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ABSTRACT 
 

IMPACT OF AGRICULTURAL MANAGEMENT AND MICROBIAL INOCULATION ON 
SOYBEAN (GLYCINE MAX) AND ITS ASSOCIATED MICROBIOME 

 
By 

 
Reid Longley 

 
 Soybean (Glycine max) is a globally important crop with uses as food, cooking oil 

livestock feed, and biodiesel. Soybean can be considered holobionts because they host diverse 

microbiomes which extend plant genotypes and phenotypes through various microbial functions 

such as nitrogen fixation and increased disease resistance. My research focused on assessing the 

impact of three agricultural management strategies on the soybean holobiont. 

 Soybean cropping systems can be managed using various strategies, including 

conventional tillage, no-till, and organic management regimes. These management systems have 

been shown to impact the microbiomes of soybean-associated soils, however, their impacts on 

plant-associated microbiomes are still not well understood. In this study, I assessed the impact of 

conventional, no-till, and organic management treatments on soybean microbiomes at Michigan 

State’s Kellogg Biological Station Long-Term Ecological Research site (KBS LTER). I found 

that management impacted microbiome composition and diversity in soil, roots, stems, and 

leaves and that this impact persisted throughout the season. Additionally, when comparing the 

same soybean genotype grown in conventional and no-till management systems, tillage regime 

impacted the microbiome throughout the plant and the growing season. This effect impacted 

microbial taxa which are likely to be plant beneficial, including nitrogen fixing Bradyrhizobium. 

Another important management tool that is expected to impact plant-associated microbial 

communities is the application of foliar fungicides. While fungicides are known to protect plants 

from particular fungal pathogens, non-target impacts of fungicides on crop microbiomes, and the 



 
 
 
 
 

impact of management on microbiome recovery are not well understood. To address this 

knowledge gap, I assessed the impact of foliar fungicide application on the maize (Headline® 

fungicide, 2017) and soybean (Delaro® fungicide, 2018) microbiomes in conventional and no-

till plots at the KBS LTER. I found that fungicide applications have a non-target impact on 

Tremellomycete yeasts in the phyllosphere and this impact was greater in soybean than maize. 

Co-occurrence network analysis and random forest modelling indicated that changes in fungal 

communities may lead to indirect impacts on prokaryotic communities in the phyllosphere.  

Importantly, this work demonstrated that phyllosphere communities of soybeans under no-till 

management had greater recovery from fungicide disturbance. This novel finding exemplifies 

how tillage regime can impact phyllosphere microbiomes and their responses to disturbance. 

Microbial inoculants in agriculture have long been used for biocontrol of pathogens, but 

there is also interest in their use to dampen the impacts of abiotic stress including drought. In this 

study, I tested whether inoculating soybeans with hub taxa identified through network analysis 

from no-till soybean root microbiome data from the KBS LTER could provide protection against 

water limitation. Soybean seedlings were enriched in consortia of hub bacteria and fungi and 

were grown in no-till field soil. Seedlings were then exposed to low-moisture stress, and plant 

phenotypes, plant gene expression, and amplicon sequencing of microbial DNA and cDNA were 

assessed throughout the stress period. Inoculation increased plant growth, nodule numbers, and 

led to increased expression of nodulation-associated genes. 16S sequencing of cDNA revealed 

higher levels Bradyrhizobium in inoculated samples. These results indicate that inoculation with 

hub microbes can benefit soybean plants, possibly through interaction with other microbes, 

interaction with the plant, or both. In summary, fungicide, tillage, and inoculation all impact the 

soybean microbiome, indicating that management choices impact the entire holobiont. 
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Problem Statement 

 As human populations continue to grow globally, it is becoming increasingly clear that 

agricultural management strategies will need to be adapted to maintain production and minimize 

environmental impacts of agriculture. In addition to the development of novel crop varieties and 

management strategies; it is important to assess how current management strategies impact host 

plants as well as their associated microbiomes. For example, no-till or reduced tillage agriculture 

have long been used in the United States, and their usage continues to increase [1]. It has been 

shown that tillage regime impacts the soil microbiome [2, 3] and may have a subtle impact on the 

plant microbiome [4]. However, there is a knowledge gap on the impact of tillage regime on 

soybean-associated microbial communities throughout the entire plant growing season. It is 

particularly important to assess the impact of tillage on soybean-associated microbial 

communities as soybeans have close relationships with Bradyrhizobium for nitrogen fixation, as 

well as important associations with arbuscular mycorrhizal fungi (AMF). 

 Foliar fungicides are another common management tool in modern agriculture that are 

used to control fungal pathogens. In the presence of disease pressure, fungicides are crucial for 

maintaining crop yield [5]. Yet, fungicide applications are frequently made in the absence of 

disease pressure to reduce risk of disease development, and in some conditions may provide a 

potential yield benefit [6]. Applying fungicides when disease pressure is low can account for 

unnecessary farm expenses, environmental damage, development of fungicide-resistance in the 

environment, and may also lead to the local extinction of fungal taxa which could benefit plant 

health and growth or aid in the structuring of the plant microbiome. Although it has been 

demonstrated that fungicides can harm non-target taxa such as phyllosphere yeasts, further work 

is needed to determine whether tillage regime alters the impact or recovery of fungal 



 
 
 
 
 
 

3 
 
 
 

communities following a fungicide disturbance [7]. Assessing the impact of fungicide 

applications in multiple crops and tillage regimes will be crucial for understanding how crop, 

tillage, and management influence community dynamics in the plant microbiome. 

 In addition to chemical and physical methods of management, the use of microbial 

inoculants to promote plant growth or protect plants from stress is becoming an increasingly 

common strategy in agriculture. Initially, biological applications were prepared using single or a 

few microbial strains that are known to have biocontrol or plant growth promotion effects [8]. 

However, there is growing interest in the use of microbial consortia that may occupy or function 

across a larger niche breadth. Yet, strategies for designing or assembling microbial consortia 

vary between research groups. One strategy for choosing microbes to include within microbial 

consortia is to focus on microbial taxa which can alter the structure of the microbiome. These 

microbial taxa, often called “hubs” due to their high levels of connectivity in the microbiome, are 

hypothesized to be important in structuring microbial communities, but their usefulness as 

microbial inoculants has not been fully addressed [9, 10]. Researching the impacts on soybeans 

of inoculation with hub taxa will be crucial for assessing the level to which native microbes can 

be used to manipulate plant-associated microbiomes.  

Background 

 This chapter serves as a literature review on the impact of various management strategies 

on microbial (fungal and bacterial) interactions with crops. This chapter is split into four sections 

that discuss beneficial roles of microbes in plant holobionts and cover the impacts of three 

different management strategies utilized in modern agriculture: (1) the impact of tillage intensity 

on field crops and their associated microbiomes; (2) the impact of foliar chemical applications,  

specifically, fungicides and insecticides, on microbial communities associated with the 
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phyllospheres of field crops, and; (3) the impact of microbial inoculants in agriculture. 

Beneficial Roles of Microbes in Plant Holobionts 

 With studies on microbiomes becoming increasingly common, it is clear that organisms 

rarely, if ever, exist in isolation. Instead, macroorganisms typically host a diverse microbiome 

composed of both prokaryotes and eukaryotes. Plants are no exception to this rule and host 

microbiomes inside and on the surface of their above and belowground tissues and also have 

important interactions with soil microbial communities. Knowing this, it is informative to be able 

to consider plants and their microbiomes as one distinct unit in which microbial genes extend the 

genetic and functional repertoire of the hosts genome. This unit is referred to as the holobiont, a 

term that originally referred to a host and a vertically transmitted symbiont, but later was applied 

more broadly to the host and its closely associated and likely co-evolving microbiome members, 

whether inherited or not [11, 12].  In this section, a few examples of the many important 

microbial contributions in the phyllosphere, endosphere, and rhizosphere of plant holobionts will 

be highlighted. 

 The plant phyllosphere (aboveground tissue) is colonized by bacteria and fungi on both 

the surface (epiphytes) and inside plant tissue (endophytes). Phyllosphere microbiota can 

contribute to functions already present in the plant, for example, bacterial and fungal 

communities can produce important phytohormones such as indole-3-acetic acid (IAA) [13, 14].  

Bacterial strains that have this trait may be enriched by the host plant [13]. In addition to the 

direct production of phytohormones, microbial communities can also modulate plant functions. 

One example of this is the priming of the plant immune response by non-pathogens, which can 

lead to increased pathogen resistance. In Arabidopsis, it was demonstrated that bacterial taxa 

including Pseudomonas helped protect hosts from Botrytis pathogenesis, and that this function 
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was not a direct interaction between the microbes in a plate setting but relied on the presence of 

the plant[15]. In addition to enhancing functions already present in the plant such as hormone 

production, members of the phyllosphere microbiota can also provide novel functions to the 

plant. For example, Epichloe, a fungal endophyte produces a non-ribosomal peptide that protects 

ryegrass from insect herbivory [16]. In addition to diverse benefits provided by individual 

microbial taxa, changes in phyllosphere microbial diversity can impact plant health. For 

example, it has been demonstrated that increased bacterial diversity on leaves was associated 

with increased ecosystem productivity in forests [17]. Increased microbial diversity in the 

phyllosphere may play an important role in increasing functional redundancy (the degree to 

which a function is performed by multiple taxa); which may in turn provide microbial 

communities more resilience to disturbance [18].   

 As in leaves, microbes play crucial roles inside and on the surface of roots by enhancing 

or modulating plant functions or by adding new functions to the host plant. One clear example of 

a crucial function provided to the plant that has been known for more than a century is nitrogen 

fixation by Bradyrhizobium in symbioses with soybeans and other plants [19] . Similarly, AMF 

are a classic example of fungal-root symbiosis in land plants. This group of fungi is known to 

play important roles in the acquisition of various minerals and nutrients including phosphorous 

and nitrogen, as well as the acquisition of water for plant hosts [20–22]. Although specific 

groups of symbiotic organisms have outsized beneficial impacts on their plant hosts, changes in 

overall microbial community structure, or beta diversity, can also impact host plant health.  For 

example, it appears that watermelon cultivars with lower levels of disease had greater microbial 

diversity in roots and the rhizosphere. This possibly indicates that greater diversity decreases 

invasion by Fusarium oxysporum [23]. Additionally, in Arabidopsis root systems, it was 
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demonstrated that beyond individual biocontrol bacteria, many bacterial strains appear to have 

negative correlations with fungi and promote host plant survival in the presence of fungal 

pathogens [24]. This indicates that there is a level of functional redundancy among biocontrol 

functions in plant roots. 

 Although soil microbial communities are not contained within plants, they can still exert 

a substantial impact on plant health. The importance of the rhizosphere microbiome on plant 

health is particularly relevant and can be demonstrated by differences between microbial 

communities and enhanced microbial activity in rhizosphere compared to bulk soils [25]. This 

indicates that the plants drive microbial activity, and exert selection or enrichment of specific 

microbial taxa in the rhizosphere, such as through their root exudates [26]. One example is the 

concept of disease suppressive soils in which crops can be planted into specific soils which are 

thought to reduce the likelihood of disease development in the plant. In some cases, this may be 

related to microbial communities as increased microbial diversity can reduce the ability of other 

microbes to enter the community [27, 28]. High diversity soil bacterial communities were shown 

to increase the arbuscular mycorrhization of maize roots following inoculation with Rhizophagus 

clarus [29]. These results demonstrate that high diversity microbial communities may prevent 

the invasion of some but not all taxa into microbial communities. Examples from plant leaves, 

roots, and associated soils demonstrate that specific beneficial taxa, as well as particular 

microbial community traits, can have a substantial beneficial impact on the plant holobiont by 

providing novel functions to the plant or by altering normal plant functioning. Knowing this, it is 

important to consider how common agricultural management strategies impact plant-associated 

microbiomes and how these changes affect crop health. 
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Impact of Tillage Intensity on Crop Plants and Their Associated Microbiomes 

Since the Dust Bowl of the 1930s, when massive erosion and loss of topsoil in US 

occurred as a result of deep tillage farming practices and severe drought, some form of 

conservation tillage has been practiced in the United States. However, reduced tillage systems 

began to be increasingly prevalent in the 1960s when herbicides became more common [1, 30].  

Reduced tillage systems include reductions in intensity, depth, or area tilled; while no-till 

systems eliminate tilling completely [31]. Conservation tillage is broadly aimed at reducing soil 

loss in comparison to traditional tillage methods and is defined as leaving 30% crop residue 

coverage on the soil surface, although it does not have to include reducing tillage [32]. However, 

reduced tillage is becoming an increasingly prominent example of conservation tillage. Reduced 

tillage also provides benefits such as reductions in soil erosion, increase in drought resilience, 

reductions of greenhouse gas emissions, and fuel cost savings to farmers [33–35]. These benefits 

may be particularly impactful when used in crops grown on the largest scale such as maize and 

soybeans which together represent 57% of all crop acreage in the United States [36]. 

 As mentioned, soybean is a major field crop in the United States, and accounts for 90% 

of oil seed production in the country. The total acreage of soybean grown in the United States 

continues to increase and was estimated to be 87.6 million acres in 2021[37]. Like other field 

crops, a substantial portion of soybeans are managed with some form of conservation tillage.  In 

2012, 70% of US soybeans were managed using conservation tillage; 56% of acreage under 

conservation tillage was no-till [1]. The proportion of soybean managed under reduced tillage 

regimes is likely to increase due to negative environmental impacts of tillage cropping practices.  

Additionally, it has been demonstrated that reductions in tillage intensity can increase yield, but 

the magnitude of this effect is dependent on soil type and other environmental factors [38]. In 
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some cases, including at Michigan State University’s Kellogg Biological Station Long-Term 

Ecological Research site (KBS LTER), no-till agriculture has increased crop yield of maize, 

soybean, and wheat relative to conventional tillage [39]. The long-term yield benefit of tillage 

reduction is particularly apparent in conventionally tilled fields that have experienced topsoil 

loss. For example, a study in Indiana demonstrated soybean yield losses of more than 17% in 

fields that experienced substantial erosion, but there were remaining concerns about no-till 

systems increasing soil compaction, which could lead to reduced seedling emergence [40].  

 As reduced or no-till management systems remain common and profitable, it is important 

to assess their impact on plant physiology and growth as well as the plant-associated 

microbiome. One important concern regarding the impact of reduced tillage is that without 

turning over the soil, root growth may be limited. Several studies have demonstrated that soil 

managed under various forms of reduced tillage can become hardened, which can lead to 

reduced seedling growth [41, 42]. Tillage regime may also impact root growth. For example, 

peas grown under conventional tillage had increased root length, but those under no-till 

management had higher root biomass [43]. In maize, it has been demonstrated that tillage leads 

to differences in the distribution of root growth with roots in no-till soils growing more 

horizontally compared to conventionally tilled roots [44] This also appeared to be true in 

soybean where roots were more abundant in the shallowest soil layers compared to conventional 

tillage [45]. These studies demonstrate that the impacts of tillage on plant phenotypes appear to 

be in part mediated through impacts on soil compaction. The extent of this compaction likely 

relies on the soil texture. The impact of these phenotypic changes on yield likely depends on the 

crop and on environmental conditions such as precipitation. Assessing microbial communities 

and plant phenotypes associated with reduced tillage under different environmental conditions 
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will be important in assessing which areas are well suited to reduced tillage regimes. 

Impact of Tillage on Pathogens and Plant Beneficial Microorganisms 

Although studies assessing plant-associated microbiomes have become increasingly 

common, the impact of tillage on microbiomes is not entirely consistent. Several amplicon 

sequencing studies on wheat, soybean, and maize have demonstrated that tillage regime impacts 

fungal community composition and  beta diversity, particularly in the soil [2, 3, 46–48]. Among 

fungi, there is concern that tillage may disrupt hyphae leading to the disruption of potentially 

beneficial activities. It has been demonstrated that there is an increase in hyphal length and 

fungal biomass in no-till compared to conventionally tilled soils [49, 50]. However, the impact 

on alpha diversity metrics of fungal communities is not consistent [3, 47, 49, 51]. In addition to 

comparing overall community metrics, there is a need to compare the impacts of tillage on 

specific functional groups that may have important interactions with their plant hosts, in 

particular AMF [52]. 

Assessing plant pathogens from different tillage regimes is an important aspect in 

determining which tillage regime to utilize. One of the primary rationales behind more intensive 

tilling regimes is to reduce pathogen pressure caused by leftover crop residues in fields. No-till 

fields may also increase pathogen pressure by lowering soil temperature and increasing soil 

moisture. For example, in studies of soybean sudden death syndrome (SDS) caused by Fusarium 

solani, chisel tillage reduced the foliar disease index by 50% in earlier season sampling and 

approximately 25% in late season [53]. Similarly in maize, ear rot caused by Stenocarpella 

maydis was reduced by as much as 40% with more intense tilling following a period of reduced 

tillage compare to other less intense tillage regimes [54].  No-till management may also increase 

disease severity of oomycete disease caused by Phytopthora and Pythium, especially in wet 
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conditions [55, 56]. However, reduced-tillage does not always result in more disease, and in fact 

there are also examples of pathogens with lower severity or unimpacted severity under reduced 

tillage practices such as Fusarium graminearum in wheat and Macrophomina phaseolina in 

soybean [33, 57]. Reduced tillage may be effective in controlling a small subset of diseases that 

thrive under drought conditions due to an increase in soil moisture associated with reduced or 

no-till systems [58]. Together, these studies demonstrated the impact of tillage systems on 

specific plant pathogens. However, with the development of high-throughput sequencing 

technologies to sequence the microbiome, the impact of reduced-tillage management on whole 

communities of microorganisms can now be readily assessed.    

Several studies have detected differences by tillage regime in the abundances of specific 

pathogens [48]. However, trends on the impact of tillage on plant disease were not consistent 

across all pathogens. This may be partially due to some pathogens not being detected at high 

enough levels to distinguish between management treatments [2]. Additionally, the detection of 

tillage-associated differences in pathogen distributions may be hindered by limitations associated 

with amplicon sequencing. For example, amplicon sequencing can typically only detect 

taxonomic differences at the genus level or above while detecting pathogens likely requires 

species or strain-level resolution. Additionally, amplicon sequencing cannot distinguish between 

DNA from living cells and dead cells, which makes it difficult to assess the activity of pathogens 

[59]. However, due to the ability of amplicon sequencing to assess the microbiome inclusive of 

many members and phylogenetically diverse lineages, the distributions of both putative 

pathogens and other microbiome members can be readily assessed under different tillage 

regimes. 

Crop microbiome studies have increasingly assessed the impact of tillage on groups of 
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potentially beneficial bacteria and fungi. Since AMF are consistently considered to be beneficial  

to plants and soils, although their impact is dependent on partner combinations and 

environmental context [60], the impact of tillage on these fungi will be discussed further. AMF 

are known to be beneficial to plants in various ways such as through the transport of 

phosphorous and nitrogen into plant roots and the direct transport of water into plant roots [61]. 

Due to limitations in culturing AMF given their obligate dependency on plant hosts, various 

culture-independent methods have been used to study their distributions in soil. For example, a 

study using spore counting and morphological identification of AMF from soil demonstrated that 

no-till plots had higher spore densities and species richness compared to those that were 

conventionally tilled, but this trend was taxa-dependent with some AMF taxa being unimpacted 

by tillage regime [62]. However, one metanalysis showed that reduced tillage and the use of 

cover crops increased root colonization of AMF [63].   

With advances in high throughput generation sequencing, AMF can be assessed either as 

part of a survey of the entire fungal community or can be targeted with specific primers which 

may increase the diversity of recovered taxa in the Glomeromycotina [64].  Although there are 

limitations to what can be inferred from amplicon sequencing of fungal communities due to 

skewed abundance estimates from primer biases and variation in internal transcribed spacer 

(ITS) copy numbers; these studies can still provide valuable insights into shifts in the 

mycobiome. One amplicon study using AMF specific primers on maize root associated AMF 

communities demonstrated a significant impact of tillage on AMF communities. Similarly to 

morphology-based studies, some operational taxonomic units (OTUs) appeared to be associated 

to tilled plots while others were associated to no-till treatments [65]. Further work is needed to 

determine the characteristics of AMF taxa that are impacted by tillage compared to those that are 
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not and their impacts on the host plant. It is also important to note that the impacts of tillage on 

AMF do not appear to be consistent across all crops. Recent microbiome studies on Sorghum 

demonstrate increases in AMF abundance under conventional tillage, especially when combined 

with cover cropping [66]. Similar to other fungal communities, advances in sequencing 

technologies continue to improve the study of AMF. For example, the use of PacBio sequencing 

technology enables the circular consensus sequencing of longer amplicons, which can improve 

the detection of strain and species-level differences [67]. These longer amplicons, along with 

increased study of AMF genomes and transcriptomes, will be useful in revealing specific impacts 

of tillage on AMF communities. 

Similar to plant beneficial fungi, there is interest in determining the impacts of tillage on 

plant beneficial bacteria. The impact of tillage on overall bacterial alpha diversity appears to be 

inconsistent and may depend on the crop and environment [47, 68]. The impact of tillage on 

bacterial communities may be expected to be reduced compared to fungi as bacteria are not 

characterized by hyphal networks, but this has not always been found to be the case. Previous 

work has demonstrated that tillage regime impacts bacterial community composition in the soil 

and roots of soybean, wheat, and maize  [3, 47, 69]. As discussed for fungi, it is important to 

assess the impact of tillage on specific guilds of bacteria that may have important interactions 

with their host plants. In soybeans, it is especially important to consider the impact of tillage on 

symbiotic nitrogen fixing bacteria such as Bradyrhizobium species, as changing distributions of 

these taxa could impact yield. Amplicon sequencing work at KBS demonstrated an increase in 

the relative abundance of Bradyrhizobium under no-till management [47]. Other work has 

demonstrated that conventional tillage reduced Bradyrhizobium diversity in soybean fields [70]. 

This observation correlates with observations of increased soil organic carbon under no-till 
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management which is thought to increase Bradyrhizobium diversity [71, 72]. Further work is 

needed to ensure that increased Bradyrhizobium relative abundance and diversity correlates with 

increased nitrogen fixation activity in soybean roots and that this increase leads to greater yields.  

The impact of tillage on plant-associated microbial communities is expected to be 

especially pronounced in roots due to the direct contact with soil. However, aboveground plant-

associated microbial communities also have important roles in plant health and may be impacted 

by tillage regime. The impact of tillage regime on phyllosphere microbiomes has been under-

assessed compared to belowground compartments. It has been demonstrated that epiphytic and 

endophytic bacteria and fungi can be transferred from the soil and organic horizon to the 

phyllosphere, so it can be expected that some of the microbial variation in the soil would be 

reflected in the phyllosphere [73–75]. However, there is also evidence that aboveground plant 

tissues select for specific communities [73]. Research on the impact of tillage on phyllosphere 

microbiomes of soybean has demonstrated that long-term no-till management altered fungal and 

prokaryotic beta diversity in leaves and stems, but to a lesser extent than soil [47].  However 

research on wheat did not find the same level of management impact in the phyllosphere, 

indicating variation by crop and season [4]. Further work is needed to determine if there is a 

direct impact of no-till management on the crop phyllosphere throughout the growing season or 

if the phyllosphere microbiome changes because of changes in the soil. 

Functional Microbiome Changes Associated with Tillage Regime  

 As sequencing technologies and methods for assesing microbiomes continue to improve, 

the functional capacity of microbiomes will become more accessible through shotgun sequencing 

of the metagenome, metatranscriptomics, proteomics and metabolomics. Differences between 

tillage managements in microbial functons may be expected to be smaller in comparison to 
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taxonomic differences due to high levels of functional redundancy, but the extent of functional 

redundancy may depend on the trait and environment [76, 77]. This was the case in a study on 

agricultural soils in a rotation that included soybean that demonstrated with shotgun 

metagenomics that there were differences between tillage managements in carbohydrate 

metabolism. These could have resulted from differences in organic carbon, but these differences 

were smaller than differences in bacterial diversity [78]. Similarly, research based on 

metatranscriptomics of soils demonstrated differences in some areas of microbial metabolism, 

but again showed some functional redundancy in carbon metabolism [66]. Interestingly, Wipf et 

al. 2020 demonstrated that the number of AMF transcripts was higher under standard tillage than 

in a no-till system, an indication of increased AMF activity [66]. 

Although sequencing techniques such as metatranscriptomics and shotgun metagenomics 

can reveal the microbiomes functional potential, other techniques such as metaproteomics and 

metabolomics can be used to provide a snapshot of active microbial functions. However, these 

methods also have limitations including limited reference databases and difficulties in annotating 

compounds. Possibly because of these limitations, metabolomics and proteomics studies on the 

impacts of tillage are rare. Several studies on broad enzymatic activity in maize and vegetable 

cultivation soils report higher levels of enzymatic activity including protease and urease activity 

in fields that were not agriculturally managed compared to those that were. Increased enzyme 

activity was also reported in fields with reduced tillage compared to conventional tillage [79]. 

Although there are few studies assesing the impact of tillage on plant or soil metabolomes 

directly, the connection between the soil microbiome and the aboveground metabolome has been 

assesed, showing that the addition of soil microbes increased production of various compounds 

such as phenolics in aboveground tissues [80]. In addition to impacts of soil microbiome 
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changes, it is known that shifts in the root-associated microbiome of Populus were associated 

with changes in at least 10% of detected root secondary metabolites [81]. Since work discussed 

above demonstrated that tillage impacts the soil and root microbiome, it is possible that these 

impacts would translate to the plant metabolome. Additional work should address how tillage 

specifically impacts the metabolome of plant holobionts, and how these changes are associated 

with changes in yield. 

Impact of Tillage on Microbiome Under Different Environmental Conditions 

As global climate continues to become increasingly erratic, it is important to analyze the 

performance of tillage under different environmental conditions. Although there are many 

environmental stresses relevant to soybeans and other crops which may be altered by tillage, 

staple crops are particularly sensitive to drought, which is expected to be affected by human-

induced climage change and will be discussed further here [82]. Reductions in tillage are thought 

to be specifically useful under drought conditions as lower tillage increases soil moisture content 

in various environments including at the KBS LTER [83, 84]. No-till or reduced tillage 

management systems are thought to be especially beneficial to yield under dry conditions. For 

example, one study on maize in China demonstrated a nearly 20% increase in yield under no-till 

conditions during dry years, but a decrease in yield during wet years [85]. Similarly, in the 

United States, a large scale study on soybean demonstrated that conservation tillage helped 

prevent yield loss under drought conditions [86]. To further understand differences between 

tillage systems under drought conditions, it is important to assess impacts on the microbiome 

under these conditions. Importantly, one metanalysis demonstrated that plant growth promoting 

bacteria may be more effective under drought conditions [87, 88]. Although it is unclear how 

tillage impacts diverse classes of plant growth promoting bacteria; this result shows that any 
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increase in plant growth promoting bacteria from tillage may be even more prominent under 

drought. As discussed above, reduced tillage frequently appears to increase diversity and 

colonization of AMF and may be a biological mechanism for drought resilience in reduced 

tillage systems, as AMF are thought to increase plant growth under drought through the direct 

transfer of water to plant hosts  [89, 90]. 

Future Directions of Tillage Microbiome Research 

Although the impact of tillage on the microbiome has been extensively researched, 

further work remains to determine the extent of and limits to microbiome impacts on plant hosts. 

It has been established that tillage regime has an impact on microbial communities associated 

with agricultural soil and all parts of the plant. However, leveraging microbial genomes and 

other next generation sequencing techniques will be needed to elucidate the common and unique 

functions of microbial taxa which benefit from tillage compared to those that do not.  Methods 

for assessing microbial communities associated with different tillage regimes could be one part 

of the modern toolkit for assessing how tillage regimes impact plant health. Further analyses 

using field imaging, remote sensing techniques, and spectrosopy-based methods to assess how 

tillage changes plant health and soil moisture metrics could be paired with microbial community 

analyses for determining the tillage regime that is best suited for a particular location [91, 92]. 

Combining these techniques will help guide scaleable methods for maintaining productive and 

sustainable agriculture.  

Impact of Foliar Insecticide and Fungicide Applications on Phyllosphere Microbiomes 

Another important agricultural management method critical to modern food and biofuel 

crops is the use of insecticide and fungicide applications. Such applications can be applied 

through soil drenching, as seed coatings, or as foliar sprays directly onto aboveground plant 
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tissue. Foliar sprays are an important method for controlling both insects and fungal pathogens 

and continue to be widely used in agriculture. However, concerns about undesired environmental 

consequences including selection for biocide-resistance in microbes, and off-target impacts on 

the host microbiome and other organisms in ecosystem persist, and warrant further research [93–

96]. The leading application type in a survey of 21 crops continues to be herbicides for weed 

control, but insecticides and fungicides each still accounted for more than 5% by mass of active 

ingredient applied among the 21 crops in 2008 [97]. The use of insecticides has decreased in 

cotton and maize due to the introduction of Bt lines which provide reistance to maize borers and 

other pests through the introduction of resistance from Bacillus thuringiensis.  However, this is 

not the case for all crops. For example, fungicides and insecticides were used on nearly 100% of 

potatoes in 2008 and fungicides were applied to 97% of potatoes in 2016 [97, 98]. Fungicides 

and insecticides each have various modes of action that should be assesed for off-target 

microbial impacts and environmental concerns. In addition to assesing off-target impacts of 

chemical applications on the microbial component of plant holobionts, it is important to assess 

environmental concerns and resistance development. 

Environmental Impacts of Fungicides and Insecticides 

It has long been known that drift or runoff of insecticides from agricultural fields can lead 

to environmental problems. For example, environmental contamination and bioaccumulation of 

the insecticide dichloro-diphenyl-trichloroethane (DDT) lead to reproductive declines in bald 

eagles in the United States, which later recovered after the ban of DDT [99]. The environmental 

impacts of fungicide runoff or environmental persistence and resistence has been less studied. 

Fungicides have been detected in fresh water ecosystems, but the impact on organisms in these 

environments has been understudied [100] . However, it is thought that some fungicides may 
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harm invertebrates, fish, and algae in freshwater [96]. Due to such environmental concerns, there 

have been approaches for fungicide and insecticide development to mitigate some of these risks. 

For example, insecticides including pyrethrins are produced by Tanacetum cinerariifolium and 

production can be engineered into other plants [101]. These natural alternatives can be effective, 

but their environmental impacts need to be assesed frther. Similarly, natural products have been 

discovered that may have effective uses as fungicides. One such compound, trans-cinnamic acid, 

isolated from a bacterial symbiont of nematodes (Photorhabdus luminescens) was discovered to 

have antifungal activities against Fusicladium effusum, the cauasative agent of pecan scab [102]. 

These natural alternatives can be effective and may reduce environmental damage, although 

further work on their environmental persistence and downstream impacts is still needed. 

Development of Resistance to Fungicides and Insecticides  

Fungicides are generally grouped by their modes of action, and alternating modes of 

action is thought to help avoid the development of resistance to fungicides. These broad classes 

include mitosis disrupters, cell mebrane disrupters, respiration inhibitors, oxidative 

phosphorylation uncouplers, and those that have multiple targets in fungal metabolism [103]. 

The development of resistance is an important area of concern because it reduces the ability of 

farmers to control plant pathogens, but it may also introduce fungi which are resistant to 

antifungal drugs into human populations. For example, there are concerns over the devlopment 

of triazole resistance in the human pathogen Aspergillus fumigatus. One study demonstrated that 

higher levels of azole fungicides in soils were associated with the increased prevalence of 

triazole resistant A. fumigatus, which can cause clinical infections when resistance develops [93, 

94]. Due to similar selective pressures on insects and fungi; insecticides are expected to lead to 

development of resistances that could impact human health, especially in the case of insect 
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vectored diseases such as Malaria [104]. 

As with fungicides, resistance to insecticides can develop and cause concerns about their 

continued efficacy. The development of resistance makes crops vulnerable to insect pests, but 

can also jeopardize human health in the case of insect vectors for diseases such as malaria. For 

example, it has been demonstrated that resitance to DDT insecticides is common among 

mosquitoes that carry malaria [104].  Insecticide resistance among insect pests of cotton is 

associated with neonicotonoid seed coatings used on soybean and cotton in the United States. 

The use of neonicotonoid insecticides on soybean was associated with resistance development in 

tobacco thrips which are a pest of cotton but not soybean [105]. This highlights an important 

concern about the development of insecticide resistance in a pest of one crop being associated 

with insecticide use on another crop that is not impacted by the pest. To avoid the continued 

development of resistance, it is important to consider chemical applications across crops and 

growing seasons. 

Efficacy and Economic Feasibility of Fungicides and Insecticides  

Although concerns such as lasting environmental impacts and development of resistance 

are imporrtant to consider when using fungicides and pesticides, these products are also effective 

in reducing populations of their pest targets and maintaining crop yields. Foliar fungicides play 

an important role in preventing economic loss from reduced crop yields in major crops. For 

example, soybean diseases were responsible for 95 billion dollars in lost revenue between 1996 

and 2016 and more than 12 billion of that loss was caused by foliar pathogens, which are 

primarily fungal [6, 106]. As expected, foliar fungicide applications are important in preventing 

yield loss in the presence of foliar disease. For example, one study on winter wheat demonstrated 

that in a year with increased disease severity, foliar fungicide applications increased monetary 
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returns by a range of $148 -239/ ha [5].  However, such benefit is dependent on the presence of 

disease as foliar fungicide applications may not be cost effective in soybean without disease 

pressure even though there may be a slight yield increase [6]. As with fungicides, yield increases 

associated with insecticide applications can vary year to year, and is dependent on levels of 

insect herbivory occuring. In switchgrass, insecticides increased yield in one studied year, but the 

effect was not consistent between years [107]. However, in wheat grown under high rainfall 

conditions, insecticides consistently helped to maintain crop yields [108]. These results show that 

fungicides and insecticides are important tools for maintaining crop yields, but that their impact 

depends on environmental and biotic factors. The importance of these environmental factors 

demonstrates the need for tools in agricultural that farmers can use to forecast environmental 

conditions that may impact pest and disease agents. 

Non-Target Impacts of Fungicides and Insecticides 

Foliar fungicides are important for controlling foliar pathogens, but the phyllosphere is 

also enriched in plant growth promoting fungal taxa and fungicides may have off-target impacts 

on these communities. One non-target fungal group which is frequently found to be impacted by 

fungicides are basidiomycete yeasts, especially in the Tremellomycetes. Dioszegia and Bullera  

may decline after fungicide application  [95, 109]. Interestingly, other yeasts, including some 

Rhodotorula and Sporidiobolus, have been demonstrated to increase in abundance following 

fungicide application [7, 95, 110]. This may result from an increase in niche space after the loss 

of phyllosphere fungal populations, including Dioszegia and Bullera [95, 109]. These results are 

particularly important as basidiomycete yeasts appear to be highly abundant in plant 

phyllospheres and are enriched in plant beneficial functions such as production of 

phytohormones [111]. It is important to note that concerns regarding off-target impacts of 
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fungicide applications are primarily when applications occur in the absence of pathogen 

pressure, as the benefit of reductions in pathogen load would outweigh the benefits of 

phyllosphere yeasts under high pathogen pressure. Still, off-target impacts on beneficial yeasts 

should be considered when making management decisions when little or no pathogen pressure is 

expected.  

In addition to concerns regarding off-target impacts of fungicides in the phyllosphere, 

there are important concerns about fungicides altering microbial communities in environments 

outside the phyllosphere where fungicides are not being directly applied. The impact of foliar 

fungicides on other plant organs such as the roots likely depends on the type of fungicide used 

and its ability to be transported systemically throughout the plant. In some cases, the movement 

of fungicides through the plant is a desired trait. This is the case for some potato diseases where 

phosphonic acid sprayed on foliar tissue reduced the infection of tubers by Phytophthora [112].  

There is particular interest in assesing the impact of foliar fungicides on beneficial root taxa such 

as arbuscular mycorrhizal fungi. When applied directly to the soil, fungicides were shown to 

reduce colonization of arbuscular mycorrhizal fungi on daisy plants [113]. Despite this, since 

many fungicides are applied to leaf tissues and have either no or limited movement through the 

plant, the impact on AMF taxa in field settings is unlikely [114]. However, fungicide seed 

treatments may reduce colonization of AMF depending on the fungicide and the identity of the 

AMF taxa [115]. Foliar fungicides are unlikely to be designed to target soil fungal communities. 

Despite this, several studies have assesed the impact of foliar fungicide sprays on soil fungal 

communities. The impact of fungicide application on soil fungal communities is likely to depend 

on the application rate of the fungicide and the type of crop. Thick foliage, higher planting 

density, and taller plants are likely to prevent spray from reaching the soil. This has been 
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demonstrated through varying results among different crops with foliar fungicide applications on 

cucumber having a substantial impact on soil fungal communities, but applications on soybean 

having no impact on soil fungal communities [95, 116].  

There remain concerns over off-target impacts of insecticides on beneficial insects. 

Beneficial insects play various important roles in agricultural systems including acting as 

predators on harmful insects and acting as pollinators. Beneficial insects can be exposed to 

insecticides through nectar of plants that have been sprayed, through contacts with other plant 

surfaces, and by the consumption of other insects which have fed on sprayed plants [117]. One 

study demonstrated that beneficial insects such as parasitic wasps and pollinators, can be killed 

by consuming secretions from deterimental phloem-feeding insects which fed on citrus trees that 

had been sprayed with neonicotinoid insecticides [118]. In addition to lethal effects, some 

insecticide chemistries can have non-lethal impacts which can still harm the reproductive success 

of important pollinators such as bees [119]. Due to these concerns, novel chemistries and 

methods are continually being devleoped that can be effective against insect pests while 

minimizing harm to pollinators or insect predators. These methods can include but are not 

limited to employing insecticides produced naturally by plants, as discussed above, or utilizing 

native insect predators to control pest insects [101, 120]. 

Although insecticides are designed to specifically target insects, it is important to ensure 

that insecticide application does not impact the microbiome. It has been demonstrated that 

Burkholderia strains found in agricultural soils are capable of degrading fenitrothion insecticides, 

and that these strains can form symbioses with insect pests leading to increased resistance [121].  

Several studies assesing off-target impacts of insecticides on microbial communities have been 

performed on soil microbiomes. It has been demonstrated that neonicotinoid applications can 
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alter bacterial community composition, structure and diversity in soils, increasing prevalence of 

insecticide degrading taxa  as well as possible indirect effects [122, 123]. In many cases, it is 

unclear if impacts on the microbiome are directly a result of the insecticide treatment, or an 

indirect impact related to changing soil paramaters. Fewer studies have assesed the impact of 

insecticides on phyllosphere microbial communities, with one study on the cucumber 

phyllosphere finding an increase in bacterial biomass coupled with a decrease in fungal biomass 

[124]. Within bacterial communities, it was found that insecticides lead to an increase in gram 

negative bacteria [125]. Further work is needed to assess the methods by which insecticides may 

impact plant-associated microbial communities. 

Conclusions and Future Directions  

Chemical insecticides and fungicides remain important means for managing insect and 

fungal pests in agricultural systems. However, these applications can have off-target impacts 

within agricultural ecosystems and beyond targeted areas and organisms. In addition to off-target 

impacts, these applications can lead to environmental concerns for humans and animals. Due to 

these concerns, it is important to continue to develop new chemistries that minimize off-target 

impacts while remaining effective against target pests. Additionally, precision agriculture 

methods are needed to more reliably sense and forecast pest concerns in fields, and to predict 

conditions when insecticide and fungicide applications will be cost-effective. For example, 

remote sensing can be used to detect fungal diseases, which lead to detectable physiological 

changes in plants [126]. Aerial imaging has been used to detect history of cotton root rot in 

fields; this information can then be used to create maps for targeted fungicide applications [127]. 

Using these strategies, as measured by drone, airplane or satellite, will reduce negative impacts 

associated with chemical applications and will help farmers maintain yields by avoiding 
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unnessecary chemical applications. 

The Use of Microbial Inoculants in Agriculture 

In addition to mechanical management using tillage and management using chemical 

applications, another agricultural management method that is becoming increasingly common is 

the use of microbial inoculations, known as biologicals. Microbial inoculations can be performed 

on agricultural soils, seeds, or directly to seedlings and mature plants [8, 128, 129]. In addition to 

microbial inoculations, potentially plant-beneficial microorganisms can be selected for by 

engineering plants to have altered exudate profile, which may impact root or rhizosphere 

microbes [130, 131]. However, there is increasing interest in direct inoculations of microbes to 

provide microbe-mediated benefit without having to genetically modify the plant. Seed or 

seedling inoculations are thought to be successful in part due to ecological priority effects, which 

posits that early arriving species are more likely to occupy a niche and persist due to the lack of 

competition upon arrival [132]. Priority effects have been shown to have a lasting role in the 

long-term structuring of microbial communities in diverse environments such as the human gut 

and agricultural systems [132, 133]. In agricultural systems, small changes such as the arrival 

order of species can lead to significant differences in community structure, demonstrating that 

the composition of microbial communities is contingent on many factors  [133]. Priority effects 

have also been demonstrated with the use of a synthetic bacterial community to show that strains 

which were inoculated early had an effect community structure that persisted, even after the 

arrival of new taxa [134]. Priority effects have been shown to occur in several different ways, 

and often result in the competitive exclusion of later arriving species. One mechanism to explain 

this result is that the inoculant community will be expected to outcompete inhabitants of the 

natural soil due to their ability to adjust to the niche prior to the arrival of other microbes [135]. 
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Another possibility is that the niche could be modified by the microbial inoculum, making it 

more difficult for competitors to colonize [136]. Microbial inoculants have been shown to 

promote plant growth, pathogen resistance, and increase resistance to abiotic stress [8]. 

Inoculations designed for each of these purposes will be discussed further.  

Microbial Inoculant Testing 

As described by Kaminsky et al. 2019, designing and assessing the efficacy of microbial 

inoculants involves analyzing inoculant performance at several stages. First, the microbial taxa 

with desired traits must be isolated. Next, the taxa must survive storage and formulation. Then 

the microbes must establish in the soil or plant system and persist until the function can be 

performed. Finally, the inoculum must avoid unintended ecological consequences associated 

with persistence passed the desired function [137]. Before inoculations can be applied, microbes 

with desired traits must be identified and isolated. Many microbial isolation methods select for 

the fastest growing taxa, but some approaches are able to select for slower growing or unique 

taxa by lower the nutrient content, extending or modifying growth conditions, baiting media with 

particular substrates, or by enriching for microbial taxa in their environment [138–140]. These 

methods allow for the selection of desired microbial functions from a broader range of taxa. 

Once desired microbes have been isolated, the next step is to ensure that they survive storage to 

be placed in the soil, on the plant, or coated onto the seed. Various methods can be used to 

increase the survival of inoculants including encapsulation with a polymer such as alginate, or 

the selection of strains which are amenable to dry coatings [8, 137, 141]. Following storage, it is 

important to ensure that the microbes are living and that the desired function is active. 

After verifying that inoculant microbes survived storage, the next stage is to ensure that 

they can establish in the desired environment. As discussed above, it is thought that microbial 
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inoculants or other early colonizing microbes can establish due to the phenomenon of priority 

effects, but it is important to assess their establishment. With the number of available fungal and 

bacterial genomes increasing, strain-specific quantitative polymerase chain reaction (qPCR) 

markers can be designed from sequenced genomes and these markers can be used to assess the 

presence of an inoculated strain in plants or associated soil [142]. However, this method could be 

problematic if closely related strains are present in the same soil. Another method which has long 

been used to track microbes in the environment is the use of fluorescent reporter strains of 

bacteria [143]. However, this method relies on the ability to transform the microbe, which is not 

always possible for bacteria or fungi. Further developments in the tracking of microbial 

inoculants in the environment will be crucial to the advancement of microbial inoculation 

methods. 

