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ABSTRACT 
 

STUDIES ON COMPLEX TASK NETWORKS BASED ON CONTEXTUAL SPECIFICS 
IN ELECTRONIC MEDICAL RECORDS 

 
By 

 
Inkyu Kim 

 
As organizational processes have become more interconnected and interdependent, contextual 

factors have become central to both information systems and process management. Despite the 

importance of context, few studies investigate the influence of contextual factors on the structure 

of business processes. Thus, in this dissertation, I examine the role of contextual specifics in the 

structure of the clinical documentation process using data from electronic health records in 

outpatient clinics. The dissertation includes three essays. In the first essay, I address the influence 

of internal contextual factors on enacted complexity. The findings of the first essay provide a 

unique opportunity to theorize on the specialization in enacted complexity of process by examining 

the effects of: 1) the number of roles and 2) the degree of specialization. Contrary to expectations, 

I find that complexity decreases when a greater number of roles are involved in the clinical process 

and the roles are highly specialized. In the second essay, I turn my attention to the effects of 

exogenous shocks on the clinical process: When routines are disrupted, are some patterns of action 

more likely to be affected than others? I show that cohesion (defined as the consistency of context 

between pairs of actions) has a particularly strong influence on the persistence of action patterns. 

Lastly, in essay three, I suggest a path prediction model in a process based on action sequence and 

its contextual specifics. The model uses a recurrent neural network that models both the observed 

sequence of actions and the contextual factors in the process. As expected, the results show that 

context can improve the prediction level of predictive models. In the case of outpatient medical 

clinics, the strongest improvement in accuracy comes from two attributes: 1) the workstation 



 

(location) where work is performed and 2) whether or not the system has been upgraded. Together, 

these essays represent a rigorous framework for analyzing the role of context in organizational 

processes and routines.  



iv 
 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is dedicated to my wife, Jieun. 
Thank you for making my days happily ever after. 

  



v 
 

ACKNOWLEDGEMENTS 

 

I am deeply grateful to my dissertation chair, Brian T. Pentland, for the warm-hearted support 

and guidance throughout the Ph.D. program. He has shown his belief in me ever since the day I 

joined the program. He was not just my advisor, but also a mentor, role model, and father of my 

life in the U.S. I would never have made it this far without him.  

I also would like to thank my committee members, Anjana Susarla, Kenneth A. Frank, 

and Quan Zhang for their valuable feedback and comments. I am truly fortunate to have them on 

my dissertation committee. I extend my appreciation to Julie Ryan Wolf and Alice Pentland for 

their help in making these studies possible. I am thankful for the financial support provided by 

the Department of Accounting and Information Systems at Broad College of Business. 

I appreciate the help and support from my office mate, Aaron Fritz, and the faculty, staff, 

and my fellow Ph.D. students from the AIS department. Their help and support were crucial to 

my journey in the Ph.D. program. I am also thankful to Jason Shin, Junghyun Mah, Sangmok 

Lee, and Seokjoo Lee for being my collegial colleagues and valued friends for this arduous, but 

worthwhile journey. Of course, I want to thank all my other friends who have supported me from 

both of inside and outside of academia. 

I am also thankful to my parents, Doo Tae Kim and Hee Won Kim, and my brother, 

Hyungkyu Kim, for their unconditional love and support. They have encouraged me with love 

throughout my life.  

Last, but certainly not least, the deepest gratitude and love to my family, Jieun and Kyuri. 

Jieun Kim, you are the most dedicated wife and loving mother that I could ever ask to have. This 

academic journey would not have even started without your immense love and support. I am also 

grateful for Kyuri Wynne Kim, who has become the most precious treasure in our life.  



vi 
 

This dissertation is supported by the National Science Foundation under Grants No. SES-

1734237 and BCS-2120530. Any opinions, findings, and conclusions, or recommendations 

expressed in this material are those of the author(s) and do not necessarily reflect the views of 

the National Science Foundation. This research was also supported in part by University of 

Rochester CTSA (UL1 TR002001) from the National Center for Advancing Translational 

Sciences (NCATS) of the National Institutes of Health (NIH). The content is solely the 

responsibility of the author(s) and does not necessarily represent the official views of the 

National Institutes of Health. 

  



vii 
 

TABLE OF CONTENTS 

 

LIST OF TABLES .......................................................................................................................... x 
 
LIST OF FIGURES ....................................................................................................................... xi 
 
INTRODUCTION .......................................................................................................................... 1 
 0.1. Motivation for the Dissertation .................................................................................... 2 
 0.2. Context Shapes Process ............................................................................................... 2 
 0.3. Research Setting ........................................................................................................... 3 
 0.4. Representing Processes as Narrative Networks ........................................................... 4 
 0.5. Overview of the Three Essays ..................................................................................... 5 
    0.5.1. Enacted Complexity in Healthcare Routines: Evidence from Electronic Medical 

Records ............................................................................................................................... 5 
    0.5.2. Dynamics of digitalization: Mechanisms of stability and change in digitalized 

work processes .................................................................................................................... 6 
    0.5.3. Predicting Next Action based on Contextual Specifics: Evidence from Electronic 

Medical Records  ................................................................................................................ 7 
BIBLIOGRAPHY ........................................................................................................................... 9 
 
CHAPTER ONE: ENACTED COMPLEXITY IN HEALTHCARE ROUTINES: EVIDENCE 
FROM ELECTRONIC MEDICAL RECORDS ........................................................................... 13 
 1.1. Introduction ................................................................................................................ 13 
 1.2. Theoretical Background ............................................................................................. 16 
    1.2.1. Enacted Complexity ............................................................................................. 16 
          1.2.1.1. Complexity as a network phenomenon ....................................................... 18 
    1.2.2. Complexity in Healthcare .................................................................................... 21 
    1.2.3. Number of Roles .................................................................................................. 22 
    1.2.4. Role Specialization .............................................................................................. 23 
 1.3. Research Context ....................................................................................................... 24 
    1.3.1. Three Kinds of Outpatient Clinics ....................................................................... 25 
    1.3.2. Clinical Roles are Specialized ............................................................................. 26 
 1.4. Hypothesis Development ........................................................................................... 28 
    1.4.1. Effect of Roles on Enacted Complexity ............................................................... 28 
    1.4.2. Effect of Role Specialization on Enacted Complexity ........................................ 29 
 1.5. Methodology .............................................................................................................. 30 
    1.5.1. Computing Enacted Complexity .......................................................................... 30 
    1.5.2. Computing the Specialization Index .................................................................... 31 
    1.5.3. Generalized Propensity Score Matching Method ................................................ 32 
 1.6. Data Description ........................................................................................................ 33 
 1.7. Model Estimation and Results ................................................................................... 36 
    1.7.1. OLS Estimation .................................................................................................... 37 
    1.7.2. Sensitivity Analysis ............................................................................................. 38 
          1.7.2.1. Robust of infererence to case replacement (RIR) ....................................... 38 



viii 
 

          1.7.2.2. Impact threshold for omitted variable ......................................................... 39 
    1.7.3. Causal Effect Estimation ...................................................................................... 39 
 1.8. Discussion .................................................................................................................. 43 
    1.8.1. Specialization Makes Workflows Simpler ........................................................... 43 
    1.8.2. Enacted Complexity as a Network Phenomenon ................................................. 45 
    1.8.3. Limitations ........................................................................................................... 45 
 1.9. Conclusion ................................................................................................................. 46 
BIBLIOGRAPHY ......................................................................................................................... 49 
 
CHAPTER TWO: DYNAMICS OF DIGITALIZATION: MECHANISMS OF STABILITY 
AND CHANGE IN DIGITALIZED WORK PROCESSES ........................................................ 56 
 2.1. Introduction ................................................................................................................ 56 
 2.2. Background ................................................................................................................ 59 
    2.2.1. Information Systems and Organizational Routines ............................................. 59 
          2.2.1.1. Co-evolution of routines and technology .................................................... 59 
          2.2.1.2. Imbrication of routines and technology ...................................................... 60 
          2.2.1.3. Routines as “shock-absorbers” ................................................................... 61 
    2.2.2. The Importance of Persistence ............................................................................. 62 
    2.2.3. Routine Dynamics as Network Dynamics ........................................................... 63 
 2.3. Hypothesis Development ........................................................................................... 64 
    2.3.1. Frequency of Edges .............................................................................................. 64 
    2.3.2. Speed of Edges ..................................................................................................... 65 
    2.3.3. Coherence of Edges ............................................................................................. 66 
 2.4. Illustration: Upgrading an EHR System .................................................................... 66 
    2.4.1. Upgrading the EHR User Interface ...................................................................... 67 
    2.4.2. Data Source .......................................................................................................... 67 
          2.4.2.1. Selection of clinics ...................................................................................... 69 
 2.5. Descriptive Findings .................................................................................................. 69 
    2.5.1. Changes in the Narrative Networks ..................................................................... 69 
    2.5.2. Visualizing Diachronic Changes .......................................................................... 70 
 2.6. Analysis...................................................................................................................... 73 
    2.6.1. Logit Models ........................................................................................................ 74 
    2.6.2. Logistic Regression Results ................................................................................. 74 
    2.6.3. Dyadic Prediction Model for Network Dynamics ............................................... 76 
    2.6.4. Application of the Latent Space Model ............................................................... 77 
    2.6.5. Results of Dyadic Prediction Models .................................................................. 78 
    2.6.6. Summary of Results ............................................................................................. 79 
          2.6.6.1. Frequency (H1) ............................................................................................ 79 
          2.6.6.2. Speed (H2) ................................................................................................... 80 
          2.6.6.3. Coherence (H3) ............................................................................................ 80 
    2.6.7. Which Edges are Most Persistent? ....................................................................... 80 
 2.7. Discussion .................................................................................................................. 83 
    2.7.1. Putting Action into Context ................................................................................. 83 
    2.7.2. Imbrication and Evolution ................................................................................... 84 
    2.7.3. Routine Dynamics as Network Dynamics ........................................................... 85 
 2.8. Limitations ................................................................................................................. 86 



ix 
 

 2.9. Conclusion ................................................................................................................. 87 
BIBLIOGRAPHY ......................................................................................................................... 88 
 
CHAPTER THREE: PREDICTING NEXT ACTION BASED ON CONTEXTUAL 
SPECIFICS: EVIDENCE FROM ELECTRONIC MEDICAL RECORDS ................................ 95 
 3.1. Introduction ................................................................................................................ 95 
 3.2. Theoretical Background ............................................................................................. 97 
    3.2.1. Process and Contextual Factors ........................................................................... 98 
          3.2.1.1. Prediction models in process management ................................................. 99 
 3.3. Data Description ...................................................................................................... 102 
 3.4. Model ....................................................................................................................... 106 
    3.4.1. Long Short-Term Memory Network .................................................................. 106 
 3.5. Results ...................................................................................................................... 109 
 3.6. Discussion ................................................................................................................ 111 
 3.7. Conclusion ............................................................................................................... 113 
BIBLIOGRAPHY ....................................................................................................................... 115 
  



x 
 

LIST OF TABLES 

 

TABLE 1.1. ACTION NETWORK COMPARISON FOR TWO DIFFERENT CLINICAL 
VISITS .......................................................................................................................................... 20 
 
TABLE 1.2. NUMBER OF CLINICS, VISITS, AND ROLES FOR EACH SPECIALTY ........ 25 

TABLE 1.3. EXAMPLE DATA ................................................................................................... 34 

TABLE 1.4. DESCRIPTIVE STATISTICS ................................................................................. 35 

TABLE 1.5. RESULTS OF REGRESSIONS ON ENACTED COMPLEXITY ......................... 37 

TABLE 2.1. SIZE AND DENSITY OF THE NETWORK IN EACH CLINIC .......................... 69 

TABLE 2.2. LOGISTIC REGRESSION RESULT ON EDGE PERSISTENCE ........................ 75 

TABLE 2.3. RESULTS OF ANALYSIS FOR EDGE DISSOLUTION ..................................... 79 

TABLE 2.4. SUMMARY OF RESULTS .................................................................................... 79 

TABLE 3.1. REPRESENTATIVE PROCESS PREDICTIVE MODELS ................................. 101 

TABLE 3.2. SAMPLE OF RAW DATA ................................................................................... 103 

TABLE 3.3. EXAMPLE OF TOUCHPOINTS .......................................................................... 104 

TABLE 3.4. VARIABLE DESCRIPTION ................................................................................ 105 

TABLE 3.5. CONFIGURATION PARAMETERS OF THE LSTM NETWORK .................... 108 

TABLE 3.6. RESULTS FROM PROPOSED APPROACH ...................................................... 109 

  



xi 
 

LIST OF FIGURES 

 

FIGURE 0.1. NETWORK GRAPHS OF PATTERNS OF ACTIONS WITH CONTEXTUAL 
SPECIFICS ..................................................................................................................................... 4 
 
FIGURE 1.1. COMPLEXITY AS A FUNCTION OF COMPONENTS AND RELATIONS .... 19 

FIGURE 1.2. ONE ROLE VS. THREE ROLES IN A PROCESS .............................................. 23 

FIGURE 1.3. SPECIALIST VS. GENERALIST ROLES IN PROCESS .................................... 24 

FIGURE 1.4. OUTPATIENT CLINIC LAYOUT ....................................................................... 25 

FIGURE 1.5. ROLES ARE SPECIALIZED ................................................................................ 27 

FIGURE 1.6. THE SAME ROLE SPECIALIZATION COULD RESULT IN DIFFERENT 
NUMBERS OF PATHS  .............................................................................................................. 30 
 
FIGURE 1.7. NARRATIVE NETWORK WITH ROLE AND LOCATION .............................. 31 

FIGURE 1.8. CAUSAL RELATIONSHIP BETWEEN NUMBER OF ROLES-ENACTED 
COMPLEXITY ............................................................................................................................. 42 
 
FIGURE 1.9. CAUSAL RELATIONSHIP BETWEEN SPECIALIZATION INDEX-ENACTED 
COMPLEXITY ............................................................................................................................. 42 
 
FIGURE 1.10. THE VISUALIZED EFFECT OF SPECIALISTS ON ENACTMENT OF 
PROCESS ..................................................................................................................................... 44 
 
FIGURE 2.1. CONVERTING EHR AUDIT TRAIL INTO NETWORKS ................................. 68 

FIGURE 2.2. DIACHRONIC VIEW OF ROUTINES ................................................................. 72 

FIGURE 2.3. WHICH EDGES ARE MOST LIKELY TO PERSIST? ....................................... 81 

 



1 
 

INTRODUCTION 
 

Context changes our understanding of how the process works. In a recent review, Avgerou 

(2019) argues that the role of context has been a major concern in research on information 

systems in both theoretical and methodological ways for many years. For example, building a 

generalizable IS theory confronts the issue of limited contextual insight due to the simplification 

of contextual influence (Bamberger, 2008; Hong et al., 2004; Johns, 2006; Rousseau & Fried, 

2001; Whetten, 2009), whereas context-specified research has a limitation of generalization 

(Cheng et al., 2016). In process management, research on context-aware process acknowledges 

the influence of contextual factors on the behaviors of the participants and technologies and 

suggests the need for a context-integrated process design (Recker et al., 2009; Rosemann et al., 

2008; vom Brocke et al., 2016). As organizational processes have become more interconnected 

and interdependent, contextual factors have become central to both information systems and 

process management.  

Context can also affect how we describe and model business processes. In particular, 

depending on how much context you consider in the process description, the process appears to 

change (Rosemann et al., 2008). It may seem to be the same process, but it can look very 

different. For example, a process looks simple when we recognize it as just a sequence of events, 

but it looks more complex when we consider that each event in the process has its own distinct 

contextual background (e.g., a distinct actor, a distinct location). As business process models get 

more complex with more stakeholders and technologies involved, the notion of the context-

aware business process gets more important (Rosemann et al., 2006).  

Despite the importance of context, few studies investigate the influence of contextual 

factors on the structure of business processes. Thus, in this dissertation, I examine the role of 
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contextual specifics in the structure of the clinical documentation process.  

0.1.   Motivation for the Dissertation 

There are three motivations for this dissertation. First, there is a theoretical motivation: how does 

context affect the structure and performance of a process? As previously mentioned, many 

studies argue the importance of contextual specifics, but how the context affects the structure of 

the process has not been studied yet. In this dissertation, I examine how the internal context of 

the clinical documentation process is associated with enacted complexity of process and how the 

process responds to changes in external contextual factors.  

Second, there is a methodological motivation: how can I detect which factors are likely to 

influence the structure and execution of a process? Many factors could be considered as the 

contextual environment for process, but their impacts on the structure of process vary. By 

estimating standardized coefficients of internal factors and modeling the effects of disruption on 

the structure of stochastic transitions between events in a process, I can compare the impact of 

each contextual factor and see their influence on process dynamics. 

Third, there is a practical motivation: if I can better predict the sequences of action in the 

execution of a process, I may be able to do a better job of supporting and perhaps automating 

parts of that process. Based on the factors whose impacts are demonstrated in the first two 

essays, I suggest a prediction model for the sequences of action for the clinic documentation 

process in my third essay. The prediction model improves on the current state of the art and 

could contribute to the automation effort (Aysolmaz et al., 2013). 

0.2.   Context Shapes Process  

Rosemann et al. (2008) suggest the “onion model” to describe how contextual factors are layered 

and how these layers can shape how a process works. According to the onion model, the context 
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of process consists of four different levels (immediate, internal, external, and environmental), 

which refers to the layers of context from inside to outside. Based on this metaphor, I distinguish 

between different layers of context. External and environmental context (that is truly “outside”), 

include factors such as the season or the country. Outside factors do not change during the 

execution of a process. Inside and immediate contextual factors, such as the person performing 

each action, can change during the execution of a process.   

In research on process management, there is increased interest in the role of context, but 

usually, they mean (a) sequential context (Becker & Intoyoad, 2017; Bose & van der Aalst, 

2009; Gunther et al., 2008) or (b) external/environmental context, similar to the typical 

exogenous variables (Avgerou, 2019). There are also studies considering and emphasizing 

internal contexts (Li et al., 2010; Rosemann et al., 2008; van der Aalst & Dustdar, 2012), but it is 

hard to find studies examining their impacts on process. Thus, in this dissertation, I examine the 

role of internal and external contextual factors in-process structure and how contextual 

information could be used for prediction.  

0.3.   Research Setting 

All three essays use data from outpatient clinics at the University of Rochester Medical Center 

(URMC). Our research partners at URMC extracted audit trail data from the EPIC Electronic 

Health Record (EHR) system in several different medical specialties (including dermatology, 

orthopedic surgery, and pediatric oncology) during different periods between 2016 and 2019. 

