.-F. Loos, and M. Caffarel, J. Chem. Phys. 147, 034101
(2017).

[129] Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferte, J. Paquier,
B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David,
J.-P. Malrieu, M. Veril, M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, J. Chem.
Theory Comput. 15, 3591 (2019).

[130] P.-F. Loos, Y. Damour, and A. Scemama, J. Chem. Phys. 153, 176101 (2020).

[131] J. J. Eriksen, T. A. Anderson, J. E. Deustua, K. Ghanem, D. Hait, M. R. Hoffmann,
S. Lee, D. S. Levine, I. Magoulas, J. Shen, N. M. Tubman, K. B. Whaley, E. Xu,
Y. Yao, N. Zhang, A. Alavi, G. K.-L. Chan, M. Head-Gordon, W. Liu, P. Piecuch,
S. Sharma, S. L. Ten-no, C. J. Umrigar, and J. Gauss, J. Phys. Chem. Lett. 11, 8922
(2020).

[132] K. Gururangan, J. E. Deustua, J. Shen, and P. Piecuch, J. Chem. Phys. 155, 174114
(2021).

[133] N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335 (1949).

166



[134] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J.
Chem. Phys. 21, 1087 (1953).

[135] W. K. Hastings, Biometrika 57, 97 (1970).

[136] W. L. McMillan, Phys. Rev. 138, A442 (1965).

[137] D. Schiff and L. Verlet, Phys. Rev. 160, 208 (1967).

[138] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

[139] P. J. Reynolds, D. M. Ceperley, B. J. Alder, and W. A. Lester, Jr., J. Chem. Phys.
77, 5593 (1982).

[140] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, Rev. Mod. Phys. 73, 33
(2001).

[141] D. Ceperley, G. V. Chester, and M. H. Kalos, Phys. Rev. B 16, 3081 (1977).

[142] D. M. Ceperley, Rev. Mineral. Geochem. 71, 129 (2010).

[143] J. Toulouse, R. Assaraf, and C. J. Umrigar, Adv. Quantum Chem. 73, 285 (2016).

[144] J. B. Anderson, J. Chem. Phys. 63, 1499 (1975).

[145] D. J. Klein and H. M. Pickett, J. Chem. Phys. 64, 4811 (1976).

[146] J. B. Anderson, J. Chem. Phys. 65, 4121 (1976).

[147] J. B. Anderson, Int. J. Quantum Chem. 15, 109 (1979).

[148] N. S. Blunt, S. D. Smart, G. H. Booth, and A. Alavi, J. Chem. Phys. 143, 134117
(2015).

[149] N. S. Blunt, G. H. Booth, and A. Alavi, J. Chem. Phys. 146, 244105 (2017).

[150] W. Sheng, M. Nairat, P. D. Pawlaczyk, E. Mroczka, B. Farris, E. Pines, J. H. Geiger,
B. Borhan, and M. Dantus, Angew. Chem., Int. Ed. 57, 14742 (2018).

[151] J.-C. Zhang, J.-F. Sun, Z.-L. Zhu, and Y.-F. Liu, Phys. Scr. 87, 025302 (2013).

[152] E. Krotscheck and R. E. Zillich, J. Chem. Phys. 145, 244317 (2016).

[153] L. Rybak, S. Amaran, L. Levin, M. Tomza, R. Moszynski, R. Kosloff, C. P. Koch, and
Z. Amitay, Phys. Rev. Lett. 107, 273001 (2011).

167



[154] P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and A. Clairon, Phys. Rev.
A 75, 063608 (2007).

[155] C. Simon and D. Jaksch, Phys. Rev. A 70, 052104 (2004).

[156] M. Machholm, P. S. Julienne, and K.-A. Suominen, Phys. Rev. A 64, 033425 (2001).

[157] P. F. Bernath, Science 324, 1526 (2009).
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B: Struct. Sci., Cryst. Eng. Mater. 69, 195 (2013).

[248] P. Sillrén, J. Swenson, J. Mattsonn, D. Bowron, and A. Matic, J. Chem. Phys. 138,
214501 (2013).
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