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ABSTRACT

OPTIMIZING AND IMPROVING THE FIDELITY OF REACTIVE, POLARIZABLE
MOLECULAR DYNAMICS SIMULATIONS ON MODERN HIGH PERFORMANCE

COMPUTING ARCHITECTURES

By

Kurt A. O’Hearn

Reactive, polarizable molecular dynamics simulations are a crucial tool for the high-fidelity

study of large systems with chemical reactions. In support of this, several approaches have

been employed with varying degrees of computational cost and physical accuracy. One of

the more successful approaches in recent years, the reactive force field (ReaxFF) model,

was designed to fill the gap between traditional classical models and quantum mechanical

models by incorporating a dynamic bond order potential term. When coupling ReaxFF

with dynamic global charges models for electrostatics, special considerations are necessary

for obtaining highly performant implementations, especially on modern high-performance

computing architectures.

In this work, we detail the performance optimization of the PuReMD (PuReMD Reactive

Molecular Dynamics) software package, an open-source, GPLv3-licensed implementation of

ReaxFF coupled with dynamic charge models. We begin by exploring the tuning of the

iterative Krylov linear solvers underpinning the global charge models in a shared-memory

parallel context using OpenMP, with the explicit goal of minimizing the mean combined

preconditioner and solver time. We found that with appropriate solver tuning, significant

speedups and scalability improvements were observed. Following these successes, we extend

these approaches to the solvers in the distributed-memory MPI implementation of PuReMD,

as well as broaden the scope of optimization to other portions of the ReaxFF potential such

as the bond order computations. Here again we find that sizable performance gains were

achieved for large simulations numbering in the hundreds of thousands of atoms.



With these performance improvements in hand, we next change focus to another im-

portant use of PuReMD – the development of ReaxFF force fields for new materials. The

high fidelity inherent in ReaxFF simulations for different chemistries oftentimes comes at

the expense of a steep learning curve for parameter optimization, due in part to complexities

in the high dimensional parameter space and due in part to the necessity of deep domain

knowledge of how to adequately control the ReaxFF functional forms. To diagnose and com-

bat these issues, a study was undertaken to optimize parameters for Li-O systems using the

OGOLEM genetic algorithms framework coupled with a modified shared-memory version of

PuReMD. We found that with careful training set design, sufficient optimization control with

tuned genetic algorithms, and improved polarizability through enhanced charge model use,

higher accuracy was achieved in simulations involving ductile fracture behavior, a difficult

phenomena to hereto model correctly.

Finally, we return to performance optimization for the GPU-accelerated distributed-

memory PuReMD codebase. Modern supercomputers have recently achieved exascale levels

of peak arithmetic rates due in large part to the design decision to incorporate massive

numbers of GPUs. In order to take advantage of such computing systems, the MPI+CUDA

version of PuReMD was re-designed and benchmarked on modern NVIDIA Tesla GPUs.

Performance on-par with or exceeding the LAMMPS Kokkos, a ReaxFF implementation de-

veloped at Scandia National Laboratories, with PuReMD typically out-performing LAMMPS

Kokkos at larger scales.
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CHAPTER 1

BACKGROUND AND RELATED MATERIAL

1.1 Description of the Reactive Force Field Method

The reactive force field (ReaxFF) method is a relatively recent model (developed in early

2000s [1]) and is similar to the classical molecular dynamics (MD) model in the sense that

it models atomic nuclei together with their electrons as a point mass. Unlike classical MD

models, ReaxFF mimics bond formation and breakage observed in quantum mechanics (QM)

methods by replacing the static harmonic bond models with the bond order concept, which

is a quantity indicating bond strength between a pair of atoms based on the types of the

atoms and the distance between them. Consequently, ReaxFF can overcome many of the

limitations inherent to conventional MD. While the bond order concept dates back to 1980s

and has been exploited in other force fields before (such as COMB [2] and AIREBO [3]), the

distinguishing aspect of ReaxFF is the flexibility and transferability of its force field that

allows ReaxFF to be applied to diverse systems of interest [1, 4, 5, 6].

ReaxFF is currently implemented by major open source (PuReMD Reactive Molecular

Dynamics (PuReMD) [7], large-scale atomic/molecular massively parallel simulator (LA-

MMPS) [8], RXMD [9]) and commercial (ADF, Material Studio) software with an esti-

mated userbase of over 1,000 groups. In this thesis, the work builds off and utilizes the

PuReMD software, as PuReMD and its LAMMPS integrations, i.e., the User-ReaxC and

User-ReaxC/OMP packages [8], represent the most widely used implementations of ReaxFF.

PuReMD uses novel algorithms and data structures to achieve high performance while re-

taining a small memory footprint. An optimized neighbor generation scheme, elimination

of the bond order derivatives list in bonded interactions, lookup tables to accelerate non-

bonded interaction computations, and efficient iterative solvers for charge distribution are

the major algorithmic innovations in PuReMD [10, 11].
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In ReaxFF, the total energy of the system is comprised of partial energy contributions

according to Eq. (1.1), where summation over atomic indices is implied for each term.

Esystem = Ebond + Elp + Eover + Eunder

+ Eval + Epen + E3conj (1.1)

+ Etors + E4conj + EH-bond + EvdW + ECoulomb

While there are many similarities in ReaxFF to classical MD methods, one major difference

is that bond orders are calculated system-wide at the beginning of every MD step before

computing energies and gradients. Moreover, due to the dynamic bonding scheme of ReaxFF,

these potentials must be modified to ensure smooth potential energy curves as bonds form

or break. In the following subsections, these details are elucidated.

1.1.1 Bond Orders

In ReaxFF, the bond order between a pair of atoms i and j signifies the strength of the bond

between the two atoms. Eq. (1.2) properly quantifies this notion for specific types of atoms

i and j at at distance apart of rij.

BOα′

ij (rij) = exp

[
aα

(
rij
r0α

)bα
]

(1.2)

In the above equation, α corresponds to σ−σ, σ−π, or π−π bonds; aα and bα are parameters

specific to the bond type; and r0α is the optimal length for this bond type. With this in

mind, the total bond order BO′
ij is expressed as the summation of these bond types in the

equation below.

BO′
ij = BOσ′

ij + BOπ′

ij + BOππ′

ij (1.3)

In order to model complex bonding behavior in real-life systems, additional considerations

beyond pairwise bond orders are necessary including the total coordination number of each

atom and 1–3 bond corrections in valence angles. Eq. (1.4) describes these such corrections.

BOij = BO′
ij · f1

(
∆′

i,∆
′
j

)
· f4
(
∆′

i,BO
′
ij

)
· f5
(
∆′

j,BO
′
ij

)
(1.4)

2



In the above equation, ∆′
i denotes the deviation of atom i from its optimal coordination

number, f1
(
∆′

i,∆
′
j

)
applies an over-coordination correction, and f4(∆

′
i,BO

′
ij), together with

f5(∆
′
j,BO

′
ij) constitute 1–3 bond order corrections. Only corrected bond orders are used in

energy and gradient computations within ReaxFF.

1.1.2 Bonding Term

Classical MD methods adopt a spring model in which the energy of a bond is determined

solely by its deviation from the optimal bond distance, thereby ignoring the effects of neigh-

boring bonds. In contrast, ReaxFF tabulates the energy incident on a bond from all bond

order constituents. The higher the bond order, the lower the energy and the stronger the

force associated with the bond. Eq. (1.5) formalizes this notion, and ensures that the energy

and force due to a bond smoothly go to zero as the bond dissipates.

Ebond = −Dσ
e · BOσ

ij · exp
{
pbe1

(
1−

(
BOσ

ij

)pbe2)} (1.5)

−Dπ
e · BOπ

ij −Dππ
e · BOππ

ij

1.1.3 Lone Pair Term

Classical MD methods do not need to resolved bond defects due to their aforementioned

modeling. In contrast, the bonding in ReaxFF must account for unpaired electrons of an

atom via an explicit lone pair term. In a nicely formed and equilibrated system, lone pair

energy does not have a significant contribution to the total energy, however, it is important

for describing atoms with defective bonds. Lone-pair energy is computed using the following

equation:

Elp =
plp2 ·∆lp

i

1 + exp{−75 ·∆lp
i }

(1.6)

In Eq. (1.6), ∆lp
i = nlp

opt − nlp
i essentially corresponds to the number of unpaired electrons.
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1.1.4 Over- and Under-coordination Term

Despite the valence correction applied during bond order corrections, there may still remain

some over- or under-coordinated atoms in the system. Over-coordination energy penalizes

over-coordinated atoms, while under-coordination energy accounts for the energy due to a

resonant π-electron between atomic centers in the presence of a π-bond between atoms i and

j. Section 1.1.4 and Section 1.1.4 describe over- and under-coordination, resepctively.

Eover = ∆lpcorr
i ·

∑
j∈nbrs(i)

povun1 ·Dσ
e · BOij(

∆lpcorr
i + V ali

)(
1 + exp{povun2 ·∆lpcorr

i }
) (1.7)

Eunder = −povun5 · f6(i, povun7, povun8) ·
1− exp{povun6 ·∆lpcorr

i }
1 + exp{−povun2 ·∆lpcorr

i }
(1.8)

∆lpcorr
i = ∆i −∆lp

i · f6(i, povun3, povun4)

f6(i, p1, p2) =

1 + p1 · exp

p2 ·

 ∑
j∈nbrs(i)

(
∆j −∆lp

j

)
·
(
BOπ

ij + BOππ
ij

)
−1

1.1.5 Valence Angle Term

The energy associated with vibration about the optimum valence angle between a triplet of

atoms i, j, and k is computed from according to Section 1.1.5.

Eval = f7(BOij, pval3, pval4) · f7(BOjk, pval3, pval4) · f8(∆j, pval5, pval6, pval7) ·(
pval1 − pval1 · exp

{
−pval2 · (Θ0 −Θijk)

2}) (1.9)

f7(BO, p1, p2) = 1− exp {−p1 · BOp2}

f8(∆, p1, p2, p3) = p1 − (p1 − 1) · f9(∆, p2, p3)

f9(∆, p1, p2) =
2 + exp {p1 ·∆}

1 + exp {p1 ·∆}+ exp {−p2 ·∆}

Similar to its classical counterparts, the energy on Θijk increases as it moves away from its

corrected optima Θ0, which is obtained from the theoretical optima Θ00, by accounting for
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the effects of over- and under-coordination on the central atom j as well as the influence of

any lone electron pairs. Valence angle energy further depends on the strength of bonds BOij

and BOjk; f7(BOij) and f7(BOjk) terms in Section 1.1.5 ensure that valence angle energy

goes smoothly to zero as either bond dissociates.

1.1.6 Torsion Term

Section 1.1.6 accounts for the energy resulting from torsions in a molecule.

Etors =
1

2
· f10(BOij,BOjk,BOkl, ptor2, 1) · sin (Θijk) · sin (Θjkl) · (1.10)

[V1 · (1 + cos (ωijkl)) +

V2 · exp
{
ptor1 ·

(
2− BOπ

jk − f9(∆j +∆k, ptor3, ptor4)
)2} · (1− 2 cos(2ωijkl)) +

V3 · (1 + cos (3ωijkl)) ]

f10(BO1,BO2,BO3, p1, p2) = f7(BO1, p1, p2) · f7(BO2, p1, p2) · f7(BO3, p1, p2)

As in the valence angle energy term, the torsional conribution from a four-body structure

should vanish as any of its bonds dissociate. Here, f10(BOij,BOjk,BOkl, ptor2, 1) enforce

this constraint. If either of the two valence angles defined by these four atoms approaches π,

torsional energy should again disappear; this is accomplished by the term sin (Θijk)·sin (Θjkl).

1.1.7 Additional Bonding Terms

In ReaxFF, there are other bonded interaction terms shown in Eq. (1.1) for which details

have been omitted for brevity. The stability of 3-body structures in which the central

atom has two double bonds is achieved through a penalty energy term Epen. Three-body

conjugation energy E3conj and four-body conjugation energy E4conj terms, as their names

imply, encapsulate the energy contribution from conjugated systems. Full details regarding

these terms can be found in [1].
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1.1.8 Hydrogen Bonding Term

The energy term attached to a hydrogen bond in ReaxFF is given by Eq. (1.11).

Ehbond = phb1 · f7(BOXH , phb2, 1) · sin4

(
ΘXHZ

2

)
· exp

{
−phb3 ·

(
r0hb
rHZ

+
rHZ

r0hb
− 2

)}
(1.11)

In this equation, a bond is defined as existing between an electronegative atom (denoted Z)

in the vicinity of a Hydrogen atom covalently bonded to a Nitrogen, Oxygen, or Fluorine

atom (denoted byX). Similar to the equations for valency and torsion, the f7 (BOXH , phb2, 1)

term ensures that contributions from hydrogen bonding smoothly approach zero as the co-

valent bond breaks. For hydrogen bonding to be strong, it is crucial that all three atoms

are geometrically aligned on a line. This fact is evident by observing that sin4
(
ΘXHZ

2

)
is

maximized when ΘXHZ = π.

1.1.9 van der Waal’s Term

A distance-corrected Morse-potential term is used for van der Waal’s interactions as shown

in Section 1.1.9.

EvdWaals = T (rij) ·Dij · (1.12)[
exp

{
αij ·

(
1− f13(rij)

rvdW

)}
− 2 · exp

{
1

2
· αij ·

(
1− f13(rij)

rvdW

)}]
T (rij) = t7 · r7ij + t6 · r6ij + t5 · r5ij + t4 · r4ij (1.13)

+ t3 · r3ij + t2 · r2ij + t1 · rij + t0

f13(rij) =
(
rpvdW1
ij + γ−pvdW1

w

) 1
pvdW1 (1.14)

In contrast to classical force fields where van der Waal’s interactions are computed only

between non-bonded atom pairs, in ReaxFF all atom pairs – bonded or non-bonded – con-

tribute to the energy term. The rationale behind this is that neglecting bonded pairs from

contributing would result in discontinuities on the potential energy surface as bonds are

formed or broken. To prevent extremely high repulsion forces between pairs at short dis-

tances, a shielding term is included in Section 1.1.9. Additionally, the tapering function
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T in Section 1.1.9 is a seventh order polynomial with coefficients ti, 1 ≤ i ≤ 7, chosen to

ensure that the van der Waal’s energy smoothly goes to zero for pairs at distances beyond

the non-bonded interaction cut-off distance, rnonb.

1.1.10 Coulomb Term

Coulomb interactions are defined pairwise for all atoms akin to van der Waal’s interactions.

For corrections, shielding and taper terms are included in the potential as shown in Eq. (1.15).

ECoulomb = C · T (rij) ·
qi · qj[

r3ij + γ−3
ij

] 1
3

(1.15)

Coulomb interactions are truncated within a specified cut-off rnonb, typically valued in the

10 to 12 Å range. Moreover, no long-range electrostatic interactions in included in ReaxFF.
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CHAPTER 2

FAST SOLVERS FOR CHARGE DISTRIBUTION MODELS ON
SHARED-MEMORY PLATFORMS

This chapter presents previously published work on optimization of global charge models

typically coupled with ReaxFF [12]. This work is reproduced with the permission of SIAM.

Chronologically, the first avenues explored for optimizing PuReMD focused on the shared-

memory implementation. This version of the software, which prior to this work was a

serial-only implementation, serves several purposes including acting as an optimization and

development framework of ReaxFF parameter sets, and providing a codebase which is used

for integration with external molecular software packages. Moreover, the relative simplicity

of the serial nature of this implementation due to the presence of all simulation data within

the same memory space enables rapid prototyping and exploration of new algorithms and

avenues for performance optimization.

With the above points in mind, the shared-memory implementation was used for devel-

oping and optimizing several global charge solver models which are instrumental to polariz-

ability [13, 12]. These models, which are described in detail in the following section, require

the determination of partial atomic charges at a given instant in time. Algorithmically, this

requires solving large sparse linear systems for equations at each MD timestep. From pre-

vious analysis of the performance of PuReMD, these linear solvers constitute a significant

portion of the execution time – 50% and upward depending on the particular system under

simulation. Thus, these kernels were clear top candidates for initial optimization efforts. In

the following sections, the charge models themselves and the techniques used to optimize

the linear solvers applied to these models are described.
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2.1 Introduction

Molecular dynamics (MD) simulations are utilized across a wide range of fields including

physics, chemistry, biology, and materials science. On one hand, the force fields (set of

parameterized mathematical equations describing the interactions between atoms) used in

these simulations must be high fidelity so that simulations can have scientific impact. On

the other hand, the force field formulations need to be computationally inexpensive such

that simulations of millions to billions of timesteps can be routinely performed, allowing

scientists to probe into chemical or biological phenomena that take place in the microseconds

to milliseconds ranges. In this regard, over the past few decades several highly successful

force fields have been developed to model liquids, proteins, and materials [14, 15, 16]. The

efficiency of these force fields is mainly due to the use of static bonds between atom pairs

and fixed charges on each atom. While suitable for various applications, these simplifications

render classical force fields unsuitable in applications where polarization effects or chemical

reactions are important.

The impact of modeling charge distribution on the fidelity of MD simulations is well

known [17, 18, 19, 20]. As such, to this day several charge distribution models have been

developed for atomistic systems [21, 22, 23, 24]. While each of these models basically aims

to find the charge distribution that minimizes the total electrostatic energy, the set of phys-

ical/chemical constraints they impose in this optimization problem is essentially what sepa-

rates them. As discussed in Section 2.2.1, minimization of the electrostatic energy subject to

the set of constraints defined by a particular model requires the solution of large systems of

linear equations. It is important to note that trying to incorporate the long-range Coulomb

effects into the dynamic charge distribution models would significantly increase their compu-

tational costs, making them impractical for actual simulations. Hence, force fields utilizing

dynamic charge models adopt tapering functions which limit the effect of charges only within

a certain radius (which is typically 10-12 Å). As a result, linear systems arising in the formu-

lations of dynamic charge models are sparse, and iterative solvers are used to find sufficiently
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accurate solutions.

Development of fast and efficient iterative solvers for dynamic charge models constitutes

the main objective of this paper. Previous work on this topic has explored the use of

Jacobi preconditioners and good initial guesses which have indeed been shown to be highly

effective [11, 10]. Nevertheless, charge distribution in actual simulations still takes up a

significant amount of computation time and represents an important scalability bottleneck,

as demonstrated for instance for the Reax Force Field (ReaxFF) [1, 4] in Refs. [11, 8]. It

can be argued that dynamic charge distribution would represent an even more significant

bottleneck for other force fields if it were to be incorporated into their formulations, because

ReaxFF is known to be a complex and computationally expensive force field.

In this paper, we focus on the development of effective, yet inexpensive preconditioners

to accelerate the solvers used in dynamic charge distribution models, as well as high perfor-

mance implementation of the resulting solvers in the open source PuReMD package [11, 10].

Presented techniques are shared memory parallel, but an efficient shared memory paral-

lel solver constitutes the critical building block for extending our techniques to distributed

memory systems. We demonstrate through extensive numerical tests that these carefully

designed efficient preconditioned solvers and their efficient implementations can significantly

accelerate solvers for dynamic charge models.

2.2 Dynamic Charge Distribution Models and Linear Solvers

2.2.1 Charge Equilibriation (QEq)

We define and discuss the charge distribution models and their formulations as linear systems

of equations beginning with the QEq model [22]. In this model, the distribution of charges

over atoms is determined by minimizing the electrostatic energy Eele given the atomic posi-

tions. Let R = (r1, r2, . . . , rn) signify the positions of the system of n atoms, where ri ∈ R3

for 1 ≤ i ≤ n. Atomic charges q = (q1, q2, . . . , qn), qi ∈ R, are thus defined by solving the
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following problem:

min
q

Eele (q) =
∑
i

χiqi +
1

2

∑
i,j

Hijqiqj

subject to qnet =
∑
i

qi.

(2.1)

In Eq. (2.1), we define Hij as δijηi+(1− δij) ·Fi,j, where δij denotes the Kronecker delta

operator; χi and ηi denote the atomic electronegativity and idempotential; rij = ||rj − ri||2
signifies the distance between the atomic pair i and j; and γij =

√
γi · γj denotes a pairwise

shielding term tuned for element types of atoms i and j to avoid unbounded electrostatic

energy at short distances. Additionally, Fi,j is defined as

Fi,j =


1

3
√

r3ij+γ−3
ij

, rij ≤ rnonb (which is typically 10 to 12 Å)

0, otherwise.

(2.2)

Applying the method of Lagrange multipliers to Eq. (2.1), we obtain the sets of linear

equations below [25, 10].

n∑
i=1

Hkisi = −χk, k = 1, . . . , n

n∑
i=1

Hkiti = −1, k = 1, . . . , n

(2.3)

Here, the values si and ti can be thought of as pseudo-charges used during the Lagrangian

method. From these, partial atomic charges qi can be computed as follows:

qi = si −
∑n

j=1 sj∑n
j=1 tj

· ti. (2.4)

We henceforth refer to the coefficient matrix in Eq. (2.3) as HQEq ∈ Rn×n. We note that

HQEq is symmetric and has been observed to be positive definite across numerous atomic

systems we have worked with.

2.2.2 Electronegativity Equalization (EE)

EE is another commonly used approach for partial charge calculation; it relies on the principle

that charges should be distributed to atoms in order to satisfy constraints for both net
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system charge and equalized atom electronegativity [26, 21]. For the latter, we represent

the electronegativity of atom i as ϵi, and thus the electronegativity equalization constraint

is formalized as

ϵ1 = ϵ2 = · · · = ϵn = ϵ̄. (2.5)

Using the same definition of electrostatic energy (i.e., Eele) and empirical parameters in

Eq. (2.1) in conjunction with the constraints in Eq. (2.5), we can represent the system of

linear equations to be solved in EE in block form as a superset of those from the QEq model:HQEq 1n

1T
n 0


q
ϵ̄

 =

−χ
qnet

 (2.6)

In Eq. (2.6), qnet again represents the net charge of the atomic system, while the EE

charge matrix HEE ∈ R(n+1)×(n+1) is symmetric, indefinite, and sparse.

2.2.3 Atom-Condensed Kohn-Sham Approximated to Second Order (ACKS2)

The recently proposed ACKS2 model [24] can be regarded as an extension of the EE model.

