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ABSTRACT

ALGORITHMS FOR NOISY QUANTUM COMPUTERS AND
TECHNIQUES FOR ERROR MITIGATION

By

Ryan LaRose

Quantum computation will likely provide significant advantages relative to classical architectures for

certain computational problems in number theory and physics, and potentially in other areas such as

optimization and machine learning. While some key theoretical and engineering problems remain

to be solved, experimental advances in recent years have demonstrated the first beyond-classical

quantum computation as well as the first experiments in error-corrected quantum computation. In

this thesis, we focus on quantum computers with around one hundred qubits that can implement

around one thousand operations, the so-called noisy-intermediate scale quantum (NISQ) regime

or kilo-scale quantum (KSQ) regime, and develop algorithms tailored to these devices as well as

techniques for error mitigation that require significantly less overhead than fault-tolerant quantum

computation. In the first part, we develop quantum algorithms for diagonalizing quantum states

(density matrices) and compiling quantum circuits. These algorithms use a quantum computer to

evaluate a cost function which is classically hard to compute and a classical computer to adjust

parameters of an ansatz circuit, similar to the variational principle in quantum mechanics and other

variational quantum algorithms for chemistry and optimization. In the second part, we extend

an error mitigation technique known as zero-noise extrapolation and introduce a new framework

for error mitigation which we call logical shadow tomography. In particular, we adapt zero-noise

extrapolation (ZNE) to the gate model and introduce new methods for noise scaling and (adaptive)

extrapolation. Further, we analyze ZNE in the presence of time-correlated noise and experimentally

show ZNE increases the effective quantum volume of various quantum computers. Finally, we

develop a simple framework for error mitigation that enables (the composition of) several error

mitigation techniques with significantly fewer resources than prior methods, and numerically show

the advantages of our framework.
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CHAPTER 1

PRELIMINARIES

1.1 Notation

|·⟩ A column vector labeled by ·
† Conjugate transpose operator (as superscript)
⟨·| The row vector |·⟩†
⊗ Tensor product
⊕ Addition modulo 2

{0, 1}𝑛 Length 𝑛 bitstrings. E.g., {0, 1}2 consists of 00, 01, 10, and 11
U(𝑑𝑛) The unitary group of dimension 𝑑𝑛

Table 1.1: Notation.

This thesis follows the Feynman-Twain principle in that no attempt is made at mathematical

rigor and persons attempting to find mathematical rigor will be shot. We are most interested in the

Hilbert space

C𝑑 ⊗ · · · ⊗ C𝑑︸           ︷︷           ︸
𝑛 terms

� C𝑑
𝑛

(1.1)

(where 𝑑 = 2 almost always in this thesis), i.e. the space of 𝑛 quantum bits (qubits). Common

bases for a single qubit include the computational (standard) basis

|0⟩ :=


1

0

 , |1⟩ :=


0

1

 (1.2)

and the Hadamard basis |±⟩ := ( |0⟩ ± |1⟩)/
√

2. For 𝑛 qubits and a bitstring 𝑧 = 𝑧1 · · · 𝑧𝑛 ∈ {0, 1}𝑛

we write basis elements as |𝑧1⟩ ⊗ · · · ⊗ |𝑧𝑛⟩ or simply |𝑧1 · · · 𝑧𝑛⟩ ≡ |𝑧⟩ for short, so a general state

may be written

|𝜓⟩ =
∑︁

𝑧∈{0,1}𝑛
𝛼𝑧 |𝑧⟩ (1.3)

with 𝛼𝑧 ∈ C and
∑
𝑧 |𝛼𝑧 |2 = 1.
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𝐼 The identity gate/element 𝐼 |𝑧⟩ = |𝑧⟩
𝑋 ≡ 𝜎𝑥 Pauli 𝑋 . 𝑋 |𝑧⟩ = |𝑧 ⊕ 1⟩
𝑍 ≡ 𝜎𝑧 Pauli 𝑍 . 𝑍 |𝑧⟩ = (−1)𝑧 |𝑧⟩
𝑌 ≡ 𝜎𝑦 Pauli 𝑌 . 𝑌 = 𝑖𝑋𝑍 .
𝐻 The Hadamard gate 𝐻 |𝑧⟩ = ( |0⟩ + (−1)𝑧 |1⟩)/

√
2

CNOT CNOT|𝑎⟩|𝑏⟩ = |𝑎⟩|𝑎 ⊕ 𝑏⟩
CZ CZ|𝑎⟩|𝑏⟩ = (−1)𝑎𝑏 |𝑎⟩|𝑏⟩

Table 1.2: Some common single- and two-qubit gates. Here, 𝑎, 𝑏, 𝑧 ∈ {0, 1}.

Quantum operations (gates) are elements inU(2𝑛). Some common single-qubit and two-qubit

gates are defined in Table 1.2. A quantum circuit is a series of operations acting on an initial state

with one or more terminal measurements. An example is shown below.

|0⟩ H • 




|0⟩ 




Figure 1.1: An example quantum circuit.

We read this circuit left-to-right as follows:

|0⟩ ⊗ |0⟩ 𝐻−→ 1
√

2
( |0⟩ + |1⟩) |0⟩

CNOT−−−−−→ 1
√

2
( |00⟩ + |11⟩)

This is the final quantum state before measurement. Born’s rule tells us that we measure 00 with

probability 1/2 and 11 with probability 1/2.

1.2 Quantum algorithms

A quantum algorithm is a quantum circuit (potentially with classical pre- and/or post-processing) for

performing some computational task. As an example, consider the following computational task:

Given a single-bit function 𝑓 : {0, 1} → {0, 1} and the ability to query the function, determine

if 𝑓 (0) = 𝑓 (1). There are four such functions, two of which satisfy 𝑓 (0) = 𝑓 (1) and two of

which do not. Since 𝑓 (0) and 𝑓 (1) are independent, the best classical algorithm takes at least

two queries. Interestingly, a quantum algorithm exists which takes only one query. This algorithm
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tells us whether 𝑓 (0) = 𝑓 (1) but does not tell us the value of either 𝑓 (0) or 𝑓 (1). The circuit for

performing this algorithm is shown in Fig. 1.2.

|0⟩ H Qf H 




Figure 1.2: Quantum circuit for the Deutsch-Jozsa algorithm.

Here, the operation 𝑄 𝑓 is a phase query 𝑄 𝑓 |𝑧⟩ = (−1)𝑧 |𝑧⟩. One can show the final state of this

circuit before the measurement is

|𝜓⟩ =
[
(−1) 𝑓 (0) + (−1) 𝑓 (1)

]
|0⟩ +

[
(−1) 𝑓 (0) − (−1) 𝑓 (1)

]
|1⟩. (1.4)

Thus, we measure 0 with probability 1 if 𝑓 (0) = 𝑓 (1), otherwise we measure 1. Notice how

constructive and destructive interference are used in preparing the solution. While this problem

is artificial, the same underlying principle is used for more realistic algorithms, e.g. Shor’s

algorithm [10] and others, which have rigorous performance and scaling guarantees but prohibitively

large overhead for (near-term) implementations. In Chapter 2 and Chapter 3, we develop quantum

algorithms with lower overhead which are still, in a well-defined manner, classically hard, but have

heuristic elements and less general performance guarantees.

1.3 Open quantum systems

A closed quantum system — one which is completely isolated from its environment — is primarily

a convenient mathematical abstraction. An open quantum system — one which interacts with its

environment — more accurately describes a quantum computer.

A noisy quantum state is described by an ensemble {𝑝𝑖, |𝜓𝑖⟩}𝑖 where 𝑝𝑖 forms a probability

distribution and each |𝜓𝑖⟩ is a wavefunction. Physically, this means we do not know with certainty

which wavefunction |𝜓𝑖⟩ we possess. Mathematically, we work with the density operator (matrix)

of an ensemble

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖 |, (1.5)

a Hermitian, positive semi-definite operator with unit trace which generalizes classical probability

distributions (diagonal 𝜌).
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Letting 𝜌 denote the quantum state of interest and 𝜌env the environment, noise can be charac-

terized physically by the process

𝜌 ↦→ Trenv
[
𝑈 (𝜌 ⊗ 𝜌env)𝑈†

]
where 𝑈 is a unitary on the composite Hilbert space and Trenv denotes the partial trace over the

environment. (Given 𝜌𝐴𝐵 ∈ H𝐴 ⊗ H𝐵, the partial trace overH𝐵 is defined by

Tr𝐴𝜌𝐴𝐵 :=
dim(H𝐵)∑︁
𝑗=1

(𝐼 ⊗ ⟨ 𝑗 |) 𝜌𝐴𝐵 (𝐼 ⊗ | 𝑗⟩) (1.6)

where | 𝑗⟩ form a basis forH𝐵. Similarly for the partial trace overH𝐴.) This can be written [11] in

the equivalent, often more convenient, operator-sum representation

𝜌 ↦→
𝐾∑︁
𝑘=1

𝐸𝑘𝜌𝐸
†
𝑘

(1.7)

where the Kraus operators 𝐸𝑘 satisfy the completeness relation

𝐾∑︁
𝑘=1

𝐸
†
𝑘
𝐸𝑘 = 𝐼 .

Equation (1.7) is known as a quantum operation or quantum channel. Physically, it can be

interpreted as randomly replacing the state 𝜌 by the (properly normalized) state 𝐸𝑘𝜌𝐸†𝑘 with

probability Tr[𝐸𝑘𝜌𝐸†𝑘 ]. Mathematically, it is a completely positive, trace preserving map. Coherent

errors are noisy channels defined by 𝐾 = 1 unitary Kraus operators whereas incoherent errors are

defined by 𝐾 > 1 Kraus operators.

We often model noise in devices with channels used in theoretical work. One commonly used

noise model is the Pauli channel.

Definition 1. The Pauli channel maps a single qubit state 𝜌 to EP
p (𝜌) defined by

EP
p (𝜌) := 𝑝𝐼𝜌 + 𝑝𝑋𝑋𝜌𝑋 + 𝑝𝑌𝑌𝜌𝑌 + 𝑝𝑍𝑍𝜌𝑍 (1.8)

where 𝑝𝐼 + 𝑝𝑋 + 𝑝𝑌 + 𝑝𝑍 = 1.
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While the Pauli channel acts on a single qubit, it can be generalized to a 𝑑-dimensional Hilbert

space via the Weyl channel

EW
𝑝 (𝜌) :=

𝑑−1∑︁
𝑘,𝑙=0

𝑝𝑘𝑙𝑊𝑘𝑙𝜌𝑊
†
𝑘𝑙

(1.9)

where 𝑝𝑘𝑙 are probabilities and the Weyl operators are

𝑊𝑘𝑙 :=
𝑑−1∑︁
𝑚=0

𝑒2𝜋𝑖𝑚𝑘/𝑑 |𝑚⟩⟨𝑚 + 1|.

For 𝑑 = 2, Eqn. (1.9) reduces to Eqn. (1.8).

Two special cases of the Pauli channel are the bit-flip and phase-flip (dephasing) channel.

Definition 2. The bit-flip channel maps a single qubit state 𝜌 to EBF
𝑝 (𝜌) defined by

EBF
𝑝 (𝜌) := (1 − 𝑝)𝜌 + 𝑝𝑋𝜌𝑋 (1.10)

where 0 ≤ 𝑝 ≤ 1.

While a bit-flip channel flips the computational basis state with probability 𝑝, the phase-flip channel

introduces a relative phase with probability 𝑝.

Definition 3. The phase-flip (dephasing) channel maps a single qubit state 𝜌 to Edeph
𝑝 (𝜌) defined

by

Edeph
𝑝 (𝜌) := (1 − 𝑝)𝜌 + 𝑝𝑍𝜌𝑍 (1.11)

where 0 ≤ 𝑝 ≤ 1.

Another special case of the Pauli channel is the depolarizing channel which occurs when each

Pauli is equiprobable 𝑝𝑋 = 𝑝𝑌 = 𝑝𝑍 = 𝑝 and 𝑝𝐼 = 1 − 3𝑝. This channel can be equivalently

thought of as replacing the state 𝜌 by the maximally mixed state 𝐼/2 with probability 𝑝.

Definition 4. The depolarizing channel maps a single qubit state 𝜌 to Edepo
𝑝 (𝜌) defined by

Edepo
𝑝 (𝜌) := (1 − 𝑝)𝜌 + 𝑝𝐼/2 (1.12)

where 0 ≤ 𝑝 ≤ 1.
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The 𝑑 = 2𝑛-dimensional generalization of Def. 4 is straightforward:

Definition 5. The global depolarizing channel maps an 𝑛-qubit state 𝜌 to EGD
𝑝 (𝜌) defined by

EGD
𝑝 (𝜌) := (1 − 𝑝)𝜌 + 𝑝𝐼/𝑑 (1.13)

where 0 ≤ 𝑝 ≤ 1, 𝑑 = 2𝑛, and 𝐼 ≡ 𝐼𝑑 is the 𝑑-dimensional identity.

We use this general description of noisy quantum systems, as well as the particular channels

we have defined, both for analyzing algorithms in the presence of noise in Chapter 2 and Chapter 3

and for developing general techniques for error mitigation in Chapter 4 and Chapter 5.

1.4 Quantum error correction

Because real quantum computers are open quantum systems, it is rather unlikely we will be able to

run circuits at the scale needed for, say, Shor’s algorithm without some solution for dealing with

errors. The primary long-term solution is error correction and fault-tolerance. Some of our ideas

for error mitigation in this thesis stem from error correction, so we briefly review this now.

Suppose a state |𝜓⟩ := 𝛼 |0⟩ + 𝛽 |1⟩ incurs a phase error 𝐸 |𝜓⟩ = 𝛼 |0⟩ + 𝑒𝑖𝛿𝛽 |1⟩. In principle,

𝛿 ∈ R could in principle be infinitesimal, in which case the task may appear hopeless from the start.

We can expand this error in the Pauli basis

𝐸 = 𝑒0𝐼 + 𝑒1𝑋 + 𝑒2𝑌 + 𝑒3𝑍 (1.14)

to get a finite set of terms, but each 𝑒𝑖 ∈ R could still in principle be infinitesimal. The almost

magical trick is that performing a measurement {𝑀𝑖} on 𝐸 |𝜓⟩ returns𝑀𝑖𝐸 |𝜓⟩/
√
𝑝𝑖 with probability

𝑝𝑖, i.e., some term 𝜂𝑖𝜎𝑖 |𝜓⟩ where 𝜂𝑖 ∈ R and 𝜎𝑖 ∈ {𝐼, 𝑋,𝑌 , 𝑍}. The 𝜎𝑖 can be removed by applying

𝜎𝑖, and although we still have a potentially infinitesimal 𝜂𝑖, it is now a global phase and has no

influence on measurement statistics. In other words, we can say that causing an error to occur is a

crucial step of quantum error correction.

In a bit more detail, a stabilizer quantum error correction code (stabilizer code) is specified by

any subgroup G with −𝐼 ∉ G of the 𝑛-qubit Pauli group

P𝑛 := {𝑝𝜎1 ⊗ · · · ⊗ 𝜎𝑛 : 𝑝 ∈ {±1,±𝑖}, 𝜎𝑖 ∈ {𝐼, 𝑋,𝑌 , 𝑍⟩}. (1.15)
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The group G is called the gauge group. The center of G in P𝑛 is called the stabilizer group

S := 𝑍 (G) ∩ G. Note that, by construction, S is abelian and does not contain −𝐼. We desire these

conditions to define codewords from S := ⟨𝑆1, ..., 𝑆𝑟⟩. A codeword is a state |𝜓⟩ such that

𝑆 |𝜓⟩ = |𝜓⟩ ∀ 𝑆 ∈ {𝑆1, ..., 𝑆𝑟}. (1.16)

The codespace is the span of codewords. It’s easy to show that the codespace is trivial if S is not

abelian or −𝐼 ∈ S. If S = G, the code is called a subspace code, otherwise the code is called a

subsystem code.

As an example, the three-qubit repetition code is a subspace code specified byS = ⟨𝑍1𝑍2, 𝑍2𝑍3⟩.

One can verify that |000⟩ =: |0̄⟩ and |111⟩ =: |1̄⟩ are codewords. This thus defines a two-

dimensional codespace

𝛼 |0̄⟩ + 𝛽 |1̄⟩ = 𝛼 |000⟩ + 𝛽 |111⟩ (1.17)

which we identify as a logical qubit. The word logical is used to distinguish from physical qubits:

this logical qubit (1.17) is formed by defining a two-dimensional subspace of C23 which we formed

out of three physical qubits. We use notation [[𝑛, 𝑘]] to describe a code with 𝑛 physical qubits

encoding 𝑘 logical qubits. The relationship to the number of stabilizer generators 𝑟 for such a code

is 𝑟 = 𝑛 − 𝑘 .

In the repetition code example, one can check that the operator 𝑍1 satisfies 𝑍1 |0̄⟩ = |0̄⟩ and

𝑍1 |1̄⟩ = −|1̄⟩. It thus behaves as the Pauli 𝑍 operator on the logical qubit — i.e., the logical

operator 𝑍̄ . Similarly, one can check that 𝑋𝑋𝑋 |0̄⟩ = |1̄⟩ and 𝑋𝑋𝑋 |1̄⟩ = |0̄⟩. It thus behaves as the

Pauli 𝑋 operator on the logical qubit — i.e., the logical operator 𝑋̄ . In general, for an [[𝑛, 𝑘]] code

it is always possible to find logical operators 𝑍̄1, ..., 𝑍̄𝑘 , 𝑋̄1, ..., 𝑋̄𝑘 with the expected commutation

relations. Specifically, logical operations are elements of L := 𝑁 (S) − S where 𝑁 denotes the

normalizer. Logical operations are not necessarily unique: e.g., for the three qubit repetition code,

𝑍2, 𝑍3, and 𝑍1𝑍2𝑍3 also behave as 𝑍̄ . Note that, in this example, if any single-qubit phase flip

error occurs, |0̄⟩ gets mapped to |1̄⟩. It would be better if this took many single-qubit errors since,

in reasonable noise models, many single-qubit errors occurring is much less likely than any one of
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the errors occurring. This property of “how far” codewords are from each other is referred to as

the distance of the code and can be formulated as

𝑑 := min
𝐿∈L

𝑤(𝐿) (1.18)

where 𝑤 is the weight (number of non-identity terms) of the Pauli 𝐿. A code with distance 𝑑 can

correct errors on up to 𝑡 = (𝑑 − 1)/2 qubits. We often augment the [[𝑛, 𝑘]] notation with the

distance 𝑑 as [[𝑛, 𝑘, 𝑑]]. We can thus describe the three-qubit repetition code as a [[3, 1, 1]] code.

A correctable error commutes with all logical operators and all but one stabilizer generator.

Specifically, correctable errors are elements of the abelian group 𝑇 := 𝑁 (L) − S. Because of the

commutation relations, measuring each stabilizer generator reveals whether the error commutes or

anti-commutes with each stabilizer generator. This information, called a syndrome, can be used to

infer which error occurred. To see this, consider again the three-qubit repetition code example. As

𝑍 = |0⟩⟨0| − |1⟩⟨1|, the product 𝑍𝑍 can be written 𝑍𝑍 = |00⟩⟨00| + |11⟩⟨11| − (|01⟩⟨01| + |10⟩⟨10|).

In other words, states in which the two bits agree are in the +1 eigenspace and states in which the

two bits disagree are in the −1 eigenspace. So, measuring the stabilizer generator 𝑍1𝑍2 tells us if

the first two bits agree or disagree. Similarly for measuring the other stabilizer generator 𝑍2𝑍3. If

the error 𝑋1 occurs, we would measure the syndrome [−1, 1] as 𝑋1 anticommutes with 𝑍1𝑍2 and

commutes with 𝑍2𝑍3. Of course in practice we only get the syndrome and have to infer which error

occurred — this process is known as decoding.

The general pattern of error correction is to encode the state with an [[𝑛, 𝑘, 𝑑]] code, measure

stabilizers to obtain a syndrome, decode the syndrome to infer which error occurred, then correct the

error. We typically assume we can do some of these operations perfectly — e.g., we prepare states

and measure stabilizers perfectly, and errors only occur elsewhere during the computation. This

is of course not realistic in practice but serves as the first step towards the theory of fault-tolerant

quantum computation in which all elements (state preparation, measurement, etc.) are treated as

noisy or unreliable. This background is sufficient for the purposes of this thesis, however. We use

the ideas of error correction for the purpose of error mitigation in Chapter 5.

8



1.5 The Gottesman-Knill theorem

The problem of simulating quantum circuits with 𝑛 qubits and depth 𝑑 is important for verifying the

output of quantum computers as well as ultimately understanding why, and in what sense, quantum

computers are more powerful than classical computers. Correspondingly, many methods have been

developed to classically simulate quantum systems. We use the term quantum simulator or just

simulator to denote a classical algorithm which inputs a quantum circuit and outputs a quantity of

interest. To truly mimic a quantum computer, this “quantity of interest” should only be a set of

bitstrings 𝑧 ∈ {0, 1}𝑛 as this is the return type of a real experimental (qubit) quantum information

processing system. However, simulators work by manipulating some classical representation of

quantum information, so it is generally possible to return additional values, for example a classical

representation of the wavefunction, a reduced density matrix on one or more qubits, a single

amplitude of the wavefunction, or an expectation value of a given observable.

The Gottesman-Knill theorem presents an algorithm for efficiently simulating a certain class of

quantum circuits which, remarkably, contains circuits with very large numbers of qubits, very large

depth, and large entanglement. This class of circuits is known as Clifford circuits, the defining

characteristic being the types of gates (Clifford gates) appearing in the circuit. For general circuits,

the resources of this simulation strategy grow exponentially in the number of non-Clifford gates.

The Gottesman-Knill theorem [12] (or algorithm / simulator) works by updating operators

instead of updating the state in the same spirit as the Heisenberg picture vs. the Schrödinger picture.

(It was originally presented this way [13], though the terminology is no longer as standard.) In the

Schrödinger picture, we think of operators being fixed and the state evolving over time. Applying

an operator 𝑈 to a state 𝑉 |𝜓⟩, we say that the new state is 𝑈𝑉 |𝜓⟩. However, we may equivalently

write this as (𝑈𝑉𝑈†)𝑈 |𝜓⟩ and say that

𝑉 ↦→ 𝑈𝑉𝑈†. (1.19)

See Table 1.3 for a summary.

If we keep track of (1.19) for a basis {𝑃1, ..., 𝑃𝑘 }, then we are able to reconstruct the evolution
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Schrödinger picture Heisenberg picture
𝑉 — 𝑈𝑉𝑈†

|𝜓⟩ 𝑈𝑉 |𝜓⟩ 𝑈 |𝜓⟩

Table 1.3: How each term in the quantity 𝑉 |𝜓⟩ is updated after application of𝑈 in the Schrödinger
vs. Heisenberg picture. The answer is always𝑈𝑉 |𝜓⟩ (the product of each column).

of any operator 𝑉 =
∑
𝑖 𝛼𝑖𝑃𝑖 since

𝑈𝑉𝑈† =
∑︁
𝑖

𝛼𝑖 (𝑈𝑃𝑖𝑈†) (1.20)

by linearity. Furthermore, the map (1.19) is a group homomorphism since

𝑉𝑊 ↦→ 𝑈𝑉𝑊𝑈† = 𝑈𝑉𝑈†𝑈𝑊𝑈†. (1.21)

Therefore it suffices to track the evolution of a generating set. If we take the Pauli basis as our

basis, then a convenient generating set is {𝑋1, ..., 𝑋𝑛, 𝑍1, ..., 𝑍𝑛}. For a general operator ofU(2𝑛),

we thus need to keep track of only 2𝑛 single qubit operators.

So far this presentation is completely general with respect to what the operators (gates) are.

For arbitrary operators, keeping track of how the generating set transforms will grow exponentially.

However, if we only allow operators which preserve Paulis under conjugation, the size of the

description does not grow. This class of operators is precisely the normalizer of the Pauli group P𝑛

inU(2𝑛), also called the Clifford group, and is denoted 𝑁 (P𝑛) or C.

The Clifford group is generated by {𝐻, 𝑆,CNOT𝑖 𝑗 } between arbitrary pairs of qubits 𝑖, 𝑗 ∈ [𝑛].

One can verify for the single-qubit gates that

𝐻𝑋𝐻† = 𝑍 𝐻𝑍𝐻† = 𝑋 (1.22)

𝑆𝑋𝑆† = 𝑌 𝑆𝑍𝑆† = 𝑍 (1.23)

and for the two-qubit CNOT that

CNOT(𝑋𝐼)CNOT† = 𝑋𝑋 (1.24)

CNOT(𝐼𝑋)CNOT† = 𝐼𝑋 (1.25)

CNOT(𝑍𝐼)CNOT† = 𝑍𝐼 (1.26)

CNOT(𝐼𝑍)CNOT† = 𝑍𝑍 (1.27)
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Assuming without loss of generality a Clifford circuit is compiled into this gateset, the

Gottesman-Knill algorithm works by iterating through the circuit and updating the generating

set at each step. As is typical with P𝑛, in software one represents elements using symplectic

notation and updates the so-called tableau of the generators. For clarity we proceed by example

with the two-qubit circuit in Fig. 1.1 that performs |00⟩ ↦→ (|00⟩ + |11⟩)/
√

2 and show how the

tableau is updated:



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


𝐻0−−→



0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1


CNOT01−−−−−−→



0 0 1 0

0 1 0 0

1 1 0 0

0 0 1 1


(1.28)

In other words, 𝑋0 ↦→ 𝑍0, 𝑋1 ↦→ 𝑋1, 𝑍0 ↦→ 𝑋0𝑋1, and 𝑍1 ↦→ 𝑍0𝑍1. From the final stabilizer tableau,

one can sample bitstrings or compute expectation values using algorithms described in [12]. For

our purposes, we are primarily concerned with the ability to efficiently store and manipulate

stabilizer states with classical resources as described above, a task which will be crucial for our

error mitigation strategy in Chapter 5.

1.6 Outline of thesis

The remainder of this thesis is split into two parts, with this first part developing algorithms for

quantum computers in the “NISQ” (noisy intermediate-scale quantum) [14] or “KSQ” (kilo-scale

quantum, ∼ 103 qubits × operations) regime, and the second part developing error mitigation

techniques for such computers. Both parts are complementary towards the goal of useful quantum

computing. In the first part, we develop algorithms for diagonalizing quantum states (density

matrices) in Chapter 2 and for compiling quantum circuits in Chapter 3. In the second part, we

analyze and extend an existing error mitigation technique, zero-noise extrapolation, in Chapter 4,

and develop a new resource-efficient procedure for implementing the composition of several error

mitigation techniques in Chapter 5.
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The following paragraphs are a short preface to Part 1 (chapters two and three). It would be

useful to format this as a part, but I’m not allowed to have parts in my thesis because someone

in the graduate school gets paid to look at the format of theses and tell you that you can’t have

colored hyperlinks, you have to have a table of algorithms with the word “Algorithm” before each

entry, and you can’t have parts unless they are formatted like chapters and simultaneously do and

do not appear in the table of contents (like chapters). So consider the following paragraphs to be

a preface to chapters two and three which one may logically format as a higher-level abstraction

than a chapter if one had the ability to do so. I would offer a link to a usefully formatted thesis on

my website or something but I’m sure my friend in the graduate school would inform me that’s a

violation of university policy and I can no longer graduate. (And that the link can’t be colored.) I’d

usually include this as a footnote but I’m sure if I did I’d have to include a list of footnotes where

each entry has to start with the word “Footnote” and the list of footnotes has to appear in the table

of contents (where the parts should and shouldn’t be, formatted like chapters). So I’m writing this

as plain text, not sectioned or chaptered or otherwise numbered, and absolutely not in a part. As a

result it makes nearly no sense, in accordance with university policy. Will my friend in the graduate

school still notice, and subsequently examine every part of my thesis with a microscope to ensure I

don’t graduate? I’m almost certain the state-of-the-art PDF diff tool MSU bought from the RAND

Corporation in 1852 will pick this up. But I leave it to fate whether this is received with a smile or

a frown in the hope that someone reading this document out of interest will be better oriented by

this remark. A similar remark will appear before Part 2 (chapters four and five).

The future applications of quantum computers, assuming that large-scale, fault-tolerant versions

will eventually be realized, are manifold. From a mathematical perspective, applications include

number theory [15], linear algebra [16, 17, 18], differential equations [19, 20], and optimization

[21]. From a physical perspective, applications include electronic structure determination [22, 23]

for molecules and materials and real-time simulation of quantum dynamical processes [24] such

as protein folding and photo-excitation events. Naturally, some of these applications are more

long-term than others. Factoring and solving linear systems of equations are typically viewed as
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longer term applications due to their high resource requirements. On the other hand, approximate

optimization and the determination of electronic structure may be nearer term applications, and

could even serve as demonstrations of quantum supremacy in the near future [25, 26].

A major aspect of quantum algorithms research is to make applications of interest more near term

by reducing quantum resource requirements including qubit count, circuit depth, numbers of gates,

and numbers of measurements. A powerful strategy for this purpose is algorithm hybridization,

where a fully quantum algorithm is turned into a hybrid quantum-classical algorithm [27]. The

benefit of hybridization is two-fold, both reducing the resources (hence allowing implementation

on smaller hardware) as well as increasing accuracy (by outsourcing calculations to “error-free”

classical computers).

Variational hybrid algorithms are a class of quantum-classical algorithms that involve minimiz-

ing a cost function that depends on the parameters of a quantum gate sequence. Cost evaluation

occurs on the quantum computer, with speedup over classical cost evaluation, and the classical

computer uses this cost information to adjust the parameters of the gate sequence. Variational

hybrid algorithms have been proposed for Hamiltonian ground state and excited state preparation

[22, 28, 29], approximate optimization [21], error correction [30], quantum data compression

[31, 32], and quantum simulation [33, 34]. A key feature of such algorithms is their near-term

relevance, since only the subroutine of cost evaluation occurs on the quantum computer, while the

optimization procedure is entirely classical, and hence standard classical optimization tools can be

employed.
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CHAPTER 2

VARIATIONAL QUANTUM STATE DIAGONALIZATION

2.1 Introduction

In this chapter, we consider the application of diagonalizing quantum states. In condensed matter

physics, diagonalizing states is useful for identifying properties of topological quantum phases—a

field known as entanglement spectroscopy [35]. In data science and machine learning, diagonalizing

the covariance matrix (which could be encoded in a quantum state [36, 16]) is frequently employed

for principal component analysis (PCA). PCA identifies features that capture the largest variance

in one’s data and hence allows for dimensionality reduction [37].

Classical methods for diagonalization typically scale polynomially in the matrix dimension [38].

Similarly, the number of measurements required for quantum state tomography—a general method

for fully characterizing a quantum state—scales polynomially in the dimension. Interestingly, Lloyd

et al. proposed a quantum algorithm for diagonalizing quantum states that can potentially perform

exponentially faster than these methods [16]. Namely, their algorithm, called quantum principal

component analysis (qPCA), gives an exponential speedup for low-rank matrices. qPCA employs

quantum phase estimation combined with density matrix exponentiation. These subroutines require

a significant number of qubits and gates, making qPCA difficult to implement in the near term,

despite its long-term promise.

Here, we propose a variational hybrid algorithm for quantum state diagonalization. For a given

state 𝜌, our algorithm is composed of three steps: (i) Train the parameters ®𝛼 of a gate sequence

U such that 𝜌̃ = 𝑈𝑝 ( ®𝛼opt)𝜌𝑈𝑝 ( ®𝛼opt)† is approximately diagonal, where ®𝛼opt is the optimal value

of ®𝛼 obtained (ii) Read out the largest eigenvalues of 𝜌 by measuring in the eigenbasis (i.e., by

measuring 𝜌̃ in the standard basis), and (iii) Prepare the eigenvectors associated with the largest

eigenvalues. We call this the variational quantum state diagonalization (VQSD) algorithm. VQSD

is a near-term algorithm with the same practical benefits as other variational hybrid algorithms.
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Employing a layered ansatz for 𝑈𝑝 ( ®𝛼) (where 𝑝 is the number of layers) allows one to obtain a

hierarchy of approximations for the eigevalues and eigenvectors. We therefore think of VQSD as

an approximate diagonalization algorithm.

We carefully choose our cost function 𝐶 to have the following properties: (i) 𝐶 is faithful (i.e,

it vanishes if and only if 𝜌̃ is diagonal), (ii) 𝐶 is efficiently computable on a quantum computer,

(iii) 𝐶 has operational meanings such that it upper bounds the eigenvalue and eigenvector error

(see Sec. 2.2.1), and (iv) 𝐶 scales well for training purposes in the sense that its gradient does not

vanish exponentially in the number of qubits. The precise definition of 𝐶 is given in Sec. 2.2.1 and

involves a difference of purities for different states. To compute 𝐶, we introduce novel short-depth

quantum circuits that likely have applications outside the context of VQSD.

To illustrate our method, we implement VQSD on Rigetti’s 8-qubit quantum computer. We

successfully diagonalize one-qubit pure states using this quantum computer. To highlight future

applications (when larger quantum computers are made available), we implement VQSD on a

simulator to perform entanglement spectroscopy on the ground state of the one-dimensional (1D)

Heisenberg model composed of 12 spins.

Our paper is organized as follows. Section 2.2 outlines the VQSD algorithm and presents

its implementation. In Sec. 2.3, we give a comparison to the qPCA algorithm, and we elaborate

on future applications. Section 2.4 presents our methods for quantifying diagonalization and for

optimizing our cost function.

2.2 Results

2.2.1 The VQSD Algorithm

2.2.1.1 Overall structure

Figure 2.1 shows the structure of the VQSD algorithm. The goal of VQSD is to take, as its input, an

𝑛-qubit density matrix 𝜌 given as a quantum state and then output approximations of the 𝑚-largest

eigenvalues and their associated eigenvectors. Here, 𝑚 will typically be much less than 2𝑛, the
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(b) (c) (a)

(e)

(d)

Figure 2.1: Schematic diagram showing the steps of the VQSD algorithm. (a) Two copies of
quantum state 𝜌 are provided as an input. These states are sent to the parameter optimization loop
(b) where a hybrid quantum-classical variational algorithm approximates the diagonalizing unitary
𝑈𝑝 ( ®𝛼opt). Here, 𝑝 is a hyperparameter that dictates the quality of solution found. This optimal
unitary is sent to the eigenvalue readout circuit (c) to obtain bitstrings ®𝑧, the frequencies of which
provide estimates of the eigenvalues of 𝜌. Along with the optimal unitary𝑈𝑝 ( ®𝛼opt), these bitstrings
are sent to the eigenvector preparation circuit (c) to prepare the eigenstates of 𝜌 on a quantum
computer. Both the eigenvalues and eigenvectors are the outputs (d) of the VQSD algorithm.

matrix dimension of 𝜌, although the user is free to increase𝑚with increased algorithmic complexity

(discussed below). The outputted eigenvalues will be in classical form, i.e., will be stored on a

classical computer. In contrast, the outputted eigenvectors will be in quantum form, i.e., will be

prepared on a quantum computer. This is necessary because the eigenvectors would have 2𝑛 entries

if they were stored on a classical computer, which is intractable for large 𝑛. Nevertheless, one can

characterize important aspects of these eigenvectors with a polynomial number of measurements

on the quantum computer.

Similar to classical eigensolvers, the VQSD algorithm is an approximate or iterative diagonal-

ization algorithm. Classical eigenvalue algorithms are necessarily iterative, not exact [39]. Iterative

algorithms are useful in that they allow for a trade-off between run-time and accuracy. Higher de-

grees of accuracy can be achieved at the cost of more iterations (equivalently, longer run-time), or
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short run-time can be achieved at the cost of lower accuracy. This flexibility is desirable in that it

allows the user of the algorithm to dictate the quality of the solutions found.

The iterative feature of VQSD arises via a layered ansatz for the diagonalizing unitary. This

idea similarly appears in other variational hybrid algorithms, such as the Quantum Approximate

Optimization Algorithm [21]. Specifically, VQSD diagonalizes 𝜌 by variationally updating a

parameterized unitary𝑈𝑝 ( ®𝛼) such that

𝜌̃𝑝 ( ®𝛼) := 𝑈𝑝 ( ®𝛼)𝜌𝑈†𝑝 ( ®𝛼) (2.1)

is (approximately) diagonal at the optimal value ®𝛼opt. (For brevity we often write 𝜌̃ for 𝜌̃𝑝 ( ®𝛼).) We

assume a layered ansatz of the form

𝑈𝑝 ( ®𝛼) = 𝐿1( ®𝛼1)𝐿2( ®𝛼2) · · · 𝐿𝑝 ( ®𝛼𝑝) . (2.2)

Here, 𝑝 is a hyperparameter that sets the number of layers 𝐿𝑖 ( ®𝛼𝑖), and each ®𝛼𝑖 is a set of optimization

parameters that corresponds to internal gate angles within the layer. The parameter ®𝛼 in (2.1)

refers to the collection of all ®𝛼𝑖 for 𝑖 = 1, ..., 𝑝. Once the optimization procedure is finished

and returns the optimal parameters ®𝛼opt, one can then run a particular quantum circuit (shown in

Fig. 2.1(c) and discussed below) 𝑁readout times to approximately determine the eigenvalues of 𝜌.

The precision (i.e, the number of significant digits) of each eigenvalue increases with 𝑁readout and

with the eigenvalue’s magnitude. Hence for small 𝑁readout only the largest eigenvalues of 𝜌 will be

precisely characterized, so there is a connection between 𝑁readout and how many eigenvalues, 𝑚,

are determined. The hyperparameter 𝑝 is a refinement parameter, meaning that the accuracy of the

eigensystem (eigenvalues and eigenvectors) typically increases as 𝑝 increases. We formalize this

argument as follows.

Let 𝐶 denote our cost function, defined below in (2.10), which we are trying to minimize. In

general, the cost 𝐶 will be non-increasing (i.e., will either decrease or stay constant) in 𝑝. One can

ensure that this is true by taking the optimal parameters learned for 𝑝 layers as the starting point

for the optimization of 𝑝 + 1 layers and by setting ®𝛼𝑝+1 such that 𝐿𝑝+1( ®𝛼𝑝+1) is an identity. This
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strategy also avoids barren plateaus [40, 41] and helps to mitigate the problem of local minima, as

we discuss in Section 2.8.

Next, we argue that 𝐶 is closely connected to the accuracy of the eigensystem. Specifically,

it gives an upper bound on the eigensystem error. Hence, one obtains an increasingly tighter

upper bound on the eigensystem error as 𝐶 decreases (equivalently, as 𝑝 increases). To quantify

eigenvalue error, we define

Δ𝜆 :=
𝑑∑︁
𝑖=1
(𝜆𝑖 − 𝜆̃𝑖)2 , (2.3)

where 𝑑 = 2𝑛, and {𝜆𝑖} and {𝜆̃𝑖} are the true and inferred eigenvalues, respectively. Here, 𝑖 is

an index that orders the eigenvalues in decreasing order, i.e., 𝜆𝑖 ≥ 𝜆𝑖+1 and 𝜆̃𝑖 ≥ 𝜆̃𝑖+1 for all

𝑖 ∈ {1, ..., 𝑑 − 1}. To quantify eigenvector error, we define

Δ𝑣 :=
𝑑∑︁
𝑖=1
⟨𝛿𝑖 |𝛿𝑖⟩ , with |𝛿𝑖⟩ = 𝜌 |𝑣̃𝑖⟩ − 𝜆̃𝑖 |𝑣̃𝑖⟩ = Π⊥𝑖 𝜌 |𝑣̃𝑖⟩ . (2.4)

Here, |𝑣̃𝑖⟩ is the inferred eigenvector associated with 𝜆̃𝑖, and Π⊥
𝑖
= 𝐼 − |𝑣̃𝑖⟩⟨𝑣̃𝑖 | is the projector onto

the subspace orthogonal to |𝑣̃𝑖⟩. Hence, |𝛿𝑖⟩ is a vector whose norm quantifies the component of

𝜌 |𝑣̃𝑖⟩ that is orthogonal to |𝑣̃𝑖⟩, or in other words, how far |𝑣̃𝑖⟩ is from being an eigenvector of 𝜌.

As proven in Sec. 2.4.1, our cost function upper bounds the eigenvalue and eigenvector error

up to a proportionality factor 𝛽,

Δ𝜆 ≤ 𝛽𝐶 , and Δ𝑣 ≤ 𝛽𝐶 . (2.5)

Because 𝐶 is non-increasing in 𝑝, the upper bound in (2.5) is non-increasing in 𝑝 and goes to zero

if 𝐶 goes to zero.

We remark that Δ𝑣 can be interpreted as a weighted eigenvector error, where eigenvectors with

larger eigenvalues are weighted more heavily in the sum. This is a useful feature since it implies that

lowering the cost 𝐶 will force the eigenvectors with the largest eigenvalues to be highly accurate.

In many applications, such eigenvectors are precisely the ones of interest. (See Sec. 2.2.2.2 for an

illustration of this feature.)

The various steps in the VQSD algorithm are shown schematically in Fig. 2.1. There are

essentially three main steps: (1) an optimization loop that minimizes the cost 𝐶 via back-and-forth
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(a)

(b)

Figure 2.2: (a) Layered ansatz for the diagonalizing unitary 𝑈𝑝 ( ®𝛼). Each layer 𝐿𝑖, 𝑖 = 1, ..., 𝑝,
consists of a set of optimization parameters ®𝛼𝑖. (b) The two-qubit gate ansatz for the 𝑖th layer,
shown on four qubits. Here we impose periodic boundary conditions on the top/bottom edge of the
circuit so that 𝐺3 wraps around from top to bottom. Section 2.7 discusses an alternative approach
to the construction of𝑈𝑝 ( ®𝛼), in which the ansatz is modified during the optimization process.

communication between a classical and quantum computer, where the former adjusts ®𝛼 and the latter

computes 𝐶 for 𝑈𝑝 ( ®𝛼), (2) a readout procedure for approximations of the 𝑚 largest eigenvalues,

which involves running a quantum circuit and then classically analyzing the statistics, and (3) a

preparation procedure to prepare approximations of the eigenvectors associated with the 𝑚 largest

eigenvalues. In the following subsections, we elaborate on each of these procedures.

2.2.1.2 Parameter optimization loop

Naturally, there are many ways to parameterize 𝑈𝑝 ( ®𝛼). Ideally one would like the number of

parameters to grow at most polynomially in both 𝑛 and 𝑝. Figure 2.2 presents an example ansatz

that satisfies this condition. Each layer 𝐿𝑖 is broken down into layers of two-body gates that can

be performed in parallel. These two-body gates can be further broken down into parameterized

one-body gates, for example, with the construction in Ref. [5]. We discuss a different approach to

parameterize𝑈𝑝 ( ®𝛼) in Section 2.7.

For a given ansatz, such as the one in Fig. 2.2, parameter optimization involves evaluating the

cost𝐶 on a quantum computer for an initial choice of parameters and then modifying the parameters
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on a classical computer in an iterative feedback loop. The goal is to find

®𝛼opt := arg min
®𝛼

𝐶 (𝑈𝑝 ( ®𝛼)) . (2.6)

The classical optimization routine used for updating the parameters can involve either gradient-free

or gradient-based methods. In Sec. 2.4.2, we explore this further and discuss our optimization

methods.

In Eq. (2.6), 𝐶 (𝑈𝑝 ( ®𝛼)) quantifies how far the state 𝜌̃𝑝 ( ®𝛼) is from being diagonal. There

are many ways to define such a cost function, and in fact there is an entire field of research on

coherence measures that has introduced various such quantities [42]. We aim for a cost that is

efficiently computable with a quantum-classical system, and hence we consider a cost that can

be expressed in terms of purities. (It is well known that a quantum computer can find the purity

Tr(𝜎2) of an 𝑛-qubit state 𝜎 with complexity scaling only linearly in 𝑛, an exponential speedup

over classical computation [43, 44].) Two such cost functions, whose individual merits we discuss

in Sec. 2.4.1, are

𝐶1(𝑈𝑝 ( ®𝛼)) = Tr(𝜌2) − Tr(Z( 𝜌̃)2) , (2.7)

𝐶2(𝑈𝑝 ( ®𝛼)) = Tr(𝜌2) − 1
𝑛

𝑛∑︁
𝑗=1

Tr(Z𝑗 ( 𝜌̃)2) . (2.8)

Here,Z andZ𝑗 are quantum channels that dephase (i.e., destroy the off-diagonal elements) in the

global standard basis and in the local standard basis on qubit 𝑗 , respectively. Importantly, the two

functions vanish under the same conditions:

𝐶1(𝑈𝑝 ( ®𝛼)) = 0 ⇐⇒ 𝐶2(𝑈𝑝 ( ®𝛼)) = 0 ⇐⇒ 𝜌̃ = Z( 𝜌̃) . (2.9)

So the global minima of 𝐶1 and 𝐶2 coincide and correspond precisely to unitaries 𝑈𝑝 ( ®𝛼) that

diagonalize 𝜌 (i.e., unitaries such that 𝜌̃ is diagonal).

As elaborated in Sec. 2.4.1, 𝐶1 has operational meanings: it bounds our eigenvalue error,

𝐶1 ≥ Δ𝜆, and it is equivalent to our eigenvector error, 𝐶1 = Δ𝑣. However, its landscape tends to be

insensitive to changes in 𝑈𝑝 ( ®𝛼) for large 𝑛. In contrast, we are not aware of a direct operational
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meaning for𝐶2, aside from its bound on 𝐶1 given by𝐶2 ≥ (1/𝑛)𝐶1. However, the landscape for𝐶2

is more sensitive to changes in𝑈𝑝 ( ®𝛼), making it useful for training𝑈𝑝 ( ®𝛼) when 𝑛 is large. Due to

these contrasting merits of 𝐶1 and 𝐶2, we define our overall cost function 𝐶 as a weighted average

of these two functions

𝐶 (𝑈𝑝 ( ®𝛼)) = 𝑞𝐶1(𝑈𝑝 ( ®𝛼)) + (1 − 𝑞)𝐶2(𝑈𝑝 ( ®𝛼)) , (2.10)

where 𝑞 ∈ [0, 1] is a free parameter that allows one to tailor the VQSD method to the scale of one’s

problem. For small 𝑛, one can set 𝑞 ≈ 1 since the landscape for 𝐶1 is not too flat for small 𝑛, and,

as noted above, 𝐶1 is an operationally relevant quantity. For large 𝑛, one can set 𝑞 to be small since

the landscape for 𝐶2 will provide the gradient needed to train 𝑈𝑝 ( ®𝛼). The overall cost maintains

the operational meaning in (2.5) with

𝛽 = 𝑛/(1 + 𝑞(𝑛 − 1)) . (2.11)

Section 2.9 illustrates the advantages of training with different values of 𝑞.

Computing 𝐶 amounts to evaluating the purities of various quantum states on a quantum

computer and then doing some simple classical post-processing that scales linearly in 𝑛. This can

be seen from Eqns. (2.7) and (2.8). The first term, Tr(𝜌2), in 𝐶1 and 𝐶2 is independent of 𝑈𝑝 ( ®𝛼).

Hence, Tr(𝜌2) can be evaluated outside of the optimization loop in Fig. 2.1 using the Destructive

Swap Test (see Sec. 2.4.1 for the circuit diagram). Inside the loop, we only need to compute

Tr(Z( 𝜌̃)2) and Tr(Z𝑗 ( 𝜌̃)2) for all 𝑗 . Each of these terms are computed by first preparing two

copies of 𝜌̃ and then implementing quantum circuits whose depths are constant in 𝑛. For example,

the circuit for computing Tr(Z( 𝜌̃)2) is shown in Fig. 2.1(b), and surprisingly it has a depth of

only one gate. We call it the Diagonalized Inner Product (DIP) Test. The circuit for computing

Tr(Z𝑗 ( 𝜌̃)2) is similar, and we call it the Partially Diagonalized Inner Product (PDIP) Test. We

elaborate on both of these circuits in Sec. 2.4.1.
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2.2.1.3 Eigenvalue readout

After finding the optimal diagonalizing unitary𝑈𝑝 ( ®𝛼opt), one can use it to readout approximations

of the eigenvalues of 𝜌. Figure 2.1(c) shows the circuit for this readout. One prepares a single copy

of 𝜌 and then acts with𝑈𝑝 ( ®𝛼opt) to prepare 𝜌̃𝑝 ( ®𝛼opt). Measuring in the standard basis {|®𝑧⟩}, where

®𝑧 = 𝑧1𝑧2...𝑧𝑛 is a bitstring of length 𝑛, gives a set of probabilities {𝜆̃®𝑧} with

𝜆̃®𝑧 = ⟨®𝑧 | 𝜌̃𝑝 ( ®𝛼opt) |®𝑧⟩ . (2.12)

We take the 𝜆̃®𝑧 as the inferred eigenvalues of 𝜌. We emphasize that the 𝜆̃®𝑧 are the diagonal elements,

not the eigenvalues, of 𝜌̃𝑝 ( ®𝛼opt).

Each run of the circuit in Fig. 2.1(c) generates a bitstring ®𝑧 corresponding to the measurement

outcomes. If one obtains ®𝑧 with frequency 𝑓®𝑧 for 𝑁readout total runs, then

𝜆̃est
®𝑧 = 𝑓®𝑧/𝑁readout (2.13)

gives an estimate for 𝜆̃®𝑧. The statistical deviation of 𝜆̃est
®𝑧 from 𝜆̃®𝑧 goes with 1/

√
𝑁readout. The relative

error 𝜖®𝑧 (i.e., the ratio of the statistical error on 𝜆̃est
®𝑧 to the value of 𝜆̃est

®𝑧 ) then goes as

𝜖®𝑧 =
1

√
𝑁readout𝜆̃

est
®𝑧

=

√
𝑁readout

𝑓®𝑧
. (2.14)

This implies that events ®𝑧 with higher frequency 𝑓®𝑧 have lower relative error. In other words,

the larger the inferred eigenvalue 𝜆̃®𝑧, the lower the relative error, and hence the more precisely

it is determined from the experiment. When running VQSD, one can pre-decide on the desired

values of 𝑁readout and a threshold for the relative error, denoted 𝜖max. This error threshold 𝜖max will

then determine 𝑚, i.e., how many of the largest eigenvalues that get precisely characterized. So

𝑚 = 𝑚(𝑁readout, 𝜖max, {𝜆̃®𝑧}) is a function of 𝑁readout, 𝜖max, and the set of inferred eigenvalues {𝜆̃®𝑧}.

Precisely, we take 𝑚 = | ®̃𝜆est | as the cardinality of the following set:

®̃𝜆est = {𝜆̃est
®𝑧 : 𝜖®𝑧 ≤ 𝜖max} , (2.15)

which is the set of inferred eigenvalues that were estimated with the desired precision.
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2.2.1.4 Eigenvector preparation

The final step of VQSD is to prepare the eigenvectors associated with the𝑚-largest eigenvalues, i.e.,

the eigenvalues in the set in Eq. (2.15). Let ®𝑍 = {®𝑧 : 𝜆̃est
®𝑧 ∈

®̃𝜆est} be the set of bitstrings ®𝑧 associated

with the eigenvalues in ®̃𝜆est. (Note that these bitstrings are obtained directly from the measurement

outcomes of the circuit in Fig. 2.1(c), i.e., the outcomes become the bitstring ®𝑧.) For each ®𝑧 ∈ ®𝑍 ,

one can prepare the following state, which we take as the inferred eigenvector associated with our

estimate of the inferred eigenvalue 𝜆̃est
®𝑧 ,

|𝑣̃®𝑧⟩ = 𝑈𝑝 ( ®𝛼opt)† |®𝑧⟩ (2.16)

= 𝑈𝑝 ( ®𝛼opt)†(𝑋 𝑧1 ⊗ · · · ⊗ 𝑋 𝑧𝑛) |®0⟩ . (2.17)

The circuit for preparing this state is shown in Fig. 2.1(d). As noted in (2.17), one first prepares |®𝑧⟩

by acting with 𝑋 operators raised to the appropriate powers, and then one acts with 𝑈𝑝 ( ®𝛼opt)† to

rotate from the standard basis to the inferred eigenbasis.

Once they are prepared on the quantum computer, each inferred eigenvector |𝑣̃®𝑧⟩ can be char-

acterized by measuring expectation values of interest. That is, important physical features such

as energy or entanglement (e.g., entanglement witnesses) are associated with some Hermitian

observable 𝑀 , and one can evaluate the expectation value ⟨𝑣̃®𝑧 |𝑀 |𝑣̃®𝑧⟩ to learn about these features.

