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ABSTRACT 

ROLE OF CIRCULAR EXERCISE ON FORELIMB LOADING AND ACCOMPANYING 

SKELETAL AND JOINT ADAPTATIONS 

By 

Alyssa A. Logan 

 Circular exercise is used frequently in equine exercise and competition, but little is 

known of the impact circular diameter and gait have to the joint and bone health of the forelimb. 

The first study evaluated the impact of circle diameter (10-m and 15-m) and gait to the forelimb 

solar outputs of average surface area, vertical force, and average pressure. Nine horses exercised 

in a straight line and in a round pen while wearing the Tekscan Hoof SystemTM on both front 

hooves with a glue-on shoe, a method of adherence which was determined to be reliable when 

measurements were recorded within one session. Gait, and not circle diameter, impacted 

forelimb outputs, with the average loaded area of the outside hoof while circling, being greatest 

at the canter (P = 0.001). While exercising on both a large and small circle, the outside hoof had 

greater vertical force at the canter than the trot (P = 0.01). A second study utilizing calves as a 

model for juvenile horses allowed the determination of physiological responses to circular 

exercise. Calves were assigned to small circle exercise (12 m), large circle exercise (18 m), 

treadmill exercise, or non-exercised control treatments (n = 6). Computed tomography and 

biomarkers were evaluated to determine impacts to bone and joint health. The inside leg of the 

small circular exercise group had larger dorsopalmar external diameter than the outside (P = 

0.05). The medial proximal phalanx had greater mediolateral diameter than the lateral proximal 

phalanx of the small circle group (P = 0.01). Cartilage glycosaminoglycan concentration was 

greater in the outside leg of the small circle exercise treatment than the inside leg (P = 0.03). 

Combined, both of these studies suggest that circular exercise diameter and gait can impact 

animal health and should be considered when performing circular exercise. 
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CHAPTER 1: Review of Literature 

 

BACKGROUND OF CIRCULAR EXERCISE 

The use of circular exercise is frequent in equine populations, both under-saddle and on the 

ground via lunging or a round pen. During early training, horses are often exercised in a circular 

manner in a round pen or by lunging [1,2]. Some disciplines of riding, such as dressage, reining, 

and barrel racing use circular exercise during training and competition throughout a horse’s 

career. Thoroughbred and Standardbred racehorses also perform circular exercise as they travel 

around a turn while racing as well as training. When surveyed, 50% of Thoroughbred trainers in 

Victoria, Australia indicated the use of a mechanical horse walker as an alternative exercise 

method to overground workouts [3]. Lunging with and without lunging aids, and the use of 

walkers are also found in many rehabilitation protocols [4,5].  

In lameness evaluations, a higher proportion of lameness can be found while utilizing 

lunging on hard or soft surfaces compared to straight lines [6]. In fact, it may be difficult to 

discriminate between lameness, and inherent gait asymmetry caused by trotting in a tight circle 

during lameness evaluations [7,8]. While circular exercise is commonly used, most of the 

industry is unaware of potential negative impacts it can have on joint health. Anecdotal evidence 

suggests a connection between circular exercise and lameness. When being exercised in a circle, 

horses will lean into the continuous turns up to 20° to maintain balance [9,10]. As speed 

increases and radius decreases, lean angle will also become more severe [11]. Due to the reduced 

surface area of the hoof that is loaded, uneven forces may be placed on joints and bones of the 

fore and hind limbs during circular exercise [9]. These uneven forces exerted on a smaller 

surface area have the potential to lead to a higher risk for joint injury and osteoarthritis.  
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CIRCULAR EXERCISE IN HUMANS AND QUADRUPEDS 

There are limited equine studies evaluating circular exercise. However, human exercise 

studies evaluating running on a curve are plentiful. When running around a curve, the inside and 

outside limbs of humans are not biomechanically symmetrical, and have different functions 

[12,13]. When running around an un-banked curve the inside leg has lower peak ground reaction 

force than the outside leg, which has increased ground reaction force. Speed is found to be 

slower when sprinting around a curve compared to sprinting in a straight line [12]. In both male 

and female athletes, race times for the 200-m sprint are slower on indoor tracks than outdoor 

tracks. When straight aways and curves of indoor and outdoor tracks were evaluated, it was 

found that athletes were slower on curves of the indoor tracks compared to outdoor tracks. The 

authors attribute this difference in race times to the notably smaller curve radii of indoor tracks 

[14]. 

In humans, the outside leg plays an important role in changing the direction of travel while 

running through a curve, as the outside leg generates larger centripetal force, thus pushing the 

runner through the direction change [13]. Within a cohort of college students, those with larger 

cross-sectional area to the psoas major of the outside leg compared to the inside leg were able to 

run faster around a circle of 23-m radius [15]. Not only does the presence of a curve impact 

runners, so does the sharpness of a curve. Running on a sharply curved track (5-m radius) leads 

to greater torsion on the inside tibia compared to running on a gently curved track (15-m) or a 

straight line [16]. As circle radius decreases, peak resultant ground reaction forces to the inside 

leg decrease compared to the outside leg [12].  

Quadrupeds, such as horses, may be at an advantage during curve running, as they can 

redistribute weight to multiple stance legs within a stride. It has been found that while cantering 



3 
 

in a 10-m circle, horses will have greater peak ground reaction force on the outside forelimb 

compared to the inside forelimb [17]. At the trot, a two beat diagonal gait, horses have been 

found to have decreased loading when the inside foreleg and outside hindleg are in stance, 

compared to a push-off pattern for the outer limbs [18]. While traveling around a curve, 

Thoroughbred race horses experience greater strain to the outside forelimb, which is increased as 

speed increases [19]. In both humans and horses, the outside limb while sprinting through a 

curve is known to generate more vertical and lateral force than the inside limb, to serve as a 

push-off limb [11].  

When speed is held constant between a straight line and a curve, stride duration and 

subsequently stride length, are seen to increase when horses travel around a curve compared to a 

straight line. With training, this increase in stride duration around a curve is seen to decrease, 

potentially through familiarity via training and neuromuscular adaptation [20]. In humans, step 

frequency will decrease as the radius of a curve decreases, leading to a decreased velocity. Given 

this, during track races the individuals running in the innermost lane may be at a disadvantage as 

they are running a tighter radius [21].  

As travel around a curve is performed, forces are exerted in many directions, not just the 

vertical force of the limb interacting with the area loaded directly underneath the foot or hoof 

[22]. Lateral forces are responsible for propulsion, while transverse forces are responsible for 

turning. Vertical, lateral, and transverse ground reaction forces are frequently captured with a 

force-plate embedded into a surface and kinematic data captured with a camera system [23–25]. 

The use of an embedded force plate is difficult for gait analysis on a curve, especially at high 

speeds such as while racing. Compared to bipedal sprinters, such as humans, quadrupeds are 
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estimated to be superior at curve running due to their ability to have more than one stance leg or 

push-off leg during a stride.  

Another quadruped which is known for track racing is the greyhound. The majority of racing 

injuries in New Zealand racing greyhounds are localized to the limbs (83%), with overall injury 

rate increasing with age. Nearly 50% of injuries occur while the greyhound is running on a bend, 

with 17% occurring on a straight section of track [26]. Track design is a significant factor to 

greyhound injury rate, dogs are more likely to injure themselves in the first turn of an oval track, 

due to congestion and contact between dogs, as well as high speed of travel while exiting the 

straight-away and entering the turn [26,27]. Some tracks closely resemble a circular track and do 

not have dramatic curves like a traditional oval track with a long straight-away. These circular 

tracks are predicted to have a lower injury rate due to the lack of a sharp curve between a 

straight-away and the start of a turn  [28]. While greyhound racing and horse racing have unique 

characteristics, it is worth noting that the presence of running on a curve leads to injuries in both 

species. 

It has been hypothesized that horses handle traveling in a circle similar to the adjustments 

they make in response to lameness on a straight line; horses counteract uncomfortable limb 

loading with asymmetrical movement which redistributes limb loading [7]. Stride length of the 

inside leg is shorter than the outside leg at both the walk and canter when lunging on a 10-m 

circle [29]. Horses will lean into the circle in which they are traveling, with the lean increasing 

with speed and smaller radii. Body lean may also be increased when a lame forelimb is on the 

inside of the circle, with lameness score also increasing [8,30]. Level of training can also impact 

lean angle, as a well-trained horse acclimated to traveling on a circle can travel more upright 

than a horse which is not acclimated to traveling in a circle or bend. This has especially been 
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noted in dressage, where trained horses are able to travel “on the bit”, while an inexperienced 

horse may not be able to maintain bit contact and engage the topline and hindlimb musculature 

through a circle [8].  

For dressage horses, lunging has been found as “protective” against lameness, while time on 

a walker is associated with lameness [31]. In dressage, lunging is typically done with a horse in a 

bridle and surcingle, allowing a skilled handler to encourage a horse to travel on a lunge line in a 

more-upright position and in larger circles. These animals frequently exercise under saddle in the 

same size and speeds as they are exercised on the lunge line, so for dressage horses, lunging is 

often similar to ridden exercise. Horses exercised freely on a mechanical walker may have more 

lean than those lunged in surcingle, the walker may have a relatively smaller radius, and the 

horses are often unsupervised on a walker. Walkers are also often used during injury 

rehabilitation and recovery, which may be a confounding factor in the association between 

walker use and lameness.  

CIRCLE RADIUS AND GAITS 

Horses can utilize many gaits to travel, most common are the walk, trot, canter, and gallop. 

The walk is a symmetrical gait with a lateral sequence of footfalls having no suspension. The trot 

is a symmetrical, two-beat diagonal gait with suspension. Unlike the walk and trot, the canter is 

an asymmetrical gait characterized by three beats with a suspension phase after lift-off of the 

leading forelimb [32]. At the canter, horses will move with a protracted leading limb through 

greater flexion of the elbow and hip joints [33]. When canter speed increases to the gallop, the 

diagonal pairs become dissociated, leading to a four-beat gait [32]. While galloping, a horse will 

propel itself over the single lead limb, with the lead limb sustaining a greater load than at a 

symmetrical gait, such as the trot [34]. A four-beat lope has also been noted in western-style 
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horses [35]. This style of lope is much slower than that of a four beat gallop is not currently 

preferable in performance, but is found frequently among the western stock-horse population, 

especially during lunging. 

In both human and equine runners, the radius of a curve has been found to impact movement 

characteristics. When trotting in a small circle with a radius of 1.8 m, horses can travel with a 

lean-in angle of up to 20°. Overall, decreasing circle radius and increasing speed will lead to an 

increased body lean-in angle [9,36]. During Thoroughbred racing, injuries are most likely to 

occur when running around a curve than on a straight section of track [11]. Dirt tracks with 

tighter turn radii have a higher risk for right (outside) forelimb fractures, while the left (inside) 

forelimb is at a lower risk for fracture while racing at the tightest radii on dirt tracks, potentially 

due to the increased centripetal force on the outside limb providing propulsive and turning forces 

during a tight turn at high speed [37].  

Yearling Quarter Horses in training for lunge-line classes typically travel at slower speeds 

than that of English-style lunging. A study evaluating the response in serum osteocalcin and 

keratin sulfate of lunging in a large circle while preparing for lunge-line classes found that 

lunging did not significantly alter osteocalcin or keratin sulfate concentrations compared to 

animals exercised on a mechanical walker [38]. Unfortunately, this study did not include a 

straight-line exercise group for comparison. The characteristic slow speeds and large circle size 

during preparation for a stock-horse lunge-line class may not have elicited changes in the studied 

markers, but other non-studied markers or bone characteristics determinable by radiographs may 

have been impacted. Alternatively, higher speeds and smaller circle size would be expected to 

lead to greater lean-in angle during travel, potentially leading to bone and joint health biomarker 

responses suggesting joint damage.  
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Combining both variability in circle diameter as well as gait of travel, can lead to unique 

conditions of circular exercise. For example, lean-in angle had been found to be 12° on average 

at the trot and 19° at the canter [39]. Lean-in angle most likely occurs to prevent a horse from 

falling over during circular exercise, and to align the limbs with resultant forces to avoid 

excessive torque to joints [39]. Understanding that decreased circle diameter and increased speed 

lead to greater body lean-in angle, can aid in clarity towards conditions which may be 

detrimental to the horse [9,36]. 

CIRCULAR EXERCISE UNDER SADDLE 

 Movement asymmetry has been found, even in sound horses, when exercising in a 

circular motion at the rising trot. The technique of the posting trot should be taken into account, 

as one half of the stride the rider is sitting down in the saddle, while the other half they are 

posting out of the saddle [18]. When riding the trot in a sitting position, the rider’s weight is 

parallel between the two diagonals. However, when posting the trot, the horse’s back is unloaded 

during the rising part of the post. During the sitting part of the post, weight is distributed very 

similar to the sitting trot [32]. It is worth noting that the experience, balance, and confidence of 

the rider could impact an observed asymmetry during the posting trot on a circle.  

Unpublished data in the Spartan Equine Research lab found that when ridden by a 

professional rider, a horse has more consistent force output of the forelimbs and lower average 

force output compared to being worked in-hand (Figure 1 and 2). This has been noted both on a 

straight line and in circular exercise. The lower force output of the forelimbs with the presence of 

a professional rider may be due to the fact that a professional rider is able encourage a horse to 

transfer weight to the haunches [32]. A study evaluating sacroiliac joint pain in horses found that 

when ridden, horses were less likely to canter on the incorrect lead in the hindlimbs than when 
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lunged, potentially because a rider can to encourage the horse to stay balanced and maintain its 

lead better than lunging [40]. A study evaluating movement symmetry differences at the trot 

between ridden and non-ridden reining Quarter Horses found that with an experienced rider, 

wither and pelvic parameters were more symmetrical when ridden. The more-movement for 

western riders may be due to the fact that the western jog is ridden in a sitting position, with no 

asymmetrical posting [41].  

Figure 1: TekscanTM outputs of Force vs. Time with a horse trotting in a straight line  

Bright green (left) and red (right) values represent the forelimb forces while worked in-hand. 

Dark green (left) and purple (right) values represent the forelimb forces while ridden by a 

professional. Each “peak” represents one step with the associated limb. 
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Figure 2: TekscanTM outputs of Force vs. Time with a horse cantering to the left in a 10-m circle 

Bright green (left) and red (right) values represent the forelimb forces while worked in-hand. 

