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ABSTRACT

TOWARDS ROBUST AND RELIABLE COMMUNICATION FOR MILLIMETER WAVE
NETWORKS

By
Masoud Zarifneshat

The future generations of wireless networks benefit significantly from millimeter wave technology
(mmW) with frequencies ranging from about 30 GHz to 300 GHz. Specifically, the fifth generation
of wireless networks has already implemented the mmW technology and the capacity requirements
defined in 6G will also benefit from the mmW spectrum. Despite the attractions of the mmW
technology, the mmW spectrum has some inherent propagation properties that introduce challenges.

The first is that free space pathloss in mmW is more severe than that in the sub 6 GHz band.
To make the mmW signal travel farther, communication systems need to use phased array antennas
to concentrate the signal power to a limited direction in space at each given time. Directional
communication can incur high overhead on the system because it needs to probe the space for
finding signal paths. To have efficient communication in the mmW spectrum, the transmitter and
the receiver should align their beams on strong signal paths which is a high overhead task.

The second is a low diffraction of the mmW spectrum. The low diffraction causes almost any
object including the human body to easily block the mmW signal degrading the mmW link quality.
Avoiding and recovering from the blockage in the mmW communications, especially in dynamic
environments, is particularly challenging because of the fast changes of the mmW channel.

Due to the unique characteristics of the mmW propagation, the traditional user association
methods perform poorly in the mmW spectrum. Therefore, we propose user association methods
that consider the inherent propagation characteristics of the mmW signal. We first propose a method
that collects the history of blockage incidents throughout the network and exploits the historical
blockage incidents to associate user equipment to the base station with lower blockage possibility.
The simulation results show that our proposed algorithm performs better in terms of improving the

quality of the links and blockage rate in the network.



User association based only on one objective may deteriorate other objectives. Therefore, we
formulate a biobjective optimization problem to consider two objectives of load balance and block-
age possibility in the network. We conduct Lagrangian dual analysis to decrease time complexity.
The results show that our solution to the biobjective optimization problem has a better outcome
compared to optimizing each objective alone.

After we investigate the user association problem, we further look into the problem of main-
taining a robust link between a transmitter and a receiver. The directional propagation of the mmW
signal creates the opportunity to exploit multipath for a robust link. The main reasons for the link
quality degradation are blockage and link movement. We devise a learning-based prediction frame-
work to classify link blockage and link movement efficiently and quickly using diffraction values
for taking appropriate mitigating actions. The simulations show that the prediction framework can
predict blockage with close to 90% accuracy. The prediction framework will eliminate the need for
time-consuming methods to discriminate between link movement and link blockage.

After detecting the reason for the link degradation, the system needs to do the beam alignment
on the updated mmW signal paths. The beam alignment on the signal paths is a high overhead
task. We propose using signaling in another frequency band to discover the paths surrounding a
receiver working in the mmW spectrum. In this way, the receiver does not have to do an expensive
beam scan in the mmW band. Our experiments with off-the-shelf devices show that we can use a
non-mmW frequency band’s paths to align the beams in mmW frequency.

In this dissertation, we provide solutions to the fundamental problems in mmW communication.
We propose a user association method that is designed for mmW networks considering challenges
of mmW signal. A closed-form solution for a biobjective optimization problem to optimize both
blockage and load balance of the network is also provided. Moreover, we show that we can
efficiently use the out-of-band signal to exploit multipath created in mmW communication. The
future research direction includes investigating the methods proposed in this dissertation to solve

some of the classic problems in the wireless networks that exist in the mmW spectrum.
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CHAPTER 1

INTRODUCTION

With the rapid increase demand of wireless data due to the emerging applications, it is essential to
go towards less populated frequency bands. Many emerging applications require high bandwidth,
and the users demand a high degree of freedom in mobility while using those applications. The
applications include the virtual reality interface for gaming and social networking, high-definition
video streaming, and live video broadcast. To solve the problem of high wireless traffic in low-
frequency bands different technologies like cognitive radio have been introduced but they cannot
provide the bandwidths required for the data-hungry applications. We can also see an increasing
number of mobile devices that run those applications over the time. For example, Ericsson Mobility
Report [1] predicts each subscriber will have over 40 GB monthly mobile traffic by 2026. It also
predicts that in 2026 the new generations of wireless networks will carry more than half of the
world’s smart-phone traffic.

The current frequency spectrum that is being used (sub 6 GHz) is very populated and unable to
provide the required bandwidth for the performance enhancements stated in the fifth generation (5G)
and the sixth generation (6G) of the wireless networks. Therefore, the applications need a much
wider frequency spectrum that has the required bandwidth. One of the main enabling technologies
of the future generations of wireless networks is the millimeter wave (mmW) technology that works
in an enormous frequency band between 30 GHz-300 GHz of the electromagnetic spectrum [2]
and is being used in the already-implemented 5G. In addition to 5G, 6G is also going to benefit
from the mmW technology [3]. With the wireless traffic demands and the capacity goals that are
defined in 5G and 6G, the mmW spectrum plays an important role in providing the capacities that
are being met in 5G and those that are planned in 6G.

The research community calls this wide frequency band the millimeter wave spectrum because
the wavelength of the signal is of the order of millimeters. The mmW spectrum has been researched

for many years. Despite its long history, because of the inherent challenges of mmW propagation,



communication is sparse in this spectrum and this band has not attracted much attention from the
communication research community up until the last two decades. However, in recent decades with
the advances in communication electronics and integrated circuits, the mmW spectrum has started
to gain more attention from the communication research community.

Despite the vast bandwidth that the mmW spectrum provides and its initial implementation
in 5G, communication in this spectrum still inherently faces challenging problems due to the
high frequency of the mmW signal. The mmW signal’s propagation characteristics incur unique
challenges to commercialize the mmW technology [4]. One of these challenges is the huge
propagation loss of mmW technology due to rain, atmospheric, and molecular absorption [4].
The free space pathloss in the mmW spectrum is more severe than in the sub 6 GHz spectrum.
Moreover, the common objects found in urban areas like building walls, glasses, foliage, and office
cubicles can deteriorate the penetration loss of mmW [5]. Experiments show that for locations
farther than 200 meters, the receiver could not detect any signals if the transmitter transmits with
powers between 15 and 30 dBm [2]. The link breakage is likely due to environmental obstructions
that block all paths (either via reflection or scattering). This is called outage in mmW technology
[2].

Since the pathloss in mmW is significant, it is necessary to concentrate the signal power of a
transmitter to a limited direction in space to make the signal travel farther. Therefore, the mmW
signal propagates directionally as opposed to the sub 6 GHz signal that propagates omnidirectionally.
To make the directional propagation of the mmW signal happen, the transmitter and the receiver use
a phased array antenna to direct the signal to a specific direction in the space through beamforming.
To have efficient communication, both the transmitter and the receiver should align their beams
towards each other. When any of the nodes move, depending on the environment the transmitter
and the receiver may require a beam alignment. The beam alignment is a challenging and high
overhead task, especially in dynamic environments where there are many humans or other blocking
objects, and User Equipment (UE) are on the move. Both nodes, UE and base station (BS), should

keep their beams aligned while there is movement or blockage which is called beam tracking. Both



the node movement and the blockages make the mmW link fragile and it is necessary to tackle this
challenge.

We look into the user association problem in mmW networks. The user association is performed
when the UE needs to be connected to another BS. Due to the unique characteristics of the mmW
propagation, the traditional user association methods perform poorly in mmW networks. To support
reliable and efficient user association in mmW networks, we study effective solutions that considers
mmW?’s unique propagation characteristics, such as signal directionality and low diffraction of the
mmW signal for various blocking objects.

We further look into the problem for maintaining a robust link between a pair of nodes, or
between a UE and a BS when the link is blocked or moved. Such solutions do not try to associate
the UE to another BS but exploit the multiple mmW signal paths that are formed around the UE to
maintain a robust link between the UE and the current BS. For example, when pedestrians block
a link on a sidewalk, the solution is to find an alternate signal path, such as a path reflected off
a surface, to quickly resolve such a transient situation. If the UE cannot find an alternate signal
path, the UE may need to look for another BS to connect. Moreover, there are situations where the
UE is stationary and does not need to change its BS. In such scenarios, the link is maintained by
exploiting the multipath created by directional propagation of the mmW signal.

In the following, we describe the major areas of focus in this dissertation to give an initial
exposure to the content of this dissertation. We provide a brief description of the types of problems
that we define in this dissertation. Then, we depict a general view of the solution for those problems
for a better understanding of future chapters.

We organize the rest of this chapter as follows. We provide an introductory explanation of
different problems and their solutions in this chapter. In Section 1.1, we discuss the problem of
blockage in mmW systems along with a proposed solution. Section 1.2 discusses a biobjective
approach to jointly optimize the load balance and the blockage of the network. We use the approach
introduced in Section 1.1 for the blockage objective function. Section 1.3 introduces the problem

of detection of blockage and link movement in mmW networks and proposes a learning approach



to detect them efficiently. Finally, Section 1.4 introduces an out-of-band method to perform

beamforming on the fly for low overhead beam tracking in mmW networks.

1.1 Blockage Mitigation in mmW Networks

Blockage in the mmW networks is a serious problem that we need to address efficiently to achieve
robust communication. Based on outdoor experiments that researchers have done, the human body
can block the mmW fatally [6]. The human blockage is also true in indoor settings [7]. Since the
body mass is mainly composed of water and water is a good blocker of mm-Wave, the human body
can attenuate up to 31.2 dB of mmW’s beam strength if positioned close enough to the transmitter in
the way of the signal [7]. The authors in [6] and [7] suggest three methods to mitigate the negative
effects of human blockage, including switching the victim UE’s antenna to another reflection path,
dilating (widening) the beam, and connecting to another BS.

The reflected signal in the None-Line-of-Sight (NLOS) state does not always provide the
network with desired performance [4]. The strength of the reflected signal also depends on the
power of the original signal and the surface reflection loss. Moreover, the signal reflection method is
more effective in indoor environments [7]. In the event of a human blockage, the beam dilation can
help maintain the link connectivity but only if the original link SINR is high and when the blockage
is far enough from the transmitter/receiver. In either case, the link rate degrades significantly [7].

We can induce that choosing a better BS in case of blockage is more effective in terms of
the network performance than the other two methods in some specific cases. This problem falls
into the field of User Association in cellular networks. The problem is how to associate UE to
different BSs in a way that the user association improves a metric. Common metrics that the
literature has considered for this purpose are SINR, rate of the links, load balance of the network,
outage/coverage probability, spectrum efficiency, and fairness. UEs are associated to BSs to
improve those metrics throughout the network individually or jointly [8]. The user association
is more suitable for environments with limited number of blockages. This is mainly due to the

overhead of the handover. Excessive blockages can result in increased number of handovers which



may decrease the gain of having the user association to combat the link blockage.

We propose a protocol to mitigate the severity of human-originated blockage in mmW cellular
networks using previous blockage incidents that the network has experienced. We exploit the
previous blockages to make more educated guesses of what is going to be the next best BS for a UE
in terms of minimum blockage chance. This history of blockage incidents in the network acts as a
heuristic for choosing the best BS for a UE to minimize the number of blockages experienced from
the current time forward. For this purpose, the centralized entity of Cloud Radio Access Network
(C-RAN) does all the coordination for keeping the history and associating UEs to the BSs. We

elaborate on the method in Chapter 2.

1.2 Biobjective Optimization for Load and Blockage

As stated in Section 1.1, one of the main methods to combat the blockage problem in mmW is the
user association to a different BS. The existing user association algorithms for reducing blockage
and increasing link availability in mmW networks do not consider load balancing base stations. The
blockage reduction algorithms aim to minimize the blockage effect which may result in overloading
some BSs due to having more UE associated to those BSs with links that the solution considers
to have a lower chance of getting blocked by blocking objects. Therefore, if the UEs associate
themselves to BSs only according to the blockage objective, the UEs will overload some BSs while
others remain underutilized, which may lead to performance degradation [9]. In an unbalanced
network, some BSs may have extra capacity to accept new UEs but are less attractive for UEs to
connect because the algorithm assigns a high blockage chance to those BSs. In this case, since the
blockage chance of a link is only an estimation of the future blockage incidents based on the previous
blockages, the actual blockage may not happen for a BS whose blockage chance is estimated to be
high and consequently becomes underutilized. In general, the blockage reduction algorithms divert
UEs to BSs with less blockage chance, which may result in overloaded or underutilized BSs and
degrade network performance.

This problem calls for a more holistic view of blockage control and load balancing. Improving



the performance based on one metric results in deterioration of the other, a framework that accounts
for both blockage and load balancing at the same time is needed to improve the overall performance.

To address this problem, we consider both blockage reduction and load balance in our user
association algorithm design and formulate a biobjective combinatorial optimization problem to
optimize user association in mmW cellular networks according to the two objectives. We can adjust
the involvement of each of the objectives when we need. We provide a detailed discussion of this

method in Chapter 3.

1.3 Blockage Prediction Using Learning Approaches

In case of intermittent blockages in a highly dynamic environment, it may not be efficient to
associate the UE to another BS to escape a blockage. Instead, the link quality may be improved by
finding an alternative path between the BS and the UE. To improve the communication throughput
of the mmW link, it is important to detect the blockage quickly and efficiently and minimize the
overhead of finding another beam for communication. The primary use case of mmW technology in
5G and 6G is cellular networks. People use cellular networks in outdoor environments with highly
dynamic mobile objects, including transceivers and blocking objects. Beam misalignment between
a transmitter and a receiver can happen when at least one of them is moving. The experiments
conducted by authors in [7] show that variations in RSSI occur when the link is moving.
Asmentioned in Section 1.1, because of the high frequency and lower diffraction value compared
to sub 30 GHz spectrum, in the mmW spectrum, the signal cannot go around the objects on its way
or penetrate them efficiently [10]. Therefore, the blocking objects can break mmW links fatally. We
call this link quality drop link blockage. RSSI variation is a sign of the blocking effect of blocking
objects on mmW link during a time window. The authors in [7] show that when a blocking object
blocks the mmW link, the algorithm can use the variations in RSSI to detect the blockage. Another
cause of the link quality drop is link movement. The link movement happens when either of the
nodes move and the nodes need to adjust their beams. The initial beam misalignment causes the

link quality to drop.



It is essential to discriminate the link quality drop due to link blockage or link movement.
Because they need their own treatment. Applying the solution of one problem to the other may
make the situation worse. Detecting a link blockage or a link movement requires 30 ms according
to [7]. This delay can have a negative impact on quality of experience. We propose a blockage
classification method to use diffraction to enable the nodes to predict the blockage without the need

of high-overhead signal strength recording. Chapter 4 discusses the problem and the solution.

1.4 Out-of-Band Beam Adaptation

Section 1.3 discusses that it is essential to discriminate between the blockage and the link movement
for better link recovery operations. When the prediction is done, the solution reacts to the source
of the link degradation accordingly to improve link quality. In both cases of link degradation, the
UE needs to find the signal paths that are updated due to the blockage or the movement of either
node (UE or BS).

One method of aligning the beam on the strongest signal path is using the mmW signal. This
method has been used extensively and has its own overhead on a communication system. The
directional communication in mmW makes the communication system scan the environment which
is a high overhead task. In some cases, it is not possible to communicate through LOS and NLOS
paths should be used. If a signal with different carrier frequency than mmW is used, the path
discovery is out-of-band.

The existing out-of-band path discovery methods focus on finding the single line-of-sight path.
Many of the methods use specialized hardware to achieve their goal. Our approach looks for all
the possible paths of the mmW band in the out-of-band signal. We implement and design it on
commercial off-the-shelf devices. It is very challenging to obtain accurate information for multiple
path discovery using the limited hardware of commercial devices. We discuss a full account of the

problem and the respective solution in Chapter 5.



1.5 Summary

In this dissertation, we first investigate the user association problem in mmW networks with its
inherent propagation characteristics. We propose a history-based blockage mitigation method that
uses blockage history to make blockage-aware user association in mmW networks. We show that the
proposed method has better performance than other common criteria for user association. We also
show that using only one criterion for user association is not enough to achieve high performance
in mmW networks. Therefore, we jointly optimize load balance along with the blockage in the
user association process. We show that considering both blockage and load balance in the user
association process makes the network balanced while reducing the number of blockages.

Moreover, we look into the problem of maintaining a robust link between two nodes. We show
that using the diffraction values is a reliable method to predict the blockage in mmW networks.
We also show that with a limited number of data points we can achieve high accuracy in blockage
prediction.

To maintain a robust link in case of a blockage, we propose to exploit the multipath in the mmW
spectrum by using the signal from a non-mmW frequency to discover mmW signal paths in the
receiver. We use such paths to avoid a time-consuming beam scan in mmW frequency. Our results
show that it is possible to have out-of-band beam adaptation without the high-overhead in-band
beam scan on commodity devices. Through experiments we are able to show that the performance

of the adapted beam is comparable to the in-band scanned beam.



CHAPTER 2

BLOCKAGE MITIGATION IN MILLIMETER WAVE NETWORKS

In this chapter, we study the impact of blockage in mmW networks and present our proposed
method to mitigate the blockage for user association in such networks. Due to the propagation
characteristics of the mmW signal, the blocking objects in an environment can easily block the
signal. In wireless communications, the user association is a method to select a BS for a UE. There
are various criteria for selecting a BS in non-mmW networks such as better SINR, higher rate or
lower power consumption. However, such criteria do not work well when applied to the mmW
networks. Therefore, we need to define a new criterion that considers the specific propagation
characteristics of the mmW signal. According to the organization that we discuss in Chapter 1,
the first step towards the robust mmW communication is to lower the blockage by circumventing it
using associating the UE to a BS with the lowest probability of blockage.

In urban areas, there are highly populated spots that have more frequent human activities.
Therefore, there is a higher probability that a link between a UE and a BS in such areas gets
blocked. The proposed algorithm aims at decreasing the blockage rate by detecting BSs that have
better beam penetration to the highly populated areas and selecting those BSs for UEs requesting
data communication. The proposed algorithm also adapts itself to the change of location of highly
blocked areas through time. Since the spectrum shortage is severe in populated urban areas, it is a
valid assumption that we use the proposed algorithm in such networks.

We organize the rest of this chapter as follows. In Section 2.1, we discuss the papers in the
field of user association in both sub 6 GHz and mmW spectrum. We dedicate Section 2.2 to
providing system preliminaries and Cloud Radio Access Network (C-RAN) primer. In Section 2.3,
we introduce the proposed algorithm and elaborate on it. Finally, we present the system evaluation

experiment results in section 2.4.



2.1 Related Work

The goal of user association is to improve or optimize different metrics by associating UEs to
appropriate BSs.

Dhillon etal. [11] have developed a closed-form formulation for coverage and outage probability
in a multi-tier heterogeneous cellular network (HCN). Jo et al. [12] have involved the BS association
bias in formulating the outage probability for a UE in a tier or the whole network. The user
association realizes the balancing process. The solution gives Each UE-BS pair an activity fraction
to maximize the utility of the whole network. The authors directly formulated the user association
problem as a convex network utility maximization problem in [13]. The algorithm centrally
performs the optimization process.

Bai et al. [14] have formulated SINR and rate in mmW networks. The association criterion
is the minimum path loss in their work. The traditional methods that the literature proposed for
sub 3 GHz networks cannot be used directly to mmW user association problem [4, 15]. In [16],
the authors addressed the problem of user association as a multi-assignment optimization problem.
They used auction algorithms to maximize the weighted throughput of all BSs. Xu et al. [17],
proposed a distributed solution to the dynamic resource allocation problem in mmW networks as
an optimization problem and proposed a distributed solution. Authors in [18] defined the user
association problem in the context of load balancing and fairness as an optimization problem. The
authors defined a dual Lagrangian problem and they solved it. A possible direction in harnessing
the power of mmW is to use this technology in current cellular networks in the form of multi-band
HCNs. Sakaguchi et al. [19] have proposed an architecture for mmW small cells in HCN that
C-RAN controls the process.

The fundamental difference between the proposed method and the methods reviewed in this
section is that our proposed method uses the previous incidents of blockage to determine the current
blockage possibility of the UE to each BS. At the time of our work, we were not aware of any papers

concerning user association has the memory to use the history of link quality fluctuations.
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2.2 System Model and C-RAN Primer

In this section, we first discuss the specifics of the system we propose. Due to the nature of
cellular mobility, handover is frequent, and due to the nature of mmW, beamforming is inevitable.
Collaboration between BSs is critical to realizing the above tasks. C-RAN is one of the most
promising candidates and the research community expects it to be popular in the future. Several C-
RAN projects have been initiated in many organizations such as Next Generation Mobile Networks

(NGMN) [20]. Our proposed algorithm can be regarded as a function added to C-RAN architecture.

2.2.1 System Model

In our system, we have N BSs, M UEs, and P blocking objects. The number of blocking objects is
the same as the number of UEs as each UE is assumed a human being carries it which is a blocking
object itself. The set of BSs is defined as N' = {1,2,..., N} and the set of the UEs is defined as
M={1,2,...,M}. For each BS;, the set of UEs that is served by the BS is M;. For each UE;, the
set of all BSs that is in the UE’s communication range is N;. We assume the communication range
of UE and BS to be equal to R meters. We call the parameter the communication disk. We assume
each BS is mounted on a post with & meters from the ground. Each BS; is equipped with a; number
of antennas meaning the BS; can serve up to a; UEs at a time. On a BS, the controller assigns
the beam on each antenna with a different channel. We assume the antennas are able to rotate all
360 degrees or in the interval, [—, +7] in radian. Figure 2.1 shows the concept of communication
disk and the human blockage and UEs. As shown in Figure 2.1, we illustrate the relative positions
of the BS, the blocking object, and the UE in a three-dimensional (3D) space. Since the space of
the illustration is a space that consists of x and y dimensions which is called 2-Dimensional (2D)
space, it is difficult to convey the exact 3D shape of the set of elements in the network.

We also depict an example network in Figure 2.2. The figure shows a street that is equipped
with BSs that are trying to serve UEs despite the human blockages. We adapt the SINR and rate

equations from [14]. In this chapter, there is a formulation for each of the SINR and consequently,
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tation

Figure 2.1 The concept of communication disk and human blockage in mmW network

the rate is based on the characteristics of mmW technology. The difference of what we calculate
from the original SINR/rate formulations comes from the fact that in simulations, we have the
actual values we do not have to deal with SINR/rate values as random variables. We only use the
SINR/rate values for system evaluation purposes.

In [14], the path loss model introduced is a hybrid one in which we have two models for LOS
and NLOS paths, respectively. L(F') is the path loss of a link with length F' and authors in [14]
formulated it as,

L(F) = I(p(F))CLF ™ + (1 — I(p(F)))CyF ™ 2.1)

In Equation (2.1), I(x) is the Bernoulli random variable with parameter x, ¢, is the LOS path loss
exponent, ay is the LOS path loss exponent, and Cy and Cy are intercepts of the LOS and NLOS
path loss formulas. In our system, we just use either the first term or the second term of (2.1)

depending on whether there is a blockage in a link or not.
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Figure 2.2 An example network with UEs, BSs and blocking objects

For the antenna gain, the authors in [14] bring the antenna directivity into attention since in
mmW technology the directivity of the beam determines most of the antenna gains. In the model
used in [14], B is the directivity gain of the main lobe and b is the directivity gain of the side lobe.
6 is the beamwidth of the main lobe in radian and ¢ is the angle from the boresight direction. Then,
we denote the directivity of an antenna as G (g p,9)(¢). To compute directivity gain, the authors in

[14] give the formulation as

D;=Gg, p,0,(4)).Gg, b, 0, (4L) (2.2)

where ¢ and r denote parameters for transmitter and receiver, respectively. We compute the
directivity gain for a BS and its associated UE as Dy = B, B;. D;j is the link directivity of all
interfering links for link 0. The authors in [14] also define the directivity gain as a random variable
but we compute the real directivity gains for each link. In their work, they assume the angles of
transmitter and receiver antenna beam have a uniform distribution. For each link, we compute the
different portions of the main lobe and side lobes of the two ends of the link that align with each
other.

We consider four different states for directivity gain, 1) when both the transmitter and the
receiver completely align their main lobes, the directivity gain is B, B;, 2) when the receiver aligns
the whole width of the main lobe with just side lobe of the transmitter, the directivity gain is B, by,

3) when the receiver aligns its side lobe with all main lobe of the transmitter, the directivity is b, B,
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Figure 2.3 Different angle values for different parts of antenna beams of transmitter and receiver

and 4) when both the transmitter and the receiver completely align their side lobes, directivity gain
is b,b;. These values are special ones that only happen under certain conditions. But in reality,
there are many cases that transmitter-receiver main/side lobe alignment is partial.

To compute those gains, in [14], they used the probabilities (uniform distribution of boresight
angles of transmitter and receiver). Instead, we use the actual angles of the transmitter and the
receiver. For each link, we compute the different portions of the main lobe and side lobes of the
two ends of the link that align with each other. The result of the computation can be the perfect
portions like mentioned above. That way, we compute the directivity gains as stated above. But
for proportional cases, the proportion is multiplied by each case. Figure 2.3 shows how different
portions are sized according to the antenna orientation of transmitter and receiver. In Figure 3, the
sector with red lines is the beam of the transmitter and the sector with blue lines is the beam of
the receiver. For grayscale recognition, 6, is the beamwidth of the transmitter and 6, is receiver
beamwidth. For the sake of simplicity, we invert the direction of the antenna of one node for the
transmitter or the receiver so both sides have the same direction. 0pp is the angle of beam portion
that both transmitter and receiver main lobes align on each other. p) is the angle of the main lobe
of transmitter and side lobe of receiver aligned, 6,5 is the angle of side lobe of transmitter and
the main lobe of receiver aligned and 6, is the angle of side lobe of transmitter and side lobe of

receiver aligned. We compute these alignment angles and inverting one side based on bisectors of

14



main lobe sectors of transmitter and receiver. We compute the directivity gain for a link connecting

a UE and its serving BS k using (2.3),

6 6 6 6
Dy = 2282+ Bh(22 + BBy 4 Zhh 2
2 2 2

. (2.3)

In Equation (2.3), the value Dy is the directivity gain between transmitter and the receiver. We
normalize the portions of different angles by dividing each angle by 2.
The Authors in [14] formulate the SINR for a link connecting a UE, and its serving BSy as

Equation (2.4),
hi Dy L(FY)
02+ Lie(No—k) iDIL(F))

In Equation (2.4), hy is the small scale fading for the link between BS) and the UE, associated

SINR, ) =

(2.4)

to it, o> is the thermal noise power of the propagation environment. We consider the small scale
fading in Equation (2.4) independent Nakagami fading for each link according to [14]. We neglect
frequency selectivity in fading as research shows delay spread is generally small [21] and we can
minimize the impact of frequency selective fading by techniques like orthogonal frequency-division
multiplexing or frequency domain equalization [14]. We compute the SINR value as signal power
divided by noise plus interference power. The interference power is composed of the integration of
power effect of antenna direction of UE, and the other BSs that are in the communication range of
e except e’s serving BS;. We formulate the rate of the link between UE, and its serving BSy as
the following equation,

' = Wlogy(1 +SINR, ) (2.5)

where W is the bandwidth of the system and is assigned to a UE in Hz.
The material provided in this section gives a more detailed view of the system on which the

proposed algorithm has been implemented. In the next section, we survey C-RAN technology.

2.2.2 C-RAN Primer

In this section, we provide a primer of Cloud Radio Access Network (C-RAN) technology. The

research community has proposed this technology to equip the modern wireless system with a
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centralized entity for better and integrated control. Since in the proposed algorithm, the algorithm
records and processes the history of blockage and makes it available to the UE’s that need the
blockage information, it is more efficient to give the responsibility of collecting, processing, and
distribution of the blockage history to the centralized C-RAN.

As the volume of wireless traffic increases over the years, it is important to keep the costs low.
These costs include the total cost of ownership (TCO), cost of sites of equipment, and the cost of
power [20]. Moreover, the complexity of future radio access networks makes it difficult to maintain
or upgrade networks to new standards like 5G while different networks with different technologies
co-exist. China Mobile Research Institute proposed Centralized, Collaborative, Cloud, and Clean
RAN (C-RAN) to address these problems [22].

C-RAN centralized different processing resources to form a single resource pool to allocate
them dynamically on demand. This helps in lowering interference and energy consumption and
increasing resource utilization. This technology is not only usable in current wireless networks
but also essential in future 5G standard technologies like Large Scale Antenna Systems (LSAS),
full-duplex and ultra-dense networks [20] mainly because of its centralized nature.

C-RAN architecture is composed of three main components: Base-band Unit (BBU) pool,
Remote Radio Unit (RRU) networks, and transport networks. A BBU pool is located at a centralized
site and consists of time-varying sets of soft BBU nodes. A soft BBU is a BBU instance in
a traditional network where processing resources and capabilities are dynamically allocated and
reconfigured on real-time conditions [20]. The RRU networks are the same as the traditional
networks. They provide the UEs the wireless coverage. Transport networks are networks that
connect BBU pools to RRU networks. Depending on different configurations the connecting
medium can differ from fiber-optic to microwave transmission.

The network can use the C-RAN technology to implement the proposed algorithm in this paper.
We use the C-RAN as a coordinator that can store the distributed data of blockage incidents and
do the processing and then use the processed data as information to make BS association blockage

aware. We use C-RAN to manage Het-Net that is a possible usage point for mmW technology.
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As depicted in Figure 1 in [20], the General Purpose Processor Platform can be used to do the
processing of the algorithm. It includes running the required functions and storing the necessary
data. Then the solution makes the user association decision based on information received from
RRU of UEs and the current blockage map of the network in C-RAN.

Considering the primary information provided in this section, we are now ready to discuss our

proposed algorithm of User Association for blockage mitigation.

2.3 User Association for Blockage Mitigation

In this section, we introduce and elaborate on our proposed algorithm of user association for
blockage mitigation in mmW networks.

The main principle that justifies the proposed algorithm is that the places that have more
common blockage incidents have a higher chance for the blocking objects to block UEs in the
future. It means if we can record the points in the coverage area that more blockage incidents have
occurred in the past, it is more likely that UEs that move to those areas will experience blockage
than other areas. Based on this observation, we propose an algorithm that associates UEs to BSs
that the blocking objects are less likely to block the UEs in the future. In urban areas like the entry
of department stores or subway stations, we can easily see that if blocking objects block a group of
UEs; it is more likely for other UEs that will be present in those locations in the future to have the
blockage. A higher blockage score for a BS from a specific geographical location means there has
been a considerable number of blockages so far and heuristically, and there will be in the future.