Essentially, ACKS2 was developed with the aim of correcting issues with accurately mod-

eling dipole polarizability and charges during bond formation/dissociation via additional

empirically fitted parameters. A block matrix representation of the linear system arising in

the ACKS2 model is as follows:

HQEq In 1n 0n

In X 0T
n 1n

1T
n 0T

n 0 0

0T
n 1T

n 0 0





q

U

µmol

λU


=



−χ

0

qnet

0


. (2.7)

In Eq. (2.7), U contains Kohn-Sham potential coefficients, µmol and λU are Lagrangian

multipliers from the underpinning optimization problem, and X contains terms for the linear

response kernel of the Kohn-Sham potential. Similarly to the EE model, the ACKS2 matrix

HACKS2 ∈ R(2n+2)×(2n+2) is symmetric, indefinite, and sparse.
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In Table A.1 of Appendix A, we present the empirically-fitted values utilized for studying

the computational behavior of the charge models discussed in this section. In addition to

the parameters mentioned in Section 2.2.1, σi and Λ are ACKS2-specific parameters which

control entries in the linear response kernel X, with the former being tuned for thresholding

entries based on element types and the latter being used as a global bond softness parameter.

2.3 Preconditioning Techniques for Linear Solvers

Two commonly used techniques to accelerate the convergence of iterative solvers are using

good initial guesses, and preconditioning; the latter of which essentially amounts to lever-

aging better spectral properties of a transformed linear system. In the context of charge

distribution models, the good initial guesses approach was previously explored in the form

of spline extrapolations for QEq [10] which capitalized on the key observation that in a

molecular simulation environment, atomic positions change slowly due to short timestep

lengths. Thus, extrapolations from solutions to the linear systems in previous timesteps are

likely to provide good initial guesses.

While initial guesses are easy to apply and can be very effective, a good preconditioner is

crucial to ensure fast convergence. Aktulga et al. have also proposed an incomplete Cholesky

based preconditioner for the QEq model, albeit in a purely sequential context [10]. Due to

the difficulties in attaining a scalable implementation of the incomplete Cholesky technique,

actual simulations carried out on distributed memory systems (such as those with PuReMD

and LAMMPS [27]) still rely on the simple Jacobi preconditioning technique in the QEq

solver. As an illustration of the performance impact of this situation, 60% or more of the

total runtime in large-scale ReaxFF simulations is spent in the QEq kernel, as the cost of

inter-node communications in the QEq solver dominate the execution time [8].

When one considers the EE and ACKS2 models, the need for efficient solvers is exac-

erbated. As shown in Table A.2 of Appendix A for the systems considered in this study

(and seems to hold true in general), condition numbers of the coefficient matrices for the EE
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model tend to be slightly worse than those of the QEq model. For ACKS2 (where we only

had empirically fitted force field parameters for the water system), the condition number is

significantly worse than either QEq or EE.

Motivated by the factors above, identifying effective and efficient preconditioning tech-

niques for the charge distribution models constitutes the main focus of this paper. One

issue that prevents well-known preconditioners to be directly useful in this context is the

fast execution requirement of molecular dynamics simulations. The key enabler for our use

of high-quality preconditioners is the same observation that allows good initials guesses –

leveraging the slowly-evolving characteristic of a molecular simulation, we amortize the cost

of a preconditioner construction by re-using the same preconditioner over several timesteps.

However, as we discuss below and demonstrate through numerical experiments in Section 2.4,

there still exist important trade-offs that must be considered in building a practical solver:

• Effectiveness : How much a preconditioner can increase the convergence rate of the

solver,

• Cost : Time to compute and apply a preconditioner,

• Longevity : Number of subsequent timesteps that a preconditioner can be used effec-

tively without having to recompute it, and

• Parallelizability : How scalable a preconditioner is in a parallel environment.

2.3.1 Approaches

In the subsections that follow, we describe the preconditioning techniques explored, which

we refer to in the remainder of the paper by the bolded notation in parentheses. The symbol

H represents the generic coefficient matrix of the sparse linear system to be solved for a

specified charge model (QEq, EE or ACKS2).
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2.3.1.1 Jacobi (Jacobi)

A simple approach is to form a preconditioning matrix P−1 by taking the multiplicative

inverses of the diagonal entries of H. The ill-defined cases of zero entries on the diagonals

of HEE and HACKS2 matrices can be treated by simply assuming those zeros to be ones for

the Jacobi preconditioner.

Despite being an inexpensive and easily parallelizable preconditioner, the Jacobi pre-

conditioner yields limited improvements in the solver convergence rate, because P−1 is a

poor approximation to H−1 for the charge models considered due to the presence of a large

number of off-diagonal entries (which is on the order of a few hundred per row) with not-so-

insignificant nonzero values. Nevertheless, given its simplicity, Jacobi preconditioned solver

performance serves as our baseline to measure the improvements obtained by the other

preconditioning techniques explored.

2.3.1.2 Incomplete LU (ILU) based Techniques

The idea behind incomplete LU preconditioning is to compute and leverage an approximate

LU decomposition H ≈ L′U′, where L′ and U′ are approximate lower and upper triangular

factors, respectively. ILU techniques are known to be among the most effective precon-

ditioners [28], but an important question is how to determine the factors L′ and U′, i.e.,

which sparsity pattern to select so that the factors are computationally inexpensive to com-

pute and apply, yet effective as a preconditioner. A common choice for the sparsity pattern

is the 0-fillin approach, ILU(0), where L′ + U′ has the same sparsity pattern as H [28].

Another effective choice utilizes the thresholding approach, ILUT(t), where the sparsity

patterns in L′ and U′ are a subset of the 0-fillin approach in which entries smaller than a

prescribed threshold t are dropped during factorization [29]. Note that since the matrices in

the QEq model are symmetric positive-definite, ILU preconditioning essentially amounts to

computing an incomplete Cholesky (IC) factorization with L′ = (U′)T .
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Sparsification Strategies for Factor Computation: Plain ILU(0) and ILUTP(t) precondi-

tioning turn out to be too costly to be useful in practice for our purposes. As such, we

investigated a number of techniques to reduce the computational costs associated with con-

struction and application of ILU based preconditioning techniques and improve their scaling.

In particular, we developed two custom sparsification schemes for matrices arising in dynamic

charge models:

• Numeric dual drop strategy: In this scheme, we start with a zero-fillin precondi-

tioner (i.e., ILU(0), IC(0)), but as in ILUTP(t), we apply a numerical threshold to

drop small entries in the incomplete factors. Specifically, after a row in a factor is com-

puted, the 1-norm of the row is computed, followed by a thresholding operation where

zero-fillin entries that are less than a predetermined threshold t times the 1-norm of

that row are discarded. This hybrid scheme allows us to easily determine the location

of the nonzeros (by virtue of not allowing fillins), and obtain sparser factors that con-

tain only the most significant entries (as in an ILUTP factorization). As such, it is an

inexpensive, yet effective and easy-to-implement preconditioner for the spd matrices

of QEq, which we refer to as IC with dual drop (ICDD(t)), where the parameter t

denotes the numerical threshold to be used. In the cases of EE and ACKS2 models, to

prevent numerical breakdowns during factorization, we replace zeros on the diagonal

with ones and perform an ILU decomposition because EE and ACKS2 matrices are

not spd. We denote this scheme as ILU with dual drop (ILUDD(t)).

• Distance drop strategy: A number of other works have utilized insights in the un-

derlying application in order to select which entries to threshold [30, 31]. We choose to

follow these approaches and look to the physics underpinning the charge model prob-

lem. From the definition of the coefficient matrices for the charge distribution models

in Eq. (2.1), we observe that as the distance between a pair of atoms increases, the

corresponding off-diagonal entry in H decreases proportionately to the inverse of the
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distance. Said differently, small off-diagonal entries in H are contributed by atomic

pairs separated by large distances. Intuitively, these entries contribute relatively less to

the preconditioner quality; thus, they are good candidates for elimination. We denote

the ILU/IC factors sparsified using the distance drop technique with the suffix DS(d),

e.g., ICDD(t)+DS(d) and ILUDD(t)+DS(d), where d is a real parameter in the

range (0, 1] that is applied as a scaling of the distance cutoff of the nonbonded inter-

action radius rnonb. The distance drop sparsification technique can be implemented

simply by constructing a sparser H given a prescribed parameter d, and then perform-

ing an ICDD or ILUDD factorization. As will be demonstrated through numerical

experiments, distance based sparsification is highly preferred across a large majority

of our benchmark cases.

Parallelization of Factor Computation and Application: In addition to the cost and effec-

tiveness of the incomplete factors utilized, another important consideration is exploiting

high degrees of parallelism available on high performance computing systems. Due to the

need for eliminating data race conditions in a parallel ILU computation, the nonzero pat-

tern of the sparse matrix plays an important role during both computation and application

of the approximate factors. In this regard, it can be argued that the above sparsification

schemes increase the degree of available parallelism by virtue of reducing the overlap be-

tween different rows of the coefficient matrices. To further improve the scalability of our

ILU preconditioners, we implemented the techniques below:

• Balanced Level Scheduling using Graph Coloring: Fundamentally, this approach

is based on the idea of level scheduling. Using the row dependency graph, groups of

independent rows (i.e., levels) are determined. During the subsequent factorization,

threads perform the scaling and elimination operations in parallel within a level, and

computations between subsequent levels proceed in a lock-step fashion. Therefore the

degree of parallelism is heavily dependent on the sparsity pattern.
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As shown in our previous work [13], a pure level scheduling approach can produce

poor thread scalability in situations where there is a large number of dependencies

between the rows. In order to improve the performance of level scheduling, many other

works have explored the use of reorderings using graph coloring [32, 33, 34]. For the

solvers in this work, we utilize an iterative, graph coloring approach [35] to break data

dependencies through an explicit permutation ofH [36]. In this method, a permutation

matrix Q – which increases the amount of independent nodes per level – is determined

by first finding an approximate coloring of the dependency graph. This permutation

matrix can be applied as QTHQ, and subsequently factored as QTHQ ≈ L′
PU

′
P using

level scheduling [37]. The graph coloring approach can be used with both the numerical

and distance drop strategies (or their combination) discussed above.

• Fine-grained ILU (FG-ILUDD(t, s)): This iterative approach, recently proposed

for computing the incomplete factors, seeks to address the issue of limited parallelism

in ILU preconditioning [38]. Here, the factorization problem is posed as a constraint

optimization problem where one seeks to satisfy a series of equations of the form

min(i,j)∑
k=1

LikUkj = Hij (2.8)

by asynchronously updating individual nonzeros in the sparse factors. A single pass

over all nonzeros in the factors is termed as a “sweep”; at each sweep, the factors

computed by this algorithm with fine-grained parallelism get asymptotically closer to

the actual L′ and U′ factors. We use the parameter s to denote the number of sweeps

used to compute the factors in our implementation. To achieve convergence of the

factors, Hmust have a unit diagonal, which may require diagonal scaling. Additionally,

we assume the convention that the factor L′ has unit diagonal entries.

Numerical dual dropping strategy can still be applied with fine grained ILU. In this

scheme, which we refer to as FG-ILUDD(t, s), after all sweeps are completed, we

perform a post-processing step where all nonzeros are scanned and those below the
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specified numerical threshold t times the 1-norm of that row are dropped. On the

other hand, distance drop sparsification is straight-forward to use here because it ap-

plies the sparsification before factorization, exactly as required by the fine-grained ILU

method, and it can be highly effective because our numerical experiments show that

contruction of the fine-grained ILU preconditioner can be very costly despite being

easily parallelizable.

2.3.1.3 Sparse Approximate Inverse (SAI(τ)))

A technique that is generally less effective than ILU preconditioning, but lends itself more

easily to parallelization, is sparse approximate inverse (SAI) preconditioning. Given H, SAI

aims to find an approximate inverse matrix M such that the right preconditioned system

HMy = b, with x = My, (or the left preconditioned system MHx = Mb) can be solved

with fewer solver iterations than the original sparse linear system, and ideally with a lower

overall execution time. Generally, there are three popular categories of SAI techniques:

Frobenius norm minimization, factorized sparse approximate inverse, and incomplete bicon-

jugation [39]. In this work, we focus on the first group. Hence, the objective is to minimize

||I−HM|| for right preconditioning (or to minimize ||I−MH|| for left preconditioning).

To control the cost of constructing as well as applying the SAI preconditioner, often M

is chosen to be no denser than the coefficient matrix H itself [40]. Given the relatively large

number of nonzeros per row in our problems, it is crucial that the number of nonzeros in

the approximate inverses is significantly lower than that of the charge distribution matrix.

Our experiments on a number of sample problems have shown that the positions of the

numerically large nonzeros in the charge matrix constitute good candidates for the sparsity

pattern of M. In accordance with this observation, we select only the τ percent largest

nonzeros for inclusion when computing the approximate inverse matrix.

During construction of the SAI preconditioner, a benefit of using the Frobenius form is
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that we can easily exploit parallelism because the SAI factorization is formulated as:

||I−HM||2F =
n∑

j=1

||ej −Hmj||22 . (2.9)

Here, ej is the j-th column of the identity matrix and mj is the j-th column of M.

Leveraging the fact that H is sparse, we build least squares problems with smaller dense

matrices Ĥj and vectors m̂j, where Ĥj is obtained by eliminating the rows and columns

of H that do not correspond to the set of nonzeros found in the row of M currently being

computed (see Section 2.1 of [41] for details of this construction). Thus, the resulting least

squares problems
∣∣∣∣∣∣êj − Ĥjm̂j

∣∣∣∣∣∣2
2
can be solved independently through QR decomposition of

Ĥj.

We note that the distance based sparsification of the coefficient matrix can be easily

applied for SAI preconditioning as well. In fact, distance based sparsification can be highly

effective in this context by reducing the cost of QR factorizations without much impact in

effectiveness of the SAI preconditioner. Additionally, we utilize optimized LAPACK libraries

(such as Intel MKL or Cray LibSci) to perform the QR decomposition tasks each of which

are executed sequentially by different threads using dynamic assignment for load balancing

purposes.

2.3.2 Dynamic Determination of Preconditioner Recomputation

One important insight considered when designing our preconditioned solver is that the molec-

ular systems (hence the corresponding linear systems) change slowly over the course of a sim-

ulation. To leverage this insight, preconditioners are only occasionally computed and reused

for several solves to amortize the preconditioner construction costs. The natural question

which arises from this is exactly when to recompute the preconditioner. In Algorithm 2.1,

we give a heuristic approach that adopts a gain-loss comparison perspective for recomputing

the preconditioner versus reusing it.
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Algorithm 2.1 Dynamic Determination of Preconditioner Recomputation.

1: Select α ≥ 0
2: for each simulation step do
3: if Tloss ≥ α · TPreComp or first simulation step then
4: (Re)compute the preconditioner
5: Define TPreComp as the preconditioner computation time from Line 3
6: Perform solve(s)
7: Define Tideal as the solve time from Line 5
8: Update Tloss = 0
9: Check if the preconditioner quality is satisfactory and act accordingly
10: else
11: Perform solve(s)
12: Define Tactual as the solve time from Line 10
13: Update Tloss += Tactual − Tideal

14: end if
15: end for

In this approach, we make the assumption that a preconditioner is most effective in

terms of improving solver convergence at the simulation step in which it was computed. The

preconditioned solve time required right after a preconditioner is recomputed is recorded as

the ideal solve time for this preconditioner (denoted Tideal). From this point onward, we

accumulate the excess solve time compared to this ideal solve time (Tloss); this is considered

the loss incurred by reusing the preconditioner. When the aggregated loss time exceeds

the time it would take to recompute the preconditioner (TPreComp) times α, we proceed to

recompute it, otherwise we continue reusing it.

This dynamic scheme essentially justifies the reconstruction of a preconditioner by de-

tecting when the loss of effectiveness of the preconditioner would exceed α times the cost

of recomputing it, and tries to balance the gains and losses in preconditioner computation

time versus other solver time (preconditioner application, solver operations including sparse

matrix-dense vector multiplications and vector operations). We further study the conse-

quences of this heuristic in further detail later in Section 2.4.2.

To provide insight into how to select the value for parameter α in Algorithm 2.1, consider

the following proof for the α which minimizes total solver execution time under a fixed
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preconditioner cost and linear degradation model for solve time with preconditioner reuse.

Theorem 1 (Optimal Parameterization for Fixed Preconditioner Recomputation). Sup-

pose that for a sequence of n linear systems, a preconditioned solver is utilized where the

preconditioner is recomputed and reused according to the Algorithm 2.1. Assuming that the

solver performance degradation due to preconditioner reuse across solves is linear (solve time

increases linearly with reuse) and the cost is identical for each time the preconditioner is re-

computed, the value which minimizes total solve execution time is α = 1 ±
√

d
TPreComp

where

d is the increased solve time per step due to reusing the preconditioner.

Proof. Let r be the number of solves for which the preconditioner is used. First, observe

that from Line 3 of Algorithm 2.1 with our linear degradation assumption, we have

α · TPreComp = Tloss

= 0 + d+ 2d+ . . .+ (r − 1) · d

= d · r
2 − r

2
.

Equivalently, we have r =
√

2α·TPreComp

d
+ 1

4
+ 1

2
. Next, considering the total solve time, we

observe the following (where, for simplicity, we assume r divides n)

Ttotal =
n∑

i=1

T
(i)
actual +

n

r
· TPreComp

= n · Tideal +
n∑

i=1

T
(i)
loss +

n

r
· TPreComp

= n · Tideal +
nd

2

[√
2α · TPreComp

d
+

1

4
− 1

2

]

+ n · TPreComp

[√
2α · TPreComp

d
+

1

4
+

1

2

]−1

Finally, we see that when ∂Ttotal

∂α
= 0, the minimum of Ttotal is achieved when

α = 1±
√

d
TPreComp

.

We note that in practice,
√

d
TPreComp

≈ 0, so we select α = 1 for our experiments in

Section 2.4.
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2.3.3 Solver Implementation

As mentioned above, through construction of the preconditioners only occasionally, costs

associated with computing the approximate inverses in SAI or the incomplete factors in

ILU/IC schemes become negligible in practice. However, despite utilizing good initial guesses

and the described preconditioning techniques, our solvers typically take tens to hundreds of

iterations to converge depending on the charge model and the convergence tolerance used.

Hence, implementation of the preconditioned solver is important from a performance point

of view.

Since EE and ACKS2 models produce indefinite coefficient matrices, our implementation

uses a restarted GMRES solver [42], which has in fact been observed to yield better conver-

gence for QEq compared to a conjugate gradient and minimum residual solvers, despite the

coefficient matrices being symmetric semi-positive definite in QEq. In a left preconditioned

restarted GMRES(k) implementation, with k being the maximum number of iterations be-

fore restarting, the main parts are the sparse matrix-dense vector multiplications (SpMVs),

the application of a preconditioner (PreApp), and the dense vector operations (VecOps). In

PuReMD, the sparse coefficient matrix H is stored in CSR format, as such solver SpMV’s

are implemented by using loop parallelization over matrix rows. In the ICDD/ILUDD

and FG-ILUDD approaches’ PreApp phase, parallelization is applied across rows within

each level of the level scheduling with graph coloring technique. For SAI preconditioner,

PreApp essentially amounts to an SpMV operation, again using CSR format with simple

parallelization of the loop over matrix rows. Finally, VecOps are also implemented by using

simple loop parallelization.

Overall, with a simple Jacobi preconditioner, SpMV costs are expected to dominate

the overall computation, while VecOps or PreApp times are negligible. However, for SAI,

ICDD/ILUDD or FG-ILUDD preconditioners, PreApp time is likely to be significant.
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2.4 Numerical Experiments

2.4.1 Computing Environment and Benchmark Systems

Results from numerical experiments presented in the following subsections have been ob-

tained on Laconia, a cluster with over 400 compute nodes at Michigan State University’s

High Performance Computing Center 1. Each of the base compute nodes on Laconia has

28 cores, consisting of two fourteen-core Intel Xeon E5-2680v4 Broadwell 2.4 GHz proces-

sors, and has 128 GB DDR3 2133 MHz ECC memory. Each core possesses a 64 KB L1 cache

(32 KB instruction, 32 KB data), a 256 KB L2 cache, and the capability of running one or

two user threads (i.e., hyperthreading). Between the fourteen cores on a single “Broadwell”

processor, a 35 MB L3 cache is shared. At the time of the experiments, the Laconia nodes ran

CentOS version 7.6.1810 distribution of GNU/linux for x86 64 architectures, kernel version

3.10.0-957.5.1, and glibc version 2.17-260.el7 6.3.

The preconditioned solvers detailed in Section 2.3 were implemented in the shared mem-

ory version of the PuReMD ReaxFF software [10, 11]. The software was built using the GNU

Compiler Collection version 8.2.0 with the optimizations enabled from the -O3 flag. For nu-

meric libraries, Intel MKL version 2019.1.144 was utilized. For experiments, we restricted

our simulations to a single socket on Laconia to avoid performance issues due to non-uniform

memory access (NUMA) effects. In these cases, the maximum number of OpenMP threads

was set to 14 with no hyperthreading enabled.

For benchmarking purposes, four characteristically varied molecular systems from various

application scenarios of reactive and polarizable force fields were selected. These systems,

which were comprised of bulk water (H2O), amorphous silica (SiO2), pentaerythritol tetran-

itrate (PETN, C5H8N4O12), and phospholipid bilayer (not solvated in water), represent liq-

uids, amorphous materials, perfect crystals, and soft matters, respectively. Quantitatively,

each system contained between 48,000 and 78,000 atoms; thus, these systems represented

1https://docs.icer.msu.edu/2018 cluster resources/
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moderately sized molecular structures. Table 2.1 summarizes the systems used for perfor-

mance evaluation.

Table 2.1 Molecular systems used in shared-memory performance evaluation. The
third column indicates the number of atoms in the system (N) and the fourth column denotes
the dimensions of the rectilinear simulation boxes in R3 in Angstroms (Å).

Name Chem. Rep. N Sim. Box Dims. (Å) Category
Water (W) H2O 78480 120.9× 80.6× 80.6 Liquid
Silica (S) SiO2 72000 109.4× 100.4× 104.2 Amorphous
PETN (P) C5H8N4O12 48256 114.5× 114.5× 155.5 Crystal
Bilayer (B) Phospholipid 56800 82.7× 81.5× 80.0 Soft matter

Unless indicated otherwise, all simulations were conducted with the following parameters:

periodic boundary conditions enabled, 0.25 fs timestep lengths, NVE ensembles, rnonb = 10 Å,

and 2000 total simulation timesteps. For the charge distribution solvers, the initial guesses

were extrapolated from solutions in earlier timesteps, with cubic and quadratic spline ex-

trapolation, respectively, used for the two linear systems arising in the QEq model solvers in

Eq. (2.3), while cubic spline extrapolation was used for EE and ACKS2 models. All reported

data have been averaged over the 2000 simulation timesteps.

Table 2.2 Qualitative behavior of the preconditioning techniques.