Dark green (left) and purple (right) values represent the forelimb forces while ridden by a 

professional. Each “peak” represents one step with the associated limb. 

 

When experienced riders rode non-lame horses at the rising trot with one stirrup 5 cm 

shorter than the other, more rotation and bending of the thoracolumbar spine of the horse was 

seen when the shortened stirrup was on the inside compared to the outside. This asymmetry is 

attributed to the fact that riders tilted towards the shortened stirrup. Riding with the shortened 

stirrup on the outside also lead to greater inside limb fetlock extension [42]. While riding at the 

sitting trot, collapse of one hip increases the force on the opposite side, while tilt of the rider’s 

upper body in one direction leads to greater pressure on that same side [43].  

A study evaluating horses trotted in-hand and under saddle found that hind limb lameness 

increased when ridden by a dressage rider compared to unridden [44]. Another study found that  

a professional rider has been found to decrease gait velocity and acceleration variability at the 

working trot, compared to the unridden trot [45]. It is important to note the impact that a rider 

can have on horse locomotion, with both the potential to increase asymmetry and variability, or 

decrease in the case of the professional rider. Conditions of circular exercise, such as the 
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presence and experience of a rider need further evaluation to determine if there is a consistent 

impact to equine bone and joint health. 

INJURIES 

Osteoarthritis and joint injuries have been reported as a leading cause of lost training days 

and horse wastage, yet little has bridged that gap between circular exercise and joint damage. 

With up to 60% of lameness being related to osteoarthritis, this gap in research greatly affects the 

equine community [46,47]. A 10 – year retrospective study of western performance horses found 

the location of the majority of lameness to be the distal forelimb [48]. Within western 

performance, all-around horses (western pleasure, western riding, western horsemanship, and 

trail) and reining horses both experienced lameness that was most frequently in the distal 

forelimb. Reining horses experience greater speeds while traveling and turning compared to all-

around horses. While the discipline of reining rarely utilizes lunging, reining horses are loped in 

circles extensively, as circles are a required maneuver in reining patterns and lateral flexibility is 

highly desired in these horses. Quarter Horses are the predominant breed used for reining, and 

often succumb to osteoarthritis [49]. In a survey across the United States, Quarter Horses and 

Thoroughbreds were found to make up over half of the population affected by osteoarthritis [50]. 

A dearth of research utilizing performance horses as the subject of research exists, especially 

given the high incidence of osteoarthritis in Quarter Horses and popularity of these horses across 

the United States. 

Bone is able to adapt to the strains it is placed under, or a lack of strains. Based on the 

difference in training regimens they commonly experience, racing Thoroughbred and 

Standardbred horses can have different bone shape to the third metacarpal [34]. Racing 

Thoroughbreds travel short distances at the gallop and Standardbreds travel longer distances at 
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the trot or pace. Another study found that when turning counter-clockwise, a small cohort of 

Thoroughbred horses had increased strain measured on the lateral surface of the left (inside) third 

metacarpal and medial surface of the right (outside) third metacarpal when walking on a bitumen 

surface [51]. When exercising on a straight, flat surface, the lateral cortex of the third metacarpal 

is not significantly loaded like it is loaded when running on a turn [51]. This may put the lateral 

cortex at higher risk of fracture when running into a curve at high speeds. Catastrophic fractures 

in older Thoroughbred racehorses frequently occur in the lateral cortex of the left third 

metacarpal, most likely due to the high strains experienced to the leading front leg during turning 

[52]. 

At North American Thoroughbred racetracks, from January 2009 – December 2014, 

horses euthanized due to fracture within 72 hours of race start, were most frequently found to 

have forelimb fractures compared to hindlimb [37]. In the majority of North American tracks, 

track shape is an oval, and races are run counterclockwise, leading to horses traveling with their 

left lead around a turn, then switching to their right lead on a straightaway to prevent fatigue of 

traveling on one lead the entire race. A study of Midwestern racetracks found that in 

Thoroughbreds the left forelimb was the most common site for injuries (56% of CMIs) [53]. As a 

result of greater impulse on the left forelimb while galloping around the turn of a race track, 

Thoroughbreds are at greater risk for injury to the left forelimb while traveling around a turn 

[54]. In Quarter Horses, the right forelimb is most commonly involved in catastrophic 

musculoskeletal injuries (CMIs), with the left forelimb following second (57% and 24% of 

CMIs, respectively). This may be due to the preference of the right lead in racing Quarter Horses 

[46,53]. However, the presence of motor laterality within the equine population is questionable 
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and may not exist outside of horses in race training, as it was not found in Quarter Horses trained 

for cutting [55].  

This may seem contradictory, as previous sections in this review have discussed 

increased forces to the outside front limb during turning both in training at slower gaits and 

racing at the gallop. However, during turning, the outside front limb has a pushing function, and 

while a horse is galloping, the weight of the horse will be pushed forward and laterally onto the 

lead forelimb [34]. The risk of injury to inside or outside forelimb appears to be dependent on 

curve radius, with the tightest of curve radii being higher risk to the outside forelimb [37]. Curve 

radius and the potential for catastrophic injury can also put jockey’s at risk; a retrospective study 

of risk factors for jockeys in Japanese Thoroughbred racing found smaller tracks to have a 

greater risk of injury [56]. 

IMPROVEMENTS 

The transition from running along a straight portion of a track into a curve can be drastic 

and cause a horse to lose coordination. To mitigate this, transitional curves, such as a gradual 

curve that slowly decreases in radius, can be implemented at tracks [57]. One way to rid tracks of 

the problem of curve design is to race on straight tracks. This is how racing started, however, is 

not conducive to spectators. A completely circular track could also be used, but also comes with 

its own set of issues such as increased space, ideal speed, and safe starting [57]. The Hanshin 

Racecourse in Japan which was found to have geometric and surface issues was restructured, and 

horse injuries were evaluated after this restructuring. This racetrack was nearly flat, and 

triangular shaped (turns 1 and 2 were nearly seamless, with turns 3 and 4 as the base of a 

triangle), producing quick times, as well as higher fracture risk. After many years of racing, the 

surface had become concerningly hard. Restructuring resulted in more gradual corners, better 
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surface cushioning, and an upgrade slope before the finishing stretch. After restructuring, severe 

injuries were significantly reduced, including fracture and non-fracture injuries. The track 

renovations did effectively decrease horse speeds, leading to slower racing times caused by 

slower times around the 3rd and 4th corners and the home stretch [58]. 

The increase in banking at tracks for Standardbred racehorses has led to a decrease in 

injuries. Standardbred racetracks are often smaller than those used for Thoroughbreds, 

necessitating banked turns to prevent injuries [19,59]. Thoroughbred racetracks do not include 

banking as dramatic as Standardbred racetracks. The lack of banking causes a horse to need to 

change how their limbs interact with the ground underneath of them. Horses running at high 

speeds through a curve utilize friction and place their feet sideways to stay on the flat, curved 

path. The inclusion of a greater degree of banking and increasing the radius of corners for 

Thoroughbred racehorses may reduce injuries [19,57].  

Even at speeds slower than the racing gaits of Thoroughbreds and Standardbreds, 

banking has been found to allow horses to travel around a curve in a similar fashion to a straight 

line. When traveling on a 10-m circle that is flat, horses will perform greater inside forelimb 

adduction (bringing closer to the midline of the body) compared to a banked surface at the walk, 

trot, and canter [29]. When lunging on a flat circle, horses may need more forelimb adduction to 

properly balance as they lean into the curve, and allow their mass to travel over the stance leg. 

Body lean is also greater in a flat lunge circle than a banked lunge circle.  As the body leans into 

the curve, the limbs also “tilt” and are potentially loaded unevenly. However, the use of banking 

deceases relative body lean angle, and therefore reduces uneven loading of the limbs [29]. 

Acclimation to traveling around a curve may be needed for young horses. Given that 

young horses in race training can become acclimated to running through a curve, an adjustment 
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period should be considered in training regimens [20]. Speed work in young horses should not be 

avoided, as it is beneficial for bone formation [60–63], and should be permitted in the straight 

portions of a track while animals are acclimating to traveling around a curve at high speeds. 
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CHAPTER 2: Evaluation of within- and between- session reliability of the TekscanTM Hoof 

System with a glue-on shoe 

 

This chapter has been published in the Journal of Equine Veterinary Science and is available at 

the following citation: 

Logan, A.A., B.D. Nielsen, D.B. Hallock, C. I. Robison, J.M. Popovich Jr. Journal of Equine 

Veterinary Science 2022, 110. https://doi.org/10.1016/J.JEVS.2021.103862 

A current trend in equine research is technology development to minimize the subjective 

nature of gait analysis. One such technology is the Tekscan Hoof System, which records force 

and area loaded by the hooves during motion. The objective of this study was to determine the 

test-retest reliability of the Tekscan Hoof System between two sessions, and the recordings 

within those sessions. Four mature Standardbred geldings wore Tekscan Hoof System sensors on 

both front hooves, secured by glue-on shoes (SoundHorse Technologies). Horses were exercised 

in AM and PM sessions. In each session, horses walked and trotted for three recordings of at 

least 10 steps. Statistical analysis was performed in SAS 9.4 with fixed effects of gait, horse, leg, 

and recording nested within session (significance at P ≤ .05). Intraclass Correlation Coefficients 

(ICC; 3,k) and confidence intervals between AM and PM sessions and recordings were 

calculated with SPSS. Average force and area were higher in AM sessions than PM sessions (P < 

.0001). Between AM and PM sessions, ICC for the walk had good reliability (0.96, 95% CI = 

0.80 – 0.99) and excellent reliability at the trot (0.98, 95% CI = 0.91–0.99). Within the AM and 

PM sessions, reliability was excellent at both the walk, and trot (ICCs > 0.96). The Tekscan 

Hoof System has been found to have excellent reliability within sessions. Caution should be 

taken when comparing between sessions, as the system is found to have lower force and area 

output during later sessions due to potential sensor damage. 

 

 

https://doi.org/10.1016/J.JEVS.2021.103862
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Chapter 3: Impact of gait and diameter during circular exercise on front hoof area, vertical force, 

and pressure in mature horses 

 

Logan, A. A.; B.D. Nielsen, C. I. Robison, D.B. Hallock, J.M. Manfredi, K.M. Hiney, D.D. 

Buskirk, J.M. Popovich Jr. Animals 2021, 11, 12. https://doi.org/10.3390/ ani11123581 

 

SIMPLE SUMMARY 

 

Circular exercise is used frequently to exercise, train, and evaluate horses both under 

saddle and with lunging. However, little is known of the impacts this type of repetitive exercise 

has on the front limbs of horses. Nine mature horses wore TekscanTM Hoof Sensors on their front 

hooves to determine if changing the circle size and gait at which the horse is traveling impacts 

the area, vertical force, or pressure output. Sensor data were collected while horses travelled in a 

straight line at the walk and trot and in small and large counterclockwise circles at the walk, trot, 

and canter. Gait was found to be a driving factor for differences in outputs, with mean area, mean 

vertical force, and mean pressure being greater at the walk in a straight line, and the area being 

greater at the canter when circling. When traveling in a counterclockwise circle, the mean area of 

the outside front leg was highest at the canter. This study shows gait is an important factor when 

evaluating exercise in a circle or straight line. Horse owners may choose to perform circular 

exercise at slower gaits or minimize unnecessary circular exercise to decrease differences 

between limbs and potentially reduce injury. 

ABSTRACT 

 

Circular exercise can be used at varying gaits and diameters to exercise horses, with 

repeated use anecdotally relating to increased lameness. This work sought to characterize mean 

area, mean vertical force, and mean pressure of the front hooves while exercising in a straight 

line at the walk and trot, and small (10-m diameter) and large circles (15-m diameter) at the 

walk, trot, and canter. Nine mature horses wore TekscanTM Hoof Sensors on their forelimbs 
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adhered with a glue-on shoe. Statistical analysis was performed in SAS 9.4 with fixed effects of 

leg, gait, and exercise type (PROC GLIMMIX) and p < 0.05 as significant. For all exercise 

types, the walk had greater mean pressure than the trot (p < 0.01). At the walk, the straight line 

had greater mean area loaded than the large circle (p = 0.01), and both circle sizes had lower 

mean vertical force than the straight line (p = 0.003). During circular exercise at the canter, the 

outside front limb had greater mean area loaded than at the walk and trot (p = 0.001). This study 

found that gait is an important factor when evaluating circular exercise and should be considered 

when exercising horses to prevent injury. 

INTRODUCTION 

The use of circular exercise is frequent in equine training, both under-saddle and in-hand 

via lunging, and anecdotally has the potential to contribute to lameness. During early training, 

horses are often exercised in a circular manner through lunging or in a round pen. Some riding 

disciplines, such as dressage, reining, and barrel racing, use circular exercise during training and 

competition throughout a horse’s career. Often, the circles performed in these disciplines are on a 

small radius with high speed and are utilized frequently within a training session. Thoroughbred 

racehorses also experience circular forces as they lean into a bend at high speeds [11,20]. Lunging 

with and without lunging aids, and the use of mechanical horse walkers is found in many 

rehabilitation protocols [4,5]. When surveyed, 50% of Thoroughbred trainers in Victoria, Australia 

indicated the use of a mechanical walker as an alternative exercise method to track work [3]. In 

lameness evaluations, a higher proportion of lameness can be found while utilizing lunging on 

hard or soft surfaces compared to straight lines [6]. While circular exercise is commonly used, 

many in the industry are unaware of the potential negative impacts it can have on joint health. 

While being exercised in a circle, horses will lean into the continuous turns up to 20 degrees to 
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maintain balance. As speed and curve increase, the lean angle will also increase [8–11,29]. Greater 

tilt on a flat curved surface has also been found compared to a banked curve surface [29]. Due to 

the possibility of a reduced loaded area, uneven vertical forces may be placed on joints and bones 

of the limbs during circular exercise. 

