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ABSTRACT

FAST AND MEMORY-EFFICIENT SUBSPACE EMBEDDINGS FOR TENSOR DATA WITH
APPLICATIONS

By

Ali Zare

The widespread use of multisensor technology and the emergence of big data sets have brought the

necessity to develop more versatile tools to represent higher-order data with multiple aspects and

high dimensionality. Data in the form of multidimensional arrays, also referred to as tensors, arise in

a variety of applications including chemometrics, physics, hyperspectral imaging, high-resolution

videos, neuroimaging, biometrics, and social network analysis. Early multiway data analysis

approaches used to reformat such tensor data as large vectors or matrices and would then resort to

dimensionality reduction methods developed for low-dimensional data. However, by vectorizing

tensors, the inherent multiway structure of the data and the possible correlation between different

dimensions will be lost, in some cases resulting in a degradation in the performance of vector-

based methods. Moreover, in many cases, vectorizing tensors leads to vectors with extremely high

dimensionality that might render most existing methods computationally impractical. In the case

of dimension reduction, the enormous amount of memory needed to store the embedding matrix

becomes the main obstacle. This highlights the need for approaches that are applied to tensor

data in their multi-dimensional form. To reduce the dimension of an 𝑛1 × 𝑛2 × · · · × 𝑛𝑑 tensor to

𝑚1×𝑚2× · · ·×𝑚𝑑 with𝑚 𝑗 ≤ 𝑛 𝑗 , MPCA1 would change the memory requirement from
∏𝑑

𝑗=1𝑚 𝑗𝑛 𝑗

for vector PCA to
∑𝑑
𝑗=1𝑚 𝑗𝑛 𝑗 , which can be a considerable improvement. On the other hand, tensor

dimension reduction methods such as MPCA need training samples for the projection matrices

to be learned. This makes such methods time consuming and computationally less efficient than

oblivious approaches such as the Johnson-Lindenstrauss embedding. The term oblivious refers to
1Multilinear Principal Component Analysis



the fact that one does not need any data samples beforehand to learn the embedding that projects a

new data sample onto a lower-dimensional space.

In this thesis, first a review of tensor concepts and algebra as well as common tensor decompositions

is presented. Next, a modewise JL approach is proposed for compressing tensors without reshaping

them into potentially very large vectors. Theoretical guarantees for the norm and inner product

approximation errors as well as theoretical bounds on the embedding dimension are presented

for data with low CP rank, and the corresponding effects of basis coherence assumptions are

addressed. Experiments are performed using various choices of embedding matrices. Results

verify the validity of one- and two-stage modewise JL embeddings in preserving the norm of

MRI and synthesized data constructed from both coherent and incoherent bases. Two novel

applications of the proposed modewise JL method are discussed. (i) Approximate solutions to

least squares problems as a computationally efficient way of fitting tensor decompositions: The

proposed approach is incorporated as a stage in the fitting procedure, and is tested on relatively

low-rank MRI data. Results show improvement in computational complexity at a slight cost in the

accuracy of the solution in the Euclidean norm. (ii) Many-Body Perturbation Theory problems

involving energy calculations: In large model spaces, the dimension sizes of tensors can grow fast,

rendering the direct calculation of perturbative correction terms challenging. The second-order

energy correction term as well as the one-body radius correction are formulated and modeled as

inner products in such a way that modewise JL can be used to reduce the computational complexity

of the calculations. Experiments are performed on data from various nuclei in different model space

sizes, and show that in the case of large model spaces, very good compression can be achieved at

the price of small errors in the estimated energy values.
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CHAPTER 1

INTRODUCTION

The emergence of big data elicits the development of compression methods to efficiently represent

such data without losing much information. One of the most well-known techniques to this end

is PCA1 which uses the linear structure of a high-dimensional vector and projects it onto the

underlying lower-dimensional subspace [2]. However, when the number of dimensions in the

data increases, as is the case with matrices and cubes, reshaping the data into a vector becomes

troublesome in the sense that it will require huge amounts of memory to store the matrix that will

project data elements onto their corresponding principal components. This problem, for instance,

can be observed in the case of MRI2 data. Take, for instance, a 240 × 240 × 155 cube from an

MRI data set, containing 8928000 data elements. To reduce the dimensionalty of this vector to

0.1% of its original size, a 8928 × 8928000 projection matrix needs to be generated. This means

an approximate 594 Gigabytes of data only to store the matrix. It is obvious how intensive memory

requirements could be if higher-dimensional data with larger mode sizes were to be dealt with.

This simple example clearly demonstrates the importance of dimension reduction techniques that

do not rely on the vectorization of higher-dimensional data, and that deal with such data in their

original multidimensional form.

In addition to computational considerations, one can intuitively observe that if the multilinear

structure of tensor data is changed, e.g. by vectorization, many conventional approaches that were

initially developed for vector data might not yield the same satisfactory results. Generally speaking,

although tensors are natural extensions to vectors and matrices, their multidimensional form adds

extra complexity to their structure in a way that the notion low-dimensionality becomes challenging

to address, especially simply as an extension of the same notion from matrices to tensors. This
1Principal Component Analysis
2Magnetic Resonance Imaging

1



issue will be addressed in Section 3.2 where tensor rank is introduced, and it is discussed that

there are various notions of rank for tensor data. In the experiments of Section 6.2, it is shown

that for higher-dimensional data, a conventional vector-based method such as PCA becomes both

computationally more expensive and less accurate compared to its multilinear counterpart. In this

case, an extension of PCA to tensor data, abbreviated to MPCA3, will be presented in Chapter

6. This method performs PCA on fibers of the unfoldings of a tensor one mode at a time, and is

specifically useful to compress tensors with low Tucker ranks [14].

An efficient method to compute MPCA would be to compress the data using the general

randomized embedding proposed in [9], which constitutes the central body of work in this thesis,

before starting the main algorithm. This approach can in general be applied as a preprocessing

stage to large scale tensor data to alleviate the computational intensity of the subsequent processing

scheme. To make tensor compression even more computationally efficient, randomized streaming

mappings are of great value where one will not have to store a big tensor to compute its compressed

form. Rather, a sketch of the unfoldings of the tensor along with a sketch of the core in the

factorization of interest will be enough to construct an approximate version of the decomposition.

Such a method has been proposed to compute of the Tucker approximation in [22], and can also be

applied to MPCA.

On the other hand, dimension reduction methods such as PCA and its extensions, including

MPCA, need a set of training samples (vectors, or tensors in the multilinear case) for the projection

matrix or matrices to be found. This makes these methods time consuming and computationally

less efficient than oblivious approaches such as the Johnson-Lindenstrauss embedding. The term

oblivious refers to the fact that one does not need any data sample beforehand to project a new data

sample onto a lower-dimensional subspace.

In recent years, many tensor dimension reduction techniques that can be applied to low-rank

data have been proposed in the literature. Most of these methods are limited to some degree in
3Multilinear Principal Component Analysis
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the sense that they either are limited in the number of data modes and/or lack general theoretical

guarantees on the error in the geometry preserving property of the embedding. In [23], such

theoretical guarantees have been presented for the vectorized form of a tensor projected using the

Khatri-Rao product of individual random projections of smaller sizes, and have been extended

to 2-mode tensors. In [18, 19], the CountSketch projection matrix has been extended to tensors,

named TensorSketch, although the multilinear structure of the tensor is again not preserved. In a

more recent version [20], however, TensorSketch is developed based on the Tucker format to extend

CountSketch to tensor data. The TensorSketch method is mainly developed for polynomial kernels

as a special case of rank-1 tensors [19, 3].

There are other more related methods that assume specific data structure for the input tensors

and at the same time respect their multimodal structure. In a closely related method abbreviated

to KFJLT4 [10], a very large Fast Johnson-Lindenstrauss embedding matrix, addressed in Section

4.2.3, is used in the form of the Kronecker product of smaller fast embeddings, and is applied

to a vector also having Kronecker structure corresponding to the vectorized form of a rank-1

tensor. The implementation of KFJLT, however, is done without actually forming the extremely

large embedding matrix or input vector, and the elements of the compressed vector (or tensor,

equivalently) can be calculated efficiently using the smaller embeddings implicitly applied to the

corresponding tensor modes. In each mode, this is made possible by using random rows of the

DFT matrix, a vector consisting of Rademacher random variables, and smaller vectors that form

the Kronecker structure of the input data. The rank-1 property of the input tensor naturally draws

one’s attention to KFJLT being suitable for the efficient computation of CP decompositions. This

method leads to lower computational cost at a small price in the embedding dimension size, and its

computational efficiency originates from both the inherent speed of the fast embedding matrices

used and also the Kronecker structure of the input data in the vectorized form. KFJLT is shown to

work for tensors having general structure with a reduction in performance. A short summary of
4Kronecker Faster Johnson-Lindenstrauss Transform.
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how computational efficiency is achieved in this method works is presented in Appendix C.

The work presented in this dissertation contains materials discussed in the following publica-

tions. In [27], extensions of PCA and its variants to tensor data are discussed for those who are

well familiar with PCA methods for vector-type data. In [17], a multiscale HoSVD5 approach

has been developed to compress tensors in multiple scales. In the 0th scale, truncated HoSVD is

performed on data. The reconstruction error tensor is then partitioned into subtensors in the 1st

scale using a clustering algorithm, and truncated HoSVD is applied to each subtensor. This process

can be repeated in higher scales depending on the needed tradeoff between reconstruction error and

compression. In [9] which constitues the main body of this thesis presented in Chapter 4, a mod-

ewise Johnson-Lindenstrauss embedding has been proposed for compressing tensor data without

reshaping the tensor into an extremely large vector. Theoretical guarantees for the approximation

error have been presented for data with low CP rank.

5Higher-order Singular Value Dicomposition
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CHAPTER 2

BACKGROUND: TENSOR BASICS AND ALGEBRA

In this chapter, basic concepts and algebraic relations that are used in the statement of problems

and proofs are presented.

Notation. The type of letters used for tensors, matrices, vectors and scalars are as follows.

Calligraphic boldface capital letters (e.g., X) are used for tensors, boldface capital letters for

matrices (e.g., X), boldface lower-case letters for vectors (e.g., x), and regular (lower-case or

capital) letters for scalars (e.g., 𝑥 or 𝑋).

For numbers in parentheses used as subscript or superscript, subscript refers to “unfoldings” while

superscript denotes an object in a sequence of objects.

We assume [𝑑] := {1, . . . , 𝑑} for all 𝑑 ∈ N.

Whenever used, the vec(·) operator generates the vectorized form of its argument.

In the following definitions, we assume X ∈ C𝑛1×...×𝑛𝑑 .

Definition 2.0.1 A “tensor” is a multi-dimensional array. A 𝑑-way, 𝑑-mode or 𝑑th-order tensor

is an element of the tensor product of 𝑑 vector spaces. Figure 2.1 shows an example of a 3-mode

tensor. A tensor is called “cubical” is all its modes are of the same size, i.e., X ∈ C𝑛×...×𝑛.

Figure 2.1: An example of a 3 × 4 × 5 tensor.

One can stack 3-mode tensors along modes 1, 2, and 3 of a 3-mode tensor to visualize higher-order

data in the 3-dimensional space, where the elements of the stacked versions can obviously be

different. For instance, Figure 2.2 illustrates this idea where the 3-mode tensor of Figure 2.1 is

5



stacked along the 1st and 2nd dimensions to simulate the 4th and 5th modes, respectively, leading to

a 3 × 4 × 5 × 3 × 2 tensor.

Figure 2.2: Visualization of a 5-mode tensor by stacking a 3-mode tensor along its 1st and 2nd

modes. The result is a 5-mode tensor of size 3× 4× 5× 3× 2. Note that the elements of the stacked
versions are not necessarily the same as they are elements corresponding to different indices in the
5-mode tensor.

Definition 2.0.2 (Mode- 𝒋 Fiber) In a 𝑑-mode tensor X, a mode- 𝑗 fiber is obtained by fixing all

but the 𝑗 th index, and is denoted by X𝑖1,...,𝑖 𝑗−1,:, 𝑗 𝑗+1,...,𝑖𝑑 ∈ C𝑛 𝑗 for 𝑖 𝑗 ∈ [𝑛 𝑗 ] and 𝑗 ∈ [𝑑]. There are∏
𝑖≠ 𝑗

𝑛 𝑗 mode- 𝑗 fibers. Figure 2.3 depicts how the fibers of a 3-mode tensor are formed.

Figure 2.3: An example of the fibers of a 3-mode tensor. Left: mode-3 fibers. Right: mode-1
fibers.

Definition 2.0.3 (Mode- 𝒋 Slice) In a 𝑑-mode tensor X, a mode- 𝑗 “slice” is a (𝑑 − 1)-mode

subtensor obtained by fixing the 𝑗 th index. A mode- 𝑗 slice of X is denoted by X:,...,:,𝑘,:,...,: ∈

C
𝑛1×...×𝑛 𝑗−1×𝑛 𝑗+1×...×𝑛𝑑 for 𝑖 𝑗 = 𝑘 ∈ [𝑛 𝑗 ]. There are 𝑛 𝑗 mode- 𝑗 slices.
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Figure 2.4: An example showing how the mode-3 slices of a 3-mode tensor are formed.

Definition 2.0.4 (Matricization of a Tensor) The process of reshaping a tensor X into a matrix

is called “matricization”, “flattening” or “unfolding”. The most common way of doing this is

the mode- 𝑗 unfolding, denoted by X( 𝑗) ∈ C𝑛 𝑗×
∏

𝑖≠ 𝑗 𝑛𝑖 , which has all the mode- 𝑗 fibers of X as its

columns. The process of matricization of tensors is linear, in the sense that for X,Y ∈ C𝑛1×...×𝑛𝑑 ,

(𝛼X + 𝛽Y) ( 𝑗) = 𝛼X( 𝑗) + 𝛽Y( 𝑗) for 𝑗 ∈ [𝑑] and 𝛼, 𝛽 ∈ C.

Figure 2.5: An example showing how the mode-1 unfolding of a 3-mode tensor is formed using its
mode-1 fibers. Colors are used to show how this is done in a column-major format.

Lemma 2.0.1 Assume we have a tensor X ∈ C𝑛1×𝑛2×···×𝑛𝑑 , and for 𝑖 𝑗 ∈ [𝑛 𝑗 ], 𝑗 ∈ [𝑑] and

ℓ ∈ [ ∏𝑑
𝑚=1
𝑚≠ 𝑗

𝑛𝑚 ], we want to find the element (𝑖 𝑗 , ℓ) of the mode- 𝑗 unfolding X( 𝑗) corresponding

to the element (𝑖1, 𝑖2, . . . , 𝑖𝑑) of X1. Then, for a given (𝑖 𝑗 , ℓ), we have

X( 𝑗) (𝑖 𝑗 , ℓ) = X𝑖1,...,𝑖 𝑗−1,𝑖 𝑗 ,𝑖 𝑗+1,...,𝑖𝑑 ,

1In this thesis, we always use column-major formatting when reshaping tensors to matrices/vectors and vice versa.
This essentially means going from lower to higher modes when moving across dimensions.
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where

𝑖𝑙 =

⌊ℓ − 1 −
𝑑∑

𝑘=𝑙+1
𝑘≠ 𝑗

(𝑖𝑘 − 1)
𝑘−1∏
𝑚=1
𝑚≠ 𝑗

𝑛𝑚

𝑙−1∏
𝑚=1
𝑚≠ 𝑗

𝑛𝑚

⌋
+ 1, for 𝑙 ≠ 𝑗 , (2.1)

starting from 𝑙 = 𝑑 and going down to 𝑙 = 1. Obviously, for 𝑙 = 𝑑, the numerator is reduced to

ℓ − 1, and for 𝑙 = 1, the denominator becomes 1. It is also clear that 𝑖 𝑗 will be the same in both the

tensor and the unfolding.

On the other hand, assume we want to obtain a tensor X from its mode- 𝑗 unfolding X( 𝑗) . Given

indices (𝑖1, . . . , 𝑖𝑑), we want to find the corresponding coordinates (𝑖 𝑗 , ℓ) in X( 𝑗) . We can do so

using

ℓ = 1 +
𝑑∑︁
𝑘=1
𝑘≠ 𝑗

(𝑖𝑘 − 1)
𝑘−1∏
𝑚=1
𝑚≠ 𝑗

𝑛𝑚, for ℓ ∈
[ 𝑑∏
𝑚=1
𝑚≠ 𝑗

𝑛𝑚

]
, (2.2)

meaning that

X(𝑖1, . . . , 𝑖 𝑗−1, 𝑖 𝑗 , 𝑖 𝑗+1, . . . , 𝑖𝑑) = X( 𝑗) (𝑖 𝑗 , ℓ),

with ℓ defined above [12].

Definition 2.0.5 (The Standard Inner Product Space of 𝒅-mode Tensors) The set of all 𝑑-mode

tensors X ∈ C𝑛1×...×𝑛𝑑 forms a vector space over the field of complex numbers when equipped with

component-wise addition and scalar multiplication. The inner product of X and Y is defined as

〈X,Y〉 :=
𝑛1∑︁
𝑖1=1

𝑛2∑︁
𝑖2=1

...

𝑛𝑑∑︁
𝑖𝑑=1
X𝑖1,𝑖2,...,𝑖𝑑 Y𝑖1,𝑖2,...,𝑖𝑑 . (2.3)

The standard Euclidean norm can be deduced from this inner product, as

‖X‖ :=
√︁
〈X,X〉 =

√√√ 𝑛1∑︁
𝑖1=1

𝑛2∑︁
𝑖2=1

...

𝑛𝑑∑︁
𝑖𝑑=1

��X𝑖1,𝑖2,...,𝑖𝑑 ��2. (2.4)
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Definition 2.0.6 (Tensor Outer Product) The tensor outer product of two tensorsX ∈ C𝑛1×𝑛2×···×𝑛𝑑

and Y ∈ C𝑛′1×𝑛
′
2×···×𝑛

′
𝑑′ , denoted by X © Y ∈ C𝑛1×𝑛2×···×𝑛𝑑×𝑛′1×𝑛

′
2×···×𝑛

′
𝑑′ , is a (𝑑 + 𝑑′)-mode tensor

whose entries are given by

(X © Y)𝑖1,...,𝑖𝑑 ,𝑖′1,...,𝑖′𝑑′ = X𝑖1,...,𝑖𝑑Y𝑖′1,...,𝑖′𝑑′ . (2.5)

When X and Y are both vectors, the tensor outer product will be reduced to the standard outer

product.

Definition 2.0.7 (Rank-1 Tensor) A 𝑑-mode tensor X ∈ C𝑛1×...×𝑛𝑑 is rank-1 if it can be written as

the outer product of 𝑑 vectors, i.e.,

X = x(1) © x(2) © . . . © x(𝑑) =: ©𝑑
𝑗=1x( 𝑗) , (2.6)

where x( 𝑗) ∈ C𝑛 𝑗 for 𝑗 ∈ [𝑑].

Definition 2.0.8 ( 𝒋-mode Product) The 𝑗-mode product of a 𝑑-mode tensorX ∈ C𝑛1×···×𝑛 𝑗−1×𝑛 𝑗×𝑛 𝑗+1×···×𝑛𝑑

with a matrix U ∈ C𝑚 𝑗×𝑛 𝑗 is another 𝑑-mode tensor X × 𝑗 U ∈ C𝑛1×···×𝑛 𝑗−1×𝑚 𝑗×𝑛 𝑗+1×···×𝑛𝑑 whose

entries are given by

(X × 𝑗 U)𝑖1,...,𝑖 𝑗−1,ℓ,𝑖 𝑗+1,...,𝑖𝑑 =

𝑛 𝑗∑︁
𝑖 𝑗=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖𝑑Uℓ,𝑖 𝑗 . (2.7)

for all (𝑖1, . . . , 𝑖 𝑗−1, ℓ, 𝑖 𝑗+1, . . . , 𝑖𝑑) ∈ [𝑛1] × · · · × [𝑛 𝑗−1] × [𝑚 𝑗 ] × [𝑛 𝑗+1] × · · · × [𝑛𝑑]. In terms of

the mode- 𝑗 unfoldings of X × 𝑗 U and X, it can be observed that (X × 𝑗 U)( 𝑗) = UX( 𝑗) holds for all

𝑗 ∈ [𝑑].

Lemma 2.0.2 Let X,Y ∈ C𝑛1×𝑛2×···×𝑛𝑑 , A,B ∈ C𝑛′1×𝑛
′
2×···×𝑛

′
𝑑′ , 𝛼, 𝛽 ∈ C, and Uℓ,Vℓ ∈ C𝑚ℓ×𝑛ℓ for

all ℓ ∈ [𝑑]. The following four properties hold:

(a) (𝛼X + 𝛽Y) © A = 𝛼X © A + 𝛽Y © A = X © 𝛼A +Y © 𝛽A

(b) 〈X © A,Y © B〉 = 〈X,Y〉 〈A,B〉
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(c) (𝛼X + 𝛽Y) × 𝑗 U 𝑗 = 𝛼
(
X × 𝑗 U 𝑗

)
+ 𝛽

(
Y × 𝑗 U 𝑗

)
.

(d) X × 𝑗
(
𝛼U 𝑗 + 𝛽V 𝑗

)
= 𝛼

(
X × 𝑗 U 𝑗

)
+ 𝛽

(
X × 𝑗 V 𝑗

)
.

(e) If 𝑗 ≠ ℓ then X × 𝑗 U 𝑗 ×ℓ Vℓ =
(
X × 𝑗 U 𝑗

)
×ℓ Vℓ = (X ×ℓ Vℓ) × 𝑗 U 𝑗 = X ×ℓ Vℓ × 𝑗 U 𝑗 .

(f) If𝑊 ∈ C𝑝×𝑚 𝑗 then X × 𝑗 U 𝑗 × 𝑗 W =
(
X × 𝑗 U 𝑗

)
× 𝑗 W = X × 𝑗

(
WU 𝑗

)
= X × 𝑗 WU 𝑗 .

Proof The proof of (a) can be done element-wise.

((𝛼X + 𝛽Y) © A)𝑖1,...,𝑖𝑑 ,𝑖′1,...,𝑖′𝑑′ = (𝛼X + 𝛽Y)𝑖1,...,𝑖𝑑 A𝑖′1,...,𝑖
′
𝑑′

=
(
𝛼X𝑖1,...,𝑖𝑑 + 𝛽Y𝑖1,...,𝑖𝑑

)
A𝑖′1,...,𝑖

′
𝑑′
.

To prove (b), we note that

〈X © A,Y © B〉 =
𝑛1∑︁
𝑖1=1
· · ·

𝑛𝑑∑︁
𝑖𝑑=1

𝑛′1∑︁
𝑖′1=1
· · ·

𝑛′
𝑑′∑︁

𝑖′
𝑑
=1
X𝑖1,𝑖2,...,𝑖𝑑A𝑖′1,...,𝑖

′
𝑑′
Y𝑖1,𝑖2,...,𝑖𝑑 B𝑖′1,...,𝑖′𝑑′

=

(
𝑛1∑︁
𝑖1=1
· · ·

𝑛𝑑∑︁
𝑖𝑑=1
X𝑖1,𝑖2,...,𝑖𝑑Y𝑖1,𝑖2,...,𝑖𝑑

) ©­«
𝑛′1∑︁
𝑖′1=1
· · ·

𝑛′
𝑑′∑︁

𝑖′
𝑑
=1
A𝑖′1,...,𝑖

′
𝑑′
B𝑖′1,...,𝑖′𝑑′

ª®¬
= 〈X,Y〉 〈A,B〉 .

The proof of (c), (d), and (f) can be done using the definition of the mode- 𝑗 unfolding. For (e),

suppose that ℓ > 𝑗 (the case where ℓ < 𝑗 is similar). Set U := U 𝑗 and V := Vℓ to simplify subscript
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notation. We have for all 𝑘 ∈ [𝑚 𝑗 ], 𝑙 ∈ [𝑚ℓ], and 𝑖𝑞 ∈ [𝑛𝑞] with 𝑞 ∉ { 𝑗 , ℓ} that( (
X × 𝑗 U

)
×ℓ V

)
𝑖1,...,𝑖 𝑗−1,𝑘,𝑖 𝑗+1,...,𝑖ℓ−1,𝑙,𝑖ℓ+1,...,𝑖𝑑

=

𝑛ℓ∑︁
𝑖ℓ=1

(
X × 𝑗 U

)
𝑖1,...,𝑖 𝑗−1,𝑘,𝑖 𝑗+1,...,𝑖ℓ ,...,𝑖𝑑

V𝑙,𝑖ℓ

=

𝑛ℓ∑︁
𝑖ℓ=1

©­«
𝑛 𝑗∑︁
𝑖 𝑗=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖ℓ ,...,𝑖𝑑U𝑘,𝑖 𝑗

ª®¬ V𝑙,𝑖ℓ

=

𝑛 𝑗∑︁
𝑖 𝑗=1

(
𝑛ℓ∑︁
𝑖ℓ=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖ℓ ,...,𝑖𝑑V𝑙,𝑖ℓ

)
U𝑘,𝑖 𝑗

=

𝑛 𝑗∑︁
𝑖 𝑗=1
(X ×ℓ V)𝑖1,...,𝑖 𝑗 ,...,𝑖ℓ−1,𝑙,𝑖ℓ+1,...,𝑖𝑑 U𝑘,𝑖 𝑗

=
(
(X ×ℓ V) × 𝑗 U

)
𝑖1,...,𝑖 𝑗−1,𝑘,𝑖 𝑗+1,...,𝑖ℓ−1,𝑙,𝑖ℓ+1,...,𝑖𝑑

.

Note 2.0.1 Unfolding the tensor Y = X ×1 U(1) ×2 U(2) ... ×𝑑 U(𝑑) =: X
𝑑?
𝑗=1

U( 𝑗) along the 𝑗 th

mode is equivalent to

Y( 𝑗) = U( 𝑗)X( 𝑗) (U(𝑑) ⊗ · · · ⊗ U( 𝑗+1) ⊗ U( 𝑗−1) ⊗ · · · ⊗ U(1))>, (2.8)

where ⊗ denotes the matrix Kronecker product. If X is a superdiagonal tensor2, then all matrices

U( 𝑗) must have the same number of columns, and (2.8) will be simplified to

Y( 𝑗) = U( 𝑗)X (U(𝑑) � · · · � U( 𝑗+1) � U( 𝑗−1) � · · · � U(1))>, (2.9)

where X is a diagonal matrix with the superdiagonal of X as its diagonal. The symbol � denotes

the Khatri-Rao product, which is defined as the column-wise matching Kronecker product, i.e., for

matrices A = [a1, . . . , a𝐽] ∈ C𝐼×𝐽 and B = [b1, . . . , b𝐽] ∈ C𝐾×𝐽 ,

A � B = [a1 ⊗ b1, . . . , a𝐽 ⊗ b𝐽] ∈ C𝐼𝐾×𝐽 .

The reason for (2.9) being a simplified form of (2.8) lies in the fact that when a 𝑑-mode tensor

X ∈ C𝑛×...×𝑛 is superdiagonal, all columns of X( 𝑗) are zeros except for 𝑛 of them spread evenly,

2A 𝑑-mode superdiagonal tensor X ∈ C𝑛×...×𝑛 is cubical and has nonzero elements only at indices (𝑖, . . . , 𝑖) for
𝑖 ∈ [𝑛].
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where in the ℓth column, only the entry in position ((ℓ − 1) mod 𝑛) +1 is nonzero3. This means that

all but matching columns in the Kronecker product will be crossed out in the final result, simplifying

the kronecker product to the Khatri-Rao product, and reducing X( 𝑗) in (2.8) to a diagonal matrix

X in (2.9).

Note 2.0.2 Vectorizing the tensor Y = X ×1 U(1) ×2 U(2) ... ×𝑑 U(𝑑) , it is straightforward to show

that

y =

(
U(𝑑) ⊗ · · · ⊗ U(2) ⊗ U(1)

)
x, (2.10)

where x and y are the vectorized forms of X and Y, respectively.

Definition 2.0.9 ( 𝒋-mode Vector Product) The 𝑗-mode product of a 𝑑-mode tensorX ∈ C𝑛1×···×𝑛𝑑

with a vector v ∈ C𝑛 𝑗 is a (𝑑 − 1)-mode tensor, and is denoted by X • 𝑗 v, whose elements are

obtained using (
X • 𝑗 v

)
𝑖1,...,𝑖 𝑗−1,𝑖 𝑗+1,...,𝑖𝑑

=

𝑛 𝑗∑︁
𝑖 𝑗=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖𝑑v𝑖 𝑗 , (2.11)

which means that the 𝑗 th mode of X is contracted with v. If we want to keep the 𝑗 th mode with

dimension size 1, meaning X • 𝑗 v ∈ C𝑛1×𝑛 𝑗−1×1×𝑛 𝑗+1...×𝑛𝑑 , a useful interpretation of this will be

X • 𝑗 v = X × 𝑗 v>, (2.12)

which is equivalent to

v>X( 𝑗) =
(
X • 𝑗 v

)
( 𝑗) =

(
vec

(
X • 𝑗 v

) )>
. (2.13)

The mode- 𝑗 vector product can be used to define eigenvalue problems for tensors. For a super-

symmetric tensor4 X ∈ C𝑛×...×𝑛, the scalar 𝜆 is an eigenvalue with the corresponding eigenvector

v ∈ C𝑛 if

X •2 v •3 v · · · •𝑑 v = 𝜆v.
3For integers 𝑎 and 𝑏, we assume that 𝑎mod 𝑏 ∈ {0, . . . , 𝑏 − 1}.
4A cubical tensor is called supersymmetric if its elements remain the same under any permutaion of indices.

Obviously, superdiagonal tensors are also supersymmetric.
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The 𝑗-mode vector product is also used in developing Support Vector Machines for tensors,

where 𝑑 optimization problems for 𝑑 modes of a tensor are mixed to form one problem for the whole

tensor [6].

Definition 2.0.10 (Tensor (𝒌, 𝒋)-Contraction) Consider tensors X ∈ C𝑛1×...×𝑛 𝑗×...×𝑛𝑑 and Y ∈

C
𝑚1×...×𝑚𝑘−1×𝑛 𝑗×𝑚𝑘+1×...×𝑚𝑑′ . Then, for each 𝑗 ∈ [𝑑] and 𝑘 ∈ [𝑑′], the (𝑘, 𝑗)-contraction of X

and Y, which is the contraction of modes 𝑗 of X and 𝑘 of Y, is a (𝑑 + 𝑑′ − 2)-dimensional array

denoted by

Z := X ×𝑘𝑗 Y ∈ C
𝑛1×...×𝑛 𝑗−1×𝑚ℓ×𝑛 𝑗+1×...×𝑛𝑑×𝑚𝐿′1

×...×𝑚𝐿′
𝑑′−2 ,

where ℓ = min{[𝑑′] \ 𝑘}, 𝐿′ := [𝑑′] \ {𝑘, ℓ}, and 𝐿′
ℎ

denotes the ℎth element of the set 𝐿′. It is

observed that ℓ = 1 for all choices of 𝑘 except for 𝑘 = 1 in which case ℓ = 2. Element-wise,

Z𝑖1,...,𝑖 𝑗−1,𝑞ℓ ,𝑖 𝑗+1,...,𝑖𝑑 ,𝑞𝐿′1
,...,𝑞𝐿′

𝑑′−2
=

𝑛 𝑗∑︁
𝑖 𝑗=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖𝑑Y𝑞1,...,𝑞𝑘−1,𝑖 𝑗 ,𝑞𝑘+1,...,𝑞𝑑′ ,

for 𝑖 𝑗 ∈ [𝑛 𝑗 ], 𝑗 ∈ [𝑑], 𝑞ℓ ∈ [𝑚ℓ], 𝑞𝐿 ′
𝑖
∈ [𝑚𝐿 ′

ℎ
], ℎ ∈ [𝑑′ − 2] .

