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ABSTRACT

MULTI-MARKER GENETIC ASSOCIATION AND INTERACTION TESTS FOR
SURVIVAL OUTCOMES

By

Di Wu

With advancements in high-throughput technologies, studies have been conducted to

investigate the role of massive genetic variants in human diseases. While multi-marker tests

have been developed for binary and continuous disease outcomes, there are few such tests

available for time-to-event outcomes. The existing tests have various drawbacks, including

slow computation speed, being conservative in small samples, incapability of dealing with

confounding, etc. To facilitate the genetic association and interaction analyses of time-

to-event outcomes, we develop four suites of novel multi-marker survival tests for genetic

association and interaction. The new tests address all the drawbacks of the existing tests.

Furthermore, they can account for potential genetic heterogeneity to enhance power and deal

with left truncation of survival data. Some of the new tests can handle competing risks, and

some apply to interval-censored data. Simulation studies show that the new tests perform

very well in finite samples of various sizes. When the genetic effect is heterogeneous across

individuals/subpopulations, the new association tests considering genetic heterogeneity are

more powerful than the existing tests, which do not account for genetic heterogeneity. Using

the new methods, we performed genome-wide association analyses of 1) age to Alzheimer’s

disease data from the Religious Orders Study and the Rush Memory and Aging Project

(ROSMAP) and 2) age to early childhood caries data from a dbGaP study, Dental Caries:

Whole Genome Association and Gene x Environment Studies.
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CHAPTER 1 Introduction

1.1 Introduction and literature review

Advances in high throughput sequencing (HTS) technologies have been used to create large

datasets, which enables researchers to comprehensively investigate the insights of a wide-

ranging catalog of variants (e.g., single nucleotide polymorphisms (SNPs), gene expression,

and copy number variations). Also, with HTS technologies, genome-wide association studies

(GWAS), and whole-genome/exome sequencing association studies can be used to detect

the association between novel genetic variants and complex human diseases. A case-control

study has been a popular experiment designed in genetic association studies, by comparing

the frequency of SNP alleles in two groups of individuals: 1) cases who have been diagnosed

with the target disease and 2) controls who are randomly selected and disease-free. Although

case-control is one of the primary tools in identifying genetic variants that are associated

with disease susceptibility, there is increased interest in studying the genetic association with

survival outcomes such as age-to-onset of cancer diagnosis (Nagy, Munkácsy, and Győrffy,

2021; Huang et al., 2017, 2009; Azzato et al., 2010), progressive supranuclear palsy (PSP)

(Jabbari et al., 2021), and alcohol dependence (Kapoor et al., 2014). The reason behind

this increasing interest is that, with the continued growth of longitudinal data in healthcare

research, a cohort study is becoming more and more popular in experiment design. In cohort

studies, working with survival outcomes has been shown to be more powerful in detecting the

association between SNPs and the onset of a wide range of human phenotypes (van der Net

et al., 2008; Staley et al., 2017; Hughey et al., 2019), because in addition to binary outcomes

(i.e. disease occurrence), survival outcomes also provided information about age/time of the

disease onset. Numerous studies in cancer research, for example, lung cancer (Beer et al.,
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2002; Chen et al., 2007; Yu et al., 2008) and breast cancer (Shu et al., 2012; Azzato et al.,

2010), have demonstrated the prediction of survival outcomes using genetic markers allow

the identification of high-risk individuals at an early stage of disease, therefore additional

treatment can be given after primary treatment to prevent the recurrence of the disease.

HTS technologies are able to sequence millions of DNA molecules at a time, producing

120Gb data in less than 30 hours. Despite the comprehensive insights about DNA molecules,

one challenge is the high dimensionality of the sequencing dataset. Single variant tests

identify important genetic variants by assessing their marginal effects individually. However,

this suffers from 1) low efficiency when there exists a complex relationship between multiple

genetic variants and the phenotype, 2) high computation burden due to a massive number

of genetic variants, 3) low statistical power on rare variants unless sample size or effect size

is large (Lee et al., 2014), 4) fewer SNPs meet the threshold after correcting for multiple

testing issue due to a large number of genetic variants. To address these issues, a biologically

relevant region (e.g., genes, genetic pathways) is tested instead of a single variant. Such

region-based test enables the aggregation of association signals from rare variants to boost

statistical testing power. Moreover, the results of region-based genetic association analyses

are more interpretable and reproducible, since the effect of single variants in a biological

region is integrated, therefore the test is robust for the effect of poorly annotated single

variant (Subramanian et al., 2005; Beyene et al., 2009; Goeman et al., 2005).

Kernel method has been extensively used in machine learning applications (Hofmann,

Schölkopf, and Smola, 2008). By applying feature mapping functions, the kernel method en-

ables researchers to view data from a different perspective and capture complex relationships

between predictive variables and response variables. Some popular applications of the kernel
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method are support vector machine (SVM) classifier, kernel principal component analysis

(kernel PCA) for dimension reduction, and kernel K-means for clustering. Kernel machine

regression (KMR) is a more general and rigorous framework that applies the kernel method

in regression analysis. In the past two decades, numerous set-based genetic association tests

for survival outcomes were developed based on KMR (Cai, Tonini, and Lin, 2011; Goeman

et al., 2005; Sinnott and Cai, 2013; Chen et al., 2014). These tests have been shown to

detect novel genes or genetic pathways associated with age-to-onset of human diseases such

as breast cancer and obesity.

However, the existing KMR-based tests for survival outcomes have several drawbacks: 1)

the test is time-consuming for permutation-based globaltest: gt (Goeman et al., 2005), kernel

machine Cox regression: coxKM (Cai, Tonini, and Lin, 2011), and kernel machine regression

under accelerated failure time (AFT) model: aftKM (Sinnott and Cai, 2013), they rely on

resampling procedures (1-10K permutations) to approximate the null distribution of test

statistic, thereby compute p-value, which is time-consuming as shown in simulation results

in Chapter 2. 2) asymptotic theory-based globaltest (Goeman et al., 2005), KMR for AFT

model (Sinnott and Cai, 2013), and the score-based sequence kernel association test (SKAT)

for Cox regression: CoxSKATs (Chen et al., 2014) are not reliable under moderate sample

size (n=150). This is demonstrated by the uniform Quantile-Quantile (QQ) plots of p-value

in simulation results in Chapter 2, it can be observed that there is an obvious deviation

from the uniform distribution. 3) The major existing KMR-based association tests assume

genetic homogeneous effect, where the genetic effects are identical across different individuals

or subpopulations. All existing KMR-based association test are subject to power loss when

the genetic variants in the target population have a heterogeneous effect, where genetic effects
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vary across individuals and (un)observable subpopulations. Studies (McClellan and King,

2010; Galvan, Ioannidis, and Dragani, 2010) suggested that genetic heterogeneity is more

suitable in capturing genetic effects in genetic research of complex human diseases, because

through the evolutionary history of human genetics, the same genetic marker may possess

numerous different rare mutations, and each rare mutations may lead to different phenotype

in different individuals and environments. 4) coxKM (Cai, Tonini, and Lin, 2011) is not

accurate when there exists observable confounder. As shown in simulation results in Chapter

2, when in the presence of adjustment covariates that are linearly correlated with genetic

markers, coxKM becomes anti-conservative and the QQ plot deviates from Uniform(0, 1).

5) the existing genetic association tests: globaltest (Goeman et al., 2005), CoxSKATs

(Chen et al., 2014), coxKM (Cai, Tonini, and Lin, 2011), and aftKM (Sinnott and Cai,

2013) all studied right-censored data, but not applicable to survival times that subject to

general interval-censoring, which arise in many important studies of complex human diseases:

age-related macular degeneration (AMD) (Sun and Ding, 2019) and breast cancer (Kim,

Williamson, and Lin, 2016). To address the drawbacks of existing KMR-based tests and to

facilitate the genetic association and interaction analyses of interval-censored time-to-event

outcomes, four suites of multi-marker survival tests were developed based on weighted V

statistics.

1.2 Organization of this dissertation

In the rest of this dissertation, a series of novel association and interaction tests were devel-

oped based on different types of survival outcomes or survival models. They are organized

as follows. In Chapter 2, we assume that survival times follow Cox proportional hazards

model with possible covariate adjustment and left truncation. In Chapter 3, we assume that
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survival times follow a semiparametric transformation model and are subject to interval

censoring, with possible covariate adjustment and left truncation. In Chapters 4 and 5, we

assume that survival times respectively follow the accelerated failure time (AFT) model and

the additive hazards model subject to competing risk and left truncation. Finally, Chapter

6 describes concluding remarks and future works based on this dissertation.
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CHAPTER 2 Multi-marker genetic association and interaction tests for sur-

vival outcomes based on weighted V statistics

2.1 Methods

A set of genetic association and interaction tests are developed for survival times that follow

Cox proportional hazard (PH) model, with or without considering adjustment covariates and

left truncation time.

2.1.1 Association tests

Consider a cohort study with n independent individuals, who are disease-free when entering

the study. Let G = (G1, . . . ,Gp) denotes p-dimentional genetic marker we are interested

in. Gj = {Gij}ni=1 is the j-th genetic marker that represents either a gene expression, a

SNP (coded by 0, 1, or 2) or a genetic pathway. To mimic linkage disequilibrium (LD)

structure in real world application, we assume that there is moderate correlation between

genetic markers of the underlying population. Let T and C denote respectively survival

time and right censoring time, then the observed survival outcome for each individual is

denoted as (A, T̃ ,∆), where A is truncation time (i.e., individual’s age at study entry),

T̃ = min(T,C), and ∆ = I(T ≤ C) is an indicator for event (∆ = 1) or censoring (∆ = 0).

When adjust for covariates, a k-dim time-invariant baseline covariates Z = (Z1, . . . ,Zk)

is considered to reduce confounding and/or increase test power. We developed two sets

of association test by assuming the effect of G is either homogeneous or heterogeneous

across sub-population structure indicated explicitly by d-dim variable X = (X1, . . . ,Xd) or

implicitly by observable/latent variables inferred by X. Denote the observed data as D =

(A, T̃ ,∆,G,Z,X), where X exists only when considering genetic heterogeneity. We assume

non-informative censoring and left truncation given G and Z (and X when considering

6



genetic heterogeneity).

In the absence of genetic heterogeneity, without covariate adjustment

Under the null hypothesis that G is not associated with the time-to-onset of the interesting

event when do not adjust for Z, we assume that the survival time follows a Cox proportional

hazard (PH) model with hazard function, λ(t) = λ0(t), where λ0(t) is unspecified baseline

hazard function. The cumulative hazard function Λ(t) =
∫ t

0
λ(s)ds will be estimated non-

parametrically by using the Nelson-Aalen estimator. The proposed association test is based

on the following weighted V statistic,

V = n−2

n∑
i=1

n∑
j=1

f̃(Gi,Gj)MiMj, (2.1)

where Mi = Ni(∞) −
∫∞
0
Yi(s)λ(s)ds is martingale residual of subject i, where Ni(t) =

I(Ui ≤ t,∆i = 1) and Yi(t) = I(Ui ≥ t)} are corresponding counting process and at-risk

process. The test statistic includes two parts 1) V statistic kernel MiMj and 2) weight

function f̃(Gi,Gj), which is a centered genetic similarity between subject i and j,

f̃(Gi,Gj) = f(Gi,Gj)− E[f(Gi,Gj)|Gi]− E[f(Gi,Gj)|Gj] + E[f(Gi,Gj)], (2.2)

where f(Gi,Gj) is a kernel function (e.g., IBS, Gaussian kernel). The test statistic is

constructed such that when G is significantly associated with the event of interest, we

expect a large phenotype similarity,MiMj, weighted by a large genetic similarity, f̃(Gi,Gj),

leading to a large V ∗ value, therefore the test will have small p-value.

Now we want to derive the asymptotic null distribution of V . By Mercer’s Theorem (Cris-
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tianini and Shawe-Taylor, 2000), under regularity conditions, we can decompose f̃(Gi,Gj)

as f̃(Gi,Gj) =
∑∞

l=1 λlψ(Gi)ψ(Gj), where {λl}∞l=1 and {ψl(·)}∞l=1 are eigenvalues and eigen-

functions of f̃(·, ·). We then have

nV =
∞∑
t=1

( 1√
n

n∑
i=1

√
λtψt(Gi)Mi

)2

. (2.3)

Theorem 1. Suppose that η ≡ E(M2
i ), where M = N(∞) −

∫∞
0
Y (s)dΛ(s), is a finite-

positive number and E[f̃(Gi,Gj)] < ∞. Under the null hypothesis that T is independent

of G, nV ⇝ η
∑∞

t=1 λtχ
2
1t, where χ

2
1t’s are independent χ2 random variables with degree of

freedom 1.

Following Theorem 1, we can show that the asymptotic null distribution of nV is a

weighted sum of independent degree one χ2 random variables.

In real application, we estimate Λ(t) by Nelson-Aalon estimator, Λ̂(t) =
∫ t

0
dN(s)/Y (s),

where N(t) =
∑n

i=1Ni(t), Y (t) =
∑n

i=1 Yi(t). f̃(Gi,Gj) is estimated from observed data by

(I − J)F (I − J), where F = {f(Gj,Gj)}n×n, I is a n× n diagonal matrix, and J is a n× n

matrix with all elements equal 1. The test statistic can be written as

V = M̂(I − J)TF (I − J)M̂, (2.4)

where M̂ = (M̂1, . . . , M̂n)
T , with M̂i = Ni(∞) −

∫∞
0
Yi(s)d ˆΛ(s). We approximates λ =

E(M2
i ) by using λ̂ = M̂TM̂/n and ηt by using η̂t = η̃t/n, where {η̃t}nt=1 are eigenvalues of
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(I − J)TF (I − J). The asymptotic null distribution of V can be approximated by

nV ∼ λ̂

n∑
t=1

η̂tχ
2
1t, (2.5)

where {χ2
1t}nt=1 are χ

2 random variables with 1 degree of freedom. Based on this linear com-

bination of independent χ2 random variables, the p-value can be calculated using Davies’

method (Davies, 1980), P (nV ≥ nVobs), where Vobs is observed value of V . This is imple-

mented using R function ”davies” in R package ”CompQuadForm”.

In the absence of genetic heterogeneity, with adjustment covariates

The association test considering adjustment covariates, Z, is similar to the test without

covariate adjustment. We now assume that the survival time for subject i conditional on Z

follow a Cox PH model with below hazard function

λ(t|Zi) = λ0(t) exp{βTZi}

and covariate-centered genetic similarity as follow

f̃Z(Gi,Gj)

= f(Gi,Gj)− E[f(Gi,Gk)u(Zk,Zj)|Gi,Zj]− E[f(Gj,Gk)u(Zk,Zi)|Gj,Zi]

+E[u(Zi,Zm)f(Gm,Gk)u(Zk,Zj)|Zi,Zj],
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where u(Zi,Zj) = (1,ZT
i )

T [E{(1,ZT )T (1,ZT )}]−1(1,ZT
j )

T . The covariate-adjusted weighted

V statistic can be written as

VZ =
1

n2

n∑
i=1

n∑
j=1

f̃Z(Gi,Gj)MZ,iMZ,j, (2.6)

where MZ,iMZ,j is considered ij-th V statistic kernel that measures phenotype similarity,

f̃Z(Gi,Gj) is covariate-centered kernel matrix that measures genetic similarity. The larger

(smaller) phenotype similarity weighted by larger (smaller) genetic similarity, leads to larger

(smaller) V statistic value and smaller (larger) p-value.

Theorem 2. Suppose that ξ ≡ E(M2
Z,i) is a finite positive number and E[f̃Z(Gi,Gj)] <∞.

When T is independent of G given Z and G is independent of Z, nVZ ⇝ ξ
∑∞

t=1 νtχ
2
1t,

where {χ2
1t}∞t=1 are independent χ

2 random variables with 1 degree of freedom and {νt}∞t=1 are

eigenvalues of f̃Z(Gi,Gj) =
∑∞

t=1 νtϕ(Gi,Zi)ϕ(Gj,Zj) with E(ϕs(G,Z)ϕt(G,Z)) = I(s =

t). The same asymptotic null distribution holds when f(Gi,Gk) is cross-product kernel and

G is linearly related to Z through G = a +BTZ + e, where a and B are constant intercept

and regression coefficient matrix and e is zero mean random error vector that is independent

of Z.

When G is independent of Z, both test statistics, V and VZ, are asymptotically valid,

with VZ more powerful. When Z is correlated with both G and survival outcome, then

Z is an observable confounder. Under the linear confounding effect, Theorem 2 implies

that the covariate-adjusted weighted V test with cross-product kernel genetic similarity is

asymptotically correct.

In real application, we can obtain maximum partial-likelihood estimate for β and Breslow
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estimator for cumulative baseline hazard function Λ0(t), denoted as β̂ and Λ̂0(t), by fitting

a CoxPH model (Andersen and Gill, 1982) to the observed data D. With β̂ and Λ̂0(t), we

have estimated martingale residual for subject i as M̂Z,i = Ni(∞)−
∫∞
0
Yi(s) exp(β̂

T
Z)dΛ̂0(s).

The covariate-centered genetic similarity kernel f̃Z(Gi,Gj) is approximated using observed

sample by (I−H)TF (I−H). The covariate adjusted weighted V statistic can be written as

VZ = M̂T
Z(I−H)TF(I−H)M̂Z, (2.7)

where M̂Z = (M̂Z,i, . . . , M̂Z,n)
T , I is n×n diagonal matrix,H = Z̃(Z̃T Z̃)−1Z̃T with Z̃ = (1,Z)

is a n × (k + 1) matrix with elements in the first column equal 1. The asymptotic null

distribution of nVZ can be approximated by

nVZ ∼ ξ̂
n∑

t=1

ν̂tχ
2
1t, (2.8)

where ξ̂ = M̂T
ZM̂Z/n is an approximation of ξ = E(M2

Z,i), ν̂t = ν̃t/n with {ν̃t}′s are eigenval-

ues of (I−H)TF(I−H). When dimension of Z, denoted as k (k < n), is large relative to n,

formula 2.8 is replace with n
n−k−1

ξ̂
∑n

t=1 ν̂tχ
2
1t to take into account of the projection operator

(I−H) as mentioned in Wei and Lu (2017). Based on this distribution, linear combination

of independent χ2 random variable with 1 degree of freedom, p-value can be achieved using

Davies’ method (Davies, 1980), P (nVZ ≥ nVZ,obs), where VZ,obs is the observed value of VZ.

In the presence of genetic heterogeneity

In the association tests introduced above, we assume the effect of G is homogeneous. How-

ever, genetic heterogeneity is more appropriate in genetic research of complex human disease.
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In this section, we extend the proposed association tests, V and VZ, to take into considera-

tion genetic heterogeneous effect, by replacing F matrix in hazard function 2.4 and 2.7 with

W = (J+K)⊙ F, where ⊙ is element-wise matrix product and K = {k(Xi,Xj)}n×n mea-

sures similarity of observable/latent subpopulation structure imposed by variable X. The

resulting weighted V statistic with or without covariates adjustment are


V H = M̂T (I− J)W(I− J)M̂,

V H
Z = M̂T

Z(I− J)W(I− J)M̂Z.

The asymptotic null distribution of V H and V H
Z can be derived similarly as other association

tests introduced in previous sections, by replacing F with W. Using Davies’ method (Davies,

1980), the p-values can be computed, respectively, by P (nV H ≥ nV H
obs) and P (nV H

Z ≥

nV H
Z,obs), where V

H
obs and V

H
Z,obs are observed values of V H and V H

Z .

2.1.2 G-G/G-E interaction test

Let G = (G1, . . . ,Gp) be the gene of interest. In testing G-G interaction effect, we assume

the effect of G depends on another gene H = (H1, . . . ,Hq). To test the G-G interac-

tion effect, we assume that the survival time follow a Cox PH model with hazard function

λ(t|G,H) = λ0(t) exp{βTG+αTH}. The maximum partial-lkelihood estimates of (β,α) is

denoted as (β̂, α̂), Λ0(t) is estimated by using Breslow estimator, denoted as Λ̂0(t). We then

have M̂i = Ni(∞) −
∫∞
0
Yi(s) exp(

∑p
k=1Gikβ̂k +

∑q
l=1Hilα̂l)dΛ̂0(s). The G-G interaction

test is based on the following weighted V test statistic

VI = M̂T (I−O)(F⊙K)(I−O)M̂,
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where O = Q(QTQ)−1QT with Q = (1,G,H) is a n× (1 + p + q) matrix with all element

in first column equal 1. F ⊙ K is element-wise matrix product of F and K with F =

{f(Gi,Gj)}n×n and K = {k(Hi,Hj)}n×n. The asymptotic null distribution of nVI can be

approximated, similarly as nVZ, by linear combination of independent χ2 distribution. When

p + q is large relative to n, we multiply the approximated asymptotic null distribution by

n/(n − p − q + 1) to take into account the project operator (I − O). The corresponding

p-value is obtained using Davies’ method (Davies, 1980), P (nVI ≥ nVI,obs). In testing G-E

interaction effect, the test can be conducted similarly as G-G interaction, except that H in

replaced with an environmental variable.

2.2 Simulations

We performed Monte Carlo simulation to assess the finite-sample performance of the weighted

V test considering adjustment covariates, in absence of left-truncation time. In all simulation

settings, unless otherwise specified, three different sample sizes, n = {500, 1000, 1500}, and

three different SNP-set sizes, p = {5, 10, 15} were considered. The genetic covariates we con-

sidered are SNP-set with each SNP generated from a Binomial(2, 0.2). When considering

confounding effects, SNP-set will be replaced by gene expression values. Two adjustment

covariates were considered for each subject, one binary Z1 ∼ Bernoulli(0.5) and one contin-

uous Z2 ∼ Uniform(0, 2). Survival times were assumed to follow the Cox PH model, which

was generated from an exponential distribution with rate λ. The λ value varies in differ-

ent scenarios to control the right censoring rate at moderate level (between 20% and 40%).

The assessment of the empirical size and statistical power were based on, respectively, 2000

and 1000 Monte Carlo samples, and the significance level of a test was set at 0.05, unless

otherwise specified in the scenario when testing genetic association under various stringent
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p-value thresholds.

2.2.1 Testing genetic association in the absence of genetic heterogeneity

In this series of simulations, empirical size and power of test VZ was assessed in detecting the

association between a SNP-set and onset of target event. To demonstrate the advantages

of weighted V test, the performance of VZ was compared with three existing tests: coxKM

(R package ’coxKM’), asymptotic version gt (R package ’globaltest’), and coxSKAT LRT.

Survival times for subject i(i = 1, . . . , n) was generated from exponential distribution with

following rate

λ(t|Gi,Zi) = λ0(t) exp{
p∑

j=1

βjGij +
2∑

k=1

0.5Zik}, (2.9)

where λ0(t) and {βj}pj=1 vary between scenarios.

Computation time comparison between Weighted V statistic (WV), coxKM, gt

(asymptotic version), and coxSKATs

We compared computation times of WV, coxKM, gt, and coxSKATs under the null hypothe-

sis of no genetic association. Survival time for subject i was assumed to follow Cox PH model

with hazard function 2.9 where λ0(t) = 1 and {βj}′s = 0. The cross-product kernel was used

to measure genetic similarity. Three sample sizes n = 150, 500, 1000 and one SNP-set size

p = 5 were considered. Table 2.1 shows that WV and asymptotic version gt are comparably

fast, while coxKM is the slowest due to the resampling procedure to achieve the test statistic

large sample null distribution and p-value.
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Table 2.1 Computation time (seconds) of WV, coxKM, gt and coxSKATs under the null
hypothesis of no genetic association and p = 5.

Sample Size WV coxKM gt coxSKATs

150 0.07 0.30 0.03 0.09

500 0.24 1.78 0.23 0.36

1000 1.41 8.22 1.76 2.13

Comparison of empirical size of WV, coxKM, gt (asymptotic version), and

coxSKATs under moderate sample size

We investigated the empirical sizes of WV, coxKM, gt, coxSKATs under moderate sample

size n = 150 and SNP-set size p = 5. Other simulation settings were the same as the

simulation above. Figure 2.1 indicates that both WV and coxKM tests are asymptotically

correct while gt and coxSKATs are not because the QQ plot of their p-values deviates

from Uniform(0, 1) distribution. Therefore, only WV and coxKM were investigated for the

following simulations.

Empirical size and power under various n’s and p’s

In this simulation, the performance of WV and coxKM tests were investigated under various

n and p. Survival time for subject i was assumed to follow Cox PH model with hazard

function 2.9 where λ0(t) = 0.5, {βj}’s were set to 0 or 0.1 for empirical size and power

assessment. IBS kernel is used to measure genetic similarity. Table 2.2 indicates that Type I

error of both WV and coxKM are close to the nominal level and have comparable statistical

power under various n’s and p’s.