Preconditioner Cost Longevity Effectiveness Parallelism
Jacobi Very Low High Low High
ICDD(t) Moderate Moderate High Low
ILUDD(t) High Moderate High Low
FG-ICDD(t, s) Very High Moderate High High
FG-ILUDD(t, s) Very High Moderate High High
SAI(τ) Moderate High Moderate/High High

Before moving onto numerical results, in Table 2.2, we give a qualitative summary of

the trade-offs involved with the preconditioning approaches we explore. As indicated in this

table and demonstrated quantitatively in the subsections that will follow, it is crucial to

identify preconditioners that are i) effective at reducing the number of solver iterations, ii)

computationally inexpensive, and iii) easily parallelizable, especially in the PreApp phase.
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In the following, we examine each of these trade-off points to identify preconditioners with

the optimal overall performance.

2.4.2 Preconditioner Longevity

As discussed previously and indicated in Table 2.2, construction of ILU and SAI based

preconditioners constitute a significant cost in terms of computational time. To reduce

this cost, we leverage the fact that atomic positions, and hence the coefficient matrices,

evolve slowly over the course of a simulation; as such a preconditioner, once computed, is

reused over several timesteps. An important consideration is then for how many subsequent

timesteps a preconditioner can be effective. In Fig. 2.1, we show the longevity of the ICDD

and SAI preconditioners (the former of which behaves very similarly to its FG-ICDD

and ILU-based counterparts) for the bilayer and bulk water systems under our dynamic

refactorization scheme. For systems where atoms have limited mobility like the bilayer

system, we observe that both preconditioners remain effective for hundreds to thousands of

steps. For systems like water where atoms can move more freely, we observe that the heuristic

employed in Algorithm 2.1 leads to significantly more frequent preconditioner recomputations

to decrease the overall solve time. Additionally, we observe that as solver tolerances decrease,

the frequency of preconditioner recomputation tends to increase as the potential losses – in

terms of solve time – from using a poor quality preconditioner tend to increase (while the

preconditioner construction time remains constant). To precisely quantify the frequency, we

report in Table 2.3 the total number of preconditioner recomputations during the course of

the 2000 step simulations.

Overall, these results provide a strong basis that preconditioner construction costs can

be amortized by reusing ILU and SAI based preconditioners over hundreds of steps for high

tolerances (e.g., 10−6) and over tens of steps for lower tolerances (e.g., 10−10 or 10−14). As

will be shown in subsequent results (see Fig. 2.2), such reuse rates are sufficient to reduce

the preconditioner construction costs to only a small percent of the overall solver time. As
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Figure 2.1 Longevity of preconditioners with the QEq model. Results for the ICDD
and SAI preconditioners with the bilayer (left column) and bulk water (right column) sys-
tems using the QEq model are presented at various solver tolerances.

such, the term “preconditioner cost” will solely refer to the preconditioner application cost

(but not its construction cost) in the remainder of this section.

2.4.3 Tuning of Preconditioner Parameters for Cost and Effectiveness

With our proposed sparsification techniques, there is a large space of possible configurations

to choose from for each preconditioner (beyond the Jacobi method). Since there exist impor-

tant trade-offs regarding the effectiveness (convergence rate) and cost of different configura-

tions, we conducted a parameter search study to determine which parameters to utilize for

each scheme. In Table 2.4, we present a small snapshot from this study in which parameters
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Table 2.3 Number of recomputations for the shared-memory preconditioned
solvers. Results for the ICDD, ILUDD, FG-ICDD, FG-ILUDD, and SAI precon-
ditioned solvers are presented over 2000 simulation steps.

Solver Tolerance 10−6 10−10 10−14

Systems B P S W B P S W B P S W

CM Prec.

QEq ICDD 1 7 1 4 2 28 2 16 3 45 2 27
FG-ICDD 1 2 1 2 2 9 2 4 3 13 2 6
SAI 1 3 1 5 2 12 2 13 6 20 2 17

EE ILUDD 2 4 1 2 2 9 2 7 2 13 2 11
FG-ILUDD 1 1 1 1 1 4 1 3 1 6 1 4
SAI 5 16 1 3 3 22 2 8 16 35 5 12

ACKS2 ILUDD - - - 23 - - - 35 - - - 55
FG-ILUDD - - - 5 - - - 8 - - - 13
SAI - - - 9 - - - 12 - - - 22

that control preconditioner quality and sparsity for various schemes were varied for the QEq

model. To illustrate the aforementioned trade-offs, focusing on ICDD(0.0)+DS(1.0) and

ICDD(0.01)+DS(0.8), we notice that the former yields fewer solver iterations (5.4 versus

5.7 for a tolerance of 10−6, widening to 29.6 versus 32.0 for 10−14), but the latter produces

the lower mean solve times (0.01 versus 0.03 for 10−6, widening to 0.03 versus 0.08 for 10−14).

Note that during application of the incomplete Cholesky preconditioner, each nonzero re-

quires a single multiply/add operation, and therefore fewer number of nonzeros translates to

less floating point operations. The better solve time for ICDD(0.01)+DS(0.8) can then

be attributed to a lower preconditioner application cost as it has an order of magnitude

less number of nonzeros than the ICDD(0.0)+DS(1.0) variant. Also, as we show in more

detail in the next subsection, fewer number of nonzeros allows higher parallelizability during

preconditioner application. Similar trade-offs for other techniques can be observed in Ta-

ble 2.4. Overall, we notice that sparsification strategies hit the “sweet spot” in between the

two extremes of achieving high effectiveness and keeping costs as low as possible.

Using insights from the above study, high quality parameters were selected for each pre-
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Table 2.4 Shared-memory preconditioner parameter comparison using the QEq
charge method. Results from bulk water simulations (6540 atoms for 100 steps) are
presented for cost (number of non-zeros), mean solver iterations (SI), and mean solver time
(ST) in seconds. Preconditioners were computed only once at step 0.

Solver Tolerance 10−6 10−10 10−14

Cost SI ST SI ST SI ST
Preconditioner

ICDD(0.0)+DS(0.6) 2.98E5 5.7 0.01 17.5 0.02 32.2 0.03
ICDD(0.0)+DS(0.8) 7.05E5 5.4 0.02 16.5 0.03 30.3 0.05
ICDD(0.0)+DS(1.0) 1.37E6 5.3 0.03 16.1 0.05 29.6 0.08
ICDD(0.01)+DS(0.6) 1.46E6 5.7 0.01 18.1 0.02 32.6 0.03
ICDD(0.01)+DS(0.8) 1.57E5 5.6 0.01 17.6 0.02 32.0 0.03
ICDD(0.01)+DS(1.0) 1.59E5 5.6 0.01 17.4 0.02 31.7 0.04
FG-ICDD(0.0,3)+DS(0.6) 2.98E5 5.6 0.01 17.4 0.03 32.0 0.05
FG-ICDD(0.0,3)+DS(0.8) 7.05E5 5.4 0.02 16.4 0.05 30.2 0.09
FG-ICDD(0.0,3)+DS(1.0) 1.37E6 5.3 0.05 16.3 0.11 29.9 0.18
FG-ICDD(0.1,3)+DS(0.6) 2.28E4 10.9 0.01 37.9 0.02 72.8 0.07
FG-ICDD(0.1,3)+DS(0.8) 2.29E4 10.8 0.02 37.9 0.02 72.6 0.07
FG-ICDD(0.1,3)+DS(1.0) 2.32E4 10.8 0.03 37.9 0.02 72.5 0.08
SAI(0.01)+DS(0.6) 6.54E3 18.9 0.01 62.2 0.04 134.0 0.12
SAI(0.01)+DS(0.8) 7.58E3 18.9 0.01 63.0 0.04 135.3 0.12
SAI(0.01)+DS(1.0) 2.09E4 10.6 0.01 35.0 0.02 72.3 0.06
SAI(0.5)+DS(0.6) 2.33E4 10.1 0.01 33.0 0.02 67.5 0.05
SAI(0.5)+DS(0.8) 6.40E4 6.7 0.01 21.0 0.02 40.4 0.03
SAI(0.5)+DS(1.0) 1.31E5 14.5 0.01 30.3 0.03 58.4 0.05
SAI(0.1)+DS(0.6) 5.36E4 6.8 0.01 21.5 0.02 41.1 0.03
SAI(0.1)+DS(0.8) 1.35E5 14.4 0.01 29.9 0.02 58.7 0.05
SAI(0.1)+DS(1.0) 2.68E5 8.4 0.01 23.0 0.01 43.2 0.04

conditioning scheme for a given molecular system and convergence tolerance by scanning the

potential values of preconditioner parameters. These parameters are the dual drop threshold

t ∈ {0.0, 0.1, 0.01} in ICDD(t), ILUDD(t), FG-ICDD(s, t), and FG-ILUDD(s, t); the

additional parameter s for the latter two methods has been the number of sweeps (ranged

from 2 to 4). For SAI, the percentage of the top nonzeros to be kept (in terms of magnitude)

was varied from 3% to 15% in 1.5% increments. For all solvers, distance based pruning

was also investigated for values of d ∈ {0.6, 0.8, 1.0}. In the results presented below, the

combination that yields the best execution time for each preconditioner is used. We report
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these parameters in Table A.3 of Appendix A. As can be seen in that table, both the dual

dropping and distance based pruning is heavily utilized across the board by different pre-

conditioning schemes, providing evidence on their merit. We note that such a parameter

search can be made an integral part of the PuReMD software itself, so that an automated

tuning is performed for the particular simulation and architecture for the first few hundred to

thousand steps of a simulation. Considering the fact that a production simulation typically

takes millions to billions of timesteps, overheads incurred would be negligible.

Table 2.5 Comparison of the cost and effectiveness of the shared-memory precon-
ditioned solvers for the bulk water system. Results for the Jacobi, ICDD, ILUDD,
FG-ILUDD, and SAI preconditioned solvers are presented. For cost, the number of nonze-
ros in the preconditioner is reported for the chosen parameters at a solver tolerance of 10−6

(sum of factors for ILU-based methods). For effectiveness, the mean solver iterations (SI)
and mean solve time (ST) in seconds are given for various solver tolerances (top row). For
enabling easier comparisons, the solver iterations for the preconditioners have been normal-
ized as improvement over the Jacobi preconditioner (bolded and unnormalized).

Solver Tolerance 10−6 10−10 10−14

Cost SI ST SI ST SI ST
CM Prec.

QEq None 0 0.8x 0.12 0.8x 0.51 0.9x 0.97
Jacobi 7.84E4 16.3 0.09 62.7 0.37 128.4 0.80
ICDD 3.46E6 2.7x 0.06 4.3x 0.14 5.0x 0.25
FG-ICDD 7.16E6 2.3x 0.08 3.3x 0.21 3.8x 0.38
SAI 6.42E5 2.6x 0.05 3.5x 0.13 3.6x 0.24

EE None 0 0.8x 0.10 0.8x 0.30 0.9x 0.55
Jacobi 7.84E4 12.2 0.08 36.2 0.23 80.9 0.55
ILUDD 1.97E6 2.4x 0.05 3.9x 0.10 4.4x 0.17
FG-ILUDD 7.32E6 1.8x 0.06 3.0x 0.16 3.4x 0.26
SAI 6.53E5 2.8x 0.03 3.5x 0.08 3.5x 0.15

ACKS2 None 0 0.1x 14.98 0.1x 27.58 0.1x 64.60
Jacobi 1.56E5 125.6 1.62 216.1 3.01 425.7 5.94
ILUDD 5.07E6 5.4x 0.43 5.0x 0.81 4.5x 1.74
FG-ILUDD 8.48E6 2.4x 1.02 2.9x 1.55 2.6x 3.38
SAI 6.34E5 2.2x 0.72 2.3x 1.25 2.1x 3.06

Next, in Table 2.5, we demonstrate the trade-offs between preconditioner cost and ef-
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fectiveness for parameters determined as a result of the above search procedure across all

charge models. As expected, despite its low cost, Jacobi is the least effective in improving

the convergence rate, while still yielding important improvements over the unpreconditioned

case, especially for the ACKS2 charge model. Incomplete factorization methods ICDD,

ILUDD, FG-ICDD, and FG-ILUDD are the most effective ones. The effectiveness gap

between Jacobi and ILU-based schemes widens as the convergence tolerance decreases from

10−6 to 10−10, with lesser gains when moving to 10−14. However, this effectiveness comes at

the expense of increased preconditioner costs for which the number of nonzeros are about the

same order of magnitude as the charge matrices themselves. Comparatively, the cost of SAI

is between that of Jacobi and the ILU schemes, but the effectiveness of this method is closer

to the latter. In addition to the cost and effectiveness examined here, parallel efficiency of

applying the preconditioners represents an important consideration for overall performance

in actual simulations. We inspect this issue next.

2.4.4 Scalability of Preconditioned Solvers

In order to analyze the scalability of our preconditioned solvers, strong scaling experiments

were performed on a single socket of a dual socket 28-core node on Laconia. To better

comprehend the trade-offs of the preconditioning approaches, the mean solver time was

broken down by the major computational kernels in the solver: sparse matrix-dense vector

multiplications (SpMV), preconditioner computation (PreComp), preconditioner application

(PreApp), and the remaining vector operations (VecOps).

As shown in Fig. 2.2, the percentage of time spent in the preconditioner computation is

insignificant for ICDD and SAI methods as a result of preconditioner reuse. However, the

iterative approach used for asynchronously computing the FG-ICDD preconditioner takes a

significant percentage of the overall solver execution time, despite reusing the preconditioners

and keeping the number of sweeps very low (2-4 sweeps). The high cost of preconditioner

computation renders the FG-ICDD method less competitive, at least on the multi-core
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architectures on which we have experimented. But the fact that preconditioners generated

by FG-ICDD exhibit convergence rates similar to those of the regular IC techniques shows

that it can provide advantages on massively parallel architectures such as GPUs or Xeon

Phis.
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Figure 2.2 Strong scaling plots of shared-memory preconditioned solvers with
QEq. Results are presented for three preconditioned solvers with the bilayer (left column)
and bulk water (right column) systems. Figures from left to right within a grouping show
results at convergence tolerance levels of 10−6, 10−10, and 10−14.

In terms of parallel scaling, ICDD achieves strong scaling efficiencies ranging from 36%

to 46% through 14 threads for the bilayer and bulk water systems, as shown in Fig. 2.2.

Improvements over ICDD are observed for FG-ICDD with scaling efficiencies ranging

between 45% and 65%. For the SAI preconditioned solver, we see efficiencies between 45%

and 50% for the bilayer system, and between 58% and 59% for the bulk water system.
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Given that the vast majority of operations involved in the preconditioned solvers have low

arithmetic intensities and are therefore memory-bound, the observed efficiencies are in the

expected regime.

An important observation in Fig. 2.2 is the relatively higher percentage of time spent in

the PreApp phase for ICDD and FG-ICDD when compared to the SAI preconditioner.

One would normally expect the PreApp phase of the ILU-based methods to exhibit poorer

scaling than that of the SAI method, as the latter boils down to a simple SpMV operation,

whereas the former requires level-scheduled forward and backward solves. However, we

observe that the PreApp phase for the ILU-based methods (which exploits graph coloring

based reordering of matrix rows) and SAI methods scale roughly at the same rate, which is

also similar to the scaling efficiency of the SpMV kernel. As such, the reason for the high

percentage of time spent by ILU-based methods in the PreApp phase is directly related to

the cost of applying the preconditioners, which is essentially characterized by the number of

nonzeros they contain (as given in Table 2.4 and Table 2.5).

2.4.5 Preconditioned Solver Performance

In this subsection, we analyze the overall benefits of the preconditioning techniques we

explored (on a single socket, i.e., 14 cores, of a node on Laconia). Fig. 2.3 shows the speedups

over the Jacobi preconditioner for our preconditioned solvers on the four benchmark systems.

Note that we take Jacobi preconditioner as our base case due to its simplicity, but we also

show the unpreconditioned solver performance for reference. We observe that for QEq, the

preconditioners ICDD, FG-ICDD, and SAI result in speedups of 1.1 to 6.7 times the mean

solve time using the Jacobi preconditioner, with speedups generally improving as the solver

tolerance decreases. A similar trend is observed for the these preconditioners with the EE

model.

In the case of the ACKS2 model, only the force field parameters for the bulk water

system were available to us. For bulk water, SAI produces speedups ranging from 1.8 to 2.4
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Figure 2.3 Speedups for shared-memory solvers for the benchmark systems by
charge distribution method. Figures from left to right show results at convergence
tolerance levels of 10−6, 10−10 and 10−14, respectively. Speedups achieved are over the
Jacobi preconditioned solver.
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times, which are similar to the speedups observed in the QEq and EE models. On the other

hand, ILUDD produces speedups ranging from 3.3 to 3.7 fold for ACKS2, despite being

less parallelizable than SAI. In fact, ILUDD reduces the Jacobi solver iteration numbers by

about a factor of 5 as can be seen in Table 2.5 compared to the roughly 2.2x improvement

observed with SAI. This suggests that the quality of the SAI preconditioner can potentially

be improved further by selecting a better sparsity pattern – we currently do not make any

distinction between the HQEq and X subblocks in the ACKS2 matrices while selecting the

sparsity pattern.

In contrast to the ILUDD and SAI techniques, the FG-ILUDD preconditioner leads

to speedups of 1.6 to 1.9 times mostly due to the high preconditioner construction cost and

lack of pivoting to handle zero diagonal elements in the charge matrix (the zero values were

substituted with unit values for preconditioner computation, thereby introducing errors).

One idea that was explored to improve the performance of FG-ILUDD was to significantly

increase the convergence of incomplete factorization by raising the number of sweeps per-

formed. However, this approach proved to be far too costly, as any gains from decreasing the

solver iterations were more than outweighed by the increase in preconditioner computation

time.

As previously highlighted in Table A.2, the very poor condition numbers of the ACKS2

charge matrices pose a significant challenge as the total number of solver iterations is still very

large despite the limited success of the ILUDD and SAI preconditioners. This results in

long solution times during simulations, leaving better preconditioners than the ones explored

here to reduce the overall solve time desirable.

2.5 Conclusions

We explored several shared memory preconditioning methods to improve the performance

of iterative linear solvers in the computationally expensive charge distribution models. By

applying sparsification techniques, carefully tuning the relevant preconditioner parameters
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and adopting an efficient dynamic refactorization scheme, we observed that incomplete

factorization-based (such as ICDD, ILUDD, and FG-ILUDD) and SAI-based methods

produce good quality preconditioners with relatively low costs. Performant implementation

of these techniques on shared memory architectures results in solvers that significantly out-

perform the Jacobi baseline in time-to-solution across the majority of the charge models and

molecular systems studied. As such, these techniques have been incorporated into PuReMD

through an easy-to-use interface. Our future work on this topic will focus on developing

GPU and distributed memory versions of the solvers explored in this study.
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CHAPTER 3

PERFORMANCE OPTIMIZATION OF REACTIVE MOLECULAR
DYNAMICS SIMULATIONS WITH DYNAMIC CHARGE DISTRIBUTION

MODELS ON DISTRIBUTED MEMORY PLATFORMS

The following chapter presents previously published work on optimization of the distributed-

memory MPI implementation of ReaxFF in PuReMD [43]. This work is reproduced with

the permission of ACM.

Following the successes from the charge solver optimizations in a shared-memory context,

efforts were made to apply similar preconditioning techniques together with additional com-

munication reduction algorithms within a distributed-memory MPI-only version of PuReMD.

During this work, additional observations were made which allowed other portions of the code

to be optimized including reducing the number of bond order calculations through appro-

priate pruning of interactions.

3.1 Introduction

Molecular dynamics (MD) simulations play increasingly important roles in diverse fields,

ranging from biophysics to chemistry to materials science. Classical MD techniques rely on

static bonds and fixed partial charges associated with atoms, limiting their applicability to

non-reactive systems. To study phenomena involving chemical reactions, quantum mechan-

ical (QM) methods have typically been the method of choice. QM simulations must account

for electronic degrees of freedom present in the system. As such, they are typically limited

to sub-nanometer length and picosecond time scales. However, long-time reactive simula-

tions are critical for several scientific problems such as catalysis, battery interfaces, biological

simulations involving water, and emerging areas like surface oxidation and chemical vapor

deposition (CVD) growth. Progress on these fronts is limited because long continuous time

simulations of large-scale systems are very difficult, if not impossible, to perform using purely

quantum mechanical (QM) or hybrid quantum mechanical/molecular dynamics (QM/MD)

37



simulations. The Reactive Force Field (ReaxFF) method [1], a bond order potential that

bridges quantum-scale and classical MD approaches by explicitly modeling bond activity

and redistribution of charges, is in principle ideally suited for this purpose. However, the

computationally complex force field formulation hinders ReaxFF’s scalability to large num-

ber of processing cores. In this paper, we present algorithmic and numerical techniques to

address scaling bottlenecks and enable high performance ReaxFF simulations at scale.

ReaxFF is a relatively recent model (developed in early 2000s [1]) and is similar to the

classical MD model in the sense that it models atomic nuclei together with their electrons as

a point particle. Unlike classical MD models, ReaxFF mimics bond formation and breakage

observed in QM methods by replacing the static harmonic bond models with the bond order

concept, which is a quantity indicating bond strength between a pair of atoms based on the

types of the atoms and the distance between them. Consequently, ReaxFF can overcome

many of the limitations inherent to conventional MD. While the bond order concept dates

back to 1980s and has been exploited in other force fields before (such as COMB [44] and

AIREBO [3]), the distinguishing aspect of ReaxFF is the flexibility and transferability of its

force field that allows ReaxFF to be applied to diverse systems of interest [1, 4, 5, 6].

ReaxFF is currently supported by major open source (PuReMD [7], LAMMPS [8], RXMD

[9]) and commercial (ADF, Material Studio) software with an estimated userbase of over

1,000 groups. In this paper, we focus on the PuReMD software, as PuReMD and its

LAMMPS integrations, i.e., the User-ReaxC and User-ReaxC/OMP packages [8], represent

the most widely used implementations of ReaxFF. PuReMD uses novel algorithms and data

structures to achieve high performance while retaining a small memory footprint. An opti-

mized neighbor generation scheme, elimination of the bond order derivatives list in bonded

interactions, lookup tables to accelerate non-bonded interaction computations, and efficient

iterative solvers for charge distribution are the major algorithmic innovations in PuReMD

[10, 11]. PuReMD has been shown to outperform the LAMMPS/Reax package by 3-5× on

various systems while using only a fraction of the memory space [11]. However, solution of

38



large sparse linear systems required for distribution of partial charges and computations re-

lated to dynamic bonding constitute significant bottlenecks against scalability of PuReMD.

