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ABSTRACT

NOVEL METHODS FOR FUNCTIONAL DATA ANALYSIS WITH APPLICATIONS TO
NEUROIMAGING STUDIES

By

Pratim Guha Niyogi

In recent years, there has been explosive growth in different neuroimaging studies such as functional

magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI). The data generated from

such studies are often complex structured which are collected for different individuals, via various

time-points and across various modalities, thus paving the way for interesting problems in statistical

methodology for analysis of such data. In this dissertation, some efficient methodologies are

proposed with considerable development which have nice statistical properties and can be useful

not only in neuroimaging but also in other scientific domains.

A brief overview of the dissertation is provided in Chapter 1 and in particular, different kinds

of data structures that are commonly used in consecutive chapters are described. Some useful

mathematical results frequently used in the theoretical derivations in various chapters are also

provided. Moreover, we raise some fundamental questions that arise due to some specific data

structures with applications in neuroimaging and answer these questions in subsequent chapters.

In Chapter 2, we consider the problem of estimation of coefficients in constant linear effect

models for semi-parametric functional regression with functional response, where each response

curve is decomposed into the overall mean function indexed by a covariate function with constant

regression parameters and random error process. We provide an alternative semi-parametric

solution to estimate the parameters using quadratic inference approach by estimating bases functions

non-parametrically. Therefore, the proposed method can be easily implemented without assuming

any working correlation structure. Moreover, we achieve a parametric
√
𝑛-convergence rate of the

proposed estimator under the proper choice of bandwidth and establish its asymptotic normality.

A multi-step estimation procedure to simultaneously estimate the varying-coefficient functions

using a local linear generalized method of moments (GMM) based on continuous moment conditions



is developed in Chapter 3 under heteroskedasticity of unknown form. To incorporate spatial

dependence, the continuous moment conditions are first projected onto eigen-functions and then

combined by weighted eigen-values. This approach solves the challenges of using an inverse

covariance operator directly. We propose an optimal instrumental variable that minimizes the

asymptotic variance function among the class of all local linear GMM estimators, and it is found

to outperform the initial estimates that do not incorporate spatial dependence.

Neuroimaging data are increasingly being combined with other non-imaging modalities, such

as behavioral and genetic data. The data structure of many of these modalities can be expressed

as time-varying multidimensional arrays (tensors), collected at different time-points on multiple

subjects. In Chapter 4, we consider a new approach to study neural correlates in the presence of

tensor-valued brain images and tensor-valued predictors, where both data types are collected over

the same set of time-points. We propose a time-varying tensor regression model with an inherent

structural composition of responses and covariates. This development is a non-trivial extension

of function-on-function concurrent linear models for complex and large structural data where the

inherent structures are preserved.

Through extensive simulation studies and real-data analyses, we demonstrate the opportunities

and advantages of the proposed methods.
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CHAPTER 1

PROLOGUE

In this chapter, we provide a brief overview of the relevant topics and state the problems that we

are going to present in the following chapters.

1.1 Big data analysis

The advances in scientific research and technological developments have led to the collection and

storage of huge amounts of data which are not only voluminous but also complex in structure.

These are commonly called “Big data”. Big data give rise to statistical problems in natural

science, engineering, social sciences, and humanities. The analysis of such data having massive

volumes and complex structures for decision-making and scientific discovery is a challenge faced

by statisticians and computer scientists, which requires innovative statistical and computational

methods, sophisticated statistical modelling, and theoretical results. Collectively, this is known

as “Data science” which has nowadays become a multi-disciplinary field involving knowledge

from various disciplines for developing new methodologies for various kinds of data: low or high

dimensional; structured, unstructured, or semi-structured. In recent decades, big data has become a

significant part of scientific interest, where images, videos, texts, and other objects can be considered

as a form of massive data. Therefore, the statistician plays an important role in proposing new

methodologies for discovering information from available big data. In the following subsections,

we discuss the different data structures that lead to different methodologies. In Sub-section 1.1.1

we discuss functional data analysis, and in Sub-section 1.1.2 we discuss analysis of a complex

structured multidimensional array (also known as tensor data analysis).

1.1.1 Functional data analysis

This subsection is dedicated to a discussion on functional data analysis (FDA) and its relevance

in the dissertation. Some relevant review articles include Morris (2015); Müller (2016); Wang
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et al. (2016). Owing to the types of data generated in various scientific research in the fields

of biology, audiology, environmental sciences, earth sciences, and economics (to name a few),

there was a need for a statistical methodology that could analyze data which are observed as

functions varying over time, space, or other continuum domains. This led to the development of

functional data analysis. Although the term “functional data analysis” was coined by Jim Ramsey

in the famous 1982 paper (Ramsay, 1982), its origin dates back to the late 1940s in the Ph.D.

theses of Kari Karhunen (Karhunen, 1946) and Ulf Grenander (Grenander, 1950). In their seminal

works, Karhunen and Grenander respectively, discussed the decomposition of square integrable

continuous-time stochastic processes into series expansions to obtain representations in a Hilbert

space. The idea to expand random curves appeared in Rao (1958) and Tucker (1958) around the

same time. In the last three decades, FDA gained considerable momentum in statistics literature, of

which some significant works are Ramsay and Silverman (2005, 2007); Ferraty and Vieu (2006);

Horváth and Kokoszka (2012); Zhang (2013); Hsing and Eubank (2015) and some notable survey

articles are Morris (2015); Wang et al. (2016); Greven and Scheipl (2017); Li et al. (2022). The

main feature that makes functional data distinct from other types of data, especially those having

a large 𝑝 (number of parameters) and small 𝑛 (sample size) framework, is that the functional data

are infinite-dimensional in nature, since the underlying statistical quantity of the measurement is

a curve or a surface over a continuum domain. Thus, the commonly used classical multivariate

statistical methods (Anderson et al., 1958) do not suffice for these types of analyses. Moreover, in

asymptotic analysis, the space between the function arguments is assumed to approach zero, hence

making the number of arguments tend to infinity. This is essentially the large 𝑝 (rather 𝑝𝑛, where

the number of arguments of the function is 𝑝𝑛 for the sample size 𝑛) problem in high-dimensional

statistics. In fact, this dimensionality issue is a blessing in disguise because we end up with more

data, with an extra cost being paid by the smoothness assumption on some standard spaces. The

smoothness assumption tells us that the information from measurements at neighboring arguments

can be pooled, thereby overcoming the curse of dimensionality.

Some significant research maneuvering the use of FDA include
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• Functional generalized linear models (Müller and Stadtmüller, 2005)

• Functional sliced inverse regression (Ferré and Yao, 2005)

• Multi-level functional data analysis (Crainiceanu et al., 2009; Huang et al., 2014; Xu et al.,

2018)

• Functional time series (Hörmann and Kokoszka, 2010; Aue et al., 2015; Kowal et al., 2017;

van Delft and Eichler, 2018)

• Spatially dependent functional data (Zhu et al., 2014; Kuenzer et al., 2021)

• Spatio-temporal point process (Li and Guan, 2014; Goldsmith et al., 2015)

• Longitudinal functional data analysis (Goldsmith et al., 2012; Chen and Müller, 2012; Park

and Staicu, 2015; Staicu et al., 2020)

In FDA, continuous functional data are available at every time-point or can at least be evaluated

for some time-points. In practice, however, data are observed in discrete domains such as time-

points, with or without measurement errors. For the demonstration of the theoretical results,

without loss of generality, it suffices to assume that the functional data are observed continuously

without measurement error. Note that the theory behind the estimation can be different for different

measurement schedules/ sampling plans such as densely or sparsely observing data over time-points.

In most cases, the analyses of sparse and dense functional data are different, although sparse and

dense data are asymptotic concepts and are difficult to use in practice. While for dense functional

data, one can smooth each of the curves separately and then proceed with further estimation and

inference procedures based on pre-smoothed curves (Castro et al., 1986; Rice and Silverman, 1991;

Zhang and Chen, 2007), for sparse functional data, the pre-smoothing step is not required (Yao

et al., 2005). Various smoothing techniques are available in non-parametric literature to deal with

functional data. The different types of non-parametric smoothing techniques commonly used in

the literature are
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• Spline smoothing (Rice and Silverman, 1991; Cai and Hall, 2006)

• B-spline (Cardot et al., 1999; James et al., 2000; Rice and Wu, 2001)

• Penalized splines (Ruppert et al., 2003; Yao and Lee, 2006)

• Local polynomial smoothing (Fan and Gijbels, 1996; Zhang and Chen, 2007; Yao and Li,

2013)

Principal component analysis (PCA) in FDA is a generalization of the classical high-dimensional

statistics for finite-dimensional matrix-valued observations to the case of infinite-dimensional con-

tinuum domain, and it is termed as functional principal component analysis (FPCA). The main

objective of FPCA is to express the underlying stochastic processes as a truncated sum of a count-

able sequence of uncorrelated random variables, thereby reducing the problem from infinite into

that of finite dimension, so that the tools of multivariate data analysis can be applied to the resulting

random vector of scores. FPCA based on spline smoothing was studied in James et al. (2000);

Zhou et al. (2008), whereas, FPCA based on kernel were discussed in Hall et al. (2006); Müller

and Yao (2010); Li and Hsing (2010). Asymptotic theories based on kernel smoothing (a.k.a.

local polynomial smoothing) are more profound in the literature. For fully observed dense data,

Hall and Hosseini-Nasab (2009) derived a stochastic expansion of estimators of eigen-values and

eigen-functions based on the principles of operator theory, the statistical implementations of which

were provided in Hall and Hosseini-Nasab (2006). For sparse functional data, FPCA approach was

studied in Yao et al. (2005); Liu and Müller (2009). Hall et al. (2006) discussed the theoretical

properties of FPCA based on local linear smoother. In one of the seminal works in Li and Hsing

(2010), an estimation procedure was discussed for all types of sampling strategies. It was found that

in some specific ranges for the rate of the number of functional points, for dense sampling strategy,

pre-smoothing was found to be asymptotically negligible, and other important commonly used

statistics such as mean, covariance, and eigen-components could be estimated using the parametric

rate. On the other hand, for sparse functional data, those statistics could only be estimated with

a non-parametric convergence rate. It was shown that the estimation of the eigen-values was not
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as sensitive to the sampling design as the estimation of the eigen-functions. This was the first

time where a phase transition was observed. Zhang and Wang (2016) investigated local linear

estimation of mean and covariance functions with general weighting schemes, where equal weight

per observation and equal weight per subject were two special cases. All works mentioned till now

were based on univariate functional data. Multivariate FPCA was discussed in Viviani et al. (2005);

Wang (2008); Berrendero et al. (2011); Chiou et al. (2014); Happ and Greven (2018) among many

others.

Regression analysis for FDA is one of the most active research domains for the analysis of

functional data wherein the modelling of the data depends on the type of variables. For example,

• when the response is functional, but the covariates are vectors, the approach is called function-

on-scalar regression (Zhu et al., 2014; Chen et al., 2019).

• when the response is vector valued, while the covariate is functional, this approach is called

scalar-on-function regression (Cardot et al., 1999, 2003; Müller and Stadtmüller, 2005; Cai

and Hall, 2006; Hall et al., 2007; Li and Hsing, 2007; Goldsmith et al., 2011; Kato, 2012).

In this approach, the covariates and the varying coefficient are expressed as the same set of

orthogonal functional bases.

• when the response and covariates are both functional, the approach is called function-on-

function regression. It was introduced by (Ramsay and Dalzell, 1991). In this regression

set-up, a varying coefficient model (Hastie and Tibshirani, 1993) was implemented. These

regression models are often referred to as concurrent linear models. Recent literature for

functional concurrent linear models include Faraway (1997); Zhang and Chen (2007); Zhang

et al. (2010); Wang et al. (2016); Fang et al. (2020). Other techniques to estimate the

regression function can be found in Hoover et al. (1998); He et al. (2003); Yao et al. (2005);

He et al. (2018).

In this dissertation, in Chapter 3, we consider the first case where the response is functional but

the covariates are vectors and we consider the third case where the covariate and response both are
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functional in Chapters 2 and 4.

1.1.2 Tensor data analysis

In many scientific researches, for instance, in areas of imaging studies, network sciences, economics,

computer technologies, genetics, recommendation systems, etc. data appear structured. Such high-

dimensional as well as multi-dimensional structures have raised various challenges to their analysis.

Thus, multidimensional arrays, popularly known as “tensors”, came as a savior for understanding

the structure of these complex data. The tensor as a generalization of matrices appeared for the

first time in the literature during 1928 (Hitchcock, 1928) and was used to represent and store data

efficiently. Ever since then, its use has seen a boom in the scientific community. Some significant

research surveys can be found in Ji et al. (2019); Bi et al. (2021). Sub-section 1.3.1 discusses some

basic notation and properties of the tensor. We will consider such kind of data in chapter 4 in more

detail.

1.2 Some applications

In December 2, 1956, eminent statistician Professor P. C. Mahalanobis emphasized that

Statistics is the universal tool of inductive inference, research in natural and social

sciences, and technological applications. Statistics, therefore, must have a clearly

defined purpose, either in the pursuit of knowledge or in the promotion of human

welfare.

In this dissertation, some advanced methodologies driven by their applications are proposed for

two types of neuroimaging studies.

1.2.1 (Functional) magnetic resonance imaging

A remarkable research area developed in magnetic resonance imaging (MRI) for studying the

structure and functioning of the human brain in the years following 1977 after the first MRI scanner
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was developed. In these studies, the differences in magnetic properties of certain molecules

(especially water molecules) in the brain are measured by using the fact that their density differs in

different media like air, white matter, gray matter, blood vessels, and tumors. Functional MRI, also

known as fMRI, has recently gained popularity as a pre-surgical procedure to map the functional

architecture of a subject’s brain without exciting the tissues associated with some critical skills

like vision, hearing, etc. Occurrence of neural activity in a certain portion of the brain results in

increased metabolic activity, causing a rush of oxygen-carrying hemoglobin in that particular area,

whereas immediately following the end of neural activity, the oxygen level drops. These changes

in the oxygen levels give rise to a measure called the blood oxygen level dependent (BOLD) signal,

which is the ratio between oxygenated and de-oxygenated hemoglobin in blood. The objective of

fMRI studies is to observe the neural activity of the brain in instantaneous time with high spatial

resolution by detecting changes in the BOLD signal. Typically, the BOLD signal happens to rise

well above the baseline with a peak at around 6 seconds following a neural activity, and decays

back to baseline over a period of 20 seconds. Due to the observable nature of neural activities,

we can use fMRI data to make various inferences if we can assess the relationship between neural

activity and the BOLD response.

In fMRI data, images are collected over time; therefore, in order to maintain high temporal

resolution, spatial resolution is sacrificed. High-resolution structural images are used to get back the

spatial resolution from the fMRI data, and the spatial coordinates are used to identify the activation

regions during the fMRI scans by examining the aligned structural coordinates. The times between

two successive scans are called repetition time (TR). Subjects are aligned in the scanner which

is assumed to be a three-dimensional coordinate system with coordinates (𝑋,𝑌, 𝑍) to the bore of

the magnet, where the 𝑍 direction is downward to the bore (from feet to head) and the 𝑋 and 𝑌

directions refer to the plane which is perpendicular to the 𝑍 axis. A schematic diagram of the MRI

scanner is provided in Figure 1.1. The brain is naturally a continuous medium due to the existence

of neurons in almost all coordinates, but can be made discrete by dividing the brain into a set of

cubes. These cubes are commonly called voxels. A typical MRI scan of a healthy human brain is
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Figure 1.1 A schematic diagram of an MRI scanner.

provided in Figure 1.2.

fMRI data consist of spatial and temporal correlations; therefore, we need sophisticated tools

to analyze them. For example, brain tissue in neighboring voxels is supplied by the same kind of

vasculature; as a result, a large response in one voxel in a neighborhood set increases the probability

that the neighboring voxels consist of a large response (spatial dependency) or, under the same

set of stimuli over time, the brain activation is expected to be similar. Moreover, fMRI data can

often be corrupted with noise arising due to the thermal motion of electrons inside the bore of the

magnet, the brain itself, and due to other physiological reasons. In order to reduce such inherent

unaccounted and uncontrolled errors due to head motion scanner drift, a series of prepossessing

is performed (see Appendix A for more details). The main objective of fMRI data analysis is to

identify regions of the brain that show task-related activity. For more information on fMRI data

analysis, please refer to Huettel et al. (2004); Lindquist (2008); Ashby (2011); Wager and Lindquist

(2015).
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Figure 1.2 A typical example of MRI scan of healthy human brain. Source: Long et al. (2012)

1.2.2 Diffusion tensor imaging

Diffusion tensor imaging, popularly known as DTI measures the restricted diffusion of water

molecules in the brain tissues in order to produce neural tract images. When water molecules

are located in fiber tracts, their movement is restricted and they are more likely to be anisotropic;

whereas those molecules in the rest of brain are less restricted in their movement, and are therefore

isotropic. Diffusion causes water molecules to diverge from a central point and gradually reach the

surface of an ellipsoid when the medium is anisotropic. In an isotropic medium, water molecules

move out at the same rate in all directions. Thus, using the laws of physics (such as attenuation),

the signal of an MRI voxel can be converted into numerical measures of diffusion, which are taken

care of by physicians. Thus, each brain voxel has one or more pairs of parameters, such as the
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rate of diffusion, direction of diffusion etc. The properties of each voxel of a single DTI image are

usually calculated by vector or higher-order multi-dimensional arrays.

Consider an ellipsoid tensor in a three-dimensional Cartesian grid, where there exist three

projections of the given ellipsoid into three different axes. These projections provide apparent

diffusion coefficient (ADC) and are denoted as ADC𝑥 , ADC𝑦 and ADC𝑧 corresponding to 𝑋 , 𝑌

and 𝑍 axes respectively. Therefore, the average diffusivity in a given voxel is defied by ADC =

(ADC𝑥 +ADC𝑦 +ADC𝑧)/3. Note that ellipsoid has three axes, one principle axis (longest) and two

small axes passing through center, where the direction and length of these axes are eigen-vectors

and eigenvalues, respectively, in the context of tensor algebra. The diffusion along the principle axis

is termed as axial diffusivity (denoted as 𝐿1) and the average diffusivity along two other minor axes

is termed as radial diffusivity (denoted as 𝐿23 where 𝐿23 = (𝐿2 + 𝐿3)/2, 𝐿2 and 𝐿3 are eigen-values

corresponding to minor axes). The mean diffusivity is defined as MD = (𝐿1 + 𝐿2 + 𝐿3)/3. The

degree of anisotropy of a diffusion process is termed as fractional anisotropy (FA), which is a scaled

measure that belongs to the interval [0, 1]. The quantity FA takes the value zero when diffusion is

isotropic (i.e., unrestricted in all directions) and takes the value one when diffusion occurs only on

one and is fully restricted in other directions. FA can be calculated using the following formula.

FA =

√︂
3
2

{
(𝐿1 −MD)2 + (𝐿2 −MD)2 + (𝐿3 −MD)2

}1/2{
𝐿2

1 + 𝐿
2
2 + 𝐿

2
3
}1/2 (1.1)

For more information on DTI, please refer to O’Donnell and Westin (2011); Van Hecke et al.

(2016).

1.3 Mathematical preliminaries

In this section, we introduce some notation and basic mathematical principles that will be used

frequently throughout the dissertation.
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1.3.1 Notations of tensor/matrix object

Tensor is a multidimensional array indexed by 𝐷 many indices. The first-order tensor is a vector

for 𝐷 = 1, second-order tensor is a matrix for 𝐷 = 2 and for 𝐷 > 2, we call the set of objects

higher-order tensors. In the following paragraph, we provide a brief summary of tensors and define

important notation. Interested readers can refer to a survey article by Kolda and Bader (2009) for

more details.

A 𝐷-dimensional tensor is denoted by Sans-serif upper-face letters A ∈ R𝐼1×···×𝐼𝐷 where the

size 𝐼𝑑 along each mode or dimension 𝑑 for 𝑑 = 1, · · · , 𝐷. Therefore, the number of elements

in the tensor A is 𝐼 =
∏𝐷
𝑑=1 𝐼𝑑 and the order of the tensor is the number of dimensions. Here

and henceforth, matrices are denoted by bold-face capital letters (examples: A,B, · · · ), vectors

are written as bold-face lower-case letters (examples: a, b, · · · ) and scalars are presented as Latin

alphabets (𝑎, 𝑏, · · · ). The entry on 𝑖-th row and 𝑗-th column of a matrix A is denoted by (A)𝑖, 𝑗 = 𝑎𝑖 𝑗

and (𝑖1, · · · , 𝑖𝐷)-th entry of a 𝐷 dimensional tensor is denoted as (A)𝑖1,··· ,𝑖𝐷 = 𝑎𝑖1,··· ,𝑖𝐷 . Slices are

two-dimensional sections of the tensor defined by fixing all but two indices and thus become a

𝐼𝑑 × 𝐼𝑑 ′ dimensional matrix. For a 𝐷-way tensor A ∈ R𝐼1×···×𝐼𝐷 with the element 𝑎𝑖1,··· ,𝑖𝐷 at the

position with mode 𝑖𝑑 , 𝑑 = 1, · · · , 𝐷, vectorization operator vec(·) is defined as a vector with length∏𝐷
𝑑=1 𝐼𝑑 which is formed by stacking the nodes of A into a single column vector, i.e.,

vec(A)
[
𝑖1 +

𝐷∑︁
𝑑=2

(
𝑑−1∏
𝑘=1

𝐼𝑘

)
(𝑖𝑑 − 1)

]
= 𝑎𝑖1,··· ,𝑖𝐷 (1.2)

By simplifying, for a matrix A of order 𝐼 × 𝐽, vec(A) = (𝑎1,1, · · · , 𝑎𝐼,1, · · · , 𝑎1,𝐽 , · · · , 𝑎𝐼,𝐽)T.

Similarly to the vectorization operator, one can unfold as 𝑑-mode matricization or unfolding, a

𝐷-array A, to form a matrix A(𝑑) with 𝐼𝑑 rows and
∏
𝑑 ′:𝑑 ′≠𝑑 𝐼𝑑 ′ columns where the element 𝑎𝑖1,··· ,𝑖𝐷

is at the row 𝑖𝑑 and column

{
1 +∑𝐷

𝑑1=1
𝑑1≠𝑑

(𝑖𝑑1 − 1)∏𝑑1−1
𝑑2=1
𝑑2≠𝑑

𝐼𝑑2

}
.
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1.3.2 Different kinds of products

Analogous to the Frobenius norm in a 2D space, the norm of a tensor A is the square root of the

sum of squares of its indices, denoted as

∥A∥F =

√√√ 𝐼1∑︁
𝑖1=1
· · ·

𝐼𝐷∑︁
𝑖𝐷=1

𝑎2
𝑖1,··· ,𝑖𝑑 (1.3)

The scalar product ⟨A,B⟩ of two 𝐷-dimensional tensors with the same size is defined as

⟨A,B⟩ =
∑︁

𝑖1,··· ,𝑖𝐷
𝑏𝑖1,··· ,𝑖𝐷𝑎𝑖1,··· ,𝑖𝐷 (1.4)

Thus, immediately, the Frobenius norm of the tensor A can be expressed as ∥A∥F =
√︁
⟨A,A⟩.

Two tensors A and B are said to be orthogonal if ⟨A,B⟩ = 0. Furthermore, consider the con-

tracted tensor product between two tensors with different mode dimensions. For two tensors A ∈

R𝐼1×···×𝐼𝐾×𝑃1×···×𝑃𝐿 and B ∈ R𝑃1×···×𝑃𝐿×𝑄1×···×𝑄𝑀 , contracted tensor product (Lock, 2018; Raskutti

et al., 2019) is defined as ⟨A,B⟩𝐿 with (𝑖1, · · · , 𝑖𝐾 , 𝑞1, · · · , 𝑞𝑀)-th element
∑
𝑝1,··· ,𝑝𝐿 𝑎𝑖1,··· ,𝑖𝐾 ,𝑝1,··· ,𝑝𝐿

×𝑏𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝐾 . As a special case, ⟨A,B⟩1 = AB where A and B are 𝐼 × 𝑃 and 𝑃 ×𝑄 matrices.

A 𝐷-way tensor A has a rank-1 when it can be written as the outer product of 𝐷 vectors

u(1) , · · · , u(𝐷) of length 𝐼1, · · · , 𝐼𝐾 respectively, i.e.,

A = u(1) ◦ · · · ◦ u(𝐷) (1.5)

where (𝑖1, · · · , 𝑖𝐷)-th element of A is
∏𝐷
𝑑=1 𝑢

(𝑑)
𝑖𝑑

. The Kronecker product of the matrices A ∈ R𝐼×𝐽

and B ∈ R𝐾×𝐿 is denoted by A ⊗ B, an (𝐼𝐾) × (𝐽𝐿) matrix, defined by

A ⊗ B = (𝑎𝑖 𝑗B)𝑖, 𝑗 = [a1 ⊗ b1, a1 ⊗ b2, · · · , a𝐽 ⊗ b𝐿−1, a𝐽 ⊗ b𝐿] (1.6)

The Khatri-Rao product of matrices A ∈ R𝐼×𝐾 , B ∈ R𝐽×𝐾 , denoted as A ⊙ B, is defined by

A ⊙ B = [a1 ⊗ b1, · · · , a𝐾 ⊗ b𝐾] (1.7)

which is an (𝐼𝐽) × 𝐾 matrix. The Hadamard product is the element-wise matrix product which is

denoted by A ∗ B where A,B are 𝐼 × 𝐽.
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1.3.3 Tensor decomposition

Now the question is how to represent the tensor as a sum of a finite number of rank-1 tensors?

The answers came from psychometrics in the form of canonical decomposition or CANDECOMP

(Carroll and Chang, 1970) and parallel factors or PARAFAC (Harshman et al., 1970) decomposition

and now in the literature of tensor decomposition, it is known as CANDECOMP/PARAFAC (CP)

decomposition which is an extension of matrix singular value decomposition (Tucker, 1966; Kiers,

2000). Therefore, the CP decomposition factorizes a tensor into a sum of rank-1 tensors, i.e.,

mathematically,

A =

𝑅∑︁
𝑟=1

u(1)𝑟 ◦ · · · ◦ u(𝐷)𝑟 (1.8)

where u(𝑑)𝑟 ∈ R𝐼𝑑 , 𝑑 = 1, · · · , 𝐷 and 𝑟 = 1, · · · , 𝑅 are column vectors and A cannot be written as a

sum of less than 𝑅 outer products for a positive integer 𝑅 which is the rank of the tensor. Equation

(1.8) is sometimes denoted as A = [[U1, · · · ,U𝐷]] where U1, · · · ,U𝐷 have linearly independent

columns U𝑑 = [u(𝑑)1 , · · · , u(𝑑)
𝑅
] ∈ R𝐼𝑑×𝑅 for each 𝑑 = 1, · · ·𝐷.

1.3.4 Some useful results

In this sub-section, we will present some useful well-known results without proofs. We define 1𝑅

as an 𝑅-dimensional vector with all elements 1.

1. vec(u(1) ◦ u(2) ◦ · · · ◦ u(𝐷)) = u(𝐷) ⊗ · · · ⊗ u(1) .

2. For two vectors a and b, a ⊗ b = a ⊙ b, a ◦ b = abT.

3. For any matrices A, B and C so that the required matrix multiplications are possible, we have

the following:

a) (A ⊗ B) (C ⊗ D) = AC ⊗ BD.

b) (A ⊗ B)−1 = A−1 ⊗ B−1

c) A ⊙ B ⊙ C = (A ⊙ B) ⊙ C = A ⊙ (B ⊙ C)
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d) (A ⊙ B)T(A ⊙ B) = (ATA) ∗ (BTB)

e) (A ⊙ B)−1 = {(ATA) ∗ (BTB)}−1(A ⊙ B)T

f) vec(A ⊙ B) = ((I ⊙ A) ⊗ I) vec(B)

g) vec(B ⊙ A) =
{
I ⊙ (A(I ⊗ 1T))

}
vec(B)

h) trace(AB) = trace(BA) = vec(AT)T vec(B)

i) vec(ABC) = (CT ⊗ A) vec(B)

j) rank(A ⊙ B) ≤ rank(A ⊗ B) ≤ rank(A)rank(B)

k) If A is a matrix of order 𝑚1 × 𝑚2 with (𝑖, 𝑗)-th element 𝑎𝑖 𝑗 , then the Frobenius norm

of A is defined as ∥A∥F =
√︃∑𝑚1

𝑖=1
∑𝑚2
𝑗=1 |𝑎𝑖 𝑗 |2 =

√︁
trace(ATA) =

√︃∑min(𝑚1,𝑚2)
𝑖=1 𝜎2

𝑖
(A)

where 𝜎𝑖 (A) is the 𝑖-th order singular value of A and trace(A) is the trace operator of a

square matrix A.

4. If the tensor A admits a rank-𝑅 decomposition, then A(𝑑) = U𝑑 (U𝐷 ⊙ · · · ⊙ U𝑑+1 ⊙ U𝑑−1 ⊙

· · · ⊙ U1)𝑇 and vec(A) = (U𝐷 ⊙ · · · ⊙ U1)1𝑅

5. ∥A∥F = ∥A(𝑑) ∥F = ∥ vec(A(𝑑))∥2 for 𝑑 = 1, · · · , 𝐷

6. vec(A) = P(𝑑)
𝐼1,··· ,𝐼𝐷 × vec(A(𝑑)) where P(𝑑)

𝐼1,··· ,𝐼𝐷 are permutation matrices such that P(𝑑)−1
𝐼1,··· ,𝐼𝐷 =

P(𝑑)T
𝐼1,··· ,𝐼𝐷 .

1.4 Dissertation outline

The main objective of this dissertation is to answer some fundamental questions that appear in

different domains of statistics due to real-life situations. Let us dive into these questions one by one

and briefly introduce them.

Question 1. How should we handle the dense functional response in quadratic inference method?

We consider the problem of estimation for constant linear effect models in semi-parametric

functional regression with functional response, where each response curve is decomposed into
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the overall mean function indexed by a covariate function with constant regression parameters

and random error. In Chapter 2, we provide an alternative solution using a popular method

for the analysis of correlated data, viz., the quadratic inference approach for such models.

Here, we use the estimated basis functions which are being estimated non-parametrically.

Therefore, the proposed method can be easily implemented without assuming any working

correlation structure. Moreover, we achieve a parametric
√
𝑛-convergence rate under the

proper choice of bandwidth when the number of repeated measurements per trajectory is

larger than 𝑛𝑎0 where 𝑛 is the number of trajectories and establish the asymptotic normality

of the resulting estimator. The performance of the proposed method is compared with that

of existing methods through extensive simulation studies. Real data analysis is also carried

out to demonstrate the proposed method.

Question 2. How should the heteroskedastic functional data be analyzed?

Motivated by recent work on diffusion tensor imaging, we propose a novel varying-coefficient

model in Chapter 3. We develop a multi-step estimation procedure to simultaneously estimate

the varying-coefficient functions using a local linear generalized method of moments (GMM)

based on continuous moment conditions. To incorporate spatial dependence, the continuous

moment conditions are first projected onto eigen-functions and then combined by weighted

eigen-values. This approach solves the challenges of using an inverse covariance operator

directly. We propose an optimal instrumental variable that minimizes the asymptotic variance

function among the class of all local linear GMM estimators and it outperforms the initial

estimates which do not incorporate the spatial dependence. It is shown that with our pro-

posed method, accuracy of the estimation is significantly improved under heteroskedasticity

conditions. We investigate the asymptotic properties of the initial and proposed estimators.

Extensive simulation studies illustrate the finite sample performance and the analysis of real

data confirms the efficacy of the proposed method.

Question 3. How should functional regression be preformed for complex structured data such as
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tensor?

All neuroimaging modalities have their own strengths and limitations. A current trend is

towards interdisciplinary approaches that use multiple imaging methods to overcome limita-

tions of each method in isolation. At the same time neuroimaging data is increasingly being

combined with other non-imaging modalities, such as behavioral and genetic data. The data

structure of many of these modalities can be expressed as time-varying multidimensional

arrays (tensors), collected at different time-points on multiple subjects. In Chapter 4, we con-

sider a new approach for the study of neural correlates in the presence of tensor-valued brain

images and tensor-valued predictors, where both data types are collected over the same set of

time-points. We propose a time-varying tensor regression model with an inherent structural

composition of responses and covariates. Regression coefficients are expressed using the

B-spline technique, and basis function coefficients are estimated using CP-decomposition

by minimizing a penalized loss function. We develop a varying-coefficient model for the

tensor-valued regression model, where both predictors and responses are modeled as tensors.

This development is a non-trivial extension of function-on-function concurrent linear models

for complex and large structural data where the inherent structures are preserved. In addition

to the methodological and theoretical development, the usefulness of the proposed method

based on both simulated and real data analysis (e.g., the combination of eye-tracking data

and functional magnetic resonance imaging (fMRI) data) is also discussed.

Putting it all together, in this chapter, we have introduced the concepts of functional data, its

computational framework, required mathematical notations, definitions and real-life applications

thereby establishing a foundation of the upcoming chapters of this dissertation.
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CHAPTER 2

IMPROVING QUADRATIC INFERENCE APPROACH FOR FUNCTIONAL
RESPONSES

2.1 Introduction

The key characteristic of longitudinal data analysis (LDA) is the collection of repeated measure-

ments on the same set of individuals over multiple time-points, thus allowing study of changes

in responses over time and identification of factors that influence those changes. Unlike cross-

sectional studies, where one can estimate only the “between-individual” responses, since they are

measured at a single time-point; in LDA, it is possible to capture the “with-in individual” changes

as repeated measurements on each individual are available. Moreover, longitudinal data is always

observed as clusters, where each cluster pertains to repeated measurements obtained from each

individual. Although longitudinal studies are performed for data that are observed sparsely over

irregular time-points, such studies do not suffice when voluminous data are observed in a continuum

domain. As technologies advance, this type of data is being observed more often, so sophisticated

methods are needed to handle it. Since functional data are natural generalizations to multivari-

ate data from finite to infinite dimension, functional data analysis (FDA) has turned out to be an

important methodological tool.

In the following two paragraphs, we will present a brief review of some significant research

in the past decades that led to the current research. In LDA, the data are generally observed

with noise for measurements at each time-point (Taris, 2000; Diggle et al., 2002; Hedeker and

Gibbons, 2006; Hand and Crowder, 2017). Moreover, a few repeated measurements are required

in LDA and the data are observed sparsely with noise. On the other hand, in FDA, data are

densely observed as a continuous-time stochastic process without noise (Zhang and Wang, 2016).

Often, the sampling plan can have an effect on the performance of the estimation procedures and

inference (Hall and Hosseini-Nasab, 2006). In some situations, data are typically functions by
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nature and are observed densely over time. Chiou et al. (2003) proposed a class of semi-parametric

functional regression models to describe the influence of vector-valued covariates on a sample of

the response curve. When data collection leads to experimental error, smoothing is performed

at closely spaced time-points in order to reduce the effect of noise. The current developments

of functional regression techniques have been rigorously studied in Fan et al. (1999); Hall et al.

(2007); Chen et al. (2019). The applicability of FDA spans across various scientific domains such

as medical imaging, speech recognition, growth curves, climatology, price index analysis, and

many more. Some recent literature on applications of FDA include Ramsay and Silverman (2005);

Ferraty and Vieu (2006); Ramsay and Silverman (2007); Zhang (2013); Hsing and Eubank (2015);

Morris (2015); Wang et al. (2016); Kokoszka and Reimherr (2017).

Methodologically, in LDA in the past few years, the generalized estimating equation (GEE)

technique proposed by Liang and Zeger (1986) has been extensively used for estimation of pa-

rameters. Although it is an efficient technique, the GEE is unable to estimate the parameters of

interest efficiently when the correlation matrix of covariates is not specified correctly. Hence,

without requiring the estimation of the correlation parameters, the quadratic inference function

(QIF) approach proposed by Qu et al. (2000) is useful for parameter estimation in longitudinal

studies (Diggle et al., 2002) and cluster randomized trials (Turner et al., 2017). By representing

the inverse of the working correlation matrix in terms of linear combinations of the basis matrices

and involving multiple sets of score functions, the QIF approach has improved efficiency over GEE

when the working correlation matrix is not specified correctly. Although it maintains the same

efficiency as in the situation where the working correlation matrix is specified correctly, the QIF

method is not independent of the choice of the working correlation matrix. A QIF method-based

approach to varying-coefficient models for longitudinal data was proposed by Qu and Li (2006).

The related work of Bai et al. (2008) is an extension of QIF for the partial linear model. An

alternative method was presented in Yu et al. (2020) where each set of score equations was solved

separately and their solutions were combined afterwards; thereby providing results on inference

for an optimally weighted estimator and extending those insights to the general setting with over-
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identified estimating equations. Zhao et al. (2020, 2021) proposed variable selection method for

the varying-coefficient model when some of the covariates were contaminated with additive errors

based on bias-corrected penalized QIFs that are defined by combining the bias function approxi-

mation to the coefficient functions and bias-corrected QIF with shrinkage estimation. Zhou and

Qu (2012) proposed QIF based strategy which minimizes the norm of the difference between two

estimating functions based on empirical correlation information. Tian et al. (2014) focused on the

selection of variables for the semi-parametric varying-coefficient model based on the combination

of the approximated basis function and the QIFs. A longitudinal principal component analysis was

proposed in Kinson et al. (2020) based on eigen-decomposition of random effects, while data on

correlations information of multivariate observations over time were decomposed by nonparametric

splines. Zheng et al. (2018) proposed a method based on a time-varying linear representation of

the inverse of the correlation matrix which is projected over the span of basis matrices.

The fundamental limitations that all the above-mentioned powerful techniques suffer from are:

(1) all the above methodologies require prior information on the working correlation structure; and

(2) performance of the classical QIF approach is unknown for dense functional data. Our study

is motivated by problems from multiple real-data applications that involve dense functional data

when information on the working correlation structure is lacking. Let us discuss two motivating

examples that we will use to illustrate the proposed method in this chapter (see Section 2.5 for more

details).

• Beijing2017-data example - In different locations in China, particulate matter (PM) with

diameter less than 2.5 micrometer is collected over different time-points. Scientists are inter-

ested in knowing the linear dependence of the pollution factor PM2.5 with other atmospheric

chemicals (Liang et al., 2015). Figure 2.1 pictorially demonstrates the readings of PM2.5 for

the given locations over several hourly time-points; therefore, dense functional data analysis

can be implemented.

• Apnea-data example - In neuroimaging data analysis, scientists are interested in modelling
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Figure 2.1 Beijing2017-data: Reading of hourly PM2.5 measures for twelve different locations over
608 hourly time-points during January 2017.

the change of responses among voxels in each region of interest (ROI) of the human brain.

Therefore, we can fit a linear regression model and compare the estimated coefficient across

each ROIs. Needless to say, there exist a large number of voxels and the responses change

smoothly across the voxels in each ROI, therefore, the data are functional and dense in

nature. In recent literature, Xiong et al. (2017) investigates white matter structural alterations
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using diffusion tensor imaging (DTI) in obstructive sleep apnea (OSA) patients. Here, the

change of DTI parameters such as fractional anisotropy (FA) with interaction of count of

lapses obtained from the Psychomotor Vigilance Task and voxel locations are investigated

and compared to the results obtained in each ROIs.

We propose a data-driven way to select the working covariance matrix and express the inverse

of the covariance function in terms of the empirical eigen-functions of the covariance operator. The

covariance operator can be estimated as in Hsing and Eubank (2015) and other related methods

based on functional principal component analysis (FPCA) as found in Dauxois et al. (1982); Yao

et al. (2005); Hall and Hosseini-Nasab (2006); Hall et al. (2007); Li and Hsing (2010). Note that

the estimation of the eigen-functions creates some error in the proposed estimation method. In

this chapter, we try to answer the following question: while we estimate the eigen-functions from

the data, is the estimation of coefficient vectors in a semi-parametric problem
√
𝑛- consistent in

dense functional data, and can we achieve asymptotic normality? The advantages of our proposed

method are the following: First, our method preserves the good properties of the QIF method and

is easier to implement since the eigen-functions can be estimated using the existing packages in

statistical softwares such as R. Second, under some mild conditions, our proposed estimator can

obtain the optimal convergence rate and is asymptotically normally distributed with less variance

as compared to the classical QIF methods. Third, asymptotic results show the estimation accuracy

of the coefficient in semi-parametric functional model, therefore, making the influence of the

dimension reduction step using FPCA redundant. The error in the estimation of the eigen-functions

contributes to the error in the estimation of the parameters. Under some mild bandwidth conditions,

the above-mentioned error contribution is of the same order of magnitude as error in parameter

estimation if eigen-functions are known in advance.

The rest of the chapter is organized as follows. In Section 2.2 we introduce the basic concept

of QIF along with our proposed method. The asymptotic results for the proposed estimator are

presented in Section 2.3. In Section 2.4, we demonstrate the performance for finite samples. We

also apply the proposed method to real data-sets in Section 2.5. We conclude in some remarks in
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Section 2.6. All technical proofs are given in Section 2.7.

2.2 Functional response model and estimation procedure

2.2.1 Basic model

To analyze longitudinal data, a straightforward application of a generalized linear model (GLM)

(McCullagh and Nelder, 1989) for single response variables is not applicable due to the lack of

independence between repeated measures. To account for the high correlation in the longitudinal

data, some special techniques are required. A seminal work by Liang and Zeger (1986) proposed

the use of GLM for the analysis of longitudinal data. The model we consider in this chapter is

commonly observed in spatial modeling, where associations among variables do not change over

the functional domain (see Zhang and Banerjee (2021) and references therein); this is termed a

constant linear effects model. In this chapter, the variable “time” is used as a functional domain

variable.

