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ABSTRACT

THREE ESSAYS ON PANEL DATA MODELS WITH INTERACTIVE AND UNOBSERVED
EFFECTS

By

Nicholas Lynn Brown

Chapter 1: More Efficient Estimation of Multiplicative Panel Data Models in the Presence of

Serial Correlation (with Jeffrey Wooldridge)

We provide a systematic approach in obtaining an estimator asymptotically more efficient than the

popular fixed effects Poisson (FEP) estimator for panel data models with multiplicative hetero-

geneity in the conditional mean. In particular, we derive the optimal instrumental variables under

appealing ‘working’ second moment assumptions that allow underdispersion, overdispersion, and

general patterns of serial correlation. Because parameters in the optimal instruments must be

estimated, we argue for combining our new moment conditions with those that define the FEP

estimator to obtain a generalized method of moments (GMM) estimator no less efficient than the

FEP estimator and the estimator using the new instruments. A simulation study shows that the

GMM estimator behaves well in terms of bias, and it often delivers nontrivial efficiency gains –

even when the working second-moment assumptions fail.

Chapter 2: Information equivalence among transformations of semiparametric nonlinear

panel data models

I consider transformations of nonlinear semiparametric mean functions which yield moment con-

ditions for estimation. Such transformations are said to be information equivalent if they yield

the same asymptotic efficiency bound. I first derive a unified theory of algebraic equivalence for

moment conditions created by a given linear transformation. The main equivalence result states that

under standard regularity conditions, transformations which create conditional moment restrictions

in a given empirical setting need only to have an equal rank to reach the same efficiency bound.



Example applications are considered, including nonlinear models with multiplicative heterogeneity

and linear models with arbitrary unobserved factor structures.

Chapter 3: Moment-based Estimation of Linear Panel Data Models with Factor-augmented

Errors

I consider linear panel data models with unobserved factor structures when the number of time

periods is small relative to the number of cross-sectional units. I examine two popular methods

of estimation: the first eliminates the factors with a parameterized quasi-long-differencing (QLD)

transformation. The other, referred to as common correlated effects (CCE), uses the cross-sectional

averages of the independent and response variables to project out the space spanned by the factors.

I show that the classical CCE assumptions imply unused moment conditions which can be exploited

by the QLD transformation to derive new linear estimators which weaken identifying assumptions

and have desirable theoretical properties. I prove asymptotic normality of the linear QLD estimators

under a heterogeneous slope model which allows for a tradeoff between identifying conditions.

These estimators do not require the number of cross-sectional variables to be less than 𝑇 − 1, a

strong restriction in fixed-𝑇 CCE analysis. Finally, I investigate the effects of per-student expenditure

on standardized test performance using data from the state of Michigan.
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CHAPTER 1

MORE EFFICIENT ESTIMATION OF MULTIPLICATIVE PANEL DATA MODELS IN
THE PRESENCE OF SERIAL CORRELATION

1.1 Introduction

The fixed effects Poisson (FEP) estimator was originally developed by Hausman, Hall, and Griliches

(1984) (hereafter, HHG) in their study of the effects of firm-level R&D spending on patent filings.

HHG used the method of conditional maximum likelihood estimation (CMLE) to estimate the

parameters in the conditional mean. In deriving the CMLE, HHG assumed that, conditional on the

unobserved heterogeneity and the history of the covariates, the outcome variable is independent

over time with a Poisson distribution. HHG showed that, conditional on the covariates and the sum

of the counts over time, the joint distribution of the counts is multinomial and does not depend

on the heterogeneity. Therefore, standard maximum likelihood theory applies, and the asymptotic

theory assuming a fixed number of time periods is standard. Hahn (1997) verified that the FEP

estimator achieves the semiparametric efficiency bound under the full distributional and conditional

independence assumptions.

Wooldridge (1999) showed that the consistency of the FEP estimator only requires correct

specification of the conditional mean function up to a multiplicative heterogeneity term. In par-

ticular, any kind of variance is allowed along with any kind of serial dependence. In fact, the

outcome variable need not even be a count variable: it can be any nonnegative outcome, including

a continuous or corner solution response. Thus, the FEP estimator is to multiplicative panel data

models what the linear FE estimator is to linear models with additive heterogeneity.

When the conditional mean function is differentiable in the parameters – by far the leading

case – Wooldridge (1999) established Fisher consistency of the FEP very generally. Specifically,

Wooldridge showed that the score has a zero conditional mean (evaluated at the true parameter

value) when the structural conditional mean is correctly specified. In addition to establishing
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robustness of the FEP estimator, the zero conditional mean property of the score leads to additional

moment conditions that can be exploited in generalized method of moments (GMM) estimation to

obtain estimators asymptotically more efficient than the FEP estimator. Unfortunately, the extra

moment conditions proposed by Wooldridge (1999) are essentially ad hoc: they are not based on

any notion of optimality. Consequently, the GMM approach to estimating multiplicative panel

data models has not caught on: FEP estimation with the fully robust standard errors derived in

Wooldridge (1999) is much more common. Some recent examples include McCabe and Snyder

(2014, 2015), Schlenker and Walker (2016), Krapf, Ursprung, and Zimmermann (2017), Castillo,

Mejia, and Restrepo (2018), and Williams, Burnap, Javed, Liu, and Ozalp (2020).

Given that the FEP estimator is fully robust to distributional misspecification and serial inde-

pendence, it is natural to wonder about its asymptotic efficiency under assumptions weaker than

the full set of assumptions used by Hahn (1997). Recently, Verdier (2018) showed that the Poisson

distributional assumption and conditional independence are not necessary for the FEP estimator to

achieve Chamberlain’s (1987, 1992) efficiency bound. In particular, Verdier (2018) showed that it is

sufficient to impose the Poisson assumption that the variance equals the mean and that the outcomes

are serially uncorrelated conditional on heterogeneity and the covariates. While weaker than the

HHG assumptions, they are still restrictive. The assumption that the variance equals the mean, even

after conditioning on unobserved heterogeneity, is very special. For example, the most common

parameterization of the gamma distribution violates equality of the variance and mean. Moreover,

serial correlation in the idiosyncratic errors of linear unobserved effects models is pervasive (which

is why researchers now routinely compute standard errors robust to general serial correlation), and

it is known how to exploit serial correlation in fixed effects versions of generalized least squares

(GLS) to improve efficiency over the usual fixed effects estimator – see, for example, Im, Ahn,

Schmidt, and Wooldridge (1999). It seems natural to search for analogous improvements over the

FEP estimator in the presence of serial correlation and more flexible variance-mean relationships.

In this paper, we relax the second moment assumptions that are implied by the traditional HHG

assumptions and derive the optimal instruments, thereby showing how to obtain an estimator that
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achieves Chamberlain’s (1992) lower bound. Our efficiency result is new, and includes the Verdier

(2018) result as a special case. The variance assumption we use to derive the optimal instruments

is appealing because, conditional on the observed covariates and unobserved heterogeneity, it

allows for underdispersion (relative to the Poisson) or overdispersion. In the spirit of the popular

generalized estimating equations (GEE) approach – see Liang and Zeger (1986) – we assume

constant conditional correlations, but allow for any pattern of serial correlation. One important

difference from the GEE literature is that our assumptions are more “structural” in that we state

the second moment assumptions conditional on the unobserved heterogeneity. This is analogous

to the linear model with an additive, unobserved effect when the working correlation matrix of the

idiosyncratic errors is assumed to be constant but is otherwise unrestricted.

In order to obtain parametric forms for the optimal instruments, we supplement the flexible

second moment assumptions for the response variable with moment assumptions about the multi-

plicative heterogeneity. These parametric assumptions are fairly flexible and are commonly used in

the literature, particularly in traditional and correlated random effects environments when one needs

to impose distributional assumptions on the heterogeneity in order to obtain consistent estimators.

Here, we impose first and second moment assumptions in order to obtain the optimal instruments.

We must emphasize that the estimator based on the optimal instruments – which we refer to as

the “generalized FEP (GFEP) estimator” – does not require any assumptions for consistency and

asymptotic normality beyond those used by the FEP estimator. That our new estimator is just as

robust as the FEP estimator in terms of consistency is important, as it is unfair to claim efficiency

improvements if the new estimator is not as robust as the popular, robust FEP estimator. In order

to emphasize the robustness of our estimator, we use the term “working” assumptions. The key

is that, under these parametric “working” assumptions we obtain the optimal instruments. If the

working assumptions are correct, then we have a just identified estimator that is more efficient than

the FEP estimator.

If any of the working assumptions are incorrect, the “optimal” instrumental variables (IVs) are no

longer optimal, and so the GFEP no longer achieves Chamberlain’s lower bound. Therefore, we have
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two estimators that are consistent under the same assumptions but efficient under different working

assumptions. To ensure that we have an estimator that is at least as efficient than both the FEP

estimator and the GFEP estimator, and usually more efficient, we combine the two sets of moment

conditions. With 𝐾 parameters this gives 𝐾 overidentifying restrictions. The overidentifying

restrictions are useful for testing the conditional mean specification – not the working assumptions,

as those are not being used for consistency.

To summarize, this paper has three primary contributions. First, we relax the second mo-

ment assumptions implied by the traditional fixed effects Poisson setting and obtain the optimal

instruments under an appealing set of second moment working assumptions, including allowing

for general patterns of serial correlation. Second, we operationalize the estimator by imposing

additional working assumptions on moments of the heterogeneity distribution, resulting in a GMM

estimator that is computationally simple and is guaranteed to be asymptotically more efficient than

both the FEP estimator and the GFEP estimator. Third, we significantly relax the conditions under

which the FEP estimator achieves the asymptotic variance lower bound, allowing for both under-

dispersion and overdispersion in the variance conditional on observed covariates and unobserved

heterogeneity.

The underlying asymptotic theory in this paper is for the microeconometric setting that treats

the number of time periods, 𝑇 , as fixed, and lets the cross section dimension, 𝑁 , increase without

bound. We assume random sampling in the cross section dimension but impose no restrictions on

the time series dependence. We do not provide formal regularity conditions because the asymptotic

theory is standard, and follow as in hundreds of panel data papers that impose random sampling in

the cross section. We do assume smoothness so that certain derivatives – in particular, that of the

conditional mean function – exist and are continuous.

The rest of the paper is organized as follows. Section 1.2 presents the conditional mean model

and summarizes the consistency result for the FEP estimator. Section 1.3 derives the optimal

instruments under two working variance assumptions, including an unrestricted (but constant)

conditional correlation matrix. Section 1.4 shows how to implement the GFEP estimator and the
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GMM estimator that combines the two sets of moment conditions. Section 1.5 provides promising

simulation evidence comparing the FEP, GFEP, and GMM estimators under serial correlation with

both underdispersion and overdispersion in the structural variance. Section 1.6 contains concluding

remarks.

1.2 Model and Background

We consider a balanced panel data setting where, for each 𝑖, {(𝑦𝑖𝑡 , x𝑖𝑡 , 𝑐𝑖) : 𝑡 = 1, 2, ..., 𝑇} is a

random draw from the population. We observe the nonnegative response variable 𝑦𝑖𝑡 ≥ 0 and x𝑖𝑡 , a

1×𝐾 vector. The scalar 𝑐𝑖 is the unobserved heterogeneity. As is usual in fixed effects environments,

the elements of x𝑖𝑡 must have variation across 𝑡 for at least some population units. Typically, these

would include dummy variables indicating different time periods to allow for flexible aggregate

time effects. The entire observed history of the covariates is x𝑖 = (x𝑖1, x𝑖2, ..., x𝑖𝑇 ). As mentioned

in the introduction, we are treating 𝑇 as fixed in the asymptotic analysis. Therefore, because we

assume random sampling in the cross section, relevant assumptions can be stated for a random

draw 𝑖 from the population.

The substantive assumptions that we make throughout the paper are that the model of the

conditional mean is correctly specified, the heterogeneity is multiplicative, and the covariates are

strictly exogenous conditional on 𝑐𝑖. These are all captured by the following.

Assumption Conditional Mean (CM): For 𝑡 = 1, ..., 𝑇 and some 𝜷0 ∈ R𝑃,

E (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) = E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖) = 𝑐𝑖𝑚𝑡 (x𝑖𝑡 , 𝜷0) (1.2.1)

where 𝑚𝑡 (x𝑡 , ·) ≥ 0 is continuously differentiable on R𝑃 for all x𝑡 ∈ X𝑡 , the support of x𝑖𝑡 . ■

As discussed in Wooldridge (1999), for consistency of the FEP estimator one can get by with

assuming continuity over the parameter space, but we impose assumptions that imply asymptotic

normality and easy calculation of asymptotic efficiency bounds. See Newey and McFadden (1994)

or Wooldridge (2010, Chapter 12) for formal regularity conditions. In terms of smoothness,

assuming 𝑚𝑡 (x𝑖𝑡 , ·) is twice continuously differentiable is sufficient and is almost always true in
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practice.

By far the leading case of the conditional mean function is

E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖) = 𝑐𝑖 exp (x𝑖𝑡𝜷0) (1.2.2)

where x𝑖𝑡 can include time period dummies to allow different intercepts inside the exponential

function. Naturally, x𝑖𝑡 can also include nonlinear functions of underlying explanatory variables,

including squares and interactions. Given the choice in (1.2.2), 𝑃 = 𝐾 , but we also allow more

general mean functions. Because we want to allow arbitrary dependence between 𝑐𝑖 and x𝑖𝑡 , we

need time variation in the latter for at least some units in the population. This permits, for example,

interactions among variables that have some time variation and others that do not.

Strict exogeneity conditional on the unobserved effect 𝑐𝑖 is implied by the first equality in

(1.2.1). This assumption is restrictive – for example, it rules out lagged dependent variables – but

it is much less restrictive than the strict exogeneity assumption typically used in the GEE literature

because of conditioning on 𝑐𝑖. In the typical GEE approach the strict exogeneity assumption is

stated as E (𝑦𝑖𝑡 |x𝑖) = E (𝑦𝑖𝑡 |x𝑖𝑡). [For a discussion of GEE from an econometrics perspective, see

Wooldridge (2010, Section 13.11.4).] Using iterated expectations, if (1.2.1) holds then

E (𝑦𝑖𝑡 |x𝑖) = E (𝑐𝑖 |x𝑖) 𝑚𝑡 (x𝑖𝑡 , 𝜷0)

and the latter expression is not E (𝑦𝑖𝑡 |x𝑖𝑡) if E (𝑐𝑖 |x𝑖) ≠ E (𝑐𝑖).

The multiplicative formulation using the exponential function in (1.2.2) can be obtained from

E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑎𝑖) = exp (𝑎𝑖 + x𝑖𝑡𝜷0)

where 𝑐𝑖 ≡ exp (𝑎𝑖). In applications where P(𝑦𝑖𝑡 = 0) > 0, it is important to use (1.2.2) to allow

for the possibility that 𝑐𝑖 = 0, which then implies 𝑦𝑖𝑡 = 0, 𝑡 = 1, 2, ..., 𝑇 . Often in count data and
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corner solution applications one sees some units with 𝑦𝑖𝑡 = 0 for all 𝑡. Remember, we are only

assuming 𝑦𝑖𝑡 ≥ 0; no other restrictions are imposed on the support of 𝑦𝑖𝑡 . In most cases, a model

such as (1.2.2) is appealing when 𝑦𝑖𝑡 has no natural upper bound.

In FEP estimation, the following residual function, first studied by HHG, plays an important

role:

𝑢𝑖𝑡 (𝜷) ≡ 𝑦𝑖𝑡 − 𝑛𝑖𝑝𝑡 (x𝑖, 𝜷) (1.2.3)

where 𝑛𝑖 ≡
∑𝑇
𝑟=1 𝑦𝑖𝑟 and

𝑝𝑡 (x𝑖, 𝜷) ≡
𝑚𝑡 (x𝑖𝑡 , 𝜷)∑𝑇
𝑟=1𝑚𝑟 (x𝑖𝑟 , 𝜷)

(1.2.4)

As convenient shorthand, we write 𝑚𝑖𝑡 (𝜷) = 𝑚𝑡 (x𝑖𝑡 , 𝜷) and 𝑝𝑖𝑡 (𝜷) = 𝑝𝑡 (x𝑖, 𝜷). We can stack the

𝑝𝑖𝑡 (𝜷) into the 𝑇 × 1 vector p (x𝑖, 𝜷) and write

u𝑖 (𝜷) = y𝑖 − p (x𝑖, 𝜷) 𝑛𝑖 = y𝑖 − p (x𝑖, 𝜷) 1′𝑇y𝑖 =
[
I𝑇 − p (x𝑖, 𝜷) 1′𝑇

]
y𝑖 (1.2.5)

where u𝑖 (𝜷) is the 𝑇 × 1 vector with 𝑡𝑡ℎ element 𝑢𝑖𝑡 (𝜷) and 1𝑇 is the 𝑇 × 1 vector with all elements

unity. As shown in Wooldridge (1999) under Assumption CM.1,

E [u𝑖 (𝜷0) |x𝑖] = 0 (1.2.6)

Further, the score of the quasi-log-likelihood function for random draw 𝑖 can be written as

s𝑖 (𝜷) = ∇𝜷p (x𝑖, 𝜷)′ W (x𝑖, 𝜷) u𝑖 (𝛽) (1.2.7)

where

W (x𝑖, 𝜷) = diag
{
[𝑝𝑖1 (𝜷)]−1 , [𝑝𝑖2 (𝜷)]−1 , ..., [𝑝𝑖𝑇 (𝜷)]−1} (1.2.8)

is 𝑇 × 𝑇 .
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It follows immediately that

E [s𝑖 (𝜷0) |x𝑖] = 0 (1.2.9)

and this translates, under standard regularity conditions, into the consistency and
√
𝑁-asymptotic

normality of the FEP estimator. For emphasis, only Assumption CM is needed for consistency and

asymptotic normality, and fully robust inference using a sandwich estimator is essentially trivial.

Wooldridge (1999) also notes that the conditional moment restrictions in (1.2.6) leads to

uncountably many unconditional moment restrictions beyond those used by the FEP estimator,

which are given by

E [s𝑖 (𝜷0)] = 0.

Wooldridge (1999) suggests some extra moment conditions but makes no attempt to find the optimal

estimator based on (1.2.6). In the next section we derive the optimal instruments under a set of

second moment assumptions.

1.3 Optimal Instruments under Second Moment Assumptions

Given the moment conditions in (1.2.6), we can apply Chamberlain’s (1992) semiparametric effi-

ciency bound to obtain an asymptotically efficient estimator. Define

D𝑜 (x𝑖) ≡ E
[
∇𝜷u𝑖 (𝜷0) |x𝑖

]
(1.3.1)

and

V𝑜 (x𝑖) ≡ Var [u𝑖 (𝜷0) |x𝑖] (1.3.2)

Under regularity conditions of the kind found in Newey and McFadden (1994), Newey (2001)

extended Chamberlain (1992) by allowing V𝑜 (x𝑖) to be singular and showed that the efficient

estimator that uses only (1.2.6) has asymptotic variance

{
E

[
D𝑜 (x𝑖)′ V𝑜 (x𝑖)− D𝑜 (x𝑖)

]}−1 (1.3.3)
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where V𝑜 (x𝑖)− denotes any generalized inverse (𝑔-inverse), which means V𝑜 (x𝑖) V𝑜 (x𝑖)− V𝑜 (x𝑖) =

V𝑜 (x𝑖). Because V𝑜 (x𝑖) is symmetric, a symmetric 𝑔-inverse always exists, and it simplifies

notation to take V𝑜 (x𝑖)− to be symmetric. Below we will obtain an explicit formula for a symmetric

𝑔-inverse. Given a random sample of size 𝑁 and knowledge of D𝑜 (x𝑖) and V𝑜 (x𝑖), an estimator

𝛽𝑂𝑃𝑇 that achieves this lower bound solves the exactly identified moment equations

𝑁∑︁
𝑖=1

D𝑜 (x𝑖)′ V𝑜 (x𝑖)− u𝑖
(
𝜷𝑂𝑃𝑇

)
= 0 (1.3.4)

Of course, this estimator is infeasible because D𝑜 (x𝑖) and V𝑜 (x𝑖) are generally unknown. In

principle, both can be nonparametrically estimated. However, especially given the often large

dimension of x𝑖, nonparametric estimation of many conditional means, variances, and covariances

hardly seems worth it just to improve asymptotic efficiency over the FEP estimator. Plus, the

finite-sample properties of the the resulting estimator could be poor. Our goal here is to obtain

simple formulas for the optimal IVs Z∗ (x𝑖) ≡ V𝑜 (x𝑖)− D𝑜 (x𝑖) under reasonably flexible parametric

second moment assumptions that have antecedents in the count data literature.

To find D𝑜 (x𝑖), note that

∇𝜷u𝑖 (𝜷) = −∇𝜷p (x𝑖, 𝜷) 𝑛𝑖 (1.3.5)

where, for each 𝑡, we can write

∇𝜷𝑝𝑖𝑡 (𝜷) =
[
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝜷)
]−1 {

∇𝜷𝑚𝑖𝑡 (𝜷) −
[
𝑇∑︁
𝑟=1

∇𝜷𝑚𝑖𝑟 (𝜷)
]
𝑝𝑖𝑡 (𝜷)

}
Therefore,

∇𝜷p𝑖 (𝜷) =

[
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝜷)
]−1 {

∇𝜷m𝑖 (𝜷) − p𝑖 (𝜷)
[
1′𝑇∇𝜷m𝑖 (𝜷)

]}
=

[
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝜷)
]−1 [

I𝑇 − p𝑖 (𝜷) 1′𝑇
]
∇𝜷m𝑖 (𝜷) (1.3.6)

which gives us the necessary gradient.
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Further, because

E (𝑛𝑖 |x𝑖, 𝑐𝑖) = 𝑐𝑖

[
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝜷0)
]

we have

E
[
∇𝜷u𝑖 (𝜷0) |x𝑖, 𝑐𝑖

]
= −𝑐𝑖

[
I𝑇 − p𝑖 (𝜷0) 1′𝑇

]
∇𝜷m𝑖 (𝜷0)

Now, let

𝜇𝑐 (x𝑖) ≡ E (𝑐𝑖 |x𝑖)

Then we have shown

D𝑜 (x𝑖) = −𝜇𝑐 (x𝑖)
[
I𝑇 − p𝑖 (𝜷0) 1′𝑇

]
∇𝜷m𝑖 (𝜷0) (1.3.7)

which is the first piece needed to derive the optimal instruments. The unknown function in D𝑜 (x𝑖),

𝜇𝑐 (x𝑖), is the conditional mean in the heterogeneity distribution.

Next, consider V𝑜 (x𝑖)−. First, we can write

V𝑜 (x𝑖) ≡ Var [u𝑖 (𝜷0) |x𝑖] = Var
{[

I𝑇 − p𝑖 (𝜷0) 1′𝑇
]

y𝑖 |x𝑖
}

≡ (I𝑇 − P𝑖)𝛀𝑖

(
I𝑇 − P′

𝑖

)
(1.3.8)

where

𝛀𝑖 ≡ Var (y𝑖 |x𝑖) (1.3.9)

is assumed to be nonsingular (with probability one) and P𝑖 ≡ p𝑖 (𝜷0) 1′
𝑇

is 𝑇 × 𝑇 . Because the

𝑝𝑖𝑡 (𝜷0) sum to unity across 𝑡, it is easy to show that P𝑖 is an idempotent (but not symmetric) matrix

with rank(P𝑖) = 1.

In establishing that the FEP estimator is asymptotically efficient under the Poisson first and

second moment assumptions, Verdier (2018) finds a particular symmetric matrix which is inherent

to the FEP solution.
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The matrix

V𝑜 (x𝑖)− = 𝛀−1
𝑖 −𝛀−1

𝑖 p𝑖 (𝜷0)
[
p𝑖 (𝜷0)′𝛀−1

𝑖 p𝑖 (𝜷0)
]−1 p𝑖 (𝜷0)′𝛀−1

𝑖

= 𝛀−1
𝑖 −𝛀−1

𝑖 m𝑖 (𝜷0)
[
m𝑖 (𝜷0)′𝛀−1

𝑖 m𝑖 (𝜷0)
]−1 m𝑖 (𝜷0)′𝛀−1

𝑖 (1.3.10)

is a generalized inverse of V𝑜 (x𝑖). The second equality in (1.3.10) follows by the definition of

p𝑖 (𝜷0) and by cancelling terms. By simple multiplication it is easily seen that

p𝑖 (𝜷0)′ V𝑜 (x𝑖)− = 0

and so

D𝑜 (x𝑖)′ V𝑜 (x𝑖)− = −𝜇𝑐 (x𝑖) ∇𝜷m𝑖 (𝜷0)′ V𝑜 (x𝑖)− (1.3.11)

The expression for the optimal instruments in (1.3.11) is not directly applicable because 𝜇𝑐 (·)

and V𝑜 (·) are unknown, with the latter depending on the unknown𝛀𝑖. We now impose assumptions

on the structural variance-covariance matrix, Var (y𝑖 |x𝑖, 𝑐𝑖), that lead to useful simplifications. The

first restriction is on the diagonal elements.

Assumption Working Variance 1 (WV.1): For 𝑡 = 1, ..., 𝑇 , there exists 𝛼 > 0 such that

Var (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) = Var (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖) = 𝛼E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖) = 𝛼𝑐𝑖𝑚𝑖𝑡 (𝜷0)■ (1.3.12)

Assumption WV.1 is motivated by the count data literature, where the assumption that the

variance is proportional to the mean is commonly used in generalized linear models (GLM) and

GEE settings; see, for example, McCullagh and Nelder (1989), Liang and Zeger (1986), Hardin and

Hilbe (2012), and Wooldridge (2010, Section 13.11). Again, one important difference between our

setting and the standard GEE setting is that we state the first and second moments conditional on

the unobserved heterogeneity, 𝑐𝑖, in addition to the observable variables, x𝑖. Once the population

is effectively partitioned on the basis of (x𝑖, 𝑐𝑖), the so-called “GLM variance assumption” is

more appealing. We do not restrict the value of 𝛼 = Var (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖) /E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖), and so the 𝑦𝑖𝑡
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can exhibit underdispersion or overdispersion relative to the Poisson distribution. This variance-

mean relationship also holds for one popular parameterization of the negative binomial distribution

(which implies overdispersion), and can hold for continuous outcomes as well, such as a common

parameterization of the gamma distribution.

The second working assumption is on the conditional correlation matrix.

Assumption Working Variance 2 (WV.2): For a 𝑇 × 𝑇 symmetric, positive definite matrix R

(with unity down the diagonal),

Corr (y𝑖 |x𝑖, 𝑐𝑖) = R ■ (1.3.13)

Assumption WV.2 is motivated by the GEE literature, where a constant conditional correlation

matrix is the leading example of a working correlation assumption. We do not put restrictions on

the elements of R, 𝜌𝑡𝑠 = Corr (𝑦𝑖𝑡 , 𝑦𝑖𝑠 |x𝑖, 𝑐𝑖), other than those that ensure R is a valid correlation

matrix. The special case of no serial correlation conditional on (x𝑖, 𝑐𝑖) is R = I𝑇 . One could impose

an exchangeability restriction on R, as is common in the GEE literature, but that is less attractive

here because we are conditioning on 𝑐𝑖 (which would often be assumed to be an explanation for

an exchangeable structure without conditioning on 𝑐𝑖). With large 𝑁 and small 𝑇 , there is little

reason to impose restrictions on R. Again, an important difference with the GEE literature is we

condition the correlation matrix on 𝑐𝑖 as well as x𝑖 – which makes R = I𝑇 more tenable (but still

unnecessary).

We can combine Assumptions WV.1 and WV.2 into a working variance-covariance matrix

conditional on (x𝑖, 𝑐𝑖):

Var (y𝑖 |x𝑖, 𝑐𝑖) = 𝛼𝑐𝑖M1/2
𝑖

RM1/2
𝑖

(1.3.14)

where M𝑖 ≡ diag {𝑚𝑖1 (𝜷0) , 𝑚𝑖2 (𝜷0) , ..., 𝑚𝑖𝑇 (𝜷0)} and M1/2
𝑖

is the obvious matrix square root. If

not for conditioning on the unobserved heterogeneity 𝑐𝑖, (1.3.14) has a structure very familiar from

the GEE literature on estimating conditional means of count variables with longitudinal data.
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In stating Assumptions WV.1 and WV.2, we have opted not to include a “0” subscript on 𝛼 or R.

This decision requires a brief explanation. For deriving the optimal instruments, we are assuming

the existence of “true values.” However, when we discuss implementation of our new estimator in

Section 1.4, we do not assume Assumptions WV.1 or WV.2 are in force. To ensure that the focus

is on estimating 𝜷0, and to simplify the notation, we omit the “0” subscripts on the parameters in

the working assumptions.

Before deriving the optimal instruments, we first obtain 𝛀𝑖 = Var (y𝑖 |x𝑖) and provide a useful

expression for its inverse. As shorthand, let m𝑖 be the 𝑇 × 1 vector of 𝑚𝑖𝑡 (𝜷0), and define M1/2
𝑖

as above. We use √m𝑖 to denote the 𝑇 × 1 vector containing the square roots of the 𝑚𝑖𝑡 (𝜷0). In

stating the next lemma, let

𝜎2
𝑐 (x𝑖) = Var (𝑐𝑖 |x𝑖)

Lemma 1.3.1. Under Assumptions CM, WV.1, and WV.2,

Var (y𝑖 |x𝑖) = 𝛀𝑖 = 𝛼𝜇𝑐 (x𝑖) M1/2
𝑖

RM1/2
𝑖

+ 𝜎2
𝑐 (x𝑖) m𝑖m′

𝑖 (1.3.15)

which is positive definite. Further,

𝛀−1
𝑖 =

1
[𝛼𝜇𝑐 (x𝑖)]

M−1/2
𝑖

{
R−1 −

𝜎2
𝑐 (x𝑖)[

𝛼𝜇𝑐 (x𝑖) + 𝜎2
𝑐 (x𝑖)

√m𝑖
′R−1√m𝑖

] R−1√m𝑖

√
m𝑖

′R−1

}
M−1/2
𝑖

Proof. See Appendix for proof. □

Establishing the formula for𝛀𝑖 uses the law of total variance (for matrices). Positive definiteness

of 𝛀𝑖 follows because the first term in (1.3.15) is positive definite under WV.1 and WV.2 and the

second is always positive semi-definite. As shown in the Appendix, the formula for 𝛀−1
𝑖

applies a

result due to Sherman and Morrison (1950).

Now we can state the main optimal instrument result.
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Theorem 1.3.1. Under Assumptions CM, WV.1, and WV.2, a symmetric generalized inverse of

V𝑜 (x𝑖) is

V𝑜 (x𝑖)− =
1

[𝛼𝜇𝑐 (x𝑖)]
M−1/2
𝑖

[
R−1 − 1

√m𝑖
′R−1√m𝑖

R−1√m𝑖

√
m𝑖

′R−1
]

M−1/2
𝑖

(1.3.16)

Further, the optimal 𝑇 × 𝐾 matrix of instruments, Z∗ (x𝑖), is

Z∗ (x𝑖)′ ≡ ∇𝜷m𝑖 (𝜷0)′ M−1/2
𝑖

[
R−1 − 1

√m𝑖
′R−1√m𝑖

R−1√m𝑖

√
m𝑖

′R−1
]

M−1/2
𝑖

(1.3.17)

where, again, m𝑖 and M𝑖 are evaluated at 𝜷0. We have dropped the minus sign in D𝑜 (x𝑖) as that

does not affect the optimal choice.

Proof. See Appendix for proof. □

The optimal instrument matrix in (1.3.17) has a rather remarkable feature: it does not depend

on the constant 𝛼 nor on the conditional first two moments of the heterogeneity distribution, 𝜇𝑐 (x𝑖)

and 𝜎𝑐 (x𝑖) – even though 𝛀−1
𝑖

depends on all of these quantities and D𝑜 (x𝑖) depends on 𝜇𝑐 (x𝑖).

Under the working variance matrix assumptions, the optimal instruments depend only on 𝜷0 and R.

We have a natural preliminary estimator of 𝜷0, namely, the FEP estimator. Estimating R is much

more challenging, and for that we will introduce additional working assumptions – something we

take up in the next section.

An interesting special case of Theorem 1.3.1 is when the {𝑦𝑖𝑡 : 𝑡 = 1, 2, ..., 𝑇} are conditionally

uncorrelated, an assumption with a long history in linear and nonlinear unobserved effects mod-

els. Traditional treatments of linear unobserved effects models – often called “random effects”

models – include the assumption that idiosyncratic shocks are serially uncorrelated, which implies

that, conditional on (x𝑖, 𝑐𝑖), the {𝑦𝑖𝑡 : 𝑡 = 1, 2, ..., 𝑇} are uncorrelated. In using joint maximum

likelihood to estimate nonlinear models with unobserved heterogeneity – random effects probit

and ordered probit, random effects multinomial logit, random effects Tobit, random effects version

of Poisson and negative binomial models, among others – it is almost always assumed that the

14



{𝑦𝑖𝑡 : 𝑡 = 1, 2, ..., 𝑇} are independent conditional on (x𝑖, 𝑐𝑖); see Sections 13.9, 15.8, 17.8, and 18.7

in Wooldridge (2010).

Corollary 1.3.1. Under Assumptions CM, WV.1, and WV.2 with R = I𝑇 , the FEP estimator is

efficient among estimators that use only Assumption CM for consistency.

Proof. See Appendix for proof. □

Corollary 1.3.1 is a new result that shows the FEP estimator is asymptotically efficient for any

𝛼 > 0 in Assumption WV.1 provided there is no serial correlation. Conditional on x𝑖 and 𝑐𝑖,

any amount of constant underdispersion or overdispersion is allowed. Therefore, Corollary 1.3.1

improves on Verdier (2018), who imposed 𝛼 = 1, the value that holds for the Poisson distribution.

That FEP is asymptotically efficient for any 𝛼 while allowing for any dependence between 𝑐𝑖

and x𝑖 allows us to make an interesting connection with the cross-sectional GLM literature. As

pointed out in Wooldridge (2010, Section 13.11.3), the cross-sectional version of Assumption WV.1

implies that the Poisson QMLE is asymptotically efficient among estimators that use only correct

specification of the conditional mean function for consistency.