(2.14)

Note 2.0.3 If 𝑘 = 𝑑′ = 2, then ℓ = min{[2] \ 2} = 1 and 𝐿′ = [2] \ {1, 2} = ∅, and the (2, 𝑗)-

contraction of X and Y (which is a matrix now, denoted by Y) is reduced to the familiar 𝑗-mode

product X × 𝑗 Y.

Note 2.0.4 One can also define the (𝑘, 𝑗)-contraction of X and Y in a way that modes of Y are

interleaved right after contracting the 𝑗 th mode of X, i.e.,

Z ∈ C𝑛1×...×𝑛 𝑗−1×𝑚ℓ×𝑚𝐿′1
×...×𝑚𝐿′

𝑑′−2
×𝑛 𝑗+1×...×𝑛𝑑

,

and

Z𝑖1,...,𝑖 𝑗−1,𝑞ℓ ,𝑞𝐿′1
,...,𝑞𝐿′

𝑑′−2
,𝑖 𝑗+1,...,𝑖𝑑 =

𝑛 𝑗∑︁
𝑖 𝑗=1
X𝑖1,...,𝑖 𝑗 ,...,𝑖𝑑Y𝑞1,...,𝑞𝑘−1,𝑖 𝑗 ,𝑞𝑘+1,...,𝑞𝑑′ ,

for 𝑖 𝑗 ∈ [𝑛 𝑗 ], 𝑗 ∈ [𝑑], 𝑞ℓ ∈ [𝑚ℓ], 𝑞𝐿 ′
𝑖
∈ [𝑚𝐿 ′

𝑖
], 𝑖 ∈ [𝑑′ − 2] .

(2.15)
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CHAPTER 3

TENSOR DECOMPOSITIONS AND RANK

In this section, a short review on the more commonly used tensor decompositions is presented. For

simplicity, the elements of the tensors as well as scalars are defined over the field of real numbers.

Results can be extended to the field of complex numbers with slight modifications. This will

specifically be the case in Chapter 4.

3.1 The CANDECOMP/PARAFAC Decomposition

This factorization, abbreviated to CPD, decomposes a tensor X into the (weighted) sum of rank-1

tensors [12]. For X ∈ R𝑛1×...×𝑛𝑑 ,

X ≈ X̂ =

𝑟∑︁
𝑘=1

𝑔𝑘 a(1)
𝑘
© a(2)

𝑘
© · · · © a(𝑑)

𝑘
, (3.1)

where © denotes the tensor outer product. The vector a( 𝑗)
𝑘
∈ R𝑛 𝑗 can be considered as the 𝑘 th

column in a matrix A( 𝑗) ∈ R𝑛 𝑗×𝑟 for 𝑗 ∈ [𝑑]. The scalar 𝑔𝑘 can be considered as the 𝑘 th element of

a vector g. Therefore, if g is set as the superdiagonal of a diagonal tensor G, called the core tensor,

then

X̂ = G ×1 A(1) × · · · ×𝑑 A(𝑑) . (3.2)

Component-wise, we have

X̂𝑖1,...,𝑖𝑑 =

𝑟∑︁
𝑘=1

𝑔𝑘 A(1)
𝑖1,𝑘

A(2)
𝑖2,𝑘

. . .A(𝑑)
𝑖𝑑 ,𝑘
. (3.3)

Considering the superdiagonality of G, and according to (2.9), the relation between the unfold-

ings of X and G may be written as

X̂( 𝑗) = A( 𝑗)G(A(𝑑) � · · · � A( 𝑗+1) � A( 𝑗−1) � · · · � A(1))>, (3.4)

where G is a diagonal matrix with g as its diagonal.
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3.1.1 Uniquensess of CPD

CPD is unique under weak conditions; there is a permutation and scaling indeterminacy. For a

permutation matrix Π ∈ R𝑟×𝑟 ,

X̂ = G ×1 A(1) × · · · ×𝑑 A(𝑑) = G ×1

(
A(1)Π

)
× · · · ×𝑑

(
A(𝑑)Π

)
, (3.5)

implying that as long as the columns of the factor matrices are permuted in the same way, the

factorization will not change. This is also evident from (3.1) where the order in which the terms in

the summation are added together does not matter. As for the scaling indeterminacy, we observe

that

X̂ =

𝑟∑︁
𝑘=1

𝑔𝑘

(
𝛼
(1)
𝑘

a(1)
𝑘

)
©

(
𝛼
(2)
𝑘

a(2)
𝑘

)
© · · · ©

(
𝛼
(𝑑)
𝑘

a(𝑑)
𝑘

)
, (3.6)

as long as 𝛼(1)
𝑘
𝛼
(2)
𝑘
. . . 𝛼

(𝑑)
𝑘

= 1.

A sufficient condition for the uniqueness of CPD is [21]

𝑑∑︁
𝑗=1

𝑘A( 𝑗) ≥ 2𝑟 + 𝑑 − 1, (3.7)

where 𝑘A is the 𝑘-rank of a matrix A, and is defined as the largest number 𝑘 such that any 𝑘 columns

of A are linearly independent. Equation (3.7) is also the necessary condition for uniqueness of

CPD for 𝑟 = 2, 3 but not for 𝑟 ≥ 4. In its general form, the necessary condition for the uniqueness

of CPD is [26]

min
𝑗∈[𝑑]

rank
(
A(1) � · · · � A( 𝑗−1) � A( 𝑗+1) � · · · � A(𝑑)

)
= 𝑟. (3.8)

However, noting that

rank(A � B) ≤ rank(A ⊗ B) ≤ rank(A) rank(B),

then (3.8) can be simplified to

min
𝑗∈[𝑑]

©­­­«
𝑑∏
𝑚=1
𝑚≠ 𝑗

rank
(
A(𝑚)

)ª®®®¬ ≥ 𝑟. (3.9)
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Algorithm 3.1: CPD-ALS [12]
initialize A( 𝑗) ∈ R𝑛 𝑗×𝑟 for 𝑗 ∈ [𝑑]
repeat

for 𝑗 = 1, . . . , 𝑑 do
V← A(1)>A(1) ∗ · · · ∗ A( 𝑗−1)>A( 𝑗−1) ∗ A( 𝑗+1)>A( 𝑗+1) ∗ · · · ∗ A(𝑑)>A(𝑑)
A( 𝑗) ← X( 𝑗)

(
A(𝑑) � · · · � A( 𝑗+1) � A( 𝑗−1) � · · · � A(1)

)
V†

normalize columns of A( 𝑗) storing norms as g
end for

until fit ceases to improve or maximum iterations exhausted
return g,A( 𝑗) for 𝑗 ∈ [𝑑]

3.1.2 Computing CPD

At first, assume the number of rank-1 tensors is known beforehand. The problem is now the

calculation of factor matrices A( 𝑗) for 𝑗 ∈ [𝑑] and g in (3.1), i.e. the solution to

min
X̂
‖X − X̂‖ with X̂ =

𝑟∑︁
𝑘=1

𝑔𝑘 a(1)
𝑘
© a(2)

𝑘
© · · · © a(𝑑)

𝑘
. (3.10)

Alternating Least Squares (ALS) is a common way of finding the fit. For instance, assume that X

is a 3-mode tensor. Then, in light of (3.10) and given that the Euclidean norm of a tensor is equal

to the Frobenius norm of any of its unfoldings, finding A(1) would be done by solving

A(1) = min
Â





X(1) − Â
(
A(3) � A(2)

)>




𝐹

, (3.11)

where Â = AG with G being an 𝑟 × 𝑟 diagonal matrix with 𝑔𝑘 forming its diagonal. The optimal

solution to (3.11) would be Â = X(1)
((

A(3) � A(2)
)>)†

which can be rearranged as

Â = X(1)
(
A(3) � A(2)

) (
A(3)>A(3) ∗ A(2)>A(2)

)†
.

Here, the symbol ∗ denotes the Hadamard product, and † represents the pseudo-inverse of a matrix.

Extending the same idea to a 𝑑-mode tensor is outlined in Algorithm 3.1, and is called CPD-ALS.

The initialization for A( 𝑗) could be either random or using 𝑟 leading left singular vectors of X( 𝑗) .

The remaining question is how to choose 𝑟. Most methods fit multiple CP decompositions with

different number of components until one is good, i.e., the one that yields an exact representation

in the Euclidean norm.
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For noiseless data, CPD is computed for 𝑟 = 1, 2, . . . , and the first value of 𝑟 that gives a 100%

fit is chosen as rank. This may indeed not work in the case of degenerate tensors (see 3.2.1). For

noisy data, which is almost always the case, the fit alone fails to determine rank. A commonly

used consistency diagnostic called CORCONDIA1 is employed to determine the proper number of

components [4]. Assume the factor matrices A(1) , . . . ,A(𝑑) are fixed, i.e., they have been obtained

using a CP procedure. A Tucker model (see 3.3) is next assumed to represent the data as in

X ≈ G ×1 A(1) × · · · ×𝑑 A(𝑑) .

Noting that the Euclidean norm of a tensor is equal to the Frobenius norm of any of its unfoldings

as well as the 2-norm of its vectorized form, the core G can be found by solving

min
G( 𝑗)









X( 𝑗) − A( 𝑗)G( 𝑗)
©­­­«

1⊗
ℓ=𝑑
ℓ≠ 𝑗

A(ℓ)
ª®®®¬
>









2

𝐹

= min
vec(G)






vec (X) −
( 1⊗
ℓ=𝑑

A(ℓ)
)

vec (G)





2

2

,

for 𝑗 ∈ [𝑑], which can be treated as a least squares problem. Now, the question is how close

the core is to a diagonal tensor with a superdiagonal of ones. If there is a 100% match, then the

perfect fit has been found. The reason why a diagonal core is sought is that in a perfect CP model,

interaction exists only between parallel factors of different modes.

3.2 Tensor Rank

The rank of a tensor X is defined as the smallest number of rank-1 tensors that generate X as their

sum. In other words, it is the smallest number of components in an exact CP decomposition.

Although this definition is similar to the definition of rank in matrices, the properties of tensor

rank are very different from matrix rank. The major difference is that there is no straightforward

algorithm to compute the rank of a tensor, and in practice, it is determined numerically by fitting

various rank-𝑟 CP models.
1CORe CONsistency DIAgnostic
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Other types of rank that are used for tensors are maximum rank and typical rank. Maximum

rank is defined as the largest attainable rank of a tensor. Typical rank is defined as any rank that

occurs with probability greater than zero when the elements of the tensor are drawn randomly from

a uniform continuous distribution. Typical rank and maximum rank are the same for matrices.

However, they may be different for tensors, and there might be more than one typical rank.

3.2.1 Low-rank approximation and border rank

For a matrix A with rank 𝑟 and a decomposition of the form A =
∑𝑟
𝑖=1 𝜎𝑖u𝑖v𝑇𝑖 where 𝜎1 ≥ · · · ≥ 𝜎𝑟 ,

the best rank-𝑘 approximation (𝑘 ≤ 𝑟) will be obtained by keeping the 𝑘 leading factors, i.e.,

Â =
∑𝑘
𝑖=1 𝜎𝑖u𝑖v

𝑇
𝑖
. For tensors, this might not be the case; the best rank-𝑘 approximation may not

even exist, which is a problem of degeneracy. A tensor is degenerate if it can be approximated

arbitrarily well by a factorization of lower rank.

When a low-rank approximation does not exist for a tensor, it is useful to introduce the concept

of border rank. It is defined as the minimum number of rank-one tensors that approximate it with

arbitrarily small non-zero error, i.e.,

r̃ank(X) = min{ 𝑟 | ∀𝜀 > 0, ∃E; ‖X − E‖ < 𝜀, rank(E) = 𝑟}. (3.12)

Obviously, r̃ank(X) ≤ rank(X).

3.3 Compression and the Tucker Decomposition

The Tucker decomposition can be considered as an extension to CPD, as well as a higher-order

principal component analysis. A tensor X ∈ R𝑛1×...×𝑛𝑑 is decomposed in the Tucker format in the

following way.

X ≈ X̂ =

𝑟1∑︁
𝑘1=1
· · ·

𝑟𝑑∑︁
𝑘𝑑=1
G𝑘1,...,𝑘𝑑 a(1)

𝑘1
© · · · © a(𝑑)

𝑘𝑑

= G ×1 A(1) × · · · ×𝑑 A(𝑑) ,

(3.13)
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where G ∈ R𝑟1×···×𝑟𝑑 is the core tensor with 𝑟 𝑗 ≤ 𝑛 𝑗 for 𝑗 ∈ [𝑑], and A( 𝑗) ∈ R𝑛 𝑗×𝑟 𝑗 is the 𝑗 th factor

matrix whose 𝑘 th
𝑗

column is a( 𝑗)
𝑘 𝑗

for 𝑘 𝑗 ∈ [𝑟 𝑗 ]. Component-wise, we have

X̂𝑖1,...,𝑖𝑑 =

𝑟1∑︁
𝑘1=1
· · ·

𝑟𝑑∑︁
𝑘𝑑=1
G𝑘1,...,𝑘𝑑 A(1)

𝑖1,𝑘1
A(2)
𝑖2,𝑘2

. . .A(𝑑)
𝑖𝑑 ,𝑘𝑑

. (3.14)

As can be seen, Tucker approximates a tensor as the linear combination of
∏𝑑

𝑗=1 𝑟 𝑗 rank-1

tensors. Unlike CPD where the interaction between modes is restricted to matching columns of the

factor matrices, in Tucker, this interaction occurs between all possible combinations of columns,

and the level of interaction is governed by the elements of G.

It is observed that if 𝑟 𝑗 < 𝑛 𝑗 for at least one 𝑗 , the size of the core tensor G will be smaller than

the size of X. This means that G can be thought of as a compressed version of X.

3.3.1 𝑗-rank

The column rank of X( 𝑗) is defined as the 𝑗-rank ofX and is denoted by rank 𝑗 (X). If 𝑟 𝑗 = rank 𝑗 (X)

for 𝑗 ∈ [𝑑], then X is said to have an exact rank-(𝑟1, 𝑟2, . . . , 𝑟𝑑) Tucker decomposition. Obviously,

𝑟 𝑗 ≤ 𝑛 𝑗 and rank 𝑗 (X) ≤ min{𝑛 𝑗 ,
∏
ℓ≠ 𝑗 𝑛ℓ}. If 𝑟 𝑗 ≤ rank 𝑗 (X) for at least one 𝑗 , then X cannot be

reconstructed exactly from its Tucker representation.

3.3.2 Computing the Tucker Decomposition

In one of the first methods developed to compute the Tucker decomposition, the basic idea is to

find those components (rank-1 tensors) that capture the most variations in each mode. This method

is known as the Higher-order SVD (HoSVD) as a generalization of the matrix SVD, and computes

the singular vectors of the mode- 𝑗 unfoldings of a tensor X. For 𝑟 𝑗 ≤ rank 𝑗 (X), the method is

called truncated HoSVD. This method is not optimal, but it can be used as a good starting point in

an ALS algorithm whose goal is to compute the Tucker decomposition.
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Algorithm 3.2: HOOI-ALS [12]
initialize A( 𝑗) ∈ R𝑛 𝑗×𝑟 𝑗 for 𝑗 ∈ [𝑑] using HoSVD
repeat

for 𝑗 = 1, . . . , 𝑑 do
Y ← X ×1 A(1)> × · · · × 𝑗−1 A( 𝑗−1)> × 𝑗+1 A( 𝑗+1)> ×𝑑 A(𝑑)>
A( 𝑗) ← 𝑟 𝑗 leading left singular vectors of Y( 𝑗)

end for
until fit ceases to improve or maximum iterations exhausted
G ← X ×1 A(1)> · · · ×𝑑 A(𝑑)>
return G,A( 𝑗) for 𝑗 ∈ [𝑑]

To compute HoSVD, 𝑟 𝑗 leading left singular vectors of X( 𝑗) is set as A( 𝑗) for all 𝑗 ∈ [𝑑]. Then

the core tensor is computed using

G = X ×1 A(1)> × · · · ×𝑑 A(𝑑)>.

The Higher-Order Orthogonal Iteration, abbreviated to HOOI, is used as the ALS method that

takes the result of HoSVD as input. The optimization problem that is solved by HOOI is expressed

as

min
subject to G∈R𝑟1×...×𝑟𝑑

A( 𝑗)∈R𝑛 𝑗×𝑟 𝑗 and column-wise orthogonal

‖X − G ×1 A(1) · · · ×𝑑 A(𝑑) ‖. (3.15)

The pseudo-code for HOOI is shown in Algorithm 3.2.

3.3.3 Uniqueness of Tucker

The Tucker decomposition is not unique. The core tensor can be modified as long as the inverse

modification is applied to the factor matrices. For instance, consider the 3-mode case. For

nonsingular matrices U ∈ R𝑛1×𝑛1 , V ∈ R𝑛2×𝑛2 and W ∈ R𝑛3×𝑛3 , we have

G ×1 A(1) ×2 A(2) ×3 A(3) = (G ×1 U ×2 V ×3 W) ×1

(
A(1)U−1

)
×2

(
A(2)V−1

)
×3

(
A(3)W−1

)
.
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Proof LetH := (G ×1 U ×2 V ×3 W) ×1

(
A(1)U−1

)
×2

(
A(2)V−1

)
×3

(
A(3)W−1

)
, then we have

H(1) = A(1)U−1 (G ×1 U ×2 V ×3 W) (1)
(
A(3)W−1 ⊗ A(2)V−1

)>
= A(1)U−1UG(1) (W ⊗ V)>

(
A(3)W−1 ⊗ A(2)V−1

)>
= A(1)G(1)

[(
A(3)W−1 ⊗ A(2)V−1

)
(W ⊗ V)

]>
= A(1)G(1)

(
A(3)W−1W ⊗ A(2)V−1V

)>
= A(1)G(1)

(
A(3) ⊗ A(2)

)>
=

(
G ×1 A(1) ×2 A(2) ×3 A(3)

)
(1)
,

(3.16)

implying the two tensors are equal. A similar approach can be applied to modes 2 and 3.

3.4 Tensor-Train Decomposition

The Tensor-Train decomposition, which is also known as MPS2 in the physics community, decom-

poses a 𝑑-mode tensor into a chain of 𝑑 lower-dimensional tensors of at most 3 modes [16]. A

tensor X is approximated by another tensor X̂ whose elements are expressed as contractions of

lower-dimensional tensors G ( 𝑗) for 𝑗 ∈ [𝑑],

X̂𝑖1,...,𝑖𝑑 =

𝑟0∑︁
𝛼0=1

𝑟1∑︁
𝛼1=1
· · ·

𝑟𝑑∑︁
𝛼𝑑=1
G (1)
𝛼0,𝑖1,𝛼1

G (2)
𝛼1,𝑖2,𝛼2

. . .G (𝑑)
𝛼𝑑−1,𝑖𝑑 ,𝛼𝑑

, (3.17)

where G ( 𝑗) ∈ R𝑟 𝑗−1×𝑛 𝑗×𝑟 𝑗 for 𝑗 ∈ [𝑑], and 𝑟0 = 𝑟𝑑 = 1, i.e., G (1) and G (𝑑) are in fact matrices. In

other words, elements of X̂ can be obtained by employing

X̂𝑖1,...,𝑖𝑑 = G(1) (𝑖1)G(2) (𝑖2) · · ·G(𝑑) (𝑖𝑑) , (3.18)

where G( 𝑗)
(
𝑖 𝑗
)
∈ R𝑟 𝑗−1×𝑟 𝑗 for 𝑗 ∈ [𝑑] is the 𝑖th

𝑗
lateral slice ofG ( 𝑗) . The tensor-Train decomposition

is calculated by a sequence of SVD’s starting with X(1) . Assuming the Tensor-Train ranks 𝑟 𝑗 are

known, a simplified version of the Tensor-Train algorithm is presented in Algorithm 3.3. For a

more detailed version also including how to choose the ranks 𝑟 𝑗 , see [16].

2Matrix Product State
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Algorithm 3.3: Tensor-Train [16]

Compute the SVD of X(1): X(1) = U(1)S(1)V(1)> ∈ R
𝑛1×

∏
ℓ≠1

𝑛ℓ
.

Compute G (1) = U(1) (:, 1 : 𝑟1) ∈ R𝑛1×𝑟1 .
for 𝑗 = 2, . . . , 𝑑 − 1 do

Compute W( 𝑗−1) = S( 𝑗−1)V( 𝑗−1)> ∈ R
𝑟 𝑗−1×

∏
ℓ∉[ 𝑗−1]

𝑛ℓ

.

Reshape W( 𝑗−1) into W( 𝑗−1) ∈ R
𝑟 𝑗−1𝑛 𝑗×

∏
ℓ∉[ 𝑗 ]

𝑛ℓ

.
Compute W( 𝑗−1) = U( 𝑗)S( 𝑗)V( 𝑗)>.
Truncate U( 𝑗) ∈ R𝑟 𝑗−1𝑛 𝑗×𝑟 𝑗−1𝑛 𝑗 to get G ( 𝑗) = U( 𝑗)

(
:, 1 : 𝑟 𝑗

)
.

Reshape G ( 𝑗) into G ( 𝑗) ∈ R𝑟 𝑗−1×𝑛 𝑗×𝑟 𝑗 .
end for
Compute G (𝑑) = W(𝑑−2) = S(𝑑−1)V(𝑑−1)> ∈ R𝑟𝑑−1×𝑛𝑑 .
return G ( 𝑗) for 𝑗 ∈ [𝑑].

Consider another definition of unfoldings of a tensor X, defined by

X 𝑗 = X𝑖1,...,𝑖 𝑗 ;𝑖 𝑗+1,...,𝑖𝑑 ∈ R
∏ 𝑗

ℓ=1 𝑛ℓ×
∏𝑑

ℓ= 𝑗+1 𝑛ℓ , (3.19)

where the indices are divided into two row and column groups for 𝑗 ∈ [𝑑]. Obviously, X1 = X(1) ,

and X𝑑 is the vectorized version of X. The following theorems hold [16].

Theorem 3.4.1 If rank(X 𝑗 ) = 𝑟 𝑗 for each unfolding X 𝑗 of a tensor X for all 𝑗 ∈ [𝑑], then there

exists a decomposition (3.17) with Tensor-Train ranks no greater than 𝑟 𝑗 .

Theorem 3.4.2 Consider the 𝛿-truncated SVD of X 𝑗 in the sense that

X 𝑗 = USV> + E

for ‖E‖𝐹 ≤ 𝛿 and 𝑟𝑘 = rank𝛿 (X 𝑗 ), where rank𝛿 (X 𝑗 ) is the 𝛿-rank of X 𝑗 defined as the minimum

rank(B) over all matrices B satisfying ‖A − B‖𝐹 ≤ 𝛿. If

𝛿 =
𝜀

√
𝑑 − 1

‖X‖,

then

‖X − X̂‖ ≤ 𝜀‖X‖.
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Theorem 3.4.3 Suppose that the unfolding matrices X 𝑗 have low ranks 𝑟 𝑗 only approximately, i.e.,

X 𝑗 = R 𝑗 + E 𝑗 for all 𝑗 ∈ [𝑑], such that rank(𝑅 𝑗 ) = 𝑟 𝑗 and ‖E 𝑗 ‖𝐹 = 𝜀 𝑗 . Then Algorithm 3.3

computes a tensor X̂ with Tensor-Train ranks 𝑟 𝑗 and ‖X − X̂‖ ≤
√︄

𝑑∑
𝑗=1
𝜀2
𝑗
.

Corollary 1 If a tensor X admits a rank-𝑟 CP decomposition with accuracy 𝜀, there exists a

Tensor-Train decomposition with Tensor-Train ranks 𝑟 𝑗 ≤ 𝑟 and accuracy
√
𝑑 − 1𝜀.

Corollary 2 Given a tensor X and rank bounds 𝑟 𝑗 , the best approximation to X in the Euclidean

norm with Tensor-Train ranks bounded by 𝑟 𝑗 always exists, and the Tensor-Train approximation X̂

is quasi-optimal. i.e., ‖X − X̂‖ ≤
√
𝑑 − 1‖X − Xbest‖.
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CHAPTER 4

DIMENSIONALITY REDUCTION OF TENSOR DATA: MODEWISE RANDOM
PROJECTIONS

Johnson-Lindenstrauss embeddings, called JL from here on for the sake of brevity, provide a simple

yet powerful tool for dimension reduction of high-dimensional data using linear random projections.

By performing JL on mode- 𝑗 fibers of a tensorX, the dimentionality of all modes can be reduced to

yield a projected tensor of much smaller size, without first vectorizing the tensor. It is then expected

that the Euclidean norm of the projected tensor remains preserved to within a predictable error.

In this chapter, theoretical guarantees for the geometry preserving properties of modewise random

projections as JL embeddings are presented. More theorems, detailed discussions and proofs are

provided in [9].

4.1 Johnson-Lindenstrauss Embeddings for Tensor Data

In this section, a brief overview of the necessary tools that will used to extend JL embeddings to

higher-order data will be presented, as well as the theorems providing the underlying theory of

modewie JL embeddings.

Definition 4.1.1 (𝜺-JL embedding) A matrix A ∈ C𝑚×𝑁 is an 𝜀-JL embedding of a set 𝑆 ⊂ C𝑁

into C𝑚 if

‖Ax‖22 = (1 + 𝜀x) ‖x‖22, (4.1)

for |𝜀x | ≤ 𝜀 and all x ∈ 𝑆.

Assuming the elements of A are subgaussian random variables and that |𝑆 | = 𝑀 , then (4.1) holds

for all x ∈ 𝑆 with probability 𝑝 ≥ 1 − 2 exp
(
−𝐶𝑚𝜀2) if 𝑚 ≥ 𝐶 log𝑀

𝜀2 , where 𝐶 is an absolute

constant [25]. A brief statement of the JL lemma along with its relation with random projections

is presented in Appendix A.3.
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Lemma 4.1.1 Let x, y ∈ C𝑛 and suppose that A ∈ C𝑚×𝑛 is an 𝜀-JL embedding of the vectors

{x − y, x + y, x − iy, x + iy} ⊂ C𝑛

into C𝑚. Then,

|〈Ax,Ay〉 − 〈x, y〉| ≤ 2𝜀
(
‖x‖22 + ‖y‖

2
2

)
≤ 4𝜀max

{
‖x‖22, ‖y‖

2
2
}
.

Proof Using the polarization identity for inner products, we have that

|〈Ax,Ay〉 − 〈x, y〉| =
�����14 3∑︁

ℓ=0
i
ℓ
(

Ax + iℓAy



2
2 −



x + iℓy

2
2

)����� =

�����14 3∑︁
ℓ=0

i
ℓ𝜀ℓ



x + iℓy

2
2

�����
≤ 1

4

3∑︁
ℓ=0

𝜀 (‖x‖2 + ‖y‖2)2 = 𝜀 (‖x‖2 + ‖y‖2)2

= 𝜀

(
‖x‖22 + ‖y‖

2
2 + 2‖x‖2‖y‖2

)
≤ 2𝜀

(
‖x‖22 + ‖y‖

2
2

)
≤ 4𝜀max

{
‖x‖22, ‖y‖

2
2
}
,

where the second to last inequality follows from Young’s inequality for products. In the second

equality, 𝜀ℓ denotes the amount of distortion applied to


x + iℓy

2

2 by the JL matrix A, where

|𝜀ℓ | ≤ 𝜀.

Extending vectors to tensors, one can define a tensor 𝜀-JL embedding in a similar way as

follows.

Definition 4.1.2 (Tensor 𝜺-JL embedding) A linear operator 𝐿 : C𝑛1×𝑛2×...×𝑛𝑑 → C
𝑚1×···×𝑚𝑑′ is

an 𝜀-JL embedding of a set 𝑆 ⊂ C𝑛1×𝑛2×...×𝑛𝑑 into C𝑚1×···×𝑚𝑑′ if

‖𝐿 (X)‖2 = (1 + 𝜀X) ‖X‖2

holds for some 𝜀X ∈ (−𝜀, 𝜀) for all X ∈ 𝑆.

25



The following lemma shows that the Tensor 𝜀-JL embedding will preserve the pairwise inner

product of tensors.

Lemma 4.1.2 If X,Y ∈ C𝑛1×𝑛2×...×𝑛𝑑 and suppose that 𝐿 is an 𝜀-JL embedding of the tensors

{X − Y,X + Y,X − iY,X + iY} ⊂ C𝑛1×𝑛2×...×𝑛𝑑

into C𝑚1×···×𝑚𝑑′ . Then,

|〈𝐿 (X) , 𝐿 (Y)〉 − 〈X, Y〉| ≤ 2𝜀
(
‖X‖2 + ‖Y‖2

)
≤ 4𝜀 ·max

{
‖X‖2, ‖Y‖2

}
.

Proof The proof will be similar to what was presented in the proof of Lemma 4.1.1, and by replacing

A𝑥 with 𝐿 (X) and using the linearity of 𝐿.

When a more general set is being projected using JL embeddings, a discretization scheme can

be used in order to embed a finite set (see Appendix A.2, and [25] for more details). This applies to,

for instance, a low-rank subspace of tensors. In such cases, due to the linearity of the embedding,

discretization can rather be done on the unit ball in that subspace1. In the following lemma, a JL

embedding result for a subspace is presented based on a covering argument.

Lemma 4.1.3 Fix 𝜀 ∈ (0, 1). Let L be an 𝑟-dimensional subspace of C𝑛, and let C ⊂ L be an

(𝜀/16)-net of the (𝑟 − 1)-dimensional Euclidean unit sphere Sℓ2 ⊂ L. Then, if A ∈ C𝑚×𝑛 is an

(𝜀/2)-JL embedding of C, it will also satisfy

(1 − 𝜀)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + 𝜀)‖x‖
2
2, (4.2)

for all x ∈ L. Furthermore, one can observe that |C| ≤
(

47
𝜀

)𝑟
.

1Any point in an 𝑟-dimensional subspace can be represented by a linear combination of 𝑟 basis elements in the
discretized unit ball of that subspace.
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Proof Noting that A is a linear embedding, it is enough to prove (4.2) for an arbitrary x ∈ Sℓ2 as

any point in the subspace L can be scaled up/down to a point on the unit sphere in L. To prove the

upper bound, let Δ := ‖A‖2→2 and choose an element y ∈ C such that ‖x − y‖2 ≤ 𝜀/16. Noting

‖x‖2 = 1, we can write

‖Ax‖2 − ‖x‖2 ≤ ‖Ay‖2 + ‖A(x − y)‖2 − 1 ≤
√︁

1 + 𝜀/2 − 1 + ‖A(x − y)‖2

≤
√︁

1 + 𝜀/2 − 1 + ‖A‖2→2‖x − y‖2 ≤ (1 + 𝜀/4) − 1 + Δ𝜀/16

= (𝜀/4) (1 + Δ/4)

for all x ∈ Sℓ2 . Since this upper bound holds for all x with ‖x‖2 = 1, it will also hold for the

maximizer of ‖Ax‖2 with ‖x‖2 = 1, meaning for that x, ‖Ax‖2 = ‖A‖2→2 so thatΔ−1 ≤ (𝜀/4) (1+

Δ/4) must also hold. Therefore, Δ ≤ 1 + 𝜀/4 + Δ𝜀/16 =⇒ Δ ≤ 1+𝜀/4
1−𝜀/16 ≤ 1 + 𝜀/3. The upper

bound now follows as ‖Ax‖2 ≤ Δ = supz∈S
ℓ2
‖Az‖2 for all x ∈ Sℓ2 .

