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ABSTRACT 

 

PERFORMANCE EVALUATION OF HVAC-CONNECTED OCCUPANCY SENSOR 

SYSTEMS 

 

By 

 

Yiyi Chu 

 

Occupancy is highly unpredictable and depends on occupants’ schedules and their 

interactions with building systems. Occupancy sensor systems have been deployed in buildings 

for many years, and many research studies have been conducted that use a range of sensor 

modalities for occupancy sensing and counting. However, no comprehensive review of occupancy 

sensor system reliability has been compiled. In addition, there is not currently a universal 

methodology and metrics to evaluate and report occupancy sensor systems’ reliability. There have 

also been increasing studies on the implementation of occupant-based controls, especially energy 

savings evaluation in typical office building models. However, although there are many 

universities throughout the U.S., prototypical academic building models do not currently exist for 

use in evaluating energy saving potential. 

To address these research gaps, in this research, a review of the literature on occupancy 

sensor systems was completed to develop a comprehensive list of influential variables that may 

impact occupancy sensor system reliability. Next a survey was developed and distributed to a 

diversity of stakeholders to obtain a list of the most important factors that may influence occupancy 

sensor system performance. Then, a methodology was developed to assess the reliability of 

occupancy sensor systems in residential buildings in a controlled laboratory environment. This 

includes both “typical” testing, evaluating how reliable and accurate an occupancy sensor system 

is over time in a typical residential building environment, and “failure” testing, identifying 

individual influential variables that impact performance. The developed methodology was then 



 

 

implemented to evaluate a novel occupancy detection sensor system’s reliability. For typical 

testing, results show that on average, the overall accuracy of the tested sensor system ranged from 

62.4% to 76.4%. For the failure testing, the number of occupants, presence of large objects, 

presence of interior light sources, and number of doors were identified as not influential, while 

lighting level, location of occupants, additional door in the entry/exit area, and having the TV on 

are variables determined to impact the sensor system performance.  

Furthermore, the U.S. DOE reference medium office building model was used as the basis 

to develop typical academic building models. The model was rezoned to add new spaces based on 

the space type and functional use data collected from 293 academic buildings across five U.S. 

universities of different sizes. Four types of typical academic building models were then identified 

using clustering methods. These include typical “Office-dominated”, “Laboratory-dominated”, 

“Study room-dominated”, and “Mixed-use” academic building models. Occupant-based controls 

were then added to the model to evaluate the potential energy savings of these developed models. 

Results show that among all these four typical academic building models, in ASHRAE Climate 

Zone 5, the total annual HVAC energy savings ranges from 35% to 51% under “Occupancy 

presence” scenarios, and a further energy saving increase (3-9%) from “Occupancy presence” 

scenarios to “Occupancy counting” scenarios.  

The proposed methodology for evaluating the reliability of occupancy sensor systems 

presents an opportunity for use as a standardized method to evaluate residential occupancy sensor 

systems that currently does not exist. This work also provides typical academic building models 

with integrated occupancy schedules which can be used to evaluate energy saving measures, and 

aid building designers and operators in making informed decisions in applying appropriate control 

strategies to optimize building energy systems, as well as predict energy use and demand. 



iv 

 

 

 

 

 

 

 

 

 

 

I dedicate this dissertation to 

my family and my beloved husband, Zhengyu 

for their constant support and unconditional love. 

I love you all dearly. 

  



v 

 

ACKNOWLEDGEMENTS 

 

 

There are many who helped me along the way on this journey. I want to take a moment to 

thank them. 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Kristen Cetin for her 

invaluable advice, dedicated support, and guidance during my PhD study. She continuously 

provided encouragement and was always willing and enthusiastic to assist in any way she could 

during the research project. Her insightful feedback pushed me to sharpen my thinking and brought 

my work to a higher level. I could not have imagined having a better advisor and mentor for my 

PhD study. Besides my advisor, I would like to thank the rest of my PhD committee, Professors 

Peter Savolainen, Joerg Petrasch, and Weiyi Lu for providing valuable comments and suggestions 

in general.  

My gratitude extends to Professors Nizar Lajnef from Michigan State University, Senem 

Velipasalar from Syracuse University, Gregor Henze from University of Colorado Boulder, Joshua 

R. Smith from University of Washington, Soumik Sarkar from Iowa State University, Janusz L. 

Konrad from Boston University, and Robert Karlicek from Rensselaer Polytechnic Institute for 

their assistance and collaboration at every stage of the research project. 

My sincere thanks also go to my colleagues and friends, Debrudra Mitra, Soham Vanage, 

and Hao Dong for providing valuable suggestions and support. Special thanks to Debrudra Mitra 

for all his patient help in the experimental lab and field work through my PhD work. A special 

thanks to my colleague Ryan Gallagher for his timely assistance in providing technical and logistic 

support in lab and field work at MSU. Additionally, I would like to thank my colleagues, Maria 

Milan, Emily Kawka, Sam Evans, Matthew Roberts, Don Madhawajayaweera, Zachary Ruddick, 



vi 

 

Brady Berg, Ceren Aydin, Mehdi Bulduk, Celso Santos, Javed Miandad, Wasif Naqvi, Md Fyaz 

Sadiq, Marzia Ashraf, Oyendrila Dobe, Tanner Herald, Hamed Bolandi, Talal Salem, Xuyang Li, 

and Peng Chen for providing help in the lab work. I would also like to thank my teammates, Burak 

Kakillioglu from Syracuse University, Mohamad Katanbaf and Ali Saffari from UW, Sin Yong 

Tan from ISU, Hao Lu from RPI, Mertcan Cokbas from BU, for their patience in collaboration at 

every stage of the research project. And companion from my colleagues and friends, Arna Ganguly, 

Ritam Ganguly, Jin Yan, Yanhuang Hua, Mengying Zhang, Fan Zhou, Weizhuo Shi, Chao Wang, 

Chi Zhan, Jing Zheng, Zheng Li, and Conniee Fan.  

Special thanks to the financial support from the Advanced Research Projects Agency‐

Energy (ARPA‐E) (DE‐AR0001256 and DE-AE0001316), U.S. Department of Energy. I am also 

grateful for the Graduate Grant-In-Aid awarded by ASHRAE. I also want to say thank you to 

IIBEC for the sponsorship of attending IIBEC International Convention & Trade Show. I would 

also like to thank for the fellowships and travel funds provided by the Department of Civil and 

Environmental Engineering, the College of Engineering and the Graduate School at Michigan 

State University. 

Finally, I would like to thank my parents and grandparents for their caring and 

unconditional love. I would not have made it this far without them. Special thanks to my beloved 

husband, Zhengyu, and my parents-in-law who all have been supportive and caring. Zhengyu has 

been a true and great supporter and has unconditionally loved me during my good and bad times. 

He has also provided invaluable suggestions throughout this journey and my career path. These 

past several years have not been an easy ride, both academically and personally. I truly thank 

Zhengyu for always standing by my side, even when I was irritable and depressed.  



vii 

 

TABLE OF CONTENTS 

 

 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ..................................................................................................................... xiii 

CHAPTER 1 – INTRODUCTION ................................................................................................. 1 

1.1 Research Motivation .......................................................................................................... 1 

1.2 Research Objectives and Research Questions ................................................................. 10 

1.2.1 Objective 1: Identify the most important variables that impact the reliability of 

occupancy sensor systems .............................................................................................. 11 

1.2.2 Objective 2: Develop a standard method to evaluate the reliability of several state-

of-art occupancy sensor systems .................................................................................... 12 

1.2.3 Objective 3: Typical academic building energy model development and energy 

saving evaluation ............................................................................................................ 13 

1.3 Research Organization ..................................................................................................... 15 

REFERENCES ............................................................................................................................. 17 

CHAPTER 2 – INFLUENTIAL VARIABLES IMPACTING THE RELIABILITY OF 

BUILDING OCCUPANCY SENSOR SYSTEMS: A SYSTEMATIC REVIEW AND EXPERT 

SURVEY....................................................................................................................................... 22 

2.1 Abstract ............................................................................................................................ 22 

2.2 Introduction ...................................................................................................................... 22 

2.3 Literature Review ............................................................................................................ 27 

2.3.1 Radio frequency-based sensors ............................................................................. 31 

2.3.2 Sound wave-based sensors .................................................................................... 39 

2.3.3 Infrared-based sensors ........................................................................................... 42 

2.3.4 Vision-based sensors ............................................................................................. 43 

2.3.5 Sensor fusion ......................................................................................................... 45 

2.4 Expert Survey on Most and Least Important Influential Variables ................................. 49 

2.5 Survey Results ................................................................................................................. 50 

2.5.1 Most important and least important variables by category ................................... 51 

2.5.2 Most important variables across all variable categories ........................................ 56 

2.6 Conclusions and Future Work ......................................................................................... 59 

APPENDIX ................................................................................................................................... 62 

REFERENCES ............................................................................................................................. 66 

CHAPTER 3 – DEVELOPMENT AND TESTING OF A PERFORMANCE EVALUATION 

METHODOLOGY TO ASSESS THE RELIABILITY OF OCCUPANCY SENSOR SYSTEMS 

IN RESIDENTIAL BUILDINGS ................................................................................................. 77 

3.1 Abstract ............................................................................................................................ 77 

3.2 Introduction ...................................................................................................................... 78 

3.3 Evaluation Methodology for Sensor System Reliability ................................................. 80 

3.3.1 Typical testing ....................................................................................................... 81 

3.3.2 Failure testing ........................................................................................................ 86 

3.3.3 Ground truth .......................................................................................................... 88 



viii 

 

3.3.4 Laboratory Setup ................................................................................................... 88 

3.3.5 Performance metrics .............................................................................................. 89 

3.4 Experimental Results: Case Study ................................................................................... 91 

3.4.1 Sensor System Description .................................................................................... 91 

3.4.2 Test bed ................................................................................................................. 91 

3.4.3 Data collection ....................................................................................................... 94 

3.5 Results .............................................................................................................................. 95 

3.5.1 Typical testing results ............................................................................................ 95 

3.5.2 Failure testing results ........................................................................................... 100 

3.5.2.1 Non-influential individual variables .......................................................... 101 

3.5.2.2 Influential individual variables .................................................................. 103 

3.6 Conclusions .................................................................................................................... 109 

APPENDICES ............................................................................................................................ 111 

APPENDIX A: Typical occupancy schedules and activity profiles .................................... 112 

APPENDIX B: Typical testing results with associated typical occupancy schedules and 

activity profiles .................................................................................................................... 116 

APPENDIX C: Supplemental variable testing results ......................................................... 120 

REFERENCES ........................................................................................................................... 121 

CHAPTER 4 – TYPICAL ACADEMIC BUILDING ENERGY MODEL DEVELOPMENT 

AND ENERGY SAVING EVALUATION OF OCCUPANT-BASED CONTROL ................. 124 

4.1 Abstract .......................................................................................................................... 124 

4.2 Introduction .................................................................................................................... 125 

4.3 Methodology .................................................................................................................. 128 

4.3.1 Typical space types and distribution in academic buildings ............................... 128 

4.3.2 Typical academic building models ...................................................................... 134 

4.3.3 Typical occupancy schedule in academic buildings ............................................ 140 

4.3.4 Occupant-based control Strategies ...................................................................... 143 

4.3.4.1 Temperature setback ................................................................................. 143 

4.3.4.2 Ventilation setback .................................................................................... 144 

4.4 Results ............................................................................................................................ 146 

4.4.1 Baseline energy consumption comparison .......................................................... 146 

4.4.2 Occupant-based control – Ventilation Setback ................................................... 147 

4.4.2.1 Zone-level ventilation setback .................................................................. 147 

4.4.2.2 System-level ventilation setback ............................................................... 150 

4.4.3 Energy savings ..................................................................................................... 151 

4.5 Conclusions .................................................................................................................... 153 

APPENDICES ............................................................................................................................ 156 

APPENDIX A: Space types of assignment for typical academic building model .............. 157 

APPENDIX B: Detailed floor plans and whole building geometry for typical academic 

building model ..................................................................................................................... 160 

REFERENCES ........................................................................................................................... 163 

CHAPTER 5 – CONCLUSIONS AND FUTURE WORK ........................................................ 166 

5.1 Conclusions and Contributions ...................................................................................... 166 

5.1.1 Influential variables impacting the reliability of building occupancy sensor 

systems ......................................................................................................................... 166 



ix 

 

5.1.2 A standard methodology to test the reliability of various occupancy sensor 

systems ......................................................................................................................... 168 

5.1.3 Typical Academic Building Energy Model Development and Energy Saving 

Evaluation of Occupant-based Control ........................................................................ 170 

5.2 Limitations ..................................................................................................................... 171 

5.2.1 Influential variables impacting the reliability of building occupancy sensor 

systems ......................................................................................................................... 171 

5.2.2 A standard methodology to test the reliability of various occupancy sensor 

systems ......................................................................................................................... 172 

5.2.3 Typical Academic Building Energy Model Development and Energy Saving 

Evaluation of Occupant-based Control ........................................................................ 172 

5.3 Future Work ................................................................................................................... 173 

5.3.1 Sensor Reliability and Performance Improvement .............................................. 173 

5.3.2 Standardized Performance metrics for reliability evaluation .............................. 173 

5.3.3 Typical academic building models improvement ................................................ 173 

 

  



x 

 

LIST OF TABLES 

 

 

Table 1 Most common types of occupancy sensor types used in single sensor and sensor 

fusion applications in residential and commercial buildings ........................................................ 30 

Table 2 Influential variables evaluated in recent literature using Doppler sensors for 

occupancy sensing ........................................................................................................................ 33 

Table 3 Influential variables evaluated in recent literature using RFID sensor systems for 

occupancy sensing ........................................................................................................................ 35 

Table 4 Influential variables evaluated in recent literature using Wi-Fi sensor systems for 

occupancy sensing ........................................................................................................................ 37 

Table 5 Influential variables evaluated in recent literature using Bluetooth/BLE-based 

sensor systems for occupancy sensing .......................................................................................... 39 

Table 6 Influential variables evaluated in recent literature using sound wave-based sensor 

systems for occupancy sensing ..................................................................................................... 41 

Table 7 Influential variables evaluated in recent literature using infrared-based sensor 

systems for occupancy sensing ..................................................................................................... 43 

Table 8 Influential variables evaluated in recent literature using vision-based sensor 

systems for occupancy sensing ..................................................................................................... 45 

Table 9 Influential variables evaluated in recent literature using sensor fusion systems for 

occupancy sensing ........................................................................................................................ 47 

Table 10 Compiled list of influential variables from literature review and expert 

stakeholder feedback ..................................................................................................................... 48 

Table 11 Most and least important variables for residential buildings, and those never 

chosen as most/least important ..................................................................................................... 54 

Table 12 Most and least important variables for commercial buildings, and those never 

mentioned as most/least important................................................................................................ 55 

Table 13 Most important variables for residential and commercial buildings ............................. 59 

Table 14 Five typical household types and associated occupancy profiles .................................. 82 

Table 15 1-person household with day work profile .................................................................... 83 

Table 16 Typical testing results with “1-person household with day absence profile” 

using “Test Duration” ................................................................................................................... 96 



xi 

 

Table 17 Performance evaluation metric calculation for typical testing results analysis ............. 99 

Table 18 Tested variables and associated testing levels ............................................................. 100 

Table 19 Testing scenarios and results of non-influential individual variables .......................... 102 

Table 20 Testing scenarios and results of “Lighting level” and “Motion level” variables ......... 104 

Table 21 Testing scenarios and results of “Location of occupants”, “Use of robots”, and 

“presence of pets” variables ........................................................................................................ 105 

Table 22 Testing scenarios and results of additional variables, including “Presence of 

another door in Entry/Exit area”, and “TV On” ......................................................................... 108 

Table 23 Sche2: 1-person household with night absence profile ............................................... 112 

Table 24 Sche3: 1-person household with stay home profile ..................................................... 113 

Table 25 Sche4: 2-person household where both with day absence profile ............................... 114 

Table 26 Sche5: 2-person household where one with day absence profile and the other 

with stay home profile ................................................................................................................ 115 

Table 27 Typical testing results with “1-person household with night absence profile” ........... 116 

Table 28 Typical testing results with “1 person with stay home profile” ................................... 117 

Table 29 Typical testing results with “2-person where both with day absence profile” ............ 118 

Table 30 Typical testing results with “2-person where 1 with day work profile and other 

one with stay home profile” ........................................................................................................ 119 

Table 31 Supplemental testing results for individual variable -- “Presence of robot” with 

the initial Occupied/Unoccupied state of the test space .............................................................. 120 

Table 32 Colleges and universities, by CCIHE size category and associated 

characteristics, from which, building and space use data were utilized ..................................... 129 

Table 33 Typical academic building types based on K-means clustering .................................. 131 

Table 34 Mean percent (by area) of functional space use type in the four defined typical 

academic buildings...................................................................................................................... 133 

Table 35 Mean of FICM space types as a percent (by area) of total available space in the 

four defined typical academic buildings ..................................................................................... 133 

Table 36 Space types under each category and space area distribution in each typical 

academic building type ............................................................................................................... 136 



xii 

 

Table 37 Space types of assignment on each floor for the Office-dominated typical 

academic building model ............................................................................................................ 138 

Table 38 Assumptions of space types used in LBNL Occupancy Simulator and associated 

occupancy density from ASHRAE Standard 62.1-2019 ............................................................. 142 

Table 39 Occupant-based control strategies for typical academic building models (Pang 

et al., 2020) ................................................................................................................................. 145 

Table 40 Space types assignment on each floor for the laboratory-dominated typical 

academic building model ............................................................................................................ 157 

Table 41 Space types assignment on each floor for the study room-dominated typical 

academic building model ............................................................................................................ 158 

Table 42 Space types assignment on each floor for the mixed-use typical academic 

building model ............................................................................................................................ 159 

Table 43 Most important variables for residential and commercial buildings ........................... 167 

  



xiii 

 

LIST OF FIGURES 

 

 

Figure 1 Summary of the most commonly used occupancy sensors .............................................. 4 

Figure 2 Diagram of challenges associated with the reliability and energy savings 

evaluation of occupancy sensor systems ....................................................................................... 10 

Figure 3 Schematic diagram of research objectives ..................................................................... 11 

Figure 4 Research Organization by Published and Submitted Papers (Note: (Chu et al. 

2021, 2022) are references for these papers) ............................................................................... 16 

Figure 5 Frequency of occupancy sensor modalities used in recent literature from 2003 to 

2020, for occupancy detection and counting, including (a) types of single sensor system 

modalities and sensor fusion, and (b) types of single sensor system modalities, with 

sensor fusion subdivided into single sensor system modalities with other environmental 

sensors ........................................................................................................................................... 29 

Figure 6 (a) Count value (Method 1) and (b) weightage value (Method 2) for most 

important influential variables for residential building applications. (Note: Red columns 

indicate where more than half of responses include this variable for Method 1) ........................ 52 

Figure 7 (a) Count value (Method 1) and (b) weightage value (Method 2) for most 

important influential variables for commercial building applications. (Note: Red columns 

indicate where more than half of responses include this variable for Method 1) ........................ 53 

Figure 8 Weightage value for variables considered as the most important in (a) residential 

and (b) commercial buildings based on the final survey question ................................................ 57 

Figure 9 Average ranking and standard deviation of variables considered as the most 

important in (a) residential buildings and (b) commercial buildings based on the final 

survey question ............................................................................................................................. 58 

Figure 10 Occupancy profile and location data ............................................................................ 84 

Figure 11 Residential laboratory used for testing of occupancy sensor systems .......................... 93 

Figure 12 Functional space use in the four defined typical academic buildings, including 

the percent of building area used for classroom, laboratory, office, and study areas ................. 132 

Figure 13 Floor plans and building geometry for office-dominated typical academic 

building model, including (a) 1st floor; (b) 2nd floor; (c) 3rd floor; (d) whole building 

geometry ..................................................................................................................................... 139 

Figure 14 The example daily occupancy profiles of (a) Classroom, (b) Office, (c) Meeting 

room and (d) Others, for typical academic building model on both weekday and weekend ..... 143 



xiv 

 

Figure 15 Baseline annual energy consumption comparison among four types of typical 

academic building models in ASHRAE Climate Zone 5A (Chicago) ........................................ 147 

Figure 16 Zone minimum primary air flow rate (m3/s) in example spaces: (a) Office -- 

Perimeter_bot_GA_OF_1; (b) Classroom -- Perimeter_bot_Classroom_1; (c) Meeting 

room -- Perimeter_bot_Meeting_RM; (d) Others -- FirstFloor_Corridor_1. (Note: B = 

Baseline; P = Occupancy presence sensing; C = Occupancy counting sensing) ...................... 148 

Figure 17 Zone outdoor air flow rate (m3/s) in example spaces: (a) Office -- 

Perimeter_bot_GA_OF_1; (b) Classroom -- Perimeter_bot_Classroom_1; (c) Meeting 

room -- Perimeter_bot_Meeting_RM; (d) Others -- FirstFloor_Corridor_1 ............................. 149 

Figure 18 System outdoor air flow rate (kg/s) in example VAV_1 system of (a) Typical 

Office-dominated; (b) Typical Laboratory-dominated; (c) Typical Study room-dominated; 

and (d) Typical Mixed-use building models ............................................................................... 151 

Figure 19 Energy saving achieved through Occupant-based Control for typical academic 

building as compared to the baseline buildings with no OBC in ASHRAE Climate Zone 

5A (Note: lighter colors indicate “Occupancy presence” scenarios; darker colors indicate 

“Occupancy counting” scenarios; _P = occupancy presence scenarios; _C = Occupancy 

counting scenarios; OD=office-dominated; LD=laboratory-dominated; SD=study room-

dominated; M=mixed-use) .......................................................................................................... 153 

Figure 20 Detailed floor plans and whole building geometry for laboratory-dominated 

typical academic building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd 

floor plan ..................................................................................................................................... 160 

Figure 21 Detailed floor plans and whole building geometry for study room-dominated 

typical academic building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd 

floor plan ..................................................................................................................................... 161 

Figure 22 Detailed floor plans and whole building geometry for mixed-use typical 

academic building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd floor plan ....... 162 



1 

 

CHAPTER 1 – INTRODUCTION 

 

1.1 Research Motivation 

Energy consumption throughout the world has significantly increased over the past 20 

years, as the population has increased, as well as the use of energy-consuming technologies. 

Building energy use accounts for approximately 40% of the total primary energy consumption in 

the U.S. and the E.U., and 27.3% in China (Cao et al., 2016). For end uses in buildings located 

these regions, space heating and cooling energy make up a large portion of total energy 

consumption in the residential (46%) and commercial (36%) sectors (Cao et al., 2016). Moving 

forward, it is projected that total energy demand from heating and cooling will increase in cooling-

dominant and less-developed regions (Cao et al., 2016). Therefore, to reduce emissions and energy 

use overall, in order to reduce climate change impacts and improve grid operations, it is important 

to develop energy saving approaches to help reduce heating and cooling energy use in buildings. 

The energy consumption of buildings and their systems are primarily dependent on outdoor 

weather conditions, building and system characteristics, and the occupants who utilize them. Data 

on these parameters is necessary to monitor performance, assess inefficiencies, and identify 

opportunities for improvements. Among these, weather data is generally ubiquitous and easier to 

obtain and/or collect using local or regional ground-based weather station or satellite-derived data. 

Many studies have used such data to demonstrate the relationship between building energy 

consumption and climate parameters (e.g., Hadley 1993), with outdoor temperature typically being 

most important. However, even though this information is generally readily available, weather is 

not a variable that can be adjusted to improve building performance. For individual buildings, data 

on building systems and their characteristics are relatively available, including assessors and other 
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publicly available information, energy code requirements, and data from the building 

owners/operators. There are many recent studies focused on the use of this information to assess 

and improve building performance. For example, for building envelope characteristics, Menyhart 

and Krarti (2017) applied Dynamic Insulation Materials (DIMs) to replace the traditional, static 

insulation and found that DIMs can achieve heating and cooling energy savings ranging from 7% 

to 42%. For energy-consuming building systems, including the heating, ventilation, and air 

conditioning (HVAC) system, appliances, equipment, and other miscellaneous loads, a broad 

range of studies have focused on assessing the impact of these systems on energy performance 

have also been investigated. For example, Anand et al. (2019) investigated the relationship of 

occupancy with plug and lighting loads energy consumption for several spaces of an institutional 

building floor, and deep neural network was used to estimate possible energy savings with a rule-

based energy-use behavior. Energy efficiency standards for residential and commercial equipment 

have also been found to be a major source of energy saving in U.S. (U.S. DOE, 2018).   

Data, however, on the third above-mentioned influential factor, occupants, is more 

challenging to collect and less readily available as compared to the other two. Buildings are 

strongly influenced by the occupants that use them and their energy-consuming behaviors (Hong 

et al., 2016). There are significant opportunities to better collect and use occupancy related data to 

inform building controls, to target energy use reductions and efficiency improvements. When there 

are less occupants, ventilation requirements are lower (ASHRAE 62.1, 2019); when there are no 

occupants, thermal comfort requirements no longer need to be met (ASHRAE 55, 2017). Therefore, 

occupancy sensing technologies used in buildings can help to significantly reduce HVAC loads 

(Jung et al., 2019).  
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To collect accurate occupancy information, such as occupant presence, counting, location, 

and tracking (Teixeira et al., 2010), occupancy recognition technologies have been developed and 

studied in the recent decades. Existing technologies for occupancy information extraction in 

buildings can generally be classified into two categories: single sensor systems and sensor fusion 

technology. Single sensor systems utilize one or multiple sensors with the same type to infer 

occupancy information, while sensor fusion methods combine more than one type of occupancy 

sensors to compensate the disadvantages of each type of sensor systems. Many of the single sensor 

technologies have been used to predict the presence and counting of occupants in buildings. Based 

on a review of 26 recent papers on occupancy sensor systems, the most common types (see Figure 

1), are PIR (passive infrared) (Liao et al., 2010), and CO2 (Jiang et al., 2016) sensors, followed by 

RFID (Liao et al., 2012) and Wi-Fi-based sensors (Zou et al., 2017). Another important, but less 

commonly used sensor technology is video (Erickson et al., 2009), which is often used to collect 

ground truth data for occupancy studies. The benefits of the use of single sensor systems is the 

simplicity of the sensor deployment and data collection, however, edge cases could happen when 

only one type of sensor is used, for example, the motion sensor could not detect people when a 

person is static, causing false positive, where sensor fusion technologies could help add more 

capabilities.  
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Figure 1 Summary of the most commonly used occupancy sensors 

Due to the emergence of machine learning and the big data industry, as well as the 

significant reductions in cost and size of equipment needed to store data and run computational 

algorithms, data-driven models have been increasingly used in research to help improve the 

prediction accuracy of various technologies. These are of particular importance and benefit to the 

second type of occupancy sensor system - sensor fusion technology. Recent studies using sensor 

fusion (e.g., Yang et al., 2014; Ryu et al., 2016) have developed low-cost, non-intrusive occupancy 

sensors systems to predict occupancy in buildings. The data collected from different sensors is pre-

processed and fed into a training model. Next, the resulting model is used to predict occupancy 

(presence or count) based on the provided inputs. In general, the more inputs and diverse data 

collected as input into the model, the more accurate the models become (Yang et al., 2018).  

The challenge with occupants and occupancy data, however, is that occupants are 

inherently unpredictable, varying both from person to person, and from building type to building 

type. Factors such as interior building layout and geometry, lighting levels and other physical 

parameters, depending on the type of sensor(s) used, can significantly impact the ability of a 
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system to detect occupants (Gennarelli et al., 2016; Labeodan et al., 2013; Wang et al., 2017; Yun 

et al., 2014). This impact varies depending on the type of sensor system used and its corresponding 

algorithms. Similarly, occupant characteristics, including their physical features and movements, 

their preferences, and their occupant-building interactions with energy-consuming appliances and 

systems in buildings, make the accurate detection of occupants challenging due to limited 

predictability (Yoshino et al., 2017; Yan et al., 2017). The relative importance of these occupant 

characteristics, similar to physical building characteristics, is also dependent on the sensor system 

considered. Among the recent literature, while some studies have considered multiple different 

factors in evaluating their influence on occupancy sensor system performance, a comprehensive 

survey gauging of the relative importance of these diverse factors on the performance of 

occupancy sensor systems has not been conducted.   