Quadrupeds, such as horses, may be at an advantage during curve running, as they can 

redistribute weight to multiple stance legs within a stride [11]. It has been found that, while 

cantering in a 10-m circle, horses will have greater peak ground reaction force on the outside 

forelimb compared to the inside forelimb. This difference in vertical forces between limbs was not 

evident at slower speeds and may be due to the presence of a lead and non-lead forelimb and 

hindlimb during the canter. In both humans and horses, the outside limb while sprinting through a 

curve is known to generate more vertical and lateral force than the inside limb [11]. When speed 

is held constant between a straight line and a curve, stride duration is seen to increase when horses 

travel around a curve compared to a straight line. With training, this increase in stride duration 

around a curve is seen to decrease, potentially through familiarity via training or neuromuscular 

adaptation [20]. 

There are few equine studies evaluating circular exercise; however, human exercise studies 

evaluating running on a curve are abundant. It has been found that in humans, when running around 

an unbanked curve, the inside leg has a lower peak ground reaction force than the outside leg. Peak 

ground reaction forces of both legs and speed are also lower when sprinting around a curve 

compared to in a straight line [12]. Not only does the presence of a curve impact runners, so does 

the sharpness of a curve. Running on a sharply curved track (5-m radius) led to greater torsion on 

the inside tibia compared to running on a gently curved track (15 m) or a straight line [16]. Both 

the speed and the radius of a circle will impact the gait asymmetry of horses circling at the trot [8]. 
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A retrospective study of risk factors for jockeys in Japanese Thoroughbred racing found smaller 

tracks to have a greater risk of injury [56]. 

In racing Quarter Horses, who race on straight portions of tracks, the right forelimb is most 

commonly involved in catastrophic musculoskeletal injuries (CMIs), with the left forelimb 

following (57% and 24% of CMIs, respectively). This may be due to the preference of the right 

lead in racing Quarter Horses [46]. However, the presence of motor laterality within the equine 

population is questionable and may not exist outside of horses in race training, as it was not found 

in Quarter Horses trained for cutting [55]. Thoroughbreds typically race counterclockwise on an 

oval track in North America, with the left front leg as the leading leg while traveling around a 

curve in the track. A study of Midwestern U.S. racetracks found that the left forelimb was the most 

common site for injuries (56% of CMIs) in Thoroughbreds, while the right forelimb was the most 

common (60% of CMIs) in Quarter Horses [53]. As a result of greater impulse on the left forelimb 

while galloping around the turn of a race track, Thoroughbred racehorses are at greater risk for 

injury to the left forelimb while traveling around a turn [54]. 

It has been hypothesized that horses handle traveling in a circle similar to the adjustments 

they make in response to lameness on a straight line; horses counteract uncomfortable limb loading 

with asymmetrical movement, which redistributes limb loading [7]. Horses will lean into the circle 

in which they are traveling, with the lean increasing with speed and smaller radii [8]. The level of 

training can also impact lean angle, as a horse acclimated to tracking in a circle can travel more 

upright than a horse that is not acclimated to tracking in a circle or bend. This has especially been 

noted in dressage, where older, trained horses are able to travel while engaging their neck, back, 

and hindlimb musculature, where a younger horse may not be able to do so through a circle. Body 

lean may also be increased when a lame forelimb is on the inside of the circle [10,29,64]. When 
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circling at the trot, a two-beat diagonal gait, horses have decreased loading when the inside front 

leg and outside hind leg are in a stance, compared to a push-off pattern for the outer limbs [18,65]. 

Osteoarthritis (OA) and joint injuries have been reported as a leading cause of lost training 

days and horse wastage. There may be a connection between OA and circular exercise, but 

interactions between circular exercise and joint damage have not been explored. With up to 60% 

of lameness being related to OA, this gap in research greatly affects the equine community [46,47]. 

Within the United States, Quarter Horses and Thoroughbreds have been identified as making up 

half the population affected by OA [50]. Osteoarthritis can occur secondary to excessive loads on 

normal cartilage or normal loads on abnormal cartilage [66,67], with both mechanisms possibly 

exacerbated by circular exercise. It has been noted that horses are able to perform adaptations to 

limb position while exercising on a circle via abduction (pushing the limbs away from the midline 

of the body) and adduction (bringing the limbs towards the midline), but these adaptations 

performed over long periods of time and at faster gaits may lead to greater risk of injury to the 

distal limb [29,67]. 

Utilizing the TekscanTM Hoof System (Tekscan, Inc., Boston, MA, USA), the aim of this 

study was to categorize the outputs (i.e., area, vertical force, and pressure) for the front hooves of 

horses during counterclockwise circular exercise, and to demonstrate that these outputs vary 

depending on circle diameter and gait. It was hypothesized that faster gaits and a decreased circle 

diameter would lead to greater disparity in the mean area, vertical force, and pressure of the front 

limbs, with the outer limbs having a smaller mean loaded area with greater mean vertical force and 

pressure. 
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MATERIALS AND METHODS 

This research was approved by the Michigan State University (MSU) Institutional 

Animal Care and Use Committee (PROTO201800148). 

Horses 

A total of nine mature horses participated in this study (14 ± 2 years). Arabian horses were 

obtained from the MSU Horse Teaching and Research center (n = 4: Two mares and two geldings) 

and stock horses were obtained from a local training operation (n = 5: Two mares and three 

geldings). One week prior to beginning exercise, horses were evaluated by two board-certified 

veterinarians (large animal surgery and one also boarded in equine sports medicine and 

rehabilitation) with a Lameness Locator® and subjective lameness evaluation to be sound 

(American Association of Equine Practitioners lameness grade of <2 on each front leg). Horses 

were transported to the MSU Pavilion South Arena for one day for exercise analysis. During the 

day, while not being exercised, horses were given ad libitum access to water and hay and kept in 

individual stalls. 

Hoof Preparation and Sensors 

Hoof and sensor preparations were performed in a method previously utilized when using 

the Tekscan Hoof SystemTM with a glue-on shoe [68]. Horses were trimmed by a certified farrier 

(Certified Journey Farrier, Advanced Skill Farrier, Associate of the Worshipful Company of 

Farriers) within a week before exercise. Horses were trimmed for medial-lateral balance according 

to the long axis of the limb observed with the hoof picked up. Excess hoof was removed as needed 

to achieve a flat plane to place sensors, and shoe placement was guided by the center of rotation 

(COR) [69]. Horse hooves were measured for width and length to determine an accurate glue-on 

shoe (SoundHorse Technology) size for each horse (Table 1). An exact fit for each front hoof and 
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shoe was desired so that the loaded sensor area represented the loaded area of the hoof. Tekscan 

hoof sensors were trimmed to the size of the front hooves of each of the horses after initial hoof 

trimming. The trimmed sensors were sealed in two layers of liquid rubber (Flex Seal, Weston, 

Florida) to protect the sensors from moisture and sand exposure. The liquid rubber sealing was 

allowed to dry for 24–48 h before sensors were placed on horses. 

The day before horses exercised, horses were weighed for calibration. Two scales of equal 

height were used. Horses stood with their hind legs on one scale and their front legs on another 

and were encouraged to stand square with their weight equally distributed. The weight of the front 

half of the horse was recorded on one scale for sensor calibration (Tru-Test Multipurpose MP600 

Load Bars). This weight was divided in half, to represent the left limb and the right limb (Table 

1). 

On the day of exercise, the sealed and trimmed sensors were attached to the front hooves 

of each horse with a glue-on shoe and animal-safe epoxy. Horses were shod with a ratio of 60% in 

front of COR and 40% behind [69]. After the initial mixing, the two-part epoxy used to adhere the 

shoe to the hoof wall was dried for approximately 30 min to be cured for exercise. Before 

beginning exercise, the sensors were calibrated with the previously recorded weight of the 

forelimbs. Each horse walked the length of the indoor arena to pre-load the sensors. Afterwards, 

they were brought to a flat spot in the middle of the arena and encouraged to stand squarely with 

their weight evenly distributed. Using F-Scan research software (TekscanTM), the previously 

determined weight of the front limbs (Table 1) was inputted with the step calibration function, and 

a calibration file was saved for the left and right forelimbs for each horse. 
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Table 1: Horse details—forelimb calibration weights used for the Tekscan Hoof System and front 
hoof measurements used to accurately assign front hoof glue-on shoe size for each horse. 

Horse Breed Shoe 

Size 

Forelimb 

Weight 

(kg) 

Left Hoof 

Width 

(mm) 

Right 

Hoof 

Width 

(mm) 

Left Hoof 

Length 

(mm) 

Right 

Hoof 

Length 

(mm) 

1 
Stock 

horse 
00 170 120 120 138 135 

2 
Stock 

horse 
0.5 169 138 138 136 136 

3 
Stock 

horse 
1.5 167 127 130 138 138 

4 
Stock 

horse 
00 156 127 127 129 130 

5 
Stock 

horse 
0 135 127 128 127 127 

6 
Arabi

an 
1.5 139 135 130 145 140 

7 
Arabi

an 
0.5 138 130 125 128 128 

8 
Arabi

an 
0 131 122 135 130 125 

9 
Arabi

an 
0 127 125 125 127 127 

Exercise 

Previous research with the Tekscan Hoof SystemTM has found that when used with a glue-

on shoe on the front hooves, the sensors are reliable within a session of exercise [68]. Bearing this 

in mind, the current study was designed that each horse would complete all their exercise within 

one session, and each set of sensors would only be used once. Straight-line exercise was performed 

first for each horse, so that if a sensor was damaged during circular exercise, then all horses would 

have straight-line exercise recordings. The space in which straight-line exercise was recorded was 

25 m in length. Multiple recordings have previously been suggested for exercise protocols utilizing 

sensors such as this to gain a mean of the desired outputs [70–73]. Each horse was recorded three 

times at both the walk and trot traveling in a straight line the length of the indoor arena. The canter 

was not recorded in a straight line, as the gait is not able to be safely and consistently attained 
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when horses are led in-hand. Each recording included at least 10 steps of the horse performing the 

specified gait consistently with no break. All straight-line exercise was performed by the same 

handler. 

After the straight-line exercise, each horse was led to the portable round pen in the middle 

of the indoor arena. Order of size for the circular exercise (small first or large first) was randomly 

assigned for each horse. The size of the small circle was 10 m in diameter, while the size of the 

large circle was 15 m. Circle diameter was adjusted by adding or removing portable round pen 

panels with the perimeter for each circle size marked in the sand of the arena so that both circles 

were set up the same each time. For each horse, three recordings of at least 10 strides at the walk, 

trot, and canter were taken for both the large circle and the small circle. All circular exercise was 

performed in a counterclockwise direction, with the left forelimb on the inside and the right 

forelimb on the outside. Only one direction was evaluated so that one limb could be consistently 

denoted as the outside limb and the other as the inside limb. Counterclockwise was chosen as this 

is the direction of travel for racing horses and is typically the first direction of travel for horses 

competing in judged classes on the rail. Horses were encouraged to maintain gait speed with a 

human handler either verbally or visually encouraging them to gain speed or slow down. The speed 

of the walk, trot, or canter was not controlled between animals, as each individual animal has a 

speed for each gait at which they are able to move comfortably and maintain their gait consistently 

through recordings. Other gait analysis studies have preferred to allow animals to travel at their 

natural speed within a gait during testing [6,18,47,71]. If there were errors such as an incorrect 

lead or break of gait, the recording in process was stopped and re-recorded. Following exercise, 

the glue-on shoes and sensors were removed from each horse. 
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Data Analysis 

Sensor data were recorded at a sampling rate of 112 frames/second for all conditions. 

Recorded data were then analyzed with Tekscan F-Scan Software (version 6.85). F-Scan Software 

collected vertical force and area outputs, and calculated pressure from the coordinating vertical 

force and area for a frame. The first and last steps were removed from each recording dataset to 

ensure that no transitional steps between gaits were included in the dataset. Each recording dataset 

still had at least 10 steps with the first and last step removed. If individual sensor cells, sensels, 

were loaded during a suspension phase for a hoof, these erroneous sensels were manually removed. 

The mean vertical force, area, and pressure for each step were exported from F-Scan Software in 

an ASCII file. 

Statistical Analysis 

Data were exported from the F-Scan Software (version 6.85) and imported into SAS 

(version 9.4) for statistical analysis and were evaluated for normality via residual plots. To evaluate 

the impacts that gait and circle size have on kinematic outputs, two datasets were created. One 

dataset removed the gait “canter”, so that at both the walk and trot outputs could be compared for 

the straight line and both circle sizes. A second dataset removed the exercise type “straight”, so 

that at the walk, trot, and canter, the two circle sizes could be compared. These two separate 

datasets were necessary, as a canter on a straight line was not able to be safely included in the data 

collection for this study. The main effects of gait, exercise type, and leg were evaluated in PROC 

GLIMMIX with Tukey adjustment. Interactions of “gait and exercise type”, “gait and leg”, 

“exercise type and leg”, and “gait, exercise type, and leg” were also evaluated. Horse, and all 

interactions including horse, was included as a random effect. Significance was set at p < 0.05. 

Means are reported at means ± standard error of the mean (SEM). 
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RESULTS 

Dataset without Canter 

Loaded Hoof Area 

Gait (p = 0.03) and exercise type (p = 0.03) were significant main effects for area (Table 

1), but leg was not (p = 0.44). The walk had a greater mean area than the trot by 12%. Gait and 

exercise type constituted a significant interaction (p = 0.005), but “gait and leg” as well as “exercise 

type and leg” were non-significant interactions (p = 0.10 and 0.71, respectively). “Gait, exercise 

type, and leg” was not a significant interaction (p = 0.48). At the walk and trot, there were no 

significant between-leg (left vs. right) differences in the mean area (p = 0.33 and p = 0.58, 

respectively) 

At the walk, the area was different between exercise types (p = 0.01, Table 2), but not at 

the trot. While trotting in a straight line, the mean area was lower than at the walk (Table 2). Within 

the small and large circles, gait was not different in terms of the area (p = 0.09 and p = 0.19, 

respectively). 

Table 2: Mean area loaded on the front hooves for nine horses with each gait repeated three times 

by exercise type in the dataset excluding canter. 

Exercise Type Walk Mean Area (Sensels 

Loaded) 

Trot Mean Area (Sensels 

Loaded) 

Straight* 42a 35 

Small circle 32ab 29 

Large circle 29b 26 

Within gait SEM 4 4 

Within gait p-Value 0.01 0.11 
ab Means with different superscripts are significantly different within a column (p = 0.01).  

