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ABSTRACT 

UNDERSTANDING THE GENETIC BASIS OF HUMAN DISEASES BY 
COMPUTATIONALLY MODELING THE LARGE-SCALE GENE REGULATORY 

NETWORKS 

By 

Hao Wang 

Many severe diseases are known to be caused by the genetic disorder of the human 

genome, including breast cancer and Alzheimer's disease. Understanding the genetic 

basis of human diseases plays a vital role in personalized medicine and precision therapy. 

However, the pervasive spatial correlations between the disease-associated SNPs have 

hindered the ability of traditional GWAS studies to discover causal SNPs and obscured 

the underlying mechanisms of disease-associated SNPs. Recently, diverse biological 

datasets generated by large data consortia provide a unique opportunity to fill the gap 

between genotypes and phenotypes using biological networks, representing the complex 

interplay between genes, enhancers, and transcription factors (TF) in the 3D space. The 

comprehensive delineation of the regulatory landscape calls for highly scalable 

computational algorithms to reconstruct the 3D chromosome structures and 

mechanistically predict the enhancer-gene links. In this dissertation, I first developed two 

algorithms, FLAMINGO and tFLAMINGO, to reconstruct the high-resolution 3D 

chromosome structures. The algorithmic advancements of FLAMINGO and tFLAMINGO 

lead to the reconstruction of the 3D chromosome structures in an unprecedented 

resolution from the highly sparse chromatin contact maps. I further developed two 

integrative algorithms, ComMUTE and ProTECT, to mechanistically predict the long-

range enhancer-gene links by modeling the TF profiles. Based on the extensive 



 

evaluations, these two algorithms demonstrate superior performance in predicting 

enhancer-gene links and decoding TF regulatory grammars over existing algorithms. The 

successful application of ComMUTE and ProTECT in 127 cell types not only provide a 

rich resource of gene regulatory networks but also shed light on the mechanistic 

understanding of QTLs, disease-associated genetic variants, and high-order chromatin 

interactions. 
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CHAPTER 1 

INTRODUCTION 

 

Genetic disorders have been proved to be closely related to the disease risks of all 

individuals, and the change of a single nucleotide of the human genome may cause 

several diseases. Therefore, understanding the relationships between genetic variants 

and diseases plays a central role in proposing individualized clinical therapy. Over the 

recent 20 years, Genome-wide association studies (GWAS) have been widely applied 

and predicted millions of disease-associated SNPs. Traditionally, people mainly focused 

on the SNPs within the coding region of genes and used the genes containing the SNPs 

as mediators to explain the SNP-disease association. However, genes only take 2% of 

the human genome, and the mechanisms of SNPs within the non-coding region of the 

human genome remain unclear.  

Recently, the development of the Next Generation Sequencing (NGS) technique has 

been the driving force in studies of functional genomics and generates large-scale 

genome-wide coverage epigenomic datasets measuring gene expression, chromatin 

opening, and transcription factor (TF) binding sites across diverse cell types. Taking 

advantage of big biological data, over a million enhancers were discovered within the 

non-coding regions, which can be bound by transcription factors and regulate the 

expression of both local and distal genes through 3D chromatin loops. The complex 

interplay between genes, enhancers, and TFs are summarized in the gene regulatory 

network, where nodes represent the biological factors and edges represent the regulatory 
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links. The gene regulatory network provides a clear roadmap of how genetic variants 

contribute to diseases by disturbing genes, enhancers, and TFs. 

Predicting the interactions between genes and enhancers are challenging. Disputing one 

can assign the nearest gene to enhancers as the target gene in 1D space, it has been 

proved that the enhancers can be brought to the proximal of the distal target genes in 3D 

space through long-range chromatin loops and regulate the gene expression. 

Experimentally, the chromosome conformation capture technique, including Hi-C and 

Capture-C, has been used to profile the chromatin contact between DNA fragments. 

However, the experimental data can only predict chromatin interactions in low resolution. 

Furthermore, the experimental data can only predict short-range chromatin interactions 

(<500kb) and has low power in predicting long-range chromatin interactions. Therefore, 

a robust computation model for predicting the long-range interaction between enhancers 

and genes is in great need. To address this problem, we developed a series of machine 

learning models to predict and utilize the 3D chromosome structures enhancer-gene 

interactions: FLAMINGO, tFLAMINGO, ComMUTE, ProTECT, and APRIL. In Chapter 2 

and 3, we introduce FLAMINGO and tFLAMINGO, which reconstruct 3D chromosome 

structures based on Hi-C contact maps. FLAMINGO is a highly scalable and accurate 

algorithm for predicting high-resolution 3D chromosome structures from Hi-C contact 

maps. Using FLAMINGO, we successfully reconstructed the 3D structures of all 23 

human chromosomes in the highest resolution (1kb) in six cell types. tFLAMINGO further 

expands the reconstruction of 3D chromosome structures into single cells using low-rank 

tensor completion. The application of tFLAMINGO in four single-cell chromatin interaction 

datasets provides a unique opportunity to study the dynamic 3D chromosome structures 
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across single cells and the relationship with gene regulations. In Chapter 4 and Chapter 

5, we introduce ComMuTE and ProTECT, which predict functional regulatory interactions 

between enhancers and genes. ComMuTE models the joint regulatory effect of multiple 

enhancers and TFs using a graphical statistical model. We applied ComMuTE in 127 cell 

types/tissues to predict enhancer-gene links and provided a mechanistic explanation of 

high-order chromatin interactions and epistasis QTLs. ProTECT predicts the enhancer-

gene links by modeling the Protein-Protein Interactions (PPI) between TFs. The 

elucidation of TF-mediated enhancer-gene links provides new insights into understanding 

the trans-QTL. 
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CHAPTER 2 

RECONSTRUCT HIGH-RESOLUTION 3D GENOME STRUCTURES FOR DIVERSE 
CELL-TYPES USING FLAMINGO 

 

A modified version of this chapter was previously published (Wang H. et al, 2022): Wang 

H., Yang J., Zhang Y., Qian, J. and Wang. J. (2022) Reconstruct high-resolution 3D 

genome structures for diverse cell-types using FLAMINGO. Nature Communications. 

 

2.1 INTRODUCTION 

The three-dimensional (3D) architecture of genomes plays pivotal roles in DNA replication, 

genome stability and tissue differentiation1-3. Quantitative characterization of spatial 

chromosome conformations is crucial for deciphering the complex systems of spatially 

coordinated transcriptional and epigenetic activities4-6, leading to the understanding of 

gene regulation mechanisms. The genome-wide high-throughput chromosome 

conformation capture technique such as Hi-C7, 8 has been one of the driving forces in 

studies of 3D genome structures. The Hi-C datasets profiled from different cell-types and 

species7, 9-13 have revealed structural components of genome organization7, 10, 14, such as 

chromatin loops, topologically associated domains (TADs), and chromatin compartments. 

Although these findings have provided powerful insights into the governing rules of 

chromosome folding at large scales (~100kb-1Mb), such as the loop extrusion model15, 

16, it is still computationally difficult to accurately reconstruct high-resolution spatial 

conformations, such as at ~5kb resolution, for all chromosomes in large genomes. 



5 

Since the collection of Hi-C experiments is growing, the resulting massive Hi-C data call 

for efficient computational algorithms for modeling 3D genomes. Previous algorithms of 

3D reconstruction using Hi-C data have been able to predict spatial distances mainly at 

low-resolutions or within specific genomic segments17. Typically, based on experimentally 

estimated conversion functions14, the observed Hi-C contact frequency is converted into 

spatial distances, which we term as observed Hi-C distances in this paper. In general, a 

consensus structure or an ensemble of structures are inferred by maximizing the similarity 

between predicted and observed Hi-C distances using optimization-based (such as MDS-

type or manifold learning techniques)18-27 or probabilistic approaches (such as MCMC 

strategy) 28-32. Representative state-of-the-art algorithms that have been shown to 

outperform other methods, along with some recent developments, include ShRec3D33, 

GEM-FISH34, Hierarchical3DGenome35, RPR36, SuperRec37, ShNeigh38 and PASTIS28 

(Methods, Supplementary Note 1). The accuracy of a predicted structure is mainly 

evaluated by its capability of recapitulating the measured pairwise distances between 

genomic loci from Hi-C. Spearman correlation is one of the widely used metrics to quantify 

the accuracy. However, four fundamental challenges still need addressing in developing 

an efficient algorithm: (1) High scalability to reconstruct high-resolution spatial 

configurations for all chromosomes from massive Hi-C datasets; (2) Superior 

performance to handle large fractions of missing data, which is a common drawback of 

Hi-C experiments; (3) Capability to make accurate cross cell-type structure predictions, 

since the vast majority of cell-types lack Hi-C data; and (4) Capability to predict high-

resolution structures from low-resolution Hi-C contact maps.  
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To address the above four challenges, we have developed a low-rank matrix completion 

based methodology for reconstructing 3D genome structures from Hi-C data. Low-rank 

matrix completion has been found to be a powerful modeling framework for 3D shape 

inferences in different scientific fields39-41. One of the unique advantages of such a 

modeling method is that it is able to explicitly leverage the low-rank property of a pairwise-

distance matrix (rank≤5 for Euclidean distance matrix, see Methods)42 in an objective 

function for optimization, and such a low-rank property has not been explicitly utilized in 

previous approaches, such as multidimensional scaling based methods. Efficient 

incorporation of the low-rank constraint into the modeling process allows fast structure 

reconstruction from just a small subset of Hi-C data, making the algorithm scalable for 

high-resolution structure predictions for large chromosomes with high fractions of missing 

data. 

Our efforts have led us to create a Fast Low-rAnk Matrix completion algorithm for 

reconstructINg high-resolution 3D Genome Organizations from Hi-C data, FLAMINGO 

(https://github.com/wangjr03/FLAMINGO), which has been implemented to generate both 

5kb- and 1kb-resolution 3D chromosomal structures for the human genome. Based on 

extensive performance evaluations using data from both simulated structures and 

experimental Hi-C datasets from the human genome, the high-resolution chromosome 

structures generated by FLAMINGO demonstrate substantially improved accuracy, 

compared with other state-of-the-art methods. The predicted high-resolution spatial 

distances in 3D space are further justified by orthogonal experiments (such as ChIA-

PET43, Capture-C44, 45 and SPRITE46), providing biological insights into long-range 

chromatin interactions in gene regulation. Beyond 2D contact maps, the predicted 3D 

https://github.com/wangjr03/FLAMINGO
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structures by FLAMINGO can help to identify higher-order multi-way chromatin 

interactions, interpret potential mechanisms of genetic QTLs, characterize the 

geometrical patterns of chromatin folding, and facilitate the understandings of structural 

variations. Moreover, even using only 10% of down-sampled Hi-C contacts, FLAMINGO  

 

Figure 2.1 Overview of FLAMINGO. (a) Schematic figure of FLAMINGO. Biologically, 
the distance matrix (size 𝑁  by 𝑁 ) is induced by the 3D coordinate matrix of DNA 

fragments (size 𝑁 by 3), which guarantees that the rank of the distance matrix is no more 
than five (upper panel). The low-rank property suggests the potential of information 
compression (𝑁2 entries to 5𝑁 entries), and enables FLAMINGO to efficiently reconstruct 
structures from incomplete distance matrices and perform superiorly against large 
portions of missing data. Equipped with high scalability, FLAMINGO can quickly predict 
the optimal coordinate matrix that reproduces the observed distances from Hi-C data 
(middle panel), leading to the high-resolution 3D genome structure and the completed 
distance matrix (lower panel). (b) Reconstructed 5kb-resolution structure of chromosome 
1 in the human genome by FLAMINGO. Chromatin compartments (A: orange; B: blue) 
demonstrate polarized positioning in the predicted structure. A representative example of 
predicted loop structures is shown in the zoom-in view, where both anchors interact with 
each other (supported by ChIA-PET interactions) and are bound by CTCF and Rad21. 
Color gradients represent consecutive TADs within each type of compartments. 

 

still achieves higher accuracy than other methods, demonstrating its superior capability 

of handling missing data in Hi-C. In addition, an integrative version of our algorithm, 
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iFLAMINGO, is built to further combine 1D epigenomics data, such as DNase-seq signals, 

with Hi-C data, which allows us to make cross cell-type predictions of 3D genome 

architectures and boost the resolution of predictions. These algorithmic advantages will 

not only expand the coverage of cell-types for 3D genome modeling but also improve the 

information extraction from the fast-growing collection of experimental Hi-C data.  

2.2 RESULTS 

2.2.1 FLAMINGO algorithm to reconstruct high-resolution 3D genome architectures 

Based on the ‘beads on a string’ polymer model47, every chromosome is modeled as a 

chain of ‘beads’ consisting of DNA fragments or loci, and the pairwise distances between 

genomic loci are biologically induced from the Gram matrix of their 3D coordinates (Figure 

2.1.a). To reconstruct the 3D spatial structure, the normalized chromatin contact maps 

from Hi-C experiments can be converted into an observed distance matrix as suggested 

by previous studies10, 14, whose validity and robustness are justified by both computational 

model selections and empirical comparisons with image-based data (see Methods). The 

observed distance matrix typically contains large portions of unmeasured distances 

(namely, missing data), especially for high-resolution genomic loci (~5kb fragments)10. 

FLAMINGO predicts the optimal genome structure based on a low-rank matrix completion 

framework (Figure 2.1.a). The objective function contains three terms: (1) a term to 

impose the low-rank constraint on the Gram matrix of predicted 3D coordinates, since the 

3D distance matrix has a rank at most five; (2) a term measuring the differences between 

predicted and observed distances, which is evaluated on the measured subset of pairs of 

loci; and (3) a penalty term penalizing unrealistic distances between adjacent DNA 

fragments. FLAMINGO uses the alternating-direction method of multipliers48 to solve the 
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optimization problem. At convergence, the optimal 3D structure that minimizes the 

objective function is identified, along with the completed pairwise distance matrix (Figure 

2.1. a). 

The key feature of FLAMINGO is to incorporate the low-rank constraint (rank≤5) of the 

3D distance matrix of size 𝑁 × 𝑁 into the optimization process, where 𝑁 is the number of 

genomic loci, such as the number of 5kb DNA fragments. Since the pairwise spatial 

distances are generated by the 3D coordinate matrix of genomic loci (rank≤3), the 

resulting symmetric Euclidean distance matrix has a rank at most 542. It is because the 

squared Euclidean distance matrix is a sum of three matrices: one being the Gram matrix 

of rank at most 3 and each of the other two being of rank at most 1 (see Methods).  And 

thus, it has intrinsic degrees of freedom at most 5𝑁, which, compared to the size 𝑁 × 𝑁 

of the entire full matrix, is extremely small when 𝑁 is large. Therefore, in order to recover 

the entire distance matrix, we may just need the number of measurements of the distance 

matrix to be proportional to the intrinsic degrees of freedom. In fact, as long as the 

information of the underlying distance matrix is not concentrated on a few entries, each 

randomly selected measurement of pairwise distances will be equally informative, 

suggesting that the information can be substantially compressed49 (Figure 2.1.a). Hence, 

by minimizing the rank of the inferred Gram matrix, low-rank matrix completion models49 

offer at least two benefits (Methods): (1) accurate 3D structures can be reconstructed 

from subsets of observed distances; and (2) fast matrix calculations can be carried out 

based on sparsity and low-rankness of the underlying matrices. Remarkably, both 

benefits are heavily needed for high-resolution structure predictions. By dividing the 

genome into high-resolution DNA fragments such as at 5kb-resolution, the size of the 
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distance matrix becomes huge, many entries of which have no data due to the limited 

sequencing depth of Hi-C experiments. Thus, FLAMINGO is able to build high-resolution 

3D structures from the fast-growing collection of Hi-C datasets with decent scalability at 

computational complexity 𝑂(𝑁2)  without demanding increased sequencing depths 

(Figure A.1 and Figure A.2).  

To enable parallel computations, FLAMINGO also employs a hierarchical strategy by 

dividing each chromosome into 1Mb domain-level fragments that are further divided into 

5kb DNA fragments, where we define a 1Mb fragment as a domain (Methods). The same 

low-rank matrix completion algorithm is applied on both the inter-domain hierarchy 

consisting of 1Mb fragments, which leads to a basic structural skeleton, and the intra-

domain hierarchy of 5kb fragments, which results in intra-domain structures. Different 

from other methods that only align the endpoints of domain fragments34 or whose 

refinement processes are dominated by intra-domain distances35, an iterative rotation 

algorithm along the three spatial directions is developed to assemble intra-domain 

structures into the inter-domain skeleton, by aligning all measured off-diagonal distances 

so as to maximize the consistency with inter-domain 5kb-resolution Hi-C contacts (Figure 

A.3, Methods). At convergence, the iterative rotation algorithm leads to the full high-

resolution structures for each chromosome. 

FLAMINGO has been applied on the normalized Hi-C datasets from six human cell-types 

(GSE6352510) to generate 3D structures for chromosomes 1-22 and X at 5kb-resolution 

(Figure A.3), which are the largest resources of reconstructed 3D structures for the human 

genome at high-resolution (https://github.com/wangjr03/FLAMINGO). For example, at 

5kb-resolution, chromosome 1 contains 44,027 DNA fragments, excluding the 

https://github.com/wangjr03/FLAMINGO
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centromere and telomere regions, and 94.5% entries of the observed distance matrix in 

GM12878 are missing data. The structure of chromosome 1 can be predicted quickly by 

FLAMINGO (Figure 2.1.b). The two types of chromatin compartments (A/B) are organized 

into separable positions in the predicted structure, consistent with the polarized 

architecture observed from the multiplexed FISH14. By zooming into the high-resolution 

structure, predicted loop structures are found corresponding to previously annotated 

TADs (Figure 2.1.b), where the pairs of CTCF-associated Hi-C loop anchors (CTCF-

CTCF pairs) are predicted with significantly shorter spatial distances, compared to 

genomic-distance controlled pairs in two cases: 1) pairs between a CTCF-anchor and a 

random anchor with the same genomic separation ( CTCF-random pairs, Figure A.1  

 

Figure 2.2 Simulation analyses of FLAMINGO. (a) Given a benchmark structure, the 
distance matrix is down-sampled using different down-sampling rates and mixed with  
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Figure 2.2 (cont’d) 

different levels of noise (Noise level 1: low-level; Noise level 2: high-level; see Methods). 
The incomplete noisy distance matrices are used as inputs for FLAMINGO. The 
reconstructed 3D structures are compared with the benchmark structure by calculating 
relative errors and correlations. (b) One example of the reconstructed structure by 
FLAMINGO (down-sampling rate=0.5, noise level 1, see Methods), which aligns with the 
benchmark structure almost identically (correlation=0.9999999, relative error=0.0037). 
(c-d) The performance of FLAMINGO (relative errors: the y-axis) under various down-
sampling rates and noise levels, with respect to the accuracy of 3D distance matrices (c) 
and 3D coordinates of DNA fragments (d). Error bars represent the standard deviations 
of relative errors examined based on n=10 independently down-sampled distance 
matrices under each down-sampling rate. Data are presented as mean values +/- SD. 
Source data are provided as a Source Data file.  

 

boxplot, right, p-value=5.21x10-4, one-sided Wilcoxon test), and 2) pairs between random 

anchors with the same genomic separation (random-random pairs, Supplementary Fig 1 

boxplot, left, p-value=2.78x10-5, one-sided Wilcoxon test). In addition, FLAMINGO has 

also generated 3D chromosomal structures at 1kb-resolution in GM12878 for all 

chromosomes (Figure A.2), which represent spatial reconstructions with the highest 

resolution to date. Moreover, FLAMINGO is robust to the choice of conversion factors for 

converting interaction frequency to distance, where the conversion factor is chosen within 

the range suggested by previous studies14, 28 (Figure A.4). 

2.2.2 Benchmark performance based on simulated structures 

The performance of FLAMINGO was benchmarked on simulated structures. The distance 

matrix generated from the benchmark structure was randomly down-sampled and then 

mixed with noise (Figure 2.2.a, Methods). By applying FLAMINGO on the noisy 

incomplete distance matrices, the reconstructed 3D structures can be identified with fast 

convergence (Figure A.5), and they are in strong agreement with the original benchmark 

structures (relative error<0.03 and correlation>0.999) (Figure 2.2.b). In addition, the 
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accuracy is robust against a wide range of down-sampling rates and different levels of 

noise (Figure 2.2.c and 2.2.d, Figure A.5, correlation>0.999), demonstrating that 

FLAMINGO is capable of handling missing data. The high accuracy is also found to be 

robust when FLAMINGO is applied to a series of simulated structures with different sizes 

(Figure A.6), suggesting the performance is not affected by the number of genomic loci 

along chromosomes. Furthermore, to validate the iterative assembly algorithm for 

organizing intra-domain structures, we partitioned the benchmark structure into different 

domains and then reconstructed the whole structure using the assembly algorithm. The 

assembled structures recapitulate the benchmark structure with high accuracy (relative 
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error < 0.005, correlation > 0.999) and are independent of specific choices of domain 

partitions (Figure A.7a and 7b).  

Figure 2.3 Superior accuracy and scalability of FLAMINGO. (a) The reconstructed 
structure of chromosome 21 at 5kb-resolution (left). The color gradient represents the 
genomic distance to the centromere (flanking centromere; yellow; flanking telomere: 
black). As an example, FLAMINGO recovers the chromatin loop formed by two TADs 
(chr21:31,375,000-32,985,000; middle), corresponding to inter-TAD hotspots in the 
reconstructed 3D distance matrix (right). (b) Robust performance of FLAMINGO across 
six cell-types at 5kb-resolution. Correlations between predicted and observed distance 
matrices are calculated for all 5kb fragments (all-points: blue) and fragments within 
domains (intra-domain: salmon). Error bars represent the standard deviations across 
n=23 chromosomes. (c) Performance comparison with the state-of-the-art algorithms 
based on Hi-C data in GM12878 at 5kb-resolution (all-points: left; intra-domain: right). 
Error bars represent the standard deviations across chromosomes with complete 
predictions (n=23 for FLAMINGO, Hierarchical3Dgenome and SuperRec; n=10 for 
ShRec3D; n=9 for ShNeigh; n=6 for RPR). GEM-FISH does not have error bars because 
it can only complete the prediction for chromosome 21. (d) Orthogonal chromatin  
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Figure 2.3 (cont’d) 

interaction data provides additional evaluation metrics: anchors of chromatin interactions 
are expected to have short 3D distances. (e-g) FLAMINGO predicts significantly shorter 
distances between anchors of chromatin interactions profiled by Capture-C (n=3,692) (e), 
ChIA-PET (n=214) (f) and SPRITE (n=871) (g). The statistical significance (***) is 
calculated by one-sided Mann-Whitney test: (e) p-value=9.4x10-25 (orange) and p-
value=7.6x10-24 (blue); (f) p-value=2.8x10-22 (orange) and p-value=5.1x10-20 (blue); (g) p-
value=7.4x10-31 (orange) and p-value=6.5x10-42 (blue). The 3D structures of different 
methods are normalized for fair comparison. The center lines of boxplots show the 
median, the upper and lower box limits show the 25th and 75th percentiles respectively. 
The whiskers extend up to 1.5 times the interquartile range away from the limits of the 
boxes. Outliers outside this range were removed from the figure. (h) One example of 
chromatin loops predicted by FLAMINGO for a significant ChIA-PET interaction (red links) 
linking the KCNA2 promoter (red) with a distal enhancer (orange). (i) Comparison of the 
computational scalability by measuring the runtime (y-axis) as a function of different 
numbers of genomic loci (x-axis). Source data are provided as a Source Data file.  

 

2.2.3 Superior reconstruction accuracy across diverse cell-types 

The performance of FLAMINGO on experimental Hi-C data in the human genome was 

then systematically evaluated and compared with the state-of-the-art methods. As 

demonstrated in Figure 2.1.b and Figure A.1, FLAMINGO is able to quickly reconstruct 

3D chromosome structures at 5kb-resolution, which are qualitatively consistent with both 

large-scale chromatin properties, such as compartments and TADs, and small-scale  

structural details, such as chromatin loops and CTCF/cohesin bindings. The predicted 

structural skeletons (1Mb-resolution) of chromosomes are strongly supported by results 

from both Hi-C (average correlation=0.95, Figure A.8.a) and FISH14 (average 

correlation=0.80, Figure A.8.b), consistently higher than other methods. The 

reconstructed structures also vary across different cell-types, consistent with cell-type 

specific chromatin contact patterns from Hi-C (Figure A.9). Taking the predicted structure 

of chromosome 21 in GM12878 as an example, FLAMINGO reconstructs clear loop 

structures for TADs and predicts short 3D distances for inter-TAD chromatin contacts 
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(Figure 2.3.a). Compared to the fuzzy input distance matrix converted from Hi-C (Figure 

A.10), the distance matrix derived from the predicted 3D structure shows substantially 

improved resolution (Figure 2.3.a), and the reconstructed long-range inter-TAD contacts 

are supported by experimental Capture-C interactions (Figure A.10). 

To quantitatively evaluate the genome-wide accuracy at 5kb-resolution, the predicted 3D 

chromosome structures were evaluated according to their consistency with the observed 

distance matrices derived from Hi-C (Methods). Similarities between structures are 

quantified by Spearman correlations, which have been widely used as accuracy metrics 

in structure analysis. To note, achieving high correlations at 5kb-resolution is a much 

harder problem than at low-resolutions (e.g. 100kb- or 1Mb-resolution), because Hi-C 

signals at 5kb-bins are much noisier and the number of high-resolution constraints in 

optimization is huge. Remarkably, the Spearman correlations between the predicted and 

observed 3D distances at 5kb-resolution, including both diagonal sub-matrices for intra-

domain structures and off-diagonal sub-matrices for inter-domain structures, are robustly 

high across all six cell-types (Figure 2.3.b, left). The predicted structure in IMR90 shows 

the highest correlation (average correlation=0.603 across 23 chromosomes), followed by 

structures predicted in GM12878 and K562 (average correlations=0.512 and 0.525 

respectively). The Spearman correlations based on off-diagonal points alone (i.e. inter-

domain distances) also show similar levels (correlations>0.42), except for HUVEC 

(correlation=0.32). These results are significant achievements, considering the extensive 

noisy constraints imposed by the huge number of pairwise distances at 5kb-resolution. 

For example, in chromosome 1, there are 6.7 × 107 pairs of 5kb fragments with measured 

Hi-C contacts as constraints. Furthermore, the predicted intra-domain structures 
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demonstrate higher correlations across the six cell-types (Figure 2.3.b, right), especially 

in GM12878, K562 and IMR90 (average correlation>0.73). In addition, even at 1kb-

resolution, the reconstructed 3D structures achieve high correlations with the observed 

spatial distances for both whole chromosomal structures and intra-domain structures 

(Figure A.2, all-points correlations ~0.4 and intra-domain correlations ~0.6). These 

consistently high correlations indicate that FLAMINGO is able to capture both long-range 

genome folding patterns and detailed structures within domains.  

FLAMINGO was then compared with other methods, GEM-FISH34, ShRec3D33, 

Hierarchical3DGenome35, ShNeigh38, RPR36 and SuperRec37, which are state-of-the-art 

and recently developed algorithms representing different modeling strategies (Methods, 

Supplementary Note 1). Strikingly, FLAMINGO achieved substantially higher correlations 

than all the other methods, for both whole chromosome structures and intra-domain 

structures, at 5kb-resolution (Figure 2.3.c, Figure A.11 and A.12). For example, 

FLAMINGO achieved a correlation of 0.53 for whole chromosome structures in GM12878, 

while the other methods only achieved correlations below 0.45 (Figure 2.3.c, left). Similar 

advantage of FLAMINGO is also observed when the performance comparison is 

restricted to off-diagonal long-range inter-domain distances (Figure A.11). Moreover, 

focusing on detailed intra-domain structures, FLAMINGO achieved a correlation of 0.76 

in GM12878, while the other methods only achieved correlations below 0.6 (Figure 2.3.c, 

right). Similarly, FLAMINGO outperformed across all the other five cell-types at 5kb-

resolution (Figure A.12). 

To further leverage orthogonal data for performance comparisons, high-resolution 

chromatin interactions profiled by Capture-C45, ChIA-PET50 and SPRITE46 experiments 



18 

were used to evaluate whether the reconstructed structures assign short 3D distances 

between interacting anchors (Figure 2.3.d, Methods). Remarkably, FLAMINGO 

consistently demonstrated higher accuracy than other methods across all three sets of 

experimental metrics (Figure 2.3.e-g). The reconstructed structures from FLAMINGO 

assign statistically significant shorter 3D distances between anchors of chromatin 

interactions (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 2 × 10−16, one-sided Mann-Whitney test), while other methods 

are less likely to capture the structural proximity for chromatin interactions. As an example 

(Figure 2.3.h), a long-range ChIA-PET interaction (~130kb) on chromosome 1 links a 

distal enhancer element (the anchor 2) to the promoter region of gene KCNA2 (the anchor 

1), where both anchors are bound by CTCF and Rad21. Interestingly, in the reconstructed 

high-resolution structure by FLAMINGO, the enhancer and the promoter are in close 

proximity with each other and the genomic region in between forms a smooth chromatin 

loop. As comparison, the Hierarchical3DGenome algorithm does not assign a short 

spatial distance between the interacting enhancer and the KCNA2 promoter (Figure 

A.13.a). Additional examples can be found in Figure A.13 b-c. These results not only 

provide rigorous evidence to validate the superior accuracy, but they also underscore the 

impacts of FLAMINGO on decoding the mechanisms underlying orchestrated gene 

regulation in 3D space.  

2.2.4 Advanced scalability for large-scale chromosome conformations 

High-resolution 3D structure modeling places stringent demands for performance, 

reliability, and more importantly, scalability on algorithms, since a large number of 

genomic loci and pairwise distances are used in the optimization procedure. Based on 

efficient information compression and matrix computation, the computational complexity 
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of FLAMINGO is 𝑂(𝑘𝑁2), where 𝑁 is the number of genomic loci, such as the number of 

5kb DNA fragments, and 𝑘  is a small constant. For example, it only took 42 minutes and 

2.2GB memory for FLAMINGO to reconstruct the 5kb-resolution 3D structure for 

chromosome 1, the largest chromosome in the human. For chromosomes 2-22 and 

chromosome X, FLAMINGO was able to predict their structures even faster (Figure 

A.14a). As comparison, the state-of-the-art algorithms all have inferior scalability. The 

running times for Hierarchical3Dgenome and ShRec3D increase rapidly when the number 

of genomic loci becomes large (Figure 2.3.i), while the other methods (i.e. SuperRec, 

ShNeigh, RPR and GEM-FISH) are even slower (Figure A.14b). Most of these methods 

can only make predictions for short chromosomes (e.g. chr12-22) at 5kb-resolution. 

Furthermore, because FLAMINGO can accurately predict the 3D structures based on a 

small subset of pairwise distances, the scalability of FLAMINGO can be improved further 

by down-sampling the distance matrix from Hi-C (Figure A.14.c). In addition, based on 

our tests of 1kb-resolution reconstruction for all chromosomes in GM12878 (Figure A.2), 

FLAMINGO can generate complete predictions for large chromosomes fast. For the 

largest chromosome (chr1), it takes less than 25 hours using 200GB memory to 

reconstruct the 1kb-resolution 3D structure. Therefore, FLAMINGO provides drastic 

improvements on the computational scalability, which is much desired since a large 

number of Hi-C datasets are to be generated in the near future51, 52. 
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Figure 2.4 Interpretation of multi-way chromatin interactions and QTLs. (a) SPRITE 
multi-way interactions on chr21 are predicted with shorter spatial distances than the 
genomic-distance controlled background (**: p-value < 10-2, ***: p-value < 10-3; one-sided 
Wilcoxon test). The x-axis corresponds to 3-way (p-value=2.3x10-9, n=302), 4-way (p-
value=1.9x10-4, n=17), and 5-way interactions (p-value=7.8x10-3, n=7). The center lines 
of boxplots show the median, the upper and lower box limits show the 25th and 75th 
percentiles respectively. The whiskers extend up to 1.5 times the interquartile range away 
from the limits of the boxes. Outliers outside this range were removed from the figure. (b) 
FLAMINGO captures more 3-way interactions across different distance thresholds, 
compared to using normalized Hi-C contact map derived distance matrix. (c) One 
example of a SPRITE 3-way chromatin interaction captured by FLAMINGO. (d) The SNP-
promoter pairs of long-range eQTLs (>900kb) are assigned with significantly shorter 
spatial distances by FLAMINGO, compared to genomic-distance controlled random pairs 
(**: p-value=4.1x10-3; one-sided Wilcoxon test, n=1,227). The center lines of boxplots 
show the median, the upper and lower box limits show the 25th and 75th percentiles 
respectively. The whiskers extend up to 1.5 times the interquartile range away from the 
limits of the boxes. Outliers outside this range were removed from the figure. (e) One 
example of long-range eQTLs interpreted by FLAMINGO. The SNP rs77725975 (blue) 
and the promoter of FERMT3 (red) are placed in close 3D proximity. (f) The SNP-
H3K4me1 pairs of distal hQTLs are assigned with significantly shorter spatial distances 
by FLAMINGO, compared to genomic-distance controlled random pairs (**: p-
value=6.3x10-3; one-sided Wilcoxon test, n=20,950). The center lines of boxplots show 
the median, the upper and lower box limits show the 25th and 75th percentiles respectively.  
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Figure 2.4 (cont’d) 

The whiskers extend up to 1.5 times the interquartile range away from the limits of the 
boxes. Outliers outside this range were removed from the figure. (g) One example of 
distal H3K4me1-QTLs interpreted by FLAMINGO. The SNPs rs79377415, rs56369941, 
rs7518642 (blue) and the H3K4me1 ChIP-seq peak (red) are placed in close 3D proximity. 
Source data are provided as a Source Data file. 

 

2.2.5 Analysis of multi-way interactions and QTLs by FLAMINGO beyond 2D Hi-C 

contact maps 

To demonstrate the biological discoveries enabled by FLAMINGO that are not directly 

visible from 2D contact maps, the reconstructed 3D chromatin structures are used to 

resolve two important questions. First, we analyzed the predicted 3D structure’s capability 

of capturing multi-way chromatin interactions. Spatially coordinated molecular processes 

frequently form multi-way interactions (e.g. 3-way, 4-way or 5-way interactions) in 3D 

space46, 53, 54, which play pivotal roles in coupled transcriptional and epigenetic activities55. 

However, Hi-C contact maps can only reveal pairwise 2-way chromatin interactions. 

Moreover, the high rates of missing data in Hi-C result in large genomic regions with 

almost no measured interactions, further limiting the capability of finding multi-way 

interactions from 2D contact maps. Since FLAMINGO recovers the whole spatial structure, 

we hypothesize that the predicted 3D structures can improve the identification of multi-

way interactions. The multi-way chromatin interactions profiled by SPRITE experiments 

in GM1287846 are used to justify this hypothesis. In addition to pairwise interacting 

anchors (Figure 2.3.g), the GM12878 structure predicted by FLAMINGO consistently 

assigns significantly shorter spatial distances among anchors of multi-way interactions in 

SPRITE (Figure 2.4.a, p-value<10-2, one-sided Wilcoxon test), compared to genomic-

distance controlled random samples, suggesting the predicted 3D structures are in strong 
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agreement with the higher-order organizations of multi-way interactions. More importantly, 

compared to using the Hi-C contact map derived distance matrix, the predicted 3D 

structure by FLAMINGO can capture more multi-way interactions (Figure 2.4.b, Figure 

A.15.a-b). Here, a multi-way interaction is considered to be captured if all interacting 

anchors are located in the same 3D spatial neighborhood, where all pairwise spatial 

distances between anchors are smaller than a specified threshold. As shown in Figure 

4b, across a wide range of thresholds on normalized spatial distances, FLAMINGO 

consistently demonstrates higher capabilities of discovering more 3-way interactions. 

Even if relaxed distance thresholds are used, 28.5% 3-way interactions from SPRITE 

experiments can not be identified based on Hi-C contact map derived distance matrix, 

while being captured by FLAMINGO (Figure 2.4.b). It is because these 3-way interactions 

involve distal interacting anchors across very long-range genomic regions (median 

genomic distance=2.32Mb), where Hi-C contact maps suffer from high rates of missing 

data. Similar results are also found for 4-way and 5-way interactions (Figure A.15.a and 

15.b), where FLAMINGO achieves much higher advantages. Figure 4c shows a 

representative example of a 3-way interaction that has been identified by SPRITE 

experiments46. The three interacting anchors are brought into spatial proximity based on 

the predicted loop structures, which are also highlighted in the predicted distance matrix 

(Figure 2.4.c, right). As comparison, the distance matrix based on the Hi-C contact map 

shows no signals of spatial closeness for the three anchors. As another interesting 

example, a candidate 4-way interaction mediated by CTCF across a 12Mb genomic 

region in chr1 is discovered by FLAMINGO, while the Hi-C based distance matrix shows 

no spatial patterns (Figure A.15.c). These results suggest that, by reconstructing 3D 
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spatial structures, FLAMINGO can help to identify multi-way chromatin interactions and 

reveal higher-order genome organizations, beyond 2D Hi-C contact maps. 

Second, we analyzed the predicted 3D structure’s utility in interpreting genetic 

associations, such as long-range expression QTLs (eQTL) and distal histone QTLs (hQTL) 

in matched cell-types or tissues. QTLs statistically link genetic variants to molecular 

phenotypes and facilitate understandings of disease genetics. But it has been challenging 

to delineate the underlying molecular mechanisms of genetic associations. Spatial 

proximity between genetic variants and target genes or histone modification peaks have 

been suggested to mediate genetic associations56, 57. Similar to the approach of multi-

way chromatin interaction analysis, the predicted 3D structure is evaluated with respect 

to its ability of interpreting QTLs58-62 based on predicted short spatial distances, compared 

to using the Hi-C contact map derived distance matrix. Interestingly, across a wide range 

of thresholds on normalized spatial distances, substantially higher fractions of eQTLs and 

hQTLs are found to have their genetically associated loci (i.e. SNP-promoter or SNP-

histone pairs) placed into small 3D neighborhoods by FLAMINGO (Figure A.16). Focusing 

on the long-range eQTLs61 whose SNPs and target gene promoters are >900kb away, 

these SNP-promoter pairs are found to be assigned with significantly shorter spatial 

distances, compared to genomic-distance controlled random pairs (p-value=1.3x10-3, 

one-sided Wilcoxon test, Figure 2.4.d), suggesting the effectiveness of FLAMINGO in 

interpreting genetic associations. For each specific long-range eQTL (>900kb), a random 

set of SNP-promoter pairs with the same genomic-distance from the same chromosome 

is generated (Methods). Among these long-range eQTLs (n=1,227), 671 of them (54.7%) 

are predicted to have spatial distances that are at least 2-fold shorter than the median  
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Figure 2.5 Geometrical signature of predicted chromatin conformations. (a) TAD 
boundaries demonstrate lower curvatures than flanking genomic regions. The center lines 
of boxplots (n=11,208) show the median of normalized curvatures, the upper and lower 
box limits show the 25th and 75th percentiles respectively. The whiskers extend up to 1.5 
times the interquartile range away from the limits of the boxes. Outliers outside this range 
were removed from the figure. (b) The regions with high curvatures show higher GC-
content compared with genomic background. One-sided Mann-Whitney test (***): p-
value=2.7x10-29 (green, n=5,261) and p-value=3.4x10-34 (blue, n=5,261). The center lines 
of boxplots (n=5,261) show the median, the upper and lower box limits show the 25th and 
75th percentiles respectively. The whiskers extend up to 1.5 times the interquartile range 
away from the limits of the boxes. Outliers outside this range were removed from the 
figure. (c) The consensus structure predicted by FLAMINGO consistently aligns with the 
average structure across single cells in K562. Right: the errors between the predicted 
consensus structure and the average structure (blue) are smaller than the intrinsic 
standard deviations among single cells (orange). (d) The consensus structure predicted 
by FLAMINGO is in strong agreement with the average structure across the subset of 
cells in cluster 2. Right: the errors between the predicted consensus structure and the 
cluster-2 specific average structure (blue) are smaller than the intrinsic standard  
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Figure 2.5 (cont’d) 

deviations among single cells in cluster 2 (orange). Source data are provided as a Source 
Data file. 