2.2.2 Implementations

Here we present our implementations of VQSD, first for a one-qubit state on a cloud quantum

computer to show that it is amenable to currently available hardware. Then, to illustrate the scaling

to larger, more interesting problems, we implement VQSD on a simulator for the 12-spin ground

state of the Heisenberg model. See Sections 2.6 and 2.7 for further details. The code used to

generate some of the examples presented here can be accessed from [45].
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Figure 2.3: The VQSD algorithm run on Rigetti’s 8Q-Agave quantum computer for 𝜌 = |+⟩⟨+|. (a)
A representative run of the parameter optimization loop, using the Powell optimization algorithm
(see Sec. 2.4.2 for details and Section 2.6 for data from additional runs). Cost versus iteration
is shown by the black solid line. The dotted lines show the two inferred eigenvalues. After four
iterations, the inferred eigenvalues approach {0, 1}, as required for a pure state. (b) The cost
landscape on a noiseless simulator, Rigetti’s noisy simulator, and Rigetti’s quantum computer.
Error bars show the standard deviation (due to finite sampling) of multiple runs. The local minima
occur roughly at the theoretically predicted values of 𝜋/2 and 3𝜋/2. During data collection for this
plot, the 8Q-Agave quantum computer retuned, after which its cost landscape closely matched that
of the noisy simulator.

2.2.2.1 One-qubit state

We now discuss the results of applying VQSD to the one-qubit plus state 𝜌 = |+⟩⟨+| on the 8Q-

Agave quantum computer provided by Rigetti [46]. Because the problem size is small (𝑛 = 1), we

set 𝑞 = 1 in the cost function (2.10). Since 𝜌 is a pure state, the cost function is

𝐶 (𝑈𝑝 ( ®𝛼)) = 𝐶1(𝑈𝑝 ( ®𝛼)) = 1 − Tr(Z( 𝜌̃)2). (2.18)

For𝑈𝑝 ( ®𝛼), we take 𝑝 = 1, for which the layered ansatz becomes an arbitrary single qubit rotation.

The results of VQSD for this state are shown in Fig. 2.3. In Fig. 2.3(a), the solid curve shows the

cost versus the number of iterations in the parameter optimization loop, and the dashed curves show

the inferred eigenvalues of 𝜌 at each iteration. Here we used the Powell optimization algorithm,
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see Section 2.4.2 for more details. As can be seen, the cost decreases to a small value near zero

and the eigenvalue estimates simultaneously converge to the correct values of zero and one. Hence,

VQSD successfully diagonalized this state.

Figure 2.3(b) shows the landscape of the optimization problem on Rigetti’s 8Q-Agave quantum

computer, Rigetti’s noisy simulator, and a noiseless simulator. Here, we varied the angle 𝛼 in the

diagonalizing unitary 𝑈 (𝛼) = 𝑅𝑥 (𝜋/2)𝑅𝑧 (𝛼) and computed the cost at each value of this angle.

The landscape on the quantum computer has local minima near the optimal angles 𝛼 = 𝜋/2, 3𝜋/2

but the cost is not zero. This explains why we obtain the correct eigenvalues even though the

cost is nonzero in Fig. 2.3(a). The nonzero cost can be due to a combination of decoherence,

gate infidelity, and measurement error. As shown in Fig. 2.3(b), the 8Q-Agave quantum computer

retuned during our data collection, and after this retuning, the landscape of the quantum computer

matched that of the noisy simulator significantly better.

2.2.2.2 Heisenberg model ground state

While current noise levels of quantum hardware limit our implementations of VQSD to small

problem sizes, we can explore larger problem sizes on a simulator. An important application of

VQSD is to study the entanglement in condensed matter systems, and we highlight this application

in the following example.

Let us consider the ground state of the 1D Heisenberg model, the Hamiltonian of which is

𝐻 =

2𝑛∑︁
𝑗=1

®𝑆( 𝑗) · ®𝑆( 𝑗+1) , (2.19)

with ®𝑆( 𝑗) = (1/2) (𝜎 ( 𝑗)𝑥 𝑥 + 𝜎 ( 𝑗)𝑦 𝑦̂ + 𝜎 ( 𝑗)𝑧 𝑧) and periodic boundary conditions, ®𝑆(2𝑛+1) = ®𝑆(1) .

Performing entanglement spectroscopy on the ground state |𝜓⟩𝐴𝐵 involves diagonalizing the reduced

state 𝜌 = Tr𝐵 ( |𝜓⟩⟨𝜓 |𝐴𝐵). Here we consider a total of 8 spins (2𝑛 = 8). We take 𝐴 to be a subset of

4 nearest-neighbor spins, and 𝐵 is the complement of 𝐴.

The results of applying VQSD to the 4-spin reduced state 𝜌 via a simulator are shown in Fig. 2.4.

Panel (a) plots the inferred eigenvalues versus the number of layers 𝑝 in our ansatz (see Fig. 2.2).
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Figure 2.4: Implementing VQSD with a simulator for the ground state of the 1D Heisenberg model,
diagonalizing a 4-spin subsystem of a chain of 8 spins. We chose 𝑞 = 1 for the cost in (2.10) and
employed a gradient-based method to find ®𝛼opt. (a) Largest inferred eigenvalues 𝜆̃ 𝑗 versus 1/𝑝,
where 𝑝 is the number of layers in our ansatz, which in this example takes half-integer values
corresponding to fractions of layers shown in Fig. 2.2. The exact eigenvalues are shown on the
𝑦-axis (along 1/𝑝 = 0 line) with their degeneracy indicated in parentheses. One can see the largest
eigenvalues converge to their correct values, including the correct degeneracies. Inset: overall
eigenvalue error Δ𝜆 versus 1/𝑝. (b) Largest inferred eigenvalues resolved by the inferred ⟨𝑆𝑧⟩
quantum number of their associated eigenvector, for 𝑝 = 5. The inferred data points (red X’s)
roughly agree with the theoretical values (black circles), particularly for the largest eigenvalues.
Section 2.7 discusses Heisenberg chain of 12 spins.

One can see that the inferred eigenvalues converge to their theoretical values as 𝑝 increases. Panel

(b) plots the inferred eigenvalues resolved by their associated quantum numbers (𝑧-component of

total spin). This plot illustrates the feature we noted previously that minimizing our cost will

first result in minimizing the eigenvector error for those eigenvectors with the largest eigenvalues.

Overall our VQSD implementation returned roughly the correct values for both the eigenvalues
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and their quantum numbers. Resolving not only the eigenvalues but also their quantum numbers is

important for entanglement spectroscopy [35], and clearly VQSD can do this.

In Section 2.7 we discuss an alternative approach employing a variable ansatz for 𝑈𝑝 ( ®𝛼), and

we present results of applying this approach to a 6-qubit reduced state of the 12-qubit ground state

of the Heisenberg model.

2.3 Discussion

We emphasize that VQSD is meant for states 𝜌 that have either low rank or possibly high rank but

low entropy 𝐻 (𝜌) = −Tr(𝜌 log 𝜌). This is because the eigenvalue readout step of VQSD would

be exponentially complex for states with high entropy. In other words, for high entropy states, if

one efficiently implemented the eigenvalue readout step (with 𝑁readout polynomial in 𝑛), then very

few eigenvalues would get characterized with the desired precision. In Section 2.11 we discuss the

complexity of VQSD for particular example states.

Examples of states for which VQSD is expected to be efficient include density matrices computed

from ground states of 1D, local, gapped Hamiltonians. Also, thermal states of some 1D systems

in a many-body localized phase at low enough temperature are expected to be diagonalizable by

VQSD. These states have rapidly decaying spectra and are eigendecomposed into states obeying

a 1D area law [47, 48, 49]. This means that every eigenstate can be prepared by a constant depth

circuit in alternating ansatz form [48], and hence VQSD will be able to diagonalize it.

2.3.1 Comparison to literature

Diagonalizing quantum states with classical methods would require exponentially large memory to

store the density matrix, and the matrix operations needed for diagonalization would be exponen-

tially costly. VQSD avoids both of these scaling issues.

Another quantum algorithm that extracts the eigenvalues and eigenvectors of a quantum state

is qPCA [16]. Similar to VQSD, qPCA has the potential for exponential speedup over classical

diagonalization for particular classes of quantum states. Like VQSD, the speedup in qPCA is
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contingent on 𝜌 being a low-entropy state.

We performed a simple implementation of qPCA to get a sense for how it compares to VQSD,

see Section 2.12 for details. In particular, just like we did for Fig. 2.3, we considered the one-

qubit plus state 𝜌 = |+⟩⟨+|. We implemented qPCA for this state on Rigetti’s noisy simulator

(whose noise is meant to mimic that of their 8Q-Agave quantum computer). The circuit that we

implemented applied one controlled-exponential-swap gate (in order to approximately exponentiate

𝜌, as discussed in [16]). We employed a machine-learning approach [50] to compile the controlled-

exponential-swap gate into a novel short-depth gate sequence (see Section 2.12. With this circuit

we inferred the two eigenvalues of 𝜌 to be approximately 0.8 and 0.2. Hence, for this simple

example, it appears that qPCA gave eigenvalues that were slightly off from the true values of 1 and

0, while VQSD was able to obtain the correct eigenvalues, as discussed in Fig. 2.3.

2.3.2 Future applications

Finally we discuss various applications of VQSD.

As noted in Ref. [16], one application of quantum state diagonalization is benchmarking of

quantum noise processes, i.e., quantum process tomography. Here one prepares the Choi state by

sending half of a maximally entangled state through the process of interest. One can apply VQSD

to the resulting Choi state to learn about the noise process, which may be particular useful for

benchmarking near-term quantum computers.

A special case of VQSD is variational state preparation. That is, if one applies VQSD to a

pure state 𝜌 = |𝜓⟩⟨𝜓 |, then one can learn the unitary 𝑈 ( ®𝛼) that maps |𝜓⟩ to a standard basis state.

Inverting this unitary allows one to map a standard basis state (and hence the state |0⟩⊗𝑛) to the state

|𝜓⟩, which is known as state preparation. Hence, if one is given |𝜓⟩ in quantum form, then VQSD

can potentially find a short-depth circuit that approximately prepares |𝜓⟩. Variational quantum

compiling algorithms that were very recently proposed [51, 52] may also be used for this same

purpose, and hence it would be interesting to compare VQSD to these algorithms for this special

case. Additionally, in this special case one could use VQSD and these other algorithms as an error
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mitigation tool, i.e., to find a short-depth state preparation that achieves higher accuracy than the

original state preparation.

In machine learning, PCA is a subroutine in supervised and unsupervised learning algorithms

and also has many direct applications. PCA inputs a data matrix 𝑋 and finds a new basis such

that the variance is maximal along the new basis vectors. One can show that this amounts to

finding the eigenvectors of the covariance matrix 𝐸 [𝑋𝑋𝑇 ] with the largest eigenvalues, where

𝐸 denotes expectation value. Thus PCA involves diagonalizing a positive-semidefinite matrix,

𝐸 [𝑋𝑋𝑇 ]. Hence VQSD can perform this task provided one has access to QRAM [36] to prepare

the covariance matrix as a quantum state. PCA can reduce the dimension of 𝑋 as well as filter out

noise in data. In addition, nonlinear (kernel) PCA can be used on data that is not linearly separable.

Very recent work by Tang [53] suggests that classical algorithms could be improved for PCA of

low-rank matrices, and potentially obtain similar scaling as qPCA and VQSD. Hence future work

is needed to compare these different approaches to PCA.

Perhaps the most important near-term application of VQSD is to study condensed matter physics.

In particular, we propose that one can apply the variational quantum eigensolver [22] to prepare

the ground state of a many-body system, and then one can follow this with the VQSD algorithm to

characterize the entanglement in this state. Ultimately this approach could elucidate key properties

of condensed matter phases. In particular, VQSD allows for entanglement spectroscopy, which has

direct application to the identification of topological order [54]. Extracting both the eigenvalues

and eigenvectors is useful for entanglement spectroscopy [54], and we illustrated this capability of

VQSD in Fig. 2.4. Finally, an interesting future research direction is to check how the discrepancies

in preparation of multiple copies affect the performance of the diagonalization.

2.4 Methods

2.4.1 Diagonalization test circuits

Here we elaborate on the cost functions 𝐶1 and 𝐶2 and present short-depth quantum circuits to

compute them.
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Figure 2.5: Diagonalization test circuits used in VQSD. (a) The Destructive Swap Test com-
putes Tr(𝜎𝜏) via a depth-two circuit. (b) The Diagonalized Inner Product (DIP) Test computes
Tr(Z(𝜎)Z(𝜏)) via a depth-one circuit. (c) The Partially Diagonalized Inner Product (PDIP) Test
computes Tr(Z®𝑗 (𝜎)Z®𝑗 (𝜏)) via a depth-two circuit, for a particular set of qubits ®𝑗 . While the DIP
test requires no postprocessing, the postprocessing for the Destructive Swap Test and the Partial
DIP Test scales linearly in 𝑛.

2.4.1.1 𝐶1 and the DIP Test

The function 𝐶1 defined in (2.7) has several intuitive interpretations. These interpretations make

it clear that 𝐶1 quantifies how far a state is from being diagonal. In particular, let 𝐷HS(𝐴, 𝐵) :=

Tr
(
(𝐴 − 𝐵)†(𝐴 − 𝐵)

)
denote the Hilbert-Schmidt distance. Then we can write

𝐶1 = min
𝜎∈D

𝐷HS( 𝜌̃, 𝜎) (2.20)

= 𝐷HS( 𝜌̃,Z( 𝜌̃)) (2.21)

=
∑︁
®𝑧, ®𝑧′≠®𝑧

|⟨®𝑧 | 𝜌̃ | ®𝑧′⟩|2 . (2.22)

In other words, 𝐶1 is (1) the minimum distance between 𝜌̃ and the set of diagonal states D, (2) the

distance from 𝜌̃ toZ( 𝜌̃), and (3) the sum of the absolute squares of the off-diagonal elements of 𝜌̃.

𝐶1 can also be written as the eigenvector error in (2.4) as follows. For an inferred eigenvector

30



|𝑣̃®𝑧⟩, we define |𝛿®𝑧⟩ = 𝜌 |𝑣̃®𝑧⟩ − 𝜆̃®𝑧 |𝑣̃®𝑧⟩ and write the eigenvector error as

⟨𝛿®𝑧 |𝛿®𝑧⟩ = ⟨𝑣̃®𝑧 |𝜌2 |𝑣̃®𝑧⟩ + 𝜆̃2
®𝑧 − 2𝜆̃®𝑧⟨𝑣̃®𝑧 |𝜌 |𝑣̃®𝑧⟩ (2.23)

= ⟨𝑣̃®𝑧 |𝜌2 |𝑣̃®𝑧⟩ − 𝜆̃2
®𝑧 , (2.24)

since ⟨𝑣̃®𝑧 |𝜌 |𝑣̃®𝑧⟩ = 𝜆̃®𝑧. Summing over all ®𝑧 gives

Δ𝑣 =
∑︁
®𝑧
⟨𝛿®𝑧 |𝛿®𝑧⟩ =

∑︁
®𝑧
⟨𝑣̃®𝑧 |𝜌2 |𝑣̃®𝑧⟩ − 𝜆̃2

®𝑧 (2.25)

= Tr(𝜌2) − Tr(Z( 𝜌̃)2) = 𝐶1 , (2.26)

which proves the bound in (2.5) for 𝑞 = 1.

In addition, 𝐶1 bounds the eigenvalue error defined in (2.3). Let ®̃𝜆 = (𝜆̃1, ..., 𝜆̃𝑑) and ®𝜆 =

(𝜆1, ..., 𝜆𝑑) denote the inferred and actual eigenvalues of 𝜌, respectively, both arranged in decreasing

order. In this notation we have

Δ𝜆 = ®𝜆 · ®𝜆 + ®̃𝜆 · ®̃𝜆 − 2®𝜆 · ®̃𝜆 (2.27)

𝐶1 = ®𝜆 · ®𝜆 − ®̃𝜆 · ®̃𝜆 (2.28)

= Δ𝜆 + 2( ®𝜆 · ®̃𝜆 − ®̃𝜆 · ®̃𝜆) . (2.29)

Since the eigenvalues of a density matrix majorize its diagonal elements, ®𝜆 ≻ ®̃𝜆, and the dot product

with an ordered vector is a Schur convex function, we have

®𝜆 · ®̃𝜆 ≥ ®̃𝜆 · ®̃𝜆 . (2.30)

Hence from (2.29) and (2.30) we obtain the bound

Δ𝜆 ≤ 𝐶1 , (2.31)

which corresponds to the bound in (2.5) for the special case of 𝑞 = 1.

For computational purposes, we use the difference of purities interpretation of𝐶1 given in (2.7).

The Tr(𝜌2) term is independent of𝑈𝑝 ( ®𝛼). Hence it only needs to be evaluated once, outside of the
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parameter optimization loop. It can be computed via the expectation value of the swap operator 𝑆

on two copies of 𝜌, using the identity

Tr(𝜌2) = Tr((𝜌 ⊗ 𝜌)𝑆) . (2.32)

This expectation value is found with a depth-two quantum circuit that essentially corresponds to a

Bell-basis measurement, with classical post-processing that scales linearly in the number of qubits

[55, 50]. This is shown in Fig. 2.5(a). We call this procedure the Destructive Swap Test, since it is

like the Swap Test, but the measurement occurs on the original systems instead of on an ancilla.

Similarly, the Tr(Z( 𝜌̃)2) term could be evaluated by first dephasing 𝜌̃ and then performing

the Destructive Swap Test, which would involve a depth-three quantum circuit with linear classical

post-processing. This approach was noted in Ref. [56]. However, there exists a simpler circuit,

which we call the Diagonalized Inner Product (DIP) Test. The DIP Test involves a depth-one

quantum circuit with no classical post-processing. An abstract version of this circuit is shown in

Fig. 2.5(b), for two states 𝜎 and 𝜏. The proof that this circuit computes Tr(Z(𝜎)Z(𝜏)) is given in

Section 2.13 For our application we will set 𝜎 = 𝜏 = 𝜌̃, for which this circuit gives Tr(Z( 𝜌̃)2).

In summary, 𝐶1 is efficiently computed by using the Destructive Swap Test for the Tr(𝜌2) term

and the DIP Test for the Tr(Z( 𝜌̃)2) term.

2.4.1.2 𝐶2 and the PDIP test

Like 𝐶1, 𝐶2 can also be rewritten in terms of of the Hilbert-Schmidt distance. Namely, 𝐶2 is the

average distance of 𝜌̃ to each locally-dephased stateZ𝑗 ( 𝜌̃):

𝐶2 =
1
𝑛

𝑛∑︁
𝑗=1

𝐷HS( 𝜌̃,Z𝑗 ( 𝜌̃)) . (2.33)

where Z𝑗 (·) =
∑
𝑧 ( |𝑧⟩⟨𝑧 | 𝑗 ⊗ 𝐼𝑘≠ 𝑗 ) (·) ( |𝑧⟩⟨𝑧 | 𝑗 ⊗ 𝐼𝑘≠ 𝑗 ). Naturally, one would expect that 𝐶2 ≤ 𝐶1,

since 𝜌̃ should be closer to each locally dephased state than to the fully dephased state. Indeed this

is true and can be seen from:

𝐶2 = 𝐶1 −
1
𝑛

𝑛∑︁
𝑗=1

min
𝜎∈D

𝐷HS(Z𝑗 ( 𝜌̃), 𝜎) . (2.34)
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However, 𝐶1 and 𝐶2 vanish under precisely the same conditions, as noted in Eq. (2.9). One can see

this by noting that 𝐶2 also upper bounds (1/𝑛)𝐶1 and hence we have

𝐶2 ≤ 𝐶1 ≤ 𝑛𝐶2 . (2.35)

Combining the upper bound in (2.35) with the relations in (2.26) and (2.31) gives the bounds in

(2.5) with 𝛽 defined in (2.11). The upper bound in (2.35) is proved as follows. Let ®𝑧 = 𝑧1...𝑧𝑛 and

®𝑧′ = 𝑧′1...𝑧
′
𝑛 be 𝑛-dimensional bitstrings. Let S be the set of all pairs (®𝑧, ®𝑧′) such that ®𝑧 ≠ ®𝑧′, and let

S 𝑗 be the set of all pairs (®𝑧, ®𝑧′) such that 𝑧 𝑗 ≠ 𝑧′𝑗 . Then we have 𝐶1 =
∑
(®𝑧, ®𝑧′)∈S |⟨®𝑧 | 𝜌̃ | ®𝑧′⟩|2, and

𝑛𝐶2 =

𝑛∑︁
𝑗=1

∑︁
(®𝑧, ®𝑧′)∈S 𝑗

|⟨®𝑧 | 𝜌̃ | ®𝑧′⟩|2 (2.36)

≥
∑︁

(®𝑧, ®𝑧′)∈S𝑈
|⟨®𝑧 | 𝜌̃ | ®𝑧′⟩|2 = 𝐶1 , (2.37)

where S𝑈 =
⋃𝑛
𝑗=1 S 𝑗 is the union of all the S 𝑗 sets. The inequality in (2.37) arises from the fact

that the S 𝑗 sets have non-trivial intersection with each other, and hence we throw some terms away

when only considering the union S𝑈 . The last equality follows from the fact that S𝑈 = S, i.e, the

set of all bitstring pairs that differ from each other (S) corresponds to the set of all bitstring pairs

that differ for at least one element (S𝑈).

Writing 𝐶2 in terms of purities, as in (2.8), shows how it can be computed on a quantum

computer. As in the case of 𝐶1, the first term in (2.8) is computed with the Destructive Swap Test.

For the second term in (2.8), each purity Tr(Z𝑗 ( 𝜌̃)2) could also be evaluated with the Destructive

Swap Test, by first locally dephasing the appropriate qubit. However, we present a slightly improved

circuit to compute these purities that we call the Partially Diagonalized Inner Product (PDIP) Test.

The PDIP Test is shown in Fig. 2.5(c) for the general case of feeding in two distinct states 𝜎 and

𝜏 with the goal of computing the inner product between Z®𝑗 (𝜎) and Z®𝑗 (𝜏). For generality we let

𝑙, with 0 ≤ 𝑙 ≤ 𝑛, denote the number of qubits being locally dephased for this computation. If

𝑙 > 0, we define ®𝑗 = ( 𝑗1, . . . , 𝑗𝑙) as a vector of indices that indicates which qubits are being locally

dephased. The PDIP Test is a hybrid of the Destructive Swap Test and the DIP Test, corresponding

to the former when 𝑙 = 0 and the latter when 𝑙 = 𝑛. Hence, it generalizes both the Destructive Swap
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Test and the DIP Test. Namely, the PDIP Test performs the DIP Test on the qubits appearing in ®𝑗

and performs the Destructive Swap Test on the qubits not appearing in ®𝑗 . The proof that the PDIP

Test computes Tr(Z®𝑗 (𝜎)Z®𝑗 (𝜏)), and hence Tr(Z®𝑗 ( 𝜌̃)2) when 𝜎 = 𝜏 = 𝜌̃, is given in Section 2.13.

2.4.1.3 𝐶1 versus 𝐶2

Here we discuss the contrasting merits of the functions 𝐶1 and 𝐶2, hence motivating our cost

definition in (2.10).

As noted previously, 𝐶2 does not have an operational meaning like 𝐶1. In addition, the circuit

for computing 𝐶1 is more efficient than that for 𝐶2. The circuit in Fig. 2.5(b) for computing the

second term in 𝐶1 has a gate depth of one, with 𝑛 CNOT gates, 𝑛 measurements, and no classical

post-processing. The circuit in Fig. 2.5(c) for computing the second term in 𝐶2 has a gate depth

of two, with 𝑛 CNOT gates, 𝑛 − 1 Hadamard gates, 2𝑛 − 1 measurements, and classical post-

processing whose complexity scales linearly in 𝑛. So in every aspect, the circuit for computing 𝐶1

is less complex than that for 𝐶2. This implies that 𝐶1 can be computed with greater accuracy than

𝐶2 on a noisy quantum computer.

On the other hand, consider how the landscape for𝐶1 and𝐶2 scale with 𝑛. As a simple example,

suppose 𝜌 = |0⟩⟨0| ⊗ · · · ⊗ |0⟩⟨0|. Suppose one takes a single parameter ansatz for 𝑈, such that

𝑈 (𝜃) = 𝑅𝑋 (𝜃) ⊗ · · · ⊗ 𝑅𝑋 (𝜃), where 𝑅𝑋 (𝜃) is a rotation about the 𝑋-axis of the Bloch sphere by

angle 𝜃. For this example,

𝐶1(𝜃) = 1 − Tr(Z( 𝜌̃)2) = 1 − 𝑥(𝜃)𝑛 (2.38)

where 𝑥(𝜃) = Tr(Z(𝑅𝑋 (𝜃) |0⟩⟨0|𝑅𝑋 (𝜃)†)2) = (1 + cos2 𝜃)/2. If 𝜃 is not an integer multiple of 𝜋,

then 𝑥(𝜃) < 1, and 𝑥(𝜃)𝑛 will be exponentially suppressed for large 𝑛. In other words, for large

𝑛, the landscape for 𝑥(𝜃)𝑛 becomes similar to that of a delta function: it is zero for all 𝜃 except

for multiples of 𝜋. Hence, for large 𝑛, it becomes difficult to train the unitary 𝑈 (𝜃) because the

gradient vanishes for most 𝜃. This is just an illustrative example, but this issue is general. Generally

speaking, for large 𝑛, the function 𝐶1 has a sharp gradient near its global minima, and the gradient
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vanishes when one is far away from these minima. Ultimately this limits 𝐶1’s utility as a training

function for large 𝑛.

In contrast, 𝐶2 does not suffer from this issue. For the example in the previous paragraph,

𝐶2(𝜃) = 1 − 𝑥(𝜃) , (2.39)

which is independent of 𝑛. So for this example the gradient of 𝐶2 does not vanish as 𝑛 increases,

and hence 𝐶2 can be used to train 𝜃. More generally, the landscape of 𝐶2 is less barren than that of

𝐶1 for large 𝑛. We can argue this, particularly, for states 𝜌 that have low rank or low entropy. The

second term in (2.8), which is the term that provides the variability with ®𝛼, does not vanish even

for large 𝑛, since (as shown in Section 2.14):

Tr(Z𝑗 ( 𝜌̃)2) ≥ 2−𝐻 (𝜌)−1 ≥ 1
2𝑟
. (2.40)

Here, 𝐻 (𝜌) = −Tr(𝜌 log2 𝜌) is the von Neumann entropy, and 𝑟 is the rank of 𝜌. So as long as 𝜌

is low entropy or low rank, then the second term in 𝐶2 will not vanish. Note that a similar bound

does not exist for second term in 𝐶1, which does tend to vanish for large 𝑛.

2.4.2 Optimization methods

Finding ®𝛼opt in (2.6) is a major component of VQSD. While many works have benchmarked

classical optimization algorithms (e.g., Ref. [57]), the particular case of optimization for variational

hybrid algorithms [58] is limited and needs further work [59]. Both gradient-based and gradient-

free methods are possible, but gradient-based methods may not work as well with noisy data.

Additionally, Ref. [40] notes that gradients of a large class of circuit ansatze vanish when the

number of parameters becomes large. These and other issues (e.g., sensitivity to initial conditions,

number of function evaluations) should be considered when choosing an optimization method.

In our preliminary numerical analyses (see Section 2.10), we found that the Powell optimiza-

tion algorithm [60] performed the best on both quantum computer and simulator implementations

of VQSD. This derivative-free algorithm uses a bi-directional search along each parameter using
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Brent’s method. Our studies showed that Powell’s method performed the best in terms of conver-

gence, sensitivity to initial conditions, and number of correct solutions found. The implementation

of Powell’s algorithm used in this paper can be found in the open-source Python package SciPy

Optimize [61]. Finally, Section 2.8 shows how our layered ansatz for 𝑈𝑝 ( ®𝛼) as well as proper

initialization of𝑈𝑝 ( ®𝛼) helps in mitigating the problem of local minima.

2.5 Code availability

The code used to generate some of the examples presented here can be accessed from [45].

2.6 Details on VQSD implementations

Here we provide further details on our implementations of VQSD in Sec. 2.2.2. This includes

further details about the optimization parameters as well as additional statistics for our runs on the

quantum computer.

2.6.1 Optimization parameters

First, we discuss our implementation on a quantum computer (data shown in Fig. 2.3). Figure 2.6

displays the circuit used for this implementation. This circuit is logically divided into three sections.

First, we prepare two copies of the plus state 𝜌 = |+⟩⟨+| = 𝐻 |0⟩⟨0|𝐻 by doing a Hadamard gate𝐻 on

each qubit. Next, we implement one layer of a unitary ansatz, namely𝑈 (𝜃) = 𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜃). This

ansatz was chosen because each gate can be natively implemented on Rigetti’s quantum computer.

To simplify the search space, we restricted to one parameter instead of a universal one-qubit unitary.

Last, we implement the DIP Test circuit, described in Fig. 2.5, which here consists of only one

CNOT gate and one measurement.

For the parameter optimization loop, we used the Powell algorithm mentioned in Sec. 2.4.2.

This algorithm found the minimum cost in less than ten objective function evaluations on average.

Each objective function evaluation (i.e., call to the quantum computer) sampled from 10,000 runs

of the circuit in Fig. 2.6. As can be seen in Fig. 2.3(b), 10,000 runs was sufficient to accurately
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State Preperation Unitary Ansatz DIP Test

Figure 2.6: Circuit used to implement VQSD for 𝜌 = |+⟩⟨+| on Rigetti’s 8Q-Agave quantum
computer. Vertical dashed lines separate the circuit into logical components.

estimate the cost function (2.10) with small variance. Because the problem size was small, we took

𝑞 = 1 in (2.10), which provided adequate variability in the cost landscape.

Because of the noise levels in current quantum computers, we limited VQSD implementations

on quantum hardware to only one-qubit states. Noise affects the computation in multiple areas.

For example, in state preparation, qubit-specific errors can cause the two copies of 𝜌 to actually be

different states. Subsequent gate errors (notably two-qubit gates), decoherence, and measurement

errors prevent the cost from reaching zero even though the optimal value of 𝜃 is obtained. The

effect of these various noise sources, and in particular the effect of discrepancies in preparation of

two copies of 𝜌, will be important to study in future work.

Next, we discuss our VQSD implementation on a simulator (data shown in Fig. 2.4). For

this implementation we again chose 𝑞 = 1 in our cost function. Because of the larger problem

size (diagonalizing a 4-qubit state), we employed multiple layers in our ansatz, up to 𝑝 = 5. The

simulator directly calculated the measurement probability distribution in the DIP Test, as opposed

to determining the desired probability via sampling. This allowed us to use a gradient-based

method to optimize our cost function, reducing the overall runtime of the optimization. Hence, our

simulator implementation for the Heisenberg model demonstrated a future application of VQSD

while alleviating the optimization bottleneck that is present for all variational quantum algorithms

on large problem sizes, an area that needs further research [59]. We explore optimization methods

further in Section 2.10.
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Figure 2.7: Cost vs iteration for all attempts of VQSD on Rigetti’s 8Q-Agave computer for
diagonalizing the plus state 𝜌 = |+⟩⟨+|. Each of the seven curves represents a different independent
run. Each run starts at a random initial angle and uses the Powell optimization algorithm to
minimize the cost.

2.6.2 Additional statistics for the quantum computer implementation

Here, we present statistics for several runs of the VQSD implementation run on Rigetti’s 8Q-Agave

quantum computer. One example plot of cost vs. iteration for diagonalizing the plus state 𝜌 = |+⟩⟨+|

is shown in Figure 2.3(a). Here, we present all data collected for this implementation of VQSD,

shown in Figure 2.7. The following table displays the final costs achieved as well the associated

inferred eigenvalues.

VQSD Run min(𝐶) min( ˜𝜆est
®𝑧) max( ˜𝜆est

®𝑧)
1 0.107 0.000 1.000
2 0.090 0.142 0.858
3 0.099 0.054 0.946
4 0.120 0.079 0.921
5 0.080 0.061 0.939
6 0.090 0.210 0.790
7 0.65 0.001 0.999

Avg. 0.093 0.078 0.922
Std. 0.016 0.070 0.070

Table 2.1: Minimum cost and eigenvalues achieved after performing the parameter optimization
loop for seven independent runs of VQSD for the example discussed in Sec. 2.2.2. The final two
rows show average values and standard deviation across all runs.
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2.7 Alternative ansatz and the Heisenberg model ground state

In this Section, we describe a modification of the layered ansatz discussed in Section 2.2.1. Figure

2.2 in the main text shows an example of a layered ansatz in which every layer has the same, fixed

structure consisting of alternating two-qubit gates acting on nearest-neighbor qubits. The modified

approach presented here may be useful in situations where there is no natural choice of the structure

of the layered ansatz.

Here, instead of working with a fixed structure for the diagonalizing unitary 𝑈 ( ®𝛼), we allow

it to vary during the optimization process. The algorithm used to update the structure of 𝑈 ( ®𝛼) is

probabilistic and resembles the one presented in [50].

In the examples studied here, the initial 𝑈 ( ®𝛼) consists of a small number of random two-qubit

gates with random supports (i.e. the qubits on which a gate acts). An optimization step involves

minimizing the cost function by changing parameters ®𝛼 as well as a small random change to the

structure of 𝑈 ( ®𝛼). This change to the structure typically amounts to a random modification of

support for a limited number of gates. The new structure is accepted or rejected following the usual

simulated annealing schemes. We refer the reader to Section II D of [50] for further details on the

optimization method.

The gate sequence representing 𝑈 ( ®𝛼) is allowed to grow. If the algorithm described above

cannot minimize the cost function for a specified number of iterations, an identity gate (spanned

by new variational parameters) is randomly added to 𝑈 ( ®𝛼). This step is similar in spirit to adding

a layer to𝑈 ( ®𝛼) as discussed in Section 2.2.1 of the main text.

We compared the current method with the one based on the layered ansatz and found that it

produced diagonalizing circuits involving significantly fewer gates. Figure 2.8 shows the eigenvalue

error Δ𝜆, defined in Eq. (2.3), as a function of 1/𝐷, where 𝐷 is the total number of gates of𝑈 ( ®𝛼).

Here, VQSD is used to diagonalize a 4-qubit reduced state of the ground state of the one-dimensional

Heisenberg model defined on 8 qubits, see Eq. (2.19). For every number of gates 𝐷, the current

algorithm outperforms the one based on the fixed, layered ansatz. It finds a sequence of gates that

results in a smaller eigenvalue error Δ𝜆.
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Figure 2.8: Comparison of two approaches to obtaining the diagonalizing unitary 𝑈 ( ®𝛼): (i) based
on a fixed layered ansatz shown in Fig. 2.2 in the main text (black line) and (ii) based on random
updates to the structure of𝑈 ( ®𝛼) (red line). The plot shows eigenvalue error Δ𝜆 versus 1/𝐷, where
𝐷 is the number of gates in𝑈 ( ®𝛼). For the same 𝐷, the second approach found a more optimal gate
sequence.

Finally, we use the current optimization approach to find the spectrum of a 6-qubit reduced state

𝜌 of the 12-qubit ground state of a one-dimensional Heisenberg model. The results of performing

VQSD on 𝜌 are shown in Fig. 2.9. Panel (a) shows the convergence of the 11 largest inferred

eigenvalues 𝜆̃ 𝑗 of 𝜌 to their exact values. We can see that the quality of the inferred eigenvalues

increases quickly with the number of gates 𝐷 used in the diagonalizing unitary𝑈 ( ®𝛼). In panel (b),

we show the dominant part of the spectrum of 𝜌 resolved in the 𝑧-component of the total spin. The

results show that VQSD could be used to accurately obtain the dominant part of the spectrum of

the density matrix together with the associated quantum numbers.

2.8 Optimization and local minima

In this Section we describe a strategy to avoid local minima that is used in the optimization

algorithms throughout the paper and detailed in Section 2.7. We adapt the optimization involved in

the diagonalization of the 6-qubit density matrix described in Section 2.7 as an illustrative example.

We note that the classical optimization problem associated with VQSD is potentially very

difficult one. In the example studied in Section 2.7 the diagonalizing unitary consisted of 150

two-qubit gates. This means that in order to find that unitary one has to optimize over at least
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Figure 2.9: VQSD applied to the ground state of the Heisenberg model. Here we consider a 6-qubit
reduced state 𝜌 of the 12-qubit ground state. (a) Largest inferred eigenvalues 𝜆̃ 𝑗 of 𝜌 as a function
of 1/𝐷, where 𝐷 is the total number of gates in the diagonalizing unitary 𝑈 ( ®𝛼). The inferred
eigenvalues converge to their exact values shown along the 1/𝐷 = 0 line recovering the correct
degeneracy. Inset: Eigenvalue error Δ𝜆 as a function of 1/𝐷. (b) The largest inferred eigenvalues
𝜆̃ 𝑗 of 𝜌 resolved in the ⟨𝑆𝑧⟩ quantum number. We find very good agreement between the inferred
eigenvalues (red crosses) and the exact ones (black circles), especially for large eigenvalues. The
data was obtained for 𝐷 = 150 gates.
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Figure 2.10: Cost function 𝐶 versus 1/𝐷 for three independent optimization runs. Here, 𝐷 is the
total number of gates in the diagonalizing unitary 𝑈𝐷 ( ®𝛼). Every optimization run got stuck at
local minimum at some point during the minimization but thanks to the growth of the ansatz for
𝑈𝐷 ( ®𝛼) described in the text, the predefined small value of 𝐶 was eventually attained. The data was
obtained for a 6-qubit reduced state of the 12-qubit ground state of the Heisenberg model.

150 · 13 continuous parameters (every two-qubit gate is spanned by 15 parameters, but there is

some reduction in the total number of parameters when two consecutive gates have overlapping

supports). Initiated randomly, off-the-shelf techniques will most likely return suboptimal solution

due to the presence of multiple local minima and the rough cost function landscape.

Let 𝑈𝐷 ( ®𝛼) denote a diagonalizing unitary that is built by 𝐷 two-qubit gates parameterized by

®𝛼. Our optimization method begins with a shallow circuit consisting of few gates only. Since there

is only a small number of variational parameters, the local minimum is quickly attained. After

this initial step, the circuit that implements the unitary 𝑈𝐷 ( ®𝛼) is grown by adding an identity gate

(either randomly as discussed in this Section or by means of a layer of identity gates as presented in

the main text). This additional gate contains new variational parameters that are initiated such that

the unitary 𝑈𝐷 ( ®𝛼) = 𝑈𝐷+1( ®𝛼) and hence the value of the cost function are not changed. After the

gate was added, the unitary𝑈𝐷+1( ®𝛼) contains more variational parameters which allows for further

minimization of the cost function. In summary, the optimization of a deeper circuit 𝑈𝐷+1( ®𝛼) is

initialized by previously obtained 𝑈𝐷 ( ®𝛼) as opposed to random initialization. What is more, even

if the unitary 𝑈𝐷 ( ®𝛼) was not the most optimal one for a given 𝐷, the growth of the circuit allows

the algorithm to escape the local minimum and eventually find the global one, as illustrated by an
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Figure 2.11: Cost versus iteration for different values of 𝑞, when 𝜌 is a tensor product of pure states
on 𝑛 qubits. Here we consider (a) 𝑛 = 6, (b) 𝑛 = 8, and (a) 𝑛 = 10. We employed the COBYLA
optimization method for training (see Section 2.10 for discussion of this method). For each call
to the quantum simulator (i.e., classical simulator of a quantum computer), we took 500 shots for
statistics. The green, red, and blue curves respectively correspond to directly training the cost with
𝑞 = 1, 𝑞 = 0.5, and 𝑞 = 0. The purple and yellow curves respectively correspond to evaluating the
𝑞 = 1 cost for the angles ®𝛼 obtained by training the 𝑞 = 0.5 and 𝑞 = 0 costs.

example below and shown in Fig. 2.10. For a similar discussion, see [41].

To clarify the above analysis, let us consider an example of diagonalizing a 6-qubit reduced state

of the 12-qubit ground state of the Heisenberg model, see Sec. 2.7 for comparison. Figure 2.10

shows the value of the cost function𝐶 as a function of 1/𝐷 for three independent optimization runs.

Each optimization was initialized randomly and we applied the same optimization scheme described

above to each of them. We see that despite getting stuck in local minima, every optimization run

managed to minimize the cost function to the predefined small value (which was set to 2 · 10−6 in

this example). For instance, at 𝐷 = 28, optimization run no. 2 clearly returns suboptimal solution

(optimization run no. 3 gives lower cost function by a factor of 6) but after adding several identity

gates, it manages to escape the local minimum and continue towards the global one.

2.9 Optimization runs with various 𝑞 values

In this Section we present some numerical results for training our overall cost function for various

values of 𝑞. Recall from Eq. (2.10) that 𝑞 is the weighting parameter that weights the contributions
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of 𝐶1 and 𝐶2 in the overall cost, as follows:

𝐶 (𝑈𝑝 ( ®𝛼)) = 𝑞𝐶1(𝑈𝑝 ( ®𝛼)) + (1 − 𝑞)𝐶2(𝑈𝑝 ( ®𝛼)) , (2.41)

where

𝐶1(𝑈𝑝 ( ®𝛼)) = Tr(𝜌2) − Tr(Z( 𝜌̃)2) , (2.42)

𝐶2(𝑈𝑝 ( ®𝛼)) = Tr(𝜌2) − 1
𝑛

𝑛∑︁
𝑗=1

Tr(Z𝑗 ( 𝜌̃)2) . (2.43)

As argued in Section 2.2, 𝐶1 is operationally meaningful, while 𝐶2 has a landscape that is more

amendable to training when 𝑛 is large. In particular, one expects that for large 𝑛, the gradient of

𝐶1 is sharp near the global minima but vanishes exponentially in 𝑛 away from these minima. In

contrast, the gradient of 𝐶2 is not expected to exponentially vanish as 𝑛 increases, even away from

the minima.

Here, we numerically study the performance for different 𝑞 values for a simple example where

𝜌 is a tensor product of qubit pure states. Namely, we choose 𝜌 =
⊗𝑛

𝑗=1𝑉 𝑗 |0⟩⟨0|𝑉
†
𝑗
, where

𝑉 𝑗 = 𝑅𝑋 (𝜃 𝑗 ) with 𝜃 𝑗 randomly chosen. Such tensor product states are diagonalizable by a single

layer ansatz: 𝑈 ( ®𝛼) =
⊗𝑛

𝑗=1 𝑅𝑋 (𝛼 𝑗 ). We consider three different problem sizes: 𝑛 = 6, 8, and 10.

Figure 2.11 shows our numerical results.

Directly training the 𝐶1 cost (corresponding to 𝑞 = 1) sometimes fails to find the global

minimum. One can see this in Fig. 2.11, where the green curve fails to fully reach zero cost. In

contrast, the red and blue curves in Fig. 2.11, which correspond to 𝑞 = 0.5 and 𝑞 = 0 respectively,

approximately go to zero for large iterations.

Even more interesting are the purple and yellow curves, which respectively correspond to

evaluating the 𝐶1 cost at the angles ®𝛼 obtained from training the 𝑞 = 0.5 and 𝑞 = 0 costs. It is

remarkable that both the purple and yellow curves perform better (i.e., achieve lower values) than

the green curve. This implies that one can indirectly train the 𝐶1 cost by training the 𝑞 = 0.5

or 𝑞 = 0 costs, and this indirect training performs better than directly training 𝐶1. Since 𝐶1 is

operationally meaningful, this indirect training with 𝑞 < 1 is performing better in an operationally

meaningful way.
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Figure 2.12: Optimization tests on six-qubit product states in the VQSD algorithm. Each plot
shows a different optimization algorithm (described in main text) and curves on each plot show
optimization attempts with different (random) initial conditions. Cost refers to the 𝐶1 cost function
(𝑞 = 1 in (2.10)), and each iteration is defined by a decrease in the cost function. As can be seen,
the Powell algorithm is the most robust to initial conditions and provides the largest number of
solved problem instances.

We expect that direct training of 𝐶1 will perform worse as 𝑛 increases, due to the exponential

vanishing of the gradient of 𝐶1. The particular runs shown in Fig. 2.11 do not show this trend,

although this can be explained by the fact that the gradient of 𝐶1 depends significantly on the initial

values of the ®𝛼, and indeed we saw large variability in the performance of the green curve even

for a fixed 𝑛. Nevertheless, it is worth noting that we were always able to directly train 𝐶1 (i.e., to

make the green curve go to zero) for 𝑛 < 6, which is consistent with our expectations.

Overall, Fig. 2.11 provides numerical justification of the definition of our cost function as a

weighted average, as in Eq. (2.10). Namely, it shows that there is an advantage to choosing 𝑞 < 1.

2.10 Comparison of optimization methods

As emphasized previously, numerical optimization plays a key role in all variational hybrid al-

gorithms, and further research in optimization methods is needed. In VQSD, the accuracy of
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the inferred eigenvalues are closely tied to the performance of the optimization algorithm used in

the parameter optimization loop. This issue becomes increasingly important as one goes to large

problem sizes (large 𝑛), where the number of parameters in the diagonalizing unitary becomes

large.

Here, we compare the performance of six different optimization algorithms when used inside

the parameter optimization loop of VQSD. These include Powell’s algorithm [60], Constrained

Optimization BY Linear Approximation (COBYLA) [62], Bound Optimization BY Quadratic

Approximation (BOBYQA) [63], Nelder-Mead [64], Broyden-Fletcher-Goldfarb-Shanno (BFGS)

[65], and conjugate gradient (CG) [65]. As mentioned in the main text, Powell’s algorithm is a

derivative-free optimizer that uses a bi-directional search along each parameter. The COBYLA

and BOBYQA algorithms are both trust region or restricted-step methods, which approximate

the objective function by a model function. The region where this model function is a good

approximation is known as the trust region, and at each step the optimizer attempts to expand the

trust region. The Nelder-Mead algorithm is a simplex method useful for derivative-free optimization

with smooth objective functions. Lastly, the BFGS and CG algorithms are both gradient-based.

The BFGS method is a quasi-Newton method that uses first derivatives only, and the CG method

uses a nonlinear conjugate gradient descent. The implementations used in our study can be found

in the open-source Python package SciPy Optimize [61] and in Ref. [66].

For this study, we take the input state 𝜌 to be a six-qubit pure product state:

𝜌 =

6⊗
𝑗=1
|𝜓 𝑗 ⟩⟨𝜓 𝑗 | , where |𝜓 𝑗 ⟩ = 𝑉 𝑗 |0⟩ . (2.44)

Here, the state preparation unitary is

𝑉 𝑗 = 𝑅𝑥 (𝛼( 𝑗)𝑥 )𝑅𝑦 (𝛼( 𝑗)𝑦 )𝑅𝑧 (𝛼( 𝑗)𝑧 ) (2.45)

where the angles (𝛼( 𝑗)𝑥 , 𝛼
( 𝑗)
𝑦 , 𝛼

( 𝑗)
𝑧 ) are randomly chosen.

Using each algorithm, we attempt to minimize the cost by adjusting 36 parameters in one layer

of the unitary ansatz in Fig. 2.2. For fairness of comparison, only the objective function and initial
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Alg. Powell COBYLA BOBYQA Nelder-Mead BFGS CG
r.r. 13.20 1 2.32 23.65 3.83 2.89

f.ev. 4474 341 518 7212 1016 1045

Table 2.2: Relative average run-times (r.r.) and absolute number of function evaluations (f.ev.) of
each optimization algorithm (Alg.) used for the data obtained in Fig. 2.12. For example, BOBYQA
took 2.32 times as long to run on average than COBYLA, which took the least time to run out of
all algorithms. Absolute run-times depend on a variety of factors and computer performance. For
reference, the COBYLA algorithm takes approximately one minute for this problem on a laptop
computer. The number of cost function evaluations used (related to run-time but also dependent
on the method used by the optimizer) is shown in the second row.

starting point were input to each algorithm, i.e., no special options such as constraints, bounds, or

other information was provided. The results of this study are shown in Fig. 2.12 and Table 2.2.

Figure 2.12 shows cost versus iteration for each of the six algorithms. Here, we define one

iteration by a call to the objective function in which the cost decreases. In particular, the number of

iterations is different than the number of cost function evaluations (see Table 2.2), which is not set

a priori but rather determined by the optimizer. Plotting cost per each function evaluation would

essentially produce a noisy curve since the optimizer is trying many values for the parameters.

Instead, we only plot the cost for each parameter update in which the cost decreases. Both

the number of iterations, function evaluations, and overall runtime are important features of the

optimizer.

In this study, as well as others, we found that the Powell optimization algorithm provides the

best performance in terms of lowest minimum cost achieved, sensitivity to initial conditions, and

fraction of correct solutions found. The trust-region algorithms COBYLA and BOBYQA were

the next best methods. In particular, although the Powell algorithm consistently obtained lower

minimum costs, the COBYLA method ran thirteen times faster on average (see Table 2.2). Indeed,

both trust region methods provided the shortest runtime. The gradient-based methods BFGS and

CG had comparable run-times but were unable to find any minima. Similarly, the Nelder-Mead

simplex algorithm was unable to find any minima. This method also had the longest average

run-time of all algorithms tested.

This preliminary analysis suggests that the Powell algorithm is the best method for VQSD.

47



For other variational quantum algorithms, this may not necessarily be the case. In particular,

we emphasize that the optimization landscape is determined by both the unitary ansatz and the

cost function definition, which may vary drastically in different algorithms. While we found that

gradient-based methods did not perform well for VQSD, they may work well for other applications.

Additionally, optimizers that we have not considered here may also provide better performance.

We leave these questions to further work.

2.11 Complexity for particular examples

2.11.1 General complexity remarks

In what follows we discuss some simple examples of states to which one might apply VQSD. There

are several aspects of complexity to keep in mind when considering these examples, including:

(C1) The gate complexity of the unitary that diagonalizes 𝜌. (It is worth remarking that approx-

imate diagonalization might be achieved with a less complex unitary than exact diagonalization.)

(C2) The complexity of searching through the search space to find the diagonalizing unitary.

(C3) The statistical complexity associated with reading out the eigenvalues.

Naturally, (C1) is related to (C2). However, being efficient with respect to (C1) does not

guarantee that (C2) is efficient.

2.11.2 Example states

In the simplest case, suppose 𝜌 = |𝜓1⟩⟨𝜓1 | ⊗ · · · ⊗ |𝜓𝑛⟩⟨𝜓𝑛 | is a tensor product of pure states. This

state can be diagonalized by a depth-one circuit𝑈 = 𝑈1 ⊗ · · · ⊗𝑈𝑛 composed of 𝑛 one-qubit gates

(all done in parallel). Each𝑈 𝑗 diagonalizes the associated |𝜓 𝑗 ⟩⟨𝜓 𝑗 | state. Searching for this unitary

within our ansatz can be done by setting 𝑝 = 1, i.e., with a single layer 𝐿1 shown in Fig. 2.2. A single

layer is enough to find the unitary that exactly diagonalizes 𝜌 in this case. Hence, for this example,

both complexities (C1) and (C2) are efficient. Finally, note that the eigenvalue readout, (C3), is

efficient because there is only one non-zero eigenvalue. Hence, 𝜆̃est
®𝑧 ≈ 1 and 𝜖®𝑧 ≈ 1/

√
𝑁readout for
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this eigenvalue. This implies that 𝑁readout can be chosen to be constant, independent of 𝑛, in order

to accurately characterize this eigenvalue.

A generalization of product states are classically correlated states, which have the form

𝜌 =
∑︁
®𝑧
𝑝®𝑧 |𝑏 (1)𝑧1 ⟩⟨𝑏

(1)
𝑧1 | ⊗ · · · ⊗ |𝑏

(𝑛)
𝑧𝑛 ⟩⟨𝑏

(𝑛)
𝑧𝑛 | (2.46)

where {|𝑏 ( 𝑗)0 ⟩, |𝑏
( 𝑗)
1 ⟩} form an orthonormal basis for qubit 𝑗 . Like product states, classically

correlated states can be diagonalized with a depth-one circuit composed of one-body unitaries.

Hence (C1) and (C2) are efficient for such states. However, the complexity of eigenvalue readout

depends on the {𝑝®𝑧} distribution; if it is high entropy then eigenvalue readout can scale exponentially.

Finally, we consider pure states of the form 𝜌 = |𝜓⟩⟨𝜓 |. For such states, eigenvalue readout

(C3) is efficient because 𝑁readout can be chosen to be independent of 𝑛, as we noted earlier for the

example of pure product states.

Next we argue that the gate complexity of the diagonalizing unitary, (C1), is efficient. The

argument is simply that VQSD takes the state 𝜌 as its input, and 𝜌 must have been prepared on

a quantum computer. Let 𝑉 be the unitary that was used to prepare |𝜓⟩ = 𝑉 |®0⟩ on the quantum

computer. For large 𝑛, 𝑉 must have been efficient to implement, otherwise the state |𝜓⟩ could not

have been prepared. Note that 𝑉†, which is constructed from 𝑉 by reversing the order of the gates

and adjointing each gate, can be used to diagonalize 𝜌. Because 𝑉 is efficiently implementable,

then 𝑉† is also efficiently implementable. Hence, 𝜌 can be efficiently diagonalized. A subtlety is

that one must compile𝑉† into one’s ansatz, such as the ansatz in Fig. 2.2. Fortunately, the overhead

needed to compile𝑉† into our ansatz grows (at worst) only linearly in 𝑛. An explicit construction for

compiling 𝑉† into our ansatz is as follows. Any one-qubit gate directly translates without overhead

into our ansatz, while any two-qubit gate can be compiled using a linear number of swap gates to

make the qubits of interest to be nearest neighbors, then performing the desired two-qubit gate, and

finally using a linear number of swap gates to move the qubits back to their original positions.