Let 𝑦(𝑡) be the response variable at time-point 𝑡 and x(𝑡) be 𝑝-dimensional covariates observed

at time 𝑡 ∈ T where T =
[
𝑎, 𝑎

]
,−∞ < 𝑎 < 𝑎 < ∞ is the spectrum of the time-points. Without

loss of generality, assume that 𝑎 = 0 and 𝑎 = 1 in the rest of this chapter. The stochastic process 𝑦(𝑡)

is square-integrable with marginal mean E{𝑦(𝑡) |x(𝑡)} and finite covariance function; the regression

parameter 𝜷 is unknown and is to be efficiently estimated. Thus, linear models with longitudinal

data have the following expression.

𝑦(𝑡) = x(𝑡)T𝜷 + 𝑒(𝑡) (2.1)

where, the stochastic process 𝑦(𝑡) is decomposed into two parts: one is the mean function 𝜇(𝑡) =

x(𝑡)T𝜷 that depends on time-varying covariates and vector-valued coefficient vector 𝜷, and other

is the random error part 𝑒(𝑡) where E{𝑒} = 0 and has finite second-order covariance. Let 𝑦𝑖 be

i.i.d. copies of the stochastic process and for each individual, the measurements are taken on 𝑚𝑖

discrete time-points 𝑇𝑖 𝑗 for 𝑗 = 1, · · · , 𝑚𝑖; 𝑖 = 1, · · · , 𝑛. Therefore, at time 𝑇𝑖 𝑗 , we observe a 𝑚𝑖 × 1

response vector 𝑦𝑖 (𝑇𝑖 𝑗 ) and corresponding covariates x𝑖 (𝑇𝑖 𝑗 ) for the 𝑖-th subject. We assume that
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𝑚𝑖’s are all of the same order as 𝑚 = 𝑛𝑎 for some 𝑎 ≥ 0, thus 𝑚𝑖/𝑚 are bounded below and above

by some constants. Functional data are considered to be sparse depending on the choice of 𝑎 (Hall

and Hosseini-Nasab, 2006). Data with bounded 𝑚 or 𝑎 = 0 are called sparse functional data, and if

𝑎 ≥ 𝑎0 where 𝑎0 is a transition point are called dense functional data. Moreover, the regions (0, 𝑎0)

are sometimes referred to as moderately dense. Furthermore, we denote 𝑦𝑖 𝑗 and x𝑖 𝑗 as 𝑦𝑖 (𝑇𝑖 𝑗 ) and

x𝑖 (𝑇𝑖 𝑗 ) respectively. (𝑦𝑖1, · · · , 𝑦𝑖𝑚𝑖 )T and (𝜇𝑖1, · · · , 𝜇𝑖𝑚𝑖 )T are 𝑚𝑖 component vectors, denoted as y𝑖

and 𝝁𝑖 respectively. The derivative of 𝝁, denoted as ¤𝝁, is a 𝑚𝑖 × 𝑝 matrix.

In the classical problem of GEE, we estimate 𝜷 by solving the quasi-likelihood equations (Liang

and Zeger, 1986):
𝑛∑︁
𝑖=1
¤𝝁T
𝑖 V−1

𝑖 (y𝑖 − 𝝁𝑖) = 0 (2.2)

We denote V𝑖 = 𝜈A1/2
𝑖

R𝑖 (𝜌)A1/2
𝑖

where R𝑖 (𝜌) is the working correlation matrix, 𝜈 is an over-

dispersion parameter and A𝑖 is a diagonal matrix where entries are marginal variances Var(𝑦𝑖1), · · · ,

Var(𝑦𝑖𝑚𝑖 ). In this article, we simply set 𝜈 = 1 while the extension to a general 𝜈 is straightforward.

The GEE approach is robust in the sense that it does not require the true knowledge of the likelihood

function.

Note that, in practice, the prior knowledge of the working correlation matrix is not known, and

the estimation of the coefficient is influenced by its choice. Therefore, Qu et al. (2000) suggested

an expansion of the inverse of the working correlation matrix as R(𝜌)−1 =
∑𝜅0
𝑘=1 𝑎𝑘 (𝜌)M𝑘 where

M𝑘 are some basis matrices. Zhou and Qu (2012) modified linear representation by grouping the

basis matrices into an identity matrix and some symmetric basis matrices. For example, if the

working correlation matrix is exchangeable/ compound symmetric, R(𝜌)−1 = 𝑐1I𝑚 + 𝑐2J𝑚 where

I𝑚 is the 𝑚 × 𝑚 identity matrix and J𝑚 is the 𝑚 × 𝑚 matrix such that 0 is in diagonal and 1 is

in off-diagonal positions. On the other hand, for first-order auto-regressive correlation matrix,

R(𝜌)−1 = 𝑐1I𝑚 + 𝑐2J(1)𝑚 + 𝑐3J(2)𝑚 where J(1)𝑚 is a matrix with 1 in the two main off-diagonal positions

and 0 otherwise, J(2)𝑚 is a matrix such that 1 is in the corner positions, viz. (1, 1) and (𝑚, 𝑚) and

0 elsewhere. Here, 𝑐𝑘s are real constants that depend on the nuisance parameter 𝜌. Therefore,

23



Equation (2.2) reduces to the linear combination of the score vectors:

ḡ(𝛽) = 1
𝑛

𝑛∑︁
𝑖=1

g𝑖 (𝛽) =


1
𝑛

∑𝑛
𝑖=1 ¤𝝁T

𝑖
A−1/2
𝑖

M1A−1/2
𝑖
(y𝑖 − 𝝁𝑖)

...

1
𝑛

∑𝑛
𝑖=1 ¤𝝁T

𝑖
A−1/2
𝑖

M𝜅0A
−1/2
𝑖
(y𝑖 − 𝝁𝑖)


(2.3)

Due to the higher dimension of g, Qu et al. (2000) used the generalized method of moments (GMM)

(Hansen, 1982) for which the method of estimation boils down to minimization of the quadratic

inference function Q(𝜷) = 𝑛ḡ(𝜷)TĈ(𝜷)−1ḡ(𝜷) where Ĉ(𝜷) = 1
𝑛

∑𝑛
𝑖=1 ḡ𝑖 (𝜷)ḡ𝑖 (𝜷)T is the sample

covariance matrix of Equation (2.3). In order to obtain the solution of 𝜷, Newton-Raphson method

is used which iteratively updates the value of 𝜷.

2.2.2 Incorporating eigen-functions in QIF

Now, due to standard Karhunen-Loève expansions of 𝑒𝑖 (𝑡) = 𝑦𝑖 (𝑡) − 𝜇𝑖 (𝑡) (Karhunen, 1946; Loève,

1946)

𝑒𝑖 (𝑡) =
∞∑︁
𝑟=1

𝜉𝑖𝑟𝜙𝑟 (𝑡) (2.4)

where independently distributed random variables 𝜉𝑖𝑟 ∼ (0, 𝜆𝑟) for ordered eigen-values 𝜆𝑟 such

that 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 and 𝜙𝑟s are orthonormal eigen-functions such that
∫
𝜙𝑟 (𝑡)𝜙𝑙 (𝑡) = 1(𝑟 = 𝑙).

We extract the main directions of the variation of the response variables using FPCA. In this

situation, we take the first 𝜅0 terms, which provide a good approximation of the infinite sum in

Equation (2.4) by considering that the majority of the variations in the data are contained in the

subspace spanned by few eigen-functions (Chen et al., 2019). For finite 𝜅0 ≥ 1, we, therefore,

consider the rank-𝜅0 FPCA model,

E{𝑦(𝑡) |x(𝑡)} = 𝜇(𝑡) +
𝜅0∑︁
𝑟=1
E{𝜉𝑟 |x(𝑡)}𝜙𝑟 (𝑡) (2.5)

An analogue of the truncated empirical version of Equation (2.22) defined in Section 2.7 and

Equation (2.4) can be provided easily and we discuss the proposed method based on this truncated

version. Moreover, we discuss how to choose 𝜅0 in our situation in Section 2.3 in detail.
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In this chapter, we propose a data-driven way to compute the basis matrices to obtain the

approximate inverse of V as discussed earlier. In this approach, it is enough to find the eigen-

functions to construct a GEE. Let us define

ḡ(𝜷) =


1
𝑛

∑𝑛
𝑖=1 ¤𝝁T

𝑖
𝚽̂𝑖1(y𝑖 − 𝝁𝑖)
...

1
𝑛

∑𝑛
𝑖=1 ¤𝜇T

𝑖
𝚽̂𝑖𝜅0 (y𝑖 − 𝝁𝑖)


(2.6)

where for 𝑘 = 1, · · · , 𝜅0, we define 𝚽̂𝑖𝑘 =

(
𝑚−2
𝑖
𝜙𝑘 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 ′)

)
𝑗 , 𝑗 ′=1,··· ,𝑚𝑖

. Since the dimension

of g in Equation (2.6) is greater than the number of parameters to estimate, instead of setting g to

zero, we minimize the following quadratic function.

𝜷̂ = arg min
𝜷

Q(𝜷) where Q(𝜷) = 𝑛ḡ(𝜷)TĈ(𝜷)−1ḡ(𝜷) (2.7)

where, Ĉ(𝜷) = 1
𝑛

∑𝑛
𝑖=1 g𝑖 (𝜷)g𝑖 (𝜷)T. For the existence of Ĉ−1 we need the additional restriction:

𝑛 ≥ 𝑑𝑖𝑚(g𝑖) = 𝑝 × 𝜅0 where 𝜅0 is the number of eigen-functions. Under the given set-up, by

Equation (8) in Qu et al. (2000) the estimating equation for 𝜷 will be

¤Q(𝜷) ≈ 2 ¤̄g(𝜷)TĈ(𝜷)−1ḡ(𝜷) (2.8)

For obtaining the solution of the above equation, we use a Newton-like method. In practice, the

standard Newton method does not lead to a decrease in the objective function, that is, at each step

of the iteration, there is no guarantee that Q(𝜷𝑠+1) < Q(𝜷𝑠). Therefore, we use the following

algorithm to estimate 𝜷 using the Quasi-Newton method with halving (Givens and Hoeting, 2012).

2.2.3 Estimation of eigen-functions

Estimation of eigen-functions is an important step in our proposed quadratic inference technique.

In general, FPCA plays an important role as a dimension reduction technique in functional data

analysis. Some important theories on FPCA have been developed in recent years. In particular,

Hall and Hosseini-Nasab (2006) proved various asymptotic expressions for FPCA for densely

observed functional data. Later, Hall and Hosseini-Nasab (2009) showed more common theoretical
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Algorithm 2.1 Estimation of 𝜷 using the Quasi-Newton method with halving.
Data: 𝜷̂0 (initial estimates) and calculate Q( 𝜷̂0), ¤Q( 𝜷̂0), ¥Q( 𝜷̂0) respectively. 𝜖0 (threshold,

a small number) and max.count (maximum number of repetition)
Result: Estimate 𝜷 using proposed method

1: Calculate: 𝜷̂1 ← 𝜷̂0 − ¥Q( 𝜷̂0)−1 ¤Q( 𝜷̂0)
2: while Error > 𝜖0 do
3: Calculate: ¤Q( 𝜷̂1) and ¥Q( 𝜷̂1) based on 𝜷̂1
4: Initialise: 𝑟0 = 1
5: 𝜷̂2 ← 𝜷̂1 − 𝑟0 ¥Q( 𝜷̂1)−1 ¤Q( 𝜷̂1)
6: Calculate Q( 𝜷̂1) and Q( 𝜷̂2) based on 𝜷̂1 and 𝜷̂2 respectively using proposed method
7: while Q( 𝜷̂2) > Q( 𝜷̂1) do
8: 𝑟0 ← 𝑟0/2
9: 𝜷̂2 ← 𝜷̂1 − 𝑟0 ¥Q( 𝜷̂1)−1 ¤Q( 𝜷̂1)

10: Calculate Q( 𝜷̂1) and Q( 𝜷̂2) based on 𝜷̂1 and 𝜷̂2 respectively using proposed
method

end
11: Calculate: Error = ∥ 𝜷̂2 − 𝜷̂1∥2

12: 𝜷̂0 ← 𝜷̂1
13: 𝜷̂1 ← 𝜷̂2

end

arguments, including the effect of gap between eigen-value (a.k.a., spacing) on the property of eigen-

value estimators. In Li and Hsing (2010), uniform rates of convergence of mean and covariance

functions are given, which are equipped for all possible choices/scenarios of 𝑚𝑖s. In this section,

we adopt the estimation of covariance functions mostly from Li and Hsing (2010).

Note that the error process 𝑒(𝑡) has mean zero, defined on compact set T = [0, 1] satisfying∫
T
E{𝑒2} < ∞. The functional principal components can be constructed via the covariance function

𝑅(𝑠, 𝑡) defined as

𝑅(𝑠, 𝑡) = E{𝑒(𝑠)𝑒(𝑡)} (2.9)

which is assumed to be square-integrable. This function 𝑅 induces the kernel operatorF as defined

in Sub-section 2.7.1. An empirical analogue of the spectral decomposition of 𝑅 can be obtained

𝑅(𝑠, 𝑡) =
∞∑︁
𝑟=1

𝜆𝑟𝜙𝑟 (𝑠)𝜙𝑟 (𝑡) (2.10)
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where the random variables 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 are the eigen-values of the estimated operator F̂ and

the corresponding sequence of eigen-functions are 𝜙1, 𝜙2, · · · . Further, assume that
∫
T
𝜙𝑟𝜙𝑟 ≥ 0 to

avoid the issue regarding change of sign (Hall and Hosseini-Nasab, 2006) for practical comparison

of eigen-functions, otherwise there is no impact on the convergence rate of eigen-functions and

hence the proposed estimators. Our proposed method can be generalized for finite ties of the true

eigen-values 𝜆𝑟 but to avoid more technicalities, we assume that the eigen-values are distinct.

Suppose that 𝑇𝑖 𝑗 are observational points with a positive density function 𝑓𝑇 (·). Assume𝑚𝑖 ≥ 2

and define 𝑁 =
∑𝑛
𝑖=1 𝑁𝑖 where 𝑁𝑖 = 𝑚𝑖 (𝑚𝑖 − 1). This approach is based on local linear smoother,

which is popular in functional data analysis, including Fan and Gijbels (1996); Li and Hsing (2010)

among many others. Let 𝐾 (·) be a symmetric probability density function on [−1, 1], which is used

as kernel, and ℎ > 0 be bandwidth; thus the re-scaled kernel function is defined as 𝐾ℎ (·) = 1
ℎ
𝐾 (·).

Therefore, for given 𝑠, 𝑡 ∈ T, choose (𝑎̂0, 𝑏̂1, 𝑏̂2) be the minimizer of the following equation.

1
𝑛

𝑛∑︁
𝑖=1

1
𝑁𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝑗1≠ 𝑗2

{𝑒𝑖 (𝑇𝑖 𝑗1)𝑒𝑖 (𝑇𝑖 𝑗2)−𝑎0−𝑏1(𝑇𝑖 𝑗1−𝑠)−𝑏2(𝑇𝑖 𝑗2−𝑡)}2𝐾ℎ
(
𝑇𝑖 𝑗1 − 𝑠

)
𝐾ℎ

(
𝑇𝑖 𝑗2 − 𝑡

)
(2.11)

Thus, we estimate 𝑅(𝑠, 𝑡) = E{𝑒(𝑠)𝑒(𝑡)} using the quantity 𝑎̂0, viz., 𝑅(𝑠, 𝑡) = 𝑎̂0. The operator F̂

is in general positive semi-definite and the estimated eigen-values 𝜆𝑟 are non-negative; indeed, 𝑅

is symmetric. Along with the lines in the existing literature, we define the following.

• 𝑆𝑎,𝑏 (𝑠, 𝑡) = 1
𝑛

∑𝑛
𝑖=1

1
𝑁𝑖

∑𝑚𝑖
𝑗1=1

∑𝑚𝑖
𝑗2=1

𝑗1≠ 𝑗2

(
𝑇𝑖 𝑗1−𝑠
ℎ

)𝑎 (
𝑇𝑖 𝑗2−𝑡
ℎ

)𝑏
𝐾ℎ (𝑇𝑖 𝑗1 − 𝑠)𝐾ℎ (𝑇𝑖 𝑗2 − 𝑡)

• R𝑎,𝑏 (𝑠, 𝑡) = 1
𝑁𝑖

∑𝑚𝑖
𝑗1=1

∑𝑚𝑖
𝑗2=1

𝑗1≠ 𝑗2

(
𝑇𝑖 𝑗1−𝑠
ℎ

)𝑎 (
𝑇𝑖 𝑗2−𝑡
ℎ

)𝑏
𝑒𝑖 (𝑇𝑖 𝑗1)𝑒𝑖 (𝑇𝑖 𝑗2)𝐾ℎ (𝑇𝑖 𝑗1 − 𝑠)𝐾ℎ (𝑇𝑖 𝑗2 − 𝑡)

• A1 = 𝑆20𝑆02 − 𝑆2
11, A2 = 𝑆10𝑆02 − 𝑆01𝑆11, and A3 = 𝑆01𝑆20 − 𝑆10𝑆11

• B = A1𝑆00 −A2𝑆10 −A3𝑆01

Therefore, 𝑅(𝑠, 𝑡) = (A1R00 −A2R10 −A3R01)B−1.
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2.3 Asymptotic properties

In this section, we study the asymptotic properties of the proposed estimator. Let us introduce some

notation. Assume that 𝑚𝑖s are all of the same order, i.e., 𝑚 ≡ 𝑚(𝑛) = 𝑛𝑎 for some 𝑎 ≥ 0. Define

𝑑𝑛1(ℎ) = ℎ2 + ℎ𝑚/𝑚 and 𝑑𝑛2(ℎ) = ℎ4 + ℎ3𝑚/𝑚 + ℎ2𝑚/𝑚2 where 𝑚 = lim𝑛→∞
1
𝑛

∑𝑛
𝑖=1 𝑚/𝑚𝑖

and 𝑚 = lim𝑛→∞
1
𝑛

∑𝑛
𝑖=1(𝑚/𝑚𝑖)2. Denote 𝛿𝑛1(ℎ) =

{
𝑑𝑛1(ℎ) log 𝑛/(𝑛ℎ2)

}1/2 and 𝛿𝑛2(ℎ) ={
𝑑𝑛2(ℎ) log 𝑛/(𝑛ℎ4)

}1/2. Further, 𝜈𝑎,𝑏 =
∫
𝑡𝑎𝐾𝑏 (𝑡)𝑑𝑡. Define W = (𝝓(𝑡1)T, · · · , 𝝓(𝑡𝑚)T)T is a

matrix of order𝑚× 𝜅0 obtained after stacking all 𝝓𝑘s and random components 𝜉𝑖 = (𝜉𝑖1, · · · , 𝜉𝑖𝜅0)T.

Further, 𝝃 has mean zero and variance 𝚲 which is a diagonal matrix with components 𝜆1, · · · , 𝜆𝜅0 .

The sign “ ≲ ” indicates that the left-hand side of the inequality is bounded by the right-hand side

up to a multiplicative positive constant, i.e. for two positive variables 𝑓1 and 𝑓2 we define 𝑓1 ≲ 𝑓2

as 𝑓1 ≤ 𝐶 𝑓2 where 𝐶 is a positive constant not involving 𝑛. The following conditions are needed

for further discussion of the asymptotic properties.

(C1) Kernel function 𝐾 (·) is a symmetric density function defined on bounded support [−1, 1].

(C2) Density function 𝑓𝑇 of 𝑇 is bounded above and away from infinity. Also the density function

is bounded below away from zero. Moreover, 𝑓 is differentiable and the derivative is

continuous.

(C3) 𝑅(𝑠, 𝑡) is twice differentiable and all second order partial derivatives are bounded on [0, 1]2.

(C4) E{sup𝑡∈[0,1] |𝑒(𝑡) |𝛾} < ∞ and E{sup𝑡∈[0,1] |x𝑖 (𝑡) |2𝛾} < ∞ for some 𝛾 ∈ (4,∞).

(C5) ℎ → 0 as 𝑛 → ∞ such that 𝑑−1
𝑛1 (log 𝑛/𝑛)1−2/𝛾 → 0 and 𝑑−1

𝑛2 (log 𝑛/𝑛)1−4/𝛾 → 0 for

𝛾 ∈ (4,∞).

(C6) Condition for eigen-components.

a) for each 1 ≤ 𝑘 < 𝑟 < ∞ and for non-zero finite generic constant 𝐶0,

max {𝜆𝑘 , 𝜆𝑟}
|𝜆𝑘 − 𝜆𝑟 |

≤ 𝐶0
max {𝑘, 𝑟}
|𝑘 − 𝑟 | (2.12)
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b) For some𝛼 > 0, with the condition𝑉𝑟𝜆−2
𝑟 𝑟

1+𝛼 → 0 as 𝑟 →∞where𝑉𝑟 = E{
∫
¤𝜇(𝑡)𝜙𝑟 (𝑡)𝑑𝑡}2.

The above two conditions hold if 𝜆𝑟 = 𝑟−𝜏1Λ(𝑟) and 𝑉𝑟 = 𝑟−𝜏2Γ(𝑟) for slowly varying

functions Λ and Γ where 𝜏2 > 1 + 2𝜏1 > 3.

c)
∫
𝜙4
𝑘
(𝑡)𝑑𝑡 and

∫
¤𝜇2(𝑡)𝜙2

𝑘
(𝑡)𝑑𝑡 are finite for all 𝑘 ≥ 1.

(C7) Ĉ(𝜷) converges almost surely to an invertible matrix C0 = E{g(𝜷0)g(𝜷0)−1}.

(C8) Conditions for ℎ and 𝜅0. For 𝜏 = 𝛼 + 𝜏1,

a) If 𝑎 > 1/4, 𝜅0 = 𝑂 (𝑛1/(3−𝜏)) and 𝑛−1/4 ≲ ℎ ≲ 𝑛−(𝑎+1)/5

b) If 𝑎 ≤ 1/4, 𝜅0 = 𝑂 (𝑛4(1+𝑎)/5(3−𝜏)) and ℎ ≲ 𝑛−1/4

Remark 2.3.1. Condition (C1) is commonly used in non-parametric regression. The bound con-

dition for the density function of time-points has the standard Condition (C2) for random design.

Similar results can be obtained for fixed design where the grid-points are pre-fixed according to

the design density
∫ 𝑇 𝑗

0 𝑓 (𝑡)𝑑𝑡 = 𝑗/𝑚 for 𝑗 = 1, · · · , 𝑚, for 𝑚 ≥ 1. Furthermore, it is important

to note that this approach does not involve the requirement to obtain sample path differentiation

when we invoke the estimation of eigenfunctions from Li and Hsing (2010). Therefore, the method

could be applicable for Brownian motion which has a continuously non-differentiable sample path.

To expand in Taylor series, Condition (C3) is required, and is also common in non-parametric

regression. Condition (C4) is required for a uniform bound for certain higher-order expectations

to show uniform convergence. This is a similar condition adopted from Li and Hsing (2010).

Smoothness conditions in (C5) and (C8) are common in kernel smoothing and functional data

to control bias and variance. The first condition for tuning the parameters mentioned in (C5) is

similar to Li and Hsing (2010). The required spacing assumptions for eigen-values in Conditions

(C6)a and (C6)b are similar as in Hall and Hosseini-Nasab (2009). Condition (C6)c is the trivial

assumption that frequently arises in the functional data analysis literature. In most situations,

this condition automatically holds. Using the weak law of large numbers, Condition (C7) holds

for large 𝑛. Similar kind of conditions can be invoked, such as the convexity assumption, i.e.,
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𝜆𝑟 − 𝜆𝑟+1 ≤ 𝜆𝑟−1 − 𝜆𝑟 for all 𝑟 ≥ 2. Condition (C8) is determined to control the rate of the number

of repeated measurements.

Now, the following theorem provides the asymptotic expansion and consistency of the proposed

estimator for 𝜷̂.

Theorem 2.3.1. Let 𝜷0 be the true value of 𝜷. Under the Conditions (C1), (C2), (C3), (C4), (C5),

(C6)a, (C6)b and (C6)c, for 𝑘 = 1, · · · , 𝜅0, we have the asymptotic mean square error for g𝑘 (𝜷0)

as

AMSE{g𝑘 (𝜷0)} = 𝑂
(
𝑛−1 + 𝑛−1𝜅3−𝜏

0 𝑅𝑛 (ℎ)
)

almost surely (2.13)

where 𝑅𝑛 (ℎ) =
{
ℎ4 + 1

𝑛
+ 1
𝑛𝑚ℎ
+ 1
𝑛2𝑚2ℎ2 + 1

𝑛2𝑚4ℎ4 + 1
𝑛2𝑚ℎ
+ 1
𝑛2𝑚3ℎ3

}
.

Moreover, under Condition (C8), AMSE{ĝ𝑘 (𝜷0)} = 𝑂 (𝑛−1). Therefore, if in addition, Condition

(C7) holds, as 𝑛→∞, ∥ 𝜷̂ − 𝜷0∥ = 𝑂 (𝑛−1/2) in probability.

The following theorem states the results of asymptotic normality.

Theorem 2.3.2. Define C𝑖 =
∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 𝚽𝑘1X𝑖C−1

𝑘1,𝑘2
XT
𝑖
𝚽𝑘2 , where C−1

𝑘1,𝑘2
is a (𝑘1, 𝑘2) block

of C−1
0 with C0 = E

{
g(𝜷0)gT

𝑖
(𝜷0)

}
. Assume that the conditions for Theorem 2.3.1 hold. Then

√
𝑛( 𝜷̂ − 𝜷0)

𝑑−→ 𝑁 (0,𝚺) where 𝚺 = B−1AB−1. The quantities A and B are, respectively, limits

of Â = 1
𝑛

∑𝑛
𝑖=1 XT

𝑖
Ĉ𝑖e𝑖eT

𝑖
Ĉ𝑖X𝑖 and B̂ = 1

𝑛

∑𝑛
𝑖=1 XT

𝑖
Ĉ𝑖X𝑖, and “ 𝑑−→ ′′ denotes the convergence in

distribution.

Remark 2.3.2. Here, the selection of the bandwidth only effects the second-order term of the MSE

of 𝜷̂ and has no effect on the asymptotic result of normality as long as ℎ satisfies the Conditions

(C5) and (C8) along with some restrictions on 𝜅0.

All proofs with relevant technical details are available in Section 2.7.
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2.4 Simulation studies

We conduct the numerical studies to compare the finite sample performance to the corresponding

longitudinal approach of quadratic inference proposed in Qu et al. (2000) under different correlation

structures.

2.4.1 Simulation set-up

Consider the normal response model

𝑦𝑖 (𝑇𝑖 𝑗 ) = x𝑖 (𝑇𝑖 𝑗 )T𝜷 + 𝑒𝑖 (𝑇𝑖 𝑗 ) (2.14)

For 𝑝 = 2, we set coefficient vectors, 𝜷 = (𝛽1, 𝛽2)T where 𝛽1 = 1 and 𝛽2 = 0.5. The covariates are

generated in following way.

𝑥𝑖𝑘 (𝑡) = 𝜒(𝑘)𝑖1 + 𝜒
(𝑘)
𝑖2

√
2 sin (𝜋𝑡) + 𝜒(𝑘)

𝑖3

√
2 cos (𝜋𝑡) (2.15)

The coefficients 𝜒(𝑘)
𝑖1 ∼ 𝑁 (0, (2

−0.5(𝑘−1))2), 𝜒(𝑘)
𝑖2 ∼ 𝑁 (0, (0.85 × 2−0.5(𝑘−1))2), 𝜒(𝑘)

𝑖3 ∼ 𝑁 (0, (0.7 ×

2−0.5(𝑘−1))2) and 𝜒𝑖 𝑗s are mutually independent for each trajectories 𝑖 and each 𝑗 . Consider the

following simulation design.

• Observational times-points. In a fixed-design situation, associated observational times are

fixed. Sample trajectories are observed at 𝑚 = 100 equidistant time-points {𝑡1, · · · , 𝑡𝑚} on

[0, 1].

• Choice of residuals. The residual process 𝑒𝑖 (𝑡) is a smoothed function with mean zero

and unknown covariance function, where each 𝑒𝑖 is distributed as 𝑒𝑖 =
∑
𝑘≥1 𝜉𝑖𝜙𝑖 and 𝜉𝑘s

are independent normal random variables with mean zero and respective variances 𝜆𝑘 . For

numerical computation, we truncate the finite series at 𝑘 = 3 in Karhunen-Loève expansions

for Situations (a), (b) and (c) as described below. In Situations (d) and (e), the error process

is generated from given covariance functions.
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(a) Brownian motion. The covariance function for the Brownian motion is min(𝑠, 𝑡),

𝜆𝑘 =
4

𝜋2 (2𝑘−1)2 and 𝜙𝑘 (𝑡) =
√

2 sin(𝑡/
√
𝜆𝑘 ).

(b) Linear process. Consider the eigen-values be 𝜆𝑘 = 𝑘−2𝑙0 and 𝜙𝑘 (𝑡) =
√

2 cos(𝑘𝜋𝑡). We

fix 𝑙0 ∈ {1, 2, 3}.

(c) Ornstein Uhlenbeck (OU) process. For positive constants 𝜇0 and 𝜌0, we have a stochastic

differential equation for 𝑒(𝑡) as 𝜕𝑒(𝑡) = −𝜇0𝑒(𝑡)𝜕𝑡 + 𝜌0𝜕𝑤(𝑡) for the Brownian motion

𝑤(𝑡). It can be shown that cov{𝑒(𝑡), 𝑒(𝑠)} = 𝑐 exp{−𝜇0 |𝑡 − 𝑠 |} where 𝑐 = 𝜌2
0/2𝜇0.

Here we assume 𝑐 = 1. Thus, by solving the integral equation we have 𝜙𝑘 (𝑡) =

𝐴𝑘 cos(𝜔𝑘 𝑡) + 𝐵𝑘 sin(𝜔𝑘 𝑡) and 𝜆𝑘 = 2𝜇0
𝜔2
𝑘
+𝜇2

0
where 𝜔 is solution of cot(𝜔) = 𝜔2−𝜇2

0
2𝜇0𝜔

. The

constants 𝐴𝑘 and 𝐵𝑘 are defined as 𝐵𝑘 = 𝜇0𝐴𝑘/𝜔𝑘 where 𝐴𝑘 =
√︂

2𝜔2
𝑘

2𝜇0+𝜇2
0+𝜔

2
𝑘

. Here 𝜇0

is chosen to be 1 or 3.

(d) Power exponential. 𝑅(𝑠, 𝑡) = exp{(−|𝑠 − 𝑡 |/𝑎0)𝑏0} where scale parameter 𝑎0 = 1 and

shape parameter 𝑏0 ∈ {1, 2, 5}.

(e) Rational quadratic. 𝑅(𝑠, 𝑡) =
{
1 +

(
𝑠−𝑡
𝑎0

)2
}−𝑏0

where scale parameter 𝑎0 = 1 and shape

parameter 𝑏0 ∈ {1, 2, 5}.

• Sample size parameter. Number of individuals, 𝑛 ∈ {100, 300, 500}.

2.4.2 Comparison and evaluation

For each of the situations, we perform 500 simulation replicates. To execute Qu et al. (2000)’s

approach, we construct the scores using basis matrices as described in Example 1 (approximation

of the compound symmetric correlation structure, denoted as ldaCS in the tables) and Example

2 (for the first-order autoregressive correlation structure, denoted as ldaAR in the tables) in their

paper. Ordinary least squares estimate (denoted as init in the tables) is taken as the initial estimate

of 𝜷 for both ours (denoted as fda-k for specific 𝑘 in the tables) and Qu et al. (2000)’s approach.

The estimation procedure in the iterative algorithm converges when the square difference between

the estimated values of two consecutive steps is bounded by a small number 10−10 or the maximum
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number of steps crosses 500, whichever happens earlier. To make theoretical results and numerical

examples consistent, we use “FPCA” function in R which is available in fdapace packages (Gajardo

et al., 2021) or in the MATLAB (MATLAB, 2014) package PACE available at http://www.stat.

ucdavis.edu/PACE/ to estimate the eigen-functions. The key references for the PACE approach

and associated works include in Yao et al. (2003, 2005); Müller and Yao (2010); Li and Hsing

(2010). Bandwidths are selected using generalized cross-validation and the Epanechnikov kernel

𝐾 (𝑥) = 0.75(1 − 𝑥2)+ is used for estimation where (𝑎)+ = max(𝑎, 0).

The means and standard deviations (SD) of the regression coefficients based on 500 simulations

are given as summary measures. We calculate the standard deviation mentioned in the tables based

on 500 estimates from 500 replications that can be viewed as the true standard error. Moreover,

we also compute the following statistics to compare the performance of estimation, where for 𝑏-th

replication 𝜷̂𝑏 be the estimated value for 𝜷,

• Absolute bias, AB = 1
500

∑500
𝑏=1 | 𝜷̂𝑏 − 𝜷|

• Mean square error, MSE = 1
500

∑500
𝑏=1( 𝜷̂𝑏 − 𝜷)2

MSEs are reported in the order of 10−2. The number of selected eigen-functions plays a critical

role in our proposed method. We choose 𝜅0 based on a scree plot where the elbow of the graph is

found and the components to the left are considered as significant.
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Table 2.1 Performance of the estimation procedure where the residuals are generated from Brownian
motion (a). Mean of the estimated coefficients, standard deviation, absolute bias, mean square error
(×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9999 0.0373 0.0297 0.1391 0.4995 0.0486 0.0384 0.2354
ldaAR 0.9991 0.0331 0.0265 0.1095 0.5004 0.0445 0.0353 0.1972
ldaCS 0.9987 0.0316 0.0253 0.1000 0.4997 0.0411 0.0322 0.1685
fda-1 0.9998 0.0564 0.0447 0.3180 0.5006 0.0743 0.0587 0.5516 86.2672
fda-2 1.0001 0.0269 0.0213 0.0723 0.4971 0.0362 0.0290 0.1314 96.3746
fda-3 0.9998 0.0231 0.0181 0.0532 0.4978 0.0317 0.0251 0.1010 99.9220
fda-4 1.0004 0.0052 0.0014 0.0028 0.4994 0.0092 0.0022 0.0085 99.9979
fda-5 0.9999 0.0021 0.0008 0.0004 0.4999 0.0051 0.0012 0.0026 100.0000
fda-6 0.9999 0.0021 0.0008 0.0004 0.4999 0.0051 0.0012 0.0026 100.0000
fda-7 0.9999 0.0021 0.0008 0.0004 0.4999 0.0051 0.0012 0.0026 100.0000

𝑛 = 300

init 1.0002 0.0200 0.0162 0.0401 0.5003 0.0288 0.0226 0.0825
ldaAR 1.0003 0.0184 0.0147 0.0336 0.5000 0.0259 0.0203 0.0670
ldaCS 1.0007 0.0170 0.0134 0.0288 0.4995 0.0242 0.0190 0.0583
fda-1 1.0002 0.0309 0.0251 0.0955 0.5008 0.0443 0.0350 0.1962 86.7578
fda-2 1.0002 0.0142 0.0114 0.0202 0.4998 0.0213 0.0169 0.0451 96.4747
fda-3 1.0002 0.0122 0.0098 0.0150 0.4992 0.0179 0.0144 0.0321 99.9745
fda-4 1.0002 0.0021 0.0003 0.0004 0.4998 0.0032 0.0005 0.0010 99.9993
fda-5 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-6 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-7 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000

𝑛 = 500

init 1.0002 0.0148 0.0117 0.0219 0.5006 0.0223 0.0177 0.0497
ldaAR 1.0005 0.0138 0.0111 0.0189 0.5000 0.0206 0.0162 0.0422
ldaCS 1.0000 0.0128 0.0102 0.0164 0.4992 0.0184 0.0146 0.0340
fda-1 1.0007 0.0234 0.0185 0.0545 0.5012 0.0348 0.0277 0.1213 86.7520
fda-2 0.9996 0.0105 0.0083 0.0110 0.5002 0.0157 0.0126 0.0247 96.5174
fda-3 0.9991 0.0091 0.0074 0.0084 0.4999 0.0133 0.0107 0.0177 99.9851
fda-4 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 99.9996
fda-5 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-6 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-7 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
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Table 2.2 Performance of the estimation procedure where the residuals are generated from linear
process (b) with 𝑙0 = 1. Mean of the estimated coefficients, standard deviation, absolute bias, mean
square error (×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 1.0019 0.0340 0.0267 0.1155 0.5001 0.0456 0.0356 0.2078
ldaAR 1.0007 0.0230 0.0187 0.0528 0.5010 0.0361 0.0285 0.1303
ldaCS 1.0000 0.0006 0.0005 0.0000 0.4999 0.0008 0.0006 0.0001
fda-1 1.0093 0.1436 0.1150 2.0675 0.5020 0.2010 0.1570 4.0311 73.0607
fda-2 1.0036 0.1055 0.0828 1.1123 0.5052 0.1337 0.1070 1.7869 91.6726
fda-3 1.0038 0.1024 0.0804 1.0473 0.5056 0.1303 0.1020 1.6969 99.7657
fda-4 1.0000 0.0092 0.0021 0.0084 0.5006 0.0096 0.0024 0.0093 99.9993
fda-5 1.0000 0.0011 0.0007 0.0001 0.5000 0.0017 0.0010 0.0003 100.0000
fda-6 1.0000 0.0011 0.0007 0.0001 0.5000 0.0017 0.0010 0.0003 100.0000
fda-7 1.0000 0.0011 0.0007 0.0001 0.5000 0.0017 0.0010 0.0003 100.0000

𝑛 = 300

init 0.9991 0.0181 0.0144 0.0326 0.5006 0.0268 0.0212 0.0715
ldaAR 0.9995 0.0133 0.0105 0.0178 0.5000 0.0212 0.0169 0.0447
ldaCS 1.0000 0.0003 0.0002 0.0000 0.5000 0.0005 0.0004 0.0000
fda-1 0.9958 0.0767 0.0616 0.5888 0.5037 0.1163 0.0918 1.3523 73.4907
fda-2 0.9974 0.0567 0.0458 0.3220 0.5011 0.0804 0.0648 0.6460 91.7757
fda-3 0.9974 0.0564 0.0455 0.3182 0.5007 0.0800 0.0643 0.6391 99.9225
fda-4 1.0000 0.0005 0.0001 0.0000 0.5000 0.0009 0.0002 0.0001 99.9998
fda-5 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-6 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000
fda-7 1.0000 0.0002 0.0001 0.0000 0.5000 0.0003 0.0002 0.0000 100.0000

𝑛 = 500

init 0.9999 0.0152 0.0121 0.0230 0.5027 0.0207 0.0163 0.0436
ldaAR 1.0008 0.0100 0.0079 0.0100 0.5019 0.0161 0.0129 0.0263
ldaCS 1.0000 0.0003 0.0002 0.0000 0.5000 0.0004 0.0003 0.0000
fda-1 0.9990 0.0657 0.0523 0.4303 0.5113 0.0883 0.0698 0.7913 73.4098
fda-2 1.0013 0.0468 0.0371 0.2185 0.5078 0.0651 0.0520 0.4292 91.8501
fda-3 1.0014 0.0459 0.0364 0.2107 0.5074 0.0650 0.0516 0.4274 99.9490
fda-4 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 99.9999
fda-5 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-6 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-7 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
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Table 2.3 Performance of the estimation procedure where the residuals are generated from linear
process (b) with 𝑙0 = 2. Mean of the estimated coefficients, standard deviation, absolute bias, mean
square error (×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 1.0020 0.0331 0.0261 0.1094 0.4999 0.0451 0.0349 0.2028
ldaAR 1.0002 0.0167 0.0133 0.0278 0.5014 0.0232 0.0183 0.0538
ldaCS 1.0000 0.0003 0.0002 0.0000 0.5000 0.0004 0.0003 0.0000
fda-1 1.0096 0.1431 0.1144 2.0520 0.5022 0.2003 0.1561 4.0029 92.5933
fda-2 1.0014 0.0648 0.0508 0.4188 0.5037 0.0842 0.0667 0.7094 98.5532
fda-3 1.0009 0.0535 0.0406 0.2860 0.5018 0.0744 0.0570 0.5524 99.7251
fda-4 1.0000 0.0074 0.0017 0.0055 0.4999 0.0103 0.0024 0.0106 99.9991
fda-5 1.0000 0.0045 0.0009 0.0021 0.5000 0.0021 0.0009 0.0004 100.0000
fda-6 1.0000 0.0045 0.0009 0.0021 0.5000 0.0021 0.0009 0.0004 100.0000
fda-7 1.0000 0.0045 0.0009 0.0021 0.5000 0.0021 0.0009 0.0004 100.0000

𝑛 = 300

init 0.9991 0.0175 0.0140 0.0308 0.5006 0.0263 0.0208 0.0689
ldaAR 0.9999 0.0091 0.0071 0.0083 0.4997 0.0127 0.0102 0.0161
ldaCS 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0002 0.0000
fda-1 0.9957 0.0767 0.0616 0.5893 0.5038 0.1164 0.0919 1.3541 92.9525
fda-2 0.9989 0.0365 0.0295 0.1331 0.4998 0.0511 0.0410 0.2608 98.7539
fda-3 0.9992 0.0349 0.0282 0.1218 0.4991 0.0483 0.0385 0.2332 99.9061
fda-4 0.9999 0.0017 0.0002 0.0003 0.4999 0.0033 0.0004 0.0011 99.9997
fda-5 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000
fda-6 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000
fda-7 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000