 

spatial distances of genomic-distance controlled random pairs. As a representative 

example (Figure 2.4.e), the SNP rs77725975 is a significant long-range eQTL to the gene 

FERMT3 (p-value=2.6x10-4) in whole blood cells61 with a genomic distance of 983kb. This 

eQTL is placed into 3D proximity by FLAMINGO in GM12878, where the SNP rs77725975 

and FERMT3’s promoter are located spatially close to each other, while the Hi-C based 

distance matrix fails to provide structural basis to interpret this eQTL. Similarly, distal 

hQTLs62 are also found to be assigned with significantly shorter spatial distances by 

FLAMINGO, compared to genomic-distance controlled random pairs (p-value=2.84x10-3, 

one-sided Wilcoxon test, Figure 2.4.f). Among the distal hQTLs (n=20,950), 11,797 of 

them (56.3%) are predicted to have spatial distances that are at least 2-fold shorter than 

the median spatial distances of genomic-distance controlled random pairs. As shown in 

Figure 4g for a set of distal hQTLs (p-value<1.8x10-4), FLAMINGO reconstructs a loop 

structure which brings the SNPs close to the specific target H3K4me1 peak that is ~75kb 

away. In contrast, the distance matrix derived from Hi-C contact maps shows no signal of 

long-range interactions in this region. These results strongly support the FLAMINGO’s  

ability of interpreting the potential mechanisms of distal QTLs by leveraging the 

reconstructed spatial proximity information, a critical step further to decipher genetic 

associations with molecular phenotypes. 
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2.2.6 Geometrical property of chromatin structures 

To gain additional insights into genome folding, 3D geometrical metrics are needed to 

describe the complex shapes of chromatin structures, which can not be directly obtained 

from Hi-C contact maps. The reconstructed 3D structures provide a systematic platform 

for dissecting geometrical signatures of chromatin organization. To do this, we calculated 

the curvatures for every 5kb genomic bin along the 3D curves of chromosomes. A larger 

curvature around a genomic region indicates the chromatin bends more sharply, while a 

smaller curvature suggests the region is relatively straight. Interestingly, the curvatures 

around TAD boundaries show significantly lower curvature than flanking genomic regions 

(Figure 2.5.a, p-value=2.2x10-16, one-sided Mann-Whitney test). Considering the loop 

extrusion model16, it suggests that, when a loop is established and the extrusion complex 

stops sliding, the DNA located around the extrusion complex is maintained rigid. In 

addition, genomic regions with large curvatures show significantly higher GC-contents 

(Figure 2.5.b), consistent with the increased flexibility of GC-rich DNA sequences63, 64 that 

may facilitate intra-TAD interactions.  

2.2.7 Reference structure to interpret single-cell variabilities 

Based on observations of recent single-cell Hi-C and imaging data65-68, chromatin 

structure is dynamic and demonstrates variabilities across individual cells. The optimal 

consensus structure reconstructed from bulk tissue Hi-C by FLAMINGO thus provides a 

reference of chromatin folding aggregated from a pool of cells, which can be used as a 

basis to delineate and interpret the ensemble of chromatin configurations69, 70. We 

compared FLAMINGO’s predicted consensus structure to the single-cell structures 

profiled by diffraction-limited 3D imaging68 to analyze their relationship. The image-based 
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dataset68 contains an ensemble of single-cell structures for a specific genomic region in 

chr21 at 30kb-resolution. The averaged structure is calculated from the ensemble and is 

then compared with FLAMINGO’s prediction. Figure 5c shows the comparison for a loop 

structure in this region. Both 5kb- and 30kb-resolution predictions from FLAMINGO align 

well with the averaged structure of single cells (Figure 2.5.c, left). More importantly, the 

differences between these structures are consistently smaller than the intrinsic standard 

deviations among single-cells within the ensemble (Figure 2.5.c, right), suggesting that 

the consensus structure can sufficiently quantify the major patterns of structural 

configurations. In addition, it suggests that the distance information derived from Hi-C 

contact frequency is overall consistent with the spatial configurations obtained from 

imaging techniques. To further analyze the structural variations relative to the consensus 

structure, the single-cell structures are classified into five different clusters, where 

individual cells belonging to the same clusters have similar structures. Structural 

variabilities are observed across distinct single-cell clusters. Interestingly, for the subset 

of cells in cluster 2, the cluster-specific average structure is highly similar to the predicted 

consensus structure (Figure 2.5.d, left), with the differences largely smaller than the 

intrinsic standard deviations among single cells within this cluster (Figure 2.5.d, right), 

further supporting the biological relevance of the predicted structure. The other four 

clusters also similarly demonstrate the overall folding patterns, each of which contains 

specific variations relative to the predicted consensus structure (Figure A.17). Across all 

five clusters, the consensus structure consistently shows smaller differences to the 

cluster-specific average structures, than the intrinsic standard deviations of single cells 

within each cluster (Figure A.17). These results suggest that the predicted consensus 
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structures by FLAMINGO can facilitate improved interpretation of the structural 

heterogeneity in ensembles of single-cell structures. 

2.2.8 Robust performance to handle missing data in Hi-C datasets 

Due to limited sequencing depths of typical Hi-C experiments and low mappabilities of 

certain genomic regions, the observed distance matrices from Hi-C usually contain large  

 

Figure 2.6 Robust performance of FLAMINGO under different missing rates. (a) 
Reconstructed 3D structures and completed distance matrices by FLAMINGO and  
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Figure 2.6 (cont’d) 

Hierarchical3DGenome in chr21:34,000,000-35,000,000 using down-sampled data. As 
inputs, the observed distance matrix from Hi-C is down-sampled with different down-
sampling rates (columns). Four TADs within this genomic region are annotated by colors. 
The inter-TAD interaction recovered only by FLAMINGO is highlighted by the black arrow. 
(b) FLAMINGO correctly recovers the short 3D distance between the two distal TAD 
boundaries (5’ of the blue TAD and 3’ of the brown TAD) as highlighted in (a), with 70% 
down-sampled data. After normalization, FLAMINGO predicts a 3D distance of 0.156 (p-
value=3.8x10-2, n=1,000, permutation test, genomic distance controlled), while 
Hierarchical3DGenome predicts 0.173 (p-value=0.1862, n=1,000, permutation test, 
genomic distance controlled). (c) The observed distance matrix from Hi-C data, along 
with TAD annotations and the highlighted inter-TAD interaction. (d) The inter-TAD 
interactions recovered by FLAMINGO (zoom-in view of the blue and brown TADs within 
chr21:34,100,000-34,850,000) are supported by CTCF and cohesin bindings and the 
convergent CTCF motifs (red arrows). The inter-TAD interactions are missed by 
Hierarchical3DGenome. (e) FLAMINGO achieves higher reconstruction accuracy against 
missing data. Correlations between predicted and observed intra-domain structures (the 
y-axis) are calculated for FLAMINGO and the state-of-the-art methods under different 
down-sampling rates (the x-axis). The dots show the average correlations based on n=10 
independently down-sampled input matrices and error bars correspond to the standard 
deviations across the ten random samples. Smaller down-sampling rates represent larger 
fractions of missing data. Source data are provided as a Source Data file. 

 

portions of missing data10, 71, which present a very challenging problem for high-resolution 

modeling. For instance, considering the same Hi-C dataset for chromosome 1, the rate 

of missing data is 21% at 100kb-resolution but quickly increases to 94.5% at 5kb-

resolution. Overall, the rate of missing data is >80% across chromosomes 1-22 and X in 

the human genome at 5kb-resolution (Figure A.14.a). By incorporating the low-rank 

property of the distance matrix into the optimization procedure, FLAMINGO has the 

superior advantage of handling high rates of missing data.  

To demonstrate FLAMINGO’s capability of handling missing data, the observed distances 

derived from Hi-C were further down-sampled to check whether FLAMINGO still can 

reproduce the same high-resolution structures (Methods). As a representative example 



30 

on chromosome 21 (chr21:34,000,000-35,000,000), FLAMINGO was able to robustly 

reconstruct the structure even if 50% of the observed pairwise distances from Hi-C was 

further down-sampled (Figure 2.6.a). By further down-sampling the dataset to the levels 

with only 20% and 5% of observed data remaining, FLAMINGO was still able to infer the 

loop structures formed by the four TADs in this region, with slightly increased intra-TAD 

fluctuations. In contrast, Hierarchical3DGenome predicted fuzzy structures with 

substantial fluctuations across all down-sampling rates. In addition, specific intra-TAD 

chromatin contacts were also captured by FLAMINGO, as shown by the specific hotspots 

within the TAD blocks in the predicted distance matrices at 50% and 70% of down-

sampling rates (Figure 2.6.a), while Hierarchical3DGenome only generated vague 

distance matrices without detailed structures within TAD blocks. More interestingly, 

FLAMINGO was also able to predict the short 3D distance for long-range inter-TAD 

contacts in the loop structure using only 70% of observed data (p-value=0.038, 

permutation test, genomic distance controlled) (Figure 2.6.b), while 

Hierarchical3DGenome predicted a much longer distance (p-value=0.186). The predicted 

inter-TAD distance is in agreement with the original Hi-C distance matrix (Figure 2.6.c) 

and demonstrates a higher level of specificity, although it was inferred from down-

sampled data. As additional justifications of the predicted structure with missing data 

(down-sampling rate = 70% or 50%), the specific intra- and inter-TAD chromatin contacts 

recovered by FLAMINGO, but not predicted by Hierarchical3DGenome, are supported by 

CTCF and cohesin bindings, along with convergent pairs of CTCF motifs (Figure 2.6.d, 

Figure A.18.a). 
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As global quantitative evaluations, the recovered 3D structures and predicted distances 

by FLAMINGO using different down-sampled input matrices are compared with the 

originally observed distances. Strikingly, for the whole 5kb-resolution distance matrix 

including both inter- and intra-domain structures, the correlation coefficients remain stable 

and high (~0.49), until less than 30% of observed distances from Hi-C are kept for 

predictions (Figure A.18.b). Focusing on detailed intra-domain structures, the correlation 

coefficients still remain to be robustly high (>0.74), until less than 50% of observed 

distances are kept (Figure 2.6.e). Across the wide range of down-sampling rates, 

FLAMINGO robustly achieves higher accuracy than other algorithms, based on 

comparisons using observed Hi-C contact maps (Figure 2.6.e, Figure A.18.b) and also 

other chromatin interaction datasets, such as Capture-C, ChIA-PET and SPRITE (Figure 

A.18.c-e). For example (Figure 2.6.e), using only 10% of observed data, FLAMINGO 

achieved better accuracy than the state-of-the-art method, Hierarchical3DGenome, which 

used all of the observed data (Figure 2.3.c). These results clearly demonstrate 

FLAMINGO’s ability to accurately reproduce high-resolution structures based on Hi-C 

with large fractions of missing data, which will significantly relax the demand of 

sequencing depths in Hi-C experiments and thus promote wide implementations of Hi-C 

in practice.  
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Figure 2.7 Cross cell-type predictions by iFLAMINGO. (a) Hi-C data from the source 
cell-type and 1D epigenomics data from the target cell-type are integrated by iFLAMINGO 
to predict the 3D genome structure in the target cell-type (left). An example of the 3D 
structure of chromosome 21 for K562 predicted from GM12878 is shown 
(GM12878->K562). K562-specific structural properties are highlighted by arrows where 
iFLAMINGO correctly captures, while the GM12878-specific structure shows substantial 
differences. Two intra-domain structures are further highlighted in the three structures 
(orange and purple). (b) Comparison of 3D distances between interacting ChIA-PET 
anchors based on the predicted 3D structures of GM12878 (blue), GM12878->K562 
(orange) and K562 (pink). P-value=3.0x10-4 (n=1,562, one-sided Mann-Whitney test). 
The center lines of boxplots show the median, the upper and lower box limits show the 
25th and 75th percentiles respectively. The whiskers extend up to 1.5 times the 
interquartile range away from the limits of the boxes. Outliers outside this range were 
removed from the figure. (c-d) Performance comparisons between iFLAMINGO (the y-
axis) and FLAMINGO (the x-axis) on cross cell-type predictions for n=30 source-target 
pairs. Source-target pairs are colored by source cell-types. The performance is quantified 
by correlations between predicted and observed distances for all DNA fragments, i.e. all- 
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Figure 2.7 (cont’d) 

points, in (c) and fragments within the same domains, i.e. intra-domain, in (d). (e) 
Performance estimation (correlation of 3D distances, y-axis) for cross cell-type 
predictions of intra-domain structures as a function of 1D epigenomic similarities between 
cell-types (correlations of genome-wide DNase-seq data, x-axis). The regression line is 
fitted based on cross cell-type predictions from GM12878 and K562 (p-value=0.02, n=12, 
two-sided Student’s t-test). Source data are provided as a Source Data file. 

 

2.2.9 Cross cell-type prediction of 3D structures 

Currently experimental Hi-C data have been collected only for a limited number of cell-

types, due to the cost of the experiments or the difficulty of collecting sufficient numbers 

of cells for certain cell-types71. To enlarge the coverage of cell-types for 3D genome 

modeling, FLAMINGO is further extended to iFLAMINGO, an integrative version of the 

algorithm that can make cross cell-type predictions. To predict the 3D structure for a cell-

type without Hi-C data, defined as target cell-type, iFLAMINGO combines two pieces of 

information (Figure 2.7.a, Methods): (1) Hi-C data from another cell-type, defined as 

source cell-type, which provides the overall structural backbone of the genome; and (2) 

chromatin accessibility data, such as DNase-seq, from the target cell-type, which provides 

the cell-type specific 1D epigenomic landscape. DNase-seq data are widely available 

across a large panel of cell-types and can characterize chromatin accessibilities at base 

pair resolution6. Since the levels of DNase-seq signals of a pair of genomic loci are 

associated with their 3D distances, for instance, co-accessible loci being significantly 

closer to each other in 3D space (Figure A.19.a), a regression model is built to impute 

approximate 3D distances based on DNase-seq signals in the target cell-type (Figure 

A.19.b). The imputed cell-type specific distances are then incorporated into iFLAMINGO 

to predict the 3D genome structure in the target cell-type (Methods).  
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iFLAMINGO was applied on the Hi-C data from GM12878 to predict the 3D genome 

structure in K562 by integrating K562-specific DNase-seq data into the modeling process. 

The resulting structure of chromosome 21 is shown in Figure 7a (GM12878->K562). The 

3D structure predicted based on GM12878 Hi-C alone is shown as the negative control, 

and the structure predicted directly from K562 Hi-C is included as the positive control 

(Figure 2.7.a). The GM12878->K562 structure not only captures the global structural 

signatures of the K562 genome but also reconstructs detailed loop structures more similar 

to K562, both of which are highlighted in Figure 7a. By comparing with K562-specific 

chromatin interactions profiled by independent ChIA-PET experiments72, the predicted 

3D distances between interaction anchors from the GM12878->K562 structure are 

significantly shorter than the distances from the GM12878 structure (Figure 2.7.b, p-

value=0.0003, one-sided Mann-Whitney test), suggesting the quantitatively improved 

similarity between the GM12878->K562 and K562 structures. Furthermore, the predicted 

spatial distances in the GM12878->K562 structure achieve a higher correlation with the 

experimentally-derived spatial distances of K562 Hi-C (correlation=0.62, Figure A.19.c), 

compared to the correlation achieved by the basic experimentally-derived spatial 

distances of GM12878 Hi-C with the experimentally-derived spatial distances of K562 Hi-

C (correlation=0.55), suggesting that the predicted GM12878->K562 structure by 

iFLAMINGO captures the cell-type specificity of K562. 
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Figure 2.8 iFLAMINGO improves the resolution of predicted 3D structures. (a) 
Scheme of the high-resolution 3D structure prediction. Low-resolution distance matrix 
from Hi-C for 𝑁  large DNA fragments of size 10kb, are divided into smaller DNA 
fragments of size 5kb, resulting in a 2𝑁 by 2𝑁 distance matrix, where the small DNA 
fragments inherit the same distances to other fragments from the original large fragment. 
The high-resolution 1D epigenomics signals in each small DNA fragment are integrated 
into iFLAMINGO to predict the high-resolution 3D genome structures. As one example, 
the 3D structure of chromosome 5 at 5kb-resolution predicted from the 10kb-resolution 
distance matrix is shown. (b) Example of the predicted 5kb-resolution 3D structure of 
chromosome 10 from 25kb-resolution distance matrix (middle, 25kb->5kb), compared 
with the 25kb-resolution structure (left) and the 5kb-resolution structure (right). The large-
scale structural differences are highlighted by red boxes. The comparisons of detailed 
intra-domain structures (red) are shown in inset. The red arrows represent the boundaries. 
(c-e) Performance comparison of predicting 5kb-resolution structures from 10kb-
resolution (c), 25kb-resolution (d), and 50kb-resolution distance matrices (e). 
Correlations between predicted and observed 5kb-resolution distances are calculated for 
all DNA fragments, i.e. all-points, and for fragments within the same domains, i.e. intra-
domain. The bar plot shows the average correlations across n=23 chromosomes and the 
error bars show the standard deviations across 23 chromosomes. Data are presented as 
mean values +/-SD. Source data are provided as a Source Data file. 
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iFLAMINGO was further applied on all source-target pairs from the six cell-types with Hi-

C data, and the performance was evaluated based on the correlations between predicted 

and observed distance matrices in target cell-types (Methods). As comparison, the 

optimal structures predicted by FLAMINGO without using DNase-seq data are included 

as negative controls. Among all the 30 source-target cell-type pairs, iFLAMINGO 

achieved a higher accuracy for almost all the cross cell-type predictions (Figure A.20), 

not only for the whole distance matrices (Figure 2.7.c) but also for intra-domain structures 

(Figure 2.7.d). These consistent improvements underscore iFLAMINGO’s ability of cross 

cell-type structure predictions and highlight the importance of 1D epigenomic information  

in 3D genome modeling. 

To further demonstrate iFLAMINGO’s potential on enlarging the cell-type coverage for 3D 

structure reconstructions, the accuracy of cross cell-type 3D predictions is plotted as a 

function of 1D epigenomic similarities between the source and target cell-types (Figure 

2.7.e). Using GM12878 or K562 as source cell-types, the accuracy of predicted intra-

domain 3D structures in target cell-types is significantly associated with the 1D 

epigenomic correlations to the source cell-types (p-value=0.02). Based on the fitted linear 

function, to obtain a cross cell-type prediction with accuracy>0.6, which is a level already 

higher than the state-of-the-art methods using Hi-C directly from the target cell-types 

(Figure 2.3.c), iFLAMINGO only requires Hi-C data available from a source cell-type with 

medium 1D epigenomic similarities (correlation>0.65). Combined with the ongoing 

experimental efforts of chromatin characterizations, such as the 4D Nucleome 

Consortium51, iFLAMINGO will substantially expand the catalog of cell-types with high-

resolution 3D structures.  
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2.2.10 Boost the resolution of 3D structures from low-resolution Hi-C 

Since another limiting factor of experimental Hi-C data is the resolution of contact maps 

being low73, 74, a tradeoff of genome-wide coverage of sequencing reads, it is much 

desired to predict high-resolution 3D structures from low-resolution contact maps of Hi-C. 

By incorporating high-resolution 1D epigenomic data, such as DNase-seq, iFLAMINGO 

is able to boost the resolution of the predicted 3D genome structures (Figure 2.8.a, Figure 

A.19). After splitting low-resolution DNA fragments into high-resolution bins, DNase-seq 

signals help delineate the distance ambiguity across consecutive bins and fine-tune the 

structures through optimization (Methods). 

As a representative example, FLAMINGO was applied to the 25kb-resolution distance 

matrix for chromosome 10, resulting in a 25kb-resolution 3D structure (Figure 2.8.b, left). 

On the other hand, based on the 5kb-resolution distance matrix, the 5kb-resolution 

structure was generated by FLAMINGO as the benchmark structure (Figure 2.8.b, right). 

Finally, applying iFLAMINGO on the 25kb-resolution distance matrix, along with the 

DNase-seq data, led to a 5kb-resolution structure, the 25kb->5kb structure (Figure 2.8.b, 

middle), which shows increased similarity to the 5kb-resolution benchmark structure. The 

25kb->5kb structure not only captures large-scale structural properties but also recovers 

the detailed high-resolution loops in the 5kb-resolution structure, which are missing in the 

25kb-resolution structure (Figure 2.8.b). 

To quantitatively evaluate the accuracy of boosted resolution genome-wide, a series of 

low-resolution distance matrices, at 10kb, 25kb and 50kb resolution, respectively, were 

generated from the same Hi-C datasets. The reconstructed structures were then 

compared with the original 5kb-resolution distance matrix. Across all the tests, 
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iFLAMINGO achieved the highest correlations to the benchmark structures (Figure 2.8.c-

e). For instance, using 10kb-resolution distance matrices as inputs, iFLAMINGO achieved 

an average correlation of 0.37 for the whole reconstructed 5kb-resolution matrices and 

an average correlation of 0.79 for intra-domain matrices, both of which are higher than 

the state-of-the-art methods even when they were directly applied on 5kb-resolution input 

matrices (Figure 2.3.c). Therefore, iFLAMINGO not only substantially improves the 

information extraction from low-resolution Hi-C data but will also widely facilitate the 

implementation of Hi-C protocols without stringent constraints on resolution. 

2.3 DISCUSSION 

In this study, we have developed an algorithm, FLAMINGO, to reconstruct high-resolution 

spatial conformations for large genomes in 3D space. Using low-rank matrix completion 

techniques, FLAMINGO is able to substantially improve data mining efficiency for Hi-C 

experiments. Based on a series of rigorous performance evaluations, FLAMINGO 

consistently demonstrates superior accuracy and advanced scalability compared to other 

state-of-the-art methods. The strong agreements between the predicted genome 

architectures and orthogonal experimental evidence, such as Capture-C, ChIA-PET and 

SPRITE, further highlight FLAMINGO’s ability of capturing high-resolution spatial 

signatures of chromatin. Biologically, the reconstructed 3D structures facilitate additional 

discoveries and understandings, beyond 2D contact maps, such as higher efficiency of 

identifying multi-way chromatin interactions, interpretation of long-range QTLs, 

geometrical properties associated with TAD boundaries, and providing structural 

references to analyze single-cell variabilities of chromatin folding. Furthermore, 

FLAMINGO, along with its integrative version iFLAMINGO, addresses four fundamental 
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challenges in 3D genome modeling: (1) high scalability to reconstruct high-resolution 3D 

structures for all chromosomes from massive Hi-C datasets; (2) robust performance to 

handle large portions of missing data in Hi-C; (3) accurate cross cell-type prediction of 3D 

structures for cell-types lacking Hi-C datasets; and (4) boosting the resolution of 

reconstructed 3D structures from low-resolution Hi-C contact maps. Given all these 

advantages, FLAMINGO will be an important tool for both computational and 

experimental studies on 3D genomes. The reconstructed high-resolution structures 

across different cell-types will significantly facilitate biological insights into the spatial 

organization of chromatin and its underlying mechanisms.  

As one of the major benefits of FLAMINGO, the generated high-resolution 3D structures 

can serve as a platform to understand how transcriptional regulation is modulated in 3D 

space. Overlaid with functional genomics data, FLAMINGO predictions provide high-

resolution structural supports for long-range regulatory links between enhancers and 

promoters (Figure 2.3.e-h), and recover the short 3D distances between CTCF-

associated boundaries of chromatin loops (Figure 2.6.a-d, Figure A.1). Moreover, beyond 

2D chromatin contact maps, FLAMINGO can help to analyze higher-order multi-way 

interactions (Figure 2.4.a-c) and long-range cis-regulatory QTLs (Figure 2.4.d-g), and 

characterize geometrical signatures of chromatin shapes (Figure 2.5.a-b). In recent years, 

deep learning models have been developed to predict regulatory interactions in gene 

regulation and TAD organization from DNA sequences75, 76. Since FLAMINGO and deep 

learning models have complementary algorithmic strengths, it is expected to gain system-

level knowledge on the relationship between gene regulation and chromatin organization 

by combining FLAMINGO with these deep learning algorithms.  
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The optimized consensus structure provides an efficient representation of the 3D genome 

for biologists with the advantage of high interpretability. Another type of methods aim to 

infer variations of the underlying chromatin structures, namely ensemble structures, using 

either polymer simulation models77-79 or machine learning algorithms69, 70. While modeling 

structural variations is important, it is sometimes difficult to biologically interpret an 

individual structure from a pool of predictions and to delineate experimental cell-to-cell 

variations from the increased noisy fluctuations. As shown in the comparisons between 

the reconstructed structure and the ensemble of single-cell structures, including both 

ensemble average structures and variable cluster-specific structures (Figure 2.5.c-d), 

FLAMINGO’s predictions can serve as effective reference structures to standardize the 

relative variabilities across single cells. Equipped with the complementary advantages of 

accuracy and robustness against noise, FLAMINGO can help the ensemble-structure 

learning algorithms to improve both the predictive performance and the interpretation of 

structures. 

There are currently two limitations of FLAMINGO, which require future methodology 

developments. First, although the transformation function from Hi-C contact frequency to 

spatial distance has been justified for intra-chromosomal contacts by previous studies14, 

34 and our analyses (Figure 2.5.c-d, Figure A.4, Figure A.17), there is currently no 

systematic estimation of the function for inter-chromosomal contacts. Thus, FLAMINGO 

can only reconstruct 3D structures for each chromosome separately, while it is difficult to 

assemble the structure for the whole genome including inter-chromosomal distances. 

Similarly, due to the lack of sequencing reads, centromere and telomere regions are 

excluded from the reconstruction of spatial chromosome conformations. These regions, 
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especially centromere regions that have been demonstrated to be important in regulating 

chromatin organization by previous studies69, 80, are components that should not be 

excluded if organizations for the whole genome are to be assembled.  In order to achieve 

complete reconstructions of 3D genome, future algorithmic developments will be needed 

to overcome this limitation. Second, the consensus structure predicted by FLAMINGO 

represents the population-average architecture from large numbers of cells, which can 

not capture the highly dynamic property of 3D chromatin81, 82 (such as the dynamic 

chromatin loops and TADs).  The multi-scale spatial conformation of chromosomes varies 

from cell to cell83 and the variability plays important roles in epigenetics, gene regulation 

and DNA damage repair84. A series of ensemble-structure prediction algorithms have 

been developed to explore the dynamic conformations69, 70, 77-79. As a future development 

that can help to further overcome this limitation, single-cell Hi-C datasets will be needed 

to predict 3D structures for individual cells. Single-cell Hi-C datasets are highly sparse 

and raise significant challenges in handling missing data. Although FLAMINGO 

demonstrates superior performance against missing data for bulk tissue Hi-C datasets 

even with ~98% missing rate at 5kb-resolution (Figure 2.6.e, corresponding to 50% down-

sampling rate), typical single-cell Hi-C experiments have >99.99% missing rates at 

100kb-resolution. Therefore, the highly sparse single-cell Hi-C datasets require further 

algorithmic improvements, in order to characterize the detailed structural variations 

across individual cells. 

Overall, the combined strengths of handling large rates of missing data, making cross 

cell-type predictions, and boosting resolutions, suggest high impacts of FLAMINGO on 

3D genome analyses. High-resolution structures can be inferred for diverse panels of cell-
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types spanning different differentiation lineages, without increasing sequencing depths or 

requiring closely similar cell-types. Thus, it will not only improve the data mining of existing 

Hi-C data but also address the urgent need from large-scale Hi-C data resources to be 

generated in the near future, such as the 4D Nucleome Consortium. Together with the 

recent image-based 3D genome information4 and the high-dimensional epigenomics 

data6, 85, FLAMINGO is expected to substantially expand our understandings of the 

spatially orchestrated genome architectures across cell-types.  

2.4 METHODS 

2.4.1 Chromatin contact maps and epigenomics datasets 

We collected the Hi-C chromatin contact maps of six human cell-types, including 

GM12878, K562, IMR90, HMEC, HUVEC, and NHEK, from the GEO database10 

(GEO:GSE63525). To remove potential biases in the Hi-C data, we normalized chromatin 

interaction-frequency matrices using the Knight-Ruiz normalization method as suggested 

by previous studies10. The normalized Hi-C interaction frequencies are then transformed 

into 3D Euclidean distances based on the exponential function14 : 𝐷𝑖𝑗 = 𝐼𝐹𝑖𝑗
(−𝜂), where 

𝐷𝑖𝑗  represents the squared pairwise 3D distance between DNA fragments 𝑖  and 𝑗 , 

𝐼𝐹represents the interaction frequency, and 𝜂 is a free parameter. In fact, after testing our 

model by taking different values of 𝜂 in the range suggested by previous experimental 

estimates14, 28, we have found that the accuracy of reconstruction is robust to the choice 

of 𝜂 (Figure A.4). Therefore, by default, 𝜂 is set to 0.5 (𝜂/2 = 0.25) as suggested by 

previous literature14. The validity of 3D distances converted from Hi-C contact maps, 

which are termed as observed distances from Hi-C in this paper, are also supported by 

the high similarity between the reconstructed structure and averaged structures of single 
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cell clusters, whose 3D configurations are directly obtained from imaging data (Figure 

2.5.c and 2.5.d, Figure A.17). 

The genome-wide DNase-seq datasets of chromatin accessibility from the six cell-types 

were collected from the ENCODE and Roadmap consortia50, 86. In a specific cell-type, for 

each DNA fragment, the averaged DNase-seq signal (namely fold-change over genomic 

background) within the fragment is used to represent the cell-type specific chromatin 

accessibility in the genomic locus. Additional details on data collection and preprocessing 

are given in Supplementary Note 1. 

2.4.2 Model framework of FLAMINGO 

FLAMINGO reconstructs 3D genome structures based on Hi-C chromatin contact maps 

using the low-rank matrix completion technique (Figure 2.1.a), which can efficiently 

delineate underlying low-rank structures from the large and noisy pairwise distance 

matrices. The cell-type specific 3D coordinates of high-resolution DNA fragments for each 

chromosome are predicted by solving a constrained rank-minimization problem using the 

augmented Lagrangian method48, which can converge fast and can robustly handle large 

amounts of missing data. 

To enable parallel computation, a hierarchy of two scales (1Mb and 5kb) is used to model 

each chromosome and an integrative assembly strategy is designed to build optimal high-

resolution chromosomal structures from these two scales (Figure A.3). Based on 

simulated benchmark analysis, the performance of FLAMINGO does not rely on specific 

choices of resolutions or domain partitions (Figure A.7). In addition, an integrative variant 

of FLAMINGO, iFLAMINGO (Figure 2.7.a, Figure A.19), is also developed to incorporate 
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cell-type specific DNase-seq datasets into the model so as to (1) enable cross cell-type 

predictions and (2) boost resolution of predicted 3D genome structures. 

2.4.3 Reconstruct 3D genome structures based on low-rank matrix completion 

Each chromosome is modeled as a ‘beads-on-a-string’ polymer chain, where each DNA 

fragment is modeled as a bead, and the centromere and telomere regions are removed 

from the analysis as suggested by previous studies33-35. Structure reconstruction requires 

inferring the optimal 3D coordinates of consecutive DNA fragments along a chromosome, 

which maximally align with the pairwise 3D distances between DNA fragments observed 

from Hi-C data. A unique property of FLAMINGO is its capability to leverage the low-rank 

nature of a pairwise distance matrix from Hi-C; namely, the high-dimensional pairwise 

distance matrix is biologically generated by the underlying low-rank coordinate matrix of 

DNA fragments (rank≤3). Defined by the coordinate matrix (𝑷), the Gram matrix (𝑿 =

𝑷𝑷𝑇 ) has a rank≤3. The squared Euclidean distance matrix (𝑫) is a sum of three 

matrices:  𝑫 = diag(𝑿)𝟏𝑇 + 𝟏𝑇diag(𝑿) − 2𝑿  where rank(𝑿) ≤ 3, rank(diag(𝑿)𝟏𝑇) ≤

1, 𝑎𝑛𝑑 rank(𝟏𝑇diag(𝑿)) ≤ 1 . Due to the property of ranks for matrix addition, the 

Euclidean distance matrix has a rank≤5.  Based on the theory of matrix completion42, the 

low-rank property of both the pairwise Euclidean distance matrix (rank≤5) and the Gram 

matrix (rank ≤ 3) guarantees that, under certain randomness assumptions on 

measurements, the underlying 3D structure can be predicted using a small fraction of 

data from Hi-C (Figure 2.1.a). 

We define 𝑷 as the 𝑁 𝑏𝑦 3 coordinate matrix for 𝑁 consecutive DNA fragments along a 

chromosome. We also define 𝐷𝑖,𝑗  as the squared 3D spatial distance between DNA 

fragments 𝑖 and 𝑗. Thus, the objective function for 3D genome reconstruction is:  
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 min ||𝑿||∗ 

subject to  𝑋𝑖,𝑖 + 𝑋𝑗,𝑗 − 2𝑋𝑖,𝑗 = 𝐷𝑖,𝑗, (𝑖, 𝑗) ∈ 𝛺;  𝑿𝟏 = 0;𝑿 = 𝑿𝑇; 𝑿 𝑖𝑠 positive semidefinite, 

( 1 ) 

where 𝑿 = 𝑷𝑷𝑇 is the Gram matrix, ||𝑿||∗ represents the nuclear norm Tr(√𝑿𝑇𝑿 ), which 

is related to the rank of matrix 𝑿, and the measurement set 𝛺 represents a subset of 

indices of DNA fragment pairs. We further introduce a linear sampling operator 𝐴 as:  

𝐴(𝑿) = 𝑓 ∈ 𝑅|𝛺|∗1, 𝑓𝑖 =< 𝑿,𝝎𝛼𝑖
>  𝑓𝑜𝑟 𝛼𝑖 ∈ 𝛺, 

( 2 ) 

where 𝛼𝑖=(𝛼𝑖,1, 𝛼𝑖,2) is the index of a DNA fragment pair. The matrix basis 𝝎𝛼𝑖
 is defined 

as:  

𝝎𝛼𝑖
= 𝒆𝛼𝑖,1,𝛼𝑖,1

+ 𝒆𝛼𝑖,2,𝛼𝑖,2
− 𝒆𝛼𝑖,1,𝛼𝑖,2

− 𝒆𝛼𝑖,2,𝛼𝑖,1
, 

( 3 ) 

where 𝒆𝑖,𝑗 represents a matrix which has 1 at entry (𝑖, 𝑗) and 0 otherwise. For later use, 

we define the adjoint of 𝐴 as 𝐴∗, where 𝐴∗𝒚 = ∑ 𝑦𝑖𝝎𝛼𝑖𝑖 . The subset of DNA fragment pairs 

(𝛺 and 𝛼𝑖) is randomly down-sampled from all measured pairs of DNA fragments with 

specified down-sampling rates. Intuitively, by defining 𝝎 and 𝛼𝑖 , the linear operator 𝐴 

summarizes all the constraints in one notation so that the objective function can be re-

written in a compact form:  

𝑚𝑖𝑛𝑷 Trace(𝑷𝑷𝑇), subject to 𝐴(𝑷𝑷𝑇) = 𝒃, 

( 4 ) 
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where 𝒃 = 𝐴(𝑴) and 𝑴 represents the true underlying low-rank Gram matrix from Hi-C 

data satisfying 𝑀𝑖,𝑖 + 𝑀𝑗,𝑗 − 2𝑀𝑖,𝑗 = 𝐷𝑖,𝑗.  

A penalization term is further added to the objective function to control unexpected large 

distances predicted between adjacent DNA fragments caused by low Hi-C data quality at 

certain genomic locations. Therefore, the final objective function is:  

minP Trace(𝑷𝑷𝑇) + 𝜆/2‖𝐵(𝑷𝑷𝑇) − 𝑑𝑡𝟏‖2
2, subject to 𝐴(𝑷𝑷𝑇) = 𝒃, 

( 5 ) 

where 𝜆 represents the penalization parameter, and the scalar 𝑑𝑡 represents the maximal 

allowed distance between adjacent DNA fragments. The linear measurement operator 𝐵 

projects the Gram matrix to the sub-diagonal elements:  

𝐵(𝑿) = 𝑔(𝑿) ∈ 𝑅(𝑛−1)∗1,  where  𝑔𝑖(𝑿) =< 𝑿,𝝎𝛽𝑖
>  𝑓𝑜𝑟 𝛽𝑖 = (𝑖, 𝑖 + 1), and 𝟏 ∈ 𝑅(𝑛−1)∗1. 

( 6 ) 

The adjoint of 𝐵 is denoted as 𝐵∗, where 𝐵∗𝒚 = ∑ 𝑦𝑖𝝎𝛽𝑖𝑖 . 

Intuitively, the low-rank matrix completion model only needs a subset of the whole set of 

pairwise distances, which is indexed by 𝛺, to reconstruct the Gram matrix 𝑷𝑷𝑇, and it 

requires the optimal matrix 𝑷𝑷𝑇 to follow three properties (Figure 2.1.a): (1) The rank of 

matrix 𝑷𝑷𝑇 should be as small as possible by minimizing the trace of 𝑷𝑷𝑇. This property 

is consistent with the low-rank assumption for 3D chromatin structures; (2) The pairwise 

distances based on the reconstructed 3D coordinates of DNA fragments should align with 

the subset of 3D distances indexed by 𝛺 by satisfying the optimization constraints. This 

ensures that the model can accurately reconstruct 3D genome structures consistent with 

observed pairwise distances; (3) The 3D distances between adjacent DNA fragments are 
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bounded. This constraint removes unrealistically stretched structures of chromatin and 

guarantees a smooth genome structure. 

Since the trace function Trace(𝑷𝑷𝑇)  is convex with respect to 𝑷 , we solve the 

optimization problem by the alternating-direction method of multipliers49. The augmented 

Lagrangian is given by:  

𝐿(𝑷;𝛬) = Trace(𝑷𝑷𝑇) + 𝜆/2‖𝐵(𝑷𝑷𝑇) − 𝑑𝑡𝟏‖2
2 + 𝑟/2‖𝐴(𝑷𝑷𝑇) − 𝒃 + 𝛬‖2

2, 

( 7 ) 

where 𝜆  is the penalty parameter, 𝑟  is the regularization parameter, and 𝛬 is the 

Lagrangian multiplier. The gradient of the augmented Lagrangian with respect to 𝑷 is 

given by:  

2𝑷 + 2𝜆𝐵∗(𝐵(𝑷𝑷𝑇) − 𝑑𝑡𝟏)𝑷 + 2𝑟𝐴∗(𝐴(𝑷𝑷𝑇) − 𝒃 + 𝛬)𝑷. 

( 8 ) 

Starting from 𝛬 = 0 and a random initial guess for 𝑷 , the following iteration will continue 

until the error between the reconstructed and observed distances indexed by 𝛺 is smaller 

than a specified threshold (default=10-3): 𝑷 is updated with the Barzilai-Borwein steepest 

descent method using the current 𝛬 and then 𝛬 is updated using the current 𝑷 49. The 

accuracy of the model does not rely on the value of 𝑟  and 𝜆 , and we have set the 

parameters 𝑟 = 1 and 𝜆 = 10 based on the previous study of low-rank reconstruction of 

the Euclidean geometry49. To tune the only free parameter of the model, 𝑑𝑡, which is the 

maximal allowed distance between adjacent DNA fragments, we test FLAMINGO on 

experimental Hi-C data using different values of 𝑑𝑡 to select the distance yielding the 

smallest objective function as the default value (Figure A.21.b), which is found to be 
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robust across different chromosomes and cell types (Figure A.21.c). This model 

demonstrates fast convergence when applied on both simulated data and experimental 

Hi-C data (Figure A.5; Figure A.21.b). 

FLAMINGO has an intrinsic computational complexity 𝑂(𝑘𝑁2) , where 𝑘  is a down-

sampling rate to define the subset (𝛺) of DNA fragment pairs (Supplementary Note 1). 

