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ABSTRACT

APPLICATION OF DENSITY FUNCTIONAL THEORY IN NUCLEAR STRUCTURE

By

Tong Li

The nuclear density functional theory (DFT) is a microscopic self-consistent framework

suitable for describing heavy nuclei and performing large-scale studies. In this dissertation I

discuss my research works on the development and application of the Skyrme nuclear-DFT

framework, covering a broad range of topics, including the nucleon localization in rotating

systems, the origin of reflection-asymmetric deformations, the parameter calibration for beta

decays, and the development of a new coordinate-space DFT solver.

The nucleon localization function (NLF), discussed in the first part, is a useful tool for

the visualization of structure information. It has been utilized to characterize clustering and

shell structure. How the NLF pattern evolves in rotating systems, how it visualizes internal

nuclear structure, and how it is connected with single-particle (s.p.) orbits are discussed in

this dissertation. The second part deals with nuclei having reflection-asymmetric shapes,

which are important candidates for the search of permanent electric dipole moments. In this

dissertation, the origin of pear-like deformation is investigated through both the multipole

expansion of the energy density functional and the spectrum of canonical s.p. states. The-

oretical predictions of beta-decay rates are discussed next; they are important for r-process

simulations that involves nuclei whose experimental beta-decay data are unknown. To pro-

vide reliable predictions with quantified uncertainties, the χ2 optimization is performed to

constrain parameters that significantly affect beta-decay transitions in proton-neutron finite-

amplitude-method calculations. Besides a well calibrated functional, a reliable and efficient

DFT solver is also crucial. The Hartree-Fock-Bogoliubov (HFB) method in the coordinate



space is preferred for deformed and weakly bound nuclei, as solvers based on basis expansions

often have difficulty correctly describing continuum effects. A new HFB solver based on the

canonical-basis HFB formalism in the three-dimensional coordinate space is developed in

this dissertation. It is a well parallelized solver and has been carefully benchmarked against

other established HFB solvers.
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Chapter 1

Introduction

1.1 Nuclear density functional theory (DFT)

Being a many-body quantum system, the atomic nucleus is difficult to describe with theoret-

ical and computational models. The nuclear density functional theory (DFT) [1, 2] provides

a microscopic self-consistent mean-field model suitable for studying medium- to heavy-mass

nuclei and for performing global surveys over the whole nuclear landscape. In a mean-field

model, every nucleon moves approximately in a mean potential generated by other nucle-

ons, and the concept of the mean field is justified by shell effects observed experimentally

(e.g., the existence of magic numbers); see Ref. [3] for a comprehensive discussion. This

dissertation discusses my research on the applications of the nuclear DFT.

In theoretical and computational studies of nuclear structure, it is of great importance to

choose appropriate degrees of freedom and approximations to achieve good descriptions with

computational expenses under control. From this perspective, the nuclear DFT model lies

between the shell model [4, 5] and microscopic-macroscopic (mic-mac) method [6, 7, 8, 9, 10].

Compared with the DFT model, the mic-mac method is computationally inexpensive but

not reliable enough for extrapolations beyond experimentally accessible region, while the ab

initio approach [11] and shell model can provide beyond-mean-field descriptions but are too

computationally expensive for heavy systems and large-scale surveys. Hence, the nuclear

DFT is usually the appropriate choice for such studies.

Within the nuclear-DFT framework, the energy of a system is given by the energy density
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functional (EDF), and there are three functional forms that are widely used – Skyrme [12,

13, 14, 15], Gogny [16, 17, 18] and relativistic [19, 20] EDFs. Inside each category, there also

exist variations and different parameterizations. This dissertation focuses on the application

of the Skyrme DFT; the underlying theoretical framework is presented in Chapter 2.

1.2 Deformation, rotation and nucleonic localization

Nuclear deformation comes from spontaneous symmetry breaking related to the nuclear

Jahn-Teller effect [21, 22, 23, 24], a concept originally proposed in molecular physics to

explain the geometric distortion of non-linear molecules.

Although the vast majority of isotopes exhibit spherical, prolate or oblate ground-state

shapes, there is abundant experimental evidence supporting the existence of stable pear-

like deformations which break the reflection symmetry in the intrinsic frame [25, 26]. As

even-even nuclei with reflection-asymmetric shapes usually have low-energy negative-parity

excitations related to octupole collective modes, they are also referred to as “octupole de-

formed.” Atoms with pear-shaped nuclei have also been shown to be good laboratories for

searching the permanent electric dipole moment [27, 28, 29], which is strongly correlated

with the nuclear octupole moment [30]. Within the nuclear-DFT framework, a global survey

for reflection-asymmetric ground states of even-even nuclei has recently been conducted in

Ref. [31]. Following this work, we investigate the microscopic origin of reflection-asymmetric

shapes from two perspectives: the multipole expansion of the EDF and single-particle (s.p.)

spectra. An in-depth discussion on this topic is given in Chapter 4.

A number of nuclear collective modes, such as rotations and vibrations, are related to

nuclear deformation. The observation of rotational bands provides abundant information

about the nuclear ground-state shape and underlying shell structures, as well as the interplay
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between collective and s.p. degrees of freedom [32, 33, 34, 35]. This interplay results from

the fact that one cannot distinguish slow and fast wave-function components in nuclear

systems as is usually done in molecules. Perfect nuclear rotors are rare and the adiabatic

approximation is usually inapplicable; thus, the fully self-consistent and microscopic nuclear-

DFT model is a good choice for the descriptions of nuclear rotation.

Recently, the nucleon localization function (NLF) has been employed in the nuclear-

DFT studies for better visualization of clusters and shell effects. It was originally introduced

in electronic-DFT studies to characterize shell structure in atoms and chemical bonds in

molecules [36, 37, 38, 39]. In nuclear physics, the NLF has been proved to be a useful tool

for the identification and description of (i) clusters in light nuclei [40, 41, 42] and heavy-ion

collisions [43], (ii) fragment formation along the fission pathway [44, 45, 46, 47, 48, 49], (iii)

nuclear pasta phases in the inner crust of neutron stars [41], and (vi) shell structures of

electrons and nucleons in Oganesson [50]. Compared with the particle distribution that is

quite smooth in the nuclear interior, the NLF clearly displays the internal structure of a

nucleus through its characteristic oscillating or cluster patterns. In Chapter 3 I discuss how

the NLF characterizes the nuclear response to rotation and show why the NLF constitutes

a powerful visualization tool for nuclear structure studies. Based on my work, the concept

of the Pauli kinetic energy is brought up in Ref. [51], which quantifies the effect of the Pauli

exclusion principle in the heavy-ion collision.

1.3 Model calibration for beta-decay calculations

How heavy elements are created in the universe is a fascinating open question [52]. Various

astrophysical processes contribute to the synthesis of these elements, and both slow and

rapid neutron-capture processes (s and r processes) are believed to be predominant [53, 54,

3



55, 56, 57]. The study of these processes requires ample astronomical observations as well

as data on the properties of nuclei involved. Theoretical predictions of beta-decay rates are

crucial nuclear inputs for the simulations of some astrophysical processes, especially the r

process that traverses the neutron-rich region that experiments cannot currently access. The

competition between neutron captures, photodissociation, and beta decays determines how

the r process proceeds in different astronomical environments, and the final abundances of

stable nuclei are strongly affected by the beta-decay rates of their progenitors [7, 58, 59, 60,

61, 62]. Therefore, the reliability of r-process simulations depends heavily on the quality of

beta-decay predictions.

Within the nuclear-DFT framework, the finite amplitude method (FAM) is an efficient

approach for the solution of the (quasiparticle) random phase approximation (QRPA) [63,

64]. Thanks to recent developments of the Skyrme proton-neutron FAM (PNFAM), it is

now feasible to calculate charge-changing transitions in deformed nuclei and to conduct

large-scale calculations for beta-decay rates [62, 65, 66, 67]. In the PNFAM, the time-odd

isovector Skyrme couplings, isoscalar pairing strength, and effective axial-vector coupling

have a strong impact on beta-decay transitions, but they are not constrained by ground-

state properties of even-even nuclei and should thus be calibrated based on experimental

data related to beta decays. In this work we carry out the χ2 optimization for the model

calibration, following the procedure discussed in Refs. [68, 69]. After the model calibration

we will be able to provide reliable predictions with quantified uncertainties for r-process

simulations. Details pertaining to this topic are presented in Chapter 5.

4



1.4 Reliable and efficient DFT solver in coordinate space

Exotic nuclei, which are far from the valley of stability and hence weakly bound, provide

rich information that helps us improve nuclear models; they also play important roles in a

number of astrophysical processes. Within the nuclear-DFT framework, the ground state

of an even-even nucleus is solved by the Hartree-Fock (HF) + Bardeen-Cooper-Schrieffer

(BCS) or Hartree-Fock-Bogoliubov (HFB) methods. The former method is simpler but can

be problematic in exotic nuclei, and the full HFB scheme that treats nuclear pairing in a

fully self-consistent way should instead be employed for such systems [70, 71, 72, 73, 74].

The HFB calculations of exotic nuclei, however, can be computationally expensive, as a

large model space is needed for weakly bound s.p. states; these s.p. states have broad density

distributions and are strongly affected by the continuum. The problem becomes even more

severe for symmetry-unrestricted calculations.

There have been a number of HF+BCS and HFB solvers developed for nuclear-DFT

studies, which can be divided into two categories: Some are formulated in the coordinate-

space representation while others are based on basis expansions of wave functions. Table 2 in

Ref. [75] gives a summary of these solvers. For exotic nuclei, the coordinate-space HFB solver

is a preferred choice as basis-based solvers often have difficulty producing correct asymptotic

behaviors of weakly bound s.p. orbits. We have developed a reliable and efficient Skyrme-

HFB solver HFBFFT in the three-dimensional Cartesian coordinate representation with no

spatial symmetry imposed. It is named after the fast-Fourier-transform (FFT) technique

used for numerical differentiation. The new solver is based on the canonical-basis HFB

formalism proposed in Refs. [76, 77] and finds the HFB solution via the damped gradient

method [76, 78, 79, 80, 81]. Compared with the quasiparticle basis, the canonical basis
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does not have an intractably huge level density as canonical states are spatially localized;

the computational cost is thus under control. Furthermore, HFBFFT is well optimized and

highly parallelized; it is also benchmarked against other established HFB solvers. Numerical

details and benchmark results can be found in Chapter 6.

1.5 Organization of this dissertation

This dissertation is organized as follows. Chapter 2 discusses the theoretical formulation of

the Skyrme-DFT approach and covers the numerical methods employed in following chapters.

The study of the NLF in rotating systems can be found in Chapter 3, which is followed by

the investigation about the origin of reflection-asymmetric shapes in Chapter 4. In Chapter

5 I discuss the model calibration for beta-decay calculations, and Chapter 6 describes the

new solver HFBFFT. Finally, the conclusions are given in Chapter 7.
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Chapter 2

Theoretical framework

The foundation of the DFT is the Hohenberg-Kohn (H-K) theorem [82] and Kohn-Sham

(K-S) equation [83]. Here only the main points of the formalism are discussed, while a

comprehensive discussion can be found in Ref. [84].

The H-K theorem states that for a many-body quantum system in an external field

vext(x), there exists a unique energy functional Ev[ρ] of the density ρ(x) such that

Ev[ρ] = F [ρ] +
∑∫

dx vext(x)ρ(x), (2.1)

which is minimized if and only if ρ(x) is the ground-state density. Here x = (r, s, τ) includes

spatial, spin, and isospin coordinates. The F [ρ] part is independent of the external field and

thus universal. Although the H-K theorem does not tell how F [ρ] should be constructed, it

allows us to search for or to guess an approximate functional. The K-S theory suggests a

practical approach to minimize the energy functional: It constructs an auxiliary system of

non-interacting particles in the K-S potential, whose density is identical to the true ground

state of interacting particles in the external field vext(x). The many-body wave function of

the auxiliary system is a Slater determinant, simpler to handle than the true wave function

which is a superposition of Slater determinants.

The DFT framework was originally developed in the context of electronic systems. In a

nuclear system, however, a Slater determinant given by the K-S equation is not enough to

account for pairing correlations, so the HFB method has been utilized, in which the nuclear
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system is described by a product state consisting of non-interacting quasiparticles. In the

following I outline the theoretical framework of the Skyrme DFT, which has been widely

employed for the global studies of various nuclear properties, such as ground-state energies,

deformations, and low-lying excitations [1, 2, 85, 86].

2.1 Skyrme energy density functional

In this section we follow the notation employed in Refs. [1, 15] and define various local

densities and the Skyrme EDF.

2.1.1 Local densities

Starting from a many-body wave function |Ψ⟩ and a complete s.p. basis {ψ1, ψ2, · · · }, one

can define the one-body density matrix ρ and pairing tensor κ as

ρij = ⟨Ψ|â†j âi|Ψ⟩, κij = ⟨Ψ|âj âi|Ψ⟩, (2.2)

where â†i and âi create and annihilate, respectively, a nucleon in the s.p. state ψi. In the

coordinate space, the non-local density matrix and pairing tensor can be similarly defined as

ρ
(
rsτ, r′s′τ ′

)
= ⟨Ψ|â†

r′s′τ ′ ârsτ |Ψ⟩, κ
(
rsτ, r′s′τ ′

)
= ⟨Ψ|âr′s′τ ′ ârsτ |Ψ⟩, (2.3)

where â
†
rsτ and ârsτ create and annihilate, respectively, a nucleon at point r with spin

s = ±1
2 and isospin τ = ±1

2 .
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In terms of spin and isospin components, the density matrix can be decomposed as

ρ
(
rsτ, r′s′τ ′

)
=

1

4

[
ρ00
(
r, r′

)
δss′ + s00

(
r, r′

)
· σss′

]
δττ ′

+
1

4

+1∑
t3=−1

[
ρ1t3

(
r, r′

)
δss′ + s1t3

(
r, r′

)
· σss′

] (
τ⃗ττ ′

)
t3

(2.4)

where σss′ =
(
s|σ|s′

)
and τ⃗ττ ′ =

(
τ |τ⃗ |τ ′

)
are matrix elements of Pauli matrices in spin and

isospin spaces, respectively. Then we have

ρ00
(
r, r′

)
=
∑
sτ

ρ
(
rsτ, r′sτ

)
, (2.5a)

ρ1t3

(
r, r′

)
=
∑
sττ ′

ρ
(
rsτ, r′sτ ′

) (
τ⃗τ ′τ

)
t3
, (2.5b)

s00
(
r, r′

)
=
∑
ss′τ

ρ
(
rsτ, r′s′τ

)
σs′s, (2.5c)

s1t3

(
r, r′

)
=
∑
ss′ττ ′

ρ
(
rsτ, r′s′τ ′

)
σs′s

(
τ⃗τ ′τ

)
t3
. (2.5d)

Starting from the non-local density matrix, one can define local densities and currents as

follows.

1. Time-even densities:

ρtt3(r) = ρtt3(r, r), (2.6a)

τtt3(r) = ∇ ·∇′ρtt3
(
r, r′

)∣∣∣
r=r′

, (2.6b)

Jtt3(r) =
i

2

(
∇′ −∇

)
⊗ stt3

(
r, r′

)∣∣∣∣
r=r′

. (2.6c)

These are the particle density, kinetic density, and spin-current tensor, respectively.

They do not change sign under the time-reversal operation.
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2. Time-odd densities:

stt3(r) = stt3(r, r), (2.7a)

jtt3(r) =
i

2

(
∇′ −∇

)
ρtt3

(
r, r′

)∣∣∣∣
r=r′

, (2.7b)

T tt3(r) = ∇ ·∇′stt3
(
r, r′

)∣∣∣
r=r′

, (2.7c)

F tt3
(r) =

1

2

(
∇⊗∇′ +∇′ ⊗∇

)
· stt3

(
r, r′

)∣∣∣
r=r′

. (2.7d)

These are the spin density, current, spin-kinetic density, and tensor-kinetic density,

respectively. They change sign under the time-reversal operation.

For a stationary state of an even-even nucleus, all the time-odd densities vanish due to

the time-reversal symmetry. As for the spin-current tensor J, only its anti-symmetric part

is usually considered in the Skyrme EDF, which can be written as the spin-orbit current

J tt3 =
∑
ijk ϵijkei

(
ej · J · ek

)
, where ei is the unit vector in the i direction and ϵijk is the

Levi-Civita symbol.

Usually the proton-neutron mixing is not considered, which means τ = τ ′ in Eq. (2.3)

and t3 = 0 in Eqs. (2.4) ∼ (2.7). In this case we can define density matrices separately for

neutrons and protons as

ρq(rs, r
′s′) = ρ(rsτq, r

′s′τq), (2.8)

where q ∈ {n, p} stands for neutrons or protons and τq = ±1
2 for q = n or p. Then the local

densities of neutrons and protons are given by

ϱ00 = ϱn + ϱp, ϱ10 = ϱn − ϱp, (2.9)
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where ϱ = ρ, τ, J,J , s, j,T ,F .

As for the pairing channel, instead of the pairing tensor κ, it is more convenient to

formulate the EDF in terms of the pairing density matrix

ρ̃
(
rsτ, r′s′τ ′

)
= −2s′κ(rsτ ; r′,−s′, τ ′), ρ̆

(
rsτ, r′s′τ ′

)
= 4s′τ ′κ(rsτ ; r′,−s′,−τ ′), (2.10)

where ρ̃ is usually adopted when there is no proton-neutron mixing, while ρ̆ is more conve-

nient to use in the isospin representation. One can decompose ρ̆
(
rsτ, r′s′τ ′

)
in the same

way as Eq. (2.4) and then define various local quantities following Eqs. (2.5) ∼ (2.7). But

in this dissertation we only care about the time-even pairing density

ρ̆1t3(r) =
∑
sττ ′

ρ̆
(
rsτ, rsτ ′

) (
τ⃗τ ′τ

)
t3
, (2.11)

and time-odd pairing spin density

s̆00(r) =
∑
ss′τ

ρ̆
(
rsτ, rs′τ

)
σs′s. (2.12)

In the case of no proton-neutron mixing, it is more convenient to use the “tilde” density

ρ̃
(
rsτ, r′s′τ ′

)
and define local neutron and proton pairing densities separately:

ρ̃q(r) =
∑
ss′

ρ̃q(rsτq, r
′sτq), q ∈ {n, p}. (2.13)

While the particle density ρq(r) gives the probability of finding a nucleon at position r,

the pairing density ρ̃q(r) describes the enhancement of the probability of finding a pair of

nucleons with opposite spins due to the pairing correlation.
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2.1.2 Skyrme EDF formalism

Within the Skyrme EDF framework, the total energy of a nucleus can be written as an

integral over the whole space:

E =

∫
drH(r) =

∫
dr
[
Hkin(r) +HSk(r) +Hpair(r) +HCoul(r) +Hcm(r)

]
, (2.14)

where H(r) is the energy density (ED) that consists of various terms that are discussed in

the following.

The kinetic ED is

Hkin(r) =
∑

q∈{n,p}

ℏ2

2mq
τq(r). (2.15)

Some parameterizations assume mn = mp = m and the kinetic ED then becomes ℏ2
2mτ00.

The Skyrme interaction ED (in the particle-hole channel) is

HSk(r) =
1∑
t=0

t∑
t3=−t

H(even)
tt3

(r) +H(odd)
tt3

(r), (2.16)

where

H(even)
tt3

(r) = C
ρ
t ρ

2
tt3

+ C
∆ρ
t ρtt3∇

2ρtt3 + Cτt ρtt3τtt3 + CJt J
2
tt3

+ C
ρ∇J
t ρtt3∇ · J tt3 (2.17)

is bilinear in time-even local densities, and

H(odd)
tt3

(r) =Cst s
2
tt3

+ C∆s
t stt3 ·∇

2stt3 + C
j
t j

2
tt3

+ CTt stt3 · T tt3

+ C
s∇j
t stt3 ·∇× jtt3 + CFt stt3 · F tt3

+ C∇s
t

(
∇ · stt3

)2 (2.18)
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is bilinear in time-odd local densities. All the coupling constants C can be density-dependent,

but in most Skyrme parameterizations only C
ρ
t and Cst depend on the isoscalar particle

density ρ00 as

Ct [ρ00] = Ct[0] + (Ct [ρc]− Ct[0])

(
ρ00
ρc

)γ
, (2.19)

where ρc ≈ 0.16 fm−3 is the nuclear saturation density. The Skyrme interaction ED can

be either derived from the Hartree-Fock calculation with an effective zero-range momentum-

dependent two-body nuclear force proposed by Skyrme [87, 88], or from the density-matrix

expansion without reference to an effective force [89, 90]. The first option results in strong

dependencies among coupling constants C, while the latter offers more degrees of freedom.

Terms involving CJt , CTt , CFt and C∇s
t in Eqs. (2.17) and (2.18) are known as tensor terms,

as they are related to the local two-body tensor interaction [87, 88, 91, 15]. There are a

number of publications discussing the effects of tensor terms; see, e.g., Refs. [92, 93, 94] for

systematic discussions.

The pairing ED (in the particle-particle channel) is usually based on a density-dependent

δ force. When the isospin symmetry is preserved, it can be written as

Hpair(r) =
1

8

[
1− ρ00(r)

ρref

]V0 |s̆00|2 + V1

1∑
t3=−1

∣∣∣ρ̆1t3∣∣∣2
 , (2.20)

where V0 and V1 are isoscalar and isovector pairing strengths, respectively. When the proton-

neutron mixing is absent, we can break the isospin symmetry by assigning different pairing

strengths for neutrons and protons:

Hpair(r) =
1

4

∑
q∈{n,p}

Vq

[
1− ρ00(r)

ρref

]
|ρ̃q|2. (2.21)
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One can adjust the reference density ρref for different types of density dependencies [95, 96].