𝑛 = 500

init 0.9998 0.0148 0.0118 0.0219 0.5026 0.0201 0.0158 0.0409
ldaAR 1.0006 0.0073 0.0059 0.0054 0.5008 0.0098 0.0079 0.0097
ldaCS 1.0000 0.0001 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000
fda-1 0.9990 0.0656 0.0523 0.4295 0.5114 0.0882 0.0698 0.7897 92.9459
fda-2 1.0013 0.0296 0.0233 0.0874 0.5039 0.0415 0.0329 0.1735 98.7957
fda-3 1.0012 0.0285 0.0224 0.0812 0.5036 0.0407 0.0322 0.1670 99.9389
fda-4 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 99.9998
fda-5 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-6 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-7 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
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Table 2.4 Performance of the estimation procedure where the residuals are generated from linear
process (b) with 𝑙0 = 3. Mean of the estimated coefficients, standard deviation, absolute bias, mean
square error (×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 1.0020 0.0328 0.0260 0.1077 0.4998 0.0451 0.0349 0.2027
ldaAR 1.0000 0.0087 0.0069 0.0076 0.5009 0.0122 0.0096 0.0149
ldaCS 1.0000 0.0001 0.0001 0.0000 0.5000 0.0002 0.0002 0.0000
fda-1 1.0096 0.1430 0.1143 2.0496 0.5023 0.2001 0.1559 3.9978 97.9586
fda-2 1.0000 0.0326 0.0250 0.1058 0.5023 0.0440 0.0344 0.1941 99.5699
fda-3 0.9998 0.0144 0.0072 0.0208 0.4986 0.0209 0.0103 0.0436 99.8941
fda-4 1.0002 0.0053 0.0013 0.0028 0.5002 0.0067 0.0018 0.0044 99.9991
fda-5 1.0003 0.0037 0.0008 0.0014 0.4998 0.0042 0.0011 0.0018 100.0000
fda-6 1.0003 0.0037 0.0008 0.0014 0.4998 0.0042 0.0011 0.0018 100.0000
fda-7 1.0003 0.0037 0.0008 0.0014 0.4998 0.0042 0.0011 0.0018 100.0000

𝑛 = 300

init 0.9991 0.0174 0.0139 0.0303 0.5006 0.0262 0.0207 0.0684
ldaAR 1.0000 0.0047 0.0037 0.0022 0.4997 0.0066 0.0052 0.0044
ldaCS 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000
fda-1 0.9957 0.0767 0.0616 0.5896 0.5038 0.1164 0.0919 1.3543 98.2262
fda-2 0.9996 0.0197 0.0158 0.0386 0.4996 0.0274 0.0219 0.0750 99.7663
fda-3 1.0002 0.0151 0.0101 0.0227 0.4990 0.0186 0.0125 0.0347 99.9255
fda-4 1.0001 0.0022 0.0003 0.0005 0.5001 0.0017 0.0003 0.0003 99.9997
fda-5 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000
fda-6 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000
fda-7 1.0000 0.0002 0.0001 0.0000 0.5000 0.0002 0.0001 0.0000 100.0000

𝑛 = 500

init 0.9998 0.0147 0.0117 0.0216 0.5025 0.0199 0.0157 0.0400
ldaAR 1.0003 0.0038 0.0031 0.0015 0.5003 0.0052 0.0041 0.0027
ldaCS 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000
fda-1 0.9990 0.0656 0.0523 0.4293 0.5114 0.0882 0.0698 0.7895 98.2518
fda-2 1.0008 0.0159 0.0126 0.0253 0.5015 0.0222 0.0175 0.0495 99.8021
fda-3 1.0001 0.0126 0.0091 0.0158 0.5002 0.0179 0.0130 0.0320 99.9449
fda-4 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 99.9998
fda-5 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-6 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
fda-7 1.0000 0.0001 0.0001 0.0000 0.5000 0.0001 0.0001 0.0000 100.0000
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Table 2.5 Performance of the estimation procedure where the residuals are generated from Ornstein-
Uhlenbeck process (c) with 𝜇0 = 1. Mean of the estimated coefficients, standard deviation, absolute
bias, mean square error (×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 1.0003 0.0541 0.0434 0.2922 0.4994 0.0711 0.0563 0.5048
ldaAR 1.0001 0.0476 0.0383 0.2261 0.4984 0.0650 0.0513 0.4214
ldaCS 0.9994 0.0398 0.0316 0.1581 0.4978 0.0534 0.0421 0.2849
fda-1 1.0009 0.0705 0.0563 0.4964 0.5006 0.0947 0.0747 0.8954 79.4156
fda-2 1.0001 0.0453 0.0358 0.2044 0.4982 0.0608 0.0482 0.3690 94.9669
fda-3 0.9993 0.0386 0.0307 0.1491 0.4978 0.0511 0.0405 0.2613 99.9949
fda-4 1.0003 0.0127 0.0081 0.0162 0.4991 0.0242 0.0146 0.0583 99.9992
fda-5 0.9997 0.0084 0.0071 0.0071 0.4991 0.0159 0.0124 0.0254 100.0000
fda-6 0.9997 0.0084 0.0071 0.0071 0.4991 0.0159 0.0124 0.0254 100.0000
fda-7 0.9997 0.0084 0.0071 0.0071 0.4991 0.0159 0.0124 0.0254 100.0000

𝑛 = 300

init 1.0000 0.0288 0.0233 0.0829 0.5003 0.0416 0.0329 0.1728
ldaAR 1.0000 0.0258 0.0206 0.0662 0.4996 0.0368 0.0294 0.1350
ldaCS 1.0002 0.0212 0.0170 0.0449 0.4987 0.0314 0.0254 0.0983
fda-1 0.9997 0.0388 0.0316 0.1503 0.5014 0.0560 0.0440 0.3130 79.9233
fda-2 1.0005 0.0240 0.0193 0.0576 0.4983 0.0352 0.0284 0.1242 95.0283
fda-3 0.9999 0.0202 0.0161 0.0409 0.4994 0.0298 0.0240 0.0884 99.9984
fda-4 0.9999 0.0072 0.0064 0.0051 0.4997 0.0129 0.0111 0.0166 99.9998
fda-5 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000
fda-6 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000
fda-7 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000

𝑛 = 500

init 1.0000 0.0288 0.0233 0.0829 0.5003 0.0416 0.0329 0.1728
ldaAR 1.0000 0.0258 0.0206 0.0662 0.4996 0.0368 0.0294 0.1350
ldaCS 1.0002 0.0212 0.0170 0.0449 0.4987 0.0314 0.0254 0.0983
fda-1 0.9997 0.0388 0.0316 0.1503 0.5014 0.0560 0.0440 0.3130 79.9233
fda-2 1.0005 0.0240 0.0193 0.0576 0.4983 0.0352 0.0284 0.1242 95.0283
fda-3 0.9999 0.0202 0.0161 0.0409 0.4994 0.0298 0.0240 0.0884 99.9984
fda-4 0.9999 0.0072 0.0064 0.0051 0.4997 0.0129 0.0111 0.0166 99.9998
fda-5 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000
fda-6 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000
fda-7 1.0000 0.0072 0.0064 0.0051 0.4997 0.0128 0.0111 0.0165 100.0000
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Table 2.6 Performance of the estimation procedure where the residuals are generated from Ornstein-
Uhlenbeck process (c) with 𝜇0 = 3. Mean of the estimated coefficients, standard deviation, absolute
bias, mean square error (×100) and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 1.0001 0.0454 0.0363 0.2056 0.4990 0.0591 0.0469 0.3487
ldaAR 0.9996 0.0390 0.0312 0.1521 0.4979 0.0521 0.0414 0.2717
ldaCS 0.9999 0.0429 0.0341 0.1841 0.4981 0.0564 0.0448 0.3176
fda-1 1.0005 0.0557 0.0445 0.3100 0.5003 0.0743 0.0588 0.5511 59.1692
fda-2 1.0005 0.0459 0.0362 0.2107 0.4981 0.0604 0.0480 0.3639 87.0120
fda-3 1.0000 0.0436 0.0348 0.1894 0.4975 0.0568 0.0455 0.3221 99.9908
fda-4 1.0004 0.0136 0.0058 0.0185 0.4989 0.0237 0.0106 0.0562 99.9960
fda-5 1.0001 0.0049 0.0033 0.0024 0.4997 0.0099 0.0061 0.0098 100.0000
fda-6 1.0001 0.0049 0.0033 0.0024 0.4997 0.0099 0.0061 0.0098 100.0000
fda-7 1.0001 0.0049 0.0033 0.0024 0.4997 0.0099 0.0061 0.0098 100.0000

𝑛 = 300

init 1.0002 0.0239 0.0191 0.0568 0.4998 0.0345 0.0274 0.1190
ldaAR 1.0003 0.0209 0.0167 0.0435 0.4990 0.0303 0.0244 0.0916
ldaCS 1.0003 0.0224 0.0178 0.0500 0.4992 0.0328 0.0265 0.1075
fda-1 0.9998 0.0305 0.0247 0.0928 0.5011 0.0443 0.0349 0.1957 59.4418
fda-2 1.0004 0.0240 0.0192 0.0574 0.4991 0.0347 0.0279 0.1201 86.9290
fda-3 1.0003 0.0222 0.0177 0.0492 0.4992 0.0327 0.0264 0.1070 99.9972
fda-4 1.0002 0.0043 0.0039 0.0018 0.4998 0.0075 0.0065 0.0057 99.9987
fda-5 1.0001 0.0038 0.0035 0.0014 0.4998 0.0068 0.0059 0.0046 100.0000
fda-6 1.0001 0.0038 0.0035 0.0014 0.4998 0.0068 0.0059 0.0046 100.0000
fda-7 1.0001 0.0038 0.0035 0.0014 0.4998 0.0068 0.0059 0.0046 100.0000

𝑛 = 500

init 1.0003 0.0180 0.0141 0.0323 0.5017 0.0268 0.0213 0.0720
ldaAR 1.0001 0.0155 0.0123 0.0241 0.5016 0.0232 0.0186 0.0541
ldaCS 1.0002 0.0171 0.0134 0.0291 0.5013 0.0251 0.0202 0.0629
fda-1 1.0005 0.0229 0.0180 0.0523 0.5021 0.0346 0.0276 0.1201 59.3104
fda-2 1.0004 0.0177 0.0138 0.0314 0.5022 0.0268 0.0217 0.0724 87.0183
fda-3 1.0001 0.0173 0.0136 0.0300 0.5010 0.0249 0.0197 0.0620 99.9983
fda-4 1.0000 0.0042 0.0038 0.0017 0.5005 0.0075 0.0065 0.0056 99.9992
fda-5 1.0000 0.0038 0.0035 0.0015 0.5004 0.0066 0.0058 0.0044 100.0000
fda-6 1.0000 0.0038 0.0035 0.0015 0.5004 0.0066 0.0058 0.0044 100.0000
fda-7 1.0000 0.0038 0.0035 0.0015 0.5004 0.0066 0.0058 0.0044 100.0000
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Table 2.7 Performance of the estimation procedure where the residuals are generated with power
exponential covariance function (d) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 1.
Mean of the estimated coefficients, standard deviation, absolute bias, mean square error (×100)
and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9968 0.0525 0.0423 0.2758 0.4961 0.0755 0.0603 0.5705
ldaAR 0.9985 0.0486 0.0387 0.2361 0.4962 0.0702 0.0562 0.4938
ldaCS 0.9978 0.0389 0.0309 0.1514 0.4986 0.0549 0.0438 0.3013
fda-1 0.9960 0.0708 0.0564 0.5018 0.4951 0.1010 0.0813 1.0195 73.1399
fda-2 0.9975 0.0439 0.0347 0.1929 0.4980 0.0629 0.0496 0.3948 87.5389
fda-3 0.9975 0.0381 0.0305 0.1453 0.4987 0.0531 0.0425 0.2811 92.2253
fda-4 0.9978 0.0392 0.0311 0.1540 0.4977 0.0540 0.0434 0.2914 94.4211
fda-5 0.9978 0.0388 0.0302 0.1508 0.4975 0.0527 0.0420 0.2773 95.6881
fda-6 0.9979 0.0393 0.0306 0.1546 0.4977 0.0534 0.0424 0.2852 96.5184
fda-7 0.9990 0.0396 0.0308 0.1570 0.4986 0.0535 0.0423 0.2857 97.0882
fda-8 0.9985 0.0405 0.0317 0.1637 0.4981 0.0540 0.0429 0.2915 97.5117

𝑛 = 300

init 0.9975 0.0297 0.0236 0.0885 0.4989 0.0428 0.0352 0.1832
ldaAR 0.9972 0.0281 0.0224 0.0793 0.4992 0.0389 0.0316 0.1509
ldaCS 0.9988 0.0226 0.0180 0.0513 0.4995 0.0300 0.0238 0.0899
fda-1 0.9967 0.0391 0.0310 0.1539 0.4986 0.0588 0.0482 0.3456 73.4971
fda-2 0.9986 0.0254 0.0203 0.0648 0.4990 0.0335 0.0266 0.1122 87.5190
fda-3 0.9987 0.0221 0.0173 0.0490 0.4996 0.0293 0.0233 0.0859 92.1425
fda-4 0.9986 0.0219 0.0171 0.0479 0.4997 0.0294 0.0233 0.0862 94.3152
fda-5 0.9988 0.0213 0.0167 0.0456 0.5000 0.0287 0.0232 0.0823 95.5616
fda-6 0.9989 0.0213 0.0166 0.0454 0.5001 0.0289 0.0232 0.0832 96.3760
fda-7 0.9988 0.0212 0.0166 0.0449 0.5003 0.0291 0.0234 0.0843 96.9441
fda-8 0.9988 0.0212 0.0166 0.0449 0.5001 0.0292 0.0236 0.0852 97.3641

𝑛 = 500

init 0.9996 0.0212 0.0169 0.0450 0.4989 0.0316 0.0252 0.0999
ldaAR 0.9993 0.0189 0.0151 0.0356 0.4983 0.0294 0.0237 0.0868
ldaCS 0.9996 0.0170 0.0135 0.0288 0.4998 0.0235 0.0193 0.0553
fda-1 0.9996 0.0278 0.0222 0.0773 0.4984 0.0422 0.0333 0.1777 73.6172
fda-2 0.9992 0.0186 0.0150 0.0347 0.4995 0.0264 0.0216 0.0694 87.5609
fda-3 1.0002 0.0164 0.0130 0.0268 0.5001 0.0225 0.0183 0.0505 92.1497
fda-4 1.0001 0.0163 0.0129 0.0264 0.4999 0.0226 0.0184 0.0508 94.3084
fda-5 1.0000 0.0160 0.0127 0.0255 0.4996 0.0223 0.0182 0.0496 95.5492
fda-6 1.0000 0.0161 0.0128 0.0260 0.4995 0.0222 0.0182 0.0493 96.3576
fda-7 0.9999 0.0161 0.0128 0.0258 0.4994 0.0219 0.0179 0.0481 96.9249
fda-8 0.9999 0.0161 0.0128 0.0258 0.4994 0.0219 0.0177 0.0478 97.3423
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Table 2.8 Performance of the estimation procedure where the residuals are generated with power
exponential covariance function (d) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 2.
Mean of the estimated coefficients, standard deviation, absolute bias, mean square error (×100)
and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9967 0.0563 0.0454 0.3170 0.4957 0.0811 0.0649 0.6591
ldaAR 0.9980 0.0506 0.0399 0.2562 0.4970 0.0724 0.0578 0.5234
ldaCS 0.9982 0.0373 0.0294 0.1389 0.4983 0.0531 0.0425 0.2814
fda-1 0.9957 0.0766 0.0611 0.5872 0.4947 0.1094 0.0881 1.1964 85.6976
fda-2 0.9979 0.0440 0.0348 0.1934 0.4975 0.0633 0.0503 0.4010 98.9964
fda-3 0.9993 0.0239 0.0187 0.0569 0.4988 0.0343 0.0273 0.1177 99.9585
fda-4 0.9984 0.0224 0.0176 0.0505 0.5004 0.0305 0.0242 0.0931 99.9987
fda-5 0.9984 0.0224 0.0176 0.0505 0.5004 0.0305 0.0242 0.0931 100.0000
fda-6 0.9984 0.0224 0.0176 0.0505 0.5004 0.0305 0.0242 0.0931 100.0000
fda-7 0.9984 0.0224 0.0176 0.0505 0.5004 0.0305 0.0242 0.0931 100.0000
fda-8 0.9984 0.0224 0.0176 0.0505 0.5004 0.0305 0.0242 0.0931 100.0000

𝑛 = 300

init 0.9973 0.0318 0.0253 0.1014 0.4987 0.0461 0.0378 0.2118
ldaAR 0.9972 0.0297 0.0239 0.0888 0.4992 0.0400 0.0323 0.1597
ldaCS 0.9990 0.0216 0.0172 0.0468 0.4995 0.0289 0.0229 0.0835
fda-1 0.9964 0.0424 0.0336 0.1804 0.4984 0.0637 0.0521 0.4047 86.0991
fda-2 0.9987 0.0253 0.0201 0.0642 0.4990 0.0336 0.0266 0.1129 99.0443
fda-3 0.9992 0.0146 0.0114 0.0213 0.5003 0.0197 0.0159 0.0388 99.9593
fda-4 0.9993 0.0128 0.0100 0.0165 0.5000 0.0176 0.0139 0.0309 99.9987
fda-5 0.9993 0.0128 0.0100 0.0165 0.5000 0.0176 0.0139 0.0309 100.0000
fda-6 0.9993 0.0128 0.0100 0.0165 0.5000 0.0176 0.0139 0.0309 100.0000
fda-7 0.9993 0.0128 0.0100 0.0165 0.5000 0.0176 0.0139 0.0309 100.0000

𝑛 = 500

init 0.9994 0.0226 0.0180 0.0512 0.4987 0.0340 0.0270 0.1153
ldaAR 0.9993 0.0201 0.0161 0.0403 0.4983 0.0309 0.0250 0.0954
ldaCS 0.9993 0.0163 0.0130 0.0266 0.4995 0.0227 0.0186 0.0517
fda-1 0.9995 0.0301 0.0240 0.0906 0.4983 0.0456 0.0361 0.2081 86.1915
fda-2 0.9990 0.0186 0.0150 0.0346 0.4992 0.0265 0.0217 0.0699 99.0585
fda-3 1.0004 0.0111 0.0087 0.0122 0.5002 0.0148 0.0121 0.0219 99.9596
fda-4 1.0007 0.0100 0.0080 0.0100 0.5007 0.0129 0.0106 0.0168 99.9987
fda-5 1.0007 0.0100 0.0080 0.0100 0.5007 0.0129 0.0106 0.0168 100.0000
fda-6 1.0007 0.0100 0.0080 0.0100 0.5007 0.0129 0.0106 0.0168 100.0000
fda-7 1.0007 0.0100 0.0080 0.0100 0.5007 0.0129 0.0106 0.0168 100.0000
fda-8 1.0007 0.0100 0.0080 0.0100 0.5007 0.0129 0.0106 0.0168 100.0000
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Table 2.9 Performance of the estimation procedure where the residuals are generated with power
exponential covariance function (d) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 5.
Mean of the estimated coefficients, standard deviation, absolute bias, mean square error (×100)
and FVE in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9970 0.0582 0.0468 0.3390 0.4952 0.0841 0.0676 0.7089
ldaAR 0.9977 0.0528 0.0415 0.2789 0.4961 0.0772 0.0621 0.5956
ldaCS 0.9996 0.0274 0.0218 0.0747 0.4979 0.0396 0.0321 0.1572
fda-1 0.9956 0.0810 0.0646 0.6564 0.4943 0.1157 0.0933 1.3399 92.2949
fda-2 0.9995 0.0375 0.0296 0.1400 0.4966 0.0548 0.0441 0.3013 99.7252
fda-3 0.9993 0.0283 0.0203 0.0801 0.5004 0.0383 0.0274 0.1462 99.8787
fda-4 0.9991 0.0121 0.0053 0.0147 0.4995 0.0165 0.0073 0.0273 99.9461
fda-5 1.0001 0.0116 0.0022 0.0134 0.5005 0.0146 0.0030 0.0212 99.9842
fda-6 1.0000 0.0133 0.0029 0.0177 0.5004 0.0184 0.0041 0.0336 99.9979
fda-7 1.0000 0.0133 0.0028 0.0176 0.5004 0.0183 0.0040 0.0334 99.9990
fda-8 1.0000 0.0133 0.0028 0.0176 0.5004 0.0183 0.0040 0.0334 99.9998

𝑛 = 300

init 0.9972 0.0328 0.0260 0.1082 0.4986 0.0482 0.0395 0.2317
ldaAR 0.9971 0.0310 0.0251 0.0968 0.4994 0.0426 0.0344 0.1810
ldaCS 0.9995 0.0156 0.0123 0.0244 0.4996 0.0216 0.0171 0.0467
fda-1 0.9962 0.0449 0.0356 0.2027 0.4982 0.0673 0.0552 0.4524 92.6741
fda-2 0.9990 0.0213 0.0168 0.0454 0.4994 0.0291 0.0229 0.0846 99.8076
fda-3 0.9995 0.0196 0.0153 0.0384 0.4992 0.0271 0.0213 0.0736 99.9391
fda-4 1.0005 0.0075 0.0044 0.0056 0.4994 0.0105 0.0064 0.0111 99.9716
fda-5 0.9999 0.0023 0.0006 0.0005 0.5000 0.0037 0.0010 0.0014 99.9889
fda-6 1.0000 0.0025 0.0006 0.0006 0.4999 0.0049 0.0011 0.0024 99.9979
fda-7 1.0000 0.0012 0.0003 0.0001 0.5002 0.0039 0.0006 0.0015 99.9989
fda-8 1.0000 0.0012 0.0003 0.0001 0.5002 0.0039 0.0006 0.0015 99.9997

𝑛 = 500

init 0.9994 0.0232 0.0185 0.0539 0.4985 0.0352 0.0280 0.1242
ldaAR 0.9989 0.0209 0.0169 0.0437 0.4981 0.0327 0.0264 0.1073
ldaCS 0.9991 0.0119 0.0095 0.0142 0.4992 0.0168 0.0134 0.0281
fda-1 0.9995 0.0318 0.0254 0.1011 0.4981 0.0483 0.0382 0.2328 92.7586
fda-2 0.9988 0.0158 0.0127 0.0252 0.4988 0.0227 0.0183 0.0517 99.8272
fda-3 0.9989 0.0153 0.0123 0.0235 0.4989 0.0218 0.0176 0.0478 99.9574
fda-4 0.9997 0.0070 0.0050 0.0049 0.5002 0.0105 0.0072 0.0110 99.9811
fda-5 1.0000 0.0024 0.0007 0.0006 0.5001 0.0035 0.0011 0.0012 99.9923
fda-6 1.0000 0.0026 0.0006 0.0007 0.5003 0.0045 0.0011 0.0021 99.9979
fda-7 1.0001 0.0017 0.0004 0.0003 0.5000 0.0038 0.0007 0.0014 99.9989
fda-8 1.0001 0.0015 0.0003 0.0002 0.5001 0.0035 0.0007 0.0012 99.9997
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Table 2.10 Performance of the estimation procedure where the residuals are generated with rational
quadratic covariance function (e) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 1. Mean
of the estimated coefficients, standard deviation, absolute bias, mean square error (×100) and FVE
in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9967 0.0565 0.0455 0.3193 0.4957 0.0814 0.0651 0.6624
ldaAR 0.9982 0.0507 0.0399 0.2567 0.4968 0.0725 0.0580 0.5257
ldaCS 0.9983 0.0349 0.0275 0.1215 0.4986 0.0495 0.0396 0.2444
fda-1 0.9957 0.0774 0.0617 0.5994 0.4946 0.1105 0.0890 1.2213 87.2296
fda-2 0.9980 0.0413 0.0326 0.1706 0.4979 0.0594 0.0471 0.3521 98.4366
fda-3 0.9989 0.0265 0.0210 0.0704 0.4988 0.0379 0.0302 0.1434 99.8285
fda-4 0.9985 0.0271 0.0212 0.0733 0.4991 0.0372 0.0296 0.1383 99.9800
fda-5 0.9987 0.0259 0.0203 0.0671 0.4987 0.0350 0.0276 0.1224 99.9977
fda-6 0.9987 0.0259 0.0203 0.0671 0.4987 0.0350 0.0276 0.1224 99.9997
fda-7 0.9987 0.0259 0.0203 0.0671 0.4987 0.0350 0.0276 0.1224 100.0000
fda-8 0.9987 0.0259 0.0203 0.0671 0.4987 0.0350 0.0276 0.1224 100.0000

𝑛 = 300

init 0.9973 0.0319 0.0253 0.1021 0.4987 0.0463 0.0381 0.2144
ldaAR 0.9971 0.0297 0.0239 0.0889 0.4992 0.0404 0.0327 0.1630
ldaCS 0.9991 0.0203 0.0161 0.0412 0.4995 0.0271 0.0215 0.0736
fda-1 0.9964 0.0429 0.0339 0.1846 0.4984 0.0643 0.0527 0.4132 87.6273
fda-2 0.9988 0.0238 0.0190 0.0568 0.4991 0.0317 0.0251 0.1002 98.4851
fda-3 0.9991 0.0159 0.0125 0.0255 0.5002 0.0215 0.0173 0.0462 99.8287
fda-4 0.9991 0.0157 0.0121 0.0248 0.5001 0.0214 0.0171 0.0457 99.9800
fda-5 0.9993 0.0144 0.0113 0.0209 0.5005 0.0202 0.0164 0.0408 99.9977
fda-6 0.9993 0.0144 0.0113 0.0209 0.5005 0.0202 0.0164 0.0408 99.9997
fda-7 0.9993 0.0144 0.0113 0.0209 0.5005 0.0202 0.0164 0.0408 100.0000
fda-8 0.9993 0.0144 0.0113 0.0209 0.5005 0.0202 0.0164 0.0408 100.0000

𝑛 = 500

init 0.9995 0.0227 0.0181 0.0514 0.4987 0.0341 0.0271 0.1160
ldaAR 0.9993 0.0200 0.0160 0.0399 0.4982 0.0310 0.0250 0.0962
ldaCS 0.9994 0.0153 0.0122 0.0235 0.4996 0.0213 0.0174 0.0454
fda-1 0.9995 0.0304 0.0243 0.0924 0.4982 0.0461 0.0365 0.2125 87.7225
fda-2 0.9991 0.0176 0.0142 0.0310 0.4993 0.0249 0.0204 0.0620 98.5022
fda-3 1.0003 0.0121 0.0096 0.0146 0.5002 0.0163 0.0133 0.0265 99.8293
fda-4 1.0005 0.0120 0.0096 0.0145 0.5004 0.0160 0.0131 0.0256 99.9801
fda-5 1.0002 0.0114 0.0090 0.0129 0.5000 0.0151 0.0121 0.0227 99.9977
fda-6 1.0002 0.0114 0.0090 0.0129 0.5000 0.0151 0.0121 0.0227 99.9997
fda-7 1.0002 0.0114 0.0090 0.0129 0.5000 0.0151 0.0121 0.0227 100.0000
fda-8 1.0002 0.0114 0.0090 0.0129 0.5000 0.0151 0.0121 0.0227 100.0000
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Table 2.11 Performance of the estimation procedure where the residuals are generated with rational
quadratic covariance function (e) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 2. Mean
of the estimated coefficients, standard deviation, absolute bias, mean square error (×100) and FVE
in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9967 0.0547 0.0441 0.2993 0.4960 0.0788 0.0628 0.6206
ldaAR 0.9983 0.0498 0.0393 0.2473 0.4968 0.0714 0.0571 0.5091
ldaCS 0.9977 0.0425 0.0337 0.1805 0.4981 0.0602 0.0481 0.3618
fda-1 0.9957 0.0730 0.0583 0.5343 0.4951 0.1042 0.0839 1.0868 78.3365
fda-2 0.9972 0.0479 0.0381 0.2297 0.4975 0.0687 0.0544 0.4721 96.4030
fda-3 0.9981 0.0368 0.0293 0.1358 0.4982 0.0520 0.0418 0.2699 99.4758
fda-4 0.9982 0.0377 0.0299 0.1424 0.4979 0.0528 0.0421 0.2791 99.9264
fda-5 0.9986 0.0356 0.0280 0.1266 0.4975 0.0483 0.0384 0.2335 99.9902
fda-6 0.9986 0.0356 0.0280 0.1266 0.4975 0.0483 0.0384 0.2335 99.9987
fda-7 0.9986 0.0356 0.0280 0.1266 0.4975 0.0483 0.0384 0.2335 99.9998
fda-8 0.9986 0.0356 0.0280 0.1266 0.4975 0.0483 0.0384 0.2335 100.0000

𝑛 = 300

init 0.9974 0.0309 0.0246 0.0959 0.4988 0.0445 0.0365 0.1977
ldaAR 0.9972 0.0290 0.0233 0.0848 0.4991 0.0393 0.0317 0.1542
ldaCS 0.9987 0.0246 0.0195 0.0606 0.4994 0.0327 0.0259 0.1066
fda-1 0.9966 0.0403 0.0320 0.1633 0.4986 0.0607 0.0497 0.3682 78.7132
fda-2 0.9985 0.0276 0.0220 0.0764 0.4989 0.0364 0.0290 0.1327 96.4278
fda-3 0.9985 0.0218 0.0171 0.0477 0.4999 0.0290 0.0232 0.0842 99.4738
fda-4 0.9985 0.0218 0.0171 0.0478 0.4998 0.0293 0.0235 0.0858 99.9259
fda-5 0.9988 0.0198 0.0157 0.0394 0.5004 0.0271 0.0224 0.0733 99.9900
fda-6 0.9988 0.0198 0.0157 0.0394 0.5004 0.0271 0.0224 0.0733 99.9987
fda-7 0.9988 0.0198 0.0157 0.0394 0.5004 0.0271 0.0224 0.0733 99.9998
fda-8 0.9988 0.0198 0.0157 0.0394 0.5004 0.0271 0.0224 0.0733 100.0000

𝑛 = 500

init 0.9995 0.0221 0.0176 0.0490 0.4989 0.0330 0.0263 0.1086
ldaAR 0.9993 0.0197 0.0158 0.0389 0.4983 0.0302 0.0245 0.0910
ldaCS 0.9994 0.0184 0.0146 0.0339 0.4996 0.0257 0.0211 0.0658
fda-1 0.9996 0.0288 0.0229 0.0826 0.4984 0.0435 0.0344 0.1892 78.8101
fda-2 0.9991 0.0201 0.0162 0.0405 0.4993 0.0286 0.0235 0.0819 96.4486
fda-3 1.0003 0.0162 0.0128 0.0262 0.5000 0.0222 0.0181 0.0491 99.4752
fda-4 1.0003 0.0162 0.0129 0.0263 0.4999 0.0224 0.0182 0.0501 99.9261
fda-5 0.9999 0.0151 0.0120 0.0227 0.4994 0.0208 0.0170 0.0434 99.9900
fda-6 0.9999 0.0151 0.0120 0.0227 0.4994 0.0208 0.0170 0.0434 99.9987
fda-7 0.9999 0.0151 0.0120 0.0227 0.4994 0.0208 0.0170 0.0434 99.9998
fda-8 0.9999 0.0151 0.0120 0.0227 0.4994 0.0208 0.0170 0.0434 100.0000
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Table 2.12 Performance of the estimation procedure where the residuals are generated with rational
quadratic covariance function (e) where scale parameter 𝑎0 = 1 and shape parameter 𝑏0 = 5. Mean
of the estimated coefficients, standard deviation, absolute bias, mean square error (×100) and FVE
in percentage are summarized upto four decimal places.

Method 𝛽1 𝛽2 FVE

Mean SD AB MSE Mean SD AB MSE %-age

𝑛 = 100

init 0.9967 0.0504 0.0407 0.2545 0.4965 0.0725 0.0577 0.5251
ldaAR 0.9986 0.0466 0.0369 0.2173 0.4965 0.0671 0.0539 0.4508
ldaCS 0.9970 0.0473 0.0377 0.2238 0.4978 0.0668 0.0531 0.4458
fda-1 0.9959 0.0648 0.0517 0.4205 0.4960 0.0922 0.0742 0.8505 62.1253
fda-2 0.9964 0.0505 0.0405 0.2561 0.4976 0.0721 0.0572 0.5199 89.2976
fda-3 0.9970 0.0462 0.0368 0.2136 0.4974 0.0644 0.0513 0.4142 97.4903
fda-4 0.9981 0.0464 0.0363 0.2149 0.4957 0.0647 0.0520 0.4201 99.4795
fda-5 0.9986 0.0441 0.0345 0.1941 0.4952 0.0621 0.0497 0.3872 99.9012
fda-6 0.9987 0.0446 0.0350 0.1986 0.4958 0.0622 0.0500 0.3885 99.9827
fda-7 0.9986 0.0440 0.0343 0.1934 0.4959 0.0625 0.0504 0.3921 99.9971
fda-8 0.9986 0.0440 0.0343 0.1934 0.4959 0.0625 0.0504 0.3921 99.9995

𝑛 = 300

init 0.9977 0.0286 0.0229 0.0820 0.4991 0.0406 0.0332 0.1646
ldaAR 0.9975 0.0271 0.0215 0.0737 0.4991 0.0367 0.0296 0.1346
ldaCS 0.9983 0.0272 0.0216 0.0739 0.4994 0.0362 0.0288 0.1309
fda-1 0.9972 0.0355 0.0283 0.1264 0.4991 0.0539 0.0441 0.2896 62.2661
fda-2 0.9983 0.0289 0.0229 0.0835 0.4990 0.0384 0.0308 0.1473 89.2161
fda-3 0.9981 0.0266 0.0209 0.0712 0.4992 0.0355 0.0282 0.1257 97.4664
fda-4 0.9981 0.0260 0.0205 0.0677 0.4992 0.0351 0.0278 0.1227 99.4727
fda-5 0.9984 0.0244 0.0192 0.0594 0.4996 0.0332 0.0267 0.1097 99.8990
fda-6 0.9985 0.0243 0.0191 0.0589 0.4997 0.0334 0.0269 0.1115 99.9820
fda-7 0.9985 0.0237 0.0189 0.0562 0.4998 0.0334 0.0270 0.1112 99.9969
fda-8 0.9985 0.0237 0.0189 0.0562 0.4998 0.0334 0.0270 0.1112 99.9995

𝑛 = 500

init 0.9996 0.0207 0.0165 0.0430 0.4992 0.0304 0.0245 0.0921
ldaAR 0.9993 0.0187 0.0151 0.0351 0.4985 0.0281 0.0229 0.0792
ldaCS 0.9996 0.0201 0.0160 0.0404 0.4997 0.0282 0.0230 0.0792
fda-1 0.9997 0.0256 0.0204 0.0654 0.4988 0.0385 0.0304 0.1484 62.3377
fda-2 0.9992 0.0210 0.0168 0.0440 0.4995 0.0299 0.0244 0.0892 89.2460
fda-3 1.0001 0.0193 0.0153 0.0372 0.4999 0.0270 0.0219 0.0728 97.4696
fda-4 0.9997 0.0188 0.0150 0.0355 0.4993 0.0269 0.0219 0.0724 99.4726
fda-5 0.9994 0.0180 0.0142 0.0322 0.4989 0.0260 0.0211 0.0674 99.8988
fda-6 0.9993 0.0180 0.0142 0.0323 0.4988 0.0258 0.0210 0.0668 99.9818
fda-7 0.9992 0.0176 0.0140 0.0309 0.4988 0.0258 0.0209 0.0663 99.9969
fda-8 0.9992 0.0176 0.0140 0.0309 0.4988 0.0258 0.0209 0.0663 99.9995
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2.4.3 Simulation results

Simulation results associated with the Brownian motion are shown in Table 2.1. In this situation,

we observe that our approach produces better results in terms of the dispersion measures. Tables

2.2, 2.3 and 2.4 show results for linear processes, here our proposed method performs better in

situations with working correlation matrix as AR, but is comparable for an exchangeable structure

for 𝑙0 = 1, 2, 3. Moreover, in our proposed method, as 𝑙 increases, all dispersion measures, such

as MSE, decrease. The results based on the OU process are documented in Tables 2.5 and 2.6.

Our method outperforms the existing methods for both situations and, as 𝜇0 increases, the MSE

decreases. For three different parameter choices of the power exponential and rational quadratic

covariance structure, numerical results are presented in Tables 2.7, 2.8, 2.9 and 2.10, 2.11, 2.12,

respectively. As before, we observe that our proposed method is finer than the existing ones in all

sub-cases; but interestingly, when 𝑏0 increases, MSE decreases for the power exponential, whereas

it increases for the rational quadratic covariance structure, as expected due to the covariance

structure. Overall, we observe that for all the above situations, as sample size increases, the

dispersion measures, for example SD and MSE decrease. It establishes that as the sample size

increases, the parameter estimates get closer and closer to the true parameters. From empirical

studies, it was observed that if the estimated number of principal components 𝜅̂ > 𝜅0 then Q( 𝜷̂)

may not be continuous at 𝜷̂. In each of the above situations, the SDs of the proposed methods

decrease as we increase 𝜅0 and stabilize after some value of 𝜅0 where the fraction of variance (FVE)

is approximately 100%.

2.5 Real data analysis

In this section, we apply our proposed method to motivating examples in two different data-sets.

2.5.1 Beijing’s PM2.5 pollution study

In the atmosphere, suspended microscopic particles of solid and liquid matter are commonly

known as particulates or particulate matter (PM). Such particulates often have a strong noxious
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impact on human health, climate, and visibility. One such common and fine type of atmospheric

particle is PM2.5 with a diameter less than 2.5 micrometers. Many developed and developing

cities across the world are experiencing chronic air pollution, with major pollutant being PM2.5;

Beijing and a substantial part of China are among such places. Some studies show that there are

many non-ignorable sources of variability in the distribution and transmission pattern of PM2.5,

which are confounded with secondary chemical generation. The atmospheric PM2.5 data used

in our analysis were collected from the UCI machine learning repository https://archive.ics.uci.

edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data (Liang et al., 2015). The data-set includes

daily measurements of PM2.5 and associated covariates at twelve different locations in China,

viz., Aotizhongxin, Changping, Dingling, Dongsi, Guanyuan, Gucheng, Huairou, Nongzhanguan,

Shunyi, Tiantan, Wanliu, and Wanshouxigong during January 2017. After excluding missing

data, there were 608 hourly data points in Beijing2017-data. We assume that the atmospheric

measurements are independent since they are located quite apart. The objective of our analysis

is to describe the trend of the functional response PM2.5 (as shown in Figure 2.1) and to evaluate

the effect of covariates including chemical compounds such as sulfur dioxide (SO2), nitrogen

dioxide (NO2), carbon monoxide (CO) and ozone (O3) over time. We smoothed the covariates and

responses to reduce variability and center them. Subsequently, we consider the following model

𝑌𝑖 (𝑡) = 𝛽0 + SO2(𝑡)𝛽1 + NO2(𝑡)𝛽2 + CO(𝑡)𝛽3 + O3(𝑡)𝛽4 + 𝑒𝑖 (𝑡) (2.16)

We use Algorithm 2.1 to estimate the coefficients of the regression model mentioned above.

Through the simulation results, we observe that if the values of 𝜅0 increase, the standard deviation

of the coefficients decreases. For small FVEs such as 50%, the corresponding 𝜅0 = 1 and the

estimation procedure performs poorly; whereas for large FVE percentages, the estimation procedure

has adequately improved in terms of standard error. The estimated values for 𝛽0, 𝛽1, 𝛽2, 𝛽3, and

𝛽4 produce similar results across different choices of 𝜅0. From the estimated standard error, using

the scree plot, we conclude that the suitable choice of 𝜅0 is approximately 10. The estimated

scaled eigen-values are provided in Figure 2.2 which clearly shows their decay rate. The estimated
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coefficients with standard error are 0.0009 (1.1644), 0.0829 (0.2584), 0.9503 (0.1586), 0.0196

(0.0037) and 1.1523 (0.1198) respectively.

Figure 2.2 Beijing2017-data results: Scree plots of fraction of variance explained (FVE).

2.5.2 DTI study for sleep apnea patients

MRI is a powerful technique for investigating the structural and functional changes in the brain

during pathological and neuro-psychological processes. Due to the advancement in diffusion tensor

imaging (DTI), several studies on white matter alterations associated with clinical variables can be

found in the recent literature. For our analysis, we use Apnea-data obtained from one such study on

obstructive sleep apnea (OSA) patients (Xiong et al., 2017). The data consist of 29 male patients

between the ages of 30-55 years who underwent a study for the diagnosis of continuous positive

airway pressure (CPAP) therapy. Among those who have sleep disorder other than OSA, night-

shift workers, patients with psychiatric disorders, hypertension, diabetes, and other neurological

disorders were excluded. In this study, the psychomotor vigilance task (PVT) was performed in
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which a light was randomly switched-on on a screen for several seconds in a certain interval of

time and subjects were asked to press a button as soon as they saw the light appear on screen; such

an experiment provides a numerical measure of sleepiness by counting the number of “lapses” for

each individual.

DTI was performed on a 3T MRI scanner using a commercial 32-channel head coil, followed

by analysis using tract-based spatial statistics to investigate the difference in fractional anisotropy

(FA) and other DTI parameters. Image acquisition is as follows. An axial T1-weighted image of

the brain (3D-BRAVO) is collected with repetition time (TR) = 12ms, echo time (TE) = 5,2ms, flip

angle = 13◦, inversion time = 450 ms, matrix = 384 × 256, voxel size = 1.2 × 0.57 × 0.69mm and

scan time = 2 min 54 s. DTI are obtained in the axial plane using a spin-echo echo planner imaging

sequence with TR = 4500ms, TE = 89.4ms, field of view = 20 × 20cm2, matrix size = 160 × 132,

slice thickness = 3mm, slice spacing = 1mm, b-values = 0, 1000 s/mm2.

Our objective is to investigate the structural alteration of white matter using DTI in the patients

with OSA over each voxel at various regions of the brain (called ROIs). Thus, our response variable

is one of the DTI parameters, viz., fractional anisotropy (FA) and we are interested in studying the

effect of the changes of FA over continuous domain such as voxels with the interaction of the lapses

and the voxel locations in each ROIs. We consider the following model for each ROI.