Each essay uses a different specific set of data, as explained below. These records include 

detailed, time-stamped records of EHR utilization in tens of thousands of patient visits.  
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0.4.   Representing Processes as Narrative Networks 

In this dissertation, I represent processes as narrative networks (Pentland & Feldman, 2007). 

Narrative networks provide a useful way of summarizing patterns of actions (Pentland et al., 

2010). A narrative network is defined as a directed graph consisting of actions (events) as the 

nodes and sequential relationships between the actions as edges (Pentland et al., 2017). A 

narrative network is useful for the study because the nodes can be defined by multiple contextual 

factors (e.g., action, actor, location) (Pentland et al., 2020). Depending on how much context you 

include in the process description, the structure of the process changes. It’s the “same process”, 

but it’s not the same process.  

Figure 0.1 shows an example of how considering contextual specifics can change how we 

see patterns of actions in a process. Using ThreadNet 3 (Pentland et al., 2020), I convert the 

clinical documentation process from one patient visit into a network. When the network consists 

of actions only (as in the left side of Figure 1), it is hard to grasp patterns and directions of 

actions because the actions are very densely connected. However, when I construct the network 

FIGURE 0.1 NETWORK GRAPHS OF PATTERNS OF ACTIONS WITH 
CONTEXTUAL SPECIFICS 
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so that nodes are described by actions and the actors who performed the actions (as in the middle 

of Figure 0.1), it increases the number of nodes and begins to reveal structure that was not visible 

with actions only. When I add another contextual factor, location (as on the right side of Figure 

0.1), the additional structure becomes apparent. The clustered sections of the network reflect 

different locations in the clinic. This example shows how adding context can change the apparent 

structure of a process.   

0.5.   Overview of the Three Essays 

This dissertation will explore the three different ways that context influences process. The three 

essays are described in the following sections. 

0.5.1. Enacted Complexity in Healthcare Routines: Evidence from Electronic Medical 
Records 

In the first essay, I address the influence of contextual factors on enacted complexity. 

Complexity has been a central problem in many disciplines including organizational studies, 

process management, and information systems (Anderson, 1999; Pich et al., 2002; Rahmati et 

al., 2020; Rettig, 2007), but context has not been considered as a factor that influences 

complexity. By understanding and combining patterns of actions with their contextual specifics, 

this essay extends our understanding of the antecedents of enacted complexity. I focus on the 

impact of specialization on enacted complexity. Specialization is essential in organizational 

processes, where most of the tasks require specified knowledge (Batista et al., 2005; Stitzenberg 

& Sheldon, 2005). However, there has been no agreed-upon model and no empirical research 

that analyzes the relationship between specialization and enacted complexity. Thus, in this essay, 

I investigate the research question: how does specialization affect the enacted complexity of 

process?  
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To answer this question, I consider the implications of specialization for process 

enactment. I investigate the effects of specialization in two distinct ways: 1) the number of 

specialized roles in process and 2) the degree of specialization in each role. First, the 

involvement of specialized roles is an important determinant of specialization. The more 

specialized roles are involved, the more specialized a process is. However, adding roles may 

make the process more complex as it adds more tasks. The degree of specialization of each role 

provides another way to address the same basic question. Although a process is enacted by many 

roles, the extent to which each role in the process is specialized may be different so the degree of 

specialization differs depending on who is involved.  

0.5.2. Dynamics of digitalization: Mechanisms of stability and change in digitalized work 
processes 

In the second essay, I turn my attention to the effects of exogenous shocks on routines: What 

mechanisms shape the dynamics of digitalization? Does the structure of the routine itself 

influence the dynamics of digitalization and vice versa? More broadly, I investigate the 

mechanisms through which organizational routines react to external disruptions. 

To address these questions, I model routines as directed graphs (Pentland et al., 2017; van der 

Aalst, 2019). Using latent factor selection models (Hoff, 2005), I study the hypothesis that the 

effects of a technological change, a major upgrade of an EHR system, may influence structure 

and patterns of action by discovering and comparing patterns of action pre-post disruption 

(Pentland & Kim, 2021). In social networks, mechanisms like reciprocity, homophily, and 

preferential attachment contribute to the formation and dissolution of network ties (Snijders, 

2001), but analogous network-based mechanisms have never been defined or investigated in the 

context of organizational routines. This essay contributes to current research on routine dynamics 

as network dynamics (Feldman et al., 2016; Goh & Pentland, 2019) by providing a novel 
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application of dynamic network models (Hoff, 2005; Minhas et al., 2019) to theorize about the 

dynamics of digitalization. The employed theory and method in this essay provide a way to 

reinvigorate the sociotechnical foundations of the information systems field by explicitly 

examining the systemic connections between technology and patterns of action. 

0.5.3. Predicting Next Action based on Contextual Specifics: Evidence from Electronic 
Medical Records 

Lastly, in essay three, I investigate how a predictive process model can be qualified based on 

contextual specifics. In my first two essays, I focus on the influence of contextual factors on 

complex networks and their stability from an exogenous disruption, a system upgrade. In this 

essay, I utilize contextual specifics as ingredients to boost the prediction level of the flow of the 

clinical documentation process.  

While the use of EMR systems was expected to make the documentation process 

convenient and concise, the process is still complex because clinicians must record every step in 

the system. As a result, complexity in the documentation process contributes to administrative 

costs in the healthcare systems (Shrank et al., 2019). However, on the flip side, if there is a way 

to find recognizable patterns and predict paths in the early stage, it may be possible to simplify 

the process and save wasted costs and time (Lee & Dale, 1998).  

For an accurate prediction of the process, in this essay, I use different types of contextual 

specifics as attributes for the prediction of actions in the process. As the clinical documentation 

process is composed of careful collaborations of various specialists and occurs in real-time when 

patients visit, the immediate contexts (actor and location) studied in essay 1 need to be used. In 

addition, the external and environmental factors also can be good elements for the prediction 

because, as shown in essay 2, the shape of the process is influenced by the external factors. 
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Towards this end, I use a Recurrent Neural Network (Long short-term memory, LSTM) 

to find recognizable patterns, which access and modify the sequence based on three types of 

gates (input, output, and forget) (Hochreiter & Schmidhuber, 1997). I train the prediction models 

to see if the prediction level changes when considering contextual factors as additional attributes, 

which contextual factors are most impactful, and how much the contextual specifics can improve 

the prediction level. 
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CHAPTER ONE:  

ENACTED COMPLEXITY IN HEALTHCARE ROUTINES: EVIDENCE FROM 

ELECTRONIC MEDICAL RECORDS 
 

1.1. Introduction 

Specialization of tasks in organizations contributes to enhanced performance with more efficient 

productivity. By specialization, I mean the concentration on particular components of an 

organization's task (Fahrenkopf et al., 2020). The benefits of specialization have long been 

studied across diverse organizational settings (Fahrenkopf et al., 2020; Flueckiger, 1976; 

Narayanan et al., 2009; Staats & Gino, 2012). Specialization allows organizations to reduce costs 

and manage complexity (Crowston, 1997; Staats & Gino, 2012). Specialization sets the context 

in which a process is performed (Rosemann et al., 2008)  

Complexity is a tremendous problem in organizations as processes have become more 

interconnected and interdependent (Rahmati et al., 2020; Rettig, 2007; Sturmberg & Martin, 

2013). While this is especially true in healthcare, where there is a growing concern about the 

consequences of complexity (Shrank et al., 2019). Specialization is essential in healthcare, where 

most of the tasks require specified knowledge (Batista et al., 2005; Stitzenberg & Sheldon, 

2005), but there are no agreed-upon models for analyzing the relationship between specialization 

and the complexity of healthcare work.  

In this study, I consider the implications of specialization for process enactment. 

Healthcare services are embedded in a web of intersecting specialties, roles, and other contextual 

factors. In the clinical process, each role participates in the process with a specialized set of skills 

and patterned social behaviors (Turner, 2001). For example, a patient who arrives at the 

orthopedic surgery clinic with a broken leg might engage with several provider roles, including 
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office staff, insurance pre-authorization, nurse, physician, and radiology technician. Later, the 

same patient may have a follow-up visit for physical therapy, and he/she would not need as many 

clinicians as the first visit. These two cases are differentiated from each other in that the number 

of participants and the types of involved roles are different. In this case, how can we assess the 

effects of specialization on this diverse set of possible workflows?   

To address this issue, I examine the effects of specialization in two distinct ways; 1) the 

number of specialized roles in a process and 2) the degree of role specialization in a process. 

First, the involvement of specialized roles is an important determinant of specialization. The 

more specialized roles are involved, the more specialized a process is. However, adding roles 

may make the process more complex as it adds more tasks. The degree of role specialization is 

also another important factor to consider. In addition, the extent to which each role in the process 

is specialized may vary, so the degree of specialization differs depending on which roles are 

involved. For example, when a patient visits the clinic, the degree of specialization of a nurse is 

lower than either clinical or administrative technicians because the nurse can cover a larger 

variety of tasks.  

Based on these two aspects of specialization, I investigate the effects of specialization on 

the enacted complexity of digitalized work processes in healthcare organizations. The 

relationship between specialization and enacted complexity of work process in organizations is 

especially important in healthcare organizations because the healthcare process consists of 

intersecting specialties and other contextual factors and administrative procedures, such as 

billing and insurance, are also very complex (Gottlieb et al., 2018; Sakowski et al., 2009). 

Complexity has been considered as one of the main practical problems in healthcare service 

(Kannampallil et al., 2011; Sturmberg & Martin, 2013; Thompson et al., 2016). The complexity 
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of organizational processes in clinical settings has been studied and characterized within the 

process and its tasks.  

I focus on the relationship between specialists who concentrate on specific components of 

tasks and enacted complexity of the process. I address the following specific research question: 

Does specialization increase or decrease enacted complexity of a process?  

To answer this question, I convert the work process into a narrative network (Pentland & 

Feldman, 2007) and see the influence of specialization on the number of paths in the network 

(Goh & Pentland, 2019). A narrative network is a special kind of “directly follows graph” (van 

der Aalst, 2019) where the nodes are defined using additional contextual features, such as actors, 

artifacts, locations, and so forth (Pentland et al., 2017). The intuition behind this measure of 

enacted complexity is simple: a process with more alternative paths is more complex. This 

measure embodies the idea that task complexity is indexed by the number of paths in the network 

of events that lead to the attainment of task outcomes (Hærem et al., 2015).  

Using EPIC EMR1 audit trail data from three different types of clinics (dermatology, 

orthopedic surgery, and pediatric oncology), I first examine if more involvement of specialized 

roles in a process has causal effects on enacted complexity of patient visits. Intuitively, the 

involvement of roles should increase enacted complexity because each role provides a 

differentiated service from others. Adding more roles tends to add steps in the clinical process, 

and more steps are associated with greater complexity (Wood, 1986). I also examine the effects 

of role specialization on the complexity of patient visits. As I describe below, there are reasons to 

expect that the effect could either increase or decrease enacted complexity. 

 
1 EPIC is the largest vendor of electronic medical record systems (Adsit et al., 2014; Holmgren et al., 2022) 
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My main results are quite surprising. While individual-level theory of task complexity 

(Campbell, 1988; Wood, 1986) suggests that more specialization should increase complexity, my 

OLS regression results show that both indicators of specialization have significant, negative 

effects on enacted complexity. This result may have been confounded by other important factors, 

so I investigate the causal effects of specialization using a casual effect estimation, a generalized 

propensity score matching method (Hirano & Imbens, 2004; Wu et al., 2018).  

I organize this essay as follows. In the next section, I provide theoretical background for 

the development of models for the relationship between enacted complexity and contextual 

factors and develop hypotheses. I then describe the research context and the dataset for the 

empirical test and introduce the research model. Next, I interpret the results to explain how and 

why specialization reduces enacted complexity. In the last section, I discuss the implications and 

generalizability of this study.  

1.2. Theoretical Background 

1.2.1. Enacted Complexity 

For this study, I first need to understand the concept of enacted complexity in a process. 

Complexity has been studied as a key concept in diverse fields including business process, IS 

and organization theory (Byström & Järvelin, 1995; Merali, 2006; Moldoveanu & Bauer, 2004; 

Rivkin & Siggelkow, 2007; Simon, 1969; Zhou, 2013), but the traditional standard framework of 

task complexity has been developed based on the concept brought from organizational 

psychology (Campbell, 1988; Weick, 1965; Wood, 1986). Traditionally, task complexity is 

described as the relationship between task inputs; required acts, and information cues to 

complete tasks (Wood, 1986) and generally focuses on the individual level. The traditional 

model of task complexity (Campbell, 1988; Wood, 1986) is based mainly on the number of 
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“required acts” (Liu & Li, 2012; Wood, 1986), independent of who performs the acts or where 

they are performed. This point of view on complexity is based on decontextualized actions, so it 

overlooks potential contextual factors, such as the role of the person performing the work 

(Hackman, 1969).  

However, most organizational processes (such as outpatient clinical visits) are not 

enacted by single individuals (Hærem et al., 2021; March & Simon, 1958; Nelson & Winter, 

1982) and they are deeply enmeshed in organizational context (Avgerou, 2019; Rosemann et al., 

2008). Thus, I need a concept of complexity for organizational processes that is distinct from the 

individual level task complexity.  

To address this problem, Hærem et al. (2021) introduce the idea of enacted complexity to 

describe processes that are enacted by multiple actors within the organizational routines. Hærem 

et al. (2015) extended the concept of task complexity to tasks that multiple actors perform and 

integrate the concept with material context. The extended concept assumes that tasks are 

embedded in a socio-material context (D'Adderio, 2011; Leonardi, 2011). The concept of 

enacted complexity has started to appear in empirical research (Danner-Schröder & Ostermann, 

2022; Goh & Pentland, 2019; Hansson et al., 2021).  

It is important to note that enacted complexity refers to EMR utilization (the record-

keeping process), not the complexity of the underlying EMR system. Complexity is not an 

absolute property of an object or a system but depends on how the system is represented. Any 

measure of complexity starts from a description of the identifiable regularities within the 

particular empirical domain (Flood, 1987; Gell‐Mann & Lloyd, 1996). Thus, I define an index of 

complexity, not an absolute number. Established measures of complexity from other disciplines, 
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such as the Lempel-Ziv complexity (Kaspar & Schuster, 1987; Lempel & Ziv, 1976) are indices 

of complexity, not absolutes.  

1.2.1.1.  Complexity as a network phenomenon  

In current theory, complexity arises from networks of interacting components (Kannampallil et 

al., 2011; Kauffman, 1993). Drawing on Simon’s (1969) architecture of complexity and decades 

of research on complex adaptive systems, Kannampallil et al. (2011) provide a framework that 

embodies two key dimensions, as shown in Figure 1.1: components and relations. Components 

correspond to the “required acts” that Wood (1986) uses to define component complexity: a task 

with more “required acts” has greater component complexity.  

I can interpret the axes in Figure 1.1 in network terms. Components can be represented 

by nodes in a network, as Wood (1986, p. 78) does when showing the sequence of actions 

required to land an airplane. The relatedness of the components is represented by the edges in the 

network. In Kauffman’s (1993) influential “nk” model of complex dynamic systems, the “n” 

stands for the number of nodes in a network, and “k” stands for the degree of relatedness of those 

nodes. For a given number of nodes (components), a network with more edges (relations) is 

more complex. 
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FIGURE 1.1. COMPLEXITY AS A FUNCTION OF COMPONENTS AND RELATIONS 

 

(Adapted from Kannampallil et al. 2011) 

Hærem et al. (2015) build on the network representation to extend the traditional idea of 

task complexity introduced by Wood (1986) to include tasks performed by multiple actors. 

Given a network that represents a task, enacted complexity can be operationalized as the number 

of possible paths for getting the task done (Goh & Pentland, 2019; Pentland et al., 2020). This 

definition relies on the same intuition as Wood’s (1986) concept of coordinative complexity, 

which is based on the number of paths in an idealized model of a task (not the task enactments).  

This is analogous to McCabe’s (1976) concept of cyclomatic complexity, in which the 

number of executable paths through a software module is used as an index of complexity. Fewer 

paths mean lower complexity; more paths mean greater complexity. Goh and Pentland (2019) 

note that this method is just an approximation. It does not depend on having a specific start or 

stop for the process. Goh and Pentland (2019) provide the following formula, which is based on 

McCabe’s (1976) metric:  
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(1)                                   	"#$%&'(	)*+,-'./&0 = 	10	"."$∗('()'*+,-('*./) 

where nodes refer to the number of unique actions in the network and edges are the 

number of unique sequential pairs of actions in the network. Using this metric, tasks with a 

single execution path have complexity equal to one.    

TABLE 1.1. ACTION NETWORK COMPARISON FOR TWO DIFFERENT CLINICAL 
VISITS 

 Visit A Visit B 
# Nodes 53 53 
# Edges 97 127 
# Paths 926 133,484 
Enacted 

Complexity 
(logged value) 

8.29 13.82 

Network Shape 

  
 

I visualize narrative network for two different patient visits from my data to show how 

nodes and edges affect enacted complexity (see Table 1.1). While visits A and B have the same 

number of actions (53 unique actions), they have a different number of edges (97 vs. 127). The 

different number of edges makes difference in the number of paths in the network. As a result, 

there is a huge gap in enacted complexity between the two clinical visits.  

The example in Table 1.1 shows the importance of understanding complexity as a 

network phenomenon. In the traditional, individual-level theory of task complexity, more nodes 
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indicate greater complexity (Wood, 1986). However, when I consider how the nodes are 

connected, they may or may not result in a greater number of possible paths. Although the 

number of nodes is the same between the two visits in Table 1.1, there is a huge gap in the 

number of paths as the number of edges increases. My goal in the analysis section is to 

understand how specialization affects the number of paths in the process. 

1.2.2. Complexity in Healthcare 

Complexity in healthcare has been both theoretically and practically challenging. The growth in 

complexity of the healthcare systems has caused a challenging environment for healthcare 

reform due to its own attributes of the healthcare area, characterized by intersecting biological, 

social, and political systems (Blanchfield et al., 2010; Long et al., 2018). As a collection of 

interconnected actions of individuals and technologies, healthcare systems are recognized as one 

of the representative complex adaptive systems (Plsek & Greenhalgh, 2001).  