A pure contact interaction (volume pairing) corresponds to ρref → ∞; a value around the

nuclear-matter saturation density ρref = ρc leads to pairing around the nuclear surface

(surface pairing); any value in between delivers a mixed-pairing prescription. A widely used

value is ρref = 0.32 fm−3 = 2ρc.

The Coulomb term is

HCoul(r) =
e2

2

∫
dr

ρp(r)ρp
(
r′
)

|r − r′|
− 3e2

4

(
3

π

)1
3
ρ
4
3
p (r), (2.22)

where the second term (exchange term) is given by the Slater approximation.

As for the center-of-mass (c.m.) correction Hcm(r), there are several recipes and only

those employed in this dissertation are discussed. In Skyrme parameterizations SkM* [97]

and SLy4 [98], the c.m. correction is introduced by renormalizing the mass of nucleons:

1
m → 1

m

(
1− 1

A

)
, where A is the number of nucleons in a nucleus. This mass renormalization

is derived from an approximate c.m. correction [86, 99]

Ecm = E
(diag)
cm =

1

2m

〈
A∑
k=1

p̂2k

〉
. (2.23)

In UNEDF1-HFB [100], a parameterization designed for the study of fission, however, no

c.m. correction is added, because the c.m. correction is not additive in the particle number

and causes problems in fission calculations [101].

There are a number of model parameters in the Skyrme EDF, which should be adjusted

to reproduce selected experimental data. Thus, there exist various Skyrme parameterizations

that are fitted to different data sets with probably different assumptions. The fit data and
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underlying assumptions are based on the selection of nuclear properties that researchers

want to describe well. For example, the energies of fission isomers are included in the fits of

UNEDF1 [101] and UNEDF1-HFB [100] so that the nuclear fission can be well described by

these two parameterizations.

2.2 Hartree-Fock-Bogoliubov method

2.2.1 HFB equations in the quasiparticle basis

Within the nuclear-DFT framework, the ground state of an even-even nucleus is obtained

through the variational principle. We choose the product state as the trial wave function

and minimize the total energy under various constraints, which leads to the self-consistent

HFB equation [1, 2, 3].

A product HFB state |Φ⟩ is a vacuum with respect to quasiparticles:

β̂k|Φ⟩ = 0 for all k = 1, 2, 3, · · · , (2.24)

where the creation and annihilation operators of quasiparticles are defined by the Bogoliubov

transformation:

β̂
†
k =

∑
l

(
Ulkâ

†
l + Vlkâl

)
, β̂k =

∑
l

(
U∗
lkâl + V ∗

lkâ
†
l

)
. (2.25)

This transformation can be written in a compact manner as

 β̂

β̂†

 = W†

 â

â†

 =

U† V †

V T UT


 â

â†

 . (2.26)

15



The matrix W must be unitary to ensure that β and β† obey the canonical anticommutation

relations for fermions. Combining Eqs. (2.25) and (2.2), we can express the density matrix

and pairing tensor of the quasiparticle vacuum |Φ⟩ as

ρ = V ∗V T , κ = V ∗UT . (2.27)

In general, the product state |Φ⟩ does not conserve neutron or proton numbers, so La-

grange multipliers need to be introduced to constrain average particle numbers. The total

HFB Routhian is then written as

R [ρ, κ, κ∗] = E [ρ, κ, κ∗]−
∑

q∈{n,p}
ϵ
(q)
F

〈
N̂q

〉
, (2.28)

where N̂q is the particle number operator for neutrons (q = n) or protons (q = p), and

the Lagrange multipliers ϵ(q)F are also known as chemical potentials or Fermi energies. The

minimization of R with regard to ρ and κ yields the HFB equation:

H

Uk
Vk

 =

h− ϵF ∆

−∆∗ −h∗ + ϵF


Uk
Vk

 = Ek

Uk
Vk

 , (2.29)

where h is called the HF mean field while ∆ is the pairing field. The eigenvector
(
Uk
Vk

)
is

the k-th column of W and the corresponding eigenvalue Ek gives the quasiparticle energy.

Uk and Vk are often referred to as the upper and lower components of the quasiparticle wave

function, respectively. The matrix elements of H are given by

hij =
δE [ρ, κ, κ∗]

δρji
= h∗ji, ∆ij =

δE [ρ, κ, κ∗]
δκ∗ij

= −∆ji, (ϵF)ij = δijϵ
(qi)
F , (2.30)
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where qi ∈ {n, p} is the isospin of the s.p. state i. One should note that the expression of

ϵF will not have the above simple form when there is proton-neutron mixing [15]. Explicit

expressions of these matrix elements can be found in a number of publications, e.g., Refs.

[1, 15, 86]. Generally speaking, the HFB Hamiltonian depends on the solution U and V , so

the HFB equation is non-linear and must be solved in a self-consistent iterative approach

(e.g., iterative diagonalization or gradient descent). The HFB equation (2.29) is derived

from the variation with respect to the density matrix ρ and pairing tensor κ, but one can

also replace κ with the pairing density ρ̃ or ρ̆ and obtain a similar equation that obviously

yields the same physics [15, 70].

When pairing collapses in a closed-shell system, κ = 0, ∆ = 0, and Eq. (2.29) reduces to

the HF equation that only involves the diagonalization of the HF mean field h. Meanwhile,

the product state |Φ⟩ becomes a Slater determinant that has conserved neutron and proton

numbers. Therefore, the HF approach can be treated as a special case of the HFB method.

Based on the HF method, the pairing correlation can be included via the BCS approximation,

and the HF+BCS approach is less computationally expensive than the full HFB method.

However, the HF+BCS method can produce an unphysical particle gas surrounding the

nucleus and thus a full HFB scheme is preferred [72]. It should be noted that in both

HF+BCS and HFB frameworks, the pairing-rearrangement term brought by the density

dependence of the pairing functional is also included in the HF mean field h.

The HFB equation is numerically solved in a truncated model space, and it is well known

that pairing functionals based on the δ interaction, such as those defined in Eqs. (2.20, 2.21),

diverge as the model space increases, so a cutoff has to be imposed on the pairing-active space

[70, 72, 102]. This cutoff can be done in the quasiparticle space: The contribution of one

quasiparticle state to all the densities (including the pairing density or pairing tensor) is
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multiplied by a function of the quasiparticle energy. A commonly used soft cutoff function

is [103, 104]

w(e) =
1

1 + exp
(
e−Ecut
∆Ecut

) , (2.31)

where Ecut is the cutoff energy, ∆Ecut provides smearing around E0, and e is the reference

(equivalent) s.p. energy

ek = (1− 2Pk)Ek + ϵ
(qk)
F , (2.32)

where Ek is the quasiparticle energy and Pk represents the norm of the lower component Vk.

This reference spectrum is similar to the spectrum of the canonical basis; the definition of

the canonical basis is to be presented in the next section. When ∆Ecut → 0, w(e) becomes

a hard cutoff at energy Ecut.

2.2.2 HFB equations in the canonical basis

Besides the formulation based on quasiparticles, the HFB theory can also be formulated in the

s.p. basis of canonical states (or natural orbitals), in which the one-body density matrix ρ is

diagonal. The connection between the quasiparticle and canonical states is discussed in Refs.

[72, 105]. On the one hand, once all the quasiparticle states are obtained, the canonical basis

can be computed by diagonalizing the density matrix ρ, and the eigenvalues of ρ represent

the occupations of corresponding canonical states. On the other hand, one can directly solve

the HFB problem in the canonical basis without any reference to the quasiparticle states.

The canonical-basis HFB formalism adopted in my work was first discussed in Ref. [76] and

further developed in [77].

The canonical basis is given by a set of orthonormal s.p. wave functions ψα with occu-

18



pation amplitudes vα:

{ψα, vα, α = 1, ...,Ω} , vα ∈ [0, 1], (2.33)

where v2α and ψα are the eigenvalues and eigenvectors of the density matrix ρ, respectively,

and Ω is the size of the active s.p. space. The non-occupation amplitude is defined as

uα =
√
1− v2α. In the canonical basis, the HFB product state takes the BCS-like form

|Φ⟩ =
∏
α>0

(
uα + vαâ

†
αâ

†
α

)
|0⟩, (2.34)

where |0⟩ is the vacuum state, â†α generates a particle in the state ψα, and α is the conjugate

partner of α that corresponds to the same eigenvalue of ρ. In this section we focus on the

stationary state of an even-even nucleus, so the partner α is assumed to be the time-reversed

state of α.

The density matrix in the coordinate space can be expressed in terms of canonical wave

functions:

ρ
(
rsτ, r′s′τ ′

)
=
∑
α

v2αψα(r, s, τ)ψ
∗
α(r

′, s′, τ ′), (2.35)

from which one can calculate all the local densities involved in the particle-hole channel.

Meanwhile, the pairing density matrix is

ρ̃
(
rsτ, r′s′τ ′

)
=
∑
α

uαvα
(
−2s′

)
ψα(r

′,−s′, τ ′)ψα(r, s, τ). (2.36)

Without proton-neutron mixing, the local pairing density can be written as

ρ̃q(r) =
∑
α∈q

uαvα
∑
s

(−2s)ψα(r,−s)ψα(r, s), (2.37)
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which can be further simplified when the conjugate partner α is the time-reversed state of

α:

ρ̃q(r) =
∑
α∈q

∑
s

uαvα |ψα(r, s)|2. (2.38)

One should note that pairing cutoffs defined in the canonical and quasiparticle bases are

not fully equivalent, and one way to achieve equivalence is to employ a pairing functional

that does not require a cutoff (e.g., the momentum-dependent pairing functional proposed

in Ref. [77]); but the effect brought by the difference should be minor when the cutoff is high

enough.

The total HFB Routhian to minimize in the canonical-basis representation is

R [ψ, ψ∗, v] =E
[
ρ [ψ, ψ∗, v] , ρ̃ [ψ, ψ∗, v] , ρ̃† [ψ, ψ∗, v]

]
−

∑
q∈{n,p}

ϵ
(q)
F

∑
α∈q

v2α −
∑
αβ

λαβ
(
⟨ψβ |ψα⟩ − δαβ

)
,

(2.39)

where ϵ(q)F is the Fermi energy of neutrons (q = n) or protons (q = p), and λ is the matrix of

Lagrange multipliers that guarantee the orthonormality of canonical states. The HFB energy

E here is originally formulated as a functional of the density matrix ρ, pairing density

matrix ρ̃ and its Hermitian conjugate ρ̃† (see Sec. 2.1), which then becomes a functional

of canonical wave functions ψ, their complex conjugates ψ∗ and occupation amplitudes v

through Eqs. (2.35, 2.36). Due to ⟨ψβ |ψα⟩ = ⟨ψα|ψβ⟩∗, the quantities we need to constrain

for orthonormality constitute a Hermitian matrix, and thus the matrix λ should also be

Hermitian so that the number of independent Lagrange multipliers in it coincides with the

number of independent constraints.
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The variation of R with respect to ψ∗α yields the mean-field equation

0 =
δR

δψ∗α
=

δE

δψ∗α
−
∑
β

ψβλβα = Ĥαψα −
∑
β

ψβλβα, (2.40)

where

Ĥα = v2αĥ+ uαvα
ˆ̃h, (2.41a)

λβα =
1

2
⟨ψβ |Ĥα + Ĥβ |ψα⟩. (2.41b)

There are three points worth discussing about the mean-field equation. First, δE
δψ∗α

can be

reduced to

δE

δψ∗α
=
δE

δρ

δρ

δψ∗α
+
δE

δρ̃

δρ̃

δψ∗α
= v2αĥψα + uαvα

ˆ̃hψα, (2.42)

which delivers the explicit expressions of the HF Hamiltonian ĥ and the pairing field ˆ̃h in

the same way as Eq. (2.30). Second, the generalized Hamiltonian Ĥα is state-dependent and

hence the full matrix λ has to be taken into account to preserve orthonormality. In contrast,

the HF calculation only requires Lagrange multipliers for normalization:

ĥψα − εαψα = 0, εα = ⟨ψα|ĥ|ψα⟩, (2.43)

where all the s.p. states experience the same Hamiltonian ĥ, and εα is the s.p. HF energy.

Third, the Hermiticity of the matrix λ is enforced by explicit symmetrization in Eq. (2.41b).

The variation of R with respect to vα yields the gap equation:

0 = 2vα

[
hαα − ϵ

(qα)
F

]
+

(
uα − v2α

uα

)
h̃αα, (2.44)
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where hαα = ⟨ψα|ĥ|ψα⟩ is the canonical s.p. energy, h̃αα = ⟨ψα|ˆ̃h|ψα⟩ is the state-dependent

pairing gap, and qα ∈ {n, p} stands for the isospin of the state α. The gap equation can be

solved in a closed form:


vα

uα

 =

√√√√√√1

2
∓ 1

2

hαα − ϵ
(qα)
F√[

hαα − ϵ
(qα)
F

]2
+ h̃2αα

, (2.45)

where the Fermi energy ϵ(q)F should be adjusted to fulfill the particle-number constraints

∑
α∈n

v2α = N,
∑
α∈p

v2α = Z. (2.46)

One can note that only the diagonal elements of the HF Hamiltonian ĥ and the pairing

field ˆ̃h in the canonical basis enter the gap equation; therefore, no information about the

non-diagonal elements is needed to determine the occupation amplitudes. It should also be

noted that the HF+BCS approach solves a gap equation in the same form of Eq. (2.44), but

it uses matrix elements computed in the HF basis instead.

The mean-field equation (2.40, 2.41) and gap equation (2.44) together constitute the

self-consistent HFB equations in the canonical basis, which can be numerically solved by the

gradient-descent algorithm. The same cutoff scheme as discussed at the end of Sec. 2.2.1 can

also be employed in the canonical space: The contribution of one canonical state to all the

densities is multiplied by a function of the canonical s.p. energy εα ≡ hαα, and the cutoff

function can still take the form of Eq. (2.31).
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2.2.3 Constrained calculations

In previous sections, the HFB Routhian is minimized under particle-number constraints.

Other quantities, such as multipole moments, angular momenta. and particle-number fluc-

tuations, can also be constrained in a similar manner [3]. The HFB energy obtained under

these constraints becomes a function of the expectation values of these observables, and this

function defines the potential-energy curve (one constraint) or surface (multiple constraints)

of the system. The constrained HFB calculation can be employed for many problems. For

instance, deformation-constrained calculations can help us locate the global minimum that

corresponds to the ground state, while an unconstrained calculation can be easily stuck in a

local minimum. The potential-energy surface obtained from constrained calculations is also

a useful tool to study large-amplitude collective motions.

Nuclear deformations are usually extracted from the multipole moments, which are de-

fined in the spherical coordinate system as

qλµ =

∫
dr ρ(r)rλYλµ(Ω), (2.47)

where ρ(r) can be the neutron, proton or total (isoscalar) particle density, which gives the

neutron, proton or total multipole moment, respectively. Components with µ ̸= 0 vanish

when the axial symmetry is preserved. The total isoscalar dipole moment (λ = 1) is related to

the shift of the center of mass, which must be constrained at zero when the parity symmetry

is violated so that the center of mass is fixed at the origin. The quadrupole and octupole

moments can also be expressed in the Cartesian coordinate system:

Q20 =

∫
dr ρ(r)

(
2z2 − x2 − y2

)
, Q30 =

∫
dr ρ(r)

[
z
(
2z2 − 3x2 − 3y2

)]
. (2.48)
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The dimensionless deformation parameters are then

β2 = Q20/

(√
16π

5

3

4π
AR2

0

)
, β3 = Q30/

(√
16π

7

3

4π
AR3

0

)
, (2.49)

where R0 = 1.2A1/3 fm is the semi-empirical expression for the nuclear radius. It is more

convenient to use dimensionless β values for the comparison of deformations among different

nuclei.

There are several methods for constraining multipole moments. One approach is adding

a quadratic penalty term to the HFB Routhian

R′ = R− cλµ
(
qλµ − q̄λµ

)2
, (2.50)

where q̄λµ is the desired value of the multipole moment and the Lagrange multiplier cλµ

should be large enough to push the minimum to the point of qλµ = q̄λµ. Another choice is

adding a linear constraint [106]

R′ = R− cλµ
(
qλµ − q̄λµ

)
, (2.51)

where the Lagrange multiplier cλµ is adjusted based on the quasiparticle random-phase ap-

proximation (QRPA). One can also choose the augmented Lagrangian method that combines

the quadratic penalty and linear constraint [107].

The constraint on the angular-momentum expectation value appears in the cranking

calculation for the description of nuclear rotation, and the same cranking formulation can

be derived through the introduction of a rotating intrinsic frame [3, 33, 35, 108]. Here we

assume that the system rotates around the y axis; then a linear constraint term is added to
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the Routhian

R′ = R− ω
(〈
Ĵy

〉
− J̄y

)
, (2.52)

and correspondingly the cranking term
(
−ωĴy

)
appears in the HF Hamiltonian ĥ. In the

description of rotation, we usually specify the value of the Lagrange multiplier ω instead

of the angular momentum J̄y, because ω can be interpreted as the angular velocity of the

system.

2.2.4 Numerical solvers

There are numerous HF and HFB solvers developed by researchers within the nuclear-DFT

framework, and Ref. [75] provides a comprehensive table summarizing some widely employed

solvers. In this section I briefly discuss the main features of solvers used in this dissertation.

It should be noted that all the solvers discussed below assume no proton-neutron mixing.

The following two codes solve the HFB equation in the quasiparticle basis (Sec. 2.2.1)

via direct diagonalization.

• HFBTHO [109, 110, 111, 112] solves the HFB problem with axial and time-reversal

symmetries, and one can select whether the parity symmetry is imposed. The HFB

Hamiltonian is constructed in the axially symmetric harmonic-oscillator (HO) or trans-

formed HO basis. The HO basis is specified by the number of shells NHO and axial

deformation β2, and Gaussian-quadrature formulas are utilized to calculate integrals in

the coordinate space. In HFBTHO, linear constraints (2.51) are added for deformation-

constrained calculations. It also provides the kickoff mode: The first 10 iterations are

carried out under deformation constraints specified in the input, and then the con-

straints are released in the following iterations. The kickoff mode helps the program
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better locate the global minimum without exploring the whole potential-energy surface.

• HFODD [113, 114, 115, 116, 117, 118, 119, 120, 121] expands quasiparticle wave func-

tions in the three-dimensional (3D) Cartesian deformed HO basis. The oscillator length

and numbers of HO quanta in three directions can be varied independently. There is

no symmetry restriction, but one can choose to impose the time-reversal symmetry

and point-group symmetries like parity or signature. HFODD can perform the crank-

ing calculation for the description of nuclear rotation. As for deformation-constrained

calculations, one can choose to add quadratic penalties (2.50) or to use the augmented

Lagrange method.

The following three programs solve the HFB equation in the canonical basis (Sec. 2.2.2)

using the gradient-descent method.

• HFBFFT [122] solves the HFB equation in the 3D coordinate representation, and the

fast Fourier transform (FFT) is employed for numerical differentiation. It assumes the

time-reversal symmetry, but no spatial symmetry is imposed. It is based on Sky3D

[81, 123, 124], a solver that can perform static HF+BCS and time-dependent HF

calculations. The numerical details of HFBFFT are discussed in Chapter 6.

• Sky2D and Sky1D [125] also work in the coordinate space, but Sky2D imposes the

axial symmetry while Sky1D the spherical symmetry. Sky2D solves the HFB problem

in the cylindrical coordinate system while Sky1D in the spherical coordinate system.

As for numerical differentiation, Sky2D employs the FFT technique while Sky1D uses

the five-point finite difference formula. When the reflection symmetry is imposed in

Sky2D, only grid points with z > 0 are taken into account. It is worth mentioning that

Sky2D is based on the HF+BCS solver SkyAx [126].
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2.3 Charge-changing finite amplitude method

2.3.1 FAM equations

The HFB theory discussed in Sec. 2.2 is applicable for the ground-state calculation. As for

low-lying excited states and giant resonances, the QRPA is often the tool of choice within

the nuclear-DFT framework [1, 2, 3]. The problem is that solving the QRPA equation

through direct construction and diagonalization of the QRPA matrix is too computationally

demanding, especially for deformed systems with no spherical symmetry. The FAM [63,

64], however, provides an efficient scheme for the solution of the QRPA without explicitly

constructing a huge matrix.

The FAM is based on the small amplitude limit of the time-dependent HFB (TDHFB)

equation. It is assumed that the nuclear system evolves with time but remains a quasiparticle

vacuum (HFB product state). The corresponding quasiparticle operators are thus time-

dependent:

β̂
†
k(t) =

∑
l

{
Ulk(t)â

†
l + Vlk(t)âl

}
, β̂k(t) =

∑
l

{
U∗
lk(t)âl + V ∗

lk(t)â
†
l

}
. (2.53)

The time evolution of β̂k(t) under a time-dependent external field F̂ (t) is given by the

TDHFB equation:

i
∂β̂k(t)

∂t
=
[
Ĥ(t) + F̂ (t), β̂k(t)

]
, (2.54)

where Ĥ(t) is the TDHFB Hamiltonian

Ĥ(t) =
1

2

(
â† â

)
H(t)

 â

â†

 =
1

2

(
â† â

)h(t)− ϵF ∆(t)

−∆∗(t) −h∗(t) + ϵF


 â

â†

 , (2.55)
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where normal ordering is assumed, and the matrix H(t) has the same form as the static HFB

matrix given in Eq. (2.29). The matrix elements of H(t) are obtained in the same way as

Eq. (2.30), but the mean fields h(t) and ∆(t) are time-dependent in the TDHFB equation

because the densities (and underlying solutions U and V ) are time-dependent.