FA𝑖 (𝑠) = 𝛽0 + 𝛽1lapses𝑖 × 𝑠 + 𝑒𝑖 (𝑠) (2.17)

where 𝑠 ∈ S, a set of voxels in the considered ROIs. Using the Algorithm 2.1, we estimate the

coefficients 𝛽1 and 𝛽2 as mentioned in the model 2.17 and the results are presented in Table 2.13.

We find that the coefficient estimates are close enough to their initial estimates and the estimated

standard error is smaller for the coefficients based on the proposed method. Here 𝜅0 (i.e., the

number of eigen-functions) are determined by FVE for simplicity.

2.6 Discussion

In this chapter, we propose an estimation procedure for the constant linear effects model, which is

commonly used in statistics (Zhang and Banerjee, 2021) especially in spatial modelling. One of
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Table 2.13 Apnea-data results: Estimated values and associated standard errors for the regression
coefficients are provided upto four decimal places based on the existing and proposed methods.
First line corresponding to each ROI shows results based on initial estimates and the second line
corresponds to that of proposed estimates.

𝛽0 𝛽1

# functional
points Estimate Std. Error (×100) Estimate (×100) Std. Error (×100)

ROI.6 659 0.4512 0.1343 -0.0606 0.0130
0.4512 0.0983 -0.0605 0.0028

ROI.7 1362 0.5048 0.0628 0.0309 0.0061
0.5050 0.0681 0.0342 0.0007

ROI.8 1370 0.5256 0.0586 -0.0667 0.0057
0.5271 0.0346 -0.0733 0.0006

ROI.9 690 0.4951 0.0910 0.2904 0.0088
0.5443 0.0874 0.1660 0.0014

ROI.10 699 0.4951 0.0892 0.3314 0.0086
0.5262 0.1398 0.4231 0.0014

ROI.11 968 0.4372 0.0979 0.1323 0.0095
0.4380 0.0637 0.1311 0.0009

ROI.12 968 0.4529 0.0948 0.0965 0.0092
0.4664 0.0750 0.0504 0.0013

ROI.13 992 0.5448 0.1060 0.3453 0.0103
0.5449 0.0856 0.3559 0.0011

ROI.14 992 0.5435 0.1068 0.3432 0.0104
0.5436 0.0754 0.3437 0.0003

ROI.37 1236 0.3695 0.0779 -0.1126 0.0076
0.3713 0.0669 -0.1175 0.0017

ROI.38 1155 0.3564 0.0819 -0.1356 0.0079
0.3578 0.0420 -0.1356 0.0009

ROI.39 1124 0.4618 0.0760 0.1972 0.0074
0.4621 0.0615 0.1996 0.0007

ROI.40 1125 0.4786 0.0658 0.0953 0.0064
0.4780 0.0369 0.1016 0.0005

ROI.45 380 0.4189 0.1071 0.1647 0.0104
0.4190 0.0175 0.1648 0.0001

ROI.46 376 0.4074 0.1033 0.1988 0.0100
0.4074 0.0159 0.1994 0.0002

ROI.47 596 0.4596 0.0932 0.1304 0.0090
0.4594 0.0191 0.1349 0.0001

ROI.48 600 0.4045 0.0868 0.1100 0.0084
0.4036 0.0644 0.1067 0.0006
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the key factors of this estimation procedure is the fact that it is based on the quadratic inference

methodology, which has played a huge role in the analysis of correlated data since it was discovered

by Qu et al. (2000). In contrast to the existing method, our approach allows the number of repeated

measurements to grow with sample size; therefore, the trajectories of individuals can be observed

on a dense grid of a continuum domain. Instead of assuming a working correlation structure,

we propose a data-driven way by estimating the eigen-functions that are obtained by functional

principal component analysis. Here, we achieve
√
𝑛−consistency of the parametric estimates in the

regression model, even though the eigen-functions are estimated non-parametrically.

Additionally, our method is easy to implement in a wide range of applications. The applicability

of the proposed method is illustrated by extensive simulation studies. Moreover, two real-data

applications in different scientific domains confirm the efficacy of the proposed method.

2.7 Technical details

2.7.1 Some preliminary definitions and concepts of operators

In this section, we discuss some basic concepts of operators and discuss some useful properties on

it. This can be found in Dunford and Schwartz (1988); Riss and Sz-Nagy (1990) along many more

textbooks in functional analysis. Since FDA deals with continuous-time stochastic process, we need

to be equipped with the dealing of random function and hence an overview of functional spaces

is required. Perturbation theory of compact operators is required to discuss functional principal

component analysis and these are demonstrated here with some useful results in our context. In

the next subsection, we discuss the functional principal component analysis in brief and show the

estimation techniques of eigen-values and eigen-functions based on the data at hand. This plays a

fundamental role in our proposed method.

Consider the standard L2 [0, 1] space that defines the set of square-integrable functions defined

on the closed set [0, 1] that takes values on the real line. The space L2 [0, 1] is equipped with an

inner product and is defined as

⟨ 𝑓 , 𝑔⟩ =
∫ 1

0
𝑓 (𝑡)𝑔(𝑡)𝑑𝑡 (2.18)
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for 𝑓 and 𝑔 in that space, and forms a Hilbert space. Moreover, we denote the norm ∥ · ∥2 in L2

which is defined as ∥ 𝑓 ∥2 =
{∫

𝑓 2(𝑢)𝑑𝑢
}1/2. Define F be an operator that assigns an element 𝑓 in

L2 [0, 1] to a new element F 𝑓 in L2 [0, 1]. The operator is linear if F(𝛼 𝑓 + 𝛽𝑔) = 𝛼F 𝑓 + 𝛽F𝑔

for any scalar 𝛼 and 𝛽. It is said to be bounded if for any positive constant 𝑀 (which may depend

on 𝑓 ) we have ∥F 𝑓 ∥ ≤ 𝑀 ∥ 𝑓 ∥ for all 𝑓 ∈ L2 [0, 1] where the largest bound for all 𝑀 is called the

norm of the operator F, denoted by ∥F∥, and it is defined as ∥F∥ = sup∥ 𝑓 ∥≤1 ∥F 𝑓 ∥. The operator

is bounded if and only if it is continuous. F is said to be self-adjoint if ⟨F 𝑓 , 𝑔⟩ = ⟨ 𝑓 ,F𝑔⟩ and

becomes non-negetive definite if ⟨F 𝑓 , 𝑓 ⟩ ≥ 0 for all 𝑓 ∈ L2 [0, 1].

A linear mapping F 𝑓 (·) =
∫
𝑅(·, 𝑢) 𝑓 (𝑢)𝑑𝑢 for any function 𝑓 ∈ L2 [0, 1] and for some

integrable function 𝑅(·, ·) on [0, 1] × [0, 1]. This function is preferably known as integral operator

and the bivariate function 𝑅 is known as a kernel in statistics and functional analysis literature.

Note that the above linear mapping is bounded since

|F 𝑓 (𝑡) |2 ≤
∫

𝑅2(𝑡, 𝑢)𝑑𝑢
∫

𝑓 2(𝑢)𝑑𝑢 using Cauchy-Schwarz inequality

= ∥ 𝑓 ∥22
∫

𝑅2(𝑡, 𝑢)𝑑𝑢 (2.19)

Furthermore, ∥F 𝑓 ∥22 ≤ ∥ 𝑓 ∥
2
2

∫ ∫
𝑅2(𝑠, 𝑡)𝑑𝑠𝑑𝑡. under the assumption that

∫ ∫
𝑅2(𝑢, 𝑣)𝑑𝑢𝑑𝑣 < ∞.

It is easy to see that F 𝑓 (·) is uniformly continuous and compact for a non-negative definite

symmetric kernel 𝑅.

For some 𝜆, in Fredholm integral equation , F𝜙 = 𝜆𝜙 has non-zero solution 𝜙 then we call

𝜆 as eigen-value of F and the solution of the eigen-equation is called eigen-functions, altogether,

the pair of eigen-values and eigen-function, viz., (𝜆, 𝜙) are called eigen-elements. Let 𝑓1 and 𝑓2

be the elements in Hilbert space H then the tensor product operator ( 𝑓1
⊗

𝑓2) : H → H and

defined by ( 𝑓1
⊗

𝑓2) (𝑢) = ⟨ 𝑓1, 𝑔⟩ 𝑓2 for 𝑔 ∈H. For a compact self-adjoint operator in L2 [0, 1],

let {(𝜆𝑘 , 𝜙𝑘 ) : 𝑘 ≥ 1} be as set of eigen-components such that 𝜙𝑘s are orthogonal. Then for any

function 𝑓 ∈ L2 [0, 1], it can be represented as

𝑓 = 𝑓0 +
∞∑︁
𝑟=1

P𝑟 (2.20)
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where P𝑟 is the projection operator for eigen-spaces 𝜆𝑟 . In our particular situation P𝑟 = 𝜙𝑟
⊗

𝜙𝑟 .

Moreover, for a suitable 𝑓0 such that F 𝑓0 = 0, it can be shown that

F =

∞∑︁
𝑟=1

𝜆𝑟P𝑟 (2.21)

where 𝜆𝑟 is repeated as its multiplicity. Due to non-negative definiteness of F, the eigen-values

are ordered as 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 .

Now we discuss Mercer’s theorem (J Mercer, 1909) for a symmetric continuous non-negative

definite kernel function 𝑅. It states that, for {(𝜆𝑟 , 𝜙𝑟)}𝑟≥1 be the set of eigen-components, such

kernel 𝑅 has the following representation

𝑅(𝑠, 𝑡) =
∞∑︁
𝑟=1

𝜆𝑟𝜙𝑟 (𝑠)𝜙𝑟 (𝑡) (2.22)

where the sum is absolutely and uniformly convergence.

In this paper, we assume that the eigen-values are distinct for mathematical simplicity. We

conclude this subsection perturbation theory of compact operators in the sense that every sub-

sequences of {F 𝑓𝑛} is a Cauchy sequence. In the statistical literature, this can be found in Hall and

Hosseini-Nasab (2006, 2009). This is useful to find the bound of eigen-components in different

applications.

Suppose for self-adjoint compact operator on Hilbert space H consider two operators F and

G, define perturbation operator Δ = G −F such that G = F + Δ where G is an approximation

to F where Δ amount of error is occurred. Let F and G have kernels 𝐹 and 𝐺 respectively with

eigen-elements (𝜃𝑟 , 𝜓𝑟) and (𝜆𝑟 , 𝜙𝑟). For simplicity, we assume that the eigen-values are distinct.

Then the following Lemma provides perturbation of the eigen-functions.

Lemma 2.7.1 (Theorem 5.1.8 in Hsing and Eubank (2015)). Let (𝜆, 𝜙) be the eigen-components

of F and (𝜃, 𝜓) be that of G with multiplicity of all eigen-values are restricted to be 1. Define

𝜂𝑘 = min𝑟≠𝑘 |𝜆𝑟 − 𝜆𝑘 |. Assume ⟨𝜙𝑟 , 𝜓𝑟⟩ ≥ 0 and 𝜂𝑘 > 0. Then

𝜓𝑘 − 𝜙𝑘 =
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜃𝑘 − 𝜆𝑟)−1P𝑟Δ𝜓𝑘 +P𝑘 (𝜓𝑘 − 𝜙𝑘 ) (2.23)
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The above equation follows

𝜓𝑘 − 𝜙𝑘 =
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜃𝑘 − 𝜆𝑟)−1P𝑟Δ𝜓𝑘 +𝑂 (∥Δ∥2) (2.24)

Remark 2.7.1. Equation (2.24) plays an important role in finding the bound of the proposed

estimator introduced in Section 2.2.2. Note that sup𝑟≥1 |𝜃𝑟 − 𝜆𝑟 | ≤ ∥Δ∥ ≤ inf𝑟≠𝑘 |𝜆𝑘 − 𝜆𝑟 | (see

Theorem 4.2.8 in Hsing and Eubank (2015) for proof). Thus, it is easy to see, |𝜃𝑟 − 𝜆𝑟 | ≤ |𝜆𝑘 − 𝜆𝑟 |

which implies from Equation (2.23)

𝜓𝑘 − 𝜙𝑘 =
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1
∞∑︁
𝑠=0

(
𝜆𝑘 − 𝜃𝑟
𝜆𝑘 − 𝜆𝑟

) 𝑠
P𝑟Δ{𝜙𝑘 + (𝜓𝑘 − 𝜙𝑘 )} +P𝑘 (𝜓𝑘 − 𝜙𝑘 )

=

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1P𝑟Δ𝜙𝑘 +
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1P𝑟Δ(𝜓𝑘 − 𝜙𝑘 )

+
∞∑︁
𝑟=1
𝑟≠𝑘

∞∑︁
𝑠=1

(𝜆𝑘 − 𝜆𝑠)𝑠
(𝜆𝑘 − 𝜆𝑟)𝑠+1

P𝑟Δ𝜓𝑘 +P𝑘 (𝜓𝑘 − 𝜙𝑘 ) (2.25)

Moreover, using Bessel’s inequality 1 , we can bound last three terms in the above equation by

∥Δ∥2.

Another useful tool in functional data analysis is Karhunen-Loève expansions Karhunen (1946);

Loève (1946) for random function 𝑒(𝑡) which is mean zero, second order process with kernel 𝑅 is

defined in Sub-section 2.2.3. It states that, with probability 1, the random function can be expressed

as

𝑒𝑖 =

∞∑︁
𝑟=1

𝜉𝑖𝑟𝜙𝑟 , where 𝜉𝑖𝑟 := ⟨𝑒𝑖, 𝜙𝑟⟩ (2.26)

The random variables 𝜉𝑖𝑟 are uncorrelated with mean zero and variance𝜆𝑟 . This provides a sufficient

and necessary condition for the decomposition of a random process.

2.7.2 Some useful lemmas

In this section, we represent some useful lemmas. For convenience, let us recall the notation.

Assume that𝑚𝑖s are all of the same order, viz,𝑚 ≡ 𝑚(𝑛). Define, 𝑑𝑛1(ℎ) = ℎ2+ℎ𝑚/𝑚 and 𝑑𝑛2(ℎ) =
1Bessel’s inequality: for any 𝑓 ∈H,

∑∞
𝑘=1 | ⟨ 𝑓 , 𝜙𝑘⟩ |2 ≤ ∥ 𝑓 ∥2
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ℎ4 + ℎ3𝑚/𝑚 + ℎ2𝑚/𝑚2 where 𝑚 = lim𝑛→∞ 𝑛−1 ∑𝑛
𝑖=1 𝑚/𝑚𝑖 and 𝑚 = lim𝑛→∞ 𝑛−1 ∑𝑛

𝑖=1(𝑚/𝑚𝑖)2.

Denote 𝛿𝑛1(ℎ) =
{
𝑑𝑛1(ℎ) log 𝑛/(𝑛ℎ2)

}1/2, 𝛿𝑛2(ℎ) =
{
𝑑𝑛2(ℎ) log 𝑛/(𝑛ℎ4)

}1/2 and 𝛿𝑛 (ℎ) = ℎ2 +

𝛿𝑛1(ℎ) + 𝛿2
𝑛2(ℎ). Further, 𝜈𝑎,𝑏 =

∫
𝑡𝑎𝐾𝑏 (𝑡)𝑑𝑡. Define, W = (𝝓(𝑡1)T, · · · , 𝝓(𝑡𝑚)T)T be matrix

of order 𝑚 × 𝜅0 obtained after stacking all 𝝓𝑘s and random components 𝝃𝑖 = (𝜉𝑖1, · · · , 𝜉𝑖𝜅0)T.

Furthermore, 𝝃 has mean zero and variance 𝚲 which is a diagonal matrix with components

𝜆1, · · · , 𝜆𝑘0 . Define the indicator function 1(𝑎 = 𝑏) = 1 if 𝑎 = 𝑏 and zero otherwise.

Lemma 2.7.2. Consider 𝑍1, · · · , 𝑍𝑛 be independent and identically distributed random variables

with mean zero and finite variance. Suppose that there exists an 𝑀 such that 𝑃( |𝑍𝑖 | ≤ 𝑀) = 1

for all 𝑖 = 1, · · · , 𝑛. Let 𝑇𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑍𝑖. then, 1

𝑛

∑𝑛
𝑖=1 𝑍𝑖 = 𝑂 ((log 𝑛/𝑛)1/2 almost surely. If√︁

𝑉𝑎𝑟 (𝑇𝑛) = 𝑂 ((log 𝑛/𝑛)1/2) then 𝑇𝑛 = 𝑂 (log 𝑛/𝑛) almost surely.

Proof. Bernstein’s inequality states that if 𝑍1, · · · , 𝑍𝑛 be centered independent bounded random

variables with probability 1. Let 𝑇𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝑍𝑖, then let Var{𝑇𝑛} = 𝜎2

𝑛 . Then for any positive

real number 𝑢, we have 𝑃( |𝑇𝑛 | ≥ 𝑢) ≤ exp{− 𝑛𝑢2

2𝜎2
𝑛+2𝑀𝑢/3

} where 𝑀 is such that 𝑃( |𝑍𝑖 | ≤ 𝑀) = 1.

Moreover, if 𝑇𝑛 converges to its limit in probability fast enough, then it converge almost surely

in the limit, i.e., if for any 𝑢 > 0,
∑∞
𝑛=1 𝑃( |𝑇𝑛 | ≥ 𝑢) < ∞ them 𝑇𝑛 converges to zero almost

surely. Now, choose 𝑢 =

√︃
4𝜎2

𝑛 log 𝑛
𝑛
+ 4𝑀 log 𝑛

3𝑛 . Thus,
∑∞
𝑛=1 𝑃( |𝑇𝑛 | ≥ 𝑢) <

∑∞
𝑛=1 1/𝑛2 which is finite.

Therefore, 𝑇𝑛 = 𝑂 (𝑢) almost surely. Now let 𝜎𝑛 ≤
√︁

4𝑀2 log 𝑛/9𝑛, we have, 𝑇𝑛 = 𝑂 (log 𝑛/𝑛) and

if 𝜎𝑛 = 𝑂 (1) then 𝑇𝑛 = 𝑂 ((log 𝑛/𝑛)1/2) almost surely.

Lemma 2.7.3. Suppose 𝑇𝑖 𝑗 are i.i.d. with density 𝑓𝑇 . Then for fixed 𝑖 = 1, · · · , 𝑛, any 𝑘 and 𝑙 ≥ 1,

under assumptions (C2) and (C6)c, the following holds.

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝜙𝑘 (𝑇𝑖 𝑗 )𝜙𝑙 (𝑇𝑖 𝑗 ) = 1(𝑘 = 𝑙) +𝑂 ((log𝑚𝑖/𝑚𝑖)1/2) almost surely (2.27)

Proof. Note that,

E
 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝜙𝑘 (𝑇𝑖 𝑗 )𝜙𝑙 (𝑇𝑖 𝑗 )
 =

∫
𝜙𝑘 (𝑡)𝜙𝑙 (𝑡)𝑑𝑡 = 1(𝑘 = 𝑙) (2.28)
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and,

Var
 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝜙𝑘 (𝑇𝑖 𝑗 )𝜙𝑙 (𝑇𝑖 𝑗 )
 = E

 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝜙𝑘 (𝑇𝑖 𝑗 )𝜙𝑙 (𝑇𝑖 𝑗 )


2

− 1(𝑘 = 1)

=
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗=1
E{𝜙2

𝑘 (𝑇𝑖 𝑗 )𝜙
2
𝑙 (𝑇𝑖 𝑗 )} +

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝑗1≠ 𝑗2

E{𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗1)𝜙𝑙 (𝑇𝑖 𝑗2)} − 1(𝑘 = 𝑙)

=
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗=1
E{𝜙2

𝑘 (𝑇𝑖 𝑗 )𝜙
2
𝑙 (𝑇𝑖 𝑗 )} +

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝑗1≠ 𝑗2

E{𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑙 (𝑇𝑖 𝑗1)}E{𝜙𝑘 (𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)} − 1(𝑘 = 𝑙)

=


1
𝑚𝑖

∫
𝜙4
𝑘
(𝑡)𝑑𝑡 + 𝑚𝑖−1

𝑚𝑖
(
∫
𝜙2
𝑘
(𝑡)𝑑𝑡)2 − 1 if 𝑘 = 𝑙

1
𝑚𝑖

∫
𝜙2
𝑘
(𝑡)𝜙2

𝑙
(𝑡)𝑑𝑡 + 𝑚𝑖−1

𝑚𝑖
(
∫ ∫

𝜙𝑘 (𝑡)𝜙𝑙 (𝑡)𝜙𝑘 (𝑡′)𝜙𝑙 (𝑡′)𝑑𝑡𝑑𝑡′) if 𝑘 ≠ 𝑙

= 𝑂 (1/𝑚𝑖) (2.29)

Therefore, by applying Lemma 2.7.2, we get Equation (2.27).

Lemma 2.7.4. Suppose 𝑇𝑖 𝑗 are i.i.d with density 𝑓𝑇 . Then for fixed 𝑖 = 1, · · · , 𝑛, for any 𝑘 ≥ 1,

under assumptions (C2), (C6)c, the following holds.

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 ) =

∫
¤𝜇𝑖 (𝑡)𝜙𝑘 (𝑡)𝑑𝑡 +𝑂

(
(log𝑚𝑖/𝑚𝑖)1/2

)
almost surely (2.30)

Proof. Note that,

E
 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 )

 =

∫
¤𝜇𝑖 (𝑡)𝜙𝑘 (𝑡)𝑑𝑡 (2.31)

and,

Var
 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 )

 ≤ E
 1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 )


2

=
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗=1
E

{
¤𝜇2
𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 )2

}
+ 1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝑗1≠ 𝑗2

E{ ¤𝜇𝑖 (𝑇𝑖 𝑗1) ¤𝜇𝑖 (𝑇𝑖 𝑗2)𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2)}

= 𝑂 (1/𝑚𝑖) since
∫
¤𝜇2(𝑡)𝜙2

𝑘 (𝑡)𝑑𝑡 < ∞ (2.32)

Therefore, applying the Lemma 2.7.2, we get Equation (2.30).
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Lemma 2.7.5. Define, M𝑖𝑟 =
∫
¤𝜇𝑖 (𝑡)𝜙𝑟 (𝑡)𝑑𝑡 and 𝑉𝑟 = E{

∫
¤𝜇(𝑡)𝜙𝑟 (𝑡)𝑑𝑡}2 for 𝑟 ≥ 2. Then under

Conditions (C6)a, (C6)b, for some 𝛼 > 0 such that 𝑉𝑟𝜆−2
𝑟 𝑟

1+𝛼 → 0 as 𝑟 → ∞ (due to Condition

(C6)b)
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟𝜉𝑖𝑘 = 𝑂

(
(log 𝑛/𝑛)1/2𝜆1/2

𝑘
𝑘 (1−𝛼)/2

)
almost surely (2.33)

Proof. It is easy to see that,

E


∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟𝜉𝑖𝑘

 = 0 (2.34)

Using the spacing condition among the eigen-values in (C6)a, for each 1 ≤ 𝑘 < 𝑟 < ∞ and for

non-zero finite generic constant 𝐶0,

max {𝜆𝑘 , 𝜆𝑟}
|𝜆𝑘 − 𝜆𝑟 |

≤ 𝐶0
max {𝑘, 𝑟}
|𝑘 − 𝑟 | (2.35)

Similar kind of conditions can be invoked such as the convexity assumption, i.e. 𝜆𝑟−𝜆𝑟+1 ≤ 𝜆𝑟−1−𝜆𝑟

for all 𝑟 ≥ 2. Thus, using Inequality (2.35), for some 𝛼 > 0, with condition 𝑉𝑟𝜆−2
𝑟 𝑟

1+𝛼 → 0 as

𝑟 →∞ we can write
∞∑︁
𝑟=1
𝑟≠𝑘

𝑉𝑟 (𝜆𝑘 − 𝜆𝑟)−2 ≲
∞∑︁
𝑟=1
𝑟≠𝑘

𝑉𝑟

{
max(𝑘, 𝑟)

|𝑘 − 𝑟 |max(𝜆𝑘 , 𝜆𝑟)

}2

=
∑︁
𝑟≤𝑘/2

𝑉𝑟𝜆
−2
𝑟

𝑘2

(𝑘 − 𝑟)2
+

∑︁
𝑟>2𝑘

𝑉𝑟𝜆
−2
𝑘

𝑟2

(𝑘 − 𝑟)2
+

∑︁
𝑘/2<𝑟<𝑘

𝑉𝑟𝜆
−2
𝑟

𝑘2

(𝑘 − 𝑟)2
+

∑︁
𝑘<𝑟<2𝑘

𝑉𝑟𝜆
−2
𝑘

𝑟2

(𝑘 − 𝑟)2

≲
∑︁

𝑟≤𝑘/2,𝑟>2𝑘
𝑉𝑟𝜆
−2
𝑟 + 𝑘2

∑︁
𝑘/2<𝑟<2𝑘

𝑉𝑟𝜆
−2
𝑟 (𝑘 − 𝑟)−2

≲ 1 + 𝑘1−𝛼
∑︁

𝑘/2<𝑟<2𝑘
(𝑘 − 𝑟)−2 ≲ 𝑘1−𝛼 . (2.36)

This follows the line of proofs in Hall and Hosseini-Nasab (2009) in different contexts. Thus, using

the Inequality (2.36), it follows that

Var


∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟𝜉𝑖𝑘

 =
1
𝑛
𝜆𝑘

∞∑︁
𝑟=1
𝑟≠𝑘

𝑉𝑟 (𝜆𝑘 − 𝜆𝑟)−2 = 𝑂

(
𝑛−1𝜆𝑘 𝑘

(1−𝛼)
)

(2.37)

Therefore, applying Lemma 2.7.2, we get Equation (2.33).
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Lemma 2.7.6. For, M𝑖𝑟 =
∫
¤𝜇(𝑡)𝜙𝑟 (𝑡)𝑑𝑡 and 𝜂𝑘 = min𝑟≠𝑘 |𝜆𝑘 − 𝜆𝑟 | > 0, under conditions (C6)a

and (C6)b, we almost surely have the following.

∞∑︁
𝑟1≠1
𝑟1≠𝑘

𝜅0∑︁
𝑟2≠1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟1𝜉𝑖𝑟2 = 𝑂
©­«(log 𝑛/𝑛)1/2𝜅 (3−𝛼)/20 𝜆−1

𝜅0

{
𝜅0∑︁
𝑟=1

𝜆𝑟

}1/2ª®¬ (2.38)

Proof. It is easy to see that,

E


∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟1𝜉𝑖𝑟2

 = 0 (2.39)

Moreover, using the spacing condition mentioned in (C6)a, one can derive the upper bound of 𝜂−1
𝑘

by

𝜂−1
𝑘 =

{
min
𝑟≠𝑘
|𝜆𝑘 − 𝜆𝑟 |

}−1
= max

𝑟≠𝑘
|𝜆𝑘 − 𝜆𝑟 |−1

≲ max
𝑟≠𝑘

{
max(𝑘, 𝑟)

|𝑘 − 𝑟 |max(𝜆𝑘 , 𝜆𝑟)

}
≤ 𝜆−1

𝑘 𝑘 (2.40)

Due to the monotonic decreasing property of eigen-values, for fixed 𝑘 = 1, · · · , 𝜅0, we have

𝜅0∑︁
𝑟=1
𝑟≠𝑘

𝜆𝑟 (𝜆𝑘 − 𝜆𝑟)−2 ≲ 𝜂−2
𝑘

𝜅0∑︁
𝑟=1

𝜆𝑟 ≲ 𝜆
−2
𝑘 𝑘

2
𝜅0∑︁
𝑟=1

𝜆𝑟 ≲ 𝜆
−2
𝜅0 𝜅

2
0

𝜅0∑︁
𝑟=1

𝜆𝑟 (2.41)

Therefore, the following holds under similar conditions to obtain the Inequality (2.36),

E


∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−2(𝜆𝑘 − 𝜆𝑟2)−2

(
1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟1𝜉𝑖𝑟2

)2


=
1
𝑛

∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟1=1
𝑟1≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−2(𝜆𝑘 − 𝜆𝑟2)−2𝑉𝑟1𝜆𝑟2

≲
1
𝑛
𝑘1−𝛼

𝜅0∑︁
𝑟=1
𝑟≠𝑘

𝜆𝑟 (𝜆𝑘 − 𝜆𝑟)−2 ≲
1
𝑛
𝜅3−𝛼

0 𝜆−2
𝜅0

𝜅0∑︁
𝑟=1

𝜆𝑟 (2.42)

Therefore, applying the Lemma 2.7.2, we get Equation (2.38).
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2.7.3 Proof of Theorem 2.3.1

For the 𝑘−th element of g𝑛 (𝜷0) (1 ≤ 𝑘 ≤ 𝜅0),

g𝑛,𝑘 (𝜷0) =
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 𝚽̂𝑘 (y𝑖 − 𝝁𝑖)

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 𝚽̂𝑘W𝝃𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 𝚽𝑘W𝝃𝑖 +

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 (𝚽̂𝑘 −𝚽𝑘 )W𝝃𝑖

:= 𝐽𝑛1
𝑘 + 𝐽

𝑛2
𝑘 (2.43)

Now, using Lemmas 2.7.3 and 2.7.4, the first part of the expression of g𝑛,𝑘 (𝜷0) becomes

𝐽𝑛1
𝑘 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 𝚽𝑘W𝝃𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗1)

{
𝜅0∑︁
𝑙=1
[1(𝑘 = 𝑙) +𝑂 ((log𝑚/𝑚)1/2)]

}
𝜉𝑖𝑙

≲
1
𝑛

𝑛∑︁
𝑖=1

{
M𝑖𝑘 +𝑂 ((log𝑚/𝑚)1/2)

} {
1 +𝑂 ((log𝑚/𝑚)1/2)

}
𝜉𝑖𝑘 where M𝑖𝑘 =

∫
¤𝜇𝑖 (𝑡)𝜙𝑘 (𝑡)𝑑𝑡

=
1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑘𝜉𝑖𝑘

{
1 +𝑂

(
(log𝑚/𝑚)1/2

)}
= 𝑂

(
(log 𝑛/𝑛)1/2

{
1 + (log𝑚/𝑚)1/2

})
almost surely (2.44)

On the other hand, the last part of g𝑛,𝑘 (𝜷) can be expressed as

𝐽𝑛2
𝑘 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 (𝚽̂𝑘 −𝚽𝑘 )W𝝃𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝑑𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙 (2.45)

where 𝑑𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) := 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2) − 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2). Now replaceG, 𝜃 and 𝜓 by F̂, 𝜆 and 𝜙

respectively since F̂ be the approximation of F and Δ is the corresponding perturbation operator
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in Equation (2.23). Therefore, Lemma 2.7.1 immediately implies the following expansion, which

is the key fact to represent the objective function in QIF.

𝜙𝑘 − 𝜙𝑘 =
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜙𝑟 +𝑂 (∥Δ∥2) almost surely (2.46)

where Δ be the integral operator with kernel 𝑅 − 𝑅. Therefore, almost surely, we have,

𝑑𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) := 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2) − 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2)

=

𝜙𝑘 (𝑇𝑖 𝑗1) +
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜙𝑟 (𝑇𝑖 𝑗1) +𝑂 (∥Δ∥2)


×

𝜙𝑘 (𝑇𝑖 𝑗2) +
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜙𝑟 (𝑇𝑖 𝑗2) +𝑂 (∥Δ∥2)

 − 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2)
=

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ⟨𝜙𝑟 ,Δ𝜙𝑘⟩
{
𝜙𝑟 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2) + 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑟 (𝑇𝑖 𝑗2)

}
+

∑︁
𝑟1≠𝑘

∑︁
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 〈
𝜙𝑟1 ,Δ𝜙𝑘

〉 〈
𝜙𝑟2 ,Δ𝜙𝑘

〉
𝜙𝑟1 (𝑇𝑖 𝑗1)𝜙𝑟2 (𝑇𝑖 𝑗2) +𝑂 (∥Δ∥2)

:= 𝐼𝑛1
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) + 𝐼

𝑛2
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) +𝑂 (∥Δ∥

2) almost surely (2.47)

Therefore, by placing the expression of 𝑑𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) in Equation (2.45), we have the following.

𝐽𝑛2
𝑘 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

¤𝝁T
𝑖 (𝚽̂𝑘 −𝚽𝑘 )W𝝃𝑖

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝑑𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)

{
𝐼𝑛1
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) + 𝐼

𝑛2
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2)

}
𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙 +𝑂 (∥Δ∥2)

:= 𝐽𝑛2
𝑘1 + 𝐽

𝑛2
𝑘2 +𝑂 (∥Δ∥

2) almost surely (2.48)

Under assumptions (C1), (C2), (C3), (C4) and (C5), by using Theorem 3.3 in Li and Hsing (2010),

we have the following.

∥Δ∥2 = 𝑂 (ℎ4 + 𝛿2
𝑛2(ℎ)) almost surely (2.49)
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Now observe that

𝐽𝑛2
𝑘1 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝐼𝑛1

𝑖𝑘 (𝑇𝑖 𝑗1)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗1)
{
𝜙𝑟 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2) + 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑟 (𝑇𝑖 𝑗2)

}
𝜙𝑙 (𝑇𝑖 𝑗2)

× ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜉𝑖𝑙

≲
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

∞∑︁
𝑟=1
𝑟≠𝑘

𝜅0∑︁
𝑙=1
(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑟 (𝑇𝑖 𝑗1)

{
1(𝑙 = 𝑘) +𝑂 ((log𝑚/𝑚)1/2)

}
⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜉𝑖𝑙

+ 1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

∞∑︁
𝑟=1
𝑟≠𝑘

𝜅0∑︁
𝑙=1
(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗1)

{
1(𝑟 = 𝑙) +𝑂 ((log𝑚/𝑚)1/2)

}
⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜉𝑖𝑙

≲
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑟 (𝑇𝑖 𝑗1) ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜉𝑖𝑘
{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
+ 1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

𝜅0∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗1) ⟨𝜙𝑟 ,Δ𝜙𝑘⟩ 𝜉𝑖𝑟
{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
:= (𝑈𝑛

𝑘1 +𝑈
𝑛
𝑘2)

{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
almost surely (2.50)

Then applying the triangle inequality, we have the following.

𝑈𝑛
𝑘1 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑟 (𝑇𝑖 𝑗 ) ⟨Δ𝜙𝑘 , 𝜙𝑟⟩ 𝜉𝑖𝑘

≲ ∥Δ𝜙𝑘 ∥
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 1
𝑛

𝑛∑︁
𝑖=1

{
M𝑖𝑟 +𝑂 ((log𝑚/𝑚)1/2)

}
𝜉𝑖𝑘

= ∥Δ𝜙𝑘 ∥
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟𝜉𝑖𝑘

{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
(2.51)

where M𝑖𝑟 =
∫
¤𝜇𝑖 (𝑡)𝜙𝑟 (𝑡)𝑑𝑡. By Lemma 6 of Li and Hsing (2010), under conditions (C1), (C2),

(C3), (C4), (C5), for any measurable bounded function 𝑒 on [0, 1], one can show the following.

∥Δ𝜙𝑘 ∥ = 𝑂 (ℎ2 + 𝛿𝑛1(ℎ) + 𝛿2
𝑛2(ℎ)) ≡ 𝑂 (𝛿𝑛 (ℎ)) almost surely (2.52)
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where 𝛿𝑛 (ℎ) = ℎ2 + 𝛿𝑛1(ℎ) + 𝛿2
𝑛2(ℎ). Thus, combining the Inequalities (2.37) in Lemma 2.7.5 and

Equation (2.52), we obtain 𝑈𝑛
𝑘1 = 𝑂

(
𝛿𝑛 (ℎ) (log 𝑛/𝑛)1/2𝜆1/2

𝑘
𝑘 (1−𝛼)/2{1 + (log𝑚/𝑚)1/2}

)
almost

surely. Next, under the spacing condition mentioned earlier and in assumption (C6)a, using the

Inequality (2.40) recall 𝜂−1
𝑘
≲ 𝜆−1

𝑘
𝑘 . Thus, observe that

𝑈𝑛
𝑘2 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1

𝜅0∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ¤𝜇𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 ) ⟨Δ𝜙𝑘 , 𝜙𝑟⟩ 𝜉𝑖𝑟

≲ ∥Δ𝜙𝑘 ∥
𝜅0∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1

{
1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑘𝜉𝑖𝑟

} {
1 +𝑂 ((log𝑚/𝑚)1/2)

}
≲ ∥Δ𝜙𝑘 ∥𝜂−1

𝑘

𝜅0∑︁
𝑟=1
𝑟≠𝑘

{
1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑘𝜉𝑖𝑟

} {
1 +𝑂 ((log𝑚/𝑚)1/2)

}
(2.53)

Using Condition (C6)b we also have 𝑉1/2
𝑘
𝜂−1
𝑘
≲ 𝑉1/2

𝑘
𝜆−1
𝑘
𝑘 = 𝑂 (𝑘 (1−𝛼)/2). Finally, combining with

the bounds for𝑈𝑛
𝑘1,𝑈

𝑛
𝑘2, we have, almost surely,

𝐽𝑛2
𝑘1 = 𝑂

©­­­«(log 𝑛/𝑛)1/2𝛿𝑛 (ℎ)

𝜆
1/2
𝑘
𝑘 (1−𝛼)/2 + 𝜂−1

𝑘 𝑉
1/2
𝑘

𝜅0∑︁
𝑟=1
𝑟≠𝑘

𝜆
1/2
𝑟


(
1 + (log𝑚/𝑚)1/2

)ª®®®¬
= 𝑂

(
(log 𝑛/𝑛)1/2𝛿𝑛 (ℎ)𝑘 (1−𝛼)/2

𝜅0∑︁
𝑘=1

𝜆
1/2
𝑟

{
1 + (log𝑚/𝑚)1/2

})
:= 𝑂 (𝜔𝑘1(𝑛, ℎ)) (2.54)

where 𝜔𝑘1(𝑛, ℎ) = (log 𝑛/𝑛)1/2𝛿𝑛 (ℎ)𝑘 (1−𝛼)/2
∑𝜅0
𝑘=1 𝜆

1/2
𝑟

{
1 + (log𝑚/𝑚)1/2

}
. It is easy to see that∑𝜅0

𝑟=1 𝜆
1/2
𝑟 ∼ 𝜅−

𝜏1
2 +1

0 . Therefore, 𝜔𝑘1(𝑛, ℎ) ∼ (log 𝑛/𝑛)1/2𝛿𝑛 (ℎ)𝜅 (3−𝜏)/20
{
1 + (log𝑚/𝑚)1/2

}
where

𝜏 = 𝛼 + 𝜏1.

Similarly to the derivation of the bound for 𝐽𝑛2
𝑘1, we can write

𝐽𝑛2
𝑘2 =

1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝐼𝑛2

𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1

𝜅0∑︁
𝑙=1

∞∑︁
𝑟1=1
𝑟1≠𝑘

∞∑︁
𝑟1=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 〈
𝜙𝑟1 ,Δ𝜙𝑘

〉 〈
𝜙𝑟2 ,Δ𝜙𝑘

〉
× ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑟1 (𝑇𝑖 𝑗1)𝜙𝑟2 (𝑇𝑖 𝑗2)𝜙𝑙 (𝑇𝑖 𝑗2)𝜉𝑖𝑙
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≲
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

𝜅0∑︁
𝑙=1

∞∑︁
𝑟1=1
𝑟1≠𝑘

∞∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 〈
𝜙𝑟1 ,Δ𝜙𝑘

〉 〈
𝜙𝑟2 ,Δ𝜙𝑘

〉
× ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑟1 (𝑇𝑖 𝑗1)

{
1(𝑟2 = 𝑙) +𝑂 ((log𝑚/𝑚)1/2)

}
𝜉𝑖𝑙

=
1
𝑛

𝑛∑︁
𝑖=1

1
𝑚𝑖

𝑚𝑖∑︁
𝑗1=1

∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 〈
𝜙𝑟1 ,Δ𝜙𝑘

〉 〈
𝜙𝑟2 ,Δ𝜙𝑘

〉
× ¤𝜇𝑖 (𝑇𝑖 𝑗1)𝜙𝑟1 (𝑇𝑖 𝑗1)𝜉𝑖𝑟2

{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
≲ ∥Δ𝜙𝑘 ∥2

∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1

(
1
𝑛

𝑛∑︁
𝑖=1

{
M𝑖𝑟1 +𝑂 ((log𝑚/𝑚)1/2)

}
𝜉𝑖𝑟2

)

×
{
1 +𝑂 ((log𝑚/𝑚)1/2)

}
= ∥Δ𝜙𝑘 ∥2

∞∑︁
𝑟1=1
𝑟1≠𝑘

𝜅0∑︁
𝑟2=1
𝑟2≠𝑘

(𝜆𝑘 − 𝜆𝑟1)−1(𝜆𝑘 − 𝜆𝑟2)−1 ×
{

1
𝑛

𝑛∑︁
𝑖=1

M𝑖𝑟1𝜉𝑖𝑟2

} {
1 +𝑂 ((log𝑚/𝑚)1/2)

}
(2.55)

Therefore, Inequality (2.55) immediately follows using Lemma 2.7.6,

𝐽𝑛2
𝑘2 = 𝑂

(
(log 𝑛/𝑛)1/2𝛿2

𝑛 (ℎ)𝜅
(3−𝛼)/2
0 𝜆−1

𝜅0 {
𝜅0∑︁
𝑟=1

𝜆𝑟}1/2
{
1 + (log𝑚/𝑚)1/2

})
:= 𝑂 (𝜔𝑘2(𝑛, ℎ)) (2.56)

almost surely where 𝜔𝑘2(𝑛, ℎ) = (log 𝑛/𝑛)1/2𝛿2
𝑛 (ℎ)𝜅

(3−𝛼)/2
0 𝜆−1

𝜅0

∑𝜅0
𝑟=1 𝜆𝑟

{
1 + (log𝑚/𝑚)1/2

}
. It is

easy to see
∑𝜅0
𝑟=1 𝜆𝑟 ∼ 𝜅

−𝜏1+1
0 under assumption (C6)b. Thus,𝜔𝑘2(𝑛, ℎ) ∼ (log 𝑛/𝑛)𝛿2(ℎ)𝜅 (4−𝜏)/20 {1+

(log𝑚/𝑚)1/2}.