* For an exercise type, mean area was different between gaits (p < 0.01). 

 

Vertical Force 

Gait (p = 0.007) and exercise type (p = 0.007) were both significant main effects for vertical 

force (Table 3), but leg was not (p = 0.71). The walk resulted in a greater mean vertical force than 
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the trot by 14%. No two-way interactions were significant. The three-way interaction of “gait, 

exercise type, and leg” was significant (p = 0.02). At the walk and trot, there were no significant 

between-leg differences in the mean vertical force (p = 0.75 and 0.66, respectively). 

At both the walk and trot, the exercise type resulted in different mean vertical force outputs, 

with straight-line exercise leading to a higher mean vertical force at both gaits, although only 

significantly higher than both circle sizes at the walk (Table 3). During straight-line exercise and 

small-circle exercise, the walk had a greater mean vertical force (Table 3). 

Table 3: Mean front hoof vertical force in Newtons (N) for nine horses with each gait repeated 
three times by exercise type in the dataset excluding canter. 

Exercise Type Walk Mean Vertical Force 

(N) 

Trot mean vertical force 

(N) 

Straight** 1234a 1040a 

Small circle* 810b 700ab 

Large circle 736b 660b 

Within gait SEM 356 134 

Within gait p-Value 0.003 0.02 
ab Means with different superscripts are significantly different within a column (p < 0.05).  

* For an exercise type, mean vertical force was different between gaits (p < 0.05).  

** For an exercise type, mean vertical force was different between gaits (p < 0.001). 
 

Front Hoof Pressure 
 

Gait was a significant main effect (p = 0.0007, Tables 4 and 5) for pressure, but exercise 

type and leg were non-significant effects (p = 0.16 and 0.14, respectively). The walk had a greater 

mean pressure than the trot by 23%. No two-way interactions were significant, but the three-way 

interaction of “gait, exercise type, and leg” was significant (p = 0.0008). 

For the right and left legs, it was found that the mean walk pressure was greater than the 

mean trot pressure when all exercise conditions were averaged (Table 4). At the walk and trot, the 

exercise type did not lead to different mean pressures, but the walk had a greater mean pressure 

for all three exercise types compared to the trot (Table 5). 
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Table 4: Mean front hoof pressure by leg in kilopascals (kPa) for nine horses with each gait 
repeated three times per exercise type for the dataset excluding canter. 

Leg Walk Mean Pressure (kPa) Trot Mean Pressure (kPa) 

Right leg** 723 530 

Left leg** 963 775 

Within gait SEM 149 149 

Within gait p-

Value 
0.15 0.14 

** For one leg, mean pressure was different between gaits (p < 0.001). 

Table 5: Mean front hoof pressure in kilopascals (kPa) for nine horses with each gait repeated three 
times by exercise type for the dataset excluding canter. 

Exercise Type Walk Mean Pressure (kPa) Trot Mean Pressure (kPa) 

Straight** 936 715 

Small circle** 839 647 

Large circle* 761 595 

Within gait SEM 75 76 

Within gait p-

Value 
0.09 0.31 

* For an exercise type, mean pressure was different between gaits (p < 0.01).  

** For an exercise type, mean pressure was different between gaits (p < 0.0001). 
 

Dataset without Straight-line Exercise 
Loaded Hoof Area 
 

Gait was a significant main effect (p = 0.03, Table 6) for area. The canter had a 21% greater 

mean loaded area than the walk and a 29% greater mean loaded area than the trot. Exercise type 

and leg were non-significant effects (p = 0.78 and p = 0.33, respectively). The interactions of “gait 

and exercise type” (p = 0.28) as well as “exercise type and leg” (p = 0.72) were non-significant; 

however, the interaction of “gait and leg” was significant (p = 0.02). “Gait, exercise type, and leg” 

was a significant interaction (p = 0.0035). For the right front leg (outside leg), the canter had a 

greater mean loaded area than other gaits (Table 6), but this was not found in the left leg. For 

exercise in a large circle, the mean area loaded was different between gaits, with the canter being 

greater than the trot (p = 0.01, Table 6). While exercising in a small circle, the mean area was not 

different between gaits (Table 6). 
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Table 6: Mean area loaded on the front hooves for nine horses with each gait repeated three times 
by gait for the dataset excluding straight-line exercise. 

Gait Right Hoof 

Mean Area 

(Sensels) 

Left Hoof 

Mean Area 

(Sensels) 

Large Circle 

Mean Area 

(Sensels) 

Small Circle 

Mean Area 

(Sensels) 

Walk 34a 27 27ab 32 

Trot 29a 26 26a 27 

Canter 47b 29 39b 37 

Within leg or 

circle size SEM 
4 4 4 4 

Within leg or 

circle size p-value 
0.001 0.80 0.01 0.11 

ab Means with different superscripts are significantly different within a column (p < 0.05). 

Vertical Force 

Gait, exercise type, and leg were non-significant main effects (p = 0.33, 0.88, and 0.87, 

respectively) for the vertical force. “Gait and exercise type” as well as “exercise type and leg” 

were non-significant interactions (p = 0.17 and 0.71, respectively), but “gait and leg” was a 

significant interaction (p = 0.004, Table 7). “Gait, exercise type, and leg” was a significant 

interaction (p < 0.0001). 

At the walk (p = 0.83), trot (p = 0.72), and canter (p = 0.31), the right and left legs did not 

have different mean vertical forces between legs. The right leg did have a lower mean vertical 

force at the trot than the canter (Table 7). During the large- and small-circle exercise, the mean 

vertical force did not differ by gait. At the walk, trot, and canter, the circle size did not have a 

different mean vertical force (Table 7). 
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Table 7: Mean front hoof vertical force in Newtons (N) for nine horses with each gait repeated 
three times by gait for the dataset excluding straight-line exercise. 

Gait Right Hoof 

Mean Vertical 

Force (N) 

Left Hoof 

Mean Vertical 

Force (N) 

Large Circle 

Mean Vertical 

Force (N) 

Small Circle 

Mean Vertical 

Force (N) 

Walk 745ab 804 736 813 

Trot 629a 729 660 698 

Canter 938b 647 817 768 

Within leg or 

circle size 

SEM 

94 94 84 86 

Within leg or 

circle size p-

value 

0.01 0.27 0.20 0.40 

ab Means with different superscripts are significantly different within a column (p = 0.01). 

Front Hoof Pressure 

Gait was a significant main effect (p = 0.001, Table 8) for pressure, while exercise type 

and leg were not (p = 0.59 and 0.11, respectively). The walk had 22% and 28% greater mean 

pressures than the trot and canter, respectively. No two-way interactions were significant. The 

three-way interaction of “gait, exercise type, and leg” was significant (p = 0.005). 

For both the right and left limbs, the walk was found to have a greater mean pressure than 

other gaits (Table 8). In both the large and small circles, the walk was found to have a larger mean 

pressure than other gaits. Within each gait, there were no differences between the large and small 

circle sizes (Table 8). 
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Table 8: Mean front hoof pressure in kilopascal (kPa) for nine horses with each gait repeated three 

times by gait for the dataset excluding straight-line exercise. 

Gait Right Hoof 

Mean Pressure 

(kPa) 

Left Hoof 

Mean Pressure 

(kPa) 

Large Circle 

Mean Pressure 

(kPa) 

Small Circle 

Mean Pressure 

(kPa) 

Walk 679a 924a 762a 813 

Trot 484b 759b 596b 698 

Canter 467b 693b 586b 768 

Within leg or circle 

size SEM 
61 61 55 86 

Within leg or circle 

size p-Value 
0.003 0.003 0.006 0.40 

ab Means with different superscripts are significantly different within a column (p < 0.01). 

DISCUSSION 
 

The objectives of this study were to determine how changes in gait and circle diameter 

influence area, vertical force, and pressure of the front hooves. We hypothesized that a decrease 

in circle diameter and an increase in speed would lead to greater differences between inside and 

outside limb outputs. The results determined that changes to gait more frequently lead to 

differences in the mean vertical force, area, and pressure outputs than changes to the circle 

diameter size. Most of the differences noted in this study were driven by gait, with gait being a 

significant effect for all evaluated outputs except for vertical force in the dataset including canter. 

When evaluating gait differences, the walk typically had greater mean area and vertical 

force in this study, but when canter was included, the canter had the greatest mean area loaded. 

The walk having the greatest pressure is driven by the inclusion of the area and vertical force in 

the calculation of pressure. Most studies utilizing the Tekscan Hoof System for gait analysis have 

done so at the walk [70–72,74] or trot [73,75,76]. The Tekscan sensors may not be able to record 

data as accurately when speed increases for gaits such as the canter or even a faster trot. It is also 

worth exploring that adaptation to circular exercise has been previously noted as gait-specific [29]. 

The differences in gait may be due to increased speed or different loading patterns, such as the 
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presence of a lead while cantering, as horses are known to protract the lead limb of a canter by 

flexing the elbow, carpal, hip, and tarsal joints [33]. One study found that as speed within the walk 

or trot increases while exercising on a treadmill, vertical impulse to the forelimbs and hindlimbs 

decreases [77]. While the current study did not compare speed within gaits, we did find that as gait 

increased from walk to trot, and therefore speed increased, the mean area, vertical force, and 

pressure decreased for the forelimbs. Another study found peak stress of the metacarpus and radius 

to be lower at a slow trot than the walk and canter and attributed the lower values of the slow trot 

to the symmetrical, diagonal movement of the gait [78]. 

Due to its two-beat diagonal footfall, the trot is considered a symmetrical gait and is the 

preferred gait for a lameness evaluation. The lower outputs seen at the trot in this study may be 

due to the fact that horses are able to utilize both forelimbs and hindlimbs within a trot stride in a 

more-even manner than the walk and canter [78–80]. The trot and canter also have moments of 

suspension, where the walk does not. Given that the results in this study are reported as means of 

the area, vertical force, and pressure, the lack of suspension in the walk could contribute to longer 

data collection for the right and left forelimbs at the walk than the trot and canter. Using a pressure 

plate, the stance phase of the walk has been found to be longer than that of a trot when tracking 

over both a hard surface and a soft surface [81]. Horses may also use other parts of their body, 

such as the musculature of the hindquarters, more so in the trot and canter than the walk, potentially 

leading to a decrease in the forelimb outputs [12,29,82,83]. One study found that activity of the 

hindlimb biceps femoris is minimal during the walk, but highly active according to 

electromyography at the trot and canter [84]. Another study found that at the walk and canter, 

horses exercising on flat and banked curves have a shorter stride length of the inside leg compared 
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to the outside leg [29]. As horses increase in gait speed from a walk, to a trot, to a canter, it has 

been found that trunk muscle engagement increases as well [85]. 

At the trot, the mean hoof area loaded was similar regardless of exercise type, once again 

suggesting the trot to be the more stable gait [79,80]. Vertical force was greatest on a straight line 

for both the walk and trot, while pressure was not found to be different between exercise types at 

the walk or trot. In humans, similar results have been found where peak vertical ground reaction 

forces are greater in a straight line than while running around a curve [12], similar to what was 

found in the current study. Considering the TekscanTM sensors measure vertical forces normal 

(perpendicular) to the sensor, it is conceivable that shear vertical forces were higher during circular 

exercise. During straight-line exercise, when a horse is tracking upright, the resultant force would 

be vertically measured. However, when horses are tracking in a circle, as was performed in this 

study, lateral forces are also considered when calculating the resultant force [37]. As the sensors 

were worn on the front hooves and measured the force of the area that came into contact with the 

arena surface, only the vertical forces were included in this study. While the walk had greater 

vertical force in this study, other forces, such as lateral force, may be greater in the trot and canter, 

especially during circular exercise [37,86]. 

When the canter was retained in the dataset, at all gaits, the large circle did not have a 

different mean area, vertical force, or pressure than the small circle. When exercising in the large 

circle, the canter did have a greater mean area than the trot. When exercising at both small and 

large circles, the walk had greater pressure than both the trot and canter. With the use of a pressure 

plate, another study found the vertical impulse of the walk to be almost twice that of the trot on 

both hard and soft surfaces [81]. Comparisons between pressure plates and sensors such as the 
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TekscanTM system should be made cautiously, as these two technologies have not been found to 

reliably produce the same outputs [76]. 

When the canter was removed from the dataset, the mean area and mean vertical force were 

not different between the right and left legs at the walk or trot. When the canter was maintained in 

the dataset, the mean loaded area of the right (outside) leg was greatest at the canter, and the mean 

vertical force for the right leg was greater at the canter than the trot. In this study, minimal 

differences were seen between limbs, but it was notable that the outside limb loaded area was 

greater at the canter. At racetracks with the smallest radii (>50–114 m), the outside front limb was 

found to have the highest number of fatal limb fractures [37]. A study evaluating body lean angle 

at the trot and canter lunged horses through a bitted bridle at a diameter of 10 m while wearing an 

inertial measurement unit on the sacrum [36]. The lean angle was reported to be greater at the 

canter (19°) than the trot (12°) when tracking both left and right. A greater lean-in angle at greater 

speeds could be cause for more push off with the outside leg [11,29], and therefore a greater mean 

area loaded in the outside limb at the canter, as was seen in this current study. Our findings are 

supported by another study, which found the third metacarpal of the outside limb endures greater 

strain than the inside limb when Thoroughbred horses are running around a turn [87]. While 

galloping around a turn, the stance phase for the inside front limb is greater, while the stance phase 

for the outside front limb is shorter, with larger centripetal, propulsive, and vertical forces [37]. 

The presence of greater peak ground reaction vertical forces in the outside leg compared to the 

inside leg on a curve has also been noted in humans [12]. This study did not evaluate horses 

tracking at a gallop, which many studies referenced in this study have evaluated. Instead, this study 

allowed for an exploration of gaits that are easily attainable and frequently used across the industry, 

including to exercise racing horses when they are not galloping. It is reasonable to expect when 
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working a horse in a round pen or lunging a horse, especially in initial saddling and riding, that 

increased speed is needed to reach the optimal training state for the horse. However, given these 

results, the frequency of circular exercise via lunging or a round pen as a replacement to pasture 

turn-out or ridden exercise should be evaluated. 