The algorithm has three main components that we discuss in different subsections.

2.3.1 Blockage Detector Component (BD)

The first component is the blockage detector (BD) in the UEs. The BD is responsible for detecting
the blockage incidents and sending the blockage information to the associated BS in a blockage
information packet (BIP). Upon receiving the BIP, the BS forwards the BIP to the C-RAN for

further processing.
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The BIP contains three information fields. The fields include blocked UE identifier (BUE),
location of blocked UE at the time of the blockage (served as blockage point), movement specifi-
cation of UE at the time of blockages like direction and speed. We can use these optional fields for
other mining operations performed on blockage information to further improve the algorithm.

For UE location-dependent information, we can say that since the manufacturers of today’s
smart devices equip them with GPS modules it is possible to obtain the location and consequently
speed and movement direction of the UE. The only problem of using the location of each UE at the
time of blockage is the privacy issue. We can resolve that by storing BUEs as coded information
anonymously. This way C-RAN has BIP, but in the field of BUE, an identifier is stored. The
blockage mitigation algorithm uses this identifier exclusively.

Based on the measurements on RSSI variations in a limited amount of time, in [7] the authors
have done measurements to find a pattern for each blockage and UE motion. The human blockage
has a more regular pattern of RSSI variation that the algorithm can exploit to distinguish between
the blockage and UE movement. For this reason, they defined a measurement window of RSSI. A
window is classified as blockage if Ny2ggs; 1s less than threshold @0« and as motion, if Ny2pgs;
is more than an upper threshold ©,,,:,,. Then the confidence of classification is accumulated over
time until it is over 95% or exceeds a detection latency bound. If RSSI(t) denotes RSSI at time t,
and T is the window length, then the authors in [7] calculated the second-order statistics of RSSI
values at the receiver side over a time window of T as follows:

2

d
’RSSI(t,T) =

pvP [RSSI(1),...,RSSI(t +T)] and Ny pgs; = Var{0*RSSI(t,T)}  (2.6)

It means the receiver computes the variance of a window of RSSI measurements and the receiver
compares it against blockage and motion thresholds. In [7], the threshold values for blockage and

motion classification are set empirically to 0.002 and 0.2, respectively.
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2.3.2 Blockage Point Collector Component (BPC)

The second component is the blockage point collector (BPC), which resides in the C-RAN. The
BPC is responsible for collecting the blockage point information from the UEs all over the network
and storing them in an informative way. The algorithm in BPC receives the BIPs from BSs and
extracts the information. The CRAN then stores the blockage information to use them as a database
for computing blockage scores.

Blockage score is a quantity that BPC computes to determine the blockage likelihood of a link
between a UE at a certain location trying to connect to a specific BS. We compute the blockage
score of a link between BS; and UE; as follows:

vi= Y, Ap.j) 27

PENH(.))

where p is a blockage point recorded in the past by its BIP, i is the index of BS and j is the index
of UE. NH(i, j) is a set of blockage points that happened in the past between BS; and UEs in the
neighborhood of the current location of UE ;. We define the neighborhood as the distance between
UE|, and the blockage point is not more than a threshold called d, ¢ fecrive- This quantity is the
maximum distance of a blockage point that would affect the blockage likelihood of a link. It is
logical to select de ¢ fecrive = R. Since the communication range of a UE and BS is not more than
R, so there is no point in selecting d. 1 fecrive more than R.

A(p, j) is a function of distance between blockage point p and current location of UE;. We
define two different functions A; and A,. The distance function defines the effect intensity of
different blockage points on a certain link. If the function tends to return a low value, the function
may lead to the false positive association, a BS that may be unsafe is falsely considered safe. If
the function tends to return a high value, the function may cause false negatives, the algorithm
falsely considers a safe BS unsafe. We propose two flavors of the function delta, inverted distance

or exponential function of distance.

1
Ai(p,Jj) = (2.82)

: (xp _xj)2 + ()’p - yj)2

19



(B) (B)

BS A BSB

Pi-k: Blockage point
number i, on a link
between a UE and BS k

Figure 2.4 A setting of blockage points spread in network for neighborhood functionality illustration

As(p. j) me~ V=03 (2.8b)

In Equation (2.8), (x,,y,) is the coordinate of blockage point p in 2D space, (x;,y;) is the
coordinate of current location of UE;. We can imply from (2.8) that if the distance of UE; from
a blockage point is more, the resulting blockage score for UE; would be lower. This comparison
makes sense as we do not expect a blocking object blocks a link if the link had a safe distance
from previous blockage points. Figure 2.4 shows a simple network setting to illustrate the subset
of blockage points that NH(i, j) selects. In Figure 2.4, the set of neighborhood of UE; for BS4 is
NH(A, j) = P3, P4 and for BSp is NH(B, j) = P1. Blockage points P2 and P5 do not belong to

any neighborhoods of UE; since they are not in UE;’s d.f fective range.

2.3.3 Device Association Component (DA)

We call the third component of the system the Device Association (DA). The responsibility of DA
is to use the blockage scores produced by BPC to select the best BS according to their blockage
scores.

When BS; forwards a BIP from UE to the C-RAN, the BPC computes the blockage score v;;

of the link between BS; and UE;. Therefore, the output of BPC is a vector 1 ;- This would be
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a vector of the blockage scores of UE if the UE were going to be associated to different BSs in
its range, R. Therefore, for each of the BSs in N, the algorithm should compute the vector. We

compute each element of 1 ; as follows,
1) =vij, VieN; (2.9)

In Equation (2.9), DA collects the blockage scores of UE; concerning BSs that are in its commu-
nication range R, which generates vector 1 ;-

Up to this point, DA has the required information to decide associating UE; to one of the BSs in
N;. Our method associates UE; to a BS with minimum blockage score in 1 j- Since the capacity of
a BS is limited and there is a limited number of antennas, it is possible that the BS with minimum
blockage score cannot serve UE;. In this case, the method selects the BS with the next minimum
blockage score. This process continues until UE is associated to a BS that has the capacity to
serve the new UE and has the lowest blockage score. The best BS to serve UE called «; and our

proposed algorithm chooses it by the following formulation,
a; =arg }’2}1\2/1] (7).x; (2.10a)

1, lu;| < a;
X; = (2.10b)

COStyay, Otherwise

Where x; detects if BS; has the capacity to accept UE; as one of its clients. Since the blockage
scores are numbers between 0 and 1, the blockage score y;; cannot be more than the number of
blockage points in NH (i, j). Therefore, we should choose cost,,,, in a way to maximize the term
1 ;(i).x;, so that the algorithm does not choose BS; if BS; does not have the capacity to serve UE;.

The traditional method looks for a distance from BS that the RSSI is less than a threshold.
We consider that distance as the borderline of the communication disk of the BS. The handover
takes place at the borderline. Since in our algorithm minimizing the blockage incidents is of high
priority, the algorithm triggers the handover procedure whenever the blockage score of the link

between UE; and its current associate BS is more than the link between UE; and other BSs in ;.
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Algorithm 2.1 The algorithm of BD component

Sense RSSI and compute the RSSI window;

Compute Ny2pgg; according to (2.6);

Compare to thresholds to classify window as blockage
Send the BIP to associated BS;

bl A

Algorithm 2.2 The algorithm of Handover component

if handover needed then
Compute y;; using (2.7);
Compute 1 ;(7) using (2.9);
Find BS with best blockage score using (2.10);
Do the handover;
end if

AN A ey

If that is the case, the algorithm hands over UE; to BS with the lowest blockage score according to
Equation (2.10).

The method mentioned above has one major drawback. The UEs need to report their locations
to their BS, and the BSs need to relay that information to C-RAN to compute the blockage score
vectors. This algorithm incurs a certain amount of overhead. However, the proposed algorithm
effectively reduces the chance of UEs being blocked. Although we can apply the proposed algorithm
to the handover task, the proposed algorithm is appropriate for the user association task, not the
handover for the reason mentioned. Therefore, it is logical to use the traditional handover methods
to detect the need for handover. When the need is evident, then our proposed algorithm can play
its role to compute the best BS to hand over to.

The Algorithms 2.1 and 2.2 generalized the whole process of blockage point registration and
using blockage information for selecting the best BS as the next BS for a UE. This algorithm has two
parts. The first part implements the BD algorithm and runs on the UE the second part implements

the BPC and DA components which the algorithm uses them in the handover detection procedure.

2.3.4 Time Complexity and Overhead Analysis

The BD component needs to measure RSSI and record RSSI T times. Therefore, the complexity of

this component is of order O(T') with T being the RSSI window size. BD also sends BIP once for
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each blockage that occurs, meaning for each O(T) computation there is O(1) overhead for sending
BIP. However, for the total number of BIPs sent by a UE, we can say the time complexity is not
of constant order and we need to address it. If the maximum number of BIPs sent by UE; while
connected to BS; is H, then the total BIP transfer in the network for all of the UEs sending to all of
the BSs is of order O(NMH).

In the BPC component, for computing blockage score v;; in Equation (2.7) we need to know
how many A(p, j) summations we do. This means that we need to know the size of set NH (i, j),
the number of blockage points that occurred in d, f fecrive Tange of the current location of the UE;
while UEs in those points connected to BS;. In order to have a good estimate of the size of NH (i, j),
we assume the number of new blockage points in each time instance compared to the previous one
is bounded. We call this bound c. This quantity says that the number of new blockage points
added to NH (i, j),Vi € N, j € M cannot go more than c¢. This assumption is valid since there is
a limited number of blockages in different time instances added. One can find this limit through
an experiment at different hours of a day and different days of a week. This is equivalent to the

recursive equation below,
n(t) =n(t—1)+c,n(0) =0 (2.11a)
n(t) =ct (2.11b)

As shown in Equation (2.11), the recursive function’s closed-form solution is the function n(z) = ct.
Variable 7 is the time instance number ¢. Therefore, the order of number of elements of set NH (i, j)
is O(ct) for time instance number ¢. There is no specific packet overhead for BPC component since
BPC computes the blockage scores based on the current location of UE ;.

In the DA component, Equation (2.10) has the time complexity related to the size of the set
N;. We can estimate this quantity by the density of BS in the implementation field. If the area
of the implementation field is A, there are N BSs deployed in this area; thus, the density of BS in
this field is %. Therefore, the expected number of elements of N; is equal to 7 X R? x % and the
time complexity of DA component is equal to O(% X R?). As we can see, the time complexity has

square relation with the radius of the blockage effect disk. It means if the radius R is halved, the
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time complexity becomes a quarter of the original. The only information transfer overhead for the
DA component is to decide for the best BS and inform the BS and UE of the decision. Therefore,
the time complexity to transfer data should be of order O(1).

According to Equation (2.11), n(t) = ct can serve as a cap for the total number of the blockage
incidents that happened in the communication disk of BS; that are in the effective blockage disk of
UE;. According to Equation (2.7), to compute the blockage score of each UE that has a different
current location than the previous one, we should reconsider all the points in NH (i, j). This process
leaves a big overhead on the system as a slight change in location of UE; obligates BPC to redo all
the computations. We propose a modification to our algorithm to enhance the algorithm in terms
of computation complexity and compromising reasonable prediction accuracy.

In our proposed modification, we define fixed points in the implementation field. We call these
points anchor points. The implementation field is divided into grids of the same size virtually. It
means BPC can compute from the location of a UE in which virtual grid the UE lands. We define
the anchor points as the center of each grid. When a new BIP is received, the algorithm computes
the blockage scores for each anchor point. In other words, the algorithm considers all the points
in the same grid equally. Therefore, in BPC instead of computing the blockage score from scratch
for each new location of each UE, the blockage score of each UE is the blockage score of the grid
the UE is located. The modification enhances the time complexity of the BPC in Equation (2.11)
to O(1). This is because the BPC only needs to find the blockage score for UE; and BS; from a
table according to the location of UE . In the originally proposed algorithm, BPC needs a place to
hold all BIPs. However, since in the modified version BPC stores the BIPs in the form of blockage
scores for grids, there is no need for that storage.

The BPC computes the blockage score in an online manner as it receives the new BIPs, and
there is no need for storing BIPs. The new BIP updates the blockage score of the grids that the
distance of the blockage point to those anchor points is not more than d ¢ fecrive. Figure 2.5 shows

the update of the blockage score of grids within d. ¢ fecrive range.
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2.4 Simulations

In this section, we present the simulation results of the proposed algorithm and another state-of-

the-art algorithm for solving the user association problem in mmW networks.

2.4.1 Simulation Parameters and Metrics

The tool used in this paper is iNet framework 2.6 for simulating the node mobility on top of the
OMNeT++ 4.6 framework to control the whole simulation process.

The simulation area is a rectangle of 100x 1000 square meters. There are 100 BSs, 250 blocking
objects, and 200 UEs roaming around the simulation area similar to the map depicted in Figure
2.2. As shown in Figure 2.2, the blocking objects considered in the simulations are human body
blockage and vehicles moving in the street since the user association algorithm can connect a UE
to a BS on the other side of the street. Therefore, we need to account for the blocking objects in the
street (i.e., vehicles). We consider the mobile nodes including nodes carrying UEs and blocking

objects to be humans plus the vehicles that we assume to have the same amount of signal absorption
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as human beings. The communication range of each BS and UE is set to 100 meters. The height of
the post that each BS is installed £ is set to 3 meters. Parameter W in Equation (2.5) is set to 1200
MHz [18].

The algorithm detects the blockage incidents based on the experiments done in [7] as stated in
Section 2.3.1. Considering each event happens on the scale of 0.1 seconds, each blockage detection
window takes three events. The BD records the RSSI in this window to detect if there has been a
blockage or not. There is a module in the simulator that knows the location of the objects moving
in the area. The module is responsible for collecting blockage data and computing the blockage
scores.

According to [14], the path loss model is different for NLOS and LOS paths. The authors of
[14] also have used Nakagami distribution for small-scale fading. We experiment with six user
association algorithms, including original and modified versions. The first one is our proposed
algorithm of computing the blockage scores for each link. We call this algorithm Blockage Point.
The second one is the modification that we make to the Blockage Point by using grids and anchor
points. We call the algorithm Blockage Point Grid. The third algorithm [18] addresses the problem
of user association with the purpose of load balancing. We call this algorithm Load Balancing.
The fourth one is our modification to Load Balancing to see how our proposed algorithm can affect
the performance of other user association algorithms. The fifth algorithm associates a user to the
closest BS. We call this Closest BS. The last algorithm does the association based on maximum
SINR. The user is associated to a BS with maximum SINR. We call this Max SINR.

We use our heuristic of blockage scores in computing the rate and consequently, the utility that
the algorithm uses in the Load Balancing. In this way, when the blockage score of a link is high,
the SINR and consequently the rate of the link decreases. According to the definition in [18] of
utility, the utility is equal to the division of demand by rate. When the rate decreases, the utility
increases. Therefore, the change of the UE to be associated to the BS decreases because of the load
balancing target. We call this algorithm Load Balancing with Heuristic.

There are four metrics defined in this paper to size the performance of the proposed algorithms
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Figure 2.6 Average Blockage per blocking object

and compare the performance with the Load Balancing. We provide the metrics in the following.

Average Blockage per blocking object is the total number of blockages that occurred in the
network divided by the number of blocking objects. The average Handover per UE is total
handovers in the network divided by the number of UEs. We implement both Rate and SINR
according to formulations defined in [14]. According to [18], we compute the link utility, and the
algorithm records the maximum of that for a link at each time as Maximum Link Utility.

There are two other metrics defined, namely False Positive Ratio and False Negative Ratio. In
order to define these two metrics, we need to define the optimal behavior in this context. UE] is
associated to BS, if there is a blockage between UE| and BS4, UE is handed over to BSp. If
there is no blockage in BSp for UE|, we say the handover is optimal. If UE has no blockage with
BS 4, itis not handed over to BSp. If UE| has blockage with BS 4 and BSp it stays in BS 4. Positive

and negative is defined as if the UE is handed over to another BS or not, respectively.

2.4.2 Simulation Results and Plots

In this section, we discuss the simulation results of the algorithms and different metrics for com-
paring them. In the first part, the A function used is exponential as in (2.8b).

Figure 2.6 shows the Average Blockage per blocking object for different algorithms. As we can
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see in Figure 2.6, our proposed algorithm, Blockage Point, and its modification Blockage Point
Grid have considerably reduced the number of blockages in the network compared to the Load
Balancing, Closest BS, and Max SINR algorithms. The reduction is at least 21%. They also
outperform Closest BS and Max SINR algorithms. The difference between Blockage Point and
Blockage Point Grid is not much, and Blockage Point Grid shows a little merit over Blockage Point.
Therefore, modifying the Blockage Point to Blockage Point Grid can be a good compromise in the
time complexity-accuracy trade-off. As we can see, both Load Balancing algorithms show more
blockages experienced by UEs compared to our algorithm. One primary reason for that is the focus
of Load Balancing on balancing UE load among all BSs in range, hence the name. Figure 2.6 also
shows that implementing our blockage score system in other optimization problems may not lead
to better results.

In Figure 2.7, we plot the Average Handover per UE. As we can see, handover count for Load
Balancing and Load Balancing with Heuristic is more than of Blockage Point and Blockage Point
Grid. The difference is not much, however. The Closest BS and Max SINR algorithms have the
lowest handover counts almost half of others.

We plot False Positive Ratio and False Negative Ratio metrics in Figures 2.8 and 2.9, respectively.

As we show in Figure 2.8, False Positive Ratio for Blockage Point and Blockage Point Grid is less
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than Load Balancing algorithms. Closest BS and Max SINR have the least values, and the reason is
the way False Positive Ratio is defined. For the False Negative ratio, all algorithms except Closest
BS and Max SINR are very close to zero. We can also find the reason for the higher False Negative
Ratio in those two algorithms in the metric definition. Load Balancing algorithms perform better
in terms of False Negative Ratio than our proposed algorithms by a minimal margin.

Figure 2.10 compares the maximum link utility in the network for Blockage point and Load
Balancing. As we can see, Blockage Point has its 100% link utility reached immediately after

starting the simulation, but the Load Balancing maintains the link utility between 40% and 70%
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for all the time. We expect this behavior from Load Balancing as it is specially designed for the
purpose.

Figure 2.11 compares average rate of all algorithms. It is evident that in Blockage Point, the
number of links with higher rates is more than the Load Balancing. As we expect from the blockage
count figure, the rate of our proposed algorithms outperform other algorithms. The Load Balancing
algorithms have worse performance than Closest BS and Max SINR algorithms. We expect these
results from the average blockage counts.

We also study the effect of choosing different A functions (defined in Section 2.3.2) and the
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Figure 2.12 Average Blockage per UE for Exponential Delta Function

inclusion of timeliness on the performance of our proposed algorithm.

So far, in this chapter, there was no mechanism to deal with the aging of blockage data. That is,
older blockage incidents are dealt with as new ones. For having an aging process of blockage data,
we use the Exponential Moving Average (EMA) for blockage data to emphasize newer blockage
data.

Figure 2.12 shows the average blockage for different algorithms when the algorithm uses
exponential A function. As we can see in Figure 2.12, except for Blockage Point EMA, our
algorithms still outperform all other algorithms except Max SINR. The Blockage Point Grid EMA
has a slightly better performance than Blockage Point EMA. Compared to the case without having
EMA, more blockage count at about 33% increase for Blockage Point. The Blockage Point Grid
shows a 28% increase when using the EMA algorithm to add timeliness to the algorithm. It seems
that, unlike Blockage Point Grid, Blockage Point is more sensitive to have older data with the same
weight as the newer data. Therefore, we can say that Blockage Point Grid has more timeliness than
Blockage Point when the A function is exponential.

Figure 2.13 shows the Average Blockage per blocking object for different algorithms with
inverted function as A function. As we show in Figure 2.13, when the algorithm uses the inverted

distance function in (2.8a) as A function instead of using exponential distance function in (2.8b),
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Figure 2.13 Average Blockage per UE for Inverted Delta Function

it worsens the average blockage count. Both EMA modifications to our algorithms have worse
performance than other algorithms. In the case of the Load Balancing Heuristic, both EMA
algorithms perform better. Comparing our algorithms in two Figures 2.12 and 2.13 shows that

exponential function is a better choice for A function.

2.5 Summary

In this chapter, we propose a user association method especially designed for mmW networks. The
method considers the inherent propagation characteristics of the mmW signal. We use the blockage
history to associate a UE to a BS that has a lower chance of blockage. We show that our proposed
method of user association can perform well in terms of decreasing the blockages and improving the
other important network metrics. We compare the performance of our proposed method with other
user association methods. The results show that our proposed method outperforms the compared

methods in different metrics.
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CHAPTER 3

BIOBJECTIVE APPROACH FOR OPTIMIZING BLOCKAGE AND LOAD
BALANCING OF THE NETWORK

In the previous chapter, we discuss the problem of blockage in mmW networks and present the
solution to this problem for user association. If the user association method only considers the
blockage, some BSs would become more favorable than others and it may make the network
unbalanced with degraded performance. In this chapter, we consider both blockage reduction and
load balance in the user association algorithm design and formulate a biobjective combinatorial
optimization problem to optimize user association in mmW cellular networks according to the two
objectives. We then transform the biobjective problem into a single objective problem using three
scalarization methods. For all of the scalarization methods, we solve both primal and dual problems.
The challenge of the problem is formulating the optimization problem as a single objective problem
from the biobjective problem and capturing the true relation between two objectives. The objectives
are discrepant in the way their parameters are collected and influence the performance of the
network. The involvement of each of the objectives can be adjusted when needed. In this way, the
solver can prioritize an objective over the other.

The main points in this chapter include defining an optimization problem and providing the
solution to the optimization problem. The solution to the optimization problem will give an
opportunity to the network to adjust its performance policy via user association with respect to the
objective functions. We provide a subgradient solution to different single objective problems of
the biobjective problem, which has polynomial time complexity compared to the primal solver that
has exponential time complexity.

We summarize the contributions as follows:

1. We define a biobjective optimization problem to improve load balance and minimize the

blockage score in mmW networks.
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2. We develop the solution for the optimization problem that is generated by each scalarization

method with polynomial time complexity.

3. We provide the proof of the upper bound for the duality gap between the dual and primal

solutions.

We organize the rest of this chapter as follows. Section 3.1 reviews the literature on the topic of user
association in wireless networks. Section 3.2 describes the system model and different parameters.
We formulate the optimization problems in Section 3.3. The proof to duality gaps provided in the
chapter comes in Section 3.4. We present the performance of the solutions provided in this chapter

in Section 3.5.

3.1 Related Work

This section discusses the literature of user association problems in wireless networks on joint
optimization/improvement domains. Liu et al. [8] have proposed a taxonomy for user association
methods in wireless networks. According to the methodology used in that paper, we review some
of the related works.

The user association can be done to improve or optimize the outage/coverage probability.
Dhillon et al. [11] have proposed a framework for computing the coverage probability in multi-tier
HetNets. Cheung et al. [23] have introduced a model to compute success probability in each tier,
considering different spectrum allocation policies.

The authors used the combinatorial approach for user association in [24]. The authors for-
mulated a joint optimization problem of user association and channel allocation decision between
macrocells and small cells in a HetNet. As a follow-up, Ghimire et al. [25] have proposed a
framework to analyze the performance of HetNets by optimizing resource allocation, transmission
coordination, and user association to maximize data rate throughput. The authors discuss joint
optimization of base station sleep mode, user association, and subcarrier allocation to maximize

total power consumption in [26].
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In the mmW spectrum area, Xu et al. [17] have discussed the problem of joint optimization of
user association and relaying traffic to other clients. The objective is to maximize the total network
throughput. In [18], the authors defined an optimization problem to minimize the maximum load
across all base stations to optimize user association. Sakaguchi et al. [27] have proposed a user
association method in mmW networks that considers the supported available rate and number
of users in each cell. For energy harvesting networks, [28] have formulated an optimization
problem to maximize network utility while each base station’s energy consumption does not
exceed the harvested amount. Alizadeh et al. [29] have proposed a method for load balancing with
consideration of blockage in millimeter-wave networks. However, they do not consider the blockage
independently and detect it as rate degradation instead. This assumption leads to false blockage
detection because the mean movement is also a source of rate degradation. Semiari et al. [30] have
proposed one-to-many matching solutions for the association problem in hybrid millimeter-wave
and microwave networks. They also do not consider the blockage as an independent objective.
They do not consider the joint optimization of load and blockage in millimeter-wave networks.

There are many other user association methods in Heterogeneous Networks (HetNet) [31, 32, 33]
that consider user association with having different performance metrics in mind. Authorsin [34,35]
also studied Energy-efficient user association.

The blockage mitigation and optimizing blockage in mmW networks have been studied to some
extent. Bai et al. [14] have talked about the blockage analysis in the mmW network. They provided
a model considering static blockages in the network. However, they did not study the effect of
human blockage more dynamically. Some papers discuss modeling the human body as a blocking
object to mmW networks [36, 37]. Although they discuss the blockage in the mmW spectrum in
its dynamic format, they only provide a model in terms of signal outcome in the blocking object’s
presence. They do not consider the load balancing of the network nor give a solution to avoid
blockage in the future. Choi [38] has proposed a model on blockage probability in a network with
multiple BSs. The authors used the diversity to mitigate the effect of blockage on the performance

of the network. They provided a closed-form expression for the outage probability concerning the
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transmission power. However, they do not provide a method to associate users to the BSs and solve
the association problem. They also do not discuss the blockage with other critical objectives. They
mention the power, but the power is not a parameter that can be changed much neither on BS nor
UE.

For the choice of blockage model, there are different schemes to be considered. Niknam et
al. [39] have proposed a geometrical blockage model in mmW networks. They use geometry to
calculate a shadow region created by a blockage. In 3D space, Han et al. [40] have proposed
a model to capture the blockage by a human body. They involve both dynamic human body
blockage and static blockage from the objects found around the human body. Blockage exists in
terahertz communications and the authors quantized the blockage based on the probability of having
line-of-sight [41] and the authors investigated the effect of blockage on quality of experiment for
wireless virtual reality in [42]. Although the papers mentioned propose a blockage model in high-
frequency communication, the solutions in these papers are not able to address the problem that
this chapter investigates, which is user association. The existing work utilizes geometric principles
for estimating the shadow region of the blockage, but they lack a quantitative measure that we need
to identify the next best base station for a blocked mobile user to associate.

All of the discussed literature share the fact that they try to optimize one or more variables based
on single objectives. The factor that distinguishes our work from the ones discussed here is that in
our work, we want to optimize user association in mmW networks considering two objectives at
the same time. Since the input variables are binary, the problem we are considering is a biobjective
combinatorial optimization problem. To the best of our knowledge, the authors did not consider
the joint consideration of load balancing and blockage avoidance in the same optimization problem

in any of their work.

3.2 System Model and Objective Functions

In this section, we discuss the specifics of the system that we consider for our proposed method.

Then, we introduce the two objective functions, load balance and blockage score. We use the
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objective functions to optimize the user association variable. We also briefly introduce three

scalarization methods used to transform the 2-dimensional objective vector to a scalar.

3.2.1 System Model

In our system, we have N BSs, M UE, and P blocking objects. The set of BSs is defined as
N ={1,2,..., N} and we define the set of the UEs as M = {1,2,..., M}. The value of parameter
P is not known in the problem formulation and consequently in the solution. The reason is that
the network does not know the value for P. Therefore, the network should be able to work without
knowing P. It can be variable as the blocking objects are on the move so that they can come and
go. The solution is adaptable to the number of blockages that are relevant to P.

We define M; as the set of UEs that are served by BS;. Analogously, we define N; as the set of
all BSs in the UE j’s communication range. We assume the communication range of UE and BS
to be equal to R meters. The communication range is a cut-off value for signal propagation. The
signal is negligible when it travels farther than R. However, the signal propagation and its quality
in different locations are a function of many factors. We use a model for signal propagation [14]
that the authors designed for mmW signal propagation.

We assume each BS to be mounted on a post with h meters from the ground. Each BS; is
equipped with a; number of antennas meaning the BS; can serve up to a; UEs at a given time. The
channels of each beam of these antennas are different from other antennas in a BS. We assume the

antennas to be able to rotate all 360° degrees or in the interval, [—, +7] in radian.

3.2.2 Objective Functions

We want to optimize user association based on two objectives. The first one is the Load Balance
(t) objective, which we define as the maximum total utility of one base station across the BSi € N.
The second objective is Blockage Score (B) that we define as the total blockage score of all links
in the network. In the following two subsections, we discuss these two objective functions in more

detail.
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3.2.2.1 Load Balance

For the first objective, we use the load balancing optimization problem definition and solution

provided by Athanasiou et al [18]. The authors have defined the channel utilization between BS

itand UE jas §;; = Ig—’ where R;; is the rate of the link between BS i and UE j and Q; is the
ij

demanded data rate of UE j. We define the rate as,
Ri,j :W10g2(1+SINRi’j) (31)

In (3.1), W is the bandwidth.

hD;;L(F;;)
0% + Yke(n;-iy "Dk L(Fi )

SINR; ; = (3.2)

The SINR [14] works with the loss due to LOS and Non-Line NLOS signals. L is the loss based
on these two types of signal. F;; is the distance between BS i and UE j. & is small scale fading, o?
is thermal noise, and, Dij is the directivity gain between BS i and UE j. The index k goes through
the interfering BSs. These BSs are the ones that are in the communication range of UE j but UE j
is not connected to them.

We define the user association variable that we want to optimize as,

1, if UE j associated to BS i
Xl'j = (33)

0, Otherwise

We formulate the combinatorial optimization problem for optimizing user association variable x

as,

minimize ¢ (3.4a)
subjectto > Byxi; <1, Vie N (3.4b)
JEM;
Doxip=1, VjieM (3.4¢)
IEN;
xij €{0,1}, VjieMieN; (3.4d)
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In Equation (3.4), constraint (3.4a) makes sure that the maximum utility of a BS does not exceed
variable t. Therefore, if the solver minimizes ¢, it minimizes the maximum BS utility as well.
Constraints (3.4c) and (3.4d) make sure that the solution to this optimization problem is feasible
i.e., UE; is associated with only one BS and a UE is associated with a BS or not with no in-between
states.