One of the primary concerns in using microbial inoculants in agriculture has to do with 

the persistence of inoculated taxa. These concerns can be twofold: first, it is important to ensure 

that the inoculant persists long enough to perform the desired function; second, the persistence of 

non-native microbial taxa in agricultural ecosystems may be undesirable due to unintended long-

term impacts of non-native taxa.  Similar methods to those described for assessing establishment 

can be used for assessing the persistence of microbial inoculants but applied using a time-series 

sampling approach. One study which used non-native AMF strains that differed in ribosomal 

DNA (rDNA) sequence from the native taxa demonstrated that AMF inoculants persisted in 

Medicago sativa plants for up to two years [144]. Similarly, rhizobial inoculants were 

demonstrated to survive in some soybean soils for up to three years following inoculation [145]. 

Although there are challenges in tracking the establishment and persistence of single isolates, 

tracking the persistence of large numbers of inoculants can be even more challenging. When 
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designing and testing synthetic microbial communities in sterile or semi-sterile environments for 

use as inoculants, their abundance can be tracked through sequencing or culture-based methods, 

but this is less likely to be viable in complex field environments [146]. Other methods such as 

fluorescence in situ hybridization (FISH) imaging can be used with probes specific to inoculant 

members [147]. However, these methods may be most applicable in sterile or controlled 

conditions due to complications from the presence of closely related strains. 

Uses of Microbial Inoculants 

It has long been known that bacterial and fungal inocula can be used for general plant 

growth promotion [148, 149]. However, microbial inocula are also commonly used to combat plant 

pathogens. These studies have been performed on a wide variety of crops to provide either broad 

spectrum protection against pathogens or against specific target pathogens [8].  Typically microbes 

are selected based off of screenings and in vitro studies that demonstrate a reduction in pathogen 

growth in culture [150]. However, with modern sequencing and bioinformatics techniques, taxa 

can be selected in silico based on the potential to produce compounds or activities of interest. For 

example, one study applied a machine learning framework to detect bacteria with biocontrol 

activity against pathogens of sorghum and banana, and found that the addition of a machine 

learning approach improved the number of strains of interest and identified novel strains compared 

to traditional screening approaches [151]. Once strains with desired biocontrol activities have been 

identified, studies frequently test a single species of bacteria in the field, greenhouse, or growth 

chamber against a target oomycete or fungal pathogen [152–154]. However, there is increasing 

interest in using several strains or a synthetic microbial community to improve plant resilience 

[155, 156].  

Increasingly, concepts used for designing microbial inocula to protect against pathogens 
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are being applied to protect plants from abiotic stress. As with designing inocula for biotic stress 

based on noted pathogen inhibition either in plants or in culture, one method for designing 

microbial inocula for abiotic stress amelioration is to isolate microbes from environments that 

are extreme for that stress. For example, one method for finding  microbes which may protect 

plants from drought stress is to isolate plant-associated microbes  from arid climates, as such 

microbes are likely to be adapted to drought conditions and may aid in their host plants survival 

[157]. This strategy has been applied to design synthetic communities that protect plants from 

drought stress. Previous work demonstrated that inoculating tomato seeds with microbes isolated 

from a desert cactus increased growth and survival under drought conditions [158]. Some 

bacterial inoculants have also been found to aid in soybean and tomato responses to flooding 

through the production or alteration of phytohormones [159, 160]. In addition to drought and 

flooding stress, fungal and bacterial inoculum have been shown to help protect plants from heavy 

metal contaminated soil and can reduce the amount of phosphorous fertilization application 

required  [161, 162]. The wide variety of uses for microbial inoculants demonstrates the diversity 

of plant-beneficial functions that can be harnessed from applications with plant-associated 

microbes in agriculture.  

The impact of inoculants on plant-associated or soil microbial communities are less 

frequently assessed compared to their impacts on plant performance. However, use of microbial 

taxa that are thought to be important in structuring the microbiome may be expected to result in 

changes to the whole microbiome. When microbial community changes have been assessed, the 

impact of the inoculation appears to depend on the taxa used in the inoculation or the plant host. 

For example, one study demonstrated a significant impact of Pseudomonas fluorescens 

inoculation on beta diversity in the rhizosphere soil of several plant species including soybean 
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[163]. However, another study performed on soybean seed inoculated with Bacillus did not show 

a substantial impact of inoculation on the rhizosphere microbiome, although this study did not 

utilize next generation sequencing so their detection limit was not very sensitive and the 

inoculation may not have persisted [153]. Further, microbial inocula can also have impacts that 

appear to be indirect. For example, inoculation with Metarhizium increased Bradyrhizobium 

abundance in common bean roots even though inoculation did not increase relative abundance of 

Metarhizium [164]. 

Conclusions and Future Directions 

Microbial inoculants have been demonstrated to be successful in aiding plant responses to 

various biotic and abiotic stresses, this wide range of use and adaptability makes microbial 

inoculants a desirable technology for agriculture companies and academic labs alike. For 

example, in 2015 a group called the BioAg alliance composed of Monsanto and Novozymes 

tested more than 2000 microbial strains throughout the United States, finding various microbes 

that increased the yield of maize and soybean [165]. The use of microbial inoculants can also be 

expected to increase as technologies improve and climate conditions make consistent crop 

production more difficult. As microbial inoculants become more common, it will be important to 

assess their in-field performance and impacts on plant health. This can be done using traditional 

measures such as changes in yield or can be done using remote imaging techniques which can 

detect changes in plant physiology and performance [126]. 

In addition to moving microbial inocula from greenhouses or growth chambers to the 

field, there are other challenges that must be met to continue the widespread use and 

improvement of microbial inoculants.  For example, it is important to ensure that non-native or 

genetically engineered microbes do not escape beyond research areas. One promising method in 
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synthetic biology is to engineer microbial inocula with “kill switches” that rely on inputs from 

the environment to survive and will die when this input is no longer present [166]. However, it 

will have to be ensured that this can be effective for fungi and for use on a full field scale. 

Another concern with microbial inoculants is that their broad use may disrupt or replace natural 

relationships formed between plants and native microbiota over evolutionary time scales [167]. 

For example, it was demonstrated that invasive plants carried non-native rhizobia that could 

potentially disrupt symbiotic relationships; this same concern is valid for inoculated microbes 

[168]. The best way to address these concerns is further testing of microbial inocula, especially 

in areas where there is low risk of spread to non-target environments. Further testing and 

development will allow for these concerns to be addressed and will allow microbial inocula to 

become an important part of creating sustainable and productive agricultural systems. 

Research Focus 

The three primary goals of my dissertation research were to: 

1. Assess the impact of agricultural management on soybean-associated microbial 

communities 

Hypotheses: (H1) Crop management will impact bacterial and fungal communities 

associated with soybean-associated soil, roots, stems, and leaves; with greater impacts in the soil. 

(H2) Soybean-associated microbial communities will vary throughout the growing season, with 

greater levels of variation in microbiomes from aboveground plant tissues compared to 

belowground root and soil communities. 

2. Assess the impact of foliar fungicide applications on microbial communities in the 

maize and soybean phyllosphere under conventional and no-till management systems. 

Hypotheses: (H3) Fungicide applications will alter microbial diversity and community 
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structure in soybean and maize leaves, especially in fungal communities. (H4) Fungicides will 

impact many of the same taxa in each crop, but there will also be crop-specific impacts. (H5) 

The impact of fungicides and the recovery of microbial communities will differ by crop 

management system.  

3.  Assess the impact of inoculation with consortia composed of microbial hub taxa on 

soybean plant growth during a period of low-moisture stress. 

Hypotheses: (H6) Inoculation with hub taxa will alter root-associated microbial 

communities. (H7) Plants inoculated with microbial hub taxa will have increased growth and 

aboveground biomass during the low-moisture stress experiment. (H8) Inoculation will lead to 

increased expression of genes related to plant growth and low-moisture stress survival.  

Value of Research 

There is increasing interest in assessing the impacts of agricultural management strategies 

on plant and soil microbiomes. Reduced tillage management is increasingly being utilized for 

soybeans grown in the United States, has been shown to have benefits including increased soil 

moisture retention and reduced input costs for farmers. However, since plants are holobionts that 

host various microbes that provide important functions such as nitrogen fixation, it is important 

to also assess the impact of tillage on microbial communities. Assessing the impact of tillage on 

plants without considering the microbiome would provide an incomplete picture of the impact on 

the holobiont. This research will help to inform how tillage regime impacts microbial 

communities which along with other data will help to inform how management decisions impact 

plant holobionts. Similarly, there is interest in assessing the impact of chemical applications such 

as fungicides on off-target microbial communities to determine potentially detrimental impacts 

of fungicide applications in the absence of pathogen pressure. Additionally, assessing the 
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microbial impacts of fungicides under no-till and conventional management systems 

demonstrates how these management strategies interact to impact the microbiome and microbial 

recovery from fungicide disturbance. Another agricultural management strategy which is 

increasingly being utilized is the application of plant-beneficial microbes in agricultural settings 

to promote plant growth or help plants combat stress. It is well known that applications of plant 

growth promoting microbes can increase yields and promote crop survival. While many studies 

have identified hub taxa that are thought to be important to the plant microbiome, few have yet to 

test whether hub taxa may be important in structuring microbial communities and improving the 

productivity of the plant holobiont. My dissertation research fills this knowledge gap by 

demonstrating how hub taxa impact soybean response to low-moisture stress in living soils, 

provides fundamental knowledge about how hub taxa impact root-associated microbial 

communities in soybean.  
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Chapter 2 

Crop Management Impacts the Soybean (Glycine max) Microbiome 
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Abstract 

 Soybean (Glycine max) is an important leguminous crop that is grown throughout the 

United States and around the world. In 2016, soybean was valued at $41 billion USD in the 

United States alone. Increasingly, soybean farmers are adopting alternative management 

strategies to improve the sustainability and profitability of their crop. Various benefits have been 

demonstrated for alternative management systems, but their effects on soybean-associated 

microbial communities are not well-understood. In order to better understand the impact of crop 

management systems on the soybean-associated microbiome, we employed DNA amplicon 

sequencing of the ITS region and 16S rRNA genes to analyze fungal and prokaryotic 

communities associated with soil, roots, stems, and leaves. Soybean plants were sampled from 

replicated fields under long-term conventional, no-till, and organic management systems at three 

time points throughout the growing season. Results indicated that sample origin was the main 

driver of beta diversity in soybean-associated microbial communities, but management regime 

and plant growth stage were also significant factors. Similarly, differences in alpha diversity are 

driven by compartment and sample origin. Overall, the organic management system had lower 

fungal and bacterial Shannon diversity. In prokaryotic communities, aboveground tissues were 

dominated by Sphingomonas and Methylobacterium while belowground samples were 

dominated by Bradyrhizobium and Sphingomonas. Aboveground fungal communities were 

dominated by Davidiella across all management systems, while belowground samples were 

dominated by Fusarium and Mortierella. Specific taxa including potential plant beneficials such 

as Mortierella were indicator species of the conventional and organic management systems. No-

till management increased the abundance of groups known to contain plant beneficial organisms 

such as Bradyrhizobium and Glomeromycotina. Network analyses show different highly 
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connected hub taxa were present in each management system. Overall, this research 

demonstrates how specific long-term cropping management systems alter microbial communities 

and how those communities change throughout the growth of soybean. 

Introduction 

 Soybean (Glycine max L.) is the third most valuable plant crop worldwide with important 

uses in feed, as an oilseed crop, and as a nutritional source [169]. Alternative cropping strategies 

are becoming increasingly common in row crop agriculture in order to manage resource inputs 

and soil health [1]. For example, the use of no-till and reduced tillage strategies have increased in 

row crops since the early 2000’s in the United States [1]. Reduced tillage strategies are especially 

prevalent in soybean, representing 70% of planted acreage in 2012 [1]. In addition to time and 

fuel-cost savings, no-till farming deposits organic carbon closer to the surface of the soil, which 

acts as an organic mulch and may lead to improved crop growth and health [34, 35]. In wet 

conditions, however, plant fungal pathogens can sporulate on previous years’ vegetation so no-

till management regimes may increase disease pressures [2]. In addition to harboring pathogens 

on plant material, no-till management may allow diseases to persist by increasing soil moisture 

and slowing soil warming as demonstrated with plant-pathogenic oomycetes, such as Pythium 

and Phytopthora [55, 56]. Under drought conditions, no-till maize and soybean crops have 

shown yield improvements, which has been attributed to increased soil moisture retention [170, 

171]. These factors and others may contribute to reports of increased grain yield for no-till 

managed soybean at several sites, including historically at the KBS LTER site [172].  

 In addition to reduced-tillage strategies, organic farming is another important alternative 

management strategy. In 2016, US organic soybeans were valued at more than $78 million US 

dollars [173]. Acreage of organic field crops has increased since the 1990s, yet the share of total 
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soybeans considered to be certified organic remained below 1% in 2015 [174]. Although farmers 

must weigh the considerations mentioned above in determining management strategies, many 

soybean crops are managed with conventional tillage regimes. Tilling reduces plant material left 

in fields, which is a source of fungal disease propagules that then can be transferred to live 

plants; which has been demonstrated with Rhizoctonia oryzae [175]. 

 It is also important to consider the effect of management systems on the plant and soil 

microbiome. Previous studies have investigated the effect of tillage regimes in conventional and 

organic wheat [3] and maize [176]. These studies found that the management system influenced 

microbial community composition in roots and soils [3, 177]. In contrast, a whole plant 

microbiome study on root, stem, and leaf organs of wheat at the KBS-LTER found that the 

impact of management system was subtle [4]. Studies investigating the impact of management 

regime on the soybean microbiome have focused on specific bacterial taxa. One such study 

showed that conventional management reduces the diversity of Rhizobium populations 

associated with soybean [70], while another study demonstrated that the relative abundance of 

Acidobacteria was reduced in soybean cultivated soils compared to forest soils [178]. 

The stage of plant growth at sampling is another important source of microbial 

community variation that has been observed in agricultural systems including biofuel crops and 

soybean [179, 180]. For example, it was demonstrated that in the soybean rhizosphere, the 

relative abundance of Bacillus, Rhizobium, and Bradyrhizobium increased throughout the 

growing season [177]. In addition to composition shifts, a study on the wheat microbiome found 

that alpha diversity of prokaryotic communities increased throughout the growing season in both 

above and belowground plant tissues, but this trend was less clear for fungal communities [4]. 

 Here we characterize the fungal and prokaryotic communities, associated with individual 
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soybean plants grown as part of a maize-soy-wheat rotation system under conventional, no-till, 

and organic management systems for nearly 30 years, to determine the impact of cropping 

management system on the soybean microbiome throughout a growing season. This study is part 

of a long term field experiment on the effect of agricultural management on plant and soil 

microbiomes in the maize-soy-wheat rotation at the KBS LTER, and follows previous research 

on the wheat-associated microbiome [4]. Although the present study is limited by representing a 

single site and season, results presented here will be available for future longitudinal microbiome 

studies from the same site under the consistent management provided by the KBS LTER. The 

organic management plots were planted with a non-genetically modified soybean variety to make 

it certified organic, while the no-till and conventional management plots were planted with a 

roundup ready genetically modified variety. Fungal and bacterial communities associated with 

soil, root, stem, and leaf compartments were characterized at three time points during the 2018 

growing season. Management regime and plant developmental stage were hypothesized to 

impact the structure of the soybean microbiome. More specifically, we expected to see distinct 

differences between no-till and conventional/organic belowground microbial communities, due 

to microenvironment changes associated with tilling [181]. In aboveground plant compartments, 

based on previous work done on wheat at the KBS LTER, we expected that variation in 

microbial communities would be primarily driven by growth stage [4].To the best of our 

knowledge, this study represents the first characterization of the effect of agricultural 

management regime on the soybean microbiome in soil, roots, stems, and leaves across the 

growing season. 
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Materials and Methods 

Sample Site and Management System 

 All samples were collected from the Michigan State University (MSU) W.K. KBS LTER 

crop rotation experiment in Hickory Corners, MI, United States. Soybean seeds were planted into 

one-hectare plots that have been managed under conventional, no-till, or organic management 

since 1989 [182]. Six replicate plots of each management system were distributed randomly at 

the LTER site in order to eliminate bias based on location. The no-till and conventional 

management plots received fertilizer in the form of potash at a rate of 120 lbs./A (72 lbs./A 

K2O). In addition to fertilizer, plots within these two management systems received Valor 

herbicide treatments prior to emergence, at a rate of 3.5 oz/A (Valent Agriculture, United States). 

Additionally, the two management regimes received mid-season weed control with Roundup 

Powermax amended with ammonium sulfate at rates of 1 qt/A and 3.4 lbs./A, respectively 

(Bayer, Germany). Genetically modified soybean and maize have been grown at the LTER site 

since 2009 and 2011, respectively. The modified varieties provide glyphosate resistance as well 

as resistance to European maize borer and rootworm in maize [182]. During wheat rotation 

years, 30 pounds of nitrogen fertilizer/acre is applied to the conventional and no-till management 

systems in March as well as 43 pounds/A of nitrogen fertilizer and 25 pounds/A of sulfur 

fertilizer in May. Additionally, during wheat rotation years, conventional and no-till management 

plots receive herbicide applications in the form of Roundup PowerMax with ammonium sulfate 

in October and August (1 qt/A,3.4lbs/A) as well as Sharpen (2 oz/A), and maize methylated 

soybean oil (0.8 qt/A) in August (BASF, Germany; Van Dielst Supply Company, United States). 

During maize rotation years, nitrogen fertilizer is applied at planting at a rate of 29 lbs./A and in 

June at a rate of 122 lbs./A, and Lexar EZ herbicide is sprayed at a rate 3.0 qt/A alongside 
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Roundup Powermax (22 oz/A) in June (Syngenta, United States). The certified organic 

management system received no chemical inputs or manure but was rotary hoed to control for 

weeds and has a red clover or annual rye cover crop in the winter season for all crops. The 

conventional and no-till management systems were planted with Pioneer P22T69R Roundup 

Ready soybean seed (Pioneer Hi Bred International, United States). The organically managed 

plots were planted with non-genetically modified Viking O.2188AT12N soybean seed (Albert 

Lea Seed, United States). 

Sampling and DNA Extraction Methods 

 In 2018, whole soybean plants were sampled at three time points corresponding to the 

following growth stages: early vegetative (V2 – two sets of unfolded trifoliate leaves), early 

reproductive (R2 – full flower inflorescence/reproductive stage), and late reproductive (R6 – full 

pod development) [183]. Within each management system (organic, no-till, conventional), three 

individual plants in each of four replicate plots were sampled at each of these growth stages (n = 

108 plants). Throughout the growing season, samples from the organic management system were 

delayed 2 weeks due to later planting of the organic system. At each sampling point, independent 

samples of soil, roots, stems, and leaves were collected. Soil was sampled by removing whole 

plants from the soil and placing ∼2 g of soil from the root zone into a coin envelope which was 

then dried on silica beads upon return to the lab. Roots were sampled by cutting the entire root 

system at the soil line and placing the roots into a Whirl-Pak bag (Nasco, United States) 

containing a 0.1%Tween 20 mixture to remove soil before lyophilizing. The stem section 

between the first and second true leaves was collected in a 15 ml Falcon tube (Corning, United 

States) containing 5 mL of CSPL buffer from the Mag-Bind Plant DNA Plus Kit (Omega Biotek, 

United States). Leaves were sampled by hole punching three 6 mm leaf discs from three leaves 
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into eppendorf tubes (Eppendorf, Germany) containing 500 µl of CSPL buffer. All samples were 

placed on ice and transported back to the Michigan State campus for storage at −80◦C. 

Additionally, plants were sampled for isolations of fungi and bacteria, isolations are described in 

detail in appendix A. 

DNA was extracted from ∼50 mg of soil/sample using the PowerMag Soil DNA 

Isolation Kit (Qiagen, United States) on the KingFisher Flex system (Thermo Fisher Scientific, 

United States). DNA was extracted from ∼50 mg of each dried fine roots, stems, and leaves 

using the Mag-Bind Plant DNA Plus Kit (Omega Biotek, United States) on the KingFisher Flex 

system (Thermo Fisher Scientific, United States). All extractions included negative controls 

(extractions containing no sample). 

Miseq Library Preparation and Sequencing 

 Illumina MiSeq amplicon libraries were constructed with the ITS1F – ITS4 primer set to 

target the ITS region of fungi and the 515F – 806R primer set to target the V4 region of the 16S 

rDNA of prokaryotes [184–186]. Libraries were prepared following a three step PCR protocol as 

described previously [187–189]. The PCR cycles used are shown in Table 2.1. Unmodified 

primer pairs were used in the first step to enrich in target taxa. In the second step, primers 

incorporating frameshifts into the amplicons were used. In the third step, 10 nucleotide indexing 

barcodes and Illumina adapters were incorporated following previously used approaches [189, 

190]. PNA blocking clamps were incorporated into PCR reactions for steps one and two at a 

concentration of 0.75 µM to reduce the amplification of chloroplast and mitochondria sequences 

in plant-associated 16S libraries (PNA Bio Inc., United States). The PCR mixes used are shown 

in Table 2.2. PCR products were run on an agarose gel to verify amplification. Next, PCR 

products were normalized to an equal concentration of 1–2 ng/µl using the SequalPrep 
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Normalization Plate Kit (Thermo Fisher Scientific, United States). Following normalization, 

eluted samples were combined into one pool and concentrated with Amicon Ultra 0.5 mL 50K 

filters (EMD Millipore, Germany). Libraries were then cleaned with Agencourt AMPure XP 

magnetic beads to remove small fragments and primer dimers (Beckman Coulter, United States). 

Libraries were sequenced at the MSU Genomics Core with the Illumina Miseq V3 600 cycles kit. 

The produced sequences for the samples analyzed in this study are stored at the NCBI SRA 

archive under the following accession number: PRJNA603147. Sequences for samples that were 

not analyzed as part of this study but were sequenced on the same Miseq runs and used for 

contaminant removal are available under the following accession numbers: PRJNA603199, 

PRJNA603207. 

Table 2.1 - Thermocycling conditions. Used for amplifying fungal (ITS) and bacterial (16S) 
genes from all sample origins. 
 

Fungi and Soil Prokaryotes Cycling 
Step 1   Step 2   Step 3  

Time  
Temperature 
(c) Cycles Time  

Temperature 
(c) Cycles Time 

Temperature 
(c) 

5:00 95  5:00 95  5:00 95 
0:30 95 10X

 

0:35 95 10X
 

0:40 95 
0:30 50 0:35 50 0:50 63 
1:00 72 1:10 72 1:20 72 
7:00 72  7:00 72  7:00 72 

Infinite 10  Infinite 10  Infinite 10 
                

Plant Tissue Prokaryotes Cycling 
Step 1   Step 2   Step 3  

Time  
Temperature 
(c) Cycles Time  

Temperature 
(c) Cycles Time 

Temperature 
(c) 

5:00 95  5:00 95  5:00 95 
0:30 95 

10X
 

0:30 95 

10X
 

0:40 95 0:15 75 0:15 75 
0:30 50 0:35 50 0:50 63 
0:45 72 0:50 72 1:20 72 
7:00 72  7:00 72  7:00 72 

Infinite 10   Infinite 10   Infinite 10 
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Table 2.2 - PCR Recipes. PCR recipes for amplifying the ITS and 16S markers. 

 
Plant Associated Prokaryotes Fungi  

Step 1 Step 1 

Component 
Volume/Sample 
(uL) Component 

2X Platinum Green Taq Master Mix (Thermo 
Fisher, USA) 6.25 2X Dream Taq Green PCR Master Mix (Thermo Fisher) 

10 uM 515F Primer (IDT, USA) 0.375 10 uM ITS 1F Primer (IDT, USA) 

10 uM 806R Primer (IDT, USA) 0.375 10 uM ITS 4 Primer (IDT, USA) 

Bovine Serum Albumin (BSA, 3%) 1 Bovine Serum Albumin (BSA, 3%) 
50 uM Mitochondrial PNA clamp (PNA Bio, 
USA) 0.18 H2O 

50 uM Plastid PNA clamp (PNA Bio, USA) 0.18 Extracted DNA 

GC Enhancer (Thermo Fisher, USA) 2 Step 2 

H2O 0.64 Component 

Extracted DNA 1 2X Dream Taq Green PCR Master Mix (Thermo Fisher) 

Step 2 10 uM ITS 1F Primer Frameshift (IDT, USA) 

Component 
Volume/Sample 
(uL) 10 uM ITS 4 Primer Frameshift (IDT, USA) 

2X Platinum Green Taq Master Mix (Thermo 
Fisher, USA) 6.25 Bovine Serum Albumin (BSA, 3%) 

10 uM 515F Primer Frameshift (IDT, USA) 0.375 H2O 

10 uM 806R Primer Frameshift (IDT, USA) 0.375 Step 1 Product 

Bovine Serum Albumin (BSA, 3%) 0.64 Step 3 
50 uM Mitochondrial PNA clamp (PNA Bio, 
USA) 0.18 Component 

50 uM Plastid PNA clamp (PNA Bio, USA) 0.18 2X Dream Taq Green PCR Master Mix (Thermo Fisher) 

GC Enhancer (Thermo Fisher, USA) 2 Barcode Forward Primer 

Step 1 Product 2 Bovine Serum Albumin (BSA, 3%) 

Step 3 H2O 

Component 
Volume/Sample 
(uL) Unique 10 Nucleotide Barcode 

2X Platinum Green Taq Master Mix (Thermo 
Fisher, USA) 8 Step 2 Product 

Barcode Forward Primer 0.5   

Bovine Serum Albumin (BSA, 3%) 1 
Soil Prokaryote PCR Mixes are the same as Fungi, but 

with Platinum Taq 

GC Enhancer (Thermo Fisher, USA) 0.5   

Unique 10 Nucleotide Barcode 1   

Step 2 Product 4   

 

Bioinformatics Analysis 

 First, sequences were analyzed for initial quality using FastQC [191]. Following quality 

analysis, reads were demultiplexed by barcode and assigned to samples using QIIME 1.9.1 
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[192]. Due to lower quality of the reverse reads, only forward reads were analyzed further. Next, 

primers, adapters, and the conserved regions including the small subunit of the ribosome, 5.8S 

,and large subunit of the ribosome  (SSU, 5.8S, LSU) of amplicons were stripped from forward 

sequences using Cutadapt v2.6 and USEARCH v10 [193–195]. Afterward, library statistics were 

analyzed using USEARCH for length and quality distributions and reads below 205 basepairs 

(bp) and above a maximum error of 1% were discarded. Additionally, sequences were de-

replicated and singletons were removed prior to clustering OTUs at a 97% threshold using the 

UPARSE algorithm of USEARCH [194–196]. Following OTU clustering, taxonomy was 

assigned to fungal OTUs using the UNITE database V10.10.2017 [197] and 16S OTUs using the 

Silva 16S V123 database [198] with the SINTAX tool [199].  

Statistical Analysis 

 OTU tables, taxonomy tables, mapping files, and OTU sequences were loaded into the R 

(Version 3.5.2) statistical environment [200] and used to create a phyloseq object for further 

analysis in the phyloseq package [201]. Before analyzing sequence data, OTUs determined to be 

contaminants in negative controls were removed with the decontam package [202]. Samples 

which produced less than 1000 reads, as well as five soil samples that did not dry properly and 

were overtaken by mold, were discarded. Alpha diversity (within sample diversity) was 

estimated for each sample before data was normalized and filtered following recommendations 

[203]. Alpha diversity was estimated using richness [204] and Shannon diversity [205] within the 

BiodiversityR and vegan packages [206, 207]. OTU richness and Shannon diversity were 

visualized for each plant compartment with boxplots in ggplot2 [208]. Differences in alpha 

diversity means due to management system, growth stage, and plant compartment were tested for 

statistical significance using Kruskal Wallis tests in the stats package [200]. In the case of a 
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significant result (P < 0.05), Pairwise Wilcox tests with a false discovery rate (FDR) P-value 

correction were utilized to determine significance groups by growth stage and management 

regime [200]. Significance groups for growth stage and management system are denoted on 

alpha diversity boxplots by letters above boxes where significant differences (P < 0.05) were 

present between means of the same growth stage or the same management system. Following 

alpha diversity analyses, OTUs with less than five reads in a single sample were placed to zero to 

account for tag switching and OTUs with less than 10 reads across all samples were removed to 

account for PCR errors [209, 210]. Rarefaction curves were created to assess the sampling of 

prokaryotic and fungal communities using the “rarecurve” function in the vegan package [207].  

Barplots for fungal communities were created in ggplot2 to show genera having >4% relative 

abundance [208]; prokaryotic barplots were created to show genera (classes for soil) having >2% 

relative abundance. Indicator species analysis was performed with the indicspecies package to 

identify taxa which were significantly associated with either one single management system and 

not the other two or significantly associated with two of three management systems [211]. 

Following identification of indicator OTUs, p-values were FDR adjusted, and only taxa with 

adjusted p < 0.05 were considered indicators. The top 30 most abundant identified indicator taxa 

were used to create heatmaps displaying the relative abundance distributions by management 

regime and growth stage of identified taxa in the ComplexHeatmap package in R [212].  

Next, data were normalized by cumulative sum scaling in the metagenomeseq package 

[213]. Following normalization, beta diversity was analyzed in the phyloseq and vegan packages 

by creating Principal Coordinates Analysis (PCoA) plots with the “ordinate” and 

“plot_ordination” functions. Community patterns identified in PCoA plots were tested for 

statistical significance using Permutational Multivariate Analysis of Variance (PERMANOVA) 



 
 
 
 
 
 

45 
 
 
 

as implemented by the “adonis” function in vegan. Homogeneity of variance between modeled 

groups was analyzed with the “betadisper” function in vegan. To further assess microbial 

community differences between management systems, random forest models were created to test 

the accuracy of assigning above and belowground samples to their management system origin 

using the “randomforest” function in the randomForest package in R [214]. Random forest 

models were optimized by testing different mtry values (number of OTUs randomly sampled 

from the community to build models). Mtry values of ±10 of the standard value (square root of 

the number of OTUs in the community) were tested. If the out of bag error did not improve any 

tested mtry values, the standard value was used. Figures were created from the results of random 

forest models, displaying the following: the out of bag error plotted against the number of trees, 

MDS plots created from random forest sample proximities converted to Bray-Curtis distances, 

and the top 30 OTUs important in assigning samples to their management system. Importance of 

each individual OTU for distinguishing between management systems was assessed by 

calculating the mean decrease in model accuracy when that OTU is removed from the 

community. Significance of random forest models was tested with 999 permutations (random 

forest models were repeated 999 times) using the “rf.significance” function in the rfUtilities 

package in R [215]. 

Bipartite co-occurrence networks containing both bacteria and Fungi were created and 

analyzed using the SpiecEasi and Igraph packages in R [216, 217]. Networks were constructed 

with OTUs that were present in 80% of samples or more. Network stability and sparsity were 

assessed using SpiecEasi. Hub taxa were identified as those above the 90th percentile (1.3 

standard deviations from the mean) of network OTUs for the measures of degree and 

betweenness centrality [9]. Additionally, taxa were only considered to be hubs if they were 
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above the 90th percentile of hub scores (eigenvector centrality) for either fungi or bacteria in that 

specific network. The betweenness centrality measure was log transformed before determining 

hubs to account for a non-normal distribution. Following network creation in Spieceasi and hub 

identification, networks were visualized with the attribute circular layout in the Cytoscape 

program [218]. Random networks with the same number of nodes as experimental networks 

were generated with the Barbasi-Albert model of the “sample_pa” function in the igraph 

package of R. The degree distributions of 100 random networks were compared to those of 

experimental networks with a two sample Kolmogorov-Smirnov using the “ks.test” function in 

the stats package of R. All R code and files for producing figures and tables including metadata 

and OTU tables, as well as example code for building networks and random forest models is 

available at: https://github.com/longleyr/Management-of-Soybean-Code-and-Files. 

Results 

Next Generation Sequencing Results 

The final soil fungal library contained 95 samples and 2,562,324 reads for an average 

depth of 26,972 reads per sample after filtering, removal of contaminants, and removal of 

samples with less than 1000 reads. Applying the same quality filtering by plant compartment, the 

root fungal library was composed of 100 samples containing 2,706,574 reads with an average 

depth of 27,618 reads per sample, the stem fungal library contained 618,697 reads in 93 samples 

with an average depth of 7,031 reads per sample, and the library for the leaves had 4,572,077 

reads in 107 samples for an average read depth of 43,133 reads per sample. Applying these 

quality filtering criteria to prokaryotic communities the 16S marker produced 6,040,145 reads 

with an average depth of 59,217 reads in 102 soil samples, 6,378,213 16S reads with an average 

depth of 60,172 reads from 106 root samples, 1,435,193 reads with an average depth of 14,497 
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reads per sample from 99 stem samples, and 1,313,368 reads with an average depth 13,402 reads 

per sample in 99 leaf samples. Rarefaction curves showing the number of OTUs generated 

against sequencing depth for each sample are shown in Figure 2.1. 

 
Figure 2.1 - Rarefaction curves. Represent the number of OTUs detected per number of reads 
produced in sequencing of fungal communities (A) associated with soil samples, (B) associated 
with soybean root samples, (C) associated with soybean stem samples, (D) associated with 
soybean leaf samples and prokaryotic communities (E) associated with soil samples, (F) 
associated with soybean root samples, (G) associated with soybean stem samples, and (H) 
associated with soybean leaf samples. 

 

Fungal Community Composition 

In the soil, Ascomycota were dominant, independent of management system, and 

accounted for between 75.0 and 81.0% of total reads. In comparison, Mucoromycota and 
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Basidiomycota abundances ranged between 7.0 and 12.9% in the three management systems 

(conventional, no-till, and organic). Of note, Fusarium was the most abundant fungal genus in 

the soil across all management systems with a relative abundance range of 15.9–23.7% (Figure 

2.2A). All management regimes also contained a high abundance of Mortierella in soils with a 

range of 12.5–14.3%. Ascomycota dominated the fungal community of the roots under all three 

management systems, accounting for between 82.2 and 85.0% of reads, Glomeromycotina (8.3–

13.5%) was the next most abundant lineage. Basidiomycota was present at relative abundances 

of between 3.7 and 8.1% in the three management systems. As found in the soil, the most 

abundant genus under all three management systems was Fusarium, which represented between 

22.1 and 37.7% of all reads (Figure 2.2B). Fusarium was followed in relative abundance by 

Macrophomina in the conventional management system (13.2%), Bionectria in the no-till 

management system (13.8%) and Corynespora in the organic management system (11.7%).  

In stems, Ascomycota and Basidiomycota accounted for nearly 100% of reads in all 

management regimes with Ascomycota accounting for about 90.0% of the reads. Davidiella was 

the most abundant genus in the stems, with over 20.0% of the reads in all three management 

systems followed by Diaporthe in conventionally managed plots and Fusarium and Alternaria in 

no-till and organic management systems (Figure 2.2C). As was found in the stems, Ascomycota 

and Basidiomycota accounted for nearly 100% of the reads in the leaves of each management 

system; with ascomycetes accounting for ∼75.0% of the reads. Alternaria was abundant in 

aboveground tissues of all management regimes and was the most abundant genus in the 

conventional and no-till management systems, with relative abundances of 14.9 and 15.5%, 

respectively. Davidiella was omnipresent in aboveground tissues, peaking in relative abundance 

at 20.0% in the organic management system. This was also true of Phoma, which had higher 
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relative abundance in the organic management regime (Figure 2.2D). 

Figure 2.2 - Stacked bar plots showing fungal genera. Genera are shown for each 
management system at each growth stage (V2 – two sets of unfolded trifoliate leaves, R2 – full 
flower reproductive stage, and R6 – full pod development) with relative abundance ≥4%, (A) 
present in soil samples throughout the soybean growing season, (B) present in soybean root 
samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples. 
 

 

Prokaryotic Community Composition  

The prokaryotic community of the soil was relatively consistent across management 

systems in terms of dominant Phyla. The most abundant phylum in every management system 

was Actinobacteria, consistently represented by ∼30% relative abundance. The next most 

dominant phylum in each management system was Proteobacteria having relative abundances 

between 20.0 and 24.0%. In the soil, the most abundant classes were consistent between 

managements, but differed in their relative abundances (Figure 2.3A). The most abundant genus 

in every management system was an unclassified member of the Chloroflexi phylum with a range 

of relative abundances between 5.5 and 7.4%. Sphingomonas was the second most abundant 

genus (4.8%) in conventional managed soils. In contrast, an unclassified Gaiellales genus (6.7%) 

was the second most abundant in the no-till, while an unidentified genus of Acidobacteria was 

the second most abundant in the organically managed soils. Soybean roots were dominated by 
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the same bacteria phyla as the soils, but Proteobacteria were more abundant in roots (57.3–

71.7%) compared to 20.0–24.1% in soil. Actinobacteria were the second most abundant bacteria 

in soybean roots (17.1–21.1%) across management systems. The most abundant genus was 

Bradyrhizobium with relative abundances of 22.9, 40.2, and 33.0% in the conventional, no-till, 

and organic management regimes, respectively. Following Bradyrhizobium, Streptomyces was 

the next highest in relative abundance ranging between 6.4 and 7.1% (Figure 2.3B). 

The stem prokaryotic community was also dominated by Proteobacteria, with relative 

abundances ranging from 60.0 to 77.0%. Actinobacteria were the second most abundant bacteria 

in no-till (20.8%) and organic (12.7%) management systems. In terms of genera, the stems of 

soybean in all three management systems were dominated by Methylobacterium (24.3–32.0%) 

and Sphingomonas (14.9–25.2%) (Figure 2.3C). The prokaryotic community of soybean leaves 

was quite like that of the stems. Proteobacteria dominated the community ranging from 78.2%in 

the conventional management system to 92.6% in the organic management system. The 

dominant genera in leaves were similar to the stems except that Sphingomonas had higher 

relative abundance in the leaves, ranging from 31.5 to 44.7%. The relative abundance of 

Methylobacterium in the leaves was between 28.1 and 36.1% (Figure 2.3D). 
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Figure 2.3 - Stacked bar plots showing prokaryotic classes or genera. Taxa are shown for 
each management system at each growth stage (V2 – two sets of unfolded trifoliate leaves, R2 – 
full flower reproductive stage, and R6 – full pod development) with relative abundance ≥2%, (A) 
present in soil samples in soybean fields throughout the growing season, (B) present in soybean 
root samples, (C) present in soybean stem samples, and (D) present in soybean leaf samples. 
 

 
 

Alpha Diversity of Fungal Communities 

Differences in fungal alpha diversity due to management system, plant growth stage, or 

sample origin were assessed. Fungal alpha diversity was highest in the soil and lowest in the 

stems with roots and leaves falling between the two (Figure 2.4). Soil had significantly higher 

species richness compared to roots, leaves, and stems (579 taxa per sample, 237 taxa per sample, 

252 taxa per sample, and 140 taxa per sample, respectively). Richness differences between roots 

and leaves were not significant, but they both had significantly greater richness than stems. The 

soil also had significantly higher Shannon diversity than roots, stems, and leaves but differences 

between plant compartments were non-significant. In the soil, the only significant difference in 

richness between management systems was between the conventional/organic and no-till 

management systems at the V2 growth stage (Figure 2.4A). Significant differences were detected 

by growth stage under the no-till management system, with significantly higher fungal richness 

in the final growth stage but a decrease in Shannon diversity. In the root microbiome, there were 
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significant differences in Shannon diversity at the early vegetative (V2) growth stage with the 

organic management regime having significantly lower Shannon diversity mean values (Figure 

2.4B). All management systems showed a decrease in fungal richness and Shannon diversity at 

the early reproductive (R2) stage, which increased again at the late reproductive (R6) stage. 

In soybean stems, the conventional and no-till management systems consistently had 

higher richness than the organic management system, but the difference was only significant at 

the early vegetative (V2) growth stage (Figure 2.4C). This trend was not consistently reflected in 

Shannon diversity. All three management systems showed increasing richness throughout the 

season in the stems, but the trend was only significant for the organic management regime. Alpha 

diversity trends in the leaves of soybean in each management system were similar to those of 

their stems, with significantly greater richness in the conventional and no-till management 

systems throughout the experiment (Figure 2.4D). Fungal richness increased throughout the 

experiment in organic treatments, but in the other management systems richness and Shannon 

diversity decreased at the early reproductive (R2) growth stage. 
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Figure 2.4 - Alpha diversity boxplots showing OTU richness and Shannon diversity metrics 
for fungal communities. (A) present in soil samples, (B) present in soybean root samples, (C) 
present in soybean stem samples, and (D) present in soybean leaf samples. Colors represent the 
plant growth stage during sampling (V2 – two sets of unfolded trifoliate leaves, R2 – full flower 
reproductive stage, and R6 – full pod development). Significance groups are represented by 
letters above the boxes. The letter before the forward slash (/) represents significance groups 
within a single growth stage by management system. Letters following the forward slash (/) 
represent significance groups within a single management system by growth stage. Significance 
groups were calculated using Kruskal Wallis tests followed by Pairwise Wilcox tests with an 
FDR P-value correction. 
 

 

Alpha Diversity of Prokaryotic Communities 

In prokaryotic communities, OTU richness was highest in the soil and decreased moving 

from that of the roots toward distal aerial compartments (Figure 2.5). Soil alpha diversity was 

significantly greater than the roots, stems, and leaves (5780 OTUs per sample, 1761 OTUs per 

sample, 597 OTUs per sample, and 358 per sample, respectively). Additionally, the roots had 

significantly greater alpha diversity compared to stems and leaves, but differences between stems 

and leaves were not significant. This pattern of statistical significance also held true for Shannon 

diversity, with a range from 2.7 in the leaves to 6.9 in the soil. In terms of Shannon diversity, 



 
 
 
 
 
 

54 
 
 
 

differences between roots and stems were not significant (3.88 and 3.80, respectively). In the 

soil, at any single growth stage, there were no significant differences between management 

systems except at the final stage where the conventional management system had significantly 

lower richness and Shannon diversity compared to the other management systems (Figure 2.5A). 

Conventional and organic management regimes showed significantly lower richness in the 

reproductive stages compared to the vegetative (V2) stage. In the roots, the richness was 

significantly lower in the conventional management system at the first sampling point, but 

differences were not significant at later stages (Figure 2.5B). The no-till and organic 

management systems showed significant decreases in richness at the R2 growth stage, but this 

pattern was not reflected in Shannon diversity. 

In the stems, the no-till management system had significantly lower richness in the first 

growth stage compared to the final stage, and Shannon diversity was significantly lower in the 

organic management system throughout the season compared to other management systems 

(Figure 2.5C). Richness increased between the first and last sampling point for all three 

management systems, but this change was only significant for no-till and organic management 

regimes. In the leaves, the organic management system had lower richness and Shannon 

diversity at the early vegetative (V2) growth stage, but this difference was not significant. All 

three management systems had a significant decrease in richness and Shannon diversity in the 

leaves at the early reproductive (R2) growth stage (Figure 2.5D). 
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Figure 2.5 - Alpha diversity boxplots showing OTU richness and Shannon diversity metrics 
for prokaryotic communities. (A) present in soil samples, (B) present in soybean root samples, 
(C) present in soybean stem samples, and (D) present in soybean leaf samples. Colors represent 
the plant growth stage during sampling (V2 – two sets of unfolded trifoliate leaves, R2 – full 
flower reproductive stage, and R6 – full pod development). Significance groups are represented 
by letters above the boxes. The letter before the forward slash (/) represents significance groups 
within a single growth stage by management system. Letters following the forward slash (/) 
represent significance groups within a single management system by growth stage. Significance 
groups were calculated using Kruskal Wallis tests followed by Pairwise Wilcox tests with an 
FDR P-value correction. 
 