Let us now consider the complexity (C2) of searching for 𝑈. Since there are a linear number

of parameters in each layer, and 𝑝 needs only to grow polynomially in 𝑛, then the total number
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Figure 2.13: Circuit for our qPCA implementation. Here, the eigenvalues of a one-qubit pure state
𝜌 are estimated to a single digit of precision. We use 𝑘 copies of 𝜌 to approximate𝐶𝑉 (𝑡) by applying
the controlled-exponential-swap operator 𝑘 times for a time period Δ𝑡 = 𝑡/𝑘 . The bottom panel
shows our compilation of the controlled-exponential-swap gate into one- and two-qubit gates.

of parameters grows only polynomially in 𝑛. But this does not guarantee that we can efficiently

minimize the cost function, since the landscape is non-convex. In general, search complexity for

problems such as this remains an open problem. Hence, we cannot make a general statement about

(C2) for pure states.

2.12 Implementation of qPCA

In the main text we compared VQSD to the qPCA algorithm. Here we give further details on our

implementation of qPCA. Let us first give an overview of qPCA.

2.12.1 Overview of qPCA

The qPCA algorithm exploits two primitives: quantum phase estimation and density matrix expo-

nentiation. Combining these two primitives allows one to estimate the eigenvalues and prepare the

eigenvectors of a state 𝜌.

Density matrix exponentiation refers to generating the unitary 𝑉 (𝑡) = 𝑒−𝑖𝜌𝑡 for a given state
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𝜌 and arbitrary time 𝑡. For qPCA, one actually needs to apply the controlled-𝑉 (𝑡) gate (𝐶𝑉 (𝑡)).

Namely, in qPCA, the 𝐶𝑉 (𝑡) gate must be applied for a set of times, {𝑡, 2𝑡, 22𝑡, ..., 2𝑥𝑡}, as part of

the phase-estimation algorithm. Here we define 𝑡max := 2𝑥𝑡.

Ref. [16] noted that𝑉 (𝑡) can be approximated with a sequence of 𝑘 exponential swap operations

between a target state 𝜎 and 𝑘 copies of 𝜌. That is, let 𝑆𝐽𝐾 be the swap operator between systems 𝐽

and 𝐾 , and let 𝜎 and 𝜌⊗𝑘 be states on systems 𝐴 and 𝐵 = 𝐵1...𝐵𝑟 , respectively. Then one performs

the transformation

𝜏𝐴𝐵 = 𝜎 ⊗ (𝜌⊗𝑘 ) → 𝜏′𝐴𝐵 = 𝑊 (𝜎 ⊗ (𝜌⊗𝑘 ))𝑊† , (2.47)

where

𝑊 = 𝑈𝐴𝐵𝑘 · · ·𝑈𝐴𝐵1 , and 𝑈𝐽𝐾 = 𝑒−𝑖𝑆𝐽𝐾Δ𝑡 . (2.48)

The resulting reduced state is

𝜏′𝐴 = Tr𝐵 (𝜏′𝐴𝐵) ≈ 𝑉 (𝑡)𝜌𝑉 (𝑡)
† (2.49)

where 𝑡 = 𝑘Δ𝑡. Finally, by turning each𝑈𝐽𝐾 in (2.48) into a controlled operation:

𝐶𝑈𝐽𝐾 = |0⟩⟨0| ⊗ 𝐼 + |1⟩⟨1| ⊗ 𝑒−𝑖𝑆𝐽𝐾Δ𝑡 , (2.50)

and hence making𝑊 controlled, one can then construct an approximation of 𝐶𝑉 (𝑡) .

If one chooses the input state for quantum phase estimation to be 𝜌 =
∑
®𝑧 𝜆®𝑧 |𝑣®𝑧⟩⟨𝑣®𝑧 | itself, then

the final state becomes ∑︁
®𝑧
𝜆®𝑧 |𝑣®𝑧⟩⟨𝑣®𝑧 | ⊗ |𝜆̂®𝑧⟩⟨𝜆̂®𝑧 | (2.51)

where 𝜆̂®𝑧 is a binary representation of an estimate of the corresponding eigenvalue 𝜆®𝑧. One can

then sample from the state in (2.51) to characterize the eigenvalues and eigenvectors.

The approximation of 𝑉 (𝑡) in (2.49) can be done with accuracy 𝜖 provided that one uses

𝑂 (𝑡2𝜖−1) copies of 𝜌. The time 𝑡max needed for quantum phase estimation to achieve accuracy 𝜖 is

𝑡max = 𝑂 (𝜖−1). Hence, with qPCA, the eigenvalues and eigenvectors can be obtained with accuracy

𝜖 provided that one uses 𝑂 (𝜖−3) copies of 𝜌.
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Figure 2.14: The largest inferred eigenvalue for the one-qubit pure state 𝜌 = |+⟩⟨+| versus application
time of unitary 𝑒−𝑖𝜌𝑡 , for our implementation of qPCA on Rigetti’s noisy and noiseless QVMs.
Curves are shown for 𝑘 = 1 and 𝑘 = 2, where 𝑘 indicates the number of controlled-exponential-
swap operators applied.

2.12.2 Our implementation of qPCA

Figure 2.13 shows our strategy for implementing qPCA on an arbitary one-qubit state 𝜌. The circuit

shown corresponds to the quantum phase estimation algorithm with one bit of precision (i.e., one

ancilla qubit). A Hadamard gate is applied to the ancilla qubit, which then acts as the control system

for the 𝐶𝑉 (𝑡) gate, and finally the ancilla is measured in the 𝑥-basis. The 𝐶𝑉 (𝑡) is approximated (as

discussed above) with 𝑘 applications of the controlled-exponential-swap gate.

To implement qPCA, the controlled-exponential-swap gate in (2.50) must be compiled into one-

and two-body gates. For this purpose, we used the machine-learning approach from Ref. [50] to

obtain a short-depth gate sequence for controlled-exponential-swap. The gate sequence we obtained

is shown in Fig. 2.13 and involves 7 CNOTs and 8 one-qubit gates. Most of the one-qubit gates

are 𝑧-rotations and hence are error-free (implemented via a clock change), including the following
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gates:

𝑢1 = 𝑢5 = 𝑢7 = 𝑅𝑧 (−(𝜋 + Δ𝑡)/2) (2.52)

𝑢3 = 𝑅𝑧 ((𝜋 − Δ𝑡)/2) (2.53)

𝑢4 = 𝑅𝑧 (Δ𝑡/2) (2.54)

𝑢8 = 𝑅𝑧 (𝜋/2) . (2.55)

The one-qubit gates that are not 𝑧-rotations are:

𝑢2 =
1
√

2

©­­«
1 1

𝑒−𝑖(𝜋−Δ𝑡)/2 𝑒𝑖(𝜋+Δ𝑡)/2

ª®®¬ (2.56)

𝑢6 =
1
√

2

©­­«
1 𝑒−𝑖(𝜋+Δ𝑡)/2

−𝑖 𝑒−𝑖Δ𝑡/2

ª®®¬ . (2.57)

We implemented the circuit in Fig. 2.13 using both Rigetti’s noiseless simulator, known as the

Quantum Virtual Machine (QVM), as well as their noisy QVM that utilizes a noise model of their

8Q-Agave chip. Because the latter is meant to mimic the noise in the 8Q-Agave chip, our qPCA

results on the noisy QVM can be compared to our VQSD results on the 8Q-Agave chip in Fig. 2.3.

(We remark that lack of availability prevented us from implementing qPCA on the actual 8Q-Agave

chip.)

For our implementation, we chose the one-qubit plus state, 𝜌 = |+⟩⟨+|. Implementations were

carried out using both one and two controlled-exponential-swap gates, corresponding to 𝑘 = 1 and

𝑘 = 2. The time 𝑡 for which the unitary 𝑒−𝑖𝜌𝑡 was applied was increased.

Figure 2.14 shows the raw data, i.e., the largest inferred eigenvalue versus 𝑡. In each case, small

values of 𝑡 gave more accurate eigenvalues. In the noiseless case, the eigenvalues of 𝜌 = |+⟩⟨+|

were correctly estimated to be ≈ {1, 0} already for 𝑘 = 1 and consequently also for 𝑘 = 2. In the

noisy case, the eigenvalues were estimated to be ≈ {0.8, 0.2} for 𝑘 = 1 and ≈ {0.7, 0.3} for 𝑘 = 2,

where we have taken the values for small 𝑡. Table 2.3 summarizes the different cases.

Already for the case of 𝑘 = 1, the required resources of qPCA (3 qubits + 7 CNOT gates) for

estimating the eigenvalue of an arbitary pure one-qubit state 𝜌 are higher than those of the DIP test
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QVM 𝑘 = 1 𝑘 = 2
noiseless ≈ {1, 0} ≈ {1, 0}

noisy ≈ {0.8, 0.2} ≈ {0.7, 0.3}

Table 2.3: Estimated eigenvalues for the 𝜌 = |+⟩⟨+| state using qPCA on both the noiseless and the
noisy QVMs of Rigetti.

(2 qubits + 1 CNOT gate) for the same task. Consequently, the DIP test yields more accurate results

as can be observed by comparing Fig. 2.3 to Fig. 2.14. Increasing the number of copies to 𝑘 = 2

only decreases the accuracy of the estimation, since the 𝐶𝑉 (𝑡) gate is already well approximated

for short application times 𝑡 when 𝑘 = 1 in the noiseless case. Thus, increasing the number of

copies does not offer any improvement in the noiseless case, but instead leads to poorer estimation

performance in the noisy case. This can be seen for the 𝑘 = 2 case (see Fig. 2.14 and Table 2.3),

due to the doubled number of required CNOT gates relative to 𝑘 = 1.

2.13 Circuit derivation

2.13.1 DIP test

Here we prove that the circuit in Fig. 2.15(a) computes Tr(Z(𝜎)Z(𝜏)) for any two density matrices

𝜎 and 𝜏.

Let 𝜎 and 𝜏 be states on the 𝑛-qubit systems 𝐴 and 𝐵, respectively. Let 𝜔𝐴𝐵 = 𝜎 ⊗ 𝜏 denote

the initial state. The action of the CNOTs in Fig. 2.15(a) gives the state

𝜔′𝐴𝐵 =
∑︁
®𝑧, ®𝑧′

𝑋 ®𝑧𝜎𝑋
®𝑧′ ⊗ |®𝑧⟩⟨®𝑧 |𝜏 | ®𝑧′⟩⟨ ®𝑧′|, (2.58)

where the notation 𝑋 ®𝑧 means 𝑋 𝑧1 ⊗ 𝑋 𝑧2 ⊗ · · · ⊗ 𝑋 𝑧𝑛 . Partially tracing over the 𝐵 system gives

𝜔′𝐴 =
∑︁
®𝑧
𝜏®𝑧,®𝑧𝑋

®𝑧𝜎𝑋 ®𝑧 , (2.59)

where 𝜏®𝑧,®𝑧 = ⟨®𝑧 |𝜏 |®𝑧⟩. The probability for the all-zeros outcome is then

⟨®0|𝜔′𝐴 |®0⟩ =
∑︁
®𝑧
𝜏®𝑧,®𝑧⟨®0|𝑋 ®𝑧𝜎𝑋 ®𝑧 |®0⟩ =

∑︁
®𝑧
𝜏®𝑧,®𝑧𝜎®𝑧,®𝑧, (2.60)

54



Figure 2.15: Test circuits used to compute the cost function in VQSD. (a) DIP test (b) PDIP test.
(These circuits appear in Fig. 2.5 and are also shown here for the reader’s convenience.)

which follows because 𝑋 ®𝑧 |®0⟩ = |®𝑧⟩. Hence the probability for the all-zeros outcome is precisely

the diagonalized inner product, Tr(Z(𝜎)Z(𝜏)). Note that in the special case where 𝜎 = 𝜏 = 𝜌̃,

we obtain the sum of the squares of the diagonal elements,
∑
®𝑧 𝜌̃

2
®𝑧,®𝑧 = Tr(Z( 𝜌̃)2).

2.13.2 PDIP test

We prove that the circuit in Fig. 2.15(b) computes Tr(Z®𝑗 (𝜎)Z®𝑗 (𝜏)) for a given set of qubits ®𝑗 .

Let ®𝑗 ′ denote the complement of ®𝑗 . Let 𝜎 and 𝜏, respectively, be states on the 𝑛-qubit systems

𝐴 = 𝐴 ®𝑗 ®𝑗 ′ and 𝐵 = 𝐵 ®𝑗 ®𝑗 ′. The initial state 𝜔𝐴𝐵 = 𝜎 ⊗ 𝜏 evolves, under the action of the CNOTs

associated with the DIP Test and then tracing over the control systems, to

𝜔′𝐴𝐵 ®𝑗 ′
=

∑︁
®𝑧
(𝑋 ®𝑧 ⊗ 𝐼)𝜎(𝑋 ®𝑧 ⊗ 𝐼) ⊗ Tr𝐵 ®𝑗 (( |®𝑧⟩⟨®𝑧 | ⊗ 𝐼)𝜏), (2.61)

where 𝑋 ®𝑧 and |®𝑧⟩⟨®𝑧 | act non-trivially only on the ®𝑗 subsystems of 𝐴 and 𝐵, respectively. Measuring

system 𝐴 ®𝑗 and obtaining the all-zeros outcome would leave systems 𝐴 ®𝑗 ′𝐵 ®𝑗 ′ in the (unnormalized)

conditional state:

Tr𝐴 ®𝑗 (( |®0⟩⟨®0| ⊗ 𝐼)𝜔
′
𝐴𝐵 ®𝑗 ′
) =

∑︁
®𝑧
𝜎®𝑧®𝑗 ′
⊗ 𝜏®𝑧®𝑗 ′, (2.62)

where 𝜎®𝑧®𝑗 ′ := Tr𝐴 ®𝑗 (( |®𝑧⟩⟨®𝑧 | ⊗ 𝐼)𝜎) and 𝜏®𝑧®𝑗 ′ := Tr𝐵 ®𝑗 (( |®𝑧⟩⟨®𝑧 | ⊗ 𝐼)𝜏). Finally, computing the expectation
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value for the swap operator (via the Destructive Swap Test) on the state in (2.62) gives∑︁
®𝑧

Tr((𝜎®𝑧®𝑗 ′ ⊗ 𝜏
®𝑧
®𝑗 ′
)𝑆) =

∑︁
®𝑧

Tr(𝜎®𝑧®𝑗 ′𝜏
®𝑧
®𝑗 ′
) = Tr(Z®𝑗 (𝜎)Z®𝑗 (𝜏)) . (2.63)

The last equality can be verified by noting thatZ®𝑗 (𝜎) =
∑
®𝑧 |®𝑧⟩⟨®𝑧 | ⊗𝜎®𝑧®𝑗 ′ andZ®𝑗 (𝜏) =

∑
®𝑧 |®𝑧⟩⟨®𝑧 | ⊗ 𝜏®𝑧®𝑗 ′.

Specializing (2.63) to 𝜎 = 𝜏 = 𝜌̃ gives the quantity Tr(Z®𝑗 ( 𝜌̃)2).

2.14 Proof of local dephasing channel bound

In this section we prove Eq. (2.40). Let 𝐻2(𝜎) = − log2 [Tr(𝜎2)] be the Renyi entropy of order

two. Then, noting that 𝐻2(𝜎) ≤ 𝐻 (𝜎), we have

Tr(Z𝑗 ( 𝜌̃)2) = 2−𝐻2 (Z 𝑗 ( 𝜌̃)) ≥ 2−𝐻 (Z 𝑗 ( 𝜌̃)) . (2.64)

Next, let 𝐴 denote qubit 𝑗 , and let 𝐵 denote all the other qubits. This allows us to write 𝜌 = 𝜌𝐴𝐵

and 𝜌̃ = 𝜌̃𝐴𝐵. Let 𝐶 be a purifying system such that 𝜌𝐴𝐵𝐶 and 𝜌̃𝐴𝐵𝐶 are both pure states. Then we

have

𝐻 (Z𝑗 ( 𝜌̃)) = 𝐻 (Z𝑗 ( 𝜌̃𝐴𝐵)) (2.65)

= 𝐻 (Z𝑗 ( 𝜌̃𝐴𝐶)) (2.66)

≤ 𝐻 (Z𝑗 ( 𝜌̃𝐴)) + 𝐻 ( 𝜌̃𝐶) (2.67)

where the inequality in (2.67) used the subadditivity of von Neumann entropy. Finally, note that

𝐻 ( 𝜌̃𝐶) = 𝐻 ( 𝜌̃𝐴𝐵) = 𝐻 (𝜌𝐴𝐵) = 𝐻 (𝜌) (2.68)

and 𝐻 (Z𝑗 ( 𝜌̃𝐴)) ≤ 1, which gives

𝐻 (Z𝑗 ( 𝜌̃)) ≤ 1 + 𝐻 (𝜌) . (2.69)

Substituting (2.69) into (2.64) gives

Tr(Z𝑗 ( 𝜌̃)2) ≥ 2−1−𝐻 (𝜌) , (2.70)

and (2.40) follows from 𝐻 (𝜌) ≤ log2 𝑟.
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CHAPTER 3

QUANTUM-ASSISTED QUANTUM COMPILING

3.1 Introduction

In classical computing, a compiler is a program that converts instructions into assembly language

so that they can be read and executed by a computer. Similarly, a quantum compiler would

take a high-level algorithm and convert it into a lower-level form that could be executed on a

NISQ device. Already, a large body of literature exists on classical approaches for quantum

compiling, e.g., using temporal planning [67, 68], machine learning [50], and other techniques

[69, 70, 71, 72, 73, 74, 75, 76].

A recent exciting idea is to use quantum computers themselves to train parametrized quantum

circuits, as proposed in Refs. [77, 78, 30, 79, 80, 81, 82, 83, 84]. The cost function to be minimized

essentially defines the application. For example, in the variational quantum eigensolver (VQE) [78]

and the quantum approximate optimization algorithm (QAOA) [77], the application is ground state

preparation, and hence the cost is the expectation value of the associated Hamiltonian. Another

example is training error-correcting codes [30], where the cost is the average code fidelity. In light

of these works, it is natural to ask: what is the relevant cost function for the application of quantum

compiling?

In this chapter, we introduce quantum-assisted quantum compiling (QAQC). The goal of QAQC

is to compile a (possibly unknown) target unitary to a trainable quantum gate sequence. A key

feature of QAQC is the fact that the cost is computed directly on the quantum computer. This leads

to an exponential speedup (in the number of qubits involved in the gate sequence) over classical

methods to compute the cost, since classical simulation of quantum dynamics is exponentially

slower than quantum simulation. Consequently, one should be able to optimally compile larger-

scale gate sequences using QAQC, whereas classical approaches to optimal quantum compiling
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will be limited to smaller gate sequences.1

We carefully define a cost function for QAQC that satisfies the following criteria:

1. It is faithful (vanishing if and only if the compilation is exact);

2. It is efficient to compute on a quantum computer;

3. It has an operational meaning;

4. It scales well with the size of the problem.

A potential candidate for a cost function satisfying these criteria is the Hilbert-Schmidt inner

product between a target unitary𝑈 and a trainable unitary 𝑉 :

⟨𝑉,𝑈⟩ = Tr(𝑉†𝑈). (3.1)

It turns out, however, that this cost function does not satisfy the last criterion. We thus use

Eq. (3.1) only for small-scale problems. For general, large-scale problems, we define a cost

function satisfying all criteria. This cost involves a weighted average of the global overlap in (3.1)

with localized overlaps, which quantify the overlap between 𝑈 and 𝑉 with respect to individual

qubits.

We prove that computing our cost function is DQC1-hard, where DQC1 is the class of problems

that can be efficiently solved in the one-clean-qubit model of computation [7]. Since DQC1 is

classically hard to simulate [85], this implies that no classical algorithm can efficiently compute our

cost function. We remark that an alternative cost function might be a worst-case distance measure

(such as diamond distance), but such measures are known to be QIP-complete [86] and hence would

violate criterion 2 in our list above. In this sense, our cost function appears to be ideal.

Furthermore, we present novel short-depth quantum circuits for efficiently computing the terms

in our cost function. Our circuits achieve short depth by avoiding implementing controlled versions
1We note that classical compilers may be applied to large-scale quantum algorithms, but they are limited to local

compiling. We thus emphasize the distinction between translating the algorithm to the native alphabet with simple,
local compiling and optimal compiling. Local compiling may reach partial optimization but in order to discover the
shortest circuit one may need to use a holistic approach, where the entire algorithm is considered, which requires a
quantum computer for compiling.
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of𝑈 and𝑉 , and by implementing𝑈 and𝑉 in parallel. We also present, in Section 3.15, circuits that

compute the gradient of our cost function. One such circuit is a generalization of the well-known

Power of One Qubit [7] that we call the Power of Two Qubits.

As a proof-of-principle, we implement QAQC on both IBM’s and Rigetti’s quantum computers,

and we compile various one-qubit gates to the native gate alphabets used by these hardwares. To

our knowledge, this is the first compilation of a target unitary with cost evaluation on actual NISQ

hardware. In addition, we successfully implement QAQC on both a noiseless and noisy simulator for

problems as large as 9-qubit unitaries. These larger scale implementations illustrate the scalability

of our cost function, and in the case of the noisy simulator, show a somewhat surprising resilience

to noise.

In what follows, we first discuss several applications of interest for QAQC. Section 3.3 provides

a general outline of the QAQC algorithm. Section 3.4 presents our short-depth circuits for cost

evaluation on a quantum computer. Section 3.5 states that our cost function is classically hard to

simulate. Sections 3.6 and 3.7, respectively, present small-scale and larger-scale implementations

of QAQC.

3.2 Applications of QAQC

Figure 3.1 illustrates four potential applications of QAQC. Suppose that there exists a quantum

algorithm to perform some task, but its associated gate sequence is longer than desired. As shown

in Fig. 3.1(a), it is possible to use QAQC to shorten the gate sequence by accounting for the

NISQ constraints of the specific computer. This depth compression goes beyond the capabilities of

classical compilers.

As a simple example, consider the quantum Fourier transform on 𝑛 qubits. Its textbook algorithm

is written in terms of Hadamard gates and controlled-rotation gates [11], which may need to be

compiled into the native gate alphabet. The number of gates in the textbook algorithm is 𝑂 (𝑛2), so

one could use a classical compiler to locally compile each gate. But this could lead to a sub-optimal

depth since the compilation starts from the textbook structure. In contrast, QAQC is unbiased with
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Figure 3.1: Potential applications of QAQC. Here, denotes the 𝑧-rotation gate 𝑅𝑧 (𝜃), while
represents the 𝜋/2-pulse given by the 𝑥-rotation gate 𝑅𝑥 (𝜋/2). Both gates are natively

implemented on commercial hardware [2, 3]. (a) Compressing the depth of a given gate sequence
𝑈 to a shorter-depth gate sequence 𝑉 in terms of native hardware gates. (b) Uploading a black-box
unitary. The black box could be an analog unitary 𝑈 = 𝑒−𝑖H 𝑡 , for an unknown Hamiltonian H ,
that one wishes to convert into a gate sequence to be run on a gate-based quantum computer. (c)
Training algorithms in the presence of noise to learn noise-resilient algorithms (e.g., via gates that
counteract the noise). Here, the unitary 𝑈 is performed on high-quality, pristine qubits and 𝑉 is
performed on noisy ones. (d) Benchmarking a quantum computer by compiling a unitary 𝑈 on
noisy qubits and learning the gate sequence 𝑉 on high-quality qubits.

respect to the structure of the gate sequence, taking a holistic approach to compiling as opposed to

a local one. Hence, in principle, it can learn the optimal gate sequence for given hardware. Note

that classical compilers cannot take this holistic approach for large 𝑛 due to the exponential scaling

of the matrix representations of the gates.
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Alternatively, consider the problem of simulating the dynamics of a given quantum system with

an unknown Hamiltonian H (via 𝑒−𝑖H 𝑡) on a quantum computer. We call this problem black-box

uploading because by simulating the black-box, i.e., the unitary 𝑒−𝑖H 𝑡 , we are “uploading” the

unitary onto the quantum computer. This scenario is depicted in Fig. 3.1(b). QAQC could be used

to convert an analog black-box unitary into a gate sequence on a digital quantum computer.

Finally, we highlight two additional applications that are the opposites of each other. These

two applications can be exploited when the quantum computer has some pristine qubits (qubits

with low noise) and some noisy qubits. We emphasize that, in this context, “noisy qubits” refers

to coherent noise such as systematic gate biases, where the gate rotation angles are biased in a

particular direction. In contrast, we consider incoherent noise (e.g., 𝑇1 and 𝑇2 noise) later in this

article, see Section 3.7.2.

Consider Fig. 3.1(c). Here, the goal is to implement a CNOT gate on two noisy qubits. Due to

the noise, to actually implement a true CNOT, one has to physically implement a dressed CNOT,

i.e., a CNOT surrounded by one-qubit unitaries. QAQC can be used to learn the parameters in these

one-qubit unitaries. By choosing the target unitary 𝑈 to be a CNOT on a pristine (i.e., noiseless)

pair of qubits, it is possible to learn the unitary 𝑉 that needs to be applied to the noisy qubits in

order to effectively implement a CNOT. We call this application noise-tailored algorithms, since

the learned algorithms are robust to the noise process on the noisy qubits.

Figure 3.1(d) depicts the opposite process, which is benchmarking. Here, the unitary𝑈 acts on

a noisy set of qubits, and the goal is to determine what the equivalent unitary 𝑉 would be if it were

implemented on a pristine set of qubits. This essentially corresponds to learning the noise model,

i.e., benchmarking the noisy qubits.

3.3 The QAQC algorithm

3.3.1 Approximate compiling

The goal of QAQC is to take a (possibly unknown) unitary𝑈 and return a gate sequence𝑉 , executable

on a quantum computer, that has approximately the same action as 𝑈 on any given input state (up
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to possibly a global phase factor). The notion of approximate compiling [87, 88, 89, 90, 91, 92]

requires an operational figure-of-merit that quantifies how close the compilation is to exact. A

natural candidate is the probability for the evolution under 𝑉 to mimic the evolution under 𝑈.

Hence, consider the overlap between |𝜓(𝑈)⟩ B 𝑈 |𝜓⟩ and |𝜓(𝑉)⟩ B 𝑉 |𝜓⟩, averaged over all input

states |𝜓⟩. This is the fidelity averaged over the Haar distribution,

𝐹 (𝑈,𝑉) B
∫
𝜓

|⟨𝜓(𝑉) |𝜓(𝑈)⟩|2 d𝜓 . (3.2)

We call 𝑉 an exact compilation of𝑈 if 𝐹 (𝑈,𝑉) = 1. If 𝐹 (𝑈,𝑉) ≥ 1− 𝜀, where 𝜀 ∈ [0, 1], then we

call 𝑉 an 𝜀-approximate compilation of𝑈, or simply an approximate compilation of𝑈.

As we will see, the quantity 𝐹 (𝑈,𝑉) has a connection to our cost function, defined below,

and hence our cost function has operational relevance to approximate compiling. Minimizing

our cost function is related to maximizing 𝐹 (𝑈,𝑉), and thus is related to compiling to a better

approximation.

QAQC achieves approximate compiling by training a gate sequence𝑉 of a fixed length 𝐿, which

may even be shorter than the length required to exactly compile 𝑈. As one increases 𝐿, one can

further minimize our cost function. The length 𝐿 can therefore be regarded as a parameter that can

be tuned to obtain arbitrarily good approximate compilations of𝑈.

3.3.2 Discrete and continuous parameters

The gate sequence 𝑉 should be expressed in terms of the native gates of the quantum computer

being used. Consider an alphabet A = {𝐺𝑘 (𝛼)}𝑘 of gates 𝐺𝑘 (𝛼) that are native to the quantum

computer of interest. Here, 𝛼 ∈ R is a continuous parameter, and 𝑘 is a discrete parameter that

identifies the type of gate and which qubits it acts on. For a given quantum computer, the problem

of compiling𝑈 to a gate sequence of length 𝐿 is to determine

( ®𝛼opt, ®𝑘opt) B arg min
( ®𝛼,®𝑘)

𝐶 (𝑈,𝑉®𝑘 ( ®𝛼)), (3.3)

where

𝑉®𝑘 ( ®𝛼) = 𝐺𝑘𝐿 (𝛼𝐿)𝐺𝑘𝐿−1 (𝛼𝐿−1) · · ·𝐺𝑘1 (𝛼1) (3.4)
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Figure 3.2: Outline of our variational hybrid quantum-classical algorithm, in which we optimize
over gate structures and continuous gate parameters in order to perform QAQC for a given input
unitary 𝑈. We take two approaches towards structure optimization: (a) For small problem sizes,
we allow the gate structure to vary for a given gate sequence length 𝐿, which in general leads to
an approximate compilation of 𝑈. To obtain a better approximate compilation, the best structure
obtained can be concatenated with a new sequence of a possibly different length, whose structure
can vary. For each iteration of the continuous parameter optimization, we calculate the cost using
the Hilbert-Schmidt Test (HST); see Sec. 3.4.1. (b) For large problem sizes, we fix the gate
structure using an ansatz consisting of layers of two-qubit gates. By increasing the number of
layers, we can obtain better approximate compilations of 𝑈. For each iteration of the continuous
parameter optimization, we calculate the cost using the Local Hilbert-Schmidt Test (LHST); see
Sec. 3.4.2.
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is the trainable unitary. Here, 𝑉®𝑘 ( ®𝛼) is a function of the sequence ®𝑘 = (𝑘1, . . . , 𝑘𝐿) of parameters

describing which gates from the native gate set are used and of the continuous parameters ®𝛼 =

(𝛼1, . . . , 𝛼𝐿) associated with each gate. The function𝐶 (𝑈,𝑉®𝑘 ( ®𝛼)) is the cost, which quantifies how

close the trained unitary is to the target unitary. We define the cost below to have the properties:

0 ≤ 𝐶 (𝑈,𝑉) ≤ 1 for all unitaries 𝑈 and 𝑉 , and 𝐶 (𝑈,𝑉) = 0 if and only if 𝑈 = 𝑉 (possibly up to a

global phase factor).

The optimization in (3.3) contains two parts: discrete optimization over the finite set of gate

structures parameterized by ®𝑘 , and continuous optimization over the parameters ®𝛼 characterizing

the gates within the structure. Our quantum-classical hybrid strategy to perform the optimization

in (3.3) is illustrated in Fig. 3.2. In the next subsection, we present a general, ansatz-free approach

to optimizing our cost function, which may be useful for systems with a small number of qubits. In

the subsection following that, we present an ansatz-based approach that would allow the extension

to larger system sizes. In each case, we perform the continuous parameter optimization using

gradient-free methods as described in Section 3.14. We also discuss a method for gradient-based

continuous parameter optimization in Section 3.15.

3.3.3 Small problem sizes

Suppose 𝑈 and 𝑉 act on a 𝑑-dimensional space of 𝑛 qubits, so that 𝑑 = 2𝑛. To perform the

continuous parameter optimization in (3.3), we define the cost function

𝐶HST(𝑈,𝑉) B 1 − 1
𝑑2 |⟨𝑉,𝑈⟩|

2

= 1 − 1
𝑑2 |Tr(𝑉†𝑈) |2,

(3.5)

where HST stands for “Hilbert-Schmidt Test” and refers to the circuit used to evaluate the cost, which

we introduce in Sec. 3.4.1. Note that the quantity 1
𝑑2 |⟨𝑉,𝑈⟩|2 is simply the fidelity between the

pure states obtained by applying𝑈 and𝑉 to one half of a maximally entangled state. Consequently,

it has an operational meaning in terms of 𝐹 (𝑈,𝑉). Indeed, it can be shown [93, 94] that

𝐶HST(𝑈,𝑉) =
𝑑 + 1
𝑑

(
1 − 𝐹 (𝑈,𝑉)

)
. (3.6)
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Also note that for any two unitaries 𝑈 and 𝑉 , 𝐶HST(𝑈,𝑉) = 0 if and only if 𝑈 and 𝑉 differ by

a global phase factor, i.e., 𝑉 = 𝑒𝑖𝜑𝑈 for some 𝜑 ∈ R. By minimizing 𝐶HST, we thus learn an

equivalent unitary 𝑉 up to a global phase.

Now, to perform the optimization over gate structures in (3.3), one strategy is to search over

all possible gate structures for a gate sequence length 𝐿, which can be allowed to vary during

the optimization. As the set of gate structures grows exponentially with the number of gates 𝐿,

such a brute force search over all gate structures in order to obtain the best one is intractable

in general. To efficiently search through this exponentially large space, we adopt an approach

based on simulated annealing. (An alternative approach is genetic optimization, which has been

implemented previously to classically optimize quantum gate sequences [95].)

Our simulated annealing approach starts with a random gate structure, then performs continuous

optimization over the parameters ®𝛼 that characterize the gates in order to minimize the cost function.

We then perform a structure update that involves randomly replacing a subset of gates in the sequence

with new gates (which can be done in a way such that the sequence length can increase or decrease)

and re-optimizing the cost function over the continuous parameters ®𝛼. If this structure change

produces a lower cost, then we accept the change. If the cost increases, then we accept the change

with probability decreasing exponentially in the magnitude of the cost difference. We iterate this

procedure until the cost converges or until a maximum number of iterations is reached.

With a fixed gate sequence length 𝐿, the approach outlined above will in general lead to an

approximate compilation of 𝑈, which in many cases is sufficient. One strategy for obtaining

better and better approximate compilations of 𝑈 is a layered approach illustrated in Fig. 3.2(a).

In this approach, we consider a particular gate sequence length 𝐿 and perform the full structure

optimization, as outlined above, to obtain an (approximate) length-𝐿 compilation of𝑈. The optimal

gate sequence structure thus obtained can then be concatenated with a new sequence of a possibly

different (but fixed) length, whose structure can vary. By performing the continuous parameter

optimization over the entire longer gate sequence, and performing the structure optimization over

the new additional segment of the gate sequence, we can obtain a better approximate compilation
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of𝑈. Iterating this procedure can then lead to increasingly better approximate compilations of𝑈.

3.3.4 Large problem sizes

We emphasize two potential issues with scaling the above approach to large problem sizes.

First, one may want a guarantee that there exists an exact compilation of𝑈 within a polynomial

size search space for 𝑉 . When performing full structure optimization, as above, the search space

size grows exponentially in the length 𝐿 of the gate sequence. This implies that the search space

size grows exponentially in 𝑛, if one chooses 𝐿 to grow polynomially in 𝑛. Indeed, one would

typically require 𝐿 to grow polynomially in 𝑛 if one is interested in exact compilation, since the

number of gates in 𝑈 itself grows polynomially in 𝑛 for many applications. (Note that this issue

arises if one insists on exact, instead of approximate, compiling.)

Second, and arguably more importantly, the cost𝐶HST(𝑈,𝑉) is exponentially fragile. The inner

product between𝑈 and 𝑉 will be exponentially suppressed for random choices of 𝑉 , which means

that 𝐶HST(𝑈,𝑉) will be very close to one for most unitaries 𝑉 . Hence, for random unitaries 𝑉 , the

number of calls to the quantum computer needed to resolve differences in the cost 𝐶HST(𝑈,𝑉) to a

given precision will grow exponentially.

The first issue can be addressed with an efficiently parameterized ansatz for 𝑉 . With an

ansatz, only the continuous parameters ®𝛼 need to be optimized in 𝑉 . The ®𝑘 parameters are fixed,

which means that structure updates are not required. This fixed structure approach is depicted in

Fig. 3.2(b). One can choose an ansatz such that the number of parameters needed to represent the

target unitary𝑈 is only a polynomial function of 𝑛. Hence, one should allow the ansatz 𝐴(𝑈) to be

application specific, i.e., to be a function of𝑈. As an example, if𝑈 = 𝑒−𝑖H 𝑡 for a local Hamiltonian

H , one could choose the ansatz to involve a polynomial number of local interactions. Due to the

application-specific nature of the ansatz, the problem is a complex one, hence we leave the issue of

finding efficient ansatzes for future work.

Nevertheless, we show a concrete example of a potential ansatz for 𝑉 in Fig. 3.3. The ansatz

is defined by a number ℓ of layers, with each layer being a gate sequence of depth two consisting
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(a) (b)

Figure 3.3: (a) One layer of the ansatz for the trainable unitary 𝑉 in the case of four qubits. The
gate sequence in the layer consists of a two-qubit gate acting on the first and second qubits, the third
and fourth qubits, the second and third qubits, and the first and fourth qubits. (b) The full ansatz
defining the trainable unitary 𝑉 consists of a particular number ℓ of the layer in (a). Shown is two
layers in the case of four qubits.

of two-qubit gates acting on neighboring qubits. Consider the following argument. In QAQC,

the unitary 𝑈 to be compiled is executed on the quantum computer, so it must be efficiently

implementable, i.e., the gate count is polynomial in 𝑛. Next, note that the gate sequence used to

implement 𝑈 can be compiled into in the ansatz in Fig. 3.3 with only polynomial overhead. This

implies that the ansatz in Fig. 3.3 could exactly describe 𝑈 in only a polynomial number of layers

and would hence eliminate the need to search through an exponentially large space. We remark

that the ansatz in Fig. 3.3 may be particularly useful for applications involving compiling quantum

simulations of physically relevant systems, as the structure resembles that of the Suzuki-Trotter

decomposition [96] for nearest-neighbor Hamiltonians.

Let us now consider the second issue mentioned above: the exponentially suppressed inner

product between 𝑈 and 𝑉 for large 𝑛. To address this, we propose an alternative cost function

involving a weighted average between the function in (3.5) and a “local” cost function:

𝐶𝑞 (𝑈,𝑉) B 𝑞𝐶HST(𝑈,𝑉) + (1 − 𝑞)𝐶LHST(𝑈,𝑉), (3.7)

where 0 ≤ 𝑞 ≤ 1 and

𝐶LHST(𝑈,𝑉) B
1
𝑛

𝑛∑︁
𝑗=1
𝐶
( 𝑗)
LHST(𝑈,𝑉) = 1 − 𝐹𝑒 . (3.8)

Here, LHST stands for “Local Hilbert-Schmidt Test”, referring to the circuit discussed in Sec. 3.4.2

that is used to compute this function. Also, 𝐹𝑒 B 1
𝑛

∑𝑛
𝑗=1 𝐹

( 𝑗)
𝑒 , where the quantities 𝐹 ( 𝑗)𝑒 are

entanglement fidelities (hence the notation 𝐹𝑒) of local quantum channels E 𝑗 defined in Sec. 3.4.2.

Hence,𝐶LHST(𝑈,𝑉) is a sum of local costs, where each local cost is written as a local entanglement

fidelity: 𝐶 ( 𝑗)LHST(𝑈,𝑉) = 1 − 𝐹 ( 𝑗)𝑒 . Expressing the overall cost as sum of local costs is analogous
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to what is done in the variational quantum eigensolver [78], where the overall energy is expressed

as a sum of local energies. The functions 𝐶 ( 𝑗)LHST are local in the sense that only two qubits need

to be measured in order to calculate each one of them. This is unlike the function 𝐶HST, whose

calculation requires the simultaneous measurement of 2𝑛 qubits.

The cost function 𝐶𝑞 in (3.7) is a weighted average between the “global” cost function 𝐶HST

and the local cost function 𝐶LHST, with 𝑞 representing the weight given to the global cost function.

The weight 𝑞 can be chosen according to the size of the problem: for a relatively small number

of qubits, we would let 𝑞 = 1. As the number of qubits increases, we would slowly decrease 𝑞 to

mitigate the suppression of the inner product between𝑈 and 𝑉 .

To see why 𝐶LHST can be expected to deal with the issue of an exponentially suppressed inner

product for large 𝑛, consider the following example. Suppose the unitary 𝑈 to be compiled is the

tensor product 𝑈 = 𝑈1 ⊗ 𝑈2 ⊗ · · · ⊗ 𝑈𝑛 of unitaries 𝑈 𝑗 acting on qubit 𝑗 , and suppose we take the

tensor product𝑉 = 𝑉1⊗𝑉2⊗· · ·⊗𝑉𝑛 as the trainable unitary. We get that𝐶HST(𝑈,𝑉) = 1−∏𝑛
𝑗=1 𝑟 𝑗 ,

where 𝑟 𝑗 = (1/4) |Tr(𝑉†
𝑗
𝑈 𝑗 ) |2. Since each 𝑟 𝑗 will likely be less than one for a random choice of 𝑉 𝑗 ,

then their product will be small for large 𝑛. Consequently a very large portion of the cost landscape

will have 𝐶HST(𝑈,𝑉) ≈ 1 and hence will have a vanishing gradient. However, the cost function

𝐶LHST is defined such that 𝐶LHST(𝑈,𝑉) = 1 − 1
𝑛

∑𝑛
𝑗=1 𝑟 𝑗 , so that we obtain an average of the 𝑟 𝑗

quantities rather than a product. Taking the average instead of the product leads to a gradient that

is not suppressed for large 𝑛.

More generally, for any 𝑈 and 𝑉 , the quantity 𝐹𝑒, which is responsible for the variability in

𝐶LHST, can be made non-vanishing by adding local unitaries to 𝑉 . In particular, for a given 𝑈 and

𝑉 , it is straightforward to show that for all 𝑗 ∈ {1, 2, . . . , 𝑛} there exists a unitary𝑉 𝑗 acting on qubit

𝑗 such that 𝐹 ( 𝑗)𝑒 ≥ 1
4 for the gate sequence given by 𝑉 ′ = 𝑉 𝑗𝑉 . In other words, there exists a local

unitary 𝑉 𝑗 that can be added to the trainable gate sequence 𝑉 such that 𝐶 ( 𝑗)LHST(𝑈,𝑉 𝑗𝑉) ≤
3
4 . This

implies that, with the appropriate local unitary applied to each qubit at the end of the trainable gate

sequence, the local cost function 𝐶LHST can always be decreased to no greater than 3
4 . Note that

local unitaries cannot be used in this way to decrease the global cost function 𝐶HST, i.e., to make
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the second term in (3.5) non-vanishing.

Finally, one can show (See Section 3.12) that 𝐶LHST ≥ (1/𝑛)𝐶HST. Combining this with

Eq. (3.6) gives

𝐶𝑞 (𝑈,𝑉) ≥
(
1 − 𝑞 + 𝑛𝑞

𝑛

) (
𝑑 + 1
𝑑

)
(1 − 𝐹 (𝑈,𝑉)) , (3.9)

which implies that

𝐹 (𝑈,𝑉) ≥ 1 −
(

𝑛

1 − 𝑞 + 𝑛𝑞

) (
𝑑

𝑑 + 1

)
𝐶𝑞 (𝑈,𝑉). (3.10)

Hence, the cost function 𝐶𝑞 retains an operational meaning for the task of approximate compiling,

since it provides a bound on the average fidelity between𝑈 and 𝑉 .

3.3.5 Special case of a fixed input state

An important special case of quantum compiling is when the target unitary𝑈 happens to appear at

the beginning of one’s quantum algorithm, and hence the state that one inputs to 𝑈 is fixed. For

many quantum computers, this input state is |𝜓0⟩ = |0⟩⊗𝑛. We emphasize that many use cases of

QAQC do not fall under this special case, since one is often interested in compiling unitaries that do

not appear at the beginning of one’s algorithm. For example, one may be interested in the optimal

compiliation of a controlled-unitary, but such a unitary would never appear at the beginning of an

algorithm since its action would be trivial. Nevertheless we highlight this special case because

QAQC can potentially be simplified in this case. In addition, this special case was very recently

explored in Ref. [52] after the completion of our article.

In this special scenario, a natural cost function would be

𝐶fixed input = 1 − |⟨𝜓0 |𝑈𝑉† |𝜓0⟩|2 . (3.11)

This could be evaluated on a quantum computer in two possible ways. One way is to apply 𝑈 and

then 𝑉† to the |𝜓0⟩ state and then measure the probability to be in the |𝜓0⟩ state. Another way is to

apply 𝑈 to one copy of |𝜓0⟩ and 𝑉 to another copy of |𝜓0⟩, and then measure the overlap [50, 55]

between these two states.
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However, this cost function would not scale well for the same reason discussed above that our

𝐶HST cost does not scale well, i.e., its gradient can vanish exponentially. Again, one can fix this

issue with a local cost function. Assuming |𝜓0⟩ = |0⟩⊗𝑛, this local cost can take the form:

𝐶local
fixed input = 1 − 1

𝑛

𝑛∑︁
𝑗=1

𝑝
( 𝑗)
0 , (3.12)

where

𝑝
( 𝑗)
0 = Tr[( |0⟩⟨0| 𝑗 ⊗ 𝐼)𝑉†𝑈 |𝜓0⟩⟨𝜓0 |𝑈†𝑉] (3.13)

is the probability to obtain the zero measurement outcome on qubit 𝑗 for the state 𝑉†𝑈 |𝜓0⟩.

We remark that the two cost functions in (3.11) and (3.12) can each be evaluated with quantum

circuits on only 𝑛 qubits. This is in contrast to𝐶HST and𝐶LHST, whose evaluation involves quantum

circuits with 2𝑛 qubits (see the next section for the circuits). This reduction in resource requirements

is the main reason why we highlight this special case.

3.4 Cost evaluation circuits

In this section, we present short-depth circuits for evaluating the functions in (3.5) and (3.8) and

hence for evaluating the overall cost in (3.7). We note that these circuits are also interesting outside

of the scope of QAQC, and they likely have applications in other areas.

In addition, in Section 3.15, we present circuits for computing the gradient of the cost function,

including a generalization of the Power-of-one-qubit circuit [7] that computes both the real and

imaginary parts of ⟨𝑈,𝑉⟩.

3.4.1 Hilbert-Schmidt Test

Consider the circuit in Fig. 3.4(a). Below we show that this circuit computes |Tr(𝑉†𝑈) |2, where𝑈

and 𝑉 are 𝑛-qubit unitaries. The circuit involves 2𝑛 qubits, where we call the first (second) 𝑛-qubit

system 𝐴 (𝐵).
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The first step in the circuit is to create a maximally entangled state between 𝐴 and 𝐵, namely,

the state

|Φ+⟩𝐴𝐵 =
1
√
𝑑

∑︁
®𝑗

| ®𝑗⟩𝐴 ⊗ | ®𝑗⟩𝐵 , (3.14)

where ®𝑗 = ( 𝑗1, 𝑗2, ..., 𝑗𝑛) is a vector index in which each component 𝑗𝑘 is chosen from {0, 1}. The

first two gates in Fig. 3.4(a)—the Hadamard gates and the CNOT gates (which are performed in

parallel when acting on distinct qubits)—create the |Φ+⟩ state.

The second step is to act with 𝑈 on system 𝐴 and with 𝑉∗ on system 𝐵. (𝑉∗ is the complex

conjugate of 𝑉 , where the complex conjugate is taken in the standard basis.) Note that these two

gates are performed in parallel. This gives the state

(𝑈 ⊗ 𝑉∗) |Φ+⟩𝐴𝐵 =
1
√
𝑑

∑︁
®𝑗

𝑈 | ®𝑗⟩𝐴 ⊗ 𝑉∗ | ®𝑗⟩𝐵 . (3.15)

We emphasize that the unitary 𝑉∗ is implemented on the quantum computer, not 𝑉 itself. (See

Section 3.10 for elaboration on this point.)

The third and final step is to measure in the Bell basis. This corresponds to undoing the unitaries

(the CNOTs and Hadamards) used to prepare |Φ+⟩ and then measuring in the standard basis. At

the end, we are only interested in estimating a single probability: the probability for the Bell-basis

measurement to give the |Φ+⟩ outcome, which corresponds to the all-zeros outcome in the standard

basis. The amplitude associated with this probability is

⟨Φ+ |𝑈 ⊗ 𝑉∗ |Φ+⟩ = ⟨Φ+ |𝑈𝑉† ⊗ 𝐼 |Φ+⟩ (3.16)

=
1
𝑑

Tr(𝑉†𝑈) . (3.17)

To obtain the first equality we used the ricochet property:

𝐼 ⊗ 𝑋 |Φ+⟩ = 𝑋𝑇 ⊗ 𝐼 |Φ+⟩, (3.18)

which holds for any operator 𝑋 acting on a 𝑑-dimensional space. The probability of the |Φ+⟩

outcome is then the absolute square of the amplitude, i.e., (1/𝑑2) |Tr(𝑉†𝑈) |2. Hence, this probability
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gives us the absolute value of the Hilbert-Schmidt inner product between 𝑈 and 𝑉 . We therefore

call the circuit in Fig. 3.4(a) the Hilbert-Schmidt Test (HST).

Consider the depth of this circuit. Let 𝐷 (𝐺) denote the depth of a gate sequence 𝐺 for a

fully-connected quantum computer whose native gate alphabet includes the CNOT gate and the set

of all one-qubit gates. Then, for the HST, we have

𝐷 (HST) = 4 +max{𝐷 (𝑈), 𝐷 (𝑉∗)} . (3.19)

The first term of 4 is associated with the Hadamards and CNOTs in Fig. 3.4(a), and this term is

negligible when the depth of𝑈 or 𝑉∗ is large. The second term results from the fact that𝑈 and 𝑉∗

are performed in parallel. Hence, whichever unitary, 𝑈 or 𝑉∗, has the larger depth will determine

the overall depth of the HST.

3.4.2 Local Hilbert-Schmidt Test

Let us now consider a slightly modified form of the HST, shown in Fig. 3.4(b). We call this the

Local Hilbert-Schmidt Test (LHST) because, unlike the HST in Fig. 3.4(a), only two of the total

number 2𝑛 of qubits are measured: one qubit from system 𝐴, say 𝐴 𝑗 , and the corresponding qubit

𝐵 𝑗 from system 𝐵, where 𝑗 ∈ {1, 2, . . . , 𝑛}.

The state of systems 𝐴 and 𝐵 before the measurements is given by Eq. (3.15). Using the

ricochet property in (3.18) as before, we obtain

(𝑈 ⊗ 𝑉∗) |Φ+⟩𝐴𝐵 = (𝑈𝑉† ⊗ 𝐼) |Φ+⟩𝐴𝐵 (3.20)

= (𝑊 ⊗ 𝐼) |Φ+⟩𝐴𝐵, (3.21)

where 𝑊 := 𝑈𝑉†. Let 𝐴 𝑗 denote all systems 𝐴𝑘 except for 𝐴 𝑗 , and let 𝐵 𝑗 denote all systems 𝐵𝑘

except for 𝐵 𝑗 . Taking the partial trace over 𝐴 𝑗 and 𝐵 𝑗 on the state in (3.21) gives us the following

state on the qubits 𝐴 𝑗 and 𝐵 𝑗 that are being measured:
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(a)

|0〉A1 H •

U

• H

|0〉A2 H • • H

...
|0〉An H • • H

|0〉B1

V ∗
|0〉B2

...

|0〉Bn

(b)

|0〉A1 H •

U

• H

|0〉A2 H •
...

|0〉An H •

|0〉B1

V ∗
|0〉B2...

|0〉Bn

Figure 3.4: (a) The Hilbert-Schmidt Test. For this circuit, the probability to obtain the measurement
outcome in which all 2𝑛 qubits are in the |0⟩ state is equal to (1/𝑑2) |Tr(𝑉†𝑈) |2. Hence, this circuit
computes the magnitude of the Hilbert-Schmidt inner product, |⟨𝑉,𝑈⟩|, between𝑈 and 𝑉 . (b) The
Local Hilbert-Schmidt Test, which is the same as the Hilbert-Schmidt Test except that only two of
the 2𝑛 qubits are measured at the end. Shown is the measurement of the qubits 𝐴1 and 𝐵1, and the
probability that both qubits are in the state |0⟩ is given by (3.25) with 𝑗 = 1.