Since 𝜔𝑛2 = 𝑂 (𝜔𝑛1) and 𝛿2
𝑛 (ℎ) = 𝑂 (𝜔𝑛1), in summary, for each 𝑘 = 1, · · · , 𝜅0, the following

holds almost surely.

g𝑘 (𝜷) = 𝑂
(
(log 𝑛/𝑛)1/2

{
1 + (log𝑚/𝑚)1/2

}
+ 𝜔𝑘1(𝑛, ℎ)

)
(2.57)

Therefore, AMSE of g𝑘 (𝜷) is the following.

AMSE{g𝑘 (𝜷0)}

= 𝑂

(
1
𝑛

(
1 + 1

𝑚

) [
1 + 𝜅3−𝜏

0

{
ℎ4 + 1

𝑛
+ 1
𝑛𝑚ℎ

+ 1
𝑛2𝑚2ℎ2 +

1
𝑛2𝑚4ℎ4 +

1
𝑛2𝑚ℎ

+ 1
𝑛2𝑚3ℎ3

}])
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= 𝑂

(
1
𝑛

(
1 + 1

𝑚

) (
1 + 𝜅3−𝜏

0 𝑅𝑛 (ℎ)
))

= 𝑂

(
𝑛−1 + 𝑛−1𝜅3−𝜏

0 𝑅𝑛 (ℎ)
)

since (1/𝑛𝑚) = 𝑂 (1/𝑛) (2.58)

where 𝑅𝑛 (ℎ) =
{
ℎ4 + 1

𝑛
+ 1
𝑛𝑚ℎ
+ 1
𝑛2𝑚2ℎ2 + 1

𝑛2𝑚4ℎ4 + 1
𝑛2𝑚ℎ
+ 1
𝑛2𝑚3ℎ3

}
. Combining the above condi-

tions, we find that if 𝑎 > 1/4, 𝜅0 = 𝑂 (𝑛1/(3−𝜏)) and 𝑛−1/4 ≲ ℎ ≲ 𝑛−(𝑎+1)/5 then AMSE{g𝑘 (𝜷0)} =

𝑂 (1/𝑛). On the other hand, if 𝑎 ≤ 1/4, 𝜅0 = 𝑂 (𝑛4(1+𝑎)/5(3−𝜏)) and ℎ ≲ 𝑛−1/4 AMSE{g𝑘 (𝜷0)} =

𝑂 (1/𝑛).

Note that for a three-dimensional array (𝜕𝐶/𝜕𝛽1, · · · , 𝜕𝐶/𝜕𝛽𝑝) such that the following is a

𝑝 × 1 vector.

g(𝜷0)TC−1(𝜷0) ¤C(𝜷0)C−1(𝜷0)g(𝜷0) (2.59)

Therefore,

𝑛−1 ¤Q(𝜷0) = 2¤g(𝜷0)TC−1(𝜷0)g(𝜷0) − g(𝜷0)TC−1(𝜷0) ¤C(𝜷0)C−1(𝜷0)g(𝜷0) (2.60)

And

𝑛−1 ¥Q(𝜷0) = 2¤g(𝜷0)TC−1(𝜷0) ¤g(𝜷0) + 𝑟𝑛1 + 𝑟𝑛2 + 𝑟𝑛3 + 𝑟𝑛4 (2.61)

where

𝑟𝑛1 = 2¥g(𝜷0)C−1(𝜷0)g(𝜷0)

𝑟𝑛2 = −4¤g(𝜷0)TC−1(𝜷0) ¤C(𝜷0)C−1(𝜷0)g(𝜷0)

𝑟𝑛3 = 2¤g(𝜷0)C−1(𝜷0)C−1(𝜷0) ¤C(𝜷0)C−1(𝜷0)g(𝜷0)

𝑟𝑛4 = −g(𝜷0)TC−1(𝜷0) ¥C(𝜷0)C−1(𝜷0)g(𝜷0)

(2.62)

Since g(𝜷0) = 𝑂𝑃 (𝑛−1/2) and the weight matrix converges almost surely to an invertible matrix,

g(𝜷0)TC−1(𝜷0) ¤C(𝜷0)C−1(𝜷0)g(𝜷0) = 𝑜(𝑛−1) almost surely. Furthermore, 𝑟𝑛1 = 𝑂 (𝑛−1/2), 𝑟𝑛2 =

𝑜(𝑛−1/2), 𝑟𝑛3 = 𝑂 (𝑛−1/2), and 𝑟𝑛4 = 𝑂 (𝑛−1) almost surely. Combining these bounds, we have

𝑟𝑛 = 𝑜(1) almost surely. Therefore, ∥𝑛−1 ¤Q − 2¤g(𝜷0)TC−1(𝜷0)g(𝜷0)∥ = 𝑜𝑃 (𝑛−1) and ∥𝑛−1 ¥Q −

2¤g(𝜷0)TC−1(𝜷0) ¤g(𝜷0)∥ = 𝑜𝑃 (1).

The following lines are based on common steps in the GEE literature that includes McCullagh

and Nelder (1989); Balan et al. (2005); Tian et al. (2014) among many others. Let 𝜷𝑛 = 𝜷0 + 𝛿d
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where set 𝛿 = 𝑛−1/2. We have to show that for any 𝜖 > 0 there exists a large constant 𝑐 such that

𝑃{ inf
∥𝑑∥=𝑐

Q(𝜷𝑛) ≥ Q(𝜷0)} > 1 − 𝜖 (2.63)

Note that the above statement is always true if 𝜖 ≥ 1. Thus, we assume that 𝜖 ∈ (0, 1). Due to

Taylor series expansion,

Q(𝜷𝑛) = Q(𝜷0 + 𝛿d) = Q(𝜷0) + 𝛿dT ¤Q(𝜷0) +
1
2
𝛿dT ¥Q(𝜷0)d + ∥d∥2𝑜𝑃 (1) (2.64)

Now, observe that, using Equation (2.60),

𝛿dT ¤Q(𝜷0) = ∥d∥𝑂𝑃 (
√
𝑛𝛿) + ∥d∥𝑂𝑃 (𝛿) (2.65)

and
1
2
𝛿2dT ¥Q(𝜷∗)d = 𝑛𝛿2dT ¤g(𝜷0)C−1(𝜷0) ¤g(𝜷0)d + 𝑛𝛿2∥d∥2𝑜𝑃 (1) (2.66)

Therefore, for given 𝜖 > 0, there exists a large enough 𝑐 such that the above equation (2.63) holds.

This implies that there exists a 𝜷̂ that satisfies ∥ 𝜷̂−𝜷0∥ = 𝑂𝑃 (𝛿). Thus, for large 𝑛, with probability

1, Q(𝜷) attains the minimal value at 𝜷̂ and therefore, ¤Q = 0.

2.7.4 Proof of Theorem 2.3.2

Recall, C𝑖 =
∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 𝚽𝑘1X𝑖C−1

𝑘1,𝑘2
XT
𝑖
𝚽𝑘2 , where C−1

𝑘1,𝑘2
is the (𝑘1, 𝑘2) block of C−1

0 . Sim-

ilarly, we can define Ĉ𝑖 =
∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 𝚽̂𝑘1X𝑖C−1

𝑘1,𝑘2
XT
𝑖
𝚽̂𝑘2 . It is easy to observe that Ĉ𝑖 =

C𝑖 +
∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1(𝚽̂𝑘1 −𝚽𝑘1)X𝑖C−1

𝑘1,𝑘2
XT
𝑖
(𝚽̂𝑘2 −𝚽𝑘2) +2

∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 𝚽𝑘1X𝑖C−1

𝑘1,𝑘2
XT
𝑖
(𝚽̂𝑘2 −𝚽𝑘2).

Therefore, 1
𝑛

∑𝑛
𝑖=1 ¤𝝁T

𝑖
(Ĉ𝑖 −C)X𝑖 =

1
𝑛

∑𝑛
𝑖=1

∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 P𝑖𝑘1C−1

𝑘1,𝑘2
P𝑖𝑘2 and 1

𝑛

∑𝑛
𝑖=1 ¤𝝁T

𝑖
(Ĉ𝑖 −C)y𝑖 =

1
𝑛

∑𝑛
𝑖=1

∑𝜅0
𝑘1=1

∑𝜅0
𝑘2=1 P𝑖𝑘1C−1

𝑘1,𝑘2
Q𝑖𝑘2 where P𝑖,𝑘 = ¤𝝁T

𝑖
D𝑖𝑘X𝑖 and Q𝑖𝑘 = ¤𝝁T

𝑖
D𝑖𝑘y𝑖 with D𝑖𝑘 be the dif-

ference matrix with ( 𝑗1, 𝑗2)-th element is 𝑑𝑖 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2). Thus, note that, almsot surely we have the

following relation,

P𝑖𝑘 =
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)𝑑𝑖 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2)𝑥𝑖 (𝑇𝑖 𝑗2)

=
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)

{
𝐼𝑛1
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) + 𝐼

𝑛2
𝑖𝑘 (𝑇𝑖 𝑗1 , 𝑇𝑖 𝑗2) +𝑂 (∥Δ∥

2)
}
𝑥𝑖 (𝑇𝑖 𝑗2)
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≲
1
𝑚2
𝑖

𝑚𝑖∑︁
𝑗1=1

𝑚𝑖∑︁
𝑗2=1
¤𝜇𝑖 (𝑇𝑖 𝑗1)

∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1 ⟨𝜙𝑟 ,Δ𝜙𝑘⟩
{
𝜙𝑟 (𝑇𝑖 𝑗1)𝜙𝑘 (𝑇𝑖 𝑗2) + 𝜙𝑘 (𝑇𝑖 𝑗1)𝜙𝑟 (𝑇𝑖 𝑗2)

}
+𝑂 (∥Δ∥2)

≲
∞∑︁
𝑟=1
𝑟≠𝑘

(𝜆𝑘 − 𝜆𝑟)−1∥Δ𝜙𝑘 ∥ +𝑂 (∥Δ∥2)

since
1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
¤𝜇(𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 ) and

1
𝑚𝑖

𝑚𝑖∑︁
𝑗=1
𝑥𝑖 (𝑇𝑖 𝑗 )𝜙𝑘 (𝑇𝑖 𝑗 ) are finite

= 𝑂 (𝜛) (2.67)

where𝜛 =
∑∞
𝑟=1
𝑟≠𝑘

(𝜆𝑘−𝜆𝑟)−1𝛿𝑛 (ℎ)+ℎ2+𝛿2
𝑛2(ℎ). A similar result can be obtained for Q𝑖𝑘 . Combining

such results, in summary, we have −2
𝑛

∑𝑛
𝑖=1 XT

𝑖
Ĉ𝑖 (y𝑖 −XT

𝑖
𝜷̂) = −2

𝑛

∑𝑛
𝑖=1 XT

𝑖
C𝑖 (y𝑖 −XT

𝑖
𝜷̂) +𝑂 (𝜛𝑛).

Since, for 𝑛→∞, Q(𝜷) attains a minimal value at 𝜷 = 𝜷̂, we therefore have ¤Q( 𝜷̂) = 0. Thus,

¤Q( 𝜷̂) = −2
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 Ĉ𝑖 (y𝑖 − XT

𝑖 𝜷̂)

= −2
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 (Ĉ𝑖 −C𝑖) (y𝑖 − XT

𝑖 𝜷̂) −
2
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖 (y𝑖 − XT

𝑖 𝜷̂) = 0 (2.68)

Therefore, almost surely, we have,

−2
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖 (y𝑖 − XT

𝑖 𝜷̂) +𝑂 (𝜛𝑛) = 0

−2
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖 (XT

𝑖 𝜷0 + e𝑖 − XT
𝑖 𝜷̂) +𝑂 (𝜛𝑛) = 0

√
𝑛( 𝜷̂ − 𝜷0)

{
1
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖X𝑖

}
=

1
√
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖e𝑖 (2.69)

Now, using the central limit theorem, we can obtain the following.

1
√
𝑛

𝑛∑︁
𝑖=1

XT
𝑖 C𝑖e𝑖

𝑑−→ 𝑁 (0,A) (2.70)

In addition, by the law of large numbers 1
𝑛

∑𝑛
𝑖=1 XT

𝑖
C𝑖X𝑖 → B in probability. Therefore, using the

Slutsky theorem, we complete the proof of Theorem 2.3.2.
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CHAPTER 3

ESTIMATION FOR VARYING-COEFFICIENT MODEL IN FUNCTIONAL DATA
ANALYSIS UNDER UNKNOWN HETEROSKEDASTICITY: A GMM-BASED

APPROACH

3.1 Introduction

Due to modern advancements of technology, varying-coefficient models in functional data have

become popular to analyze data coming from several imaging technologies such as magnetic reso-

nance imaging (MRI), diffusion tensor imaging (DTI) etc. We consider the problem of estimating

non-parametric coefficient function 𝜷(𝑠)which is defined on functional domain (for example, space,

time) S to understand the relationship between the functional response 𝑌 (𝑠) and the real-valued

covariates denoted by X = (𝑋1, · · · , 𝑋𝑝)T, which takes the following form.

𝑌 (𝑠) = XT𝜷(𝑠) +𝑈 (𝑠) (3.1)

where 𝜷(𝑠) = (𝛽1(𝑠), · · · , 𝛽𝑝 (𝑠))T is a 𝑝-dimensional vector of unknown smooth functions, and

it is assumed that 𝜷(·) is twice-differentiable with continuous second-order derivatives. The

random error {𝑈𝑖 (𝑠) : 𝑠 ∈ S} is assumed to be a stochastic process indexed by 𝑠 ∈ S and it

characterizes the within curve dependence with mean zero and an unknown covariance function

Σ(𝑠, 𝑠′) = cov{𝑈 (𝑠),𝑈 (𝑠′) |X}. The varying-coefficient model (VCM) in Equation (3.1) allows its

regression coefficient to vary over some predictors of interest. It was introduced in the literature by

Hastie and Tibshirani (1993) and systematically studied in Hoover et al. (1998); Fan et al. (1999);

Wu and Chiang (2000); Huang et al. (2002); Fan et al. (2003); Huang et al. (2004); Chiou et al.

(2004); Ramsay and Silverman (2005); Zhang and Chen (2007); Cardot and Sarda (2008); Fan and

Zhang (2008); Wang et al. (2008); Zhu et al. (2014); Kokoszka and Reimherr (2017).

The notion of density is not well defined for functional responses (in general for any random

function) (Delaigle and Hall, 2010), as a result of which it is difficult to take advantage of likelihood-

based inference; therefore, we need to rely on the moment conditions. Typically, we assume that
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the error term𝑈 (𝑠) satisfies the conditional mean-zero assumption, such as E{𝑈 (𝑠) |X} = 0. By the

iterated law of expectation, it is easy to see that, for a given point 𝑠 ∈ S, we can define least-square

estimates as solution of the sample version of E{X[𝑌 (𝑠) − XT𝜷(𝑠)]} = 0. Equivalently, we can

obtain these estimates by a minimizer of the sample version of E{[𝑌 (𝑠) − XT𝜷(𝑠)]2} which is

termed as non-parametric local linear estimates (Fan and Gijbels, 1996). Since the above estimates

rely only on the conditional mean-zero assumption, they become inefficient in the presence of

heteroskedasticity. Therefore, to analyze such data, there is need for a robust estimation procedure,

which does not require distributional assumption and can accommodate heteroskedasticity of

unknown form. Therefore, we introduce the functional generalized method of moments (GMM)

estimation procedure for such VCM.

In classical statistics, the method of moment (MM) estimator solves the sample moment con-

ditions corresponding to the population moment conditions to obtain solutions for the unknown

parameters. For example, if the data 𝑌𝑖 are independently and identically distributed with mean 𝜇,

then E{𝑌𝑖 − 𝜇} = 0, and the MM estimate of 𝜇 is simply 𝜇̂ = 𝑌 , the sample mean. Now consider

the linear regression model 𝑌𝑖 = XT
𝑖
𝜷 +𝑈𝑖 where 𝑌𝑖 is the response, X and 𝜷 are, respectively, the

covariates of dimensions 𝑝 and the unknown regression coefficient with simple moment restric-

tions 𝐸{𝑈𝑖 |X𝑖} = 0. By applying the law of iterated expectation, we get the unconditional moment

condition E{X𝑖𝑈𝑖} = 0 for random error 𝑈𝑖. It is easy to see that MM estimates coincide with

the ordinary least squares (OLS) estimates for simple linear regression model. For a non-linear

regression model with additive error 𝑌𝑖 = 𝔐(X𝑖, 𝜷) + 𝑈𝑖, the moment condition is similar to the

classical linear model which is essentially E{𝑔(X𝑖)𝑈𝑖} = 0 for any function 𝑔(·) of X. An obvious

choice is 𝑔(X) = 𝜕𝔐(x,𝜷)
𝜕𝜷 as first-order conditions in non-linear least squares estimator.

In simple linear regression, let us consider that the covariates are decomposed into 𝑝1 and 𝑝2

components such that X𝑖 = (X𝑖1,X𝑖2)T with 𝑝1 + 𝑝2 = 𝑝. It is a well-known fact that without any

further assumptions, an asymptotically efficient estimator of 𝜷 is the OLS estimator. Assume that

𝜷 = (𝜷1, 𝜷2)T, where 𝜷2 is known and is 0. Then, we can rewrite the above model as𝑌𝑖 = XT
𝑖1𝜷1+𝑈𝑖

with a similar restrictionE{X𝑖1𝑈𝑖} = 0. For estimating 𝜷1 based on the data {𝑌𝑖,X𝑖1 : 𝑖 = 1, · · · , 𝑛},
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the MM estimates become inefficient since the number of moment conditions (𝑝) is larger than

the number of parameters to estimate (𝑝1). This is called “over-identified” situation whereas when

𝑝 = 𝑝1, it is referred as “just-identified” situation. In general, for over-identified situation, let

g(𝑌,X; 𝜷) be a 𝑑-dimensional function of 𝜷 ∈ R𝑝 where 𝑑 ≥ 𝑝 such that

Eg(𝑌𝑖,X𝑖; 𝜷0) = 0 (3.2)

where 𝜷0 is the vector of true parameters. The set of restrictions in Equation (3.2) is often called

“estimating equations”. In a seminal paper, Hansen (1982) proposed an extended version of the

MM approach for over-identified model. Let 𝑊1, · · · ,𝑊𝑛 be a set of random variables indexed by

𝑝-dimensional parameter vector 𝜷 with moment conditions E{g(𝑊, 𝜷0)} = 0, where g(𝑊, 𝜷) be a

𝑑-dimensional vector such that g(·; 𝜷) be the function of𝑊 . The estimator is formed by choosing 𝜷

such that the sample average of g𝑖 is close to zero. For over-identification problem, it is not possible

for all the moment conditions to satisfy. Therefore, GMM approach is used to define an estimator

which brings the sample mean of g, (viz., g(𝑊, 𝜷)) close to zero. GMM estimates minimize the

following objective function.

J(𝜷) = g(𝑊 ; 𝜷)TW(𝜷)g(𝑊 ; 𝜷) (3.3)

Note that, the above Equation (3.3) is a well-defined norm as long as the weight matrix W(𝜷) is

symmetric positive definite with dimension 𝑑 × 𝑑.

When the likelihood is not specified or ill-specified, GMM is an alternative estimation technique

to the likelihood principle and has become quite popular in statistics and econometrics in the last

few decades due to its intuitive idea and applicability; also its properties are quite well-known.

In the original version of the proposed method described in Hansen (1982) a two-step GMM was

described by the following algorithm: First, compute 𝜷̆ ∈ arg min𝜷 g(𝜷)Tg(𝜷); then estimate the

precision matrix W based on the first-step estimates, W( 𝜷̆). Therefore, the two-step GMM esti-

mates are 𝜷̂ ∈ arg min𝜷 g(𝜷)TW( 𝜷̆)g(𝜷). Under some sufficient conditions, it is well known that

the GMM estimator is constant and asymptotically normally distributed with the asymptotic covari-

ance matrix 𝑛−1 {
G(𝜷0)TWG(𝜷0)

}−1 G(𝜷0)TW𝛀WG(𝜷0)
{
G(𝜷0)TWG(𝜷0)

}−1, where G(𝜷0) =
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E{∇𝜷0g(𝑊 ; 𝜷0)} and 𝛀 = E{g(𝑊 ; 𝜷0)g(𝑊 ; 𝜷0)T} for true 𝜷0 (Newey and McFadden, 1994). Note

that the variance of the GMM estimator depends on the weight matrix and is optimal if the weight

matrix is W = 𝛀−1. Therefore the asymptotic variance would be 𝑛−1 {
G(𝜷0)TWG(𝜷0)

}−1.

A crucial problem of the above estimation procedure is identifying the number of moment

conditions. An increase in the number of moment conditions may lead to the problem of finite

sample bias. Based on the situation, additional moment conditions may be beneficial. Adding

more moment conditions leads to decrease (or at least no change) in the asymptotic variance of

the estimator, since the optimal weight matrix for fewer moment conditions is not optimal for all

moment conditions. In the presence of heteroskedasticity, the set of moment conditions g(𝑊 ; 𝜷) =

(X𝑈,𝔐(X)𝑈)T produces an estimator more efficient than the least squares estimates for the simple

linear regression model by efficiently choosing 𝔐. It is of interest to figure out how many functions

should be used to get a better estimator. Moreover, some choices of g are better than others depending

on additional assumptions. For example, in a linear regression model, if we choose g = X𝑈 then

the resulting estimator becomes OLS. On the other hand, if we choose g = X𝑈/Var{𝑈 |X} we land

upon a generalized least squares estimator under heteroskedasticity. Var{𝑈 |X} can be modelled

parametrically and substituted in the above mentioned mean-zero function. If the complete form of

the likelihood structure is known, one can choose g = ∇𝜷 ln{P(𝑈 |X)} where P(·) is the density

of 𝑈. When explanatory variables are endogenous, additional moment conditions may create bias

and, as a result, increase the small sample variance. However, this issue does not arise when

the explanatory variables are exogenous and the presence of heteroskedasticity does not cause

OLS inconsistency problems in classical linear regression. Lu and Wooldridge (2020) obtained

an asymptotic efficient estimator using Cragg (1983) which showed existence of GMM estimators

which are more efficient than OLS in the presence of heteroskedasticity of unknown form.

It is well known that the constant or varying-coefficient models may often be misspecified

and, therefore, this may lead to inconsistent estimation. In varying-coefficient non-parametric

models, mostly exogenous regression situation has been considered so far (Hastie and Tibshirani,

1993; Fan et al., 1999). In last two decades, some semi-parametric models were considered under
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endogenous variables and a non-parametric or semi-parametric GMM with instrument variables

approach was considered. For example, Cai and Li (2008) proposed a one-step local linear GMM

estimator that corresponds to the local linear GMM discussed in Su et al. (2013) with an identity

weight matrix. Tran and Tsionas (2009) provided a local constant two-step GMM estimator with

specified weight matrix by minimizing the asymptotic variance. Su et al. (2013) developed a

local linear GMM estimator procedure of functional coefficient instrument variable models with

a general weight matrix under exogenous conditions. Cai et al. (2006) proposed a two-step local

linear estimation procedure to estimate the functional coefficient which include the estimation of

high-dimensional non-parametric model in first step and later estimate the functional coefficients

using the first-step non-parametric estimates as generated regressor. As opposed to the classical

GMM, for non-parametric local linear GMM estimator, integrated mean square error increases as

the number of instrument variables increase for arbitrary choice of instrument variables (Bravo,

2021).

The current work is motivated by the problem encountered in diffusion tensor imaging (DTI)

where multiple diffusion properties are measured along common major white matter fiber tracts

across multiple individuals to characterize the structure and orientation of white matter in the

human brain. Recently a study has been performed to understand white matter structural alteration

using DTI for obstructive sleep apnea patients (Xiong et al., 2017). As an illustration, we present

smoothed functional data to analyze the efficiency properties of network generated by diffusion

properties of the water molecules. We plot the graphical characteristics of one of the diffusion

properties called fractional anisotropy (FA) over different significant levels to obtain the graphical

connectivity from 29 patients in Figures 3.1. Scientists are often interested to know the individual

association of average path length (APL) of the network generated from FA with a set of covariates

of interests such as age and lapses score (see Section 2.5). Moreover, in this data, there is sufficient

evidence of heteroskedasticity in the covariates. Details about the data-set and associated variables

are described in Section 3.6. We therefore need an estimation procedure which (1) does not need

knowledge of distribution, (2) can handle heteroskedasticity of covariates, (3) can estimate non-
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Figure 3.1 Apnea-data: Smoothed average path length (APL) from 29 patients over different
thresholds. Black solid line indicates the mean of APL over thresholds.

parametric coefficient functions from varying-coefficient models, and (4) has a systematic technique

for computing an efficient estimator. In this chapter, we develop a local linear GMM estimation

procedure for varying-coefficient model. For given instrument variables, we propose an optimal

local-linear GMM estimator motivated by Lu and Wooldridge (2020). However, the key difference

in our approach from the later is that we model the variance of integrated squared error using a

non-parametric function of covariates whereas they assume a parametric form in case of classical

regression. Therefore, we can ensure that the proposed estimator is at least as efficient as local linear

estimates (initial estimator) and more efficient than that under the presence of heteroskedasticity.
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This chapter is organized as follows. In Section 3.2, we introduce our varying-coefficient model

and propose a local linear GMM estimator. In Section 3.3, we present a multi-step estimation

procedure. We establish asymptotic results in Section 3.4. We perform a set of simulations studied

to understand the finite sample performance of the proposed estimator and present those in Section

3.5. In Section 3.6, we apply the proposed method in a real imaging data-set on obstructive sleep

apnea (OSA). In Section 3.7, we conclude this chapter with some discussion. All technical details

are provided in Section 3.8.

3.2 Varying-coefficient functional model and moment conditions

In this section, we first introduce heteroskedastic conditions for SVC model and thereafter, propose

a heuristic method to construct a mean-zero function.

3.2.1 Model

Let {𝑌𝑖 (𝑠),X𝑖} for 𝑖 = 1, · · · , 𝑛 be independent copies of {𝑌 (𝑠),X}. Instead of observing the entire

functional trajectory, one can observe 𝑌 (𝑠) only on the discrete spatial grid {𝑠1, · · · , 𝑠𝑟} on the

functional domain S. Data can be Gaussian or non-Gaussian and homoskedastic or heteroskedas-

tic depending on the real applications. Therefore, the observed data for the 𝑖-th individual are

{𝑠 𝑗 , 𝑌𝑖 (𝑠 𝑗 ),X𝑖 : 𝑗 = 1, · · · , 𝑟}. For simplifying the notation, define 𝑌𝑖 𝑗 = 𝑌𝑖 (𝑠 𝑗 ) and𝑈𝑖 𝑗 = 𝑈𝑖 (𝑠 𝑗 ).

Considering the functional principal component analysis (FPCA) model for 𝑈𝑖 (𝑠), we assume

that𝑈𝑖 (𝑠) is square-integrable and admits the Karhunen-Loève expansion (Karhunen, 1946; Loève,

1946). Let𝜔1(X) ≥ 𝜔2(X) ≥ · · · ≥ 0 be ordered eigen-values of the linear operator determined by

Σ with
∑∞
𝑘=1 𝜔𝑘 (X) being finite and 𝜓𝑘 (𝑠)’s being the corresponding orthonormal eigen-functions

or principal components. Thus, the spectral decomposition (J Mercer, 1909) is given by

Σ(𝑠, 𝑠′) =
∞∑︁
𝑘=1

𝜔𝑘 (X)𝜓𝑘 (𝑠)𝜓𝑘 (𝑠′) (3.4)

Therefore,𝑈𝑖 (𝑠) admits the Karhunen-Loève expansion as follows.

𝑈𝑖 (𝑠) =
∞∑︁
𝑘=1

𝜉𝑘 (X𝑖)𝜓𝑘 (𝑠) (3.5)
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where 𝜉𝑘 (X𝑖) =
∫
S
𝑈𝑖 (𝑠)𝜓𝑖 (𝑠)𝑑𝑠, which is termed as the 𝑘-th functional principal score for 𝑖-th

individual. The 𝜉𝑘 (X𝑖) are uncorrelated over 𝑘 with E{𝜉𝑘 (X𝑖) |X𝑖} = 0 and Var{𝜉𝑘 (X𝑖) |X𝑖} =

𝜔𝑘 (X𝑖), 𝑘 ≥ 1. Furthermore, assume that the eigen-values vary with X𝑖 such that 𝜔𝑘 (X𝑖) =

𝜃𝑘𝜎
2(X𝑖) for some unknown function 𝜎(X) ≥ 0 and 𝜃1 ≥ 𝜃2 ≥ · · · ≥ 0. For identifiability, we

need some restrictions on 𝜃𝑘s, such as known or fixed 𝜃1. Therefore, the above assumption on

eigen-values for spectral decomposition allow us to incorporate heteroskedasticity into the model.

To best of our knowledge, this is the first attempt to model SVC with unknown heteroskedasticity.

3.2.2 Local-linear mean-zero function

Let us reiterate our main objective: we want to efficiently estimate the varying-coefficient functions

based on GMM for the case of continuum moment conditions together with infinite-dimensional

parameters. Therefore, we need to construct a mean-zero function which will be described in this

sub-section.

Since 𝜷(·) in model 3.1 is twice continuously differentiable, we can apply the Taylor series

expansion to 𝜷(𝑠 𝑗 ) around an interior point 𝑠0 and get

𝜷(𝑠 𝑗 ) = 𝜷(𝑠) + ¤𝜷(𝑠0) (𝑠 𝑗 − 𝑠0) + ¥𝜷(𝑠∗) (𝑠 𝑗 − 𝑠0)2/2 (3.6)

where 𝑠∗ lies between 𝑠 𝑗 and 𝑠0 for all 𝑗 = 1, · · · , 𝑟 and ¤𝜷 and ¥𝜷 denote the gradients of 𝜷 and ¤𝜷

with respect to 𝑠. Thus, 𝜷(𝑠 𝑗 ) can be approximated as 𝛽𝑘 (𝑠 𝑗 ) ≈ 𝛽(𝑠0) + 𝜕𝛽𝑘 (𝑠0)
𝜕𝑠
(𝑠 𝑗 − 𝑠0). So in

matrix notation, the first-order Taylor series expansion of the coefficient functions becomes

𝜷(𝑠 𝑗 ) ≈ A(𝑠0)zℎ (𝑠 𝑗 − 𝑠0) (3.7)

where zℎ (𝑠 𝑗 − 𝑠0) =
(
1, 𝑠 𝑗−𝑠0

ℎ

)T
and A(𝑠) = [𝜷(𝑠0), ℎ ¤𝜷(𝑠0)] which is a 𝑝 × 2 matrix. Hence,

applying the approximation procedure in Equation (3.7), we can rewrite the model 3.1 as

𝑌𝑖 𝑗 ≈ XT
𝑖

{
A(𝑠)zℎ (𝑠 𝑗 − 𝑠0)

}
+𝑈𝑖𝑟

=
{
zℎ (𝑠 𝑗 − 𝑠0) ⊗ X𝑖

}T vec{A(𝑠0)} +𝑈𝑖𝑟

= W𝑖 𝑗 (𝑠0)T𝜸(𝑠0) +𝑈𝑖𝑟 (3.8)
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such that 𝑠 𝑗 are sufficiently close to 𝑠0, where W𝑖 𝑗 (𝑠0) = [zℎ (𝑠 𝑗 − 𝑠0) ⊗ X𝑖] and 𝜸(𝑠0) =

(𝜷(𝑠0)T, ℎ ¤𝜷(𝑠0)T)T, both of which are vectors of length 2𝑝 × 1.

Let 𝐾 (·) be a symmetric probability density function which is used as a kernel and ℎ > 0 be

the bandwidth; thus a re-scaled kernel function is defined as 𝐾ℎ (·) = 1
ℎ
𝐾 (·). It is easy to see that

for a given location 𝑠0 ∈ S, we can construct a least squares estimator of 𝜸(𝑠) defined in Equation

(3.8) by minimizing the sample version of mean squared error E{[𝑌𝑖 𝑗 −WT
𝑖 𝑗
(𝑠0)𝜸(𝑠0)]2 |X𝑖}. Let

𝔐(X) be a 𝑞-dimensional instrument variable with 𝑞 ≥ 𝑝; the moment condition can be written

as E
{

1
𝑟

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)𝚫𝑖 𝑗 (𝑠0)

}
= 0 where 𝚫𝑖 𝑗 (𝑠0) = 𝔐(X𝑖)

{
𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠0)T𝜸(𝑠0)

}
is a zero-

mean stochastic process. Two popular approaches to construct optimal instrument variables are

proposed by Newey (1990); Ai and Chen (2003). Due to functional dependence and the existence

of heteroskedasticity of an unknown form, these approaches can not be undertaken for the model

3.8 that we have considered. Since Taylor series expansion provides a local approximation of the

function, we need to incorporate this phenomenon into the instrument variables during construction

of the mean-zero function.

Motivated from the idea of local linear estimator Fan and Gijbels (1996), consider the local linear

instrument variables Q𝑖𝑟 (𝑠0) = (𝔐(X𝑖),𝔐(X𝑖) (𝑠 𝑗 − 𝑠0)/ℎ)T. Therefore, consider the following

non-parametrically localizing augmented orthogonal moment conditions for estimating 𝜷(𝑠).

g𝑖{𝜸(𝑠0)} =
1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)Q𝑖𝑟 (𝑠0)

{
𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠0)T𝜸(𝑠0)

}
=

©­­«
1
𝑟

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)𝚫𝑖 𝑗 (𝑠0)

1
𝑟

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)

(𝑠 𝑗−𝑠0)
ℎ

𝚫𝑖 𝑗 (𝑠0)

ª®®¬
=

1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0) ⊗ 𝚫𝑖 𝑗 (𝑠0) (3.9)

and note that {g𝑖 (𝜸(𝑠))} : 𝑖 = 1, · · · , 𝑛} are independent and E{g𝑖 (𝜸(𝑠))} = 02𝑞×1 for 𝑠 ∈ S.

Most of the varying-coefficient models that exist in the literature assume homoskedasticity in

covariates and are limited to weakly dependent non-parametric models (Su et al., 2013; Sun, 2016),

that differs significantly in our model assumptions. In contrast, we assume a varying-coefficient

model under heteroskedasticity of an unknown form.
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3.3 Multi-step estimation procedure

This section develops a multi-step estimation procedure to estimate 𝜷(𝑠) simultaneously across all

functional points. Essentially, the multi-step procedure can be broken down as, Step-I: an initial

estimation; Step-II: estimation of the variance function, mean zero function, and eigen-components

and Step-III: GMM estimation. The key ideas of each step are described below.

Step-I. Calculate the least squares estimates of 𝜷(𝑠) as initial estimates, denoted by 𝜷̆(𝑠) across all

𝑠 ∈ S.

Step-II. Estimate the conditional variance of integrated square residuals non-parametrically, subse-

quently estimate the covariance of mean-zero function. Estimate the eigen-components using

multivariate FPCA.

Step-III. Project the continuous moment conditions onto eigen-functions and then combine them by

weighted eigenvalues to incorporate spatial dependence and thus obtain the updated estimate

of 𝜷(𝑠), denoted by 𝜷̂(𝑠) across all 𝑠 ∈ S.

3.3.1 Step-I: Initial least squares estimates

We consider a local linear smoother (Fan and Gijbels, 1996) to obtain an initial estimator of 𝜷(·)

ignoring functional dependencies. In this case, the non-linear least squares function of the model

3.1 can be defined as an objective function given by J𝑖𝑛𝑖𝑡{𝜷(·)} = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1{𝑌𝑖 𝑗 − XT

𝑖
𝜷(𝑠 𝑗 )}2.

By the local linear smoothing method we estimate 𝜸 at functional point 𝑠0, by minimizing

J𝑖𝑛𝑖𝑡{𝜸(𝑠0)} =
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

{
𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠0)T𝜸(𝑠0)

}2 (3.10)

The solution of the above least-squares problem can be expressed as

𝜸̆(𝑠0) =
 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)W𝑖 𝑗 (𝑠0)T


−1  1

𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)𝑌𝑖 𝑗


(3.11)
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Consequently, the estimator of the coefficient function vector 𝜷(𝑠) at 𝑠0 is

𝜷̆(𝑠0) = [(1, 0) ⊗ I𝑝]𝜸̆(𝑠0) (3.12)

We determine the tuning parameter ℎ by using some data-driven techniques such as cross-validation

and generalized cross-validation (Hastie and Tibshirani, 2017).

3.3.2 Step-II: Intermediate steps

Step-II consists of two important steps in determining the class of GMM estimator. First in

Step-II.A, we propose a method to obtain optimal instrument variables and therefore estimate the

eigen-components which are used in local linear GMM objective function in Step-III. To estimate

eigen-components, we essentially need to use a multivariate version of FPCA which is quite

uncommon in the literature. We borrow the method proposed by Wang (2008).

Step-II.A: Choice of instrument variables

The choice of instrument variables is critical and the required identification condition is 𝑞 ≥ 𝑝,

which ensures that the dimension of Q𝑖 𝑗 (𝑠0) is at least equal to the dimension of 𝜸(𝑠0). In our

model, as discussed in Section 3.2, the error term has a potential heteroskedasticity of unknown

form. We define a set of independent and identically distributed random variables 𝑅1, 𝑅2, · · · , 𝑅𝑛

for 𝑛 individuals, where 𝑅𝑖 =
∫
𝑈2
𝑖
(𝑠)𝑑𝑠 for each 𝑖, termed as integrated square of residuals,

and E{𝑅𝑖 |X𝑖} = 𝜎2(X𝑖)
∑∞
𝑘=1 𝜃𝑘 . Therefore, consider the following non-parametric regression

problem.

log 𝑅𝑖 = log𝜎2(X𝑖) + 𝜖𝑖 (3.13)

where 𝜖𝑖 is the mean zero random variable with constant variance. The above model in Equation

(3.13) boils down to the problem of estimation of log𝜎2(X𝑖) by regressing the logarithmic value of

the integrated squared residual variables on the covariates X𝑖. This approach is inspired by Yu and

Jones (2004); Wasserman (2006) although used in a different context. Since𝑈𝑖s are not observable,

we replace 𝑈𝑖 by an efficient estimate that is obtained from Step-I, viz., 𝑈̆𝑖 (𝑠) = 𝑌𝑖 𝑗 − XT
𝑖
𝜷̆(𝑠) for
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all 𝑠 ∈ S. This step can easily be implemented using “gam" function available in mgcv package

in R to get an estimate of the non-parametric mean function, denoted by 𝜇(X) and therefore

𝜎̂2(X) = exp{𝜇(X)}. Given the estimate of 𝜎(·), we can, therefore, choose instrument variables

as 𝔐(X𝑖) =
(
X𝑖,X𝑖/𝜎̂2(X𝑖)

)T.

Step-II.B: Estimation of eigen-components

Without loss of generality, assume that the spectrum of functional domain S = [0, 1] and the

dimension of mean-zero function g(𝑠) = (𝑔1(𝑠), · · · , 𝑔𝑑 (𝑠))T is 𝑑 (in our problem, it equals 2𝑞) for

simplicity. Note that g(𝑠) is defined on an interval [0, 1] such that
∑𝑑
𝑙=1

∫
E{𝑔2

𝑙
(𝑠)}𝑑𝑠 is finite and

the covariance function C(𝑠, 𝑠′) = E
{
g{𝜸(𝑠)}g{𝜸(𝑠)}T

}
. Under the condition (C6) mentioned in

Section 3.4, using the lining-up method in Wang (2008), define a new stochastic process 𝑒(𝑠) on

the interval [0, 𝑑] with eigen-function 𝜙𝑒 such that,

𝑒(𝑠) =



𝑔1(𝑠) 0 ≤ 𝑠 < 1

𝑔2(𝑠 − 1) 1 ≤ 𝑠 < 2

· · ·

𝑔𝑙 (𝑠 − (𝑙 − 1)) 𝑙 − 1 ≤ 𝑠 < 𝑙

· · ·

𝑔𝑑 (𝑠 − 𝑑 + 1) 𝑑 − 1 ≤ 𝑠 < 𝑑

𝜙𝑒 (𝑠) =



𝜙1(𝑠) 0 ≤ 𝑠 < 1

𝜙2(𝑠 − 1) 1 ≤ 𝑠 < 2

· · ·

𝜙𝑙 (𝑠 − (𝑙 − 1)) 𝑙 − 1 ≤ 𝑠 < 𝑙

· · ·

𝜙𝑑 (𝑠 − 𝑑 + 1) 𝑑 − 1 ≤ 𝑠 < 𝑑

where we define the eigen-function for each 𝑔𝑙 as 𝜙𝑙 for 𝑙 = 1, · · · , 𝑑. Therefore, the covariance

function between 𝑔𝑙 (𝑠) and 𝑔𝑙 ′ (𝑠′) can be expressed as 𝐶𝑙,𝑙 ′ (𝑠, 𝑠′) = cov{𝑔𝑙 (𝑠 − (𝑙 − 1)), 𝑔𝑙 ′ (𝑠′ −

(𝑙′ − 1))} for 𝑙 − 1 ≤ 𝑠 < 𝑙 and 𝑙′ − 1 ≤ 𝑠′ < 𝑙′; 𝑙, 𝑙′ = 1, · · · , 𝑑. Note that for 𝑑-dimensional

processes, the Fredholm integral equation (Porter et al., 1990) is equivalent to 𝑑-simultaneous

integral equations where each of them corresponds to a specific functional interval of 𝑒(𝑠). For

𝑙 − 1 ≤ 𝑠 < 𝑙; 𝑙 = 1, · · · , 𝑑, the Fredholm integral equation yields∫ 𝑑

0
cov{𝑒(𝑠), 𝑒(𝑠′)}𝜙𝑒 (𝑠)𝑑𝑠 = 𝜆𝜙𝑒 (𝑠) (3.14)
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Now observe that for (𝑙 − 1) ≤ 𝑠 < 𝑙; 𝑙 = 1, · · · , 𝑑, the above relation is equivalent to the following.