The authors of [18] have used Lagrangian dual analysis to solve optimization problem in (3.4).
The Lagrangian of optimization problem (3.4) is,

L(t,x,Q) = t(l - Zai) + Z Z Bij.Ai.xij (3.5)
ieN JjeEMiEN;
In Equation (3.5), there are N Lagrangian variables, one for each inequality in (3.4b). The
Lagrangian dual function is,
2 g, Y=l
ieN

g() = inf L(1,x, 1) = { /M
teR
xeX

(3.6)

—00, Otherwise

In Equation (3.6), X is a set of x; vectors for all j € M that conform constraints (3.4c) and (3.4d).
g;(A) is,
minimize Z Bij.Aixij
ieN; (3.7)
Subject to x; € X;

The Lagrangian dual problem is,

maximize g(d) = )" g;(d) (3.8)
JeEM
subjectto " A; =1 (3.8b)
ieN
>0, VieN (3.8¢)

The algorithm then solves the optimization problem (3.8) via the iterative subgradient method. The
algorithm chooses the best solution for optimization problem (3.4) from solutions resulting from
each iteration of the subgradient method. Throughout this chapter, we refer to the load balance

objective as the first objective.
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3.2.2.2 Blockage Score

For the second objective, we use the idea introduced in Chapter 2. We use the blockage model
to capture the randomness that is inherent in mobile networks. The randomness is especially
significant in outdoor mobile networks, which is our proposed user association model’s primary
target. The blockage score model we use has the user association structure, which is an integer
optimization problem. This structure fits into our proposed biobjective optimization design. The
blockage score model conveniently provides our model with a measure of how probable a blockage
is by capturing the history of past blockage incidents in the non-deterministic and dynamic outdoor
environment. While this blockage model uses geometric principles to calculate the shadow region
of a blocking object like the other blockage models, we also design it to optimize user association
which its counterparts are not capable of doing. The other blockage models that we survey in
Section 3.1 provide the probability measure for the blockage. However, they do not use the model
to enhance user association. We design the model in a way to reduce the blockage through user
association.

The algorithm computes the blockage score objective for the whole network. The algorithm
generates the objective value by adding the blockage score for all the links in the network. This
includes the links that exist between the UEs that are associated with the BSs. As discussed in
Chapter 2, BPC computes the blockage score of one link between a UE and a BS based on the
previous blockage incidences that occurred in the UE neighborhood in past. The BPC computes
the blockage score using the distance function from the UE location and the history of the UES’
locations that had blockages in the past. The blockage score is a temporal and spatial parameter. It
is spatial in the sense that it contains the blockage report of the previous blockage incidents in the
area in which a UE is trying to connect to a BS. It is temporal because the value of the blockage
score ages. They use an Exponential Moving Average (EMA) on the blockage score to decrease
over time if there are no new blockages reported recently. The solutions that will be developed for
the optimization problem assume that the blockage score objective is constant while the solution

forms and implements the user association matrix. The solution’s distributed nature makes this
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assumption possible since UE performs each user association. We completely implement the time
variability of the blockage score objective for the evaluation of our solution.

In the provided model, we do not use the number of the blocking objects (P). In reality, the
network and the solvers do not know the value of P. Therefore, the potential solution should be
independent of P, so that the solution is practical in a real system. What matters to the solvers
is the historical blockage data that BPC gathers from across network in the form of the blockage

score. P affects the historical blockage data.

3.2.3 Scalarization Methods

In a biobjective optimization problem, we call a solution Pareto-optimal or Pareto-efficient if there
exists no other feasible solution that dominates it. A solution A dominates other solution B if it is the
same or better in one objective and strictly better in the other objective. By solving the problem, we
get a Pareto-front (PF) or trade-off surface (concave or convex) of optimal values. Any preference-
based multi-objective optimization problem can be solved with either apriori or a-posteriori method.
Among apriori methods, researchers widely use utility-based method, lexicographic method, goal
programming [43]. Since we don’t assume any prior preference of objectives, we only discuss
a-posteriori methods. Posteriori methods find a good distribution of Pareto-optimal solutions and
give them to the decision-maker (DM) to pick one. Solvers generate Pareto-efficient solutions
one by one in an iterative manner. Literature proposes various scalarization methods to combine
multiple objectives in such a way that it targets specific optimal solutions of the front in each
subproblem. From literature, some of the well-known scalarization methods are Achievement
Scalarization Function (ASF) [44], Normal Constraint (NC) [45] and Weighted Sum (WS) [46].
WS approach combines two objectives into a single one by giving weights to the objectives.
Then we use a single objective optimizer to solve the converted single objective problem. WS
approach has the drawback of finding only the convex part of the whole Pareto-front. For example,
in Figure 3.1, the WS approach could only find one of the two extreme points (A or B). But it can

be very efficient in finding the convex part of PF. We give the formulation of WS below. Here m is

41



target optimal point

>

Objective 2

z | B
Objective 1

Figure 3.1 Optimal point targeting for corresponding reference direction

the number of objectives, w is the weight vector, F = (fi, ..., f) is objective function.
m
WS(x) = Z wi X fi(X) (3.9)
i=1

In Achievement Scalarizing Function (ASF) method[47], the problem gives one ideal minimum
point z and a set of well-distributed reference directions (see Figure 3.1). Unlike WS, the reference

directions w can easily specify the target optimal point of PF. We optimize the following equation.

ASF(x) = mnellx M

i=1 Wi

(3.10)

The normal constraint method (NC)[45] optimizes two objectives separately as a single objective
optimization to get utopian points f; and . The solver uses these points to normalize the
objectives. The solver uses converted objective values F = (fi, f,..., fin) in the following

equation. Ituses parallel reference vectors to generate subproblems. After solving each subproblem,
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it makes the corresponding region infeasible.
NC(x) = nx (ﬁ<x> - (i - 1))
i=1 m
such that v; - (F(x) —w) <0, Vie {1,2,...,m} G.11)
where v; =g —f;, i #

We use more than one scalarization method to see how different scalarization methods perform in
solving the defined problem. Since different methods have different approaches to finding the Pareto
front in optimization problems, we are interested to see the performance of different scalarization
methods in solving the problem. We see the different performance of the scalarization methods in
Figure 3.7.

The intuition behind choosing the mentioned scalarization methods comes from the nature
of the biobjective optimization problem. The defined optimization problem is a combinatorial
type and needs special methods for converting an objective vector to a scalar. The NC method
generates evenly spaced solutions on a Pareto frontier [45]. Due to the solution space’s unknown
characteristics in our proposed optimization problem, we conclude that using the NC scalarization
method helps us find an optimal solution due to the method’s unbiased search strategy. On the
other hand, our optimization problem has a clear ideal objective value vector that can be useful
for searching for the solution set using the ASF method as this method is sensitive to the ideal
point selection [48]. The WS method does not change the feasible set and boils down to the
single objective version of the multi-objective problem [49]. This property of the WS scalarization
method is beneficial for combinatorial problems.

To generate the weight vectors, we have used Das and Dennis method[50]. This method
generates equally spaced weight vectors in any number of dimensions. Note that, the scalarization
methods can potentially generate non-Pareto-optimal solutions if there exists no optimal solution
with the corresponding weight or reference direction[50]. Thus we need to use a Pareto filter to

remove the dominated solutions from the set.
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3.3 Biobjective Optimization Problem

In this section, we first formulate the biobjective optimization problem. We formulate the single
objective optimization problem of biobjective optimization problem (3.12) by the scalarization
methods introduced in Section 3.2.3. Then, we solve the transformed single objective problem by
appropriate methods. We borrow the general approach used in [18] to solve the single-objective
problem generated by the three scalarization methods via dual analysis.

To optimize user association based on both load balancing and blockage score objectives, we

formulate the optimization problem as,

minimize f (¢, B) (3.12a)
subjectto " Bjxi; <1, Vie N (3.12b)
JEM;
D=1, VjieM (3.12¢)
iENj
xij €{0,1}, VjieM,ieN; (3.12d)

In Equation (3.12), function f is a general function that converts the vector of objectives to one
scalar for optimization, and the objective B is the total blockage score in the network. The problem
formulated in (3.12) is a Biobjective Combinatorial Optimization (BOCO) problem. The user
association problem is combinatorial. The algorithms for solving these problems have exponential
time complexity [18]. We transform the problem (3.12) into single objective problem by using
three scalarization methods introduced in Section 3.2.3. Then we solve the resulting primal single-
objective problems. We also provide the Lagrangian dual solutions to the single objective problems
with lower time complexity than the exponential primal solution.

The constraint (3.12c) says that all UEs must connect to exactly one BS. It may seem like a
strong constraint. However, if a solution works for };;. N;Xij =1, it will work for ). N;Xij < L
Since the solution works on each UE independently, it is possible to define a threshold for the signal
received by the UE. If it falls below that threshold, the algorithm does not perform the association

for that UE.
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The purpose of defining this optimization problem is to optimize (minimize) both blockage
probability and maximum load on the BSs in the network. We pursue this purpose by selecting
BSs for different UEs based on the objective functions. In other words, solving this optimization
problem makes the network more balanced while decreasing the blockages that can happen in the
network. The blockage score objective B captures the blockage probability of a UE if it is associated
with a certain BS. We would like to select a BS for a UE that minimizes such probability. Since it
is a joint optimization problem, the solution selects a BS that decreases both blockage probability

and maximum BS load at the same time.

3.3.1 Formulation and Solution of ASF Scalarization Method

This section will formulate the single-objective optimization problem of the biobjective problem
defined in (3.12) generated by the ASF scalarization method. Then, we use dual analysis to solve

the single-objective optimization problem for the ASF scalarization method.

3.3.1.1 ASF Generated Single Objective Problem

ASF method needs an ideal minimum point z. The ideal point in our defined problem (3.12) is
z = (0, 0) for objective vector (¢, B). Since both objectives of maximum BS utilization and total
blockage score cannot get negative values, thus assuming the ideal point as zero for both objectives
is logical. The ideal point may or may not be reachable. We formulate the ASF generated single

objective problem as,

S t B
minimize max(—, —)
wo Wi
subject to Z Bij-xij < t, Vie N
JEM: (3.13)
Z Xij = I, VjeM
iEN;
X,‘jE{O,l}, VjEM,iE/\{]'
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In problem (3.13), B is total blockage score, w = (wq, w;) is the weight vector. Since there are
two objectives the size of weight vector is 2. We can reformulate the problem in (3.13) to linear as

authors in [18] did to formulate min-max problem. We can reformulate the problem as,

minimize S (3.14a)
t
subjectto — < § (3.14b)
wo
B
— < S (3.14¢)
wi
Z Bijxij <t Vie N (3.14d)
JEM;
D xip=1, VjieM (3.14e)
iENj
xij € {0,1}, VjeM,ieN,; (3.14f)

In problem (3.14), is a linear combinatorial optimization problem. The objective is the maximum
of two terms of original ASF formulation. We solve the primal problem in (3.14) by a linear

program solver to get to its optimum solution.

3.3.1.2 Solution to ASF Generated Single Objective Problem via Dual Analysis

In this section, we elaborate on a solution to ASF that generated a single optimization problem
formulated in Equation (3.14). The problem in (3.14) is a mixed-integer linear program (MILP)
and its complexity is proved to be NP-hard [18]. To have a distributed low complexity method of
solving the biobjective problem defined in Equation (3.12), we discuss the Lagrangian dual analysis
of a single objective optimization problem generated by the ASF scalarization method.

First, we eliminate variable ¢ from Equation (3.14) and replacing B with its equivalent. In order
to do that, we can remove the constraint (3.14b) by using it in constraint (3.14d) and replacing

variable B with its value defined in [51], making the resulting optimization problem as,

minimize S (3.15a)
DY Yij -Xij
. iGNjGMi
subject to <S (3.15b)
wi
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ZjeMi Bij-Xij

<S Vie N (3.15¢)
wo

>oxy=1, VjieM (3.15d)

iENj

xij € {0, 1}, VjieMieN; (3.15¢)

We solve Equation (3.15) as the optimization problem for ASF scalarization method.

In order to obtain Lagrangian of an optimization problem, the objective function and the
constraints of the primal problem go together in another optimization problem. Then, we derive
the Lagrangian dual by computing infimum of Lagrangian with respect to all variables other than
Lagrangian multipliers. We formulate the Lagrangian of problem in Equation (3.15) using only

objective function (3.15a) and first two constraints (3.15b) and (3.15c¢) as,

L(S,x,/l):S.(l—/lNH—Z ) Z Z y” /1N+1+ﬁ—/1) (3.16)

ieN ieN jeM;

In Equation (3.16), we gather the Lagrangian multipliers in vector A = (A, A2, ..., An+1). There
are N Lagrangian multipliers, one for each constraint in (3.15¢) and another one for constraint
(3.15b). We also swap the index of nested sum operators according to equivalence {(i,j) | i €
N,je M} ={(n,m)| me M,n e N,} usedin [18]. We also borrowed from [18] the definition
of a vector space that input x satisfies constraints (3.15d) and (3.15¢). The vector space X is

Cartesian product of X = X X X3 X - - - X Xj. We define each X] as,
Xj={x; = (xiplien; | D xij = Loxiy € {0,1}, € Nj} (3.17)

ieN;

According to Equation (3.17), each X is j th column in matrix x that has a single one and all
other entries are zeros. The single one can be in any N entries of the column j. Now, we are ready

to define the Lagrangian dual problem. We define it as,

g(d) =inf L(S,x, 1) (3.18a)
SeR
xeX
inf 3 lej( AN+1+@A) SN A =1
_ [XXieN jeM; wi wo (3.18b)
—00, otherwise
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> inf zxi,-.(ﬂ.a,v+1+@.ai), SN =1
_ ljeM Xi€XjieN; w1 wo (3.18¢)

—00, otherwise

g, nt =1
—JljeM (3.18d)

3 otherwise

We formulate the infimum of Lagrangian in Equation (3.16) with respect to two variables S and
X. The infimum of the term containing S with respect to S in Equation (3.16) is —co. Therefore,
it is unbounded. In order to have a bounded S term, we need to make the coefficient of S, zero in
Equation (3.16). That is made possible by having coeflicient of § equal to zero as condition in dual
problem. The vector space we define in (3.17) helps us to deduce Equation (3.18¢). In Equation
(3.18c), we compute the infimum over all x; members of the set X;. We formulate the Lagrangian

dual problem as,

maximize g(A) = Z x;"j.(ﬂ./lNH + @./l,-) (3.192)
‘ wi wo
JEM
N+1
subjectto " A; =1 (3.19b)
i=1
;=20 (3.19¢)

In Equation (3.19a), we compute x;."j using the following formula,

B

I, i=arg min(m.ﬂNH +—. )
xt = keN; Wi wo (3.20)

0, otherwise

The fact that the infimum in g;(A) is over the set X; results Equation (3.20). Therefore, the entries
of x;‘j are all zeros except the i’ h entry that has minimum E.ANH + @./li for UE;.
wi wo
The problem in (3.19), is a concave function. It is also non-smooth, leading to the use of

the subgradient method because it is a non-differentiable function. Since the dual problem has

constraint (3.19b), we use the projected version of the subgradient method. In this version, to ensure
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that the solver chooses the variable values from the constraint polygon, we generate a Euclidean
projection of the current point on the constraint polygon as the next solution to the optimization
problem. There are N + 1 variables of A; that each will have a subgradient. Therefore, subgradient
of —g (since subgradient is for minimization problems) is a vector with N + 1 elements. The

subgradient of —g in a feasible 4 is

- @.x;.;, ieN
P W
=14 I 07” (3:21)
-y Y X, i=N+1
JEM IEN; W1 Y

Then we compute the next value of vector A by,
A = pA® — gy u @)y (3.22)

In Equation (3.22), P(A%M — ;. u™) is Euclidean projection of point A% — o u® in N +1
dimensional space into simplex defined by {4 | Zf\i J{l A; = 1}. The parameter ay is a step size
variable in k" iteration.

The subgradient algorithm works iteratively. In each iteration (k), it considers vector A%=D
and computes a new vector A% for current iteration. Then, we use vector A% to compute xj‘j
via Equation (3.36). Then, we use the value of x;kj to compute the subgradient vector. This cycle
continues for a constant number of times defined by iteration number of subgradient algorithm.
As stated in Equation (3.20), the algorithm selects only one i that minimizes the term. This leads
to satisfying constraints (3.15d) and (3.15e). The simplex projection satisfies the constraint in
Lagrangian dual problem. Therefore, we always have a feasible solution for the problem.

The subgradient method does not find the optimal solution but can find a near-optimal solution
within reasonable time complexity. To compute the time complexity of the subgradient algorithm,
we analyze all the steps mentioned earlier. The computation of x* matrix is of order O(M.N).
Computing subgradient vector also costs O(M.N). There are different algorithms to compute the

Euclidean projection on simplex. The one we use has a time complexity of order O (N log(N)).

If we call the iteration number of the subgradient method K, the subgradient method’s total time
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complexity is O(K.M.N). The worst order is O(max(K, M, N)?), which is of polynomial time
complexity compared to exponential time complexity for methods that solve the primal problem.
This difference is significant for systems with limited processing resources and real-time response
expectations.

We formulate the duality gap for the solution of ASF scalarization method as,

. Yk ,Bkj
—d"<(N+2 , + o 323
P ( )| max(, Jentien; 70 jepien; Bij) rré%((g}\%( wo))) 6.2

In inequality (3.23), p* and d* are the optimum solutions to primal and dual optimization problems,
respectively. In this inequality, the value that determines the maximum value of right hand side
of the inequality is max e jen; vij- According to [51], this term equals the maximum blockage
score in the whole network. As stated in [51], the BPC sums the blockage score over time using
the exponential moving average (EMA) to account for the aging of the blockage data. It means that
if the blockage data gets old and no new blockages happen, the blockage score does not increase,
or it even decreases. The non-increasing property of blockage score under such conditions leads to
a bounded duality gap given the fact that j;; is bounded to 1.

On the other hand, if the blockages happen frequently, the upper bound for the duality gap
increases over time. One approach can be using a bound for blockage score to keep it from growing
excessively. This approach is useful for making less biased decisions for selecting a base station
because growing the blockage score of a base station to a great value does not necessarily make the
other base stations that have a little less blockage score more attractive. They all have high blockage
scores. A simple implementation may involve choosing a value and the maximum blockage score.
The BPC does not record the blockage incidents leading to an increase of such maximum value,
and the respective base station is not associable. If the algorithm defines such bound on blockage

score, the duality gap is bounded.
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3.3.2 Formulation and Solution of NC Scalarization Method

In this section, we formulate and solve the linear single objective optimization problem that we
generate by the NC scalarization method.

Normal Constraint (NC) method requires two Utopian points to do the scalarization. These two
points are the optimum values for all objectives when solved separately. The NC is the same as
ASF method, but the difference is in how they draw the reference vectors. In NC, unlike ASF, the
weight vector generating method draws the reference vectors in parallel. We show the reformulated

version for NC generated single objective problem as,

minimize max(NF1 —(wg—=0.5),NF, — (w1 = 0.5) (3.24a)
subjectto > Byxij <t VieN (3.24b)
JEM;
>oxii=1, VjieM (3.24¢)
ieN;
xij € {0, 1}, VjeMieN; (3.24d)

t—-AX) - fAi(X)
LX) - G
_ B - fZ(Xr) _ B - f2(Xr)
C A - AX) (0))

In problem (3.24), NF| and N F; are normalized objective values for first and second objectives. X;

In which NF; =

(3.24¢)

NF, (3.24f)

is the optimal solution to the optimization problem that minimizes maximum load 7 in the network.
Similarly, X, is the optimal solution to optimization problem that minimizes total blockage score
B. fi(x) is the objective value for maximum load of solution x and f>(x) is the objective value
for total blockage score B. The values in max function are normalized objective values. Like
ASF formulation (3.14), we want to reformulate problem (3.24) to make it a linear optimization

problem. We formulate the result as,

minimize S (3.25a)
subjectto NF; — (wp—0.5) < § (3.25b)
NF, —(w;=05)<S (3.25¢)
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D Biyxiy<t,  VieN (3.25d)

JEM;
Z xij=1, VieM (3.25¢)
iGNj
x;j € {0, 1}, VjeM,ieN; (3.25f)

The problem in (3.25) is a linear optimization problem that LP solvers can solve.

3.3.2.1 Solution to NC Generated Single Objective Problem via Dual Analysis

The solution to the NC-generated single objective problem uses the same methodology as the ASF
scalarization method.

In order to get to the linear optimization problem, we need to eliminate the ¢ variable and
replace NF; and NF, parameters with extreme constants as in Equations (3.24e) and (3.24f).
We also replace parameter B by it equivalent according to [51]. We do the variable elimination
through using constraint (3.25b) in constraint (3.25d). Therefore, we eliminate variable ¢ and the

reformulate the problem as,

minimize S (3.26a)
DY Yij-Xij
iEN jeM; X,
subject to ——° LX) L os<s (3.26b)
G C,
2 Bijxij
e M; X
s A 05 < vien (3.26¢)
C C
Z xij=1, VjieM (3.26d)
ieN;
xij € {0, 1}, VjeM,.ieN, (3.26¢)

We compute the Lagrangian of optimization problem in (3.26), like ASF that we provide in Section

3.3.1.2. We use objective function (3.26a) along with constraints (3.26b) and (3.26c). Therefore,
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we formulate the Lagrangian as,

L(S,x,Q) :S.(l — AN+l —Z ) Z Z xlj 71] /lN+1 ﬁlj Ai)-

ieN ieEN jeM;
(fzgr) +w1—0.5)./1N+1—( filX 05) Zﬂ~

From Lagrangian in (3.27), we can deduce Lagrangian dual optimization problem for (3.26). We

(3.27)

formulate the Lagrangian dual as,

g(d) =inf L(S,x, Q) (3.28a)
SeR
xeX
Yij IBU H(X;)
f i A Ai) — -0.5].4
;gxlg,v]g\%xj (C2 N+l + = c, ) ( G + W N+l
Cl ieN

—o0, otherwise

Yij Bij ~(X)
f A Aj) — -0.5].4
]eZM lerelleg/x,j (Cz N G ) ( G i o
_ X
Cl ieN

—oo0, otherwise

> g, I =1
—dJeM (3.28d)

—00, otherwise

In (3.28b) and (3.28c), the whole term before each colon is the term for the first case and the
term after colon is the condition. Similar to the ASF solution, we get different formulations for

Lagrangian dual.
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The Lagrangian dual optimization problem is,

maximize g(4d) =

i i X
Z x;} (’)(/j] /1N+1 il ./1,') - fzé ) +wp — 0.5)./11\]4_1 - (fl( - 0. 5) Z/l
JEM 2 ! 2 ieN
Nal (3.29)
subject to Z Ai=1
i=1
;=0
In Equation (3.29), we compute x;.k]. as,
I, i=arg mln(y— AN+l + @./lk)
xl*] — kEN C Cl (330)
0, otherwise
We formulate the subgradient of optimization problem in (3.29) as,
i X,
_y %.x;j+flé D o -0, ieN
wy =4 JM ! (3.31)

i, X
Cy o p Y SR L 0s ioNed
jemien; G2 Y G2
By using the subgradient in Equation (3.31) and subgradient method it is possible to solve the
optimization problem in (3.29). The general approach is the same as described in Section 3.3.1.2.

The duality gap inequality for NC scalarization method is as follows,

vii B (3.32)
N+2 j) +CTh, if) +CTh |+ &t e
( )(max (je%:c}é/\/j(yu) 2 jeﬂ%)e(/\/j(ﬁ]) 1) %%‘(g}%( C, C ))
where X
CT] — _fZE: r) _ +0.5
2
(3.33)
X
CT, = _fi(X) o +0.5
Ci

We can use the same explanation of bounded duality gap as inequality in (3.23) for inequality in

(3.32).
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3.3.3 Formulation and Solution of WS Scalarization Method

Weighted sum method multiplies objective values by a weight vector and then sums over the results.

For our specific problem, we formulate weighted sum scalarized optimization problem as,

minimize wq.t +wi.B (3.34a)
subjectto > Bjxij <1, Vie N (3.34b)
JEM;
Doxip=1, VjieM (3.34¢)
iENj
xi; € {0,1}, VjieMieN; (3.34d)

The objective function in the weighted sum method is a linear function, so there is no need for

reformulation of problem (3.34). We formulate the Lagrangian dual problem as,

maximize g(/l) = Z x:-‘j.(wl.)/ij +/li-ﬂij) (3.35a)
jeM
subject to »" A; = wo (3.35b)
ieN
;i 20,ie N (3.35¢)

In Equation (3.35a), we compute xl’."j using the following formula,

1, i=argmin(wi.yk; +Ak.Br))
o= keN; (3.36)

0, otherwise

For subgradient method we compute the subgradient of optimization problem in (3.35). The

subgradient of —g in a feasible A is u = (u;)jen and u; = — 3 jcpq, X;;-Bij. Then we compute the

ij
next value of vector A by recursive subgradient method formulation in (3.22).

In Equation (3.22), P(AM — a; .u®) is Buclidean projection of point AP0 — qpu® in N
dimensional space into simplex defined by {4 | 2};cp 4i = wo}.

We formulate the duality gap for the solution provided for WS scalarization method as,

*—d*<(N+1)| ma - +maxp,. 3.37
p ( )jeM,i)e(Njﬁl] m ﬁﬁnﬂ (3.37)
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Algorithm 3.1 Semi-distributed Algorithm for User Association (SDA)

Initialize: Central { CRAN distributes the parameters to BSs}

Initialize: Distributed {Each BS; distributes A% at time k and vij to UEs j € M;}

UE; computes its associated BS; by Equations (3.20), (3.30) and (3.36)

UE; only signals its associated BS; and BS; compute subgradient according to subgradient
equations for each scalarization method

A+ computed by communication between BSs for the next step

6: if stopping criterion not met go to 3

bl A

9,1

where,

nj = argmin By (3.38)
kENj

As we can see in inequality (3.37), the right-hand side of the inequality does not depend on
the blockage score. This independence means that the duality gap is bounded regardless of the

assumption of having maximum value for blockage score.

3.3.4 Semi-Distributed Algorithm for Dual Analysis

In this section, we introduce a semi-distributed algorithm used to do the computations of the
solution to the dual problem discussed in previous sections. We need to compute the subgradient of
the dual problem and the step in the subgradient method to solve the dual problem for three single
objective problems generated by all three scalarization methods in Equation (3.22). The evaluation
of this equation requires the evaluation of subgradients of three scalarization methods. It also needs
to compute x;} for the scalarization methods.

The algorithm is a semi-distributed one as there are some parts of it needs a centralized entity
like CRAN to run them [20]. The rest of the operations can be done in a distributed manner
between BSs and UEs. We elaborate on the semi-distributed algorithm for user association (SDA)
in Algorithm 3.1. In Algorithm 3.1, there are two different initializations, central and distributed.
In central initialization, CRAN is responsible for distributing the general parameters to BSs.
These parameters include weight vectors for all scalarization methods and Ay for ASF and NC
scalarization methods and C and C; for NC scalarization method. An entity that has a holistic view

of the network can only compute the general parameters. That is why CRAN is responsible for it.
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According to this algorithm, a change in the number of BS or UE should not incur a considerable
load on the distributed process. For the central process, the CRAN can handle the change properly
as it is designed to do so.

As we can see in Algorithm 3.1, the algorithm can perform the different tasks for implementing
the solutions to different biobjective optimization problems in a distributed manner. The solution
to the optimization problem tries to associate UEs to BSs suitable to improve the objective values.
The objective functions push the UEs to BSs with less chance of being blocked while maintaining
the network as balanced as possible. The different user association methods that we evaluate are
user association policies (UAP) generated by solutions to different optimization problems. Since
the solution has a distributed nature, it is feasible to have the solution running in higher frequencies
and have a negligible overhead on the system. When the UE goes out of the reach of a BS, the

algorithm can start the solution to find another BS for the UE based on the objectives defined.

3.4 Proof of Duality Gaps

In this section, we present the proof of the duality gaps provided in the chapter. For duality
inequality of each scalarization method, we provide the required proofs and then the proof for
duality inequality.

Before we discuss the duality gap of the scalarization methods, we need to present a proposition
that provides a general framework for the duality gap of a certain class of optimization problems.

In the following, we present Proposition 1 adopted from [18].

Proposition 1 Consider a possibly nonconvex problem in Equation (3.39).

minimize Z fiy;) (3.39a)
Jjeg
subjectto y; € Y;, j€J (3.39b)
Z hi(y;)<b (3.39¢)
JjeT
where the variables are y; € RYi. The problem parameters are J = {1,2,...,J}, b is a vector in

R?, Y; is a subset of R and f; : conv(Y;) — Rand h; : conv(Y;) — R? are functions that are
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defined on convex hull of Y;. There are assumptions that hold for the optimization problem (3.39).

Assumption 1 There exists at least one feasible solution for problem (3.39).

Assumption 2 For each j, the subset of RYi*C+!

(b3 f; )Ny € Y} (3.40)

is compact.

Assumption 3 For each j, with any vector § in conv(Y;), there exists y € Y; such that h;(y) <
ﬁj(i), where ﬁj : conv(Y;) — R? is convexified version of h; on conv(Y;) and < means

component-wise inequality. To be specific, for all § € conv(Y;) we have,

yj+1

yj+1 yj+1
hy(5) =inf{ 2, GH = ) ey ey Y af =10k > o} (3.41)
k=1 k=1 k=1

We define the dual problem of problem (3.39) as,

maximize d(v) = inf {Z[fj(yj)wTh,-(yj)] —va}
ey LT

(3.42)
subjectto v > 0

The Lagrangian multipliers are v = (v, ...,vg) € RC. Then, the duality gap of the problem in

(3.39) is

P"—D" < (Q+1)maxp; (3.43)
jeJ

In Equation (3.43), Px is the optimal value for the problem (3.39), Dx is the optimal value for the

dual problem in (3.42) and p; is a nonnegative scalar such that,

pj < sup f;(y;) —yi.‘;& fi(y;) (3.44)

Yi€Y;

Relying Proposition 1, for each optimization problem generated by each scalarization function,
we reformulate the optimization problem to an equivalent problem so that it fits in general form
provided in problem (3.39). Then we show that the reformulated problem is compatible with
all assumptions mentioned. Then, we formulate the duality gap of each optimization problem

generated by each scalarization method based on Equation (3.43).
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3.4.1 Duality Gap of ASF

In this section, we elaborate the duality gap inequality presented in the chapter. The ASF generated

optimization problem that we prepare for the Lagrangian dual analysis is as follows.

minimize S
Z):v ZM Yij-Xij
eN jeM;
subject to AL <S
wi
Ziem Pty g Vie N (3.45)
wo
D=1, VjieM
ieN;
x,-je{O,l}, VjEM,iE}Vj

We rewrite the problem formulated in (3.45) in a way to conform with the formulation of the

problem in (3.43). We reformulate problem (3.45) as follows.

minimize Z S;

JEM
'ZM‘Z):V)_/U'XU

1€

subject to R < Z S;
w1 .
JEM

ZjeM Bij'xif
=L . /

oS Z S Vie N (3.46)

JEM

Zéij.xijzl, V]GM
ieN
x;j € {0, 1}, VieM,ie N

0< Sj < gmax +1jXn;j
In problem defined in (3.46), the variables are S = (Sy,...,Sy). We define the variables in
Equation (3.47).