Tr𝐴 𝑗𝐵 𝑗 ((𝑊𝐴 ⊗ 𝐼𝐵) |Φ+⟩⟨Φ+ |𝐴𝐵 (𝑊†𝐴 ⊗ 𝐼𝐵))

= Tr𝐴 𝑗

(
(𝑊𝐴 ⊗ 𝐼𝐵 𝑗 )

(
|Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 ⊗

𝐼𝐴 𝑗

2𝑛−1

)
×(𝑊†

𝐴
⊗ 𝐼𝐵 𝑗 )

)
(3.22)

= (E 𝑗 ⊗ I𝐵 𝑗 ) ( |Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 ) . (3.23)

In (3.22), |Φ+⟩𝐴 𝑗𝐵 𝑗 is a 2-qubit maximally entangled state of the form in (3.14). In (3.23), we have
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defined the channel E 𝑗 by

E 𝑗 (𝜌𝐴 𝑗 ) B Tr𝐴 𝑗

(
𝑊𝐴

(
𝜌𝐴 𝑗 ⊗

𝐼𝐴 𝑗

2𝑛−1

)
𝑊
†
𝐴

)
. (3.24)

The probability of obtaining the (0, 0) outcome in the measurement of 𝐴 𝑗 and 𝐵 𝑗 is the overlap of

the state in (3.23) with the |Φ+⟩𝐴 𝑗𝐵 𝑗 state, given by

𝐹
( 𝑗)
𝑒 := Tr

(
|Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 (E 𝑗 ⊗ I𝐵 𝑗 ) ( |Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 )

)
. (3.25)

Note that this is the entanglement fidelity of the channel E 𝑗 . We use these entanglement fidelities

(for each 𝑗) to define the local cost function 𝐶LHST(𝑈,𝑉) as

𝐶LHST(𝑈,𝑉) =
1
𝑛

𝑛∑︁
𝑗=1
𝐶
( 𝑗)
LHST(𝑈,𝑉), (3.26)

where

𝐶
( 𝑗)
LHST(𝑈,𝑉) B 1 − 𝐹 ( 𝑗)𝑒 . (3.27)

Note that for all 𝑗 ∈ {1, 2, . . . , 𝑛}, the maximum value of 𝐹 ( 𝑗)𝑒 is one, which occurs when E 𝑗 is the

identity channel. This means that the minimum value of 𝐶LHST(𝑈,𝑉) is zero. In Section 3.11, we

show that 𝐶LHST is indeed a faithful cost function:

Proposition 1: For all unitaries𝑈 and 𝑉 , it holds that 𝐶LHST(𝑈,𝑉) = 0 if and only if𝑈 = 𝑉 (up to

a global phase).

The cost function 𝐶LHST is simply the average of the probabilities that the two qubits 𝐴 𝑗𝐵 𝑗 are

not in the |00⟩ state, while the cost function 𝐶HST is the probability that all qubits are not in the

|0⟩⊗2𝑛 state. Since the probability of an intersection of events is never greater than the average of

the probabilities of the individual events, we find that

𝐶LHST(𝑈,𝑉) ≤ 𝐶HST(𝑈,𝑉) (3.28)

for all unitaries𝑈 and 𝑉 . Furthermore, we can also formulate a bound in the reverse direction

𝑛𝐶LHST(𝑈,𝑉) ≥ 𝐶HST(𝑈,𝑉). (3.29)

In Section 3.12, we offer a proof for the above bounds.
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Proposition 2: Let𝑈 and 𝑉 be 2𝑛 × 2𝑛 unitaries. Then,

𝐶LHST(𝑈,𝑉) ≤ 𝐶HST(𝑈,𝑉) ≤ 𝑛𝐶LHST(𝑈,𝑉) .

The depth of the circuit in Fig. 3.4(b) used to compute the cost function 𝐶LHST is the same as

the depth of the circuit in Fig. 3.4(a) used to compute 𝐶HST, namely,

𝐷 (LHST) = 4 +max{𝐷 (𝑈), 𝐷 (𝑉∗)}. (3.30)

3.5 Computational complexity of cost evaluation

In this section, we state impossibility results for the efficient classical evaluation of both of our costs,

𝐶HST and 𝐶LHST. To show this, we analyze our circuits in the framework of deterministic quantum

computation with one clean qubit (DQC1) [7]. We then make use of known hardness results for

the class DQC1, and establish that the efficient classical approximation of our cost functions is

impossible under reasonable complexity assumptions.

3.5.1 One-clean-qubit model of computation

The complexity class DQC1 consists of all problems that can be efficiently solved with bounded

error in the one-clean-qubit model of computation. Inspired by the early implementations of NMR

quantum computing [7], in the one-clean-qubit model of computation the input is specified by a

single “clean qubit”, together with a maximally mixed state on 𝑛 qubits:

𝜌 = |0⟩⟨0 | ⊗ (𝐼/2)⊗𝑛. (3.31)

A computation is then realized by applying a poly(𝑛)-sized quantum circuit 𝑄 to the input. We

then measure the clean qubit in the standard basis and consider the probability of obtaining the

outcome “0”, i.e.,

Tr[( |0⟩⟨0 | ⊗ 𝐼⊗𝑛)𝑄𝜌𝑄†] . (3.32)
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The DQC1 model of computation has been widely studied, and several natural problems have been

found to be complete for DQC1. Most notably, Shor and Jordan [4] showed that the problem of

trace estimation for 2𝑛 × 2𝑛 unitary matrices that specify poly(𝑛)-sized quantum circuits is DQC1-

complete. Moreover, Fujii et al. [85] showed that classical simulation of DQC1 is impossible, unless

the polynomial hierarchy collapses to the second level. Specifically, it is shown that an efficient

classical algorithm that is capable of weakly simulating the output probability distribution of any

DQC1 computation would imply a collapse of the polynomial hierarchy to the class of Arthur-Merlin

protocols, which is not believed to be true. Rather, it is commonly believed that the class DQC1 is

strictly contained in BQP, and thus provides a sub-universal model of quantum computation that is

hard to simulate classically. Finally, we point out that the complexity class DQC1 is known to give

rise to average-case distance measures, whereas worst-case distance measures (such as the diamond

distance) are much harder to approximate, and known to be QIP-complete [86]. Currently, it is not

known whether there exists a distance measure that lies between the average-case and worst-case

measures in DQC1 and QIP, respectively. However, we conjecture that only average-case distance

measures are feasible for practical purposes. We leave the task of finding a distance measure whose

approximation is complete for the class BQP as an interesting open problem.

Our contributions are the following. We adapt the proofs in [4, 85] and show that the problem

of approximating our cost functions, 𝐶HST or 𝐶LHST, up to inverse polynomial precision is DQC1-

hard. Our results build on the fact that evaluating either of our cost functions is, in some sense, as

hard as trace estimation. Using the results from [85], it then immediately follows that no classical

algorithm can efficiently approximate our cost functions under certain complexity assumptions.

3.5.2 Approximating 𝐶HST is DQC1-hard

In Section 3.13, we prove the following:

Theorem 6: Let𝑈 and 𝑉 be poly(𝑛)-sized quantum circuits specified by 2𝑛 × 2𝑛 unitary matrices,

and let 𝜖 = 𝑂 (1/poly(𝑛)). Then, the problem of approximating 𝐶HST(𝑈,𝑉) up to 𝜖-precision is

DQC1-hard.
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3.5.3 Approximating 𝐶LHST is DQC1-hard

In Sec. 3.13, we also prove the following:

Theorem 7: Let𝑈 and 𝑉 be poly(𝑛)-sized quantum circuits specified by 2𝑛 × 2𝑛 unitary matrices,

and let 𝜖 = 𝑂 (1/poly(𝑛)). Then, the problem of approximating 𝐶LHST(𝑈,𝑉) up to 𝜖-precision is

DQC1-hard.

As a consequence of these results, it then follows from [85] that there is no classical algorithm

to efficiently approximate our cost functions, 𝐶HST or 𝐶LHST, with inverse polynomial precision,

unless the polynomial hierarchy collapses to the second level.

3.6 Small-scale implementations

This section presents the results of implementing QAQC, as described in Sec. 3.3, for well-

known one- and two-qubit unitaries. Some of these implementations were done on actual quantum

hardware, while others were on a simulator. In each case, we performed gradient-free continuous

parameter optimization in order to minimize the cost function 𝐶HST in (3.5), evaluating this cost

function using the circuit in Fig. 3.4(a). For full details on the optimization procedure, see

Section 3.14.

3.6.1 Quantum hardware

We implement QAQC on both IBM’s and Rigetti’s quantum computers. In what follows, the depth

of a gate sequence is defined relative to the native gate alphabet of the quantum computer used.

3.6.1.1 IBM’s quantum computers

Here, we consider the 5-qubit IBMQX4 and the 16-qubit IBMQX5. For these quantum computers,

the native gate set is

AIBM = {𝑅𝑥 (𝜋/2), 𝑅𝑧 (𝜃),CNOT𝑖 𝑗 } (3.33)
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where the single-qubit gates 𝑅𝑥 (𝜋/2) and 𝑅𝑧 (𝜃) can be performed on any qubit and the two-qubit

CNOT gate can be performed between any two qubits allowed in the topology; see [97] for the

topology of IBMQX4 and [98] for the topology of IBMQX5.

To compile a given unitary𝑈, we use the general procedure outlined in Sec. 3.3.3. Specifically,

our initial gate structure, given by𝑉®𝑘 ( ®𝛼), is selected at random from the gate alphabet in (3.33). We

then calculate the cost 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) by executing the HST shown in Fig. 3.4(a) on the quantum

computer. To perform the continuous parameter optimization over the angles 𝜃 of the 𝑅𝑧 gates, we

make use of Algorithm 2 outlined in Section 3.14.1. This method is designed to limit the number of

objective function calls to the quantum computer, which is an important consideration when using

queue-based quantum computers like IBMQX4 and IBMQX5 since these can entail a significant

amount of idle time in the queue.

In essence, our method in Algorithm 2 discretizes the continuous parameter space of angles 𝜃

to perform the continuous optimization. These angles are selected uniformly over the unit circle

and the grid spacing between them decreases in the number of iterations. See Section 3.14.1 for

full details. If the cost of the new sequence is less than the cost of the previous sequence, then we

accept the change. Otherwise, we accept the change with a probability that decreases exponentially

in the magnitude of the difference in cost. This change in cost defines one iteration.

In Fig. 3.5(a), we show results for compiling single-qubit gates on IBMQX4. All gates (𝐼,

𝑇 , 𝑋 , and 𝐻) converge to a cost below 0.1, but no gate achieves a cost below our tolerance of

10−2. As elaborated upon in Sec. 3.8, this is due to a combination of finite sampling, gate fidelity,

decoherence, and readout error on the device. The single-qubit gates compile to the following gate

sequences:

1. 𝐼 gate: 𝑅𝑧 (𝜃), with 𝜃 ≈ 0.01𝜋.

2. 𝑇 gate: 𝑅𝑧 (𝜃), with 𝜃 ≈ 0.30𝜋.

3. 𝑋 gate: 𝑅𝑥 (𝜋/2)𝑅𝑥 (𝜋/2).

4. 𝐻 gate: 𝑅𝑧 (𝜃1)𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜃2), with 𝜃1 = 𝜃2 = 0.50𝜋.
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Figure 3.5(b) shows results for compiling the same single-qubit gates as above on IBMQX5.

The gate sequences have the same structure as listed above for IBMQX4. The optimal angles

achieved are 𝜃 = −0.03𝜋 for the 𝐼 gate and 𝜃 = 0.23𝜋 for the 𝑇 gate. The 𝑋 gate compiles to

𝑅𝑥 (𝜋/2)𝑅𝑥 (𝜋/2), and the Hadamard gate 𝐻 compiles to 𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜋/2)𝑅𝑥 (𝜋/2).

In our data collection, we performed on the order of 10 independent optimization runs for each

target gate above. The standard deviations of the angles 𝜃 were on the order of 0.05𝜋, and this can

be viewed as the error bars on the average values quoted above.

3.6.1.2 Rigetti’s quantum computer

The native gate set of Rigetti’s 8Q-Agave 8-qubit quantum computer is

ARigetti = {𝑅𝑥 (±𝜋/2), 𝑅𝑧 (𝜃),CZ𝑖 𝑗 } (3.34)

where the single-qubit gates 𝑅𝑥 (±𝜋/2) and 𝑅𝑧 (𝜃) can be performed on any qubit and the two-qubit

CZ gate can be performed between any two qubits allowed in the topology; see [99] for the topology

of the 8Q-Agave quantum computer.

As with the implementation on IBM’s quantum computers, for the implementation on Rigetti’s

quantum computer we make use of the general procedure outlined in Sec. 3.3.3. Specifically,

we perform random updates to the gate structure followed by continuous optimization over the

parameters 𝜃 of the 𝑅𝑧 gates using the gradient-free stochastic optimization technique described in

Algorithm 1 in Section 3.14. In this optimization algorithm, we use fifty cost function evaluations

to perform the continuous optimization over parameters. (That is, each iteration in Fig. 3.5(c) and

Fig. 3.6 uses fifty cost function evaluations, and each cost function evaluation uses 10, 000 calls to

the quantum computer for finite sampling.) We take the cost error tolerance (the parameter 𝜀′ in

Algorithm 1) to be 10−2, and for each run of the Hilbert-Schmidt Test, we take 10, 000 samples in

order to estimate the cost. Our results are shown in Fig. 3.5(c). As described in Algorithm 1, we

define an iteration to be one accepted update in gate structure followed by a continuous optimization

over the internal gate parameters.
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Figure 3.5: Compiling the one-qubit gates 𝐼, 𝑋 , 𝐻, and 𝑇 using the gradient-free optimization
technique described in Section 3.14. The plots show the cost 𝐶HST as a function of the number of
iterations, where an iteration is defined by an accepted update to the gate structure; see Sec. 3.3.3
for a description of the procedure. The insets display the minimum cost achieved by optimizing
over gate sequences with a fixed depth, where the depth is defined relative to the native gate alphabet
of the quantum computer used. (a) Compiling on the IBMQX4 quantum computer, in which we
took 8, 000 samples to evaluate the cost for each run of the Hilbert-Schmidt Test. (b) Compiling
on the IBMQX5 quantum computer, in which we again took 8, 000 samples to evaluate the cost for
each run of the Hilbert-Schmidt Test. (c) Compiling on Rigetti’s 8Q-Agave quantum computer. In
the plot, each iteration uses 50 cost function evaluations to perform the continuous optimization.
For each run of the Hilbert-Schmidt Test to evaluate the cost, we took 10, 000 samples (calls to the
quantum computer).
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The gates compiled in Fig. 3.5(c) have the following optimal decompositions. The same

decompositions also achieve the lowest cost in the cost vs. depth plot in the inset.

1. 𝐼 gate: 𝑅𝑧 (𝜃), with 𝜃 ≈ 0.

2. 𝑇 gate: 𝑅𝑧 (𝜃), with 𝜃 ≈ 0.342𝜋.

3. 𝑋 gate: 𝑅𝑥 (−𝜋/2)𝑅𝑥 (−𝜋/2).

4. 𝐻 gate: 𝑅𝑧 (𝜃1)𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜃2), with 𝜃1 ≈ 0.50𝜋 and 𝜃2 ≈ 0.49𝜋.

As with the results on IBM’s quantum computers, none of the gates achieve a cost less than 10−2,

due to factors such as finite sampling, gate fidelity, decoherence, and readout error. In addition,

similar to the IBM results, the standard deviations of the angles 𝜃 here were on the order of 0.05𝜋,

which can be viewed as the error bars on the average values (over 10 independent runs) quoted

above.

3.6.2 Quantum simulator

We now present our results on executing QAQC for single-qubit and two-qubit gates using a

simulator. We use the gate alphabet

A = {𝑅𝑥 (𝜋/2), 𝑅𝑧 (𝜃),CNOT𝑖 𝑗 }, (3.35)

which is the gate alphabet defined in Eq. (3.33) except with full connectivity between the qubits. We

again use the gradient-free optimization method outlined in Section 3.14 to perform the continuous

parameter optimization. The simulations are performed assuming perfect connectivity between the

qubits, no gate errors, and no decoherence.

Using Rigetti’s quantum virtual machine [2], we compile the controlled-Hadamard (CH) gate,

the CZ gate, the SWAP gate, and the two-qubit quantum Fourier transform QFT2 by adopting the

gradient-free continuous optimization procedure in Algorithm 1. We also compile the single-qubit

gates 𝑋 and 𝐻. For each run of the Hilbert-Schmidt Test to determine the cost, we took 20, 000
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Figure 3.6: Compiling one- and two-qubit gates on Rigetti’s quantum virtual machine with the
gate alphabet in (3.35) using the gradient-free optimization technique described in Algorithm
1 in Section 3.14. (a) The minimum cost achieved by optimizing over gate sequences with a
fixed depth. (b) The cost as a function of the number of iterations of the full gate structure and
continuous parameter optimization; see Sec. 3.3.3 for a description of the procedure. Note that each
iteration uses 50 cost function evaluations, and each cost function evaluation uses 10, 000 samples
(calls to the quantum computer). (c) Shortest-depth decompositions of the two-qubit controlled-
𝑍 , controlled-Hadamard, and quantum Fourier transform gates as determined by the compilation
procedure. The equalities indicated are true up to a global phase factor. Here, denotes the
rotation gate 𝑅𝑧 (𝜃), while represents the rotation gate 𝑅𝑥 (𝜋/2).
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samples. Our results are shown in Fig. 3.6. For the SWAP gate, we find that circuits of depth

one and two cannot achieve zero cost, but there exists a circuit with depth three for which the cost

vanishes. The circuit achieving this zero cost is the well-known decomposition of the SWAP gate

into three CNOT gates. While our compilation procedure reproduces the known decomposition

of the SWAP gate, it discovers a decomposition of both the CZ and the QFT2 gates that differs

from their conventional “textbook” decompositions, as shown in Fig. 3.6(c). In particular, these

decompositions have shorter depths than the conventional decompositions when written in terms

of the gate alphabet in (3.35).

In Section 3.15, we likewise implement QAQC for one- and two-qubit gates on a simulator, but

instead using a gradient-based continuous parameter optimization method outlined therein.

3.7 Larger-scale implementations

While in the previous section we considered one- and two-qubit unitaries, in this section we explore

larger unitaries, up to nine qubits. The purpose of this section is to see how QAQC scales, and

in particular, to study the performance of our 𝐶HST and 𝐶LHST cost functions as the problem size

increases. We consider two different examples.

Example 1: In the first example, we let 𝑈 be a tensor product of one-qubit unitaries. Namely we

consider

𝑈 =

𝑛⊗
𝑗=1

𝑅𝑧 (𝜃 𝑗 ) (3.36)

where the 𝜃 𝑗 are randomly chosen, and 𝑅𝑧 (𝜃) is a rotation about the 𝑧-axis of the Bloch sphere by

angle 𝜃. Similarly, our ansatz for 𝑉 is of the same form,

𝑉 =

𝑛⊗
𝑗=1

𝑅𝑧 (𝜙 𝑗 ) (3.37)

where the initial values of the angles 𝜙 𝑗 are randomnly chosen.
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Example 2: In the second example, we go beyond the tensor-product situation and explore a unitary

that entangles all the qubits. The target unitary has the form𝑈 = 𝑈4( ®𝜃′)𝑈3𝑈2𝑈1( ®𝜃), with

𝑈1( ®𝜃) =
𝑛⊗
𝑗=1

𝑅𝑧 (𝜃 𝑗 ), 𝑈2 = ...CNOT34CNOT12 (3.38)

𝑈3 = ...CNOT45CNOT23, 𝑈4( ®𝜃′) =
𝑛⊗
𝑗=1

𝑅𝑧 (𝜃′𝑗 ) . (3.39)

Here, CNOT𝑘𝑙 denotes a CNOT with qubit 𝑘 the control and qubit 𝑙 the target, while ®𝜃 = {𝜃 𝑗 } and

®𝜃′ = {𝜃′
𝑗
} are 𝑛-dimensional vectors of angles. Hence 𝑈2 and 𝑈3 are layers of CNOTs where the

CNOTs in 𝑈3 are shifted down by one qubit relative to those in 𝑈2. Our ansatz for the trainable

unitary 𝑉 has the same form as 𝑈 but with different angles, i.e., 𝑉 = 𝑈4( ®𝜙′)𝑈3𝑈2𝑈1( ®𝜙) where ®𝜙

and ®𝜙′ are randomly initialized.

In what follows we discuss our implementations of QAQC for these two examples. We first

discuss the implementation on a simulator without noise, and then we move onto the implementation

on a simulator with a noise model.

3.7.1 Noiseless implementations

We implemented Examples 1 and 2 on a noiseless simulator. In each case, starting with the ansatz

for𝑉 at a randomly chosen set of angles, we performed the continuous parameter optimization over

the angles using a gradient-based approach. We made use of Algorithm 4 in Section 3.15.3, which

is a gradient descent algorithm that explicitly evaluates the gradient using the formulas provided in

Section 3.15.3. For each run of the HST and LHST, we took 1000 samples in order to estimate the

value of the cost function. The results of this implementation are shown in Figs. 3.7 and 3.8.

In the case of Example 1 (Fig. 3.7), both the 𝐶HST and 𝐶LHST cost functions converge to the

desired global minimum up to 5 qubits. However, for 𝑛 = 6, 7, 8, and 9 qubits, we find cases in

which the 𝐶HST cost function does not converge to the global minimum but the 𝐶LHST cost function

does. Specifically, the cost 𝐶HST stays very close to one, with a gradient value smaller than the

pre-set threshold of 10−3 for four consecutive iterations, causing the gradient descent algorithm to
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Figure 3.7: Results of performing continuous parameter optimization using the HST and the LHST
for the scenario described in Example 1. We make use of the gradient-based optimization algorithm
given by Algorithm 4 in Section 3.15. The curves “HST via LHST” are given by evaluating 𝐶HST
using the angles obtained during the optimization iterations of 𝐶LHST. For each run of the HST and
LHST, we use 1000 samples to estimate the cost function.
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Figure 3.8: Results of performing continuous parameter optimization using the HST and the
LHST for the scenario described in Example 2. We make use of the gradient-based optimization
algorithm given by Algorithm 4 in Section 3.15, in which each iteration can involve several calls to
the quantum computer. The curves “HST via LHST” are given by evaluating𝐶HST using the angles
obtained during the optimization iterations of 𝐶LHST. For each run of the HST and LHST, we use
1000 samples to estimate the cost function.

declare convergence. Interestingly, even in the cases that the 𝐶HST cost does not converge to the

global minimum, training with the 𝐶LHST cost allows us to fully minimize the 𝐶HST cost. (See the

green curves labelled “HST via LHST” in Fig. 3.7, in which we evaluate the𝐶HST cost at the angles

obtained during the optimization of the𝐶LHST cost.) This fascinating feature implies that, for 𝑛 ≥ 6

qubits in Example 1, training our 𝐶LHST cost is better at minimizing the 𝐶HST cost than is directly

attempting to train the 𝐶HST cost.

We find very similar behavior for Example 2 (Fig. 3.8). In particular, for 𝑛 ≥ 6 qubits, we were

unable to directly train the 𝐶HST cost. However, the 𝐶LHST cost converges to the global minimum

for 𝑛 = 6 and 8 qubits. Furthermore, as with Example 1, we find that minimizing the 𝐶LHST cost
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also minimizes the 𝐶HST cost.

3.7.2 Noisy implementations

We implemented Examples 1 and 2 on IBM’s noisy simulator, where the noise model matches that

of the 16-qubit IBMQX5 quantum computer. This noise model accounts for 𝑇1 noise, 𝑇2 noise, gate

errors, and measurement errors. We emphasize that these are realistic noise parameters since they

simulate the noise on currently available quantum hardware. (Note that when our implementations

required more than 16 qubits, we applied similar noise parameters to the additional qubits as those

for the 16 qubits of the IBMQX5.) We used the same training algorithm as the one we used in the

noiseless case above. The results of these implementations are shown in Figs. 3.9 and 3.10.

Similar to the noiseless case, for Example 1 (Fig. 3.9) and for Example 2 (Fig. 3.10), we find

that both the 𝐶HST and 𝐶LHST cost functions converge up to a problem size of 5 qubits. Due to the

noise, as expected, both cost functions converge to a value greater than zero. For 𝑛 ≥ 6 qubits,

however, we find that the 𝐶HST cost function does not converge to a local minimum. Specifically,

this cost stays very close to one with a gradient value smaller than the pre-set threshold of 10−3

for four consecutive iterations, causing the gradient descent algorithm to declare convergence. The

local cost, on the other hand, converges to a local minimum in every case.

Remarkably, despite the noise in the simulation, we find that the angles obtained during the

iterations of the 𝐶LHST optimization correspond to the optimal angles in the noiseless case. This

result is indicated by the green curves labeled “Noiseless HST via LHST”. One can see that the

green curves go to zero for the local minima found by training the noisy𝐶LHST cost function. Hence,

in these examples, training the noisy 𝐶LHST cost function can be used to minimize the noiseless

𝐶HST cost function to the global minimum. This intriguing behavior suggests that the noise has not

affected the location (i.e., the value for the angles) of the global minimum. We thus find evidence

of the robustness of QAQC to the kind of noise present in actual devices. We elaborate on this

point in the next section.
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Figure 3.9: Results of performing continuous parameter optimization using the HST and the
LHST, in the presence of noise, for the scenario described in Example 1. The noise model used
matches that of the IBMQX5 quantum computer. We make use of the gradient-based optimization
algorithm given by Algorithm 4 in Section 3.15. The curves “Noiseless HST via LHST” are given
by evaluating 𝐶HST (without noise) using the angles obtained during the optimization iterations of
𝐶LHST. For each run of the HST and LHST, we use 1000 samples to estimate the cost function.
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Figure 3.10: Results of performing continuous parameter optimization using the HST and the
LHST, in the presence of noise, for the scenario described in Example 2. The noise model used
matches that of the IBMQX5 quantum computer. We make use of the gradient-based optimization
algorithm given by Algorithm 4 in Section 3.15. The curves “Noiseless HST via LHST” are given
by evaluating 𝐶HST (without noise) using the angles obtained during the optimization iterations of
𝐶LHST. For each run of the HST and LHST, we use 1000 samples to estimate the cost function.

3.8 Discussion

On both IBM’s and Rigetti’s quantum hardware, we were able to successfully compile one-qubit

gates with no a priori assumptions about gate structure or gate parameters. We also successfully

implemented QAQC for simple 9-qubit gates on both a noiseless and noisy simulator. These

implementations highlighted two important issues, (1) barren plateuas in cost landscape and (2) the

effect of hardware noise, which we discuss further now.
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3.8.1 Barren plateaus

Recent results [40, 100] on gradient-based optimization with random quantum circuits suggest that

the probability of observing non-zero gradients tends to become exponentially small as a function

of the number of qubits. That work showed that a hardware-efficient ansatz leads to vanishing

gradients as the ansatz’s depth becomes deeper (and hence begins to look more like a random

unitary). This is an important issue for many variational hybrid algorithms, including QAQC, and

motivates the need to avoid a deep, random ansatz. Strategies to address this “barren plateau” issue

for QAQC include restricting to a short-depth ansatz, or alternatively employing an application-

specific ansatz that takes into account some information about the target unitary 𝑈. We intend

to explore application-specific ansatze in future work to address this issue. There may be other

strategies based on the fact that similar issues have been identified in classical deep learning [101].

For instance, recent work [102] shows that gradient descent with momentum (GDM) using an

adaptive (multiplicative) integration step update, called resilient backpropagation (rProp), can help

with convergence. But, this is an active research area and will likely be important to the success of

variational hybrid algorithms.

Interestingly, in this work, we identified another barren plateau issue that is completely indepen-

dent and distinct from the issue raised in Refs. [40, 100]. Namely, we found that our operationally

meaningful cost function, 𝐶HST, can have barren plateaus even when the ansatz is a depth-one

circuit. The gradient of 𝐶HST can vanish exponentially in 𝑛 even when the ansatz has only a single

parameter. This issue became apparent in our implementations (see Figs. 3.7 through 3.10), where

we were unable to directly train the 𝐶HST cost for 𝑛 ≥ 6 qubits. Fortunately, we fixed this issue by

introducing the 𝐶LHST cost, which successfully trained in all cases we attemped (we attempted up

to 𝑛 = 9 qubits). Although 𝐶LHST is not directly operationally meaningful, it is indirectly related

to 𝐶HST via Eqs. (3.28) and (3.29). Hence it can be used to indirectly train 𝐶HST, as shown in

Figs. 3.7 through 3.10. We believe this barren plateau issue will show up in other variational

hybrid algorithms. For example, we encountered the same issue in a recently introduced variational

algorithm for state diagonalization [103].
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3.8.2 Effect of hardware noise

The impact of hardware noise, such as decoherence, gate infidelity, and readout error, is important

to consider. This is especially true since QAQC is aimed at being a useful algorithm in the era of

NISQ computers, although we remark that QAQC may also be useful for fault-tolerant quantum

computing.

On the one hand, we intuitively expect noise to significantly affect the HST and LHST cost

evaluation circuits. On the other hand, we see empirical evidence of noise resilience in Figs. 3.9

and 3.10. Let us elaborate on both our intuition and our empirical observations now.

A qualitative noise analysis of the HST circuit in Fig. 3.4(a) is as follows. To compile a unitary

𝑈 acting on 𝑛 qubits, a circuit with 2𝑛 qubits is needed. Preparing the maximally-entangled

state |Φ+⟩ in the first portion of the circuit requires 𝑛 CNOT gates, which are significantly noisier

than one-qubit gates and propagate errors to other qubits through entanglement. In principle, all

Hadamard and CNOT gates can be implemented in parallel, but on near-term devices this may not

be the case. Additionally, due to limited connectivity of NISQ devices, it is generally not possible

to directly implement CNOTs between arbitrary qubits. Instead, the CNOTs need to be “chained”

between qubits that are connected, a procedure that can significantly increase the depth of the

circuit.

The next level of the circuit involves implementing 𝑈 in the top 𝑛-qubit register and 𝑉∗ in

the bottom 𝑛-qubit register. Here, the noise of the computer on 𝑉∗ is not necessarily undesirable

since it could allow us to compile noise-tailored algorithms that counteract the noise of the specific

computer, as described in Sec. 3.2. Nevertheless, the depth of𝑉∗ and/or of𝑈 essentially determines

the overall circuit depth as noted in (3.19), and quantum coherence decays exponentially with the

circuit depth. Hence, compiling larger gate sequences involves additional loss of coherence on

NISQ computers.

The final level of the HST circuit involves making a Bell measurement on all qubits and is the

reverse of the first part of the circuit. As such, the same noise analysis of the first portion of the

circuit applies here. Readout errors can be significant on NISQ devices [104], and our HST circuit
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involves a number of measurements that scales linearly in the number of qubits. Hence, compiling

larger unitaries can increase overall readout error.

A similar qualitative noise analysis holds for the LHST circuit in Fig. 3.4(b), except we note

that to calculate the functions 𝐶 ( 𝑗)LHST in (3.26) we require only one CNOT gate in the last portion

of the LHST circuit before the measurement. Furthermore, we measure only two qubits regardless

of the total number of qubits.

With that said, we observed a (somewhat surprising) noise resilience in Figs. 3.9 and 3.10. In

these implementations, we imported the noise model of the IBMQX5 quantum computer, which

is a currently available cloud quantum computer. Hence, we considered realistic noise parameters

for decoherence, gate infedility, and readout error. This noise affected all circuit elements of the

LHST circuit in Fig. 3.4(b). Yet we still obtained the correct unitary 𝑉 via QAQC, as shown by the

green curves going to zero in Figs. 3.9 and 3.10.

Naturally, we plan to investigate this noise resilience in full detail in future work. But it is worth

emphasizing the following point here. The value of the cost could be significantly affected by noise

without shifting the location of the global minimum in parameter space. In fact, one can see in

Figs. 3.9 and 3.10 that the value of the 𝐶LHST cost is significantly affected by noise. Namely, note

that the red curves in these plots do not go to zero for larger iterations. However, the green curves

do go to zero, which means that QAQC found the correct parameters for 𝑉 despite the noisy cost

values.

We could speculate reasons for why the global minimum appears not shift in parameter space

with noise. For example, it could be due to the nature of our cost functions. These cost functions

can be thought of as entanglement fidelities and hence are related to Hilbert-space averages of

input-output fidelities, see Eq. (3.6). By averaging the input-output fidelity over the whole Hilbert

space, the effect of noise could essentially be averaged away. This is just speculation at this point,

and we will perform a detailed analysis of the effect of noise in future work. Regardless, our

preliminary results in Figs. 3.9 and 3.10 suggest that QAQC may indeed be useful in the NISQ era.

92



3.9 Conclusions

Quantum compiling is crucial in the era of NISQ devices, where constraints on NISQ computers

(such as limited connectivity, limited circuit depth, etc.) place severe restrictions on the quantum

algorithms that can be implemented in practice. In this work, we presented a methodology for

quantum compilation called quantum-assisted quantum compiling (QAQC), whereby a quantum

computer provides an exponential speedup in evaluating the cost of a gate sequence, i.e., how well

the gate sequence matches the target. In principle, QAQC should allow for the compiling of larger

algorithms than standard classical methods for quantum compiling due to this exponential speedup.

As a proof-of-principle, we implemented QAQC on IBM’s and Rigetti’s quantum computers to

compile various one-qubit gates to their native gate alphabets. To our knowledge, this is the

first time NISQ hardware has been used to compile a target unitary. In addition, we successfully

implemented QAQC on a noiseless and noisy simulator for simple 9-qubit unitaries.

Our main technical results were the following. First, we carefully chose a cost function (which

involved global and local overlaps between a target unitary𝑈 and a trainable unitary 𝑉) and proved

that it satisfied four criteria: it is faithful, it is efficient to compute on a quantum computer, it has an

operational meaning, and it scales well with the size of the problem. Second, we presented short-

depth circuits (see Sections 3.4.1 and 3.4.2) for computing our cost function. Third, we proved that

evaluating our cost function is DQC1-hard, and hence no classical algorithm can efficiently evaluate

our cost function, under reasonable complexity assumptions. This established a rigorous proof for

the difficulty of classically simulating QAQC. We also remark that, in the Section, we detailed our

gradient-free and gradient-based methods for optimizing our cost function. This included a circuit

for gradient computation that generalizes the famous Power of One Qubit [7] and hence is likely of

interest to a broader community.

As elaborated in the Discussion section, our noisy implementations of QAQC showed a surpris-

ing resilience to noise. While simulating realistic noise parameters based on a currently available

cloud quantum computer (IBMQX5), we were able to run QAQC on a 9-qubit unitary and obtain

the correct parameters for 𝑉 . We plan to investigate this intriguing noise resilience in future work.
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QAQC is a novel variational hybrid algorithm, similar to other well-known variational hybrid

algorithms such as VQE [78] and QAOA [77]. Variational hybrid algorithms are likely to provide

some of the first real applications of quantum computers in the NISQ era. In the case of QAQC,

it is an algorithm that makes other algorithms more efficient to implement, via algorithm depth

compression. We note that the ability to compress algorithm depth will also be useful (to reduce

the run-time of quantum circuits) in the era of fault-tolerant quantum computing. The central

application of QAQC is thus to make quantum computers more useful.

3.10 Remark on implementation of 𝑉∗

As mentioned in Sec. 3.4, a subtle point about evaluating the cost functions 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) and

𝐶LHST(𝑈,𝑉®𝑘 ( ®𝛼)) is that the complex conjugate𝑉®𝑘 ( ®𝛼)
∗ must be executed on the quantum computer,

not 𝑉®𝑘 ( ®𝛼) itself. The complex conjugate of a unitary corresponding to a gate sequence can be

obtained by taking the complex conjugate of each unitary in the gate sequence. However, if each

gate in the sequence comes from a gate alphabet A, it is possible that the complex conjugate of a

gate in the sequence is not contained in the alphabet; for example, if A = {𝑅𝑥 (𝜋/2), 𝑅𝑧 (𝜃)}, then

the complex conjugate of 𝑅𝑥 (𝜋/2), which is 𝑅𝑥 (−𝜋/2), is not contained in A. But the unitary

𝑅𝑧 (𝜋)𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜋) is equal (up to a global phase) to 𝑅𝑥 (−𝜋/2). There are thus two ways to

proceed when performing the compilation procedure: during the optimization over the continuous

parameters, directly run the gate sequence corresponding to 𝑉®𝑘 ( ®𝛼), expressing it in terms of the

native gate alphabet of the quantum computer, then at the end establish the complex conjugate of

the optimal unitary as the unitary to which 𝑈 has been compiled. This would involve translating

the complex conjugate of each gate in the optimal sequence into the native gate alphabet of the

quantum computer. An alternative is to first take the complex conjugate 𝑉®𝑘 ( ®𝛼)
∗ by translating the

complex conjugate of each gate in the sequence into the native gate alphabet, then execute the

resulting sequence on the quantum computer. In each case, we allow for a small-scale classical

compiler that can perform the simple translation of the complex conjugate of a gate sequence into

the native gate alphabet of the quantum computer. Note that this small-scale classical compiler
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does not come with exponential overhead because it is only compiling one- and two-qubit gates.

Also, observe that if a gate alphabet is not closed under complex conjugation, then the depth

of a gate sequence from that alphabet can increase by taking its complex conjugate. This is true

for the example given above, in which the complex conjugate 𝑅𝑥 (−𝜋/2) of 𝑅𝑥 (𝜋/2) has a depth of

three under the alphabet A = {𝑅𝑥 (𝜋/2), 𝑅𝑧 (𝜃)}, while the original gate has a depth of only one.

However, in general, note that the final depth increases by at most a constant factor relative to the

original depth.

3.11 Faithfulness of LHST cost function

Proposition 1: For all unitaries𝑈 and 𝑉 , it holds that 𝐶LHST(𝑈,𝑉) = 0 if and only if𝑈 = 𝑉 (up to

a global phase).

Proof: First, we note that since 0 ≤ 𝐶 ( 𝑗)LHST(𝑈,𝑉) ≤ 1 for all 𝑗 ∈ {1, 2, . . . , 𝑛}, we get that

𝐶LHST(𝑈,𝑉) = 0 if and only if𝐶 ( 𝑗)LHST(𝑈,𝑉) = 0, i.e., 𝐹 ( 𝑗)𝑒 = 1, for all 𝑗 ∈ {1, 2, . . . , 𝑛}. Next, since

𝐹
( 𝑗)
𝑒 is by definition the entanglement fidelity of the channel E 𝑗 , we have that 𝐹 ( 𝑗)𝑒 = 1 if and only if

E 𝑗 is the identity channelI. Finally, the condition𝑈 = 𝑉 is equivalent to𝑊 B 𝑈𝑉† = 𝐼. Therefore,

it suffices to prove that𝑊 = 𝐼 if and only if E 𝑗 is the identity channel for all 𝑗 ∈ {1, 2, . . . , 𝑛}. The

implication𝑊 = 𝐼 ⇒ E 𝑗 = I for all 𝑗 ∈ {1, 2, . . . , 𝑛} is immediate. We now prove the converse.

Let 𝑗 = 1, and suppose that 𝑊 has the following operator Schmidt decomposition under the

bipartite cut 𝐴1 |𝐴2 · · · 𝐴𝑛:

𝑊 =

𝑟∑︁
𝑖=1

√
𝜎𝑖𝑋

𝐴1
𝑖
⊗ 𝑌 𝐴2···𝐴𝑛

𝑖
, (3.40)

where {𝑋𝑖}𝑟𝑖=1 and {𝑌𝑖}𝑟𝑖=1 are orthonormal sets of operators, 𝜎𝑖 > 0 are the Schmidt coefficients of

𝑊 , and 𝑟 is the Schmidt rank of𝑊 . Since𝑊 is unitary, we have

𝑊†𝑊 =

𝑟∑︁
𝑖,𝑖′=1

√
𝜎𝑖𝜎𝑖′𝑋

†
𝑖
𝑋𝑖′ ⊗ 𝑌†𝑖 𝑌𝑖′ = 𝐼𝐴1···𝐴𝑛 , (3.41)

which implies that

Tr𝐴2···𝐴𝑛 (𝑊†𝑊) =
𝑟∑︁
𝑖=1

𝜎𝑖𝑋
†
𝑖
𝑋𝑖 = 2𝑛−1𝐼𝐴1 . (3.42)
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Plugging in the Schmidt decomposition of𝑊 into the definition of E1 in (3.24), we get

E1(𝜌) =
𝑟∑︁
𝑖=1

1
2𝑛−1𝜎𝑖𝑋𝑖𝜌𝑋

†
𝑖
. (3.43)

The operators 𝐾𝑖 :=
√︃

𝜎𝑖
2𝑛−1 𝑋𝑖 can therefore be regarded as Kraus operators for E1. Indeed, they

satisfy the following condition for trace preservation:
𝑟∑︁
𝑖=1

𝐾
†
𝑖
𝐾𝑖 =

1
2𝑛−1

𝑟∑︁
𝑖=1

𝜎𝑖𝑋
†
𝑖
𝑋𝑖 (3.44)

=
1

2𝑛−1 Tr𝐴2···𝐴𝑛 (𝑊†𝑊) (3.45)

= 𝐼𝐴1 , (3.46)

where to obtain the second equality we used (3.42).

Now, we assume that E1 is the identity channel, meaning that E1(𝜌) =
∑𝑟
𝑖=1

𝜎𝑖
2𝑛−1 𝑋𝑖𝜌𝑋

†
𝑖
= 𝜌 for

all states 𝜌. By the non-uniqueness of Kraus representations of quantum channels, there exists an

isometry𝑉 relating the Kraus operators {𝐾𝑖}𝑟𝑖=1 to another set {𝑁 𝑗 }𝑠𝑗=1 of Kraus operators according

to 𝐾𝑖 =
∑𝑠
𝑗=1𝑉𝑖, 𝑗𝑁 𝑗 . Since one Kraus representation of the identity channel is the one consisting

of only the identity operator 𝐼, we let the set {𝑁 𝑗 }𝑠𝑗=1 consist of only the identity operator. The

isometry 𝑉 is then a 𝑟 × 1 matrix, so that 𝑉𝑖,1 = 𝛼𝑖 ∈ C for all 𝑖 ∈ {1, 2, . . . , 𝑟}. This implies that

𝐾𝑖 =
√︃

𝜎𝑖
2𝑛−1 𝑋𝑖 = 𝛼𝑖 𝐼𝐴1 for all 𝑖 ∈ {1, 2, . . . , 𝑟}. Therefore,

𝑊𝐴1···𝐴𝑛 =
𝑟∑︁
𝑖=1

√
𝜎𝑖𝑋

𝐴1
𝑖
⊗ 𝑌 𝐴2···𝐴𝑛

𝑖
(3.47)

=

𝑟∑︁
𝑖=1

√
𝜎𝑖

©­«
√︄

2𝑛−1

𝜎𝑖
𝛼𝑖 𝐼𝐴1

ª®¬ ⊗ 𝑌 𝐴2···𝐴𝑛
𝑖

(3.48)

= 𝐼𝐴1 ⊗
√︁

2𝑛−1
𝑟∑︁
𝑖=1

𝛼𝑖𝑌
𝐴2···𝐴𝑛
𝑖

(3.49)

=: 𝐼𝐴1 ⊗𝑊′𝐴2···𝐴𝑛 , (3.50)

where in the last line we have defined the unitary𝑊′
𝐴2···𝐴𝑛 =

√
2𝑛−1 ∑𝑟

𝑖=1 𝛼𝑖𝑌
𝐴2···𝐴𝑛
𝑖

.

Now, given the assumption that E1 = I, so that𝑊 has the form in (3.50), we get that

E2(𝜌) = Tr𝐴3···𝐴𝑛

(
𝑊′

(
𝜌 ⊗

𝐼𝐴3···𝐴𝑛
2𝑛−2

)
(𝑊′)†

)
. (3.51)
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Therefore, applying the procedure above for 𝑗 = 2 by taking the bipartite cut in the operator

Schmidt decomposition of 𝑊′ to be 𝐴2 |𝐴3 · · · 𝐴𝑛, we get that if E2 is the identity channel, then

𝑊 = 𝐼𝐴1 ⊗ 𝐼𝐴2 ⊗ 𝑊′′ for some unitary 𝑊′′ acting on 𝐴3 · · · 𝐴𝑛. Continuing in this manner for

all 𝑗 up to 𝑗 = 𝑛, assuming in each case that E 𝑗 is the identity channel, we ultimately obtain

𝑊 = 𝐼𝐴1 ⊗ 𝐼𝐴2 ⊗ · · · ⊗ 𝐼𝐴𝑛 , which implies that𝑈 = 𝑉 , as required. □

3.12 Relation between 𝐶LHST and 𝐶HST

Proposition 2: Let𝑈 and 𝑉 be 2𝑛 × 2𝑛 unitaries. Then,

𝐶LHST(𝑈,𝑉) ≤ 𝐶HST(𝑈,𝑉) ≤ 𝑛𝐶LHST(𝑈,𝑉) .

Proof: First we rewrite the global cost function:

𝐶HST(𝑈,𝑉) = 1 − 1
𝑑2

��Tr[𝑉†𝑈]
��2

= 1 − Tr[|Φ+⟩⟨Φ+ |𝐴𝐵

× (𝑊 ⊗ 𝐼𝐵) |Φ+⟩⟨Φ+ |𝐴𝐵 (𝑊† ⊗ 𝐼𝐵)],

(3.52)

where𝑊 = 𝑈𝑉†. Also, for the local cost function, we have

𝐶LHST(𝑈,𝑉) B
1
𝑛

𝑛∑︁
𝑗=1
𝐶
( 𝑗)
LHST(𝑈,𝑉), (3.53)

where
𝐶
( 𝑗)
LHST(𝑈,𝑉)

= 1 − Tr[Π 𝑗 (𝑊 ⊗ 𝐼𝐵) |Φ+⟩⟨Φ+ |𝐴𝐵 (𝑊† ⊗ 𝐼)]
(3.54)

and we have defined

Π 𝑗 B 𝐼𝐴1𝐵1 ⊗ · · · ⊗ |Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 ⊗ · · · ⊗ 𝐼𝐴𝑛𝐵𝑛 , (3.55)

which are projectors that all mutually commute. Let

𝜌 B (𝑊 ⊗ 𝐼𝐵) |Φ+⟩⟨Φ+ |𝐴𝐵 (𝑊† ⊗ 𝐼𝐵). (3.56)

Then, we can write 𝐶HST(𝑈,𝑉) as

𝐶HST(𝑈,𝑉) = 1 − Tr[Π𝑛 · · ·Π1𝜌], (3.57)
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and we can write 𝐶 ( 𝑗)LHST(𝑈,𝑉) as

𝐶
( 𝑗)
LHST(𝑈,𝑉) = 1 − Tr[Π 𝑗 𝜌] (3.58)

for all 1 ≤ 𝑗 ≤ 𝑛. If we associate the events 𝐸 𝑗 with the projectors Π 𝑗 , so that Pr[𝐸 𝑗 ] = Tr[Π 𝑗 𝜌],

then, Tr[Π𝑛 · · ·Π1𝜌] = Pr
[⋂𝑛

𝑖=1 𝐸𝑖
]
.

To prove (3.28), namely 𝐶LHST(𝑈,𝑉) ≤ 𝐶HST(𝑈,𝑉), we recall a basic inequality in probability

theory. For any set {𝐴1, 𝐴2, . . . , 𝐴𝑛} of events, it holds that

Pr

[
𝑛⋃
𝑖=1

𝐴𝑖

]
≥ 1
𝑛

𝑛∑︁
𝑖=1

Pr[𝐴𝑖] . (3.59)

Let us take 𝐴𝑖 = 𝐸𝑖 in (3.59). Then,

Pr

[
𝑛⋃
𝑖=1

𝐸𝑖

]
≥ 1
𝑛

𝑛∑︁
𝑖=1

Pr[𝐸𝑖] (3.60)

⇒ 1 − Pr

[
𝑛⋂
𝑖=1

𝐸𝑖

]
≥ 1
𝑛

𝑛∑︁
𝑖=1
(1 − Pr[𝐸𝑖]). (3.61)

By definition of the events 𝐸𝑖, the last equality is precisely𝐶HST(𝑈,𝑉) ≥ 𝐶LHST(𝑈,𝑉), as required.

To prove (3.29), we make use of the union bound:

Pr

[
𝑛⋃
𝑖=1

𝐸𝑖

]
≤

𝑛∑︁
𝑖=1

Pr[𝐸𝑖] (3.62)

⇒ 1 − Pr

[
𝑛⋂
𝑖=1

𝐸𝑖

]
≤

𝑛∑︁
𝑖=1
(1 − Pr[𝐸𝑖]) (3.63)

= 𝑛𝐶LHST(𝑈,𝑉). (3.64)

Given that the left-hand side of the above inequality is precisely 𝐶HST(𝑈,𝑉), we have that

𝐶HST(𝑈,𝑉) ≤ 𝑛𝐶LHST(𝑈,𝑉), as required. □

3.13 Proofs of complexity theorems

Theorem 6: Let𝑈 and 𝑉 be poly(𝑛)-sized quantum circuits specified by 2𝑛 × 2𝑛 unitary matrices,

and let 𝜖 = 𝑂 (1/poly(𝑛)). Then, the problem of approximating 𝐶HST(𝑈,𝑉) up to 𝜖-precision is

DQC1-hard.
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⊕
⊕

Q† Q... ...U ′ =

Figure 3.11: The trace of the unitary 𝑈′ defined by the circuit above is equal to the trace of the
non-unitary operator ( |0⟩⟨0 | ⊗ 𝐼)𝑄( |0⟩⟨0 | ⊗ 𝐼)𝑄† up to a factor of 4 [4].

Proof: We show that the problem of approximating the cost 𝐶HST(𝑈,𝑉) is hard for DQC1. In

other words, we have to show that any problem in DQC1 reduces to an instance of approximating

𝐶HST(𝑈,𝑉) for some 𝜖 = 𝑂 (1/poly(𝑛)). Recall that, given as input a poly(𝑛)-sized unitary 𝑄

on 𝑛-qubits, any problem in DQC1 requires us to estimate the acceptance probability 𝑝acc when

measuring the outcome “0” on input 𝜌 = |0⟩⟨0 | ⊗ 𝐼/2𝑛, i.e.

𝑝acc = Tr[( |0⟩⟨0 | ⊗ 𝐼)𝑄𝜌𝑄†] . (3.65)

Note that, since the above equation describes a probability via the positive semi-definite operator

|0⟩⟨0 | ⊗ 𝐼, the trace will result in a non-negative real number. Let us re-write Eq. (3.65) as follows:

𝑝acc =
1
2𝑛

��Tr[( |0⟩⟨0 | ⊗ 𝐼)𝑄( |0⟩⟨0 | ⊗ 𝐼)𝑄†]
��. (3.66)

When letting𝑈′ as in Fig. 3.11, we can also write

Tr[( |0⟩⟨0 | ⊗ 𝐼)𝑄( |0⟩⟨0 | ⊗ 𝐼)𝑄†] = Tr[𝑈′]/4, (3.67)

hence the problem is equivalent to approximating the absolute value of the trace of a unitary 𝑈′.

In fact, given our choice of 𝑈′ and when taking 𝑉 to be the identity, the problem reduces to

an instance of approximating the cost 𝐶HST(𝑈′, 𝐼) up to some precision 𝜖 = 𝑂 (1/poly(𝑛)) via a

simple reduction. Therefore, we have shown that the problem of approximating 𝐶HST(𝑈,𝑉) up to

𝜖-precision is DQC1-hard. □

99



Theorem 7: Let𝑈 and 𝑉 be poly(𝑛)-sized quantum circuits specified by 2𝑛 × 2𝑛 unitary matrices,

and let 𝜖 = 𝑂 (1/poly(𝑛)). Then, the problem of approximating 𝐶LHST(𝑈,𝑉) up to 𝜖-precision is

DQC1-hard.

Proof: We show that any problem in DQC1 reduces to an instance of approximating𝐶LHST(𝑈,𝑉)

via a reduction. We are given as input a poly(𝑛)-sized unitary 𝑄 on 𝑛-qubits, and the task is to

estimate the acceptance probability of outputting “0”. Our proof strategy is to show that one can

efficiently extract Tr(𝑈′), the trace of an 𝑛-qubit unitary𝑈′, from two distinct evaluations of 𝐶LHST

and elementary post-processing. This implies that computing 𝐶LHST is hard for DQC1, since all

problems in DQC1 can be seen as estimating the real part of Tr(𝑈′) via Eq. (3.66) and Eq. (3.67).

The two cost function evaluations that we consider are 𝐶LHST(𝑈1, 𝐼) and 𝐶LHST(𝑈2, 𝐼), where

𝑈1 = 𝑈′ (3.68)

𝑈2 = 𝐶𝑈 ′ . (3.69)

Here, 𝐶𝑈 ′ denotes controlled-𝑈′ operation.

First, consider𝑈2 and let the 𝑗 = 𝑛+1 qubit correspond to the control qubit for the𝐶𝑈 ′ controlled

unitary. Then one can show that

𝐶
( 𝑗)
LHST(𝑈2, 𝐼) =

1
2
𝐶
( 𝑗)
LHST(𝑈1, 𝐼) ∀ 𝑗 ∈ {1, ..., 𝑛} , (3.70)

𝐶
(𝑛+1)
LHST (𝑈2, 𝐼) =

1
2
− 1

2𝑛+1
Re(Tr(𝑈′)) . (3.71)

This gives

𝐶LHST(𝑈2, 𝐼) =
1

2(𝑛 + 1)

(
1 + 𝑛𝐶LHST(𝑈1, 𝐼)

− Re(Tr(𝑈′))
2𝑛

)
. (3.72)

For notational simplicity, let 𝐵(𝑈) := 1 − 𝐶LHST(𝑈, 𝐼). Then, we can rewrite Eqs. (3.72) as

𝐵(𝑈2) =
1
2

(
1 + 2−𝑛

𝑛 + 1
Re(Tr(𝑈′)) + 𝑛

𝑛 + 1
𝐵(𝑈1)

)
. (3.73)
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Hence, we have that

Re(Tr(𝑈′)) = 2𝑛 ((𝑛 + 1) (2𝐵(𝑈2) − 1) − 𝑛𝐵(𝑈1)) . (3.74)

By choosing𝑈′ according to Fig. 3.11, one can see from Eq. (3.66) and Eq. (3.67) that the problem

is equivalent to 𝜖-approximating our local cost function for some 𝜖 = 𝑂 (1/poly(𝑛)). Hence,

any DQC1 problem can be efficiently solved for by computing a simple linear combination of

two instances of 𝐶LHST. Therefore, we have shown that the problem of approximating the cost

𝐶LHST(𝑈,𝑉) is hard for DQC1. □

3.14 Gradient-free optimization method

We now outline our approach to gradient-free optimization of over the continuous gate parameters

®𝛼 in the trainable unitary 𝑉®𝑘 ( ®𝛼). This approach was used to obtain the results in Sec. 3.6. Given

that this is an implementation for small problem size, we employ the cost function𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)).