In the small amplitude limit, the system is perturbed by a weak external field F̂ (t) with

a fixed frequency ω:

F̂ (t) = η
(
F̂ e−iωt + F̂ †eiωt

)
, F̂ =

1

2

∑
kl

(
F 20
kl Â

†
kl + F 02

kl Âkl

)
+
∑
kl

F 11
kl B̂kl, (2.56)

where Â†
kl ≡ β̂

†
kβ̂

†
l , B̂kl ≡ β̂

†
kβ̂l, and η is small. Because of the canonical anticommutation

relations {β̂k, β̂l} = {β̂†k, β̂
†
l } = 0, F 20 and F 02 are chosen to be anti-symmetric. The

oscillation of F̂ (t) induces the oscillations of the density matrix and pairing tensor:

ρ(t) = ρ0 + ηδρ(t) = ρ0 + η
{
δρ(ω)e−iωt + δρ†(ω)eiωt

}
, (2.57a)

κ(t) = κ0 + ηδκ(t) = κ0 + η
{
δκ(+)(ω)e−iωt + δκ(−)(ω)eiωt

}
, (2.57b)

where ρ0 and κ0 are, respectively, the density matrix and pairing tensor of the stationary

HFB state that the system oscillates around. The Hamiltonian is thus also oscillating around

the stationary HFB Hamiltonian Ĥ0:

Ĥ(t) = Ĥ0 + δĤ(t) = Ĥ0 + η
{
δĤ(ω)e−iωt + δĤ†(ω)eiωt

}
, (2.58a)

δĤ(ω) =
1

2

∑
kl

{
δH20

kl (ω)Â
†
kl + δH02

kl (ω)Âkl

}
+
∑
kl

δH11
kl (ω)B̂kl, (2.58b)

where δH20 and δH02 are anti-symmetric. Moreover, the time-dependent quasiparticle an-
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nihilation operator can be decomposed in a similar way:

β̂k(t) =
{
β̂k + δβ̂k(t)

}
eiEkt, δβ̂k(t) = η

∑
l

β̂
†
l

{
Xlk(ω)e

−iωt + Y ∗
lk(ω)e

iωt
}

(2.59)

where Ek is the quasiparticle energy of the static HFB Hamiltonian Ĥ0, and δβ̂k(t) is ex-

panded only in terms of quasiparticle creation operators so that the anticommutation relation

{β̂k(t), β̂
†
l (t)} = δkl is satisfied up to the linear order of η. The FAM amplitudes X and Y

must be anti-symmetric to fulfill the anticommutation relation {β̂k(t), β̂l(t)} = 0.

With all the definitions given above, the TDHFB equation up to the linear order of η is

i
∂δβ̂k(t)

∂t
= Ekδβ̂k(t) +

[
Ĥ0, δβ̂k(t)

]
+
[
δĤ(t) + F̂ (t), β̂k

]
, (2.60)

which yields the FAM equations

(Ek + El − ω)Xkl(ω)+δH
20
kl (ω) = −F 20

kl , (Ek + El + ω)Ykl(ω)+δH
02
kl (ω) = −F 02

kl . (2.61)

It should be noted that F 11 and δH11 are absent in Eq. (2.61) as they do not contribute in

the linear expansion. Thanks to the anti-symmetric property of X and Y , only half of their

matrix elements must be solved. Furthermore, the frequency ω is, in general, a complex

number. Now the task is to calculate the induced fields δH20 and δH02. One can expand

them in terms of amplitudes X and Y , and obtain the linear response equation


 A B

B∗ A∗

− ω

I 0

0 −I



X(ω)

Y (ω)

 = −

F 20

F 02

 , (2.62)
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where
(
A B
B∗ A∗

)
is the QRPA matrix and I is the identity matrix. Eq. (2.62) becomes the

standard QRPA equation when the right-hand side is set to zero:

 A B

B∗ A∗


Xn

Yn

 = Ωn

I 0

0 −I


Xn

Yn

 , (2.63)

where the eigenvalue Ωn is the QRPA energy and the eigenvector
(
Xn
Yn

)
contains QRPA

amplitudes (see Ref. [127] for the relation between the FAM amplitudes and QRPA eigen-

modes). The dimension of the QRPA matrix, which equals the number of two-quasiparticle

excitations, is huge, especially for deformed nuclei; so its explicit evaluation is often numer-

ically infeasible. In the FAM, however, the induced fields are directly computed with no

explicit construction of the QRPA matrix.

Based on Eq. (2.59), we can obtain time-dependent quasiparticle wave functions

Ulk(t) = Ulke−iEkt + η
∑
j

(
V∗
ljX

∗
jke

iωt + V∗
ljYjke

−iωt
)
e−iEkt, (2.64a)

Vlk(t) = Vlke−iEkt + η
∑
j

(
U∗
ljX

∗
jke

iωt + U∗
ljYjke

−iωt
)
e−iEkt, (2.64b)

where
( U
V
)

gives the quasiparticle wave functions of the stationary HFB solution that the

system oscillates around. The density matrix ρ(t) and pairing tensor κ(t) in the s.p. basis are

then calculated from Uk(t) and Vk(t) via Eq. (2.27). Based on ρ(t) and κ(t) one can construct

the TDHFB Hamiltonian matrix (2.55) in the s.p. basis, which is connected with the induced

fields δH20 and δH02 through the Bogoliubov transformation (2.25). In this procedure we

only keep terms up to the first order of η; the value of η should be small enough for linearity,

but large enough to avoid reaching the numerical precision limit. Explicit expressions for
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the procedure are presented in Ref. [64]. One can also note that the time-reversal symmetry

is broken in the FAM, so the Skyrme-EDF terms involving time-odd densities must be

considered for the evaluation of the induced fields.

The general FAM formulation discussed above is applicable for any external transition

operator F̂ , but for a specific type of F̂ one can use its features to simplify the numerical

procedure. As for beta-decay calculations, the external field is generated by the charge-

changing operator that transforms a neutron to a proton or vice versa, and hence the charge-

changing FAM is also called the proton-neutron FAM (PNFAM) [65]. In this work we

concentrate on the beta-minus decay, which involves one-body transition operators that

convert a neutron to a proton. Correspondingly, only proton and neutron quasiparticle states

are connected by such operators, and only matrix elements between proton and neutron

states are non-zero in the FAM amplitudes X and Y , induced density δρ, induced pairing

tensor δκ, and induced fields δH02 and δH20. Therefore, although there is usually no

proton-neutron mixing in the stationary HFB state the system oscillates around, such mixing

is induced in the PNFAM. Here we only need to solve the proton-neutron part of FAM

amplitudes while the neutron-proton part can be obtained via the anti-symmetric property

Xνπ = −Xπν , Yνπ = −Yπν .

2.3.2 FAM response function

The relation between the FAM amplitudes and transition matrix elements is revealed by

connecting the small-amplitude TDHFB framework with the time-dependent perturbation

theory [63]. In the first-order approximation with regard to the external perturbation F̂ (t),
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the system evolves as

|Ψ(t)⟩ = |Φ0⟩ − i
∑
n

e−iΩnt
∫ t

−∞
dt′ eiΩnt

′
|Φn⟩⟨Φn|F̂ (t′)|Φ0⟩

= |Φ0⟩+
∑
n

|Φn⟩

(
η⟨Φn|F̂ |Φ0⟩
ω − Ωn + iϵ

e−iωt − η∗⟨Φn|F̂ †|Φ0⟩
ω + Ωn − iϵ

eiωt

)
,

(2.65)

where |Φ0⟩ is the ground state while |Φn⟩ represents the n-th excited state whose excitation

energy is Ωn. Here the frequency ω in F̂ (t) is replaced by ω ± iε so that the external field

vanishes when t→ −∞. The expectation value of F̂ † is then

⟨Ψ(t)|F̂ †|Ψ(t)⟩ = ⟨Φ0|F̂ †|Φ0⟩+ ηS(F̂ ;ω)e−iωt + ... (2.66a)

S(F̂ ;ω) =
∑
n

(
|⟨Φn|F̂ |Φ0⟩|2

ω − Ωn + iϵ
− |⟨Φn|F̂ †|Φ0⟩|2

ω + Ωn − iϵ

)
(2.66b)

where S(F ;ω) is the response function. Taking the limit ε → 0, we have the transition

strength distribution

dB(F̂ ;ω)

dω
≡
∑
n

|⟨Φn|F̂ |Φ0⟩|2δ (ω − Ωn) = − 1

π
ImS(F̂ ;ω). (2.67)

For a complex frequency ω = ωr + iΓ (Γ > 0), we have

− 1

π
ImS(F̂ ;ωr + iΓ) =

Γ

π

∑
n

{
|⟨Φn|F̂ |Φ0⟩|2

(ωr − Ωn)
2 + Γ2

− |⟨Φn|F̂ †|Φ0⟩|2

(ωr + Ωn)
2 + Γ2

}
, (2.68)

which is the strength distribution smeared with a Lorentzian function of width Γ.

One can also evaluate the expectation value ⟨Ψ(t)|F̂ †|Ψ(t)⟩ with the TDHFB state in
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the small amplitude limit, and find the relation

S(F̂ ;ω) =
1

2

∑
kl

{
F 20∗
kl Xkl(ω) + F 02∗

kl Ykl(ω)
}

=
∑
n

(
|⟨Φn|F̂ |Φ0⟩|2

ω − Ωn
− |⟨Φn|F̂ †|Φ0⟩|2

ω + Ωn

)
,

(2.69)

which connects the transition matrix elements with the FAM solution. Based on Eqs. (2.62,

2.63), Ref. [127] shows that the excitation energy Ωn equals the QRPA energy and the state

|Φn⟩ is the QRPA state (including the QRPA ground state |Φ0⟩). When the QRPA stability

condition is met, all the energies Ωn are real-valued and we have S(ω∗) = S∗(ω).

It is also possible to construct a response function that includes the interference between

two distinct transition operators [65]. Starting from ⟨Ψ(t)|Ĝ†|Ψ(t)⟩, we obtain

χ(F̂ , Ĝ;ω) =
1

2

∑
kl

{
G20∗
kl Xkl(F̂ ;ω) +G02∗

kl Ykl(F̂ ;ω)
}

=
∑
n

(
⟨Φn|F̂ |Φ0⟩⟨Φ0|Ĝ†|Φn⟩

ω − Ωn
− ⟨Φ0|F̂ |Φn⟩⟨Φn|Ĝ†|Φ0⟩

ω + Ωn

)
,

(2.70)

where G20 and G02 are defined in the same manner as F 20 and F 02 in Eq. (2.56).

2.3.3 Beta-decay rate

As shown in Ref. [65], the beta-decay rate can be calculated via the contour integration

of PNFAM response functions, which eliminates the necessity to extract individual QRPA

modes from the response functions. Here we take the Fermi transition as an example to

illustrate the procedure. Equations for the rates of allowed (Fermi and Gamow-Teller) and

first-forbidden transitions can all be found in Ref. [65].

The Fermi transition rate is proportional to the sum of individual transition strengths
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Bi(F̂ ) from the ground state of the parent nucleus |Φ0⟩ to all the energetically allowed states

|Φi⟩ of the daughter nucleus, weighted by a phase-space factor:

λ
F̂
=

ln 2

κ

∑
n

f (En)Bn(F̂ ), (2.71)

where κ = (6147.0 ± 2.4) s, F̂ = τ̂− is the Fermi transition operator (isospin lowering

operator) for the β− decay, En is the energy released in the transition, and f(En) is the

phase-space factor derived from the final-state lepton kinematics. The explicit expression of

f can be found in Refs. [65, 128], and the released energy En is computed via [58]

En = ωmax − Ωn = ϵ
(n)
F − ϵ

(p)
F +∆Mn−H − Ωn, (2.72)

where Ωn is the QRPA energy, and ∆Mn−H = 0.78227 MeV is the mass difference between

the neutron and hydrogen atom. Here ϵ(n)F and ϵ
(q)
F represent neutron and proton Fermi

energies of the HFB ground state of the parent nucleus, respectively. Based on Eq. (2.69),

the transition strength can be expressed as the residue of the response function, and one can

thus perform a contour integration in the complex plane of ω to evaluate the rate:

λ
F̂
=

ln 2

κ

∑
n

g(Ωn)Bn(F̂ ) =
ln 2

κ

∑
n

g(Ωn) Res
[
S(F̂ ),Ωn

]
=

ln 2

κ

∑
n

Res
[
g̃S(F̂ ),Ωn

]
=

ln 2

κ

1

2πi

∮
C
dωg̃(ω)S(F̂ ;ω),

(2.73)

where g(ω) = f(ωmax − ω), g̃(ω) is the analytic continuation of g(ω), and the contour C

encloses all the poles entering the summation (2.71). Our choice is a circular contour that
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crosses the real axis at origin and ωmax:

ω(θ) =
ωmax

2

(
1 + eiθ

)
, θ ∈ [−π, π]. (2.74)

Thanks to the relation S(ω∗) = S∗(ω), we only need to compute the integrand on the upper

or lower semicircle.

The remaining problem is how the analytic continuation of the phase-space factor f

should be done numerically. We employ a polynomial or rational function to interpolate f

on the real axis; the interpolating function is analytic in the complex plane and can thus

be used in the integrand. Because of Runge’s phenomenon [129], a better choice is Thiele’s

interpolation formula [67, 130]. A rational function in the form of a continued fraction is

utilized to interpolate f on a grid between 0 and ωmax:

finterp(x) = f (x1) +
x− x1

ρ (x1, x2) +
x−x2

ρ2(x1,x2,x3)−f(x1)+
x−x3

ρ3(x1,x2,x3,x4)−ρ(x1,x2)+···

, (2.75)

where x1, x2, · · · constitute the grid on which f is evaluated and ρ denotes the reciprocal

difference:

ρ (x1, x2) =
x1 − x2

f (x1)− f (x2)
,

ρ (x1, x2, x3) =
x1 − x3

ρ (x1, x2)− ρ (x2, x3)
+ f (x2) ,

· · ·

ρ (x1, x2, . . . , xn) =
x1 − xn

ρ (x1, x2, . . . , xn−1)− ρ (x2, x3, . . . , xn)
+ ρ (x2, x3 . . . , xn−1) .

(2.76)

With this interpolation the integrand is smooth, and we can employ the Gauss-Legendre
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quadrature rule to calculate the integral.

The total beta-decay rate λ is obtained by summing the rates of all the possible decay

transitions. Currently we include allowed and first-forbidden transitions in our calculations.

Once we have the total rate, the half life can be evaluated via T1/2 = ln 2
λ .

2.3.4 Gamow-Teller resonance

Apart from the decay rate, the Gamow-Teller resonance (GTR) is another phenomenon

worth investigating through the PNFAM formalism. Among all the final states that can

be reached via GT transitions from the ground state of the parent nucleus, the GTR takes

a large portion of the total GT transition strength, and it can be identified as a strong

enhancement (peak) in the total GT transition strength distribution

− 1

π

∑
K=0,±1

S(GT, K;ω) (2.77)

where K is the angular momentum projection of the GT operator. For a spherical parent

nucleus, the response function S is independent of K and we only need to consider one K

value.

To locate the GTR, one can evaluate S(GT, K;ω) along a horizontal line close to the real

axis in the ω plane, i.e., ω = ωr+ iΓ where Γ is a small positive constant; then the maximum

of the smeared total GT strength (2.77) corresponds to the GTR. A direct scan along the

line is computationally expensive, because a dense grid of ωr with a tiny smearing width Γ is

required for high resolution but the PNFAM does not converge well when Γ approaches zero.

Besides, the range of ωr must be large enough to ensure that the GTR is included in the scan.

For efficient determination of the GTR, we turn to a sparser ωr grid and a larger Γ when the
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GTR is well separated from other states, and interpolate the response function between grid

points to locate the maximum. The width Γ here should be smaller than the grid spacing

to avoid missing peaks. A good choice is to interpolate 1/S with Eq. (2.75), because it

produces a rational function with the degree of the numerator being either the same (odd

number of grid points) or one greater than (even number of grid points) the degree of the

denominator, and 1/S has the latter property according to Eq. (2.69). Complex-conjugate

points ω∗ = ωr − iΓ are also added to the interpolation to ensure S(ω∗) = S∗(ω).

The GTR energy presented in experimental works is usually the excitation energy with

respect to the ground state of the daughter nucleus, while the ωr value corresponding to the

GTR peak is the QRPA energy relative to the ground state of the parent nucleus. As Ref.

[131] points out, the QRPA energy needs to be converted to

Ex = EQRPA −m(Z + 1, A) +m(Z,A)−∆Mn−H + ϵ
(p)
F − ϵ

(n)
F , (2.78)

for direct comparison with the experimental GTR energy. Here m(Z,A) and m(Z + 1, A)

are the atomic masses of parent and daughter nuclei, respectively.

2.3.5 Numerical PNFAM solver

The development and test of the numerical PNFAM solver has been discussed in Ref. [65],

while its applications can be found in Refs. [62, 66, 67]. In PNFAM, the calculation starts

from a HFBTHO solution with the axial symmetry imposed. A Python package called

PyNFAM [67] has been developed to manage HFBTHO and PNFAM calculations in a parallel

manner with MPI, and to calculate observables like GTRs and decay rates based on PNFAM

outputs. The parallelization in PyNFAM is straightforward: First, calculations of different
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nuclei can always be done in parallel; second, for one nucleus, HFBTHO runs with different

deformation kickoffs are performed simultaneously, and PNFAM computations at distinct

frequencies ω can also run at the same time.

In the PNFAM program, the performance has been significantly boosted (≳ 10× speedup)

by replacing explicit loops with BLAS [132] matrix-matrix multiplication routines. The

Hamiltonian matrix element in the PNFAM is constructed via the Gaussian-quadrature

rule:

hαβ =
∑
s,s′

∫
d3r ψ∗α(r, s)h(r, s, s

′)ψβ(r, s
′) ≈

∑
s,s′,i

wiψ
∗
α(ri, s)h(ri, s, s

′)ψβ(ri, s
′), (2.79)

where ψ(r, s) is the basis wave function at point r with spin s, h(r, s, s′) the mean-field

matrix element in the coordinate space, and wi the quadrature weight. We can construct

matrices A(s) and B(s) such that A(s)
αi =

√
wiψ

∗
α(ri, s), B

(s)
jβ =

∑
s′ h(ri, s, s

′)
√
wiψβ(ri, s

′).

Then the matrix element hαβ can be expressed in the form of a matrix-matrix multiplication:

hαβ =
∑
s

∑
iA

(s)
αi B

(s)
iβ =

∑
sA

(s)B(s), which can be efficiently computed by optimized

BLAS libraries. A similar strategy can be used to accelerate the evaluation of local densities.

For instance, the particle density is given by

ρ(ri) =
∑
s

∑
αβ

ψα(ri, s)ραβψ
∗
β(ri, s), (2.80)

where ραβ is the density matrix in the HO basis. We immediately see that
∑
β ραβψ

∗
β(ri, s)

is essentially a matrix-matrix multiplication and can be efficiently evaluated.
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Chapter 3

Nucleon localization function in rotating nuclei

This chapter investigates the nucleon localization function (NLF) in rotating systems. Re-

sults of this work has been published in Ref. [133]. This chapter is organized as follows.

Sec. 3.1 first discusses the definition and interpretation of the NLF, and then the details of

cranked calculations are given in Sec. 3.2. Results are presented in Sec. 3.3, with a short

summary given in Sec. 3.4.

3.1 Nucleon localization function

3.1.1 Definition

Let µ = x, y, z be the spin-quantization axis. Starting from ρq
(
rsµ, r

′s′µ
)
, the non-local

density of neutrons (q = n) or protons (q = p) defined in Eq. (2.8), one can construct the

particle density, kinetic density and current of a specific spin sµ = ±1
2 and isospin q as

ρqsµ (r) = ρq
(
rsµ, rsµ

)
=

1

2
ρq(r) +

1

2
σµsq(r) · eµ, (3.1a)

τqsµ (r) = ∇ ·∇′ρq
(
rsµ, r

′sµ
)∣∣
r=r′ =

1

2
τq(r) +

1

2
σµT q(r) · eµ, (3.1b)

jqsµ (r) =
i

2

(
∇′ −∇

)
ρq
(
rsµ, r

′sµ
)∣∣∣∣
r=r′

=
1

2
jq(r) +

1

2
σµJq(r) · eµ, (3.1c)

where σµ = 2sµ = ±1, eµ is the unit vector in the µ direction, and ρq, sq, τq, T q, jq and

Jq are local densities defined in Eq. (2.9). In a rotationally invariant and spin-unpolarized

system, densities defined above are independent of the choice of the quantization axis µ, but
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in a deformed and rotating nucleus one has to explicitly specify µ.

For a HF product state |Ψ⟩, the definition of the NLF starts from the probability of

finding two nucleons of a given isospin q and spin sµ at spatial locations r and r′:

Pqsµ(r, r
′) = ⟨Ψ|a†rsµqa

†
r′sµq

ar′sµqarsµq|Ψ⟩

= ρq(rsµ, rsµ)ρq(r
′sµ, r′sµ)− |ρq(rsµ, r′sµ)|2.