Circular exercise is frequently used to exercise and train animals, especially through 

lunging. A review of risk factors for lameness in dressage horses found lunging to be protective 

against lameness, while the use of walkers increased the risk of lameness [31]. Mechanical walkers 

are often used during recovery from lameness, so it may be difficult to separate horses that are 

being placed on a walker for recovery or for exercise. When on a mechanical walker, animals may 

be unsupervised, and are not controlled by a handler that would encourage them to travel upright 

and at consistent speeds. However, when lunging is utilized in dressage, often the use of a surcingle 

and bridle could encourage the horse to track in an upright and balanced manner, very similar to 

the way that a horse is “on the bit” while under saddle in dressage. In disciplines outside of 

dressage, lunging is typically performed with only the lunge line attached to a halter. This gives 

the handler less control of the horse, often resulting in lunging sessions where the horse is leaning 

into the circle and does not consistently engage the hindquarters and topline musculature to travel 

in an upright manner, making lunging in this manner less likely to be a protective factor against 

lameness. Circular exercise is also used under saddle for both training and competition in events 

such as dressage and reining. The presence of a rider is known to alter how horses utilize their 

back musculature at various gaits [85,88]. Further exploration into circular exercise with a rider 

present is needed to determine if differences between front limb outputs at the walk, trot, and canter 

are mitigated or exacerbated. 
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The current study evaluated straight line exercise versus circular exercise of a horse in a 

round-pen that was not attached to a lunge line. Further studies of similar design are needed to 

evaluate the impact of a lunge-line simply attached to a halter on forelimb disparity while an animal 

is in motion. When different head and neck positions were evaluated on a straight line on a 

treadmill, it was found that a high head position impacted limb functionality compared to an 

unrestrained horse [89]. Head and neck position has also been found to alter the center of motion 

of a horse while lunging [64]. The current study found frequent differences in gait, but limited 

differences in circle size for a horse moving freely in a round-pen. Differences in forelimb outputs 

between small and large circles may be detectable when a horse is exercised on a lunge line, as to 

make the circle smaller, greater tension could be applied to the lunge line attached to the horse’s 

halter, potentially encouraging the horse to lean in and push off more with the outside leg. 

A limitation in this study is that recordings of the canter on a straight line were not 

attainable, and thus two sets of data were evaluated to best compare gait and exercise types. Future 

studies could use a long aisle-way with an appropriate surface to have horses travel in a straight 

line without the need of a handler. This may help to better answer the question of whether circular 

exercise at a canter has differences in the outside limb because of the lead or just the increase in 

speed. Our current study only evaluated the front limbs, which permitted us to determine 

differences between the inside and outside limbs. It is recognized that the hindlimbs are important 

in the adaptation to motion, such as turning [37,82,86], and future studies to determine the impact 

of gait and the circle diameter to hind limb outputs should be explored. The TekscanTM system 

used in the manner of this study measured vertical force and not shear force, which is certainly 

important for turning, especially for the hind limbs [37]. It should be noted that many technologies 

are utilized for gait analysis, such as vertical force plates, inertial measurement units, and sensors 
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such as the TekscanTM Hoof System. Between studies, the technology used for analysis, as well as 

attachment methods and locations, is not standardized. While our study protocol and recorded 

metrics have been shown to be reliable [68], comparisons between studies should be made 

recognizing the current limitation of no standardized protocol for quantitative gait analysis for 

horses in motion currently. 

CONCLUSIONS 

While circular exercise is used frequently in the training, exercising, and competing of 

horses, little is known of its potential connection to joint and bone injury. This study explored the 

impact of gait as well as circle size to mean area, vertical force, and pressure of the front hooves. 

It was found that gait (walk, trot, canter) drives changes to outputs more than exercise type 

(straight, circular). The trot frequently had lower mean outputs than other gaits, suggesting that it 

is a more dynamically stable gait that could potentially allow horses to adapt to circular exercise 

easier than other gaits. Handlers looking to utilize circular exercise while maintaining the longevity 

of equine careers may consider doing so at slower gaits, as differences in outside limb output were 

noted at the canter, or minimizing the use of circular exercise. Future studies will help to determine 

if a round-pen allows the horse to adapt to changes in gait and diameter better than when exercised 

on a lunge line or under saddle. Lateral forces may be greater during circular exercise and should 

be evaluated and compared with the findings of vertical forces provided in this research. 
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CHAPTER 4: Impact of circular exercise diameter on bone and joint health of juvenile animals 

 

SIMPLE SUMMARY 

In many equestrian disciplines, circular exercise is utilized to train, exercise, and compete 

with horses and can vary in gait, as well as diameter. This study aimed to determine if circular 

exercise diameter impacts animal health. Calves have previously been used as a terminal skeletal 

model of juvenile horses, allowing for collection of musculoskeletal samples not acceptable from 

horses. Calves exercised on a small circle (12-m clockwise), large circle (18-m clockwise), 

treadmill, or served as non-exercised controls. Exercise was performed at a walking speed 

starting 5 minutes per day and increasing 5 minutes weekly until reaching 30 minutes per day 

during the 7-week study. The response to exercise was monitored in forelimb bones and joints. 

The small circular exercise group was found to have bone diameters which differed between the 

right and left fused third and fourth metacarpi, and between lateral and medial proximal phalanx 

bones. Cartilage glycosaminoglycan content was greater in the outside leg of the small circle 

exercise calves than the inside leg, with no differences noted within other treatments. These 

differences suggest that altering circular exercise diameter can impact bone and joint health, and 

that larger diameter circles may prevent asymmetric loading between inside and outside legs. 

ABSTRACT 

Circular exercise is used in many equestrian disciplines, this study aimed to determine if 

circle diameter impacts juvenile animal forelimb bone and joint health. On d 0, 24 calves at 9 

wks of age were assigned exercise treatments: small circle (12-m clockwise), large circle (18-m 

clockwise), treadmill, or non-exercised control. Exercise initiated at 1.1–-1.5 m/s for 5 mins/d 

and increased 5 mins weekly until reaching 30 mins/d. On d 49 synovial fluid was collected from 

multiple joints, cartilage was collected from the proximal surface of fused third and fourth 
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metacarpi (MC III & IV), and forelimbs underwent computed tomography scans. Statistical 

analysis (PROC mixed) was performed in SAS 9.4. The inside leg of the small circle treatment 

had larger MC III & IV dorsopalmar external diameter than the outside (P = 0.05). The medial 

proximal phalanx had greater mediolateral diameter than the lateral proximal phalanx of the 

small circle treatment (P = 0.01). Fetlock nitric oxide was greater in large circle and treadmill 

treatments (P < 0.0001). Cartilage glycosaminoglycan concentration was greater in the outside 

leg of the small circle exercise treatment than the inside leg (P = 0.03). Even at slow speeds, 

circular exercise diameter can impact joint and bone health, but faster speeds may have greater 

alterations. 

INTRODUCTION 

The strain environment of bone can be influenced by exercise and consists of many factors, 

such as magnitude of strain, rate of strain, distribution of strain, and frequency of strain. Response 

of bone to exercise can be explained by the mechanostat theory. Under this theory, bone can adapt 

to its mechanical environment based on the strains it is subject to. When there is too little strain in 

the environment, the amount of bone needed is reduced, and bone resorption occurs. When there 

is an increase in strain, the amount of bone needed is increased, and bone formation occurs. The 

mechanostat theory also predicts bone can be maintained and repaired without net resorption or 

net formation when strain is high enough to prevent removal of unnecessary bone, but not too high 

to elicit an acquisition of more bone [90]. Dynamic exercise, such as sprinting, leads to an increase 

in bone strength in juvenile animals [60]. While straight-line sprint exercise has been found to 

benefit bone strength, little is known of the impacts that circular exercise has on bone or joint 

health of juvenile animals. Circular exercise is used frequently in training, exercise, and 

competition of horses across various disciplines. Common methods of circular exercise include 
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riding under saddle, or working on the ground, such as in round pens and lunging. In the early 

training of a young horse, circular exercise via a round pen or lunging is used frequently. During 

circular exercise, the gait (walk, trot, canter, or gallop) and diameter can be altered by the handler 

or rider.  

While exercising on a circle, horses will lean into the center of the circle by up to 20 

degrees to maintain balance [9,10]. Speed and radius have been found to impact lean angle, with 

greater speed and smaller radii increasing lean-in towards the center of the circle [11]. Level of 

training can also impact lean angle, as a horse acclimated to traveling on a circle can travel more 

upright than a horse which is not acclimated to traveling in a circle or arc. This has especially 

been noted in dressage, where trained horses are able to travel “on the bit”, while inexperienced 

horses may not be able to engage the back and hindlimb musculature through a circle [8]. 

Quadrupeds, such as horses, may be at an advantage compared to bipedal runners during curve 

running, as they can redistribute weight to multiple stance legs within a stride. It has been found 

that while cantering in a 10-m circle, horses will have greater peak ground reaction force on the 

outside forelimb compared to the inside forelimb [17]. While traveling around a curve, 

Thoroughbred race horses experience greater strain to the outside forelimb, which increases as 

speed increases [19]. When both humans and horses sprint through a curve, the outside limb is 

known to generate more vertical and lateral force than the inside limb [11].  

Sharpness of a turn is also found to impact horses and human runners. A sharply curved 

track (5-m radius) leads to greater torsion on the inside tibia of humans compared to running on a 

gently curved track (15-m) or straight line [16]. When running around a curve, the inside and 

outside limbs of human subjects are not biomechanically symmetrical. As circle radius decreases, 

peak resultant ground reaction forces to the inside leg decrease compared to straight line running 
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[12]. As speed increases, whole forelimb and third metacarpal angle in the horse increase, 

supporting that due to centripetal acceleration while traveling around a turn, horses lean into a turn 

at a greater angle as speed increases [11]. The area loaded by the outside front hoof is greater at 

the canter than the trot or walk during circular exercise, suggesting a push-off motion with the 

outside front leg at the canter [91]. Due to the reduced surface area of the inside hoof that is loaded, 

uneven forces may be placed on joints and bones of the fore and hind limbs during circular 

exercise. These forces exerted on a smaller surface area have the potential to lead to a higher risk 

for joint injury and osteoarthritis [9].  

Circle radius can impact animal and rider safety, a retrospective study of risk factors for 

jockeys in Japanese Thoroughbred racing found smaller tracks to have a greater risk of injury 

[56]. Osteoarthritis and joint injuries have been reported as a leading cause of lost training days 

and horse wastage, yet little research has bridged the gap between circular exercise and joint 

damage. Osteoarthritis can be caused by excessive loads to normal cartilage, or normal loads to 

abnormal cartilage [66,67]. With up to 60% of lameness being related to osteoarthritis, this gap 

in research greatly affects the equine community [46,47]. 

Biomarkers can allow determination of bone and joint activity throughout an exercise 

trial. Osteocalcin (OC), a marker of bone formation, and c-telopeptide crosslaps of type I 

collagen (CTX-1), a marker of bone resorption, can be monitored simultaneously from serum 

samples to aid in determining bone activity in horses and bovines [60,92]. Procollagen II c-

propeptide (CPII) is a marker of collagen synthesis [93]. Osteoarthritis affected horses have been 

found to have greater CPII serum and synovial fluid concentration during an exercise trial than 

horses without osteoarthritis [94]. Prostaglandin E2 (PGE2) and nitric oxide (NO) are markers of 

inflammation and cartilage metabolism that are frequently evaluated in synovial fluid. Synovial 
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fluid PGE2 is found to be greater in joints affected by osteoarthritis than in joints that are not 

affected by osteoarthritis in exercising horses [94]. Exercise has been found to increase synovial 

fluid concentration of PGE2 in healthy, sound horses as well [95]. Joints effected by osteoarthritis 

may experience both catabolic and protective functions of NO [96]. Glycosaminoglycans (GAG) 

are a hydrophilic proteoglycan in the extracellular matrix of articular cartilage, which provide 

shock absorption and resistance against forces [24]. Within articular cartilage, GAG 

concentration had been found to be heterogenous between joint locations [97,98]. Biomarkers 

can be combined with evaluation of bone morphology as well as tensile testing to determine the 

activity, shape, and strength of bone as well as joint health [60,61]. 

Many studies have evaluated gait characteristics of animals performing circular exercise, 

but few have evaluated bone and joint health. The objective of this study was to utilize a calf 

model to determine the impact of diameter during circular exercise at the walk to forelimb bone 

and joint health in juvenile animals. Calves have been used as a model for management and 

exercise of young horses successfully in previous studies [60–62,98]. It was hypothesized that 

exercise on a smaller diameter circle would lead to increased biological markers of joint 

inflammation and metabolism and greater asymmetry between inside and outside forelimbs. 

MATERIALS AND METHODS 

Animals, housing, and exercise 

Holstein steer calves, previously dehorned, were obtained from a local farm at 8 weeks of 

age and moved into group-housing at the Michigan State University (MSU) Veterinary Research 

Farm. Group-housing consisted of a pen (112 m2) including a partially enclosed three-sided shed 

(17 m2) bedded in straw with a feeding trough and automatic water trough. Calves had ad libitum 
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access to calf starter (Caledonia Farmers Elevator, Caledonia, MI) and water. Calves were given 

one week for acclimation to housing and halter training before exercise began at 9 weeks of age. 

Each calf underwent two days of halter training, in which they were introduced to the sensation 

of a rope halter and taught to move forward from halter pressure while being led for two laps in 

the group-housing pen. Calves were evaluated with daily health checks to assure the safety of 

exercise. 

On d 0, calves were 9 weeks of age, and blood samples were taken along with height, 

weight, and length measurements. Calves were then randomly striated to treatment groups based 

on weight. Calves remained in their treatment groups for 7 weeks (49 d). Treatment groups 

consisted of non-exercise controls, treadmill exercise, small circle exercise, and large circle 

exercise. All treatment groups were maintained together in a group-housing pen. Calves 

randomized to the circle and treadmill exercise treatments exercised 5 d/wk starting at 5 min/d 

and increased by 5 min each week until reaching 30 min (Table 9). Exercise was performed at a 

speed of 1.1–1.5 m/s, allowing calves to maintain a walking gait. This exercise protocol allowed 

calves to acclimate to exercise throughout the study. Circular exercise was performed in a 

clockwise fashion, tracking to the right, on a mechanical walker (Q-line Horse Exercise) with 

both a small diameter (12 m) and large diameter (18 m) track. Treadmill exercise was performed 

on a Classic Treadmill equine treadmill (Classic Champion Model 940, Queensland, Australia). 
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Table 9: Exercise protocol for treadmill, small circle, and large circle treatment groups.  