However, we note that one can replace 𝐶HST with our general cost function 𝐶𝑞 for larger problem

sizes.

Algorithm 1: Gradient-free Continuous Optimization for QAQC via the HST
Input: Unitary𝑈 to be compiled; trainable unitary 𝑉®𝑘 ( ®𝛼) of a given structure; error

tolerance 𝜀′ ∈ (0, 1); maximum number of starting points 𝑁; maximum number of
iterations 𝑁iter for gp_minimize; sample precision 𝛿 > 0.

Output: Parameters ®𝛼opt such that at best 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼opt)) ≤ 𝜀′.
Init: ®𝛼opt ← 0; cost← 1

1 repeat
2 choose an initial parameter ®𝛼(0) at random;
3 run gp_minimize with ®𝛼(0) and 𝑁iter as input and ®𝛼min as output; whenever the cost is

called upon for some ®𝛼, run the HST on 𝑉®𝑘 ( ®𝛼)
∗ and𝑈 approximately 1/𝛿2 times to

estimate the cost 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼));
4 if cost ≥ 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼min)) then
5 cost← 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼min)); ®𝛼opt ← ®𝛼min

6 until cost ≤ 𝜀′, at most 𝑁 times.
7 return ®𝛼opt, cost

Recall that we compute the cost function𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) using the Hilbert-Schmidt Test (HST),

as described in Sec. 3.4.1 and illustrated in Fig. 3.4(a). For a given set of gate structure parameters
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®𝑘 , the calculation of the cost on a quantum computer (as well as on a simulator) is affected by the

fact that, due to finite sampling, the HST allows us to obtain only an estimate of the magnitude

of the Hilbert-Schmidt inner product. Noise within the quantum computer itself also affects

the calculation of the cost. Therefore, in order to perform gradient-free optimization over the

continuous gate parameters ®𝛼, we make use of stochastic optimization techniques that are designed

to optimize noisy functions. Specifically, we make use of the gp_minimize routine in the scikit-

optimize Python library [105], which is a gradient-free optimization routine that performs Bayesian

optimization using Gaussian processes [106, 107]. See Algorithm 1 for a general overview of the

optimization procedure. Note that with this algorithm, we obtain an 𝜀-approximate compilation of

𝑈, with

𝜀 =

(
𝑑

𝑑 + 1

)
𝜀′ . (3.75)

In the small-scale quantum computer implementations of Fig. 3.5(c) and Fig. 3.6, we use 50

objective function evaluations in gp_minimize per iteration. Note that evaluating the objective

function involves running the quantum circuit many times in order to sample from the output

distribution of the circuit.

For large problem sizes, as described in Sec. 3.3.4, we propose using the cost function

𝐶𝑞 = 𝑞𝐶HST + (1 − 𝑞)𝐶LHST. The gradient-free continuous parameter optimization algorithm for

𝐶𝑞 is similar to the one for 𝐶HST in Algorithm 1, except that in addition to running the HST we run

the LHST for every qubit 𝑗 ∈ {1, 2, . . . , 𝑛} in order to compute the local cost 𝐶LHST. In this case,

the algorithm provides an 𝜀-approximate compilation of𝑈, with

𝜀 =

(
𝑛

1 − 𝑞 + 𝑛𝑞

) (
𝑑

𝑑 + 1

)
𝜀′ . (3.76)

We emphasize that our approach to gradient-free optimization avoids the exponential overhead

of evaluating the cost function classically, yet at the same time makes use of fast and efficient

classical heuristics for optimization. In fact, using the HST, Algorithm 1 requires only 𝑂 (1/𝛿2)

calls to the quantum computer in order to evaluate the cost, where 𝛿 = 1/√𝑛shots is the sample

precision, which is related to the number of samples 𝑛shots taken from the device.
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3.14.1 Alternative method for gradient-free optimization

Here we propose an alternative algorithm for gradient-free optimization that, on average, signif-

icantly reduces the number of times the objective function is evaluated. As a result, it is more

suitable for cloud computing under a queue submission system (e.g., IBM’s Quantum Experience).

This algorithm performs a “multi-scale bisection” of the parameter space based on simulated an-

nealing. We implement this method in Sec. 3.6.1.1 specifically for the hardware of IBM because

the queue submission system can require a significant amount of time to make many calls to the

quantum computer.

This alternative approach to performing gradient-free continuous parameter optimization is out-

lined in Algorithm 2. We start with four angles spread uniformly in the interval [0, 2𝜋)—namely

0, 𝜋/2, 𝜋, and 3𝜋/2. This significantly reduces the size of the search space and allows us to get close

to, or find exactly, an optimal gate sequence. Once the optimal structure is reached from this step,

we then bisect the angles for each gate 𝑅𝑧 (𝛼) by evaluating the cost with a new circuit containing

𝑅𝑧 (𝛼 ± 𝜋/2𝑡+1), where 𝑡 = 1, 2, . . . , 𝑡max is determined by the iteration in the procedure. Although

we do not explore all angles in the interval, the runtime is logarithmically faster than a continuous

search due to the bisection procedure. An additional advantage of this approach is that many gates

have angles that are simple fractions of 𝜋, e.g., 𝑇 = 𝑅𝑧 (𝜋/4) and 𝐻 = 𝑅𝑧 (𝜋/2)𝑅𝑥 (𝜋/2)𝑅𝑧 (𝜋/2).

In a noiseless environment, the two steps above are sufficient. On actual devices, we implement

a third step of stochastic optimization by evaluating the cost for the new circuit with each gate

𝑅𝑧 (𝛼) replaced by 𝑅𝑧 (𝛼 ± Δ(𝑡)) for some small value Δ(𝑡) ≪ 1 decreasing monotonically with

the iteration 𝑡. This allows us to compile for a given device by accounting for noise and gate

errors. This can be thought of as a “fine-grained” angular optimization in contrast to the previous

“coarse-grained” angular optimization.
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Algorithm 2: Gradient-free Optimization using Bisection for QAQC
Input: Unitary𝑈 to be compiled; trainable unitary 𝑉®𝑘 ( ®𝛼) of a given structure and gate

alphabet A; error tolerance 𝜀′ ∈ (0, 1); maximum number of iterations 𝑁;
maximum number of bisections 𝑡max of the unit circle; sample precision 𝛿 > 0.

Output: Parameters ®𝛼opt such that at best 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼opt)) ≤ 𝜀′.
Init: Restrict all gates in A with continuous parameters to discrete angles in the set

Ω0 = {0, 𝜋/2, 𝜋, 3𝜋/2}; 𝛼opt ← 0; cost← 1
1 for 𝑡 = 1, 2, . . . , 𝑡max do
2 repeat
3 anneal over all possible bisected angles in the set

Ω𝑡 := {𝛼 ± 𝜋/2𝑡+1 | for 𝛼 ∈ Ω0} ∪Ω𝑡−1;
4 whenever the cost is called upon for some 𝛼 ∈ Ω𝑡 , run the HST on 𝑉®𝑘 ( ®𝛼)

∗ and𝑈
approximately 1/𝛿2 times to estimate the cost 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼));

5 if cost ≥ 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) then
6 cost← 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼));
7 until cost ≤ 𝜀′ at most 𝑁 times.
8 repeat
9 minimize the cost over all small continuous increments Δ(𝑡) ≪ 1 within the set of

bisected angles Ω𝑡 ; whenever the cost is called upon for some 𝛼 + Δ(𝑡), with
𝛼 ∈ Ω𝑡 , run the HST on 𝑉®𝑘 (𝛼 + Δ(𝑡))

∗ and𝑈 approximately 1/𝛿2 times to
estimate the cost 𝐶HST(𝑈,𝑉®𝑘 (𝛼 + Δ(𝑡)));

10 if cost ≥ 𝐶HST(𝑈,𝑉®𝑘 (𝛼 + Δ(𝑡))) then
11 cost← 𝐶HST(𝑈,𝑉®𝑘 (𝛼 + Δ(𝑡))); ®𝛼opt ← 𝛼 + Δ(𝑡)
12 until cost ≤ 𝜀′ at most 𝑁 times.
13 return ®𝛼opt, cost

3.15 Gradient-based optimization method

We now describe a gradient-based approach to performing the optimization over the continuous

parameters in the trainable gate sequence 𝑉®𝑘 ( ®𝛼). In Sec. 3.15.1, we define a new cost function

for this purpose, and we introduce a quantum circuit to calculate this cost function on a quantum

computer. In Sec. 3.15.2, we present the results of implementing this method on a quantum

simulator. In Sec. 3.15.3, we briefly describe how the original cost functions 𝐶HST and 𝐶LHST can

also be optimized using a gradient-based method.

While recent work on gradient descent continuous optimization has shown vast quantum

speedups over classical variants [108, 109, 110], the majority of proposals still appear to be
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out of reach for implementations on NISQ devices, mainly due to their use of certain algorith-

mic techniques, such as quantum random-access memory, the quantum Fourier transform, and the

Grover search algorithm, which have high resource requirements. Instead, we focus on continuous

optimization procedures that are feasible on current quantum computers and leave improvements

to our algorithms as an open problem.

The gradient with respect to ®𝛼 of the gate sequence 𝑉®𝑘 ( ®𝛼) given by

𝑉®𝑘 ( ®𝛼) = 𝐺𝑘𝐿 (𝛼𝐿)𝐺𝑘𝐿−1 (𝛼𝐿−1) · · ·𝐺𝑘1 (𝛼1), (3.77)

is defined by

∇®𝛼𝑉®𝑘 ( ®𝛼) =
(
𝜕𝑉®𝑘 ( ®𝛼)
𝜕𝛼1

, . . . ,
𝜕𝑉®𝑘 ( ®𝛼)
𝜕𝛼𝐿

)
, (3.78)

where the (𝑖, 𝑗) matrix element of the ℓ-th component is(
𝜕𝑉®𝑘 ( ®𝛼)
𝜕𝛼ℓ

)
𝑖, 𝑗

=
𝜕𝑉®𝑘 ( ®𝛼)𝑖, 𝑗
𝜕𝛼ℓ

. (3.79)

For example, consider the rotation gate 𝑅𝑧 (𝛼) = 𝑒−𝑖𝛼𝜎𝑧/2, which is parametrized by the angle 𝛼.

Then, the derivative with respect to 𝛼 can be written as

𝜕

𝜕𝛼
𝑅𝑧 (𝛼) = −

𝑖

2
𝜎𝑧𝑅𝑧 (𝛼) , (3.80)

which follows from the Taylor series expansion of the exponent.

Now, evaluating the gradient on a quantum computer is possible due to the fact that for the

gate alphabets we consider in this paper, only the single-qubit gates are parameterized, and these

gates are simply rotation gates. In fact, any unitary gate can be decomposed into circuits in which

only the single-qubit rotation gates are present. This is illustrated in Fig. 3.12. Furthermore, the

circuits in Fig. 3.12(a) and Fig. 3.12(b) are universal for one- and two-qubit gates, respectively (see

[6], which also contains universal circuits for 𝑛-qubit gates). This means that our gradient-based

approach can be applied to any 𝑛-qubit unitary without explicitly searching over gate structures,

though the compilations obtained in this manner will generally have sub-optimal depth.
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(a)

(b)

U = Rz(αz1) Ry(αy) Rz(αz2)

UAB =
U1(α

(1))

U2(α
(2))

⊕ Rz(αz)

Ry(αy1) Ry(αy2)⊕

⊕ U3(α
(3))

U4(α
(4))

Figure 3.12: (a) Any single-qubit gate 𝑈 can be decomposed into three elementary rotations
(up to a global phase). Given appropriate parameters ®𝛼 = (𝛼𝑧1 , 𝛼𝑦, 𝛼𝑧2), 𝑈 can be written as
𝑉 ( ®𝛼) = 𝑒−𝑖𝛼𝑧2𝜎𝑧/2𝑒−𝑖𝛼𝑦𝜎𝑦/2𝑒−𝑖𝛼𝑧1𝜎𝑧/2. (b) Any two-qubit gate 𝑈𝐴𝐵 can be decomposed into three
CNOT gates as well as 15 elementary single-qubit gates, where each unitary 𝑈 𝑗 ( ®𝛼( 𝑗)) can be
written as in (a). This decomposition is known to be optimal [5], i.e., it uses the least number of
continuous parameters and CNOT gates. General universal quantum circuits for 𝑛-qubit gates are
discussed in [6].

3.15.1 The Power of Two Qubits

Consider the following cost function based on the normalized Hilbert-Schmidt distance between

the unitaries𝑈 and 𝑉 :
𝐶POTQ(𝑈,𝑉) B

1
2𝑑
||𝑈 −𝑉 ||2HS

= 1 − 1
𝑑

Re
[
Tr(𝑉†𝑈)

]
,

(3.81)

where POTQ stands for “Power of Two Qubits” and refers to the circuit used to evaluate it, which

we present below. Note that𝐶POTQ(𝑈,𝑉) is zero if and only if𝑈 = 𝑉 . Contrary to the cost function

𝐶HST(𝑈,𝑉), which is defined using the magnitude of the inner product ⟨𝑉,𝑈⟩, this cost function is

defined using the real part of the inner product. Consequently, it does not vanish if 𝑈 and 𝑉 differ

only by a global phase. Indeed, if 𝑉 = 𝑒𝑖𝜑𝑈, then 𝐶POTQ(𝑈,𝑉) = 1 − cos(𝜑).

Before discussing the circuit used to evaluate the cost function 𝐶POTQ(𝑈,𝑉), let us review

the Power of One Qubit (POOQ) [7], shown in Fig. 3.13(a), which is a circuit for computing the

trace of a 𝑑-dimensional unitary 𝑈. This circuit acts on a 𝑑-dimensional system 𝐴, initially in the

maximally mixed state, 𝐼/𝑑, and on a single-qubit ancilla𝑄 initially in the |0⟩ state. After applying

a Hadamard gate to 𝑄 and a controlled-𝑈 gate to 𝑄𝐴 (with 𝑄 the control system), the reduced

density matrix 𝜌𝑄 has its off-diagonal elements proportional to Tr(𝑈). Hence, one can measure 𝑄

in the 𝑋 and 𝑌 bases, respectively, to read off the real and imaginary parts of Tr(𝑈).
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We now introduce a circuit for computing the real and imaginary parts of ⟨𝑉,𝑈⟩ that generalizes

the POOQ and is called the Power of Two Qubits (POTQ), depicted in Fig. 3.13(b). As the name

suggests, the POTQ employs two single-qubit ancillas, 𝑄 and 𝑄′, each initially in the |0⟩ state. In

addition, two 𝑑-dimensional systems, 𝐴 and 𝐵, are initially prepared in the Bell state |Φ+⟩ defined

in Eq. (3.14). (Although not shown in Fig. 3.13(b), this Bell state is prepared with a depth-two

circuit, as shown in Fig. 3.4.)

The first step in the POTQ is to prepare the two-qubit maximally entangled state 1√
2
( |0⟩|0⟩ +

|1⟩|1⟩) between 𝑄 and 𝑄′, using the Hadamard and CNOT gates as shown in Fig. 3.13(b). The

second step is to apply a controlled-𝑈 gate between 𝑄 and 𝐴 (with 𝑄 the control system). In

parallel with this gate, the anticontrolled-𝑉𝑇 gate is applied to 𝑄′𝐵, with 𝑄′ the control system,

where anticontrolled means that the roles of the |0⟩ and |1⟩ states on the control system are reversed

in comparison to a controlled gate. This results in the state:

1
√

2
( |0⟩𝑄 |0⟩𝑄′ (𝐼𝐴 ⊗ 𝑉𝑇 ) |Φ+⟩

+ |1⟩𝑄 |1⟩𝑄′ (𝑈 ⊗ 𝐼𝐵) |Φ+⟩)

=
1
√

2
( |0⟩𝑄 |0⟩𝑄′ (𝑉 ⊗ 𝐼𝐵) |Φ+⟩

+ |1⟩𝑄 |1⟩𝑄′ (𝑈 ⊗ 𝐼𝐵) |Φ+⟩), (3.82)

where to obtain the equality we used the ricochet property in Eq. (3.18). As in the HST, note that

𝑉 itself is not implemented. In this case, its transpose is implemented.

Finally, a CNOT gate is applied to 𝑄𝑄′, with 𝑄 the control system. This results in the reduced

state on 𝑄 being

𝜌𝑄 =
1
2

(
|0⟩⟨0| + Tr(𝑉†𝑈) |0⟩⟨1|

+Tr(𝑈†𝑉) |1⟩⟨0| + |1⟩⟨1|
)
. (3.83)

By inspection of 𝜌𝑄 , one can see that measuring 𝑄 in the 𝑋 and 𝑌 bases, respectively, gives the

real and imaginary parts of Tr(𝑉†𝑈).
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(a) Power of One Qubit

(b) Power of Two Qubits
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Figure 3.13: (a) The Power of One Qubit (POOQ) [7]. This can be used to compute the trace
of a unitary 𝑈 acting on a 𝑑-dimensional space. The 𝑅 gate represents either 𝐻, in which case
the circuit computes Re[Tr(𝑈)], or the 𝑆 gate followed by 𝐻, in which case the circuit computes
Im[Tr(𝑈)]. (b) The Power of Two Qubits (POTQ). This is a generalization of the POOQ, as can
be seen by setting 𝑉 = 𝐼. The POTQ can be used to compute the Hilbert-Schmidt inner product
Tr(𝑉†𝑈) between two unitaries 𝑈 and 𝑉 acting on a 𝑑-dimensional space. As with the POOQ,
𝑅 = 𝐻 leads to Re[Tr(𝑉†𝑈)], while 𝑅 = 𝐻𝑆 leads to Im[Tr(𝑉†𝑈)].

Interestingly, if we set 𝑉 to the identity in the POTQ, then since the CNOT gate commutes with

the controlled-𝑈 gate and the reduced state of |Φ+⟩ is the maximally mixed state 𝐼/𝑑, we recover

the POOQ. The POTQ is therefore a generalization of the POOQ.

Note that while the POOQ can also be used to determine Tr(𝑉†𝑈), the POTQ has the advantage

that the controlled gates for𝑈 and𝑉 can be executed in parallel, while in the POOQ they would have

to be executed in series. This makes the POTQ better suited for NISQ devices, where short depth

is crucial. Consider the depth of the POTQ. Denoting the controlled-𝑈 and the anticontrolled-𝑉𝑇

as 𝐶𝑈 and 𝐶𝑉𝑇 respectively, the overall depth is

𝐷 (POTQ) = 4 +max{𝐷 (𝐶𝑈), 𝐷 (𝐶𝑉𝑇 )} (3.84)

Note the similarity here to Eq. (3.19). The overall depth is essentially determined by whichever

controlled gate has the largest depth.
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3.15.2 Gradient-based optimization via the POTQ

The gradient with respect to ®𝛼 of 𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼)) can be computed using the POTQ. This is due

to the fact that
𝜕

𝜕𝛼ℓ
Re

[
Tr(𝑉®𝑘 ( ®𝛼)

†𝑈)
]
=

1
2

Re
[
Tr

(
𝑉
(ℓ)
®𝑘
( ®𝛼)†𝑈

)]
, (3.85)

where
𝑉
(ℓ)
®𝑘
( ®𝛼) B 𝐺𝑘𝐿 (𝛼𝐿) · · ·𝐺𝑘ℓ+1 (𝛼ℓ+1) (−𝑖𝜎𝑘ℓ )

× 𝐺𝑘ℓ (𝛼ℓ)𝐺𝑘ℓ−1 (𝛼ℓ−1) · · ·𝐺𝑘1 (𝛼1)
(3.86)

is the original gate sequence 𝑉®𝑘 ( ®𝛼) except with an additional Pauli gate 𝜎𝑘ℓ corresponding to the

variable with respect to which the derivative is taken. (Note that for the gate alphabets that we

consider in this paper, only the single-qubit gates are parameterized, and these gates are simply

rotation gates. The derivative of any one-qubit rotation gate is analogous to the expression in

(3.80) for the derivative of the rotation gate 𝑅𝑧 (𝛼).) This means that to compute the gradient of

𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼)), we simply add the appropriate local Pauli gate to the original gate sequence and

run the POTQ on this new gate sequence.

Our gradient-based optimization procedure is outlined in Algorithm 3. Given an arbitrary

unitary 𝑈 as input, Algorithm 3 compiles 𝑈 to a unitary 𝑉®𝑘 ( ®𝛼opt) of a given structure ®𝑘 that

minimizes the cost 𝐶POTQ. The gradient is evaluated with the POTQ circuit as a subroutine within

a classical gradient-descent algorithm. The overall query complexity in the number of calls to the

cost evaluation routine of Algorithm 3 is𝑂 (𝑁𝑇𝐿/𝛿2), where 𝛿 = 1/√𝑛shots is the sample precision,

𝑁 is the maximum number of repetitions over random initial parameters ®𝛼0, 𝐿 is the dimension

of the continuous parameter space of ®𝛼, and 𝑇 is the number of gradient descent iterations for a

suitable learning rate 𝜂 > 0. In order to improve convergence, it may also be useful to supply

the quantum subroutines for computing the cost function and the gradient to a more advanced

minimization routine, for example as found in the Python library SciPy [61]. We present below the

results on compiling both single-qubit and two-qubit gates on a simulator.

When performing Algorithm 3, we rely on the ability to perform the controlled-𝑈 gate. The

unitary 𝑈 may be unknown, e.g., as in Fig. 3.1(b). In general, to perform a controlled operation
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Algorithm 3: Gradient-based Continuous Optimization for QAQC via the POTQ
Input: Unitary𝑈 to be compiled; a trainable unitary 𝑉®𝑘 ( ®𝛼) of a given structure, where ®𝛼

is a continuous circuit parameter of dimension 𝐿; maximum number of iterations
𝑁; error tolerance 𝜀′ ∈ (0, 1); learning rate 𝜂 > 0; sample precision 𝛿 > 0.

Output: Parameters ®𝛼opt such that at best 𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼opt)) ≤ 𝜀′.
Init: ®𝛼opt ← 0; cost← 1

1 repeat
2 choose initial parameters ®𝛼(0) at random
3 for 𝜏 = 1, 2, . . . , 𝑇 do
4 for 𝑖 = 1, 2, . . . , 𝐿 do
5 run the POTQ on 𝜕𝛼𝑖𝑉®𝑘 ( ®𝛼

(𝜏−1))𝑇 and𝑈 approximately 1/𝛿2 times to estimate
Re

(
Tr

[
𝜕𝛼𝑖𝑉®𝑘 ( ®𝛼

(𝜏−1))†𝑈
] )

6 update ®𝛼(𝜏) ← ®𝛼(𝜏−1) − 𝜂 ∇®𝛼𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼
(𝜏−1)))

7 run the POTQ on 𝑉®𝑘 ( ®𝛼
(𝜏))𝑇 and𝑈 approximately 1/𝛿2 times to estimate the cost

𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼
(𝜏)))

8 if cost ≥ 𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼
(𝜏))) then

9 cost← 𝐶POTQ(𝑈,𝑉®𝑘 ( ®𝛼
(𝜏))); ®𝛼opt ← ®𝛼(𝜏)

10 until cost ≤ 𝜀′, at most 𝑁 times
11 return ®𝛼opt, cost

with respect to a target unitary 𝑈, one can use a method for “remote control” [111]. This method

employs a local 𝑈 gate and controlled-SWAP operations in order to realize the controlled-𝑈 gate.

In practice, since any controlled unitary gate can be decomposed into native gates, the ability to

compile controlled-SWAP, the Toffoli gate, and the set of controlled rotations is sufficient. In order

to perform such a translation, we allow the user to have access to a small-scale classical compiler.

This does not incur exponential overhead since the gates to be translated are one- and two-qubit

gates (or their controlled versions). While this may cause the depth of our compiled unitary to

increase, it will only be by a constant factor.

We note that decoherence, gate infidelity, and readout errors on NISQ computers are all more

pronounced when attempting to execute controlled unitaries. This means that there is significant

performance loss for controlled unitaries, as required in the POTQ. Consequently, we did not

implement our gradient-based optimization method on current quantum devices, but we speculate

that improvements to quantum hardware will enable this application.
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Figure 3.14: Compiling one- and two-qubit gates on a simulator with the gate alphabet in (3.35)
using the gradient-based optimization technique described in Algorithm 3, with 𝑛shots = 10, 000.
Shown is the cost as a function of the number of gradient calls of the continuous parameter
optimization using the minimize routine in the SciPy-optimize Python library. The gate structure
for the single-qubit gates is fixed to the one shown in Fig. 3.12(a), while the gate structure for the
two-qubit gates is fixed to the one shown in Fig. 3.12(b).

3.15.2.1 Implementation on a quantum simulator

We use IBM’s simulator [3] to compile a selection of single-qubit and two-qubit gates by performing

the gradient-based optimization procedure in Algorithm 3. In order to improve convergence, we

additionally supply the gradient, as well as the cost function, to the minimize routine in the

SciPy-optimize Python library [61]. For the single-qubit gates, we assume a fixed structure for the

trainable gate sequence according to the decomposition in Fig. 3.12(a), while for the two-qubit

gates we assume a fixed structure for the trainable gate sequence according to the decomposition

in Fig. 3.12(b). We compile the 𝑇 gate, 𝑋 gate, Hadamard (𝐻) gate, as well as the CNOT and CZ

gates, all with 𝑛shots = 10, 000. The results are shown in Fig. 3.14. We note that increasing 𝑛shots

to higher orders of magnitude significantly reduces the sampling error and results in more stable

convergence at the cost of an increase in runtime.

3.15.3 Gradient-based optimization via the HST and LHST

We now show that it is possible to perform gradient-based optimization of the original cost function

𝐶HST and its local variant 𝐶LHST. This allows us to perform gradient-based optimization of the
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general cost function 𝐶𝑞 = 𝑞𝐶HST + (1 − 𝑞)𝐶LHST. The algorithm for gradient-based optimization

of 𝐶HST and 𝐶LHST is presented in Algorithm 4.

The gradient with respect to ®𝛼 of both 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) and 𝐶LHST(𝑈,𝑉®𝑘 ( ®𝛼)) can be computed

using the HST and the LHST, respectively. Specifically, for a gate sequence of the form in (3.77),

in which the only parameterized gates are the single-qubit rotation gates, we have that

𝜕

𝜕𝛼ℓ
𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) =

1
2
𝐶HST(𝑈,𝑉 (ℓ)®𝑘,+ ( ®𝛼))

− 1
2
𝐶HST(𝑈,𝑉 (ℓ)®𝑘,−( ®𝛼)),

(3.87)

and
𝜕

𝜕𝛼ℓ
𝐶
( 𝑗)
LHST(𝑈,𝑉®𝑘 ( ®𝛼)) =

1
2
𝐶
( 𝑗)
LHST(𝑈,𝑉

(ℓ)
®𝑘,+
( ®𝛼))

− 1
2
𝐶
( 𝑗)
LHST(𝑈,𝑉

(ℓ)
®𝑘,−
( ®𝛼))

(3.88)

for all 𝑗 ∈ {1, 2, . . . , 𝑛}. Here,

𝑉
(ℓ)
®𝑘,±
( ®𝛼) B 𝐺𝑘𝐿 (𝛼𝐿) · · ·𝐺𝑘ℓ+1 (𝛼ℓ+1)𝐺𝑘ℓ

(
±𝜋

2

)
× 𝐺𝑘ℓ (𝛼ℓ)𝐺𝑘ℓ−1 (𝛼ℓ−1) · · ·𝐺𝑘1 (𝛼1)

(3.89)

is the original gate sequence 𝑉®𝑘 ( ®𝛼) with an additional rotation gate 𝐺𝑘ℓ

(
± 𝜋2

)
corresponding to the

variable with respect to which the derivative is taken. In other words, to compute the gradient

of the cost function 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)), we run the HST in Fig. 3.4(a) twice, once with the gate

sequence 𝑉 (ℓ)®𝑘,+ ( ®𝛼) and once with the gate sequence 𝑉 (ℓ)®𝑘,−( ®𝛼). Similarly, to compute the gradient of

the functions 𝐶 ( 𝑗)LHST(𝑈,𝑉®𝑘 ( ®𝛼)), we run the LHST in Fig. 3.4(b) twice, once with the gate sequence

𝑉
(ℓ)
®𝑘,+
( ®𝛼) and once with the gate sequence 𝑉 (ℓ)®𝑘,−( ®𝛼).

The expressions for the gradient in (3.87) and (3.88) can be verified by recalling that only the

one-qubit gates need to be parameterized and that they can always be assumed to have the form

𝑒−𝑖𝛼𝜎/2 for some Pauli operator 𝜎, where 𝛼 is the continuous parameter specifying the gate. Then,
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for the gate sequence 𝑉®𝑘 ( ®𝛼) in (3.77), we get

𝜕𝑉®𝑘 ( ®𝛼)
𝜕𝛼ℓ

= 𝐺𝑘𝐿 (𝛼𝐿) · · ·𝐺𝑘ℓ+1 (𝛼ℓ+1)
𝜕𝐺𝑘ℓ (𝛼ℓ)
𝜕𝛼ℓ

× 𝐺𝑘ℓ−1 (𝛼ℓ−1) · · ·𝐺𝑘1 (𝛼1) (3.90)

= − 𝑖
2
𝐺𝑘ℓ (𝛼ℓ) · · ·𝐺𝑘ℓ+1 (𝛼ℓ+1)𝜎𝑘ℓ𝐺𝑘ℓ (𝛼ℓ)

× 𝐺𝑘ℓ−1 (𝛼ℓ−1) · · ·𝐺𝑘1 (𝛼1) (3.91)

Then, we use the identity

𝑖[𝜎𝑘ℓ , 𝜌] = 𝐺𝑘ℓ

(
−𝜋

2

)
𝜌𝐺𝑘ℓ

(
−𝜋

2

)†
− 𝐺𝑘ℓ

(𝜋
2

)
𝜌𝐺𝑘ℓ

(𝜋
2

)†
,

(3.92)

which holds for any state 𝜌. We also observe that both the functions 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)) and

𝐶
( 𝑗)
LHST(𝑈,𝑉®𝑘 ( ®𝛼)) are of the form

𝐹 ( ®𝛼) = Tr[𝐻 (𝑈 ⊗ 𝑉®𝑘 ( ®𝛼)
∗)𝜌(𝑈† ⊗ 𝑉®𝑘 ( ®𝛼)

𝑇 )], (3.93)

where 𝜌 = |Φ+⟩⟨Φ+ |𝐴1···𝐴𝑛 for both functions, 𝐻 = |Φ+⟩⟨Φ+ |𝐴1···𝐴𝑛 for 𝐶HST(𝑈,𝑉®𝑘 ( ®𝛼)), and

𝐻 = |Φ+⟩⟨Φ+ |𝐴 𝑗𝐵 𝑗 ⊗ 𝐼𝐴 𝑗𝐵 𝑗 for 𝐶 ( 𝑗)LHST(𝑈,𝑉®𝑘 ( ®𝛼)). Finally, using

𝜕𝐹 ( ®𝛼)
𝜕𝛼ℓ

= Tr

[
𝐻

(
𝑈 ⊗

(
𝑉®𝑘 ( ®𝛼)
𝜕𝛼ℓ

)∗)
𝜌(𝑈† ⊗ 𝑉®𝑘 ( ®𝛼)

𝑇 )
]

+ Tr

[
𝐻 (𝑈 ⊗ 𝑉®𝑘 ( ®𝛼)

∗)𝜌
(
𝑈† ⊗

(
𝜕𝑉®𝑘 ( ®𝛼)
𝜕𝛼ℓ

)𝑇 )]
, (3.94)

substituting (3.91) into this expression, and using (3.92) to simplify, we obtain (3.87) and (3.88).

The quantum algorithms we developed in the first part of this thesis have several advantages for

near-term quantum computers, but in order to scale them to problem sizes that are challenging for

classical methods, several problems must be solved. Such problems include optimization strategies

and techniques for dealing with errors. In this second part of the thesis, we zoom in on the problem

of dealing with errors. As we have described in Chapter 1, the usual long-term solution is quantum

error correction and fault tolerance [112, 113, 114], but this requires significant overhead beyond

113



Algorithm 4: Gradient-based Continuous Optimization for QAQC via the (L)HST
Input: Unitary𝑈 to be compiled; a trainable unitary 𝑉®𝑘 ( ®𝛼) of a given structure, where ®𝛼

is a continuous circuit parameter of dimension 𝐿; maximum number of iterations
𝑁; gradient tolerance 𝜀′ ∈ (0, 1); sample precision 𝛿 > 0; cost function
𝐶 ∈ {𝐶HST, 𝐶LHST}.

Output: Parameters ®𝛼opt such that at best ||∇®𝛼𝐶 (𝑈,𝑉®𝑘 ( ®𝛼opt)) ||2 ≤ 𝜀′.
Init: ®𝛼opt ← 0; cost← 0; grad←∞; 𝜏 ← 0; gradCount← 0; 𝜂← 1

1 choose initial parameters ®𝛼(0) at random
2 cost← 𝐶 (𝑈,𝑉®𝑘 ( ®𝛼

(0)))
3 while count < 𝑁 and gradCount < 4 do
4 𝜏 ← 𝜏 + 1
5 for 𝑖 = 1, 2, . . . , 𝐿 do
6 Calculate 𝜕𝐶

𝜕𝛼𝑖
using either (3.87) or (3.88), taking approximately 1

𝛿2 samples for
each circuit.

7 grad← ||∇®𝛼𝐶 (𝑈,𝑉®𝑘 ( ®𝛼
(𝜏−1))) ||2

8 if grad ≤ 𝜀′ then
9 gradCount← gradCount + 1

10 ®𝛼(𝜏−1)
1 ← ®𝛼(𝜏−1) − 𝜂∇®𝛼𝐶 (𝑈,𝑉®𝑘 ( ®𝛼

(𝜏−1)))
11 ®𝛼(𝜏−1)

2 ← ®𝛼(𝜏−1)
1 − 𝜂∇®𝛼𝐶 (𝑈,𝑉®𝑘 ( ®𝛼

(𝜏−1)))
12 if cost − 𝐶 (𝑈,𝑉®𝑘 ( ®𝛼

(𝜏−1)
2 )) ≥ 𝜂 · grad then

13 𝜂← 2𝜂
14 𝛼(𝜏) ← 𝛼

(𝜏−1)
2

15 else if cost − 𝐶 (𝑈,𝑉®𝑘 ( ®𝛼
(𝜏−1)
1 )) < 𝜂

2 · grad then
16 𝜂← 𝜂

2
17 𝛼(𝜏) ← 𝛼

(𝜏−1)
1

18 else
19 𝛼(𝜏) ← 𝛼

(𝜏−1)
1

20 cost← 𝐶 (𝑈,𝑉®𝑘 ( ®𝛼
(𝜏)))

21 ®𝛼opt ← ®𝛼(𝜏)

22 return ®𝛼opt, cost
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current experimental capabilities. It is therefore interesting and important to develop methods for

dealing with errors with less overhead. The general name used to refer to this is quantum error

mitigation (QEM) [115].

A central task in near-term quantum algorithms (and many other areas of quantum information

processing) is to estimate the expectation value of an observable 𝑂 with respect to a pure state

𝜌 = |𝜓⟩⟨𝜓 |, i.e. ⟨𝑂⟩ = ⟨𝜓 |𝑂 |𝜓⟩ = Tr(𝜌𝑂). If the state is prepared by a quantum device, it can be

noisy, and we instead evaluate ⟨𝑂⟩noisy = Tr(𝜌E𝑂) where 𝜌E = E(𝜌) denotes the noisy state that

is corrupted from the target state 𝜌 by an unknown noisy quantum channel E. Given the corrupted

state 𝜌E , the goal of quantum error mitigation is to estimate a quantity ⟨𝑂⟩QEM that is closer to the

target value ⟨𝑂⟩ compared to the noisy result ⟨𝑂⟩noisy. In other words, we seek to compute ⟨𝑂⟩QEM

such that ��⟨𝑂⟩QEM − ⟨𝑂⟩
�� < ��⟨𝑂⟩noisy − ⟨𝑂⟩

�� . (3.95)

A relatively large number of QEM techniques have been proposed in recent literature includ-

ing zero-noise extrapolation [116, 117], probabilistic error cancellation [116, 118], randomized

compiling [119], Pauli-frame randomization [120], dynamical decoupling [121, 122, 123, 124],

quantum optimal control [125, 126], subspace expansion [127], virtual distillation [128, 129] and

others [130, 131, 132, 133, 134]. Some authors have defined common frameworks which encap-

sulate one or more of these techniques [135, 136]. At its core, any QEM technique uses additional

quantum resources (qubits, gates, and/or samples) in a clever way to approximate what would

happen in an ideal device.
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CHAPTER 4

ADVANCES IN ZERO-NOISE EXTRAPOLATION

4.1 Digital and adaptive ZNE

4.1.1 Introduction

Zero-noise extrapolation (ZNE) was introduced concurrently in [116] and [117]. In ZNE, a

quantum program is altered to run at different effective levels of processor noise. The result of the

computation is then extrapolated to an estimated value at a noiseless level. More formally, one can

parameterize the noise-level of a quantum system with a dimensionless scale factor 𝜆. For 𝜆 = 0

the noise is removed, while for 𝜆 = 1 the true noise-level of the physical hardware is matched. For

example, 𝜆 could be a multiplicative factor that scales the dissipative terms of a master equation

[116]. More generally, 𝜆 could represent a re-scaling of any physical quantity which introduces

some noise in the quantum computation: the calibration uncertainty of variational parameters, the

temperature of the quantum processor, etc.

For a given quantum program, we can measure an arbitrary expectation value 𝐸 (𝜆). By

construction, 𝐸 (1) represents the expectation value evaluated with the natural noise of the hardware,

whereas 𝐸 (0) denotes the noiseless observable which, despite being not directly measurable, we

would like to estimate.

To implement ZNE, one needs a direct or indirect way to scale the quantum computation’s noise

level to values of 𝜆 larger than one. With such a method, ZNE can be implemented in two main

steps:

1. Noise-scaling: Measure 𝐸 (𝜆) at 𝑚 different values of 𝜆 ≥ 1.

2. Extrapolation: Infer 𝐸 (0) from the 𝑚 expectation values measured in previous step.
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Figure 4.1: An example of the change of an expectation value, 𝐸 (𝜆), with the underlying scaling
𝜆 of the depolarizing noise level. Here the simulated base noise value is 5% (marked by the green
dashed vertical line). ZNE increases that noise and back extrapolates to the 𝜆 = 0 expectation
value. In this example, an accurate extrapolation should be non-linear and take advantage of a
known asymptotic behavior.

Figure 4.1 shows an example noise curve given by scaling depolarizing noise for a randomized

benchmarking circuit.

In this work, we introduce improvements to both noise-scaling and extrapolation methods for

quantum error mitigation. In Section 4.1.2.1 we introduce unitary folding, a framework for digital

noise scaling of generic gate noise. We then move to the extrapolation step of ZNE, which we

characterize as an inference problem. We study non-adaptive (Section 4.1.3) extrapolation methods

and introduce adaptive (Section 4.1.4) extrapolation to improve performance and reduce resource

overhead for ZNE.

4.1.2 Noise scaling methods

In [116] and [137] a time-scaling approach implements the scaling of effective noise on the back-

end quantum processor. Control pulses for each gate are re-calibrated to execute the same unitary

evolution but applied over a longer amount of time. This effectively scales up the noise. While

successfully used to suppress errors in single and two-qubit quantum programs on a superconducting

quantum processor [137], time-scaling has some disadvantages:

• It requires programmer access to low-level physical-control parameters. This level of access
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is not available on all quantum hardware and breaks the gate model abstraction.

• Control pulses must be re-calibrated for each time duration and error-scaling. This calibration

can be resource intensive.

Instead, we study alternative approaches that require only a gate-level access to the system.

Rather than increasing the time duration of each gate, we increase the total number of gates or,

similarly, the circuit depth. This procedure is similar to what is usually done by a quantum compiler

but with the opposite goal: instead of optimizing a circuit to reduce its depth or its gate count,

we are interested in “de-optimizing” to increase the effect of noise and decoherence. We use the

term digital to describe noise-scaling techniques that manipulate just the quantum program at the

instruction set layer. Their advantage is that they can be used with the gate model access that is

common to most quantum assembly languages [138, 139, 140]. Low level access to pulse shaping

and detailed physical knowledge of quantum processor physics is no longer required. Our digital

framework incorporates and generalizes some recent related work [141, 142].

4.1.2.1 Unitary folding

We describe two methods–circuit folding and gate folding–for scaling the effective noise of a

quantum computation based on unitary folding, i.e., replacing a unitary circuit (or gate)𝑈 by:

𝑈 → 𝑈 (𝑈†𝑈)𝑛, (4.1)

where 𝑛 is a positive integer. In an ideal circuit, since 𝑈†𝑈 is equal to the identity, this folding

operation has no logical effect. However, on a real quantum computer, we expect that the noise

increases since the number of physical operations scales by a factor of 1 + 2𝑛. This effect is clearly

visible in the quantum computing experiment reported in Figure 4.5.

A similar trick was used in Ref. [141, 142], where noise was artificially increased by inserting

pairs of CNOT gates into quantum circuits. In our framework,𝑈 can represent the full input circuit

or, alternately, some local gates which are inserted with different strategies.
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4.1.2.2 Circuit folding

Assume that the circuit is composed of 𝑑 unitary layers:

𝑈 = 𝐿𝑑 ...𝐿2𝐿1, (4.2)

where 𝑑 represents the depth of the circuit and each block 𝐿 𝑗 can either represent a single layer of

operations or just a single gate.

In circuit folding, the substitution rule in Eq. (4.1) is applied globally, i.e., to the entire circuit.

This scales the effective depth by odd integers. In order to have a more fine-grained resolution of the

scaling factor, we can also allow for a final folding applied to a subset of the circuit corresponding

to its last 𝑠 layers. The general circuit folding replacement rule is therefore:

𝑈 → 𝑈 (𝑈†𝑈)𝑛𝐿†
𝑑
𝐿
†
𝑑−1 . . . 𝐿

†
𝑠𝐿𝑠 . . . 𝐿𝑑−1𝐿𝑑 . (4.3)

The total number of layers of the new circuit is 𝑑 (2𝑛 + 1) + 2𝑠. This means that we can stretch the

depth of a circuit up to a scale resolution of 2/𝑑, i.e., we can apply the scaling 𝑑 → 𝜆𝑑, where:

𝜆 = 1 + 2𝑘
𝑑
, 𝑘 = 1, 2, 3, . . . . (4.4)

Conversely, for every real 𝜆, one can apply the following procedure:

1. Determine the closest integer 𝑘 to the real quantity 𝑑 (𝜆 − 1)/2.

2. Perform an integer division of 𝑘 by 𝑑. The quotient corresponds to 𝑛 and the reminder to 𝑠.

3. Apply 𝑛 integer foldings and a final partial folding as described in Eq. (4.3).

From a physical point of view, the circuit folding method corresponds to repeatedly driving the

Hamiltonian of the qubits forwards and backwards in time, such that the ideal unitary part of the

dynamics is not changed while the non-unitary effect of the noise is amplified.

119



Table 4.1: Different methods for implementing gate (or layer) folding

Method Subset of indices to fold
From left 𝑆 = {1, 2, . . . , 𝑠}
From right 𝑆 = {𝑑, 𝑑 − 1, . . . , 𝑑 − 𝑠 + 1}
At random 𝑆 = 𝑠 different indices randomly sampled

without replacement from {1, 2, . . . , 𝑑}.

4.1.2.3 Gate (or layer) folding

Instead of globally folding a quantum circuit, appending the folds at the end, one could fold a subset

of individual gates (or layers) in place. Let us consider the circuit decomposition of Eq. (4.2) where

we can assume that each unitary operator 𝐿 𝑗 represents just a single gate applied to one or two

qubits of the system or, alternatively, each 𝐿 𝑗 could be a layer of several gates.

If we apply the replacement rule given in Eq. (4.1) to each gate (or layer) 𝐿 𝑗 of the circuit, it is

clear that the initial number of gates (layers) 𝑑 is scaled by an odd integer 1 + 2𝑛. Similarly to the

case of circuit folding, we can add a final partial folding operation to get a scaling factor which is

more fine grained. In order to achieve such “partial” folding, let us define an arbitrary subset 𝑆 of

the full set of indices {1, 2, . . . 𝑑}, such that its number of elements is a given integer 𝑠 = |𝑆 |. In

this setting, we can define the following gate (layer) folding rule:

∀ 𝑗 ∈ {1, 2, . . . 𝑑}, 𝐿 𝑗 →


𝐿 𝑗 (𝐿†𝑗𝐿 𝑗 )𝑛 i 𝑓 𝑗 ∉ 𝑆,

𝐿 𝑗 (𝐿†𝑗𝐿 𝑗 )𝑛+1 i 𝑓 𝑗 ∈ 𝑆.

(4.5)

Depending on how we chose the elements of the subset 𝑆, different noise channels will be added

at different positions along the circuit and so we can have different results. The optimal choice may

depend on the particular circuit and noise model. We focus on three different ways of selecting

the subset of gates (layers) to be folded: f rom left, f rom right and at random. Depending on the

method, the prescription for selecting the subset 𝑆 of indices is reported in Table 4.1.

It is easy to check that the number of gates (or layers), obtained after the application of the gate

folding rule given in Eq. (4.5) is 𝑑 (2𝑛 + 1) + 2𝑠. This is exactly the same number obtained after

the application of the global circuit-folding rule given in Eq. (4.3). As a consequence, the number
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of gates (layers) is still stretched by a factor 𝜆, i.e., 𝑑 → 𝜆𝑑, where 𝜆 can take the specific values

reported in Eq. (4.4). Moreover, if we are given an arbitrary 𝜆 and we want to determine the values

of 𝑛 and 𝑠, we can simply apply the same procedure that was given in the case of circuit-folding.

While preparing this manuscript we became aware of [141] whose technique is similar to our

gate folding (at random). The main difference is that [141] focuses mainly on CNOT gates and uses

random sampling with replacement, in our case any gate (or layer) can be folded and the sampling

is performed without replacement. The rationale of this choice is to sample in a more uniform way

the input circuit, and to converge smoothly to the odd integer values of 𝜆 = 1 + 2𝑛 where all the

input gates are folded exactly 𝑛 times.

4.1.2.4 Advantages and limitations of unitary folding

The main advantage of the unitary folding approach is that is is digital, i.e., noise is scaled using a

high level of abstraction from the physical hardware. Moreover, it can be applied without knowing

the details of the underlying noise-model. It is natural to ask: how justified is this approach

physically? Does unitary folding actually correspond to an effective scaling of the physical noise

of the hardware?

For example, unitary folding may fail to amplify systematic and coherent errors since applying

the inverse of a gate will usually undo such errors instead of increasing them. It is also clear

that unitary folding is not appropriate to scale state preparation and measurement (SPAM) noise,

since this noise is independent of the circuit depth. Instead, we expect that unitary folding can be

used for scaling incoherent noise models which are associated both to the application of individual

gates and/or to the time-length of the overall computation. The more we increase the depth of

the circuit, the more such kinds of noise are usually amplified. In this work this intuition is

confirmed by numerical and experimental examples in which unitary folding is successfully used

for implementing ZNE (see Figures 4.2, 4.3, 4.4 and 4.5).

The effect of unitary folding can be analytically derived when the noise-model for each gate 𝐿 𝑗
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is a global depolarizing channel with a gate-dependent parameter 𝑝 𝑗 ∈ [0, 1], acting as:

𝜌
noisy gate
−−−−−−−→ 𝑝 𝑗𝐿 𝑗 𝜌𝐿

†
𝑗
+ (1 − 𝑝 𝑗 )I/𝐷, (4.6)

where 𝐷 is the dimension of the Hilbert space associated to all the qubits of the circuit. Since the

depolarizing channel commutes with unitary operations, we can postpone the noise channels of all

the gates until the end of the full circuit𝑈, resulting into a single final depolarizing channel:

𝜌
noisy circuit
−−−−−−−−−→ 𝑝𝑈𝜌𝑈† + (1 − 𝑝)I/𝐷, (4.7)

where 𝑝 = Π 𝑗 𝑝 𝑗 is the product of all the gate-dependent noise parameters 𝑝 𝑗 . This simple

commutation property does not hold for local depolarizing noise, unless we are dealing with

singe-qubit circuits.

Consider what happens if we apply unitary folding with a scale factor 𝜆 = 1 + 2𝑛 (odd positive

integer). For both the circuit folding and the gate folding methods, defined in Eq. (4.3) and (4.5)

respectively, the final result is exactly equivalent to an exponential scaling of all the depolarizing

parameters of each gate 𝑝 𝑗 → 𝑝𝜆
𝑗

or, equivalently, to the global operation:

𝜌
noise + unitary folding
−−−−−−−−−−−−−−−−→ 𝑝𝜆𝑈𝜌𝑈† + (1 − 𝑝𝜆)I/𝐷. (4.8)

This implies that unitary folding is equivalent to an exponential parameterization of the noise level

𝑝, and so any expectation value is also scaled according to an exponential ansatz:

𝐸 (𝜆) = 𝑎 + 𝑏𝑝𝜆, (4.9)

which we can fit and extrapolate according to the methods discussed in the Sections 4.1.3 and 4.1.4.

Equations (4.8) and (4.9) are valid only for depolarizing noise and for odd scaling factors 𝜆.

For gate-independent depolarizing noise, the global parameter 𝑝 is a function of the total number

of gates only. This means that all the folding methods (circuit, from left, from right and at random)

become equivalent, and induce the exponential scalings of Eqs. (4.8) and (4.9)) for all values of 𝜆.
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4.1.2.5 Numerical results

We executed density matrix simulations using unitary folding for zero-noise extrapolation. Broadly

these results show that unitary folding is effective in a variety of situations. Furthermore, we

benchmark on both random circuits and a variational algorithm at 6 and more qubits. This extends

previous work that focuses on the single and two qubit cases [116, 117, 137, 118]. Figure 4.2 shows

a simulated two qubit randomized benchmarking experiment under 1% depolarizing noise with and

without error-mitigation. Noise was scaled using circuit folding as described in Section 4.1.2.2.

Figure 4.3 shows the distribution of noise reduction by ZNE with circuit folding on randomly

generated six qubit circuits. Let 𝐸𝑚 be the mitigated expectation value of a circuit after zero-

noise extrapolation. Then 𝑅𝑚 = |𝐸𝑚 − 𝐸 (0) | is the absolute value of the error in the mitigated

expectation and 𝑅𝑢 = |𝐸 (1) − 𝐸 (0) | is the absolute value of the error of the unmitigated circuit.

The improvement from ZNE is quantified as 𝑅𝑢/𝑅𝑚.

Table 4.2 (see Section 4.1.3) provides a comparison different combinations of folding and

extrapolation techniques on a set of randomized benchmarking circuits.

Figure 4.4 shows the performance of unitary folding ZNE on a variational algorithm. Using

exact density matrix simulation we study the percentage closer to optimal achieved by the quantum

approximation optimization algorithm [143] on random instances of MAXCUT.

4.1.3 Non-adaptive extrapolation methods: Zero noise extrapolation as statistical inference

In Section 4.1.2, we discussed several methods to scale noise. In this section we study, from an

estimation theory perspective, the second component of ZNE: extrapolating the measured data to

the zero-nose limit.

We assume that the output of the quantum computation is a single expectation value 𝐸 (𝜆),

where 𝜆 is the noise scale factor. This expectation could be the result of a single quantum circuit or

some combinations of quantum circuits with classical post-processing. The expectation value 𝐸 (𝜆)

is a real number which, in principle, can only be estimated in the limit of infinite measurement

samples. In a real situation with 𝑁 samples, only a statistical estimation of the expectation value is
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Figure 4.2: Comparison of two qubit randomized benchmarking with & without error mitigation.
Data is taken by density matrix simulation with a 1% depolarizing noise model. The unmitigated
simulation results in a randomized benchmarking decay of 97.9%. Mitigation is applied using
circuit folding and an order-2 polynomial extrapolation at 𝜆 = 1, 1.5, 2.0. With mitigation the
randomized benchmarking decay improves to 99.0%. Since we do not impose any constraint on
the domain of the extrapolated results, some of the mitigated expectation values are slightly beyond
the physical upper limit of 1. This is an expected effect of the noise introduced by the extrapolation
fit. If necessary, one could enforce the result to be physical by using a more advanced Bayesian
estimator.