(3.2)

Because of the Pauli exclusion principle, Pqsµ(r, r) = 0. Given that a nucleon with spin sµ

and isospin q is located at position r, the conditional probability of finding another nucleon

with the same spin and isospin at position r′ is

Rqsµ(r, r
′) =

Pqsµ(r, r
′)

ρq(rsµ, rsµ)
. (3.3)

To find the conditional probability of like-spin and like-isospin nucleons in the vicinity of

each other, we assume that the second nucleon is located within a small spherical shell with

radius δ around r; the conditional probability can then be written as:

Rqsµ(r, r + δ) = eδ·∇
′
Rqsµ(r, r

′)
∣∣∣
r=r′

. (3.4)

Let ⟨· · · ⟩ denote an average over the spherical shell. The first non-zero term in the Taylor

expansion of
〈
Rqsµ(r, r + δ)

〉
with respect to the radius δ is [134]

1

6
δ2 ∇′2Rqsµ(r, r

′)
∣∣∣
r=r′

=
1

3
Dqsµ(r)δ

2, (3.5)
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where

Dqsµ = τqsµ − 1

4

∣∣∣∇ρqsµ

∣∣∣2
ρqsµ

−

∣∣∣jqsµ∣∣∣2
ρqsµ

, (3.6)

is a localization measure that captures the short-range behavior of Rqsµ(r, r
′). The deriva-

tion for Eq. (3.6) is based on the density-matrix expansion technique [89, 135]; details can

be found in Ref. [136]. Following Ref. [36], we define a dimensionless and normalized NLF:

Cqsµ(r) =

1 +(Dqsµ(r)
τTFqsµ(r)

)2
−1

, (3.7)

where τTFqsµ(r) = 3
5

(
6π2
)2/3

ρ
5/3
qsµ(r) is the Thomas-Fermi kinetic density. The value of C

can vary in the range of [0, 1]; the smaller the conditional probability of finding two like-spin

particles near each other, the more localized they are, and the larger the NLF is.

According to Eq. (3.1), densities entering the NLF are composed of both time-even and

time-odd terms. In a time-reversal invariant system that is spin-saturated or governed by

spin-independent interactions, we have D
q,sµ=±1

2
= 1

2τq −
1
8
|∇ρq|2
ρq

. We also note that the

Jq(r) term does not vanish even when the time-reversal symmetry is conserved [137]. Hence,

the current jqsµ(r) does not vanish in the ground-state configuration of an even-even nucleus

unless the system is spin-saturated. Although the contribution of the current jqs to the NLF

was ignored in previous works [40, 43, 44], it actually almost vanishes inside the nucleus (see

Sec. 3.3.2), so we can safely neglect it when using the NLF as a visualization tool.

3.1.2 Alternative interpretation

Besides interpreting the NLF as a measure of the conditional probability of like-spin pairs,

there is an alternative interpretation which allows the generalization of NLF’s definition.
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As discussed in Refs. [37, 138], the localization function can also be interpreted in terms of

the Pauli exclusion principle. Let us assume that one isolated fermion of given spin sµ and

isospin q is located in some region. The wave function of this particle can be written as

ψqsµ (r) =
√
ρqsµe

iχ(r), where χ (r) is a position-dependent phase factor whose gradient is

related to the current density as jqsµ = ρqsµ∇χ. The corresponding s.p. kinetic density is

the sum of the last two terms in Dqsµ (3.6):

τ
s.p.
qsµ =

∣∣∣∇ψqsµ

∣∣∣2 =
1

4

∣∣∣∇ρqsµ

∣∣∣2
ρqsµ

+

∣∣∣jqsµ∣∣∣2
ρqsµ

, (3.8)

where the first term is the von Weizsäcker kinetic density [139]. Therefore, the localization

measure Dqsµ = τqsµ − τ
s.p.
qsµ can be interpreted as the excess of kinetic density due to

the Pauli exclusion principle. This interpretation of the NLF is more flexible since it does

not involve the notion of the conditional probability; with the new interpretation one can

straightforwardly generalize the NLF to the case of point-group symmetries.

For the rotating systems to be discussed in following sections, parity (P̂ ), y-signature

(R̂y = e−iπĴy), and y-simplex (R̂y = P̂ R̂y) symmetries are conserved. To display the effects

caused by different s.p. orbits, it is convenient to study the NLF of a given y signature ry

or y simplex ry. This can be done by expressing local densities in terms of their symmetry-

conserving components. For instance, when y simplex is conserved, we have

ρq(r) = ρqσ̆y=+1(r) + ρqσ̆y=−1(r), (3.9)

where σ̆y ≡ ry/i = ±1. In practice, the component ρqσ̆y is computed via summing up the

contributions from s.p. levels with y simplex ry = iσ̆y [113, 140, 141]. The kinetic density
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τq(r) and current jq(r) can be similarly decomposed. With ρqσ̆y , τqσ̆y and jqσ̆y , the NLF

for quantum number σ̆y can be defined as

Dqσ̆y = τqσ̆y −
1

4

∣∣∣∇ρqσ̆y

∣∣∣2
ρqσ̆y

−

∣∣∣jqσ̆y ∣∣∣2
ρqσ̆y

, Cqσ̆y(r) =

1 +
Dqσ̆y(r)
τTFqσ̆y

(r)

2

−1

, (3.10)

where τTFqσ̆y(r) =
3
5

(
6π2
)2/3

ρ
5/3
qσ̆y

(r). One should note that densities ρqσ̆y , τqσ̆y and jqσ̆y can

also be decomposed into time-even and time-odd components in the same manner as Eq.

(3.1).

3.2 Cranked calculations

3.2.1 Cranked Hartree-Fock calculation

The cranked Hartree-Fock (CHF) method is utilized to study the rotational band of su-

perdeformed (SD) 152Dy. Extreme single-particle behavior is seen in this system [142, 143]

and the pairing correlation is absent due to large SD gaps at Z = 66 and N = 86 as well

as rapid rotation [144, 145, 146]. The collective rotation of 152Dy has been investigated in

many works, e.g., Refs. [94, 147, 148, 149]. We follow the procedure given in Ref. [147] and

perform CHF calculations with HFODD [119]. Single-particle wave functions are expanded

in a deformed Cartesian HO basis with frequencies ℏωz = 6.246 MeV and ℏω⊥ = 11.200 MeV

along the directions parallel and perpendicular to the symmetry axis, respectively, and the

total number of basis states is 1013 with HO quanta not exceeding 15 in each direction. The

Skyrme parameterization SkM* [97] with its generic time-odd terms [147, 150] is adopted

for the CHF calculations.

The main idea of the cranked calculation has already been discussed around Eq. (2.52)
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in Sec. 2.2.3. Here we follow the notation adopted in Sec. 2.2.3 and assume that the system

rotates around the y axis. In our CHF calculations, parity, y-signature, and y-simplex

symmetries are preserved while time-reversal and axial symmetries are broken; see Refs. [113,

140, 141] for more discussions. One should note that operator R̂y (R̂y) is time-odd and thus

time-reversed s.p. states belong to opposite signature (simplex) eigenvalues. With conserved

parity and y signature, the CHF configuration can be labeled in terms of parity-signature

blocks [N+,+i, N+,−i, N−,+i, N−,−i], where Nπry denotes the number of occupied s.p. orbits

with parity π ind y-signature ry. The yrast configuration of SD 152Dy is [22, 22, 21, 21]n ⊗

[16, 16, 17, 17]p [147]. The relative variation of the quadrupole moment Q20 within this

configuration is less than 1% in the frequency range ℏω = 0.2 ∼ 0.5 MeV [142], so we

constrain Q20 at 42 b to eliminate its possible influence on the NLF.

Single-particle Routhians for the SD yrast band of 152Dy are shown in Fig. 3.1, where

SD shell closures are clearly exhibited. In the figure, rotation-aligned s.p. orbits are marked

by thicker lines; they are dramatically impacted by rotation and tend to align their angular

momenta along the rotational axis (y axis) as the rotational frequency ω rises. Some of them

are intruder orbits denoted by their main HO components with large principal quantum

numbers N ; they are the lowest N = 7 neutron and N = 6 proton levels [151, 152]. Other

rotation-aligned orbits are labeled by the asymptotic quantum numbers (Nilsson quantum

numbers) [NnzΛ]Ω of their dominant HO components. On the other hand, some s.p. states

around the Fermi level are weakly affected by rotation and thus known as deformation-aligned

[32, 153, 154]; they tend to align their angular momenta along the z axis, the symmetry axis

when ω = 0.
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Figure 3.1: Single-particle neutron (a) and proton (b) Routhians as functions of ω, obtained
from the CHF+SkM* calculations for the SD yrast band of 152Dy. The (π, ry) combinations
are denoted by solid lines (+,+i), dotted lines (+,−i), dot-dashed lines (−,+i), and dashed
lines (−,−i). Single-particle Routhians of the lowest neutron N = 7, proton N = 6, and
proton [541]1/2 levels are marked by thicker lines. Large SD gaps at Z = 66 and N = 86
can be clearly seen in this figure.

3.2.2 Cranked harmonic-oscillator (CHO) calculation

In the previous study of the NLF, the deformed harmonic-oscillator model was employed

to provide illustrative guidance [41]. For a rotating nucleus, the corresponding model for

illustration is the cranked harmonic oscillator (CHO) that rotates around the y axis. In the

CHO model we neglect the alignment of spin along the rotational axis and assume that the
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Figure 3.2: Single-particle Routhians of the SD CHO model belonging to supershells Nshell =
6 and 7. The CHO quantum numbers [n1, n2, n3] are given in brackets. Positive-parity and
negative-parity orbits are marked by solid and dashed lines, respectively. The rotational
frequency ω is expressed in units of ω0 = 3

√
ωzω2⊥ while the Routhians E in units of ℏωz.

Each level is doubly degenerate due to the two possible spin orientations. The crossing
between the lowest N = 7 Routhian [0,0,7] and the [3,0,0] Routhian at ω/ω0 ⪅ 0.2 is
denoted by the arrow.

s.p. Hamiltonian is spin-independent:

Ĥ
s.p.
CHO =

p̂2

2m
+

1

2
mω2⊥(x̂

2 + ŷ2) +
1

2
mω2z ẑ

2 − ωL̂y, (3.11)

where ωz and ω⊥ = 2ωz are HO frequencies, ω is the angular velocity of rotation, and

L̂y = ẑp̂x − x̂p̂z is the orbital angular-momentum operator in the y direction. All the s.p.

levels are doubly degenerate and the NLFs of different spins (y signatures or y simplexes)
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are identical. Analytical expressions for the s.p. Routhians and wave functions of the CHO

model can be found in a number of publications, e.g., Refs. [33, 155, 156]. The CHO s.p.

Routhian is

E = ℏΩ+(n1 +
1

2
) + ℏωy(n2 +

1

2
) + ℏΩ−(n3 +

1

2
) (3.12)

where

Ω± =

√√√√ω2⊥ + ω2z
2

+ ω2 ±

√(
ω2⊥ − ω2z

)2
+ 8ω2

(
ω2⊥ + ω2z

)
2

, (3.13)

and n1, n2 and n3 become HO quantum numbers in x, y and z directions when ω is zero. It

should be noted that the consistency relation between the mean-field ellipsoidal deformation

and average density distribution [32, 156] is not adopted here.

As an analytical counterpart of the SD doubly-magic 152Dy, the CHO model should also

be closed-shell. Figure 3.2 presents the s.p. Routhians of the CHO system with 60 fermions

filling SD supershells up to Nshell ≡ 2(n1+ n2) + n3 = 6 [32, 154, 157, 158]. As discussed in

Ref. [33] and shown in Fig. 3.2, orbits with no CHO quanta along the rotation axis (n2 = 0)

and the largest possible value of the difference (n3−n1) carry most of the angular momentum,

and thus are most highly aligned; those are the [0, 0, 7] and [0, 0, 6] Routhians shown in the

figure.

3.3 Results and discussions

3.3.1 Time-odd local densities

In a rotating system, the collective rotational behavior is well characterized by the current

density j [149, 159, 160, 161, 162, 163, 164, 165, 166]. Figure 3.3 displays how the current

emerges in the CHO model as the rotational frequency ω increases to 0.2ω0. As ω increases, a
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Figure 3.3: Current density j in the x-z (y = 0) plane obtained from the CHO model, as
a function of the rotational frequency ω (in units of ω0). The magnitude |j| (in fm−4) is
shown by color and line thickness.

flow pattern close to a rigid-body rotation gradually develops inside the system. At ω = 0.2ω0

there is dramatic growth in |j|2, indicating significant angular-momentum alignment; the

system becomes more elongated as well. This effect results from the band crossing marked

by the arrow in Fig. 3.2, where the prolate s.p. level [0, 0, 7] with large angular momentum

becomes occupied while the oblate [3, 0, 0] level becomes empty.

Figure 3.4 presents the current distribution of 152Dy obtained from CHF calculations,

with the rotational frequency ℏω ranging from 0 up to 0.8 MeV (angular momentum Jy from

0 to 90ℏ). The leftmost column in the figure displays the result of the benchmark FAM

calculation [167], which corresponds to the limit of ω → 0 (see Sec. 2.3 for details). One can

find flow patterns close to the rigid-body rotation in both FAM and CHF results. Since the

irrotational flow is mainly attributed to pairing correlations [162, 167], it is expected that no

significant irrotational current is produced in the CHF calculations without static pairing.

Besides the current j, three other time-odd densities are also present in the expression

of the NLF: the spin density s, spin-kinetic density T , and spin-current tensor J. Figure

3.5 shows the distributions of s and T at a number of rotational frequencies, while Fig.

3.6 displays J · ey, the projection that enters the NLF when the y axis is selected as the
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Figure 3.4: Current density j in the x-z (y = 0) plane for neutrons (top) and protons
(bottom) in the SD yrast band of 152Dy, as a function of the rotational frequency ω (in
MeV/ℏ). The magnitude |j| (in fm−4) is shown by color and line thickness. The FAM result
is presented in the leftmost column with a different color range.

spin-quantization axis. Both s and T are polarized in the y direction, parallel to the aligned

angular momentum. As frequency ω increases, the magnitudes of s and T gradually increase

while their directions hardly vary. The distributions of J · ey shown in Fig. 3.6 are mainly

present at the nuclear surface, similar to the current j. On the other hand, the spin-current

tensor does not vanish at ω = 0 and depends weakly on the rotational frequency.

3.3.2 Simplified nucleon localization function

An important consequence of the surface characters of j and J·ey is that they only contribute

significantly to the NLF at the surface. This observation should be valid in most cases even

if the irrotational flow exists (see examples in Refs. [162, 167]). The same feature is also

observed in the distribution of squared density gradient
∣∣∣∇ρqsµ

∣∣∣2 since the particle density

is quite flat in the nuclear interior. Therefore, we can define a simplified localization function
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Figure 3.5: Spin density s (top) and spin-kinetic density T (bottom) in the x-y (z = 0)
plane for neutrons in the SD yrast band of 152Dy, as functions of the rotational frequency
ω (in MeV/ℏ). The magnitudes, |s| (in fm−3) and |T | (in fm−5), are shown by color and
line thickness. The FAM results are presented in the leftmost column with a different color
range.

as

Cτqsµ(r) =

1 +(τqsµ
τTFqsµ

)2
−1

, (3.14)

which does not include the current jqsµ and density gradient ∇ρqsµ . Figure 3.7 presents

the NLFs (3.7), simplified NLFs (3.14), and their differences in the CHO model. In the

figure, the simplified NLF shows the same pattern as the usual NLF, except the lack of

strong enhancement resulting from the current and density gradient at the surface. Similar
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m
)
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Figure 3.6: Spin-current tensor density J ·ey in the x-z (y = 0) plane for neutrons in the SD
yrast band of 152Dy, as a function of the rotational frequency ω (in MeV/ℏ). Its magnitude
(in fm−4) is shown by color and line thickness.
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Figure 3.7: C (top), Cτ (middle), and their differences (bottom) in the x-z (y = 0) plane
obtained from the CHO model, as functions of the rotational frequency ω (in units of ω0).

behavior is also observed in the yrast band of 152Dy: Figure 3.8 shows the comparison

between the distributions of C and Cτ for neutrons with σ̆y = −1 (y-simplex ry = −i) at

rotational frequency ℏω = 0.9 MeV, and the difference C − Cτ is only significant at the

surface. This difference is less pronounced at lower rotational frequencies. One can see that

the simplified NLF eliminates the large value of the NLF at the nuclear surface, and it is

thus unnecessary to normalize the NLF as Cqs → Cqsρqs/
[
max ρqs

]
[44].

Considering the interpretation ofDqsµ as the excess of the kinetic density due to the Pauli

principle, we are not surprised to see that
∣∣∣∇ρqsµ

∣∣∣2 and
∣∣∣jqsµ∣∣∣2 are non-negligible only at the

surface where only a limited number of s.p. orbits are prominent and “localized.” Therefore,

we can replace the old NLF with the simplified NLF in most cases, except perhaps some

extremely dynamic processes where the current and density gradient can become appreciable
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neutrons with σ̆y = −1 (y-simplex ry = −1) in the SD yrast band of 152Dy at rotational
frequency ℏω = 0.9 MeV.

inside the nucleus. In addition, this interpretation also helps the study of the Pauli energy

in heavy-ion fusion reactions [51].

3.3.3 Dependence on the choice of spin-quantization axis

As mentioned in Sec. 3.1, the NLF Cqsµ (3.7) and its simplified version Cτqsµ (3.14) depend

on the choice of the spin quantization direction µ. This dependence is visualized in Figs. 3.9

(y = 0 plane) and 3.10 (x = 0 plane) for the rotating 152Dy at frequency ℏω = 0.5 MeV. It

is shown that the NLF depends slightly on the choice of the quantization axis µ as well as

the plane selection. One can also notice the relation Cτqsµ ≈ Cqsµ inside the nuclear volume,

no matter which quantization axis µ and which cross section are selected.

3.3.4 Angular-momentum alignment in the CHO model

Figure 3.7 has shown the NLFs of the CHO model in the y = 0 plane at different rotational

frequencies; patterns in the x = 0 plane are similar. A pattern similar to that shown in

Ref. [43] for the deformed HO model can be clearly observed at ω = 0, but as ω increases

the pattern gradually becomes blurred. At ω = 0.2ω0 where the band crossing occurs, the
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Figure 3.9: Cqsµ (3.7) and Cτqsµ (3.14) in the x-z (y = 0) plane for three spin quantization
directions µ = x, y, z, obtained from CHF calculations for the SD yrast band of 152Dy at
rotational frequency ℏω = 0.5 MeV. The symbols ↑ and ↓ represent sµ = +1 and −1,
respectively.

NLF changes dramatically: The number of maxima along the z axis increases due to the

occupation of the [0, 0, 7] state; the number of maxima in the x direction, on the other hand,

decreases since the [3, 0, 0] orbit becomes empty. Thus, the NLF is a good indicator for the

shell structure and can easily visualize the effect of band crossing.

To better display the evolution of the simplified NLF Cτ induced by rotation, in Fig. 3.11

we show the difference

∆Cτ (r;ω) ≡ Cτ (r;ω)− Cτ (r;ω = 0), (3.15)

together with density variations ∆τ ≡ τ(r;ω) − τ(r;ω = 0) and τTF ≡ τTF(r;ω) −

τTF(r;ω = 0). Figure 3.11 shows a clear correspondence between the peaks of ∆Cτ and
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Figure 3.10: Similar to Fig. 3.9 but shown in the y-z (x = 0) plane.

valleys (peaks) of ∆τ (∆τTF), which is consistent with Eq. (3.14). This phenomenon indi-

cates that ∆τ and ∆τTF oscillates in antiphase, causing a “constructive interference” when

we compute their ratio.

One can notice that this out-of-phase oscillation already exists in the patterns of τ and

τTF at ω = 0. Figure 3.12(a) shows τ , τTF and Cτ of the non-rotating HO model along the

z axis (x = y = 0), as well as the density profile of the [0, 0, 6] orbit. We see that the valleys

(peaks) of τ (τTF or Cτ ) roughly coincide with the maximum points of the s.p. density |ψ006|2,

while lower s.p. levels provide a smooth background for the total τ (τTF). This observation

is more evident in the one-dimensional (1D) HO model, as presented in Fig. 3.12(b); in

this 1D HO model s.p. orbits with quantum number N ≤ 6 are occupied. The antiphase

correspondence is expected because the kinetic density τ is based on the gradient of s.p. wave
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Figure 3.11: Cτ (top), τ (in fm−5, middle) and τTF (in fm−5, bottom) in the x-z (y = 0)
plane, obtained from the CHO model. The leftmost column shows the reference plots at
ω = 0 while the other columns show the rotational dependence relative to the ω = 0
reference as a function of the rotational frequency ω (in units of ω0).

functions while the τTF depends on the particle density ρ and involves no derivatives. The

oscillating patterns of τ and τTF basically reflect the characteristic nodal structure of high-

N s.p. orbits, allowing us to have a sense of the shell structure by counting the number of

maxima; the NLF then successfully magnifies this nodal pattern thanks to the “constructive

interference” between τ and τTF. In addition, the nodal structure is closely associated with

clustering, which has been discussed in many works, e.g., Refs. [166, 168, 169, 170]; and

hence the NLF can also visualize clusters inside the nucleus.