1.4 Operationalizing Optimal IV Estimation

From Theorem 1.3.1, in order to obtain a feasible optimal IV estimator under Assumptions CM,

WV.1, and WV.2, we need a preliminary consistent estimator of 𝜷0 and we either need to know R

or have a consistent estimator of it. If we want to impose a specific structure on R – say, an AR(1)

model with a known AR(1) parameter – then (1.3.17) can be used after replacing 𝜷0 with 𝜷𝐹𝐸𝑃

(the clear choice for a first-stage estimator of 𝜷0). Remember, imposing such a restriction when

it is incorrect would not affect consistency of the method of moments estimator; but the estimator

would not be asymptotically efficient. Generally, we want to estimate R without imposing any

restrictions.

In order to ignore the first-stage estimation when obtaining the asymptotic variance of
√
𝑁

(
𝛽𝑂𝑃𝑇 − 𝜷0

)
,

the first-stage estimators of should be
√
𝑁-consistent – a weak requirement because we are assuming
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random sampling and smooth moment and objective functions. See Wooldridge (2010, Chapter

14) for discussion. As mentioned earlier, it is very natural to use the FEP estimator as the initial

estimator of 𝜷0. Estimation of R is more difficult because it is the (working) correlation matrix

conditional on the unobserved heterogeneity, 𝑐𝑖, in addition to x𝑖.

The key to estimating R is the relationship in (1.3.15). To see how (1.3.15) can be used, define

a 𝑇 × 1 vector of errors

v𝑖 ≡ y𝑖 − E (y𝑖 |x𝑖) = y𝑖 − 𝜇𝑐 (x𝑖) m𝑖 (1.4.1)

Then

E
(
v𝑖v′𝑖 |x𝑖

)
= 𝛼𝜇𝑐 (x𝑖) M1/2

𝑖
RM1/2

𝑖
+ 𝜎2

𝑐 (x𝑖) m𝑖m′
𝑖 (1.4.2)

which we can write in matrix error form as

v𝑖v′𝑖 = 𝛼𝜇𝑐 (x𝑖) M1/2
𝑖

RM1/2
𝑖

+ 𝜎2
𝑐 (x𝑖) m𝑖m′

𝑖 + S𝑖

with

E (S𝑖 |x𝑖) = 0 (1.4.3)

Next, define

k𝑖 ≡ E (y𝑖 |x𝑖) = 𝜇𝑐 (x𝑖) m𝑖 (1.4.4)

and let K𝑖 be the diagonalized version of k𝑖. Then

v𝑖v′𝑖 − 𝜎2
𝑐 (x𝑖) m𝑖m′

𝑖 = 𝛼
√︁

K𝑖R
√︁

K𝑖 + S𝑖 (1.4.5)

and so

K−1/2
𝑖

[
v𝑖v′𝑖 − 𝜎2

𝑐 (x𝑖) m𝑖m′
𝑖

]
K−1/2
𝑖

/𝛼 = R + K−1/2
𝑖

S𝑖K−1/2
𝑖

/𝛼 (1.4.6)

By (1.4.3) and iterated expectations, the second term in (1.4.6), K−1/2
𝑖

S𝑖K−1/2
𝑖

/𝛼, has a mean of

zero.

16



Therefore, we have shown

R = E
{
𝛼−1K−1/2

𝑖

[
v𝑖v′𝑖 − 𝜎2

𝑐 (x𝑖) m𝑖m′
𝑖

]
K−1/2
𝑖

}
(1.4.7)

Combining (1.4.7) with (1.3.17) shows that 𝛼 appears as a multiplicative factor in Z∗ (x𝑖), and

therefore does not affect the optimal choice of instruments.

Equation (1.4.7) for R suggests simply computing the sample analog of the matrix inside the

expected value. However, we must deal with the fact that the matrix depends on three unknown

quantities: the parameter 𝛼, the conditional mean function 𝜇𝑐 (·) (which appears in the definition

of v𝑖), and the conditional variance function 𝜎2
𝑐 (·).

There are different ways to approach estimation of 𝜇𝑐 (·). For example, under Assumption CM,

E (𝑛𝑖 |x𝑖, 𝑐𝑖) = 𝑐𝑖

[
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝜷0)
]

(1.4.8)

and so

E

[
𝑛𝑖∑𝑇

𝑟=1𝑚𝑖𝑟 (𝜷0)

����� x𝑖
]
= 𝜇𝑐 (x𝑖) (1.4.9)

Alternatively, we can write

E

[
𝑇−1

𝑇∑︁
𝑡=1

𝑦𝑖𝑡

𝑚𝑖𝑡 (𝜷0)

����� x𝑖
]
= 𝜇𝑐 (x𝑖) (1.4.10)

Because we have available
√
𝑁-consistent estimators of 𝜷0, expressions (1.4.9) and (1.4.10) show

that 𝜇𝑐 (·) is nonparametrically identified. In fact, we can use these expressions to motivate a

nonparametric estimator. Almost certainly the initial estimator of 𝜷0 is 𝜷𝐹𝐸𝑃, in which case we

construct a dependent variable, 𝑛𝑖/
[∑𝑇

𝑟=1 𝑚̂𝑖𝑟
]
, where 𝑚̂𝑖𝑟 = 𝑚𝑖𝑟

(
𝜷𝐹𝐸𝑃

)
, and use it in a cross-

sectional nonparametric regression to obtain 𝜇̂𝑐 (·). For 𝜎2
𝑐 (·), the law of total variance gives the

conditional form given 𝒙𝑖.
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We have

E
(
𝑣2
𝑖𝑡 |x𝑖

)
= Var (𝑦𝑖𝑡 |x𝑖) = E [Var (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) |x𝑖] + Var [E (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) |x𝑖]

= E [𝛼𝑐𝑖𝑚𝑖𝑡 (𝜷0) |x𝑖] + Var [𝑐𝑖𝑚𝑖𝑡 (𝜷0) |x𝑖]

= 𝛼𝜇𝑐 (x𝑖) 𝑚𝑖𝑡 (𝜷0) + 𝜎2
𝑐 (x𝑖) [𝑚𝑖𝑡 (𝜷0)]2 (1.4.11)

where we impose the working variance Assumption WV.1. Given that 𝜇𝑐 (x𝑖) is identified from the

previous argument, this expression identifies 𝛼 and 𝜎2
𝑐 (·). In fact, after obtaining (semiparametric)

residuals 𝑣̂𝑖𝑡 = 𝑦𝑖𝑡 − 𝜇̂𝑐 (x𝑖) 𝑚𝑖𝑡
(
𝜷𝐹𝐸𝑃

)
, we can use the squared residuals, 𝑣̂2

𝑖𝑡
, as the dependent

variable in nonparametric estimation of 𝜎2
𝑐 (·). Therefore, a semiparametric approach to estimating

the optimal IVs is available under Assumptions CM, WV.1, and WV.2.

For practical reasons, our suggestion is to avoid estimating either 𝜇𝑐 (·) and 𝜎2 (·) nonpara-

metrically. Remember, we only need to estimate these conditional moments to obtain IVs more

efficient than those used by the FEP estimator. The dimension of x𝑖 = (x𝑖1, x𝑖2, ..., x𝑖𝑇 ) is often

large. We can reduce the dimension by using a nonparametric Mundlak (1978) device, which

would have 𝜇𝑐 (·) and 𝜎2 (·) depending only on time averages x̄𝑖 ≡ 𝑇−1 ∑𝑇
𝑟=1 x𝑖𝑟 . Nevertheless,

estimating a conditional variance along with a conditional mean when 𝐾 is even moderately large

is still challenging, both theoretically and practically. It would involve choosing at least two tuning

parameters. From a robustness perspective, we cannot improve over the FEP estimator because it is

consistent under Assumption CM. High-dimensional nonparametric estimation seems unnecessary

to improve over the usual FEP estimator in the presence of serial correlation and under- or overdis-

persion, especially if one factors in finite-sample considerations. Instead, we draw on the literature

on models for nonnegative responses to suggest working assumptions for the conditional mean and

variance of the heterogeneity – as summarized, for example, in Wooldridge (2010, Section 18.7.3).

For concreteness, and because it is by far the leading case, we now assume that 𝑚𝑖𝑡 (𝜷0) =

exp (x𝑖𝑡𝜷0). Other forms of 𝑚𝑖𝑡 (𝜷0) are easily handled, but the formulas and connections with

other literatures is not as straightforward. In fact, we do not even need a generalized linear model

form in our current setting, though such a mean function tends to lead to easier interpretation.

18



Assumption WH.1: For known 1 ×𝑄 functions h (x𝑖), a scalar 𝜂, and 𝝀 a 𝑄 × 1 vector,

𝜇𝑐 (x𝑖) ≡ E (𝑐𝑖 |x𝑖) = exp [𝜂 + h (x𝑖) 𝝀] ■ (1.4.12)

The leading case is to use the (nonredundant) time averages of {x𝑖𝑡 : 𝑡 = 1, ..., 𝑇}, which is an

extension of the Mundlak (1978) device to the nonlinear case, so that h (x𝑖) = x̄𝑖. But we can also use

Chamberlain’s (1980) less restrictive version, or include other functions of {x𝑖𝑡 : 𝑡 = 1, ..., 𝑇}, such

as unit-specific trends or even unit-specific second moments. It seems sensible to use something

simple, such as the Mundlak device, as we are only using WH.1 to generate instruments.

When we combine Assumption WH.1 with the exponential conditional mean for E (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖),

we obtain, by iterated expectations,

E (𝑦𝑖𝑡 |x𝑖) = exp [𝜂 + h (x𝑖) 𝝀] exp (x𝑖𝑡𝜷0) = exp [x𝑖𝑡𝜷0 + 𝜂 + h (x𝑖) 𝝀] (1.4.13)

The parameters in this conditional mean function can be consistently estimated using a variety

of methods. A simple approach is to exploit equation (1.4.9) or (1.4.10) using exponential mean

functions. After obtaining the FEP estimator 𝜷𝐹𝐸𝑃, estimate 𝜂 and 𝝀 by a cross sectional Poisson

regression with mean function exp [𝜂 + h (x𝑖) 𝝀] and one of the dependent variables

𝑛𝑖∑𝑇
𝑟=1 exp

(
x𝑖𝑟𝜷𝐹𝐸𝑃

) or 𝑇−1
𝑇∑︁
𝑡=1

𝑦𝑖𝑡

exp
(
x𝑖𝑡𝜷𝐹𝐸𝑃

) (1.4.14)

Even if the original 𝑦𝑖𝑡 are count variables – and there is no presumption that they are – neither

of the regressands in (1.4.14) would be a count variable. Of course, this is of no consequence

because of the robustness of the Poisson QMLE for estimating the parameters of the conditional

mean regardless of the nature of the dependent variable (provided it is nonnegative).

Alternatively, 𝜷0, 𝜂, and 𝝀 can be estimated jointly using the pooled Poisson QMLE. The pooled

Poisson QMLE is completely robust to distributional misspecification and serial correlation. Of

course, to preserve consistency of the resulting method of moments estimator we do not need

Assumption WH.1 to hold; we are using it to estimate the optimal instruments derived earlier.
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The second working assumption on the heterogeneity distribution imposes a restriction on the

variance-mean relationship.

Assumption WH.2: For 𝛿 > 0,

𝜎2
𝑐 (x𝑖) ≡ Var (𝑐𝑖 |x𝑖) = 𝛿 [𝜇𝑐 (x𝑖)]2 = 𝛿 {exp [𝜂 + h (x𝑖) 𝝀]}2 ■ (1.4.15)

Assumption WH.2 is very common in settings with nonnegative, continuous heterogeneity

(including so-called random effects Poisson and negative binomial models). The condition that the

variance is proportional to the square of the mean holds for the natural parameterizations of the

gamma and lognormal distributions, and holds whenever

𝑐𝑖 = ℎ𝑖𝜇𝑐 (x𝑖) (1.4.16)

for ℎ𝑖 ≥ 0 and independent of x𝑖, without any further restrictions on the distribution of ℎ𝑖. Like

Assumption WH.1, Assumption WH.2 is not needed for consistent estimation using the method of

moments estimator but only to estimate the optimal instruments under the working Assumptions

WV.1 and WV.2.

Using Assumptions CM, WV.1, WH.1, and WH.2 we can obtain estimating equations for 𝛼 and

𝛿. First, note that

E
(
𝑣2
𝑖𝑡 |x𝑖

)
= 𝛼𝑘𝑖𝑡 + 𝛿𝑘2

𝑖𝑡 (1.4.17)

where

𝑘𝑖𝑡 ≡ E (𝑦𝑖𝑡 |x𝑖) = exp [x𝑖𝑡𝜷0 + 𝜂 + h (x𝑖) 𝝀]

An immediate implication of equation (1.4.17) is

E

[ (
𝑣𝑖𝑡√
𝑘𝑖𝑡

)2
����� x𝑖

]
= 𝛼 + 𝛿𝑘𝑖𝑡 (1.4.18)
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which is the basis for estimating variance parameters in common cross-sectional models where

heterogeneity is assumed independent of the covariates. A simple way to operationalize the

conditional mean is

𝑣̂𝑖𝑡 = 𝑦𝑖𝑡 − 𝑘̂𝑖𝑡 = 𝑦𝑖𝑡 − exp
[
x𝑖𝑡𝜷𝐹𝐸𝑃 + 𝜂 + h (x𝑖) 𝝀

]
(1.4.19)

where 𝜂 and 𝝀 are from one of the Poisson regressions described in equation (1.4.13). Then 𝛼̂ and

𝛿 are, respectively, the intercept and slope in the pooled simple regression

𝑣̂2
𝑖𝑡

𝑘̂𝑖𝑡
on 1, 𝑘̂𝑖𝑡 , 𝑡 = 1, ..., 𝑇 ; 𝑖 = 1, ..., 𝑁 (1.4.20)

It is clear from equation (1.3.17) that 𝛼̂ does not appear in the optimal instruments, but we need

to estimate 𝛼 in order to obtain 𝛿. In order to conclude the working assumptions are a reasonable

approximation to reality, both 𝛼̂ and 𝛿 should be nonnegative. If one of them is negative (most likely

𝛿) then 𝛿 should be set to zero. Because 𝛼̂ drops out of the optimal IVs, we need not estimate it

when we set 𝛿 = 0. Nevertheless, one may be curious about the estimated amount of overdispersion

when 𝛿 is set to zero. With 𝛿 = 0, the estimate of 𝛼 is simply

𝛼̂ = (𝑁𝑇)−1
𝑁∑︁
𝑖=1

𝑇∑︁
𝑡=1

(
𝑣̂2
𝑖𝑡/𝑘̂𝑖𝑡

)
(1.4.21)

and this is guaranteed to be nonnegative. However, as mentioned above, 𝛼̂ does not affect estimation

of the optimal IVs when 𝛿 = 0.

When we add Assumptions WH.1 and WH.2 to the previous assumptions, we obtain a simple

form for R:

R = E
{
K−1/2
𝑖

[
v𝑖v′𝑖 − 𝛿k𝑖k′

𝑖

]
K−1/2
𝑖

/𝛼
}

which leads immediately to the method-of-moments/plug-in estimator

R̂ =

(
1
𝛼̂

)
𝑁−1

𝑁∑︁
𝑖=1

K̂−1/2
𝑖

(
v̂𝑖v̂′𝑖 − 𝛿k̂𝑖k̂′

𝑖

)
K̂−1/2
𝑖

(1.4.22)
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By a standard application of the uniform weak law of large numbers [Wooldridge (2010, Lemma

12.1)], R̂
𝑝
→ R. For each 𝑡 ≠ 𝑠, the correlations are estimated as

𝜌̂𝑠𝑡 =

(
1
𝛼̂

)
𝑁−1

𝑁∑︁
𝑖=1

(
𝑣̂𝑖𝑠 𝑣̂𝑖𝑡 − 𝛿𝑘̂𝑖𝑠 𝑘̂𝑖𝑡

)
√︁
𝑘̂𝑖𝑠 𝑘̂𝑖𝑡

(1.4.23)

From the definition of 𝛼̂ and 𝛿 obtained from (1.4.18), it is easily seen that 𝜌̂𝑡𝑡 = 1 for 𝑡 = 1, ..., 𝑇 ,

and so this estimator imposes the logical requirement that a correlation matrix must have unity

down its diagonal.

If we set 𝛿 = 0, R̂ reduces to

R̂ =

(
1
𝛼̂

)
𝑁−1

𝑁∑︁
𝑖=1

K̂−1/2
𝑖

(
v̂𝑖v̂′𝑖

)
K̂−1/2
𝑖

(1.4.24)

With this choice of R̂, we can make a direct connection with the GEE literature by ignoring the

presence of 𝑐𝑖 and working off the first two conditional moments of y𝑖 given x𝑖 – see, for example,

Liang and Zeger (1986) and Wooldridge (2010, Sections 13.11.4 and 18.7.3). Namely, under the

full set of working assumptions with 𝛿 = 0,

E (𝑦𝑖𝑡 |x𝑖) = exp [x𝑖𝑡𝜷0 + 𝜂 + h (x𝑖) 𝝀] = 𝑘𝑖𝑡 , 𝑡 = 1, ..., 𝑇 (1.4.25)

Var (𝑦𝑖𝑡 |x𝑖) = 𝛼E (𝑦𝑖𝑡 |x𝑖) , 𝑡 = 1, ..., 𝑇 (1.4.26)

Corr (y𝑖 |x𝑖) = 𝛼K1/2
𝑖

RK1/2
𝑖

(1.4.27)

This collection of moment assumptions is precisely what is used in GEE applications of Poisson

regression (whether or not 𝑦𝑖𝑡 is a count variable), with the addition of the vector of functions

h (x𝑖). We emphasize that these are all working assumptions in the current context. Not even

the conditional mean function in (1.4.25) is assumed to hold for consistency because (1.4.25) is

obtained from Assumptions CM and WH.1, whereas we are only require Assumption CM for

consistency. We impose Assumptions WH.1 and WH.2 in order to estimate R and then to estimate

𝛀𝑖. Provided it leads to a positive definite estimate, we prefer (1.4.20) because it is the correct

expression under all of the working assumptions.
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Under Assumption CM and the full set of working assumptions, we can estimate the optimal

IVs, for each 𝑖, as

∇𝜷m̂′
𝑖M̂

−1/2
𝑖

[
R̂−1 − 1

√
m̂𝑖

′R̂−1
√

m̂𝑖

R̂−1
√︁

m̂𝑖

√︁
m̂𝑖

′
R̂−1

]
M̂−1/2
𝑖

(1.4.28)

where “ˆ” means the quantity is evaluated at a first-round estimator, most likely 𝜷𝐹𝐸𝑃, and R̂

is from (1.4.22) or, if necessary, (1.4.24). [In either case, 𝛼̂ drops out of (1.4.28).] However,

without the full set of working assumptions, this choice of IVs is not guaranteed to improve over

the FEP estimator because of its dependence on R̂. A somewhat subtle point is that (1.4.28) is not

even optimal under Assumptions CM, WV.1, and WV.2 because consistency of R̂ for R generally

requires correct specification of the heterogeneity mean and variance – that is, Assumptions WH.1

and WH.2. As mentioned previously, if we did not have to estimate R, we could use (1.4.28) with R̂

replaced by R, and then we would have just identification as with the FEP estimator. Naturally, we

want to use the data to provide an estimator of R better than just guessing. Incidentally, expression

(1.4.28) shows that the estimator 𝛼̂ has no direct effect on the optimal IVs because it factors out as

a constant.

In order to ensure improvements over FEP, our recommendation is to stack the FEP and the

new “optimal” IVs to form an expanded IV matrix and use GMM. The resulting estimator, which

we simply call the “GMM estimator,” is guaranteed to be asymptotically at least as efficient as the

FEP and GFEP estimators; usually it is strictly more efficient than both. In other words, the 𝑇 × 2𝐾

matrix of IVs is Ẑ𝑖, written in transposed form as

Ẑ′
𝑖 =

©­­«
∇𝜷m̂′

𝑖
M̂−1/2
𝑖

[
I𝑇 −

√︁
p̂𝑖

√︁
p̂𝑖

′]
M̂−1/2
𝑖

∇𝜷m̂′
𝑖
M̂−1/2
𝑖

[
R̂−1 − 1√

m̂𝑖
′R̂−1√m̂𝑖

R̂−1√m̂𝑖

√
m̂𝑖

′R̂−1
]

M̂−1/2
𝑖

ª®®¬ (1.4.29)

Given this choice of Ẑ𝑖, the mechanics of GMM are straightforward. After obtaining 𝜷𝐹𝐸𝑃, obtain

the 𝑇 × 1 residual vectors

ũ𝑖 = y𝑖 − p
(
x𝑖, 𝜷𝐹𝐸𝑃

)
𝑛𝑖 (1.4.30)
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Then, given the estimators of 𝜂, 𝝀, 𝛼, 𝛿, and R described above, obtain the 2𝐾 × 2𝐾 matrix,

𝚿̂ = 𝑁−1
𝑁∑︁
𝑖=1

Ẑ′
𝑖ũ𝑖ũ

′
𝑖Ẑ𝑖 (1.4.31)

Assuming 𝚿̂ is positive definite (which generally holds with probability approaching one), the

optimal GMM estimator, 𝛽𝐺𝑀𝑀 , solves

min
𝜷∈R𝐾

(
𝑁∑︁
𝑖=1

u𝑖 (𝜷)′ Ẑ𝑖

)
𝚿̂−1

(
𝑁∑︁
𝑖=1

Ẑ′
𝑖u𝑖 (𝜷)

)
(1.4.32)

Because we have chosen very smooth mean, variance, and correlation functions, the consistency

and
√
𝑁-asymptotic normality are standard; see, for example, Wooldridge (2010, Chapter 14).

Remember, 𝚿̂−1 is an (estimated) optimal weighting matrix given the choice of instruments; the

standard GMM inference does not require that Ẑ𝑖 is optimal.

Regardless of the size of 𝑇 , the GMM estimator generates 𝐾 overidentification restrictions that

can be used to test Assumption CM.

1.5 A Small Simulation Study

We now present the results of a small Monte Carlo simulation to demonstrate the efficacy of

the improved GMM estimator. The conditional mean model, which has an exponential form,

includes three time-varying explanatory variables and multiplicative heterogeneity. We consider

two conditional distributions for the outcome variable, 𝑦𝑖𝑡 . In the first case, 𝑦𝑖𝑡 is a count variable

generated as

𝑦𝑖𝑡 |x𝑖, 𝑐𝑖, e𝑖 ∼ Poisson [𝑐𝑖 exp (x𝑖𝑡𝜷 + 𝑒𝑖𝑡)] (1.5.1)

where e𝑖 = (𝑒𝑖1, 𝑒𝑖2, ..., 𝑒𝑖𝑇 )′ is distributed as multivariate normal with unit variances. In order

to generate serial dependence in {𝑦𝑖𝑡 : 𝑡 = 1, ..., 𝑇} conditional on (x𝑖, 𝑐𝑖), {𝑒𝑖𝑡 : 𝑡 = 1, 2, ..., 𝑇}

follows an AR(1) process with first-order correlation 𝜙 ∈ {0, 0.25, 0.75}. This autoregressive

process generates no conditional dependence when 𝜙 = 0 and fairly strong time series dependence

when 𝜙 = 0.75. Because of the inclusion of 𝑒𝑖𝑡 , the conditional distribution D (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) is
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not Poisson; in fact, it exhibits overdispersion because exp (𝑒𝑖𝑡) is integrated out in obtaining

D (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖). However, consistency of the estimators requires only that that E (𝑦𝑖𝑡 |x𝑖, 𝑐𝑖) has the

exponential form with multiplicative 𝑐𝑖.

The strictly exogenous explanatory variables, x𝑖𝑡 , are generated as a trivariate, stationary vector

autoregression, where the stochastic term is an independent multivariate standard normal distribu-

tion with autocorrelation parameter 0.125. The processes x𝑖 =
(
x𝑖1, ..., x𝑖𝑇

)
and e𝑖 are independent.

The vector 𝜷 is set to 𝜷′ = (0.15, 0.25, 0.35) (where we drop the 𝑜 subscript to make the tables

easier to read).

To generate correlation between 𝑐𝑖 and x𝑖, we first use an exponential version of the Mundlak

(1978) device and an exponential distribution:

𝑐𝑖 |x𝑖 ∼ Exponential [exp (𝜂 + x̄𝑖𝝀)] (1.5.2)

Under this specification, the working assumptions WH.1 and WH.2 are both satisfied with h (x𝑖) =

x̄𝑖 and, in the case of WH.2, 𝛿 = 1.

We estimate the parameters in the heterogeneity moments using a two-step pooled Poisson

QMLE with the FEP estimator as the first-stage estimator of 𝜷. The estimates 𝛼̂ and 𝛿 are estimated

via the pooled OLS regression in equation (1.4.20) and R̂ is estimated as in (1.4.22). When R̂ is

not positive definite for a particular draw, we set 𝛿 = 0 and estimate R̂ as in (1.4.24) (in which case

the value of 𝛼̂ plays no role in the estimation of 𝜷). This situation occurs between 60% and 80%

of the simulations.

We use 𝑁 = 300, 𝑇 ∈ {4, 8}, and 1, 000 replications in the simulations. The findings are

reported in Table 1.1.

Some general patterns emerge from Table 1.1. First, the FEP estimator shows very little bias,

and its bias is almost always smaller than the GFEP and GMM estimators. The GFEP estimator

generally shows the most bias – as high as nine percent in some cases. Still, we only have 𝑁 = 300,

which is not especially large. Interestingly, the bias in the GMM estimator – which combines both

sets of moment conditions – is well below that of the GFEP estimator. The bias in both the GFEP
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Table 1.1: Conditional Poisson distribution

Bias SD RMSE
FEP GFEP GMM FEP GFEP GMM FEP GFEP GMM

𝝓 = 0 T = 4 0.002 -0.004 0.000 0.082 0.075 0.072 0.082 0.075 0.072
0.001 -0.011 -0.003 0.083 0.078 0.072 0.083 0.079 0.072

-0.001 -0.016 -0.005 0.083 0.079 0.075 0.083 0.081 0.075
T = 8 0.011 -0.010 -0.005 0.052 0.044 0.041 0.052 0.045 0.041

0.000 -0.020 -0.011 0.053 0.044 0.042 0.053 0.049 0.044
0.001 -0.027 -0.014 0.051 0.045 0.042 0.052 0.052 0.045

𝝓 = 0.25 T = 4 -0.007 -0.016 0.008 0.081 0.074 0.072 0.081 0.076 0.073
-0.003 -0.014 0.004 0.082 0.075 0.070 0.079 0.077 0.070
0.002 -0.015 0.003 0.079 0.075 0.070 0.079 0.077 0.070

T = 8 -0.001 -0.014 -0.007 0.051 0.045 0.042 0.051 0.047 0.043
0.000 -0.021 -0.010 0.048 0.044 0.040 0.048 0.049 0.042

-0.001 -0.029 -0.015 0.051 0.046 0.043 0.051 0.054 0.046
𝝓 = 0.75 T = 4 -0.001 -0.007 -0.003 0.057 0.054 0.051 0.057 0.055 0.051

0.005 -0.008 0.001 0.060 0.058 0.052 0.061 0.059 0.052
0.001 -0.014 -0.002 0.060 0.059 0.053 0.060 0.060 0.053

T = 8 0.001 -0.012 -0.004 0.043 0.035 0.034 0.043 0.037 0.034
-0.001 -0.023 -0.011 0.044 0.036 0.034 0.044 0.043 0.036
-0.002 -0.032 -0.015 0.047 0.038 0.036 0.047 0.050 0.039

and GMM estimators appears to increase with 𝑇 . Overall, the bias in the GMM estimator seems

acceptable, especially given the small 𝑁 .

The GMM estimator always has the smallest sampling standard deviation, sometimes being

about 80% of the FEP standard error. The SD of the GFEP estimator falls in between that of the

FEP and GMM estimators. In a few cases the FEP estimator has smaller root mean squared error

(RMSE) than the GFEP estimator. The asymptotic theory of GMM estimation implies that the

GMM estimator is asymptotically more efficient than FEP or GFEP because, in the setting of the

simulation, the entire set of working assumptions does not hold, and so GFEP does not use the

optimal IVs. The ranking of the estimators in terms of the root mean squared error favors the GMM

estimator in every case.

To see how the estimators perform when 𝑦𝑖𝑡 is a continuous outcome, we generated 𝑦𝑖𝑡 as

𝑦𝑖𝑡 |x𝑖, 𝑐𝑖, e𝑖 ∼ Gamma [exp (x𝑖𝑡𝜷 + 𝑒𝑖𝑡) , 𝑐𝑖] (1.5.3)
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where the gamma distribution is parameterized so that E (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖, e𝑖) = 𝑐𝑖 exp (x𝑖𝑡𝜷 + 𝑒𝑖𝑡), as

before. The conditional variance is Var (𝑦𝑖𝑡 |x𝑖𝑡 , 𝑐𝑖, e𝑖) = 𝑐2
𝑖

exp (x𝑖𝑡𝜷 + 𝑒𝑖𝑡). We use the same

process in (1.5.2) to generate 𝑐𝑖. The simulation findings are reported in Table 1.2.

Table 1.2: Conditional Gamma distribution

Bias SD RMSE
FEP GFEP GMM FEP GFEP GMM FEP GFEP GMM

𝝓 = 0 T = 4 0.000 -0.006 -0.002 0.090 0.087 0.081 0.090 0.087 0.081
0.003 -0.008 0.003 0.089 0.085 0.080 0.089 0.085 0.080
0.001 -0.014 0.000 0.090 0.088 0.083 0.090 0.089 0.083

T = 8 0.000 -0.012 -0.006 0.056 0.049 0.048 0.056 0.051 0.048
-0.001 -0.019 -0.009 0.052 0.050 0.047 0.052 0.054 0.048
-0.001 -0.027 -0.014 0.054 0.051 0.048 0.054 0.058 0.050

𝝓 = 0.25 T = 4 0.002 -0.007 0.002 0.086 0.082 0.078 0.086 0.082 0.078
-0.003 -0.016 -0.004 0.085 0.082 0.077 0.085 0.084 0.078
0.002 -0.014 -0.001 0.086 0.084 0.081 0.086 0.085 0.081

T = 8 0.000 -0.013 -0.006 0.057 0.050 0.048 0.057 0.052 0.048
0.000 -0.019 -0.009 0.055 0.050 0.048 0.055 0.053 0.049

-0.001 -0.033 -0.017 0.058 0.053 0.051 0.058 0.062 0.053
𝝓 = 0.75 T = 4 0.001 -0.006 0.000 0.069 0.067 0.063 0.069 0.067 0.063

0.000 -0.012 -0.001 0.074 0.072 0.067 0.074 0.073 0.067
0.000 -0.016 -0.001 0.070 0.072 0.064 0.070 0.074 0.064

T = 8 0.001 -0.014 -0.005 0.049 0.041 0.040 0.049 0.044 0.040
0.000 -0.023 -0.008 0.048 0.042 0.039 0.048 0.048 0.040

-0.001 -0.034 -0.013 0.050 0.046 0.043 0.050 0.057 0.045

The general pattern found in Table 1.1 continues to hold in Table 1.2. The FEP estimator

generally has the lowest bias, although the GMM estimator also does well with bias. The GFEP

estimator, which uses only the “optimal” IVs, shows more bias – again, sometimes on the order of

more than nine percent. In terms of precision and RMSE, the GMM estimator outperforms FEP

and GFEP in all scenarios, although the gains are modest in some cases.

We tried several additional scenarios, including cases where Assumption WH.2 is violated –

by drawing 𝑐𝑖 from a Poisson distribution – and cases where, conditional on (x𝑖, 𝑐𝑖) – 𝑦𝑖𝑡 is an

underdispersed gamma random variable. In the former case, we found only minor differences

among the estimators, although sometimes the FEP estimator outperformed the other two in terms

of RMSE. In the latter case, where we did not allow serial correlation, the estimators perform very
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similarly. As a final set of simulations, we misspecified the conditional mean E (𝑐𝑖 |x𝑖) in (1.5.2)

by letting the mean depend on the average of the first and last time periods rather than x̄𝑖. In other

words, Assumption WH.1 is violated. The GMM estimator uniformly performed the best based on

RMSE and exhibited biases on the order of those reported in Tables 1.1 and 1.2. These simulations

are available upon request from the authors.

1.6 Summary and Conclusion

We have characterized the optimal instruments in a multiplicative panel model under a general set

of working assumptions. The variance-mean relationship, conditional on unobserved heterogeneity

as well as covariates, is allowed to be any positive number. The conditional correlation matrix

is assumed to be constant but is otherwise unrestricted. Under these assumptions, the optimal

IVs depends only on the unknown correlation matrix, R (and the value of the conditional mean

parameters, 𝜷0). In the special case that R = I𝑇 , we show that the FEP estimator achieves the

asymptotic efficiency bound for any amount of overdispersion or underdispersion, thereby relaxing

the assumptions under which the FEP estimator is known to be asymptotically efficient. When R

is not the identity matrix, it is possible to improve on the FEP estimator.

To operationalize the optimal IVs in order to exploit serial correlation, we add working first

and second moment assumptions on the conditional heterogeneity distribution. These assumption

are common in literatures that allows nonnegative heterogeneity in cross-sectional and panel data

models. We show that estimating the optimal IVs is straightforward, and suggest a GMM approach

that is guaranteed to improve asymptotic efficiency whether or not serial correlation is present.

Our simulations show that the GMM estimator that combines the FEP moment conditions and the

new “optimal” moment conditions has very good bias properties and provides nontrivial efficiency

gains – even when the cross-sectional sample size is only 𝑁 = 300.

Our results and new estimator are appealing for cases where 𝑁 is substantially larger than

𝑇 , as we have used the standard microeconometric setting where 𝑇 is fixed in the asymptotic

analysis. Naturally, this is not the only possibility. For example, Fernández-Val and Weidner
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(2018) and Chen, Fernández-Val, and Weidner (2020) have proposed quasi-MLEs that allow more

heterogeneity. However, consistency requires 𝑇 → ∞ along with 𝑁 → ∞, and necessarily restricts

the amount of time series heterogeneity and dependence.
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CHAPTER 2

INFORMATION EQUIVALENCE AMONG TRANSFORMATIONS OF
SEMIPARAMETRIC NONLINEAR PANEL DATA MODELS

2.1 Introduction

In the standard linear panel data model with additive unobserved heterogeneity, it is well known

that numerous transformations can be used to eliminate the heterogeneity prior to estimation.