Algorithm 5: Generic non-adaptive extrapolation
Data: A set of increasing noise scale factors λ = {𝜆1, 𝜆2, . . . 𝜆𝑚}, with 𝜆 𝑗 ≥ 1 and fixed

number of samples 𝑁 for each 𝜆 𝑗 .
Result: A mitigated expectation value

1 y ←− ∅;
2 begin
3 for 𝜆 𝑗 ∈ λ do
4 𝑦 𝑗 ←− 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜆 𝑗 , 𝑁);
5 𝐴𝑝𝑝𝑒𝑛𝑑

(
y, 𝑦 𝑗

)
;

/* Abitrary best fit algorithm (e.g., least squares) */
6 𝚪∗ ←− 𝐵𝑒𝑠𝑡𝐹𝑖𝑡 (𝐸m𝑜𝑑𝑒𝑙 (𝜆; 𝚪), (λ, y));
7 return 𝐸m𝑜𝑑𝑒𝑙 (0; 𝚪∗);

actually possible:

𝐸̂ (𝜆) = 𝐸 (𝜆) + 𝛿, (4.10)

where 𝛿 is a random variable with zero mean and variance 𝜎2 = E(𝛿2) = 𝜎2
0 /𝑁 , with 𝜎2

0

corresponding to the single-shot variance. In other words, we can sample a real prediction 𝑦 from
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Figure 4.3: A comparison of improvements from ZNE (using quadratic extrapolation with folding
from left) averaged across all output bitstrings from 250 random six-qubit circuits. Results are from
exact density matrix simulations with a base of 1% depolarizing noise. The horizontal axis shows
a ratio of 𝐿2 distances from the noiseless probability distribution and the vertical axis shows the
frequency of obtaining this result. ZNE improves on the noisy result by factors of 1-7X. The average
mitigated error is 0.075 ± 0.035, while the unmitigated errors average 0.114 ± 0.050. Each circuit
has 40 moments with single-qubit gates sampled randomly from {𝐻, 𝑋,𝑌, 𝑍, 𝑆, 𝑇} and two-qubit
gates sampled randomly from {iSWAP,CZ} with arbitrary connectivity.

the probability distribution:

𝑃(𝐸̂ (𝜆) = 𝑦) = N(𝐸 (𝜆) − 𝑦, 𝜎2), (4.11)

where N(𝜇, 𝜎2) is a generic distribution (typically Gaussian), with mean 𝜇 and variance 𝜎2 =

𝜎2
0 /𝑁 .

Given a set of 𝑚 scaling parameters λ = {𝜆1, 𝜆2, . . . 𝜆𝑚}, with 𝜆 𝑗 ≥ 1, and the corresponding

results

y = {𝑦1, 𝑦2, . . . 𝑦𝑚}, (4.12)

the ZNE problem is to build a good estimator 𝐸̂ (0) for 𝐸 (𝜆 = 0), such that its bias

B𝑖𝑎𝑠(𝐸̂ (0)) = E(𝐸̂ (0) − 𝐸 (0)), (4.13)

and its variance

V𝑎𝑟 (𝐸̂ (0)) = E(𝐸̂ (0)2) −E(𝐸̂ (0))2, (4.14)
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Figure 4.4: Percent closer to optimal on random MAXCUT executions. 14 Erdos-Renyi random
graphs were generated at each number 𝑛. Each random graph has 𝑛 nodes and 𝑛 edges. QAOA
was then run (with 𝑝 = 2 QAOA steps) and optimized using Nelder-Mead with and without error
mitigation. Results are from exact density matrix simulations with a base of 2% depolarizing noise.
For the mitigated case, we used zero noise extrapolation with global unitary folding for scaling
and linear extrapolation at noise scalings of 1, 1.5 and 2. The y axis shows the percent closer
to the optimal solution that was gained by ZNE. Here 𝐸𝑢 is the absolute error in the unmitigated
expectation and 𝐸𝑚 is the absolute error in the mitigated expectation. The violin plot shows the
distribution of percentage improvements over the 14 sampled instances. Variance is zero for 2 and
3 nodes graphs as there is only a single valid graph with 𝑛 nodes and edges for 𝑛 = 2, 3.

are both reasonably small. More precisely, a typical figure of merit for the quality the estimator is

its mean squared error with respect to the true unknown parameter:

M𝑆𝐸 (𝐸̂ (0)) = E(𝐸̂ (0) − 𝐸 (0))2 (4.15)

= V𝑎𝑟 (𝐸̂ (0)) + B𝑖𝑎𝑠(𝐸̂ (0))2. (4.16)

If the expectation value 𝐸 (𝜆) can be an arbitrary function of𝜆without any regularity assumption,

then zero-noise extrapolation is impossible. Indeed its value at 𝜆 = 0 would be arbitrary and

unrelated to its values at 𝜆 ≥ 1. However from physical considerations, it is reasonable to have

a model for 𝐸 (𝜆), e.g., we can assume a linear, a polynomial or an exponential dependence with

respect to 𝜆. For example, for a depolarizing noise model, one can use the exponential ansatz given

in Eq. (4.9).

If we chose a generic model 𝐸model(𝜆;𝚪) for the quantum expectation value, where 𝚪 represents

the model parameters, then the zero-noise-extrapolation problem reduces to a regression problem.

Algorithm 5 is the general form for a non-adaptive ZNE. Alternatively, the scale factors 𝜆 𝑗 and the
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associated numbers of samples 𝑁 𝑗 can be chosen in an adaptive way, depending on the results of

intermediate steps. This adaptive extrapolation method is studied in more details in Section 4.1.4.

We focus on two main non-adaptive models, the polynomial ansatz and the poly-exponential

ansatz. These two general models, give rise to a large variety of specific extrapolation algorithms.

Some well known methods, such as Richardson’s extrapolation, are particular cases. Some other

methods have, to our knowledge, not been applied before for quantum error mitigation.

4.1.3.1 Polynomial extrapolation

The polynomial extrapolation method is based on the following polynomial model of degree 𝑑:

𝐸
(𝑑)
p𝑜𝑙𝑦 (𝜆) = 𝑐0 + 𝑐1𝜆 + . . . 𝑐𝑑𝜆𝑑 , (4.17)

where 𝑐0, 𝑐1, . . . 𝑐𝑑 are 𝑑 + 1 unknown real parameters. This essentially corresponds to a Taylor

series approximation and is physically justified in the weak noise regime.

In general, the problem is well defined only if the number of data points 𝑚 is at least equal

to the number of free parameters 𝑑 + 1. As opposed to Richardson’s extrapolation [116], a useful

feature of this method is that we can keep the extrapolation order 𝑑 small but still use a large

number of data points 𝑚. This avoids an over-fitting effect: if we increase the order 𝑑 by too much,

then the model is forced to follow the random statistical fluctuations of our data at the price of a

large generalization error for the zero-noise extrapolation. In terms of the inference error given in

Eq. (4.15), if we increase 𝑑 by too much, then the bias is reduced but the variance can grow so

much that the total mean squared error is actually increased.

4.1.3.2 Linear extrapolation

Linear extrapolation is perhaps the simplest method and is a particular case of polynomial extrap-

olation. It corresponds to the model:

𝐸l𝑖𝑛𝑒𝑎𝑟 (𝜆) = 𝐸 (𝑑=1)
p𝑜𝑙𝑦 (𝜆) = 𝑐0 + 𝑐1𝜆. (4.18)
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In this case a simple analytic solution exists, corresponding to the ordinary least squared estimator

of the intercept parameter:

𝐸̂l𝑖𝑛𝑒𝑎𝑟 (0) = 𝑦̄ −
𝑆𝜆𝑦

𝑆𝜆𝜆
𝑥, (4.19)

where

𝜆̄ =
1
𝑚

∑︁
𝑗

𝜆 𝑗 , 𝑦̄ =
1
𝑚

∑︁
𝑗

𝑦 𝑗 ,

𝑆𝜆𝑦 =
∑︁
𝑗

(𝜆 𝑗 − 𝜆̄) (𝑦 𝑗 − 𝑦̄), 𝑆𝜆𝜆 =
∑︁
𝑗

(𝜆 𝑗 − 𝜆̄)2. (4.20)

With respect to the zero noise value of the model 𝐸l𝑖𝑛𝑒𝑎𝑟 (0), the estimator is unbiased. If the

statistical uncertainty 𝜎2 for each 𝑦 𝑗 is the same, the variance for 𝐸̂l𝑖𝑛𝑒𝑎𝑟 (0) is:

V𝑎𝑟 [𝐸̂l𝑖𝑛𝑒𝑎𝑟 (0)] = 𝜎2
[

1
𝑚
+ 𝜆̄

2

𝑆𝜆𝜆

]
. (4.21)

4.1.3.3 Richardson extrapolation

Richardson’s extrapolation is also a particular case of polynomial extrapolation where 𝑑 = 𝑚 − 1,

i.e., the order is maximized given the number of data points:

𝐸R𝑖𝑐ℎ (𝜆) = 𝐸 (𝑑=𝑚−1)
p𝑜𝑙𝑦 (𝜆) = 𝑐0 + 𝑐1𝜆 + . . . 𝑐𝑚−1𝜆

𝑚−1. (4.22)

This is the only case in which the fitted polynomial perfectly interpolates the 𝑚 data points such

that, in the ideal limit of an infinite number of samples 𝑁 → ∞, the error with respect to the

true expectation value is by construction 𝑂 (𝑚). Using the interpolating Lagrange polynomial, the

estimator can be explicitly expressed as:

𝐸̂R𝑖𝑐ℎ (0) = 𝑐0 =

𝑚∑︁
𝑘=1

𝑦𝑘

∏
𝑖≠𝑘

𝜆𝑖

𝜆𝑖 − 𝜆𝑘
, (4.23)

where we assumed that all the elements of λ are different.

The error of the estimator is 𝑂 (𝑚) only in the asymptotic limit 𝑁 → ∞. In other words 𝑂 (𝑚)

corresponds to the bias term in Eq. (4.15). In a real scenario, 𝑁 is finite, and the variance term in
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Eq. (4.15) grows exponentially as we increase 𝑚. This fact can be easily shown in the simplified

case in which the noise scale factors are equally spaced, i.e., 𝜆𝑘 = 𝑘 𝜆1 where 𝑘 = 1, 2, . . . 𝑚.

Substituting this assumption into Eq. (4.23) we get:

𝐸̂R𝑖𝑐ℎ (0) =
𝑚∑︁
𝑘=1

𝑦𝑘

∏
𝑖≠𝑘

𝑖

𝑖 − 𝑘 =

𝑚∑︁
𝑘=1

𝑦𝑘 (−1)𝑘−1
(
𝑚

𝑘

)
. (4.24)

If we assume that each expectation value is sampled with the same statistical variance 𝜎2 as

described in Eq. (4.11), since 𝐸̂R𝑖𝑐ℎ (0) is a linear combination of the measured expectation values

{𝑦𝑘 }, its variance is given by:

V𝑎𝑟 (𝐸̂R𝑖𝑐ℎ (0)) = 𝜎2
𝑚∑︁
𝑘=1

(
𝑚

𝑘

)2

= 𝜎2
[(

2𝑚
𝑚

)
− 1

]
𝑚−→∞−−−−−→ 𝜎2 22𝑚

√
𝜋𝑚

, (4.25)

where we used the Vandermonde’s identity and, in the last step, the Stirling approximation.

The practical implication of Eq. (4.25) is that the zero-nose limit predicted by the Richardson’s

estimator is characterized by a statistical uncertainty which scales exponentially with the number

of data points.

4.1.3.4 Poly-Exponential extrapolation

The poly-exponential ansatz of degree 𝑑 is:

𝐸
(𝑑)
p𝑜𝑙𝑦𝑒𝑥𝑝 (𝜆) = 𝑎 ± 𝑒

𝑧(𝜆) , 𝑧(𝜆) := 𝑧0 + 𝑧1𝜆 + . . . 𝑧𝑑𝜆𝑑 . (4.26)

where 𝑎, 𝑧0, 𝑧1, . . . 𝑧𝑑 are 𝑑+2 parameters. From physical considerations, it is reasonable to assume

that 𝐸 (𝜆) converges to a finite asymptotic value i.e.:

𝐸 (𝜆) 𝜆→∞−−−−→ 𝑎 ⇐⇒ 𝑧(𝜆) 𝜆→∞−−−−→ −∞. (4.27)

There are two important scenarios: (i) where 𝑎 is unknown and so a non-linear fit should be

performed and (ii) where 𝑎 is deduced from asymptotic physical considerations. For example, if

we know that in the limit of 𝜆 → ∞ the state of the system is completely mixed or thermal, it is
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possible to fix the value of 𝑎 such that the poly-exponential ansatz (4.26) is left with only 𝑑 + 1

unknown parameters: 𝑧0, 𝑧1, . . . 𝑧𝑑 . If the asymptotic limit 𝑎 is known, we can apply the following

procedure:

1. Evaluate {𝑦′
𝑘
} = {log( |𝑦𝑘 − 𝑎 | + 𝜖)}, representing the measurement results in a convenient

logarithmic space with coordinates (𝑦′
𝑘
, 𝜆𝑘 ), with a small regularizing constant 𝜖 > 0.

2. The model of Eq. (4.26) in the logarithmic space (𝑦′
𝑘
, 𝜆𝑘 ) reduces to the polynomial 𝑧(𝜆).

3. Estimate the zero-noise limit in the logarithmic space 𝑧(0) = 𝑧0 with a standard polynomial

extrapolation. If necessary different weights can be used for different scale factors, taking

into account the non-linear propagation of statistical errors.

4. Convert back to the original space, obtaining the final estimator 𝐸̂ (0) = 𝑎 ± 𝑒𝑧(0) .

This allows us to map a non-linear regression problem into a polynomial fit that is linear with

respect to the parameters and therefore much more stable. However, many reasonable alternative

approaches exist like maximum likelihood optimization. Alternatively a Bayesian approach could

be used, especially if we have prior information about the parameters of the model.

4.1.3.5 Exponential extrapolation

Exponential extrapolation is a particular case of the more general poly-exponential method. It

corresponds to the model:

𝐸e𝑥𝑝 (𝜆) = 𝐸 (𝑑=1)
p𝑜𝑙𝑦𝑒𝑥𝑝 (𝜆) = 𝑎 ± 𝑒

𝑧0+𝑧1𝜆 = 𝑎 + 𝑏𝑒−𝑐𝜆, (4.28)

where the set of real coefficients 𝑎, 𝑏, 𝑐 is a way of parametrizing the same ansatz, alternative but

equivalent to 𝑎, 𝑧0, 𝑧1. This model was discussed in [118] and is generalized by our extrapolation

framework. In particular, increasing the order 𝑑, for example to 𝑑 = 2, and using the poly-

exponential model (4.26) we can capture small deviations from the ideal exponential assumption,

possibly obtaining a more accurate zero-noise extrapolation.
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Scaling Extrapolation Error %
(dep.)

Error %
(amp. damp.)

none unmitigated 29.9± 5.1 16.7± 4.0
circuit linear (𝑑 = 1) 14.6± 4.6 5.40± 2.3
circuit quadratic (𝑑 = 2) 6.35± 3.6 3.53± 3.4
circuit Richardson (𝑑 = 3) 17.6± 11 17.9± 16
circuit exponential (𝑎 = 0.25) 2.73± 1.9 2.06± 1.6
circuit adapt. exp. (𝑎 = 0.25) 1.27± 1.1 2.69± 2.8
at random linear (𝑑 = 1) 15.6± 5.3 5.20± 2.4
at random quadratic (𝑑 = 2) 5.54± 4.4 8.00± 8.1
at random Richardson (𝑑 = 3) 30.0± 24 24.0± 18
at random exponential (𝑎 = 0.25) 2.84± 1.8 0.95± 1.0
at random adapt. exp. (𝑎 = 0.25) 1.77± 1.4 2.18± 1.2
from left linear (𝑑 = 1) 14.4± 4.5 5.16± 2.3
from left quadratic (𝑑 = 2) 6.73± 3.7 3.88± 3.7
from left Richardson (𝑑 = 3) 18.4± 12 16.1± 13
from left exponential (𝑎 = 0.25) 3.17± 2.1 2.19± 2.0
from left adapt. exp. (𝑎 = 0.25) 1.43± 1.1 3.08± 3.6

Table 4.2: Average of 20 different two-qubit randomized benchmarking circuits with mean depth
27. The percent mean absolute error from the exact value of 1 is reported for a depolarizing noise
with 𝑝 = 1% and an amplitude damping channel with 𝛾 = 0.01. For all non-adaptive methods
we used 𝜆 = {1, 1.5, 2, 2.5}. Adaptive extrapolation was iterated up to 4 scale factors. All the
results reported in this table are obtained with exact density matrix simulations. The best result for
each noise model is highlighted with a bold font, while errors larger than the unmitigated one are
italicized.

4.1.3.6 Benchmark comparisons of ZNE methods

Benchmarks comparing the performance of ZNE methods are given in Table 4.2. In all cases,

besides for Richardson extrapolation, ZNE improves on the unmitigated noise value, however the

performance varies significantly. Furthermore, one scaling or extrapolation method does not strictly

dominate others.

Different extrapolation methods are compared on IBMQ’s London superconducting quantum

processor in Fig. 4.5. Here random gate folding scales the noise of 50 different two-qubit randomized

benchmarking circuits. The ideal expectation value for all circuits is 1. The order 2 polynomial fit,

and the exponential fit outperform Richardson extrapolation. In fact, Fig. 4.5 shows the expectation

value for Richardson extrapolation when only the first 3 data points are considered. Instability in
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Figure 4.5: Comparison of extrapolation methods averaged over 50 two-qubit randomized bench-
marking circuits executed on IBMQ’s “London” five-qubit chip. The circuits had, on average, 97
single qubit gates and 17 two-qubit gates. The true zero-noise value is ⟨0|𝜌 |0⟩ = 1 and different
markers show extrapolated values from different fitting techniques.

the Richardson extrapolation for more points, as described in Section 4.1.3.3, causes nonphysical

results when applied to all the measured data. This is an example in which vanilla Richardson

extrapolation is not sufficient to provide stable results.

4.1.4 Adaptive zero noise extrapolation

In Section 4.1.3, we considered only non-adaptive extrapolation methods. However, in order to

reduce the computational overhead, we can choose the scale factors and the number of samples in

an adaptive way as described in Algorithm 6.

Differently from the non-adaptive case, in this adaptive procedure (Alg. 6) the measured scale

factors λ are not monotonically increasing. Indeed in the adaptive step, 𝜆next can take any value

(above or equal to 1). In particular, 𝜆next could also be equal to a previous scale factor 𝜆 𝑗 , for some

𝑗 . In this case, the additional measurement samples 𝑁next will improve the statistical estimation of

𝐸 (𝜆 𝑗 ).

Now, we present an example of adaptive extrapolation which is based on the exponential ansatz

𝐸exp(𝜆) = 𝑎 + 𝑏𝑒−𝑐𝜆 that we have already introduced in Eq. (4.28). We also assume that the

asymptotic value 𝑎 is known. This implies that at least two scale factors should be measured to fit
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Algorithm 6: Generic adaptive extrapolation
Data: An initial set of 𝑚 noise scale factors λ = {𝜆1, 𝜆2, . . . 𝜆𝑚}, with 𝜆 𝑗 ≥ 1, 𝑚 sample

numbers N = (𝑁1, 𝑁2, . . . 𝑁𝑚) and a maximum number of total samples 𝑁max.
Result: A mitigated expectation value

1 begin
/* Initialization */

2 y ←− ∅;
3 for 𝜆 𝑗 ∈ λ do
4 𝑦 𝑗 ←− 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜆 𝑗 , 𝑁 𝑗 );
5 𝐴𝑝𝑝𝑒𝑛𝑑

(
y, 𝑦 𝑗

)
;

/* Adaptive loop */
6 𝑁used ←− 0;
7 while 𝑁used < 𝑁max do
8 𝚪∗ ←− 𝐵𝑒𝑠𝑡𝐹𝑖𝑡 (𝐸m𝑜𝑑𝑒𝑙 (𝜆; 𝚪), (λ, y));
9 𝜆next ←− 𝑁𝑒𝑤𝑆𝑐𝑎𝑙𝑒(𝚪∗,λ, y);

10 𝑁next ←− 𝑁𝑒𝑤𝑁𝑢𝑚𝑆𝑎𝑚𝑝𝑙𝑒𝑠(𝚪∗,λ, y);
11 𝑦next ←− 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜆next, 𝑁next);
12 𝐴𝑝𝑝𝑒𝑛𝑑 (λ, 𝜆next);
13 𝐴𝑝𝑝𝑒𝑛𝑑 (y, 𝑦next);
14 𝑁used ←− 𝑁used + 𝑁next;
15 return 𝐸m𝑜𝑑𝑒𝑙 (0; 𝚪∗);

the parameters 𝑏 and 𝑐. We first consider this particular case and then we generalize the method to

an a arbitrary number of scale factors, which will be chosen in an adaptive way.

4.1.4.1 Exponential extrapolation with two scale factors

We assume only two scale factors 𝜆1 and 𝜆2 (typically, 𝜆1 is 1). As discussed in Section 4.1.3, we

can estimate the corresponding expectation values, 𝐸 (𝜆1) and 𝐸 (𝜆2), with a statistical uncertainty

of 𝜎2
1 = 𝜎2

0 /𝑁1 and 𝜎2
2 = 𝜎2

0 /𝑁2, respectively. Here, we are implicitly assuming that the single shot

variance 𝜎2
0 is independent of 𝜆, such that the estimation precision is only determined by number of

samples 𝑁1 and 𝑁2. The measurement process will produce two results 𝑦1 and 𝑦2, whose statistical

distribution is given by Eq. (4.11).

Since the parameter 𝑎 is known, we can use the points (𝜆1, 𝑦1) and (𝜆2, 𝑦2) to estimate 𝑏 and

𝑐 of Eq. (4.28). The two estimators 𝑏̂ and 𝑐 can be determined by the unique ansatz interpolating
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the two points, whose parameters are:

𝑐 =
1

𝜆2 − 𝜆1
log

𝑦1 − 𝑎
𝑦2 − 𝑎

, (4.29)

𝑏̂ = (𝑦1 − 𝑎)
𝜆2

𝜆2−𝜆1 (𝑦2 − 𝑎)−
𝜆1

𝜆2−𝜆1 . (4.30)

The corresponding estimator for the zero-noise limit is 𝐸̂exp(0) = 𝑎+ 𝑏̂ where, since 𝑎 is known,

the error is only due to the statistical noise of 𝑏̂.

This estimator depends on the empirical variables 𝑦1, 𝑦2, with statistical variances 𝜎2
1 = 𝜎2

0 /𝑁1

and 𝜎2
2 = 𝜎2

0 /𝑁2 respectively. Such measurement errors will propagate to the estimator 𝑏̂. To

leading order in 𝜎2
1 and 𝜎2

2 , we have:

M𝑆𝐸 (𝑏̂) =
(
𝜕𝑏̂

𝜕𝑦1

)2

𝜎2
1 +

(
𝜕𝑏̂

𝜕𝑦2

)2

𝜎2
2 . (4.31)

The explicit evaluation of Eq. (4.31), yields:

M𝑆𝐸 (𝑏̂) =
𝜎2

0
(𝜆2 − 𝜆1)2

[
𝜆2

2 𝑒
2𝑐𝜆1

𝑁1
+
𝜆2

1 𝑒
2𝑐𝜆2

𝑁2

]
. (4.32)

The previous equation shows that the error depends on the choice of the scale factors 𝜆1 and 𝜆2 but

also on the associated measurement samples 𝑁1 and 𝑁2.

Error minimization Let us first assume that we have at disposal only a total budget𝑁max = 𝑁1+𝑁2

of circuit evaluations and that 𝜆1 and 𝜆2 are fixed. Minimizing Eq. (4.32), with respect to 𝑁1 and

𝑁2, we get:

𝑁1 = 𝑁max
𝜆1

𝜆1 + 𝜆2 𝑒−𝑐(𝜆2−𝜆1)

𝑁2 = 𝑁max
𝜆2 𝑒

−𝑐(𝜆2−𝜆1)

𝜆1 + 𝜆2 𝑒−𝑐(𝜆2−𝜆1)
(4.33)

and the corresponding error becomes:

M𝑆𝐸 (𝑏̂) = 𝜎2
0

[
𝜆2 𝑒

𝑐𝜆1 + 𝜆1 𝑒
𝑐𝜆2

𝜆2 − 𝜆1

]2

. (4.34)
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Algorithm 7: Adaptive exponential extrapolation
Data: An exponential model 𝐸exp(𝜆) = 𝑎 + 𝑏𝑒−𝑐𝜆 with a known/estimated 𝑎. A maximum

number of total samples 𝑁max, a fixed number of samples per iteration 𝑁batch and a
minimum scale factor 𝜆1 (typically equal to 1).

Result: A mitigated expectation value
1 begin
2 𝑐 ←− 1; /* Initial guess */
3 𝛼←− 1.27846; /* Alpha in Eq. (4.36) */
4 d𝑎𝑡𝑎 ←− ∅;
5 𝑁used ←− 0 ;
6 while 𝑁used < 𝑁max do
7 𝜆2 ←− 𝜆1 + 𝛼/𝑐;
8 𝑁1 ←− 𝑁batch × 𝑐 𝜆1/𝛼

𝑐 𝜆1+𝛼−1 ;

9 𝑁2 ←− 𝑁batch × (1+𝑐 𝜆1/𝛼) (𝛼−1)
𝑐 𝜆1+𝛼−1 ;

10 𝑁used ←− 𝑁used + 𝑁1 + 𝑁2;
11 𝑦1 ←− 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜆1, 𝑁1);
12 𝑦2 ←− 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜆2, 𝑁2);
13 𝐴𝑝𝑝𝑒𝑛𝑑 (d𝑎𝑡𝑎, (𝜆1, 𝑦1));
14 𝐴𝑝𝑝𝑒𝑛𝑑 (d𝑎𝑡𝑎, (𝜆2, 𝑦2));

/* New estimate of c */
15 𝑐 ←− 𝐵𝑒𝑠𝑡𝐹𝑖𝑡 (𝐸e𝑥𝑝 (𝜆; 𝑎, 𝑏, 𝑐), d𝑎𝑡𝑎);
16 return 𝐸e𝑥𝑝 (0; 𝑎, 𝑏, 𝑐);

This error can be further minimized with respect to the choice of the scale factors. Since 𝜆1 is

usually fixed to 1, we optimize over 𝜆2, leading to the condition:

𝑒𝑐(𝜆2−𝜆1) (𝑐(𝜆2 − 𝜆1) − 1) − 1 = 0. (4.35)

We can solve the previous equation numerically, obtaining:

𝑐(𝜆2 − 𝜆1) = 𝛼, (4.36)

where 𝛼 ≃ 1.27846 is a numerical constant. For a fixed 𝜆1, the previous condition determines the

optimal choice of the scale factor 𝜆2 which minimizes the zero-nose extrapolation error. From a

practical point of view, Eqs. (4.33) and (4.36) can only be used if we have some prior knowledge

about 𝑐. This motivates the following adaptive algorithm.
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Figure 4.6: Comparison of adaptive and non-adaptive exponential zero noise extrapolation, given
a fixed budget of samples. The adaptive method generally produces a more accurate extrapolation
with less samples. On the other hand, in this example, the advantage of adaptivity is not particularly
large. Likely, this is due to the fact that the scale factors used for the non-adaptive method are
already quite good and not far from their optimal values. Data was generated by exact density
matrix simulation of 5-qubit randomized benchmarking circuits of depth 10 under 5% depolarizing
noise and measured in the computational basis. Noise was scaled directly by access to the back-end
simulator rather than with a folding method.

4.1.4.2 An adaptive exponential extrapolation algorithm

Algorithm 7 is an adaptive exponential algorithm based on the exponential ansatz 𝐸exp(𝜆) =

𝑎 + 𝑏𝑒−𝑐𝜆, where 𝑎 is a known constant. Figure 4.6 shows a comparison of adaptive exponential

extrapolation with non-adaptive exponential extrapolation. At almost all sample levels, adaptive

extrapolation outperforms the non adaptive approach.

4.1.5 Conclusion

We make zero-noise extrapolation digital, developing the unitary folding framework to run error

mitigation with instruction set level access. We then demonstrate improved performance through a

set of non-adaptive and adaptive extrapolation methods. We emphasize that zero-noise extrapolation

is in general an inference problem with many avenues for further optimization.

While ZNE has previously been benchmarked on randomized benchmarking circuits or VQE,

we give benchmarks of ZNE on MAXCUT problems solved with QAOA. This allows us to smoothly

benchmark the performance of ZNE on larger variational quantum circuits then have been consid-

136



ered previously.

We also consider specialization of zero-noise extrapolation to different noise models, using

calibration noise as an example. With more sophisticated multi-parameter noise models (such as

a combination of calibration noise and amplitude dampening), it is likely that multi-dimensional

noise extrapolation [144] will be of interest.

This work is a first step towards viewing zero-noise extrapolation as an inference problem and

has opportunities for extension. Priors or constraints from observable, noise or circuit structure

could be included. Data could be gathered from similar executions over time so that inference

includes a historical database of previous computations.

4.2 Reducing the impact of time-correlated noise on ZNE

4.2.1 Introduction

Zero-noise extrapolation (ZNE) techniques have been primarily investigated under the assumption

that the errors to be mitigated are uncorrelated in time. On the other hand, time-correlated noise

(in particular 1/ 𝑓 𝛼 noise) has been widely observed in physical systems including superconducting

devices [145, 146, 147, 148, 149], quantum dots [150, 151], and spin qubits [152]. To estimate

the noise present in these real physical systems, one can use quantum noise spectroscopy (QNS)

[153, 154, 155] wherein the outcomes of a set of distinct control pulses or circuits are analyzed.

Key to this approach is that while these different probe sequences may in fact represent identical

circuits under ideal conditions, they interact with any noise present in different ways. This can

be understood through the filter function formalism [156, 157] which describes the “frequency

response” of a given probe sequence. Broadly speaking, the impacts of noise (in terms of fidelity)

are approximately proportional to the integral of the power spectrum of the noise with the filter

function of the control. In what follows, we will show how this intuition can also be applied to

different ZNE schemes in the presence of temporally correlated dephasing noise.

The recently developed [158] and experimentally validated [159] Schroödinger wave autore-

gressive moving average (SchWARMA) technique provides a natural mechanism for the exploration
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of so-called digital ZNE techniques [142, 160, 161] that operate at the gate level in a quantum

circuit. Building on techniques from classical time-series modeling in statistics and signal pro-

cessing, SchWARMA was conceived as a highly flexible mechanism for simulating a wide-range

of spatiotemporally correlated errors in quantum circuits.

In the following, we first review the SchWARMA modeling and simulation formalism and

its relationship to the filter function formalism. Next, we provide a concise overview of ZNE

and discuss different methods for scaling noise. Next, we show how these different schemes are

impacted by time-correlated dephasing noise despite the fact that they behave equivalently for

uncorrelated noise. We then interpret these noise scaling schemes using the language of filter

functions and show that these results are well described by the intuition provided by the filter

functions. Our findings indicate that, for time-correlated noise, the noise scaling method known as

global unitary folding [160, 162] produces more accurate noise-scaled expectation values and ZNE

results.

4.2.2 Background

4.2.2.1 Time-correlated noise: The SchWARMA model

Consider a single-qubit Hamiltonian

𝐻 (𝑡) = 𝐻𝑧 (𝑡) + 𝐻𝑐 (𝑡) (4.37)

consisting of a semiclassical dephasing noise component 𝐻𝑧 (𝑡) along with a deterministic idealized

control component 𝐻𝑐 (𝑡) corresponding, for example, to the external driving induced by laser

pulses. If we further define 𝐻𝑧 (𝑡) = 𝜂(𝑡)𝜎𝑧 with 𝜂(𝑡) a wide-sense stationary Gaussian stochastic

process, we can say that this noise process is not time-correlated if E[𝜂(𝑡)𝜂(𝑡′)] = E[𝜂( |𝑡 −

𝑡′|)𝜂(0)] = 0 for all 𝑡 ≠ 𝑡′, where E(·) represents the average over many statistical realizations. 𝜎𝑖,

𝑖 = 𝑥, 𝑦, 𝑧 are the Pauli matrices. Equivalently, we can say that the noise process is time-correlated

if the power spectrum

𝑆𝜂 (𝜔) =
∫ ∞

0
𝑑𝑡 E[𝜂(𝑡)𝜂(0)]𝑒−𝑖𝜔𝑡 (4.38)
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is not constant as a function of 𝜔 (i.e., not a “white” process).

In the SchWARMA modeling approach [158], the impact of the continuous time Hamiltonian in

(4.37) is modeled in a quantum circuit formalism by inserting correlated 𝑍-error operators after each

“gate” determined by the control𝐻𝑐. This is accomplished by generating a time-correlated sequence

of rotation angles 𝑦𝑘 defined from independent Gaussian inputs 𝑥𝑘 using an auto-regressive moving

average(ARMA) model [163, 164],

𝑦𝑘 =

𝑝∑︁
𝑖=1

𝑎𝑖𝑦𝑘−𝑖︸     ︷︷     ︸
𝐴𝑅

+
𝑞∑︁
𝑗=0

𝑏 𝑗𝑥𝑘− 𝑗︸      ︷︷      ︸
𝑀𝐴

, (4.39)

where the set {𝑎𝑖} defines the autoregressive portion of the model, and {𝑏 𝑗 } the moving average

portion with 𝑝 and 𝑞 + 1 elements of each set respectively. The time correlations are defined via

the resulting power spectrum

𝑆𝑦 (𝜔) =
��∑𝑞

𝑘=0 𝑏𝑘 exp(−𝑖𝑘𝜔)
��2��1 +∑𝑝

𝑘=1 𝑎𝑘 exp(−𝑖𝑘𝜔)
��2 , (4.40)

and ARMA models can approximate any discrete-time power spectrum to arbitrary accuracy [165].

For the scope of this work we focus on the four paradigmatic noise spectra shown in Fig. 4.7,

namely: white noise, low-pass noise, 1/ 𝑓 noise and 1/ 𝑓 2 noise.

Dividing the circuit trajectory defined by 𝐻𝑐 (𝑡) into consecutive gates 𝐺𝑘 , the SchWARMA

approach models the impact of correlated noise 𝐻𝑧 (𝑡) by adding in a random 𝑍 (𝜃𝑘 ) = exp(𝑖𝑦𝑘𝜎𝑧)

after each gate, which can then be Monte Carlo averaged to produce an expectation value. This

model can be extended to multi-qubit Hamiltonians

𝐻 (𝑡) =
𝑛∑︁
𝑗=1
𝜂 𝑗 (𝑡)𝜎𝑧𝑗 + 𝐻𝑐 (𝑡) , (4.41)

by generating independent, yet identically defined, SchWARMA-generated errors on each qubit.

In principle, these could of course be heterogeneous and correlated between qubits.
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4.2.2.2 Zero-noise extrapolation with colored noise

Zero-noise extrapolation (ZNE) is a heuristic error mitigation technique which relies on the ability

to increase the noise in a quantum circuit [166, 167, 168]. Like other error mitigation techniques,

the target is to estimate an expectation value

𝐸 (𝜆) := Tr[𝜌(𝜆)𝑂] (4.42)

at zero noise. The noise scale factor 𝜆 dictates how much the base noise level 𝜆 = 1 is scaled in

the quantum circuit which prepares the system density matrix 𝜌, and 𝑂 is a problem-dependent

observable. The key insight of ZNE is to (i) evaluate 𝐸 (𝜆) at several noise scale factors 𝜆 ≥ 1, then

(ii) fit a statistical model to the collected data and infer the zero-noise value 𝐸 (𝜆 → 0). We refer

to these two steps as noise scaling and inference, respectively.

Compared to other error mitigation techniques, zero-noise extrapolation requires very few

additional quantum resources. Correspondingly, it has received some attention in recent literature,

e.g. it was implemented in Refs. [169, 142, 160, 162, 170, 171] and in [172] on twenty six

superconducting qubits to produce results competitive with classical approximation techniques.

References [142, 160, 161] formally introduced digital noise scaling, in which noise is scaled at a

gate-level without pulse-level control.

10 3 10 2 10 1 100

Normalized frequency 

10 4

10 3

10 2

10 1

100

101

N
oi

se
 s

pe
ct

ru
m

 S
(

)

white
low-pass
1/f
1/f2

Figure 4.7: Noise power spectrum of four different dephasing SchWARMA noise models corre-
sponding to white noise, low-pass noise, 1/ 𝑓 noise and 1/ 𝑓 2 noise. These noise models are used
in Sec. 4.2.3 to test the effect of time-correlated noise on zero-noise extrapolation.
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(b)

(c)

(a)

Figure 4.8: A sample three-qubit circuit with four gates under the action of three digital noise
scaling methods we consider in this work. (a) Local folding, in which each gate 𝐺 gets mapped to
𝐺 ↦→ 𝐺

(
𝐺†𝐺

)𝑛 for scale factor 𝜆 = 2𝑛 − 1. (b) Global folding, in which the entire circuit 𝐶 gets
mapped to 𝐶 ↦→ 𝐶

(
𝐶†𝐶

)𝑛. In (a) and (b), grey shading shows the “virtual gates” which logically

compile to identity. (c) Gate Trotterization, in which 𝐺 ↦→
(
𝐺1/𝜆

)𝜆
for each gate 𝐺.

While ZNE is straightforward to implement and requires relatively few additional quantum

resources, it is nonetheless a heuristic method. The quality of the solution depends critically on

both the inference and noise-scaling method. In this work, we fix the inference method by assuming

a particular noise model and focus on the effects of the noise-scaling method.

4.2.2.3 Noise scaling methods

Ideal noise scaling In a purely theoretical setting, the ideal way of scaling the noise would be to

multiply the Hamiltonian 𝐻𝑧 in Eq. (4.37) by a constant
√
𝜆:

𝐻′(𝑡) =
√
𝜆𝐻𝑧 (𝑡) + 𝐻𝑐 (𝑡). (4.43)

Equivalently, the scale factor can be absorbed into a redefinition of the stochastic noise amplitude:

𝜂′(𝑡) =
√
𝜆𝜂(𝑡). From Eq. (4.40), it is evident that the noise power spectrum gets scaled by 𝜆,

𝑆𝜂′ (𝜔) = 𝑆√𝜆𝜂 (𝜔) = 𝜆 𝑆𝜂 (𝜔). (4.44)

If one could directly control the noise, this would be the ideal way of scaling its power and,

therefore, the ideal way of applying zero-noise extrapolation. In a typical experimental scenario,
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of course, one cannot directly control the noise of a quantum device. For this reason, several

indirect noise scaling techniques of have been proposed and applied in recent literature. We define

several of these in the following subsections (see Fig. 4.8 for an overview) in order to analyze their

performance in the presence of time-correlated noise in Sec. 4.2.3.

Pulse stretching The intent of pulse stretching is to scale the impacts of the noise on the system

by “stretching” the underlying control Hamiltonian, replacing (4.37) with

𝐻 (𝑡) = 𝐻𝑧 (𝑡) +
1
𝜆
𝐻𝑐 (𝑡/𝜆) , (4.45)

for some dimensionless time-scaling factor 𝜆. In principle, this scales the impacts of the noise by

increasing the overall time duration of the circuit. More precisely, if we define 𝑡′ = 𝑡/𝜆, the density

operator 𝜌(𝑡′) of the system evolves with respect to the effective Hamiltonian:

𝐻′(𝑡′) = 𝜆 𝐻𝑧 (𝜆𝑡′) + 𝐻𝑐 (𝑡′) . (4.46)

The corresponding noise power spectrum is:

𝑆𝜂′ (𝜔) = 𝜆2
∫ ∞

0
𝑑𝑡′ E[𝜂(𝜆𝑡′)𝜂(0)]𝑒−𝑖𝜔𝑡 ′

= 𝜆

∫ ∞

0
𝑑𝑡 E[𝜂(𝑡)𝜂(0)]𝑒−𝑖𝜔𝑡/𝜆 = 𝜆 𝑆𝜂 (𝜔/𝜆). (4.47)

From the equation above, it is evident that for a white (constant) spectrum, pulse stretching can be

used to effectively scale the noise power by 𝜆 as in the ideal case defined in Eq. (4.44). In fact, the

equivalence between the ideal noise scaling and the pulse-stretching technique was already shown

in Ref. [166], under the hypothesis of a quantum state 𝜌 evolving according to a master equation

with a time-independent noise operator acting asL(𝜌) (more details about the consistency between

our findings with the results of Ref. [166] are given in Section 4.2.6). On the other hand, Eq. (4.47)

shows that, for a colored spectrum, pulse-stretching does not exactly reproduce the ideal noise

scaling defined in (4.44). Indeed, on the r.h.s. of Eq. (4.47) we observe that the original spectrum is

also stretched with respect to the frequency variable 𝜔. This fact is a manifestation of the intuitive

idea that slowing down the dynamics the system corresponds to effectively speeding up the time
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scale of the environment. Such frequency stretching, while irrelevant in the white noise limit,

becomes relevant for time-correlated noise.

In the SchWARMA formalism, there is not a mechanism for stretching pulses per se as it

operates at the gate level in a circuit (without pulse-level control on 𝐻𝑐 (𝑡)). However, as discussed

in the supplement to [158], it is possible to manipulate and stretch the spectrum of a SchWARMA

model. So, for the task of numerically simulating pulse stretching, instead of implementing

equation Eq. (4.46) one can simply implement Eq. (4.47) by directly transforming the spectrum of

the SchWARMA model.

Local unitary folding A possible way of effectively increasing the noise of a circuit is to insert

after each noisy CNOT gate, the product of two additional CNOT gates [142, 161]. In this way the

ideal unitary is not changed, but the real dynamics is more noisy. More generally, in Sec. 4.1 we

introduced several digital noise scaling methods that are based on the unitary folding replacement

rule

𝐺 → 𝐺 (𝐺†𝐺)𝑛, 𝑛 = 0, 1, 2, . . . , (4.48)

where 𝐺 is a unitary operation associated to an individual gate. If noise is absent, the replacement

rule leaves the operation unchanged since 𝐺†𝐺 is equal to the identity. On the contrary, if some

base noise is associated to 𝐺, the unitary folding operation approximately scales the noise by an

odd integer factor 𝜆 = 1 + 2𝑛.

More precisely, by applying the unitary folding replacement to all the gates of an input circuit

𝑈 = 𝐺𝑑𝐺𝑑−1 . . . 𝐺1 (4.49)

which is composed of 𝑑 gates 𝐺 𝑗 , we obtain new circuit𝑈′ of depth 𝑑′ = (1 + 2𝑛)𝑑 given by

𝑈′ = 𝐺𝑑 (𝐺†𝑑𝐺𝑑)𝑛𝐺𝑑−1(𝐺†𝑑−1𝐺𝑑−1)𝑛 . . . 𝐺1(𝐺†1𝐺1)𝑛. (4.50)

The depth of the new circuit𝑈′ is scaled by 𝜆 = 𝑑′/𝑑 = 1+2𝑛 and, similarly, any type of noise which

depends on the total number of gates will be effectively scaled by the same constant 𝜆. In Sec. 4.1,
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partial folding methods were proposed to obtain arbitrary real values of 𝜆, but for simplicity in this

work we only consider odd-integer scale factors. We refer to (4.50) as local unitary folding.

Global unitary folding Instead of locally folding all the gates, we can apply Eq. (4.48) to the

entire circuit. In this way, the circuit𝑈 defined in Eq. (4.49) is simply mapped to

𝑈′ = 𝑈 (𝑈†𝑈)𝑛. (4.51)

Also in this case the total number of gates of the new circuit𝑈′ is multiplied by 𝜆 = 𝑑′/𝑑 = 1 + 2𝑛

corresponding to an effective scaling of the noise.

Gate Trotterization In this work we also introduce another local noise-scaling method, acting

at the level of individual gates, that we call gate Trotterization since it can be considered as a

discretization of the continuous pulse-stretching technique. According to the gate Trotterization

technique, each gate of the circuit is replaced as follows:

𝐺 →
(
𝐺1/𝜆

)𝜆
, 𝜆 = 0, 1, 2, . . . . (4.52)

For example, a Pauli 𝑋 rotation gate 𝑅𝑋 (𝜃) is replaced by 𝜆 applications of 𝑅𝑋 (𝜃/𝜆). Eq. (4.52)

is similar to the local version of the unitary folding rule (4.48) and, indeed, both methods replace

a single gate with the product of 𝜆 gates. Compared to Eq. (4.48), the Trotter-like decomposition

used in Eq. (4.52) is more uniform since equal elementary gates are used. On the other hand, a

possible drawback of the gate Trotterization method is that 𝐺1/𝜆 may be compiled by the hardware

in different ways depending on 𝜆 and, therefore, the circuit depth may not get scaled as expected.

4.2.3 Results

In the previous section, we defined several noise-scaling methods that can be used in zero-noise

extrapolation. In this section, we study how these different methods affect the performance of

ZNE in the presence of time-correlated noise. For all the simulations presented in this section

we used the following Python libraries: Mezze [158] for modeling SchWARMA noise, Mezze’s
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Figure 4.9: Comparison of different zero-noise extrapolations obtained with different noise scaling
methods. We consider a single-qubit randomized benchmarking circuit affected by dephasing
noise of fixed integrated power. The two subfigures correspond to different noise spectra: (top)
white noise, (bottom) 1/ 𝑓 pink noise. Both spectra are shown in Fig. 4.7. The expectation value
𝐸 (𝜆) = t𝑟 (𝑂𝜌(𝜆)) is associated to the observable 𝑂 = |0⟩⟨0| measured with respect to the noise-
scaled quantum state 𝜌(𝜆). The colored squares represent the noise-scaled expectation values;
the dotted lines represent the associated exponential fitting curves; the colored stars represent the
corresponding zero-noise extrapolations. The figure shows that the zero-noise limit obtained with
global unitary folding (green star) is relatively close to the ideal result (gray star) even in the
presence of strong time correlations in the noise.

TensorFlow Quantum [173] interface for simulating quantum circuits and Mitiq [162] for applying

unitary folding and zero-noise extrapolation.

4.2.3.1 Zero-noise extrapolation with colored noise

In this section we numerically simulate a simple ZNE experiment with different noise scaling

methods and with different noise spectra. The results are reported Fig. 4.9 and demonstrate the
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Figure 4.10: Average relative errors in noise scaling two-qubit randomized benchmarking circuits
with (a) white noise, (b) lowpass noise, (c) 1/ 𝑓 noise, and (d) 1/ 𝑓 2 noise. Panel (a) shows no
significant difference in scaling methods under white noise (no time correlations). (Inset shows
zoomed vertical scale.) Panels (b)-(d) show that global scaling is the lowest-error digital scaling
method. The two-qubit randomized benchmarking circuits used here have, on average, 27 single-
qubit gates and five two-qubit gates. For each circuit execution, 3000 samples were taken to estimate
the probability of the ground state as the observable. Points show the average results over fifty such
circuits and error bars show one standard deviation.

detrimental effect of time-correlated noise on ZNE. In Fig. 4.9(a) the noise spectrum is white and

all noise scaling methods produce nearly identical expectation values. Correspondingly, the zero-

noise limits (marked with stars in the plot) are nearly identical. On the other hand, in Fig. 4.9(b),

the noise is colored (a 1/ 𝑓 “pink” spectrum) and different noise-scaling methods produce different

expectation values. Correspondingly, the zero-noise limits (marked with starts in the plot) are also

different. This is the main qualitative result that this work aims to highlight: compared to white

noise, time-correlated noise can be much harder to mitigate via zero-noise extrapolation.

In the rest of this section, we study this aspect in a more quantitative way. In particular we

study the performances of different noise-scaling methods for different types of noise spectra and

different types of circuits.

4.2.3.2 Comparing noise scaling methods

Observing Fig. 4.9(b) we notice that, at least for the particular circuit considered in the example,

some noise sclaing methods perform better than others in the presence of time-correlated noise.
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In particular the extrapolation based on the global folding technique produces a relatively good

approximation of the ideal result even in the presence of time-correlated noise.

To better investigate this phenomenon, we consider the relative noise-scaling error

Δ(𝜆) :=
����𝐸 (𝜆) − 𝐸∗(𝜆)𝐸∗(𝜆)

���� , (4.53)

as a figure of merit. Here, 𝐸 (𝜆) is the expectation value of interest evaluated with some particular

noise scaling method and scale factor 𝜆, and 𝐸∗(𝜆) is the expectation value simulated with a noise

spectrum ideally scaled according to Eq. (4.44). In Fig. 4.10 we plot the relative error defined

in Eq. (4.53) for each noise-scaling method, after averaging the results over multiple instances

of two-qubit randomized-benchmarking circuits. Here the expectation value of the observable

𝑂 = |00⟩⟨00| is considered. The results of Fig. 4.10 are consistent with those of Fig. 4.9 discussed

in the previous subsection. In fact, even after averaging over multiple random circuits, we observe

that in the presence of white noise all noise scaling methods are practically equivalent to each other

and are characterized by a small relative noise-scaling error. For all colored noise spectra instead,

global folding is optimal when compared to other noise scaling methods.

We repeat the same experiments using mirror circuits [174] and QAOA-like circuits instead of

RB circuits. The former provides another type of randomized circuit structure used for benchmark-

ing, and the latter provides a structured circuit. Fig. 4.11 shows the results using two-qubit mirror

circuits. These circuits have 26 single-qubit gates and eight two-qubit gates on average. As with

the randomized benchmarking circuits, 3000 samples were taken when executing each circuit to

estimate the probability of sampling the correct bitstring. As shown in Fig. 4.11, the conclusion

that global unitary folding most closely matches true noise scaling holds on average for mirror

circuits as well. These results were averaged over fifty random mirror circuits.

Fig. 4.12 shows the same experiment using QAOA circuits. These 𝑛 = 2 qubit circuits have

𝑝 = 2 QAOA rounds using the standard mixer Hamiltonian 𝐻𝑀 =
∑𝑛
𝑖=1 𝑋𝑖 and driver Hamiltonian

𝐻𝐶 =
∑
𝑖 𝑗 𝑍𝑖𝑍 𝑗 . Denoting this circuit as 𝑈, we append 𝑈† such that the final noiseless state is

|00⟩ independent of the randomly chosen angles 𝛽 and 𝛾. A total of fifty circuits with random

angles were simulated for the final results, again using 3000 samples to estimate the ground state
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probability for each circuit execution. The results in Fig. 4.12 have the highest variance of the three

circuit types, but on average we still see that global unitary folding is closest to true noise scaling

out of all scaling methods considered.

The conclusions of this subsection suggest that, even for different types of circuits, the effect of

time-correlated noise on noise scaling methods is qualitatively similar. This intuition is consistent

with the theoretical discussion presented in the next section, in which the performances of noise

scaling methods are linked to their effective frequency modulation effects.

We emphasize that the comparison considered in this work is focused on one particular figure

of merit: the robustness of a noise scaling method with respect to time-correlated noise. Our

results suggest that global folding outperforms the other methods considered with respect to this

specific figure of merit. In a real-world scenario, the optimal noise-scaling method should be

determined according to a more general cost-benefit analysis, e.g. taking into account the sampling

cost, coherence time, and other hardware limitations. For instance, it may not be possible to use

global noise scaling if the circuit length is comparable to the coherence time of the computer;

in such circumstances, pulse stretching can amplify errors via small scale factors [172], although

potentially inaccurately in the presence of time-correlated noise as we have shown in this section.

4.2.4 Discussion and physical interpretation

4.2.4.1 Frequency response of a circuit

The impacts of time-correlated dephasing noise can be interpreted using the filter function formalism

[156, 157]. In a single qubit scenario, we can associate with a given deterministic 𝐻𝑐 (𝑡) (or gate

sequence 𝐺𝑘 ) a frequency response 𝐹𝑧 (𝜔) that relates the expected reduction in fidelity due to the

noise as a decay exp(−𝜒) where 𝜒 is defined via the “overlap integral,”

𝜒 =

∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝜂 (𝜔)𝐹𝑧 (𝜔)𝐹𝑧 (𝜔)† . (4.54)

The overlap integral can be used to derive approximations to noise-averaged observables, via

𝐸 [Tr[𝜌 𝑂]] ≈ 𝐴 + 𝐵 exp(−𝜒) . (4.55)
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Figure 4.11: Relative errors in noise scaling two-qubit mirror circuits with (a) white noise, (b)
lowpass noise, (c) 1/ 𝑓 noise, and (d) 1/ 𝑓 2 noise. Panel (a) shows no significant difference in
scaling methods under white noise (no time correlations). (Inset shows zoomed vertical scale.)
Panels (b), (c) and (d) show global scaling is optimal with time-correlated noise. The two-qubit
mirror benchmarking circuits used here have, on average, 26 single-qubit gates and eight two-qubit
gates. For each circuit execution, 3000 samples were taken to estimate the probability of the correct
bitstring (defined by the particular mirror circuit instance) as the observable. Points show the
average results over fifty such circuits and error bars show one standard deviation.