 
 

Beta Diversity of Fungal Communities 

When considering all sampling sources together, the soybean-associated fungal 

communities were most separated by sample source (Figure 2.6A). When considering PCoA 

ordinations by individual sample origin, distinct clusters by management system are evident in 

the soil (Figure 2.6B). In the stems and the leaves there is some separation by the management 

system along both axes, but the management systems are not distinct (Figures 2.6D, E). There is 

no clear pattern among root samples by PCoA (Figure 2.6C). When samples are colored by 

growth stage, there are distinct clusters by growth stage along the X axis in the leaves. This axis 
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accounts for 41% of the variation and primarily separates the V2 growth stage on the left from 

the R2 and R6 growth stages (Figure 2.7E). There was some clustering by growth stage in the 

stems, but clusters were not as distinct compared to the leaves (Figure 2.7D). There was no clear 

pattern of fungal communities by growth stage in the soil or roots (Figure 2.7B, C). 

Figure 2.6 - Principal coordinates analysis plots, based on Bray-Curtis dissimilarity, of 
fungal and prokaryotic communities separated by sample origin and colored by 
management regime. (A) Fungal communities associated with soybean soil, root, stem, and leaf 
samples, (B) associated with soil samples, (C) associated with root samples, (D) associated with 
stem samples, (E) associated with leaf samples and prokaryotic, (F) associated with soil, root, 
stem, and leaf samples, (G) associated with soil samples, (H) associated with root samples, (I) 
associated with stem samples, and (J) associated with leaf samples. The shape represents the 
management system, while color represents sample origin in (A, F). In all others the color 
represents the management system. 
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Figure 2.7 - Principal coordinates analysis plots, based on Bray-Curtis dissimilarity, of 
fungal and prokaryotic communities separated by sample origin and colored by soybean 
growth stage. (A) Fungal communities associated with soybean soil, root, stem, and leaf 
samples, (B) associated with soil samples, (C) associated with root samples (D) associated with 
stem samples, (E) associated with leaf samples and prokaryotic (F) communities associated with 
soil, root, stem, and leaf samples, (G) associated with soil samples, (H) associated with root 
samples, (I) associated with stem samples, and (J) associated with leaf samples. The shape 
represents the plant growth stage, while color represents sample origin in (A) and (F).  In all 
others the color represents the plant growth stage. 
 
 

 
 

The PERMANOVA analysis of fungal communities showed that regardless of sample 

origin there was a significant (P < 0.05) effect of both management system and growth stage 

(Table 2.3). However, since there was also a significant (p < 0.05) effect of the interaction 

between management regime and growth stage, datasets were split by growth stage and 

management system to analyze the effects separately (Table 2.3 and Table 2.4). When split by 

growth stage, the effect of management system was significant across all growth stages and all 

plant organs (Table 2.4A). This effect accounted for between 13 and 52% of variation. However, 

at several growth stages in several sample origins, there was a significant effect of dispersion, 

confounding PERMANOVA results (Soil R2 – P-value: 0.0096, Soil R6 – P-value: 0.023, Roots 

R2 – P-value: 0.0027, Leaves V2 – P-value: 0.0027). Although there is a significant effect of 

dispersion for these groups, there is clustering by management system in the PCoA ordination 
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space for the soil and the leaves, but clustering is less clear for R2 roots (Figure 2.8A, C, G). 

When split into individual management systems, the effect of growth stage is also significant 

throughout all management regimes and all plant compartments (Table 2.4B). The no-till roots 

and the conventional leaves have significant differences in group dispersion (P-values 0.042 and 

0.037, respectively), but there do appear to be distinct clusters by growth stage in the ordination 

space for these groups (Figure 2.8D, H). 

Table 2.3 - Permutational multivariate analysis of variance (“adonis”) and multivariate 
homogeneity of groups dispersions analysis (“betadisper”) results for fungal and 
prokaryotic communities split by sample origin. (A) fungal communities associated with 
soybean soil, root, stem, and leaf samples, (B) prokaryotic communities associated with soybean 
soil, root, stem, and leaf samples. Significance values at p ≤ .05 are indicated in bold. 
 
 
 Factor PERMANOVA  DISPERSION 

 A - Fungi Df F-value R2 P-value  F-value P-value 

Soil 

Growth Stage 2 4.347 0.071 0.0001  2.566 0.08580 
Management 2 9.794 0.160 0.0001  8.123 0.00056 
Growth Stage: Management 4 1.948 0.064 0.0001    
Residuals 86       
Total 94       

Roots 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 4.310 0.075 0.0001  3.525 0.03337 
Management 2 4.198 0.073 0.0001  0.709 0.49480 
Growth Stage: Management 4 2.286 0.079 0.0001    
Residuals 89       
Total 97       

Stems 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 8.324 0.138 0.0001  0.279 0.7571 
Management 2 8.699 0.144 0.0001  4.553 0.0132 
Growth Stage: Management 4 1.891 0.063 0.002    
Residuals 79       
Total 87       

Leaves 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 59.172 0.433 0.0001  7.763 7.24E-04 
Management 2 15.091 0.110 0.0001  0.032 0.9685 
Growth Stage: Management 4 6.998 0.102 0.0001   

 

Residuals 97       
Total 105       
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Table 2.3 (cont’d) 
 B-Prokaryotes Df F-value R2 P-value  F-value P-value 

Soil 

Growth Stage 2 3.829 0.063 0.0001  5.086 0.0079 
Management 2 7.526 0.119 0.0001  8.555 0.0004 
Growth Stage: Management 4 1.882 0.060 0.0002    
Residuals 92       
Total 101       

Roots 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 7.087 0.110 0.0001  3.477 0.0350 
Management 2 4.405 0.069 0.0001  3.055 0.0514 
Growth Stage: Management 4 2.149 0.067 0.0007    
Residuals 97       
Total 105       

Stems 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 19.511 0.253 0.0001  8.146 8.96E-05 
Management 2 8.932 0.116 0.0001  10.287 0.0001 
Growth Stage: Management 4 1.784 0.046 0.0205    
Residuals 90       
Total 98       

Leaves 

 Df F-value R2 P-value  F-value P-value 
Growth Stage 2 33.654 0.366 0.0001  29.286 1.24E-10 
Management 2 4.557 0.050 0.0001  1.431 0.2442 
Growth Stage: Management 4 4.559 0.099 0.0001   

 

Residuals 89       
Total 97       
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Table 2.4 - Permutational multivariate analysis of variance (“adonis”) and multivariate 
homogeneity of group dispersion analysis (“betadisper”) results for fungal and prokaryotic 
communities associated with soybean soil, root, stem, and leaf samples split by 
management and growth stage. (A) the effect of agricultural management on individual growth 
stages (V2 – two sets of unfolded trifoliate leaves, R2 – full flower reproductive stage, and R6 – 
full pod development), and (B) the effect of growth stage on individual agricultural management 
systems. 
 
 

A - Growth Stage PERMANOVA  DISPERSION 

  F-value R2 P-value  F-value P-value 

So
il 

V2 5.23 0.241 1.00E-04  3.08 0.052 
R2 4.001 0.242 1.00E-04  5.63 0.0096 
R6 4.59 0.247 1.00E-04  3.63 0.0396 

Ro
ot

s V2 3.6 0.189 1.00E-04  0.669 0.519 
R2 2.08 0.138 5.90E-03  4.39 0.023 
R6 2.85 0.151 1.00E-04  0.145 0.866 

St
em

s  V2 4.89 0.259 1.00E-04  0.709 0.501 
R2 4.2 0.244 1.00E-04  3.15 0.059 
R6 9.98 0.444 1.00E-04  1.57 0.227 

Le
av

es
 V2 17.6 0.524 1.00E-04  7.15 0.0027 

R2 5.86 0.268 1.00E-04  1.34 0.276 
R6 7.74 0.319 1.00E-04  3.27 0.051  

       
B - Management PERMANOVA  DISPERSION 

 F-value R2 P-value  F-value P-value 

So
il 

Conventional 1.62 0.097 8.00E-04  0.728 0.491 
No-Till 2.72 0.149 1.00E-04  0.903 0.416 
Organic 1.65 0.116 0.0065  0.0401 0.961 

Ro
ot

s Conventional 2.83 0.163 1.00E-04  0.786 0.465 
No-Till 4.18 0.207 1.00E-04  3.49 0.042 
Organic 2.29 0.14 1.60E-03  2.86 0.074 

St
em

s Conventional 3.67 0.197 1.00E-04  1.39 0.264 
No-Till 5.21 0.264 1.00E-04  1.19 0.318 
Organic 2.73 0.214 1.00E-04  1.77 0.196 

Le
av

es
 Conventional 27.6 0.641 1.00E-04  3.66 0.037 

No-Till 29.1 0.638 1.00E-04  1.24 0.302 
Organic 19.9 0.547 1.00E-04  3.23 0.052 
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Figure 2.8 - Principal coordinates analysis plots using Bray-Curtis dissimilarity of fungal 
communities split by growth stage and management system. (A) communities associated with 
soybean soil split by soybean growth stage, (B) communities associated with soybean soil split 
by agricultural management system, (C) communities associated with soybean roots split by 
soybean growth stage, (D) communities associated with soybean roots split by agricultural 
management system, (E) communities associated with soybean stems split by soybean growth 
stage, (F) communities associated with soybean stems split by agricultural management system, 
(G) communities associated with soybean leaves split by soybean growth stage, and (H) 
communities associated with soybean leaves split by agricultural management system. 
 
 

 

Beta diversity of no-till and conventional management systems were analyzed together 

without the organic management regime due to the difference of host genotype. There was a 

significant effect of management system on beta diversity across all plant compartments and all 

growth stages with the effect ranging from 9 to 29% (Table 2.5A and Figure 2.9). When split 

into no-till and conventional management systems, the effect of growth stage was also significant 

across management systems and sample origins. In the no-till roots, a significant effect of group 

dispersion (P = 0.016) was found, with separation of growth stages obvious in ordinational space 

(Figure 2.9D). 
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Figure 2.9 - Principal coordinates analysis plots using Bray-Curtis dissimilarity, excluding 
the organic management of fungal communities split by growth stage and management 
system. (A) communities associated with soybean soil split by soybean growth stage, (B) 
communities associated with soybean soil split by agricultural management system, (C) 
communities associated with soybean roots split by soybean growth stage, (D) communities 
associated with soybean roots split by agricultural management system, (E) communities 
associated with soybean stems split by soybean growth stage, (F) communities associated with 
soybean stems split by agricultural management system, (G) communities associated with 
soybean leaves split by soybean growth stage, and (H) communities associated with soybean 
leaves split by agricultural management system. 
 

 

Table 2.5 - Permutational multivariate analysis of variance (“adonis”) and multivariate 
homogeneity of groups dispersions analysis (“betadisper”) results for fungal and 
prokaryotic communities excluding the organic management system and split by growth 
stage and management. (A) fungal communities associated with soybean soil, root, stem, and 
leaf samples showing the effect of agricultural management on individual growth stages and the 
effect of growth stage on individual agricultural management systems, and (B) prokaryotic 
communities associated with soybean soil, root, stem, and leaf samples showing the effect of 
agricultural management on individual growth stages and the effect of growth stage on 
individual agricultural management systems. 
 

A - Fungi PERMANOVA  DISPERSION 
Growth Stage F-value R2 P-value  F-value P-value 

Soil 

V2 4.515 0.17 1.00E-04  0.043 0.8377 
R2 3.871 0.17 1.00E-04  0.4581 0.507 
R6 4.241 0.17 1.00E-04  0.4612 0.505 
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Table 2.5 (cont’d) 

Roots 

V2 4.05 0.16 3.00E-04  0.831 0.372 
R2 2.16 0.102 1.60E-02  4.83 0.041 
R6 2.06 0.089 7.60E-03  0.778 0.387 

Stems 

V2 3.96 0.16 1.00E-04  0.339 0.567 
R2 2.33 0.11 9.40E-03  2.723 0.115 
R6 7.5 0.283 1.00E-04  2.394 0.138 

Leaves 

V2 8.62 0.29 1.00E-04  1.867 0.186 
R2 3.57 0.15 8.00E-04  2.645 0.119 
R6 7.27 0.25 1.00E-04  0.169 0.291 

Management F-value R2 P-value  F-value P-value 

Soil 
Conventional 1.57 0.095 1.00E-03  0.453 0.639 
No-Till 2.22 0.125 1.00E-04  0.825 0.448 

Roots 

Conventional 2.79 0.161 3.00E-04  0.209 0.812 

No-Till 4.42 0.216 1.00E-04  4.712 0.016 

Stems 

Conventional 3.18 0.175 1.00E-04  0.997 0.381 

No-Till 4.69 0.244 1.00E-04  0.462 0.634 

Leaves 

Conventional 27.35 0.638 1.00E-04  2.39 0.108 

No-Till 29.53 0.642 1.00E-04  1.21 0.31 
B - Prokaryotes PERMANOVA  DISPERSION 
Growth Stage F-value R2 P-value  F-value P-value 

Soil 

V2 6.504 0.228 1.00E-04  1.656 0.212 
R2 3.124 0.135 6.00E-04  0.951 0.341 
R6 3.301 0.13 1.00E-04  16.913 4.58E-04 

Roots 

V2 2.731 0.115 1.69E-02  2.98 0.099 
R2 0.694 0.032 7.68E-01  0.0309 0.862 
R6 2.213 0.0914 2.71E-02  1.523 0.23 

Stems 

V2 2.864 0.12 5.30E-03  1.127 0.3 
R2 3.679 0.143 6.00E-04  0.347 0.5621 
R6 3.567 0.151 1.00E-04  1.392 0.251 

Leaves 

V2 5.108 0.203 1.00E-04  1.709 0.206 
R2 1.418 0.0662 2.15E-01  2.492 0.13 
R6 2.406 0.0986 1.21E-02  0.869 0.361 

Management F-value R2 P-value  F-value P-value 

Soil 
Conventional 2.972 0.157 1.00E-04  29.747 5.00E-08 
No-Till 2.259 0.124 1.30E-03  1.023 0.371 

Roots 
Conventional 2.359 0.132 7.80E-03  0.165 0.849 
No-Till 3.494 0.175 6.00E-04  2.87 0.071 

Stems 
Conventional 5.33 0.262 1.00E-04  1.19 0.319 
No-Till 10.06 0.378 1.00E-04  0.627 0.541 

Leaves 
Conventional 15.56 0.509 1.00E-04  8.53 1.20E-03 
No-Till 16.79 0.512 1.00E-04  5.38 0.0097 
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Beta Diversity of Prokaryotic Communities 

When all samples are considered together, prokaryotic communities are clustered by 

sample origin, although there was not a clear distinction between stems and leaves (Figure 2.6F). 

When separated by sample origin, there were not clear clusters by management regime in any 

sample origin, but in the soil the no-till management system did appear slightly separated from 

the conventional and organic, primarily appearing in the upper left of the ordinational space 

(Figure 2.6G). In the stems, the organic management system was the most distinct, primarily 

appearing in the upper right of the PCoA (Figure 2.6I). When samples are colored by growth 

stage, there are clear clusters for each growth stage in the stem and leaf PCoAs with separation 

along the X and Y axes (Figure 2.7I, J). Similar to fungal communities, soil and root prokaryotic 

communities did not show distinct clusters by plant growth stage. 

Growth stage and management system had a significant effect (P < 0.05) on prokaryotic 

communities at all sample origins, and the effect of plant growth stage increased moving 

upwards from the soil to aboveground and distal compartments of the plant (Table 2.3). Since 

there were significant interactions between growth stage and management system as well as 

significant differences in group dispersion, datasets were split by management regime and 

growth stage and analyzed separately (Table 2.6 and Figure 2.10). When split by growth stage, 

the effect of management system is significant across all sample origins and all growth stages. 

This effect accounts for between 11.3% (R2 roots) and 30.1% (R2 stems) of the variation. In 

several groups, there was a significant effect of group dispersion, making PERMANOVA results 

difficult to interpret. In the soil, at all three growth stages there was a significant (P = 0.00037, 

0.0417, 0.00271) effect of dispersion, but in the ordinational space, there does seem to be 

separation by management system (Figure 2.10). In the V2 leaves, where there was also a 
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significant effect of dispersion (P = 0.045), distinct clusters by management system are visible in 

the PCoA (Figure 2.10G). When split by management system, there was a significant effect of 

growth stage in all management systems and all sample origins. This effect accounted for the 

most variation in the leaves where it accounted for between 42 and 53% of variation (Table 

2.6B). However, there was a significant effect of group dispersion (P = 0.0013, 0.0041, 0.00073) 

in the leaves in all management systems, but samples do cluster by growth stage in the 

ordinational space (Figure 2.10G). In conventional soil and organic stems, there is also a 

significant effect of group dispersion (P = 2.5E-8, 7.2 E-5, respectively), but separation by 

growth stage is less clear in the ordinational space (Figure 2.10B, F). 
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Table 2.6 - Permutational multivariate analysis of variance (“adonis”) and multivariate 
homogeneity of groups dispersions analysis (“betadisper”) results for prokaryotic 
communities associated with soybean soil, root, stem, and leaf samples split by growth stage 
and management system. (A) the effect of agricultural management on individual growth 
stages (V2 – two sets of unfolded tri foliate leaves, R2 – full flower reproductive stage, and R6 – 
full pod development), and (B) the effect of growth stage on individual agricultural management 
systems. 
 

A - Growth Stage PERMANOVA  DISPERSION 

  F-value R2 P-value  F-value P-value 

So
il 

V2 5.93 0.264 1.00E-04  10.1 3.70E-04 
R2 3.47 0.211 1.00E-04  3.6 0.0417 
R6 3.1 0.158 1.00E-04  7.11 2.71E-03 

Ro
ot

s V2 3.56 0.182 2.00E-04  2.07 0.143 
R2 2.01 0.113 0.0123  0.032 0.969 
R6 3.32 0.181 1.90E-03  0.739 0.486 

St
em

s  V2 6.17 0.285 1.00E-04  3.44 0.045 
R2 6.9 0.301 1.00E-04  0.247 0.783 
R6 4.49 0.249 1.00E-04  1.11 0.344 

Le
av

es
 V2 3.94 0.233 1.00E-04  3.49 0.045 

R2 3.29 0.177 1.00E-04  0.119 0.887 
R6 6.25 0.281 1.00E-04  0.289 0.751  

       
B - Management PERMANOVA  DISPERSION 

 F-value R2 P-value  F-value P-value 

So
il 

Conventional 3.1 0.162 1.00E-04  31.7 2.50E-08 
No-Till 2.21 0.121 1.10E-03  1.01 0.376 
Organic 2.55 0.175 3.00E-04  0.49 0.619 

Ro
ot

s  Conventional 2.34 0.131 7.20E-03  0.175 0.841 
No-Till 4.09 0.209 1.00E-04  0.898 0.418 
Organic 3.76 0.186 1.00E-04  0.796 0.459 

St
em

s Conventional 5.2 0.257 1.00E-04  1.04 0.367 
No-Till 9.1 0.355 1.00E-04  1.07 0.356 
Organic 4.31 0.242 2.00E-04  13.9 7.20E-05 

Le
av

es
 Conventional 13.9 0.481 1.00E-04  8.26 1.30E-03 

No-Till 18.6 0.537 1.00E-04  6.55 4.12E-03 
Organic 9.85 0.421 1.00E-04  9.56 7.30E-04 
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Figure 2.10 - Principal coordinates analysis plots using Bray-Curtis dissimilarity, of 
prokaryotic communities split by growth stage and management regime. (A) associated with 
soybean soil split by soybean growth stage, (B) associated with soybean soil split by agricultural 
management system, (C) associated with soybean roots split by soybean growth stage, (D) 
associated with soybean roots split by agricultural management system, (E) associated with 
soybean stems split by soybean growth stage, (F) associated with soybean stems split by 
agricultural management system, (G) associated with soybean leaves split by soybean growth 
stage, and those (H) associated with soybean leaves split by agricultural management system. 
 
 

 
 

As with fungal communities, the no-till and conventional systems were analyzed without 

the organic system due to the genotypic difference. When split into individual growth stages, the 

effect of management system is significant (p < 0.05) in all growth stages and all sample origins 

except R2 roots and R2 leaves (Table 2.5B). This effect is the largest in the V2 soil and the V2 

leaves (22.8 and 20.3% respectively). In groups where the management system effect is 

significant, distinct clusters are apparent in the ordinational spaces (Figure 2.11), although 

clusters are less distinct than those of Fungi. In the R6 soil, there was a significant effect of group 

dispersion (P = 4.58E-4), but the PCoA reveals separation between no-till and conventional 

management systems (Table 2.5B). When split into no-till and conventional management 
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regimes, the effect of growth stage was significant throughout the management systems and 

sample origins. In the leaves, there were significant differences (P = 0.0012, 0.0097) in group 

dispersion for both conventional and no-till management systems, but there are distinct clusters 

by growth stage in both management regimes (Figure 2.11H, Table 2.5B). 

Figure 2.11 - Principal coordinates analysis plots using Bray-Curtis dissimilarity, excluding 
the organic management of prokaryotic communities split by growth stage and 
management system. (A) associated with soybean soil split by soybean growth stage, (B) 
associated with soybean soil split by agricultural management system, (C) associated with 
soybean roots split by soybean growth stage, (D) associated with soybean roots split by 
agricultural management system, (E) associated with soybean stems split by soybean growth 
stage, (F) associated with soybean stems split by agricultural management system, (G) 
associated with soybean leaves split by soybean growth stage, and (H) associated with soybean 
leaves split by agricultural management system. 
 

 

 

Indicator Species Analysis and Random Forest Modeling of Fungi 

Many fungal OTUs were strongly associated with specific management systems. 

Heatmaps of the top 30 most relatively abundant indicator OTUs in above and belowground 

samples are shown in Figure 2.12. In belowground fungal communities, many of the indicator 
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taxa were OTUs which were indicators for conventional and organic soils but were lacking in 

no-till soils. These indicators were from several genera including Didymella OTU 17, 

Mortierella OTU 46, Podospora OTU 56, and Minemedusa OTU 57 (Figure 2.12A). All these 

taxa were also identified as being in the top 30 most important taxa for distinguishing between 

management systems in random forest analysis (Figure 2.13A). Indicators to no-till soils 

included a Sordariomycetes OTU and Fusarium OTU 96 which was also identified by random 

forest analysis. In the roots, a Glomeromycotina OTU 188 was highly associated to the no-till 

management system. An unidentified Agaricales OTU 87 was an indicator for the conventional 

and organic management regimes, and Mycoleptodiscus OTU 150 was an indicator for organic 

root communities (Figure 2.12A). Both taxa were also identified in random forest models as 

being important in distinguishing between management systems. 

In aboveground fungal communities, many of the indicator species for no-till and 

conventional stems and early vegetative (V2) leaves clustered together. These OTUs included 

Diaporthe OTU 13 which was abundant in conventional stems and leaves, as well as Fusarium 

OTU 96 which was abundant in no-till tissues. Both indicator taxa were also identified as being 

important in aboveground random forest models. At later growth stages in the leaves, a Hanaella 

sp. was an indicator in the conventional and no-till leaves. The main indicator for the organic 

management system was an Edenia sp. which was most highly abundant in the stems at the late 

reproductive (R6) growth stage (Figure 2.12B). 
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Figure 2.12 - Heatmaps of the relative abundances of the top 30 most abundant indicator 
taxa of fungi for each above and belowground samples. (A) belowground taxa, (B) 
aboveground taxa. Samples are clustered by the displayed dendrogram using Bray-Curtis 
distances. The associated barplots show the relative abundance among indicator species of the 
taxa. Taxa that were also among the top 30 most important for distinguishing between 
managements in Random Forest models of above and belowground samples are indicated with 
an asterisk (*).  
 

 
Trends identified through indicator species analysis were further assessed with random 

forest analysis. Above and belowground fungal communities were assessed, and it was 

demonstrated that for belowground fungal communities there was an out of bag error for 

assigning management system to belowground samples of 7.7% (Figure 2.13A). Conventional 

samples were assigned incorrectly 10.6% of the time, no-till samples were assigned incorrectly 

4.3% of the time, and organic samples were assigned incorrectly 10% of the time. For 

aboveground samples, the out of bag error was 3.1% (Figure 2.13B). The error rate in the organic 

management system was 0.0%, while the rate for conventional samples was 1.4% and the rate for 



 
 
 
 
 
 

71 
 
 
 

no-till samples was 8.8%. Conversion of sample proximities to Bray-Curtis distance allowed for 

the visualization of clusters of samples by each management regime for above and belowground 

samples (Figure 2.13A, B). Random forest models identified several Phoma and Paraphoma taxa 

which were important in distinguishing management systems but were not identified by indicator 

species analysis (Figure 2.13A). 

Figure 2.13 - Random Forest modelling results of fungal communities. (A) associated with 
belowground samples, (B) communities associated with aboveground plant tissues 

 

Indicator Species Analysis and Random Forest Modeling of Prokaryotes 

Belowground prokaryotic indicator OTUs in root and soil compartments form into groups 

when clustered by Bray-Curtis distances. In the organic management system, Steroidobacter 

OTU 56 and Promicromonospora OTU 106 were indicator bacteria in the soybean root 
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compartment, whereas a Streptomyces OTU was an indicator in roots from conventional and no-

till management systems. Promicromonsopora OTU 106 was also identified as being among the 

top 30 most important OTUs in random forest modeling (Figure 2.15A). In the soil, a 

Phormidium OTU was an indicator for conventional and no-till management systems, while 

Cellulosmicrobium OTU 372 was an indicator to the organic soil and roots and was also 

identified by random forest modeling (Figure 2.14A and Figure 2.15A). 

 
Figure 2.14 - Heatmaps of the relative abundances of the top 30 most abundant indicator 
taxa of bacteria for each above and belowground samples. (A) belowground taxa, (B) 
aboveground taxa. Samples are clustered by the displayed dendrogram using Bray-Curtis 
distances. The associated barplots show the relative abundance among indicator species of the 
taxa. Taxa that were also among the top 30 most important for distinguishing between 
managements in Random Forest models of above and belowground samples are indicated with 
an asterisk (*).  
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In aboveground tissues, indicator OTUs clustered based on plant compartments, 

management regime and growth stage. For example, at the early vegetative (V2) growth stage, 

stems and leaves from conventional managed soybean shared several indicator OTUs, including 

Cyanobacteria belonging to Tricholeus (OTU 83) and an unidentified Cyanobacteria Family L 

species (OTU 103). Both taxa were also identified as being important for assigning samples to 

management systems by random forest analysis. Many of the bacterial indicator taxa were 

Hymenobacter species, the majority of which were associated with no-till and conventional 

management regimes in both leaves and stems (Figure 2.14B). Many of the Hymenobacter taxa 

were also identified as being important in random forest modeling (Figure 2.15B). A stem 

associated Arthrobacter sp. was an indicator of the organic management system and was 

identified in random forest modeling. Random forest modeling performed on belowground 

prokaryotic communities revealed that samples were assigned to the correct management system 

89.9% of the time (Figure 2.15A). Samples of the conventional management regime were 

assigned incorrectly 10.1% of the time, no-till samples 9.9% of the time, and organic samples 

10.3% of the time. When proximities between samples were converted to Bray Curtis distance, 

clustering by management system is visible, but less clear compared to belowground fungal 

communities. The aboveground prokaryotic random forest model had an out of bag error rate of 

10.7% (Figure 2.15B). The conventional management system samples were assigned incorrectly 

12.1% of the time, no-till samples were assigned incorrectly 4.2% of the time, while organic 

samples were assigned incorrectly 0% of the time. In the MDS space, there was separation by 

management system, but the clusters were less clear than aboveground Fungi (Figure 2.15B). 
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Figure 2.15 - Random Forest modelling results of bacterial communities. (A) associated with 
belowground samples, (B) communities associated with aboveground plant tissues 
 

 
 

Core Network Analysis and Hub Species Detection 

Microbial networks constructed for above and belowground compartments across each 

management system differed in their network statistics (Table 2.7). Microbial networks in the 

no-till management system had the greatest numbers of nodes and edges for both above and 

belowground networks. Belowground, the network for the organic management system had the 

next highest number of edges and nodes, but aboveground the organic network was the sparsest 

in terms of edges and nodes. When compared to 100 random networks, each network except the 

aboveground organic and belowground conventional networks consistently had a significantly (p 

< 0.05) different degree distribution than 100 random networks (Table 2.7). Since the 

aboveground organic network and belowground conventional network did not have a 

A 
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significantly different degree distribution than a random network, they will not be interpreted 

further. All networks contained a greater number of prokaryotic than fungal nodes and this 

difference was more pronounced belowground. Overall, networks had a diverse mix of bacterial 

and fungal phyla but were dominated by Proteobacteria and Actinobacteria with fungal nodes 

primarily being Ascomycota (Figure 2.16). 

Table 2.7 - Summary table of network statistics. Statistics include number of nodes, number 
of edges, network stability, network sparsity, modularity, number of modules, number of fungal 
nodes, number of prokaryotic nodes, and number of detected hub species in above and 
belowground networks of conventional, no-till, and organic management systems. 
 

Network # Of Nodes # Of Edges stability sparsity modularity 
Belowground 
Conventional* 139 270 0.047 0.0279 0.44 
Aboveground 
Conventional 96 173 0.0495 0.038 0.61 
Belowground 
No-Till 441 2663 0.0495 0.0274 0.36 
Aboveground 
No-Till 119 270 0.0493 0.0381 0.53 
Belowground 
Organic 424 2232 0.0487 0.0248 0.34 
Aboveground 
Organic* 52 51 0.046 0.0377 0.7 

Network # Of modules 
# Fungal 
Nodes 

# Prokaryotic 
Nodes # Of Hubs 

P Value 
Range 

Belowground 
Conventional* 38 26 113 3 0.016 - 0.27 
Aboveground 
Conventional 20 42 54 2 

2.3E-04 - 
0.037 

Belowground 
No-Till 8 36 415 5 

1.3E-03 - 
0.027 

Aboveground 
No-Till 16 46 73 2 

2.2E-05 - 
0.031 

Belowground 
Organic 22 26 398 1 

3.9E-05 - 
0.037 

Aboveground 
Organic* 17 16 36 0 8.5E-03 - 0.57 
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Figure 2.16 - Bipartite networks constructed for fungal and prokaryotic communities. (A) 
belowground conventional samples, (B) aboveground conventional samples, (C) belowground 
no-till samples, (D) aboveground no-till samples, (E) belowground organic samples, and (F) 
aboveground organic samples. 
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Figure 2.16 (cont’d) 

 

Within above and belowground networks created for each management system, 10 hubs 

were identified from significant networks to belong to 10 separate fungal and bacterial genera 

(Figure 2.17A). Most bacterial hubs consisted of Proteobacteria and Actinobacteria while the two 

fungal hubs were one basidiomycete and one ascomycete. The hub OTUs varied in relative 

abundance, the Massilia OTU 17 and Bulleria OTU 10 were dominant among hubs in the roots, 

stems, and leaves (Figure 2.17B). Some hubs varied in relative abundance by management 

system, for example, Tetracladium OTU 59 was less relatively abundant in organic leaves and 
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stems compared to no-till and conventional samples. Most hub OTUs were restricted to one 

compartment or to only above or belowground samples. This was not the case for Massilia OTU 

17 which was present throughout and Modestobacter OTU 116 which was present in the soil and 

stems (Figure 2.17B). 

Figure 2.17 - Summary of hub taxa detected in above and belowground bipartite networks 
for conventional, no-till, and organic management systems. (A) a table of detected hub genera 
and (B) stacked barplot showing the distributions of hub taxa across all managements and sample 
origins. 
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Discussion 

In this study, we assessed impacts of long-term cropping management systems on the 

soybean microbiome at a unique agricultural LTER site with 30 years of consistent management. 

We detected differences in the soybean-associated microbiome between management systems 

and growth stages throughout all sample origins. It is important to note that since plant 

compartments are not independent of each other; detected differences between managements in 

non-soil compartments may be largely driven by differences in the soil due to the role of the soil 

in seeding the microbiome of plant compartments [180]. However, if this is the case, our results 

demonstrate that differences from the soil persist throughout the plant. Additionally, since the 

same plots were sampled repeatedly throughout the season, samples from the same plot at 

different time points are not completely independent. However, when differences by growth 

stage are the highest (in the leaves and stems) the samples cluster by growth stage even when 

they are from different management systems; indicating that this is likely a true effect of growth 

stage, not simply differences between plots that persist due to repeated sampling of that plot 

(Figure 2.7). Some effect of growth stage may in fact be obscured due to differences between 

plots that persist because of repeated sampling of the same plots. Future studies performed at 

multiple sites can identify taxa which are consistently affected by the growth stage of the host 

plant at multiple sites. 

In terms of alpha diversity, there was not a consistent difference between organic and 

conventional management systems, a pattern that was also observed for maize [219]. Alpha 

diversity results were consistent with studies that have demonstrated the highest alpha diversity 

of both Fungi and Prokaryotes in the soil [220, 221]. Additionally, our results were consistent 

with previous results from the same site which demonstrated that the highest within plant alpha 
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diversity for prokaryotes could be found in the roots, but for fungi the root alpha diversity was 

similar to that of the leaves [4]. Interestingly, previous studies have demonstrated higher alpha 

diversity of fungal communities in Populus stems compared to leaves which contradicts our 

results [222]. This may be due to differences in plants, or the level at which stems were sampled. 

Within a single compartment, in terms of alpha diversity, the primary pattern in fungal and 

prokaryotic communities was a decrease in richness in the early reproductive (R2) stage 

followed by an increase at the late reproductive (R6) growth stage. This differed from a trend of 

increasing alpha diversity in plant organs throughout the season, as was detected in a previous 

study on wheat at the KBS LTER [4]. Our results also differed from a previous observation of a 

reduction in phyllosphere prokaryotic diversity throughout a soybean growing season [223]. 

Additionally, fungal richness was lower in organic stems and leaves. It is possible that this was 

due to management but it could also be due to the different plant genotype that was used in the 

organic system, as has been demonstrated to be an important source of variation in the maize 

rhizosphere [224]. Taken together, these observations suggest that trends in alpha diversity are 

not consistent across crops and sites. This may indicate that alpha diversity and other microbial 

community measures may be altered by unmeasured environmental factors as well as biotic 

factors such as plant exudates, interspecies competition, and the effects of non-microbial taxa 

[225]. 

The structures of the fungal communities were distinct between management regimes in 

terms of the presence and absence of particular fungal genera. For example, although abundant in 

other treatments, in no-till soils, Podospora and Didymyella were below the 4% threshold to be 

included in bar graphs (Figure 2.2A). Podospora has been identified previously as being more 

abundant in conventionally tilled wheat soils [226]. In the soil, it is postulated that tillage can 
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alter fungal communities such as AMF by disrupting hyphae [2]. Consistent with this hypothesis, 

the highest relative abundance of AMF was detected in no-till soils, but mechanistic studies are 

needed to ensure that this difference is due to tillage at the KBS LTER site. 

Indicator species analysis identified taxa such as Mortierella and Minimedusa that were 

associated with organic and conventional management systems (Figure 2.12A). These same taxa 

were identified as being important in assigning samples to management systems in random forest 

models (Figure 2.13). Minimedusa polyspora is of interest because it has been suggested to be 

plant growth promoting given its ability to solubilize phosphorous [227]. Some Mortierella 

species are also known to solubilize phosphorus [228]. Mortierella elongata has been reported to 

upregulate nutrient uptake and lipid signaling pathways in Populus [229], and are known to 

break down toxic organic compounds in the soil [230].  

Phoma was enriched in aboveground stem and leaf fungal communities in organic 

managements, while Fusarium and Phaeosphaeriopsis were conspicuously absent (Figure 2.1C, 

D). Additionally, various Phoma OTUs were identified as being important for separating 

belowground management systems in random forest models (Figure 2.13A). Interestingly, 

Phoma spp. have been indicated as a possible biocontrol agent for Fusarium graminearum in 

wheat, which may explain the lack of Fusarium where Phoma was abundant [4]. Indicator 

species analysis identified Fusarium sp. as statistically associated to aboveground soybean tissues 

in conventional and no-till managements. This result was interesting because previous work at 

the same site found Fusarium to be enriched in the phyllosphere of organic wheat [4]. It is also 

possible that this microbiome difference is due to the difference in soybean cultivar used in the 

organic system, as host genotype differences have been demonstrated in grape, maize, and poplar 

phyllospheres [231–233]. 
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In soil prokaryotic communities, Spartobacteria were enriched in no-till treatments. 

Spartobacteria has been found to be associated with no -till maize/soybean fields in a previous 

study, indicating that tillage regime may be specifically disruptive to these bacteria [234]. The 

no-till prokaryotic community was enriched in Bradyrhizobium. Previous studies have found a 

positive correlation between Bradyrhizobium and increased organic carbon caused by not tilling 

[72]. No-till and organic management regimes have been demonstrated to significantly increase 

total carbon in surface soils at the KBS LTER, which may explain the enrichment of 

Bradyrhizobium in the no-till management system [71]. However, since soil carbon was not 

measured as a part of this study, further work is needed to establish this relationship. In 

aboveground tissues, Hymenobacter was enriched in the no-till and conventional management 

systems. Some Hymenobacter species are plant growth promoting bacteria that can increase fatty 

acid content of plants [235, 236]. Together, these results indicate that management choices may 

select for beneficial microbes, but strain level identifications of taxa will be needed to assess this 

hypothesis. The indicator species analysis identified taxa which were tightly associated with 

roots or soils or tightly associated with specific growth stages (Figure 2.14A). For example, 

Aureimonas appeared only in the early reproductive (R2) and late reproductive (R6) growth 

stage of the three management systems. This observation is consistent with the idea that plants 

can recruit diverse microbes throughout their life cycles as they develop and their environment 

changes [237]. It is important to note that future studies on the effect of management regimes on 

the soybean microbiome are unlikely to identify the exact same indicator taxa. However, future 

work and more mechanistic studies may identify classes of microbes likely to be highly impacted 

by agricultural management. This information could then be used to predict the effect of the 

microbiome on plant health under alternative agricultural management. 
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The main explanatory variable of beta diversity in the soybean microbiome appeared to 

be whether the sample was from above or below ground compartments (Figure 2.6A, F). This 

result agrees with previous microbiome studies in Arabidopsis and wheat which showed different 

microbial communities are present in above and belowground plant tissues [4, 238]. At a finer 

resolution, there was separate clustering for leaves and stems and roots and soils, as has been 

noted in prokaryotic and fungal communities in the Populus microbiome [222]. Differences 

between microbial communities of organic vs. non-organic management systems have been 

demonstrated in grape and apple [239, 240]. Alternatively, pronounced effects of plant genotype 

could be driving differences in the phyllosphere fungal community, as has been reported for 

Populus [222, 231]. However, there were also distinct fungal communities between conventional 

and no-till management systems that persisted throughout the growing season in various plant 

compartments (Table 2.5 and Figure 2.9). Differences between conventional and no-till 

management systems were also made clear by the low error rate of random forest analyses in 

distinguishing agricultural management regimes (Figure 2.13 A, B). Tillage is known to be 

damaging to fungal mycelial networks in the soil, reducing the ratio of fungal to bacterial cells in 

soils [241]. Consequently, changes in fungal communities were expected given the substantial 

differences between tilled and non-tilled soils as has been demonstrated previously [2]. 

Differences between conventional and no-till management systems were not only in the soil but 

persisted in the leaves throughout the growing season (Figure 2.9). The effect of no-till vs. 

conventional agricultural management on the fungal communities of aboveground plant 

compartments has been understudied but may have an important impact on plant health. Our 

study found shifts in the phyllosphere community throughout a growing season, and is consistent 

with previous observations of seasonal phyllosphere shifts in fungal and bacterial communities at 
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the KBS LTER in wheat, switchgrass and miscanthus [4, 180]. While PERMANOVA results 

confirm the effect of sampling time-point on aboveground plant microbiome compartments, they 

also confirm the effects of crop management regime on soil and rhizobiome (Table 2.3, 2.4). 

Further work is warranted in this area to determine if time- point shifts are driven by 

deterministic or stochastic effects. 

PCoA plots of prokaryotic communities did not show a clear signature of management 

system on the soybean microbiome (Figures 2.6 G–J), yet a clustering of growth stages is evident 

in aboveground tissues (Figure 2.7). PERMANOVA results showed that management system 

played a larger role in the soil and growth stage/sampling point played a larger role in plant 

tissues, but the effects of both factors were significant in all sample origins (Table 2.3, 2.4). The 

moderate but significant effect of management regime on soil prokaryotic communities was 

consistent with results of a previous study that compared organic and conventional management 

systems [219]. As with fungal communities, changes in aboveground and root prokaryotic 

communities based on plant growth stage and sampling time-point are consistent with the results 

of previous studies on maize and rice [242, 243]. Differences in assembly between above and 

belowground tissues may alter the community’s ability to respond to agricultural management 

and plant growth. Similar to fungi, when the organic management system was not included in 

analyses, there was still a significant difference between conventional and no-till management 

systems, although the difference was smaller than in fungal communities (Table 2.5 and Figure 

2.11). As with Fungi, this distinction between conventional and no-till agriculture has been 

demonstrated in soils, but has been understudied within plant compartments [244]. Additionally, 

in the leaves the effect of management regime was reduced throughout the growing season when 

analyzing no-till and conventionally managed treatments alone (Figure 2.11G and Table 2.5). 
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Microbial networks in the long-term no-till management were denser than those of 

conventional or organic managements. This is undoubtedly related to higher prokaryotic alpha 

diversity in the no-till management system. We speculate that the increased number of core taxa, 

and therefore nodes, in the no-till networks may be related to both the lack of disturbance and 

increased soil carbon quality and quantity associated with no-till [10, 234]. Differences in 

network density and other network statistics between organic and other management systems 

may be due to management regime or due to host genotype differences. Further mechanistic 

studies are needed to assess the effects of more complex networks on host plant health. 

Microbial networks detected different hub species in each network. Due to the lack of 

taxonomic resolution in amplicon sequencing studies, species, and strain level identification of 

hubs is impossible. However, detection of hub OTUs belonging to particular microbial genera 

may inform future mechanistic studies. In the no-till belowground network, two detected hubs 

were from the Gaiellales order, which has been previously shown to be enriched in the roots of 

rice compared to surrounding soil, their detection as hubs may indicate an important role in 

structuring the root microbiome [245]. The only hub OTU detected in the belowground organic 

network was Phenylobacterium. This particular OTU seemed to only appear at a low relative 

abundance among hubs and only appeared in the roots and soil. Species from this genus have 

been understudied in terms of their effect on plant health, but it’s detection as a hub in the roots 

indicates that it may play a role in structuring the root microbiome. 

One hub of the aboveground no-till network was a fungus belonging to the genus, 

Bullera. Similar to many other basidiomycete yeasts, Bullera species have been isolated from the 

phyllosphere of various plants, but their roles in plant health are undetermined [111]. The only 

other fungal hub detected was a Tetracladium OTU which was a hub in the aboveground 
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conventional network and was previously found to be abundant at the KBS-LTER site [4]. 

Massilia is another aboveground hub taxon of interest. Although studied primarily in the roots, 

taxa from this genus are potentially beneficial due to their ability to solubilize phosphate [246]. 

Its presence in aboveground tissues indicates that it may be important in structuring plant 

microbiomes in both above and belowground phytobiomes. Further research is needed to 

determine why hub taxa are highly connected to other microbial members and how these 

connections help assemble soybean-associated microbial communities. 

Conclusion 

Here we report on the impact of long-term cropping management systems on the soybean 

microbiome. In doing so, we also addressed whole plant-microbiome changes in above and 

belowground compartments across the growing season. Our results indicate that the management 

system and growth stage have significant effects on the soybean microbiome. The effect of 

management system persisted when comparing conventional and no-till systems, excluding 

organic samples that were of a different genotype. Our results also indicated that specific 

indicator taxa varied between management regimes. Some of the indicator taxa such as 

Mortierella and Hymenobacter may be beneficial to plants. Additionally, the management 

system altered the network hub taxa, which may be important in structuring the microbiome. 