For the lower bound, let 𝛿 := infz∈S
ℓ2 ‖Az‖2 ≥ 0, and we also note that there exists an element

of the compact set Sℓ2 that realizes 𝛿. Similar to the proof of the upper bound, we consider this

minimizing vector x ∈ Sℓ2 and choose an element y ∈ C with ‖x − y‖2 ≤ 𝜀/16 in order to observe

that

𝛿 − 1 = ‖Ax‖2 − ‖x‖2 ≥ ‖Ay‖2 − ‖A(x − y)‖2 − 1 ≥
√︁

1 − 𝜀/2 − 1 − ‖A(x − y)‖2

≥
√︁

1 − 𝜀/2 − 1 − ‖A‖2→2‖x − y‖2 ≥ (1 − 𝜀/3) − 1 − Δ𝜀/16

≥ − (𝜀/3 + 𝜀/16 (1 + 𝜀/3)) ≥ − (𝜀/3 + 𝜀/16 + 𝜀/48) = −5𝜀/12.

Thus, 𝛿 ≥ 1− 5𝜀/12 ≥ 1− 𝜀. This proves the lower bound as ‖Ax‖2 ≥ 𝛿 for all x ∈ Sℓ2 . The proof

of the upper bound on |C| can be found in Appendix C of [5].

Note 4.1.1 According to the lower and upper bounds proved above, (4.2) can use a tighter bound,

i.e.,

(1 − 𝜀/2)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + 𝜀/2)‖x‖
2
2,
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as 𝛿 ≥ 1 − 5𝜀/12 ≥ 1 − 𝜀/2 and Δ ≤ 1 + 𝜀/3 ≤ 1 + 𝜀/2. This means the (𝜀/2)-JL property of A

assumed to hold for the elements of C is carried over to all elements of the subspace.

In Lemma 4.1.3, the norms of vectors in a subspace are preserved by preserving the norms

of all points in the discretized unit ball in that subspace. This makes the dependence on the

subspace dimension 𝑟 exponential according to |C| ≤ (47/𝜀)𝑟 . The following lemma uses a

coarser discretization to improve the dependence on 𝑟 so that a better target dimension can be

achieved for the JL embedding. This is done by preserving the norms of an orthonormal basis to,

by linearity, control the norms of all points in the subspace. If the angles between the elements of the

orthonormal basis are preserved very accurately, then the projected basis will also be approximately

orthonormal, and the norms of the points that are in the span of the orthonormal basis will also be

preserved. Requiring the preservation of the aformentioned angles to be accurate imposes, in turn,

a more strict bound on the norm-preserving property of the embedding. This concept is presented

in the following lemma.

Lemma 4.1.4 Fix 𝜀 ∈ (0, 1) and letL be an 𝑟-dimensional subspace ofC𝑛1×···×𝑛𝑑 spanned by a set

of 𝑟 orthonormal basis tensors {T𝑘 }𝑘∈[𝑟] . If 𝐿 is an (𝜀/4𝑟)-JL embedding of the 4
(𝑟
2
)
+ 𝑟 = 2𝑟2 − 𝑟

tensors ( ⋃
1≤ℎ<𝑘≤𝑟

{T𝑘 − Tℎ,T𝑘 + Tℎ,T𝑘 − iTℎ,T𝑘 + iTℎ}
) ⋃

{T𝑘 }𝑘∈[𝑟] ⊂ L

into C𝑚1×···×𝑚𝑑′ , then ��‖𝐿 (X)‖2 − ‖X‖2�� ≤ 𝜀‖X‖2

holds for all X ∈ L.

Proof According to Lemma 4.1.2, one can see that |𝜀𝑘,ℎ | := |〈𝐿 (T𝑘 ) , 𝐿 (Tℎ)〉 − 〈T𝑘 ,Tℎ〉| ≤ 𝜀/𝑟
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for all ℎ, 𝑘 ∈ [𝑟]. Thus, for any X =
∑𝑟
𝑘=1 𝛼𝑘T𝑘 ∈ L,

��‖𝐿 (X)‖2 − ‖X‖2�� =

����� 𝑟∑︁
𝑘=1

𝑟∑︁
ℎ=1

𝛼𝑘𝛼ℎ (〈𝐿 (T𝑘 ) , 𝐿 (Tℎ)〉 − 〈T𝑘 , Tℎ〉)
����� =

����� 𝑟∑︁
𝑘=1

𝑟∑︁
ℎ=1

𝛼𝑘𝛼ℎ𝜀𝑘,ℎ

�����
≤

𝑟∑︁
𝑘=1
|𝛼𝑘 |

𝑟∑︁
ℎ=1
|𝛼ℎ | |𝜀𝑘,ℎ | ≤

𝜀

𝑟
‖𝜶‖21 ≤ 𝜀‖𝜶‖22,

where we have used the relation ‖𝜶‖1 ≤
√
𝑟 ‖𝜶‖2 to obtain the last inequality2. To finish the proof,

we must show that ‖X‖2 = ‖𝜶‖22. Due to the orthonormality of the basis tensors {T𝑘 }𝑘∈[𝑟] , one

may write

‖X‖2 = 〈X,X〉 =
𝑟∑︁
𝑘=1

𝑟∑︁
ℎ=1

𝛼𝑘𝛼ℎ 〈T𝑘 ,Tℎ〉 =
𝑟∑︁
𝑘=1
|𝛼 |2 = ‖𝜶‖2.

4.2 Johnson-Lindenstrauss Embedings for Low-Rank Tensors

In this section, JL embeddings are discussed along the lines of Lemmas 4.1.3 and 4.1.4 in the case

of low-CP-rank tensors, i.e., tensors that can be expressed as the weighted sum of a number of

rank-1 tensors.

4.2.1 Geometry-Preserving Property of JL Embeddings for Low-Rank Tensors

The main purpose of this section is to show how employing modewise JL embeddings affect the

norm of a low-rank tensor and its inner product with another low-rank tensor. Considering rank-𝑟

tensors as members of an 𝑟-dimensional tensor subspace spanned by 𝑟 rank-1 basis tensors, we are

essentially assuming that the these basis tensors always exist. This, however, is not guaranteed,

and we are not even able to guarantee that there always exist a sufficiently incoherent basis of

𝑟 rank-1 tensors that span any rank-𝑟 subspace. To incorporate coherence into our analysis, the

concepts of modewise and basis coherence are introduced in the following. Next, the norm and
2Using the Cauchy-Schwarz ineqquality for vectors 𝜶 and 1, we have ‖𝜶‖1 = 〈|𝜶 | , 1〉 ≤ ‖𝜶‖2‖1‖2 =

√
𝑟 ‖𝜶‖2,

where |𝜶 | is a vector whose elements are the absolute values of the elements of 𝜶, and 1 is a vector of all ones.
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inner product preservation property in the Johnson-Lindenstrauss embeddings of low-rank tensors

will be discussed.

Definition 4.2.1 (Modewise Coherence) Assume that X admits a decomposition of rank 𝑟 in the

“standard” form, i.e.,

X =

𝑟∑︁
𝑘=1

𝛼𝑘 x(1)
𝑘
© x(2)

𝑘
© · · · © x(𝑑)

𝑘
=

𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘
, (4.3)

where ‖x(ℓ)
𝑘
‖22 = 1 for 𝑘 ∈ [𝑟] and ℓ ∈ [𝑑]. The maximum modewise coherence of X is defined as

𝜇X := max
ℓ∈[𝑑]

𝜇X,ℓ := max
ℓ∈[𝑑]

max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

���〈x(ℓ)
𝑘
, x(ℓ)
ℎ

〉��� . (4.4)

where 𝜇X,ℓ ∈ [0, 1] for ℓ ∈ [𝑑] is the modewise coherence for mode ℓ. Also obviously, 𝜇X ∈ [0, 1].

Definition 4.2.2 (Basis Coherence) Let B be a set of 𝑟 rank-1 tensors, defined as

B :=
{
©𝑑
ℓ=1x(ℓ)

𝑘

�� 𝑘 ∈ [𝑟]} ⊂ C𝑛1×···×𝑛𝑑

with ‖x(ℓ)
𝑘
‖2 = 1 for 𝑘 ∈ [𝑟] and ℓ ∈ [𝑑]. Let L := span

({
©𝑑
ℓ=1x(ℓ)

𝑘

�� 𝑘 ∈ [𝑟]}) be the span of B.

For the set B, the basis coherence is defined as

𝜇′B := max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

〈
©𝑑
ℓ=1x(ℓ)

𝑘
,©𝑑

ℓ=1x(ℓ)
ℎ

〉
= max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

𝑑∏
ℓ=1

���〈x(ℓ)
𝑘
, x(ℓ)

ℎ

〉��� . (4.5)

It is easy to verify that 𝜇′B ∈ [0, 1].

Note 4.2.1 Looking at (4.5), one can observe that 𝜇′B is in fact the maximum absolute inner

product3 of the pairs of rank-1 tensors that form the basis B, hence the name basis coherence.

We will also use, with some abuse of notation, the (maximum) modewise coherence and basis

coherence for any X ∈ L = span (B) and the basis B interchangeably, i.e., 𝜇X,ℓ = 𝜇B,ℓ, 𝜇X = 𝜇B ,

and 𝜇′X = 𝜇′B . Finally, it can also be inferred that

𝜇′X ≤
𝑑∏
ℓ=1

𝜇X,ℓ ≤ 𝜇𝑑X .

3Defined as per (2.3), or equivalently, the inner product of the vectorized form of the tensors.
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It should also be noted that 𝜇X,ℓ, 𝜇X , and 𝜇′X always depend on the choice of the particular basis

tensors forming B.

To further prepare grounds for the main JL embedding result, we discuss how modewise JL

embeddings affect the structure, modewise coherence, and the norm of a low-rank tensor of the

form (4.3), as well as the inner product of two such low-rank tensors. This will be done through

the next few lemmas and theorems below.

Lemma 4.2.1 Let 𝑗 ∈ [𝑑], A ∈ C𝑚×𝑛 𝑗 , and X ∈ C𝑛1×···×𝑛𝑑 be a rank-𝑟 tensor as per (4.3) such

that min
𝑘∈[𝑟]




Ax( 𝑗)
𝑘





2
> 0. Then X′ := X × 𝑗 A can be written in standard form as

X′ =
𝑟∑︁
𝑘=1

𝛼𝑘




Ax( 𝑗)
𝑘





2

©­­«
(
© 𝑗−1
ℓ=1 x(ℓ)

𝑘

)
©

Ax( 𝑗)
𝑘


Ax( 𝑗)
𝑘





2

©
(
©𝑑
ℓ= 𝑗+1x(ℓ)

𝑘

)ª®®¬ .
Furthermore, the modewise coherence of X′ as above will satisfy

𝜇X′, 𝑗 = max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

���〈Ax( 𝑗)
𝑘
,Ax( 𝑗)

ℎ

〉���


Ax( 𝑗)
𝑘





2




Ax( 𝑗)
ℎ





2

so that

𝜇X′ = max ©­«𝜇X′, 𝑗 , max
ℓ∈[𝑑]\{ 𝑗}

max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

���〈x(ℓ)
𝑘
, x(ℓ)
ℎ

〉���ª®¬ .

Proof Using Lemma 2.0.2, the linearity of tensor matricization, and (2.8) we can see that the

mode- 𝑗 unfolding of X′ satisfies

X′( 𝑗) = AX( 𝑗) = A
𝑟∑︁
𝑘=1

𝛼𝑘

(
©𝑑
ℓ=1x(ℓ)

𝑘

)
( 𝑗)

=

𝑟∑︁
𝑘=1

𝛼𝑘Ax( 𝑗)
𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)>
=

𝑟∑︁
𝑘=1

(
𝛼𝑘




Ax( 𝑗)
𝑘





2

) Ax( 𝑗)
𝑘


Ax( 𝑗)
𝑘





2

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)>
.
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where ⊗ℓ≠ 𝑗x(ℓ)𝑘 = x(𝑑)
𝑘
⊗ · · · ⊗ x( 𝑗+1)

𝑘
⊗ x( 𝑗−1)

𝑘
⊗ · · · ⊗ x(1)

𝑘
. Folding X′( 𝑗) back into a 𝑑-mode tensor

then gives us our first equality. The second two equalities follow directly from the definition of

modewise coherence.

The following lemma will be helpful in proving the norm-preserving property of modewise JL

embeddings; it provides a useful relation expressing the norm of the 𝑗-mode product of a tensor

that is in the standard form (4.3) in terms of inner products of its individual factor vectors projected

by the embedding.

Lemma 4.2.2 Let 𝑗 ∈ [𝑑], A ∈ C𝑚×𝑛 𝑗 , and X ∈ C𝑛1×···×𝑛𝑑 be a rank-𝑟 tensor in standard form as

per (4.3). Then,

‖X × 𝑗 A‖2 =

𝑟∑︁
𝑘,ℎ=1

∏
ℓ≠ 𝑗 𝑛ℓ∑︁
𝑎=1

𝛼𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)
𝑎
𝛼ℎ

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)
𝑎

〈
Ax( 𝑗)

𝑘
,Ax( 𝑗)

ℎ

〉
.

where (·)𝑎 denotes the 𝑎th element of a vector.

Proof Using the linearity of 𝑗-mode products, tensor matricization, and observing that the Eu-

clidean norm of a tensor is equal to the Frobenius norm of any of its unfoldings, one can write

‖X × 𝑗 A‖2 =






 𝑟∑︁
𝑘=1

𝛼𝑘

((
©𝑑
ℓ=1x(ℓ)

𝑘

)
× 𝑗 A

)




2

=






 𝑟∑︁
𝑘=1

𝛼𝑘

((
©𝑑
ℓ=1x(ℓ)

𝑘

)
× 𝑗 A

)
( 𝑗)






2

F

=






 𝑟∑︁
𝑘=1

𝛼𝑘Ax( 𝑗)
𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)>




2

F

=

𝑟∑︁
𝑘,ℎ=1

〈
𝛼𝑘Ax( 𝑗)

𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)>
, 𝛼ℎAx( 𝑗)

ℎ

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)>〉
F

where ‖·‖F and 〈·, ·〉F denote the Frobenius matrix norm and inner product, respectively. Computing

the Frobenius inner products above columnwise, and noting that there are
∏
ℓ≠ 𝑗 𝑛ℓ columns in the

mode- 𝑗 unfolding, one can further see that

‖X × 𝑗 A‖2 =

𝑟∑︁
𝑘,ℎ=1

∏
ℓ≠ 𝑗 𝑛ℓ∑︁
𝑎=1

𝛼𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)
𝑎
𝛼ℎ

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)
𝑎

〈
Ax( 𝑗)

𝑘
,Ax( 𝑗)

ℎ

〉
,
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completing the proof.

The following theorem demonstrates that a single modewise JL embedding of any low-rank

tensor X of the standard form (4.3) will preserve its norm up to an error depending on the overall

ℓ2-norm of its coefficients 𝜶 ∈ C𝑟 . It should also be noted that in establishing proofs for the

following lemmas and theorems, we will encounter situations where applying the polarization

identity for inner products (recall how it was used in the proofs of Lemmas 4.1.1 and 4.1.2) will

lead to the requirement that the JL property of matrices involved must hold for a set of vectors and

combinations of them. For low-rank tensors under consideration, this set will include the vectors

forming (4.3), and the corresponding set of interest will be

S′𝑗 =
( ⋃
1≤ℎ<𝑘≤𝑟

{
x( 𝑗)
𝑘
− x( 𝑗)

ℎ
, x( 𝑗)
𝑘
+ x( 𝑗)

ℎ
, x( 𝑗)
𝑘
− ix( 𝑗)

ℎ
, x( 𝑗)
𝑘
+ ix( 𝑗)

ℎ

}) ⋃ {
x( 𝑗)
𝑘

}
𝑘∈[𝑟]

⊂ C𝑛 𝑗 , (4.6)

containing 4
(𝑟
2
)
+ 𝑟 = 2𝑟2 − 𝑟 vectors for each mode 𝑗 ∈ [𝑑].

Theorem 4.2.1 Let 𝑗 ∈ [𝑑] and X ∈ C𝑛1×···×𝑛𝑑 be a rank-𝑟 tensor as per (4.3). Suppose that

A ∈ C𝑚×𝑛 𝑗 is an (𝜀/4)-JL embedding of the vectors in the set defined in (4.6) into C𝑚. Let

X′ := X × 𝑗 A and rewrite it in standard form so that

X′ =
𝑟∑︁
𝑘=1

𝛼′𝑘
©­­«
(
©ℓ< 𝑗x(ℓ)𝑘

)
©

Ax( 𝑗)
𝑘


Ax( 𝑗)
𝑘





2

©
(
©ℓ> 𝑗x(ℓ)𝑘

)ª®®¬ .
Then all of the following hold:

(a)
��𝛼′
𝑘
− 𝛼𝑘

�� ≤ 𝜀 |𝛼𝑘 |/4 for all 𝑘 ∈ [𝑟] so that ‖𝜶′‖∞ ≤ (1 + 𝜀/4)‖𝜶‖∞

(b) 𝜇X′, 𝑗 ≤
𝜇X, 𝑗+𝜀
1−𝜀/4 , and 𝜇X′,ℓ = 𝜇X,ℓ for all ℓ ∈ [𝑑] \ { 𝑗}

(c)
��‖X′‖2 − ‖X‖2�� ≤ 𝜀

©­«1 +
√︁
𝑟 (𝑟 − 1)

∏
ℓ≠ 𝑗

𝜇X,ℓ
ª®¬ ‖𝜶‖22 ≤ 𝜀

(
1 + 𝑟𝜇𝑑−1

X

)
‖𝜶‖22 ≤ 𝜀(𝑟+1)‖𝜶‖22
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Proof Properties are proved in order below.

(a) By Lemma 4.2.1, one can write for all 𝑘 ∈ [𝑟] that��𝛼′𝑘 − 𝛼𝑘 �� =

���𝛼𝑘


Ax( 𝑗)
𝑘





2
− 𝛼𝑘

��� = |𝛼𝑘 |
���


Ax( 𝑗)

𝑘





2
− 1

��� ≤ 𝜀 |𝛼𝑘 |/4.

(b) Lemma 4.2.1 and the definition of 𝑗-mode coherence lead to

𝜇X′, 𝑗 = max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

���〈Ax( 𝑗)
𝑘
,Ax( 𝑗)

ℎ

〉���


Ax( 𝑗)
𝑘





2




Ax( 𝑗)
ℎ





2

≤ max
𝑘,ℎ∈[𝑟]
𝑘≠ℎ

���〈x( 𝑗)
𝑘
, x( 𝑗)
ℎ

〉��� + 𝜀
1 − 𝜀

4
=
𝜇X, 𝑗 + 𝜀
1 − 𝜀

4
,

where the inequality follows from A being an (𝜀/4)-JL embedding and Lemma 4.1.1.

(c) Applying Lemma 4.2.2 one can observe that

‖X′‖2 − ‖X‖2 =

𝑟∑︁
𝑘,ℎ=1

∏
ℓ≠ 𝑗 𝑛ℓ∑︁
𝑎=1

𝛼𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)
𝑎
𝛼ℎ

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)
𝑎

(〈
Ax( 𝑗)

𝑘
,Ax( 𝑗)

ℎ

〉
−

〈
x( 𝑗)
𝑘
, x( 𝑗)
ℎ

〉)
. (4.7)

Lemma 4.1.1 can be applied to each inner product in (4.7) to get〈
Ax( 𝑗)

𝑘
,Ax( 𝑗)

ℎ

〉
=

〈
x( 𝑗)
𝑘
, x( 𝑗)
ℎ

〉
+ 𝜀𝑘,ℎ

for some 𝜀𝑘,ℎ ∈ C with
��𝜀𝑘,ℎ�� ≤ 𝜀. As a result we have that

��‖X′‖2 − ‖X‖2�� =

������ 𝑟∑︁
𝑘,ℎ=1

∏
ℓ≠ 𝑗 𝑛ℓ∑︁
𝑎=1

𝛼𝑘

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)
𝑎
𝛼ℎ

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)
𝑎
𝜀𝑘,ℎ

������ .
=

������ 𝑟∑︁
𝑘,ℎ=1

𝛼𝑘𝛼ℎ𝜀𝑘,ℎ

∏
ℓ≠ 𝑗 𝑛ℓ∑︁
𝑎=1

(
⊗ℓ≠ 𝑗x(ℓ)𝑘

)
𝑎

(
⊗ℓ≠ 𝑗x(ℓ)ℎ

)
𝑎

������
=

����� 𝑟∑︁
𝑘,ℎ=1

𝛼𝑘𝛼ℎ𝜀𝑘,ℎ

〈
©ℓ≠ 𝑗x(ℓ)𝑘 ,©ℓ≠ 𝑗x

(ℓ)
ℎ

〉����� =
������ 𝑟∑︁
𝑘,ℎ=1

𝛼𝑘𝛼ℎ𝜀𝑘,ℎ

∏
ℓ≠ 𝑗

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉������
≤

������ 𝑟∑︁
𝑘=1
|𝛼𝑘 |2𝜀𝑘,𝑘

∏
ℓ≠ 𝑗




x(ℓ)
𝑘




2
������ +

������∑︁𝑘≠ℎ 𝛼𝑘𝛼ℎ𝜀𝑘,ℎ ∏ℓ≠ 𝑗
〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉������ .
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Noting that
∏
ℓ≠ 𝑗




x(ℓ)
𝑘




2
= 1 as




x(ℓ)
𝑘





2
= 1 for all ℓ ∈ [𝑑] and 𝑘 ∈ [𝑟], it follows that

��‖X′‖2 − ‖X‖2�� ≤ 𝜀

����� 𝑟∑︁
𝑘=1
|𝛼𝑘 |2

����� +
������∑︁𝑘≠ℎ 𝛼𝑘𝛼ℎ𝜀𝑘,ℎ ∏ℓ≠ 𝑗

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉������
= 𝜀‖𝜶‖22 +

��〈E>𝜶,𝜶〉�� ≤ (
𝜀 +



E>

2→2

)
‖𝜶‖22,

where E ∈ C𝑟×𝑟 is zero on its diagonal, 𝐸𝑘,ℎ = 𝜀𝑘,ℎ
∏
ℓ≠ 𝑗

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉
for 𝑘 ≠ ℎ, and the operator

norm ‖E>‖2→2 satisfies



E>

2→2 ≤ ‖E‖𝐹 ≤

√√√√√∑︁
𝑘≠ℎ

������∏ℓ≠ 𝑗
〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉������
2

𝜀2 = 𝜀 ·

√√√√√∑︁
𝑘≠ℎ

������∏ℓ≠ 𝑗
〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉������
2

.

Finally, the definition of 𝜇X implies that

‖E‖2→2 ≤ 𝜀
√︁
𝑟 (𝑟 − 1)

∏
ℓ≠ 𝑗

𝜇X,ℓ ≤ 𝜀𝑟𝜇𝑑−1
X .

Thus, the desired bound can be obtained, i.e.,

��‖X′‖2 − ‖X‖2�� ≤ 𝜀
©­«1 +

√︁
𝑟 (𝑟 − 1)

∏
ℓ≠ 𝑗

𝜇X,ℓ
ª®¬ ‖𝜶‖22 ≤ 𝜀

(
1 + 𝑟𝜇𝑑−1

X

)
‖𝜶‖22.

Theorem 4.2.2 provides an upper bound for the distortion in the norm of a tensor when modewise

JL embeddings are applied to all its modes. The following remark provides a useful tool in the

proof of the theorem.

Remark 4.2.1 Let 𝑐, 𝑑 ∈ R+. Then,
(
1 + 𝑐

𝑑

)𝑑 ≤ e𝑐.
Theorem 4.2.2 Let 𝜀 ∈ (0, 3/4]. Assume that X admits a decomposition of rank 𝑟 in the standard

form as per (4.3). Also, assume that the matrices A( 𝑗) ∈ C𝑚 𝑗×𝑛 𝑗 are
(
𝜀

4𝑑
)
-JL embeddings of the

vectors in S′
𝑗

as per (4.6) into C𝑚 𝑗 for each 𝑗 ∈ [𝑑]. If

Y = X ×1 A(1) ×2 A(2) × · · · ×𝑑 A(𝑑) , (4.8)
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then, ��‖Y‖2 − ‖X‖2�� ≤ 𝜀 (
e + e2

√︁
𝑟 (𝑟 − 1)max

(
𝜀𝑑−1, 𝜇𝑑−1

X

))
‖𝜶‖22

≤ 𝜀e2 (𝑟 + 1) ‖𝜶‖22,
(4.9)

and if the maximum modewise coherence of X is zero, i.e., if 𝜇X = 0, then

��‖Y‖2 − ‖X‖2�� ≤ (
𝜀 + e

√︁
𝑟 (𝑟 − 1)𝜀𝑑

)
e‖𝜶‖22. (4.10)

Proof Let X (0) := X and X (𝑑) := Y, and for each 𝑗 ∈ [𝑑] define the partially compressed tensor

X ( 𝑗) := X ×1 A(1) · · · × 𝑗 A( 𝑗) =
𝑟∑︁
𝑘=1

𝛼𝑘

(
© 𝑗

ℓ=1A(ℓ)x(ℓ)
𝑘

)
©

(
©𝑑
ℓ= 𝑗+1x(ℓ)

𝑘

)
=:

𝑟∑︁
𝑘=1

𝛼 𝑗 ,𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑗 ,𝑘
,

(4.11)

expressed in standard form via 𝑗 applications of Lemma 4.2.1. By looking closely at the second

and third equalities above, one can observe that for all 𝑗 ∈ [𝑑], 𝛼 𝑗 ,𝑘 = 𝛼𝑘
∏ 𝑗

ℓ=1




A(ℓ)x(ℓ)
𝑘




, as well

as x(ℓ)
𝑗 ,𝑘

= A(ℓ)x(ℓ)
𝑘
/



A(ℓ)x(ℓ)

𝑘




 for ℓ ∈ [ 𝑗] and x(ℓ)
𝑗 ,𝑘

= x(ℓ)
𝑘

for ℓ > 𝑗 .

The first two parts of Theorem 4.2.1 can be used to write

(𝑖)
��𝛼 𝑗 ,𝑘 − 𝛼 𝑗−1,𝑘

�� ≤ 𝜀 |𝛼 𝑗−1,𝑘 |/4𝑑 so that |𝛼 𝑗 ,𝑘 | ≤ (1 + 𝜀/4𝑑) |𝛼 𝑗−1,𝑘 | holds for all 𝑘 ∈ [𝑟], and

(𝑖𝑖) 𝜇X ( 𝑗) , 𝑗 ≤ (𝜇X ( 𝑗−1) , 𝑗 + 𝜀/𝑑)/(1 − 𝜀/4𝑑), and 𝜇X ( 𝑗) ,ℓ = 𝜇X ( 𝑗−1) ,ℓ for all ℓ ∈ [𝑑] \ { 𝑗},

for 𝑗 ∈ [𝑑]. Using these facts inductively, it can also be established that both

|𝛼 𝑗 ,𝑘 | ≤ (1 + 𝜀/4𝑑) 𝑗 |𝛼𝑘 |, (4.12)

and ∏
ℓ≠ 𝑗

𝜇X ( 𝑗−1) ,ℓ ≤
©­«
∏
ℓ< 𝑗

𝜇X,ℓ + 𝜀/𝑑
1 − 𝜀/4𝑑

ª®¬
∏
ℓ> 𝑗

𝜇X,ℓ ≤
(
𝜇X + 𝜀/𝑑
1 − 𝜀/4𝑑

) 𝑗−1
𝜇
𝑑− 𝑗
X , (4.13)
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hold for all 𝑘 ∈ [𝑟] and 𝑗 ∈ [𝑑]. To prove (4.13), one can write
∏
ℓ≠ 𝑗 𝜇X ( 𝑗−1) ,ℓ =

∏
ℓ< 𝑗 𝜇X ( 𝑗−1) ,ℓ

∏
ℓ> 𝑗 𝜇X ( 𝑗−1) ,ℓ.

The second term on the right-hand side is equal to
∏
ℓ> 𝑗 𝜇X,ℓ since ℓ > 𝑗 . For the first term, we

have ∏
ℓ< 𝑗

𝜇X ( 𝑗−1) ,ℓ =

(
𝑗−2∏
ℓ=1

𝜇X ( 𝑗−1) ,ℓ

)
𝜇X ( 𝑗−1) , 𝑗−1 =

(
𝑗−3∏
ℓ=1

𝜇X ( 𝑗−1) ,ℓ

)
𝜇X ( 𝑗−1) , 𝑗−2𝜇X ( 𝑗−1) , 𝑗−1

=

(
𝑗−3∏
ℓ=1

𝜇X ( 𝑗−1) ,ℓ

)
𝜇X ( 𝑗−2) , 𝑗−2𝜇X ( 𝑗−1) , 𝑗−1 = · · · =

𝑗−1∏
ℓ=1

𝜇X (ℓ) ,ℓ

≤
𝑗−1∏
ℓ=1

𝜇X (ℓ−1) ,ℓ + 𝜀/𝑑
1 − 𝜀/4𝑑 =

𝑗−1∏
ℓ=1

𝜇X,ℓ + 𝜀/𝑑
1 − 𝜀/4𝑑 ≤

(
𝜇X + 𝜀/𝑑
1 − 𝜀/4𝑑

) 𝑗−1
.

(4.14)

In (4.13), 𝜇0
X = 1 is assumed even if 𝜇X = 0 since this still yields the correct bound in the case

where 𝑗 = 𝑑 and 𝜇X = 0.

To get the desired error bound, we can now see that

��‖X‖2 − ‖Y‖2�� =

������𝑑−1∑︁
𝑗=0




X ( 𝑗)


2
−




X ( 𝑗+1)


2
������

≤ 𝜀

𝑑

𝑑−1∑︁
𝑗=0

©­«1 +
√︁
𝑟 (𝑟 − 1)

∏
ℓ≠ 𝑗+1

𝜇X ( 𝑗) ,ℓ
ª®¬ ‖𝜶 𝑗 ‖22

≤ 𝜀

𝑑

𝑑−1∑︁
𝑗=0

(
1 +

√︁
𝑟 (𝑟 − 1)

(
𝜇X + 𝜀/𝑑
1 − 𝜀/𝑑4

) 𝑗
𝜇
𝑑−1− 𝑗
X

)
(1 + 𝜀/4𝑑)2 𝑗 ‖𝜶‖22

≤ 𝜀

𝑑

𝑑−1∑︁
𝑗=0

(
1 +

√︁
𝑟 (𝑟 − 1)

(
𝜇X + 𝜀/𝑑
1 − 𝜀/𝑑4

) 𝑗
𝜇
𝑑−1− 𝑗
X

)
(1 + 9𝜀/16𝑑) 𝑗 ‖𝜶‖22,

where the third part of Theorem 4.2.1, as well as (4.12) and (4.13) have been used. Considering

each term in the upper bound above separately, we have that��‖X‖2 − ‖Y‖2�� ≤ 𝜀
𝑑
‖𝜶‖22

(
𝑇1 +

√︁
𝑟 (𝑟 − 1)𝑇2

)
where

𝑇1 :=
𝑑−1∑︁
𝑗=0
(1 + 9𝜀/16𝑑) 𝑗 =

(1 + 9𝜀/16𝑑)𝑑 − 1
9𝜀/16𝑑

≤ e𝑑
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using 9𝜀/16 < 1, and where

𝑇2 :=
𝑑−1∑︁
𝑗=0

(
𝜇X + 𝜀/𝑑
1 − 𝜀/𝑑4

) 𝑗
𝜇
𝑑−1− 𝑗
X (1 + 9𝜀/16𝑑) 𝑗 ≤

𝑑−1∑︁
𝑗=0
(𝜇X + 𝜀/𝑑) 𝑗 𝜇𝑑−1− 𝑗

X (1 + 𝜀/𝑑) 𝑗

for 𝜀 ≤ 3/4.