More precisely, the sparse linear solves and bond order computations at halo (ghost) regions

may start accounting for a significant portion of the execution time in large runs due to

communication overheads and redundant computations.

In this paper, we discuss the use of a communication-hiding conjugate gradient solver

to prevent the onset of collective communication overheads at scale (Section 3.3.1), present

a preconditioning technique that significantly accelerates the sparse linear solves in charge

distribution (Section 3.3.2), and describe a novel technique to avoid redundant bond order

computations at halo regions (Section 3.3.3). We evaluate the performance impact of these

techniques through extensive tests and demonstrate that they significantly improve the exe-

cution time and scalability of large ReaxFF simulations (Section 3.4). While the techniques

presented are discussed in the context of the ReaxFF model, they can directly be used in

other bond order potentials. The accelerated charge model solvers can also be useful for

classical force fields with polarizable charge models.

3.2 Background

The ReaxFF approach allows reactive phenomena to be modeled with atomistic resolution

in a molecular dynamics framework. Consequently, ReaxFF can overcome many of the

limitations inherent to conventional molecular simulation methods, while retaining, to a

great extent, the desired scalability. Fig. 3.1 depicts the various ReaxFF interactions and

summarizes the work flow of a simulation which includes computation of various atomic

interaction functions (bonds, lone pair, over-/under-coordination, valance angles, torsions,

van der Waals and Coulomb) and summing up various contributions to obtain the net force

on each atom for a given time step. In terms of its implementation in PuReMD, major

components of ReaxFF can be summed up as neighbor generation, initialization of interaction

lists, bonded interactions, charge distribution and non-bonded interactions. Before presenting
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Figure 3.1 ReaxFF’s computational workflow includes bonded, non-bonded, and
system-specific interactions, each with different physical formulations and cut-
offs.

our performance improvement techniques, we summarize each of these major components

and the general parallelization scheme in PuReMD.

3.2.1 Parallelization

PuReMD uses the well-known domain decomposition technique where the input domain is

divided into equal-sized subdomains according to a prescribed 3D Cartesian configuration of

processes. Each process is then responsible for calculating the net force on all atoms in its

subdomain and updating their positions based on the velocity Verlet integration scheme [45].

After position updates, atoms crossing process boundaries, if any, are transferred, and atom

information at boundaries are exchanged locally (halo exchange) between processes that

are neighbors in the 3D grid. Since interaction functionals in ReaxFF are very expensive

computationally, interactions falling at process boundaries are computed on only one of the
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processes (as explained in [11]) to prevent redundant computations. This necessitates the

exchange of force information at the end of a timestep for those atoms whose coordinates

were communicated at the start of the timestep.

3.2.2 Neighbor Generation

In PuReMD, neighbor lists are generated using the linked cell algorithm [45] which bins

atoms into small cells based on their coordinates and generates the neighbors for each atom

by only scanning atoms in cells within applicable interaction cutoffs (typically 10-12 Å).

The neighbor list is stored by default as a half list, i.e., for neighboring atoms i and j,

only a single record is kept. A compact adjacency list format (similar to the compressed

row format in sparse matrices) is used for storing the neighbor list. Neighbor generation is

accelerated using the Verlet list method, which adds a buffer region on top of the largest

interaction cutoff and updates the neighbors of each atom by scanning the Verlet list instead

of the neighboring cells. This way, Verlet lists need to be formed from scratch (which we

call reneighboring and is performed using the neighboring cell information) only occasionally.

Reneighborings in ReaxFF can be delayed for a few hundred timesteps (typically 250 to 500)

as each timestep in ReaxFF is only fractions of a femtosecond, i.e., an order of magnitude

smaller than the typical timestep length in classical MD.

3.2.3 Initialization of Interaction Lists

While neighbor information is needed only for non-bonded interactions (with the cutoff radii

rnonb typically being 10-12 Å) in most classical MD models, in ReaxFF neighbor information

is needed additionally for formation of the Hamiltonian matrix for the dynamic charge model

(which uses a distance cutoff identical to non-bonded Coulomb interactions), for bonded in-

teractions (with cutoff radii rbond being 4-5 Å), and for hydrogen bond interactions (with

cutoff radii rhbond being 7.5 Å). Consequently, PuReMD creates four interaction lists by scan-

ning through the Verlet list, updating the atomic pair distances found therein and checking
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them against various cutoffs involved. As expected, the process of creating the interaction

lists is memory-bound in terms of performance because calculations associated with creation

of these lists are trivial. However, the bonds list is an exception here as it requires expensive

bond order calculations between pairs of atoms that are within the prescribed rbond cutoff.

The memory-bound nature of this kernel and expensive bond order calculations make this

routine (which we denote shortly by init) one of the expensive parts in PuReMD.

3.2.4 Bonded Interactions

Since bonds are dynamic in bond order formalism, 3-body and 4-body interactions (which

involve three and four atoms, respectively, as their names indicate) also need to be dis-

covered on-the-fly. Accurately modeling chemical reactions and avoiding discontinuities on

the potential energy surface in the presence of dynamic bonds requires almost all bonded

interactions (such as bond energy, 3-body valence angle energy, and 4-body torsion energy)

to have significantly more complex mathematical formulations than those found in classical

MD models [1, 4]. In addition, in a reactive environment, atoms often do not achieve their

optimal coordination numbers; to compensate for this, ReaxFF requires additional modeling

abstractions such as lone pair, over/under-coordination, and 3-body and 4-body conjugation

potentials, which introduce significant computational cost to evaluation of bonded interac-

tions. Consequently, bonded interaction calculation costs which are insignificant in classical

MD models constitute a significant part of the total execution time in ReaxFF.

3.2.5 Charge Distribution

An important requirement for correctly modeling reactions is the charge distribution proce-

dure, which tries to approximate the partial charges on atoms using suitable models such

as the Electronegativity Equilibration Method (EEM) [21] and the Charge Equilibration

Method (QEq) [22]. While the chemical intuition behind these two methods is quite differ-

ent, they produce identical-looking charge distributions in practice. Since QEq produces a
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symmetric positive definite Hamiltonian which is easier to solve using distributed memory

solvers, PuReMD uses the QEq method. In QEq, charges are determined by minimizing the

electrostatic energy Eele. Let R = (r1, r2, . . . , rn) denote the atomic positions in a system

with n atoms, where ri ∈ R3. Atomic charges q = (q1, q2, . . . , qn), qi ∈ R, are thus defined

by solving the following optimization problem:

argmin
q

Eele (q) =
∑
i

χiqi +
1

2

∑
i,j

Hijqiqj

subject to qnet =
∑
i

qi

where Hij = δij · Ji + (1− δij) · Fij

Fij =


1

3
√

r3ij+γ−3
ij

, rij ≤ rnonb

0, otherwise.

(3.1)

In Eq. (3.1), χi and Ji denote the atomic electronegativity and idempotential; δij denotes

the Kronecker delta operator; rij = ||rj − ri||2 signifies the distance between the atomic

pair i and j; and γij =
√
γi · γj denotes a pairwise tuned parameter for elements i and j

for avoiding unbounded electrostatic energy at short distances. Applying the method of

Lagrange multipliers to Eq. (3.1), the sets of linear equations below are obtained [25, 10]:
n∑

i=1

Hkisi = −χk, k = 1, . . . , n

n∑
i=1

Hkiti = −1, k = 1, . . . , n.

(3.2)

The dimension of the linear systems in Eq. (3.2) is equal to the number of atoms in the

simulation (and can be on the order of several millions to billions). Due to the computational

expense of including long-range interactions during charge distribution, QEq uses a truncated

electrostatic kernel and therefore H is a sparse matrix. Consequently, these systems must

be solved approximately using iterative methods [10]. Using solutions to Eq. (3.2), partial

atomic charges qi can be determined:

qi = si −
∑n

j=1 sj∑n
j=1 tj

· ti.
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3.2.6 Nonbonded Interactions

Nonbonded interactions include van der Waals and Coulomb forces, which have functional

forms of the Morse and electrostatic potentials, respectively. As these interactions are pair-

wise interactions, they can be calculated directly by going over the Verlet list. When ad-

vantageous performance-wise, non-bonded interactions can be approximated with very high

accuracy using cubic spline interpolations over lookup tables.

3.3 Methods

Charge distribution is essentially a precursor to Coulomb interactions. However, the iterative

method used therein is significantly more expensive than the Coulomb interaction itself. Even

worse, this iterative method requires a large number of communication operations (both local

& global). We note that with the exception of position updates and force exchanges needed as

part of parallelization, among all kernels described above, only the charge distribution solver

requires communications. Again, among all kernels, only initialization of bonded interactions

list incurs redundant calculations which may hamper scalability in large simulations. In this

section, we present algorithms and numerical techniques to alleviate these inefficiencies.

3.3.1 Reduction of Global Communication Overheads in Charge Solvers

3.3.1.1 Baseline Preconditioned Conjugate Gradient

Previous versions of PuReMD used the conjugate gradient (CG) algorithm for solving for

the charges in the QEq procedure [11]. CG is a member of the Krylov subspace methods;

these methods seek a solution x to the sparse system Ax = b, with A being symmetric

positive definite, which falls within the Krylov subspace κ (A, b) = {b, Ab,A2b, . . .}. Each

iteration of CG increases the dimension of the subspace, and the procedure terminates when

an acceptable solution is found. In the case of CG, storing all the vectors which define κ is

not necessary due to orthogonality and A-orthogonality of the conjugate vectors. Computing
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additional conjugate vectors with the prescribed A-orthogonality obviously requires sparse

matrix vector multiplications (SpMVs), which in the parallel context of PuReMD entails two

local communications over the 3D process torus – a forward communication to distribute

the input vectors and a backward communication to accumulate partial results into the

output vector (note that in PuReMD the Hamiltonian is stored as a half matrix to leverage

symmetries). Also, the orthonormalizations require calculation of inner products and vector

norms. In a parallel setting, these operations entail two all-reduce operations which are quite

expensive global communications in large scale runs.

In PuReMD, the standard CG solver is improved by: i) producing good initial guesses, ii)

solving both systems in Eq. (3.2) through simultaneous iteration, and iii) utilizing a Jacobi

(diagonal) preconditioner. The initial guesses in PuReMD are based on the observation that

atomic positions (and hence charges) change only slightly from timestep to timestep; as such

PuReMD uses cubic and quadratic extrapolations to solutions of Eq. (3.2) from previous

timesteps. The Jacobi preconditioning idea stems from the fact that the Hamiltonian H

carries a heavy diagonal. Both techniques are inexpensive, yet quite effective; together

they substantially improve the convergence rate of CG for QEq, but as we demonstrate in

Section 3.4, this basic solver still requires tens of iterations per timestep, hampering the

overall scalability.

3.3.1.2 Preconditioned Pipelined Conjugate Gradient

The scalability of Krylov subspace methods like CG is hampered by global communications

during the calculation of inner products and vector norms. To combat this scalabilty issue,

the pipelined CG (PIPECG) algorithm [46] aims to achieve lower communication latency

by reducing the number of these communications to only one non-blocking global reduction

per iteration. PIPECG essentially rearranges the algebraic formulation of CG in order to

achieve this goal of one communication per step. As a trade-off for this, PIPECG ends up

performing more computation (dense vector-dense vectors operations) per step and also ex-
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hibits slightly worse convergence properties than CG (i.e., stagnation at tolerances beginning

at around 10−11). Algorithm 3.1 highlights the advantages and disadvantages of PIPECG

by showing that the single global communication (lines 20 and 21) can be overlapped with

the preconditioner application and SpMV on subsequent lines, effectively hiding some of the

communication latency – specifically, an MPI IAllreduce call can be started at these lines

and waited on until the completion of the SpMV. Additionally, the increased number of vec-

tor operations are shown in lines 17 through 19. Because of these advantages, we implement

PIPECG and analyze its impact on performance in the following section.

Algorithm 3.1 Preconditioned Pipelined Conjugate Gradient.

1: function PIPECG(H, x0, b, M , τ , miters)
2: u ← Hx0 ▷ SpMV
3: r ← b− u
4: u ← Mr ▷ Apply Preconditioner
5: w ← Hu ▷ SpMV
6: δ ← wTu, γnew ← rTu
7: κ ←

√
uTu, bnorm ←

√
bT b ▷ Global Redux

8: m ← Mw ▷ Apply Preconditioner
9: n ← Hm ▷ SpMV
10: x ← x0, i ← 0
11: while κ

bnorm
≥ τ And i ≤ miters do

12: if i > 0 then
13: β ← γnew

γold
, α ← γnew

δ−β/α·γnew
14: else
15: β ← 0, α ← γnew

δ

16: end if
17: z ← n+ βz, q ← m+ βq, p ← u+ βp
18: d ← w + βd, x ← x+ αp, u ← u− αq
19: w ← w − αz, r ← r − αd
20: γold ← γnew, δ ← wTu
21: γnew ← rTu, κ ←

√
uTu ▷ Global Redux

22: m ← Mw ▷ Apply Preconditioner
23: n ← Hm ▷ SpMV
24: i ← i+ 1
25: end while
26: return x
27: end function
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3.3.2 Acceleration of QEq through preconditioning

Despite reducing global communication overheads, the PIPECG solver for QEq that is de-

scribed above still has excessive computation and communication costs compared to the

rest of the operations that must be performed in a simulation step. Therefore, to accel-

erate the convergence of the PIPECG algorithm, we present a novel distributed memory

preconditioning scheme based on the sparse approximate inverse (SAI) technique.

3.3.2.1 SAI Preconditioning

Given a linear system Hx = b, sparse approximate inverse (SAI) preconditioning aims to

find a matrix M that serves as a good approximation to H−1 by selectively computing the

entries of H−1. Using M as a preconditioner (the transformed system is MHx = Mb in

case of left preconditioning and HMu = b where x = Mu in case of right preconditioning),

ideally the preconditioned system is expected to converge faster than the original linear

system. To satisfy that, the cost of computing and applying the preconditioner should be

marginal as construction of M is non-trivial and SAI preconditioning introduces one extra

SpMV per solver iteration. Considering that the cost of SAI preconditioner construction

and application are directly proportional to the number of non-zeros in M, M should be

chosen to be even sparser than the linear system itself H (note that H−1 is actually a dense

matrix).

For the QEq problem, we choose the Frobenius norm minimization variant of left SAI

preconditioning [47], which tries to find anM such that ||I−MH||F is minimized where ||.||F

denotes the Frobenius norm of a matrix. In PuReMD, H is stored in the compressed sparse

row (CSR) format, which actually makes constructing M as a right preconditioner more

straightforward and affordable. Note that since H is symmetric, the left SAI preconditioner

can then easily be inferred because left and right preconditioners of SAI are transposes of

each other [41]. Let ej be the j-th column of the n × n identity matrix and let mj be the
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j-th column of M. Then we have

min
M∈Rn×n

||I−HM||2F =
∑n

j=1minmj∈Rn×1 ||ej −Hmj||22 .

Finding mj for each ||ej −Hmj||22 corresponds to solving a set of independent least squares

problems, and as such M can be constructed column by column through a series of QR

decompositions. These decompositions are performed using optimized LAPACK libraries

(e.g., the Intel Math Kernel Library). Note that solving each least squares problem can

be quite expensive considering the dimensions of H. Leveraging the fact that M will be

much sparser than H, we reduce the computational costs of the least squares problems

significantly by building dense vectors m̂j and êj, and dense matrix Ĥj. This densification

process essentially amounts to eliminating rows and columns that are entirely composed of

zeros, as those rows and columns do not contribute to Hmj (see Sect. 2.1 of [41] for further

details).

While the densification step significantly reduces the computation cost of M, it alone

is not sufficient to make our SAI preconditioner useful in practice. The key insight that

makes SAI useful for ReaxFF in practice is the same as the one we use for solver initial

guesses: because an atomic system evolves slowly, the preconditioner M computed at a cer-

tain timestep can be reused effectively for several subsequent steps. In fact, as we demonstrate

in Section 3.4, the SAI preconditioner can be useful for hundreds of steps. As such in the

accelerated QEq solver, we reconstruct M only occasionally and amortize the SAI precon-

ditioner computation costs over several steps.

Determining the sparsity pattern of M, however, remains a challenge. The inverse of a

sparse matrix is generally a dense matrix; for the inverses of our QEq matrices (H−1), we have

observed that the magnitude of many entries is small. While it is desirable to select a sparsity

pattern that captures the positions of the numerically large entries of H−1, these positions

cannot be known a priori. Several works have suggested approaches for choosing a sparsity

pattern [40], but these are neither sparser than H nor practical to compute in our case.

During experiments with several molecular systems, we observed a strong correlation between
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the positions of the numerically large entries of H and H−1. Therefore, we hypothesized that

positions of numerically large entries in H are a good candidate for the sparsity pattern of

M. Subsequent experiments confirmed that including only τ percent of the numerically large

entries of H indeed yields promising results. We remark, however, that finding the ideal τ

value is non-trivial. On one hand, larger τ values (15%-20%) substantially improve the CG

convergence but computation and application of M becomes expensive. On the other hand,

smaller τ values make computation and application of M more affordable at the expense of

smaller improvements in solver convergence. The longevity of M (discussed in the previous

paragraph), the number of processes used, and the parallel efficiency are certainly other

important considerations.

We observe that in general τ being 10% to 15% (depending on the molecular system)

leads to decent improvements in total QEq solve time. While we empirically determine the

ideal value of τ for experiments presented in this paper, note that MD simulations typically

last for millions to billions of steps. As such, an auto-tuning mechanism that empirically

determines the ideal τ value and preconditioner reconstruction frequency on-the-fly for a

given atomic system and architecture, while performing the MD simulation itself, is certainly

feasible and is planned as future work.

3.3.2.2 Parallelization of the SAI Preconditioner

After describing how we “engineer” a custom SAI preconditioner that is practical for dy-

namic charge models, we next detail its parallelization. While this topic is arguably well

documented in the literature, our contribution here is the development of an SAI imple-

mentation that leverages problem-specific characteristics of ReaxFF for high efficiency and

scalability, so that the resulting solver can perform significantly better than PuReMD’s ex-

isting QEq solver that already delivers decent results with its simple Jacobi preconditioning

scheme.

Our discussion focuses on parallel construction of the SAI preconditioner M as this step
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is highly non-trivial; application of M, which needs to be performed at each iteration of

PIPECG, is trivial as it simply requires a parallel SpMV. Construction of M includes two

main subtasks: i) pattern selection, and ii) setup and solution of the least squares problems.

As both subtasks are intimately tied to the structure of the Hamiltonian H, we begin with

its description.

3.3.2.3 Structure of the Hamiltonian

In the Hamiltonian H, a matrix entry (i, j) represents the charge affinity relation between

atoms i and j. While the original charge solver in PuReMD adopts a half matrix for reducing

storage and SpMV computation costs, in the SAI preconditioned solver we store the full H

matrix in distributed memory (hence redundantly storing the symmetric entries twice), as

this simplifies the setup of the least squares problems (subtask 2). With the full storage

scheme, the H matrix is effectively 1D block partitioned because each process knows all

neighbors (i.e., all non-zeros in a row) of its local atoms (i.e., all rows it owns).

Locally each process stores its submatrix in a structure that facilitates the construction

of M, as well as parallel SpMVs (needed in CG/PIPECG). As depicted in Fig. 3.2, lower

indices are reserved for local atoms. In PuReMD, local communications between neighboring

processes follows a three-stage communication scheme that respects the 3D torus topology:

first, atom information is exchanged in −x and +x directions; then in −y and +y directions,

and finally in −z and +z directions [11]. Atoms received after each stage are indexed

contiguously in the atom list as well as the local Hamiltonian, and messages to be transmitted

in the subsequent step are augmented with the received atom information as necessary. This

communication scheme yields the indexing and organization shown in Fig. 3.2.

3.3.2.4 SAI Preconditioner Sparsity Pattern Selection

Given p processes and the filtering parameter τ , for each process local Hamiltonians Hs
loc,

with 1 ≤ s ≤ p, the top τ percent numerically largest non-zeros of H are selected for the
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Figure 3.2 Structure of the local charge matrix in distributed-memory simulations.
In the figure, region R0 corresponds to the interactions between local atoms, R1 corresponds
to the interactions between local atoms and the atoms imported from −x direction, etc.

sparsity pattern of M. This problem can equivalently be stated as finding the k-th largest

non-zero, namely α, in the union of all local Hamiltonians such that when entries less than

α are filtered out, only τ percentile of the non-zeros remain. However, trying to find the

exact α does not lend itself to an efficient parallel algorithm, but trying to be exact is not

required as τ is an empirically determined threshold. As such, we approximate τ using a

sampling-based technique as shown in Algorithm 3.2 (see line 2). Sampled numbers from

each process are collected at the root (line 5), and these numbers are processed using a

Quickselect algorithm to efficiently find α (line 7). After broadcasting α, each process can

obtain their local sparsity patterns Hs
sp by filtering out entries in their local Hs

loc matrices

(line 10).

3.3.2.5 SAI Preconditioner Computation

As described in Section 3.3.2.1, constructing the SAI preconditioner entails solving n least

squares problems where n is the total number of atoms. These problems are independent and

thus can be solved in parallel by performing QR decompositions. However, the precursor to

the QR decompositions is building the least squares problems which we explain through the
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Algorithm 3.2 Distributed SAI(τ) Preconditioner Sparsity Pattern Selection.

1: function SetupSAI(H, p, τ)
2: Plocal ← Sample(H, samplerate)
3: s ← Reduce(length of Plocal)
4: if rank = root then
5: Pglobal ← Gather(Plocal)
6: k ←

⌊
s·τ
100

⌋
7: α ← Quickselect(Pglobal, k)
8: end if
9: Bcast(α) ▷ Broadcast threshold value
10: Hsp ← FilterMatrix(H, α)
11: return Hsp

12: end function

example in Fig. 3.3. After determining α, the least squares problem for atom i on process s

is built based on the sparsity pattern of the i-th column of Hs
sp. In this example, we form

the least squares problem for atom 0, and suppose that the non-zeros in column 0 of Hs
sp

are in rows 0 and 3 (non-zeros in rows 4 and 7 are below α and are dropped). Consequently,

columns 0 and 3 of H are included, but the real challenge lies in finding the subset of rows

of H that are to be included in the densified least squares problem Ĥi. Those rows are the

union of j’s such that at least one of the selected columns of Ĥi has a non-zero element

at index j. Referring to the example in Fig. 3.3, the rows incorporated into the densified

matrix will be {0, 3, 4, 7} ∪ {3, 5} = {0, 3, 4, 5, 7}, which are the rows with non-zero entries

found in columns 0 and 3, respectively. This process is straight-forward if all atoms were to

be local, but when there is a non-local atom j in the sparsity pattern of the i-th column of

Hs
sp, all neighbors of j are needed; this information must be imported from another process.