Many studies have warned about the growth of complexity in healthcare systems. The 

biggest problem of increased complexity in healthcare systems is that it increases cost and waste 

(Shrank et al., 2019). Blanchfield et al. (2010) find that excessive administrative complexity 

costs about 12 percent of net patient service revenue. As such, administrative complexity has 

been concerned as the largest waste in healthcare systems of the U.S. To reduce it, Shrank et al. 

(2019) suggest eliminating process that does contribute to quality improvement and/or access to 

care.  

The waste of complexity is derived from the increased interconnection within and across 

components of systems (Simon, 1969). From network perspective, the individuals and 

technologies in healthcare systems are considered as nodes in healthcare systems and their 

interrelatedness denotes the edges of the network (Kannampallil et al., 2011). As modern 
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healthcare systems have been developed, the work tasks have been more specified and 

distributed between diversified actors with new technologies. Thus, as a result of specified actors 

and artifacts in the healthcare process, it makes the process more complex.  

As such, previous studies address complexity in healthcare system and describe the role 

of actors and technologies in it. However, few studies are giving much attention to the 

interrelatedness of contextual specifics in healthcare systems and empirically examining its 

impacts on complexity of process (Kannampallil et al., 2011). Previous studies have 

demonstrated that specialization improves performance at the organizational level under similar 

conditions (Clark & Huckman, 2012; Kalra & Li, 2008). For example, Clark and Huckman 

(2012) find that specialization in areas related to cardiovascular care has positive impacts on 

performance of cardiovascular patients (positive spillovers) and there are complementarities in 

specialization across related areas. Kalra and Li (2008) show that firms signal quality to their 

consumers by specialization. However, these studies have not examined the relationship between 

specialization and enacted complexity. Hence, in this study, I examine how the contextual factors 

affect the complexity of the healthcare process using the data on the clinical documentation 

process.  

1.2.3. Number of Roles 

It is easy to count the number of roles in a clinical process. Figure 1.2 shows a simple example. 

On the left side, I see a process with one role. On the right side, I see a process with two 

additional roles. New roles will always add to the number of nodes in the network. However, 

whether there are more (or fewer) possible paths will depend on how those nodes are connected 

in the network.  
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FIGURE 1.2. ONE ROLE VS. THREE ROLES IN A PROCESS 

 

 

 

1.2.4. Role Specialization 

In addition to the number of roles, I can consider how specialized the roles are. There is a 

consensus that specialization has played an important role in organizations. To illustrate the role 

of specialization, I use the concept of specialist and generalist. Prior literature shows that 

specialists and generalists in organizations can be conceptualized as two dimensions; 1) the 

extent of task concentration and 2) task variety (Fahrenkopf et al., 2020; Narayanan et al., 2009; 

Staats & Gino, 2012; Tyler, 1973). For example, Fahrenkopf et al. (2020) define specialists as 

“those who have worked in organizations with a high degree of division of work across 

individuals” and generalists as “those who have worked in organizations with limited or no 

division of work across individuals”.  

Specialists focus on and repeatedly execute a narrow range of tasks based on specific 

knowledge for those tasks, whereas generalists can cover a broader range of tasks within an 

organization (Vermeiren & Raeymaeckers, 2020). Figure 1.3 shows the network of events 

visualizing how role specialization influences the number of paths in process. Red circles in the 

network show tasks of a very specialized role and green ones indicate actions that a generalist 

performs. 
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FIGURE 1.3. SPECIALIST VS. GENERALIST ROLES IN PROCESS 

 

1.3. Research Context  

I analyze data extracted from the EPIC Electronic Medical Record (EMR) audit trail at the 

University of Rochester Medical Center (URMC). Clinic organization provides a clear example 

of a complex service organization with multiple roles with different specialties and the audit trail 

data shows how the clinics work. For example, when a patient visits a clinic, multiple roles are 

involved. Figure 1.4 is an actual layout of a dermatology clinic from my data2. In this layout, 

there are multiple roles in this layout working at different locations. The green squares are 

workstations where the individuals can input or access information on the patient. While the 

patient visits the clinic, multiple individuals input information on the patient at different 

locations.  

In this layout, I can observe two different contextual factors in the documentation 

process: roles and workstations. The specialized roles are moving from one room to the others, 

 
2 I appreciate the layout from Dr. Julie Ryan Wolf at the University of Rochester Medical Center.  

= Very Specialized Role

= Not Specialized Role
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and they are creating different paths in the process by using different workstations at different 

locations. All workstations provide identical functions regardless of their location, but each role 

uses it in distinctive ways because all the roles have different specialties. 

FIGURE 1.4. OUTPATIENT CLINIC LAYOUT 

 

1.3.1. Three Kinds of Outpatient Clinics 

My data is extracted from the EPIC Electronic Medical Record (EMR) audit trail from 13 

different clinics with three different clinical specialties (dermatology, orthopedic surgery, and 

pediatric oncology) at the University of Rochester Medical Center (URMC). Table 1.2 shows 

brief information on three areas of medical practice in the data. The total number of roles is not 

the sum of each area because many of the roles exist in all clinics (e.g., physician, nurse, etc…)  

TABLE 1.2. NUMBER OF CLINICS, VISITS, AND ROLES FOR EACH SPECIALTY 
Specialty # Clinic # Visits # Roles 
Dermatology 4 9,818 8 
Orthopedic Surgery 8 131,345 28 
Pediatric Oncology 1 6,285 22 
Total 13 143,347 29 

9
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1.3.2. Clinical Roles are Specialized  

As mentioned above, each clinical role has a specialized set of skills. Role specialization can be 

seen in the data. Figure 1.5 shows the similarity among the roles based on the frequency of 

actions each role performs. I compute cosine distance based on their actions to compare how 

similar/different action patterns each specialized role has. Red colors show that the two roles 

have different action patterns using workstation systems, while blue colors indicate the tendency 

to have similar patterns. As I assumed, there exist similarities among the specialized providers 

depending on the service area (e.g., administrative, technician, assistant, diagnosis, etc.) and they 

are clearly differentiated from each other. For example, the technologist group (Supervisor 

imaging X-ray, CT-technologist, and Radiology-technologist) have very similar action patterns 

with each other but are different from anyone else. Figure 1.5 provides a clue on how specialized 

the roles are in the clinical process and how the action patterns of each clinician can be 

differentiated/classified. The number of roles and role specialization will be the two major 

variables of interest in the analysis.
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FIGURE 1.5. ROLES ARE SPECIALIZED 
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1.4. Hypothesis Development 

I am concerned with the effect of roles and specialization on enacted complexity. For each 

independent variable (number of roles and role specialization), there are competing hypotheses 

about their effect on enacted complexity.  

As we know from the formula for enacted complexity, there is a balancing act between 

nodes and edges in the network that represents the process. If there are more nodes (for a given 

number of edges), complexity will go down. If there are more edges (for a given number of 

nodes), complexity will go up. Thus, the main question is how the roles affect the number of 

nodes and edges in the network. 

1.4.1. Effect of Roles on Enacted Complexity 

As each role has a specialized set of skills, a process enacted by more distinct roles will tend to 

include more required acts (Wood, 1986). Medical services are typically delivered by teams of 

providers with differentiated roles. By role, I mean “a comprehensive pattern for behavior and 

attitude that is linked to an identity, is socially identified more or less clearly as an entity, and is 

subject to being played recognizably by different individuals” (Turner, 2001, p. 234). Intuitively, 

as each provider provides a differentiated service from others based on their role, adding more 

roles implies additional tasks in the clinical process. For example, a patient who arrives at the 

clinic might engage with several roles, including office staff, insurance pre-authorization, nurse, 

physician, and clinical technician. When the same patient returns to the same clinic a week later, 

the clinical process for the visit might be simpler as involving only two provider roles (e.g., 

office staff and physical therapist). As the increased number of actors creates more paths in the 

action network, it can increase enacted complexity. Figure 1.2 simply shows how additional roles 

can increase the number of actions in process. When the roles are added in process, nodes are 
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added to the network, and it could increase the number of paths by generating more relations 

between the actions. For example, if a patient needs to see a clinical technician after seeing a 

physician, then it implies that the patient needs additional care service before leaving the clinic. 

This will generate additional steps and relations in the network for the patient visit. However, as 

we have seen above, the effect on enacted complexity will depend on how those steps are 

connected in a network. Thus, I offer two competing hypotheses 

H1a: Processes enacted with more roles will have more enacted complexity.  

H1b: Processes enacted with more roles will have less enacted complexity. 

1.4.2. Effect of Role Specialization on Enacted Complexity 

Next, I consider the effects of the degree of role specialization on enacted complexity. Previous 

studies have demonstrated that specialization improves performance at the organizational level 

but have not examined the effects of specialization on complexity (Clark & Huckman, 2012; 

Kalra & Li, 2008). Although medical settings consist of specialized tasks mostly, the depth of 

specialization of each role would be different depending on the roles that clinicians play in the 

clinical process. For example, nurse practitioners generally cover more various tasks than CT 

technologists and exercise physiologists have a smaller number of tasks than physicians. As 

such, each specialized role has a different degree of specialization and the impacts of each role 

on the clinical process vary depending on how specialized the roles in a clinical visit are. 

However, the effect of specialization will depend on whether the specialized roles add more 

nodes or more edges to the network. The examples in figure 1.6 suggest two possible cases. In 

one case, a specialized role adds three new actions that are sparsely connected to the other 

actions in the visit. In practice, this would mean that the new role has few handoffs with other 

roles (e.g., an x-ray technician). In the other case, the specialized role adds three new actions that 
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are densely connected to the rest of the actions in the visit. In practice, this would mean that there 

are a lot of handoffs between the new role (e.g., a nurse) and the other roles. These two different 

cases lead us to two alternative hypotheses:  

H2a: Greater role specialization causes increased enacted complexity.  

H2b: Greater role specialization causes decreased enacted complexity.  

FIGURE 1.6. THE SAME ROLE SPECIALIZATION COULD RESULT IN DIFFERENT 
NUMBERS OF PATHS  

  
 

1.5. Methodology 

In this section, I explain how I compute each of the major variables used in testing the 

hypotheses. I also explain the use of Generalized Propensity Score matching, which is used for 

causal inference. 

1.5.1. Computing Enacted Complexity 

Enacted complexity is operationalized based on the actions in each outpatient visit. Each visit 

can be represented as a narrative network and enacted complexity is indexed by the number of 

paths through the network (Goh & Pentland, 2019). To operationalize, I aggregate the action 

trace data at the visit level. I extract unique actions with two immediate contextual specifics: 

roles and workstations, in each process and compute the time spent to input the data in the 
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system for each patient visit in the EMR. The extracted actions in each visit are used as nodes in 

the action network for each visit.  

Next, to compute the enacted complexity, I use the concept that Hærem et al. (2015) 

suggest. Based on conceptualizing patterns of action as directed graphs, this concept allows 

measuring the complexity of a task as enacted by multiple actors. To estimate enacted 

complexity, I use the formula in equation (1) based on the network for each visit. The nodes in 

the network represent the unique, contextually specific combinations of action, role, and 

workstation that are observed in the data for each visit. A typical example would be a nurse 

checking medications at a workstation in the examination room. Figure 1.7 shows how the 

process can be represented as a network.  

FIGURE 1.7. NARRATIVE NETWORK WITH ROLE AND LOCATION 

 

1.5.2. Computing the Specialization Index 

Next, I describe the construction of a new variable, the specialization index, which captures the 

extent to which the roles involved in a patient visit are specialized. The specialization index is 
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the ratio of the unique actions that each role performs to the total unique actions performed by all 

roles in the system. The index is constructed as follows:  

(2)																					%! = −
N( unique actions	performed	by	role	i)

 N(unique actions in the system)  

At one extreme, %! = −1 would mean that role i performs every action in the systems at 

least once. The index will be lower when the role i performs fewer actions. I further 

operationalize a weighted specialization index. The weight is given as 3!" =
#!"
$"

 where 4!" is the 

number of actions a specialized role i performs in the patient visit j and 5" is a total number of 

actions performed for the patient visit j. I place the weights on each role in the patient visits and 

calculate the average weighted specialization index for each patient visit as 

      (3)   6" =
%

&"
∑ 3!"%!
'
!(%  

where 8" is the number of specialized roles in the patient visit j. Based on the visit level 

specialization index, I examine the relationship between specialization degree and enacted 

complexity of patient encounters.  

1.5.3. Generalized Propensity Score Matching Method 

I estimate causal effects using the generalized propensity score (GPS) (Hirano & Imbens, 2004). 

I investigate the expected outcome at different levels of two continuous variables: 1) the number 

of specialized roles and 2) specialization index in equation (3). To accommodate continuous 

variables (also called “exposures”), I use the Generalized Propensity Score (GPS), which is 

defined as the conditional density function of the exposure given the covariates (Hirano & 

Imbens, 2004; Imbens, 2000; Wu et al., 2018). GPS is widely used for causal inference and the 

basic idea for this method is to get the same confidence with a random assignment experiment, 
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but with my current dataset. It has a balancing property that is conditional on observable 

covariates. If subjects belong to the same GPS strata, the exposure level is regarded as random. 

Therefore, in this study, I use a robust GPS matching approach, proposed by Wu et al. (2018), to 

remove bias and estimate the exposure-response function.  

The main goal of the GPS matching method is to find matched observations by assessing 

the balance of covariates across different levels of specialization in the data. Specifically, first, I 

compute a GPS for each data point based on a function of the exposure and other observed 

covariates. Next, I find an observation that has the closest values of exposure and GPS to E and 

f(E|X). I use the outcome of this observation as the counterfactual outcome of a subject with X 

and E. The matched unit is used as a valid representation of observations with the exposure level, 

considering the potential confounders have been adjusted. Finally, the expected outcome at a 

predetermined exposure level is estimated by averaging the outcomes of the matched units with 

such an exposure value. 

1.6. Data Description 

I used audit trail data from the Electronic Medical Record (EMR) at the University of Rochester 

Medical Center (URM). The collected data traces actions of the medical record-keeping process 

for each patient from 24 clinics (4 dermatology, 19 orthopedic surgery, and 1 pediatric 

oncology). The data includes 143,347 patient visits from April 2nd, 2018 to November 29th, 

2018. Each observation contains contextual factors for patient visits: role, workstation, diagnosis 

group, as well as timestamps. Especially, roles and workstations are closely interrelated with the 

actions because some actions only can be performed by specific roles at specific locations. I 

consider the role and workstation as immediate contextual factors, which are directly related to 
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actions in process (Rosemann et al., 2008). Table 1.3 describes the first five minutes of one visit 

as an example of the data from the first five minutes of one visit. 

TABLE 1.3. EXAMPLE DATA 

   

Time Action Role WorkStation Diagnosis 
Clinic 

ID 
2/2/15 8:53 Checkin Time Admin Tech W1 Neoplasm A 
2/2/15 8:53 Mr_Snapshot Admin Tech W1 Neoplasm A 
2/2/15 8:53 Mr_Reports Admin Tech W1 Neoplasm A 
2/2/15 8:53 Mr_Snapshot Admin Tech W1 Neoplasm A 
2/2/15 8:53 Mr_Reports Admin Tech W1 Neoplasm A 
2/2/15 8:55 Mr_Snapshot Admin Tech W1 Neoplasm A 
2/2/15 8:55 Mr_Reports Admin Tech W1 Neoplasm A 
2/2/15 8:56 Mr_Snapshot Admin Tech W1 Neoplasm A 
2/2/15 8:56 Mr_Reports Admin Tech W1 Neoplasm A 
2/2/15 8:56 Ac_Visit_Navigator Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Histories Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Enc_Encounter Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Vn_Vitals Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Reports Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Flowsheet Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Vn _Complaint Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Reports Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Snapshot Lic.Nurse W3 Neoplasm A 
2/2/15 8:56 Mr_Reports Lic.Nurse W3 Neoplasm A 
2/2/15 8:57 Mr_Reports Admin Tech W1 Neoplasm A 
2/2/15 8:57 Mr_Snapshot Admin Tech W1 Neoplasm A 
2/2/15 8:58 Mr_Reports Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Ac_Visit_Navigator Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Enc_Encounter Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Histories Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Reports Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Vn_Vitals Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Flowsheet Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Reports Physician W4 Neoplasm A 
2/2/15 8:58 Mr_Vn_Vitals Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Histories Lic.Nurse W2 Neoplasm A 
2/2/15 8:58 Mr_Histories Lic.Nurse W2 Neoplasm A 

... ... ... ... ... ... 
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The shaded rows in Table 1.3 show how the role and workstation change throughout a visit at the 

level of individual actions. In contrast, Diagnosis and Clinic ID could be interpreted as external 

factors as they have the same values throughout the visit.  

This data provides a unique opportunity to study the effects of specialization in a 

narrative network. This is because it includes fine-grained, time-stamped information about 

actions and roles, which vary throughout each patient visit. With two years of data, I can see how 

routines change over time. It provides a detailed trace of actions that are taken in the 

recordkeeping work for each clinic day. This allows us to analyze complex action patterns in 

each visit.  

The number of roles is simply the number of unique roles within each patient visit. There 

are 30 types of specialized roles (physician, clinical tech, licensed nurse, residents, etc.). I count 

the number of unique roles that participated in the clinical process during each patient visit. I 

also count workstations and other factors that could influence the complexity of the visit. These 

are used as control variables in the analysis. Table 1.4 shows descriptive statistics of the 

variables used for the study. 

TABLE 1.4. DESCRIPTIVE STATISTICS 

Variable Obs Mean Std. Dev. 
Enacted Complexity 143,663 6.86 3.41 
Specialization Index 143,663 -0.12 0.06 

Logged Number of Roles 143,663 1.69 1.51 
Logged Number of Workstations 143,663 2.19 3.31 
Logged Number of Procedures 143,663 0.41 0.98 

Logged Number of Events 143,663 5.40 0.48 
Logged Visit Duration 143,663 2.58 1.34 
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I also control for the visit level observed heterogeneity by adding the number of 

workstations, the number of events, performed procedures, and the duration of the visit, all of 

which are visit-varying variables. The complexity of the narrative network may vary depending 

on the procedures because the likelihood of actions on the procedures may differ. Duration time 

for the visit also needs to be controlled, because the required time for each visit also changes 

according to the patient visits. Lastly, I capture the variation by adding the number of events 

since longer visits (with more events) tend to have larger networks (more unique nodes and 

edges) and greater enacted complexity.  