Empirical size and power under linear confounding effect

In this simulation, the genetic covariates of our interest are gene expression values G =

(G1, . . . ,Gp), where Gi = Zi1 + Zi2 + ei. ei ∼ MVN(0,Σ) is p-dim multivariate normal
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Table 2.2 Empirical size and power comparison between WV and coxKM in testing
association of a SNP set with right-censored survival time in the absence of genetic

heterogeneity, adjusting for covariates.

Empirical Size (Power)
p=5, n=500 p=5, n=1000 p=5, n=1500

WV 0.054 (0.208) 0.049 (0.445) 0.055 (0.601)
coxKM 0.052 (0.244) 0.054 (0.430) 0.045 (0.627)

p=10, n=500 p=10, n=1000 p=10, n=1500
WV 0.038 (0.335) 0.052 (0.631) 0.055 (0.819)

coxKM 0.041 (0.337) 0.051 (0.630) 0.040 (0.846)
p=15, n=500 p=15, n=1000 p=15, n=1500

WV 0.046 (0.507) 0.049 (0.853) 0.046 (0.974)
coxKM 0.038 (0.473) 0.034 (0.886) 0.045 (0.976)
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Figure 2.1 Uniform(0, 1) Q-Q plots of p-values for WV, coxKM, gt and coxSKATs under
n = 150, p = 5 and the null hypothesis of no genetic association.

random error with covariance matrix Σ = {0.5|i−j|}p×p. Cross-product kernel was used to

measure gene expression similarity for both WV and coxKM tests. Survival times were

generated similarly as previous simulation, except G is replaced by the gene expression

16



values. Sample size n = 500 and SNP-set size p = 5 is considered. Type 1 error of WV

is 0.0475, which is close to nominal level, while Type I error of coxKM (0.0185) is far from

nominal level. This can also be observed from the Uniform(0, 1) Q-Q plot in Figure 2.2.

2.2.2 Testing genetic association in the presence of genetic heterogeneity

In this series of simulations, we investigated the performance of HWV in testing genetic

association with age-to-onset of target event, considering genetic heterogeneity across four

different sources: 1) heterogeneity across four observable subpopulations, 2) heterogeneity

across two latent subpopulations, 3) heterogeneity across twenty latent subpopulations, and

4) heterogeneity across genome profile.

Genetic heterogeneity across four observable subpopulations

In this simulation, we investigated the empirical size and power of HWV and coxKM in

the presence of genetic heterogeneity across four observable subpopulations inferred by

X = (X1,X2,X3), a three-dimensional dummy variable that codes four equally distributed

observable subpopulations. Survival time for subject i was generated from Cox PH model

with the following hazard function

λ(t|Gi,Xi) = exp
{ p∑

k=1

(β1Xi1 + β2Xi2 + β3Xi3 + β4)Gik

+0.6Xi1 + 0.6Xi2 + 0.2Xi3

}
.

We set (β1, β2, β3, β4) to be (0, 0, 0, 0) and (0.5, 0.005, 0.001, 0.0005) for, empirical size

assessment and power assessment, respectively. IBS kernel was used to measure genetic sim-

ilarity and identity kernel, {I(Xi = Xj)}n×n, was used to measure subpopulation similarity

in HWV. Two sample sizes n = {500, 750} and three SNP-set sizes p = {5, 10, 15} were
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considered. Table 2.3 shows that both HWV and coxKM control Type I error well around

nominal level under various sample sizes and SNP-set sizes. However, HWV is more powerful

than coxKM in presence of genetic heterogneity across four observable subpopulations, by

taking advantage of the background similarity when conducting the test.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

WV

Theoretical Quantile

S
a
m

p
le

 Q
u

a
n

ti
le

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

coxKM

Theoretical Quantile

S
a
m

p
le

 Q
u

a
n

ti
le

Figure 2.2 Uniform(0, 1) Q-Q plots of p-values for WV and coxKM under linear
confounding and the null hypothesis of no genetic association.

Table 2.3 Empirical size and power comparison between HWV and coxKM in the presence
of genetic heterogeneity across four observable sub-populations, adjusting for covariates.

Empirical Size (Power)
p=5, n=500 p=5, n=750

HWV 0.054 (0.801) 0.049 (0.963)
coxKM 0.047 (0.618) 0.047 (0.811)

p=10, n=500 p=10, n=750
HWV 0.052 (0.942) 0.046 (0.997)
coxKM 0.045 (0.799) 0.055 (0.975)

p=15, n=500 p=15, n=750
HWV 0.043 (0.931) 0.050 (0.998)
coxKM 0.044 (0.857) 0.049 (0.984)

Genetic heterogeneity across two latent subpopulations

In this simulation, we investigated the empirical size and power of HWV and coxKM in the

presence of genetic heterogeneity across two latent subpopulations. The survival time for
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subject i in subpopulation j was generated from Cox PH model with the following hazard

function

λ(t|Gij,Zij) = 0.5 exp{
p∑

k=1

Gijkβjk + 0.5Zij1 + 0.5Zij2}, (2.10)

where βjk represents the effect of Gk (k = 1, . . . , p) in subpopulation j (j = 1, 2). One-

dimensional covariate X = {Xi}ni=1 was generated to infer two latent subpopulations. Each

element is Xi = ai+1+ ei, where ai ∼ Bernoulli(0.5) and ei ∼ Normal(0, 0.25). IBS kernel

was used to measure genetic similarity and unified kernel to measure latent subpopulation

similarity. Table 2.4 shows that Type I error of HWV is close to nominal level under various

n’s and p’s, while coxKM could be conservative when p is large relative to n (e.g., under

p=15, n=500). Table 2.5 shows power comparison of HWV and coxKM under four different

scenarios: T1, T2, T3, and T4. It can be observed that in the absence of genetic heterogeneity

(scenario T1 β1k = β2k ̸= 0), HWV is less powerful than coxKM since the genetic effect in the

underlying population is homogeneous. However, in the presence of genetic heterogeneity

(scenario T2, T3, T4), HWV is more powerful than coxKM and as heterogeneity size (|β1k−

β2k|) increases, HWV gains more power.

Genetic heterogeneity across twenty latent subpopulations

In this simulation, we investigated empirical sizes and power of HWV and coxKM in the

presence of genetic heterogeneity across twenty latent subpopulations. The simulation setting

is same as above except the number of subpopulations increased to twenty. The regression

coefficients, {βj = (βj1, . . . , βjp), s.t. βj1 = . . . , βjp}20j=1, in hazard function 2.10 were set to

0 for empirical size assessment. In power assessment, {βj}20j=1 were generated from uniform

distribution with mean µβ and standard deviation σβ. To infer the twenty subpopulation
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Table 2.4 Empirical size comparison between HWV and coxKM in testing genetic
association in the presence of genetic heterogeneity across two latent sub-populations,

adjusting for covariates.

Empirical Size

p=5, n=500 p=5, n=1000 p=5, n=1500

HWV 0.050 0.051 0.056

coxKM 0.048 0.061 0.051

p=10, n=500 p=10, n=1000 p=10, n=1500

HWV 0.050 0.054 0.046

coxKM 0.034 0.049 0.046

p=15, n=500 p=15, n=1000 p=15, n=1500

HWV 0.051 0.047 0.046

coxKM 0.038 0.039 0.042

structure, we used X = (X1, . . . ,X25) to infer subpopulation structure. Xk = ak + ek (k =

1, . . . , 25), with ak is a length n bootstrap sample from {1, . . . , 20} and ek = (ek1, . . . , ekn) ∼

Normal(0, 0.5) is random error vector. IBS kernel was used to measure genetic similarity

in HWV and coxKM. Unified kernel was used to measure subpopulation similarity in HWV.

Table 2.6 shows both HWV and coxKM control Type I error well around nominal level,

with an minor exception that under p = 15, n = 500, coxKM is slightly conservative due to

relatively small sample size issue. Figure 2.3 shows power comparison under p = 15, n =

1000. It can be observed that as average genetic effect size increases (µβ = 0, 0.02, 0.03),

both HWV and coxKM gains power. However, for a fixed average genetic effect (µβ), as

genetic heterogeneity effect increases (σβ = 0.02, 0.04, 0.06), power of coxKM does not change

much, while HWV gains substantially more power by considering subpopulation structure

in performing the association test.
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Table 2.5 Power comparison between HWV and coxKM in the presence of genetic
heterogeneity across two latent sub-populations, adjusting for baseline covariates.

Heterogeneity Scenario†
T1 T2 T3 T4

β1k +0.09 +0.13 +0.02 +0.04 0 0 +0.01 -0.01

β2k +0.09 +0.13 -0.02 -0.04 +0.02 +0.04 +0.05 +0.03

p=5, n=500
HWV 0.11 0.25 0.10 0.27 0.06 0.11 0.09 0.10

coxKM 0.28 0.60 0.04 0.06 0.06 0.07 0.08 0.04

p=5, n=1000
HWV 0.24 0.59 0.18 0.48 0.08 0.17 0.18 0.15

coxKM 0.57 0.91 0.04 0.04 0.05 0.07 0.09 0.04

p=5, n=1500
HWV 0.42 0.86 0.20 0.64 0.09 0.21 0.22 0.21

coxKM 0.84 0.99 0.05 0.04 0.06 0.08 0.11 0.05

p=10, n=500
HWV 0.10 0.25 0.27 0.77 0.10 0.30 0.29 0.27

coxKM 0.46 0.84 0.04 0.04 0.04 0.06 0.07 0.05

p=10, n=1000
HWV 0.25 0.69 0.48 0.98 0.16 0.51 0.55 0.51

coxKM 0.83 1.00 0.05 0.04 0.05 0.07 0.10 0.04

p=10, n=1500
HWV 0.44 0.94 0.69 1.00 0.21 0.67 0.71 0.70

coxKM 0.96 1.00 0.05 0.05 0.07 0.08 0.10 0.04

p=15, n=500
HWV 0.09 0.22 0.54 0.98 0.19 0.58 0.58 0.56

coxKM 0.56 0.93 0.05 0.04 0.04 0.05 0.06 0.05

p=15, n=1000
HWV 0.22 0.72 0.86 1.00 0.34 0.87 0.87 0.86

coxKM 0.93 1.00 0.03 0.05 0.05 0.08 0.12 0.05

p=15, n=1500
HWV 0.43 0.98 0.94 1.00 0.46 0.95 0.96 0.95

coxKM 0.99 1.00 0.05 0.06 0.05 0.09 0.16 0.06

† Various heterogeneity scenarios were investigated in this simulation, determined by values of β1k and
β2k, including same effect size with same direction (T1), same effect size with opposite directions (T2),
no effect in one sub-population while positive effect in the other (T3), and different effect sizes with same
or opposite directions (T4).

Genetic heterogeneity across individual genome profile

In this simulation, instead of assuming a ’categorical’ subpopulation structure like previous

two simulations did, we now assume that the subpopulation structure is ’continuous’. In

other words, each individual is itself a subpopulation and genetic variants have varied effect

across individuals. We used a genome profile of 1,000 SNPs, X = (X1, . . . ,X1000), to infer

subpopulation structure. X was generated in three steps, 1) generate genetic effect sizes

{βi = (βi1, . . . , βip), s.t. βi1 = . . . = βip}ni=1 from uniform distribution with mean µβ and

variance σ2
β, 2) generate a n-dim vector Xd (d = 1, . . . , 1000) from MVN(0,Σ), where
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Table 2.6 Empirical size comparison between HWV and coxKM in the presence of genetic
heterogeneity across 20 latent sub-populations, adjusting for covariates.

Empirical Size

p=5, n=500 p=5, n=1000 p=5, n=1500

HWV 0.052 0.055 0.051

coxKM 0.042 0.053 0.045

p=10, n=500 p=10, n=1000 p=10, n=1500

HWV 0.048 0.056 0.047

coxKM 0.046 0.043 0.050

p=15, n=500 p=15, n=1000 p=15, n=1500

HWV 0.047 0.040 0.044

coxKM 0.038 0.044 0.051

Σ is a n × n identity matrix under null hypothesis and {exp(−|βi1 − βj1|/σβ)}n×n under

alternative hypothesis, 3) categorize Xd (d = 1, . . . , 1000) into SNPs coded by 0, 1, or 2

by using predetermined quantile cutoffs: a2, 2a(1 − a), and (1 − a)2 of a standard normal

distribution where a is MAF generated from Beta(2, 5), to ensure the resulting population

is in HWE. Survival times were generated from Cox PH model with hazard function 2.10,

with {βj = (βj1, . . . , βjp), s.t. βj1 = . . . = βjp}nj=1 set to 0 for empirical size assessment and

sampled from uniform distribution with mean µβ and variance σ2
β for power assessment. IBS

kernel was used to measure genetic and genome profile similarity.

Results in Table 2.7 indicate that Type I error of both HWV and coxKM are close to

nominal level under various sample sizes (n) and SNP-set sizes (p). Figure 2.4 shows power

comparison of HWV and coxKM under p = 10, n = 1000. Figure 2.4 indicates that as

average genetic effect (µβ) increases, both tests gain power. However, for a fixed µβ, as

genetic heterogeneity size (σβ) increases, HWV gains substantially more power than coxKM

does.
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Table 2.7 Empirical size comparison of HWV and coxKM considering genetic heterogeneity
due to genomic profile, adjusting for covariates.

Empirical Size

p=5, n=500 p=5, n=1000 p=5, n=1500

HWV 0.041 0.057 0.049

coxKM 0.042 0.046 0.057

p=10, n=500 p=10, n=1000 p=10, n=1500

HWV 0.044 0.054 0.057

coxKM 0.045 0.044 0.057

p=15, n=500 p=15, n=1000 p=15, n=1500

HWV 0.042 0.047 0.050

coxKM 0.039 0.040 0.045

2.2.3 Testing G-G/G-E interaction effect

In this simulation, we investigated the performance of the weighted V test for G-G and G-E

interaction, denoted as WVI, and compared it with the likelihood ratio test (LRT).

For testing G-G interaction effect, two genes, G = (G1, . . . ,Gp) and H = (H1, . . . ,Hq),

were generated using a two-step procedure: 1) generate n samples from MVN(0,ΣG) and

fromMVN(0,ΣH), where ΣG = {0.3|k−l|}p×p and ΣH = {0.3|k−l|}q×q, to mimic LD structure

between k- and l-th SNP within gene G and H; 2) categorize each column into 0, 1 or 2 using

pre-defined cut-off values to achieve Hardy-Weinberg Equilibrium (HWE) and set MAF to

0.2. We assume survival time of subject i (i = 1, . . . , n) follow Cox PH model with the

following hazard function

λ(t|Gi,Hi) = 0.5 exp{
p∑

k=1

0.05Gik +

q∑
l=1

0.05Hil +

pq∑
m=1

βm(GH)im},

where (GH)im representsm-th interaction term of Gi and Hi. {βm}pqm=1 were set to 0 and 0.1

for empirical size and power assessment, respectively. Three sample sizes n = 500, 1000, 1500
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and two SNP-set sizes p = q = 2, 3 were considered. Cross-product kernel was used to

measure genetic similarity for both G and H.
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Figure 2.3 Power comparison between HWV and coxKM in the presence of genetic
heterogeneity across twenty latent subpopulations when p = 15 and n = 1000.

For testing G-E interaction effect, the simulation setting is similar to that of testing G-G

interaction, except that H = (H1,H2) is an two-dimensional environmental variable, with

H1 ∼ Bernoulli(0.5) andH2 ∼ Uniform(0, 2). The survival time for subject i (i = 1, . . . , n)

was generated from CoxPH model with the following hazard function

λ(t|Gi,Hi) = 0.5 exp
{ p∑

k=1

0.1Gik +
2∑

l=1

0.1Hil +

2p∑
m=1

βm(GH)m
}
, (2.11)

where (GE)m is m-th interaction term of G and H. One sample size n = 1000 and one

SNP-set size p = 10 was considered (q was fixed at 2 since H has two-dimension). IBS

kernel to measure genetic similarity and unified kernel for environmental similarity.
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Table 2.8 and 2.9 indicates that, in testing G-G and G-E interaction effect, Type I error

of WVI is close to nominal level while LRT could be slightly inflated under small sample

size and relative large SNP-set. Under all n’s and p’s WVI is more powerful than LRT as

expected because the asymptotic null distribution of WVI has a more effective degree of

freedom than LRT, therefore more powerful than LRT. The power advantages of WVI over

LRT increase with the strength of LD, measured by ρ in Σ = {ρ|k−l|}p×p.
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Figure 2.4 Power comparison between HWV and coxKM in the presence of genetic
heterogeneity across individual genome profiles when p = 10 and n = 1000.

2.2.4 Empirical size under stringent p-value thresholds

So far, we have investigated the empirical size of WV and HWV under a significance level

of 0.05. However, to account for multiple testing issues in GWAS, a more strict p-value

(5 × 10−3 or lower) is often considered. In this simulation, we investigated the empirical

size of 1) WV in absence of genetic heterogeneity, with p = 5, n = 1000 and 2) HWV in

the presence of heterogeneity across observable subpopulations with p = 10, n = 1000 under
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Table 2.8 Empirical sizes and powers of WVI and LRT in testing G-G interaction without
considering left truncation.

Empirical Size (Power)

p=2, q=2, n=500 p=2, q=2, n=1000 p=2, q=2, n=1500

WVI 0.050 (0.255) 0.056 (0.435) 0.051 (0.629)

LRT 0.055 (0.205) 0.054 (0.328) 0.052 (0.494)

p=3, q=3, n=500 p=3, q=3, n=1000 p=3, q=3, n=1500

WVI 0.057 (0.488) 0.059 (0.837) 0.057 (0.952)

LRT 0.072 (0.341) 0.064 (0.664) 0.052 (0.864)

Table 2.9 Empirical sizes and powers of HWV and LRT in testing G-E interaction without
considering left truncation (p = 10, q = 2, n = 1000).

Empirical Size (Power)

HWV 0.049 (0.905)

LRT 0.071 (0.855)

p-value thresholds that are more strict than 0.05. 350K Monte Carlo samples were generated

in the same way as corresponding association tests in previous sections. Table 2.10 shows

that the empirical size of WV and HWV is close to the nominal level.

Table 2.10 Empirical size for WV and HWV that considers heterogeneity across individual
genome profiles and adjusts for covariates, under several stringent p-value thresholds.

Empirical Size†
Threshold WV (p=5, n=1000) HWV (p=10, n=1000)

0.05 0.0494 0.0487

0.005 0.00474 0.00453

0.0005 0.000400 0.000489

0.00005 0.0000429 0.0000371
† Proportion of p-values in 350K replicates that are smaller or equal to the corresponding
threshold.

2.3 A Real Application

We applied the developed WV and HWV test on the ROSMAP dataset by assuming the

age-to-onset of AD follows the Cox PH model. ROSMAP is a GWAS that includes demen-
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tia exam data from two large longitudinal studies of aging and dementia: 1) the Religious

Orders Study (ROS) and the Rush Memory and Aging Project (MAP) (Bennett et al.,

2018). The ROSMAP genotype dataset includes 1,639 subjects, each has 750,173 SNPs. We

first performed quality control on genotype dataset 1) at SNP level by removing SNPs with

MAF>0.01, HWE test’s p-value > 10−6, or missing rate > 2%, then 2) at the subject level

by removing subjects with missing genotype rate > 2%. This results in a quality-controlled

genotype dataset with 1,618 subjects each having 619,061 SNPs. The missing genotypes

were then imputed with random samples generated from Binomial(2,MAF ), where MAF

was estimated from the genotype dataset. PCA was performed using Plink software (ver-

sion 1.9) to obtain the first 20 principal components that represent the underlying ancestry

information. After that, we grouped all available SNPs into 21,329 different genes by using

human genome annotation (GRCh38/hg38) obtained from the UCSC Genome Browser. We

also formed a new gene APOE4 which was coded as the count of the APOE4-ϵ4 allele.

The ROSMAP phenotype dataset includes information from 2,376 subjects. Each subject

has 1) baseline covariates: race, gender, years of education, and binary study cohort indicator

(ROS or MAP) and 2) follow-up information: subject’s age and clinical cognitive diagnosis

result at each examination center visit including at study registry. For our analysis, we

include only subjects who are disease-free in the study registry. Age at baseline served as

left-truncation time, the age at first AD diagnosis served as survival time, and the age at

study termination served as right censoring time if the subject is disease-free throughout the

study follow-up period.

We merged preprocessed genotype and phenotype datasets by keeping only the overlap-

ping subjects to generate the analysis-ready dataset, which includes 1,433 subjects, with a
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censoring rate of 67.8%. We are interested in 1) testing genetic covariates that are associated

with the time-to-onset of first AD diagnosis and 2) detecting potential genetic heterogeneity

across subpopulations inferred by either baseline covariates or individual genome profiles

(represented by a random sample of 200K SNPs), in the presence of left-truncation time

and adjust for gender, year of education, study cohort indicator (ROS served as baseline),

and first 20 principal components. Note that race is not adjusted because 1,432 out of 1,433

subjects are white. IBS kernel was used to measure genetic similarity, while the choice of

similarity kernel for subpopulation similarity depends on the source of heterogeneity, which

is elaborated in Table 2.11.

Various types of heterogeneity have been considered including no genetic heterogeneity

(S1), heterogeneity across individual genome profiles (S2), heterogeneity due to years of edu-

cation (S3), heterogeneity across three education attainment categories (0: yrs of education ≤

12; 1: yrs of education ∈ (12, 16]; 2: yrs of education > 16) with education similarity

between subjects i and j measured by κij = I(Xi = Xj) (S4), heterogeneity across the

three education attainment categories with education similarity measured by IBS kernel

(S5), and heterogeneity due to sex (S6). FDR-based p-value thresholds were calculated

according to Benjamini and Hochberg (1995) under arbitrary dependence assumption, i.e.,

Thresholdi =
αi

m
∑m

k=1(1/k)
(i = 1, . . . ,m), where m is the number of tests and α is the target

FDR.

Table 2.11 shows the analysis results of the ROSMAP dataset. To account for multiple

testing issues, the p-value thresholds were obtained by controlling the FDR under 10% by

Benjamini-Hochberg procedure Benjamini and Hochberg (1995). When in the absence of

genetic heterogeneity (S1), APOE4 appeared to be the most significant gene (p=1.21E-10)
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followed by APOC1 (p=1.04E-07). When in the presence of genetic heterogeneity (S2-S6),

even though APOE4 and APOC1 were still the most significant genes, their p-values vary

across scenarios, with notably smaller p-values in S4 that considered genetic heterogeneity

across re-categorized year-of-education, with similarity measured by IBS kernel. This indi-

cates the potential genetic heterogeneity due to education levels. In other words, the effect

of APOE4 and APOC1 on age-to-onset of AD varies across subjects’ education levels.

Table 2.11 Top five significant genes discovered by WV/HWV from a genome-wide
association analysis of ROSMAP dataset by assuming age-to-onset of AD follows Cox PH

model.

Heterogeneity Gene names and p-values

S1 APOE4 APOC1 CAMSAP1 XPR1 GRIP1

1.21e-10 1.04e-07 2.34e-05 1.48e-04 3.04e-04

S2 APOE4 APOC1 CAMSAP1 XPR1 KU.MEL.3

4.03e-10 2.31e-07 7.56e-06 6.92e-05 1.97e-04

S3 APOE4 APOC1 CAMSAP1 XPR1 PPM1A

6.72e-11 4.54e-08 7.94e-05 1.33e-04 3.93e-04

S4 APOE APOC1 CAMSAP1 XPR1 LINC00911

3.68e-11 1.68e-08 3.07e-05 4.30e-05 7.88e-05

S5 APOE APOC1 CAMSAP1 LETMD1 CSRNP2

4.30e-11 3.64e-08 1.15e-05 3.57e-05 6.17e-05

S6 APOE APOC1 CAMSAP1 XPR1 PPM1A

2.87e-10 2.29e-07 2.05e-05 9.72e-05 1.19e-04

Threshold 4.45e-07 8.89e-07 1.33e-06 1.78e-06 2.22e-06

2.4 Discussion

We developed a suite of multi-variant association and interaction tests for survival pheno-

types based on weighted V statistics. They have three main advantages over the state-

of-the-art methods. First, the new tests are faster. Second, they can account for possible

heterogeneity in genetic effects to enhance power. Third, they can handle linear confounding.