From the s.p. perspective, the density differences shown in Fig. 3.11 are related to the

particle-hole (p-h) excitations across the Fermi level induced by the cranking operator ωL̂y,

especially the low-energy transitions with ∆n1 = ±1, ∆n2 = 0, ∆n3 = ∓1. Crossings

and mixtures of s.p. levels far below the Fermi energy, on the other hand, can barely impact

densities. Figure 3.13 displays the kinetic-density variations generated by the p-h excitations
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Figure 3.12: Cτ (thick solid line), τ (solid line), and τTF (dashed line) in the non-rotating
HO model along the z axis (x = y = 0). (a) 3D SD HO potential with 60 particles. The
density profile of the [0,0,6] orbit is marked by a dotted line. (b) 1D case. HO orbits with
quantum number N ≤ 6 are occupied. The density profile of the N = 6 orbit is marked by
a dotted line; here τTF = π2ρ3/3. Some quantities are scaled for better visualization.

from the occupied supershell Nshell = 6 to the unoccupied Nshell = 7 (see Fig. 3.2 for

supershell notations). By summing all the p-h contributions one can obtain the last panel

of Fig. 3.13, where we see a pattern similar to that of Fig. 3.11 at ω = 0.15ω0. The

oscillating pattern along the z axis primarily comes from the excitation of [0, 0, 6] → [1, 0, 5].

Other transitions produce more structures in the horizontal direction; the most extreme

one is [2, 0, 2] → [3, 0, 1]. Both [0, 0, 6] and [1, 0, 5] orbits are prolate and rotation-aligned,

corresponding to [660]1/2 (61,2) and [651]3/2 (63,4) Nilsson levels, respectively; [2, 0, 2] and

[3, 0, 1], on the other hand, are deformation-aligned and resemble [420]1/2 ([422]3/2) and

[411]3/2 ([413]5/2). In short, the strong imprints left by p-h transitions involving rotation-

aligned levels can be identified through the characteristic NLF variation along the major axis,
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Figure 3.13: Variations in the kinetic density τ due to p-h excitations (at ω = 0) from
supershell Nshell = 6 to Nshell = 7 shown in Fig. 3.2. These excitations are induced by the
cranking term in the CHO model. The rightmost panel displays the average of all the p-h
contributions.

while those involving deformation-aligned orbits contribute to patterns along the minor axis.

3.3.5 Angular momentum alignment in the CHF calculation

In this section we analyze the NLF patterns obtained from CHF calculations for the yrast

band of 152Dy. Figure 3.14 shows the simplified NLFs Cτqσ̆y for different y simplexes and

isospins in the y = 0 plane; patterns in the x = 0 plane are similar. The first column of

the figure gives the NLFs of the non-rotating case, where one can identify the characteristic

pattern of a deformed nucleus, similar to those presented in Ref. [44]. As frequency ω

rises, new patterns gradually develop inside the nuclear volume, and the NLFs of opposite

simplexes deviate from each other because of time-reversal symmetry breaking.

Similar to Fig. 3.11, NLF differences ∆Cτqσ̆y (3.15) in the y = 0 plane are presented in

Fig. 3.15 for the yrast band of 152Dy; density variations ∆τqσ̆y and ∆τTFqσ̆y
are also shown in

Figs. 3.16 and 3.17, respectively. One can see a clear connection between the patterns of ∆τ

(∆τTF) and ∆Cτ , similar to those in the CHO model, so the mechanism of the “constructive

interference” discussed in Sec. 3.3.4 is still valid in the realistic case. Moreover, in Figs. 3.15,

3.16 and 3.17, ∆τ , ∆τTF, and ∆C of opposite simplexes vary in a roughly opposite manner

when frequency ω increases. This can be explained via decomposing ∆τqσ̆y and ∆ρqσ̆y into
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Figure 3.14: The NLF Cτqσ̆y in the x-z (y = 0) plane as a function of ω (in MeV/ℏ), obtained

from CHF calculation for the SD yrast band of 152Dy. The symbols ↑ and ↓ represent
σ̆y = +1 and −1 (y-simplex ry = +i and −i), respectively.

time-even and time-odd components. For example, the difference ∆τqσ̆y can be written as

∆τqσ̆y(r;ω) =
1

2
∆τq(r;ω) +

1

2
σ̆yT

′
q(r;ω), (3.16)

where the time-even term ∆τq(r;ω) = τq(r;ω)−τq(r;ω = 0) produces the same background

in ∆τqσ̆y=±1, while the time-odd term T ′
q(r;ω) = τqσ̆y=+1(r;ω)− τqσ̆y=−1(r;ω) results in

the difference between the NLFs of different simplexes.

For the connection between the NLFs and s.p. orbits in the rotating 152Dy, we follow Sec.

3.2.2 and concentrate on the study of ∆τ . It is difficult to figure out individual p-h excitations
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Figure 3.15: Similar to Fig. 3.14 but for ∆Cτqσ̆y . The reference value of Cτ at ω = 0 is shown
in the leftmost column of Fig. 3.14.

in the realistic case, so we track individual s.p. levels near the Fermi energy from ℏω = 0

up to 0.1 MeV (see Fig. 3.1) and investigate the evolution of their kinetic densities. When

the rotational frequency becomes larger than 0.1 MeV, it is difficult to identify contributions

from different s.p. orbits due to strong level mixing. Figure 3.18 presents the kinetic-density

variations ∆τ for different parity-signature combinations when ω grows from 0 to 0.1 MeV.

These patterns can be approximately reproduced with contributions from a few occupied

s.p. levels close to the Fermi energy, as shown in Fig. 3.19. Among neutron orbits with

negative parity, rotation-aligned levels 71,2 with high N provide important contributions to
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Figure 3.16: Similar to Fig. 3.15, but for ∆τqσ̆y (in fm−5). The reference value of τqσ̆y at
ω = 0 is shown in the leftmost column.

the vertical oscillation of ∆τn. Among neutron orbits with positive parity, the highest four

occupied levels, [651]1/2, [642]5/2, [413]5/2, and [411]1/2, are closely lying and deformation-

aligned; they are responsible for the patterns of ∆τn, especially the horizontal structures.

For protons, rotation-aligned orbits 61,2,3,4 and [541]1/2 are most crucial and the quantum

numbers of their dominant HO components explains their contributions to the difference ∆τp.

One can now reach the same conclusion as Sec. 3.3.4: The nodal structures of ∆τ (∆τTF and

∆Cτ ) along the z axis are attributed to rotation-aligned s.p. orbits below the Fermi energy

with large N and n3, while their horizontal features are associated with deformation-aligned

levels.
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Figure 3.17: Similar to Fig. 3.16, but for ∆τTFqσ̆y
(in fm−5).

3.4 Summary

In this chapter, the nucleon localization function has been studied in anisotropic, spin-

unsaturated and spin-polarized rotating systems. The concept of the NLF is first gener-

alized to the case of point-group symmetries with the help of the interpretation that the

NLF measures the kinetic-density excess owing to the Pauli principle. Then we propose a

simplified NLF that is easier to compute and interpret. It is shown that the “constructive

interference” between the kinetic density τ and Thomas-Fermi kinetic density τTF makes

the NLF a powerful tool for the visualization of the nodal structure of high-lying s.p. orbits,

which explains why the NLF pattern is closely connected with the shell structure and clus-

tering. In the rotating 152Dy, time-odd effects are clearly displayed in the NLFs of opposite
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Figure 3.18: ∆τ (in fm−5) of neutrons (top) and protons (bottom) in the x-z (y = 0) plane
for different parity-signature combinations (π, ry) in the SD yrast band of 152Dy at rotational
frequency ℏω = 0.1 MeV.

simplexes. Also, we see the relation between s.p. levels and the NLF pattern’s evolution:

The NLF structure along the major axis is related to occupied rotation-aligned states close

to the Fermi energy, while the pattern in the perpendicular direction results from high-lying

deformation-aligned states.

Results discussed in this chapter demonstrates that the NLF is helpful for the study

of nuclear rotation, and we expect its use for other collective motions and time-dependent

processes. We are also considering the extension of the NLF to the HFB case and beyond-

mean-field frameworks for new insights into many-body correlations. The kinetic density

has already been computed within the no-core shell model [171], which paves the way for

the application of the NLF in the ab initio framework.
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Figure 3.19: Contributions to the variation ∆τ (in fm−5) in the x-z (y = 0) plane for different
parity-signature blocks from individual s.p. Routhians in 152Dy at ℏω = 0.1 MeV: the four
positive-parity neutron levels [651]1/2, [642]5/2, [413]5/2 and [411]1/2 with signature ry =
+i (a) and −i (b) that lie below the N = 86 shell gap in Fig. 3.1 (see Fig. 1 of Ref. [152]
for the asymptotic quantum numbers [NnzΛ]Ω of s.p. levels in the SD 152Dy); the N = 7
neutron intruder states 71 (c) and 72 (d); the N = 6 proton intruder states 62 + 64 (e) and
61 + 63 (f); and the [541]1/22 (g) and [541]1/21 (h) proton states.
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Chapter 4

Origin of reflection-asymmetric shapes

This chapter focuses on the microscopic origin of ground-state reflection-asymmetric defor-

mations of even-even nuclei and investigates this problem from the perspectives of the mul-

tipole expansion and s.p. spectrum. Results discussed in the following has been published

in Ref. [122], and main conclusions are presented for Ra and Yb isotopes. The multipole

expansion of the total energy is discussed in Sec. 4.1, followed by the behaviors of various

multipole components shown in Sec. 4.2. In Sec. 4.3 the origin of pear-like deformations are

studied through the spectra of canonical s.p. states.

4.1 Multipole expansion of the EDF

The multipole expansion of the total energy was first adopted in Ref. [172] and further studied

in Ref. [173] to reveal the origin of quadrupole deformations. We generalize the concept of the

expansion for the EDF, and employ it for reflection-asymmetric shapes. Since the octupole

moment is the lowest nonzero moment related to the reflection-symmetry violation, the

pear-like shape is often referred to as “octupole” deformation.

In the Skyrme EDF presented in Sec. 2.1, each term inside the integrand can be written

in the form of Γ(r)ϱ(r), where ϱ is some density. When the time-reversal symmetry is

conserved, ϱ can be ρ, ρ̃, τ , ∇2ρ, ∇ ·J or Jij (i, j = x, y, z). For the term Cτt ρtt3(r)τtt3(r),

one can choose Γ = Cτt ρtt3 and ϱ = τ , and it does not matter whether the coupling Cτ

is density-dependent. With the axial symmetry imposed, the field Γ and density ϱ can be
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expanded with the help of spherical harmonics YLM as [13]

ξ(r) =
∑
L

ξ[L](r)YL,M=0(Ω), ξ = Γ or ϱ, (4.1)

where ξ[L](r) =
∫
dΩ ξ(r)Y ∗

L,M=0(Ω). The corresponding energy becomes

E(Γϱ) =

∫
dr Γ(r)ϱ(r) =

∑
L

∫
dr Γ[L]ϱ[L] =

∑
L

E
(Γϱ)
[L]

, (4.2)

where
∫
dr Γ[L]ϱ[L′] (L ̸= L′) vanishes thanks to the orthogonality of spherical harmonics.

In the isospin representation, the density that determines Γ is in the same isospin channel

of ϱ, and we can calculate the multipole components of isoscalar (t = 0) and isovector (t = 1)

energies to compare their contributions to the appearance of reflection-asymmetric shapes.

The kinetic ED enters the isoscalar energy as the Skyrme parameterization we use in this

chapter adopts the same proton and neutron masses. Like-particle pairing EDF (2.21) with

Vp ̸= Vn, and the Coulomb interaction (2.22), however, are neither isoscalar nor isovector

because they breaks the isospin symmetry. Without proton-neutron mixing, one can also

write the EDF in terms of neutron and proton densities with the help of Eq. (2.9), and

the total energy is then decomposed into neutron-neutron (n-n), proton-proton (p-p) and

proton-neutron (p-n) components. The Coulomb energy contributes to the p-p energy, while

neutron and proton pairing energies are included in n-n and p-p energies, respectively. One

can also investigate the multipole components of n-n, p-p and p-n energies to examine their

roles in the onset of reflection-asymmetric deformations.
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∆E[L] (b), and the components of the octupole part ∆E[3] in isospin and proton-neutron
representations (c), as functions of the octupole deformation β3.

4.2 Energy expansion and reflection asymmetry

A recent global nuclear-DFT survey [31] showed that a number of even-even Ra isotopes have

parity-violating ground states. We use 224Ra as an example and study its deformation with

the HFBTHO program [111] and Skyrme parameterization SLy4 [98]. First the equilibrium

quadrupole deformation β2 is determined by parity-conserving HFB calculations; then with

β2 fixed at the equilibrium value, we vary the constraint on the octupole deformation β3 and

obtain the potential-energy curve shown in Fig. 4.1(a). The octupole deformation energy in

the figure is defined as ∆E(β3) = E(β3)−E(β3 = 0), and we see that the minimum-energy

point is octupole-deformed.

Figure 4.1(b) presents the multipole components of the deformation energy

∆E[L](β3) = E[L](β3)− E[L](β3 = 0), (4.3)

as functions of β3. We notice that the magnitudes of these components are much larger

than the magnitude of the total deformation energy, so strong cancellation between them

leads to the small deformation energy, and high-order components can be crucial for the

determination of the minimum-energy point. Figure 4.1(c) shows the decomposition of ∆E[3]
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Figure 4.3: Similar to Fig. 4.2 but along the isotopic chain of Yb.

in both isospin and proton-neutron representations. The dominant contribution comes from

the isoscalar part ∆Et=0
[3]

or p-n part ∆E
pn
[3]

, which is consistent with the simple estimate

with a schematic particle-vibration coupling Hamiltonian [122]. Similar phenomenon has

already been observed in the study of quadrupole deformations [172].

Now we turn to the behavior of various multipole components along the isotopic chain of

Ra. We plot in Fig. 4.2(a) octupole deformabilities, i.e., the octupole deformation energies

at a small octupole deformation β3 = 0.05, for even-even Ra isotopes. Figure 4.2(b) then

shows the multipole components of these deformabilities. In the figure, significant variations

of monopole and octupole parts are observed at around N = 130, the transition point of

reflection-symmetry breaking. As the neutron number N increases to 142, the region of

pear-shaped nuclei ends and curves in Fig. 4.2(b) become flat. For comparison, Fig. 4.3(a)
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shows the octupole deformabilities along the isotopic chain of Yb. One can see that there

are no pear-shaped Yb ground states, and the corresponding multipole components given in

Fig. 4.3(b) vary slowly as the neutron number N increases.

To illustrate the cancellation between various multipolarities, Fig. 4.2(c) displays the

cumulative sum

∆E[0−L](β3 = 0.05) =
L∑

L′=0

∆E[L′](β3 = 0.05), (4.4)

along the Ra isotopic chain. It is seen that a summation up to L = 7 is necessary to con-

verge due to the strong cancellation between monopole and octupole components, especially

for isotopes with negative total deformabilities, and that dotriacontapole (L = 5) compo-

nents significantly contribute to the appearance of pear-like shapes. This observation is in

agreement with previous works that show the important roles of high-order deformations in

pear-shaped nuclei [174, 175, 176, 177, 178, 179, 180, 181].

4.3 Relation to single-particle spectra

From the s.p. perspective, the octupole deformation results from the coupling between close-

lying opposite-parity orbits (parity doublets) with angular-momentum difference ∆ℓ = ∆j =

3. One can find such pairs of orbits across the Fermi energy when neutron or proton numbers

are around Noct = 34, 56, 88 or 134, slightly larger than the magic numbers, where the

unique-parity intruder shell (ℓ, j) becomes close to the normal-parity shell (ℓ − 3, j − 3).

Refs. [178, 180] noted that the dotriacontapole (and even higher-order) coupling is also

related to the ∆ℓ = ∆j = 3 excitations, consistent with the essential role of high-order

multipolarities shown in the previous section. One should note that the s.p. argument

regarding the appearance of reflection-asymmetric shapes is qualitative and cannot be used
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to exactly determine which isotope is octupole-deformed. The quadrupole deformation makes

the simple criterion on ∆ℓ and ∆j difficult to apply as ℓ and j are no longer good quantum

numbers, and pairing correlations disfavor the emergence of deformations.

Figure 4.4 displays the canonical s.p. energies of 224Ra as functions of the quadrupole

deformation β2. HFB calculations for this figure are carried out with the reflection symmetry

imposed (β3 = 0). The Fermi energies and equilibrium quadrupole deformations of a series of

Ra isotopes are also marked. Around the Fermi energy, we find two pairs of shells, π1i13/2 ↔

π2f7/2 and ν1j15/2 ↔ ν2g9/2, whose couplings drive the octupole shape. As the neutron

number grows from 130 to 136, the quadrupole deformation emerges and breaks the spherical

symmetry; then the octupole deformation appears and causes more level repulsion due to

the interactions between opposite-parity pairs of states with the same angular-momentum

projection Ω. After we pass the neutron number 136, the pear-like shape gradually becomes

less favored as more s.p. levels originating from octupole-driving pairs of shells become

occupied.

For comparison, the s.p. diagram of 176Yb is given in Fig. 4.5. Compared with 224Ra,

176Yb has a larger equilibrium quadrupole deformation but no close-lying opposite-parity

pairs of levels with the same Ω value around the Fermi energy, and its ground state is thus

reflection symmetric.

4.4 Summary

The microscopic origin of the reflection-asymmetric ground-state deformations is investigated

in this chapter, with the help of the multipole expansion of the EDF and the spectrum of

canonical s.p. states. The monopole and octupole energy components significantly contribute

to the appearance of pear-like deformations, but higher-multipolarity interactions are also
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crucial due to the strong cancellation between ∆E[0] and ∆E[3]. We also see that the isoscalar

part ∆Et=0
[3]

or the proton-neutron part ∆E
pn
[3]

plays a dominant role in ∆E[3]. From the

s.p. perspective, the emergence of reflection-asymmetric shapes is mainly attributed to the

coupling between parity doublets with ∆ℓ = ∆j = 3 around the Fermi energy; both octupole

and dotriacontapole couplings between such pair of states are strong.
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Figure 4.4: Canonical single-particle energies for neutrons (top) and protons (bottom) in
224Ra as functions of the quadrupole deformation β2. The reflection symmetry is imposed
(β3 = 0). Solid (dashed) lines represent levels with positive (negative) parity. The equi-
librium quadrupole deformation of 224Ra is given by a vertical dotted line, and the Fermi
energies of 224Ra are marked by dash-dotted lines. Quadrupole deformations and Fermi en-
ergies of even-even Ra isotopes with neutron number N = 130 ∼ 144 are denoted by circles.
All the Fermi energies are shifted with respect to the positions of spherical neutron 2g9/2
and proton 1h9/2 shells. The line color indicates the angular-momentum projection Ω.
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Figure 4.5: Similar to Fig. 4.4 but for 176Yb.
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Chapter 5

Model calibration for beta-decay studies

This chapter discusses the EDF calibration for beta-decay calculations. The physics model

we employ in the calibration has been presented in Sec. 2.3, and the χ2 optimization is

carried out to determine optimal model parameters. Sections 5.1 and 5.2 discuss model

parameters and experimental observables considered in the fit. Then the basic framework

of the χ2 optimization is presented in Sec. 5.3, with numerical details discussed in Sec. 5.4.

Results are shown in Sec. 5.5 and a summary is given in Sec. 5.6.

5.1 Model parameters

For beta-decay studies within the Skyrme-HFB-PNFAM framework, it is necessary to fit

parameters that play important roles in the PNFAM but are not constrained in static HFB

calculations. In the Skyrme interaction ED (2.16), only isovector (t = 1) terms with t3 = ±1

contribute to the proton-neutron induced fields in the PNFAM. Because of time-reversal

symmetry breaking, H(odd) (2.18) that is bilinear in time-odd densities must be taken into

account, but corresponding coupling constants are not constrained by the properties of even-

even nuclei and thus need to be calibrated.

The Skyrme parameterization we utilize for time-even Skyrme couplings and like-particle

pairing strengths is UNEDF1-HFB [100], whose parameters have been well calibrated within

the χ2-optimization framework. Following Ref. [66], we preset some time-odd couplings and

exclude them from the fit for simplicity. First, we assume that there is no density dependence

in the time-odd couplings we fit. Second, the local gauge invariance [147] can relate Cjt and
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C∇J
t to time-even couplings as Cjt = −Cτt , C

∇j
t = C∇J

t . Third, we set C∆s
1 = 0 to avoid

finite-size instabilities [182]. Fourth, as for time-odd tensor terms, we only take CT1 into

account while CF1 and C∇s
1 are set to zero so that the number of free parameters is limited.

In the end, the time-odd couplings that we need to calibrate are Cs1 and CT1 .

As for the particle-particle channel, we utilize the pairing ED in the isospin representation

(2.20), where neutron-neutron, proton-proton and proton-neutron pairing correlations are all

included. Both isoscalar and isovector terms in Eq. (2.20) contribute in the PNFAM, but

their strengths are determined in different ways. We use the average of neutron-neutron and

proton-proton pairing strengths as the isovector pairing strength V1, i.e., V1 =
(
Vp + Vn

)
/2,

where Vp and Vn are defined in Eq. (2.21) and their values have been fitted together with

time-even Skyrme couplings to reproduce selected properties of even-even nuclei. Since

Vp and Vn will be the same as V1 when the isospin symmetry is strictly preserved, our

choice of V1 partially fulfills the consistency requirement between static HFB and PNFAM

calculations. The isoscalar pairing strength V0, on the other hand, should be calibrated in

the same manner as Cs1 and CT1 . Although the isoscalar pairing is related to the Wigner

effect in nuclei with N = Z [183], it is not yet reliably constrained in static HFB calculations

for these nuclei.