1.7. Model Estimation and Results 

To examine the effects of the contextual specifics on the enacted complexity of the clinical 

process, I specify two cross-sectional models. Two models are needed because the two aspects of 

specialization include overlapping information and cannot be included in the same model. In 

each model, the complexity of visit i’s network is a function of specialization and a set of control 

variables: 

(4)	log;<" 	= = > + @ABC"D% + E)*+,-.#.!*'"F% + E/+*0123+1"F4 + GHI4JKAE"F5 + E161'.-"F7

+ L" + M" + N" 	 

(5)	log;<" 	= = > + 6"D% + E)*+,-.#.!*'"F% + E/+*0123+1"F4 + GHI4JKAE"F5 + E161'.-"F7 + L"

+ M. + N" 	 

In both models, <" represents the enacted complexity computed based on nodes and edges 

in visit j. @ABC" denotes the vector of a variable for specialized roles: number of roles (eq. (4)) 

and 6" is the specialization index for visit j. (eq. (5)). I also add the vector of control variables 

such as the number of workstations, events, and procedures and time duration of visits in 
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seconds. Lastly, L" refers to time-invariant clinic fixed effects and M. are time fixed effects to 

capture unobserved heterogeneity of seasonality.  

1.7.1. OLS Estimation 

In this section, I report the results of ordinary least squares (OLS) regression. Overall, I observe 

strong significant effects of the number of specialists and degree of role specialization on the 

enacted complexity (see Table 1.5).  

TABLE 1.5. RESULTS OF REGRESSIONS ON ENACTED COMPLEXITY 
VARIABLES (1) (2) 
   
Number of roles -0.4604***  
 (0.0370)  
Specialization Index  -11.9598*** 
  (0.3141) 
 (0.0087) (0.0084) 
Constant -27.2624*** -32.8934*** 
 (0.2259) (0.3134) 
   
Observations 143,663 143,663 
R-squared 0.7492 0.7655 
YM Dummies YES YES 
Workstation Control YES YES 
Events Control YES YES 
Procedure Control YES YES 
Duration Control YES YES 
Clinic Control YES YES 

Robust standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 

 
The first column in Table 1.5 shows the effects of specialization in the clinical process: 1) 

the number of roles (column (1)) and 2) the degree of specialization on the enacted complexity 

(column (2)). I check the variance inflation factor (VIF) for the concern on multicollinearity 

among the variables for the explanatory variable (Belsey et al., 1980). The VIF value is less than 

four, which ensures that multicollinearity is not a concern. As seen in column (1) in Table 1.5, 
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more roles are negatively associated with enacted complexity at a significant level. This result 

shows that more specialists tend to simplify the process, consistent with hypothesis H1b.  

Consistent with the results for the number of roles, the role specialization index also 

shows a negative and significant association with enacted complexity. This is consistent with 

hypothesis H2b. Thus, both results show a negative relationship between specialization and 

enacted complexity.  

1.7.2. Sensitivity Analysis 

From the OLS estimation, I recognize there may be concerns about biased effects due to 

unobserved or omitted confounding variables. To prevent invalid inferences, I leverage my data 

and design as much as possible. Specifically, I controlled for the number of workstations, events, 

and procedures and the time duration of visits in seconds, clinics, and seasonality. Nonetheless, 

there may still be concerns about omitted variables. Therefore, I use the Konfound-it app to 

conduct sensitivity analysis (Frank et al., 2013). I quantify how strongly an omitted confounding 

variable would have to be correlated with specialization and enacted complexity to invalidate 

any inferences I made (Frank, 2000) and how much bias there would have to be due to the 

omitted variables or any other source (Frank et al., 2013). 

1.7.2.1.  Robustness of inference to case replacement (RIR) 

First, I draw on Frank et al (2013) as in the Konfound-it app to quantify how much bias there 

would have to be due to omitted variables or any other source to invalidate our inference. The 

results indicate that 84.249% of the estimated effect of the number of roles on enacted 

complexity would have to be due to bias to invalidate the inference of an effect of the number of 

roles. Correspondingly, to invalidate the inference one would have to replace 84.249% of the 

observed data with null hypothesis cases of no effect of the number of roles. For the 



39 
 

specialization index, to invalidate an inference, 94.853 % of the estimate would have to be due to 

bias. 

1.7.2.2.  Impact threshold for omitted variable 

Next, I also quantify how strongly an omitted confounding variable would have to be correlated 

with specialization and enacted complexity to invalidate our inference. For the number of roles, 

the result indicates that an omitted variable must be correlated at 0.167 with the explanatory 

variable and with enacted complexity (with opposite signs) to invalidate the inference. 

Correspondingly, the impact of an omitted variable must be 0.028 to invalidate the inference.  

For the specialization index, the minimum impact to invalidate an inference of an effect of 

specialization on enacted complexity is based on a correlation of 0.309 with the outcome. This 

implies that the impact of an omitted variable must be 0.095 to invalidate the inference. 

 The results of the sensitivity analysis imply the possibility of a confounding effect, 

especially for the number of roles (0.167), as the correlation coefficient lower than 0.2 is 

normally considered a weak correlation by social science standards (Cohen & Cohen, 1983). 

Thus, in the next section, I adjust for any potential confounding effects using the generalized 

propensity score (GPS) matching method (Wu et al., 2018). 

1.7.3. Causal Effect Estimation 

I use the GPS matching method to adjust for the potential confounder effects and remove the 

endogeneity bias. I use R package CausalGPS for the GPS matching (Wu et al., 2018). First, I 

use a non-parametric, cross-validation-based SuperLearner algorithm to estimate the GPS of 

specialization (the number of roles and specialization index) conditioning on all other covariates 

including potential confounders. SuperLearner is an algorithm that uses cross-validation to 

estimate the performance of multiple machine learning models, or the same model with different 
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settings (Kennedy et al., 2017; van der Laan et al., 2007). I implement and combine four 

different algorithms: 1) extreme gradient boosting machines, 2) multivariate adaptive regression 

splines, 3) generalized additive models, and 4) random forest, using the SuperLearner R package 

(Polley & van der Laan, 2010). Next, I use the caliper matching function to approximate 

randomized data points with the balanced pre-exposure covariates by jointly matching the units 

on the estimated GPS and treatment. To do this, I tune 1) the caliper parameter as the radius of 

the neighborhood around the exposure level and 2) the scale parameter, which assigns weight 

between the exposure and the estimated GPS. The specified caliper matching function is as 

follows:    

(8)             P89:(C, 3) = arg min
!:<!∈[<?@,<B@]

||	(UC∗(3! , V!), (1 − U)3!
∗) − (UC∗, (1 − U)3∗)||  

where 3! is the ith exposure level, 3!∗and C∗ represent the standardized Euclidean 

transformed exposure and GPS estimates, δ is the caliper parameter, λ is the scale parameter, and 

||.|| is a Manhattan distance matching method. I rely on the data-driven method to find the best 

combination of the parameters that lead to the smallest absolute correlation between the 

covariates and exposure. The goodness of a covariate matching is quantified by absolute 

correlation: a value below 0.1 indicates a good balance of the covariate (Wu et al., 2018; Zhu et 

al., 2015). After the data-driven process, I use the caliper matching function with the scale and 

caliper parameters equal to 1.0 and 0.16, respectively, to match the subjects. I have assessed 

absolute correlations of all the covariates across different levels of exposure and the average 

absolute correlation is 0.87 (number of roles) and 0.67 (specialization index), indicating the 

covariates are well balanced. Finally, I generate the matched data by the imputed outcome values 

from the caliper matching function.  
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Next, using the matched dataset, I estimate a smooth exposure-response function by the 

non-parametric kernel smoothing. The kernel smoothing fits a kernel smoother on the generated 

matched set to get the smoothed average exposure-response function (Wu et al., 2018). 

Figure 1.8 shows a negative causal relationship between the number of roles and enacted 

complexity. The figure shows that the magnitude of causal effects is very substantial. The 

analysis implies that a lower level of complexity is expected if a greater number of specialized 

roles are involved in the patient visit. This result demonstrates that the unexpected effect of the 

number of roles in OLS regression has substantial causal effects on enacted complexity.  
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FIGURE 1.8. CAUSAL RELATIONSHIP BETWEEN NUMBER OF ROLES-ENACTED 
COMPLEXITY 

 

FIGURE 1.9. CAUSAL RELATIONSHIP BETWEEN SPECIALIZATION INDEX-
ENACTED COMPLEXITY 

 

The result of causal estimation for the specialization index is also consistent with the 

OLS regression. Figure 1.9 shows that the higher the specialization index patient visit has, the 

less complex process of the visit tends to be. As seen in the figure, some of the visits with lower 

specialization index increase enacted complexity, but mostly the magnitude of the effects is 

substantial. This result indicates that role specialization reduces enacted complexity even after 

the confounding effect is adjusted.  
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1.8. Discussion 

Intuitively, when more roles are involved in a process, or the involved roles are more specialized, 

a process seems likely to be more complex. While there may indeed be more required acts 

(Wood, 1986), my results show that the workflow has lower enacted complexity. This 

paradoxical result has some interesting implications. 

1.8.1. Specialization Makes Workflows Simpler 

This study points to a fundamental concept of specialization in organizational work structure. 

Compared to generalists, who perform a large number of actions, specialists focus on a relatively 

small number of distinct actions (Fahrenkopf et al., 2020; Narayanan et al., 2009). Specialists 

tend to reduce enacted complexity because they have a narrow and deep task range, and there are 

fewer relations between actions. In healthcare settings, all the provider roles are considered as 

specialists as every provider has their own specialty.  

I visualize the effect of specialists on process enactment in terms of the narrative network 

(see Figure 1.10). While the graph-based only on actions has a smaller number of nodes 

compared to the context-aware network which considers specialized roles for nodes, it has many 

more edges between nodes, which increases enacted complexity. As such, contrary to intuition, 

adding more roles tends to simplify the graph because, in a healthcare setting, roles tend to be 

specialists. Specialization tends to decrease the enacted complexity of the clinical workflow.  
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FIGURE 1.10. THE VISUALIZED EFFECT OF SPECIALISTS ON ENACTMENT OF 
PROCESS  

Representation 
Visit level 
(1 visit) 

Action only 

 

Context-aware 
(action + role) 

 
 

My analysis also leads to important substantive findings on roles and specialization. As a 

component of task complexity, the traditional component complexity states that a task gets more 

complex when there are more events (actions) because it is based on the only “content of 

activity” (Campbell, 1988; Wood, 1986). While it is undeniable that the number of events is an 

important factor to be considered, there can be also many other factors that have an impact on 

complexity. For example, the applied technologies in the work process affect the individuals’ 

work practice the and structure of organizations (Orlikowski & Barley, 2001), and this change 

causes significant complexity and variation (Butler & Gray, 2006). I acknowledge the potential 

influence of social and material factors on the complexity of how the process is enacted. To 

address this gap, I examine the extent to which the enacted complexity is influenced by the social 

and material context of work. I specifically focus on the social factor, specialized workers, 

controlling the material context, represented as digitalized systems for the tasks. The results of 
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this study reveal that patient visits with more specialized roles decrease enacted complexity, 

compared to less specialized providers. 

1.8.2. Enacted Complexity as a Network Phenomenon 

The results of this study show that specialists tend to decrease enacted complexity. This 

contradicts practitioner literature, which has argued that more touchpoints result in greater 

complexity (Rawson et al., 2013; Richardson, 2010). It also contradicts the traditional theory of 

individual-level task complexity, where more required acts indicate greater complexity (Wood, 

1986). The critical difference is that I conceptualize enacted complexity as a network 

phenomenon. The measure of enacted complexity considers how the touchpoints (or required 

acts) are related (Kannampallil et al., 2011; Kauffman, 1993).  

This network perspective provides a framework for managing enacted complexity in the 

process. To reduce complexity at the systemic level, it helps to untangle the network. Fewer 

edges will tend to reduce the space of possible paths. To increase complexity, it helps to add 

edges. The goal should be to minimize excess complexity. The contribution of this study to the 

practical problem is simple: the number of touchpoints (or required acts) does not tell the entire 

story. Enacted complexity grows exponentially as a function of the number of relations between 

nodes in the network.  

1.8.3. Limitations 

This study has several limitations. First, although I investigate the relationship between 

specialization and enacted complexity of process, it does not directly measure how specialization 

affects organizational performance. For example, there exists a big difference between specialists 

and generalists in terms of learning and productivity (Narayanan et al., 2009). Specialization of 

tasks for specialists enables a deeper understanding of concentrated tasks based on the learning 
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curve than less specialized individuals (Dane, 2010; Flueckiger, 1976). In contrast, generalists 

can get impeded when it comes to learning tasks, as they are easily exposed to too much variety 

of tasks. For future study, studying the impact of specialization on learning and productivity of 

process would help us understand the quality of the organizational process. Second, this study 

examines the antecedents of enacted complexity in the clinical documentation process, but EMR 

records do not represent all the clinical processes in the clinics. It would be interesting to 

examine other settings of the clinical process. Second, this study examines the antecedents of 

enacted complexity, but I also need to examine the consequences. For future work, studying to 

operationalize enacted complexity could give us a better understanding of the effects of enacted 

complexity in process. 

1.9. Conclusion 

The findings provide a unique opportunity to theorize on the relationship between specialization 

and enacted complexity in the clinical documentation process. Using simple measurements of 

specialization, I find that greater specialization causes lower enacted complexity. Adding a 

specialized role into the process decrease enacted complexity because each role performs a set of 

distinct actions that are sparsely connected with the actions performed by other roles. As a result, 

the network as a whole becomes less densely connected and less complex. 

This study deepens our understanding of the context in the organizational process. Roles 

and role specialization are established aspects of organizational design and structure, but their 

impact on process structure has not been examined. While prior works have focused on the 

effects of specialization or generalist experience on organizational performance, I identify the 

effects of specialization on enacted complexity (Fahrenkopf et al., 2020; Narayanan et al., 2009). 
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The results of this study suggest the potential benefit of specialization of roles and its impact on 

the simplification of process. 

By focusing on roles and role specialization, this study examines the contextual 

antecedents of enacted complexity. The content of an activity affects complexity of the action 

patterns, but at the same time, there needs to be a consideration of the potential influence of the 

context of the activity. The traditional model of task complexity (Campbell, 1988; Wood, 1986) 

explicitly excludes the effects of context and process enactment. In doing so, it overlooks the 

potential influence of social factors (such as role structure) on the complexity of process 

enactment. This study addresses this gap and examines the extent to which the context of the 

work influences the complexity of action patterns in the clinical documentation process.  

Lastly, I also shed light on the possibility of automation for tasks in healthcare 

information systems. Process mining studies have focused on automated process discovery. The 

complexity of workflows has been considered as one of the biggest barriers to actualizing 

automation of processes across industries because it is hard to anticipate potential errors (Fast-

Berglund et al., 2013; Lyell & Coiera, 2017; Rojo Abollado et al., 2017; Woods, 1996). Augusto 

et al. (2022) show that automated process discovery can be more challenging when the event log 

records a small amount of process behavior that varies greatly than when the event log records a 

huge amount of process behavior that varies little. I can interpret this as the automatically 

discovering process is more difficult when there are more relations among actions. Hence, 

reducing the complexity is the first step toward the automation of the process. To do this, first I 

need to understand the structure of the process based on the contextual factors and see how much 

process is entangled. Considering process as sequences of actions (events) may allow us to see 

only the tip of an iceberg of the process because paths cannot be revealed without considering 
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contextual specifics (Leopold et al., 2018). Even if it looks like just one action, each action has a 

different depth of explanation on the event because an action can be different “events” depending 

on who performed the action or where the action was performed. Thus, context-awareness 

provides a deeper level of understanding of process. 
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CHAPTER TWO:  

DYNAMICS OF DIGITALIZATION: MECHANISMS OF STABILITY AND CHANGE  

IN DIGITALIZED WORK PROCESSES 
 

2.1. Introduction 

Updates, revisions, upgrades, and enhancements are pervasive aspects of digitalization. 

Organizations and individuals face an on-going barrage of changes in the digital artifacts I use. 

While many of these changes go unnoticed, some can cause significant disruption. By disruption, 

I mean changes to the ongoing pattern of action that is enabled/constrained by the artifact being 

upgraded. Upgrades can disrupt individual habits and organizational workflows in intended and 

unintended ways. While they are pervasive, they are not always visible, so their consequences 

are difficult to detect and analyze. 

To address this problem, I build on Swanson’s (2019) understanding of technology as a 

routine capability (p. 1008, emphasis in original):  

we argue that device-enabled routines constitute technology, in terms of 
capabilities achieved in human practices. Devices must, in effect, be “wrapped” 
in routines in the constitution of technology. Routines are seen as integral to 
technology itself.  

When digital technologies are changed or upgraded, the effect is always mediated by 

routines. This insight is important because we know that routines can be difficult to change 

(Becker, 2004; Cohen et al., 1996). Information technology (IT) artifacts are constantly being 

upgraded, but how does this influence the routinized patterns of action that are entangled with 

those artifacts? The idea of technology as a routine capability provides the theoretical foundation 

for my main research question: what mechanisms shape the dynamics of digitalization? Does the 

structure of the routine itself influence the dynamics of digitalization and vice versa?  
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Dynamics are important because IT-induced change is not instantaneous or frictionless 

(Berente et al., 2016; Goh et al., 2011; Keen, 1981; Laumer et al., 2016) Technologists 

(re)design artifacts, hoping for new patterns of action (Pentland & Feldman, 2008), but they are 

often disappointed, as routines buffer the “shock” of new technology (Berente et al., 2016) and 

old ways of working remain in place. New technology provides an occasion for structuring 

(Barley, 1986), but it also provides an occasion for workarounds (Alter, 2014; Frank et al., 2011; 

Zhao & Frank, 2003) and appropriation (DeSanctis & Poole, 1994). 

Field studies show that digitalization proceeds through a process of imbrication 

(Leonardi, 2011) or co-evolution (Goh et al., 2011). These are recursive, endogenous processes. 

Leonardi (2011) describes imbrication as the successive layering of human and material agency. 

Goh et al. (2011) describe a process of successive refinements of technology and routines. Like 

Goh et al. (2011), I model routines as narrative networks (Pentland & Feldman, 2007) and 

compare the network before and after a change in technology. Rather than using observational 

fieldwork, I use digital trace data to construct an extremely detailed picture of how routines 

change over time. 

To better understand the mechanisms that shape these dynamics, I zoom in on one 

technological change, followed by one adjustment: a major upgrade of the Electronic Health 

Record (EHR) system at an academic medical center in the Northeastern U.S. I use process 

mining to discover and compare patterns of action pre- and post-disruption (Pentland et al., 

2021b). Process mining provides an accurate, diachronic description of routine dynamics. The 

central theoretical contribution is that the structure of the routine – represented as a weighted, 

directed graph – influences the tendency of the routine to persist over time. I hypothesize and test 
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the effect of three mechanisms that influence the tendency of action patterns to resist disruption 

and re-form quickly after disruption.  