The most common methods are the within and first-differencing transformations1. Similarly,

when the heterogeneity appears as a multiplicative term in the conditional mean like in certain

Generalized Linear Model settings, modified within and differencing transformations can control for

the heterogeneity and provide moment conditions for estimation. There exist other transformations

which control for heterogeneity but are clearly absurd. For example, multiplying all the data by zero

eliminates the heterogeneity along with all information for estimation. For a less trivial example,

suppose the population model is linear with a single additive effect and the first-differenced errors

are homoskedastic and uncorrelated. Then second-differencing is still consistent but less efficient

than first-differencing. These examples raise the question of how to evaluate methods for eliminating

heterogeneity while preserving information for estimation.

This paper considers conditional mean models with unobserved heterogeneity. The general

framework derived within encompasses a large class of both linear and strictly nonlinear models,

examples of which are given in Section 2.2.1. The models are referred to as “semiparametric” in

the sense that nothing is assumed about the relationship between the heterogeneity and observables

other than regularity conditions needed for asymptotic analysis. In place of assumptions on

the conditional distribution of the heterogeneity, these models often require a transformation to

eliminate or control for the term. I provide a unified framework for comparing such transformations

in terms of the information they preserve. Those that yield the same moment conditions, given
1For a comprehensive review of linear panel models with additive heterogeneity, see Chapters 10 and 11 of

Wooldridge (2010).
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certain regularity assumptions, will provide the same
√
𝑁-asymptotic efficiency bound if they have

equal rank.

As mentioned above, the within and first-differencing transformations are the most common

in the linear panel case for eliminating additive heterogeneity. When the covariates are strictly

exogenous with respect to the idiosyncratic errors, these transformations provide conditional mo-

ment restrictions which can be exploited for estimation of the population parameters. For a given

conditional variance matrix, Arellano and Bover (1995) suggest that Generalized Least Squares

(GLS) on the demeaned equations is equivalent to the efficient 3SLS estimator. This claim was

later proven in Im et al. (1999) along with a proof that the GLS estimators on the demeaned and

first-differenced estimators are equivalent. Their result shows that two commonly used methods of

estimation preserve the same information in the linear case. However, they limit their investigation

to a small number of estimators and only allow for a single time-invariant individual effect. My

approach can derive the same result as Im et al. (1999) as well as general factor-augmented panels

with an arbitrary number of individual effects with time-varying coefficients.

For nonlinear models with a multiplicative heterogeneity term, one approach to estimation is

the fixed effects Poisson (FEP) estimator. Hausman et al. (1984) derive the FEP as the maximum

likelihood estimator of a multinomial distribution2. Wooldridge (1999) shows that the FEP is in

fact consistent under a much weaker strict exogeneity assumption. One proof of this result shows

that the score of the likelihood function has a mean of zero at the true parameter value due the

likelihood’s implicit transformation of the data. This transformation subtracts the weighted time

averages from each outcome and so I refer to it as the generalized within transformation. Another

approach is the generalized next-differencing transformation first studied by Chamberlain (1992)

and Wooldridge (1997), which subtracts from a time period the next period outcome, weighted by

the quotient of the mean functions. While generalized next-differencing was originally proposed

for a sequential exogeneity setting, I study it here in the context of strict exogeneity. I also consider

the residual maker matrix from regressing on the outcome variable’s mean function. To the best of
2Similar to the linear fixed effects estimator, the FEP estimator is a true fixed effects procedure as it can be derived

by estimating via pooled Poisson regression and treating the multiplicative terms as parameters to estimate.
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my knowledge, this paper is the first to show information equivalence of these transformations.

In Section 2.2, I define information equivalence in a first order asymptotic sense. The efficiency

bounds studied will apply to “small-𝑇” settings where asymptotics are derived with 𝑇 fixed as

𝑁 → ∞. I then derive sufficient conditions under which transformations of the data which yield

moment restrictions for estimation preserve the same information. This result is general and

can apply to a number of finite and asymptotic settings. In Section 2.3, I apply the main result

from Section 2.2 to a nonlinear multiplicative model, a linear model with an unknown factor

structure, and a linear random trend model. Section 2.4 discusses further practical suggestions

like implementation and extensions. Section 2.5 provides concluding remarks along with potential

directions for future research.

2.2 Information equivalence

As mentioned in the Introduction, the results of this section apply to population moments. In what

follows, (𝒚𝑖, 𝒙𝑖, 𝒄𝑖) is assumed to be a random draw from an infinite population. The matrix (𝒚𝑖, 𝒙𝑖)

is 𝑇 × (1 + 𝐾) and observable whereas the random 𝑝 × 1 vector 𝒄𝑖 is not. All statements involving

expressions of random variables hold almost surely. For example, conditional means and rank

conditions for random matrices hold with probability one. Finally, I assume regularity conditions

suitable for asymptotic analysis such as bounds on the higher-order moments of the data.

2.2.1 Model

The following conditional mean assumption specifies the empirical setting:

Assumption CM: For 𝑡 = 1, ..., 𝑇 ,

𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝒄𝑖) = 𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷0, 𝒄𝑖) (2.2.1)

where 𝑚𝑡 (𝒙, ., 𝒄) : R𝐾 → R is a known Borel twice-differentiable function for every 𝒙 ∈ X𝑡 and

𝒄 ∈ C, where X𝑡 and C are the respective supports of 𝒙𝑖 𝑡 and 𝒄𝑖. ■
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Equation (2.2.1) specifies a nonlinear semiparametric conditional mean function with strictly

exogenous covariates where 𝜷0 is a 𝐾×1 vector of parameters3. The mean function itself is allowed

to vary over time periods. The heterogeneity is also allowed to enter the mean function in any

arbitrary way. In the linear panel case, the simplest and most common specification is an individual-

specific intercept. In nonlinear cases, the heterogeneity is often included as a multiplicative term.

I do not place any identifying assumptions directly on 𝑚𝑡 . These implicit identification con-

ditions will come later in the form of rank assumptions. Essentially, the results contained in this

paper apply to nontrivial empirical situations. For example, consider a model 𝑦𝑖1 = 𝑐𝑖 + 𝛽𝑦𝑖2 where

𝑐𝑖 is an individual-specific intercept and 𝑦𝑖2 is an indicator variable associated with a treatment or

policy intervention. If 𝑐𝑖 has a mass point at zero, it must be the case that there is variation, so that

𝑦𝑖1 ≠ 0 for all 𝑖.

The following examples illustrate some common empirical settings for which Assumption CM

applies:

Example 1 (Linear model with additive effects): Consider the following specification:

𝑦𝑖 𝑡 = 𝑐𝑖 + 𝒙𝑖 𝑡𝜷0 + 𝑢𝑖 𝑡

This model is common among applied microeconometric researchers. Im et al. (1999) shows that

the 3SLS estimator of 𝜷0 using the differenced covariates as instruments is algebraically equivalent

to GLS estimators based off of both the within and differenced transformed residuals4. This example

will be discussed in Sections 2.2.2 and 2.3.1.

We can include multiple individual effects loaded onto macro shocks in the form

𝑦𝑖 𝑡 = 𝒄′𝑖 𝒇𝑡 + 𝒙𝑖 𝑡𝜷0 + 𝑢𝑖 𝑡

where 𝒄′
𝑖
𝒇𝑡 =

∑𝑝

𝑟=1 𝑐𝑖𝑟 𝑓𝑟 𝑡 and 𝒇𝑡 is observable. An example of the general setting is the random

trend linear model.

𝑦𝑖 𝑡 = 𝑐𝑖 + 𝑎𝑖𝑡 + 𝒙𝑖 𝑡𝜷0 + 𝑢𝑖 𝑡
3In this context, nonlinear does not mean ’strictly nonlinear’, but can also include linear models.
4The setting studied by Im et al. is motivated by considering covariates which satisfy 𝐸 (𝒙𝑖 ⊗ 𝒖𝑖) = 0. The

equivalence result provided in their paper, however, is purely algebraic in nature and holds regardless of the covariance
between the covariates and idiosyncratic errors.
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The standard approach to estimation is to first-difference the outcomes to yield another linear model

with only an additive individual effect. If strict exogeneity is assumed with respect to 𝒙𝑖, we have

the same empirical setting as above, and so the same analysis will apply. I discuss the general

model in Section 2.3.2. ■

Example 2 (Exponential mean): Consider the following mean function:

𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝑐𝑖) = exp(𝑐𝑖 + 𝒙𝑖 𝑡𝜷0)

The exponential mean function is most popularly employed to study count data. The most common

estimator of the parameters in this model is the FEP estimator. Wooldridge (1999) shows that

Assumption CM is sufficient for identification using the following transformation:

𝑦𝑖 𝑡 −
(
𝑇∑︁
𝑠=1

𝑦𝑖 𝑠

) (
exp(𝒙𝑖 𝑡𝜷0)∑𝑇
𝑠=1 exp(𝒙𝑖 𝑠𝜷0)

)
This transformation will be referred to as the generalized within transformation and provides the

basis of the FEP estimator since it shows up in the score function of the Poisson QMLE and has an

expectation of zero conditional on 𝒙𝑖. Another possible transformation is

𝑦𝑖 𝑡 − 𝑦𝑖,𝑡+1
exp(𝒙𝑖 𝑡𝜷0)

exp(𝒙𝑖,𝑡+1𝜷0)

which I refer to as the generalized next-differencing transformation. Both of this transformations

are studied in generality in Section 2.3.

In an analogy to the linear setting, we can discuss an exponential random trend model with

multiplicative specification

𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝒄𝑖) = 𝑐𝑖𝑎𝑡𝑖 exp(𝒙𝑖 𝑡𝜷0)

which can be motivated by the form 𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝒄𝑖) = exp(𝛾𝑖 + 𝛼𝑖𝑡 + 𝒙𝑖 𝑡𝜷0). This model has received

no attention in the econometric literature to the best of my knowledge. I discuss how the results of

this paper could apply to such a model in Section 2.3.1. ■

Example 3 (Production functions): Suppose the dependent variable is firm output which follows

the given production technology:

𝑄𝑖 𝑡 = exp(𝜖𝑖 𝑡 − 𝑐𝑖)𝐿𝑖 𝛽1
𝑡 𝐾𝑖

𝛽2
𝑡
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where (𝐿, 𝐾) are labor and capital stock respectively. The heterogeneity can be written exp(−𝑐𝑖).

If 𝐸 (𝜖𝑖 𝑡 |𝑐𝑖, 𝐿𝑖 𝑡 , 𝐾𝑖 𝑡) is assumed constant5, then the transformations studied in Section 2.3 can be

used for estimation of the parameters and average partial effects under weak assumptions on the

heterogeneity term. This example serves as an interesting bridge between the linear and nonlinear

specifications as production theory can be stated in the above nonlinear fashion, but production

function estimation is often carried out after log-linearization for which the results of Im et al.

(1999) would apply. The specific form of the error is reminiscent of a stochastic frontier model

with a time-invariant inefficiency term. See Section V of Amsler, Lee, and Schmidt (2009). ■

For the general treatment of the paper, I consider transformations of the mean function which

provide moment conditions for estimating 𝜷0. Assumption MAT characterizes such matrix trans-

formations:

Assumption MAT: Let 𝐿 ≤ 𝑇 , and let 𝑨(𝒙, 𝜷) be an 𝐿 × 𝑇 matrix which satisfies

𝑨(𝒙𝑖, 𝜷0)𝐸 (𝒚𝑖 |𝒙𝑖, 𝒄𝑖) = 0 (2.2.2)

and is differentiable in 𝜷 over int(𝚯) for every 𝒙 ∈ X. ■

𝑨 is a residual maker matrix which is zero at the true parameter value 𝜷0. I assume 𝐿 ≤ 𝑇

which corresponds to the examples studied in Section 2.3. While 𝐿 > 𝑇 is theoretically possible

and would rely on the same theory of g-inverses employed in this paper, I do not consider such

a case. In fact, cases of the examples in Section 2.3 where 𝐿 > 𝑇 often correspond to linearly

dependent and hence redundant sets of moment conditions.

Under the previous assumptions,

𝐸 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖) = 0 (2.2.3)

by iterated expectations. We can thus use equation (2.2.3) as the basis of a GMM estimator of 𝜷0,

where any function of 𝒙𝑖 can be used as an instruments for 𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 to improve efficiency. Note
5The value of 𝐸 (𝜖𝑖 𝑡 |𝐿𝑖 𝑡 , 𝐾𝑖 𝑡 ) is allowed to differ over time as long as it is not a function of observables. The

researcher can then just specify time dummies in the mean function to capture the temporal change.
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that 𝑨 could contain external instrumental variables which do not appear in the mean function.

This more general case is considered in Section 2.2.2.

The following Lemma demonstrates a useful fact for characterizing information equivalent trans-

formations and has clear parallels in the linear model case. First define 𝒎𝑖 (𝜷) = (𝑚𝑡 (𝒙𝑖1, 𝜷, 𝒄𝑖), ..., 𝑚𝑡 (𝒙𝑖𝑇 , 𝜷, 𝒄𝑖))′.

Lemma 2.2.1. Suppose 𝑨(𝒙, 𝜷) is an 𝐿 × 𝑇 matrix satisfying Assumption MAT. Then for any

(𝒙0, 𝒄0) ∈ X × C such that |𝑚𝑡 (𝒙0
𝑡 , 𝜷0, 𝒄

0) | > 0 for some 𝑡, Rank(𝑨(𝒙0, 𝜷0)) < 𝑇 .

Proof. 𝑨(𝒙0, 𝜷0)𝒎𝑖 (𝜷0) = 0 over the supports of 𝒙𝑖 and 𝒄𝑖 by Assumption MAT. As |𝑚𝑡 (𝒙0
𝑡 , 𝜷0, 𝒄

0) | >

0, 𝑨(𝒙0, 𝜷0) has a nontrivial null space, and hence its rank is less than 𝑇 . □

The theory for choosing optimal instruments is well-known: when the conditional variance is

nonsingular, the optimal GMM estimator uses instruments (𝑉𝑎𝑟 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)−1𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖))′.

However, in most nontrivial cases when 𝑨 is 𝑇 ×𝑇 , the conditional variance matrix of 𝑨(𝒙𝑖, 𝜷0)𝒚𝑖

is singular even when 𝑉𝑎𝑟 (𝒚𝑖 |𝒙𝑖) is nonsingular. I make one additional assumption on the trans-

formation studied which allows for such a generality. Assumption SYS specifies consistency of a

particular linear system which is necessary for the definition of the asymptotic efficiency bound. It

will allow us to use a certain class of generalized inverses when the conditional variance is singular.

Assumption SYS: The system 𝑉𝑎𝑟 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)𝑭(𝒙𝑖) = 𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖) is consistent in

𝑭(𝒙𝑖) and 𝐸 (𝑭(𝒙𝑖)′𝑉𝑎𝑟 (𝑨(𝜷0)𝒚𝑖 |𝒙𝑖)𝑭(𝒙𝑖)) is nonsingular for a given solution. ■

Consistency of a linear system only requires the existence of a solution and not necessarily

uniqueness. In fact, Section 2.3 considers relevant cases for which uniqueness does not hold.

Assumption SYS is posed in Newey (2001) for studying censored and truncated regression. It

holds trivially when the conditional variance is nonsingular, in which case the unique solution

is 𝑉𝑎𝑟 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)−1𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖). The results in Chamberlain (1987) and Newey

(2001) show that the semiparametric efficiency bound for estimating 𝜷0 using equation (2.2.3) and

Assumptions CM, MAT, and SYS is

𝐸
(
𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)′𝑉𝑎𝑟 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)−𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)

)−1 (2.2.4)
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where "−" denotes a symmetric g-inverse6. That is, no
√
𝑁-consistent estimator of 𝜷0 based off of

equation (2.2.3) has a smaller asymptotic variance than (2.2.4).

Theorem 5.2 in Newey (2001) shows that the efficiency bound in (2.2.4) is invariant to choice

of symmetric g-inverse under Assumption SYS. If the conditional variance is nonsingular, then the

g-inverse can be replaced by a proper inverse as in Chamberlain (1987). Otherwise any g-inverse

will work as long as the consistency assumption holds. The matrix in (2.2.4) is also equivalent to

the asymptotic variance of the GMM estimator based off of the moment conditions in (2.2.3) which

uses the optimal instruments (𝑉𝑎𝑟 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖)−𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖))′. The system is just

identified and so no weight matrix is required for the asymptotic bound. Realizing this efficiency

bound is the subject of Section 2.4.

The rest of the paper is concerned with studying transformations of the observed data which

provide the same semiparametric efficiency bound as defined in (2.2.4). The following definition

characterizes the types of transformations I consider:

Definition: Let Assumption CM hold, and let 𝑨(𝒙𝑖, 𝜷) and 𝑩(𝒙𝑖, 𝜷) be 𝐿 × 𝑇 and 𝑀 × 𝑇 ,

respectively. Given 𝑨 and 𝑩 satisfy Assumptions MAT and SYS, the matrices are information

equivalent transformations if their semiparametric efficiency bounds given by (2.2.4) are equal.

■

Information equivalence defined above is an equivalence relation on the set of 𝐾 × 𝐾 real-

valued matrices since it is defined via matrix equivalences. This fact will be used in Section 2.3

to show information equivalence between general forms of applied transformations since it is a

transitive property and it is easiest to evaluate the information bound in relation to the generalized

within transformation. Information equivalence is similar to the definition of redundancy of

moment conditions as given by Breusch et al. (1999). However, the results in this paper are not

direct consequences of their redundancy results as I allow the moment conditions to have singular

covariance matrices which directly applies to the examples in Section 2.3.
6A g-inverse for matrix 𝛀 is a matrix 𝛀− such that 𝛀𝛀−𝛀 = 𝛀. This condition is weaker than the Moore-Penrose

inverse which requires three other non-redundant properties. It is worth noting that the Moore-Penrose inverse is
unique, but a g-inverse is not necessarily; this fact will be used to prove the main results in Section 2.2.2. For a general
treatment of g-inverses, see Rao and Mitra (1978).
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2.2.2 General equivalence result

I now prove the general unifying theory of information equivalence. Consider the empirical setting

proposed in Section 2.2.1 where Assumption CM holds. I suppose there is a 𝑇 ×𝑇 matrix 𝑴 (𝒛𝑖, 𝜷)

satisfying Assumptions MAT and SYS where 𝒛𝑖 is allowed to include any element of 𝒙𝑖 as well as

outside instruments. Dropping the arguments and writing 𝑴𝑖 = 𝑴 (𝒛𝑖, 𝜷0) for simplicity, we have

the following moment conditions:

𝐸 (𝑴𝑖𝒚𝑖 |𝒛𝑖) = 0 (2.2.5)

Equation (2.2.5) includes the case of unconditional moment restrictions.

I denote 𝑽𝑖 = 𝐸 (𝒚𝑖𝒚′𝑖 |𝒛𝑖). I now consider transformations which still yield valid moment

conditions. Let 𝑩𝑖 = 𝑩(𝒛𝑖, 𝜷0) be a 𝐽 × 𝑇 matrix such that 𝐸 (𝑩𝑖𝒚𝑖 |𝒛𝑖) = 0. Now I make the

following assumptions which are pivotal for the general result of this section, and thus refer to them

as Assumptions GR.1 and GR.2.

Assumption GR.1: 𝑩𝑖𝑴𝑖 = 𝑩𝑖 and 𝑅𝑎𝑛𝑘 (𝑴𝑖𝑽𝑖𝑴
′
𝑖
) = 𝑅𝑎𝑛𝑘 (𝑴𝑖) = 𝐽 < 𝑇 . ■

Assumption GR.2: 𝑅𝑎𝑛𝑘 (𝑩𝑖𝑽𝑖𝑩′
𝑖
) = 𝑅𝑎𝑛𝑘 (𝑩𝑖) = 𝐽. ■

The notation for 𝑴𝑖 in Assumption GR.1 is motivated by the standard notation for a residual

maker matrix. In fact, one possible sufficient condition for Assumption GR.1 is that 𝑅𝑎𝑛𝑘 (𝑽𝑖) = 𝐽

and that 𝑽𝑖 shares a null space with 𝑩𝑖. This assumption would also suffice for Assumption

GR.2 since 𝑩′
𝑖

spans the column space of 𝑽𝑖, and is relevant in linear panel models with additive

heterogeneity. We can then let 𝑴𝑖 be a residual maker matrix from regressing on a basis vector for

the null space of 𝑩𝑖. Another relevant setting to this paper is when 𝑴𝑖 = 𝑰𝑇 − 𝑷𝑖 where 𝑷𝑖 has rank

𝑇 − 𝐽 and 𝑩𝑖𝑷𝑖 = 0. This setting characterizes the nonlinear models studied in Section 2.3 and is

also sufficient for Assumptions GR.1 and GR.2.

Given the discussion above, I now prove a lemma which is essential to the proof of the general

equivalence result.

Lemma 2.2.2. 𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖 is a g-inverse of 𝑴𝑖𝑽𝑖𝑴

′
𝑖
.
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Proof. 𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖𝑴𝑖𝑽𝑖𝑴

′
𝑖
𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖 = 𝑩′

𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖𝑽𝑖𝑩

′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖 = 𝑩′

𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖.

Since 𝑅𝑎𝑛𝑘 (𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖) = 𝐽 by Assumption GR.2 and 𝑅𝑎𝑛𝑘 (𝑴𝑖𝑽𝑖𝑴

′
𝑖
) = 𝐽 by Assumption

GR.1, 𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖 is a g-inverse of 𝑴𝑖𝑽𝑖𝑴

′
𝑖

by Theorem 2.6 of Rao and Mitra (1971). □

Theorem 2.2.1. The equality

𝑩′
𝑖 (𝑩𝑖𝑽𝑖𝑩′

𝑖)−1𝑩𝑖 = 𝑴′
𝑖 (𝑴𝑖𝑽𝑖𝑴

′
𝑖 )−𝑴𝑖 (2.2.6)

holds for any choice of matrix 𝑩𝑖 satisfying Assumptions GR.1 and GR.2 for the same 𝑴𝑖 and for

any g-inverse of 𝑴𝑖𝑽𝑖𝑴
′
𝑖
.

Proof. By Rao and Mitra (1971, p. 603), the expression

𝑴′
𝑖 (𝑴𝑖𝑽𝑖𝑴

′
𝑖 )−𝑴𝑖 (2.2.7)

is invariant to the choice of g-inverse as 𝑅𝑎𝑛𝑘 (𝑴𝑖𝑽𝑖𝑴
′
𝑖
) = 𝑅𝑎𝑛𝑘 (𝑴𝑖) by Assumption GR.1. Since

𝑩′
𝑖
(𝑩𝑖𝑽𝑖𝑩′

𝑖
)−1𝑩𝑖 is such a g-inverse by Lemma 2.2.2 and 𝑩𝑖𝑴𝑖 = 𝑩𝑖 we have

𝑩′
𝑖 (𝑩𝑖𝑽𝑖𝑩′

𝑖)−1𝑩𝑖 = 𝑴′
𝑖𝑩

′
𝑖 (𝑩𝑖𝑽𝑖𝑩′

𝑖)−1𝑩𝑖𝑴𝑖

= 𝑴′
𝑖 (𝑴𝑖𝑽𝑖𝑴

′
𝑖 )−𝑴𝑖

which is independent of 𝑩𝑖. □

Equation (2.2.6) of Theorem 1 provides the framework for evaluating information equivalence.

To see how, I include an additional orthogonality assumption which simplifies the efficiency bound

in (2.2.4).

Assumption ORTH: 𝑨(𝒙𝑖, 𝜷) is an 𝐿 ×𝑇 matrix, 𝐿 ≤ 𝑇 , such that 𝑨(𝒙𝑖, 𝜷)𝒎𝑖 (𝜷) = 0 for all 𝜷 is

some open ball about 𝜷0. ■

Assumption ORTH is clearly sufficient for Assumption MAT. The transformations studied in

the next section satisfy Assumption ORTH for all values of 𝜷 ∈ R𝐾 for which the mean function

is well-defined. However it only needs to be defined on a relatively small open and connected
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set so that it applies with respect to differentiation. Note that ORTH does not say anything about

point identification of 𝜷0. Assumption CM guarantees 𝐸 (𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖) = 0 only at 𝜷0 because

𝐸 (𝒚𝑖 𝑡 |𝒙𝑖, 𝒄𝑖) = 𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷0, 𝒄𝑖). I also note that every transformation considered in Section 2.3

satisfies Assumption ORTH.

The following lemma is a consequence of Assumption ORTH which greatly simplifies the

bound in (2.2.4).

Lemma 2.2.3. Let 𝑨(𝒙𝑖, 𝜷) satisfy Assumption ORTH. Then under regularity conditions which

allow us to pass the gradient operator through the conditional expectation,

𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖) = 𝑨(𝒙𝑖, 𝜷0)∇𝜷𝒎𝑖 (𝜷0)

Proof. See Appendix for proof. □

Lemma 2.2.3 greatly simplifies the efficiency bound in (2.2.4). It also allows us to say something

about finite sample equivalence among certain types of transformations. I summarize these results

here:

Corollary 2.2.1. Let 𝑨(𝒙𝑖, 𝜷) be a 𝐿 × 𝑇 matrix satisfying Assumptions MAT, SYS, and ORTH.

Then 𝑨(𝒙𝑖, 𝜷0) has the following efficiency bound:

𝐸
(
∇𝜷𝒎𝑖 (𝜷0)′𝑨(𝒙𝑖, 𝜷0)′( 𝑨(𝒙𝑖, 𝜷0)𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖)𝑨(𝒙𝑖, 𝜷0)′

)−
𝑨(𝒙𝑖, 𝜷0)∇𝜷𝒎𝑖 (𝜷0)

)−1 (2.2.8)

Corollary 2.2.2. Suppose 𝑨𝑖 and 𝑩𝑖 are 𝐽 × 𝑇 matrices and 𝑴𝑖 is a 𝑇 × 𝑇 matrix such that

Assumptions GR.1 and GR.2 hold for 𝑨 and 𝑩. Further suppose 𝑨𝑖, 𝑩𝑖, 𝑴𝑖, and the conditional

gradient ∇𝜷𝐸 (𝒚𝑖 |𝒛𝑖) are independent of 𝜷. Then

∇𝜷𝒎
′
𝑖𝑨

′
𝑖 (𝑨𝑖𝑽𝑖𝑨′

𝑖)−1𝑨𝑖𝒎𝑖 (𝜷) = ∇𝜷𝒎
′
𝑖𝑩

′
𝑖 (𝑩𝑖𝑽𝑖𝑩′

𝑖)−1𝑩𝑖𝒎𝑖 (𝜷) (2.2.9)

for any value of 𝜷 in 𝒎𝑖 (𝜷).

Corollary 2.2.1 allows us to directly apply the result from Theorem 2.2.1 to the relevant cases

in Section 2.3. For information equivalence, it will suffice to show that the relevant transformations
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satisfying Assumptions MAT, SYS, and ORTH only need to satisfy a rank assumption to be

information equivalent. The choice of 𝑴 will become apparent based on the empirical setting.

Corollary 2.2.2 gives an even more powerful result than equivalence of efficiency bounds. For

example, if the moment conditions in (2.2.5) are conditional on 𝒙𝑖, the efficient GMM estimator of

𝜷0, say 𝜷, solves
𝑁∑︁
𝑖=1

∇𝜷𝒎
′
𝑖𝑴

′
𝑖 (𝑴𝑖𝑽𝑖𝑴

′
𝑖 )−𝑴𝑖𝒎𝑖 (𝜷) = 0 (2.2.10)

Corollary 2.2.2 tells us that the efficient estimator based off of 𝐸 (𝑨𝑖𝒚𝑖 |𝒙𝑖) and 𝐸 (𝑩𝑖𝒚𝑖 |𝒙𝑖) are

algebraically equivalent. When the transformations are themselves functions of the parameters,

implementation of the efficient instruments depends on first-stage estimators whereas the transfor-

mation 𝑨𝑖𝒎𝑖 depends on the FOC solution, so the results only hold asymptotically. The proof of

Theorem 4.2 in Im et al. (1999) uses a specific form of the argument in the proof above. This

fact suggests further applications to panel data transformations with strictly exogenous covariates

which I explore in the next section.

2.3 Examples of information equivalence

This section considers the application of Theorem 2.2.1 to a variety of interesting empirical settings.

2.3.1 Multiplicative heterogeneity

I now consider the case of a single multiplicative heterogeneous effect:

𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝑐𝑖) = 𝑐𝑖𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷0) (2.3.1)

This specification has grown in popularity in recent years. For example, see Krapf, Ursprung,

and Zimmermann (2017), Fischer, Royer, and White (2018), Castillo, Mejía, and Restrepo (2020),

Schlenker and Walker (2016), McCabe and Snyder (2014, 2015), and Williams et al. (2020). The

most common specification of equation (2.3.1) in practice is the exponential mean function as

demonstrated in Example 2. Often the data generating process is a count variable with a mass point
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at zero, but the model can apply to any nonnegative outcome. This typically implies 𝑚𝑡 (𝒙, 𝜷0) > 0

for all 𝒙 ∈ X which the rank assumptions made in this section will imply.

I consider the following generalized residual functions first introduced in Example 2:

𝑢𝑖 𝑡 (𝜷) = 𝑦𝑖 𝑡 −
(
𝑇∑︁
𝑠=1

𝑦𝑖 𝑠

)
𝑝𝑖 𝑡 (𝜷) (2.3.2)

𝑟𝑖,𝑡,𝑠 (𝜷) = 𝑦𝑖 𝑡 − 𝑦𝑖 𝑠
𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷)
𝑚𝑠 (𝒙𝑖 𝑠, 𝜷)

(2.3.3)

where 𝑝𝑖 𝑡 (𝜷) = 𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷)
(∑𝑇

𝑠=1𝑚𝑠 (𝒙𝑖 𝑠, 𝜷)
)−1

. Equation (2.3.2) is reminiscent of the linear

within transformation. However, the transformation in the linear case demeans using the time

averages, whereas the generalized within transformation weights by the pseudo-probability 𝑝𝑖 𝑡 (𝜷).

The generalized differencing residual in equation (2.3.3) allows a large number of differencing

procedures, including next- and first-differencing as well as differencing one time period from the

others in which 𝑡 is fixed and 𝑠 is allowed to vary. Any other number of arbitrary generalized

differencing is allowed so long as it produces a full rank transformation.

In contrast to the linear model with an additive effect, the transformations in equations (2.3.2)

and (2.3.3) will not eliminate the heterogeneity but still creates valid moment conditions. For

example, taking the mean of equation (2.3.3) conditional on (𝒙𝑖, 𝑐𝑖) gives

𝐸 (𝑟𝑖,𝑡,𝑠 (𝜷0) |𝒙𝑖, 𝑐𝑖) = 𝑐𝑖𝑚𝑡 (𝒙𝑖𝑡 , 𝜷0) − 𝑐𝑖𝑚𝑠 (𝒙𝑖𝑠, 𝜷0)
𝑚𝑡 (𝒙𝑖𝑡 , 𝜷0)
𝑚𝑠 (𝒙𝑖𝑠, 𝜷0)

= 𝑐𝑖 (𝑚𝑡 (𝒙𝑖𝑡 , 𝜷0) − 𝑚𝑡 (𝒙𝑖𝑡 , 𝜷0))

= 0

which still yields conditional moment restrictions.

Define the respective 𝑇 × 1 and (𝑇 − 1) × 1 residual vectors

𝒖𝑖 (𝜷) = (𝑰𝑇 − 𝒑𝑖 (𝜷)1′)𝒚𝑖 (2.3.4)

𝒓𝑖 (𝜷) = 𝑫𝑖 (𝜷)𝒚𝑖 (2.3.5)

where 1 is a𝑇×1 vector of ones and 𝑫𝑖 (𝜷) is the𝑇−1×𝑇 weighted generalized differencing matrix

which yields the desired residuals as in (2.3.3). I refer to transformations in Equations (2.3.4) and

42



(2.3.5) as the generalized within and generalized differencing transformations respectively. Then

an iterated expectations argument shows 𝐸 (𝒖𝑖 (𝜷0) |𝒙𝑖) = 0 and 𝐸 (𝒓𝑖 (𝜷0) |𝒙𝑖) = 0. Thus equations

(2.3.4) and (2.3.5) satisfy Assumption MAT and suggest moment conditions for efficient GMM

estimation which could reach their respective efficiency bounds in (2.2.4).

As discussed in the Introduction, equation (2.3.4) is the foundation of the FEP estimator. The

FEP is defined in Hausman et al. (1984) as the MLE of a conditional Multinomial distribution

with probability and count parameters 𝒑𝑖 (𝜷0) = (𝑝𝑖1(𝜷0), ..., 𝑝𝑖𝑇 (𝜷0))′ and 𝑛𝑖. Wooldridge (1999)

shows that the FEP is consistent under Assumption CM using the fact that equation (2.3.4) has

a zero conditional mean at 𝜷0 regardless of the true distribution of 𝒚𝑖 |𝒙𝑖. This robustness result

helped lead to its proliferation in empirical research. As for efficiency, Hahn (1997) shows that

the FEP is asymptotically efficient under the full set of Multinomial distributional assumptions.

Verdier (2018) strengthens this result substantially by showing efficiency under just zero conditional

correlation and conditional mean-variance equality. Brown and Wooldridge (2021) extends this

result to allow arbitrary constant conditional mean-variance dispersion.

Equation (2.3.5) was first studied by Chamberlain (1992) and Wooldridge (1997) in the context

of next-differencing for nonlinear models. It can also allow for estimation of 𝜷0 under weaker

forms of exogeneity, like sequential exogeneity in the next-differencing case of 𝑠 = 𝑡 +1, rather than

the strict exogeneity implied by Assumption CM. Sequential exogeneity allows the researcher to

specify lag dynamics in the mean function which violates strict exogeneity. However, remarkably

less is known about efficient estimation based off of equation (2.3.5) when compared to equation

(2.3.4) in the context of strict exogeneity as studied here.