Thus, FLAMINGO has sufficiently high scalability to predict high-resolution structures for 

large genomes, where 𝑁  is large. Moreover, by using the low-rank property of a 3D 

distance matrix, FLAMINGO can reconstruct 3D genome structures using a small down-

sampling rate 𝑘 , such as 0.2, which can substantially accelerate the optimization. 

Furthermore, the parallelized computation enabled by the hierarchical prediction strategy 

further boosts the reconstruction speed. 

2.4.4 Assemble predicted structures from different scales 

The same low-rank matrix completion algorithm is applied separately at two scales: (1) 

the 1Mb domain-level scale; and (2) the 5kb intra-domain scale. To construct the final 3D 

structure, the predicted intra-domain structures are assembled into the skeleton specified 

by the domain-level structures. At each 1Mb domain-level DNA fragment, the center of 

the corresponding intra-domain structure is assigned at the 3D coordinates predicted for 

the domain-level fragment. The assigned intra-domain structures are then rotated to 

minimize the overall reconstruction error between the predicted and the observed 

pairwise distances over DNA fragments across adjacent domains (inter-domain fragment 

distances) (Figure A.3). To identify the optimal 3D rotation matrices and control the 

corresponding computational cost, we search for a series of optimal 3D Givens rotation 
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matrices on each dimension. The 3D rotation matrices are then approximated by the 

multiplication of the 3D Givens rotation matrices.  

Denote the predicted intra-domain structure for domain 𝑖 as 𝑺𝑖. The optimal 3D Givens 

rotation matrices for the 𝑥-axis across domains are identified by:  

min𝜃𝑖
𝑥
∑ (||𝒓𝜃𝑖

𝑥
(𝑺𝑖,𝑗 − 𝑪𝑖) + 𝑪𝑖 − 𝑺𝑖+1,𝑘||

2 − 𝐷 
𝑖,𝑗;𝑖+1,𝑘)

2 
𝑗,𝑘 , 

( 9 ) 

where 𝒓𝜃𝑖
𝑥
 is the 3D Givens rotation matrix of 𝑺𝑖 for the 𝑥-axis with parameter 𝜃𝑖

𝑥, 𝑺𝑖,𝑗 

represents the DNA fragment 𝑗 within domain 𝑖, 𝑪𝑖  represents the center of domain 𝑖 

(which is inferred from the domain-level prediction), and 𝐷𝑖,𝑗;𝑖+1,𝑘 represents the observed 

squared 3D distance between two inter-domain DNA fragments (fragment 𝑗 of domain 𝑖 

and fragment 𝑘 of domain 𝑖 + 1) from adjacent domains. The same algorithm is applied 

to all domains consecutively to search for the rotation matrices of the 𝑥 -axis for all 

domains. Intuitively, the objective function searches for the best rotation 𝒓𝜃𝑖
𝑥 

 of domain 𝑖 

around its center 𝑪𝑖 to match the distances between fragments across adjacent domains 

observed from the Hi-C data. The rotation matrices for the 𝑦-axis and 𝑧-axis are obtained 

similarly. Therefore, a series of 3D Givens rotation matrices are identified iteratively for 

the three axes. Multiplying the converged 3D Givens rotation matrices together yields the 

optimal 3D rotation matrices which are used to rotate the intra-domain structures, leading 

to the final genome structure. Since it jointly models all inter-domain distances between 

adjacent domains (i.e. off-diagonal points) and robustly identifies the global optimal 

rotation matrices for all intra-domain structures, the rotation algorithm will better align 

reconstructed structures with the Hi-C data and boost the accuracy of reconstruction. 
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2.4.5 Benchmark performance using simulated genome structures 

To quantitatively benchmark the accuracy of FLAMINGO, we simulated 3D genome 

structures and generated matrices of squared pairwise distances between DNA 

fragments. The FLAMINGO algorithm was then applied to the squared pairwise distance 

matrices to reconstruct the 3D structures. The model performance was evaluated by 

comparing the reconstructed structure with the original structure in two ways. (1) The 

relative error between the reconstructed 3D coordinates ( 𝑪re ) and the benchmark 

coordinates 𝑪benchmark of DNA fragments was calculated: 𝑅𝐸coord  =  ‖𝑪re − 𝑪benchmark‖2
2/

‖𝑪benchmark‖2
2. (2) The relative error between the reconstructed pairwise distance matrix 

(𝑹) and the original squared distance matrix (𝑫) was calculated: 𝑅𝐸 = ‖𝑹 − 𝑫(1/2)‖
2

2
/

‖𝑫(1/2)‖
2

2
. Moreover, Spearman correlations between predicted and benchmark 

structures were also calculated to quantify the accuracy. 

To test the performance of FLAMINGO with respect to missing data, we randomly down-

sampled subsets of the squared pairwise distances as inputs and considered other 

squared pairwise distances as missing. Multiple down-sampled datasets were generated 

with different fractions of missing data in terms of different down-sampling rates. 

FLAMINGO was applied to these down-sampled squared pairwise distance matrices, and 

the resulting 3D coordinates of DNA fragments were used to calculate the relative errors 

and correlations.  

To further test the performance of FLAMINGO on noisy inputs, we added two levels of 

white noise separately into the down-sampled squared pairwise distance matrices. As 

suggested by previous research49, the first level of noise (Noise level 1) was generated 
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by the normal distribution 𝑁(𝛿, 𝛿), where 𝛿 represents the minimum value from the down-

sampled squared pairwise distances. Similarly, the second level of noise (Noise level 2) 

was generated by the normal distribution 𝑁(2𝛿, 𝛿). In this way, the noisy down-sampled 

squared pairwise distances remain positive with high probability, consistent with the basic 

property of Euclidean distances. The simulations and down-sampling procedures were 

repeated 10 times for each benchmark setting. 

To test the assembly algorithm, we divided the benchmark structure into different domains 

or fragments. The intra-domain structures were reconstructed separately and then 

assembled for the final structures, which were compared with the benchmark structure. 

The relative errors of pairwise distances and 3D coordinates were calculated to 

demonstrate the high accuracy of the assembly algorithm and its robustness with respect 

to different choices of domain partitions (Figure A.7).  

2.4.6 Performance comparison based on experimental Hi-C data 

For each of the six cell-types, we reconstructed the 3D structures using FLAMINGO at 

5kb-resolution for each of the 23 chromosomes, based on the normalized Hi-C input 

datasets. To quantitatively evaluate the global reconstruction accuracy of FLAMINGO, 

we calculated the Spearman correlation coefficients between reconstructed and observed 

3D distances for all pairs of DNA fragments, which are defined as all-points correlations. 

To further evaluate the accuracy of reconstructed intra-domain structures, we also 

calculated intra-domain correlations based on pairs of DNA fragments within the same 

domains. An accurately reconstructed structure is expected to demonstrate high 

correlations, at both all-point and intra-domain levels, which further suggest that the 

reconstructed structure quantitatively aligns with the observed Hi-C datasets.  
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We compared the performance of FLAMINGO with seven representative state-of-the-art 

algorithms:ShRec3D33, GEM-FISH34, Hierarchical3DGenome35, SuperRec37, ShNeigh38 

and RPR36. These methods were selected because they have been shown in previous 

studies to perform better than other methods using similar modeling strategies, and other 

existing methods are not included in the comparison because either they have been 

shown to have less accurate performance by previous studies or they do not practically 

converge at 5kb-resolution in our tests. All these methods were applied, based on their 

suggested parameters, on all of the 23 chromosomes in the six cell-types at 5kb resolution 

(Supplementary Note 1). GEM-FISH only finished for chromosome 21. ShRec3D, 

ShNeigh and RPR finished predictions only for short chromosomes (ShRec3D: chr13-22, 

ShNeigh: chr15-22 and chrX, and RPR: chr17-22). Hierarchical3DGenome and 

SuperRec finished predictions for all 23 chromosomes. The correlation coefficients based 

on those chromosomes with complete predictions were calculated using the same 

method as explained above. At 5kb-resolution, the run-times on an AMD EPYC processor 

with 25 cores were recorded. The maximum memory was set to be 100GB, sufficient for 

all algorithms. 

To further quantify the performance of FLAMINGO with respect to large fractions of 

missing data, we randomly down-sampled the squared pairwise distance matrix with 

different down-sampling rates. Using the down-sampled input data, we tested the 

performance of FLAMINGO and other methods based on the correlation metrics 

described above. For each down-sampling rate, ten random samples with missing data 

were generated. The correlation coefficients were calculated for each random sample to 

evaluate the model performance. Because of impractically long computational times 
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needed by other methods for large chromosomes, only the chromosomes with complete 

predictions from these methods are included in this comparison.  

As orthogonal biological information for model comparisons, we also collected significant 

long-range chromatin interactions profiled from different experiments, including ChIA-

PET72, Capture-C45, and SPRITE46. For each chromatin interaction, we calculated the 

predicted 3D distances between the interacting DNA fragments from different 

reconstruction algorithms. Since interacting DNA fragments (anchors) are close to each 

other in 3D space, the algorithm is considered to have higher accuracy if it yields shorter 

predicted distances between interacting DNA fragments. 

2.4.7 Analysis of multi-way chromatin interactions and QTLs 

The multi-way chromatin interactions in GM12878 are collected from a dataset of SPRITE 

experiments46. To identify significant multi-way interactions, Market-Basket algorithm is 

used to search for higher-order associations of multiple genomic regions that are 

supported by SPRITE sequencing reads. Significant 3-way, 4-way and 5-way interactions 

are called based on confidence threshold=0.1 and support thresholds=3x10-4, 2x10-4 and 

1.7x10-4, respectively. The support thresholds are selected based on the curves of called 

significant multi-way interactions as a function of different thresholds, and the values 

corresponding to the elbow points are chosen.  Genomic-distance controlled random 

samples of multi-way interactions are used to generate the background null distribution 

for statistical testing on the spatial distances among multi-way interacting anchors from 

the SPRITE data. To compare the fractions of SPRITE multi-way interactions captured 

by short predicted distances from FLAMINGO versus the fractions captured by short 

distances converted from Hi-C contact maps, distances are normalized by F-norm to 



54 

guarantee fair comparisons. A variety of thresholds of distances are used to define 3D 

spatial neighborhoods. A multi-way interaction is considered to be captured if all 

interacting anchors are located in the same 3D spatial neighborhood. The eQTL 

datasets58-61 and hQTL datasets62 are collected from matched cell-types, including whole 

blood cells and lymphoblastoid cells. The same normalization procedure is applied to 

compare the capability of assigning short spatial distances for QTLs based on the 

predicted distances versus the distances converted from Hi-C contact maps. Similarly, a 

variety of thresholds of distances are used to define 3D spatial neighborhoods. And long-

range eQTLs (>900 kb) and distal hQTLs are evaluated whether it can be interpreted 

using the predicted spatial proximity by checking whether the SNP and the target region 

(i.e. a gene’s promoter or histone modification peak) are predicted with shorter spatial 

distances, compared to samples of genomic-distance controlled random pairs. For every 

QTL, 1,000 random genomic-distance controlled pairs from the same chromosome are 

generated for comparison. 

2.4.8 Curvature analysis for predicted 3D genome structures 

To calculate the curvature in each 5kb genomic bin, a quadratic parametric function was 

fitted locally based on the specific genomic bin and the two neighboring 

upstream/downstream bins. Assume the parametric representation of the curve is 𝒓(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ =

(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)), where each dimension can be written as a quadratic function, e.g. 𝑥(𝑡) =

𝑎0 + 𝑎1𝑡 + 𝑎2𝑡
2 . By fitting the curve locally, the curvature is calculated as 𝜅 =

| 𝒓⃗  ′′ × 𝒓⃗  ′ | / | 𝒓⃗  ′ |3. To have a fair comparison across different chromosomes, curvatures 

are normalized by the median values of each chromosome. Curvature is then calculated 

around TAD boundaries10. 
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2.4.9 Comparison with image-based single-cell structures 

3D coordinates of genomic bins at 30kb-resolution across single cells for a 2Mb region in 

chromosome 21 are collected68 and compared with FLAMINGO’s predictions. In K562, 

797 single cells are kept for comparison by filtering out cells with >10% bins having no 

data (missing data). Linear interpolation is used to fill the missing coordinates in each 

single cell. To normalize the scales of structures, the 3D coordinate matrix (𝑷) of every 

single cell (30kb-resolution) is centered, and then scaled by the F-norm: 𝑷scaled =

𝑷 / || 𝑷 ||𝐹 . Singular value decomposition (SVD) is then used to rotate and align the 

normalized single-cell structures (Supplementary Note 1). The average structure across 

single cells is calculated by taking the mean coordinates for each genomic bin. The 

predicted consensus structure by FLAMINGO (5kb-resolution) is centered, scaled and 

rotated using the same procedure, and is then aligned with the average structure of single 

cells or cluster-specific average structures. A 30kb-resolution version of the consensus 

structure is calculated by taking the average coordinates of six consecutive 5kb-resolution 

bins. Hierarchical clustering is applied on single-cell structures based on Euclidean 

distance to classify the ensemble of single cells into clusters, which can systematically 

represent the structural variabilities across single cells. After aligning the predicted 

consensus structure with variable single-cell structures, the differences of coordinates 

along the genomic region are calculated and compared to the intrinsic standard deviations 

among single cells.  

2.4.10 Cross cell-type prediction of 3D genome structures 

To predict 3D genome structures in cell-types without Hi-C datasets which are defined as 

target cell-types, we further expand the FLAMINGO algorithm to combine the Hi-C 
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dataset from a source cell-type and the DNase-seq dataset from the target cell-type, 

resulting in an integrative variant of FLAMINGO, named as iFLAMINGO. Intuitively, the 

Hi-C data from the source cell-type facilitate the inference of an approximate structure, 

which is fine-tuned by the cell-type specific DNase-seq data from the target cell-type. 

Based on the observation that 3D distances between interacting DNA fragments are 

associated with chromatin accessibilities (Figure A.19a), we impute the 3D distances 

between any two DNA fragments in the target cell-type (𝐷𝑖,𝑗) based on DNase-seq signals 

and 1D genomic distances (Figure A.19b). The imputation is achieved by fitting a linear 

regression model in the source cell-type: 𝐷𝑖,𝑗 = 𝛼1𝑆𝑖 + 𝛼2𝑆𝑗 + 𝛼3𝐺𝑖,𝑗, where 𝛼1, 𝛼2, and 𝛼3 

are fitting parameters to be determined, 𝐷𝑖,𝑗  represents the observed distance, 𝑆𝑖 

represents the DNase-seq signal of DNA fragment 𝑖, and 𝐺𝑖,𝑗 represents the 1D genomic 

distance between DNA fragments 𝑖  and 𝑗 . Based on the fitted regression model, 3D 

distances between DNA fragments can be imputed in the target cell-type, using the target 

cell-type specific DNase-seq data, which are then summarized into a matrix 𝑬. Therefore, 

the imputed 3D distance matrix 𝑬 represents the target cell-type specific information 

which can be used to improve the reconstruction of the corresponding 3D structure. 

The imputed 3D distance matrix is integrated into the original objective function as a 

penalization term, so that we will solve the following problem to reconstruct the 3D 

structure:  

minP Trace(𝑷𝑷𝑇) + 𝜆/2‖𝐵(𝑷𝑷𝑇 − 𝑑𝑡𝟏)‖2
2 + 𝛾‖𝐴(𝑷𝑷𝑇) − 𝐴(𝑬𝑀)‖2

2, subject to 𝐴(𝑷𝑷𝑇) =

𝒃 , 

( 10 ) 
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where 𝛾 is the penalization parameter and 𝑬𝑀  is the Gram matrix of the imputed 3D 

distance matrix (𝑬) for the target cell-type. The penalization term tunes the reconstructed 

3D structure in the target cell-type to align with the imputed 3D distances from DNase-

seq. Hence, by borrowing information from the source cell-type Hi-C data, iFLAMINGO 

predicts the cell-type specific 3D genome structures in the target cell-type. 

To validate the performance of cross cell-type predictions, iFLAMINGO was applied to 30 

source-target cell-type pairs, based on the six cell-types with Hi-C data available. For 

each source-target cell-type pair, we predicted the 3D genome structure for the target 

cell-type based on the Hi-C data from the source cell-type and the DNase-seq data from 

the target cell-type. The reconstructed 3D structures for target cell-types were evaluated 

by calculating the correlation coefficients between the reconstructed 3D distance matrix 

and the observed one based on the Hi-C dataset from the target cell-type. As 

comparisons, we also evaluated the performance using the reconstructed 3D distance 

matrices solely based on Hi-C data from the source cell-type, without incorporating the 

DNase-seq information from the target cell-type.  

2.4.11 Improve the resolution of 3D genome structures  

iFLAMINGO integrates the high-resolution chromatin accessibility data to improve the 

resolution of predicted 3D genome structures, such as 5kb-resolution, based on relatively 

low-resolution Hi-C contact maps, such as 10kb-resolution. Given a Hi-C contact map at 

10kb-resolution, we divide each 10kb genomic fragment into two consecutive 5kb 

fragments. The 5kb fragments inherit the same pairwise 3D distances from the original 

10kb fragment. In this way, the 𝑚 𝑏𝑦 𝑚 3D distance matrix at 10kb-resolution is expanded 

into a 2𝑚 𝑏𝑦 2𝑚 3D distance matrix at 5kb-resolution, which serves as the initial structure 
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for high-resolution reconstruction. The high-resolution DNase-seq datasets of chromatin 

accessibility are then incorporated to impute the 3D distances between 5kb DNA 

fragments, following the same method described above (Figure A.19b). By applying the 

iFLAMINGO algorithm on the expanded 3D distance matrix from a low-resolution Hi-C 

contact map and the imputed one from a high-resolution DNase-seq dataset, the 3D 

genome structure at 5kb-resolution is then reconstructed. We applied the model on the 

Hi-C dataset in GM12878 for all of 23 chromosomes at resolution of 10kb, 25kb, and 50kb, 

respectively. The model performance is evaluated using the correlation coefficients (all-

points and intra-domain) between the reconstructed and the observed 3D distance 

matrices at 5kb-resolution.  
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CHAPTER 3 

PREDICT HIGH-RESOLUTION SINGLE-CELL 3D CHROMOSOME STRUCTURES 
USING TFLAMINGO 

 

3.1 INTRODUCTION 

The 3D chromosome structures provide the structural foundation of gene regulation, DNA 

replication, and cell differentiation. Comprehensive profiling of the 3D chromosome 

structures is important for understanding the structural basis of the interplay between 

genes, regulatory elements, and genetic variants. Chromosome conformation capture-

based methods, including Hi-C and Capture-C, have been widely used to profile the 

contacts between DNA fragments in different cell types/tissues and generate important 

observations of the genome structures, such as chromatin loops, topologically associated 

domains (TADs), and chromatin compartments. However, the chromatin contact maps 

generated in bulk tissue only represent the average structure of millions of cells, thus 

cannot reflect the dynamic 3D chromatin structures across single cells.  

In recent years, the toolbox for measuring the chromosome conformations in single cells 

has been largely expanded, including Dip-C, single nucleosome Hi-C (snHi-C), single-

nucleus methyl-3C sequencing (snm3C) and single-cell Hi-C (scHi-C). These 

experimental methods measure contact frequencies between DNA fragments in 

individual cells and generate massive single-cell chromatin contact maps. These datasets 

push the understanding of the chromosome conformation from bulk tissue to singe cells 

and innovate the variable cell-to-cell chromosome structures. However, limited by the low 

sequencing depth, the single-cell chromatin contact maps are highly sparse in high 
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resolution (i.e. >99.9% missing rate at 10kb resolution), making it highly challenging to 

further study the high-resolution 3D chromosome structures. To address this emerging 

question, computational methods to predict the high-resolution single-cell 3D 

chromosome structures are highly desired. 

In general, previous efforts in computationally predicting 3D chromosome structures can 

be classified into two categories: MDS-based methods and simulation-based methods. In 

the first category, the observed interacting frequencies from the single-cell chromatin 

contact maps are firstly converted to the spatial distance. The 3D chromosome structures 

are reconstructed from the derived distance matrices using the MDS-based methods or 

the recurrent plots. ShRec3D and RPR are representative methods in this category. 

These methods are solely data-driven and do not have any additional assumptions on the 

3D structures. However, these methods cannot handle a significant fraction of missing 

data and demonstrate a relatively low accuracy in reconstructing high-resolution single-

cell 3D chromosome structures. In the second category, the observed contacts from the 

single-cell chromatin contact maps are used as constraints in simulating 3D chromosome 

structures based on the polymer simulation models. The representative algorithms 

include isdHi-C, Si-C, and NucDynamics. In the simulation process, the algorithms 

simulate a 3D chromosome structure based on the biophysics properties of the DNA 

sequences and further refine the structures to maximize the contact probabilities of the 

observed interacting anchors. Benefiting from the polymer simulation, these methods 

have been successfully applied to reconstruct the single-cell chromosome structures. 

However, the simulation-based methods have strong prior assumptions about the 

chromosome structures. Based on the objective functions of these methods, the invariant 
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biophysical properties of single cells are considered as equally important as the dynamic 

single-cell chromatin contact maps, which may result in a decreased ability in capturing 

the structural variations across single cells. Additionally, these algorithms are configured 

with pre-defined parameters, requiring additional parameter selection procedures for 

different datasets. 

To address these problems, we developed a low-rank tensor completion-based method, 

tFLAMINGO, to reconstruct high-resolution 3D chromatin structures from single-cell 

chromatin contact maps. As a powerful tool in video reconstruction and compression, the 

low-rank tensor completion methods leverage the similarity between frames to infer the 

missing pixels. Similarly, tFLAMINGO models every single-cell chromatin contact as a 

frame, and models the whole dataset as a video, which facilitates the information sharing 

across single cells to complete the missing data. Apart from the low-rank property of the 

tensor, tFLAMINGO further utilized the low-rank property of the single-cell chromatin 

contact maps, which guarantees the underlying single-cell 3D chromosome structures 

can be recovered using a subset of pairwise distances. These two algorithmic advantages 

distinguish tFLAMINGO from existing methods with superior accuracy in reconstructing 

the single-cell 3D chromatin structures and strong abilities in capturing the dynamic 

structural variabilities. 

We applied tFLAMINGO on four single-cell chromatin conformation datasets (Dip-C, 

snHi-C, snm3C and scHi-C) in three cell types and reconstructed the 3D chromatin 

structures for all single cells in 10kb and 30kb resolution. Based on the extensive 

simulated datasets and experimental bulk tissue chromatin contact maps, tFLAMINGO 

demonstrates superior performance over existing methods in predicting 3D chromosome 



62 

structures. Beyond the robust compartment and TAD structures across single cells, the 

predicted 3D structures by tFLAMINGO capture the dynamic single-cell chromatin 

interactions, which allow us to evaluate dynamic gene regulations in 3D space. 

Furthermore, the predicted 3D structures of tFLAMINGO provide new biological insights 

into the mechanistic interpretation of GWAS SNPs and high-order chromatin interactions. 

3.2 RESULTS 

3.2.1 tFLAMINGO reconstructs high-resolution single-cell 3D chromosome 

structures 

Single-cell chromatin conformation capture (3C) experiments measure the 3D 

chromosome structures and generate the chromatin contact maps for tens to hundreds 

of cells simultaneously (Figure 3.1.a). Limited by the low sequencing depth, the single-

cell chromatin contact maps are highly sparse and contain large fraction of missing data 

in high resolution (>99.9% in 10kb resolution). Unlike existing methods, which models 

every single cell separately, tFLAMINGO jointly models the whole single-cell 3C dataset 

as a tensor, where frontal slices represent the single-cell chromatin contact maps (Figure 

3.1.a). Such formalism of tFLAMINGO enables the imputation of missing contact 

frequencies in one cell to borrow information from other cells, thus mitigating the high 

missing rates of single-cell 3C datasets and accurately reconstructing single-cell 3D 

chromosome structures. 

Given a sparse tensor of the single-cell 3C dataset, tFLAMINGO constructs a low-rank 

dense tensor that optimally aligns with the observed entries from the inputs, thus 

completing the missing values (Figure 3.1.a). Computationally, the construction process 

is achieved by minimizing the tensor tubal rank of the dense tensor and requiring the  
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Figure 3.1 Overview of tFLAMINGO. (a) Schematic figure of tFLAMINGO. Biologically, 
the scHi-C experiment generates the highly-sparse contact maps for N cells. For every 
single cell, the distance matrix derived from the scHi-C experiment is a low-rank matrix 
(rank≤5). Thus, the tensor organizing the distance matrices of N cells is a low-rank tensor 
and the missing values can be completed using the low-rank tensor completion method. 
To accurately reconstruct the 3D chromatin structure of single cells at high resolution, 
tFLAMINGO utilizes the tube-wise Fourier Transformation to borrow information across 
single-cells, while keeping the geometric character of every single cell. Based on the 
completed distance matrix, FLAMINGO is used to reconstruct the 3D chromatin structure 
for every single cell. (b) Reconstruction of the 3D chromatin structure for 14 single cells 
at 10kb-resolution by tFLAMINGO using GM12878 Dip-C data. 

 

reconstructed values equal to the observed values on the measurement set. Based on 

the completed single-cell chromatin contact maps, the 3D chromosome structures are 

predicted by our in-house 3D reconstruction algorithm, FLAMINGO, for every single cell. 

The key design of tFLAMINGO is to model the whole single-cell 3C dataset as a tensor 

with dimension 𝑀 × 𝑀 × 𝑁 , where 𝑀  represents the number of genomic loci and 𝑁 

represents the number of single cells. The low-rank tensor completion method has been 
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widely used to represent large scale high-dimensional datasets with low-dimensional 

features, and its application includes video compression and reconstruction (Figure 3.1.a). 

In the single-cell 3C dataset, the low-rank properties are guaranteed in two aspects. 

Firstly, the tensor summarizing all single-cell chromatin contact maps is a low-rank tensor. 

This is because the cell-type-specific chromosome structures are observed to be robust 

at low-resolution (i.e. > 1MB resolution), suggesting single cells share a consensus 

backbone structure. In the single-cell 3D dataset, the information is redundant since the 

consensus structure is repeatedly measured in all single-cell chromatin contact maps. 

Therefore, the single-cell chromatin contact maps are complementary in terms of 

characterizing the consensus structure, concluding the low-rank property of the single-

cell 3D dataset. Based on this property, the missing values in one cell can be inferred by 

borrowing information from the measurements of the same contacts in other cells. In 

tFLAMINGO, the information integration is facilitated by the tube-wise Fourier 

Transformation across all cells. Secondly, single-cell chromatin contact maps are low-

rank matrices. According to the Euclidian geometry, the 𝑀 × 𝑀 chromatin contact map is 

induced by the 𝑀 × 3 coordinate matrix, thus having rank≤ 5. This property guarantees 

that the chromatin contact maps can be fully compressed and reconstructed using up to 

five singular values, which is far less than the number of genomic loci at high resolution. 

Thus, the chromatin contact maps can also be recovered based on a small fraction of the 

observed entries. By taking the advantage of the low-rank properties, tFLAMINGO 

facilitates large-scale information sharing within and across single cells, and completes 

the missing values of the sparse single-cell chromatin contact maps. 
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Our previously developed algorithm, FLAMINGO, is used to predict the 3D chromosome 

structures from the completed single-cell chromatin contact maps. FLAMINGO 

demonstrates superior performance and scalability in reconstructing high-resolution 3D 

chromosome structures. These features are especially important for reconstructing the 

high-resolution single-cell chromosome structures, which involves predicting the 3D  

 

Figure 3.2 Simulation analyses of tFLAMINGO. (a) Schematic figure of simulations. 
Three consensus structures are generated from the same starting structure with 
parameter 𝑊 controlling the similarity between consensus structures. Each consensus 
structure is repeated ten times to generate a tensor with 30 frontal slices. The resulting 
tensor is further mixed with different levels of noise (no noise, noise level 1, and noise 
level 2) and down-sampled. The highly noisy and incomplete tensor is used as the input 
of tFLAMINGO to reconstruct the consensus structures. (b) Performance of tFLAMINGO 
under different weights with 1,000 beads and 0.5% down-sampling rates. (c) Examples 
of benchmark consensus structures and tFLAMINGO predictions (weights=0.6, 
correlations=0.783, RMSD=0.133).  

 

location of several thousand genomic loci. Remarkably, FLAMINGO takes less than 25 

hours to reconstruct the 3D structure of human chromosome 1 in 1kb resolution. 

We applied tFLAMINGO on four single-cell 3C datasets to predict single-cell 3D 

chromosome structures in 10kb and 30kb resolution, providing the largest cohort of high-
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resolution single-cell chromatin structures. As an example, tFLAMINGO predicted the 3D 

chromosome structures of chromosome 21 for 14 GM12878 cells based on the Dip-C 

data, whose missing rate is over 99.95% in 10kb resolution (Figure 3.1.b, Figure B.1-3).  

3.2.2 Performance validation based on the simulation analyses 

The performance of tFLAMINGO is firstly validated by reconstructing the simulated 

benchmark structures. We simulated a sparse tensor with three consensus structures, 

whose similarity is controlled by the weight 𝑊 (Figure 3.2.a). tFLAMINGO is applied on 

the simulated dataset to reconstruct the underlying 3D structures. Across a wide range of 

weight 𝑊 , the predicted 3D structures of tFLAMINGO are highly coherent with the 

benchmark consensus structures, verifying that tFLAMINGO can capture the structural 

variations across single cells. As a representative example, at weight 0.6, the predicted 

3D structures accurately capture the unique layouts of different consensus structures 

(Figure 3.2.c, Figure B.11). Moreover, the predicted 3D structures of the frontal slices are 

classified into three clusters based on the pairwise RMSD, which is consistent with their 

original identities during the data generation process. In addition to weights, tFLAMINGO 

demonstrates exceptional performance on simulated datasets with the different numbers 

of beads and frontal slices, as well as different down-sampling rates (Figure B.7-10). 

Remarkably, tFLAMINGO can accurately reconstruct the 3D structure with 3000 beads  
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Figure 3.3 Performance validation based on the STORM dataset. (a) The number of 
STORM structures that are correctly captured by predicted single-cell structures for all 
methods. The center lines of boxplots show the median, the upper and lower box limits 
show the 25th and 75th percentiles respectively. The whiskers extend up to 1.5 times the 
interquartile range away from the limits of the boxes. (b) Examples of predicted 3D 
chromatin structures and top 20 aligned STORM structures for tFLAMINGO and isdHi-C. 
(c-d) tFLAMINGO accurately reconstructs the underlying 3D structures from snHi-C data. 
For each snHi-C single cell, the correlations between the raw snHi-C distance matrix and 
STORM distance matrices are calculated. The top 20 correlated STORM structures are 
considered to represent the true underlying 3D structures of the snHi-C distance matrix. 
(c) tFLAMINGO predictions show the highest correlations with the top 20 STORM 
structures. The center lines of boxplots show the median, the upper and lower box limits 
show the 25th and 75th percentiles respectively. The whiskers extend up to 1.5 times the 
interquartile range away from the limits of the boxes. (d) Example of the predicted 3D 
chromatin structure of snHi-C single cell 1. tFLAMINGO shows the highest correlation 
with the pooled STORM structures (correlation=0.676). 
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based on only 0.1% of the pairwise distances (Figure B.7-8, correlation=0.647, RMSD = 

0.193), proving tFLAMINGO is able to reconstruct the high-resolution 3D chromosome 

structures from highly sparse chromatin contact maps.  

Furthermore, we compared the performance of tFLAMINGO with the baseline method, 

which completes the missing values by averaging all frontal slices. Strikingly, tFLAMINGO 

shows significantly higher accuracy over the baseline method, demonstrating the 

algorithmic design of tFLAMINGO is necessary to reconstruct the single-cell 3D 

chromosome structures accurately (Figure B.10). 

3.2.3 Performance comparison based on the STORM dataset 

The performance of tFLAMINGO in reconstructing the 3D structures of human 

chromosome 21 for 14 K562 cells is benchmarked with the STORM dataset and 

compared with four state-of-art algorithms: RPR, ShRec3D, Si-C and isdHiC. The 

similarity between the predicted structures and STORM structures are quantified by the 

Spearman correlations, which has been widely used to quantify the accuracy of structure 

reconstructions. Since the STORM experiment measures the 3D structures of a 2MB 

region in thousand cells, we calculated the Spearman correlations between all pairs of 

predicted structures and STORM structures. Such a comparisons provides direct 

evidence of the model performance at the single-cell level. Firstly, we evaluated the 

consistency between the predicted structures and STORM structures. On average, 

tFLAMINGO predictions are supported by 73.4 STORM structures (Figure 3.3.a, 

correlation>0.8), while less than 50 STORM structures support other methods. For 

example, the predicted single-cell 3D structures of tFLAMINGO align well with the 

average of the top 20 STORM structures based on the correlations. In comparison, the 
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predictions of isdHiC demonstrate distinct structures with the STORM data (Figure 3.3.b). 

Secondly, the reconstruction accuracy of different algorithms is evaluated using the 

STORM structures. Since the underlying single-cell 3D chromosome structures of snHi-

C data are unknown, the average of the top 20 STORM structures with the highest 

similarity with the raw snHi-C contact maps is used as the gold-standard to evaluate the 

model performance. Across all methods, tFLAMINGO demonstrates the highest 

correlations (Figure 3.3.c, median correlation 0.56). Figure 3.3.d shows one example 

where tFLAMINGO accurately reconstructs the underlying structures (correlation = 0.853) 

while other methods demonstrate lower accuracy (correlation < 0.4). These results not 

only validate the accuracy of tFLAMINGO in predicting single-cell 3D chromosome 

structures, but also suggest that the prediction of tFLAMINGO widely exists in the 

population of K562 cells, thus supporting the biological significance of tFLAMINGO.  
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Figure 3.4 Systematic performance comparison in reconstructing single-cell 
chromosome structures. (a) Performance comparison in 10kb-resolution across four 
single-cell datasets (GM12878 Dip-C dataset, K562 snHi-C dataset, mESC scHi-C 
dataset, and mESC snm3C dataset). The chromatin contact maps generated in the 
matching tissues are used as gold standards. (b) Performance comparison in 30kb-
resolution across four single-cell datasets (GM12878 Dip-C dataset, K562 snHi-C dataset, 
mESC scHi-C dataset, and mESC snm3C dataset). The predictions of NucDynamics 
provided by Si-C are directly used. (c) Example of the accurately reconstructed distance 
matrix of tFLAMINGO at chr19:8,200,000-9,100,000. (d) UMAP visualization of the 
reconstructed distance matrices. tFLAMINGO accurately predicts the cell-type-specific 
chromatin structures. 
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3.2.4 Performance comparison based on the bulk tissue chromatin contact maps 

The performance of tFLAMINGO is systematically evaluated and compared with existing 

algorithms based on the bulk tissue chromatin contact maps. As the orthogonal evidence, 

the bulk tissue chromatin contact maps from Hi-C, 3D ATAC-PALM and GAM are 

collected to verify the predicted pairwise distance matrices of different algorithms. For 

every single cell, Spearman correlations based on two sets of distances are calculated to 

quantify the model performance: (1) Spearman correlations based on the measured 

distances in the bulk tissue datasets (termed as ‘all distance correlations’) and (2) 

Spearman correlations based on the measured distances in both bulk tissue datasets and 

each single-cell contact map (termed as ‘validated distance correlations’). Comparing 

these two metrics, all distance correlations tend to quantify the accuracy of the completed 

missing values, while the validated distance correlations evaluate the accuracy of 

recapitulating the observed values. Strikingly, tFLAMINGO demonstrates superior 

performance in reconstructing the single-cell 3D chromosome structures, especially at 

10kb resolution (Figure 3.4.a-b). More importantly, tFLAMINGO shows even more 

improvement over existing methods based on all distance correlations (Figure 3.4.a-b , 

tFLAMINGO: 0.52, other methods < 0.3), suggesting a highly enhanced ability in imputing 

the missing pairwise distances. The advanced performance stems from the algorithmic 

design of tFLAMINGO. Unlike the simulation-based methods, where the missing values 

are completed based on the polymer simulation, tFLAMINGO uses the low-rank 

structures learned from the observed data to impute the missing values, thus showing 

better consistency with the biological ground truth. At 30 kb resolution, tFLAMINGO still 

archives consistently high accuracy. Figure 3.4.c shows a representative example of 
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predicted chromatin contact maps predicted by tFLAMINGO and Si-C. At this 1MB 

genomic region, the distance matrix predicted by tFLAMINGO accurately recapitulates 

the domain structures and long-range chromatin interactions of the GAM chromatin 

contact map (correlation 0.68), which are not observed in the prediction of Si-C  

 

Figure 3.5 Systematic performance comparison in imputing high-resolution single-
cell chromatin contact maps. (a) Evaluation of the accuracy of imputed single-cell 
contact maps on mESC snm3C datasets at 30kb-resolution. Bulk tissue chromatin 
contact maps generated by orthogonal experiments are used as gold standards. The error 
bar represents the standard deviations across 351 single cells. (b) Example of imputed 
single cell contact maps by tFLAMINGO and Higashi. The TAD pattern predicted by 
tFLAMINGO aligns with the bulk-tissue CTCF Chip-seq peaks. (c-d) Performance 
comparison in identifying cell types based on the imputed contact maps across different 
resolutions. (c) The quantitative accuracy is evaluated by the Adjusted Rand Index (ARI). 
(d) UMAP of distance matrices predicted by Higashi and tFLAMINGO. Dots represent 
single cells and are colored by the cell types. 

 

(correlation 0.24). These results provide quantitative support for the superior performance 

of tFLAMINGO in reconstructing the single-cell 3D chromosome structures. 
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Furthermore, we evaluated the performance of different algorithms in capturing structural 

variations across cell types. All algorithms are applied to the snm3C dataset, including 

351 mESC cells and 96 NMuMG cells, to reconstruct the single-cell 3D chromosome 

structures. The distance matrices induced by the predicted 3D chromosome structures 

are projected into the two-dimensional space using UMAP to discover clusters of cells. 

Since the great majority of pairwise distances are missing from the raw single cell snm3C 

chromatin contact maps at 30kb resolution (missing rate >99.9%), the observed values 

from the raw single cell snm3C dataset cannot reflect the cell-type specific structural 

variations and only one cloud of cells are observed (Figure 3.3.d). By jointly modeling all 

cells within the same cell type, tFLAMINGO identifies the cell-type-specific structures and 

correctly projects cells into the matching clusters(Figure 3.3.d).  In comparison, no clear 

clusters of cells are observed in the UMAP plots based on the predictions of other 

methods(Figure 3.3.d). These results suggest that, by jointly modeling all cells, 

tFLAMINGO has better abilities to complete the missing data and capture the cell-type 

specific structural variations of single cells.  

3.2.5 Performance comparison in imputing high-resolution chromatin contact 

maps 

Currently, analyses of the single-cell 3D chromatin structures in high resolution are 

significantly hindered by the sparsity of the single cell datasets. To enhance the usability 

of single-cell datasets at high-resolution, the computational methods are developed to 

impute the single-cell chromatin contact maps and Higashi is the latest and most powerful 

one. In tFLAMINGO, the 3D distances between the DNA fragments are naturally induced 

by the predicted single-cell 3D chromosome structures, thus leading to a complete 
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distance matrix. By further converting the spatial distances to interaction frequencies 

using the observed negative exponent function, tFLAMINGO can help to impute the high-

resolution chromatin contact maps. 

To evaluate the performance of tFLAMINGO in imputing chromatin contact maps, 

tFLAMINGO is applied to the snm3C dataset of 351 mESC cells to impute the single-cell 

chromatin contact maps in 30kb resolution and compared with Higashi. The performance 

is evaluated based on the correlations between the imputed chromatin contact maps and 

bulk tissue chromatin contact maps measured by 3D ATAC-PALM, GAM, and Hi-C in bulk 

mESC cells. Compared with Higashi, tFLAMINGO demonstrates higher correlations 

(Figure 3.4.a, correlations > 0.44) across all comparisons. As Figure 3.5.b shows, the 

chromatin contact map imputed by tFLAMINGO for the single-cell 1 accurately captures 

the TAD structures of the bulk Hi-C contact maps. Furthermore, the TAD boundaries in 

the imputed single-cell chromatin contact maps are supported by the CTCF binding, 

which further illustrates the accuracy of tFLAMINGO. In comparison, no clear TAD 

structures are observed in the chromatin contact map imputed by Higashi, and the TAD 

boundaries are not consistent with the CTCF binding profiles. 