Figure 4.12: Relative errors in noise scaling two-qubit 𝑝 = 2 QAOA circuits with (a) white noise,
(b) lowpass noise, (c) 1/ 𝑓 noise, and (d) 1/ 𝑓 2 noise. Panel (a) shows no significant difference in
scaling methods under white noise (no time correlations). (Inset shows zoomed vertical scale.)
Panels (b), (c) and (d) show global scaling is optimal with time-correlated noise. The two-qubit
𝑝 = 2 QAOA circuits used here have eight single-qubit gates and four two-qubit gates. For each
circuit execution, 3000 samples were taken to estimate the probability of the ground state as the
observable. (Note that the QAOA circuit𝑈 is echoed such that the total circuit is𝑈𝑈† = 𝐼 without
noise.) Points show the average results over fifty such circuits and error bars show one standard
deviation.
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For multiqubit circuits, the overlap integral becomes a more complicated expression involving the

second cumulant C (2)
𝑂
(𝑇),

C (2)
𝑂
(𝑇)

2
=

∑︁
𝛼,𝛽,𝛼′,𝛽′

Re
∫ ∞

0

𝑑𝜔

2𝜋
𝑆𝛼,𝛼′ (𝜔)F𝛼𝛽,𝛼′𝛽′ (𝜔,𝑇)A𝛽𝛽′,

(4.56)

where the overlaps between the noise power spectrum 𝑆𝛼,𝛼′ and filter functions F𝛼𝛽,𝛼′𝛽′ scale

operators A𝛽𝛽′.This expression captures potential cross correlations in noise, but here 𝑆𝛼,𝛼′ = 0

when 𝛼 ≠ 𝛼′ and 𝛼 is not a 𝜎𝑧 operator on given qubit. Furthermore, for the examples below we

compute the filter functions using instantaneous gates as specified by a circuit, but these expressions

can hold for piecewise constant controls to accommodate pulse shaping. In the context of noise

scaling experiments, Eq. (4.56) provides a mechanism for understanding how the different noise

scaling techniques impact the resulting scaled expectations and thus the interpolation process.

4.2.4.2 Spectral analysis of noise scaling methods

Using the filter function prediction from Eq. (4.55) we have that direct noise scaling produces states

𝜌𝑑𝑖𝑟 (𝜆) with expectation

𝐸 [Tr[𝜌𝑑𝑖𝑟 (𝜆)𝑂]] ≈ 𝐴 + 𝐵 exp(−𝜆𝜒1) , (4.57)

where 𝜒1 is the overlap integral of the base circuit. Similarly, following Eq. (4.46), we have that

pulse stretching produces the expectation

𝐸 [Tr[𝜌𝑝𝑢𝑙 (𝜆)𝑂]] ≈ 𝐴 + 𝐵 exp
(
−𝜆

∫ ∞

−∞

𝑑𝜔

2𝜋
𝑆𝜂 (𝜔/𝜆)𝐹†𝑧 (𝜔)𝐹𝑧 (𝜔)

)
, (4.58)

with similar expressions for Eq. (4.56), which is clearly not equal to Eq. (4.57) in general. Equiv-

alently, stretching the pulse amounts to “compressing” a filter function response by a factor of 𝜆,

which shifts the filter function to lower frequencies, and thus the overlap with low-frequency noise

will likely increase by a factor greater than 𝜆. An example of the impact of pulse stretching on

a sample filter function is shown in Fig. 4.13a. Gate Trotterization is similar in spirit to pulse
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Figure 4.13: Largest magnitude filter function of a two-qubit randomized benchmarking circuit of
Clifford depth 2 (actual depth 24) for different scale factors 𝜆. All filter functions are normalized by
their maximum values (otherwise the integral of the filter function scales by 𝜆). Different subplots
correspond to different noise scaling methods. All noise scaling methods change the frequency
response of the circuit, however, global folding tends to preserve the qualitative shape of response
function and, for this reason, it gives better performances for zero-noise extrapolation with colored
noise.

stretching, but performed “digitally.” However, repeating a gate-pulse 𝜆 times with amplitude 1/𝜆

is in general different from stretching a gate’s pulse (except in the case of rectangular pulses).

Fig. 4.13d shows a similar qualitative impact of gate Trotterization on the filter function as pulse

stretching, in that the filter function is compressed to the low frequencies. However, unlike pulse

stretching, it is distorted and not a “perfect” compression.

Like pulse stretching and gate Trotterization, local folding also increases the proportion of

the filter function that overlaps with low frequency noise, see Fig. 4.13c. However unlike pulse

stretching and gate Trotterization, local folding also appears to generate response at high frequency.
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Qualitatively, local folding “pulls” the filter function to the extreme frequencies from the middle of

the spectrum. With these general trends, we would again expect that the overlap integrals produced

would not be particularly close to direct noise scaling.

Of the noise scaling methods studied, it appears that global folding preserves the most structure

from the unscaled filter function. The circuit responses shown in Fig. 4.13b shows that scaling

preserves the qualitative shape of the base circuit’s filter function. Qualitatively, it looks like the

impact of global folding serves to “resolve” a coarse frequency response of the base circuit. Thus,

scaling in this case preserves some structure and produces overlap integrals that are somewhat close

to direct noise scaling.

These observations in the different noise scaling strategies explain the trends in Figs. 4.9 and

4.10. As global folding produces scaled filter functions that best preserve the general balance across

different frequency ranges, the overlap integrals of the globally folded circuits are the closest to the

ideal scaling produced by direct noise scaling. The remaining three scaling approaches all produce

some level of concentration at low frequencies, and thus tend to have much greater overlap with

the low-frequency noise here. As the pulse stretching and gate Trotterization approaches are very

similar in spirit, they produce similar extrapolations. Furthermore, unlike local folding, these two

approaches have all their concentration at low frequency, thus producing the most overlap leading

to the worst extrapolation error. Local folding, which includes some high frequency content (based

on the proportion of the original circuit’s frequency response above 𝜋/2), produces overlaps that

lie between the global folding and the stretching/Trotterization approaches.

We note that the trends observed above and the intuition behind them is a direct consequence of

the correlated noise classes considered, all of which are fundamentally low frequency. Thus, pulse

stretching, gate Trotterization, and local folding produce larger overlaps with the low-frequency

noise and drastically bias the noise extrapolation process. In contrast, if the noise was band limited

(say between 𝜋/4 and 3𝜋/4 in normalized frequency) we would expect that global folding would

continue to track direct noise scaling the best. However, analysis of the other three techniques

would be challenging as the overlap integral with these would essentially vanish as the scaling
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increased. Without knowing the true expectation and the underlying noise spectra, it would be

unclear if the leveling out of the scaled expectation values would be due to the overlap integral

approaching infinity (i.e., too much noise) or vanishing (i.e., decoupling from the noise). Similarly,

if the noise were purely high frequency, we would expect the pulse stretching and gate Trotterization

approaches to be insensitive, local folding method to be more sensitive, and global folding between

them. Finally, extremely narrow band noise could potentially lie in a “valley” in the scaled response

(obviously this is circuit dependent), and thus overlap integrals would vanish for all the noise scaling

approaches considered here.

4.2.5 Conclusion

In this work, we have demonstrated the effect of time-correlated noise on zero-noise extrapolation.

Using the SchWARMA technique to model time-correlated dephasing noise, we presented the

results of several numerical experiments showing that global unitary folding produces the lowest

error relative to direct noise scaling. We analyzed our observed results and provided a physical

interpretation in terms of the spectral analysis of the considered noise scaling methods.

A takeaway from our work is to use global noise scaling in zero-noise extrapolation, if possible,

whenever noise may be time-correlated. An obvious important consideration is which quantum

computer architectures may have time-correlated noise, a question we do not consider in this paper

and leave to future work. We note that global folding is not the only possible noise scaling method

suitable for time-correlated noise: other methods could be defined and analyzed, e.g. folding the

first half and second half of the gates in a unitary separately. Our work provides the theoretical and

practical tools to analyze the performance of such methods under a wide variety of noise models.

Data availability Software for reproducing all numerical results is available at https://github.com/mezze-

team/mezze.
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4.2.6 Consistency between different theories of pulse-stretching

Our work is based on a semi-classical theory of time-correlated noise, according to which, the

pulse-stretching technique induces two effective changes on the noise spectrum: (i) it scales the

noise level by a constant 𝜆, (ii) it also stretches the noise spectrum on the frequency axis by the

same constant. Both effects are formally summarized in Eq. (4.47) derived in the main text.

In Ref. [166], a different formalism, based on a master equation with a time-independent noise

operator, was used to study the pulse-stretching technique. More precisely, a system evolving

according to the following master equation was considered:

𝜕

𝜕𝑡
𝜌(𝑡) = −[𝐾 (𝑡), 𝜌(𝑡)] + L(𝜌(𝑡)), (4.59)

where 𝐾 (𝑡) is the system Hamiltonian and L is a time-independent noise super-operator. As shown

in Ref. [166], the effect of pulse stretching (i.e., 𝐾 (𝑡) −→ 1/𝜆𝐾 (𝑡/𝜆)) is equivalent to an effective

master equation:
𝜕

𝜕𝑡′
𝜌(𝑡′) = −[𝐾 (𝑡′), 𝜌(𝑡′)] + 𝜆L(𝜌(𝑡′)), (4.60)

where 𝑡′ = 𝜆𝑡. In practice pulse-stretching induces a multiplicative scaling of the noise operator

L −→ 𝜆L.

The master equation Eq. (4.59) is typically used to model Markovian noise (no time-correlations).

In this case, the Hilbert space of the environment can be traced out such that 𝜌 represents the re-

duced state of the system evolving according to the master equation Eq. (4.59). In this white-noise

regime, also our semi-classical theory of pulse-stretching predicts a simple multiplicative scaling

of noise power and this is indeed consistent with Eq. (4.60).

What happens for a non-Markovian environment with a colored noise spectrum? In this case,

our semi-classical theory suggests that pulse-stretching induces, in addition to a multiplicative

scaling, also a scaling of the frequency axis of the noise spectrum (see Eq. (4.47)). This may

seem to contradict the simple multiplicative scaling of the noise L −→ 𝜆L derived in Ref. [166]

and reported in Eq. (4.60). However, as explained below, both theoretical derivations are actually

consistent with each other.
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In principle, the master equation (4.59) can be used to model a non-Markovian bath by repre-

senting with 𝜌 the global quantum state (system + bath) instead of the reduced state of the system.

In this global picture, a non-Markovian bath can be modeled by a time-independent noise operator

L(𝜌) that includes an interaction Hamiltonian term 𝐻S𝐵 and the bare Hamiltonian 𝐻B acting on

the bath only (see Supplemental Material of Ref. [166])

L(𝜌(𝑡)) = −𝑖[𝐻S𝐵 + 𝐻B, 𝜌(𝑡)], (4.61)

which we can split as the sum of two terms L = LS𝐵 + LB, where LS𝐵 (𝜌) = −𝑖[𝐻S𝐵, 𝜌] and

LB(𝜌) = −𝑖[𝐻B, 𝜌]. In this case, the simple multiplicative scaling L −→ 𝜆L induced by the

pulse-stretching technique according to Eq. (4.60) has actually two physically different effects: (i)

L𝑆𝐵 −→ 𝜆L𝑆𝐵 corresponding to a scaling of the noise power and (ii) L𝐵 −→ 𝜆L𝐵 corresponding

to an effective scaling of the all the characteristic frequencies of the bath and, therefore, to a

frequency stretching of the noise spectrum. These two effects are consistent with the semi-classical

theory of pulse-stretching presented in this work and, in particular, with Eq. (4.47).

4.3 Increasing the effective quantum volume of quantum computers

4.3.1 Introduction

Quantum volume [8] is a single-number metric which, loosely speaking, reports the number of

usable qubits on a quantum computer1. While improvements to the underlying hardware are a

direct means of increasing quantum volume, the metric is “full-stack” and can be increased by an

improvement to any component, e.g. software for compilation to produce an equivalent quantum

circuit with fewer elementary operations [175].

Given an 𝑚 qubit quantum circuit 𝐶, the heavy set is H𝐶 := {𝑧 ∈ {0, 1}𝑚 : 𝑝(𝑧) > 𝑝median}

where 𝑝(𝑧) := |⟨𝑧 |𝐶 |0⟩|2 is the probability of sampling bitstring 𝑧 and 𝑝median is the median

probability over all bitstrings. A heavy bitstring is one in the heavy set. Quantum volume is

1Some authors define quantum volume as the effective Hilbert space dimension. Here we report the logarithm of
this number which corresponds to the number of qubits.
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determined by counting the number of heavy bitstrings 𝑛ℎ measured over 𝑛𝑐 random circuits, each

sampled 𝑛𝑠 times. If the experiment is run with 𝑚 qubit circuits of depth 𝑑 = 𝑚, 𝑛𝑐 ≥ 100, and

ℎ̂𝑑 := 𝑛ℎ/𝑛𝑐𝑛𝑠 > 2/3 + 2𝜎 (4.62)

where 𝜎 is the standard deviation of the estimate, then the volume is at least 𝑚. The actual volume

is the largest𝑚 such that these conditions are true. The particular structure of these random circuits,

which we refer to as quantum volume circuits, is defined in [8].

4.3.2 Method

Given a quantum volume circuit 𝐶, we define the projector on the heavy subspace

Πℎ,𝐶 :=
∑︁
𝑧∈H𝐶

|𝑧⟩⟨𝑧 | (4.63)

so that the expected number of heavy bitstrings for this circuit is 𝑛ℎ,𝐶 := 𝑛𝑠⟨0|𝐶†Πℎ,𝐶𝐶 |0⟩. We use

zero-noise extrapolation (ZNE) [176, 177] with Πℎ,𝐶 as the observable for each quantum volume

circuit 𝐶 to estimate the noise-free value of 𝑛ℎ :=
∑
𝐶 𝑛ℎ,𝐶 . This amounts to evaluating ⟨Π (𝜆)

ℎ,𝐶
⟩ at

several noise-scale factors 𝜆 ≥ 1 then using these results to estimate ⟨Π (0)
ℎ,𝐶
⟩, i.e., the zero-noise

limit of the heavy output probability. In practice, this means compiling the circuit 𝐶 to a set of

circuits {𝐶𝜆𝑖 }𝑘𝑖=1. For fairness with the unmitigated experiment, we use 𝑛𝑠/𝑘 samples for each 𝐶𝜆𝑖

so that the total number of samples drawn is equal in the mitigated and unmitigated experiments.

The main difference to previous work improving quantum volume by compiling [175] is that we

compile a single circuit to a set of circuits, following the pattern of many error mitigation methods

(e.g. [177]), in contrast with compilation that does rewrites on a single circuit following algebraic

rules or optimized routing.

After executing each 𝐶𝜆𝑖 to obtain scaled heavy output counts 𝑛(𝑖)
ℎ,𝐶

, we use Richardson extrap-

olation [177, 178] to estimate the zero-noise result via

𝑛
(0)
ℎ,𝐶

=

𝑘∑︁
𝑖=1

𝜂𝑖𝑛
(𝑖)
ℎ,𝐶

(4.64)
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Figure 4.14: Results of unmitigated and mitigated quantum volume experiments on three five-qubit
quantum computers (left-to-right: Belem, Lima, and Quito) using 𝑛𝑐 = 500 circuits and 𝑛𝑠 = 104

total samples. Each marker shows the estimated heavy output probability ℎ̂𝑑 on a different qubit
configuration defined in the legend and error bars show 2𝜎 intervals evaluated by bootstrapping.
The connectivity of each device is shown below each legend. Dashed black lines show the 2/3
threshold and noiseless asymptote (1+ln 2)/2 [8]. For the mitigated experiments, 𝜆𝑖 ∈ {1, 3, 5, 7, 9}
and 𝑛𝑠 = 104/5. Local unitary folding of two-qubit gates is used to compile the circuits (i.e., scale
noise) and Richardson’s method of extrapolation is used to infer the zero-noise result. The qubit
subsets which achieved the largest quantum volume in the mitigated experiments are colored blue
in each device diagram. As can be seen, on Belem error mitigation increases the effective quantum
volume from three to five, on Lima error mitigation increases the effective quantum volume from
three to four, and on Quito error mitigation increases the effective quantum volume from four to
five.

where coefficients are given by

𝜂𝑖 :=
∏
𝑗≠𝑖

𝜆 𝑗

𝜆 𝑗 − 𝜆𝑖
. (4.65)

In practice, we use 𝜆𝑖 ∈ {1, 3, 5, 7, 9} and scale circuits by locally folding two-qubit (CNOT)

gates [178]. In other words, the scaled circuit for 𝜆𝑖 = 𝑡 has each CNOT replaced by 𝑡 CNOTs.

4.3.3 Results

Using this strategy, we perform unmitigated and mitigated quantum volume experiments on

the Belem, Lima, and Quito devices available through IBM [1] (see Section 4.3.6 for device

specifications). The results, shown in Fig. 4.14, demonstrate that we are able to increase the

effective quantum volume from three to five on Belem, three to four on Lima, and from four to five

on Quito. Note that ZNE increases the estimated heavy output probability ℎ̂𝑑 on all qubit subsets

even though the 2/3 threshold is not always crossed. We therefore expect that ZNE can increase

effective quantum volume independent of the size of the device, so long as cross-talk and other
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errors do not scale with the device size. The largest ZNE experiment to date was performed on 26

qubit circuits with 1080 two-qubit gates [179] and, in the context of our work, provides evidence

that error mitigation can continue to increase the effective volume of larger quantum devices, e.g.

those listed in Section 4.3.7.

Because we estimate the noiseless result by taking a linear combination of noisy results, the

way we compute 𝜎 in (4.62) changes relative to [8]. For any technique, such as Richardson

extrapolation, that evaluates an error-mitigated expectation value as a linear combination of noisy

expectation values (4.64), one can show (see Section 4.3.8) that

𝜎2 =
1
𝑛2
𝑐

∑︁
𝐶

𝜎2
𝐶 , 𝜎2

𝐶 =

𝑘∑︁
𝑖=1
|𝜂𝑖 |2(𝜎 (𝑖)𝐶 )

2, (4.66)

where (𝜎 (𝑖)
𝐶
)2 is the variance of each noise-scaled expectation value, while 𝜎2

𝐶
is the variance of the

error-mitigated expectation value associated to the quantum circuit 𝐶. The previous expressions

correspond to a theoretical estimate of the error, but in practice we can estimate error bars by

repeating the experiment multiple times or by bootstrapping. The 2𝜎 error bars in Fig. 4.14 are

calculated by bootstrapping with 500 resamples. See Section 4.3.8 for more details.

4.3.4 Discussion

There is a subtle point in interpreting our results in the general context of quantum computer

performance. Our error mitigation procedure improves the expectation value of the heavy output

projector but does not produce more heavy bitstrings — in fact, our procedure likely produces fewer

heavy bitstrings because we distribute samples across circuits at amplified noise levels. However,

as we have shown, we are able to use this information to estimate the expected number of heavy

bitstrings in a statistically significant way. To carefully distinguish between the two cases, we refer

to our results as increasing the effective quantum volume.

The restriction to evaluating expectation values but not directly sampling bitstrings raises

interesting questions about physicality and the role of a quantum computer in a computational

procedure. If an algorithm only requires expectation values and we apply the error mitigation
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procedure used in this work, is it the case that we effectively have access to a quantum computer

with a larger quantum volume? These questions are linked to the physical interpretation of error

mitigation. One way to interpret ZNE is that we evaluate expectation values with respect to the

“extrapolated density matrix”

𝜌0 =
∑︁
𝑖

𝜂𝑖𝜌𝜆𝑖 (4.67)

where 𝜌𝜆𝑖 are the noise-scaled physical states and 𝜂𝑖 are the real coefficients in (4.64). Clearly

we did not physically prepare 𝜌0 in our experiment, but should we restrict the use of a quantum

computer to only preparing a single physical state from which we can sample bitstrings? Or do

we allow ourselves to “virtually” prepare non-physical but mathematically well-defined states from

which we can compute expectation values more accurately? We note that similar questions have

been asked in the context of virtual distillation techniques [180, 129] which have been proposed to

artificially purify a quantum state or to reduce its effective temperature [181].

4.3.5 Conclusion

In this work we have experimentally demonstrated that error mitigation improves the effective

quantum volume of several quantum computers. We use the term effective quantum volume to

emphasize that our procedure is appropriate for algorithms computing expectation values and not

for algorithms requiring individual bitstrings. The error mitigation technique is not tailored to the

structure of quantum volume circuits or to the architecture of the quantum computers we used.

Indeed, we did not run any additional calibration experiments or use any calibration information to

obtain our results. Similar software-level techniques have been used in previous quantum volume

experiments, e.g. (approximate) compilation [8, 175] and dynamical decoupling [175]. The novelty

of our proposal is that, by relaxing the strong requirement of directly sampling heavy bitstrings

to the weaker requirement of estimating the expectation value of the heavy output projector, more

general error mitigation techniques can be applied to improve the effective quantum volume of a

device. We expect this approach to improve the effective quantum volume of additional quantum
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Lima Belem Quito
# Qubits 5 5 5
𝜖1Q 4.446 × 10−4 2.808 × 10−4 2.980 × 10−4

𝜖CNOT 1.131 × 10−2 1.098 × 10−2 8.292 × 10−3

𝜖M 3.790 × 10−2 2.868 × 10−2 2.546 × 10−2

Table 4.3: Device specifications and error rates for the quantum computers we used in our experi-
ments. Device connectivities are shown in Fig. 4.14. Parameters 𝜖1Q, 𝜖CX, 𝜖M denote, respectively,
averages (over all qubits) of single-qubit

√
𝑋 gate errors, two-qubit CNOT gate errors, and readout

errors (𝑝(0|1) + 𝑝(1|0))/2 accessed from [1].

computers such as those in Section 4.3.7. Our open source error mitigation software [182] can be

used on many quantum computers to repeat the experiments we performed here.

In the context of error mitigation, our work provides additional benchmarks to the relatively

few experimental results in literature [183, 182, 179, 184, 185, 186, 187]. We encourage the use

of quantum volume as a benchmark for error mitigation techniques due to its relatively widespread

adoption and clear operational meaning. Normalizing by additional resources used (gates, shots,

qubits, etc.) in error-mitigated quantum volume experiments provides a way to directly compare

different techniques and drive progress in this area. As most error mitigation techniques act on

expectation values, they can be used for effective quantum volume experiments as we have done in

this work.

Code and data availability The code we used to run experiments as well as the data we

collected are available at https://github.com/unitaryfund/mitiq-qv.

4.3.6 Device specifications

In Table 4.3 we provide more information about the quantum computers we used in our experiments.

Note that the quantum volume of Belem is listed as four at [1] but we are unable to reproduce this

result in our unmitigated experiments, presumably due to device degradation over time.
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Quantum computer log QV Reference
Rigetti Aspen-4 3 [188]

Lima 3 (4) [1] (this work)
Belem 3 (5) [1] (this work)
Jakarta 4 [1]
Bogota 4 [1]
Quito 4 (5) [1] (this work)
Manila 5 [1]
Nairobi 5 [1]
Lagos 5 [1]
Perth 5 [1]

Guadalupe 5 [1]
Toronto 5 [1]

Brooklyn 5 [1]
Trapped-ion QCCD 6 [189]

Hanoi 6 [1]
Auckland 6 [1]

Cairo 6 [1]
Washington 6 [1]

Mumbai 7 [1]
Kolkata 7 [1]

Honeywell System Model H1 10 [190]

Table 4.4: Measured quantum volumes (in increasing order). Values in parentheses show effective
quantum volumes measured in this work.

4.3.7 Table of quantum volumes

As discussed in the main text, error mitigation consistently increased the estimated heavy output

probability in all of our experiments. To increment the effective quantum volume of a device, this

increase must cross the 2/3 threshold with statistical significance. While there is no guarantee that

this will happen, we expect there to be several cases of already-measured quantum volumes where

this will be true. For this reason, as well as general context, we include a list of quantum computer

volumes in Table 4.4.
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4.3.8 Statistical uncertainty of error-mitigated volume

4.3.8.1 Theoretical estimation of error bars

For a large number of error mitigation techniques, including Richardson extrapolation, an error-

mitigated expectation value 𝐸𝐶 associated with an ideal circuit𝐶 is evaluated as linear combination

of different noisy expectation values:

𝐸𝐶 =
∑︁
𝑗

𝜂 𝑗 𝐸̃ 𝑗 . (4.68)

Because of shot noise, each noisy expectation value 𝐸̃ 𝑗 can only be measured up to a statistical

variance 𝜎2
𝑗
= E(𝐸̃2

𝑗
) − [E(𝐸̃ 𝑗 )]2, where E represents the statistical average over 𝑛 𝑗 measurement

shots.

Since different noisy expectation values are statistically uncorrelated, the variance 𝜎2
𝐶

of the

error-mitigated result 𝐸𝐶 is:

𝜎2
𝐶 = E(𝐸2

𝐶) − [E(𝐸𝐶)]
2 =

∑︁
𝑗

|𝜂 𝑗 |2𝜎2
𝑗 . (4.69)

If we assume that each noisy expectation value is obtained by sampling a binomial distribution

B(𝑝 𝑗 , 𝑛 𝑗 ) with probability 𝑝 𝑗 = 𝐸̃ 𝑗 and normalizing the result over 𝑛 𝑗 measurement shots, we have

𝜎2
𝑗
= 𝐸 𝑗 (1 − 𝐸 𝑗 )/𝑛 𝑗 . The variance 𝜎2

𝐶
of the error-mitigated result is therefore:

𝜎2
𝐶 =

𝑘∑︁
𝑗=1
|𝜂 𝑗 |2𝐸̃ 𝑗 (1 − 𝐸̃ 𝑗 )/𝑛 𝑗 . (4.70)

The previous expression is valid for a generic expectation value. In the specific case of a quantum

volume experiment, we can identify with 𝐸𝐶 the heavy-output probability associated with a specific

random circuit𝐶. Averaging 𝐸𝐶 over multiple 𝑛𝑐 noisy circuits𝐶 of depth 𝑑, produces the estimated

heavy output probability visualized in Fig. 4.14:

ℎ𝑑 =
1
𝑛𝑐

∑︁
𝐸𝐶 . (4.71)

This is again a sum of independent random variables and so its variance is given by:
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𝜎2 =
1
𝑛2
𝑐

∑︁
𝐶

𝜎2
𝐶 . (4.72)

4.3.8.2 Bootstrapping empirical error bars

The previous way of estimating error bars is based on theoretical assumptions and, even though

it provides useful analytical expressions, it may underestimate unknown sources of errors such as

systematic errors.

A brute-force way of estimating error bars is to repeat the estimation of the quantity of interest (in

our case ℎ𝑑) with 𝑁 independent experiments and to evaluate the empirical variance of the results.

This method can be expensive with respect to classical and quantum computational resources, and

the results can be sensitive to how the independent samples are grouped. So while we can split

independent samples into five groups of 𝑛𝑐 = 100 circuits to estimate the standard deviation this

way, a more feasible alternative is instead given by bootstrapping. This is a statistical inference

technique in which, instead of performing 𝑁 new experiments, one resamples the raw results of a

single experiment 𝑁 times in order to estimate properties of the underlying statistical distribution.

In our specific quantum volume experiment, the heavy-output probability ℎ𝑑 is estimated

as an average over 𝑛𝐶 random circuits 𝐶 as shown in equation (4.71). Let us define the set

0 200 400 600 800 1000
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0.0050
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Figure 4.15: The value of 𝜎 for different resampling numbers in bootstrapping.
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𝑆 = {𝐸𝐶1 , 𝐸𝐶2 , ....𝐸𝐶𝑛𝐶 } containing all the estimated heavy-output probabilities associated with

different random circuits. We can now resample N sets of data 𝑆1, 𝑆2, ....𝑆𝑁 , each one containing

𝑛𝑐 values that are randomly sampled from 𝑆 with replacements. For each resampled set 𝑆 𝑗 we

evaluate the associated bootstrapped mean 𝜇 𝑗 = ⟨𝐸𝐶⟩𝑆 𝑗 .

The empirical standard deviation of all the bootstrap means {𝜇1, 𝜇2, ...𝜇𝑁 } provides an estimate

of the statistical uncertainty:

𝜎 =

√√√
1
𝑁

𝑁∑︁
𝑗=1
(𝜇 𝑗 − 𝜇̄)2. (4.73)

where 𝜇̄ =
∑𝑁
𝑗=1 𝜇 𝑗/𝑁 . This is the method that we used to evaluate error bars in Fig. 4.14 (with

𝑁 = 500).

One may ask how large should 𝑁 be, in order to obtain a reasonable estimate of the error. In Fig.

4.15 we show the dependence of 𝜎 for an arbitrary error-mitigated point of Fig. 4.14 (the results

are qualitatively similar for all points). Fig. 4.15 provides empirical evidence that, for 𝑁 > 400,

the bootstrapped estimate converges around a stable result.

164



CHAPTER 5

LOGICAL SHADOW TOMOGRAPHY

5.1 Background

5.1.1 Subspace expansion

Let S = ⟨𝑆1, ..., 𝑆𝑟⟩ be a stabilizer code with generators 𝑆1, ..., 𝑆𝑟 . Recall from Chapter 1.4 that a

stabilizer code (group) S is a subgroup of P𝑛, the Pauli group on 𝑛-qubits, such that −𝐼 ∉ S and S

is abelian. These properties ensure the codespace defined by S is non-trivial. The codespace 𝑉S

of S is the span of the codewords of S, where a codeword is a plus one eigenstate of all stabilizer

elements. That is,

𝑉S := span {|𝑐1⟩, ..., |𝑐𝑘⟩} (5.1)

where each codeword |𝑐𝑖⟩ for all 𝑖 = 1, ..., 𝑘 satisfies 𝑆 |𝑐𝑖⟩ = |𝑐𝑖⟩ for all 𝑆 ∈ S. Note that the

dimension of the codespace is dim (𝑉S) = 𝑘 = 2𝑛−𝑟 .

Given a generator 𝑆𝑖 ∈ {𝑆1, ..., 𝑆𝑟}, define the projector

𝑃𝑖 :=
1
2
(𝐼 + 𝑆𝑖). (5.2)

Note that 𝑃2
𝑖
= 1

4 (𝐼 + 2𝑆𝑖 + 𝑆2
𝑖
) = 1

4 (2𝐼 + 2𝑆𝑖) = 𝑃𝑖 so that 𝑃𝑖 is indeed a projector. Now, define the

complete projector as follows.

Definition 8. Given a stabilizer S = ⟨𝑆1, ..., 𝑆𝑟⟩, the complete projector is defined as

𝑃 :=
𝑟∏
𝑖=1

𝑃𝑖 =

𝑟∏
𝑖=1

1
2
(𝐼 + 𝑆𝑖). (5.3)

Theorem 9: The complete projector can be written as a convex combination over all stabilizer

elements

𝑃 =
1
2𝑟

∑︁
𝑆∈S

𝑆. (5.4)
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Proof. This follows from expanding (5.3) and using closure. Note that there are 2𝑟 elements in

S. □

For quantum subspace expansion [127], we want to compute the expectation value ⟨Γ⟩ ≡ Tr[𝜌Γ]

for an observable

Γ :=
𝑚∑︁
𝑖=1

𝛾𝑖Γ𝑖 . (5.5)

We start in the codespace with a state |𝜓⟩⟨𝜓 | and evolve unitarily to 𝜌 := 𝑈 |𝜓⟩⟨𝜓 |𝑈†. Suppose

some error 𝐸𝑖 occurs which takes us out of our codespace, i.e.

|𝜓⟩ ↦→ 𝐸𝑖 |𝜓⟩. (5.6)

If 𝐸𝑖 is correctable by our stabilizer code, then there exists a projector 𝑃𝑖 such that 𝑃𝑖𝐸𝑖 |𝜓⟩ = |𝜓⟩

(ignoring any renormalization). Hence for any correctable errors the complete projector (5.3) will

map the errored state |𝜓⟩error ∈ 𝑉⊥S back into the codespace 𝑉S . The idea of quantum subspace

expansion is thus to measure

⟨Γ⟩corrected :=
1
𝑐

Tr[𝑃𝜌𝑃†Γ] (5.7)

where 𝑐 is a normalization factor. Using (5.3) and (5.5), we can expand this as

⟨Γ⟩corrected =
1

22𝑟𝑐

𝑚∑︁
𝑖=1

2𝑟∑︁
𝑗=1

2𝑟∑︁
𝑘=1

𝛾𝑖Tr[𝑆 𝑗 𝜌𝑆†𝑘Γ𝑖] . (5.8)

Here each Γ𝑖 is a logical operator of the stabilizer code S. For subspace codes, all logical

operators commute with stabilizers. Using cyclicity of the trace along with this property, we can

write

⟨Γ⟩corrected =
1

22𝑟𝑐

𝑚∑︁
𝑖=1

2𝑟∑︁
𝑗=1

2𝑟∑︁
𝑘=1

𝛾𝑖Tr[𝜌𝑆†
𝑘
𝑆 𝑗Γ𝑖] . (5.9)

Again by closure, the product 𝑆†
𝑘
𝑆 𝑗 is another stabilizer element. This allows us to eliminate one

summation and arrive at the following theorem.

Theorem 10: If [Γ𝑖, 𝑆 𝑗 ] = 0 for all logical operators Γ𝑖 and stabilizers 𝑆 𝑗 (which is true for subspace

codes), then

⟨Γ⟩corrected =
1

2𝑟𝑐

𝑚∑︁
𝑖=1

2𝑟∑︁
𝑗=1
𝛾𝑖Tr[𝜌𝑆 𝑗Γ𝑖] . (5.10)
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We remark that for subsystem codes, not all logical operators commute with stabilizers, so (5.10)

is invalid for subsystem codes. Here, there is an additional “residue” term containing [Γ𝑖, 𝑆 𝑗 ] ≠ 0.

The full expression is

⟨Γ⟩corrected =
1

2𝑟𝑐

𝑚∑︁
𝑖=1

2𝑟∑︁
𝑗=1
𝛾𝑖Tr[𝜌𝑆 𝑗Γ𝑖] −

1
22𝑟𝑐

𝑚∑︁
𝑖=1

2𝑟∑︁
𝑗=1

2𝑟∑︁
𝑘=1

𝛾𝑖Tr[𝜌𝑆†
𝑘
[Γ𝑖, 𝑆 𝑗 ]] (5.11)

5.1.2 Virtual distillation

Given a noisy state 𝜌E = E(𝜌), write its spectral decomposition

𝜌E = 𝑝0 |𝜓0⟩⟨𝜓0 | +
∑︁
𝑘

𝑝𝑘 |𝜓𝑘⟩⟨𝜓𝑘 | (5.12)

where 𝑝0 > 𝑝1 ≥ · · · ≥ 0, and ⟨𝜓𝑖 |𝜓 𝑗 ⟩ = 𝛿𝑖 𝑗 (the Kronecker delta). Assume that the ideal

(noiseless) state is 𝜌 = |𝜓0⟩⟨𝜓0 |. (In an idealized noise model, we can think of the noise as adding

“orthogonal errors”, e.g. if our ideal state is |0⟩⟨0| then under bitflip noise with probability 𝑝 < 1/2

we obtain the noisy state 𝜌E = (1 − 𝑝) |0⟩⟨0| + 𝑝 |1⟩⟨1|. See [128] for more justification of this

assumption.) Given an observable 𝑂, the idea of virtual distillation [128, 129] is to evaluate the

quantity

⟨𝑂⟩VD :=
Tr[𝜌𝑚E𝑂]
Tr[𝜌𝑚E ]

(5.13)

for positive integer 𝑚. Using the spectral decomposition (5.12), one can show that

⟨𝑂⟩VD = ⟨𝑂⟩
[
1 +∑

𝑘 (𝑝𝑘/𝑝0)𝑚 ⟨𝜓𝑘 |𝑂 |𝜓𝑘⟩/⟨𝑂⟩
1 +∑

𝑘 (𝑝𝑘/𝑝0)𝑚

]
(5.14)

where ⟨𝑂⟩ := ⟨𝜓0 |𝑂 |𝜓0⟩ is the true (noiseless) expectation value by assumption. It’s easy to see

that lim𝑚→∞⟨𝑂⟩VD(𝑚) = ⟨𝑂⟩. In fact, to leading order

⟨𝑂⟩VD = ⟨𝑂⟩ [1 + O ((𝑝1/𝑝0)𝑚)] , (5.15)

showing that errors are suppressed exponentially in the power 𝑚.

The remaining question is how to evaluate (5.13). Authors of [128, 129] propose physically

preparing𝑚 copies of the state then using the “SWAP trick” Tr[𝑆𝑚𝜌⊗𝑚𝑂1] = Tr[𝜌𝑚𝑂]. Here, 𝑆𝑚 is
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the SWAP or shift operator which cyclically permutes𝑚 copies of a state 𝑆𝑚 |1⟩⊗ |2⟩⊗ |3⟩⊗· · · |𝑚⟩ =

|2⟩ ⊗ |3⟩ ⊗ · · · |𝑚⟩ ⊗ |1⟩ and 𝑂1 is the observable 𝑂 acting on the first copy of the state 𝜌⊗𝑚. The

denominator of (5.13) is computed in the same way but by omitting 𝑂1. Even for small 𝑚, this

requires many additional qubits and operations to prepare the states, and the SWAP operation is

very hard to implement experimentally. Recognizing these challenges, Ref. [191] proposes using

active reset to reduce the number of ancilla qubits needed for this approach. Our logical shadow

tomography procedure only requires sampling from a single copy of the state. We now describe this

method and how it encapsulates both subspace expansion and virtual distillation with significantly

fewer resources.

5.2 Introduction

In this chapter, we are interested in error mitigation in the region between noisy-intermediate scale

quantum (NISQ) and fault-tolerant quantum computation. We present a conceptually simple and

practical QEM technique. In our setup, we use quantum error correction code to distribute logical

qubits information with multiple physical qubits. Without active quantum error correction which

requires extra ancilla qubits and parity check measurements, the only step which happens on a

quantum computer is repeatedly sampling from an encoded state to perform shadow tomogra-

phy [192, 193]. After this, one can use classical post-processing to project out errors as in subspace

expansion [127] and calculate powers of the density matrix as in virtual distillation [128]. In

addition to enabling both of these methods, our technique requires significantly fewer resources.

Specifically, we show that (i) the quantum gate overhead is independent of the number of logical

qubits and we do not require multiple copies of the physical systems, (ii) the sample complexity for

estimating error mitigated Pauli observables only scales with the number of logical qubits instead

of the total number of physical qubits, and (iii) there exists an efficient classical algorithm that can

post-process data with polynomial time. We show the new method is practical for relatively large

systems with numerical experiments.
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5.3 Logical shadow tomography

5.3.1 Motivation
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Figure 5.1: Graphic illustration of logical shadow tomography. (a) Red dots are logical qubits,
and blue dots are physical qubits. Logical information is distributed to physical qubits by error
correction code, then followed by noisy quantum computation on physical qubits. To get estimation
of error mitigated observables, we perform classical shadow tomography on the noisy physical
state. Particularly, we can apply random Clifford gates denoted as green blocks from some unitary
ensemble U, and take computational basis measurements. (b) A special case using [[𝑛, 1]] code
for each logical qubit. In shadow tomography, we apply random unitary from tensor product of
Clifford groups Cℓ(2𝑛)⊗𝑘 . Additional gate depth will not scale with number of logical qubits 𝑘 ,
and sample complexity for estimating error mitigated logical Pauli observables is the same as using
global Clifford group Cℓ(2𝑛𝑘 ).

In this work, we are interested in error mitigation in the region between noisy intermediate-scale

quantum (NISQ) and fault-tolerant quantum computation, where the number of qubits is more than

a few but cannot fulfill the requirement of fault-tolerance. We ask the question whether we can use

those resources cleverly to achieve a more reliable quantum computation. QEM methods related

to this idea are subspace expansion [127] and the virtual distillation [128]. The key contribution

of this work is to propose the application of classical shadow tomography [192, 193] to reduce

the quantum and classical resources needed to perform these QEM schemes, and provide rigorous

analysis on its error mitigation capability.
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The subspace expansion approach starts by encoding 𝑘 logical qubits with 𝑁 physical qubits

via an error correction code [[𝑁, 𝑘]]. Consider using a stabilizer code defined by a stabilizer group

S = ⟨𝑆1, 𝑆2, · · · , 𝑆𝑁−𝑘⟩, the code subspace is specified by the projection operator

Π =

𝑁−𝑘∏
𝑗=1

𝐼 + 𝑆 𝑗
2

=
1

2𝑁−𝑘
∑︁
𝑀∈S

𝑀, (5.16)

where 𝑀 denote group elements in S as products of the stabilizers. Errors may occur to the

physical state during the quantum information processing, which generally takes the physical state

away from the code subspace. Suppose the goal is to estimate the logical observable 𝑂 only, then

even without active error correction, a simple projection of the the corrupted physical state 𝜌E back

to the code subspace can already mitigate the error for the logical observable [127]

⟨𝑂⟩QEM =
Tr(Π𝜌EΠ†𝑂)
Tr(Π𝜌EΠ†)

=
1

2𝑛−𝑘𝑐

∑︁
𝑀∈S

Tr(𝜌E𝑀𝑂), (5.17)

where 𝑐 = Tr(Π𝜌EΠ†). This amounts to measuring ⟨𝑀𝑂⟩ on the corrupted physical state for all

elements 𝑀 in the stabilizer group S (or for a majority of 𝑀 sampled from S). This approach can

quickly become exponentially expensive when 𝑁 − 𝑘 becomes large.

Another approach for QEM goes under the name of virtual distillation. Assuming the target

state is a pure state as the leading eigen state of 𝜌E . The sub-leading eigen states of 𝜌E (as

errors orthogonal to the target state) can be suppressed by powering the density matrix 𝜌𝑚E , and

we estimate ⟨𝑂⟩QEM = Tr(𝜌𝑚E𝑂)/Tr(𝜌𝑚E ). Or more generally, a polynomial function 𝑓 (𝜌E) =

𝑐0𝐼 + 𝑐1𝜌E + 𝑐2𝜌
2
E + · · · + 𝑐𝑚𝜌

𝑚
E of 𝜌E can be considered, with an optimal choice of the coefficients

𝑐0, · · · , 𝑐𝑚 to best mitigate the error, such that

⟨𝑂⟩QEM =
Tr( 𝑓 (𝜌E)𝑂)
Tr( 𝑓 (𝜌E))

. (5.18)

However, powering a density matrix on quantum devices typically involves making multiple copies

of the quantum system, which can be challenging and expensive in quantum resources.

The key observation of this work is that both Eq. (5.17) and Eq. (5.18) (or their combination)

can be efficiently evaluated in the classical post-processing phase after performing the classical
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shadow tomography [193] on the noisy physical state 𝜌E . The classical shadow tomography uses

randomized measurements to extract information from an unknown quantum state, and predicts

physical properties about the state efficiently by post-processing collected measurement outcomes

on a classical computer. When the measurement basis are chosen to be Pauli or Clifford basis, the

post-processing can be made efficient. The code subspace projection and the powering of density

matrix can all be implemented efficiently in the post-processing phase by classical computation,

given the Clifford nature of the classical shadows. In this way, we can implement the existing error

mitigation schemes with significantly reduced quantum and classical resources.

5.3.2 Procedure

Let us now introduce our technique which we will refer to as logical shadow tomography (LST).

LST consists of the following steps1 (see Fig. 5.1 for a graphical overview):

1. Given a 𝑘-qubit logical state, encode it into a 𝑁-qubit physical state by a [[𝑁, 𝑘]] stabilizer

code.

2. Perform the quantum information processing on the physical state, the resulting physical

state is denoted as 𝜌E . Due to the error accumulated in the processing, 𝜌E = E(𝜌) may be

corrupted from the ideal result 𝜌 = |𝜓⟩⟨𝜓 | by some noisy quantum channel E. The goal is

the mitigate the error for predicting logical observables based on the noisy physical state 𝜌E .

3. Perform shadow tomography on the noisy state.

3.1. Apply a randomly sampled unitary𝑈 from a unitary ensembleU to the physical qubits.

Measure all physical qubits in the computational basis to obtain a bit-string 𝑏 ∈ {0, 1}𝑛.

Store𝑈, 𝑏.

3.2. Repeat step 3.1 for 𝑁 times to obtain a data ensemble {(𝑈𝑠, 𝑏𝑠)}𝑁𝑠=1 (𝑠 labels the samples

in the ensemble).
1Steps 2 and 3 can be aptly summarized by “perform shadow tomography [193] on the logical state,” whence

logical shadow tomography. We explain these steps in detail for completeness.
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4. Post-process the data on a classical computer.

4.1. Construct the classical shadow ensemble

Σ(𝜌E) = { 𝜌̂𝑠 =M−1(𝑈†𝑠 |𝑏𝑠⟩⟨𝑏𝑠 |𝑈𝑠)}𝑁𝑠=1, (5.19)

where M−1 is the classical shadow reconstruction map that depends on the unitary

ensembleU.

4.2. Given any logical observable 𝑂 (i.e. [Π, 𝑂] = 0) estimate the error-mitigated expecta-

tion value by

⟨𝑂⟩LST =
Tr(Π 𝑓 (𝜌E)Π†𝑂)
Tr(Π 𝑓 (𝜌E)Π†)

, (5.20)

where Π is the code subspace projection operator defined in Eq. (5.16), and 𝑓 (𝑥) =∑𝑚
𝑝=1 𝑐𝑝𝑥

𝑝 can be a generic polynomial function up to the power 𝑚. The proposed

QEM estimator ⟨𝑂⟩LST in Eq. (5.20) combines the subspace expansion Eq. (5.17) and the

virtual distillation Eq. (5.18) approaches. In particular, the numerator Tr(Π 𝑓 (𝜌E)Π†𝑂)

is evaluated by
𝑚∑︁
𝑝=1

𝑐𝑝 E
{ 𝜌̂𝑠}∈Σ(𝜌E )×𝑝

Tr
(
Π

( 𝑝∏
𝑠=1

𝜌̂𝑠

)
Π†𝑂

)
, (5.21)

and the denominator Tr(Π 𝑓 (𝜌E)Π†) is evaluated independently in a similar manner (by

replacing 𝑂 with 𝐼).

The mapM−1 depends on the unitary ensemble U for which there are several proposals, e.g.

Pauli ensembles, random Clifford circuits, and chaotic dynamics [193, 194, 195, 196]. In this work,

we find the sample complexity for predicting logical Pauli observable is the same between using a

full Clifford ensemble Cℓ(2𝑁 ) as shown in Fig. 5.1(a) and a tensor product of Clifford ensemble

Cℓ(2𝑁/𝑘 )⊗𝑘 as shown in Fig. 5.1(b). In the following, we will focus on the scheme where each

qubit is encoded with a [[𝑛, 1]] error correction code and apply random unitaries from Clifford

group Cℓ(2𝑛) at each logical qubit sector. And the total number of physical qubits is 𝑁 = 𝑛𝑘 .
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5.3.3 Analysis

In the previous section, we have outlined the procedure of logical shadow tomography (LST). Here,

we will analyze its performance from three perspectives: 1) error mitigation capacity, 2) quantum

resources, and 3) classical resources. Particularly, in error mitigation capacity subsection, we

show how error is suppressed with the code distance 𝑑 of the error correction code and powers

of density matrix. In quantum resources subsection, we show the gate overhead is similar to the

original proposal of subspace expansion, except for a shallow depth Clifford circuit whose depth

does not depend on the number of logical qubits. Compared to virtual distillation, our method

only requires one copy of the physical system. In addition, we also show the sample complexity

has an exponential reduction compared to the direct implementation of subspace expansion for

estimating logical Pauli observables. In classical resources subsection, we outline the general

classical algorithm for post-processing the data. Particularly, we show there exists fast algorithm

for LST with 𝑓 (𝜌E) = 𝜌E and its algorithm time complexity is 𝑂 (𝑁3). This allows our method

scale to large system size.

5.3.3.1 Error mitigation capability

Code space projection. Let S be the stabilizer code used in LST. For any correctable error 𝐸 ,

there exists a stabilizer generator 𝑆 such that 𝑆𝐸 = −𝐸𝑆 and so

Π𝐸 |𝜓⟩ ∝ (𝐼 + 𝑆)𝐸 |𝜓⟩ = 𝐸 ( |𝜓⟩ − |𝜓⟩) = 0. (5.22)

Analogously, if no error has occurred then |𝜓⟩ is a codeword and

Π |𝜓⟩ = |𝜓⟩. (5.23)

Thus the projector Π discards results in which correctable errors have occurred [127]. The set of

correctable errors is determined by the chosen code. Assume a simple noise model where each

qubit is subjected to depolarizing noise with rate 𝑝. If a single error happened on one qubit. Then

it can be projected out given the fact that single Pauli operator is not the stabilizer group. Those

errors are non-logical errors.
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The code space projection fails when more local error happens and they form a logical operator.

The probability of having this failure is 𝑝𝑑 , where 𝑑 is the code distance of the error correction

code. Mathematically, we can write down

𝜌E = (1 − 𝑝)𝑁 𝜌0 + 𝑝𝜌1 + 𝑝2𝜌2 + . . . , (5.24)

where 𝜌0 = |𝜓0⟩⟨𝜓0 | is the ideal quantum state, and 𝑁 is the system size. 𝜌1 is the quantum state

subjected to error happened to one qubit, i.e.

𝜌1 =(𝑋𝐼 · ·𝐼)𝜌0(𝑋𝐼 · ·𝐼) + (𝐼𝑋 · ·𝐼)𝜌0(𝐼𝑋 · ·𝐼) + . . . (5.25)

Similarly, 𝜌2 is the quantum state subjected to two error happened, i.e.

𝜌2 =(𝑋𝐼𝑌 · ·𝐼)𝜌0(𝑋𝐼𝑌 · ·𝐼)

+ (𝐼𝑋𝑋 · ·𝐼)𝜌0(𝐼𝑋𝑋 · ·𝐼) + . . .
(5.26)

Therefore, for any logical observable 𝑂, we have

Tr(Π𝜌EΠ𝑂)
Tr(Π𝜌EΠ)

= ⟨𝜓0 |𝑂 |𝜓0⟩
[
1 +𝑂

(
𝑝𝑑

Tr(𝜌𝑑𝑂)
⟨𝜓0 |𝑂 |𝜓0⟩

)]
.

(5.27)

More details can be found in Sec. 5.7.

Virtual distillation. For completeness, we will review the virtual distillation theory here. With

the spectral decomposition of the noisy density matrix, one can write

𝜌E = 𝑝0 |𝜓0⟩⟨𝜓0 | + 𝑝1 |𝜓1⟩⟨𝜓1 | + · · · + 𝑝𝑛 |𝜓𝑛⟩⟨𝜓𝑛 |, (5.28)

where 𝑝0 > · · · > 𝑝𝑛 and ⟨𝜓𝑖 |𝜓 𝑗 ⟩ = 𝛿𝑖 𝑗 . For shallow circuit, it is reasonable to assume |𝜓0⟩ ≡ |𝜓⟩

is the noiseless state. In this case, for any observable 𝑂 and positive integer 𝑚 we have [128, 135]

Tr(𝜌𝑚E𝑂)
Tr(𝜌𝑚E )

=
𝑝𝑚0 ⟨𝜓0 |𝑂 |𝜓0⟩ +

∑
𝑖 𝑝

𝑚
𝑖
⟨𝜓𝑖 |𝑂 |𝜓𝑖⟩

𝑝𝑚0 +
∑
𝑖 𝑝

𝑚
𝑖

= ⟨𝜓 |𝑂 |𝜓⟩
[
1 +𝑂

((
𝑝1

𝑝0

)𝑚 ⟨𝜓1 |𝑂 |𝜓1⟩
⟨𝜓 |𝑂 |𝜓⟩

)]
.

(5.29)
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Thus, computing the expectation value with the 𝑚th power of the state suppresses errors exponen-

tially in 𝑚, a phenomenon which can also be interpreted as artificially cooling the system [197].

Here we allow for an arbitrary function 𝑓 acting on the noisy state via its Taylor expansion

𝑓 (𝑥) = ∑𝑚
𝑝=1 𝑐𝑝𝑥

𝑝. Including sums of powers up to 𝑚 (instead of just the highest power 𝑚) was

shown to improve results of numerical experiments in [135].

LST (Combined approach). LST has the error mitigation capability of code space projection

and virtual distillation. When we combine code space projection with virtual distillation, we expect

both code distance 𝑑 of the error correction code and 𝑚th power of the density matrix will suppress

the error. Especially, when 𝑚 = 2 in Tr(Π𝜌𝑚𝜖 Π𝑂), i.e. one projects the squared density matrix to

code space, the order of error suppression is improved from O(𝑝𝑑) to O(𝑝2𝑑). In general, higher

order of the power 𝑚 will lead to stronger error mitigation effect. (See Sec. 5.7 for more details.)