The transformations defined in (2.3.4) and (2.3.5) are clearly not the only transformations

which satisfy Assumption MAT. Consider the residual maker matrix from regressing on the mean

function defined by equation (2.3.1): (𝑰𝑇 − 𝒎𝑖 (𝜷) (𝒎𝑖 (𝜷)′𝒎𝑖 (𝜷))−1𝒎𝑖 (𝜷)′). This matrix satisfies

Assumption ORTH and thus Assumption MAT since it is algebraically orthogonal to the mean

function by construction. It is also well-known that the matrix is symmetric, idempotent, and has

rank 𝑇 − 1. I will refer to this matrix as the residual maker transformation.
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The main theorem of this section proves the information equivalence between the generalized

within, generalized differencing, and residual maker transformations. This result is similar to

Theorem 4.2 of Im et al. (1999) who proves algebraic equivalences of GLS estimators based off

of strictly exogenous covariates in linear panel data models with additive effects. There are two

primary differences between Theorem 2.3.1 in this paper and Theorem 4.2 in Im et al. First, the

heterogeneity is multiplicative rather than additive. This difference is not made without loss of

generality as rewriting the terms causes the heterogeneity to have time variation7. Second, Im et

al. shows an algebraic equivalence between the estimators studied, while I show an asymptotic

equivalence. As mentioned after Theorem 2.2.1, finite sample equality will not necessarily follow

when the transformations are functions of the parameter 𝜷0 and require a first-step estimator to

implement.

By Lemma 2.2.1, the conditional variance of the generalized within transformation is necessarily

singular, so I will need to show that its efficiency bound is well-defined and invariant to the choice of

symmetric g-inverse. Lemma 1 of Verdier (2018) shows that it has rank 𝑇 − 1 at the true parameter

value. This fact suggests that deleting a row to remove the rank degeneracy leads to a transformation

with a nonsingular variance matrix. Im et al. (1999) takes this approach when showing equivalence

between the within and differenced linear estimators. Let 𝑸 be a 𝑇 − 1 × 𝑇 matrix which removes

any arbitrary row from a given 𝑇 × 𝑇 matrix. Then the transformation 𝑸(𝑰𝑇 − 𝒑𝑖 (𝜷0)1′) is the

generalized within transformation with an arbitrary row deleted. A similar procedure can be used

to make the residual maker transformation full rank. The main result will show that information

equivalence is invariant to the row deleted.

Lemma 2.3.1 will show that the efficiency bound of the within and residual maker transfor-

mations are well-defined. First I will assume that 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) is strictly positive definite, a weaker

assumption than the conditional variance of 𝒚𝑖 itself being positive definite. Under this assumption,

the conditional variance of the generalized differencing transformation is nonsingular under a rank

condition provided below. Before I can verify Assumption SYS, I will need an additional rank
7If 𝑦𝑖 𝑡 = 𝑚𝑡 + 𝑢𝑖 , then rewriting this as 𝑦𝑖 𝑡 = 𝑐𝑖𝑚𝑡 implies 𝑐𝑖 = 𝑚𝑡+𝑢𝑖

𝑚𝑡
which depends on the time period specified.
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assumption for each respective transformation.

Assumption RK.1: 𝑅𝑎𝑛𝑘 (𝑫𝑖 (𝜷0)) = 𝑇 − 1. ■

Assumption RK.1 states that the differencing matrix has full row rank. It requires that none

of the differences used for estimation are redundant in the sense that some row or rows are linear

combinations of the others. Necessarily the researcher cannot reuse rows, and if 𝑦𝑖 𝑡 is differenced

from 𝑦𝑖 𝑠, then 𝑦𝑖 𝑠 cannot be differenced from 𝑦𝑖 𝑡 . Further, we must have 𝑠 ≠ 𝑡 for each row so

that 𝑫 does not have any zero rows. For example, including all pairwise differences leads to linear

dependence which causes RK.1 to fail.

Assumption RK.2: Let𝚺𝑖 = 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) be positive definite. Define𝑽−
𝑖
= (𝚺−1

𝑖 − 1
𝑎𝑖
𝚺−1
𝑖 𝒎𝑖 (𝜷0)𝒎𝑖 (𝜷0)′𝚺−1

𝑖 )

where 𝑎𝑖 = 𝒎𝑖 (𝜷0)′𝚺−1
𝑖 𝒎𝑖 (𝜷0). Then the square matrix 𝐸 (∇𝜷𝒎𝑖 (𝜷0)′𝑽−

𝑖
∇𝜷𝒎𝑖 (𝜷0)) has full rank.

■

𝑽−
𝑖

is a symmetric g-inverse of 𝑉𝑎𝑟 ((𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)𝒚𝑖 |𝒙𝑖). In fact, it also satisfies the property

𝑽−
𝑖 [𝑉𝑎𝑟 ((𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)𝒚𝑖 |𝒙𝑖)] 𝑽−

𝑖 = 𝑽−
𝑖 (2.3.6)

as shown in Lemma 2 of Verdier (2018) so that it is a reflexive inverse and is also clearly symmetric.

Assumption RK.2 suffices for the bound in (2.2.4) existing, as I show in the next lemma that

𝑽−
𝑖
∇𝜷𝒎𝑖 (𝜷0) is a solution to the system in Assumption SYS. This fact, along with the fact that

𝑽−
𝑖
𝒎𝑖 (𝜷0) = 0 and Lemma 2.2.3, gives the bound in (2.2.4) as the expectation above. The following

lemma shows that all transformations studied satisfy Assumption SYS and so any symmetric g-

inverse will suffice.

Lemma 2.3.1. Suppose Assumptions CM, RK.1, and RK.2 hold and that 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) is positive

definite. Then the generalized differencing, generalized within, and residual maker transformations

satisfy Assumption SYS. Further, either of the 𝑇 ×𝑇 transformations with any arbitrary row deleted

also satisfy Assumption SYS.

Proof. See Appendix for proof. □
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The main consequence of Lemma 2.3.1 is that the asymptotic efficiency bound is well-defined

and invariant to symmetric g-inverse for all of the transformations studied in this section. Now I can

formally state the application of the main equivalence theorem to the transformations studied in this

section. First note that Assumptions CM, RK.1, RK.2, and the positive definiteness of 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖)

are sufficient for each of the transformations studied to satisfy Assumptions SYS and ORTH (and

thus MAT) so that their asymptotic efficiency bounds are well-defined and given by (2.2.8).

Theorem 2.3.1. Suppose Assumptions CM, RK.1, and RK.2 hold and that 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) is positive

definite. (𝑰𝑇 − 𝒑𝑖 (𝜷0)1′), 𝑫𝑖 (𝜷0), (𝑰𝑇 − 𝒎𝑖 (𝜷) (𝒎𝑖 (𝜷)′𝒎𝑖 (𝜷))−1𝒎𝑖 (𝜷)′), 𝑸(𝑰𝑇 − 𝒑𝑖 (𝜷0)1′), and

𝑸((𝑰𝑇 − 𝒎𝑖 (𝜷) (𝒎𝑖 (𝜷)′𝒎𝑖 (𝜷))−1𝒎𝑖 (𝜷)′)) are information equivalent and invariant to the row

deleted by 𝑸.

Proof. See Appendix for proof. □

The proof of Theorem 2.3.1 is independent of which row is deleted in choosing 𝑸 and the

type of differencing chosen in 𝑫 satisfying Assumption RK.1, reinforcing the importance of the

rank assumptions. As in Theorem 2.2.1, transformations with rank 𝐿 < 𝑇 can be shown to be

information equivalent via a similar argument, but this fact is not directly relevant to the current

results. It’s also important to note that the list of information equivalent transformations is not

necessarily exhaustive, as any𝑇 ×𝑇 or𝑇 −1×𝑇 matrix with rank𝑇 −1 and respective orthogonality

condition will be information equivalent to the transformations in Theorem 2.3.1 by Theorem 2.2.1.

Similar to the discussion after Theorem 2.2.1, the results in Theorem 2.3.1 could also apply

to mean function which have already been transformed. For example, consider the multiplicative

random trend from Example 2, 𝑦𝑖 𝑡 = 𝑐𝑖𝑎
𝑡
𝑖
𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷0)𝑢𝑖 𝑡 where 𝑢𝑖 𝑡 is an idiosyncratic error. If

we assume the outcomes are bounded away from zero, we could first divide each outcome by

the previous period. We now have the multiplicative model 𝑦𝑖∗𝑡 = 𝑎𝑖
𝑚𝑡 (𝒙𝑖 𝑡 ,𝜷0)

𝑚𝑡−1 (𝒙𝑖,𝑡−1,𝜷0)
𝑢𝑖 𝑡
𝑢𝑖,𝑡−1

. If 𝑢𝑖 𝑡
𝑢𝑖,𝑡−1

is

independent of 𝒙𝑖 and 𝑎𝑖 with mean 1, we have the model from equation (2.3.1). Then all of the

transformations studied here are information equivalent on the transformed outcomes 𝒚∗
𝑖
.
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2.3.2 Linear factor model

This section considers linear panels with a factor-augmented error:

𝑦𝑖𝑡 = 𝒙𝑖𝑡𝜷0 + 𝒇 ′𝑡 𝜸𝑖 + 𝑢𝑖𝑡 (2.3.7)

where 𝒇𝑡 is a 𝑝 × 1 vector of common factors. Stacking the factors into the 𝑇 × 𝑝 matrix 𝑭 =

( 𝒇1, ..., 𝒇𝑇 )′, Pesaran (2006) adds the additional reduced form equation

𝒙𝑖 = 𝑭𝚪𝑖 + 𝒗𝑖 (2.3.8)

where 𝚪𝑖 is a 𝑝 ×𝐾 matrix of “factor loadings" and 𝒗𝑖 is a 𝑇 ×𝐾 matrix of mean zero idiosyncratic

errors. Write 𝒛𝑖 = (𝒚𝑖, 𝒙𝑖). Under the assumptions in Pesaran (2006), equations (2.3.7) and (2.3.8)

imply

𝐸 (𝒛𝑖) = 𝑭𝑪𝑸 (2.3.9)

where 𝑪𝑸 is a 𝑝 × 𝐾 + 1. Assuming 𝑝 ≤ 𝐾 + 1, 𝑪𝑸 is full rank which suggests that 𝐸 (𝒛𝑖) can

control for the space spanned by 𝑭. The pooled common correlated effects estimator (CCEP) is

defined as

𝜷𝐶𝐶𝐸𝑃 =

(
𝑁∑︁
𝑖=1

𝒙′𝑖𝑴𝑭𝒙𝑖

)−1 𝑁∑︁
𝑖=1

𝒙′𝑖𝑴𝑭𝒚𝑖 (2.3.10)

where 𝑭 = 𝒁 = 1
𝑁

∑𝑁
𝑖=1(𝒚𝑖, 𝒙𝑖). Westerlund et al. (2019) shows that when 𝑇 is fixed and 𝑁 → ∞,

𝑴𝑭

𝑝
→ 𝑴𝑭 − 𝑷−𝑝 where 𝑷−𝑝 is a nonlinear function of the model’s errors. When 𝑝 = 𝐾 + 1 and

the number of cross-sectional averages equals the number of factors, 𝑷−𝑝 = 0 and so the CCEP

removes the factors and nothing else.

Another fixed-𝑇 approach comes from Ahn et al. (2013). They do not make the reduced form

assumption in equation (2.3.8). Instead, they introduce new parameters which eliminate 𝑭. As

both 𝑭 and 𝜸𝑖 are unobserved, they impose the 𝑝2 normalizations on the factor matrix

𝑭 = (𝚯′,−𝑰𝑝)′ (2.3.11)

47



where Θ is a (𝑇 − 𝑝) × 𝑝 matrix of unrestricted parameters. Let 𝜽 = vec(𝚯). They then define the

quasi-long-differencing (QLD) matrix

𝑯(𝜽) =
©­­«
𝑰𝑇−𝑝

𝚯′

ª®®¬ (2.3.12)

so that 𝑯(𝜽)′𝑭 = 0.

The Ahn et al. (2013) technique involves jointly estimating (𝜷′0, 𝜽
′)′ with the use of many

instruments. Instead, I focus on the QLD transformation and compare it to the asymptotic CCE

transformation. Suppose 𝛀𝑖 = 𝐸 (𝒖𝑖𝒖′𝑖 |𝒙𝑖) is known and has full rank. Define the CCE GLS and

QLD GLS estimators as

𝜷𝐶𝐶𝐸𝐺𝐿𝑆 =

(
𝑁∑︁
𝑖=1

𝒙′𝑖𝑴𝑭 (𝑴𝑭𝛀𝑖𝑴𝑭)−𝑴𝑭𝒙𝑖

)−1 𝑁∑︁
𝑖=1

𝒙′𝑖𝑴𝑭 (𝑴𝑭𝛀𝑖𝑴𝑭)−𝑴𝑭𝒚𝑖 (2.3.13)

𝜷𝑄𝐿𝐷𝐺𝐿𝑆 =

(
𝑁∑︁
𝑖=1

𝒙′𝑖𝑯(𝜽) (𝑯(𝜽)′𝛀𝑖𝑯(𝜽))−1𝑯(𝜽)′𝒙𝑖

)−1 𝑁∑︁
𝑖=1

𝒙′𝑖𝑯(𝜽) (𝑯(𝜽)′𝛀𝑖𝑯(𝜽))−1𝑯(𝜽)′𝒚𝑖

(2.3.14)

Theorem 2.3.2. Suppose Assumption CM holds, 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) is positive definite, and 𝑅𝑎𝑛𝑘 (𝑭) =

𝑝 < 𝑇 . Then 𝜷𝐶𝐶𝐸𝐺𝐿𝑆 = 𝜷𝑄𝐿𝐷𝐺𝐿𝑆.

Proof. 𝑅𝑎𝑛𝑘 (𝑯(𝜽)) = 𝑅𝑎𝑛𝑘 (𝑴𝑭) = 𝑇−𝑝 so 𝑴𝑭 (𝑴𝑭𝛀𝑖𝑴𝑭)−𝑴𝑭 = 𝑯(𝜽) (𝑯(𝜽)′𝛀𝑖𝑯(𝜽))−1𝑯(𝜽)′

by Theorem 1. □

Because 𝑯(𝜽) and 𝑴𝑭 are only available asymptotically, the best we can hope to achieve

is an asymptotic equivalence result. Further, as discussed earlier, the CCE transformation 𝑴𝑭

only converges in probability to 𝑴𝑭 when 𝑝 = 𝐾 + 1. Other fixed-𝑇 approaches in the literature

include Robertson and Sarafidis (2015) who parameterize the correlation between the exogenous

instruments and the factor loadings. They show that one of their estimators is asymptotically

equivalent to the full QLD GMM estimator of Ahn et al. (2013) which suggests a similar efficiency

result as Theorem 3. Westerlund (2020) studies the principal components (PC) estimator using the

Pesaran (2006) CCE model. PC estimation is essentially fixed effects OLS which estimates the
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factors and loadings as additional parameters. If the estimator of 𝑴𝑭 is consistent for 𝑴𝑭, it can be

made asymptotically efficient in the sense of Theorem 2.3.2 and thus a possible efficient alternative

to CCE estimation when 𝑇 is fixed.

2.3.3 Random trend

I now consider a particular factor specification which is common in applied settings. This linear

model with additive effects as described in Example 1 of Section 2.2.1. takes the form

𝑦𝑖 𝑡 = 𝑐𝑖 + 𝑎𝑖𝑡 + 𝒙𝑖 𝑡𝜷0 + 𝑢𝑖 𝑡 (2.3.15)

Such a model is often called a random trend model because the outcome variable has an

unobserved heterogeneous response to the observable time trend8. A standard technique in dealing

with the heterogeneous trend is to first-difference. Define Δ𝑦𝑖 𝑡 = 𝑦𝑖 𝑡 − 𝑦𝑖,𝑡−1 with similar definitions

for Δ𝒙𝑖 𝑡 and Δ𝑢𝑖 𝑡 . Then

Δ𝑦𝑖 𝑡 = 𝑎𝑖 + Δ𝒙𝑖 𝑡𝜷0 + Δ𝑢𝑖 𝑡 (2.3.16)

Under the strict exogeneity assumption of Assumption CM, we have 𝐸 (Δ𝑢𝑖 𝑡 |𝒙𝑖) = 0 for each 𝑡 ≥ 2.

Thus we have strictly exogenous covariates with an additive heterogeneity term. The most popular

technique for estimating 𝜷0 in a linear model with additive heterogeneity is fixed effects estimation

which applies the within transformation, 𝑰𝑇−1 − 1
𝑇−11𝑇−11′

𝑇−1 where here 1𝑇−1 is a 𝑇 − 1× 1 vector

of ones, to the first differenced residuals Δ𝑦𝑖 𝑡 − Δ𝒙𝑖 𝑡𝜷0.

Another way to eliminate the heterogeneity in equation (2.3.15) is to apply the first-differencing

transformation again on equation (2.3.16). This technique is often referred to as second-differencing.

The regression is then run for Δ𝑦𝑖 𝑡 − Δ𝑦𝑖,𝑡−1 on Δ𝒙𝑖 𝑡 − Δ𝒙𝑖,𝑡−1. Since the heterogeneous terms cor-

respond to a known intercept and time trend, we can also run a full fixed regression on equation

(2.3.15) which treats (𝑐1, ..., 𝑐𝑁 , 𝑎1, ..., 𝑎𝑁 ) as parameters.

One final transformation to consider is the forward orthogonal deviations (FOD) operator in

Arellano and Bover (1995). This matrix applies the following transformation to the errors 𝑢𝑖 𝑡 in
8See Section 11.7.1 of Wooldridge (2010).
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equation (2.2.16):
(𝑇 − 𝑡)

(𝑇 − 𝑡 + 1)

(
𝑢𝑖 𝑡 −

1
(𝑇 − 𝑡) (𝑢𝑖,𝑡+1 + ... + 𝑢𝑖𝑇 )

)
(2.3.17)

The transformation can be written in matrix form as

diag(𝑇 − 1
𝑇

, ...,
1
2
)1/2×

©­­­­­­­­­­­­«

1 −(𝑇 − 1)−1 −(𝑇 − 1)−1 . . . −(𝑇 − 1)−1 −(𝑇 − 1)−1 −(𝑇 − 1)−1

0 1 −(𝑇 − 2)−1 . . . −(𝑇 − 2)−1 −(𝑇 − 2)−1 −(𝑇 − 2)−1

...
...

...
...

...
...

0 0 0 . . . 1 −1
2 −1

2

0 0 0 . . . 0 1 −1

ª®®®®®®®®®®®®¬
(2.3.18)

I denote this FOD transformation as the matrix 𝑭. For each of the first 𝑇 − 1 observations, 𝑭

subtracts off a weighted mean of the rest of the independent variables. While initially studied in the

context of sequential exogeneity and predetermined systems like first-differencing, I study it here

in the context of strict exogeneity to determine information equivalence. Since I am also assuming

the structure in (2.3.16) where first-differencing has already occurred, I consider the 𝑇 − 2 × 𝑇 − 1

matrix 𝑭 which corresponds to the definition in equation (2.3.18) but only assumes𝑇 −1 dependent

variables instead of 𝑇 . Regardless of the number of time periods considered, 𝑭 has full row rank

which is 𝑇 − 2 in this case.

To show information equivalence of the techniques described, let 𝑫1 and 𝑫2 be the respective

𝑇 − 1 × 𝑇 and 𝑇 − 2 × 𝑇 − 1 full rank first-differencing matrices, 𝑾 = 𝑰𝑇−1 − 1
𝑇−11𝑇−11′

𝑇−1 be the

𝑇 − 1 × 𝑇 − 1 within transformation which has rank 𝑇 − 2, 𝑭 be the 𝑇 − 2 × 𝑇 − 1 full rank matrix

defined similarly to equation (2.3.18), and 𝑴 be the 𝑇 × 𝑇 residual maker matrix from regressing

on (1, 𝑡). Then

𝑫2𝑫1𝐸 ((𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 𝐸 (𝑫2𝑫1(𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 0 (2.3.19)

𝑾𝑫1𝐸 ((𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 𝐸 (𝑾𝑫1(𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 0 (2.3.20)

𝑴𝐸 ((𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 𝐸 (𝑴 (𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 0 (2.3.21)

𝑭𝑫1𝐸 ((𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 𝐸 (𝑭𝑫1(𝒚𝑖 − 𝒙𝑖𝜷0) |𝒙𝑖) = 0 (2.3.22)

50



where equations (2.3.19)-(2.3.22) correspond to the residuals from the second-differencing, first-

differencing then within, first-differencing then forward orthogonal deviations, and full fixed effects

transformations respectively. Thus each of the transformations satisfy Assumption MAT and so we

can apply the general theory from Section 2.2.2.

Theorem 2.3.3. Suppose Assumption CM holds and 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) is positive definite. Then 𝑫2𝑫1,

𝑾𝑫1, 𝑭𝑫1 and 𝑴 are information equivalent.

Proof. As 𝑫1 is full rank, 𝑅𝑎𝑛𝑘 (𝑫2𝑫1) = 𝑅𝑎𝑛𝑘 (𝑾𝑫1) = 𝑅𝑎𝑛𝑘 (𝑭𝑫1) = 𝑇 − 2. Since

𝑅𝑎𝑛𝑘 (𝑴) = 𝑇 − 2 by definition, the result holds by Theorem 1. □

The simplicity of the proof follows from the general nature of the unified theory proved in

Section 2.2 and thus demonstrates its usefulness. In the language of Im et al. (1999), the GLS

estimators based off of the residuals in equations (2.3.19)-(2.3.22) for a given 𝐸 (𝒖𝑖𝒖′𝑖 |𝑿𝑖) are

algebraically equivalent for a given covariance matrix. Finally, Theorem 2.3.3 can be seen as a

generalization of Theorem 4.3 of Im et al. (1999).

2.4 Practical considerations

The final section of the paper provides useful applications of the results in the previous two

sections. I first consider implementation of the efficiency bounds discussed in the paper. Given a

transformation 𝑨(𝒙𝑖, 𝜷) satisfying Assumptions SYS and ORTH (and thus MAT), I describe the

efficient estimator. The estimator 𝜷𝐴 which solves

𝑁∑︁
𝑖=1

∇𝜷𝒎𝑖 (𝜷0)′𝑨(𝒙𝑖, 𝜷0)′(𝑨(𝒙𝑖, 𝜷0)𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖)𝑨(𝒙𝑖, 𝜷0)′)−𝑨(𝒙𝑖, 𝜷𝐴)𝒚𝑖 = 0 (2.4.1)

is
√
𝑁-asymptotically normal with asymptotic variance equal to the efficiency bound given by

equation (2.2.4).

First-stage estimation of 𝜷0 comes from a GMM estimator with an arbitrary weight matrix.

Second, one needs to consistently estimate 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖). A nonparametric regression estimator can

be used in principle, but in practice this estimator may give highly imprecise estimates when 𝑇
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and 𝐾 are relatively large. In the multiplicative heterogeneity setting, Brown and Wooldridge

(2021) provides a simple and attractive parametric framework for the FEP setting. They assume

𝑉𝑎𝑟 (𝑦𝑖 𝑡 |𝒙𝑖, 𝑐𝑖) = 𝛼𝐸 (𝑦𝑖 𝑡 |𝒙𝑖, 𝑐𝑖) where 𝛼 > 0 is an identified coefficient along with a constant

conditional correlation matrix.

Asymptotically justified standard errors can be derived using the familiar sample analog to the

efficiency bound in (2.2.4). The researcher can then test the validity of parts of Assumption CM.

For strict exogeneity, Wooldridge (2010, Chapter 18) suggests including functions of lead values

of independent variables and running a joint test of significance. This method’s most attractive

feature is the weakness of its alternative hypothesis. The null maintains strict exogeneity while

the alternative is merely that strict exogeneity fails. It is also easy to implement and can be tested

in most standard statistical packages. However, there is no guidance on how to choose which

regressors to include or their functional forms.

Another possible way to examine strict exogeneity is via a Hausman test. The researcher

could choose a competing estimator based on the desired alternative hypothesis. In the nonlinear

multiplicative example of Section 2.3.1, suppose the researcher believes that sequential exogeneity

holds, or that 𝐸 (𝑦𝑖 𝑡 |𝒙𝑖1, ..., 𝒙𝑖 𝑡 , 𝑐𝑖) = 𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷0). Then the generalized next-differencing trans-

formation 𝑫𝑖 (𝜷) = (𝒓𝑖,1,2(𝜷), ..., 𝒓𝑖,𝑇−1,𝑇 (𝜷))′ still provides valid moment conditions. However,

the instruments are designed to reach the efficiency bound in (2.2.4) will not be valid under

sequential exogeneity alone. Chamberlain (1992b) derives the asymptotic efficiency bound for

moment conditions under sequential exogeneity and provides an implementable estimator which

reaches said bound. Under the null hypothesis, both estimators are consistent with the generalized

next-differencing estimator as in (2.3.5) being asymptotically efficient. Under the alternative, only

Chamberlain’s instruments are valid (and in fact asymptotically efficient among
√
𝑁-asymptotically

normal estimators). Thus we can use a Hausman statistic to test the assumption of strict exogeneity.

The Chamberlain estimator described in the Hausman statistic procedure is difficult to im-

plement as the instruments may be comprised of multiple sums of conditional moments. The

researcher will need to either greatly strengthen the assumptions of the model to allow for para-
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metric forms of these moments or utilize a large number of nonparametric regressions. Either way,

this computational burden makes the Chamberlain estimator difficult to implement.

Another possible application of the results involve finite-sample and computational concerns.

Phillips (2020) demonstrates that matrix inversion for estimators based on first-differencing can

involve significantly more computational resources than those based on forward orthogonal devi-

ations. He demonstrates with simulation evidence that computational time increases quickly with

𝑇 even for relatively small values of 𝑁 . While instruments need to satisfy two conditions given in

Phillips (2020) which are not necessarily assumed here, I reiterate that the results in Section 2.2

are purely algebraic and can be applied in a large number of settings.

2.5 Conclusion

This paper considers linear transformations of nonlinear panel models with unobserved heterogene-

ity. When covariates are strictly exogenous in the zero conditional mean sense, such transforma-

tions provide uncountable moment conditions exploitable for estimation. I consider specifically the

asymptotic efficiency bound for estimating the model’s parameter which is reached by the optimal

choice of instruments. This matrix specifies a lower bound on how efficient any
√
𝑁-asymptotically

normal estimator of 𝜷0 can possibly be.

Transformations of the data are said to be information equivalent if they yield the same asymp-

totic efficiency bound. The main result of Section 2.2 is a unified framework for evaluating the

efficiency bounds of transformations that provide moment conditions for estimation. It shows that

besides regularity conditions, matrix transformations which yield conditional moment restrictions

and have the same rank yield the same information bound. I also simplify the form of the efficiency

bound under a general and easily verifiable algebraic orthogonality property which could potentially

help in determining other interesting relationships between instrumental variable estimators.

The general framework is applied to show that the generalized within transformation, which

provides the basis of the FEP estimator, is in fact information equivalent to a number of other

transformations. These transformations, which include generalizations of varying differencing
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techniques used in the linear panel data context such as next-, first-, and long-differencing, as well

as the residual maker matrix from regression on the outcome variable’s mean function, are only

required to satisfy a rank condition for the main theorem to hold. It is also shown that any 𝑇 −1×𝑇

matrix which is algebraically orthogonal to the mean function of the outcome and of full rank

is information equivalent, which includes deleting any arbitrary row from the generalized within

transformation and removing the linear redundancy does not lose any information.

I also generalize a result of Im et al. (1999) on linear panels with an additive heterogeneity term

to a general factor-augmented error structure as studied in Pesaran (2006), Ahn et al. (2013), and

Westerlund (2020). I show that any transformation of the data which is full rank and eliminates the

factors is information equivalent. I use this result to show that in the case of a random heterogeneous

trend model, first-differencing twice, first-differencing and then using a within transformation, and

the true fixed effects estimator are information equivalent. For arbitrary factor structures, the QLD

transformation of Ahn et al. (2013) is information equivalent to the infeasible fixed effects GLS

estimator which takes the unobserved effects as known.

The work in this paper provides a basic framework for comparison of parametric estimators for

a broad class of nonlinear models. I primarily consider strictly exogenous covariates so I could

compare estimators using theoretically efficient instruments. However, the finite sample algebraic

results hold regardless of validity of the instruments. As such, the main theorem in Section 2.2 can

apply to any comparison of efficiency for instrumental variable estimators.
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CHAPTER 3

MOMENT-BASED ESTIMATION OF LINEAR PANEL DATA MODELS WITH
FACTOR-AUGMENTED ERRORS

3.1 Introduction

The prevalence of panel data in modern economics has led theorists and practitioners to pay more

attention to unobserved and interactive heterogeneity. A popular representation of unobserved

effects is the linear factor structure
∑𝑝

𝑗=1 𝑓𝑡 𝑗𝛾 𝑗 𝑖 where 𝑓𝑡 𝑗 is a time-varying macro effect or “common

factor" and 𝛾 𝑗 𝑖 is an individually heterogeneous response or “factor loading". In studying the

statistical properties of estimators of factor models, most theoretical treatments have relied on

asymptotic expansions where the number of time periods 𝑇 grows large with the number of cross-

sectional units 𝑁 . As the vast majority of microeconometric data sets have only a few time periods,

the recent literature assumes 𝑇 is fixed while 𝑁 goes to infinity.

One of the most popular approaches is the common correlated effects (CCE) estimator of

Pesaran (2006). He assumes that the covariates are a linear function of the common factors plus

a matrix of independent idiosyncratic errors. The pooled CCE estimator comes from the OLS

regression which estimates unit-specific slopes on the cross-sectional averages of the dependent

and independent variables. CCE is similar to a fixed effects treatment which seeks to eliminate the

factors and remove a source of both endogeneity and cross-sectional dependence. Consistency and

asymptotic normality was originally proved for sequences of 𝑁 and 𝑇 going to infinity.

Recent work extends the CCE framework to a fixed-𝑇 setting. De Vos and Everaert (2021)

derive a fixed-𝑇 consistency correction for the dynamic CCE estimator but requires 𝑇 → ∞ for

asymptotic normality. Westerlund et al. (2019) provide the first asymptotic normality derivation

of pooled CCE when 𝑇 is fixed and 𝑁 → ∞. However, they still maintain stringent assumptions

on the model’s DGP. For example, they assume that the factor loadings are independent of the

idiosyncratic errors. My estimators do not require this assumption for consistency, though making
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it simplifies the standard errors. Further, the CCE estimator generally uses more factor proxies

than necessary which can lead to inefficiency. Finally, the CCE estimator requires 𝑇 > 𝐾 + 1

which is highly restrictive in microeconometric settings. For example, an intervention analysis

with only pre-treatment, treatment, and post-treatment observations, classical CCE would require

the treatment indicator to be the only regressor.

Aside from CCE, most existing fixed-𝑇 techniques create moment conditions by including

additional parameters to estimate or by eliminating the factors with observed proxies. A few

examples include Hayakawa (2012), Ahn et al. (2001, 2013), Robertson and Sarafidis (2015), and

Juodis and Sarafidis (2018, 2020)1. Of these approaches, I focus on Ahn et al. (2013), who define

a parameterized quasi-long-differencing (QLD) transformation that eliminates the factor structure.

The QLD residuals then form the basis for a GMM estimator which uses all available exogenous

variables to generate moment conditions. I focus on the QLD technique for the sake of comparison

to CCE as both approaches eliminate the factor structure and allow for “fixed effects" assumptions.

For example, Robertson and Sarafidis (2015) parameterize the correlation between the exogenous

variables and the factor loadings. Ahn (2015) points out that if the factor loadings’ distributions

change over the cross-sectional units, identification in Robertson and Sarafidis (2015) does not

hold.

Ahn et al. (2013) do not assume a pure factor structure in the covariates like Pesaran (2006)

and leaves the distribution of the covariates unspecified. However, the generality of Ahn et al.

(2013) comes at the cost of identifying assumptions, which may explain its lack of use in the

empirical literature. The QLD GMM estimator requires many moments to identify all the model’s

parameters. If either 𝑇 or the number of factors is large, their GMM estimator may require

outside instruments. Their estimator also requires nonlinear optimization with a large number of

moments and parameters. Hayakawa (2016) provides a simple example where the global identifying

assumptions fail and there exist local stationary points.
1Juodis and Sarafidis (2021) allows for a linear estimator which requires no additional parameters, However, the

fixed-𝑇 analysis requires strong assumptions on the loadings which this paper avoids. See Assumption S.1.1(d) in their
Appendix.
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I synthesize both approaches and weaken both the Pesaran (2006) and Ahn et al. (2013)

assumptions. I use a weakened CCE model without any independence assumptions to provide

a first-stage estimator of the additional QLD parameters. Using the QLD transformation, I then

derive pooled and mean group linear estimators and provide standard errors which are valid even

when the heterogeneity is correlated with the model’s errors. These novel estimators have desirable

rank conditions and do not require outside instruments like in Ahn et al. (2013). They also do

not restrict the number of covariates to be less than the number of time periods minus one, an

improvement over fixed-𝑇 CCE. Simulations suggest that the linear QLD estimators outperform

the CCE and QLD GMM estimators in finite samples.

Another potential source of heterogeneity in linear models comes from the slope coefficients

on the observed variables of interest. Pesaran (2006) proves fixed-𝑇 consistency of the mean group

CCE estimator under random slopes but assumes they are independent of everything else in the

model. Asymptotic normality requires 𝑇 → ∞ and pooled CCE is studied under constant slopes.

I prove fixed-𝑇 consistency and asymptotic normality of the new pooled and mean group QLD

estimators. I show that the first-stage estimation of the QLD parameters does not affect consistency,

which mirrors the pooled OLS result of Wooldridge (2005), who assumes known factors. To the

best of my knowledge, this paper is the first to consider arbitrary random slopes in the context of

fixed-𝑇 panels with factor-driven endogeneity.

The rest of the paper is structured as follows: Section 3.2 describes the main model of interest

which is weaker than that in Westerlund et al. (2019). Section 3.3 provides the assumptions

which underlie the model and discusses implementation of the QLD-based estimators. Section

3.4 introduces random slopes. Section 3.5 provides simulation evidence for the finite sample

properties of the QLD estimators. Section 3.6 compares the pooled QLD estimator to two-way

fixed effects (TWFE) and CCE in estimating the effect of education expenditure on standardized

test performance using a school district-level data set from the state of Michigan. Section 3.7

concludes with a brief summary and suggestions for future research.
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3.2 Model

This section lays out the models considered in Westerlund et al. (2019) and Ahn et al. (2013), the

fixed-𝑇 CCE and QLD approaches respectively. Throughout the paper, the equation of interest is

𝒚𝑖 = 𝑿𝑖𝜷0 + 𝑭0𝜸𝑖 + 𝒖𝑖 (3.2.1)

where 𝒚𝑖 is a 𝑇 × 1 vector of outcomes, 𝑿𝑖 is 𝑇 × 𝐾 matrix of covariates, 𝑭0 is a 𝑇 × 𝑝0 matrix of

factors common to all units in the population, 𝜸𝑖 is a 𝑝0 × 1 vector of factor loadings, 𝒖𝑖 is a 𝑇 × 1

vector of idiosyncratic shocks. A ‘0’ subscript denotes the true or realized value of an unobserved

parameter. 𝑝0 is then unobserved because 𝑭0 and 𝜸𝑖 are unobserved. Later, 𝑝 denotes the number

of factors specified by the econometrician. 𝜷0 is the object of interest and the factor structure 𝑭0𝜸𝑖

is treated as a collection of nuisance parameters.