The accuracy of imputation is also evaluated by the ability in identifying cell-type-specific 

structures. tFLAMINGO and Higashi are used to impute the chromatin contact maps for 

351 mESC cells and 96 NMuMG cells in 1MB, 250 kb, and 30kb resolutions (Figure 3.4.c). 

The cells are further clustered based on the imputed distance matrices in the two-

dimensional space to assign cell identities. Adjusted Rand Index (ARI) is used to evaluate 

the similarity between the predicted cell-type identities and the ground truth. At 1MB and 

250 kb resolution, both Higash and tFLAMINGO demonstrate high ARI. However, 



75 

tFLAMINGO can still correctly predict the cell identify in 30kb resolution (Figure 3.4.c, ARI: 

0.53, while Higashi fails to correctly identify clusters of different cell types (ARI: 0.13), 

suggesting tFLAMIGO enjoys a better ability in capturing the high-resolution cell-type-

specific structural variations. As Figure 3.5.d shows, the chromatin contact maps imputed 

by tFLAMINGO can be robustly clustered into two cell clusters across all resolutions. In 

contrast, the cell clusters based on the imputation of Higashi are gradually merged as  

 

Figure 3.6 Compartment analyses and TAD analyses in single cells. (a) 
Compartment identification of chromosome 19 for 351 mESC single cells at 30kb-
resolution. PC1 scores based on the bulk Hi-C contact maps pooled single-cell contact 
maps and all 351 single cells are shown. (b) Example of TAD boundary identification at 
chr19:13,620,000-15,750,000. Seven out of eight predicted TAD boundaries are  
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Figure 3.6 (cont’d) 

supported by the bulk tissue CTCF Chip-seq dataset. The TAD boundary without CTCF 
Chip-seq peak contains a transposable B2 SINE element with B-box and a TE-derived 
CTCF motif. (c-d) Regions with higher TAD boundary scores tend to have (c) higher 
CTCF binding strength and (d) a higher number of CTCF peaks (High: <20% quantile; 
Mid: 20%-80%; Low: >80%). (e-f) Functional regions tend to have higher structural 
stabilities across single cells. The RMSD is calculated between the 3D chromatin 
structure of every single cell and the averaged structures of all cells. Lower RMSD 
represents the 3D location of DNA fragments that are stable across single cells. (e) 
Compartment A shows lower RMSD compared with compartment B. (f) Genes specifically 
expressed in GM12878 cells show lower RMSD compared with other genes. 

 

resolution increases. These results clearly demonstrate the usability of tFLAMINGO in 

imputing single-cell chromatin contact maps at high resolution. 

3.2.6 Single-cell compartment and TAD analyses of tFLAMINGO 

Based on the bulk tissue Hi-C chromatin contact maps, the chromosomes are segregated 

into densely interconnected regions, i.e. compartments and topological associated 

domains (TADs), which delineate the outlines the chromosome structures in 3D space. 

Due to the high sparsity of the single-cell chromatin contact maps, discovering 

compartments and TADs for every cell is still challenging. Therefore, the completed high-

resolution chromatin contact map imputed by tFLAMINGO provides a foundation to study 

the single-cell compartment and TAD structures. Based on the chromatin contact maps 

imputed by tFLAMINGO for 351 mESC single cells, single-cell compartments and TADs 

are called following the existing methodology. As Figure 3.6.a shows, chromosome 19 

can be divided into two major compartments based on the bulk tissue Hi-C dataset in 

mESC. Interestingly, the same compartment structure is also observed in the pooled 

(average) single-cell chromatin contact maps, further verifying the accuracy of the 

predicted single-cell 3D chromosome structures. Moreover, all 351 mESC cells show 
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consistent distributions of the PC1 scores, suggesting the chromosome structures are 

highly stable across single cells at the compartment level. We also repeated the analyses 

in 14 GM12878 cells, and the similar distributions of the PC1 scores along the genome 

are observed across single cells and bulk tissue Hi-C data (Figure B.12). 

To gain insights into chromatin structures across single cells at the TAD level, we further 

calculated the TAD boundary scores from the single-cell chromatin contact maps imputed 

by tFLAMINGO. As an example, Figure 3.6.b shows the distribution of the TAD boundary 

scores in a ~2MB genomic region. Eight regions with consistently high TAD boundary 

scores across all single cells are identified as TAD boundaries. Interestingly, seven out 

of eight TAD boundaries are intensively bound by CTCFs, which is consistent with the 

loop extrusion model. For the TAD boundary without CTCF binding, a CTCF motif (p-

value < 1.2x10-5) and B-Box regulatory element are observed in a SINE/B2 transposable 

element, which have been proved to shape the chromatin structures by serving as TAD 

boundaries. Quantitatively, DNA fragments with high TAD boundary scores show 

significantly higher CTCF binding intensity (p-value = 2.48x10-5) and instances (p-value = 

8.32x10-4) compared with DNA fragments with medium and low TAD boundary scores 

(Figure 3.6.c and Figure 3.6.d). These results further highlight that the formation of the 

persistent TAD boundaries across single cells is mediated by CTCF binding, which is 

coherent with the loop-extrusion model. 

We further explored the structural stabilities of 3D chromatin structures across single cells 

and their relationships with gene regulations in GM12878. RMSD between the single-cell 

3D chromatin structures and the average structure across all cells is calculated along the 
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chromosome to quantify the structural stabilities at each genomic location. Interestingly, 

we found a differential distribution of the RMSD in compartment A/B. Compared with  

Figure 3.7 Dynamic single-cell 3D chromosome structures reflects distinct 
methylation landscape of gene. (a) In snm3C dataset, the contact map and coupled 
DNA Methylation are provided. (b) Less methylated genes show closer 3D distances 
across single cells. For every single cell, genes are divided into three groups based on 
the DNA methylation scores (<30% quantile, 30%-70% quantile, and >70% quantile). The 
pairwise distances between pairs of two genes within the same group are calculated 
across all single cells. The center lines of boxplots show the median, the upper and lower 
box limits show the 25th and 75th percentiles respectively. The whiskers extend up to 1.5 
times the interquartile range away from the limits of the boxes. (c) 351 single cells are 
divided into two clusters based on the similarity of the predicted 3D chromatin structures. 
The consensus structures of the two cell clusters are visualized. (d) Identification of the 
differentially methylated genes across two cell clusters. (e) Distribution of the pairwise 
distances between the cluster-specific differentially methylated genes across cell clusters. 
Genes show shorter 3D distances in cells with lower DNA methylation scores. (f) Example 
of 3D chromatin structures facilitating the densely organized differentially expressed 
genes. 
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genomic regions in compartment B, compartment A shows significantly lower RMSD, 

implying more stable 3D chromosome structures across all single cells (Figure 3.6.e, p-

value=5.33x10-5). This result suggests the open chromatin regions are more stable in the 

3D space, probably because of their essential role in transcriptional regulations. In 

addition, the genomic regions harboring the genes specifically expressed in GM12878 

show lower RMSD compared with other genes (p-value=1.92x10-3), further supporting the 

observation that the genomic regions with essential transcriptional and regulatory 

functions have more stable 3D structures across single cells. These results not only verify 

the accuracy of tFLAMINGO, but also provides new functional interpretations of the cell-

to-cell structural variations. 

3.2.7 Spatial analysis of gene activities in 3D space by tFLAMINGO 

To further demonstrate the critical role of 3D chromosome structures in regulating gene 

expressions, we analyzed the spatial organizations of the differentially methylated genes 

using the snm3C dataset. Beyond profiling the single-cell chromatin contact maps, the 

snm3C dataset simultaneously measures the single-cell DNA methylation signals, which 

overlays the epigenomic information with the 3D structural information (Figure 3.7.a). The 

gene activity is quantified by the average DNA methylation signals within the promoter 

region for every cell. We divided protein-coding genes from chromosome 19 into three 

groups based on the strength of the DNA methylation signals and calculated the spatial 

distances between genes within each group based on the pooled 3D chromosome 

structures of 351 mESC cells. As Figure 3.7.b shows, genes with the lowest DNA 

methylation scores have shorter spatial distances, while genes with medium and high 

DNA methylation scores show relatively longer spatial distances. Considering the DNA 
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methylation signal of the promoter region is a counter metric of the gene activity, this 

result suggests the highly expressed genes are densely organized into 3D neighborhoods, 

which potentially enables the gene-gene regulations.  

To further explain the variability of gene expressions across single cells in the 3D space, 

we clustered the 351 mESC cells based on the 3D chromosome structures and studied 

the spatial relationships between the differentially methylated genes. By projecting the 

distance matrices into the two-dimensional space using UMAP, two clusters of cells are 

identified with the maximized average silhouette width, where the first cluster contains 

117 cells and the second cluster contains 234 cells. While these two clusters of cells show 

a similar backbone structure, local chromosome structures are extensively re-organized 

(Figure 3.7.c). By comparing the single-cell DNA methylation profiles across two clusters, 

116 genes are identified as the cluster-specific differentially methylated genes, 

suggesting the distinct transcriptional landscapes in two cell clusters. As Figure 3.7.d 

shows, since 71 of 116 genes show strong DNA methylation signals in the second cell 

cluster but weak signals in the first cluster, they are considered to be specifically 

methylated in the second cluster. For the same reason, 45 genes are considered to be 

specifically methylated in the second cluster. To investigate the relative spatial localities 

of the differentially methylated genes, we calculated the pairwise distances between 

genes in two cell clusters based on two pooled cluster-specific structures. Strikingly, the 

differentially methylated genes exhibit shorter pairwise distances based on the matching 

3D chromosome structures, while they are loosely scattered along with the unmatching 

3D chromatin structure (Figure 3.7.e). As a representative example, Figure 3.7.f shows a 

3MB genomic region, which contains 9 genes specifically methylated in the first cell  
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Figure 3.8 Analyses of single-cell chromatin interactions. (a) Predicted single-cell 
chromatin interactions across 15 GM12878 cells at 30kb-resolution. Altogether, the 
predicted single-cell chromatin interactions capture three TADs shown in the bulk Hi-C 
contact maps and Capture-C interactions. Across single cells, different 3D chromatin 
structures and associated single-cell chromatin interactions are observed, confirming the 
dynamicity of the 3D chromatin structures. Only statistically significant chromatin 
interactions are shown (p-value < 5x10-5). (b) Predicted single-cell chromatin interactions 
are strongly supported by bulk tissue Capture-C interactions. (c) Predicted single-cell 
chromatin interactions have a lower p-value in the bulk tissue Hi-C dataset, suggesting 
strong interactions are less dynamic across single cells. (d) Consistency of single-cell 
chromatin interactions across 15 cells under different resolutions. Under a certain 
resolution, fractions of the different number of cells containing a specific chromatin 
interaction are calculated. (e) Genes linked by the single-cell chromatin interactions have 
higher expression values in GM12878. (f) Single-cell chromatin interactions are enriched 
with TCGA-LAML somatic mutations compared with distance-controlled random 
interactions. (g) Example of GWAS SNP captured by single-cell chromatin interactions.  
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Figure 3.8 (cont’d) 

rs1736135 is linked with gene RBM11 through chromatin interactions in three single cells. 
Potentially, rs1736135 controls the expression of RBM11 gene expression through 
chromatin interactions by creating a CTCF motif, thus associated with Crohn’s disease. 
(h) Schematic of predicting the functional chromatin interactions based on the 
tFLAMINGO predicted contact maps and coupled DNA methylation scores using mESC 
snm3C data. LASSO regression is used to select the DNA fragments whose 3D distances 
to the gene promoter can best predict the DNA methylation scores of the target gene. The 
longest distances between DNA fragments and target gene promoters are limited to 3MB. 
(i) Enrichment of enhancers along effect sizes predicted by LASSO. As comparisons, the 
correlations between the DNA fragments and target gene promoters across single cells 
are used as the predictive score for enhancer enrichment analysis. The result of distance-
controlled random chromatin interactions is also shown.  

 

cluster and 14 genes for the second cell cluster. Interestingly, the two groups of genes 

are located in two distinct 3D neighbors and interact with each other through 3D chromatin 

loops. Apart from the 3D proximity of the differentially methylated genes, we further 

confirmed that the two sets of genes are enriched in different biological pathways, 

suggesting their unique roles in cell development at different stages. These results further 

demonstrate the biological utilities of tFLAMINGO in interpreting the dynamic activity of 

genes across single cells. 

3.2.8 Dynamic single-cell chromatin interaction landscape identified by 

tFLAMINGO 

As a direct contribution of tFLAMINGO, the predicted high-resolution 3D chromosome 

structures, as well as the chromatin contact maps, fully characterize the interaction 

landscape at 10kb resolution and facilitate the study of single-cell chromatin interactions. 

Therefore, we identified chromatin interactions based on the predicted chromatin contact 

maps of tFLAMINGO for 15 GM12878 cells in 30kb resolution (Figure B.15). As a 

representative example, Figure 3.8.a shows the single-cell chromatin interactions in a 
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5.5MB genomic region (chr21:15,500,000-21,000,000). In this region, the combined 

single-cell chromatin interactions form three TADs, consistent with the bulk Hi-C and 

Capture-C data. Surprisingly, chromatin interaction landscapes are drastically changed 

across single cells, and TADs are observed to be shifting, merging, and vanishing. For 

example, we observed three TADs from single-cell 1. The imputed single-cell chromatin 

contact maps accurately capture the bulk chromatin contact maps, and three compact 

domains are observed on the 3D structure. However, for single-cell 7, the second and 

third TAD from the bulk tissue Hi-C contact maps are merged into a larger compact 

domain, and only two TADs persist. In single-cell 12 and single-cell 15, the chromatin 

loops are untangled, resulting in the vanishment of two TADs. As a functional validation 

of the predicted single-cell chromatin interactions, we evaluated whether the genes linked 

by the single-cell chromatin interactions are specifically and highly expressed in 

GM12878. We found that the linked genes have high Z-scores of gene expression in 

GM12878, comparing with the randomly selected genes (Figure 3.8.e). This result 

highlights the regulatory effect of the predicted single-cell chromatin interactions. The 

systematic comparisons of TAD structures across single cells and bulk chromatin contact 

maps, along with the analysis of the gene expression specificity, unveil the dynamic 

chromosome structures in an unprecedented resolution, which cannot be observed in 

bulk tissue chromatin contact maps or the low-resolution single-cell chromatin contact 

maps.  
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3.2.9 Relationship between single-cell chromatin interactions and bulk Capture-C 

interactions 

We further leverage the orthogonal Capture-C dataset to evaluate the consistency 

between chromatin interactions in bulk tissue and single cells. By overlapping the 

predicted single-cell chromatin interactions and Capture-C interactions, we found that the 

Capture-C dataset captures 73% of the single-cell chromatin interactions (Figure 3.8.b). 

On the other hand, the Capture-C interactions that overlap with the single-cell chromatin 

interactions tend to have lower p-values (p-value = 3.47x10-3), suggesting stronger 

chromatin interactions are conserved across single cells (Figure 3.8.c). In fact, a large 

fraction of chromatin interactions are shared across different cells. As shown in Figure 

3.8.d, the fraction of single-cell chromatin interactions shared by different numbers of cells 

is calculated as the resolution increases. At 250 kb resolution, over 50% of the single-cell 

chromatin interactions are captured in two cells, and around 40% of single-cell chromatin 

interactions are shared by three cells (Figure 3.8.d). These analyses strongly suggest the 

bulk tissue chromatin contact maps only reflect the average of million cells and have no 

dynamicity. Therefore, the development of tFLAMINGO can largely boost the 

understanding of the dynamic chromatin interactions at the single-cell level. 

3.2.10 Interpreting genetic variants based on single cell chromatin interactions 

The 3D chromatin structures and chromatin contact maps predicted by tFLAMINGO 

provide the structural basis of the GWAS SNPs and disease-associated somatic 

mutations. Firstly, we used the single-cell chromatin interactions to interpret the LAML-

associated somatic mutations. We overlapped the LAML-somatic mutations with the 

interacting anchors of the chromatin interactions and calculated the enrichment of somatic 
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mutations. Compared with the random chromatin interactions with genomic distances 

controlled, the single-cell chromatin interactions predicted by tFLAMINGO show a higher 

enrichment of somatic mutations (Figure 3.8.f), suggesting the disease-SNP associations 

are mediated by the chromatin interactions. Figure 3.8.g shows one representative 

example, where the SNP rs1736135 is associated with the Crohn's disease. Based on 

the predicted single-cell chromatin interactions, this SNP is linked to the promoter of an 

oncogene RBM11, whose overexpression can significantly decrease the survival rate of 

the patients. Interestingly, the SNP rs1736135 creates a CTCF motif by transiting a T to 

C in the alternate genome (E-value: 0.89 to 0.103), which potentially established the 

chromatin interactions with the RBM11 promoter and finally contributed to the Crohn's 

disease. This evidence further confirms the regulatory function of the single-cell chromatin 

interactions and provides a new approach to understanding the disease-associated 

genetic variants mechanistically. 

3.2.11 Predicting functional gene regulatory links in single cells 

In addition to the single-cell chromatin interactions, we further predict the functional 

regulatory links for gene expression. In bulk tissue, the regulatory elements are 

computationally linked to the promoter of genes based on the 1D genomic distances and 

co-activity patterns. However, these methods model the chromosomes as 1D strings and 

leave out the important 3D chromosome structures. According to the phase separation 

model, the gene expressions are controlled by the dynamic binding and unbinding events 

between genes and regulatory elements on the 3D chromosome structures. This transient 

binding process can not be explained by the static bulk tissue datasets but can be 

captured by spatial distances between the DNA fragments across single cells. Therefore, 
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single-cell 3D chromosome structures predicted by tFLAMINGO can help to predict the 

transcriptional regulations between genes and regulatory elements. Specifically, we 

linked the target genes and DNA fragments, whose close spatial distances to the target 

genes are associated with the high gene activities across single cells, based on the 

predicted single-cell 3D chromosome structures. The DNA methylation signals of every 

gene are considered to have a linear relationship with the spatial distances of all DNA 

fragments with 1D distance smaller than 3MB across all single cells. LASSO model is  

 

Figure 3.9 Identification of the single-cell multi-way chromatin interactions based 
on the predicted chromosome structures. (a) The three-way chromatin interactions 
are predicted from the 3D chromatin structures by evaluating the pairwise 3D distances. 
(b) Predicted three-way chromatin interactions are supported by scSPRITE data (n=3408, 
p-value<1.4x10-5). Higher scSPRITE scores represent the three-way interactions are 
observed in more single cells from scSPRITE dataset. (c-d) Example of (c) 3D chromatin  
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Figure 3.9 (cont’d) 

structure of predicted three-way interactions and (d) scSPRITE scores. (e) Example of 
the 3D chromatin structure of cluster-specific three-way interactions.  

 

used to prioritize the most influential DNA fragments, i.e. master regulators, of the gene 

activities (Figure 3.8.h). DNA fragments with larger effect sizes in LASSO are considered 

to have more substantial regulatory effects on the target gene expressions, as the smaller 

3D distances are associated with lower DNA methylation signals of promoters and higher 

gene activities. The orthogonal enhancer annotation dataset in mESC is used to evaluate 

the regulatory effect of the linked DNA fragments. We calculated the enhancer enrichment 

among the predicted DNA fragment-gene links at different effect size cut-offs and used 

the enrichment to quantify the accuracy of predicted links. As shown in Figure 3.8.i, DNA 

fragments with high effect sizes are enriched with enhancers, suggesting the regulatory 

effects of the highly ranked DNA fragments. As comparison, the DNA fragments are also 

linked to the genes based on the co-activities and 1D genomic distances. In comparison, 

the predictions of tFLAMINGO demonstrate consistently higher enhancer enrichment 

across all cut-offs. These analyses clearly demonstrate that, overlaid with the gene 

activities, the ability of tFLAMINGO to accurately predict the functional chromatin 

interactions. 

3.2.12 Analysis of single-cell multi-way interactions by tFLAMINGO 

The high-order genome organization enables the multi-way interactions between DNA 

fragments, which play an important role in gene regulations. Beyond the 1D genomic 

distances and 2D chromatin contact maps, the single-cell 3D chromosome structures 

predicted by tFLAMINGO enable directly probing the spatial distances between multiple 
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DNA fragments and predicting the multi-way chromatin interactions from the 3D space. 

We depicted the three-way interactions by identifying sets of three closely allocated DNA 

fragments on the pooled 3D chromosome structure of 351 mESC cells. FOr each set of 

three DNA fragments, we calculated the average pairwise distances to quantify the 

compactness of the three-way interactions. To evaluate the statistical significance of the 

three-way interactions, 1000 sets of randomly selected DNA fragments were generated 

with the genomic distance controlled and their average pairwise distances were used to 

calculate the empirical p-values. Overall, we predicted 973 statistically significant three-

way interactions (p-value < 0.05). To evaluate the predicted three-way interactions, we 

overlapped the scSPRITE clusters to the predicted three-way interactions and used the 

normalized counts of the overlapping scSPRITE clusters to quantify the accuracy (termed 

as the ‘scSPRITE score’ hereafter). We observed that the predicted three-way 

interactions show significantly higher scSPRITE scores than random three-way 

interactions with 1D genomic distances controlled. Figure 3.9.c shows an example of the 

predicted three-way interaction, where three anchors are brought to the same 3D 

neighborhood by a chromatin loop. Interestingly, the three-way interaction is also 

frequently observed in the scSPRITE cluster, validating the accuracy of the predicted 

three-way interactions.  

To further understand the high-order organization of chromosomes across single cells, 

we divided 15 GM12878 cells into three clusters based on similar chromosome structures 

and predicted three-way interactions in each cluster. The three-way interactions are 

predicted based on the pooled structure of every cluster. We identified around 1000 three-

way chromosome interactions in each cluster, suggesting that chromosomes display 
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dynamic high-order structures across single cells. As shown in Figure 3.9.e, the anchors 

of the predicted cluster-specific three-way interactions show short spatial distances on 

the matched 3D chromosome structure. However, they are far from each other on the two 

unmatched 3D chromosome structures, suggesting the complex high-order structures 

across single cells. Given these analyses, the single-cell 3D chromosome structures 

predicted by tFLAMINGO reveal the high-order chromosome conformation and innovate 

the study of multi-way chromosome interactions. 

3.3 DISCUSSION 

In this work, we developed tFLAMINGO to reconstruct the single-cell 3D chromosome 

structures at high resolution from the sparse single-cell chromatin contact maps. 

Equipped with the low-rank tensor completion method, tFLAMINGO mitigates the high 

missing rates of the single-cell chromatin contact maps by borrowing information from all 

contacts in all cells. The application of tFLAMINGO on four single-cell chromatin 

conformation capture datasets provides a rich resource of single-cell 3D chromosome 

structures at 10kb and 30kb resolution. Based on the extensive performance evaluations, 

tFLAMINGO achieves superior accuracy in reconstructing the single-cell 3D chromosome 

structures, imputing single-cell chromatin contact maps over the existing state-of-art 

methods, and capturing the cell-type-specific structural variations. The high consistency 

between the experimental super-resolution imaging data and tFLAMINGO predictions 

further confirms the accuracy of tFLAMINGO in predicting the highly dynamic single-cell 

3Dchromosome structures. Biologically, tFLAMINGO confirms the robust compartment 

and TAD structures across single cells. Coupled with the DNA methylation dataset, 

tFLAMINGO unveils the interplay between dynamic gene regulations and 3D 
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chromosome structures across single cells. The detailed delineation of the high-resolution 

single-cell 3D chromosome structures by tFLAMINGO facilitates prediction of the single-

cell chromatin interactions and provides mechanistic interpretations of GWAS SNPs and 

somatic mutations. Beyond the 2D chromatin contact maps, the characterization of the 

chromosome structure in the 3D space further enables the predictions of the high-order 

chromatin organizations and multi-way chromatin interactions.  

Compared with existing methods, tFLAMINGO enjoys three unique advantages by 

modeling the low-rank structure of the single-cell chromatin contact maps: (1) 

substantially improved ability in handling high missing rate of the single-cell 3C datasets; 

(2) superior accuracy in predicting single-cell 3D chromosome structures and (3) robust 

performance in imputing the cell-type-specific high-resolution chromatin contact maps. 

Equipped with all these advantages, tFLAMINGO is designed for the single-cell 3C 

datasets and can aid the biological identification and interpretation of the cell-to-cell 

structural variations, differential single-cell gene expression, single-cell chromatin 

interactions, and the genetic variants. 

As a data-driven model, tFLAMINGO solely relies on the input single-cell chromatin 

interactions and does not introduce any bias into the reconstruction. This feature is crucial 

for reconstructing the high-resolution single-cell 3D chromosome structures, as the 

information from the highly sparse single-cell chromatin contact maps poses fewer 

constraints on the predicted structures compared with the prior assumptions. As another 

important class of methods, the constrained polymer simulation-based model relies on 

both pre-determined biophysics properties of the DNA sequences and the observed 

single-cell chromatin contact maps to predict the 3D chromosome structures. This 
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strategy successfully reconstructs the low-resolution chromosome structures (i.e. 1MB) 

when most of the DNA fragments are constrained in the relatively dense low-resolution 

single-cell chromatin contact maps. However, the predictive accuracy in high resolution 

(i.e. 10kb) is drastically decreased for two reasons. Firstly, the high-resolution chromatin 

contact maps are incredibly sparse, and the simulation process is dominated by the pre-

defined biophysics property, which is invariant across single cells and cell types and may 

contradict the observed chromatin contact maps. In this case, the model cannot find an 

optimal structure to satisfy both constraints, thus deviating from the observed values. 

Therefore, the simulated 3D chromosome structures cannot accurately capture the high-

resolution structural variations across single cells. Secondly, the simulation-based 

methods tend to predict the chromosome structures as extended smooth strings, which 

violates the observed long-range chromatin interactions. For example, isdHi-C 

demonstrates a high accuracy (Figure B.16, correlation: 0.73) on a genomic region with 

22% of long-range chromatin interactions (>200kb) but failed on the adjacent genomic 

region with 42% of long-range interactions (Figure B.16, correlation 0.18). Further 

simulation analyses confirm the limitation of isdHiC in predicting the condensed ball-type 

structures with massive long-range interactions (Figure B.17). Therefore, the simulation-

based methods cannot accurately reconstruct the 3D structures from chromatin contact 

maps with lots of long-range interactions. In comparison, since no prior assumptions of 

the chromosome structures are made, tFLAMINGO demonstrates robust performance in 

reconstructing 3D structures with different geometrical patterns across different 

resolutions, which implies a high accuracy in reconstructing the dynamic 3D spatial 

structures. 
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We envision two future developments of tFLAMINGO. First, the information-sharing 

mechanism of tFLAMINGO requires that all cells are from the same cell type and share 

a similar backbone structure. In the current framework of tFLAMINGO, all cells are equally 

important in the Fourier transformation, and the low-rank features shared by all cells will 

be extracted for the reconstructions. This assumption can be satisfied when the cell-type 

identities of single-cell chromatin contact maps are provided, or the dataset only contains 

cells from one cell type. However, some highly complex tissue may contain cells from 

multiple cell types with unknown cell-type identities. For example, the human brain tissue 

consists of several highly differentiated cell types, and the cell-type deconvolution is 

challenging. In this case, the consensus structure of the dataset is essentially a mixture 

of multiple cell-type-specific chromosome structures, and the assumption of tFLAMINGO 

is not fulfilled. Although tFLAMINGO demonstrates superior performance on the 

simulated datasets with three similar consensus structures, it is still challenging to 

accommodate datasets with multiple fundamentally re-wired structures. Therefore, 

additional algorithmic improvement of tFLAMINGO is required to simultaneously de-

convolve the single-cell 3D chromatin contact maps and reconstruct the single-cell 3D 

chromosome structures with the cell-type specificity retained. Secondly, tFLAMINGO can 

be improved to reconstruct the time-dependent single-cell 3D chromosome structures. 

Based on the recent single-cell RNA-seq data analysis, the differential gene expression 

patterns are observed at the different stages of cell differentiation along the lineage 

trajectory, suggesting the changing gene regulations and 3D chromosome structures. 

Reconstructing the time-dependent single-cell 3D chromosome structures will open new 

avenues to understand the dynamic gene expression during the cell cycle, cell 
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differentiation, and cellular activation from the 3D space. Currently, the experimental 

assessment of the lineage-specific single-cell 3D chromatin conformation is still 

challenging, and the computational methods are highly applaudable. tFLAMINGO has 

inherent algorithmic advantages in modeling the ordered single-cell chromatin contact 

maps in two aspects. Firstly, tFLAMINGO models all single-cell chromatin contact maps 

as the frontal slices of a low-rank tensor. The order of the frontal slices can be easily 

extended to incorporate the lineage information of single cells by assigning cells based 

on the time order. Secondly, tFLAMINGO demonstrates superior ability in preserving the 

cell-type-specific structures based on the simulation analyses. This critical advantage of 

tFLAMINGO guarantees that the subtle changes in 3D chromosome structures can be 

accurately captured. Therefore, the further development of tFLAMINGO can not only 

capture the structural variations across single cells but also recapitulate the time-

dependent structural properties. 

3.4 METHODS 

3.4.1 Model framework of tFLAMINGO 

tFLAMINGO reconstructs single-cell 3D chromatin based on the low-rank tensor 

completion method. In the framework of tFLAMINGO, the missing values of the sparse 

tensor summarizing all single-cell chromatin contact maps is firstly completed and the 

underlying 3D structures are predicted for every cell. This framework brings two 

algorithmic advancements: (1) tFLAMINGO jointly models the chromatin contact maps of 

all single cells. This ensures the information could be borrowed across single cells; (2) 

tFLAMINGO makes full use of the low-rank property of the single cell chromatin contact 

maps. This property guarantees the underlying 3D chromatin structures can be accurately 
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recovered from the sparse chromatin contact maps under high missing rates. 

Computationally, we solved a tensor rank-minimization problem using the ADMM method 

to complete the missing values and used our in-house 3D reconstruction algorithm 

FLAMINGO to reconstruct the 3D structures. 

3.4.2 Chromatin contact maps and data preprocessing 

Chromatin contact maps from four single-cell 3C studies are collected, including the Dip-

C experiment in GM12878, the snHi-C experiment in K562, the snm3C experiment in 

mESC and scHi-C experiment in mESC (see Data availability). Although the interaction 

frequencies from single-cell 3C datasets show strong agreement with the bulk tissue 

dataset, the single cell chromatin contact maps tend to have much smaller interaction 

frequencies at high resolution, thus cannot be directly converted to the 3D distances 

between DNA fragments using the conversion transformation function observed from the 

bulk-tissue Hi-C data. More importantly, different linear relationships are observed for 

interaction frequencies with different 1D genomic distances, suggesting the potential 

confounding effect of the 1D distances. Based on this observation, tFLAMINGO maps the 

single-cell chromatin contact maps to the same scale as the bulk Hi-C contact maps using 

the band-wise log-linear regression. Interaction frequencies between DNA fragments with 

similar 1D genomic distances are jointly modeled, which can be represented as a 

diagonal band on the interaction frequency matrix. Apart from interaction frequencies, 1D 

genomic distances between interacting DNA fragments, missing rate of single cells and 

expected interaction frequencies between interacting DNA fragments are considered as 

covariates:  
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𝑙𝑜𝑔 (𝐼𝐹𝑖,𝑗
𝑏𝑢𝑙𝑘)  = 𝛼𝑙 ∗𝑙𝑜𝑔 (𝐼𝐹𝑘;𝑖,𝑗

𝑠𝑐 )  + 𝛽𝑙 ∗𝑙𝑜𝑔 (𝐷𝑖𝑠𝑡𝑖,𝑗)  + 𝜃𝑙 ∗ 𝑀𝑅𝑘 + 𝛾𝑙 ∗𝑙𝑜𝑔 (𝐼𝐹𝑘;𝑖,𝑖
𝑠𝑐 ∗ 𝐼𝐹𝑘;𝑗,𝑗

𝑠𝑐 ) , 

( 11 ) 

 where 𝐼𝐹𝑖,𝑗
𝑏𝑢𝑙𝑘 represents the interaction frequency between 𝑖𝑡ℎ DNA fragment and 𝑗𝑡ℎ 

DNA fragment in the bulk-tissue Hi-C contact map, 𝐼𝐹𝑘;𝑖,𝑗
𝑠𝑐  represents the interaction 

frequency between 𝑖𝑡ℎ DNA fragment and 𝑗𝑡ℎ DNA fragment in the contact map of 𝑘𝑡ℎ 

single cell, 𝐷𝑖𝑠𝑡𝑖,𝑗  represents the 1D genomic distance between 𝑖𝑡ℎ  and 𝑗𝑡ℎ  DNA 

fragment, and 𝑀𝑅𝑘 represents the missing rate of 𝑘𝑡ℎ single cell contact map. To account 

for the different log-linear relationships under different distance ranges, the regression 

parameters are estimated in every distance band as suggested by previous studies. We 

applied the estimated log-linear transformation functions on different single cell 3C 

datasets across different resolution and observed high correlations between the 

transformed single-cell interaction frequencies and observed bulk Hi-C interaction 

frequencies, validating the robustness and generalizability of the estimated 

transformation functions. 

The bulk-tissue chromatin contact maps generated by four studies are collected from 

GEO and 4DN databases, including bulk-tissue Hi-C experiments in GM12878 and K562 

(GSE63525), GAM experiment in mESC (GSE64881), 3D ATAC-PALM experiment in 

mESC (GSE126112) and bulk-tissue Hi-C experiment in mESC (4DNFI5IAH9H1). The 

GAM data only provide chromatin contact maps at 30kb resolution. Except the GAM data, 

all bulk-tissue chromatin contact maps are used to validate the performance in 10kb and 

30kb resolution. Whenever possible, the chromatin contact maps normalized by the 

Knight-Ruiz normalization are used. The scSPRITE data is collected from the GEO 

database (GSE154353) and preprocessed according to the instructions. 
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3.4.3 Complete single-cell chromatin contact maps based on the low-rank tensor 

completion 

The missing rate of the single-cell contact map is high (>99.9% at 30kb resolution), 

making the reconstruction of the 3D chromatin structures in high resolution extremely 

challenging. tFLAMINGO mitigates the high missing rate by borrowing information in two 

directions: (1) the same contact of two DNA fragments across all contact maps and (2) 

all contacts between DNA fragments within the same contact maps. Biologically, every 

sparse single-cell contact map represents a randomly down-sampled ‘snapshot’ of the 

consensus 3D chromatin structure with structural variations. Therefore, the missing entry 

in one single cell contact map can be imputed by borrowing information from the same 

entry measured in other single cell contact maps. tFLAMINGO facilitates the information-

sharing across all single cells using a Fourier transformation-based method. To borrow 

information from contacts within the same contact map, tFLAMINGO takes advantage of 

the low-rank property of the single-cell contact map. According to Euclidean geometry, 

the distance matrix derived from the single cell contact map is induced by a 3D coordinate 

matrix, thus having the low-rank property (rank≤ 5). The low-rank property guarantees 

that the missing values can be reconstructed from a small fraction of observed values. 

Equipped with an SVD-based method, tFLAMINGO borrows information across all 

contacts within the same single cell contact map. 

Computationally, the single cell contact maps are summarized into a tensor, where each 

frontal slice represents a single cell contact map and a tube that perpendicular to the 

plane of paper represents a contact between a pair of DNA fragments across all single 

cells. tFLAMINGO aims to recover a dense tensor with minimum error compared with the 
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sparse input tensor on the observed entries using a t-SVD-based method. The t-SVD 

method has been widely used to identify the low-rank structures of high-dimensional 

tensor. Similar to the matrix SVD, t-SVD decomposes the tensor into the multiplication of 

three tensors: 𝑇𝑜𝑏𝑠 = 𝑈 ∗ 𝑆 ∗ 𝑉𝑇, where ∗ represents the circular convolution product (t-

product) of tensors. According to the tensor-completion theory, the tensor completion 

problem can be solved by calculating the matrix SVD across all frontal slices of the tensor 

in the Fourier domain. The observed tensor 𝑇𝑜𝑏𝑠 is transformed into the Fourier domain 

using a tube-wise Fourier Transformation:  

𝑇̂𝑖,𝑗,𝑘
𝑜𝑏𝑠 = ∑  𝑁

𝑛=1 𝑇𝑖,𝑗,𝑛
𝑜𝑏𝑠 ∗ 𝑒−2𝜋𝑖𝑘𝑛/𝑁. 

( 12 ) 

Intuitively, the contact between DNA fragment 𝑖 and DNA fragment 𝑗 for single cell 𝑘 in 

the Fourier domain (𝑇̂𝑖,𝑗,𝑘
𝑜𝑏𝑠) are calculated from the same contact across all single cells 

(𝑇𝑖,𝑗,𝑛
𝑜𝑏𝑠   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛). Therefore, if any single cell chromatin contact map contains observed 

values for the contact (𝑖, 𝑗), all values in the tube  𝑇̂𝑖,𝑗,: will be completed in the Fourier 

domain by aggregating the observations of all cells. Given the tensor 𝑇̂𝑜𝑏𝑠 in the Fourier 

domain, the SVD is applied on every fontal slice of 𝑇̂𝑜𝑏𝑠 (  𝑇̂:,:,𝑘
𝑜𝑏𝑠):  𝑇̂:,;,𝑘

𝑑𝑒𝑛𝑠𝑒 = 𝑈𝑘
𝑜𝑏𝑠 ∗ 𝑆𝑘

𝑜𝑏𝑠 ∗

(𝑉𝑘 
𝑜𝑏𝑠)𝑇. The SVD procedure captures the low-rank structures of the frontal slices and 

borrows information across all contacts within each cell. The recovered tensor is then 

transformed into the original domain using the inverse Fourier Transformation, and the 

resulting tensor can maximally approximate the input one.  
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For single-cell chromatin contact maps, the high missing rate of the observed tensor 𝑇𝑜𝑏𝑠 

requires the completion process only relies on a few observed entries. In tFLAMINGO, 

the objective function of the low-rank tensor reconstruction is:  

||𝑋|| 𝑇𝑁𝑁,  𝑠. 𝑡.  𝛺(𝑇𝑜𝑏𝑠) = 𝛺(𝑋), 

( 13 ) 

where 𝑇𝑜𝑏𝑠 represents the sparse tensor summarizing all single cell chromatin contact 

maps, 𝑋 represents the recovered dense tensor, 𝛺 represents the set of observed entries 

in 𝑇𝑜𝑏𝑠  and 𝑇𝑁𝑁 represents the Tensor Nuclear Norm. To achieve fast and accurate 

convergence, tFLAMINGO simplifies the optimization problem by solving the equivalent 

optimization problem in the Fourier domain:  

||𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝑋̂)||
∗
  𝑠. 𝑡. 𝛺(𝑋̂) = 𝛺(𝑇̂), 

( 14 ) 

where 𝑋̂ represents the transformed tensor in the Fourier domain, 𝑏𝑙𝑘𝑑𝑖𝑎𝑔 represents the 

block diagonal matrix constructed by placing the frontal slices of the tensor 𝑋  into 

diagonal submatrices of a large matrix, ∗  represents the matrix nuclear norm. 

tFLAMINGO uses the Alternating Direction Method of Multipliers (ADMM) algorithm to 

solve the optimization problem and the original objective function can be re-written as: 

|𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝑍̂)|
∗
+ 1𝛺(𝑇̂)=𝛺(𝑋̂)  𝑠. 𝑡. 𝑋̂ − 𝑍̂ = 0, 

( 15 ) 

where 𝑍 is introduced as an intermediate variable. The iterative updating scheme can be 

derived as:  
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𝑋𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑋:𝛺(𝑋)=𝛺(𝑇𝑜𝑏𝑠){||𝑋 − (𝑍𝑡 − 𝑄𝑡)||
𝐹

2
}, 

𝑍𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑍{
1

𝜌
||𝑏𝑙𝑘𝑑𝑖𝑎𝑔(𝑍̂)||

∗
+

1

2
||𝑍̂ − (𝑋𝑡 + 𝑄𝑡)||

𝐹

2

}, 

𝑄𝑡 = 𝑄𝑡−1 + 𝑋𝑡 − 𝑍𝑡, 

( 16 ) 

where 𝜌 is a free parameter. In tFLAMINGO, 𝜌 is set to 1 by default according to previous 

analysis. 𝑋𝑡+1 can be analytically solved as : 

𝑋𝑖,𝑗,𝑘
𝑡+1 = {

𝑍𝑖,𝑗,𝑘
𝑡 − 𝑄𝑖,𝑗,𝑘

𝑡     (𝑖, 𝑗, 𝑘) ∉ 𝛺
𝑇𝑖,𝑗,𝑘

𝑜𝑏𝑠  

𝑇𝑖,𝑗,𝑘
𝑜𝑏𝑠          (𝑖, 𝑗, 𝑘) ∈ 𝛺

 

𝑍𝑡+1 can be solved by applying the soft-thresholded t-SVD method on 𝑋𝑡 + 𝑄𝑡. Through 

iterations, 𝑍 borrows information across all contacts across all single cells using the t-

SVD method and 𝑋 guarantees the imputed values are close to the observed values on 

the measurement set. Upon convergence, tFLAMINGO imputes a much denser contact 

map for every single cell which maximally aligns with the observed single cell chromatin 

contact map.  