Although the covariate adjustment in the (heterogeneity) weighted V tests is based on

a Cox model, the tests are robust against model mis-specification. This is because, under a
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null model that is not the Cox model,

M̂Z,i = Ni(∞)−
∫ ∞

0

Yi(s) exp(Z
T
i γ̂)dΛ̂0(s)

= Ni(∞)−
∫ ∞

0

{Yi(s) exp(ZT
i γ

∗) + op(1)}
[

E{dNi(s)}
E{Yi(s) exp(ZT

i γ
∗)}

+ op(1)

]
≡ M∗

Z,i + op(1),

where γ∗ is defined as in Lin and Wei (1989), E(M∗
Z,i) = 0, and thus Theorem 2 with MZ,i

replaced by M∗
Z,i still holds.

The covariate adjustment proposed for the (heterogeneity) weighted V tests cannot con-

trol Type I error rates around the nominal level in the presence of nonlinear confounding, i.e.,

the genetic covariates follow a nonlinear model about the adjustment covariates. However,

our simulation results suggested that the empirical sizes of the proposed tests are smaller,

not larger, than the nominal level in this situation (results not shown here due to space limi-

tations). A conservative test does not violate the fundamental principle of small-probability

events in hypothesis testing.

The proposed G-G/G-E interaction test assumes linearity on the main effects of the two

genes (or the gene and the environmental determinant). When the true main effects are

nonlinear, the test may have an incorrect size. A more robust test could estimate the null

model using the kernel machine Cox regression (Cai, Tonini, and Lin, 2011), which, however,

significantly increases the computational cost.

One may improve the power of the heterogeneity weighted V tests by changing wij to
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(ρ+κij)f(Gi,Gj), where ρ is a positive unknown parameter, and then using the test statistic

S = sup
ρ∈I

nV H(ρ)

or

SZ = sup
ρ∈I

nV H
Z (ρ),

where I is a range of ρ under consideration. The asymptotic null distribution of S or SZ

is hard to derive. A workaround is to calculate S or SZ for many permutations of the n

subjects’ martingale residuals to obtain a permutation-based p-value. But this permutation

test requires an assumption that there is no relationship between the genetic variables and

the adjustment covariates when the latter is present.

We can also develop a set of weighted U tests in parallel to the weighted V tests developed

herein. For example, a covariate-adjusted weighted U test for genetic association is based

on the following weighted U statistic,

UZ =
1

n(n− 1)

∑
i ̸=j

ˆ̃fZ(gi,gj)M̂Z,iM̂Z,j,

where ˆ̃fZ(gi,gj) is the ij-th element of (I −H)TF (I −H). Following the derivation of the

large-sample distribution of nVZ, it is easy to show that when n is large, the null distribution

of nUZ can be approximated by

nUZ ∼ ξ̂

n∑
t=1

ν̂t(χ
2
1t − 1).
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The weighted U and V tests can be used interchangeably, as they have the same asymptotic

efficiency.
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CHAPTER 3 Multi-marker genetic association and interaction tests with interval-

censored survival outcomes

3.1 Methods

3.1.1 Association test

Consider a cohort study of n independent subjects, who are disease-free at the study registry.

Denote genetic covariates G = (G1, . . . ,Gp), where Gj is the j-th genetic variant that can

be either a SNP (coded as 0, 1, or 2) or gene expression values. Z = (Z1, . . . ,Zd) is a d-dim

adjustment covariates. Survival times, T , are subject to the interval censoring and possible

left truncation. Interval left and right endpoints are denoted as L and R, and left truncation

time is denoted as A. Two sets of tests were developed to detect genetic association with

interval-censored survival outcomes by assuming the effect of G is homogeneous or heteroge-

neous across subpopulations indicated explicitly by X or by latent variables inferred by X.

Therefore, we denote the observed data as D = {(Gi,Zi, Li, Ri, Ai,Xi)}ni=1 (Xi only used

in the presence of genetic heterogeneity). We assume that examination times {(Li, Ri)}ni=1

are independent of event risk (In that case one can in the analysis ignore the distribution

of the examination times, and treat the examination times as fixed.). We also assume non-

informative censoring and truncation time given G and Z (and X in the presence of genetic

heterogeneity).

Consider the scenario when in the absence of genetic heterogeneity. Under the null

hypothesis that G is independent of T given Z, we assume a semi-parametric transformation

model for the cumulative hazard function of T given Z as follow

Λ(t|Z) = G[Λ0(t) exp{βTZ}],
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where Λ0(t) is unspecified cumulative baseline hazard function with Λ0(0) = 0. G(x) =

− log
∫∞
0
e−xtf(t)dt, where f(t) is a known density function whose support is R+. Choose

f(t) to be a gamma density with mean 1 and variance r yields the logarithmic transformation:

G(x) = log(1+rx)/x, which becomes Cox proportional hazard and proportional odds model

when setting r=0 and r=1.

Motivated by association test proposed in Chapter 2, we introduce a subject-level frailty

(h) and use a working semiparametric transformation frailty model with cumulative hazard

function: Λ(t|Z, h) = G[Λ0(t) exp{βTZ+h}]. The covariate-adjusted weighted V test statis-

tic can be constructed similarly to equaltion 2.6 by replacing martingale residuals {MZ,i}ni=1

by score function {SZ,i}ni=1, where SZ,i = ∂ logLi(Λ0,β, hi)/∂hi|hi=0. Li(Λ0,β, hi) is condi-

tional likelihood function of subject i given frailty hi and left-truncation time Ai, as follows

Li(Λ0,β, hi) =
exp(−G[Λ0(Li)e

βTZi+hi ])− exp(−G[Λ0(Ri)e
βTZi+hi ])

exp(−G[Λ0(Ai)eβ
TZi+hi ])

.

The weighted V test statistics is as follow,

VZ,IC = n−2

n∑
i=1

n∑
j=1

f̃Z(Gi,Gj)SZ,iSZ,j, (3.1)

where SZ,iSZ,j is considered as V statistic kernel that measures phenotype similarity, weighted
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by covariate-centered genetic similarity f̃Z(Gi,Gj),

f̃Z(Gi,Gj) = f(Gi,Gj)− E[f(Gi,Gk)u(Zk,Zj)|Gi,Zj]

−E[f(Gj,Gk)u(Zk,Zi)|Gj,Zi]

+E[u(Zi,Zm)f(Gm,Gk)u(Zk,Zj)|Zi,Zj],

where f(Gi,Gj) is genetic similarity and u(Zi,Zj) = (1,ZT
i )[E{(1,ZT )T (1,ZT )}]−1(1,ZT

j )
T .

When G has effect on T , the larger (smaller) phenotype similarity, weighted by larger

(smaller) genetic similarity, results in larger (smaller) weighted V statistic and more (less)

significant p-value.

When Z is independent of G, the asymptotic null distribution of VZ,IC can be obtained

similarly following Theorem 2 in Chapter 2. Denote ξ = E(S2
Z), {νt}∞t=1 are eigenvalues of

f̃Z(Gi,Gj), the asymptotic null distribution of weighted V statistic is

nVZ,IC ∼ ξ
∞∑
t=1

νtχ
2
1t, (3.2)

where {χ2
1t}∞t=1 are independent χ2 random variables of 1 degree of freedom.

When Z and G are linearly correlated, G = a + bTZ + e, where a and b are intercept

and regression coefficients and e is a normally distributed random error that is independent

of Z. Theorem 2 in Chapter 2 suggests that the distribution in 3.2 is still asymptotically

correct.

In real application the regression coefficients β̂ and cumulative baseline hazard function

Λ̂0(t) in 3.1 are obtained by fitting model Λ(t|Z, h = 0) = G[Λ0(t)e
βTZ] with r = 0 using
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unpenalized version of penalized nonparametric maximum likelihood estimation (PNPMLE)

for Cox regression and possibly left truncated data (Li, Pak, and Todem, 2020). When

r > 0 is considered, a more general method (Zeng, Mao, and Lin, 2016) can be used to

obtain NPMLE of β and Λ0(t). Due to the lack of available estimation methods for the

Porportional Odds model with left-truncation and interval-censored data, left truncation

was considered only under the Cox proportional hazards model. f̃Z(Gi,Gj) is estimated by

its sample mean denoted as (I−H)F(I−H), where F = {f(Gi,Gj)}n×n with f(Gi,Gj) the

genetic similarity between any pair of subjects i and j, H = Z̃(Z̃T Z̃)−1Z̃T with Z̃ = (1,Z).

The weighted V statistic can be rewritten as

VZ,IC = ŜT
Z(I−H)F(I−H)ŜZ, (3.3)

where ŜZ = (ŜZ,1, . . . , ŜZ,n).

Estimate of ξ = E(S2
Z), denoted as ξ̂, can be obtained by ŜT

Z ŜZ/n, where ŜZ,i =

∂Li(Λ0(t),β, hi)/∂hi|Λ0(t)=Λ̂0(t),β=β̂,hi=0. The estimate of νt is estimated as ν̂t = ν̃t/n, where

ν̃t’s are eigenvalues of f̃Z(Gi,Gj). The asymptotic null distribution of nVZ,IC can be ap-

proximated by

nVZ,IC ∼ ξ̂

n∑
t=1

ν̂tχ
2
t1,

which is linear combination of independent χ2 random variables of 1 degree of freedom.

p-value can be computed using Davies’ method (Davies, 1980) P (nVZ,IC ≥ nV obs
Z,IC), where

V obs
Z,IC) is the observed value of VZ,IC).

When in the absence of adjustment covariates Z, the centered genetic similarity is denoted
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as f̃(Gi,Gj) and is estimated by sample mean (I − J)F(I − J), where J = {1}n×n. The

corresponding weighted V statistic is VIC = ŜT (I − J)F(I − J)Ŝ, and the asymptotic null

distribution can be approximated similarly as above.

When in the presence of genetic heterogeneity, the effect of G varies across different

subpopulations, the association tests VIC and VZ,IC is extended to consider the subpopulation

structure, thereby improving test power. The setting is the same as the association test in

the absence of heterogeneity, except that X is now introduced to infer explicit or latent

subpopulation structure. The heterogeneity weighted V statistics, with or without covariate

adjustment are 
V H
IC = ŜT (I− J)W(I− J)Ŝ

V H
Z,IC = ŜT (I−H)W(I−H)Ŝ,

where W = (J + K) ⊙ F. K = {k(Xi,Xj)}n×n with the ij-th element represents sub-

population similarity of subject i and j. ⊙ is the element-wise matrix multiplication. The

asymptotic null distribution of nV H
IC and nV H

Z,IC can be approximated similarly as that of

nVIC and nVZ,IC using linear combination of independent χ2 random variable with 1 degree

of freedom. Based on this distribution, p-value is calculated using Davies’ method (Davies,

1980) by P (nV H
IC ≥ nV H

IC,obs) and P (nV
H
Z,IC ≥ nV H

Z,IC,obs). V
H
IC,obs and V H

Z,IC,obs are observed

values of V H
IC and V H

Z,IC .

3.1.2 G-G/G-E interaction test

Two interaction tests were developed to detect the interaction effect between two genes

(G-G) or between a gene and environmental variable (G-E). Let G = (G1, . . . ,Gp) be the

interested gene, let H = (H1, . . . ,Hq) be a different gene or an environmental variable when

there exists G-G or G-E interaction effect.
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To test G-G interaction effect, we assume that given G and H, the survival time T for

subject i follow a semi-parametric transformation model with cumulative hazard function as

follow

Λ(t|Gi,Hi) = G[Λ0(t) exp{βTGi +αTHi}]. (3.4)

The V statistic kernel is SiSj with Si = ∂Li(Λ0,β,α, hi)/∂hi|Λ0=Λ̂0,β=β̂,α=α̂,hi=0. The condi-

tional likelihood function for subject i, Li(Λ0,β,α, hi), can be written as follow

Li(Λ0,β,α, hi) =
exp(−G[Λ0(Li)e

βTGi+αTHihi ])− exp(−G[Λ0(Ri)e
βTGi+αTHi+hi ])

exp(−G[Λ0(Ai)eβ
TGi+αTHi+hi ])

. (3.5)

The weighted V statistic for G-G interaction is V I
IC = ŜT (I − O)(F ⊙ K)(I − O)Ŝ, where

O = Q(QTQ)−1QT , Q = (1,G,H). F = {f(Gi,Gj)}n×n and K = {k(Hi,Hj)}n×n are

genetic similarity matrices. The asymptotic null distribution of nV I
IC can be approximated

similarly as that of nVZ,IC . When p + q is large relative to sample size n, the asymptotic

null distribution of V I
IC is . p-value can be computed using Davies’ method (Davies, 1980)

P (nV I
IC ≥ nV I

IC,obs), where V
I
IC,obs is observed value of V I

IC . The test for G-E interaction

effect is performed in the same way as that of G-G interaction test except that H is replaced

by environmental variable.

3.2 Simulations

Monte Carlo simulation was performed to assess the finite-sample performance of (hetero-

geneity) weighted V statistic in detecting genetic association with time-to-onset of interval-

censored and possibly left-truncated survival outcomes. In all simulation settings, unless

otherwise specified, two sample sizes n = 500, 1000 and two SNP-set sizes p = 4, 8 were
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considered. For each subject, we assume three examine center visits at ages {V1, V2, V3},

where V1 ∼ Uniform(L,R), V2 = V1 +Uniform(L,R), and V3 = V2 +Uniform(L,R) with

predetermined positive values L and R to control the left censoring rate ∼ 25% and right

censoring rate ∼ 35%. When adjust for covariates, one binary variable Z1 ∼ Binomial(0.5)

and one continuous variable Z2 ∼ Uniform(0, 2) were considered. Genetic covariates

G = (G1, . . . ,Gp) is a n × p SNP set generated using a two-step procedure 1) generate n

random samples from multivariate normal distributionMVN(0,Σ), where Σ = {0.5|k−l|}p×p

is covariance matrix that used to mimic LD between any pair of SNPs, 2) categorize each

quantitative column into SNP with three levels labeled as 0, 1, and 2 by using predetermined

quantile cutoffs: a2, 2a(1−a), and (1−a)2 of a standard normal distribution with a = 0.2, so

that the resulting population is in HWE and each SNP has MAF=0.2. When in the presence

of genetic heterogeneity, X was generated accordingly to infer explicit/latent subpopulation

structure. Survival time T was assumed to follow either Cox proportional hazard or propor-

tional odds model, two special cases of the class of semiparametric transformation model.

However, left-truncated survival time was not considered under the proportional odds model,

due to the lack of an available estimation method, and the simulation results were shown in

Appendix. In all simulations, 1000 Monte Carlo samples were generated and the significance

level was set to 0.05.

3.2.1 Testing genetic association in the absence of genetic heterogeneity

In this series of simulation, we investigated the performance of weighted V statistic in de-

tecting genetic association considering adjustment covariates and left-truncation times, in

the absence of genetic heterogeneity. Survival time for subject i (i = 1, . . . , n) follows Cox
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PH model (constant baseline hazard) with the following form of hazard function,

λ(t|Zi,Gi) = exp{βTGi +αTZi}, (3.6)

where the value of β and α vary in different simulation settings to achieve moderate left-

and right-censoring rate (∼ 30%).

Empirical size and power under various n’s and p’s

In this simulation, we assumed that Z is independent of G, and the empirical size and power

of the weighted V test were evaluated under various n′s and p′s. Regression coefficients in

hazard function 3.6 are set to β = 0, α = 0.5 for empirical size assessment and β = α = 0.5

for power assessment. We set L = 0.1 and R = 0.6 as endpoints of uniform distribution used

in follow-up time generation. IBS kernel was used to measure genetic similarity. Table 3.1

shows that the Type I error of WV-IC is close to the nominal level and the power increases

with sample size.

Table 3.1 Empirical size and power of WV-IC with r = 0 in testing genetic effects in the
absence of left truncation.

Empirical Size (Power)

p=4, n=500 p=4, n=1000

WV-IC 0.047 (0.231) 0.057 (0.410)

p=8, n=500 p=8, n=1000

WV-IC 0.048 (0.415) 0.054 (0.738)

Empirical size and power under linear confounding

In this simulation, we assumed that there exists linear confounding effect, when Z has linear

relationship with G. The genetic covariate of our interest, G = (G1, . . . ,Gp), are gene

expression values with Gi = Zi1 + Zi2 + ei (i = 1, . . . , n). The random error is ei ∼
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MVN(0,Σ) with Σ = {0.5|k−l|}p×p. Regression coefficients in hazard function 3.6 was set

to β = 0, α = 0.05 for empirical size assessment and β = α = 0.02 for power assessment.

We set L = 0.1 and R = 0.6 in follow-up time generation. Cross-product kernel was used to

measure gene expression similarity. Table 3.2 shows that WV-IC controls Type I error well

around nominal level and gains power as sample size increases.

Table 3.2 Empirical size and power of WV-IC with r = 0 in testing genetic effects under
linear confounding and no left truncation.

Empirical Size (Power)

p=4, n=500 p=4, n=1000

WV-IC 0.050 (0.158) 0.055 (0.313)

p=8, n=500 p=8, n=1000

WV-IC 0.041 (0.320) 0.056 (0.574)

3.2.2 Testing genetic association in the presence of genetic heterogeneity

So far, we have assumed that the effect of G is homogeneous in the population. In this series

of simulations, we introduced genetic heterogeneity, and the performance of HWV-IC and

WV-IC will be evaluated under four sources of heterogeneity 1) observable subpopulations,

2) two latent subpopulations, 3) twenty latent subpopulations, and 4) individual genome

profile.

Genetic heterogeneity across observable subpopulations

In this simulation, we investigated the performance of HWV-IC and WV-IC in the pres-

ence of genetic heterogeneity across four observable subpopulations, which was inferred

by Z = (Z1 = I(1 ≤ U < 2),Z2 = I(2 ≤ U < 3),Z3 = I(3 ≤ U ≤ 4)), where

U = (U1, . . . , Un) ∼ Uniform(0, 4) and I(·) is an indicator function. The genetic covariate

G was generated following the two-step procedure, but four different sets of predetermined
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MAFs (∼ Uniform(0.005, 0.05)) and LD structures (measured by ρ throughΣp×p = {ρ|k−l|})

were used as follows,

MAFs = {0.0118, 0.0304, 0.0476, 0.0450, 0.0393, 0.0076, 0.0459, 0.0054} and ρ = 0.2 in

subpopulation 1;

MAFs = {0.0378, 0.0421, 0.0312, 0.0467, 0.0156, 0.0085, 0.0362, 0.0336} and ρ = 0.5 in

subpopulation 2;

MAFs = {0.0157, 0.0299, 0.0220, 0.0119, 0.0272, 0.0093, 0.0063, 0.0354} and ρ = 0.7 in

subpopulation 3;

MAFs = {0.0257, 0.0323, 0.0289, 0.0252, 0.0078, 0.0319, 0.0439, 0.0193} and ρ = 0.6 in

subpopulation 4.

Survival time for subject i (i = 1, . . . , n) was generated from Cox PHmodel with the following

hazard function,

λ(t|Gi,Zi) = exp{
p∑

k=1

(β1Zi1 + β2Zi2 + β3Zi3 + β4)Gik + 0.6Zi1 + 0.6Zi2 + 0.2Zi3},

where (Zi1, Zi2, Zi3) is a three-dimensional dummy variable that indicates which subpopula-

tion subject i belongs to. We set β1 = β2 = β3 = β4 = 0 for empirical size assessment and

β1 = 0.4, β2 = 0.002, β3 = 0.0005, β4 = 0.0005 for power assessment. L = 0.1 and R = 0.5

were the endpoints of unform distribution used in follow-up time generation. IBS kernel

was used to measure genetic similarity and identity kernel for subpopulation inferred by Z.

Table 3.3 indicates that Type I error of both HWV-IC and WV-IC are close to nominal level

and HWV-IC is more powerful than WV-IC as expected since HWV-IC takes advantages of
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subpopulation structure in performing the test to increase statistical power.

Table 3.3 Comparison of performance of WV-IC and HWV-IC (r = 0) in testing genetic
association under genetic heterogeneity across four observable subpopulations and no left

truncation.

Empirical Size (Power)

p=4, n=500 p=4, n=1000

HWV-IC 0.040 (0.535) 0.046 (0.878)

WV-IC 0.042 (0.384) 0.049 (0.647)

p=8, n=500 p=8, n=1000

HWV-IC 0.046 (0.801) 0.053 (0.998)

WV-IC 0.047 (0.552) 0.044 (0.889)

Genetic heterogeneity across two latent subpopulations

In this simulation, we investigated performance of HWV-IC in the presence of two latent

subpopulations, inferred by one-dim vector X = {Xi}ni=1, with Xi = ai + ei, where ai =

Bernoulli(0.5) and ei ∼ Normal(0, 0.5). Survival time for subject i in subpopulation j was

generated from Cox PH model with the following hazard function,

λ(t|Gij,Zij) = exp{
p∑

k=1

Gijkβjk + 0.05(Zij1 + Zij2)}, (3.7)

where {βj = (βj1, . . . , βjp) s.t. βj1 = . . . = βjp}2j=1, denoted as {βj}2j=1, are effect sizes of G

in two subpopulations. {βj}2j=1 were set to 0 for empirical assessment and set to different

values power assessment under five different scenarios representing four different forms of

genetic heterogeneity. We set L = 0.1 and R = 0.5 for follow-up time generation. IBS kernel

was used to measure genetic similarity and Gaussian kernel for subpopulation similarity.

Table 3.4 indicates that Type I error of HWV-IC is close to nominal level. Table 3.5 shows

power assessment under no heterogeneity (T1) and four different forms of heterogeneity (T2
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- T5). It can be observed that power of HWV-IC increase with sample size and size of

heterogeneity (|β1k − β2k|).

Table 3.4 Empirical size of HWV-IC with r = 0 in testing genetic effects under genetic
heterogeneity across two latent subpopulations and no left truncation.

Empirical Size

p=4, n=500 p=4, n=1000

HWV-IC 0.042 0.049

p=8, n=500 p=8, n=1000

HWV-IC 0.047 0.045

Table 3.5 Power of HWV-IC with r = 0 in testing genetic effects under genetic
heterogeneity across two latent subpopulations and no left truncation. Various

heterogeneity scenarios were considered, determined by the values of β1k and β2k, including
the same effect size and the same effect direction (T1), identical sizes but opposite

directions (T2), no effect in one subpopulation while positive effect in the other (T3),
different sizes and opposite directions (T4), and different sizes but the same direction (T5).

Heterogeneity Scenario

T1 T2 T3 T4 T5

β1k 0.05 0.1 -0.05 -0.1 0 0 -0.025 -0.025 0.02 0.02

β2k 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

p=4, n=500 0.153 0.508 0.079 0.213 0.063 0.185 0.083 0.201 0.079 0.202

p=4, n=1000 0.257 0.862 0.136 0.402 0.110 0.369 0.108 0.305 0.162 0.440

p=8, n=500 0.210 0.790 0.232 0.735 0.139 0.441 0.167 0.437 0.142 0.450

p=8, n=1000 0.423 0.989 0.477 0.976 0.230 0.801 0.280 0.788 0.258 0.812

Genetic heterogeneity across twenty latent subpopulations

In this simulation, we investigated the performance of HWV-IC in the presence of twenty

latent subpopulations. The simulation setting is similar to simulation above except that the

number of subpopulation increased from two to twenty. X = (X1, . . . ,X25) was generated

to infer subpopulation structure with Xk = ak + ek, ak is a length n bootstrap sample from

{1, 2, . . . , 20} and ek ∼ Normal(0, 0.5). Regression coefficients, {βj}20j=1, in hazard function

3.7 were set to 0 for empirical size assessment. For power assessment, {βj}20j=1 were generated
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from uniform distribution with mean µβ and variance σ2
β. We set L = 0.1 and R = 0.6 for

follow-up time generation. IBS kernel was used to measure genetic similarity and Gaussian

kernel for subpopulation similarity. Table 3.6 indicates that Type I error of HWV-IC is

close to nominal level under various n’s and p’s. Table 3.7 indicates the power of HWV-IC

increases as mean effect size (µβ) increases. For a mean effect size (µβ), the power increases

with size of genetic heterogeneity (σβ).

Table 3.6 Empirical size of HWV-IC with r = 0 in testing genetic effects under genetic
heterogeneity across twenty latent subpopulations and no left truncation.

Empirical Size

p=4, n=500 p=4, n=1000

HWV-IC 0.051 0.050

p=8, n=500 p=8, n=1000

HWV-IC 0.045 0.052

Table 3.7 Power of HWV-IC with r = 0 under genetic heterogeneity across twenty latent
subpopulations and no left truncation.