Some hub OTUs, such as Massilia, belonged to microbial genera that are known to contain plant 

beneficial organisms. Taken together, these results indicate that agricultural management 

practices impact whole-plant microbiomes. How specific management regimes can be employed 

to select desired microbial traits is still an open question. Further research into taxa identified by 

indicator species and network analyses may help to elucidate their functional roles to explain 

why specific taxa may be enriched under different management systems. 
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Chapter 3 

Non-target impacts of fungicide disturbance on phyllosphere 

yeasts in conventional and no-till management 
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Abstract 

 Fungicides reduce fungal pathogen populations and are essential to food security. 

Understanding the impacts of fungicides on crop microbiomes is vital to minimizing unintended 

consequences while maintaining their use for plant protection. However, fungicide disturbance 

of plant microbiomes has received limited attention, and has not been examined in different 

agricultural management systems. We used amplicon sequencing of fungi and prokaryotes in 

maize and soybean microbiomes before and after foliar fungicide application in leaves and roots 

from plots under long-term no-till and conventional tillage management. We examined fungicide 

disturbance and resilience, which revealed consistent non-target effects and greater resiliency 

under no-till management. Fungicides lowered pathogen abundance in maize and soybean and 

decreased the abundance of Tremellomycetes yeasts, especially Bulleribasidiaceae, including 

core microbiome members. Fungicide application reduced network complexity in the soybean 

phyllosphere, which revealed altered co-occurrence patterns between yeast species of 

Bulleribasidiaceae, and Sphingomonas and Hymenobacter in fungicide treated plots. Results 

indicate that foliar fungicides lower pathogen and non-target fungal abundance and may impact 

prokaryotes indirectly. Treatment effects were confined to the phyllosphere and did not impact 

belowground microbial communities. Overall, these results demonstrate the resilience of no-till 

management to fungicide disturbance, a potential novel ecosystem service provided by no-till 

agriculture.  
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Introduction 

 Disturbances from chemical applications in agriculture reduce the abundance of pests and 

pathogens and are common in modern agricultural ecosystems [247–251]. However, applying 

disturbance concepts to microbial communities can be challenging to assess recovery and 

analyze the full impacts of crop management. A lack of data on the impacts crop management 

combined with fungicide disturbances on the plant microbiome hinders developing novel 

strategies to minimize diversity loss, understand unintended consequences of these applications, 

and improve crop microbiomes’ resilience. Observing fluctuations in taxa abundance and 

secondary effects mediated through microbial interactions following fungicide application opens 

the possibility for novel ecologically motivated strategies that promote microbiome stability or 

resilience following a fungicide application. 

Fungicide use has become common in conventional agricultural systems. Yet, concerns 

remain about direct and indirect effects on non-targeted organisms, consequences (i.e., 

resistance), and negative impacts on the environment or human health [96, 252, 253]. The rapid 

evolution of fungicide resistance in plant and human pathogenic fungal populations can cause 

devastating epidemics in agricultural ecosystems, with spill-over effects to public health [254–

257]. For example, there is substantial concern about the overuse of azole fungicides that have 

been linked to the resistance of Aspergillus fumigatus to antifungals in human infections [256, 

257]. Despite concerns, foliar fungicide applications in maize (Zea mays L.) and soybean 

(Glycine max L. Merr) are often made without pathogen pressure due to perceived or marketed 

yield benefits [6, 258] . A meta-analysis of soybeans demonstrated that foliar fungicide 

application in the absence of disease increased yield by 2.7%, but applications are less profitable 

without disease pressure [6]. While fungicides are necessary for crop protection, minimizing 
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non-target effects and unintended consequences is critical in evaluating the sustainability of 

agricultural production systems. 

Studies reporting fungicidal and pesticidal impacts on micro-biomes [259, 260] have 

focused on soil and aquatic systems [96] rather than effects on foliage microbes. The two most 

popular fungicide classes used in agricultural field crops are the sterol demethylation inhibitors 

(DMIs), otherwise known as triazoles, and quinone outside inhibitors (QoI), or strobilurins. 

Foliar fungicides for maize and soybean are primarily applied as single or premixed QoI and 

DMI active ingredients [261]. QoI fungicides inhibit fungal respiration by blocking the quinol 

oxidation site in the cyto-chrome bc1 complex in the electron transport chain. DMI fungicides 

inhibit CYP51 (encoding 14α-demethylase), an important enzyme in the ergosterol biosynthesis 

pathway of fungi [18]. Both fungicide classes are highly active against many plant pathogens. 

From the few studies focused on the plant phyllosphere, a consistent non-target effect is detected 

against phyllosphere yeasts. One study on grapevine microbiomes reported minimal and transient 

impacts to the phyllosphere microbiome, including phyllosphere yeast abundance [7]. Similarly, 

repeated application of broad-spectrum fungicides has been shown through culture-based and 

culture-independent methods to decrease phyllosphere yeast richness [110, 262–264]. 

Yeasts that inhabit the phyllosphere are well suited to oligotrophic and dynamic 

environmental conditions present on leaf surfaces and consequently have been applied for 

biocontrol of plant pathogens [265]. They are known to produce extracellular polysaccharides 

and surfactants, which may be necessary for creating or maintaining biofilms [266]. In addition, 

some phyllosphere yeasts, including species of basidiomycete yeasts in Cryptococcus and 

Sporidiobolus, produce carotenoid compounds, which have antioxidant properties and may 

protect the yeasts and other resident microbes from stress in the phyllosphere [267]. Phyllosphere 
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yeast communities have also been linked to pollinator insects by altering floral nectary 

chemistry, and fungicides can modify this relationship [268, 269]. However, few studies have 

addressed the links between phyllosphere yeasts and other phyllosphere residing 

microorganisms. One study, which did analyze the links between phyllosphere yeasts and 

bacteria, found evidence that phyllosphere yeasts have direct interactions with bacterial members 

of the microbiome [9]. While indirect and collective effects of removing single species or groups 

of species from ecosystems have been proposed in ecological theory since the 1940s and studied 

in various macro-organism contexts such as conservation biology, disturbance ecology, and food 

web ecology, such effects are comparatively understudied in microbiome science [270–272]. In 

microbiomes, network complexity (i.e., linkage density) has been correlated to ecosystem 

functioning and stability [273, 274]. Consequently, co-occurrence patterns may reveal indirect 

effects, which may not be seen using other analyses. 

Since the US Dust Bowl of the 1930s, soil conservation efforts have led to the steady 

adoption of minimum or no-till agriculture management systems [1]. Cropping management 

systems have been demonstrated to impact phyllosphere microbiomes [4, 47]. Crop 

management’s effect on the resilience of foliar fungal communities following fungicides has not 

been explored but differing impacts of fungicides in different agricultural managements are 

probable. In one study performed on soil, agricultural management altered the response of 

microbial communities to the application of the DMI fungicide tetraconazole [275]. Similarly, a 

study on wheat demonstrated that crop rotation and wheat variety impacted response to foliar 

fungicides of various active ingredients, however the crop rotation systems differed between 

locations, confounding efforts to distinguish fungicide responses in specific rotations from those 

of location and variety [109]. Long-term experiments circumvent these confounding effects by 
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applying all treatments at a single location. 

Here, we characterize effects of foliar fungicides on the maize and soybean leaf and root 

microbiomes in no-till and conventional plots of the Long-Term Ecological Research (LTER) 

Main Cropping Systems Experiment at the Kellogg Biological Station (KBS). Our research 

objectives were three-fold: (1) to determine whether fungicides alter microbial diversity across 

plant compartments (e.g., leaves or roots), crop species (e.g., maize or soybean), or tillage 

management (conventional vs. no-till); (2) to identify non-target and indirect effects of fungicide 

applications, and (3) determine if crop management alters the resiliency of the microbiome. We 

hypothesized that fungicides would alter both maize and soybean microbial (fungal and 

prokaryotic) diversity and network complexity. We predicted that this effect would be most 

pronounced in the leaves. In addition, given that plant microbiomes have been shown to differ 

under the two tillage management systems [47], we hypothesize that the response and recovery 

of plant microbiomes following fungicides would also differ. This LTER site allows for a novel 

approach by eliminating any differences caused by location bias and assessing the effect of 

fungicide application under long-term agricultural management. We apply a novel microbiome 

network analysis approach to determine the impact fungicides have on prokaryote-fungal co-

occurrences in the plant microbiome. Finally, we used random forest models to predict 

prokaryote taxa responsive to altered fungal diversity demonstrating the possible indirect effects 

of fungicides. 
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Materials and Methods 

Sample Site and Management Systems 

Samples were collected from the no-till and conventional tillage management treatments 

of the main cropping experiment at Michigan State University’s KBS LTER site which follows a 

maize (Zea mays L.), soybean (Glycine max L. Merr), and winter wheat (Triticum aestivum L.) 

rotation. The site contains six one-hectare replicate plots of no-till or conventional tillage plots 

consistently managed since 1989 [276] . Fungicide micro-plots (3.05 m wide × 6.10 m long) 

were established within four replicate plots in no-till and conventional tillage treatments. Control 

samples were taken from micro-plots of the same size directly next to the fungicide micro-plots. 

Samples were taken from the middle of plots to minimize the effect of any spray drift. Fungicide 

applications of Headline® with the quinone outside inhibitor (QoI) active ingredient 

pyraclostrobin (2017) and Delaro® with the combination of the demethylation inhibitor (DMI) 

prothioconazole and QoI trifloxystrobin active ingredients (2018) were performed at 

recommended label rates. 

Fungicide Application 

In 2017, the fungicide Headline® was applied to maize foliage at a recommended rate of 

877 ml ha-1 (12 fl oz acre-1). Headline® contains the QoI active ingredient pyraclostrobin, which 

acts as a mitochondrial respiration inhibitor.  Pyraclostrobin is a local penetrant fungicide with 

translaminar movement and is not translocated in the xylem [277]. In 2018, soybean foliage was 

sprayed with Delaro® fungicide on 3 August 2018 (Bayer, Raleigh, NC, USA) at a recommended 

rate of 731 ml ha-1 (11 fl oz acre-1). The active ingredients in Delaro® are a combination of the 

QoI trifloxystrobin which inhibits mitochondrial respiration, and the DMI prothioconazole, 

which inhibits ergosterol synthesis. Trifloxystrobin is a local penetrant fungicide with 
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translaminar movement and is not translocated in the xylem [277]. Prothioconazole has acropetal 

penetrant activity and has weak basipetal movement [278]. 

Sample Collection and DNA Extraction 

In 2017, maize leaf and root samples were collected at three time points. The first 

sampling occurred before the fungicide application on 26 June 2017 (V6 growth stage), the 

second was 9-days post fungicide (dpf) (V8 growth stage), and the final sampling was 35-dpf 

(V15 growth stage). Leaves and roots from three plants from four replicate control or adjacent 

fungicide treated plots of each no-till, and conventional management were sampled at each time 

point. In 2018, soybean leaves were sampled at three time points the first occurred before 

fungicide spray on 3 August 2018 (R3 growth stage), the second occurred 13-dpf (R4 growth 

stage), and the final occurred 33-dpf (R6 growth stage) [183]. 

Sampling and DNA extractions were performed as described previously [4, 47]. Maize 

leaves were sampled by removing two whole leaves from each plant and placing them into a 

sterile Whirl Pak (Nasco, Madison, WI, USA) for transport back to the lab where they were 

stored at -80ºC until they were lyophilized. At the V6 and V8 growth stage, the sixth and seventh 

leaf was sampled. However, at the V15 growth stage, three leaves above the ear leaf were 

sampled. Roots were sampled by removing whole plants from the soil and the entire root system 

to the soil line. Then roots were washed in the field before being transported back to the lab, 

where roots were washed again with 0.1% tween 20 (ThermoFisher Scientific, USA) and 

deionized water.  Samples were stored at -80ºC before being lyophilized for DNA extraction. 

Following lyophilization, the fine roots were removed from the root system and used for DNA 

extraction.  

Soybean leaves were sampled with a flamed metal hole punch, washed in 80% ethanol, 
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and flame sterilized between samples. Three 6-mm leaf discs from three separate leaves were 

punched directly into an Eppendorf tube (Eppendorf, Germany) containing 500 μl of CSPL 

buffer (Omega Bio-Tek, Norcross, GA, USA). As with the maize roots, whole soybean plants 

were removed from soil and soybean roots were removed at the soil line and placed into a new 

Whirl-Pak (Nasco, Madison, WI, USA) bag containing approximately 50 ml of 0.1% tween 20 to 

remove the remaining soil. Root samples were transported back to the lab, where roots were 

washed again with deionized (DI) water, and samples were stored at -80ºC until processing. 

Maize and soybean leaf and root tissue were pulverized for 2-min at a speed of 30 Hz with two 

4-mm stainless balls in a TissueLyser II (Qiagen, Venlo, Netherlands). Total DNA was extracted 

from plant tissues with the OMEGA Mag-Bind Plant DNA Plus kit (Omega Bio-Tek, Norcross, 

GA, USA) following the manufacturer’s instructions with the aid of a KingFisher FlexTM liquid 

handling machine (ThermoFisher Scientific, USA). Five or six internal negative extraction 

controls were included per 96-well plate in each DNA extraction. 

Amplicon Library Preparation for ITS and 16S Community Profiling 

 Amplicon libraries were prepared from a modified three-step PCR protocol as described 

previously [47]. In brief, fungal libraries were constructed around the ITS and were amplified 

using the primers ITS1F and ITS4 [185]. Prokaryote libraries targeted the V4 region of 16S 

rRNA with the primers 515F and 806R [186]. Tables 2.1 and 2.2 describe PCR protocols and 

cycling conditions in detail. Amplicons were purified with the SequalPrepTM Normalization Plate 

Kit (ThermoFisher Scientific, USA) and then pooled and concentrated with Amicon® Ultra 0.5 

mL filters (EMDmillipore, Germany). Subsequently, the library was purified, and size selected 

with Agencourt AMPure XP magnetic beads (Beckman Coulter, USA). Amplicon libraries were 

quantified and checked on the Agilent 4200 TapeStation DNA10000 and Kapa Illumina Library 
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Quantification qPCR assays. All amplicon libraries were then paired-end sequenced (300 bp 

reads) on an Illumina MiSeq with a v3 600 cycles kit (Illumina, USA). 

 Raw sequences for soybean microbial communities used to create figures and tables in 

this study are available in the NCBI SRA database under the following accession numbers: 

PRJNA603199 and PRJNA603207. Sequences produced on the same Miseq runs and used to 

remove contaminants are available in PRJNA603147. Raw sequences for maize microbial 

communities are available under the following accession numbers: PRJNA739465 and 

PRJNA739759. Code to generate figures and tables are located on GitHub 

at https://github.com/noelzach/FungicidePulseDisturbance. 

Bioinformatic Sequence Processing 

 Fungal ITS1 or prokaryotic 16S V4 reads were demultiplexed in QIIME 1.9.1 [192]. 

Forward and reverse prokaryote reads were merged using QIIME 1.9.1. Only forward fungal 

ITS1 reads were used since reverse reads did not overlap. After removing primers with Cutadapt 

1.8.1 [193], fungal reads were trimmed to remove the conserved SSU and 28S regions. Reads 

were then quality filtered at an expected error threshold of 0.1 and truncated to equal length 

(fungi 200 bp; prokaryote 300 bp) in USEARCH 11.0.667 [279]. Singletons and chimeras were 

removed, and de novo OTU clustering was performed at a 97% similarity using the UPARSE 

algorithm [196]. Using CONSTAX2 [280, 281], the taxonomic classification of fungal and 

prokaryotic OTU's representative sequences was performed against the UNITE eukaryote 

database, ver. 8.2 of 04.02.2020 [197] and SILVA, version 138 [198], respectively. To filter out 

non-target taxa and OTUs unidentified at the Kingdom level, CONSTAX was run twice under 

different cutoff levels, as previously suggested [282]. Non-target taxa, OTUs not assigned to a 

Kingdom, and OTUs identified as either chloroplast or mitochondria in either database were 
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removed from further analysis [283]. 

Data Import and Preprocessing in R 

 Data were imported into R 4.0.3 [200] and the R packages phyloseq 1.24.2 [201] and 

vegan 2.5.3 [207] were used for most analyses. Samples with low sequencing coverage (less than 

1000 reads) were removed from the analysis. Contaminant OTUs (i.e., those prevalent in 

negative extraction controls) were removed with the R package decontam [202]. Before 

normalization, richness was assessed for Prokaryotes and Fungi in the leaves and roots of each 

crop using the ‘estimate_richness’ function in the phyloseq package. Results of alpha diversity 

analyses were plotted using the ggplot2 package [208]. Then, sample read counts were 

normalized using the cumulative sum scaling technique within the metagenomeSeq R package 

[213]. 

Statistical Analysis 

 Differences in fungal and prokaryotic community composition were tested through 

PERMANOVA with the ‘adonis2’ function on Bray-Curtis distances in the R package vegan 

[207]. Variation in multivariate dispersion was tested with the ‘betadisper’ function in vegan. 

More specific hypotheses were tested based on constrained analysis of principal coordinates 

(CAP) [284] using the ‘capscale’ function in vegan. Differentially abundant taxa resulting from 

fungicide application were identified by comparing fungicide treated plots to control plots 

through an analysis of the composition of microbiomes (ANCOM v 2.1) [285]. For differential 

abundance analysis, fungal OTUs (fOTU, hereafter) with a mean relative abundance less than 

10−5 and fOTUs with zeros present in 95% samples were discarded from the analysis to avoid 

detecting fOTUs as significantly different based on stochasticity. In addition, fOTUs that were 

never present in fungicide treated plots were not included. Fungal OTUs were determined to be 
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significant if the W value was greater than 70% of the taxa tested based on Wilcoxon ranked sum 

test between additive log-ratio transformed data and a Benjamini-Hochbergj adjusted P value (α 

= 0.05) [285]. Recovered taxa (i.e., transient effects) were defined as fOTUs that were 

significantly less abundant in the first sampling following fungicide treatment but were not 

significantly less abundant from non-disturbed plots, after 33- or 34-dpf, for soybean or maize, 

respectively. Non-recovered taxa were defined as those fOTUs with significantly altered 

abundance following fungicide application and remained significantly altered for the remainder 

of the sampling. In addition, a portion of non-recovered taxa was also locally extinct, which were 

defined as taxa present before fungicide application but having zero relative abundance following 

fungicide application in fungicide treated plots through the remainder of the sampling while 

being present in the control plots. Finally, taxa that did not have significantly altered abundance 

following fungicide application but then had significantly different abundance at a later sampling 

point (i.e., 33- or 34-dpf) were defined as indirect effects. 

The core phyllosphere fungal and prokaryotic taxa from the non-fungicide disturbed no-

till or conventional plots were identified based on each abundance and occupancy across space 

and time. Taxa that contributed to the last 2% increase in Bray-Curtis distances were defined as 

the core [286]. 

We built random forest regression models to test the effect of altered prokaryote 

abundance through fungal diversity by using prokaryote abundances to predict fungal diversity. 

Random forest models were generated with the ‘randomForest’ function in the randomForest R 

package [214]. To remove redundant features and avoid overfitting models, we removed 

redundant OTUs with the ‘Boruta’ function in the package Boruta [287]. The method performs a 

top-down search for relevant OTUs by comparing the importance of the original OTUs from 
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those selected at random. Models were tuned to achieve the lowest stable out-of-bag (OOB) error 

estimate possible, and the best mtry value (number of OTUs sampled at random in the entire 

pool for each tree at each split) was selected using the ‘tuneRF’ function in randomForest R 

package. 

Network analysis was conducted on soybean and maize leaf samples to estimate co-

occurrences among prokaryotic and fungal OTUs in each host and determine whether fungicides 

altered fungal-prokaryotic co-occurrences and network complexity (i.e., linkage density). For 

network analyses, soybean and maize fungal and prokaryotic OTU tables were filtered to exclude 

taxa with mean relative abundance below 10−5. A co-occurrence meta-matrix was estimated 

using the Meinshausen and Bühlmann algorithm within the SpiecEasi R package with the 

‘nlambda’ set to 100 and with ‘lambda.min.ratio’ set to 10−2 [217]. From this meta-matrix, 

subnetworks were created from taxa present within each sample. Then, network complexity was 

calculated for each subnetwork. The contribution of the Bulleribasidiaceae to network 

complexity was assessed by examining the change in the cumulative edge weights across 

subnetworks with prokaryotic genera. Bulleribasidiaceae were selected for further analysis 

because they represent an off-target group of fungi that was substantially impacted by fungicide 

application. 

Results 

General Sequencing Results 

The final fungal OTU table contained 20,844,912 ITS1 reads across 554 samples, 

including 5,315 fOTUs after filtering 36 contaminant fOTUs detected in negative controls. The 

median read depth was 30,370 ITS1 reads per sample. Prokaryotes contributed 29,691,681 total 

reads across 555 samples with a median read depth of 47,590 reads per sample. A total of 14,291 
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prokaryote OTUs (pOTU, hereafter) were defined after filtering 55 contaminant pOTUs detected 

in the negative controls. Rarefaction curves verified that the median read depth adequately 

sampled the diversity present (Figure 3.1).  

Figure 3.1 - Rarefaction curves for each sample sequenced in the fungicide study for (A) 
fungi and (B) prokaryotes in soybean or maize leaves and roots. The dashed line represents the 
median sequence depth. 
 

 

Fungicides alter maize and soybean leaf fungal richness 

Following fungicide application, the richness of maize and soybean leaf fungal 

communities was significantly reduced compared to control plots across managements and crops 

(P < 0.05) except for in no-till maize samples (Figure 3.2). This effect was most pronounced for 

Dothideomycetes (target) and Tremellomycetes (non-target). However, in other fungal classes 

such as Sordariomycetes, there was no significant difference in richness between control and 

fungicide treated samples following fungicide applications. There were no significant differences 

in fungal richness between fungicide and control plots amongst the assessed fungal classes or in 

overall richness in the roots of either crop (Figure 3.3). Among prokaryotes, there were no 

consistent differences between control and fungicide samples in the leaves or roots of either crop 
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(Figure 3.4). 

Figure 3.2 - Fungicidal effects on the richness of different fungal classes. Results shown in 
(A) soybean and (B) maize phyllosphere. Black dots are control yellow dots are fungicide 
samples. Asterisks indicate the level of significance; * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001 
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Figure 3.3 - Fungicidal effects on the richness of different fungal classes in the roots. Results 
shown for (A) soybean and (B) maize roots. Black dots are control yellow dots are fungicide. 
 

 
 
Figure 3.4 - Fungicidal effects on the richness of prokaryotes in soybean and maize. Results 
shown for (A) leaves and (B) roots. Black dots are control yellow dots are fungicide. Asterisks 
indicate the level of significance; * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
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Fungicides alter the maize and soybean leaf fungal community composition 

Fungal and prokaryote community composition varied significantly due to timepoint (i.e., 

dpf) and crop management in maize and soybean leaves and roots (Table 3.1; Table 3.2). 

Notably, before fungicides were sprayed, crop management was shown to have a significant 

effect on the maize and soybean phyllosphere fungal and prokaryotic communities (maize leaf 

fungi R2 = 0.050, P = 0.001; maize leaf prokaryotes R2 = 0.038, P = 0.005; soybean leaf fungi 

R2 = 0.058, P = 0.020; soybean leaf prokaryotes R2 = 0.046, P = 0.049). Furthermore, fungal, 

and prokaryotic phyllosphere community compositions in control and treatment plots were 

indistinguishable from each other prior to applying fungicide treatments (maize leaf fungi R2 = 

0.032, P = 0.051; maize leaf prokaryotes R2 = 0.023, P = 0.418; soybean leaf fungi R2 = 0.018, 

P = 0.483; soybean leaf prokaryotes R2 = 0.035, P = 0.128). Despite this, changes to the fungal 

phyllosphere composition by fungicide treatments differed depending on management 

(fungicide-management interaction) only in the soybean, but not in the maize leaves (maize leaf 

fungi 9-dpf R2 = 0.012, P = 0.916; soybean leaf fungi 13-dpf R2 = 0.041, P = 0.017; soybean 

leaf fungi 33-dpf R2 = 0.039, P = 0.015). There was no substantial evidence that fungicides 

altered the composition of phyllosphere prokaryote communities, prokaryote root communities, 

or fungal root communities. Therefore, the variance explained due to the fungicide disturbance 

was examined for fungal phyllosphere communities before and after fungicide exposure while 

partitioning out the variation due to crop management by a constrained analysis of principal 

coordinates (CAP) (Figure 3.5). 
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Table 3.1 - Permutational multivariate analysis of variance for fungi in maize or soybean in 
roots or leaves before and after fungicide application. Significant P values (< .05) are shown 
in bold.  
 

Crop  Tissue Factorab 
Degrees 

Freedom 
Sum of 

Squares R2 
Pseudo-

F P 
Maize Leaf Fungicide 1 0.471 0.013 2.564 0.005 

  Management 1 0.640 0.018 3.478 0.002 
  DPF 2 7.628 0.218 20.737 < 0.001 

  
Fungicide x 
Management 1 0.217 0.006 1.181 0.253 

  Fungicide x DPF 2 0.852 0.024 2.317 0.004 
  Management x DPF 2 0.532 0.015 1.446 0.074 

  
Fungicide x 
Management x DPF 2 0.422 0.012 1.148 0.240 

  Residual 132 24.276 0.693 - - 
  Total 143 35.038 1.000 - - 
        

Maize Root Fungicide 1 0.345 0.007 1.086 0.295 
  Management 1 2.311 0.046 7.283 < 0.001 
  DPF 2 5.618 0.112 8.852 < 0.001 

  
Fungicide x 
Management 1 0.381 0.008 1.200 0.235 

  Fungicide x DPF 2 0.538 0.011 0.848 0.734 
  Management x DPF 2 1.911 0.038 3.010 < 0.001 

        

  
Fungicide x 
Management x DPF 2 0.704 0.014 1.109 0.274 

  Residual 121 38.401 0.765 - - 
  Total 132 50.208 1.000 - - 
        

Soybean Leaf Fungicide 1 0.816 0.034 6.704 < 0.001 
  Management 1 0.465 0.020 3.816 < 0.001 
  DPF 2 4.648 0.196 19.086 < 0.001 

  
Fungicide x 
Management 1 0.233 0.010 1.910 0.038 

  Fungicide x DPF 2 0.697 0.029 2.864 0.002 
  Management x DPF 2 0.470 0.020 1.928 0.013 

  
Fungicide x 
Management x DPF 2 0.392 0.017 1.608 0.046 

  Residual 131 15.950 0.674 - - 



 
 
 
 
 
 

105 
 
 
 

Table 3.1 (cont’d) 
  Total 142 23.670 1.000 - - 
        

Soybean Root Fungicide 1 0.274 0.007 0.949 0.429 
  Management 1 0.890 0.022 3.086 < 0.001 
  DPF 2 2.330 0.057 4.040 < 0.001 

  
Fungicide x 
Management 1 0.426 0.010 1.478 0.112 

  Fungicide x DPF 2 0.515 0.013 0.893 0.573 
  Management x DPF 2 0.563 0.014 0.977 0.439 

  
Fungicide x 
Management x DPF 2 0.479 0.012 0.831 0.693 

  Residual 122 35.186 0.865 - - 
    Total 133 40.663 1.000 - - 

aThe management factor refers to no-till or conventional management 
bDPF = days post fungicide 
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Table 3.2 - Permutational multivariate analysis of variance for prokaryotes in maize or 
soybean in roots or leaves before and after fungicide application. Significant P values (< .05) 
are shown in bold. 
 

Crop  Tissue Factorab 
Degrees 

Freedom 
Sum of 

Squares R2 
Pseudo-

F P 
Maize Leaf Fungicide 1 0.278 0.006 0.993 0.384 

  Management 1 1.075 0.023 3.834 0.002 
  DPF 2 7.492 0.160 13.361 < 0.001 

  
Fungicide x 
Management 1 0.280 0.006 0.997 0.389 

  
Fungicide x 
DPF 2 0.523 0.011 0.933 0.511 

  
Management 
x DPF 2 0.900 0.019 1.605 0.043 

  

Fungicide x 
Management 
x DPF 2 0.639 0.014 1.139 0.240 

  Residual 127 35.608 0.761 - - 
  Total 138 46.796 1.000 - - 
        

Maize Root Fungicide 1 0.191 0.005 0.985 0.408 
  Management 1 1.568 0.038 8.101 < 0.001 
  DPF 2 12.291 0.299 31.743 < 0.001 

  
Fungicide x 
Management 1 0.083 0.002 0.427 0.914 

  
Fungicide x 
DPF 2 0.449 0.011 1.161 0.287 

  
Management 
x DPF 2 1.225 0.030 3.165 0.002 

  

Fungicide x 
Management 
x DPF 2 0.307 0.007 0.793 0.628 

  Residual 129 24.976 0.608 - - 
  Total 140 41.091 1.000 - - 
        

Soybean Leaf Fungicide 1 0.138 0.007 1.189 0.281 
  Management 1 0.380 0.019 3.276 0.006 
  DPF 2 3.777 0.185 16.292 < 0.001 

  
Fungicide x 
Management 1 0.122 0.006 1.048 0.352 

  
Fungicide x 
DPF 2 0.234 0.011 1.010 0.446 
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Table 3.2 (cont’d) 

  
Management 
x DPF 2 0.258 0.013 1.112 0.331 

  

Fungicide x 
Management 
x DPF 2 0.298 0.015 1.287 0.181 

  Residual 131 15.185 0.745 - - 
  Total 142 20.391 1.000 - - 
        

Soybean Root Fungicide 1 0.197 0.007 0.998 0.370 
  Management 1 1.316 0.047 6.672 < 0.001 
  DPF 2 1.106 0.040 2.805 0.002 

  
Fungicide x 
Management 1 0.458 0.017 2.321 0.042 

  
Fungicide x 
DPF 2 0.228 0.008 0.577 0.884 

  
Management 
x DPF 2 0.467 0.017 1.185 0.274 

  

Fungicide x 
Management 
x DPF 2 0.298 0.011 0.755 0.689 

  Residual 120 23.659 0.853 - - 
    Total 131 27.728 1.000 - - 
aThe management factor refers to no-till or conventional management 
bDPF = days post fungicide 

 

For soybean leaves, no significant differences were observed prior to fungicide 

application (P = 0.51), but fungicide treatment had a significant effect on fungal leaf composition 

after fungicides were applied (13-dpf 12% variation P < 0.001; 33-dpf 11% variation P < 0.001) 

(Figure 3.5a–c). Similarly, the effect of fungicide disturbance on maize leaf fungal composition 

was not observed before fungicides were applied (P = 0.075) (Figure 3.5d). However, unlike 

soybean, there was no evidence the fungicide altered fungal composition longer than nine days 

(9-dpf 8% variation P < 0.001; 34-dpf 3% variation P = 0.078) (Figure 3.5e, f). The non-

significant beta dispersion tests across tillage management at 9-dpf or 34-dpf for maize (9-dpf 

conventional P = 0.369, no-till P = 0.631; 34-dpf conventional P = 0.364, no-till P = 0.662) and 
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13- and 33-dpf (13-dpf conventional P = 0.742, conventional P = 0.866; 33-dpf conventional P = 

0.335, no-till P = 0.123) for soybean, indicate that the effects of fungicide on fungal leaf 

composition are likely due to true differences in community composition rather than group 

dispersions (Table 3.3). 

Table 3.3 - Effects of fungicide on maize and soybean leaf fungal composition. Significant P 
values (< .05) are shown in bold 
 
        PERMANOVA Beta-dispersion 

Crop  Management 
Growth 
Stage aDPF R2 

Pseudo-
F P-value 

Pseudo-
F 

P-
value 

Maize Conventional  V6 0-dpf 0.032 0.724 0.811 0.162 0.679 
V8 9-dpf 0.087 2.108 0.018 0.855 0.369 
V15 34-dpf 0.028 0.638 0.821 0.862 0.364 

 No-till V6 0-dpf 0.082 1.959 0.015 17.156 0.002 
  V8 9-dpf 0.104 2.543 0.003 0.241 0.631 
  V15 34-dpf 0.109 2.697 0.006 0.213 0.662 
         

Soybean Conventional R3 0-dpf 0.045 1.044 0.357 0.141 0.726 
R4 13-dpf 0.140 3.568 < 0.001 0.101 0.742 
R6 33-dpf 0.183 4.912 < 0.001 0.979 0.335 

No-till R3 0-dpf 0.036 0.816 0.494 1.016 0.316 
R4 13-dpf 0.199 5.470 < 0.001 0.042 0.866 
R6 33-dpf 0.121 2.900 0.001 2.781 0.123 

aDPF = days post fungicide 
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Figure 3.5 - Effects of fungicides on fungal leaf composition in maize and soybean. A 
separate analysis was conducted for soybean (A)0- (B) 13-or (C) 33-days post fungicide (dpf) 
application or maize (D)0-(E)9-or(F) 34-dpf since there was a significant interaction between dpf 
and fungicide. Constrained analysis of principal coordinates (CAP) analyses was constrained by 
the effect of fungicide while partialling out the effect of management. The percentage of total 
variation due to fungicide is expressed above the plot. The significance was determined based on 
1000 permutations. 
 

 

Fungicidal effects on network properties depend on crop management 

In soybean under conventional and no-till management, network complexity was not 

significantly different before fungicide application (conventional P = 0.13; no-till P = 0.93) but 

was significantly lower than control plots 13-dpf (conventional P < 0.001; no-till P = 0.01) 

(Figure 3.6a). However, after one month, the soybean no-till network complexity had recovered 

(P = 0.12), whereas the conventional treatment was still significantly lower compared to the non-

sprayed control plots (P = 0.002) (Figure 3.6a). The loss in network complexity can partially be 

explained by a reduction in the number of nodes (i.e., OTUs) since the average number of nodes 
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per network also followed this same trend (Figure 3.6b). Fungicide disturbance was followed by 

the loss of network complexity mainly through node loss but crops and crop management 

impacted network properties under fungicide disturbance. These same effects were not observed 

in maize (Figure 3.7). To investigate these trends more closely, we investigated the specific 

fungal taxa affected through differential abundance analysis. 

Figure 3.6 - Fungicides alter soybean network complexity. A microbial co-occurrence 
network was constructed using taxa with a mean relative abundance greater than 1−5 and present 
in greater than 5 % of samples. Subnetworks were generated for each sample based on the OTUs 
present within those samples, and each point represents a subnetwork. (A) Network complexity 
(i.e., linkage density) and (B) number of edges were then calculated for each subnetwork. 
Comparisons are based on Wilcox ranked sign tests for soybean conventional management and 
no-till. Asterisks indicate the level of significance; * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
Comparisons for maize are shown in Figure 3.7 
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Figure 3.7 - Fungicides do not alter maize network complexity. A microbial co-occurrence 
network was constructed using taxa with a mean relative abundance greater than 10-5 and 
present in greater than 5 % of samples. Subnetworks were generated for each sample based on 
the OTUs present within those samples, and each point represents a subnetwork. (A) Network 
complexity (i.e., linkage density) and (B) number of edges were then calculated for each 
subnetwork. Comparisons are based on Wilcox ranked sign tests for maize conventional 
management and no-till. Asterisks indicate the level of significance; * = p ≤ 0.05, ** = p ≤ 0.01, 
*** = p ≤ 0.001. 
 

 
 

Identification of fungicide-affected fOTUs 

To determine which fungal taxa were significantly affected by fungicide application, a 

differential abundance analysis was conducted with ANCOM (Table B.1). In total, the 

abundance of 238 unique fOTUs representing 21 fungal classes was altered by fungicide 

treatments across the two crops. Ascomycota (52.9%) and Basidiomycota (43.3%) fOTUs made 

up 96.2% of the differentially abundant fOTUs. Within Ascomycota, the Dothideomycetes 

(28.6%) and Sordariomycetes (9.66%) accounted for the largest percentage of fOTUs that were 

differentially abundant following fungicide treatment (Figure 3.8a). These fungi may be 

expected since many foliar plant pathogens fall within these classes of fungi, and fungicides 

typically target these pathogen groups. Unexpectedly, a large percentage of fOTUs that were 

differentially abundant included non-target dimorphic clades of fungi that commonly exist as 
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yeasts such as Agaricostilbomycetes, Cystobasidiomycetes, Exobasidiomycetes, 

Microbotryomycetes, Spiculogleomycetes, Taphrinomycetes, and Tremellomycetes. A total of 

83 fOTUs across these classes were significantly different in abundance following the fungicide 

application in maize or soybean (Figure 3.8a). Notably, Tremellomycetes made up the second 

largest class (42 fOTUs, 17.6%) of differentially abundant fungi. Of the Tremellomycetes, 

57.1% were concentrated within the Bulleribasidiaceae, accounting for 24 fOTUs that were 

differentially abundant compared to non-sprayed control. Twenty-three of the Bulleribasidiaceae 

significantly decreased in abundance. However, not all yeast fOTUs decreased in abundance. For 

example, Bulleromyces albus fOTU10 increased in relative abundance 4.25 times in soybean 

conventional management 13-dpf but was not significantly different than the control after 33-dpf. 

In contrast, two Sporobolomyces fOTUs (fOTU66 and fOTU94) increased in relative abundance 

following fungicide application in soybean and remained significantly (7 times) higher in 

fungicide treated plots than in control plots 33-dpf. Sporobolomyces patagonicus fOTU94 was 

4.38 times more abundant in the fungicide treated plots than the control 13-dpf in the 

conventional management and remained significantly higher in fungicide sprayed plots (9.06 

times) compared to the control after 33-dpf. Sporobolomyces roseus fOTU66 was 15 times more 

abundant in the conventionally managed fungicide treated plots 33-dpf. This same increase in 

Sporobolomyces abundance was not observed in maize. 
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Figure 3.8 - Management scheme alters the recovery dynamics of phyllosphere fungi 
following fungicide treatment. The composition of fungal operational taxonomic units (OTUs) 
that were significantly different in abundance, as indicated with analysis of compositions of 
microbiomes (ANCOM) analysis (n = 12). (A) Composition of fOTUs whose abundance was 
significantly different following a fungicide disturbance. Bars below zero indicate the fOTU 
decreased in abundance, whereas bars above zero indicate the fOTU increased in abundance. (B) 
Recovery of fungi in soybean leaf samples in conventional (conv.) or no-till management. All 
fungi recovered in maize leaf samples. (C) Composition of fOTUs within the Tremellomycetes 
whose abundance was significantly altered following a fungicide disturbance. (D) Recovery 
dynamics of Tremellomycetes fOTUs following a fungicide disturbance in conv. or no-till. All 
Tremellomycete fungi recovered in maize. (E) Soybean or (F) maize plots subjected to a 
fungicide treatment compared to non-sprayed control plots. (G) Abundance occupancy 
relationship with the recovery dynamics of the Bulleribasidiaceae fOTUs significantly affected 
by the fungicide treatment. All Bulleribasidiaceae fOTUs recovered in maize. A full list of core 
fungi and prokaryotes for soybean or maize leaves are found in Table B.2. Asterisks indicate the 
level of significance; * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. 
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Resilience of the Core Mycobiome and Local Extinctions of Accessory Members 

Many of the fOTUs affected by a fungicide application were also part of the core 

phyllosphere taxa (Table B.2). In conventionally managed soybean plots, 22 fOTUs were 

determined to be core fungal phyllosphere taxa, and the abundances of five of these core 

members (fOTU 6 Mycosphaerella sp., fOTU 10 Tremellales, fOTU 34 Hannaella sp., fOTU 13 

Hannaella sp., and fOTU 643 Tilletiopsis sp.) were significantly different following fungicide 

application. Hannaella sp. (fOTU 34), Hannaella sp. (fOTU 13), and Tilletiopsis sp. (fOTU 643) 

were also part of the 43 core members of the no-till soybean phyllosphere affected by fungicide 

application. Of the 40 core members of the conventionally managed maize phyllosphere, the 

abundance of four Tremellomycetes fOTUs and one unidentified fungal taxon (fOTU 116) were 

significantly different following fungicide application. These included three yeast taxa that were 

not members of the soybean core, which included two fOTUs in the genus Filobasidium (fOTU 

82 Filobasidium oeirense, and fOTU 97 Filobasidium sp.), one Bullera crocea (fOTU 65), and 

Vishniacozyma globispora (fOTU 83). Two of these fOTUs (fOTU 97 Filobasidium and fOTU 

65 Bullera crocea) were also core members of the maize phyllosphere in the no-till management 

that were significantly altered by the fungicide. 

None of the core members of the phyllosphere taxa became locally extinct following 

fungicide application in the core microbiome of either crop or tillage management. However, 

among the taxa whose abundance was significantly altered by the fungicide application in 

soybean, the no-till management had a 61 % recovery compared to the 34 % recovery in the 

conventional tilled soybean (Figure 3.8b; Table B.3). Fourteen fungal OTUs became locally 

extinct following fungicide application in soybean with conventional tillage compared to one in 

the no-till plots (Figure 3.8b). Among the Tremellomycetes fOTUS whose abundances were 
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significantly impacted by fungicide applications, the majority were Bulleribasidiaceae (Figure 

3.8c). Eighty-two percent of affected Bulleribasidiaceae recovered in no-till managed soybean 

compared to 30% of the conventionally tilled plots. No Bulleribasidiaceae taxa became locally 

extinct in the no-till plots; in contrast, three Bulleribasidiaceae fOTUs were never observed again 

following fungicide application in the conventional tilled management (Figure 3.8d). The trend 

of increased recovery was also evident in Bulleribasidiaceae richness on the last sampling for 

maize (33-dpf) and soybean (34-dpf) no-till samples (Figure 3.8e, f). Bulleribasidiaceae in the 

core of conventional tillage did not fully recover within the study period (Figure 3.8g). In 

addition, the Bulleribasidiaceae in the conventional tillage management that were locally extinct 

following fungicide disturbance occupied less than 50% samples in non-sprayed plots indicating 

that local extinctions caused by fungicides affect the rare, non-core members of the community 

(Figure 3.8g). No local extinctions among fungal taxa were detected in maize fungicide treated 

plots; all impacted taxa recovered. 

Indirect Effects of Fungicides on Prokaryotes Mediated Through Yeast 

Random forest models based on prokaryotic abundance on soybean leaves sprayed with 

fungicides explained a significant amount of variance (P < 0.001) in Bulleribasidiaceae richness 

in the no-till (28.70%; R2 = 0.25) and conventional tillage (43.47%; R2 = 0.44) management 

(Figure 3.10a, c). We then extracted the set of OTUs that were most important for maintaining 

the model’s accuracy in fungicide treated plots. However, there was no evidence (P ≥ 0.05) those 

same taxa were able to predict Bulleribasidiaceae richness in control samples indicating the 

unique effect of the fungicide (Figure 3.9). OTUs classified as Sphingomonas, 

Methylobacterium, and Hymenobacter were the most important for predicting fungal richness in 

the no-till management (Figure 3.10c, d). Many taxa from the same genera were important in 
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predicting Bulleribasidiaceae richness in the conventional tillage management, including the 

Sphingomonas and Hymenobacter genera (Figure 3.10a, b). However, other genera were unique 

by management type, including Methylobacterium for the no-till management and 

Pseudokineococcus and Kineococcus in the conventional tillage management. 

Figure 3.9 - Random Forest models percent explained variance, error, and overall model 
significance (permutations = 999) for (A) conventional management treated with fungicides, 
(B) no-till treated with fungicides, (C) conventional management control, and (D) no-till control. 
 