This paper defines 𝑝0 as the number of factors whose loadings correlate with 𝑿𝑖. This interpre-

tation is similar to Ahn et al. (2013) and implicit to the CCE model as discussed in the following

section. One justification of this interpretation is to write the full error as 𝑫0𝝆𝑖 + 𝝐𝑖 where 𝑫0 is a

possibly infinite dimensional matrix of common factors and 𝝐𝑖 is a vector of idiosyncratic errors.

Then 𝑭0𝜸𝑖 is the set of variables from 𝑫0𝝆𝑖 which are correlated with 𝑿𝑖 and the rest are absorbed

into the error. However, it is entirely likely that 𝜸𝑖 is correlated with the other loadings which are

uncorrelated with 𝑿𝑖. This correlation can cause problems for inference and is addressed in Section

3.3.

Finally, I assume the factors in 𝑭0 are constant for the purpose of asymptotic analysis. The

alternative setting is to assume the factors are stochastic and independent of the other terms, or make

the modeling assumptions conditional on the sigma-algebra generated by the factors like in Ahn et

al. (2013). When 𝑇 is fixed, the stochastic nature of the factors is less relevant for the asymptotic

arguments. Standard errors do not change as properly studentized test statistics converge to their

usual distributions2. As such, I consider the standard microeconometric assumption of random
2See Section 6 of Andrews (2005).
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sampling in the cross-section. Hsiao (2018) provides examples of papers which make either the

fixed or random assumption on the factors.

3.2.1 Common Correlated Effects

The CCE model in Pesaran (2006) and Westerlund et al. (2019) adds an additional reduced form

equation which represents the relationship between the covariates and the factor structure:

𝑿𝑖 = 𝑭0𝚪𝑖 + 𝑽𝑖 (3.2.2)

where 𝚪𝑖 is a 𝑝0 × 𝐾 matrix of factor loadings and 𝑽𝑖 is a 𝑇 × 𝐾 matrix of idiosyncratic errors.

Westerlund et al. (2019) follows Pesaran (2006) in assuming 𝑽𝑖, 𝚪𝑖, 𝜸𝑖, and 𝒖𝑖 are mutually

independent3. Assuming that the idiosyncratic errors have mean zero, CCE estimates the factors

with the matrix 𝑭 = (𝒚, 𝑿) where (𝒚, 𝑿) = 1
𝑁

∑𝑁
𝑖=1(𝒚𝑖, 𝑿𝑖) are the cross-sectional averages of 𝒚𝑖

and 𝑿𝑖.

The pooled common correlated effects (CCEP) estimator treats the cross-sectional averages

as fixed effects and can be represented as

𝜷𝐶𝐶𝐸𝑃 =

(
𝑁∑︁
𝑖=1

𝑿′
𝑖𝑴𝑭𝑿𝑖

)−1 𝑁∑︁
𝑖=1

𝑿′
𝑖𝑴𝑭𝒚𝑖 (3.2.3)

where 𝑴𝑭 = 𝑰𝑇 − 𝑭(𝑭′𝑭)+𝑭′. Here ′+′ denotes a Moore-Penrose inverse which can be replaced

by a proper inverse in samples where 𝑭′𝑭 has full rank. Pesaran (2006) derives the CCE estimator

under the following intuition: first, write 𝒁𝑖 = (𝒚𝑖, 𝑿𝑖). The two models in equations (3.2.1) and

(3.2.2) imply

𝐸 (𝒁𝑖) = 𝑭0𝐸 (𝑪𝑖)𝑸 (3.2.4)

where 𝑪𝑖 = (𝜸𝑖, 𝚪𝑖) and

𝑸 =
©­­«

1 01×𝐾

𝜷0 𝑰𝐾

ª®®¬
3Westerlund et al. (2019) assume the loadings come from a fixed series of constant matrices which is more general

than the Pesaran (2006) assumption that the loadings are iid.
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Thus, 𝑴𝑭 asymptotically eliminates the space spanned by 𝑭0 which includes 𝑭0𝜸𝑖.

Westerlund et al. (2019) show that 𝑴𝑭 generally converges to the space orthogonal to both

𝑭 and a random term which is a function of the model’s idiosyncratic errors. For the sake of

simplicity, suppose that 𝑴𝑭

𝑝
→ 𝑴𝑭0 which is the case when 𝑝0 = 𝐾 + 1. Then the pooled CCE

estimator is based off of the moment conditions

𝐸 (𝑿′
𝑖𝑴𝑭0 (𝒚𝑖 − 𝑿𝑖𝜷)) = 0

Assuming 𝐸 (𝑽𝑖) = 0 as in Pesaran (2006) and Westerlund et al. (2019), the reduced form portion

of the CCE model also implies 𝐸 (𝑴𝑭0𝑿𝑖) = 0. Since the CCE approach estimates no parameters

in this set of moments, the additional moments are unused by the CCE residual above. I show how

these reduced form moments can be exploited for additional information in Section 3.3.

A particularly harsh restriction of the pooled CCE estimator is the rank condition required for

the denominator. 𝑴𝑭 is a residual-maker matrix and so it has rank 𝑇 − (𝐾 + 1). For the estimator

to be well-defined, we require 𝑇 > 𝐾 + 1. This constraint is trivially nonbinding when 𝑇 → ∞

like in the prior literature. However, when 𝑇 is fixed like in this paper, we need 𝐾 < 𝑇 − 1. For

example, if we only observe three time periods, we can only incorporate one regressor. Also, when

𝐾 +1 > 𝑝0, the CCE estimator unnecessarily removes variation from the data which could improve

precision of the estimator. I address both of these problems in Section 3.2.2.

3.2.2 Quasi-long-differencing

Ahn et al. (2013) do not assume the pure factor structure in 𝑿𝑖. They start with equation (3.2.1)

then parameterize the factors for the purpose of eliminating them. Before discussing how this

process works, I introduce the ‘rotation problem’, a well-known issue in the factor literature. Since

both 𝑭 and 𝜸𝑖 are unobservable, they cannot be separately identified. To see why, consider any

nonsingular 𝑝 × 𝑝 matrix 𝑨. Then 𝑭0𝚪𝑖 = 𝑭∗𝚪∗
𝑖 where 𝑭∗ = 𝑭0𝑨 and 𝚪∗

𝑖 = 𝑨−1𝚪𝑖. We can only

hope to identify the factors up to an arbitrary rotation of their linear subspace. Ahn et al. (2013)
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suggest the following 𝑝2
0 normalizations based off of a row-reduction rotation:

𝑭0 = (𝚯′
0,−𝑰𝑝0)′ (3.2.5)

where𝚯0 is a (𝑇 − 𝑝0) × 𝑝0 matrix of unrestricted parameters. The given normalization is irrelevant

because I am not interested in estimating 𝑭0. In this case, I only assume that the factors are full

rank; the normalization chosen merely reflects this fact.

Given the normalization of the general factor matrix 𝑭0 in equation (3.2.5), Ahn et al. (2013)

define the quasi-long-differencing (QLD) matrix

𝑯(𝜽0) =
©­­«
𝑰𝑇−𝑝0

𝚯′
0

ª®®¬ (3.2.6)

where 𝜽0 = vec(𝚯0). The QLD transformation eliminates the factors for any given 𝜽0: 𝑯(𝜽0)′𝑭(𝜽0) =

0. This differencing technique allows for the construction of the QLD residual studied in Ahn et al.

(2013):

𝐸 (𝒘𝑖 ⊗ 𝑯(𝜽0)′(𝒚𝑖 − 𝑿𝑖𝜷0)) = 0 (3.2.7)

where 𝒘𝑖 is a vector of instruments which may contain vec(𝑿𝑖). The normalization in (3.2.5) and

implicit in (3.2.6) is only one particular choice of rotation. The Ahn et al. (2013) estimator depends

on the choice of normalization which is unaddressed in the original paper. I discuss this issue in

the Appendix and provide potential solutions for the estimators derived in Section 3.2.

While Ahn et al. (2013) provide a general framework for estimating 𝜷0 without strong restric-

tions on the distribution of 𝑿𝑖, it requires at least 𝑝0 + 𝐾/(𝑇 − 𝑝0) instruments in 𝒘𝑖 to identify

all of the model’s parameters. If some of the variables are not exogenous in each time period

like with weakly exogenous or predetermined variables, or if 𝑝0 is large, we may require outside

instruments. Hayakawa (2016) demonstrates an example where the objective function based off of

equation (3.2.7) suffers from non-global stationary points due to the nonlinear nature of estimation

with a large number of moments and parameters.
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The pure factor structure in equation (3.2.4) can thus be used for estimating the parameters in

equation (3.2.6). If we assume 𝑿𝑖 = 𝑭0𝚪𝑖 + 𝑽𝑖 where 𝐸 (𝑽𝑖) = 0, then

𝐸 (𝑯(𝜽0)′𝒁𝑖) = 0 (3.2.8)

and 𝜽0 is identified by equation (3.2.8) which substantially reduces the number of moments needed

to identify 𝜷0. I also show explicitly in the following section how and when these additional

moments are useful for the purpose of identification and efficiency.

3.3 Estimation

I now state this paper’s primary assumptions. The first assumption is similar to the ’Basic As-

sumptions’ of Ahn et al. (2013) and is made for the sake of comparison to their approach. The

second set specifies the pure factor structure in 𝑿𝑖 similar to Westerlund et al. (2019). I specify

the models in the assumptions as the main results of the paper depend on which model is being

assumed. Conditional moments hold almost surely.

Assumption 1 (Linear population model):

1. 𝒚𝑖 = 𝑿𝑖𝜷0 + 𝑭0𝜸𝑖 + 𝒖𝑖.

■

Assumption 2 (CCE reduced form equations):

1. 𝑿𝑖 = 𝑭0𝚪𝑖 + 𝑽𝑖 .

2. (𝜸𝑖, 𝚪𝑖,𝑽𝑖, 𝒖𝑖) are independent and identically distributed across 𝑖 with finite fourth moments.

3. 𝐸 (𝑽𝑖) = 0 and 𝐸 (𝒖𝑖 |𝑽𝑖) = 0.

4. Rk(𝑭0) = 𝑝0 and Rk(𝐸 ( [𝜸𝑖, 𝚪𝑖])) = 𝑝0 ≤ 𝐾 + 1.

■

Assumption 1 simply defines the relevant population model. I will not require the strong rank

conditions of Ahn et al. (2013) which can be found in the Appendix, nor will I require outside
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instruments. Assumption 2 specifies the pure factor assumption similar to Pesaran (2006) and

Westerlund et al. (2019). I assume random sampling in the cross-section to simplify the asymptotic

analysis, though this restriction is unnecessary.

Westerlund et al. (2019) follow the classical CCE approach in assuming independence between

all stochastic components of the model which is unrealistic in microeconometric settings. Further,

the asymptotic normality derivation in Westerlund et al. (2019) relies on the assumption that
1
𝑁

∑𝑁
𝑖=1 𝜸

′
𝑖
⊗ 𝑽′

𝑖
= 𝑂𝑝 (𝑁−1/2). I demonstrate in Section 3.3.2 that it is unnecessary for consistency

and asymptotic normality, and how misspecification causes inconsistency in the standard errors

and bootstrapped test statistics provided in Westerlund et al. (2019). The factor structure allows us

to weaken the Ahn et al. (2013) assumption from 𝐸 (𝒖𝑖 |𝑿𝑖) = 0 to 𝐸 (𝒖𝑖 |𝑽𝑖) = 0. Finally, I do not

assume the reduced form equation is a conditional mean specification like Westerlund et al. (2019).

They assume 𝐸 (𝑽𝑖 |𝚪𝑖) = 0, where I only need 𝐸 (𝑽𝑖) = 0 and place no restrictions on 𝐷 (𝑽𝑖 |𝒖𝑖).

Another way in which QLD can help weaken the CCE model is the relevant order conditions.

As described earlier, Westerlund et al. (2019) require 𝑇 > 𝐾 + 1 for CCE estimation but I will

directly use the moments 𝐸 (𝑯′
0𝒁𝑖) = 0 to remove the factors which only requires 𝐾 ≥ 𝑝0 + 1,

a restriction also made by Pesaran (2006) and Westerlund et al. (2019). Ahn et al. (2013)

does not require this condition but assumes the existence of outside instruments which may be

infeasible given the application. I also discuss in Section 3.3.2 how to include known factors like a

heterogeneous intercept which decreases the number of relevant factors and makes the assumption

even less restrictive.

3.3.1 CCE Moment Conditions

I now look at the moment conditions implied by Assumption 2. Equation (3.2.8) of Section 3.2,

𝐸 (𝑯′
0𝒁𝑖) = 0 where 𝒁𝑖 = (𝒚𝑖, 𝑿𝑖), implies that Assumption 2 provides information on 𝜽0 which

leads to more efficient estimation of 𝜷0 and provides a first-stage estimator which negates the need

for the full joint estimator of Ahn et al. (2013). I first consider identification of 𝜽0 from the

pure factor structure alone to show that it in fact yields valid moments. As in Ahn et al. (2013),
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identification hinges on correctly specifying 𝑝 = 𝑝0 where 𝑝 is the number of factors specified by

the econometrician.

Lemma 3.3.1. Under Assumption 2, 𝜽0 is identified by 𝐸 (𝑯(𝜽)′𝒁𝑖) = 0 if and only if 𝑝 = 𝑝0.

Proof. Assumption 2(3) implies

𝐸 (𝑯(𝜽)′𝒁𝑖) = 𝑯(𝜽)′𝑭0𝐸 (𝑪𝑖)𝑸 (3.3.1)

where 𝑬 (𝐶𝑖) = 𝐸 ( [𝜸𝑖, 𝚪𝑖]) and 𝑸 is given in Section 3.2.1. 𝑸 is nonsingular and 𝐸 (𝑪𝑖) has full

row rank by Assumption 2(4), so equation (3.3.1) is zero if and only if 𝑯(𝜽)′𝑭0 = 0. When 𝑝 = 𝑝0,

𝐻 (𝜽)′𝑭0 = 𝚯0 −𝚯 which is zero if and only if 𝜽 = 𝜽0. See the Appendix for the 𝑝 ≠ 𝑝0 cases. □

Remark (Misspecification): A possible reason for the lack of use of CCE estimation among

microeconomists is the model in Assumption 2(1). This assumption is in fact not strictly necessary

for identifying 𝜽0. Consider the following linear projection:

𝐸 (𝒁𝑖) = 𝑭0𝑮 + 𝑬

where 𝑭′
0𝑬 = 0. Then 𝜽0 is still identified by the moments 𝐸 (𝑯(𝜽)′𝒁𝑖) if 𝑮 has full rank. ■

We can use Lemma 3.3.1 to provide an estimator of 𝜽0 based off of the covariates alone. Let

𝑯 = 𝑯(𝜽), 𝑫𝜽 = 𝐸 (∇𝜽vec(𝑯′
0𝑿𝑖)), and 𝑨𝜽 = 𝐸 (vec(𝑯′

0𝒁𝑖)vec(𝑯′
0𝒁𝑖)

′).

Theorem 3.3.1. Suppose Assumption 2 holds, and let 𝜽 be the GMM estimator based off of

𝐸 (vec(𝑯′
0𝒁𝑖)) = 0 using a consistent estimator of the optimal weight matrix. Then

1.
√
𝑁 (𝜽 − 𝜽0)

𝑑→ 𝑁 (0,
(
𝑫′

𝜽𝑨
−1
𝜽 𝑫𝜽

)−1).

Now suppose that 𝑨𝜽
𝑝
→ 𝑨𝜽 using first-step estimator 𝜽 .

1. If 𝑝0 = 𝑝 then 𝑁−1
(∑𝑁

𝑖=1 vec(𝑯′𝒁𝑖)
)′
𝑨−1
𝜽

(∑𝑁
𝑖=1 vec(𝑯′𝒁𝑖)

)
𝑑→ 𝜒2((𝑇 − 𝑝0) (𝐾 + 1 − 𝑝0)).

2. If 𝑝0 > 𝑝, then 𝑁−1
(∑𝑁

𝑖=1 vec(𝑯′𝒁𝑖)
)′
𝑨−1
𝜽

(∑𝑁
𝑖=1 vec(𝑯′𝒁𝑖)

)
𝑝
→ ∞.
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Proof. The proof comes from standard theory; see Hansen (1982). The estimator of the optimal

weight matrix is 𝑨𝜽 = 1
𝑁

∑𝑁
𝑖=1 vec(𝑯(𝜽)′𝒁𝑖)vec(𝑯(𝜽)′𝒁𝑖)′ where 𝜽 is a consistent first-stage

estimator of 𝜽0. □

It is entirely possible there are variables in the data set which are linear in the factors but not

relevant for estimation. In this case, one can simply use them to estimate 𝜽0 but drop them from the

estimating equation. Further, if relevant variables are not linear in 𝑭0, they should be dropped from

the estimation in Theorem 3.3.1. This can occur if there are polynomial or interactive functions

of the covariates in the estimating equation. De Vos and Westerlund (2019) study this case in the

context of CCE.

I also note that the just identified case 𝑝0 = 𝐾 + 1 corresponds to a simple M-estimator:

Corollary 3.3.1. When 𝑝0 = 𝐾 + 1, the estimator 𝜽 solves

𝑯′(𝒚, 𝑿) = 0

Corollary 3.3.1 provides important robustness properties in Section 3.3. For now, I point out

how Theorem 3.3.1 can help test for 𝑝0. There are (𝑇 − 𝑝0) (𝐾 + 1) moments and (𝑇 − 𝑝0)𝑝0

parameters, so the system is underidentified when 𝐾 + 1 < 𝑝0 and just identified like in Corollary

3.3.1 when 𝐾 + 1 = 𝑝0. When 𝐾 + 1 > 𝑝0, we have overidentifying restrictions to test for 𝑝0. Ahn

et al. (2013) recommend testing for 𝑝0 by first setting 𝑝 = 0 and setting 𝑯 = 𝑰𝑇 . If the hypothesis

is rejected using the statistic in part (2) of Theorem 3.3.1, move to 𝑝 = 1. Continue until the null

hypothesis cannot be rejected. I refer the reader to Section 3 of Ahn et al. (2013) for additional

details and tests. I follow a similar approach to testing based off of the moments in Theorem 3.3.1.

I now demonstrate that the additional moments generally improve efficiency of the Ahn et al.

(2013) GMM estimator by demonstrating that the CCE model’s reduced form assumption implies

additional non-redundant moment conditions. The following theorem completely characterizes

when the moments 𝐸 (𝑯′
0𝑿𝑖) = 𝐸 (𝑯

′
0𝑽𝑖) = 0 are partially redundant for estimating 𝜷0 using the Ahn

et al. (2013) estimator, meaning its asymptotic variance is the same with or without the additional

moments. I do not include 𝐸 (𝑯′
0𝒚𝑖) = 0 because the efficiency result would require additional
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assumptions on𝑉𝑎𝑟 (𝒖𝑖). Let 𝒈𝑖1(𝜷, 𝜽) = vec(𝑿𝑖) ⊗ 𝑯(𝜽)′(𝒚𝑖 − 𝑿𝑖𝜷) and 𝒈𝑖2(𝜽) = 𝑯(𝜽)′𝑽𝑖 be the

residuals associated with the moment conditions from equations (3.2.7) and (3.2.8) respectively.

Let 𝑫11 = 𝐸 (∇𝜷𝒈𝑖1(𝜷0, 𝜽0)), 𝑫12 = 𝐸 (∇𝜽 𝒈𝑖1(𝜷0, 𝜽0)), and 𝛀11 = 𝑉𝑎𝑟 (𝒈𝑖1(𝜷0, 𝜽0)).

Theorem 3.3.2. Given Assumptions 1 and 2, suppose 𝐸 (𝒖𝑖 |𝑿𝑖) and the Identifying Assumptions

in the Appendix hold. Then the moment conditions 𝐸 (𝒈𝑖2(𝜽0)) = 0 are partially redundant for

estimating 𝜷0 if and only if

𝑫′
12𝛀

−1
11 𝑫11 = 0 (3.3.2)

Proof. See Appendix for proof. The extra assumptions are only needed so that (𝜷′0, 𝜽
′
0)

′ are

identified by 𝐸 (𝒈𝑖1(𝜷0, 𝜽0)) = 0 and are equivalent to the Basic Assumptions of Ahn et al. (2013).

I assume 𝐸 (𝒖𝑖 |𝑿𝑖) = 0 whereas Assumption 2 implies the weaker 𝐸 (𝒖𝑖 |𝑽𝑖) = 0. I make the stronger

exogeneity assumption for simplicity, though the moment conditions in 𝒈𝑖1 could be reformulated

with 𝑯′
0𝑽𝑖 ⊂ 𝒘𝑖. □

There is no reason to believe equation (3.3.2) holds in general, and so the additional moments

improve the efficiency of estimating 𝜷0 using the QLD residual in equation (3.2.7). Trivial cases

where equation (3.3.2) holds includes 𝜽0 being known to the researcher and 𝑝0 = 0.

3.3.2 Pooled and Mean Group QLD

The QLD GMM approach of Ahn et al. (2013) can select appropriate instruments for a given

time period. However, an abundance of moment conditions can induce finite-sample bias and local

stationary points in the GMM objective function. This section introduces the linear pooled and

mean group estimators based off of the QLD transformation. They allow for a variety of rank

and exogeneity conditions which are especially useful when the researcher includes heterogeneous

slopes in the model, like in Section 3.4. I propose first estimating the parameters 𝜽0 using the pure

factor structure assumed in 𝒁𝑖 and then running the relevant regressions using the “defactored" data

66



𝑯′𝒚𝑖 and 𝑯′𝑿𝑖:

𝜷𝑄𝐿𝐷𝑃 =

(
𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝑿𝑖

)−1 𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝒚𝑖 (3.3.3)

𝜷𝑄𝐿𝐷𝑀𝐺 =
1
𝑁

𝑁∑︁
𝑖=1

(𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1𝑿′

𝑖𝑯𝑯′𝒚𝑖 (3.3.4)

The pooled quasi-long-differencing (QLDP) estimator defined by equation (3.3.3) is the pooled

OLS estimator from regressing 𝑯′𝒚𝑖 on 𝑯′𝑿𝑖. A similar estimator was mentioned in Breitung and

Hansen (2020) but not thoroughly studied. The mean group quasi-long-differencing (QLDMG)

estimator defined by equation (3.3.4) can be obtained by running the 𝑇 − 𝑝 observation time series

regression 𝑯′𝒚𝑖 on 𝑯′𝑿𝑖 for each 𝑖, and then averaging each of the 𝑁 estimates. It should be noted

that 𝑯′ can be used to “defactor" any variables which are linear in 𝑭0 and not just those used in the

estimator of 𝜽0. This observation allows for 2SLS estimation using outside instruments.

Intuitively, the mean group estimator should allow for arbitrarily random slopes at the cost

of rank assumptions and precision. If the model is thought to have homogeneous slopes, one

should generally choose the pooled estimator over the mean group one. I ignore its asymptotic

properties until Section 3.4 when I introduce random slopes. However, the pooled QLD allows us

to relax the rank conditions used in Ahn et al. (2013) and Westerlund et al. (2019). Instead of

𝐸 (vec(𝑿𝑖) ⊗ 𝑯′
0(𝒚𝑖 − 𝑿𝑖𝜷0)) = 0, we can use the moments 𝐸 (𝑿′

𝑖
𝑯0𝑯

′
0(𝒚𝑖 − 𝑿𝑖𝜷0)) = 0. This

residual represents a just-identified system of moments, requires no outside instruments, and allows

𝐸 (𝜸𝑖𝜸′
𝑖
) and 𝐸 (𝜸𝑖) to be completely arbitrary. Further, since estimation of 𝜽0 comes from the

reduced form moments, I do not require 𝑇 > 𝐾 + 1.

Before proving asymptotic normality, I point out that the case of 𝑝 = 𝐾 + 1 implies a powerful

algebraic fact about the pooled QLD estimator: it is the same whether or not the researcher includes

common variables in the regression. That is, all variables which do not vary over 𝑖 are irrelevant

to the estimation of 𝜷0, which includes time dummies. Further, the pooled QLD residuals are the

same with or without the inclusion of common variables. Note that I say 𝑝 = 𝐾 + 1 instead of

𝑝0 = 𝐾 + 1 as the following theorem is purely algebraic and independent of model specification or

statistical properties.
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Let 𝑾 be a (𝑇 − 𝑝) × 𝑞 matrix of common variables, and let (𝜶̃′, 𝜷̃′)′ be the estimates from the

pooled regression of 𝑯′𝒚𝑖 on 𝑯′[𝑾, 𝑿𝑖]. Finally, let 𝝐̂𝑖 = (𝒚𝑖−𝑿𝑖𝜷𝑄𝐿𝐷𝑃) and 𝝐𝑖 = (𝒚𝑖−𝑿𝑖 𝜷̃−𝑾𝜶̃)

be the associated residuals.

Theorem 3.3.3. Suppose 𝑝 = 𝐾 + 1. If Rk(𝑯′𝑾) = 𝑞, then

1. 𝜷𝑄𝐿𝐷𝑃 = 𝜷̃.

2. 𝜶̃ = 0.

3. 𝝐̂𝑖 = 𝝐𝑖.

Proof. By Corollary 3.3.1, the first-stage estimator 𝜽 solves 𝑯′[𝒚, 𝑿] = 0.

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑾 = 𝑁𝑿

′
𝑯𝑾 = 0

by Corollary 3.3.1, so 𝑯′𝑿𝑖 and 𝑾 are uncorrelated in the sample. Thus 𝜷̃𝑄𝐿𝐷𝑃 = 𝜷𝑄𝐿𝐷𝑃. Using

the same argument,

𝜶̃ =

(
𝑁∑︁
𝑖=1

𝑾′𝑯𝑯′𝑾

)−1 𝑁∑︁
𝑖=1

𝑾′𝑯𝑯′𝒚𝑖

= 𝑁

(
𝑾′𝑯𝑯′𝑾

)−1
𝑾′𝑯𝑯′𝒚 = 0

As 𝜶̃ = 0 and 𝜷̃ = 𝜷𝑄𝐿𝐷𝑃, we have 𝝐𝑖 = 𝝐̂𝑖. □

The above result suggests that when 𝑝 = 𝐾+1, the QLD matrix suffices to remove all unobserved

time effects in the population, even those which do not interact with the heterogeneity. The intuition

is similar to the ‘zero sum’ class of estimators studied by Westerlund (2019).

It may appear that Theorem 3.3.3 only applies in very special scenarios; however, simulation

evidence in the Appendix suggests that overestimating 𝑝0 does not cause inconsistency. These

results bolster the simulation evidence from Ahn et al. (2013) which suggests the same thing when

using their GMM estimator. Breitung and Hansen (2020) also demonstrate that the Ahn et al.

(2013) estimator performs well under the BIC method of estimating 𝑝0 which has a tendency to
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overestimate the number of factors. Overestimating 𝑝0 includes the case of incorrectly estimating

factors when 𝑝0 = 0. Under strict exogeneity, CCE and QLD procedures will be consistent because

their factor proxies are just functions of the exogenous variables. Reporting the QLDP which takes

𝑝 = 𝐾 + 1 could then serve as a robustness check if the estimated 𝑝0 is less than 𝐾 + 1. This fact is

explored in a brief simulation study in Section 3.5.2.

I now show asymptotic normality for the pooled QLD estimator. I demonstrate how first-stage

estimation of 𝜽0 can affect the asymptotic distribution and show why ignoring this problem leads

to incorrect standard errors even when pooled QLD is asymptotically normal. I briefly discuss why

the standard errors in Westerlund et al. (2019) do not account for this problem. The full proof of

asymptotic normality is given in the Appendix, so I will only sketch the problem here.

Let 𝑨𝑃 = 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖). I show in the Appendix that

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0) = 𝑨−1

𝑃

(
1
√
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′(𝑭0𝜸𝑖 + 𝒖𝑖)

)
+ 𝑜𝑝 (1)

After a mean value expansion about 𝜽0, and using the results from Theorem 3.3.1, the normalized

estimator is

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0) = 𝑨−1

𝑃

1
√
𝑁

𝑁∑︁
𝑖=1

(
𝑽′
𝑖𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0)

)
+ 𝑜𝑝 (1)

where 𝒓𝑖 (𝜽0) is derived from Theorem 1 and 𝑮𝑃 = 𝐸 (∇𝜽𝑿
′
𝑖
𝑯(𝜽)𝑯(𝜽)′(𝑭0𝜸𝑖 + 𝒖𝑖)) evaluated at

𝜽 = 𝜽0. 𝑮𝑃 = 0 when 𝐸 (𝒖𝑖 ⊗ 𝑽𝑖) = 0, 𝐸 (𝒖𝑖 ⊗ 𝚪𝑖) = 0, and 𝐸 (𝑽𝑖 ⊗ 𝜸𝑖) = 0.

I only need exogeneity of𝑽𝑖 with respect to 𝒖𝑖 for asymptotic normality, so the other assumptions

only simplify the asymptotic variance. Westerlund et al. (2019) impose these assumptions which

ignores the effect of first-stage estimation uncertainty. My result thus proves asymptotic normality

of the pooled QLD under weaker assumptions than used in Westerlund et al. (2019) for the pooled

CCE with an even more general asymptotic variance formula. In fact, one could only assume

exogeneity on the last 𝑝0 elements of the differenced quantities, but this assumption is difficult to

interpret. I now state the general asymptotic normality result assuming 𝑝 = 𝑝0 is known due to

Theorem 3.3.1.

Theorem 3.3.4. Given Assumptions 1 and 2, suppose that
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1. 𝑨𝑃 = 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖) has full rank.

2. 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0𝒖𝑖) = 0.

Then 𝜷𝑄𝐿𝐷𝑃
𝑝
→ 𝜷0 and

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0)

𝑝
→ 𝑁 (0, 𝑨−1

𝑃 𝑩𝑃𝑨
−1
𝑃 )

where 𝑩𝑃 = 𝐸 ((𝑽′
𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0)) (𝑽′

𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0))′). If 𝐸 (𝒖𝑖 ⊗ 𝚪𝑖) = 0 and 𝐸 (𝑽𝑖 ⊗

𝜸𝑖) = 0, then 𝑮𝑃 = 0.

Proof. See Appendix for proof and a derivation of 𝑮𝑃 and 𝒓𝑖 (𝜽0). Condition (2) is not practically

weaker than 𝐸 (𝒖𝑖 |𝑽𝑖) = 0 for linear estimation but I state it for completeness. □

Remark (Joint estimation): The two-step procedure is less efficient than joint GMM estimation

using 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0(𝒚𝑖−𝑽𝑖𝜷0)) = 0 and 𝐸 (𝑯′

0𝒁𝑖) = 0 unless 𝑝 = 𝐾 +1; see Ahn and Schmidt (1997).

However, the 𝑝 = 𝐾+1 case confers the advantage of invariance to common variables from Theorem

3.3.3 and appears consistent even when 𝑝0 < 𝑝. There are also optimization issues involved in

joint estimation because the moments which identify 𝜷0 are nonlinear in 𝜽0. ■

Remark (Known factors): Eliminating known factors like random intercepts or polynomial

time trends can make the QLD estimators more precise. Simply remove the known factors from

[𝒚𝑖, 𝑿𝑖] by regressing it, unit-by-unit, onto the known factors, then estimate 𝜽0 as in Theorem 3.3.1

using the residuals. This procedure is equivalent to defining 𝑴 = 𝑰𝑇 − 𝑭1(𝑭′
1𝑭1)−1𝑭′

1, where 𝑭1

are the known factors, and running estimation based off of (𝒚∗
𝑖
, 𝑿∗

𝑖
) = (𝑰𝑁 ⊗ 𝑴) (𝒚𝑖, 𝑿𝑖). ■

Remark (Bootstrap): While I provide analytic inference below, the standard errors can be

quite complicated in general. Regardless of any additional restrictions which can simplify the

calculation of standard errors,
√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0) is asymptotically normal so that one can instead

do inference via the nonparametric bootstrap. Just resample over (𝒚𝑖, 𝑿𝑖), with 𝑯 estimated for

each new sample to account for the first-stage estimation in the final standard errors. This procedure

contrasts to Section 2 of the Supplement to Westerlund et al. (2019) which does not estimate 𝑭

with each new sample. I do not provide a proof of consistency because the problem is standard;
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Westerlund et al. (2019) needed a proof because of the CCE projection matrix has a reduced-rank

limit. ■

The asymptotic variance can be estimated by 𝑨−1
𝑝 𝑩𝑃𝑨

−1
𝑃

where

𝑨𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝑿𝑖

𝑩𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

𝒗̂𝑖𝒗𝑖
′

Here, 𝒗̂𝑖 = 𝑿′
𝑖
𝑯𝑯′𝝐𝑖 + 𝑮𝑃 (𝜽)𝒓𝑖 (𝜽) where 𝝐̂𝑖 = 𝒚𝑖 − 𝑿𝑖𝜷𝑄𝐿𝐷𝑃 is the full pooled QLD residual. The

gradient is

𝑮𝑃 =
1
𝑁

𝑁∑︁
𝑖=1

©­­­­­«
(𝑰𝐾 ⊗ 𝝐̂′𝑖𝑯)

©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+ 𝑿′

𝑖𝑯(𝝐̂∗𝑖 ′ ⊗ 𝑰𝑇−𝑝0)
ª®®®®®¬

(3.3.5)

𝒓𝑖 (𝜽) = (𝑫′
𝜽𝑨

−1
𝜽 𝑫𝜽)−1𝑫′

𝜽𝑨
−1
𝜽 vec(𝑯′𝒁𝑖) (3.3.6)

where a ‘∗’ denotes the last 𝑝0 elements of a 𝑇 × 1 vector. The form for 𝒓𝑖 (𝜽) comes from Theorem

3.3.1 and is derived in the proof of Theorem 3.3.4. The matrix 𝑮𝑃 appears because of correlation

between the full error 𝝐𝑖 = 𝑭0𝜸𝑖 + 𝒖𝑖 and the covariates 𝑿𝑖, and the vector 𝒓𝑖 comes from error in

estimating 𝜽0 in the first stage. The regular cluster-robust standard errors for a pooled regression

are only valid if 𝑮𝑃 = 0. Assuming factor loadings are independent of the errors causes this matrix

to be zero, like in the classical CCE treatments of Pesaran (2006) and Westerlund et al. (2019).