Fortunately, when local Hamiltonians are stored as full matrices, all neighbors of atom j can

be obtained from the process that owns atom j. We describe the SAI preconditioner setup

operation in Algorithm 3.3. To efficiently import all the neighbors of a non-local atom, a

modified version of three-stage messaging is employed in the CompSAI function. All local

atoms save the number of their neighbors, which is equal to the number of non-zero entries in

the corresponding row of the local matrix, to a list (line 2-3). Then, every process distributes
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Figure 3.3 The global view of the process of constructing and solving one of the
least-squares problems for the distributed SAI preconditioning approach with an
example QEq matrix. In the figure, formation of ê0, Ĥ0, and m̂0 are shown for an example
QEq matrix H ∈ R8×8 and m0 through column selection (blue) and row eliminations (red).
In the above matrices, empty spaces and x’s denote zero and non-zero entries, respectively.

their list using staged communication (line 8) so that each atom can get to learn how many

non-zero entries have to be imported for each of its non-local neighbors (line 10-14). Next,

the processes allocate space for those non-zero entries (line 15) and pack the non-zero entries

for the local atoms that are needed by other processors (line 16-20). Then, again using

the same communication scheme, each processor sends its packed entries (line 21). Finally,

processors start constructing dense matrices and solving QR decompositions for each of their

local atoms (line 22-25).
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Algorithm 3.3 Distributed SAI(τ) Preconditioner Computation.

1: function CompSAI(H, Hsp, n, N)
2: for i← 0 to n− 1 do
3: row nnz(i) ← H(i).end−H(i).start
4: end for
5: for i← n to N − 1 do
6: row nnz(i) ← 0
7: end for
8: Dist(row nnz) ▷ Send non-zeros per row to neighboring processors
9: nnzrecv ← 0
10: for i← n to N − 1 do
11: if row nnz(i) ̸= 0 then ▷ If non-local atom i is needed by a processor
12: nnzrecv ← nnzrecv + row nnz(i)
13: end if
14: end for
15: AllocateSpace(rowsrecv, nnzrecv)
16: for i← 0 to n− 1 do
17: if atom i is needed by a neighbor then
18: rowssend.append(H(i)) ▷ Copy rowi non-zeros into comm. buffers
19: end if
20: end for
21: Dist(rowssend) ▷ Send non-zeros to neighboring processors
22: for i← 0 to n− 1 do
23: êi, Ĥi, m̂i ← Build Dense Matrix(H,Hsp, rowsrecv, i)

24: Hsai(i) ← QR(êi, Ĥi, m̂i)
25: end for
26: return Hsai

27: end function

3.3.3 Optimization at the Ghost Regions

In ReaxFF, the precursor to bonded interactions is the calculation of the uncorrected bond

orders (BOp), which is performed within the rbond radii of each atom during initialization

of interaction lists. Once the bond order list is initialized, all bonded interaction functions

are calculated without any redundancies. For instance, a bond at the boundary between

two processes is calculated by the owner of the atom with the smaller global id, or a 3-body

interaction shared between 3 processes is calculated by the owner of the middle atom. In

PuReMD, a process initializes all bonds that fall within its boundaries including the ghost

regions to be prepared to handle all kinds of bonded interactions that it may end up being
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responsible for. Note that in the strong scaling regime, the redundant computations associ-

ated with doing so can be significant. For instance, when the dimensions of the subdomain of

a process is equal to rnonb, the three dimensional import region (which must have a thickness

of rnonb at least in each direction) would have a volume of roughly 26 times the volume of the

process’s local subdomain. However, inspecting how bonded interactions are shared between

processes in PuReMD reveals that one must only extend up to 3 hops into the ghost from

any local atom (as expected, this happens for 4-body bonded interactions) where a hop is

defined to be a bond order with strength above a certain threshold. This suggests that there

can be a significant number of redundant bond order calculations in the ghost region.

To avoid redundant BOp calculations in an effort to improve the strong scaling perfor-

mance, i) we adopted a BFS-style branching with multiple sources, and ii) we implemented

a scheme to automatically tighten the rbond cutoff for a given input system. In our first opti-

mization, i.e., the BFS-style branching scheme, all local atoms are initially added to a queue

with a hop distance of 0. Then, an atom is popped from the queue at each BFS step and its

neighbors within a hop distance are inserted into the queue. The method stops when all the

atoms with less than 4 hop distance are inserted into the queue. Notice that this approach

can be used only when full neighbor list format is employed; otherwise, we would have to

calculate the hop distances of atoms in the underlying graph of a digraph, which is identical

to turning a half neighbor list into a full one. Moreover, we take advantage of symmetry to

optimize the computations even further as full neighbor list is the only viable option. To

realize this, we ensured that the interaction between atom i and atom j is computed by the

atom that is popped from the queue first.

Our second optimization, i.e., automatic tightening of rbond, relies on the observation

that, given two atom types ti and tj, BOp is a monotonically decreasing function of the

distance between atoms. However, rbond is usually conservatively given as 4 Å (or even 5 Å)

as part of simulation parameters. Instead of relying on this parameter, we scan all possible

atom type pairs at several distances to precisely determine the distance after which the BOp
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value for all type pairs present in the given system are guaranteed to fall below bond order

acceptance threshold.

3.4 Numerical Results

3.4.1 Benchmarking Systems and Hardware

Results from numerical experiments presented in the following subsections were obtained on

Cori at the National Energy Research Scientific Computing Center (NERSC). Each Haswell

node in this Cray XC40 system has 32 cores, on two sixteen-core Intel Xeon E5-2698v3

Haswell 2.3 GHz processors, and has 128 GB DDR4 2133 MHz ECC memory. Each core

possesses a 64 KB L1 cache (32 KB instruction, 32 KB data), a 256 KB L2 cache, and the

capability of running one or two user threads (i.e., hyperthreading). All cores on a single

processor share a 40 MB L3 cache. At the time of the experiments, Cori ran the SuSE Linux

Enterprise Server version 12.3 for x86 64 architectures, linux kernel version 4.4.162-94.72-

default, and glibc version 2.22-62.16.2.

The preconditioned solvers detailed in the above sections were implemented in the Pu-

ReMD ReaxFF software [10, 11]. The software was built using the Intel Compiler Collection

version 18.0.1 with the -O3 -march=native flags and the Cray MPICH library version 7.7.3.

For relevant experiments, we restricted our simulations to one process per core (no hyper-

threading was utilized).

For benchmarking purposes, two molecular systems from application scenarios of reactive

and polarizable force fields were selected. These systems, which were comprised of bulk

water (H2O) and amorphous silica (SiO2), range in size from thousands to millions of atoms

depending on the experiment.

To quantify the impact of optimizations presented, we created four different versions of

the PuReMD code: i) original PuReMD code as published on its website [7] (i.e., CG+Jacobi

[Half]), ii) PuReMD code modified to work with full neighbor lists and full Hamiltonians (i.e.,

CG+Jacobi [Full], aims to quantify the impact of the switch to full list and matrices), iii)
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Figure 3.4 Longevity of the CG+SAI(0.15) distributed preconditioned solver for
systems using the QEq model. In the figure, results are shown for the silica system with
864K atoms (left column), and bulk water system with 837K atoms (right column) using the
QEq model at different solver tolerances. Preconditioners were utilized for 250 steps before
being re-computed.

PuReMD with SAI preconditioning and ghost region optimizations (i.e., CG+SAI(0.15) that

denotes a τ value of 15%), and our final version which includes all presented optimizations

(i.e., PIPECG+SAI(0.15)).

3.4.2 Impact of Charge Solver Improvements

3.4.2.1 SAI Longevity

We start by examining for how long an SAI preconditioner can be effective, as the longevity

of the preconditioner is crucial for determining how much preconditioner computation costs

can be amortized, as well as for estimating the average number of solver iterations. As

shown in Fig. 3.4, the SAI preconditioners can be effective for tens to hundreds of steps,

especially for the silica system which is a solid material where atoms cannot move freely

like they do in water. SAI preconditioner loses its effectiveness after some point, and the

necessity of preconditioner reconstruction can be seen clearly. Overall, silica system requires

fewer iterations for convergence than the water system at the same tolerances, and the gap

becomes more apparent as the convergence tolerance is decreased to 10−10.
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Based on results shown in Fig. 3.4 and further empirical tests (not shown), we set the SAI

reconstruction rates to 250 steps for evaluations performed in this paper. All simulations

have been executed for 500 steps and averages of relevant quantities are reported, unless

stated otherwise.

3.4.2.2 SAI Preconditioning Convergence Rates

In Table 3.1, we present the mean solver iterations for the Jacobi and SAI preconditioned

QEq solvers at 10−6 and 10−10 tolerances for the 864K silica and 837K water systems using

512 processes. As expected, neither the switch to full matrix with CG, nor replacing the CG

solver with PIPECG affects convergence rates. SAI preconditioning significantly improves

the convergence rate of QEq compared to Jacobi preconditioning, yielding about 4 to 5 times

better convergence rates for silica and water at 10−6 tolerance. The margin between SAI

and Jacobi preconditioning gets larger as we go to 10−10 tolerance threshold both for silica

and water systems. Other tests (not shown here) indicate that this trend continues as we

move to even smaller tolerances, e.g., 10−13.

3.4.2.3 Strong Scaling Tests

While convergence results in Table 3.1 are highly encouraging regarding the speedups that

can be obtained through SAI preconditioning, they omit the execution time overheads asso-

ciated with SAI in actual solves which include preconditioner construction and application

costs. While the preconditioner construction is amortized over several steps, preconditioner

application – which essentially is a parallel SpMV – must be performed at each iteration of

the QEq solver and requires an extra set of local communications; therefore it can be expen-

sive. In Fig. 3.5, we present the results of a strong scaling study for silica and water systems.

In comparing CG+Jacobi[Half] and CG+Jacobi[Full], we observe that the switch to full

neighbor lists and full charge matrices does not have a significant negative effect. In fact, at

a large number of cores, we observe a positive impact from CG+Jacobi[Full], because it only
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Table 3.1Mean solver iterations for the Jacobi and SAI distributed preconditioned
QEq solvers.

Iters.
Dataset Tol. Solver

Silica 10−6 CG+Jacobi [Half] 11.8
CG+Jacobi [Full] 11.8
CG+SAI(0.15) 1.9
PIPECG+SAI(0.15) 1.9

10−10 CG+Jacobi [Half] 39.2
CG+Jacobi [Full] 39.2
CG+SAI(0.15) 5.8
PIPECG+SAI(0.15) 5.8

Water 10−6 CG+Jacobi [Half] 9.5
CG+Jacobi [Full] 9.5
CG+SAI(0.15) 2.7
PIPECG+SAI(0.15) 2.7

10−10 CG+Jacobi [Half] 38.4
CG+Jacobi [Full] 38.4
CG+SAI(0.15) 10.2
PIPECG+SAI(0.15) 10.2

needs to do a forward communication before the SpMV in CG iterations. In comparison,

CG+Jacobi[Half] needs to do a forward communication before SpMV and backward com-

munication after SpMV. In any case, neither CG+Jacobi[Half] nor CG+Jacobi[Full] exhibit

good scaling beyond 2048 cores.

By switching to SAI preconditioning, CG+SAI(0.15) is able to achieve significant speed-

ups over the Jacobi variants by virtue of reduced CG iterations. As expected, the fully

optimized PIPECG+SAI(0.15) version exhibits the best performance in large core counts,

while it attains similar (or sometimes slightly worse) performance to its CG variants at

smaller runs. As shown in Fig. 3.6, we observe 0.7x to 2.4x speedup at 10−6 tolerances,

and 1.6x to 4.6x speedup at the 10−10 tolerances from PIPECG+SAI(0.15) over the original

QEq solver in PuReMD. Again looking at Fig. 3.6, it can be said that PIPECG+SAI(0.15)

almost always yields better strong scaling efficiencies than the original QEq solver.

Note that the simulation volume (hence computational load) assigned to each process
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Figure 3.5 Strong scaling plots for mean QEq time of the distributed precondi-
tioned solvers for the silica and water systems. Figures from left to right within a
row show results at convergence tolerance levels of 10−6 and 10−10.

decreases linearly with the increase in the core count. However, the volume of the ghost

region (hence local communication) decreases at a slower pace. Additionally, the overhead

due to global communication operations of CG (i.e., all-reduces) grows with increasing core

counts. Consequently, the ratio of communication overheads to computational load on each

process is maximized at high core counts, and unsurprisingly this is where the impact of SAI
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Figure 3.6 Speedups and parallel efficiencies for the distributed strong scaling
study. In the figures, results are shown for silica (top row) and water (bottom row).
Speedups are relative to the CG+Jacobi [Half] baseline at the same number of cores.

and PIPECG are observed most significantly.

3.4.2.4 Weak Scaling

To better analyze the impact of core count over execution time and scaling, we also conducted

weak scaling experiments. As indicated earlier, in the current PuReMD implementation,

the dimensions of the simulation box that can be assigned to each process must be equal

to or greater than the neighbor generation cutoff (which is equal to rnonb cutoff plus the

Verlet buffer size). Therefore for our weak scaling experiments, we choose bulk water and

silica systems with cubic shapes that roughly have the minimum possible box dimensions per

process, i.e., ≈13 Å, and scale it up to 1,728 cores. As given in Fig. 3.7, PIPECG+SAI(0.15)

yields speedups of between 0.9x to 2.5x for a 10−6 tolerance, and between 1.4x to 5.1x for

a 10−10 tolerance over the original QEq solver. As a result of our highly optimized SAI

preconditioner, SAI related overheads are minimal, allowing the reduction in iteration counts
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Figure 3.7 Weak scaling plots for the distributed solver sub-kernels for QEq. In
the figures, results are shown for the silica and bulk water systems at solver tolerances of
10−6 and 10−10. Unhatched bars (left within a grouping) are from CG+Jacobi [Half] while
hatched bars (right within a grouping) are from PIPECG+SAI(0.15).

to translate to QEq speedups. Another source of performance gain with PIPECG+SAI(0.15)

is the overlapping of global communications which constitutes the most significant part of

the original QEq solver on 1,728 cores.
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3.4.3 Impact of Ghost Region Optimizations

In Table 3.2, we quantify the impact of the ghost region optimizations. Since the implemen-

tation of the original interaction list initializations in PuReMD does not allow us to time the

exact duration spent in bond order initializations, we rather compare the number of BOp

evaluations in both schemes. As shown in this table, the presented optimizations signifi-

cantly reduce the number of BOp evaluations by a factor of about 5 for water and about 2

for silica. This is expected as silica has longer maximum bond distance (3.5 Å) and therefore

3 hops into the ghost region already covers a significant volume. But, the maximum bond

distance for water is shorter, and as such redundant calculations in a larger portion of ghost

region can be avoided.

Table 3.2 Average number of bond order calculations per simulation step. Sim-
ulations were performed with the silica and bulk water systems (6000 and 6540 atoms,
respectively) using 27 cores.

Dataset Original Bond Init Optimized Bond Init

Silica 2.6E5 1.1E5
Water 6.3E5 1.3E5

3.4.4 Overall Simulation Performance

In Figs. 3.8 and 3.9, we present the strong scaling and weak scaling results for the entire

PuReMD simulation, which are indeed quite similar to those presented above for QEq.

Since QEq solves and initialization of interaction lists constitute a significant amount of the

total running time, improvements obtained for each of these kernels carry their benefits to

the overall simulation times, especially when solver tolerance is reduced to 10−10. In our

experiments, we observed overall speedups of 1.1x to 1.9x for strong scaling experiments,

and 0.9x to 1.8x for weak scaling experiments.
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Figure 3.8 Strong scaling plots for total simulation time of distributed precondi-
tioned solvers for the benchmark systems. Figures from left to right within a row
show results at convergence tolerance levels of 10−6 and 10−10.

3.5 Conclusions

Reactive MD models fill an important void in the molecular dynamics landscape, but the

scalability of existing software is limited due to the onset of communication overheads and

redundant calculations, specifically due to charge distribution solvers and computations re-

lated to dynamic bond order lists. In this paper, we presented a number of novel techniques
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Figure 3.9 Weak scaling plots for main simulation sub-kernels in distributed mem-
ory using the benchmark systems. Figures depict results for silica (left column) and
bulk water (right colum) systems at solver tolerances of 10−6 (top row) and 10−10 (bottom
row). Unhatched bars (left within a grouping) are from CG+Jacobi [Half] while hatched
bars (right within a grouping) are from PIPECG+SAI(0.15).

to address these bottlenecks and studied their performance impact in large-scale simula-

tions. Our results show that the presented techniques can significantly improve the overall

performance and scaling of reactive MD simulations. A number of potential performance

improvement opportunities have been observed as discussed above, and will be the subject

of our future work in this area. While the techniques presented in this paper are discussed

in the context of the ReaxFF model, they can directly be used in other bond order poten-

tials. The accelerated charge model solvers can also be useful for classical force fields with

65



polarizable charge models.
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CHAPTER 4

OPTIMIZATION OF THE REAX FORCE FIELD FOR THE
LITHIUM-OXYGEN SYSTEM USING A HIGH FIDELITY CHARGE

MODEL

This chapter presents previously published work on improving ReaxFF parameter optimiza-

tion with the recently published ACKS2 charge model using the OGOLEM software inte-

grated with a modified shared-memory version of PuReMD [48]. This work is reproduced

with the permission of AIP Publishing.

While ReaxFF has been shown to be highly accurate potential with acceptable compu-

tational cost for a variety of application areas, the development of new force fields remains a

challenging task which is often limited to a handful of researchers with deep domain knowl-

edge and experience. Moreover, the high dimensionality and difficult features of the ReaxFF

parameter space pose significant challenges to applying global optimization techniques, such

as evolutionary genetic algorithms. To address and further diagnose these issues, a parame-

ter optimization study was conducted with Li-O systems for ReaxFF coupled with the QEq

and ACKS2 charge models. In support of this, the OGOLEM genetic algorithm framework

was coupled with a modified shared-memory version of PuReMD.

4.1 Introduction

Accurately simulating chemical bond breaking is a non-trivial task. In particular, the widely

used methods based on density functional theory (DFT) [49] struggle with describing bond

dissociation processes. In materials science, fracture can simply be defined as a long series

of bond breaking events, naturally making it a significantly more difficult task than the

description of an individual bond breaking event [50].

Given the hardships faced at the quantum chemistry level, it is no surprise that fracture

simulations have proven challenging for atomistic models, too. Fracture is especially pivotal

in ceramic materials, which exhibit catastrophic brittle failures as opposed to the more
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ductile failure modes of metals. Their failure typically starts from pre-existing cracks, in

which stress is concentrated at the sharp tip of the cracks. Griffith theory [51] further

connects the energy to break the bonds ahead of the crack tip with the strain energy due to

the tensile stress to determine whether it is energetically favorable for a crack to propagate.

This highlights the need for correct description of bond breaking in predicting fracture of

ceramic materials.

Fracture simulations are typically beyond the length and time scales currently accessible

to quantum-based methods. Reactive molecular dynamics (MD) simulations based on em-

pirical force fields (FFs) allow simulation of mechanical deformation and crack propagation

in materials at nanometer scales [52, 53, 54, 55, 56]. However, FF-based MD simulations

tend to predict features of ductile fracture, such as void formation [57, 58], extensive sliding-

induced necking [59], and crack blunting [56], even in ceramics such as Si, Ge, SiO2, Li2O, and

Lix S that are known to exhibit brittle fracture [60, 61, 59, 62]. Although small simulation

volumes, lack of preexisting defects or notches, excess surface diffusion in nanostructures,

and fast strain rates can all contribute to over-ductility in MD simulations [63], the most

important factor is the underlying force field. For example, Kang and Cai compared five

different force fields for simulating Si and Ge nanowires under tension. Although all of them

predicted reasonable elastic modulus, the predicted tensile strengths and fracture behaviors

varied widely [59]. This points to an inaccurate description of bond breaking within the

force field itself as a source of the error.

In this study, we use the reactive FF abbreviated as ReaxFF [1, 4] due to its applicability

to a wide range of systems. In ReaxFF, reactions are simulated by dynamically computing

the bond order between pairs and determining partial charges based on atomic positions.

Previous work has shown that ReaxFF is well suited to study mechanical failure in a variety

of systems [64, 65, 66]. However, major challenges still remain when it comes to fracture

simulations.

As mentioned above, accurate description of bond breaking plays a crucial role in being
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able to correctly capture the fracture behavior (ductile vs. brittle). Of the several partial

energies employed in ReaxFF, bond energy and van der Waals and Coulomb interactions

play the main role in bond breaking. However, the charge prediction scheme utilized in

existing ReaxFF is not sufficiently accurate.

Traditionally, ReaxFF adopts the electronegativity equalization method (EEM) [26, 21]

(which is closely related to the charge equilibration (QEq) method [22]) for dynamically

determining charges in a simulation. Both of these methods obtain the atomic charges by

minimizing the electrostatic energy at each step as a function of atomic positions. Such

system-wide optimization of charges can result in instantaneous long-range charge trans-

fer during bond breaking. For example, when a diatomic molecule dissociates and the

constituent atoms move far apart, they should become neutral species rather than being

charged. However, the QEq and EEM methods allow these two atoms to exchange electrons

and carry fractional charges even when they are well separated. Since Coulomb interaction

decays slowly, residual charges in a fracture simulation remaining after bond breaking can

still lead to strong electrostatic forces between opposing surfaces which cause overestimation

of the toughness and lead to unphysical ductility.

Another shortcoming in existing force fields is the training set used in parameter fitting.