Continuing to bound the second term we will consider three cases. First, if 𝜇X = 0 then

𝑇2 ≤ (𝜀/𝑑)𝑑−1 (1 + 𝜀/𝑑)𝑑−1 ≤ e (𝜀/𝑑)𝑑−1 ,

using Remark 4.2.1 and that 𝜀 < 1. Second, if 0 < 𝜇X ≤ 𝜀 then

𝑇2 ≤
𝑑−1∑︁
𝑗=0
(𝜀 + 𝜀/𝑑) 𝑗 𝜀𝑑−1− 𝑗 (1 + 𝜀/𝑑) 𝑗 = 𝜀𝑑−1

𝑑−1∑︁
𝑗=0
(1 + 1/𝑑) 𝑗 (1 + 𝜀/𝑑) 𝑗

≤ 𝜀𝑑−1𝑑 (1 + 1/𝑑)𝑑 (1 + 𝜀/𝑑)𝑑 ≤ 𝑑e2𝜀𝑑−1,

using Remark 4.2.1 and that 𝜀 < 1 once more. If, however, 𝜇X > 𝜀 then we can see that

𝑇2 ≤ 𝜇𝑑−1
X

𝑑−1∑︁
𝑗=0
(1 + 𝜀/𝜇X𝑑) 𝑗 (1 + 𝜀/𝑑) 𝑗 ≤ 𝜇𝑑−1

X

𝑑−1∑︁
𝑗=0
(1 + 1/𝑑) 𝑗 (1 + 𝜀/𝑑) 𝑗

≤ 𝜇𝑑−1
X · 𝑑 (1 + 1/𝑑)𝑑 (1 + 𝜀/𝑑)𝑑 ≤ 𝜇𝑑−1

X 𝑑 e1+𝜀 ≤ 𝑑e2𝜇𝑑−1
X ,

where we have again utilized Remark 4.2.1. The desired result now follows.

Theorem 4.2.2 expresses the distortion in the Euclidean norm of a low-rank tensor X after

applying modewise JL embeddings in terms of its low-rank expansion coefficients norm ‖𝜶‖2. The

following lemma helps express the distortion in terms of the norm of a tensor X in with sufficiently

small modewise coherence by establishing its relation to the norm of 𝜶, as this is usually the

convention in expressing error guarantees for JL embeddings.

Lemma 4.2.3 Let X ∈ C𝑛1×···×𝑛𝑑 be a rank-𝑟 tensor in the standard form as per (4.3) with basis

coherence 𝜇′X < (𝑟 − 1)−1. Then,

‖𝜶‖22 ≤
(

1
1 − (𝑟 − 1)𝜇′X

)
‖X‖2 ≤

(
1

1 − (𝑟 − 1)∏𝑑
ℓ=1 𝜇X,ℓ

)
‖X‖2

≤
(

1
1 − (𝑟 − 1)𝜇𝑑X

)
‖X‖2.

(4.15)

38



Proof To establish the result, one can write

‖X‖2 = 〈X,X〉 =
〈
𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘
,

𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘

〉
=

𝑟∑︁
𝑘,ℎ=1

𝛼𝑘𝛼ℎ

〈
©𝑑
ℓ=1x(ℓ)

𝑘
,©𝑑

ℓ=1x(ℓ)
ℎ

〉
=

𝑟∑︁
𝑘,ℎ=1

𝛼𝑘𝛼ℎ

𝑑∏
ℓ=1

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉
=

𝑟∑︁
𝑘=1
|𝛼𝑘 |2 +

𝑟∑︁
𝑘≠ℎ

𝛼𝑘𝛼ℎ

𝑑∏
ℓ=1

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉
= ‖𝜶‖2 +

𝑟∑︁
𝑘≠ℎ

𝛼𝑘𝛼ℎ

𝑑∏
ℓ=1

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉
.

where (A.8) has been used to get the fourth equality. Therefore,��‖X‖2 − ‖𝜶‖22�� = ����� 𝑟∑︁
𝑘≠ℎ

𝛼𝑘𝛼ℎ

𝑑∏
ℓ=1

〈
x(ℓ)
𝑘
, x(ℓ)
ℎ

〉����� ≤ 𝑟∑︁
𝑘≠ℎ

|𝛼𝑘𝛼ℎ |
𝑑∏
ℓ=1

���〈x(ℓ)
𝑘
, x(ℓ)
ℎ

〉��� ≤ 𝜇′X 𝑟∑︁
𝑘≠ℎ

|𝛼𝑘𝛼ℎ |

= 𝜇
′

X


(
𝑟∑︁
𝑘=1
|𝛼𝑘 |

)2

−
𝑟∑︁
𝑘=1
|𝛼𝑘 |2

 = 𝜇
′

X

(
‖𝜶‖21 − ‖𝜶‖

2
2

)
≤ 𝜇′X (𝑟 − 1) ‖𝜶‖22,

yielding the result and implying that 𝜇′X (𝑟 − 1) < 1 should also hold given that both ‖X‖ and ‖𝜶‖2

are non-negative numbers. The relation ‖𝜶‖1 ≤
√
𝑟 ‖𝜶‖2 has been used to get the final inequality.

Theorem 4.2.2 guarantees that modewise JL embeddings approximately preserve the norms of

all tensors in the form of (4.3). Theorem 4.2.3 below states the inner product preservation property

of JL embeddimgs for low-rank tensors, and guarantees that the inner products of all tensors in the

span of the set B :=
{
©𝑑
ℓ=1xℓ

𝑘

��𝑘 ∈ [𝑟]} ∈ C𝑛1···×𝑛𝑑 are preserved.

Theorem 4.2.3 Suppose that X1,X2 ∈ L ⊂ C𝑛1×···×𝑛𝑑 have standard forms as per (4.3), in terms

of the elements of the basis B :=
{
©𝑑
ℓ=1xℓ

𝑘

��𝑘 ∈ [𝑟]} ∈ C𝑛1···×𝑛𝑑 , given by

X1 =

𝑟∑︁
𝑘=1

𝛽𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘
, and X2 =

𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘
.

Let 𝜀 ∈ (0, 3/4], and A( 𝑗) ∈ C𝑚 𝑗×𝑛 𝑗 be defined as per Theorem 4.2.2 for each 𝑗 ∈ [𝑑]. Then,������
〈
X1

𝑑?
𝑗=1

A( 𝑗) , X2

𝑑?
𝑗=1

A( 𝑗)
〉
− 〈X1, X2〉

������ ≤ 2𝜀′
(
‖𝜷‖22 + ‖𝜶‖

2
2

)
≤ 4𝜀′ ·max

{
‖𝜷‖22, ‖𝜶‖

2
2
}

≤ 4𝜀′ ·
max

{
‖X1‖2, ‖X2‖2

}
1 − (𝑟 − 1)𝜇′B

,
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where

𝜀′ :=


(
𝜀 + e

√︁
𝑟 (𝑟 − 1)𝜀𝑑

)
e if 𝜇B = 0,

𝜀

(
e + e2

√︁
𝑟 (𝑟 − 1)max

(
𝜀𝑑−1, 𝜇𝑑−1

B

))
otherwise.

(4.16)

Proof Using the polarization identity in combination with Lemma 2.0.2 and Theorem 4.2.2 we can

see that ������
〈
X1

𝑑?
𝑗=1

A( 𝑗) , X2

𝑑?
𝑗=1

A( 𝑗)
〉
− 〈X1, X2〉

������
=

�������14
3∑︁
ℓ=0

i
ℓ
©­­«







X1

𝑑?
𝑗=1

A( 𝑗) + iℓX2

𝑑?
𝑗=1

A( 𝑗)








2

2

−


X1 + iℓX2



2
2

ª®®¬
�������

=

�������14
3∑︁
ℓ=0

i
ℓ
©­­«







(X1 + iℓX2

) 𝑑?
𝑗=1

A( 𝑗)








2

2

−


X1 + iℓX2



2
2

ª®®¬
�������

≤ 1
4

3∑︁
ℓ=0

�������






(X1 + iℓX2

) 𝑑?
𝑗=1

A( 𝑗)








2

2

−


X1 + iℓX2



2
2

�������
≤ 1

4

3∑︁
ℓ=0

𝜀′


𝜷 + iℓ𝜶

2

2 ≤
1
4

3∑︁
ℓ=0

𝜀′ (‖𝜷‖2 + ‖𝜶‖2)2 = 𝜀′ (‖𝜷‖2 + ‖𝜶‖2)2

≤ 2𝜀′
(
‖𝜷‖22 + ‖𝜶‖

2
2

)
≤ 4𝜀′max

{
‖𝜷‖22, ‖𝜶‖

2
2
}
,

where the third to last and second to last inequalities follow from the triangle inequality and Young’s

inequality for products, respectively. Applying Lemma 4.2.3 to relate the Euclidean norms of 𝜷

and 𝜶 to X1 and X2, respectively, leads to the final result.

To sum up, theorems 4.2.2 and 4.2.3 guarantee that modewise JL embeddings approximately

preserve the norms of and inner products between all tensors in the span of the set

B :=
{
©𝑑
ℓ=1x(ℓ)

𝑘
| 𝑘 ∈ [𝑟]

}
⊂ C𝑛1×···×𝑛𝑑 .
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4.2.1.1 Computational Complexity of Modewise Johnson-Lindenstrauss Embeddings

Assuming X ∈ R𝑛1×...×𝑛𝑑 and A𝑚 𝑗×𝑛 𝑗 with 𝑚 𝑗 ≤ 𝑛 𝑗 , we have X>𝑑
𝑗=1 A( 𝑗) ∈ R𝑚1×...×𝑚𝑑 . The total

operation count4 of the embedding is the sum of the operation counts for each 𝑗-mode product in

each mode. Therefore, one can show that the operations count will be

O (𝑚1𝑛1 . . . 𝑛𝑑) + O (𝑚1𝑚2𝑛2 . . . 𝑛𝑑) + · · · + O (𝑚1𝑚2 . . . 𝑚𝑑𝑛𝑑) = O (𝑚1𝑛1 . . . 𝑛𝑑) .

On the other hand, ifX is vectorized, to achieve the same compression, it should be left-multiplied by

a JL matrix A ∈ R𝑚1...𝑚𝑑×𝑛1...𝑛𝑑 . The computational complexity would then be O (𝑚1𝑛1 . . . 𝑚𝑑𝑛𝑑)

which is significantly higher than the complexity of the modewise approach.

4.2.2 Main Theorems: Oblivious Tensor Subspace Embeddings

So far, no assumption has been made about the type of JL embeddings that have been considered

for dimension reduction of tensor data. In this section, the main theorems establishing bounds on

the embedding dimension are presented in the case where randomness is incorporated into the JL

embeddings being used. In the case of finite-dimensional bases, the JL embeddings of interest will

be matrices drawn from random distributions, or are contructed as the product of matrices some of

which have random properties. This section starts with the definition of the family of 𝜂-optimal JL

embedding distributions, followed by the main theorems.

Definition 4.2.3 Fix 𝜂 ∈ (0, 1/2) and let
{
D(𝑚,𝑛)

}
(𝑚,𝑛)∈N×N be a family of probability distributions

where each D(𝑚,𝑛) is a distribution over 𝑚 × 𝑛 matrices. We will refer to any such family of

distributions as being an 𝜂-optimal family of JL embedding distributions if there exists an absolute

constant 𝐶 ∈ R+ such that, for any given 𝜀 ∈ (0, 1), 𝑚, 𝑛 ∈ N with 𝑚 < 𝑛, and nonempty set

S ⊂ C𝑛 of cardinality

|𝑆 | ≤ 𝜂 exp
(
𝜀2𝑚

𝐶

)
,

4Here, the elements of tensors and matrices are assumed to belong to the field of real numbers, for simplicity. The
operation count can be updated accordingly when the field of complex numbers is considered.
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a matrix A ∼ D(𝑚,𝑛) will be an 𝜀-JL embedding of S into C𝑚 with probability at least 1 − 𝜂.

In fact, many 𝜂-optimal families of JL embedding distributions exist for any given 𝜂 ∈ (0, 1/2), in-

cluding, e.g., those associated with random matrices having independent and identically distributed

(i.i.d.) sub-Gaussian entries (see Lemma 9.35 in [5]).

We are now ready to state the main oblivious subspace property of JL embeddings for low-rank

tensors. It should be noted, however, that as Lemma 4.2.3 suggests, an incoherence assumption is

necessary to establish a relation between the Euclidean norm of a low-rank tensor and the norm of

its expansion coefficients in the standard form. This assumption will be necessary for the proof of

Theorem 4.2.4 to work.

Theorem 4.2.4 Fix 𝜀, 𝜂 ∈ (0, 1/2) and 𝑑 ≥ 2. Let L be an 𝑟-dimensional subspace of C𝑛1×···×𝑛𝑑

spanned by a basis of rank-1 tensors B :=
{
©𝑑
ℓ=1x(ℓ)

𝑘

�� 𝑘 ∈ [𝑟]} with modewise coherence as

per (4.4) satisfying 𝜇𝑑−1
B < 1/2𝑟. For each 𝑗 ∈ [𝑑] draw A( 𝑗) ∈ C𝑚 𝑗×𝑛 𝑗 with

𝑚 𝑗 ≥ 𝐶̃ · 𝑟2/𝑑𝑑2/𝜀2 · ln
(
2𝑟2𝑑/𝜂

)
(4.17)

from an (𝜂/𝑑)-optimal family of JL embedding distributions, where 𝐶̃ ∈ R+ is an absolute constant.

Then, with probability at least 1 − 𝜂 we have����


X ×1 A(1) · · · ×𝑑 A(𝑑)



2
− ‖X‖2

���� ≤ 𝜀 ‖X‖2 , (4.18)

for all X ∈ L.

Proof Let B be a set of 𝑟 rank-1 tensors, defined as

B :=
{
©𝑑
ℓ=1x(ℓ)

𝑘

�� 𝑘 ∈ [𝑟]} ⊂ C𝑛1×···×𝑛𝑑

with ‖x(ℓ)
𝑘
‖2 = 1 for 𝑘 ∈ [𝑟] and ℓ ∈ [𝑑], and let L := span (B). We first note the coherence

assumption 𝜇𝑑−1
B < 1/2𝑟 guarantees that

𝜇′B ≤ 𝜇
𝑑
B ≤ 𝜇

𝑑−1
B < 1/2𝑟 < 1/2(𝑟 − 1),
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which can be rearranged as

4/(1 − (𝑟 − 1)𝜇′B) ≤ 8.

Also, letting 𝛿 := (1/𝑟)1/𝑑𝜀/16e and according to (4.16), it is enough to have 𝜀 ≥ 8𝛿e +

8𝛿e2𝑟 max(𝛿𝑑−1, 𝜇𝑑−1
B ) so that each embedding A( 𝑗) will be a (𝛿/4𝑑)-JL embedding of the set

𝑆′
𝑗

in (4.6) into C𝑚 𝑗 where 𝜀′(𝛿) is defined by (4.16) and 𝜀 ≥ 8𝜀′. Furthermore, if A( 𝑗) is taken

from an 𝜂/𝑑-optimal family of JL distributions, it will also be a (𝛿/4𝑑)-JL embedding of 𝑆′
𝑗
in (4.6)

into C𝑚 𝑗 with probability 1 − 𝜂/𝑑 if

|𝑆′𝑗 | = 2𝑟2 − 𝑟 ≤ 𝜂
𝑑

exp

(
𝛿2𝑚 𝑗

16𝑑2𝐶

)
,

which is satisfied for each 𝑚 𝑗 defined in (4.17). Finally, taking union bound over all 𝑑 modes

concludes the proof.

Note 4.2.2 Theorem 4.2.4 can be used in the special case where X is a matrix X ∈ C𝑛1×𝑛2 . In

this case, the CP-rank is the usual matrix rank, and the CP decomposition becomes the regular

SVD decomposition of the matrix, which can be computed efficiently in parallel (see, e.g., [8]). In

particular, the basis vectors are orthogonal to each other in this case. The result of Theorem 4.2.4

implies that taking A and B as matrices belonging to the (𝜂/2)-JL embedding family and of sizes

𝑛1×𝑚1 and 𝑛2×𝑚2, respectively, such that 𝑚 𝑗 & 𝑟 ln(𝑟/√𝜂)/𝜀2 (for 𝑗 = 1, 2), we get the following

JL-type result for the Frobenius matrix norm: with probability 1 − 𝜂,

‖A𝑇XB‖2𝐹 = (1 + 𝜀)‖X‖2𝐹 for some |𝜀 | ≤ 𝜀.

Theorem 4.2.5 Fix 𝜀, 𝜂 ∈ (0, 1/2) and 𝑑 ≥ 3. Let X ∈ C𝑛1×···×𝑛𝑑 , 𝑛 := max
𝑗
𝑛 𝑗 ≥ 4𝑟 + 1, and let L

be an 𝑟-dimensional subspace ofC𝑛1×···×𝑛𝑑 spanned by a basis B :=
{
©𝑑
ℓ=1x(ℓ)

𝑘

�� 𝑘 ∈ [𝑟]} of rank-1

tensors, with modewise coherence satisfying 𝜇𝑑−1
B < 1/2𝑟. For each 𝑗 ∈ [𝑑], draw A( 𝑗) ∈ C𝑚 𝑗×𝑛 𝑗

with

𝑚 𝑗 ≥ 𝐶 𝑗 · 𝑟𝑑3/𝜀2 · ln
(
𝑛/ 𝑑
√
𝜂
)

(4.19)
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from an (𝜂/4𝑑)-optimal family of JL embedding distributions, where 𝐶 𝑗 ∈ R+ is an absolute

constant. Furthermore, let A ∈ C𝑚′×∏𝑑
ℓ=1 𝑚ℓ with

𝑚′ ≥ 𝐶′𝑟 · 𝜀−2 · ln
(

47
𝜀 𝑟
√
𝜂

)
be drawn from an (𝜂/2)-optimal family of JL embedding distributions, where 𝐶′ ∈ R+ is an

absolute constant. Define 𝐿̃ : C𝑛1×···×𝑛𝑑 → C
𝑚1×···×𝑚𝑑 by 𝐿̃ (Z) = Z ×1 A(1) · · · ×𝑑 A(𝑑) . Then,

with probability at least 1 − 𝜂, the linear operator A ◦ vect ◦ 𝐿̃ : C𝑛1×···×𝑛𝑑 → C
𝑚′ satisfies���

A (

vect ◦ 𝐿̃ (X − Y)
)

2

2 − ‖X − Y‖
2
��� ≤ 𝜀 ‖X − Y‖2

for all Y ∈ L.

Proof To begin, we note that A will satisfy the conditions required by Theorem 5.1.1 with probability

at least 1− 𝜂/2 as a consequence of Lemma 4.1.3. Thus, if we can also establish that 𝐿̃ will satisfy

the conditions required by Theorem 5.1.1 with probability at least 1− 𝜂/2, we will be finished with

our proof by Theorem 5.1.1 and the union bound.

To establish that 𝐿̃ satisfies the conditions required by Theorem 5.1.1 with probability at least

1 − 𝜂/2, it suffices to prove that

(a) 𝐿̃ will be an (𝜀/6)-JL embedding of all Y ∈ L into C𝑚1×···×𝑚𝑑 with probability at least

1 − 𝜂/4, and that

(b) 𝐿̃ will be an (𝜀/24
√
𝑟)-JL embedding of the 4𝑟+1 tensorsS′∪{PL⊥ (X)} ⊂ C𝑛1×𝑛2×...×𝑛𝑑 into

C
𝑚1×···×𝑚𝑑 with probability at least 1 − 𝜂/4, where the set S′ is defined as in Theorem 5.1.1,

and apply yet another union bound.

To show that (a) holds, we will utilize Theorem 4.2.2 and Lemma 4.2.3. Since each A( 𝑗) matrix

is an (𝜂/4𝑑)-optimal JL embedding and the sets S′
𝑗

defined as in (4.6) are such that |S′
𝑗
| < 𝑛𝑑 ,

we know that each A( 𝑗) is an
(
𝜀/480𝑑

√
𝑟
)
-JL embedding of S′

𝑗
into C𝑚 𝑗 with probability5 at

5Here we also implicitly use the fact that 𝑑
√
𝑑 ≤ e

√
e holds for all 𝑑 > 0 in order to avoid a 𝑑

√
𝑑 term appearing

inside the logarithm in (4.19).
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least 1 − 𝜂/4𝑑. Thus, Theorem 4.2.2 holds with 𝜀 → 𝜀/120
√
𝑟 with probability at least 1 − 𝜂/4.

Note that the modewise coherence assumption that 𝜇𝑑−1
B < 1/2𝑟 both allows 𝜀𝑑−1 to reduce the√︁

𝑟 (𝑟 − 1) factor in (4.9) to a size less than one for any 𝜀 ≤ 1/
√
𝑟 ≤ (1/𝑟)1/(𝑑−1) , and also allows

Lemma 4.2.3 to guarantee that ‖𝜶‖22 < 2 ‖Y‖2 holds for allY ∈ L. Hence, applying Theorem 4.2.2

with 𝜀 → 𝜀/120
√
𝑟 will ensure that 𝐿̃ is an (𝜀/6)-JL embedding of all Y ∈ L into C𝑚1×···×𝑚𝑑 .

To show that (b) holds we will utilize Lemma 5.1.1. Note that the S 𝑗 sets defined in Lemma 5.1.1

all have cardinalities
��S 𝑗 �� ≤ 𝑝𝑛𝑑−1, where 𝑝 = 4𝑟 +1 ≤ 𝑛 in our current setting. As a consequence,

we can see that the conditions of Lemma 5.1.1 will be satisfied with 𝜀 → 𝜀/24
√
𝑟 for all 𝑗 ∈ [𝑑]

with probability at least 1− 𝜂/4 by the union bound. Hence, both (a) and (b) hold and our proof is

concluded.

Figure 4.1 provides a schematic view of the 2-stage JL embedding introduced in Theorem 4.2.5 on

a 3 × 4 × 5 sample tensor.

Figure 4.1: An example of 2-stage JL embedding applied to a 3-dimensional tensor X ∈ R3×4×5.
The output of the 1st stage is the projected tensor Y = X ×1 A(1) ×2 A(2) ×3 A(3) , where A( 𝑗) are
JL matrices for 𝑗 ∈ {1, 2, 3}, A(1) ∈ R2×3, A(2) ∈ R3×4, and A(3) ∈ R4×5, resulting in Y ∈ R2×3×4.
Matching colors have been used to show how the rows of A( 𝑗) interact with the mode- 𝑗 fibers
of X (and the intermediate partially compressed tensors) to generate the elements of the mode- 𝑗
unfolding of the result after each 𝑗-mode product. Next, the resulting tensor is vectorized (leading
to y ∈ R24), and a 2nd-stage JL is then performed to obtain z = Ay where A ∈ R3×24, and z ∈ R3.
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Note 4.2.3 (About 𝒓 and 𝜺 Dependence) Fix 𝑑, 𝑛, and 𝜂. Looking at Theorem 4.2.5 we can see

that it’s intermediate embedding dimension is

𝑑∏
ℓ=1

𝑚ℓ ≤ 𝐶𝑑𝑑,𝜂,𝑛𝑟
𝑑𝜀−2𝑑

which effectively determines its overall storage complexity. Hence, Theorem 4.2.5 will only result

in an improved memory complexity over the straightforward single-stage vectorization approach

if, e.g., the rank 𝑟 of L is relatively small. The purpose of facultative vectorization and subsequent

multiplication by an additional JL transform A in Theorem 4.2.5 is to reduce the resulting final

embedding dimension to the near-optimal order O(𝑟𝜀−2) from total dimension O𝜂,𝑛 (𝑑3𝑑𝑟𝑑𝜀−2𝑑)

that we have after the modewise compression.

4.2.3 Fast and Memory-Efficient Modewise Johnson-Lindenstrauss Embeddings

In this section we consider a fast Johnson-Lindenstrauss transform for tensors recently introduced

in [10], which is effectively based on applying fast JL transforms [13] in a modewise fashion.6

Given a tensorZ ∈ C𝑛1×···×𝑛𝑑 the transform takes the form

𝐿FJL (Z) :=
√︂
𝑁

𝑚
R

(
vect

(
Z ×1 F(1)D(1) · · · ×𝑑 F(𝑑)D(𝑑)

))
(4.20)

where vect : C𝑛1×···×𝑛𝑑 → C
𝑁 for 𝑁 :=

∏𝑑
ℓ=1 𝑛ℓ is the vectorization operator, R ∈ {0, 1}𝑚×𝑁 is a

matrix containing 𝑚 rows selected randomly from the 𝑁 × 𝑁 identity matrix, F(ℓ) ∈ C𝑛ℓ×𝑛ℓ is a

unitary discrete Fourier transform matrix for all ℓ ∈ [𝑑], and D(ℓ) ∈ C𝑛ℓ×𝑛ℓ is a diagonal matrix

with 𝑛ℓ random ±1 entries for all ℓ ∈ [𝑑]. The following theorem is proven about this transform in

[10, 13].

Theorem 4.2.6 (See Theorem 2.1 and Remark 4 in [10]) Fix 𝑑 ≥ 1, 𝜀, 𝜂 ∈ (0, 1), and 𝑁 ≥ 𝐶′/𝜂

for a sufficiently large absolute constant𝐶′ ∈ R+. Consider a finite setS ⊂ C𝑛1×···×𝑛𝑑 of cardinality
6In fact, the fast transform described here differs cosmetically from the form in which it is presented in [10].

However, one can easily see they are equivalent using (2.10).
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𝑝 = |S|, and let 𝐿FJL : C𝑛1×···×𝑛𝑑 → C
𝑚 be defined as above in (4.20) with

𝑚 ≥ 𝐶

𝜀
−2 · log2𝑑−1

(
max(𝑝, 𝑁)

𝜂

)
· log4 ©­­«

log
(

max(𝑝,𝑁)
𝜂

)
𝜀

ª®®¬ · log 𝑁

 ,
where 𝐶 > 0 is an absolute constant. Then with probability at least 1 − 𝜂 the linear operator 𝐿FJL

is an 𝜀-JL embedding of S into C𝑚. If 𝑑 = 1 then we may replace max(𝑝, 𝑁) with 𝑝 inside all of

the logarithmic factors above (see [13]).

Note that the fast transform 𝐿FJL requires only O (𝑚 log 𝑁 +∑
ℓ 𝑛ℓ) i.i.d. random bits and

memory for storage. Thus, it can be used to produce fast and low memory complexity oblivious

subspace embeddings. The next Theorem does so.

Theorem 4.2.7 Fix 𝜀, 𝜂 ∈ (0, 1/2) and 𝑑 ≥ 2. Let X ∈ C𝑛1×···×𝑛𝑑 , 𝑁 =
∏𝑑
ℓ=1 𝑛ℓ ≥ 4𝐶′/𝜂 for an

absolute constant𝐶′ > 0, L be an 𝑟-dimensional subspace ofC𝑛1×···×𝑛𝑑 for max
(
2𝑟2 − 𝑟, 4𝑟

)
≤ 𝑁 ,

and 𝐿FJL : C𝑛1×···×𝑛𝑑 → C
𝑚1 be defined as above in (4.20) with

𝑚1 ≥ 𝐶1

𝐶
𝑑
2

( 𝑟
𝜀

)2
· log2𝑑−1

(
𝑁

𝜂

)
· log4 ©­­«

log
(
𝑁
𝜂

)
𝜀

ª®®¬ · log 𝑁

 ,
where 𝐶1, 𝐶2 > 0 are absolute constants. Furthermore, let L′FJL ∈ C𝑚2×𝑚1 be defined as above in

(4.20) for 𝑑 = 1 with

𝑚2 ≥ 𝐶3

𝑟 · 𝜀
−2 · log

(
47
𝜀 𝑟
√
𝜂

)
· log4 ©­­«

𝑟 log
(

47
𝜀 𝑟
√
𝜂

)
𝜀

ª®®¬ · log𝑚1

 ,
where 𝐶3 > 0 is an absolute constant. Then, with probability at least 1 − 𝜂 it will be the case that���

L′FJL (𝐿FJL (X − Y))



2
2 − ‖X − Y‖

2
��� ≤ 𝜀 ‖X − Y‖2

holds for all Y ∈ L.

In addition, the
(
L′FJL, 𝐿FJL

)
transform pair requires only O (𝑚1 log 𝑁 +∑

ℓ 𝑛ℓ) random bits

and memory for storage (assuming w.l.o.g. that 𝑚2 ≤ 𝑚1), and L′FJL ◦ 𝐿FJL : C𝑛1×···×𝑛𝑑 → C
𝑚2

can be applied to any tensor in just O (𝑁 log 𝑁)-time.
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Proof Let {T𝑘 }𝑘∈[𝑟] be an orthonormal basis for L (note that these basis tensors need not be

low-rank), and PL⊥ : C𝑛1×···×𝑛𝑑 → C
𝑛1×···×𝑛𝑑 be the orthogonal projection operator onto the

orthogonal complement of L. Theorem 5.1.1 combined with Lemmas 4.1.4 and 4.1.3 imply that

the result will be proven if all of the following hold:

(i) 𝐿FJL is an (𝜀/24𝑟)-JL embedding of the 2𝑟2 − 𝑟 tensors( ⋃
1≤ℎ<𝑘≤𝑟

{T𝑘 − Tℎ,T𝑘 + Tℎ,T𝑘 − iTℎ,T𝑘 + iTℎ}
) ⋃

{T𝑘 }𝑘∈[𝑟] ⊂ L

into C𝑚1 ,

(ii) 𝐿FJL is an (𝜀/6)-JL embedding of {PL⊥ (X)} into C𝑚1 ,

(iii) 𝐿FJL is an (𝜀/24
√
𝑟)-JL embedding of the 4𝑟 tensors⋃

𝑘∈[𝑟]

{
PL⊥ (X)
‖PL⊥ (X)‖

− T𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

+ T𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

− iT𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

+ iT𝑘
}
⊂ C𝑛1×...×𝑛𝑑

into C𝑚1 , and

(iv) L′FJL is an (𝜀/6)-JL embedding of a minimal (𝜀/16)-cover, C, of the 𝑟-dimensional Euclidean

unit sphere in the subspace L′ ⊂ C𝑚1 from Theorem 5.1.1 with 𝐿 = 𝐿FJL into C𝑚2 . Here we

note that |C| ≤
(

47
𝜀

)𝑟
.