Though the loadings are meant to model the correlation between 𝑿𝑖 and all unobservables, they

may still correlate with the errors due to misspecification. If there are additional factors in 𝒚𝑖 not

in 𝑿𝑖, we can still estimate 𝜷0 but the asymptotic variances will depend on first-stage estimation of

𝜽0. In fact, if we allow for uncorrelated loadings, the CCE and QLD estimators exclude relevant

information for estimation. Additionally assuming 𝐸 (𝑽𝑖 |𝜸𝑖) = 0 like in Westerlund et al. (2019),
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we have:

𝐸 ((𝑯′
0𝑽𝑖) ⊗ 𝑯′

0(𝒚𝑖 − 𝑽𝑖𝜷0)) = 0 (3.3.7)

𝐸 ((𝑯′
0𝑽𝑖) ⊗ (𝒚𝑖 − 𝑿𝑖𝜷0)) = 0 (3.3.8)

𝐸 (𝑿𝑖 ⊗ 𝑯′
0(𝒚𝑖 − 𝑽𝑖𝜷0)) = 0 (3.3.9)

𝐸 (𝑯′
0(𝒚𝑖 − 𝑽𝑖𝜷0)) = 0 (3.3.10)

𝐸 (𝑯′
0𝑽𝑖) = 0 (3.3.11)

Equations (3.3.7)-(3.3.11) list (𝑇 − 𝑝0) ((𝑇 − 𝑝0)𝐾 + 2𝑇𝐾 + 𝐾 + 1) moment conditions which

displays the strength of the CCE assumptions made in current applications. Without at least

theoretically justifying 𝐸 (𝑽𝑖 ⊗ 𝜸𝑖) = 0, CCE-based inference needs a modern treatment which

accounts for first-stage estimation as in Brown et al. (2021). To summarize, if the loadings are

allowed to be correlated, then the pooled CCE standard errors from Pesaran (2006) and Westerlund

et al. (2019) are incorrect. If the loadings are assumed uncorrelated, then we have a significant

number of unused moment restrictions. In fact, if first-stage estimation does not affect the asymptotic

distribution, and the conditional covariance 𝐸 (𝒖𝑖𝒖′𝑖 |𝑿𝑖) is estimable, the feasible version of the GLS

estimator from Section 3.2 of Brown (2021) is
√
𝑁-consistent and efficient among all estimators

based off of 𝐸 (𝑴𝑭0 (𝒚𝑖 − 𝑿𝑖𝜷0)) = 0 in which case all the moments in equations (3.3.7)-(3.3.11)

are redundant.

3.4 Heterogeneous Slopes

I now consider a generalization of the population model in equation (3.2.1) which allows for random

slopes.

𝒚𝑖 = 𝑿𝑖𝜷𝑖 + 𝑭0𝜸𝑖 + 𝒖𝑖 (3.4.1)

𝜷𝑖 = 𝜷0 + 𝒃𝑖 (3.4.2)

𝒃𝑖 ∼ (0,𝚺) (3.4.3)

The random slopes model is identical to the forms in Wooldridge (2005) and Pesaran (2006) though

the former assumes 𝑭0 is observable. Neither Ahn et al. (2013) nor Westerlund (2019) consider
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random slopes in their fixed-𝑇 analyses. I summarize this model in the following assumption:

Assumption 3 (Random slopes):

1. 𝒚𝑖 = 𝑿𝑖 (𝜷0 + 𝒃𝑖) + 𝑭0𝜸𝑖 + 𝒖𝑖.

2. (𝑿𝑖, 𝒃𝑖, 𝜸𝑖, 𝒖𝑖) are independent and identically distributed across 𝑖 with finite fourth moments.

3. 𝐸 (𝒃𝑖) = 0.

■

The iid sampling assumption on 𝒃𝑖 does not rule out correlation between 𝒃𝑖 and the other

stochastic components of the model. Similarly, Assumption 3(3) places no restrictions on the

correlation between 𝒃𝑖 and 𝑿𝑖. It only states that 𝒃𝑖 is the heterogeneous, unobserved deviation

from the population parameters 𝜷0.

Most fixed-𝑇 treatments of random slope models either exclude factors altogether or simplify

the factor structure as in a fixed effects analysis. Examples of fixed effects treatments include Juhl

and Lugovskyy (2014) Campello et al. (2019), and Breitung and Salish (2021). Though Pesaran

(2006), Chudik and Pesaran (2015), Neal (2015), and Norkutė et al. (2021) allow for random slopes

and arbitrary factors, they require𝑇 to grow to infinity and make strong exogeneity conditions which

I avoid.

Before continuing with the analysis, I want to address how the random slopes model changes

first-stage estimation of 𝜽0. The pure factor model for 𝒁𝑖 in equation (3.2.4) now takes the form

𝐸 (𝒁𝑖) = 𝑭0𝐸 (𝑪𝑖𝑸𝑖) + 𝐸 (𝑼𝑖𝑸𝑖)

where 𝑼𝑖 = [𝒖𝑖,𝑽𝑖]. In order for the identification result in Lemma 3.3.1 to hold, we need two

additional conditions. First, Rk(𝐸 (𝑪𝑖𝑸𝑖)) = 𝑝0, which is reasonable given Assumption 1. We

also need 𝐸 (𝑸𝑖𝑼𝑖) = 0 which necessitates 𝐸 (𝜷′
𝑖
𝒗𝑖𝑡) = 0 for each 𝑡, implying that 𝒃𝑖 and 𝒗𝑖𝑡 are

uncorrelated but allows arbitrary correlation between 𝒃𝑖 and (𝜸𝑖, 𝚪𝑖). We could instead estimate 𝜽0

based off of 𝐸 (𝑯′
0𝑿𝑖) = 𝐸 (𝑯

′
0𝑽𝑖) = 0 and require 𝑝0 ≤ 𝐾 instead of 𝐾 + 1. The robustness result

of Theorem 3.3.3(1) holds for 𝑝 = 𝐾 but parts (2) and (3) are not necessarily true.
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Remark (Testing for random slopes): Assumption 2 allows us to test for correlated random

slopes. Assuming that 𝑝0 < 𝐾 + 1, we can test the model 𝐸 (𝑯′
0𝒁𝑖) = 0 using the standard

overidentifying restrictions test. The moments are zero under Assumptions 2 and 3 only when 𝜷𝑖

is uncorrelated with 𝑽𝑖. ■

The remainder of this section assumes 𝜽0 is derived from the reduced form moments 𝐸 (𝑯′
0𝑽𝑖) =

0 with an analogous result to Theorem 1 to avoid uncertainty related to the overidentifying restric-

tions test. I first consider the Ahn et al. (2013) estimator in the presence of random slopes. The

GMM estimator cannot estimate the individual random slopes due to the well-known incidental

parameters problem. As such, I consider estimation which ignores the random slopes so that 𝑿𝑖𝒃𝑖

is absorbed into the error. The Ahn et al. (2013) expected residual becomes

𝐸 (vec(𝑿𝑖) ⊗ 𝑯′
0(𝒚𝑖 − 𝑿𝑖𝜷0)) = 𝐸 (vec(𝑿𝑖) ⊗ 𝑯′

0𝑿𝑖𝒃𝑖) (3.4.4)

Theorem 3.4.1. Under Assumptions 1 and 3, (𝜷′0, 𝜽
′
0)

′ is identified by equation (3.4.4) if and only

if

𝐸 (vec(𝑿𝑖) ⊗ 𝑯′
0𝑽𝑖𝒃𝑖) = 0

Proof. The proof is a corollary of the identification result presented in Section 3.1 of Ahn et al.

(2013). □

Murtazashvili and Wooldridge (2008) consider IV estimation with random slopes and known

factors. The exogeneity condition in Theorem 3.4.1 can depend on the type of instruments available.

If there is a vector 𝒘𝑖 of outside instruments, one sufficient condition is

𝐶𝑜𝑣(𝑯′
0𝑿𝑖, 𝒃𝑖 |𝒘𝑖) = 𝐶𝑜𝑣(𝑯

′
0𝑿𝑖, 𝒃𝑖) = 0 (3.4.5)

which is similar to Assumption 3.3 of Murtazashvili and Wooldridge (2008).

With strictly exogenous covariates, the exogeneity condition is more similar to equations (12)

and (13) of Wooldridge (2005) who considers fixed effects OLS. Wooldridge shows that pooled

OLS is robust to heterogeneous slopes which are uncorrelated with the matrix of second moments

of the defactored covariates; that is 𝐸 (𝑿′
𝑖
𝑴𝑭0𝑿𝑖𝒃𝑖) = 0 where he also assumes 𝑭0 is known. An
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even simpler sufficient condition would be 𝐸 (𝒃𝑖 |𝑿𝑖) = 0 which is in fact even weaker than the

random slope assumption from Pesaran (2006) who assumes 𝒃𝑖 is independent of all stochastic

components of the model.

The Ahn et al. (2013) estimator requires stronger exogeneity and rank conditions than

Wooldridge (2005) and Murtazashvili and Wooldridge (2008) because 𝜽0 needs to be estimated

along with 𝜷0. If we add Assumption 2, we are able to obtain a first stage
√
𝑁-consistent estimator

of 𝜽0 by Theorem 3.3.1 and so joint identification of (𝜷′0, 𝜽
′
0)

′ is irrelevant. This first stage estimator

allows us to substantially weaken the identification requirements for 𝜷0 which allows for estimation

under a broader class of settings. Using the given estimator 𝜽 from Theorem 3.3.1, I study the

pooled QLD estimator in the context of heterogeneous slopes.

Theorem 3.4.2. Given Assumptions 2 and 3, where Rk(𝐸 (𝚪𝑖)) = 𝑝0 ≤ 𝐾 , suppose that

1. 𝑨𝑃 = 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖) has full rank.

2. 𝐸 (𝑽′
𝑖
𝑯0𝑯

′
0(𝑽𝑖𝒃𝑖 + 𝒖𝑖)) = 0.

Then 𝜷𝑄𝐿𝐷𝑃
𝑝
→ 𝜷0 and

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0)

𝑝
→ 𝑁 (0, 𝑨−1

𝑃 𝑩𝑃𝑨
−1
𝑃 )

where 𝑩𝑃 = 𝐸 ((𝑽′
𝑖
𝑯0𝑯

′
0(𝑽𝑖𝒃𝑖 + 𝒖𝑖) + 𝑮𝑃𝒓𝑥,𝑖 (𝜽0)) (𝑽′

𝑖
𝑯0𝑯

′
0(𝑽𝑖𝒃𝑖 + 𝒖𝑖) + 𝑮𝑃𝒓𝑥,𝑖 (𝜽0))′), 𝑮𝑃 =

𝐸 (∇𝜽𝑽
′
𝑖
𝑯0𝑯

′
0(𝑿𝑖𝒃𝑖 + 𝑭0𝜸𝑖 + 𝒖𝑖)), and 𝒓𝑥,𝑖 (𝜽0) is given in the Appendix. If 𝐸 (𝒖𝑖 ⊗ 𝚪𝑖) = 0,

𝐸 (𝑽𝑖 ⊗ 𝒃𝑖) = 0, and 𝐸 (𝑽𝑖 ⊗ 𝜸𝑖) = 0, then 𝑮𝑃 = 0.

Proof. The proof is identical to the proof of Theorem 3.3.4 with the full error 𝝐𝑖 = 𝑿𝑖𝒃𝑖 +𝑭0𝜸𝑖 +𝒖𝑖.

While 𝑩𝑃 does not have the same form as in Theorem 3.3.4, the standard errors are calculated the

same but with 𝒓𝑥,𝑖 instead of 𝒓𝑖, and so I use the same notation. The additional rank assumption

on 𝐸 (𝚪𝑖) allows us to estimate 𝜽0 via 𝐸 (𝑯′
0𝑽𝑖) = 0 which overcomes the problems of correlation

between 𝜷𝑖 and 𝑽𝑖. The asymptotic variance of
√
𝑁 (𝜽 − 𝜽0) and the computation of 𝒓𝑖,𝑥 are given

in the Appendix. □
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Consistency is not affected by the first stage estimates of 𝜽0 even with random slopes so that

the exogeneity conditions needed are identical in spirit to Wooldridge (2005) who assumes known

factors. I also do not require independence between 𝒃𝑖 and (𝑿𝑖, 𝒖𝑖) like Pesaran (2006), but I

still restrict the correlation between 𝑿𝑖 and 𝒃𝑖. This condition can be weakened via mean group

estimation which allows an arbitrary conditional distribution 𝐷 (𝒃𝑖 |𝑿𝑖) at the expense of much

stronger rank and exogeneity conditions. I now state consistency and asymptotic normality for the

mean group QLD estimator. Again, 𝜽 is derived from 𝐸 (𝑯′
0𝑽𝑖) = 0. Define T as the parameter

space of 𝜽0. Finally, let 𝑎𝑖 (𝜽) =
√︃∑𝐾

𝑖=1 𝜎𝑖
(
(𝑿′

𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖)−1) where {𝜎𝑖 (𝑫)}𝐾

𝑖=1 are the singular

values of the 𝐾 × 𝐾 matrix 𝑫.

Theorem 3.4.3. Given Assumptions 2 and 3, where Rk(𝐸 (𝚪𝑖)) = 𝑝0 ≤ 𝐾 , suppose that

1. The eigenvalues of 𝑿′
𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖 are almost surely positive uniformly over T .

2. Uniformly over T ,

max
{
𝐸 (𝑎𝑖 (𝜽) ∥𝑿𝑖∥ ∥𝒖𝑖∥) , 𝐸

(
𝑎𝑖 (𝜽)2 ∥𝑿𝑖∥3 ∥𝒖𝑖∥

)}
< ∞

3. T is a compact subset of R(𝑇−𝑝0)𝑝0 .

Then 𝜷𝑄𝐿𝐷𝑀𝐺
𝑝
→ 𝜷0 and

√
𝑁 (𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0)

𝑑→ 𝑁 (0, 𝑩𝑀𝐺)

where 𝑩𝑀𝐺 = 𝐸 (
(
(𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽0)

) (
(𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽0)

)′
).

If 𝐸 (𝒃𝑖 |𝑽𝑖) = 0 and 𝐸 (𝑽𝑖 ⊗ 𝜸𝑖 = 0), then 𝑮𝑀𝐺 = 0.

Proof. See Appendix for proof and the derivation of 𝑮𝑀𝐺 . Note that Assumption 2 implies

𝐸 (𝒖𝑖 |𝑽𝑖) = 0. □

Standard errors are derived similarly to the pooled QLD estimator in Section 3.3.2. Let

𝑩 =
1
𝑁

𝑁∑︁
𝑖=1

(
(𝑿′

𝑖𝑯𝑯′𝑿𝑖)−1𝑿′
𝑖𝑯𝑯′𝝐̂𝑖𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽)

) (
(𝑿′

𝑖𝑯𝑯′𝑿𝑖)−1𝑿′
𝑖𝑯𝑯′𝝐̂𝑖𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽)

)′
(3.4.6)
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where 𝝐𝑖 = 𝒚𝑖 − 𝑿𝑖𝜷𝐶𝐶𝐸𝑀𝐺 is the mean group QLD residual and 𝒓𝑥,𝑖 (𝜽) comes from Lemma .0.2

in the Appendix. The gradient 𝑮𝑀𝐺 can be estimated via

𝑮𝑀𝐺 =
1
𝑁

𝑁∑︁
𝑖=1

−
(
𝑰𝐾 ⊗ 𝝐̂ ′𝑖𝑯𝑯′𝑿𝑖

) (
(𝑿′

𝑖𝑯𝑯′𝑿𝑖)−1 ⊗ (𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1

)
(𝑰𝐾2 + 𝑲𝐾) (𝑰𝐾 ⊗ 𝑿′

𝑖𝑯)∗

∗
©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+

+ (𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1

©­­­­­«
(
𝑰𝐾 ⊗ 𝝐̂′𝑖𝑯

) ©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+ 𝑿′

𝑖𝑯
(
𝝐̂∗𝑖

′ ⊗ 𝑰𝑇−𝑝0

)ª®®®®®¬
where 𝑲𝐾 is the 𝐾2 × 𝐾2 commutation matrix.

As discussed in Section 3.3.2, Theorem 3.4.3 is the first fixed-𝑇 proof of asymptotic normality

for a mean group estimator which allows for arbitrary random factors. While I believe the mean

group CCE estimator can be adjusted to allow 𝑇 fixed, it has yet to be proved, as Pesaran (2006)

required 𝑇 → ∞. Further, it is likely that a modern proof using the methods of Karabiyik et

al. (2017) and Westerlund et al. (2019) is required. Like with the pooled estimator, the
√
𝑁-

asymptotic normal convergence result in Theorem 3.4.3 implies that inference can be done via the

usual nonparametric bootstrap, estimating 𝜽 for each new bootstrap sample.

Remark (Order conditions): Similar to the pooled estimator, one advantage of the QLD

transformation is that it allows for more variables than the CCE when 𝑝0 is small. CCE uses (𝒚, 𝑿)

to control for the factors. The rank of 𝑴𝑭 is generally 𝑇 − (𝐾 + 1) in finite samples, regardless of

the number of factors. The rank of 𝑯𝑯′ is 𝑇 − 𝑝 which is assumed to be greater than 𝑇 − (𝐾 + 1)

in Westerlund et al. (2019). ■

One consequence of the strong rank conditions is that we cannot allow values which take zero for

all 𝑡 with positive probability. This rules out demographic dummy variables which are common in

applied microeconometrics. Instead, we could just split the sample and run mean group estimation

on each demographic sub sample. The estimator’s precision will suffer, but this technique allows

77



us to estimate different slope means for different groups in the population.

3.5 Simulations

This section considers the finite-sample performance of the QLD estimators compared to the GMM

and CCE estimators of Ahn et al. (2013) and Pesaran (2006) respectively.

3.5.1 Main Results

The main model is

𝒚𝑖 = 𝑿𝑖𝜷0 + 𝑭0𝜸𝑖 + 𝒖𝑖

𝑿𝑖 = 𝑭0𝚪𝑖 + 𝑽𝑖

as in Assumptions 1 and 2. There are two variables with slopes 𝜷0 = (1, 1)′. I do not include

random slopes as they would only serve to increase the amount of noise in the model and restrict

the first-stage estimation of 𝜽0 for the QLD estimators and the cross-sectional averages for the CCE

estimator. Theorems 3.4.2 and 3.4.3 dictate theoretically how the estimators should perform in

given scenarios. I refer the reader to Campello et al. (2019) for simulation studies regarding the

performance of pooled estimators when slopes are correlated with the variables of interest.

The two factors are generated as AR(1) random processes with initial value from a normal

distribution with mean 1 and variance 1, having parameters 0.75 and −0.75 respectively. The

factors are generated once then fixed over repeated replications. The simulations do not substantively

change if factors are repeatedly drawn4. As described earlier, since 𝑇 is small and fixed, it is the

factor loadings which cause problems asymptotically and not the factors. The loadings on 𝑿𝑖 are

drawn as

𝚪𝑖 ∼
©­­«
𝑁 (1, 1) 𝑁 (0, 1)

𝑁 (0, 1) 𝑁 (1, 1)

ª®®¬
4Additional simulations are available upon request.
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so that 𝜽0 is identified from the reduced form moments. The loadings in 𝒚𝑖 are drawn

𝜸𝑖 ∼
©­­«
𝑁 (Γ1,1, 1)

𝑁 (Γ2,2, 1)

ª®®¬
The errors 𝒖𝑖 and 𝑽𝑖𝑘 (𝑘 = 1, 2) are drawn from a multivariate normal distribution with mean 0𝑇×1

and variance 𝑪 where 𝑪 is the correlation matrix from an AR(1) process with parameter 0.75. That

is, the two errors in 𝑽𝑖 = (𝑽𝑖1,𝑽𝑖2) are both drawn from 𝑀𝑉𝑁 (0𝑇×1,𝑪) but are independent of

each other and 𝒖𝑖. Each simulation study includes 1000 replications.

Table 3.1 compares the Ahn et al. (2013) estimator both with and without the additional

moments 𝐸 (𝑯′
0𝒁𝑖) = 0. Both estimators are computed as two-step estimators where the optimal

weight matrix is calculated with a consistent first-step estimator. The first-step estimator uses an

identity weight matrix.

Table 3.1: GMM estimators

Bias SD RMSE
GMM1 GMM2 GMM1 GMM2 GMM1 GMM2

N = 50 T = 3 0.0328 -0.0107 0.2326 0.1812 0.2349 0.1815
-0.0053 -0.0167 0.1719 0.1690 0.1720 0.1698

T = 4 -0.0019 -0.0225 0.1444 0.1518 0.1444 0.1535
0.0137 -0.0196 0.1626 0.1424 0.1632 0.1438

T = 5 0.0170 -0.0249 0.1701 0.1694 0.1710 0.1712
0.1375 -0.0055 0.3080 0.2057 0.3373 0.2058

N = 300 T = 3 0.0328 -0.0107 0.2326 0.1812 0.2349 0.1815
-0.0053 -0.0167 0.1719 0.1690 0.1720 0.1698

T = 4 -0.0019 -0.0225 0.1444 0.1518 0.1444 0.1535
0.0137 -0.0196 0.1626 0.1424 0.1632 0.1438

T = 5 0.0005 -0.0016 0.0363 0.0364 0.0363 0.0365
0.0156 -0.0029 0.1014 0.0367 0.1026 0.0368

The GMM estimator based off of the Ahn et al. (2013) residual 𝐸 (vec(𝑿𝑖) ⊗ 𝑯′
0(𝒚𝑖 − 𝑿𝑖𝜷0))

only is GMM1, whereas the GMM estimator using the Ahn et al. residual and the additional

moments 𝐸 (𝑯′
0𝒁𝑖) = 0 is GMM2. The GMM estimator using both sets of moments consistently

outperforms the original Ahn et al. (2013) estimator in terms of both bias and standard deviation

implying that the additional moments are practically relevant in finite samples.
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Before turning to a comparison of the pooled QLD and CCE estimators, I first investigate the

performance of QLDP when 𝑝0 is misspecified in estimation of 𝜽0. The simulation setting implies

𝑝0 = 2, so I look at the performance of QLDP for 𝑝 = 1, 2, 3. I reiterate that 𝑝0 is given by the

DGP and 𝑝 is the number of factors specified by the econometrician.

Table 3.2: Misspecifying 𝑝0

Bias SD RMSE
p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

N = 50 T = 4 0.2700 0.0078 0.0118 0.1677 0.1097 0.1466 0.3178 0.1100 0.1471
0.4024 0.0029 0.0120 0.1814 0.1097 0.1561 0.4414 0.1098 0.1566

T = 5 0.4662 0.0095 0.0154 0.3511 0.1005 0.1282 0.5836 0.1009 0.1291
0.5372 0.0058 0.0119 0.4111 0.0950 0.1228 0.6764 0.0952 0.1234

T = 6 0.1697 0.0074 0.0126 0.1534 0.0956 0.1239 0.2287 0.0959 0.1246
0.5843 0.0132 0.0200 0.1516 0.1025 0.1222 0.6036 0.1034 0.1238

N = 300 T = 4 0.2748 -0.0003 0.0000 0.0657 0.0424 0.0559 0.2826 0.0424 0.0559
0.4087 0.0024 0.0030 0.0746 0.0411 0.0587 0.4154 0.0411 0.0588

T = 5 0.5267 0.0008 0.0032 0.2545 0.0382 0.0491 0.5849 0.0383 0.0492
0.5993 0.0007 0.0038 0.2953 0.0369 0.0474 0.6681 0.0369 0.0476

T = 6 0.1484 0.0015 0.0027 0.0646 0.0392 0.0470 0.1618 0.0392 0.0471
0.6191 0.0013 0.0020 0.0596 0.0406 0.0480 0.6220 0.0406 0.0480

Table 3.2 gives the results for the QLDP under the different specifications. My results track

with previous simulation evidence provided by Ahn et al. (2013) and Breitung and Hansen

(2020). Underestimating 𝑝0 leads to substantial bias which does not decrease with 𝑁 . However,

overestimating 𝑝0 leads to only slightly worse performance than correct specification. The bias is

larger but decreases with 𝑁; in fact, even 𝑁 = 300 gives reasonable bias for the 𝑝 = 3 estimator.

The 𝑝 = 3 estimator also performs worse than the correctly specified estimator in terms of standard

deviation, which is not surprising. Overall, I find evidence that overestimation of 𝑝0 does not lead

to substantial bias in estimation, but underestimating 𝑝0 can.

I now turn to comparison of the QLDP and CCEP estimators. Tables 3.3 and 3.4 look at the

QLDP estimator compared to the CCEP estimator where the QLD transformation is estimated under

𝑝 = 𝑝0 = 2. Table 3.3 contains results for 𝐾 = 2 and table 3.4 contains results for 𝐾 = 3. I include

𝐾 = 3 because it demonstrates how CCE removes more information as 𝐾 grows but QLD does not.

First note that the CCEP is biased when 𝑇 = 3 as 𝐾 + 1 = 3 and this order condition is not allowed.
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However, the QLDP is still consistent here. Further, the QLD estimators takes 𝑝0 as known while

the CCE estimators “overestimates" 𝑝0 with the cross-sectional averages, of which there are 𝐾 + 1.

One might suspect this overestimation leads to inefficiency which is demonstrated by the results of

the simulations. The QLDP estimator consistently shows a 15%-25% decline in standard deviation

over the CCE estimator. Further, the CCE identifying condition requires 𝑇 > 𝐾 + 1 which causes

severe bias when violated. The QLDP estimator significantly outperforms the CCEP estimator in

every setting provided.

Table 3.3: Pooled estimators, 𝐾 = 2

Bias SD RMSE
CCEP QLDP CCEP QLDP CCEP QLDP

N = 50 T = 3 -0.5525 0.0082 25.9618 0.1546 25.9676 0.1548
1.2734 0.0034 12.5824 0.1555 12.6467 0.1556

T = 4 0.0118 0.0078 0.1466 0.1097 0.1471 0.1100
0.0120 0.0029 0.1561 0.1097 0.1566 0.1098

T = 5 0.0197 0.0095 0.1220 0.1005 0.1236 0.1009
0.0089 0.0058 0.1152 0.0950 0.1155 0.0952

N = 300 T = 3 0.0272 0.0024 2.7295 0.0580 2.7296 0.0581
0.9400 0.0026 3.3976 0.0585 3.5253 0.0585

T = 4 0.0000 -0.0003 0.0559 0.0424 0.0559 0.0424
0.0030 0.0024 0.0587 0.0411 0.0588 0.0411

T = 5 0.0050 0.0008 0.0464 0.0382 0.0467 0.0383
0.0027 0.0007 0.0441 0.0369 0.0442 0.0369

Comparing table 3.3 to table 3.1, the QLDP performs much better than either of the GMM

estimators despite the fact that we know they are using valid instruments. That the QLDP has better

finite-sample performance than the overidentified systems from Ahn et al. (2013) is most likely due

to the fact that it uses a smaller, just identified system of moments. See the Appendix for additional

simulations including larger values of 𝑇 .

Finally, I investigate the performance of the mean group quasi-long-differencing (QLDMG)

and mean group common correlated effects (CCEMG) estimators. The QLDMG estimator is given

by equation (3.3.4) and the CCEMG estimator is identical to the QLDMG estimator but with 𝑴𝑭

in place of 𝑯𝑯′. Consistency is proved in Pesaran (2006) but, like the pooled estimator, will
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Table 3.4: Pooled estimators, 𝐾 = 3

Bias SD RMSE
CCEP QLDP CCEP QLDP CCEP QLDP

N = 50 T = 3 0.0875 0.0076 3.0883 0.1586 3.0895 0.1588
1.0809 0.0094 2.2956 0.1594 2.5373 0.1597
0.3240 -0.0018 7.6585 0.1560 7.6654 0.1560

T = 4 0.1574 0.0041 3.1025 0.1105 3.1065 0.1106
1.1709 0.0140 3.2437 0.1107 3.4486 0.1116

-0.2552 -0.0047 6.7375 0.1089 6.7423 0.1090
T = 5 0.0151 0.0066 0.1530 0.0986 0.1537 0.0988

0.0039 0.0031 0.1495 0.0979 0.1495 0.0979
-0.0072 -0.0041 0.1408 0.0958 0.1410 0.0959

N = 300 T = 3 1.9936 0.0030 61.6795 0.0580 61.7117 0.0581
2.5873 0.0007 45.5170 0.0578 45.5905 0.0578

-0.8012 0.0017 17.5764 0.0570 17.5947 0.0570
T = 4 0.0011 0.0008 0.0601 0.0397 0.0601 0.0397

0.0028 0.0001 0.0559 0.0394 0.0560 0.0394
0.0035 0.0009 0.0571 0.0378 0.0572 0.0378

T = 5 0.0064 0.0028 2.0502 0.0400 2.0502 0.0401
1.0163 0.0020 0.9861 0.0414 1.4160 0.0414

-0.0826 0.0006 3.6462 0.0400 3.6471 0.0400

eventually require a modern treatment which either controls for the asymptotic degeneracy in 𝑴𝑭

like Karabiyik et al. (2017) and Westerlund et al. (2019) or assumes full rank limits like Brown et al.

(2021). Table 3.5 contains the results for the mean group estimators where the QLD transformation

is estimated assuming 𝑝 = 𝑝0 = 2. I start at 𝑇 = 5 so that 𝑇 − 𝑝0 > 𝑝0 and the CCEMG estimator

is well-defined.

Despite 𝑇 > 2𝐾 + 1 for each setting, the CCEMG estimator exhibits substantial bias when

𝑇 = 6, though the QLDMG estimator appears unbiased. The QLDMG outperforms the CCEMG

in terms of RMSE for each 𝑁 and 𝑇 besides 𝑁 = 600 and 𝑇 = 8. We would expect the CCEMG

to perform well relative to the QLDMG as 𝑇 grows due to the incidental parameter problem in the

first-stage QLD estimation. However, even for moderately low values of 𝑁 and large values of 𝑇 ,

the QLDMG has optimistic properties.
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Table 3.5: Mean group estimators

Bias SD RMSE
CCEMG QLDMG CCEMG QLDMG CCEMG QLDMG

N = 50 T = 5 -1.5703 -0.0055 34.8038 0.4837 34.8392 0.4837
-0.4832 0.0256 18.2402 0.6523 18.2466 0.6529

T = 6 0.0324 0.0056 0.4630 0.1737 0.4641 0.1738
0.0256 0.0044 0.3774 0.1820 0.3782 0.1820

T = 7 0.0187 0.0156 0.1670 0.1658 0.1681 0.1665
0.0113 0.0102 0.1628 0.1574 0.1632 0.1577

N = 300 T = 5 -1.2597 -0.0039 27.7644 0.1537 27.7929 0.1537
1.1968 -0.0030 34.6115 0.1420 34.6322 0.1420

T = 6 -0.0077 0.0039 0.2846 0.0767 0.2847 0.0768
0.0116 -0.0004 0.1768 0.0745 0.1772 0.0745

T = 7 0.0003 0.0000 0.0649 0.0641 0.0649 0.0641
0.0010 0.0009 0.0677 0.0595 0.0677 0.0595

3.5.2 Comparison to TWFE

Theorem 3.3.3 suggests a certain robustness property for the QLDP estimator with respect to the

traditional TWFE estimator. If the factor structure gives the traditional two-way error 𝒇 ′𝑡 𝜸𝑖 + 𝑢𝑖𝑡 =

𝛾𝑖 + 𝑓𝑡 + 𝑢𝑖𝑡 , the QLDP can accommodate the time and individual fixed effects without Assumption

2 holding. If one regresses out a heterogeneous intercept and estimates 𝜽 assuming 𝑝 = 𝐾 + 1,

the QLDP estimator will be consistent even if it is nonlinear in the unobserved effects. I first

demonstrate that TWFE is inconsistent in the presence of an arbitrary factor structure. The DGP is

the same as Section 3.5.1 so that the QLDP results are identical to table 3.2.

TWFE performs poorly as expected. I now generate the data according to the two-way error

model so that

𝑦𝑖𝑡 = 𝑥𝑖𝑡1 + 𝑥𝑖𝑡2 + 𝑡 + 𝛾𝑖 + 𝑢𝑖𝑡

where 𝑡 is the time effect and 𝛾𝑖 ∼ 𝑁 (1, 1) is the individual effect. The covariates are generated as

𝑥𝑖𝑡1 ∼ Poisson( |𝑐𝑖 + 𝑡 |)

𝑥𝑖𝑡2 ∼ 𝑈 (0, log((𝑐𝑖 + 𝑡)2))

so that Assumption 2 does not hold. The simulation results in table 3.7 compare TWFE to QLDP
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Table 3.6: AR(1) factor structure

Bias SD RMSE
K = 2 TWFE QLDP TWFE QLDP TWFE QLDP

N = 50 T = 3 0.0791 0.0082 0.1366 0.1546 0.1578 0.1548
0.8684 0.0034 0.1339 0.1555 0.8787 0.1556

T = 4 0.1148 0.0078 0.1351 0.1097 0.1773 0.1100
0.8321 0.0029 0.1330 0.1097 0.8427 0.1098

T = 5 0.1116 0.0095 0.1290 0.1005 0.1706 0.1009
0.8107 0.0058 0.1302 0.0950 0.8211 0.0952

N = 300 T = 3 0.0765 0.0024 0.0528 0.0580 0.0929 0.0581
0.8851 0.0026 0.0513 0.0585 0.8865 0.0585

T = 4 0.1089 -0.0003 0.0527 0.0424 0.1210 0.0424
0.8321 0.0024 0.0527 0.0411 0.8337 0.0411

T = 5 0.1119 0.0008 0.0529 0.0382 0.1238 0.0383
0.8055 0.0007 0.0530 0.0369 0.8073 0.0369

when 𝜽 is computed with 𝑝 = 𝐾 + 1 (despite the fact that 𝑝0 = 1) and after removing a random

intercept for 𝑿𝑖 and 𝒚𝑖 unit-by-unit. That is, let 𝑴 be the 𝑇 × 𝑇 within transformation. I compute

𝜽 and 𝜷𝑄𝐿𝐷𝑃 with 𝒚∗
𝑖

and 𝑿∗
𝑖

where 𝒚∗
𝑖
= 𝑴𝒚𝑖 and 𝑿∗

𝑖
= 𝑴𝑿. The time effects are irrelevant

because the QLDP estimator is the same regardless of whether or not they are controlled for in the

regression.