_ Bij, PeEN,jeM,

,[)),'j = (3473)

0, otherwise
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_ Yijs i € N,] S M,‘
Yij = 9
0, otherwise
I, jeM,ieN;
51']' =
0, otherwise
S™* = max(y, B)
= max
4 jeEMieN y”
= max
’8 ieN ]e/\/(ﬁl]
7kj IBkJ
1 = min (24 + )
keN; " wWq wo
k
nj =arg mln(& + &)
keN; W1 WO

(3.47b)

(3.47c¢)

(3.47d)

(3.47e)

(3.471)

(3.47g)

(3.47h)

We can show easily that problem in (3.46) is the same as the problem in (3.45). Therefore, if P* is

the optimal value of problem (3.46) and p* is the optimal value of problem (3.45), then we have

P*:p*

(3.48)

This modified version of problem (3.46) is based on (3.39) which we compare its different parts as

follows.

. 9=M,J=M

N

W

&

.U‘

. fj(yj) :S]

y] = (Z_/’Sj) (S ]Ryj,Zj = (xij)iEN’ yJ

=N+1

y' = {((xij)iENaSj)|ZieN 5,']'.)(,']' = 1,xl-j € {O, 1},i c N, Sj € [0, §max +77j.xnjj]}

J( )_((

b=0

Blj

—xlj

—S),...

RTINS
wo
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We are ready to show that the assumptions in Proposition 1. The Assumptions 1 and 2 hold for the
problem (3.46). We can show it easily. For Assumption 3, we need to make some more elaboration.
According to definition of / ;(¥) in Equation (3.41) we can write it as follows.

v+l

hi(5) =) o*hi(y") (3.49)
k=1

After plugging the parameters of problem (3.46) in Equation (3.49) we have,

il](j’) = Zak( i—lé,xll(j —S?),.__,(ﬁ‘:z)j k _Sk) ﬁwl\;l k _Sk) (y"JJ ‘_Sf))

njj
k

(3.50a)

= Z ((@.ak.x’f/ —ak.sh, ..., (@.ak.xk — a5k
k ' wo

Wo j njj j
_ (3.50b)
ﬁNj ')711]

e, W—O.ak.xllf,j - ak.Sf),( wll .a/k.xfljj - ozk.Sf))

_ B_ll k k ok 13_"1/ k _k k
_(WO Z( X)) = D aksh, o Z( Xk - Z(a )

5 g (3.50¢)

Nj Y

B S (b)) (ks 22 Z(a".x’;j,.)—Z(ak.sb)

wo % 48 B %
Blf k k ok '8_”11' k _k k (omax

> W—O.Z( xlj)—Z(oz S5, v Z(a X —Z(a (8™ +m;.2x0,7))

ﬁ g k (3.50d)
Nj Y
D YCE AR YRS ’;,-)—Z(a".sb)
(,811 0- Smax . IanJ' —Sme,.. ,BNJ 0- Sm“x Vn;J Sm“x) (3.50¢)
wo wo wo wi
A _M _ gmax __ gmax _@ _ gmax| _ hj(y) (3.50f)
¢ w1 ¢ wo

In Equation (3.50), $7'** = §"* +p;and y = (0,...,1,0,...,0,57%) is a feasible solution, thus
Assumption 3 holds.
According to (3.51), the dual optimal value for problem (3.46) is equal to dual optimal value of
problem (3.45).
D*=pP. , =p. ., =d (3.51)

relax = Prelax
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where D* is dual optimal value for problem in (3.46) and P},  is the optimal solution of a LP

*

relax

relaxation of problem (3.46) and p is optimal value for LP relaxation of problem (3.45) and
d* is dual optimal value for problem (3.45). The authors proved the first equality in (3.51) in [18]
for their problem. Using the same process to prove it for our problem is trivial. Second equality
comes from the fact that both problems are equivalent and therefore, their LP relaxations have the
same optimal value. The authors again proved the last equality in [18] and we can use it for our

problem as well.

According to Equations (3.48), (3.51) and (3.43) we have

. Yki By
(N +2)manp; < (N +2)max(S™ +n,) = W*”(m"”’m i (22 + w—0>))

(3.52)

3.4.2 Duality Gap of NC

In this section we discuss the duality gap analysis for optimization problem that we generate by
Normal Constraint (NC) scalarization method. We use Proposition 1 and its assumptions. We

formulate the optimization problem generated by NC scalarization method as,

minimize S (3.53a)
DY Yij-Xij
iEN jeM; X,
subject to —° LX) L i0s<s (3.53b)
C, C,
2 Pijxij
M, X
i N 05 < vieN (3.53¢)
Ci Ci
D=1, VjieM (3.53d)
iENj
x;; €{0,1}, VjieM,ieN; (3.53e)
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We formulate the modified version of the problem (3.53) based on the general form in problem

(3.39) as,
minimize Z S;
JEM
ZM Z/:V)_’ij-xij
ieMie
subject w2 LT < Z S
6)) :
JEM
Z. _..'x..
Mm’nsZs‘j Vie N
Cy :
JEM
Zéij-.xij:L V]EM
ieN
x;j €{0,1}, VieM,ie N

0<§;< Sgrmax + 1) Xn;j

(3.54)

In problem defined in (3.54), the variables are S = (Sy,...,Sy). We define the variables in

Equation (3.55).

_ ,Bij, I € N,_] S M,‘
Bij =
0, otherwise
_ Yijs i€ N,] € M,‘
Yij =
0, otherwise
I, jeM,ieN;
51’]’ = 1
0, otherwise
X,
CT, = —f2( ) | +0.5
8))
X
CT, = fiXi) —wo+0.5
Ci

Smar = max()/ + CTz,ﬁ + CTl)

= max v;;
4 jeM,ieN%]

B= max B

ieEN,jeM
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(3.55f)
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Ykj ﬁk])

omin (P, By 3.55i
n; Igg}l\r(:( ot (3.551)
nj =arg min(& + @) (3.55))

ken; G2 G
Like ASF, we can show that problem (3.54) is the same as the original NC problem (3.53). Therefore

we have the equality (3.48) for NC as well as ASF. This modified version of problem (3.54) is based

on (3.39) which we define its different parts as follows.
. 9=M,J=M

2. y;=(Z;,8)) e R, Zj = (xij)ien> yj = N +1

4, % = {((xij)ieN, Sj)|ZieN 5,~j.x,~j = l,x,-j c {O, 1},i (S N, S]' € [0, smax +77j.x,,jj]}
,B_Ij CT, ﬁ_Nj CT, Z~N)7,~j.x,~j CTy
5. hj(y;) = ((C—I-X1j+7—5j),-..,(C—I-XN#W—SJ'),( = 6t h -S;)) € R
O0=N+1
6. b=0

The validity of Assumptions 1 and 2 of Proposition 1 are straightforward to show for problem
(3.54). For Assumption 3, we have the following series of equalities and inequalities in an approach

similar to ASF.

_ 1 CT B CT
hi(5) =" ok P e CO - 58, .. (ﬁ Dok = sy,
k

¢ Y c, "
(3.56a)
ﬁN] k CTy k '}’n,] ok CT, k
N TR R e R )
Bi CT an CT
:Z((_lj ak-xf,ﬂ“ k‘ﬁ ks CJ k ’iijj+ k - kgky
K i (3.56b)
ﬁN' CT1 7_’n-j CTZ
C—lj.cxk.xlf\,j+a/k.7—a/k.S?),(C—Jz.a/k.xﬁjj+ak.7—a/k.Sj?))
Blj k k T, k k ok anf k- k CT; k k
:(C—l.;a.xu +7.Z(a)—2(a RN ( P Z( = Z(a/ S%). .
BN' Yn
T D+ G D - St s Z(k 0+ G e = D sh)
3
(3.56¢)
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3 (3.56d)
Nj k CTl k k
TR k( xN])+— Z( ) — Z(cx )
Ynjj k. T k k ¢k
G2l SR Z( ) - Z(a 5%
ﬁl] T Bn-j CT] ﬁNJ 7_’n~j CTZ
0+ Smax’.”, J __Smax 0+ Smax, J __Smax
(C1 ™ e M 0 STk G M e
(3.56e)
= (% —SZ“”‘,...,% yg_;] —S’”“’“,...,% —SZ“”‘,% - ﬁg—’lj —S’”“") =h;(y) (3.56f)

In Equation (3.56), S7'* = §™%* +p;and y = (0,...,1,0,...,0,87%%) is a feasible solution, thus
Assumption 3 holds.

According to (3.51), the dual optimal value for problem (3.54) is equal to dual optimal value of problem
(3.53). We can make the same justification as ASF for the explanation for equality (3.51) in case of NC.

According to Equations (3.48), (3.51) and (3.43) we have
p*—d* < (N+2)maxp; < (N +2)max(S™" +1n;)
JeM JeM

( Ykj  Brkj )) (3:57)

=(N+2 +CTh,B+CT)) +
= (N +2)| max(y + CTo, -+ CTi) + max| min (=5 + 7

jeM

3.4.3 Duality Gap of WS

We discuss the duality gap of Weighted Sum (WS) scalarization method in this section. This analysis is
very close to the proof that the authors provided in [18]. In order to avoid repetition, we just mention the
difference between WS and the duality gap that the authors proved in [18]. We formulate the WS generated

optimization problem as,

minimize wg.t +wi.B (3.58a)
subjectto > Bij.xij <t, Vie N (3.58b)
JEM;
Doxip=1, VjieM (3.58¢)
iENj
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X,‘J'G{O,l}, VjEM,iENj (358d)

The objective function of the problem that conforms to problem (3.39) is the only difference of WS opti-

mization problem with problem defined in [18] and formulated as,
minimize Z (wo.tj + wi. Z Yij .xij) (3.59)

JeM ieN
Therefore, the objective function of modified WS problem that is comparable to problem (3.39) is as follows,
fiy;) :WO-[j+W1~Z'}_’ij-xij (3.60)

ieN
According to proof provided in [18], the duality gap for WS scalarization method is,

pr—d < (N+ 1)jn;a/1\)/(4pj < (N + l)ﬁaMx(tm“x +Bn,j) = (N + 1)( m’a}xNj/Bij +§23Mxﬂnff (3.61)

jeM,ie

3.5 Evaluations

This section discusses the simulation results of different scalarization methods discussed in the previous
section based on two different objective functions defined. We also use a primal problem solver called
Gurobi [52]. We use Version 7.0.1 of the Gurobi solver in our simulations. To compute the ;; parameter,

we use the SINR model introduced in [14].

3.5.1 Parameters and Metrics

We use OMNet++ [53] network simulator to simulate the environment. The simulation area is a rectangle of
100 x 500 square meters. There are M = 100 user equipments, N = 50 base stations and P = 130 blocking
objects. To simulate a street in a city, we design two sidewalks that the UEs and the blocking objects move.
The BSs are installed every 50 meters. We fix their positions. We use the Gauss-Markov mobility model
[54] to move the mobile nodes (UEs and blocking objects) in the network.

The user association methods studied in this simulation section are Achievement Scalarizing Function
(ASF), Normal Constraint (NC), and Weighted Sum (WS) methods. We also solve the optimization problem
for each of the load balance and blockage score objective functions separately. We use two different solvers

for solving different methods. We use a subgradient algorithm to solve the dual optimization problem.
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We use this algorithm to solve ASF, NC, and WS generated single objective problems and single-objective
optimization problems for load balance objective function. We also use a primal problem solver to solve
all single objective problems at hand. It includes single objective scalarized optimization problems and the
load balance and blockage score optimization problems separately. Gurobi is the name of the solver, and we
show it in figures.

We use several metrics to measure and compare the performance of our biobjective optimization approach
to single-objective approaches. The first metric is Average Blockage per Blocking Object. The BPC records
the blockage each time it occurs in the network. The blockage count is cumulative over time. Then, the total
number of blockages in the network is divided by the number of blocking objects. To detect blockage in the
simulation environment, we assume that each dynamic blocking object, a human, is a cylinder with a height
of 1.8 meters and a 0.4-meter width. Each BS is installed on a 3-meter post. The field-of-view of the BS is
a sector of about 30°. Using this information, we calculate the shadowed area behind each blocking object.
If a UE falls in these shadowed areas, we count that as one blockage.

The second metric is Average Handover per User Equipment. A counter increments when a handover
occurs. We divide the total by M. This metric is cumulative over time, as well. We also compute rate
and SINR for all active links in the network. We use the formulation in [14]. In this formulation, the
SINR for a link in the mmW network is a function of antenna orientation, path loss model, independent
Nakagami fading model for small-scale fading, and thermal noise of propagation environment. We also use
the objective values of load balance and total blockage score for all user association methods we discuss.

The values for the parameters are absolute quantities. All of them are the results of simulations with equal
duration. Therefore, the results show the differences in the performance of the algorithms under the same
conditions. Thus, we use the values of the parameters to fairly compare the performance of the algorithms.

There are two metrics named False Positive and False Negative. We define them based on the optimal
behavior of handover. We provide those plots to show how the different user association methods are aligned
with the defined optimal behavior. For the implementation of the optimal behavior, we access the parameters
of the mobility generator based on the mobility model used to mobilize both the UE and blocking objects.
The algorithm performs the association and handover based on how far in time an impending blockage would
be. The UE is associated to another BS if a blockage happens on the current BS. The algorithm chooses the

destination BS based on the least chance of blockage based on the movement of the UE and the blocking
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objects. This information is not available in the real world and the simulator knows them because it generates
the movement of the objects.

The simulator knows the optimal BS for a UE to connect. We define false-positive and false-negative
ratios based on whether the algorithm connects a UE to an optimal BS or not. If based on the optimal
behavior, the UE should be connected to a BS, but it does not, it counts as one false negative.

On the other hand, if a UE should stay in the current BS, but the algorithm connects it to another BS, it
counts as one false positive. The algorithm detects the negativity based on the handover event. We define
the optimal behavior based on the blockage. Since the blockage objective is heuristic, it is possible that after
handover to a BS, the UE experiences a blockage. Therefore, this handover is not optimal. In general, the

optimal behavior is when performing a handover does not cause blockage.

3.5.2 Results and Discussion

In the following, we depict figures for different metrics we discuss.

All of the scalarization methods have 40 subproblems. It means that we generate 40 different weight
vectors and then solved the single optimization problem generated by each of the scalarization methods
using each weight vector. Unless specifically mentioned, we make the comparison between load balance and
minimum blockage score and scalarization methods with a subgradient solution of the scalarization method

with 40 subproblems. Unless stated otherwise, the solver for all methods is subgradient. Whenever there is
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a comparison involving primal solver, the number of the subproblem is 40. For the load balance method, we
use the subgradient method used in [18].

As depicted in Figure 3.2, the three scalarization methods have a lower average blockage score than each
load balance and minimum blockage score methods. Among the scalarization methods, the weighted sum
has the best performance, while ASF and normal constraints are close to each other. The normal constraint
has the worst performance than the other two scalarization methods. Since blockage score is a heuristic,
minimizing that does not guarantee the best performance. Therefore, the number of blockages for the Min
Blockage Score is not the minimum one. The heuristic nature of the blockage score model is responsible
for higher blockage rates than other methods. The combination of minimum blockage score policy and load
balance policy results in a better average blockage value. The better performance is owed to the fact that
having a balanced network leads to a balanced distribution of users, which can act as blocking objects. If we
only use the blockage score minimization as the user association policy, the network gets unbalanced, and it
causes the concentration of users in certain areas and leads to more blockages.

As expected, the optimal method has the best blockage score among the association methods thanks to
its knowledge of the mobilities.

In Figure 3.3, we make the comparison between all scalarization methods and load balance method
solved by subgradient and Gurobi solvers. As we can see in this figure, the subgradient solver has a slightly
better performance than Gurobi solver for weighted sum and load balance methods.

We show the average handover count in Figure 3.4. As shown in this figure, the handover count of
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scalarization methods is nearly the same but more than the minimum blockage score method. Load balance
has the worst performance in this metric. The minimum blockage score, on the other hand, has the best
performance. The optimal method decreases the handover count significantly and the Min Blockage Score
is the closest method to the optimal one with a 43% increase in handover count over the optimal method. As
we can see, the scalarization methods’ results are between blockage score and load balance methods. We
expect this because the scalarization methods receive something from both objective functions. The load
balance method’s handover is higher mainly because the blockage score is more stable with the EMA method
and calculation of blockage score according to a reference point in the simulation area.

We illustrate the false-positive ratio in Figure 3.5. The false-positive counts for the three scalarization
methods are less than the separate objectives. Among separate objectives, load balance has a better ratio.
We see almost the same pattern for the false-negative ratio in Figure 3.6. Within scalarization methods, the
weighted sum has the best performance of all. For both figures, the patterns of difference for the FPR and
the FNR are the same. It shows that the scalarization methods cause the UEs to be connected to the BSs
with longer uninterrupted periods. It is mainly because of the reconciliation of the two objectives by these
methods. Moreover, the scalarization methods tame the blockage score uncertainty.

Figure 3.7 shows a radar plot comparing the parameters for all of the user association methods. We
convert the values for each side to normalized values for better comparison. For each parameter, the smaller
value is better. As shown in Figure 3.7, the Load Balance method has overall better performance than the

other methods, but it is a single objective method. Among the biobjective methods, we can see that the
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Weighted Sum method performs the best. The solution to the WS scalarization method generates a user
association policy (UAP) that results in the best overall network performance. We illustrate various network
metrics in Figure 3.7 that shows the better performance of such UAP.

We depict the CDF of SINR in Figure 3.8. It is evident that the normal constraint solved with Gurobi
solver has links with high SINR with higher frequency than two objective functions separately. Minimum
blockage score and normal constraint solved with subgradient solver are the same in terms of SINR. Load
balance has the worst performance.

We present the column diagram of the average rate for different user association algorithms in Figure

3.9. In this figure, we include the result for both solvers. However, for the minimum blockage score method,
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the solver is just a simple, primal solver, and we do not need to use either Gurobi or subgradient solvers.
The normal constraint is the best algorithm according to the rate metric. The scalarization methods are
performing better than blockage score and load balance methods except for the ASF subgradient. Load
balance has the worst metric value.

As shown in Figure 3.10, the load balance algorithm has the best performance for minimizing the
maximum load in the network. We have the same structure as Figure 3.9 here. Three scalarization methods

have comparable performance, while all are outperforming blockage score algorithm. For subgradient
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Figure 3.10 Average Maximum Load for Different User Association Algorithms

versions of scalarization methods, the weighted sum has the best performance compared to the other two
methods. The optimal method, as expected, does not perform well in terms of the load distribution in the
network. The optimal method only considers the blockage avoidance measures to define the behavior.
Figure 3.11 shows how the number of subproblems in a biobjective solver will affect the resulting load
objective value. There are solutions with 10, 20, 30, and 40 subproblems for each scalarization and single
objective methods that either subgradient or Gurobi solver solves. As shown in the figure, the general trend
of load objective reduces when the number of subproblems (weight vectors) increases. It means that when
there are more weight vectors, it is more probable that the solver finds better solutions. We can also see that

the Gurobi solver results are better than the subgradient. For selecting the best solution from s solutions (s
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is the subproblem size), we choose a solution whose objective values are closest to the ideal point, (0, 0)
We present the comparison between SINR values for two different solutions to normal constraint scalar-
ization method in Figure 3.12. The figure shows that the primal solutions have better SINRs for all

sub-problem sizes. However, the trend within each curve is almost increasing with increase in subproblem

In order to show the statistical behavior of the blockage model, we perform simulations for different

numbers of the blocking objects (P). We show the results in Table 3.1.

In Table 3.1, Average Blockage is the total blockage in the network divided by the number of blocking

74



Table 3.1 Effect of blocking object count on blockage and blockage score

blocking object Count (P) | 650 | 850 | 1050
Average Blockage 1235 1274 1281
Average Blockage Score 99033 | 115076 | 114429

objects and Average Blockage Score is the total blockage score in the network divided by the number of
blocking objects. As we can see in this table, the number of blockages increases with the predictable number
of blocking objects. The blockage score increases except for the blocking object count of 1050. We observe
that the blockage score decreases while the blockage increases in a blocking object count change from 850
to 1050. This shows that the blockage score and the blockage count do not only depend on P but also on the
distribution of the blocking objects and with what mobility model the blocking objects and the UEs move.
Therefore, P is not the only contributing factor to the blockage score.

As shown in this section’s results, we use three different scalarization methods to compare them against
each other. For different parameters, different scalarization methods can have the best results with a small
variation. The difference stems from the inherent differences in the scalarization methods.

We use the scalarization methods to convert the biobjective optimization problem to a single objective
problem and we show that it is possible to provide a solution to user association problem while we optimize
more than one objective function to benefit the network from more than one aspect. We provide the solution
to each of the problems that have linear time complexity unlike the current solutions to combinatorial
optimization problems that have exponential time complexity. We also prove that the duality gap is bounded
for all of the solutions. In general, the WS scalarization method performs better for various metrics compared
to other methods. It shows that the simple structure of WS captures the complexity of both of the objective
functions. Since the lower number of subproblems yields results that are as good as the higher number of

subproblems, the solver can use a small number of subproblems to solve the problems faster.

3.6 Summary

In this chapter, we further study the user association problem in mmW networks by considering two objective
functions, one for minimizing blockage in the network and the other for minimizing maximum load across
all base stations in the network. The results show that the biobjective approach achieves better performance

on improving the load balance objective and reducing the blockage score objective, increasing SINR, and
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keeping base stations in the networks less loaded. For the weighted sum scalarization method, we show
that the solution to the dual problem via the subgradient method has better time complexity than solving the
primal problem, but with the cost of losing some SINR value. A possible future direction of this research
can be an investigation of other factors affecting link blockage chance and the importance of their role in this

arca.
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CHAPTER 4

LEARNING-BASED LINK BLOCKAGE PREDICTION

We study the user association problems for mmW networks in previous two chapters. In this chapter, we
focus on maintaining a robust link between a pair of nodes. The methods for maintaining a robust link do
not try to associate a UE to a BS, but try to exploit the signal paths around either node for uninterrupted
communication.

Link quality can be deteriorated when a link is blocked or when its associated node moves. It is important
to discriminate between link blockage and link movement since they require different remedies. If link quality
drop is due to link movement, the most probable cause is the misalignment of transmitter and receiver beams.
A new beam adjustment can restore link quality. If link quality drop is due to link blockage, the nodes require
a different remedy. One possible solution is switching to an unblocked path. An inappropriate solution, such
as applying beam alignment for link blockage or path switching for link movement, may deteriorate the link
quality drop. The nodes can use beam scanning in case of link blockage to find NLOS paths to switch and
they can perform beam adjustment to fix beam misalignment. Therefore, a beam selection of neighboring
beams to the current one can solve the problem. We should apply these two methods to appropriate cases
since incorrect use of them results in more unnecessary overhead. Therefore, it is crucial to detect the cause
of link quality.

In both behaviors mentioned as link blockage and link movement, the existing work to detect and
discriminate them is to have a window of RSSI measurements over time [7]. In their approach, the algorithm
calculates the variance of a series of RSSI measurements. The receiver measures RSSI values in fixed-
length time windows. If the variance falls below a threshold, the receiver considers the time window as a
link blockage. If the variance is more than another threshold, the receiver considers the window as a link
movement.

There are raytracing methods in the literature that try to resolve the paths of Line-of-Sight (LOS) and
NLOS for path switching purposes. We can apply these methods to simulation and analytical approaches. The
accuracy of such methods drops over time and as the number of reflections increases over the geographical

area [55]. Therefore, the raytracing algorithms cannot benefit from the low overhead methods for link quality
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drop.

According to the experiments conducted in [7], to achieve an accuracy of close to 100%, the receiver
will have to experience a delay of 30 milliseconds (ms). During this period, the link is in a halt state and
cannot transmit data. For an IEEE802.11ad link, the maximum data rate is 7 Gbps [56]. In the mentioned
method of classifying the RSSI variation window as a link blockage or link movement, the 30 ms means that
the link losses 210 Mb in this time window. This amount of data that is unavailable for a service running on
the receiver can affect the quality of experience (QoE) negatively. The interruption in data communication
can have a negative effect on data-hungry applications like video streaming.

We develop a learning-based prediction framework that predicts link blockage and discriminates between
link blockage and link movement in real-time without the need for having time-consuming RSSI variance
calculation. In this framework, the overhead is generating the data point and predicting the label of that
data point. The predictor predicts by measuring the diffraction values of different multipath components
(MPC) formed around the receiver. Then trainer converts the information into a data point to classify it as
blocked or not blocked. The accuracy of the classifier is close to 90%, and it incurs much less overhead
on the communication system compared to the time window method. For simplicity, we refer to multipath
components (MPCs) as paths throughout the chapter.

We summarize our contributions in this chapter as follows:
1. We develop a learning-based prediction method to classify link blockage and link movement efficiently

and quickly.

2. We devise a data point structure to accommodate paths with different Angles of Arrival and develop

a method to measure diffraction values of multipath components.
3. We investigate the learning features such as blockage burst feature to enhance prediction accuracy.

4. We evaluate different learning approaches to find the best training approach for link blockage/link

movement prediction in terms of accuracy and speed.

We organize the rest of this chapter as follows. In Section 4.1, we discuss the related work on link
blockage and link movement detection. In Section 4.2, we present an elaboration on the system and the
required components. We discuss our proposed prediction framework in Section 4.3. We present the

simulation results in Section 4.4.
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4.1 Related Work

In this section, we discuss the state-of-the-art methods of link blockage and link movement detection and
discrimination.

The authors in [57] proposed to detect link blockage by a sudden drop of SINR in static HDTV signal
links. In more recent work, Sur et al. [58] proposed a method to predict the quality of all the paths around a
receiver by probing just one path.

The closest work to our proposed method is from Nitsche et al. [59]. They propose a method to make
link establishment in 802.11ad standard more efficient and faster by detecting whether link blockage occurs
on a LOS path. However, their approach does not distinguish between link movement and link blockage.
The authors evaluated the performance of the method in the form of LOS detection accuracy. Furthermore,
the paper focuses on establishing an mmW link and does not consider maintaining the link in case of link
blockage or movement. Our method predicts link blockage or movement to decide on the appropriate
action. They also used the legacy 2.4/5 GHz band to do most of the sensing procedure, while our method is
independent of the legacy frequency band.

Zhang et al. [60] presented a model to characterize the abrupt channel changes due to the receiver’s
blockage and orientation change. This model captures the abrupt changes of Angle of Arrival (AoA)
and Angle of Departure (AoD) of the paths but does not accurately detect the movement of the link. In
another paper [61], the authors propose a method to track signal-to-noise-ratio (SNR) in mmW networks,
without addressing the problem of detecting link blockage and movement with the minimum amount of time
consumed.

Oguma et al. [62] devised a reactive method for switching the base station when a link blockage occurs.
In their work, they measure the throughput to detect only the link blockage. The authors did not consider
the throughput degradation due to link movement. They also did not consider the time it takes to perform
the detection procedure. Zarifneshat et al. [51] used blockage history to predict the possibility of future
blockage incidents. Their method of link blockage detection did not consider the link quality degradation
due to link movement.

Some research has been done in the field of 3D performance evaluation in wireless networks. Mordachev

et al. [63] have proposed a statistical model for interference in spaces with various dimensions including
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3D space. They use probabilistic geometry to obtain outage probability in wireless networks. However,
interference is not a major issue compared to link blockage in the mmW because of directional signal
propagation in mmW networks. For the mmW networks, Camisso et al. [64] provide a model for coverage
probability in 2D and 3D propagation environments for the mmW networks. They provide the model for the
reliability of the networks based on the interference as well. Samimi et al. [65] have gathered information
on delay, angle of departure, and the angle of arrival for the mmW signal to design a model and simulation
tool for the 3D channel in mmW networks that experts can use to design those networks.

Park et al. [66] measured the performance of different link blockage detection methods. The experiments
show various time delays for different methods. The best time they measured is 15 ms for 100% accuracy.
This time is only for detecting the link blockage. The methods cannot discriminate between signal strength
variations due to link blockage and link movement. Yang et al. [67] have proposed a neural network approach
to extrapolate the downlink channel information from uplink channel state information. They also propose
a graph-based neural network to track the channel in a dynamic environment [68]. In our method, we use
the signal pattern to detect the link blockage and link movement that happens in mmW networks. We define
the problem in the mmW spectrum. This spectrum introduces new challenges that the researchers cannot
address by methods designed for lower frequency bands [67, 68]. Therefore, the signal degradation due to
link blockage and link movement is not as big of a problem as in lower frequency bands.

Alrabeiah et al. [69] have proposed an out-of-band method to detect the paths in mmW band like [59].
They use deep neural networks to achieve this goal. However, the authors used preexisting datasets to train
their neural networks. There is no discussion of the overhead of training the neural networks in realistic
settings. Ali et al. [70] have proposed an early link blockage warning method using the diffraction of sub-6
GHz signal for mmW signal. Since the authors have used the simulation platform to validate their method,
they did not see the difference in the magnitude of diffraction between sub-6 GHz and mmW signals. In
reality, the difference is not negligible, and this leads to inaccuracies of the method. They also did not
measure the mmW band’s diffraction in a real platform to see a meaningful difference. Gonzalez-Prelcic et
al. [71] have discussed using the out-of-band signal for beam alignment in the mmW band. The authors
do not mention the cost of beam tracking and try to reduce the beam tracking overhead by the out-of-band
signal. Sur et al. [72] have used Wi-Fi (2.4 GHz) to find the strongest path in the mmW band and offload

the traffic from the mmW band to Wi-Fi when there is no line-of-sight path in the mmW band. However,
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they do not consider the beam tracking procedure. Relying only on the out-of-band signal to track beams in
the mmW band can lead to inaccuracies as the out-of-band signal has its differences compared to the mmW
band. Kumar et al. [73] have provided ray-tracing simulations to show how sparse the channel is in the
mmW spectrum. They also use a sub-6 GHz channel to predict the behavior of the mmW channel. They use
ray tracing to show a correlation between the two spectra.