3.4.5 Reconstruct the single cell 3D chromatin structure based on low-rank matrix 

completion 

Given the single-cell chromatin contact maps imputed by the low-rank tensor completion 

algorithm, tFLAMINGO reconstruct the 3D chromosome structures. The chromatin 

contact maps are converted to pairwise distance matrices using the observed conversion 

function: 𝐼𝐹𝑖,𝑗 = 𝑃𝐷𝑖𝑗
−𝛼, where 𝛼 is set to 0.25 based on the previous studies. Our in-house 

3D chromatin reconstruction algorithm, FLAMINGO, is used to reconstruct the high-
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resolution 3D chromatin structures for every single cell. Algorithmically, FLAMINGO 

reconstructs the 3D chromosome structures based on the low-rank matrix completion 

technique, which guarantees an accurate reconstruction of the 3D coordinate matrices 

from highly noisy and sparse chromatin contact maps. Compared with existing methods, 

FLAMINGO demonstrates superior accuracy and scalability in reconstructing high-

resolution chromatin structures (up to 1kb) from extremely sparse chromatin contact 

maps (missing rate >99%). 

3.4.6 Performance evaluation based on simulated chromatin structures 

The performance of tFLAMINGO is extensively evaluated by reconstructing the simulated 

benchmark structures. In the simulation, a benchmark structure with 𝑙  beads is 

generated. The 𝑙 by 𝑙 benchmark distance matrix induced by the benchmark structure is 

down-sampled 𝑛 times with the down-sampling rate 𝛾  and mixed with three levels of 

noise: (1) no noise, (2) noise level one, which is generated by the normal distribution 

𝑁(𝛿, 𝛿), where 𝛿 is the minimum value of the down-sampled matrix, and (3) noise level 

two, which is generated by the normal distribution 𝑁(2𝛿, 𝛿). Thus, a sparse tensor is 

constructed to simulate the single-cell 3C dataset. tFLAMINGO is applied on the sparse 

tensor to reconstruct the benchmark 3D structures. The model performance is quantified 

by two metrics: (1) Spearman correlations between the pairwise distance matrices 

predicted by tFLAMINGO and benchmark pairwise distance matrices and (2) the RMSD 

between the predicted 3D coordinates ( 𝐶𝑝𝑟𝑒𝑑 ) and benchmark 3D coordinates 

(𝐶𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘): 𝑅𝑀𝑆𝐷 = √
1

𝑛
∑  𝑛

𝑖=1 ||𝐶𝑖
𝑝𝑟𝑒𝑑 − 𝐶𝑖

𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘|| . To demonstrate the robustness of 

tFLAMINGO, the simulated datasets are generated under different combinations of 𝑙, 𝑛 

and 𝛾. 
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Apart from the white noise, we further evaluated the performance of tFLAMINGO on 

inputs with noise generated from random structures. Given a benchmark structure, 𝑛 

random structures are generated and corresponding pairwise distance matrices are 

mixed with the benchmark pairwise distance with weight 𝑊:𝐷 = 𝐷𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 ∗ (1 − 𝑊) +

𝐷𝑟𝑎𝑛𝑑𝑜𝑚 ∗ 𝑊. The resulting noisy pairwise distance matrices are used as the input of 

tFLAMINGO to recover the benchmark structure. Compared with the white noise, the 

structured noise follows a similar pattern to the benchmark distances, i.e. consecutive 

points show lower distances, thus making the reconstruction of the benchmark structure 

more challenging.  

Further, tFLAMINGO demonstrates excellent performance on datasets containing 

multiple consensus structures. Biologically, single-cell 3C data may contain cells in 

different developmental stages, which share similar backbone structures with structural 

variations. In the simulation, three consensus structures are generated with the weight 𝑊 

to illustrate the heterogeneity of the single-cell 3D chromosome structures: 𝑆𝑖 = 𝑆𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 ∗

𝑊 + 𝑆𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (1 − 𝑊) , where weight 𝑊  controls the similarity of the consensus 

structures. A sparse tensor with 3𝑁 frontal slices is further constructed by down-sampling 

the distance matrix induced by each consensus structure 𝑁 times and mixed with noise 

and used as the input of tFLAMINGO to reconstruct the underlying 3D structures. 

tFLAMINGO is applied on the sparse tensor to recover the 3D structures. A wide range 

of weight is tested in the simulation and the performance of tFLAMINGO is evaluated by 

the correlations of pairwise distances and RMSD of 3D coordinates. 
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3.4.7 Performance comparison based on the STORM 3D genome imaging data 

We applied tFLAMINGO on K562 snHi-C data to reconstruct the 3D chromatin structures 

of chromosome 21 for 16 single cells. To evaluate the model performance, we 

benchmarked the predicted single cell 3D chromatin structures with the STORM 3D 

genome imaging data. As the data quality control, single-cell structures measured by 

STORM data with missing rates greater than 0.5 are excluded from the analysis. For each 

pair of the predicted structures and STORM structures, the Spearman correlations of 

spatial distances are calculated to evaluate the consistency. To approximate the 

underlying 3D structures of the snHi-C dataset, we calculated the Spearman correlations 

between the raw single-cell chromatin contact maps and STORM structures.  The top 20 

STORM structures with the highest Spearman correlations with each single-cell 

chromatin contact maps are considered to be the true underlying structures. Therefore, 

the Spearman correlations between the predicted structures and approximated ground-

truth measure the reconstruction accuracy. Note that, these two metrics are 

complimentary, since the first Spearman correlation evaluates the consistency between 

the predictions and STORM data, and the second Spearman correlation validates the 

accuracy of reconstructing 3D structures of the snHi-C data. Therefore, a better algorithm 

is expected to achieve high values in both correlations. 

3.4.8 Performance comparison in reconstructing 3D chromatin structures based on 

experimental single cell Hi-C data 

We applied tFLAMINGO on four single cell Hi-C datasets (human GM12878 Dip-C and 

human K562 snHi-C, mESC scHi-C and mESC snm3C) to reconstruct the single-cell 3D 

chromatin structures (chr21 in human GM12878 and K562, chr19 in mESC) in 10kb and 
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30kb resolution. To evaluate the accuracy of completed missing data, we calculated the 

Spearman correlations based on all available entries from the bulk chromatin contact 

maps (termed as ‘all distance correlations’). The ability of recovering the observed values 

of the single-cell 3C datasets is further quantified by the Spearman correlations based on 

the observed distances from the single-cell 3C dataset (termed as ‘validated distance 

correlations’). Therefore, an accurately reconstructed single-cell 3D chromosome 

structures should demonstrate high all distance correlation as well as validated distance 

correlation. 

The performance of tFLAMINGO is compared with six existing algorithms in 

reconstructing 3D chromatin structures: ShRec3D, NucDynamics, RPR, isdHi-C and Si-

C. Another existing algorithm, MBO, is not included into the comparison due to no code 

availability. Predicted chromatin structures of NucDynamics based on mESC scHi-C data 

are directly used. ShRec3D, RPR, isdHi-C and Si-C are applied on the same dataset as 

tFLAMINGO in 10kb and 30kb resolution to predict the single cell 3D chromatin 

structures. To systematically compare the performance of tFLAMINGO with existing 

methods, we used two sets of experimental datasets as gold-standards: (1) the single cell 

3D chromatin structures provided by the multiplexed STORM 3D genome imaging data 

in human K562 and (2) bulk tissue chromatin contact maps in human GM12878, human 

K562 and mESC.  

We further evaluated cell-type specificity of the predicted 3D chromatin structures by 

different algorithms. All algorithms are applied on the snm3C data with 351 mESC single 

cells and 96 NMuMG cells to reconstruct the single-cell 3D chromatin structures. UMAP 
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plots based on the distance matrices predicted by different algorithms are used to 

visualize the clusters of single cells and evaluate the performance. 

3.4.9 Performance comparison with Higashi in imputing high-resolution single cell 

chromatin contact maps 

We benchmarked tFLAMINGO and Higashi on the snm3C dataset in 1mb, 250kb and 

30kb resolution. For both algorithms, the original cell types of the single cells are provided 

as the inputs. The model performance is evaluated by: (1) the correlations with the 

observed distances in bulk-tissue chromatin contact maps and (2) the ability to recover 

cell-type identity based on the imputed chromatin contact maps. The Adjusted Random 

Index (ARI) is used to quantify the consistency between the predicted single cell clusters 

and the original cell-type identify. 

3.4.10 Identification of the single-cell compartment A/B and TAD boundaries 

The single-cell interaction frequency matrices are derived from the single cell distance 

matrices completed by tFLAMINGO using the conversion function 𝐼𝐹𝑖𝑗 = 𝑃𝐷𝑖𝑗
−4 

(corresponding to the conversion from interaction frequencies to distances with the 

conversion factor -0.25). The expected interaction frequency matrices then normalize the 

observed interaction frequency matrices following the standard procedure in previous 

studies. PC1 scores calculated from the normalized interaction frequency matrices are 

used to represent the compartment A/B. The single-cell TAD boundaries are called based 

on the single-cell interaction frequency matrices using the TADCompare software. The 

structural stability of the 3D chromatin structures is quantified by calculating the RMSD 

between the average structure from tFLAMINGO predictions and the single-cell 3D 
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chromatin structures along the genome: 𝑅𝑀𝑆𝐷𝑖
𝑘=|𝐶𝑜𝑜𝑟𝑑𝑖

𝑘 − 𝐶𝑜𝑜𝑟𝑑𝑖
𝑝𝑜𝑜𝑙𝑒𝑑|, where 𝑅𝑀𝑆𝐷𝑖

𝑘 

represents the RMSD in single cell 𝑘 at the genomic location 𝑖. 

3.4.11 Differential methylated gene analysis across clusters of single cells 

To demonstrate the relationships between 3D chromatin structures and gene regulations, 

351 mESC cells from the snm3C data are grouped into two clusters based on the pairwise 

distance matrices and two clusters are selected based on the highest average silhouette 

score. The coupled single-cell DNA methylation signals of snm3C data are overlapped 

with gene promoters to quantify the single-cell gene activities. The differential methylation 

analysis of genes across two clusters of single cells is performed using the DEGseq2 

package with default settings. 

3.4.12 Analyses of single-cell chromatin interactions and genetic variants  

To predict the single-cell chromatin interactions, the distance matrices induced by the 

predicted single-cell 3D chromosome structures are converted to the interaction 

frequency matrices using the same conversion function as above. FitHi-C is used to 

predict the statistically significant chromatin interactions from the single-cell interaction 

frequency matrices. To control the false positive rates, the p-value threshold is set to 

1x10-20, which is a stringent criterion compared with previous analyses. As validation, we 

overlapped the single-cell chromatin interactions with the bulk Capture-C dataset and 

calculated the fraction of overlapping. To provide a mechanistic interpretation of GWAS 

SNPs and somatic mutations, we overlapped the SNPs with the single-cell chromatin 

interactions and calculated the enrichment of the SNPs. As a comparison, links between 

randomly selected DNA fragments with genomic distances controlled are generated. The 

motif matching score of CTCF is calculated using the TOMTOM software. 
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Furthermore, we predicted the three-way chromatin interactions from the predicted 3D 

structures of tFLAMINGO. For every set of three DNA fragments, the average pairwise 

spatial distances were calculated to quantify the compactness. Specifically, for a set of 

DNA fragments 𝑖, 𝑗, 𝑘  ( 𝑖 < 𝑗 < 𝑘 ), the averaged 3D pairwise distance is calculated 

as:  𝐷𝑖,𝑗,𝑘 =
1

3
(𝐷𝑖𝑗 + 𝐷𝑖𝑘 + 𝐷𝑗𝑘), where 𝐷𝑖𝑗 represents the 3D genomic distances between 

DNA fragment 𝑖 and 𝑗. As comparison, the average spatial distances of 1,000 sets of DNA 

fragments with the same 1D genomic distances are calculated:  𝐷𝑚,𝑛,𝑝
𝑏𝑔

=
1

3
(𝐷𝑚𝑛 + 𝐷𝑚𝑝 +

𝐷𝑛𝑝), where 𝑛 − 𝑚 = 𝑗 − 𝑖 and 𝑝 − 𝑛 = 𝑘 − 𝑗. The empirical p-values are calculated as 

𝑃𝑖𝑗𝑘 =
1

1000
(1 + #{𝐷𝑖𝑗𝑘 > 𝐷𝑏𝑔}) . Similar to the identification of the two-way chromatin 

interactions, the adjacent three-way interactions are pruned and the most significant ones 

are selected: 𝑆𝐼𝑖,𝑗,𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑚,𝑛,𝑝𝑃𝑚𝑛𝑝 𝑓𝑜𝑟 𝑎𝑙𝑙 |𝑚 − 𝑖| = |𝑛 − 𝑗| = |𝑝 − 𝑘| < 5.  
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CHAPTER 4 

DECIPHER THE COMBINATORIAL GRAMMAR OF TRANSCRIPTION FACTORS IN 
LONG-RANGE MULTI-ENHANCER REGULATION 

 

4.1 INTRODUCTION 

The comprehensive profiling of the epigenomic landscapes has discovered millions of 

putative enhancer regions across hundreds of cell lines. In the 3D space, enhancers are 

brought to the proximity of the gene through DNA loops and regulate the gene 

expressions. Such enhancer-gene link exhibits strong cell-type specificity and is 

ubiquitous across the human genome, highlighting the crucial role of enhancer regulation 

in cell differentiation and development. Beyond the one-on-one interaction between 

enhancers and genes, recent case studies demonstrate that multiple enhancers can 

synergistically control the expression of a single gene87-89. For example, the kni gene in 

the Drosophila embryo is regulated by the orchestration of an intronic enhancer and a 

distal enhancer which is ~35kb away from the promoter87. Another experimental analysis 

further shows that multi-enhancer regulation is crucial for phenotypic robustness88. These 

important biological discoveries demonstrate the complex landscape of transcriptional 

regulations and highlight the vital role of multi-enhancer regulation. 

To characterize the interaction landscape of the genome, several experimental 

techniques have been developed, including Hi-C, ChIA-PET, and Capture-C, to measure 

the interaction frequencies between pairs of two genomic loci and demonstrate the cell-

type-specific genome organization. However, these methods rely on the ligation between 

the cross-linked DNA anchors to detect the chromatin interactions, thus demonstrating 
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less ability to capture long-range and multi-way interactions. To further characterize the 

high-order chromosome conformations, three techniques that do not require proximity 

ligations are invented: SPRITE, GAM, and ChIA-Drop. The successful applications of 

these methods in the human genome and mouse genome not only generate the high-

resolution chromatin contact maps but also unravel the multi-way enhancer-promoter 

interactions and the functional relationships between the co-binding transcription factors 

(TFs). For example, IRF, STAT, AP1, and SMAT family motifs are frequently observed 

within the interacting anchors, suggesting the cooperative action of the TFs in shaping 

the 3D chromosome structures and regulating gene expressions. 

Although these experimental techniques have revealed the multi-way chromatin 

interactions and largely expanded the understanding of the interplay between genes, 

enhancers, and TFs, they are only available in human GM12878 cells and mouse ESC 

cells, thus limiting the studies of other important tissues and cell lines. In addition, these 

techniques can only capture the interactions between relatively large DNA fragments 

(SPRITE: 5kb; GAM: 30kb; ChIA-Drop: 10kb), which is not sufficient to pinpoint the actual 

functional enhancers. 

Given these limitations, computational methods are developed to predict the cell-type-

specific enhancer-promoter interactions by integrating multi-omics datasets generated by 

the large consortia, e.g. ENCODE and Roadmap Epigenomics projects. By evaluating the 

gene expression, enhancer activates, genomic distances, and other DNA sequence 

features, these methods link the enhancers to the promoters and predict the cell-type-

specific enhancer-promoter interactions. In light of the machine learning techniques, 

these methods can be classified into supervised learning methods and unsupervised 
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learning methods. For the unsupervised methods, the 1D genomic distances and the 

correlations between the enhancer activities and gene expression across diverse cell 

types are used as the predictive score to prioritize the enhancer-gene links. Compared 

with the supervised learning methods, the unsupervised learning methods do not require 

the experimental chromatin interactions to train the model but demonstrate lower 

accuracy based on comprehensive benchmarking analyses. For the supervised learning 

methods, the experimentally verified chromatin interactions are used to annotate the 

interacting enhancer-gene links. By learning the differential distributions of the multi-

omics feature between the interacting and non-interacting enhancer-gene links, these 

methods can make genome-wide predictions. Currently, most computational methods in 

predicting long-range enhancer-gene interactions are supervised learning methods, 

including TargetFinder, JEME, IM-PET, ProTECT, RIPPLE, FOCS, and EAGLE. Besides 

the epigenomic signals, transcription factor (TF) binding sites are also used to improve 

the predictive accuracy. For example, TargetFinder uses the peaks of the TF ChIP-seq 

datasets within the enhancers, promoters, and intervening genomic windows as features 

to predict the enhancer-gene links. ProTECT further incorporates the Protein-Protein 

Interactions (PPIs) between the enhancer-binding and promoter-binding TFs to predict 

the TF-mediated enhancer-gene links. The expanded feature set largely improves the 

model performance. However, these methods can only be applied to cell types with 

experimental chromatin interaction datasets, which are unavailable in a significant fraction 

of cell lines. Although the trained models can be directly applied to another cell type to 

make cross-cell-type predictions, a recent analysis suggests that the cross-cell-type 

predictions are less accurate. In addition, a severe overfitting problem has been observed 
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for some methods, suggesting the high false-positive rates of the genome-wide 

predictions. Furthermore, the existing methods consider potential enhancer-gene links as 

independent samples and thus cannot capture the synergistic effect of multiple enhancers 

in regulating the same target gene. Finally, while TargetFinder and ProTECT use TF 

bindings as features, how TFs cooperate with each other to regulate distal target genes 

is still unclear, thus providing little mechanistic insights into the complex gene regulations. 

According to the recent experimental studies, apart from the co-binding TFs in the same 

locus, TFs that bind to different loci can also synergistically regulate the expression of 

genes through multi-enhancer regulations. For example, GFI1b, RUNX1, and MYB are 

observed to regulate the expression of Myc gene by binding to a cluster 

of Myc enhancers. The deletion of a distal enhancer, which is ~ 1.7Mb away from 

the Myc gene, can significantly downregulate the expression of Myc gene, suggesting the 

critical role of the synergistic effect of TFs and enhancers in maintaining the gene 

expressions. In another example, the expression of -globin genes is regulated by five 

enhancers spanning a continuous 24kb genomic region. Interestingly, instead of binding 

to the same enhancer, four master erythroid transcription factors NF-E2, GATA1, SCL, 

and KLF1, show differential binding profiles across five enhancers, highlighting the cross-

enhancer cooperation between these TFs. Globally, the integrative analysis of the long-

range chromatin interactions and TF ChIP-seq datasets leads to the discoveries of TF 

clusters enriched in the interacting DNA anchors. These global analyses and case studies 

strongly support the need to model the multi-TF and multi-enhancer regulations in 

understanding the complex gene regulatory networks. 
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As stated above, existing methods can only model the one-on-one enhancer-gene links, 

except JEME. To quantify the additive effect of nearby enhancers, JEME jointly models 

the linear relationships between the activities of all nearby enhancers (+/- 1MB of the TSS) 

and gene expressions using a LASSO model. Together with the epigenomic signals and 

1D genomic distances, the LASSO coefficients are used as a feature in the random forest 

model to predict the enhancer-gene links. By modeling the additive effect of multiple 

enhancers, the co-regulating enhancers tend to reside in the same TAD and super-

enhancer, contain similar TF motifs and have correlated epigenomic signals across cell 

lines. However, JEME does not incorporate the information of TFs into the algorithm and 

thus cannot provide a mechanistic interpretation of the multi-enhancer regulations. 

In this study, we developed a new unsupervised learning model, ComMUTE, to predict 

the long-range multi-way enhancer-gene links by mechanistically modeling the TF 

regulatory grammar of gene expressions. As a scalable Bayesian graphical model, 

ComMUTE integrates gene regulatory grammars by modeling the combinatorial TF 

modules of the co-regulating enhancers and thus mechanistically links multiple enhancers 

to the target genes simultaneously. In the framework of ComMUTE, genes are clustered 

into gene groups, and the enriched TF combinations across all genes are considered to 

be the group-specific TF grammars. Based on the gene group-specific TF combinations, 

a subset of enhancers that can synergistically provide the required TFs are prioritized as 

the co-regulating enhancers. Since ComMUTE is an unsupervised model, no 

experimental chromatin interaction dataset is required, which greatly expands the 

usability of ComMUTE in vast cell types without Hi-C datasets. We applied ComMUTE in 

127 cell types/tissues to predict the cell-type-specific multi-way enhancer-gene links. 
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Compared with existing algorithms, ComMUTE demonstrates consistently improved 

performance by benchmarking with 19 cell-type-specific Hi-C and Capture-C datasets.  

 

Figure 4.1 Bayesian framework of ComMUTE in predicting multi-enhancer 
regulations. (a) Genes are regulated by different combination of TFs (TF modules), 
which binds to multiple interacting enhancers with the same target gene. (b) Examples of 
Hi-C interactions linking enhancers (orange) and genes (red) showing the linked 
enhancers cooperatively provide the TF combination STAT1-CREB to regulate the target 
genes. (c) Plate diagram of ComMUTE. (d) Iterative scheme of ComMUTE. First, given 
the TF regulatory grammar, ComMUTE searches for a set of enhancers that cooperatively 
provides the required TFs (combinatorial TF profile) by comparing the similarity (KL). 
Combined with epigenomics data, ComMUTE predicts enhancer-gene interaction. 
Second, based on the predicted enhancer-gene interactions, the genes are assigned to 
different TF regulatory groups based on enhancer-binding TF profiles. ComMUTE repeats 
the two steps until convergence. (e) Example of predicted cell-type specific enhancer-
gene interactions in GM12878, K562, HUVEC and H1. The ComMUTE predictions are 
consistent with cell-type specific DNase-seq data. 
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By randomly shuffling the TF bindings across enhancers in the inputs, we demonstrated 

that incorporating the TF module can significantly improve the accuracy of predicted 

enhancer-gene links. Interestingly, the co-regulating enhancers demonstrate high partial 

correlations of activities conditioned on the target gene expression, multi-correlations, and 

enrichment of Hi-C interactions, confirming the enhancers are directly associated and not 

mediated by the joint interacting promoters. Furthermore, the SPRITE multi-way 

interactions strongly support the multi-way enhancer-gene links. In addition to enhancer-

gene links, we also evaluated the predicted TF regulatory grammars of gene groups. We 

observed a high PPI enrichment and clear co-expression patterns of the predicted 

combinatorial TFs. Moreover, the predicted enhancer-gene links are enriched with QTLs 

and GWAS SNPs. Strikingly, the epistasis eQTLs are precisely captured by the predicted 

multi-way enhancer-gene links, innovating new biological insights in mechanistically 

interpreting the high-order functional associations between SNPs.  

4.2 RESULTS 

4.2.1 ComMUTE predicts long-range multi-enhancer regulations based on TF 

regulatory grammars 

In the framework of ComMUTE, the relationships between TFs, enhancers and genes are 

summarized as a three-layer network, where TFs bind to enhancers and enhancers 

interact with genes. The gene regulatory grammars are represented by the combinatorial 

TF profiles across all linked enhancers. Based on this model, the synergistic regulatory 

effect of multiple TFs is aggregated by the co-regulating enhancers (Figure 4.1.a). To 

verify the three-layer gene regulatory networks, we analyzed the Capture-C dataset and 

observed common TF combinations at different genomic loci, suggesting different genes 
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share similar regulatory grammars. As a representative example, we identified that the 

combination of STAT1 and CREB are collectively shared by the IFNGR1 gene and the 

IRF1P2 gene (Figure 4.1.b). At the IFNGR1 gene locus, two distal enhancers (~120 kb) 

are simultaneously linked to the gene promoter by the Capture-C interactions. While both 

enhancers show strong CREB binding signals, the STAT1 exclusively binds to the second 

enhancer. Similarly, two enhancers are linked to the promoter of the IRF1P2 gene (Figure 

4.1.b).  Interestingly, STAT1 and CREB show differential binding signals within two 

enhancer regions, suggesting the cross-enhancer cooperation is necessary for the 

activation of the target gene.  

Based on the three-layer gene regulatory network, ComMUTE is specifically designed to 

model the multi-enhancer regulations and complex regulatory grammars.  To predict the 

interacting probabilities of candidate enhancer-gene links, ComMUTE evaluates whether 

linking the enhancers to the target genes can improve the TF profiles of all co-regulating 

enhancers towards the required gene regulatory grammar. This unique design enables 

ComMUTE to model the joint regulatory effect of multiple enhancers and TF grammars, 

which distinguishes ComMUTE from existing algorithms. The interacting probability 

between enhancer 𝑖 (𝑒𝑖) and gene 𝑗 (𝐺𝑗) is calculated as 𝑃(𝑒𝑖~𝐺𝑗|𝐴, 𝑇𝐹𝑒𝑖
, 𝑇𝐹𝐺𝑗

−𝑒𝑖 ,𝑀𝐼), where 

𝐴 represents the activity based features(enhancer activity, gene expression and their 

correlation across 127 cell-types), 𝐷  represent the 1D genomic distance between 

enhancers and TSS of genes, 𝑇𝐹𝑒𝑖
 represents the binarized occurrence vector of TF 

motifs for the candidate enhancer and 𝑇𝐹𝐺𝑗

−𝑒𝑖 represents the TF profile of all enhancers 

linked to the 𝐺𝑗 except 𝑒𝑖. These features are selected because they demonstrate strong 

predictive power in dissecting Capture-C interactions and random enhancer-gene links 
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(Figure C.1). To model the complex regulatory grammar, we introduced two latent 

variables to represent the gene group membership ( 𝐼 ) and the group-specific TF 

regulatory grammar (𝑀). Since both 𝐼 and 𝑀 are unknown, ComMUTE further predicts 

the probabilistic membership of genes by comparing the gene-specific TF profiles to the 

group-specific regulatory grammars: 𝑃(𝐼 = 𝑘|𝑇𝐹𝐺𝑗
, 𝑀) , where 𝑇𝐹𝐺𝑗

 represents the TF 

profile of all linked enhancers and 𝑀 represents the group-specific regulatory grammars. 

After the gene groups memberships are updated, 𝑀 is updated accordingly.  

To efficiently infer the underlying distributions of features and latent variables, ComMUTE 

utilized an iterative Gibbs sampling framework (Figure 4.1.c). In each iteration, genes are 

assigned to different groups based on the predicted enhancer-gene links from the last 

iteration and the group-specific TF profiles are calculated. The prediction of enhancer-

gene links are then calculated by evaluating the KL divergence between the gene 

regulatory grammar𝑀𝐼 and TF profile of 𝐺𝑗 if the enhancer is linked to the gene: 𝑒𝑥𝑝 (−𝑅 ∗

𝐾𝐿(𝑇𝐹𝐺𝑗
|𝑀𝐼)), where 𝑅 is a free scaling parameter. The predicted enhancer-gene links 

are then used to update the gene group membership. To avoid the searching for optimal 

enhancer combinations stuck at certain states through iterations, ComMUTE adopted a 

Simulated Annealing-based searching strategy and tested different combinations of 

enhancers and TFs before moving to the next iteration. To tune the unknown model 

parameters, we tested a wide range of values for the scaling parameter 𝑅 and number of 

gene groups, and selected the optimal values based on the highest AUROC when 

benchmarking predicted enhancer-gene links with Capture-C interactions in GM12878 

(Figure C.2). Upon convergence, three sets of predictions are made by ComMUTE: (1) 

probabilistic score of enhancer-gene links, (2) mixture memberships of genes and (3) TF 
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regulatory grammar across gene groups. These outputs systematically delineate how 

multiple TF synergistically regulate the gene expression through multi-way enhancer 

regulations. 

To expand the generalizability of ComMUTE, we predicted enhancer-gene links based 

on the imputed and non-imputed multi-omics dataset in diverse cell types. In total, four  

 

Figure 4.2 Performance comparisons with JEME across 35 gold-standards support 
the superior performance of ComMUTE. (a) Performance of ComMUTE with shuffled 
TFs (blue) and only one gene group (purple). For the shuffled TF version, the TF binding 
profiles are shuffled across all enhancers to disable the TF features of ComMUTE. For 
the one-gene-group version, all genes are assigned to the same gene groups, aiming to 
only capture master TF regulators for all genes. Compared with the shuffled TF and one-
gene-group version, ComMUTE achieves higher AUROC (y-axis) in both K562 (upper) 
and GM12878 (upper). (b-c) Examples of ComMUTE predicted enhancer-gene links 
(blue) based on the combination of NF-κB-CREB (b) and SMAD4-ZBTB33-NF-κB (c). The 
predicted enhancer-gene links are supported by Hi-C (brown), ChIA-PET (purple) and 
Capture-C (red). 

 

versions of predictions are generated: (1) imputed DNase-seq and RNA-seq across 127 

cell-types/tissues; (2) imputed H3K27ac and RNA-seq across 127/tissue; (3) non-imputed 

DNase-seq and RNA-seq across 29 cell-types/tissues and (4) non-imputed H3K27ac and 

RNA-seq across 29 cell-types/tissues. These large-scale predictions of enhancer-gene 
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links provide a rich resource for understanding the complex multi-enhancer regulations. 

In this paper, we focused on the first version due to the broadest cell-type coverage. 

Across 127 cell-types/tissues, ComMUTE predicted ~80,000 cell-type-specific enhancer-

gene links for each context. The predicted enhancer-gene links follow a similar 1D 

genomic distance distribution to Capture-C interactions. On average, over 20% of 

enhancers and over 85% of genes have a degree of more than one, suggesting the 

universal existence of multi-enhancer regulations (Figure C.3). As expected, the predicted 

enhancer-gene links show significantly higher correlations over the random chromatin 

interactions (Figure C.3), supporting the functional interactions between enhancers and 

genes. As an example, distinct cell-type-specific regulatory landscapes are predicted at 

the DHRS3 gene locus across GM12878, K562, H1 and HUVEC (Figure 4.1.e). The 

predicted enhancer-gene links precisely capture the cell-type-specific DNase peaks. 

Interestingly, a distal enhancer is linked to the DHRS3 gene (~40kb away) by skipping 

the nearest gene, suggesting the ability of ComMUTE to capture the long-range 

enhancer-gene links.  

4.2.2 Robust performance in predicting enhancer-gene links 

To systematically evaluate the performance of ComMUTE, we compared the genome-

wide predictions of ComMUTE with 19 experimental chromatin interactions, i.e. Capture-

C, Hi-C and ChIA-PET, and 16 tissue-specific eQTL annotations. As a commonly used 

metric, AUROCs that are calculated based on the Cross-Validations are used to evaluate 

the performance of the supervised learning models. However, significant concerns are 

raised about the inflated performance due to inappropriate segmentation of the 

training/testing sets and the selection of negative samples. Unlike the currently existing 
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methods, ComMUTE is an unsupervised algorithm that does not need experimental 

datasets for training and does not need to Cross-Validations for performance validation. 

Given this significant algorithmic advancement, ComMUTE is free from the risk of 

overfitting, and the genome-wide predictions can be directly evaluated based on the 

orthogonal experimental chromatin interactions. As a representative example, the 

predicted enhancer-gene links achieve high AUROC (>0.93) in GM12878 by 

benchmarking with ChIA-PET interactions and four eQTL datasets, supporting the 

superior performance of ComMUTE (Figure 4.2.a). The performance of ComMUTE is 

compared with six state-of-art algorithms: JEME, TargetFinder, IM-PET, RIPPLE, Ernst 

et al and FOCS. Since the predictive probabilities of JEME and IM-PET are available 

across 127 cell types, we compared the performance of ComMUTE with these two 

methods based on 19 chromatin interaction datasets. Based on the observation that the 

1D genomic distances can significantly inflate the AUROCs, we limited the comparison 

to the commonly evaluated enhancer-gene links of all three methods. This strategy 

guarantees that these methods are benchmarked on the exact same set of enhancer-

gene links, thus excluding the confounding effects induced by the differential distributions 

of the input features. Based on the rigorous evaluation strategy, ComMUTE demonstrated 

consistently improved AUROC over JEME and IM-PET (Figure 4.2.b). As shown in Figure 

4.2.c, ComMUTE achieved an AUROC of 0.73 in the CD4+ T cell, which is higher than 

JEME (AUROC: 0.68) and IM-PET (AUROC: 0.64). In addition, the AUPR based on the 

predictions of ComMUTE (AUPR: 0.04) is also higher than the predictions of JEME 

(AUPR: 0.03) and IM-PET (AUPR: 0.02). Globally, ComMUTE outperforms JEME and 

IM-PET across all 19 comparisons, suggesting a strong agreement between the 
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ComMUTE predictions and experimental chromatin interactions. In addition to the 

AUROC, we further calculated the enrichment of experimental chromatin interactions and 

the ranked enhancer-gene links. In almost all scenarios, ComMUTE achieves higher 

enrichments of true positives over JEME, especially for the top-ranked links (Figure C.6). 

In addition to JEME and IM-PET, we also compared with RIPPLE, Ernst et al, and FOCS 

(Figure C.7). The enrichment of ten experimental chromatin interactions among the 

predicted enhancer-gene links is calculated to quantify the model performance. In fact, 

since all of the existing methods are trained on the experimental data, they naturally tend 

to prioritize the experimentally validated enhancer-gene links, leading to an inflated 

enrichment. Strikingly, ComMUTE still demonstrated the highest enrichment in eight of 

ten comparisons, excluding comparisons based on Hi-C datasets in HeLa cells and K562 

cells (Figure C.8). The predictions based on different epigenomic features also show 

improved performance compared with the background pairs with 1D genomic distances 

controlled (Figure C.9). 

To demonstrate the usability of ComMUTE in expanding the understanding of gene 

regulations to cell types without experimental chromatin interaction datasets, we 

compared the performance of ComMUTE with TargetFinder to predict cell-type-specific 

enhancer-gene links. TargetFinder is selected based on the improved performance in 

making cross-cell-type predictions compared with other methods. We trained 

TargetFinder in one of the six-cell types using Hi-C interactions and used the trained 

model to predict enhancer-gene links in the other five cell types. We compared 30 sets of 

cross-cell-type predictions of TargetFinder with the cell-type-specific predictions of 

ComMUTE. As shown in Figure C.8, ComMUTE shows consistently high AUPR in all cell 
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types, which further supports the superior performance of ComMUTE in predicting high-

quality enhancer-gene links in understudied cell types. 

We further studied the cell-type-specificity of the predicted enhancer-gene links in 127 

cell types/tissues based on the enrichment of 35 functional interaction datasets. As shown 

in Figure 4.2.d, different clusters of cell type are identified, suggesting the predicted 

enhancer-gene links in this cell-type are highly similar and supported by the same sets of 

gold standards. For example, distinct clusters for B-cells, T-cells, Epithelial related cells,  

 

Figure 4.3 Integration of TF modules improve the predictive accuracy. (a) 
Performance of ComMUTE with shuffled TFs (blue) and only one gene group (purple). 
For the shuffled TF version, the TF binding profiles are shuffled across all enhancers to 
disable the TF features of ComMUTE. For the one-gene-group version, all genes are 
assigned to the same gene groups, aiming to only capture master TF regulators for all 
genes. Compared with the shuffled TF and one-gene-group version, ComMUTE achieves 
higher AUROC (y-axis) in both K562 (upper) and GM12878 (upper). (b-c) Examples of 
ComMUTE predicted enhancer-gene links (blue) based on the combination of NF-κB-
CREB (b) and SMAD4-ZBTB33-NF-κB (c). The predicted enhancer-gene links are 
supported by Hi-C (brown), ChIA-PET (purple) and Capture-C (red). 
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and ES cells are observed, suggesting the fundamentally rewired regulatory links during 

the cell differentiation and development. 

4.2.3 Integration of the TF regulatory grammar boost the predictive accuracy 

As a significant algorithmic advancement of ComMUTE, the combinatorial TF modules of 

gene regulations are integrated to boost the prediction of enhancer-gene links. To 

demonstrate the contribution of TF-related features in improving the performance of 

ComMUTE, we specifically tested two cases. Firstly, we set the number of gene groups 

to one (termed as the ‘one gene group’ hereafter). In this case, only the TF regulatory 

grammar shared by all genes is identified and used to predict enhancer-gene links. In the 

second case, we shuffled the TF binding profile within enhancers to disable the TF feature 

(termed as the ‘shuffled TF’ hereafter). In this case, the prediction of enhancer-gene links 

is solely based on the epigenomic features and 1D genomic distances. Strikingly, the 

original configuration of ComMUTE achieves a median AUROC of ~0.7 in GM12878, 

while the one gene group setting and shuffled TF setting achieve AUROCs around 0.68 

(Figure 4.3.a). Similar decreased performances are also observed in K562  (Figure 4.3.a). 

These permutation analyses demonstrate that the improved accuracy of ComMUTE is 

due to the integration of the TF module and prove that the TF modules predicted by 

ComMUTE can accurately capture the underlying gene regulatory grammar. For 

example, NF-κB and CREB are well-known co-factors in regulating gene expression. 

These two TFs are also predicted to synergistically regulate gene expressions in our 

predictions. Given the discovered regulatory grammar of NF-κB and CREB, the predicted 

multi-enhancer regulations accurately captured the cross-enhancer cooperation of these 

two TFs. At the NOG gene locus, ComMUTE linked two distal enhancers to the gene 
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promoter across a 122kb genomic window. The predicted enhancer-gene links are 

extensively supported by Hi-C and ChIA-PET interactions. Interestingly, a strong NF-κB 

binding peak is observed in the first enhancer but not in the second enhancer, and 

conversely, CREB only shows high signals in the second enhancer (Figure 4.3.b). The 

multi-enhancer regulations at the SMAD12 gene locus also capture the exclusive NF-κB 

and CREB binging signals across co-regulating enhancers (Figure C.10.a). A more 

complex TF module of SMAD4, ZBTB33, and NF-κB are captured at the SNRPD1 locus, 

where three enhancers are linked to the gene promoter and supported by Capture-C 

interactions (Figure 4.3.c). Although none of the linked enhancers contain binding sites 

of all three TFs, the multi-enhancer regulation facilitates the formation of the TF module  

 

Figure 4.4 Direct functional and physical interactions between predicted co-
regulating enhancers. (a) The enhancers regulating the same genes are directly 
interacted, which yields higher partial activity correlations conditioned on the common 
target genes (top). Compared with JEME, ComMUTE predictions show significantly  
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Figure 4.4 (cont’d) 

higher partial correlations between co-regulating enhancers. (b) The co-regulating 
enhancers synergistically regulate the target gene, which yields higher multi-correlation 
between all enhancers and genes. Compared with JEME, ComMUTE predictions show 
significantly higher multi-correlations. (c) Co-regulating enhancers predicted by 
ComMUTE are enriched with direct Hi-C interactions (y-axis) compared with JEME and 
random enhancer-enhancer interactions (x-axis). (d) Example of multi-enhancer 
regulations predicted by ComMUTE. ComMUTE predicts the enhancer-gene interactions 
(blue curve) between seven enhancers (orange) to the WSB1 gene (red) based on the 
TF combination CHD2-PAX5-IRF3, and five of them are supported by Capture-C 
interactions (red curve). The direct interactions between enhancers are supported by Hi-
C (brown curves) and ChIA-PET (purple curves). 