5.3.3.2 Quantum resources

Gate overhead. LST requires additional qubits and gates to encode the logical state, the exact

number of which depends on the chosen code. Restricting to stabilizer codes, the logical state

preparation only requires implementing Clifford gates, which are presumably easier to implement

on NISQ devices compared to universal quantum computation gate set. This encoding overhead

is the same as the subspace expansion method. To perform the classical shadow tomography,

an element from a unitary ensemble U is appended to the quantum circuit before measuring all

qubits in the computational basis. If U is chosen to be a global Clifford ensemble, the added

circuit depth is O(𝑁) with local random unitary gates [198]. The gate overhead associated with

this can be significant. If U is chosen to be a tensor-product Pauli ensemble, the added circuit

depth is O(1) [193]. The gate overhead is more affordable. However, the Pauli measurement

will increase the sample complexity exponentially for non-local observables. Facing this dilemma

between Clifford v.s. Pauli measurement, a recent work [195] by part of the authors has developed

an efficient classical shadow tomography approach for finite-depth local Clifford circuits, which can

smoothly interpolate between the global Clifford and the local Pauli limit. Using shallow (finite-
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depth) Clifford circuits for shadow tomography, the gate overhead can be significantly reduced

with only a mild increase of sample complexity. [195] This approach can be combined with our

error mitigation technique seamlessly to achieve an optimal balance between gate overhead and

sample complexity. For this work, we will use a tensor-product Clifford group Cℓ(2𝑛)⊗𝑘 as shown

in Fig. 5.1 (b). The added circuit depth is O(𝑛), where 𝑛 is the physical qubits in [[𝑛, 1]] code for

one logical qubit. It is important to notice that the depth of additional circuit is independent of the

number of logical qubit 𝑘 .

Sample complexity. We now consider number of measurements needed for classical post-

processing in LST. If one uses a [[𝑛, 1]] code for each logical qubit and a tensor-product Clifford

group Cℓ(2𝑛)⊗𝑘 , where 𝑘 is number of logical qubits, we have the following theorem which dictates

the sample complexity of LST.

Theorem 11: Let 𝜌 be a 𝑘 logical qubits quantum state, where each logical qubit is encoded with

a [[𝑛, 1]] code, and Π be the associated projection operator to the code subspace. Then one needs

O(log(𝑀)4𝑘/𝜖𝛿2) samples to produce an estimation 𝑂̃𝑖 of Tr(Π𝜌Π𝑂𝑖) with {𝑖 = 1, . . . , 𝑀} of

logical Pauli observables 𝑂𝑖 such that

Pr
(��𝑂̃𝑖 − Tr(Π𝜌Π𝑂𝑖)

�� ≥ 𝜖 ) ≤ 𝛿. (5.30)

The result (5.30) applies to both the numerator and denominator of the LST estimate Eq. (5.20)

separately. We emphasize that the number of samples does not depend on the total number of

physical qubits 𝑛𝑘 , but only depends on the number of logical qubits 𝑘 , and scales as O(4𝑘 ).

Compared to direct implementation of subspace expansion whose sample complexity is O(2𝑛𝑘 ),

our method dramatically reduces the sample complexity.

In Ref. [127], the authors also mentioned stochastic sampling of the stabilizer group elements

to reduce the sample complexity at the price of losing the error mitigation capacity. Our approach

bypasses the need to sample the all elements in the stabilizer group, as we can implement the

projection operator directly and efficiently by data post-processing. Our advantage will be even

176



more apparent if one uses larger 𝑛 error correction code [[𝑛, 1]], which provides larger code

distance and better error mitigation capacity.

5.3.3.3 Classical resources

In this section, we show that there exists efficient algorithm for classical post-processing. Especially,

for LST with 𝑓 (𝜌E) = 𝜌E (no virtual distillation), the classical post-processing can be performed

with polynomial classical memory and time.

After sampling, we have the classical shadow Eq. (5.19) consisting of 𝑁 stabilizer states

𝑈† |𝑏⟩⟨𝑏 |𝑈, the observable 𝑂, and the projector Π. We need to estimate the numerator and

denominator of Eq. (5.20), both of which can be written

Tr[ 𝑓 (𝜌E)Γ] (5.31)

where Γ = Π𝑂 for the numerator and Γ = Π for the denominator. Let 𝑚 be the highest degree of

the Taylor expansion of 𝑓 . As in [193], we can evaluate the expectation of this term via

ETr[ 𝜌̂𝑖1 · · · 𝜌̂𝑖𝑚Γ], (5.32)

where { 𝜌̂𝑖1 . . . 𝜌̂𝑖𝑚 are independent samples. A single classical shadow 𝜌̂𝑖 requires O(𝑁2) classical

memory to store (where 𝑁 = 𝑛𝑘 is the total number of qubits), so the argument inside the trace

in (5.32) requires O(𝑁2𝑚) classical memory [12]. In Sec. 5.6.1, we showed that the evaluation of

(5.32) boils down to evaluating the general form

Tr
( 𝑙∏
𝑗=1
(𝑎 𝑗 𝐼 + 𝑏 𝑗𝑀 𝑗 )

)
, (5.33)

where 𝑀 𝑗 are Pauli operators. This can be solved by finding the null space N𝐴 of a binary

matrix representation of Pauli operators {𝑀 𝑗 }. By simple counting argument (see Sec. 5.6.1

for more details), we see the evaluation of Eq. (5.32) has time complexity upper bounded by

O
(
𝑚𝑁2(𝑚𝑁 + 𝑁 − 𝑘 + 1) + 𝑚 |N𝐴 |

)
, when 𝑚 ≥ 2, where 𝑘 is number of logical qubits, 𝑁 = 𝑛𝑘

is the total number of physical qubits, 𝑚 is power of density matrix, and |N𝐴 | is the volume of
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binary null spaceN𝐴 determined by a set of classical shadows { 𝜌̂𝑖1 , . . . , 𝜌̂𝑖𝑚}. When 𝑚 is large, the

null space N𝐴 can be very large. In practice, the evaluation of (5.32) can be slow given the time

complexity is proportional to O(𝑚 |N𝐴 |) for 𝑚 ≥ 2.

We also find an improved classical algorithm for 𝑚 = 1 with time complexity O(𝑁3). When

𝑚 = 1, we would like to evaluate Tr(Π𝜌Π𝑂), where 𝜌 is proportional to a stabilizer state, which

can be represented using stabilizer tableau. The intuition behind the efficient algorithm is that a

stabilizer state can be efficiently projected by another stabilizer group projector by updating its

stabilizer tableau. We leave the detail of the algorithm to Sec. 5.6.2.

In conclusion, at least for the𝑚 = 1 (no virtual distillation) case, the post-processing complexity

is polynomial O(𝑁3) in the total qubit number 𝑁 .

5.4 Numerical results

In Sec. 5.3.3, we discussed the error mitigation capabilities, quantum resources, and classical

resources of LST. One should notice that the discussion of sample complexity is mainly fo-

cused on estimation of Tr(Π𝜌Π†𝑂). While in practice, we would like to estimate the ratio of

Tr(Π𝜌Π†𝑂)/Tr(Π𝜌Π†). The sample complexity of the ratio does not have a closed form in gen-

eral. This problem is not unique to our approach. It also exists for the subspace expansion [127]

and virtual distillation [128].

Nevertheless, in the following, we will use numerical experiments to investigate the sample

complexity. We demonstrate the performance of LST through numerical simulation of large sys-

tems. In particular, we find LST outperforms the direct implementation of the subspace expansion

and the sample complexity scaling is very close to our theoretical prediction in small noise region.

5.4.1 Pseudo-threshold with the [[5, 1, 3]] code

We first consider a simple example with one logical qubit encoded in five physical qubits with

the [[5, 1, 3]] stabilizer code. Each physical qubit is subjected to depolarizing noise with error

rate 𝑝. The same model is considered in the subspace expansion literature [127], which shows
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Figure 5.2: LST with the [[5, 1, 3]] code. Here, |𝜓⟩ is taken to be the logical |0̄⟩ and we estimate
infidelity 1 − 𝐹 with samples. The dashed black line shows the physical infidelity, i.e., the noisy
expectation value of single qubit without any encoding. The green and blue dashed line are analytical
performance of logical shadow tomography with 𝑓 (𝜌E) = 𝜌E and 𝑓 (𝜌2

E) = 𝜌2
E respectively. The

red dots and red shaded area indicates the mean value and standard deviation of error mitigation
with 𝑓 (𝜌E) = 𝜌E by direct implementation of subspace expansion with 3000 measurements. The
green line and green shaded area indicate the mean value and standard deviation with 𝑓 (𝜌E) = 𝜌E
and 3000 measurements by LST. And the performance of LST with 𝑓 (𝜌E) = 𝜌2

E is indicated by
blue line and blue shaded area.

pseudo-threshold 𝑝 = 0.5. Here, we want to compare the practical performance of logical shadow

tomography and direct measurement by subspace expansion.

We evaluate Eq. (5.20) with 𝑓 (𝜌E) = 𝜌E and 𝑓 (𝜌E) = 𝜌2
E . The results are shown in Fig. 5.2.

Here, the dashed black line shows the infidelity without any error mitigation (the “physical”

curve), and the dashed colored lines show the infidelity using LST. We see that the LST estimates

have lower infidelity than the physical curve, showing that errors are indeed being mitigated.

LST with 𝑓 (𝜌E) = 𝜌2
E outperforms LST with 𝑓 (𝜌E) = 𝜌E showing that the combination of

codespace projection and virtually distillation outperforms only projecting into the codespace.

This phenomenon agrees with the behavior of the error mitigation capability 𝑝𝑚𝑑 with 𝑚 = 1, 2

argued in 5.3.3.1 (See Sec. 5.7 for proof details). In addition to expected performance, we also

care about sample efficiency, since one major contribution of our work is showing the exponential

reduction in sample complexity with LST.
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To show this practical advantage, we collect 3000 measurements results and use the data to

estimate error mitigated value. The colored lines/points shows the mean values of the estimation

and the colored regions shows the standard deviation to the mean value. For 𝑓 (𝜌E) = 𝜌E , LST is the

same as the subspace expansion. If we implement the direct subspace expansion by measuring every

Pauli observables, each Pauli observable is measured around 100 times. The red points/line and red

shaded region shows the result of direct implementation of subspace expansion. Given each Pauli

observable is not measured many times, small error in the denominator can cause large error of the

ratio. We see the standard deviation is very huge. The mean estimation and standard deviation of

LST is shown as green points/line and green shaded region. In contrast to direct implementation of

subspace expansion, LST has a much smaller fluctuation with the same amount of measurements.

This shows the practical advantage of our method. In addition, the blue points/line and blue shaded

region shows the result of LST with 𝑓 (𝜌E) = 𝜌2
E . With the same amount of data, we see it will

suppress the noise even more.

5.4.2 Convergence vs. code size

As we have pointed out in Sec. 5.3.3.2, the sample complexity for estimating Tr(Π𝜌Π†𝑂) for logical

Pauli observables 𝑂 only scales with number of logical qubits 𝑘 as 𝑂 (4𝑘 ) but does not scale with

the number of encoding qubits 𝑛 of the [[𝑛, 1]] code for each logical qubit. In practice, we will

estimate error mitigated values as a ratio, i.e. Tr(Π𝜌Π†𝑂)/Tr(Π𝜌Π†). Since there is no closed

form for the statistical fluctuation of the above ratio. We will investigate the sample complexity of

it via numerical simulation. Interestingly, we find the sample complexity of the ratio agrees well

with our theoretical analysis in small noise region.

We now consider [[𝑛, 1]] codes for one logical qubit and vary the number of physical qubits

ranging from 𝑛 = 10 to 𝑛 = 60. For quantum noise, each physical qubit is subjected to 1%

depolarizing noise in all the following experiments. The LST estimated fidelity (using 𝑓 (𝜌𝜖 ) = 𝜌𝜖

for all code sizes) vs. number of samples is shown in Fig. 5.3 (a). Using a relatively small number

of samples (at most 105), all LST values converge to the noiseless fidelity. Note that the direct

180



S.
D.

N

Number of Samples

Fi
de

lit
y

S.
D.

N

Number of Samples

Fi
de

lit
y

<latexit sha1_base64="/STYW22VddDT+bUkwwi78n9aF9I=">AAACAHicbVDLSsNAFL2pr1pfVZduBluhbkpS8LEsuHFZwdRCG8pkMmmHTiZhZiKU0I0/4Fb/wJ249U/8Ab/DSZuFth64cDjnvjh+wpnStv1lldbWNza3ytuVnd29/YPq4VFXxakk1CUxj2XPx4pyJqirmea0l0iKI5/TB39yk/sPj1QqFot7PU2oF+GRYCEjWBvJrTf88/qwWrOb9hxolTgFqUGBzrD6PQhikkZUaMKxUn3HTrSXYakZ4XRWGaSKJphM8Ij2DRU4osrL5s/O0JlRAhTG0pTQaK7+nshwpNQ08k1nhPVYLXu5+K8XqHzh0nUdXnsZE0mqqSCL42HKkY5RngYKmKRE86khmEhm/kdkjCUm2mRWMcE4yzGskm6r6Vw07btWrX1ZRFSGEziFBjhwBW24hQ64QIDBM7zAq/VkvVnv1seitWQVM8fwB9bnD4Uglho=</latexit>

(b)

<latexit sha1_base64="fRW3xKZfVV+BXdPIuafoIp3ZOmo=">AAACAHicbVDLSsNAFL2pr1pfVZduBluhbkpS8LEsuHFZwdRCG8pkMmmHTiZhZiKU0I0/4Fb/wJ249U/8Ab/DSZuFth64cDjnvjh+wpnStv1lldbWNza3ytuVnd29/YPq4VFXxakk1CUxj2XPx4pyJqirmea0l0iKI5/TB39yk/sPj1QqFot7PU2oF+GRYCEjWBvJrTfweX1YrdlNew60SpyC1KBAZ1j9HgQxSSMqNOFYqb5jJ9rLsNSMcDqrDFJFE0wmeET7hgocUeVl82dn6MwoAQpjaUpoNFd/T2Q4Umoa+aYzwnqslr1c/NcLVL5w6boOr72MiSTVVJDF8TDlSMcoTwMFTFKi+dQQTCQz/yMyxhITbTKrmGCc5RhWSbfVdC6a9l2r1r4sIirDCZxCAxy4gjbcQgdcIMDgGV7g1Xqy3qx362PRWrKKmWP4A+vzB4OGlhk=</latexit>

(a)

<latexit sha1_base64="cChVkP7Z6VY13tsn2WSNPWqI9bg=">AAACAHicbVDLSsNAFL2pr1pfVZduBluhbkpS8LEsuHFZwdRCG8pkMmmHTiZhZiKU0I0/4Fb/wJ249U/8Ab/DSZuFth64cDjnvjh+wpnStv1lldbWNza3ytuVnd29/YPq4VFXxakk1CUxj2XPx4pyJqirmea0l0iKI5/TB39yk/sPj1QqFot7PU2oF+GRYCEjWBvJrTfIeX1YrdlNew60SpyC1KBAZ1j9HgQxSSMqNOFYqb5jJ9rLsNSMcDqrDFJFE0wmeET7hgocUeVl82dn6MwoAQpjaUpoNFd/T2Q4Umoa+aYzwnqslr1c/NcLVL5w6boOr72MiSTVVJDF8TDlSMcoTwMFTFKi+dQQTCQz/yMyxhITbTKrmGCc5RhWSbfVdC6a9l2r1r4sIirDCZxCAxy4gjbcQgdcIMDgGV7g1Xqy3qx362PRWrKKmWP4A+vzB4a6lhs=</latexit>

(c)
<latexit sha1_base64="l9PjmpnJj64lWod2/sUVoiV+Ylk=">AAAB/nicbVDLSsNAFL2pr1pfVZduBlvBVUkKPpYFNy4r2ge0oUwmk3boZBJmJkIJBX/Arf6BO3Hrr/gDfoeTNAttPXDhcM59cbyYM6Vt+8sqra1vbG6Vtys7u3v7B9XDo66KEkloh0Q8kn0PK8qZoB3NNKf9WFIcepz2vOlN5vceqVQsEg96FlM3xGPBAkawNtJ9XdRH1ZrdsHOgVeIUpAYF2qPq99CPSBJSoQnHSg0cO9ZuiqVmhNN5ZZgoGmMyxWM6MFTgkCo3zV+dozOj+CiIpCmhUa7+nkhxqNQs9ExniPVELXuZ+K/nq2zh0nUdXLspE3GiqSCL40HCkY5QlgXymaRE85khmEhm/kdkgiUm2iRWMcE4yzGskm6z4Vw07LtmrXVZRFSGEziFc3DgClpwC23oAIExPMMLvFpP1pv1bn0sWktWMXMMf2B9/gDL4JXB</latexit>n

Figure 5.3: Scaling study of LST with 𝑓 (𝜌𝜖 ) = 𝜌𝜖 . In all figures, each physical qubit is subjected
to 1% depolarizing noise. (a) LST estimated fidelity vs. number of samples from 102 - 105 with
various [[𝑛, 1]] code sizes. The noiseless fidelity value of 1.0 is shown with the dashed black line.
For all code sizes up to 𝑛 = 60 physical qubits, the LST estimate converges to the true noiseless
value. Codes used are the minimum distance constructions from [9].(b) Standard deviation vs.
number of physical qubits 𝑛. The standard deviation of estimation doesn’t scale with number of
encoding physical qubits. (c) Mean value and standard deviation scaling vs. number of logical
qubits 𝑘 . Each logical qubit is encoded with [[5, 1, 3]] code, and the state is prepared as logical
GHZ state |0̄ . . . 0̄⟩ + |1̄ . . . 1̄⟩. We see standard deviation scales exponentially with number of
logical qubits 𝑘 as predicted.
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implementation of subspace expansion with the full projection Π as used here would require at

least 259 samples, a number infeasible to implement in any practical experiment. In addition, we

estimate the standard deviation of each predicted point by LST using the bootstrap method, and the

result is shown in Fig. 5.3 (b). We see the standard deviation does not show strong dependence of

number of encoding qubits 𝑛, and it indicates the sample complexity does not increase much if one

increase 𝑛.

In addition, we also study the sample complexity scaling with number of logical qubits 𝑘 .

Particularly, we use [[5, 1, 3]] code to encode each logical qubit and prepare a multi-logical qubits

GHZ state, ( |0̄ . . . 0̄⟩ + |1̄ . . . 1̄⟩)/
√

2. In Fig. 5.3 (c), the blue dots/line shows the estimated mean

value for logical operator 𝑋̄1 ⊗ · · · ⊗ 𝑋̄𝑘 , and the blue shaded area indicates the standard deviation.

Especially, in the inset, we see the standard deviation increases exponentially with number of logical

qubits 𝑘 . This result also agrees well with our sample complexity analysis, even though the analysis

focuses on estimating Tr(Π𝜌Π†𝑂).

Through the large scale numerical simulation, we find LST indeed outperforms previous meth-

ods in terms of sample complexity. Interestingly, we also find the sample complexity agrees well

with the theoretical analysis in small noise region. This indicates the sample complexity of LST

does not scale much with the number of physical encoding qubits 𝑛 with [[𝑛, 1]] error correction

code and only scales with number of logical qubits 𝑘 .

5.5 Discussion

We have presented a procedure for estimating error-mitigated observables on noisy quantum com-

puters. Our procedure is flexible enough to be performed on virtually any quantum computer: the

only additional quantum resources needed are qubits and Clifford gates for encoding the logical

state. After sampling from the logical state, a classical computer processes the obtained classical

shadow to return the error-mitigated expectation value. In the analysis, we show if the error cor-

rection code has code distance 𝑑 and 𝑓 (𝜌E) = 𝜌E for LST, then error will be suppressed to O(𝑝𝑑),

assuming independent depolarizing noise with rate 𝑝 on each physical qubit. And we also show

182



higher power of density matrix will further improve the performance. For sample complexity, we

show it scales only with number of logical qubits 𝑘 but not the number of encoding physical qubits

𝑛. This result is also supported with large scale numerics. In addition, we provide efficient classical

algorithms to post-process the classical shadow data and remark that this post-processing can be

easily parallelized for practical efficiency in real-world experiments.

With respect to error mitigation, our procedure provides an experimentally simple procedure

to carry out proposed error mitigation techniques [127, 128] at scale. In particular, we have

demonstrated subspace expansion with up to 𝑛 = 60 physical qubits encoding a single logical qubit,

i.e., a stabilizer group with 259 elements, an experiment which would be practically infeasible

with the direct or stochastic sampling schemes of [127, 135]. We have also implemented virtual

distillation [128] without expensive swap operations to compute powers of the density matrix.

Rather, our procedure uses the same quantum circuit to evaluate the error-mitigated expectation

with any function 𝑓 (𝜌E) of the noisy state 𝜌E ; the only difference is in classical post-processing

(and number of shadows needed). Note that virtual distillation without subspace expansion can be

implemented in our protocol by using a trivial code (i.e., not encoding a logical state). Further,

beyond making both of these techniques significantly more practical to implement, our procedure

enables them to be composed with one another, and we have shown numerically the composition of

both techniques results in further reduction of errors. Additional error mitigation techniques which

act on the noisy state, e.g., those in [135], may also be implementable with our framework.

In our analysis, we assumed the Clifford circuit in the classical shadow part is noise-free. If there

are noise in the Clifford circuit part, it can be mitigated if the noise is independent of the Clifford

gates, as in [199, 200, 201], where similar idea was used for randomized benchmarking [202, 203].

Shadow tomography since proposed in [193] has found a number of applications in quantum

information processing, including the recently proposed process tomography [204], and avoiding

barren plateau in variational quantum circuits [205]. This work constitutes an application in the

error mitigation realm. We are optimistic our procedure will be effective on current and near-term

quantum computers for a variety of experiments on relatively large systems.
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5.6 Stabilizer algorithms

5.6.1 Evaluating the trace in Eq. (5.21)

In this Section, we explain an efficient approach to evaluate the trace in Eq. (5.21). For random

Clifford ensemble, the reconstruction map reads 𝜌̂ =M−1(𝜎̂) = (2𝑛 + 1)𝜎̂ − 𝐼, such that

E𝜌̂Tr
(
Π

( 𝑚∏
𝑠=1

𝜌̂𝑠

)
Π†𝑂

)
=

𝑚∑︁
𝑞=0

(
𝑚

𝑞

)
(2𝑛 + 1)𝑞 (−1)𝑚−𝑞E𝜎̂Tr

(
Π

( 𝑞∏
𝑠=1

𝜎̂𝑠

)
Π†𝑂

)
. (5.34)

Notice that the projection operator Π =
∏𝑛−𝑘

𝑗=1 (𝐼 + 𝑆 𝑗 )/2 and the snapshot state 𝜎̂ = 𝑈† |𝑏⟩⟨𝑏 |𝑈 =∏𝑛
𝑖=1(𝐼+𝑏𝑖𝑈†𝑍𝑖𝑈)/2 both take the from of stabilizer states. So the problem boils down to evaluating

the trace of the following general form

Tr
( 𝑙∏
𝑗=1
(𝑎 𝑗 𝐼 + 𝑏 𝑗𝑀 𝑗 )

)
, (5.35)

where 𝑀 𝑗 are Pauli operators and 𝑎 𝑗 , 𝑏 𝑗 are real coefficients. As we expand the product, the only

terms that survive the trace are those terms with the Pauli operators multiplied to the identity

operator. To find these combination of Pauli operators, we can first encode every Pauli operator 𝑀 𝑗

as a binary vector following

𝑀 𝑗 = i
∑𝑛
𝑖=1 𝜉𝑖 𝑗 𝜁𝑖 𝑗

𝑛∏
𝑖=1

𝑋
𝜉𝑖 𝑗

𝑖

𝑛∏
𝑖=1

𝑍
𝜁𝑖 𝑗

𝑖
→

©­­­­­­­­«

...

𝜉𝑖 𝑗

𝜁𝑖 𝑗

...

ª®®®®®®®®¬
, (5.36)

where 𝜉𝑖 𝑗 , 𝜁𝑖 𝑗 ∈ {0, 1} are binary variables. Arranging all the binary vector representations of 𝑀 𝑗

as column vectors, together they form a 2𝑛 × 𝑙 matrix, denoted as 𝐴. Each combination of Pauli

operators 𝑀 𝑗 that multiply to identity corresponds to a binary null vector solution 𝑥 of the binary

matrix 𝐴, as 𝐴𝑥 = 0 (modulo 2). The null vectors form the null space of 𝐴, denoted asN𝐴. The null

space of binary matrix 𝐴 can be found using Gaussian elimination method, and its time complexity

is O(𝑛𝑙 ×min(2𝑛, 𝑙)). For 𝑥 ∈ N𝐴,
𝑙∏
𝑗=1
(𝑀 𝑗 )𝑥 𝑗 = 𝑧(𝑥)𝐼, (5.37)
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which defines the phase factor 𝑧(𝑥) given 𝑥. Then the trace in Eq. (5.35) is given by

Tr
( 𝑙∏
𝑗=1
(𝑎 𝑗 𝐼 + 𝑏 𝑗𝑀 𝑗 )

)
= 2𝑛

∑︁
𝑥∈N𝐴

𝑧(𝑥)
𝑙∏
𝑗=1

𝑎
1−𝑥 𝑗
𝑗

𝑏
𝑥 𝑗

𝑗
. (5.38)

Therefore the time complexity of evaluating the general trace Eq. (5.38) isO(𝑛𝑙×min(2𝑛, 𝑙)+ |N𝐴 |),

where |N𝐴 | is the volume of the null spaceN𝐴 that is determined by the set of Pauli operators {𝑀𝑖}.

Applying this result for Eq. (5.34), we get the time complexity for evaluating Tr
(
Π

(∏𝑚
𝑠=1 𝜌̂𝑠

)
Π†𝑂

)
is upper bounded by O(𝑚𝑛𝑙 × min(2𝑛, 𝑙) + 𝑚 |N𝐴 |), with 𝑙 = 𝑚𝑛 + 𝑛 − 𝑘 + 1. For large 𝑚, the

volume of null space |N𝐴 | can be troublesome, and scale exponentially with 𝑚. But luckily for

𝑚 = 1, there exists more efficient polynomial time algorithm, which is illustrated in Sec. 5.6.2.

5.6.2 Efficient projection of a stabilizer state

As shown in Eq. (5.36), any Pauli string operator can be represented as a one-hot binary vector 𝑥

and 𝑧, with 𝑥𝑖, 𝑧𝑖 = 0, 1 for 𝑖 = 1, . . . , 𝑁 , where 𝑁 is the total number of qubits,

𝜎(𝑥,𝑧) = 𝑖
𝑥·𝑧

𝑁∏
𝑖=1

𝑋
𝑥𝑖
𝑖
𝑍
𝑦𝑖
𝑖
, (5.39)

where 𝑋𝑖, 𝑍𝑖 are Pauli operators, and 𝑥𝑖, 𝑧𝑖 are binary values. The multiplication of two Pauli

operators can be represented as

𝜎(𝑥,𝑧)𝜎(𝑥 ′,𝑧′) = 𝑖
𝑝(𝑥,𝑧;𝑥 ′,𝑧′)𝜎(𝑥+𝑥 ′,𝑧+𝑧′)%2, (5.40)

where the phase factor is

𝑝(𝑥, 𝑧; 𝑥′, 𝑧′) =
𝑁∑︁
𝑖=1

(
𝑧𝑖𝑥
′
𝑖 − 𝑥𝑖𝑧′𝑖 + 2(𝑧𝑖 + 𝑧′𝑖)

⌊
𝑥𝑖 + 𝑥′𝑖

2

⌋
+ 2(𝑥𝑖 + 𝑥′𝑖)

⌊
𝑧𝑖 + 𝑧′𝑖

2

⌋)
mod 4. (5.41)

Any two Pauli strings either commute or anti-commute,

𝜎(𝑥,𝑧)𝜎(𝑥 ′,𝑧′) = (−)𝑐(𝑥,𝑧;𝑥
′,𝑧′)𝜎(𝑥 ′,𝑧′)𝜎(𝑥,𝑧) , (5.42)

where the anticommutation indicator 𝑐 has a simpler form

𝑐(𝑥, 𝑧; 𝑥′, 𝑧′) = 𝑝(𝑥, 𝑧; 𝑥′, 𝑧′) − 𝑝(𝑥′, 𝑧′; 𝑥, 𝑧)
2

=

𝑁∑︁
𝑖=1

(
𝑧𝑖𝑥
′
𝑖 − 𝑥𝑖𝑧′𝑖

)
mod 2. (5.43)

185



Therefore, the complexity of calculating anticommutation indicator is O(𝑁). The binary vectors

𝑥 and 𝑧 can be interweaved into a 2𝑁-component vector 𝑔 = (𝑥0, 𝑧0, 𝑥1, 𝑧1, · · · ), which forms the

binary representation of a Pauli operator 𝜎𝑔.

Figure 5.4: Data structure of a stabilizer state. Each Pauli string is represented as a binary vector.
First 𝑁 rows store the stabilizers of the state, and second 𝑁 rows store the destabilizers of the state.

In Fig. 5.4, each row is a binary representation of a Pauli string. For a Hilbert space with

dimension C2𝑁 , we can find at most 𝑁 stabilizers {𝑆𝑖, 𝑖 = 1 . . . 𝑁} and 𝑁 destabilizers {𝐷𝑖, 𝑖 =

1 . . . 𝑁}, with [𝑆𝑖, 𝑆 𝑗 ] = 0, [𝐷𝑖, 𝐷 𝑗 ] = 0 and {𝑆𝑖, 𝐷 𝑗 } = 𝛿𝑖, 𝑗 . Fig. 5.4 is called the stabilizer tableau

of stabilizer state. We use 𝑟 in Fig. 5.4 indicates the log−2 rank of the density matrix. For pure

stabilizer state, 𝑟 = 0. And if 𝑟 > 0, then stabilizer tableau represents a mixed state and only partial

Hilbert space is stabilized.

A stabilizer projector Π =
∏𝑙
𝑘=1

𝐼𝑘
2 can also be represented as a 𝑙-row tableau (only stabilizer).

Now we are going to present an efficient algorithm to calculate Tr(Π𝜌Π), and update the stabilizer

tableau of a full rank stabilizer state 𝜌 according to projection Π.

Outline of the algorithm: First, we set trace = 1. Then we scan over every observable 𝐺𝑘 in

the generator of the operator. For each 𝐺𝑘 , we continue to scan over all operators in the stabilizer

tableau. If the observable 𝐺𝑘 anticommute with:

1. At least one active stabilizer (the first of them being 𝑆𝑝) → 𝐺𝑘 is an error operator that

take the state out of the code subspace→ stabilizer tableau need to be updated according to

𝐼 ± 𝐺𝑘 . And trace will be multiplied by 1/2.

2. Otherwise, 𝐺𝑘 is in the stabilizer group generated by {𝑆𝑘 }. If the phase factor is compatible,
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then stabilizer state is eigenstate of (𝐼 ± 𝐺𝑘 )/2 with eigenvalue 1, i.e. (𝐼 ± 𝐺𝑘 ) |𝜓⟩/2 = |𝜓⟩;

if the phase factor is incompatible, it means (𝐼 ± 𝐺𝑘 ) |𝜓⟩/2 = 0.

We see this algorithm has a double loop of O(𝑁) items, and each anticommutation check takes

O(𝑁) time. Therefore, the time complexity of this algorithm is O(𝑁3), where 𝑁 is the total number

of qubits in the system.

5.7 Error mitigation capability

In Eq. (5.24), we show the density matrix subjected to depolarizing noise is naturally the spectral

decomposition form. Here, we provide detailed proof of it. Let |𝜓0⟩ be the ideal quantum state

encoded with [[𝑛, 𝑘, 𝑑]] error correction code. And let {|𝑖⟩, 𝑖 = 1, . . . , 2𝑘 } be the orthonormal

basis for the logical space. In general, |𝜓0⟩ =
∑2𝑘
𝑖=1 𝑐𝑖 |𝑖⟩. We assume the simple depolarizing error

for each physical qubit. Then

𝜌𝜖 = (1 − 𝑝)𝑁 |𝜓0⟩⟨𝜓0 | + 𝑝𝜌1 + 𝑝2𝜌2 + · · · , (5.44)

where 𝜌𝑖 is the density matrix with 𝑖 local error happened, and 𝑁 is the system size. For example,

𝜌1 =(𝑋𝐼𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝑋𝐼𝐼 · · · 𝐼) + (𝑌 𝐼𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝑌 𝐼𝐼 · · · 𝐼)

+ (𝑍𝐼𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝑍𝐼𝐼 · · · 𝐼) + (𝐼𝑋𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝐼𝑋𝐼 · · · 𝐼)

+ · · · + (𝐼 𝐼 · · · 𝐼𝑍) |𝜓0⟩⟨𝜓0 | (𝐼 𝐼 · · · 𝐼𝑍),

(5.45)

and

𝜌2 =(𝑋𝑋𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝑋𝑋𝐼 · · · 𝐼) + (𝑋𝑌 𝐼 · · · 𝐼) |𝜓0⟩⟨𝜓0 | (𝑋𝑌 𝐼 · · · 𝐼)

+ · · · + (𝐼 · · · 𝑍𝑍) |𝜓0⟩⟨𝜓0 | (𝐼 · · · 𝑍𝑍).
(5.46)

We define the support of a Pauli string as number of Pauli operators that is not the identity operator.

Let 𝑃𝑙 be a Pauli string operator with non-trivial support 𝑙. For example, the support of Pauli string

𝑋𝐼𝑍𝑌 𝐼 is three. Then any term in 𝜌𝑙 can be written as 𝑃𝑙 |𝜓0⟩⟨𝜓0 |𝑃𝑙 with some 𝑃𝑙 . It is easy to

check Π𝑃𝑙 |𝜓0⟩⟨𝜓0 |𝑃𝑙Π = 0 for any 𝑙 < 𝑑. By definition of the code distance 𝑑, any 𝑃𝑙 with 𝑙 < 𝑑

is not in the stabilizer group. Therefore, it must anti-commute with some stabilizer generator 𝑆,
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such that {𝑆, 𝑃𝑙} = 0. We write Π = Π
′ (𝐼 + 𝑆), where Π

′ includes all other stabilizer generators.

Then

Π𝑃𝑙 |𝜓0⟩ = Π
′ (𝐼 + 𝑆)𝑃𝑙 |𝜓0⟩ = Π

′
𝑃𝑙 (𝐼 − 𝑆) |𝜓0⟩ = Π

′
𝑃𝑙 ( |𝜓0⟩ − |𝜓0⟩) = 0, (5.47)

and

Π𝑃𝑙 |𝜓0⟩⟨𝜓0 |𝑃𝑙Π = 0 (𝑙 < 𝑑). (5.48)

Therefore, we conclude Π𝜌𝑙Π = 0 for any 𝑙 < 𝑑, and

Tr(Π𝜌EΠ𝑂)
Tr(Π𝜌EΠ)

= ⟨𝜓0 |𝑂 |𝜓0⟩
[
1 +𝑂

(
𝑝𝑑

Tr(𝜌𝑑𝑂)
⟨𝜓0 |𝑂 |𝜓0⟩

)]
.

(5.49)

Now we want to prove the leading order correction of Π𝜌2
𝜖Π is of order O(𝑝2𝑑) with contradic-

tion. Suppose the leading order correction is of order O(𝑝𝑠) with 𝑠 < 2𝑑, then there exist 𝑃𝑙 and

𝑃𝑟 with 𝑙 + 𝑟 = 𝑠 < 2𝑑 such that

Π(𝑃𝑙 |𝜓0⟩⟨𝜓0 |𝑃𝑙) (𝑃𝑟 |𝜓0⟩⟨𝜓0 |𝑃𝑟)Π = ⟨𝜓0 |𝑃𝑙𝑃𝑟 |𝜓0⟩(Π𝑃𝑙 |𝜓0⟩)(⟨𝜓0 |𝑃𝑟Π) ≠ 0. (5.50)

This requires Π𝑃𝑙 |𝜓0⟩ ≠ 0 and Π𝑃𝑟 |𝜓0⟩ ≠ 0. From Eq. (5.48), we know this requires 𝑙 ≥ 𝑑 and

𝑟 ≥ 𝑑, and it contradicts with 𝑙 + 𝑟 < 2𝑑. Therefore, we conclude the leading order correction of

Tr(Π𝜌2
𝜖Π𝑂) is of order O(𝑝2𝑑).

For higher power of Π𝜌𝑚𝜖 Π, one may expect the leading order correction will be O(𝑝𝑚𝑑).

Depending on the particular logical state |𝜓0⟩ and error correction code, the performance may

or may not reach O(𝑝𝑚𝑑). This is because there can exist shortcuts that make the leading order

correction larger than O(𝑝𝑚𝑑). In practice, we do witness the performance will be improved with

larger 𝑚.

5.8 Mean and variance of a ratio of two random variables

Consider random variables 𝑃 and 𝑄 and let 𝐺 = 𝑔(𝑃,𝑄) = 𝑃/𝑄. In general, there is no closed

form expression for E[𝐺 (𝑃,𝑄)], and Var[𝐺 (𝑃,𝑄)]. Here, we find approximations for the mean

and variance using Taylor expansions of 𝑔(𝑃,𝑄).
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Figure 5.5: Infidelity in small error rate region. Theoretically we have shown the leading order
correction to infidelity will be O(𝑝𝑚𝑑) with 𝑚 = 1, 2. Here, we use [[5, 1, 3]] code with LST as a
demonstration. We prepare random logical states and calculate the infidelity. We see the numerical
results give linear order correction O(𝑝3.07) and O(𝑝6,15), which is very close to theoretical
prediction O(𝑝3) and O(𝑝6).

The approximation for the mean value is

E[𝑔(𝑃,𝑄)] = E[𝑔(𝜇𝑃, 𝜇𝑄) + 𝑔′𝑃 (𝜇𝑃, 𝜇𝑄) (𝑃 − 𝜇𝑃) + 𝑔′𝑄 (𝜇𝑃, 𝜇𝑄) (𝑄 − 𝜇𝑄) + 𝑅]

≈ E[𝑔(𝜇𝑃, 𝜇𝑄)] + 𝑔′𝑃 (𝜇𝑃, 𝜇𝑄)E[(𝑃 − 𝜇𝑃)] + 𝑔′𝑄 (𝜇𝑃, 𝜇𝑄)E[(𝑄 − 𝜇𝑄)]

= 𝑔(𝜇𝑃, 𝜇𝑄),

(5.51)

where 𝑅 is the higher order reminders of the Taylor expansion. For keeping the Taylor expansion

to the first order, we ignore higher order remainders.

For the variance, we have

Var[𝑔(𝑃,𝑄)] = E
{
[𝑔(𝑃,𝑄) − E(𝑔(𝑃,𝑄))]2

}
≈ E

{
[𝑔(𝑃,𝑄) − 𝑔(𝜇𝑃, 𝜇𝑄)]2

}
≈ E

{
[𝑔′𝑃 (𝜇𝑃, 𝜇𝑄) (𝑃 − 𝜇𝑃) + 𝑔′𝑄 (𝜇𝑃, 𝜇𝑄) (𝑄 − 𝜇𝑄)]

2
}

= 𝑔′2𝑃 (𝜇𝑃, 𝜇𝑄) Var(𝑃) + 𝑔′2𝑄 (𝜇𝑃, 𝜇𝑄) Var(𝑄) + 2𝑔′𝑃 (𝜇𝑃, 𝜇𝑄)𝑔′𝑄 (𝜇𝑃, 𝜇𝑄) Cov(𝑃,𝑄).

(5.52)

For our case, 𝑔(𝑃,𝑄) = 𝑃/𝑄, therefore 𝑔′
𝑃
(𝜇𝑃, 𝜇𝑄) = 1/𝜇𝑄 , 𝑔′

𝑄
(𝜇𝑃, 𝜇𝑄) = −𝜇𝑃/𝜇2

𝑄
, and

Var(𝑃/𝑄) ≈ ( 𝜇𝑃
𝜇𝑄
)2

[
Var(𝑃)
𝜇2
𝑃

+ Var(𝑄)
𝜇2
𝑄

− 2
Cov(𝑃,𝑄)
𝜇𝑃𝜇𝑄

]
(5.53)
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5.9 Proof of sample complexities

Suppose we want to predict a linear property of the underlying quantum state,

𝑜 = Tr(𝜌𝑂). (5.54)

We simply replace the unknown quantum state 𝜌 with the classical shadows 𝜌̂ = M−1(𝜎̂). This

yields a stochastic number 𝑜 = Tr( 𝜌̂𝑂), and it will converge to correct answer with sufficient

amount of classical shadows,

E𝑜 = Tr(𝜌𝑂). (5.55)

In practice, the expectation E𝑜𝑖 is replaced by a sample mean estimator, 𝑜avg = 1
𝑀

∑𝑀
𝑖=1 𝑜𝑖 =

1
𝑀

∑𝑀
𝑖=1 Tr(𝑂𝜌̂𝑖). Based on Chebyshev’s inequality, the probability of the estimation 𝑜avg to

deviate from its expectation value 𝑜 is bounded by its variance Var(𝑜avg) as Pr( |𝑜avg − 𝑜 | ≥

𝛿) ≤ Var(𝑜avg)/𝛿2. To control the deviation within a desired statistial accuracy 𝜖 , we require

Var(𝑜avg)/𝛿2 = Var(𝑜)/(𝑀𝛿2) ≤ 𝜖 , where 𝑀 is the number of classical shadows. In other words,

the number of experiments needed to achieve the statistical error 𝜖 is given by

𝑀 ≥ Var(𝑜)/𝜖𝛿2. (5.56)

Therefore, the sample complexity is directly related to the variance of single-shot estimation Var(𝑜).

We can further bound the variance by

Var(𝑜) = E[𝑜2] − E[𝑜]2 ≤ E[𝑜2]

= E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈M−1(𝑂)𝑈† |𝑏⟩2

≤ ||𝑂 | |2shadow,

(5.57)

where the shadow norm of an observable is defined as

| |𝑂 | |shadow = max
𝜎:state

©­«E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
⟨𝑏 |𝑈𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈M−1(𝑂)𝑈† |𝑏⟩2ª®¬

1/2

= max
𝜎:state

©­«E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
Tr(𝜎𝑈† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈M−1(𝑂)𝑈† |𝑏⟩2)ª®¬

1/2

= max
𝜎:state

(Tr𝜎𝑉U [𝑂])1/2 ,

(5.58)
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where we define a new operator 𝑉U [𝑂] = E𝑈∼U
∑

𝑏∈{0,1}𝑛
𝑈† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈M−1(𝑂)𝑈† |𝑏⟩2 that de-

pends both on the unitary ensemble U and observable 𝑂. If the unitary ensemble U satisfies

unitary 3-design, it can be simplified as

𝑉U [𝑂] = E𝑈∼U
∑︁

𝑏∈{0,1}𝑛
𝑈† |𝑏⟩⟨𝑏 |𝑈⟨𝑏 |𝑈M−1(𝑂)𝑈† |𝑏⟩2

=
∑︁

𝑏∈{0,1}𝑛

∑︁
𝜎,𝜏∈𝑆3

Wg[𝜎𝜏−1𝑔0]𝐴[𝜎]𝐵[𝜏],
(5.59)

where 𝜎, 𝜏 are permutations from permutation group 𝑆3, Wg[𝑔] is the Weingarten function of

the permutation group element 𝑔, 𝑔0 = (2, 3) is a fixed permutation to match the tensor network

connection, and 𝐴[𝜎], 𝐵[𝜏] are defined as:

<latexit sha1_base64="zBztVZzQ8KME4W2N+zJGLKWwdWs=">AAAB73icbVDLSgNBEOz1GeMr6tHLYCJ4CrsB0WNADx4jmAckS5idzCZD5rHOzAphyU948aCIV3/Hm3/jJNmDJhY0FFXddHdFCWfG+v63t7a+sbm1Xdgp7u7tHxyWjo5bRqWa0CZRXOlOhA3lTNKmZZbTTqIpFhGn7Wh8M/PbT1QbpuSDnSQ0FHgoWcwItk7qVHqGDQWu9Etlv+rPgVZJkJMy5Gj0S1+9gSKpoNISjo3pBn5iwwxrywin02IvNTTBZIyHtOuoxIKaMJvfO0XnThmgWGlX0qK5+nsiw8KYiYhcp8B2ZJa9mfif101tfB1mTCappZIsFsUpR1ah2fNowDQllk8cwUQzdysiI6wxsS6iogshWH55lbRq1eCy6t/XyvXbPI4CnMIZXEAAV1CHO2hAEwhweIZXePMevRfv3ftYtK55+cwJ/IH3+QNYIY+D</latexit>� <latexit sha1_base64="FESXuwyF8J3Co0vNq3v/2zz7KFQ=">AAAB7XicbVBNS8NAEJ34WetX1aOXxVbwVJKC6LGgB48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2Z++4lrI2L1gJOE+xEdKhEKRtFKrUoPaVrpl8pu1Z2DrBIvJ2XI0eiXvnqDmKURV8gkNabruQn6GdUomOTTYi81PKFsTIe8a6miETd+Nr92Ss6tMiBhrG0pJHP190RGI2MmUWA7I4ojs+zNxP+8borhtZ8JlaTIFVssClNJMCaz18lAaM5QTiyhTAt7K2EjqilDG1DRhuAtv7xKWrWqd1l172vl+m0eRwFO4QwuwIMrqMMdNKAJDB7hGV7hzYmdF+fd+Vi0rjn5zAn8gfP5A9vJjqg=</latexit>⌧

<latexit sha1_base64="WoO6lF1XIJHSpytj1f6zXTBQ2UU=">AAAB/nicbVDLSgMxFL1TX7W+RsWVm2Ar1IVlpiC6LOjCjVjBPqAdSyZN29DMgyQjlGHAX3HjQhG3foc7/8ZMOwttPRA4nHMv9+S4IWdSWda3kVtaXlldy68XNja3tnfM3b2mDCJBaIMEPBBtF0vKmU8biilO26Gg2HM5bbnjy9RvPVIhWeDfq0lIHQ8PfTZgBCst9cyDUtfDakQwj2+Sh/jUTsq3J6WeWbQq1hRokdgZKUKGes/86vYDEnnUV4RjKTu2FSonxkIxwmlS6EaShpiM8ZB2NPWxR6UTT+Mn6FgrfTQIhH6+QlP190aMPSknnqsn06xy3kvF/7xOpAYXTsz8MFLUJ7NDg4gjFaC0C9RnghLFJ5pgIpjOisgIC0yUbqygS7Dnv7xImtWKfVax7qrF2lVWRx4O4QjKYMM51OAa6tAAAjE8wyu8GU/Gi/FufMxGc0a2sw9/YHz+AJm/lJg=</latexit>

M�1(O)
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M�1(O)
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<latexit sha1_base64="ow6ZFChRUQXgwQ1OixdFWLqnRd8=">AAAB83icbVBNSwMxEJ2tX7V+VT16CbaCp7JbEL0IFT14rGA/YHcp2TTbhibZJckKpfRvePGgiFf/jDf/jWm7B219MPB4b4aZeVHKmTau++0U1tY3NreK26Wd3b39g/LhUVsnmSK0RRKeqG6ENeVM0pZhhtNuqigWEaedaHQ78ztPVGmWyEczTmko8ECymBFsrBRUb/xAs4HA4XW1V664NXcOtEq8nFQgR7NX/gr6CckElYZwrLXvuakJJ1gZRjidloJM0xSTER5Q31KJBdXhZH7zFJ1ZpY/iRNmSBs3V3xMTLLQei8h2CmyGetmbif95fmbiq3DCZJoZKsliUZxxZBI0CwD1maLE8LElmChmb0VkiBUmxsZUsiF4yy+vkna95l3U3Id6pXGXx1GEEziFc/DgEhpwD01oAYEUnuEV3pzMeXHenY9Fa8HJZ47hD5zPH84JkOE=</latexit>

A[�] =
<latexit sha1_base64="q+MmhdymxNMdsz0LTrPbUz6oVpI=">AAAB8XicbVBNS8NAEJ34WetX1aOXYCt4KklB9CIU9eCxgv3ANJTNdtMu3WzC7kQoof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zMCxLBNTrOt7Wyura+sVnYKm7v7O7tlw4OWzpOFWVNGotYdQKimeCSNZGjYJ1EMRIFgrWD0c3Ubz8xpXksH3CcMD8iA8lDTgka6bFy7XWRpP5VpVcqO1VnBnuZuDkpQ45Gr/TV7cc0jZhEKojWnusk6GdEIaeCTYrdVLOE0BEZMM9QSSKm/Wx28cQ+NUrfDmNlSqI9U39PZCTSehwFpjMiONSL3lT8z/NSDC/9jMskRSbpfFGYChtje/q+3eeKURRjQwhV3Nxq0yFRhKIJqWhCcBdfXiatWtU9rzr3tXL9No+jAMdwAmfgwgXU4Q4a0AQKEp7hFd4sbb1Y79bHvHXFymeO4A+szx9QdpAH</latexit>

B[⌧ ] =, (5.60)

In the following, we will mainly focus on the analysis of 𝑉U [𝑂] operator and | |𝑂 | |2shadow. In the

main text, we focus on the scheme of encoding each logical qubit with [𝑛, 1] stabilizer code, and

doing quantum computation with total physical qubits 𝑁 = 𝑛 × 𝑙, where 𝑙 is the number of logical

qubits. For the classical shadow tomography part, we will use random unitaries sampled from

Cℓ(2𝑛)⊗𝑙 . One reason of choosing this factorized random unitary group is global clifford group

Cℓ(2𝑛𝑙) is harder to implement in experiments. And the difficulty of implementing this factorized

scheme does not depend on number of logical qubits. In practice, it is possible to encode each

logical qubit with a small error correction code, such as [5, 1] code, and implement random circuits

from Cℓ(2𝑛). If the random unitary ensemble is Cℓ(2𝑛)⊗𝑙 , then it is easy to show the reconstruction

map is

M−1 [𝜎] = ⊗𝑙𝑖=1 [(2
𝑛 + 1)𝜎𝑖 − Tr(𝐴𝑖)𝐼] , (5.61)

where 𝜎𝑖 is the reduced classical shadow on part 𝑖. The logical Pauli observables will be factorized

on each logical sectors, i.e. 𝑂 = 𝑂1 ⊗ 𝑂2 ⊗ · · · ⊗ 𝑂𝑙 . And since the random untaries are sampled
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from ensemble Cℓ(2𝑛)⊗𝑙 , they also have the tensor product structure, i.e. 𝑈 = 𝑈1 ⊗𝑈2 ⊗ · · · ⊗𝑈𝑙 .

By combining those two properties, we can show

𝑉U [𝑂] = ⊗𝑙𝑖=1𝑉U𝑖 [𝑂𝑖] . (5.62)

Therefore, we only need to focus on the property of𝑉U𝑖 [𝑂𝑖] for each logical sector. In the following,

we will use 𝑑 = 2𝑛 for the Hilbert space dimension for one logical sector.

The calculation for 𝑉U𝑖 [𝑃𝑖 𝐼𝑖] : For projection operator 𝑃𝑖,M−1(𝑃𝑖 𝐼𝑖) = (𝑑 + 1)𝑃𝑖 − 2𝐼𝑖. And

Eq. (5.59) can be evaluated

𝑉Cℓ(𝑑) [𝑃𝑖 𝐼𝑖] =
2𝑑 − 2
𝑑 + 2

(𝑃𝑖 + 𝐼𝑖). (5.63)

The calculation for𝑉U𝑖 [𝑃𝑖𝑂𝑖] : For non-trivial Pauli string𝑂𝑖,M−1(𝑃𝑖𝑂𝑖) = (𝑑 +1)𝑃𝑖𝑂𝑖. And

Eq. (5.59) can be evaluated

𝑉Cℓ(𝑑) [𝑃𝑖𝑂𝑖] =
2𝑑 + 2
𝑑 + 2

(𝑃𝑖 + 𝐼𝑖). (5.64)

As we can see, 𝑉Cℓ(𝑑) [𝑃𝑖 𝐼𝑖] ≲ 𝑉Cℓ(𝑑) [𝑃𝑖𝑂𝑖] =
2𝑑 + 2
𝑑 + 2

(𝑃𝑖 + 𝐼𝑖). This result indicates the sample

complexity for predicting logical Pauli operators 𝑂 = ⊗𝑙
𝑖=1𝑂𝑖 after projection by 𝑃 = ⊗𝑙

𝑖=1𝑃𝑖 does

not depend on the locality of the logical Pauli operators,

| |𝑃𝑂 | |2shadow ⪅ max
𝜎:state

Tr

(
𝜎

(
2𝑑 + 2
𝑑 + 2

) 𝑙
⊗𝑙𝑖=1 (𝑃𝑖 + 𝐼𝑖)

)
≲ 4𝑙 . (5.65)

This result is different from the sample complexity from local Clifford group or tensored Clifford

group Cℓ(𝑑)⊗𝑙 , where the sample complexity will depends on the locality of Pauli string 𝑂. This

difference is mainly introduced by the logical subspace projection 𝑃. Even the Pauli string 𝑂 is

trivial in some region, the subspace projection 𝑃𝑖 will still introduce fluctuation.
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