𝑑∑︁
𝑙 ′=1

∫ 𝑙 ′

𝑙 ′−1
cov{𝑔𝑙 (𝑠 − (𝑙 − 1)), 𝑔𝑙 ′ (𝑠′ − (𝑙′ − 1))𝜙𝑙 ′ (𝑠′)𝑑𝑠′ = 𝜆𝜙𝑙 (𝑠 − (𝑙 − 1))

𝑑∑︁
𝑙 ′=1

∫ 1

0
cov{𝑔𝑙 (𝑠 − (𝑙 − 1)), 𝑔𝑙 ′ (𝑠′)}𝜙𝑙 ′ (𝑠′)𝑑𝑠′ = 𝜆𝜙𝑙 (𝑠 − (𝑙 − 1))

𝑑∑︁
𝑙 ′=1

∫ 1

0
cov{𝑔𝑙 (𝑠), 𝑔𝑙 ′ (𝑠′)}𝜙𝑙 ′ (𝑠′)𝑑𝑠′ = 𝜆𝜙𝑙 (𝑠) (3.15)

In a multivariate setting, the orthogonality condition is∫ 𝑑

0
𝜙𝑒,𝑙 (𝑠)𝜙𝑒,𝑙 ′ (𝑠)𝑑𝑠 = 1(𝑙 = 𝑙′) =

𝑑∑︁
𝑘=1

∫ 𝑘

𝑘−1
𝜙𝑘,𝑙 (𝑠 − (𝑘 − 1))𝜙𝑘,𝑙 ′ (𝑠 − (𝑘 − 1))𝑑𝑠

=

𝑑∑︁
𝑘=1

∫ 1

0
𝜙𝑘,𝑙 (𝑠)𝜙𝑘,𝑙 ′ (𝑠)𝑑𝑠 (3.16)

Using the generalized Mercer’s theorem (J Mercer, 1909), the results for the covariance function

can be briefly shown using the lining-up method. Assume that the covariance function is continuous

after the lining-up processes, so for (𝑙1 − 1) ≤ 𝑠 < 𝑙1 and (𝑙2 − 1) ≤ 𝑠 < 𝑙2; 𝑙1, 𝑙2 = 1, · · · , 𝑑, the

covariance function between 𝑔𝑙1 (𝑠) and 𝑔𝑙2 (𝑠′) can be expressed as

𝐶𝑙,𝑙 ′ (𝑠, 𝑠′) = cov{𝑔𝑙 (𝑠), 𝑔𝑙 ′ (𝑠)} =
∞∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑙 (𝑠 − (𝑙 − 1))𝜙𝑘,𝑙 ′ (𝑠 − (𝑙′ − 1))

=

∞∑︁
𝑘=1

𝜆𝑘𝜙𝑘,𝑙 (𝑠)𝜙𝑘,𝑙 ′ (𝑠′) (3.17)

Therefore, using the above argument, we can define the multivariate spectral decomposition

C(𝑠, 𝑠′) =
∞∑︁
𝑘=1

𝜆𝑘𝝓𝑘 (𝑠)𝝓𝑘 (𝑠′)T (3.18)

with the orthogonality condition 3.16. Since the lining-up data are univariate, we can adopt the

existing techniques of estimating functional eigen-values and eigen-function in the literature (Yao

et al., 2003, 2005; Müller and Yao, 2010; Li and Hsing, 2010) to estimate 𝜆 and 𝜙𝑒 (𝑠), and hence

can estimate 𝝓(𝑠) by stacking all components for aliened eigen-functions 𝜙𝑒 (𝑠).
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3.3.3 Step-III: Final estimates

Finally, we demonstrate our proposed estimator based on local-linear GMM where the proposed

mean-zero function can be projected onto eigen-function and then combined by the weighted

eigen-values. Then, for any positive 𝛼, the objective function is given by

J{𝜸(𝑠0)} =
∞∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

{
g(𝜸(𝑠0))T𝝓̂𝑘 (𝑠0)

}2

=

∞∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)𝝓̂𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)

[
𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠0)T𝜸(𝑠0)

]
2

(3.19)

By minimizing the above objective function, we obtain the following.

∞∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)𝝓̂𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)W𝑖 𝑗 (𝑠0)


×

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)𝝓̂𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)

[
𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠0)T𝜸(𝑠0)

]
:=
∞∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0)
{
y𝑘 (𝑠0) −X𝑘 (𝑠0)T𝜸(𝑠0)

}
(3.20)

whereX𝑘 (𝑠0) = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗−𝑠0)𝝓̂𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)W𝑖 𝑗 (𝑠0) andy𝑘 (𝑠0) = 1

𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗−

𝑠0)𝝓̂𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)𝑌𝑖 𝑗 . Therefore, the final estimate of the coherent function is 𝜷̂(𝑠0) = [(1, 0) ⊗

I𝑝]𝜸̂(𝑠0) where

𝜸̂(𝑠0) =
{ ∞∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0)X𝑘 (𝑠0)T
}−1 { ∞∑︁

𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0)y𝑘 (𝑠0)
}

(3.21)

The algorithm 3.1 summarizes the proposed method. For demonstration purposes, we choose the

tuning parameters using cross-validation as discussed in the algorithm. In the proposed algorithm,

𝛼 controls the number of eigen-values, and can be chosen so that the condition (C8) defined in

Section 3.4 is valid. Moreover, a continuity condition for lining-up is required for theoretical

justification, by empirical studies, in the present of discontinuity in 𝜙𝑒, the end results are still

adequate to use in practice.
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Algorithm 3.1 Estimation of 𝜷(𝑠) : 𝑠 ∈ S for the proposed local-GMM based estimation
procedure.

Data: {𝑌𝑖 (𝑠 𝑗 ), 𝑋𝑖, 𝑠 𝑗 }, for 𝑗 = 1, · · · , 𝑟; 𝑖 = 1, · · · , 𝑛
Result: Estimate 𝜷(𝑠) using proposed method

1: Calculate optimal ℎ: ℎ̂𝑖𝑛𝑖𝑡 ← arg minℎ∈H 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑟=1

{
𝑌𝑖 𝑗 − XT

𝑖
𝜷̆
−𝑖 (𝑠𝑟 ; ℎ)

}2

2: Calculate 𝜸̆(𝑠; ℎ̂𝑖𝑛𝑖𝑡)
3: g𝑖{𝜸(𝑠)} = 1

𝑟

∑𝑟
𝑗=1 𝐾ℎ̂𝑖𝑛𝑖𝑡 (𝑠 𝑗 − 𝑠)Q𝑖 𝑗 (𝑠; ℎ̂𝑖𝑛𝑖𝑡){𝑌𝑖 𝑗 −W𝑖 𝑗 (𝑠; ℎ̂𝑖𝑛𝑖𝑡)T𝜸̆(𝑠; ℎ̂𝑖𝑛𝑖𝑡)}

4: Determine the instrument variables 𝔐(X)
5: Compute eigen-components 𝜆𝑘 , 𝝓̂𝑘 (𝑠) and get the value of 𝛼 using the condition (C8).

6: Calculate optimal ℎ: ℎ̂𝑜𝑝𝑡 ← arg minℎ∈H 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑟=1

{
𝑌𝑖 𝑗 − XT

𝑖
𝜷̂
−𝑖 (𝑠𝑟 ; ℎ)

}2

7: Calculate 𝜷̂(𝑠; ℎ𝑜𝑝𝑡)

3.4 Asymptotic results

In this section, we provide some assumptions and then study the asymptotic properties of the local

linear GMM estimator. Here, we allow the sample size 𝑛 and the number of functional domains 𝑟

to grow to infinity. Detailed technical proofs are provided in Section 3.8.

Let 𝜷0(𝑠0) be the true value of 𝜷(𝑠0) at the location 𝑠0. For simplicity, define 𝛿𝑛1(ℎ) ={
(1 + (ℎ𝑟)−1) log 𝑛/𝑛

}1/2 and 𝛿𝑛2(ℎ) =
{
(1 + (ℎ𝑟)−1 + (ℎ𝑟)−2) log 𝑛/𝑛

}1/2. 𝜈𝑎,𝑏 =
∫
𝑡𝑎𝐾𝑏 (𝑡)𝑑𝑡.

Consider the following conditions that will be useful in asymptotic results.

(C1) Kernel function 𝐾 (·) is a symmetric density function defined on the bounded support [−1, 1]

and is Lipschitz continuous.

(C2) Density function 𝑓𝑇 of 𝑇 is bounded above and away from infinity, and also below and away

from zero. Moreover, 𝑓 is differentiable, and the derivative is continuous.

(C3) E{∥𝑋 ∥𝑎} < ∞ and E{sup𝑠∈S |𝑈 (𝑠) |𝑎} < ∞ for some positive 𝑎 > 1. Define E{𝔐(X)X} = 𝛀

with rank 𝑝.

(C4) The true coefficient function 𝜷0(𝑠) is three-times continuously differentiable and Σ(𝑠, 𝑠′) are

twice continuously differentiable.
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(C5) {𝑈 (𝑠) : 𝑠 ∈ [0, 1]} and {𝔐(X)𝑈 (𝑠) : 𝑠 ∈ [0, 1]} are Donsker class, where X ⊂ 𝔐(X)

(C6) a) lim𝑠↘1 E{|𝑔𝑙 (𝑠 − 1) − 𝑔𝑙 (0) |2} = 0 for 𝑙 = 1, · · · , 𝑑

b) lim𝑠↗1 E{|𝑔𝑙−1(𝑠) − 𝑔𝑙 (0) |2} = 0 for 𝑙 = 2, · · · , 𝑑

(C7) All second order partial derivatives of C(𝑠, 𝑠′) exist and are bounded on the support of the

functional domain.

(C8) For some 𝜅0 ≥ 1 and 𝛼−1 = 𝑜

(∑𝜅0
𝑘=1 𝜆

−1
𝑘
/∑∞𝑘=𝜅0+1 𝜆𝑘

)
(C9) The numbers of individuals and functional grid-points are growing to infinity such that ℎ→ 0

and 𝑟ℎ → ∞. For some positive number 𝑎 ∈ (2, 4), | log ℎ |1−2/𝑎/ℎ ≤ 𝑟1−2/𝑎. For 𝑎 > 2,

(ℎ4 + ℎ3/𝑟 + ℎ2/𝑟2)−1(log 𝑛/𝑛)1−2/𝑎 → 0 as 𝑛→∞.

Remark 3.4.1. Conditions (C1) and (C2) are commonly used in the literature of non-parametric

regression. The bound condition for the density function in (C2) of the functional points is standard

for random design. Similar results can be obtained for fixed design where the grid-points are

pre-fixed according to the design density
∫ 𝑠 𝑗

0 𝑓 (𝑠)𝑑𝑡 = 𝑗/𝑟 for 𝑗 = 1, · · · , 𝑟, for 𝑟 ≥ 1. Condition

(C3) is similar to that in Li and Hsing (2010) which requires the bound on the higher order moment

of X. Moreover, the rank condition of𝛀 is required for the identification of the functional coefficient

and its first-order derivatives (Su et al., 2013). Condition (C4) is also common in functional data

analysis literature (Wang et al., 2016). This condition allows us to perform the Taylor series

expansion. Condition in (C5) avoids the smoothness condition of the sample path (Zhu et al.,

2012, 2014) which is commonly assumed in Hall and Hosseini-Nasab (2006); Zhang and Chen

(2007); Cardot et al. (2013). Conditions (C6) are required to check the continuity in the mean-zero

function, which is equivalent to checking the mean square continuity of the process after lining-up

(Hadinejad-Mahram et al., 2002). Here, the first condition shows the limits from right and remain

always right; therefore, it involves only one process. A similar but opposite phenomenon occurs in

the second condition. Moreover, if the vector process g(𝑠) is mean-square continuous, then both

approaches are equivalent, as a result, the covariance function is continuous after lining-up the
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process. To obtain the asymptotic expression of 𝜷̂(𝑠), observed for a fixed sample size, there exists

𝜅0 such that 𝑘 ≤ 𝜅0, 𝜆2
𝑘

is much larger than 𝛼, thus the ratio 𝜆𝑘/(𝜆2
𝑘
+𝛼) ≈ 𝜆−1

𝑘
. On the other hand,

if 𝑘 > 𝜅0, 𝜆2
𝑘
<< 𝛼, as a result, the fraction 𝜆𝑘/(𝜆2

𝑘
+ 𝛼) can be approximately written as 𝜆𝑘/𝛼.

Therefore, by the assumption that we make in (C8), we can write for 𝑠 ∈ S,

𝜅0∑︁
𝑘=1

𝜆−1
𝑘 𝝓𝑘 (𝑠)𝝓𝑘 (𝑠′)T + 𝛼−1

∞∑︁
𝑘=𝜅0+1

𝜆𝑘𝝓𝑘 (𝑠)𝝓𝑘 (𝑠′)T =

𝜅0∑︁
𝑘=1

𝜆−1
𝑘 𝝓𝑘 (𝑠)𝝓𝑘 (𝑠′)T {1 + 𝑜(1)} (3.22)

Condition (C9) provide the range of bandwidth. Under the fixed sampling design, this condition

can be weakened; see Zhu et al. (2012).

The following result provide the asymptotic properties of the initial estimates mentioned in Step-I.

Theorem 3.4.1. Under conditions (C1), (C2), (C3), (C4), (C5), and (C9){√
𝑛

(
𝜷̆(𝑠0) − 𝜷0(𝑠0) − 0.5ℎ2𝜈21 ¥𝜷0(𝑠0)

)
× (1+𝑜𝑎.𝑠. (1)) : 𝑠0 ∈ S

}
weakly converges to a mean

zero Gaussian process with a covariance matrix Σ(𝑠0, 𝑠0)𝛀−1
x where 𝛀x = E{XXT}.

Next, we study the convergence rates of the estimated eigen-components based on the proposed

lining-up method. The following lemma is the output of the asymptotic expansion of eigen-

components of an estimated covariance function developed by Li and Hsing (2010).

Lemma 3.4.2. Under assumptions (C1), (C2), (C3), (C6), (C7), (C8), and (C9) the following

convergence holds almost surely for any finite-dimensional mean-zero function g(𝑠).

1.
���𝜆𝑘 − 𝜆𝑘 ��� = 𝑂 (ℎ2 + 𝛿𝑛1(ℎ) + 𝛿𝑛2(ℎ))

2. sup𝑠0∈S

���𝝓̂𝑘 (𝑠0) − 𝝓𝑘 (𝑠0)
��� = 𝑂 (ℎ2 + 𝛿𝑛1(ℎ) + 𝛿2

𝑛2(ℎ))

for all 𝑘 = 1, · · · , 𝜅0.

We skip the proof of the above lemma, as it is well developed in the literature of functional data

analysis including Hall (2004); Hall and Hosseini-Nasab (2006); Li and Hsing (2010). Next, we

show the asymptotic results of the proposed estimation.
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Theorem 3.4.3. Suppose the conditions (C1), (C2), (C3), (C4), (C5), (C6), (C7), (C8), and (C9)

hold, then for the proposed local linear GMM estimator 𝜷̂(𝑠), have the following results hold.{√
𝑛

(
𝜷̂(𝑠) − 𝜷0(𝑠) − 0.5ℎ2𝜈21 ¥𝜷(𝑠))

)
(1 + 𝑜𝑎.𝑠. (1)) : 𝑠 ∈ S

}
weakly converges to a mean zero

Gaussian process with a covariance matrix

A(𝑠0, 𝑠0) =
(
𝛀C−1

𝜅0,11(𝑠0, 𝑠0)𝛀T
)−1

𝛀C−1
𝜅0,11(𝑠0, 𝑠0)𝚺(𝑠0, 𝑠0)C−1

𝜅0,11(𝑠0, 𝑠0)𝛀
(
𝛀C𝜅0,11(𝑠0, 𝑠0)−1𝛀T

)−1

.

The proofs of Theorems 3.4.1 and 3.4.3 are provided in Section 3.8.

3.5 Simulation studies

We conduct numerical studies to compare finite sample performance under different correlation

structures and heterogeneity conditions. Data are generated from the following model.

𝑌𝑖 (𝑠) = 𝑋𝑖𝜷(𝑠) +𝑈𝑖 (𝑠) (3.23)

where we generate trajectories observed at 𝑟 spatial locations for 𝑖-th curve, 𝑖 = 1, · · · , 𝑛. Assume

that the functional fixed effect be 𝛽(𝑠) = cos(2𝜋𝑠) and corresponding fixed effect covariate is

generated from the normal distribution with unit mean and variance. The error process is generated

as

𝑈𝑖 (𝑠) = 𝜉1(𝑋𝑖)𝜓1(𝑠) + 𝜉2(𝑋𝑖)𝜓2(𝑠) (3.24)

where 𝜉1(𝑋𝑖) and 𝜉2(𝑋𝑖) are independent central normal random variables with variance 3𝜎2(𝑋𝑖)𝜃2
0

and 1.5𝜎2(𝑋𝑖)𝜃2
0 where 𝜃0 is determined by the relative importance of random error signal-to-noise

ratio, denoted as SNR𝜃 which is interpreted as the ratio of standard deviation of the additive

prediction without noise divided by the standard error of the random noise function. For example,

SNR𝜃 = 2 means that the contribution of each functional random noise to the variability in 𝑌 (𝑠)

is about double that of the fixed effect (Scheipl et al., 2015). Here, we use scaled orthonormal

functions 𝜓1(𝑠) ∝ (1.5 − sin(2𝜋𝑠) − cos(2𝜋𝑠)) and 𝜓2(𝑠) ∝ sin(4𝜋𝑠); due to orthonormality, the

proportionality constant can be easily determined. Contributions to the conditional variances in

𝜉𝑘 (𝑋) are specified below.
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S.0 𝜎2(𝑥) = 1 (homoskedastic)

S.1 𝜎2(𝑥) = (1 + 𝑥2/2)2

S.2 𝜎2(𝑥) = exp(1 + 𝑥2/2)

S.3 𝜎2(𝑥) = exp(1 + |𝑥 | + 𝑥2)

S.4 𝜎2(𝑥) = (1 + |𝑥 |/2)2

The following parameters are considered for each of the above scenarios.

1. Observational spatial points. We sample the trajectories at 𝑟 equidistant spatial points

{𝑠1, · · · , 𝑠𝑟} on [0, 1]. Let 𝑠𝑖 = ( 𝑗 − 0.5)/𝑟 for 𝑗 = 1, · · · , 𝑟 for the 𝑖-th curve. The number

of spatial points is assumed to be 200 for each case.

2. Sample size. Number of trajectories 𝑛 ∈ {50, 100, 200, 500}.

3. Signal to noise ratio. The controlling parameter 𝜃0 is determined using signal-to-noise ratio,

SNR𝜃 which is assumed to be either 0.5 or 1.

Here, for each of the above situations, we perform 500 simulation replicates. To make it

consistent with theoretical results and numerical examples, we use “FPCA" function in R which is

available in fdapace packages (Gajardo et al., 2021) or in the MATLAB (MATLAB, 2014) package

PACE available at http://www.stat.ucdavis.edu/PACE/ to estimate the eigen-functions. Bandwidths

are selected using five-fold generalized cross-validation in all situations and for estimation, the

Epanechnikov kernel 𝐾 (𝑥) = 0.75(1 − 𝑥2)+ is used; where (𝑎)+ = max(𝑎, 0). Accuracy of the

parameter estimation is assessed using integrated mean square error (IMSE) and integrated mean

absolute error (IMAE) which for the 𝑏−th replication are defined as

IMSE𝑏 =

𝑟∑︁
𝑗=1

(
𝜷̂𝑏 (𝑠 𝑗 ) − 𝜷(𝑠 𝑗 )

)2
Δ(𝑠𝑟)

 (3.25)

and

IMAE𝑏 =

𝑟∑︁
𝑗=1
| 𝜷̂𝑏 (𝑠 𝑗 ) − 𝜷(𝑠 𝑗 ) |Δ(𝑠𝑟)

 (3.26)

85

http://www.stat.ucdavis.edu/PACE/


with Δ(𝑠 𝑗 ) = 𝑠 𝑗 − 𝑠 𝑗−1 and 𝑠0 = 0 and 𝑠1 < · · · < 𝑠𝑟 are the observed points over the support set

of observational points. We have noticed that the results can be improved by multiplying ℎ∗ by a

constant in a certain range where ℎ∗ is the optimal bandwidth obtained from cross-validation. We

use 𝜷̂ corresponding to bandwidth 0.75ℎ∗ for our numerical studies. We present Tables 3.1 and

3.2 where IMSEs and IMAEs are averaged over 500 replications for each situation. We denote

LLE, LLGMM and LLGMM-opt by local linear smoothing estimator described in Step-I, local

linear GMM without incorporating weight matrix and local linear GMM with weight matrix as

proposed in Step-III in Section 3.3 respectively. As expected, for all situations, IMSE and IMAE are

significantly reduced if we increase the sample size and/or SNR𝜃 . For the homoskedastic case, the

error rates of LLE are similar for LLGM but under the presence of heteroskedasticity of unknown

form, our proposed method outperforms.

Table 3.1 Performance of the estimation procedure with SNR𝜃 = 0.5

n = 50 n = 100 n = 200 n = 500

Case Method IMSE IMAE IMSE IMAE IMSE IMAE IMSE IMAE

S.0 LLE 0.0372 0.1429 0.0189 0.1016 0.0099 0.0737 0.0041 0.0472
LLGMM 0.0375 0.1435 0.0191 0.1022 0.0099 0.0737 0.0041 0.0471

LLGMM-opt 0.0388 0.1460 0.0198 0.1038 0.0100 0.0740 0.0042 0.0474

S.1 LLE 0.0939 0.2271 0.0516 0.1679 0.0261 0.1189 0.0106 0.0766
LLGMM 0.0816 0.2123 0.0443 0.1556 0.0227 0.1109 0.0091 0.0708

LLGMM-opt 0.0585 0.1820 0.0292 0.1262 0.0135 0.0867 0.0050 0.0517

S.2 LLE 0.1381 0.2810 0.0812 0.2169 0.0468 0.1632 0.0209 0.1094
LLGMM 0.0804 0.2105 0.0372 0.1409 0.0164 0.0902 0.0048 0.0486

LLGMM-opt 0.0557 0.1462 0.0134 0.0817 0.0045 0.0471 0.0015 0.0262

S.3 LLE 0.1762 0.3330 0.1018 0.2538 0.0581 0.1913 0.0265 0.1291
LLGMM 0.0328 0.1069 0.0126 0.0619 0.0055 0.0376 0.0023 0.0243

LLGMM-opt 0.1067 0.0600 0.0021 0.0201 0.0004 0.0093 0.0003 0.0064

S.4 LLE 0.0588 0.1798 0.0309 0.1298 0.0158 0.0928 0.0065 0.0596
LLGMM 0.0577 0.1782 0.0303 0.1285 0.0155 0.0920 0.0063 0.0589

LLGMM-opt 0.0576 0.1792 0.0303 0.1287 0.0153 0.0914 0.0063 0.0585
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Table 3.2 Performance of the estimation procedure with SNR𝜃 = 1

n = 50 n = 100 n = 200 n = 500

Case Method IMSE IMAE IMSE IMAE IMSE IMAE IMSE IMAE

S.0 LLE 0.0097 0.0729 0.0048 0.0515 0.0025 0.0372 0.0010 0.0237
LLGMM 0.0099 0.0738 0.0051 0.0526 0.0025 0.0373 0.0010 0.0238

LLGMM-opt 0.0101 0.0741 0.0052 0.0532 0.0025 0.0374 0.0010 0.0238

S.1 LLE 0.0248 0.1169 0.0135 0.0860 0.0068 0.0608 0.0027 0.0387
LLGMM 0.0142 0.0887 0.0070 0.0617 0.0034 0.0430 0.0013 0.0269

LLGMM-opt 0.0126 0.0836 0.0062 0.0573 0.0029 0.0403 0.0012 0.0253

S.2 LLE 0.0363 0.1440 0.0215 0.1117 0.0124 0.0842 0.0055 0.0560
LLGMM 0.0103 0.0734 0.0046 0.0480 0.0019 0.0304 0.0006 0.0172

LLGMM-opt 0.0069 0.0589 0.0029 0.0376 0.0012 0.0239 0.0004 0.0142

S.3 LLE 0.0466 0.1705 0.0274 0.1314 0.0157 0.0994 0.0071 0.0669
LLGMM 0.0050 0.0398 0.0025 0.0273 0.0011 0.0168 0.0004 0.0101

LLGMM-opt 0.0006 0.0133 0.0003 0.0078 0.0002 0.0069 0.0001 0.0052

S.4 LLE 0.0155 0.0924 0.0080 0.0662 0.0041 0.0472 0.0016 0.0300
LLGMM 0.0141 0.0881 0.0073 0.0631 0.0036 0.0447 0.0015 0.0285

LLGMM-opt 0.0142 0.0883 0.0074 0.0634 0.0037 0.0449 0.0015 0.0285

3.6 Real data analysis

For illustrating the application of our proposed method and the estimation procedure therein, we

use Apnea-data to understand white matter structural alterations using diffusion tensor imaging

(DTI) in obstructive sleep apnea (OSA) patients (Xiong et al., 2017). The details of this data-set

have already been discussed in Chapter 2, Subsection 2.5.2.

FA varies systematically along the trajectory of each white matter fascicle. Several pre- and

post-processing steps were performed by the FSL software. The brain was extracted using brain

segmentation tools. After generating FA maps using the FMRIB diffusion toolbox, images from all

individuals were aligned to an FA standard template through non-linear co-registration. The Johns

Hopkins University (JHU) white matter tractography atlas was used as a standard template for white

matter parcellation with 50 regions of interest (ROIs). All imaging parameters were calculated by

averaging the voxel values in each ROI.

For each subject, we calculate the similarity matrix C with dimension 50 × 50. The (𝑘, 𝑙)-th
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element of the matrix C is defined as 𝑐𝑘𝑙 = |𝑦𝑘 − 𝑦𝑙 | where 𝑦𝑘 is the measure of FA associated

with 𝑘-th ROI. For simplicity, we scale the similarity matrix such that the range of elements of the

matrix is [0, 1]. To create the network, we threshold each similarity matrix to build an adjacency

matrix G with elements {1, 0} depending on whether the similarity values exceed the threshold or

not. Since this threshold controls the topology of the data, we contract the adjacent matrix over a

set of threshold parameters from 0.01 to 0.99, and this set is denoted as S with cardinally 99. A

popular measure of the connectivity is average path length (APL) which is defined as the average

number of steps along the shortest path for all possible pairs of the network nodes. Therefore, it

measures the efficacy of information on a network (Albert and Barabási, 2002). For a series of

threshold parameters (𝑠), we observe the APL for FA as shown in Figure 3.1. Scientists are often

interested to know the association of APL of the network generated from FA with a set of covariates

of interests such as age and lapses score.

We fit the model 3.1 to APLs that are collected over continuous spatial domains (viz, thresholds)

from all individuals in which X𝑖 included clinical variables such as lapses, age. We discard the

subjects from the analysis with missing clinical variables and therefore sample size 𝑛 = 27. Here

we used three-fold cross-validation to obtain the tuning parameters and the FVE is set be at 0.99.

In Figure 3.2, we present the estimated coefficient functions corresponding to age and number of

lapses associated with APL where it can be observed that the coefficient of the network property

is negative with age but positive with lapses counts. Moreover the effect for the APL is found to

be increasing when the significant level is small to moderate and decreasing at moderate to large

significance levels; whereas, the effect of APL is more-or-less similar upto the larger values of

threshold, and after that it significantly decreases. Here small values of significance thresholds

represent sparse connected graph where the true connection might be eliminated due to lenient

thresholding; on the other hand, for large significant values, the generated graphs are densely

connected.
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Figure 3.2 Apnea-data analysis: Plots of estimated coefficient functions of age (top panel) and
number of lapses (bottom panel) for average path length associated with Fractional Anisotropy
(FA) in DTI analysis.
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3.7 Discussion

In this chapter, we propose an efficient estimation procedure for the varying-coefficient model

which is commonly used in neuroimaging and econometrics. We understand that this procedure is

an efficient approach to incorporate heteroskedasticity in the analysis of functional data. To best

of our knowledge, this is the first initiative to incorporate such a condition into the model. This

model is therefore equipped with a more complex relationship between the functional response

and real-valued covariates. Additionally, our method is easy to implement in a wide range of

applications due to the multi-stage structure of the algorithm. The applicability of the proposed

method is illustrated by simulation studies and real data analysis. We leave the testing of hypotheses

for linear constraints on 𝜷0(·) for future studies.

3.8 Technical details

In this section, we provide technical details of the proposed theorems in Section 3.4. We prove

theorems 3.4.1 and 3.4.3 by proving the following lemmas.

3.8.1 Some useful lemmas

Lemma 3.8.1. Under the conditions (C5) 1√
𝑛

∑𝑛
𝑖=1𝑈𝑖 (𝑠0)𝔐(X𝑖) is tight.

Proof. Consider the class of function C = {𝑈 (𝑠0)𝔐(X𝑖) : 𝑠0 ∈ [0, 1]}. Therefore, due the

assumption (C5), C is a P-Donsker class. Therefore, 1√
𝑛

∑𝑛
𝑖=1𝑈𝑖 (𝑠0)𝔐(X𝑖) is tight.

Lemma 3.8.2. Under the assumptions (C1), (C2) and (C9), the following holds for any power

𝑐 ≥ 0.

sup
𝑠∈[0,1]

����∫ 𝐾ℎ (𝑡 − 𝑠) {(𝑡 − 𝑠)/ℎ}𝑐 𝑑Π(𝑡) − Π(𝑡)
���� = 𝑂 (1/(𝑟ℎ)−1/2) (3.27)

The above bound can be replaced by 𝑂 (1/𝑟ℎ) for fixed design case.

Proof. This can be proved by using the empirical process techniques by observing that the class

{𝐾 ((· − 𝑠/ℎ)) ((· − 𝑠/ℎ))𝑐 : 𝑠 ∈ [0, 1]} is a P-Donsker class (Zhu et al., 2012). For the balanced

case, the results can be shown using Tayler’s series expansion.
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Lemma 3.8.3. Define I(𝑠0) = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)Q𝑖 𝑗 (𝑠0)T. Under the conditions

(C1), (C2), (C3) and (C9) I(𝑠0) = 𝑓 (𝑠0)diag(1, 𝜈21) ⊗ 𝛀 + 𝑂 (ℎ + 𝛿𝑛1(ℎ)) almost surely, where

𝛀 = E{𝔐(X)XT}.

Proof. Observe the following.

I(𝑠0) =
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)Q𝑖 𝑗 (𝑠0)T

=
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

{
zℎ (𝑠 𝑗 − 𝑠0) ⊗𝔐(X𝑖)

} {
zℎ (𝑠 𝑗 − 𝑠0) ⊗ X𝑖

}T

=
1
𝑛𝑅

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠)

{
zℎ (𝑠 𝑗 − 𝑠0)⊗

2 ⊗𝔐(X𝑖)XT
𝑖

}
=

1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

©­­«
𝔐(X𝑖)XT

𝑖
𝔐(X𝑖)XT

𝑖
(𝑠 𝑗 − 𝑠0)/ℎ

𝔐(X𝑖)XT
𝑖
(𝑠 𝑗 − 𝑠0)/ℎ 𝔐(X𝑖)XT

𝑖
((𝑠 𝑗 − 𝑠0)/ℎ)2

ª®®¬
:=

©­­«
I11(𝑠0) I12(𝑠0)

I21(𝑠0) I22(𝑠0)

ª®®¬ (3.28)

Let us define I𝑎,𝑏 = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0) (𝑠 𝑗 − 𝑠0)𝑎+𝑏𝔐(X𝑖)XT

𝑖
. Assume that 𝜈41 is finite and

due to condition (C2),for general index 𝑐, we can derive the uniform bound of for all 𝑠0 ∈ S.

E{I𝑎,𝑏 (𝑠0)} = E
 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0) ((𝑠 𝑗 − 𝑠0)/ℎ)𝑐𝔐(X𝑖)XT

𝑖


= 𝛀E

1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0) ((𝑠 𝑗 − 𝑠0)/ℎ)𝑐


= 𝛀

∫
𝐾ℎ (𝑢 − 𝑠0) ((𝑢 − 𝑠0)/ℎ)𝑐 𝑓 (𝑢)𝑑𝑢

= 𝛀
∫

𝐾 (𝑢)𝑢𝑐 𝑓 (𝑠0 + ℎ𝑢)𝑑𝑢

= 𝛀
∫

𝐾 (𝑢)𝑢𝑐
{
𝑓 (𝑠0) + ℎ𝑢 𝑓 ′(𝑠0) + 0.5ℎ2𝑢2 𝑓 ′′(𝑠0) + · · ·

}
𝑑𝑢
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= 𝛀



𝑓 (𝑠0) +𝑂 (ℎ2) 𝑐 = 0, provided 𝜈21 < ∞, 𝑓 ′′ exists and finite

𝑂 (ℎ) 𝑐 = 1, provided 𝜈21 < ∞, 𝑓 ′ exists and finite

𝑓 (𝑠0)𝜈21 +𝑂 (ℎ2) 𝑐 = 2, provided 𝜈41 < ∞, 𝑓 ′′ exists and finite

𝑂 (ℎ) 𝑐 = 3, provided 𝜈41 < ∞, 𝑓 ′ exists and finite

(3.29)

Moreover, under the condition (C3), we have E∥X∥𝑎 is finite for some 𝑎 > 2 and can define,

𝑏𝑛 = ℎ
2+ ℎ/𝑟 where ℎ→ 0 such that 𝑏−1

𝑛 (log 𝑛/𝑛)1−2/𝑎 = 𝑜(1). Thus, 𝛿𝑛1(ℎ) = {𝑏𝑛 log 𝑛/𝑛ℎ2}1/2.

Now to establish the uniform bound for I(𝑠0), by using Lemma 2 in Li and Hsing (2010) for each

of I𝑎,𝑏 (𝑠0) for 𝑎, 𝑏 = 1, 2, we have

I(𝑠0) = 𝑓 (𝑠0) (diag(1, 𝜈21)) ⊗ 𝛀 +𝑂 (ℎ + 𝛿𝑛1(ℎ)) almost surely (3.30)

Lemma 3.8.4. Define, J(𝑠0) = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)Q𝑖 𝑗 (𝑠0)XT

𝑖
𝜷0(𝑠 𝑗 ). Thus, under the condi-

tions (C1), (C2), (C4), (C3) and (C9), J(𝑠0) − I(𝑠0)𝜸0(𝑠0) = 𝑓 (𝑠0) (𝜈21, 0) ⊗ 𝛀 + 𝑂 (𝛿𝑛1(ℎ) + ℎ)

almost surely, where 𝜸0(𝑠0) = (𝜷0(𝑠0)T, ℎ ¤𝜷0(𝑠0)T)T. Moreover, T(𝑠0) = 1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 −

𝑠0)Q𝑖 𝑗 (𝑠0)𝑈𝑖 𝑗 = 𝑂 (𝛿𝑛1(ℎ)) almost surely.

Proof. Observe that, because of condition (C4), using Taylor’s series expansion,

J(𝑠0) =
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)Q𝑖 𝑗 (𝑠0)XT

𝑖 𝜷0(𝑠0)

=
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)Q𝑖 𝑗 (𝑠0)

{
XT
𝑖 𝜷0(𝑠0) + (𝑠 𝑗 − 𝑠0)XT

𝑖
¤𝜷0(𝑠0)

+0.5(𝑠 𝑗 − 𝑠0)2XT
𝑖
¥𝜷0(𝑠0)

}
+ 𝑜(ℎ2)

= I(𝑠0)𝜸0(𝑠0) + 0.5ℎ2I21(𝑠0) + 𝑜(ℎ2) (3.31)

Using similar arguments, due to Lemma 2 in (Li and Hsing, 2010), under the conditions (C1), (C2)
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and (C3), with 𝜈41 being finite, we have

I21(𝑠0) =
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

©­­«
((𝑠 𝑗 − 𝑠0)/ℎ)2

((𝑠 𝑗 − 𝑠0)/ℎ)3
ª®®¬𝔐(X𝑖)XT

𝑖

= 𝑓 (𝑠0) (𝜈21, 0) ⊗ 𝛀 +𝑂 (𝛿𝑛1(ℎ) + ℎ) almost surely (3.32)

and

T(𝑠0) =
©­­«

1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0)𝔐(X𝑖)𝑈𝑖 𝑗

1
𝑛𝑟

∑𝑛
𝑖=1

∑𝑟
𝑗=1 𝐾ℎ (𝑠 𝑗 − 𝑠0) ((𝑠 𝑗 − 𝑠0)/ℎ)𝔐(X𝑖)𝑈𝑖𝑟

ª®®¬
= 𝑂 (𝛿𝑛1(ℎ)) almost surely (3.33)

Lemma 3.8.5. Under conditions (C1),(C2), (C3), (C5), (C9),

√
𝑛T(𝑠0) (1 + 𝑜𝑎.𝑠. (1))

𝑑−→ 𝑁 (0, 𝑓 2(𝑠0)Σ(𝑠0, 𝑠0) ⊗ 𝛀) (3.34)

where T(𝑠0) is defined in Lemma 3.8.4.

Proof. Note that

√
𝑛T(𝑠0) =

1
√
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

[
zℎ (𝑠 𝑗 − 𝑠0) ⊗𝔐(X𝑖)

]
𝑈𝑖 𝑗 (3.35)

Therefore, the variance of the above quantity is

Var{
√
𝑛T(𝑠0)}

=
1
𝑛
E


𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝑟∑︁
𝑗 ′=1

𝐾ℎ (𝑠 𝑗 − 𝑠0)𝐾ℎ (𝑠 𝑗 ′ − 𝑠0)
[
zℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 ′ − 𝑠0)T ⊗𝔐(X𝑖)⊗

2
]
𝑈𝑖 𝑗𝑈𝑖 𝑗 ′


=

1
𝑛

𝑛∑︁
𝑖=1
E

 1
𝑟2

𝑟∑︁
𝑗=1

𝑟∑︁
𝑗 ′=1

𝐾ℎ (𝑠 𝑗 − 𝑠0)𝐾ℎ (𝑠 𝑗 ′ − 𝑠0)
[
zℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 ′ − 𝑠0) ⊗𝔐(X𝑖)⊗

2
]
Σ(𝑠 𝑗 , 𝑠 𝑗 ′)


= E

 1
𝑟2

𝑟∑︁
𝑗=1

𝑟∑︁
𝑗 ′=1

𝐾ℎ (𝑠 𝑗 − 𝑠0)𝐾ℎ (𝑠 𝑗 ′ − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)TΣ(𝑠 𝑗 , 𝑠 𝑗 ′)
 ⊗ 𝛀

= [E{D1(𝑠0)} + E{D2(𝑠0)}] ⊗ 𝛀 (3.36)
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where D1(𝑠0) = 1
𝑟2

∑𝑛
𝑗=1 𝐾

2
ℎ
(𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)⊗

2
Σ(𝑠 𝑗 , 𝑠 𝑗 ) and D2(𝑠0) = 1

𝑟 (𝑟−1)
∑𝑛
𝑗=1

∑𝑟
𝑗 ′=1

𝑗≠ 𝑗 ′
𝐾ℎ (𝑠 𝑗 −

𝑠0)𝐾ℎ (𝑠 𝑗 ′ − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 ′ − 𝑠0)TΣ(𝑠 𝑗 , 𝑠 𝑗 ′). Note that

E{D2(𝑠0)} = E
 1
𝑟2

𝑟∑︁
𝑗=1
𝐾2(𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)⊗

2
Σ(𝑠 𝑗 , 𝑠 𝑗 )


=

1
𝑟

∫
𝐾2
ℎ (𝑡 − 𝑠0)zℎ (𝑡 − 𝑠0)⊗

2
Σ(𝑡, 𝑡) 𝑓 (𝑡)𝑑𝑡

=
1
ℎ𝑟

∫
𝐾2(𝑡)

©­­«
1 𝑡

𝑡 𝑡2

ª®®¬Σ(𝑠0 + ℎ𝑢) 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡

=
1
ℎ𝑟
{ 𝑓 (𝑠0)diag(𝜈02, 𝜈22)Σ(𝑠0, 𝑠0) +𝑂 (ℎ)} (3.37)

Now assume that Θ(𝑠0) = E{D2(𝑠0)} with (𝑙, 𝑙′)-th entry 𝜃𝑙,𝑙 ′ and P(𝑡) =
∫
S
𝐾ℎ (𝑡 − 𝑠0)𝐾ℎ (𝑡′ −

𝑠0)zℎ (𝑡 − 𝑠0)zℎ (𝑡′ − 𝑠0)Σ(𝑡, 𝑡′) 𝑓 (𝑡′)𝑑𝑡′ with (𝑙, 𝑙′)-the element P𝑙,𝑙 ′. Therefore, using Hájek pro-

jection (Vaart and Wellner, 1996), we have

D1,𝑙.𝑙 ′ (𝑠0) = 𝜃𝑙,𝑙 ′ (𝑠0) +
2
𝑟

𝑟∑︁
𝑗=1

{
P𝑙,𝑙 ′ (𝑠 𝑗 ) − 𝜃𝑙,𝑙 ′ (𝑠0)

}
+ 𝜖𝑙,𝑙 ′ (𝑠0) (3.38)

where 2
𝑟

∑𝑟
𝑗=1

{
P𝑙,𝑙 ′ (𝑠 𝑗 ) − 𝜃𝑙,𝑙 ′ (𝑠0)

}
is the projection on D2,′,𝑙 ′ (𝑠0) − 𝜃𝑙,𝑙 ′ (𝑠0) onto the set of all

statistics of the linear order form. Thus, it is easy to see Var{𝜖} = 𝑂 (1/(𝑟ℎ)2) (Zhu et al., 2012).