 

and precisely controls the gene expression. A similar example of the PARS2 gene also 

shows that three linked enhancers collectively provide the TF module of SMAD4-ZBTB33-

NF-κB (Figure C.10.b). Together with the permutation tests, these examples strongly 

support the superior ability of ComMUTE in decoding the regulatory grammar of the long-

range gene regulations. 

4.2.4 ComMUTE captures direct enhancer-enhancer interactions 

In ComMUTE, multiple enhancers are linked to the same gene based on their functional 

cooperation in regulating gene expressions. Here, we demonstrate that the functional and 

physical interactions between co-regulating enhancers are direct and not mediated by the 

common target genes. Firstly, we calculated the partial correlations of the enhancer 

activities between the co-regulating enhancers conditioned on the target gene expression 

(Figure 4.4.a). The partial correlations evaluate the direct associations of enhancer 

activities between enhancers by removing the indirect associations mediated by the target 

gene. Compared with the enhancer modules predicted by JEME, the multi-enhancer 

regulations predicted by ComMUTE shows significantly higher partial correlations, 

suggesting the co-regulating enhancers have strong direct functional associations. 
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Secondly, the multi-correlations are calculated to measure the association between the 

target genes and all co-regulating enhancers, which evaluates the combinatorial 

regulatory effect of all co-regulating enhancers on gene expressions (Figure 4.4.b). In 

comparison, ComMUTE achieved the multi-correlation of 0.6 (median), while JEME only 

achieved ~0.48 multi-correlations, suggesting that co-activation patterns between the co-

regulating enhancers and target genes. The results of the comparison based on partial 

correlations and multi-correlations strongly support the accuracy of the multi-enhancer 

regulations predicted by ComMUTE. 

To further verify the direct physical interactions between multiple enhancers, we 

calculated the enrichment of the Hi-C interactions among all possible pairwise interactions 

between co-regulating enhancers. Compared with JEME and randomly linked enhancers, 

ComMUTE demonstrated the highest enrichment (Figure 4.4.c), supporting the 

enhancers are directly interacting with each other in the 3D space. As a representative 

example, seven enhancers are linked to the WSB1 gene promoter based on the TF 

combinations of CHD2-PAX5-IRF3 (Figure 4.4.d). Compared with Capture-C interactions, 

four out of seven predictions are supported, including the interaction of an enhancer that 

is ~307kb away from the gene promoter. Interestingly, three enhancer-enhancer links are 

supported by Hi-C and Capture-C interactions. The left-most enhancer is linked to the 

right-most enhancer across a 464kb genomic window, suggesting the existence of a DNA 

loop at this locus. In another two examples of the LMTK2 gene and the RALY gene, the 

predictions of ComMUTE are not only extensively supported by Capture-C but also 

capture the long-range enhancer-enhancer interactions of Hi-C and ChIA-PET 

interactions (Figure C.13). These results demonstrate that the co-regulating enhancers 
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directly interact in the 3D space and establish functional cooperation in regulating gene 

expressions. 

 

Figure 4.5 Validation of the predicted multi-enhancer regulations based on SPRITE. 
(a) The multiple interacting enhancers and genes are densely organized in 3D space and 
forming high-order chromatin interactions, e.g. three-way enhancer-promoter-enhancer 
interactions. (b) ComMUTE predictions (red) are enriched with SPRITE three-way 
chromatin interactions (y-axis) under all resolutions (x-axis), compared with JEME (blue) 
and IM-PET (grey). (c) Example of ComMUTE predicted multi-enhancer regulations (blue 
curves). The three-way enhancer-promoter-enhancer interactions formed by the co-
regulating enhancers and the promoter are extensively supported by SPRITE. 

 

4.2.5 Superior accuracy in predicting multi-enhancer regulations 

In addition to evaluating the accuracy of the enhancer-gene links and enhancer-enhancer 

links, we further evaluated the multi-enhancer regulations based on the SPRITE dataset. 

Unlike the evaluations based on the pairwise interactions, the integration of the SPRITE 

dataset facilitates the evaluation of multi-way interactions, i.e. co-regulating enhancers 

and the target gene. We specifically focused on the three-way interactions, where two 

enhancers are simultaneously linked to one gene (Figure 4.5.a). By overlapping the 

predicted three-way enhancer-gene links with SPRITE three-way interactions under 

different resolutions, the enrichment of SPRITE interactions is calculated to quantify the 

accuracy of the predicted three-way enhancer-gene links. Strikingly, ComMUTE 
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demonstrates a significantly higher enrichment over JEME and IM-PET across all 

resolutions (Figure 4.5.b), supporting the high accuracy of the predicted three-way 

enhancer-gene links. As a representative example (Figure 4.5.c), 13 enhancers are linked 

to the PDE4DIP gene promoter in a ~114kb genomic window. The possible three-way 

interactions between two enhancers and the PDE4DIP gene promoter are extensively 

supported by 15 SPRITE three-way interactions in 1kb resolution. By combining proximal 

enhancers within the 1kb genomic window into 18 1kb genomic bins, 83% of possible 

three-way interactions are supported by SPRITE interactions. 

4.2.6 ComMUTE decodes the TF regulatory grammars of gene expression 

One of the significant contributions of ComMUTE is discovering TF modules that can 

synergistically regulate the target gene expressions, which represent the underlying gene 

regulatory grammars. Based on the predictions of ComMUTE, diverse TF combinations 

are captured across different gene groups (Figure 4.6.a), suggesting that the gene 

regulatory grammars are highly complex. Such TF combinations cannot be observed from 

the traditional co-binding analyses for three reasons. First, the flexible Bayesian 

framework of ComMUTE allows the TFs to bind to some, but not all, of the co-regulating 

enhancers. Therefore, instead of co-binding in the 1D space, these TFs are interacting in 

the 3D space, which can not be captured based on the correlations of TF ChIP-seq 

signals. Second, the prioritized TF modules are predicted for clusters of genes. For each 

gene cluster, the members are not required to have spatial proximity and could be far 

away from each other or even located in different chromosomes. Thus, the long-range 

functional gene-gene relationships can not be captured by the co-binding analyses based 
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on the sequential TF ChIP-seqs. Third, ComMUTE only prioritized the functional TF 

combinations. Although TF motifs are frequently observed within co-regulating  

 

 

 

 

 

 

 

 

 

Figure 4.6 Accurate predictions of cooperative TF modules. (a) Gene-group-specific 
TF combinations predicted by ComMUTE. The heatmap shows the TF enrichments 
(columns) across all gene groups (rows). Twenty clusters of TFs are observed. (b) TF 
module predicted by ComMute are significantly co-expressed across cell-types compared 
with random TF combinations (purple) and (c) The TF modules predicted by ComMUTE 
are enriched with PPI compared (x-axis) with controls (blue and orange curves). (d) 
Example of ComMUTE predicted enhancer-gene links with CTCF binding sites in one 
enhancer and YY1 binding sites in another enhancer. The regulatory function of the PPI 
between CTCF and YY1 is well-studied. 

 

enhancers, only a few of them are functional and contribute to the gene regulations. By 

modeling the TF grammar of gene regulations, only master TF regulators are used for 

predicting enhancer-gene links. Compared with the TF groups captured by hierarchical 
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clustering analysis (Figure C.14), the TF profiles predicted by ComMUTE show clear TF 

enrichments. 

To evaluate the predicted TF regulatory grammar, we calculated the pairwise correlations 

of the TF gene expressions within TF modules predicted by ComMUTE (Figure 4.6.b). As 

a comparison, the correlations based on the randomly paired TFs are calculated. To 

further control the potential bias caused by the different occurrence of motifs across TFs, 

we generated a more stringent control by randomly pairing TFs that are captured by at 

least one TF module. Compared with both controls, the TF modules prioritized by 

ComMUTE shows the highest correlations of activities, supporting the functional 

interactions of the TF grammar. We further validated the predicted TF modules using the 

PPI datasets. Compared with controls, the predicted TF modules are highly enriched with 

PPIs, suggesting these TFs are not only functionally associated but also physically 

interacted (Figure 4.6.c). As a representative example, Figure 3.6.d shows an example 

of the two co-regulating enhancers which are predicted from the YY1-CTCF TF 

combinations. Interestingly, YY1 only binds to the right most enhancer and CTCF only 

binds to the left most enhancer, suggesting the YY1-CTCF combinations are co-localized 

in the 3D space, rather than in the 1D genome. The PPI between YY1 and CTCF are 

well-known and plays an important role in establishing chromatin interactions and gene 

regulations, which is consistent with the observed long-range multi-enhancer regulation 

of the SLAC39A6 gene (Figure 4.6.c). 

 

 

 



129 

Figure 4.7 Predicted enhancer-gene interactions are enriched with eQTLs. (a) 
Schematic figure of eQTL SNPs located in the enhancers, whose functional interactions 
with the target genes are mediated by enhancer-gene interactions. (b) Example of the 
ComMUTE predicted enhancer-gene link (blue curve) mediating the SNP-gene 
interaction of eQTL(purple curve, rs1403222, p-value: 3.147x10-49). The predicted 
enhancer-gene interaction is supported by the Capture-C interaction (red curve). (c) 
Global enrichment of eQTLs from different resources (x-axis) in predicted enhancer-gene 
links of ComMUTE, JEME and random controls. In all groups, ComMUTE predictions  
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Figure 4.7 (cont’d) 

show significantly higher enrichment compared with JEME predictions (p-value < 2.2x10-

16, Binomial test). (d) Enrichment of GWAS SNPs in predicted enhancer-gene links. (e) 
Multi-enhancer regulations capture epistasis eQTLs. The interactions between SNPs in 
regulating the common gene expression are mediated by three-way enhancer-promoter-
enhancer interactions. (f) Enrichment of epistasis eQTLs (y-axis) in the multi-enhancer 
regulatory networks. Multi-enhancer regulatory networks predicted by ComMUTE are 
significantly enriched with epistasis eQTLs compared with JEME (p-val=1.73x10-5, 
Binomial test). (g) Example of predicted multi-enhancer regulatory networks (orange 
curves) mediating epi-stasis eQTLs. The SNPs of two pairs of epistasis eQTLs of TUBB6 
gene, i.e rs12966726-rs7229921 pair and rs12966726-rs8092506 pair, are located in the 
interacting enhancers and regulate the gene through enhancer-gene links. 

 

4.2.7 Predicted enhancer-gene links are enriched with QTLs and GWAS SNPs 

To further support the superior accuracy of ComMUTE, we utilized the functional genomic 

datasets of eQTLs and hQTLs by calculating the enrichment of QTLs in predicted long-

range enhancer-gene links. The enhancer-gene links are supported by the QTL datasets 

if the enhancers harbor the SNPs and are linked to the same target genes or histone 

peaks (Figure 4.7.a). As a representative example, ComMUTE predicted one enhancer 

gene link at the GIMAP4 gene locus, which is supported by the Capture-C interactions 

(Figure 4.7.b). Interestingly, the linked enhancer harbors a significant eQTL of 

the GIMAP4 gene (rs1403222, p-value=3.15x10-49). A similar example at the IL6R gene 

locus is also shown in Figure C.15, where four eQTLs of the IL6R gene are precisely 

captured by four predicted enhancer-gene links. Globally, we compared the QTL 

enrichment of ComMUTE with JEME and randomly linked enhancer-gene pairs with 1D 

genomic distance controlled and observed significantly higher enrichments of ComMUTE 

(p-value<2.2x10-16) across five QTL datasets (Figure 4.7.c). These results not only 

supports the superior performance of ComMUTE in discovering the functional interactions 
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between enhancer-gene links but also suggest that the SNP-gene associations are 

mediated by the physical enhancer-gene links. 

We further interpreted the GWAS SNPs based on the predicted enhancer-gene links. 

Compared with JEME and distance-controlled random links, ComMUTE predictions are 

significantly enriched with GWAS SNPs, suggesting the interacting enhancers are also 

strongly associated with disease phenotypes (Figure 4.7.d). Figure 4.7.e shows an 

example of Leukemia-associated SNP rs3024505. Based on the predictions of 

ComMUTE, the enhancer that contains the SNP rs3024505 is linked to 

the MAPKAPK4 gene, which is a well-known leukemia-related gene based on the TF 

grammar of STAT1 and RUNX3. By overlapping the SNP location with the TF ChIP-seq 

signals, we found the SNP is precisely located within the summits of the TF ChIP-seq 

peaks, which further supports the predicted regulatory effect of the combination of STAT1 

and RUNX3. These examples, together with the global enrichment of QTLs and GWAS 

SNPs, provide a mechanistic interpretation of the disease association of the SNP, where 

the SNP disrupts the TF binding sites within enhancers and dysregulate the disease-

related genes.  

4.2.8 Multi-enhancer regulations unravel the regulatory basis of epistasis-QTLs  

The key feature that distinguishes ComMUTE from existing methods is the prediction of 

multi-enhancer regulations with close spatial proximity and strong functional associations, 

which delineates the high-order chromatin interaction landscape. In the eQTL analyses, 

the high-order interactions between SNPs, i.e. epistasis eQTLs, are predicted to be 

associated with the disease phenotypes. However, the traditional analyses require a large 

number of tests to prioritize all possible combinations of SNPs, thus hampering their 
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applications in the whole genome. Here, we showed that the multi-way enhancer-gene 

interactions predicted by ComMUTE could help to discover the high-order interactions of 

SNPs within co-regulating enhancers. 

To demonstrate that the predicted multi-enhancer regulation can precisely capture the 

epistasis eQTLs, we overlapped the SNPs of the epistasis eQTLs to the co-regulating 

enhancers with the same target genes and calculated the enrichment of epistasis eQTLs. 

Compared with the predictions of JEME and random links, ComMUTE achieves a 

significant higher enrichment, suggesting the predicted multi-enhancer regulations are 

not only physically interacted but also functionally associated (Figure 4.7.f). Take 

the HLA-DQA1 gene as an example, the interaction of two SNPs (rs9270911 and 

rs9271589) is predicted to be associated with the gene expression. Strikingly, the two 

epistasis eQTLs are captured by the multi-enhancer regulations predicted by ComMUTE, 

where the co-regulating enhancers captured the SNPs. Another example at 

the TUBB6 gene locus is also shown in Figure 4.7.h. Two pairs of epistasis eQTLs, i.e. 

rs12966726-rs7229921 and rs12966726-rs8092506, are identified as statistically 

significant epistasis eQTLs of the TUBB6 gene from the previous analysis. Interestingly, 

both sets of epistasis eQTLs are captured by the co-regulating module of six enhancers 

based on the predictions of ComMUTE. 

4.3 DISCUSSION 

In this study, we developed a Bayesian Graphical model, ComMUTE, to predict the multi-

enhancer regulations across 127 cell types/tissues. By jointly modeling the TF bindings 

of all co-regulating enhancers, ComMUTE captures the synergistic effect of multiple 

enhancers in regulating the target gene expressions and unravels the complex high-order 
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gene regulatory landscape. As an unsupervised learning algorithm, ComMUTE does not 

require the experimental chromatin interaction datasets for training, thus showing strong 

generalizability compared with existing supervised learning algorithms. Furthermore, the 

unsupervised framework of ComMUTE fully addresses the overfitting risks of the existing 

algorithms and facilitates rigorous evaluation of the model performance. By extensively 

comparing the performance with existing cutting-edge algorithms based on 19 

experimental chromatin interaction datasets, ComMUTE demonstrates consistently 

improved performance in predicting long-range enhancer-gene interactions. Based on the 

permutation analyses, we show that the integration of the TF binding sites and gene 

regulatory grammars can significantly improve the performance of ComMUTE, 

suggesting the cooperation of TFs is important in decoding the complex enhancer-gene 

regulatory networks. 

The genome-wide application of ComMUTE in 127 cell-types/tissues based on four sets 

of imputed and non-imputed epigenomic and transcriptomic datasets to delineate the 

multi-enhancer regulations (Figure C.4). We show that the co-regulating enhancers 

predicted by ComMUTE demonstrate strong partial correlations, multi-correlations, and 

enrichment of Hi-C-supported enhancer-enhancer interactions, supporting the direct 

functional and physical interactions between these enhancers. We highlighted several 

examples where the long-range co-regulating enhancers are directly linked by Hi-C and 

ChIA-PET interactions. These results strongly support the utility of ComMUTE in 

predicting the large-scale cell-type-specific multi-enhancer regulatory landscape. Beyond 

predicting enhancer-gene links, the predicted TF grammars are also supported by the 
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PPIs and co-activate patterns, which suggest new biological innovations in gene 

regulations.  

The accurate prediction of the multi-enhancer regulatory landscape provides new 

avenues to mechanistically interpret QTLs, GWAS SNPs, and epistasis eQTLs. The high 

consistency between the functional genomic datasets and predicted enhancer-gene links 

further supports the accuracy of the predicted enhancer-gene links. More importantly, 

these results suggest that the SNP-gene associations and SNP-disease association are 

mediated by the enhancer-gene links, which bring the SNPs to the proximal of the gene 

promoters and indirectly control the phenotypes. As a unique contribution of ComMUTE, 

the predicted multi-enhancer regulations facilitate the interpretation of the epistasis 

eQTLs, where the co-regulating enhancers bring SNPs to the proximal 3D neighborhoods 

of the target gene promoters. Together with the global enrichment analyses, we 

highlighted several examples where the SNPs of epistasis eQTLs are accurately captured 

by the co-regulating enhancers. Therefore, the predicted multi-enhancer regulations can 

help explain the discovered QTLs and GWAS SNPs and provide a mechanistic approach 

to significantly reduce the required number of tests in predicting epistasis eQTLs. 
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CHAPTER 5 

PREDICT LONG-RANGE ENHANCER REGULATION BASED ON PROTEIN-
PROTEIN INTERACTIONS BETWEEN TRANSCRIPTION FACTORS 

 

A modified version of this chapter was previously published (Wang H. et al, 2021): Wang 

H.*, Huang B*., and Wang. J. (2021) Predict long-range enhancer regulation based on 

protein-protein interactions between transcription factors. Nucleic Acids Research. 

 

5.1 INTRODUCTION 

Cell-type specific transcriptional regulation plays important roles in differentiation and 

development 90-102. In addition to proximal regulatory elements, e.g. promoters, which are 

located around transcriptional start sites (TSS) of genes, distal enhancers provide 

complex and precise controls on gene expression through long-range regulation 103, 104. 

Based on recent genome-wide enhancer annotations from ENCODE and Roadmap 

Epigenomics projects 50, 86, hundreds of thousands of putative enhancers across the 

whole human genome have been identified, especially in non-coding regions, highlighting 

the biological impacts of enhancer regulation. Although a series of computational 

algorithms have been developed to predict the genomic locations of cell-type specific 

enhancers 105, 106, it remains challenging to identify the specific target genes regulated by 

enhancers in different cell-types or tissues. Unlike promoters, enhancers are usually 

located far away from their target genes along the genome 107 and the nearest genes may 

not be regulated by a proximal enhancer 108. In three-dimensional (3D) space, an 
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enhancer and its target genes are placed close to each other through long-range 

chromatin interactions, i.e. enhancer-promoter interactions 109.  

The discoveries of tissue-specific long-range enhancer regulation have the potential to 

enable novel insights in a wide range of different biological studies. As one of the 

canonical examples, long-range regulation by distal enhancers play pivotal roles in 

controlling the tissue and condition-specific expression of the mouse 𝛽-globin (Hbb) gene 

expression 90, 94, 95. As another well-known example, the expression of the Shh gene in 

mouse limb bud is precisely regulated by a distal enhancer located 850kb away, which is 

critical for the proper limb development 96-98, 110. In addition to normal tissue development, 

the annotation of long-range enhancer regulation has also facilitated the interpretation of 

genetic variants underlying complex diseases. A non-coding genetic variant associated 

with obesity is located in an intron of the FTO gene but regulates the IRX3 and IRX5 

genes that are located >400kb away 91, 99, 111. Similar examples of long-range interactions 

linking disease-associated genetic variants to distal genes have also been found in 

studies of autoimmune diseases 92, 93, 100-102.  

Given the functional importance of long-range enhancer regulation, experimental 

techniques have been developed to identify chromatin interactions linking distal 

enhancers to promoters of their target genes. Based on the pioneering chromosome 

conformation capture (3C) technology 112, along with its derivatives of 4C and 5C 113, 114, 

the genome-wide version, i.e. Hi-C 7, has been applied to several human cell-types and 

tissues 10, 45, 50. Furthermore, the promoter-enriched genome conformation assay, 

Capture Hi-C 115, improves the resolution and cell-type specificity of the identified 

chromatin interactions for gene promoters 116. On the other hand, the method of chromatin 
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interaction analysis with paired-end-tag sequencing (ChIA-PET) 117 was developed to 

capture long-range chromatin interactions associated with a protein of interest, such as a 

specific transcription factor (TF), with high-resolution and cell-type specificity 118. These 

cutting-edge technologies have generated large-scale chromatin contact maps for a 

number of cell-types or tissues in the human genome and other model species 10, 45, 50, 

118.  

Although experimental techniques have substantially expanded the catalog of 

annotations for long-range chromatin interactions, there are several limitations that hinder 

in-depth analysis on cell-type specific enhancer-promoter interactions. First, the 

resolution of interacting genomic anchors profiled by Hi-C and Capture Hi-C is relatively 

low (~5-10kb genomic fragments) 10, 115, which makes it difficult to pinpoint the specific 

enhancers involved in long-range regulation. Second, while Capture Hi-C and ChIA-PET 

experiments can discover cell-type or tissue-specific enhancer regulation, data generated 

by Hi-C experiments have been found to be largely invariant across different cell-types or 

tissues 119. Third, the background noise levels of Hi-C and Capture Hi-C datasets are high, 

leading to many false positive discoveries 71. Fourth, due to the dependency on specific 

protein antibodies, such as CTCF or RNA Pol II 118, each ChIA-PET experiment can only 

profile a subset of long-range interactions, resulting in large numbers of false negative 

interactions that are not identified 120.  

Because of these limitations, computational models are needed to predict cell-type 

specific long-range enhancer regulation, based on integration of multi-omics signatures, 

e.g. genomics, transcriptomics, and epigenomics. Large-scale multi-omics data 

resources collected by the ENCODE and Roadmap Epigenomics projects contain the 
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multi-view information of gene regulation 50, including gene expression, transcription 

factor binding and histone modifications. They can help to overcome the limitations of 

experimental techniques because they are cell-type or tissue specific 121, provide high-

resolution signal landscape along the genome 85, 122, have high signal-to-noise ratio 122, 

and cover the genomic binding sites for diverse transcription factors 50. The existing 

computational models of long-range enhancer-promoter interaction prediction can be 

grouped into two classes. For the first class, i.e. supervised algorithms, 3D chromatin 

interactions profiled by experimental techniques are used as labels for enhancer-

promoter pairs. The commonly used features include: 1) cell-type specific gene 

expression based on RNA-seq data; 2) enhancer activity based on specific epigenetic 

signals, such as H3K4me1, H3K27ac or DNase hypersensitivity; 3) genomic separation 

distance between enhancers and gene promoters; and 4) correlations between gene 

expression and enhancer activity. Supervised methods incorporating some or all of these 

features include RIPPLE 123, FOCS 124, EAGLE 125 and JEME 126. As one of the most 

recently developed supervised methods, JEME 126 employs a combined approach of 

regression and random forest to predict long-range regulatory links between enhancers 

and genes. But it requires multi-omics datasets from a large panel of diverse cell-types 

and tissues as inputs, which is usually not available for users. The other two top-

performing methods are IM-PET 127 and TargetFinder 128. These two algorithms not only 

integrate the features described above but also leverage additional features of 

transcription factor binding in promoters, enhancers, or genomic windows between 

enhancers and promoters. With respect to machine learning techniques, IM-PET employs 

a random forest model, and TargetFinder implements a boosting tree approach. For the 
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second class, i.e. unsupervised algorithms, every enhancer-promoter pair is assigned 

with a score and then ranked based on the scores. Top-ranking enhancer-promoter pairs 

are predicted to interact with each other. The scores are generally based on genomic 

separation distance and co-activity patterns, e.g. correlations, between enhancers and 

genes 129-131. Based on a systematic performance evaluation analysis 132, supervised  

 

Figure 5.1 Schema of ProTECT in predicting PPI mediated enhancer-gene links. (a) 
The enhancer-promoter interactions are regulated by PPIs between enhancer-binding  
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Figure 5.1 (cont’d) 

TFs (brown) and promoter-binding TFs (blue), which link distal enhancers (orange) to the 
proximity of promoters (red) in 3D chromatin structure. (b) Enrichment of TF-TF pairs in 
Hi-C interactions (y-axis) compared to background (x-axis). Points represent TF-TF pairs. 
Frequency is calculated as the fraction of enhancer-gene pairs containing the specific TF-
TF pairs. Fold-change (FC) is the ratio of the frequency in Hi-C interactions over the 
frequency in background. TF-TF pairs are colored by the FC (red: FC>2; orange: 1<FC<2; 
blue: FC<1). (c) Enriched TF-TF pairs are supported by PPIs. The fraction of pairs 
supported by PPIs are calculated for the set of enriched TF-TF pairs (red). As controls, 
the TF members from the enriched TF-TF pairs are randomly paired (brown). Statistical 
test is done based on 1,000 random repeats of controls (***: p-value=10-3). Error bar 
represents sd. (d) Examples of Hi-C interactions linking enhancers (orange) and 
promoters (red) showing enhancer-binding CTCF ChIP-seq peaks and promoter-binding 
RUNX3 ChIP-seq peaks in GM12878 cells. (e) The workflow of ProTECT algorithm. A 
balanced training dataset is generated with confounding factors controlled. A feature 
matrix summarizing cell-type specific TF PPI features, activity-based features (enhancer 
activity, gene expression, enhancer-gene activity correlation), and genomic distances is 
then constructed. A novel hierarchical network community detection-based approach is 
applied for feature dimension reduction. Based on the reduced feature matrix, a random 
forest model is trained, and rigorous genomic-bin split cross-validations are used for 
performance evaluations and comparisons. Using the trained predictive model, genome-
wide high-confidence enhancer-promoter interactions are predicted based on stringent 
permutation statistical tests.  

 

methods overall demonstrate better performance than unsupervised methods, but many 

of the supervised methods suffer from overfitting issues due to high model complexity 132 

or excessively high-dimensional features that are often shared across training and testing 

sets 133. Furthermore, existing methods provide limited mechanistic insights on how 

specific long-range chromatin interactions are established to link distal enhancers with 

promoters of target genes 134.  

Interestingly, as shown by recent experimental studies 91, 135-140, in addition to the binding 

of individual TFs on enhancers or promoters, the protein-protein interactions (PPIs) 

between TFs have been found to participate in the process of long-range chromatin 

interaction formation and thus, mediate distal enhancer to the proximity of target gene 
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promoters (Figure 5.1.a-D). For example, the PPI between the enhancer-binding and 

promoter-binding YY1s (i.e. YY1 dimerization) has been found to mediate enhancer-

promoter contacts 141. The ChIA-PET data from mESCs suggests that the YY1-YY1 

interactions largely participate in the connections between active enhancers and gene 

promoters 141. In a chromatin structure engineering study, based on a CRISPR-dCas9 

system, two proteins (PYL1 and ABL1) are fused to dCas9 and are guided to bind on 

different genomic locations 142. Remarkably, the PYL1-ABL1 dimerization can establish 

novel long-range chromatin interactions, highlighting the mechanistic importance of PPIs 

in orchestrating chromatin loops.  In addition, a couple of genome-wide analyses have 

also found that specific groups of transcription factors are enriched in cell-type specific 

long-range chromatin interactions 143-145. Within each group, some TF members can 

interact with each other and form protein complexes. As a representative example, a 

group of CTCF, RAD21, SMC3 and ZNF143 is found to be enriched in chromatin 

interactions 143, consistent with the chromatin loop extrusion model that CTCF and 

cohesin can interact with each other and regulate chromatin loops 16, 146.  

These observations strongly support the mechanistic hypothesis that specific TF PPIs 

may mediate long-range enhancer regulation. Therefore, incorporation of TF PPIs as a 

new set of features into a machine learning model is expected to improve the accuracy 

of long-range enhancer-promoter interaction predictions. Moreover, the prioritized TF 

PPIs from the predictive model can further indicate the important transcription factors that 

facilitate long-range enhancer regulation, leading to novel understandings of enhancer 

biology. However, unlike basic enrichment analysis of candidate TF-TF pairs that are 

over-represented in enhancer-promoter interactions 143-145, building a predictive model 
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based on TF PPI features is computationally challenging. First, the number of candidate 

TF PPIs is large (~200,000). By filtering the features using cell-type specific TF 

expression, there are still large amounts of potential TF PPI features. Take the human 

GM12878 cell-line as an example, by only considering TFs that are expressed 86, the 

number of PPIs between expressed TFs is ~1,900. The excessively high-dimensional TF 

PPI features easily render predictive models with high overfitting risks. Second, individual 

TF PPIs are not independent features because of 1) co-binding TF modules along the 1D 

genome 50); and 2) protein complexes consisting of multiple interacting TFs 147, 148. Both 

challenges require advanced feature dimension reduction approaches to efficiently 

handle the non-linear dependencies in features. In addition, as highlighted by recent 

benchmark studies 132, 133, rigorous settings of cross-validation need to be designed for 

unbiased performance evaluation and interpretation.  

In this study, we developed a new predictive model, ProTECT, to infer long-range 

enhancer-promoter interactions with substantially improved accuracy. A unique novelty 

of the model is designing a graph-based dimension reduction algorithm, which can 

efficiently incorporate combinatorial TF PPI features into the model and, in the meantime, 

control the overfitting risks. By setting rigorous genomic bin-split cross-validations and 

controlling various confounding factors, we systematically demonstrated the superior 

performance of our model compared to existing algorithms. Furthermore, we analyzed 

the relative importance of TF PPI features in different cell-types and prioritized the key TF 

PPIs that may participate in the regulation of long-range enhancer-promoter interactions, 

leading to new mechanistic insights on enhancer regulation. Accordingly, we further 

classified genes into specific subsets, where enhancer-gene interactions are predicted to 
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be mediated by different TF PPIs. Interestingly, genes in different subsets are enriched 

with distinct biological pathways, suggesting the specific functional impacts of TF PPIs. 

Genome-wide implementation of ProTECT in human GM12878 and K562 cell-lines 

results in 134,792 long-range enhancer-promoter interactions, which are significantly 

enriched with cis-eQTLs. In addition, by analyzing enhancer-promoter interactions 

mediated by different TF PPIs, we were able to assign specific TFs as upstream trans-

factors to downstream target genes through distal enhancers. Strikingly, the prioritized 

TF-gene pairs are significantly supported by trans-eQTLs, leading to new mechanistic 

interpretations of trans-genetic effects propagated through the combined regulatory 

pathways of TF bindings, TF PPIs and long-range chromatin interactions. 

5.2 MATERIALS AND METHODS 

To predict cell-type specific long-range enhancer-promoter interactions and obtain 

understandings of the underlying mechanisms, we have developed a new algorithm 

ProTECT (i.e. PROtein-protein interactions of Transcription factors predicting Enhancer 

Contacts with Target genes). In addition to cell-type specific multi-omics data, ProTECT 

(https://github.com/wangjr03/PPI-based_prediction_enh_gene_links) further integrates 

the information of PPIs between transcription factors as new features, because TF PPIs 

have been found to be functionally associated with the regulation of chromatin loops 90-94, 

99, 101, 102, 110. The major steps of ProTECT are summarized in Figure 5.1.e. By creating 

balanced training sets with confounding factors systematically controlled, ProTECT is 

trained on cell-type specific chromatin interactions linking distal enhancers and gene 

promoters. The high-dimensional TF PPI features are hierarchically grouped into feature 

modules based on a novel graph-based dimension reduction approach. This approach 

https://github.com/wangjr03/PPI-based_prediction_enh_gene_links
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can simultaneously control the overfitting risk and also reveal the cooperative complexes 

of TF interactions. Our model demonstrated substantially improved accuracy based on a 

series of rigorous performance evaluations. Along with genome-wide enhancer-promoter 

interaction predictions, ProTECT also identifies the key TF PPIs involved in chromatin 

interaction mediation and prioritizes specific gene sets whose expressions are regulated 

by distinct TF PPIs. 

5.2.1 Chromatin contact maps and multi-omics datasets 

ProTECT can take different types of chromatin contact maps as input data (Figure 5.1.e), 

such as Hi-C 10, Capture Hi-C 45 and ChIA-PET 117. In this study, we used the significant 

high-resolution Hi-C interactions from human GM12878 and K562 (GEO: GSE63525) 10 

to train models for the two cell-lines separately. Enhancer-promoter pairs are labeled as 

positive samples if overlapping with Hi-C interactions, or are labeled as negative samples 

otherwise. 

Enhancer coordinates are based on Roadmap and ENCODE enhancer annotations 50, 86. 

Cell-type specific enhancer activities in GM12878 and K562 cell-lines are quantified using 

the cell-type specific DNase-seq signals 86. Other enhancer-associated histone marks, 

such as H3K27ac or H3K4me1 ChIP-seq data, can also be used to represent enhancer 

activities and have been found to produce similar predictions in our testing (see Results). 

Promoters of genes are defined as +/-1kb around transcriptional start sites (TSS), based 

on gene annotations from GENCODE v17 149. Cell-type specific gene expressions are 

measured by RPKM values of RNA-seq dataset from Roadmap Epigenomics project 86. 

Correlation coefficients are calculated for enhancer-gene pairs across diverse cell-types 
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50, 86 based on the same set of RNA-seq data for genes and DNase-seq data for 

enhancers. 

The ChIP-seq datasets of transcription factor (TF) bindings in GM12878 and K562 are 

collected from ENCODE separately 50. For each TF, if multiple datasets exist, one ChIP-

seq dataset is selected based on data quality evaluations (Supplementary Methods). In 

total, 129 TFs in GM12878 and 270 TFs in K562 cell-lines are included in the analysis 

(Figure D.1.A). The significant narrow peaks identified by MACS2 150 are used to label 

whether a TF binds to a specific genomic location (Figure 5.1.e). Detailed information of 

all datasets (i.e. TF ChIP-seq, epigenomic signals, transcriptomic data, and chromatin 

contact maps) are summarized in Supplementary Table 1. 

The protein-protein interaction dataset is collected from the STRING database v11 148. 

To remove low-quality PPIs, only PPIs with confidence scores greater than 100 in the 

‘Experiments’ category are included into the analysis. Multiple PPI confidence score 

thresholds (e.g. 200 and 300) are also tested, which produce similar predictive 

performance (see Results). The high-quality PPIs are then summarized into a matrix and 

represented as a PPI network, where every node corresponds to a protein and every 

edge corresponds to a protein-protein interaction. To account for the intratypic 

dimerizations of TFs from the Nuclear Receptor (NR), bHLH, and bZIP families, these 

PPI edges are removed from the PPI network 151 (Supplementary Table 2), because they 

can only bind locally as dimers. The nodes are further classified into two types: 1) TF 

protein nodes and 2) non-TF protein nodes. For edges connecting two TF nodes, i.e. TF-

TF PPIs, if both TFs are expressed in the specific cell-type, then the TF-TF PPI is 

considered as active. Therefore, cell-type specificity is assigned for every TF-TF PPI. 
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non-TF protein nodes are maintained in the PPI network because they are useful to 

identify indirect TF-TF interactions mediated by non-TF proteins, leading to the discovery 

of TF PPI modules in subsequent steps.  

5.2.2 Generation of the training dataset and the matrix of features 

In a specific cell-type, enhancer-promoter pairs that overlap with significant Hi-C 

interactions 10, i.e. the enhancer of the pair overlaps with one of the Hi-C interaction 

anchors and the promoter overlaps with the other anchor, are labeled as positive samples 

of enhancer-promoter interactions. As reported by previous studies 119, 152, 153, the data 

quality of Hi-C interactions whose anchors are located in different topologically associated 

domains (TADs) are substantially reduced. Therefore, we remove cross-TAD interactions 

from the analysis, and only use intra-TAD enhancer-promoter interactions, i.e. the 

interacting enhancer and promoter are located in the same TAD, to train the model.  

To avoid biased model training and inflated performance evaluations, we generate a 

balanced negative set of training samples by randomly selecting the same number of 

enhancer-promoter pairs that do not overlap with Hi-C interactions. In addition, as pointed 

out by recent benchmark studies 132, predictions of enhancer-promoter interactions can 

be substantially biased due to uncontrolled confounding factors. Thus, in the process of 

generating the balanced random set of negative samples, we strictly control three key 

confounding factors that have been found to influence the model (Figure 5.1.e): 1) The 

negative samples of enhancer-promoter pairs should be intra-TAD pairs (Figure D.1.B); 

2) The genomic separation distances between the enhancers and promoters follow the 

same distance distribution of the positive training set. Uncontrolled genomic distances 

have been found to substantially dominate the models and result in simple short-range 
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predictions, leading to inflated performance 132, 133. Using the positive training set of 

enhancer-promoter pairs, we group them into different genomic distance bins. For each 

distance bin (bin-size=50kb), we sample the same number of negative enhancer-

promoter pairs as observed from the positive set. Therefore, the genomic distance is 

controlled and the final predictions will not be driven by genomic distances alone (Figure 

D.1.C-D). 3) The negative enhancer-promoter pairs are sampled for genes which are 

actively transcribed (Figure D.1.E-F). As demonstrated by previous studies 154, the false 

negative rates of Hi-C datasets are substantially lower in actively transcribed genomic 

regions, i.e. more enhancer-promoter interactions can be mapped by Hi-C in active 

regions compared to repressive genomic regions. To account for this intrinsic bias of Hi-

C data, we restrict the sampling of negative enhancer-promoter pairs only from genes 

whose cell-type specific expression is nonzero (RPKM > 0). By controlling these three 

key sets of confounding factors, we thus construct the rigorous balanced training dataset 

for robust model training and performance evaluation. In total, the balanced training 

dataset contains 5,348 enhancer-promoter pairs in GM12878 and 8,650 enhancer-

promoter pairs in K562.    

Based on the cell-type specific multi-omics datasets, the matrix of features are then 

constructed for enhancer-promoter pairs in the training dataset (Figure 5.1.e). There are 

three types of features incorporated into the model: 1) activity-based features; 2) genomic 

distance; and 3) TF PPI features. Activity-based features include (i) cell-type specific 

enhancer activity measured by DNase-seq signals as described above 86; (ii) cell-type 

specific gene expression measured by RNA-seq 86; and (iii) the activity correlations 

between enhancers and their paired genes calculated from diverse cell-types profiled in 
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the ENCODE and Roadmap Epigenomics projects 50, 86. All these activity-based features 

are differentially distributed across positive and negative training sets, suggesting they 

are informative to make predictions (Figure D.2.A-C). For each enhancer-gene pair, the 

genomic distance is calculated as the distance between the center of the enhancer and 

the gene’s TSS. Although they have been controlled in the positive and negative training 

sets based on genomic bins, there might be residue distance bias within bins. Therefore, 

the inclusion of genomic distances into the feature matrix captures the residue effects of 

genomic distances, leading to robust feature prioritization in subsequent analyses.  