Table 3.7: TWFE specification

Bias SD RMSE
TWFE QLDP TWFE QLDP TWFE QLDP

N = 50 T = 4 -0.0004 -0.0044 0.0284 0.0388 0.0284 0.0390
-0.0006 -0.0013 0.0184 0.0276 0.0184 0.0277

T = 5 -0.0010 -0.0022 0.0240 0.0300 0.0240 0.0301
0.0000 -0.0015 0.0142 0.0196 0.0142 0.0197

T = 6 -0.0004 -0.0022 0.0199 0.0251 0.0199 0.0252
0.0007 -0.0013 0.0126 0.0157 0.0127 0.0157

N = 300 T = 4 -0.0003 -0.0004 0.0106 0.0142 0.0106 0.0142
0.0003 -0.0005 0.0061 0.0086 0.0061 0.0086

T = 5 -0.0001 -0.0004 0.0092 0.0116 0.0092 0.0116
-0.0002 -0.0001 0.0054 0.0072 0.0054 0.0072

T = 6 0.0001 0.0001 0.0082 0.0105 0.0082 0.0105
-0.0002 -0.0005 0.0048 0.0065 0.0048 0.0065

While the TWFE estimator is clearly superior in terms of both bias and standard deviation
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when 𝑁 is small, the QLDP shows promising results. When 𝑁 = 300, the two estimators are

nearly indistinguishable in terms of their bias. The QLDP’s RMSE is inflated because of its higher

variance, but this result is unsurprising as it is a more conservative estimator which is trying to

eliminate more heterogeneity. However, it performs comparably well even though it removes more

variation from the data than is needed.

3.6 Application

I evaluate the effect of expenditure per student on standardized test performance. I consider school

district-level data in the state of Michigan over the time periods 1995-2001. The state of Michigan

reformed education expenditure in 1994 to bring poorly-funded schools to parity with wealthier

schools. See Papke (2005) for a comprehensive discussion of the data and institutional details.

There are 𝑁 = 501 school districts observed for 𝑇 = 7 school years over 1995-2001. I present

summary statistics and descriptions for the variables of interest.

Variable Mean Standard Deviation Description

math4 0.6939 0.1515 Fraction of fourth graders who pass the MEAP math test.
lunch 0.2886 0.1616 Fraction of students eligible for free and reduced lunch.
enroll 3112.31 7965.49 Total enrollment.
avgrexp 6385.51 1034.94 Average real expenditure per pupil.

The outcome variable, math4, denotes the pass rate for fourth-grade students taking a standard-

ized math test and stands as a measure of student achievement. Michigan students undertake a

battery of standardized tests in elementary, junior, and secondary school. Like Papke (2005) and

Papke and Wooldridge (2008), I focus on the fourth-grade math test because it has been consistently

defined and measured over the observed time periods.

The primary variable of interest is average expenditure per pupil, as it represents the effect of

additional expenditure on test scores. Starting in the 1994/1995 school year, the state of Michigan

began awarding so-called “foundation grants" which were based on the per-student spending of the

school district in the previous year. The goal was to eventually bring schools up to a benchmark

“basic foundation" amount which increased over time. The state started by awarding foundation
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grants to increase expenditure to a minimum $4200 per student or an additional $250 per student,

whichever was higher. By 2000, the minimum and benchmark amounts were equal at $5700.

Expenditures per pupil were averaged over the current year as well as the previous three, meaning

average real expenditure per pupil in 1995 is an average of expenditure in 1992, 1993, 1994, and

1995.

The equation of interest is

𝑚𝑎𝑡ℎ4𝑖𝑡 = 𝑐𝑖 + log(𝑎𝑣𝑔𝑟𝑒𝑥𝑝𝑖𝑡)𝛽1 + 𝑙𝑢𝑛𝑐ℎ𝑖𝑡𝛽2 + log(𝑒𝑛𝑟𝑜𝑙𝑙𝑖𝑡)𝛽3 + 𝒇 ′𝑡 𝜸𝑖 + 𝑒𝑖𝑡 (3.6.1)

which is similar to Papke (2005). I collect 𝑙𝑢𝑛𝑐ℎ𝑖𝑡 , log(𝑒𝑛𝑟𝑜𝑙𝑙)𝑖𝑡 , and log(𝑎𝑣𝑔𝑟𝑒𝑥𝑝)𝑖𝑡 and use the

reduced form CCE equation from Assumption 2 to implement the pooled QLD estimator. This

specification allows me to test for the number of factors. I also use the Ahn et al. (2013) GMM

function to test for 𝑝0, with and without the CCE equations.

Table 3.8 provides the p-values for testing the hypothesis 𝐻0 : 𝑝0 = 𝑝 versus 𝐻1 : 𝑝0 > 𝑝.

Table 3.8: Testing for 𝑝0

p-values
RF2 GMM1 GMM2

𝒑0 = 0 0.0000 0.0000 0.0000
𝒑0 = 1 0.0000 0.0000 0.0000
𝒑0 = 2 0.0000 0.4852 0.0000
𝒑0 = 3 0.0000 0.1157 0.0000

A rejection of the hypothesis suggests more factors than the tested value, and a failure to reject

suggests the current value is correct. The titles ‘GMM1’, ‘GMM2’, and ‘RF’ (for reduced form)

refer to the respective objective function used to test the relevant hypothesis. I stress that testing

for 𝑝0 comes from a long-established literature, briefly described in Ahn et al. (2013). The only

new concept I introduce with respect to this specific specification test is using the reduced form

moments 𝐸 (𝑯′
0𝒁𝑖) = 0.

GMM1 is just the Ahn et al. (2013) objective function from equation (3.2.7). GMM2 is the

Ahn et al. objective function with the additional moments 𝐸 (𝑯′
0𝒁𝑖) = 0. Finally, RF is just the
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reduced form moments 𝐸 (𝑯′
0𝒁𝑖) = 0. GMM1 suggests that the correct number of factors is 𝑝0 = 2.

GMM2 and RF both reject 𝑝0 = 2 at any reasonable confidence level, and GMM2 rejects 𝑝0 = 3,

though it uses a much larger set of moments than the other two which may decrease power. It may

suffer from the same global identification problems discussed in Hayakawa (2016) which suggests

the GMM1 test will perform better practically. I stop testing at 𝑝0 = 3 because RF is just identified

at 𝑝0 = 4. Regardless of the tests, the moments 𝐸 (𝑯′
0𝒁𝑖) = 0 only allow me to estimate up to four

factors. Even if 𝑝0 > 4, the QLDP nets more unobserved heterogeneity than TWFE.

For the purpose of comparison with the pooled QLD estimator, I include the TWFE estimator

and the pooled CCE estimator. As 𝑇 = 7 and 𝐾 = 3, the CCE estimator can accommodate both

𝑿, 𝒚, and a heterogeneous intercept in 𝑭. Further, the pooled QLD estimator is computed with

𝑝 = 𝐾 = 3 after eliminating a heterogeneous intercept from 𝑿𝑖 and 𝒚𝑖, unit-by-unit. As such,

QLDP is a natural comparison to TWFE. Theorem 3.3.3 tells us that 𝜷𝑄𝐿𝐷𝑃 is invariant to common

variables when 𝑝 = 𝐾 . Since it also eliminates a heterogeneous intercept, it will be consistent if

TWFE is consistent, assuming strictly exogenous covariates.

I present results in table 3.9 which shows estimation after eliminating a heterogeneous intercept.

For CCE, this simply amounts to 𝑭 = (1, 𝒚, 𝑿). For QLDP, I project out the intercept from each

𝑿𝑖 and 𝒚𝑖 via the within transformation before estimating. Standard errors are in parentheses while

p-values are in brackets. The reported standard errors are generated via the panel nonparametric

bootstrap.

The QLDP estimator suggests substantial estimates for the effect of per student expenditures.

A 10% increase in the average expenditure per student is associated with an 8.3 percentage point

increase in the math test pass rate, with a p-value of 0.0009. This estimate is more than twice as

large as the TWFE estimate and more than three halves the CCEP estimate. These results suggest

that TWFE is not adequately controlling for the heterogeneity present in the data set. Both the

CCE and QLDP estimates are statistically significant at the 5% level. The TWFE standard errors

are generally smaller than CCE and QLD because it removes less variation from the data.

I also considered estimation via the mean group QLD and CCE estimators. However, both
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Table 3.9: Controlling for heterogeneous intercept

TWFE CCEP QLDP

lunch -0.0419 0.0398 -0.1576

(0.0730) (0.1367) (0.1637)

[0.5658] [0.7709] [0.3381]

log(enroll) 0.0021 -0.0592 0.0268

(0.0487) (0.1497) (0.2152)

[0.9663] [0.6924] [0.8838]

log(avgrexp) 0.3771 0.5409 0.8287

(0.0704) (0.2695) (0.3785)

[0.0000] [0.0446] [0.0303]

parameter estimates and standard errors were unreasonable compared to the other estimators. In

fact, the p-values were significantly larger than any other reported case and suggested a critical

lack of precision. Recall that the mean group estimators require much stronger exogeneity and

identifying conditions than the pooled estimators.

3.7 Conclusion

This paper considers fixed-𝑇 estimation of linear panel data models where the errors have a general

unknown factor structure. I use the quasi-long-difference transformation studied by Ahn et al.

(2013) to eliminate the factor structure and provide moment conditions for estimation. For the

purpose of comparison with the popular pooled common correlated effects estimator, I study

the moments implied by assuming a pure factor structure in the covariates. Applying the QLD

transformation to the independent variables improves efficiency of estimating the parameters of

interest in the main equation which is information that pooled CCE does not use.

Current proofs of fixed-𝑇 asymptotic normality of the pooled CCE estimator assumes loadings
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which are strictly exogenous with respect to the idiosyncratic errors in the independent variables.

I show that the uncorrelated loadings assumptions implies the existence of an even larger number

of moments which CCE neglects. Ultimately, if one makes the strong assumptions sufficient for

asymptotic normality of pooled CCE in Westerlund et al. (2019), one should fully consider the

information available for efficient estimation. Regardless, I provide robust standard errors in a more

general and appealing setting than the CCE models in Pesaran (2006) and Westerlund et al. (2019).

I apply the moment-based perspective to a heterogeneous slopes model similar to the original

Pesaran (2006) setting. I prove consistency and asymptotic normality of pooled and mean group

estimators based off of the QLD transformation which put no restrictions on the relationship

between 𝑇 and 𝐾 in contrast to CCE. These estimators are shown to outperform CCE estimators in

finite samples even when 𝑁 is small. The pooled QLD estimator also has the desirable property of

invariance to common variables, like time trends and macroeconomic indicators, when the estimated

number of factors equals the number of regressors. I reexamine estimation of school district

expenditures on standardized test performance and find significantly larger effects of educational

spending compared to simple fixed effects regression. These estimates are also reported up to

reasonable precision which suggests that applied researchers are not adequately controlling for

heterogeneity in their data.

One important direction for future work concerns the overestimation of 𝑝0. It is known that

CCE is robust to 𝐾+1 > 𝑝0. Moon and Weidner (2015) prove that principal components estimation

is also robust to overestimating the number of factors, provided 𝑇 is large. However, while there

is ample simulation evidence suggesting the robustness of QLD to such a failure, a formal proof

is lacking. It would also be useful to investigate the robustness of the QLDP estimators to failure

of the reduced form equation in Assumption 2. Finally, the methods presented in this paper all

assumed balanced panels. Missing data causes challenges to constructing the CCE and QLD

transformations. It is not clear how even a complete cases estimator would work, as the cross

sectional averages and first-stage estimator of 𝜽 require all time periods for each unit in the sample.
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APPENDIX

PROOFS FOR CHAPTER 1

This Appendix collects together proofs of the formal results stated in the text.

Proof of Lemma 1.3.1

From equation (1.3.14), Assumptions WV.1 and WV.2 imply

Var (y𝑖 |x𝑖, 𝑐𝑖) = 𝛼𝑐𝑖M1/2
𝑖

RM1/2
𝑖

By the law of total variance,

Var (y𝑖 |x𝑖) = E [Var (y𝑖 |x𝑖, 𝑐𝑖) |x𝑖] + Var [E (y𝑖 |x𝑖, 𝑐𝑖) |x𝑖]

= E
(
𝛼𝑐𝑖M1/2

𝑖
RM1/2

𝑖

��� x𝑖) + Var (𝑐𝑖m𝑖 |x𝑖)

= 𝛼𝜇𝑐 (x𝑖) M1/2
𝑖

RM1/2
𝑖

+ 𝜎2
𝑐 (x𝑖) m𝑖m′

𝑖 (.0.1)

To simplify notation in what follows, write 𝜇𝑖 ≡ 𝜇𝑐 (x𝑖), 𝜎2
𝑖
≡ 𝜎2

𝑐 (x𝑖). To derive 𝛀−1
𝑖

, we apply an

implication of Sherman and Morrison (1950): For a nonsingular 𝑇 × 𝑇 matrix A and 𝑇 × 1 vector

b,

(A + bb′)−1
= A−1 − 1

1 + b′A−1b
A−1bb′A−1 (.0.2)

which can be verified by direct multiplication. Take A ≡ 𝛼𝜇𝑖M1/2
𝑖

RM1/2
𝑖

and b ≡ 𝜎𝑖m𝑖 in (.0.2)

and note that
[
𝛼𝜇𝑖M1/2

𝑖
RM1/2

𝑖

]−1
= M−1/2

𝑖
R−1M−1/2

𝑖
/(𝛼𝜇𝑖) and M−1/2

𝑖
m𝑖 =

√m𝑖.
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Therefore,

𝛀−1
𝑖 =

1
𝛼𝜇𝑖

M−1/2
𝑖

R−1M−1/2
𝑖

− 1
1 +

[
𝜎2
𝑖

√m𝑖
′R−1√m𝑖

]
/(𝛼𝜇𝑖)

𝜎2
𝑖 R−1√m𝑖

√
m𝑖

′R−1/(𝛼𝜇𝑖)2

=
1
𝛼𝜇𝑖

M−1/2
𝑖

R−1M−1/2
𝑖

−
𝜎2
𝑖

𝛼𝜇𝑖 + 𝜎2
𝑖

√m𝑖
′R−1√m𝑖

𝜎2
𝑖 R−1√m𝑖

√
m𝑖

′R−1/(𝛼𝜇𝑖)

=
1
𝛼𝜇𝑖

M−1/2
𝑖

{
R−1 −

𝜎2
𝑖[

𝛼𝜇𝑖 + 𝜎2
𝑖

√m𝑖
′R−1√m𝑖

] R−1√m𝑖

√
m𝑖

′R−1

}
M−1/2
𝑖

□

Proof of Theorem 1.3.1

Simplify the notation by defining D𝑖 ≡ D𝑜 (x𝑖), V𝑖 ≡ V𝑜 (x𝑖), 𝜇𝑖 ≡ 𝜇𝑐 (x𝑖), 𝜎2
𝑖
≡ 𝜎2

𝑐 (x𝑖), and

drop dependences on 𝜷0. With this simplified notation,

V−
𝑖 = 𝛀−1

𝑖 −𝛀−1
𝑖 m𝑖

(
m′
𝑖𝛀

−1
𝑖 m𝑖

)−1
m′
𝑖𝛀

−1
𝑖

and, from Lemma 1.3.1,

𝛀−1
𝑖 =

1
𝛼𝜇𝑖

M−1/2
𝑖

R−1M−1/2
𝑖

−
𝜎2
𝑖

𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

where 𝑎𝑖 ≡
√m𝑖

′R−1
𝑖

√m𝑖. Therefore, because M−1/2
𝑖

m𝑖 =
√m𝑖,

𝛀−1
𝑖 m𝑖 =

1
𝛼𝜇𝑖

M−1/2
𝑖

R−1√m𝑖 −
𝜎2
𝑖

𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1√m𝑖

=
1
𝛼𝜇𝑖

M−1/2
𝑖

R−1√m𝑖 −
𝑎𝑖𝜎

2
𝑖

𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

=

[
1
𝛼𝜇𝑖

−
𝑎𝑖𝜎

2
𝑖

𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) ] M−1/2
𝑖

R−1√m𝑖

=

[ (
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

)
− 𝑎𝑖𝜎2

𝑖

]
𝛼𝜇𝑖

(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

=
1(

𝛼𝜇𝑖 + 𝑎𝑖𝜎2
𝑖

) M−1/2
𝑖

R−1√m𝑖
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Also,

m′
𝑖𝛀

−1
𝑖 m𝑖 =

1(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

)√m𝑖
′R−1√m𝑖 =

𝑎𝑖

𝛼𝜇𝑖 + 𝑎𝑖𝜎2
𝑖

It follows that

𝛀−1
𝑖 m𝑖

(
m′
𝑖𝛀

−1
𝑖 m𝑖

)−1
m′
𝑖𝛀

−1
𝑖 =

1
𝑎𝑖

(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

Plugging into V−
𝑖

gives

V−
𝑖 =

1
𝛼𝜇𝑖

M−1/2
𝑖

R−1M−1/2
𝑖

−
𝜎2
𝑖

𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

− 1
𝑎𝑖

(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

=
1
𝛼𝜇𝑖

M−1/2
𝑖

R−1M−1/2
𝑖

−
[

𝛼𝜇𝑖 + 𝑎𝑖𝜎2
𝑖

𝑎𝑖𝛼𝜇𝑖
(
𝛼𝜇𝑖 + 𝑎𝑖𝜎2

𝑖

) ] M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

=
1
𝛼𝜇𝑖

[
M−1/2
𝑖

R−1M−1/2
𝑖

− 1
𝑎𝑖

M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

]
which completes the result for V−

𝑖
. From (1.3.10), the optimal IVs are

D′
𝑖V

−
𝑖 = −𝜇𝑖∇𝜷m′

𝑖V
−
𝑖 = − 1

𝛼
∇𝜷m′

𝑖

[
M−1/2
𝑖

R−1M−1/2
𝑖

− 1
𝑎𝑖

M−1/2
𝑖

R−1√m𝑖

√
m𝑖

′R−1M−1/2
𝑖

]
and we can drop −1/𝛼 and factor out M−1/2

𝑖
to get the result. □

Proof of Corollary 1.3.1

Putting R = I𝑇 into (1.3.17) and using simple algebra gives the optimal IVs as

Z∗ (x𝑖)′ = ∇𝛽m𝑖 (𝜷0)′
(
M−1
𝑖 − 1∑𝑇

𝑟=1𝑚𝑖𝑟
1𝑇1′𝑇

)
We show that this choice of instruments leads to the FEP first order condition, as expressed by

Wooldridge (1999), using the definition of W𝑖 given in Section 1.2:

∇𝜷p𝑖 (𝜷0)′ W𝑖 = ∇𝜷m𝑖 (𝜷0)′
[
I𝑇 − 1𝑇p𝑖 (𝜷0)′

]
M−1
𝑖
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To see the equivalence, note that

1𝑇p𝑖 (𝜷0)′ M−1
𝑖 =

1(∑𝑇
𝑟=1𝑚𝑖𝑟

)
©­­­­­­­­«

m𝑖

m𝑖

...

m𝑖

ª®®®®®®®®¬
M−1
𝑖 =

1∑𝑇
𝑟=1𝑚𝑖𝑟

1𝑇1′𝑇

and so

∇𝜷p𝑖 (𝜷0)′ W𝑖 = ∇𝜷m𝑖 (𝜷0)′
(
M−1
𝑖 − 1∑𝑇

𝑟=1𝑚𝑖𝑟
1𝑇1′𝑇

)
= Z∗ (x𝑖)′

□
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APPENDIX

PROOFS FOR CHAPTER 2

Proof of Lemma 2.2.3

Let 𝑝𝑖 𝑡 (𝜷) = 𝑚𝑡 (𝒙𝑖 𝑡 , 𝜷)
(∑𝑇

𝑠=1𝑚𝑠 (𝒙𝑖 𝑠, 𝜷)
)−1

, 𝒑𝑖 (𝜷) = (𝑝𝑖1(𝜷), ..., 𝑝𝑖𝑇 (𝜷))′, and 𝑛𝑖 =
∑𝑇
𝑠=1 𝑦𝑖 𝑠.

Let 1 be a 𝑇 × 1 vector of ones. First I directly show the conclusion holds for 𝑰𝑇 − 𝒑(𝜷)1′ which

satisfies the lemma’s assumption. It also satisfies Assumption MAT, which is made clear in Section

2.3. I need the following derivation:

∇𝜷𝑝𝑖 𝑡 = (
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷))−2(∇𝜷𝑚𝑖 𝑡 (𝒙𝑖 𝑡 , 𝜷)
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷) − 𝑚𝑖 𝑡 (𝒙𝑖 𝑡 , 𝜷)
𝑇∑︁
𝑟=1

∇𝜷𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷))

= (
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷))−1(∇𝜷𝑚𝑖 𝑡 (𝒙𝑖 𝑡 , 𝜷) − 𝑝𝑖 𝑡 (𝜷) (
𝑇∑︁
𝑟=1

∇𝜷𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷)))

Stacking the 𝑇 equations gives

∇𝜷 𝒑𝑖 (𝜷) = (
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷))−1(∇𝜷𝒎𝑖 (𝜷) − 𝒑𝑖 (𝜷)1′∇𝜷𝒎𝑖 (𝜷))

= (
𝑇∑︁
𝑟=1

𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷))−1(𝑰𝑇 − 𝒑𝑖 (𝜷)1′)∇𝜷𝒎𝑖 (𝜷)

As 𝐸 (−𝑛𝑖 |𝒙𝑖) = −𝜇𝑐 (𝒙𝑖)
∑𝑇
𝑟=1𝑚𝑖𝑟 (𝒙𝑖𝑟 , 𝜷0), evaluating the derivative at 𝜷0 and multiplying by

𝐸 (−𝑛𝑖 |𝒙𝑖) yields the final result.

Now let 𝑨(𝒙𝑖, 𝜷) be an 𝐿 × 𝑇 matrix satisfying the assumption of the lemma. 𝑨(𝒙𝑖, 𝜷) (𝑰𝑇 −

𝒑𝑖 (𝜷)1′) = 𝑨(𝒙𝑖, 𝜷) for all 𝜷 near 𝜷0. Then writing 𝒈(𝒙𝑖, 𝜷) = (𝑰𝑇 − 𝒑𝑖 (𝜷)1′)𝒚𝑖, we have for all

𝜷 near 𝜷0

𝐸 (∇𝜷 (𝑨(𝒙𝑖, 𝜷)𝒚𝑖) |𝒙𝑖) = 𝐸 (∇𝜷 (𝑨(𝒙𝑖, 𝜷)𝒈(𝒙𝑖, 𝜷)) |𝒙𝑖)

= ∇𝜷𝑨(𝒙𝑖, 𝜷)𝐸 (𝒈(𝒙𝑖, 𝜷) |𝒙𝑖) + 𝑨(𝒙𝑖, 𝜷)𝐸 (∇𝜷𝒈(𝒙𝑖, 𝜷) |𝒙𝑖)

Evaluating at 𝜷0 yields 𝐸 (∇𝜷𝑨(𝒙𝑖, 𝜷0)𝒚𝑖 |𝒙𝑖) = 𝑨(𝒙𝑖, 𝜷0)∇𝜷𝒎𝑖 (𝜷0) since 𝐸 (𝒈(𝒙𝑖, 𝜷0) |𝒙𝑖) = 0 and

𝐸 (∇𝜷𝒈(𝒙𝑖, 𝜷0) |𝒙𝑖) = (𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)∇𝜷𝒎𝑖 (𝜷0). □
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Proof of Lemma 2.3.1

Write 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) = 𝚺𝑖. Then for any 𝑇 − 1 × 𝑇 transformation 𝑨(𝒙𝑖, 𝜷0) with rank 𝑇 − 1,

𝑅𝑎𝑛𝑘 (𝑨(𝒙𝑖, 𝜷0)𝚺𝑖𝑨(𝒙𝑖, 𝜷0)) = 𝑅𝑎𝑛𝑘 ((𝑨(𝒙𝑖, 𝜷0)𝚺1/2
𝑖

) ((𝑨(𝒙𝑖, 𝜷0)𝚺1/2
𝑖

)′)

= 𝑅𝑎𝑛𝑘 (𝑨(𝒙𝑖, 𝜷0)𝚺1/2
𝑖

)

= 𝑅𝑎𝑛𝑘 (𝑨(𝒙𝑖, 𝜷0)) = 𝑇 − 1

as 𝚺1/2
𝑖

is 𝑇 × 𝑇 and full rank. Thus the conditional variance is nonsingular and (2.2.4) holds with

a proper inverse. Any generalized differencing residual with transformation satisfying Assumption

RK.1 has a nonsingular conditional variance. This result goes for 𝑸(𝑰𝑇 − 𝒑𝑖 (𝜷0)1′) and 𝑸(𝑰𝑇 −

𝒎𝑖 (𝜷0) (𝒎𝑖 (𝜷0)′𝒎𝑖 (𝜷0))−1𝒎𝑖 (𝜷0) since their full transformations have rank 𝑇 − 1. Lemma 1 of

Verdier (2018) shows 𝑅𝑎𝑛𝑘 ((𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)) = 𝑇−1; the rank of the residual maker transformation

is a well-known result.

First note that 𝑽−
𝑖
𝒎𝑖 (𝜷0) = 0 by construction. As

𝒑𝑖 (𝜷0)1′(𝑰𝑇 −
1
𝑎𝑖
𝒎𝑖 (𝜷0)𝒎𝑖 (𝜷0)′𝚺−1

𝑖 ) = 0

(𝑰𝑇 − 𝒎𝑖 (𝜷0) (𝒎𝑖 (𝜷0)′𝒎𝑖 (𝜷0))−1𝒎𝑖 (𝜷0)′)𝒎𝑖 (𝜷0) = 0

the conditional gradients are given as

(𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)∇𝜷𝒎𝑖 (𝜷0)

(𝑰𝑇 − 𝒎𝑖 (𝜷0) (𝒎𝑖 (𝜷0)′𝒎𝑖 (𝜷0))−1𝒎𝑖 (𝜷0)′)∇𝜷𝒎𝑖 (𝜷0)

by Lemma 2.2.3. Then the systems defined by Assumption SYS for both transformations are con-

sistent with 𝑭(𝒙𝑖) = 𝑽−
𝑖
∇𝜷𝒎𝑖 (𝜷0) and the singularity assumption in Assumption RK.2 guarantees

both efficiency bounds exist. □

Proof of Theorem 2.3.1

As mentioned in the text, Assumptions CM, RK.1, RK.2, and the positive definiteness of

𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖) are sufficient for each of the transformations studied to satisfy Assumptions SYS and

ORTH (and thus MAT) so that their asymptotic efficiency bounds are well-defined and given by
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(2.2.8). Let 𝑩𝑖 be one of the full rank 𝑇 − 1 × 𝑇 transformation (evaluated at 𝒙𝑖 and 𝜷0) studied.

𝑩𝑖 could be the generalized within transformation, or either the generalized within or residual

maker transformation with any arbitrary row deleted. I will prove the theorem by showing each of

these transformations are information equivalent to the full generalized within transformation via

Theorem 1, and noting that a similar proof holds for the full residual maker transformation. Write

𝚺𝑖 = 𝐸 (𝒚𝑖𝒚′𝑖 |𝒙𝑖). Since each of the potential 𝑩𝑖 matrices satisfy Assumption ORTH, its efficiency

bound is given by (2.2.8):

𝐸 (∇𝜷𝒎𝑖 (𝜷0)′𝑩′
𝑖 (𝑩𝑖𝚺𝑖𝑩′

𝑖)−1𝑩𝑖∇𝜷𝒎𝑖 (𝜷0))−1

In the notation of Theorem 1, let𝑽𝑖 = (𝑰𝑇 − 𝒑𝑖 (𝜷0)1′)𝚺𝑖 (𝑰𝑇 −1 𝒑𝑖 (𝜷0)′) and 𝑴𝑖 = (𝑰𝑇 − 𝒑𝑖 (𝜷0)1′).

𝑩𝑖𝑴𝑖 = 𝑩𝑖 as 𝑩𝑖 𝒑𝑖 (𝜷0) = 0 by Assumption CM. Also 𝑅𝑎𝑛𝑘 (𝑴𝑖𝑽𝑖𝑴
′
𝑖
) = 𝑅𝑎𝑛𝑘 (𝑽𝑖) =

𝑇 − 1 = 𝑅𝑎𝑛𝑘 (𝑴𝑖), so Assumption GR.1 holds for the same 𝑴𝑖 regardless of 𝑩𝑖. As 𝑩𝑖𝑽𝑖𝑩
′
𝑖
=

𝑩𝑖𝚺𝑖𝑩′
𝑖
, we have 𝑅𝑎𝑛𝑘 (𝑩𝑖𝑽𝑖𝑩𝑖) = 𝑇 − 1 = 𝑅𝑎𝑛𝑘 (𝑩𝑖), so Assumption GR.2 holds. Thus by

Theorem 1 𝑩′
𝑖
(𝑩𝑖𝚺𝑖𝑩′

𝑖
)−1𝑩𝑖 = 𝑴′

𝑖
(𝑴𝑖𝚺𝑖𝑴′

𝑖
)−𝑴𝑖. The information bound for the generalized

within transformation is

𝐸 (∇𝜷𝒎𝑖 (𝜷0)𝑴′
𝑖 (𝑴𝑖𝚺𝑖𝑴

′
𝑖 )−𝑴𝑖∇𝜷𝒎𝑖 (𝜷0))−1

This expression is equal to the expression in (2.2.6) by Theorem 2.2.1, so the generalized within

transformation is information equivalent to 𝑩𝑖. The proof for the residual maker transformation is

similar with 𝑴𝑖 = (𝑰𝑇−𝒎𝑖 (𝜷0) (𝒎𝑖 (𝜷0)′𝒎𝑖 (𝜷0))−1𝒎𝑖 (𝜷0)′) and𝑽𝑖 being the respective conditional

covariance matrix. □
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APPENDIX

PROOFS FOR CHAPTER 3

Proof of Lemma 3.3.1

Separate the estimated parameters into the respective 𝑇 − 𝑝 × 𝑝 − 𝑝0 and 𝑇 − 𝑝 × 𝑝0 matrices

(𝚯1 |𝚯2). Separate the true regularized parameters by rows (𝚯1
0
′|𝚯2

0
′)′, which are then 𝑇 − 𝑝 × 𝑝0

and 𝑝 − 𝑝0 × 𝑝0 matrices, respectively. Then for 𝑝 > 𝑝0, 𝑯(𝜽)′𝑭0 = 𝚯1
0 + 𝚯1𝚯2

0 − 𝚯2. Set

𝚯2 = 𝚯1
0 + 𝚯1𝚯2

0 for any value of 𝚯1, so that there are infinitely many solutions which make

equation (3.3.1) zero. Finally when 𝑝 < 𝑝0 there are too many parameters than can be consistently

estimated. Thus there are no values of 𝚯 which cause (3.3.1) to be zero. These order conditions

for estimation of 𝜽0 are identical to Ahn et al. (2013). □

Proof of Theorem 3.3.2

I first state the Identifying Assumption (IA) which comes from Ahn et al. (2013)’s Basic

Assumptions:

Identifying Assumption: Rk(𝐸 (𝜸𝑖𝜸′
𝑖
)) = 𝑝0 < 𝑇 . For any 𝑇 × (𝑇 − 𝑝0) matrix 𝑯0 such that

Rk(𝑭0,𝑯0) = 𝑇 , the following matrix has full column rank:

(
𝐸 (𝑯′

0𝑿𝑖 ⊗ vec(𝑿𝑖)), 𝑰𝑇−𝑝0 ⊗ 𝐸 (vec(𝑿𝑖)𝜸′
𝑖)
)
■

The two equations under consideration are equations (3.2.7) and (3.2.8),

𝐸 (𝒘𝑖 ⊗ 𝑯′
0(𝒚𝑖 − 𝑿𝑖𝜷0)) = 0

𝐸 (𝑯′
0𝑽𝑖) = 0

I appeal to the partial redundancy results given in Section 4 of Breusch et al. (1999). In this setting,

partial redundancy of two sets of moment conditions means that the asymptotic variance of the

GMM estimator of 𝜷0 based off of both sets of moment conditions is the same as that of the GMM

estimator which only uses the first set. See Section 1 of Breusch et al. (1999) for examples.
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Write 𝝀 = (𝜷′0, 𝜽
′
0)

′ and let 𝝀1 = 𝜷0 and 𝝀2 = 𝜽0. Then 𝝀1 is identified by equation (3.2.7)

under IA1 and 𝝀2 is identified by equation (3.2.8), both facts I use in the proof. They consider a

general vector of moment conditions

𝐸 (𝒈(𝝀, 𝜼𝑖)) =

𝒈1(𝝀, 𝜼𝑖))

𝒈2(𝝀, 𝜼𝑖))

 = 0

where in my notation 𝜼𝑖 = (𝒚𝑖, 𝑿𝑖, 𝜸𝑖, 𝚪𝑖), 𝒈1 = 𝑯(𝜽)′(𝒚𝑖 − 𝑿𝑖𝜷0 + 𝑭𝜸𝑖), and 𝒈2 = 𝑯(𝜽)′𝑽𝑖. I

partition the gradient and covariances matrices as

𝑫 =


𝑫11 𝑫12

𝑫21 𝑫22


𝛀 =


𝛀11 𝛀12

𝛀21 𝛀22


where 𝑫𝑚𝑛 = 𝐸 (∇𝝀𝑛 𝒈𝑚 (𝝀, 𝜼𝑖)) and 𝛀𝑚𝑛 = 𝐸 (𝒈𝑚 (𝝀, 𝜼𝑖)𝒈𝑛 (𝝀, 𝜼𝑖)′). Equation (3.2.8) is partially

redundant for estimating 𝜷0 if and only if

𝑫21 −𝛀21𝛀
−1
11 𝑫11 = (𝑫22 −𝛀21𝛀

−1
11 𝑫12) (𝑫′

12𝛀
−1
11 𝑫12)−1(𝑫′

12𝛀
−1
11 𝑫11)

by Theorem 7 of Breusch et al. (1999). As 𝒖𝑖 is mean independent of 𝑿𝑖, 𝛀21 = 0 and 𝛀12 = 0 so

that the necessary and sufficient condition of partial redundancy is

𝑫21 = 𝑫22(𝑫′
12𝛀

−1
11 𝑫12)−1(𝑫′

12𝛀
−1
11 𝑫11)

Since 𝒈2(𝝀, 𝜼𝑖) is not a function of 𝜷0, we also have 𝑫21 = 0. Assumption PF gives that 𝑫22 has

full column rank so that 𝑫22(𝑫′
12𝛀

−1
11 𝑫12)−1 is left-invertible. Therefore the redundancy condition

becomes

𝑫′
12𝛀

−1
11 𝑫11 = 0

□

Proof of Theorem 3.3.4
1See Section 3 of Ahn et al. (2013).
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I start with the proof of consistency. The centered QLDP estimator is written as

𝜷𝑄𝐿𝐷𝑃 − 𝜷0 =

(
1
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝑿𝑖

)−1 (
1
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′(𝑭0𝜸𝑖 + 𝒖𝑖)

)
The denominator equals its infeasible counterpart 1

𝑁

∑𝑁
𝑖=1 𝑽

′
𝑖
𝑯0𝑯

′
0𝑽𝑖 up to a 𝑂𝑝 (𝑁−1/2) term by

Theorem 1 and the moment bounds from BASE. The inverse exists with probability approaching

one by condition (1) of the theorem. Thus the denominator is a𝑂𝑝 (1) term so consistency depends

on the numerator.