Besides EDF parameters, the effective axial-vector coupling constant gA is also included

as a model parameter in the fit. It impacts the strengths of Gamow-Teller (GT) and forbidden

transitions. For a free neutron its value is gfreeA ≈ 1.27 [184], but in nuclei it is quenched

due to nuclear-medium effects and deficiencies in nuclear models; see Refs. [185, 186] for

reviews on the quenching of the axial-vector coupling. It should be noted that the quenching

in principle depends on the nucleus and transition type, and heavy systems usually require

strong quenching. In this work, however, we adopt a universal gA parameter for simplicity.
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In previous global beta-decay studies within the Skyrme-HFB-PNFAM framework [66, 67],

an empirical value gA = 1.0 is used and the results are acceptable when compared with

experimental data. Hence, this empirical value provides a starting point for our fits.

It is a good practice to exploit dimensionless parameters with similar variations in the

χ2-optimization routine. The effective axial-vector coupling gA is already dimensionless,

with its value constrained within the range of [0, 2]. A natural choice for the dimensionless

isoscalar pairing strength is v0 = V0/ |V1| ≤ 0. As for the time-odd Skyrme couplings,

we transform them into dimensionless Landau-Migdal parameters that are defined by the

Landau interaction, a residual-interaction form suitable for the studies of nuclear-matter

properties and low-lying excitations [187, 188]. The transformation is [94, 189, 190]:

g′0 = N0

(
2Cs1 + 2CT1 k

2
F +

2

3
CF1 k

2
F

)
, (5.1a)

g′1 = −2N0C
T
1 k

2
F − 2

3
N0C

F
1 k

2
F, (5.1b)

h′0 =
1

3
N0k

2
FC

F
1 , (5.1c)

where kF =
(
3π2ρc/2

)2/3 is the Fermi momentum of nuclear matter at the saturation density

ρc. The normalization factor is N0 = 2m∗kF/
(
π2ℏ2

)
, where

m∗ =

(
2

ℏ2
∂E

∂τ00

∣∣∣∣
ρ00=ρc

)−1

=

(
1

m
+

2

ℏ2
Cτ0 ρc

)−1

(5.2)

is the isoscalar effective mass of symmetric nuclear matter [191, 192]. One can notice that

g′1 and h′0 are purely determined by the couplings of tensor terms in the Skyrme EDF. In

the fit we have h′0 = 0 as we set CF1 = 0, and the stability condition of nuclear matter in the

spin-isospin channel yields g′1 > −3 when h′0 = 0 [193], providing a constraint on g′1. On the
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Table 5.1: Four optimization schemes with different free and fixed parameter sets.

Scheme Free parameters Fixed parameters
A g′0, v0 gA = 1, g′1 = 0
B g′0, v0, gA g′1 = 0
C g′0, g

′
1, v0 gA = 1

D g′0, g
′
1, v0, gA None

Table 5.2: GTR energies and their experimental errors (in MeV) taken from Refs. [197, 199,
200, 201] for the four nuclei selected in this work.

No. Nucleus EGTR Exp error No. Nucleus EGTR Exp error
1 208Pb 15.6 0.2 3 90Zr 8.7 –
2 132Sn 16.3 0.6 4 112Sn 8.94 0.25

other hand, no constraint is placed on g′0, but experiments on nuclear spin-isospin responses

give a value of g′0 ∼ 1.6 [194, 195, 196, 197]1, which is a good starting point for our fits.

In summary, model parameters considered in the calibration are g′0, g
′
1, v0 and gA. Table

5.1 summarizes the four optimization schemes we use, where g′0 and v0 are always free

parameters but g′1 and gA can be either fixed or free. The comparison between these schemes

can answer if g′1 and gA can be well constrained and if they should be included in the fits.

5.2 Fit observables

As shown in Tables 5.2 and 5.3, two types of observables are employed in the calibration:

Gamow-Teller-resonance (GTR) energies EGTR and β−-decay half lives T1/2. The half lives

are given in ascending order, and their logarithms lg T1/2 (base 10) are adopted in the fit as

the half lives can vary by several orders of magnitudes.

Our data selection is similar to that of Ref. [66], but some data points have been excluded

for various reasons. As for the resonance data, only GTRs of doubly-magic (208Pb and 132Sn)

1It should be noted that experimental papers usually adopt the π+ ρ+ g′ model with a different normal-
ization factor 1/N ′

0 = 392 MeV · fm [198] , so a transformation of normalization is necessary here.
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Table 5.3: Beta-minus-decay half lives and their experimental errors (in second) taken from
Ref. [202] for the 25 nuclei selected in this work. Half lives are listed in ascending order.

No. Nucleus T1/2 Exp error No. Nucleus T1/2 Exp error
5 98Kr 0.043 0.004 18 166Gd 4.8 1.0

6 58Ti 0.058 0.009 19 156Nd 5.26 0.2

7 102Sr 0.069 0.006 20 204Pt 10.3 1.4

8 82Zn 0.166 0.011 21 74Zn 95.6 1.2

9 48Ar 0.475 0.04 22 52Ti 102 6

10 60Cr 0.49 0.01 23 180Yb 144 30

11 126Cd 0.515 0.017 24 114Pd 145.2 3.6

12 114Ru 0.54 0.03 25 242U 1008 30

13 134Sn 1.05 0.011 26 134Te 2508 48

14 152Ce 1.4 0.2 27 92Sr 9399.6 61.2

15 78Zn 1.47 0.15 28 156Sm 33840 720

16 72Ni 1.57 0.05 29 200Pt 45360 1080

17 92Kr 1.84 0.008

and semi-magic (90Zr and 112Sn) systems are considered, while transitional soft systems

76Ge, 130Te and 150Nd are not well described by the mean-field model and thus excluded.

The GTR of 48Ca and spin-dipole resonances (SDRs) of 90Zr and 208Pb are also excluded

because their experimental spectra do not exhibit clear resonance peaks (see Refs. [203, 204,

205] for the GTR of 48Ca and Refs. [196, 206] for the SDRs of 90Zr and 208Pb). As for

beta-decay data, systems with possible octupole ground states (148Ba, 226Rn) [31] are ruled

out as the reflection symmetry is imposed in our calculations.

5.3 Least-squares fit

Reference [68] provides a comprehensive guide and a compilation of examples for the appli-

cation of the least-squares fit in nuclear physics. Here we briefly summarize conclusions that

are useful for this work. The optimal model parameters are determined through minimizing
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the weighted sum of squared residuals (errors):

χ2(x) =
1

nd − nx

nd∑
k=1

ε2k(x) =
1

nd − nx

nd∑
k=1

[
sk(x)− dk

wk

]2
, (5.3)

where x ∈ Rnx is the (column) vector constituted by model parameters, nx = |x| is the

number of model parameters, nd is the total number of observables, subscript k denotes the

observable index, sk(x) is the model prediction, dk is the experimental value, and wk is

known as the weight or adopted error. When there is more than one observable type, the

weight is necessary to make the residual εk = [sk(x)− dk] /wk dimensionless. For an inexact

model, there is arbitrariness on the values of weights and one can adjust them to vary the

importance of different observables [207]. However, the statistical assumption we adopt for

uncertainty estimation can provide a guide for the weight determination.

It is assumed that all weighted residuals εk are independent and follow the same normal

distribution with expectation 0 and variance σ2, and the χ2 value at the optimal point x̂ is

approximately the variance σ2. To satisfy this assumption, we should choose the weight wk

close to the error of model sk, including theoretical, numerical and experimental errors, and

then the χ2(x̂) should be approximately 1. Although each point can have a distinct weight,

the points of the same type usually share the same weight as their errors are expected to be

close. One can note that what actually matters is the relative weights between observable

types, because we can introduce a global scale factor s (Birge factor [208]) such that

χ2(x̂) → χ̃2(x̂) = χ2(x̂)/s = 1, wk → w̃k = wk
√
s. (5.4)

Then, for consistency between weights and residual distributions, the scaled weight for a
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given observable type w̃typ should be close to

rtyp =

√
nd

ntyp(nd − nx)

∑
k∈typ

[sk(x̂)− dk]
2, (5.5)

where ntyp is the number of points of the given type.

With the linear expansions of weighted residuals εk(x) around the optimal point x̂, we

can transform the nonlinear optimization problem to a linear one and employ the linear-

regression framework. Rigorous mathematical discussions can be found in Ref. [209]; in the

following we only list important conclusions without proof. Let x∗ be the true parameter

vector. Then the difference (x̂−x∗) approximately follows a multivariate normal distribution:

x̂− x∗ ∼ N(0,Cov(x̂)). The covariance matrix is

Cov(x̂) ≈ χ2(x̂)
[
JT (x̂)J(x̂)

]−1
, (5.6)

where the nd × nx Jacobian matrix J(x) is defined by Jkl =
∂εk
∂xl

. There exist several

approximate evaluations for the covariance matrix, but Eq. (5.6) is simpler, numerically

cheaper and stabler than other choices [210]. The correlation matrix is then

Rkl =
Cov(x̂)kl
σkσl

, (5.7)

where σk =
√
Cov(x̂)kk is the standard deviation of x̂k. The (1 − α) confidence region for

x∗ is {
x∗ ∈ Rnx : (x∗ − x̂)T Cov−1(x̂)(x∗ − x̂) ≤ nxFnx, nd−nx, 1−α

}
, (5.8)

where Fnx, nd−nx, 1−α is the (1 − α) quantile of the F distribution with nx and (nd − nx)
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degrees of freedom. Suppose x = (xT1 ,x
T
2 )
T , where x1 ∈ Rn1 and x2 ∈ Rnx−n1 ; the (1−α)

confidence region for the parameter subset x∗
1 is

{
x∗
1 ∈ Rn1 : (x∗

1 − x̂1)
T Cov−1(x̂1)(x

∗
1 − x̂1) ≤ n1Fn1, nd−nx, 1−α

}
, (5.9)

where Cov(x̂1) is the upper left n1 × n1 submatrix of Cov(x̂). When n1 = 1 we obtain the

(1−α) confidence interval for the k-th parameter:
{
x∗k ∈ R :

∣∣x∗k − x̂k
∣∣ ≤ σktnd−nx, 1−α/2

}
,

where tnd−nx, 1−α/2 is the (1−α/2) quantile of the t distribution with (nd− nx) degrees of

freedom. As discussed in Ref. [192], the sensitivity matrix is

S =
[
JT (x̂)J(x̂)

]−1
JT (x̂), (5.10)

whose matrix elements are Skl ≈
∂x̂k
∂εl

, representing the variations of optimal parameters

when experimental data are slightly changed. To eliminate the impact of different param-

eter scales, we introduce normalized model parameters yk = xk/σk; correspondingly, the

normalized Jacobian matrix is J̌kl(y) =
∂εk
∂yl

= σlJkl(x), and the normalized sensitivity

matrix is

Škl = Skl/σk =

{[
J̌T (ŷ)J̌(ŷ)

]−1
J̌T (ŷ)

}
kl

≈ ∂ŷk
∂εl

. (5.11)

The principal component analysis (PCA) [211, 212, 213] is a useful tool to explore the

possibility of reducing the dimension of the parameter space. It has been employed to find the

number of effective parameters in nuclear mass models [69]. The PCA provides an orthogonal

transformation among model parameters such that the first few new parameters can explain

most variation in data. In the PCA, we calculate the singular value decomposition (SVD) of
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the normalized Jacobian matrix J̌ at the optimal point ŷ to obtain principal components:

∑
l

J̌(ŷ)klV̌lm = smǓkm, s1 ≥ s2 ≥ · · · > snx ≥ 0, (5.12)

where V̌ ∈ Rnx×nx and Ǔ ∈ Rnd×nd are orthogonal matrices. The transformation V̌ defines

a new set of parameters as zm =
∑
l ylV̌lm, and the singular value sm indicates the relevance

of zm in the fit. One can prove that the approximate covariance matrix of the new parameter

set is Cov(ẑ)kl =
[
V̌ T Cov(ŷ)V̌

]
kl

∝ s−2
k δkl. Therefore, ẑk and ẑl (k ̸= l) are uncorrelated,

and the larger the singular value sk is, the better the parameter zk is constrained (the less

soft the χ2 surface is in the corresponding direction). To determine the number of effective

model parameters, we define a cumulative fraction:

Sm =

∑m
k=1 s

2
k∑nx

k=1 s
2
k

, (5.13)

which is the percentage of the variation in data that firstm components (columns) of matrices

Ǔ and V̌ account for. The number of effective parameters is the minimum m that satisfies

Sm > Sth. A typical threshold value is Sth = 0.99, and the corresponding parameter set

{z1, z2, · · · , zm} explains 99% variation.

5.4 Numerical details

The program HFBTHO is utilized to calculate the HFB ground states of parent nuclei whose

GTRs or beta-decay half lives are fit observables. To be consistent with the fit of UNEDF1-

HFB [100], the number of HO shells is NHO = 20. The ground states of 208Pb, 90Zr and

132Sn are spherical. Other HFB calculations start from a series of kickoff deformations
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β2 = −0.4+ 0.1k (k = 0, 1, · · · , 8) with the HO-basis deformation taking the same β2 value;

then the minimum-energy point corresponds to the ground state.

Based on HFB results, the PyNFAM program calls the PNFAM routine to compute β−-

transition strength distributions, and then evaluates the GTR energy or beta-decay half life;

see Sec. 2.3 for details. In GTR calculations, the resonance is searched on a horizontal line

in the complex ω plane with a constant imaginary part (smearing width) Γ = 0.5 MeV, while

the grid spacing of the real part is 0.4 MeV. In half-life calculations, 60 sample points are

used for the Gauss-Legendre integration on the full circular contour (2.74); PNFAM runs on

half of the points are actually needed thanks to the relation S(ω∗) = S∗(ω). In addition, a

15-point Chebyshev grid is adopted for the rational interpolation of phase-space factors.

The least-squares fit routine we choose is POUNDERS (practical optimization using no

derivatives for sums of squares) [214] in PETSc/TAO [215, 216, 217]. It is first employed

for the fit of Skyrme parameterization UNEDF0 [192], and shown to be robust and efficient

among derivative-free optimizers [218, 219]. In POUNDERS, weighted residuals εi are mod-

eled by a quadratic function within a trust region to guide the χ2 minimization. To find the

statistical quantities discussed in Sec. 5.3, the Jacobian matrix J is approximately evaluated

via the central difference formula:

Jkl(x̂) =
∂εk
∂xl

∣∣∣∣
x̂
≈ εk(x̂+ del)− εk(x̂− del)

2d
, (5.14)

where el ∈ Rnx denotes a standard unit vector with a 1 in the l-th component and zeros

elsewhere, and we choose d = 10−3 in our calculations. A Python interface has been de-

veloped to connect the PyNFAM program and POUNDERS routine. This interface is also

capable of performing calculations for a given group of parameter vectors, and the results
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Table 5.4: Optimal parameter values obtained from fits with GTR energies only. Standard
deviations are given in brackets. The first letter of the fit indicates the scheme (see Table
5.1). Schemes B and D are absent as gA does not affect the GTR energy. Root-mean-square
errors (RMSEs) are also presented for comparison.

Fit g′0 g′1 v0 RMSE (MeV)
A-GTR 1.60553 (0.025) 0 −1.73430 (0.561) 0.118
C-GTR 1.47434 (0.779) 0.38129 (2.353) −1.70663 (0.699) 0.116

Table 5.5: Similar to Table 5.4 but with beta-decay half-life data only. Optimization schemes
C and D with g′1 as a free parameter are absent because of severe numerical instability.

Fit g′0 v0 gA RMSE
A-β 2.42992 (0.503) −1.06817 (0.169) 1 0.924
B-β −0.07262 (0.212) −1.06339 (0.274) 0.12243 (0.059) 0.718

can then be used as training or test data to build a physics-model emulator for the Bayesian

calibration.

5.5 Results and discussions

5.5.1 Optimizations involving one observable type

In order to examine the role of different data types and to estimate their weights for a fit

with the full data set, we first carry out fits with only one type of data and results are shown

in Tables 5.4 (GTR data) and 5.5 (beta-decay half-life data). Optimization schemes B and

D are not considered in Table 5.4 since gA does not affect the GTR location, while schemes

C and D are not listed in Table 5.5 because in these schemes model parameters are pushed

to unphysical regions where severe numerical instability is observed.

In Fit A-GTR, we see that g′0 is well constrained by the GTR data but v0 is not, since

only the GTR locations of semi-magic 90Zr and 112Sn weakly depend on v0. On the other

hand, in Fit A-β the half-life data yield a large uncertainty of g′0 and drive it far from the

experimentally accepted value, while the standard deviation of v0 is small. Therefore, when
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Figure 5.1: Values of w̃ and r for fits with a series of relative weights γ = wGTR/wβ . The
optimization scheme A in Table 5.1 is used and all the data in Tables 5.2 and 5.3 are included
in the fits. Actual calculations are performed with wβ = 1 and wGTR = γ.

both data types are considered in A, g′0 will be primarily determined by the GTR data while

v0 be well constrained by the half-life data. As shown in Table 5.4, when g′1 is included as

a free parameter (Fit C-GTR), the root-mean-square error (RMSE) is barely reduced and

the uncertainty of g′1 is quite large; in addition, g′0 and g′1 are strongly correlated with a

correlation coefficient of −0.9991. Therefore, g′1 should not be considered in the fit with the

GTR data only. Fit C-β takes gA into account and yields unphysical values of g′0 and gA, far

away from those determined in previous studies (see Sec. 5.1); but the RMSE significantly

decreases in this fit and it is difficult to say whether gA should be freely varied.

5.5.2 Weight determination

As discussed in Sec. 5.3, only relative weights between different observable types need to be

determined, and the main idea is to match the values of w̃ and r defined in Eqs. (5.4) and

(5.5). Let wGTR and wβ be the weights of GTR energies EGTR and logarithms of beta-

decay half lives lg T1/2, respectively. The relative weight is then the ratio γ = wGTR/wβ =
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Figure 5.2: Relation between the RMSEs of two types of data (GTR energies EGTR and
logarithms of beta-decay half lives lg T1/2), obtained from the fits shown in Fig. 5.1. Relative
weights γ (in MeV) are represented by the colors of square markers.

w̃GTR/w̃β . Using optimization scheme A, we perform a series of fits with a fixed value of

wβ = 1 and various values of wGTR, and Fig. 5.1 shows the values of w̃ and r of both data

types. One can notice that the requirement w̃ ≈ r is fulfilled at around γ = 0.15 MeV,

where w̃GTR ≈ 0.15 MeV and wβ ≈ 1.03. On the other hand, the quantity w̃ is supposed

to include theoretical, numerical and experimental errors, and thus w̃GTR cannot be that

small given the experimental errors in Table 5.2 (the experimental errors of lg T1/2 is smaller

than 1 and thus negligible). Based on these two considerations, we can make a trade-off and

choose γ = 0.3 MeV, which yields w̃GTR ≈ 0.29 MeV and w̃β ≈ 0.96. Figure 5.2 displays

the RMSEs of the two types of data for the same series of fits shown in Fig. 5.1, and we see

that the fit of γ = 0.3 MeV produces a good balance between the RMSEs of the two types.

Other optimization schemes produce similar results and are thus not discussed here.
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Table 5.6: Optimal parameter values obtained from fits with weights wGTR = 0.3 MeV and
wβ = 1 (relative weight γ = 0.3 MeV). Standard deviations are given in brackets, and the
χ2 values are also presented for comparison.

Fit g′0 g′1 v0 gA χ2

A 1.59560 (0.039) 0 −0.99993 (0.178) 1 25.057
B 1.59184 (0.034) 0 −1.19745 (0.179) 0.50345 (0.143) 19.385
C 1.73245 (0.820) −0.37034 (2.143) −0.99920 (0.183) 1 25.019
D 2.72206 (0.422) −2.54125 (0.781) −1.23511 (0.179) 0.41168 (0.132) 17.788
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Figure 5.3: Individual weighted residuals obtained from the four fits presented in Table 5.6.
The labeling of data points is consistent with that in Tables 5.2 and 5.3. The vertical dashed
line separates the two data types, and the horizontal dashed line indicates zero.

5.5.3 Optimizations involving two observable types

Table 5.6 presents optimal parameters obtained from the four optimization schemes with

weights wGTR = 0.3 MeV and wβ = 1 (relative weight γ = 0.3 MeV). As expected in Sec.

5.5.1, both g′0 and v0 are well constrained in Fit A. In Fit B, where gA becomes a free

parameter, the value of χ2 is dramatically reduced as decay half lives are better fitted. In

Fit C, however, the introduction of free g′1 does not improve the fit much, and both g′0 and

g′1 become badly constrained. When both g′1 and gA are freely varied in Fit D, the optimal

values of g′0 and g′1 are pushed far from other fits with large uncertainties. Based on the
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Table 5.7: Correlation matrix (5.7) obtained from Fit A in Table 5.6.

A g′0 v0
g′0 1.000
v0 −0.135 1.000

Table 5.8: Similar to Table 5.7 but for Fit B given in Table 5.6. Correlations larger than 0.6
in absolute value are marked in italics.