TF PPIs are the most important set of features for the model because of both the 

mechanistic relationship with long-range regulation 140, 141, 155 and their significant 

enrichment in enhancer-promoter interactions (Figure 5.1.b, 5.1.c and Figure D.2.D). In 

each specific cell-type (i.e. GM12878 or K562 cells), all TFs with available ChIP-seq 

datasets are collected as described above and compared with the PPI database 148. From 

the pool of all candidate pairs, the TF-TF pairs that are capable of forming direct PPIs are 

considered as TF PPIs. Considering the differences of binding sites in enhancers or 

promoters, each TF PPI pair is allocated with two directional features. For example, TFa-

TFb represents the PPI between enhancer-binding TFa and promoter-binding TFb, while 

TFb-TFa represents the PPI between enhancer-binding TFb and promoter-binding TFa. 

Thus, a set of directional TF PPI features is generated. Because the features are 

generated only for TFs with cell-type specific ChIP-seq signals, PPIs between TFs that 

are not active in the specific cell-type do not participate in the predictions. Enhancer-

promoter pairs are scanned for TF binding peaks in enhancers and promoters. For each 

enhancer-promoter pair, if TFa binds to the enhancer and TFb binds to the promoter, then 



149 

the directional PPI feature TFa-TFb is labeled as 1. Therefore, a matrix of TF PPI features 

is constructed for all enhancer-promoter pairs. Combining with the activity-based features 

and genomic distances, the full matrix of features is then built (Figure 5.1.e). 

5.2.3 Hierarchical TF community detection on the PPI network  

Due to the large number of TF PPI features, dimension reduction is fundamentally 

important for the construction of robust predictive models. Without dimension reduction, 

there are 1,888 TF PPI features in GM12878 and 7,066 TF PPI features in K562 cells. 

Although a number of TF PPIs are enriched in enhancer-promoter interactions (Figure 

5.1.b and 5.1.c), direct incorporation of these TF PPI features makes the model to be 

over-complicated, leading to poor generalization of predictions. To illustrate the significant 

overfitting issues of direct incorporation of high-dimensional TF PPI features, a basic 

random forest model is used to test the performance in GM12878 10. The features include 

the activity correlations between enhancers and genes, genomic distances, and 1,888 

active TF PPI features. Although the regular 5-fold cross-validation shows an AUC of 0.89, 

a rigorous genomic-bin split cross-validation (see subsequent sections on cross-

validation) shows the unbiased AUC as 0.55, suggesting strong overfitting problems 

without advanced feature dimension reductions (Figure D.3). Thus, a novel predictive 

model is needed for predicting long-range enhancer-promoter interactions based on PPI 

features among transcription factors.   

To address the over-fitting problem, we substantially reduce the feature dimensions by 

hierarchically grouping individual TF PPIs into TF PPI modules based on the topology of 

the PPI network, while maintaining the predictability of the model (Figure 5.1E). TF PPI 

modules represent densely connected groups of TFs in the PPI network, and they are 
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hierarchically organized where smaller PPI modules merge together to form larger 

modules (Figure D.4). Biologically, using TF PPI modules as features is consistent with 

the regulatory mechanisms of long-range chromatin loops, because multiple TFs usually 

interact with each other as protein complexes. Empirically, the biological relevance of TF 

PPI modules is also supported by the data. As can be seen in Figure D.5, similar to 

individual TF-TF pairs, a specific subset of TF modules are strongly enriched in enhancer-

promoter Hi-C interactions and are strongly supported by PPI connections (p-

value=1.39x10-2, permutation test).  

TF PPI modules are computationally identified from the PPI network 148 using a random-

walk based network-community detection approach. The PPI network, including non-TF 

protein nodes, is modeled as an undirected weighted graph, where the weights on edges 

are the ‘Experiment’ PPI scores from the STRING database 148. Define 𝑊  as the 

adjacency matrix of the PPI network, and define the diagonal degree matrix 𝐷 as 𝐷𝑖𝑖 =

∑ 𝑊𝑖𝑗𝑗 . Hence, based on the stochastic model of random-walks on graphs 156, the 1-step 

transition probability from node 𝑖 to node 𝑗 is 
𝑊𝑖𝑗

𝐷𝑖𝑖
 , and the p-step transition matrix 𝑇𝑟𝑎𝑛𝑠𝑝 

can be calculated as 𝑇𝑟𝑎𝑛𝑠𝑝  =  (𝐷−1 ∗ 𝑊)𝑃. Based on the p-step transition matrix, the 

pairwise distance matrix between TFs (denoted as 𝑅) can be further calculated as: 𝑅 =

 𝑑𝑖𝑎𝑔(𝐺)𝑡 ∗ 𝟏 + 𝟏𝒕 ∗ 𝑑𝑖𝑎𝑔(𝐺)  − 2𝐺 , where 𝐺 =  𝑇𝑟𝑎𝑛𝑠𝑝 ∗ 𝑇𝑟𝑎𝑛𝑠𝑝
𝑡 . Each entry in the 

matrix 𝑅 quantifies the distance between a pair of TFs based on the PPI network structure. 

Hierarchical clustering is then applied to the pairwise distance matrix 𝑅 to identify 

hierarchical PPI modules of TFs (Figure 5.1.e). “wald” method is used in the hierarchical 

clustering as suggested by previous studies of network-community detections 157. By 

testing multiple values (Figure D.4.A and 5.4.b), 𝑝 is set to be 20 in order to balance the 
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detection of both local (i.e. small-size) and global (i.e. large-size) modules 

(Supplementary Methods).  

In the constructed hierarchical clustering tree, the leaf nodes are individual TF PPIs. By 

applying the bottom-up merging strategy on the tree, individual TF PPIs are first grouped 

into small-size PPI modules, i.e. S-modules, with the maximum size of 𝑆𝑚𝑎𝑥. S-modules 

represent densely connected TFs in the PPI network, corresponding to candidate protein 

complexes. S-modules are further merged to form large-size PPI modules, i.e. L-modules, 

with the maximum size of 𝐿𝑚𝑎𝑥. L-modules represent larger PPI network components that 

cover multiple densely connected S-modules. Biologically, L-modules represent 

candidate groups of highly interacting protein complexes. The maximum sizes for S-

modules (𝑆𝑚𝑎𝑥)  and L-modules (𝐿𝑚𝑎𝑥) are selected based on the modularity score of the 

clustering 158 (Figure D.4, Supplementary Methods). The modularity score 𝑄 is defined as 

𝑄 =
1

2𝑚
∗ ∑ (𝑊𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝑖𝑗 ∗ 𝛿(𝑐𝑖, 𝑐𝑗) where 𝑊 is the adjacency matrix, 𝑘𝑖 is the degree of 

node 𝑖, 𝑚 is the total number of edges in the PPI network (𝑚 =
1

2
∑ 𝑘𝑖𝑖 ), and 𝑐𝑖 is the 

membership assignment to modules for node 𝑖 . Modularity scores are extensively 

calculated for different choices of maximum module sizes (Figure D.4.C and 5.4.d), 

because the choice of specific maximum module sizes automatically determines the total 

number of modules and results in the final module membership assignments. The optimal 

size of S-modules is selected as the one yielding the maximum modularity score, which 

guarantees that the generated S-modules represent densely connected TF groups. The 

optimal size of L-modules is selected as the one corresponding to the elbow point of 

modularity score curves, leading to the delineation of large-scale PPI components without 

significant loss of modularity. Compared to Markov Cluster Algorithm, the PPI modules 
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from our approach demonstrate higher modularity scores and larger module sizes (Figure 

D.6), which is desired for feature dimension reductions. Using this procedure, a two-layer 

hierarchical modular structure is finally built and each individual TF PPI is assigned with 

the memberships belonging to a specific S-module and a specific L-module. 

Based on the TF PPI module assignments, individual TF PPI features (i.e. direct TF-TF 

PPIs) are merged into module-level PPI features, and, therefore, the feature matrix of TF 

PPIs are restructured accordingly (Figure 5.1.e). There are two types of module-level PPI 

features: (i) intra-module features, which include all S-modules and L-modules. The intra-

module features cover PPIs between TFs within the same modules. (ii) inter-module 

features, which include inter S-module features and inter L-module features. The inter-

module features cover PPIs linking TFs from two different modules. Given a pair of S-

modules, e.g. S-module 𝑎 and S-module 𝑏, if there exists a TF member from S-module 𝑎 

that has PPI with a TF member from S-module 𝑏, then the pair of S-modules 𝑎 and 𝑏 is 

included into the feature matrix as one inter S-module PPI feature. The inter L-module 

PPI features are defined in the same way by checking PPIs of TF members from two L-

modules. Each inter-module feature is further split into two directional features, depending 

on the binding sites of TF members in enhancers and promoters. Using this approach, 

the PPI features are substantially reduced. For example, the 1,888 individual TF PPI 

features are reduced to only 78 module-level PPI features in GM12878 and the 7,066 

individual TF PPI features are reduced to only 238 module-level PPI features in K562 

cells. 

The training set of enhancer-promoter pairs are then scanned for module-level PPI 

features. For each specific enhancer-promoter pair, based on the counts of individual TF 
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PPI features calculated in the previous step, the counts of module-level PPI features are 

generated depending on the module memberships of TFs (Figure 5.1.e). For each 

module-level PPI feature, if multiple TF PPI features are found for an enhancer-promoter 

pair, the maximum count is used for the module-level feature. Although the number of 

features is substantially reduced after using module-level PPIs, the specific PPI 

information is still maintained in this procedure, as shown in Figure D.5. It suggests that 

the module-based dimension reduction does not cause the loss of information, while 

substantially reducing the risk of over-fitting.  

5.2.4 Predictive model of long-range enhancer-promoter interactions 

Random forest model is used to predict cell-type specific long-range enhancer-promoter 

interactions based on the feature matrix constructed above, after module-based 

dimension reduction (Figure 5.1.e). Random forest model is selected due to its superior 

performance of handling non-linear feature dependency and its capability of prioritizing 

the key set of important features for subsequent biological interpretations. As a free model 

parameter, the number of decision trees in the model is extensively tested with different 

values, and the accuracy of predictions is found to be robust (Figure D.7). 

Additionally, to quantitatively demonstrate the contributions from TF PPIs, we train 

random forest models based on two versions of input features: 1) the model is trained 

using only activity-based features and genomic distances; and 2) the full set of features 

including module-level TF PPI features. The Area Under Curve (AUC) values of cross-

validations are calculated for the two versions. The increased AUC from version 2 is the 

quantitative measurement of the additional information contributed from TF PPIs that is 

not encoded in activity-based or genomic distance features. 
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5.2.5 Feature selection  

In the random forest model, the backward feature elimination approach is used to select 

useful module-level TF PPI features, where the features with the minimum importance 

are recursively eliminated from the model. Furthermore, the statistical significance of the 

directions of TF PPI features are evaluated. As described in the previous section, every 

module-level PPI feature is split into a pair of two directional features, based on the 

binding sites of TFs in enhancers or promoters. For example, the feature module 𝑎 - 

module 𝑏 represents the PPI between an enhancer-binding TF member from module 𝑎 

and a promoter-binding TF member from module 𝑏. Reversely, the feature module 𝑏 - 

module 𝑎 represents the PPI between an enhancer-binding TF member from module 

𝑏 and a promoter-binding TF member from module 𝑎. Based on the statistical evaluation 

of the feature directions, insignificant directional features are merged into un-directional 

features. This feature merging procedure not only reduces the number of features but 

also reveals the biological roles of TF bindings in the context of different binding 

orientations.   

The determination of whether a pair of directional TF PPI features to be merged into an 

un-directional feature is a model selection problem. While Akaike Information Criterion 

(AIC) has been a widely used metric for parametric models, it can not be applied to 

random forest models, which are non-parametric. Instead, we use the Generalized 

Degrees of Freedom (GDF) method to calculate a relaxed AIC 159 for the random forest 

model. GDF is a metric to evaluate the degree of freedoms for Bernoulli distributed data, 

e.g. the binary labels for enhancer-promoter interactions. And it is defined as 𝐺𝐷𝐹 ≈

∑ (𝑦𝑖 ′̂ − 𝑦̂𝑖)/(𝑦
′
𝑖
− 𝑦𝑖)𝑖 , where 𝑦𝑖 is the observed label for data point 𝑖, 𝑦′𝑖 is the perturbed 
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label by inverting 𝑦𝑖, i.e. 𝑦𝑖′ =  1 − 𝑦𝑖, 𝑦𝑖̂ is the predicted label from the model using the 

unperturbed 𝑦𝑖, and 𝑦𝑖 ′̂ is the predicted label from the model using the perturbed 𝑦𝑖′. As 

suggested by previous studies 159, to calculate GDF, 20% samples are simultaneously 

perturbed. The relaxed AIC of random forest models are then estimated as 𝐴𝐼𝐶 =

 −2𝑙𝑚 + 2𝐺𝐷𝐹 + 𝐺𝐷𝐹(𝐺𝐷𝐹 + 1)/(𝑁 − 𝐺𝐷𝐹 − 1), where 𝑁 represents the total number of 

data points and 𝑙𝑚  represents the goodness-of-fit of the random forest model. As 

suggested by previous analyses 159, 𝑙𝑚 is calculated as the averaged 𝑅2 value from 5-

fold cross-validations.   

For each pair of directional TF PPI features, the relaxed AIC metrics are calculated before 

and after they are merged into an un-directional feature. If a smaller AIC is observed by 

merging the two directional features, the model with the merged un-directional feature is 

then selected, because the reduced AIC suggests the directions of the pair are not 

statistically important. This procedure is conducted for all pairs of directional TF PPI 

features, and a final random forest model with the selected features is built. In GM12878 

cells, the number of module-level TF PPI features is reduced to 53 from 78. In K562 cells, 

the number is reduced to 139 from 238. This feature selection process further boosts the 

generalizability of our model and improves the biological interpretations of the learned TF 

PPI features (i.e. directional or un-directional). 

5.2.6 Cross-validation and performance comparison 

To evaluate the performance of our model, i.e. Area Under Curve (AUC), we designed a 

stringent strategy of 5-fold cross-validation. As highlighted by previous studies 132, 133, 

multiple factors have been found to substantially inflate the performance evaluations and 

cause overfitting problems. First, the confounding factors (i.e. TAD domain structures, 
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genomic distances between enhancers and promoters, and gene expression levels) need 

to be controlled. Otherwise, the performance will be biased and dominated by 

confounding factors. We addressed this issue in the step of data generation as described 

in previous sections. Negative samples are randomly generated with the confounding 

factors controlled to have the same distributions as seen from the positive samples. 

Second, inflated cross-validation AUC can be found due to the spatially proximal 

enhancer-promoter pairs across the training and testing datasets 132, 133. Because TF 

binding profiles are highly correlated among enhancers and promoters in neighboring 

genomic regions, proximal enhancer-promoter interactions that are allocated in the 

testing set will substantially inflate the accuracy. Therefore, random splits of samples 

based on typical cross-validation may suffer from the dependency of spatially proximal 

samples allocated in both training and testing sets, as has been noted in previous studies 

132, 133. To address this issue, we developed a genomic bin-split cross-validation approach 

(Figure 5.1.e). In this approach, the human genome is first divided into consecutive 1Mb 

bins. In each of the 5-fold cross-validation steps, 80% of the genomic bins are selected 

as training bins. And the balanced and confounding factor controlled samples of 

enhancer-promoter pairs from the training bins are used to train the random forest model. 

The remaining 20% bins are selected as testing bins, and the samples of enhancer-

promoter pairs from the testing bins are used to test the model. Using this genomic bin-

split cross-validation method, the dependency between training and testing samples are 

broken and the model performance can be rigorously quantified. 

The performance of our model, ProTECT, is compared with two most recent supervised 

methods that also leverage TF information: IM-PET 127 and TargetFinder 128. In addition 
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to activity-based features and genomic distances, IM-PET and TargetFinder also includes 

the TF binding features in enhancers and promoters, while TargetFinder further 

incorporates TF binding information in the genomic windows between enhancers and 

promoters. By comparing with these two algorithms, we can further demonstrate the 

improved accuracy is obtained purely from the unique features of our model, i.e. the PPIs 

between TFs.  

The stand-alone package of IM-PET (https://github.com/tanlabcode/IM-PET) is applied to 

the same dataset. Since IM-PET automatically makes predictions for all enhancer-gene 

pairs with distances <2Mb, only the enhancer-gene pairs overlapping with the dataset are 

used for performance evaluation, leading to a fair comparison for IM-PET. The 

TargetFinder software (https://github.com/shwhalen/targetfinder) is also implemented to 

the same training and testing dataset. The same set of TF ChIP-seq peaks are used to 

generate the window related features for TargetFinder. 5-fold cross-validation with the 

same genomic bin-split strategy is applied to remove the potential issues of inflated 

performance evaluations.  

In addition, to quantitatively demonstrate that the improved accuracy of ProTECT is 

indeed contributed by TF PPI features, we randomly permute the PPIs between TFs, with 

the degree of each TF in the PPI network unchanged. Furthermore, for every TF, the 

specific binding sites in enhancers and promoters are also maintained. Therefore, only 

the TF PPI features are shuffled across enhancer-promoter pairs. The same model 

training and evaluation procedure are then applied on the permuted dataset. The resulting 

AUC is then compared to the model trained on the original dataset. This comparison 
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provides direct evidence on the contributions of TF PPIs to chromatin interaction 

regulation.  

5.2.7 Genome-wide prediction of long-range enhancer-promoter interactions 

The trained ProTECT algorithm is applied to all enhancer-promoter pairs with genomic 

distances <2Mb across the whole human genome to make genome-wide predictions of 

cell-type specific enhancer-promoter interactions (Figure 5.1.e). The features for each 

candidate enhancer-promoter pair are generated in the same way as described in 

previous sections. By applying the trained random forest classifier, every candidate 

enhancer-promoter pair is assigned with a predicted score of interacting with each other. 

To derive unbiased estimates of the statistical significance for the scores, i.e. p-values, a 

null distribution of the scores is generated by permuting the feature matrix across 

enhancer-promoter pairs. This permutation approach effectively maintains the overall 

abundances of different features in the shuffled dataset. Based on the null distribution, 

the p-value for each enhancer-promoter pair is then calculated. 

Unlike the phase of model training, where the genomic distances are controlled in order 

to learn specific TF PPI signatures, the phase of genome-wide predictions requires the 

incorporation of genomic distance information. As shown by chromatin contact maps, e.g. 

Hi-C datasets, enhancer-promoter pairs with shorter genomic separation distances have 

higher probability to interact and the probabilities decay as the distances increase (Figure 

D.1.C). To statistically incorporate the genomic distances based on this prior knowledge, 

we use the pFDR algorithm 160 to transform p-values into distance-aware q-values. In 

pFDR, the distribution of distances between Hi-C linked enhancers and promoters is 

treated as prior probabilities of interactions for enhancer-promoter pairs. Based on Hi-C 
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data, ProTECT divides the range of distances into consecutive 20kb bins, and the prior 

probability of interactions for each distance bin is calculated as: 

𝜋𝑖 = 5% ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝐻i − C in bini)/(number of significant Hi − C in bin1) , 

where πi is the prior probability for distance-bin i. The prior probability for bin 1 (i.e. the 

shortest distance bin) is set to be the default 0.05. The pFDR under rejection region [0, γ] 

in distance-bin i  is then calculated as pFDR(γ)  =  πiPr(P ≤   γ|H =  0)/Pr(P ≤   γ)  =

 πiγ/Pr(P ≤  γ),  where P represents the p-value for each enhancer-promoter interaction. 

P follows the uniform distribution under the null hypothesis, i.e. H=0, so that Pr(P ≤

  γ|H =  0) = γ. Pr(P ≤ γ) can be estimated by Pr̂(P ≤ γ) = (∑ δ(Pj  ≤ γ))/NN
j=1 , where Pj 

is the p-value for the enhancer-promoter interaction j, N represents the total number of p-

values, and δ(x) equals to 1 if x is true and equals to 0 otherwise. Therefore, the q-values 

can be calculated as Q(P) = infγ>P(πiγ/Pr̂(P ≤ γ)), which combines the information from 

both the distance-aware prior probabilities (πi) and the p-values from the random forest 

model (P). Based on the q-value threshold of 0.05, the final genome-wide predictions of 

significant enhancer-promoter interactions are obtained.  

5.2.8 Feature interpretation for mechanistic insights 

Using the trained random forest model of ProTECT, we evaluate and rank the importance 

of features, i.e. the module-level PPI features in the model. The top-ranking module-level 

PPIs are considered as important features, which represent putative protein complexes 

that may regulate chromatin interactions. Furthermore, in order to obtain detailed 

mechanistic understandings of important PPIs between specific TFs, we decode the 

module-level PPI feature importance into TF-level PPI feature importance. For each 

prioritized module-level PPI feature, we decompose it into individual TF-TF PPI features, 
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i.e. specific PPIs between an individual enhancer-binding TF and an individual promoter-

binding TF. Then the genome-wide predictions of enhancer-promoter interactions are 

scanned, and the fractions of predictions that contain the specific TF-level PPI features 

are calculated. The fractions scanned from genome-wide predictions are highly correlated 

with the fractions calculated from the cross-validation samples in model training, and are 

more robust given the larger pool of genome-wide enhancer-promoter pairs (see Results). 

Using the fractions, the top-ranking TF-level PPI features are thus identified for each 

important module-level PPI feature. The prioritized features, both module-level and TF-

level, shed light on new biological insights on long-range enhancer regulation. 

5.2.9 Pathway enrichment analysis for genes regulated by specific TF PPIs  

To investigate whether chromatin interactions mediated by different TF PPIs may 

participate in distinct biological pathways, we classify genes based on the specific TF PPI 

features involved in their interactions with enhancers. For each top-ranking module-level 

PPI feature, we first identify the top five TF-level PPI features using the method described 

above. Then, we scan the genome-wide predictions of enhancer-promoter interactions 

and collect the subset of interactions that contain at least one of the top five TF-level PPI 

features. Finally, the subset of interactions are ranked by their q-values, and the top 1,000 

genes regulated by these interactions are selected. In this way, the prioritized subset of 

genes represent strong targets of long-range enhancer regulation mediated by the 

important TF PPIs. Gene Ontology enrichment analyses are performed on different gene 

sets using DAVID 161 to check whether they are enriched with specific biological pathways. 
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5.2.10 cis-eQTL enrichment analysis for predicted long-range enhancer-promoter 

interactions 

As the orthogonal information to validate the accuracy of genome-wide predictions made 

by ProTECT, cis-eQTL datasets from the matched human tissues and cell-types are 

compared with the predicted enhancer-promoter interactions. Because our genome-wide 

predictions are made in human GM12878 and K562 cells, we selected four eQTL 

datasets 58-60, 162 which were profiled from either whole blood tissues or lymphoblastoid 

cells. A predicted enhancer-promoter interaction is considered to be supported by a cis-

eQTL (i.e. a significantly associated SNP-gene pair), if the enhancer contains the SNP 

and the promoter matches with the gene. For each eQTL dataset, the fraction of predicted 

enhancer-promoter interactions that are supported by cis-eQTLs is calculated, and is 

compared to two versions of negative controls. The first version of negative control is 

based on random pairing enhancers with promoters that are within 2Mb distances. The 

second version of negative control further requires the genomic distances of random 

enhancer-promoter pairs follow the same distribution from our predicted enhancer-

promoter interactions. Therefore, the second version is a more stringent control. For each 

version, 1,000 random samples are generated. And the statistical significance, i.e. p-

values, of the observed overlapping fractions from our predictions is calculated as the 

portion of random samples showing a higher overlapping fraction than the real observed 

one. 

In addition to cis-eQTLs, we also use cis-hQTLs, i.e. histone QTLs, to evaluate the 

accuracy of our predictions. The hQTL dataset was also profiled from the human 

GM12878 cells 62. Similarly, a predicted enhancer-promoter interaction is considered to 
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be supported by a cis-hQTL (i.e. a significantly associated SNP-histone pair), if the 

enhancer contains the SNP and the promoter overlaps with the histone modification peak. 

The overlapping fraction is also compared with the two versions of negative controls to 

justify the enrichment of cis-hQTLs in support of our predictions. 

5.2.11 cis-eQTL enrichment around TF binding sites 

For cis-eQTLs that overlap with predicted enhancer-promoter interactions, the genomic 

locations of the SNPs from cis-eQTLs are further compared with TF binding sites within 

enhancers. Here, the TF binding sites are defined as the ChIP-seq peak summits. For 

each enhancer included in this analysis, the TFs involved in important PPI features 

prioritized from the previous steps are selected. The genomic distances between the 

SNPs and the binding sites of these TFs are calculated. To statistically test whether the 

SNPs are closer to these important PPI-related TFs, two versions of random controls are 

generated. The first version is generated by randomly sampling binding sites of any TFs 

within the same set of enhancers. And the second version is generated by randomly 

sampling binding sites of TFs that are members of bottom-ranking PPI features, based 

on feature importance calculations from the previous sections. For each version of 

negative controls, p-values are calculated using Kolmogorov-Smirnov tests by comparing 

the cumulative distributions of distances.   

5.2.12 trans-eQTL enrichment analysis for enhancer-mediated TF-gene pairs 

Compared to cis-eQTLs, trans-eQTLs can provide additional evidence to support the 

functional associations between the prioritized TFs and specific genes, where the TF’s 

PPIs are predicted to mediate enhancer-promoter interactions of the target genes. For 

enhancer-binding TFs that are members of the important PPI features, we first collect the 
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predicted enhancer-promoter interactions mediated by the corresponding PPI features. 

Genes regulated by these predicted interactions are thus considered as the downstream 

target genes of the specific enhancer-binding TFs. We define this relationship as 

enhancer-mediated TF-gene pairs. To exclude the possibility of promoter-mediated 

effects, we remove the genes whose promoters are also bound by the specific TF.  

Using the trans-eQTLs from the published database 163, we identify a subset of trans-

eQTLs whose SNPs are located within TF’s gene bodies (plus -10kb from TSS) and target 

genes are covered in our input dataset. For this specific subset of trans-eQTLs, the SNPs 

are likely to disrupt the transcription of the TF genes, which in turn affects the TF’s 

regulation on the downstream target gene’s expression (Supplementary Methods).  

Hypergeometric test is used to statistically test whether the enhancer-mediated TF-gene 

pairs significantly overlap with the subset of trans-eQTLs described above. A TF-gene 

pair is considered to overlap with a trans-eQTL if the SNP is located within the TF’s gene 

body and the gene is the same as the trans-eQTL’s target gene. As comparisons, two 

versions of controls are generated based on the same set of TFs and enhancers. The 

first version uses the nearest genes to the enhancers as target genes, instead of using 

ProTECT’s predictions. The second version randomly selects genes within 2Mb distances 

as target genes. In each version, the same number of enhancer-promoter interactions are 

generated as seen from the foreground for each sample, and totally 1,000 random 

samples are created, along with the hypergeometric p-values.  
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5.3 RESULTS 

5.3.1 Long-range enhancer-promoter interaction prediction based on PPIs among 

TFs 

As discovered by recent experimental studies 93-95, 97-102, 140, 141, the protein-protein 

interactions between specific transcription factors have been found to participate in the 

regulation of long-range chromatin loops, where the TFs bind to enhancers and promoters 

respectively (Figure 5.1.a). The PPIs between the enhancer-binding TFs and promoter-

binding TFs facilitate the 3D proximity of enhancers and the target gene’s promoters. By 

analyzing the Hi-C interactions between enhancers and promoters in human GM12878 

cells, a specific set of TF-TF pairs are found to be enriched in enhancer-promoter 

interactions (Figure 5.1.b), compared to their frequencies in distance-controlled random 

enhancer-promoter pairs. Interestingly, these TF-TF pairs are also enriched with known 

PPIs (Figure 5.1.c, p-value=10-3), suggesting that the TFs within each pair can establish 

interactions at the protein level. Figure 5.1.d shows two examples, where both enhancer-

promoter Hi-C interactions contain enhancer-binding CTCF peaks and promoter-binding 

RUNX3 peaks. And the physical interaction between RUNX3 and CTCF is validated by 

the PPI database STRING 148, suggesting the RUNX3-CTCF interaction as a putative 

mechanism linking the enhancers with specific promoters. These observed enrichments 

strongly indicate the functional importance of TF PPIs in long-range chromatin loops and 

the possibility of predicting cell-type specific enhancer-promoter interactions using TF PPI 

features.  

Due to the large number of TF PPI features, i.e. PPIs between enhancer-binding TFs and 

promoter-binding TFs, basic predictive models significantly suffer from overfitting 
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problems, as shown in Figure D.3. Therefore, to efficiently leverage the information of TF 

PPIs from the high-dimensional feature space and overcome the overfitting risks, we 

developed a new machine learning classifier, ProTECT, to predict cell-type specific long-

range enhancer-promoter interactions (Figure 5.1.e). Detailed algorithmic designs have 

been described in Materials and Methods. Overall, there are four main steps to achieve 

the final predictions: 1) Generation of the balanced Hi-C based training dataset, along 

with cell-type specific TF PPI features; 2) Dimension reduction of features based on 

hierarchical network community detection; 3) Predictive model construction using random 

forest; and 4) Genome-wide predictions of cell-type specific enhancer-promoter 

interactions. 

As a new predictive model, here we highlight a series of key novelties of ProTECT (see 

Materials and Methods for details).  First, a rigorous method of controlling confounding 

factors, such as TAD domains, genomic separation distances and gene expression levels, 

is designed in the steps of data and feature generations. This method efficiently removes 

the impacts of confounding factors, which are fundamentally important to control as 

discussed by recent benchmark analyses 132, 133. Second, the graph-based dimension 

reduction approach not only addresses the potential risk of overfitting but also facilitates 

the prioritization of functionally important TF PPIs and TF complexes. Third, a generalized 

degree of freedom (GDF) technique 159 is incorporated to improve feature selections, 

leading to new biological understandings of specific TFs. Fourth, a stringent genomic bin-

split cross-validation strategy is developed for unbiased and robust performance 

evaluation. This stringent strategy thoroughly breaks the dependency between the 

training and testing datasets and avoids the inflated performance estimations that have  
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Figure 5.2 Performance comparison in GM12878 and K562. (a) ProTECT, 
TargetFinder, and IM-PET are applied on the same input datasets and are evaluated 
based on the averaged performance of 5-fold genomic-bin split cross-validation. As a 
baseline comparison, a random forest model using only enhancer-gene activity 
correlations is also included in the analysis. (a-b) ROC curves in GM12878 (A) and K562 
(B). (c-d) The enrichment of Hi-C interactions in top-ranking predictions. Cumulative odds 
ratios of true positives (y-axis), i.e. overlapping Hi-C interactions, are calculated across 
the ranked lists of predictions where predictions with stronger scores are ranked at the 
top (x-axis), in GM12878 (C) and K562 (D). (e-f) Examples of enhancer-promoter 
interactions predicted by ProTECT (pink paired lines) in GM12878 (E) and K562 (F). In 
each example, the highlighted enhancer (orange) is predicted to interact with the 
highlighted promoter (red) by ProTECT. Both predictions are supported by cell-type 
specific Hi-C interactions (black paired lines). The prioritized TF PPIs mediating the 
interactions are CTCF-RUNX3 (E) and CTCF-ELF1 (F) respectively, both of which are 
top-ranking PPI features from the random forest model.  

 

been commonly found in existing methods 132, 133. Fifth, a genomic distance-aware pFDR 

procedure 160 is implemented to identify statistically significant enhancer-promoter 

interactions along the whole human genome. We trained ProTECT using the high-

resolution Hi-C datasets from the human GM12878 and K562 cell-lines separately 10. The 
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balanced and confounding factor-controlled training dataset contains 5,348 long-range 

enhancer-promoter interactions in GM12878 and 8,650 interactions in K562 cells. The 

trained classifiers were further applied to make genome-wide cell-type specific predictions 

of enhancer-promoter interactions. As shown in subsequent sections, the ProTECT 

algorithm not only improves the prediction accuracy substantially, but also reveals novel 

mechanistic insights on the functional roles of TF PPIs in the regulation of long-range 

chromatin loops. The prioritized TFs and their specific PPIs provide a new platform to 

understand the complex interplay among TFs, enhancers and genes, and remarkably, 

open a new avenue to systematically interpret both cis- and trans-eQTLs in human 

genetics analyses. 

5.3.2 Boosted performance based on features of TF PPIs 

Using the genomic bin-split cross-validation strategy (see Materials and Methods), we 

rigorously tested the accuracy of ProTECT and compared with the other two supervised 

methods, i.e. IM-PET127 and TargetFinder 128. In both GM12878 and K562 cell-lines, 

ProTECT achieves the highest performance (Figure 5.2.a and 5.2.b): AUC=0.82 in 

GM12878 and AUC=0.78 in K562 cells. And the accuracy of ProTECT is robust with 

respect to the number of trees used in the random forest models (Figure D.7). As 

comparison, TargetFinder is ranked as the second algorithm with AUC values below 0.74, 

while the AUC metrics of IM-PET is around 0.6. As a baseline comparison, a random 

forest model using only activity correlations between enhancers and genes, without using 

TF PPI features, shows AUC values around 0.57. Because we systematically controlled 

confounding factors in the training dataset, the AUC estimates are not dominated or 

biased by those factors, especially the genomic separation distances. Therefore, these 
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comparisons strongly support that the ProTECT model substantially boosts the prediction 

accuracy over existing algorithms.  

In addition to the overall AUC metrics, to demonstrate that ProTECT has better 

capabilities of pinpointing true enhancer-promoter interactions in top-ranking predictions, 

we calculated the cumulative Odds Ratio (OR) of true positives along the ranked list of 

predictions. As shown in Figure 5.2.c and 5.2.d, ProTECT achieves much higher OR 

curves than other algorithms, especially in the zone of top-ranking predictions.  Because 

top-ranking predictions are the main de novo discoveries used for experimental studies 

in practice, this observation further exemplifies the superior precision of ProTECT.  

Moreover, we further evaluated the robustness of ProTECT’s superior performance with 

respect to different settings of input features and data. As shown in Figure D.8, by setting 

different confidence score cutoffs on PPIs to be included as input features (i.e. 100, 200 

and 300), ProTECT robustly achieves the highest accuracy (AUC>0.78) compared to 

other methods. In addition, using different epigenetic signals to represent cell-type 

specific enhancer activity levels, such as DNase-seq, H3K27ac and H3K4me1, ProTECT 

demonstrates highly similar accuracy, with DNase-seq and H3K27ac based versions 

slightly better than the H3K4me1 based version (Figure D.8). Furthermore, we also tested 

the performance on imbalanced dataset, where the ratio of positive-to-negative samples 

is 0.1, as suggested by previous studies 127, 128. ProTECT consistently shows the best 

ROC and Precision-Recall curves (Figure D.9). To obtain orthogonal evidence on 

ProTECT’s accuracy, we also used a diverse panel of Hi-ChIP 108, 164, 165 and ChIA-PET 

50 datasets from the matched cell-types as gold-standards for enhancer-promoter 

interactions. Remarkably, ProTECT maintains the highest accuracy across all 
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comparisons based on different gold-standard datasets (Figure D.10 and 5.11). Across 

the five Hi-ChIP evaluations, ProTECT achieves AUC>0.78, while TargetFinder and IM-

PET only show AUC<0.66. Using ChIP-PET datasets as gold-standards, ProTECT 

achieves AUC>0.84 while other methods demonstrate AUC<0.76. These tests 

systematically support the robustness of ProTECT’s performance advantages. 

Figure 5.2.e shows one example predicted by ProTECT in human GM12878 cells. The 

distal enhancer is located 99.4kb from the predicted target gene’s promoter, and this long-

range prediction is supported by a cell-type specific Hi-C interaction 10. Based on the 

trained random forest model, this enhancer-promoter interaction is mediated by the PPI 

between the enhancer-binding CTCF and the promoter-binding RUNX3 (Figure 5.2.e). 

Interestingly, the correlation between the enhancer’s activity and the target gene’s 

expression across different cell-types is only 0.28, which strongly suggests the 

importance of incorporating TF PPI features in predicting enhancer-promoter interactions. 

A similar example from K562 is shown in Figure 5.2.f, where the distal enhancer is located 

46kb from the predicted target gene’s promoter, and is also supported by a cell-type 

specific Hi-C interaction (Figure 5.2.f). This enhancer-promoter interaction, which only 

shows an activity correlation of 0.261, is successfully predicted based on the PPI between 

enhancer-binding CTCF and promoter-binding ELF1. Overall, these results demonstrate 

that TF PPI features can improve the delineation of specific interacting  
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Figure 5.3 TF PPI features provide additional information beyond TF bindings and 
activity-based features. (a) Schematic figure of the permutation test on TF PPI features. 
The shuffled PPIs are generated by randomly pairing two interacting TFs from the original 
pool of TF PPIs, while the degrees of PPI partners and TF binding sites in enhancers and 
promoters are maintained. Based on the shuffled PPI features, a new random forest 
model is trained and then evaluated by the same cross-validation procedure. (b) ROC 
plots for the models based on the original TF PPI features (red), the models based on the 
shuffled TF PPI features (salmon), and the baseline models based on activity-correlation 
features alone (blue), in GM12878 and K562 cells.  

 

enhancer-promoter pairs from neighboring non-interacting pairs, beyond the information 

of activity-related features. In addition, specific hypotheses of the mechanisms mediating 

chromatin interactions, i.e. the functional TF PPIs linking enhancers and promoters, are 

derived from the model simultaneously.  

To further justify that the superior performance of ProTECT is indeed due to the 

information from TF PPI features, we randomly shuffled the TF-TF connections in the PPI 

network (Figure 5.3.a). Therefore, the specific TF binding sites in enhancers and 
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promoters are strictly maintained (see Materials and Methods), while the PPI features 

across enhancer-promoter pairs are randomized. This shuffling strategy also controls the 

degree of PPI partners for each TF, i.e. the number of protein neighbors in the PPI 

network. By training the ProTECT model on the shuffled data, we found that the accuracy 

is substantially reduced. The AUC based on PPI-shuffled data is only 0.68, while the 

original AUC of ProTECT is 0.82 in human GM12878 cells (Figure 5.3.b). Similar 

decrease of performance is also observed in human K562 cells (Figure 5.3.b). The 

striking differences of prediction accuracy suggest that the performance improvement of 

ProTECT is mainly induced by TF PPI features, instead of TF binding information, 

consistent with previous biological studies of the functional roles of PPIs in chromatin loop 

regulation 146.  

To evaluate the model’s dependence on the cell-type specificity of TF bindings, we 

swapped the TF ChIP-seq data across GM12878 and K562, and run ProTECT based on 

the swapped data. As expected, the prediction accuracy decreased in both cell-types 

(Figure D.12.A and 5.12.B), suggesting the necessity of using TF datasets from the 

matched cell-types. Interestingly, ProTECT still maintains the highest prediction accuracy 

when other algorithms are also trained on the swapped TF data. In addition, to test the 

model’s dependence on the number of TFs included as features, we obtained the 

intersection subset of TFs whose ChIP-seq are available in both GM12878 and K562, 

and trained ProTECT based on features derived from this subset. The cell-type specific 

predictions in GM12878 and K562 demonstrate similar accuracy (AUC=0.74 and 0.70, 

Figure D.12.C), suggesting additional TFs are needed in each cell-type beyond the 

intersection subset. 
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Figure 5.4 Genome-wide prediction of enhancer-promoter interactions reveals 
functional roles of TF PPIs in gene regulation. (a) Summary of genome-wide 
predictions in GM12878 and K562. The venn-diagram shows the overlap between 
predicted enhancer-promoter interactions in GM12878 (yellow) and K562 (salmon). (b-c)  
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Figure 5.4 (cont’d) 

Feature importance (y-axis) of top 10 module-level TF PPI features based on the random 
forest models in GM12878 (B) and K562 (C). Each module-level PPI feature is named by 
the most abundant TF-level PPIs between the modules as axis-labels (x-axis). (d) 
Schematic figure of ranking specific TF-level PPIs in each PPI module. For each module-
level PPI feature, all TF-level PPIs linking two TFs from the pair of two modules (the pair 
of modules can be the same to represent intra-module TF-level PPIs) are ranked by their 
occurrences in the predicted long-range enhancer-promoter interactions (abundance 
scores). (e-f) Examples of top 5 TF-level PPIs for three representative module-level 
features in GM12878 (E) and K562 (F). (g) Examples of predicted enhancer-promoter 
interactions regulated by RELB-YY1 in the ISCU locus. Predicted enhancer-promoter 
interactions for the ISCU gene are shown as the pink paired lines. Totally 11 enhancers 
are predicted to interact with the promoter of ISCU, and 5 predictions are supported by 
Hi-C (purple paired lines) or Capture Hi-C (grey paired lines). ChIP-seq signal tracks of 
RELB and YY1 (brown signal peaks) are consistent with predictions. (h) Schematic figure 
of ranking enhancer-promoter interactions regulated by specific TF PPIs. For each 
prioritized TF PPI feature, enhancer-promoter interactions are ranked based on the q-
values inferred by ProTECT. Top 1,000 genes are then selected by following the ranked 
list of interactions for pathway enrichment analysis. (i) Pathway enrichments of genes 
regulated by five different TF PPIs in GM12878. The top 10 most enriched pathways for 
each TF PPI feature are shown. The heatmap is colored based on the -log10(p value) of 
pathway enrichments.  