 

Prokaryote OTUs that were important for random forest model accuracy increased in 

abundance in fungicide treated plots as a response to altering Bulleribasidiaceae diversity and 

were negatively co-associated with Bulleribasidiaceae (Figure 3.10b, d, e, f). For example, 

pOTU21 Hymenobacter and pOTU1874 Sphingomonas abundance increased as 
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Bulleribasidiaceae richness decreased and was negatively co-associated with the 

Bulleribasidiaceae (Figure 3.10b, e, f). In addition, the cumulative edge weight between pOTU21 

Hymenobacter, pOTU1874 Sphingomonas, and Bulleribasidiaceae significantly changed when 

sprayed with fungicides in the conventional tillage management, but not always in the no-till 

management, indicating that an alteration in Bulleribasidiaceae diversity can indirectly influence 

the co-occurrence between fungi and bacteria in different crop management schemes. However, 

not all co-occurrences between the Bulleribasidiaceae and prokaryotes were negative, indicating 

that positive co-occurrences between prokaryotes and fungi in the phyllosphere may shift as well 

(Figure 3.10e, f). 
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Figure 3.10 - Indirect effects of fungicides on prokaryotic communities from altered 
Bulleribasidiaceae diversity on soybean leaves. Relationship of observed versus predicted 
Bulleribasidiaceae richness in conventional (A) or no-till (C) from random forest models using 
prokaryote OTU abundance in fungicide treated plots. The most important (P < 0.05) prokaryote 
OTUs for random forest model accuracy in fungicide treated conventional (B) or no-till (D). The 
cumulative mean edge weight calculated from each sub-network of a meta-network of 
Bulleribasidiaceae edges between Sphinogomonas, Hymenobacter, or Methylobacterium OTUs 
and alterations to co-occurrence strength with and without fungicides under (E) conventional and 
(F) no-till crop management. Parallel analysis was not conducted with maize due to the lack of 
evidence to alteration of network structure and complexity (Figure 3.7). 
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Discussion  

To our knowledge, this is the first study to assess the effect of fungicide-imposed 

disturbance and resiliency under different agricultural management systems. We found that 

fungicide applications had a substantial effect on target and non-target fungal phyllosphere 

communities, minor indirect effect on prokaryotic communities in the phyllosphere, and no 

direct effects on fungal or prokaryotic communities of roots. Soil fungi and prokaryotes were 

also identified in soybeans, where there was no evidence of fungicidal effects (data not shown). 

Leveraging the KBS LTER site allowed the direct comparison of long-term crop management 

impacts to the microbiome without confounding location. Our data demonstrate that the 

resilience of phyllosphere microbiome depends on the cropping management system, with a 

greater recovery in the abundance of affected phyllosphere microbiota in long-term no-till 

compared to annually conventional tilled management. Among the most important results was 

the commonality in the fungal taxa affected by fungicide treatments. In maize and soybean, fungi 

in Dothideomycetes (target) and Tremellomycetes (non-target) decreased in abundance 

following fungicide applications, raising questions on the role of Tremellomycete yeasts; 

specifically, the Bulleribasidiaceae in phyllosphere microbiomes, and the effects of fungicide use 

in the absence of disease pressure. 

This study observed reductions and local extinctions of yeasts following fungicide 

application, which may lead to unintended consequences for the host plant. Phyllosphere yeast 

communities have received less attention in the literature than prokaryote communities [288]. 

The three Bulleribasidiaceae genera observed in this study were Hannaella, Dioszengia, and 

Vishniacozyma. Dioszengia, and Hannaella have been demonstrated to produce the plant 

growth-promoting hormone indole acetic acid (IAA), similar to many plant growth-promoting 
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phyllosphere prokaryotes [111, 289]. In comparison, Vishniacozyma yeasts have remained 

understudied but have been isolated from maize kernels [290]. In addition, Dioszegia has been 

identified as a hub taxon important in maintaining fungal-prokaryote interactions by altering 

prokaryote diversity in the phyllosphere microbiome of Arabidopsis [9, 111]. As observed in this 

study, in the absence of disease pressure, fungicide applications may affect populations of 

beneficial microbes. However, adverse impacts would be expected to be outweighed if the 

fungicide mitigates the disease, which will be tested in future experiments. 

Here, we show for the first time that fungicidal impacts on crop microbiomes are 

dependent on management, addressing a knowledge gap that previous studies were unable to 

address specifically [109, 110, 262]. A higher proportion of fOTUs altered by fungicide 

application in the no-till management system showed improved resilience within the study 

period, which may be explained by the differences in microbial communities present in the 

phyllosphere of each management before fungicide applications, as has been demonstrated 

previously at the KBS LTER site [4, 47]. A previous study from the KBS LTER site 

demonstrated that aerially dispersed yeasts are enriched in the phyllosphere, but also found in 

lower abundance in belowground plant organs [291]. Crop residue from previous seasons can 

harbor fungi that may act as a source to repopulate the phyllosphere following a disturbance like 

the phenomenon of pathogens transferring from residues [292]. Yeasts that inhabit the 

phyllosphere are primarily known to disperse through ballistosporic aerial dispersal, and the 

reassembly of leaves following fungicides may rely heavily on this spore dispersal mechanism. 

However, not all yeast taxa in the Bulleribasidiaceae have been observed to form ballistocondia 

in culture [293], leaving arguably less efficient means of dispersal from insects or through wind 

and rain [294, 295]. Locally extinct taxa were not part of the core microbiome regardless of 
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tillage management system or spore dispersal mechanism, demonstrating a tight relationship 

between abundance-occupancy and disturbance. These results indicate that microbiome 

resilience is improved in no-till crop management, which informs discussion of managing crops 

for resilience, and demonstrates a potential ecosystem service provided by no-till agriculture in 

addition to improved nutrient cycling or preservation of habitats for microorganisms and 

mesofauna [296]. 

Fungicide applications affected soybean and maize phyllosphere communities differently. 

These differences may be due to crop, planting year, or fungicide regime. The effect of fungicide 

was likely reduced in the final sampling of maize due to sampling of new leaves that were not 

directly sprayed with fungicides, indicating that any effect would have been through systemic 

activity of the fungicide 34 days after spray. This is unlikely since pyraclostrobin is not easily 

xylem mobile and mainly works as a translaminar local penetrant [277]. Another critical 

difference is that the Delaro® fungicide applied to soybeans in 2018 has two modes of action. 

Application of fungicides having two different modes of action has been shown to have a more 

significant effect on fungal community composition than a single mode of action in cereal crops 

[262]. Although the impact of fungicides varied in magnitude between the two crops, the 

commonality of off-target impacted taxa between crops and fungicides demonstrates that 

multiple fungicide products on different crops consistently reduce these taxa. This information 

can be used to inform decisions on the use of fungicides under low pathogen pressure across 

crops and cropping systems. 

Recovery of network complexity is one measure of microbiome resilience. We show that 

network complexity decreased significantly in the soybean phyllosphere following fungicide 

treatment. Despite similar affected taxa, the effect of fungicides on maize was moderate 
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compared to soybean, which saw a reduction in network complexity and local extinctions of 

some taxa. Therefore, we focused more on fungicidal effects to soybean rather than maize. Other 

studies have demonstrated that agricultural management alters network complexity. However, 

the functional consequences of these changes were not directly assessed [10, 297]. In soils, it has 

been demonstrated that increases in network complexity are positively correlated with various 

ecosystem functions and increases in the number of unique functions and functional redundancy 

[274]. The functional consequences of decreases in network complexity remain unexplored in 

the phyllosphere microbiome. They may provide the rationale for chemical application decisions 

or novel microbial-based treatments to replace lost taxa. 

Notably, fungicide application altered co-occurrences between phyllosphere fungi and 

prokaryotes, demonstrating the indirect effects of fungicide applications through the loss in the 

diversity of Bulleribasidiaceae. In support of random forest results, many of the same 

prokaryotes identified from networks as having changes in cumulative mean edge weight were 

identified by random forest as predicting Bulleribasidiaceae richness. Disturbance can change 

cooperation/competition dynamics, and a high level of disturbance can reduce cooperation [298, 

299]. In our study, the cumulative mean edge weight between most phyllosphere prokaryotes and 

Bulleribasidiaceae became more positive, indicating fewer negative associations between 

particular bacteria and the Bulleribasidiaceae. However, there were exceptions where cumulative 

edge weights, positive before spray, became neutral following fungicide application likely due to 

the disappearance of some fungal taxa from samples, and therefore the disappearance of any 

associations. Loss of negative correlations may also be due to reduced competition between 

phyllosphere prokaryotes and Bulleribasidiaceae as more niche space is available to phyllosphere 

prokaryotes following fungicide application. 
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Shifts in correlations between Bulleribasidiaceae and phyllosphere prokaryotes are of 

interest due to the unique physiology of many phyllosphere prokaryotes as it relates to plant 

health. Methylobacterium spp. have been demonstrated to be abundant in plants’ phyllosphere 

and have the genes to produce plant growth-promoting auxins and UVA-absorbing compounds 

[300, 301]. Hymenobacter sp., Methylobacterium sp., and Sphingomonas sp. are core 

phyllosphere members in switchgrass [180] and are highly abundant in the Arabidopsis 

phyllosphere [302]. 

A comprehensive view of the phyllosphere organisms is needed to understand 

microbiome functioning and plant health. This research demonstrates that foliar fungicide 

treatments alter phyllosphere microbiomes in maize and soybean, and non-target 

Bulleribasidiaceae yeasts were negatively impacted in both crops. Microbiome complexity was 

altered partially by decreasing co-occurrence between Bulleribasidiaceae yeasts and dominant 

phyllosphere prokaryote taxa, demonstrating indirect effects of fungicide applications mediated 

through the presence of these yeasts. Further, these data support our hypothesis that the recovery 

of the phyllosphere microbiome differed by tilling management. Together, these results improve 

our understanding of fungicide impacts on crop microbiomes and their recovery in different 

managements and inform their rational use to maintain efficacy and intended impacts across 

different cropping systems. 
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Chapter 4 

Inoculation with Hub Taxa from the Soybean Microbiome Impacts Host Response to Low 

Moisture Stress 
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Abstract 

 Drought is an increasing threat to soybean (Glycine max) production worldwide. In 

addition to methods such as breeding and genetic modification, inoculation of plants or soils with 

single microbes and microbial consortia are being explored to mitigate the impacts of drought 

stress on crop plants. One criterion for selecting microbes within a consortium is to select hub 

taxa, which are those whose abundances appear to be highly correlated with abundances of other 

taxa in the microbiome. To assess the impact of microbial inoculations with hub taxa on 

soybean, I identified five hub taxa from soybean roots which were then used to inoculate 

soybean grown in 75% sand and 25% no-till soil from the KBS LTER. No-till soil was used to 

match the environment from which hub taxa were identified and isolated. Inoculated and control 

plants were then exposed to low-moisture stress as seedlings. Selected hub taxa included two 

fungi (Humicola sp., and Gibellulopsis sp.) and three bacteria (Streptomyces sp., Massilia sp., 

and Caulobacter segnis). The impact of inoculation on plant hosts was assessed with phenotype 

measures (aboveground and belowground) and plant functional measures (transcriptomics and 

non-target metabolomics of roots). The impact on the microbiome was assessed using amplicon 

sequencing of DNA as well as cDNA created from RNA extracted from roots. Inoculation had a 

minor impact on the microbiome that was most apparent when a more active fraction of the 

microbiome was analyzed using cDNA. cDNA amplicon sequencing demonstrated that 

Bradyrhizobium ZOTUs generally had higher cDNA:DNA ratios in inoculated samples 

compared to control samples, especially in earlier sampling points. Transcriptomics of soybean 

roots demonstrated that genes related to nodulation were upregulated in inoculated samples, and 

non-targeted metabolomics showed differences between the composition of metabolites in 

inoculated and control plants. Molecular and metabolomics data agreed with phenotypic data 
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which showed increases in nodulation as well as increased aboveground growth. Experiments 

using field soils and enriching individual hub taxa revealed that this effect of increased resilience 

to drought and increased aboveground biomass was reproducible with both Caulobacter segnis 

and Streptomyces treatments. Overall, these results support the hypothesis that hub taxa can be 

used as inocula to improve the performance and resilience of the host plants.  

Introduction 

 Abiotic stresses including flooding, drought, temperature, and nutrition stresses threaten 

crop production globally. These impacts are likely to become more severe with a changing 

climate. Drought is among the abiotic stresses that most threatens the yield of crops worldwide, 

and the frequency of drought is expected to increase [303] . For example, in a global study of 

crop yields under drought stress, it was determined that drought decreased the yield of maize by 

39% and wheat by 21% [304]. Previous work has predicted that soybeans in the United States 

will be more vulnerable to drought compared to other locations worldwide and that the risk of 

yield loss due to drought will increase in the future [305]. Severe drought can be particularly 

damaging to soybean yields due to a reduction in nodule numbers and nitrogen fixation activity 

[306, 307]. This reduction in nitrogen fixation with severe drought may be caused by a reduced 

supply of photosynthate from host plants, or possibly due to a loss of oxygen-carrying 

leghemoglobin [308–310]. In addition to changes in nitrogen fixation activity, there are various 

phenotypic changes to soybean host plants associated with drought. These changes include 

increases in the root to shoot ratio due to increased root growth and a reduction in aboveground 

biomass [308]. Soybean cultivars have been demonstrated to vary in root phenotypic traits 

including root length and nodulation in response to drought stress. This variation may allow for 

planting of cultivars with increased drought tolerance when drought conditions are anticipated.  
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Various approaches can be deployed to enhance the resilience of plants to drought stress. 

These include molecular breeding, genetic engineering, and the use of remote sensing to monitor 

and respond to crop stress, such as through irrigation [311–314]. However, each approach comes 

with its own trade-offs. For example, upregulation of abscisic acid through plant trait 

manipulation may aid in plant drought response, but could have undesired outcomes in disease 

resistance [315].  One method to increase crop resilience without altering the crop itself is to 

enhance natural interactions with classes of beneficial microbes. Many groups of fungi and 

bacteria can increase plant resilience to drought through diverse mechanisms. Microbial 

inoculants have been frequently used in prevention of plant disease or to establish 

Bradyrhizobium in soybean fields, but their use is also being explored in the amelioration of the 

impacts of abiotic stress [157, 316–320]. For example, Streptomyces chartreusis has been 

demonstrated to increase drought tolerance in sugarcane and inoculations with salt-tolerant 

Streptomyces taxa can increase drought tolerance in tomato plants [321, 322]. Other strains have 

been demonstrated to improve responses to other stresses, such as low nutrient stress and 

flooding stress [323]. Manipulating these traits through the microbiome adds a method for 

protecting plants from stress without manipulating the plant. 

 One challenge in the development of microbial inoculants for plant health and resilience 

is the selection of microbial taxa to use as inoculants. Frequently, taxa have been selected for 

their perceived plant growth promoting traits such as plant hormone production or alterations to 

plant hormones, enhancement of nitrogen or other nutrient acquisition, or increased resistance to 

pathogens [323–326]. Traditionally, the majority of bioinoculants have been bacterial taxa, but 

increasingly fungal taxa are being used. These fungal taxa are primarily selected for similar plant 

growth promoting traits including phytohormone production and nutrient acquisition, as is 
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provided by AMF [327, 328]. Other fungal taxa such as Trichoderma harzianum and Epichloe 

can be utilized in pest control as biopesticides and biofungicides [329, 330]  However, applying 

microbial inoculants based on plant growth promoting traits does not account for how taxa will 

interact with other members of the microbiome once inoculants are applied.  

 One method to ensure microbial inoculants will interact favorably with the native 

microbiome is to select microbes based on interactions with other microbes. Selections of 

interacting taxa can be done through experimental studies, or they can be predicted 

bioinformatically. A common bioinformatics approach to predict taxa that may be important in 

structuring the microbiome is to identify highly connected hub taxa which appear to be important 

in structuring correlation networks created from amplicon or metagenomic sequence data [9, 10, 

331]. Since these hub taxa, identified as operational taxonomic units (OTUs) are only identified 

through correlation networks, further experimentation is needed to determine their role in the 

microbiome. Work in the Arabidopsis phyllosphere has demonstrated that hub taxa impact the 

microbiome through microbe-microbe interactions as well as impacts on alpha and beta diversity 

metrics [9]. Additionally, increased interkingdom microbe-microbe interactions in Arabidopsis 

roots were demonstrated to increase host plant survival in the presence of pathogens 

[24].  Additional research is needed to determine the impact of hub microbial taxa on plants 

during periods of abiotic stress. 

 Here, I assess the impacts of inoculating soybeans with hub microbial taxa identified 

from the roots of soybean grown under no-till management at the KBS LTER prior to exposing 

soybean seedlings to a period of low-moisture stress. Five hub taxa were used in the inoculation 

treatment in this experiment. These included three bacterial taxa (Streptomyces sp., Caulobacter 

segnis, Massilia sp.) and two fungal taxa (Humicola sp., and Gibellulopsis sp.). Streptomyces, 
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Caulobacter, and Massilia are thought to be plant growth promoting bacteria, but this trait is 

species and strain-specific [321, 322, 332, 333]. Humicola has also been indicated as potentially 

promoting plant growth fungus, while Gibellulopis nigrescens can be a weak phytopathogen of 

peppermint and other plants [334, 335]. However, plant-impacts of fungi are expected to be 

species, strain and host-specific as well as being impacted by environmental conditions. Strains 

used in this study were not assessed for plant growth promotion prior to experiments but were 

instead selected based off their status as network hubs in soybean roots from no-till management 

(chapter 1 = Longley et al. 2020).  

 The objectives of this study were as follows: (1) Determine the impact of microbial hub 

enrichment to living soils on soybean root and soil associated microbiomes, (2) Assess the 

impact of microbial consortium inoculation on plant phenotype before, during, and after the low-

moisture stress period, (3) Assess the impact of microbial hub enrichment on plant functioning 

through gene expression and metabolomics analyses. Drought conditions can frequently occur 

simultaneously with other stressful abiotic conditions such as heat. However, in this study, only 

low-moisture stress was assessed. I hypothesized that inoculated hub-taxa will persist and impact 

the plant microbiome in subtle but significant ways. Additionally, it is expected that inoculation 

will improve plant growth throughout the experiment either through direct benefits from hub 

microbes or through changes in the microbiome as mediated by hubs. These phenotypic 

differences will be reflected in differential expression of genes and metabolites related to plant 

stress response and or growth.  
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Materials and Methods 

Hub Identification 

Hub taxa were identified from amplicon sequencing data of the roots of no-till soybeans 

grown at the KBS LTER in 2018 [47]. Networks were created using OTUs that were detected in 

more than half of the no-till root samples collected from the three soybean growth stages 

sampled in 2018 (V2, R3, R6). Methods for hub identification were adapted from Agler et al. 

2016 [9]. Hub OTUs were identified by being in the top 10% of the measures of degree and 

betweenness centrality among all nodes in the co-occurrence network. Sequences of hub taxa 

were then compared to those resulting from bacterial and fungal culture collections isolated from 

soybeans in 2018. Isolates were chosen if they had a 100% ITS or 16S rDNA sequence similarity 

to hub OTUs, and if they had been isolated from no-till soybean roots. Additionally, taxa from 

genera enriched in pathogens (Fusarium etc.) or those whose identities were ambiguous were not 

included. Using these criteria, the five hub taxa used in this study were selected. A summary of 

the five taxa identified as hubs and used as inoculum is shown in Table 4.1.  

Table 4.1 - Summary of hub taxa used as inocula. Relative abundance values represent 
relative abundances among taxa included in network analysis. Occupancy represents the number 
of taxa in which the OTU was detected divided by the total number of taxa included in the 
construction of the network (n=36). 
 

Isolate 
Match Type Best Taxonomy 

Genbank 
Accession 

Relative 
Abundance (%) 

Occupancy 
(%) 

RL269 Fungi Gibellulopsis sp. MT557270 0.014 61.1 
RL661 Fungi Humicola sp.  MT557341 0.035 83.3 

RL271 Bacteria 
Caulobacter 
segnis MT653469 0.17 94.4 

RL115 Bacteria Massilia sp. MT653557 0.015 88.9 
RL170 Bacteria Streptomyces sp. MT653560 0.04 86.1 
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Inoculum Preparation 

 Microbes used in this study were grown on expanded clay beads (Hydroton, USA) 

weighing between 0.35g and 0.5g, that were first sterilized with a forced air-dry heat oven 

(Xingchen Instruments, China) by heating glass jars containing clay beads for 4 hours at 200°C. 

75 sterilized clay beads were then placed into 250 mL flasks containing 150 mL of Luria-Bertani 

(LB) broth for Streptomyces, Peptone Yeast Extract (PYE) broth for Caulobacter, Reasoner’s 2A 

(R2A) broth for Massilia, or Malt Extract Broth (MEB) for fungal isolates. Bacterial strains were 

grown in flasks with expanded clay beads on a rotating shaker at 100 rpm until they reached a 

concentration level between 107and 109 colony forming units/ml (CFUs). Fungal strains were 

grown in stationary flasks with expanded clay beads for 10 days. Following the growth of the 

strains and colonization of expanded clay beads, beads were dipped into a 2% alginate solution, 

immediately followed by dipping beads in a 2.5% CaCl2 solution to seal the beads. Once the 

beads were sealed, they were washed in sterile DI H2O to remove any excess CaCl2 and 

refrigerated until use. Control treatments were made by growing microbes on expanded clay 

beads and then heating the beads to 200°C for 2 hours in a dry heat oven (Xingchen Instruments, 

China). This treatment allowed for the addition of nutrients similar to the inoculum but without 

the addition of live microbial inoculum.  

Greenhouse Low-Moisture Experiment Setup 

 Soil for use in greenhouse experiments was collected from the no-till managed lysimeter 

fetch field at the Michigan State’s Kellogg Biological Station in October 2020. Prior to use in 

experiments, soil was stored at 4°C. In February of 2021, field soil was mixed with playbox sand 

(Quikrete, USA) to a proportion of 25% soil: 75% sand to maintain drainage. Prior to adding the 

soil mixture to 500 mL pots, the bottom of each pot was lined with approximately half an inch of 
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pea gravel to prevent leaking of the soil mixture out of the pots.  Pots were then weighed to 

ensure that equal amounts of gravel had been added to each pot. Next, the soil/sand mixture was 

added to each pot to a level of 5.7 cm below the lip of the pot. Inoculated or control expanded 

clay beads (one bead of each microbe) were then placed on top of this layer of soil mixture and 

covered with another a 1 cm layer of the soil mixture. Williams 82 soybean seeds were utilized 

due to the availability of a high-quality transcriptome and genome of the Williams 82 cultivar. 

Seeds were placed directly on top of the 1 cm soil layer covering the clay beads and covered with 

the soil mixture to a planting depth of 3.8 cm.  

 Next, pots were again weighed, and soil mixture was added or removed to ensure that all 

pots had equal mass. Water was then added to field capacity by watering pots until water began 

draining from the plot, water was allowed to drain from the pots until dripping stopped. 10 pots 

were weighed after water had stopped draining. The average mass of these 10 pots was used as 

the field capacity standard for the remainder of the experiment. Dry pots containing beads, soil, 

and seeds weighed 600g and the field capacity standard was set to 690g. Pots were randomly 

placed in flats and each flat contained nine control pots and nine inoculated pots. All pots were 

then watered to the mass of the field capacity standard. Following planting, pots were watered 

every other day; water was added until each pot reached the field capacity standard. This method 

accounted for unequal drying rates in the greenhouse. For example, if a pot had dried relatively 

more than the others, it would receive more water to reach field capacity. Pots were moved to 

different positions in each flat at each watering, and the position of flats were changed to ensure 

randomization in drying rates throughout the experiment. Plants were grown in a greenhouse at 

Michigan State University, with a 12-hour photoperiod and temperature set to 23.8°C during the 

day and 20.5°C at night. Daytime temperature is similar to expected temperatures for soybean 
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planting in Michigan, however nighttime temperatures were likely higher than field conditions. 

After seedlings reached the VC growth stage (unifoliate leaves fully emerged, 16 days post-

planting), the low moisture stress experiment began by reducing watering to 50% of field 

capacity [183]. Starting at day 16, pots were watered every other day to equal masses that 

represented 50% of the water added to reach field capacity.  

Sample Collection and Phenotyping 

 Starting two days before the low-moisture stress experiment, plant phenotype collection 

began. Every other day prior to watering, the height of thirteen control and thirteen inoculated 

plants were assessed by measuring to the height of the stem node of the most recent emerged 

leaf, and the same plants were assessed for photosynthesis measurements using the PhotosynQ 

system [336]. Starting at day 0 of the low-moisture stress period (16 days post planting), five 

control and five experimental sample root systems were destructively sampled for RNA and 

metabolites by removing the plant from the soil, briefly washing with sterile DI water, and 

quickly blot drying with a sterilized paper towel prior to flash freezing the entire root system 

with liquid nitrogen. Three samples were used in RNA and metabolite extraction, but five 

samples were collected to have extra tissue for RNA extraction in case of failure to generate 

useable RNA from a sample. After removal from the soil, samples were processed for a 

maximum of 15 seconds prior to freezing. Samples were then transported from the greenhouse to 

the lab where they were stored at -80°C until further processing.  

Additionally, eight plants were destructively sampled for root and aboveground 

phenotyping as well as DNA extraction from roots, leaves, and rhizosphere soil. Rhizosphere soil 

was sampled by shaking soil from the root system into paper envelopes. Aboveground tissue was 

sampled by cutting the aboveground plant from the root system and placing it in paper 
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envelopes. Roots were sampled by placing the entire root system in Whirl pak bags (Whirlpak, 

United States). Roots were then transported to the lab where they were washed with 0.1% tween 

20 and sterile DI water. Roots were carefully washed to avoid the removal of nodules which 

were then counted by hand for the entire root system. Prior to destructive sampling, plants 

selected for RNA/metabolites and DNA extraction were analyzed for height and photosynthesis 

measurements as described above. Non-destructive (height and PhotosynQ) measurements were 

carried out every two days until the end of the experiment, while destructive samplings for 

molecular measurements were carried out every six days. The distribution of samples taken and 

an explanation of the five timepoints is shown in Table 4.2. 

Table 4.2 - Summary of collected samples and molecular sampling timepoints. 

Sample Type 
Sampling 
Frequency 

Number of 
Samples/treatment/timepoint Total  

Plant Height Every 2 days 13 365 
Photosynthesis Metrics Every 2 days 13 338 
Aboveground Biomass 
and Area Every 6 days  13 65 
Root Phenotypes Every 6 days  8 40 
Roots for RNASeq, 
Metabolomics, and 
cDNA amplicons Every 6 days  5 (3 analyzed) 30 
Roots and soil for 
amplicon sequencing Every 6 Days  8 

80 roots, 
80 soil 

    

Timepoint Watering Approximate Growth Stage 
Days Since 
Drought 

T1 Field Capacity VC 
0 (pre-
drought) 

T2 50%  V1 6 
T3 50%  V1/V2 12 
T4 50%  V2 18 

T5 Field Capacity V2/V3 
6 days 
recovery 

 

Individual Microbe Follow-up Experiments 
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 To assess the impact of individual microbes on soybean seedlings compared to the use of 

the five inoculants together, experiments were performed with individual microbes. Using the 

same soil mixes as discussed above, soybeans were inoculated using expanded clay beads as 

previously. Individual microbe treatments were established by placing five beads of the single 

microbe below the seed at planting. Controls were established as described above by heat killing 

individual microbes and placing heat killed clay beads below the seed at planting. To control for 

the impact of dry heating alginate without the microbes, microbe-free beads coated with alginate 

were compared to microbe-free, alginate coated expanded clay beads which had been heated to 

200°C for 2 hours. This control ensured that phenotypic differences were not due to differences 

in dry heated alginate vs non-heated alginate. Seven plants of each individual microbe and 

respective controls were established in addition to the combined inoculum described above. This 

experiment was performed twice: first, without low-moisture stress by maintaining well-watered 

conditions throughout, and then with the same low-moisture stress conditions as described 

above. These experiments were carried out in a Percival GR-36VL growth chamber (Percival 

Scientific, USA) for a period of 9 or 12 days after plants reached the VC growth stage. Light in 

the growth chamber ranged from 103 µmol to 118 µmol (measured at 3 points on each of the 

four chamber shelves). Plants were grown with a 12-hour photoperiod at 23.8°C during the day 

and 20.5°C at night. Following the 9-day period for well-watered plants and a 12-day period for 

low-moisture plants, plants were destructively sampled and assessed for dry biomass after drying 

in a dry oven at 60°C for five days.  To ensure complete drying, five samples were weighed after 

four days and were reassessed after five days, to ensure that masses were stable and not still 

decreasing.  In these low-moisture stress experiments, plants were watered to equal weight every 

four days instead of every other day due to the greater moisture retention of the growth chamber 
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environment. Additionally, to reduce the buildup of humidity in the chamber two Petri dishes 

filled with silica beads were placed on each shelf and were refreshed every other day.  

Imaging and Analysis 

  Following sampling, aboveground plant tissues and washed roots were imaged using an 

Epson Perfection V700 Photo scanner (Epson, Japan). Root and aboveground tissue scans were 

pre-processed by removing the background with the canva imaging tool 

(https://www.canva.com/). The images were then converted to be black on a white background 

using imagej [337].Aboveground plant tissues (including stems and leaves) were assessed for 

area using ImageJ with a scale created from a ruler visible in the images. Root images were 

analyzed with Rhizovision explorer [338] to quantify the number of root tips, total root length, 

root diameter, and root volume. 

Nucleotide Extraction 

 Following sampling and imaging of the roots, aboveground tissues, and rhizosphere soils 

were dried with silica beads for two weeks. Five samples were weighed on two consecutive days 

to ensure that samples were completely dry, and that dry mass was no longer decreasing. Prior to 

nucleotide extraction, aboveground tissues were weighed, and masses were recorded. DNA was 

extracted from approximately 50 mg of dried root or leaf tissue using the Mag-Bind Plant DNA 

Plus Kit (Omega Bio-Tek, United States). DNA was extracted from approximately 50 mg of soil 

with the PowerMag Soil DNA Isolation Kit (Qiagen, United States) and the Kingfisher Flex 

System (Thermo Fisher Scientific, United States).  RNA was extracted from flash-frozen roots 

by grinding whole root systems with dry heat sterilized (240c for 4 hours) and RNASE Zap 

(Sigma-Aldrich, USA) treated mortars and pestles. Liquid nitrogen was added to mortars and 

pestles before and during grinding to ensure that roots remained frozen. Following grinding, 
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RNA was extracted from approximately 50 mg of ground root tissue per sample using the 

RNeasy plant mini kit (Qiagen, United States). RNA was eluted in 50 µl of water. In addition to 

RNA and DNA, aliquots of cDNA were created from RNA samples using Goscript Reverse 

Transcriptase with 1 µL of extracted RNA (Promega, United States).  

Metabolite Extraction 

 Prior to extraction, frozen root tissue was ground to a fine powder on liquid nitrogen in 

heat-sterilized mortar and pestles. Non-target metabolites were extracted with acetonitrile: 

isopropanol: water in a proportion of 3:3:2. The extraction solvent contained telmisartan at a 

concentration 0.5 µM as an internal standard. 1.5 mL of extraction solvent was added to a 

maximum of 0.15g of ground root tissue and samples were left overnight at -20°C. The 

following day, 200 µL of this solution from each sample was transferred to glass autosampler 

vials which were stored at -80°C until processing at the MSU metabolomics core.  

LC-MS of Non-Target Metabolomics 

 Samples were analyzed on a Waters G2-XS Q-Tof mass spectrometer interfaced with a 

Waters Acquity UPLC. Five µl per sample was injected onto a Waters Acquity UPLC HSS-T3 

column (2.1x100 mm) at 40°C. Compounds were separated using a binary gradient as follows: 

initial conditions were 100% mobile phase A (10 mM ammonium formate in water) and 0% 

mobile phase B (acetonitrile), hold at 100% A for 1 min, linear ramp to 99% B at 16 min, hold at 

99% B until 18 min, return to 100% A at 18.01 min and hold until 20 min. The flow rate was 0.3 

ml/min. Mass spectra were obtained by electrospray ionization operating in either positive or 

negative ion mode with a capillary voltage of 3.0 kV (positive) or 2.0 kV (negative), source 

temperature of 100°C, cone voltage at 35 V, desolvation temperature of 350°C, desolvation gas 

flow of 600 L/hr and cone gas flow of 50 L/hr. Data were acquired using a data-independent 
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MSe method (0.2 second scans with fast switching between no collision energy and using a 

collision energy ramp of 20-80 V) across an m/z range of 50-1500 while using the dynamic 

range enhancement setting. Lockmass correction was performed in Masslynx software using 

leucine enkephalin as the reference compound. 

Amplicon Library Preparation 

   Amplicon libraries were created from extracted DNA and cDNA using a three-step PCR 

protocol as described previously [47, 339]. Prokaryotes were amplified with the 515F - 806R 

primer set and fungi were amplified with the ITS1F - ITS4 primer set [185, 186]. The first step in 

the library construction utilized unmodified primers to enrich in targeted taxa, the second step 

used primers with frameshifts, and the third step incorporated unique 10 nucleotide barcodes 

[190]. Details on primers and amplification are available in tables 2.1 and 2.2. Following 

amplification, samples were run on the Qiaxcel Advanced automated electrophoresis system 

(Qiagen, United States) to ensure amplification. Next, libraries were normalized to equal 

concentration with the SequalPrep Plate Normalization Kit (Thermo Fisher Scientific, United 

States). Following normalization, libraries were combined and concentrated with Amicon Ultra 

0.5 mL 50k filters (EMD Millipore, Germany). After libraries were concentrated, they were 

cleaned with Ampure XP magnetic beads to remove primer dimers (Beckman Coulter, United 

States). Cleaned libraries were again assessed with Qiaxcel Advanced system to ensure that all 

small fragments were removed. Amplicon libraries were then submitted to the MSU Genomics 

Core and sequenced with Illumina MiSeq V3 600 cycles kit (Illumina, United States). Raw 

amplicon sequencing data is available on NCBI SRA under PRJNA825108.  

 

RNA Quality Analysis and Sequencing 
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Following RNA extraction, extracts were quantified using the Qubit RNA HS Assay Kit 

(Thermo Fisher Scientific, United States) and analyzed using the Agilent 2100 Bioanalyzer 

(Agilent, United States). Samples with concentrations above 50 ng/µl and RIN quality values 

above 7.5 were submitted for sequencing. Samples that did not reach these thresholds were re-

extracted from extra samples taken during sampling. 30 RNA samples were submitted to the 

MSU genomics core for Illumina Stranded mRNA library prep and sequencing across three 

HiSeq 4000 lanes using 50 bp single end sequencing. All samples were sequenced across the 

three lanes to avoid bias based on the HiSeq lane. Raw RNA sequencing data is available on 

NCBI SRA under the following accession number: PRJNA825532. 

Amplicon Data Processing 

 Raw data was downloaded and assessed for quality with FastQC V 0.11.5 [191]. Due to 

the lower quality of reverse sequences, only forward reads were analyzed for both loci. 

Following quality assessment, raw data was demultiplexed by 10 nucleotide barcodes using 

QIIME V1.9.1 [192]. Next, primers, adapters were removed using Cutadapt V2.6 [193]. 

Additionally, conserved regions (5.8S, LSU, SSU) of ITS amplicons were removed to improve 

taxonomic assignments by aligning a subset of 500 sequences with SeaView [340] . Next, length 

and quality statistics were assessed using USEARCH V10 and reads with an expected error rate 

above 0.5% were removed [194]. Prokaryotic reads were trimmed to equal length and sequences 

less than 260 bp in length were discarded. After removing low quality reads, zero radius OTUs 

(ZOTUs) were created using the UNOISE V3 algorithm of USEARCH [341]. Taxonomy was 

then assigned to ZOTUs using CONSTAX V2 [280, 281].  

 

Amplicon Sequencing Statistical Analysis and Visualizations 
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 ZOTU tables, sequences, taxonomy tables, and mapping files were transferred to the R 

statistical environment and combined to create a phyloseq object with the phyloseq 1.36.0 

package [200, 201]. Prior to further analyses, ZOTU tables were assessed for contamination 

using the decontam 1.12.0 package [202]. Following removal of contaminants, ratios of numbers 

of cDNA reads to numbers of DNA reads were assessed for each ZOTU. Ratios were created by 

dividing the number of cDNA reads for a ZOTU by the average number of DNA reads for a 

ZOTU within a single timepoint and treatment (inoculated and control). ZOTUs with ratios >1 

were considered to likely represent taxa which were more active compared to those with ratios of 

<1. To assess activity of Bradyrhizobium, ratios were visualized for the four Bradyrhizobium 

ZOTUs detected by amplicon sequencing.  

 Prior to beta diversity analyses, OTU tables were normalized by cumulative sum scaling 

with the metagenomeseq 1.34.0 package [213]. Beta diversity was analyzed with the “ordinate” 

and “plot ordination” functions in the vegan 2.5.7 package [207]. Ordinations were visualized 

using principal coordinate analysis (PCoAs), and visualized patterns were assessed for statistical 

significance through PERMANOVA with the “adonis” function of vegan. Additionally, 

homogeneity of dispersion between groups was tested with the “betadisper” function in vegan. In 

the case of a significant PERMANOVA for the treatment variable, variation confined only to 

differences in treatment were visualized using canonical analysis of principal coordinates (CAP) 

with the ‘capscale’ function in vegan [207, 284]. 

 

 

 

RNA Data Processing 
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Initial sequence quality was assessed with FastQC V 0.11.5[191]. Following quality 

assessment, data from the three separate lanes were then merged for each sample. After merging, 

reads were trimmed to remove adapter sequences and low quality reads with trimmomatic V 

0.39; only reads of 30 bp or longer were retained for further analysis [342]. Next, SortMeRNA V 

2.1 was used to remove any residual rRNA reads [343]. Transcripts were then quantified with 

Salmon and a transcript index was created from the Williams 82 soybean genome published by 

the Joint Genome Institute (JGI) [344, 345].  Quantified transcripts files were then transferred 

into the R statistical environment for analysis with DeSeq2 V 1.32.0 [346].  Multidimensional 

scaling plots were created to variance stabilizing transformed (VST) data to assess clustering of 

samples based on plant transcript data. Genes were considered to be differentially expressed if 

they had an adjusted P value of less than 0.05 and an absolute value of log 2-fold change of 

greater than 0.585 (a 1.5X change in expression) [347]. Differentially expressed genes for each 

timepoint (control and inoculated) were annotated based upon the soybase genome annotation 

tool with the JGI Williams 82 genome [348]. Distributions of differentially expressed genes by 

timepoint were assessed for control and inoculated samples with ggVennDiagram V 1.2.0 [349]. 

Differentially expressed genes were assessed for their relation to nodulation with the RNAseq 

atlas tool on SoyBase.org [348, 350, 351].  DeSeq2 normalized counts for each gene in each 

sample were deposited to the NCBI Gene Expression Omnibus (GEO) under accession number 

GSE200609. 

 To further assess the functions of differentially expressed genes, GO (gene ontology) 

term functional enrichment analysis was performed with g:profiler [352]. The log10 transformed 

P values for the top five most significantly enriched GO term in each category at each timepoint 

were plotted to assess functional categories that were enriched in control and inoculated samples. 
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Gene model names were converted to match the Severin et al., 2010. RNAseq atlas and nine 

matched genes which were identified by Severin et al., 2010 as being highly associated with 

nodulation were assessed further. Genes from the RNAseq atlas were determined to be 

potentially related to nodulation if a larger number of transcripts mapped to nodules than to any 

other plant tissue. This gene set was used to determine the proportion of differentially expressed 

genes (control and inoculated) related to nodulation at each timepoint. Additionally, log10 

transformed normalized counts of genes matching the nodulation GO term from gprofiler were 

used to create a heatmap in pheatmap V 1.0.12 that assessed expression patterns of nodulation-

related genes [353]. 

Non-Target Metabolomics Data Processing 

 Prior to further analysis, metabolites with relative mass defects (RMD) above 1200 were 

removed as these compounds likely represent non-organic contaminants [354, 355]. Peak areas 

were normalized to the telmisartan internal standard and sample biomass using the following 

formula: metabolite peak area/ telmisartan peak area/ sample mass (mg) * 1e8. The 

metaboanalyst online tool V 5.0 was used to identify metabolites that were significantly 

differentially abundant between inoculated and control samples at each timepoint [356]. 

Metabolites were considered to be significantly differentially abundant if there was a T-test P 

value of less than 0.05 and an absolute value of log 2-fold change of greater than 0.585 (a 1.5X 

change in expression) to match threshold used in RNASeq results. Principal components analysis 

(PCA) plots were used to assess clustering of samples by timepoint and inoculation treatment. 

Distributions of differentially abundant metabolites by timepoint in control and inoculated 

samples (both positive and negative ion mode) were assessed with Venn diagrams created with 

ggVennDiagram V 1.2.0 [349]. RMD values were used to assess distributions of broad classes of 



 
 
 
 
 
 

143 
 
 
 

compounds as previously outlined [354, 355]. The RMD range of 200-350 was assigned as 

containing phenolics, 350-550 was assigned as containing terpenoid glycosides, and 550 and 

above was assigned as containing terpenoids and lipids [354, 355]. Histograms were created 

using ggplot2 V 3.3.5 to assess the distributions of these groups [208]. Bioinformatics and R 

code for processing hub inoculation data is available at: https://github.com/longleyr/Hub-

Microbe-Inoculation. 

Results 

Phenotyping Results 

 Inoculated samples consistently showed increased aboveground biomass and 

aboveground area compared to plants in control treatments. For aboveground area, this 

difference was only significant at later timepoints (T4 and T5), but for aboveground biomass the 

difference was significant throughout the experiment except for the final sampling (Figure 4.1A, 

B). The same general pattern was true for plant height measurements, but the difference was 

generally not significant (Figure 4.1C). The Phi2 measurement of photosynthesis, which 

represents the proportion of incoming light available for photosynthesis, was significantly higher 

in inoculated plants compared to those in control treatments (Figure 4.1D). The PhiNPQ 

measurement, which represents the proportion of light, which is non-photochemically quenched, 

was higher in controls compared to inoculated samples (Figure 4.1E).  This pattern was generally 

consistent throughout the experiment but was not consistently significant (Figure 4.2A,4.2B). 

Belowground phenotyping did not show a consistent pattern across any of the root phenotypes 

analyzed except for root nodulation (Figure 4.3). Control and inoculated samples were both 

nodulated by the second sampling point at vegetative growth stage V1/V2. Inoculated roots 

consistently had higher nodule numbers than control samples, but this difference was only 
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significant at the second sampling point (Figure 4.3E). The number of root tips and total root 

length were higher in inoculated plants at the T4 and T5 sampling points, but these differences 

were not significant (Figure 4.3A, 4.3B).  There was not a consistent pattern for inoculated 

versus control samples for the measurements of average root diameter or total root volume and 

there were no significant differences at any time point.  

Figure 4.1 - Aboveground phenotyping results of soybean seedlings from image analysis 
and photosynthesis metrics. Total aboveground area starting at T2 (n = 8/treatment/timepoint) 
(A), aboveground dry biomass (n = 13/treatment/timepoint) (B), height measured to the highest 
emerged leaf node (n = 13/treatment/timepoint) (C), and photosynthesis measurements showing 
the Phi measurement (n =339) (D) and PhiNPQ (n =339) (E). Comparisons are based on Wilcox 
ranked sign tests, an asterisk indicates a significant difference; * = p ≤ 0.05, ** = p ≤ 0.01. 
 

 

Figure 4.2 - Measurements of photosynthesis metrics at each sampling point. Phi2 (A) and 
PhiNPQ (B). Comparisons are based on Wilcox ranked sign tests, an asterisk indicates a 
significant difference; * = p ≤ 0.05, ** = p ≤ 0.01 (n = 13/treatment/timepoint). 
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Figure 4.3 - Root phenotyping metrics showing: total number of detected root tips (A), total 
root length across all branches (B), average root diameter (C), total root volume (D), nodule 
counts (E), n = 8/treatment/sampling point. 
 