The difference between the numerator and its infeasible counterpart is

1
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖 (𝑯𝑯′−𝑯0𝑯

′
0) (𝑭0𝜸𝑖+𝒖𝑖) =

(
1
𝑁

𝑁∑︁
𝑖=1

(𝑭0𝜸𝑖 + 𝒖𝑖)′ ⊗ 𝑿′
𝑖

)
vec(𝑯𝑯′−𝑯0𝑯

′
0) = 𝑂𝑝 (1)𝑜𝑝 (1)

The sum converges to its finite expectation by the moment bounds from Assumption 2(2). vec(𝑯𝑯′−

𝑯0𝑯
′
0) = 𝑂𝑝 (𝑁−1/2) by Theorem 3.3.1. The infeasible numerator, 1

𝑁

∑𝑁
𝑖=1 𝑿

′
𝑖
𝑯0𝑯

′
0(𝑭0𝜸𝑖 + 𝒖𝑖), is

𝑜𝑝 (1) as 𝑯′
0𝑭0 = 0 and 1

𝑁

∑𝑁
𝑖=1 𝑿

′
𝑖
𝑯0𝑯

′
0𝒖𝑖 = 𝑜𝑝 (1) by condition (3), so we have 𝜷𝑄𝐿𝐷𝑃 − 𝜷0 =

𝑜𝑝 (1).

Before deriving the asymptotic distribution of the QLDP, I need the following lemma:

Lemma .0.1. Let 𝝐𝑖 = 𝑭0𝜸𝑖 + 𝒖𝑖. Then

∇𝜽 (𝑿′
𝑖𝑯0𝑯

′
0𝝐𝑖) =

(
𝑰𝐾 ⊗ 𝒖′𝑖𝑯0

) ©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+ 𝑽′

𝑖𝑯0
(
𝝐∗𝑖

′ ⊗ 𝑰𝑇−𝑝0

)
(.0.1)

where 𝒙𝑖 𝑗 is the 𝑗’th column of 𝑿𝑖 and 𝒗∗ = (𝑣𝑇−𝑝0+1, ..., 𝑣𝑇 )′ is the last 𝑝0 elements of the 𝑇 × 1

vector 𝒗.

Proof. I omit the pure factor notation for simplicity and work with the full matrix 𝑿𝑖. Proposition

5.4 of Dhrymes (2013) gives

∇𝜽 (𝑿′
𝑖𝑯(𝜽)𝑯(𝜽)′𝝐𝑖) = (𝝐′𝑖𝑯(𝜽) ⊗ 𝑰𝐾)∇𝜽 (𝑿′

𝑖𝑯(𝜽)) + 𝑿′
𝑖𝑯(𝜽)∇𝜽 (𝑯(𝜽)′𝝐𝑖) (.0.2)
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where I follow standard notation in writing the derivative of the 𝑛 ×𝑚 matrix 𝑨 with respect to the

𝑘 × 1 vector 𝜶 as ∇𝜶𝑨 = ∇𝜶vec(𝑨). The row vectors of ∇𝜶𝑨 are then the 1 × 𝑘 gradient vectors

of the elements of vec(𝑨) with respect to 𝜶.

In order to derive the various derivatives, I first start with the case of an arbitrary 𝑇 × 1

vector 𝒗 = (𝑣1, ..., 𝑣𝑇 )′. As described in Section 3.1, 𝑯(𝜽)′ = (𝑰𝑇−𝑝0 ,𝚯) where 𝜽 = vec(𝚯).

I write the 𝑝0 column vectors of 𝚯 as 𝚯 = (𝜽1, ..., 𝜽𝑝0) where each column can be written as

𝜽 𝑗 = (𝜃 𝑗 1, ..., 𝜃 𝑗 ,𝑇−𝑝0)′. These definitions give the expression

𝑯(𝜽)′𝒗 =

©­­­­­«
𝑣1 + 𝜃11𝑣𝑇−𝑝0+1 + ... + 𝜃𝑝1𝑣𝑇

...

𝑣𝑇−𝑝0 + 𝜃1,𝑇−𝑝0𝑣𝑇−𝑝0+1 + ... + 𝜃𝑝,𝑇−𝑝0𝑣𝑇

ª®®®®®¬
(.0.3)

The expression above is similar to that derived below equation (4) of Ahn et al. (2013). They

write the terms as the dot product between the rows of 𝑯(𝜽)′ and 𝒗∗. However, I expand the sums

so that the gradient is easier to see. Taking the gradient of the 𝑟’th element of 𝑯(𝜽)′𝒗 with respect

to 𝜽 𝑗 gives

∇𝜽 𝑗 (𝑣𝑟 + 𝜃1𝑟𝑣𝑇−𝑝0+1 + ... + 𝜃𝑝0𝑟𝑣𝑇 ) = (0, ..., 0, 𝑣𝑇−𝑝0+ 𝑗 , 0, ..., 0)

where the only nonzero term is in the 𝑟’th column. Thus differentiating with respect to the 𝑗’th

vector gives

∇𝜽 𝑗𝑯(𝜽)′𝒗 =

©­­­­­­­­«

𝑣𝑇−𝑝0+ 𝑗 0 . . . 0

0 𝑣𝑇−𝑝0+ 𝑗 . . . 0
...

. . .
...

0 . . . . . . 𝑣𝑇−𝑝0+ 𝑗

ª®®®®®®®®¬
= 𝑣𝑇−𝑝0+ 𝑗 𝑰𝑇−𝑝0

Putting together the 𝑇 − 𝑝0 gradients gives

∇𝜽𝑯(𝜽)′𝒗 =
(
𝑣𝑇−𝑝0+1𝑰𝑇−𝑝0 , ..., 𝑣𝑇 𝑰𝑇−𝑝0

)
= 𝒗∗′ ⊗ 𝑰𝑇−𝑝0 (.0.4)

Equation (.0.4) implies ∇𝜽𝑯(𝜽)′𝝐𝑖 = 𝝐∗
𝑖
′ ⊗ 𝑰𝑇−𝑝0 . Handling 𝑯(𝜽)′𝑿𝑖 is done similarly. Writing

the covariates in terms of its column vectors 𝑿𝑖 = (𝒙𝑖1, ..., 𝒙𝑖𝐾) where now the subscript on 𝒙𝑖 𝑘

denotes the 𝑇 × 1 vector of observations for variable 𝑘 of individual 𝑖, we can see that

𝑯(𝜽)′𝑿𝑖 = (𝑯(𝜽)′𝒙𝑖1, ...,𝑯(𝜽)′𝒙𝑖𝐾)
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which implies that

vec(𝑯(𝜽)′𝑿𝑖) =
©­­­­­«
𝑯(𝜽)′𝒙𝑖1

...

𝑯(𝜽)′𝒙𝑖𝐾

ª®®®®®¬
𝑯(𝜽)′𝒙𝑖 𝑘 is a (𝑇 − 𝑝0) × 1 vector so its gradient follow the same form as equation (.0.4). Thus

∇𝜽vec(𝑯(𝜽)′𝑿𝑖) =
©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
Filling in the gradient in equation (.0.1) gives our final answer. □

Returning to the main proof of asymptotic normality, the pooled QLD estimator can be written

as
√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0) =

(
1
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝑿𝑖

)−1 (
1
√
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′(𝑭0𝜸𝑖 + 𝒖𝑖)

)
As before, he denominator equals 𝑨𝑃 up to a 𝑂𝑝 (𝑁−1/2). The inverse exists with probability

approaching one by condition (1) of the theorem. Thus asymptotic normality depends on the

numerator.

Write the full error as 𝝐𝑖 = 𝑭0𝜸𝑖+𝒖𝑖 so that we study the asymptotic distribution of 1√
𝑁

∑𝑁
𝑖=1 𝑿

′
𝑖
𝑯𝑯′𝝐𝑖.

Mean value expansion about 𝜽0 gives

1
√
𝑁

𝑁∑︁
𝑖=1

𝑿′
𝑖𝑯𝑯′𝝐𝑖 =

1
√
𝑁

𝑁∑︁
𝑖=1

𝑽′
𝑖𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃

√
𝑁 (𝜽 − 𝜽0) + 𝑜𝑝 (1)

where 𝑮𝑃 = 𝐸 (∇𝜽𝑿
′
𝑖
𝑯0𝑯

′
0𝝐𝑖) which is derived explicitly in Lemma .0.1. The estimator 𝜽 is

derived in Theorem 3.3.1 as based on the moments 𝐸 (vec(𝑯′
0𝒁𝑖) = 0. It is a GMM estimator using

the optimal weight matrix 𝑨𝜽 = 1
𝑁

∑𝑁
𝑖=1 vec(𝑯̃′𝒁𝑖)vec(𝑯̃′𝒁𝑖)′ where 𝑯̃ = 𝑯(𝜽) uses an initial

estimator. The first order conditions of the GMM optimization problem give(
𝑁∑︁
𝑖=1

∇𝜽vec(𝑯′𝒁𝑖)
)′
𝑨−1
𝜽

(
𝑁∑︁
𝑖=1

vec(𝑯′𝒁𝑖)
)
= 0

where ∇𝜽vec(𝑯′𝒁𝑖) = (𝒛∗
𝑖,1 ⊗ 𝑰𝑇−𝑝0 , ..., 𝒛

∗
𝑖,𝐾+1 ⊗ 𝑰𝑇−𝑝0)′ comes from Lemma 3.3.1. Interestingly,

this gradient is free of any parameters and thus the same regardless of the estimator.
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Write 𝑫𝜽 = 𝐸 (∇𝜽vec(𝑯′
0𝒁𝑖)) and 𝑨𝜽 = 𝐸 (vec(𝑯′

0𝒁𝑖)vec(𝑯′
0𝒁𝑖)

′), the notation from Theorem

3.3.1. Using another standard mean value expansion gives

√
𝑁 (𝜽 − 𝜽0) =

1
√
𝑁

𝑁∑︁
𝑖=1

(𝑫′
𝜽𝑨

−1
𝜽 𝑫𝜽)−1𝑫′

𝜽𝑨
−1
𝜽 vec(𝑯′

0𝒁𝑖) + 𝑜𝑝 (1) (.0.5)

which allows us to write the estimator as

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0) = 𝑨−1

𝑃

1
√
𝑁

𝑁∑︁
𝑖=1

(
𝑽′
𝑖𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0)

)
+ 𝑜𝑝 (1) (.0.6)

where 𝒓𝑖 (𝜽0) = (𝑫′
𝜽𝑨

−1
𝜽 𝑫𝜽)−1𝑫′

𝜽𝑨
−1
𝜽 vec(𝑯′

0𝒁𝑖). Thus we have

√
𝑁 (𝜷𝑄𝐿𝐷𝑃 − 𝜷0)

𝑑→ 𝑁 (0, 𝑨−1
𝑃 𝑩𝑃𝑨

−1
𝑃 ) (.0.7)

where 𝑩𝑃 = 𝐸 ((𝑽′
𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0)) (𝑽′

𝑖
𝑯0𝑯

′
0𝒖𝑖 + 𝑮𝑃𝒓𝑖 (𝜽0))′). □

Proof of Theorem 3.4.2

Now the asymptotic variance depends only on the moments 𝐸 (𝑯′
0𝑽𝑖) = 0.

Lemma .0.2. Suppose Assumption 2 holds and Rk(𝐸 (𝚪𝑖)) = 𝑝0 and let 𝜽 be the GMM estimator

based off of 𝐸 (vec(𝑯′
0𝑿𝑖)) = 𝐸 (vec(𝑯′

0𝑽𝑖) = 0 using a consistent estimator of the optimal weight

matrix. Then
√
𝑁 (𝜽 − 𝜽0)

𝑑→ 𝑁 (0,
(
𝑫′
𝑥,𝜽𝑨

−1
𝑥,𝜽𝑫𝑥,𝜽

)−1
).

and 𝒓𝑥,𝑖 (𝜽0) = (𝑫′
𝑥,𝜽𝑨

−1
𝑥,𝜽𝑫𝑥,𝜽)−1𝑫′

𝑥,𝜽𝑨
−1
𝑥,𝜽vec(𝑯′

0𝑽𝑖), where 𝑨𝑥,𝜽 = 𝐸 (vec(𝑯′
0𝑽𝑖)vec(𝑯′

0𝑽𝑖)
′) and

𝑫𝑥,𝜽 = 𝐸 (∇𝜽vec(𝑯′
0𝑽𝑖)) is derived in Lemma .0.1.

□

Proof of Theorem 3.4.3

I first consider the proof of consistency. Facts about uniform convergence shown for consistency

will be taken for granted in the proof of asymptotic normality.

As a technical aside, I do not differentiate between the Euclidean vector norm and the Frobenius

matrix norm in terms of notation. It does not affect the proof as the two norms are compatible

in the sense that ∥𝑨𝒙∥𝐸 ≤ ∥𝑨∥𝐹 ∥𝒙∥𝐸 where 𝑨 is a 𝑛 × 𝑚 matrix, 𝒙 is a 𝑚 × 1 vector, and the
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F and E subscripts refer to Frobenius and Euclidean respectively. Further, since both norms are

submultiplicative, it does not matter for the point of this proof. As such the notation should be clear

from the context. Finally, all statements involving random quantities are assumed to hold almost

surely unless stated otherwise.

The QDMG estimator can be written as

(𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0) =
1
𝑁

𝑁∑︁
𝑖=1

(𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1𝑿′

𝑖𝑯𝑯′(𝑭0𝜸𝑖 + 𝒖𝑖) +
1
𝑁

𝑁∑︁
𝑖=1

𝒃𝑖

=
1
𝑁

𝑁∑︁
𝑖=1

(𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1𝑿′

𝑖𝑯𝑯′(𝑭0𝜸𝑖 + 𝒖𝑖) +𝑂𝑝 (𝑁−1/2)

where 𝑯 = 𝑯(𝜽), 𝜽
𝑝
→ 𝜽0 by Theorem 1. As 1

𝑁

∑𝑁
𝑖=1 𝒃𝑖 = 𝑂𝑝 (𝑁−1/2) by the CLT, consistency of

the QLDMG does not depend on the correlation between 𝒃𝑖 and (𝑿𝑖, 𝜸𝑖, 𝒖𝑖). However, since the

rate of convergence is
√
𝑁 , it will affect the asymptotic distribution. This fact is handled later in

the proof.

I write 𝒁𝑖 (𝜽) = (𝑿′
𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖)−1𝑿′

𝑖
𝑯(𝜽)𝑯(𝜽)′(𝑭0𝜸𝑖 + 𝒖𝑖) for convenience. The goal of

this section is to show that
1
𝑁

𝑁∑︁
𝑖=1

𝒁𝑖 (𝜽)
𝑝
→ 𝐸 (𝒁𝑖 (𝜽0)) = 0 (.0.8)

By Theorem 21.6 of Davidson (1994), the convergence result in equation (.0.8) is implied by

conditions:

𝜽
𝑝
→ 𝜽0 (.0.9)

sup
𝜽∈𝐵0






 1
𝑁

𝑁∑︁
𝑖=1

𝒁𝑖 (𝜽) − 𝐸 (𝒁𝑖 (𝜽))





 = 𝑜𝑝 (1) where 𝑩0 is some open set about 𝜽0. (.0.10)

where ∥.∥ denotes the Euclidean 𝐿2 norm for vectors and Frobenius norm for matrices. Consistency

of 𝜽 holds by Theorem 1 so that uniform convergence is the only condition which needs to be

verified. I show uniform convergence via a traditional argument which demonstrates both pointwise

convergence in probability and stochastic equicontinuity (SE).

Pointwise convergence in probability follows from the WLLN by the moment bounds and

sampling assumptions in Assumption 3(2). {𝑿′
𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖}𝑖≥1 is a sequence of positive definite
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random matrices for all possible values of 𝜽 by condition (1) of the theorem. Thus for each 𝜽 ,

{𝒁𝑖 (𝜽)}𝑖≥1 is well-defined and iid. By the WLLN, 1
𝑁

∑𝑁
𝑖=1 𝒁𝑖 (𝜽)

𝑝
→ 𝐸 (𝒁𝑖 (𝜽)) which is 0 when

𝜽 = 𝜽0.

For the purpose of verifying SE of the random sequence, I show that the following Lipschitz

condition of Theorem 21.11 from Davidson (1994) holds: for some random sequence {𝐵𝑁𝑖}𝑖≥1

with bounded expectations and real function ℎ such that ℎ(𝑥) → 0 as 𝑥 → 0, there exists 𝑛 ∈ N

such that
1
𝑁



(𝒁𝑖 (𝜽) − 𝐸 (𝒁𝑖 (𝜽))) − (𝒁𝑖 ( ¤𝜽) − 𝐸 (𝒁𝑖 ( ¤𝜽)))


 ≤ 𝐵𝑁𝑖ℎ(∥𝜽 − 𝜽′∥) (.0.11)

for all 𝜽 , ¤𝜽 ∈ T and 𝑁 ≥ 𝑛, where all stated inequalities hold almost surely as stated above.

I start with the stochastic component 𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽). It will make sense to write 𝒁𝑖 (𝜽) =

𝑨(𝜽)−1𝑩(𝜽) where

𝑨𝑖 (𝜽) = 𝑿′
𝑖𝑯(𝜽)𝑯(𝜽)′𝑿𝑖

𝑩𝑖 (𝜽) = 𝑿′
𝑖𝑯(𝜽)𝑯(𝜽)′(𝑭0𝜸𝑖 + 𝒖𝑖)

We then have

𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽)


 = 

𝑨𝑖 (𝜽)−1𝑩𝑖 (𝜽) − 𝑨𝑖 ( ¤𝜽)−1𝑩𝑖 ( ¤𝜽)




≤



𝑨𝑖 (𝜽)−1𝑩𝑖 (𝜽) − 𝑨𝑖 ( ¤𝜽)−1𝑩𝑖 (𝜽)


 + 

𝑨𝑖 ( ¤𝜽)−1𝑩(𝜽) − 𝑨𝑖 ( ¤𝜽)−1𝑩( ¤𝜽)




We can bound the second normed value on the right-hand side. Let 𝑫 (𝜽 , ¤𝜽) = 𝑯(𝜽)𝑯(𝜽)′ −

𝑯( ¤𝜽)𝑯( ¤𝜽)′. The Frobenius norm of a matrix is equal to the square root of the sum of its squared

singular values (see, for example, Horn and Johnson (2013)). Thus


𝑨(𝜽)−1



 = 𝑎𝑖 (𝜽) > 0 and we

have 

𝑨𝑖 ( ¤𝜽)−1𝑩𝑖 (𝜽) − 𝑨𝑖 ( ¤𝜽)−1𝑩𝑖 ( ¤𝜽)


 = 

𝑨𝑖 ( ¤𝜽)−1(𝑩𝑖 (𝜽) − 𝑩𝑖 ( ¤𝜽))




≤ 𝑎𝑖 ( ¤𝜽)



𝑿′
𝑖𝑫 (𝜽 , ¤𝜽) (𝑭𝜸𝑖 + 𝒖𝑖)




≤ 𝑎𝑖 ( ¤𝜽) ∥𝑿𝑖∥ ∥𝑭𝜸𝑖 + 𝒖𝑖∥



𝑫 (𝜽 , ¤𝜽)
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Turning now to the other term from the triangle inequality, note that condition (1) of the theorem

implies 𝑨(𝜽) is nonsingular for any 𝜽 in the parameter space. Then

𝑨𝑖 (𝜽)−1𝑩𝑖 (𝜽) − 𝑨𝑖 ( ¤𝜽)−1𝑩𝑖 (𝜽)


 = 


(𝑨𝑖 (𝜽)−1 − 𝑨𝑖 ( ¤𝜽)−1

)
𝑩𝑖 (𝜽)





=




(𝑨𝑖 ( ¤𝜽)−1𝑨𝑖 ( ¤𝜽)𝑨𝑖 (𝜽)−1 − 𝑨𝑖 ( ¤𝜽)−1𝑨𝑖 (𝜽)𝑨𝑖 (𝜽)−1
)
𝑩𝑖 (𝜽)





=



𝑨𝑖 ( ¤𝜽)−1 (
𝑨𝑖 ( ¤𝜽) − 𝑨𝑖 (𝜽)

)
𝑨𝑖 (𝜽)−1𝑩𝑖 (𝜽)




≤



𝑨𝑖 ( ¤𝜽)−1

 

𝑨𝑖 ( ¤𝜽) − 𝑨𝑖 (𝜽)


 

𝑨𝑖 (𝜽)−1

 ∥𝑩𝑖 (𝜽)∥

As before,


𝑨𝑖 ( ¤𝜽)−1



 

𝑨𝑖 (𝜽)−1


 = 𝑎𝑖 ( ¤𝜽)𝑎𝑖 (𝜽). ∥𝑩𝑖 (𝜽)∥ =



𝑿′
𝑖
𝑯(𝜽)𝑯(𝜽)′(𝑭𝜸𝑖 + 𝒖𝑖)



 where

(𝑭𝜸𝑖 + 𝒖𝑖)𝑿′
𝑖



 is bounded in expectation.

Condition (3) implies that sup𝜽∈T ∥𝑯(𝜽)𝑯(𝜽)′∥ < 𝜏 for some 𝜏 < ∞. Finally note that

𝑨𝑖 ( ¤𝜽) − 𝑨𝑖 (𝜽)


 = 

𝑿′

𝑖𝑫 ( ¤𝜽 , 𝜽)𝑿𝑖




≤ ∥𝑿𝑖∥2 

𝑫 (𝜽 , ¤𝜽)




as 𝑫 (𝜽 , ¤𝜽) = −𝑫 ( ¤𝜽 , 𝜽). Putting everything together yields

1
𝑁



𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽)


 ≤ 1

𝑁

(
𝑎𝑖 ( ¤𝜽) ∥𝑿𝑖∥ ∥(𝑭0𝜸𝑖 + 𝒖𝑖)∥ + 𝜏𝑎𝑖 ( ¤𝜽)𝑎𝑖 (𝜽) ∥𝑿𝑖∥3 ∥(𝑭0𝜸𝑖 + 𝒖𝑖)∥

) 

𝑫 (𝜽 , ¤𝜽)




Clearly


𝑫 (𝜽 , ¤𝜽)



 → 0 as


𝜽 − ¤𝜽



 → 0. In the language of Davidson’s Theorem 21.11,

𝑁∑︁
𝑖=1

𝐵𝑁𝑖 =
1
𝑁

𝑁∑︁
𝑖=1

∥𝑿𝑖∥ ∥(𝑭0𝜸𝑖 + 𝒖𝑖)∥ 𝑎𝑖 ( ¤𝜽) (1 + 𝜏𝑎𝑖 (𝜽) ∥𝑿𝑖∥)

The random variables here have identical moments by Assumption 2(2) and the bound on 𝒂𝑖 (𝜽)

holds uniformly over T by Condition (2) so that

𝐸 (
𝑁∑︁
𝑖=1

𝐵𝑁𝑖) = 𝐸
(
∥𝑿𝑖∥ ∥(𝑭0𝜸𝑖 + 𝒖𝑖)∥ 𝑎𝑖 ( ¤𝜽) (1 + 𝜏𝑎𝑖 (𝜽) ∥𝑿𝑖∥)

)
= 𝑂 (1)

as the expectation is finite. Looking at equation (.0.11), we have

(𝒁𝑖 (𝜽) − 𝐸 (𝒁𝑖 (𝜽))) − (
𝒁𝑖 ( ¤𝜽) − 𝐸 (𝒁𝑖 ( ¤𝜽))

)

 ≤


𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽)



 + 

𝐸 (𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽))
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As norms are convex,


𝐸 ((𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽))



 ≤ 𝐸 (


𝒁𝑖 (𝜽) − 𝒁𝑖 ( ¤𝜽)



) which is bounded by the same

argument as above. I have thus verified SE and so 𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0 = 𝑜𝑝 (1).

Turning to asymptotic normality, I need a lemma on the mean value expansion of the QLDMG

estimator like in Theorem 3.3.4.

Lemma .0.3. Let 𝝐𝑖 = 𝑿𝑖𝒃𝑖 + 𝑭0𝜸𝑖 + 𝒖𝑖. Then

∇𝜽 (𝑿𝑖𝑯0𝑯
′
0𝑿𝑖)

−1𝑿′
𝑖𝑯0𝑯

′
0𝝐𝑖 = −

(
𝑰𝐾 ⊗ 𝝐′𝑖𝑯0𝑯

′
0𝑽𝑖

) (
(𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1 ⊗ (𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1
)

∗ (𝑰𝐾2 + 𝑲𝐾) (𝑰𝐾 ⊗ 𝑽′
𝑖𝑯0)

©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+

+ (𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1(𝑰𝐾 ⊗ 𝝐′𝑖𝑯0)
©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
+

+ (𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖𝑯0

(
𝝐∗𝑖

′ ⊗ 𝑰𝑇−𝑝0

)
where 𝑲𝐾 is the 𝐾2 × 𝐾2 commutation matrix.

Proof. Like in Lemma .0.1, I omit the factor structure 𝑿𝑖 = 𝑭0𝚪𝑖 + 𝑽𝑖 and derive the above form

with respect to just 𝑿𝑖. The factor structure is substituted in later after the lemma. Assumption

2 and conditions (1) and (2) imply that the inverse of 𝑿′
𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖 is differentiable about 𝜽0.

Proposition 5.16 of Dhrymes (2013) gives

∇𝜽 (𝑿′
𝑖𝑯0𝑯

′
0𝑿𝑖)

−1 = −
(
(𝑿′

𝑖𝑯0𝑯
′
0𝑿𝑖)

−1 ⊗ (𝑿′
𝑖𝑯0𝑯

′
0𝑿𝑖)

−1
) (

∇𝜽𝑿
′
𝑖𝑯0𝑯

′
0𝑿𝑖

)
The differential of the 𝑿′

𝑖
𝑯(𝜽)𝑯(𝜽)′𝑿𝑖 can be worked out via 13.19(b) of Abadir and Magnus

(2013):

𝑑vec(𝑿′
𝑖𝑯(𝜽)𝑯(𝜽)′𝑿𝑖) = (𝑰𝐾2 + 𝑲𝐾) (𝑰𝐾 ⊗ 𝑿′

𝑖𝑯(𝜽))𝑑vec(𝑯(𝜽)′𝑿𝑖)
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The associated gradient was worked out in the proof of Theorem 3.3.4. Thus we have

∇𝜽 (𝑿′
𝑖𝑯0𝑯

′
0𝑿𝑖)

−1 = −
(
(𝑿′

𝑖𝑯0𝑯
′
0𝑿𝑖)

−1 ⊗ (𝑿′
𝑖𝑯0𝑯

′
0𝑿𝑖)

−1
)
(𝑰𝐾2+𝑲𝐾) (𝑰𝐾⊗𝑿′

𝑖𝑯0)
©­­­­­«
𝒙𝑖

∗
1
′ ⊗ 𝑰𝑇−𝑝0

...

𝒙𝑖
∗
𝐾
′ ⊗ 𝑰𝑇−𝑝0

ª®®®®®¬
The product rule of the gradient is given in Proposition 5.4 of Dhrymes (2013) and the gradient

∇𝜽𝑿
′
𝑖
𝑯0𝑯

′
0𝝐𝑖 comes from Lemma .0.1 in the proof of Theorem 3.3.4. □

The
√
𝑁-normalized estimator is

√
𝑁 (𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0) =

1
√
𝑁

𝑁∑︁
𝑖=1

(𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1𝑿′

𝑖𝑯𝑯′𝝐𝑖

where 𝝐𝑖 = 𝑿𝑖𝒃𝑖 + 𝑭0𝜸𝑖 + 𝒖𝑖. I write the estimator in terms of its full error because the asymptotic

variance generally depends on the correlation between 𝒃𝑖 and the other terms. I derive the asymptotic

variance in full, with a simpler form under stronger exogeneity conditions. I apply a mean value

expansion to the above sum and get

1
√
𝑁

𝑁∑︁
𝑖=1

(𝑿′
𝑖𝑯𝑯′𝑿𝑖)−1𝑿′

𝑖𝑯𝑯′𝜖𝑖 =
1
√
𝑁

𝑁∑︁
𝑖=1

(𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖𝑯0𝑯

′
0𝝐𝑖 + 𝑮𝑀𝐺

√
𝑁 (𝜽 − 𝜽0) + 𝑜𝑝 (1)

where 𝑮𝑀𝐺 comes from Lemma .0.3. Thus

√
𝑁 (𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0) =

1
√
𝑁

𝑁∑︁
𝑖=1

(
(𝑽′
𝑖𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖𝑯0𝑯

′
0𝝐𝑖 + 𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽0)

)
+ 𝑜𝑝 (1) (.0.12)

where 𝒓𝑥,𝑖 (𝜽0) = (𝑫′
𝑥,𝜽𝑨

−1
𝑥,𝜽𝑫𝑥,𝜽)−1𝑫′

𝑥,𝜽𝑨
−1
𝑥,𝜽vec(𝑯′

0𝑽𝑖) comes from Lemma .0.2. We then have

√
𝑁 (𝜷𝑄𝐿𝐷𝑀𝐺 − 𝜷0)

𝑑→ 𝑁 (0, 𝑩𝑀𝐺) (.0.13)

where 𝑩𝑀𝐺 = 𝑉𝑎𝑟

(
(𝑽′
𝑖
𝑯0𝑯

′
0𝑽𝑖)

−1𝑽′
𝑖
𝑯0𝑯

′
0𝝐𝑖 + 𝑮𝑀𝐺 𝒓𝑥,𝑖 (𝜽0)

)
. □
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APPENDIX

ADDITIONAL TABLES FOR CHAPTER 3

I now present additional simulations comparing the pooled CCE and QLD estimators. Table .1

gives results for 𝐾 = 2 and 𝑝0 = 2 but for larger values of 𝑇 .

Table .1: Pooled estimator, 𝐾 = 2

Bias SD RMSE
CCEP QLDP CCEP QLDP CCEP QLDP

N = 50 T = 6 0.0128 0.0074 0.1028 0.0956 0.1036 0.0959
0.0128 0.0132 0.1019 0.1025 0.1027 0.1034

T = 7 0.0146 0.0102 0.0994 0.1222 0.1004 0.1226
0.0150 0.0096 0.0910 0.1191 0.0922 0.1194

T = 8 0.0105 0.0061 0.0873 0.0886 0.0879 0.0888
0.0166 0.0086 0.0855 0.0852 0.0871 0.0856

N = 300 T = 6 0.0029 0.0015 0.0405 0.0392 0.0406 0.0392
0.0039 0.0013 0.0416 0.0406 0.0418 0.0406

T = 7 0.0016 0.0001 0.0376 0.0477 0.0377 0.0477
0.0021 -0.0001 0.0374 0.0450 0.0374 0.0450

T = 8 0.0020 0.0009 0.0344 0.0348 0.0344 0.0349
0.0010 0.0001 0.0345 0.0344 0.0346 0.0344

Both estimators perform poorly when 𝑁 = 50 with CCEP typically outperforming the QLDP in

terms of SD for all 𝑁 and 𝑇 . Interestingly, QLDP seems to decrease in bias as 𝑇 gets larger despite

the fact that the number of parameters increases linearly in𝑇 for fixed 𝑝0. Generally, the differences

in bias are small, and CCEP has a smaller RMSE dues to its reduced SD. Table .2 performs the

same simulations but for 𝐾 = 3. In these cases, the QLDP has the smaller SD, most likely due

to the fact that the additional covariates provide information which the QLD transformation can

exploit.
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Table .2: Pooled estimators, 𝐾 = 3

Bias SD RMSE
K = 3 CCE QLDP CCE QLDP CCE QLDP

N = 50 T = 6 0.0115 0.0055 0.1174 0.1010 0.1179 0.1012
0.0207 0.0131 0.1143 0.1024 0.1161 0.1032

-0.0041 -0.0009 0.1151 0.1001 0.1151 0.1001
T = 7 0.0184 0.0127 0.0991 0.1255 0.1008 0.1261

0.0218 0.0079 0.1009 0.1245 0.1033 0.1247
-0.0054 -0.0022 0.0998 0.1157 0.0999 0.1157

T = 8 0.0151 0.0122 0.0883 0.0867 0.0896 0.0875
0.0095 0.0084 0.0896 0.0873 0.0901 0.0877
0.0015 -0.0041 0.0895 0.0870 0.0895 0.0871

N = 300 T = 6 0.0034 0.0024 0.0451 0.0374 0.0452 0.0375
-0.0001 0.0007 0.0468 0.0404 0.0468 0.0404
0.0001 -0.0016 0.0440 0.0391 0.0440 0.0391

T = 7 0.0038 0.0021 0.0385 0.0468 0.0387 0.0468
0.0048 0.0010 0.0381 0.0448 0.0384 0.0448
0.0005 0.0016 0.0382 0.0461 0.0382 0.0461

T = 8 0.0005 -0.0002 0.0352 0.0347 0.0352 0.0347
0.0042 0.0015 0.0364 0.0336 0.0367 0.0336
0.0000 0.0012 0.0351 0.0344 0.0351 0.0344
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