In addition, in considering such factors can vary substantially by building type and 

occupant characteristics, while both single sensor and sensor fusion methods have improved 

significantly in recent years, these technologies are not 100% accurate. The methodology used to 

evaluate performance, and the metric used to report it are not uniform across the literature. Sensors 

can fail under various scenarios and edge cases. For occupancy presence sensors, this can be either 

as a false positive reading (i.e., the sensor system indicates there is an occupant when there is not), 

or false negative (i.e., the sensor system does not register an occupant when there is one present). 

For occupancy counting, the failure would be to incorrectly count the number of occupants in a 

space. A false positive would result in systems being on (e.g., HVAC, lighting) that do not need 

to be on since no occupants are present; a false negative would result in a potentially thermally 

uncomfortable (HVAC) or dark space (lighting). For occupancy counting, an incorrect reading of 

the number of occupants would result in ventilation rates that could be too high or low for the 
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number of occupants present. In summary, occupancy, while challenging to detect with as strong 

an accuracy as weather and building characteristics, is of significant importance if the goal of a 

building is to be both energy efficient and comfortable for the occupants that use it. However, 

without an established method to evaluate the performance of these sensor systems, it is not 

possible to objectively evaluate and compare the performance of multiple sensor systems. 

Currently there is no standard method to evaluate the reliability of occupancy sensors. To address 

these two challenges, the first focus area of this research is on the development of a universal 

evaluation methodology to test reliability of occupancy sensor systems in residential buildings.  

Beyond reliability of these sensor systems, among the most important features is their 

function to support energy savings in buildings. Currently, occupancy sensors detecting the 

presence/non-presence of people in a space are often used in commercial and in some cases 

residential spaces to determine whether to turn on/off the lights. In the 2018 International Energy 

Conservation Code, for some types of buildings occupancy sensors connected to lighting are 

required (IECC 2018). These sensors are often directly interfaced and integrated with the lighting 

systems. However, in this research, lighting-connected occupancy sensors are not the focus as this 

is a more widely used application with significant research. More recently, occupancy sensors, 

including both occupancy presence and occupancy counting sensors are being considered for 

HVAC control applications. In residential buildings, smart thermostats with built-in occupancy 

sensors have been increasing in use (Moon et al., 2011). These thermostats generally include a 

“home” and “away” mode, depending on whether the sensor detects movement or not. In “away” 

mode, occupancy is considered to be gone from the home and thus the setpoint temperature is 

adjusted for the single-zone HVAC system to unoccupied mode, to reduce consumption. Many 

thermostats, however, do not yet have these occupancy sensors integrated into them. There are 
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various energy saving evaluation methods conducted using modeling, or laboratory/field testing 

methods related to occupancy information. For example, Jain et al. (2013) examined the impact 

that information representation has on energy consumption behavior by conducting a one-month 

empirical study with 39 participants in an urban residential building. Wang et al. (2020) explored 

a co-simulation platform to assess energy saving impact and economic benefits of occupancy 

driven thermostats in a residential building. EnergyPlus was integrated into the co-simulation 

platform to evaluate energy consumption and indoor air temperatures. Qin and Pan (2020) 

analyzed the energy use of high-rise residential buildings in subtropical climate and examined the 

impacts of different energy saving measures for developing strategies for achieving very low-

energy high-rise buildings by using EnergyPlus software. 

In commercial buildings, HVAC systems are generally more complex than residential 

buildings since there are typically multiple thermal zones with a variety of space types. In addition, 

modern commercial buildings require mechanical ventilation per energy code requirements, thus 

outdoor air is required to maintain acceptable levels of indoor air quality. The energy consumption 

associated with ventilation accounts for approximately 50% of the total HVAC energy use in 

commercial buildings in U.S. (CBECS, 2012). Based on ASHRAE Standard 62.1-2019 (ASHRAE 

2019), the outdoor air flow depends on the number of occupants in commercial buildings, thus 

adjusting outdoor air intake based on real-time number of occupants could significantly improve 

energy saving.  In addition, GPC 36 (High Performance Sequences of Operation for HVAC 

Systems) within ASHRAE (ASHRAE, 2018) in recent years has also included consideration for 

occupancy sensing technologies.  Given these recent developments in state-of-the art controls, 

including GPC there is a need to evaluate the level of energy savings that can be achieved in 

commercial buildings using such controls. 
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There are two main methods which can be used to evaluate energy savings, including 

laboratory/field testing, and energy simulation. For energy modeling, while some recent efforts 

within the past year have considered office building types (i.e., Pang et al., 2020), none have 

considered academic buildings, which is a primary building type of interest to ARPA-E/DOE and 

this research (ARPA-E SENSOR FOA, 2017). In academic buildings there are significant transient 

populations, thus there is a significant opportunity for energy savings from occupancy sensor 

systems. However, currently there is no established prototypical building model for academic 

building types which is able to be used to evaluate energy savings from occupancy sensors.  

The U.S. Department of Energy Prototype (U.S. DOE, 2018) and Reference (Deru et al., 

2011) building models were created, in part, to represent the most common types of buildings and 

their associated energy-impacting characteristics. These can be used with the energy simulation 

engine, EnergyPlus (Crawley et al., 2000), to assess the building energy performance of such 

typical building types in different climate zones, for different age buildings (Deru et al., 2011) 

and/or buildings built to different energy codes (U.S. DOE, 2018). Despite the substantial effort 

made to validate these and other building energy models, there is, however, typically a discrepancy 

between the predicted building energy use, and the energy used during actual operation. This is 

due in part to the unpredictable nature of occupants and their energy-related impacts. Various 

related studies have been conducted to improve the occupant-related energy efficiency in buildings. 

In particular, occupant-based control has been the subject of increasing research interest in recent 

years. Zhang et al. (2018) summarized that the energy saving potential from the use of occupant-

based controls is 10%-25% for residential buildings, and 5%-30% for commercial buildings. 

However, the occupant-based control used in existing studies varies substantially from the 

perspective of occupant sensing, ranging from simple presence-based switching of lighting 
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systems to full model predictive control. Energy savings estimates vary substantially for these 

technologies as well (Naylor et al., 2018).   

Commercial buildings can be classified into 15 different types according to their principal 

activity, as outlined in the CBECS (Commercial Buildings Energy Consumption Survey) dataset 

(Michaels and Leckey, 2012). Based on these, Commercial Reference building models were 

developed (DOE Commercial Reference Buildings) to represent nearly 70% of the commercial 

buildings in the U.S. (Deru et al., 2011), including offices, schools, restaurants, hotels, etc. The 

reference office building models have been widely used in energy simulation efforts in research 

projects to assess the potential energy savings of typical office buildings in U.S. Buildings used 

for educational purposes are among the subgroups of commercial buildings in the U.S. that 

consume a large amount of HVAC energy (U.S. EIA, 2012). Academic buildings at universities 

are included among these and can vary substantially from typical office buildings in their space 

use, occupancy patterns, and energy use. However, despite substantial energy use, there are few 

studies which have considered occupant-based control in academic buildings.  

In summary, the second portion of this research focuses on developing typical academic 

building models and assessing the influence of occupant-based control strategies on energy 

efficiency improvement in the developed typical academic building models.  Figure 2 summarizes 

the two focus areas of this research and the associated above-mentioned challenges. 
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Figure 2 Diagram of challenges associated with the reliability and energy savings 

evaluation of occupancy sensor systems   

1.2 Research Objectives and Research Questions 

Based on the above-described challenges, the overarching purpose of this research is to 

evaluate the reliability of occupancy sensor systems and HVAC energy saving from occupancy 

sensor systems in residential and commercial buildings. More specifically, the scope of this 

research includes the development of a systematic test procedure to access the reliability of sensor 

systems based on a stakeholder consensus on the most important variables to evaluate, 

development and use of a methodology to evaluate laboratory energy saving from occupancy 

sensors in buildings, and development of typical academic building models and HVAC energy 

saving evaluation using occupant-based control. Figure 3 represents the relationship of these 

aspects of this research and how they relate to the overarching purpose. The details of each 

objective are described below, where each objective aims to address several major research 

questions. 
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Figure 3 Schematic diagram of research objectives 

To develop a systematic testing protocol to evaluate the reliability of the occupancy sensor 

systems using experimental method, and provide feedback to manufacturers and researchers, this 

research addresses two major issues identified as Objectives 1 and 2. For the evaluation of energy 

savings of HVAC systems using occupant-based control, including both the development of 

typical academic building models, and the implementation of occupancy-based controls for 

developed typical academic building models, this research focuses on two major and related issues 

designated as Objective 3a and 3b.  

1.2.1 Objective 1: Identify the most important variables that impact the reliability of occupancy 

sensor systems  

Occupancy sensor systems are sensitive to different types of variables based on their 

operational characteristics and types of sensors used. If sensitive to variations in such variables, 
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this would limit an occupancy sensor system’s ability to accurately determine the occupancy of a 

building. Thus specifically, this objective aims to answer the following research questions: 

a) For each occupancy sensor/sensor system type, what are the influential variables that are 

likely to cause failures? 

b) What is the relative impact of variations in these variables on different occupancy 

sensors/sensor system types? 

c) What do diverse stakeholders agree are the most and least important variables for use in a 

standard methodology of evaluation of occupancy sensor system reliability?  

d) Are these most important variables the same for residential and commercial building 

settings? 

In this research, the comprehensive evaluation of potential influential variables that may 

cause sensor failures are summarized based on literature review, the results from a workshop with 

the occupancy sensor stakeholders, and the results of a survey of diverse stakeholders on the most 

and least important variables that affect occupancy sensor performance for commercial and 

residential building applications.  

1.2.2 Objective 2: Develop a standard method to evaluate the reliability of several state-of-art 

occupancy sensor systems 

This objective focuses on the development of a testing protocol to evaluate the robustness 

of sensor systems in a range of “typical” and “challenging” scenarios, in order to identify areas in 

need of improvement for the system being tested. The following questions will be addressed in 

this objective related to the reliability evaluation: 
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a) Should a standard set of variables be used to test all types of occupancy sensor systems, or 

should variations in different variables be evaluated, depending on the sensor system type? 

b) What experimental methodology should be used to test the identified variables from 

Objective 1? 

c) What evaluation methods should be used to analyze the experimental results? 

d) What reliability evaluation metric should be used for the occupancy sensor systems? 

In this research, typical testing and failure testing are defined based on the results of 

research conducted for Objective 1 which identify the potential sources of issues and/or failures 

for different sensors. Typical testing is defined as the “typical” conditions that are expected to 

occur on an everyday basis in the residential or commercial setting. Failure testing is the 

“challenging” conditions that may be less common and/or more extreme than what might occur 

under a “typical” scenario (e.g., someone running quickly, very dark/bright lighting conditions, 

etc.), which are helpful in determining what (extreme) conditions will elicit a system failure. 

Several experimental design methods are considered, and one is chosen for the method 

development.  These test methods are then used for laboratory testing of the reliability of 

occupancy sensor systems.  

1.2.3 Objective 3: Typical academic building energy model development and energy saving 

evaluation 

This objective focuses on the development of a prototypical academic building energy 

model, which can be used to evaluate energy savings from the use of occupancy sensor system in 

academic buildings, using occupant-based control (OBC) strategies. Academic buildings are a 

combination of various space types with different functional uses based on the Postsecondary 
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Education Facilities Inventory and Classification Manual (FICM). The following questions will 

be addressed: 

a) What is the typical composition of space types for typical academic buildings? 

b) How many prototypical academic building models are needed to sufficiently represent 

typical academic buildings in the U.S.? 

c) What modifications should be made to existing prototypical building models in order for 

them to represent the features of typical academic buildings, and to allow for the use of 

occupancy-based controls? 

d) What are the potential energy savings for the developed typical academic buildings using 

occupancy sensor systems to control the HVAC system? 

To determine typical academic building models, data from different size universities was 

collected, as designated by the Carnegie Classification of Institutions of Higher Education 

(CCIHE). This system provides university size categories according to the FTE-based enrollment 

(FTE = Full-Time Headcount plus 1/3 part-time headcount). Iowa State University data, as well 

as data from the Texas Higher Education Data (THED) was used. THED provides, under the 

Facilities Inventory and Audit portal, detailed building, and relevant space information for all 

Texas-based campuses. This includes the predominant purpose and function of a building and 

corresponding spaces in that building, the functional use of each room in a building, following the 

FICM (Facilities Inventory and Classification Manual) code, and the size of each room, and other 

details. For these universities, FTE-based Enrollment data was obtained from the Integrated 

Postsecondary Education Data System (IPEDS) under the National Center for Education Statistics. 

Ultimately, based on this analysis, four universities are chosen from the THED system, in addition 
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to Iowa State University (ISU), to support a diversity of university sizes. To define typical 

scenarios of space use, the percentage of the area of each space type is used to define the typical 

academic buildings. A medium office DOE Reference building (U.S. DOE, 2020) was used as the 

basis of design, then conditioned zones were further divided into different types of rooms with 

corresponding sizes based on functional uses by using EnergyPlus and Sketchup. The resulting 

model is used to evaluate energy savings compared to a baseline without the use of OBC.  

1.3 Research Organization 

This research is organized into one review paper, and several journal papers and associated 

conference papers (Figure 4). The citations for the papers indicated in this figure are listed in 

Section 1.4 (Chu et al. 2021, 2022). Chapter 2 includes a review of the literature on occupancy 

sensor systems focusing on influential variables that may cause systems to incorrectly represent 

occupancy and developed a survey to attain the most influential variables. Chapter 3 proposes a 

standard performance evaluation methodology to assess the reliability of occupancy sensor 

systems in residential buildings. Chapter 4 discuss a novel methodology of developing typical 

academic building models and potential energy savings evaluation based on occupant-based 

control. The conclusions, limitations, research contributions, and future work are described in 

Chapter 5. The details of each of the corresponding publications are including the following 

Chapters 2, 3 and 4. 
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Figure 4 Research Organization by Published and Submitted Papers (Note: (Chu et al. 

2021, 2022) are references for these papers) 
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CHAPTER 2 – INFLUENTIAL VARIABLES IMPACTING THE RELIABILITY OF 

BUILDING OCCUPANCY SENSOR SYSTEMS: A SYSTEMATIC REVIEW AND 

EXPERT SURVEY 

 

2.1 Abstract  

Occupancy information is critical for buildings, as it can substantially impact energy 

consumption. However, occupancy is highly unpredictable, and depends on occupants’ schedules 

and their interactions with building systems. Occupancy sensor systems have been deployed in 

buildings for many years, using a broad range of sensor types, most typically for lighting control. 

Similarly, many research studies have been conducted that use a range of sensor modalities for 

occupancy sensing. These studies have assessed reliability considering diverse variables, testing 

methods, and evaluation metrics. However, no comprehensive review of occupancy sensor system 

reliability has been compiled. In this research, a review of the literature on occupancy sensor 

systems is presented, focusing on influential variables that may cause systems to incorrectly 

represent occupancy. Next, a survey was developed and completed by researchers, practitioners, 

and other stakeholders, ranking the most influential variables. The results of this effort provide a 

tiered list of what both literature and experts suggest the most influential factors are on occupancy 

sensor system performance. Future work includes the development of a standard methodology to 

evaluate the reliability of different occupancy sensor systems based on these efforts.  

Keywords: Building occupancy; Occupancy sensor systems; reliability testing; influential 

variables 

2.2 Introduction 

Energy consumption throughout the world has significantly increased over the past 20 

years, as the world population has increased, as has the use of energy-consuming technologies. 
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Building energy use accounts for approximately 40% of the total primary energy consumption in 

the U.S. and in the E.U., and approximately 27% in China (Cao et al., 2016). For end uses in 

buildings located these regions, space heating and cooling energy make up a large portion of total 

energy consumption. In the U.S., heating and cooling consumes approximately 51% of the total 

energy use in the residential (U.S. EIA, 2019) and 33% in commercial sectors (U.S. EIA, 2019). 

Moving forward, it is projected that total energy use from heating and cooling will increase in 

cooling-dominant and less-developed regions throughout the world (Cao et al., 2016). Therefore, 

in an effort to reduce greenhouse gas (GHG) emissions and energy use overall to limit climate 

change impacts and improve electric grid operations, it is important to develop energy saving 

approaches to reduce, in particular, heating and cooling energy use in buildings. 

The energy consumption of mechanically conditioned buildings and their systems are 

primarily influenced by outdoor weather conditions, building and system characteristics, and the 

occupants who utilize them. Data on these parameters are necessary to monitor performance, 

assess inefficiencies, and identify opportunities for improvements. Weather data are generally 

easier to obtain and/or collect using local or regional ground-based weather station or satellite-

derived data. For individual buildings, data on building systems and their characteristics are 

sometimes available, most typically through building owners and/or operators, with more data 

being available if the building has a building management system (BMS) or building automation 

system (BAS). Occupancy data, however, are more challenging to collect and less readily available 

as compared to the others.  

Buildings are strongly influenced by the occupants that use them and their energy-

consuming behaviors (Hong et al., 2016). There are significant opportunities to improve the 

collection and use of occupancy-related data to inform building controls, to target energy use 
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reductions and efficiency improvements (Wang et al., 2017). When there are less occupants in 

commercial buildings, ventilation requirements are lower (ASHRAE, 2019); when there are no 

occupants, thermal comfort requirements no longer need to be met (ASHRAE, 2017), thus 

enabling adjustments to setpoint temperatures without impacting occupants. Therefore, through 

both mechanisms, occupancy sensing technologies used in buildings can help to significantly 

reduce HVAC use, also resulting in reduced energy demands of buildings (Jung et al., 2019).  

To collect accurate occupancy information, such as occupant presence, counting, location, 

and tracking (Teixeira et al., 2010), occupancy recognition technologies have been developed and 

studied in the recent decades. Existing technologies for occupancy information extraction in 

buildings can generally be classified into two categories: single sensor systems and sensor fusion 

technology. Single sensor systems utilize one or multiple sensors of the same type to infer 

occupancy information, while sensor fusion methods combine the use of multiple types of sensors 

and sensing modalities to detect occupancy.  

The benefit of the use of single sensor systems is the relative simplicity of the sensor 

deployment and data collection, however, edge cases can occur where the utilized single sensor 

type determined occupancy incorrectly. For example, a motion-based sensor may not be able to 

detect occupants who are not moving, causing a false negative, the sensor provides “unoccupied” 

as its output when there are occupants in the space. Sensor fusion technologies that have multiple 

sensor modalities can help to compensate for known weaknesses of single sensor systems, by 

adding other sensor systems that work better where others have weaknesses. These then typically 

use a data-driven model which is developed based on the data collected from the different sensor 

system modalities, to determine occupancy. In general, the more inputs and diverse data collected 

as input into the model, the more accurate the models become (Yang et al., 2018).  



25 

 

The challenge with occupants and occupancy data, however, is that occupants are 

inherently unpredictable. Occupants and their schedules vary both from person to person, and from 

building type to building type (Gu et al., 2018). While there are “typical” occupancy schedules 

and activities that represent the most common behaviors (e.g., Mitra et al., 2020), even the most 

“normal” people can deviate from these typical scenarios, creating edge case occupancy scenarios. 

In order to create the most reliable occupancy sensor systems possible, they should perform well 

under both typical scenarios and edge cases, and thus in a range of building scenarios, indoor 

environmental conditions, and occupancy scenarios.  

To evaluate if occupancy sensor systems perform well across this range of scenarios, what 

characterizes “typical” must be defined, such that system performance can be tested and evaluated 

under these conditions following a standardized methodology. The results from the use of such a 

methodology would enable comparison of occupancy sensor system performance, to determine 

their relative reliability. Currently, however, there is no standard method of testing, nor a standard 

definition of “typical” occupancy scenarios and typical building conditions under which to test. 

There are occupancy schedules commonly used in energy modeling software (Christensen et al., 

2005; Deru et al., 2011), however these define only the occupancy fraction (percent of total 

occupants in a space), and not their activities, locations, building interactions, and other variables. 

There are also prototypical building energy models developed to represent typical residential 

(Mendon et al., 2014) and commercial buildings (Deru et al., 2011). However, when considering 

these typical buildings for use in defining an appropriate setup for a controlled laboratory 

environment for sensor system testing and evaluation, translating the buildings’ setup to a space-

limited environment for controlled laboratory testing can present challenges. Similarly, edge cases 

must be defined. Edge cases occur when occupants, building systems or other factors deviate from 
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“typical” conditions. Therefore, to determine what type of normal and edge cases may occur, it is 

necessary to define what specific variables may influence the performance of occupancy sensor 

systems, how these variables are likely to vary under normal and extreme scenarios.  

There are many factors that may influence building occupancy sensor system performance. 

These can generally be classified into four categories, including building-related, environment-

related, occupant-related, and others. For building-related and environment-related characteristics, 

factors such as interior building layout and geometry, and lighting levels can significantly impact 

the ability of a system to detect occupants (Gennarelli et al., 2016; Labeodan et al., 2013; Wang et 

al., 2017; Yun et al., 2014). This impact varies depending on the type of sensor system being 

evaluated, its corresponding algorithms, and how the sensor system is deployed in a particular 

location. Similarly, occupant-related characteristics, including their physical features and 

movements, their preferences, and their occupant-building interactions with energy-consuming 

appliances and systems can make the accurate detection of occupants challenging (Yoshino et al., 

2017; Yan et al., 2017). The relative importance of these occupant characteristics, similar to 

physical building characteristics, is also dependent on the sensor system considered. Other 

variables include those that do not fit into the other three categories, such as presence of pets.  

Among recent literature, while many of sensor testing studies have considered multiple 

different factors in evaluating their influence on the occupancy sensor system performance, these 

papers follow different methods and test different sets of variables. The current gap in the literature 

is that 1) there is no comprehensive assessment gauging the relative influence and importance of 

these diverse factors on the performance of occupancy sensor systems; 2) there has been no attempt 

to develop a standard method to evaluate sensor system performance, including defining what 

influential factors to consider for typical and edge case scenarios. Therefore, to address these 
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challenges, the objectives of this paper are to 1) conduct a comprehensive literature review on the 

variables that impact occupancy sensor system performance, including what variables are likely to 

vary under normal and extreme scenarios; 2) obtain expert feedback from occupancy sensor system 

stakeholders regarding the most and least important variables influencing occupancy sensor 

performance for commercial and residential building applications, in order to evaluate the relative 

importance of these variables. The development of a standard methodology to evaluate sensor 

system performance is the focus of ongoing efforts. 

The next section describes a general review of the commonly used occupancy sensor 

systems, to summarize the influential variables that could cause sensor failures. Section 3 presents 

the expert workshop, expert survey, and their results that were used to identify, based on 

stakeholder feedback, the most important variables to evaluate for sensor system reliability. 

2.3 Literature Review 

Human-sensing technologies can be divided into five categories: presence, counting, 

location, tracking, and identification (Teixeira, et al., 2010). From the perspective of building 

energy performance, whether or not there are people is significant for lighting control in both 

residential and commercial buildings.  For HVAC system control, the presence/non-presence of 

people is of significance in residential buildings, while how many people in each thermal zone of 

a building is critical in commercial buildings, particularly for ventilation controls. The specific 

location, tracking of occupants and their identification have more limited impact on the energy use 

of a building. Thus, in this research, the main focus among these categories is occupant presence 

and counting.  

Many sensor technologies have been used to assess the presence and counting of occupants 

in buildings. Of the 120 recent papers published between 2003 and 2020 on occupancy sensor 
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systems identified based on keywords search in Google Scholar, such as “occupancy sensor”, 

“occupancy detection”, and “occupancy counting”, including both single sensor systems and 

sensor fusion systems, 80 focused on either occupancy detection (presence/non-presence) and 

occupancy counting (number of people). These are used in this paper.  

Figure 5 (a) and (b) summarizes the number of papers where each of the occupancy sensor 

technologies appear. From Figure 5 (a), the most commonly used sensor technologies include both 

single sensor systems, which are radio frequency-, vision-, infrared-, sound wave-based sensors, 

and sensor fusion systems. Sensor fusion is generally a combination of one or more of the single 

sensor systems’ sensing modalities and one or more environmental sensors. Figure 5 (b) further 

subdivides the sensor modalities’ sensor fusion systems into each of the single sensor systems as 

well as each of the environmental sensors and provides the number of papers in which each appears. 

For those papers that use sensor fusion systems, each is included in the count for each of the single 

sensor systems and environmental sensors. From Figure 5 (b), it is also noted that there are some 

other types of sensors that were used in sensor fusion methods, such as door sensors, reed switches, 

and pressure mats, which have not been discussed in detail as a single sensor system in this research 

since it was not found to be common for these sensor types to be used as a single sensor system, 

as compared to others. 
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(a) 

 
(b) 

Figure 5 Frequency of occupancy sensor modalities used in recent literature from 2003 to 

2020, for occupancy detection and counting, including (a) types of single sensor system 

modalities and sensor fusion, and (b) types of single sensor system modalities, with sensor 

fusion subdivided into single sensor system modalities with other environmental sensors   

This literature review is discussed by sensor type. A literature review of 80 relevant peer-

reviewed research articles on occupancy sensor systems in buildings, focusing on occupancy 

detection and occupancy counting, resulted in five types of sensor technologies that were most 

commonly used (Figure 5 (a)), including single sensor systems (radio frequency-, soundwave-, 
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infrared-, vision-based sensors), and sensor fusion, which are discussed herein. For the single 

sensor systems, the focus is on the potential sensor failures for each type of sensor modality. For 

sensor fusion technologies, which are typically a combination of one or more of the single sensor 

systems sensing modalities and environmental sensors, the potential sensor failures include 

failures caused by not only the above single sensor modality, but also the environmental sensors, 

as well as the system’s interpretation and use of this information. Table 1 shows each of the types 

of sensors for each sensor category.  

Table 1 Most common types of occupancy sensor types used in single sensor and sensor 

fusion applications in residential and commercial buildings 

Sensor Category Sensor type 

Radio frequency-based 

Normal Doppler Radar 

Ultra-wide band (UWB) Radar  

Radio-frequency Identification (RFID) 

Wi-Fi 

Bluetooth low energy (BLE) 

Sound wave-based  
Acoustic  

Ultrasonic  

Infrared-based  Active infrared (IR)/Passive infrared (PIR) 

Vision-based  Video/camera 

Sensor fusion 
Combination of environmental sensors (e.g., temperature, relative 

humidity, CO2, VOCs) and the above-listed single sensor types 

 

In the following section, a literature review is discussed, and a summary table provided for 

each of these five sensor technologies, including the type of occupancy information each paper 

studied (presence/counting), the building type where this occurred (residential/commercial), the 

sensor type (single/sensor fusion), and the influential variables (building-related, environment-



31 

 

related, occupant-related, others) that either have been tested and shown to impact occupancy 

detection/counting, or were mentioned as variables that may cause sensor failure. 

Across these studies, most of the goals are to develop an occupancy sensor system and test 

it in a controlled environment to evaluate the performance of the system. Several also combined 

the developed occupancy sensor system with HVAC control to evaluate the level of energy savings 

that can be achieved with occupancy-based control. Data collection periods, in general, ranged 

from 1 min to four months, where the shorter ones focused on assessing specific variables, while 

the longer ones were to assess the performance of the occupancy sensor system over a longer 

period of time, coving a range of scenarios such as workdays, weekend, and holidays, and different 

weather conditions. Most of the data collection periods are several days to several weeks in length. 

Ground truth data (e.g., data from the camera system) was also collected across these studies to be 

compared with occupancy data attained from occupancy sensors to assess their reliability. 