 

Amplicon Sequencing Results 

Due to poor amplicon sequencing yields from leaf samples, these samples were used in 

the removal of contaminants, but were not analyzed further. For 16S rDNA libraries, the soil had 

an average depth of 45,000 reads per sample across 80 samples and was composed of 13,978 

ZOTUs. The root 16S DNA library was composed of 80 samples and had an average depth of 

27,000 reads across 9,051 ZOTUs, and the root 16S cDNA library had an average 36,868 reads 

per sample across 30 samples and 5,974 ZOTUs after the filtering of plastids and non-bacterial 

sequences. Following filtering and removal of non-fungal sequence, the soil library had an 

average depth of 11,787 reads per sample across 1528 ZOTUs in 80 samples. Root DNA 

samples had an average depth of 11,668 reads per sample across 79 samples in 666 ZOTUs. The 

ITS cDNA was composed of 30 samples and had and average depth of 15,679 reads per sample 

in 275 ZOTUs.  

Fungal Community Composition 

 DNA amplicons were initially dominated by the Mortierella genus at timepoint 1 (T1), 

accounting for 44% of reads among classified genera. However, beginning at T2 the community 

was dominated by Fusarium, Penicillium and Setophoma, which persisted through T5. These 

taxa accounted for between 12 and 30% of the reads at each of T2 – T5. The relative abundance 
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of Mortierella decreased following the first timepoint and was completely absent from bars by 

the final sampling point, but fungal communities appeared to be relatively consistent otherwise 

(Figure 4.4). 

Figure 4.4 - Stacked barplots showing fungal genera in DNA amplicons. Genera > 5% 
relative abundance present in DNA amplicons. 
 

 
Bacterial Community Composition 

 Prior to the low-moisture stress experiment at timepoint 1 (T1), control and inoculated 

DNA amplicon communities were dominated by Rhizobium, Massilia, and Methylophilus, with 

Massilia having the highest relative abundance (19%). Throughout the low-moisture stress 

experiments, the majority of both control and inoculated samples were dominated by 

Bradyrhizobium, which accounted for 39% of genus-level classified reads in control samples and 

42% in inoculated samples. At the final sampling point, samples continued to be dominated by 

Bradyrhizobium, but several control samples were lacking in Bradyrhizobium and were instead 

dominated by Pseudomonas (Figure 4.5). 
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Figure 4.5 - Stacked barplots showing prokaryotic genera in DNA amplicons in roots. 
Genera > 3% relative abundance present in DNA amplicons. 
 

 

Activity Assessment of Bradyrhizobium  

Four Bradyrhizobium ZOTUs were identified from amplicon sequencing. ZOTU 2 was 

the most abundant Bradyrhizobium ZOTU identified and had an average of 7557 reads/sample in 

the DNA dataset. The other three Bradyrhizobium ZOTUs had an average of less than 100 

reads/sample. Throughout the low-moisture stress period (T2, T3, and T4), three of the four 

Bradyrhizobium ZOTUs (ZOTU 2, ZOTU 4248, ZOTU 14324) had higher cDNA/DNA ratios in 

inoculated samples compared to control samples until the recovery period following the low 

moisture stress period (T5) (Figure 4.6A-C). Differences were especially apparent at T2 where, 

inoculated samples consistently had cDNA ratios above one, whereas control samples 

consistently had cDNA:DNA ratios below one (Figure 4.6). Ratios generally decreased in 

inoculated samples following T2 and in control samples following T1. 
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Figure 4.6 - cDNA: DNA Ratios for Bradyrhizobium OTUs. Ratios calculated for the four 
Bradyrhizobium ZOTUs detected with amplicon sequencing throughout the experiment. 

 

Beta Diversity Analyses – DNA 

PCoA ordinations of soil fungal and prokaryotic communities did not reveal clear 

clustering by inoculum treatment or timepoint. Samples from all timepoints and both treatments 

spread throughout ordinational space (Figure 4.7A, C).  However, when analyzing root DNA 

communities, there is clear clustering by timepoint for both fungi and prokaryotes. This variation 

was primarily spread along the X axis of each ordination, which accounted for 20.9% of 

variation in fungi and 46.8% of variation in prokaryotes (Figure 4.7B, D). PERMANOVA results 

confirm patterns present in ordinations as treatment and timepoint were both insignificant for soil 

communities, but the timepoint factor was significant for root fungi and prokaryotes (p = 

0.0001).  For root fungal communities, there was also a significant difference in group dispersion 

making PERMANOVA results difficult to interpret, but patterns in the ordinational space appear 

to confirm PERMANOVA results (Table 4.3).  
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Figure 4.7 - Principal coordinates analysis of DNA amplicons. Plots based on Bray-Curtis 
dissimilarity of fungal communities associated with soil (A), roots (B) and prokaryotic 
communities associated with soil (C) and roots (D). 

 

Table 4.3 - Permutational multivariate analysis of variance (“adonis”) and multivariate 
homogeneity of dispersion (“betadisper”) analysis results for DNA amplicons of fungal and 
prokaryotic communities from soil and roots. Significant P values (< 0.05) are shown in bold. 

Fungi Soil PERMANOVA Dispersion 

 DF F model R2 P value F value P value 
Timepoint 4 1.2362 0.06241 0.1571 0.6948 0.5979 
Treatment 1 1.3132 0.01657 0.1691 0.0346 0.8528 
Timepoint: Treatment 4 0.7434 0.03753 0.9007   
Residuals 70  0.88349    
 Fungi Roots  

Timepoint 4 5.2483 0.21935 0.0001 4.4404 
2.85E-

03 
Treatment 1 1.1481 0.012 0.2525 0.3195 0.5736 
Timepoint: Treatment 4 1.141 0.04769 0.1933   
Residuals 69  0.72096    
 Prokaryote Soil 
Timepoint 4 2.1743 0.10351 0.0001 1.4318 0.2318 
Treatment 1 1.3042 0.01552 0.1331 0.1799 0.6726 
Timepoint: Treatment 4 1.0064 0.04791 0.4376   
Residuals 70  0.83306    
 Prokaryote Roots 
Timepoint 4 14.3406 0.44929 0.0001 1.7207 0.1553 
Treatment 1 0.7079 0.00554 0.5621 1.194 0.2782 
Timepoint: Treatment 4 1.4009 0.04389 0.1425   
Residuals 64  0.50128    
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RNA Sequencing Results 

Across the three lanes, RNA sequencing produced an average of 30,241,310 reads per 

sample with a range of 20,962,122 - 41,258,840 reads. Following trimming and discarding of 

remaining ribosomal RNA reads, the average read depth was 27,212,943 reads per sample with a 

range of 6,884,446 - 38,903,129 reads. On average, 89.5% of the processed reads mapped to the 

soybean (Glycine max) transcriptome with a range of 72.2% - 92.7%.  

Differential Expression Results 

An MDS ordination of filtered plant RNA sequencing results showed distinct clustering 

by both sampling timepoint and inoculation treatment (Figure 4.8A). The two treatments were 

distinct from each other at each timepoint, but the clusters were most distinct in the T2 and T3 

stages (Figure 4.8A). There were 4851 differentially expressed genes upregulated in the 

experimental treatment and 2008 in the control treatment. The number of differentially expressed 

genes which were upregulated in the experimental treatment varied by timepoint and ranged 

from 174 at T4 to 1968 at T2. The number of differentially expressed genes associated to the 

control treatment varied between 148 at T4 and 785 at T5. There were more shared genes 

between timepoints among genes that were upregulated in the inoculated samples. For example, 

between T2 and T3, there were 1093 differentially expressed genes in common (Figure 4.8B). In 

control samples, the majority of the differentially expressed genes were unique to a single 

timepoint.  The maximum number of genes which were shared between two sampling timepoints 

was 53 between T1 and T2 (Figure 4.8C).  Among inoculated samples, there were two 

differentially expressed genes identified at all time points. One gene was annotated in the TauE 

PFAM, which contains sulfite exporters, and the other was identified as being in the AP2 PFAM 

which contains ethylene responsive transcription factors. Additionally, 17 genes were found to 
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be differentially expressed in four of the five timepoints. These genes were primarily identified 

as expansins, nodulation proteins, and copper binding proteins (Table 4.4). 

Figure 4.8 - RNA sequencing results of soybean roots. MDS of RNAseq data after variance 
stabilizing transformation (VST) in DEseq2 (A), Venn diagram showing numbers of 
differentially expressed genes by timepoint in inoculated samples (B), and control samples (C). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

152 
 
 
 

Table 4.4 - Genes that were differentially expressed in inoculated roots at four or more 
timepoints. 
 

Gene Name Timepoints  PFAM Name Uniprot Function 
Glyma.01G175200 T1-T5 TauE Sulfite Exporter 

Glyma.07G025800 T1-T5 AP2 
Transcription Factor, Ethylene 
Responsive 

Glyma.12G161500 T1-T4 Aminotran_1_2 pyridoxal phosphate binding 
Glyma.17G073400 T1-T4 Cu_bind_like Copper binding 

Glyma.08G190700 T1-T4 
ABC_membrane; 
ABC_tran ABC Transporters 

Glyma.02G204500 T1-T4 Cu_bind_like Copper binding 
Glyma.15G260600 T1-T4 TAXi_C Peptidase 
Glyma.06G182700 T1-T4 Pro_CA  Carbonic anhydrase 
Glyma.19G251500 T1-T4 Inhibitor_I9; Peptidase_S8 Peptidase 
Glyma.15G055900 T1-T4 NA NA 
Glyma.04G222100 T1-T4  DPBB_1; Pollen_allerg_1 Expansin 
Glyma.01G050100 T1-T3, T5 DPBB_1; Pollen_allerg_1 Expansin 
Glyma.02G132700 T1-T4 VID27 NA 
Glyma.13G364400 T1-T4 Nodulin Nodulation 
Glyma.15G045000 T1-T4 Nodulin Nodulation 
Glyma.16G127960 T1-T4 NA NA 
Glyma.13G327500 T1-T4 NA NA 
Glyma.15G048400 T1-T4 zf-XS; XS Uncharacterized 
Glyma.18G153500 T1-T4 DPBB_1; Pollen_allerg_1 Expansin 

 

Functional Enrichment Analysis 

Many of the molecular function GO terms enriched in inoculated samples were related to 

transmembrane transport; with transport GO terms being upregulated in samples at T2, T3, and 

T5. Additionally, cysteine dioxygenase activity was upregulated at T2 and T3 in inoculated 

samples, with about 60% of genes in this GO term being presented in differentially expressed 

genes from T2 and T3 (Figure 4.9A). The most significantly enriched molecular function GO 

terms in control samples were not shared between timepoints, and many were related to protein 

folding or associations. Several of the cellular component GO terms enriched in inoculated 
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samples were shared across multiple timepoints. These terms were shared between T2, T3, and 

T4 and related to symbiosomes, peribacteroid membranes, and endocytic vesicles. Many of the 

GO terms enriched in control samples were related to the cell wall or other cellular components 

such as the cytoplasm (Figure 4.9B). Several biological processes were significantly enriched at 

multiple timepoints in the inoculated samples. These included transmembrane transport enriched 

at T2, T3, and T5 and nodulation and anatomical structure formation involved in morphogenesis 

which were enriched at T2, T3, and T4. The GO term for de novo IMP biosynthetic process was 

enriched at T2 and T3. None of the top enriched GO terms in control sample were shared across 

multiple timepoints, but many were related to cell wall and cell cycle functions (Figure 4.10A). 

Several KEGG assignments were shared between the T2 and T3 timepoints in inoculated 

samples. These assignments were primarily related to secondary metabolism, amino acid 

biosynthesis, alkaloid biosynthesis, purine metabolism, and nitrogen metabolism.  In control 

samples, pentose and glucuronate interconversions were enriched in T1 and T3. Other enriched 

functions included various metabolism and biosynthesis functions (Figure 4.10B). 
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Figure 4.9 - Molecular function and cellular component categories upregulated in control 
and inoculated plants. Top 5 most highly upregulated functional categories at each timepoint 
for each control and inoculated plants in the molecular function GO term (A), and cellular 
component GO term (B). Point size represents the proportion of the genes in the GO term 
category found in the differential expression dataset for either control or inoculated samples at 
that timepoint. 
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Figure 4.10 - Biological Process and KEGG Assignment categories upregulated in control 
and inoculated plants. Top 5 most highly upregulated functional categories at each timepoint 
for each control and inoculated plants in biological processes GO terms (A), and KEGG 
functional categories (B). Point size represents the proportion of the genes in the GO term 
category found in the differential expression dataset for either control or inoculated samples at 
that timepoint. 
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Nodulation Specific Results 

 Nine genes (leghemoglobin and nodulin genes) that had been previously identified  as 

being most highly associated to nodule tissue compared to other tissues in soybean were 

analyzed for read counts in control vs inoculated samples throughout the experiment [351]. 

These nine genes had higher counts in inoculated samples compared to controls throughout the 

experiment, but this difference was larger during the low-moisture stress period (Figure 

4.11A).  Using the RNASeq atlas, the percentage of differentially expressed genes for each 

treatment that had the highest counts in the nodules compared to other tissues was assessed. 

Inoculated samples consistently had a greater percentage of differentially expressed genes, 

particularly throughout the low moisture stress period (T2, T3, T4). During this period, over 60% 

of the genes which were upregulated in the inoculated samples were nodule-associated (Figure 

4.11B). Genes from the nodulation GO term showed that this group of genes was primarily 

consistently upregulated in the inoculated samples. This group of nodulation genes were 

upregulated in inoculated samples beginning at the T1 or T2 sampling point, whereas the 

expression remained low in the control samples until the T5 sampling point (Figure 4.11C).  
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Figure 4.11 - Expression of nodulation specific genes. DEseq2 normalized counts for soybean 
genes identified by Severin et al., 2010 as being most highly associated to nodulation (A), 
percentage of differentially expressed genes for control and inoculated that were identified by 
Severin et al., 2010 as having higher counts in nodules compared to any other soybean tissue (B), 
heatmap of log10 transformed DEseq2 normalized counts of the genes in the nodulation GO term 
(C).  

 

Non-Target Metabolomics 

 Following filtering of metabolites with RMD values above 1200, negative ion mode 

results contained 3,512 metabolites while the positive ion mode produced 4,049 metabolites. 

PCA plots revealed that there was clustering due to both inoculation and timepoint. In positive 

ion mode, separation of treatments was clearest at T3, but separation was apparent at T1 and T2 

as well (Figure 4.12A). In negative ion mode, separation also appeared to be greatest at T3, but 

there was separation by treatment at T2 as well. At the first sampling point (T1), samples within 

a treatment appeared to cluster closely together but this dispersion was more substantial at later 

sampling points (Figure 4.12D). As with results for differentially expressed genes, there were 

more differentially abundant metabolites at the beginning of low-moisture stress (T2) compared 

to other timepoints. There was little overlap between differentially abundant metabolites across 
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timepoints (Figure 4.12B, C, E, F). However, in inoculated samples in negative ion mode, there 

was substantial overlap between T1 and T3 (Figure 4.12E).  

Figure 4.12 - Non-target metabolomics of soybean roots. PCA of metabolomics data after log 
transformation in positive ion mode (A) and negative ion mode (D). Venn diagrams showing 
numbers of differentially abundant positive ion mode metabolites by timepoint in inoculated 
samples (B), and control samples (C). Venn diagrams showing numbers of differentially 
abundant negative ion mode metabolites by timepoint in inoculated samples (E), and control 
samples (F). 
 

 

 In positive ion mode, 12% of the metabolites enriched in inoculated samples had RMD 

values associated with phenolics and 23% were consistent with terpenoid glycosides. For both 

phenolics and terpenoid glycosides, the majority of these metabolites were significantly enriched 

at the T5 timepoint (Figure 4.13A). In positive ion, control samples, 14% of metabolites enriched 

in control samples had RMD values consistent with each phenolics and terpenoid glycosides. 

The majority of metabolites associated to both groups were differentially abundant at the T2 and 

T3 timepoints (Figure 4.13B).  In negative ion mode, 16% of the metabolites that were 

significantly enriched in inoculated samples had RMD values consistent with phenolics, while 

27% had values consistent with terpenoid glycosides. The metabolites that had RMD values 
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consistent with phenolics were primarily differentially abundant at T5, while those in the 

terpenoid glycoside range were from T2 and T5 (Figure 4.13C). In negative ion mode, 11% of 

metabolites which were significantly enriched in control samples had RMD values consistent 

with phenolics and 14% had values consistent with terpenoid glycosides. The majority of 

metabolites consistent with both groups were significantly enriched in control samples at T2 

(Figure 4.13D). 

Figure 4.13 - Histograms of RMD Distributions. Distributions of RMD values in positive 
mode for inoculated (A) and control (B) samples. Distributions of RMD values in negative mode 
for inoculated (C) and control (D) samples.  
 

 
 

Follow-up Experiments and Individual Microbe Results 

 In well-watered conditions, each individual inoculant except for Massilia appeared to 

increase aboveground biomass compared to their respective controls. However, this difference 

was only significant for Caulobacter and for the inoculum mix. No significant differences were 
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found between alginate beads that were heated compared to those that were not (Figure 4.14A). 

Individual microbe results under low-moisture conditions followed a similar pattern to those 

under well-watered conditions. Plant biomass in Streptomyces, Caulobacter, and mixed 

inoculum treatments were greater in low-moisture conditions compared to respective controls 

(Figure 4.14B). 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

161 
 
 
 

Figure 4.14 - Aboveground dry biomass of plants inoculated with individual microbes, 
combined inoculum, and alginate only controls. Results shown for well-watered (A), and low-
moisture conditions (B). Comparisons are based on Wilcox ranked sign tests, an asterisk 
indicates a significant difference; * = p ≤ 0.05, ** = p ≤ 0.01. Horizontal dashed lines represent 
the average across all controls, solid line represents average of all inoculated samples 
 
 

 
Discussion 

 Here I tested whether microbial hub taxa could mitigate soybean response to low-

moisture stress. My hypotheses that hub-taxa will persist and impact the plant microbiome and 

phenotype in subtle but significant ways was primarily supported. ZOTUs matching all 

inoculated taxa (>99% similarity) except for Humicola sp. persisted in DNA and cDNA 
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amplicons at some level, although not in every sample. The Humicola inoculant appeared to 

disappear from most samples at later timepoints. However, assessing the exact persistence of 

inoculated taxa was difficult as the use of natural soil introduced taxa from the same genera to 

control roots.  I found that the microbial hub taxa had a minor impact on the microbiome, but 

that a few taxa that were impacted are known to be important to plant health including AMF and 

Bradyrhizobium, which were only apparent through analysis of amplicons made from cDNA. 

This underlines the importance of assessing microbial activity alongside traditional amplicon 

sequencing efforts as important community changes may be missed with DNA amplicons. 

Microbial inoculation was also demonstrated to impact a variety of plant phenotypes including 

biomass, photosynthesis, and nodule number. RNA sequencing results supported phenotyping 

measurements and showed increased Bradyrhizobium activity through the demonstration of 

increased expression of nodulation related genes in the soybean host. 

Inoculation did not have an obvious impact on microbiomes when assessed with DNA 

amplicons. This agrees with previous work which showed little substantial change in the 

rhizosphere microbiome following inoculation [153]. However, other studies have found 

microbiome changes following inoculation with Pseudomonas [163]. Although there was no 

obvious impact of inoculation on the microbiome, important functional taxa were impacted. 

Most obviously, three of the four Bradyrhizobium ZOTUs had higher cDNA:DNA ratios in 

inoculated samples compared to control samples, these differences were most obvious in early 

stages of low-moisture stress (T2). Changes in cDNA reflect microbial RNA differences and 

therefore are more likely to represent activity changes. This difference was not present in DNA 

amplicons, indicating the difference was likely related to Bradyrhizobium activity within the 

roots. This agrees with previous work which indicates that soil bacterial changes can alter the 
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colonization of Bradyrhizobium and Sinorhizobium. Additionally, this same work demonstrated 

that some Bacillus taxa directly promote Sinorhizobium growth [357].  Inoculation with the 

fungus, Metarhizium, was also demonstrated to increase abundance of Bradyrhizobium in the 

common bean rhizosphere [164].  Further work is needed to determine whether the increased 

activity of Bradyrhizobium demonstrated here was a direct effect of Bradyrhizobium growth 

promotion by the microbes or if the effect was mediated through the plant. Importantly, 

inoculation did not appear to substantially increase the abundance of the inoculated genera. This 

may be due to a lack of strain-level resolution in amplicons, making it difficult to assess the 

colonization of inoculated strains. Previous work has shown that inoculation with Metarhizium 

increases the abundance of Bradyrhizobium in common bean roots even though Metarhizium was 

not always significantly enriched in inoculated plant roots [164]. Follow-up work is needed in 

sterile soils or with fluorescently labelled inoculum members to directly assess the colonization 

of plants by inoculum members.  These results underscore the importance of assessing microbial 

activity in addition to traditional amplicon sequencing in microbiome studies. 

 Several AMF ZOTUs had higher cDNA:DNA ratios at T1 in control samples compared 

the ratios of the same ZOTUs in inoculated samples. This is important as it has been 

demonstrated that earlier AMF colonization can lead to increased plant biomass, but differences 

in other microbes such as Bradyrhizobium may compensate for later AMF colonization [358]. 

However, ratios at later sampling points appear to demonstrate that levels of AMF activity 

became more similar between inoculated and control plants.  

  In addition to increased colonization and activity of Bradyrhizobium, it was clear that 

inoculation increased expression of soybean nodulation genes. This result is line with a 

metanalysis which demonstrated that co-inoculation of soybeans with Bradyrhizobium and other 
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plant growth promoting bacteria can increase nodule number and other plant phenotypes 

including root and shoot biomass [359]. Specifically, Streptomyces species, including 

Streptomyces griseoflavus, has been demonstrated to increase soybean nodulation and nitrogen 

fixation activity [360].  However, our result demonstrates a mixed inoculum community can 

maintain improvements of nodulation under low-moisture stress conditions. This is a crucial 

finding as low-moisture stress has been demonstrated to reduce nodulation and nitrogen fixation 

activities in soybeans [306, 307].   

Previous work has demonstrated that the presence of Nod factors from rhizobia stimulate 

AMF colonization [361]. However, it was later demonstrated that this result may depend on 

specific factors such as simultaneous presence of the Nod factors and AMF colonizers as well as 

a co-localization of the two. This was demonstrated using a split root design where colonization 

by AMF on one half of the roots reduced nodule formation in the other half upon later exposure 

to Sinorhizobium [362]. This data appears to be in agreement with trends in cDNA: DNA 

amplicon ratios which showed early colonization and likely higher activity levels of Glomus in 

control samples, but delayed colonization and reduced nodulation gene expression compared to 

inoculated plants.  Further work is needed to determine whether specific inoculant members used 

in this study reduce colonization by AMF taxa, and whether the reduction in AMF is related to 

increased Bradyrhizobium colonization. 

GO term analysis revealed that many of the most upregulated functions in inoculated 

plants were related to the observed increase in nodulation related gene expression. In addition, 

there was upregulation of various transport functions such as transmembrane transport and 

endocytic vesicle formation. These terms may be related to nodulation such as through the 

endocytosis of Bradyrhizobium [363], but may also be caused by the need to absorb nutrients 
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from sandy soil as some plants showed foliar signs of low-nutrient stress. Inoculated plants were 

also enriched in terms related to purine metabolism at T2 and T3, these terms included “de-novo 

IMP biosynthetic process” and “purine metabolism”. These terms are crucial as IMP is a 

precursor to purines and purines are degraded into ureides, which is the form in which fixed 

nitrogen is transferred to aboveground plant tissue [364, 365].  This enrichment indicates that 

fixed nitrogen is likely being transferred at an increased level to aboveground tissues of 

inoculated plants. Additionally, there appeared to be more consistency in upregulated GO terms 

among inoculated plants with several GO terms shared across multiple timepoints. Additionally, 

there were several abundant GO terms related to stress in the controls, including responses to 

heat stress and abiotic stimulus. This indicates that control plants appear to be experiencing 

greater levels of stress possibly due to a reduction in nitrogen fixation activity resulting in 

increased nutrient stress. 

 In addition to impacting plant gene expression, inoculation with hub microbes impacted 

the root metabolome. This is in line with previous work which has demonstrated that microbial 

inoculation alters root metabolites and that exposure to different microbiomes alters the 

composition of root exudates [366, 367]. Additionally, this alternation may depend on stress 

being experienced by the host plant [366]. Soyasaponins were previously found to be enriched in 

areas of the root infected by Bradyrhizobium [368]. Soyasaponins are triterpenoid glycosides, 

and RMD values consistent with terpenoid glycosides appeared to be enriched in inoculated 

samples [369].  Control plant samples were generally enriched in metabolites with larger RMD 

values that are consistent with lipids [354]. This result appears to be consistent with lower 

Bradyrhizobium colonization as lipids have been previously shown to be more abundant in 

uninfected areas of roots [368]. More specific annotations will determine which metabolites are 
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primarily responsible for these differences. 

In addition to altering plant gene expression and microbial activity, inoculation also 

impacted various plant phenotypes, particularly aboveground phenotypes. This impact is likely 

related to increased nodulation and nitrogen fixation in inoculated plants. These increases in 

seedling dry biomass and height may lead to increased yield as increases in plant height and 

seed/seedling vigor measures have been shown to be associated with yield [370, 371]. Inoculated 

samples also had significantly increased values for the Phi2 measurement of photosynthesis 

which demonstrates an increased proportion of incoming light going to photosystem II, 

corresponding to an increased percentage of light which can be converted to sugars [372]. This 

result, along with increased Bradyrhizobium and nodulation activities is in line with previous 

work demonstrating that rhizobial inoculation enhanced photosynthesis [373].  Interestingly, 

outside of root nodule numbers, there were no consistent differences in root phenotype 

measurements assessed with image analysis. This was somewhat unexpected as prior work has 

demonstrated that plant growth-promoting bacteria including rhizobia can alter root architecture 

via increases in branching, elongation, and other metrics [374–376]. However, it may be that the 

root systems were not developed enough in young seedlings to see differences. This underscores 

the importance of assessing impacts on inoculation throughout the entire plant life cycle in future 

work.  

The only two microbes that significantly increased plant dry biomass when inoculated 

alone under well-watered or low-moisture conditions were Streptomyces sp. and Caulobacter 

segnis. However, under low-moisture stress conditions the impact of the combined inoculum was 

greater than the impact of individual microbes. The impact of Streptomyces inoculation is in line 

with previous results which have demonstrated that some Streptomyces are drought responsive 
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and can enhance nodulation of soybeans [360, 377]. Plant beneficial impacts of Caulobacter 

strains are understudied, but a Caulobacter strain which was closely related to C. segnis was 

shown to promote growth of Arabidopsis [332]. More specifically, it has been demonstrated that 

redox genes were related to the Arabidopsis growth promotion in strains of Caulobacter 

including C. segnis. When genes related to redox functions were knocked out, plant growth 

promotion disappeared [378]. Interestingly, genome sequencing revealed that the strain of C. 

segnis used in this study is a riboflavin auxotroph (Appendix C). This may indicate that this 

strain relies on other microbes or the host plant for riboflavin. Previous work has demonstrated 

that the production of riboflavin appears to be important in maintaining the relationship between 

a Bradyrhizobium strain and its plant host. Particularly, the production of a riboflavin 

biosynthesis pathway protein is required for maintaining long-term symbioses, but not important 

for riboflavin biosynthesis when the bacterium is in a free-living state [379]. The production of 

riboflavin by Bradyrhizobium could form the basis of an interaction between Bradyrhizobium 

and the Caulobacter segnis strain utilized in this study, which may be associated with increased 

Bradyrhizobium colonization and activity within nodules. Further studies on the interactions 

between Caulobacter, Bradyrhizobium, soybean and other microbiome taxa will be crucial to 

determining the basis for the increased root nodulation and aboveground biomass that resulted 

from Caulobacter segnis and hub-consortia inoculations. 

Conclusions and Future Directions 

 In this study, I demonstrated that inoculation with five hub taxa led to increased plant 

growth under low-moisture and well-watered conditions. Increased colonization by 

Bradyrhizobium, increased expression of nodulation-related genes, and a possible signal of 

nodulation related shifts in the metabolome seem to indicate that this plant growth promotion 
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was likely related to increased nitrogen fixation activity. Caulobacter segnis and Streptomyces 

appear to be the main driving forces behind this phenotype, as results were replicated through 

single strain inoculations with these two taxa.  In the case of C. segnis, a relationship may be 

formed with Bradyrhizobium based on riboflavin autotrophy in C. segnis which could be 

complemented by Bradyrhizobium. However, the need of exogenous riboflavin in C. segnis 

could be complimented by other microbes or the host plant. Future studies on interactions 

between these hub taxa and Bradyrhizobium can be used to assess if the impact of hub taxa is 

directly related to microbial interactions or if the impact is mediated through the plant. 

Additionally, further work will be needed to determine if impacts of hub taxa inoculation persist 

throughout the soybean growing season, or if they are confined to seedlings. 
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Objectives 

 This dissertation was composed of three primary objectives: 1) to assess the impact of 

three agricultural managements on the soybean leaf, stem, root, and soil microbiome (fungi and 

prokaryotes); 2) to assess the impact of foliar fungicide application on the microbiome of maize 

and soybean, with particular attention to the microbiome of leaves; and 3) to assess the impact of 

inoculating soybean plants with hub microbial taxa identified from co-occurrence networks of 

no-till soybean roots. The detailed results for these three objectives are contained in chapters 2-4 

of this dissertation. A brief synthesis of the major findings in each objective as well as future 

directions for each objective will be provided here.  

Impact of Agricultural Management on the Soybean Microbiome 

 In chapter 2, I assessed how three agricultural managements (conventional, no-till, and 

organic) impacted the soybean associated microbiome throughout the plant and the growing 

season. This work revealed that agricultural management impacts fungal and prokaryotic beta 

diversity of communities associated with all assessed organs of the soybean plant, and this effect 

persisted throughout the growing season. This finding was novel as previous work demonstrated 

that agricultural management impacts soil used to grow soybeans but did not assess the 

microbiome of the plant itself.  Additionally, since organic management was planted with a 

different genotype, no-till and conventional results were analyzed separately. This analysis 

demonstrated that tillage impacted the soybean microbiome throughout the plant and the growing 

season. 

 The results of this study demonstrate that no-till management may cause an increase in 

the relative abundances of plant beneficial taxa including AMF and Bradyrhizobium. These 

microbial benefits may provide additional motivation for farmers to employ no-till agriculture in 
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addition to other benefits such as increased soil health, erosion control, and increased drought 

tolerance. However, since this study employed amplicon sequencing, further work will be 

needed to ensure that these differences are due to active microbes and not relic or dead DNA. 

However, my work on the impact of agricultural management on the microbiome is foundational 

and will provide a basis for studies on the functional consequences of these changes. 

Additionally, the culture library of soybean-associated microbes will be a resource for studies on 

soybean-microbe interactions, as was done in chapter four. 

 This work could be improved by including functional assessments of both the plant host 

and the associated microbiome. For the plant host, this should include phenotyping of host plants 

under different management systems and associating this phenotyping data with abundances of 

microbial taxa using random forest and other modelling methods. Such phenotyping efforts will 

be particularly valuable if they can be used in a high-throughput manner in field systems [380]. 

Additionally, transcriptomics and metabolomics could be used to assess the impact of 

management on plant functioning. From the microbial side, there are many methods that more 

closely represent microbial function. This could include extracting RNA to assess cDNA 

amplicons which likely represent a truer reflection of the active community. Additionally, 

sequencing advances including long-read amplicon sequencing will allow for greater genetic 

resolution which will provide greater resolution into which species or strains are impacted by 

management [381].  This will allow the assessment of microbial changes to become part of a 

broader toolkit used to make agricultural management decisions.  

Non-Target Impacts of Foliar Fungicide Applications  

In chapter 3, I assessed the impacts of foliar fungicide application on the phyllosphere 

microbiomes of maize and soybean. Particularly, this study focused on non-target impacts as 
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there was no obvious pathogen pressure detected in the treated plots. This work revealed that 

foliar fungicide applications impacted fungal classes such as Dothideomycetes, which contain 

important soybean pathogens. However, fungicide applications also had a substantial, non-target 

impact on Tremellomycetes. This class includes many dimorphic species and phyllosphere-

residing yeasts are thought to be potentially plant beneficial through the production of carotenoid 

compounds, which could also protect other phyllosphere microbes or host cells from UV stress 

[267]. Phyllosphere taxa that were especially impacted by fungicides were concentrated in 

Bulleribasidiaceae, indicating their sensitivity to fungicide disturbance. This study demonstrated 

that there were no direct impacts of phyllosphere fungicide applications on soil and communities, 

nor on phyllosphere bacterial communities. However, in a novel finding, random forest 

modelling demonstrated that changes in phyllosphere fungal communities may have an indirect 

impact on phyllosphere prokaryotic communities. These interactions would not be unexpected as 

the phyllosphere is a dynamic complex of microbial communities that would be expected to 

respond to changes in niche-space caused by disturbance[288]. Further microbial interaction 

studies are needed to determine if there are direct interactions between identified bacteria and 

phyllosphere yeasts. 

 Additionally, results from this study indicate that the responses to fungicide disturbance 

differed by crop and agricultural management. Particularly, soybean fungal communities were 

more highly impacted by fungicide application, but this may have been due to an additional 

mode of action (DMI) while maize only received a single mode of action (QoI). Effects of 

fungicides on maize may have been comparatively smaller because the leaves that were directly 

sprayed had senesced before later sampling, whereas for soybean the sprayed leaves could be 

sampled repeatedly. Fungal communities in no-till leaves appeared to experience greater 
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recovery in the study period compared to those in conventionally managed plots. This is a novel 

finding that indicates that no-till agriculture can increase the recovery of fungal communities 

following disturbance. This work will lay the foundations for future studies assessing non-target 

impacts of agricultural chemistries, and the mechanisms and benefits of no-till agriculture to 

recovery from disturbance. 

In addition to assessing the role of no-till management in disturbance recovery, further 

work should assess the function of impacted basidiomycete yeasts in the plant phyllosphere. 

Ideally, this work would be done in fields where pathogen pressure is present as the impact of 

fungicides is likely to outset their costs and off-target impacts when pathogens are highly present 

[5]. However, in the absence of pathogens it has been shown that fungicide applications are not 

always economically feasible [6]. This may be particularly true if potentially plant-beneficial 

yeasts are demonstrated to increase plant biomass or yield. Fungicides will need to continue to be 

applied to maintain crop yields in the face of pathogen pressure. However, agricultural strategies 

such as no-till management could be paired with fungicide application to increase recovery of 

beneficial yeasts. Additionally, other strategies could be paired with fungicide applications to 

minimize off-target damage. For example, phyllosphere sprays of beneficial microbes such as 

Bacillus amyloliquefaciens have been demonstrated to confer biocontrol activities [382]. This 

strategy could be used to re-apply phyllosphere yeasts in the weeks following a fungicide 

application. This combination would allow for an agricultural management system which 

suppressed the proliferation of phyllosphere pathogens while maintaining the benefits provided 

by phyllosphere yeasts. 
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Hub Microbial Inoculation of Glycine max Alters Holobiont Response to Stress 

In chapter 4, I assessed the impact of inoculating soybean plants with hub microbes 

identified from co-occurrence networks of no-till soybean roots assessed in chapter 1. For this 

assessment, I combined various phenotyping and molecular methods to assess the impact of 

inoculation on both the plant host and the associated microbiota. Inoculation had an obvious 

impact on plant growth, and several phenotype measurements including aboveground area, 

aboveground biomass, nodule numbers, and photosynthesis measurements differed between 

control and inoculated samples. Additionally, inoculation had a significant effect on gene 

expression of host plants throughout a low moisture stress period. Primarily, the major category 

of gene expression that was upregulated in inoculated samples was related to nodulation. The 

genes most tightly associated to nodulation were consistently upregulated in inoculated samples. 

This demonstrated that gene expression results mirrored phenotyping results showing higher 

biomass and nodule numbers in inoculated samples. Subsequent follow-up experiments 

confirmed the initial results and demonstrated that the Caulobacter and Streptomyces inoculants 

were each able to confer an increase in plant biomass. Although the impact on nodule numbers in 

follow-up experiments was unclear due to fewer replicates and smaller nodules, making them 

more difficult to count. 

Inoculation did not appear to substantially alter the root microbiome, but several 

important functional taxa were impacted by inoculation. These differences were especially 

apparent when the root microbiome was assessed using cDNA to reveal a more activity 

community than traditional DNA amplicon sequencing. Most notably, Bradyrhizobium had 

higher cDNA:DNA ratios earlier in the cDNA from inoculated samples. On the contrary, in 

fungal communities, AMF taxa belonging to Glomus appeared to have higher ratios in control 
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samples at the first sampling point. 

Together these results demonstrate that inoculation with hub microbes can be utilized to 

ameliorate the impacts of low-moisture stress on soybean seedlings. This work could be 

complimented by future studies on interactions between hub taxa and other microbes. Especially, 

to follow-up on results from this study, it will be important to assess how microbes used in 

inocula interact with both Bradyrhizobium and Glomus, and soybean. For example, some 

microbial taxa including Bacillus species have been demonstrated to directly enhance the growth 

of Bradyrhizobium [357]. However, another possibility is that this effect is mediated through the 

plant by making host plants more susceptible to infection by Bradyrhizobium. Interaction studies 

with Bradyrhizobium will help begin to disentangle these possibilities. It is also possible that the 

earlier colonization of control plants by AMF taxa reduced later colonization by Bradyrhizobium 

as has been previously demonstrated [362]. Further microbial interaction studies will be 

important for assessing if impacts seen here are direct plant growth promoting effects of hub taxa 

or if they are through microbe-microbe interactions.  

Results from inoculation experiments were repeatable in growth-chamber and greenhouse 

settings. Both settings are useful for studying microbial inoculation. Growth chambers provide 

an ideal setting due to exact temperature and environmental control. This would allow for the 

addition of heat to low-moisture stress in future studies of multiple stressors associated with 

drought. Alternatively, studying microbial inoculation in greenhouses exposes plants to more 

variation in factors such as light due to changes in cloud cover. This means that greenhouses may 

provide a more accurate representation of field conditions. Testing inoculum members in 

multiple settings is one way to assess their potential success before deploying microbial 

inoculants in the field. 



 
 
 
 
 
 

176 
 
 
 

However, further work will be required to assess how these taxa would perform in a field 

setting. For example, it is clear that inoculants increase seedling aboveground biomass, but it will 

be important to assess if this increase in seedling biomass correlates with increases in grain yield. 

For some crops, there does appear to be a relationship between seedling vigor measures such as 

dry weight and final yield [370]. Plant height measured during soybean reproductive stages was 

associated with increased yield, therefore if height differences from seedling stages associated 

with inoculation persist, yield may be expected to increase [371]. Although greenhouse and 

growth chamber experiments are crucial steps for testing microbial inoculants, it will also be 

important to test the concept of hub microbes as inoculants in field settings.  

Conclusions 

Interactions between plants and microbes have long been known to be crucial to the 

health of the host plant. This is especially true of soybean and other legumes due to the nitrogen 

fixation benefit provided to the plants by root nodulating Rhizobia. Like all other plants, 

soybeans interact with a wide diversity of bacteria and fungi throughout the plant, but these 

interactions are complex and less well characterized compared to relationships with nitrogen 

fixing bacteria in root nodules. There are various important questions about the functional and 

taxonomic diversity of these relationships, but one important outstanding goal is to determine the 

impact of modern agricultural management strategies on soybean-associated microbiomes. 

Throughout this dissertation I have assessed the impacts of various agricultural management 

strategies on the soybean microbiome including mechanical tillage, chemical fungicides, and 

biological consortia.  

My dissertation research demonstrated that tillage regime, which is typically selected 

based off soil moisture, reductions in soil erosion, or reductions in fuel input costs also impacts 
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the bacterial and fungal microbiome in the soil and throughout the soybean holobiont. My 

dissertation research provides a foundation for understanding impacts on the microbiome into 

decisions of which tillage regime to utilize. Incorporating the microbiome into management 

decisions will also become increasingly streamlined as sequencing methods continue to improve. 

In addition to tillage regime, foliar fungicide applications are a management technique which can 

be expected to impact microbial communities by creating a disturbance to fungal communities. 

Research on soybean and maize microbiomes demonstrated that fungicide applications were 

particularly detrimental to phyllosphere yeasts. Although, I expect that fungicides will continue 

to be an important tool for controlling foliar fungal pathogens, the impact on these yeasts should 

be considered. Studies to assess the plant benefit provided by phyllosphere yeasts and techniques 

for maintaining these or other microbes in agricultural ecosystems will become more 

commonplace.  

Finally, another common form of agricultural management is to use microbes as 

inoculants. This has commonly been used as a technique for biocontrol of pathogens but is 

becoming increasingly common for a variety of abiotic stresses as well. I hypothesized that 

bioinformatically identified hub taxa would be useful as microbial inoculants as their correlations 

with other microbes may predict a role in structuring the microbiome. I found that inoculations 

composed of hub taxa provided a benefit to soybean plants with and without low-moisture stress, 

and that part of this benefit may have been from an increase in recruitment of beneficial 

Bradyrhizobium. Future analyses will determine if hub taxa create microbial co-occurrence 

networks which are more stable through time, which may indicate an increase in microbial 

stability provided by hub taxa inoculation. I expect that microbial inoculations which capitalize 

on microbe-microbe interactions will become increasingly common as this type of inoculation 
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may allow for greater flexibility in microbial recruitment compared to inoculation with taxa 

which are selected for a single plant growth promoting trait. Taken together, these results 

demonstrate that three diverse agricultural management strategies all impact the soybean 

associated microbiome. Due to this impact, it is crucial that decisions on agricultural 

management strategies consider the plant holobiont as a whole, inclusive of the microbial 

component.  
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APPENDIX A: Microbial Isolations 

 Along with soybean samples taken in chapter two for next-generation sequencing, soybean 

roots, leaves, stems, and seed pods were collection for isolation and culturing of bacteria and 

fungi. In addition to plants sampled for next generation sequencing as described in chapter 2, 

three plants were taken for microbial isolations. Fungal endophytes were isolated from surface 

sterilized leaves, stems, roots and seed pods as previously described [4]. Briefly, leaves and pods 

were sampled using a 6 mm hole punch; seven punches were taken from various leaves on each 

plant and the seven punches from each plant. Roots were processed in the same way, but instead 

of a hole punch, 1 cm samples of fine roots were taken using flame sterilized scissors. Tissues 

were then surface sterilized by soaking in a mixture of .5% sodium hypochlorite and .1% tween 

20 for 2 minutes, followed by 2 minutes in 70% ethanol, and a rinse with sterile distilled water. 

Surface sterilized tissues were placed on petri dishes containing 2% MEA amended with 

rifampicin and chloramphenicol to prevent bacterial growth (two pieces of plant tissue per plate). 

As fungi emerged from plant tissues, single isolates were transferred to fresh MEA plates. Each 

isolate was transferred three times to obtain a pure culture.  

 To isolate endophytic bacteria, plants were sampled, and tissues were surface sterilized as 

described for fungi. Approximately 100 mg of surface sterilized plant tissue was then ground 

with a sterile micro pestle in eppendorf tubes containing .9 ml of sterile distilled water. Leaf and 

pod samples were then serially diluted to a level of 10-5 or 10-6 and root samples were serially 

diluted to a level of 10-7 or 10-8 and 100 ul of each dilution was spread onto petri dishes 

containing R2A agar or King B agar. After two days of growth at room temperature, single 

colonies were picked and struck onto fresh plates. Colonies were chosen based off selection of 

diverse macro morphologies.  
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 DNA was extracted from fungal isolates by removing a small piece of fungal mycelium 

with flame-sterilized tweezers and placing the tissue into 20 ul of premade extraction solution 

(ES) in PCR tubes. This solution was then heat lysed by heating to 95c for 10 minutes. 