Wang et al. [74] have proposed a regression model based on the signal strength over all possible beams
to make a data point to be used to train the model. This gives them a model to predict the signal spectrum
for beamforming in future instances. However, their method requires scanning all beams each time in model
training that can be time-consuming. In another paper, Wang et al. [75] have proposed a classification
and ranking method for beam selection in vehicular networks. Their method depends on the situational
awareness provided to the system by the vehicular network. We cannot assume such information is available
in all environments, like a sidewalk with pedestrians. Wu et al. [76] and Booth et al. [77] use probabilistic
and signal processing methods to align beams for the transmitter and the receiver. The primary process is to
select the optimum beams for both the transmitter and the receiver to maximize the link budget. While both
methods try to maximize performance, they do not consider a proactive policy to avoid link blockage. Our
method uses the channel conditions to sense that there is an impending link blockage.

Lin et al. [78] have proposed a dynamic base station formation algorithm to maximize users’ rate. They
apply the change in the base stations through the selection of them and the beams to use. Palacios et al. [79]
propose a method of using localization techniques for better beam alignment in mmW. They use the direction
of arrival of the signal for localization and ultimately perform fast handovers or beam alignment in mmW
access points. Hashemi et al. [80] propose a multi-armed bandit model to reduce the exploration overhead
via a stochastic optimization model. The goal of the optimization problem is to maximize the directivity
gain. The model exploits the information of previous beam matchings as contextual information for future
ones. Aykin et al. [81] have proposed a search scheme for multiple paths in mmW using multi-armed beams.
They designed the beams to search multiple directions at once.

The above work considers either a link blockage or link movement. However, none of them take into
account both jointly. In this chapter, we address the practical scenarios where both mobility and link blockage
can occur. We also address the time delay that occurs during the detection of link blockage or link movement,

which is very important as the proposed method targets to minimize the duration of the link outage.
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4.2 System Primer and Design

This section discusses the system overview and different components required to realize our proposed system
of link blockage and link movement detection. First, we present a primer on diffraction in mmW frequency.
Second, we cover the method to compute the paths formed around a receiver. Finally, we introduce the
learning methods.

To depict a high-level idea of the proposed system, we discuss the general aspects of it. First, the link
blockage prediction system calculates the paths around each receiver. Then, it measures the diffraction value
on each path. The data obtained from this procedure acts as one data point in the classifier’s data space. The

system feeds this data point to the classifier to determine its label, i.e., blocked or not blocked.

4.2.1 Diffraction in Millimeter-Wave Frequency

The link blockage prediction system performs the prediction task by measuring diffraction values on each
path formed around the receiver. Since the link blockage affects the diffraction value on a link [10], we
propose to use this value on different paths around a receiver to measure the chance of a LOS link between
a sender and a receiver being blocked.

The experts define diffraction as the phenomenon of changing in the direction of a mechanical or
electromagnetic wave when it reaches the edge of an obstacle. Physicists describe this phenomenon as
bending the wave around corners of blocking object or an aperture into the shadowing region.

In mmW links, there is diffraction when an obstacle is close enough to the link. Since the transmitter
and receiver antennas are antenna arrays for beamforming, Angle of Arrival (AoA) and Angle of Departure
(AoD) are small. The LOS is the signal from the main lobe of the beam pattern in the transmitter that travels
to get to the main lobe of the beam pattern in the receiver in a straight line. The authors of [10] have done
experiments on @ which is the angle between transmitter and receiver main lobe. For negative a values the
receiver is in the shadow region, and for positive values, it is in the lit region.

The experiments show that for higher frequencies the diffraction is higher. For the metal blocking
object, there is no signal penetration while there is some signal penetration in a wooden obstacle. They also
compared their measurements with two well-known diffraction models. The first is Uniform Geometrical

Theory of Diffraction (UTD) and the second is Knife Edge Diffraction (KED). The measurements of angle
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experiments comply with the UTD model well.

In the second set of experiments in [10], the authors tested the effect of a metallic cuboid on a link
between transmitter and receiver. The object acts as an obstacle, thus creating a shadow region behind it on
the receiver side. They move the object on the x-axis while the transceivers sit on the y-axis. With x¢ being
the center of the link, they move the object in small increments from negative x towards positive x. There is
diffraction originating from both edges of the cuboid.

The measurements for the moving obstacle experiment comply with both UTC and KED diffraction
models. In the shadow region, there is interference between the diffracted signal from both sides of the
obstacle. The obstacle should be very close to the LOS, so the diffraction is perceivable (in order of 4-5cm).
The less perception of diffraction is because of the lower diffraction values as the frequency increases. The
decrease of diffraction causes the Fresnel zones around the link to be thinner. Therefore, an object should
be close enough to LOS or any path so that the receiver can experience the diffraction.

For the human body as an obstacle, the authors in [10] also have some experiments. In this experiment,
the authors model the human body as a double-edged knife. One edge is on the front of the body, and the
other one is on the back. The proximity issue for diffraction is true in this experiment too. The human body
should be close enough to the LOS path so that the receiver can detect diffraction. The authors conducted
experiments in 60 GHz and 300 GHz.

The Knife Edge Diffraction (KED) model is a popular model for human originated diffraction. As stated

in [10], the authors can define the model defined in (4.1).

Epkep _[1+]
o _( 5 )F(v) (4.1a)
F(v) = / xcos(tz)dt+ j. / ysin(tz)dt (4.1b)
0 0
v=x+]jy (4.1¢)

In Equation (4.1), v is a geographic parameter that is dependent on location of the obstacle with respect to
the path that has diffraction. F(v) is the Fresnel integral on complex number v.

In another work, the authors presented a double-edged knife model for diffraction by a human body [37].
The authors consider the double edge property to both the front-back and top-down sides of the human body.

This involves four sides of the human body to diffraction value. Their experiment complies with the KED
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model they provided. The same property of getting close to the path for diffraction effect is true in their

experiments.

4.2.2 Measuring Diffraction Value on a Multipath Component

This section elaborates on the method we use to measure diffraction on each path formed around a receiver.
We use the method for diffraction value measurement. Our proposed method uses the diffraction values for
predicting whether an mmW link quality drop is due to beam misalignment or link blockage.

The link blockage prediction system performs the prediction task by measuring diffraction values on
each path formed around the receiver. Since the link blockage affects the diffraction value on a link [10], we
propose to use this value on different paths around a receiver to measure the chance of a LOS link between
a sender and a receiver being blocked.

We adapt the method we use to measure diffraction from a paper on indoor localization [82]. The authors
implemented the method on commodity WiFi networks that work in the 2.4/5 GHz frequency band.

The authors define a power fading model (PFM) to include diffraction, path loss, and absorption fading.
Based on the equations used in [82], the sources of power fading are propagation fading, diffraction fading,
and target absorption fading. Depending on how the blocking object locates concerning the link, different
summations of the mentioned fading sources represent the total power fading of a link. We use this model for
diffraction fading analysis on the mmW link. The advantage of this power fading model is that it discriminates
between different elements of the power fading process. The channel models used in the literature consider
parameters that are not the focus of our chapter. They do not discriminate between different power fading
factors as separate functions of distance and frequency. Therefore, we use the mentioned power fading
model, which better serves the purpose of our defined solution.

The equation of diffraction fading used in [82] is as follows.

00 _ 2 2
Dijt=2010g(£/ exp(—L2% )dz')
2 1 2 (4.2)

v = h[2(dis + djo) [ (Ui )

In Equation (4.2), D,}, is diffraction value on link between transmitter 7 and receiver j caused by blocking
object ¢. For parameter v, h; is distance from highest point of blocking object to the link, d;; is distance

between transmitter i and blocking object 7 and d, is the distance between receiver j and blocking object 7.

84



The equation for diffraction fading is applicable to paths that create a single link between the transmitter
and the receiver. For this purpose, Equation (4.2) holds for each path. Each path can be LOS or NLOS. If it
is LOS, the transmitter i and receiver j are the transmitter and the receiver. If it is NLOS there are two cases.
In the first case, we assume the blocking object is between a reflecting point and the receiver. In this case,
we replace the transmitter i in Equation (4.2) by the reflecting point from which the signal path is reflected.
In the second case, the blocking object is between the transmitter and the reflecting point. We treat this case
like the LOS case in which a blocking object is between the transmitter and the receiver.

Before we continue with the total power fading model, we describe First Fresnel Zone (FFZ). The FFZ
is an imaginary ellipsoid in 3D space. If the transmitter’s signal is reflected off a blocking object in it, the
received signal will have minimal phase shift (Iess than half of the signal wavelength) [83]. Other Fresnel
Zones contain the previous one recursively. We consider the FFZ because as the frequency increases, the
effect of blocking objects on the higher Fresnel Zones decreases [83]. This also applies to the 60 GHz
millimeter wave band that we use in our simulations and experiments.

We denote the total power fading between transmitter i and receiver j by R;;.

Lij+Dijt+At+77 LOS

Rij=\L;j+Dij;+n NLOS but in FFZ (4.3)

Lij+n Out of FFZ

In Equation (4.3), L;; is propagation fading of the link between transmitter i and receiver j, n is the
measurement noise. The absorption fading of blocking object ¢, which the authors denote by A;, and define
as the signal absorbed by the blocking object when the blocking object is on the link’s LOS path and blocked
LOS path. There are three zones based on which the authors in [8§2] model the power fading. The absorption
fading in the LOS zone of Equation (4.3) is due to the presence of a dynamic blocking object on a LOS path.
A static blocking object did not block the LOS path. The algorithm does the detection of whether a blocking
object is in any of those zones via a comparison of the difference of averaged Channel State Information
(CSI) values. In order to set up this comparison, the authors in [82] defined different parameters. The first

one is 0, rf which the authors define as the averaged standard deviation of CSI values over all subcarriers.

2K« 54 (4.4)



In Equation (4.4), K is number of subcarriers, f, is central frequency, fx is frequency for subcarrier number
k and Oy is the standard deviation of CSIs read in subcarrier £ when there is no blocking object in the
network. Raytracing algorithms can measure the CSI values of blocking object-empty networks for different
network locations after measuring the CSI values at some anchor points. The network locations are different
places within the deployed network that the algorithm measures the CSI or calculates through raytracing.
The process of measuring CSI values of the empty network can also be done with several CSI measurements
in the network. This process has its accuracy, but the overhead can be high for large environments (scalability
issue). We can also use a hybrid method of both raytracing and in-field CSI measurement. We need to
perform this process only once.

The second parameter defined in [82] for the purpose of power fading model selection is the effective

CSI change, denoted by ACS/I, 7.

K
1
ACSIeps = o > I (R - 0p) (4.5)
k=1 fO

In Equation (4.5), Fx and Oy are CSI values read from subcarrier k£ when a blocking object is in FFZ of a
link and when there is no blocking object in the network, respectively. The authors also call Oy baseline CSI
reading for subcarrier k.

Based on parameters defined so far, the authors in [82] formulated the conditions for selecting different

power fading models as follows.

|ACSI.¢f| > A LOS
Seff < |ACSleps| < |A;|  NLOS but in FFZ (4.6)
[ACSIorr| < Oeff Out of FFZ

In Equation (4.6), if any of the conditions are met, then the blocking object is in that specific zone. In this
way, the receiver can select the appropriate power fading model in Equation (4.3). We should note that the
inequality 0.y < |A;| holds because the value 0. ¢ is a standard deviation of CSI values when there is no
blocking object. Therefore, its magnitude is not high. On the other hand, |A;| is the absorption value of the
target that is high especially in the mmW band that the human body absorbs most of the signal.

With N transmitters and M receivers, there are M N possible links in the network. For each link with

a transmitter and receiver, there are two to three paths: LOS and the rest are NLOS [21]. There are two or
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three paths that the wireless hardware resolves. In theory, the number of paths can be more than that, but
the number of paths that the hardware can resolve is limited to two or three paths. The two to three paths
resolved by the hardware are of different clusters [2]. The hardware cannot resolve the intra-cluster paths
because their characteristics are very close to one another. When we discuss the paths, we mean the path
clusters and not the clusters’ multipath components. The resolution of the paths also means the resolution
of the path clusters.

According to Equation (4.3), for LOS, there are three unknown parameters, including x and y coordinates
of the blocking object and the effective height of blocking object #,. We assume that there is one blocking
object for a receiver that impacts the paths around it. For the LOS path, the system knows the location of
both transmitter and receiver. For NLOS paths, the system knows the receiver’s location, but it does not
readily know the location of the reflective point from which the signal is bounced to the receiver.

The assumption of having one link blockage on each link may seem strong. In practice, in populated
areas, the bodies of humans move in reasonable proximity. This closeness makes a group of people a bigger
blocking object. Therefore, the assumption of having one blocking object in a specific direction is not strong
enough to invalidate the method. Although there are cases of having more than one blocking object on a link,
one can estimate the strongest paths reaching the receiver by performing the path discovery method for each
blocking object separately. The height at which we deploy the base stations can be high and the assumption
still holds. The proximity of the blocking object to the mobile device, that happens in the populated areas,
can make the link blockage happen despite the height at which we deploy a base station.

We can obtain the location of the transmitter and the receiver quite easily. Since we design the method for
the outdoor cellular network, the system can obtain the mobile nodes’ location from the GPS of the device. If
the GPS information is not available, the base station can measure the location of the mobile device through
signal-based localization methods [84]. Such methods are especially favorable in mmW communication due
to its directional links. The location of base stations (like picocells) is fixed and determined at the time of
installation.

To discover the location of reflective points, Wei et al. [85] proposed a method that we use to locate
the ambient reflectors in the environment. In this method, the authors introduce two primary mechanisms.
The first mechanism finds different paths from the transmitter to the receiver. The second mechanism uses

the parameters for multiple paths that the algorithm finds to reconstruct dominant reflectors. For finding
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different paths’ directions, the receiver receives the signal on each antenna element. The MUSIC algorithm
estimates the directions of the paths for both transmitter and the receiver. Using phase shift in signals, the
method can know each path’s distance from the transmitter to the receiver.

In the second mechanism, we estimate each reflecting point’s location using the parameters estimated
in the first mechanism. The algorithm estimates the location of the receiver by using two signal paths from
the transmitter to the receiver. In combination with the signal paths, the receiver’s location can give us the
location of the reflector. The mechanism continues with the estimation of the orientation and reflectivity
of the reflectors. Finding the reflectors by one set of transmitter and receiver (BS and UE) can be used for
other sets of BS and UE because the reflectors are of the propagation environment’s static features. This
algorithm’s time complexity is not negligible and we need to consider it in the system overhead assessment.
However, we should note that the system does this process of finding reflection points in an offline manner
and it does not affect the algorithm’s online performance, which is critical. The system performs the process
once, and it can use the information for the future. There can be some regular updates as the static objects
on the map may change over time.

Some regular updates of the reflector map are inevitable due to new furniture or buildings. For very
dynamic objects like cars, trucks, etc., we have some new paths created due to the reflections of such objects’
metallic surfaces. Moltchanov et al. [86] have provided a model for the length of the time interval of
blockage and non-blockage as a function of blocking object and mobile node speed. Based on their model,
the time interval of the blockage state of the link increases with the mobile node’s speed. Let us consider
the reflector a mobile node, according to their results. The time interval of the blocked state for a link that
comes from a reflector on a moving vehicle is long enough to neglect its effect on the paths formed around a
mobile device that a human carries. Moreover, the proposed algorithm’s online part can adapt itself to major
and general changes in dynamic reflectors in the long term.

As we will see further in Section 4.5, the third dimension’s effect in our experiments is limited. In our
hardware setup, the codebook used for scanning the space scans the elevation angle of zero, that is, the
plane in which we place the devices. We conduct the majority of our experiments in indoor environments.
The indoor environments tend to create more signal paths due to the presence of the ceiling. The several
paths in an indoor environment may create the need for having high-resolution 3D raytracing. However, our

experiments (Section 4.5.4, Figures 4.20 and 4.21) show that not considering the other elevations would not
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decrease the prediction accuracy.

After getting the location of the reflectors of NLOS paths, we have three equations with three unknown
parameters. Each path has one PFM equation with actual CSI reading. The system computes the unknown,
which are x and y coordinates of the blocking object location and effective height of the blocking object, by
solving each of the equation systems.

We must mention that the algorithm performs all these procedures if the conditions for the blocking
object being in FFZ are true. If this is not the case, the diffraction value of the blocking object on the path
is zero. Once the system knows and optimizes the unknown parameters, it computes the diffraction value of
the blocking object on the MPC by using Equation (4.2).

For path detection, we use a method to discover the paths formed around a receiver due to beamformed
signal transmission and reception. Sur et al. [58] proposed a method to discover the paths formed around a
receiver. Their approach uses two main observations that the authors experimented with the validity of those
observations. First, there is a limited number of paths formed around the receiver, and second, for a path that
is covered by two or more beams, the path’s qualities read by the beams often correlate. We use the method
to compute the paths formed around the receiver.

In the following, we discuss a brief analysis of the link blockage probability. According to [14], the
authors define the probability of a link being LOS as p(R) in which R is the length of the link. The
probability of a link being blocked (NLOS) is 1 — p(R). When the blocking objects are modeled as a
rectangle like in our simulations, the LOS probability is p(R) = e PR where 8 is a parameter that the
system determines by the density and size of the rectangular blocking objects. In the equation for the LOS
probability 8 = 2A(E[W] + E[L])/n [87]. W and L are the random variables for the width and the length
of the blocking objects and A is the density of the blocking objects. As we can see, the probability of
LOS decreases as the length of the link increases since the blocking objects are more probable to block the
longer links. The mean of both width and length of the blocking objects have an inverse relation with LOS

probability. Higher blocking object density also decreases p(R).

4.2.3 Discovering the Multipath Components Around Receiver

In this section, we discuss the method used to discover the paths formed around a receiver as a result of

beamformed signal transmission and reception.
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Sur et al. [58] have proposed a method to discover the paths formed around a receiver. Their method
uses two main observations that the authors did experiments on the validity of those observations. First,
there is a limited number of paths formed around the receiver, and second, for a path that is covered by two or
more beams, the path’s qualities read by the beams often correlate. They have also shown that the structure
of the paths does not change in the presence of a human blockage. The only thing that changes is the quality
of affected paths. They show that human blockage does not create new paths as the signal reflection of the
human body is not strong.

To set up the prediction framework, the authors have proposed a model called path skeleton. Path
skeleton is the parameters obtained from signal readings by changing beams around the receiver. Whenever
the current path quality drops, the system can predict the quality of other paths by probing the current
path and selecting the best one. The receiver can perform the complete scanning to obtain a path skeleton
whenever the transceivers are going to establish a link. The path skeleton is valid until either transmitter or
receiver moves. If that is the case, there is the need to renew the path skeleton by performing the scanning
process again.

A receiver has K number of beams that V number of paths around it. When the transceivers need to
establish a link, the receiver probes all the beams in the receiver’s antenna to measure channel impulse
response (CIR). In fact, CIR is aggregated effect of all paths reaching the receiver. There are two sides to the
CIR value. First, the authors have modeled the CIR value in each beam as a function of the number of paths,
the angle of the paths, their amplitude, and phase. On the other hand, there are actual measurements of the
beam CIRs. The goal is to optimize the paths parameters by minimizing the difference between modeled
and measured CIRs. The model of CIR is as follows.

\4
WEP =" Ax(6i).aie’® 4.7)
i=1
In Equation (4.7), ;" is modeled or reproduced value of CIR for receiver’s beam number k, V is total
number of paths reaching to the receiver, Ay is array factor or gain at a direction for beam number &, 6; is
the angle of arrival of path 7, a; and ¢; is the amplitude and phase of path i. For each beam, the method uses
the same model. H" P = {h?ep yeees h;ep } is the vector of CIR models for all beams.

The measured CIRs for each beam are gathered in a vector H™* = {h{", ..., hi"*}. The optimization
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problem we need to solve is,
{p1, ... Py} = argmin ||H™ — H"™P|? (4.8)
{p1.-npv}
In Equation (4.8), an optimizer computes V paths by minimizing the difference between modeled beam CIRs
and their measured counterparts.
The authors of [58] define a binary variable. The task of this variable is to determine which path is
blocked by an obstacle. Since £} is CIR for beam k and contains the effect of all paths on this beam, the
authors add the binary variable to this model to determine obstacle blocks which path according to the CIR

measured. In general, this part of their system is not directly related to our proposed system.

4.2.4 Learning and Classification Methods

The proposed prediction system for predicting link blockage has a learning system in its heart that learns
the specifics of the diffraction values on different paths reaching the receiver. In this section, we discuss
different learning modalities that we consider in the proposed framework. We also elaborate on different

classification methods used in the proposed system.

4.24.1 Learning Modalities

The machine learning community calls two main training modes supervised and unsupervised [88]. In
supervised training, each data point that is a point in data space consists of a feature vector and one or more
labels. In this way, when a specific feature vector is ready, the trainer would know what the label of that data
point is. On the other hand, in unsupervised training, the data point includes the feature vector and does not
have the label.

In the problem that we try to solve, the data points consist of a feature vector that contains diffraction
values and a label showing whether that feature vector indicates a link blockage situation or not. This
structure of data point in the problem makes the system do a link blockage detection procedure once for
each data point. It means the system does a link blockage detection procedure even though the purpose of
our proposed system is to minimize the number of link blockage detection procedure in its traditional way

(i.e., having a time window of RSSI recordings) and waste time. That is the exact procedure we want to

91



avoid by proposing the prediction framework. Therefore, the proposed prediction system needs to learn in
an unsupervised way.

The other type of training method categorization is online or offline training [88]. In offline (batch)
training, all data points required for training the classifier are available. When the data points train the
classifier, it does the prediction task. While predicting the labels, the classifier does not change as it sees
the new data points. Applications use this type of training when a big enough data set is ready at the time
of training, and the data points in the future do not change much. Therefore, there is no need to update the
classifier as new unlabeled data points are available.

In online (sequential) training, the data set required to train the classifier is not available at first to train
the classifier. Instead, the data points become available one at a time. Such systems may have huge data
sets that make it impossible to process the whole data set at once. Therefore, we require to process them
incrementally [88]. The other characteristic of such systems is that they are dynamic. The parameters of data
points tend to change over time. Therefore, it is reasonable to make changes to the classifier as it sees the
new data points over time. As a new data point becomes available for label prediction, the classifier assigns
a label to it, and then based on that label, it updates the classifier weights in order to include the changes the

new data point introduces to the classifier.

4.24.2 Training Methods

In our proposed prediction framework, we use different training methods to compare their accuracy of link
blockage prediction. In this section, we briefly explain the training methods.

The most popular unsupervised learning algorithm is clustering [88]. In this method, the clustering
algorithm groups the data points that belong to the data space in such a way that the distance between points
in the group is less than the distance between points of different groups.

In our prediction framework, we use the K-means clustering algorithm [88]. In this algorithm, K is the
number of groups or clusters. In the problem we define, the number of clusters is two, with no link blockage
and link blockage. We use this algorithm in two modes, online and offline. In offline mode, all points are
ready to form the clusters. In online mode, the points become available one by one. The clustering algorithm

updates the cluster centers after seeing each data point.
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The other method used is the classification method. In the particular case that we use in our experiments
[89], there are two phases. In the first phase, we train a cascade classifier with labeled data. In the second
phase, unlabeled data points become available one by one, and the classifier predicts each data point’s label.
Then the trainer updates the classifier by the new data point.

The classifier that we train in the offline stage is a cascade classifier. In cascade classifier, there are
several numbers of smaller classifiers called base classifiers [89]. The cascade classifier predicts label of
the data point based on partial sums of the base classifier. Each base classifier ¢ has a value of itself 4,
and a threshold b,. The classifier labels a data point x positive if V¢ € {1,...,T}, H;(x) > b, in which
H, = ZE h;. T is the total number of base classifiers.

Each data point for training the cascade classifier has a weight. The training algorithm initializes the
weights to a value that is a function of the number of data points. The training algorithm can use each feature
of the data point for the current base classifier. The method divides the feature values into intervals to form a
histogram. Then based on which interval a feature value falls, the trainer computes the base classifier for that
feature. The trainer chooses best base classifier based on how well a base classifier can discriminate between
positive and negative data points. The trainer chooses the best base classifier via computing a function of the
weight of positive and negative samples. A small portion of data is enough to train the cascade classifier.

In the second stage, we do the online boosting. In this stage, as each data point is available, the
trainer feeds it to the cascade classifier to determine its label. Then the trainer uses this label to update the
base classifiers and their threshold values. The online boosting algorithm updates the weight distribution
according to the predicted label of the new data point. Based on the updated weight distribution, the trainer
also updates the value of the current base classifier. The online boosting algorithm updates weight of the
sample by using an updated base classifier value. There is a mechanism to stop sample weight from growing
excessively while the algorithm uses the base classifiers. The online updater also can update the length of
the cascade classifier.

The classifier may have a prediction error. If the trainer only relies on the predicted label by the classifier,
the model can lose its accuracy over time because the prediction error can accumulate. To decrease the effect
of prediction errors on the model, the online trainer can use the real label obtained to train the model. The
trainer obtains the real label using the legacy method of windowed recording of SNR values for detection of

the link blockage. In this way, the trainer uses the real label periodically. This can calibrate the model and
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Figure 4.1 Flowchart of training and prediction phases

slow down the effect of the prediction error accumulation on the classifier.

The last set of classifiers used in our experiments is cross-validation with a group of classifiers. This
experiment’s difference from the previous classifier is that the trainer does not update the classifier when it
predicts the label of a new data point. This set includes ensemble, k-nearest neighbors, and support vector
machine [88].

We show a flowchart of both training and prediction phases of our proposed system in Figure 4.1.

We train a classifier to classify the feature vectors. The feature vectors contain the diffraction values

94



on the paths formed around the mobile receiver. blocking objects around the mobile receiver cause the
diffractions.

The data set size dictates how much space we require for the training and maintaining the model.
Although some of the methods we use for training rely on a limited data set, we use online training schemes
that theoretically can run forever. We show in the evaluation section (Figure 4.10) that the size of the data

set required to reach an acceptable accuracy is not large.

4.3 Feature Vector Generation

This section introduces a key element in the learning model, which is the feature vector generation. This
section has two parts. In the first part, we consider how we make different features from diffraction values
on the receiver’s paths. In the second part, we discuss another feature that enhances the performance of the

predictor. This feature considers the burst of link blockage incidents.

4.3.1 Feature Generation Based on Diffraction

The main point of using diffraction values for generating features in our proposed prediction framework
is that whenever there is a link blockage, we have diffraction happening in the shadow region caused by
the blocking object. We argue that by measuring the value of diffraction, we can predict the link blockage
incident.

Because of the reflections of different static environmental objects like buildings, walls, and boards, the
signal reaches the receiver in more than one path. Each path is like a link, and transceivers can use it for
communication. A blocking object can have a diffraction effect on any of these paths. The receiver perceives
the diffraction as a component of power fading, and it can calculate diffraction by using a power fading
model.

To generate features from diffractions on links, we need to have a template for diffraction values. The
paths reaching a receiver can change as either transmitter or receiver moves. The movement of transceivers
makes the paths change their AoA. It is also possible that the number of paths changes while transceivers
change location. The location change makes some paths disappear, and some others appear on a different
AoA. To have a constant number of features for each data point and have each feature the same meaning, we

propose to divide the angle space around a receiver to C sectors with equal angular width. Depending on
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Figure 4.2 Sectors are drawn around receiver and features associated with them

the AoA of each path, each of them falls into one of these sectors. Some sectors may have more than one
path, and some of them may have no paths.

One should note that both the AoA and AoD parameters can change with the movement of transceivers.
For our application, we only need the AoA. However, due to channel reciprocity, the AoD in one link direction
is the AoA when the link is reversed.

The trainer generates the data point features based on paths that fall into each sector around the receiver.
If a sector has no paths within its angular limits, the respective feature gets zero. If a sector has one path
with AoA within its limits, the respective feature value would be the diffraction value due to the presence of
a blocking object in the proximity of the path. If there is more than one path falling in a sector, the respective
feature is the sum of the diffraction of the sector’s paths. The diffraction values are the absolute values of
complex numbers that define diffraction. Figure 4.2 shows an example of the feature generation procedure

from diffraction values on paths around a receiver.
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Figure 4.2 illustrates an example of how the algorithm uses the diffraction values to make a feature
vector. There are five paths formed around the receiver in the center. We name the paths P = {Py, ..., Ps}. In
this example, we divide the space around the receiver into eight equally sized sectors called S = {Sy, ..., Sg}.
Each path has a diffraction value due to the presence of a blocking object in its proximity. Each path belongs
to a sector depending on its AoA. Therefore, there are some sectors without any paths in them, some sectors
have one, and some have more than one path in them. The algorithm adds the diffraction values of the paths
P4 and Ps5 together to represent the seventh feature’s value. The sectors {S, S5, S¢, Sg} do not contain any

paths, so their respective features get zero. We show the feature vector at the bottom of Figure 4.2.

4.3.2 Burst Feature

A data point with just diffraction values as features cannot reflect the whole situation that the data point
represents. A critical condition in the environment is the burst of link blockages. Suppose there is no
consideration of burst of link blockage. A data point sampled from a very bursty time interval has the
same effect on training the classifier as the same data point sampled from a time interval that link blockages
are happening sparsely. This is due to the fact that the feature vector without the burst feature only has
information of the diffraction values at the time of sampling and no memory incorporated in the data point.
Therefore, it does not make any difference the trainer trains te classifier by either data points. The feature
vector without the burst feature lacks the memory element of the burst feature. It only contains the diffraction
values for that instance of time that the trainer collected the sample. For example, the trainer cannot see an
impending link blockage (or a link blockage in the time that has just passed) just by looking at the diffraction
features and it needs the memory element in the burst feature to include the impending link blockage in its
picture of the environment that it sampled by the data point. Therefore, relying only on the diffraction values
cannot reflect the complete information that we are sampling. Because of that, we use an extra feature to
capture the link blockage burst aspect of the environment. Since the feature vector with the diffraction values
only looks at the environment at the time of sampling, a memory of the previous link blockages can help
the trainer see the environment in a more inclusive manner. This is how inclusion introduced by the burst
feature helps the classifier enhance its accuracy.

There are two approaches to address the link blockage burst issue. The first one is to have a counter

that counts the number of link blockages in a time window. This approach does not fully capture the link
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Figure 4.3 Example of EMA value change in a series of samples

blockage’s burst as it cannot discriminate between different moments of link blockage bursts within the time
window.

The second method is to use the Exponential Moving Average (EMA) [90]. The authors devised the
method to dampen the effect of a data instance as time passes. The weighting factor decreases over time
but does not reach zero. The value of 1 accounts for the link blockage incident, and 0 accounts for no link
blockage (as in labels of data points). The equation which we use to define the burst feature is as follows
[90].