Power

µβ 0 0 0 0.025 0.025 0.025 0.05 0.05 0.05

σβ 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1 0.15

p=4, n=500 0.063 0.148 0.369 0.105 0.240 0.483 0.224 0.422 0.640

p=4, n=1000 0.108 0.376 0.804 0.252 0.562 0.906 0.532 0.796 0.969

p=8, n=500 0.179 0.766 0.993 0.283 0.862 0.996 0.549 0.933 0.999

p=8, n=1000 0.434 0.989 1.000 0.687 0.999 1.000 0.908 1.000 1.000

Genetic heterogeneity across individual genome profile

In this simulation, instead of assuming the subpopulation structure to be ’categorical’ (two

or twenty subpopulations), we investigated the performance of HWV-IC in the presence of

heterogeneity across ’continuous’ subpopulation structure. In other words, each individual

is a ’subpopulation’. Regression coefficients in hazard function 3.7, {βj}nj=1, were set to 0
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for empirical assessment and sampled from uniform distribution with mean µβ and variance

σ2
β for power assessment. We generated a 1000-SNP genome profile, X = (X1, . . . ,X1000), to

infer subpopulation structure. The generation of X follow a two-step procedure, 1) generate

a length n sample from MVN(0,Σ), repeat for 1,000 times to get a n × 1000 matrix, the

covariance matrix Σ was set to In×n under null hypothesis and exp{−|βil − βjl|/σβ} under

alternative hypothesis. 2) categorize each quantitative column into SNP coded as 0, 1, and 2

using prespecified cutoffs in order to achieve HWE and MAFs that follow uniform distribution

Uniform(0.05, 0.2). We set (L,R) to be (0.2, 0.6) and (0.1, 0.5), respectively, for empirical

size and power assessment. IBS kernel was used to measure both genetic and genome profile

similarity. Table 3.8 indicates that Type I error of HWV-IC is close to nominal level. Table

3.9 indicates that HWV-IC gains power as mean effect size (µβ) increases. For a fixed mean

effect size (µβ), HWV-IC gains power with heterogeneity size (σβ).

Table 3.8 Empirical size of HWV-IC with r = 0 in testing genetic effects under genetic
heterogeneity across individual genome profiles and no left truncation.

Empirical Size

p=4, n=500 p=4, n=1000

HWV-IC 0.043 0.052

p=8, n=500 p=8, n=1000

HWV-IC 0.047 0.049

3.2.3 Testing G-G/G-E interaction effect

In this simulation, we investigated the performance of WVI-IC and LRT in testing G-G and

G-E interaction effect. For testing G-G interaction between two genes G = (G1, . . . ,Gp),

H = (H1, . . . ,Hq). The survival time for subject i was generated from Cox PH model with
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Table 3.9 Power of HWV-IC with r = 0 under genetic heterogeneity across individual
genome profiles and no left truncation.

Power

µβ 0 0 0 0.02 0.02 0.02 0.04 0.04 0.04

σβ 0.04 0.08 0.12 0.04 0.08 0.12 0.04 0.08 0.12

p=4, n=500 0.062 0.076 0.103 0.089 0.116 0.149 0.170 0.190 0.252

p=4, n=1000 0.069 0.087 0.223 0.125 0.204 0.369 0.330 0.442 0.590

p=8, n=500 0.094 0.280 0.693 0.170 0.388 0.765 0.347 0.589 0.850

p=8, n=1000 0.117 0.750 0.996 0.326 0.856 0.999 0.699 0.957 1.000

the following hazard function

λ(t|Gi,Hi) = exp{
p∑

k=1

0.02Gik +

q∑
l=1

0.02Hil +

pq∑
m=1

βm(GH)im}, (3.8)

where (GH)im is the m-th column of interaction between Gi and Hi. {βm}pqm=1 were set to

0 for empirical size assessment and 0.08 for power assessment. We set L = 0.1 and R = 0.5

for follow-up time generation. Cross-product kernel was used to measure genetic similarity

for both genes. Two sets of SNP-set size were used (p = 4, q = 2) and (p = 6, q = 3).

For testing G-E interaction, the simulation setting is similar to G-G interaction test,

except that H = (H1, . . . , Hn) ∼ Binomial(0.5) is now a one-dim binary vector representing

subjects’ gender. Survival time for subject i was generated from Cox proportional hazard

model with hazard function 3.8. {βm}pqm=1 were set to 0 and 0.1 for empirical size and power

assessment. Cross-product kernel was used to measure genetic similarity and identity kernel

for gender similarity. Two sets of SNP-set size (p = 4, q = 1) and (p = 8, q = 1) were

investigated.

Table 3.10 and 3.11 indicate that, in testing both G-G and G-E interaction, Type I error

of WVI-IC is close to nominal level while LRT is inflated. Also, in both scenarios, WVI-IC

47



is more powerful than LRT as expected because the asymptotic null distribution of WVI-IC

has a more efficient degree of freedom than LRT, therefore more powerful than LRT.

Table 3.10 Empirical sizes and powers of WVI-IC and LRT in testing G-G interaction
under no left truncation.

Empirical Size (power)

p=4, q=2, n=500 p=4, q=2, n=1000

WVI-IC 0.046 (0.458) 0.052 (0.793)

LRT 0.069 (0.305) 0.073 (0.519)

p=6, q=3, n=500 p=6, q=3, n=1000

WVI-IC 0.060 (0.864) 0.057 (0.989)

LRT 0.115 (0.590) 0.076 (0.863)

Table 3.11 Empirical sizes and powers of WVI-IC and LRT in detecting G-E interaction
under no left truncation.

Empirical Size (power)

p=4, q=1, n=500 p=4, q=1, n=1000

WVI-IC 0.051 (0.236) 0.056 (0.435)

LRT 0.055 (0.204) 0.054 (0.350)

p=8, q=1, n=500 p=8, q=1, n=1000

WVI-IC 0.047 (0.450) 0.043 (0.768)

LRT 0.069 (0.341) 0.068 (0.575)

3.2.4 Empirical size under stringent p-value thresholds

In case-control studies, there is usually a huge amount of genetic variants are tested. To

account for the multiple testing issue, Bonferroni correction is used and results in p-value

threshold 5 × 10−3 or smaller. In this simulation, we investigated the performance of 1)

WV-IC in the absence of genetic heterogeneity and 2) HWV-IC in the presence of genetic

heterogeneity across observable subpopulations under stringent p-value thresholds. The cor-

responding simulation settings for significance level 0.5 were adopted, except that only sce-

nario p = 4, n = 1000 was investigated and 150K Monte Carlo samples were generated.
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The empirical size is calculated as the proportion of p-values smaller than the corresponding

p-value threshold. Table 3.12 shows that the Type I error of both WV-IC and HWV-IC is

close to the nominal level, indicating the capability of WV-IC and HWV-IC for large-scale

GWAS.

Table 3.12 Empirical sizes of WV-IC and HWV-IC under stringent p-value thresholds and
no left truncation.

Empirical Size

Threshold WV-IC HWV-IC

0.005 0.0046 0.0047

0.0005 0.00039 0.00053

0.00005 0.000044 0.000047

3.3 A Real Application

We applied the proposed WV-IC and HWV-IC tests to a GWAS Dental Caries: A Whole-

Genome Association and Gene X Environment studies. The study includes 5,418 consented

subjects ascertained through four study sites: PITT, IOWA, DRDR, and GEIRS. Each

subject has 601,273 typed SNPs and 84 subject-level phenotypes such as age at the dental

exam, gender, and number of DMFS (Decay, Missing, Filling, Sound) teeth/surfaces. Since

the goal of this analysis is to detect genetic association with age-to-onset of ECC, in the

absence/presence of genetic heterogeneity, we keep only subjects who were younger than 6

at the dental exam. Also, since each subject has one dental exam, the age-to-onset of ECC

is current status data, one special case of interval censoring survival outcome.

To avoid systematic error, we performed SNP- and subject-level quality control on the

genotype data using PLINK 1.9. SNPs were removed if MAF>0.01, HWE test p-value> 10−6,

or missing rate > 2%. Subjects were removed if the missing genotype rate was > 2%. In
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addition to quality control, we also removed subjects whose genotype or phenotype is missing.

The resulting genotype data has 1,125 subjects and 553,194 SNPs. The genotype data

still has ∼ 0.01% missing values, which were then imputed by random samples generated

from Binomial(2,MAF ), where MAF was estimated from the phenotype dataset. PCA

was performed using PLINK 1.9 to obtain the first 10 principal components. The 553,194

SNPs were then grouped into 23,008 different genes based on human UCSC human genome

annotation (NCBI36/hg18).

Each of the 23,008 genes was tested for genetic association and potential heterogeneity

effect using WV-IC and HWV-IC adjust for the top 10 principal components, study site

indicator (PITT as baseline), gender, and race. To account for the multiple testing issue,

we adopted the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995) to con-

trol the FDR at 10%. The p-value threshold for i-th most significant gene is obtained by

li = (iα){m
∑m

k=1(1/k)}−1 (i = 1, . . . , 23008), where α = FDR and m=23,008. When in

the presence of genetic heterogeneity, four sources were considered 1) across different races

(White, Asian, Black American Indian, Bi- or multi-racial, and Other), 2) across two water

fluoride levels, sufficient (>0.7 mg/L) and insufficient (≤0.7 mg/L), 3) across two sexes, and

4) across genetic background inferred by a random sample of 200,000 SNPs from the whole

genome. Note that, because subjects ascertained from the DRDR study site have missing

water fluoride levels, the sample size drops from 1,125 to 652 and the count of unique study

sites drops from 4 to 3 when water fluoride level is included in the analysis. In all analy-

sis scenarios, two kernels were used to measure genetic similarity: IBS and Cross-product,

two special cases of the semiparametric transformation model were considered: the Cox

proportional hazard model (r=0) and proportional odds model (r=1).
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Table 3.13 shows the top five genes detected by WV-IC (scenario S1) and HWV-IC

(scenarios S2-S5) and the corresponding p-values. Even though none of the 23,008 genes

was shown to be statistically significantly associated with age-to-onset of ECC, the analysis

did suggest that MPPED2 and TSPAN2 were frequently found to have the smallest p-value.

MPPED2 exhibited suggestive evidence for association with ECC development in the first

genome-wide association scan for dental caries in the study of 1,305 US children (Shaffer

et al., 2011). The biological role of MPPED2 was later verified via a meta-analysis of five

childhood samples (Staley et al., 2017). For TSPAN2, no strong evidence was found to show

its biological role in ECC.

3.4 Discussion

We developed the first set of multi-marker tests for genetic associations and G-G/G-E inter-

actions with interval-censored and possibly left-truncated survival outcomes. The new tests

can adjust for covariates based on a semiparametric transformation model. The proposed

HWV-IC can also account for genetic heterogeneity to increase the power of association

testing.

Our methods are directly applicable to interval-censored competing risks data if the

observation process is independent of the process of competing risks given the covariates.

Specifically, by applying our methods to the reduced interval-censored competing risks data

about the failure cause of interest (Hudgens, Li, and Fine, 2014), one can test the effect of

a marker set or a G-G/G-E interaction on the cumulative incidence function of that cause.

It is worthwhile to extend the proposed tests to multivariate survival phenotypes. This

extension has applications to genetic studies of chronic diseases that can occur at multiple

sites in the human body, such as dental caries, diabetic retinopathy, and age-related macular
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Table 3.13 Top five genes discovered by WV-IC and HWV-IC from a gene-based
genome-wide association analysis of the DC-WGAGE dataset. PH and PO stand for the

Cox proportional hazard model and the proportional odds model respectively. CP and IBS
stand for cross-product kernel and IBS kernel respectively. Various types of heterogeneity
were considered, including no genetic heterogeneity (S1), heterogeneity across races (S2),

heterogeneity between the two home water fluoride levels (S3), heterogeneity between sexes
(S4), and heterogeneity across genetic backgrounds (S5).

Scenario Genes and p-values

S1
MPPED2 OR2B11 NECAB3 E2F1 CYB5R2

5.01E-05 7.61E-05 8.62E-05 8.62E-05 1.69E-04

PO+CP

S2
MPPED2 HOXC13-AS CYB5R2 NECAB3 E2F1

3.21E-05 1.29E-04 1.37E-04 1.79E-04 1.79E-04

S3
TSPAN2 CRCT1 HOXC13-AS LCE5A TSHB

1.17E-05 2.23E-05 2.55E-05 2.73E-05 4.78E-05

S4
MPPED2 OR2B11 NECAB3 E2F1 CDK5RAP1

5.88E-05 9.91E-05 1.10E-04 1.11E-04 1.65E-04

S5
MPPED2 OR2B11 NECAB3 E2F1 CYB5R2

4.94E-05 7.84E-05 8.70E-05 8.70E-05 1.69E-04

S1
MPPED2 OR2B11 NECAB3 E2F1 CYB5R2

8.23E-05 8.48E-05 8.90E-05 8.90E-05 9.26E-05

PH+CP

S2
MPPED2 CYB5R2 LINC00511 HOXC13-AS NCR3LG1

5.75E-05 9.12E-05 1.69E-04 1.90E-04 2.08E-04

S3
TSPAN2 HOXC13-AS CRCT1 ECRG4 LCE5A

1.27E-05 3.05E-05 4.53E-05 5.07E-05 5.50E-05

S4
CYB5R2 MPPED2 TSPAN2 NCR3LG1 OR2B11

2.16E-04 2.21E-04 2.49E-04 2.64E-04 2.73E-04

S5
TSPAN2 MPPED2 CYB5R2 TPM3P9 NCR3LG1

1.77E-04 1.93E-04 2.02E-04 2.07E-04 2.09E-04

S1
LOC101927989 MPPED2 PAX9 NECAB3 E2F1

4.68E-05 4.89E-05 7.04E-05 7.61E-05 7.61E-05

PO+IBS

S2
MPPED2 STARD5 LOC101927989 CCDC185 CYB5R2

2.78E-05 3.56E-05 1.19E-04 1.31E-04 1.50E-04

S3
TSPAN2 CRCT1 TSHB LCE5A HOXC13-AS

5.84E-06 5.63E-05 6.04E-05 6.23E-05 6.48E-04

S4
LOC101927989 CCDC185 MPPED2 PAX9 NECAB3

5.03E-05 6.12E-05 6.46E-05 8.93E-05 9.72E-05

S5
LOC101927989 MPPED2 PAX9 NECAB3 E2F1

4.79E-05 4.85E-05 7.13E-05 7.79E-05 7.79E-05

S1
CCDC185 MPPED2 NECAB3 E2F1 PAX9

5.76E-05 6.89E-05 7.58E-05 7.58E-05 8.95E-05

PH+IBS

S2
STARD5 MPPED2 CCDC185 CYB5R2 PPM1E

4.28E-05 4.36E-05 7.93E-05 1.07E-04 1.65E-04

S3
TSPAN2 HOXC13-AS TSHB CRCT1 ECRG4

6.21E-06 7.55E-05 7.83E-05 1.14E-04 1.25E-04

S4
CCDC185 STARD5 TSPAN2 MPPED2 CYB5R2

2.04E-05 1.02E-04 1.63E-04 2.01E-04 2.51E-04

S5
CCDC185 STARD5 TSPAN2 MPPED2 CYB5R2

2.79E-05 7.71E-05 1.12E-04 1.60E-04 2.14E-04

p-value threshold 4.09E-07 8.18E-07 1.23E-06 1.64E-06 2.05E-06

degeneration. Joint analysis of the failure times at the different sites could increase the power

to detect the association of such a disease with genes. The extension hinges on finding an

appropriate phenotype similarity for multivariate interval-censored survival endpoints.
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CHAPTER 4 Multi-marker genetic association and interaction tests based on

the accelerated failure time model

4.1 Methods

4.1.1 Association tests

Consider a cohort of n independent individuals who have not experienced any competing

events at baseline. We assume that each individual is subject to multiple potential sources

of failure event and the occurrence of one event impedes the occurrence of all other events.

Let G = (G1, . . . ,Gp) be genetic covariates that is either a set of SNPs, gene expression

values or a genetic pathway. We are interested in testing the genetic association with age-to-

onset of Cause 1 (primary event) with or without considering genetic heterogeneity. Denote

A as left truncation time (e.g., age at study registry), T̃ = min(T,C) is observed survival

time subject to right censoring, where T is survival time and C is right censoring time.

∆ = I(T ≤ C) and ϵ is cause of failure, ϵ = 1 for primary cause, ϵ = 0 for all other causes.

Baseline covariates, Z = (Z1, . . . ,Zk) is adjusted to reduce confounding and/or increase

power. When in the presence of genetic heterogeneity, X = (X1, . . . ,Xd) is used to infer

subpopulation structure. Observed data for n subjects is denoted as D = (D1, . . . , Dn),

with {Di = (Ai, T̃i,∆i,∆iϵi,G
T
i ,Z

T
i )}ni=1 and also includes Xi in the presence of genetic

heterogeneity. We assume the survival time T , the residual censoring time C − A and the

left truncation time A are conditionally independent given G and Z (and X if considering

genetic heterogeneity).

When in the absence of genetic heterogeneity, under the null hypothesis that G is not

associated with survival time T , we assume that, given adjustment covariate Z, the survival
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time of subject i (i = 1, . . . , n) follows AFT model with the following CSH for Cause 1,

λ(t|Zi) = λ0(te
−βTZi)e−βTZi ,

where λ0(·) is an unknown baseline CSH function. In real application, the regression param-

eter β and cumulative baseline hazard function Λ0(t) are estimated by applying rank-based

estimation method (Chiou and Xu, 2017) to observed data D with the (working) AFT

model log(T ∗) = βTZ + ϵ. The resulting estimators are β̂ and Λ̂0(β, t). Then we have

Λϵ(t) =
∫ t

−∞ λϵ(s)ds =
∫ t

−∞ esλ0(s)ds, which can be estimated using Nelson-Aalon type

estimator,

Λ̂ϵ(β, t) =

∫ t

−∞

∑n
i=1 dNi(β, s)∑n

i=1 νi(β, s)Yi(β, s)
,

where Ni(β, t) = I(ei(β) ≤ t,∆iϵi = 1), Yi(β, t) = I(ei(β) ≥ t), and νi(β, t) = I(eai (β) < t),

with ei(β) = logT̃i − βTZi and eai (β) = logAi − βTZi. Define martingale residual to

be Mi = Mi(Λϵ,β) = Ni(β,∞) −
∫∞
−∞ νi(β, t)Yi(β, t)dΛϵ(t)}, M̂i = Mi(Λ̂ϵ(β, t),β) and

M̃i =Mi(Λ̂ϵ(β̂, t), β̂). The weighted V test statistics can be written as

VZ = M̃TFM̃

=
n∑

i=1

n∑
j=1

f(Gi,Gj)M̃iM̃j,

where M̃ = (M̃1, . . . , M̃n) and F = {f(Gi,Gj)}n×n. M̃iM̃j is V statistic kernel that measures

phenotype similarity weighted by f(Gi,Gj), which measures genetic similarity, for a pair of

subjects (i, j). The value of weighted V statistic is the weighted sum over all pairs of (i, j).

Therefore, the larger (smaller) the phenotype similarity weighted by larger (smaller) genetic
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similarity results in larger (smaller) VZ value, therefore smaller (larger) p-value.

To get the asymptotic null distribution of VZ, we decompose F = ET
1 E1 for some m× n

matrix E1, where m(1 ≤ m ≤ n) is the rank of F. We then have weighted V statistic

in quadratic form as: VZ = (M̃TET
1 )(E1M̃), and the asymptotic null distribution can be

approximated by
∑m

j=1 λjχ
2
1j, which is linear combination of independent χ2 variables of 1

degree of freedom weighted by {λi}mi=1, the eigenvalues of estimator of Cov(E1M̃) (derivation

shown in Appendix). Based on this distribution, the p-values can be computed using Davies’

method (Davies, 1980), P (VZ ≥ VZ,obs) , where VZ,obs is the observed value of VZ.

When in the presence of genetic heterogeneity inferred by d-dimensional covariate X =

(X1, . . . ,Xd), the heterogeneity weighted V test statistic is an extension of 5.3 as follow,

V H
Z = M̃TWM̃,

where W = (J+H)⊙F, H = {h(Xi,Xj)}n×n, h(Xi,Xj) is a kernel function that measures

subpopulation similarity between subject i and j. ⊙ is element-wise matrix multiplication.

The asymptotic null distribution of V H
Z can be approximated similarly as that of VZ. Based

on the distribution, p-value can be computed using Davies’ method (Davies, 1980), P (V H
Z ≥

V H
Z,obs), where V

H
Z,obs is observed value of V H

Z .

4.1.2 G-G/G-E interaction test

We developed two interaction tests to detect the potential association between G-G and G-E

interaction effect on age-to-onset of the primary event (Cause 1) considering left-truncation

time.

In testing G-G interaction effect two genes G = (G1, . . . ,Gp) and H = (H1, . . . ,Hq).
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Under the null hypothesis of no G-G interaction effect, the adjustment covariate Z is replaced

with (G,H) and the genetic main effect is homogeneous. We assume the cause specific hazard

for subject i given G and H is,

λ(t|Gi,Hi) = λ0(te
−βTGi−αTHi)e−βTGi−αTHi , (4.1)

where λ0(·) is unspecified baseline hazard function. In real application, the regression param-

eter β and cumulative baseline hazard function Λ0(t) are estimated by applying rank-based

estimation method (Chiou and Xu, 2017) to observed data D with the (working) AFT model

log(T ∗) = βTG + αTH + ϵ. The resulting estimators are β̂, α̂, and Λ̂0(β,α, t). Then we

have Λϵ(t) =
∫ t

−∞ λϵ(s)ds =
∫ t

−∞ esλ0(s)ds, which can be estimated using Nelson-Aalon type

estimator,

Λ̂ϵ(β,α, t) =

∫ t

−∞

∑n
i=1 dNi(β,α, s)∑n

i=1 νi(β,α, s)Yi(β,α, s)
, (4.2)

where Ni(β,α, t) = I(ei(β,α) ≤ t,∆iϵi = 1), Yi(β,α, t) = I(ei(β,α) ≥ t), and νi(β,α, t) =

I(eai (β,α) < t), with ei(β,α) = logT̃i−βTGi−αTHi and e
a
i (β,α) = logAi−βTGi−αTHi.

LetMi =Mi(Λϵ,β,α) = Ni(β,α,∞)−
∫∞
−∞ νi(β,α, t)Yi(β,α, t)dΛϵ(t)} be martingale resid-

ual, M̂i =Mi(Λ̂ϵ(β,α, t),β,α) and M̃i =Mi(Λ̂ϵ(β̂, α̂, t), β̂, α̂). The weighted V test statis-

tics can be written as

VI = M̃T (F⊙K)M̃

=
n∑

i=1

n∑
j=1

f(Gi,Gj)k(Hi,Hj)M̃iM̃j, (4.3)

where M̃ = (M̃1, . . . , M̃n), F = {f(Gi,Gj)}n×n, and K = {k(Hi,Hj)}n×n. M̃iM̃j in 4.3 is
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the V statistic kernel that measures phenotype similarity weighted by f(Gi,Gj)k(Hi,Hj),

which measures genetic similarity, for a pair of subjects (i, j). The value of weighted V

statistic is the weighted sum over all pairs of (i, j). Therefore, the larger (smaller) the

phenotype similarity weighted by larger (smaller) genetic similarity results in larger (smaller)

VZ value, therefore smaller (larger) p-value.

The asymptotic null distribution of VI can be approximated similarly as VZ. Based on

the distribution, we use Davies’ method (Davies, 1980) to compute p-value, P (VI ≥ VI,obs),

where VI,obs is the observed value of VI .

For testing G-E interaction effect, the weighted V test statistic and its asymptotic null

distribution can be obtained in the same way, except that H is replaced by an environmental

variable (e.g., gender). The proposed interaction tests are expected to be more powerful than

regular tests (e.g., LRT, Wald test) when there exists strong LD because the weighted V

statistic has an effective degree of freedom lower than that of regular tests.

4.1.3 Small sample adjustment

The association and interaction tests introduced above work efficiently when the sample size

is large. However, as shown in the QQ plot in the simulation below, the distribution might not

be accurate when n is relatively small (as compared to p), which is frequently encountered in

whole-exome sequencing studies (Lee et al., 2012; Emond et al., 2012). Therefore, motivated

by (Chen et al., 2016), we propose a small sample correction on VZ, V
H
Z and VI , denoted,

respectively, as V c
Z, V

H,c
Z and V c

I as follow,

V c
Z =

M̃TFM̃

M̃TM̃
, V H,c

Z =
M̃TWM̃

M̃TM̃
, and V c

I =
M̃T (F⊙K)M̃

M̃TM̃
,
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where M̃TM̃ accounts for the variability of martingale residual. After accounting for that, we

expect that the approximated asymptotic null distribution of corrected weighted V statistics,

V c
Z, V

H,c
Z , and V c

I have exact mixture of χ2 distribution. For V c
Z, based on the distribution,

we can apply Davies’ method (Davies, 1980) to compute p-values by P (V c
Z ≥ V c

Z,obs) =

P (M̃
TFM̃

M̃T M̃
≥ VZ,obs) = P (M̃T (F − VZ,obsI)M̃ ≥ 0). The p-value of V H,c

Z and V c
I can be

computed similarly.