Current theory points to frequency and speed as major indicators of routinization. 

Routines that are fastest and most frequently repeated should be most likely to persist. However, 

my analysis indicates that speed is irrelevant, and coherence is the most important factor. By 

coherent, I mean that sequentially adjacent pairs of actions tend to share the same context 

(Pentland et al., 2017). Coherence points to the importance of materiality (rather than cognition) 

as an explanation for the persistence of routines after a disruption.   

The theoretical contribution of this paper is made possible by the novel application of 

dynamic network models (Hoff, 2005; Minhas et al., 2016) to theorize about the dynamics of 

digitalization. Swanson’s (2019) theory of technology as routine capability implies that the 

dynamics of digitalization are inextricably connected to the dynamics of routines. Whether we 

conceptualize this as imbrication or coevolution, the dynamic network framework offers a novel 

perspective on the dynamics of digitalization. Rather than relying on actor-centric or device-

centric explanations (Swanson, 2019), it provides an explanation based on the structure of the 

pattern action itself. The dynamic network lens affords a variety of practical insights, as well. It 

provides a simple way to assess the impact of upgrades and other disruptions and it demonstrates 

how quickly routines can form after a disruptive event. 

I begin by reviewing current research on information systems, organizational routines, 

and the process of digitalization. I introduce the use of network models to study change 

processes, such as upgrades and other disruptions. Based on the current theory, I develop a set of 

hypotheses about the effects of disruptions. I test these hypotheses using data from five 
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outpatient medical clinics. I discuss the implications of this approach for research on the 

dynamics of digitalization.  

2.2. Background 

2.2.1. Information Systems and Organizational Routines 

Through observational field research, information systems researchers have begun to examine 

the relationship between technology and routines, defined as “repetitive, recognizable patterns of 

action carried out by multiple actors” (Feldman & Pentland, 2003, p. 95). The entanglement of 

artifacts and routines is axiomatic to the current theory on routines (D’Adderio, 2011; Feldman 

et al., 2022), and there is a growing body of work on information systems that build on concepts 

and methods from research on habits and routines (e.g., Beverungen, 2014; Limayem et al., 

2007; Lyytinen et al., 2010; Mendling et al., 2021; Pan et al., 2007; Polites & Karahanna, 2013; 

Thummadi & Lyytinen, 2020; Zhang et al., 2021). There is also a strong tradition of practice-

based scholarship that examines patterns of technology-in-use without explicitly framing those 

patterns as routines (e.g., Orlikowski, 2000).  

Within this literature, observational field studies provide the best evidence of the 

recursive relationship between technology and routines. This work builds on the long-standing 

theme of technology adaptation (Leonard-Barton, 1988; Majchrzak et al., 2000; Tyre & 

Orlikowski, 1994), but explicitly focuses on technology and routines. I focus on three studies 

that provide an especially clear picture of how changing technology is entangled with changing 

routines: Goh et al. (2011), Leonardi (2011), and Berente et al. (2016).  

2.2.1.1.  Co-evolution of routines and technology 

Goh et al. (2011) conducted a detailed field study of the implementation of new healthcare 

information technology (HIT) system for in-patient care in a hospital. Based on their fieldwork, 
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they “propose a dynamic, process model of adaptive routinization of HIT that explicates the 

mechanisms through which HIT systems are incorporated into hospital routines” (2011, p. 566). 

Goh et al. (2011) model healthcare routines as narrative networks (Pentland & Feldman, 2007). 

They compare the network before and after the implementation of new systems that include 

hardware and software (e.g., “computers on wheels”). Drawing on adaptive structuration theory 

(DeSanctis & Poole, 1994), Goh et al. (2011) conceptualize the interaction of technology and 

routines as a process of co-evolution:  

Methodologically, this study demonstrates that organizational routines viewed as 
narrative networks provide a rich and promising lens through which to understand 
the HIT adaptation process. We find that routines are not simply passively 
disrupted by technology, but rather interact through functional affordances and 
symbolic expressions. These interactions trigger agentic forces that actively 
modify the newly implemented IT artifacts. (Goh et al. 2011, p. 583) 

 Goh et al. (2011) focused on the initial implementation of new systems. They mapped 

changes in two key routines for in-patient care: consulting and rounds. They identify three 

phases but do not put a specific time window on adaptation and subsequent refinements. They 

note that after initial implementation, the technology is subject to ongoing, repeated refinement. 

The system upgrade I report here could be considered as a typical refinement in their framework.  

2.2.1.2.  Imbrication of routines and technology 

Leonardi (2011) uses a field study of automotive crash testing to illustrate the idea of 

imbrication. Leonardi (2011, p. 147) argues that:  

Imbrication of human and material agencies creates infrastructure in the form of 
routines and technologies that people use to carry out their work. Routine or 
technological infrastructure used at any given moment is the result of previous 
imbrications of human and material agencies. 

 

Through careful qualitative fieldwork, Leonardi (2011) describes this process as a series 

of steps where technical changes are followed by adaptation in the routines and vice versa. In 
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this way, he breaks down the co-evolutionary process described by Goh et al. (2011) into 

discrete steps.  

2.2.1.3.  Routines as “shock absorbers” 

Berente et al. (2016) studied the implementation of an enterprise resource planning systems at 

NASA. They documented numerous ways that routines diverged from the intent of the designers. 

From these observations, they theorized that routines can act as “shock absorbers” that buffer 

organizational structures and processes from changes in technology (Berente et al., 2016). Over 

time, there is mutual adjustment and alignment between the systems and routines.  

Throughout these field studies, I can identify three themes that are relevant to my inquiry in this 

paper. First, as Swanson (2019) argues, I see that routines and information systems are 

integrated. Technologies are wrapped in routines; the technology only functions in the context of 

the routines where it is used (for treating patients, simulating car crashes, or managing budgets 

and inventory).  

Second, I see the familiar gap between the systems as designed and patterns of action as 

enacted (Boudreau & Robey, 2005; Pentland & Feldman, 2008; Vaast & Walsham, 2005). As 

Orlikowski (2000, p. 412) notes, people “have the option, at any moment and within existing 

conditions and materials, to ‘choose to do otherwise’ with the technology at hand.” Technology 

shapes but does not determine how people choose to use it. Thus, when technological artifacts 

change (as they do in a system upgrade), behavior does not necessarily follow.  

Third, technology and routines change in succession as a process of repetitive, stepwise 

change or coevolution. This perspective adds nuance to the classic debate between technological 

determinism and constructivism (Leonardi & Barley, 2008). The relationship between 

technology and practice is mutually constitutive, but a closer look at the process reveals that 
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changes are punctuated. In the analysis that follows, I zoom in on the dynamics of one of these 

punctuations.  

2.2.2. The Importance of Persistence 

By definition, upgrades and other disruptions happen in the context of ongoing routines. The 

world does not start fresh with every new version of Windows. Field studies (such as Goh et al. 

2011 and Leonardi 2011) have focused on what changes, but they have paid less attention to 

what persists. This emphasis is appropriate because the field of information systems has an 

inherent interest in innovation (Yoo et al., 2010). However, work and organization can't continue 

unless parts of the routine persist.  

When action patterns persist over time, this persistence can be interpreted in several 

ways, such as inertia (Gilbert, 2005), resistance (Becker et al., 2005), persistence (Howard-

Grenville, 2005), regeneration (Birnholtz et al., 2007) or resilience (Grote et al., 2009). Inertia 

and resistance seem negative, while resilience and regeneration seem positive; but either way, 

the tendency of routines to persist is a crucial but under-appreciated aspect of digitalization. 

Researchers have examined the effect of habits on the continued use (Limayem et al., 2007; 

Polites & Karahanna, 2013), but this research is framed in terms of individual-level habits and 

choices. By definition, organizational routines embody patterns of action that engage multiple 

individuals (Feldman & Pentland, 2003).  

 Schulz (2008) offers an encyclopedic list of mechanisms that keeps routines "on track", 

ranging from very macro (institutional norms) to very micro (neuronal priming). Cohen and 

Bacdayan (1994) present evidence that routines are stored in the procedural memory of 

individuals performing the routine, so that routine can be considered concatenated habits. 
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Theoretical explanations of routine persistence have not considered the structure of the routine 

itself as a factor. I introduce and develop this central idea in the next section.  

2.2.3. Routine Dynamics as Network Dynamics 

Routine dynamics concerns understanding the mechanisms that influence stability or change in 

action patterns (Feldman et al., 2022). An organizational routine can be represented as a valued, 

directed graph where the vertices represent categories of action and the edges represent 

sequential relations between those categories (Pentland et al., 2017). In process mining, this is 

called a "directly follows graph" (DFG) (van der Aalst, 2019). Where a conventional social 

network represents relations between actors (e.g., people), a DFG represents relations between 

categories of actions. In research on organizational routines, these graphs are often referred to as 

“narrative networks” (Pentland & Kim, 2021). 

In a narrative network, a path represents a possible way of getting something done (Goh 

and Pentland 2019). When a change occurs, such as a software upgrade, it may affect the 

structure of the network. However, some of the edges in the network need to stay the same, or 

else the work would cease because there would be no paths for getting things done. For this 

reason, persistence matters.  

To model the dynamics of digitalization, I need to explain edge formation/dissolution, 

which is the fundamental mechanism of the network dynamics (Snijders, 2001). Pentland et al 

(2019) use this approach to simulate the dynamics of drift in digitalized processes. My goal is to 

explain why the structure of the routine changes (or persists) after an upgrade or other disruption. 

In social network research, models that predict edge formation or deletion are often referred to as 

selection models because they predict how people select other people as interaction partners 

(Steglich et al., 2010). There are well-established selection mechanisms that drive dynamics in 
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social networks, such as homophily and preferential attachment (Snijders, 2001). My goal here is 

to identify and test generalizable mechanisms that drive the analogous persistence and 

dissolution of edges in networks of routines during the dynamics of digitalization.  

2.3. Hypothesis Development 

Network dynamics can be defined in terms of two basic processes: edge formation and edge 

dissolution (Snijders, 2001). In this paper, I focus on mechanisms that influence the persistence 

(or dissolution) of existing edges. I state three simple hypotheses, all of which concern how the 

structure of the routine before a disruption predicts the structure of the routine after a disruption. 

Each hypothesis involves a particular way of weighting the edges in the network. Edges indicate 

sequential relations between actions and each edge is part of a larger path (a way of getting 

things done). The weights on the edges indicate the properties of that piece of the path: How 

frequently is it followed? How fast is it, on average? How much does the context change from 

one action to the next?   

2.3.1 Frequency of Edges 

Repetition is definitional of routinized behavior (Becker, 2004). Edges that repeat frequently 

form the "ruts in the road" (Birnholtz et al., 2007) that define routinized patterns of action. 

Repetition is an indicator of behavior that minimizes search and cognitive effort (Hansson et al., 

2021; March & Simon, 1958).  

To test the effect of frequent repetition on persistence, I conceptualize the frequency of 

edges in a straightforward way, like the frequency of communication in a social network 

(Wasserman & Faust, 1994). For this hypothesis, the edges in the network are weighted 

according to how frequently they occur each day. I expect more frequent edges to persist after a 

disruption to the network:  
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H1: Frequent edges are more likely to persist after a disruption. 

2.3.2. Speed of Edges 

Speed has long been recognized as an indicator of routinization (Cohen & Bacdayan, 1994; Su et 

al., 2013). Cohen and Bacdayan (1994) use the speed of response to define the routinization of 

moves in a card game. Su et al. (2013) use speed of response to identify routines in human-

computer interaction. These findings align with the idea that routinized patterns of action are 

important for efficiency (Becker, 2004).  

To test the effect of speed on the structure of a routine after a disruption, I compute the 

mean duration of each handoff in the network, where handoff is defined as the transition from 

one action to the next (Pentland et al., 2017). This definition generalizes the conventional notion 

of handoff (which assumes that handoffs are between two different actors) to include actions 

performed by the same actor at a later time, perhaps in a different location or using a different 

technology. For example, a nurse might enter some data for a patient on one workstation in the 

examination room and then review or update that data for that same patient a few minutes later 

on a different workstation in another part of the clinic. Thus, clinical staff can hand work off to 

themselves. 

  For this hypothesis, edges in the network are weighted according to how long they take to 

perform, on average, using time-stamp data from the event log. Edges with shorter mean 

duration indicate faster ways of getting things done. I hypothesize that fast edges (edges with 

shorter mean duration) are more likely to persist after a disruption than slower edges (edges with 

longer mean duration).  

H2: Faster edges are more likely to persist after a disruption.  
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2.3.3. Coherence of Edges 

Unlike repetition and speed, coherence is not one of the classic indicators of routinization. 

Coherence is defined by the extent of similarity (or difference) between the context of 

sequentially adjacent pairs of actions (Pentland et al., 2017). Coherence can easily be computed 

on a narrative network where the nodes are defined by multiple contextual factors (Pentland et 

al., 2017). Coherence represents the number of contextual factors that remain the same across an 

edge. For example, are two adjacent actions in the network performed by the same actor? Do 

both actions occur in the same place? Do they involve the same tools or technology? Coherence 

provides a way to quantify the effects of materiality (embodiment and embeddedness) on the 

pattern of action (Feldman et al., 2022).  

Coherence can be operationalized in a narrative network, where each node is defined by a 

number of contextual factors, such as place, actor, and technology. When more factors change, 

the context is less coherent. When fewer factors change, the context is more coherent. Coherence 

provides another way of weighting the edges in the network. The logic of this hypothesis is 

similar with the logic for effects of homophily in social networks ("birds of a feather…"). Thus, I 

expect that more coherent edges (same actor, same place, same technology) will be more likely 

to persist:  

H3: More coherent edges are more likely to persist after a disruption.  

2.4. Illustration: Upgrading an EHR System 

To test these hypotheses, I use data from a medical center in the Northeastern U.S. where there 

was a major upgrade of their electronic health record (EHR) system. I examine the patterns of 

action for six weeks, three weeks before and after the upgrade.   
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2.4.1. Upgrading the EHR User Interface 

In October 2019, the medical center upgraded from EPIC v2017 to EPIC v2019. This upgrade 

was considered a major system upgrade. The changes included: 1) creation of a Storyboard 

which rearranged the layout of patient information and activities, 2) use of sexual orientation 

gender identity (SOGI) and preferred name appearing for patient interactions; 3) display of cost 

for inpatient medications and testing at time of order for provider decision making; 4) expansion 

of view to widescreen mode, which can require hardware replacement to use. Two other high-

impact changes influencing medical workflow, but not changing it directly included: 1) the 

ability of users to view data from multiple EPIC organizations and 2) online registration for 

Business Continuity Access (BCA) for faster downtime recovery.  

A campaign to bring awareness of these widespread and high-impact changes began in 

April 2019 followed by detailed information sessions in July 2019. Training and practice 

sessions for users were implemented in August 2019. All upgrade changes were complete and 

live on October 14, 2019.  

The impact of this upgrade on clinical activity was unclear and most likely varied by 

department. The widespread upgrades minimized screen jumps, consolidated important 

information to be viewable from anywhere in the chart, and allowed users to accomplish more on 

a single screen with fewer clicks and scrolling. It was anticipated that there would be minimal 

disruption from this upgrade if all users were prepared appropriately prior to the “go-live” date in 

October.  

2.4.2. Data Source 

I analyzed data extracted from the audit trail of the EHR system. EHR audit trail data is 

increasingly being used to model clinical workflows (Adler-Milstein et al., 2020). The subset of 
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records used here includes detailed, time-stamped records of EHR utilization in 4885 patient 

visits at five clinics from three different medical specialties (two from Dermatology, two from 

Orthopedic surgery, and one from pediatric oncology). The data include all visits to each of these 

clinics from September 16, 2019 (three weeks before the start of the system upgrade) to 

November 10, 2019 (three weeks after), before and after of system upgrade date (October 14th). 

Within this period, I excluded weekends and some weekdays for each clinic when less than 

2,000 actions are performed.  

Figure 2.1 includes a brief example of the audit trail data. Figure 2.1 shows how 

ThreadNet (Pentland et al., 2020) can be used to convert EHR audit trails into networks. Figure 

2.1 shows a small part of an audit trail for one patient visit. Each row is a time-stamped action. 

Each unique row becomes a node in the network and sequentially adjacent nodes become edges 

in the network. The resulting network is a narrative network where each node is defined by the 

combination of action, role, and workstation.  

FIGURE 2.1. CONVERTING EHR AUDIT TRAIL INTO NETWORKS 

 
The inclusion of contextual factors, such as role and workstation, is a departure from 

standard practice in process mining, which often treats actions as decontextualized. However, I 

include context here because routines are enacted from situated actions (Feldman et al. 2022). 

EHR Audit Trail
Time Stamp Action Role

Work-
station

10/7/19 10:49:03 REGHARACCTCRT Admin Tech A
10/7/19 10:49:04 RGWKFLBEGIN Admin Tech A

10/7/19 10:49:05 FORM_VIEWED Admin Tech A

10/7/19 10:49:05 RGEPTBSCDM Admin Tech A
10/7/19 10:49:06 FORM_VIEWED Admin Tech A

10/7/19 10:49:07 MR_DEMOGRAPHICS_VIEWED Admin Tech A

10/7/19 10:49:09 RGEPTADDRS Admin Tech A
10/7/19 10:49:10 REG_SC_EPTLANGUAGE Admin Tech A

10/7/19 10:49:11 REG_SC_EARDEMOGRAPHICS Admin Tech A

10/7/19 11:16:44 AC_VISIT_NAVIGATOR Physician B
10/7/19 11:16:48 VISIT_DIAGNOSES_VIEW Physician B

10/7/19 11:16:50 MR_PROBLEM_LIST_ACCESS Physician B

10/7/19 11:16:51 VISIT_DIAGNOSES_VIEW Physician B
10/7/19 11:16:52 MR_LOS_ACCESS Physician B

10/7/19 11:17:01 MR_REVIEW_ENCOUNTER Physician B

10/7/19 11:17:04 MR_REVIEW_MEDIA Physician B
10/7/19 11:17:05 MR_REVIEW_ORDERS Physician B

10/7/19 11:17:06 MR_CHART_REVIEW Physician B

10/7/19 11:17:07 MR_CHART_REVIEW Physician B

10/7/19 11:23:14 MR_REPORTS Clinical Tech C
10/7/19 11:23:16 AC_VISIT_NAVIGATOR Clinical Tech C

10/7/19 12:23:42 SEC_FLOWSHEET_VIEW Nurse C

10/7/19 12:23:43 UCW_RELATED_ENCOUNTERS Nurse C
10/7/19 12:23:44 MR_REVIEW_ENCOUNTER Nurse C

10/7/19 12:23:48 MR_REVIEW_ORDERS Nurse C

10/7/19 12:23:57 MR_CHART_REVIEW Nurse C
… … …. …

ThreadNet



69 
 

Thus, I use unique combination of action-role-workstation as nodes and pairs of nodes to define 

the networks in this study.  