Different performance metrics were used in these papers, including accuracy, confusion matrix 

(true positive, true negative, false positive, and false negative), F-score (calculated based on 

confusion matrix), and other statistical methods (e.g., mean average error, mean absolute error, 

root mean square error, normalized root mean square error, standard deviation, and root mean 

square deviation). 

2.3.1 Radio frequency-based sensors 

Radio frequency-based sensors utilize radio waves as media for signal transmission, 

ranging from approximately 20 kHz to around 300 GHz (Basnayaka et al., 2017), and detect 

occupants based on a change in the characteristics of the radio signals. Doppler-shift sensors 

operate on the principle that radio waves reflected from a moving object will result in a frequency 

shift that is related to the radial component of the object’s velocity. Generally, such a sensor will 
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register as detecting occupancy as long as it is able to detect motion. There are four main 

classifications of motion levels, including major (e.g., people walking), minor (e.g., people 

extending arms), fine (e.g., sitting and typing), and no motion (e.g., sleeping), as defined in 

National Electrical Manufacturers Association (NEMA) WD 7 Occupancy Motion Sensors 

Standard (NEMA, 2011). The level of motion that occurs at a particular instance could influence 

the performance of sensors. At the finer levels of motion, it may be more difficult for such a sensor 

to detect occupants, and thus may elicit a failure (Yavari et al. 2013).  

There are two main categories of Doppler sensors, including normal Doppler radar sensors, 

and ultra-wide band (UWB) radar sensors. Compared to UWB radar sensors, normal Doppler radar 

sensors can more easily experience interference with other parallel signatures, such as from nearby 

systems generating electromagnetic interference in the same frequency range (Diraco et al., 2017). 

UWB sensors, however, use a radio signal with a fractional bandwidth equal to or greater than 

0.20 or at a frequency greater than 500 MHz (Wilzeck et al., 2010). UWB also uses the Doppler-

shift effect to detect occupants. It is also able to operate over a larger bandwidth and wider range 

of frequencies, resulting in submillimeter range resolution and high penetration power, supporting 

detection of small objects even through obstacles (Diraco, et al., 2017). In addition, UWB sensors 

can penetrate walls and other obstacles with relatively low power consumption compared to 

normal Doppler radar systems (Kim et al., 2016). 

Table 2 summarizes recent research using Doppler radar sensors in occupancy sensing 

technologies. Of the listed studies in Table 2, the influential variables that appeared multiple times 

in multiple studies are building-related (presence of large metal objects), and occupant-related 

(motion level, number of occupants, location of occupants, posture of occupants) variables.   
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Table 2 Influential variables evaluated in recent literature using Doppler sensors for occupancy sensing 

Sensor type Reference 
Occupancy 

Information 
Building type Influential variables mentioned/tested 

Normal Doppler 

Radar 

(Yavari et al. 2013) Presence - Motion level of occupants 

(Yavari et al., 2014) Presence - 

1. Number of occupants; 

2. Multiple occupants walking at similar speeds; 

3. Non-human periodic motion; 

4. Number of sensors; 

5. Direction of arrival of sensors. 

(Sekine et al., 2012) Presence - 

1. Presence of large metal objects (fan, 

microwave, oven, washing machines); 

2. Environmental noise. 

UWB Doppler radar 

(Kilic et al., 2013) Presence Commercial 

1. Motion level of occupants; 

2. Range of sensor system; 

3. Measurement duration. 

(Kim et al., 2013, Yarovoy 

et al., 2006, Ossberger et al., 

2004) 

Presence/ 

Location 
Commercial 

1. Location of occupants (Occupants behind 

walls); 

2. Distance between the sensor and occupants; 

3. Body shape of occupants. 

(Gulmezoglu et al., 2014) 
Presence/ 

Tracking 
Commercial 

1. Number of occupants; 

2. Occlusion. 

(Rane et al., 2016, Mabrouk 

et al., 2014) 
Presence - 

1. Location of occupants (Stationary occupants 

behind the wall); 

2. Posture of occupants. 

(Singh et al., 2011) Presence Commercial 

1. Wall type (drywall, wooden door, brick wall, 

load bearing concrete wall); 

2. Motion level of occupants; 

3. Presence of large metal objects; 

4. Posture of occupants. 

(Yavari et al., 2018) Counting Commercial 

1. Size/shape of the test space; 

2. Number of occupants; 

3. Location of occupants; 

4. Location of sensors; 

5. Clustering of occupants. 
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Another type of RF sensor is RFID (radio-frequency identification). RFID sensors identity 

and track tags attached to occupants or other item. An RFID tag receives signals from a nearby 

RFID reader, then transmits digital data back to the reader. The reader recognizes the received 

information from each of the tags to decide whether a person is in this space. RFID is an 

identification technology designed to provide data on the location and the testing occupants itself. 

RFID sensors have several advantages, including that they do not require line of sight conditions, 

and that they can have on-board storage capacity, making it more flexible for data collection. RFID 

sensors are truly real-time, and thus do not have accumulated errors like vision-based sensors. 

RFID sensors, however, can be highly impacted by noisy environments due to noise interference 

and the sensitivity patterns of anisotropic antennas (Li et al., 2011). One of the main disadvantages 

is the needed network density, i.e., a larger number of sensors are needed as compared to other 

sensor types (Wang et al., 2017). RFID sensor systems require a complex infrastructure of beacon 

nodes, which can be expensive and cumbersome to install and manage. It also requires calibration 

once the built environment has been changed, such as chairs or furniture being in different 

positions.  

Table 3 provides a list of recent research efforts that have evaluated the use of RFID sensor 

systems. Of the listed studies in Table 3, the variables that appeared multiple times in multiple 

papers include occupant-related variables (motion level, number of occupants, location of 

occupants). 
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Table 3 Influential variables evaluated in recent literature using RFID sensor systems for 

occupancy sensing  

Sensor 

type 
Reference 

Occupancy 

Information 
Building type 

Influential variables 

mentioned/tested 

RFID 

(Li et al., 2012) Counting Commercial 

1. Number of occupants; 

2. Motion level of occupants; 

3. Location of occupants 

(occupants walk close to the 

boundary of thermal zones); 

4. Response time of the sensor. 

(Li et al., 2011) 
Counting/ 

Location 
Commercial 

1. Motion level of occupants; 

2. Size/shape of test area; 

3. Number of occupants; 

4. Location of occupants; 

5. Environmental noise. 

(Ranjan et al., 

2012) 
Presence Residential 

1. Different locations of sensor 

(RFID tags such as attached to hat, 

shoes, belt, shirt, pants, wrists, and 

ankles, antennas placed on diff. 

appliances); 

2.  Configuration of antennas. 

(Wang et al., 

2017) 
Counting Commercial 

1. Awareness of occupants wearing 

tags. 

(Xu et al., 2021) 
Counting/ 

Location 
Commercial 

1. Location of occupants; 

2. Environmental noise; 

3. Number of tags; 

4. Protocol reconfigurability; 

5. Tag read rate; 

6. Allowable operational 

bandwidth. 
Note: The “location of occupants” can influence the sensor performance when occupants are at a boundary (e.g., 

corners), as occupants may not be sensed or detectable by the sensor system in this location. 

The “size/shape of test area” refers to the size, interior layout, and geometry of a space, which may influence sensor 

system configuration, number of sensors needed and their ability to cover the test area. 

 

A third type of RF sensor uses Wi-Fi communication. Wi-Fi describes a local wireless 

network that uses radio waves to communicate data, typically originating from the Internet. To be 

considered Wi-Fi, the radio signal must use the IEEE 802.11 standard (2016) to communicate. 

Multiple versions of Wi-Fi are defined in the IEEE specifications, including common ones such 

as 2.4 GHz and 5 GHz frequency radio waves. Wi-Fi infrastructure is widely available in most 

buildings along with mobile devices (e.g., smart phones, tablets, laptops) with Wi-Fi connectivity 
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carried by occupants. The data packets are transmitted in existing Wi-Fi traffic, and both received 

signal strength (RSS), and, in some cases, the MAC address of each occupant’s mobile device 

connected to Wi-Fi can be extracted to estimate occupancy, including either presence/non-

presence or number of occupants. The MAC address of each device serves as a unique identifier 

for each of the occupants. Some of the main advantages of the use of Wi-Fi include the use of a 

common and widely implemented network, especially in residential and commercial buildings. In 

addition, the cost of using this technology is negligible in comparison to some other sensor types 

(Ouf et al., 2017), particularly when Wi-Fi is already available. Disadvantages include that it 

requires occupants to carry their mobile devices (Zou et al., 2018) and higher power consumption 

compared to some other sensor types (Mahmoud et al., 2015). In addition, there may be privacy 

concerns for occupants since the personal MAC addresses and other universally unique identifiers 

(UUIDs) need to be monitored and collected (Wagner et al., 2018). 

Table 4 includes a summary of recent studies which have used Wi-Fi-based sensors 

systems to evaluate occupancy. Of the listed studies, the influential variables that appeared in 

multiple papers include building-related variables (size/shape of test area, presence of large metal 

objects), environment-related variables (electromagnetic interference), occupant-related variables 

(number of occupants), and others (distance between occupants and sensors). 
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Table 4 Influential variables evaluated in recent literature using Wi-Fi sensor systems for 

occupancy sensing  

Sensor 

type 
Reference 

Occupancy 

Information 
Building type Influential variables mentioned/tested 

Wifi-

based 

(Ravichandran 

et al., 2015) 
Presence Residential 

1. Distance between occupants and 

sensors; 

2. Orientation of the antennas; 

3. Motion level of occupants; 

4. Posture of occupants; 

5. Presence of large metal objects 

(refrigerator, computer monitor, large 

furniture). 

(Xi et al., 2014) Counting Commercial 

1. Number of occupants; 

2. Clustering of occupants; 

3. Walking speed of occupants; 

4. Spatial distribution of occupants. 

(Palipana et al., 

2016) 
Presence Commercial 

1. Distance between occupants and 

sensors. 

(Wang et al., 

2017, Wang et 

al., 2018, Ouf et 

al., 2017) 

Counting Commercial 

1. Wi-Fi device not turned on by 

occupants; 

2. Phone in sleep mode if not in use; 

3. Occupant(s) has multiple devices 

(phones, laptops, wireless printers); 

4. Presence of large metal objects 

(interior metal separations); 

5. Size/shape of test area; 

6. Electromagnetic interference;  

(Balaji et al., 

2013) 
Counting Commercial 

1. Phone in sleep mode if not in use; 

2. Occupant leaves space without 

carrying their phone; 

3. Electromagnetic interference. 

(Lu et al., 2016) Counting Commercial 
1. Presence of large metal objects; 

2. Data collection timestep. 

(Vasisht et al., 

2016) 
Presence Residential 1. Signal strength of sensors 

(Petrovic et al., 

2018) 
Counting 

Residential/ 

Commercial 

1. Size/shape of test area; 

2. Number of occupants; 

3. Response time of sensor(s) 

(Vattapparamba

n et al., 2016) 
Counting Commercial 1. Electromagnetic Interference 

Note: Occupant posture was found to impact the ability of some technologies to detect respiration rates for use in 

occupancy detection. For moving occupants, the spatial distribution of occupants and their movements was found to 

influence occupancy count accuracy, where randomly moving and distributed occupants reduced estimate errors. 
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A fourth RF wireless sensor technology is Bluetooth, which uses short-wavelength radio 

transmissions in the range of 2400-2480 MHz, standardized in IEEE 802.15.1 (2005), to exchange 

data within short ranges from fixed and mobile devices. Using Bluetooth, smart devices need to 

be in discoverable mode for an initial registration to be connected. As long as the Bluetooth 

capability is enabled, there are no subsequent actions needed to change Bluetooth settings. One 

example is an iBeacon, which uses Bluetooth low-energy (BLE) wireless technology to provide 

location-based information. There are three main components used in the detection of occupancy 

using Bluetooth: beacon transmitters, which send uniquely identified beacon packets with a 

Universally Unique Identifier (UUID), receivers who install a client mobile application on their 

smartphones to periodically scan signals to detect beacons in a building, and remote servers which 

gather and implement algorithms to identify whether there is a person in the space based on the 

information that the client mobile application receives from occupants’ smart phones. The main 

advantages of the use of Bluetooth sensor technologies include much lower power consumption 

compared to standard Bluetooth and Wi-Fi devices (Putra et al., 2017). However, a main 

disadvantage would be the potential interference this system with Wi-Fi, which may disturb the 

connection if multiple Bluetooth devices are running at the same time. 

Table 5 summarizes recent research using Bluetooth and/or BLE-based sensors systems to 

evaluate occupancy. Of the listed studies, the variables that appeared multiple times in multiple 

papers are building-related variables (size/shape of test area). 
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Table 5 Influential variables evaluated in recent literature using Bluetooth/BLE-based 

sensor systems for occupancy sensing 

Sensor 

type 
Reference 

Occupancy 

Information 

Building 

type 

Influential variables 

mentioned/tested 

BLE-

based 

(Conte et al., 2014, 

Corna et al., 2015) 
Presence 

Commerci

al 

1. Cyclic behavior of beacons; 

2. Humidity; 

3. Occupant(s) have multiple 

devices. 

(Filippoupolitis et 

al., 2016) 
Presence 

Commerci

al 

1. Size/shape of test area; 

2. Location of sensor(s); 

3. Distance between occupants and 

sensors. 

(Shen et al., 2016) Presence 
Commerci

al 

1. Occupant leaves space without 

carrying their phone; 

2. Occupants go beyond the 

Bluetooth range; 

3. Response time of sensor(s). 

(Park et al., 2018) Counting 
Commerci

al 
1. Size/shape of test area. 

(Longo et al., 2019) Counting 
Commerci

al 

1. Size/shape of test area; 

2. Number of occupants. 

 

2.3.2 Sound wave-based sensors 

There are two main types of soundwave-based sensors, including acoustical sensors and 

ultrasonic sensors. Acoustic wave sensors are named because their detection mechanism is a 

mechanical or acoustic wave using a piezoelectric material. For this application such sensors detect 

only human audible sound with frequency of 20 Hz–20 kHz (Launer et al., 2016). Ultrasonic 

sensors measure distances based on transmitting and receiving ultrasonic signals, which detects 

these sounds that are inaudible to humans. An ultrasonic sensor is generally made up of 

piezoelectric material, where the ultrasonic transmitter transmits an ultrasonic wave, when then 

travels through a medium of air until it is intersected by a material. The wave is reflected back 

when it detects a person, which can then be detected by the ultrasonic receiver. By analyzing the 

time and distance that the reflected ultrasonic wave is received, it can infer whether there is a 

person in the space. Compared to other sensors, the main advantages of the use of sound wave-
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based sensor technologies is that it can include an increased range of sensitivity for minor 

movement. However, the disadvantage would be that certain materials absorb sound waves, such 

as cloth or foam, causing problems when a person is covered in multiple layers of clothing and the 

sensor would not detect motion consistently, and they are highly sensitive to reflective materials 

such as glass or plastic (Yavari et al., 2014).  

Research focused on sound wave-based sensors for occupancy detection is provided in 

Table 6. Of the listed studies, the variables that appeared multiple times in multiple papers include: 

building-related (size/shape of test area), occupant-related (number of occupants, motion levels, 

walking speed of occupants), and other (location of sensors, distance between occupants and 

sensors, number of sensors) variables. 
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Table 6 Influential variables evaluated in recent literature using sound wave-based sensor 

systems for occupancy sensing 

Sensor 

type 
Reference 

Occupancy 

Information 

Building 

type 
Influential variables mentioned/tested 

Acoustic 

(Khan et 

al., 2015) 
Counting Commercial 

1. Number of occupants; 

2. Location of sensors; 

3. Distance between occupants and sensors; 

4. Environmental noise; 

5. Noise level of occupants. 

(Xu et al., 

2013) 
Counting Commercial 

1. Number of occupants; 

2. Location of sensors; 

3. Presence of non-occupant sounds; 

4. Characteristics of sound (utterance length of 

sound). 

(Yavari et 

al., 2014) 
Presence - 

1. Different wall materials (cloth, foam) absorption 

of sound waves; 

2. Presence of reflective materials (glass, plastic); 

3. Motion levels of occupants. 

(Shih et al., 

2015) 
Counting Commercial 

1. Size/shape of test area; 

2. Performance over time of the sensor; 

3. Number of sensors. 

(Shih et al., 

2016) 

Presence/ 

Counting 
Commercial 

1. Size/shape of test area; 

2. Number of occupants; 

3. Distance between occupant and sensors; 

4. Blind spots where sensor cannot see. 

(Khalil et 

al., 2018) 
Presence Commercial 

1. Body shape of occupants (height, width, girth, 

hand-waist distance, and bounce); 

2. Motion level of occupants; 

3. Location of sensors; 

4. Angle between occupants and sensors; 

5. Number of occupants walking simultaneously; 

6. Occupant(s) with a purse; 

7. Walking speed of occupants; 

8. Occupant in a wheelchair; 

9. Location of the door frame (corner); 

10. Door size; 

11. Number of sensors. 

(Hnat et al., 

2012) 
Presence Residential 

1. Occupant height; 

2. Walking speed of occupants; 

3. Number of sensors; 

4. Posture of occupants; 

5. Presence of large metal objects; 

6. Occupants wearing hats; 

7. Occupants standing in doorways; 

7. Movement of furniture over time;  

8. Opening and closing of doors and windows; 

9. Presence of household objects (bags, laundry 

baskets). 
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2.3.3 Infrared-based sensors 

PIR (passive infrared) sensors, which are among the most common types of occupancy 

sensors used, are passive in that they do not generate or radiate energy for detection purposes. 

Instead, they function through the detection of infrared radiation emitted by or reflected from 

objects. Active IR sensors require both an emitter and receiver, where the IR emitter emits a beam 

of light, facing an in-line receiver. If nothing is in the way, the receiver sees the emitted signal. If 

the receiver fails to see an IR beam, it detects that a person is between the emitter and the receiver, 

and therefore present in the monitored area. Low-resolution IR arrays are based on thermopile 

technology, of which the thermopile element is sensitive to a motionless object. The main 

advantages of the use of infrared-based sensor technologies is that it is the most commonly used 

technology for occupancy presence sensing. However, the disadvantage would be that they cannot 

detect static occupants, and the sensitivity of this sensor type drops off drastically with distance 

and requires line of sight (Santra et al., 2018). There have been studies focusing on the 

improvement of motion sensors to detect static occupants. For example, Wu et al., (2019) 

developed an optical shutter based on a PIR sensor, which indicated an accuracy of 97% in 

unoccupied and occupied scenarios. Ma et al., (2019) also proposed an active PIR sensing system 

to actively detect static thermal targets.  

Research using IR-based sensors for occupancy detection is provided in Table 7. Of the 

listed studies, the variables that appeared multiple times in multiple papers include occupant-

related variables (location of occupants, body shape of occupants, number of occupants, motion 

level of occupants, clustering of occupants).
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Table 7 Influential variables evaluated in recent literature using infrared-based sensor 

systems for occupancy sensing 

Sensor type Reference 
Occupancy 

Information 

Building 

type 

Influential variables 

mentioned/tested 

Infrared-

based sensor 

(Dodier et al., 

2006) 
Presence Commercial 1. Location of occupants. 

(Kuutti et al., 

2014) 
Counting Commercial 

1. Differences among multiple 

individual sensor; 

2. Response time of sensor; 

3. Height of sensor; 

4. Body shape of occupants; 

5. Clustering of occupants; 

6. Air flow (e.g., from HVAC 

vents). 

(Yun et al., 

2014) 
Presence - 

1. Number of occupants; 

2. Different walking directions of 

occupants (back and forth); 

3. Motion level of occupants; 

4. Distance between occupants and 

sensors; 

5. Number of sensors; 

6. Location of sensors. 

(Zappi et al., 

2007) 
Counting Commercial 

1. Number of occupants; 

2. Clustering of occupants. 

(Raykov et al., 

2016) 
Counting Commercial 

1. Location of occupants; 

2. Number of occupants; 

3. Data collecting frequency. 

(Chowdhury 

et al., 2016) 
Presence - 

1. Body shape of occupants; 

2. Location of occupants. 

(Liu et al., 

2017) 
Presence - 1. Motion levels of occupants. 

 

2.3.4 Vision-based sensors 

Vision-based sensors include camera and video technologies. These sensors are used to 

collect video/camera frame data to infer occupancy information. Methods include background 

subtraction, where the foreground elements are separated out from the background by generating 

a foreground mask to be used for differentiating frames before and after a person appears, and 

pattern matching approaches, where Haar-like features and a cascade of classifiers are constructed. 

Other methods include HOG (Histogram of Oriented Gradients), SVM (Support Vector Machine), 
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SIFT (Scale-invariant feature transform)-inspired features, to detect and locate occupants in a 

video frame, frame-differencing (subtracting consecutive frames pixelwise), and optical flow (i.e. 

measuring the motion gradient of each pixel over a number of frames). The advantage of vision-

based sensors is that video is considered as the most accurate occupancy sensing technology, and 

thus is usually used as a ground truth method (Shen et al., 2017). The disadvantage of the 

traditional RGB cameras is the passive vision problems due to brightness variations, shadows, and 

occlusions (Kwolek et al., 2015). In addition, the privacy concern is also a concern when using 

vision-based sensors.  Recently, 3D depth-based cameras have been increasingly implemented, 

which use structured light to measure distances from every point to the camera, such that it can 

work in a completely dark environment, and the privacy concern could also be addressed by using 

only the depth data (Diraco et al., 2015, Munir et al., 2017).   

 A summary of the variables that have been tested for vision-based sensor is presented in 

Table 8. Of the listed studies, the variables that appeared multiple times in multiple papers include 

building-related (presence of large metal objects), environment-related (lighting levels, presence 

of direct sunlight), and occupant-related (clustering of occupants) variables. 
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Table 8 Influential variables evaluated in recent literature using vision-based sensor 

systems for occupancy sensing 

Sensor 

type 
Reference 

Occupancy 

Information 
Building type 

Influential variables 

mentioned/tested 

Vision-

based 

(Zou et al., 2017) Counting Commercial 

1. Lighting levels; 

2. Presence of interior lighting 

sources; 

3. Presence of direct sunlight; 

4. Age of occupants; 

3. Hairstyles of occupants; 

4. Posture of occupants; 

5. Motion level of occupants; 

6. Presence of large metal objects; 

7. Clustering of occupants. 

(Teizer et al., 

2007) 
Presence - 

1. Presence of large metal objects; 

2. Objects located in the shadow; 

3. Blind spots where sensor cannot 

see; 

4. Lighting levels; 

5. Air temperature; 

6. Presence of direct sunlight. 

(Tomastik et al., 

2008) 
Counting Commercial 

1. Door sizes (Multiple 

entrances/exits). 

(Ahmad et al., 

2018) 
Counting Commercial 1. Number of occupants. 

(Yang et al., 

2018) 
Counting Commercial 

1. Lighting levels; 

2. Presence of cobweb on the 

camera; 

3. Clustering of occupants.  
Note: Age was found to influence occupancy detection abilities as age influence the shape and size of occupants’ heads used as a 

target for occupancy detection. 

 

2.3.5 Sensor fusion 

Sensor fusion methods usually combine the use of environmental sensors, such as 

temperature, relative humidity, lighting, and CO2, with other types of sensors, such as those 

discussed in the previous portions of this research, to indicate occupancy information. Compared 

to sensor systems than only use one sensor type, sensor fusion methods have the advantage of 

multiple sensing modalities. With the appropriately developed data processing algorithms, this can 

help to reduce the occurrence of false positives and negatives through the use of multiple sensor 
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systems’ data to check the agreement among sensor data output to largely improve accuracy.  

However, the limitation of sensor fusion is that models can differ largely in terms of their 

predictive accuracy; additionally, the model formalism chosen, and its complexity can 

substantially influence the model accuracy (Hobson et al., 2019).  

A summary of recent sensor fusion research efforts to detect occupancy is included in Table 

9. Of the listed studies, the variables that appeared multiple times in multiple papers include 

building-related (size/shape of test area), occupant-related (number of occupants), and other (short-

term transition, number of sensor types, locations of sensors, response time of sensors) variables. 

Based on the literature review, a comprehensive list of variables that may impact the 

occupancy sensor systems is compiled (Table 10). This compiled list was also used to determine 

variables that should potentially be considered when evaluating the performance of the sensor 

systems. The number of times each of the variable was discussed in this literature review is also 

shown in Table 10. It is noted that among the variables that appear multiple times in multiple 

papers for each of the sensor systems, several variables appear in these lists for two or more of the 

five sensor system types, including size/shape of test area, presence of large metal objects, motion 

level of occupants, number of occupants, and location of occupants. The variables were arranged 

based on the categories they belong to, the order for each variable within each category was 

random, to limit bias for discussion of stakeholders when ranking the most/least important 

variables. 
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Table 9 Influential variables evaluated in recent literature using sensor fusion systems for 

occupancy sensing 

Sensor 

type 
Reference 

Occupancy 

Information 

Building 

type 
Sensor type 

Influential variables 

mentioned/tested 

Sensor 

fusion 

(Hailemari

am et al., 

2011) 

Presence 
Commer

cial 

Sensor fusion (CO2, 

current, lighting, 

motion, sound) 

1. Short term transition (a 

person just arrived or left 

their office). 

(Ekwevug

be et al., 

2013) 

Counting 
Commer

cial 

Sensor fusion (sound, 

case temperature, 

CO2 and motion) 

1. Size/shape of test area.   

(Yang et 

al., 2014) 

Presence/ 

Counting 

Commer

cial 

Sensor fusion 

(temperature, relative 

humidity, CO2, 

lighting, motion, door 

switch) 

1. Number of sensors; 

2. Interrupted Wi-Fi 

connection; 

3. Loss of electricity; 

4. Physical damage to 

sensors; 

5. Data corruption; 

6. Location of sensors; 

7. Size/shape of test area; 

8. Presence of large metal 

objects. 

(Chen et 

al., 2016) 
Counting 

Commer

cial 

Sensor fusion 

(temperature, relative 

humidity, CO2, 

VOCs, noise, PIR) 

1. Number of occupants; 

2. Size/shape of test area; 

3. Short term transition; 

4. Response time of 

sensors; 

5. Air temperature;  

6. Presence of direct 

sunlight. 

(Zikos et 

al., 2016) 

Presence/ 

Counting 

Commer

cial 

Sensor fusion (door 

counter, acoustic, 

PIR, CO2) 

1. Size/shape of test area; 

2. Noise level of 

occupants; 

3. Motion level of 

occupants;  

4. Door sizes; 

5. Number of sensor types. 

(Zikos et 

al., 2016) 
Presence 

Residenti

al/Comm

ercial 

Sensor fusion 

(temperature, 

humidity, CO2, 

pressure) 

1. Number of occupants; 

2. Short term transition; 

3. Response time of 

sensors. 