4.2 Simulations

We performed a Monte Carlo simulation to assess the finite-sample performance of (hetero-

geneity) weighted V tests on survival time following the AFT model, considering adjustment

covariates, left-truncation time, and each individual potentially experiencing two competing

events (Cause 1 and Cause 2). In all simulations, unless otherwise specified, two sample sizes

n = 400, 500 and two SNP set sizes p = 3, 5 were considered. Genetic covariates, denoted

as G = (G1, . . . ,Gp), is a set of p SNPs (coded by 0, 1, or 2), unless otherwise specified.

The generation of G follows a two-step procedure that considered potential LD structure,

1) sample n vectors independently from MVN(0,Σ), where Σ = {0.5|k−l|}p×p, the kl-th

element is the covariance between Gk and Gl; 2) categorize each quantitative column into

SNP with three levels 0, 1, and 2 by using predetermined quantile cutoffs: a2, (1− a)2, and

2a(1− a) of standard normal distribution with a ∼ Beta(2, 5), to ensure the resulting pop-

ulation is in Hardy-Weinberg equilibrium (HWE) and MAFs follow Beta(2, 5) distribution.

Two baseline covariates were adjusted, one binary Z1 ∼ Binomial(0.5) and one continuous

Z2 ∼ Uniform(0, 2). Unless otherwise specified, we assumed that there is no confounding

effect, in other words, Z is independent of G. The failure of all competing events was as-

sumed to follow the AFT model, and the observed survival times were generated following
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steps in section 3.2 of Beyersmann et al. (Beyersmann et al., 2009). Left truncation times

were generated from Uniform(0, 1) and the residual censoring times from Exponential(0.3)

to control the right censoring rate around 35%. In all simulations, 1000 Monte Carlo samples

were generated and the significance level of a test was set at 0.05 unless otherwise specified

in testing genetic association under the scenarios where stringent p-value thresholds were

considered.

4.2.1 Association test in the absence of genetic heterogeneity

In this series of simulation, we investigated the empirical size and power of VZ in the absence

of genetic heterogeneity and in the presence of left truncation time. Left truncation time

was generated from Uniform(0, 1). For subject i, both competing events were assumed to

follow AFT model with following cause specific hazard (CSH) function,

λ(t|Gi,Zi) = λ0(t · exp{−
p∑

j=1

β1jGij −
2∑

l=1

β2lZil}) exp{−
p∑

j=1

β1jGij −
2∑

l=1

β2lZil},

where λ0(x) = x2 + x is baseline hazard function.

Empirical size and power under various n’s and p’s

In this simulation, we assessed the empirical size and power of VZ and V H
Z . Cause specific

hazard (CSH) of Cause 1 and Cause 2 competing events for subject i are as follows,


λ1(t|Zi,Gi) = λ0(t · exp{−

p∑
j=1

βjGij −
2∑

l=1

0.1Zil}) exp{−
p∑

j=1

βjGij −
2∑

l=1

0.1Zil},

λ2(t|Zi,Gi) = λ0(t · exp{−
p∑

j=1

0.2Gij −
2∑

k=1

0.2Zik}) exp{−
p∑

j=1

0.2Gij −
2∑

k=1

0.2Zik},
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where λ1 is CSH of Cause 1 (primary event). We set β1 = . . . = βp to 0 and 0.1 for empirical

size and power assessment, while CSH for Cause 2 stays the same. IBS kernel was used

to measure genetic similarity in both VZ and V H
Z . Gaussian kernel was used to measure

similarity of adjustment covariates Z for test V H
Z . Table 4.1 shows that the Type I error of

both VZ and V H
Z are close to nominal level and their power are comparable under various

n′s and p′s. This indicates that when the genetic effect is homogeneous, VZ and V H
Z have

similar performance.

Table 4.1 Empirical size and power comparison of VZ and V H
Z in testing genetic effects

under covariate adjustment and left truncation.

Empirical Size (Power)

p=3, n=400 p=3, n=500

VZ 0.051 (0.688) 0.054 (0.805)

V H
Z 0.050 (0.690) 0.054 (0.798)

p=5, n=400 p=5, n=500

VZ 0.052 (0.865) 0.048 (0.945)

V H
Z 0.045 (0.849) 0.047 (0.940)

Empirical size and power under quadratic confounding

In this simulation, we assessed the empirical size and power of VZ in the absence of genetic

heterogeneity. We assumed that G is a quadratic function of Z, in other words, there

is quadratic confounding effect. The genetic covariate for subject i was replaced by gene

expression values generated by Gi = 0.5Zi1 + 0.5Zi2 + 0.25Z2
i1 + 0.25Z2

i2 + 0.5Zi1Zi2 + ei

(i = 1, . . . , n). The random error ei ∼MVN(0,Σ), where Σ = {0.5|k−l|}p×p. CSH for Cause
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1 and Cause 2 competing event of subject i are as follow



λ1(t|Zi,Gi) = λ0(t · exp{−
p∑

j=1

βjGij −
2∑

l=1

0.1Zil})

exp{−
p∑

j=1

βjGij −
2∑

l=1

0.1Zil},

λ2(t|Zi,Gi) = λ0(t · exp{−
p∑

j=1

0.1Gij −
2∑

k=1

0.2Zik})

exp{−
p∑

j=1

0.1Gij −
2∑

k=1

0.2Zik},

where λ1 is CSH for primary event (Cause 1), β1 = . . . = βp are set to 0 and 0.03 for

empirical size and power assessment, while CSH for Cause 2 stays the same. Gaussian

kernel was used to measure gene expression similarity. Figure 4.1 shows that p-value of VZ

is uniformly distributed and table 4.2 shows Type I error of VZ is close to nominal level

and power increases with sample size. The results show that VZ is able to handle quadratic

confounding effect.

Table 4.2 Empirical size and power of VZ in testing genetic effects under quadratic
confounding and left truncation.

Empirical Size (Power)

p=3, n=400 p=3, n=500

VZ 0.050 (0.178) 0.049 (0.220)

p=5, n=400 p=5, n=500

VZ 0.047 (0.279) 0.057 (0.325)

4.2.2 Association test in the presence of genetic heterogeneity

In this series of simulations, we investigated the performance of association test statistic,

V H
Z , in the presence of genetic heterogeneity across 1) observable subpopulations, 2) two

latent subpopulations, 3) twenty subpopulations, and 4) individual genome profile. The
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advantage of V H
Z over VZ is obvious through the performance comparison shown below. For

all simulations in this section, we assume that the effect of G exists on survival time of both

competing events, but the form of effect is heterogeneous for Cause 1 (primary event) and

homogeneous for Cause 2.
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(a) n = 400, p = 3
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(b) n = 400, p = 5

Figure 4.1 Q-Q plot of the null p-value of VZ under quadratic confounding with n = 400
and p = 3 or 5.

Genetic heterogeneity across observable subpopulation

In this simulation, we assessed the empirical size and power of heterogeneity weighted V

statistic, V H
Z , in the presence of heterogeneity across two observable subpopulations. We

used a one-dim vector to infer two equally weighted subpopulations, X = {Xi}ni=1, where

Xi = {0, 1}. Therefore, two genetic covariates (each has sample size n/2) were genertaed

using two different sets of MAFs (∼ Beta(2, 5)) and LD structure (Σp×p = {ρ|k−l|} depends

on ρ) as follow,

MAFs = {0.144, 0.046, 0.042, 0.013, 0.166} and ρ = 0.5 in Subpopulation 1,

MAFs = {0.095, 0.038, 0.450, 0.125, 0.265} and ρ = 0.3 in Subpopulation 2.
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The first p MAFs will be used. We used a one-dimensional vector X = (X1, . . . , Xn) ∼

Binomial(0.5) to infer two observable subpopulations (e.g., male and female). The CSH of

Cause 1 and Cause 2 for subject i are as follow,


λ1(t|Zi,Gi) = λ0(t·e−

∑p
j=1(β0+β1Xi)Gij−0.1Xi)e−

∑p
j=1(β0+β1Xi)Gij−0.1Xi

λ2(t|Zi,Gi) = λ0(t·e−
∑p

j=1 0.02Gij−
∑2

k=1 0.2Zik)e−
∑p

j=1 0.02Gij−
∑2

k=1 0.2Zik ,

where β0 = β1 = 0 for empirical size assessment and (β0, β1) = {(0.002, 0.1), (0.002, 0.2)} for

power assessment under two different genetic heterogeneity sizes, measured by β1. IBS kernel

was used to measure genetic similarity and identity kernel used to measure subpopulation

similarity. Performance of weighted V statistic, VZ, was also included. Table 4.3 shows that

Type I error of both VZ and V H
Z are close to nominal level. Table 4.4 shows that V H

Z is more

powerful than VZ. For a fixed mean effect size (β0), as heterogeneity size (β1) increases, V
H
Z

gains more power by taking advantage of the subpopulation structure in performing the test.

Table 4.3 Empirical sizes of V H
Z and VZ in testing genetic association under genetic

heterogeneity across two observable subpopulations and left truncation.

Empirical Size

p=3, n=400 p=3, n=500

V H
Z 0.054 0.058

VZ 0.054 0.057

p=5, n=400 p=5, n=500

V H
Z 0.046 0.049

VZ 0.045 0.051

Genetic heterogeneity across two latent subpopulations

In this simulation, we assessed the empirical size and power of heterogeneity weighted V

statistic in the presence of genetic heterogeneity across two latent subpopulations. A one-
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Table 4.4 Powers of V H
Z and VZ in testing genetic association under genetic heterogeneity

across two observable subpopulations and left truncation.

Power

p=3, n=400 p=3, n=500

β1 0.1 0.2 0.1 0.2

V H
Z 0.226 0.646 0.261 0.749

VZ 0.185 0.543 0.234 0.645

p=5, n=400 p=5, n=500

β1 0.1 0.2 0.1 0.2

V H
Z 0.289 0.733 0.368 0.860

VZ 0.259 0.604 0.303 0.711

dim vector X = (X1, . . . , Xn) was generated to infer two latent subpopulation structure.

Xi = ai + 1 + ei (i = 1, . . . , n), where ai ∼ Binomial(0.5) and ei ∼ Normal(0, 0.5). The

CSH of Cause 1 and Cause 2 competing event for subject i in subpopulation j are as follows



λ1(t|Zi,Gij) = λ0(t· exp{−
p∑

k=1

Gijkβjk − 0.1Zi1 − 0.1Zi2})·

exp{−
p∑

k=1

Gijkβjk − 0.1Zi1 − 0.1Zi2}

λ2(t|Zi,Gij) = λ0(t· exp{−
p∑

k=1

0.02Gijk − 0.2Zi1 − 0.2Zi2})·

exp{−
p∑

k=1

0.02Gijk − 0.2Zi1 − 0.2Zi2},

(4.4)

where {βj = (βj1, . . . , βjp), s.t. βj1 = . . . = βjp}2j=1 are respectively genetic effects of p SNPs

in two latent subpopulations. {βj}2j=1 were set to 0 for empirical size assessment and set

to different values to indicate different genetic heterogeneity scenarios for power assessment.

IBS kernel was used to measure genetic similarity and Gaussian kernel for subpopulation

similarity. Table 4.5 shows that Type I error of both V H
Z and VZ are close to nominal level.

Table 4.6 shows that when in the absence of genetic heterogeneity (T1), VZ is more powerful,
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however, when in the presence of genetic heterogeneity, V H
Z is more powerful and gains more

power as heterogeneity size increases.

Table 4.5 Empirical sizes of VZ and V H
Z in testing genetic effects under genetic

heterogeneity across two latent subpopulations, covariate adjustment and left truncation.

Empirical Size

p=3, n=400 p=3, n=500

V H
Z 0.047 0.050

VZ 0.052 0.058

p=5, n=400 p=5, n=500

V H
Z 0.053 0.044

VZ 0.045 0.049

Table 4.6 Powers of VZ and V H
Z in testing genetic effects under genetic heterogeneity across

two latent subpopulations, covariate adjustment and left truncation. Various heterogeneity
scenarios were considered, determined by the values of β1k and β2k, including the same

effect size and the same effect direction (T1), identical sizes but opposite directions (T2),
no effect in one subpopulation while positive effect in the other (T3), and different sizes

but the same direction (T4).

Heterogeneity Scenario

T1 T2 T3 T4

β1k 0.04 0.08 -0.05 -0.1 0 0 0.03 0.03

β2k 0.04 0.08 0.05 0.1 0.08 0.12 0.08 0.1

p=3,n=400
V H
Z 0.252 0.768 0.775 0.972 0.719 0.906 0.601 0.784

VZ 0.376 0.891 0.056 0.043 0.370 0.636 0.596 0.746

p=3,n=500
V H
Z 0.327 0.825 0.826 0.979 0.768 0.945 0.703 0.868

VZ 0.376 0.927 0.057 0.047 0.467 0.716 0.702 0.817

p=5,n=400
V H
Z 0.403 0.900 0.984 1.000 0.950 0.994 0.855 0.958

VZ 0.594 0.976 0.062 0.069 0.557 0.775 0.829 0.894

p=5,n=500
V H
Z 0.467 0.968 0.988 1.000 0.968 0.998 0.935 0.979

VZ 0.729 0.995 0.047 0.068 0.659 0.866 0.905 0.958

Genetic heterogeneity across twenty latent subpopulation

In this simulation, we assessed empirical size and power of heterogeneity weighted V statis-

tic, V H
Z , in the presence of twenty latent subpopulations. The simulation setting is same to
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simulation above, except that we increased the number of latent subpopulation to twenty.

We used X = (X1, . . . ,X25) to infer subpopulation structure. Xk = ak + ek (k = 1, . . . , 25)

where ak is a length n bootstrap sample from {1, . . . , 20} that represents subgroup assign-

ments. Random error ek = (ek1, . . . , ekn) ∼ Normal(0, 0.5). Regression coefficients for j

subpopulations, {βj = (βj1, . . . , βjp), s.t. βj1 = . . . = βjp}20j=1, in CSH function 4.4 were set

to 0 for empirical size assessment. In power assessment, {βj}20j=1 were sampled from uniform

distribution with mean µβ and variance σ2
β. IBS kernel was used to measure genetic similar-

ity and Gaussian kernel for subpopulation similarity. Table 4.7 shows that Type I error of

both VZ and V H
Z are close to nominal level. Table 4.8 shows that V H

Z is more powerful than

VZ and gains power as heterogeneity size (σβ) increases.

Table 4.7 Empirical sizes of VZ and V H
Z in testing genetic effects under genetic heterogeneity

across twenty latent subpopulations, covariate adjustment and left truncation.

Empirical Size

p=3, n=400 p=3, n=500

V H
Z 0.045 0.043

VZ 0.046 0.042

p=5, n=400 p=5, n=500

V H
Z 0.043 0.044

VZ 0.042 0.048

Genetic heterogeneity across individual genome profile

In this simulation, we investigated the empirical size and power of heterogeneity weighted

V statistic, V H
Z , in the presence of genetic heterogeneity across individual genome profile.

In stead of considering two or twenty ’categorical’ subpopulation structure, we now assume

a ’continuous’ subpopulation structure. In other words, each individual itself is a single

’subpopulation’. We used a genome profile of 1,000 SNPs, X = (X1, . . . ,X1000), to infer
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Table 4.8 Power comparison of V H
Z and VZ under genetic heterogeneity across twenty latent

subpopulations, covariate adjustment and left truncation.

Power

p=3, n=400 p=3, n=500

(µβ, σβ) (0.02, 0.04) (0.02, 0.08) (0.02, 0.04) (0.02, 0.08)

V H
Z 0.396 0.742 0.448 0.843

VZ 0.336 0.506 0.390 0.616

p=5, n=400 p=5, n=500

(µβ, σβ) (0.02, 0.04) (0.02, 0.08) (0.02, 0.04) (0.02, 0.08)

V H
Z 0.679 0.955 0.785 0.988

VZ 0.473 0.634 0.581 0.754

subpopulation structure. X was generated in three steps, 1) generate genetic effect sizes

in each subgroup {βi = (βi1, . . . , βip), s.t. βi1 = . . . = βip}ni=1, 2) generate a n-dim vector

Xd (d = 1, . . . , 1000) from MVN(0,Σ), where Σ is a n × n identity matrix under null

hypothesis and {exp(−|βi1 − βj1|/σβ)}n×n under alternative hypothesis, 3) categorize Xd

(d = 1, . . . , 1000) into SNPs coded by 0, 1, or 2 by using predetermined quantile cutoffs: a2,

2a(1 − a), and (1 − a)2 of a standard normal distribution where a is MAF generated from

Beta(2, 5), to ensure the resulting population is in HWE. IBS kernel was used to measure

both genetic and subpopulation similarity. Table 4.9 shows that Type I error of both VZ

and V H
Z are close to nominal level 0.05. Table 4.10 shows that V H

Z is more powerful than

VZ. Furthermore, for fixed mean effect size (µβ = 0.03), as heterogeneity size (σβ) increases

from 0.02 to 0.04, V H
Z gains substantially more power while the power of VZ does not change

much as heterogeneity size increases.

4.2.3 Testing G-G/G-E interaction effect

In this simulation, we investigated the performance of weighted V statistic, VI , in testing

interaction effect. The performance was also compared with Wald test. For testing G-G
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Table 4.9 Empirical sizes of V H
Z and VZ in testing genetic effects under genetic

heterogeneity across individual genome profiles, covariate adjustment and left truncation.

Empirical Size

p=3, n=400 p=3, n=500

V H
Z 0.052 0.058

VZ 0.053 0.058

p=5, n=400 p=5, n=500

V H
Z 0.046 0.049

VZ 0.047 0.051

Table 4.10 Powers of V H
Z and VZ under genetic heterogeneity across individual genome

profiles, covariate adjustment and left truncation.

Power

p=3, n=400 p=3, n=500

(µβ, σβ) (0.03, 0.02) (0.03, 0.04) (0.03, 0.02) (0.03, 0.04)

V H
Z 0.253 0.328 0.308 0.400

VZ 0.241 0.242 0.290 0.292

p=5, n=400 p=5, n=500

(µβ, σβ) (0.03, 0.02) (0.03, 0.04) (0.03, 0.02) (0.03, 0.04)

V H
Z 0.449 0.649 0.550 0.756

VZ 0.390 0.381 0.480 0.477

interaction effect between two genes G = (G1, . . . ,Gp) and H = (H1, . . . ,Hq). We assumed

that two genes come from the same population, therefore have the same MAF and LD

structures. CSH of Cause 1 and Cause 2 competing events for subject i are as follows



λ1(t|Zij,Gij) = λ0(t· exp{−
p∑

j=1

0.2Gij −
q∑

j=1

0.2Hij −
pq∑

m=1

βm(GH)m})·

exp{−
p∑

j=1

0.2Gij −
q∑

j=1

0.2Hij −
pq∑

m=1

βm(GH)m}

λ2(t|Zij,Gij) = λ0(t· exp{−
p∑

j=1

0.2Gij −
q∑

j=1

0.2Hij})·

exp{−
p∑

j=1

0.2Gij −
q∑

j=1

0.2Hij},
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where λ1 is CSH for Cause 1 competing event (primary event), (GH)m is m-th column of

interaction between G and H. Two SNP-set sizes (p = 1, q = 2) and (p = 2, q = 2) and

two sample sizes n = 600, 1000 were used. We set βm = 0 under null hypothesis of no G-G

interaction effect to Cause 1 competing event and β=1 under alternative hypothesis, when

G-G interaction effect exists only in Cause 1 (primary event). Cross-product kernel was used

to measure genetic similarity for both genes.

For testing G-E interaction effect, the simulation setting is the same as above ex-

cept that H is replaced by a one-dim vector binary environmental variable generated from

Binomial(0.5). Two SNP-set sizes p = 2, 3 and two sample sizes n = 500, 900 were used.

Identity kernel was used to measure environmental variable similarity.

Table 4.11 and 4.12 show that Type I error of VI is close to nominal level while Wald

test is slightly inflated under small sample size (e.g., under p = 2, q = 2, n = 600). In all

scenarios, VI is more powerful than the Wald test as expected, since the asymptotic null

distribution of VI has a more effective degree of freedom.

Table 4.11 Empirical sizes and powers of VI and the Wald test in testing G-G interaction
under left truncation.

Empirical Size (Power)

p=1, q=2, n=600 p=1, q=2, n=1000

VI 0.054 (0.217) 0.059 (0.289)

Wald 0.048 (0.139) 0.059 (0.206)

p=2, q=2, n=600 p=2, q=2, n=1000

VI 0.065 (0.408) 0.060 (0.550)

Wald 0.075 (0.202) 0.059 (0.375)
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Table 4.12 Empirical sizes and powers of VI and the Wald test in testing G-E interaction
under left truncation.

Empirical Size (Power)

p=2, q=1, n=500 p=2, q=1, n=900

VI 0.052 (0.329) 0.055 (0.561)

Wald 0.047 (0.276) 0.054 (0.507)

p=3, q=1, n=500 p=3, q=1, n=900

VI 0.061 (0.381) 0.053 (0.617)

Wald 0.085 (0.342) 0.045 (0.529)

4.2.4 Empirical size under stringent p-value thresholds

In case-control studies, there is usually a huge amount of genetic variants are tested. To

account for the multiple testing issue, Bonferroni correction is used and results in p-value

threshold 5× 10−3 or smaller. In this simulation, we investigated the performance of 1) VZ

in the absence of genetic heterogeneity and 2) V H
Z in the presence of genetic heterogeneity

across observable subpopulations under stringent p-value thresholds. The corresponding

simulation settings for significance level 0.05 were adopted, except that only p = 3, n = 500

was considered and 500K Monte Carlo samples were generated. The Type I errors were the

proportion of p-values that are smaller than the corresponding p-value thresholds. Table

4.13 shows that Type I error of both VZ and V H
Z are close to nominal level, indicating the

capability of VZ and V H
Z for large-scale GWAS.

4.2.5 Small-sample correction

In this series of simulations, we investigated the performance of small sample adjusted (het-

erogeneity) weighted V statistic in the following three scenarios: 1) VZ in the absence of

genetic heterogeneity, 2) V H
Z in the presence of genetic heterogeneity across observable sub-

populations, and 3) VI in the presence of G-G and G-E interaction effect.
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Table 4.13 Empirical sizes of VZ and V H
Z under stringent p-value thresholds and left

truncation.

Empirical Size

Threshold VZ V H
Z

0.05 0.051 0.049

0.005 0.0052 0.0047

0.0005 0.00054 0.00048

0.00005 0.000060 0.000054

In the absence of genetic heterogeneity under small sample size

In this simulation, we assessed the empirical size and power of V c
Z and VZ in testing genetic

association in the absence of genetic heterogeneity. The simulation settings were the same as

that of the simulations shown above, except that we used sample size n = 100 and SNP-set

size p = 15. Table 4.14 and Figure 4.2 show that small sample corrected weighted V statistic,

V c
Z, is asymptotically correct without loss of power, while unadjusted weighted V statistic,

VZ, is not.

Table 4.14 Empirical size and power of test VZ and V c
Z considering left truncation, with

n = 100, p = 15.

Empirical Size (power)

V c
Z 0.045 (0.417)

VZ 0.034 (0.346)

In the presence of genetic heterogeneity across observable subpopulations under

a small sample size

In this simulation, we assessed the empirical size and power of V H,c
Z and V H

Z in testing

genetic association in the presence of genetic heterogeneity across observable subpopulation.

The simulation settings were the same as that of simulations shown above, except that we

used sample size n = 200 and SNP-set size p = 10. In power assessment, two genetic
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heterogeneity sizes were considered: β1 = 0.02, 0.04. Table 4.15 and figure 4.3 show that

small sample corrected heterogeneity weighted V statistic, V H,c
Z , is asymptotically correct

without loss of power, while V H
Z is not.

(a) VZ (b) V c
Z

Figure 4.2 Comparison of uniform QQ plot of test VZ and V c
Z in detecting genetic

association without considering genetic heterogeneity effect, with n=100 and p=15.