Typically, training set data are computed by DFT calculations for structures near the equi-

librium bond distance. Since bond breaking is crucial for fracture, highly accurate bond

breaking data should be included in the training set. However, as mentioned earlier, some

electronic structure theory methods, such as DFT, are unable to correctly describe bond

breaking processes. In those cases, highly correlated ab initio wave function methods, espe-

cially those using multiple suitably chosen reference determinants, such as the multireference

configuration interaction (MRCI) approach developed in Refs. [67] and [68] exploited in this

study, may provide the desired solution. As illustrated in Ref. [4], data from these higher-

level quantum chemistry calculations can be used to train a Reax force field to correctly

describe bond breaking events.
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In this paper, we explore a new Reax force field concept and its ability to describe

crack propagation in lithium oxide materials. Our force field development method combines

advancements in the training set generation phase and the fitting protocol itself, in addition

to utilizing a high-fidelity charge model to mitigate the accuracy issues with the conventional

ReaxFF charge models. We created a training data set suitable for the study of crack

propagation, and fitted ReaxFF parameters by adopting the atom-condensed Kohn-Sham

DFT approximated to second order (ACKS2), [24] which is derived from the Kohn-Sham

formulation of DFT, [69] as the charge model. The use of ACKS2 instead of QEq/EEM for

charge distribution together with the training data set used lead to a significantly different

ReaxFF bond description (where Coulomb interactions are heavily emphasized as they should

be in an ionic system) compared to an existing ReaxFF parameter set [70]. Therefore,

contributions from other energy terms had to be re-balanced by refitting those parameters as

well. Since ReaxFF was developed with the capability to describe many varying chemistries,

the complexity of the force field makes parameter optimization a challenging task. Oftentimes

tens to hundreds of parameters must be simultaneously optimized when fitting to a large

training dataset. For this purpose, a genetic algorithm (GA) based parameter optimization

software was used, while the choice of parameters and their ranges were chosen carefully to

avoid an over-fitted force field with incorrect physics.

We demonstrate that this new Reax force field is able to correctly describe bond breaking

and charge transfer in the Li2O molecule. This translates to improved charge prediction dur-

ing bond formation and breaking in solid Li2O systems, leading to an improved description

of fracture in amorphous Li2O. Together with improvements in formation enthalpies of both

Li2O and Li2O2, the resulting force field represents a major step forward in the simulation

of the lithium oxidation process, and paves the way for improved atomistic simulations of

lithium-air batteries as well as dendrite formation, solid-electrolyte interphase formation,

and passivation layers in lithium-ion batteries. [71]

70



4.2 Methodology

Our newly fitted force field for the Li-O system advances in three distinct improvements:

i) selection of a suitable training data set, ii) adoption of the ACKS2 model for charge

prediction, iii) the fitting procedure itself. We present the details for these improvements

next.

4.2.1 Training Data Set

In training the new force field, a mix of crystalline and molecular structures were used.

Relative energies (with respect to a closely related reference structure) rather than absolute

energies are used in the training data set. This allows us to combine different quantum

chemistry methods for generating the training data to balance accuracy and efficiency. For

example, DFT was used to obtain the equations of state for crystals and surface energies for

slab models, while the higher-level ab initio MRCI methodology was employed to determine

accurate partial charges and, after adding the multireference Davidson correction through

the MRCI+Q approach, accurate energetics characterizing the asymmetric and symmetric

bond dissocation in a model molecular system containing Li and O atoms.

The training set consisted of 276 items: energies of crystalline Li2O, Li2O2, and Li

metal under varying strain rates, energies of Li–Li molecules (taken from Ref. [72]), and

energies and charges of Li–O–Li molecules under dissociation. Since DFT calculations are

suitable to give the relative energies for systems near their equilibrium structures, energies

for crystals were calculated using the DFT method in vasp [73] with PBE-GGA [74] and

PAW pseudopotentials [75]. In order to correctly capture the thermodynamic driving forces

for oxidation, the formation energies of crystal structures were used to train the force field:

EF [LixOy] = E[LixOy]− (x− y)E0[Li]−
y

2
E0[Li2O2]. (4.1)

The required MRCI+Q calculations of the potential energy curves characterizing asym-

metric and symmetric bond dissociations in the linear Li–O–Li triatomic and the corre-
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sponding MRCI computations of atomic charges were performed using the MOLPRO 2010.1

program. [76] In the case of asymmetric single bond breaking, we stretched one of the Li–O

bonds while keeping the other fixed at the equilibrium distance. In the case of symmetric

double dissocation, we stretched both Li–O bonds symmetrically. The information about

the grid of nuclear geometries used in these calculations can be found in the Appendix B. In

order to perform the MRCI computations, we employed the highly efficient internally con-

tracted MRCI algorithm developed in Refs. [67] and [68]. The underlying orbitals and refer-

ence functions were obtained with the complete active-space self-consistent field (CASSCF)

approach [77, 78] using the active space of 8 valence electrons distributed among 12 va-

lence orbitals correlating with the 2s and 2p shells of the lithium and oxygen atoms. In

the subsequent internally contracted MRCI calculations, we explicitly correlated the 8 va-

lence electrons of Li–O–Li by including all asymmetric and symmetric excitations out of

the multi-determinantal reference space. The final energetics entering our training dataset

included the quasi-degenerate Davidson correction through the aforementioned MRCI+Q

approach. Due to the fact that the Mulliken population analysis is not reliable for lithium-

containing compounds, [79] the MRCI atomic charges that form part of our training dataset

were obtained using the natural bond orbital analysis of Weinhold and co-workers, [80, 81, 82]

as implemented in MOLPRO 2010.1. [83] All of our MRCI and MRCI+Q calculations for

the Li–O–Li system used the aug-cc-pVDZ basis set. [84, 85, 86] The complete set of results

of our MRCI and MRCI+Q computations can be found in the Appendix B.

4.2.2 High Fidelity Charge Model

The residual charge problem is a common issue beyond the Li-O systems studied herein.

Some ad hoc fixes have been proposed in the literature. Patel and Brooks add artificial

constraints on atomic charges in CHARMM [87]. A different approach called atom-atom

charge transfer (AACT), proposed by Chelli et al., [88] introduced a dummy variable, called

a split charge, to share charges across a bond. The split charge variable determines the
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amount of charge transferred from one atom to the other. Later, Nistor et al. [23] proposed

the split-charge equilibration (SQE) method which combines the EEM and AACT methods.

SQE and its improved version can accurately capture some charge transfer phenomena such

as static electricity transfer [89].

In this study, we adopt the more general ACKS2 method, which is a relatively recent

model [24]. It is derived by expanding the Legendre transform of the Kohn-Sham kinetic

energy to second order in the atomic populations and introducing a new set of dual atomic

variables, the relative atomic Kohn-Sham potentials. The ACKS2 model [24] can be regarded

as an extension of QEq/EEM methods. Essentially, ACKS2 was developed with the aim of

correcting issues with accurately modeling dipole polarizability and charges during bond

formation/dissociation via additional empirically fitted parameters.

From a computational point of view, a block matrix representation of the linear system

arising in the ACKS2 model is as follows:

HQEq In 1n 0n

In X 0T
n 1n

1T
n 0T

n 0 0

0T
n 1T

n 0 0





q

U

µmol

λU


=



−χ

qref

qnet

0


. (4.2)

In Eq. (4.2), n is the number of atoms in the system, HQEq is the n × n Hamiltonian

matrix for the QEq model, X is an n× n matrix that contains terms for the linear response

kernel of the Kohn-Sham potential, In is the n-dimensional identity matrix, 0n and 1n are

n-dimensional column vectors whose individual elements equal 0 and 1, respectively, q is the

n-dimensional column vector whose elements are the atomic charges, U is an n-dimensional

column vector containing the coefficients defining the Kohn-Sham potential, µmol and λU are

Lagrange multipliers from the underpinning optimization problem, χ is an n-dimensional

column vector containing the electronegativity of each atom, qref is the set of atomic reference

charges (taken as all zero for this work), and qnet represents the net charge of the system to

be simulated.

73



The entries of HQEq are defined as H ij
QEq = δijηi + (1− δij) · Tij, where δij denotes the

Kronecker delta operator; ηi denotes the atomic idempotential; and Tij is defined as

Tij =


1

3
√

r3ij+γ−3
ij

, if rij ≤ rnonb

0, otherwise.

In the above equation, rij signifies the distance between atoms i and j and γij =
√
γi · γj

denotes a pairwise shielding term tuned for element types of atoms i and j to avoid un-

bounded electrostatic energy at short distances. Using a tapering function, the term Tij

decays smoothly to zero for all pairs beyond the non-bonded interaction cutoff rnonb (typi-

cally 10 Å). The diagonal entries of the linear response kernel are X ii =
∑i−1

j=1−X ij, while

the off-diagonal entries are defined as

X ij =


Λ ·
(

rij
σij

)3
·
(
1− rij

σij

)6
, rij ≤ rmin, X

ij > 0

0, otherwise.

In the previous equation, σij =
σi+σj

2
and rmin = min{rnonb, σij}. The ACKS2-specific

parameters σi and Λ are fitted as part of the GA optimization process. σi thresholds entries

based on element types and Λ is a global bond softness parameter.

The resulting ACKS2 matrix HACKS2 ∈ R(2n+2)×(2n+2) is symmetric, indefinite, and

sparse. Atomic charges q = (q1, q2, . . . , qn), qi ∈ R are thus obtained by solving the linear

system in Eq. (4.2). Due to the size of the linear systems involved, we use the accelerated

sparse solvers for ACKS2 [12, 43] in the PuReMD package [10, 11].

It has been shown that ACKS2 gives a better description of atomic charge, as well as

a more accurate energy prediction [4]. Therefore, we anticipate that ACKS2 will describe

the bond breaking process in Li-O with higher fidelity, and hence lead to a more accurate

characterization of its brittle fracture property.
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4.2.3 Optimization of the Force Field Parameters

Published parameter sets for the ReaxFF are the result of a combination of chemical intuition

guided by a physical interpretation of the parameters, together with several generations of

parameter fitting. Hence when an extension of the method to a new system is desired, a

careful balance must be struck: adjusting parameters to better describe the new system

while maintaining the core chemistry of ReaxFF. It is also desirable to maintain information

from past training that is encoded in the parameters, without needing to explicitly include

the entire training history of ReaxFF in a new training set (due to the computational costs

of the parameter fitting phase).

A two-element system in ReaxFF (such as Li-O) typically requires simultaneous opti-

mization of tens of parameters, or over 100 parameters for a full re-fit. In the case of the

Li-O system, the bond-order parameters have already been fit to capture bond formation in

this system reasonably well [4, 70, 90]. We therefore keep bond-order related parameters

fixed in our fitting, with the notable exception of the lithium bond-order over-coordination

correction. In the Li2O crystal, the 2016 QEq FF finds a large number of lithium-lithium

bonds in addition to the desired lithium-oxygen bonds. This is because the Li-Li distance in

Li2O is smaller than that in the lithium metal, so the bond-order terms appropriate for the

metallic bonds are also activated in Li2O. This results in a large over-coordination correction

to the energy, but the forces due to the Li-Li bonds may still have undesired effects in fit-

ting all quantum-mechanical training data and in subsequent MD simulations. We therefore

turned on over-coordination correction at the bond-order level for lithium. This ensured

that lithium only formed bonds with oxygen in the Li2O solid.

While these parameters were kept fixed, adopting the ACKS2 model does require re-

optimization of a significant number of force field parameters. Most obvious are the ACKS2-

specific parameters: the ACKS2 softness parameter as well as the EEM shielding and atomic

softness parameters for oxygen and lithium. Upon fitting these parameters to the MRCI

charges and MRCI+Q energies, we observe that the use of ACKS2 instead of QEq for charge
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assignment leads to significant differences in the Coulomb force. Consequently, the strengths

of the other partial energy terms and how much they contribute to the total energy need to

be balanced. We therefore perform a “high-level” re-fit of the lithium and oxygen bonding

and angle terms, too. We find that re-fitting a total of 39 parameters (the ACKS2 softness

parameter, 14 atomic parameters, 12 bonding parameters, and 12 angle parameters) provides

sufficient flexibility to achieve a good fit while preserving the basic chemical properties of the

underlying ReaxFF structure. Additional details are provided in Section B.1 and Table B.1.

For such high dimensional ReaxFF parameter optimization problems, recent works have

utilized GAs [91, 92], which essentially are heuristic optimization techniques that take their

namesake from the biological concept of evolution. In GAs, optimization proceeds using

mutation and crossover operations (at a predetermined rate) until some termination criteria

are reached (e.g., a solution with small enough error is found or a maximum number of

generations is reached). For evaluation of the solutions, a fitness function is used:

Fi =
T∑

j=1

(
x
(j)
ref − x

(i,j)
actual

σ(j)

)2

. (4.3)

In Eq. (4.3), Fi is the fitness score for organism i, j denotes an index over the items in the

training dataset (T total items), x
(j)
ref denotes the reference values for the j-th training item

with weight σ(j), and x
(i,j)
actual denotes the computed value for training item j using the force

field parameters associated with organism i.

In this study, we utilized the OGOLEM software [93], a global optimization GA frame-

work aimed at computational chemistry problems, including the fitting of MD force field

parameters. In conjunction with OGOLEM, the PuReMD ReaxFF software was used for

evaluation of the parameter sets and the MD simulations [11, 10, 94]. Novel to this work

has been the integration of ACKS2 model into PuReMD for optimization with OGOLEM.

Several identical fitting runs were performed in parallel using OGOLEM; a model was

deemed to have converged when fitness as a function of GA generation leveled off (see

Fig. 4.1). Among the converged models, the force field that performed well on the training
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Figure 4.1 Fitness of the best performing ReaxFF parameter set during optimiza-
tion. Results obtained from using OGOLEM are presented by run number for using the (a)
QEq and (b) ACKS2 charge models.

data according to the fitness score and showed good stability in brief energy minimization

runs was selected for use in the fracture simulations.

4.3 Results and Discussion

In this section, we present the fitting results using the ACKS2 in Reax force field (denoted as

ACKS2 FF) and the MD simulation results for Li2O fracture. There already is a parameter

set for ReaxFF from 2016 to study Li-O systems [70], which uses the EEM/QEq model for

charge equilibration. We use this parameter set, denoted as “2016 QEq FF” in what follows,

as our comparison point. The results from these two force fields are compared.
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4.3.1 Fitness to the Training Data Set

The optimized ReaxFF with the ACKS2 model significantly improves the accuracy of the

atomic charge assignment when compared against the MRCI training data. Fig. 4.2 shows

the predicted atomic charges in the Li–O–Li molecule during stretching. The ACKS2 FF

shows an important qualitative improvement over the 2016 QEq FF, as the latter leaves a

large residual charge on the mobile Li even after bond-breaking. ACKS2 FF, on the other

hand, correctly predicts it to be neutral at a sufficiently large separation. In the bottom

figure of Fig. 4.2, when both Li atoms are slowly pulled away from the central O atom,

charges on Li atoms decrease as expected. The MRCI method can correctly predict the

neutrality of Li atoms when they are more than 4 Å away from O. But DFT still predicts Li

and O are +0.2 and −0.4 charged after their distance is beyond 8 Å. This result shows that it

is necessary to use more accurate quantum-mechanical methods to predict charges during the

bond breaking process. The 2016 QEq FF also significantly under-predicted the Li–O–Li

molecule dissociation energy compared to the MRCI+Q results, as shown in Fig. 4.3. This

has been corrected in our new force field. We achieve much improved agreement particularly

for the “asymmetric stretching” mode in which one Li–O bond is kept fixed while the other

Li atom is removed.

Significant improvement is also found in the description of the Li2O and Li2O2 crystal

energies, as shown in Fig. 4.3. The 2016 QEq FF significantly over-predicted the formation

energy of Li2O (as given by Eq. (4.1)) in addition to the incorrect prediction of the overall

shape of the energy vs. strain curve. Li2O2 is even more poorly described, with the 2016 QEq

FF failing to even recognize Li2O2 as a local minimum in energy. Table 4.1 summarizes the

basic materials properties predicted by the ACKS2 and the 2016 QEq FFs in comparison with

experiments and DFT data for the crystal phases. ACKS2 FF indeed shows improvement on

lattice parameters, formation energies, and bulk modulus, especially for the oxide phases, as

these properties are embedded in the energies in the training data. The cohesive energies were

not included in the training set for the ACKS2 FF but were fitted by 2016 QEq FF, which
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(a)

(b)

Figure 4.2 Charge during dissociation of the Li–O–Li molecule for asymmetric
symmetric bond stretching. Results are plotted for the MRCI training data, the fitted
ACKS2 FF, and the 2016 QEq FF for (a) asymmetric stretching (one Li–O bond remains
static) and (b) symmetric stretching (O remains static).

shows slightly better performance. The elastic constants were not included in the training

data. ACKS2 FF is softer for Li than 2016 QEq FF. The 2016 QEq predicted two shear

instabilities (C44 < 0 and C11 − C12 < 0) and the ACKS2 FF showed one shear instability

(C11−C12 < 0). This can be potentially problematic, as they suggest that deformation may

lead to phase instability, which is not the case experimentally. The fracture energy was not

included in the training set either. For fracturing along ⟨111⟩ direction, the force fields are

very close to one another and significantly over-predict the DFT value. By contrast, both

force fields significantly under-predict the DFT fracture energy along the ⟨110⟩ direction, but
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Figure 4.3 Energy vs. hydrostatic strain of Li2O and Li2O2 crystals along with
energy vs. separation of the Li2O molecule for bond stretching. Energy vs. hydro-
static strain of (a) Li2O and (b) Li2O2 crystals, plotted for the DFT training data, the fitted
ACKS2 FF, and the 2016 QEq FF. (a) shows the Li2O formation energy (given by Eq. (4.1))
and (b) shows the Li2O2 energy referenced to the DFT-optimized structure. Energy vs.
separation of the Li2O molecule for (c) asymmetric stretching (one Li–O bond fixed) and
(d) symmetric stretching. Plotted for the MRCI+Q training data, the ACKS2 FF, and the
2016 QEq FF.

the ACKS2 FF shows marked improvement over the 2016 QEq FF. These results suggest

that it is difficult for ReaxFF to predict the large variation in surface energies among crystal

facets. In the future, a larger number of amorphous structures, surfaces, and deformed

lattices could be included in the training set, potentially improving the performance of the

FF on phase stability and mechanical properties. For example, both the ACKS2 FF and

the 2016 QEq FF predict that the Li2O crystal is higher in energy than the amorphous

phase, which is not a correct description at room temperature. However, the ACKS2 FF

obtained in this work already represents a major improvement over the 2016 QEq FF in this
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regard, placing the Li2O crystal at 16 kcal/mol above the amorphous phase, as opposed to

42 kcal/mol predicted by the 2016 QEq FF. We anticipate that with the future consideration

of larger number of amorphous structures in the ACKS2 FF fitting, we should be able to

lower the energy of the crystalline phase even further, making the simulations more realistic.

Table 4.1 Materials properties as predicted by DFT, the fitted ACKS2 FF, and
the 2016 QEq FF. Cohesive energy, elastic constants, and fracture energy, which is defined
as twice the surface energy, were not included in the training data.

Li Li2O2 Li2O

Fitted Stable Bcc, Im3m P63/mmc Fm3̄m
Cryst. Phase
Lattice Param. Experiment a = 3.49 [95] a = 3.17, c = 7.72 [96] a = 4.57 [97]

(Å) DFT a = 3.43 a = 3.18, c = 7.70 a = 4.66
ACKS2 FF a = 3.44 a = 3.15 (a/c fixed) a = 4.63
2016 QEq FF a = 3.44 not stable a = 4.65

Form. Energy DFT - - 263
(kJ/mol) ACKS2 FF - - 263
(Eq. (4.1)) 2016 QEq FF - - 547
Cohesive Energy Experiment 158 [95] -
(kJ/mol) DFT 153 1515 1173

ACKS2 FF 99.7 2583 1654
2016 QEq FF 157.7 832 1121

Bulk Modulus Experiment 11.6 [95] - 88.0 [97]
(GPa) DFT 12.3 78.7 82.5

ACKS2 FF 2.55 159 132
2016 QEq FF 7.30 - 217

Elastic Consts. Experiment 14, 11, 9 [95] - 217, 25, 68 [97]
C11, C12, C44 DFT 14, 13, 16 153, 51, 37 203, 20.3, 53.7
(GPa) ACKS2 FF 2, 2, 2 211, 67,−94 143, 185, 33

2016 QEq FF 16, 8, 8 - 250, 250,−164
Fracture Energy Surface ⟨111⟩ ⟨110⟩ ⟨111⟩
(J/m2) DFT 1.08 1.68 1.07

ACKS2 FF 3.09 39.3 2.26
2016 QEq FF 7.78 −2.24 2.31
Surface ⟨110⟩ ⟨100⟩ ⟨110⟩
DFT 1.00 3.55 7.53
ACKS2 FF 0.70 19.0 3.63
2016 QEq FF 3.44 −8.23 2.50
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4.3.2 Evaluation using Bulk Lithium Oxide

To test the newly fitted ACKS2 FF, a 324-atom cubic supercell of crystalline Li2O under

periodic boundary conditions was simulated within an NPT ensemble at zero pressure and

300K for 40 ps. Tests in the NVE ensemble showed that 0.25 fs time step was required to

avoid energy drift, so this time step value was selected and is used consistently throughout

the paper. In both force fields, the structure became amorphous, but the volume increased

by 6% using the ACKS2 FF while decreasing by 25% using the 2016 QEq FF. Fig. 4.4 shows

the evolution of the volume and the resulting radial distribution functions (RDFs), while

more detailed RDF evaluations are shown in Fig. B.4. The nearest-neighbor Li-O peak in

the ACKS2 FF split into two peaks at 1.8 Å and 2.4 Å, respectively, causing anisotropic

mechanical behavior. The 2016 QEq FF showed similar Li-O peak splitting, with a small

Li-Li peak appearing close to 1.3 Å, which is much shorter than the Li-Li bond distance in

crystal Li (3.0 Å) and Li2O (2.3 Å). Based on these results, we conclude that the ACKS2

FF equilibrium structure is more realistic and stable than that of 2016 QEq FF.

Subsequent to NPT relaxation of the Li2O boxes, slabs were then constructed from a

8 × 1 × 6 tiling of the equilibrated boxes, with a 90 Å vacuum space included in the x

direction. The slabs were then further equilibrated within the NPT ensemble under 3D

periodic boundary conditions at 300K (Fig. 4.5). Equilibration of the ACKS2 FF slab

does not have much effect on the amorphous Li2O other than smoothing out the random

distribution of atoms over a large number of particles. The RDF stabilizes after about 10

ps in ACKS2, showing very little subsequent change out to 40 ps. The same process occurs

in the first 8 ps of the 2016 QEq FF slab, but then starting around 10 ps the slab shrinks

considerably and develops long-range order, as shown by the emergence of distinct peaks

in the RDF, reaching a new equilibrium by 40 ps. The order is not commensurate with

real crystalline Li2O and represents an unphysical crystalline phase. This provides further

confirmation that the ACKS2 FF predicts a more stable solid Li2O than the 2016 QEq FF.