(Meyn et 

al., 2009) 
Counting 

Commer

cial 

Sensor fusion (CO2, 

PIR, video, access 

control) 

1. Size/shape of test area; 

2. Number of sensor types; 

3. Location of sensors. 
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Table 10 Compiled list of influential variables from literature review and expert 

stakeholder feedback 

Category All variables Frequency  

Building-related 

A1. Glass walls & mirrors (reflective surfaces) 1 

A2. Size (length/width) and shape of test area 6 

A3. Location/characteristics of windows 0 

A4. Number of doors (entrances/exits) 1 

A5. Door sizes (i.e., single vs. double, other) 3 

A6. Wall, floor, and ceiling color/characteristics 1 

A7. Height of ceiling 0 

A8. Building envelope type (e.g., brick, siding, EFIS, batt vs. continuous insulation) 1 

A9. Presence of large objects (especially metal objects) within or near a space 9 

A10. Electromagnetic interference 1 

A11. Ventilation rates 0 

**A12. Other building-related variables (please specify) 0 

Environment-related 

B1. Lighting level (regardless of source of light) (lux) 1 

B2. Spectral distribution of light 0 

B3. Presence of interior lighting sources (non-overhead) 1 

B4. Indoor humidity 1 

B5. Indoor temperature 2 

B6. Mean radiant temperature (indoor) 0 

B7. Presence of sunlight - direct 2 

B8. Presence of sunlight - diffuse 0 

**B9. Other environment-related variables (please specify) 0 

Occupant-related 

C1. Number of occupants (including 0) 10 

C2. Age of occupant(s) 1 

C3. Metabolic rate 0 

C4. Spatial location of occupant(s) 5 

C5. Level of motion of occupant(s) 10 

C6. Noise level of occupant(s) 3 

C7. Clustering of occupants (distance between occupants) 5 

C8. Speed of occupant (e.g., walking vs. running) 2 

C9. Speed of occupants relative to one another 1 

C10. Number of occupants entering/exiting a room at the same time 1 

C11. Speed of occupants entering/exiting a room at the same time 0 

C12. Presence of occupants in adjacent spaces 0 

C13. Clothing color/contrast/patterns (including images on clothing) of occupants 0 

C14. Occupant clothing level (clo) 0 

C15. Skin color of occupant(s) 0 

C16. Body shape of occupant(s) 4 

C17. Occupants wearing heavy winter coats with a cold surface temperature 0 

**C18. Other occupant-related variables (please specify) 0 

Others 

D1. Presence of pets 0 

D2. Motion characteristics of pets (if present) 0 

D3. Size/type of pets 0 

D4. Use of robots 0 

D5. Presence of mylar balloons/party items 0 

D6. Ability to communicate with thermostat 0 

D7. Initial performance/performance over time 1 

D8. Range of devices (related to electromagnetic interference) 0 

D9. Repeatability of performance of system 0 

D10. Presence of heat sources such as a heat lamp 0 

D11. Presence of wheelchairs, strollers, shopping carts, etc. 4 

D12. Vibrations in spaces 0 

**D13. Other variables (please specify) 0 

Note: The content with “**” indicates that these variables are not from the literature review or stakeholder feedback but are shown because in 

the survey this was an option for participants to provide in the case that they want to suggest other variables. The “0” represents variables that 

were identified based on discussion with stakeholders. 
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2.4 Expert Survey on Most and Least Important Influential Variables 

Using the results of the literature review, the influential variables tested in previous 

literature were compiled into a comprehensive list. An expert workshop was held on June 26, 2019 

with a diverse set of 50+ stakeholders from academia, consultants, utility workers, manufacturers, 

and building owners. Four facilitated discussions were completed during the workshop, the first 

of which included a discussion of influential variables impacting the reliability of occupancy 

sensor systems. The question posed during this session is as follows:  

“Which variables that may affect the performance of a sensor system should be included 

in a test standard/guideline for occupancy recognition sensor systems? Which are most critical?” 

The compiled list of influential variables was provided to attendees for discussion. 

Throughout the discussion, additional variables were suggested by stakeholder attendees, which 

were added into a final list of potential influential variables (Table 10). The final list of variables 

was then divided into four categories, including (a) building-related variables, (b) environment-

related variables, (c) occupant-related variables, and (d) other variables. 

Using this list of variables, an online survey was developed to determine which influential 

variables were “most important” and “least important” for use in the development of a standard 

method of testing of occupancy sensor systems. The participants chose to answer the questions for 

residential building applications or for commercial building applications. Next, the participants 

were presented with the list of variables in Table 10 divided into one question for each of the four 

categories. For each question, the participants consider one category of variables, and were asked 

to categorize which they would consider the most and least important in evaluating the reliability 

performance of occupancy sensor systems. Respondents were limited to the choice of the top 6 

most and top 6 least influential variables.  Within each of the “most” and “least” influential groups, 
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participants were also asked to rank the order of importance. Participants were not required to 

select a certain number of variables, however a suggested amount in each category was provided 

in the survey. Not all variables in each question (each category) were required to be selected, thus 

the variables that were not selected as most or least important were not used in the survey analysis.  

Following the four questions on the four variable categories, a final question provided a 

list of all variables across all categories and asked participants to select the most and least important 

variables. This allowed for the comparison of responses from the categorial rankings (Questions 

1-4) and overall rankings of variables (Question 5).

The survey was sent to all ARPA-E SENSOR teams (2017), members of Annex 79 

(Occupant-Centric Building Design and Operation) (O’Brien et al., 2018), and all workshop 

attendees. 54 survey responses were gathered in Fall 2019. 24 expert stakeholder responses were 

complete responses, including 9 focused on residential buildings, 15 focused on commercial 

building applications. This number of responses is similar to other expert surveys in terms of 

number of collected responses from experts (e.g., Constenla et al. 2015). 

2.5 Survey Results 

Two methods were used to evaluate the survey data results. The first method (“Method 1”) 

was a count of the number of times that participants selected each variable, regardless of how it 

was ranked among the “most” and “least” important categories. In this case, the higher the count, 

the more important the variable; and the lower the count, the less important the variable. The 

second method (“Method 2”) incorporated the rankings of participants’ responses using a weighing 

factor. In this method, for each of the first four questions, the first six variables selected in the 

“most” and “least” important variables were considered. In the case of the most important variables, 

the variable that was ranked first received a weightage factor of 6, the second received a factor of 
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5, etc. The same method was applied for the least important variables. For both methods, the final 

count or score was summed across all participants. Two methods were used as a way to double 

check the results, to make sure that results from the two methods used to ask stakeholders to rank 

these variables are consistent. All variables were divided into different categories and then 

combined together to see if these two methods identified the same or similar set of important 

influential variables. 

Natural breaks in the summed count or score were used to determine the tier of importance 

of each variable. If the resulting count (from Method 1) for each variable was larger than half of 

the total responses from the data for that category of variables, then the variables were categorized 

as Tier 1 (i.e., the most/least important variables). Following Method 2, similar results were 

obtained. Thus, with this data, the Tier 1 variables were then ordered based on their count.  

2.5.1 Most important and least important variables by category 

Figure 6 (a) shows the results of the count of variables under each category for residential 

buildings using Method 1. The red columns are the variables where the count value is larger than 

half of the total responses, which is classified as Tier 1 – the most important variables. Weightage 

distribution is also provided (Method 2), showing that the variables designated as Tier 1 based on 

the first method also have higher weightage value, as seen in Figure 6 (b), which shows the results 

are consistent between these two methods. Figure 7 (a) and (b) present the count and weightage 

results for commercial buildings. 
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Figure 6 (a) Count value (Method 1) and (b) weightage value (Method 2) for most 

important influential variables for residential building applications. (Note: Red columns 

indicate where more than half of responses include this variable for Method 1)  
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Figure 7 (a) Count value (Method 1) and (b) weightage value (Method 2) for most 

important influential variables for commercial building applications. (Note: Red columns 

indicate where more than half of responses include this variable for Method 1)  

Table 11 shows the survey results for the most important and least important variables and 

variables that are never mentioned as most or least important for residential buildings. The order 

in the table represents the importance of these variables. The other variables not presented here are 

considered in-between variables, being neither most nor least important. Half of the most important 

variables are never mentioned as the least important variables, and one third of the least important 

variables are also never mentioned as the most important variables, which shows the results are 

consistent with each other. In addition, there is no overlap between the most and least important 

variables. Table 12 summarizes the results of the most important and least important variables in 

commercial buildings, parallel to Table 11. 
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Table 11 Most and least important variables for residential buildings, and those never 

chosen as most/least important 

Most Important Least Important 

A2. Size (length/width) and shape of test 

area 

A8. Building envelope type (e.g. brick, siding, EFIS, 

batt vs. continuous insulation) 

C5. Level of motion of occupant(s) A6. Wall, floor, and ceiling color/characteristics 

D1. Presence of pets B6. Mean radiant temperature (indoor) 

B1. Lighting level (regardless of source of 

light) (lux) 
B4. Indoor humidity 

C4. Spatial location of occupant(s) C15. Skin color of occupant(s) 

C1. Number of occupants (including 0) C2. Age of occupant(s) 

A9. Presence of large objects (especially 

metal objects) within or near a space 
C16. Body shape of occupant(s) 

B3. Presence of interior lighting sources 

(non-overhead) 
C3. Metabolic rate 

A4. Number of doors (entrances/exits) D5. Presence of mylar balloons/party 

D4. Use of robots D11. Presence of wheelchairs 

Never Chosen as Most important  Never Chosen as Least Important 

A5. Door sizes (i.e., single vs. double, other) A2. Size (length/width) and shape of test area 

A8. Building envelope type (e.g., brick, 

siding, EFIS, etc..) 
A12. Other building-related variables (please specify) 

A12. Other building-related variables 

(please specify) 
B1. Lighting level (regardless of source of light) (lux) 

B9. Other (please specify) C1. Number of occupants (including 0) 

C2. Age of occupant(s) C4. Spatial location of occupant(s) 

C9. Speed of occupants relative to one 

another 
C5. Level of motion of occupant(s) 

C12. Presence of occupants in adjacent 

spaces 
C8. Speed of occupant (e.g., walking vs. running) 

C16. Body shape of occupant(s) 
D9. Repeatability of performance of system (i.e., does 

it provide the same results consistently) 
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Table 12 Most and least important variables for commercial buildings, and those never 

mentioned as most/least important 

Most Important Least Important 

A2. Size (length/width) and shape of test area 
A8. Building envelope type (e.g., brick, siding, 

EFIS, etc.)  

C1. Number of occupants (including 0) B4. Indoor humidity 

D9. Repeatability of performance of system (i.e., 

does it provide the same results consistently)  
B5. Indoor temperature 

D7. Initial performance/performance over time 

(e.g., does it take a while for the system to 

learn/work well)  

C6. Noise level of occupant(s) 

B1. Lighting level (regardless of source of light) 

(lux)  
C16. Body shape of occupant(s) 

C4. Spatial location of occupant(s) C2. Age of occupant(s) 

A9. Presence of large objects (especially metal 

objects) within or near a space 
D1. Presence of pets 

C5. Level of motion of occupant(s) 
D8. Range of devices (related to 

electromagnetic interference) 

B7. Presence of sunlight - direct D4. Use of robots 

-- D5. Presence of mylar balloons/party items 

-- 
D11. Presence of wheelchairs, strollers, 

shopping carts,  

Never Chosen as Most important  Never Chosen as Least Important 

B8. Presence of sunlight - diffuse A2. Size (length/width) and shape of test area 

C12. Presence of occupants in adjacent spaces A4. Number of doors (entrances/exits) 

C16. Body shape of occupant(s) C1. Number of occupants (including 0) 

D2. Motion characteristics of pets (if present) C4. Spatial location of occupant(s) 

-- 
C7. Clustering of occupants (distance between 

occupants) 
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Comparing the most important variables for residential buildings with that of commercial 

buildings, approximately 2/3 of variables are the same, including the size and shape of test area, 

lighting level, spatial location of occupant(s), presence of large objects, number of occupants, and 

the level of motion of occupant(s). Similarly, for the least important variables, approximately half 

are the same for both residential and commercial buildings, including building envelope type, 

indoor humidity, age of occupant(s), presence of mylar balloons, and presence of wheelchairs. 

These variables are either difficult to adjust in an existing building, such as the building envelope 

type, or in most applications, are a rare occurrence, such as balloons that typically are only present 

during a party. The presence of wheelchairs is also not common, except in specific building types. 

Indoor humidity in mechanically controlled commercial buildings is typically controlled within a 

certain range and is generally a variable that sensor system types are not impacted by.  

For the other important variables, there are differences between residential and commercial 

buildings. For example, the presence of pets is important for residential buildings but not for 

commercial, which makes sense given pets are much more likely to be in a home than a commercial 

building. Commercial buildings are also more likely to have overhead lighting sources as 

compared to residential which likely include a broader diversity of lighting sources. The use of 

robots is also a variable that is also more common in homes, specifically sweeping/vacuum robots. 

The presence of direct sunlight appears to be ranked more importantly for commercial buildings, 

likely because there are typically more windows in commercial buildings compared to residential, 

and that a visually comfortable work environment is important.  

2.5.2 Most important variables across all variable categories 

The last question in the survey asked participants to, regardless of the type/category of 

variables, identify and rank the most/least important variables. Figure 8 shows the weightage 
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values calculated for each variable based on the ranking of respondents in (a) residential buildings, 

and (b) commercial buildings, indicating that there are large jumps/breaks in rankings among the 

variables. Approximately half of the variables were not chosen by respondents and thus not shown. 

In addition, for residential buildings, for 85% of the variables, their weightage values were less 

than 10, compared to the five most highly ranked variables with a weightage value larger than 22 

(shown in red). For commercial buildings, 92% of variables had a weightage value of less than 15, 

whereas the four top variables had a weightage value of more than 36. 

 

Figure 8 Weightage value for variables considered as the most important in (a) residential 

and (b) commercial buildings based on the final survey question 

The final question in the survey asked responders to indicate, across all variables, 

regardless of category or type, what variables are most important, in rank order. This was used as 

a check of the above-mentioned variables which were evaluated by category of variable. Figure 9 

shows the average ranking across all responses for each of these variables for both residential 

(Figure 9 a) and commercial (Figure 9 b) buildings. The variables, where none or only one 

responder provided a ranking, are not included in the analysis. Among the variables with more 

than one ranking, if a person did not rate that variable, we assume the remaining unrated variables 

are the next rank after their last rank. For example, if one person rated four variables 1 to 4, the 

rest were rated are considered as 5. Error bars indicate standard deviation. From the results, we 
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can see that the standard deviation is similar across the different variables. In addition, the average 

rankings for the most important variables determined in Figure 8 are smaller compared to the 

others, indicating that they are more important than others. 

  
                                       (a)                                              (b) 

Figure 9 Average ranking and standard deviation of variables considered as the most 

important in (a) residential buildings and (b) commercial buildings based on the final 

survey question 
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Table 13 Most important variables for residential and commercial buildings 

 Building type Most important (Tier 1) 

Residential buildings 

A2. Size (length/width) and shape of test area 

C5. Level of motion of occupant(s) 

D1. Presence of pets 

B1. Lighting level (regardless of source of light) (lux)  

C4. Spatial location of occupant(s) 

C1. Number of occupants (including 0)  

A9. Presence of large objects (especially metal objects) within or near a 

space  

B3. Presence of interior lighting sources (non-overhead)  

A4. Number of doors (entrances/exits)  

D4. Use of robots 

Commercial buildings 

A2. Size (length/width) and shape of test area 

C1. Number of occupants (including 0) 

B1. Lighting level (regardless of source of light) (lux)  

C4. Spatial location of occupant(s) 

A9. Presence of large objects (especially metal objects) within or near a 

space 

C5. Level of motion of occupant(s) 

B7. Presence of sunlight - direct 

C7. Clustering of occupants (distance between occupants) 

 

2.6 Conclusions and Future Work 

This paper reviewed existing occupancy sensor technologies and summarized the potential 

influential variables that may cause sensor failures. Using the results of the literature review, the 

influential variables tested in previous literature were compiled into a comprehensive list, and 

additional variables were suggested by stakeholder attendees. Then an expert survey was 
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conducted across a diversity of stakeholders on the most and least important variables impacting 

occupancy sensor performance based on this comprehensive influential variable list. A final list of 

most and least important variables was determined for both residential and commercial buildings. 

The results of this work provide insights for sensor manufacturers on what variables industry 

stakeholders care about most when assessing the performance of occupancy sensor systems, and 

also provide initial results for use in considering a standard set of variables by which to test 

occupancy sensor systems for comparative performance evaluation.  

The limitations of this work include that there are many different influential variables and 

combinations of variables that can impact occupancy sensor systems, some of which may be more 

important in some building scenarios as compared to others. It was not attempted to rank the order 

of importance for different building types, such as hospitals versus schools. It is anticipated that 

they may be variations in these ranking among building types, as well as the frequency of 

occurrence of various variables. However, this effort was an attempt to define the most and least 

important variables for residential and commercial building applications overall. The stakeholders 

that participated in the survey were also mostly based in the U.S., which may influence results.  

Moving forward, as climate change challenges becoming increasingly important to address, 

significant efforts are and will continue to be made to improve the efficiency of buildings, as one 

of the largest consumers of energy and electricity. Occupancy sensor systems used to more 

efficiently control the lighting, HVAC, and other systems in a building represent a strong 

opportunity for energy savings compared to most building operations today. The results of this 

work will support the development of a standard methodology to test these systems. By having a 

standard set of variables that a diversity of representative stakeholders suggests are most important 

to use, the next step is to develop associated methods of testing to evaluate the performance of 
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occupancy sensor systems, which will help to provide a standard method for comparative 

performance evaluation, to determine which sensor systems work best and where these systems 

can be improved. Additionally, it is also important to consider that if a reliability issue is identified 

for a certain type of occupancy sensor system, further efforts are needed to mitigate these to 

improve the sensor’s reliability and performance. For example, if a sensor system is determined to 

be sensitive to natural daylight, it may be recommended to not install this sensor system near 

exterior windows, or additional changes to the sensor system may be made to reduce the sensitivity 

to daylight. The reliability challenges, however, vary depending on each sensor type, therefore, 

the specific methods to address each of these issues are also unique to the sensor system and need 

to be address individually. 
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Appendix: “Occupancy Sensor System Evaluation Methodologies - Stakeholder Feedback” 

survey 

 

 

Q4: Please categorize the building-related variables, including those that you believe would 

be most and least important to test for Occupancy presence sensing systems: 

A1. Glass walls & mirrors (reflective surfaces) 

A2. Size (length/width) and shape of test area 

A3. Location/characteristics of windows 

A4. Number of doors (entrances/exits) 

A5. Door sizes (i.e., single vs. double, other) 

A6. Wall, floor, and ceiling color/characteristics 

A7. Height of ceiling 

A8. Building envelope type (e.g., brick, siding, EFIS, batt vs. continuous insulation) 

A9. Presence of large objects (especially metal objects) within or near a space 

A10. Electromagnetic interference 

A11. Ventilation rates 

A12. Other building-related variables (please specify)  

 

Q5: Please provide any additional comments or suggestions for building-related variables (e.g., 

any additional variables/situations that should be considered) 

Q6: Please categorize the environment-related variables including those that you believe would 

be most and least important to test for Occupancy presence sensing systems: 

B1. Lighting level (regardless of source of light) (lux) 

B2. Spectral distribution of light 

B3. Presence of interior lighting sources (non-overhead) 

B4. Indoor humidity 

B5. Indoor temperature 

B6. Mean radiant temperature (indoor) 

B7. Presence of sunlight – direct 

B8. Presence of sunlight – diffuse 

B9. Other environment-related variables (please specify) 

Q7: Please provide any additional comments or suggestions for environment-related variables (e.g. 

any additional variables/situations that should be considered): 
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Q8: Please categorize the occupant-related variables including those that you believe would 

be most and least important to test for Occupancy presence sensing systems: 

C1. Number of occupants (including 0) 

C2. Age of occupant(s) 

C3. Metabolic rate 

C4. Spatial location of occupant(s) 

C5. Level of motion of occupant(s) 

C6. Noise level of occupant(s) 

C7. Clustering of occupants (distance between occupants) 

C8. Speed of occupant (e.g. walking vs. running) 

C9. Speed of occupants relative to one another 

C10. Number of occupants entering/exiting a room at the same time 

C11. Speed of occupants entering/exiting a room at the same time 

C12. Presence of occupants in adjacent spaces 

C13. Clothing color/contrast/patterns (including images on clothing) of occupants 

C14. Occupant clothing level (clo) 

C15. Skin color of occupant(s) 

C16. Body shape of occupant(s) 

C17. Occupants wearing heavy winter coats with a cold surface temperature 

C18. Other occupant-related variables (please specify) 

Q9: Please provide any additional comments or suggestions for occupant-related variables (e.g., 

any additional variables/situations that should be considered): 

Q10: Please choose other variables that you believe would be the most/least important to 

evaluate for Occupancy presence sensing systems: 

D1. Presence of pets 

D2. Motion characteristics of pets (if present) 

D3. Size/type of pets 

D4. Use of robots 

D5. Presence of mylar balloons/party items 

D6. Ability to communicate with thermostat 

D7. Initial performance/performance over time (e.g., does it take a while for the system to 

learn/work well) 

D8. Range of devices (related to electromagnetic interference) 

D9. Repeatability of performance of system (i.e., does is provide the same results 

consistently) 

D10. Presence of heat sources such as a heat lamp 

D11. Presence of wheelchairs, strollers, shopping carts, etc. 

D12. Other variables (please specify) 
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Q11: Please provide any additional comments or suggestions for other variables: 

Q12: Above you selected important variables for environment, building, occupant, 

and other categories. Of those that you felt were the most important, please list below the topmost 

important variables across all categories that should be tested for occupancy presence sensor 

systems used in residential buildings AND occupancy counting systems used in commercial 

buildings 
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CHAPTER 3 – DEVELOPMENT AND TESTING OF A PERFORMANCE 

EVALUATION METHODOLOGY TO ASSESS THE RELIABILITY OF OCCUPANCY 

SENSOR SYSTEMS IN RESIDENTIAL BUILDINGS 

 

3.1 Abstract 

With the emergence of advanced occupancy sensor technologies to better detect occupancy 

in buildings, a universal methodology and metrics are required to evaluate and report sensor 

systems’ reliability and compare the performance across multiple sensor systems. This research 

presents a methodology to assess the reliability of occupancy sensor systems in residential 

buildings in a controlled laboratory environment, including both “typical” and “failure” testing 

scenarios. The developed methodology was then implemented to evaluate a novel occupancy 

detection sensor system’s reliability. “Typical” testing evaluates the overall accuracy of the sensor 

system, which suggest how reliable the occupancy sensor system is over time. Results show that 

on average, the precision and recall are 0.75 and 0.70, indicating similar numbers of false positives 

and false negatives across the dataset. The overall accuracy of the tested sensor system was 62.4% 

to 76.4%. Failure testing results indicate whether there are influential variables impacting the 

sensor performance. For the tested sensor system, the number of occupants, presence of large 

objects, presence of interior light sources, and number of doors are not influential, while lighting 

level, location of occupants, additional door in the entry/exit area, and having the TV on are 

variables determined to impact the sensor system performance. 

Keywords: Sensor reliability; Standard testing methodology; Typical testing; Failure testing; 

Performance metrics; Occupancy sensor systems 
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3.2 Introduction 

Buildings account for approximately 40% of the total energy use in the U.S. (U.S. EIA, 

2021). In residential buildings, heating and cooling energy consumption consists, on average, of 

more than 50% of this energy use among the different energy end uses (RECS, 2015). Therefore, 

it is of importance to develop energy saving approaches to help reduce heating and cooling energy 

use in residential buildings.  

Energy consumption in residential buildings is strongly impacted by occupants and their 

energy use patterns (Hong et al., 2016). There have been an increasing number of studies focusing 

on the development of more advanced occupancy sensor systems to better collect occupancy 

information such that this occupancy related data could be used to inform building controls. For 

example, Razavi et al. (2019) proposed a genetic programming approach to predict the present and 

future home-occupancy status of households based on high-frequency meter data. Tan et al. (2022) 

used an ensemble method to combine sensor data from different data modalities, including 

environmental sensors (temperature, humidity, and illuminance), image sensors, and acoustic 

sensors to predict occupancy information in residential buildings. Such controls can help to target 

opportunities to reduce energy use and improve operational efficiency. For example, occupancy 

sensors may be connected to lighting systems to detect the presence/non-presence of people to 

determine when to turn lights on or off (Nagy et al., 2015). More recently, occupancy sensors have 

been considered for HVAC (heating, ventilation, and air conditioning) control applications. Turley 

et al. (2020) proposed non-probabilistic occupancy models developed based on occupancy data 

derived from occupancy sensors incorporated in smart thermostats to provide occupant-based 

controls in residential buildings in Colorado. These thermostats generally include a “home” and 

“away” mode, depending on whether the sensor detects movement or not. In “away” mode, 
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occupants are considered to be outside of the home and thus the setpoint temperature is adjusted 

to unoccupied mode, to reduce energy consumption. These thermostats generally include a “home” 

and “away” mode, depending on whether the sensor detects movement or not. In “away” mode, 

occupants are considered to be outside of the home and thus the setpoint temperature is adjusted 

to unoccupied mode, to reduce energy consumption. Esrafilian-Najafabadi and Haghighat (2021) 

used deep learning algorithms to provide dynamic estimations of preconditioning time and future 

occupancy patterns as a function of occupancy, indoor temperature, and weather data to make 

control decisions in residential buildings. 

However, occupancy patterns, particularly in residential buildings, can be highly 

unpredictable, varying significantly from person to person, and across households and building 

types. In a prior study (Chu et al., 2021a), more than 50 different variables were identified that 

may impact the ability of an occupancy sensor system to detect occupants. While occupancy 

detection methods have been the focus of increasing interest in recent years, there are opportunities 

to improve the accuracy of existing technologies. Sensor systems can incorrectly provide 

occupancy information under various scenarios and edge cases. For example, for occupancy 

detection sensors, most typically used in residential buildings, this can be either a false positive 

reading (i.e., the sensor system indicates there is an occupant(s) when there is not), or false negative 

(i.e., the sensor system cannot detect an occupant when there is one or more present). However, 

the methodology used to evaluate reliability of performance, and the metrics used to report this are 

not uniform across the literature. Without an established standard method to evaluate the 

performance of these sensor systems, it is not possible to objectively evaluate and compare the 

performance of multiple sensor systems. To address this challenge, therefore, the focus of this 

research is on the development of a universal evaluation methodology to test the reliability of 
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occupancy sensor systems in residential buildings. As a case study, the developed testing 

methodology was implemented to evaluate a novel occupancy detection sensor system in a 

controlled laboratory environment.  

This research is organized as follows. Section 2 presents the proposed standard 

methodology to test the reliability of occupancy sensor systems, while Section 3 describes the 

novel occupancy detection sensor system developed and evaluated. The case study results of 

applying the developed reliability evaluation methodology to the occupancy detection sensor 

system are detailed in Section 4. Conclusions and discussion are provided in Section 5. 

3.3 Evaluation Methodology for Sensor System Reliability 

The proposed methodology for testing the reliability of occupancy sensor systems in 

residential buildings includes both “typical” testing and “failure” testing. For typical scenarios, the 

occupancy sensor system is tested with real occupants following occupancy schedules and activity 

profiles that represent typical conditions in a controlled residential environment, to determine the 

frequency of failures. The purpose of typical testing is to evaluate the accuracy and reliability of 

each occupancy sensor system under real occupancy scenarios over time. For the “failure” testing, 

the performance of the occupancy sensor systems is determined by testing the impact of a range 

of variables to determine if they are influential or not, using the one variable at a time (OVAT) 

testing method (Hasan et al., 2016). When a single variable is considered, all other variables are 

fixed at standard level, while the variable being evaluated is varied across a range of values to 

assess how it impacts performance. The purpose of this component of testing is to identify which 

variable(s) may cause sensing failures, and thus influence the performance of the occupancy sensor 

system. 
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3.3.1 Typical testing 

Occupancy schedules under typical scenarios were first created, utilizing American Time 

Use Survey (ATUS) data (BLS 2020) as it collects activity data for people in the United States, 

including periods they spend at home, in residential buildings. The activity data of participants 

from the ATUS was then mapped to the presence or absence of occupants in residential buildings. 

This data was also classified based on occupant characteristics including their age group, whether 

it is weekday or weekend, and types of households. Three most common types of occupancy 

profiles, including “Day absence”, “Stay at home”, and “Night absence” profiles, were obtained 

from our prior study (Mitra et al., 2021), which represents approximately 88% of people in the 

United States. Based on these most common types of residential occupancy profiles, each was 

selected for use in representing typical occupancy profiles of residential buildings to evaluate the 

reliability of occupancy sensors systems in this research.  

The occupancy schedules from the ATUS-derived data were then used to compare to the 

raw data in the ATUS database, from which participant’s activity data was selected that most 

closely matched occupancy profiles. The criteria used for matching was calculated as the 

participant’s activity data that had the least difference in occupancy fraction as compared to the 

three previously identified typical individual profiles. The detailed activity information for the 

selected occupant IDs was then extracted from ATUS dataset, which forms “Sche 1”, “Sche 2” 

and “Sche 3”.  