Table 4.15 Empirical size and power of test V H
Z and V H,c

Z considering genetic heterogeneity
across two observable subpopulations and left truncation, with n = 200, p = 10.

Epirical Size Power
β1 0 0.02 0.04

V H,c
Z 0.051 0.343 0.395
V H
Z 0.045 0.342 0.394

Interaction test under small sample size

In this simulation, we assessed the empirical size and power of weighted V statistics, V c
I and

VI , in testing G-G and G-E interaction effect. The simulation settings were the same as

that of simulations with large sample size in previous sections, except that we used n = 600

and p = q = 2 for testing G-G interaction effect and n = 500 and p = 2, q = 1 for testing

G-E interaction effect. Table 4.16, 4.17 and figure 4.4, 4.5 show that the p-values of small

sample corrected weighted V statistic, V c
I , is close to Uniform(0, 1) distribution, while VI
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is not.

Table 4.16 Empirical size and power of test VI and V c
I in testing G-G interaction effect,

considering left truncation, with n = 600, p = q = 2.

Empirical Size (power)
V c
I 0.064 (0.413)
VI 0.065 (0.408)

Table 4.17 Empirical size and power of test VI and V c
I in testing G-E interaction effect,

considering left truncation, with n = 500, p = 2.

Empirical Size (power)
V c
I 0.054 (0.334)
VI 0.052 (0.329)

4.3 A Real Application

We applied the developed small sample adjusted (heterogeneity) weighted V test statistics,

V c
Z and V H,c

Z , on the ROSMAP dataset by assuming the age-to-onset of Alzheimer’s disease

follows the AFT model. ROSMAP is a GWAS that includes dementia exam data from two

large longitudinal studies of aging and dementia: 1) the Religious Orders Study (ROS) and

the Rush Memory and Aging Project (MAP) (Bennett et al., 2018). The ROSMAP genotype

dataset includes 1,679 subjects, each has 750,173 SNPs. We first performed quality control

on genotype dataset 1) at SNP level by removing SNPs with MAF>0.01, HWE test’s p-

value > 10−6, or missing rate > 2%, then 2) at the subject level by removing subjects with

missing genotype rate > 2%. This results in a quality-controlled genotype dataset with 1,618

subjects each having 619,061 SNPs. There were still ∼ 0.3% missing genotypes, which were

then imputed with random samples generated from Binomial(2,MAF ), where MAF was

estimated from the genotype dataset. PCA was performed using Plink software (version 1.9)

to obtain the first 6 principal components that represent the underlying ancestry information.

73



After that, we grouped all available SNPs into 21,285 different genes by using human genome

annotation (GRCh38/hg38) obtained from UCSC Genome Browser. We also formed a new

gene APOE4 which was coded as the count of the APOE4-ϵ4 allele.

The ROSMAP phenotype dataset includes information from 2,543 subjects. Each subject

has 1) baseline covariates: race, gender, years of education, and binary study cohort indicator

(ROS or MAP) and 2) follow-up information: subject’s age and clinical cognitive diagnosis

result at each examination center visit including at the study registry. For our analysis, we

include only subjects who are disease-free in the study registry. Age at baseline served as

left-truncation time, the age at first AD diagnosis served as survival time, and the age at

study termination served as right censoring time if the subject is disease-free throughout the

study follow-up period.
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(b) V H,c
Z

Figure 4.3 Uniform QQ plot of V H
Z and V H,c

Z , considering genetic heterogeneity across two
observable subpopulations, with n=200 and p=10.

We merged preprocessed genotype and phenotype datasets by keeping only the overlap-

ping subjects to generate the analysis-ready dataset, which includes 1,440 subjects, with a

censoring rate of 62.5%. We are interested in 1) testing genetic covariates that are associated
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with the time-to-onset of first AD diagnosis and 2) detecting potential genetic heterogeneity

across subpopulations inferred by either baseline covariates or individual genome profiles

(represented by a random sample of 200K SNPs), in the presence of left-truncation time

and adjust for gender, year of education, study cohort indicator (ROS served as baseline),

and first 6 principal components. Note that race is not adjusted because 1,439 out of 1,440

subjects are white. IBS kernel was used to measure genetic similarity, while the choice of

similarity kernel for subpopulation similarity depends on the source of heterogeneity, which

is elaborated in Table 4.18.
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(b) V c
I

Figure 4.4 Comparison of uniform QQ plot of test VI and V c
I in testing G-G interaction

effect, with n=600, p=q=2.

Table 4.18 shows the analysis results of the ROSMAP dataset. To account for multiple

testing issues, the p-value thresholds were obtained by controlling the FDR under 10% using

the Benjamini-Hochberg procedure Benjamini and Hochberg (1995). Four different kernels

were used to measure genetic similarity. When in the absence of genetic heterogeneity

(scenario S1), APOE4 appeared to be the most significant gene followed by APOC1. When

in the presence of genetic heterogeneity (scenarios S2-S4), even though APOE4 and APOC1
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were still the most significant genes, their p-values varies across scenarios and sources of

heterogeneity, with notably smaller p-values when Laplacian kernel was used under scenario

S2 and S4 that considered genetic heterogeneity across sexes and genetic background. In

other words, the effect of APOE4 and APOC1 on age-to-onset of AD varies across subjects’

gender and genetic background. In addition to APOE4 and APOC1, IGSF23 is frequently

detected as the next most significant gene. The function of IGSF23 is listed in table 4.19.
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(b) V c
I

Figure 4.5 Comparison of uniform QQ plot of test VI and V c
I in testing G-E interaction

effect, with n=500, p=2, q=1.

4.4 Discussion

We developed a suite of novel multi-marker genetic association and interaction tests based

on weighted V statistics. The proposed tests have four major advantages: 1) they can

handle competing risks, 2) they are accurate under a small sample size, 3) the heterogeneity

weighted V statistic is powerful when the genetic effect is heterogeneous in the underlying

population, and 4) they can handle quadratic confounding effect.

The asymptotic null distribution of weighted V statistic can be well approximated by a

rescaled χ2 distribution, c0χ
2
d0
, using the Satterthwaite method (Liu, Lin, and Ghosh, 2007).
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Table 4.18 Top five genes discovered by VZ and V H,c
Z from ROSMAP dataset by assuming

the age-to-onset of Alzheimer’s disease follows AFT model. IBS, CP, Lap and Quad stand
for IBS, cross-product, Laplacian and Quadratic kernel, respectively, that measures genetic

similarity. Various types of heterogeneity were considered, including no genetic
heterogeneity (S1), heterogeneity between sexes (S2), heterogeneity across education

categories (S3), and heterogeneity across genetic backgrounds (S4).

Kernel Scenario Genes and p-values

S1
APOE4 APOC1 IGSF23 TBCC HSBP1
3.46E-14 1.72E-09 6.99E-05 7.20E-05 1.21E-04

IBS
S2

APOE4 APOC1 PLEKHG5,TNFRSF25 TBCC GRIP1
6.45E-14 2.61E-09 9.45E-05 1.41E-04 1.91E-04

S3
APOE4 APOC1 EFEMP2 MUS81 TBCC
6.08E-10 1.01E-07 1.58E-04 6.08E-04 9.74E-04

S4
APOE4 APOC1 IGSF23 TBCC HSBP1
7.63E-14 1.50E-09 7.09E-05 7.26E-05 1.22E-04

S1
APOE4 APOC1 IGSF23 MTMR2 HSBP1
6.66E-16 2.35E-10 4.14E-05 9.32E-05 9.91E-05

CP
S2

APOE4 APOC1 IGSF23 GRIP1 MTMR2
1.44E-15 1.11E-09 9.46E-05 1.06E-04 1.42E-04

S3
APOE4 APOC1 TBCC IGSF23 TTC1
1.15E-14 1.08E-09 3.40E-05 9.31E-05 1.50E-04

S4
APOE4 APOC1 IGSF23 MTMR2 HSBP1
6.21E-15 3.19E-10 4.23E-05 9.45E-05 9.84E-05

S1
APOE4 APOC1 IGSF23 GRIP1 TBCC
1.00E-12 3.83E-08 6.80E-05 8.70E-05 1.23E-04

Lap
S2

APOE4 APOC1 GRIP1 MTMR2 IGSF23
4.57E-13 2.72E-08 1.13E-04 2.07E-04 2.09E-04

S3
APOE4 APOC1 EFEMP2 TBCC DCAF12
6.05E-12 1.27E-08 1.40E-04 3.15E-04 3.88E-04

S4
APOE4 APOC1 IGSF23 GRIP1 TBCC
3.26E-13 5.11E-09 6.92E-05 9.29E-05 1.24E-04

S1
APOE4 APOC1 GRIP1 EHHADH-AS1 MTMR2
9.99E-16 2.52E-10 1.07E-04 1.31E-04 2.12E-04

Quad
S2

APOE4 APOC1 EHHADH-AS1 GRIP1 C16orf54
6.66E-16 1.07E-09 8.77E-05 9.69E-05 1.33E-04

S3
APOE4 APOC1 TBCC GRIP1 TTC1
2.44E-15 2.07E-09 1.14E-04 1.60E-04 1.78E-04

S4
APOE4 APOC1 GRIP1 EHHADH-AS1 GABBR1
4.11E-15 1.23E-08 1.08E-04 1.29E-04 2.14E-04

p-value threshold 4.46E-07 8.91E-07 1.34E-06 1.78E-06 2.23E-06

Table 4.19 Function of IGSF23, the third most frequent top gene, according to Entrez.

Gene Function

IGSF23

This gene encodes a protein that has one immunoglobulin (Ig) domain and is a
member of the immunoglobulin superfamily. Proteins in this superfamily are
usually found on or in cell membranes and act as receptors in immune response
pathways.

c0 is the scaled parameter and d0 is the χ2 distribution’s degree of freedom estimated by

matching the mean and variance of weighted V statistics and c0χ
2
d0
. In testing G-G and G-E

interaction effect, the scaled χ2 distribution of weighted V statistic has d0 degree of freedom,
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which is smaller than pq, the number of G-G interaction terms, when there is a weak or

strong correlation between SNPs. Therefore the weighted V statistic is more powerful than

regular tests (e.g., LRT, Wald test).
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CHAPTER 5 Multi-marker genetic association and interaction tests based on

the additive hazards model

5.1 Methods

A series of association and interaction tests were developed for survival times based on an

additive hazards model possibly under competing risks and/or left truncation.

5.1.1 Association test

Consider a cohort of n independent individuals who have not experienced any competing

events at baseline. We assume that each individual is subject to multiple potential sources

of failure event and the occurrence of one event impedes the occurrence of all other events.

Let G = (G1, . . . ,Gp) be genetic covariates that is either a set of SNPs, gene expression

values or a genetic pathway. We are interested in detecting the genetic association with age-

to-onset of Cause 1 competing event (primary event) with or without considering genetic

heterogeneity. Denote A as left truncation time (e.g., age at study registry), T̃ = min(T,C)

is observed survival time subject to right censoring, where T is survival time and C is right

censoring time. ∆ = I(T ≤ C) and ϵ is cause of failure, ϵ = 1 for Cause 1 competing

event (primary event) and ϵ = 0 for all other causes. Baseline covariates, Z = (Z1, . . . ,Zk)

is adjusted and when in the presence of genetic heterogeneity, X = (X1, . . . ,Xd) is used to

infer subpopulation structure. Observed data for n subjects is denoted as D = (D1, . . . , Dn),

with Di = (Ai, T̃i,∆i,∆iϵi,G
T
i ,Z

T
i ,X

T
i ) (Xi is included only when in the presence of genetic

heterogeneity). We assume the survival time T , the residual censoring time C − A and the

left truncation time A are conditionally independent given G and Z (and X if considering

genetic heterogeneity).

When in the absence of genetic heterogeneity, under the null hypothesis that G is in-
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dependent of survival time of Cause 1 competing event (primary event), we assume that

survival time for subject i (i = 1, . . . , n), given adjustment covariate Z, follows additive

hazards model with the following CSH function,

λ(t|Zi) = λ0(t) + βTZi, (5.1)

where λ0(t) is an unknown baseline hazard function. In real application, the regression

parameter β and cumulative baseline hazard function Λ0(t) are estimated by fitting a semi-

parametric additive hazards model (Lin and Ying, 1994) to observed data D. The resulting

estimators are β̂ and

Λ̂0(β, t) =

∫ t

0

∑n
i=1{dNi(u)− Yi(u)β

TZi}∑n
j=1 Yj(u)

, (5.2)

where Ni(u) = I(T̃ ≤ u,∆iϵi = 1) is counting process and Yi(u) = I(Ai < u ≤ T̃ ) is at-risk

process for subject i at time u. DefineMi =Mi(Λ0,β) = Ni(∞)−
∫∞
0
Yi(t){dΛ0(t)+βTZidt}

the martingale residual, M̂i =Mi(Λ̂0(β, t),β). By plugging in the β̂ or Λ̂0(β, t) in equation

5.2, we have M̃i =Mi(Λ̂0(β̂, t), β̂). The weighted V test statistics can be written as

VZ = M̃TFM̃

=
n∑

i=1

n∑
j=1

f(Gi,Gj)M̃iM̃j, (5.3)

where M̃ = (M̃1, . . . , M̃n) and F = {f(Gi,Gj)}n×n. M̃iM̃j in 5.3 is considered as V statistic

kernel that measures phenotype similarity weighted by f(Gi,Gj), measures genetic similar-
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ity, for a pair of subjects (i, j). The weighted V statistic value is the weighted sum over all

pairs of (i, j). Therefore, the larger (smaller) the phenotype similarity weighted by larger

(smaller) genetic similarity results in larger (smaller) VZ value, therefore smaller (larger)

p-value.

To get the asymptotic null distribution of VZ, we decompose F = ET
1 E1 for some m× n

matrix E1, where m(1 ≤ m ≤ n) is the rank of F. We then have weighted V statistic in

quadratic form, VZ = (M̃TET
1 )(E1M̃), and the asymptotic null distribution can be approxi-

mated by
∑m

j=1 λjχ
2
1j, which is linear combination of independent χ2 variables of 1 degree of

freedom weighted by {λi}mi=1, the eigenvalues of estimator of Cov(E1M̃) (derivation shown in

Appendix). Based on this distribution, the p-values can be computed using Davies’ method

(Davies, 1980), P (VZ ≥ VZ,obs) , where VZ,obs is the observed value of VZ.

When in the presence of genetic heterogeneity inferred explicitly or implicitly by X =

(X1, . . . ,Xd), the heterogeneity weighted V test statistic is an extension of 5.3, denoted as

V H
Z = M̃TWM̃, whereW = (J+H)⊙F, H = {h(Xi,Xj)}n×n, h(Xi,Xj) is a kernel function

that measures subpopulation similarity between subject i and j. ⊙ is element-wise matrix

multiplication. The asymptotic null distribution of V H
Z can be approximated similarly as

that of VZ introduced above by replacing F with W in equation 5.3. Based on the estimated

distribution, p-value can be computed by P (V H
Z ≥ V H

Z,obs) using Davies’ method (Davies,

1980), where V H
Z,obs is observed value of V H

Z .

5.1.2 G-G/G-E interaction test

We developed two interaction tests to detect the potential association between G-G and G-E

interaction effect on age-to-onset of Cause 1 competing event (primary event) considering

left-truncation time.
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In testing G-G interaction effect of two genes G = (G1, . . . ,Gp) and H = (H1, . . . ,Hq).

Under the null hypothesis of no G-G interaction effect on Cause 1 competing event, the

adjustment covariate Z is replaced with (G,H) and the genetic main effect is assumed to

be homogeneous. Under the null hypothesis, the CSH function of subject i given G and H

is as follows

λ(t|Gi,Hi) = λ0(t) + βTGi +αTHi, (5.4)

where λ0(t) is unspecified baseline hazard function. In real application, we fit a semiparamet-

ric additive hazards model (Lin and Ying, 1994) to observed data D and obtain the estimates

of regression coefficients β, α and cumulative baseline hazard function Λ0, denoted as β̂, α̂,

and Λ̂0, where Λ̂0 is as below

Λ̂0(β,α, t) =

∫ t

0

∑n
i=1{dNi(u)− Yi(u){βTGi +αHi}∑n

j=1 Yj(u)
, (5.5)

where Ni(u) is counting process and Yi(u) is at-risk process for subject i. Define mar-

tingale residual Mi = Mi(Λ0,β,α) = Ni(∞) −
∫∞
0
Yi(t){dΛ0(t) + (βTGi + αTHi)dt},

M̂i = Mi(Λ̂0(β,α, t),β,α), and M̃i = Mi(Λ̂0(β̂, α̂, t), β̂, α̂). The weighted V test statis-

tic for G-G interaction effect is

VI = M̃T (F⊙K)M̃

=
n∑

i=1

n∑
j=1

f(Gi,Gj)k(Hi,Hj)M̃iM̃j.

where F = {f(Gi,Gj)}n×n and K = {k(Hi,Hj)}n×n are genetic similarity matrices, and

⊙ is element-wise matrix multiplication. The asymptotic null distribution of VI can be
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approximated similarly to VZ by replacing F with F ⊙ K in equation 5.3. Based on this

estimated distribution, we use Davies’ method (Davies, 1980) to compute p-value, P (VI ≥

VI,obs), where VI,obs is the observed value of VI .

For testing G-E interaction effect, the weighted V test statistic is performed in the same

way as testing G-G interaction effect, except that H is replaced by an environmental variable

(e.g., gender). The proposed interaction tests are expected to be more powerful than regular

tests (e.g., LRT, Wald test), and the advantage over regular tests increases as LD gets

stronger because the asymptotic null distribution of weighted V statistic has an effective

degree of freedom lower than that of regular tests.

5.1.3 Small sample adjustment

The association and interaction tests introduced above work efficiently when sample size is

large. However, as shown in the QQ plot in Figure 5.1 (a) and Figure 5.2 (a) in simulation

below, the distribution might not be accurate when n is relative small (as compared to

p), which is frequently encountered in whole-exome sequencing studies (Lee et al., 2012;

Emond et al., 2012). Therefore, motivated by Chen et al. (2016), we propose a small sample

correction on VZ, V
H
Z and VI , denoted, respectively, as V

c
Z, V

H,c
Z and V c

I as follow,

V c
Z =

M̃TFM̃

M̃TM̃
, V H,c

Z =
M̃TWM̃

M̃TM̃
, and V c

I =
M̃T (F⊙K)M̃

M̃TM̃
,

where M̃TM̃ accounts for the variability of martingale residual. We expect that the approx-

imated asymptotic null distribution of corrected (heterogeneity) weighted V statistics, V c
Z,

V H,c
Z , and V c

I have exact mixture of χ2 distribution. For V c
Z, based on the distribution, we can

apply Davies’ method (Davies, 1980) to compute p-values by P (V c
Z ≥ V c

Z,obs) = P (M̃
TFM̃

M̃T M̃
≥
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VZ,obs) = P (M̃T (F−VZ,obsI)M̃ ≥ 0). The p-value of V H,c
Z and V c

I can be computed similarly.

5.2 Simulations

We performed a Monte Carlo simulation to assess the finite-sample performance of (hetero-

geneity) weighted V tests on survival time that follow the additive hazards model, considering

adjustment covariates and left-truncation time. Each individual potentially experiences two

competing events with Cause 1 (primary event) and Cause 2. In all simulations, unless

otherwise specified, two sample sizes n = 600, 800 and two SNP set sizes p = 8, 12 were

considered. Genetic covariates, denoted as G = (G1, . . . ,Gp), is a set of p SNPs (coded by

0, 1, or 2), unless otherwise specified in the scenario under confounding effect. The gener-

ation of G follows a two-step procedure that considered potential LD structure, 1) sample

n vectors independently from MVN(0,Σ), where Σ = {0.5|k−l|}p×p, the kl-th element is the

covariance between Gk and Gl; 2) categorize each quantitative column into SNP with three

levels 0, 1, and 2 by using predetermined quantile cutoffs: a2, (1 − a)2, and 2a(1 − a) of

standard normal distribution with a ∼ Beta(2, 5), to ensure the resulting population is in

Hardy-Weinberg equilibrium (HWE). Two baseline covariates were adjusted Z = (Z1,Z2),

one binary Z1 ∼ Binomial(0.5) and one continuous Z2 ∼ Uniform(3, 5). Unless otherwise

specified, we assumed that there is no confounding effect, in other words, Z is independent

of G. The failure of all competing events was assumed to follow the additive hazards model,

and the observed survival times were generated following steps in section 3.2 of Beyersmann

et al. (2009). Left truncation times were generated from Uniform(0, 1) and the residual

censoring times from Exponential(0.3) to control the right censoring rate around 35%. In

all simulations, 1000 Monte Carlo samples were generated and the significance level of a test

was set at 0.05 unless otherwise specified in testing genetic association under the stringent
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p-value threshold scenario.

5.2.1 Association test in the absence of genetic heterogeneity

In this series of simulation, we investigated the empirical size and power of weighted V

statistic (VZ) in the absence of genetic heterogeneity. For subject i, both competing events

were assumed to follow additive hazards model with cause specific hazard (CSH) function

of the following form,

λ(t|Zi) = ct2 + βTGi +αTZi, (5.6)

where ct2 is baseline hazard function. Coefficients, c, β, α vary depending on simulation

scenario and cause of failure.

Empirical size and power under various n’s and p’s

In this simulation, we assessed the empirical size and power of VZ and V H
Z . CSH function of

both competing events for subject i (i = 1, . . . , n) are as follow,


λ1(t|Zi,Gi) = 0.6t2 +

∑p
j=1 βjGij +

∑2
k=1 0.5Zik,

λ2(t|Zi,Gi) = 0.3t2 +
∑p

j=1 0.05Gij +
∑2

k=1 0.1Zik,

where λ1 is CSH of Cause 1 competing event. We set β1 = . . . = βp to 0 and 0.2 for empirical

size and power assessment, while CSH for Cause 2 competing event stays the same. IBS

kernel was used to measure genetic similarity in both VZ and V H
Z . Gaussian kernel was used

to measure similarity of adjustment covariates Z for test V H
Z . Table 5.1 shows that the Type

I error of both tests are close to nominal level and their power are comparable under various

n′s and p′s. This indicates that when the genetic effect is homogeneous, both VZ and V H
Z

are valid and have similar statistical power.
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Table 5.1 Empirical size and power comparison of test VZ and test V H
Z in testing genetic

effects considering adjustment covariates and left truncation.

Empirical Size (Power)

p=8, n=600 p=8, n=800

VZ 0.058 (0.584) 0.052 (0.667)

V H
Z 0.059 (0.572) 0.049 (0.674)

p=12, n=600 p=12, n=800

VZ 0.050 (0.653) 0.054 (0.784)

V H
Z 0.052 (0.640) 0.052 (0.772)

Empirical size and power under quadratic confounding

In this simulation, we assessed the empirical size and power of VZ in the absence of genetic

heterogeneity. We assumed that Z and G are quadratically related, in other words, there is

quadratic confounding effect. The genetic covariate was replaced by gene expression values

generated by Gi = Zi1+Zi2+Z
2
i1+Z

2
i2+Zi1Zi2+ei (i = 1, . . . , n), where ei ∼MVN(0,Σ),

where Σ = {0.5|k−l|}p×p the covariance between any pair of genetic variants (Gk,Gl). CSH

function for Cause 1 and Cause 2 competing events of subject i are as follow,


λ1(t|Zi,Gi) = 9t2 +

∑p
j=1 βjGij +

∑2
k=1 0.1Zik,

λ2(t|Zi,Gi) = 3t2 +
∑p

j=1 0.05Gij +
∑2

k=1 0.025Zik,

where λ1 is CSH for Cause 1 competing event, β1 = . . . = βp are set to 0 and 0.1 for empirical

size and power assessment, while CSH for Cause 2 stays the same. Gaussian kernel was used

to measure gene expression similarity. Table 5.2 shows that Type I error of VZ is close to

nominal level and power increases with sample size. This indicates that weighted V statistic

handles quadratic confounding effect properly.
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Table 5.2 Empirical size and power of test VZ in testing genetic effects under quadratic
confounding and left truncation.

Empirical Size (Power)

p=4, n=600 p=4, n=800

VZ 0.047 (0.212) 0.051 (0.320)

p=6, n=600 p=6, n=800

VZ 0.051 (0.241) 0.054 (0.329)

5.2.2 Association test in the presence of genetic heterogeneity

In this series of simulations, we investigated the performance of heterogeneity weighted V

statistics, V H
Z , in the presence of genetic heterogeneity across 1) observable subpopulations,

2) two latent subpopulations, 3) twenty subpopulations, and 4) individual genome profile.