2.4.2.1.  Selection of clinics 

The data analyzed here were collected as part of a larger study that included three medical 

specialty areas: dermatology, orthopedic surgery, and pediatric oncology. Where possible, I 

present data from two clinics in each of those specialty areas to improve the generalizability of 

the analysis. Pediatric oncology only had one clinic.  

2.5. Descriptive Findings 

Before testing my three main hypotheses, it is helpful to describe the effects of the disruption in 

more detail. I present two kinds of simple, descriptive analyses to help the reader build intuition 

about the EHR system upgrade and its effects.  

2.5.1. Changes in the Narrative Networks 

Table 2.1 shows the average number of visits per day in each clinic, as well as the size and 

density of the narrative network in each clinic before and after the upgrade. These networks have 

thousands of edges (between 8760 and 25,167), but the density is low. Only a tiny fraction of the 

possible edges was observed. With the exception of the orthopedic clinics, the networks had 

fewer nodes after the upgrade.  

TABLE 2.1. SIZE AND DENSITY OF THE NETWORK IN EACH CLINIC  

 
Visits 

per day 
Before Upgrade After Upgrade 

Nodes Edges Density Nodes Edges Density 
DERM A 16.68 1,852 10,989 0.0032 1,596 8760 0.0034 
DERM B 46.05 3,911 25,167 0.0016 3,494 21,281 0.0017 

ORTHO A 9.73 1,247 11,800 0.0075 1,289 11,193 0.0017 
ORTHO B 13.78 4,003 17,159 0.0011 4,647 19,844 0.0010 
PEDONC 9.45 3,376 16,152 0.0014 2,543 11,990 0.0019 
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Each clinic must be analyzed separately because workstation codes (and some of the 

roles) are different in each clinic. As a result, the action-role-workstation combinations in each 

clinic have different labels and the networks cannot simply be aggregated.  

2.5.2. Visualizing Diachronic Changes 

Figure 2.2 shows the changes to the pattern of action over time using the network time-series 

visualization recommended by Pentland et al. (2021a). The figure shows three weeks before and 

after the upgrade on October 14th. On that date, 40 actions were added to the EPIC system that 

serves all of the clinics, while 60 actions were removed from the system.  

This visualization addresses a simple question: how much is this network changing over 

time? The horizontal axis represents time measured in days; each point in the figure represents 

one day in one clinic. The vertical axis represents the cosine similarity of the network of each 

clinic on each day compared to the first day in the time series for each clinic. This similarity 

measure is based on the frequency of nodes or edges in the network, which change from day to 

day. The left side of Figure 2.2 is based on the nodes; the right side of Figure 2.2 is based on the 

edges. When the graph stays horizontal from day to day, the pattern of action is staying the same. 

For clarity, I removed a handful of outliers with very few patient visits per day.  

Figure 2.2 shows the same data at three different levels of contextual specificity. Each 

row of the figure incorporates more situational context into the definition of the nodes in the 

network (Pentland et al., 2020). In the top row, the nodes are defined by actions only. In the 

middle row, the nodes are defined by action + role. This adds the social context of each action: 

who did what. In the bottom row, the nodes are defined by action + role + workstation. This adds 

the material context of each action: who did what and where. In each panel of Figure 2.2, I show 
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the mean value and 95% confidence interval on the mean, before and after the upgrade. This 

clearly shows a significant disruption at all three levels of contextual specificity.  

I show these three levels of contextual specificity for two reasons. First, it shows how 

situating the pattern of action in its social and material context increases the apparent variability 

of the routine. Second, all of my subsequent analysis is conducted on the actions situated in their 

social and material context (the highest level of contextual specificity) because I want to 

understand the effect of contextual coherence. Figure 2.2 helps convey the substantial amount of 

natural variability that exists in these clinical work processes. However, as expected, there is still 

a discernable difference before and after the upgrade. My goal in the analysis that follows is to 

understand how the disruption affects these fine-grained, situated patterns. To address my 

research question, I need to see beyond the obvious noise in Figures 2.2 (c) and 2.2 (d) and 

extract signals that help us understand stability.  
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FIGURE 2.2. DIACHRONIC VIEW OF ROUTINES 
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FIGURE 2.2. (CONT’D) 
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Contrary to the literature on information systems implementation and adaptation (e.g., 

Majchrzak et al. 2000), there was not an extended period of adjustment. The routines adapted to 

the new software immediately after the upgrade. Using a simple OLS regression, I tested the rate 

of change after the disruption and found that it is not significantly different than zero (see 

Appendix A). There is a lot of variation from day to day, but there is no trend. This implies that 

new routines stabilized very quickly after the new system went live.  

2.6. Analysis 

I examine my hypotheses in five different clinics with two kinds of models. Logistic regression 

provides an easy-to-interpret model of edge dissolution (Minhas et al., 2019). It also provides a 

simple way to test for collinearity in the independent variables. However, the standard errors 

from this model are naïve because they ignore dependencies in the data (Hoff, 2005). Therefore, 

to fully account for network effects I use the dyadic prediction model for network dynamics 

described by Hoff (2005, 2009) which uses latent spaces and random effects to account for 
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dependencies in the data. Across all five clinics, with both kinds of models, the results are 

similar. I discuss the details of these analyses in the next sections.  

2.6.1. Logit Models 

I construct a logit regression model to examine evidence of the effects of edge characteristics on 

the structure of routines. The logit model is the simple and well-defined model to examine the 

relationship between the directed dichotomous relations of the edges and statistics of network 

characteristics (Robins et al., 1999; Wasserman & Pattison, 1996). I specify the structure as the 

persistence of edges. The proposed model is as follows: 

(1) logit;XCI%K%JCEVC!".= = 	D%;YICZHCEV[!".?%=+	D4;%\CCG]]]]]]]]!".?%= +

	D5;VAℎCICEVC!".?%= 

In this model, the time period t represents three weeks before and three weeks after. The 

dependent variable in this model is XCI%K%JCEVC!"., which is a binary variable and equals 1 if 

edge between actions i and j in the network exists before and after the system upgrade, and 0 if it 

only exists before the upgrade. Thus, the edges considered in this analysis include only those that 

existed before the system upgrade. YICZHCEV[!".?% represents the frequency of the edge from 

the previous time period, as in H1. %\CCG]]]]]]]]!".?% reflects the average speed of the edge 3!", as in 

H2. VAℎCICEVC!".?% represents the extent to which actions i and j share a coherent context, as in 

H3. I estimate the model for each clinic separately because they have different sets of edges. I use 

standardized variables so I can compare the relative magnitudes of the effects in the models.  

2.6.2. Logistic Regression Results 

Table 2.2 shows the result of the logistic regression in each clinic. I use standardized variables, 

with log transformations for frequency and speed. 
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TABLE 2.2. LOGISTIC REGRESSION RESULT ON EDGE PERSISTENCE 
 (1) (2) (3) (4) (5) 
Variables DERM_A DERM_B ORTHO_A ORTHO_B PEDONC 
      
H1: Frequency 0.7031*** 0.7823*** 0.6651*** 0.6943*** 0.6090*** 
 (0.0291) (0.0219) (0.0300) (0.0258) (0.0233) 
H2: Speed - 0.0213 0.0525** 0.0343 - 0.0238 0.0092 
 (0.0255) (0.0187) (0.0286) (0.0226) (0.0290) 
H3: Coherence 0.1834*** 0.4296*** 0.5580*** 0.4944*** 0.7493*** 
 (0.0280) (0.0217) (0.0334) (0.0270) (0.0467) 
Constant -1.8727*** -2.6562*** -3.3371*** -3.1807*** -4.3291*** 
 (0.0874) (0.0697) (0.1107) (0.0874) (0.1570) 
      
Observations 10,906 24,886 10,300 16,999 16,046 
Pseudo R2 0.0906 0.131 0.124 0.127 0.114 

Naïve robust standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05 

In Table 2.2, I observe that in all clinics the probability of edge persistence increases with 

the frequency of edges from the previous period. I can interpret this as two actions tend to persist 

more after the system upgrade the more frequently they were performed before the upgrade. In 

contrast, the magnitudes of the estimates for speed are typically less than their naïve standard 

errors, with the exception of one Dermatology clinic (DERM_B) whose estimate is positive and 

more than three times its naïve standard error. I infer that in contrast to my hypothesis, speed of 

the edges does not increase their tendency to persist. Lastly, I infer that coherence has significant 

and positive coefficient on persistence. This indicates that the probability of edge persistence 

after the system upgrade increases when the actions are performed by the same role and at the 

same workstation.  

From the results of the logit regression models, I infer that the edge characteristics, 

frequency (H1) and coherence (H3), have positive effects on edge persistence. However, the 

speed of the edge (H2) does not seem to affect persistence. As explained above, the results from 

logistic regression may be biased because of unobserved random effects due to the 
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interdependence between the nodes. Thus, I use the dyadic prediction model for network 

dynamics described by Hoff (2005, 2009). 

2.6.3. Dyadic Prediction Model for Network Dynamics 

The dyadic prediction model is introduced to account for the interdependent patterns in network 

and make predictions about the paths based on not only the observed characteristics of the nodes 

and edges but also unobserved random effects on the base rate of edges (Minhas et al., 2019). 

Considering the interdependence between actions is especially important because the actions and 

edges are not independent.  

In social networks, to estimate how actors choose others with whom to interact, the 

logistic selection model is generally considered as  

(2)   log _
/E<!"F

%?/E<!"F
` = DG + D%|a! − a"| 

where 3!" is interactions, edge persistence, between i and j, a! is a characteristic of node i 

such as weight, and DG is odds of tie occurring when ba! − a"b = 0. Lastly, D% represents the 

change in log odds of a tie occurring for a one unit increase in |a! − a"|. In this context, if each 

of the interactions is conditionally independent, I can write the joint likelihood function as  

(3)   X(W|D, X) = ∏ log _
/E<!"F

%?/E<!"F
`!H"  

Where I write W as the network matrix of 3!", X as the array of x, and D as the regression 

coefficient. However, there exist random effects representing potential interdependence in the 

process network. As a directed network, the event in the process is selected based on the 

previous paths, and it also influences the next event. Amis-specified model without considering 

the potential dependencies can have simultaneous dependencies for reciprocity between events 
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(Hoff, 2009; Holland & Leinhardt, 1981). Thus, it is important to specify a model that considers 

potential dependencies in the data. The suggested random effect model is as follows: 

(4)   log _
/E<!"F

%?/E<!"F
` = D1Ix1,!," + D-Ix-,! + D+Ix+," + h! + h" 

(5)   h! = FG + 	F%a! + H! 

(6)   h" = FG + 	F%a" + i" 

Where x2,!," refer to edge covariates, x-,! and x+," represent covariates for sending and 

receiving nodal attributes, and θi and θj are the random effects of senders and receivers. In my 

model, I interpret senders as predecessor actions and receivers as successor actions.  

There is another potential dependence associated with transitivity and clusterability of 

nodes in the network (Hoff, 2005). This third-order dependence pattern can be accounted for 

with the similarity of relational patterns of two nodes (Minhas et al., 2019). Each node has 

unobserved attributes which can affect the ties between nodes. In the latent factor model, these 

unobserved factors of nodes are considered an unobserved vector of factors based on similar 

relational patterns. Hoff (2005), 2009) suggests adding H!i" term in the model, which represents 

the similarity between pairs of nodes on each dimension based on the latent nodal attributes of 

sending and receiving nodes. Thus, the final model proposed by Hoff (2009) is as follows:  

(7)   [!" = D1Ix1,!," + D-Ix-,! + D+Ix+," + h! + h" + H!i" + j!," 

2.6.4. Application of the Latent Space Model 

My goal is to predict the frequency of all edges in the narrative network that represents the 

clinical documentation process. To do so, I use the previous state of the process (at time t-1) to 

predict the current state of the process (at time t). Using this approach, I can test my three 

hypotheses within the model as follows:  
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(8)  XCI%K%JCEVC!". =	D%;YICZHCEV[!".?%=+	D4;%\CCG]]]]]]]]!".?%= +

	D5;VAℎCICEVC!".?%= 	+ h! +	h" + H!i" + C!" 

where h! and h" are random effects relating to the base rate of actions i and j. If i and j 

occur more or less often, that will directly influence how often 3!" occurs. As I apply the model 

here, h! and h" reflect the change in the repertoire of actions. I am interpreting random effects (h! 

and h") as control variables: Controlling for changes in base rates of the actions, what drives 

changes in the pairs of actions? Lastly, H!i" represents the similarity between pairs of nodes on 

each dimension (action i and j) of a latent space and C!" is the error term. 

2.6.5. Results of Dyadic Prediction Models 

To estimate the latent space models, I use the R package amen (https://cran.r-

project.org/web/packages/amen/amen.pdf) which uses an MCMC (Markov Chain Monte Carlo) 

procedure. As with the logistic regression, I use standardized variables, with log transformations 

for frequency and speed. Table 2.3 shows the results for each of the clinics in my data. The 

results show that standard errors of the variables are significantly decreased compared to the 

result of logit regression, as a lot of the variance is explained by the random effects and latent 

factors.   
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TABLE 2.3. RESULTS OF ANALYSIS FOR EDGE DISSOLUTION  
 DERM A DERM B ORTHO_A  ORTHO_B PEDONC 

H1: Frequency 0.516*** 0.968 *** 0.559*** 0.573*** 0.573*** 
 (0.003) (0.006) (0.004) (0.004) (0.004) 
H2: Speed 0.101*** 0.122*** 0.026 0.077** 0.015 
 (0.003) (0.0006) (0.044) (0.003) (0.003) 
H3: Coherence 1.229*** 1.675*** 1.353*** 1.300*** 1.348*** 
 (0.004) (0.005) (0.006) (0.005) (0.006) 
Constant -6.105*** -5.833*** -6.727*** -6.246*** -6.649*** 
 (0.020) (0.027) (0.037) (0.032) (0.004) 
Random Effect:	4! 0.926 0.709 1.116 0.710 0.846 
 (0.012) (0.012) (0.016) (0.011) (0.035) 
Random Effect: k" 0.805 0.557 0.819 0.517 0.553 
 (0.018) (0.019) (0.025) (0.017) (0.019) 
      
# nodes  1,851 3,910 3,090 4,002 3,375 
# edges 10,906 24,886 16,503 16,999 16,049 

 

2.6.6. Summary of Results 

Table 2.4 summarizes the results of the analysis for both kinds of models.   

TABLE 2.4. SUMMARY OF RESULTS  

Hypothesis 
Logistic 

Regression 
Model 

Dyadic 
Prediction 

Model 
Overall 

H1: Frequency 
Strong, 

significant  
in all clinics 

Strong, 
significant  

in all clinics 
Supported 

H2: Speed 
Weak, opposite 

direction  
in all clinics 

Weak, opposite 
direction  

in all clinics 

Not 
supported 

H3: Coherence 
Strong, 

significant  
in all clinics 

Strong, 
significant  

in all clinics 
Supported 

 

2.6.6.1.  Frequency (H1) 

As expected, the frequency of an edge is a strong predictor of its tendency to persist after a 

disruption. This finding aligns with everything I know about repetitive patterns of action: they 
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tend to keep repeating (Schulz, 2008). However, this is the first time this hypothesis has been 

tested in empirical research.  

2.6.6.2.  Speed (H2) 

The hypothesized effect of speed is not supported by the data. Contrary to existing theory, it 

would appear that slower edges are slightly more likely to persist than faster edges. This effect is 

small and not always statistically significant, so I should not overstate its implications. 

Nevertheless, it is interesting because it seems to contradict the idea that speed indicates 

routinization, which was introduced by Cohen and Bacdayan’s (1994) pioneering lab 

experiment.  

2.6.6.3.  Coherence (H3) 

The hypothesized effect of coherence is also supported by both models in all of the clinics. In the 

dyadic prediction model, where the coefficients and standard errors are less subject to bias, the 

magnitude of this effect is consistently much larger than the effect of frequency. This suggests 

that relations between actions are strongly shaped by contextual factors, accounting for the effect 

of repetition. In my data, edge persistence is shaped by the role of the person performing the 

action and the workstation where it is performed.  

2.6.7. Which Edges are Most Persistent? 

Contrary to the stereotype of routines as fixed patterns of action (March & Simon, 1958), these 

outpatient clinical routines are quite variable. Any given edge has a substantial probability of 

disappearing (or reappearing) from one time period to the next, especially after a disruption. 

Nevertheless, it is interesting to examine which edges are most nearly locked in. 

The dyadic prediction model estimates the probability of each edge persisting after the 

upgrade. Using this result, I can identify the edges in each clinic that are most likely to survive 
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(Persistenceij ≥ 0.95). In Figure 2.3, I use a simple 3-D scatter plot to show how these highly 

persistent edges compare to the others. In Figure 2.3, larger red points represent edges with more 

than or equal to 95% probability of persistence. In contrast, smaller blue dots represent the edges 

with less than 95% probability of persistence after the upgrade. The results are similar in all of 

the clinics, so to save space I present one clinic from each medical specialty.  

FIGURE 2.3. WHICH EDGES ARE MOST LIKELY TO PERSIST?  
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FIGURE 2.3. (CONT’D) 
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Clearly, coherence dominates the picture. For all clinics, most of the persistent edges are 

at the highest level of coherence. This implies that having the same/similar contextual factors 

correlates with lock-in. What this means, in concrete terms, is that the most persistent pairs of 

sequentially adjacent actions are performed by the same person at the same workstation. In other 

words, materiality dominates the picture. Although it is based on the top 5% of persistence, the 

visualization in Figure 2.3 reinforces the findings from the models. The edges that are most 

likely to persist have the highest frequency and coherence. In contrast, speed does not have a 

clear relationship to persistence probability. 
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2.7. Discussion 

This paper provides a novel perspective on the dynamics of digitalization. The empirical 

foundation for this theory is generated through process mining, which is usually used to discover 

a stationary model of a process (van der Aalst 2012). Here, I am using process mining to help 

build theory about stability and change in routines, as suggested by Pentland et al (2021). The 

contributions here go beyond the specific findings in these particular clinics. The main 

methodological contribution concerns the use of dynamic network models to analyze routine 

dynamics. I borrow a foundational idea from social network analysis (that network structure 

influences network dynamics) and apply this idea to routine dynamics. The theoretical 

contribution concerns the extension of Swanson’s (2019) concept of technology as routine 

capability and the use of routine dynamics to develop a new theory about the dynamics of 

digitalization. In the following sections, I discuss these contributions in more detail.  