All exercise was performed 5 d/wk at a speed of 1.1–1.5 m/s 

Week Exercise duration 

1 5 min/d 

2 10 min/d 

3 15 min/d 

4 20 min/d 

5 25 min/d 

6 30 min/d 

7 30 min/d 

Sample collection 

Starting on d 0 and continuing weekly, serum was collected via jugular venipuncture into 

non-heparinized vacutainers. Calf height, weight, and length were recorded weekly, starting on d 

0. Height was measured from the floor to the top of the withers with an L-shaped measuring stick 

that was adjustable to the wither height of the calf. Weight was measured with a weight scale, 

(Tru-Test; Model 700; Mount Wellington, New Zealand) and length was from the point of 

shoulder to ischium, or pin bone. On d 49, all calves were humanely euthanized at the MSU 

Meat Laboratory, and the right and left forelimbs collected at the middle of the radius. From the 

right and left forelimb of each calf, synovial fluid was collected from the radiocarpal, middle 

carpal, lateral fetlock, and medial fetlock joints. Synovial fluid was kept on dry ice during 

sampling, after which it was placed in a -80° C freezer until analysis. Cartilage from the 

proximal surface of the fused third and fourth metacarpal (MC III & IV) was collected from the 

right and left forelimb of each calf. Cartilage was kept on dry ice during sampling, then stored in 

a -20° C freezer until analysis. Synovial fluid and cartilage samples were collected within 30 min 

of animal death. After cartilage and synovial fluid sample collection, the front legs of each calf 

were labeled and placed in a chiller (4.8° C) overnight until computed tomography (CT) 

scanning. 
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Computed tomography scans 

Computed tomography scans were performed at the MSU College of Veterinary 

Medicine in a GE Revolution Evo Scanner (Boston, Massachusetts). Both the right and left 

forelimb of each calf were CT scanned within 36 hours of euthanasia. Position was set to 

“lumbar spine”, slice thickness was set at 0.625-mm, with settings of 120kV and 320 mAmp. 

Field of view was 180 mm with a 512 x 512 matrix size, leading to a pixel size of 0.35 mm x 

0.35 mm. Voxel volume was 0.077 mm3 (0.35 mm x 0.35 mm x 0.625 mm). Calcium 

hydroxyapatite phantoms (Image Analysis, Inc; Colombia, KY) were included in each scan, with 

rows representing 0, 75, and 100 mg mineral/cm3 for BMD comparison. All CT scans were 

analyzed with Mimics 24.0 software (Materialise, Leuven, Belgium). For each MC III & IV and 

lateral and medial proximal phalanx bone, the proximal and distal end were recorded to calculate 

the midpoint of the bone. Measurements of BMD, area, and cortical widths were performed at 

the midpoint of each MC III & IV and lateral and medial proximal phalanx. Bone mineral 

density, cross sectional area, cortical widths, and cortical areas were determined with a mask 

threshold value of 400 Hounsfield Units (HU). Moment of inertia (MOI) was calculated from 

MC III & IV diameters measured in Mimics with the calculation for a hollow ellipse described in 

the American Society of Agricultural and Biological Engineers (ASABE) standards [60,61,99]. 

Values for average BMD are reported as HU. Average HU values were recorded at each of the 3 

concentrations of calcium along the length of the phantom at 10 locations for each scan. Average 

HU values for each concentration were then compared in a scatter plot to the known 

concentrations of the phantom. An equation from the regression line converted HU to mg 

mineral/cm3. This method of determining BMD from CT scans has been previously utilized 

[60,100].  
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Biomechanical testing 

Before biomechanical testing, front legs were removed from the freezer (-20° C) to thaw 

for 5 days at 4.8° C in order to clean the MC III & IV. Skin, soft tissue, and remaining bones were 

removed with a scalpel so the fused MC III & IV to allow tensile testing of only the MC III and 

IV. Cleaned MC III & IV were then stored in the freezer until tensile testing (-20° C). Three days 

before tensile testing, MC III & IV were removed from the freezer to thaw at 4.8° C. Fracture force 

of the MC III & IV was determined by four-point bending at room temperature with an 

electromechanical testing system (MTS Criterion, Model 43) equipped with a 60 kN load cell. Left 

and right MC III & IV for each calf were placed individually with the palmar aspect of the bone 

facing upwards toward the force applicators [60]. The bottom supports were 82-mm apart, and 

upper supports, which applied the vertical force from the load cell, were 52-mm apart. All samples 

were loaded to failure at a rate of 10mm/min. Fracture force was recorded as the maximum force 

(ultimate load) before failure. Data acquisition rate was set to 100 Hz. 

Osteocalcin 

Calf serum samples were analyzed for OC concentration, a marker of bone formation 

reflecting osteoblastic activity, with the commercially available MicroVue Osteocalcin Enzyme 

Immunoassay (Quidel, San Diego, CA). Calf serum samples utilized for OC analysis were 

diluted at a 1:15 ratio with wash buffer for samples taken through week 4. At week 4, depending 

on individual calf samples, sera were diluted at 1:20 or 1:25 with wash buffer, without this 

dilution samples were outside of the threshold of sensitivity. Analysis was performed according 

to kit instructions. Coefficients of variation below 10% were accepted. 
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C-telopeptide crosslaps of type I collagen 

Calf serum samples were analyzed for CTX-1 concentration, a marker of bone resorption, 

with the commercially available Serum CrossLaps kit made by Immunodiagnostics Systems 

(Gaithersburg, MD). Samples were run neat and analysis was performed according to kit 

instructions. Coefficients of variation below 10% were accepted. 

Procollagen II c-propeptide 

An ELISA kit from IBEX Pharmaceuticals (Montreal, Quebec, Canada) was obtained for 

analysis of CPII concentration in serum, a marker of collagen synthesis. This competitive assay 

measures CPII which is released from type-2 collagen during collagen synthesis. Serum samples 

were run in triplicate and with a 1:4 dilution, except d 0 which was run with a 1:2 dilution. Assay 

procedure was performed according to instructions accompanying the kit. Coefficients of 

variation below 10% were accepted. 

Prostaglandin E2 & Nitric oxide 

Calf synovial fluid samples were analyzed for concentration of PGE2 and NO, markers of 

inflammation. Fetlock joint synovial fluid samples were analyzed with the commercially 

available Thermo Fisher (Waltham, Massachusetts) PGE2 ELISA kit. Due to supply chain issues, 

sufficient kits from Thermo Fisher for carpal synovial fluid were not able to be procured. Carpal 

synovial fluid samples were analyzed with a PGE2 ELISA kit made by Enzo (Farmingdale, New 

York). Synovial fluid samples were digested with 50 µg/mL of hyaluronidase from bovine testes. 

Digested samples were diluted at a 1:2 ratio with reagent diluent, analysis was performed 

according to kit instructions. Coefficients of variation below 10% were accepted. 



48 
 

Nitric oxide was measured by quantifying nitrite (an end product of nitric oxide 

metabolism) using a Greiss reaction and sodium nitrite standard [101,102]. Samples were not 

digested with hyaluronidase or diluted, as this caused sample readings to be too low and outside 

of the threshold of sensitivity. Nitric oxide results are expressed in micromoles per well. 

Coefficients of variation below 30%, larger than with other assays, were accepted due to the 

variability of undigested and undiluted synovial fluid. 

Glycosaminoglycan 

Cartilage slices from the proximal surface of the MC III & IV were digested with papain 

to determine the GAG concentration with a dimethylmethylene blue assay [103]. This assay is 

based on the binding of anionic GAGs to cationic 1,9-dimethylmethylene blue. Sulfated GAG 

content was measured against a chondroitin sulfate standard, and sample concentration 

determined with a linear curve [101]. Papain digested samples were diluted 1:25 with a sodium 

acetate and tween dilution buffer. Coefficients of variation below 10% were accepted. 

Statistical analysis 

All statistical analyses were performed in SAS 9.4. Residuals were plotted against 

predicted means and observed for normality. Nitric oxide data were found to be abnormally 

distributed and were log transformed to achieve normal distribution. All other data were found to 

be normally distributed. Height, weight, length, OC, CTX-1, and CPII were evaluated with the 

repeated effect of day, with calf as subject, fixed effects of day and treatment, as well as the 

interaction between day and treatment. Repeated measurements of OC, CTX-1, and CPII were 

run with d 0 as a covariate. Fracture force and glycosaminoglycan content were evaluated with 

fixed effects of leg (right or left) and treatment as well as the interaction between leg and 
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treatment, with calf as a random effect. Fetlock NO and PGE2 concentration were evaluated with 

the fixed effects of treatment and joint (lateral or medial fetlock) and the interaction between 

treatment and joint. Carpal NO and PGE2 concentration were evaluated with fixed effects of 

treatment and joint (radiocarpal or middle carpal) and the interaction between treatment and 

joint. Calf was included as a random effect for both fetlock and carpal NO and PGE2. Fused MC 

III & IV CT data were evaluated with the fixed effects of treatment and leg, as well as the 

interaction between treatment and leg, calf was included as a random effect. Proximal phalanx 

CT data were evaluated with the fixed effects of treatment, leg, and bone (lateral or medial 

phalanx) and interactions, calf was included as a random effect. Means are reported as averages 

± standard error of the mean (SEM). Error bars in graphs represent SEM. Significance was set at 

P ≤ 0.05 and trends at P ≤ 0.10. 

RESULTS 

Study day was a significant effect for calf height (P < 0.001), weight (P < 0.001), and 

length (P < 0.001), supporting animal growth throughout the study. The interaction between day 

and treatment was not significant for calf height, weight, or length (P = 0.99, P = 0.99, and P = 

0.68, respectively). Average daily gain (ADG) was not different among treatments (Table 2). On 

both d 0 and d 48, calf height, weight, and length were not different among treatments (Table 

10). 
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Table 10: Initial (d 0) and final (d 48) calf height, weight, and length by treatment as well as 
average daily gain (ADG) 

Treatment Height 

(d 0) 

cm 

Height 

(d 48) 

cm 

Weight 

(d 0) 

kg 

Weight 

(d 48) 

kg 

Length 

(d 0) 

cm 

Length 

(d 48) 

cm 

ADG, 

kg 

Control 89 100 75 146 90 113 1.5 

Large 88 100 81 145 90 112 1.3 

Small 89 102 81 156 89 113 1.6 

Treadmill 87 100 80 145 87 114 1.4 

SEM 1.2 1.1 4.0 6.0 2.02 1.2 0.10 

n 6 6 6 6 6 6 6 

P – Value  0.52 0.51 0.71 0.44 0.71 0.61 0.17 

 

Fused MC III & IV CT scan results 

There were no differences in MC III & IV internal or external diameters at the midpoint 

of the bone between left and right leg or treatments. There was no interaction between treatment 

and leg for dorsopalmar internal diameter (P = 0.54), mediolateral internal diameter (P = 0.42), 

or mediolateral external diameter (P = 0.54). There was a trend for an interaction between 

treatment and leg for dorsopalmar external diameter (P = 0.09). This interaction was driven by 

the right leg of the small circle treatment group having larger dorsopalmar external diameter than 

the left leg (P = 0.04). Moment of inertia was not different among treatments (P = 0.50), but 

there was a trend for an effect of leg (P = 0.10), with the left leg having higher moment of 

inertia. There was no interaction between treatment and leg (P = 0.15). 

The bone length of MC III & IV was different among treatments (Table 11, P = 0.04), 

with large circle treatment group having shorter MC III & IV compared to all other treatments. 

There was no difference between left and right leg length (0.57) and no interaction between 

treatment and leg (P = 0.96). The cortical area was not different between leg (P = 0.15), or 

treatment (P = 0.057), but there was a trend for an interaction between treatment and leg (P = 

0.07). This trend was driven by the left leg MC III & IV of the treadmill group having larger 
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cortical area then the right leg (P = 0.01). The cross-sectional area was not different between left 

and right legs (P = 0.42), treatment (P = 0.026), and there was no interaction between treatment 

and leg (P = 0.36).  

Table 11: Bone length of the right and left metacarpal III & IV (MC III & IV) by treatment 

Treatment MC III & IV bone 

length, mm 

Control 199a 

Large 192b 

Small 195a 

Treadmill 195a 

n 12 

SEM 1.6 

P – Value 0.04 
a,b Values lacking common superscripts within a column differ (P = 0.04) 

For the dorsal, lateral, medial, and palmar cortices, as well as the entire slice of the 

midpoint, BMD was not different between left and right legs (P = 0.73, 0.64, 0.17, 0.82, and 

0.12, respectively) nor treatment (0.95, 0.73, 0.76, 0.97, and 0.96, respectively). No interactions 

between leg and treatment were significant. 

Dorsal, lateral, medial, and palmar cortical widths of the MC III & IV were not different 

among treatments (0.38, 0.86, 0.63, and 0.70, respectively). The medial cortex width of the MC 

III & IV tended to be larger for the left leg compared to the right leg (P = 0.063). No interactions 

between leg and treatment were significant.  

Medial and lateral proximal phalanx CT scan results 

Dorsopalmar internal and external diameter were not different among treatments (P = 

0.68, 0.70), leg (P = 0.85, 0.64), or bone (P = 0.36, 0.53). Mediolateral internal and external 

diameter were not different among treatments (P = 0.90, 0.56) or leg (P = 0.84, 0.61). There was 

a difference between proximal phalanx bones with the medial proximal phalanx having greater 



52 
 

mediolateral internal (P = 0.0003) and mediolateral external diameter (P = 0.01). The interaction 

between treatment and bone was significant for the mediolateral external diameter (Table 12, P = 

0.01). 