The advantage of heterogeneity weighted V statistic V H
Z over VZ is obvious through the

performance comparison shown below. For all simulations in this section, we assume that

the effect of G on survival time is heterogeneous for Cause 1 and homogeneous for Cause 2.

Genetic heterogeneity across observable subpopulation

In this simulation, we assessed the empirical size and power of heterogeneity weighted V

statistic, V H
Z , in the presence of heterogeneity across two observable subpopulations. There-

fore, two genetic covariates (each has sample size n/2) were genertaed using two different

sets of MAFs (∼ Beta(2, 5)) and LD structure (measured by ρ in Σ = {ρ|k−l|}) as follow,

MAFs = {0.16187719, 0.24027357, 0.29026717, 0.42216265, 0.10528255, 0.50324631,

0.13275845, 0.48439386, 0.07259317, 0.20828786, 0.22822443, 0.39021594} and ρ = 0.5

in Subpopulation 1;

MAFs = {0.17645756, 0.22244350, 0.08635246, 0.40581343, 0.49636636, 0.48130878,

0.25831106, 0.38090314, 0.14896296, 0.16374183, 0.29928099, 0.04836184} and ρ = 0.3
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in Subpopulation 2.

The first p MAFs will be used. We used a one-dimensional vector X = (X1, . . . , Xn) ∼

Binomial(0.5) to infer two observable subpopulations (e.g., male and female). The CSH of

Cause 1 and Cause 2 for subject i are as follow,


λ1(t|Zi,Gi) = 9t2 +

∑p
j=1(β0 + β1Zi)Gij + 0.1Xi,

λ2(t|Zi,Gi) = 3t2 +
∑p

j=1 0.001Gij + 0.1Xi,

where β0 = β1 = 0 for empirical size assessment and (β0, β1) = {(0.002, 0.6), (0.002, 0.7)} for

power assessment under different genetic heterogeneity sizes (β1 = 0.6, 0.7). IBS kernel was

used to measure genetic similarity and identity kernel to measure subpopulation similarity.

Performance of weighted V statistic, VZ, was also included. Table 5.3 shows that Type I error

of both VZ and V H
Z are close to nominal level. Table 5.4 shows that V H

Z is more powerful

than VZ by taking advantage of the subpopulation structure. Also, as size of heterogeneity

increases, V H
Z gains more power.

Table 5.3 Empirical sizes of test VZ and test V H
Z in testing genetic association under

genetic heterogeneity across two observable subpopulations, considering adjustment
covariates and left truncation.

Empirical Size

p=8, n=600 p=8, n=800

V H
Z 0.059 0.054

VZ 0.058 0.052

p=12, n=600 p=12, n=800

V H
Z 0.046 0.049

VZ 0.046 0.045
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Table 5.4 Power of test VZ and test V H
Z in testing genetic association under genetic

heterogeneity across two observable subpopulations, considering adjustment covariates and
left truncation.

Power

p=8, n=600 p=8, n=800

β1 0.6 0.7 0.6 0.7

V H
Z 0.109 0.554 0.169 0.697

VZ 0.103 0.454 0.158 0.551

p=12, n=600 p=12, n=800

β1 0.6 0.7 0.6 0.7

V H
Z 0.135 0.594 0.192 0.777

VZ 0.114 0.472 0.176 0.633

Genetic heterogeneity across two latent subpopulations

In this simulation, we assessed the empirical size and power of V H
Z in the presence of genetic

heterogeneity across two latent subpopulations. A one-dim vector X = (X1, . . . , Xn) was

generated to infer two latent subpopulation structure. Xi = ai +1+ ei (i = 1, . . . , n), where

ai ∼ Binomial(0.5) and ei ∼ Normal(0, 0.5). The CSH of Cause 1 and Cause 2 for subject

i in subpopulation j are as follow


λ1(t|Zij,Gij) = 9t2 +

∑p
k=1Gijkβjk + 0.5Zij1 + 0.5Zij2,

λ2(t|Zij,Gij) = 3t2 +
∑p

k=1 0.0025Gik + 0.1Zi1 + 0.1Zi2,

(5.7)

where λ1 is CSH of Cause 1, which is of our primary interest and λ2 is CSH of the other

competing risk. {βj = (βj1, . . . , βjp) s.t. βj1 = . . . = βjp}2j=1 are genetic effects of p SNPs

in two latent subpopulations. {βj}2j=1 were set to 0 for empirical size assessment and set to

different values for power assessment. IBS kernel was used to measure genetic similarity and

Gaussian kernel for subpopulation similarity. Four heterogeneity scenarios were considered
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determined by the values of β1k and β2k. This includes the same effect size and the same effect

direction (T1), identical sizes but opposite directions (T2), no effect in one subpopulation

while positive effect in the other (T3), and different sizes but the same direction (T4). Table

5.5 shows that Type I error of both V H
Z and VZ are close to nominal level. Table 5.6 shows

that when in the absence of genetic heterogeneity (T1), VZ is more powerful, however, when in

the presence of genetic heterogeneity, V H
Z is more powerful and gains power as heterogeneity

size increases.

Table 5.5 Empirical size of VZ and V H
Z in testing genetic effects under genetic heterogeneity

across two latent subpopulations, with covariates adjustment and left truncation.

Empirical Size

p=8, n=600 p=8, n=800

V H
Z 0.058 0.055

VZ 0.051 0.059

p=12, n=600 p=12, n=800

V H
Z 0.052 0.058

VZ 0.054 0.052

Genetic heterogeneity across twenty latent subpopulation

In this simulation, we assessed empirical size and power of heterogeneity weighted V statistic

in the presence of twenty latent subpopulations. The simulation setting is same to simu-

lation above, except that we increased the number of latent subpopulation to twenty. We

used X = (X1, . . . ,X25) to infer subpopulation structure. Xk = ak + ek (k = 1, . . . , 25)

where ak is a length n bootstrap sample from {1, . . . , 20}, representing subgroup assign-

ments. Random error ek = (ek1, . . . , ekn) ∼ Normal(0, 0.5). Regression coefficients for j

subpopulations, {βj = (βj1, . . . , βjp), s.t. βj1 = . . . = βjp}20j=1, in CSH function 5.7 were all

set to 0 for empirical size assessment. In power assessment, {βj}20j=1 were sampled from
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Table 5.6 Power of test VZ and V H
Z in testing genetic effects under genetic heterogeneity

across two latent subpopulations, considering adjustment covariates and left truncation.
Various heterogeneity scenarios were considered, determined by the values of β1k and β2k.

Heterogeneity Scenario

T1 T2 T3 T4

β1k 0.2 0.3 0.25 0.35 0 0 0.05 0.1

β2k 0.2 0.3 0.05 0.05 0.15 0.25 -0.05 -0.1

p=8,n=600
V H
Z 0.193 0.410 0.244 0.394 0.138 0.316 0.095 0.216

VZ 0.448 0.724 0.243 0.362 0.103 0.176 0.048 0.049

p=8,n=800
V H
Z 0.258 0.512 0.341 0.529 0.187 0.377 0.103 0.252

VZ 0.512 0.833 0.328 0.436 0.119 0.221 0.049 0.057

p=12,n=600
V H
Z 0.180 0.396 0.341 0.624 0.239 0.486 0.146 0.427

VZ 0.566 0.819 0.270 0.392 0.088 0.172 0.047 0.044

p=12,n=800
V H
Z 0.261 0.529 0.499 0.759 0.311 0.642 0.171 0.538

VZ 0.659 0.905 0.323 0.497 0.131 0.226 0.055 0.078

uniform distribution with mean µβ and variance σ2
β. IBS kernel was used to measure genetic

similarity and Gaussian kernel for background similarity. Table 5.7 shows that Type I error

of both VZ and V H
Z are close to nominal level. Table 5.8 shows that V H

Z is more powerful

than VZ and as heterogeneity size (σβ) increases, V
H
Z gains more power.

Table 5.7 Empirical size of test VZ and V H
Z in testing genetic effects under genetic

heterogeneity across twenty latent subpopulations considering adjustment covariates and
left truncation.

Empirical Size

p=8, n=600 p=8, n=800

V H
Z 0.050 0.057

VZ 0.052 0.053

p=12, n=600 p=12, n=800

V H
Z 0.040 0.044

VZ 0.041 0.042
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Table 5.8 Power of test V H
Z and VZ under genetic heterogeneity across twenty latent

subpopulations, considering adjustment covariates and left truncation.

Power

p=8, n=600 p=8, n=800

(µβ, σβ) (0.15, 0.15) (0.15, 0.25) (0.15, 0.15) (0.15, 0.25)

V H
Z 0.211 0.434 0.261 0.532

VZ 0.177 0.139 0.185 0.167

p=12, n=600 p=12, n=800

(µβ, σβ) (0.15, 0.15) (0.15, 0.25) (0.15, 0.15) (0.15, 0.25)

V H
Z 0.353 0.691 0.449 0.844

VZ 0.172 0.149 0.218 0.183

Genetic heterogeneity across individual genome profile

In this simulation, we investigated the empirical size and power of heterogeneity weighted

V statistic in the presence of heterogeneity across individual genome profile. In stead of

considering two or twenty ’categorical’ subpopulation structure, we now assume ’continuous’

subpopulation structure. In other words, each individual is a subpopulation. We used a

genome profile of 1,000 SNPs, X = (X1, . . . ,X1000), to infer subpopulation structure. X was

generated in three steps, 1) generate genetic effect sizes {βi = (βi1, . . . , βip), s.t. βi1 = . . . =

βip}ni=1 from uniform distribution with mean µβ and variance σ2
β, 2) generate n-dim vectors

Xd (d = 1, . . . , 1000) from MVN(0,Σ), where Sigma is a n× n identity matrix under null

hypothesis and {exp(−|βi1 − βj1|/σβ)}n×n under alternative hypothesis, 3) categorize Xd

(d = 1, . . . , 1000) into SNPs coded by 0, 1, or 2 by using predetermined quantile cutoffs: a2,

2a(1 − a), and (1 − a)2 of a standard normal distribution with a is MAF generated from

Beta(2, 5), to ensure the resulting population is in HWE. IBS kernel was used to measure

both genetic and subpopulation similarity. Table 5.9 shows that Type I error of both VZ

and V H
Z are close to nominal level. Table 5.10 shows that V H

Z is more powerful than VZ and
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for fixed mean effect size (µβ = 0.15), as heterogeneity size (σβ) increases from 0.15 to 0.25,

V H
Z gains more power.

Table 5.9 Empirical size of test V H
Z and VZ in testing genetic effects under genetic

heterogeneity across individual genome profiles, considering adjustment covariates and left
truncation.

Empirical Size

p=8, n=600 p=8, n=800

V H
Z 0.050 0.053

VZ 0.048 0.053

p=12, n=600 p=12, n=800

V H
Z 0.048 0.052

VZ 0.052 0.051

Table 5.10 Power of test V H
Z and VZ under genetic heterogeneity across individual genome

profiles, considering adjustment covariates and left truncation.

Power

p=8, n=600 p=8, n=800

(µβ, σβ) (0.15, 0.15) (0.15, 0.25) (0.15, 0.15) (0.15, 0.25)

V H
Z 0.196 0.354 0.289 0.518

VZ 0.154 0.109 0.172 0.133

p=12, n=600 p=12, n=800

(µβ, σβ) (0.15, 0.15) (0.15, 0.25) (0.15, 0.15) (0.15, 0.25)

V H
Z 0.404 0.720 0.541 0.892

VZ 0.163 0.106 0.192 0.078

5.2.3 Testing G-G/G-E interaction effect

In this simulation, we investigated the performance of weighted V statistic in testing interac-

tion effect. The performance was also compared with Wald test. For testing G-G interaction

effect between two genes (SNP set of size p and q): G = (G1, . . . ,Gp) andH = (H1, . . . ,Hq).

We assumed that two genes come from the same population, therefore have the same MAF
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and LD structures. CSH of Cause 1 and Cause 2 for subject i is as follow,


λ1(t|Gi,Hi) = 6t2 +

∑p
j=1 0.2Gij +

∑q
j=1 0.25Hij +

∑pq
l=1 βl(GH)l,

λ2(t|Gi,Hi) = 3t2 +
∑p

j=1 0.1Gij +
∑q

j=1 0.15Hij,

where λ1 is CSH for Cause 1 competing event (primary event), (GH)l is l-th column of

interaction between gene G and H. Two SNP-set sizes p = q = 2 and p = q = 3 were

used. We set βl = 0 under null hypothesis of no G-G interaction effect and βl = 0.2 under

alternative hypothesis, when G-G interaction effect exists only in Cause 1 (primary event).

Cross-product kernel was used to measure genetic similarity for both gene G and H.

For testing G-E interaction effect, the simulation setting is the same as testing G-G

interaction effect except thatH is replaced by a one-dim vector binary environmental variable

generated from Binomial(0.5). Two SNP-set sizes p = 4, q = 1 and p = 6, q = 1 were

considered. Identity kernel was used to measure environmental variable similarity.

Table 5.11 and 5.12 show that Type I error of both VI and Wald test are close to na ominal

level. In all scenarios, VI is more powerful than the Wald test since the asymptotic null

distribution of VI has a more effective degree of freedom than the Wald test. Furthermore,

the advantage of VI over the Wald test increases as the correlation between SNPs (LD) gets

stronger.

5.2.4 Empirical size under stringent p-value thresholds

In case-control studies, there is usually a huge amount of genetic variants are tested. To

account for the multiple testing issue, Bonferroni correction is used and results in a p-value

threshold that is 5×10−3 or smaller. In this simulation, we investigated the performance of 1)
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Table 5.11 Empirical sizes and powers of test VI and Wald test in testing G-G interaction
considering left truncation.

Empirical Size (power)

p=2, q=2, n=600 p=2, q=2, n=800

VI 0.048 (0.208) 0.058 (0.319)

Wald 0.058 (0.133) 0.052 (0.197)

p=3, q=3, n=600 p=3, q=3, n=800

VI 0.053 (0.397) 0.055 (0.562)

Wald 0.044 (0.184) 0.059 (0.265)

Table 5.12 Empirical sizes and powers of test VI and Wald test in detecting G-E interaction
considering left truncation.

Empirical Size (power)

p=4, q=1, n=600 p=4, q=1, n=800

VI 0.044 (0.506) 0.043 (0.673)

Wald 0.044 (0.358) 0.042 (0.485)

p=6, q=1, n=600 p=6, q=1, n=800

VI 0.043 (0.620) 0.048 (0.786)

Wald 0.042 (0.395) 0.042 (0.573)

VZ in the absence of genetic heterogeneity and 2) V H
Z in the presence of genetic heterogeneity

across observable subpopulations under stringent p-value thresholds. The corresponding

simulation settings for significance level 0.5 were adopted, except that only scenario p =

8, n = 800 was investigated and 500K Monte Carlo samples were generated and empirical

size is the proportion of p-values less than the corresponding thresholds. Table 5.13 shows

that Type I error of both VZ and V H
Z are close to nominal level, indicating the capability of

VZ and V H
Z for large-scale GWAS.

5.2.5 Small-sample correction

So far, we have shown that VZ, V
H
Z , and VI performed well under relatively large sample

sizes as compared to SNP-set size. However, we noticed that the proposed weighted V
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Table 5.13 Empirical sizes of test VZ and V H
Z under stringent p-value thresholds and left

truncation.

Empirical Size

Threshold VZ V H
Z

0.05 0.050 0.051

0.005 0.0051 0.0050

0.0005 0.00053 0.00049

0.00005 0.000044 0.000047

statistics could be asymptotically wrong. In this series of simulations, we investigated the

performance of small sample corrected (heterogeneity) weighted V statistic in the following

three scenarios: 1) test V c
Z in the absence of genetic heterogeneity, 2) test V H,c

Z in the presence

of genetic heterogeneity across observable subpopulations, and 3) test V c
I in the presence of

G-G and G-E interaction effect.

In the absence of genetic heterogeneity under small sample size

In this simulation, we assessed the empirical size and power of V c
Z and VZ in testing genetic

association in the absence of genetic heterogeneity. The simulation settings were the same

as that of the simulations shown above, except that we used sample size n = 100 and SNP-

set size p = 15. Table 5.14 and Figure 5.1 show that small sample corrected weighted V

statistic, V c
Z, is asymptotically correct without loss of power, while the unadjusted weighted

V statistic, VZ, is not.

In the presence of observable subpopulation under small sample size

In this simulation, we assessed the empirical size and power of V H,c
Z and V H

Z in testing genetic

association in the presence of genetic heterogeneity across observable subpopulations. The

simulation settings were the same as simulations for unadjusted heterogeneity weighted V

statistics, except that we used sample size n = 200 and SNP-set size p = 10. Table 5.15
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and figure 5.2 show that small sample corrected weighted V statistic, V H,c
Z , is asymptotically

correct without loss of power, while the unadjusted heterogeneity weighted V statistic, V H
Z ,

is not.

Table 5.14 Empirical size and power of test VZ and V c
Z considering left truncation, with

n = 100, p = 15.

Empirical Size (power)

V c
Z 0.059 (0.141)

VZ 0.051 (0.134)
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(b) V c
Z

Figure 5.1 Comparison of uniform QQ plot of test VZ and V c
Z in detecting genetic

association without considering genetic heterogeneity effect, with n=100 and p=15.

Table 5.15 Empirical size and power of test V H
Z and V H,c

Z considering genetic heterogeneity
across two observable subpopulations and left truncation, with n = 200, p = 10.

Epirical Size Power

β1 0 0.6 0.7

V H,c
Z 0.046 0.211 0.249

V H
Z 0.043 0.196 0.237

Interaction test under small sample size

In this simulation, we assessed the empirical size and power of V c
I and VI in testing G-G and

G-E interaction effects. The simulation settings were the same to simulation for weighted V
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statistic without small-sample correction that test interaction effect. To mimic small sample

scenario, we used smaller sample size and larger SNP-set size. Specifically, we used n = 300

and p = 10 for testing G-G interaction effect and n = 200 and p = 10 for testing G-E

interaction effect. Table 5.16 and 5.17 show that type I error of small-sample corrected test

statistic V c
I is close to nominal level while that of VI is slightly inflated. Figure 5.3, 5.4 show

that small sample corrected weighted V statistic, V c
I , is asymptotically correct without loss

of testing power, while VI has slightly inflated Type I error under small sample size.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical Quantile

S
am

pl
e 

Q
ua

nt
ile

(a) V H
Z

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Theoretical Quantile

S
am

pl
e 

Q
ua

nt
ile

(b) V H,c
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Figure 5.2 Comparison of uniform QQ plot of test V H
Z and V H,c

Z , considering genetic
heterogeneity across two observable subpopulations, with n = 200 and p = 10.

Table 5.16 Empirical size and power of test VI and V c
I in testing G-G interaction effect,

considering left truncation, with n = 300, p = q = 10.

Empirical Size (power)

V c
I 0.044 (0.134)

VI 0.059 (0.198)

5.3 A Real Application

We applied the developed small sample adjusted (heterogeneity) weighted V test statistics,

V c
Z and V H,c

Z , on ROSMAP by assuming the age-to-onset of AD follows the additive hazards
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Table 5.17 Empirical size and power of test VI and V c
I in testing G-E interaction effect,

considering left truncation, with n = 200, p = 10.

Empirical Size (power)

V c
I 0.055 (0.152)

VI 0.069 (0.177)

model. ROSMAP is a GWAS that includes dementia exam data from two large longitudinal

studies of aging and dementia: 1) the Religious Orders Study (ROS) and the Rush Memory

and Aging Project (MAP) (Bennett et al., 2018). The ROSMAP genotype dataset includes

1,679 subjects, each has 750,173 SNPs. We first performed quality control on genotype

dataset 1) at SNP level by removing SNPs with MAF>0.01, HWE test’s p-value > 10−6, or

missing rate > 2%, then 2) at the subject level by removing subjects with missing genotype

rate > 2%. This results in a quality-controlled genotype dataset with 1,618 subjects each

having 619,061 SNPs. There were still ∼ 0.3% missing genotypes, which were then imputed

with random samples generated from Binomial(2,MAF ), where MAF was estimated from

the genotype dataset. PCA was performed using Plink software (version 1.9) to obtain the

first 6 principal components that represent the underlying ancestry information. After that,

we grouped all available SNPs into 21,285 different genes by using human genome annotation

(GRCh38/hg38) obtained from UCSC Genome Browser. We also formed a new gene APOE4

which was coded as the count of the APOE4-ϵ4 allele.

The ROSMAP phenotype dataset includes information from 2,543 subjects. Each subject

has 1) baseline covariates: race, gender, years of education, and binary study cohort indicator

(ROS or MAP) and 2) follow-up information: subject’s age and clinical cognitive diagnosis

result at each examination center visit including at the study registry. For our analysis, we

include only subjects who are disease-free in the study registry. Age at baseline served as
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left-truncation time, the age at first AD diagnosis served as survival time, and the age at

study termination served as right censoring time if the subject is disease-free throughout the

study follow-up period.
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Figure 5.3 Comparison of uniform QQ plot of test VI and V c
I in testing G-G interaction

effect, with n=300, p=q=10.
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Figure 5.4 Comparison of uniform QQ plot of test VI and V c
I in testing G-E interaction

effect, with n=200, p=10, q=1.

We merged preprocessed genotype and phenotype datasets by keeping only the overlap-

ping subjects to generate the analysis-ready dataset, which includes 1,440 subjects, with a

censoring rate of 62.5%. We are interested in 1) testing genetic covariates that are associated
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with the time-to-onset of first AD diagnosis and 2) detecting potential genetic heterogeneity

across subpopulations inferred by either baseline covariates or individual genome profiles

(represented by a random sample of 200K SNPs), in the presence of left-truncation time

and adjust for gender, year of education, study cohort indicator (ROS served as baseline),

and first 6 principal components. Note that race is not adjusted because 1,439 out of 1,440

subjects are white. IBS kernel was used to measure genetic similarity, while the choice of

similarity kernel for subpopulation similarity depends on the source of heterogeneity, which

is elaborated in Table 5.18.

Table 5.18 shows the results of the ROSMAP dataset analysis. To account for multiple

testing issues, the p-value thresholds were obtained by controlling the FDR under 10% using

the Benjamini-Hochberg procedure Benjamini and Hochberg (1995). Four different kernels

were considered to measure genetic similarity: cross-product (CP), IBS, laplacian (Lap),

and quadratic (Quad). When in the absence of genetic heterogeneity (scenario S1), APOE4

appeared to be the most significant gene followed by APOC1. When in the presence of

genetic heterogeneity (scenarios S2-S4), even though APOE4 and APOC1 were still the

most significant genes, their p-values varies across scenarios, with APOE4 having a notably

smaller p-value when the Quadratic kernel was used under scenario S3 that considered genetic

heterogeneity across gender. This indicates that the effect of APOE4 on the age-to-onset of

AD varies between genders.

5.4 Discussion

We developed a suite of multi-marker genetic association and interaction tests based on the

additive hazards model. The proposed tests have three major advantages: 1) they fill the

research gap that no available genetic association and interaction test for survival times
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Table 5.18 Top five genes discovered by V c
Z and V H,c

Z from ROSMAP dataset by assuming
age-to-onset of AD follows additive hazards model. CP, IBS, Lap and Quad are IBS,
cross-product, Laplacian and Quadratic kernel, respectively, which measure genetic
similarity. Various types of heterogeneity were considered, including no genetic

heterogeneity (S1), heterogeneity across education categories (S2), heterogeneity between
sexes (S3), and heterogeneity across genetic backgrounds (S4).