B g′0 v0 gA
g′0 1.000
v0 −0.097 1.000
gA −0.004 0.615 1.000

results in Table 5.6, we conclude that g′1 cannot be constrained by our data and should not

be included as a free parameter in the fit.

Figure 5.3 displays individual weighted residuals εk given by the four fits in Table 5.6,

which are consistent with the χ2 values shown in the table. One can notice a general trend

that the errors of decay half lives are significantly larger for long-lived nuclei (those with

large data-point numbers). These nuclei usually have small beta-decay Q values, and Refs.

[66, 67] show that their phase-space factors incur greater theoretical errors. In addition,

a small Q value also means that the radius of the integration contour (2.74) is small and

a very limited number of residues are enclosed, so one peak that is poorly determined in

the calculation can lead to a large error in the half life. Hence, one may consider assigning

different weights for short- and long-lived nuclei in future fits.

5.5.4 Number of effective model parameters

The correlation matrix (5.7) can give us hints on the number of effective model parameters

as two well correlated variables should be combined into one effective parameter. Tables 5.7,

5.8, 5.9 and 5.10 present the correlation matrices of the four fits given in Table 5.6. One can
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Table 5.9: Correlation matrix (5.7) obtained from Fit C in Table 5.6.

C g′0 g′1 v0
g′0 1.000
g′1 −0.999 1.000
v0 0.057 −0.064 1.000

Table 5.10: Similar to Table 5.9 but for Fit D given in Table 5.6.

D g′0 g′1 v0 gA
g′0 1.000
g′1 −0.996 1.000
v0 −0.259 0.256 1.000
gA −0.500 0.507 0.622 1.000

note that g′0 and g′1 are highly correlated in Fits C and D, similar to the case of Fit C-GTR

in Table 5.4. Also, v0 and gA are moderately correlated in Fits B and D as both of them

depend heavily on the half-life data.

As discussed in Sec. 5.3, more concrete determination of effective parameters is provided

by the PCA. Figure 5.4 displays squared singular values of normalized Jacobian matrices

J̌ obtained from Eq. (5.12) for the four fits listed in Table 5.6, while Fig. 5.5 shows the

corresponding cumulative fractions Sm (5.13). In Fits A and B, the number of effective

parameters is the same as that of free parameters. In Fits C and D, the 99% threshold is

reached when the first 1 and 2 singular values are included in the cumulative quantity Sm

(5.13), respectively. Parameters corresponding to the smallest 2 singular values should thus

be removed from the set of effective parameters in Fits C and D.

Figure 5.6 shows the squared principal components V̌ 2
kl corresponding to the first (l = 1)

and second (l = 2) largest singular values in the four fits; they represent how the two most

effective parameters determined by the PCA are constructed from the normalized parameter

set {yk}. In Fit A, g′0 and v0 are equally important and democratically contribute to V̌ 2
k1

and V̌ 2
k2. In Fit B, the first principal component is constituted by v0 and gA that are

88



1 2 3 4
m

100

101

102

103

Sq
ua

re
d 

si
ng

ul
ar

 v
al

ue
 s

2 m A
B
C
D

Figure 5.4: Squared singular values (in descending order) obtained from Eq. (5.12), the SVD
of the normalized Jacobian matrix J̌ , for the four fits presented in Table 5.6.
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Figure 5.5: Cumulative fractions Sm (5.13) for the four fits presented in Table 5.6. The gray
horizontal line indicates the 0.99 threshold.

mainly related to the half-life data, while the second component is purely g′0 that has almost

no correlation with other parameters. In Fits C and D, the first principal component is

composed of g′0 and g′1 with almost the same amplitudes because of their strong correlation.

5.5.5 Sensitivity analysis

The matrix elements of the normalized sensitivities (5.11) are shown in Fig. 5.7 in absolute

value for the four fits given in Table 5.6. The sensitivity quantifies the variations of parameter
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Figure 5.6: Squared amplitudes of the first (left) and second (right) principal components
(column vectors of V̌ ) that correspond to the first and second largest singular values, for
the four fits presented in Table 5.6. They are obtained from Eq. (5.12), the SVD of the
normalized Jacobian matrix J̌ .

values when one observable is changed. In Fits A and B the value of g′0 is highly sensitive to

the GTR data, while in Fits C and D the introduction of g′1 as a free parameter spreads the

sensitivity distribution of g′0. Furthermore, in Fits C and D the sensitivities of g′0 and g′1 on

the same point are close to each other in absolute value but have opposite signs, indicating

strong anticorrelation between these two parameters. In all the fits, v0 is equally sensitive

to all the data, except the half lives of 52Ti and 92Sr. These two nuclei are long-lived and

it is unclear whether there are any underlying physics problems attributed to their strong

sensitivities. As expected, the sensitivity of gA to the half-life data is greater than that to

the GTR data, and the point of 52Ti still provides the largest sensitivity.
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Figure 5.7: Normalized sensitivity matrices (5.11) in absolute value for the fits presented in
Table 5.6, with weights wGTR = 0.3 MeV and wβ = 1 (relative weight γ = 0.3 MeV). The
labeling of data points is consistent with that in Tables 5.2 and 5.3. The vertical dashed line
separates the points of GTR energies and the logarithms of beta-decay half lives.

5.6 Summary

In this chapter we calibrate time-odd Skyrme couplings (Landau parameters), the isoscalar

pairing strength and the effective axial-vector coupling in the Skyrme-HFB-PNFAM model

for beta-decay calculations. The calibration is carried out within the χ2-optimization frame-

work, i.e., in the frequentist picture. Selected GTR energies and β−-decay half lives are

included as experimental data in the fits, and we see that different parameters depend dif-

ferently on the two types of data. The weights of the two types are carefully determined

based on the statistical assumption and experimental errors. The comparison between the
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results of various schemes shows that g′1, the parameter related to the tensor term, cannot

be well constrained by data. The correlation matrices and principal component analysis help

us reduce the dimension of the effective parameter space.

Based on current results, there are a couple of possible extensions for future works.

First, the density dependence of Cs1 should be taken into account in the fit to investigate

its role in GTR and beta-decay calculations. Second, as noted in Ref. [220] the two-body

weak current plays a crucial role in the quenching of gA, and Ref. [221] has included it

in the PNFAM framework. In this new model, low-energy constants involved in the chiral

effective field theory become model parameters to calibrate while gA should take the value

of gfreeA . Moreover, we consider adding new data or including other types of data (e.g., the

GTR strength and beta-decay rate of a given order) to better constrain model parameters.

One should notice that in the total decay rate, contributions from various transitions can

compensate each other; thus, the total half life may not well constrain some model parameters

and individual transitions can provide more information.

In addition to the χ2 optimization, we are also working on the Bayesian model calibration

with the help of the Kennedy-O’Hagen (KOH) framework [222]. The Bayesian framework

avoids the assumptions employed in the χ2 optimization and directly produces the posterior

distributions of model parameters through Monte Carlo sampling. An emulator is necessary

for such sampling as the physics model we are using is not fast enough to finish sampling in

a reasonable time. Our choice is the Gaussian-process (GP) emulator [223], a widely used

statistical model for emulation. The Python toolkit discussed in this chapter can also be

conveniently utilized to generate data for emulator building.
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Chapter 6

New HFB solver HFBFFT in three-dimensional coordinate space

This chapter describes the numerical implementations and benchmarks of HFBFFT, a new

HFB solver for even-even nuclei in the 3D coordinate space. The theoretical framework of

the new solver has been discussed in Sec. 2.2.2, and this chapter starts from its numerical

implementation (Sec. 6.1). Then the benchmarks of the new solver against well-established

HFB solvers are discussed in Sec. 6.2, with a brief summary presented in Sec. 6.3. The

material discussed in this chapter has recently been published in Ref. [224].

6.1 Numerical framework

6.1.1 Numerical realization on a grid

HFBFFT is adapted from the HF+BCS solver Sky3D, whose numerical framework has been

presented in Refs. [81, 123, 124]. This section briefly summarizes the numerical representation

of densities, fields and wave functions in the two solvers, and discusses how we correct the

problem of Hermiticity violation.

All densities, fields and wave functions in HFBFFT are defined on a 3D Cartesian grid.

Grid points along one (x, y or z) direction are equidistant, but one can in principle choose

different numbers of points and different grid spacings in different directions. In our calcu-

lations we use identical geometries along the three directions. For simplicity, the numerical

framework will be explained for the 1D case in the following; one can straightforwardly

generalize it to the 3D case.
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The grid points in the x direction are xν =
(
−Nx+1

2 + ν
)
δx, ν = 1, . . . , Nx, where Nx

is the (even) number of grid points and δx is the grid spacing. On a grid, the action of a

local operator U(x) on a wave function ψ(x) is a simple multiplication, i.e., U(xν)ψ(xν).

The action of the momentum operator requires numerical derivatives defined in the Fourier

space. The Fourier technique has been shown to be precise and advantageous for large grids

[80]. In the Fourier space, the discrete grid points kn are defined as:

kn =


(n− 1)δk, n = 1, . . . ,

Nx
2

(n−Nx − 1)δk, n =
Nx
2

+ 1, . . . , Nx

, δk =
2π

Nxδx
. (6.1)

A coordinate-space wave function ψ(xν) is connected to its Fourier-space counterpart ψ̃(kn)

via the discrete Fourier transform and its inverse

ψ̃n =

Nx∑
ν=1

exp (−iknxν)ψν , (6.2a)

ψν =
1

Nx

Nx∑
n=1

exp (iknxν)ψ̃n, (6.2b)

where ψν ≡ ψ(xν), ψ̃n ≡ ψ̃(kn). The discrete Fourier transform and its inverse can be

efficiently evaluated through the FFT routine provided by the FFTW3 library [225]. One

should note that the use of the Fourier space indicates that the wave function ψ is periodic,

i.e., ψ(x+Nxδx) = ψ(x). The long-range Coulomb field is not compatible with periodicity,

so we deal with it in the same way as Sky3D, i.e., solve Poisson’s equation for an isolated

charged distribution [81, 226, 227]. The appropriate integration method that works with the
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FFT technique and the periodic boundary condition is the trapezoidal rule

∫ Nx
2 δx

−Nx2 δx
dx f(x) ≈

Nx∑
ν=1

f(xν)δx, (6.3)

where all the points have equal weights.

Algorithm 6.1 presents the numerical evaluation of d
mψ
dxm in the FFT scheme, while algo-

rithm 6.2 shows the method for the calculation of position-varying differentiation d
dx

[
B(x)dψdx

]
.

The position-varying derivative in the HF mean field ĥ comes from the functional term

Cτt ρtt3τtt3 . Mathematical details about the two algorithms can be found in Ref. [228]. Here

we only discuss issues related to the point kNx/2+1 and the product rule.

One should note that kNx/2+1 in principle can be ±Nx
2 δk. This arbitrariness does not

impact the transforms (6.2) but leads to different ψ(m) when m is odd. We can equally

split ψ̃(kNx/2+1) between positive and negative momenta, and they will cancel each other

in the final result of an odd-order derivative, which is equivalent to setting ψ̃(kNx/2+1) = 0

in Algorithm 6.1. On the one hand, this ensures that the derivative of a real-valued function

is still real; on the other hand, it means that the second derivative is not equivalent to two

consecutive first derivatives in this framework.

As noted in Refs. [124, 228], the FFT-based differentiation is not compatible with the

product rule. However, in Sky3D the position-varying derivative is still computed via the

Algorithm 6.1: Compute the 1D differentiation ψ(m) ≡ dmψ
dxm , m = 1, 2, 3, · · · .

1: Compute Fourier transform ψ̃n = FFT[ψν ] via Eq. (6.2a).
2: If m is odd, set ψ̃Nx/2+1 = 0. Then compute ψ̃(m)

n = (ikn)
mψ̃n.

3: Compute inverse Fourier transform ψ
(m)
ν = FFT−1[ψ̃

(m)
n ] via Eq. (6.2b).
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Algorithm 6.2: Compute the 1D position-varying differentiation χ ≡ d
dx

[
B(x)dψdx

]
.

1: Compute Fourier transform ψ̃n = FFT[ψν ] via Eq. (6.2a).
2: Save ψ̃Nx/2+1 → Ψ̃ where Ψ̃ is a temporary variable.

3: Set ψ̃Nx/2+1 = 0 and compute ψ̃(1)n = iknψ̃n (see Algorithm 6.1).

4: Compute inverse Fourier transform ψ
(1)
ν = FFT−1[ψ̃

(1)
n ] via Eq. (6.2b).

5: Calculate ϕν = Bνψ
(1)
ν with Bν = B(xν), then compute ϕ̃n = FFT[ϕν ].

6: Compute ϕ̃(1)n = iknϕ̃n and set ϕ̃(1)
Nx/2+1

= − 1
Nx

(∑Nx
ν=1Bν

)(
Nx
2 δk

)2
Ψ̃.

7: Compute inverse Fourier transform χν = FFT−1[ϕ̃
(1)
n ].

product rule

d

dx

[
B(x)

dψ

dx

]
=
dB

dx

dψ

dx
+B

d2ψ

∂x2
, (6.4)

which leads to Hermiticity violation. To restore Hermiticity, one should compute d
dx

[
B dψ
dx

]
with two consecutive first derivatives, but special treatment must be performed for the point

kNx/2+1 to ensure that we return to Algorithm 6.1 with m = 2 when B = 1. As suggested

in Ref. [228], we keep the term ψ̃Nx/2+1 in the two first derivatives and then average the

results of kNx/2+1 = ±Nx
2 δk for the symmetry in the Fourier space. One can prove that

this treatment gives Algorithm 6.2 (Algorithm 3 in [228]), the algorithm implemented in

HFBFFT.

6.1.2 Iteration scheme in coordinate space

The self-consistent HFB equations (2.40, 2.41, 2.44) in the canonical basis are solved via the

damped gradient iteration [76, 78, 79, 80, 81]. The main iteration scheme is presented in

Algorithm 6.3. The iteration starts from a number of HF+BCS steps (default is 30 HF+BCS

steps), and the HF+BCS calculation is initialized by a 3D HO wave function. The initial

HO potential can be spherical, axially deformed or triaxially deformed, but triaxiality is not
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considered in examples shown this work.

Both Sky3D and HFBFFT are parallelized with OpenMP and MPI. The parallelization

design for Sky3D can be found in Ref. [123], and it is adapted in HFBFFT to perform scalable

HFB calculations. In steps 1 and 4 ∼ 6, each thread / process is responsible for a subset of

s.p. wave functions. Matrix operations in steps 7 ∼ 9 and 11 are performed with BLAS [132]

+ LAPACK [229] (sequential or OpenMP) or ScaLAPACK [230] (MPI or OpenMP/MPI

hybrid) libraries. For good scaling in MPI parallelization, the 2D block cyclic distribution is

employed to divide matrices among processes in steps 7 ∼ 9 and 11. Steps 2, 3 and 10 are

not parallelized, i.e., all the threads / processes do the same work at the same time.

6.1.3 Sub-iteration scheme in the configuration space

To accelerate convergence, we develop the sub-iteration scheme (step 11 in Algorithm 6.3)

in which damped gradient iterations are performed in the configuration space. In the con-

figuration space, the canonical s.p. wave function is expanded in some basis {φn} as

ψα =
Ω∑
n=1

φncnα, (6.12)

and we choose an expansion basis such that c(0)nα = δnα when entering the sub-iteration

scheme. The corresponding damped gradient iteration is

c
(new)
nα = Ô

cnα − δ

hnn − h11 +E0

∑
m

Hα,nmcmα −
∑
β

cnβλβα


= Ô

cnα − δ

hnn − h11 + E0

∑
β

cnβλ
−
βα

 ,

(6.13)

97



Algorithm 6.3: Damped gradient iteration scheme of HFBFFT.
1: Given canonical s.p. states and their occupation fractions {ψα, vα, α = 1, ...,Ω}, compute

local densities ρ, τ , J and ρ̃ on the grid.
2: Linear mix new densities with old ones for better convergence:

ϱ(new) = (1− γ)ϱ(old) + γϱψ, ϱ = ρ, τ or ρ̃, (6.5)

where subscript ψ denotes the density directly computed from wave functions and γ is
the mixture ratio whose default value is 0.2.

3: Calculate HF mean field ĥ and pairing field ˆ̃h based on densities.
4: Apply ĥ and ˆ̃h on all the wave functions ψα:

ĥψα → Ψα,
ˆ̃hψα → Ψ̃α, (6.6)

5: Compute canonical s.p. energies and pairing gaps:

hαα = ⟨ψα|Ψα⟩, h̃αα = ⟨ψα|Ψ̃α⟩. (6.7)

6: Evaluate the action of the generalized Hamiltonian Ĥ on ψα and overwrite Ψα:

Ĥαψα = v2αΨα + uαvαΨ̃α → Ψα. (6.8)

7: Compute
Ψα −

∑
β

ψβλβα → Ψα, (6.9)

where the matrix of Lagrange multipliers is taken into account.
8: Apply the damping operator D̂ and orthonormalization Ô

ψ
(new)
α = Ô

{
ψα − D̂Ψα

}
, D̂ =

x0

v2α(T̂ + E0) +
1
2uαvαh̃0

, (6.10)

where x0 and E0 are adjustable numerical parameters, and h̃0 = max
[
h̃n(r), h̃p(r)

]
.

Empirical values x0 = 0.45, E0 = 100 MeV are employed.
9: Reevaluate the action of the generalized Hamiltonian and compute the matrix of La-

grange multipliers

λβα =
⟨ψβ |Ĥα|ψα⟩+ ⟨ψα|Ĥβ |ψβ⟩∗

2
. (6.11)

10: With new hαα and h̃αα, compute new occupations amplitudes vα via Eq. (2.45).
11: Perform iterations in the configuration space (see Sec. 6.1.3).
12: If convergence is achieved (see Sec. 6.1.4), exit the iteration; otherwise, return to step 1.
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where Hα,nm = ⟨φn|Ĥα|φm⟩, λβα = 1
2

∑
mn c

∗
nβ

(
Hα,nm +Hβ,nm

)
cmα and

λ−βα =
1

2

〈
ψβ

∣∣∣Ĥα − Ĥβ

∣∣∣ψα〉 =
1

2

∑
mn

c∗nβ

〈
φn

∣∣∣Ĥα − Ĥβ

∣∣∣φm〉 cmα. (6.14)

Default values of E0 and δ are 10 MeV and 2, respectively. The gap equation (2.44) is solved

between two damped gradient steps (6.13), but densities, the HF Hamiltonian ĥ and pairing

potential ˆ̃h are not updated in the sub-iteration scheme. In one word, the program tries

to find a unitary transformation among canonical s.p. states and a new set of occupation

amplitudes to further minimize the HFB Routhian in the sub-iteration scheme.

Let N be the total number of grid points. The time complexity of the FFT algorithm

is O(N logN), and thus the complexity of one coordinate-space iteration is O(ΩN logN).

On the other hand, the complexity of one sub-iteration step is O(Ω2). Since Ω ≪ N

(several hundreds vs. at least 104), one iteration in the configuration space is much less

computationally expensive than that on a full 3D grid, so a number of configuration-space

iterations can be performed two coordinate-space steps to achieve fast convergence. The best

combination of iterations in coordinate and configuration spaces should be determined by

numerical experiments; the default choice is to perform 100 iterations in the configuration

space between two coordinate-space steps.

6.1.4 Convergence criterion

In a gradient-descent framework, a natural choice for the convergence check is the norm of

the gradient vector. The α-th component of the gradient vector in the coordinate space is

Ĥαψα −
∑
β ψβλβα, whose projection in the configuration space is given by ⟨ψβ |Ĥαψα −∑

β ψβλβα⟩ = λ−βα. The matrix elements of λ− can be combined into one convergence
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measure:

∆S ≡ 1

2

∑
q∈{n,p}

√√√√ 1

Ω2
q

∑
α,β∈q

∣∣∣λ−βα∣∣∣2. (6.15)

The iteration stops once ∆S is smaller than a specific threshold.

This convergence measure, however, does not always work for the pure HF case with no

pairing present. Starting from the Hermiticity relation ⟨ψα|ĥ|ψβ⟩ = ⟨ψβ |ĥ|ψα⟩∗, one can

show that λ−αβ vanishes when both ψα and ψβ are occupied (vα = vβ = 1) or unoccupied

(vα = vβ = 0). Hence, in the pure HF calculation the quantity ∆S measures overlaps of

occupied and unoccupied orbits, which reaches zero at the HF solution. Without pairing

included, it is allowed that the size of the active s.p. space equals the number of particles

(Ωn = N , Ωp = Z) and that all the s.p. levels are occupied. Under this circumstance, ∆S

always stays zero and is thus not an appropriate measure of convergence; it instead becomes a

measure of Hermiticity violation in our numerical implementations (see Secs. 6.1.1 and 6.2.1).

Therefore, we should adopt the convergence measure
√∑

α

∣∣∣⟨ψα|ĥ2|ψα⟩ − ⟨ψα|ĥ|ψα⟩2
∣∣∣ for

the pure HF calculation.

6.1.5 Strategies for pairing

Since the HF solution with no pairing is a valid but probably unstable HFB solution, the

iteration can be easily locked in a no-pairing solution for a long time; this phenomenon is

called pairing breakdown. There exist many strategies to avoid this problem, and here we

use a method similar to simulated annealing [231]. The iteration begins with an enhanced

pairing strength which is gradually reduced to the physical value as the iteration goes on:

V
(effective)
pair = V

(physical)
pair

[
ηenh

max(Nenh − n, 0)

Nenh
+ 1

]
, (6.16)
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where n is the iteration number. Default values of ηenh and Nenh are 2 and 400, respectively.