These typical profiles are individual schedules obtained among all types of households 

based on ATUS data. For the evaluation of the performance of occupancy sensor systems in homes, 

typical occupancy schedules in households need to be then developed. Based on RECS data (2020), 

1-member households and 2-member households account for around 64% of the total amount of 
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households. Therefore, these two types of households were chosen in this work. For 1-member 

households, the three typical profiles were directly selected. For 2-member households, the three 

personal schedules were combined to form 2-person household schedules. Among these three 

typical profiles, the portion of household members following Sche 2 “Night absence” is relatively 

small, compared to the others (Mitra et al., 2021). Thus, for 2-person households, only “Sche 1” 

and “Sche 3” were used. “Sche 4” includes two people following “day absence”; and “Sche 5” 

includes one person following “day absence” and the other following “stay-at-home”. The 

combined schedule when two people follow “Stay-at-home” was not used in this research since it 

has less varied occupancy scenarios for use in evaluating sensor reliability. The five typical 

household profiles are summarized in Table 14. 

Table 14 Five typical household types and associated occupancy profiles 

Item Household Type Occupancy Profile 

Sch1 1-person household "Day absence" 

Sch2 1-person household "Night absence" 

Sch3 1-person household "Stay-at-home" 

Sch4 2-person household "Day absence" for both household members 

Sch5 2-person household 
"Day absence" for one person; 

"Stay-at-home" for the other 

 

The detailed activity profiles for these five typical occupancy scenarios were then created 

for use in evaluating occupancy sensor systems under a range of typical conditions. As an example, 

Table 14 shows a sample of Sch1 over a 24-hour period, in the column “24-hour duration”, which 

represents the ATUS-defined schedule across this period. ATUS collects occupancy data from 4 

am of one day to 4 am of the following day (e.g., Table 15) with a time interval of 5-minute. These 
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occupancy profiles are shown in Figure 10. All typical occupancy schedules and activity data used 

are also included as supplemental data, in the Appendix A.  

Table 15 1-person household with day work profile 

Start 

time 

End 

time 

24-hr 

duration  

(min) 

Intermediate 

duration 

(min) 

Test 

duration  

(min) 

ATUS 

activity 

details 

Location Motion level 

4:00 6:00 120 10 10 Sleeping Bedroom None 

6:00 6:30 30 30 10 

Washing, 

dressing and 

grooming 

oneself 

Bathroom Minor 

6:30 6:50 20 20 10 
Eating and 

drinking 

Dining 

room 
Minor 

6:50 18:20 690 10 10 Go to work 
Not in 

home 
None 

18:20 19:20 60 60 20 
Eating and 

drinking 

Dining 

room 

Minor & 

Major 

19:20 22:30 190 190 15 
Television 

and movies 

Living 

room 
Minor 

22:30 4:00 330 10 10 Sleeping Bedroom None 
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Figure 10 Occupancy profile and location data 

Motion level was defined by the National Electrical Manufacturers Association (NEMA) 

WD 7 Occupancy Motion Sensors Standard (NEMA 2016), including four categories based on the 

activity level, which are major, minor, fine, and no motion. An example of major motion is people 

walking; an example of minor motion is people extending their arms; an example of fine motion 

is people sitting and typing; an example of no motion is people sleeping. Each activity was also 

assigned a specific location or a set of locations in the laboratory space for occupants, who follow 

these typical profiles.  

Time Sche1 Sche2 Sche3 Sche4_Person1 Sche4_Person2 Sche5_Person1 Sche5_Person2
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8:00
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10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Bedroom Bathroom Living room
Kitchen/

Dining room
Not in home
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Given that there are a number of activities that occur over long durations of many hours 

(e.g., “no one at home”, these activities may be shortened to optimize laboratory testing time and 

utilization. These testing durations proposed are included in the column “test duration”, shown in 

Table 15. The “Test duration” is a shorter version of sleeping and not at home activity times, since 

there are rarely variations in occupancy and activities occurring during these periods. The longer 

time periods were reduced to 10 to 20 minutes. Preliminary testing results suggested that a 10- to 

20-minute duration was able to capture the behavior of a sensor system sufficiently to mimic a 

longer period of time. This shorter duration also enables a more time-efficient testing method 

which is beneficial given this test method requires human subjects to complete. There are 

limitations of the use of the “test” duration for extrapolating to the 24-hour duration. Further 

studies can be implemented in future to investigate this further. 

 The sensor performance is evaluated at 1-min intervals, which means that the ground truth 

and sensor output data is also collected and compared every 1 minute. This is based on results 

attained from the expert survey developed in a prior study (Chu et al., 2021a). The last question in 

this survey asked the time frequency of evaluation of the performance of occupancy sensor systems 

in residential buildings.  A 1-minute frequency was the most commonly recommended. As such, 

for a 10-minute activity, this will result in ten classification results (occupied/unoccupied) from 

the sensor system, for use as input in calculating the resulting performance metrics. In order to 

translate the “test” duration test results into a reliability metric representative of a 24-hour period, 

the performance of the sensor system across the shortened activity periods must be extrapolated to 

the initial “24-hour duration” period. To do so, test results were scaled up from actual “Test 

duration” period to “24-hour duration” period by assuming the results from the “test” duration are 

proportional to the time for the activity across the “24-hour duration”. 



86 

 

3.3.2 Failure testing 

A recent study (Chu et al., 2021a) conducted a comprehensive literature review on 

influential variables impacting the performance of occupancy sensor systems. This research 

compiled a list of these variables, amounting to approximately 50 variables in total. An expert 

survey was then used to determine what a diversity of stakeholders suggest as the “most important” 

variables. The resulting most important variables suggested for residential buildings included 10 

variables, more specifically, size and shape of the test area, level of motion of occupant(s), 

presence of pets, lighting level, spatial location of occupant(s), number of occupants, presence of 

large objects, presence of non-overhead interior lighting sources, number of doors, and use of 

robots (e.g., robot vacuum). The proposed standard set of variables to be tested are the same across 

any occupancy sensor system that may be tested following this method. 

The size and shape of the test area variable means different interior configuration and 

layouts of a controlled test space. This would also influence how many sensors are needed, and 

where the sensors are installed for a particular sensor system. For level of motion of occupants, 

four different motion levels are defined including major, minor, fine and no motion (Chu et al. 

2021a). These motion levels are based on the National Electrical Manufacturers Association 

(NEMA) WD 7 Occupancy Motion Sensors Standard (NEMA 2016). Some sensor systems may 

have failures when occupants are not moving, such as PIR motion sensors (Kilic et al., 2013). 

Lighting level indicates a binary variable, which represents lights being on or off, since lighting 

levels are not typically dimmable in a residential building. Some types of sensors are sensitive to 

lighting levels and/or certain kinds of light (Yang et al., 2018). Pets, large objects, interior lighting 

sources, and robots are considered, since they could be mistaken for a person by certain types of 

occupancy sensor systems. For number of doors, there may be potential failures caused by 



87 

 

variations in this variable if sensor systems miss detecting people entering or leaving when there 

are multiple entry/exit doors. This is particularly the case for door-based occupancy sensor systems, 

which rely on detection of occupants in these locations to determine occupancy. This set of 

variables is proposed as a standard set of variables to evaluate all occupancy sensor systems 

considered.   

Apart from the above-mentioned most important variables, additional variables may also 

be included in the evaluation methods. These may be added based on known failures or sensitivities 

of certain sensors or combination of sensor types, or as suggested by the manufacturer of the sensor 

system who wishes to evaluate the occupancy sensor system under these conditions. Apart from 

the above-mentioned most important variables, additional variables may also be included in the 

evaluation methods. These may be added based on known failures or sensitivities of certain sensors 

or combination of sensor types, or as suggested by the manufacturer of the sensor system who 

wishes to evaluate the occupancy sensor system under these conditions. Based on how each 

variable might influence the sensor performance, different levels of variables are determined. For 

example, for the variable “motion level”, there are four levels (major, minor, fine and none), 

indicating that the occupancy sensor system will be tested under these four different motion levels 

to determine which level will fail the sensor system. For each variable level, at least three trials, 

under identical conditions, are conducted for each scenario to make sure the testing results are 

more robust. 

For the OVAT method, as mentioned above, a standard value must be determined for each 

of the variables not being tested in a particular scenario. The target for this standard set of values 

would be the environmental conditions that are most commonly occurring in a residential 

environment. In this case lights are on, with no pets, large objects, or robots. For spatial location 
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of occupants, this was in the center of the largest main room, which was the living room area. For 

testing of large objects, non-overhead interior lighting sources, robot, and pets, this also occurred 

in center. All variables were tested under both the presence of occupants (i.e., the laboratory test 

home was occupied), and without occupants (i.e., when the space was unoccupied). For each 

variable, at least three trials, under identical conditions, were conducted for each scenario. 

3.3.3 Ground truth 

Ground truth provides the information that is known to be real or true by direct observation 

or measurement. In this paper, it refers to the real occupancy information (i.e., whether or not the 

test space was occupied) compared to the sensor prediction. The ground truth data must be 

provided to enable the comparison to the sensor output to evaluate the sensor performance. For 

typical testing, ground truth data was pre-defined/known based on the developed typical 

occupancy schedules and activity profiles. For failure testing, ground truth data was manually 

recorded. This data was used to compare with the sensor output to determine sensor performance. 

The ground truth data was recorded at the same frequency as the sensor data. 

3.3.4 Laboratory Setup  

In order to ensure repeatability of test results, as well as to best mimic conditions 

experienced by occupancy sensors in residential buildings, standard laboratory conditions are 

proposed and used.  Variables that are untested should be within acceptable limits to reduce 

potential sensor failures due to these untested variables. These are as follows:  

1) Exterior windows are covered with an opaque cover to eliminate exterior lighting sources. 

Insulated foam boards could be used to cover windows. 

2) Light sources are LED.  
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3) Lighting levels are approximately 300 lux at the work plane in the center of the test space(s) 

following DiLaura et al. (2011).  

4) Uniform lighting levels are present throughout the test space. The lighting level is tested 

initially in each room. As needed supplemental overhead lighting is used to make lighting 

levels uniform across different spaces. 

5) Indoor temperature is 21 +/- 2 C. Indoor temperature is controlled by setting the 

temperature setpoint using smart thermostat in residential buildings. 

6) Relative humidity must be less than 80% +/- 5%, with a targeted value of 30-60%. As 

suggested by Ramos et al. (2015) the sensing ability may decrease with higher humidity 

for IR sensors. Based on the ASHRAE Equipment and Systems Handbook (2020), 30% to 

60% relative humidity is ideal for human occupancy.  

7) Electronics that emit potential interference in a similar frequency band (e.g., microwaves) 

as the tested sensor system(s) are turned off during testing to avoid electromagnetic 

interference. 

3.3.5 Performance metrics 

Performance metrics for reliability evaluation of occupancy sensor systems have been 

discussed in detail in a recent study (Chu et al. 2021b). Among 80 peer-reviewed research articles, 

accuracy is the most widely used metric, which is the ratio of correct predictions over total number 

of testing scenarios. Some recent papers have used a confusion matrix to discuss failures. This 

method separates the counts of true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) that occur during testing. Such a method enables a stronger understanding of the 

types of errors that occur. However, in many cases for prior studies, only an overall accuracy value 
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or error estimation was provided rather than analyzing these four terms in detail. Therefore, in this 

proposed standard methodology, a confusion matrix, and associated metrics, including precision, 

recall, F1-score, and accuracy were used to evaluate the “typical” testing results of the occupancy 

sensor systems. Precision is the percentage of true positive out of all the predicted positives as 

shown in Equation (1), while recall represents the ratio of true positives to all actual positives as 

shown in Equation (2). An F1-score is the harmonic mean of precision and recall Equation (3), 

which combines both false positives and false negatives, and gives precision and recall the same 

weight (Deng et al. 2016).  

Precision = TP/(TP+FP) (1) 

Recall = TP/(TP+FN) (2) 

F1-score = 2 * (Precision * Recall)/(Precision + Recall) (3) 

While “failure” testing aims to test the influence of each individual variable on the sensor 

performance, confusion matrix (TP, TN, FP, FN) is chosen as a standard metrics so that results 

can be evaluated for each testing scenario. By comparing the sensor output with ground truth 

(actual occupancy information), a confusion matrix will be provided. TP represents that the sensor 

output is the same as the ground truth, which is “Occupied”; TN means that the sensor output is 

“Unoccupied” which is same as the ground truth; FP is that the sensor output is “Occupied” but 

the space is actually “Unoccupied”; FN means that the sensor output is “Unoccupied” but the space 

is actually “Occupied”. After testing one variable, for all scenarios, if the prediction result is either 

TP or TN, it means that the sensor output is correct compared to the ground truth, indicating the 

variable is not influential since it does not appear to cause the sensor system to fail. Otherwise, if 
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either FP or FN was observed, that means this variable is influential since it may cause the sensor 

system to fail at certain conditions. 

3.4 Experimental Results: Case Study 

3.4.1 Sensor System Description 

The tested sensor system is the MicroCam platform, which is a battery-powered, stand-

alone sensor system designed to detect occupancy in residential homes. It contains a local 

processing unit, a camera, a microphone, a motion sensor, and a Near-IR Band (NIR) Light 

Emitting Diode (LED). Multiple MicroCam platforms operate concurrently and communicate 

wirelessly with each other to detect presence of people. This provides more coverage for the 

detection task that the system is designed for. Advanced algorithms are employed to translate data 

streams into actionable adjustments to home heating and cooling. The algorithms are implemented 

and executed locally on the sensor unit making the solution stand-alone, not relying on external 

computation units or cloud computing. 

MicroCam platforms are designed to operate under daylight conditions as well as low-

light/no-light conditions, and to detect people even when they are static. This system is also 

designed to differentiate different sources of motion, i.e., motions of pets, robot vacuums, etc. from 

people. After local data processing, the MicroCam platforms send only a binary occupancy result 

to the “lead platform”, which is then connected to the HVAC system of a home to adjust setpoints 

based on occupancy. 

3.4.2 Test bed 

For testing and evaluation of occupancy sensor systems, controlled laboratory tests were 

conducted using a residential building laboratory. The residential building laboratory facility, 
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located in East Lansing, MI, includes two identical single-story wood-framed residential buildings, 

one of which was used in this study. This laboratory space includes eight double-glazed windows 

and two exterior doors. The interior includes white-colored drywall, grey floors and white ceilings, 

with interior walls consisting of wood studs with drywall on either side. The interior of the 

laboratory test space is reconfigurable, including movable interior walls to allow for testing by 

using different interior layouts. In this study, two configurations were chosen, including a two-

bedroom and three-bedroom layout. The three-bedroom layout is shown in Figure 11 (a). To create 

a 2-bedroom layout, the interior wall between bedroom 1 (BR1) and bedroom 2 (BR2) was 

removed. Overhead LED lighting was installed and evenly distributed on the ceiling. The interior 

of the test space is furnished to represent a typical residential home configuration. This included a 

living room, kitchen, dining room, bedroom/bathroom, and storage room.   

Seven occupancy sensor platforms, including one lead platform (mc04) and six member 

platforms (mc01, mc03, mc05, mc06, mc07, mc08), were installed on the wall and ceiling per 

developer’s instructions. Each platform is an independent occupancy sensor component with 

multiple sensing technologies. Each platform utilizes sensor fusion technology to integrate motion 

sensors, microphones, and image sensors to detect occupancy. This configuration, as shown in 

Figure 11 (a), was used to provide sufficient coverage of the entire testing space. The lead platform 

(mc04) was connected via Wi-Fi and located in BR1. The member platforms communicated with 

the lead platform using Bluetooth. Platforms mc06 and mc08 were installed such that they faced 

the entry/exit area for each of the two exterior doors. The platforms mc01, mc03, and mc05 were 

used to cover each of the three bedrooms, and mc07 was used for the living room, kitchen and 

dining area.
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(a) Interior layout showing the three-bedroom configuration and deployment of sensors platforms mc01 

through mc08 

 
(b) 1 m x 1 m grid of locations within the laboratory for use in directing occupants where to be throughout 

testing 

(Note: BR – Bedroom; K/D – Kitchen/Dining; LR – Living room; SR – Storage room) 

Figure 11 Residential laboratory used for testing of occupancy sensor systems  
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During testing it was important, for consistency, to ensure that the occupants move about 

the test space in a consistent manner. Therefore, the interior space was divided into seven different 

blocks, labeled from A to G, where each letter represents a different location. This included A 

through C for the three bedrooms, D for the doorway, G for the kitchen and dining area, and E and 

F are for the living room space. Within each quadrant, a 1 m x 1 m grid was created and labeled 

on the floor (Figure 11 (b)) The storage room (SR) shown is where all equipment was located, 

therefore it was not used as a location where occupants could go during testing. People were 

assigned to different locations, following the occupancy schedule and activity profiles. For 

example, occupants were moving in quadrant G when they are cooking and eating in the kitchen 

and dining area. When people were reading, watching TV, and playing video games, they sat on 

the couch in the living room (Blocks E and F). Bedroom 3 (Block A) is considered to be a bedroom 

with a bathroom. Bedroom 1 (Block C) and Bedroom 2 (Block B) were also used for sleeping.  

3.4.3 Data collection 

The testing was conducted across a period of several months, from April to July 2021. A 

web scraper was used to extract occupancy output from the sensor output interface using Home 

Assistant (2021), an open-source smart home platform. The sensor output collected was a binary 

classification of “Occupied” or “Unoccupied”. Ground truth data was manually recorded during 

failure testing and predefined for typical testing based on the developed typical occupancy 

schedules and activity profiles. 
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3.5 Results 

3.5.1 Typical testing results 

Typical testing was implemented following the five typical occupancy schedules and 

activity profiles, as detailed in Table 15 and in the Appendix. Table 16 shows an example of the 

typical testing results with the 1-person household with day absence profile, following the “test 

duration” testing period. The remaining typical test results are included in Tables 27-30 in the 

Appendix B. The sensor performance was evaluated at 1-min intervals for these activity durations. 

The “error time” represents the total time that sensor failures occur for the “test duration”. For 

example, for the “eating and drinking” activity, the error time is eight minutes out of the 10-minute 

test duration, which means that there were eight detection errors out of the ten times of detection, 

or 80% of the time. Following the methods proposed in the methodology section, these errors were 

extrapolated to the 24-hour duration. From these tables, most failures occurred when occupants 

were using the computer, or sitting (either on the couch for reading or for eating and drinking). 

For these cases, the positioning of the sensor platforms greatly affects the performance. For 

instance, when people are using the computer, they are sitting and their back is towards the camera, 

causing an occlusion by the chair and thus misdetection. Similarly, as seen in Figure 11 a, the 

relative positioning of the couch and mc06 is the main reason for misdetection of people sitting on 

the couch.  
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Table 16 Typical testing results with “1-person household with day absence profile” using 

“Test Duration” 

ATUS-Based 

Activity  

detail 

Ground 

truth 

Test 

Duration 

(min) 

Error 

Time 

 (min, 

%) 

Intermediate  

duration  

(min) 

Error 

Time1 

(min) 

24-hour 

duration 

(min) 

Error 

Time1 

(min) 

Sleeping 

Occupied 

10 
0 

(0%) 
10 0 120 0 

Teeth brushing; 

Shower; 

Getting dress 

10 
0 

(0%) 
30 0 30 0 

Eating and 

drinking 
10 

8 

(80%) 
20 16 20 16 

No one in home Unoccupied 10 
6 

(60%) 
10 6 690 414 

Cook food; Bring 

food to dinner 

table; Eating and 

watching TV; 

Remove dishes, 

clean kitchen and 

table 
Occupied 

20 
2 

(10%) 
60 6 60 6 

Watching TV  15 
0 

(0%) 
190 0 190 0 

Sleeping 10 
10 

(100%) 
10 10 330 330 

1 Calculated by extrapolation based on error time for “test duration”; see methodology section 
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Performance metrics were then used to evaluate the reliability of the occupancy sensor 

system over time, including a confusion matrix (TP, TN, FP, and FN), Precision, Recall, F1-score, 

and accuracy. These metrics were calculated for the “test duration”, for the five typical occupancy 

schedules and activity profiles (Table 15), then extrapolated to the “24-hour duration”. The last 

column, “Summary”, represents the overall performance evaluation results combining all five sets 

of testing results.  

From Table 17, for the “test duration”, for 1-person households there are more TPs and 

FNs with Sch3 compared to that of Sch1 and Sch2. This is because Sch3 is the 1-person with a 

stay-at-home profile where the test duration is longer, thus a greater number of data points is 

collected, compared to the other two schedules. Since there are more TPs than FNs for Sch3, the 

highest accuracy was attained for Sch3 in the 1-person household category. For the 2-person 

household, even though the total number of data points collected is higher for Sch5, there were 

more FNs compared to that of Sch4, therefore, Sch4 resulted in higher accuracy.  

When the data is scaled to the “24-hour duration”, the TPs, TNs, FPs and FNs were 

proportionally increasing according to the time duration when they occurred. As a result, as some 

schedules have different activities that were scaled, the confusion matrix TPs, TNs, FPs, and FNs 

are adjusted differently. Following this extrapolation, the overall accuracy with Sch1 and Sch3 

decreased by 22% and 20%, respectively, from the “Test duration” to “24-hour duration”, since 

the FP increased slightly more compared to the others. For Sch2, both TPs and FPs largely 

increased, but FPs increased a bit more compared to TPs, and FN slightly increased, thus the 

accuracy with Sch2 decreased by 20%. For Sch4, the TPs and FNs increased a similar amount, 

with TNs substantially increasing, thus the accuracy has a slight increase of 4%. For Sch5, since 
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the increase in TPs and TNs are similar to that of FPs and FNs, the accuracy is similar, with a 

slight decrease of 1.6%. 

There are some scenarios where Precision is 1, which means there are no FPs. Low 

Precision also appears in Sche1 and Sche2, which are less than 0.5, indicating that there are more 

FPs in these scenarios. However, there is no one value for Recall, which indicates there are always 

FNs in all scenarios, and FNs are consistent across all scenarios. On average, the Precision and 

Recall are 0.75 and 0.70, respectively, which means that there are a similar number of FPs and 

FNs across the dataset. The overall accuracy of the typical testing is also calculated. For the “Test 

duration” this was 76.4%, and 62.4% for the “24-hour duration”. 
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Table 17 Performance evaluation metric calculation for typical testing results analysis 

  1-person household 2-person household 

Overall 
   Sche1 Sche2 

Sche3-

Day11 

Sche3-

Day21 
Total Sche4 

Sche5-

Day11 

Sche5-

Day21 
Total 

Test  

Duration 

TP 55 46 69 65 235 115 125 102 342 577 

TN 4 0 3 0 7 25 0 0 25 32 

FP 6 15 0 0 21 0 0 0 0 21 

FN 20 14 18 15 67 17 45 38 100 167 

Precisio

n 
0.90 0.75 1.00 1.00 0.92 1.00 1.00 1.00 1.00 0.96 

Recall 0.73 0.77 0.79 0.81 0.78 0.87 0.74 0.73 0.77 0.78 

F1-score 0.81 0.76 0.88 0.90 0.84 0.93 0.85 0.84 0.87 0.86 

Accurac

y 
69.4% 61.3% 80.0% 81.3% 73.3% 89.2% 73.5% 72.9% 78.6% 76.4% 

24-hr  

Duration 

(scaled) 

TP 398 594 1004 1996 656 875 1531 3527 

TN 276 0 3 279 685 0 685 964 

FP 414 750 0 1164 0 0 0 1164 

FN 352 96 433 881 99 565 664 1545 

Precisio

n 
0.49 0.44 1.00 0.63 1.00 1.00 1.00 0.75 

Recall 0.53 0.86 0.70 0.69 0.87 0.61 0.70 0.70 

F1-score 0.51 0.58 0.82 0.66 0.93 0.76 0.82 0.72 

Accurac

y 
46.8% 41.2% 69.9% 52.7% 93.1% 60.8% 77.0% 62.4% 

Note: 1’Day1’ and ‘Day2’ appear when testing was completed across two days to represent one typical schedule. 
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3.5.2 Failure testing results 

Twelve individual variables were tested, including the standard set of variables (1-10) from 

the stakeholder survey (Chu et al. 2021) and two additional variables that were identified to be 

potentially influential to the tested sensor system (11-12). These included the presence of an extra 

door in the entry/exit area and having the TV on. For (11), this variable was tested because of the 

known sensitivity of the sensor system to other doors near an entry/exit door. For (12), this was 

chosen to be tested because when the TV was on, its sounds and pictures could potentially be 

interpreted by the sensor system as being occupants. All tested variables and their range of values 

tested are listed in Table 18. Additional trials were added to certain variables when inconsistent 

results occurred within the first three trials, to collect further data on performance. 

Table 18 Tested variables and associated testing levels 

Variables Levels 

Motion level None Fine Minor Major 

Number of occupants 1 2 

Spatial location of occupants D7 G1 G7 F5 E10 E4 A6 C1 

Interior lighting level Off On 

Presence of large metal objects Non-presence Presence 

Presence of interior lighting sources Non-presence Presence 

Number of exterior doors 1 2 

Presence of (vacuum) robot Non-presence Presence 

Presence of pets Non-presence Presence 

Test area configuration Two-bedroom Three-bedroom 

 

During failure testing, each scenario was tested for five minutes continuously. Across this 

period, data was collected every minute. Based on whether there were state changes across this 5-
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min period, the resulting value was determined to be a TP, TN, FP or FN. A five-minute period 

was also used in between tests to allow for the sensor system to respond to changed conditions. In 

addition, to prevent data loss, simple occupied/unoccupied scenarios were also used as a check to 

make sure the sensor system was operational before each test. The results of failure testing are 

reported herein in two parts, including those variables found to be influential and those found not 

to be influential. 

3.5.2.1 Non-influential individual variables 

Individual non-influential variables included number of occupants, presence of large objects, 

presence of large interior light sources, and number of doors, as shown in Table 19. In other words, 

in all scenarios tested, both with and without occupants present in the laboratory test space, all 

resulting data collected was either TPs or TNs, as shown in the last three columns. The last three 

columns describe the sensor output, ground truth, and confusion matrix. 

For number of occupants, scenarios with 1 and 2 occupants were evaluated, however this 

variable was not found to be impactful. The presence of large objects (2m metal ladder) and the 

presence of interior light sources (floor lamp) were not found to impact sensor reliability. For 

number of doors, for 1 door, occupants entered and exited from the same door. For the 2-door 

scenario, occupants entered from one of the two exterior doors, and then exited from the other. No 

impact was found for this variable.  
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Table 19 Testing scenarios and results of non-influential individual variables  

Test  

variable 
Occupancy 

Lighting 

level 

Presence of 

large object 

objects 

Interior 

lighting 

sources 

Use of 

robots 

Presence 

of pets 

Motion 

level 
Location 

Number 

of 

occupants 

Number 

of doors 

Sensor 

Output 

Ground 

truth 

Prediction 

result 

Number 

of  

occupants 

Presence On No No No No Major Center  

1 

1 

1 1 TP 

1 1 1 TP 

1 1 1 TP 

2 1 1 TP 

2 1 1 TP 

2 1 1 TP 

Presence 

of  

large 

objects 

Non-presence On 

Yes 

No No No - - 0 1 

0 0 TN 

Yes 0 0 TN 

Yes 0 0 TN 

No 0 0 TN 

No 0 0 TN 

No 0 0 TN 

Presence On 

Yes 

No No No Major Center  2 1 

1 1 TP 

Yes 1 1 TP 

Yes 1 1 TP 

No 1 1 TP 

No 1 1 TP 

No 1 1 TP 

Presence 

of  

interior 

light 

sources 

Non-presence On No 

Yes 

No No - - 0 1 

0 0 TN 

Yes 0 0 TN 

Yes 0 0 TN 

Presence On No 

Yes 

No No Major Center 2 1 

1 1 TP 

Yes 1 1 TP 

Yes 1 1 TP 

umber of 

doors 

Non-presence On No No No No - - 0  

1 0 0 TN 

1 0 0 TN 

1 0 0 TN 

2 0 0 TN 

2 0 0 TN 

2 0 0 TN 

Presence On On No No No Major Center  2 

1 1 1 TP 

1 1 1 TP 

1 1 1 TP 

2 1 1 TP 

2 1 1 TP 

2 1 1 TP 
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3.5.2.2 Influential individual variables 

 Lighting level was tested only under non-presence scenarios, as shown in Table 20. This was 

because with the presence of occupants, other variables are introduced such as motion level, 

location, and number of occupants. Seven trials were conducted with lights on, where FPs occurred 

twice. This was found to occur when, prior to testing, occupants exited the door, making the space 

unoccupied, however the sensor system missed detecting this event thus the output remained 

occupied. In other words, this does not mean that the sensor system detects occupants when the 

space is not occupied, but rather when there is an issue with the entry/exit event. With lights off, 

four of the five trials resulted in FPs. This may be because of light reflection, off some objects 

present in the test space, or an issue with the entry/exit event not being detected. 