Since the Taylor series expansion for small ℎ → 0, we have 𝜃𝑙,𝑙 ′ (𝑠0) = 𝑓 (𝑠0)2𝜈𝑙−1,𝜈𝑙 ′−1,1Σ(𝑠0, 𝑠0).

Therefore, in summery, we have Var{
√
𝑛T(𝑠0)} = 𝑓 2(𝑠0)UΣ(𝑠0, 𝑠0). where the element (𝑙, 𝑙′) of

the matrix U is 𝜈𝑙−1𝜈𝑙 ′−1.

To hold the above asymptotic results, we need to show that
√
𝑛T(𝑠0) be tight asymptotically.

Therefore, consider the following, for suitable choice of 𝑙 < 𝑙 after change of variables,

√
𝑛T(𝑠0)

=
1
√
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑟=1

𝐾ℎ (𝑠 𝑗 − 𝑠0) [zℎ (𝑠 𝑗 − 𝑠0) ⊗𝔐(X𝑖)]𝑈𝑖 𝑗

=
1
√
𝑛

𝑛∑︁
𝑖=1

1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)𝑈𝑖 𝑗 −

∫ 1

0
𝐾ℎ (𝑡 − 𝑠0)zℎ (𝑡 − 𝑠0)𝑈𝑖 (𝑡) 𝑓 (𝑡)𝑑𝑡

 ⊗𝔐(X𝑖)

+ 1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠0)

∫ 𝑙

𝑙

𝐾 (𝑡) (1, 𝑡)T 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡 ⊗𝔐(X𝑖)
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+ 1
√
𝑛

𝑛∑︁
𝑖=1

∫ 𝑙

𝑙

𝐾 (𝑡) (1, 𝑡)T {𝑈𝑖 (𝑠0 + ℎ𝑡) −𝑈𝑖 (𝑠0)} 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡 ⊗𝔐(X𝑖)

:= T1(𝑠0) + T2(𝑠0) + T3(𝑠0) (3.39)

Note that,

T1(𝑠0)

=
1
𝑟

𝑟∑︁
𝑟=1

𝐾ℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0)
{

1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 𝑗 ⊗𝔐(X𝑖) −

1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑡) ⊗𝔐(X𝑖)

}
+

1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0) −

∫ 𝑙

𝑙

𝐾ℎ (𝑡 − 𝑠0)zℎ (𝑡 − 𝑠0) 𝑓 (𝑡)𝑑𝑡


{
1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑡) ⊗𝔐(X𝑖)

}
+

∫ 𝑙

𝑙

𝐾ℎ (𝑡 − 𝑠0)zℎ (𝑡 − 𝑠0)
1
√
𝑛

𝑛∑︁
𝑖=1
{𝑈𝑖 (𝑠0) −𝑈𝑖 (𝑡)} 𝑓 (𝑡)𝑑𝑡 ⊗𝔐(X𝑖)

:= T11(𝑠0) + T12(𝑠0) + T13(𝑠0) (3.40)

Due to the Donsker Theorem, we have 1√
𝑛

∑𝑛
𝑖=1 𝔐(X𝑖)𝑈𝑖 (𝑠) weekly converges to a centered

Gaussian process and sup𝑠∈[0,1] | 1√
𝑛

∑𝑛
𝑖=1 𝔐(X𝑖)𝑈𝑖 (𝑠) | = 𝑂𝑝 (1) (Vaart and Wellner, 1996). There-

fore,

|T11(𝑠0) |

≤ 1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)∥zℎ (𝑠 𝑗 − 𝑠0)∥2

����� 1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 𝑗 ⊗𝔐(X𝑖) −

1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠) ⊗𝔐(X𝑖)

�����
≤ 1
𝑟

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)∥zℎ (𝑠 𝑗 − 𝑠0)∥2 sup

|𝑠−𝑠0 |≤ℎ

����� 1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠) ⊗𝔐(X𝑖) −

1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠0) ⊗𝔐(X𝑖)

�����
= 𝑜𝑃 (1) (3.41)

|T12(𝑠0) |

≤

������1𝑟 𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)zℎ (𝑠 𝑗 − 𝑠0) −

∫ 𝑙

𝑙

𝐾ℎ (𝑡 − 𝑠0)zℎ (𝑡 − 𝑠0) 𝑓 (𝑡)𝑑𝑡

������ sup
𝑡∈[0,1]

{
1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑡) ⊗𝔐(X𝑖)

}
= 𝑂𝑃 (1/

√
𝑟ℎ)𝑂𝑃 (1) = 𝑜𝑃 (1) (3.42)
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The above bound holds for Lemma 3.8.2 and Condition (C9) so that 𝑚ℎ→∞.

|T13(𝑠0) |

≤ sup
|𝑠−𝑠0 |≤ℎ

����� 1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠) ⊗𝔐(X𝑖) −

1
√
𝑛

𝑛∑︁
𝑖=1
𝑈𝑖 (𝑠0) ⊗𝔐(X𝑖)

����� ∫ 𝑙

𝑙

𝐾ℎ (𝑠 𝑗 − 𝑠0)∥zℎ (𝑠 𝑗 − 𝑠0)∥2 𝑓 (𝑠)𝑑𝑠

= 𝑂𝑃 (1) (3.43)

By combining the above three bounds, due to conditions (C1),(C2), (C3), (C5), (C9), we obtain

T1(𝑠0) = 𝑜𝑃 (1). Now, rewrite T3(𝑠0) as

T3(𝑠) =
1
√
𝑛

𝑛∑︁
𝑖=1

∫ 𝑙

𝑙

𝐾 (𝑡) (1, 𝑡)T {𝑈𝑖 (𝑠0 + ℎ𝑡) −𝑈𝑖 (𝑠0)} 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡 ⊗𝔐(X𝑖)

=

∫ 𝑙

𝑙

𝐾 (𝑡) (1, 𝑡)T ⊗ {𝑈𝑖 (𝑠0 + ℎ𝑡) −𝑈𝑖 (𝑠0)}𝔐(X𝑖) 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡 (3.44)

Since, 1√
𝑛

∑𝑛
𝑖=1 𝔐(X𝑖)𝑈𝑖 (𝑠0)is asymptotically tight, for any ℎ → 0, we have the following (Vaart

and Wellner, 1996).

sup
𝑠0∈[0,1]:|𝑡 |≤1

1
√
𝑛

𝑛∑︁
𝑖=1

𝔐(X𝑖) {𝑈𝑖 (𝑠0 + ℎ𝑡) −𝑈𝑖 (𝑠0)} = 𝑜𝑃 (1) (3.45)

Now it is enough to show that T2(𝑠0) is tight. First, observe that

(1, 0)
∫ 𝑙

𝑙

𝐾 (𝑡)diag(1, 𝜈−1
21 ) (1, 𝑡)

T 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡

=

∫ 𝑙

𝑙

𝐾 (𝑡) 𝑓 (𝑠0 + ℎ𝑡)𝑑𝑡

=

∫ 𝑙

𝑙

𝐾 (𝑡) { 𝑓 (𝑠0) + ℎ𝑡 𝑓 ′(𝑠0) + · · · }

= 𝑓 (𝑠0) + 𝑜(ℎ) (3.46)

Therefore, T2(𝑠0) (1+𝑜𝑃 (ℎ)) = 1√
𝑛

∑𝑛
𝑖=1𝑈𝑖 (𝑠0) ⊗𝔐(X𝑖). By assumption (C5), T2(𝑠0) is tight.

3.8.2 Proof of Theorem 3.4.1

Under the initial estimates, by considering 𝔐(X) = X, 𝛀 can be replaced by 𝛀x in Equation (3.47)

and inverse of 𝛀x exits. Therefore, by using Lemma 3.8.3, it is easy to observe that, almost surely

I(𝑠0)−1 = 𝑓 (𝑠0)−1(diag(1, 𝜈21)−1) ⊗ 𝛀−1
x +𝑂 (ℎ + 𝛿𝑛1(ℎ)) (3.47)
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Similarly, for the numerator, we have the following.

1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

{
zℎ (𝑠 𝑗 − 𝑠0) ⊗ X𝑖

}
𝑌𝑖 𝑗

=
1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)

{
zℎ (𝑠 𝑗 − 𝑠0) ⊗ X𝑖

} {
XT
𝑖 𝜷0(𝑠 𝑗 ) +𝑈𝑖 𝑗

}
= I(𝑠0)𝜸0(𝑠0) + 0.5ℎ2I21(𝑠0) ¥𝜷0(𝑠0) + T(𝑠0) + 𝑜(ℎ2) (3.48)

Thus, using Equation (3.47) and (3.48), we can derive,

𝜷̆(𝑠0) = [(1, 0) ⊗ I𝑝]I(𝑠0)−1 {
I(𝑠0)𝜸0(𝑠0) + 0.5ℎ2I21(𝑠0) ¥𝜷0(𝑠0) + T(𝑠0) + 𝑜(ℎ2)

}
= 𝜷0(𝑠0) + [(1, 0) ⊗ I𝑝] 𝑓 (𝑠0)−1 {

diag(1, 𝜈21)−1 ⊗ 𝛀−1
x

}
{ 𝑓 (𝑠0) (𝜈21, 0) ⊗ 𝛀x} 0.5ℎ2 ¥𝜷0(𝑠0)

+𝑂 (𝛿𝑛1(ℎ) + ℎ)

= 𝜷0(𝑠0) + 0.5ℎ2𝜈21 ¥𝜷0(𝑠0) +𝑂 (𝛿𝑛1(ℎ) + ℎ)

= 𝜷0(𝑠0) +𝑂 (𝛿𝑛1(ℎ) + ℎ) almost surely (3.49)

Therefore, sup𝑠0∈S
��𝜷̆(𝑠0) − 𝜷0(𝑠0)

�� = 𝑂 (𝛿𝑛1 + ℎ) almost surely. Furthermore, observe that the bias

of the initial estimator is

E{ 𝜷̆(𝑠0)} − 𝜷0(𝑠0) = 0.5ℎ2𝜈21 ¥𝜷0(𝑠0) {1 +𝑂𝑃 (𝛿𝑛1(ℎ) + ℎ)} (3.50)

Now, to calculate the variance, note that

√
𝑛{ 𝜷̆(𝑠0) − 𝜷(𝑠0) − 0.5ℎ2𝜈21 ¥𝛽0(𝑠0)}(1 + 𝑜𝑎.𝑠. (1))

= [(1, 0) ⊗ I𝑝] 𝑓 (𝑠0)
{
diag(1, 𝜈21)−1 ⊗ 𝛀−1

x
} √

𝑛T(𝑠0) (3.51)

By Lemma 3.8.5, we have the variance of the above quantity Σ(𝑠0, 𝑠0)𝛀−1
x .

3.8.3 Proof of Theorem 3.4.3

Define C𝜅0 (𝑠, 𝑠′) =
∑𝜅0
𝑘=1 𝜆𝑘𝝓𝑘 (𝑠)𝝓𝑘 (𝑠

′)T and hence, we can define C−1
𝜅0 (𝑠, 𝑠

′) with possible block

matrix

C−1
𝜅0 (𝑠, 𝑠

′) =
𝜅0∑︁
𝑘=1

𝜆−1
𝑘 𝝓𝑘 (𝑠)𝝓𝑘 (𝑠′)T =

©­­«
C−1
𝜅0,1,1(𝑠, 𝑠

′) 0

0 C−1
𝜅0,2,2(𝑠, 𝑠

′)

ª®®¬ (3.52)
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Also define,

𝜸̂𝜅0 (𝑠0) =
{
𝜅0∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0; 𝜅0)X𝑘 (𝑠0; 𝜅0)T
}−1 {

𝜅0∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0; 𝜅0)y𝑘 (𝑠0; 𝜅0)
}

(3.53)

where

X𝑘 (𝑠0; 𝜅0) =
1
𝑛𝑟

𝑛∑︁
𝑗=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)𝝓𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)W𝑖 𝑗 (𝑠0) (3.54)

and

y𝑘 (𝑠0; 𝜅0) =
1
𝑛𝑟

𝑛∑︁
𝑗=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)𝝓𝑘 (𝑠0)TQ𝑖 𝑗 (𝑠0)𝑌𝑖 𝑗 (3.55)

Therefore, we have the following.

𝜅0∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0; 𝜅0)X𝑘 (𝑠0; 𝜅0)T

=

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)Q𝑖 𝑗 (𝑠0)T


×

𝜅0∑︁
𝑘=1

𝜆−1
𝑘 𝝓𝑘 (𝑠0)𝝓𝑘 (𝑠0)T

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)Q𝑖 𝑗 (𝑠0)T


T

= I(𝑠0)C−1
𝜅0 (𝑠0, 𝑠0)I(𝑠0)T

= 𝑓 2(𝑠0) [diag(1, 𝜈21) ⊗ 𝛀] C−1
𝜅0 (𝑠0, 𝑠0) [diag(1, 𝜈21) ⊗ 𝛀]T +𝑂 (𝛿(ℎ))

= V(𝑠0) +𝑂 (𝛿(ℎ)) (3.56)

where we define V(𝑠0) = 𝑓 2(𝑠0)diag
(
𝛀C−1

𝜅0,1,1,(𝑠0, 𝑠0)𝛀T, 𝜈2
21𝛀C−1

𝜅0,2,2,(𝑠0, 𝑠0)𝛀T
)

and

𝜅0∑︁
𝑘=1

𝜆𝑘

𝜆2
𝑘
+ 𝛼

X𝑘 (𝑠0; 𝜅0)y𝑘 (𝑠0; 𝜅0)

=

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)W𝑖 𝑗 (𝑠0)Q𝑖 𝑗 (𝑠0)T


𝜅0∑︁
𝑘=1

𝜆−1
𝑘 𝝓𝑘 (𝑠0)𝝓𝑘 (𝑠0)T

 1
𝑛𝑟

𝑛∑︁
𝑖=1

𝑟∑︁
𝑗=1
𝐾ℎ (𝑠 𝑗 − 𝑠0)Q𝑖 𝑗 (𝑠0)𝑌𝑖 𝑗


= I(𝑠0)C−1

𝜅0 (𝑠0, 𝑠0)
{
I(𝑠0)𝜸0(𝑠0) + 0.5ℎ2I21(𝑠0) ¥𝜷(𝑠0) + T(𝑠0) + 𝑜(ℎ2)

}
(3.57)
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Therefore,

𝜷̂(𝑠0) − 𝜷0(𝑠0)

= 0.5ℎ2 [diag(1, 0) ⊗ I𝑝]V(𝑠0)−1I(𝑠0)C−1
𝜅0 (𝑠0, 𝑠0)I21(𝑠0) ¥𝜷(𝑠0)

+ [diag(1, 0) ⊗ I𝑝]V(𝑠0)−1I(𝑠0)C−1
𝜅0 (𝑠0, 𝑠0)T(𝑠0) +𝑂 (𝛿(ℎ))

= 0.5ℎ2 𝑓 2(𝑠0) [diag(1, 0) ⊗ I𝑝]V(𝑠0)−1 [diag(1, 𝜈21) ⊗ 𝛀]C−1
𝜅0 (𝑠0, 𝑠0) [(𝜈21, 0) ⊗ 𝛀]T ¥𝜷(𝑠0)

+ 𝑓 2(𝑠0) [diag(1, 0) ⊗ I𝑝]V(𝑠0)−1 [diag(1, 𝜈21) ⊗ 𝛀]C−1
𝜅0 (𝑠0, 𝑠0)T(𝑠0) +𝑂 (𝛿(ℎ))

= 0.5ℎ2𝜈21 ¥𝜷(𝑠0) +T(𝑠0) +𝑂 (𝛿(ℎ)) (3.58)

In order to obtain the asymptotic variance, consider, using Lemmas 3.8.3, 3.8.4 and 3.8.5, we have
√
𝑛{ 𝜷̂(𝑠0)−𝜷0(𝑠0)−0.5ℎ2𝜈21 ¥𝜷(𝑠0)}

𝑑−→ 𝑁 (0,A(𝑠0, 𝑠0))whereA(𝑠0, 𝑠0) is the asymptotic variance

of
√
𝑛T(𝑠0), where we derive, A(𝑠0, 𝑠0) = [(1, 0) ⊗ I𝑝]V−1(𝑠0)Ã(𝑠0, 𝑠0)V−1(𝑠0) [(1, 0) ⊗ I𝑝] for

Ã(𝑠0, 𝑠0) = [diag(1, 𝜈21) ⊗ 𝛀]C−1
𝜅0 (𝑠0, 𝑠0)diag(Σ(𝑠0, 𝑠0), 𝜈2

11Σ(𝑠0, 𝑠0))C−1
𝜅0 (𝑠0, 𝑠0) [diag(1, 𝜈21) ⊗

𝛀]T. By simple calculation, it can be shown that

A(𝑠0, 𝑠0) = (𝛀C−1
𝜅0,11(𝑠0, 𝑠0)𝛀T)−1𝛀C−1

𝜅0,11(𝑠0, 𝑠0)𝚺(𝑠0, 𝑠0)C−1
𝜅0,11(𝑠0, 𝑠0)𝛀(𝛀C−1

𝜅0,11(𝑠0, 𝑠0)𝛀T)−1

(3.59)
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CHAPTER 4

TENSOR BASED SPATIO-TEMPORAL MODELS FOR ANALYSIS OF FUNCTIONAL
NEUROIMAGING DATA

4.1 Introduction

Recent years have seen an explosive growth in the number of neuroimaging studies performed.

Popular imaging modalities include functional magnetic resonance imaging (fMRI), electroen-

cephalography (EEG), diffusion tensor imaging (DTI), positron emission tomography (PET), and

single-photon emission computed tomography (SPECT). Each of these techniques has its own

limitations and strengths. Therefore, a current trend is toward interdisciplinary approaches that use

multiple imaging techniques to overcome limitations of each method in isolation. As an example,

Figure 4.1 illustrates the combination of fMRI and EEG data. At the same time, neuroimaging data

is increasingly being combined with non-imaging modalities, such as behavioral and genetic data.

Prepossessed fMRI data

Prepossessed EEG data

Time

Time

El
ec
tr
od

e

Vo
xe
l

Figure 4.1 Multi-modal-data: An example of multi-modal data analysis which seeks to explore the
relationship between EEG and fMRI data.
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Multi-modal analysis is an increasingly important topic of research, and to fully realize its promise,

novel statistical techniques are needed. Here, we present a new approach towards performing such

analysis. It is common for the data generated from neuroimaging studies to consist of time-varying

signal measured over a large three-dimensional (3D) domain (Lindquist, 2008; Ombao et al., 2016).

Hence, the data are inherently spatio-temporal in nature. Due to the massive size of the data along

with its complex anatomical structure, classical vector-based spatio-temporal statistical methods

are often deemed unrealistic and inadequate. It is becoming increasingly clear that any new model

and methodology should address three fundamental concerns. First, standard spatio-temporal co-

variance modelling techniques are based on many parametric assumptions, which are often hard

to validate in large high-dimensional data such as fMRI. Second, modelling of spatio-temporal

interactions often produces large covariance matrices containing millions of elements that are hard

to estimate properly. Third, storage of these large data-sets while performing analysis is nearly

impossible.

The current research is motivated by the experiment studyforrest (http://studyforrest.org/) which

investigates high-level cognition in the human brain using complex natural stimulation, namely

watching the Hollywood movie Forrest Gump (1994). The data consist of several hours of fMRI

scans, structural brain images, eye-tracking data, and extensive annotations of the movie. Details of

this experiment are presented in Section 4.6. In our motivating example, we focus on data consisting

of voxel-wise fMRI images, measured over a large number of spatial locations (voxels) at 451 time-

points. The goal of our analysis is to use the multivariate eye-tracking data, measured while the

participants watch the movie, as covariates in a model that explains changes in the multivariate

brain data. The vast size and scale of these data call for well-equipped statistical techniques to find

the association between brain regions and other covariates over time-varying activities. It is useful

to consider this as a regression problem with a multi-dimensional array of outcomes and predictors.

These multi-dimensional arrays are popularly known as tensors. Figure 4.2 illustrates the reason

for considering a time-varying multi-dimensional array for analysis. Although the signals in both

modalities (in this case fMRI and eye-tracking) are measured discretely over time, we consider
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Figure 4.2 ForrestGump-data: (Top panel) BOLD fMRI for an example subject during their first
run (see Section 4.6 for details). 35 axial slices (thickness 3.0 mm) represents the third mode of
the tensor with 80× 80 voxels (3.0× 3.0 mm) in-plate resolution measured at every repetition time
(TR) of 2 seconds. (Bottom panel) fMRI data-set consists of a time series of 3D images (tensors)
at each TR (source: Wager and Lindquist (2015)).

them to be discrete measures of a smooth underlying function over time in a certain interval. This

assumption is reasonable in the context of both brain activity and eye movement, as they can

potentially change at any moment.

There are two main advantages to taking a tensor-based approach (Guo et al., 2012) towards

modeling this data-set. First, we can represent the unknown parameters to be estimated as a

linear combination of rank-1 components, where the latter are expressed as the outer product of

low-dimensional vectors. This allows the estimation of fewer parameters, which is consistent with

variable selection or dimension reduction problems in statistics. Second, because of the need to

estimate fewer parameters, the computational complexity is significantly reduced.

In an exploratory analysis of multi-dimensional data, principal component analysis (PCA) is

one of the most common tools for reducing dimensionality. Its use in tensor data has been studied

in various articles; for example, Liu et al. (2017) provided a generalized classical PCA that can
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deal with data matrices and tensors and can explore the spatial and temporal dependencies of

data simultaneously. (Allen et al., 2014) proposed generalization of singular value decomposition

(SVD) to quantify two-way regularization of PCA. This generalization involves a class of penalty

functions that can be used to regularize the matrix factors. In recent years, the methodology for

modelling tensor data has developed considerably with interesting applications. Hoff et al. (2011)

proposed a class of multi-dimensional normal distributions by applying multi-linear transformation

to an array of independently and identically distributed (i.i.d.) 𝑁 (0, 1) items and hence studied the

maximum likelihood estimator of separable complex covariance structures. Hoff (2011) discussed

a model-based version of low rank decomposition.

In a previous work, Zhou et al. (2013) formulated a regression framework that considers

clinical outcomes as response and images as covariates. Their method efficiently explored the

spatial dependence of images in the form of a multi-dimensional array structure. By extending

the generalized linear regression to a multi-way parameter corresponding to the tensor-structured

predictor, they proposed a penalized likelihood approach with adaptive lasso penalties, which

are imposed on the individual margins of PARAFAC decomposition. Guhaniyogi et al. (2017)

later proposed a Bayesian approach using a similar setup as Zhou et al. (2013), but with a novel

multi-way shrinkage prior, which can identify important cells in the tensor predictor appropriately.

However, a shortcoming of both these approaches is that they unable to address the issue when

responses are multi-dimensional images, and the covariates are also multi-dimensional variables

(e.g., clinical data or data from another imaging modality), as in the case of multi-modal analysis

and our motivating example. This necessitates the use of a tensor-on-tensor type model. The

recent work of Zhang et al. (2014) presents a tensor generalized estimation equation (GEE) for

longitudinal data analysis using low-rank CANDECOMP/PARAFAC (CP) decomposition on the

coefficient array in GEE. This decomposition approach accommodates the longitudinal correlation

of the data. Hoff (2015) proposed multi-linear regression model for longitudinal data using the

least squares method. In practice, there might be the possibility that there exists an effect among

the relations between the numbers of different pairs of modes. The general multi-linear regression
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model can address this via separable, Kronecker-structured regression parameters along with a

separable covariance structure.

A tensor-on-tensor regression approach was proposed in Lock (2018), followed by a general

multiple tensor-on-tensor regression in Gahrooei et al. (2018). Furthermore, Guhaniyogi and

Spencer (2018) discussed a tensor response regression where the coefficients corresponding to each

vector covariate are assumed to be tensors in the Bayesian framework. Recently, Liu et al. (2020)

have represented a generalized multi-linear tensor-on-tensor ridge regression model via tensor

train representation. Melzer et al. (2019) proposed a joint tensor regression which is weighted

at expectile levels. Their estimation technique is based on low-rank factorization combined with

regularization techniques using the smooth fast iterative shrinkage-thresholding algorithm (Beck

and Teboulle, 2009). An adaptive tensor-based SVD estimation is also discussed in the light of

Remannian trust method in Conn et al. (2000).

A varying-coefficient model in functional data analysis (FDA) literature allows the regression

coefficient to vary over some predictors of interest (say, 𝑇). In some cases, these predictors are

confounded with covariates X or some special variables such as time. This kind of model was

introduced and discussed by Hastie and Tibshirani (1993) and has since been widely studied by

researchers. The non-constant relationship between functional response and predictors has been

described in Fan et al. (1999); Ramsay and Silverman (2005); Ferraty and Vieu (2006); Horváth

and Kokoszka (2012); Bongiorno et al. (2014); Hsing and Eubank (2015), which are some good

references in FDA among many others.

The current chapter provides the following contributions to this literature. First, we propose

a method of modelling image data that can efficiently process large amounts of information and

identify associations while preserving the structure of the 3D images and multi-layer covariates.

Second, we consider the time-varying function-on-function concurrent linear model (Hastie and

Tibshirani, 1993) and generalize it to the tensor-on-tensor regression case, thus moving a step

further than Lock (2018), which did not consider the time-varying coefficient. Consequently,

our generalization provides an extension to classical functional concurrent regression with tensor
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predictors and tensor covariates. To the best of our knowledge, such an approach has not yet been

proposed in the statistics literature. Here, we express the regression coefficients using the B-spline

technique, and the coefficients of the basis functions are estimated using CP-decomposition, thereby

reducing computational complexity. Furthermore, our model requires minimum assumptions

compared to those in the existing literature. Our approach does not require the estimation of

covariance separately. Thus, our proposal offers an important addition to the literature on functional

and imaging data analysis. Our methods are flexible and general; therefore, they are applicable

using data from different domains such as multi-phenotype analysis and imaging genetics (Casey

et al., 2010). This makes it an ideal approach for modeling multi-modal data of the type described

in our motivating example.

The rest of this chapter is organized as follows. The proposed tensor-on-tensor functional

regression models are described in Section 4.2. Section 4.3 provides the theoretical properties of

the proposed estimator. Section 4.4 presents the algorithm and implementation of the method. The

simulation results are presented in Section 4.5 and real data examples are shown in Section 4.6.

Section 4.7 concludes with a discussion of future extensions. The technical proofs are presented in

Section 4.8.

4.2 Tensor-on-tensor functional regression

Recall the notations and definition in matrix algebra from Section 1.3 in Chapter 1. A𝐷-dimensional

tensor is denoted by Sans-serif upper-face letters A ∈ R𝐼1×···×𝐼𝐷 where the size 𝐼𝑑 along each mode

or dimension 𝑑 for 𝑑 = 1, · · · , 𝐷. Therefore, the number of elements in tensor A is 𝐼 =
∏𝐷
𝑑=1 𝐼𝑑

and the order of the tensor is the number of dimensions. Here and henceforth, matrices are denoted

by bold-face capital letters (examples: A,B · · · ), vectors are written as bold-face lower-case letters

(examples: a, b, · · · ) and scalars are presented as Latin alphabets (𝑎, 𝑏, · · · ).

In this section, we discuss tensor-on-tensor functional regression with time-varying coefficients.

Let Y(𝑡) ∈ R𝑄1×···×𝑄𝑀 with (𝑞1, · · · , 𝑞𝑀)-th element 𝑦𝑞1,··· ,𝑞𝑀 for all possible indices, be a set of

time-varying response variables observed at time 𝑡 and {Y(𝑡) : 𝑡 ∈ T} be the underlying continuous
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stochastic process defined on a compact interval T. Without loss of generality, we assume

T = [0, 𝑇] , 𝑇 > 0. Suppose there are 𝑁 individuals/trajectories on T. Observations are taken

at 𝐽 distinct points for each individual. Collection of points for the 𝑖-th individual is denoted as

T
†
𝑖
= {0 ≤ 𝑡𝑖1 < · · · < 𝑡𝑖𝐽 ≤ 𝑇}. Therefore, for 𝑖-th individual at a set of discrete time-pointsT†

𝑖
, we

observe the responses Y𝑖 (𝑡𝑖) = (Y𝑖 (𝑡𝑖1), · · · ,Y𝑖 (𝑡𝑖𝐽)) ∈ R𝐽×𝑄1×···×𝑄𝑀 which are distinct realizations

of the corresponding stochastic process. The covariate X(𝑡) ∈ R𝑃1×···×𝑃𝐿 with (𝑝1, · · · , 𝑝𝐿)-th

element 𝑥𝑝1,··· ,𝑝𝐿 (𝑡) for all indices, observed at T†
𝑖

is denoted as X𝑖 (𝑡𝑖) = (X𝑖 (𝑡𝑖1), · · · ,X𝑖 (𝑡𝑖𝐽)) ∈

R𝐽×𝑃1×···×𝑃𝐿 . The time-varying tensor coefficient 𝜷(𝑡) ∈ R𝑃1×···×𝑃𝐿×𝑄1×···×𝑄𝑀 is assumed to vary

smoothly over time. Therefore, we can apply local polynomial smoothing (Hardle, 1990; Wahba,

1990; Wand and Jones, 1995; Fan and Gijbels, 1996; Eubank, 1999), smoothing spline (Wahba,

1990; Green and Silverman, 1993; Eubank, 1999), regression spline (Eubank, 1999), P-spline

Ruppert et al. (2003). In this chapter, we use B-spline bases which are very popular in mathematics,

computer science and statistics (De Boor et al., 1978). Suppose, {𝜏ℎ}𝐾𝑁ℎ=1 be 𝐾𝑁 interior knots

within the compact interval [0, 𝑇] and the partition of the interval [0, 𝑇] at these knots be denoted

as K =
{
0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝐾𝑁 < 𝜏𝐾𝑁+1 = 𝑇

}
. The polynomial spline of order 𝑣 +1 is a function

of polynomials with degree 𝑣 on the intervals [𝜏ℎ−1, 𝜏ℎ) for ℎ = 1, · · · , 𝐾𝑁 and
[
𝜏𝐾𝑁 , 𝜏𝐾𝑁+1

]
and

𝑣 − 1 continuous derivatives globally. Let S𝑣
𝐾𝑁
(𝑡) denotes a set of such spline functions, i.e., 𝑠(𝑡)

belongs to S𝑣
𝐾𝑁
(𝑡) if and only if 𝑠(𝑡) belongs to 𝐶𝑣−1 [0, 𝑇] and its restriction to each intervals

[𝜏ℎ−1, 𝜏ℎ) is a polynomial of degree atleast 𝑣. Define for ℎ = 1, · · · , 𝐻𝑁

Bℎ (𝑡) = (𝜏ℎ − 𝜏ℎ−𝑣−1) [𝜏ℎ−𝑣−1, · · · , 𝜏ℎ] (𝑧 − 𝑡)𝑣+ (4.1)

where 𝐻 := 𝐻𝑁 = 𝐾𝑁 + 𝑣 + 1, [𝜏ℎ−𝑣−1, · · · , 𝜏ℎ] 𝑓 denotes the (𝑣 + 1)-st order divided difference of

the function 𝑓 and 𝜏ℎ = 𝜏0 for ℎ = −𝑣, · · · ,−1 and 𝜏ℎ = 𝜏𝐾𝑁+1 for ℎ = 𝐾𝑁 + 2, · · · , 𝐻𝑁 . Therefore,

{Bℎ}𝐻𝑁ℎ=1 forms the basis for S𝑣
𝐾𝑁
(𝑡) (Schumaker, 2007).

Now, for 1 ≤ 𝑝𝑙 ≤ 𝑃𝑙 , 1 ≤ 𝑞𝑚 ≤ 𝑄𝑚, 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝑀 , each function 𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡)

can be approximated by

𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡) =
𝐻∑︁
ℎ=1

𝑏ℎ,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀Bℎ (𝑡) = bT
𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀B(𝑡) (4.2)
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where b𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 = (𝑏1,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 , · · · , 𝑏𝐻,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 )T is the collection of basis

coefficients and B(𝑡) = (B1(𝑡), · · · ,B𝐻 (𝑡))T is a vector of known B-spline bases.

In practice, we can use different basis functions in mode to approximate 𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡).

However, for convenience, we use the same set of bases in this chapter. Instead of the B-spline,

one can use other basis functions to approximate the coefficient functions. We use the B-spline

base for its simplicity and numerical tractability. Although this method does not produce a

desirable approximation for discontinuous functions, in this chapter we restrict ourselves to smooth

continuous coefficients.

We propose a general time-varying tensor-on-tensor regression model,

Y𝑖 (𝑡) = ⟨X𝑖 (𝑡), 𝜷(𝑡)⟩𝐿 + E𝑖 (𝑡) (4.3)

which can be reduced into the following mode-wise time-varying coefficient model.

𝑦𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) =
𝑃1∑︁
𝑝1=1
· · ·

𝑃𝐿∑︁
𝑝𝐿=1

𝑥𝑖,𝑝1,··· ,𝑝𝐿 (𝑡)𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡) + 𝜖𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) (4.4)

where 𝜖𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) is a random error with mean zero. Errors can be correlated over time and

modes, but are independent over the trajectories. After plugging-in the approximate expression of

𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡) at each mode, the model now boils down to

𝑦𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) =
𝑃1∑︁
𝑝1=1
· · ·

𝑃𝐿∑︁
𝑝𝐿=1

𝐻∑︁
ℎ=1

𝑏ℎ,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀𝑥𝑖,𝑝1,··· ,𝑝𝐿 (𝑡)Bℎ (𝑡) + 𝜖𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) (4.5)

The multi-dimensional basis coefficients B0 =
{
𝑏ℎ,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 : 1 ≤ ℎ ≤ 𝐻, 1 ≤ 𝑝𝑙 ≤ 𝑃𝑙 ,

1 ≤ 𝑞𝑚 ≤ 𝑄𝑚, 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝑀} can be estimated by minimizing the mode-wise penalized

integrated sum of square errors with respect to B0. Let us denote the smoothness penalty by Ω𝑠𝑚

where

Ω𝑠𝑚 (B0)

=

𝑃1∑︁
𝑝1=1
· · ·

𝑃𝐿∑︁
𝑝𝐿=1

𝑄1∑︁
𝑞1=1
· · ·

𝑄𝑀∑︁
𝑞𝑀=1

∫
𝜃𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀

{
𝛽′′𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡)

}2
𝑑𝑡
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=

𝑃1∑︁
𝑝1=1
· · ·

𝑃𝐿∑︁
𝑝𝐿=1

𝑄1∑︁
𝑞1=1
· · ·

𝑄𝑀∑︁
𝑞𝑀=1

𝜃𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀bT
𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀

∫
B′′(𝑡)B′′(𝑡)T𝑑𝑡b𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀

(4.6)

Hence, the loss function turns out to be

L(B0)

=
1
𝑁

∫
T

𝑁∑︁
𝑖=1

𝑄1∑︁
𝑞1=1
· · ·

𝑄𝑀∑︁
𝑞𝑀=1

(
𝑦𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) −

𝑃1∑︁
𝑝1=1
· · ·

𝑃𝐿∑︁
𝑝𝐿=1

𝐻∑︁
ℎ=1

𝑏ℎ,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀𝑥𝑖,𝑝1,··· ,𝑝𝐿 (𝑡)𝐵ℎ (𝑡)
)2
𝑑𝑡

+Ω𝑠𝑚 (B0) (4.7)

In Equation (4.6), {𝜃𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 }𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 are the tuning parameters for smoothness.

Penalty due to smoothness is widespread in the literature of functional data analysis (Ramsay

and Silverman (2005) among many others). In practice, it is unrealistic to find these large num-

bers of pre-assigned tuning parameters. By considering 𝜃𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 = 𝜃, for all possible

𝑝1, · · · , 𝑝𝐿 , 𝑞1, · · · , 𝑞𝑀 , the simplest version of smoothness penalty would be,

Ω𝑠𝑚 (B0) = 𝜃 vec(B0)T(I𝑄 ⊗ I𝑃 ⊗
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡) vec(B0) (4.8)

Note that, vec(B0) = (b11, · · · , b𝑃1, b12, · · · , b𝑃2, · · · , b1𝑄 , · · · , b𝑃𝑄)T. Therefore, the penalized

likelihood estimating equation for functional tensor-on-tensor regression problem is

L(B0) =
∫
T

1
𝑁

𝑁∑︁
𝑖=1
∥Y𝑖 (𝑡) − ⟨Z𝑖 (𝑡),B0⟩𝐿+1∥2F 𝑑𝑡 +Ω𝑠𝑚 (B0) (4.9)

where ⟨·, ·⟩𝐿+1 is the contracted tensor product defined in Section 1.3.1 and ∥ · ∥F is the Frobenius

norm. The first term of the Equation (4.9) is integrated sum of squares and the second term is the

smoothness penalty.

Let the response tensor for time 𝑡, Y(𝑡) ∈ R𝑁×𝑄1×···×𝑄𝑀 with its (𝑖, 𝑞1, · · · , 𝑞𝑀)-th element be

𝑦𝑖,𝑞1,··· ,𝑞𝑀 (𝑡) for all 𝑖 = 1, · · · , 𝑁; 𝑞𝑚 = 1, · · · , 𝑄𝑚;𝑚 = 1, · · · , 𝑀 . Similarly, we define an updated

covariate tensor contaminated with B-spline bases Z(𝑡) ∈ R𝑁×𝐻×𝑃1×···×𝑃𝐿 where (𝑖, ℎ, 𝑝1, · · · , 𝑝𝐿)-

th element of the tensor is defined as 𝑧𝑖,ℎ,𝑝1,··· ,𝑝𝐿 (𝑡) = 𝑥𝑖,𝑝1,··· ,𝑝𝐿 (𝑡)Bℎ (𝑡). Therefore, the corre-

sponding penalized loss function in Equation (4.9) is equivalent to

L(B0) =
∫
T

∥Y(𝑡) − ⟨Z(𝑡),B0⟩𝐿+1∥2F 𝑑𝑡 +Ω𝑠𝑚 (B0) (4.10)
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Remark 4.2.1. For 𝑄 = 0, the proposed model reduces to the classical concurrent linear model

Ramsay and Silverman (2005). For 𝑄 = 1 and 𝑃 = 1, the time-varying network model (Xue et al.,

2018) is a special case of our proposed model for a specific choice of covariates. For 𝑄 = 2,

𝑦𝑖,𝑞1,𝑞2 (𝑡) is the observation of the quantity of interest at time 𝑡 for sub-unit 𝑞2 from unit 𝑞1 of a

treatment group 𝑖 in a hierarchical model (Zhou et al., 2010).

Let 𝑃 =
∏𝐿
𝑙=1 𝑃𝑙 be the total number of predictors for each observation and𝑄 =

∏𝑀
𝑚=1𝑄𝑚 be the

total number of outcomes for each predictor over time. To minimize the penalized integrated sum

of squared residuals described in Equation (4.10), the solution for B0 could be inconsistent. Since

the unknown coefficient tensor B0 has 𝐻
∏𝐿
𝑙=1 𝑃𝑙

∏𝑀
𝑚=1𝑄𝑚 many parameters, we need to adopt the

dimension reduction technique. Inspired by the novel idea discussed in Lock (2018), we consider

rank 𝑅 decomposition of B0 as B0 = [[U0,U1, · · · ,U𝐿 ,V1, · · · ,V𝑀]] where U0, U𝑙 and V𝑚 are

matrices with dimensions𝐻×𝑅, 𝑃𝑙×𝑅 and𝑄𝑚×𝑅 respectively for all 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝑀 . After

dimension reduction, the number of unknown parameters reduces to 𝑅(𝐻 +∑𝐿
𝑙=1 𝑃𝑙 +

∑𝑀
𝑚=1𝑄𝑚).

Therefore, the estimate of the coefficient tensor is as follows.

B̃0 = arg min
rank(B0)≤𝑅

L(B0) (4.11)

However, this estimated coefficient tensor suffers from over-fitting and instability problems due

to multi-collinearity of Z and/or the large number of observed outcomes. Thus, we obtain an

alternative estimate of the coefficient tensor B0

B̂0 = arg min
rank(B0)≤𝑅

Q(B0) (4.12)

which is based on the modified loss function, Q, defined by

Q(B0) =
1
𝑁

∫
T

∥Y(𝑡) − ⟨Z(𝑡),B0⟩𝐿+1∥2F 𝑑𝑡 +Ω(B0) (4.13)

where

Ω(B0) = 𝜃 vec(B0)T(I𝑄 ⊗ I𝑃 ⊗
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡) vec(B0) + 𝜙 vec(B0)T vec(B0) (4.14)

Equation (4.14) suggests the penalization of the smoothness and sparsity of the coefficient functions

simultaneously.
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Remark 4.2.2. Tuning parameter selection: The number of knots and tuning parameters 𝜃 and

𝜙 are unknown and we need to select it using Mallows’s 𝐶𝑝 (Mallows, 1973), generalized cross-

validation (Craven and Wahba, 1978) or leave-one-out cross validation method (Stone, 1974). Also,

the selection of rank is a separate problem altogether. A rank selection method can be proposed

based on Chen et al. (2013).

4.3 Asymptotic properties

In this section, we will study identifiability of the model and consistency of parameter estimates

under the proposed model as the number of subjects 𝑁 goes to infinity while we assume that the

rank of the basis tensor coefficient is known and fixed.