Kernel Scenario Genes and p-values

S1
APOE4 APOC1 IGSF23 GRIP1 MIR12117

3.55E-15 7.26E-10 6.05E-05 6.99E-05 1.06E-04

CP

S2
APOE4 APOC1 TBCC IGSF23 MIR12117

1.99E-14 2.84E-09 6.75E-05 7.16E-05 8.42E-05

S3
APOE4 APOC1 GRIP1 IGSF23 MIR12117

3.10E-15 2.44E-09 6.12E-05 1.26E-04 1.37E-04

S4
APOE4 APOC1 IGSF23 TBCC HSBP1

7.63E-14 1.50E-09 7.09E-05 7.26E-05 1.22E-04

S1
APOE4 APOC1 IGSF23 MIR12117 GRIP1

7.97E-14 4.59E-09 8.21E-05 8.78E-05 9.65E-05

IBS

S2
APOE4 APOC1 IGSF23 EFEMP2 DCAF12

3.71E-11 2.50E-08 3.03E-04 3.42E-04 7.19E-04

S3
APOE4 APOC1 GRIP1 IGSF9B PLEKHG5

1.42E-13 9.74E-09 8.82E-05 9.83E-05 1.20E-04

S4
APOE4 APOC1 IGSF23 MIR12117 GRIP1

7.53E-14 4.61E-09 8.25E-05 8.79E-05 9.66E-05

S1
APOE4 APOC1 GRIP1 IGSF23 MIR12117

4.73E-13 1.52E-08 6.27E-05 7.78E-05 8.72E-04

Lap

S2
APOE4 APOC1 IGSF23 DCAF12 EFEMP2

4.64E-12 3.86E-08 1.15E-04 2.27E-04 3.43E-04

S3
APOE4 APOC1 GRIP1 IGSF9B MIR12117

8.44E-13 2.77E-08 5.53E-05 1.32E-04 1.39E-04

S4
APOE4 APOC1 GRIP1 IGSF23 MIR12117

4.69E-13 1.53E-08 6.27E-05 7.81E-05 8.74E-05

S1
APOE4 APOC1 GRIP1 MIR12117 GABBR1

1.11E-15 6.35E-10 6.66E-05 1.12E-04 1.14E-04

Quad

S2
APOE4 APOC1 GRIP1 MIR12117 GABBR1

6.43E-15 2.78E-09 8.38E-05 8.84E-05 1.10E-04

S3
APOE4 APOC1 GRIP1 EHHADH-AS1 GABBR1

2.22E-16 3.10E-09 5.87E-05 7.55E-05 1.33E-04

S4
APOE4 APOC1 GRIP1 MIR12117 GABBR1

1.77E-15 6.24E-10 6.64E-05 1.11E-04 1.13E-04

p-value threshold 4.46E-07 8.91E-07 1.34E-06 1.78E-06 2.23E-06

that follow the additive hazards model, 2) they are powerful when the genetic effect is

heterogeneous across subpopulations, and 3) they are robust to quadratic confounding effect

and can handle competing risk.

The asymptotic null distribution of weighted V statistic can be well approximated by a

rescaled χ2 distribution, c0χ
2
d0
, using the Satterthwaite method (Liu, Lin, and Ghosh, 2007).

c0 is the scaled parameter and d0 is the χ2 distribution’s degree of freedom estimated by
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matching the mean and variance of weighted V statistics and c0χ
2
d0
. In testing G-G and G-E

interaction effect, the scaled χ2 distribution of weighted V statistic has d0 degree of freedom,

which is smaller than pq, the number of G-G interaction terms, when there is a weak or

strong correlation between SNPs. Therefore the weighted V statistic is more powerful than

regular tests (e.g., LRT, Wald test).
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CHAPTER 6 Concluding remarks

6.1 Remarks regarding selection of survival model

In this dissertation, we developed four suites of novel multi-marker association and interac-

tion tests to detect genetic association and interaction with survival outcomes. Three popular

survival models were studied: (conventional) Cox PH model, additive hazard model, and ac-

celerated failure time (AFT) model. In a real application, the true survival model underlying

the observed data is rarely known, therefore, it would be helpful to determine which model

best fits the dataset and the goal of the analysis. Cox PH model is the most popular model

that models the hazard rate as a function of predictor variables in a multiplicative manner

as follows,

λ(t|X) = λ0(t) exp(β
TX),

where λ0(t) is the non-parametric baseline hazard function and X is the predictor variable.

One critical assumption of the Cox PH model is that the predictor variables analyzed should

satisfy the PH assumption. In other words, for any two predictor variable values X and X∗,

the corresponding hazard ratio is constant over time, as follows

λ(t|X)

λ(t|X∗)
=

λ0(t) exp(β
TX)

λ0(t) exp(β
TX∗)

= exp(βT (X −X∗)).

Violation of PH assumption can be tested based on Schoenfeld residuals. When the PH

assumption is violated, the additive hazard model and AFT model are alternatives to the

Cox PH model.

Additive hazard model assumes that the predictor affects hazard function in an additive
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manner and also assumes constant hazard difference, instead of hazard ratio in the Cox PH

model.

λ(t|X) = λ0(t) + βTX,

AFT model models the direct effect of predictors on logarithmic survival time through a

linear model,

log(T ) = βTX + ϵ,

where ϵ is an independent and identically distributed random variable and is independent of

predictor X. A negative β indicates that an increase in X would accelerate the onset of the

event of interest and a negative value prolongs the event onset. Two important assumptions

of the AFT model are the linearity assumption and the constant time ratio assumption.

Linearity assumption, similar to that in linear regression models, assumes that logarithmic

survival time has a linear relationship with covariates. The constant time ratio assumption

assumes that the survival time ratio is constant over time for any given two sets of covariates

X and X∗ as follows,

T

T ∗ =
exp(βTX)eϵ

exp(βTX∗)eϵ
= exp(βT (X −X∗)) ⇒ T = T ∗e(β

T (X−X∗)).

The appropriateness of the AFT model can be assessed based on Cox-Snell residual plot.

When the survival time is assumed to follow a class of semiparametric transformation

model as introduced in Chapter 3. We have the flexibility to choose from different transfor-

mation functions controlled by r (r ≥ 0). For example, we can vary r from 0 to 1.5 in steps

of 0.05 (Zeng, Mao, and Lin, 2016), and the transformation function corresponds to the r
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value that achieves the highest likelihood is selected. One can also choose from r = 0 and

r = 1, whichever is the closest to the optimal r to achieve better model interpretability.

6.2 Future work

Throughout this dissertation, the proposed four suites of novel association and interac-

tion tests all assume independence between study subjects. This assumption is violated in

datasets such as time-to-caries data of second molars in preschool child participants of DDHP

(Detroit Dental Health Project) dataset studied in Pak, Li, and Todem (2019), where four

tooth-level time-to-ECC were considered for each child participant. So far, a multi-marker

genetic association and interaction test is lacking for multivariate survival data. However,

the estimation methods for such multivariate survival data were developed in Lin (1994)

for the multivariate Cox PH model, and in Zeng, Gao, and Lin (2017) for multivariate

interval-censored data, which contribute to the development of the multi-marker test.

In many applications (Kelly and Lim, 2000; Amorim and Cai, 2014), we deal with the

recurrent event, where the event of interest might occur repeatedly, instead of once as as-

sumed in this dissertation. A recurrent event subject to interval censoring is panel count

data, which has been studied (Zeng and Lin, 2020; Sun and Wei, 2000; Wang, Ma, and Yan,

2013). It is worth developing a multi-marker association and interaction test for such panel

count data since this type of data is frequently encountered in complex human diseases such

as bladder tumor study (Byar, 1980) and skin cancer (Bailey et al., 2010).
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APPENDIX A: Proofs for Chapter 2

Proof of Theorem 1

We prove Theorem 1 following the proof of Theorem 3 in Wei and Lu (2017). By the

expression (2), we have

nV ∗ =
∞∑
t=1

(
1√
n

n∑
i=1

ψ∗
t (Gi)Mi)

2. (6.1)

Under the null hypothesis that T is independent of G,

E[ψ∗
t (Gi)Mi] = E[ψ∗

t (Gi)]EMi = 0 (6.2)

and

E[ψ∗
t (Gi)Miψ

∗
s(Gi)Mi] = E[ψ∗

t (Gi)ψ
∗
s(Gi)]E(M

2
i ) =


ηtλ if t = s

0 otherwise

(6.3)

These results, in conjunction with the multivariate central limit theorem, imply that for any

finite index set I = {i1, . . . , iK}, the multivariate random variable { 1√
n

∑n
i=1 ψ

∗
t (Gi)Mi}t∈I

converges in distribution to a zero-mean multivariate normal random variable with a covari-

ance matrix whose lk-th element is ληlI(l = k) (l = 1, . . . , K; k = 1, . . . , K).

In addition, we have

∞∑
t=1

E[{ψ∗
t (G1)M1}2] = λ

∞∑
t=1

ηt

= λE[f̃(Gi,Gj)] <∞.

By Theorem 2.13.1 in van der Vaart and Wellner (1996), the countably infinite sequence of

functions {ψ∗
t (·)M(·)}, where M(N(·), Y (·)) ≡ N(∞)−

∫∞
0
Y (s)dΛ(s) , is a Donsker
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class. Therefore, the empirical process, 1√
n

∑n
i=1 ψ

∗
t (Gi)Mi, converges weakly to a zero-

mean Gaussian process Zt with covariance function, cov(Zt, Zs) = ηtλI(t = s). By continu-

ous mapping theorem, we have

nV ∗ ⇝
∞∑
t=1

Z2
t = λ

∞∑
t=1

ηtχ
2
1t,

where χ2
1t’s are independent chi-square random variables with degree 1.

Proof of Theorem 2

Similar to (6.1), nV ∗
Z can be re-written as

nV ∗
Z =

∞∑
t=1

(
1√
n

n∑
i=1

ϕ∗
t (Gi,Zi)MZ,i)

2, (6.4)

where ϕ∗
t (Gi,Zi) = ν0.5t ϕt(Gi,Zi). Under the null hypothesis that T is independent of G

given Z,

E[ϕ∗
t (Gi,Zi)MZ,i] = E[ϕ∗

t (Gi,Zi)E{MZ,i|Gi,Zi}]

= E[ϕ∗
t (Gi,Zi)E{MZ,i|Zi}]

= 0

We are then going to prove that E[ϕ∗
t (Gi,Zi)MZ,iϕ

∗
s(Gi,Zi)MZ,i] = ξνtI(t = s). In-

deed, when G is independent of Z, it is easy to show that f̃Z(Gi,Gj) = f(Gi,Gj) −

E[f(Gi,Gj)|Gi]−E[f(Gi,Gj)|Gj]+E[f(Gi,Gj)]. WhenG = a+BTZ+e and f(Gi,Gj) =
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GT
i Gj,

f̃Z(Gi,Gj) = GT
i Gj −GT

i E(Gj|Zj)− E(GT
i |Zi)Gj + E(GT

i |Zi)E(Gj|Zj)

= eTi ej.

In both cases, f̃Z(Gi,Gj) is independent of (Zi,Zj). As a result, ϕ∗
t (Gi,Zi) is also indepen-

dent of Zi. Thus,

E[ϕ∗
t (Gi,Zi)MZ,iϕ

∗
s(Gi,Zi)MZ,i] = E[ϕ∗

t (Gi,Zi)ϕ
∗
s(Gi,Zi)E{M2

Z,i|Gi,Zi}]

= E[ϕ∗
t (Gi,Zi)ϕ

∗
s(Gi,Zi)E{M2

Z,i|Zi}]

= E[ϕ∗
t (Gi,Zi)ϕ

∗
s(Gi,Zi)]E[E{M2

Z,i|Zi}]

= νtI(t = s)E{M2
Z,i}

= ξνtI(t = s).

The rest of the proof follows the same arguments as in the proof of Theorem 1.
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APPENDIX B: Proofs for Chapter 4

Derivation of the large-sample null distribution of weighted V statistic based on

AFT model

Write E1 as E1 = (E11, . . . ,E1n). Then

E1M̃ =
n∑

i=1

E1iM̃i

=
n∑

i=1

E1i

∫ ∞

−∞

{
dNi(β̂, t)−

νj(β̂, t)Yj(β̂, t)∑n
j=1 νj(β̂, t)Yj(β̂, t)

n∑
j=1

dNj(β̂, t)

}

=
n∑

i=1

∫ ∞

−∞

{
E1i −

∑n
j=1E1jνj(β̂, t)Yj(β̂, t)∑n

j=1 νj(β̂, t)Yj(β̂, t)

}
dNi(β̂, t)

≡ Qn(β̂).

Under the null, β̂ is n1/2-consistent for β (Lai and Ying, 1991). Using similar arguments to

the proof of Theorem 1(ii) in Lai and Ying (1991), it can be shown that

n−1/2E1(M̃− M̂) = n−1/2{Qn(β̂)−Qn(β)} = Bn1/2(β̂ − β) + op(1 + n1/2∥β̂ − β∥), (6.5)

where B is the asymptotic slope matrix of n−1Qn(β). Following Zeng and Lin (2006), we use

a least squares method to estimate B. Specifically, let β̃ = β̂+n−1/2W, where W ∼ N(0, Iq)

and Iq is a q × q identity matrix. (6.5) implies that

n−1/2{Qn(β̃)−Qn(β̂)} = Bn1/2(β̃ − β̂) + op(1) = BW + op(1).

The least squares method has the following steps:
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Step 1: Generate L, say 10,000, independent realizations of W, denoted by W1, . . . ,WL.

Step 2: Calculate n−1/2{Qn(β̂ + n−1/2Wl)−Qn(β̂)} (l = 1, . . . , L).

Step 3: For j = 1, . . . ,m, regress n−1/2{Qn(β̂ + n−1/2Wl)−Qn(β̂)} onto Wl (l = 1, . . . , L) to

estimate Bj, the j-th row of B, using the least squares estimation.

Denote the estimator of B by B̂. Recall that β̂ is obtained from Eq. (5) in Chiou and Xu

(2017) with log-rank weights,

Un(β) ≡
1

n

n∑
i=1

∫ ∞

−∞

{
Zi −

∑n
j=1 Zjνj(β, t)Yj(β, t)∑n
j=1 νj(β, t)Yj(β, t)

}
dNi(β, t) = 0.

Chiou and Xu (2017) showed that

n1/2(β̂ − β) = −A−1n1/2Un(β) + op(1), (6.6)

where A is the asymptotic slope matrix of Un(β). A can be estimated using a similar method

to that for estimating B. Specifically, we carry out the following steps:

Step I: Generate L̃, say 10,000, independent realizations of S ∼ N(0, Iq), denoted by S1, . . . ,SL̃.

Step II: Calculate n1/2Un(β̂ + n−1/2Sl) (l = 1, . . . , L̃).

Step III: For j = 1, . . . , q, regress n1/2Un(β̂+n−1/2Sl) onto Sl (l = 1, . . . , L̃) to estimate Aj, the

j-th row of A, using the least squares estimation.

Denote the estimator of A by Â. Combining (6.5) and (6.6), we have

E1(M̃− M̂) = −BA−1nUn(β) + op(n
1/2). (6.7)
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Let Mi(t) = Ni(β, t)−
∫ t

−∞ νi(β, u)Yi(β, u)dΛε(u), which a martingale under the null. It

is easy to show that

Un(β) =
1

n

n∑
i=1

∫ ∞

−∞

{
Zi −

∑n
j=1 Zjνj(β, t)Yj(β, t)∑n
j=1 νj(β, t)Yj(β, t)

}
dMi(β, t)

=
1

n
ZT

∫ ∞

−∞
(In − V (β, t)1T )dM(t), (6.8)

where 1 is a n-dimension vector of 1’s, Z = (Z1, . . . ,Zn)
T , and V (β, t) is a n × 1 vec-

tor V (β, t) = (ν1(β, t)Y1(β, t), . . . , ν1(β, t)Yn(β, t))
T{

∑n
j=1 νj(β, t)Yj(β, t)}−1, and M(t) =

(M1(t), . . . ,Mn(t))
T . It is also easy to show that

M̂ =

∫ ∞

−∞
(In − V (β, t)1T )dM(t). (6.9)

Combining (6.7), (6.8) and (6.9) , we have

E1M̃ = E1M̂+ E1(M̃− M̂)

=

∫ ∞

−∞
(E1 −BA−1ZT )(In − V (β, t)1T )dM(t) + op(n

1/2)

SinceM(t) is a vector of independent martingales under the null, whose compensators are

Λ(t) =
∫ t

−∞ dΛ(t) ≡ (
∫ t

−∞ dΛ1(t), . . . ,
∫ t

−∞ dΛn(t))
T , where dΛi(t) = νi(β, t)Yi(β, t)dΛε(t)

(i = 1, . . . , n), we have by the martingale theory (Fleming and Harrington, 1991, Chapters

2 and 5) that

Cov(E1M̃) ≈
∫ ∞

−∞
(E1−BA−1ZT )(In−V (β, t)1T )diag(dΛ(t))(In−1V (β, t)T )(ET

1−ZA−TBT ),
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where diag(a) represents a diagonal matrix with a as the diagonal, and that E1M̃ is approx-

miately multivariate normal with mean zero. An estimator of Cov(E1M̃) is

ˆCov(E1M̃) =

∫ ∞

−∞
(E1−B̂Â−1ZT )(In−V (β̂, t)1T )diag(dΛ̃(t))(In−1V (β̂, t)T )(ET

1−ZÂ−T B̂T ),

where dΛ̃(t) = (dΛ̃1(t), . . . , dΛ̃n(t))
T with each element as follows,

dΛ̃i(t) = νi(β̂, t)Yi(β̂, t)
n∑

j=1

dNj(β̂, t){
n∑

j=1

νj(β̂, t)Yj(β̂, t)}−1. (6.10)

By algebra, we can simplify ˆCov(E1M̃) as

ˆCov(E1M̃) =

∫ ∞

−∞
(E1−B̂Â−1ZT ){diag(dΛ̃(t))−V (β̂, t)1TdN(β̂, t)V (β̂, t)T}(ET

1−ZÂ−T B̂T ),

(6.11)

where N(β̂, t) = (N1(β̂, t), . . . , Nn(β̂, t))
T . Take an eigendecomposition of ˆCov(E1M̃),

ˆCov(E1M̃) = Γ


λ1

. . .

λm

ΓT ,

where Γ is a m ×m orthogonal matrix. Together with the asymptotic normality of E1M̃ ,

we have

E1M̃
d
≈ Γ


λ
1/2
1

. . .

λ
1/2
m

χ,
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where χ ≡ (χ11, . . . , χ1m)
T ∼ N(0, Im). Thus,

VZ = M̃TKM̃ = M̃TET
1E1M̃

d
≈

m∑
j=1

λjχ
2
1j,

where χ2
1j’s are independent chi-square variables with degree 1.
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APPENDIX C: Proofs for Chapter 5

Derivation of the large-sample null distribution of weighted V statistic based on

additive hazard model

Consider a general scenario where the hazard function of survival time T that is associated

with a possibly time-varying d-dimensional covariate Z(t) is as follows,

λ(t|Z) = λ0(t) + βTZ(t).

The proposed weighted V test statistic is VZ = M̃TFM̃, where M̃ = (M̃1, . . . , M̃n)
T and

M̃i =Mi(Λ̂0(β̂, t), β̂) (i = 1, . . . , n) as follows,

M̃i = Ni(∞)−
∫ ∞

0

Yi(t)
{∑n

j=1 dNj(t)∑n
j=1 Yi(t)

− β̂
T
Z̄(t)dt+ β̂

T
Zi(t)dt

}
,

where Z̄(t) =
∑n

j=1 Yj(t)Zj(t)/
∑n

j=1 Yj(t) = ZT (t)V (t), with V (t) = Y (t)(1TY (t))−1.

V (t) = (V1(t), . . . , Vn(t))
T and Y (t) = (Y1(t), . . . , Yn(t))

T . β̂ is n1/2-consistent estimator

of β as shown in equaltion (2.8) in Lin and Ying (1994). By first-order Taylor expansion of

M̃ around β0, true parameter value of β, we have

M̃ ≈ M̂+
∂M̃

∂βT
|β=β0

(β̂ − β0) (6.12)
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The influence function of β̂ is

(β̂ − β0) = D−1U(β0) + op(
1√
n
)

≈ D−1

n∑
i=1

∫ ∞

0

{Zi(t)− Z̄(t)}dMi(t)

= D−1

∫ ∞

0

{Z(t)T − Z̄(t)1T
n}dM(t), (6.13)

where Z(t) = (Zi(t), . . . ,Zn(t))
T is a n × d covariate matrix at time t, Z̄(t) is a d vector

at time t, 1n is n × 1 vector with each element equals 1, and M(t) = (M1(t), . . . ,Mn(t)).

U(β0) is estimating function of β0 according to equation (2.7) in Lin and Ying (1994). When

covariate is time-independent, Z(t) = Z, we have

(β̂ − β0) = D−1ZT

∫ ∞

0

(In − V (t)1T )dM(t).

Matrix D has the following form

D =
n∑

j=1

∫ ∞

0

Yj(t){Zj(t)− Z̄(t)}
⊗

2dt

=

∫ ∞

0

Z(t)T
(
diag(Y (t))− Y (t)V (t)T

)
Z(t)dt, (6.14)

where a
⊗

2 = aaT . When covariate is time-independent, Z(t) = Z, we have

D = ZT
[
diag

( ∫ ∞

0

Y (t)dt
)
−

∫ ∞

0

Y (t)V (t)Tdt
]
Z

= ZTWZ,
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where W = diag
( ∫∞

0
Y (t)dt

)
−

∫∞
0
Y (t)V (t)Tdt.

M̂ in equation 6.12 can be written as

M̂ =

∫ ∞

0

dM̂(t)

=
{∫ ∞

0

dMi(t)− Yi(t)

∑n
j=1 dMj(t)∑n
j=1 Yj(t)

}n

i=1

=

∫ ∞

0

(In − V (t)1T )dM(t)

The first-order derivative of M̃ around β0 (∂M̃/∂βT |β=β0
) in equation 6.12 can be written

as

∂M̃

∂βT
|β=β0

=
{∫ ∞

0

Yi(t)(Z̄(t)
T − Zi(t)

T )dt
}n

i=1

= −
∫ ∞

0

(diag(Y (t)− Y (t)V (t)T )Z(t)dt

= −G. (6.15)

When covariate is time-independent, we have

∂M̃

∂βT
|β=β0

= −
∫ ∞

0

(diag(Y (t))− Y (t)V (t)T )dt Z

= −WZ

By plugging 6.13, 6.14, and 6.15 into equation 6.12, we can approximate M̃ as follows,

M̃ ≈
∫ ∞

0

(In − V (t)1T )dM(t)− GD−1

∫ ∞

0

Z(t)T (In − V (t)1T )dM(t)

=

∫ ∞

0

(In − GD−1)(In − V (t)1T )dM(t).
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When covariate is time-independent, Z(t) = Z, the approximation of M̃ can be simplified as

M̃ ≈ (In −WZ(ZTWZ)−1)

∫ ∞

0

(In − V (t)1T )dM(t).

Since M(t) is a vector of independent martingales under the null hypothesis, whose com-

pensators are Λ(t) =
∫ t

0
dΛ(t) = (

∫ t

0
dΛ1(t), . . . ,

∫ t

0
dΛn(t))

T , where dΛi(t) = Yi(t)dΛ(t)

(i = 1, . . . , n). By martingale theory (Fleming and Harrington, 1991, Chapters 2 and 5), M̃

is approximately MVN(0, Cov(M̃)), where Cov(M̃) is approximated as follows,

Cov(M̃) ≈
∫ ∞

0

(In − GD−1Z(t)T )(In − V (t)1T )diag(dΛ(t))(In − 1V (t)T )(In − Z(t)D−1GT ),

where dΛ(t) is approximates Cov(dM(t)). When Z(t) is independent of time, Z(t) = Z, we

have

Cov(M̃) ≈ (In −WZ(ZTWZ)−1ZT )
[ ∫ ∞

0

(In − V (t)1T )diag(dΛ(t))(In − 1V (t)T )
]

(In − Z(ZTWZ)−1ZTWT ),

where dΛ(t) is a n × 1 vector with i-th element equals {Yi(t)(dΛ0(t) + βT
0Zi(t)dt)} (i =

1, . . . , n). Replace β0 with its estimator β̂, we can obtain an estimator of Cov(M̃) as

follows,

ˆCov(M̃) = (In −WZ(ZTWZ)−1ZT )
[ ∫ ∞

0

(In − V (t)1T )diag(dΛ̂(t))(In − 1V (t)T )
]

(In − Z(ZTWZ)−1ZTWT ),
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where dΛ̂(t) = Y (t)V (t)TdN(t) + (diag(Y (t))− Y (t)V (t)T )Z(t)β̂dt.

Write F = ET
1E1 for some m × n matrix E1, where m (1 ≤ m ≤ n) is the rank of

F. Then the weighted V statistic can be written as VZ = (E1M̃)T (E1M̃), with E1M̃ ∼

N(0, ˆCov(E1M̃)). Take an eigendecomposition of ˆCov(E1M̃),

ˆCov(E1M̃) = Γ


λ1

. . .

λm

ΓT ,

where {λi}mi=1 are eigenvalues and Γ is a m × m orthogonal matrix. Together with the

asymptotic normality of E1M̃ , we have

E1M̃
d
≈ Γ


λ
1/2
1

. . .

λ
1/2
m

χ,

where χ ≡ (χ11, . . . , χ1m)
T ∼ N(0, Im). Thus,

VZ = M̃TFM̃ = (E1M̃)TE1M̃
d
≈

m∑
j=1

λjχ
2
1j,

where χ2
1j’s are independent chi-square variables with degree 1.
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