For motion level, Table 20 presents the testing scenarios and results. Before each test, the 

occupant exited the space to ensure the sensor system started in an unoccupied state, then the 

occupant entered the space and maintained the design motion level across each trial period. The 

results indicate there were no failures for “Major”, “Minor” and “Fine” motion levels, and only 

one failure for the “None” motion level. For location of occupants, eight locations were used. 

These locations (Figure 11 b) included in the center of spaces (E10), corners (E4, D7, G1), 

locations near sensor platforms (G7), and in locations that are anticipated to be challenging for the 

sensor system to detect people correctly (F5, A6). Results (Table 21) show that the only failure 

occurred at E10. This may be because of its proximity to the door, causing the sensor system to 

register that the occupant is leaving the space when they did not.  
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Table 20 Testing scenarios and results of “Lighting level” and “Motion level” variables 

Test variable Occupancy 
Lighting 

level 

Presence of 

large metal 

objects 

Interior 

lighting 

sources 

Use of 

robot 

Presence 

of pets 

Motion 

level 
Location 

Number 

of 

occupants 

Number 

of doors 
Output 

Ground 

truth 

Prediction 

result 

Lighting 

level 
Non-presence 

On 

No No No No - - 0 1 

0 0 TN 

On 0 0 TN 

On 1 0 FP 

On 0 0 TN 

On 0 0 TN 

On 0 0 TN 

On 1 0 FP 

Off 1 0 FP 

Off 1 0 FP 

Off 0 0 TN 

Off 1 0 FP 

Off 1 0 FP 

Motion 

level of 

occupants 

Presence On No No No No 

Major 

Center 1 1 

1 1 TP 

Major 1 1 TP 

Major 1 1 TP 

Minor 1 1 TP 

Minor 1 1 TP 

Minor 1 1 TP 

Fine 1 1 TP 

Fine 1 1 TP 

Fine 1 1 TP 

None 0 1 FN 

None 1 1 TP 

None 1 1 TP 
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Table 21 Testing scenarios and results of “Location of occupants”, “Use of robots”, and “presence of pets” variables 

Test 

variable 
Occupancy 

Lighting 

level 

Presence 

of large 

metal 

objects 

Presence 

of 

interior 

lighting 

sources 

Use of 

robots 

Presence 

of pets 

Motion 

level 
Location 

Number 

of 

occupants 

Number 

of doors 
Output 

Ground 

truth 

Prediction 

result 

Location 

of 

occupants 

Presence On No No No No Major 

D7 

1 1 

1 1 TP 

G1 1 1 TP 

G7 1 1 TP 

F5 1 1 TP 

E10 0 1 FN 

E4 1 1 TP 

A6 1 1 TP 

C1 1 1 TP 

Use of 

robot 

Non-

presence 
On No No Yes No NA NA 0 1 

1 0 FP 

1 0 FP 

1 0 FP 

Presence On No No Yes No Major Center 1 1 

1 1 TP 

1 1 TP 

1 1 TP 

Presence 

of pets 

Non-

presence 
On No No No Yes NA NA 0 1 

1 0 FP 

1 0 FP 

1 0 FP 

Presence On No No No Yes Minor Center 2 1 

1 1 TP 

1 1 TP 

1 1 TP 
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For use of robots, a robot vacuum was used. For non-presence scenarios, the occupants were 

in the space initially and turned on the robot, then left the space, keeping robot running for at least 

five minutes without the presences of occupants. Results show consistent FPs when the space was 

unoccupied. No failures occurred for presence scenarios. For presence of pets, two rabbits were 

used, which were placed in an enclosure in the center of the test space and allowed to move freely 

within this space during testing.  Similar to use of robots, there were consistent FPs during non-

presence scenarios. This was an unexpected result. After discussions with the developer, 

supplementary tests were conducted for these scenarios, wherein the system started in an 

unoccupied state, meaning there were robot vacuum or pets but no occupants in the space. From 

this supplemental testing, it was determined that when the initial state is unoccupied, the presence 

of robot vacuum or pets did not cause FPs, indicating that the FPs in the prior tests were not due 

to robot vacuum or pets being detected as people, but rather due to exit events of the people (who 

were initially in the space) not being properly registered, which is caused by the continuous motion 

in the entry/exit area. Testing was also completed a second time for when the sensor system began 

in an occupied state (i.e., the robot vacuum or pets as well as occupants), then the occupants left 

the space, while the robot vacuum or pets remained. The results from this testing was consistent 

with the first set of testing results reported in Table 21. The supplemental results are included in 

Appendix C. 

As discussed, several additional variables were also tested beyond those considered to be the 

“most important.” These include the presence of another door in the entry/exit area, and having 

the TV on, the results of which are shown in Table 22. Figure 11 shows that the “entry/exit” 

platform mc06 can “see” both the exterior door and the interior bedroom door. This scenario was 

tested with an occupant entering and exiting the BR3 door. Results indicated FNs during this 
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scenario, indicating the sensor system interpreted this as the occupant exiting the space when they 

did not or the person in BR3 was in a blind region. For the TV on scenario, the results indicate 

consistent FPs occurring when the TV was left on in an unoccupied space. This is likely because 

the sensor system incorrectly interpreted the TVs picture and/or sounds as being an occupant.  This 

is another scenario, for which supplementary testing was performed. Results suggested that this 

kind of error can be avoided.   
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Table 22 Testing scenarios and results of additional variables, including “Presence of another door in Entry/Exit area”, and 

“TV On”  

Test 

variable 
Occupancy 

Lighting 

level 

Presence 

of large 

metal 

objects 

Interior 

lighting 

sources 

Use of 

robots 

Presence 

of pets 

Motion 

level 
Location 

Number 

of 

occupants 

Number 

of doors 
Output 

Ground 

truth 

Prediction 

result 

Another 

door in 

E/E 

area 

Presence On No No No No Major Center 1 1 

0 1 FN 

0 1 FN 

1 1 TP 

0 1 FN 

1 1 TP 

1 1 TP 

0 1 FN 

TV on 

Non-

presence 
On No No No No NA NA 0 1 

1 0 FP 

1 0 FP 

1 0 FP 

Presence On No No No No Major Center 2 1 

1 1 TP 

1 1 TP 

1 1 TP 
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3.6 Conclusions 

This research proposes a standard evaluation methodology to test the reliability of 

occupancy sensor systems in residential buildings. The proposed methodology includes both 

“Typical testing” and “Failure testing”. Typical testing is used to evaluate the reliability of each 

occupancy sensor system under scenarios that mimic real occupancy scenarios. Failure testing 

follows one variable at a time (OVAT) methods to test the most important variables based on a 

stakeholder survey, to determine if these variables impact sensor system reliability. The developed 

methodology was then implemented for a novel occupancy detection sensor system to test the 

sensor system’s reliability. The following overall conclusions can be made for this study:  

(1) Cluster analysis methods were used to analyze American Time Use Survey-derived data, 

resulting in three main types of occupancy profiles for residential buildings, specifically 

“Day absence”, “Stay at home”, and “Night absence” profiles. These representative 

residential occupancy profiles for individuals were then used, in combination, to create five 

1-person and 2-person household, representative, 24-hour occupancy and activity scenarios, 

using activity data from the ATUS database that most closely match these occupancy 

profiles.   

(2) The resulting five activity schedules were followed by real occupants in a controlled, 

residential laboratory environment to evaluate occupancy sensor system performance. 

Occupancy sensor systems were tested using a shortened “test duration” for all activities, 

which allowed for all unique activities to occur, but shortening longer duration activities 

to reduce the need to test continuously for 24 hours. The results were extrapolated to “24-

hour duration” results, with the 24-hour results representing the predicted reliability of the 

sensor system over a typical 1-day period in a residential building. Results show that on 
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average, the Precision and Recall are 0.75 and 0.70, respectively, which means that there 

are similar number of FPs and FNs across the whole dataset. The overall accuracy of the 

tested novel system ranged from 62.4% to 76.4%.  

(3) For failure testing, individual variable testing provided insights as to the impact of a range 

of levels of individual variables on sensor system performance. Variables were identified 

for testing based on a both stakeholder feedback, as well as based on known possible 

sensitivities of the sensor system being evaluated. This resulted in the testing of a total of 

12 individual variables. For the tested sensor system, the “Number of occupants”, 

“Presence of large objects”, “Presence of interior light sources”, and “Number of doors” 

are not influential, while “Lighting level”, “Location of occupants”, “Another door in the 

entry/exit area”, and “TV on” variables were determined to impact sensor system 

performance.  

(4) Supplementary tests showed that the performance of the evaluated system is affected most 

by the positioning of the platforms monitoring the entry/exit doors. Individual sensor 

evaluations showed that the system can differentiate between the sources of motion, i.e. 

can differentiate between people and robot vacuums and pets. 

The proposed methodology for evaluating the reliability of occupancy sensor systems 

presents an opportunity for use as a standardized method to evaluate residential occupancy sensor 

systems that currently does not exist. The focus on typical scenarios enables the reporting of 

metrics representing the reliability of the sensor system under typical U.S. household scenarios. 

This could be used as a comparative measure of performance across sensor systems. The focus on 

failure testing enables a focus on the potential weaknesses in the sensor system reliability, as well 

as targets for further testing and development.
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APPENDICES
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APPENDIX A: Typical occupancy schedules and activity profiles 

 

 

Table 23 Sche2: 1-person household with night absence profile 

Start time End time 24-hr 

duration  

(min) 

Test 

duration  

(min) 

ATUS activity details Specific location Motion level 

4:00 12:00 480 10 Sleeping Bedroom None 

12:00 13:00 60 15 Eating and drinking Dining room Minor & Major 

13:00 13:10 10 10 Laundry Bathroom Major 

13:10 13:40 30 10 Washing, dressing and grooming oneself Bathroom Minor 

13:40 15:30 110 15 Computer use for leisure  Living room Minor 

15:30 4:00 750 15 Go to work Not in home None 
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Table 24 Sche3: 1-person household with stay home profile 

Start time End time 

24-hr 

duration  

(min) 

Test 

duration  

(min) 

ATUS activity details Specific location Motion level 

4:00 9:00 300 10 Sleeping Bedroom None 

9:00 9:20 20 10 Washing, dressing and grooming oneself Bathroom Minor 

9:20 9:23 3 3 HH & personal mail & messages (except e-mail) Not in home Major 

9:23 9:28 5 5 Food and drink preparation Kitchen Major 

9:28 9:29 1 1 Eating and drinking Dining room Minor 

9:29 11:00 91 10 Reading for personal interest Living room Minor 

11:00 12:00 60 16 Television and movies (not religious) Living room Minor 

12:00 12:10 10 10 Financial management Living room Minor 

12:10 14:30 140 10 Reading for personal interest Living room Minor 

14:30 17:00 150 15 Television and movies (not religious) Living room Minor 

17:00 17:30 30 10 Reading for personal interest Living room Minor 

17:30 18:30 60 15 Television and movies (not religious) Living room Minor 

18:30 19:00 30 10 Food and drink preparation Kitchen Major 

19:00 19:15 15 10 Eating and drinking Dining room Minor 

19:15 23:30 255 15 Television and movies (not religious) Living room Minor 

23:30 0:30 60 10 Reading for personal interest Living room Minor 

0:30 4:00 210 10 Sleeping Bedroom None 
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Table 25 Sche4: 2-person household where both with day absence profile 

Start time End time 

24-hr 

duration  

(min) 

Test 

duration  

(min) 

ATUS activity details Specific location Motion level 

4:00 6:00 120 10 Both are sleeping Bedroom None 

6:00 6:30 30 10 Both washing, dressing and grooming oneself Bathroom Minor 

6:30 6:40 10 10 1 food preparation other Eating and drinking Kitchen/Dining room Major 

6:40 6:50 10 10 Both Eating and drinking Dining room Minor 

6:50 6:55 5 5 1 left for job, other Eating and drinking 
Not in home/Dining 

room 
None/Minor 

6:55 18:20 685 25 Both left for work Not in home / 

18:20 18:30 10 5 1 is not in home, other one is Eating and Drinking 
Not in home/Dining 

room 
None/Minor 

18:30 18:45 15 5 1 is food preparation other Eating and drinking Kitchen/Dining room Major 

18:45 19:15 30 20 Both Eating and drinking Dining room Minor 

19:15 19:20 5 5 
1 Eating and drinking and other computer use for 

leisure 

Dining room/Living 

room 
Minor 

19:20 21:00 100 20 
1 Television and Movies and other computer use for 

leisure 
Living room Minor 

21:00 21:30 30 10 
1 watching Television and movies and other washing, 

dressing and grooming oneself 

Living 

room/Bathroom 
Minor/Major 

21:30 21:32 2 2 
1 watching Television and movies and other Health 

related selfcare 

Living 

room/Bedroom 
Minor/Major 

21:32 22:30 388 20 1 watching Television and movies and other Sleeping 
Living 

room/Bedroom 
Minor/None 

22:30 4:00 270 10 Both Sleeping Bedroom None 
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Table 26 Sche5: 2-person household where one with day absence profile and the other with stay home profile 

Start time End time 

24-hr 

duration  

(min) 

Test 

duration  

(min) 

ATUS activity details Specific location Motion level 

4:00 6:00 120 10 Both are Sleeping Bedroom None 

6:00 6:20 20 10 Both are Washing, dressing and grooming oneself Bathroom Major 

6:20 6:40 20 10 1 interior cleaning and other Washing, dressing and grooming oneself Whole space/Bathroom Major 

6:40 7:00 20 10 1 Eating and drinking and other Washing, dressing and grooming oneself Dining room/Bathroom Major 

7:00 7:10 10 10 Both are Eating and drinking Dining room Minor 

7:10 7:15 10 10 1 interior cleaning and other Eating and drinking Whole space/Dining room Major/Minor 

7:15 7:20 5 5 1 interior cleaning and other left for job Whole space/Not in home Major/None 

7:20 7:45 25 10 1 in home and doing kitchen and food clean up Kitchen/Not in home Major/None 

7:45 7:50 5 5 1 in home and doing interior cleaning Whole space/Not in home Major/None 

7:50 8:10 20 10 1 in home and doing Care for animals and pets (not veterinary care) Living room/Not in home Minor/None 

8:10 8:30 20 10 1 in home and doing Computer use for leisure (exc. Games) Living room/Not in home Minor/None 

8:30 9:30 60 15 1 in home and doing television and movies (not religious) Living room/Not in home Minor/None 

9:30 10:30 60 10 1 in home and doing Reading for personal interest Living room/Not in home Minor/None 

10:30 10:45 15 5 1 in home and doing Telephone calls Living room/Not in home Minor/None 

10:45 11:45 60 10 1 in home and doing Playing games Living room/Not in home Minor/None 

11:45 12:45 60 15 1 in home and doing television and movies (not religious) Living room/Not in home Minor/None 

12:45 12:55 10 10 1 in home and doing Food and drink preparation Kitchen/Not in home Major/None 

12:55 13:25 30 10 1 in home and doing Eating and drinking Dining room/Not in home Minor/None 

13:25 15:25 120 20 1 in home and doing television and movies (not religious) Living room/Not in home Minor/None 

15:25 15:55 30 10 1 in home and doing Sleeping Bedroom/Not in home None 

15:55 16:55 60 15 1 in home and doing television and movies (not religious) Living room/Not in home Minor/None 

16:55 18:25 90 15 1 in home and doing Playing games Living room/Not in home Minor/None 

18:25 18:30 10 10 1 in home and doing Food and drink preparation Kitchen/Not in home Major/None 

18:30 18:35 5 5 1 is doing Food and drink preparation and other Eating and drinking Kitchen/Dining room Major/Minor 

18:35 19:05 30 10 Both are Eating and drinking Dining room Minor 

19:05 19:30 25 10 1 is Eating and drinking and other Kitchen and food clean-up Kitchen/Dining room Major/Minor 

19:30 19:35 5 5 1 is Television and movies and other Kitchen and food clean-up Living room/Kitchen Minor/Major 

19:35 20:00 25 15 Both watching television and movies (not religious) Living room Minor 

20:00 21:00 60 10 
1 watching television and movies and other socializing and communicating 

with others 
Living room Minor 

21:00 21:30 30 10 
1 watching television and movies and other Washing, dressing and 

grooming oneself 
Living room/Bathroom Minor/Major 

21:30 22:00 390 10 
1 Computer use for leisure (exc. Games) and other watching television and 

movies 
Living room Minor 

22:00 22:20 20 20 1 sleeping and other Washing, dressing and grooming oneself Bedroom/Bathroom None/Major 

22:20 4:00 280 10 Both Sleeping Bedroom None 
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APPENDIX B: Typical testing results with associated typical occupancy schedules and 

activity profiles 

 

 

Table 27 Typical testing results with “1-person household with night absence profile” 

ATUS-Based Activity  

detail 

Ground 

truth 

Test 

durat

ion 

(min) 

Error  

time 

(min) 

Interme

diate 

duration 

(min) 

Erro

r 

Tim

e 

24-hr 

durat

ion  

(min) 

Err

or 

Ti

me 

Sleeping 

Occupied 

10 0 10 0 480 0 

Heat food; 

Bring food to dinner table; 

Eating and watching tv, using 

phone; 

Remove plates and cleaning 

kitchen and table 

15 0 60 0 60 0 

Collecting dresses from bedroom 

and put them in washer for 

laundry 

10 1 10 1 10 1 

Shower; 

Dressing & grooming 
10 0 30 0 30 0 

Computer use for leisure (exc. 

Games) 
15 13 130 113 110 95 

Left for job 
Unoccupi

ed 
15 0 15 0 750 0 
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Table 28 Typical testing results with “1 person with stay home profile” 

ATUS-Based 

Activity  

detail 

Ground 

truth 

Test 

duration 

(min) 

Error  

time 

(min) 

Intermediate 

duration 

(min) 

Error 

Time 

24-hr 

duration  

(min) 

Error 

Time 

Sleeping 

Occupied 

10 0 10 0 300 0 

Mouthwash; 

Shower and others; 

Dressing 

10 0 20 0 20 0 

Outside house: HH 

& personal mail & 

messages (except e-

mail) 

Unoccupied 3 0 3 0 3 0 

Food and drink 

preparation 

Occupied 

5 0 5 0 5 0 

Eating and 

drinking 
1 0 1 0 1 0 

Reading for 

personal interest 
10 9 91 82 91 82 

Television and 

movies (not 

religious) 

16 0 60 0 60 0 

Financial 

management 
10 0 10 0 10 0 

Reading for 

personal interest 
10 9 140 126 140 126 

Television and 

movies (not 

religious) 

15 0 150 0 150 0 

Reading for 

personal interest 

Occupied 

10 5 30 15 30 15 

Television and 

movies (not 

religious) 

15 0 60 0 60 0 

Bring stuff from 

refrigerator and 

preprocess; 

Using range, cook 

food; 

Bring all cooked 

food to table 

10 0 30 0 30 0 

Eating and 

drinking 
10 0 15 0 15 0 

Television and 

movies (not 

religious) 

15 0 255 0 255 0 

Reading for 

personal interest 
10 0 60 0 60 0 

Sleeping 10 10 30 30 210 210 
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Table 29 Typical testing results with “2-person where both with day absence profile” 

ATUS-Based activity detail 
Ground 

truth 

Test 

durati

on 

(min) 

Err

or  

time 

(mi

n) 

Intermedi

ate 

duration 

(min) 

Err

or 

Tim

e 

24-hr 

durati

on  

(min) 

Err

or 

Tim

e 

Sleeping 

Occupie

d 

10 2 10 2 120 24 

Mouth wash; 

Taking shower; 

Dressing; 

Grooming. 

10 0 30 0 30 0 

Food preparation 10 0 10 0 10 0 

Eating and drinking 15 0 15 0 15 0 

Left for work 
Unoccup

ied 
25 0 25 0 685 0 

Having snacks while waiting for 

other person 

Occupie

d 

5 0 10 0 10 0 

Heating and bringing food to table 5 0 15 0 15 0 

Eating, discussing and using phone 20 0 30 0 30 0 

Eating and drinking 5 0 5 0 5 0 

Television and Movies 20 15 100 75 100 75 

Taking shower; 

Getting dressed for sleep 
10 0 30 0 30 0 

Health related self-care 2 0 2 0 2 0 

Sleeping 20 0 73 0 388 0 

Note: Only one of the two activity profiles is provided in the “Activity detail” column 
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Table 30 Typical testing results with “2-person where 1 with day work profile and other 

one with stay home profile” 

ATUS-Based activity detail 

Grou

nd 

truth 

Test 

durati

on 

(min) 

Err

or  

tim

e 

(mi

n) 

Intermed

iate 

duration 

(min) 

Err

or 

Tim

e 

24-hr 

durati

on 

(min) 

Err

or 

Tim

e 

Sleeping 

Occup

ied 

10 0 10 0 120 0 

Mouthwash; Shower; Dressing. 10 0 20 0 20 0 

Arrange bedroom 10 0 20 0 20 0 

Making food for breakfast; 

Bring food to table, start eating 
10 1 20 2 20 2 

Eating and drinking 10 0 10 0 10 0 

Interior cleaning 10 0 10 0 10 0 

Kitchen and food clean up 10 0 25 0 25 0 

Interior cleaning 5 0 5 0 5 0 

Clean plates for pet and bring food for them; 

Playing with pets 
10 7 20 14 20 14 

Computer use for leisure (exc. Games) 10 10 20 20 20 20 

Television and movies (not religious) 15 15 60 60 60 60 

Reading for personal interest 10 0 60 0 60 0 

Telephone calls 5 0 15 0 15 0 

Playing games 10 0 60 0 60 0 

Television and movies (not religious) 15 0 60 0 60 0 

Food and drink preparation 10 2 10 2 10 2 

Eating and drinking 10 10 30 30 30 30 

Television and movies (not religious) 20 9 120 54 120 54 

Sleeping 10 0 30 0 30 0 

Television and movies (not religious) 15 0 60 0 60 0 

Playing games 15 0 90 0 90 0 

Food and drink preparation 10 5 10 5 10 5 

Eating together and discussing, use mobile 10 0 30 0 30 0 

Bring used plates from table to kitchen, start 

cleaning the kitchen 
10 3 25 8 25 8 

Kitchen and food clean-up 5 1 5 1 5 1 

Watching television and movies (not religious) 15 11 25 18 25 18 

Socializing and communicating with others 10 0 60 0 60 0 

Taking shower; 

Dressing for sleep 
10 0 30 0 30 0 

Sleeping 10 9 65 59 390 351 

Note: Only one of the two activity profiles is provided in the “Activity detail” column 
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APPENDIX C: Supplemental variable testing results 

 

 

Table 31 Supplemental testing results for individual variable -- “Presence of robot” with 

the initial Occupied/Unoccupied state of the test space 

Test  

variab

le 

Occupanc

y 

Initial 

State 

Light

ing 

level 

Prese

nce 

of 

large 

metal 

objec

ts 

Inter

ior 

light

ing 

sour

ces 

Use 

of 

rob

ots 

Prese

nce 

of 

pets 

Mot

ion 

level 

Loca

tion 

# of 

occup

ants 

# 

of 

do

ors 

Out

put 

Gro

und 

trut

h 

Predic

tion 

result 

Prese

nce 

of 

robot 

Non-

presence 

Occupi

ed 

On No No 
Ye

s 
No NA NA 0 1 

1 0 FP 

1 0 FP 

1 0 FP 

Unocc

upied 

0 0 TN 

0 0 TN 

0 0 TN 
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CHAPTER 4 – TYPICAL ACADEMIC BUILDING ENERGY MODEL DEVELOPMENT 

AND ENERGY SAVING EVALUATION OF OCCUPANT-BASED CONTROL 

 

4.1 Abstract 

Studies on occupant-based controls have been increasing over the past decade because of 

the significant energy saving potentials they can offer in buildings. Many of these studies focus on 

office buildings. However, there are very few studies that focus on academic buildings, which 

represent a significant number of buildings in the U.S., and a substantial amount of energy 

consumption. The space use, occupant types, and energy-use patterns in academic buildings at 

universities and colleges can vary substantially from other prototypical building types. The 

objective of this paper is thus to develop typical academic building models and then use these 

models to evaluate the energy savings potential of implementing occupant-based control (OBC) 

in the developed models using EnergyPlus. The U.S. DOE reference office building model was 

modified and rezoned to add new space types to represent the typical characteristics and space use 

compositions of academic buildings based on the space type and functional use data collected from 

293 academic buildings across five diverse U.S. universities/college. Four types of typical 

academic building models were then determine based on clustering analysis, including “Office-

dominated”, “Laboratory-dominated”, “Study room-dominated”, and “Mixed-use” academic 

building models. The occupancy schedules were then updated to include stochastic occupancy 

schedules representing academic building use. Next, the baseline and proposed models were built, 

of which a fixed setpoint schedule and minimum outdoor air flowrate were used for the baseline 

model. The proposed model uses OBC, resetting the temperature schedule and minimum outdoor 

air flow schedule based on occupancy, following the recommendations of ASHRAE 90.1, and 

62.1. Results show that there is significant energy saving potential for academic buildings with the 
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implementation of OBC, including an HVAC energy savings of 35% to 51% under “Occupancy 

presence” scenarios, and a further energy saving increase (3-9%) from “Occupancy presence” 

scenarios to “Occupancy counting” scenarios. The results of this work also provide typical 

academic building models with integrated occupancy schedules which can be used to evaluate 

other energy saving measures, and aid building designers and operators in making informed 

decisions in applying appropriate control strategies to optimize building energy systems, as well 

as predict energy use and demand.  

Keywords: Typical Academic Building Models; Occupant-based Control; Energy Saving 

Evaluation 

4.2 Introduction 

Building energy consumption accounts for approximately 40% of the total primary energy 

consumption in the U.S. (Robinson et al., 2017). In commercial buildings, heating and cooling 

energy consumption takes up the largest portion, which is more than 30% of this energy use, among 

all different energy end uses (U.S. EIA 2021). Therefore, in an effort to reduce energy use overall, 

it is important to develop energy saving approaches to help reduce heating and cooling energy use 

in commercial buildings.  

In modern commercial buildings in the U.S., mechanical ventilation that brings in outdoor 

air is required by energy codes to maintain acceptable levels of indoor air quality. Based on the 

Commercial Building Energy Consumption Survey (U.S. EIA 2021), energy consumption 

associated with ventilation accounts for approximately 50% of total HVAC energy use in 

commercial buildings in U.S. Per ASHRAE Standard 62.1-2019 (2019), the minimum required 

outdoor airflow is dependent on the number of occupants in commercial buildings as well as the 

size of the space being ventilated. With the emergence of various occupancy sensor systems to 
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better predict real-time presence/non-presence and/or number of occupants in commercial 

buildings, there are significant opportunities to save energy by applying occupancy-based controls. 