Following heat lysis, 60 uL of bovine serum albumin (BSA) was added. Two ul of this solution 

was then used as template in PCR reactions with the ITS 1F and LR3 primer set [185, 383]. 

Bacterial 16S sequences from isolate were retrieved by colony PCR with 27F and 1492R primers 

on single colonies from each isolate [384]. Following PCR, amplification was assessed using gel 

electrophoresis, and samples which were successfully amplified were sanger sequenced with the 

forward primer at the MSU genomics core. Following sequencing, isolates were identified using 

the RDP classifier [385] 

 Fungal isolations resulted in 820 cultures, from these cultures, 503 ITS sequences were 

generated using sanger sequencing, representing 47 fungal genera Bacterial isolations resulted in 

415 pure cultures. From these cultures, 193 were identified as belonging to 39 genera using 16S 

sanger sequencing.  Fungal sequences are available on genbank under the following accession 

numbers: MT557064-MT557566. Bacterial sequences are available on genbank under the 

following accession numbers: MT653370-MT653562.The most prevalent genus among fungal 

isolates was Fusarium (155 isolates) followed by Clonostachys and Trichoderma. Many of the 

fungal genera were isolated from multiple parts of the plant, but some genera such as 

Macrophomina were exclusive to the roots (Figure A.1A). The most prevalent bacterial genus 

among isolates was Sphingomonas (43 isolates) followed by Bacillus and Microbacterium. 

Similarly, to fungal isolates, many genera were isolated from multiple plant tissues. However, 

the Frigoribacterium genus which was prevalent among isolates was only isolated from soybean 

leaves. 
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Figure A.1 - Summary of microbial isolates collected from soybeans. Color represents the 
isolation source of fungal isolates (A) and bacterial isolates (B). 
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APPENDIX B: Fungicide Supplementary Material 

Table B.1 - Differentially Abundant Phyllosphere Fungi by Fungicide Treatment 
 
 
 

OTU 
Growth 
Stage Crop Treatment 

Difference 
in mean % 

RA BestMatch 

Fungicide 
abundance 
response 

OTU65 V8 Maize Conventional -2.29087% Bullera crocea Decrease 
OTU65 V8 Maize No-till -1.90887% Bullera crocea Decrease 

OTU83 V8 Maize No-till -1.07769% 
Vishniacozyma 
globispora Decrease 

OTU82 V8 Maize No-till -0.96538% 
Filobasidium 
oeirense Decrease 

OTU97 V8 Maize No-till -0.91537% Filobasidium sp. Decrease 
OTU97 V8 Maize Conventional -0.72116% Filobasidium sp. Decrease 
OTU34 V8 Maize Conventional -0.53438% Hannaella oryzae Decrease 

OTU1340 V8 Maize No-till -0.44156% 
Filobasidium 
wieringae Decrease 

OTU130 V8 Maize No-till -0.43680% 
Vishniacozyma 
victoriae Decrease 

OTU2177 V8 Maize Conventional -0.33341% Vishniacozyma sp. Decrease 
OTU155 V8 Maize Conventional -0.21524% Dioszegia sp. Decrease 
OTU118 V8 Maize Conventional -0.17354% Helotiales sp. Decrease 
OTU587 V8 Maize No-till -0.16469% Limonomyces sp. Decrease 
OTU162 V8 Maize Conventional -0.16119% Pleosporales sp. Decrease 
OTU116 V8 Maize No-till -0.15336% Leptospora sp. Decrease 
OTU156 V8 Maize Conventional -0.13986% Filobasidium sp. Decrease 

OTU953 V8 Maize No-till -0.12968% 
Fibulobasidium 
inconspicuum Decrease 

OTU421 V8 Maize Conventional -0.11637% Septoriella hirta Decrease 
OTU251 V8 Maize Conventional -0.10824% Papiliotrema frias Decrease 
OTU278 V8 Maize No-till -0.10284% Taphrina sp Decrease 
OTU277 V8 Maize Conventional -0.09981% Coprinellus sp. Decrease 

OTU526 V8 Maize Conventional -0.09965% 
Holtermanniella 
festucosa Decrease 

OTU137 V8 Maize No-till -0.09663% Phaeosphaeria sp Decrease 

OTU821 V8 Maize No-till -0.09243% 
Genolevuria 
amylolytica Decrease 

OTU134 V8 Maize No-till -0.09132% 
Bulleribasidium 
oberjochense Decrease 
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Table B.1 (cont’d) 
OTU118 V8 Maize No-till -0.08603% Helotiales sp. Decrease 
OTU210 V8 Maize Conventional -0.07838% Alternaria rosae Decrease 
OTU274 V8 Maize No-till -0.06528% Stemphylium sp. Decrease 

OTU254 V8 Maize Conventional -0.06453% 
Erythrobasidium 
yunnanense Decrease 

OTU171 V8 Maize No-till -0.06026% 
Phaeosphaeriaceae 
sp. Decrease 

OTU487 V8 Maize No-till -0.05510% 
Phomatospora 
biseriata Decrease 

OTU368 V8 Maize No-till -0.04857% Xylariales sp. Decrease 
OTU197 V8 Maize Conventional -0.04600% Ophiognomonia sp. Decrease 
OTU664 V8 Maize No-till -0.04144% Agaricomycetes sp. Decrease 
OTU692 V8 Maize No-till -0.03397% Stagonosporopsis sp. Decrease 
OTU678 V8 Maize Conventional -0.02891% Erysiphe sp Decrease 
OTU3375 V8 Maize No-till -0.02888% Dioszegia athyri Decrease 
OTU433 V8 Maize No-till -0.02881% Venturia inaequalis Decrease 

OTU2860 V8 Maize Conventional -0.02795% 
Cladosporium 
grevilleae Decrease 

OTU928 V8 Maize No-till -0.02602% Phanerochaete sp. Decrease 

OTU309 V8 Maize No-till -0.02492% 
Pyrenophora tritici-
repentis Decrease 

OTU259 V8 Maize No-till -0.02468% Tubeufiaceae sp. Decrease 
OTU483 V8 Maize Conventional -0.02338% Diaporthe sp. Decrease 
OTU101 V8 Maize No-till -0.02266% Ascomycota sp. Decrease 
OTU2950 V8 Maize No-till -0.02258% Ascochyta sp. Decrease 
OTU1626 V8 Maize No-till -0.02218% Meripilaceae sp. Decrease 
OTU421 V8 Maize No-till -0.02193% Septoriella hirta Decrease 
OTU136 V8 Maize Conventional -0.02103% Aureobasidium sp. Decrease 
OTU836 V8 Maize No-till -0.01994% Trametes trogii Decrease 

OTU309 V8 Maize Conventional -0.01870% 
Pyrenophora tritici-
repentis Decrease 

OTU1324 V8 Maize No-till -0.01623% Physalacriaceae sp. Decrease 
OTU249 V8 Maize Conventional -0.01581% Phaeosphaeria sp. Decrease 
OTU531 V8 Maize No-till -0.01503% Helicoma sp. Decrease 
OTU904 V8 Maize No-till -0.01338% Diaporthe sp. Decrease 

OTU303 V8 Maize No-till -0.01319% 
Dissoconium 
eucalypti Decrease 

OTU7134 V8 Maize No-till -0.01278% 
Filobasidium 
floriforme Decrease 

OTU643 V8 Maize Conventional -0.01227% 
Tilletiopsis 
washingtonensis Decrease 
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Table B.1 (cont’d) 
OTU366 V8 Maize No-till -0.01225% Leptospora rubella Decrease 
OTU1425 V8 Maize No-till -0.01073% Kondoa yuccicola Decrease 
OTU1242 V8 Maize No-till -0.01023% Agaricomycetes sp. Decrease 

OTU595 V8 Maize No-till -0.00875% 
Arthrocatena 
tenebrio Decrease 

OTU483 V8 Maize No-till -0.00852% Diaporthe sp. Decrease 

OTU524 V8 Maize No-till -0.00786% 
Dissoconium 
aciculare Decrease 

OTU1504 V8 Maize Conventional -0.00774% 
Ceratobasidiaceae 
sp. Decrease 

OTU17 V8 Maize Conventional -0.00745% 
Tilletiopsis 
washingtonensis Decrease 

OTU5816 V8 Maize No-till -0.00646% Pleosporales sp. Decrease 
OTU1145 V8 Maize No-till -0.00554% Xylodon erastii Decrease 

OTU5990 V8 Maize No-till -0.00461% 
Phaeosphaeriaceae 
sp. Decrease 

OTU3217 V8 Maize No-till -0.00426% 
Lophiostomataceae 
sp. Decrease 

OTU5120 V8 Maize Conventional -0.00356% 
Ceratobasidiaceae 
sp. Decrease 

OTU245 V8 Maize No-till -0.00288% Occultifur sp Decrease 
OTU2000 V8 Maize Conventional 0.02734% Schizoporaceae sp. Increase 
OTU785 V8 Maize Conventional 0.03981% Trichaptum biforme Increase 
OTU1318 V8 Maize No-till 0.05419% Sporobolomyces sp Increase 
OTU382 V8 Maize No-till 0.35391% Chytridiomycota sp. Increase 

OTU776 V8 Maize No-till 0.47142% 
Sporormiella 
leporina Increase 

OTU489 V8 Maize Conventional 0.53590% Preussia tetramera Increase 

OTU13 R4 Soy Conventional -4.73367% 
Hannaella 
coprosmae Decrease 

OTU17 R4 Soy Conventional -3.15419% 
Tilletiopsis 
washingtonensis Decrease 

OTU34 R4 Soy Conventional -2.23774% Hannaella oryzae Decrease 

OTU643 R6 Soy No-till -2.11519% 
Tilletiopsis 
washingtonensis Decrease 

OTU34 R6 Soy No-till -2.08712% Hannaella oryzae Decrease 

OTU13 R6 Soy No-till -1.96218% 
Hannaella 
coprosmae Decrease 

OTU643 R6 Soy Conventional -1.95997% 
Tilletiopsis 
washingtonensis Decrease 

OTU643 R4 Soy Conventional -1.09464% 
Tilletiopsis 
washingtonensis Decrease 
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Table B.1 (cont’d) 
OTU89 R6 Soy No-till -1.04964% Kondoa sp Decrease 

OTU643 R4 Soy No-till -0.92621% 
Tilletiopsis 
washingtonensis Decrease 

OTU27 R4 Soy Conventional -0.88111% Hannaella zeae Decrease 
OTU89 R6 Soy Conventional -0.83494% Kondoa sp Decrease 
OTU120 R4 Soy Conventional -0.56930% Pleosporales sp. Decrease 

OTU134 R6 Soy No-till -0.53139% 
Bulleribasidium 
oberjochense Decrease 

OTU52 R4 Soy Conventional -0.50497% Dioszegia sp. Decrease 
OTU154 R6 Soy No-till -0.49905% Leptospora sp Decrease 

OTU130 R4 Soy Conventional -0.45301% 
Vishniacozyma 
victoriae Decrease 

OTU502 R6 Soy Conventional -0.42456% Fungi sp. Decrease 

OTU134 R4 Soy Conventional -0.41925% 
Bulleribasidium 
oberjochense Decrease 

OTU134 R4 Soy No-till -0.39088% 
Bulleribasidium 
oberjochense Decrease 

OTU35 R6 Soy No-till -0.35911% Hannaella luteola Decrease 
OTU6420 R6 Soy No-till -0.34788% Coniothyrium sp Decrease 
OTU155 R6 Soy Conventional -0.34465% Dioszegia sp. Decrease 

OTU95 R4 Soy No-till -0.31738% 
Neosetophoma 
rosigena Decrease 

OTU119 R4 Soy No-till -0.29512% Symmetrospora sp. Decrease 

OTU90 R4 Soy Conventional -0.24354% 
Sporobolomyces 
phaffii Decrease 

OTU52 R6 Soy No-till -0.24351% Dioszegia sp. Decrease 
OTU27 R4 Soy No-till -0.21907% Hannaella zeae Decrease 
OTU119 R6 Soy No-till -0.21377% Symmetrospora sp. Decrease 
OTU502 R6 Soy No-till -0.19236% Fungi sp. Decrease 

OTU32 R4 Soy No-till -0.17986% 
Symmetrospora 
coprosmae Decrease 

OTU120 R6 Soy Conventional -0.15907% Pleosporales sp. Decrease 
OTU119 R4 Soy Conventional -0.15562% Symmetrospora sp. Decrease 
OTU155 R4 Soy No-till -0.15023% Dioszegia sp. Decrease 
OTU89 R4 Soy No-till -0.12973% Kondoa sp Decrease 
OTU278 R6 Soy No-till -0.12902% Taphrina sp Decrease 

OTU6 R6 Soy No-till -0.11617% 
Mycosphaerella 
tassiana Decrease 

OTU2746 R6 Soy Conventional -0.11591% Dioszegia sp Decrease 
OTU6350 R4 Soy Conventional -0.11100% Hannaella zeae Decrease 
OTU267 R6 Soy Conventional -0.10960% Cyphellophora sp. Decrease 
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Table B.1 (cont’d) 

OTU2945 R4 Soy Conventional -0.10629% 
Vishniacozyma 
victoriae Decrease 

OTU2746 R4 Soy No-till -0.09988% Dioszegia sp Decrease 
OTU89 R4 Soy Conventional -0.09438% Kondoa sp Decrease 
OTU267 R4 Soy Conventional -0.09341% Cyphellophora sp. Decrease 
OTU258 R4 Soy Conventional -0.08320% Ascomycota sp. Decrease 
OTU3085 R4 Soy Conventional -0.07944% Ophiosphaerella sp Decrease 

OTU124 R4 Soy Conventional -0.07813% 
Neoascochyta 
desmazieri Decrease 

OTU222 R6 Soy No-till -0.06963% Dioszegia sp. Decrease 
OTU5225 R6 Soy No-till -0.06820% Coniothyrium sp Decrease 
OTU167 R4 Soy Conventional -0.05655% Parastagonospora sp. Decrease 

OTU195 R4 Soy No-till -0.05469% 
Dioszegia 
changbaiensis Decrease 

OTU824 R6 Soy No-till -0.05370% Seimatosporium sp. Decrease 

OTU5171 R4 Soy Conventional -0.05314% 
Tilletiopsis 
washingtonensis Decrease 

OTU282 R6 Soy No-till -0.04985% 
Neodevriesia 
poagena Decrease 

OTU5171 R4 Soy No-till -0.04929% 
Tilletiopsis 
washingtonensis Decrease 

OTU267 R6 Soy No-till -0.04884% Cyphellophora sp. Decrease 
OTU278 R4 Soy No-till -0.04864% Taphrina sp Decrease 

OTU254 R4 Soy Conventional -0.04827% 
Erythrobasidium 
yunnanense Decrease 

OTU309 R6 Soy Conventional -0.04712% 
Pyrenophora tritici-
repentis Decrease 

OTU1872 R6 Soy No-till -0.04346% 
Mycosphaerellaceae 
sp. Decrease 

OTU186 R6 Soy No-till -0.04298% 
Zymoseptoria 
verkleyi Decrease 

OTU195 R4 Soy Conventional -0.04070% 
Dioszegia 
changbaiensis Decrease 

OTU325 R4 Soy Conventional -0.04012% Papiliotrema aurea Decrease 
OTU2177 R4 Soy Conventional -0.03898% Vishniacozyma sp. Decrease 
OTU798 R6 Soy No-till -0.03873% Golubevia pallescens Decrease 

OTU354 R4 Soy Conventional -0.03844% 
Paraphaeosphaeria 
michotii Decrease 

OTU5171 R6 Soy No-till -0.03838% 
Tilletiopsis 
washingtonensis Decrease 

OTU825 R6 Soy No-till -0.03736% Phyllozyma linderae Decrease 
OTU757 R6 Soy No-till -0.03735% Pseudozyma pruni Decrease 
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Table B.1 (cont’d) 
OTU278 R6 Soy Conventional -0.03568% Taphrina sp Decrease 
OTU4350 R4 Soy No-till -0.03247% Didymella sp. Decrease 
OTU278 R4 Soy Conventional -0.03141% Taphrina sp Decrease 

OTU395 R4 Soy Conventional -0.02906% 
Vishniacozyma 
dimennae Decrease 

OTU971 R6 Soy No-till -0.02858% Trichomeriaceae sp. Decrease 
OTU251 R4 Soy Conventional -0.02811% Papiliotrema frias Decrease 

OTU195 R6 Soy No-till -0.02801% 
Dioszegia 
changbaiensis Decrease 

OTU254 R4 Soy No-till -0.02611% 
Erythrobasidium 
yunnanense Decrease 

OTU825 R4 Soy No-till -0.02575% Phyllozyma linderae Decrease 
OTU65 R4 Soy Conventional -0.02544% Bullera crocea Decrease 
OTU4944 R4 Soy Conventional -0.02491% Cercospora sojina Decrease 
OTU447 R4 Soy No-till -0.02336% Sampaiozyma sp. Decrease 

OTU6184 R4 Soy No-till -0.02257% 
Diaporthe 
cotoneastri Decrease 

OTU637 R4 Soy Conventional -0.02193% Pleosporales sp. Decrease 
OTU6163 R4 Soy Conventional -0.02148% Pleosporales sp. Decrease 
OTU222 R4 Soy No-till -0.02044% Dioszegia sp. Decrease 

OTU567 R4 Soy No-till -0.02004% 
Rachicladosporium 
cboliae Decrease 

OTU604 R4 Soy No-till -0.01986% 
Itersonilia 
perplexans Decrease 

OTU436 R4 Soy No-till -0.01935% Pleosporales sp. Decrease 
OTU436 R4 Soy Conventional -0.01907% Pleosporales sp. Decrease 
OTU361 R4 Soy Conventional -0.01783% Papiliotrema fusca Decrease 
OTU486 R6 Soy No-till -0.01590% Saitozyma paraflava Decrease 

OTU963 R6 Soy No-till -0.01588% 
Tuber 
melanosporum Decrease 

OTU222 R4 Soy Conventional -0.01521% Dioszegia sp. Decrease 
OTU2284 R4 Soy Conventional -0.01497% Dissoconium sp. Decrease 
OTU767 R6 Soy No-till -0.01455% Dioszegia sp. Decrease 

OTU642 R4 Soy Conventional -0.01405% 
Entyloma 
polysporum Decrease 

OTU1213 R4 Soy No-till -0.01386% 
Zygophiala 
inaequalis Decrease 

OTU5990 R4 Soy Conventional -0.01288% 
Phaeosphaeriaceae 
sp. Decrease 

OTU293 R6 Soy No-till -0.01204% Papiliotrema sp. Decrease 
OTU28 R4 Soy Conventional -0.01147% Cryptococcus sp. Decrease 
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Table B.1 (cont’d) 
OTU7117 R4 Soy Conventional -0.01141% Didymella sp. Decrease 
OTU6436 R6 Soy No-till -0.01127% Tilletiopsis sp. Decrease 
OTU944 R4 Soy Conventional -0.01114% Pleosporales sp. Decrease 
OTU741 R4 Soy No-till -0.01095% Strelitziana albiziae Decrease 
OTU869 R4 Soy Conventional -0.01081% Cryptococcus sp Decrease 
OTU536 R4 Soy No-till -0.01074% Knufia sp. Decrease 

OTU740 R4 Soy Conventional -0.01041% 
Ophiognomonia 
rosae Decrease 

OTU6108 R4 Soy No-till -0.01035% 
Uwebraunia 
communis Decrease 

OTU655 R6 Soy No-till -0.00984% Tremellomycetes sp. Decrease 

OTU83 R6 Soy Conventional -0.00981% 
Vishniacozyma 
globispora Decrease 

OTU536 R6 Soy No-till -0.00928% Knufia sp. Decrease 
OTU1488 R6 Soy No-till -0.00921% Ascomycota sp. Decrease 
OTU4350 R4 Soy Conventional -0.00904% Didymella sp. Decrease 
OTU1570 R4 Soy No-till -0.00898% Erythrobasidium sp. Decrease 
OTU4947 R4 Soy Conventional -0.00878% Cryptococcus sp Decrease 
OTU2767 R6 Soy Conventional -0.00868% Basidiomycota sp. Decrease 
OTU518 R4 Soy No-till -0.00853% Tulasnellaceae sp. Decrease 

OTU1747 R6 Soy No-till -0.00845% 
Crocicreas 
cyathoideum Decrease 

OTU6748 R6 Soy No-till -0.00844% 
Tilletiopsis 
washingtonensis Decrease 

OTU1086 R6 Soy No-till -0.00819% Phaeosphaeria sp Decrease 
OTU1478 R4 Soy No-till -0.00804% Cyphellophora sp. Decrease 
OTU12 R4 Soy No-till -0.00780% Pleosporales sp. Decrease 
OTU513 R4 Soy Conventional -0.00750% Vishniacozyma sp. Decrease 

OTU158 R6 Soy No-till -0.00736% 
Vishniacozyma 
dimennae Decrease 

OTU2047 R4 Soy Conventional -0.00679% Rutstroemiaceae sp. Decrease 

OTU158 R4 Soy Conventional -0.00677% 
Vishniacozyma 
dimennae Decrease 

OTU358 R4 Soy No-till -0.00675% 
Neofitzroyomyces 
nerii Decrease 

OTU2205 R4 Soy Conventional -0.00650% Pleosporales sp. Decrease 
OTU1559 R6 Soy Conventional -0.00648% Kondoa phyllada Decrease 
OTU447 R6 Soy Conventional -0.00641% Sampaiozyma sp. Decrease 
OTU849 R4 Soy No-till -0.00628% Pleosporales sp. Decrease 
OTU381 R4 Soy Conventional -0.00596% Coprinopsis sp. Decrease 
OTU746 R4 Soy Conventional -0.00591% Archaeorhizomyces  Decrease 
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Table B.1 (cont’d) 
OTU224 R4 Soy No-till -0.00564% Exophiala equina Decrease 

OTU1036 R4 Soy No-till -0.00564% 
Mycosphaerellaceae 
sp. Decrease 

OTU845 R4 Soy No-till -0.00562% 
Teratosphaeriaceae 
sp. Decrease 

OTU279 R4 Soy No-till -0.00561% Hypocreales sp. Decrease 
OTU322 R6 Soy No-till -0.00559% Torula sp. Decrease 
OTU1388 R6 Soy No-till -0.00559% Cyphellophora sp. Decrease 
OTU3417 R6 Soy No-till -0.00557% Helotiales sp. Decrease 
OTU486 R4 Soy No-till -0.00525% Saitozyma paraflava Decrease 

OTU326 R4 Soy Conventional -0.00517% 
Mycosphaerellaceae 
sp. Decrease 

OTU3340 R6 Soy No-till -0.00498% Pleosporales sp. Decrease 

OTU347 R6 Soy Conventional -0.00495% 
Chionosphaeraceae 
sp. Decrease 

OTU2159 R4 Soy Conventional -0.00490% 
Xenosonderhenia 
syzygii Decrease 

OTU3340 R4 Soy Conventional -0.00486% Pleosporales sp. Decrease 

OTU3465 R4 Soy Conventional -0.00473% 
Phaeosphaeriaceae 
sp. Decrease 

OTU642 R6 Soy No-till -0.00469% 
Entyloma 
polysporum Decrease 

OTU1413 R4 Soy No-till -0.00469% Capnodiales sp. Decrease 

OTU3493 R4 Soy Conventional -0.00464% 
Bulleribasidium 
oberjochense Decrease 

OTU246 R4 Soy No-till -0.00462% Sordariales sp. Decrease 

OTU1867 R6 Soy No-till -0.00448% 
Neosetophoma 
samararum Decrease 

OTU42 R6 Soy Conventional -0.00447% Pleosporales sp. Decrease 
OTU3340 R6 Soy Conventional -0.00446% Pleosporales sp. Decrease 

OTU522 R6 Soy No-till -0.00430% 
Microdochium 
seminicola Decrease 

OTU306 R4 Soy No-till -0.00422% Eucasphaeria sp Decrease 
OTU890 R6 Soy No-till -0.00376% Hannaella sinensis Decrease 

OTU2902 R4 Soy Conventional -0.00376% 
Spiculogloeomycetes 
sp. Decrease 

OTU1580 R4 Soy Conventional -0.00374% Chaetothyriales sp. Decrease 
OTU989 R4 Soy No-till -0.00373% Chaetothyriales sp. Decrease 
OTU4459 R4 Soy Conventional -0.00364% Ceriporia humilis Decrease 
OTU1464 R6 Soy No-till -0.00364% Symmetrospora sp. Decrease 
OTU2177 R6 Soy Conventional -0.00361% Vishniacozyma sp. Decrease 
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Table B.1 (cont’d) 
OTU1358 R4 Soy No-till -0.00361% Kondoaceae sp. Decrease 
OTU1161 R6 Soy Conventional -0.00359% Ramularia sp. Decrease 
OTU4518 R6 Soy Conventional -0.00355% Pleosporales sp. Decrease 

OTU124 R4 Soy No-till -0.00355% 
Neoascochyta 
desmazieri Decrease 

OTU4045 R6 Soy No-till -0.00332% Pleosporales sp. Decrease 

OTU233 R6 Soy No-till -0.00325% 
Penicillium 
decumbens Decrease 

OTU462 R6 Soy No-till -0.00320% 
Devriesia 
pseudoamericana Decrease 

OTU319 R4 Soy No-till -0.00319% Fungi sp. Decrease 
OTU1523 R6 Soy No-till -0.00319% Bannoa sp. Decrease 
OTU661 R4 Soy Conventional -0.00314% Diaporthe sp. Decrease 
OTU4567 R6 Soy Conventional -0.00306% Pleosporales sp. Decrease 

OTU1053 R4 Soy Conventional -0.00304% 

Thamnolia 
vermicularis subsp. 
subuliformis Decrease 

OTU946 R4 Soy No-till -0.00297% 
Cystobasidiomycetes 
sp. Decrease 

OTU2945 R6 Soy No-till -0.00293% 
Vishniacozyma 
victoriae Decrease 

OTU6163 R6 Soy No-till -0.00293% Pleosporales sp. Decrease 

OTU1614 R6 Soy Conventional -0.00271% 
Chionosphaeraceae 
sp. Decrease 

OTU589 R6 Soy No-till -0.00264% Bensingtonia sp Decrease 
OTU362 R6 Soy No-till -0.00262% Ganoderma sp. Decrease 
OTU4802 R4 Soy Conventional -0.00260% Hannaella oryzae Decrease 

OTU1271 R6 Soy No-till -0.00256% 
Phaeosphaeriaceae 
sp. Decrease 

OTU1032 R4 Soy Conventional -0.00254% Tilletia sp. Decrease 

OTU2423 R4 Soy Conventional -0.00249% 
Parastagonospora 
forlicesenica Decrease 

OTU4045 R4 Soy No-till -0.00242% Pleosporales sp. Decrease 
OTU4518 R6 Soy No-till -0.00236% Pleosporales sp. Decrease 
OTU1563 R4 Soy No-till -0.00230% Rhizophlyctis rosea Decrease 

OTU1584 R6 Soy Conventional -0.00226% 
Hypoxylon 
rubiginosum Decrease 

OTU209 R6 Soy Conventional -0.00226% Branch06 sp. Decrease 
OTU5224 R4 Soy No-till -0.00224% Talaromyces sp. Decrease 
OTU4045 R4 Soy Conventional -0.00215% Pleosporales sp. Decrease 
OTU4182 R4 Soy Conventional -0.00213% Dioszegia sp. Decrease 
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Table B.1 (cont’d) 
OTU141 R6 Soy Conventional -0.00213% Papiliotrema sp. Decrease 
OTU2205 R4 Soy No-till -0.00210% Pleosporales sp. Decrease 
OTU4839 R4 Soy Conventional -0.00207% Pleosporales sp. Decrease 

OTU410 R6 Soy No-till 0.00225% 
Herpotrichiellaceae 
sp. Increase 

OTU2872 R6 Soy Conventional 0.00247% Hypoxylon carneum Increase 

OTU266 R6 Soy Conventional 0.00313% 
Minimedusa 
polyspora Increase 

OTU744 R6 Soy No-till 0.00362% Sordariales sp. Increase 
OTU2984 R4 Soy No-till 0.00367% Xylodon flaviporus Increase 
OTU2205 R6 Soy No-till 0.00380% Pleosporales sp. Increase 
OTU290 R6 Soy Conventional 0.00483% Malassezia sp. Increase 
OTU1561 R4 Soy No-till 0.00522% Sistotrema sp Increase 
OTU4924 R4 Soy Conventional 0.00558% Hyphoderma sp. Increase 
OTU997 R4 Soy No-till 0.00641% Corticiales sp. Increase 

OTU326 R6 Soy No-till 0.00711% 
Mycosphaerellaceae 
sp. Increase 

OTU409 R6 Soy No-till 0.00716% 
Chaetosphaeriaceae 
sp. Increase 

OTU731 R4 Soy Conventional 0.00818% Bionectriaceae sp. Increase 
OTU1399 R4 Soy Conventional 0.00861% Hypocreales sp. Increase 
OTU46 R4 Soy Conventional 0.00867% Pleosporales sp. Increase 
OTU531 R4 Soy No-till 0.00884% Helicoma sp. Increase 
OTU714 R4 Soy Conventional 0.01058% Entylomatales sp. Increase 
OTU1449 R4 Soy Conventional 0.01220% Phellinus gilvus Increase 
OTU1487 R4 Soy Conventional 0.01360% Coprinellus sp. Increase 
OTU1468 R4 Soy Conventional 0.01659% Eutypella sp. Increase 

OTU1895 R6 Soy Conventional 0.01819% 
Paraconiothyrium 
sp. Increase 

OTU675 R6 Soy Conventional 0.02323% 
Phaeosphaeria 
typharum Increase 

OTU157 R6 Soy No-till 0.02560% Chaetomiaceae sp. Increase 
OTU725 R6 Soy Conventional 0.03100% Parmeliaceae sp. Increase 
OTU58 R4 Soy Conventional 0.06823% Agaricomycetes sp. Increase 

OTU1509 R4 Soy No-till 0.10404% 
Vishniacozyma 
victoriae Increase 

OTU94 R6 Soy Conventional 0.13162% 
Sporobolomyces 
patagonicus Increase 

OTU66 R6 Soy No-till 0.14794% 
Sporobolomyces 
roseus Increase 

OTU94 R6 Soy No-till 0.45543% Sporobolomyces sp. Increase 
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Table B.1 (cont’d) 

OTU94 R4 Soy No-till 0.90409% 
Sporobolomyces 
patagonicus Increase 

OTU8 R4 Soy Conventional 0.96580% Fusarium sp. Increase 
OTU10 R4 Soy No-till 12.03078% Bulleromyces albus Increase 

 

Table B.2 - Core members of the soybean or maize phyllosphere in no-till and conventional 
management.   
 

Taxonomy Treatment Crop Kingdom 
BOTU_25-Allorhizobium-neorhizobium-
pararhizobium-rhizobium sp. Conventional Maize Bacteria 
BOTU_19-Aureimonas sp. Conventional Maize Bacteria 
BOTU_10796-Burkholderia-caballeronia-
paraburkholderia sp. Conventional Maize Bacteria 
BOTU_89-Geobacillus sp. Conventional Maize Bacteria 
BOTU_21-Hymenobacter sp. Conventional Maize Bacteria 
BOTU_130-Leifsonia sp. Conventional Maize Bacteria 
BOTU_16-Massilia sp. Conventional Maize Bacteria 
BOTU_7-Methylobacterium-methylorubrum sp. Conventional Maize Bacteria 
BOTU_17-Methylobacterium-methylorubrum sp. Conventional Maize Bacteria 
BOTU_3113-Methylobacterium-methylorubrum 
sp. Conventional Maize Bacteria 
BOTU_497-Methylobacterium-methylorubrum 
sp. Conventional Maize Bacteria 
BOTU_3257-Methylobacterium-methylorubrum 
sp. Conventional Maize Bacteria 
BOTU_24-Methylobacterium-methylorubrum sp. Conventional Maize Bacteria 
BOTU_73-Microbacterium sp. Conventional Maize Bacteria 
BOTU_296-Noviherbaspirillum sp. Conventional Maize Bacteria 
BOTU_481-Pantoea sp. Conventional Maize Bacteria 
BOTU_37-Pseudarthrobacter sp. Conventional Maize Bacteria 
BOTU_10-Pseudomonas sp. Conventional Maize Bacteria 
BOTU_38-Ralstonia sp. Conventional Maize Bacteria 
BOTU_5-Sphingomonas sp. Conventional Maize Bacteria 
BOTU_1025-Sphingomonas sp. Conventional Maize Bacteria 
BOTU_64-Sphingomonas sp. Conventional Maize Bacteria 
BOTU_15-Sphingomonas sp. Conventional Maize Bacteria 
BOTU_873-Sphingomonas sp. Conventional Maize Bacteria 
BOTU_27-Staphylococcus sp. Conventional Maize Bacteria 



 
 
 
 
 
 

194 
 
 
 