It is worth mentioning that the pairing annealing strategy also mitigates the point collapse

issue [77]. Here we only discuss the origin of the point collapse in a qualitative way. Assume

that there exists a s.p. state ψα with hαα ≫ ϵF and thus vα ≈ 0, uα ≈ 1. Then we have

uαvα ≫ v2α and Ĥα ≈ uαvα
ˆ̃h, which means that the generalized Hamiltonian becomes a

local operator with no derivative when ˆ̃h is derived from a density-dependent δ interaction.

The corresponding solution is ψα(r) ∝∼ δ(r − rmin), where rmin is the minimum point of

the pairing potential. Then the s.p. state α acquires a huge kinetic energy and thus a

huge canonical s.p. energy hαα, which drives the occupation fraction even closer to zero

(vα → 0) and forms a positive feedback. This phenomenon is called the point collapse since

the corresponding wave function collapses into a spatial point around rmin. The enhanced

pairing strength at the early stage of iterations ensures that the occupation amplitude vα

cannot be easily deadlocked at a small value and thus mitigates the point collapse. Otherwise,

it will be difficult to recover correct pairing if some s.p. states are kicked out of the pairing

window at an early stage far prior to convergence.

As for the pairing cutoff, the soft cutoff scheme discussed in Sec. 2.2.1 is adopted. In

HFBFFT the cutoff weight w given by Eq. (2.31) is a function of e = hαα−ϵF and we choose

∆Ecut = 0.1Ecut by default.

6.2 Benchmarks

Following the procedure presented in Ref. [232], we have benchmarked our new solver HF-

BFFT against several well established solvers, including HFBTHO, Sky1D (spherical systems

only) and Sky2D. The Skyrme parameterization SLy4 [98] in the particle-hole channel and

the mixed density-dependent δ interaction (ρref = 0.32 fm−3 in Eq. (2.21)) in the particle-
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Table 6.1: Parameters adopted in different solvers for benchmark calculations: HFBTHO –
the number of HO shells NHO and the axial deformation of the HO basis β2; Sky1D, Sky2D
and HFBFFT – the number of points Ni and grid spacing δi in the direction of i; Common
parameter – the pairing cutoff energy Ecut.

Solver Parameters
HFBTHO NHO = 25, β2 = 0 (spherical systems) or 0.2, Ecut = 60 MeV

Sky1D Nr = 141, δr = 0.15 fm, Ecut = 15 MeV
Sky2D Nr = Nz = 31, δr = δz = 0.7 fm, Ecut = 15 MeV

HFBFFT Nx = Ny = Nz = 48, δx = δy = δz = 0.8 fm, Ecut = 15 MeV

particle channel are employed for benchmarks. The nuclei we use for benchmarks are: (i)

spherical closed-shell nuclei – 208Pb, 132Sn, (ii) spherical superfluid nucleus – 120Sn, (iii)

axially deformed superfluid nuclei – 102Zr, 110Zr, and (iv) superfluid nucleus with a superde-

formed fission isomer – 240Pu. All the nuclear systems used for benchmarks have axial and

reflection symmetries, but they are also rather different: 110Zr is a weakly bound system

while other nuclei in (i), (ii) and (iii) are well bound; 120Sn and 102Zr have no proton pairing

while static pairing correlations exist for both protons and neutrons in 110Zr and 240Pu.

Table 6.1 summarizes some parameters utilized in HFBTHO, Sky1D, Sky2D and HF-

BFFT. The reflection symmetry is imposed in both HFBTHO and Sky2D. The numbers of

active neutron and proton s.p. states in three coordinate-space solvers (Sky1D, Sky2D and

HFBFFT) for nuclei in items (i), (ii) and (iii) are Ωn = 176 and Ωp = 126, respectively; they

are large enough as the total energy does not vary significantly (< 10 keV) when we increase

(Ωn,Ωp) to (200, 150). For 240Pu, however, the active s.p. space should be expanded to

accommodate its large number of nucleons: We choose (Ωn,Ωp) = (300, 200) for the ground

state and (Ωn,Ωp) = (400, 300) for the fission isomer. The box size adopted in HFBFFT is

also large enough so that proton and neutron densities are small enough (< 10−7 fm−3) at

the boundary.
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Table 6.2: Total energies Etot (in MeV) and ∆S (in MeV) obtained from HFBFFT without
and with Hermiticity restoration. Digits that do not coincide are marked in bold.

Hermiticity broken Hermiticity restored
Etot ∆S Etot ∆S

132Sn −1103.5429 3.44× 10−7 −1103.5423 1.60× 10−15

208Pb −1635.6817 3.16× 10−7 −1635.6807 1.20× 10−15

120Sn −1018.3310 3.44× 10−7 −1018.3305 4.01× 10−7

110Zr −893.8578 4.59× 10−7 −893.8574 5.54× 10−7

102Zr −859.4696 4.94× 10−7 −859.4692 3.93× 10−7

6.2.1 Effect of Hermiticity restoration

As mentioned in Sec. 6.1, Algorithm 6.2 for the position-varying derivative avoids the Her-

miticity breaking caused by the incompatibility between the product rule and FFT-based

differentiation. The effect of this Hermiticity restoration is shown in Table 6.2, where one can

compare the results of some closed- and open-shell nuclei before and after the restoration.

For closed-shell 132Sn and 208Pb the HFB problem is reduced to the pure HF case, and

thus we choose (Ωn,Ωp) = (50, 82) for 132Sn and (Ωn,Ωp) = (82, 126) for 208Pb. The

Hermiticity violation is then demonstrated by their non-vanishing ∆S in the third column

of Table 6.2, and the magnitudes of their ∆S indicate the order of errors brought by the

Hermiticity breaking. After the restoration, the values of ∆S obtained from HF calculations

reach almost zero as Hermiticity is well preserved in the new implementation. On the other

hand, the impact of the Hermiticity breaking on the total energy is usually a few keV and

thus insignificant. Moreover, the convergence measure ∆S of a superfluid system does not

vary significantly before and after the restoration, and is also larger than the error resulting

from the Hermiticity violation. Hence, the Hermiticity breaking is not a critical issue for

static HFB calculations. But it should not be neglected in a time-dependent framework

where such errors can accumulate through time steps and become appreciable.
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Table 6.3: Total energies Etot of 132Sn and 208Pb obtained from HFBTHO, HFBFFT,
Sky1D and Sky2D. Various energy components are also listed: Subscript of densities denotes
contributions from corresponding ED terms in Eq. (2.17), “Coul” the Coulomb energy, and
“kin” the kinetic energy. Digits that do not coincide with HFBFFT are marked in bold.

HFBTHO HFBFFT Sky1D Sky2D
132Sn Etot −1103.49 −1103.54 −1103.57 −1103.56

Ekin,n 1637.71 1637.97 1638.01 1638.02
Ekin,p 808.44 808.57 808.59 808.56
Eρρ −4876.26 −4877.02 −4877.04 −4877.07
Eρτ 821.49 821.70 821.73 821.72
E
ρ∇2ρ

248.11 248.23 248.25 248.23
Eρ∇·J −84.40 −84.43 −84.44 −84.43
ECoul 341.42 341.44 341.44 341.43

208Pb Etot −1635.46 −1635.68 −1635.70 −1635.70
Ekin,n 2528.42 2529.13 2529.16 2529.12
Ekin,p 1336.71 1337.06 1337.07 1337.08
Eρρ −7845.66 −7847.54 −7847.63 −7847.57
Eρτ 1329.79 1330.20 1330.22 1330.20
E
ρ∇2ρ

315.12 315.29 315.29 315.30
Eρ∇·J −96.42 −96.45 −96.45 −96.45
ECoul 796.56 796.63 796.63 796.62

6.2.2 Benchmarks without pairing

We start our benchmarks from systems without pairing correlations, i.e., closed-shell nu-

clei. Table 6.3 shows the energies of doubly magic 132Sn and 208Pb obtained from various

solvers; contributions from different functional terms are also given for comparison. These

two nuclei are spherical so we can use 1D, 2D and 3D solvers for them. One can see that

the results of three coordinate-space solvers agree with each other quite well, and the small

differences are mainly attributed to their different grid geometries. The agreement between

the results of HFBFFT and HFBTHO is acceptable but not perfect; the main reason is

the slow convergence of the total energy (especially the kinetic energy) with respect to the

number of HO shells [233, 234]. This is clearly shown by the large discrepancies of Ekin and
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Eρρ between HFBTHO and HFBFFT. According to Refs. [233, 235], the relation between

the total energy Etot obtained from a HO-basis-based solver and the number of HO shells N

can be approximated by Etot(L) = E∞+ a0e
−2k∞L, where L ≡

√
2(N + 3/2 + 2)b, b is the

oscillator length of the HO basis, and a0, k∞ and E∞ should be obtained by fitting. Then

E∞ is the energy corresponding to an infinitely large model space. The fit for 208Pb yields

E∞ = −1635.786 MeV, which is closer to the energy given by HFBFFT.

6.2.3 Benchmarks with pairing

Due to different numerical representations adopted in different solvers, their discretized quasi-

particle continua are also different. In addition, inconsistent cutoff schemes are adopted in

these solvers, as we prefer a low cutoff energy and a large smearing factor in grid-based

solvers due to the dense continuum in the coordinate-space representation. Thus, pairing

strengths Vq (q ∈ {p, n}) are not portable and must be renormalized for benchmarks. Our

strategy is to adjust pairing strengths in grid-based solvers to match the spectral pairing gap

∆q [70, 72, 236] given by HFBTHO. The pairing gap is defined in the canonical basis as

∆q =

∑
α∈q wαv

2
α

∣∣∣h̃αα∣∣∣∑
α∈q wαv

2
α

, (6.17)

where wα is the pairing cutoff weight (2.31). In HFBTHO, the neutron pairing strength

Vn is tuned to reproduce the average experimental neutron pairing gap of 120Sn, which is

∆n = 1.25 MeV, while the proton pairing strength Vp takes the same value as Vn. Another

quantity based on which we can tune pairing strengths is the sum of kinetic and pairing

energies, Ẽkin = Ekin+Epair, as it is less sensitive to the pairing cutoff energy than its com-

ponents [102, 237]. But the pairing gap is preferred because it is connected with experimental
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Table 6.4: Results of spherical 120Sn obtained from HFBTHO, HFBFFT, Sky1D and Sky2D,
including total energies Etot, some energy components, average pairing gaps ∆ and total
root-mean-square (rms) radii rrms (in fm). All energies are in MeV. Pairing strengths Vn
and Vp adopted in these calculations are equal and listed in the last row. Digits that do not
coincide with HFBFFT are marked in bold and numbers used for the pairing renormalization
are in italics.

HFBTHO HFBFFT Sky1D Sky2D
120Sn Etot −1018.77 −1018.78 −1018.92 −1018.74

Ekin,n 1340.51 1339.17 1339.14 1338.72
Ekin,p 830.75 831.25 831.31 831.28
Epair,n −12.48 −9.29 −9.14 −9.02
Epair,p 0.00 0.00 0.00 0.00
Ẽkin,n 1328.03 1329.88 1330.01 1329.70
∆n 1.25 1.25 1.25 1.25
∆p 0.00 0.00 0.00 0.00
rrms 4.67 4.67 4.67 4.67
Vn, Vp −284.57 −361.80 −367.30 −372.35

observables and usually yields better total-energy agreement among different solvers.

Tables 6.4, 6.5 and 6.6 show the results obtained with different solvers for spherical,

deformed and superdeformed systems. As shown in these tables, the values of various ob-

servables (total energy, total root-mean-square radius and quadrupole moments) in different

columns agree fairly well after the renormalization, although energy components differ sig-

nificantly. It is worth noting that the calculation for a deformed nucleus should start from

the wave functions of a HO (in grid-based solvers) or Woods-Saxon (in HFBTHO) potential

with an appropriate deformation. Besides, the fission isomer of 240Pu in principle should

be determined by locating the local minimum on the potential-energy curve obtained from

quadrupole-moment constrained calculations (see Fig. 7 in Ref. [232] for an example). This

can be easily carried out in HFBTHO and Sky2D; in HFBFFT, however, the constrained

calculation has not been implemented yet and the fission isomer is found by initializing

iterations with various HO deformations.
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Table 6.5: Results of axially deformed 102Zr and 110Zr obtained from HFBTHO, HFBFFT
and Sky2D. Besides quantities shown in Table 6.4, quadrupole moments Q20 (in fm2) are
also listed here. Pairing strengths Vn and Vp adopted in these calculations are listed in the
last two rows. Digits that do not coincide with HFBFFT are marked in bold and numbers
used for the pairing renormalization are in italics.

102Zr 110Zr
HFBTHO HFBFFT Sky2D HFBTHO HFBFFT Sky2D

Etot −859.65 −859.69 −859.67 −893.97 −894.01 −894.01
Ekin,n 1202.02 1200.96 1201.97 1368.08 1367.86 1367.13
Ekin,p 651.25 651.22 651.27 632.03 632.16 632.05
Epair,n −3.39 −2.50 −2.39 −3.18 −2.30 −2.19
Epair,p −1.97 −1.42 −1.38 0.00 0.00 0.00
Ẽkin,n 1198.63 1199.53 1199.58 1364.90 1365.56 1364.94
Ẽkin,p 649.28 649.79 649.89 632.03 632.16 632.05
∆n 0.69 0.69 0.69 0.64 0.64 0.64
∆p 0.56 0.56 0.56 0.00 0.00 0.00
rrms 4.58 4.58 4.58 4.73 4.73 4.74
Q20,n 639 639 640 789 791 796
Q20,p 411 411 411 444 445 447
Vn −284.57 −367.00 −378.40 −284.57 −371.00 −384.80
Vp −284.57 −372.00 −384.70 −284.57 −371.00 −384.80

Table 6.6: Similar to Table 6.5, but for the ground state and fission isomer of 240Pu.

240Pu
ground state fission isomer

HFBTHO HFBFFT HFBTHO HFBFFT Sky2D
Etot −1802.11 −1802.43 −1797.00 −1797.35 −1797.35
Ekin,n 2938.92 2939.94 2922.56 2923.45 2923.43
Ekin,p 1520.95 1521.46 1525.25 1525.52 1525.33
Epair,n −3.11 −2.30 −3.52 −2.60 −2.48
Epair,p −1.54 −1.22 −2.85 −2.19 −2.07
Ẽkin,n 2935.81 2937.64 2919.03 2920.85 2920.55
Ẽkin,p 1519.40 1520.25 1522.39 1523.33 1523.25
∆n 0.44 0.44 0.47 0.47 0.47
∆p 0.33 0.33 0.46 0.46 0.46
rrms 5.93 5.93 6.40 6.40 6.40
Q20,n 1784 1782 5063 5072 5071
Q20,p 1166 1165 3336 3344 3343
Vn −284.57 −360.00 −284.57 −369.00 −384.60
Vp −284.57 −355.00 −284.57 −360.00 −375.80
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6.3 Summary

We have developed a new HFB solver HFBFFT in the 3D coordinate space, using the

canonical-basis formalism and damped gradient method. The development of the new pro-

gram is based on Sky3D, a well-optimized, highly-parallelized HF+BCS program; the paral-

lelization framework of HFBFFT is similar to that of Sky3D. A number of implementations

has been done to ensure correct results and quick convergence, including the sub-iteration

method, soft pairing cutoff, pairing annealing, and the new algorithm to restore Hermiticity

in FFT-based numerical derivatives. We analyze a variety of nuclei with different deforma-

tions and s.p. structures to benchmark the new solver against HFBTHO, Sky2D, and (for

spherical systems) Sky1D. In the benchmarks, pairing strengths are adjusted according to

the pairing gap so that we can compare results obtained with different continuum structures.

We expect this benchmark procedure to be useful for the development of other DFT solvers.

As a 3D coordinate-space solver, HFBFFT performs better than HO-basis-based solvers

for the study of deformed and weakly bound systems. As a solver with no spatial symmetry

imposed, we will use HFBFFT to study triaxially deformed or reflection-asymmetric ground

states in the future. Besides, there are a number of features we plan to add to HFBFFT to

make it more versatile, such as the deformation constraint, the blocking procedure for odd-A

and odd-odd systems, and the pairing regularization that removes the dependence of pairing

strengths on the cutoff. We are also going to further optimize the performance of HFBFFT

for modern supercomputers using GPU architectures.
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Chapter 7

Conclusions

As shown in this dissertation, the nuclear-DFT framework has broad applications to various

nuclear physics problems. Research works discussed in this dissertation develop the frame-

work, and employ it to study nuclear ground-state properties, collective rotation and beta

decays. We also demonstrate that the combination of the nuclear DFT and tools developed

in other fields (e.g., the localization function developed in the electronic DFT, statistics, and

high-performance computing) can be helpful.

Chapter 3 shows the NLF patterns in two rotating systems, the CHO model and SD

152Dy. These two examples demonstrate the “constructive-interference” mechanism that ex-

plains the usefulness of the NLF in the visualization of the internal structure; they also reveal

the close connection between NLF patterns and high-lying occupied s.p. orbits. Chapter 4

discusses the origin of reflection-asymmetric ground-state shapes. The roles that different

multipole components of the energy play in the onset of pear-like deformations are exam-

ined for Ra and Yb isotopic chains, and high-order components are small but important

due to the strong cancellation between monopole and octupole parts. Besides, the coupling

between close-lying orbits with ∆ℓ = ∆j = 3 across the Fermi energy is shown to be re-

sponsible for the reflection asymmetry. Chapter 5 presents the procedure and results of the

model calibration for beta-decay calculations. The time-odd Skyrme couplings, isoscalar

pairing strength, and effective axial-vector coupling are fitted within the χ2-optimization

framework; their uncertainties and correlations are also obtained in the fit, with the number

of effective parameters determined by the PCA. The χ2 optimization paves the way for the
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Bayesian model calibration, and can be utilized to provide high-quality beta-decay inputs

with quantified uncertainties for r-process simulations. Finally, chapter 6 finally discusses

the numerical implementation and benchmark of the new HFB solver HFBFFT. This new

solver uses the canonical-HFB formalism in the 3D coordinate-space representation, so it

is an efficient and reliable tool for the studies of weakly bound and large-deformed nuclei.

HFBFFT is highly performant and well parallelized, and its correctness is ensured by careful

benchmarks against other HFB solvers. We expect to add more features to HFBFFT and

further optimize it for future applications.

Generally speaking, there are three main ingredients necessary in the nuclear-DFT re-

search, namely, (i) universal and well calibrated EDF parameterizations, (ii) versatile and

highly performant solvers, and (iii) useful approaches to extract physics information. Re-

search projects presented in this dissertation have significantly contributed to all these three

aspects.
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Appendix

List of my contributions

1. Tong Li, Mengzhi Chen, Chunli Zhang, Witold Nazarewicz, and Markus Kortelainen.

Nucleon localization function in rotating nuclei. Phys. Rev. C 102, 044305 (2020).

• Rederived the localization function with no term omitted.

• Performed cranked HF calculations for rotating 152Dy.

• Carried out the analysis and prepared figures regarding the results of rotating

152Dy and the cranked harmonic-oscillator model.

• Wrote the first paper draft.

2. Mengzhi Chen, Tong Li, Jacek Dobaczewski, and Witold Nazarewicz. Microscopic

origin of reflection-asymmetric nuclear shapes. Phys. Rev. C 103, 034303 (2021).

• Prepared Figs. 11 and 12 to facilitate discussions on s.p. levels.

• Checked equations in Sec. III and proofread the draft.

3. Mengzhi Chen, Tong Li, Bastian Schuetrumpf, Paul-Gerhard Reinhard, and Witold

Nazarewicz. Three-dimensional Skyrme Hartree-Fock-Bogoliubov solver in coordinate-

space representation. Comput. Phys. Commun. 276, 108344 (2022).

• Performed a large portion of work regarding the code development.

• Wrote the last two paragraphs in Sec. 2.2 and the whole Sec. 3.6.

• Checked all the equations and proofread the draft.
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4. Evan M. Ney, Jonathan Engel, Tong Li, and Nicolas Schunck. Global description of

β− decay with the axially deformed Skyrme finite-amplitude method: Extension to

odd-mass and odd-odd nuclei. Phys. Rev. C 102, 034326 (2020).

• Improved the performance of PNFAM by replacing loops with BLAS routines.

5. Model calibration for beta-decay calculations (unpublished).

• Added new codes to PyNFAM to connect the physics model with POUNDERS

and to provide data for emulator building.

• Produced physics-model outputs for the GP emulator building.

• Checked the codes for Bayesian model calibration and corresponding results.

6. Presentations

• “Model calibration for beta-decay calculations”, TRIUMF theory seminar, online

seminar hosted by TRIUMF, Dec 2021.

• “Skyrme EDF parameter calibration for beta-decay calculations”, 2021 NUCLEI

collaboration meeting, online, Jun 2021.

• “Nucleon localization function in rotating nuclei”, 2021 APS April meeting, online,

Apr 2021.

• “Nucleon localization function in rotating systems”, 2020 NUCLEI collaboration

meeting, online, Jun 2020.

• “Hartree-Fock-Bogoliubov solver in natural orbit representation using Fast Fourier

Transformation”, joint presentation with Mengzhi Chen, 2018 NUCLEI collabo-

ration meeting, University of Tennessee, Knoxville, TN, May 2018.
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