Table 12: Internal (int) and external (ext) cortical diameters of the lateral and medial proximal 
phalanx of both front legs 

Treatment Proximal 

phalanx 

bone 

Dorsopalmar 

int diameter, 

mm 

Dorsopalmar 

ext diameter, 

mm 

Mediolateral 

int dimeter, 

mm 

Mediolateral 

ext diameter, 

mm 

Control Lateral 20.7 25.5 17.2 23.6* 

 Medial 20.4 25.4 18.0 24.5* 

Large Lateral 19.8 25.0 17.2 23.6 

 Medial 20.1 25.2 17.4 23.8 

Small Lateral 20.1 25.4 17.1 23.7* 

 Medial 20.6 25.7 18.0 24.8* 

Treadmill Lateral 19.9 24.9 17.2 23.5 

 Medial 20.0 24.9 17.4 23.6 

n  12 12 12 12 

SEM  0.45 0.42 0.42 0.41 

P – Value  0.44 0.63 0.26 0.01 
* Denotes lateral and medial proximal phalanx are different within a treatment (P = 0.01) 

Proximal phalanx bone length was not different among treatments (P = 0.40), lateral or 

medial bones (P = 0.76), or the left and right legs (P = 0.72). No interactions were significant. 

Cortical area was not different among treatments (P = 0.65) or legs (P = 0.17) but was different 

between the lateral and medial proximal phalanx bones (P = 0.01), with the medial phalanx 

having greater cortical area. No interactions were significant. Cross sectional area was not 

different among treatments (P = 0.71), leg (P = 0.83) or proximal phalanx bones (P = 0.18). 

There was a tendency for an interaction between leg and bone (P = 0.07). This trend was driven 

by the right medial proximal phalanx having more area than the right lateral proximal phalanx (P 

= 0.03). 
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For the dorsal cortex, BMD was not different among treatments (P = 0.59) or leg (P = 

0.79), but there was a trend for an interaction between leg and bone (Table 13, P = 0.07). Lateral 

cortical BMD was not different among treatments (P = 0.69) or leg (P = 0.75) but was different 

between proximal phalanx bones (P < 0.0001), with the lateral proximal phalanx having greater 

lateral cortical BMD than the medial proximal phalanx. Medial cortical BMD was not different 

among treatments (P = 0.30) or leg (P = 0.66) but was different between proximal phalanx bones 

(P < 0.0001), with the medial proximal phalanx having greater cortical BMD. There was a trend 

for an interaction between leg and bone (Table 13, P = 0.06). For the palmar cortex, BMD was 

not different among treatments, legs, or proximal phalanx bones (P = 0.75, P = 0.34 and P = 

0.20, respectively). There was a significant interaction between leg and bone (Table 13, P = 0.03) 

and a trend for an interaction between treatment and proximal phalanx bone (P = 0.07). This 

trend was driven by the palmar cortex in the medial proximal phalanxes of the treadmill group 

having greater density than the palmar cortex of the lateral proximal phalanxes (P = 0.005). For 

midpoint slice BMD, treatments and leg were not different (P = 0.67 and P = 0.40, respectively). 

There was a tendency for difference between the proximal phalanx bones (P = 0.08), with the 

medial proximal phalanx trending towards greater BMD. There was a significant interaction 

between leg and bone (Table 13, P = 0.001). 
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Table 13: Cortical bone mineral density of the lateral and medial proximal phalanx of left and 
right legs 

Leg Proximal 

phalanx 

bone 

Dorsal 

cortex, mg 

mineral/cm3 

Lateral 

cortex, mg 

mineral/cm3 

 

Medial 

cortex, mg 

mineral/cm3 

Palmar 

cortex, mg 

mineral/cm3 

Midpoint 

slice, mg 

mineral/cm3 

Left Lateral 845 959 728* 799* 737* 

 Medial 855 776 974* 837* 764* 

Right Lateral 853# 973 769* 812 759 

 Medial 831# 755 949* 803 751 

n  24 24 24 24 24 

SEM  16 21 23 17 12 

P– 

Value 

 0.07 0.19 0.06 0.03 0.001 

* Denotes lateral and medial proximal phalanx are different within the left or right leg (P < 0.05) 
# Denotes lateral and medial proximal phalanx tend to differ within the left or right leg (P < 0.10) 

Dorsal, lateral, medial, and palmar cortical widths all had significant effects of phalanx 

bone (Table 14). There were no effects for treatments or legs for cortical widths of the dorsal, 

lateral, medial, or palmar cortices. 

Table 14: Cortical widths of the lateral and medial proximal phalanx of left and right front limbs 

Proximal 

phalanx 

bone 

Dorsal 

cortex, 

mm 

Lateral 

cortex, 

mm 

 

Medial 

cortex, 

mm 

Palmar 

cortex, 

mm 

Lateral 2.6a 3.7a 2.6b 2.6a 

Medial 2.5b 2.6b 3.8a 2.7b 

n 48 48 48 48 

SEM 0.07 0.12 0.11 0.06 

P – Value 0.04 <0.0001 <0.0001 0.02 
a,b Values lacking common superscripts within a column differ (P < 0.05) 

Fracture force of MC III & IV 

There was no significant effect of treatment (P = 0.70) or leg (P = 0.88), but there was an 

interaction between treatment and leg (Table 15, P = 0.05), with the right fused MC III & IV of 

the treadmill treatment having lower fracture force than the left.  
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Table 15: Fracture force of calf MC III & IV by treatment and leg 

 

 

 

 

 

 

 

 

* Denotes lateral and medial proximal phalanx are different within the left or right leg (P < 0.05) 

Average serum OC 

There was a significant effect of day and treatment on average OC concentration (Figure 

3, P < 0.001 and P = 0.049, respectively), with the small circle and treadmill exercise groups 

having greater osteocalcin concentration than the control group. Overall osteocalcin 

concentrations were higher on d 14 and 21. The interaction between day and treatment was not 

significant (P = 0.97). 

 

 

 

 

 

 

Treatment Leg Force (N) 

Control Left 8,700 

 Right 9,300 

Large Left 8,800 

 Right 9,200 

Small Left 10,100 

 Right 10,400 

Treadmill Left 9,400* 

 Right 8,300* 

n  6 

SEM  960 

P – Value  0.05 
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Figure 3: Calf mean serum osteocalcin (OC) by treatment throughout the 7-week study period 

 
a,b Treatments lacking common superscripts differ (P = 0.05) 

Average serum CTX-1 

There was a significant effect of day on serum CTX-1 concentration (Figure 4, P = 0.02) 

but not treatment (P = 0.15). Day 0 had greater average concentration of CTX-1 than other dates. 

The interaction between day and treatment was not significant (P = 0.42). 
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Figure 4: Calf mean serum C-telopeptide crosslaps of type I collagen (CTX-1) by treatment 
throughout the 7-week study period 

 

Average serum CPII 

There was a trend for a treatment effect on serum CPII concentation (P = 0.08) and a day 

effect (P < 0.0001), with day 14, 21, 28, and 49 having lower concentrations than other days 

(Figure 5). The interaction between day and treatment was not significant (P = 0.73). 
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Figure 5: Calf mean procollagen II c-propeptide (CPII) by treatment throughout the 7-week 

study period 

 

x,y Treatments lacking common superscripts have a tendency to differ (P = 0.08) 

Fetlock synovial fluid NO 

Treatment was a significant effect on synovial fluid NO concentration (Figure 6, P = 

0.0005) with the large circle treatment having the highest concentration of NO. Joint was not a 

significant effect (P = 0.80) nor was the interaction of treatment and joint (P = 0.51). 
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Figure 6: Log transformed average nitric oxide (NO) concentration in the lateral and medial 
fetlock joints by treatment 

 

 

a,b Treatments lacking common superscripts differ (P = 0.0005) 

Carpal synovial fluid NO 

    Treatment was not a significant effect on synovial fluid NO concentration (P = 0.27), but joint 

was (Figure 7, P < 0.0001), with middle carpal joints having greater average NO concentration 

than radiocarpal joints. The interaction of treatment and joint was not significant (P = 0.91). 
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Figure 7: Log transformed average nitric oxide (NO) concentration in the middle carpal and 

radiocarpal joints 

 

a,b Values lacking common superscripts differ (P < 0.0001) 

Fetlock synovial fluid PGE2 

Treatment was not a significant effect on synovial fluid PGE2 (P = 0.99) but joint was 

(Figure 8, P = 0.0005), with both medial fetlock joints having greater average PGE2 

concentration than the left lateral fetlock joint. The interaction of treatment and joint was not 

significant (P = 0.16). 
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Figure 8: Average prostaglandin E2 (PGE2) concentration in lateral and medial fetlock joints 

 

a,b,c Values lacking common superscripts differ (P = 0.0004) 

Carpal synovial fluid PGE2 

Treatment was not a significant effect on synovial fluid PGE2 (P = 0.78) but joint was 

(Figure 9, P = 0.007), with the right radiocarpal joint having higher average concentration than 

both left and right middle carpal joints. The interaction of treatment and joint was not significant 

(P = 0.60). 
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Figure 9: Average prostaglandin E2 (PGE2) concentration in middle carpal and radiocarpal joints 

  

a,b,c Values lacking common superscripts differ (P = 0.007) 

Cartilage glycosaminoglycan content 

There was no significant effect of treatment (P = 0.73) or leg (P = 0.35), nor was the 

interaction between treatment and leg significant (P = 0.14). Within the control, large circle, and 

treadmill treatments, the left and right legs did not have different GAG concentration at the 

proximal surface of the MC III & IV (Table 16). However, it was determined that the left leg of 

the small circle exercise treatment had greater GAG concentration at the proximal surface of the 

MC III & IV than the right leg (Table 16, P = 0.03). 
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Table 16: Average Glycosaminoglycan concentration in cartilage slices from the proximal 

surface of the MC III & IV by treatment and leg 

Treatment Leg GAG (mg/g) 

Control Left 88 

 Right 90 

Large Left 84 

 Right 71 

Small Left 113a 

 Right 68b 

Treadmill Left 79 

 Right 99 

n  6 

SEM  14 

P - Value  0.14 
a,b Values lacking common superscripts differ (P < 0.05) 

DISCUSSION 

This study utilized calves as a model for young horses to determine the impact circle 

diameter can have to joint and bone health of the front limbs. It was hypothesized that a smaller 

diameter circle would lead to asymmetry between inside and outside forelimbs and increased 

markers of joint inflammation and cartilage metabolism. This hypothesis is partially accepted, as 

bone morphology and cartilage GAG content differences were noted within the small circle 

exercise group, but differences in markers of joint inflammation were not observed within the 

small circular exercise group.  

Computed tomography scans in this study found the right (inside) leg of the small circle 

treatment group to have larger dorsopalmar external diameter than the left (outside) leg. In racing 

Thoroughbreds, the inside forelimb is the most common location for injuries (56% of catastrophic 

musculoskeletal injuries) [53]. While galloping around a turn the outside front limb has a pushing 

function, and the weight of the horse will be pushed forward and laterally onto the lead forelimb 

[34]. While there is great speed difference between the walking gait of calves in this study and 
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Thoroughbreds galloping around a turn, the location of bone adaptation in the small circle exercise 

calves seems to be a result of exercising on a turn.  

Computed tomography analysis also identified treatment differences in the more-distally 

located proximal phalanxes. The small circle exercise group was found to have greater external 

mediolateral diameter in the medial phalanxes compared to the lateral phalanxes. This was also 

noted in the control treatment group. Both treadmill and large circle exercised animals had similar-

sized lateral and medial phalanx external mediolateral diameter. The straight-line treadmill 

exercise and large circle exercise diameters being similar between the two phalanxes may suggest 

that the large circle exercise is more similar to straight-line exercise than the small circle exercise 

at such low speeds. Calves in the control treatment only had access to movement in the group 

housing pen. These movements may have included tight turns similar to the small circle exercise 

group.  

Cortical density and widths of the proximal phalanxes were not impacted by treatment, but 

were however, different between the lateral and medial proximal phalanx bones. Very few studies 

have evaluated cortical bone characteristics of the proximal phalanxes in exercising horses or 

bovines. Horses have a single proximal phalanx unlike calves. This current study provides a 

necessary categorization of the differences in bovine lateral and medial proximal phalanxes which 

is important in the continued use of cloven-hoof species, such as calves, to serve as a skeletal 

model for equines. Lack of treatment differences between cortical widths and BMD from 

computed tomography are not surprising. It is known that dynamic exercise, such as sprinting, 

leads to bone adaptations [60–62,104]. As has been previously determined, gait is an important 

factor in the response of loading during circular exercise [91]. In this study, exercise only occurred 

at slow speeds of 1.1–1.5 m/s, leading to a walking gait for the calves, and no treatment differences 
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between cortical widths or BMD. Based on the mechanostat theorem, localized strain within 1500-

2500 microstrain will lead to bone maintenance, but greater strain will lead to a formation response 

in bone in order to reduce strain [90,105]. A limitation of this current study is that strain was not 

evaluated or calculated. Stride rate or other gait characteristics were not recorded in this study to 

allow for strain calculation. Strain evaluation among the cortexes of the MC III & IV would aid in 

the determination of calf bone response to circular exercise, treadmill exercise, as well as the free 

exercise in group housing. 

The fracture force of the MC III & IV was found to be lower for the right leg of the treadmill 

exercise treatment group compared to the left. Similarly, the left MC III & IV of the treadmill 

group was found to have larger cortical area than the right leg. During treadmill exercise, calves 

wore rope halters which were tied with a quick release knot to either the left or the right side of 

the treadmill depending on which side of the treadmill the calves were on. Depending on calf size, 

between 2 and 4 calves could fit on the treadmill at a time. During the last week of the study, calves 

were large enough that only two calves could fit on the treadmill at once, both tied to the left side 

of the treadmill as handlers were only able to stand on the left side of the treadmill. While calves 

were tied with their rope halter loose enough so that they were encouraged to travel straight, there 

is a potential that having their rope halter tied to their left side could have caused asymmetric 

loading between the right and left forelimb. Kinematics between treadmill and over ground 

exercise are not identical. Exercise on a treadmill exposes animals to footing that is different than 

that of normal ground surfaces. Treadmill exercise can impact gait factors, such as a longer stance 

duration of the forelimbs at the trot, less lumbar motion at the trot, and longer stride length at the 

canter [106]. The difference between the right and left MC III & IV fracture force may have simply 

been a result of a small number of animals on each treatment, and not method of exercise, but both 
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possibilities should be noted. The presence of a shorter MC III & IV for the large circular exercise 

group is most likely due to very little variation of bone length within and among treatments, 

causing for a relatively small SEM that could allow any minor difference, whether related to 

exercise treatment or not, to be found significant. 