In order to test if the improved success of our ACKS2 FF was due to the charge assignment
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method and not just the training procedure, a nearly-identical parameter-fitting run was

attempted for a ReaxFF force field using QEq for charge assignment. The only difference

was that the ACKS2-specific parameters were not allowed to change during optimization,

since they are not relevant to a QEq force field. While a comparable fitness value on the

training items was achieved as shown in Fig. 4.1, the resulting force fields are unstable when

simulating solid Li2O (see Section B.2). This suggests that QEq-based ReaxFF is incapable

of describing the underlying charges properly in the training set, and the genetic algorithm

may be forced to “over-fit” the training data with an unphysical parameter combination

which leads to an unusable force field. This highlights the need for ACKS2 for the correct

description of charges in these materials and the difficulty of using fully automated fitting

procedure, as the physics insights are still important.

4.3.3 Evaluation using Deformation and Fracture

In a molecular dynamics simulation, brittle fracture is characterized by the propagation of

a sharp crack tip across a sample and a relatively flat fracture surface. To explore brittle

fracture, MD simulations were performed on slabs of Li2O. Atoms were removed from each

slab to create a sharp notch in the xy plane, which corresponded to the [100] crystal direction

in the original structures. Every picosecond, 0.5% strain was applied normal to the crack

plane while the atom positions were evolved under NVT at 300K. This simulates a plane-

strain condition. Initially, crystalline slabs were used as the starting point for the deformation

simulations. However, the large difference in built-in stresses due to the instability of the

crystal structure made it impossible to draw meaningful comparison between the results.

Therefore, NPT-equilibrated slabs described in Section 4.3.2 by ACKS2 FF and 2016 QEq FF

methods (both with and without long-range order) were selected to test crack propagation.

All of these initially have low stress in all three directions, suggesting equilibrium state, and

thus represent a fair comparison. Parameters of the slabs at the beginning of the fracture

simulations are shown in Table 4.2. Duplicates of each fracture simulation were performed
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x10

Figure 4.4 NPT simulation and material properties of crystalline Li2O with the
ACKS2 FF and the 2016 QEq FF. Simulations were performed for 40 picoseconds at
300K using a 324-atom cube of crystalline Li2O with the ACKS2 FF and the 2016 QEq
FF. Panels (a) and (b) show side lengths of the simulation box (under periodic boundary
conditions). Resulting RDFs are shown in (c), along with the crystal RDF (scaled by 0.1
for ease of comparison). The ACKS2 FF equilibration is more realistic, developing a single
nearest-neighbor peak closer to the crystal Li-O bond distance, whereas the 2016 QEq FF
peak is split and at smaller separation. Panel (d) shows the average stress over the course
of the simulation.
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(a) (b)

Figure 4.5 Simulation results and material properties for Li2O slabs before and
after NPT equilibration with ACKS2 and 2016QEq FF. Results are shown using (a)
ACKS2 and (b) 2016QEq FF. Noise is reduced in both simulations due to the large number
of particles, but the ACKS2 FF shape remains the same. For the first 8 ps the 2016 QEq
FF RDF remains similar, but then it develops long-range order evidenced by the emergence
of distinct peaks.

to test the impact of the stochastic MD simulation. The different random starting velocities

did not impact the conclusions (see Fig. B.3).

Table 4.2 Properties of the notched slabs used as a starting point for the fracture
simulations. a is the notch length, b is the slab width, y is the thickness in the periodic
direction along the crack, z is the thickness in the periodic direction normal to the crack,
h is the space between the crack edge and the periodic boundary, and N is the number of
atoms in the slab.

ACKS2 FF 2016 QEq FF 2016 QEq FF
(amorphous) (ordered)

a (Å) 49.7 46.0 46.2
b (Å) 108.3 101.2 97.5
y (Å) 14.8 12.7 12.0
z (Å) 86.6 74.6 71.7
h (Å) 32.5 27.9 27.5
N 14700 14624 14654

Stress-strain curves and visualizations of the slab undergoing crack propagation are shown

in Fig. 4.6. Stress was calculated by taking the average pressure over each picosecond of

constant strain. Pressure was converted to true stress by multiplying by V/Vocc where V is

the total volume of the simulation cell and Vocc is volume occupied by the slab at each time
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Figure 4.6 Simulation results for fracture in Li2O slabs. After NPT equilibration,
a notch is cut in the z-normal plane in each slab, and strain is applied along z constant
engineering strain rate of 5× 10−3ps−1 up to 20% strain to simulate fracture. Panels (a) to
(c) show the resulting stress-strain curves using the ACKS2 FF equilibrated slab and two
2016 QEq FF equilibrated slabs: one amorphous, one ordered. The amorphous ACKS2 FF
slab does not show complete fracture, but it does show a well-defined peak around 9% strain
and stress relaxation as the crack propagates. The 2016 QEq FF amorphous slab shows more
ductile behavior, with a broad peak around 13% strain and more gradual stress relaxation.
The 2016 QEq FF ordered slab shows classic fracture behavior, with a sharp peak around 5%
strain, with the stress falling to zero by about 12% strain. This cracking behavior is likely
assisted by the increased density and long-ranged order. Panel (d) shows the shape of the
slabs during deformation through scatter plots of the oxygen charges in slabs under various
levels of strain. The ACKS2 FF slab retains a sharper crack tip than the amorphous 2016
QEq FF slab, and the oxygen charge remains close to the formal charge of −2 throughout
the slab. Both 2016 QEq FF slabs show oxygen charge significantly smaller than the formal
charge, with noticeable charge depletion around the crack tip and fracture surfaces.

step. The stress in the x direction remains zero due to the free surface. The stress in the y

direction varies due to the different Poisson’s ratios. According to the elastic constants for

Li2O shown in Table 4.1, the 2016 QEq FF over-predicts the Poisson’s ratio while the ACKS2

FF under-predicts the Poisson’s ratio compared to the DFT results. As expected based on

its performance on the training data, the newly optimized ACKS2 FF parameter set shows
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improvement in the description of fracture in amorphous Li2O. The ACKS2 FF stress-strain

curves show crack propagation events in which the stress along z direction drops sharply at

10% of strain, while the 2016 QEq FF shows more smooth, ductile behavior. However, neither

force field produces true brittle fracture in amorphous slabs, although the stress intensity

factor is less than 1 MPa ·m1/2 (calculated based on the peak stress [98] and the geometry of

the notched slab), due to the small crack length used in MD simulations. Interestingly, the

2016 QEq FF slab with long-range order appears to show classic brittle fracture at 5% strain.

However there is local pre-fracture melting near the crack tip, which is not likely to occur

in room temperature brittle fracture. So the simulated fracture is likely due to unphysical

mechanisms. This suggests that, while the force field used is important, the overall fracture

propagation is a much more complicated process that may be related to some non-fitted

features in the force field. The current force fields have deficiencies in describing some

elastic and fracture properties of the lithium oxides. The phase change during relaxation

and deformation is related to the over-stabilization of the amorphous structure and the

mechanical instability shown in Table 4.1. For future improvement, the training set should

include crystalline structures with a wider variety of elastic deformations in addition to

unstable amorphous structures. However, since the energy differences between elastically

deformed structures are relatively small (±5 kcal/mol) compared to the formation energy of

lithium oxides (∼ 260 kcal/mol), the weights for fitting have to be carefully picked.

The improvement in fracture behavior on amorphous slabs may once again be attributed

to an improvement in the charge assignment due to ACKS2. The oxygen charges are shown

in Fig. 4.6 (d). The magnitude of both oxygen and lithium charges are significantly larger

in the ACKS2 FF and closer to the formal charges of Li+ and O2– . The difference between

atomic charges in surface and in bulk is improved in the ACKS2 FF. There is only a modest

reduction in magnitude of the atomic charge at the surfaces in ACKS2 FF. These ACKS2

FF results are consistent with Bader charge analysis [99] of DFT results on Li2O surfaces,

which show that atom charges at the most favorable (111) surface are essentially unchanged
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from their bulk values.

By contrast, the (already small) oxygen charge in the QEq FF is significantly depleted

at surfaces of the crack, to a greater degree than at the slab surface. This is especially

pronounced at the crack tip, suggesting that the depletion arises from QEq’s incomplete

charge transfer upon bond breaking. Further details on the charges may be found in Fig. B.2.

We expect that in the future, if an ACKS2-based force field can be trained to produce

a stable ordered structure, it will show similar or better brittle fracture behavior to that

exhibited by the ordered 2016 QEq FF slab. This will be particularly valuable if the crystal

structure matches the experimental Li2O structure, as this could allow for realistic large-scale

MD simulations of lithium oxidation and cracking.

4.4 Conclusion

Both ionic and covalent bond breaking are individually challenging in a MD context, and

simulating fracture in ceramics requires an accurate description of both phenomena simulta-

neously. Our results represent a significant step forward in the atomistic simulation of bond

breaking in crystalline systems with mixed ionic-covalent bonding character. We show that

a Reax force field employing the high-fidelity ACKS2 method for charge assignment, trained

using a GA with training data from high-level ab initio wave function quantum chemistry

calculations, is able to describe bond-breaking in Li–O–Li molecules. When comparing

fracture on stable amorphous Li2O, the ACKS2 force field represents a modest improvement

in fracture behavior compared to the existing 2016 QEq force field.

Future work may be able to improve fracture behavior in Li2O by training an ACKS2-

empowered ReaxFF with a genetic algorithm, while also including a large sample of amor-

phous structures in the training set. This may train the force field to predict the correct

crystal structure of Li2O rather than amorphization. The improvement in bond-breaking

and charge assignment demonstrated by ACKS2 may then lead to true brittle fracture.

The insights gained in this study, our GA-based fitting method, and our training set de-
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sign strategies can easily be extended to other systems. They may also serve as a foundation

for further automation of force-field generation and fitting [92]. Use of ACKS2 is also likely

to improve the description of other systems, especially ceramics or other materials with a

high degree of ionic bonding.
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CHAPTER 5

PERFORMANCE OPTIMIZATION OF LARGE-SCALE DISTRIBUTED
GPU-ACCELERATED REAXFF SIMULATIONS

5.1 Introduction

The original MPI+CUDA implementation of PuReMD was authored when the Fermi and

Keplar microarchitectures from the Tesla line of NVIDIA GPUs were in their heyday [94].

Since this time, subsequent hardware revisions have drastically improved peak computational

and memory bandwidth. These advancements have highlighted the need for revision and

enhancement of ReaxFF implementations.

5.2 Methods

The following subsections discuss several optimizations employed in the MPI+CUDA code-

base for PuReMD. These efforts range from generic best practices software engineering ap-

proaches to tuning individual kernels for lower resource usage and high parallelizability and

to implementing several of the previously discussed charge solver optimizations.

5.2.1 Improving Performance Portability and Scalability via Software Modern-
ization

As previously mentioned, the original MPI+CUDA implementation of PuReMD was devel-

oped on the Fermi and Kepler microarchitectures of NVIDIA Tesla GPUs [94]. While this

work made great strides in improving performance, numerous limitations to this implemen-

tation existed including hand-optimized kernels solely for Kepler GPUs (due to hardware

assumptions); fixed-size memory allocations which severely limited scalability to systems

with at most a few thousand atoms; low parallelizablity resulting in poor device utilization

due to assigning one CUDA thread to compute all interactions for an atom; excessive data

transfers the between host and device memory spaces; and lack of implementation of critical
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simulation features (e.g., non-NVE ensembles and additional charge models).

To address these shortcomings, the MPI+CUDA codebase was revised and improved

using several approaches. To address issues with microarchitecture-specific optimizations,

several kernels and small sub-tasks within kernels were replaced with performant portable

alternatives within the NVIDIA CUB library [100]. CUB provides optimized implementa-

tions of algorithms and performance primitives at varying scopes – device-wide, block-wide,

warp-wide – across various NVIDIA GPU microarchitectures which have been used across

several scientific and numeric codes [101, 102]. For the PuReMD codebase, several CUB

routines were leveraged including reductions and prefix sums.

In order to resolve issues with fixed-size memory allocations, a robust approach was re-

quired as the number of interactions per atoms may vary significantly across simulation steps

for different terms in the ReaxFF potential. Previous iterations of PuReMD addressed this

issue with ReaxFF by adopting a three-stage approach to managing memory: 1) estimate

the number of interactions per atom, 2) check current data structures allocations and re-

allocate more memory if needed, and 3) perform computations for an interaction. While

this approach is simple and has reasonable performance in a traditional CPU code, several

downsides become apparent when moving to a programming model where most of the com-

putation resides on the GPU. Namely, estimation of interaction counts requires expensive

device-wide reductions at every simulation step. Moreover, following these estimations, data

must be transferred back to host memory as the host context drivers memory management

for the majority of the device memory space. In order to avoid these issues, an atomic

transactional approach for dynamic memory reallocation was developed in Algorithm 5.1.

Algorithm 5.1 relies on writing kernels where the computations may be rolled back if

an out-of-memory condition is detected. If this atomicity condition is satisfied, then the

benefit of avoiding steps within the conditional clause can be gained on the majority of

simulation steps if either the system under simulation does not have rapidly changing mem-

ory requirements or sufficiently large over-allocations are performed when reallocation steps
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Algorithm 5.1 Atomic Transactional Approach for GPU Memory Management.

1: Perform computation and note any out-of-memory conditions (e.g., compute bond list)
2: Copy out-of-memory status from computation to host
3: if Out-of-memory condition detected during computation then
4: Revert any state altered by previous computation
5: Estimate new storage requirements for computation
6: Copy storage requirements to host
7: Reallocation storage space from host
8: Redo computation
9: end if

occur. In practice, a 20% to 40% increase above the current estimation is often sufficient to

significantly reduce the number of reallocation steps. Furthermore, refining the scoping of

reallocations in data structures from a global scope to a more localized scope may further

reduce the frequency of triggering reallocations – a prime example of this is in the interac-

tion lists where changing from global counts across all atoms to localized counts per atom

dramatically drops the number of reallocations.

5.2.2 Increasing Parallelism through Kernel-Level Restructuring

In order to fully utilize the thousands of CUDA cores in modern NVIDIA GPUs, additional

programming changes are required to achieve degrees of finer-grain parallelism. A core

mechanism where a higher degree of parallelism can be expressed is the interaction list data

structure. The interaction list in PuReMD is effectively a list of lists where the inner lists

are flattened and stored contiguously as a 1-D array (with inter-list padding for memory

alignment), with supporting arrays for storing the starting and ending indices of each inner

list within the flatten 1-D array. Conceptually, the outer index used to select a specific inner

list corresponds to some entity of interaction such as an atom or a group of atoms interacting

in some physical manner. In terms of parallelism, the original MPI+CUDA code utilized

1 CUDA thread to process all the valid interactions for a inner list. As the inner lists can

vary significantly in terms of size and as many of the computations performed for each entry

in an inner list possess a relatively high arithmetic intensity, the introduction of additional
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parallelism in processing the inner lists leads to significant gains. Toward this end, a group

of threads (e.g., a warp of 32 threads) was utilized to process the inner lists.

The group of threads approach has several advantages including enabling kernels to use

fast collective operations – reductions, scans, broadcasts, atomic operations with leader

election, and synchronizations – and performing fast memory accesses through memory coa-

lescing via aligned burst reads and writes to aligned sections of the inner lists, at the cost of

increased memory usage due to this padding. Additionally, when combining delayed writes

to global memory, use of fast shared memory, and reductions of partial results at the warp-

level, memory pressure decreases with respect to the use of atomic operations in kernels for,

e.g., partial energy and force calculations.

5.2.3 Exploiting Task-Level Parallelism via CUDA Streams

Moving beyond the idea of exposing more parallelism, another approach which is broadly

applicable to the PuReMD MPI+CUDA codebase is to leverage task-level parallelism within

the ReaxFF potential and the coupled global charge model. Conceptually, the use of mul-

tiple simultaneous CUDA streams provides the CUDA warp scheduler more opportunity to

hide memory access latency as well as to increase device utilization by scheduling compu-

tation on idling streaming multiprocessors. With this in mind, Fig. 5.1 depicts the task

dependency graph in ReaxFF. In this graph, there are two points with a number of paths

with independent tasks following Verlet list generation/updating: 1) initialization post Ver-

let list generation, and 2) energy and force computation for the potential terms in ReaxFF.

In the former section, three independent paths are present (bond, H-bond, charge matrix

initialization) while in the latter section six independent paths exist (QEq/Coulomb, van der

Waals, BO/Bonds, BO/OverUnder, BO/Valence/Torsion, H-Bonds). As such, the updated

codebase employed the use of 6 CUDA streams.

In order to facilitate the use of CUDA streams in PuReMD, several changes were required

including using atomic operations to ensure true data independence between tasks for in-
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Figure 5.1 Task dependency graph for the ReaxFF potential coupled with a global
charge model (QEq) within a single MD step.

termediate results, switching from synchronous to asynchronous data transfers between the

host and device memory spaces, and injecting CUDA events between asynchronous kernel

launches in order to translate dependencies in the task graph into dependencies between

kernels executing in different streams. Further to this last point on CUDA events – syn-

chronization of tasks across different streams is accomplished via the queuing of and waiting

on CUDA events. As to data movements in the context of multiple CUDA streams, the

synchronous CUDA API functions all occur in the default stream and thus cannot execute

concurrently with non-default streams; thus, the switch to the asynchronous functions is

required and yields additional performance gains due to decreases in synchronization over-

heads.
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5.2.4 Global Charge Solver Optimizations

Another more targeted area for optimization in the MPI+CUDA code is the global charge

solver models. As previously discussed concerning optimizations for the shared-memory and

distributed-memory MPI-only versions of PuReMD, the sparse linear solvers underpinning

the global charge models constitute a significant portion of the total execution time per MD

step within ReaxFF+QEq. In order to better understand the need for optimization of the

charge solver, Fig. 5.2 presents kernel execution from a profiling run of the MPI+CUDA

code for a typical MD step (as delimited by the green vertical bars). As shown, the charge

solver starts to run about mid-way through the total step time, and once the charge solver

begins execution, the GPU utilization drops due low arithmetic intensity of the kernels in

the solver, especially the SpMV kernel. Also, due to host-device data transfers and the

MPI communications, several gaps occur in the execution timeline where the streaming

multiprocessors on the GPU sit idle. As previously discussed, multiple CUDA streams may

be used to hide the data transfer latency, but other optimizations are required to further

decrease charge solver runtime. These methods are discussed in detail below.

Approaches for improving the charge solver performance include optimizing significant

kernels within the iterative solver algorithm, namely the sparse-matrix-dense-vector multi-

plications (SpMV’s); overlapping the charge solver with other kernels via multiple streams

as discussed in the previous section; and decreasing solver runtime through efficient pre-

conditioning. For kernel-level tuning, warps of threads were utilized for the SpMV’s along

with symmetric charge matrices being stored in the full format. As to the use of CUDA

streams, the approach followed the guidance outlined in the previous section, with the addi-

tional insight that if one host thread is used to manage the CUDA context then the charge

solver should be launched last in order to avoid the blocking other kernel launches in dif-

ferent streams due to waits on memory transfers and MPI communication routines. Lastly,

insights from the preconditioning methods explored in the distributed-memory MPI-only

section guided implementing SAI-based preconditioning. For this work, computation of the
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Figure 5.2 Execution profile of the MPI+CUDA version of PuReMD using a single
CUDA stream. The nvprof profile was collected on a single V100 GPU using a 6000 atom
amorphous silica system running for 10K steps with 0.25 fs step sizes and an NVE ensemble.
Individual kernels, CUDA API calls, and host functions are visualalized horizontally in the
center, while cumulative runtime percentages are summarized in the left-most column.

SAI preconditioner was performed on the host using multiple OpenMP threads due to the

current lack of optimized batched least-squares solvers in the CUDA ecosystem – it is left as

an area of future work to move this computation to the device.

5.3 Performance Studies

5.3.1 Computing Environment and Benchmark Systems

Results from numerical experiments presented in the following subsections were collected on

clusters at the High Performance Computing Center at Michigan State University. Subsets

of nodes in these clusters are equipped with NVIDIA Tesla GPUs of varying models and

multiplicities: K20’s, K80’s, V100’s, and A100’s. For these experiments, we focus on nodes

equipped with V100’s and A100’s. Targeted nodes equipped with V100’s contained 8 GPUs

and 40 CPU cores – two twenty-core Intel Xeon Gold 6148 Skylake 2.4 GHz processors

and 384 GB main memory. Also, nodes equipped with A100’s contained 4 GPUs and 64
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GPU cores – two thirty-two core Intel Xeon Platinum 8358 Ice Lake 2.6 GHz processors and

256 GB main memory.

At the time of the experiments, the clusters ran version 7.9.2009 of the CentOS distribu-

tion of GNU/linux for x86 64 architectures, kernel version 3.10.0-1160.36.2, and glibc version

2.17-325.

For software, the MPI+CUDA version of PuReMD was built using the GNU Compiler

Collection version 10.3.0, OpenMPI version 4.1.1, and CUDA version 11.4.2 bundled with

CUB version 1.12.1. Compiler optimizations enabled included those implied by the -O3 flag

and those enabled by optimized device code generation for the Volta and Ampere microar-

chitectures. For numeric libraries, Intel MKL version 2021.2.0 was utilized. For SAI-based

precondition computation, the number of OpenMP threads was set to the number of available

CPU cores (no hyperthreading enabled).

For benchmarking purposes, two familiar molecular systems were selected: bulk water

(H2O) and amorphous silica (SiO2). The sizes of these systems varied from hundreds to

thousands of atoms depending on the experiment.

5.3.2 Scalability Studies

To better analyze the impact of GPU acceleration over execution time and scaling, we con-

ducted weak and strong scaling experiments for mean simulation time per step for PuReMD

and LAMMPS Kokkos, a high performance ReaxFF implementation maintained by Scan-

dia National Laboratories. As indicated earlier, the current PuReMD implementation relies

upon a uniform domain decomposition of the simulation space among the computing re-

sources, with MPI processes and GPUs in a one-to-one mapping. Therefore for our weak

scaling experiments, we choose water and silica systems with simulation volumes of mod-

erate size which contain several thousand atoms, and scale it up number of GPUs in pow-

ers of 2. As given in Fig. 5.3, results for the silica systems on the V100’s with PuReMD

CG+SAI(0.15) yield speedups of between 1.2x to 1.26x over PuReMD CG+Jacobi, and be-

97



tween 1.12x to 1.31x over LAMMPS Kokkos. For the water systems, speedups for PuReMD

CG+SAI(0.15) range from 0.88x to 1.04x over PuReMD CG+Jacobi and from 0.76x to

0.97x over LAMMPS Kokkos. Similar to the V100’s, results for the silica systems on

the A100’s with PuReMD CG+SAI(0.15) yield speedups of between 1.14x to 1.37x over

PuReMD CG+Jacobi, and between 1.17x to 1.54x over LAMMPS Kokkos. For the water

systems, PuReMD CG+SAI(0.15) fairs better with speedups ranging from 1.02x to 1.08x

over PuReMD CG+Jacobi and from 1.05x to 1.24x over LAMMPS Kokkos. Worth noting,

gains from SAI preconditioning due to the reduction in iteration counts are somewhat eroded

by the relatively large precondition computation cost due to host-side computation and sub-

sequent transfer to device memory. Particularly, as the number of GPUs increases, the

number of MPI threads per MPI process decreases, hence the preconditioner computation

cost increases.