Y1, t=1
F = (4.9)

aY,+(1l—-a)F—;, t>1
In Equation (4.9), F; is the value of exponential moving average of link blockage incidents at time ¢, Y; is
the link blockage incident at time ¢ which can be 0 or 1 and « is the weighting decrease parameter which
is between 0 and 1. If @ is higher, it means the earlier observations lose effect in the average faster. The
formula shows that when there is no link blockage, the EMA value decreases with the rate of 1 — . When
there is a link blockage, the formula adds the value of « to the EMA value. The classifier predicts the values
of link blockage incidents as the last prediction.

To better describe how the burst feature can capture a link blockage burst, we provide the following
example. Figure 4.3 shows an example of EMA value change with the change of link blockage incidence.
Figure 4.3 shows a series of link blockage samples, and for each of them, we calculate the EMA value. In
this example, we assume @ = 0.3. There are nine samples in this example. The plus sign (+) is an indicator
of link blockage happened, and the negative sign (—) indicates that link blockage did not happen. As we
can see for the first sample in 77, there is a link blockage, and according to Equation (4.9), EMA equals 1.
For the samples in 7, to T4, we see a decreasing amount of EMA. That is because time passes, but there is
no link blockage. Thus the effect of link blockage in 77 diminishes over time. At 75, there is a positive link
blockage increasing the EMA with @ = 0.3. The increasing trend from 77 to Ty is obvious due to positive

link blockage. The burst feature is one scalar, and we add it to the feature vector. As we can see in this
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Algorithm 4.1 Training algorithm of the classifier

1: if link quality drops then
2:  Measure the diffraction values and use burst feature (feature vector)
3:  Decide on the reason of link quality drop by method [7] (the label)
4:  Train the classifier
5. Update the burst feature by the measured label
6: end if

Algorithm 4.2 Prediction algorithm by the classifier
1: if link quality drops then
2:  Measure the diffraction values and use burst feature (feature vector)
3:  Predict label
4. Update the burst feature with the predicted label
5:  Update the classifier’s weight vector (online boosting)
6: end if

example, by having more recent link blockages the EMA increases and this increase indicates a more bursty
time interval. When there is no link blockage, the EMA value decreases and this indicates a less bursty
time interval. We then use the EMA value as the burst feature in the feature vector. Since this is a moving
average, the average indicates the effect of link blockages for a limited time and the average forgets older link
blockages. We use the parameter « to adjust how forgetful the EMA should be.

The general procedure of the prediction is as follows. When there is a degradation of the link quality,
to detect whether the cause of this degradation is link blockage or link movement, the receiver measures the
diffraction values of the paths around itself. Then, the algorithm generates the data point for the diffraction
values according to the AoA of the paths. After that, the predictor receives the data point after being trained.
The predictor (classifier) predicts the label of the data point. If it predicts link blockage, then the link quality
degradation is due to link blockage. Therefore, the receiver should take appropriate actions to improve
the link quality. Otherwise, the degradation is due to link movement, and the transceivers need to take
appropriate action (like transceiver beam adjustment). Our proposed method’s benefit is that it prevents
excessive windowed RSSI measurements and leaves the link in the blocked state. We elaborate on the
training and prediction procedures as follows. According to Algorithm 4.1, the system performs the training
process when there is a link quality drop. The system updates the burst feature with the measured label and
it uses it to construct the next feature vector.

In Algorithm 4.2, the trainer performs the online boosting procedure if the time has come based on
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the frequency that it selects for the online boosting procedure. Since for online boosting, the trainer needs
to measure the label traditionally. There is a trade-off between the frequency of online boosting and the
accuracy of the prediction.

One can argue that the path discovery method introduced in [58] is time-consuming itself. We should
state that the method described in that section is a precise method for the path discovery process. If that
is not the primary concern and with some compromise on the accuracy of paths, we can use the method in
[85] to achieve the same goal. With lower path accuracy, the method in [85] discovers reflecting points and
then feeds them to a raytracing software to come up with the AoA of the paths and their qualities in different
locations. The nodes in the network can perform this procedure once.

According to the training methods, the unsupervised training methods do not need a label for training.
Therefore, they do not need any usage of the traditional method used in [7] to know the ground truth. We
experiment with unsupervised training methods to see if we can solve the problem without the labels. Since
acquiring the labels incurs overhead to the system, the unsupervised classification saves extra effort. We
apply unsupervised learning (clustering) to this problem by assigning labels to clusters. We assign the labels
to clusters by measuring the accuracy. If the accuracy is maximum for an assignment, the system chooses
that assignment for all of the simulations.

For the supervised methods, whenever there is the need for a label, we use the method in [7] to get the
label and assign it to the feature vector. As we see in the results section, the needed offline training is not
much to achieve satisfactory accuracy.

The system’s overhead to generate the feature vectors is not low for a naive setup. The process of
measuring CSI has the overhead of scanning on all antenna elements. However, we can further enhance the
system by reducing the number of CSI measurements (measuring AoA or AoD) by choosing 10% of total
points in the area for anchor points for CSI measurement. Then, using raytracing tools, it is possible to
get the measurements of other locations without CSI measurement. It is also possible to use the reflective
surfaces and their orientations to enhance the raytracing procedure’s performance.

The proposed link blockage prediction algorithm can have various applications in link blockage avoid-
ance. By detecting the link blockage in time, the transmitter can adapt the rate proactively, unlike the
traditional methods that wait for a link quality degradation and lower the rate. The rate adaptation is one

method of dealing with an impending link blockage. Another method is switching the beam to a direction
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with a better-quality signal path without experiencing data loss. We can apply the same approach, but instead

of switching to another beam, the receiver switches to another base station.

4.3.3 Time Complexity Analysis

This section elaborates on the time complexity of the method proposed for predicting link blockage and link
movement. We provide a thorough time complexity discussion of all steps involved in the proposed method.

The first stage of the proposed prediction framework is training. In the training phase, the method does
two main tasks. The first task is to find the signal paths around a receiver and compute the diffraction values
due to blocking objects in the receiver’s proximity. The path-finding procedure, as stated before, can have
a high overhead if the method uses traditional SLS on every point in the area. However, we propose using
the raytracing method to extend the effect of SLS in one location to other locations. This would decrease
the number of SLSs and the overhead. For the feature vector generation in both training and testing phases,
according to [82], the time for solving the optimization problem to measure the location of the targets is
about 65 ms. This time is for the case of 21 clients. In our proposed solution, the number of clients (nodes)
is one, but there are two or three signal paths. As mentioned in Section 4.2.2, there are three equations
and three unknowns. Therefore, the time for solving the optimization problem is reduced significantly since
we can solve the equation system one by one. For the training phase, we also need to know the label. We
perform the traditional method introduced in [7] to know the label to train the classifier.

For the second phase, which is the prediction, we only need to generate the feature vector and then feed
it to the classifier to classify. The classification does not take variable time, and it can be of O (1) order. The
algorithm performs the other parts before (reflector positioning and raytracing) and are not online. On the
other hand, having a continuous SLS costs a high overhead. Besides that, the system can benefit from the

added information of signal paths with lower overhead.

4.4 Simulation Results

In this section, we present the simulation results of our proposed prediction framework. We also include the
implementation of the method on an mmW hardware platform. The platform consists of two tri-band routers
that can communicate in the 60 GHz frequency band. In the following sections, we introduce the simulation

framework and the hardware testbed.
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4.4.1 Simulation Framework

The simulation framework has two parts. The first part of the simulation framework is the package responsible
for creating the environment and moving the transceivers and blocking objects. The simulation framework
also uses raytracing software [91] to generate the paths formed around the receivers due to objects and
reflecting surfaces. Although the raytracing software is designed for indoor environments, it is possible to
adjust different parameters to make the software adapt to the outdoor environments. For example, we adjust
the reflectivity of the surface of blocking objects in the simulation area as the objects that we can find in an
outdoor environment like concrete, glass, or metal. We also set the power of the transmitters according to
outdoor BS settings. The raytracing software maintains spatial consistency. The environment is the same in
all our simulations, and the mobility model for all mobile objects is the same throughout the simulations.

We collect the data for both LOS and NLOS areas. First, our mobility generator generates the locations
on the mobile objects in the simulation area. Then, we feed those locations to the raytracing software to
know the mmW channel for them. If a mobile user has a clear path to AP, then it will have a LOS path.

The first part of the simulator is also responsible for extracting the paths’ diffraction values based on the
Knife Edge Diffraction (KED) model. Then, it generates datasets for training and testing the predictors. The
second part of the simulation framework receives the data sets generated by the first part. It uses them to
train different learners and test their accuracy against the ground truth.

There are three parameters that we compute to compare the performance of different methods with each
other. The first parameter is accuracy. Accuracy is the ratio of the number of data points predicted correctly
according to the ground truth to the total number of data points. False Positive Ratio (FPR) is the ratio
between the number of data points falsely predicted as positive (link blockage incident) and the total number
of data points. False Negative Ratio (FNR) is the ratio between the number of data points falsely predicted
negative (no link blockage) and the total number of data points.

The simulation environment comprises two fixed location transmitters on the north and south sides of the
simulation area. Five receivers are moving east to west or in the opposite direction. Twelve blocking objects
move from east to west or opposing directions. The number of data points in each data set is 500 for each
receiver. Figure 4.4 shows different components in the simulation area. The figure shows the components’
layout, and the number of each component is not necessarily accurate. Throughout the simulations, the

simulator generates areas with both LOS and NLOS paths. Therefore, the trainer performs the samplings
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Figure 4.4 The layout of the simulation area

for both types of paths. Since the NLOS paths are weaker than LOS, the diffractions and consequently the

feature vectors from diffractions are weaker and have limited contribution to training the model.

4.4.2 Results

The first experiment is about the cascade classifier’s prediction accuracy we elaborate in Section 4.2.4. There
are two types of experiment results presented here for this classifier. The first figure is the accuracy of the
batch training and online boosting for each receiver when we use 30% of the data set for batch training and
the rest for online boosting. According to Figure 4.5, the accuracy of prediction for all receivers is high. The
highest is for receiver number 3, which is close to 90%. The accuracy is a significant improvement since it
prevents the excessive RSSI recording for a significant number of the cases and shortens the detection to a
label prediction. To further improve the accuracy, we should increase the variability of the feature vector
across the dataset. It means that we should add other features to the feature vector like time and information
of the movement of the mobile devices. We also included the effect of online boosting in the figure. For
most of the receivers, the FNR is more than the FPR. It indicates that the cascade classifier tends to predict

no link blockage rather than link blockage when predicts incorrectly.
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Figure 4.5 Accuracy of cascade classifier trained for each receiver
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Figure 4.6 Link blockage vs. non-link blockage accuracy of cascade classifier trained for each
receiver
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Figure 4.7 Accuracy of the K-Means clustering trained for each receiver

Figure 4.6 shows the accuracy of predicting link blockage versus non-link blockage labels. We can see
that the accuracy of the majority of the receivers are about 80% and there is a balance between the accuracy
of link blockage and non-link blockage labels.

Figure 4.7 depicts the accuracy of K-Means clustering after training with 30% of the data set and online
updating the cluster centers with the rest of the dataset. It shows the results for all five receivers. We adopt
the online updating of K-Means from [92]. We choose 30% after performing some experiments with other
percentages for batch training. We observe that increasing the batch portion of the dataset does not increase
the accuracy significantly. As shown in Figure 4.7, the results are worse than the cascade classifier. The
accuracy of receiver number four is better than the rest. For receiver number three, accuracy and FPR are
almost the same. It generally shows that clustering cannot be a good solution for our problem, although it is
an unsupervised learning algorithm.

Since the clustering algorithm does not show the required accuracy for our defined prediction task, we
continue with other learning algorithms. Figure 4.8 shows the accuracy of the cascade classifier with online

boosting. We train the classifier by a data set that does not have the burst feature introduced in Section 4.3.2.
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Figure 4.8 Accuracy of cascade classifier trained with no burst feature

As shown in Figure 4.8, the x-axis (Batch Percentage) is the percentage of the data set used for training
cascade classifiers in batch mode. We use the rest of the data set for online boosting. We present the average
of the metric values for different receivers. The figure shows that the data set without the burst feature is not
very successful for predicting link blockage accurately. However, there is a slight increase in accuracy from
lower batch percentages to higher ones. This increase indicates that the batch percentage is also an affecting
factor in prediction accuracy.

We define two metrics. The first one is blockage accuracy and the second is the non-blockage accuracy.
To compute blockage accuracy, we count the number of the positive (link blockage) labels that are predicted
correctly by total number of blockage labels. The non-blockage accuracy is measured the same way for
non-blockage label. We show the comparison between the accuracy of predicting blockage versus non-
blockage labels in Figure 4.9. As we can see in the figure, the accuracy of blockage is much higher than the
non-blockage label. It means that the classifier is strongly biased towards predicting blockage. We already
show the low performance of the classifier in Figure 4.8.

Figure 4.10, depicts the same situation as Figure 4.8, but trained with data set that has burst feature.

The accuracy of the classifier’s prediction trained by a dataset with the burst feature shows a significant

improvement compared to Figure 4.8. The increased accuracy with the increase of the batch percentage
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Figure 4.9 blockage vs. non-blockage accuracy of cascade classifier trained with no burst feature
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Figure 4.10 Accuracy of cascade classifier trained with burst feature

is still visible in this figure. As shown in this figure, a small training set batch percentage can result in

satisfactory accuracy. We can consider the accuracy of the batch percentage of 30% and more satisfactory.
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Figure 4.11 blockage vs. non-blockage accuracy of cascade classifier trained with burst feature

This shows the high convergence of the classifier to the satisfactory accuracy with the feature vectors created.
The size of the dataset is 500, and 30% of that is 150 data points. By seeing the remaining 350 data points,
the model can achieve its current accuracy of more than 80%. If there are other new data points, they further
enhance the accuracy. Since we can achieve high accuracy by using 30% of the training data, the algorithm’s
convergence happens fast.

In Figure 4.10, we show that with a limited percentage of the data set used for training, we see an
acceptable accuracy. If the size of the model grows beyond a threshold, we suggest limiting the size of the
model. In this approach, the model drops the oldest data points and uses the newly introduced data points.
In this way, the model size is limited to a specific value and does not grow beyond it. The recent data points
control the accuracy more. Controlling the model size can prevent the growth of time complexity.

We compare the accuracy of prediction of blockage and non-blockage labels in Figure 4.11. It is evident
that the burst feature improves the accuracy over no usage of the burst feature. We can also see that with
increasing the percentage of the dataset used for batch training of the classifier, we can decrease the bias of
the classifier.

To see the effect of just batch training, we experiment with three classification algorithms with and

without the burst feature. The experiment includes measuring the metrics of training a classifier with
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Figure 4.12 Effect of training set percentage on accuracy without online boosting and the burst
feature
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Figure 4.13 Effect of training set percentage on accuracy of blockage and non-blockage without
online boosting and the burst feature

different percentages of the data set. Then, we use the whole data set to test the trained classifier. The
classification algorithms include ensemble, K-nearest neighbors, and support vector machine. As depicted in
Figure 4.12, the accuracy of support vector machine is better than the other two classifiers. The accuracy of
all classifiers are not high enough and changing the training set percentage does not help much. Figure 4.14
shows the same experiment with the burst feature. In Figure 4.13, we show how the training set percentage
to training different classifiers affects the prediction accuracy of blockage and non-blockage labels. The
accuracy of predicting the non-blockage label is higher than the blockage one. This shows that without the
burst feature the training has bias. As shown in Figure 4.14, the accuracy for the support vector machine
is again slightly better than the other two classifiers. Figure 4.15 shows the blockage versus non-blockage
label prediction accuracy with the burst feature. Again, the increased percentage of the dataset assigned to

training causes the bias to decrease. All of the trained classifiers have worse performance than the cascade
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Figure 4.14 Effect of the training set percentage on accuracy without online boosting and with the
burst feature
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Figure 4.15 Effect of training set percentage on accuracy of blockage and non-blockage without
online boosting and with the burst feature

classifier.

4.4.2.1 Results for different settings and parameters

To understand how effective online boosting can be in improving the accuracy, we experiment with different
locations in the environment. Figure 4.16 shows the experiment setting. As depicted in Figure 4.16, there
are three receivers, one transmitter and four static blocking objects called O1, 02, O3, and O4, and several
dynamic blocking objects shown by solid squares without names. For generating data points, the only objects
that we move are dynamic blocking objects. The purpose of the experiment is to observe the effect of the
receiver’s location on the classifier’s accuracy trained for each receiver. Figure 4.17 shows the results of the

location experiment.

As shown in Figure 4.17, when we train a classifier for the receiver in the center of the environment and
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Figure 4.16 The location experiment setting
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Figure 4.17 Measured metrics for location experiments

tested by the receivers in the other two locations (lower right and lower left), the accuracy of the classifier
in the trained location is much more than the other locations. This observation shows that the problem we
define has a dynamic nature. We can benefit from implementing an online booster to improve the classifier’s

accuracy over time, which we show in the previous results.
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Table 4.1 Effect of relative permittivity value on prediction accuracy (%)

Relative Permittivity \ 2.24 \ 4.24 \ 5.24
Ensemble | 85.8 | 86.4 | 86.4

KNN | 84.8 | 85.6 | 84.5

SVM | 85.0 | 85.2 | 86.2

We measure the accuracy in these simulations by considering the link blockage and not the link movement.
We assume that when there is a link quality drop, either link blockage or link movement causes this. Based
on the experiments in [7] this assumption is valid. Therefore, when we predict the link blockage, the positive
label shows the link blockage, and the negative label indicates the link movement. The system performs
training for the link blockage. If we involve the link movement in training, we do not expect to see the
accuracy decrease as we generate the feature vectors solely based on diffraction. The diffraction happens
when there are blocking objects around the link. Since, in the case of the link movement, we do not have
blocking objects around the links, the feature vector for a link movement is far enough from the link blockage
feature vector, and the classifier cannot predict these two interchangeably.

We investigate the effect of permittivity on the accuracy of prediction. The permittivity is the ability of
the surfaces to polarize and store energy [93]. The higher relative permittivity results in a higher reflectivity
coefficient. Hence more reflection happens on the surfaces. We change the permittivity of all surfaces
of the room and the blocking objects. They all have the same permittivity. Then using the datasets in
different environments, we measure the accuracy of Ensemble, K-Nearest Neighbors (KNN), and Support
Vector Machine (SVM) classifiers. We show the results in Table 4.1. As shown in Table 4.1, the increase in
permittivity causes the increase of classification accuracy in general. This is mainly because of an increase
in the number of paths due to an increase in permittivity and the signal’s reflection. The effect results in the
generation of datasets that has more non-zero features in their data points. More non-zero features result in
better training and prediction. However, the overhead of resolving the paths and measuring the diffractions
increases.

We perform the simulations with different mobility models in the following. We use the random walk
mobility model opposed to our line mobility model that we use for the previous simulations. Table 4.2 shows
the accuracy of different classifiers for line and random walk mobility models [94, 95].

As shown in Table 4.2, when the mobile objects move by random walk model, the accuracy of the
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Table 4.2 Prediction accuracy (%) vs. different mobility models

Mobility Model | Line | Random Walk

Ensemble | 97.0 98.0
KNN | 974 97.6
SVM | 90.6 96.4

prediction is enhanced. Although the improvement is not much, it shows that our feature vector generation
scheme works even better with the randomness introduced by the random walk model. The difference
between the previous accuracy rates of the line mobility model and in Table 4.2 is because of the reduction
of the blocking objects in the simulations. This reduction is necessary for generating the mobility model

traces for the random walk model.

4.5 Detecting the Link Blockage Using Signal Patterns

In this section, we elaborate on the method we propose to assess the possibility of implementing the link
blockage detection method on real hardware. We propose to use the physical layer parameters to compute
the signal radiation pattern, and based on the pattern, the method detects whether a pattern belongs to the
class of blocked or the class of unblocked. As stated at the beginning of this chapter, the reason for using the
prediction framework is to avoid time-consuming sequential scanning of the space. In the case of detecting
link blockage using signal patterns, the same argument holds. After obtaining the feature vector, the classifier
predicts whether the signal pattern belongs to blocked or unblocked classes. The time-saving part comes
from the fact that the nodes do not have to have time windows for detecting the link blockage when they use
the classifier.

The proposed method in Section 4.3 shows the feature vector generation using the diffraction values.
The system measures the diffraction value through optimizing it in the power fading model in Equation (4.3).
In this section, we want to use the angular profile of signal strength around the receiver to generate feature
vectors to train a classifier. Both feature vector generation methods share using the power strength parameter
to obtain the feature values. We perform the experiments with the total signal strength and not the exact
diffraction value due to some hardware limitations. According to Equation (4.3), the total power fading value
does include the diffraction value. Therefore, the reason for including the experiments is to show that the

proposed method of using diffraction to generate feature vectors works on actual hardware. In other words,

113



the experiments act as a feasibility study of the simulations.

In the proposed method, the transmitter and the receiver use the legacy IEEE 802.11ad procedures to
exchange probe packets for getting the physical layer parameters. Using those parameters, both of the nodes
can form the signal patterns formed around them. Using signal processing methods, we obtain the angular
profile of the signal. We use the profile as the feature vector. We then use the feature vector for labeling based
on the condition that we collect the feature vector. We use the resulting data point for training a classifier for

classifying the same shape of the feature vector in the future.

4.5.1 Channel State Information Reconstruction

To get the signal pattern formed around the transmitter and the receiver, we use the method introduced in
[96] to get the signal pattern using the antenna gains for different beams. We set up the codebook of each
of the devices to have the maximum number of beams possible. It covers the half-plane of the space. The
beams sweep half the space. Using the measured antenna complex gains and the beam shapes designed for
the half-space, we can draw the signal patterns for the two sides of the link.

We obtain the Channel State Information (CSI) by reconstructing the sent signal on the receiver side.
We use the CSI or the channel condition matrix for obtaining the signal paths. The signal paths are for both
the receiver and the transmitter. The reconstruction process is composed of sending probe signals on each
of the antenna elements of the transmitter’s phased array antenna. The phased array of both the transmitter
and the receiver of the devices used for the experiments has two-bit phase shifters. Each antenna element
has one phase shifter. The number of bits for the phase shifter determines the beamforming resolution.
For commodity devices, the cost efficiency dictates the phase shifters to have a limited number of bits for
controlling them. The phase shifters’ two bits can shift the phase of the signal transmitted from each antenna
element with four different values.

In order to get the CSI value, the transmitter sends four-probe signals with different phases. The
transmitter sends the signals with a reference signal, so the receiver measures the phase shift compared to
that reference signal. Using this concept of transmitting probe and reference signal, the receiver can compute
the phased antenna array’s complex gains. The receiver then uses the antenna’s complex gain for the
reconstruction of the propagation channel or the CSI matrix. The CSI matrix describes how the transmitter

transmits signal and the receiver receives it. It holds the required information necessary for computing the
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strength, AoA, and the AoD of the transmitted signal. The channel matrix can also determine the number
of signal paths formed around the transmitter and the receiver. The signal paths are the peaks of the signal
strengths in different directions. The training algorithm uses these peaks to make better discrimination
between the feature vectors of two different classes. We use the CSI to generate the feature vectors, which

we call the signal patterns.

4.5.2 Link Blockage Detection Based on Signal Patterns

The proposed method for detecting the link blockage begins with the training process. In the training process,
we obtain the signal pattern of the sent and the received signals. Then, depending on the condition under
which we obtain the signal patterns, the system determines the signal pattern label. We use label one as no
link blockage and two as a link blockage.

After collecting the required dataset for training, the training phase begins. In the training phase, the
dataset trains a classifier. In our experiments, we use cross-validation to train and test the resulting classifier
with the same dataset. The training is a supervised learning process as the feature vectors belong to different
classes. For the label of the dataset, we use the legacy method of having a time window to determine the
label of the feature vector.

The classifier predicts the label of each newly collected feature vector. The trainer then uses the predicted
label as the condition (blocked or unblocked) in which it collected the feature vector. The feature vector in
our experiments is composed of 75 values of the signal strength that covers one half-plane of space in one
specific elevation. For the sake of simplicity, we use one elevation of 3D space and align the phased antenna
arrays of the routers aligned with that elevation. We can extend the method to a range of elevations easily.

Before elaborating on the algorithm and the results of experiments, we present some experiments that we
conduct to validate the usage of signal patterns in predicting the link blockage in different conditions. There
are two nodes in each link, one is the access point (AP), and the other is the station (STA). Figure 4.18 shows
the signal pattern of both of the devices when there is no blocking object on the way. For all of the signal
pattern figures, the red curve is for the STA, and the blue curve depicts the AP’s signal pattern. In Figure
4.18, the lobes of both AP and STA signals are pretty regular. There is one big main lobe in both devices’
signal patterns. This shows that if there is no blocking object to the link, the signal patterns are regular and

have minimal side lobes. The misalignment of the main lobes is due to the reflective surfaces in the indoor
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Figure 4.18 Signal pattern for an unblocked link

Spatial Spectrum

90 90
120 60 120 60

150 30
180 0
0.4 0.8
210 330
240 300

270

Figure 4.19 Signal pattern for a blocked link

environment. We conduct sampling in an indoor environment.

We consider the following condition as blocked. There is a blocking object that can block the signal and
degrade the link quality significantly. In Figure 4.19, the signal patterns are not as regular as the unblocked
condition shown in Figure 4.18. There are various side lobes and spikes in the signal patterns of both the AP
and STA. The reason for such irregularities is the creation of the new signal paths when the original signal
hits the blocking object. The blocking object surface absorbs some of the signal power and reflects the rest.
The reflected signals are superposed with each other to create the spikes and the side lobes. As we can see,
the signal patterns for blocked and unblocked signals create two different feature vectors that have a safe
distance in data space. This ensures good training of the classifier and high precision of the prediction of the
classes.

The data collection procedure takes milliseconds for each sampling. Therefore, the time consumption is
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very low. The trainer performs the batch training offline; therefore, the time consumption is not a problem for
the integrity of the operation. BS can seamlessly perform the process of sampling. There are mobile nodes
that send periodic frames to the BS and receive from the BS. The system can use these frame exchanges for
the data collection procedure. The algorithm needs no additional data transfers. The frequency of collecting
data depends on the frequency of frames exchanged. At each location of a mobile node, there are regular
frames exchanged with BS.

We do not use the CSI measurements for the simulations because we use a raytracing tool to get the paths
to a mobile receiver. Therefore, we do not need to use CSI values for this purpose in the simulations. The

CSI is data that we use for path detection in a possible hardware implementation of our method.

4.5.3 Data Collection

In this section, we discuss the data collection and preprocessing that we perform before the training and
testing of the classifiers.

We perform the experiments in an indoor environment. We use the indoor environment to have more
multipath to test the method in an uncontrolled situation. The environment is a standard room with different
reflectors like the walls, furniture objects, and a glass window. We use two routers that we set one meter
apart. The nodes are in a static state. They do not move as the methods that the operating system implements
on the routers are not real-time.

To collect the data points (feature vectors), we set the transmitter in a specific location. Then, we locate
the receiver in different locations in the environment. After that, we perform the signal sampling. We repeat
this procedure to collect all of the data points that we need. In some locations, we add a human blocking
object to create the link blockage that we require for the blocked label.

After the collection of data, we have the spatial spectrum for each data point. This is the raw data from
the sampling stage. It is the angular spectrum of the signal strength. We normalize the spatial spectrum to
keep the value of the signal strength between O to 1. Normalization is a common preprocessing method to

avoid biased prediction by a specific feature.
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4.5.4 Experimental Results

The hardware platform that we use to perform the experiments consists of two TP-Link TALON AD7200
tri-band routers. The router works in three frequency bands of 2.4 GHz, 5 GHz, and 60 GHz. The 60 GHz
frequency band falls well in the millimeter-wave domain. The standard that uses the 60 GHz band is IEEE
802.11ad.

The operating system that we flash is a customized LEDE image [97]. The customized image adds some
capabilities to the routers, like reporting the SNR for each beam and having the possibility of working with
the system through the Linux environment. We connect the STA to the AP, and each time for getting the
signal strength, the AP and the STA perform a Sector-Level Sweep (SLS) of the IEEE 802.11ad standard.
We transfer the data collected on both of the nodes to a computer. The computer then processes them and
creates the data point.

For hardware platform experiments, we generate datasets with two classes. The first class is when there
is no blocking object in the way of communication. The blocking object in our experiments is the human
body. For the first class (label 1), there is no blocking object between the AP and the STA. Then, the nodes
initiate the SLS process. In the SLS scan of IEEE 802.11ad, the AP sends probe packets on all of its beams.
In the meanwhile, the STA is in its quasi-omnidirectional mode. When a node is in its quasi-omnidirectional
mode, the beam for receiving packets is wide and close to the omnidirectional beam. Of course, the quality
of the signal received by such a beam is low. That is why the standard keeps the rate of the probe packets
to the minimum supported rate. It ensures the correct reception of each of the packets. The AP sends on
all of its beams, and STA receives on its quasi-omnidirectional beam. When this stage is finished, STA
sends an acknowledgment packet that contains the beam index with the maximum SNR and the value of
the maximum SNR of all of the probe packets STA received. In this way, the AP knows by which beam
it should communicate with the STA. The only thing that is remaining is the best beam of the STA. To
get the best beam of STA, STA sends probe packets on all of its beams, and the AP receives them by its
quasi-omnidirectional beam.

We train three different classifiers with a dataset of 200 data points. We have two sets of data of the
same size. One is the dataset that we collect from the AP. These are the SNR values of the probe packets.
The STA sends the probe packets over all its possible beams. The second one is the same dataset in the

opposite direction. The training dataset is 80% of the whole dataset, and we use the rest for testing as
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Figure 4.20 Average prediction accuracy in the bedroom

the cross-validation method. We sample the NLOS and LOS test cases independently and with the same
quantity. For these experiments, we plot the average accuracy of AP and STA.

Figure 4.20 shows the average accuracy of the three classifiers on both AP and STA datasets. We
train three classifiers of Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Ensemble. As
shown in the figure, KNN and SVM have the highest accuracy with 100% of accuracy. There are two other
parameters that we measure for the classifiers. The first one is False Positive Ratio (FPR), and the second
one is False Negative Ratio (FNR). We define FPR as the ratio of test cases that the predicted class that is
unblocked, but the ground truth is blocked to the total number of test cases. For the FNR, the definition is
the opposite. The predicted class is blocked, but the ground truth is unblocked. For the Ensemble classifier,
the accuracy is not perfect, and it is divided on FPR and FNR almost equally.