Similar to bone morphology, some treatment differences, as well as multiple joint 

differences, were found in markers of joint inflammation and metabolism, NO and PGE2. Average 

fetlock NO concentration was found to be greatest in the large circular exercise treatment. During 

the first two weeks of exercise the large circle calves were reluctant to exercise, and while they 

maintained an average speed within the range of this study, they often paused during exercise and 

needed verbal encouragement to begin walking again. Once they began walking again they needed 

to take a few steps at a faster stride to avoid getting shocked by the panels in the electric walker. 

The small circle exercise and treadmill groups exercised continually with no pauses in a walking 

session unlike the large circle group. This behavioral difference may contribute to the greater 

concentration of NO in the large circle exercise groups. It is also worth noting in this study, there 

was large variation of NO concentration in synovial fluid samples due to the viscous nature of un-

diluted and un-digested synovial fluid. Future studies may have more success evaluating NO 

concentration in serum. 

In this study we specifically chose not to compare results of the fetlock synovial fluid to 

the carpal synovial fluid, understanding that the range of motion and relative loading of these joints 

are vastly different due to their locations. However, differences within fetlock and carpal joints 

were found. The carpal NO concentration was different between locations, with middle carpal 

joints having higher NO concentration than radiocarpal joints, providing further categorization of 

joint characteristics of cloven-hooved animals. Nitric oxide is considered to be important in the 
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initiation of repair and attracts bone cells to the site of injury. NO may also be involved in the 

regulation of osteoclasts, as in vitro osteoclast cell death has been found after high doses of NO 

[107]. NO can lead to dysregulation of osteoblast and osteoclast balance, which can result in 

cartilage destruction through chondrocyte apoptosis [108]. Fetlock PGE2 was greater in medial 

fetlock joints than lateral fetlock joints of both legs. Carpal PGE2 was lower for the right middle 

carpal compared to left and right radiocarpal joints regardless of treatment. Synovial fluid PGE2 

in two-year-old horses and dogs has been found to increase after surgically-induced osteoarthritis 

[94,109]. Middle carpal NO concentration was greater than radiocarpal, but middle carpal PGE2 

concentration was lower than the radiocarpal. Injuries to carpal joints have been found to vary 

based on animal function. Middle carpal joint injuries are found frequently in racing horses due to 

repeated trauma, but pleasure and sport horses are found with osteoarthritis most commonly in the 

radiocarpal joint [110]. Exercise performed in this study did not impact fetlock or carpal PGE2 

concentration. In this study, synovial fluid concentrations of NO and PGE2 were mostly influenced 

by joint location, similar to the proximal phalanx bone location. These results provide important 

information on joint-based differences of biomarkers in calves, which have not been previously 

analyzed as a result of exercise.  

Determination of GAG content in the proximal surface of MC III & IV was not different 

among treatments. It has been previously speculated that in 15-wk-old calves, the joints may still 

be homogeneous and GAG content was not influenced by short-duration exercise [98]. In this 

study within the small circle exercise group the left (outside) leg had greater GAG content in the 

MC III & IV proximal surface compared to the right (inside) leg. Another study found, after a 5-

month period, horses confined to box stalls had elevated cartilage GAG content compared to horses 

afforded pasture access [111]. As has been previously discussed, lean angle is increased as a result 
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of smaller radii circles and has the potential for uneven loading between the inside and outside 

limbs [8,29,67]. With only 6 animals per treatment, and exercise at a slow rate of speed in this 

study, treatment differences may not have been detectable. However, a future experiment with a 

combination of more animals and higher speeds may find GAG content to be different between 

cartilage surfaces of the front limbs.  

Average OC, a marker of osteoblastic activity and thus bone formation [112], was greater 

for the small circle and treadmill exercise treatments compared to the control treatment. However, 

the large circle group was not greater than the control exercise group. During the first two weeks 

of exercise the large circular exercise calves were reluctant to exercise and needed encouragement 

to achieve the basic requirements of exercise at 1.1–1.5 m/s. However, the treadmill and small 

circle exercise treatment groups were amenable to exercise and needed less auditory coercion to 

continue to exercise at the speed required for the study. In this study, behavior was not evaluated 

or analyzed, but the described behavioral differences may have been a contributing factor to the 

treatment differences in average OC concentration. A limitation of this study is the lack of internal 

load indicators evaluated during exercise. Future studies including an analysis of internal load of 

exercising calves, such as heart rate response, can aid in characterizing more of the 

psychophysiological response of calves to exercise [113]. 

Average OC, CTX-1, and CPII were different among treatments on d 0, thus, d 0 was a 

significant covariate for all serum markers. All calves were randomly assigned to treatments and 

striated based on weight at d 0, assuring that each treatment had calves of equal sizes at the start 

of the study. Calves were transported to the farm one week before d 0. In future studies utilizing 

calves for exercise, animals may need more than one week for housing acclimation before 

beginning exercise. It is interesting to note, that in the middle of the study, on days 14, 21, and 28, 
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CPII concentration appears to decrease, then increase after day 28. At this time, OC was also 

elevated. By d 14 all treatment groups were acclimated to their exercise treatments and 

successfully exercising with little coercion. These day differences observed may be a result of 

calves settling into their exercise and housing after acclimation. The lack of day effects in CTX-1 

after d 0 is not surprising, as calf serum CTX-1 has not previously exhibited a day effect during 

sprint exercise or confinement [60]. 

CONCLUSIONS 

Circular exercise is used frequently, and by varying methods across the equine industry. 

Circle size, speed of travel, and training of the animal are all factors which should be considered 

when utilizing circular exercise. Based on the results of this study, altering circle size can impact 

joint and bone health, with a smaller circle size leading to differences in bone diameters as well 

as cartilage glycosaminoglycan content. This study provides initial characterization of 

physiological responses to circular exercise performed by calves on a walker at slow speeds. 

Results from this study, coupled with other studies available in the literature suggest that circular 

exercise, even at a slow speed, can impact joint and bone health of young animals. The circular 

exercise in this study was performed at slow speeds, and for a duration of 7 weeks, a very short 

time span in relation to horse training. Alteration of speed or duration of exercise could 

eventually lead to greater changes to bone morphology and biomarkers. Further information 

needs to be explored on circular exercise, such as the impact of different styles of riding, 

presence of a rider, and effect to the hind limb function. Handlers and riders utilizing circular 

exercise should recognize the manner in which they exercise animals can impact overall health, 

and should consider the circle size at which animals exercise to be a factor contributing to bone 

and joint health. 
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Figure S1: Equation utilized to calculate bone mineral density (BMD) of values measured in 

computed tomography (CT) scans 

 

1Hounsfield Units (HU): Values along the x-axis are average HU values obtained from CT scans 

2Bone Mineral Density (BMD): Values along the y-axis are known concentrations of rows in the 
hydroxyapatite phantom (0, 75, and 150 mg mineral/cm3) 

 

Table S1: Calf height, weight, and length expressed throughout the weekly measurements 

Day Height (cm) Weight (kg) Length (cm) 

0 88g 78g 89e 

7 90f 90f 89e 

14 92e 87f 95d 

21 96d 108e 95d 

28 96d 119d 103c 

35 98c 130c 104c 

42 99b 140b 109b 

48 100a 148a 113a 

SEM 1 3 1 

P – Value P < 0.001 P < 0.001 P < 0.001 

a,b,c,d,e,f,g Values lacking common superscripts within a column differ (P < 0.001) 
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Table S2: Internal (int) and external (ext) dorsopalmar and mediolateral diameters as well as 
moment of inertia (MOI) from cross-sectional views at the midpoint of fused metacarpal III & 
IV of left and right front legs 

  

 

 

 

 

Table S3: Cortical and midpoint slice bone density of metacarpal III & IV (MC III & IV) of left 
and right front legs 

Treatment Dorsal 

cortex, mg 

mineral/cm3 

Lateral 

cortex, mg 

mineral/cm3 

Medial 

cortex, mg 

mineral/cm3 

Palmar 

cortex, mg 

mineral/cm3 

Midpoint 

slice, mg 

mineral/cm3 

Control 1,240 1,220 1,220 1,060 1,030 

Large 1,240 1,240 1,230 1,070 1,030 

Small 1,250 1,230 1,240 1,070 1,040 

Treadmill 1,250 1,230 1,240 1,060 1,030 

SEM 21 12 14 17 11 

P – Value 0.95 0.73 0.76 0.97 0.96 

 

Table S4: Cortical widths at midpoint of the metacarpal III & IV (MC III & IV) of left and right 

front legs 

Treatment Dorsal 

cortex, mm 

Lateral 

cortex, mm 

Medial 

cortex, mm 

Palmar 

cortex, mm 

Control 5.0 5.6 5.7 4.1 

Large 5.0 5.2 5.2 3.9 

Small 5.4 5.4 5.7 4.0 

Treadmill 5.2 5.4 5.5 4.2 

SEM 0.20 0.31 0.28 0.21 

P – Value 0.38 0.86 0.63 0.70 

 

 

 

 

Treatment Dorsopalmar 

int, mm 

Dorsopalmar 

ext, mm 

Mediolateral 

int, mm 

Mediolateral 

ext, mm 

MOI, 

mm4 

Control 12 21 17 29 11,600 

Large 12 21 19 29 11,200 

Small 12 22 18 30 12,900 

Treadmill 12 21 17 28 11,500 

SEM 0.40 0.39 0.52 0.61 820 

P – Value 0.60 0.27 0.16 0.29 0.50 
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Table S5: Dorsal, lateral, medial, and palmar cortical widths of the metacarpal III & IV separated 

by left and right leg  

Leg Dorsal 

cortex, mm 

Lateral 

cortex, mm 

Medial 

cortex, mm 

Palmar 

cortex, mm 

Left 5.15 5.44 5.62x 4.12 

Right 5.11 5.35 5.40y 4.01 

n 24 24 24 24 

SEM 0.11 0.16 0.15 0.11 

P – Value 
0.48 0.40 0.06 0.21 

x,y Values lacking common superscripts within a column tend to differ (P < 0.06) 
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CHAPTER 5: Overall discussion and conclusions 

Compared to straight-line exercise, it is considerably more difficult to determine the 

overall effects of circular exercise in horses. Radius and gait speed can both be altered 

independently, but also simultaneously, making for infinite combinations of radius and gait 

speed. When studying quadrupeds, the impact of radius, gait, as well as radius and gait has the 

potential to be unique to all four limbs, as well as the possible combinations of limbs (forelimbs, 

hindlimbs, inside limbs, outside limbs, or diagonal pairs), and the rest of the musculoskeletal 

system. Outside of alterations to radius and gait, there are multiple methods to circular exercise: 

round pen, ridden, lunged, mechanical walker. All these methods, combined with varying radii 

and gaits, provide exponentially more unique situations of circular exercise to evaluate. This 

concluding chapter is prefaced with these limitations to recognize that the research performed in 

this dissertation, and the previously published research that exists on the topic, truly have only 

been able to evaluate a small sector of the impacts of circular exercise to equine health. 

Specifically, this dissertation found that in horses exercising on a 10-m or 15-m circle, 

the area loaded by the outside front hoof is greater at the canter than the walk or trot. In this 

study, we expected to find that circle size would have an impact for forelimb average solar area, 

vertical force, and pressure outputs. This was not the case, only the gait (walk, trot, or canter) 

impacted the outputs. In this study, horses were exercised in a round pen with no physical 

restraint, and only auditory or visual encouragement to travel at a specific gait. Of particular 

interest is how utilization of a lunge line and halter to restrain a horse instead of a round pen 

would impact forelimb outputs. The use of lunging with simply a halter and lunge line is 

incredibly common as a method of exercise and training and is utilized by handlers of varying 

skill levels. Combinations of circle size, gait, and handler experience would be interesting to 
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evaluate. Of course, a rider can also impact how a horse travels; unpublished data in our lab 

found that a professional rider on a horse leads to lower peak force when traveling straight or in a 

circle. This is a very small slice of data that has not been evaluated statistically nor with 

numerous horse/rider combinations. This early relationship found in the preliminary data and 

supported with other studies is an exciting area to consider for future research. 

During the above-mentioned study, the TekscanTM Hoof System was used to determine 

loaded area and force, and subsequently calculated pressure. This system needs further 

development for use in circular exercise, especially at speeds above a walk and moderate trot. 

The material which the sensors are embedded in is not strong enough on its own to withstand 

loading from horses, and environmental exposure to dirt and moisture. Further experimentation 

is needed to evaluate a sealing method which aids the durability of the sensors, but also allows 

for collection of data without hindering natural movement. 

When using calves as a model for juvenile horses, it was found that even at a slow, 

walking gait, circular exercise for 7 weeks led to potentially negative impacts in bone and joint 

health at a small circle (12-m). Ideally, the calves would have travelled at a trotting gait, but 

unfortunately they were not willing to travel at a trot for a long duration on a mechanical walker 

or treadmill. While faster speed would have been preferred, horses are frequently exercised at a 

walk on mechanical walkers, allowing connections between these results and the equine industry 

to be made. While calves in this study were reluctant to exercise faster than a walk, other studies 

in the Spartan Equine Research Lab have found that sheep will exercise at faster speeds willingly 

and safely. Future studies are in development to utilize a sheep model which can tolerate 

mechanical walker and treadmill exercise at faster speeds for longer durations. Using older, 
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exercise trained bovines may also be an option, but these animals may need housing and 

management needs that are more expensive than using sheep as an equine model. 

A researcher could spend the lifetime of their career and beyond evaluating the many 

combinations of circular exercise radius, gait of travel, method of exercise, and their infinite 

combinations. However, before losing oneself to the depths of possibility in research, one should 

remember the reason for the research: the horse. Beneficial application of this topic of research is 

to find the combination which is most beneficial to the horse, and could prevent injuries, while 

providing an effective, and safe method of exercise for both human and horse. This priority of 

horse health and safety should not only be recognized by researchers, but also riders, trainers, 

breeders, governing associations, and spectators alike. Instead of determining which circle size, 

speed, and method elicits to the least amount of damage in the horse, we may need to incur a 

change in how horses are trained and evaluated, and put less priority on small, repetitive 

maneuvers, that are not beneficial to the overall health, purpose, of affective state of the horse.  
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