Furthermore, if 𝑚1 and 𝑚2 are chosen as above for sufficiently large absolute constants 𝐶1, 𝐶2,

and 𝐶3, then Theorem 4.2.6 implies that each of (𝑖) − (𝑖𝑣) above will fail to hold with probability

at most 𝜂/4. The desired result now follows from the union bound.

The number of random bits and storage complexity follows directly form Theorem 4.2.6 after

noting that each row of R in (4.20) is determined by O (log 𝑁) bits. The fact that L′FJL ◦ 𝐿FJL can be

applied to any tensorZ in O (𝑁 log 𝑁)-time again follows from the form of (4.20). Note that each

𝑗-mode product with F( 𝑗)D( 𝑗) involves
∏
ℓ≠ 𝑗 𝑛ℓ multiplications of F( 𝑗)D( 𝑗) against all the mode- 𝑗

fibers of the given tensor Z, each of which can be performed in O(𝑛 𝑗 log(𝑛 𝑗 ))-time using fast
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Fourier transform techniques (or approximated even more quickly using sparse Fourier transform

techniques if 𝑛 𝑗 is itself very large). The required vectorization and applications of R can then be

performed in just O(𝑁)-time thereafter. Finally, Fourier transform techniques can again be used

to also apply L′FJL in O(𝑚1 log𝑚1)-time.

4.3 Experiments

In this section, it is shown that the norms of several different types of (approximately) low-rank

data can be preserved using JL embeddings. The data sets used in the experiments consist of

1. MRI data: This data set contains three 3-mode MRI images of size 240 × 240 × 155 [1].

2. Randomly generated data: This data set contains 10 rank-10 4-mode tensors. Each test tensor

is a 100 × 100 × 100 × 100 array that is created by adding 10 randomly generated rank-1

tensors. More specifically, each rank-10 tensor is generated according to

X (𝑚) =
𝑟∑︁
𝑘=1
©𝑑
𝑗=1x( 𝑗)

𝑘
,

where 𝑚 ∈ [10], 𝑟 = 10, 𝑑 = 4 and x( 𝑗)
𝑘
∈ R100. In the Gaussian case, each entry of x( 𝑗)

𝑘

is drawn independently from the standard Gaussian distribution N (0, 1). In the case of

coherent data, low-variance Gaussian noise is added to a constant, i.e., each entry x( 𝑗)
𝑘,ℓ

of x( 𝑗)
𝑘

is set as 1 +𝜎𝑔( 𝑗)
𝑘,ℓ

with 𝑔( 𝑗)
𝑘,ℓ

being an i.i.d. standard Gaussian random variable defined above,

and 𝜎2 denoting the desired variance. In the experiments of this section, 𝜎 =
√

0.1 is used.

In both cases, the 2-norm of x( 𝑗)
𝑘

is also normalized to 1.

The reason for running experiments on both Gaussian and coherent data is to show that

although coherence requirements presented in section 4.2 are used to help get general theo-

retical results for a large class of modewise JL embeddings, they do not seem to be necessary

in practice.
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When JL embeddings are applied, experiments are performed using Gaussian JL matrices as

well as Fast JL matrices. For Gaussian JL, A 𝑗 =
1√
𝑚

G is used for all 𝑗 ∈ [𝑑], where 𝑚 is the target

dimension and each entry in G is an i.i.d. standard Gaussian random variable G𝑖, 𝑗 ∼ N (0, 1). For

Fast JL, A 𝑗 =
1√
𝑚

RFD is used for all 𝑗 ∈ [𝑑], where R denotes the random restriction matrix, F

is the unitary DFT matrix scaled by √𝑛 𝑗 ,7 and D is a diagonal matrix with Rademacher random

variables forming its diagonal [13]. The embedded version of a test tensor X is always denoted by

𝐿 (X), and is calculated by

𝐿 (X) =


X ×1 A(1) × · · · ×𝑑 A(𝑑) , 1-stage JL

A
(
vec

(
X ×1 A(1) × · · · ×𝑑 A(𝑑)

))
, 2-stage JL

(4.21)

where A is a JL matrix used in the 2nd stage. Obviously, 𝐿 (X) is a vector in the 2-stage case.

4.3.1 Effect of JL Embeddings on Norm

In this section, numerical results have been presented, showing the effect of mode-wise JL embed-

ding on the norm of 3 MRI 3-mode images treated as generic tensors, as well as randomly generated

data.

The compression ratio for the 𝑗 th mode, denoted by 𝑐( 𝑗)1 , is defined as the compression in the

size of each of the mode- 𝑗 fibers, i.e.,

𝑐
( 𝑗)
1 =

𝑚 𝑗

𝑛 𝑗
.

The target dimension 𝑚 𝑗 in JL matrices is chosen as 𝑚 𝑗 =
⌈
𝑐1𝑛 𝑗

⌉
for all 𝑗 ∈ [𝑑], to ensure that

at least a fraction 𝑐1 of the ambient dimension in each mode is preserved. In the experiments, the

compression ratio is set to be the same for all modes, i.e., 𝑐( 𝑗)1 = 𝑐1 for all 𝑗 ∈ [𝑑]. In the case of a

2-stage JL embedding, the target dimension 𝑚 of the secondary JL embedding is chosen as

𝑚 = d𝑐2𝑁e ,
7Recall that 𝑛 𝑗 is the size of the mode- 𝑗 fibers of the input tensor.
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where 𝑐2 is the compression ratio in the 2nd stage, and 𝑁 is the length of the vectorized projected

tensor after the modewise JL embedding. The total achieved compression is calculated by 𝑐𝑡𝑜𝑡 =

𝑐2

(∏𝑑
𝑗=1 𝑐

( 𝑗)
1

)
. When the 2nd stage embedding is skipped, 𝑐𝑡𝑜𝑡 =

∏𝑑
𝑗=1 𝑐

( 𝑗)
1 . In all experiments of

this section, when a 2-stage embedding is performed, 𝑐2 = 0.05. Also, in figure legends, when

two JL types are listed together, the first and second terms refer to the first and second stages,

respectively. For example, in ‘Gaussian+RFD’, Gaussian and RFD JL embeddings were used in

the first and second stages, respectively. The term ‘vec’ in the legends refers to vectorizing the data.

Assuming X denotes the original tensor and 𝐿 (X) is the projected result, the relative norm of

X is defined by

𝑐𝑛,X =
‖𝐿 (X) ‖
‖X‖ .

The results of this section depict the interplay between 𝑐𝑛,X and 𝑐1 for randomly generated data,

and 𝑐𝑛,X versus 𝑐𝑡𝑜𝑡 for MRI data, where the numbers have been averaged over 1000 trials, as well

as over all samples for each value of 𝑐1 or 𝑐𝑡𝑜𝑡 . In the case of Figure 4.2, 1000 randomly generated

JL matrices were applied to each mode of all 10 randomly generated tensors. The results there

indicate that the modewise embedding methods proposed herein still work on relatively coherent

data despite the incoherence assumptions utilized in their theoretical analysis (recall Section 4.2).

In Figure 4.3, 1000 JL embedding choices have been averaged over each of the 3 MRI images as

well as the 3 images themselves. As expected, it can be observed in both figures that increasing the

compression ratio leads to better norm (and distance) preservation.

The MRI data experiments were done using various combinations of JL matrices in the first

and second stages, and were compared with the 1-stage (modewise) case and also JL applied to

vectorized data. In Figure 4.3b, the runtime plots show that vectorizing the data before applying

JL embeddings is the most computationally intensive way of compressing the data, although it

preserves norms the best, as Figure 4.3a demonstrates. Due to the small mode sizes of the MRI data

used in the experiments, modewise fast JL does not outperform modewise Gaussian JL in terms

of computational efficiency in the modewise embeddings as one might initially expect (see the red
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and blue curves). This is likely due to the fact that the individual mode sizes are too small to benefit

from the FFT (recall all modes are ≤ 240 in size), together with the need of Fourier methods to

use less efficient complex number arithmetic. However, when the 2-stage JL is employed for larger

compression ratios, the vectorized data after the first stage compression is large enough to make

the efficiency of fast JL over Gaussian JL embeddings clear (compare, e.g., the yellow and purple

curves). Also the small sizes of modes make the use of explicitly constructed 1√
𝑚

RFD matrices

more efficient than taking the FFT of mode fibers.

It should be noted that in the second stage of the 2-stage JL throughout the experiments of this

thesis, the matrix 1√
𝑚

RFD is not constructed explicitly as this would be inefficient due to the large

size of the vector that 1√
𝑚

RFD is applied to. Instead, the signs of the vector are randomly changed

(the effect of D) followed by a Fourier transform (the effect of F). Finally 𝑚 samples of the

resulting vector are picked at random with replacement (the effect of R) after which the scale 1/
√
𝑚

is applied. This allows one to notice the computational efficiency of FFT in the fast JL embedding.
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Figure 4.2: Relative norm of randomly generated 4-dimensional data. Here, the total compression
will be 𝑐𝑡𝑜𝑡 = 𝑐4

1. (a) Gaussian data. (b) Coherent data. Note that the modewise approach still
preserves norms well for the coherent data indicating that the incoherence assumptions utilized in
Section 4.2 can likely be relaxed.

By looking at Figure 4.2 We observe that the proposed modewise JL approach leads to very

good norm preservation for data generated from both coherent and incoherent factors. Specifically,
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the compression listed on the horizontal axis is for one mode, and given that the synthesized data

samples are 4-mode tensors, the total compression is very good.
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Figure 4.3: Simulation results averaged over 1000 trials for 3 MRI data samples, where each sample
is 3-dimensional. In the 2-stage cases, 𝑐2 = 0.05 has been used. (a) Relative norm. (b) Runtime.

Figure 4.3b depicts the results of the proposed modewise JL method on three MRI data samples.

Although part (a) shows relative superiority of the ‘vec+RFD’ in terms of accuracy, part (b) suggests

that for good compression values, the 1-stage and 2-stage JL approaches yields much smaller

runtimes. The reason ‘vec+RFD’ is leading to an almost horizontal line in part (b) lies in the way
1√
𝑚

RFD is applied. As the matrix is not formed explicitly and the only part that determines the

compression is the restriction (which does not inflict any computational load if it is simply picking

random samples from a vector), choosing various compression values does not alter the runtime.

However, if one explicitly forms and applies 1√
𝑚

RFD, the runtime will change with the chosen

compression.
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CHAPTER 5

APPLICATIONS OF MODEWISE JOHNSON-LINDENSTRAUSS EMBEDDINGS

In this chapter, two cases are presented where modewise JL embeddings can be used to reduce the

computational cost of computationally intensive problems.

5.1 Application to Least Squares Problems and CPD Fitting

Tensor decomposition problems usually involve fitting a low-rank approximation to a given tensor

that is assumed to have a low rank of some type. In this section, it is shown that modewise JL

embeddings offer an efficient way to reduce the computational cost of such fitting problems through

dimension reduction at the cost of an approximation error.

Consider a tensor X which is assumed to have low CP rank 𝑟 . We would like to approximate X in

the Euclidean norm with a tensor Y expressed in the standard form as per (4.3). As mentioned in

Chapter 3, a common fitting method is the Alternating Least Squares, where the factors representing

the rank-𝑟 subspace are solved for one mode at a time. One can start from a random subspace

and improve the least squares error mode by mode through multiple iterations. Since the subspace

of interest is changing throughout the fitting process, oblivious subspace embeddings would be a

natural choice to reduce the fitting problem size. For an arbitrary tensor X ∈ C𝑛1×···×𝑛𝑑 , the fitting

process involves solving

arg min
x̃( 𝑗)1 ,...,x̃( 𝑗)𝑟 ∈C𝑛 𝑗






X − 𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘






 (5.1)

for each mode 𝑗 ∈ [𝑑] after fixing
{
x(ℓ)
𝑘

}
𝑘∈[𝑟],ℓ∈[𝑑]\{ 𝑗}

. Here, x( 𝑗)
𝑘

= x̃( 𝑗)
𝑘
/‖x̃( 𝑗)

𝑘
‖2 ∀ 𝑗 , 𝑘 and

𝛼𝑘 =
∏𝑑
ℓ=1 ‖x̃

(ℓ)
𝑘
‖2. One then varies 𝑗 through all values in [𝑑] solving (5.1) for each 𝑗 in order

to update x( 𝑗)
𝑘
∀ 𝑗 , 𝑘 . Sweeping through all modes usually takes place in numerous iterations until

convergence is achieved, meaning the fit stops to improve, or the maximum number of iterations is

exhausted. This in turn means a high computational load, and makes it particularly important to
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solve each least squares problem (5.1) efficiently by reducing the problem size. To see how this can

be done to solve (5.1), one may write




X − 𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘






2

=








X( 𝑗) −
𝑟∑︁
𝑘=1

𝛼𝑘x( 𝑗)𝑘

( 1⊗
ℓ=𝑑
ℓ≠ 𝑗

x(ℓ)
𝑘

)>







2

F

,

as the Euclidean norm of a tensor is equal to the Frobenius norm of any of its unfoldings. By

looking closely at the right-hand side of the above equation, one can see that the Frobenius norm

squared can be calculated row-wise (also note that the Frobenius norm is equivalent with the 2-norm

for vectors, i.e., rows or columns of a matrix). Denoting row ℎ of X( 𝑗) by x 𝑗 ,ℎ and element ℎ of

x(ℓ)
𝑘

by 𝑥 ( 𝑗)
𝑘,ℎ

, we can write






X − 𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
ℓ=1 x(ℓ)

𝑘






2

=

𝑛 𝑗∑︁
ℎ=1








x 𝑗 ,ℎ −
𝑟∑︁
𝑘=1

𝛼𝑘𝑥
( 𝑗)
𝑘,ℎ

( 1⊗
ℓ=𝑑
ℓ≠ 𝑗

x(ℓ)
𝑘

)>







2

2

=

𝑛 𝑗∑︁
ℎ=1






X ( 𝑗 ,ℎ) − 𝑟∑︁
𝑘=1

𝛼′𝑗 ,ℎ,𝑘 ©
𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
𝑘






2

,

(5.2)

where 𝛼′
𝑗 ,ℎ,𝑘

= 𝛼𝑘𝑥
( 𝑗)
𝑘,ℎ

with 𝛼𝑘 is known for 𝑘 ∈ [𝑟] from (5.1) and X ( 𝑗 ,ℎ) is the tensorized form of

x 𝑗 ,ℎ which is in fact the ℎth mode- 𝑗 slice of X. It is also clear that the original problem (5.1) can

be modeled as 𝑛 𝑗 independent least squares problems that can be solved in parallel if needed, with

each least squares problem involving a (𝑑 − 1)-mode tensor X ( 𝑗 ,ℎ) . Essentially, this would mean

that for mode 𝑗 , one has to solve 𝑛 𝑗 minimization problems, each of the following form.

arg min
𝜶′

𝑗 ,ℎ
∈C𝑟






X ( 𝑗 ,ℎ) − 𝑟∑︁
𝑘=1

𝛼′𝑗 ,ℎ,𝑘 ©
𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
𝑘






 . (5.3)

Now, assuming that for each mode 𝑗 , the factors {x(ℓ)
𝑘
} are sufficiently incoherent for 𝑘 ∈ [𝑟] and

ℓ ∈ [𝑑] \ 𝑗 , we can use our modewise JL embedding method to solve a compressed version of each
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least squares problem in (5.3) in the following way.

arg min
𝜶′

𝑗 ,ℎ
∈C𝑟









X ( 𝑗 ,ℎ)
𝑑?

ℓ′=1
ℓ′≠ 𝑗

A(ℓ
′) −

𝑟∑︁
𝑘=1

𝛼′𝑗 ,ℎ,𝑘 ©
𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
𝑘

𝑑?
ℓ′=1
ℓ′≠ 𝑗

A(ℓ
′)









 (5.4)

We can then update each entry of x̃( 𝑗)
𝑘

by setting 𝑥 ( 𝑗)
𝑘,ℎ

= 𝛼′
𝑗 ,ℎ,𝑘
/𝛼𝑘 for all ℎ ∈ [𝑛 𝑗 ] and 𝑘 ∈ [𝑟]. To

show that the solutions to (5.4) and (5.3) are close, we first establish that







X ( 𝑗 ,ℎ)
𝑑?

ℓ′=1
ℓ′≠ 𝑗

A(ℓ)









 ≈



X ( 𝑗 ,ℎ)




can also hold for all 𝑗 ∈ [𝑑] and ℎ ∈ [𝑛 𝑗 ]. This is done in the following lemma.

Lemma 5.1.1 Let 𝜀 ∈ (0, 1), Z (1) , . . . ,Z (𝑝) ∈ C𝑛1×···×𝑛𝑑 , and A(1) ∈ C𝑚1×𝑛1 be an (𝜀/e𝑑)-JL

embedding of the all 𝑝
(∏𝑑

ℓ=2 𝑛ℓ

)
mode-1 fibers of all 𝑝 of these tensors,

S1 :=
⋃
𝑡∈[𝑝]

{
Z (𝑡):,𝑖2,...,𝑖𝑑 | ∀𝑖ℓ ∈ [𝑛ℓ], ℓ ∈ [𝑑] \ {1}

}
⊂ C𝑛1 ,

into C𝑚1 . Next, setZ (1,𝑡) := Z (𝑡) ×1 A(1) ∈ C𝑚1×𝑛2×···×𝑛𝑑 ∀𝑡 ∈ [𝑝], and then let A(2) ∈ C𝑚2×𝑛2 be

an (𝜀/e𝑑)-JL embedding of all 𝑝
(
𝑚1

∏𝑑
ℓ=3 𝑛ℓ

)
mode-2 fibers

S2 :=
⋃
𝑡∈[𝑝]

{
Z (1,𝑡)
𝑖1,:,𝑖3,...,𝑖𝑑 | ∀𝑖1 ∈ [𝑚1] & 𝑖ℓ ∈ [𝑛ℓ], ℓ ∈ [𝑑] \ [2]

}
⊂ C𝑛2

into C𝑚2 . Continuing inductively, for each 𝑗 ∈ [𝑑] \ [2] and 𝑡 ∈ [𝑝] set Z ( 𝑗−1,𝑡) := Z ( 𝑗−2,𝑡) × 𝑗−1

A( 𝑗−1) ∈ C𝑚1×···×𝑚 𝑗−1×𝑛 𝑗×···×𝑛𝑑 , and then let A( 𝑗) ∈ C𝑚 𝑗×𝑛 𝑗 be an (𝜀/e𝑑)-JL embedding of all

𝑝

(∏ 𝑗−1
ℓ=1 𝑚ℓ

) (∏𝑑
ℓ= 𝑗+1 𝑛ℓ

)
mode- 𝑗 fibers

S 𝑗 :=
⋃
𝑡∈[𝑝]

{
Z ( 𝑗−1,𝑡)
𝑖1,...,𝑖 𝑗−1,:,𝑖 𝑗+1,...,𝑖𝑑 | ∀𝑖ℓ ∈ [𝑚ℓ], ℓ ∈ [ 𝑗 − 1] & 𝑖ℓ ∈ [𝑛ℓ], ℓ ∈ [𝑑] \ [ 𝑗],

}
⊂ C𝑛 𝑗

into C𝑚 𝑗 . Then, ����


Z (𝑡)


2
−




Z (𝑡) ×1 A(1) · · · ×𝑑 A(𝑑)



2

���� ≤ 𝜀




Z (𝑡)


2

will hold for all 𝑡 ∈ [𝑝].
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Proof Fix 𝑡 ∈ [𝑝] and let X (0) := Z (𝑡) , X ( 𝑗) := Z ( 𝑗 ,𝑡) for all 𝑗 ∈ [𝑑 − 1], and X (𝑑) :=

Z (𝑑−1,𝑡) ×𝑑 A(𝑑) = Z (𝑡) ×1 A(1) · · · ×𝑑 A(𝑑) . Choose any 𝑗 ∈ [𝑑], and let x 𝑗 ,ℎ ∈ C𝑛 𝑗 denote the ℎth

column of the mode- 𝑗 unfolding of X ( 𝑗−1) , denoted by X( 𝑗−1)
( 𝑗) . It is easy to see that each x 𝑗 ,ℎ is a

mode- 𝑗 fiber of X ( 𝑗−1) = Z ( 𝑗−1,𝑡) for each 1 ≤ ℎ ≤ 𝑁′
𝑗

:=
(∏ 𝑗−1

ℓ=1 𝑚ℓ

) (∏
ℓ= 𝑗+1 𝑛ℓ

)
. Thus, we can

see that����


X ( 𝑗−1)



2
−




X ( 𝑗)


2
���� =

����


X ( 𝑗−1)



2
−




X ( 𝑗−1) × 𝑗 A( 𝑗)



2

���� =

����


X( 𝑗−1)
( 𝑗)




2

F
−




A( 𝑗)X( 𝑗−1)
( 𝑗)




2

F

����
=

������
𝑁 ′

𝑗∑︁
ℎ=1
‖x 𝑗 ,ℎ‖22 −




A( 𝑗)x 𝑗 ,ℎ


2

2

������ ≤
𝑁 ′

𝑗∑︁
ℎ=1

���‖x 𝑗 ,ℎ‖22 − ‖A( 𝑗)x 𝑗 ,ℎ‖22���
≤ 𝜀

e𝑑

𝑁 ′
𝑗∑︁

ℎ=1
‖x 𝑗 ,ℎ‖22 =

𝜀

e𝑑




X( 𝑗−1)
( 𝑗)




2

F
=
𝜀

e𝑑




X ( 𝑗−1)



2
.

A short induction argument now reveals that


X ( 𝑗)

2 ≤

(
1 + 𝜀

e𝑑

) 𝑗 

X (0)

2 holds for all 𝑗 ∈ [𝑑].

As a result we can now see that����


X (0)


2
−




X (𝑑)


2
���� =

������ 𝑑∑︁𝑗=1




X ( 𝑗−1)



2
−




X ( 𝑗)


2
������ ≤ 𝑑∑︁

𝑗=1

����


X ( 𝑗−1)



2
−




X ( 𝑗)


2
���� ≤ 𝜀

e𝑑

𝑑∑︁
𝑗=1




X ( 𝑗−1)



2

≤ 𝜀

e𝑑

𝑑∑︁
𝑗=1

(
1 + 𝜀

e𝑑

) 𝑗−1 


X (0)


2
≤ 𝜀

e

(
1 + 𝜀

e𝑑

)𝑑 


X (0)


2
.

holds. The desired result now follows from Remark 4.2.1.

Now, we can use the result of Lemma 5.1.1 to prove that the solution to (5.4) will be a close

approximation to that of (5.3) if the matrices A( 𝑗) are chosen appropriately. We have the following

general result which directly applies to least squares problems as per (5.4) when 𝐿̃ (Z) := Z
𝑑>
ℓ=1
ℓ≠ 𝑗

A(ℓ)

and A = I.

Theorem 5.1.1 (Embeddings for Compressed Least Squares) Let X ∈ C𝑛1×···×𝑛𝑑 , L be an 𝑟-

dimensional subspace of C𝑛1×···×𝑛𝑑 spanned by a set of orthonormal basis tensors {T𝑘 }𝑘∈[𝑟] , and

PL⊥ : C𝑛1×···×𝑛𝑑 → C
𝑛1×···×𝑛𝑑 be the orthogonal projection operator on the orthogonal complement
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of L. Fix 𝜀 ∈ (0, 1) and suppose that the linear operator 𝐿̃ : C𝑛1×𝑛2×···×𝑛𝑑 → C
𝑚1×···×𝑚𝑑′ has both

of the following properties:

(i) 𝐿̃ is an (𝜀/6)-JL embedding of all Y ∈ L ∪ {PL⊥ (X)} into C𝑚1×···×𝑚𝑑′ , and

(ii) 𝐿̃ is an (𝜀/24
√
𝑟)-JL embedding of the 4𝑟 tensors

S′ :=
⋃
𝑘∈[𝑟]

{
PL⊥ (X)
‖PL⊥ (X)‖

− T𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

+ T𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

− iT𝑘 ,
PL⊥ (X)
‖PL⊥ (X)‖

+ iT𝑘
}
⊂ C𝑛1×𝑛2×···×𝑛𝑑

into C𝑚1×···×𝑚𝑑′ .

Furthermore, let vect : C𝑚1×···×𝑚𝑑′ → C
∏𝑑′

ℓ=1 𝑚ℓ be a reshaping vectorization operator, and A ∈

C
𝑚×∏𝑑′

ℓ=1 𝑚ℓ be an (𝜀/3)-JL embedding of the (𝑟 + 1)-dimensional subspace

L′ := span
{
vect ◦ 𝐿̃ (PL⊥ (X)) , vect ◦ 𝐿̃ (T1) , . . . , vect ◦ 𝐿̃ (T𝑟)

}
⊂ C

∏𝑑′
ℓ=1 𝑚ℓ

into C𝑚. Then, ���

A (
vect ◦ 𝐿̃ (X − Y)

)

2
2 − ‖X − Y‖

2
��� ≤ 𝜀 ‖X − Y‖2

holds for all Y ∈ L.

Proof Note that the theorem will be proven if 𝐿̃ is an (𝜀/3)–JL embedding of all tensors of the form{
X −Y

�� Y ∈ L}
intoC𝑚1×···×𝑚𝑑′ since any such tensorX−Y will also have vect◦ 𝐿̃ (X − Y) ∈ L′

so that��� 

A (
vect ◦ 𝐿̃ (X − Y)

)

2
2 − ‖X − Y‖

2
���

≤
���

A (

vect ◦ 𝐿̃ (X − Y)
)

2

2 −


𝐿̃ (X − Y)

2

��� + ���

𝐿̃ (X − Y)

2 − ‖X − Y‖2
���

≤
���

A (

vect ◦ 𝐿̃ (X − Y)
)

2

2 −


vect ◦ 𝐿̃ (X − Y)



2
2

��� + 𝜀3 ‖X − Y‖2
≤ 𝜀

3


vect ◦ 𝐿̃ (X − Y)



2
2 +

𝜀

3
‖X − Y‖2

=
𝜀

3


𝐿̃ (X − Y)

2 + 𝜀

3
‖X − Y‖2

≤ 𝜀

3

(
1 + 𝜀

3

)
‖X − Y‖2 + 𝜀

3
‖X − Y‖2 ≤ 𝜀 ‖X − Y‖2 .
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LetPL be the orthogonal projection operator onto L. Our first step in establishing that 𝐿̃ is an

(𝜀/3)–JL embedding of all tensors of the form
{
X −Y

�� Y ∈ L}
into C𝑚1×···×𝑚𝑑′ will be to show

that 𝐿̃ preserves all the angles between PL⊥ (X) and L well enough that the Pythagorean theorem

‖X − Y‖2 = ‖PL⊥ (X) +PL (X) − Y‖2 = ‖PL⊥ (X)‖2 + ‖PL (X) − Y‖2

still approximately holds for all Y ∈ L after 𝐿̃ is applied. Toward that end, let 𝜸 ∈ C𝑟 be such

that PL (X) −Y =
∑
𝑘∈[𝑟] 𝛾𝑘T𝑘 and note that ‖𝜸‖2 = ‖PL (X) − Y‖ due to the orthonormality of

{T𝑘 }𝑘∈[𝑟] . Appealing to Lemma 4.1.2 we now have that

��〈𝐿̃ (PL (X) − Y) , 𝐿̃ (PL⊥ (X))〉�� = ‖PL⊥ (X)‖

������ ∑︁𝑘∈[𝑟] 𝛾𝑘
〈
𝐿̃ (T𝑘 ) , 𝐿̃

(
PL⊥ (X)
‖PL⊥ (X)‖

)〉������
≤ ‖PL⊥ (X)‖

(
𝜀

6
√
𝑟

) ∑︁
𝑘∈[𝑟]
|𝛾𝑘 | ≤

𝜀

6
‖PL⊥ (X)‖ ‖𝜸‖2

(5.5)

≤ 𝜀

12

(
‖PL⊥ (X)‖2 + ‖PL (X) − Y‖2

)
=

𝜀

12
‖X − Y‖2.

Using (5.5) we can now see that��� 

𝐿̃ (X − Y)

2
2 − ‖X − Y‖

2
���

=

���

𝐿̃ (X − Y)

2
2 − ‖PL⊥ (X)‖

2 − ‖PL (X) − Y‖2
���

≤
���

𝐿̃ (PL⊥ (X))

2 − ‖PL⊥ (X)‖2

��� + ���

𝐿̃ (PL (X) − Y)

2 − ‖PL (X) − Y‖2
���

+ 2
��〈𝐿̃ (PL (X) − Y) , 𝐿̃ (PL⊥ (X))〉��

≤ 𝜀

6

(
‖PL⊥ (X)‖2 + ‖PL (X) − Y‖2 + ‖X − Y‖2

)
=
𝜀

3
‖X − Y‖2.

Thus, 𝐿̃ has the desired JL-embedding property required to conclude the proof.

5.1.1 Experiments: Effect of JL Embeddings on Least Squares Solutions

In this section, trial least squares experiments with compressed tensor data are performed to show

the effect of modewise JL embeddings on solutions to least squares problems. In the experiments
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of this section, the first sample of the three MRI data samples used in Section 4.3 is employed.

Again, all experiments were carried out in MATLAB.

First, it is shown that this MRI sample has a relatively low-rank CP representations by plotting

its CP reconstruction error for various choices of rank. Next, the effect of modewise JL on least

squares solutions is investigated by solving for the coefficients of the CP decomposition of the MRI

sample in a least squares problem. This will be done by performing 1-stage (modewise) and 2-stage

JL on the data, which we call compressed least squares, and will be compared with the case where

a regular uncompressed least squares problem is solved instead.

5.1.1.1 CPD Reconstruction

Before the experimental results, a short description of the basic form of CPD calculation is reviewd.

Given a tensor X, assume 𝑟 is known beforehand. The problem is now the calculation of x( 𝑗)
𝑘

for

𝑗 ∈ [𝑑] and 𝑘 ∈ [𝑟] and 𝜶 in (4.3), i.e. the solution to

min
X̂
‖X − X̂‖ with X̂ =

𝑟∑︁
𝑘=1

𝛼𝑘 x(1)
𝑘
© x(2)

𝑘
© · · · © x(𝑑)

𝑘
. (5.6)

As the Euclidean norm a 𝑑-mode tensor is equal to the Frobenius norm of its mode- 𝑗 unfoldings

for 𝑗 ∈ [𝑑], by letting x( 𝑗)
𝑘

be the 𝑘 th column of a matrix X( 𝑗) ∈ C𝑛 𝑗×𝑟 , the above minimization

problem can be written as

min
X̂( 𝑗)





X( 𝑗) − X̂( 𝑗)
(
X(𝑑) � · · · � X( 𝑗+1) � X( 𝑗−1) � · · · � X(1)

)>




F

where X̂( 𝑗) = X( 𝑗)diag (𝜶), and the operator diag(·) creates a diagonal matrix with𝜶 as its diagonal.