We do experiments in another indoor environment with the STA and AP nodes. We first make a 200-
point dataset that includes both blocked and unblocked labels. Figure 4.21 shows the average accuracy of
both AP and STA nodes in the living room environment. As shown in Figure 4.21, the accuracy for all
of the classifiers is high like the bedroom results. This is due to the great discrimination of the blocked

and unblocked data labels. It shows that we can rely on the classification of blocked and unblocked feature
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Figure 4.21 Average prediction accuracy in the living room

vectors.

We experiment with different human body orientations, and the results were not different significantly.
The human in-move is another case that is worth investigating. Due to our hardware limitations, we could not
conduct experiments with moving human. This is mainly because of the real-time nature of the experiments.
The limitations in hardware do not let us perform real-time applications. With better hardware and firmware,
it is possible to perform experiments with dynamic scenarios. We leave this for our future research efforts.

Comparing the results of the experiments and the simulations using CSI values, we see that the accuracy
in the experiments is higher than in the simulations. In the experiments, we scan all the beams in the receiver.
Therefore, it takes more time than the simulation method if we require it to run for a long time. In the
simulations, the nodes are entirely dynamic, while in the hardware experiments, the nodes are static due to
inherent hardware limitations for real-time implementation of the method. Therefore, for the comparison,
we should note these points.

We measure the time delay for training and prediction of the methods on the hardware devices. We
measure the time delays by millisecond. Table 4.3 shows these values. The time delay for performing the
SLS procedure on the COTS devices we have is 490 ms. We measure this value using the time command in

the bash script installed on the OpenWRT firmware of the routers. The time is for the association process to
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Table 4.3 Time delays for training and prediction (ms)

Training Method | Ensemble | KNN | SVM
Training 5.38 0.14 | 0.66

Prediction 2.81 0.31 0.45

update the SNR values for beams and reading those values from the 60 GHz radio’s firmware. The prediction
time delay occurs in an online way but the trainer performs the training offline. Prediction delay in Table 4.3
shows only the prediction of the label and not the feature vector generation delay. We cannot measure the
feature vector generation delay on the devices nor the simulation platform. Since in the simulation we use a
raytracing tool for obtaining the paths, we are not able to measure time delay as it would happen in reality.
For the experiments, we do not use the reflectors for detecting the paths and used scanning for this purpose.
We provide a thorough discussion of the feature vector generation delay in Section 4.3.3.

We also perform another set of experiments to investigate the effect of orientation change on the classifiers’
accuracy. We put the STA node to the northwest (NW) and west (W) of the AP node and generated the data
points. We observe that the accuracy for all of the classifiers was 100%. The feature vectors’ variation shows
that it is robust to the orientation changes in a dynamic environment.

Another experiment that we conduct is the experiment for observing the effect of the distance on the
classifiers’ accuracy. We place the nodes (AP and STA) three meters apart and collected the data points. We
observe that all of the classifiers’ accuracy is equal to 98.75%, and the FPR is equal to 1.25%. Compared to
the orientation experiment with the nodes one meter apart, we see a slight degradation of the accuracy due
to multipath fading occurring in the environment. The excessive paths due to this type of fading can cause

the classifier to make a mistake on how to predict the labels.

4.6 Summary

In this chapter, we propose a method of using diffraction values on the signal paths of a receiver to predict
if a link blockage is going to happen or the link is going to move. We define a data space for training the
machines that make such predictions. We use the data that were sampled to train a classifier and then tested
its accuracy. We try various types of classifiers and showed that our proposed method of using diffraction
values for link blockage prediction yields a high prediction accuracy and can be used to quickly predict link

blockage. We also introduce the burst feature to add an extra dimension to the dataset. Adding this feature

121



resulted in a higher prediction accuracy.
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CHAPTER 5

BEAM ADAPTATION USING OUT-OF-BAND SIGNAL FOR ROBUST MILLIMETER WAVE
COMMUNICATION

In Chapter 4, we discuss a method to predict link blockage with high accuracy and low latency in mmW
networks. However, the nodes that establish a link need to react efficiently to a link blockage to maintain the
link quality.

Using the signal in the mmW band is a very common and reliable method to find the signal paths to align
the beams in mmW forming a robust link. The drawback of this general category of solutions to the problem
of beam adaptation in mmW communication is its high overhead and time consumption. The literature has
applied this approach with different strategies to minimize the overhead it has on a mmW communication
system.

Due to the high free space path loss of the mmW signal compared to the non-mmW signal [21], the
phased array beamforms the mmW signal to concentrate the signal strength in a limited direction. The usage
of beamformers or phased array antennas makes the communication in the mmW directional rather than
omnidirectional communication in the non-mmW spectrum. Therefore, to have an omnidirectional image
of the paths around the receiver, it needs to scan all the beams to cover 360° space. The act of scanning
requires the transmitter to send a packet and the receiver to receive the same packet. Therefore, the scanning
operation in mmW incurs a high overhead on the communication system. The nodes experience the overhead
as a time delay in the link recovery process in case of the link movement or blockage [7].

The experiments show that the number of signal paths that are formed around a receiver are about two
or three in most cases based on extensive outdoor measurements in [21]. In some cases, it is impossible to
communicate through the LOS path; it is possible to exploit the NLOS paths created by blocking objects.
Therefore, it is crucial to know the signal paths that reach a receiver. We call this procedure the path
discovery.

There are two different types of path discovery methods. The first type is called in-band path discovery.
In this category of methods, the scanning of all directions to find the paths that reach the receiver is done by
using the signals in the mmW spectrum. The second type of the path discovery methods is called out-of-band

path discovery, in which the receiver discovers the paths formed around itself in the mmW band by probing
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the signals in another band (sensing band). The sensing band is a non-mmW band in which the reception
of the signal is done omnidirectionally. In out-of-band path discovery methods, the node aligns the paths
discovered in the sensing band to the paths in the mmW band.

The purpose of out-of-band method is to perform fast beam alignment and avoid the high-overhead
operation of beam alignment in standard IEEE 802.11ad called Sector-Level Sweep (SLS). As stated before,
one method to have low overhead beamforming and beam tracking is using the signal from the sensing band
(out-of-band signal) to estimate the DoA of the signal in the mmW band. Since the sub-6 GHz band does not
need beamforming for transmission and reception of signal, we can use it for single-transmit DoA estimation.

In this chapter, we develop an out-of-band path discovery method to find all the paths formed around a
receiver. The method performs the probing for calculating the paths with no overhead on the mmW band. The
receiver receives packets in the WiFi band (2.4 GHz or 5 GHz) and based on the Channel State Information
(CSI) values, the MUSIC [98] and the ESPRIT algorithms [99] estimate all the paths formed around the
receiver in the sensing band. We also experiment with other methods like Bartlett, Burg’s maximum entropy,
Capon, and linear prediction methods. Then, based on the Direction of Arrival (DoA) of the paths, algorithm
selects the beam covering the strongest one. If a link quality degradation occurs on the current path, the
receiver probes the rest of the paths to find the best candidate. Considering the number of the paths is two or
three, the algorithm requires a minimal number of probing as it only probes the beams that cover the paths.

Figure 5.1 shows the different paths traveling from the access point to the receiver (client). By knowing
the signal paths to a receiver, the receiver can change its current active beam to an unblocked path to avoid
interruption of the ongoing communication.

We summarize the contributions of this chapter as follows:

1. We propose a new mmW band beam alignment method using out-of-band signals.
2. We use commercial hardware to perform measurements on both the out-of-band and mmW band.

3. The proposed method exploits all of the out-of-band paths in the mmW band beam alignment proce-

dure.

4. We measure performance of our method with a TCP performance measurement tool.

We organize the rest of this chapter as follows. In Section 5.1, we overview the methods of the beam

alignment. In Section 5.2, we summarize the direction of arrival estimation methods and the mmW channel.

124



(9 11 \ Reflector

Access Point

Receiver

Figure 5.1 The paths formed around the receiver

We elaborate our method of out-of-band path discovery in Section 5.3. We discuss the hardware platform in

Section 5.4.1. The results of the experiments come in Section 5.4.

5.1 Related Work

This section discusses different methods proposed in both path discovery categories, in-band, and out-of-band
methods.

The first category is the in-band path discovery. Sur et al. [58] have proposed a method to discover the
paths formed around a receiver. It requires a significant amount of mmW scanning and solving optimization
problems. Teng et al. [85] propose a method that tries to draw the paths forming around a receiver by finding
the reflectors based on some geometric equations.

The methods proposed in [100, 81, 76] probe more than one direction by sending special beams that
have more than one lobe. They designed hardware that can generate a beam that has multiple lobes pointing
towards the defined directions. The authors in [96] measured the CSI in 60 GHz. The expense of calculating
CSI is very high in this method. There is a probabilistic method for beam alignment like [77]. The authors
in [101] consider the problem of neighbor discovery in 60 GHz communication. The authors proposed to
use active learning to find the best beam for decoding the beacons from an access point. They define a

compressive sensing framework for the purpose of learning. The problem of consecutive beam probing still
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persists. The out-of-band scheme can be applied in the problem of neighbor discovery as well. For the
omnidirectional beam steering, Wang et al. [102] have proposed a method to steer the beam on different
phased array antennas that they laid out to cover omnidirectionally. The scanning is present and they perform
optimizations to decide which beams from which phased array antennas the algorithm should activate to
reduce interference and maximize performance. With the out-of-band method, not only one can reach high
performances given two antenna arrays for omnidirectional coverage, but they can also select the phased
array antenna and its appropriate beam to activate.

Ghasempour et al. [103] have proposed a method for multi-stream mmW communications. The method
finds both LOS and NLOS paths as it needs them for multi-stream communication. Jog et al. [104] have
proposed a protocol for beam alignment between many access points (AP) and clients. It needs extensive
communications. Sur et al. [105] have proposed a beam alignment method based on a limited number of
probing in the mmW band. The number of probing, though limited, is still more than the number of probing
in out-of-band methods. The model-driven methods like [106] try to limit the number of full-beam scanning
by predicting the channel profile based on the correlation of the profiles of close locations. While it can
reduce the number of beam scanning, it still needs to scan at certain reference locations and the prediction
can be error-prone in cluttered indoor environments.

Zhou et al. [107] have proposed a method for enabling a robust link with the aid of a robot that acts as a
relay. The relay installed on a robot needs to discover the reflecting points in the environment and plan the
trajectory to deliver the maximum signal strength from the access point to the client. This method requires
another mobile node that acts as a relay that needs to map the environment to find the reflecting points and
plan the appropriate path. It needs excessive signal strength readings for mapping the environment. A more
recent view is using the millimeter wave technology for a communication link from a vehicle. They have
also done some measurements [108]. Wang et al. [109] have conducted a study of the performance of the
mmW link under the mobility of a vehicle. The authors show the channel sparsity of the mmW spectrum in
the outdoor environment with high mobility of the vehicle. The blockage can still occur, but the algorithm
can steer the beam towards a non-blocked path once it happens. It shows that the out-of-band method can be
useful in a dynamic outdoor environment given the limited number of paths in mmW.

To limit the number of mmW scanning, Nitsche et al. [59] have come up with the idea of detecting the

LOS path in the mmW spectrum by scanning lower frequencies WiFi (2.4/5 GHz) as an out-of-band path
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discovery method. The methods in [70, 110] use the out-of-band signal for early blockage warning as well.
Haider et al. [111] have proposed to use visible light to steer the beam of a mmW client. Sur et al. [112]
propose to find the best beam by out of band sensing and probing without overhead for mmW band. Similar
to [59], the proposed method searches for one strong path. Woodford et al. [113] propose to use a LiDAR
sensor to create a 3D map of the indoor environment to do raytracing of mmW signal. Their method requires
a special LiDAR sensor and also fingerprinting (construction of the 3D model) of each new environment.
Although they mention that mobile devices use LiDAR sensors, they use a hand-held standalone sensor in
their experiences.

All of the mentioned methods do either probing in the mmW band or do not consider multiple mmW
band paths. If they do, they do it with in-band overhead. In our proposed method, we use out-of-band frames
to find the paths in the mmW band. Then, we use those paths to align the beams in the mmW band on them
for enhanced mmW communication in case of blockage or movement. We also use a tool to measure the

TCP performance of our method.

5.2 A Primer on the Direction of Arrival and the mmW Channel

In this section, we provide a background on two foundations of our proposed out-of-band path discovery
method. First, we discuss the methods used in DoA methods for obtaining the DoA of the sensing band

signals. We also give a quick review of how beam alignment in the IEEE 802.11ad standard works.

5.2.1 The Direction of Arrival in the Sensing Band

The researchers call one of the main categories of the methods for estimation of DoA Multiple Signal
Classification (MUSIC) [114]. The problem of the DoA estimation is the estimation of the incident angle of
the signal plane and the plane of passive sensors (antennas). We show the received signal and the angle it
makes with the line of the antenna array in Figure 5.2. For demonstration purposes, we enlarge the antenna
array of the sensing band of the receiver. The antenna patch of the mobile devices for both the sensing band
and mmW band is fully embedded in the device’s chassis. The angle 6 is the azimuth of the DoA angle. We
show the signal that the transmitter sends as sinusoids in the form of x(¢) = aelBel @t = pel@! We show
the time delay in the signal value as a phase shift: x(t —1y) = e /“0pe/ @’ = ¢~/ @hg(t). We define a source

signal as s(#) = pe/“’. The source signal travels and reaches the receiver. The incident angle of the signal
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Figure 5.2 The incidence angle of signal and the antenna array

and the antenna array of the receiver is called 8. We show a schematic design of such a setting in Figure 5.2.
The signal that is received by the first antenna element e is y;(z) = x(¢#). The antenna element i receives

the signal x(¢) with a delay defined by Equation (5.1).

_(i=1)dsin6
- c

5; G.D

In Equation (5.1), d is the distance between antenna elements of element separation, 6 is the DoA of the
signal received by element e;, and c is the propagation speed. The authors in [114] formulate the received
signal by element e; as,

jw (i—l)flsine

yi(t) = e 0s(t) = eI s(n) (5.2)
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If we put all of the signals received by N antenna elements we then have,

i ; 1
t
y1(1) e
y2(2) -
y(1) = =| o | xx(t) = a(d) xx(1) (5.3)
_YN(I)_ e_jw(N—l)dsinH

In Equation (5.3), a(0) is called the steering vector. Due to multipath effect, there are more than one signal

that reach to the receiver. Therefore, we modify the model in Equation (5.3) as in Equation (5.4).

yi(1) x1(1) Vi
=la(01) ... a(@m)]| X S (5.4)
yn (1) xm(D)|  |vn
In this equation, vector Y is the received signal by N antenna elements. Matrix A is the steering matrix of
the antenna array, vector X is the transmitted signal, and vector v is the noise on each antenna element. Each
column in the matrix A is one steering vector as defined in Equation (5.3). In Equation (5.4), a(6;) is the
steering vector of the i*? signal path.

The solution to the problem tries to find the vector d. Vector 8 contains the DoA of all of the M incident
signals. The first step of the solution to the problem by MUSIC algorithm [98] is computing the correlation
matrix of the received signal vector y(#). The matrix is Ry, = AR AT+ 0'31 . Ry is the correlation matrix
of the transmitted signal. If N > M then AR A" is singular meaning det [ARXAH] = det [Ry - 0'31] =0.
Therefore, O'g is an eigenvalue of Ry,. The N-dimensional received signal space is divided into signal
subspace U, and noise subspace U,. The steering vector a(6;) is in signal subspace. Signal and noise
subspace are orthogonal which implies that a (6;)U,, = 0.

The algorithm searches in the space of 6 and draws the spatial spectrum that is the signal power based on
DoA. The peak on the spatial spectrum shows one DoA of the received signal. There are M peaks associated
to M signal paths. The authors in [114] formulate the spatial spectrum function as,

1

PO = e,

(5.5)

Although the MUSIC algorithm works with any array shapes, it should know the antenna element positions.

The algorithm is susceptible to antenna element position. The MUSIC algorithm should also know the gain
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and the phase of the antenna elements. The antenna elements need calibration for the correct performance
of the algorithm. The other disadvantage of the MUSIC algorithm is its time complexity. Depending on the
resolution of the search space (6) for DoA, the time complexity can be high, and it needs much computational
power.

The other algorithm that we use in estimating the DoA is called the ESPRIT algorithm [99]. In this
algorithm, the pairs of antenna elements are called doublet. The doublets are pairs of antenna elements
that are identical. A vector separates the doublets called A, which determines the displacement between the
antenna elements. The phase, the gain, and the position of the doublet can be arbitrary. N sets of doublets
have 2N antenna elements. The steering vector depends on the array geometry and it should know the array
geometry. The signal equation is the same as defined in Equation (5.4). However, there are two sets of such
equations, one for each of the identical subarrays. We use the vector A to define the equations.

The algorithm computes the correlation matrix of 2N received signals. M eigenvectors of the correlation
matrix corresponding to M largest eigenvalues form the signal subspace U,. The remaining 2N — M
eigenvectors form the noise subspace U,. In the end, the algorithm computes the vector of the ® asa
one-time computation. This vector is a function of DoA values for M signal paths. The ESPRIT algorithm
does not search for any space for the solution. It is a closed-form solution. Due to the noisy measurements
and errors in the calibration of the doublets, we use the total least squares ESPRIT.

As a comparison of the two DoA estimation methods discussed in this section, both of the methods are
high resolution. It means that with the same number of antenna elements, the estimation has more accuracy
as the DoA values can change with the smaller increments compared to the beamforming methods. Both
MUSIC and ESPRIT methods can detect multiple signal paths as long as enough antenna elements are
present.

Since MUSIC needs fewer antenna elements, in case of the limited number of antenna elements, the
MUSIC algorithm has preference over the ESPRIT algorithm. On the other hand, ESPRIT needs less
computational power compared to MUSIC and more antenna elements. Therefore, the trade-off between
computational power (computational delay) and the number of antenna elements exists in choosing one of
these two methods.

The distance between the antenna elements for these methods is 0.54 in which A is the wavelength of

the signal. Authors in [115] say that the accuracy of MUSIC is higher than ESPRIT. We also compare these
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two methods in our scenario with real-world data.

In Bartlett’s method [116], the algorithm uses periodogram for the estimation of power spectral density.
In this method, an average of uncorrelated measurements of the signal is used to estimate the power spectral
density. The algorithm achieves this by averaging the periodograms which results in an asymptotically
unbiased estimate of the power spectrum. To obtain uncorrelated data, the method divides the data record
into subsequences. It performs the averaging over each subsequence.

In Burg’s Maximum Entropy Method (MEM) [117], the method estimates the spectral density by
maximizing the entropy of the sampled data of the signal. The signal is partial and noisy. There are two
conditions for the entropy maximization problem. First, the power spectral density has to be non-negative.
Second, the Fourier transform of the estimate has to match the sample autocorrelation. The closed-form of
the solution to the estimation problem needs coefficients that it obtains through the iterative Burg’s algorithm.

In Capon’s method [118], the method estimates the power spectral density based on an estimation of
the cross-power spectral density. The smallest minima of the function of the steering vector and the sample
covariance matrix gives the direction of arrival of the signal.

The last DoA estimation method that we use is Linear Prediction Method (LPM) [119]. This method is
based on minimizing the mean output signal power of the array elements. Which is subject to the constraint
that the weight of the array elements is unity. The weight of the array elements is a function of the correlation
matrix. The power spectrum is a function of the correlation matrix of the sensors (antenna elements) and

the steering vector of the antenna elements.

5.2.2 A Primer on mmW Channel and Beam Pattern

This section skims through the fundamental concepts and their mathematical relations of mmW channel and
beam pattern.

Due to the unique propagation characteristics of the mmW signal, devices use a particular type of
antennas called phased arrays for transmission and reception. The phased arrays are composed of small
patch antennas as antenna elements. The phased arrays mentioned make the analog beamforming possible.
In analog beamforming, the phased array can activate only one beam pattern at a time. Based on the phase

shifters’ resolution, the beam pattern can cover a limited space around the phased array. The goal is to find
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the sparse signal paths by scanning beam patterns (in-band path discovery) or getting DoA using signals of
another frequency (out-of-band path discovery).

On the other hand, there is digital beamforming that can have more than one beam pattern active. In
digital beamforming, each antenna element has its own RF chain. This can result in a more expensive phased
array. Many commercial devices (including the devices we use) are not using digital beamforming due to
the high cost of the beamformer.

The commercial devices can store several settings to the phase shifters as beam patterns. These vectors
can set the phase shifters to specific values resulting in a beam pattern that points to a specific direction in the
space. Therefore, each beam pattern can cover a fraction of the space around the receiver or the transmitter.
On the other hand, according to measurements of mmW signal propagation, the receiver receives the mmW
signal in 2 or 3 paths [21]. The goal is to find the sparse signal paths by either scanning beam patterns
(in-band path discovery) or by getting DoA using signals of another frequency (out-of-band path discovery).

According to [96], the authors define the received signal y in the receiver as,
y=plHpx+pIN (5.6)

In Equation (5.6), p, is the complex gain of the receiver and p, is for the transmitter, x is the transmitted
signal, H is the channel matrix that describes how the signal propagates from the transmitter to the receiver,
and N is the noise perceived by the receiver. The matrix H describes the multipath effect of the transmitted
signal as well. The channel matrix is a function of the number of paths from the transmitter to the receiver,
the complex gain, and the transmitter and receiver’s steering vectors. The steering vector is the same as the
one in Equation (5.3). It is a function of DoA and determines the phase shift based on the distance.

The authors in [96] formulate the receiving channel as h, = p,.H. They also formulate the transmitting
channel as h; = Hp,. Their algorithm uses these values for computing the received signal power. The
magnitude of receiving and transmitting channels is the received signal power.

Due to cost efficiency considerations, the hardware components that we use have limited capabilities for
commercial devices. In the device that we use, two bits in a word control the phase shifters, making them
choose between four phases (from O to 2z radian). This limitation affects the accuracy of the beamformer in

commercial devices.
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5.2.3 Beam Alignment in IEEE802.11ad

In this section, we provide a quick review of the beam alignment in the IEEE 802.11ad standard. Since this
is a widespread standard in mmW communication, it is useful to know the mechanism and compare it to
other methods in terms of time complexity and overhead.

The IEEE 802.11ad standard calls the beam alignment Sector Level Sweep (SLS) [120]. SLS has two
main phases. In the first phase, an initiator sends SLS frames in the beacon packets to the receiver or
responder. The initiator starts by sending SLS frames on all of its defined beam patterns. The responder
listens to all of these SLS frames with one quasi-Omni beam pattern. Since the bit rate for this transmission
is at the lowest, the beam pattern on the responder can be wide because a small portion of the signal can
deliver the SLS frames. When the initiator finishes sending all of the frames, the responder sends the initiator
an SLS feedback frame that contains the initiator’s beam index of the strongest frame received, alongside
its SNR. In this way, the initiator knows which of its beam patterns it should use to communicate with the
responder. The responder performs the same process so the responder knows through which of its beam
patterns it should communicate with the initiator. We illustrate a general scheme of the first phase of the
process in Figure 5.3. In Figure 5.3, Node A is the initiator, and node B is the responder. In the second
phase, an optional beam fine-tuning takes place. The time complexity of the SLS beam alignment method
is O(B; + B,) in which B; is the number of the beam patterns in the initiator, and B, is the number of the
beam patterns in the responder. Each new communication link requires a process of SLS. In the case of
link breakage, after some delay, the nodes initiate the process. The SLS process is a high overhead beam
alignment procedure that has a high occurrence rate. Therefore, it is important to look for methods that have

lower overhead as the beam alignment procedures happen frequently.

5.2.4 Beam Adjustment Using Out-of-Band Measurements

In this section, we elaborate on the method that we use to adjust the beam of the mmW interface to the
channel that the out-of-band interface estimates.

The out-of-band CSI measurements can lead to finding more than one signal direction in the sensing
band. In our design, we use the weights of the antenna elements to create beams along with different

directions in the 3D space with different azimuths and elevations. When the AP measures the DoA of the

133



BP1
BP12
BP2

BP11

2. Send Feedback Frame.

BP6
BP5

o
NN

BP10

BP1

‘1. Send SLS Frames. BP12

.2. Send Feedback Frame.

Figure 5.3 The general process of sector-level sweep

BP11

signal in the sensing band, the DoA estimating algorithm may find one or more than one signal arrival
direction. In the case of finding one direction, the AP uses the appropriate antenna element weights for the

phased array antenna to generate the beam that points to the direction of the received signal in the sensing

band.

The other case is when the DoA estimating algorithm estimates more than one DoA from the sensing
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band. In this case, the AP needs to use the weights of the antenna elements that create beams for different
directions in space to create a beam that points to all the directions that the DoA estimating algorithm
estimates. The combined beam may not have the directionality of a beam that points to one direction, but it
can amplify the gain from several directions that is useful in an indoor multipath environment.

Devices use phased array antenna in mmW communication systems to form the beam toward a specific
direction in space consists of several patch antenna elements. Each of such antenna elements is connected
to a phase shifter to change the phase of the signal that it transmits. A phased array antenna has N antenna
elements and K beams are precoded in its codebook. If we assume that the antenna elements’ layout is a 1D
linear formation and the space between each antenna element is the same, the authors in [121] compute the

gain for the k’"* beam for spatial direction @ as:

N
Ai(0) = > w(n, k). exp(j2rnd cos /1) (5.7)

n=1
In Equation 5.7, w(n, k) is the weight of the n'" antenna element for the k*” beam, d is the distance between
each antenna element, and A is the wavelength of the carrier signal. Activating different antenna elements
satisfies the effect of the sum in Equation 5.2. The summation effect is based on the superposition of the
signals that all of the antenna elements transmit. The exponential part of the equation is collectively called
the steering vector of the phased array antenna and is dependent on the structure of the phased array.

We use the beam combining method [121] to achieve a beam that the device creates by combining two
beams that each of them point to a different direction in space. The main use case of the beam combining
procedure is in a mmW system that has two or more phased array antennas. However, in the system that we
use for our experiments, this is not the case and the routers have one phased array antennas. The other method
is to divide the antenna elements into two subarrays in which each subarray forms the beam independently.
We choose the antenna elements for each subarray and use the weights for each antenna element in one
subarray to form the beam in the direction that the DoA estimation method estimates.

For example, if the DoA estimation algorithm estimates that the signal arrives at two angles of 61 and 8,
then the phase shifters of subarray A create a beam that points to direction ¢ and the subarray B handles 6,.
The periodic signal sent over the different antenna elements for each subarray generates the two beams on
the same phased array antenna. Since the beam combining method reduces the number of antenna elements

compared to the case of having all antenna elements for the same beam direction, it reduces the directivity

135



Link Quality Drop

Figure 5.4 A flowchart of out-of-band path discovery

of the beams.

5.3 Out-of-Band Path Discovery

In this section, we describe the proposed method for the out-of-band path discovery.

We use the packets in another WiFi band like 2.4 GHz or 5 GHz to measure the proposed system’s
channel matrix. Using the algorithms for estimating DoA, the receiver can discover the paths around itself
that are formed due to out-of-band signal propagation. The receiver then uses the discovered paths as guides
for the in-band or the mmW band to align its beams based on them. The frames used in the non-mmW
band can be periodic beacon frames sent regularly, or even the receiver can request ping frames from the
transmitter as needed to update the discovered paths in the non-mmW band.

We depict a schematic of the system architecture of the out-of-band path discovery in Figure 5.4.

We show the process in Figure 5.4. For estimation, we assume that the DoA of the out-of-band signal
is the same as the mmW band. When the algorithm discovers the new paths, it transfers them to another
subroutine to align the beams. By knowing the phased array’s antenna gains, it is possible to adjust the
beams to the direction needed.

When the phased array aligns the beam in a specific direction, the communication begins. During the
communication, the algorithm monitors a link quality measure like SNR for a drop in link quality. When
the quality drops below a threshold, the control initiates another out-of-band path discovery process. Since

the system wants to exploit multiple paths discovered in the non-mmW band, the initiation of the out-of-
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band path discovery process does not occur unless there are no other paths that the node can use for the
communication.

In case of a link quality drop in the current path in use, the receiver probes an alternative path to see if the
path is strong enough for the communication. If it is, the current active beam switches over to the alternative
path and continues the communication. If the alternative path is not suitable for the communication, the
receiver initiates another out-of-band path discovery process to update the paths.

The proposed method can replace out-of-band path discovery’s initial process with a legacy beam
alignment of the IEEE 802.11ad standard. In this way, there is an in-band path discovery in the system, and
the communication does not rely solely on out-of-band path discovery. This is due to some inaccuracies
in the out-of-band path discovery. Because the signal of 2.4 GHz / 5 GHz frequencies can go through the
walls and other blocking objects, but the mmW signal cannot. Consequently, the receiver can sense some
non-mmW signal paths due to their diffraction around the blocking objects, but the equivalent paths do
not exist in the mmW band. However, the problem of excess non-mmW paths has a simple solution. The
receiver needs to check multiple paths discovered by the out-of-band path discovery. If a path does not have
the required quality, the receiver initiates another out-of-band scan. The checking of the paths is as simple
as switching to a beam that covers the path. Then, the receiver receives a beacon from the transmitter.

The other case of the mentioned scenario is when the out-of-band scan discovers two paths, but there
are three paths in the mmW band. Since the non-mmW signal has both the reflection and the diffraction,
this case is not possible. A portion of the non-mmW signal goes through blocking objects. The blocking
object absorbs a portion of the signal, and the rest is reflected off the surface of the blocking object. On the
other hand, the blocking object absorbs a portion of the mmW signal, and it reflects off the rest. If the mmW
source is behind a blocking object, there is no path (or a very weak one). If the mmW source is in front of a
blocking object, the reflections and the LOS path create the paths. The non-mmW signal also has reflections
and LOS paths. Therefore, the mmW signal does not have any other means of propagation other than the
ones the non-mmW signal has.

The Algorithm 5.1 shows how the beam alignment uses out-of-band path discovery to avoid high overhead
in-band scanning.