2.7.1. Putting Action into Context 

The essential conceptual move in this research is to locate actions in context. In a recent review, 

Avgerou (2019) examines the role of context in IS research. Her key message is that context is 

crucially important and enters IS-related phenomena in a host of different ways. Typically, I 

think of context as outside, in the background, like the weather. However, as Rosemann et al. 

(2008) point out, context can permeate to the finest-grained level of description. At this fine-

grained level, context can change constantly throughout the execution of a process or routine as 

work is handed from one person to another, one place to another, one system to another, and so 

on. Explicitly locating actions in their immediate context aligns with the emphasis on situated 

action that has been the driving for the last 20 years of research on organizational routines 

(Feldman et al., 2022).  
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In this paper, I put action into context at this fine-grained level in two different ways. 

First, I put actions into sequential context. I do this by defining sequentially adjacent pairs of 

actions as the unit of analysis. These pairs of actions are the edges in the narrative network that 

represents a routine. This constitutes a departure from more familiar research traditions that 

emphasize isolated decisions by individual actors (e.g., psychology, behavioral economics). 

Actions are never isolated; they are always part of a larger trajectory, path, or line (Ingold, 2015). 

Second, coherence puts actions into context by taking the actor (role) and location 

(workstation) into account. Without a doubt, there are many other contextual factors that could 

be included, but the combination of action+actor+location is indicative of the technology-in-use 

(Orlikowski, 2000). When I take the technology out of context (as suggested by Figures 2.2 (a) 

and 2.2 (b), the effects of change seem straightforward and perhaps even deterministic. When I 

examine actions in context, I see an entirely different picture, where the changes on October 19 

are situated in a stream of continually changing networks.  

2.7.2. Imbrication and Evolution 

Where Goh et al. (2011), Leonardi (2011), and Berente et al. (2016) used ethnographic 

fieldwork, I have used archival trace data to zoom in on one particular technological change. As 

a methodology, fieldwork is well suited to the analysis of innovation and change because it can 

provide a more holistic perspective. The influence of culture, power, emotion, and conflict are all 

potentially on display and available for analysis. There is no way that an archival method, based 

on digital trace data, can offer those kinds of insights. What trace data and process mining can 

offer, however, is a complementary perspective that is not available to any human observer.  

Imbrication and evolution are conceptualized as an ongoing series of changes, so I zoom 

in on one of those changes in detail. I examine the mechanisms that influence the tendency of 
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routines to persist. Persistence can be interpreted as an indicator of a resilience (Grote et al., 

2009), or resistance (Becker et al., 2005). Either way, persistence is an essential, take-for-granted 

aspect of digitalization. As routines evolve (Goh et al., 2011) or undergo successive refinements, 

changes, and re-alignments, significant parts of the overall pattern of action remain the same. 

Where IS research has generally put the changes in the foreground, I have put continuity in the 

foreground, as in Figure 2.3. In doing so, I see that only a small fraction of the overall pattern of 

action is truly locked in. At the level of situated action, there is a great deal of variability in the 

networks of action that are constitutive of this technology-in-use.  

2.7.3. Routine Dynamics as Network Dynamics 

In research on social networks, mechanisms like reciprocity, homophily, and preferential 

attachment contribute to the formation and dissolution of network ties (Snijders, 2001). Until 

now, analogous network-based mechanisms have never been defined or investigated in the 

context of digitally enabled routines. It is important to recognize that hypotheses 1-3 represent a 

first attempt at defining network-based mechanisms that influence the dynamics of routines and 

therefore, the dynamics of digitalization. These mechanisms may seem simple, but so are the key 

mechanisms that drive the dynamics of social networks: homophily (“birds of feather...”), 

preferential attachment (“the rich get richer...”) and transitive closure (“the friend of my 

friend...”). In theory, simplicity is a virtue.  

My analysis suggests that routines persist for structural reasons, such as frequency of 

repetition and coherence of context. The effect of coherence is particularly strong in these five 

clinics: roughly twice as strong as the effect of repetition. In Figure 2.3, coherence is strongly 

associated with the most persistent edges. As it is defined in my data, coherence refers to the 

continuity of the actor and the location from one action to the next. Thus, pairs of actions with 
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the highest coherence are performed by the same actor in the same location. For this reason, I 

can interpret the effect of coherence in terms of materiality. The metaphorical “ruts in the road” 

that make routines recognizable are embodied in the actors and places where they are performed.  

2.8. Limitations 

This study has some obvious limitations. First, I have data from a narrow context. This is 

essentially a case study of one software upgrade in a few clinics within a single medical system. 

The findings would be more generalizable if they were reproduced in a broader range of settings.  

Second, I study a rather simple disruption: a system upgrade. It would be helpful to study 

a broader range of disruptions. For example, the COVID epidemic disrupted medical services in 

a variety of ways, from interruptions (e.g., lockdowns) to new technology (e.g., telemedicine). In 

this study, the routines immediately adapted to the upgrade. With more severe disruptions, I 

would not expect adaptation to occur as quickly. Data from different kinds of disruptions would 

provide additional tests of my hypotheses concerning the influence of frequency, speed, and 

coherence on the persistence of routines.  

Third, I don’t have measures of other variables (such as attitudes or incentives), nor do I 

have an interview or observational data about this upgrade. These variables would add richness 

to the story and allow us to discuss alternative explanations and consequences. The data I report 

here was collected as part of a larger study that was not specifically focused on upgrades or 

disruptions. Future studies would undoubtedly benefit from a combination of fieldwork and 

archival methods.  

Fourth, I only address the dissolution of existing edges, not the formation of new edges. 

As a result, my analysis is limited to existing paths, not new paths. In future studies, it may be 

possible to use the attributes of actions to predict edge formation, as well.  
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2.9. Conclusion 

The entanglement of technology and human behavior has been a central concern of information 

systems theory and practice for decades (Bostrom & Heinen, 1977; Mumford & Weir, 1979; 

Orlikowski, 1992) and remains a central “axis of cohesion” for the IS discipline (Sarker et al., 

2019, p. 695). The theory and method I employ here offer a way to reinvigorate the 

sociotechnical foundations of the information systems field by explicitly examining the systemic 

connections between technology and patterns of action. As my analysis shows, this relationship 

can be noisy and complex. This is especially true when I examine it with fine-grained trace data.  

The tools I demonstrate here provide a rigorous new way to analyze stability and change, 

even in a setting that has a great deal of variability. As a discipline, information systems scholars 

tend to focus on innovation and change (Yoo et al., 2010). In most of my research, change is the 

figural part of the picture. But change always happens against a background of stability. As 

digitalization continues to progress, I need to see figures and ground if I want to understand the 

whole picture. 
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CHAPTER THREE: 

PREDICTING NEXT ACTION BASED ON CONTEXTUAL SPECIFICS: EVIDENCE  

FROM ELECTRONIC MEDICAL RECORDS 
 

3.1. Introduction 

As the increased number of paths makes a process more complex, it becomes difficult to predict 

what happens next. The increased complexity in the process makes monitoring and predicting 

process a significant factor in both industries and disciplines related to organization and business 

process (Allen & Varga, 2006; Augusto et al., 2022; Rettig, 2007; Russell et al., 2006).  

In process mining, the sequence of events is essential in determining the “flow of control”, which 

provides a model for the expected sequence of actions in a process (Bozkaya et al., 2009; van der 

Aalst et al., 2005; van der Aalst & Weijters, 2004; van der Werf et al., 2008). However, relying 

only on the sequence itself may not provide enough clues for prediction when organizational 

processes are more complex. It is especially hard to understand contextualized processes, where 

the control flow may depend on contextual factors. When a firm tries to adopt a new business 

process, it often fails when there is no consideration of contextual factors (vom Brocke et al., 

2016). Prior studies discuss the importance of contextual factors in the design of the business 

process (Ploesser et al., 2009; Rosemann et al., 2008; van der Aalst & Dustdar, 2012), but few 

studies focus on contextual factors in process prediction. 

Context is particularly important in healthcare, where very specific procedures and 

specialties exist. For example, when clinical employees input patient information at a 

workstation for electronic medical record (EMR) systems for the recordkeeping process, taking a 

particular action (e.g., check_meds) takes on a different meaning depending on who performs it 

and where it is performed. The office staff can check_meds at the workstation in the front office. 
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This might be in response to a patient question (e.g., can I refill this prescription?). This might 

occur as the patient is checking in or checking out. Alternatively, a nurse, resident or doctor 

might check_meds in the examination room, or outside the examination room, in order to 

confirm the dosage, look for conflicts, or write a new prescription. These examples point out that 

when the physician checks the patient’s medication, it has a different significance than when the 

office staff does so. It looks like the same action in the event log, but it is not, because the 

immediate context is different.  

As such, while the adoption of EMR systems is intended to make recordkeeping 

processes more efficient, studies argue that EMR systems cause entanglements of processes that 

can increase process complexity (Frankel et al., 2005). Thus, to understand the entangled 

process, it needs to be understood based on the sequence of events with its context. Without 

consideration of context, the entangled process cannot be grasped clearly.  

To address this, I investigate prediction models based on contextual specifics as well as 

the sequence of actions, using clinical documentation process data. Specifically, I examine if 

context can help to get better prediction results with fewer parameters / simpler models / or less 

training. The research questions I address here are as follows; 1) Can contextual specifics make 

patterns more recognizable and predictable? 2) Can we use context to get better results 

with fewer parameters/ simpler models? 

To address these questions, I use Long Short-Term Memory Networks (LSTM) (a kind of 

Recurrent Neural Network (RNN)) which models both the observed sequence of actions and 

their contextual factors in process. I build on work by Camargo et al. (2019), who trained LSTM 

networks to predict sequential process patterns. In this study, I extend the idea of Camargo et al. 
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(2019) on associated resource pools as contextual factors to see the importance of context in the 

business process prediction. 

For the analysis, I compare models using different types of variables: 1) sequence of 

actions, and 2) contextual specifics with the action sequence. First, I predict the action in the 

clinical documentation process based on the sequence of actions only. Next, I add different 

contextual factors; role, workstation, diagnosis group, and others, and see how the prediction 

level changes with the factors. Lastly, I examine how the results could be changed depending on 

the different settings of hyperparameters. This analysis provides important findings as the results 

show that some contextual specifics improve the process prediction more than others. I show that 

the more relevant contextual information is included, the more accurate prediction is feasible.  

I organize the rest of this study as follows. In the next section, I review the literature on 

how RNN has been used for process prediction and the relations between actions and their 

contextual specifics. Then I describe the data sources used for the study in section 3. In section 4, 

the model is developed to predict actions in the clinical documentation process. I report the 

results of the estimates in the subsequent section and conclude the paper by discussing the 

contribution of the results and limitations of the study.  

3.2. Theoretical Background 

Predicting what happens next is not an unrealistic and future technology anymore. Imagine that 

you have a friend who has dinner with you often and you are about to text him again to ask to 

join dinner tonight. You have added dinner events with your friend in the calendar on your phone 

for a few weeks. Based on this “context”, when you text, your phone will automatically suggest 

words on asking to join dinner tonight, such as time, location, or even menu. This is a very 

common example that shows the convenience of prediction. As such, it is obviously possible to 
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predict the next event more accurately based on context. In this section, I explain what role 

contextual factors play in the organizational process and introduce prediction models in process 

management. 

3.2.1. Process and Contextual Factors 

Recognizing patterns in business processes is not a new rising domain. Numerous studies in the 

business process discipline have investigated business process mining to decompose entangled 

patterns of business processes (Gacitua-Decar & Pahl, 2009; Mejia Bernal et al., 2010; van der 

Aalst et al., 2007). However, the importance of context in process management was overlooked 

in many process mining analyses (Kronsbein et al., 2014; Li et al., 2010; van der Aalst & 

Dustdar, 2012). Even after the importance of contextual factors is discussed, many studies 

neither reflect the factors for the prediction model nor consider with a narrow perspective. Prior 

studies show how to classify contextual factors based on the characteristics of each. Contextual 

factors are largely divided into two dimensions; internal and external factors (Kronsbein et al., 

2014). While internal factors are important to recognize the patterns because these factors are 

directly related to events (i.e: particular roles or location in the process), external elements 

influence the occurrence of events from outside of the process. In the onion model for contextual 

factors (Rosemann et al., 2008), these two factors are segmented into more specific types of 

contexts, depending on how frequently the factors are changed during the execution of the 

process. For example, while suppliers and customers are somewhat controllable in the 

organizational process, climate or seasonality cannot be controlled but its impact on the patterns 

of actions can be substantial (vom Brocke et al., 2016). Extending the internal and external 

contextual factors to the more specific types of context helps figure out which types of 

contextual factors influence the prediction levels in process.  
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Many studies on monitoring and managing processes discuss the importance of 

contextual specifics, but those factors are seldomly used for the predictive process models. For 

this study, following Rosemann et al. (2008), I use immediate and external contextual factors for 

the prediction. As the immediate layers, I use actors (who), workstation as location (where), and 

diagnosis group of patients for each visit as immediate context. As the external factors, I use flu 

season information and if the system is upgraded 

3.2.1.1.  Prediction models in process management 

Prior to the introduction of RNN, predictive process models were generally based on diverse 

probabilistic models (Breuker et al., 2016; Pravilovic et al., 2013; van Dongen et al., 2008). 

However, since RNN was introduced, most of the studies on process prediction models have 

depended on it because of its enhanced features in processing sequential data (Lipton et al., 

2015).  

Compared to Convolution Neural Network (CNN), RNN can handle and model sequence 

data (Graves et al., 2006). Simply put, RNN helps predict what comes next in one thing 

following another. RNN architecture applies to the predictive model for process monitoring 

because RNN can learn order dependence in the input sequence. In other words, RNN can 

encode information from all the events in previous steps so that it is proper to construct the 

predictive model for the next actions in the clinical documentation process. However, RNN has a 

fatal challenge of the vanishing gradient problem which does not capture long-term dependencies 

in sequences. To alleviate, there have been many alternative approaches with modified RNN, 

such as LSTM, which utilizes forget gate to complement short-term memory and vanishing 

gradient of the RNN (Gers et al., 1999; Hochreiter et al., 2001). 

In the business process management (BPM) discipline, studies show how deep learning 

techniques allow us to predict the next events in the business process (Becker & Intoyoad, 2017; 
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Camargo et al., 2019; Tax et al., 2017; Tello-Leal et al., 2018). RNN, especially the LSTM 

network, is frequently used for business process monitoring because it has been developed to 

deal with sequential data (Gers et al., 1999; Gers et al., 2002). Using the LSTM network, 

numerous studies propose approaches for predictive business process monitoring (Di 

Francescomarino et al., 2017; Evermann et al., 2017; Tello-Leal et al., 2018). For example, Tax 

et al. (2017) model a predictive process monitoring function. This approach predicts the next 

activity and its timestamp based on the event logs. Mehdiyev et al. (2020) propose a multi-stage 

business process prediction model for a loan application process and show the improvement of 

the prediction performance for rare case events.  

Previous studies used a history of events and its related information to predict the next 

event, but few studies focus on how contextual information influences the prediction level. 
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TABLE 3.1. REPRESENTATIVE PROCESS PREDICTIVE MODELS 

Authors Prediction Object Predictive 
Model Dataset Inputs 

van Dongen et 
al. (2008) Cycle Time prediction 

Non-
parametric 
Regression 

bezwaar WOZ Occurrences of events, case 
attributes, duration  

Pravilovic et al. 
(2013) Next event log and its attributes Predictive 

clustering trees 

Event logs in 
Process Mining 
book 

Events, resource, lifecycle, time  

Breuker et al. 
(2016) Next event RegPFA 

predictor 
2012, 2013 BPI 
challenges Events 

Choi et al. 
(2016) 

Next Clinical Events (Diagnosis 
and Medication Categories) LSTM Historical HER data Diagnosis, Medication codes, and 

procedure codes 
Evermann et al. 
(2016, 2017) 

Next event with resources or 
organizational group in a process LSTM 2012, 2013 BPI 

challenges 
Events, event life cycle, resource 
name, Organizational Group 

(Tax et al., 
2017) Next event and its timestamp LSTM Helpdesk, 2012 BPI 

challenge Events, timestamp 

Tello-Leal et al. 
(2018) 

Next activity in manufacturing 
process LSTM Executed production 

process data  Events, resources, time-stamp 

Mehdiyev et al. 
(2020) Next activity process LSTM and 

CNN 
Helpdesk, 2012, 
2013 BPI challenge 

Events as n-gram, organizational 
information 
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Process predictive models from previous studies generally have high accuracy (0.6-0.8) 

without consideration of contextual factors. If I use the suggested models in Table 3.1 for 

prediction, the high performance of the predictive models may be assured. However, previous 

studies train and test the models using the event log data that are extracted from relatively simple 

processes. These processes have a relatively small lexicon and a small number of possible paths. 

In process mining, process complexity correlates with the quality of the automated process 

discovery (Augusto et al., 2022). This implies that simple event logs make it easy to find patterns 

and predict the next events. However, a complex process like clinical documentation has a large 

lexicon and billions of possible paths (Pentland et al., 2020), so it is harder to discover and model 

the process.  

In this study, I show that even with complex event logs, the quality of the predictive 

models can be improved with contextual factors. By adding diverse types of contextual factors, I 

expect to see a more accurate prediction level in complex processes in the neural network. 

Hence, I compare the network based on the sequence of action only and the neural network of 

sequential actions with its contextual factors. 