Table B.2 (cont’d) 
BOTU_32-Streptococcus sp. Conventional Maize Bacteria 
BOTU_13-Microbacteriaceae sp. Conventional Maize Bacteria 
BOTU_11044-Microbacteriaceae sp. Conventional Maize Bacteria 
BOTU_211-Sphingomonadaceae sp. Conventional Maize Bacteria 
BOTU_14112-Bacteria sp. Conventional Maize Bacteria 
BOTU_10618-Bacteria sp. Conventional Maize Bacteria 
BOTU_126-Acinetobacter sp. No-till Maize Bacteria 
BOTU_25-Allorhizobium-neorhizobium-
pararhizobium-rhizobium sp. No-till Maize Bacteria 
BOTU_11812-Allorhizobium-Neorhizobium-
Pararhizobium-Rhizobium sp. No-till Maize Bacteria 
BOTU_91-Allorhizobium-neorhizobium-
pararhizobium-rhizobium sp. No-till Maize Bacteria 
BOTU_19-Aureimonas sp. No-till Maize Bacteria 
BOTU_2-Bacillus sp. No-till Maize Bacteria 
BOTU_10796-Burkholderia-caballeronia-
paraburkholderia sp. No-till Maize Bacteria 
BOTU_94-Corynebacterium sp. No-till Maize Bacteria 
BOTU_82-Duganella sp. No-till Maize Bacteria 
BOTU_11-Escherichia-shigella sp. No-till Maize Bacteria 
BOTU_89-Geobacillus sp. No-till Maize Bacteria 
BOTU_21-Hymenobacter sp. No-till Maize Bacteria 
BOTU_80-Hymenobacter sp. No-till Maize Bacteria 
BOTU_5403-Hymenobacter sp. No-till Maize Bacteria 
BOTU_300-Hymenobacter sp. No-till Maize Bacteria 
BOTU_314-Hymenobacter sp. No-till Maize Bacteria 
BOTU_303-Kineococcus sp. No-till Maize Bacteria 
BOTU_85-Klenkia sp. No-till Maize Bacteria 
BOTU_130-Leifsonia sp. No-till Maize Bacteria 
BOTU_122-Marmoricola sp. No-till Maize Bacteria 
BOTU_16-Massilia sp. No-till Maize Bacteria 
BOTU_3370-Massilia sp. No-till Maize Bacteria 
BOTU_17-Methylobacterium-methylorubrum sp. No-till Maize Bacteria 
BOTU_7-Methylobacterium-methylorubrum sp. No-till Maize Bacteria 
BOTU_3113-Methylobacterium-methylorubrum 
sp. No-till Maize Bacteria 
BOTU_497-Methylobacterium-methylorubrum 
sp. No-till Maize Bacteria 
BOTU_3257-Methylobacterium-methylorubrum  No-till Maize Bacteria 
BOTU_24-Methylobacterium-methylorubrum sp. No-till Maize Bacteria 
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Table B.2 (cont’d) 
BOTU_53-Methylobacterium-methylorubrum sp. No-till Maize Bacteria 
BOTU_73-Microbacterium sp. No-till Maize Bacteria 
BOTU_192-Nocardioides sp. No-till Maize Bacteria 
BOTU_47-Paenarthrobacter sp. No-till Maize Bacteria 
BOTU_5427-Paenibacillus sp. No-till Maize Bacteria 
BOTU_34-Paenibacillus sp. No-till Maize Bacteria 
BOTU_3180-Paenibacillus sp. No-till Maize Bacteria 
BOTU_481-Pantoea sp. No-till Maize Bacteria 
BOTU_70-Pedobacter sp. No-till Maize Bacteria 
BOTU_347-Polaromonas sp. No-till Maize Bacteria 
BOTU_37-Pseudarthrobacter sp. No-till Maize Bacteria 
BOTU_10-Pseudomonas sp. No-till Maize Bacteria 
BOTU_1039-Pseudomonas sp. No-till Maize Bacteria 
BOTU_158-Pseudonocardia sp. No-till Maize Bacteria 
BOTU_22-Quadrisphaera sp. No-till Maize Bacteria 
BOTU_38-Ralstonia sp. No-till Maize Bacteria 
BOTU_5-Sphingomonas sp. No-till Maize Bacteria 
BOTU_1025-Sphingomonas sp. No-till Maize Bacteria 
BOTU_64-Sphingomonas sp. No-till Maize Bacteria 
BOTU_15-Sphingomonas sp. No-till Maize Bacteria 
BOTU_873-Sphingomonas sp. No-till Maize Bacteria 
BOTU_10215-Sphingomonas sp. No-till Maize Bacteria 
BOTU_331-Sphingomonas sp. No-till Maize Bacteria 
BOTU_167-Sphingomonas sp. No-till Maize Bacteria 
BOTU_274-Sphingomonas sp. No-till Maize Bacteria 
BOTU_115-Spirosoma sp. No-till Maize Bacteria 
BOTU_141-Spirosoma sp. No-till Maize Bacteria 
BOTU_27-Staphylococcus sp. No-till Maize Bacteria 
BOTU_32-Streptococcus sp. No-till Maize Bacteria 
BOTU_103-Terrabacter sp. No-till Maize Bacteria 
BOTU_78-Thermus sp. No-till Maize Bacteria 
BOTU_92-Tumebacillus sp. No-till Maize Bacteria 
BOTU_847-uncultured 35 sp. No-till Maize Bacteria 
BOTU_5895-Variovorax sp. No-till Maize Bacteria 
BOTU_13-Microbacteriaceae sp. No-till Maize Bacteria 
BOTU_44-Comamonadaceae sp. No-till Maize Bacteria 
BOTU_11044-Microbacteriaceae sp. No-till Maize Bacteria 
BOTU_211-Sphingomonadaceae sp. No-till Maize Bacteria 
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Table B.2 (cont’d) 
BOTU_1692-Microbacteriaceae sp. No-till Maize Bacteria 
BOTU_10618-Bacteria sp. No-till Maize Bacteria 
BOTU_14112-Bacteria sp. No-till Maize Bacteria 
BOTU_8-Enterobacteriaceae sp. No-till Maize Bacteria 
BOTU_19-Aureimonas sp. Conventional Soy Bacteria 
BOTU_3-Bradyrhizobium sp. Conventional Soy Bacteria 
BOTU_21-Hymenobacter sp. Conventional Soy Bacteria 
BOTU_5403-Hymenobacter sp. Conventional Soy Bacteria 
BOTU_80-Hymenobacter sp. Conventional Soy Bacteria 
BOTU_2048-Hymenobacter sp. Conventional Soy Bacteria 
BOTU_4751-Hymenobacter sp. Conventional Soy Bacteria 
BOTU_85-Klenkia sp. Conventional Soy Bacteria 
BOTU_7-Methylobacterium-methylorubrum sp. Conventional Soy Bacteria 
BOTU_24-Methylobacterium-methylorubrum sp. Conventional Soy Bacteria 
BOTU_17-Methylobacterium-methylorubrum sp. Conventional Soy Bacteria 
BOTU_3113-Methylobacterium-methylorubrum 
sp. Conventional Soy Bacteria 
BOTU_497-Methylobacterium-methylorubrum 
sp. Conventional Soy Bacteria 
BOTU_3257-Methylobacterium-methylorubrum 
sp. Conventional Soy Bacteria 
BOTU_53-Methylobacterium-methylorubrum sp. Conventional Soy Bacteria 
BOTU_41-Pseudokineococcus sp. Conventional Soy Bacteria 
BOTU_22-Quadrisphaera sp. Conventional Soy Bacteria 
BOTU_109-Roseomonas sp. Conventional Soy Bacteria 
BOTU_15-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_5-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_1025-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_64-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_274-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_873-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_10215-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_1874-Sphingomonas sp. Conventional Soy Bacteria 
BOTU_5895-Variovorax sp. Conventional Soy Bacteria 
BOTU_211-Sphingomonadaceae sp. Conventional Soy Bacteria 
BOTU_25-Allorhizobium-neorhizobium-
pararhizobium-rhizobium sp. No-till Soy Bacteria 
BOTU_19-Aureimonas sp. No-till Soy Bacteria 
BOTU_154-Aureimonas sp. No-till Soy Bacteria 
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Table B.2 (cont’d) 
BOTU_14916-Aureimonas sp. No-till Soy Bacteria 
BOTU_3-Bradyrhizobium sp. No-till Soy Bacteria 
BOTU_26-Buchnera sp. No-till Soy Bacteria 
BOTU_108-Corynebacterium sp. No-till Soy Bacteria 
BOTU_94-Corynebacterium sp. No-till Soy Bacteria 
BOTU_21-Hymenobacter sp. No-till Soy Bacteria 
BOTU_5403-Hymenobacter sp. No-till Soy Bacteria 
BOTU_80-Hymenobacter sp. No-till Soy Bacteria 
BOTU_2048-Hymenobacter sp. No-till Soy Bacteria 
BOTU_11846-Hymenobacter sp. No-till Soy Bacteria 
BOTU_4751-Hymenobacter sp. No-till Soy Bacteria 
BOTU_163-Hymenobacter sp. No-till Soy Bacteria 
BOTU_322-Hymenobacter sp. No-till Soy Bacteria 
BOTU_1723-Hymenobacter sp. No-till Soy Bacteria 
BOTU_300-Hymenobacter sp. No-till Soy Bacteria 
BOTU_5733-Hymenobacter sp. No-till Soy Bacteria 
BOTU_8866-Hymenobacter sp. No-till Soy Bacteria 
BOTU_436-Hymenobacter sp. No-till Soy Bacteria 
BOTU_303-Kineococcus sp. No-till Soy Bacteria 
BOTU_85-Klenkia sp. No-till Soy Bacteria 
BOTU_122-Marmoricola sp. No-till Soy Bacteria 
BOTU_16-Massilia sp. No-till Soy Bacteria 
BOTU_7-Methylobacterium-methylorubrum sp. No-till Soy Bacteria 
BOTU_24-Methylobacterium-methylorubrum sp. No-till Soy Bacteria 
BOTU_17-Methylobacterium-methylorubrum sp. No-till Soy Bacteria 
BOTU_3113-Methylobacterium-methylorubrum 
sp. No-till Soy Bacteria 
BOTU_53-Methylobacterium-methylorubrum sp. No-till Soy Bacteria 
BOTU_497-Methylobacterium-methylorubrum 
sp. No-till Soy Bacteria 
BOTU_7894-Methylobacterium-methylorubrum 
sp. No-till Soy Bacteria 
BOTU_3257-Methylobacterium-methylorubrum 
sp. No-till Soy Bacteria 
BOTU_73-Microbacterium sp. No-till Soy Bacteria 
BOTU_51-Niastella sp. No-till Soy Bacteria 
BOTU_33-Novosphingobium sp. No-till Soy Bacteria 
BOTU_695-P3ob-42 sp. No-till Soy Bacteria 
BOTU_20-Phenylobacterium sp. No-till Soy Bacteria 
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Table B.2 (cont’d) 
BOTU_347-Polaromonas sp. No-till Soy Bacteria 
BOTU_41-Pseudokineococcus sp. No-till Soy Bacteria 
BOTU_97-Pseudomonas sp. No-till Soy Bacteria 
BOTU_10-Pseudomonas sp. No-till Soy Bacteria 
BOTU_22-Quadrisphaera sp. No-till Soy Bacteria 
BOTU_109-Roseomonas sp. No-till Soy Bacteria 
BOTU_15-Sphingomonas sp. No-till Soy Bacteria 
BOTU_5-Sphingomonas sp. No-till Soy Bacteria 
BOTU_1025-Sphingomonas sp. No-till Soy Bacteria 
BOTU_274-Sphingomonas sp. No-till Soy Bacteria 
BOTU_10215-Sphingomonas sp. No-till Soy Bacteria 
BOTU_64-Sphingomonas sp. No-till Soy Bacteria 
BOTU_1874-Sphingomonas sp. No-till Soy Bacteria 
BOTU_873-Sphingomonas sp. No-till Soy Bacteria 
BOTU_2407-Sphingomonas sp. No-till Soy Bacteria 
BOTU_40-Sphingomonas sp. No-till Soy Bacteria 
BOTU_99-Spirosoma sp. No-till Soy Bacteria 
BOTU_308-Spirosoma sp. No-till Soy Bacteria 
BOTU_27-Staphylococcus sp. No-till Soy Bacteria 
BOTU_9-Streptomyces sp. No-till Soy Bacteria 
BOTU_242-Streptomyces sp. No-till Soy Bacteria 
BOTU_10263-Streptomyces sp. No-till Soy Bacteria 
BOTU_50-Streptomyces sp. No-till Soy Bacteria 
BOTU_847-uncultured 35 sp. No-till Soy Bacteria 
BOTU_5895-Variovorax sp. No-till Soy Bacteria 
BOTU_110-Variovorax sp. No-till Soy Bacteria 
BOTU_211-Sphingomonadaceae sp. No-till Soy Bacteria 
BOTU_443-Bacteria sp. No-till Soy Bacteria 
BOTU_44-Comamonadaceae sp. No-till Soy Bacteria 
BOTU_13-Microbacteriaceae sp. No-till Soy Bacteria 
BOTU_18-Oxalobacteraceae sp. No-till Soy Bacteria 
BOTU_806-Bacteria sp. No-till Soy Bacteria 
BOTU_579-Bacteria sp. No-till Soy Bacteria 
FOTU_2-Alternaria sp. Conventional Maize Fungi 
FOTU_38-Alternaria sp. Conventional Maize Fungi 
FOTU_136-Aureobasidium sp. Conventional Maize Fungi 
FOTU_65-Bullera crocea Conventional Maize Fungi 
FOTU_10-Bulleromyces albus Conventional Maize Fungi 
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Table B.2 (cont’d) 
FOTU_28-Cryptococcus sp. Conventional Maize Fungi 
FOTU_9-Didymella sp. Conventional Maize Fungi 
FOTU_21-Dioszegia hungarica Conventional Maize Fungi 
FOTU_5526-Dioszegia hungarica Conventional Maize Fungi 
FOTU_3-Epicoccum dendrobii Conventional Maize Fungi 
FOTU_1725-Epicoccum dendrobii Conventional Maize Fungi 
FOTU_1354-Epicoccum dendrobii Conventional Maize Fungi 
FOTU_97-Filobasidium sp. Conventional Maize Fungi 
FOTU_82-Filobasidium oeirense Conventional Maize Fungi 
FOTU_91-Filobasidium floriforme Conventional Maize Fungi 
FOTU_13-Hannaella coprosmae Conventional Maize Fungi 
FOTU_27-Hannaella zeae Conventional Maize Fungi 
FOTU_16-Hannaella oryzae Conventional Maize Fungi 
FOTU_154-Leptospora sp Conventional Maize Fungi 
FOTU_116-Leptospora sp. Conventional Maize Fungi 
FOTU_6-Mycosphaerella tassiana Conventional Maize Fungi 
FOTU_96-Neoascochyta sp. Conventional Maize Fungi 
FOTU_4-Phoma sp. Conventional Maize Fungi 
FOTU_66-Sporobolomyces roseus Conventional Maize Fungi 
FOTU_90-Sporobolomyces phaffii Conventional Maize Fungi 
FOTU_32-Symmetrospora coprosmae Conventional Maize Fungi 
FOTU_119-Symmetrospora sp. Conventional Maize Fungi 
FOTU_48-Taphrina caerulescens Conventional Maize Fungi 
FOTU_87-Vishniacozyma carnescens Conventional Maize Fungi 
FOTU_83-Vishniacozyma globispora Conventional Maize Fungi 
FOTU_6430-Dothioraceae sp. Conventional Maize Fungi 
FOTU_30-Pleosporales sp. Conventional Maize Fungi 
FOTU_14-Pleosporales sp. Conventional Maize Fungi 
FOTU_33-Phaeosphaeriaceae sp. Conventional Maize Fungi 
FOTU_23-Nectriaceae sp. Conventional Maize Fungi 
FOTU_123-Phaeosphaeriaceae sp. Conventional Maize Fungi 
FOTU_2-Alternaria sp. No-till Maize Fungi 
FOTU_38-Alternaria sp. No-till Maize Fungi 
FOTU_65-Bullera crocea No-till Maize Fungi 
FOTU_10-Bulleromyces albus No-till Maize Fungi 
FOTU_28-Cryptococcus sp. No-till Maize Fungi 
FOTU_9-Didymella sp. No-till Maize Fungi 
FOTU_21-Dioszegia hungarica No-till Maize Fungi 
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Table B.2 (cont’d) 
FOTU_52-Dioszegia sp. No-till Maize Fungi 
FOTU_5526-Dioszegia hungarica No-till Maize Fungi 
FOTU_3-Epicoccum dendrobii No-till Maize Fungi 
FOTU_1354-Epicoccum dendrobii No-till Maize Fungi 
FOTU_1725-Epicoccum dendrobii No-till Maize Fungi 
FOTU_82-Filobasidium oeirense No-till Maize Fungi 
FOTU_97-Filobasidium sp. No-till Maize Fungi 
FOTU_13-Hannaella coprosmae No-till Maize Fungi 
FOTU_27-Hannaella zeae No-till Maize Fungi 
FOTU_6350-Hannaella zeae No-till Maize Fungi 
FOTU_16-Hannaella oryzae No-till Maize Fungi 
FOTU_154-Leptospora sp No-till Maize Fungi 
FOTU_6-Mycosphaerella tassiana No-till Maize Fungi 
FOTU_96-Neoascochyta sp. No-till Maize Fungi 
FOTU_4-Phoma sp. No-till Maize Fungi 
FOTU_66-Sporobolomyces roseus No-till Maize Fungi 
FOTU_90-Sporobolomyces phaffii No-till Maize Fungi 
FOTU_32-Symmetrospora coprosmae No-till Maize Fungi 
FOTU_83-Vishniacozyma globispora No-till Maize Fungi 
FOTU_6430-Dothioraceae sp. No-till Maize Fungi 
FOTU_30-Pleosporales sp. No-till Maize Fungi 
FOTU_14-Pleosporales sp. No-till Maize Fungi 
FOTU_128-Pleosporales sp. No-till Maize Fungi 
FOTU_33-Phaeosphaeriaceae sp. No-till Maize Fungi 
FOTU_2-Alternaria sp. Conventional Soy Fungi 
FOTU_38-Alternaria sp. Conventional Soy Fungi 
FOTU_134-Bulleribasidium oberjochense Conventional Soy Fungi 
FOTU_10-Bulleromyces albus Conventional Soy Fungi 
FOTU_51-Coniothyrium sp Conventional Soy Fungi 
FOTU_9-Didymella sp. Conventional Soy Fungi 
FOTU_3-Epicoccum dendrobii Conventional Soy Fungi 
FOTU_13-Hannaella coprosmae Conventional Soy Fungi 
FOTU_16-Hannaella oryzae Conventional Soy Fungi 
FOTU_34-Hannaella oryzae Conventional Soy Fungi 
FOTU_6-Mycosphaerella tassiana Conventional Soy Fungi 
FOTU_4-Phoma sp. Conventional Soy Fungi 
FOTU_45-Septoria sp. Conventional Soy Fungi 
FOTU_119-Symmetrospora sp. Conventional Soy Fungi 
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Table B.2 (cont’d) 
FOTU_17-Tilletiopsis washingtonensis Conventional Soy Fungi 
FOTU_643-Tilletiopsis washingtonensis Conventional Soy Fungi 
FOTU_30-Pleosporales sp. Conventional Soy Fungi 
FOTU_14-Pleosporales sp. Conventional Soy Fungi 
FOTU_6430-Dothioraceae sp. Conventional Soy Fungi 
FOTU_33-Phaeosphaeriaceae sp. Conventional Soy Fungi 
FOTU_123-Phaeosphaeriaceae sp. Conventional Soy Fungi 
FOTU_55-Pleosporales sp. Conventional Soy Fungi 
FOTU_2-Alternaria sp. No-till Soy Fungi 
FOTU_38-Alternaria sp. No-till Soy Fungi 
FOTU_134-Bulleribasidium oberjochense No-till Soy Fungi 
FOTU_10-Bulleromyces albus No-till Soy Fungi 
FOTU_51-Coniothyrium sp No-till Soy Fungi 
FOTU_6420-Coniothyrium sp No-till Soy Fungi 
FOTU_5225-Coniothyrium sp No-till Soy Fungi 
FOTU_267-Cyphellophora sp. No-till Soy Fungi 
FOTU_103-Diaporthe caulivora No-till Soy Fungi 
FOTU_9-Didymella sp. No-till Soy Fungi 
FOTU_52-Dioszegia sp. No-till Soy Fungi 
FOTU_21-Dioszegia hungarica No-till Soy Fungi 
FOTU_3-Epicoccum dendrobii No-till Soy Fungi 
FOTU_1354-Epicoccum dendrobii No-till Soy Fungi 
FOTU_1725-Epicoccum dendrobii No-till Soy Fungi 
FOTU_254-Erythrobasidium yunnanense No-till Soy Fungi 
FOTU_8-Fusarium sp. No-till Soy Fungi 
FOTU_68-Gibberella sp. No-till Soy Fungi 
FOTU_13-Hannaella coprosmae No-till Soy Fungi 
FOTU_16-Hannaella oryzae No-till Soy Fungi 
FOTU_34-Hannaella oryzae No-till Soy Fungi 
FOTU_27-Hannaella zeae No-till Soy Fungi 
FOTU_35-Hannaella luteola No-till Soy Fungi 
FOTU_89-Kondoa sp No-till Soy Fungi 
FOTU_6-Mycosphaerella tassiana No-till Soy Fungi 
FOTU_106-Ophiosphaerella aquatica No-till Soy Fungi 
FOTU_4-Phoma sp. No-till Soy Fungi 
FOTU_45-Septoria sp. No-till Soy Fungi 
FOTU_90-Sporobolomyces phaffii No-till Soy Fungi 
FOTU_94-Sporobolomyces patagonicus No-till Soy Fungi 
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Table B.2 (cont’d) 
FOTU_119-Symmetrospora sp. No-till Soy Fungi 
FOTU_32-Symmetrospora coprosmae No-till Soy Fungi 
FOTU_17-Tilletiopsis washingtonensis No-till Soy Fungi 
FOTU_643-Tilletiopsis washingtonensis No-till Soy Fungi 
FOTU_5171-Tilletiopsis washingtonensis No-till Soy Fungi 
FOTU_33-Phaeosphaeriaceae sp. No-till Soy Fungi 
FOTU_123-Phaeosphaeriaceae sp. No-till Soy Fungi 
FOTU_30-Pleosporales sp. No-till Soy Fungi 
FOTU_14-Pleosporales sp. No-till Soy Fungi 
FOTU_6430-Dothioraceae sp. No-till Soy Fungi 
FOTU_55-Pleosporales sp. No-till Soy Fungi 
FOTU_120-Pleosporales sp. No-till Soy Fungi 
FOTU_5472-Phaeosphaeriaceae sp. No-till Soy Fungi 
FOTU_5227-Pleosporales sp. No-till Soy Fungi 
FOTU_128-Pleosporales sp. No-till Soy Fungi 
FOTU_23-Nectriaceae sp. No-till Soy Fungi 

 
Table B.3 - Recovery status of fungicide-impacted soybean phyllosphere fungal OTUs 
 
OTU Species Class Treatment Recovery Status 
FOTU_27 Hannaella zeae Tremellomycetes No-till Recovered 
FOTU_28 Cryptococcus Tremellomycetes No-till Recovered 

FOTU_13 
Hannaella 
coprosmae Tremellomycetes No-till Recovered 

FOTU_17 
Tilletiopsis 
washingtonensis Exobasidiomycetes No-till Recovered 

FOTU_8 Fusarium Sordariomycetes No-till Recovered 

FOTU_130 
Vishniacozyma 
victoriae Tremellomycetes No-till Recovered 

FOTU_134 
Bulleribasidium 
oberjochense Tremellomycetes No-till Recovered 

FOTU_52 Dioszegia Tremellomycetes No-till Recovered 
FOTU_34 Hannaella oryzae Tremellomycetes No-till Recovered 

FOTU_124 
Neoascochyta 
desmazieri Dothideomycetes No-till Recovered 

FOTU_119 Symmetrospora Other No-till Recovered 

FOTU_254 
Erythrobasidium 
yunnanense Other No-till Recovered 

FOTU_395 
Vishniacozyma 
dimennae Tremellomycetes No-till Recovered 
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Table B.3 (cont’d) 
FOTU_251 Papiliotrema frias Tremellomycetes No-till Recovered 
FOTU_258 Ascomycota unidentified No-till Recovered 
FOTU_661 Diaporthe Sordariomycetes No-till Recovered 
FOTU_167 Parastagonospora Dothideomycetes No-till Recovered 
FOTU_325 Papiliotrema aurea Tremellomycetes No-till Recovered 
FOTU_3085 Ophiosphaerella sp Dothideomycetes No-till Recovered 

FOTU_90 
Sporobolomyces 
phaffii Microbotryomycetes No-till Recovered 

FOTU_4944 Cercospora sojina Dothideomycetes No-till Recovered 
FOTU_5990 Phaeosphaeriaceae Dothideomycetes No-till Recovered 
FOTU_222 Dioszegia Tremellomycetes No-till Recovered 
FOTU_65 Bullera crocea Tremellomycetes No-till Recovered 

FOTU_195 
Dioszegia 
changbaiensis Tremellomycetes No-till Recovered 

FOTU_513 Vishniacozyma Tremellomycetes No-till Recovered 
FOTU_869 Cryptococcus sp Tremellomycetes No-till Recovered 

FOTU_642 
Entyloma 
polysporum Exobasidiomycetes No-till Recovered 

FOTU_714 Exobasidiomycetes Exobasidiomycetes No-till Recovered 

FOTU_2945 
Vishniacozyma 
victoriae Tremellomycetes No-till Recovered 

FOTU_6163 Pleosporales Dothideomycetes No-till Recovered 

FOTU_740 
Ophiognomonia 
rosae Sordariomycetes No-till Recovered 

FOTU_2284 Dissoconium Dothideomycetes No-till Recovered 
FOTU_2902 Spiculogloeomycetes Other No-till Recovered 
FOTU_637 Dothideomycetes Dothideomycetes No-till Recovered 

FOTU_5171 
Tilletiopsis 
washingtonensis Exobasidiomycetes No-till Recovered 

FOTU_361 Papiliotrema fusca Tremellomycetes No-till Recovered 
FOTU_2205 Pleosporales Dothideomycetes No-till Recovered 
FOTU_6350 Hannaella zeae Tremellomycetes No-till Recovered 

FOTU_158 
Vishniacozyma 
dimennae Tremellomycetes No-till Recovered 

FOTU_2159 
Xenosonderhenia 
syzygii Dothideomycetes No-till Recovered 

FOTU_354 
Paraphaeosphaeria 
michotii Dothideomycetes No-till Recovered 

FOTU_7117 Didymella Dothideomycetes No-till Recovered 
FOTU_326 Mycosphaerellaceae Dothideomycetes No-till Recovered 
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Table B.3 (cont’d) 
FOTU_436 Pleosporales Dothideomycetes No-till Recovered 
FOTU_4350 Didymella Dothideomycetes No-till Recovered 

FOTU_3493 
Bulleribasidium 
oberjochense Tremellomycetes No-till Recovered 

FOTU_724 Ascomycota unidentified No-till Recovered 

FOTU_2423 
Parastagonospora 
forlicesenica Dothideomycetes No-till Recovered 

FOTU_4839 Pleosporales Dothideomycetes No-till Recovered 
FOTU_4802 Hannaella oryzae Tremellomycetes No-till Recovered 
FOTU_4947 Cryptococcus sp Tremellomycetes No-till Recovered 
FOTU_2047 Rutstroemiaceae Other No-till Recovered 
FOTU_944 Pleosporales Dothideomycetes No-till Recovered 
FOTU_731 Hypocreales Sordariomycetes No-till Recovered 
FOTU_1464 Symmetrospora Other No-till Recovered 
FOTU_1468 Eutypella Sordariomycetes No-till Recovered 
FOTU_3465 Phaeosphaeriaceae Dothideomycetes No-till Recovered 
FOTU_1032 Tilletia Exobasidiomycetes No-till Recovered 
FOTU_4182 Dioszegia Tremellomycetes No-till Recovered 
FOTU_1449 Phellinus gilvus Agaricomycetes No-till Recovered 
FOTU_1399 Hypocreales Sordariomycetes No-till Recovered 
FOTU_1487 Coprinellus Agaricomycetes No-till Recovered 
FOTU_46 Pleosporales Dothideomycetes No-till Recovered 
FOTU_1580 Chaetothyriales Eurotiomycetes No-till Recovered 
FOTU_381 Coprinopsis Agaricomycetes No-till Recovered 

FOTU_1053 

Thamnolia 
vermicularis subsp. 
subuliformis Other No-till Recovered 

FOTU_4045 Pleosporales Dothideomycetes No-till Recovered 

FOTU_746 
Archaeorhizomyces 
borealis Other No-till Recovered 

FOTU_4924 Hyphoderma Agaricomycetes No-till Recovered 
FOTU_58 Agaricomycetes Agaricomycetes No-till Recovered 

FOTU_4271 
Tapinella 
atrotomentosa Agaricomycetes No-till Recovered 

FOTU_4459 Ceriporia humilis Agaricomycetes No-till Recovered 

FOTU_643 
Tilletiopsis 
washingtonensis Exobasidiomycetes No-till 

Non-recovered or 
Indirect 

FOTU_267 Cyphellophora Eurotiomycetes No-till 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_2177 Vishniacozyma Tremellomycetes No-till 
Non-recovered or 
Indirect 

FOTU_120 Pleosporales Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_278 Taphrina sp Other No-till 
Non-recovered or 
Indirect 

FOTU_89 Kondoa sp Agaricostilbomycetes No-till 
Non-recovered or 
Indirect 

FOTU_3340 Pleosporales Dothideomycetes No-till Local Extinction 

FOTU_141 
Papiliotrema 
flavescens Tremellomycetes No-till 

Non-recovered or 
Indirect 

FOTU_94 
Sporobolomyces 
patagonicus Microbotryomycetes No-till 

Non-recovered or 
Indirect 

FOTU_155 Dioszegia Tremellomycetes No-till 
Non-recovered or 
Indirect 

FOTU_309 
Pyrenophora tritici-
repentis Dothideomycetes No-till 

Non-recovered or 
Indirect 

FOTU_266 
Minimedusa 
polyspora Agaricomycetes No-till 

Non-recovered or 
Indirect 

FOTU_502 unidentified fungus unidentified No-till 
Non-recovered or 
Indirect 

FOTU_2746 Dioszegia sp Tremellomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1161 Ramularia Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_2872 Hypoxylon carneum Sordariomycetes No-till 
Non-recovered or 
Indirect 

FOTU_83 
Vishniacozyma 
globispora Tremellomycetes No-till 

Non-recovered or 
Indirect 

FOTU_997 Corticiales Agaricomycetes No-till 
Non-recovered or 
Indirect 

FOTU_675 
Phaeosphaeria 
typharum Dothideomycetes No-till 

Non-recovered or 
Indirect 

FOTU_447 Sampaiozyma Microbotryomycetes No-till 
Non-recovered or 
Indirect 

FOTU_971 Trichomeriaceae Eurotiomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1415 
Flabellascoma 
cycadicola Dothideomycetes No-till 

Non-recovered or 
Indirect 

FOTU_725 Parmeliaceae Other No-till 
Non-recovered or 
Indirect 

FOTU_347 Chionosphaeraceae Agaricostilbomycetes No-till 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_290 Malassezia Other No-till 
Non-recovered or 
Indirect 

FOTU_1337 unidentified fungus unidentified No-till 
Non-recovered or 
Indirect 

FOTU_1584 
Hypoxylon 
rubiginosum Sordariomycetes No-till 

Non-recovered or 
Indirect 

FOTU_1559 Kondoa phyllada Agaricostilbomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1614 Chionosphaeraceae Agaricostilbomycetes No-till 
Non-recovered or 
Indirect 

FOTU_2435 
Chrysozyma 
griseoflava Microbotryomycetes No-till 

Non-recovered or 
Indirect 

FOTU_1463 Trichomeriaceae Eurotiomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1317 
Bensingtonia 
pseudonaganoensis Agaricostilbomycetes No-till 

Non-recovered or 
Indirect 

FOTU_1695 unidentified fungus unidentified No-till 
Non-recovered or 
Indirect 

FOTU_1637 Trichomeriaceae Eurotiomycetes No-till 
Non-recovered or 
Indirect 

FOTU_2767 Basidiomycota unidentified No-till 
Non-recovered or 
Indirect 

FOTU_1895 Paraconiothyrium Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1523 Bannoa Other No-till 
Non-recovered or 
Indirect 

FOTU_42 Pleosporales Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_5204 Pleosporales Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_2060 Microascales Sordariomycetes No-till 
Non-recovered or 
Indirect 

FOTU_4518 Pleosporales Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_2627 Entomophthorales Other No-till 
Non-recovered or 
Indirect 

FOTU_4567 Pleosporales Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1791 Melanommataceae Dothideomycetes No-till 
Non-recovered or 
Indirect 

FOTU_1083 Protomyces inouyei Other No-till 
Non-recovered or 
Indirect 

FOTU_209 Sordariomycetes Sordariomycetes No-till 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_1261 Hansfordia pulvinata Sordariomycetes No-till 
Non-recovered or 
Indirect 

FOTU_27 Hannaella zeae Tremellomycetes Conv. Recovered 
FOTU_10 Bulleromyces albus Tremellomycetes Conv. Recovered 

FOTU_95 
Neosetophoma 
rosigena Dothideomycetes Conv. Recovered 

FOTU_124 
Neoascochyta 
desmazieri Dothideomycetes Conv. Recovered 

FOTU_32 
Symmetrospora 
coprosmae Other Conv. Recovered 

FOTU_531 Helicoma Dothideomycetes Conv. Recovered 
FOTU_845 Teratosphaeriaceae Dothideomycetes Conv. Recovered 
FOTU_155 Dioszegia Tremellomycetes Conv. Recovered 

FOTU_254 
Erythrobasidium 
yunnanense Other Conv. Recovered 

FOTU_1358 Kondoaceae Agaricostilbomycetes Conv. Recovered 
FOTU_2177 Vishniacozyma Tremellomycetes Conv. Recovered 
FOTU_12 Pleosporales Dothideomycetes Conv. Local Extinction 

FOTU_358 
Neofitzroyomyces 
nerii Other Conv. Local Extinction 

FOTU_604 
Itersonilia 
perplexans Tremellomycetes Conv. Recovered 

FOTU_2746 Dioszegia sp Tremellomycetes Conv. Recovered 
FOTU_1413 Capnodiales Dothideomycetes Conv. Recovered 

FOTU_1509 
Vishniacozyma 
victoriae Tremellomycetes Conv. Recovered 

FOTU_997 Corticiales Agaricomycetes Conv. Recovered 
FOTU_224 Exophiala equina Eurotiomycetes Conv. Recovered 

FOTU_6108 
Uwebraunia 
communis Dothideomycetes Conv. Recovered 

FOTU_5224 Talaromyces Eurotiomycetes Conv. Recovered 

FOTU_1213 
Zygophiala 
inaequalis Dothideomycetes Conv. Recovered 

FOTU_1036 Mycosphaerellaceae Dothideomycetes Conv. Local Extinction 
FOTU_518 Tulasnellaceae Agaricomycetes Conv. Recovered 

FOTU_781 
Plenodomus 
collinsoniae Dothideomycetes Conv. Recovered 

FOTU_989 Chaetothyriales Eurotiomycetes Conv. Recovered 
FOTU_447 Sampaiozyma Microbotryomycetes Conv. Recovered 

FOTU_567 
Rachicladosporium 
cboliae Dothideomycetes Conv. Recovered 
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Table B.3 (cont’d) 
FOTU_436 Pleosporales Dothideomycetes Conv. Recovered 
FOTU_4350 Didymella Dothideomycetes Conv. Recovered 
FOTU_849 Pleosporales Dothideomycetes Conv. Recovered 

FOTU_6184 
Diaporthe 
cotoneastri Sordariomycetes Conv. Recovered 

FOTU_741 Strelitziana albiziae Eurotiomycetes Conv. Recovered 
FOTU_319 unidentified fungus unidentified Conv. Recovered 
FOTU_1617 Lecanorales Other Conv. Recovered 
FOTU_2984 Xylodon flaviporus Agaricomycetes Conv. Recovered 

FOTU_1531 
Hyphodontia 
pallidula Agaricomycetes Conv. Recovered 

FOTU_946 Cystobasidiomycetes Other Conv. Recovered 
FOTU_1478 Cyphellophora Eurotiomycetes Conv. Recovered 
FOTU_1570 Erythrobasidium Other Conv. Recovered 
FOTU_306 Eucasphaeria sp Sordariomycetes Conv. Recovered 
FOTU_1563 Rhizophlyctis rosea Other Conv. Recovered 
FOTU_1211 unidentified fungus unidentified Conv. Recovered 
FOTU_246 Sordariales Sordariomycetes Conv. Recovered 
FOTU_279 Hypocreales Sordariomycetes Conv. Recovered 
FOTU_863 Sanchytriaceae Other Conv. Recovered 
FOTU_2335 Thecaphora Other Conv. Recovered 
FOTU_1561 Sistotrema sp Agaricomycetes Conv. Recovered 
FOTU_4259 Pleosporales Dothideomycetes Conv. Recovered 
FOTU_4459 Ceriporia humilis Agaricomycetes Conv. Recovered 

FOTU_134 
Bulleribasidium 
oberjochense Tremellomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_643 
Tilletiopsis 
washingtonensis Exobasidiomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_119 Symmetrospora Other Conv. 
Non-recovered or 
Indirect 

FOTU_94 
Sporobolomyces 
patagonicus Microbotryomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_222 unidentified Tremellomycetes Conv. Local Extinction 

FOTU_278 Taphrina sp Other Conv. 
Non-recovered or 
Indirect 

FOTU_195 
Dioszegia 
changbaiensis Tremellomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_89 Kondoa sp Agaricostilbomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_486 Saitozyma paraflava Tremellomycetes Conv. Local Extinction 
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Table B.3 (cont’d) 

FOTU_5171 
Tilletiopsis 
washingtonensis Exobasidiomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_2205 Pleosporales Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_825 Phyllozyma linderae Other Conv. 
Non-recovered or 
Indirect 

FOTU_536 Knufia Eurotiomycetes Conv. Local Extinction 

FOTU_2326 Microbotryomycetes Microbotryomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_6082 Phyllozyma Other Conv. 
Non-recovered or 
Indirect 

FOTU_1771 Spiculogloeomycetes Other Conv. 
Non-recovered or 
Indirect 

FOTU_1053 

Thamnolia 
vermicularis subsp. 
subuliformis Other Conv. 

Non-recovered or 
Indirect 

FOTU_1014 Kondoa Agaricostilbomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_4045 Pleosporales Dothideomycetes Conv. Local Extinction 

FOTU_6 
Mycosphaerella 
tassiana Dothideomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_13 
Hannaella 
coprosmae Tremellomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_35 Hannaella luteola Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_52 Dioszegia Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_34 Hannaella oryzae Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1225 Tremellales Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_66 
Sporobolomyces 
roseus Microbotryomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_267 Cyphellophora Eurotiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_154 Leptospora sp Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_824 Seimatosporium Sordariomycetes Conv. Local Extinction 

FOTU_642 
Entyloma 
polysporum Exobasidiomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_282 
Neodevriesia 
poagena Dothideomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_502 unidentified fungus unidentified Conv. 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_1271 Phaeosphaeriaceae Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_798 Golubevia pallescens Exobasidiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_6420 Coniothyrium sp Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_186 
Zymoseptoria 
verkleyi Dothideomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_2945 
Vishniacozyma 
victoriae Tremellomycetes Conv. Local Extinction 

FOTU_6163 Pleosporales Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_655 Tremellomycetes Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_767 Dioszegia Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_744 Sordariales Sordariomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_6436 Tilletiopsis Exobasidiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_293 Papiliotrema Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_963 
Tuber 
melanosporum Other Conv. Local Extinction 

FOTU_5225 Coniothyrium sp Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_158 
Vishniacozyma 
dimennae Tremellomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_1867 
Neosetophoma 
samararum Dothideomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_322 Torula Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_326 Mycosphaerellaceae Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1220 Taphrina communis Other Conv. 
Non-recovered or 
Indirect 

FOTU_1388 Cyphellophora Eurotiomycetes Conv. Local Extinction 

FOTU_971 Trichomeriaceae Eurotiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_362 Ganoderma Agaricomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_890 Hannaella sinensis Tremellomycetes Conv. Local Extinction 

FOTU_1086 Phaeosphaeria sp Dothideomycetes Conv. 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_1747 
Crocicreas 
cyathoideum Other Conv. Local Extinction 

FOTU_462 
Devriesia 
pseudoamericana Dothideomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_1488 Ascomycota unidentified Conv. 
Non-recovered or 
Indirect 

FOTU_1186 Helotiales Other Conv. 
Non-recovered or 
Indirect 

FOTU_1165 Curvularia Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_757 Pseudozyma pruni Other Conv. 
Non-recovered or 
Indirect 

FOTU_1464 Symmetrospora Other Conv. 
Non-recovered or 
Indirect 

FOTU_3417 Helotiales Other Conv. 
Non-recovered or 
Indirect 

FOTU_410 Herpotrichiellaceae Eurotiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_522 
Microdochium 
seminicola Sordariomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_6187 Protomyces inouyei Other Conv. 
Non-recovered or 
Indirect 

FOTU_1463 Trichomeriaceae Eurotiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1317 
Bensingtonia 
pseudonaganoensis Agaricostilbomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_3340 Pleosporales Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1637 Trichomeriaceae Eurotiomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_6748 
Tilletiopsis 
washingtonensis Exobasidiomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_1284 Tremellomycetes Tremellomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1872 Mycosphaerellaceae Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_409 Chaetosphaeriaceae Sordariomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1523 Bannoa Other Conv. 
Non-recovered or 
Indirect 

FOTU_589 Bensingtonia sp Agaricostilbomycetes Conv. Local Extinction 

FOTU_1947 Ustilaginaceae Other Conv. 
Non-recovered or 
Indirect 
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Table B.3 (cont’d) 

FOTU_2490 
Bensingtonia 
naganoensis Agaricostilbomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_233 
Penicillium 
decumbens Eurotiomycetes Conv. 

Non-recovered or 
Indirect 

FOTU_4518 Pleosporales Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_5596 Peroneutypa Sordariomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1939 Pleosporales Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_2004 Bensingtonia Agaricostilbomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1411 Bambusicola Dothideomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_1058 Protomyces inouyei Other Conv. 
Non-recovered or 
Indirect 

FOTU_157 Chaetomiaceae Sordariomycetes Conv. 
Non-recovered or 
Indirect 

FOTU_3934 Basidiomycota Other Conv. 
Non-recovered or 
Indirect 

FOTU_699 unidentified fungus unidentified Conv. 
Non-recovered or 
Indirect 

FOTU_1038 Ascomycota unidentified Conv. 
Non-recovered or 
Indirect 

FOTU_3552 Pseudocercospora Dothideomycetes Conv. 
Non-recovered or 
Indirect 
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APPENDIX C: Caulobacter Segnis Genome Sequencing 

 High molecular weight genomic DNA was extracted was using a guanidinium 

thiocyanate protocol as previously described [386]. Briefly, cells from 1mL of an overnight 

culture were pelleted and resuspended in .1 ml of Tris EDTA (TE) buffer with added RNAse A. 

Cells were then lysed with a lysis buffer composed of guanidinium thiocyanate, EDTA, and 

0.5% Sarkosyl. Next, samples were incubated at 60c for 15 minutes before adding .25 mL of 

7.5M ammonium acetate. Next, samples were placed on ice for 10 minutes prior to adding .5 mL 

of chloroform. Samples were then centrifuged, and the aqueous phase was then transferred to 

fresh tubes, mixed with .5 volumes of ice-cold isopropanol, and placed at room temperature for 

15 minutes. Following centrifugation, DNA pellets were washed three times with 70% ethanol 

and resuspended in .1 mL of TE buffer. The Caulobacter genome was sequenced at the 

Microbial Genome Sequencing Center (Pittsburgh, USA) through a combination of long read 

nanopore (Oxford, UK) sequencing and paired end 150 bp Illumina (San Diego, USA) 

sequencing for polishing. The genome was then assembled using Pilon and annotated using the 

National Center for Biotechnology Information Prokaryotic Genome Annotation Pipeline (NCBI 

PGAP) pipeline [387, 388].  

 The complete, circularized Caulobacter genome was 5,687,505 bp long and had 5,287 

genes. The isolate used in this study appears to be most closely related to Caulobacter segnis. 

The isolate appears to be a riboflavin auxotroph as it is missing early genes in the riboflavin 

biosynthesis pathway (ribD-E-AB-H locus), although these genes are present in Caulobacter 

crescentus (Figure C.1). Additionally, C. segnis RL271 had impaired growth in PYE media that 

had been stored for a month or more where light sensitive riboflavin would be expected to be 

lacking. The media again supported growth when supplemented with riboflavin. Regardless of 
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storage age, the media supported growth of C. crescentus without riboflavin supplementation 

(Figure C.2). Additionally, the isolate is lacking genes for the biosynthesis of the polar adhesin 

holdfast that is characteristic of most Caulobacter.  
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Figure C.1 - Caulobacter segnis RL271 lacks riboflavin biosynthesis genes.  A) Riboflavin 
biosynthesis pathway.  Riboflavin is synthesized from GTP and ribulose-5-phosphate via the 
indicated intermediate molecules.  The enzymes responsible for each chemical reaction are 
indicated in color.  Riboflavin is further modified to generate FMN and FAD.  B) Heatmap of the 
number of enzymes encoded by Caulobacter crescentus NA1000 (the widely studied model 
Caulobacter) and C. segnis RL271.  Full enzyme names with the corresponding enzyme 
commission numbers are in black.  Protein names are in color.  Bifunctional enzymes have two 
activities listed.  C) Genetic loci encoding riboflavin biosynthesis genes in Caulobacter sps.  The 
locus numbers for each gene are indicated below the operon structures.  C. segnis lacks the ribD-
E-AB-H locus.  Genes/proteins absent in C. segnis are blue; two orthologs of ribH (teal) are 
present in C. crescentus, but only one is present in C. segnis; the bifunctional ribFC (pink) is 
present in both genomes.  Unrelated genes at these loci are grey.   
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Figure C.2 - Riboflavin supplementation supports growth of Caulobacter segnis RL271.  
The complex growth medium, peptone-yeast extract (PYE) broth, supports growth of C. segnis 
RL271 when freshly prepared (T=0, blue dots).  Riboflavin is light sensitive.  Over relatively 
short time scales (~1 month), the same media stored in room light no longer supports robust 
growth unless supplemented with riboflavin.  Double strength (2X) PYE supports more growth 
than the standard strength recipe.  Note that C. crescentus, which encodes the genes for 
riboflavin synthesis, grows robustly in all these batches of PYE medium (not shown).   
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APPENDIX D: Current Curriculum Vitae  

Reid W. Longley 

Michigan State University | Department of Microbiology and Molecular Genetics 

3285 Molecular Plant Sciences Building | 1066 Bogue St. East Lansing, MI 48824 

longleyr@msu.edu  

Education: 

University of Montana  Missoula  Human Biology  BS,2016 
University of Montana Missoula Exercise Science BS,2016 
     

Research Experience: 
Graduate Researcher/ PhD Candidate: Department of Microbiology and Molecular Genetics, 

Michigan State University, November 2017- present (research advisor: Dr. Gregory Bonito). 

• Working on a project researching crop microbiome effects on crop health and yield. 

Additionally, studying the importance of the coral microbiome in changing ocean 

environments. Work includes extraction, next generation sequencing and preparation, 

PCR, bioinformatics.  

PhD Rotation Student: Department of Microbiology and Molecular Genetics, Michigan State 

University, August 2017 – November 2017, (research advisor: Dr. Matthew Schrenk) 

• Performed a 10-week rotation in Matthew Schrenk’s laboratory, extracted DNA from 

deep sea hydrothermal extremophiles. Gained skills in developing extraction techniques. 

Undergraduate Research/Laboratory Technician: Department of Biology, University of 

Montana, January 2015 – August 2017, (research advisor: Dr. Scott Miller). 

• Worked on various projects within the field of microbial ecology, Projects included: 

bacterial genetics, basic microbiology, genome assembly, and bacterial evolution. 

Mentorship Experience:  
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Marcela Tabares Ruiz: PhD rotation student in the Bonito lab in the fall of 2019. Gained skills in 

bioinformatics analyses and next generation sequencing analyses. 

Grace Kuza: Michigan State University undergraduate student Spring/Summer 2019. Assisted in 

curating culture collection of Fungi and Bacteria isolated from Soybeans. Gained skills in DNA 

extraction, PCR, and sterile technique. 

Sophia Fitzgerald: Denver University undergraduate student Summer 2019. REU student who 

aided in collection and organization of soybeans in the summer of 2018. Gained skills in DNA 

extraction, field sampling, and fungal and bacterial isolation. 

Sophie Gabrysiak: Michigan State University undergraduate student 2020-2022. Assisted in 

various tasks including plant care, experimental design, culturing of bacteria and fungi, and DNA 

extraction. 

Publications:  

Published (* designates equal contribution): 

1. Longley R*, Noel ZA*, Chilvers MI, Trail F, Bonito G. 2022. Non-target fungicidal 

disturbance in the soybean and corn phyllosphere lead to loss in network complexity 

and differential resilience under two management strategies. ISME Communications 

2:19. 

2. Liber J, Minier DH, Stouffer-Hopkins A, Van Wyk J, Longley R, Bonito G. 2022. 

Leaf litter fungal communities reflect pre-senescent leaf communities in a temperate 

forest ecosystem. PeerJ 10:e12701. 

3. Chen KH, Longley R, Bonito G, Liao HL. 2021. A Two-step PCR Protocol Enabling 
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Flexible Primer Choice and High Sequencing Yield for Illumina Miseq Meta-

Barcoding. Agronomy 11:7. 

4. Longley R, Noel ZA, Benucci GMN, Chilvers M, Trail F, Bonito G. 2020. Crop 

Management Impacts the Soy (Glycine max) Microbiome. Frontiers in Microbiology 

11:1116. 

5. Miller SR, Longley R, Hutchins PR, Bauersachs T. 2020. Cellular Innovation of the 

Cyanobacterial Heterocyst by the Adaptive Loss of Plasticity. Current Biology 30:1-7. 

6. Longley R*, Benucci GMN*, Mills G, Bonito G.2019. Fungal and bacterial 

community dynamics in substrates during the cultivation of morels (Morchella 

rufobrunnea) indoors. Fems Microbiology Letters 366: fnz215. 

7. Longley R*, Benucci GMN*, Zhang P, Zhao Q, Bonito G, Yu F. 2019. Microbial 

communities associated with the black morel Morchella sextelata cultivated in 

greenhouses. PeerJ 7: e7744. 

8. McCoy AG, Roth MG, Shay R, Noel ZA, Jayawardana MA, Longley RW, Bonito G, 

Chilvers MI. 2019. Identification of Fungal Communities Within the Tar Spot 

Complex of Corn in Michigan via Next-Generation Sequencing. Phytobiomes J. 3:3, 

235-243. 

In Preparation: 

1. Longley R, Benucci GMN, Pochon X, Bonito V, Bonito G. Post-bleaching 

microbiome assessment of stony coral survivors and casualties.  

2. Zemenick A, Longley R, Hughes D, Gordon S, Bonito G, Weber M. Multitrophic 

community of the phyllosphere influenced by the evolution of a novel leaf trait.  

3. Shemanski S, Hatlen RJ, Heger L, Sharma N, Bonito G, Longley R, Miles TD. 
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Blueberry Fruit Microbiome Varies by Tissue Type and Fungicide Treatment.  

4. Sultaire SM, Benucci GMN, Longley R, Bonito G, Roloff GJ. The influence of 

retention forestry on richness and composition of ectomycorrhizal fungi in chipmunk 

diet. 

5. Longley R, Robinson A, Liber J, Bryson A, LaButti K, Riley R, Barry K, Grigoriev 

IV, Desiro A, Jones A, Misztal P, Chain P, Bonito G. Comparative genomics of 

intracellular Mollicutes-related bacterial endosymbionts of Fungi. 

6. Longley R, Trail F, Chilvers M, Bonito G. Hub Microbe Inoculation Impact on 

Soybean Response to Low Moisture Stress. 

Competitive Honors/Awards 
2021: Michigan State University Dissertation Completion Fellowship 

2021: Microbiology and Molecular Genetics Ralph Evans Award 

2020: Department of Energy Office of Science Graduate Student Research Fellowship 

2020: The James M. Tiedje Graduate Student/Post-doctorate Travel Award in Microbial 

Ecology  

2020: Russell B. Duvall Travel Award 

2019: Dr. C. A. Reddy and Sasikala Reddy Endowed Graduate Award in Microbial Physiology-

Ecology 

Fall 2018-2020: Plant Biotechnology for Health and Sustainability NIH Fellow 

Summer 2018: Kellogg Biological Station Summer Graduate Fellowship 

2016: Montana Institute on Ecosystems Summer Fellowship 

Spring 2013-2016: University of Montana Dean’s list 

Fall 2014: University of Montana Dean’s list 

Spring 2014: Academic All-Big Sky Track and Field 
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Fall 2013: Academic All-Big Sky Cross Country 

Relevant Extracurricular Activities: 

Plant Biotechnology for Health and Sustainability Symposium: Serving on organizing committee 

for 2020 symposium. Helping to plan topics, invite speakers, and organize symposium events. 

Smith Foray:  Served on the planning committee for the 2019 Smith Foray which was a 

mushroom foray for professional mycologists of the Midwest held at Kellogg Biological Station.  

Fascination of Plants Day: Michigan State University community outreach event in May 2019 to 

teach to community members interested in learning more in plant biology. Volunteered at a 

booth that displayed the diversity and importance of mushrooms. 

STEAM Night: Volunteered alongside other Michigan State University Graduate students in 

February 2019 at Donley Elementary School to teach elementary schoolers and their parents 

about plant-associated microbes and their interactions. 

Invited Talks/Presentations: 

1. Department of Energy Genomic Science Program 2022:  Poster Presentation – 

Genomics of Mollicutes Related Endobacteria. Longley R, Robinson A, Liber J, 
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5. Mycological Society of America Conference 2019: Poster Presentation- Soybean 
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2019: Poster Presentation- Soybean Associated Root and Soil Fungal Communities 

Under Three Different Managements. Reid Longley, Martin Chilvers, Frances Trail, 

Gregory Bonito. 

7. International Mycological Congress 2018: Analysis of coral-associated fungal and 

microbial communities in Fiji using high throughput amplicon sequencing. Reid 
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Gregory Bonito 

8. Kellogg Biological Station Undergraduate Symposium 2018: Poster Presentation- The 
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