In Algorithm 5.1, multiple paths that the out-of-band scanning discovers are separated into vectors of

the spatial spectrum. Then, the algorithm uses each beam pattern’s antenna gains to see how close a spatial
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Algorithm 5.1 The general procedure of Out-of-Band Path Discovery

1. Align the beams using the IEEE 802.11ad legacy method
2: while true do
3. if link quality drops below threshold then
4: Ping the transmitter
5: Perform DoA estimation {obtains (:)}
6: for Vo; € ® do
7: ,ézargmin”@i—bpj”
Vbp;€BP
: end for
9: Bmax = argmax SNR(S;)
vBiep
10: Use Bqx for communication
11:  endif

12: end while

spectrum of each path is to the beam pattern. The algorithm chooses the closest beam pattern (the one
with the minimum norm) for a beam pattern that best covers the path. Using a probing (shown by the
function SNR()) for each of the selected beams, the node selects the path with maximum strength for the
communication.

Since the number of paths discovered is limited (two or three), the number of probings to find 8,4 is
limited to that number. Therefore, the proposed method incurs a constant number of probing on the mmW

band communication system compared to the IEEE 802.11ad legacy beam alignment method.

5.4 Experimental Evaluations

This section discusses the experiment scenarios and how we use the hardware to generate the results. We also
present the results of the experiments we conduct by the hardware platform. We first discuss the scenarios

and how different components work together and then provide the results.

5.4.1 Experimental Hardware Platform

In this section, we discuss the hardware platform used to conduct experiments in this chapter.
In this chapter, we use commercial off-the-shelf (COTS) wireless hardware to validate our proposed
method. We use two TP-LINK TALON AD7200 tri-band routers to act as the transmitter or the access point

(AP) and the receiver or the station (STA). To access control on the routers and some MAC layer parameters,
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we flash both routers with LEDE firmware images as a part of the TALON Tools project [97]. The second
part of the hardware platform is the hardware and the tool for collecting the Channel State Information (CSI)
matrices for estimating the DoA of the non-mmW signal. The tool [122] that we use works on Intel 5300

network interface card (NIC) to collect CSI data.

5.4.2 Evaluation Setup

There are four nodes in the network of the devices in our experimental setup. The two routers that act as the
transmitter (AP) and receiver (STA) in the mmW band, the laptop that we use for collecting the CSI values,
and the controller laptop that we use to coordinate all the other three devices and collect data from them.
First, the controller laptop commands the routers to set up a mmW link between each other. Then, It
instructs the AP router to ping the CSI laptop. Based on the CSI matrices obtained, the CSI laptop estimates
the DoA of the non-mmW signal and the controller laptop uses it. The controller laptop also collects the
SNR of the ground truth from the AP router. This gives the paths formed around the STA router based on

the SLS procedure in the IEEE 802.11ad standard.

5.4.3 Methodology of the Communication Performance Assessment

To do the assessment, we measure the Transmission Control Protocol (TCP) performance of the link. We
use a popular tool for the TCP performance measurement called iPerf3 [123].

The test starts by sending a ping packet from the transmitter to the receiver. The CSI laptop receives the
ping packet, and the CSI laptop measures the CSI matrices for different subcarriers. There are 30 subcarriers,
and each subcarrier has its own CSI matrix. Therefore, we can measure the DoA for each subcarrier. Due
to hardware imperfections for the CSI measurement subsystem, we cannot get the best DoA measurement
for all subcarriers. We mostly see the imperfect DoA measurement for higher subcarriers in the form of no
maximum signal strength for any arrival direction. Using the DoA of each subcarrier, the receiver makes
a beam for that point in that direction. The receiver uses the beam to communicate with the transmitter.
The receiver performs the process we discuss and according to our measurements, it does not incur much
computational overhead on the receiver.

For each bandwidth measurement, iPerf sends data from the transmitter to the receiver for ten seconds.
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Figure 5.5 The spatial spectrum of the signals in the office cubicle
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Every 0.1 seconds, the iPerf tool performs one bandwidth measurement. For each location of the transmitter,

we perform one ten-second iPerf test for each subcarrier. Each subcarrier has its own DoA, which in turn,

we translate to a beam for communication. We collect all of the bandwidth readings for evaluation.

5.4.4 Experiments Results

We conduct experiments on two different frequency bands for out-of-band path discovery. The WiFi network

works with two frequency bands of 2.4 GHz and 5 GHz. We experiment with two different DoA estimation

methods, MUSIC and ESPRIT, as described in Section 5.2.1. The first category is the signal spatial spectrum

that shows the spatial behavior of in-band and out-band signals. The second category is the communication

performance assessment.

5.4.4.1 Signal Spatial Spectrum

The first set of results is from an indoor location. In all of the polar plots in this section, the blue line

indicates the spatial spectrum of the Out-of-Band signal, and the red line shows the spatial spectrum of the

In-Band signal. For the following figures, the frequency of the Out-of-Band signal is 5 GHz, and for the

In-Band signal, the frequency is 60 GHz. The subcarriers covered in the experiments are subcarrier numbers

S={-28, -26, -24, -22, -20, -18, -16, -14, -12, -10, -8, -6, 4, -2, -1, 1,3, 5,7, 9, 11, 13, 15, 17, 19,

21, 23, 25, 27, 28} in the channel 36 of 5 GHz band. We set the 2.4 GHz band to channel 11. Figure 5.5

shows the spatial spectrum samplings in an office cubicle. As shown in Figure 5.5, the spatial spectrum of

the 5 GHz signal estimated by the subcarriers in the lower half of the whole subcarriers has good accordance
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Figure 5.6 The spatial spectrum of the signals in the bedroom

with the spatial spectrum of the 60 GHz band. We show the accordance as the alignment of the in-band
and out-of-band spatial spectrum. It is a good result since the setup of the devices is very tight in the office
cubicle. Moreover, the office cubicle has minimal space with three walls surrounding the space. We expect
to have the multipath fading in such limited space. On the other hand, the 60 GHz signal’s spatial spectrum
shows a pretty clean single lobe signal. One reason for such high accordance between the spatial spectrum
of 5 GHz and 60 GHz signals is low multipath fading. The cubicle walls are made of fabric, which we expect
it to reflect less signal compared to walls made from more solid materials.

Figure 5.6 shows the spatial spectrum of the signals in a room with hard walls. The walls are suitable
surfaces to reflect the signal. The room is a bedroom with medium dimensions. The nodes are in the middle
of the room within 1 to 2 meters apart, and there is furniture present. The out-of-band signal frequency is
5 GHz. In Figure 5.6, we show two samples of the same placement of the nodes. As we can see, the high
subcarriers show better conformity to the ground truth of the 60 GHz signal spatial spectrum. There is some
deviation from the ground truth in the subcarriers 20 and 21. The reason is that the signals in both bands
are reflected off the hard walls of the bedroom. The walls of the bedroom are harder than the office cubicle.
The nodes are pretty close to the solid wall in these samplings. In the sample 2 subcarriers 16, 17, and 18,
the out-of-band shows that it can capture the multipath in 60 GHz well by spreading over both main and side
lobes of the 60 GHz signal.

The next location we experiment is a living room with no furniture. We place the nodes in the center of
the room. We use the 2.4 GHz band for out-of-band measurements. We place the antennas in a linear array

with 0.54 spacing. Figure 5.7 shows the results of experiments in the living room. The spatial spectrum of
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Figure 5.7 The spatial spectrum of the signals in the living room

the 60 GHz band in Figure 5.7 shows that there are multiple paths formed around the receiver in the living
room. The main reason is the limited space around the nodes. Therefore, the reflected signal bounces off the
walls several times until it gets to the receiver. Almost for all subcarriers, the out-of-band spatial spectrum
estimates the 60 GHz band spatial spectrum well. Of course, out-of-band spatial spectrum does not properly
cover some lobes. This is because of the DoA estimation methods’ limitation and the hardware we use for
collecting CSI matrices. The MUSIC algorithm can resolve two paths (N — 1) (or two peaks in the spatial
spectrum) with three antenna elements Intel 5300 NIC has.

For the ESPRIT algorithm, the number of paths resolved is not improved compared to the MUSIC
algorithm. The number of resolved paths by ESPRIT is I_%J with N being the number of the antenna
elements. Figure 5.8 shows the spatial spectrum in the living room with both DoA estimation algorithms
MUSIC and ESPRIT. The blue line in the graphs is the MUSIC algorithm, the green line is the ESPRIT
algorithm, and the red line is in-band 60 GHz measurements. Since, unlike MUSIC, the ESPRIT is not a
search algorithm, there is no spatial spectrum output generated by the ESPRIT algorithm. We only show the
computed DoA by ESPRIT by the green radial line. As shown in Figure 5.8, both of the DoA estimation
algorithms can estimate close to each other (with exception of subcarriers 8 and 9). The estimations are close
to the spatial spectrum of 60 GHz band. The inaccuracy comes from both multipath fading in the 60 GHz

band and the COTS hardware that we use in the experiments. The lower subcarriers show better accuracy

142



Subcarrier 7

Subcarrier 8

Subcarrier 9

Subcarrier 16

Subcarrier 17

Subcarrier 18

%0 90 90
120 60 120 60 120 60 120 N 60 120 ~ 60 120 60
( (
150 \ 30 150 \ 30 150 | 30 150 \ 30 150 \ 30 150 | 30
Wy / "
180 0 180 0 180 0 180 0 180 0 180 0
0.2 0.2 0.2 0.2 0.2 0.2
0.4 0.4 0.4 0.4 0.4 0.4
210 06 330 210 06 330 210 06 330 210 06 330 210 0.6 330 210 06 330
0.8 0.8 08 0.8 08 08
1 1 1
240 L. 300 240 L. 300 240 L. 300 240 1 300 20 1 300 240 1o 300
Subcarrier 10 Subcarrier 11 Subcarrier 12 Subcarrier 19 Subcarrier 20 Subcarrier 21
90 %0 LY % 90 90
120 60 120 (\ 60 120 (\ 60 120 60 120 60 120 60
( (
150 , 30 150 \ \ 30 150 \ \ 30 150 \ 30 150 \ \1 30 150 \\ 30
| J ) 0
180 = 0 180 0 180 0 180 0 180 o 180 0
0.2 0.2 0.2 0.2 0.2 0.2
0.4 0.4 0.4 0.4 0.4 0.4
210 0.6 330 210 0.6 330 210 0.6 330 210 0.6 330 210 0.6 330 210 0.6 330
0.8 0.8 0.8 0.3 0.3 038
240 1 240 1 240 1 1 1 1
01, 300 01, 30 01, 30 240 1 300 240 L. 300 240 L. 300

(a) The subcarriers 7 through 12

(b) The subcarriers 16 through 21

Figure 5.8 The spatial spectrum of the signals in the living room with ESPRIT
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Figure 5.9 The spatial spectrum of the signals in the outdoor environment

due to the fact that the COTS hardware provides more precise CSI matrices for them.

We also perform experiments in the outdoor environment. The space is an outdoor tennis court without
any blocking objects and walls around it. The purpose is to analyze the performance in outdoor and blocking
object free environment. There are two courts side by side. Figure 5.9 shows the results. As Figure 5.9
shows, the 60 GHz signal’s multipath effect is powerful in the outdoor environment due to the hard floor of
the area. We position the nodes on the ground. However, the two DoA estimation methods can detect the
peaks of signal in the 60 GHz band.

Due to limitations in hardware, we cannot perform the algorithms in a real-time fashion. This would limit
the scenarios that we can create to assess our method, like having people walking. We leave this problem

for our future research endeavors.
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5.4.4.2 Communication Performance Assessment

In this subsection, we discuss the performance evaluation of the communication link. The out-of-band paths
make the communication link possible and there is no legacy beam sweep performed on the receiver side.

We perform the assessment for the links when we deploy the transmitter in different locations. We deploy
the receiver in a fixed position and the transmitter changes its place for different evaluations. Figure 5.10
shows the topology of the transmitter in different locations with respect to the receiver.

The positions in Figure 5.10 are respective to the receiver. The locations of the transmitter are as follows:
East (E), North East (NE), North (N), North West (NW), and West (W). Throughout this section, we refer to
different transmitter locations when needed.

The first set of the results are from the evaluation that the transmitter is to the North of the receiver. In
Figure 5.11, we show the cumulative distribution function (CDF) of bandwidth when the transmitter is to
the North of the receiver (location N).

There are three types of beams. The first one is the beam that the MUSIC algorithm using the out-of-
band signal generates. The second type is the beam that the ESPRIT method using the out-of-band signal
generates. The third one is the original beam that is predefined in the router by the factory. As we can see in
Figure 5.11, both MUSIC and ESPRIT methods generate the beams that yield better performance than the

original beams of the router. The better result is due to the fact that the DoA estimation method works well
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in the direct link when both the phased array antennas of the routers are facing each other.

145



Bandwi dth of ESPIRIT and Oiginal Beans AP on North

1 T T -]
Subcarrierl d
Subcarrierl
0.9 Subcarrier2 ; ]
Subcarrier3
0.8} Subcarrier4 [r N
Subcarrier5
0.77—Or|g|nal )
< 0.6 - .
o 0.5+ =
0(? 0.4+ il
0.3+~ .
0.2+~ .
0.1+ .
0 T | |
0 500 1000 1500 2000

Bandwi dth ( Mbps)

Figure 5.13 CDF over subcarriers 1 to 5 (ESPRIT) N

Figure 5.12 shows the statistics of the Figure 5.11. Although the results are from all of the subcarriers,
the MUSIC and ESPRIT methods outperform the original beams.

Figures 5.13 and 5.14 show the CDF for the first five subcarriers for ESPRIT and MUSIC methods,
respectively. We can see that ESPRIT performs slightly better than MUSIC.

Figure 5.15 shows that with deviating from the direction path, the performance gap between the out-
of-band method and the legacy method shrinks. We still can see the better performance of the out-of-band
method over the legacy method. We show the statistics for location NW in Figure 5.16.

Figure 5.16 shows that the mean and median for the original beam are less than MUSIC and ESPRIT
algorithms for NW location.

For locations, E and W, MUSIC and ESPRIT methods’ performance is not as good as the original beams.
The reason for this is the shape of the original beams compared to the beams generated by out-of-band
measurements. The original beams are more omnidirectional than the out-of-band generated beams. The
phased array of the routers cannot generate beams that are highly stretched to the left or right.

In order to have a more inclusive performance comparison between DoA estimation methods introduced

in Section 5.2.1, we plot the results of the performances of such DoA estimation methods in Figure 5.19.
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As we can see in Figure 5.19, the Capon method has the best performance in terms of bandwidth of the

communication link. The beam that establishes the communication is created by the DoAs that this method
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estimates. It also shows that this superiority is more meaningful for lower bandwidth values. The main
reason is using the cross-power spectral density in the process of estimation. To better see the difference in
the performances, we show some statistics in Figure 5.20. As shown in this figure, the Capon DoA method
has the highest mean and median. It also has the lowest standard deviation that shows that it is more stable
around the mean compared to other methods.

We compare the performance of our proposed out-of-band path discovery method with the Adaptive
Codebook Optimization (ACO) method [96] and the IEEE 802.11ad Sector-level Sweep (SLS) method that
is done in all of the WiFi devices that have mmW radio. We perform the orientation experiment for North,
North West, and West AP orientation with respect to the STA. Figure 5.21 shows the CDF of the bandwidth
when the AP is in the North of the STA. As shown in Figure 5.21, our proposed out-of-band method that
uses the Capon method for DoA estimation has the best performance compared to ACO and IEEE 802.11ad.
The out-of-band method’s performance is better than the other two methods by a small amount. However,
the low overhead of the out-of-band method makes this method more preferable over the ACO and SLS. We
show the North West and West orientations in Figures 5.22 and 5.23.

For the North West orientation, the out-of-band method still performs better than the ACO and the IEEE
802.11ad. However, for the case of the AP positioned on the West (or exactly to the side) of the STA, the

performance of the out-of-band method degrades. This degradation is mainly due to the limitation of the

150



I n-Band & Qut-Band Bandw dt h Conparison (North)

T

m—— QUt - Of - Band
ACO B
| EEE 802. 11ad

Ratio (%
o o
(62} o

©
I
T

0 1 1 1 1 1
0 500 1000 1500 2000 2500

Bandwi dth ( Mops)

Figure 5.21 CDF of performance of the beam training methods (North)

= —_

n- Band & CQut-Band Bandwi dt h Conpari son (North West)

m— QUt - Of - Band
ACO .
| EEE 802. 11ad

T 1 1 1
0 500 1000 1500 2000 2500
Bandwi dt h ( Mops)

Figure 5.22 CDF of performance of the beam training methods (North West)

hardware and the DoA estimation methods when they try to estimate the DoA of a signal that comes close to

the boundaries of the detectable angle spectrum which are 0° and 180°. To improve this limitation, we need
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Table 5.1 Statistics of the Orientation Experiment

Statistics Mean (Mbps) Median (Mbps) Standard Deviation (Mbps)

Methods | ACO | OB | IEEE | ACO | OB | IEEE | ACO | OB IEEE
North 1765 | 1792 | 1682 | 1990 | 2000 | 1960 | 484 | 458 560

North West | 1683 | 1852 | 1679 | 1920 | 2030 | 1880 | 539 | 429 538
West 1603 | 1566 | 1563 | 1690 | 1660 | 1670 | 499 | 336 413

a new antenna array for the out-of-band path estimation to cover the side planes.

We show the statistics of the orientation experiments in Table 5.1. In this table, "OB" is the abbreviation

of the out-of-band method.

As we can see in Table 5.1, as the AP moves from North to West, all of the statistics for the out-of-band
decrease in general. This shows that there is a limitation of resolving paths for the out-of-band methods
when the transmitter transmits from the sides. Although the same pattern is visible for the other two in-band
methods, for West orientation the values of mean and mean and median for ACO are more than the out-of-

band. This shows that ACO is more efficient in finding paths that are on the sides. We expect this result

since ACO uses both front and back antenna elements for generating beams.

Figure 5.24 compares the performance of the beams generated from the paths that the CSI matrices of
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different subcarriers in the sensing band discover.

As depicted in Figure 5.24, the performance of the out-of-band degrades as the subcarrier index increases.
This means the CSI matrices measured on higher frequencies are noisier than the lower frequency matrices.
This would cause mathematical problems for the DoA estimation methods. The fault originates from the

CSI measurement device.

5.5 Summary

In this chapter, we study the use of another frequency spectrum to assist the beam alignment of the mmW
band. Using COTS hardware, we do extensive experiments in different environments to show the possibility
of such assistance. The indoor environment results show that the paths discovered using the out-of-band
signal can be used for beam alignment in the mmW band. Due to the high level of multipath fading in
the mmW band, the discovered paths have less compliance with the mmW spatial spectrum for the outdoor
environment. Both of the DoA estimation methods show consistency in finding the paths and can capture
the mmW band paths even with high multipath. There are some inaccuracies in the samplings as well. The
inaccuracies come from the limited number of antenna elements and inherent errors of the COTS hardware.
Using intelligent methods to mitigate the inaccuracies resulting from hardware limitations is left for future

investigations.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, we first draw conclusions on the research described in this dissertation, and then, we discuss

the future research directions from the current research.

6.1 Conclusion

We address several problems in mmW communication in this dissertation in different chapters. We discuss

the conclusions of the chapters in the following sections.

6.1.1 Blockage Score and Load Balancing Joint Optimization

User association is considered as a method to maintain the link quality. We propose new methods of user
association that are tailored to the propagation characteristics of the mmW signal.

To mitigate the effect of blockage on the quality of links in a mmW communication system, we propose a
user association scheme that is aware of the blockage history in the neighborhood of a UE. We devise a new
algorithm for the user association problem to mitigate the blockage count in mmW networks. We compare
the performance of our proposed algorithm with other user association algorithms called Load Balancing,
Closest BS, and Max SINR. According to different metrics, our proposed algorithm outperforms Load
Balancing and Closest BS and Max SINR for blockage count by 21%. It also enhances the rate compared to
experimented algorithms. We also propose a modification to our algorithm to enhance its time complexity.
Experiments show that the modification can slightly improve the performance of the original algorithm with
a better time complexity. We also embed the blockage scoring system we propose in the Load Balancing, but
the experiments show a negative effect of using our blockage scores in the Load Balancing’s performance.

We design the proposed algorithm to mitigate blockage for scenarios in which the blocking objects move
in a semi-dynamic manner. That entails having human bodies moving in groups and predictable directions
with limited deviation from the main path. For more dynamic settings, the overhead of the algorithm goes
up.

When we use the proposed blockage mitigation approach, the load balance of the network may deteriorate.
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This resulted in defining another problem and proposing the solution for it. To solve this problem, we define
a biobjective optimization problem to optimize load balancing objective while minimizing the blockage
score of the network. Since it is a biobjective optimization problem, we use a class of scalarization methods
to convert the objective vector to an objective scalar. Then, for each of these scalarization methods, we
define the single objective optimization problem. Through Lagrangian analysis, we provide the iterative and
the linear solution for each of the scalarization methods. Since we use the dual Lagrangian approach for
obtaining the solution, it is necessary to provide a sound analysis of the duality gap between the solutions of
the primal and the Lagrangian dual. We provide such analysis for all of the scalarization methods that we
use.

We show that the average blockage count for all of the scalarization methods is better than just the load
balancing method. It is also evident from the results that the proposed dual Lagrangian solution is very close
to the results of a solver that solves the primal optimization problems. It shows that there is a tight duality gap
which we show in the duality gap analysis as well. The false positive and false negative metrics also show
improvements over both optimizing the blockage score and the load balancing objectives individually. Since
the blockage count is improved for the biobjective solutions, the rate for those methods is also improved
compared to the load balancing method. The load objective is improved for the biobjective optimization
methods compared to optimizing the blockage score. Not only the number of blocking objects is effective
on the blockage score but also the distribution of the blocking objects can play an important role in changing
the likelihood of blockage. Considering all metrics, we show that the weighted sum scalarization method

can have better results compared to other scalarization methods.

6.1.2 Link-Aware mmW Communication Improvement

Link quality degradation in mmW networks is caused by different reasons. To have an effective solution, it is
important to detect the reason of the link degradation such as link blockage or link movement. Therefore, we
define the problem of predicting a blockage and discriminating between a link movement and a link blockage.
To solve this problem, we propose a learning framework to train a classifier for predicting the blockage. We
define a data space of the diffraction values on paths formed around a receiver. We also add a burst feature
to the data space. This feature can indicate blockage burstiness at the moment that the algorithm samples a

data point. The training algorithm trains the classifiers by data points generated in such a data space. The
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learning modality is unsupervised online learning. We show that online boosting could have a positive effect
on the accuracy of the classifiers. A cascade classifier with the online boosting has the best results. The
pure batch training cannot have the accuracy required by the application we pursue. Therefore, an online
enhancement can be useful in improving the accuracy. We provide the prediction accuracy with different
surface permittivities. With the increase of this parameter, the accuracy of the prediction increases in general.
Also, the mobility model of the mobile nodes has an effect on the prediction accuracy. With random walk,
which is widely used for modeling human waking, the prediction accuracy is improved compared to a simple
line movement. We also present the results from a hardware testbed. In these experiments, we measure
the prediction accuracy of the blockage from the signal pattern that we obtain from the hardware devices.
We show that all of the classifiers can reach high accuracy rates in predicting the blockage from the signal
patterns.

After detecting that the reason for the link degradation is link blockage, nodes need to perform a beam
alignment according to the updated signal paths with a low overhead. We propose an out-of-band method
to find the signal paths that are formed around the receiver in the mmW spectrum from the CSI measured
in the 2.4/5 GHz spectrum. The system works by measuring CSI from the sensing band and forming the
beam in the mmW band on the DoAs that the CSI of the out-of-band estimates. The nodes then use the
beam for communication in the mmW band. We provide two main types of results. The first type shows
how the signal pattern from the out-of-band estimated CSI aligns with the mmW signal pattern. This shows
that the out-of-band method that we propose can have high compliance with the mmW signal pattern. The
second category of the evaluation results targets the performance of the mmW link that the estimated DoAs
from the out-of-band signal created. Putting the transmitter in different orientations compared to the receiver
shows that the performance of the out-of-band DoA estimation method is higher than the predefined beams
of the devices. However, the performance decreases when the discovered paths are close to the sides of the
out-of-band antenna array. This is due to the limitation of the DoA estimation methods. We also compare
the out-of-band method with a well-known method of measuring the CSI in the mmW spectrum. The results
show that the out-of-band method’s performance is comparable to this in-band method. We compare various
DoA estimation methods with each other to see how they differ in terms of the generated beam based on the

output of the estimated DoA. Capon method of DoA estimation has better performance over other methods.

156



6.1.3 Contribution

In this dissertation, we discuss several challenges in mmW networks including user association to improve
blockage and load balance, blockage prediction using diffraction, and mmW signal path discovery using out-
of-band signal. We provide the first user association criterion specifically tailored to the mmW networks.
The blockage score is a user association criterion that ranks the BSs based on the likelihood of the blockage
if a UE connects to them. A UE is connected to a BS if it has the lowest blockage score. While the reduction
of the blockage is of high interest in the mmW networks, optimizing the user association only based on the
blockage score makes the network unbalanced. This is where the next contribution of this dissertation comes
into play. The second contribution of this dissertation is defining a biobjective optimization problem to
minimize the blockage score and balance the load in the network. Then, the solution to the Lagrangian dual
problem of the biobjective problem is provided. The time complexity of this solution is linear while other
solutions to the user association problems have exponential time complexity. In this dissertation, we prove
that our solution does not differ much from the solution to the primal optimization problem. To perform
beamforming efficiently in mmW networks, the nodes need to know the reason for a link degradation. The
third contribution of this dissertation is a fast and accurate classification of the link degradation. We provide
a successful application of machine learning methods to solve the problem of detecting link blockage and
link movement in mmW networks. We provide a solution that is fast and accurate for detecting the link
degradation cause. After detecting that the link degradation is due to a blockage, the node needs to find
the alternative paths quickly to align its beams. The fourth contribution of this dissertation is providing a
method for fast and low-overhead beam alignment. We provide a method to use the out-of-band signal for
discovering the paths of the mmW signal. Our proposed method provides a fast and low-overhead method
of the beam alignment in an environment in which the mmW channel changes fast. We also perform the

experiments using the COTS devices to show the effectiveness of our solution.

6.2 Future Research Directions

In this section, we discuss several future research directions.
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6.2.1 Path Discovery for User Association

In Chapters 2 and 3, we discuss our proposed methods of user association that uses blockage history to
connect UEs to BSs, while it balances the load throughout the network. This metric is a heuristic and is
prone to prediction error in high blockage situations. A more deterministic criterion is the signal paths from
BSs to a UE that are discovered by out-of-band signal. Therefore, a BS selection metric is the mmW signal
paths that reach the UE from different BSs in the communication range of the UE which are obtained by DoA
estimation methods using out-of-band signals. The current state-of-the-art does not consider this metric for
the user association problem. It is favorable to have the BS selection based on the paths with minimum
overhead in both processing and mmW band scanning. The other metric is beamwidth. A wider beamwidth
can make the mmW link less sensitive to the movement of UEs, but it can decrease the signal strength sensed
by UE and BS’s antenna array. On the other hand, a narrower beamwidth results in a better signal quality
but it requires more precise beam tracking algorithms as the UE moves.

In this user association method, we build the pool of paths reaching to the UE from all of the BSs in
the communication range (within the communication radius) of the UE. The BS with the strongest path is
selected for handover. In this method, the UE goes to monitor mode to hear the packets that are not intended
for the UE and captures them for calculating the CSI and the DoA estimation methods.

On the implementation side, the UE can only be associated to one BS. While a UE is not connected to a
BS, it cannot change the beams with conventional methods of beam changing. We propose to have extensive
research and development on methods of controlling the beam and getting signal strength while the UE is
not connected to the BS. The methods can be difficult to develop since the programs in the procedures are
working with the kernel of the operating system and even the firmware of the wireless hardware. Moreover,
it is challenging to devise a method for processing the signal strength to determine the strongest path because
the signal strength changes quickly especially in dynamic environments. It is essential to develop metrics

that can capture stable signal paths for user association purposes.

6.2.2 Out-of-Band Method for Classic Problems in mmW

In Chapter 5, we discuss the problem of finding the signal paths in mmW spectrum using the signal from

another frequency band. We only focus on the path finding problem in mmW. However, the problems in
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mmW are not limited to finding the signal paths. In fact, classic problems in non-mmW networks can be
valid problems in mmW networks as well. These problems can be more challenging in mmW spectrum due
to the directional propagation of mmW signal.

Another research direction is using the out-of-band method for different problems that are defined for
sub-6 GHz spectrum but with the mmW twist. The classic problems that have attracted a lot of research can
be defined in the context of mmW with their unique challenges. One application is using the out-of-band
method in neighbor discovery problem for the mmW spectrum. Since the beams with a limited view perform
the mmW communications, it is even more challenging to coordinate two or more mmW nodes to discover
each other. It is very useful to use the out-of-band method to replace the mmW band communication as a
radar for detecting the neighbors.

Another application of the out-of-band method is in mmW Omni-directional communications. In some
COTS devices, there is more than one phased array antenna. One can lay out these arrays in a way to cover
360° space and one phased array can cover one sector in space. The algorithm can use the out-of-band
method to discover paths in all directions and it then uses those discovered paths to form the beams on
different phased arrays for an Omni-directional coverage in mmW. Since the DoA estimation methods use
the antenna arrays for sub-6 GHz frequencies to estimate DoAs for 180° space, it is essential to have two
arrays for the out-of-band system to estimate the DoA of the signals for all 360° space. The challenge is
aligning the DoAs of the paths discovered on different phased array antennas accurately.

Interference mitigation in sub-6 GHz is an important task that is essential to achieve the defined data rates.
Although the communication is directional in mmW networks, the interference can still happen. The beams
from different nodes can overlap and cause interference. Moreover, the interference can be severe due to
high data rates in mmW communication because it can corrupt more data compared to sub-6 GHz networks.
Therefore, it is essential to consider interference in mmW networks. The directionality of communication
in mmW introduces the challenge of detecting interference and avoiding it. Using out-of-band signal for the

purpose of detecting interference is a future direction of research.

In summary, the future research directions that the research in this dissertation inspires include the user
association using the paths discovered via the out-of-band signal and employing the out-of-band method

to solve classic wireless networks problems in the mmW spectrum. These problems include neighbor
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discovery or interference control using out-of-band signal to limit the overhead on the mmW communication
significantly. Since the communication in the mmW is directional, using multiple phased arrays to make
omnidirectional communication possible in the mmW spectrum is of interest of future research. The approach
of using the out-of-band signal in this problem is interesting to investigate since it introduces low-overhead
solutions to the problems in the mmW networks. However, there are some challenges that need to be
addressed. The most important is the alignment of signal of non-mmW on the mmW signal is critical in
the out-of-band methods. The requirement of the precision for this alignment can be different in various

applications.
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