In Fig. 5.4, we present the strong scaling results mean per-step simulation time. Since

QEq solves constitute a significant amount of the total running time, improvements obtained

for from SAI preconditioning carry their benefits to the overall simulation times. In our

experiments, we observed overall speedups of 0.81x to 1.74x and 0.89x to 1.77x for PuReMD

CG+SAI(0.15) over LAMMPS Kokkos on the V100’s with the silica and water systems

respectively, and 0.79x to 1.17x and 0.82x to 1.57x for silica and water on the A100’s.

Interestingly, the LAMMPS Kokkos code fairs best with lower GPU counts where the number

of atoms per GPU is greatest. Thus, additional tuning on PuReMD may be required,

especially if performance can be gained from avoiding memory transfers between host and

device memory spaces during the charge solve kernels.

5.4 Conclusions

We explored several optimizations to improve the performance of GPU-accelerated distribut-

ed-memory implementation of ReaxFF+QEq in PuReMD. By applying techniques including

leveraging performance portable primitives in code libraries, exploiting higher degrees of
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parallelizablity through warp-tuned kernels, hiding memory access latency and increasing

device utilization through CUDA streams, and improving charge solver performance through

tuning and improved preconditioning, the updated MPI+CUDA version of PuReMD stands

to enable efficient large-scale scientific studies on modern supercomputers. To confirm these

assertions, we performed scaling experiments against the LAMMPS Kokkos codebase, an

efficient ReaxFF implementation developed by Scandia National Laboratories. In several

cases, PuReMD performance is near parity or above the LAMMPS codebase, with greater

performance tending to be achieved at larger scales, thus showing great promise for the

future use of PuReMD.
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Figure 5.3 Weak scaling study for the MPI+CUDA PuReMD implementation and
LAMMPS Kokkos. Simulations coupled with the QEq charge model were performed on
servers with (a) 8 Volta V100 and (b) 4 Ampere A100 GPUs at the MSU HPCC. Within
each group of plots above, the left plots correspond to amorphous silica systems (6000 atoms
per GPU) and the right plots correspond to bulk water systems (6540 atoms per GPU).
PuReMD results correspond to the left two bars in a group (CG+Jacobi, CG+SAI(0.15)
solvers, respectively) while LAMMPS Kokkos (CG+Jacobi) results correspond to the trans-
parent, hatched bars. Reported times are mean total times per MD step. For these results,
simulations were performed using an NVE ensemble for 10K steps with 0.25 fs per step.
Reconstruction of the Verlet neighbor list was done every 25 steps using a 2.0 Å Verlet list
buffer for the codes using CG+Jacobi solvers, while for the CG+SAI(0.15) solver reconstruc-
tion occurred every 250 steps using a 3.0 Å buffer. All codes used a 10−6 solver tolerance.
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Figure 5.4 Strong scaling study for the MPI+CUDA PuReMD implementation
and LAMMPS Kokkos. Simulations were performed on servers with (a) 8 Volta V100
and (b) 4 Ampere A100 GPUs. Within each group of plots above, the left plots correspond
to amorphous silica systems (48000 atoms) and the right plots correspond to bulk water
(22500 atoms). PuReMD results correspond to the left two bars in a group (CG+Jacobi,
CG+SAI(0.15) solvers, respectively) while LAMMPS Kokkos (CG+Jacobi) results corre-
spond to the rightmost bars. Reported times are mean total times per MD step. Additional
simulation parameters were identical to those used in the weak scaling study.
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APPENDIX A

SUPPLEMENTAL DATA FOR GLOBAL CHARGE MODEL
OPTIMIZATIONS IN SHARED-MEMORY

Table A.1 Force field parameter values utlized for simulations with the molecular
systems in Table 2.1.

γi χi ηi σi Λ
System Element
Bilayer C 0.7631 5.9993 6.0000 - -
& H 0.8203 3.7248 9.6093 - -
Silica N 1.0000 6.8287 7.2217 - -

O 1.0898 8.5000 8.3122 - -
P 1.0000 1.8292 7.2520 - -
Si 0.8925 4.6988 6.0000 - -

PETN C 0.8712 5.7254 6.9235 - -
H 0.8910 3.8446 1.0698 - -
N 0.8922 6.7424 6.2435 - -
O 0.8712 8.5000 7.1412 - -

Water H 0.8203 3.7248 9.6093 3.4114 -
O 1.0898 8.5000 8.3122 0.9745 -
- - - - - 548.6451

Table A.2 Charge matrix condition numbers for the charge distribution models.
Condition numbers derived from the eigen-spectrum computed by the LAPACKE dgesvd func-
tion with Intel Math Kernel Library (MKL) version 2018.1.163.

System Method dim (H) κ (H) = σmax

σmin

Bilayer QEq 56800 2.569E2
EE 56801 3.166E2

PETN QEq 48256 1.347E2
EE 48257 2.117E2

Silica QEq 72000 1.061E2
EE 72001 2.315E2

Water QEq 78480 6.008E1
EE 78481 1.022E2

ACKS2 156962 8.231E4
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Table A.3 Tuned preconditioned solver parameters for shared-memory exper-
iments. For selection, a parameter search was conducted in order to minimize mean
solver time for the ICDD(t)+DS(d), ILUDD(t)+DS(d), FG-ICDD(t, s)+DS(d), FG-
ILUDD(t, s)+DS(d), and SAI(τ)+DS(d) preconditioned solvers. Parameters in the table
are ordered from left to right as appearing in the above preconditioner names.

Solver Tolerance 10−6 10−10 10−14

CM Prec. System

QEq ICDD Bilayer (0.0, 0.6) (0.0, 0.6) (0.0, 0.8)
PETN (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
Silica (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
Water (0.01, 0.6) (0.0, 0.6) (0.0, 0.6)

FG-ICDD Bilayer (0.0, 4, 0.6) (0.0, 3, 0.6) (0.01, 3, 0.6)
PETN (0.0, 3, 0.6) (0.0, 2, 0.6) (0.01, 2, 0.6)
Silica (0.0, 2, 0.6) (0.0, 2, 0.6) (0.0, 3, 0.6)
Water (0.0, 3, 0.6) (0.0, 3, 0.6) (0.0, 4, 0.6)

SAI Bilayer (0.05, 0.6) (0.1, 1.0) (0.15, 1.0)
PETN (0.1, 0.6) (0.15, 1.0) (0.15, 1.0)
Silica (0.075, 0.8) (0.1, 0.8) (0.1, 0.8)
Water (0.1, 0.6) (0.15, 0.6) (0.1, 0.6)

EE ILUDD Bilayer (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
PETN (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
Silca (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
Water (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)

FG-ILUDD Bilayer (0.01, 3, 0.6) (0.01, 3, 0.6) (0.01, 4, 0.6)
PETN (0.1, 2, 0.6) (0.0, 2, 0.6) (0.0, 2, 0.6)
Silica (0.0, 3, 0.6) (0.0, 3, 0.6) (0.01, 4, 0.6)
Water (0.1, 2, 0.6) (0.0, 2, 0.6) (0.01, 2, 0.6)

SAI Bilayer (0.15, 1.0) (0.1, 1.0) (0.15, 1.0)
PETN (0.125, 0.8) (0.15, 0.6) (0.125, 1.0)
Silica (0.1, 0.8) (0.1, 0.8) (0.1, 0.8)
Water (0.1, 0.6) (0.1, 0.6) (0.1, 0.6)

ACKS2 ILUDD Water (0.0, 0.6) (0.0, 0.6) (0.0, 0.6)
FG-ILUDD Water (0.0, 2, 0.6) (0.0, 2, 0.6) (0.0, 2, 0.6)
SAI Water (0.075, 0.6) (0.15, 0.6) (0.15, 0.6)
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APPENDIX B

SUPPLEMENTAL DATA FOR OPTIMIZATION OF THE REAX FORCE
FIELD FOR THE LITHIUM-OXYGEN SYSTEM USING A HIGH

FIDELITY CHARGE MODEL

B.1 Fitted ACKS2-based ReaxFF Parameters

Table B.1 shows the parameters chosen to fit are labeled according to the standard ReaxFF

parameter file indexing [103]. The first integer in parentheses indexes the parameter section

corresponding to one of the following five categories: General, Atoms, Bonds, Off-diagonal,

and Angles. The second integer indexes the block within the section. In this case, we fit

lithium and oxygen atomic parameters O-O, Li-O and Li-Li bonds; Li-O off-diagonal param-

eters; and O-Li-O, O-O-Li, and Li-O-Li angle parameters. The third integer corresponds to

the specific parameter within each block (see the ReaxFF Manual for details [103]).

The ACKS2-specific parameters are a global bond softness parameter Λ ((1, 35, 1) in

the force field), element-specific EEM shielding parameters γi ((2, 2, 6) and (2, 5, 6)),

and element-specific thresholding parameters σi ((2, 2, 23) and (2, 5, 23)), discussed in

Section 4.2.2.

Table B.1 The ReaxFF parameters adjusted to create the new ACKS2-based force

field for Li-O. Each parameter is constrained to the range defined by its lower bound (L.B.)

and upper bound (U.B.) during the optimization procedure. The fourth and fifth columns

report the fitted parameter values for the ACKS2-based ReaxFF and the 2016 QEq-based

ReaxFF, respectively. Parameters marked with an asterisk∗ are specific to the ACKS2 model

and were not fitted (N.F.) for the ReaxFF QEq 2016 force field. Parameteres not listed in

the table are fixed to the values from the 2016 ReaxFF reference.

Parameter Indices L.B. U.B. Fitted ACKS2 Values ReaxFF QEq 2016 Values
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Table B.1 (cont’d)

(1, 35, 1)∗ 10.00 500.00 234.3037 N.F.

(2, 2, 5) 0.01 0.20 0.0502 0.1000

(2, 2, 6)∗ 0.50 1.50 0.6318 N.F.

(2, 2, 9) 8.00 10.00 9.8993 9.7300

(2, 2, 14) 1.00 20.00 9.0609 8.5000

(2, 2, 15) 1.00 20.00 7.4275 8.3122

(2, 2, 23)∗ 0.10 10.00 3.4489 N.F.

(2, 2, 25) −5.00 −1.00 −4.0553 −3.5500
(2, 5, 5) 0.01 0.20 0.1996 0.1109

(2, 5, 6)∗ 0.40 1.00 0.7511 N.F.

(2, 5, 9) 8.00 10.00 9.9731 9.3147

(2, 5, 14) −12.00 12.00 −6.0479 −6.9345
(2, 5, 15) 1.00 20.00 6.2978 15.0000

(2, 5, 23)∗ 0.50 15.00 9.3096 N.F.

(2, 5, 25) −28.00 −17.00 −23.0012 −25.0000
(3, 2, 1) 140.00 150.00 141.9324 142.2858

(3, 2, 4) 0.00 1.50 1.2989 0.2506

(3, 2, 8) 0.00 1.75 0.4910 0.6051

(3, 12, 1) 75.00 85.00 76.8938 76.3632

(3, 12, 4) −1.50 0.00 −1.1429 −0.4309
(3, 12, 8) 0.00 1.50 0.0631 0.1271

(3, 15, 1) 45.00 75.00 45.0406 52.4319

(3, 15, 4) 0.00 1.00 0.0064 0.2219

(3, 15, 8) 0.00 3.00 1.5411 0.5355

(4, 8, 1) 0.00 2.00 1.4736 0.1112

(4, 8, 2) 0.00 2.50 1.4147 1.6982

(4, 8, 3) 9.00 13.00 9.0283 11.0473

(5, 31, 1) 70.00 90.00 73.8444 83.7146

(5, 31, 2) 2.00 12.00 7.3527 8.7579

(5, 31, 3) 3.00 5.00 4.2355 4.0000

(5, 31, 7) 0.50 2.50 2.1889 1.2463

(5, 32, 1) 78.00 89.00 83.7686 81.6233

(5, 32, 2) 28.00 32.00 29.7164 30.0000

(5, 32, 3) 1.00 3.00 1.4275 2.0000
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Table B.1 (cont’d)

(5, 32, 7) 0.00 2.00 0.8509 1.0000

(5, 33, 1) 85.00 110.00 93.3484 86.6874

(5, 33, 2) 15.00 25.00 19.0545 22.4076

(5, 33, 3) 3.00 5.00 3.5779 4.0000

(5, 33, 7) 0.50 2.50 1.7236 1.3084

B.2 Fitted QEq force field

As discussed in the main text, a ReaxFF force field was fitted using the same parameters

and training set as the ACKS2 force field. While it achieved similar fitness values on the

training set (see Fig. 4.1), it was unstable and did not capture the correct physics. This is

illustrated in Fig. B.1. The failure of this force field is important for two reasons. Firstly, it

highlights the fact that good fitness values on the training set alone do not guarantee a good

force field; the proof is in the MD simulations. Secondly, it shows that the ACKS2 method

is necessary to correctly capture bond-breaking. A QEq force field breaks when forced to fit

bond-breaking data.

B.3 The MRCI+Q energies and MRCI atomic charges

Table B.2 shows the MRCI+Q energies and MRCI atomic charges that form part of the

training dataset used in force field fitting.

Table B.2 Nuclear geometries used in the calculations for the Li-O-Li system,

along with the MRCI+Q total electronic energies and MRCI atomic charges on

Li and O atoms.

rLi(1)–O rLi(2)–O MRCI+Q qLi(1) qO qLi(2)

1.1381 1.6259 -89.865009 0.87 -1.79 0.93

1.3007 1.6259 -89.982903 0.91 -1.85 0.94

1.4633 1.6259 -90.030280 0.93 -1.88 0.94
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Table B.2 (cont’d)

1.6259 1.6259 -90.043345 0.94 -1.89 0.94

1.7885 1.6259 -90.039912 0.94 -1.89 0.94

1.9511 1.6259 -90.028990 0.94 -1.88 0.94

2.1137 1.6259 -90.015046 0.93 -1.87 0.94

2.2763 1.6259 -90.000344 0.92 -1.85 0.94

2.4389 1.6259 -89.986037 0.90 -1.83 0.93

2.6015 1.6259 -89.972698 0.86 -1.80 0.93

2.7641 1.6259 -89.960250 0.82 -1.75 0.93

2.9266 1.6259 -89.947858 0.75 -1.68 0.93

3.0892 1.6259 -89.936609 0.65 -1.58 0.93

3.2518 1.6259 -89.926896 0.52 -1.46 0.93

3.4144 1.6259 -89.919775 0.38 -1.32 0.94

3.7396 1.6259 -89.909602 0.17 -1.11 0.94

4.0648 1.6259 -89.904763 0.07 -1.02 0.95

4.3900 1.6259 -89.902426 0.03 -0.98 0.95

4.7152 1.6259 -89.901202 0.01 -0.96 0.95

5.0403 1.6259 -89.900506 0.01 -0.96 0.95

5.3655 1.6259 -89.900080 0.00 -0.95 0.95

5.6907 1.6259 -89.899804 0.00 -0.95 0.95

6.0159 1.6259 -89.899618 0.00 -0.95 0.95

1.1381 1.1381 -89.672358 0.88 -1.75 0.88

1.3007 1.3007 -89.917700 0.92 -1.83 0.92

1.4633 1.4633 -90.016373 0.93 -1.87 0.93

1.6259 1.6259 -90.043345 0.94 -1.89 0.94

1.7885 1.7885 -90.036195 0.95 -1.89 0.95

1.9511 1.9511 -90.013953 0.94 -1.89 0.94

2.1137 2.1137 -89.985959 0.94 -1.87 0.94

2.2763 2.2763 -89.956459 0.92 -1.83 0.92

2.4389 2.4389 -89.928055 0.88 -1.77 0.88

2.6015 2.6015 -89.900678 0.83 -1.66 0.83

2.7641 2.7641 -89.877388 0.76 -1.51 0.76

2.9266 2.9266 -89.856157 0.67 -1.35 0.67

3.0892 3.0892 -89.838679 0.61 -1.22 0.61

3.2518 3.2518 -89.814604 0.50 -1.00 0.50
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Table B.2 (cont’d)

3.4144 3.4144 -89.805887 0.50 -1.00 0.50

3.7396 3.7396 -89.790753 0.00 0.00 0.00

4.0648 4.0648 -89.791244 0.00 0.00 0.00

4.3900 4.3900 -89.791538 0.00 0.00 0.00

4.7152 4.7152 -89.791685 0.00 0.00 0.00

5.0403 5.0403 -89.791736 0.00 0.00 0.00

5.3655 5.3655 -89.791730 0.00 0.00 0.00

5.6907 5.6907 -89.791698 0.00 0.00 0.00

6.0159 6.0159 -89.791658 0.00 0.00 0.00

B.4 Further details of the MD simulations

Fig. B.2 shows detailed information on oxygen charge during cracking simulation from

Fig. 4.6 (d). Also, Fig. B.3 provides analysis from a second cracking experiment with iden-

tical parameters and starting structures to Fig. 4.6 (a)-(c).

Fig. B.4 displays evolution of the RDF of the 324-atom Li2O cube during NPT simulation

in Section 4.3.2.
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(a)

(b)

Figure B.1 Deformation simulation using the fitted QEq force field for Li-O. In the
atomic visualization (a), atoms are clearly being ejected from the slab, despite the fact that
this simulation was run at 1K in an attempt to avoid the ejections. In the radial distribution
function (b), a small peak around 1 Å appears. This is unphysical and does not occur in the
other force fields tested.
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Figure B.2 Detailed information on oxygen charge during cracking simulation.
Left: histograms of oxygen charge simulations at various points during the deformation
simulations. Note that the axis scales are identical among the subplots. Right: deviation of
oxygen charge from the average, shown at various points during the deformation simulations.
It is clear from this figure that the charge-depleted population is larger in the QEq FF
simulations, whereas the distribution is narrower and more symmetric under the ACKS2
FF.
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Figure B.3 Second cracking experiment with identical parameters and starting
structures. The behavior is slightly different but the qualitative trends remain. This
provides evidence that the conclusions are not sensitive to the stochastic nature of MD
simulation.
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Figure B.4 Evolution of the RDF during NPT simulation with the ACKS2 FF
and the 2016 QEq FF. Results are shown for the ACKS2 FF (left) and the 2016 QEq FF
(right).
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[39] M. Benzi and M. Tûma, “A comparative study of sparse approximate inverse precon-
ditioners,” Applied Numerical Mathematics, vol. 30, no. 2, pp. 305 – 340, 1999.

[40] M. Grote and T. Huckle, “Parallel preconditioning with sparse approximate inverses,”
SIAM Journal on Scientific Computing, vol. 18, no. 3, pp. 838–853, 1997.

[41] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner for nonsymmet-
ric linear systems,” SIAM Journal on Scientific Computing, vol. 19, no. 3, pp. 968–994,
1998.

[42] Y. Saad and M. Schultz, “Gmres: A generalized minimal residual algorithm for solving
nonsymmetric linear systems,” SIAM Journal on Scientific and Statistical Computing,
vol. 7, no. 3, pp. 856–869, 1986.

[43] K. A. O’Hearn, A. Alperen, and H. M. Aktulga, “Performance optimization of re-
active molecular dynamics simulations with dynamic charge distribution models on
distributed memory platforms,” in ICS ’19: Proceedings of the Association of Com-
puting Machinery International Conference on Supercomputing, pp. 150–159, 2019.

[44] T. Liang, T.-R. Shan, Y.-T. Cheng, B. D. Devine, M. Noordhoek, Y. Li, Z. Lu, S. R.
Phillpot, and S. B. Sinnott, “Classical atomistic simulations of surfaces and heteroge-
neous interfaces with the charge-optimized many body (comb) potentials,” Materials
Science and Engineering: R: Reports, vol. 74, no. 9, pp. 255–279, 2013.

[45] D. Frenkel and B. Smit, Chapter 10 - Free Energies of Solids. San Diego: Academic
Press, second edition ed., 2002.

[46] P. Ghysels and W. Vanroose, “Hiding global synchronization latency in the precondi-
tioned conjugate gradient algorithm,” Parallel Computing, vol. 40, no. 7, pp. 224–238,
2014. 7th Workshop on Parallel Matrix Algorithms and Applications.

[47] M. Benzi and M. Tuma, “A comparative study of sparse approximate inverse precon-
ditioners,” Applied Numerical Mathematics, vol. 30, pp. 305–340, 04 1998.

[48] K. A. O’Hearn, M. W. Swift, J. Liu, I. Magoulas, P. Piecuch, A. C. T. van Duin,
H. M. Aktulga, and Y. Qi, “Optimization of the reax force field for the lithium–oxygen
system using a high fidelity charge model,” The Journal of Chemical Physics, vol. 153,
no. 8, p. 084107, 2020.

[49] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136,
pp. B864–B871, Nov 1964.

118



[50] S. Huang, S. Zhang, T. Belytschko, S. S. Terdalkar, and T. Zhu, “Mechanics of nanoc-
rack: Fracture, dislocation emission, and amorphization,” Journal of the Mechanics
and Physics of Solids, vol. 57, no. 5, pp. 840–850, 2009.

[51] A. A. Griffith and G. I. Taylor, “Vi. the phenomena of rupture and flow in solids,”
Philosophical Transactions of the Royal Society of London. Series A, Containing Pa-
pers of a Mathematical or Physical Character, vol. 221, no. 582-593, pp. 163–198, 1921.

[52] J. Belak, J. N. Glosli, D. B. Boercker, and I. F. Stowers, “Molecular dynamics simu-
lation of mechanical deformation of ultra-thin metal and ceramic films,” MRS Proc.,
vol. 389, p. 181, 1995.

[53] I. Salehinia, J. Wang, D. Bahr, and H. Zbib, “Molecular dynamics simulations of
plastic deformation in nb/nbc multilayers,” International Journal of Plasticity, vol. 59,
pp. 119–132, 2014.

[54] D. Wolf, V. Yamakov, S. Phillpot, A. Mukherjee, and H. Gleiter, “Deformation of
nanocrystalline materials by molecular-dynamics simulation: relationship to experi-
ments?,” Acta Materialia, vol. 53, no. 1, pp. 1–40, 2005.
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[75] P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, pp. 17953–
17979, Dec 1994.

[76] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona,
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A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura,
A. Nicklass, D. P. O’Neill, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki,
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