Once solved for, the columns of X̂( 𝑗) can then be normalized and used to form the coefficients

𝛼𝑘 =
∏𝑑

𝑗=1 ‖x̂
( 𝑗)
𝑘
‖2 for 𝑘 ∈ [𝑟], although this is optional, i.e., if the columns are not normalized,

the coefficients 𝛼𝑘 in the factorization will all be ones. This procedure is repeated iteratively until

the fit ceases to improve (the objective function stops improving with respect to a tolerance) or the

maximum number of iterations are exhausted. To choose the rank of the decomposition as well as
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Figure 5.1: Relative reconstruction error of CPD calculated for different values of rank 𝑟 for MRI
data. As the rank increases, the error becomes smaller.

obtaining the best estimates for X( 𝑗) , a commonly used consistency diagnostic called CORCONDIA

can be employed as explained in Section 3.1.2.

Now, the relative reconstruction error of CPD is calculated and plotted for various values of

rank 𝑟. Assuming X represents the data, this error is defined as

𝑒𝑐𝑝𝑑 =
‖X − X̂‖
‖X‖ ,

where X̂ denotes the reconstruction of X. Figure 5.1 displays the results.

5.1.1.2 Compressed Least Squares Performance

Let x( 𝑗)
𝑘

be known in

X ≈
𝑟∑︁
𝑘=1

𝛼𝑘 ©𝑑
𝑗=1 x( 𝑗)

𝑘
,

for 𝑘 ∈ [𝑟] and 𝑗 ∈ [𝑑]. They can be obtained from a previous iteration in the CPD fitting

procedure. Here, they come from the CPD of the data calculated in section 5.1.1.1. Also, assume

these vectors have unit norms. In general, as stated in section 5.1.1.1, when x( 𝑗)
𝑘

are obtained using

a CPD algorithm, they do not necessarily have unit norms. Therefore, they are normalized and the

norms are absorbed into the coefficients of CPD. In other words, 𝛼𝑘 =
∏𝑑

𝑗=1 ‖x
( 𝑗)
𝑘
‖2 for 𝑘 ∈ [𝑟]. If

the normalization of the vectors is not performed, 𝛼𝑘 = 1 for 𝑘 ∈ [𝑟]. The coefficients of the CPD
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fit are the solutions to the following least squares problem,

𝜶 = arg min
𝜷






X − 𝑟∑︁
𝑘=1

𝛽𝑘 ©𝑑
𝑗=1 x( 𝑗)

𝑘






 .
As normalization of x( 𝑗)

𝑘
was not performed when computing the CPD of the data in these experi-

ments, the true solution will be 𝜶 = 1. An approximate solution for the coefficients can be obtained

by solving for

𝜶𝑃 = arg min
𝜷






𝐿 (X) − 𝐿
(
𝑟∑︁
𝑘=1

𝛽𝑘 ©𝑑
𝑗=1 x( 𝑗)

𝑘

)




 ,
where 𝜶𝑃 is the vector 𝜶 estimated for randomly projected data, and 𝐿 (X) is defined as per

(4.21). This is in fact simply another way of demonstrating that solving (5.4) yields an approximate

solution to (5.3) for a (𝑑 − 1)-mode tensor. Of course, both of these problems can be solved using

the vectorized versions of the tensors instead. Indeed, for 𝜶𝑃, vectorization should be done after

random projection of X and the rank-1 tensors, i.e.,

𝜶𝑃 = arg min
𝜷
‖x𝑃 − B𝜷‖2 = (B∗B)−1 B∗x𝑃 = B†x𝑃,

where B† denotes the pseudo-inverse of B, x𝑃 = vec (𝐿 (X)), and B is a matrix whose 𝑘 th column

is vec
(
𝐿

(
©𝑑
𝑗=1x( 𝑗)

𝑘

))
1 for 𝑘 ∈ [𝑟] .2 The error measure used to evaluate the approximate solution

is defined as

𝑒𝑟 =

����𝑒𝑃 − 𝑒𝑇𝑒𝑇

���� ,
where 𝑒𝑇 =




X −∑𝑟
𝑘=1 𝛼𝑘 ©𝑑

𝑗=1 x( 𝑗)
𝑘




 and 𝑒𝑃 =




X −∑𝑟
𝑘=1 𝛼𝑃,𝑘 ©𝑑

𝑗=1 x( 𝑗)
𝑘




. This in fact compares

the true CPD reconstruction error and the reconstruction error calculated using the approximate

solution for the CPD coefficients 𝜶𝑃. The results are shown in Figure 5.2.

1Again, it is clear that in the 2-stage case, 𝐿 (X) and 𝐿
(
©𝑑

𝑗=1x( 𝑗)
𝑘

)
are vectors, and therefore, the operator vec (·)

does not change the result.
2The backslash operator was used to actually solve the resulting least squares problems in MATLAB.
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Figure 5.2: Effect of JL embeddings on the relative reconstruction error of least squares estimation
of CPD coefficients. In the 2-stage cases, 𝑐2 = 0.05 has been used. (a) 𝑟 = 40. (b) 𝑟 = 75. (c)
𝑟 = 110. (d) Average runtime for 𝑟 = 40. The other runtime plots for 𝑟 = 75 and 𝑟 = 110 are
qualitatively identical.

In Figure 5.2, the compressed least squares results for the aforementioned MRI data sample

have been plotted. We can observe that as we choose a higher rank for the CPD model, we obtain

a smaller error in the estimated coefficients of 𝜶. As expected, the ‘Vectorize+RFD’ case yields

the most accurate results by a small margin. However, its runtime is considerably larger due to the

huge size of the vectorized tensor, although the it is benefiting from the computational efficiency

of the FFT.3 To see why the runtime plot is almost flat regardless of the chosen compression, see
3For information about how RFD is applied after vectorization, refer to Section 4.3.1.
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the discussion at the end of Section 4.3.1.

5.2 Application to Many-Body Purturbation Theory Problems

This section provides a framework for modeling the energy correction terms as the sum of multiple

inner products between tensors, so that each inner product can be approximated according to the

geometry preserving property of JL embeddings as outlined in Lemma 4.1.1. The idea is to

calculate the inner product of tensors with reduced dimensions to obtain an approximate value of

the true energy terms. In doing so, it is assumed that the data lie on a low-rank inner product space

of tensors.

5.2.1 Second-order energy correction

The 2nd-order energy correction term is defined as:

𝐸 (2) =
𝑁𝐽−1∑︁
𝐽=0

𝐸 (2) (𝐽) , (5.7)

where 𝑁𝐽 is the number of blocks, and

𝐸 (2) (𝐽) = −1
4
(2𝐽 + 1)

∑︁
𝑖 𝑗 𝑘𝑙

H𝑖 𝑗 𝑘𝑙 H𝑘𝑙𝑖 𝑗D𝑖 𝑗 𝑘𝑙 = −
1
4
(2𝐽 + 1) 〈H , H̃〉, (5.8)

in which the Hamiltonian tensor H ∈ R𝑛×𝑛×𝑛×𝑛 should be updated for each value of 𝐽, and D has

the same dimensions asH and is calculated from single-particle energy values. The tensor H̃ is a

permuted version of theH multiplied component-wise by D, i.e.,

H̃𝑖 𝑗 𝑘𝑙 = H𝑘𝑙𝑖 𝑗D𝑖 𝑗 𝑘𝑙 . (5.9)

Now, an approximation of (5.8) can be computed by randomly projecting H and H̃ onto a lower-

dimensional space using mode-wise Johnson-Lindenstrauss embeddings:

S = H ×1 A(1) ×2 A(2) ×3 A(2) ×4 A(4) , (5.10)
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S̃ = H̃ ×1 A(1) ×2 A(2) ×3 A(2) ×4 A(4) , (5.11)

where A( 𝑗) ∈ R𝑚 𝑗×𝑛 are JL matrices and 𝑚 𝑗 ≤ 𝑛 for 𝑗 ∈ [4]. Now, with high probability,

〈H , H̃〉 ≈ 〈S, S̃〉, (5.12)

to within an adjustable error that is related to the target dimension sizes 𝑚 𝑗 .

A 2nd stage JL embedding can be applied to the vectorized versions of S and S̃ to further

compress the projected tensors before computing the approximate inner product. This is done

according to

s𝑝 = Avect (S) , (5.13)

where s𝑝 ∈ R𝑚 and A ∈ R𝑚×
∏𝑑

𝑗=1 𝑚 𝑗 .

Note 5.2.1 It is observed that assuming real arithmetic, the operations count to directly caclulate

the inner product is O(𝑛1 . . . 𝑛𝑑) while the computational complexity of a one-stage JL embedding

is O(𝑚1𝑛1 . . . 𝑛𝑑) as discussed in Section 4.2.1.1, which is obviously higher. However, the same

compressed tensors can be used in the process of calculating many observables including the

higher-order purturbative terms such as the third-order energy correction and radius corrections.

As the number of such terms increases, the overall computational complexity will become much

lower when compressed tensors are used to approximate observables.

5.2.2 Radius Corrections

In what follows, a one-stage (modewise) JL compression scheme is discussed. Obviously, in both

cases shown below, a second stage JL compression can also be performed after vectorizing the

result of the first stage.

Particle Term:
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The one-body particle term is expressed in the following way

𝑅1 =
1
2

∑︁
𝑖 𝑗 𝑘𝑙𝑚

H𝑖 𝑗 𝑘𝑙D𝑖 𝑗 𝑘𝑙D𝑚 𝑗𝑘𝑙H𝑘𝑙𝑚 𝑗𝑅𝑚𝑖

=
1
2

∑︁
𝑖 𝑗 𝑘𝑙

H𝑖 𝑗 𝑘𝑙D𝑖 𝑗 𝑘𝑙
∑︁
𝑚

D𝑚 𝑗𝑘𝑙H𝑘𝑙𝑚 𝑗𝑅𝑚𝑖

=
1
2

〈
Ȟ , Ĥ

〉
,

(5.14)

where Ȟ is obtained by the component-wise product ofH and D, i.e., Ȟ𝑖 𝑗 𝑘𝑙 = H𝑖 𝑗 𝑘𝑙D𝑖 𝑗 𝑘𝑙 ,

Ĥ𝑖 𝑗 𝑘𝑙 =
∑︁
𝑚

D𝑚 𝑗𝑘𝑙H𝑘𝑙𝑚 𝑗𝑅𝑚𝑖 =
∑︁
𝑚

H̃𝑚 𝑗𝑘𝑙𝑅𝑚𝑖, (5.15)

and R is the radius operator and a square matrix. Here, H̃ is defined in (5.9). We can observe that

Ĥ = H̃ ×1 R>. Therefore, the approximate correction term would be calculated as

𝑅1 ≈
1
2

〈
H𝑝1 ,H𝑝2

〉
,

where

H𝑝1 = Ȟ
4?
ℓ=1

A(ℓ) , (5.16)

and

H𝑝2 = Ĥ
4?
ℓ=1

A(ℓ) = H̃ ×1 (A(1)R>)
4?
ℓ=2

A(ℓ) . (5.17)

Hole Term:

Calculations for the one-body hole term are very similar to the first term, as shown below.

𝑅2 =
1
2

∑︁
𝑖 𝑗 𝑘𝑙𝑚

H𝑖 𝑗 𝑘𝑙D𝑖 𝑗 𝑘𝑙H𝑚𝑙𝑖 𝑗D𝑖 𝑗𝑚𝑙𝑅𝑘𝑚 (5.18)

=
1
2

∑︁
𝑖 𝑗 𝑘𝑙

H𝑖 𝑗 𝑘𝑙D𝑖 𝑗 𝑘𝑙
∑︁
𝑚

D𝑖 𝑗𝑚𝑙H𝑚𝑙𝑖 𝑗𝑅𝑘𝑚 (5.19)

=
1
2

〈
Ȟ , H̄

〉
, (5.20)

where

H̄𝑖 𝑗 𝑘𝑙 =
∑︁
𝑚

D𝑖 𝑗𝑚𝑙H𝑚𝑙𝑖 𝑗𝑅𝑘𝑚 =
∑︁
𝑚

H̃𝑖 𝑗𝑚𝑙𝑅𝑘𝑚 . (5.21)
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We have that

H̄ = H̃ ×3 R. (5.22)

Therefore,

𝑅2 ≈
1
2

〈
H𝑝1 ,H𝑝2

〉
, (5.23)

where

H𝑝1 = Ȟ
4?
ℓ=1

A(ℓ) (5.24)

as in the case of the first correction term, and

H𝑝2 = H̄
4?
ℓ=1

A(ℓ)

= H̃ ×1 A(1) ×2 A(2) ×3 (A(3)R) ×4 A(4) .

(5.25)

It can be observed that all one needs to calculate the approximations to 𝑅1 and 𝑅2 is the two tensors

Ȟ and H̃ . This has been depicted in the block diagram of Figure 5.3. In many cases, due to the

symmetry inH , we have that Ȟ = H̃ which further reduces the storage requirements.

Figure 5.3: A block diagram showing how the approximations to 𝑅1 and 𝑅2 are calculated.
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5.2.3 Third-order energy correction

The 3rd-order energy correction term is defined as

𝐸 (3) =
𝑁𝐽−1∑︁
𝐽=0

𝐸 (3) (𝐽) , (5.26)

where the term 𝐸 (3) (𝐽) is calculated in each of the following settings.

5.2.3.1 Particle-Particle

In the particle-particle case,

𝐸 (3) (𝐽) = 1
8
(2𝐽 + 1)

∑︁
𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛

H(𝑖, 𝑗 , 𝑘, 𝑙) H (𝑘, 𝑙, 𝑚, 𝑛) H (𝑚, 𝑛, 𝑖, 𝑗) D(𝑘, 𝑙, 𝑖, 𝑗) D(𝑚, 𝑛, 𝑖, 𝑗).

(5.27)

Again, the Hamiltonian tensorH should be updated for each value of 𝐽. To calculate the sum,

one can use a scheme similar to the one used in section 5.2.1, but this time with 6 dimensions:

generate 6-dimensional tensors by regrouping the terms in (5.27) asH1 andH2, and then calculate

the inner product betweenH1 andH2. There are multiple ways to group the terms in (5.27). In the

following, two grouping options are listed.

Option 1 :


H1(𝑖, 𝑗 , 𝑘, 𝑙, 𝑚, 𝑛) = 1

8H(𝑖, 𝑗 , 𝑘, 𝑙)H (𝑘, 𝑙, 𝑚, 𝑛)

H2(𝑖, 𝑗 , 𝑘, 𝑙, 𝑚, 𝑛) = H(𝑚, 𝑛, 𝑖, 𝑗)D(𝑘, 𝑙, 𝑖, 𝑗)D(𝑚, 𝑛, 𝑖, 𝑗),
(5.28)

Option 2 :


H1(𝑖, 𝑗 , 𝑘, 𝑙, 𝑚, 𝑛) = 1

8H(𝑖, 𝑗 , 𝑘, 𝑙)H (𝑘, 𝑙, 𝑚, 𝑛)D(𝑘, 𝑙, 𝑖, 𝑗)

H2(𝑖, 𝑗 , 𝑘, 𝑙, 𝑚, 𝑛) = H(𝑚, 𝑛, 𝑖, 𝑗)D(𝑚, 𝑛, 𝑖, 𝑗).
(5.29)

Now, if S1 and S2 are the projected versions ofH1 andH2, we expect that

𝐸 (3) (𝐽) = (2𝐽 + 1) 〈H1,H2〉 ≈ (2𝐽 + 1) 〈S1,S2〉.

The problem with this approach lies in the fact that when the dimension sizes increase, the

6-mode tensors become problematic in terms of storage. For instance, for H ∈ R100×100×100×100,
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7.45 TB of space is needed to store each ofH1 andH2. To overcome this problem, we can reshape

the tensors and perform the projections as explained below.

It is observed that the indices of the hypothetical 6-mode tensors always appear in groups of two

in the inner product summation. Therefore, they can be reshaped into 3-mode tensors by regrouping

the indices, and one may perform mode-wise JL on the reshaped tensors.

Option 1 :


H1(𝑝, 𝑞, 𝑟) = 1

8H(𝑝, 𝑞)H (𝑞, 𝑟)

H2(𝑝, 𝑞, 𝑟) = H(𝑟, 𝑝)D(𝑞, 𝑝)D(𝑟, 𝑝) = H̃ (𝑟, 𝑝)D(𝑞, 𝑝),
(5.30)

where H̃ is defined similarly as in (5.9). Here, 𝑝 represents all relevant pairs of 𝑖 and 𝑗 , 𝑞 encodes

all pairs of 𝑘 and 𝑙, and 𝑟 represents all pairs of 𝑚 and 𝑛 in the grouping operation4. The repetitive

patterns existing in 3-mode tensors that now can be formed using combinations of matrices, as well

as reducing the size of two modes at once, as a result of combining two indices into one index, will

provide the tools to avoid dealing with extremely large tensors when performing the projections.

For instance, to projectH1 in (5.30), one must calculate

P1 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H1(𝑝, 𝑞, 𝑟)A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟) ,

which is the element-wise version of

P1 = H1 ×1 A(1) ×2 A(2) ×3 A(3) .

According to the way H1 is defined it will be possible to decompose the triple summation into

separate sums for two of the mode-wise projections. This way, one can obtain the fully-projected

tensor P1 by only dealing with 2-mode (partially) compressed arrays. Algebraic details on how the

mode-wise projections can be done in a memory efficient way are presented in Appendix B.1.

Due to the resemblance of options 1 and 2 in terms of the method used, only option 1 will be

considered for future experiments, and also in the Hole-Hole and Particle-Hole settings, only one

option will be discussed.
4For instance, if column-major formatting is used, and assuming the indices start from 1, the relation between 𝑝, 𝑖

and 𝑗 is 𝑝 = 𝑖 + ( 𝑗 − 1) 𝑁 , where 𝑖, 𝑗 ∈ [𝑁].
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5.2.3.2 Hole-Hole

In this case, the energy term for each value of 𝐽 is expressed by

𝐸 (3) (𝐽) = 1
8
(2𝐽 + 1)

∑︁
𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛

H(𝑖, 𝑗 , 𝑘, 𝑙) H (𝑘, 𝑙, 𝑚, 𝑛) H (𝑚, 𝑛, 𝑖, 𝑗) D(𝑚, 𝑛, 𝑖, 𝑗) D(𝑚, 𝑛, 𝑘, 𝑙).

(5.31)

For simplicity, only one option will be used to formH1 andH2, where
H1(𝑝, 𝑞, 𝑟) = 1

8H(𝑝, 𝑞)H (𝑞, 𝑟)

H2(𝑝, 𝑞, 𝑟) = H(𝑟, 𝑝)D(𝑟, 𝑝)D(𝑟, 𝑞) = H̃ (𝑟, 𝑝)D(𝑟, 𝑞).
(5.32)

Again, 𝑖 and 𝑗 are combined to form 𝑝, 𝑘 and 𝑙 are grouped to form 𝑞, and 𝑚 and 𝑛 are combined

to form 𝑟 , as explained above. Details on the calculations of mode-wise projections are presented

in Appendix B.2.

5.2.3.3 Particle-Hole

In this case, the energy term for each value of 𝐽 is calculated by

𝐸 (3) (𝐽) = (2𝐽 + 1)
∑︁

𝑖, 𝑗 ,𝑘,𝑙,𝑚,𝑛

H𝑝 (𝑖, 𝑗 , 𝑘, 𝑙) H𝑝 (𝑘, 𝑙, 𝑚, 𝑛) H𝑝 (𝑚, 𝑛, 𝑖, 𝑗) D(𝑘, 𝑗 , 𝑙, 𝑖) D( 𝑗 , 𝑚, 𝑖, 𝑛),

(5.33)

where the Hamiltonians are obtained after a Pandya transform shown by the subscript 𝑝 in the

summation. To make the process of reshaping the data into 3-mode tensors possible, the dimensions

of D should be permuted to get

D1(𝑖, 𝑗 , 𝑘, 𝑙) = D(𝑘, 𝑗 , 𝑙, 𝑖)

D2(𝑚, 𝑛, 𝑖, 𝑗) = D( 𝑗 , 𝑚, 𝑖, 𝑛).

Then, we can choose 
H̃1(𝑖, 𝑗 , 𝑘, 𝑙) = H𝑝 (𝑖, 𝑗 , 𝑘, 𝑙)D1(𝑖, 𝑗 , 𝑘, 𝑙)

H̃2(𝑚, 𝑛, 𝑖, 𝑗) = H𝑝 (𝑚, 𝑛, 𝑖, 𝑗)D2(𝑚, 𝑛, 𝑖, 𝑗),
(5.34)
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𝑒Max 4 6 8 10 12 14
𝑛 30 56 90 132 174 216

Table 5.1: Basis truncation parameters and mode dimensions for single-particle bases labeled by
𝑒Max.

leading to the reshaped version
H1(𝑝, 𝑞, 𝑟) = H̃1(𝑝, 𝑞)H𝑝 (𝑞, 𝑟)

H2(𝑝, 𝑞, 𝑟) = H̃2(𝑟, 𝑝).
(5.35)

Memory efficient calculations for the mode-wise projections can be found in Appendix B.3.

5.2.4 Experiments

In this section, numerical results are provided to demonstrate how mode-wise JL embeddings

affect the accuracy of energy calculations. Experiments are done for different data sizes, i.e., for

H ,D ∈ R𝑛×𝑛×𝑛×𝑛 where the dimension size 𝑛 is chosen from the set of number listed in Table 5.1.

In each case, the relative error in 𝐸 (2) , 𝐸 (3) , and the radius correction terms 𝑅1 and 𝑅2 defined by

(5.36), (5.37), and (5.38), and are plotted for various values of compression.

Δ𝐸 (2) = mean

( �����𝐸 (2)𝑝 − 𝐸 (2)𝐸 (2)

�����
)
. (5.36)

Δ𝐸 (3) = mean

( �����𝐸 (3)𝑝 − 𝐸 (3)𝐸 (3)

�����
)
. (5.37)

Δ𝑅 = mean
( ����𝑅𝑝 − 𝑅𝑅

���� )
. (5.38)

where the subscript 𝑝 is used to denote the corresponding value calculated after the projection of

tensors, and mean(𝑋) denotes the mean of 𝑋 . Compression in mode 𝑗 is defined by

𝑐 𝑗 =
𝑚 𝑗

𝑁
, (5.39)
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where 𝑁 and 𝑚 𝑗 denote the size of mode 𝑗 before and after projection, respectively. The target

dimension 𝑚 𝑗 in JL matrices is chosen as 𝑚 𝑗 =
⌈
𝑐 𝑗𝑛

⌉
for all 𝑗 , to ensure that at least a fraction 𝑐 𝑗

of the ambient dimension in mode 𝑗 is preserved. In the experiments, compression is chosen the

same for all modes, i.e., 𝑐 𝑗 = 𝑐 for all 𝑗 . It should be noted that for the 𝐸 (3) calculations, the size

of each dimension in the reshaped data is 𝑁 = 𝑛2, while for the 𝐸 (2) and 𝑅 calculations, 𝑁 = 𝑛.

5.2.4.1 𝐸 (2) Experiments

Experiment results for O16 have been plotted in Figures 5.4, 5.5, and 5.6. In Figure 5.7, the relative

error in 𝐸 (2) has been plotted for two compression levels for O16 and Sn132. These results clearly

show that JL embeddings result in smaller error values when data size increases. This dependence

is almost log-linear.
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Figure 5.4: 𝐸 (2) experiment results for O16, 𝑒𝑀𝑎𝑥 = 2.
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Figure 5.5: 𝐸 (2) experiment results for O16, 𝑒𝑀𝑎𝑥 = 4.
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Figure 5.6: 𝐸 (2) experiment results for O16, 𝑒𝑀𝑎𝑥 = 8.
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Figure 5.7: Relative error in 𝐸 (2) for total compression values of 0.0009 and 0.0125. (a) O16. (b)
Sn132.
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5.2.4.2 Radius Correction Experiments

The experiments of this section were done on the data of Tin (Sn132) and Calcium (Ca48) for

𝑛 = 216 or eMax= 14. The results can be viewed in Figure 5.8.
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Figure 5.8: Radius correction results, for interaction em1.8−2.0 and eMax= 14. (a) Ca48, particle
term. (b) Ca48, hole term. (c) Sn132, particle term. (d) Sn132, hole term.

5.2.4.3 𝐸 (3) Experiments

The reason behind 𝐸 (3) experiments not working as well as 𝐸 (2) is that the two tensors forming

the inner product become nearly orthogonal in the 𝐸 (3) case, in such a way that after projection,

their inner product becomes much smaller than their individual norms. In other words, two tensors

that are not originally orthogonal are made close to orthogonal after projection onto the lower-
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dimensional subspace. One can think of a criterion that should be met for the inner product

preservation to work, i.e., |〈Ax,Ay〉| ≥ 𝜀 ‖Ax‖ ‖Ay‖ for some small 𝜀, where x and y are fibers in

unfoldings of a tensor.
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Figure 5.9: Mean absolute relative error in 𝐸 (3) for hole-hole and 𝑒𝑀𝑎𝑥 = 8.
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Figure 5.10: Mean absolute relative error in 𝐸 (3) for particle-particle and 𝑒𝑀𝑎𝑥 = 8.
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Figure 5.11: Mean absolute relative error in 𝐸 (3) for particle-hole and 𝑒𝑀𝑎𝑥 = 8.
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CHAPTER 6

EXTENSION OF VECTOR-BASED METHODS TO TENSORS AND FUTURE WORK

In this chapter, two of the conventional methods developed for vector data are extended to tensors

while keeping the miltilinear structure of the data. The computational load and memory require-

ments of these methods can be mitigated by applying modewise JL embeddings to the inout data.

For instance, in Algorithm 6.1 of Section 6.1, the training tensors X (𝑚) can be compressed to a

much smaller size by applying modewise JL prior to solving for the projection matrices Ũ( 𝑗) . The

same set of JL embeddings used to compress all the training samples could also be used for test data,

meaning they need to be generated only once. The result will be an approximate yet easier to obtain

set of projection matrices that will be used to compute the approximate MPCA output. In another

possible way, randomized methods can be used to obtain an approximate low-rank representation

of data during the SVD stage of MPCA (in step 2 of Algorithm 6.1 in the following, SVD could be

used on
∑𝑀
𝑚=1 X̃(𝑚)( 𝑗) instead of the eigen-decomposition of

∑𝑀
𝑚=1 X̃(𝑚)( 𝑗) X̃

(𝑚)>
( 𝑗) ).

In a similar manner, the support vector machine methods mentioned in Section 6.3 involve the

computation of the CP decomposition of a tensor. Obtaining CPD requires solving a least squares

problem for each mode of the input data, which in turn can be made faster and memory-efficient

by solving the least squares problem using a sketched (compressed) version of the known variables

in, e.g., (3.11). This leads to an approximate and a computationally more efficient implementation

of CPD to be used in the main support vector machine approach.

6.1 Multilinear Principal Component Analysis

Multilineal Principal Component Analysis, abbreviated to MPCA, is a dimensionality reduction

scheme for tensor objects. As an extension to regular PCA, it is similar in structure to the Tucker

decomposition and defines its goal to capture as much variations as possible across the modes of a

tensor object.
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Definition 6.1.1 Let {X (1) , . . . ,X (𝑀)} be a set of tensor objects in R𝑛1×···×𝑛𝑑 . The total scatter of

these tensors is defined as

ΨX =

𝑀∑︁
𝑚=1
‖X (𝑚) − X̄‖2,

where X̄ is the mean tensor calculated by

X̄ =
1
𝑀

𝑀∑︁
𝑚=1
X (𝑚) .

6.1.1 Problem Statement

Consider {X (𝑚)}𝑀
𝑚=1 for training. The objective is to define a multilinear transformation {Ũ( 𝑗) ∈

R𝑛 𝑗×𝑃 𝑗 }𝑑
𝑗=1 that maps the tensor space R𝑛1×···×𝑛𝑑 into a tensor subspace R𝑃1×···×𝑃𝑑 with 𝑃 𝑗 ≤ 𝑛 𝑗 for

𝑗 ∈ [𝑑], such that

Y (𝑚) = X (𝑚) ×1 Ũ(1)> × · · · ×𝑑 Ũ(𝑇)> ∈ R𝑃1×···×𝑃𝑑 ; 𝑚 ∈ [𝑀],

capture most of the variations in {X (𝑚)}𝑀
𝑚=1 measured by the total scatter ΨY , i.e.,

{Ũ( 𝑗)}𝑑𝑗=1 = arg max
Ũ(1) ,...,Ũ(𝑑)

ΨY . (6.1)

A pseudo-code outlining the steps of MPCA is shown in Algorithm 6.1 [14], with 𝐾 denoting

the maximal number of allowed iterations.

Theorem 6.1.1 Let {Ũ( 𝑗)}𝑑
𝑗=1 be the solution to (6.1). Then, given Ũ(1) , . . . , Ũ( 𝑗−1) , Ũ( 𝑗+1) , . . . , Ũ(𝑑) ,

the matrix Ũ( 𝑗) consists of 𝑃 𝑗 eigenvectors corresponding to the 𝑃 𝑗 largest eigenvalues of the matrix

𝚽( 𝑗) =
𝑀∑︁
𝑚=1

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)
Ũ𝚽( 𝑗) Ũ>𝚽( 𝑗)

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)>
, (6.2)

where

Ũ𝚽( 𝑗) =

(
Ũ(𝑑) ⊗ · · · ⊗ Ũ( 𝑗+1) ⊗ Ũ( 𝑗−1) ⊗ · · · ⊗ Ũ(1)

)>
for 𝑗 ∈ [𝑑].
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Algorithm 6.1: MPCA [14]
Require: Training samples X (𝑚) ∈ R𝑛1×...×𝑛𝑑 for 𝑚 ∈ [𝑀].
Ensure: Projection matrices Ũ( 𝑗) ∈ R𝑃 𝑗×𝑛 𝑗 for 𝑛 ∈ [𝑑].

(1) Center input samples: X̃𝑚 = X𝑚 − X̄.

(2) Initialization: Calculate the eigen-decomposition of 𝚽( 𝑗)∗ =
𝑀∑
𝑚=1

X̃(𝑚)( 𝑗) X̃
(𝑚)>
( 𝑗) . Set Ũ( 𝑗) to

consist of the 𝑃 𝑗 leading eigenvectors for 𝑗 ∈ [𝑑].
(3) Local optimization:
Calculate Ỹ (𝑚) = X̃ (𝑚) ×1 Ũ(1)> × · · · ×𝑑 Ũ(𝑇)> for 𝑚 ∈ [𝑀].
Calculate ΨY0 =

𝑀∑
𝑚=1
‖Ỹ (𝑚) ‖2

𝐹
.

for 𝑘 = 1, . . . , 𝐾 do
for 𝑗 = 1, . . . , 𝑑 do

Set the matrix Ũ( 𝑗) to consist of the 𝑃 𝑗 leading eigenvectors of 𝚽( 𝑗) defined in (6.2).
end for
Calculate Ỹ𝑚 for 𝑚 ∈ [𝑀], and ΨY𝑘 .
If ΨY𝑘 − ΨY𝑘−1 < 𝜂, break, and go to step 4.

end for
(4) Projection: Obtain the feature tensors as Y (𝑚) = X (𝑚) ×1 Ũ(1)> × · · · ×𝑑 Ũ(𝑇)> for 𝑚 ∈ [𝑀].

Proof The Euclidean norm of a tensor is equal to the Frobenius norm of any of its unfoldings.