3.3. Data Description 

For the analysis, I use the EMR audit trail data. It lists sequential touchpoint event logs for the 

clinical documentation process. Each touchpoint refers to an event that occurs when a “specific 

clinic staff” member accesses a “specific patient record” at a “specific workstation”. An event 

represents the execution of specific actions. The event logs include 529 distinct actions of the 

clinical documentation process. Each event includes attributes on event timestamp, role, 

workstation, flu season, system upgrade, and clinic information.   
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TABLE 3.2. SAMPLE OF RAW DATA 

Tstamp Flu 
Season 

VISIT 
ID Workstation_ID Role Action Code 

4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Regharacctcrt 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Rgwkflbegin 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Form_Viewed 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Rgeptbscdm 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Form_Viewed 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Mr_Demographics_Viewed 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Rgeptaddrs 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Reg_Sc_Eptlanguage 
4/2/18 10:49 Non_Flu 1 Bcabrkderm OAS Reg_Sc_Eardemographics 
4/2/18 12:16 Non_Flu 1 Brkdermdt6 Physician Ac_Visit_Navigator 
4/2/18 12:16 Non_Flu 1 Brkdermdt6 Physician Visit_Diagnoses_View 
4/2/18 12:16 Non_Flu 1 Brkdermdt6 Physician Mr_Problem_List_Access 
4/2/18 12:16 Non_Flu 1 Brkdermdt6 Physician Visit_Diagnoses_View 
4/2/18 12:16 Non_Flu 1 Brkdermdt6 Physician Mr_Los_Access 
4/2/18 12:17 Non_Flu 1 Brkdermdt6 Physician Mr_Review_Encounter 
4/2/18 12:17 Non_Flu 1 Brkdermdt6 Physician Mr_Review_Media 
4/2/18 12:17 Non_Flu 1 Brkdermdt6 Physician Mr_Review_Orders 
4/2/18 12:17 Non_Flu 1 Brkdermdt6 Physician Mr_Chart_Review 
4/2/18 12:17 Non_Flu 1 Brkdermdt6 Physician Mr_Chart_Review 

4/2/18 12:23 Non_Flu 2 Brkdermproc Admin 
Tech Mr_Reports 

4/2/18 12:23 Non_Flu 2 Brkdermproc Admin 
Tech Ac_Visit_Navigator 

4/2/18 12:23 Non_Flu 2 Brkdermproc Clinical 
Tech Sec_Flowsheet_View 

4/2/18 12:23 Non_Flu 2 Brkdermproc Clinical 
Tech Ucw_Related_Encounters 

4/2/18 12:23 Non_Flu 2 Brkdermproc Clinical 
Tech Mr_Review_Encounter 

4/2/18 12:23 Non_Flu 2 Brkdermproc Clinical 
Tech Mr_Review_Orders 

4/2/18 12:23 Non_Flu 2 Brkdermproc Clinical 
Tech Mr_Chart_Review 

4/2/18 12:23 Non_Flu 3 Brkdermproc Nurse Mr_Reports 
4/2/18 12:28 Non_Flu 3 Brkdermproc Nurse Mr_Reports 
4/2/18 12:33 Non_Flu 3 Brkdermproc Nurse Mr_Reports 
4/2/18 12:38 Non_Flu 3 Brkdermproc Nurse Mr_Reports 
…  … … …. … 

 

Table 3.2 shows a sample subset of raw data for the clinical documentation process. The 

raw dataset consists of a list of actions with its specific attributes as described, but the data shape 
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needs to be processed to analyze. Thus, prior to analysis, I conduct data pre-processing by 

transforming data from individual action levels to consecutive actions with contextual factors 

(Table 3.3). Each of the rows in Table 3.3 shows a series of actions that are performed at each 

touchpoint (Visit ID + Role + Workstation) with the contextual information. 

TABLE 3.3. EXAMPLE OF TOUCHPOINTS  
Visit  
ID Role Workstation Diagnosis 

Group 
Flu 
Season Action 

1 Clinical_Tech Bcabrkderm Uncertain 
Neoplasm No_flu As_Appt_Desk 

1 Physician Brkdermproc1 Actinic 
Keratosis No_flu Mr_Review_Encounter, 

Mr_Chart_Review_Viewed… 

1 Clinical_Tech Haikugenericw Seborrheic 
Keratosis No_flu Rgwkflbegin, Form_Viewed, 

Rgeptbscdm… 

2 Clinical_Tech Brkdermproc1 Dermatitis Flu Mr_Reports, Mr_Synopsis, 
Ac_Visit_Navigator….. 

2 Clinical_Tech Clisup Rosacea Flu As_Appt_Desk 

2 Clinical_Tech Dermfromisdt5 Psoriasis Flu Mr_Reports, Mr_Reports, 
Sec_Flowsheet_View…. 

2 Physician Dermfromisdt5 Nevi Flu Ac_Visit_Navigator, 
Ucw_Related_Encounters…. 

3 Physician Bcabrkderm Nevi No_flu Ac_Visit_Navigator, 
Sec_Flowsheet _Report 

… … … … … … 

 

Table 3.4 summarizes the characteristics of attributes for this study. The number of 

identified roles and workstations is 47 and 1,343. In this essay, I use only categorical contextual 

factors for the comparison.   
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TABLE 3.4. VARIABLE DESCRIPTION 

Variable Name Variable Type # of Values 
(Mean for Numeric) 

Actions Categorical 529 
Role Categorical 47 

Workstation Categorical 1,343 
Diagnosis Group Categorical 160 

Clinic Categorical 12 
Flu Season Dummies (Categorical)  

System Upgrade Dummies (Categorical)  
 

In the next stage, I eliminate consecutively duplicated actions because I regard them as 

un-informative. After removing the duplicates, I list all the events in one column for each 

touchpoint and create data points that consist of five consecutive sequential actions3. For 

example, if an event chunk contains six sequential actions e = [A,B,C,D,E,F,G], it generates 

three observations [A,B,C,D,E], [B,C,D,E,F] and [C,D,E,F,G], which consist of four input 

variables and one target variable.  

Next, I add contextual factors as additional attributes to train the model. To add the 

factors to the model, I set the contextual factors before the sequence of actions (e.g., [factor 1, 

factor 2, …, A,B,C,D,E]). In this way, the context sets the stage for each sequence of actions.  

 Next, I encode the input sequences. This step is required to convert the character strings, the 

specific actions in this study, into a unique integer. For the encoding process, using tokenizer, I 

find all the unique values from the entire dataset and convert them into a numeric feature. Based 

on the dataset of sequential event logs, I split the inputs into two types; training and target 

variable. The first four actions and contextual factors are regarded as input datasets to train the 

 
3 Predicting sequence within touchpoints represents an important simplification in the analysis. If we tried to predict 
the sequence between touchpoints, we would need to include contextual factors for each action, so there would be a 
combinatoric explosion in the size of the lexicon (529 actions * 47 roles * 1343 workstations…) It would be 
impossible to train a model of this complexity with the available data. 



106 
 

model and the last action is set as the expected value that corresponds to input variables. In other 

words, the model is trained using the training dataset to predict the target variable.  

3.4. Model 

3.4.1. Long Short-Term Memory Network 

A recurrent neural network (RNN) is a class of deep artificial neural networks based on a 

sequential process (Baziotis et al., 2017). The state output at each time consists of the hidden 

state as well as the old state with the outputs of previous steps as follows. 

(1)    ℎ! = #"(ℎ!#$, &!) 

In eq (1), ℎ! denotes a new state at time t founded on a function with parameters W and 

&!, an input vector at time t. The model learns the name of the actions embedding at each step 

and only passes useful information as weighting vector W makes a prediction on the label 

assigned to the current action name.  

However, a standard RNN has a vanishing gradient issue over long sequences that makes 

the RNN difficult to train (Pascanu et al., 2013). Applying RNN to text analysis requires 

overcoming this issue because long sentences/lists of the words are loaded as the dataset. To 

overcome the gradient issue, Long Short-Term Memory (LSTM) network is used by including 

three types of gates (input gate, output gate, and forget gate) and a cell memory state.  

The word vector (a type of action in this study), (%, in a sentence with length N 

(sequence of actions in this study) is generated from word embeddings as dense vector 

representations of words (Nakov et al., 2019). Each LSTM unit contains an input gate )!, a forget 

gate #!, an output gate *!, a memory cell +!, a hidden state ℎ!, and the word embedding input, &!, 

at time step t.  
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(2)     , = -ℎ!#$&!
. 

(3)    #! = /(0& ∙ , + 3&	) 

(4)    )! = /(0' ∙ , + 3' 	) 

(5)    *! = /(0( ∙ , + 3(	) 

(6)    5! = 678ℎ(0) ∙ , + 3) 	) 

(7)    +! = #! ∘ +!#$ + )! ∘ 5!	 

(8)                  ℎ! = *! ∘ tanh	(+!) 

Each gate consists of the weighted matrices (0' ,0& ,0() and biases of LSTM (3' , 3& , 3() 

in the training process. The weighted matrices and biases parameterize the transformations of 

three gates with the embedding inputs respectively (Xu et al., 2016). / is the sigmoid function 

and the operator ∘ denotes element-wise multiplication.  

In LSTM, each gate plays important role in the process. In the input gate, I first decide 

how to update each unit. Next, forget gate controls the extent to which the previously stored 

information in the memory cell is forgotten. Lastly, the output gate controls the exposure of the 

internal memory state. Through this process, the hidden state captures and stores both past and 

future required information. For the prediction model, I use LSTM and train the sequence of 

actions list in clinics.  

For the analysis, I implement parameters of LSTM network using Keras framework, 

since it provides the required functionalities to model LSTM network (Keras-team, 2019). First, I 

set the embedding dimensionality as 529, the number of unique actions in the clinical 

documentation process, and the length for the sequence set as 5, implying four sequential actions 

for training and one for predicted action. The basic model is trained for 50 epochs in batches of 

size 128. To encode input vectors to the hidden layer, I adopt the Rectified Linear unit (ReLU) as 

an encoding activation function (Ketkar & Santana, 2017). Compared to other activation 
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functions, ReLU, as one of the most popular activation functions, has several advantages in 

terms of computation time and efficiency of gradient propagation (Xu et al., 2016). The ReLU 

activation function is defined as follows; 

(9)    ℎ = #*+,-(&) = max(0, &) 																			ℎ ∈ [0,1]	 

This activation function produces a linear function only if & ≥ 0, otherwise it outputs 

only 0. For the classification, I employ Softmax activation function as last layer. Softmax is 

generally used for a multi-class classification (Mehdiyev et al., 2020). To estimate a discrete 

probability of class i, Softmax layer is defined as: 

(10)    F(G = )|&) = ./0("!2)
∑ ./0	("!2)!

 

where w is a weighted parameter and x indicates the input vector. Based on the 

probability distribution of classes, a class with the highest probability of prediction is selected. 

Table 3.5 shows the hyperparameter configurations for this study.  

TABLE 3.5. CONFIGURATION PARAMETERS OF THE LSTM NETWORK 
Parameters Value 

Sequence length of actions for prediction 4 
Embedding dimension 50 

Epoch 50 
Batch size 128 
Activation ReLU 

Activation for classification Softmax 
Loss Categorical_Crossentropy 
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3.5. Results 

Table 3.6 summarizes the overall performance for the next action prediction task in the clinical 

documentation process. I use weighted average accuracy, precision, recall, and F-score value for 

the comparison. Overall, the suggested approach with contextual factors has better performance 

than the model with a sequence of action only, and each of the factors has different impacts on 

the prediction level. The initial result of the study shows the capacity to predict the next action in 

the clinical documentation process. I have tested four different types of models; 1) the sequence 

of actions model, 2) the model with the internal contextual factors, 3) the model with the external 

contextual factors, and 4) the model considering all the contextual factors.  

TABLE 3.6. RESULTS FROM PROPOSED APPROACH 
  Accuracy Precision Recall F-score 
No Contextual 
Factor 

     

 One Action 0.283 0.26 0.04 0.05 
 Two Actions 0.373 0.57 0.14 0.20 
 Three Actions 0.423 0.61 0.22 0.30 
 Four Actions 0.454 0.66 0.26 0.36 
Internal Contextual 
Factors Four Actions +      

 Role 0.461 0.68 0.27 0.37 
 Workstation 0.471 0.69 0.29 0.38 
 Role + Workstation  0.478 0.69 0.30 0.40 
External Contextual 
Factors Four Actions +     

 Diagnosis Group 0.458 0.68 0.27 0.36 
 Flu Season 0.455 0.67 0.29 0.36 
 System Upgrade 0.469 0.67 0.29 0.38 
 Diagnosis Group +  

Flu Season +  
System Upgrade 

0.475 0.69 0.29 0.39 

All Contextual  
Factors 

 0.494 0.70 0.32 0.42 

 

In the first model, I predict the next action only based on the sequence of actions for the 

base model. To examine the effects of sequence of actions, I run the models including different 
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number of actions. For the internal contextual factors, I add a role and workstation as those 

immediate contexts are the attributes that directly facilitate the execution of process (Rosemann 

et al., 2008). Next, I use the diagnosis group of patients, flu seasons, and system upgrade as 

external contextual-specific covariates since they are impactful factors on the process, but 

beyond the controllable boundary of the organization. Lastly, I include all the factors for the 

prediction to see the extent to which contextual factors affect the prediction level. 

The average validation accuracy for all learning rates of each model shows that as I 

assumed, the action is the most important factor for the process predictive model. However, the 

margin of increase is reduced when more action sequences are added, so I added the contextual 

factors as additional attributes in the model. The internal contextual factors generally have 

slightly higher predictive power than the external factors (0.478 vs. 0.475). Specifically, the 

workstation works better than the role (0.471 vs. 0.461), but the combination of role and 

workstation does not show much difference with workstation (0.476 vs. 0.471). This result 

implies that workstation as location (where) is more informative because clinicians perform 

specific tasks at a specific location. Although the role as the actor provides information on what 

role each clinician performs, the location information could provide much more detailed 

information.  

In case of the external factors, whereas most of the factors do not boost accuracy a lot 

(Diagnosis group = 0.458 and flu season = 0.455, system upgrade does increase accuracy as 

much as workstation (0.469). This makes sense because the system upgrade changes the lexicon 

of the actions. After the system upgrade, some of the actions are no longer available and new 

actions are added. These new and removed actions could create new habits for the system use. 

Thus, the system upgrade attribute is informative to predict the next events, as it infers that new 
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pattern of actions are created or some paths are removed from the process. In case of diagnosis 

group and flu season, in contrast, there is no dramatic change in accuracy for both models. I 

expected that the system usage patterns of the users might change depending on whether or not it 

is the flu season or patients’ diagnosis, but they don’t seem to be very informative. These results 

show that although the internal contextual factors generally boost accuracy more, there are still 

important external factors that may affect the quality of the process predictive model.  

3.6. Discussion 

This essay represents a first step toward revealing the importance of contextual factors in process 

prediction. I use RNN to model the observed sequence of actions and their contextual factors 

together in the process. Specifically, I use Long Short-Term Memory Networks (LSTM) to find 

recognizable patterns and predict events (Gers et al., 2002; Tello-Leal et al., 2018).  

The main contribution of this study concerns the idea of contextual information on process 

prediction. There is no doubt that the most essential attribute of the predictive process model is 

the sequence of actions. However, adding more actions does not fully reflect the structure of 

complex process because there is no consideration of context. The result of this study shows that 

the internal contextual factors increase the prediction level more than the external contextual 

factors.  

From the internal contextual factor, the influence of the workstation is very interesting. In 

the EPIC EMR system, every workstation provides the same function for users. So, the 

workstations can be regarded as identical from the point of view of the users. However, every 

workstation is located in a different place, so the workstation indicates the location of the work 

(e.g., in the examination room, at the nurses’ station in the hall, in the front office, etc.). In this 

perspective, the effect of the workstation may not be surprising because the physical 
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environment of a hospital could determine its influence. A busy hallway is different from a 

private office. Of course, these contextual differences are not generally conceptualized as 

relevant to process execution, but this study suggests that they can be. 

The system upgrade, on the other hand, is an important external factor that increases the 

prediction accuracy. This variable provides a simple indicator of whether the system is upgraded 

when a patient visits a clinic, but it seems to play an important role in the prediction model. This 

implies that the patterns of the system use may change when the system is upgraded. Habitual 

patterns of actions can be changed depending on the system the users use, and it affects the 

prediction level considerably. This points out that although the external contextual factors are not 

controllable as much as the internal factors are, they still need to be considered when it comes to 

predicting the next events in process.  

This study extends our understanding of the entangled relationship between contextual 

factors (features of nodes) and actions (nodes) and the extent to which the factors could impact 

predicting the next actions in EMR settings. Currently, the clinical process has been more 

complex because of entangled relationships among numerous stakeholders and new 

technologies. Complexity of the process influences the quality of the model, so the 

understanding of the relationship could provide clues to disentangling complex relationships and 

finding recognizable patterns (Augusto et al., 2022). The recognizable patterns are useful for 

organizing actions in the clinical documentation process.   

My results show relatively less accuracy and precision than studies that use simpler event 

logs for training and testing (e.g., the studies in Table 1). However, the purpose of this essay is 

different from other process predictive frameworks in two ways. First, my analysis shows that 

the suggested approach can be applied and worked in real process datasets that are extremely 
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complex. Second, I extend the idea of a process predictive model based on LSTM. To the best of 

my knowledge, prior studies suggest a predictive model based on the previous events only or 

with a few contextual factors, but there are few studies to see the effects of contextual factors. 

The main goal of the study is to see how the contextual factors affect the prediction, rather than 

introducing a higher performance prediction model using LSTM.  

Another contribution of this study is its practical implication in the clinical 

documentation process in terms of text suggestion. Currently, clinical documentation is regarded 

as a process that requires considerable time consumption (Friedman et al., 2004; Lin et al., 

2018). Predicting the next actions suggests what comes next and it helps input the documentation 

process faster. The application of my approach with contextual factors could reduce the number 

of suggested actions and increase human accuracy. In other words, using suggested actions in the 

documentation process could even reduce the chance that clinical practitioners may input wrong 

information by mistake. I assume that considering contextual factors in the prediction model for 

the process could help the interdependent organization process be efficient and effective.  

3.7. Conclusion 

This essay uses a deep learning approach to predict the next actions in the clinical documentation 

process and investigates the effectiveness of contextual factors in predicting events. To examine 

the effects of contextual factors on predictive performance, I apply the deep learning model 

using LSTM recurrent neural networks and compare different models with different 

combinations of attributes. This paper shows how the LSTM-based approach performs for 

predicting the sequence of actions in the clinical documentation process. As expected, the results 

show that context can improve predictive models. In the case of outpatient medical clinics, the 

strongest improvement in accuracy comes from two attributes: 1) the workstation (location) 
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where work is performed and 2) whether or not the system has been upgraded. This result 

implies positive potential to demonstrate the significance of contextual factors in the predictive 

model for the clinical documentation process.  
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