In addition, consideration of occupancy sensing technologies has also been included in ASHRAE 

Guideline 36 - High Performance Sequences of Operation for HVAC Systems (ASHRAE, 2018). 

Given these recent developments in state-of-the art controls, there is a need to evaluate the level 

of energy savings that can be achieved using such controls. 

Commercial building reference models (Deru et al., 2011) have been created to represent 

the most common types of commercial buildings and their energy use patterns. Existing studies 

mainly focus on evaluating the energy saving potential from OBC for typical office buildings using 

energy simulation tools. However, these prototypical building models use simplified perimeter and 

core zoning methods that are not conducive to accurately modeling room based OBC. Various 

studies have been conducted to improve typical office building models. For example, Im et al. 

(2019) updated the small and medium office prototype models to include multiple new space types, 

which enables the updated models to be more flexible in applying OBC by space types. Pang et al. 

(2021) also proposed a detailed zoning plans for medium and large office reference building 

models and implemented OBC, of which the potential energy savings was determined to be up to 

45%.  

Buildings used for educational purposes are among the subgroups of commercial buildings 

in the U.S. that consume a large amount of HVAC energy (U.S. EIA, 2021). Academic buildings 

at colleges and universities are included among these. These can vary substantially in their space 

use, occupancy patterns, and resulting energy use.  However, despite their substantial energy use, 

there are no established prototypical building models for academic building types, nor any that can 

be used to evaluate energy savings potential from occupancy sensors. Given the intermittency in 



127 

 

which many spaces in academic buildings are used, this suggests substantial potential for energy 

savings from occupancy-based control. Therefore, the objective of this research is the development 

of typical academic building energy models that can be used to evaluate the potential energy 

savings of occupant-based controls. 

In an initial study by the authors (Chu et al., 2020) two simplified typical academic building 

models were developed using five conditioned zones (4 perimeter and 1 core zone) on each of the 

three stories of the building. The occupancy schedules used for each zone were based on typical 

characteristics and space use compositions of academic buildings from (Mitra et al., 2019). 

However, using this simplified version of occupancy modeling and zoning, the energy savings 

from the use of occupancy-based control likely is underestimated. This is because each zone 

modeled includes multiple space types, thus if one of the spaces within a particular zone becomes 

unoccupied, while the others in the same zone are still be occupied, the entire zone is still 

considered occupied.  As such, an improved method to model each space type is to consider each 

space as a single zone, such that each space may be controlled separately based on the occupancy 

in that zone. To achieve this, this research first proposes a data-driven method, based on academic 

building data, to determine the typical space distribution in academic buildings. This research then 

develops zoning for each floor by assigning a variety of space types and their areas, where each 

space type is considered as a thermal zone. Sketchup OpenStudio plug-in was used to build the 

geometry of the typical academic building models, and EnergyPlus was used to complete the 

building energy simulation.  

The remainder of this research is organized as follows. Section 2 introduces the 

methodology for creating academic building energy models, including developing typical space 

distributions, energy model geometry, occupancy schedules, and occupancy-based controls.  
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Section 3 presents the energy saving estimates from the assigned controls for the typical academic 

building models developed in this paper. Section 4 summarizes the conclusion of this paper. 

4.3 Methodology 

4.3.1 Typical space types and distribution in academic buildings 

To create prototypical academic building models, first the typical space distributions of 

U.S. academic buildings was determined, based on data collected from multiple universities. The 

Postsecondary Education Facilities Inventory and Classification Manual (FICM) (Cyros and Korb, 

2006) was used for assigning space classifications. Within FICM, there are 10 major space use 

categories of assignable space and 3 major space use categories of non-assignable space. In this 

context, “assignable” space means all spaces which are assigned to, or available for assignment to 

an occupant(s) or specific use, including classrooms, laboratories, offices, study areas, special use 

space, general use space, support rooms, health care, residential and unclassified space. “Non-

assignable” space indicates the spaces cannot be assigned to specific use but are still necessary for 

the general operation of a building. This includes building service areas, circulation areas, and 

mechanical areas. The existing space type codes that colleges and universities use have the same 

categories and the same coding; however, they can have different subcategories of space types 

under each main space type category.  

The Carnegie Classification of Institutions of Higher Education (CCIHE) (2018) provides 

the college/university size categories according to FTE-based enrollment (FTE = Full-Time 

Headcount plus 1/3 part-time headcount) of the college/university. Based on 2018 CCIHE data, 

60% of the 4,323 institutions in the U.S. are four-year institutions. In this research, given the 

potentially substantial differences in how two-year and four-year institutions operate, this study is 

limited to only four-year institutions. In order to consider a diversity of university sizes, data was 
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collected from all buildings at five U.S. universities and colleges, each under a different CCIHE 

size class. Data was obtained from these universities through their facilities management 

organizations and through publicly available data (THED 2020). The collected data includes 

detailed building and room information, including the predominant purpose and function of each 

building, the corresponding spaces, their sizes, and their functional use based on FICM. For the 

studied colleges and universities, FTE-based enrollment data was obtained from the Integrated 

Postsecondary Education Data System (IPEDS) (2019) under the National Center for Education 

Statistics. Table 32 summarizes the five universities with different sizes and associated information. 

The last column indicates the number of academic buildings at each college/university used for 

the determination of typical space distributions in this research. 

Table 32 Colleges and universities, by CCIHE size category and associated characteristics, 

from which, building and space use data were utilized 

CCIHE 2018 

Class 
Four-year Institutions 

FTE-based 

Enrollment 

# of Academic 

Buildings 

Very small Jarvis Christian College <1000 5 

Small Sul Ross State University 1000 to 3,000 19 

Medium Lamar University 3,000 to 10,000 42 

Large 
Texas A & M University-College 

Station 
> 10,000 190 

 Iowa State University  37 

 

Among the 293 selected academic buildings, the total area of classroom, laboratory, office, 

and study facilities makes up more than 50% of the total space area, for approximately 188 

academic buildings. Therefore, in this research, we mainly focus on the academic buildings with 

office, classroom, laboratory, and study room being used as the main occupied spaces. Those 

buildings like health care facility and special uses were not considered here. Based on this 
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assumption, we defined functional use spaces, which indicate the mostly used spaces, including 

offices, classrooms, laboratories, and study rooms.  

In order to determine the percentage of each space type, interquartile range was used to 

detect outliers for special use, general use, supporting facilities, health care, residential, non-

assigned spaces, and other spaces. Using this method, the interquartile range (IQR) of each data is 

calculated first, then the IQR is multiplied by 1.5, which is then used as a threshold above which 

data points are considered outliers. Next the outliers are removed, and the mean value of the new 

data was used as the percentage of each space, including special use (0.32%), general use (2.38%), 

supporting facilities (0.44%), health care (0%), residential (0%), non-assigned spaces (0%), and 

others (25.5%). After that, we use 100% to subtract the sum of these spaces other than functional 

use spaces to attain the percentage of the functional use spaces (71.36%). 

According to the functional use spaces data, the majority of spaces in these buildings are 

either office, laboratory, or study room spaces, amounting to more than 70%. A “study-room” is 

defined as a room or area used by individuals to study at their convenience (FICM, Cyros and 

Korb, 2006). Since different occupant activities occur due to different functional use space types, 

this results in varied energy use and savings potential. As such, different typical academic building 

models are needed to represent different functional uses. First, K-mean clustering (Warne and 

Ganorkar, 2015) was used to segment the space distribution and composition data from the selected 

academic building into groups and group the data with similar distributions into one group. In this 

case, K=5 was used since there are four different functional use space types, and the buildings with 

100% office space should be defined as an office building, which would use the existing 

prototypical office building models. After the clusters of building types (by space use distribution) 
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were attained, the space distribution and composition data were manually checked within each 

group to confirm buildings appeared to be in the correct cluster.  

The resulting five groups of buildings include 100% office, study room-dominated, office-

dominated, laboratory-dominated, and mixed-use. In these categories “dominated” means that 

more than 70% of the total space use is associated with that space use type, while the remaining 

space is for other purposes. Mixed-use indicates that the distribution of functional space types is 

more evenly distributed compared to those “dominated” space types and no space type accounts 

for more than 50% of the total space use. Table 33 shows the distribution of the typical academic 

building types after our classification. Note that the 100% office building type was not developed 

further as it represents a typical office building, for which a detailed building model already exists 

(Deru et al 2011). From Table 33, after eliminating the 100% office building type, we can see that 

the laboratory-dominated academic building group takes up the largest percentage of these four 

typical academic building models, followed by office-dominated. Mixed-use and study room-

dominated academic buildings only account for approximately 12% of the four typical academic 

building types. 

Table 33 Typical academic building types based on K-means clustering  

Building type # of academic buildings Percentage 

100% Office 67 22.9% 

Office-dominated 86 29.3% 

Laboratory-dominated 114 38.9% 

Mixed-use  15 5.1% 

Study room-dominated 11 3.8% 
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For each typical academic building type from Table 33, Figure 12 shows the box plot of 

functional use space distribution. After removing the outliers using the same interquartile range 

rule as mentioned above, the mean value of each space type was determined. The distribution of 

the functional use spaces is shown in across the 293 buildings (Figure 12), which presents the 

mean percent (by area) of functional space use type in the four defined typical academic buildings. 

Multiplying the total percentage of the functional area use (71.36%), as calculated before, by the 

percentage of each functional use space type in Figure 12, we attained the space distribution across 

the ten assignable spaces and non-assignable space as defined in FICM (Cyros and Korb, 2006), 

which can be seen in Table 35. Others refers to the spaces that don’t fall into any of the categories 

defined in FICM (Cyros and Korb, 2006).  

  

  

 

Figure 12 Functional space use in the four defined typical academic buildings, including 

the percent of building area used for classroom, laboratory, office, and study areas 
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Table 34 Mean percent (by area) of functional space use type in the four defined typical 

academic buildings 

 
Office- 

dominated 

Laboratory- 

dominated 

Study room-  

dominated 
Mixed-use 

Classroom 9.74% 3.38% 0.06% 42.28% 

Laboratory 20.14% 73.57% 7.17% 20.64% 

Office 69.39% 22.96% 19.92% 34.50% 

Study room 0.73% 0.09% 72.85% 2.59% 

 

Table 35 Mean of FICM space types as a percent (by area) of total available space in the 

four defined typical academic buildings  

 Category from FICM 
Office- 

dominated 

Laboratory- 

dominated 

Study room-  

dominated 
Mixed-use 

Classroom 6.95% 2.41% 0.04% 30.17% 

Laboratory 14.37% 52.50% 5.12% 14.73% 

Office 49.52% 16.39% 14.21% 24.62% 

Study room 0.52% 0.07% 51.99% 1.85% 

Functional use 71.36% 71.36% 71.36% 71.36% 

Special use 0.32% 0.32% 0.32% 0.32% 

General use 2.38% 2.38% 2.38% 2.38% 

Supporting facility 0.44% 0.44% 0.44% 0.44% 

Health care - - - - 

Residential - - - - 

Non-assigned space - - - - 

Other 25.50% 25.50% 25.50% 25.50% 

Total 100% 100% 100% 100% 
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4.3.2 Typical academic building models 

Next the building energy model was developed in which the space types and occupancy 

schedules are to be applied. The medium office DOE Reference Building model (Deru et al 2011), 

which is a three-story building with a total area of 4,982 m2, was used as a starting point for the 

academic building models. This is based on the finding that the average college/university building 

is 4,496 m2, which is closest to the medium size office DOE Reference Building model, based on 

the 2018 CBECS (Commercial Buildings Energy Consumption Survey) data. In the initial model, 

there are five zones on each floor, including four perimeter zones and one core zone. The gross 

window-wall ratio (WWR) is 33%. The HVAC system is a VAV (variable air volume) system 

with reheat. This model was then used to create the four academic building models, as defined 

above. Based on the total area of the building and percentage space distribution (Table 35), the 

total area of each space type was calculated (Table 36). Each space type was then further divided 

into sub-categories, for example, the “classroom” space type was defined to include “classrooms” 

and “seminar rooms” to represent the space types under that category according to their 

functionality, as shown in the second column of Table 36. The subcategory area fractions were 

attained from Im et al. (2019), which indicates the space types and area fractions for major zones 

of updated small and medium office models, and from Mitra et al. (2020), which explored the area 

distribution of different academic spaces, including staff/faculty office, conference, seminar room, 

graduation student office, and classrooms.  

After determining the area of each space type throughout the building, the spaces must be 

assigned to each floor. When assigning space types to each floor, the typical unit area of a space 

type was first studied. For example, the area of a typical office. This was defined based on various 

resources, such as the Whole Building Design Guide (2021), which provides the floor area of a 
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typical space for a variety of space types. The Time-Saver Standards for Building Types (De 

Chiara, 2001) was also reviewed, which also provides typical size of different space types for 

various building types, including educational buildings. The selected typical space type areas are 

summarized in the third column of Table 36.  
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Table 36 Space types under each category and space area distribution in each typical academic building type 

Category from FICM Space types 

Selected typical 

unit space area 

(m2) 

Office-

dominated 

(m2) 

Laboratory-

dominated 

(m2) 

Study room-

dominated 

(m2) 

Mixed-

use 

(m2) 

CLASSROOM 
Classrooms 72.46 

346 120 2 1503 
Seminar rooms 55.74 

LABORATORIES 
Research labs 117.06 

716 2615 255 734 
Teaching labs 62.71 

OFFICES 

Staff offices 13.94 

2,467 816 708 1,227 
Faculty offices 13.94 

Graduate student offices 27.87 

Conference rooms1 44.96 

STUDY FACILITIES Study rooms 62.71 26 3 2,590 92 

SPECIAL USE Special use 16.00 16 16 16 16 

GENERAL USE 

Meeting rooms1 70.61 

119 119 119 119 Lounge/ Recreation 18.58 

Food facilities 11.15 

SUPPORTING FACILITIES Active storage2 14.86 22 22 22 22 

OTHERS 

Corridor - 

1,270 1,270 1,270 1270 Stairway 5.30 

Restroom 13.01 

1Note: A conference space is typically equipped with tables and chairs, and is used by a specific organizational unit or office area; Meeting Rooms are used for 

general purposes such as community or campus group meetings and not associated with a particular department 

2Note: Active storage is an area for use as a part of routine operation of a business. This suggests that occupants will visit this space routinely. This is in contrast 

to inactive storage which may be visited less frequently.
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For each typical academic building type, a combination of different space types was 

assigned to each floor (50 m x 33 m) based on the total area of each space type and typical unit 

space area. For all three floors, perimeter zones are 5 m in width, and core zone is 35 m x 18.3 m. 

The corridor in between the perimeter zones and core zone has a width of 2.5 meters. The perimeter 

zones and core zones were further assigned with different space types to represent each typical 

academic building type. Dividing the total area of a certain space type on each floor by the typical 

unit space area, the number of each space types on that floor was then obtained. A summary of the 

final assignment of space types, the number of rooms for each space type and associated area on 

each floor for the Office-dominated typical academic building model is presented in Table 37 as 

an example. The summary for the Laboratory-dominated, Study room-dominated, and Mixed-use 

academic building models are listed in Table 40-42 in Appendix A.  
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Table 37 Space types of assignment on each floor for the Office-dominated typical academic building model 

Category from 

FICM 

Area of  

Office-

dominated 

Space types  

1st floor 2nd floor 3rd floor 

Number of 

rooms 

Area 

(m2) 

Number of 

rooms  

Area 

(m2) 

Number of 

rooms 

Area 

(m2) 

CLASSROOM 346 
Classroom 2 145 2 145 - - 

Seminar - - - - 1 56 

LABORATORIES 716 
Research lab 1 117 1 117 3 351 

Teaching lab 2 125 - - - - 

OFFICES 2467 

Staff office - - 15 209 - - 

Faculty office - - - - 12 167 

Graduate student 

office 
25 697 18 502 13 362 

Conference - - 6 270 6 270 

STUDY 

FACILITIES 
26 Study room 1 26 - - - - 

SPECIAL USE 16 Special use -  - - - 1 16 

GENERAL USE 119 

Meeting room 1 71 - - - - 

Lounge- 

Recreation 
1 38 - - - - 

Food facilities - - - - - - 

SUPPORTING 

FACILITIES 
22 Active storage 1 23 - - - - 

OTHERS 1270 

Corridor 1 291 1 290 1 290 

Stairway 1 15 1 15 1 15 

Lobby 1 105 1 105 1 105 

Restroom 1 15 1 15 1 15 
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Sketchup (2019) and OpenStudio Sketchup plug-in (2020) were then used to draw the 

geometry of the typical academic building models. Figure 13 shows the floor plans of the office-

dominated typical academic building model, including detailed space types, and the building 

geometry. The floor plans for the other three typical academic building types are summarized in 

Figure 20-22 in Appendix B. Figure 13(d) presents the 3-D geometry in SketchUp for the typical 

office-dominated academic building model. 

  

(a) (b) 

 

 

(c) (d) 

Figure 13 Floor plans and building geometry for office-dominated typical academic 

building model, including (a) 1st floor; (b) 2nd floor; (c) 3rd floor; (d) whole building 

geometry 
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The geometry was then transferred to EnergyPlus (2020), which was used as the energy 

simulation tool in this paper. An Energy Management System (EMS) in EnergyPlus was used to 

apply occupant-based control using the python package Eppy (2020).  

4.3.3 Typical occupancy schedule in academic buildings 

To represent the stochastic nature of occupancy in academic buildings, several methods 

were used to develop occupancy schedules representative of the space types in these buildings. 

The LBNL Occupancy Simulator (Chen et al., 2016) was developed to simulate the typical 

occupancy schedules in commercial buildings. Given that academic buildings have many space 

types similar to that of commercial buildings and are generally considered one of the subcategories 

of commercial buildings, this tool was used to aid in the generation of stochastic occupancy 

schedules. There are, however, only three space types defined in the LBNL Occupancy Simulator, 

including Office, Meeting Room and Others, yet there is a broader diversity of space types in 

typical academic building models. Therefore, for the remaining space types not covered, 

alternative methods and/or assumptions were used.  

Table 38 summarizes the assumptions for all space types and associated occupancy density 

for each space type according to ASHRAE Standard 62.1 (2019). The Classroom has similar 

intermittent occupancy pattern to a Meeting room since there are 1-hour or 1.5-hour classes that 

occur several times a week in a classroom. However, there is no design population in the Meeting 

room defined in the LBNL Occupancy Simulator because people who may come to a meeting have 

already been assigned to offices or classrooms. In addition, the occupant density in classrooms is 

generally much higher compared to other space types, thus requiring larger amounts of outdoor air 

for ventilation, and therefore occupancy-based controls are likely to have a more substantial 

positive impact on energy use. 
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 Therefore, the classroom space type was first treated as an Open office, which is the same 

concept of an office defined in LBNL simulator, but with a lower occupant density compared to a 

private office. This is to reflect the design population in the classrooms and the whole building 

since the LBNL simulator calculates the design population for each space through dividing the 

area of the space by the occupancy density of that space. This schedule was then updated to be a 

Meeting room schedule because of the similar intermittent occupancy pattern. Seminar was similar 

to the classroom, but since there is a very small portion of spaces that are seminar rooms, it was 

considered to be a Meeting room. Research lab, Graduate student office, and Study room spaces 

were assumed to be Open office with occupancy densities defined based on ASHRAE Standard 

62.1. Teaching lab spaces were defining using Meeting room. Staff and faculty offices were 

assumed to be Private office. Conference and Meeting rooms were treated as Meeting room. The 

other spaces, including Lounge/Recreation, Food facilities, Active storage, Corridor, Lobby, 

Stairway, and Restroom were considered as Other space type.
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Table 38 Assumptions of space types used in LBNL Occupancy Simulator and associated 

occupancy density from ASHRAE Standard 62.1-2019 

Space types 
Assumption in LBNL Occupancy 

Simulator 

Occupancy density2 

(m2/person) 

Classroom Meeting room/Open office 2.86 

Seminar room Meeting room 2 

Research lab Open office 4 

Teaching lab Meeting room 4 

Staff office Private office 20 

Faculty office Private office 20 

Graduate student office Open office 131 

Conference Meeting room 2 

Study room Open office 10 

Meeting room Meeting room 2 

Lounge/Recreation Other - 

Food facilities Other - 

Active storage Other - 

Corridor Other - 

Lobby Other - 

Stairway Other - 

Restroom Other - 

1 Occupancy density value is from LBNL Occupancy Simulator.  

2 Occupancy density values from ASHRAE Standard 62.1 

The LBNL Occupancy Simulator assumes that there are no people working on weekends, 

including Saturday and Sunday. However, this is not always the case in academic buildings, as 

students may go to campus to do work and/or study on weekends. To reflect this situation, a new 

occupant type was added, named “Student”. This was added into the occupant types for Office and 

Research lab space types, with 10% student attendance among all different occupancy types in the 

building. The example daily occupancy profiles of each space type, including Classroom, Office, 
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Meeting Room and Others, for the typical academic building models on both weekdays and 

weekends are presented in Figure 14. 

  
(a) Office (b) Classroom 

  
(c) Meeting room (d) Others 

Figure 14 The example daily occupancy profiles of (a) Classroom, (b) Office, (c) Meeting 

room and (d) Others, for typical academic building model on both weekday and weekend 

4.3.4 Occupant-based control Strategies 

4.3.4.1 Temperature setback 

According to ASHRAE Standard 90.1 (2019), Occupied-Standby Controls are 

recommended to be implemented to help support reduced energy use. Following this, active 

heating and cooling setpoints should be setback at least 0.5 °C when a space is in occupied-standby 

mode (scheduled to be occupied but there are no occupants in the space). In this research a 1°C 

temperature setback was applied. 

0

0.2

0.4

0.6

0.8

1

0
:0

0
:0

0

1
:1

0
:0

0

2
:2

0
:0

0

3
:3

0
:0

0

4
:4

0
:0

0

5
:5

0
:0

0

7
:0

0
:0

0

8
:1

0
:0

0

9
:2

0
:0

0

1
0
:3

0
:0

0

1
1
:4

0
:0

0

1
2
:5

0
:0

0

1
4
:0

0
:0

0

1
5
:1

0
:0

0

1
6
:2

0
:0

0

1
7
:3

0
:0

0

1
8
:4

0
:0

0

1
9
:5

0
:0

0

2
1
:0

0
:0

0

2
2
:1

0
:0

0

2
3
:2

0
:0

0

Office_Weekday

Office_Weekend

0

0.2

0.4

0.6

0.8

1

0
:0

0
:0

0

1
:1

0
:0

0

2
:2

0
:0

0

3
:3

0
:0

0

4
:4

0
:0

0

5
:5

0
:0

0

7
:0

0
:0

0

8
:1

0
:0

0

9
:2

0
:0

0

1
0
:3

0
:0

0

1
1
:4

0
:0

0

1
2
:5

0
:0

0

1
4
:0

0
:0

0

1
5
:1

0
:0

0

1
6
:2

0
:0

0

1
7
:3

0
:0

0

1
8
:4

0
:0

0

1
9
:5

0
:0

0

2
1
:0

0
:0

0

2
2
:1

0
:0

0

2
3
:2

0
:0

0

Classroom_Weekday
Classroom_Weekend

0

0.2

0.4

0.6

0.8

1

0
:0

0
:0

0

1
:1

0
:0

0

2
:2

0
:0

0

3
:3

0
:0

0

4
:4

0
:0

0

5
:5

0
:0

0

7
:0

0
:0

0

8
:1

0
:0

0

9
:2

0
:0

0

1
0
:3

0
:0

0

1
1
:4

0
:0

0

1
2
:5

0
:0

0

1
4
:0

0
:0

0

1
5
:1

0
:0

0

1
6
:2

0
:0

0

1
7
:3

0
:0

0

1
8
:4

0
:0

0

1
9
:5

0
:0

0

2
1
:0

0
:0

0

2
2
:1

0
:0

0

2
3
:2

0
:0

0

Meeting room_Weekday
Meeting room_Weekend

0

0.2

0.4

0.6

0.8

1

0
:0

0
:0

0

1
:1

0
:0

0

2
:2

0
:0

0

3
:3

0
:0

0

4
:4

0
:0

0

5
:5

0
:0

0

7
:0

0
:0

0

8
:1

0
:0

0

9
:2

0
:0

0

1
0
:3

0
:0

0

1
1
:4

0
:0

0

1
2
:5

0
:0

0

1
4
:0

0
:0

0

1
5
:1

0
:0

0

1
6
:2

0
:0

0

1
7
:3

0
:0

0

1
8
:4

0
:0

0

1
9
:5

0
:0

0

2
1
:0

0
:0

0

2
2
:1

0
:0

0

2
3
:2

0
:0

0

Others_Weekday
Others_Weekend



144 

 

4.3.4.2 Ventilation setback 

Occupant-based ventilation setbacks were also included. These include zone-level and 

system-level ventilation setbacks (Pang et al., 2020), according to the Ventilation Rate Procedure 

in the current version of ASHRAE Standard 62.1 (2019). For zone-level control, the breathing 

zone outdoor air flow rate, Vbz, zone outdoor air flow rate Voz, and zone minimum primary air 

flow, Vpz-min, are dynamically reset based on the occupancy information. For the system-level, 

the system minimum outdoor air intake is also dynamically reset based on real-time occupancy 

information. The system ventilation efficiency Ev is also reset based on detailed methods related 

to occupancy.  

Table 39 summarizes the occupant-based control strategies for energy saving analysis of 

typical academic building models (Pang et al., 2020). It is noted that in Table 2, there are four 

scenarios considered: Baseline, Temperature setback, Occupancy sensing, and Occupancy 

counting. The “Baseline” is the model which calculates the energy consumption of an academic 

building without any occupant-based controls; the “Temperature setback” model includes zone-

level temperature setbacks, which decrease/increase the zone setpoint temperature by 1℃ 

depending on if the system is in heating or cooling mode; the “Occupancy presence” model 

includes the use of occupancy detection technology such that the air handling unit (AHU) outdoor 

air intake is able to be adjusted based on the presence and non-presence of occupants; the 

“Occupancy counting” model includes occupancy counting technology enabling ventilation 

setbacks to be applied depending on the real time number of occupants. All occupant-related 

variables that require adjustment are summarized in Table 39 with detailed calculations from 

ASHRAE Standard 62.1. 
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Table 39 Occupant-based control strategies for typical academic building models (Pang et al., 2020) 

Control Strategy Attribute Baseline Temperature setback Occupancy presence Occupancy counting 

Venti-

lation 

setback 

Zone 

level 

Zone population 𝑃𝑧 = 𝑃(𝑧𝑑𝑒𝑠𝑖𝑔𝑛) Same as baseline Same as baseline 𝑃𝑧' = 𝑃(𝑧𝑎𝑐𝑡𝑢𝑎𝑙) 

Breathing zone 

outdoor air flow 
Vbz=Rp∗𝑃𝑧+Ra∗Az Same as baseline 

If Occupied, Same as 

baseline; 

If Unoccupied, Vbz=0 

If Occupied, 

Vbz'=Rp∗𝑃_𝑧'+R_a∗A_z; 

If Unoccupied, V_bz=0 

Zone air 

Distribution 

effectiveness 

Ez = constant: 

Ez = 1 for cooling,  

Ez = 0.8 for heating 

Same as baseline Same as baseline Same as baseline 

Zone outdoor 

air flow 
Voz=Vbz/Ez Same as baseline 

If Occupied, Same as 

baseline; 

If Unoccupied, Voz=0 

If Occupied, 

V_oz'=V_bz'/E_z; 

If Unoccupied, V_oz=0 

Zone minimum 

primary air flow 
V(pz-min) =Voz∗1.5 Same as baseline 

If Occupied, Same as 

baseline; 

If Unoccupied, V(pz-min) 

=0 

If Occupied, V_(pz-

min)'=V_oz'∗1.5; 

If Unoccupied, V_(pz-min) 

=0 

System 

level 

System 

Minimum 

Uncorrected 

outdoor air intake 

 

Same as baseline 

If the zone is Occupied, 

Same as baseline; 

If Unoccupied, Vbz=0 

 

System 

Ventilation 

efficiency 

D= Ps∕Pzsum  

Ev=0.88∗D+0.22   for 

D<0.6   

Ev=0.75     for D≥0.6 

Same as baseline 

Uncorrected system outdoor 

air fraction: Xs=Vou'/Vps 

Zone outdoor air fraction: 

Z(d,i)=V(oz,i)/V(dz,i) 

Z(d,imax)=Max(Z(d,i)) 

Ev'=1+Xs-Z(d,imax) 

X_s=V_ou''/V_ps 

Z_(d,i)=V_(oz,i)/V_(dz,i) 

Z_(d,i_max)=Max(Z_(d,i)) 

E_v''=1+X_s-Z_(d,i_max) 

System 

Minimum 

outdoor air 

intake 

Vot= Vou/Ev Same as baseline Vot'= Vou'/Ev' V_ot''= V_ou''/E_v'' 

Temperature 

setback 

OBC Temperature 

setback 
No 1℃ 1℃ 1℃ 

𝑉𝑜𝑢 = ∑ 𝑉𝑏𝑧

𝐴𝑙𝑙𝑍𝑜𝑛𝑒𝑠

 𝑉𝑜𝑢′ = ∑ 𝑉𝑏𝑧′

𝐴𝑙𝑙𝑍𝑜𝑛𝑒𝑠
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4.4 Results 

4.4.1 Baseline energy consumption comparison 

Chicago (ASHRAE Climate Zone 5A) was chosen as the climate zone for assessment of 

the energy savings potential for comparison. This is because Chicago is in a cold climate zone 

where heating is dominant. In this scenario, there will be more energy saving potential in winter 

with the use of OBC when less outdoor air in required based on a smaller number of occupants. 