Therefore, the total scatter of the projected samples can be written as

ΨY =

𝑀∑︁
𝑚=1
‖Y (𝑚) − Ȳ‖2 =

𝑀∑︁
𝑚=1
‖Y(𝑚)( 𝑗) − Ȳ( 𝑗) ‖2𝐹

=

𝑀∑︁
𝑚=1
‖Ũ( 𝑗)

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)
Ũ𝚽( 𝑗) ‖2𝐹

=

𝑀∑︁
𝑚=1

trace
(
Ũ( 𝑗)

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)
Ũ𝚽( 𝑗) Ũ>𝚽( 𝑗)

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)>
Ũ( 𝑗)>

)
= trace

(
Ũ( 𝑗)

𝑀∑︁
𝑚=1

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)
Ũ𝚽( 𝑗) Ũ>𝚽( 𝑗)

(
X(𝑚)( 𝑗) − X̄( 𝑗)

)>
Ũ( 𝑗)>

)
= trace

(
Ũ( 𝑗)𝚽( 𝑗)Ũ( 𝑗)>

)
,

which turns into an eigenvalue problem when ΨY is to be maximized.
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6.1.2 Full Projection

If 𝑃 𝑗 = 𝑛 𝑗 for 𝑗 ∈ [𝑑], it is easy to show that Ũ( 𝑗)
𝚽( 𝑗)

Ũ( 𝑗)>
𝚽( 𝑗)

= I, then in the optimal case, 𝚽( 𝑗)∗ =
𝑀∑
𝑚=1

(
X(𝑚)( 𝑗) − X̄(𝑚)( 𝑗)

) (
X(𝑚)( 𝑗) − X̄(𝑚)( 𝑗)

)>
. In this case, U( 𝑗)∗ is the optimal solution for Ũ( 𝑗) , and consists

of the eigenvectors of 𝚽( 𝑗)∗.

The total scatter tensor Y∗var of the full projection is defined as

Y∗var =

𝑀∑︁
𝑚=1

(
Y (𝑚)∗ − Ȳ∗

)2
, (6.3)

where the exponentiation is done component-wise, Y (𝑚)∗ is the full projection of the 𝑚th sample

X (𝑚) and Ȳ∗ is the mean of the fully projected samples. The following two observations can be

made.

(a) The 𝑖th
𝑗

mode- 𝑗 eigenvalue 𝜆( 𝑗)∗
𝑖 𝑗

is the sum of all entries of the 𝑖th
𝑗

mode- 𝑗 slice of Y∗var, where

𝑖 𝑗 ∈ [𝑛 𝑗 ] for 𝑗 ∈ [𝑑].

(b) Every sample tensorX (𝑚) can be represented as an expansion in the subspace spanned by rank-1

tensors, called eigentensors. This is shown by

X (𝑚) ≈
𝑃1∑︁
𝑖1=1

𝑃2∑︁
𝑖2=1
· · ·

𝑃𝑑∑︁
𝑖𝑑=1
Y (𝑚)∗
𝑖1,𝑖2,...,𝑖𝑑

ũ(1)
𝑖1
© ũ(2)

𝑖2
© · · · © ũ(𝑑)

𝑖𝑑
, (6.4)

where ũ( 𝑗)
𝑖 𝑗

is the 𝑖th
𝑗

column of Ũ( 𝑗)
𝑖 𝑗

for 𝑖 𝑗 ∈ [𝑃 𝑗 ] and 𝑗 ∈ [𝑑].

6.1.3 Initialization by Full Projection Truncation (FPT)

To initialize the MPCA algorithm, assume the first 𝑃 𝑗 < 𝑛 𝑗 leading eigenvectors of 𝚽(𝑛)∗ form

Ũ( 𝑗) . It is shown in [14] that if a nonzero eigenvalue is truncated in one mode, the eigenvalues

in all other modes tend to decrease in magnitude, and therefore, the optimality of (6.1) is affected

negatively. Thus, the eigen-decomposition needs to be updated in all other modes. If the total

scatter of the projected samples in FPT is denoted by ΨY0 , then the loss of variations due to FPT is
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bounded by

max
𝑗

𝑛 𝑗∑︁
𝑖 𝑗=𝑃 𝑗+1

𝜆
( 𝑗)∗
𝑖 𝑗
≤ ΨX − ΨY0 ≤

𝑑∑︁
𝑗=1

𝑛 𝑗∑︁
𝑖 𝑗=𝑃 𝑗+1

𝜆
( 𝑗)∗
𝑖 𝑗

. (6.5)

6.1.4 Determination of subspace Dimensions 𝑃 𝑗

A simple yet commonly used method to choose 𝑃 𝑗 is to pick the minimum value 𝑃 𝑗 such that

𝑃 𝑗∑
𝑖 𝑗=1

𝜆
( 𝑗)∗
𝑖 𝑗

𝑛 𝑗∑
𝑖 𝑗=1

𝜆
( 𝑗)∗
𝑖 𝑗

≥ 𝜏, (6.6)

where 𝜏 is a predetermined threshold set by the user.

6.1.5 Feature Extraction and Classification

The set of projection matrices {Ũ( 𝑗)}𝑑
𝑗=1 obtained using the training samples can be employed to

project any new sample onto the same subspace. The projected samples (training or test) can be

either directly used in classification, or they can undergo further processing. In LDA1, the elements

of the projected samples Y (𝑚) are vectorized to yield y(𝑚) and are ordered according to the Fisher

score to maximize the between-class to in-class discriminability. Next, a predetermined number of

features with the highest Fisher scores are selected for classification.

Or, to maximize between-class to in-class discriminability, y(𝑚) can be projected onto the LDA

space by

z(𝑚) = V>lday
(𝑚) ,

where for 𝐶 classes, Vlda consists of 𝑛𝑧 ≤ 𝐶 − 1 of the leading generalized eigenvectors of

S𝑊 =
∑𝑀
𝑚=1

(
y(𝑚) − ȳ(𝑚)𝑐

) (
y(𝑚) − ȳ(𝑚)𝑐

)>
and S𝐵 =

∑𝐶
𝑐=1 𝑁𝑐 (ȳ𝑐 − ȳ) (ȳ𝑐 − ȳ)>. Here, 𝑁𝑐 is the

number of samples in class 𝑐 and ȳ(𝑚)𝑐 denotes the in-class mean for the 𝑚th training sample, i.e.,
1Linear Discriminant Analysis
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ȳ(𝑚)𝑐 ∈ {ȳ1, . . . , ȳ𝐶} where ȳ𝑐 is the mean of class 𝑐. In fact, the LDA projection matrix is obtained

by solving

Vlda = arg max
V

|V>S𝐵V|
|V>S𝑊V| =

[
v1 . . . v𝑛𝑧

]
.

Now, z(𝑚) is used for classification as the projected training sample, and Vlda is applied to any

vectorized projected test data y to further project it onto the LDA space according to z = V>lday.

6.2 Comparison between PCA, MPCA and MPS

Here, the methods PCA, MPCA and MPS have been compared in terms of computational complex-

ity measured by training time, and classification Success Rate (CSR). The data were first projected

onto the subspace, and then the features were either directly used in nearest neighbor (1NN) clas-

sification, or they were further sorted in descending order according to the Fisher score and 100

features were selected to be used in 1NN. The following data sets were used in the experiments.

COIL-100 data set: 7200 images collected from 100 objects taken at 5◦ pose intervals, creating a

3-mode tensorX ∈ R128×128×7200 [15]. Sample images from this library can be viewed in Figure 6.1.
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Figure 6.1: Gray-scale sample images of five objects in the COIL-100 database.

MRI data: A 4-mode tensor X ∈ R240×240×155×51 comprised of 51 MRI samples [1]. A lateral

slice of a sample MRI image is shown in Figure 6.2.
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Figure 6.2: A lateral slice of a sample MRI image.
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Figure 6.3: Training time. (a) COIL-100. (b) MRI.
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Figure 6.4: Classification Success Rate. (a) COIL-100. (b) MRI.

6.3 Extension of Support Vector Machine to Tensors

In this section, 3 tensor-based methods used to extend the regular support vector machine to tensor

data are summarized. Consider 𝑀 𝑑-mode training sample tensors {X (𝑚)}𝑀
𝑚=1 ∈ R

𝑛1×...×𝑛𝑑 with

corresponding labels {𝑦𝑚}𝑀𝑚=1 ∈ {−1, +1}.
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6.3.1 Support Tensor Machine

The soft-margin Support Tensor Machine for binary classification of data is composed of 𝑑 quadratic

programming problems with inequality constraints, where the 𝑗 th problem is described as [24]:

min
w( 𝑗) ,𝑏 ( 𝑗) ,𝝃 ( 𝑗)

𝐽

(
w( 𝑗) , 𝑏 ( 𝑗) , 𝝃 ( 𝑗)

)
=

1
2
‖w( 𝑗) ‖22

𝑑∏
𝑖=1
𝑖≠ 𝑗

‖w(𝑖) ‖22 + 𝐶
𝑀∑︁
𝑚=1

𝜉
( 𝑗)
𝑚

subject to 𝑦𝑚

©­­­«w( 𝑗)>
©­­­«X
(𝑚)

𝑑?
𝑖=1
𝑖≠ 𝑗

w( 𝑗)>
ª®®®¬ + 𝑏

( 𝑗)
ª®®®¬ ≥ 1 − 𝜉 ( 𝑗)𝑚

𝜉
( 𝑗)
𝑚 ≥ 0, 𝑚 ∈ [𝑀],

(6.7)

for 𝑗 ∈ [𝑑], where w( 𝑗) ∈ R𝑛 𝑗 is the normal to the 𝑗 th hyperplane corresponding to the 𝑗 th

mode, 𝑏 ( 𝑗) is the bias, 𝜉 ( 𝑗)𝑚 is error of the 𝑚th training sample, and 𝐶 is the trade-off between the

classification error and the amount of margin violation. These 𝑑 optimization problems have no

closed-form solution, and need to be solved iteratively using the alternating projection algorithm.

All 𝑑 normal vectors are randomly initialized. In each iteration, for each mode 𝑗 , {w(𝑘)}𝑘≠ 𝑗 are

fixed and (6.7) is solved for w( 𝑗) . Iterations continue until convergence is reached. Convergence

criterion considering iterations 𝑡 and 𝑡 − 1 is set as

𝑑∑︁
𝑗=1

(�����w( 𝑗)>𝑡 w( 𝑗)
𝑡−1

‖w( 𝑗)𝑡 ‖2

����� − 1

)
≤ 𝜀,

for some 𝜀. Once the STM model has been solved, the binary classifier will determine the class of

a test sample X based on the decision rule

𝑦(X) = sign

(
X

𝑑?
𝑖=1

w( 𝑗)> + 𝑏
)
. (6.8)

Further, assume that 𝜉𝑚 = max
𝑗∈[𝑑]
{𝜉 ( 𝑗)𝑚 }, and that the 𝑑 normal vectors w( 𝑗) form a rank-1 tensor

W = w(1) © w(2) © · · · © w(𝑑) [6]. In this case, the following can be observed.

‖W‖2 = 〈W,W〉 =
∑︁
𝑖1,...,𝑖𝑑

W2
𝑖1,...,𝑖𝑑

=
∑︁
𝑖1,...,𝑖𝑑

w(1)2
𝑖1

. . .w(𝑑)2
𝑖𝑑

=

𝑑∏
𝑗=1
‖w( 𝑗) ‖22, (6.9)
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and

w( 𝑗)>
©­­­«X
(𝑚)

𝑑?
𝑖=1
𝑖≠ 𝑗

w( 𝑗)>
ª®®®¬ = X (𝑚)

𝑑?
𝑖=1

w( 𝑗)> =
∑︁
𝑖1,...,𝑖𝑑

X (𝑚)
𝑖1,...,𝑖𝑑

w(1)
𝑖1
. . .w(𝑑)

𝑖𝑑
=

〈
X (𝑚) ,W

〉
, (6.10)

where (2.11) and (2.12) have been used in the penultimate equality. This result can be used to write

the problem as

min
W,𝑏,𝝃

𝐽 (W, 𝑏, 𝝃) = 1
2
‖W‖2 + 𝐶

𝑀∑︁
𝑚=1

𝜉𝑚

subject to 𝑦𝑚

(〈
X (𝑚) ,W

〉
+ 𝑏

)
≥ 1 − 𝜉𝑚

𝜉𝑚 ≥ 0,

(6.11)

By forming the Lagrangian function with Lagrange multipliers 𝛼 and 𝜆, and taking partial

derivatives with respect toW, 𝑏 and 𝜉𝑚, we obtainW =
∑𝑀
𝑚=1 𝛼𝑚𝑦𝑚X (𝑚) ,

∑𝑀
𝑚=1 𝛼𝑚𝑦𝑚 = 0 and

𝛼𝑚 + 𝜆𝑚 = 𝐶. Then, the dual problem can be written in the following form.

max
𝜶

= 1>𝜶 − 1
2
𝜶>S𝜶

subject to
𝑀∑︁
𝑚=1

𝛼𝑚𝑦𝑚 = 0

0 ≤ 𝛼𝑚 ≤ 𝐶, 𝑚 ∈ [𝑀],

(6.12)

where S𝑝𝑞 = 𝑦𝑝𝑦𝑞
〈
X (𝑝) ,X (𝑞)

〉
. Therefore, after solving the model, the binary classifier will be

𝑦(X) = sign (〈X,W〉 + 𝑏) , (6.13)

for a test tensor X. This procedure is equivalent to solving the regular soft-margin SVM if the

tensors are first vectorized. However, for large tensors vectorized, SVM suffers significantly from

the curse of dimensionality and also small training sample count compared to the dimensionality

of each sample making it susceptible to new data.
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6.3.2 Support Higher-order Tensor Machine

Support Higher-order Tensor Machine (abbreviated to SHTM) assumes that the data samples admit

low-rank CP decompositions, which allows for another form of the objective function in the dual

problem. As can be expected, in obtaining the CPD of data, a sketched least squares problem

can be solved in each mode of the training and test samples to obtain approximate but more

efficient versions of the corresponding CP decompositions. Let the CPD of X (𝑝) and X (𝑞) be

X (𝑝) ≈ ∑𝑟
𝑘=1 x(1)

𝑝𝑘
© · · · © x(𝑑)

𝑝𝑘
and X (𝑞) ≈ ∑𝑟

𝑘=1 x(1)
𝑞𝑘
© · · · © x(𝑑)

𝑞𝑘
, where x( 𝑗)

𝑞𝑘
and x( 𝑗)

𝑝𝑘
represent

the 𝑘 th column in the 𝑗 th factor matrix of X (𝑝) and X (𝑞) , respectively. Therefore, the elements of S

in (6.12) will be

S𝑝𝑞 = 𝑦𝑝𝑦𝑞
〈
X (𝑝) ,X (𝑞)

〉
= 𝑦𝑝𝑦𝑞

𝑟∑︁
𝑘,ℎ=1

〈
x(1)
𝑝𝑘
© · · · © x(𝑑)

𝑝𝑘
, x(1)
𝑞ℎ
© · · · © x(𝑑)

𝑞ℎ

〉
= 𝑦𝑝𝑦𝑞

𝑟∑︁
𝑘,ℎ=1

∑︁
𝑖1,...,𝑖𝑑

(
x(1)
𝑝𝑘
© · · · © x(𝑑)

𝑝𝑘

)
𝑖1,...,𝑖𝑑

(
x(1)
𝑞ℎ
© · · · © x(𝑑)

𝑞ℎ

)
𝑖1,...,𝑖𝑑

= 𝑦𝑝𝑦𝑞

𝑟∑︁
𝑘,ℎ=1

𝑑∏
𝑗=1

〈
x( 𝑗)
𝑝𝑘
, x( 𝑗)
𝑞ℎ

〉
.

Now, (6.12) can be solved using Sequential Minimal Optimization [11] in one iteration. The binary

classifier for a test sample X ≈ ∑𝑟
ℎ=1 x(1)

ℎ
© · · · © x(𝑑)

ℎ
will decide the class based on

𝑦(X) = sign (〈X,W〉 + 𝑏) = sign ©­«
𝑀∑︁
𝑚=1

𝑟∑︁
𝑘=1

𝑟∑︁
ℎ=1

𝛼𝑚𝑦𝑚

𝑑∏
𝑗=1

〈
x( 𝑗)
𝑚𝑘
, x( 𝑗)
ℎ

〉
+ 𝑏ª®¬ , (6.14)

which clearly shows that the curse of dimensionality will not be an issue as only the much smaller

factors of the CPD of data are incorporated in the classification operation.

6.3.3 Kernelized Support Tensor Machine

Aside from the low-rank structure that is assumed for the weight tensorW and the data samples,

STM and SHTM are only taking into account the multilinear structure in tensors, and are missing

any nonlinearities that might exist in the data. For this reason, STM and SHTM will yield
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suboptimal results. A kernelized approach can lead to improved performance by capturing the

existing nonlinearities in the data. In [7], the primal problem for Kernelized Support Tensor

Machine (KSTM) is stated as

arg min
W,𝑏

𝐿 (𝑦, 〈W,X〉 + 𝑏) + 𝑃 (W) +Ω (X) , (6.15)

where 𝐿 is a loss function, 𝑃 (W) is a penalty function, and Ω (X) is a specific constraint imposed

on the training samples. Before going into details about the terms in (6.15), the tensor Reproducing

Kernel Hilbert Space needs to be defined.

Note: For a domain D, a reproducing kernel 𝜅 : D × D → R is a kernel function associated with

a feature map 𝜙 : D → RD , where RD denotes the space of functions from D to R, with the

property that any function 𝑓 ∈ RD can be reproduced pointwise by calculating the inner product

of the kernel and 𝑓 , i.e., 𝑓 (𝑥) = 〈 𝑓 (·), 𝜅(·, 𝑥)〉 for all 𝑥 ∈ D, where 𝜅(·, 𝑥) = 𝜙(𝑥).

A direct consequence of this property is that any inner product defined on RD can be calculated

by the kernel as 〈𝜙(𝑥1), 𝜙(𝑥2)〉 = 〈𝜅(·, 𝑥1), 𝜅(·, 𝑥2)〉 = 𝜅(𝑥2, 𝑥1) = 𝜅(𝑥1, 𝑥2) for all 𝑥1, 𝑥2 ∈ D.

Definition 6.3.1 Tensor Product Reproducing Kernel Hilbert Space

For 𝑗 ∈ [𝑑], let
(
H 𝑗 , 〈., .〉 𝑗 , 𝜅 ( 𝑗)

)
be a reproducing kernel Hilbert space (RKHS) of functions on

a set S 𝑗 with a reproducing kernel 𝜅 ( 𝑗) : S 𝑗 × S 𝑗 → R and the inner product operator 〈·, ·〉 𝑗 .

The space H = H1 © · · · © H𝑑 is called a tensor product RKHS of functions on the domain

S := S1 × · · · × S𝑑 . In particular, assume that 𝑥 =

(
𝑥 (1) , . . . , 𝑥 (𝑑)

)
∈ S is a tuple. Let the tensor

product space formed by the linear combinations of the functions 𝑓 ( 𝑗) for 𝑗 ∈ [𝑑] be defined as

𝑓 (1) © · · · © 𝑓 (𝑑) : 𝑥 ↦→
𝑑∏
𝑗=1

𝑓 ( 𝑗)
(
𝑥 ( 𝑗)

)
, 𝑓 ( 𝑗) ∈ H 𝑗

Then for a multi-index 𝒌 = (𝑘1, . . . , 𝑘𝑑), it holds that∑︁
𝒌

G𝒌
(
𝑓
(1)
𝑘1
© · · · © 𝑓

(𝑑)
𝑘𝑑

)
(𝑥) =

∑︁
𝒌

G𝒌
𝑑∏
𝑗=1

𝑓
( 𝑗)
𝑘 𝑗

(
𝑥 ( 𝑗)

)
=

∑︁
𝒌

G𝒌
𝑑∏
𝑗=1

〈
𝑓
( 𝑗)
𝑘 𝑗
, 𝑘
( 𝑗)
𝑥

〉
𝑗
, (6.16)

90



where G𝒌 is the combination coefficient, and 𝑘 ( 𝑗)𝑥 is the function 𝑘 ( 𝑗)
(
·, 𝑥 ( 𝑗)

)
: 𝑡 ↦→ 𝑘 ( 𝑗)

(
𝑡, 𝑥 ( 𝑗)

)
in

the sense that 𝑓 ( 𝑗)
𝑘 𝑗

(
𝑥 ( 𝑗)

)
=

〈
𝑓
( 𝑗)
𝑘 𝑗
(·) , 𝑘 ( 𝑗)𝑥

(
·, 𝑥 ( 𝑗)

)〉
𝑗
.

By looking closely at (6.16), it is observed that if in a special case, we let 𝑓 ( 𝑗)
𝑘 𝑗

(
𝑥 ( 𝑗)

)
= u( 𝑗)

𝑘 𝑗

(
𝑖 𝑗
)

for 𝑘 𝑗 ∈ [𝑟 𝑗 ] and 𝑖 𝑗 ∈ [𝑛 𝑗 ] for 𝑗 ∈ [𝑑], then(
𝑓
(1)
𝑘1
© · · · © 𝑓

(𝑑)
𝑘𝑑

) (
𝑥 (1) , . . . , 𝑥 (𝑑)

)
=

(
u(1)
𝑘1
© · · · © u(𝑑)

𝑘𝑑

)
(𝑖1, . . . , 𝑖𝑑) = u(1)

𝑘1
(𝑖1) . . . u(𝑑)𝑘𝑑 (𝑖𝑑)

and (6.16) presents a general form of the Tucker decomposition, in a kernelized form, where u( 𝑗)
𝑘 𝑗

(
𝑖 𝑗
)

can be represented as the inner product of a kernel and u( 𝑗)
𝑘 𝑗

, and G plays the role of the core tensor.

Therefore (6.16) represents a kernelized tensor factorization. TreatingX ∈ R𝑛1×...×𝑛𝑑 as an element

of the tensor product RKHSH , assume that it has a low-rank structure inH , such that

arg min
G,{U( 𝑗) }𝑑

𝑗=1

‖X −
∑︁

𝑘1,...,𝑘𝑑

G𝑘1,...,𝑘𝑑

(
©𝑑
𝑗=1u( 𝑗)

𝑘 𝑗

)
‖2 = arg min

G,{U( 𝑗) }𝑑
𝑗=1

‖X − G
𝑑?
𝑗=1

(
K( 𝑗)U( 𝑗)

)
‖2,

(6.17)

where K( 𝑗) ∈ R𝑛 𝑗×𝑛 𝑗 is a symmetric kernel matrix whose 𝑖th
𝑗

row/column is 𝑘 ( 𝑗)𝑥
(
·, 𝑖 𝑗

)
for 𝑖 𝑗 ∈ [𝑛 𝑗 ],

and U( 𝑗) ∈ R𝑛 𝑗×𝑟 𝑗 has u( 𝑗)
𝑘 𝑗

as its 𝑘 th
𝑗

column for 𝑘 𝑗 ∈ [𝑟 𝑗 ]. To get from the left-hand side to the

right-hand side, one can use the reproducing property of the kernel, i.e.,(
©𝑑
𝑗=1u( 𝑗)

𝑘 𝑗

)
𝑖1,...,𝑖𝑑

=

𝑑∏
𝑗=1

u( 𝑗)
𝑘 𝑗

(
𝑖 𝑗
)
=

𝑑∏
𝑗=1

〈
u( 𝑗)
𝑘 𝑗
, 𝑘
( 𝑗)
𝑥

(
·, 𝑖 𝑗

)〉
,

In a kernelized CP factorization (KCP), the objective function of (6.17) will be the same except

that G will be a diagonal tensor, and if the elements of its superdiagonal are absorbed into the factor

matrices, then the primal model of KSTM for 𝑀 training samples {X (𝑚) , 𝑦𝑚}𝑀𝑚=1 is stated as

min
{U( 𝑗)𝑚 }𝑑𝑗=1,{K( 𝑗) }

𝑑
𝑗=1,W,𝑏

𝛾

𝑀∑︁
𝑚=1
‖X (𝑚) − I

𝑑?
𝑗=1

(
K( 𝑗)U( 𝑗)𝑚

)
‖2

+ 〈W,W〉

+ 𝐶
𝑀∑︁
𝑚=1

[
1 − 𝑦𝑚

(〈
W, X̂ (𝑚)

〉
+ 𝑏

)]
+
,

(6.18)
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where I denotes the identity tensor and [1 − 𝑥]+ = max (0, 1 − 𝑥)𝑝 for 𝑝 = 1 or 𝑝 = 2. Also, X̂ (𝑚)

is the CP reconstruction of X (𝑚) using {U( 𝑗)𝑚 }𝑑𝑗=1. Comparing (6.18) with (6.15), the first term

is Ω (X) representing the total KCP reconstruction error of training samples penalized by 𝛾, the

second term is 𝑃 (W), and the third term corresponds to 𝐿 (𝑦, 〈W,X〉 + 𝑏). All training samples

are sharing the same set of kernel matrices for a specific mode 𝑗 ∈ [𝑑] which makes characterization

of tensor data possible by taking into account both common and discriminative features. Solving

(6.18) in the dual domain is very complicated due to the inherent coupling between the weight

tensorW and factor matrices {U( 𝑗)𝑚 }𝑑𝑗=1. The kernel trick is used to implicitly capture the nonlinear

structures in the data. IfW is replaced with a function

𝑓 (·) =
𝑀∑︁
𝑚=1

𝛽𝑚 𝜅(·, X̂ (𝑚)),

represented as the linear combination of a kernel function 𝜅(·, X̂ (𝑚)) for 𝑀 reconstructed training

data samples, then (6.18) can be transformed to

min
{U( 𝑗)𝑚 }𝑑𝑗=1,{K( 𝑗) }

𝑑
𝑗=1,𝜷,𝑏

𝛾

𝑀∑︁
𝑚=1
‖X (𝑚) − I

𝑑?
𝑗=1

(
K( 𝑗)U( 𝑗)𝑚

)
‖2

+ 𝜆
𝑀∑︁
𝑖, 𝑗=1

𝛽𝑖𝛽 𝑗 𝜅(X̂ (𝑖) , X̂ ( 𝑗))

+
𝑀∑︁
𝑚=1

1 − 𝑦𝑚 ©­«
𝑀∑︁
𝑗=1

𝛽 𝑗 𝜅(X̂ (𝑚) , X̂ ( 𝑗)) + 𝑏
ª®¬
+ ,

(6.19)

where 𝜆 = 1/𝐶 is the weight between the loss function and the margin, and 𝛾 controls the tradeoff

between discriminative components and reconstruction error. Letting K̂𝑖, 𝑗 = 𝜅(X̂ (𝑖) , X̂ ( 𝑗)) denote

the elements of the symmetric kernel matrix K̂, the so called dual form of (6.18) is obtained as

min
{U( 𝑗)𝑚 }𝑑𝑗=1,{K( 𝑗) }

𝑑
𝑗=1,𝜷,𝑏

𝛾

𝑀∑︁
𝑚=1
‖X (𝑚) − I

𝑑?
𝑗=1

(
K( 𝑗)U( 𝑗)𝑚

)
‖2

+ 𝜆𝜷>K̂𝜷

+
𝑀∑︁
𝑚=1

[
1 − 𝑦𝑚

(
k̂>𝑚𝜷 + 𝑏

)]
+
,

(6.20)
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where k̂𝑚 denotes the 𝑚th row/column of K̂. This objective function is non-convex and finding

a global minimum might not be possible. Therefore, an iterative scheme has been derived in [7]

by alternatively finding the local minimum of the objective function for each variable by fixing

the others. This is done by updating K( 𝑗) , 𝜷, U( 𝑗)𝑚 and 𝑏 consecutively in each iteration. Let

𝑧𝑚 = k̂>𝑚𝜷 + 𝑏 in the following steps whenever it is used. Also, let [1 − 𝑥]+ = max (0, 1 − 𝑥)2.

At each iteration, solving (6.20) includes the following steps.

(a) Update K( 𝑗): Since there is no supervised information involving K( 𝑗) , the optimization

technique in CPD is used by finding the solution to the following system of equations for

𝑗 ∈ [𝑑].

K( 𝑗)
𝑀∑︁
𝑚=1

(
U( 𝑗)𝑚 W(− 𝑗)

𝑚

)
=

𝑀∑︁
𝑚=1

(
X(𝑚)( 𝑗) V

(− 𝑗)
𝑚

)
where X(𝑚)( 𝑗) is the mode- 𝑗 unfolding of X (𝑚) , V(− 𝑗)𝑚 =

⊙1
ℓ=𝑑
ℓ≠ 𝑗

(
K( 𝑗)U( 𝑗)𝑚

)
and W(− 𝑗)

𝑚 =(
V(− 𝑗)𝑚

)>
V(− 𝑗)𝑚 .

(b) Update 𝜷: A data point is a support vector (support tensor, in fact) if 𝑦𝑚𝑧𝑚 < 1 for that point,

i.e., if the loss is nonzero for it. After reordering the training samples such that the first 𝑀𝑠

samples are support tensors, 𝜷 can be found by setting the first-order gradient of the objective

function to zero, i.e.,

5𝜷 = 2
(
𝜆K̂𝜷 + K̂I0

(
K̂𝜷 − y + 𝑏1

))
= 0,

where I0 =


I𝑀𝑠

0

0 0

 and y is the vector of labels.

(c) Update U( 𝑗)𝑚 : The kernel function 𝜅 is inherently coupled with U( 𝑗)𝑚 , which underlines the

importance of choosing an appropriate kernel when calculating the gradient of the objective

function with respect to U( 𝑗)𝑚 . Before that, it should be made clear how the kernel 𝜅 is related

to U( 𝑗)𝑚 . Mapping the tensors into a tensor Hilbert space of higher dimension, one can retain
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the multilinear structure of data as well as capture existing nonlinearities. The mapping

function is defined as

𝜙 :
𝑟∑︁
𝑘=1
©𝑑
𝑗=1u( 𝑗)

𝑘
→

𝑟∑︁
𝑘=1
©𝑑
𝑗=1𝜙

(
u( 𝑗)
𝑘

)
,

which assumes mapping the tensor data into a tensor Hilbert space and then performing CPD.

In other words, the feature map 𝜙 acts on the individual factors of CPD while retaining the

low-rank structure of the data. The kernel will now be the standard inner product of tensors

on the higher-dimensional space, i.e., one can find a dual structure-preserving kernel function

by writing

𝜅

(
X̂ (𝑖) , X̂ ( 𝑗)

)
= 𝜅

(
𝑟∑︁
𝑘=1
©𝑑
ℓ=1u(ℓ)

𝑖𝑘
,

𝑟∑︁
ℎ=1
©𝑑
ℓ=1u(ℓ)

𝑗 ℎ

)
=

𝑟∑︁
𝑘,ℎ=1

𝜅

(
©𝑑
ℓ=1u(ℓ)

𝑖𝑘
,©𝑑

ℓ=1u(ℓ)
𝑗 ℎ

)
=

𝑟∑︁
𝑘,ℎ=1

〈
𝜙

(
©𝑑
ℓ=1u(ℓ)

𝑖𝑘

)
, 𝜙

(
©𝑑
ℓ=1u(ℓ)

𝑗 ℎ

)〉
=

𝑟∑︁
𝑘,ℎ=1

〈
©𝑑
ℓ=1𝜙

(
u(ℓ)
𝑖𝑘

)
,©𝑑

ℓ=1𝜙
(
u(ℓ)
𝑗 ℎ

)〉
=

𝑟∑︁
𝑘,ℎ=1

𝑑∏
ℓ=1

〈
𝜙

(
u(ℓ)
𝑖𝑘

)
, 𝜙

(
u(ℓ)
𝑗 ℎ

)〉
=

𝑟∑︁
𝑘,ℎ=1

𝑑∏
ℓ=1

𝜅

(
u(ℓ)
𝑖𝑘
, u(ℓ)

𝑗 ℎ

)
,

(6.21)

implying that to apply the kernel to two tensors, it suffices to apply it to the their factors in

their respective CPD representations. The second equality results from the bilinearity of the

kernel 𝜅. Examples of commonly used kernels include 𝜅 (x, y) = x>y for the inner product

kernel, and 𝜅 (x, y) = exp
(
−𝜎‖x − y‖22

)
for the Gaussian kernel where 𝜎 controls the width

of the kernel.