 

5.3.3 Genome-wide prediction of long-range enhancer-promoter interactions 

The trained random forest model is then applied to the genome-wide dataset in GM12878 

and K562 cell-lines separately to predict novel enhancer-promoter interactions (Figure 

D.13.A-D). All enhancer-promoter pairs within 2Mb distance windows are included into 

genome-wide predictions (see Materials and Methods), as suggested by observations 

from experimental Hi-C datasets 10. For each enhancer-promoter pair, a p-value from the 

permutation test is generated, which is further used to derive a q-value based on the 

pFDR approach 160 (see Materials and Methods). Using the q-value threshold of 0.05, 

there are totally 60,016 significant enhancer-promoter interactions predicted in GM12878, 

and 80,591 significant enhancer-promoter interactions predicted in K562 (Figure 5.4.a). 

The median separation genomic distance between linked enhancers and promoters is 
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243kb in GM12878 (Figure D.13.E), consistent with enhancer’s function of long-range 

regulation. In the predicted GM12878 enhancer-promoter network, >37% of enhancers 

regulate multiple genes (Figure D.13.F), whose accuracy is consistent with the overall 

performance (Figure D.14) and 24% of these multi-gene enhancer links are supported by 

experimental chromatin interactions. On average, every gene is regulated by 6.9 

enhancers (Figure D.13.G), suggesting combinations of multiple enhancers are recruited 

for precise transcriptional regulation. Similar patterns are also observed in the predicted 

K562 enhancer-promoter network (Figure D.13.H-J). Furthermore, the predicted 

enhancer-promoter interactions are highly cell-type specific. By comparing the predictions 

in GM12878 and K562, only 5,815 (~4.2%) enhancer-promoter interactions are shared 

by the two cell-types (Figure 5.4.a). Compared to the recent activity-by-contact (ABC) 

model 166, our genome-wide predictions demonstrate higher accuracy, as quantified by 

both ROC and Precision-Recall curves, using Hi-ChIP data as gold-standards (Figure 

D.15). 

5.3.4 Important protein-protein interactions regulating chromatin interactions 

To gain insights of the underlying mechanisms of linking distal enhancers to target gene’s 

promoters, we analyzed the feature importance of module-level PPI features inferred by 

the random forest model and further prioritize the representative TF-level PPI features. 

We first identified the top-ranking module-level PPI features, which represent the protein 

complexes of interacting TFs involved in chromatin loops (Figure 5.4.b and 5.4.c). For 

example, in GM12878 cells, module(CTCF)-module(POLR2A) is ranked as the top 3rd 

feature (here the module-level features are named by the most abundant TF-level PPIs 

linking the modules). Interestingly, this is consistent with a recent experimental study 167 
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which also found that the enhancer-binding CTCF interacts with the promoter-binding Pol 

II and participates in the regulation of long-range chromatin loops. As another interesting 

example, the module-level PPI feature module(IKZF1)-module(RB1) is one of the top-

ranking features in K562, consistent with their critical functions in leukemia cells  and their 

impacts on chromatin structure 168, 169. Additional examples of the prioritized module-level 

TF PPIs are visualized as PPI networks in Figure D.16, showing the complex PPI 

connectivity between TF modules binding to enhancers and promoters.  

In order to characterize the key PPI features between individual TFs, instead of TF 

modules, we further decode the module-level PPI features into ranked TF-level PPI 

features (Figure 5.4.d), based on their occurrences across genome-wide predictions of 

enhancer-promoter interactions (see Materials and Methods). Genome-wide predictions 

are used to calculate the abundance scores for TF level PPIs because they provide a 

large pool of enhancer-promoter links, and the abundance scores are found to be highly 

correlated with the observations from cross-validation samples (Figure D.17, Spearman 

Correlation=0.95). For each module-level feature, the top 5 most abundant PPI features 

between specific enhancer-binding and promoter-binding TFs are identified. For example 

(Figure 5.4.e), RELB-YY1 is predicted to be a key TF-level PPI feature in long-range 

enhancer regulation. In support of this new discovery, RELB has recently been found to 

promote gene expression by interacting with YY1 170. As another example, SMC3-HDAC1 

is one of the top-ranking features in K562 (Figure 5.4.f), consistent with the reported 

regulatory roles of HDAC1 on chromatin structure by interacting with SMC3 171. The 

discoveries of these key TFs and their PPIs as candidate functional factors in chromatin 
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loop formation may lead to new biological hypotheses of enhancer regulation for in-depth 

experimental investigations.   

As a demonstration of the potential importance of TF PPIs in linking distal enhancers to 

promoters, Figure 5.4.g shows the predicted long-range enhancer-promoter interactions 

for the gene ISCU. There are totally 11 enhancers predicted by ProTECT to interact with 

ISCU’s promoter, and 5 of them are supported by experimental data of chromatin 

interactions based on Hi-C or Capture Hi-C (Figure 5.4.g), indicating the high accuracy of 

the predictive model. The inferred top-ranking feature is the PPI between enhancer-

binding RELB and promoter-binding YY1. Consistent with this prediction, YY1 has a 

strong ChIP-seq binding site at the promoter of ISCU, and almost all linked enhancers 

have ChIP-seq signals of RELB binding. Importantly, 4 out of the 5 validated enhancers 

show the strongest RELB ChIP-seq binding signals (Figure 5.4.g), indicating the shared 

mechanism of these enhancer-promoter interactions for the gene ISCU. In this region, 

the longest interaction predicted by ProTECT is from a distal enhancer located >547kb 

from ISCU’s promoter. Although not captured by chromatin contact map experiments, this 

specific enhancer contains a sharp ChIP-seq peak of RELB binding (Figure 5.4.g), 

suggesting this novel prediction as a strong candidate of enhancer-promoter interactions. 

It also implies the capability of ProTECT to discover long-range enhancer regulation that 

might be missed by experimental approaches. 

To investigate whether the orientations of PPI features between enhancer-binding and 

promoter-binding TFs have impacts in chromatin interactions, we designed a systematic 

model selection strategy to test whether a pair of two TF PPI features with opposite 

directions can be merged into one un-directional PPI feature without reducing the 
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predictive accuracy (see Materials and Methods). Using this approach, 32 pairs of 

directional PPI features in GM12878 are merged into 16 un-directional features, 

suggesting there is no statistical preference of binding sites (i.e. enhancers vs. promoters) 

between interacting TFs involved in these PPIs. For example, the features ATF2-

SMARCA5 and SMARCA5-ATF2 are merged into an un-directional feature by the model, 

consistent with the observation that the two directional PPI features have similar 

abundance in enhancer-promoter interactions (Figure D.18.A). A similar example 

involves the merge of IKZF1-CREM and CREM-IKZF1 features (Figure D.18.A). In spite 

of these un-directional PPI features, there are 37 features remaining to be directional in 

GM12878. For example, there is a significant preference of SMC3-MXI1 feature over the 

MXI1-SMC3 feature (fold-enrichment=7.80, Figure D.18.B). This is an interesting 

observation considering the function of SMC3 (a subunit of cohesin 172) in chromatin 

structural maintenance, and the reported regulatory function of MXI1 binding in promoter 

regions 173. Another example corresponds to the preference of EP300-POL2R2A over 

POL2R2A-EP300 (fold-enrichment=9.19, Figure D.18.B), consistent with the well-known 

enhancer binding activities of EP300 174 and the transcriptional initiation function of 

POL2R2A 175. Similarly, 184 pairs of directional PPI features in K562 are merged into 92 

un-directional features, while 47 PPI features remain to be directional. 

5.3.5 Genes regulated by different TF PPIs are enriched in distinct pathways 

To evaluate the downstream impacts of chromatin interactions mediated by different TF 

PPIs, we focused on the top 5 module-level PPI features (Figure 5.4.b and 5.4.c). We 

identified the strongest enhancer-promoter interactions mediated by each feature 

separately based on the ranked q-values of predictions (see Materials and Methods). 
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Genes that are regulated by the top-ranking enhancer-promoter interactions are therefore 

collected for pathway enrichment analysis (Figure 5.4.h). Overall, these prioritized genes 

are enriched with immune-related or B-cell-related pathways (Figure D.19.A-B), which is 

expected since the predictions are inferred from GM12878 and K562 cell-lines. Strikingly, 

for each specific PPI feature, the gene sets are strongly enriched with distinct groups of 

pathways (Figure D.19.A-B). Figure 5.4.i shows the most enriched pathways for each TF 

PPI feature discovered in the GM12878 cell-line. Clearly, the enhancer-promoter 

interactions mediated by different TF PPIs are enriched with diverse biological processes. 

For example, the CTCF-YY1 feature is found to be associated with long-range regulation 

of genes in the B cell receptor signaling pathway, while the SMC3-POLR2A feature is 

associated with genes of the innate immune response pathway (Figure 5.4.i). To exclude 

the potential bias caused by gene background, we carried out pathway enrichment 

analysis based on two additional gene backgrounds, respectively: 1) genes with the same 

set of promoter-binding TFs; and 2) genes with the same set of enhancer-binding TFs 

(Figure D.19.C-D). Based on these two rigorous gene backgrounds, the majority (>67%) 

of enriched pathways are still discovered. These differentially enriched pathways further 

highlight the functional roles of TF PPIs in regulating gene expression and maintaining 

the specific cellular states.  
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Figure 5.5 Predicted enhancer-promoter interactions are enriched with cis-QTLs 
and trans-eQTLs. (a) cis-eQTLs and cis-hQTLs from multiple datasets (x-axis) are  



180 

Figure 5.5 (cont’d) 

significantly enriched in predicted enhancer-promoter interactions in GM12878 (red). The 
fractions of enhancer-promoter interactions overlapping with cis-QTLs (y-axis) are 
compared with other methods and two versions of controls: (1) random enhancer-
promoter pairs (brown) and (2) distance-controlled random enhancer-promoter pairs 
(blue). 1,000 samples are generated for both versions to calculate p-values (***: p-
value<1.04x10-4). Error bars represent sd. (b) Schematic figure of cis-eQTL SNPs located 
in the binding sites of functionally important TFs (blue) of chromatin interactions, 
compared to general enhancer-binding TFs (grey), as a mechanistic hypothesis of cis-
regulatory effects on target gene expression. (c) Distributions of relative distances 
between cis-eQTL SNPs and binding sites of different enhancer-binding TFs. Relative 
distances (x-axis) are genomic distances between SNPs and TF ChIP-seq peak summits 
normalized by the sizes of TF peaks. Binding sites of top-ranking TFs inferred by 
ProTECT (red) significantly overlap with cis-eQTL SNPs, compared with bottom-ranking 
TFs (grey, p-value=3.02x10-4) and random enhancer-binding TFs (blue, p-value=4.17x10-

18). (d) Example of a cis-eQTL, i.e. the rs2488088-ADK pair, overlapping with a predicted 
enhancer-promoter interaction (pink paired lines). The predicted interaction is supported 
by Hi-C (black paired lines). The prioritized PPI feature is RUNX3-SMAD, consistent with 
the ChIP-seq signal tracks (brown signals). Zoom-in view of the distal enhancer (orange) 
shows the cis-eQTL SNP rs2488088 is located at the peak summit of RUNX3 binding site. 
(e) Schematic figure of trans-eQTL SNPs located in specific TF genes, whose binding to 
enhancers are predicted to mediate long-range enhancer-promoter interactions of trans-
eQTL target genes. (f) Hypergeometric test on the overlaps between trans-eQTLs (i.e. 
trans- SNP-gene pairs) and enhancer-mediated TF-gene pairs, if the SNP is located in 
the TF’s gene body and the trans-eQTL’s target gene is the same as the TF’s target gene 
(red, p-value=0.014). The -log10(p-value) (y-axis) from the hypergeometric test is 
compared to two versions of controls: 1) nearest genes to the enhancers (brown); and 2) 
random target genes (blue). Each control is generated 1,000 times and the error bars 
show the sd. The black dash line corresponds to -log10(0.05). (g) Venn diagram 
comparing genes affected by weakened Hi-C interactions in PAX5 KO pro-B cells and 
genes regulated by PAX5 in ProTECT predictions (Hypergeometric test, p-
value=5.64x10-165). (h) Example of a trans-eQTL, i.e. rs10973104-NOL6 pair, supported 
by the predicted enhancer-mediated PAX5-NOL6 pair. The predicted enhancer-promoter 
interaction for NOL6 (black paired lines) is based on the prioritized TF PPI feature PAX5-
CTCF. ChIP-seq signals (brown signal tracks) show a strong CTCF peak in the NOL6 
promoter (red) and strong PAX5 peaks in the linked enhancer (orange). The trans-eQTL 
SNP rs10973104 is located in the gene body of PAX5, which is 3.6Mb away from this 
locus.  

 

5.3.6 Predicted enhancer-promoter interactions are enriched with cis-eQTLs  

Because the predictive model is trained on Hi-C datasets, we use cis-eQTLs as 

orthogonal evidence to quantitatively evaluate the accuracy of the genome-wide 
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predictions of enhancer-promoter interactions. By comparing the predictions with the 

SNP-gene pairs of significant eQTLs, we calculated the overlapping enrichment scores 

(see Materials and Methods). Using four eQTL datasets generated from matched cell-

types or tissues (e.g. whole blood tissues or lymphoblastoid cell-lines) 58-60, 162, the 

predicted enhancer-promoter interactions in GM12878 cell-line show significantly higher 

fractions overlapping with eQTLs, compared to stringent distance-controlled random 

interactions and other algorithms (p-value<1.04x10-4, Figure 5.5.a). Similar, but relatively 

weaker, enrichment with eQTLs is found for predictions in K562 cell-line (Figure D.20.A). 

In addition to cis-eQTLs, we compared our predictions in GM12878 with histone-QTLs 

from the same cell-line 62 and also observed strong enrichment (p-value=3.27x10-5) 

compared to distance-controlled random samples and other algorithms (Figure 5.5.a). 

These observations not only support the high accuracy of genome-wide predictions but 

also suggest the putative mechanisms of cis-eQTLs mediated by chromatin interactions 

between regulatory elements and target genes.  

5.3.7 cis-eQTLs are enriched in binding sites of prioritized TFs  

The prioritized TF PPI features by the ProTECT model provides a new metric of 

delineating functionally important TFs for enhancer regulation against general enhancer-

binding TFs, which is complicated due to the large array of TFs binding to enhancers. For 

a typical enhancer, it contains 10 different TF binding sites on average, based on the 

counts of TF ChIP-seq peaks in GM12878 from the ENCODE project 50. However, binding 

itself is not sufficient to assign functional importance for TFs. As found by previous studies, 

TFs binding in enhancer regions are not equally important for the function of enhancers, 

with many enhancer-binding TFs lacking evidence of regulatory impacts on gene 
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expression 176. This ambiguity hinders the understanding of enhancer activation and 

downstream effects. We hypothesized the TFs involved with top prioritized PPI features 

are more likely to be functional for enhancers. We tested this hypothesis by checking the 

enrichment of cis-eQTL SNPs within the binding sites of the prioritized TFs in enhancers 

(Figure 5.5.b, see Materials and Methods). The cis-eQTLs are called in whole blood 

tissues from the GTEx project 162. Interestingly, the SNPs of cis-eQTLs are located 

significantly closer to the binding sites of prioritized TFs in GM12878 (p-value=4.17x10-

18, Kolmogorov-Smirnov test), compared to the binding sites of other adjacent enhancer-

binding TFs (Figure 5.5.c). To control the potential bias caused by data availability, we 

also generated a more stringent background only using TFs included in the model but 

inferred with low feature importance (see Materials and Methods). Compared with this 

new background, the prioritized TFs are still significantly enriched with cis-eQTL SNPs 

(p-value=3.02x10-4, Kolmogorov-Smirnov test, Figure 5.5.c). In the K562 cell-line, cis-

eQTL SNPs are also closer to the binding sites of the prioritized TFs but not statistically 

significant (Figure D.20.B). Overall, this analysis supports the stronger regulatory effects 

of prioritized TFs whose PPIs may mediate long-range enhancer-promoter interactions. 

Additionally, the prioritized TF binding sites provide a new layer of information to pinpoint 

regulatory SNPs at a higher resolution, by dissecting the ambiguity of numerous TF 

bindings within enhancers. 

As a representative example, a distal enhancer located >589kb away is predicted by 

ProTECT to interact with the promoter of the ADK gene in GM12878 (Figure 5.5.d), which 

is supported by experimental Hi-C data 10. This long-range interaction is also supported 

by a significant eQTL, i.e. rs2488088-ADK (p-value=3.29x10-19) 162. The prioritized TF 
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PPI feature for this interaction is RUNX3-SMAD, where RUNX3 binds to the enhancer 

and SMAD binds to the promoter. By zooming into the enhancer element, which is 1.2kb 

long and contains binding sites of 5 different TFs, the SNP rs2488088 is found to be 

precisely located at the ChIP-seq peak summit of RUNX3 (Figure 5.5.d), consistent with 

our prioritization of RUNX3 as the important TF for this enhancer. This observation also 

implies the mechanistic interpretation of this non-coding SNP, whose disruptive effect on 

the RUNX3 binding causes the loss of RUNX3-SMAD mediated long-range interaction to 

ADK.  

5.3.8 trans-eQTLs are enriched in enhancer-mediated TF-gene pairs 

As one of the advantages of the ProTECT algorithm, both cis-regulatory elements (i.e. 

enhancers) and trans-regulatory factors (i.e. TFs) are jointly modeled in long-range 

chromatin interactions. In traditional studies of trans-regulation of gene expression, 

analyses have been mainly limited to promoter-binding TFs as candidate trans-regulatory 

factors 177, 178. Based on the functional impacts of the predicted important TF PPI features 

(Figure 5.4.b-I) and the observed enrichment of cis-eQTL SNPs in prioritized enhancer-

binding TFs (Figure 5.5.b-D), we hypothesized that there is an enhancer-mediated 

pathway of trans-regulation, i.e. the enhancer-binding TFs associated with top-ranking 

PPI features for long-range chromatin interactions are trans-regulatory factors for the 

expression of distal target genes (Figure 5.5.e). To quantitatively validate this hypothesis, 

we compared the enhancer-mediated TF-gene pairs with significant trans-eQTLs 163, and 

the significance of overlaps are statistically tested using Hypergeometric tests (see 

Materials and Methods). Interestingly, the enhancer-mediated TF-gene pairs are found to 

be strongly supported by trans-eQTLs (p-value=0.014, Figure 5.5.f, Figure D.20.C), 
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suggesting that the SNPs of trans-eQTLs are associated with target gene’s expression 

via the disruption of the TF gene’s activity (Figure 5.5.e), although the SNPs may be 

located far away from the target genes or even located in different chromosomes. The 

observed statistical significance is also stronger than two versions of controls, excluding 

the potential confounding effects of biased enhancer activity and genomic distances 

(Figure 5.5.f, see Materials and Methods).  

To obtain additional experimental evidence on the predicted enhancer-mediated TF-gene 

regulation, we leveraged a differential Hi-C interaction dataset in mouse pro-B cells where 

7,810 weakened Hi-C interactions were identified following PAX5 knock-out 179. The top-

ranking PAX5 related PPI feature predicted by ProTECT is PAX5-CTCF, consistent with 

their collaborative roles in B cells 180, 181. Based on our genome-wide predictions in 

GM12878, we identified the subset of PAX5-CTCF mediated enhancer-promoter 

interactions (see Materials and Methods), and thus collected the enhancer-mediated 

target genes of PAX5. To purify the subsequent analysis, genes whose promoters are 

also bound by PAX5 are removed from the list. If PAX5 is a true trans-regulatory factor 

for these genes, the genes are expected to be targeted by the weakened long-range 

interactions following PAX5 knock-out. By mapping the genes to their homology in the 

mouse genome 182, 6,744 enhancer-mediated target genes of PAX5 are conserved. 

Strikingly, these genes are found to significantly overlap with the genes of weakened Hi-

C interactions in PAX5-/- pro-B cells 179 (hypergeometric p-value=5.64x10-165, Figure 

5.5.g). To control the potentially biased enhancer activity and TF bindings, we generated 

two versions of controls. The first version randomly selects genes as enhancer-mediated 

target genes of PAX5. And the second version randomly chooses target genes of other 
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TFs. 1,000 random samples are generated for each version and the same number of 

genes are selected for each sample. Both versions of negative controls show decreased 

overlap with genes of weakened Hi-C interactions in PAX5-/- pro-B cells (p-value=10-3), 

supporting the predicted trans-regulatory links between PAX5 and target genes by 

ProTECT. Figure 5.5.h shows one representative example of PAX5-CTCF mediated long-

range enhancer-promoter interaction (~600kb), where the enhancer contains multiple 

PAX5 binding sites and the promoter of the target gene, i.e. NOL6, contains a strong 

CTCF binding site. Interestingly, NOL6 is linked with weakened Hi-C interactions in PAX5-

/- pro-B cells. These strong experimental validations, along with the enrichment of trans-

eQTLs, suggest the biological validity of the predicted enhancer-mediated TF-gene pairs, 

and provide a new regulatory mechanism to discover and interpret trans- regulatory 

genetic variants.  

5.4 DISCUSSION 

In this study, we have developed a novel supervised algorithm, ProTECT 

(https://github.com/wangjr03/PPI-based_prediction_enh_gene_links), to predict long-

range enhancer-promoter interactions. By incorporating new features of protein-protein 

interactions among transcription factors, the algorithm achieves superior performance 

compared to other methods, based on a rigorously designed genomic bin-split cross-

validation procedure. Considering the overfitting risk of high-dimensional inter-dependent 

TF PPI features, a novel network-community based dimension reduction strategy is used 

to hierarchically organize TF PPIs into module-level features. This approach efficiently 

improves the generalizability of the predictive model to make robust predictions based on 

complex TF PPI patterns, while maintaining the detailed ranking of TF-level PPI features 

https://github.com/wangjr03/PPI-based_prediction_enh_gene_links
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for specific mechanistic understandings of long-range enhancer regulation. With the 

impacts of confounding factors strictly controlled, the relative contributions of different 

features are systematically evaluated, which shows that TF PPIs contain substantially 

additional information beyond activity-based features of enhancers and genes.  

The genome-wide implementation of ProTECT in GM12878 and K562 cell-lines 

generated 60,016 and 80,591 new predictions of significant enhancer-promoter 

interactions, which will be useful resources of cell-type specific enhancer regulation for 

biologists. In addition, a set of prioritized TF PPIs, in both module-level and TF-level, are 

identified as the key PPIs mediating long-range chromatin loops. Different TF PPIs are 

found to mediate enhancer regulation for genes in distinct biological pathways, implying 

specific functional roles of complex TF cooperation. The TF members participating in 

these prioritized PPI features can be used as candidate targets for knock-out to 

investigate the changes of specific enhancer-promoter interactions, which will expand the 

insights on the underlying mechanisms of chromatin loop formation and long-range gene 

regulation.  

To gain orthogonal evidence of the validity of genome-wide predictions, cis- and trans-

eQTLs are compared with the predicted enhancer-promoter interactions in three ways, 

each of which supports one aspect of the interplay among TFs, enhancers and genes. 

First, the enrichment of overlaps between cis-eQTLs and enhancer-promoter interactions 

suggests the accuracy of predicted long-range cis-regulation by distal enhancers. Second, 

the enrichment of cis-eQTL SNPs located within the binding sites of prioritized TFs 

underscores the precise delineation of functionally important TFs for enhancer activities 

against other general enhancer-binding TFs. Third, the enrichment of overlaps between 
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trans-eQTLs and enhancer-mediated TF-gene pairs highlights the novel identification of 

trans-regulatory pathways from upstream TFs to downstream genes via distal enhancers. 

The promising enrichment analyses further indicate that the predictions from ProTECT 

can be used as a platform to interpret cis- and trans-eQTLs, i.e. characterize the non-

coding SNP’s disruptive effects propagated through long-range enhancer regulation on 

gene expression. Therefore, combined with eQTL datasets, the ProTECT model can also 

be a useful tool to generate testable hypotheses in statistical genetics studies.  

To control the model complexity, only direct PPIs between TFs are included as features, 

while indirect PPIs between TFs may also participate in the regulation of chromatin loops. 

For example, an enhancer-binding TF and a promoter-binding TF may not be able to 

interact with each other but they both can interact with a third protein. The incorporation 

of module-level TF PPI features helps to capture the potential indirect PPIs to some 

degree, but does not explicitly address this problem. Due to the large number of indirect 

PPI features and the limited number of labeled samples for model training, more 

advanced designs of feature selection will be needed to achieve a balance between 

predictive accuracy and model generalizability.  

As a major novelty of the ProTECT model, the efficient inclusion of TF PPIs as features 

not only improves the predictions but also reveals mechanistic insights on long-range 

enhancer regulation. In the meantime, the algorithm requires the availability of large 

panels of TF ChIP-seq data for the specific cell-types under study, which may be a 

practical challenge for users. As one of the directions to extend the ProTECT model, it is 

possible to leverage the combined information of chromatin accessibility data, e.g. 

DNase-seq or ATAC-seq data, and TF binding motif annotation datasets as 
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approximations for cell-type specific TF bindings. Several recent studies have 

demonstrated the reasonable accuracy of this approximation 50, 86. Furthermore, multiple 

imputation algorithms have been recently developed for ENCODE cell-types or tissues to 

impute cell-type specific TF binding ChIP-seq signals 183, 184. The imputed TF binding 

signals can be used as alternative inputs for the model to make cell-type specific 

predictions of enhancer-promoter interactions, for cell-types lacking ChIP-seq datasets. 

As an evaluation of this possibility, we generated the imputed TF bindings by overlapping 

TF motifs with cell-type specific DNase-seq peaks, and then derived TF PPI features 

based on the imputed data. Remarkably, applied on the imputation-based input features, 

ProTECT is able to achieve high accuracy (Figure D.21). This evaluation strongly 

supports the wide applicability of ProTECT on diverse cell-types even if TF ChIP-seq data 

is not directly available. 
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CHAPTER 6 

DISCUSSION 

 

Characterizing the high-order chromatin conformation and complex interplays between 

TFs, enhancers, and genes in the 3D space play an important role in understanding the 

complex gene regulations. In this dissertation, we showed two directions to fully delineate 

the interaction landscape based on the multi-omics datasets. We reconstructed the 3D 

chromosome structures from the chromatin contact maps and single-cell chromatin 

conformation capture datasets, which provide the structural basis of the long-range 

chromatin interactions. We also developed two computational algorithms to predict the 

long-range enhancer-gene regulations based on the TF bindings. Notably, we predicted 

the multi-enhancer regulations with high accuracy, which expanded the analyses of gene 

regulations from one enhancer to the cooperation of multiple enhancers. This chapter 

summarizes the results, biological innovations, and future directions of our work.  

6.1 SUMMARY 

We first reconstruct the 3D chromosome structures from the chromatin contact maps 

based on the completion of the low-rank matrix. Our developed algorithm, FLAMINGO, 

demonstrated high accuracy and scalability in reconstructing high-resolution 3D 

structures from sparse chromatin contact maps. Using FLAMINGO, we successfully 

predicted the 3D structures of all 23 chromosomes in 5kb and 1kb resolution, which is the 

highest resolution for now. Based on the extensive evaluation of the simulated data and 

orthogonal biological evidence, FLAMINGO demonstrated superior performance over 

existing algorithms. The 3D chromosome structures predicted by FLAMINGO innovate 
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the interpretation of the long-range QTLs and multi-way interactions, where chromatin 

loops bring anchors into proximal 3D neighborhoods and facilitate long-range functional 

interactions. An integrative variant of FLAMINGO, iFLAMINGO, is further developed to 

facilitate the cross-cell-type prediction of the 3D structures and refine the resolution. The 

development of FLAMINGO provides a powerful tool to delineate the interaction 

landscape in high resolution. 

We further developed tFLAMINGO to predict the single-cell 3D chromosome structures. 

To mitigate the high missing rate of single-cell datasets, tFLAMINGO utilized a low-rank 

tensor completion method. Compared with existing algorithms, tFLAMINGO 

demonstrated superior performance in reconstructing single-cell 3D structures and 

imputing the chromatin contact maps. Given the complete single-cell 3D chromosome 

structures, we proved the 3D chromosome structures are robust in low-resolution but 

highly dynamic in terms of single-cell chromatin interactions. For example, TADs are 

overall robust but could be shifting, merging, and vanishing across single cells. We 

showed that the genomic loci with critical biological functions, e.g. open chromatin and 

active transcription, tend to be densely organized in the 3D space and less dynamic 

across single cells. The delineation of the single-cell 3D chromosome structures also 

provides a new approach to interpreting the somatic mutations, GWAS SNPs, and 

predicting the dynamic multi-way chromatin interactions. 

To computationally predict the long-range enhancer-gene interactions, we developed an 

unsupervised learning method, ComMUTE, to integrate the gene regulatory grammar and 

enhancer-binding TF profiles. The unsupervised framework of ComMUTE largely 

expands its usability in cell types without experimental chromatin interactions and avoids 
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the overfitting risks. Compared with existing algorithms, ComMUTE simultaneously links 

multiple enhancers with synergistic regulatory functions to the same target gene, which 

captures the multi-enhancer regulations. By extensively benchmarked with existing 

algorithms, ComMUTE demonstrated consistently improved performance in predicting 

enhancer-gene links and multi-enhancer regulations. The decoded high-order regulatory 

landscape shed light on understanding the eQTLs and GWAS SNPs. Strikingly, the multi-

enhancer regulations predicted by ComMUTE can help predict the epistasis eQTLs, 

whose discovery is important for gene regulations but highly challenging due to the 

unrealistically large searching space. We proposed that the SNPs within the co-regulating 

enhancers should have a higher probability of being the epistasis eQTLs and thus 

significantly reduce the number of tests. 

In addition to ComMUTE, we also developed supervised learning, ProTECT, to predict 

the PPI-mediated enhancer-gene links. In addition to standard features used by other 

methods, we included a new set of features: the PPI between enhancer-binding TFs and 

promoter-binding TFs. Based on the permutation test, we proved that the new features 

can boost the accuracy in predicting the enhancer-gene links. We also developed a 

graph-based dimension reduction method and feature selection approach to avoid 

overfitting risks. Besides predicting enhancer-gene links, ProTECT also prioritized 

important TF-TF interactions to establish long-range regulatory interactions. Such 

predictions can help interpret the trans-eQTLs, where the SNPs and target genes are 

very far or even on the different chromosomes. Based on the global evaluations and case 

studies, SNPs may disrupt the important TF regulators and block the enhancer-gene links, 

thus indirectly controlling the distal target gene expressions. 
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In summary, the development of the four algorithms fully characterizes the high-resolution 

3D chromosome structures in bulk tissue and single cells and depicts the more detailed 

enhancer-gene regulatory interactions across diverse cell types. The rich predictions and 

algorithmic advancements of these methods provide a solid foundation for future studies 

of the complex biological events in the 3D space. 

6.2 FUTURE DIRECTION 

Although we captured the dynamic chromosome structures across single cells, 

investigating the cell-type-specific structures in single cells is still challenging since the 

single-cell chromatin conformation capture datasets are few. Therefore, an important 

feature of the desired algorithm is building a connection between the cell-types-specific 

epigenomic signals and 3D spatial distances between genomic loci. We will continue the 

study of the underlying driving force in shaping the 3D chromosome structures. 

Another important direction is utilizing the predictions of these methods to predict 

downstream biological events, for example, gene expressions, TF binding sites, and 

disease-associated genes. We will further integrate the 3D chromosome structures and 

enhancer-gene regulatory interactions into the following algorithms to improve the model 

performance and gain better mechanistic insights 

Another important direction is utilizing the predictions of these methods to predict 

downstream biological events, for example, gene expressions, TF binding sites and 

disease associated genes. We will further integrate the 3D chromosome structures and 

enhancer-gene regulatory interactions into following algorithms to improve the model 

performance and gain better mechanistic insights 
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APPENDIX A 

SUPPLEMENTARY FIGURES FOR CHAPTER 2 

Figure A.1 5kb-resolution 3D structures for 23 chromosomes predicted by 
FLAMINGO. 
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Figure A.1 (cont’d) 
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Figure A.1 (cont’d) 
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Figure A.2 1kb-resolution 3D structures for 23 chromosomes predicted by 
FLAMINGO. 
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Figure A.2 (cont’d) 
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Figure A.2 (cont’d) 
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Figure A.3 Overview of the assembly algorithm of FLAMINGO. 
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Figure A.4 High similarity of predicted structures using different conversion factors.  
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Figure A.5 Convergence and model performance under different down-sampling 

rates based on simulated structures. 
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Figure A.6 Model performance under different number of loci and down sampling 

rates based on simulated structures. 
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Figure A.7 Validation of the assembly algorithm based on simulations. 
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Figure A.8 Performance validation using low-resolution Hi-C data and FISH data. 
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Figure A.9 Predicted 3D structures of chr1 by FLAMINGO in six cell-types at 5-kb 
resolution. 
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Figure A.10 The observed long-range chromatin interactions are supported by TF 
ChIP-seq and Capture-C interactions. 
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Figure A.11 Performance comparison in GM12878 based on off-diagonal distances. 
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Figure A.12 Performance comparison in the additional five cell-types. 
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Figure A.13 Example of 3D chromatin loops reconstructed by FLAMINGO. 
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Figure A.14 High scalability of FLAMINGO over existing algorithms. 
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Figure A.15 FLAMINGO leads to the discovery of multi-way chromatin interactions. 
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Figure A.16 FLAMINGO provides structural basis of long-range QTLs.  
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Figure A.17 Comparison between the predicted structures with single-cell 
chromosome structures. 
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Figure A.18 FLAMINGO robustly reconstructs the high-resolution 3D structures 
using a small fraction of observed Hi-C data. 
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Figure A.19 The imputation of 3D distances based on 1D epigenomics data in 
iFLAMINGO. 



217 

 
Figure A.20 Performance of cross cell-type predictions using iFLAMINGO. 
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Figure A.21 Convergence and parameter tuning of FLAMINGO.  
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APPENDIX B 

SUPPLEMENTARY FIGURES FOR CHAPTER 3 

 

Figure B.1 3D structures of chromosome 19 in 10kb-resolution for 351 mESC cells 
predicted by tFLAMINGO based on snm3C data. 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.1 (cont’d) 
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Figure B.2 3D structures of chromosome 19 in 10kb-resolution for 7 mESC cells 
predicted by tFLAMINGO based on scHi-C data. 
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Figure B.3 3D structures of chromosome 21 in 10kb-resolution for 16 K562 cells 
predicted by tFLAMINGO based on scHi-C data. 
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Figure B.4 Differential linear relationships between single-cell 3C datasets and bulk 
Hi-C datasets. 
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Figure B.5 Schema of the band wise log-regression method to rescale the single-
cell interaction frequencies. 
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Figure B.6 3D Validation of the transformed single-cell interaction frequencies 
based on three additional datasets. 
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Figure B.7 Robust performance of tFLAMINGO under different settings based on 
simulations. 
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Figure B.8 Accurate reconstruction of a simulated structure with 3000 loci under 
the 0.5% down sampling rate. 
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Figure B.9 Systematic performance evaluation based on simulations. 
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Figure B.10 Convergence of tFLAMINGO. 
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Figure B.11 tFLAMINGO identifies underlying structural variations. 

  



237 

 
Figure B.12 Single-cell compartment and TAD analyses in GM12878. 
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Figure B.13 Justification of the optimal number of clusters. 
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Figure B.14 Pathway enrichments of differential methylated genes. 
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Figure B.15 Dynamic 3D structures across 15 single cells. 
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Figure B.16 Simulation-based methods fail to handle long-range interactions. 
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Figure B.17 Simulation analyses confirms the limitation of simulation-based 
models.  
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APPENDIX C 

SUPPLEMENTARY FIGURES FOR CHAPTER 4 

 

Figure C.1 Predictive power of the features used in ComMUTE.  
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Figure C.2 Parameter selection based on the optimal AUROC. 
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Figure C.3 Summary statistics of the predicted enhancer-gene links. 
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Figure C.4 Summary of the input epigenomic datasets. 

 

Figure C.5 Convergence of ComMUTE. 
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Figure C.6 Performance comparison with JEME based on the enrichment analyses.  
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Figure C.7 Performance comparison with existing methods based on the 
enrichment of experimental chromatin interactions. 
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Figure C.8 Cross-cell-type comparison with TargetFinder. 
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Figure C.9 Evaluating the accuracy of predicted enhancer-gene links based on 
different epigenomic datasets. 
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Figure C.10 Example of predicted multi-enhancer regulations. 
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Figure C.11 Example of predicted multi-enhancer regulations. 
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Figure C.12 Co-binding analysis based on TF motif occurrence. 

 

Figure C.13 Example of direct chromatin interactions between co-regulating 

enhancers. 
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Figure C.14 ComMUTE discovers clear TF grammars for gene regulations.  
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Figure C.15 Convergence of ComMUTE. 
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APPENDIX D 

SUPPLEMENTARY FIGURES FOR CHAPTER 5 

 

Figure D.1 Summary of training dataset generation and confounding factor 

controls. 
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Figure D.2 Predictive power of features are supported by the differential 
distributions of features. 
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Figure D.3 Advanced feature dimension reduction is needed due to the risk of 

overfitting. 
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Figure D.4 Hierarchical network-community detection based on the PPI network to 
construct model-level TF PPI features. 
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Figure D.5 PPI community detection based on the MCL. 
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Figure D.6 Enrichment analysis and PPI support analysis for TF module pairs. 
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Figure D.7 Model performance as a function of the number of decision trees. 
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Figure D.8 Performance of ProTECT using different epigenomic signals. 
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Figure D.9 Performance comparison based on the imbalanced training data and the 
genomic bin-split cross-validation. 
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Figure D.10 Performance comparison using five Hi-ChIP datasets. 
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Figure D.11 Performance comparison using four different ChIA-PET datasets. 
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Figure D.12 Performance comparison based on different combinations of Hi-C data 
and TF ChIP-seq data. 
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Figure D.13 Summary of genome-wide predictions by ProTECT in GM12878 and 
K562. 
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Figure D.14 Validation of ProTECT predicted enhancer-gene links with enhancer 
degree greater than one. 
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Figure D.15 Performance comparison with the ABC model in the whole genome-
wide. 
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Figure D.16 Comparing the TF PPI abundance score in the Hi-C supported 
enhancer-gene links and the ProTECT predictions. 
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Figure D.17 Examples of prioritized module-level TF PPIs features. 
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Figure D.18 Identification of the directions of TF PPI features. 
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Figure D.19 Differential pathway enrichments of genes regulated by different 
module-level TF PPIs based on the ProTECT predictions. 
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Figure D.20 QTL enrichment analysis in K562. 
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Figure D.21 ProTECT predicts enhancer-gene links based on the imputed TF 
binding sites. 
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