The four typical academic building models developed have different occupancy profiles due to 

different composition of space types, resulting in different energy consumption. Figure 15 includes 

the baseline energy consumption each of the four typical academic building models. It is noted 

that the Mixed-use typical academic building model energy consumption is largest compared to 

the other three typical academic building models. This may be because that the classroom space 

type accounts for the largest portion of all spaces in the Mixed-use model. In addition, the 

maximum number of occupants is the largest; it also has the largest average real-time number of 

occupants in the building. This is followed by is the typical Laboratory-dominated academic 

building model which is slightly higher than that of the typical Office-dominated academic 

building model. This is likely because the portion of laboratory space type in the typical 

Laboratory-dominated model is higher than the percentage of office space type in the typical 

Office-dominated model. The occupancy density is also slightly lower in the office space types 

compared to that in laboratory spaace types. The Study room-dominated model consumes the least 

energy because it has the lowest portion of classroom, laboratory, and office, and the occupancy 

density in study area is not as high as in the classroom and laboratory spaces.  
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Figure 15 Baseline annual energy consumption comparison among four types of typical 

academic building models in ASHRAE Climate Zone 5A (Chicago) 

4.4.2 Occupant-based control – Ventilation Setback 

4.4.2.1 Zone-level ventilation setback 

The zone minimum primary air flow Vpz_min was reset based on occupancy information 

under both “Occupancy presence” and “Occupancy counting” scenarios. Figure 16 shows the zone 

minimum primary air flow profiles in four different space types, including office, classroom, 

meeting room and others, in typical Office-dominated academic building model. Zones on the first 

floor were selected to represent these four space types, which inlude “Perimeter_bot_GA_OF_1”, 

“Perimeter_bot_Classroom_1”, “Perimeter_bot_Meeting_RM”, and “FirstFloor_Corridor_1”, 

respectively. The name of the zones are the names used in EnergyPlus. The notation after each of 

the zone names represents the three different scenarios, where “_B” indicates the “Baseline” 

scenario; “_P” indicates the “Occupancy Presence” scenario; and “_C” represents the “Occupancy 

Counting” scenario.  
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From Figure 16, it can be seen that compared to the baseline, the Vpz_min decreases to 

zero when the space is unoccupied under both “Occupancy Presence” and “Occupancy Counting” 

scenarios, while for “Occupancy Counting” scenario, the zone minimum primary air flow 

decreases further with a decrease in number of occupants. Among the four different space types, 

“Classroom” and “Meeting room” have more vacancy. As a result, the zone minimum primary air 

flow in these space types decreases, thus these areas have a larger potential energy savings, 

compared to “Office” and “Others” space types. The zone minimum primary air flow rate profiles 

in the other three typical academic building models are similar to Figure 16. 

  
(a) (b) 

  
(c) (d) 

Figure 16 Zone minimum primary air flow rate (m3/s) in example spaces: (a) Office -- 

Perimeter_bot_GA_OF_1; (b) Classroom -- Perimeter_bot_Classroom_1; (c) Meeting room -- 

Perimeter_bot_Meeting_RM; (d) Others -- FirstFloor_Corridor_1. (Note: B = Baseline; P = 

Occupancy presence sensing; C = Occupancy counting sensing) 
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Figure 17 shows the zone outdoor air flow rate profiles in the same four example spaces, 

including Perimeter_bot_GA_OF_1, Perimeter_bot_Classroom_1, Perimeter_bot_Meeting_RM, 

and FirstFloor_Corridor_1, respectively. From this figure, the zone outdoor air flow rate 

decreases from the “Baseline” scenario to “Occupancy Presence” scenario. It decreases further for 

the “Occupancy Counting” scenario during the daytime while the space is occupied, compared to 

the “Occupancy Presence” scenario. Similar to the zone minimum primary air flow rate, the zone 

outdoor air flow rate decreases with a larger vacancy period in the “Classroom” and “Meeting 

room” space types compared to others. The zone outdoor air flow rate profiles in the other three 

typical academic building models are similar to Figure 17. 

  
(a) (b) 

  
(c) (d) 

Figure 17 Zone outdoor air flow rate (m3/s) in example spaces: (a) Office -- 

Perimeter_bot_GA_OF_1; (b) Classroom -- Perimeter_bot_Classroom_1; (c) Meeting room -- 

Perimeter_bot_Meeting_RM; (d) Others -- FirstFloor_Corridor_1 
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4.4.2.2 System-level ventilation setback 

For the system-level ventilation setback, the system VAV_1, the air handler servicing the 

first floor, is used to illustrate the system outdoor air flow profiles under all scenarios. The systems 

servicing the second (VAV_2) and third floor (VAV_3) are similar to VAV_1. Figure 18 summarizes 

the outdoor air flow rate for VAV_1 under the “Baseline”, “Occupancy presence” and “Occupancy 

Counting” scenarios in all typical academic building models. “OD” represents “Office-dominated”; 

“LD” represents “Laboratory-dominated”; “SD” represents “Study room-dominated”; “M” 

represents “Mixed-use”. Figure 18 shows that the outdoor air mass flow rate substantially 

decreases from the “Baseline” to “Occupancy presence” scenario regardless of if the space is 

occupied or unoccupied. For the “Occupancy counting” scenario, the outdoor air flow rate further 

decreases based on the actual, real-time number of occupants in each space. 
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(a) (b) 

  
(c) (d) 

Figure 18 System outdoor air flow rate (kg/s) in example VAV_1 system of (a) Typical 

Office-dominated; (b) Typical Laboratory-dominated; (c) Typical Study room-dominated; 

and (d) Typical Mixed-use building models 

4.4.3 Energy savings 

The overall energy savings achieved through the use of occupant-based control using 

temperature and zone- and system-level ventilation setbacks for all types of typical academic 

buildings are shown in Figure 19. This figure shows that significant energy savings is possible by 

applying the proposed occupant-based control, especially occupant-related ventilation setback 

controls, for typical academic buildings. For ASHRAE Climate Zone 5A, the total annual HVAC 

energy savings ranges from 35%-52% for “Occupancy presence” scenarios across all types of 

typical academic buildings.  
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Among “Occupancy presence” scenarios, the typical Mixed-use academic building 

achieves the highest HVAC energy savings, which may be because it has the largest portion of 

classroom spaces, with the highest occupancy density. The larger the design population is, the 

larger the amount of energy savings is that can be achieved when the space is unoccupied or when 

there is a smaller number of occupants utilizing this pace. This is followed by the typical Office-

dominated model, then the typical Laboratory-dominated model. The typical Study room-

dominated academic building model achieves the least energy savings, but it is still a significant 

amount, which is around 35%.  

The same ranking is also observed when comparing cooling and heating energy savings 

separately for the “Occupancy presence” scenarios. However, the heating energy savings is much 

higher compared to the cooling energy savings. This is weather dependent, and is most likely 

because the climate zone considered is Chicago, where heating requirements are greater due to the 

cold climate. When comparing “Occupancy presence” and “Occupancy counting”, there is an 

increase in the energy savings, ranging from 3% to 10%.  

Among the four typical academic building models under “Occupancy counting” scenarios, 

the energy savings ranking is similar to that of “Occupancy presence”. The main difference is that 

energy savings of typical Laboratory-dominated academic building models are similar to that of 

typical Office-dominated academic building models. This may be because laboratory space type 

was assumed as Open Office, therefore, a similar occupancy profiles were considered for both 

typical Office-dominated and Laboratory-dominated academic building models. From 

“Occupancy presence” scenarios to “Occupancy counting” scenarios, the largest increase in energy 

savings was observed for the typical Laboratory-dominated model, which is around 9%, indicating 
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that the typical Laboratory-dominated academic building models have larger variations in 

occupancy profiles when the space is occupied.  

 

Figure 19 Energy saving achieved through Occupant-based Control for typical academic 

building as compared to the baseline buildings with no OBC in ASHRAE Climate Zone 5A 

(Note: lighter colors indicate “Occupancy presence” scenarios; darker colors indicate 

“Occupancy counting” scenarios; _P = occupancy presence scenarios; _C = Occupancy 

counting scenarios; OD=office-dominated; LD=laboratory-dominated; SD=study room-

dominated; M=mixed-use)   

4.5 Conclusions 

Building energy consumption is highly impacted by occupants and their energy use 

patterns, therefore, there are significant opportunities for energy efficiency improvement by 

applying occupant-based controls in buildings. This research focuses on, first, defining what a 

typical academic building is and how it is structured, as currently there no prototypical academic 

building model available. It then uses this to assess the energy savings potential of the use of 

occupancy sensors in such buildings.  

The space type and functional use data was collected from 293 academic buildings across 

five U.S. universities of different sizes was used to define typical space distribution and 
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composition for use in typical academic building models. Four types of typical academic building 

models were then defined, which are typical Office-dominated, Laboratory-dominated, Study 

room-dominated, and Mixed-use academic building models, using clustering.  Next the medium 

size office DOE Reference building model was used as a baseline, as it is similar to that of 

academic buildings in size, then re-zoned to represent the typical characteristics and space use 

compositions of academic buildings, to develop the four typical academic building models. The 

occupancy schedules were initially built using LBNL Occupancy Simulator with some additional 

modifications. The baseline and proposed models when then built, of which a fixed setpoint 

schedule and minimum outdoor air flowrate were used for the baseline model. The proposed model 

utilizes occupant-based controls, which resets the temperature schedule and minimum outdoor air 

flow schedule under both “Occupancy presence” and “Occupancy counting” scenarios.  

Baseline energy consumption were first compared across the four building models, 

indicating that the energy savings evaluation for each of the buildings should be separated since 

different academic building models have different energy patterns due to different mixes of space 

functional uses. After applying the occupant-based controls, results show that there is significant 

energy saving potential for the proposed typical academic building models with the 

implementation of occupant-based controls. Among all these four typical academic building 

models, the total HAVC energy savings ranges from 35% to 51% under “Occupancy presence” 

scenarios. An additional energy saving increase (3~9%) from “Occupancy presence” scenarios to 

“Occupancy counting” scenarios is also achieved. The results of this work provide typical 

academic building models with integrated occupancy schedules which can be used to evaluate 

energy saving measures, and aid building designers and operators in making informed decisions 
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in applying appropriate control strategies to optimize building energy systems, as well as predict 

energy use and demand.  

We also noted that the energy savings could vary depending on different variables, such as 

building characteristics, space distributions, and occupancy schedules, among others. Future 

efforts should consider a sensitivity analysis to investigate how much influence the variations of 

these variables could have on building energy savings.
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APPENDIX A: Space types of assignment for typical academic building model 

 

 

Table 40 Space types assignment on each floor for the laboratory-dominated typical academic building model 

Category from FICM 

Area of  

Laboratory

-dominated 

Space types  

1st floor 2nd floor 3rd floor 

Number of 

rooms 

Area 

(m2) 

Number of 

rooms  

Area 

(m2) 

Number of 

rooms 

Area 

(m2) 

CLASSROOM 120 
Classroom 1 72 - - - - 

Seminar - - - - 1 56 

LABORATORIES 2615 
Research lab 4 492 7 940 8 1014 

Teaching lab 2 126 - - - - 

OFFICES 816 

Staff office - - 2 166 - - 

Faculty 

office 
- - - - 1 166 

Graduate 

student office 
4 392 - - - - 

Conference - - 2 130 - - 

STUDY FACILITIES 26 Study room 1 23 - - - - 

SPECIAL USE 16 Special use - - - - - - 

GENERAL USE 119 

Meeting 

room 
1 71 - - - - 

Lounge- 

Recreation 
1 38 - - - - 

Food 

facilities 
- - - - - - 

SUPPORTING 

FACILITIES 
22 

Active 

storage 
1 23 - - - - 

OTHERS 1270 

Corridor 1 291 1 290 1 290 

Stairway 1 15 1 15 1 15 

Lobby 1 105.00 1 105 1 105 

Restroom 1 15 1 15 1 15 
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Table 41 Space types assignment on each floor for the study room-dominated typical academic building model 

Category from 

FICM 

Area of  

Study 

room-

dominated 

Space types  

1st floor 2nd floor 3rd floor 

Number of 

rooms 

Area 

(m2) 

Number of 

rooms  

Area 

(m2) 

Number of 

rooms 

Area 

(m2) 

CLASSROOM 2 
Classroom / / / / / / 

Seminar / / / / / / 

LABORATORIE

S 
255 

Research lab 1 122 / / / / 

Teaching lab 2 126 / / / / 

OFFICES 708 

Staff office / / 2 189 / / 

Faculty office / / / / 1 166 

Graduate student 

office 
4 215 / / / / 

Conference / / / / 1 135 

STUDY 

FACILITIES 
2,590 Study room 5 642 9 1048 8 935 

SPECIAL USE 16 Special use / / / / / / 

GENERAL USE 119 

Meeting room 1 71 / / / / 

Lounge/ 

Recreation 
1 38 / / / / 

Food facilities / / / / / / 

SUPPORTING 

FACILITIES 
22 Active storage 1 23 / / / / 

OTHERS 1,270 

Corridor 1 290 1 290 1 290 

Stairway 1 15 1 15 1 15 

Lobby 1 105 1 105 1 105 

Restroom 1 15 1 15 1 15 
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Table 42 Space types assignment on each floor for the mixed-use typical academic building model 

Category from 

FICM 

Area of  

Mixed-

use 

Space types  

1st floor 2nd floor 3rd floor 

Number of 

rooms 

Area 

(m2) 

Number of 

rooms  

Area 

(m2) 

Number of 

rooms 

Area 

(m2) 

CLASSROOM 1,503 
Classroom 4 442 5 661 4 433 

Seminar / / / / 1 56 

LABORATORIES 734 
Research lab 1 122 1 122 2 382 

Teaching lab 2 126 / / / / 

OFFICES 1,227 

Staff office / / 4 319 / / 

Faculty office / / / / 2 301 

Graduate student 

office 
4 392 / / / / 

Conference     1 135 / / 

STUDY 

FACILITIES 
92 Study room 1 23 / / 1 65 

SPECIAL USE 16 Special use / / / / / / 

GENERAL USE 119 

Meeting room 1 71 / / / / 

Lounge/ 

Recreation 
1 38 / / / / 

Food facilities / / / / / / 

SUPPORTING 

FACILITIES 
22 Active storage 1 23 / / / / 

OTHERS 1,270 

Corridor 1 290 1 290 1 290 

Stairway 1 15 1 15 1 15 

Lobby 1 105 1 105 1 105 

Restroom 1 15 1 15 1 15 
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APPENDIX B: Detailed floor plans and whole building geometry for typical academic 

building model 

 

 

 

 

(a) (b) 

 
(c) 

Figure 20 Detailed floor plans and whole building geometry for laboratory-dominated 

typical academic building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd floor 

plan 
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(a) (b) 

 
(c) 

Figure 21 Detailed floor plans and whole building geometry for study room-dominated 

typical academic building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd floor 

plan 
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(a) (b) 

 
(c) 

Figure 22 Detailed floor plans and whole building geometry for mixed-use typical academic 

building model, including (a) 1st floor plan; (b) 2nd floor plan; (c) 3rd floor plan 
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CHAPTER 5 – CONCLUSIONS AND FUTURE WORK 

 

The research presented in this dissertation has led to an expansion of knowledge on the 

influential variables that impact the reliability of occupancy sensor systems, a standard 

methodology to test the reliability of various occupancy sensor systems, and the development of 

typical academic building models and their use to assess the energy savings potential of the use of 

these technologies. The research findings provide a novel methodology for evaluating the 

performance of occupancy sensor systems and for developing and accessing technology-based 

energy savings potential in typical academic building models. 

5.1 Conclusions and Contributions 

Based on the results in this dissertation, the following conclusions can be drawn: 

5.1.1 Influential variables impacting the reliability of building occupancy sensor systems 

Existing occupancy sensor technologies were reviewed and summarized to attain a 

comprehensive list of the potential influential variables that may cause sensor failures along with 

stakeholder discussion. Then an expert survey was conducted across a diversity of stakeholders on 

the most and least important variables impacting occupancy sensor performance based on this 

comprehensive influential variable list. This resulted in a final list of most and least important 

variables for assessing energy for both residential and commercial buildings. The most important 

variables are summarized in Table 43. The results of this work provide insights for sensor 

manufacturers on what variables industry stakeholders consider to be most important when 

assessing the performance of occupancy sensor systems. This also provides initial results for use 

in considering a standard set of variables by which to test occupancy sensor systems for 

comparative performance evaluation. The unique contribution of this work is the comprehensive 
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influential variable list that might influence occupancy sensor performance based on literature 

review, and list of the most important variable list for residential and commercial buildings attained 

from an expert survey. 

Table 43 Most important variables for residential and commercial buildings 

 Building type Most important (Tier 1) 

Residential buildings 

A2. Size (length/width) and shape of test area 

C5. Level of motion of occupant(s) 

D1. Presence of pets 

B1. Lighting level (regardless of source of light) (lux)  

C4. Spatial location of occupant(s) 

C1. Number of occupants (including 0)  

A9. Presence of large objects (especially metal objects) within or 

near a space  

B3. Presence of interior lighting sources (non-overhead)  

A4. Number of doors (entrances/exits)  

D4. Use of robots 

Commercial buildings 

A2. Size (length/width) and shape of test area 

C1. Number of occupants (including 0) 

B1. Lighting level (regardless of source of light) (lux)  

C4. Spatial location of occupant(s) 

A9. Presence of large objects (especially metal objects) within or 

near a space 

C5. Level of motion of occupant(s) 

B7. Presence of sunlight - direct 

C7. Clustering of occupants (distance between occupants) 
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5.1.2 A standard methodology to test the reliability of various occupancy sensor systems 

A standard evaluation methodology was proposed to test the reliability of occupancy sensor 

systems in residential buildings, including both “Typical testing” and “Failure testing”. “Typical 

testing” is used to evaluate the reliability of each occupancy sensor system under scenarios that 

mimic real occupancy scenarios. “Failure testing” follows one variable at a time (OVAT) methods 

to test the most important variables based on a stakeholder survey (see previous section), to 

determine if these variables impact sensor system reliability.  

The proposed methodology for evaluating the reliability of occupancy sensor systems 

presents an opportunity for use as a standardized method to evaluate the reliability of residential 

occupancy sensor systems that currently does not exist. The focus on typical scenarios enables the 

reporting of metrics representing the reliability of the sensor system under typical U.S. household 

scenarios. This could be used as a comparative measure of performance across sensor systems. 

The focus on failure testing enables the ability to assess the potential weaknesses in sensor system 

reliability, which can provide valuable information for sensor developers to adapt their design to 

avoid sensor failures from the impact of various influential variables, thus improving sensor 

performance beyond that which could be assessed from typical scenario testing only. 

Standardized performance metrics were also proposed in this research for both the “typical” 

and “failure” testing, which are summarized from a state-of-art literature review. Both a detailed 

confusion matrix and associated metrics were provided, instead of only the use of overall accuracy 

for “typical” testing evaluation. 

A case study was completed to verify the feasibility of the proposed methodology. The 

developed methodology was implemented for a novel occupancy detection sensor system to test 

the sensor system’s reliability. For “typical testing”, results show that on average, the Precision 
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and Recall are 0.75 and 0.70, respectively, which means that there are similar number of false 

positives (FPs) and false negatives (FNs) across the dataset. The overall accuracy of the tested 

novel system ranged from 62.4% to 76.4%. For “failure testing”, individual variable testing 

provided insights as to the impact of a range of levels of individual variables on sensor system 

performance. For the tested sensor system, the “Number of occupants”, “Presence of large objects”, 

“Presence of interior light sources”, and “Number of doors” are not influential, while “Lighting 

level”, “Location of occupants”, “Another door in the entry/exit area”, and “TV on” variables were 

determined to impact sensor system performance. Supplementary tests showed that the 

performance of the evaluated systems is affected most by the positioning of the platforms 

monitoring the entry/exit doors. Individual sensor evaluations showed that the system can 

differentiate between the sources of motion, i.e., can differentiate between people and robot 

vacuums and pets.  

The unique contributions of this work include the proposed a novel methodology to 

evaluate the reliability of occupancy sensor systems, including both typical testing and failure 

testing, in residential buildings. The proposed methodology for evaluating the reliability of 

occupancy sensor systems presents an opportunity for its use as the basis for development of a 

standardized method to evaluate residential occupancy sensor systems, including existing sensor 

systems as well as those being developed and commercialized. Within this methodology, the focus 

on typical scenarios enables the reporting of metrics representing the reliability of the sensor 

system under typical U.S. household scenarios. This could be used as a comparative measure of 

performance across sensor systems. The focus on failure testing enables the ability to identify 

potential weaknesses in the sensor system reliability, as well as targets for further testing and 

development. In summary, this effort could help establish and form standards that define a standard 
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way to evaluate occupancy sensor systems’ performance to push forward the applications of 

various occupancy sensor technologies. With an understand of a testing metric indicating the 

performance of various sensors systems, this should help encourage those that may be skeptical of 

performance to realize their potential.  

5.1.3 Typical Academic Building Energy Model Development and Energy Saving Evaluation of 

Occupant-based Control 

A methodology was proposed to develop typical academic building models. First, the space 

type and functional use data collected from 293 academic buildings across five U.S. universities 

covering different sizes of universities was used to attain the typical space distribution and 

composition in typical academic building models. Four types of typical academic building models 

were then determined based on cluster analysis, which include typical Office-dominated, 

Laboratory-dominated, Study room-dominated, and Mixed-use academic building models.  

Next, the medium size office DOE Reference building model was used as the basis to 

develop the academic building models in EnergyPlus. It was re-zoned to represent the typical 

characteristics and space use compositions of academic buildings, to develop the four typical 

academic building models. The stochastic occupancy schedules were built based initially on the 

LBNL Occupancy Simulator. Next the baseline and proposed models were created, of which a 

fixed setpoint schedule and minimum outdoor air flowrate were used for the baseline model. The 

proposed models utilize the occupant-based controls, which resets the temperature schedule and 

minimum outdoor air flow schedule under both “Occupancy presence” and “Occupancy counting” 

scenarios.  

Baseline energy consumptions were first compared, indicating that the energy savings 

evaluation should be separated since different academic building models have different energy 
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patterns due to different space functional uses. After applying the occupant-based controls, results 

show that there are significant energy saving potentials for the proposed typical academic building 

models with the implementation of occupant-based controls. Among all these four typical 

academic building models, the total HVAC energy savings ranges from 35% to 51% under 

“Occupancy presence” scenarios, compared to baseline energy consumptions, and a further energy 

saving increase (3 - 9%) from “Occupancy presence” scenarios to “Occupancy counting” scenarios, 

resulting in an overall energy savings potential for “Occupancy counting” of 38-56%.  

The developed typical academic building models with integrated occupancy schedules can 

be used as a comparative measure of energy savings across different energy saving measures, and 

aid building designers and operators in making informed decisions in applying appropriate control 

strategies to optimize building energy systems, as well as predict energy use and demand.  The 

unique contributions of this work include proposing a novel methodology to define the space 

distribution and composition for typical academic buildings and classify the typical academic 

buildings into four different categories, including typical office-dominated, laboratory-dominated, 

study-room dominated, and mixed-use academic buildings, which could be used for defining 

typical academic building models.  

5.2 Limitations 

5.2.1 Influential variables impacting the reliability of building occupancy sensor systems 

There are many different influential variables and combinations of variables that can 

impact occupancy sensor systems, some of which may be more important in some building 

scenarios as compared to others. It was not attempted to rank the order of importance for different 

building types, such as hospitals versus schools. It is anticipated that they may be variations in 

these ranking among building types, as well as the frequency of occurrence of various variables. 
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However, this effort was an attempt to define the most and least important variables for residential 

and commercial building applications overall. The stakeholders that participated in the survey were 

also mostly based in the U.S., which may influence results.  

5.2.2 A standard methodology to test the reliability of various occupancy sensor systems 

When evaluating the “Typical testing” results, given that there are a number of activities 

that occur over long durations of many hours (e.g., “unoccupied”), shortened testing durations 

were proposed to optimize laboratory testing time. The longer time periods were generally reduced 

to 10 to 20 minutes. Preliminary testing results suggested that a 10- to 20-minute duration was able 

to capture the behavior of a sensor system sufficiently to mimic a longer period of time. This 

shorter duration also enables a more time-efficient testing method which is beneficial given this 

test method requires human subjects to complete. However, there are limitations of the use of the 

“test” duration for extrapolating to the 24-hour duration that could benefit from further testing as 

a part of future work.  

5.2.3 Typical Academic Building Energy Model Development and Energy Saving Evaluation of 

Occupant-based Control 

The typical space distribution and composition for typical academic building models were attained 

from 293 academic buildings across five U.S. universities covering different sizes of universities. 

Assumptions were made for the percentage of each space types based on the existing studies, 

however, there are not any standards or guidelines to use as a reference. In addition, the occupancy 

schedules were developed, in part, based on the LBNL occupancy simulator, which may also have 

some limitations.  
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5.3 Future Work 

5.3.1 Sensor Reliability and Performance Improvement 

After the standard methodology for reliability testing, it is also important to consider that 

if a reliability issue is identified for a certain type of occupancy sensor system, further efforts are 

needed to mitigate these to improve the sensor’s reliability and performance. For example, if a 

sensor system is determined to be sensitive to natural daylight, it may be recommended to not 

install this sensor system near exterior windows, or additional changes to the sensor system may 

be made to reduce the sensitivity to daylight.  

5.3.2 Standardized Performance metrics for reliability evaluation 

Performance metrics were summarized from a state-of-art literature review. Both a detailed 

confusion matrix and associated metrics were provided, instead of only the use of overall accuracy 

for “typical” testing evaluation. However, it is noted that there is not currently a standard that 

suggests a certain level of performance using these metrics merits a sensor system would “pass”. 

This could be an opportunity for future work. 

5.3.3 Typical academic building models improvement 

293 academic buildings across five U.S. universities covering different sizes of universities 

were used to attain the typical space distribution and composition in typical academic building 

models. In the future, more university data could be collected to evaluate and further improve the 

typical academic building models.  

We also noted that the energy savings could vary depending on different variables, such as 

building characteristics, space distributions, and occupancy schedules. Future efforts would 
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benefit from a sensitivity analysis to investigate how much influence the variations of these 

variables would have on building energy savings. 

 

 

 