After choosing a kernel and thus knowing how it is related to the factor matrices U( 𝑗)𝑚 , the

gradient of the objective function with respect to U( 𝑗)𝑚 can be calculated and set to zero to

solve for the updated U( 𝑗)𝑚 . An explicit form of the gradient can be found in [7].

(d) Update 𝑏: Setting the first-order gradient of the objective function with respect to 𝑏 to zero
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yields the solution for 𝑏, i.e.,

5𝑏 = 2
𝑀𝑠∑︁
𝑚=1
(𝑧𝑚 − 𝑦𝑚) = 0,

which can be solved as 𝜷 has been estimated and K̂ is known.

Classification. After solving (6.20) using the training data, the shared kernel matrices {K( 𝑗)}𝑑
𝑗=1

can be utilized to compute the KCP factorization of a test sample X. Computing the CPD of X

yields its CP factor matrices {U( 𝑗)}𝑑
𝑗=1. Letting K( 𝑗)V( 𝑗) = U( 𝑗) and thus V( 𝑗) = K( 𝑗)−1U( 𝑗) , the

KCP reconstruction of X is calculated using {V( 𝑗)}𝑑
𝑗=1, i.e., X̂ = I>𝑑

𝑗=1 V( 𝑗) . Finally, the test

sample X can be classified according to

𝑦 (X) = sign

(
𝑀∑︁
𝑚=1

𝛽𝑚 𝜅

(
X̂, X̂ (𝑚)

)
+ 𝑏

)
.

using the reconstructed training samples. In this case, (6.21) can be used to calculate the kernel as

𝜅

(
X̂, X̂ (𝑚)

)
=

𝑟∑︁
𝑘,ℎ=1

𝑑∏
ℓ=1

𝜅

(
v(ℓ)
𝑘
, u(ℓ)

𝑚ℎ

)
,

instead of dealing with the actual reconstructed data. For the training samples, it is important to

note that for 𝑗 ∈ [𝑑] and 𝑚 ∈ [𝑀], U( 𝑗)𝑚 = K( 𝑗)U( 𝑗)𝑚 according to the reproducing property of 𝑘 ( 𝑗)𝑥 ,

which explains why the CP reconstruction of training data can be used in the kernel instead of their

KCP reconstruction, as the KCP and CP reconstructions of the training samples are equivalent.

However, the reproducing property of K( 𝑗) will not necessarily hold for test data, and therefore,

the assumption K( 𝑗)V( 𝑗) = U( 𝑗) is made in this case, where U( 𝑗) are the corresponding CP factor

matrices of the test tensor.

6.4 Future Work

Directions for future research based on oblivious subspace embeddings include

• Extend the results of JL on tensors with low CP rank to tensors with low Tucker rank without

orthogonality constraints. The goal is to obtain theoretical bounds on the deviation in the
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norm and inner product of randomly projected tensors as well as lower bounds on embedding

dimensions.

• In settings where data points lie on a low-rank subspace, the following can be investigated.

– Compressed MPCA. One can use JL embeddings to project tensors before performing

MPCA to solve for the principal components in the low-rank subspace.

– Compressed Tensor SVM. One can use JL embeddings to project tensors with low-rank

expansions before SVM classification. In other words, the separating hyperplane can

be found in a lower-dimensional subspace.

• Modewise JL in third-order MBPT calculations where higher-order tensors are formed from

lower-order data replicated in certain dimensions. As was seen, in this setting, non-orthogonal

tensors sometimes become nearly orthogonal after projection. The role of repetitive patters

forming the higher-dimensional tensors as well as sparsity can be investigated.

96



APPENDICES

97



APPENDIX A

USEFUL NOTIONS, DEFINITIONS, AND RELATIONS

In this appendix chapter, some of the terms and mathematical definitions used in derivations

throughout the thesis are presented.

A.1 Operations on Rank-1 tensors

In this section, useful relations are presented that explain how rank-1 tensors are reshaped into

vectors or unfoldings, and how 𝑗-mode products are done.

A.1.1 Reshaping rank-1 tensors

A.1.1.1 Vectorization

For a rank-1 tensor X = ©𝑑
ℓ=1x(ℓ) , the vectorized form will be obtained according to

vec (X) =


1⊗
ℓ=𝑑

x(ℓ) column −major,

𝑑⊗
ℓ=1

x(ℓ) row −major.
(A.1)

A.1.1.2 Mode- 𝑗 Unfolding

The mode- 𝑗 unfolding a rank-1 tensor X = ©𝑑
ℓ=1x(ℓ) can be calculated using

X( 𝑗) =


x( 𝑗)©vec

(
©𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
)
=x( 𝑗)

(
x(𝑑)⊗· · · ⊗x( 𝑗+1) ⊗x( 𝑗−1) ⊗· · · ⊗x(1)

)>
, column −major,

x( 𝑗)©vec

(
©𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
)
=x( 𝑗)

(
x(1) ⊗· · · ⊗x( 𝑗−1) ⊗x( 𝑗+1) ⊗· · · ⊗x(𝑑)

)>
, row −major.

(A.2)

In the rest of this section, only the column-major relations will be presented and used as this has

been the case throughout this thesis.
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A.1.2 𝑗-mode Product

For a rank-1 tensor X = ©𝑑
ℓ=1x(ℓ) , the 𝑗-mode product can be done by applying the matrix of

interest to the mode- 𝑗 factor x( 𝑗) , i.e.,

X × 𝑗 A( 𝑗) = © 𝑗−1
ℓ=1 x(ℓ) ©

(
A( 𝑗)x( 𝑗)

)
©𝑑
ℓ= 𝑗+1 x(ℓ) (A.3)

The proof is simply done by considering the mode- 𝑗 unfolding.(
X × 𝑗 A( 𝑗)

)
( 𝑗)

= A( 𝑗)
(
©𝑑
ℓ=1x(ℓ)

)
( 𝑗)

= A( 𝑗)x( 𝑗) © vec

(
©𝑑
ℓ=1
ℓ≠ 𝑗

x(ℓ)
)

(A.4)

Reshaping to tensor form, (A.3) is obtained.

A more general relation involving all modes can be established through a similar approach.

Consider a rank-1 tensor X = ©𝑑
ℓ=1x(ℓ) , and letY := X>𝑑

ℓ=1 A(ℓ) . Then,Y is also a rank-1 tensor,

and

Y = ©𝑑
ℓ=1A(ℓ)x(ℓ) . (A.5)

To show this, the mode- 𝑗 unfolding of Y is calculated as follows.

Y( 𝑗) = A( 𝑗)X( 𝑗)
(
A(𝑑) ⊗ · · · ⊗ A( 𝑗+1) ⊗ A( 𝑗−1) ⊗ · · · ⊗ A(1)

)>
= A( 𝑗)x( 𝑗)

(
x(𝑑) ⊗ · · · ⊗ x( 𝑗+1) ⊗ x( 𝑗−1) ⊗ · · · ⊗ x(1)

)>(
A(𝑑) ⊗ · · · ⊗ A( 𝑗+1) ⊗ A( 𝑗−1) ⊗ · · · ⊗ A(1)

)>
=A( 𝑗)x( 𝑗)

[(
A(𝑑)⊗ . . .⊗A( 𝑗+1)⊗A( 𝑗−1)⊗ . . .⊗A(1)

) (
x(𝑑)⊗ . . .⊗x( 𝑗+1)⊗x( 𝑗−1)⊗ . . .⊗x(1)

)]>
= A( 𝑗)x( 𝑗)

(
A(𝑑)x(𝑑) ⊗ · · · ⊗ A( 𝑗+1)x( 𝑗+1) ⊗ A( 𝑗−1)x( 𝑗−1) ⊗ · · · ⊗ A(1)x(1)

)>
.

(A.6)

This is clearly the mode- 𝑗 unfolding of a rank-1 tensor which can be formed by reshaping (A.6) to

tensor structure to obtain (A.5). To get from the penultimate equality to the last one, the following

matrix Kronecker product property was used.(
A(1) ⊗ · · · ⊗ A(𝑑)

) (
B(1) ⊗ · · · ⊗ B(𝑑)

)
= A(1)B(1) ⊗ · · · ⊗ A(𝑑)B(𝑑) . (A.7)
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A.1.3 Inner Product

Consider rank-1 tensors X = ©𝑑
ℓ=1x(ℓ) and Y = ©𝑑

ℓ=1y(ℓ) . To simplify the inner product defined

as per (2.3), one can use the fact that an element of a rank-1 tensor at index set (𝑖1, 𝑖2, . . . , 𝑖𝑑) is

the product of the individual elements of its factor vectors at indices 𝑖1, 𝑖2, ... , and 𝑖𝑑 . The inner

product is then written as

〈X,Y〉 =
∑︁
𝑖1,...,𝑖𝑑

X𝑖1,...,𝑖𝑑Y𝑖1,...,𝑖𝑑 =
∑︁
𝑖1,...,𝑖𝑑

x(1)
𝑖1
. . . x(𝑑)

𝑖𝑑
y(1)
𝑖1
. . . y(𝑑)

𝑖𝑑

=
∑︁
𝑖1

x(1)
𝑖1

y(1)
𝑖1
· · ·

∑︁
𝑖𝑑

x(1)
𝑖𝑑

y(1)
𝑖𝑑

=

𝑑∏
ℓ=1
〈x(ℓ) , y(ℓ)〉.

(A.8)

This means the inner product of rank-1 tensors boils down to the inner product of their factor

vectors.

A.2 𝜀-nets as a Means of Set Discretization

This is a useful discretization concept that allowes for obtaining large deviation inequalities when

assessing the stattistical properties of random variables/vectors/matrices/tensors [25].

Definition A.2.1 (𝜺-net) Let (S, 𝑑) be a metric space, and letS0 be a subset of 𝑆. A subsetN ⊆ S0

is called an 𝜀-net of S0 if for 𝜀 > 0, we have

∀𝑥 ∈ S0 ∃𝑥0 ∈ N : 𝑑 (𝑥, 𝑥0) ≤ 𝜀, (A.9)

meaning any given point in S0 is within a distance 𝜀 of a point inN . This also means thatN is an

𝜀-net of S0 if and only if S0 can be fully covered by balls centered in the elements of N and with

radii 𝜀.

It can be observed that the balls of radii 𝜀 in the above definition may have overlaps. This puts a

lower bound on the number for such balls, paving the way for the following definition.

Definition A.2.2 (Covering Number) The smallest possible cardinality of an 𝜀-net N of S0 in

Definition A.2.1 is called the convering number of S0 and is denoted by C(S0, 𝜀). Equivalently, it
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is the smallest number of closed balls with centers in the elements of N and radii 𝜀 whose union

covers S0.

Note A.2.1 The covering number of the Euclidean ball 𝐵𝑛2 satisfies the following inequality.(
1
𝜀

)𝑛
≤ C(𝐵𝑛2, 𝜀) ≤

(
1 + 2

𝜀

)𝑛
(A.10)

A.3 Random Projections and Johnson-Lindenstrauss Embeddings

In this section, a brief introduction to random projections in the context of JL embeddings is

presented. More details can be found in [25]. Suppose that we have 𝑁 data points {x𝑖 ∈ R𝑛}𝑁
𝑖=1

and we want to project them onto {y𝑖 ∈ R𝑚}𝑁
𝑖=1 where 𝑚 � 𝑛, in a way that the geometry of the

data is preserved, i.e., 

x𝑖 − x 𝑗


 ≈ 

y𝑖 − y 𝑗



 for 𝑖 ≠ 𝑗 .

We would also like to know what the smallest 𝑚 that make this possible is. First, we review notions

that will be later useful. A general group of random variables called sub-Gaussian random variables

are of special interest in this discussion.

Definition A.3.1 (Sub-Gaussian Random Variable) For a sub-Gaussian random variable 𝑋 , the

following properties hold and are equivalent. The constants𝐾𝑖 differ from each other by an absolute

constant.

1. P{|𝑋 | > 𝑡} ≤ 2 exp
(
−𝑡2/𝐾2

1
)
, for all 𝑡 > 0.

2. ‖𝑋 ‖𝑝 := (E |𝑋 |𝑝)1/𝑝 ≤ 𝐾2
√
𝑝, for all 𝑝 > 1.

3. The MGF of 𝑋2 satisfies E exp
(
𝜆2𝑋2) ≤ exp

(
𝐾3𝜆2) for all 𝜆 such that |𝜆 | < 1/𝐾3.

4. The MGF of 𝑋2 is bounded at some point, namely, E exp
(
𝑋2/𝐾2

4
)
≤ 2.

5. If E 𝑋 = 0, the above four properties are equal to the MGF of 𝑋 satisfying E exp (𝜆𝑋) ≤

E exp
(
𝐾2

5𝜆
2
)
, for all 𝜆 ∈ R.

101



All Guassian random variables and bounded random variables are sub-gaussian.

Definition A.3.2 (Sub-Gaussian Norm) The sub-Gaussian norm of a random variable 𝑋 , denoted

by ‖𝑋 ‖𝜓2 , is defined as

‖𝑋 ‖𝜓2 = inf
{
𝑡 > 0 : E exp

(
𝑋2/𝑡2

)
≤ 2

}
.

An alternative definition of the sub-Gaussian norm of a random variable 𝑋 is

‖𝑋 ‖𝜓2 = sup
𝑝≥1

𝑝−
1
2 ‖𝑋 ‖𝑝 .

Definition A.3.3 (Random Subspace) Let 𝐺𝑛,𝑚 denote the Grassmannian1, i.e., the set of all 𝑚-

dimensional subspaces inR𝑛. We say that 𝐸 is a random 𝑚-dimensional subspace ofR𝑛 uniformly

distributed in 𝐺𝑛,𝑚 if 𝐸 is a random 𝑚-dimensional subspace ofR𝑛 whose distribution is rotation-

invariant, i.e.,

P{𝐸 ∈ E} = P{U (𝐸) ∈ E},

for any fixed subset E ⊂ 𝐺𝑛,𝑚, where U is an 𝑛 × 𝑛 orthogonal matrix.

Proposition A.3.1 (Random Projection) Let P be a projection fromR𝑛 onto a random𝑚-dimensional

subspace of R𝑛 uniformly distributed in 𝐺𝑛,𝑚. Let z ∈ R𝑛 be a fixed point and 𝜀 > 0. Then,

1. ‖‖Pz‖2‖2 :=
(
E ‖Pz‖22

)1/2
=

√︁
𝑚
𝑛
‖z‖2.

2. With probability at least 1 − 2 exp
(
−𝑐𝜀2𝑚

)
, we have that

(1 − 𝜀)
√︂
𝑚

𝑛
‖z‖2 ≤ ‖Pz‖2 ≤ (1 + 𝜀)

√︂
𝑚

𝑛
‖z‖2 ,

where 𝑐 is an absolute contant.

1Also called the Grassmann manifold.
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Proof Since we can normalize the terms by dividing by ‖z‖2, without loss of generality, we may

assume that ‖z‖2 = 1. Using rotation-invariance, one can show that the random projection of

a fixed point is equivalent in distribution to the fixed projection of a random point uniformly

distributed on the unit sphere 𝑆𝑛−1 ∈ R𝑛. This is denoted by z ∼ uniform
(
𝑆𝑛−1) . We choose this

fixed projection to be in such a way that it picks the first 𝑚 entries of z ∈ R𝑛, i.e.,

Pz = [𝑧1, 𝑧2, . . . , 𝑧𝑚]>.

In other words, P = [I𝑚 | 0]𝑚×𝑛, where 0 ∈ R𝑚×(𝑛−𝑚) is a matrix of all zeros. Therefore, we have

that

E ‖Pz‖22 = E

𝑚∑︁
𝑖=1

𝑧2𝑖 =

𝑚∑︁
𝑖=1
E𝑧2𝑖 = 𝑚E𝑧

2
𝑖 ,

since all 𝑧𝑖 are drawn from the same distribution. We also know that ‖z‖22 = 1. Taking expectation

of both sides we can write

E

𝑛∑︁
𝑖=1

𝑧2𝑖 = 1,

resulting in E𝑧2
𝑖
= 1/𝑛. Therefore, E ‖Pz‖22 = 𝑚/𝑛. This proves 1.

To prove 2, we may use the large deviation inequality for the concentration of Lipschitz-continuous

functions on the unit sphere.2 In particular, if 𝑓 (z) is Lipschitz-continuous, and z ∼ uniform
(
𝑆𝑛−1) ,

then

P {| 𝑓 (z) − ‖ 𝑓 (z)‖2 | > 𝑡} ≤ 2exp
(
−𝑐𝑛𝑡

2

𝐿2

)
,

where 𝑐 is an absolute constant and 𝐿 is the Lipschitz constant of 𝑓 (z).3 Here, ‖ 𝑓 (z)‖2 =(
E | 𝑓 (z) |2

)1/2
as 𝑓 (z) is a random variable. In our case, 𝑓 (z) = ‖Pz‖2. Since 𝑓 (z) is Lipschitz,

and therefore continuous, we can use the mean value theorem to write

| 𝑓 (z) − 𝑓 (y) | =
��∇> 𝑓 (z0) (z − y)

�� ≤ ‖∇ 𝑓 (z0)‖2 ‖z − y‖2
2If 𝑓 : R𝑛 → R is Lipschitz with Lipschitz constant 𝐿, then 𝑓 (x) is sub-Gaussian for x ∼ uniform

(
𝑆𝑛−1) , and we

have thatP ( | 𝑓 (x) − 𝑀 | > 𝑡) ≤ 2exp
(
− 𝑛𝑡2

2𝐿2

)
for 𝑡 > 0, where 𝑀 is the median of 𝑓 . This means with high probability,

𝑓 (x) ≈ 𝑀 on the unit sphere. A similar inequality can be obtained when 𝑀 is replaced with E 𝑓 (z) which, in turn,
can be substituted by ‖ 𝑓 (z)‖2. For details, see Chapter 5 in [25].

3Here, we have also replaced E 𝑓 (z) by ‖ 𝑓 (z)‖2 in the large deviation inequality [25].
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where y, z ∈ R𝑛 and z0 is a point on the line segment between z and y. We can bound the gradient

of 𝑓 (z) to show that ‖ 𝑓 (z) − 𝑓 (y)‖2 ≤ ‖z − y‖2 meaning that we can let 𝐿 = 1. On the other hand,

we may rearrange the inequalily in 2 as����‖Pz‖2 −
√︂
𝑚

𝑛
‖z‖2

���� ≤ 𝜀√︂𝑚

𝑛
‖z‖2

Noting that 𝑡 = 𝜀
√︁
𝑚
𝑛
‖z‖2 in the large deviation inequality, and using the result from 1, we can

obtain the desired result.

Lemma A.3.1 (Johnson-Lindenstrauss Lemma for Point Sets) Let 𝑋 ⊆ R𝑛 be a set of 𝑁 points

in R𝑛. Then, for an absolute constant 𝐶, there exists a linear map A =
√︁
𝑛
𝑚

P ∈ R𝑚×𝑛 where

𝑚 ≥ 𝐶 log 𝑁
𝜀2 such that for all x, y ∈ 𝑋 ,

(1 − 𝜀) ‖x − y‖2 ≤ ‖A (x − y)‖2 ≤ (1 + 𝜀) ‖x − y‖2

with probability at least 1 − 2 exp
(
−𝐶𝑚𝜀2) . This means that A is an approximate isometry on 𝑋 .

Proof We showed how the random projection P acts on a vector in 𝑋 . Now, consider the difference

set 𝑋 − 𝑋 := {x − y | x, y ∈ 𝑋}. We want to show for all z ∈ 𝑋 − 𝑋 ,

(1 − 𝜀) ‖z‖2 ≤ ‖Az‖2 ≤ (1 + 𝜀) ‖z‖2 .

Replacing A by
√︁
𝑛
𝑚

P, we have√︂
𝑚

𝑛
(1 − 𝜀) ‖z‖2 ≤ ‖Pz‖2 ≤

√︂
𝑚

𝑛
(1 + 𝜀) ‖z‖2 ,

which we already know holds with probability at least 1 − 2 exp
(
𝑐𝑚𝜀2) from Proposition A.3.1.

Now, taking union bound over all points in 𝑋 , we may conclude that the desired result holds with

probability at least

1 − 2 |𝑋 − 𝑋 | exp
(
−𝑐𝑚𝜀2

)
= 1 − 2𝑁2 exp

(
−𝑐𝑚𝜀2

)
= 1 − exp

(
−𝑐𝑚𝜀2 + log 2𝑁2

)
.
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Since this probability must be non-negative, we have that

𝑐𝑚𝜀2 ≥ log 2𝑁2,

and therefore,

𝑚 ≥ 𝐶 log 𝑁
𝜀2 ,

completing the proof.
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APPENDIX B

MEMORY-EFFICIENT MODE-WISE PROJECTION CALCULATIONS OF THE
ENERGY TERMS

In the following, it is assumed that 𝑛 𝑗 , 𝑗 ∈ {1, 2, 3} is the dimension size of the 3-mode tensors

as the reshaped versions of the hypothetical 6-mode arrays, and 𝑚 𝑗 is the corresponding size after

projection.

B.1 Particle-Particle

Denoting the projected version ofH1 by P1, one can calculate its elements by

P1 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H (𝑝, 𝑞) H (𝑞, 𝑟) A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟)

=
∑︁
𝑞

A(2) (𝑖2, 𝑞)
(∑︁
𝑝

A(1) (𝑖1, 𝑝) H (𝑝, 𝑞)
) (∑︁

𝑟

A(3) (𝑖3, 𝑟) H𝑇 (𝑟, 𝑞)
)
,

(B.1)

for 𝑖 𝑗 ∈ [𝑚 𝑗 ], 𝑗 ∈ {1, 2, 3}. Now, letting H ′ = A(1)H and H ′′ = A(3)H𝑇 , it can be observed that

P1 = H ′′′ ×2 A(2) whereH ′′′ is a tensor that is formed element-wise according to

H ′′′ (𝑖1, 𝑞, 𝑖3) = H ′ (𝑖1, 𝑞) H ′′ (𝑖3, 𝑞) .

Indeed, the mode-2 unfolding of H ′′′ is the result of the Hadamard product of the 𝑛2 × 𝑚1𝑚3

matrices G1 and G2, where G1 is formed by replicatingH ′𝑇 across its second dimension 𝑚3 times,

and G2 is formed by replicating each column of H ′′𝑇 𝑚1 times1. Left-multiplying the mode-2

unfolding ofH ′′′ by A(2) and folding back to tensor shape yields P1.

Letting P2 denote the projected version ofH2, it is observed that
1For implementation, one does not have to store replicated versions of data as this would be inefficient use of

memory.
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P2 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H̃ (𝑟, 𝑝) D (𝑞, 𝑝) A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟)

=
∑︁
𝑝

A(1) (𝑖1, 𝑝)
(∑︁
𝑞

A(2) (𝑖2, 𝑞) D (𝑞, 𝑝)
) (∑︁

𝑟

A(3) (𝑖3, 𝑟) H̃𝑇 (𝑟, 𝑝)
)
,

(B.2)

Again, lettingH ′ = A(2)D andH ′′ = A(3)H̃ , it can be observed that P2 = H ′′′ ×1 A(1) where

H ′′′ is defined element-wise by

H ′′′ (𝑝, 𝑖2, 𝑖3) = H ′ (𝑖2, 𝑝) H ′′ (𝑖3, 𝑝) .

The mode-1 unfolding ofH ′′′ is obtained by the Hadamard product of the 𝑛1 × 𝑚2𝑚3 matrices G1

and G2, where G1 is formed by replicating H ′𝑇 across its second dimension 𝑚3 times, and G2 is

formed by replicating each column of H ′′𝑇 𝑚2 times. It suffices now to left-multiply the mode-1

unfolding ofH ′′′ by A(1) followed by folding back to tensor form to obtain P2.

B.2 Hole-Hole

Calculations are done in a similar way to that of Appendix B.1. The projection of H1 will be

exactly the same. ForH2, one can write

P2 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H̃ (𝑟, 𝑝) D (𝑟, 𝑞) A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟)

=
∑︁
𝑟

A(3) (𝑖3, 𝑟)
(∑︁
𝑝

A(1) (𝑖1, 𝑝) H̃𝑇 (𝑝, 𝑟)
) (∑︁

𝑞

A(2) (𝑖2, 𝑞) D𝑇 (𝑞, 𝑟)
)
,

(B.3)

LettingH ′ = A(1)H̃𝑇 andH ′′ = A(2)D𝑇 , it can be observed that P2 = H ′′′ ×3 A(3) whereH ′′′

is formed element-wise according to

H ′′′ (𝑖1, 𝑖2, 𝑟) = H ′ (𝑖1, 𝑟) H ′′ (𝑖2, 𝑟) .

The mode-3 unfolding of H ′′′ is obtained by the Hadamard product of the 𝑛3 × 𝑚1𝑚2 matrices

G1 and G2, where G1 is formed by replicatingH ′𝑇 across its second dimension 𝑚2 times, and G2
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is formed by replicating each column of H ′′𝑇 𝑚1 times, where the replication is not performed

explicitly to save time and memory as mentioned above. The remaining step is to left-multiply the

mode-3 unfolding ofH ′′′ by A(3) and fold back to tensor shape to get P2.

B.3 Particle-Hole

The projection ofH1 can be calculated using

P1 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H̃1 (𝑝, 𝑞) H𝑝 (𝑞, 𝑟) A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟) , (B.4)

which is the same as (B.1) after replacingH (𝑞, 𝑟) byH𝑝 (𝑞, 𝑟) andH (𝑝, 𝑞) by H̃1 (𝑞, 𝑟) in (B.1).

ForH2, the projected tensor P2 is calculated using

P2 (𝑖1, 𝑖2, 𝑖3) =
∑︁
𝑝,𝑞,𝑟

H̃2 (𝑟, 𝑝) H𝑝A(1) (𝑖1, 𝑝) A(2) (𝑖2, 𝑞) A(3) (𝑖3, 𝑟)

=
∑︁
𝑞

A(2) (𝑖2, 𝑞)
(∑︁
𝑝

A(1) (𝑖1, 𝑝)
(∑︁
𝑟

A(3) (𝑖3, 𝑟) H̃2 (𝑟, 𝑝)
))

= H ′′ (𝑖1, 𝑖3)
∑︁
𝑞

A(2) (𝑖2, 𝑞) .

(B.5)

whereH ′′ = A(1)H ′𝑇 andH ′ = A(3)H̃2.
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APPENDIX C

FASTER KRONECKER JOHNSON-LINDENTRAUSS TRANSFORM

In this appendix, the idea behind the method proposed in [10] is outlined in short. Here, the

notation is kept similar to that of [10], and is slightly different from the notation used in Section

4.2.3. Assume that 𝑁 =
∏𝑑
𝑘=1 𝑛𝑘 , and consider the JL matrix

𝚽 =

√︂
𝑁

𝑚kron
S

1⊗
𝑘=𝑑

(
F𝑛𝑘D𝜉𝑛𝑘

)
∈ C𝑚kron×𝑁 (C.1)

where S ∈ R𝑚kron is a random sampling matrix (similar to R in RFD), D𝜉𝑛𝑘
∈ R𝑛𝑘×𝑛𝑘 is a diagonal

matrix with Rademacher random variables on its diagonal, and F𝑛𝑘 ∈ C𝑛𝑘×𝑛𝑘 is the unitary DFT

matrix. If a vector x ∈ C𝑁×1 has Kronecker structure, meaning it can be written as x =
⊗1

𝑑 x𝑘 or

equivalently, the vectorized form of a rank-1 tensor X = ©𝑑
𝑘=1x𝑘 , then one can observe that

𝚽x =

√︂
𝑁

𝑚kron
S

1⊗
𝑘=𝑑

(
F𝑛𝑘D𝜉𝑛𝑘

) 1⊗
𝑘=𝑑

x𝑘

=

√︂
𝑁

𝑚kron
S

1⊗
𝑘=𝑑

(
F𝑛𝑘D𝜉𝑛𝑘

x𝑘
)
=

√︂
𝑁

𝑚kron
S vec

(
©1
𝑘=𝑑F𝑛𝑘D𝜉𝑛𝑘

x𝑘
)

=

√︂
𝑁

𝑚kron
S vec

[(
©1
𝑘=𝑑x𝑘

) 𝑑?
𝑘=1

(
F𝑛𝑘D𝜉𝑛𝑘

)]
.

(C.2)

It is easy to see that applying 𝚽 to x defined above is equivalent to performing a modewise fast JL

embedding to a rank-1 tensor whose vectorized form is x, meaning x = vec(X) = vec(©𝑑
𝑘=1x𝑘 ).

The embedding applied to mode 𝑘 is F𝑛𝑘D𝜉𝑛𝑘
. Next, the result is vectorized and the random

restriction matrix S is applied followed by the factor
√︃

𝑁
𝑚kron

.

The computational cost will be low since if y𝑘 := F𝑛𝑘D𝜉𝑛𝑘
x𝑘 , then one can see that

Y := ©𝑑
𝑘=1y𝑘 = ©𝑑

𝑘=1F𝑛𝑘D𝜉𝑛𝑘
x𝑘 = X

𝑑?
𝑘=1

(
F𝑛𝑘D𝜉𝑛𝑘

)
and y := vec (Y) =

𝑑⊗
𝑘=1

y𝑘 . Therefore, when applying the random sampling matrix 𝑆, if one knows

which indices in y are being picked, those indices can be translated to indices in y𝑘 , meaning
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that calculations will only be done for those specific indices. Assume we are interested in finding

element 𝑖𝑘 of y𝑘 . For 𝑖𝑘 ∈ [𝑛𝑘 ] and 𝑘 ∈ [𝑑], we have that

y𝑘 (𝑖𝑘 ) =
𝑛𝑘∑︁
𝑗=1

(
F𝑛𝑘D𝜉𝑛𝑘

)
𝑖𝑘 , 𝑗
(x𝑘 ) 𝑗 .

On the other hand, (
F𝑛𝑘D𝜉𝑛𝑘

)
𝑖𝑘 , 𝑗

=

( (
F𝑛𝑘

)
𝑖𝑘 ,: ∗ d𝜉𝑛𝑘

)
𝑗

where ∗ is the elementwise multiplication and d𝜉𝑛𝑘 denotes the diagonal of D𝜉𝑛𝑘
. Therefore,

y𝑘 (𝑖𝑘 ) =
〈(

F𝑛𝑘
)
𝑖𝑘 ,: ∗ d𝜉𝑛𝑘 , x𝑘

〉
.

This means in each mode, all one needs is d𝜉𝑛𝑘 and the 𝑖𝑘 th row of F𝑛𝑘 . This significantly reduces

the computational cost as in practice, it is the case that 𝑚kron � 𝑁 .
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