4.3.1 Identifiability

Identifiability issue plays important roles in tensor regression (Lock, 2018; Zhou et al., 2013;

Guhaniyogi et al., 2017). The model discussed in Section 4.2 would be identifiable for 𝜷(𝑡), if for

𝜷(𝑡) ≠ 𝜷∗(𝑡) implies ⟨X(𝑡), 𝜷(𝑡)⟩𝐿 ≠ ⟨X(𝑡), 𝜷∗(𝑡)⟩𝐿 for some 𝑡 ∈ T and some X(𝑡) ∈ R𝑃1×···×𝑃𝐿 .

Using the basis expansion in Equation (4.2), we can say that B0 is identifiable if and only if

𝜷(𝑡) is identifiable for all 𝑡 ∈ T. Therefore, the reduced model is identifiable if for B0 ≠ B∗0

implies ⟨Z(𝑡),B0⟩𝐿+1 =
〈
Z(𝑡),B∗0

〉
𝐿+1 for some 𝑡 ∈ T and for some Z(𝑡) ∈ R𝐻×𝑃1×···×𝑃𝐿 . Assume

that, for 𝑡 = 𝑡0, Zℎ,𝑝𝑘1 ,··· ,𝑝𝑘𝐿 (𝑡0) = 1 at 𝑘1 = 1, · · · , 𝑘𝐿 = 𝐿 and 0 otherwise, then the product

becomes 𝑏ℎ,𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 . Furthermore, U0,U1, · · · ,U𝐿 ,V1, · · · ,V𝑀 in the expression of CP-

decomposition are not identifiable. Therefore, The identifiability conditions can be imposed in the

following way (Sidiropoulos and Bro, 2000).

1. Restrictions for scale and non-uniqueness: B0 will remain same after replacing U0, U𝑙 and

V𝑚 by 𝑐𝑠U0, 𝑐𝑢𝑙U𝑙 and 𝑐𝑣𝑚V𝑚 respectively, where {𝑐𝑠, 𝑐𝑢𝑙 , 𝑐𝑣𝑚} is the set of constants with

𝑐𝑠
∏𝐿
𝑙=1 𝑐𝑢𝑙

∏𝑀
𝑙=1 𝑐𝑣𝑙 = 1. This problem can be solved by introducing the condition that the

norm of each of u𝑟0, u𝑟𝑙 and v𝑟𝑚 is set to be 1, 1 ≤ 𝑟 ≤ 𝑅, 1 ≤ 𝑙 ≤ 𝐿, 1 ≤ 𝑚 ≤ 𝑀 .
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2. Restriction for permutation: For any permutation 𝜋(·) of {1, · · · , 𝑅}, ∑𝑅
𝑟=1 u𝑟0 ◦ u𝑟1 ◦ · · · ◦

u𝑟𝐿 ◦v𝑟1◦· · ·◦v𝑟𝑀 is same as
∑𝑅
𝑟=1 u𝜋(𝑟)0◦u𝜋(𝑟)1◦· · ·◦u𝜋(𝑟)𝐿 ◦v𝜋(𝑟)1◦· · ·◦v𝜋(𝑟)𝑀 . Therefore,

we impose the restriction ∥u01∥ ≥ · · · ≥ ∥u0𝑅∥.

These indeterminacies are enough to ensure the identifiability for 𝐿 + 𝑀 ≥ 2. Therefore, we do

not need the additional orthogonality condition that appeared in Lock (2018); Zhou et al. (2013);

Guhaniyogi et al. (2017).

4.3.2 Convergence rate

In this subsection, we study the asymptotic properties of the estimate of the time-varying tensor

regression parameter 𝜷(𝑡) based on polynomial spline approximation and the CP decomposition.

To proceed further, we introduce some regularity conditions which are required to establish the

asymptotic properties.

(C1) Without loss of generality, assumeT = [0, 1]. The observation times 𝑡𝑖 𝑗 for 𝑖 = 1, · · · , 𝑁; 𝑗 =

1, · · · , 𝐽 are independent and follow a distribution 𝑓𝑇 (𝑡) over the support T. the density

function 𝑓𝑇 (𝑡) is assumed to be absolutely continuous and bounded by a nonzero and finite

constant.

(C2) {𝜏ℎ}𝐾𝑛ℎ=1 be 𝐾𝑛 interior knots within the compact interval K = [0, 1] and the partition of the

interval [0, 𝑇] with 𝐾𝑁 knots can be denoted as I =
{
0 = 𝜏0 < 𝜏1 < · · · < 𝜏𝐾𝑁 < 𝜏𝐾𝑁+1 = 1

}
.

(C3) The polynomial spline of order 𝑣 + 1 are the function with degree 𝑣 of polynomials on

the interval [𝜏ℎ−1, 𝜏ℎ) for ℎ = 1, · · · , 𝐾 and
[
𝜏𝐾𝑁 , 𝜏𝐾𝑁+1

]
and 𝑣 − 1 continuous derivatives

globally.

(C4) For 𝑡 ∈ T, 𝜖𝑖,𝑞1,··· ,𝑞𝑀 (𝑡)’s are i.i.d. copies with mean zero and finite second order moment over

𝑖. Moreover, for each 𝑖 and the coordinates 𝑞1, · · · , 𝑞𝑀 , 𝜖𝑖,𝑞1,··· ,𝑞𝑀 (𝑡𝑖 𝑗 ) are locally stationary

time series of the form given in appendix. Assume physical dependence measure Δ(𝑘, 𝑎) is

upper bounded by 𝑘−𝜅0 for some positive 𝜅0 and for all 𝑗 ≥ 1.
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(C5) The covariate 𝑥𝑖,𝑝1,··· ,𝑝𝐿 (𝑡)’s are i.i.d. for index 𝑖 and it is bounded almost everywhere.

Remark 4.3.1. Conditions (C1), (C2), (C3) are standard conditions in the context of polynomial

spline regression and require the consistency of spline estimation of varying-coefficient models.

Condition (C3) provides the degree of smoothness on the time-varying coefficients. We assume

Condition (C4) to represent a wide class of stationary, locally stationary, and non-linear processes.

Similar conditions can be found in Ding and Zhou (2020); Ding et al. (2021). This is a natural

assumption of temporal short-range dependent process where temporal correlation decays in poly-

nomial order. This phenomenon can also be observed in well-known Ornstein–Uhlenbeck process

and the linear process with the standard basis expansion 𝜖𝑖,•(𝑡) =
∑∞
𝑘=1 𝑎𝑖𝑘,•𝜙𝑘 (𝑡) where 𝑎𝑖𝑘,• is

an uncorrelated mean zero, finite variance random variables over (𝑖, 𝑘) and sup𝑡 𝜙𝑘 (𝑡) ≤ 𝐶𝑘−𝑎 for

some positive constants 𝐶 and 𝑎 .

Since the number of modes is fixed, we reduce the objective function by following the notation

Y ∈ R𝑁𝐽×𝑄 and Z ∈ R𝑁𝐽×𝐻𝑁×𝑃

Q(B0) =
1
𝑁𝐽
∥Y − ⟨Z,B0⟩2 ∥2F + ∥B0∥2F,W𝜔

(4.15)

where ∥B0∥F,W𝜔
be the weighted Frobenius norm, defined as ∥B0∥F,W𝜔

=
√︁

vec(B0)TW𝜔 vec(B0)

where 𝜔 is a set of all tuning parameters. Moreover, assume that rank(B0) = 𝑅0 which is assumed

to be known and fixed. Further assume that

(C6) 𝜆min

(
ZT
(1)Z(1)

)
= 𝜎min(Z(1))2 ≥ 𝜆min(BTB)𝜆min(XTX) > 𝜆

where𝜆𝑖 (A) and𝜎𝑖 (A) denotes 𝑖-th eigen-value and singular value respective for a matrix A. Define,

the constants C(𝛿) = 1+2/𝛿 such that C(𝛿) ≤ 𝜆2/2𝜇 where 𝜇 = (𝑁𝐽) (𝜃𝜆max(
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡) +

𝜙)
√

2𝑅0. Further, define 𝜉 = sup1≤ℎ≤𝐻 sup𝑡∈[0,1] |Bℎ (𝑡) | which is typically bounded. Additionally,

define 𝜎1(C) = max{𝜎1(C(1)), 𝜎1(C(2)), 𝜎1(C(3))}. Therefore, we propose the following theorem

for the estimation and prediction performance of the coefficient tensor.

Theorem 4.3.1. Under assumptions (C4) and (C6), when both the number of time-points and

trajectories are large enough, there exists a constant 𝐶𝑎, with probability atleast 1−𝐶𝑎𝑁−𝑎𝜏, such
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that we have the following.

∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤ 𝜆

−1
(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2𝑅0(1 + 𝛿)𝑄2𝜉2𝑁2𝜏+2𝐽
}

(4.16)

for any 𝐻𝑁 ×𝑃×𝑄 matrix C with rank(C) ≤ 𝑅0, By choosing C = B0, a simplified prediction error

could be obtained. Under the same set of assumptions, the estimation error of the matrix B0 is

∥B̂0 − B0∥2F ≤ 𝜆
−1

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2𝑅0(1 + 𝛿)𝑄2𝜉2𝑁2𝜏+2𝐽
}

(4.17)

Additionally, we introduce the following theorem which states the consistency result for the

coefficient tensor function.

Theorem 4.3.2. Under assumptions (C1)-(C6), with probability, we have the following with prob-

ability 1 − 𝐶𝑎𝑁−𝑎𝜏,∫
T

|𝛽•(𝑡) − 𝛽•(𝑡) |2 𝑓𝑇 (𝑡)𝑑𝑡 = 𝑂
{
𝜆−1

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C(1)) + 2𝑅0(1 + 𝛿)𝑄𝜉𝑁𝜏+1
√
𝐽

}
+𝐾−2(𝑣+1)

𝑁

}
4.4 Algorithm and implementation

In this section, we propose a general algorithm to estimate the basis coefficient tensor using the

objective function described in Section 4.2. For given time-points 𝑡1, · · · , 𝑡𝐽 , define Z and Y as

the combined tensor after staking over all time-points. Therefore, Z andY are the tensors of order

𝑁𝐽 ×𝐻×𝑃1× · · · 𝑃𝐿 ×𝑄1× · · ·𝑄𝑀 and 𝑁𝐽 ×𝑄1× · · ·𝑄𝑀 respectively. Moreover, define B̆0 as the

matrix of coefficient of order 𝐻𝑃 × 𝑄, where columns and rows of B0 are obtained by vectorizing

first (𝐿 + 1) and last 𝑀 modes of B0 respectively. For the alternative expression of the penalty term

in Equation (4.13), observe the following.

1. ∥B0∥2 = ∥B̆0∥2 = vec(B0)T vec(B0) = trace(B̆0B̆0
T), where trace(A) denotes the trace of a

square matrix A.

2.
[
I𝑄 ⊗ I𝑃 ⊗

(
𝜃
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡 + 𝜙I𝐻
)1/2

]
vec(B0)
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= vec
(
(I𝑃 ⊗

(
𝜃
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡 + 𝜙I𝐻
)1/2
)B̆0I𝑄

)
Therefore, equivalently, the optimization problem reduces to an unregulated least squares problem

with modified predictor and outcome variables for estimating B0.

B̂0 = arg min
rank(B0)≤𝑅

1
𝑁𝐽

∫
T

∥Ỹ − ⟨Z̃,B0⟩𝐿+1∥2𝑑𝑡 (4.18)

where Z̃ ∈ R(𝑁𝐽+𝐻𝑃)×𝐻×𝑃1×···×𝑃𝐿×𝑄1×···𝑄𝑀 be the contamination of Z(𝑡) along with smoothing term

and sparsity. Ỹ ∈ R(𝑁𝐽+𝐻𝑃)×𝑄1×···×𝑄𝑀 which is a contamination of Y(𝑡) and zero tensor function.

The unfolding of Z̃ and Ỹ along the first dimension produce the following matrices:

Z̃(1) =


Z(1)

(I𝑃 ⊗
(
𝜃
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡 + 𝜙I𝐻
)1/2
)

 and Ỹ(1) =


Y(1)

0𝐻𝑃×𝑄

 (4.19)

Thus, applying the following Algorithm 4.1, we obtain an estimate of coefficient tensor for the

known rank of the coefficient array and hence the coefficient function 𝜷(𝑡).

The above algorithm is similar to function “rrr” available in the package MultiwayRegression

in R. The selection of the adjustment parameters 𝜃, 𝜙 and the rank 𝑅 of the coefficient tensor is

crucial. It can be done using integrated predictive accuracy in a training and test set. K-fold cross-

validation can be used to obtain these tuning parameters; however, it is computationally expensive.

Fortunately, our estimate is robust for the selection of 𝜃 and 𝜙. The rank of CP decomposition of

the coefficient tensor is the number of rank-1 terms that are necessary to represent the coefficient

tensor. For large 𝑅, every B0 can be represented by the CP decomposition. Therefore, it determines

the complexity of the model. We leave the optimal determination of the rank for future research.

4.5 Simulation studies

In this section, we conduct numerical studies to compare the finite sample performance to estimate

four-way time-varying tensor coefficient 𝜷(𝑡). Data are generated from the following model for

each mode 𝑝1, 𝑝2, 𝑞1, 𝑞2

𝑦𝑖,𝑞1,𝑞2 (𝑡) =
𝑃1∑︁
𝑝1=1

𝑃2∑︁
𝑝2=1

𝑥𝑖,𝑝1,𝑝2 (𝑡)𝛽𝑝1,𝑝2,𝑞1,𝑞2 (𝑡) + 𝜖𝑖,𝑞1,𝑞2 (𝑡), 𝑖 = 1, · · · , 𝑁; 𝑡 ∈ [0, 1] (4.20)
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Algorithm 4.1 Estimation of 𝜷(𝑡) : 𝑡 ∈ [0, 𝑇] for tensor based function-on-function
regression method.

Data: X(𝑡), Y(𝑡) for 𝑡 ∈ [0, 𝑇] , 𝑇 > 0 observed on a grid in [0, 𝑇]
Result: Estimate 𝜷(𝑠) using proposed method
Tuning parameters: {𝜃, 𝜙}, rank 𝑅 ∈ N, number of knots 𝐾𝑁 , a vector of known B-spline
bases B(𝑡) = (B1(𝑡), · · · ,B𝐻 (𝑡))T

Stopping parameter: 𝜖0 > 0
Create: Z and Y as mentioned in Equation (4.19)
Initialize: U0,U1, · · · ,U𝐿 ,V1, · · · ,V𝑀 be randomly chosen matrices of specific order

1: while Error > 𝜖0 do
2: for 𝑙 ← 1 to #{𝐻, 𝑃1, · · · , 𝑃𝐿} do
3: Set 𝑑 (𝑙) be the 𝑙-th entry of {𝐻, 𝑃1, · · · , 𝑃𝐿}
4: for 𝑟 = 1, · · · , 𝑅 do
5: C𝑟 ← ⟨Z̃, u𝑟0 ◦ · · · ◦ u𝑟,𝑘−1 ◦ u𝑟,𝑘+1 ◦ · · · ◦ u𝑟𝐿 ◦ v𝑟1 ◦ · · · ◦ v𝑟𝑀⟩𝐿 which is a

tensor of dimension (𝑁𝐽 + 𝐻𝑃) × 𝑑 (𝑙) ×𝑄1 × · · · ×𝑄𝑀

6: Unfolding C𝑟 along with dimension corresponding to 𝑑 (𝑙)

7: Obtain a (𝑁𝐽 + 𝐻𝑃)𝑄 × 𝑑 (𝑙) dimension matrix C𝑟

end
8: C← [C1, · · · ,C𝑅] ∈ R(𝑁𝐽+𝐻𝑃)𝑄×𝑅𝑑

(𝑙)

9: vec(U𝑙) ← (CTC)−1CT vec(Ỹ)
end

10: for 𝑚 ← 1 to #{𝑄1, · · · , 𝑄𝑀} do
11: Set 𝑑 (𝑚) be the 𝑚-th entry of {𝑄1, · · · , 𝑄𝐿}
12: Ỹ𝑑 (𝑚) is unfolded along the mode corresponding to 𝑑 (𝑚) and obtain a

𝑑 (𝑚) × (𝑁𝐽 + 𝐻𝑃)∏𝑚≠𝑘 𝑄𝑚
13: for 𝑟 = 1, · · · , 𝑅 do
14: 𝐷𝑟 ← vec(⟨Z̃, u𝑟0 ◦ u𝑟1 ◦ · · · ◦ u𝑟𝐿 ◦ v𝑟1 ◦ · · · v𝑟,𝑘−1 ◦ v𝑟,𝑘+1 ◦ · · · ◦ v𝑟𝑀⟩𝐿+1)

end
15: D← [𝐷1, · · · , 𝐷𝑅] ∈ R(𝑁𝐽+𝐻𝑃)

∏
𝑚≠𝑘 𝑄𝑚×𝑅

16: V𝑚 ← Ỹ𝑑 (𝑚)D(DTD)−1

end
17: Compute B = [[U0,U1, · · · ,U𝐿 ,V1, · · · ,V𝑀]]

18: Calculate: Error =
∥Ỹ−

〈
Z̃,B̂

〉
𝐿+1
∥2
F

∥Ŷ∥2
F

end
19: Compute 𝛽𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀 (𝑡) = bT

𝑝1,··· ,𝑝𝐿 ,𝑞1,··· ,𝑞𝑀B(𝑡) using Equation (4.2) for each node

Regression functions are given by

𝛽𝑝1,𝑝2,𝑞1,𝑞2 (𝑡) = 𝑝1 cos (2𝜋𝑡) + 𝑞1 sin (2𝜋𝑡) + 𝑝2 sin (4𝜋𝑡) + 𝑞2 cos (4𝜋𝑡) (4.21)
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Here, changes in one unit of the index of each mode produce a change in one unit of the coefficient

when the time is fixed. The covarites are generated in the following way,

𝑥𝑖,𝑝1,𝑝2 (𝑡) = 𝜒
(1)
𝑖,𝑝1,𝑝2

+ 𝜒(2)
𝑖,𝑝1,𝑝2

sin (𝜋𝑡) + 𝜒(3)
𝑖,𝑝1,𝑝2

cos (𝜋𝑡) (4.22)

and errors are generated as follows.

𝜖𝑖,𝑞1,𝑞2 (𝑡) = 𝜂
(1)
𝑖,𝑞1,𝑞2

√
2 cos (𝜋𝑡) + 𝜂(2)

𝑖,𝑞1,𝑞2

√
2 sin (𝜋𝑡)

for all 𝑝1 = 1, · · · , 𝑃1, 𝑝2 = 1, · · · , 𝑃2, 𝑞1 = 1, · · · , 𝑄1 and 𝑞2 = 1, · · · , 𝑄2. Moreover, we

assume that 𝑥𝑖,𝑝1,𝑝2 (𝑡) are observed with measurement error, i.e., 𝑢𝑖,𝑝1,𝑝2 (𝑡) = 𝑥𝑖,𝑝1,𝑝2 + 𝛿𝑝1,𝑝2

where 𝛿𝑝1,𝑝2 ∼ 𝑁 (0, 0.62). Assume that the set of random variables {𝜒(𝑙)
𝑖,𝑝1,𝑝2

: 𝑙 = 1, 2, 3} and

{𝜂(𝑙)
𝑖,𝑞1,𝑞2

: 𝑙 = 1, 2} are mutually independent. The data generation process is influenced by Kim

et al. (2018) although in an entirely different situation. We observe the data at 81 equidistant

time-points in [0, 1] with 𝑡 𝑗 = ( 𝑗 − 0.5)/𝐽 for all 𝑗 = 1, · · · , 𝐽. We also fix 𝑃1 × 𝑃2 = 5 × 2 and

𝑄1 × 𝑄2 as either 5 × 2 or 15 × 12. Set, number of subjects, 𝑁 ∈ {30, 100}. We consider the

following scenarios.

(Situation1) We choose 𝜒(1)
𝑖,𝑝1,𝑝2

∼ 𝑁 (0, 12), 𝜒(2)
𝑖,𝑝1,𝑝2

∼ 𝑁 (0, 0.852), 𝜒(3)
𝑖,𝑝1,𝑝2

∼ 𝑁 (0, 0.72) and they

are mutually independent. 𝜂
(1)
𝑖,𝑞1,𝑞2

∼ 𝑁 (0, 22), 𝜂(2)
𝑖,𝑞1,𝑞2

∼ 𝑁 (0, 0.752) and they are

mutually independent. Here, the covariates do not depend on the modes of the data

structure.

(Situation2) In addition, with the assumption of the coefficients of covariates, impose the spa-

tial correlation structure to address the mode-wise dependencies. We consider the

following two cases.

a) 𝜒(𝑙)
𝑖,𝑝1,𝑝2

at mode (𝑝1, 𝑝2) is 𝜌𝑠 (ED𝑝1,𝑝2; 𝜃), where 𝜌𝑠 is the exponential cor-

relation function, ED𝑝1,𝑝2 is defined as scaled Euclidean distance between two

modes, having scaled by a constant 𝜃, therefore, 𝜃 defines an isotropic covariance

function. In this simulation setup, 𝜃 is taken as 8.

116



b) 𝜒(𝑙)
𝑖,𝑝1,𝑝2

at mode (𝑝1, 𝑝2) is 𝜌𝑀 (𝑑𝑝1,𝑝2; 𝜅, 𝜈), where 𝑑𝑞1,𝑞2 denotes the Euclidean

distance between two different modes and 𝜌𝑀 is the correlation function, belongs

to Matérn family. The Matérn isotropic auto-correlation function has a specific

form

𝜌𝑀 (𝑑; 𝜅, 𝜈) = 21−𝜈

Γ(𝜈)

(
2𝑑
√
𝜈

𝜅

)𝜈
𝐾𝜈

(
2𝑑
√
𝜈

𝜅

)
, 𝜅, 𝜈 > 0 (4.23)

Here, 𝐾𝜈 (·) is termed as Bessel function of order 𝜈. The positive range parameter

𝜅 controls the decay of the correlation between the observations at a large

distance 𝑑. The order 𝜈 controls the behavior of the auto-correlation function for

observations that are separated by a small distance. For our numerical example,

we set the scale 𝜅 = 0.55 and the smoothness parameter 𝜈 = 1.

The above mentioned situations have been implemented using “stationary.image.cov”

and “matern.image.cov” functions respectively available in fields package in R (Dou-

glas Nychka et al., 2017).

We run the simulation 100 times for each scenario for the evaluation of our method. For each of

the simulation setups, we take the number of knots as [𝐽/4], where [𝑎] denotes the integer part of

𝑎. We compare the overall performance of the models to estimate the parameter curves for different

choices of ranks by studying several error rates based on different norms. We choose the smoothing

parameters 𝜃 from the set {0, 0.001, 0.005, 0.01, 0.05, 0.1}, on the other hand, 𝜙 is chosen from a

grid from {0, 0.5, 3, 10} and allow the different values from 1 to 5 for the choice of rank 𝑅. In the

following tables, we denote FToTM𝑟 as proposed functional tensor-on-tensor model with rank 𝑟. To

compare with the existing literature, we apply the concurrent linear model (Ramsay and Silverman,

2005) (CLM) for mode-wise analysis and implement this method using “pffr” function available

in refund (Goldsmith et al., 2020) package in R, with the penalized concurrent effect of functional

covariates (Ivanescu et al., 2015).

Tables 4.1, 4.2 and 4.3 show the results of integrated mean square errors and absolute errors

IMSE =
∫
𝑡∈T ∥ 𝜷̂(𝑡) − 𝜷(𝑡)∥2

F
𝑑𝑡 and IMAE =

∫
𝑡∈T

∑
𝑝1,𝑝2,𝑞1,𝑞2

���𝛽𝑝1,𝑝2,𝑞1,𝑞2 (𝑡) − 𝛽𝑝1,𝑝2,𝑞1,𝑞2 (𝑡)
��� 𝑑𝑡
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Table 4.1 Results of simulation situations (Situation1) where each modes are assumed to be
independent for X(𝑡) and E(𝑡) for fixed time-points. Here we assume each of {𝜒(𝑘)𝑝1,𝑝2}𝑝1,𝑝2 and
{𝜂𝑞1,𝑞2}

(𝑘)
𝑞1,𝑞2 are independent for (𝑝1, 𝑝2) and (𝑞1, 𝑞2) respectively.

Method IMSE (SD) RIMSE (SD) IMAE (SD) RIMAE (SD)

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

CLM 0.14294 (0.02046) 0.01059 (0.00152) 0.28311 (0.02027) 0.09244 (0.00662)
FToTM1 1.48469 (0.05628) 0.10998 (0.00417) 0.96636 (0.01626) 0.31552 (0.00531)
FToTM2 0.45773 (0.02218) 0.03391 (0.00164) 0.53786 (0.01068) 0.17561 (0.00349)
FToTM3 0.15078 (0.01316) 0.01117 (0.00097) 0.29482 (0.01452) 0.09626 (0.00474)
FToTM4 0.01065 (0.00383) 0.00079 (0.00028) 0.07871 (0.01367) 0.0257 (0.00446)
FToTM5 0.01558 (0.00582) 0.00115 (0.00043) 0.09412 (0.01695) 0.03073 (0.00553)

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 0.1448 (0.01339) 0.00193 (0.00018) 0.28468 (0.0132) 0.04054 (0.00188)
FToTM1 9.24824 (0.06732) 0.12304 (0.0009) 2.27313 (0.01304) 0.32372 (0.00186)
FToTM2 1.79804 (0.06786) 0.02392 (0.0009) 1.02121 (0.01836) 0.14543 (0.00261)
FToTM3 0.23289 (0.02089) 0.0031 (0.00028) 0.36104 (0.01293) 0.05142 (0.00184)
FToTM4 0.06108 (0.06808) 0.00081 (0.00091) 0.15243 (0.13744) 0.02171 (0.01957)
FToTM5 0.00195 (0.00053) 0.00003 (0.00001) 0.03348 (0.00451) 0.00477 (0.00064)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

CLM 0.03087 (0.00348) 0.00229 (0.00026) 0.13236 (0.00731) 0.04322 (0.00239)
FToTM1 1.46268 (0.04068) 0.10835 (0.00301) 0.95921 (0.01095) 0.31319 (0.00358)
FToTM2 0.43737 (0.01418) 0.0324 (0.00105) 0.52551 (0.00725) 0.17158 (0.00237)
FToTM3 0.13651 (0.00541) 0.01011 (0.0004) 0.27253 (0.01099) 0.08898 (0.00359)
FToTM4 0.00303 (0.00091) 0.00022 (0.00007) 0.04222 (0.00632) 0.01379 (0.00206)
FToTM5 0.0037 (0.00115) 0.00027 (0.00008) 0.04663 (0.00696) 0.01523 (0.00227)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 0.03082 (0.00163) 0.00041 (0.00002) 0.1328 (0.00357) 0.01891 (0.00051)
FToTM1 9.21298 (0.04487) 0.12257 (0.0006) 2.26689 (0.01132) 0.32283 (0.00161)
FToTM2 1.76018 (0.04482) 0.02342 (0.0006) 1.00917 (0.01218) 0.14372 (0.00173)
FToTM3 0.22276 (0.03467) 0.00296 (0.00046) 0.35168 (0.02647) 0.05008 (0.00377)
FToTM4 0.05837 (0.06468) 0.00078 (0.00086) 0.14918 (0.14726) 0.02124 (0.02097)
FToTM5 0.00085 (0.00033) 0.00001 (<0.00001) 0.02197 (0.00403) 0.00313 (0.00057)

respectively. Similarly, we report the relative mean and absolute errors, which are defined as

RIMSE =

∫
𝑡 ∈T ∥ 𝜷̂(𝑡)−𝜷(𝑡)∥

2
F
𝑑𝑡∫

𝑡 ∈T ∥𝜷(𝑡)∥
2
F
𝑑𝑡

and RIMAE =

∫
𝑡 ∈T

∑
𝑝1 , 𝑝2 ,𝑞1 ,𝑞2

���𝛽𝑝1 , 𝑝2 ,𝑞1 ,𝑞2 (𝑡)−𝛽𝑝1 , 𝑝2 ,𝑞1 ,𝑞2 (𝑡)
���𝑑𝑡∫

𝑡 ∈T
∑
𝑝1 , 𝑝2 ,𝑞1 ,𝑞2 |𝛽𝑝1 , 𝑝2 ,𝑞1 ,𝑞2 (𝑡) |𝑑𝑡

respectively.

The advantages of these simulation situations are that these models are not based on the reduced-

rank model. Here, we observe the curves in the presence of errors. All integrals are approximated
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Table 4.2 Results of simulation situations (Situation2)a where each modes are assumed to be
independent for E(𝑡) for fixed time-points whereas modes for X(𝑡) are assumed to be dependent.
Here we assume {𝜒(𝑘)𝑝1,𝑝2}𝑝1,𝑝2 is spatially dependent with exponential covariance function.

Method IMSE (SD) RIMSE (SD) IMAE (SD) RIMAE (SD)

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

CLM 11.03513 (2.27364) 0.81742 (0.16842) 2.45079 (0.24082) 0.8002 (0.07863)
FToTM1 1.46631 (0.0141) 0.10862 (0.00104) 0.96402 (0.00583) 0.31476 (0.0019)
FToTM2 0.60273 (0.01917) 0.04465 (0.00142) 0.60152 (0.01318) 0.1964 (0.0043)
FToTM3 0.32753 (0.01741) 0.02426 (0.00129) 0.42707 (0.01962) 0.13944 (0.00641)
FToTM4 0.21328 (0.21078) 0.0158 (0.01561) 0.35394 (0.13306) 0.11556 (0.04344)
FToTM5 0.13694 (0.02654) 0.01014 (0.00197) 0.30854 (0.0384) 0.10074 (0.01254)

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 11.36335 (1.34533) 0.15118 (0.0179) 2.49712 (0.14845) 0.35562 (0.02114)
FToTM1 9.21977 (0.02778) 0.12266 (0.00037) 2.27091 (0.0079) 0.32341 (0.00112)
FToTM2 1.76995 (0.02734) 0.02355 (0.00036) 1.01769 (0.01081) 0.14493 (0.00154)
FToTM3 0.41264 (0.16057) 0.00549 (0.00214) 0.48365 (0.08798) 0.06888 (0.01253)
FToTM4 0.18218 (0.21293) 0.00242 (0.00283) 0.32063 (0.13906) 0.04566 (0.0198)
FToTM5 0.06936 (0.05182) 0.00092 (0.00069) 0.19811 (0.08864) 0.02821 (0.01262)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

CLM 2.55232 (0.45649) 0.18906 (0.03381) 1.19172 (0.10708) 0.38911 (0.03496)
FToTM1 1.45974 (0.00711) 0.10813 (0.00053) 0.96178 (0.00323) 0.31403 (0.00105)
FToTM2 0.58776 (0.01049) 0.04354 (0.00078) 0.59246 (0.00766) 0.19344 (0.0025)
FToTM3 0.31275 (0.00961) 0.02317 (0.00071) 0.411 (0.01063) 0.1342 (0.00347)
FToTM4 0.18492 (0.20235) 0.0137 (0.01499) 0.32604 (0.13409) 0.10646 (0.04378)
FToTM5 0.11149 (0.03648) 0.00826 (0.0027) 0.27665 (0.06128) 0.09033 (0.02001)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 2.5259 (0.21061) 0.0336 (0.0028) 1.18808 (0.05122) 0.1692 (0.00729)
FToTM1 9.26995 (0.13929) 0.12333 (0.00185) 2.28525 (0.03385) 0.32545 (0.00482)
FToTM2 1.74798 (0.01575) 0.02325 (0.00021) 1.00948 (0.00691) 0.14376 (0.00098)
FToTM3 0.61359 (0.30173) 0.00816 (0.00401) 0.58812 (0.16308) 0.08376 (0.02322)
FToTM4 0.66733 (0.41716) 0.00888 (0.00555) 0.596 (0.24026) 0.08488 (0.03422)
FToTM5 0.0914 (0.04684) 0.00122 (0.00062) 0.23906 (0.07987) 0.03405 (0.01137)

using the Riemann sum. Since our proposed method involves an iterative procedure, which depends

on the initial estimates, the computational time is therefore not comparable to that of the classical

CLM, which is not an iterative method. For all situations, our proposed method does a much better

job in terms of low error rates in estimating the parameter 𝜷(𝑡).
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Table 4.3 Results of simulation situations (Situation2)b where each modes are assumed to be
independent for E(𝑡) for fixed time-points whereas modes for X(𝑡) are assumed to be dependent.
Here we assume {𝜒(𝑘)𝑝1,𝑝2}𝑝1,𝑝2 is spatially dependent with Matérn covariance function.

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

Method IMSE (SD) RIMSE (SD) IMAE (SD) RIMAE (SD)

CLM 0.26393 (0.04919) 0.01955 (0.00364) 0.38374 (0.03318) 0.12529 (0.01083)
FToTM1 1.45885 (0.02061) 0.10806 (0.00153) 0.9599 (0.00731) 0.31342 (0.00239)
FToTM2 0.46879 (0.02445) 0.03473 (0.00181) 0.54097 (0.01118) 0.17663 (0.00365)
FToTM3 0.16291 (0.01629) 0.01207 (0.00121) 0.30998 (0.01506) 0.10121 (0.00492)
FToTM4 0.0087 (0.01146) 0.00064 (0.00085) 0.06782 (0.0274) 0.02214 (0.00895)
FToTM5 0.0111 (0.00525) 0.00082 (0.00039) 0.07909 (0.01855) 0.02582 (0.00606)

𝑁 = 30, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 0.26313 (0.02958) 0.0035 (0.00039) 0.3835 (0.02167) 0.05462 (0.00309)
FToTM1 9.22145 (0.02791) 0.12268 (0.00037) 2.27063 (0.00894) 0.32337 (0.00127)
FToTM2 1.77848 (0.02878) 0.02366 (0.00038) 1.02026 (0.01052) 0.1453 (0.0015)
FToTM3 0.23293 (0.01206) 0.0031 (0.00016) 0.36047 (0.00952) 0.05134 (0.00136)
FToTM4 0.05929 (0.06315) 0.00079 (0.00084) 0.15872 (0.13817) 0.0226 (0.01968)
FToTM5 0.00175 (0.00133) 0.00002 (0.00002) 0.03081 (0.00931) 0.00439 (0.00133)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 5 × 2

CLM 0.05833 (0.00912) 0.00432 (0.00068) 0.18217 (0.01463) 0.05948 (0.00478)
FToTM1 1.44275 (0.00963) 0.10687 (0.00071) 0.95499 (0.00374) 0.31181 (0.00122)
FToTM2 0.44676 (0.01346) 0.03309 (0.001) 0.52798 (0.00559) 0.17239 (0.00183)
FToTM3 0.14999 (0.00779) 0.01111 (0.00058) 0.29657 (0.00869) 0.09683 (0.00284)
FToTM4 0.00231 (0.00143) 0.00017 (0.00011) 0.03593 (0.00956) 0.01173 (0.00312)
FToTM5 0.00284 (0.00125) 0.00021 (0.00009) 0.04026 (0.00816) 0.01314 (0.00266)

𝑁 = 100, 𝑃1 × 𝑃2 = 5 × 2, 𝑄1 ×𝑄2 = 15 × 12

CLM 0.05746 (0.00427) 0.00076 (0.00006) 0.18093 (0.00695) 0.02577 (0.00099)
FToTM1 9.18754 (0.00744) 0.12223 (0.0001) 2.26337 (0.00385) 0.32233 (0.00055)
FToTM2 1.73663 (0.00773) 0.0231 (0.0001) 1.00481 (0.0038) 0.1431 (0.00054)
FToTM3 0.2181 (0.00522) 0.0029 (0.00007) 0.34535 (0.00306) 0.04918 (0.00044)
FToTM4 0.05167 (0.05987) 0.00069 (0.0008) 0.13999 (0.14339) 0.01994 (0.02042)
FToTM5 0.00081 (0.00061) 0.00001 (0.00001) 0.02055 (0.00654) 0.00293 (0.00093)
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4.6 Application to ForrestGump-data

4.6.1 Details about the data-set

The studyforrest (website: https://www.studyforrest.org/) describes a publicly available data-set for

the study of neural language and story processing. The imaging data analyzed here are publicly avail-

able through OpenfMRI (https://openneuro.org/datasets/ds000113/versions/1.3.0) (Hanke et al.,

2014; Sengupta et al., 2016). In total 15 right-handed participants (mean age 29.4 years, range

21–39, 40% females, native German speaker) volunteered for a series of studies including eye-

tracking experiments using natural signal stimulation with a motion picture. Volunteers have no

known hearing problem without permanent or current temporary impairments, and no neurological

disorder. Participants viewed a feature film “ Forrest Gump” (Robert Zemeckis, Paramount Pic-

tures, 1994 with German audio track) in eight back-to-back 15-minute movie sessions, which were

presented chronologically in two back-to-back sessions on the same day. Each session contained

four segments, each approximately 15 minutes long. The eye tracking camera was fitted just outside

the scanner bore, approximately centered and viewing the left eye of the participant at a distance

of 100 cm through a small gap between the top of the back projection screen and the scanner bore

ceiling. Participants were allowed to perform free eye movements without having to fixate or keep

the eye open. The eye-gaze recording started as soon as the computer received the first fMRI trigger

signal. In the audio-visual movie, the video-track of the movie was extracted and encoded as H.264

(1280× 720 at 25 fps). The movie was shown on a 1280× 1024 pixel screen with a 63 cm viewing

distance in 720p resolution. The temporal resolution of the participants’ eye gaze recording was

1000Hz.

All fMRI acquisitions had the following parameters: T2*- weighted echo-planner images with

2 second repetition time (TR), 30 ms echo time, and 90-degree flip angle were acquired during

stimulation using a 3 Tesla MRI scanner. The dimension of the images for each time-point was

80 × 80 × 35 (with pixel dimension 3 × 3 × 3.3𝑚𝑚3). The number of volumes acquired for the

selected session was 451.
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All files related to data acquisition for a particular subject are available as sub-<ID>/ses-movie/

directory, where ID is the numeric subject ID. fMRI data files are available with the file name ses-

movie_task-movie_<run>_bold. In the scanner, the normalized eye-gaze coordinate time series are

located at sub-<ID>/ses-movie/func/sub-<ID>_recording-eyegaze_physio.tsv.gz which contain X

and Y coordinates of the eye-gaze, pupil area measurements, and numerical ID of movie frame

presented at the time of measurement. Since the sampling rate is uniformly 1000 Hz, we have 1000

lines per second, with the first line corresponding to the onset of the movie stimulus. Here, the

coordinates (0, 0) were located at the top-left corner of the movie frame, and the lower right corner

is located at (1280, 546). Both measurements were taken excluding the gray bar of the frame.

All in-scanner recordings were temporally normalized by shifting the time series by the minimal

video onset. Stimulus timing information was recorded in events.tsv files which contain the onset,

duration of each movie frame. In eye-gazing data, there is huge change of loss of information due

to eye blinks and those are marked as nan in the data-set and perform spline interpolation. We used

14 individuals and removed Subject 5 due to excessive missing data.

We use the eye position in the angular unit (i.e., polar coordinates) instead of Cartesian co-

ordinates, where we report magnitude changes of eye position in the screen reference system.

Moreover, X and Y coordinates, related polar coordinates, and pupil area were down-sampled to

the match fMRI sampling frequency. Table 4.4 reports the covariance between angles and distance

for each participants and quotient of the standard deviations of distance and angle, and that of

vertical and horizontal direction of the frame. Fransson et al. (2014) investigates the relationship

between spontaneous charges in eye position during passive fixation and intrinsic brain position in

a block-related task in a resting-state fMRI and concurrent recordings of eye-gaze experiments.
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Figure 4.3 ForrestGump-data: Summary statistics for the parameters estimates of head motion
correction across TRs and participants. (Left panel) Magnitude of three rotational parameters
(in radians) and (Right panel) Magnitude of three translation parameters (in millimeters) for each
individual on each of the 451 TRs. In each plot, solid black line indicates mean over the individuals
through TRs and black dotted lines indicate mean±2sd over the individuals through TRs.
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Figure 4.4 ForrestGump-data: Covariates of interest. Cartesian and polar coordinates and pupil
area are shown across TRs and participants.
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ID sd(X)/sd(Y) sd(dist)/sd(angle) corr(dist, angle)

1 1.7044 922.2200 -0.3640
2 1.5247 1004.1233 -0.2552
3 1.6271 919.6505 -0.3124
4 1.6990 839.1719 -0.4135
5 1.1656 1156.9217 -0.4048
6 1.3943 772.5980 -0.2928
9 1.4403 762.4111 -0.3457

10 1.1282 821.5585 0.0177
14 1.9538 967.5292 -0.4522
15 1.1085 753.6706 -0.0512
16 1.7194 899.7864 -0.4071
17 1.9600 904.5869 -0.4612
18 1.6047 890.4765 -0.3568
19 1.3867 1069.9573 -0.2195
20 1.4631 944.8355 -0.3688

Table 4.4 ForrestGump-data: Summary statistics across participants.

4.6.2 Analysis

To analyze the data on a local computer, we only used the first run of the experiment for each

individual and down-sampled the images to 64 × 64 × 64 via nearest-neighbor interpolation using

“resize” function in Matlab, where the number of time-points was 451. Details of the pre-processing

steps performed along with further information of data acquisitions are described in Appendix A.

Our scientific question of interest was to understand the association between brain image pattern

in the presence of audio-visual inputs. This is the first approach to statistically analyze such a study

by exploiting the complex structure of the data. We fit a time-varying tensor regression coefficient

model as described in Section 4.2. Our covariate is a 3-mode tensor representing normalized

eye-gaze coordinate time-series; each mode representing scaled polar coordinates of the eye-gaze

and pupil area measurements, respectively. The response of the model is pre-processed fMRI data.

Response and covariates are collected simultaneously. The coefficient functions 𝜷1, 𝜷2 and 𝜷3 are

amplitudes over the time associated with distance, angle of eye-gaze and pupil area respectively;

included to detect the effect of movie in a visual form in BOLD response change. We choose the
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rank for reduced-rank extraction to be 3 since it has lowest prediction error.

For interpretation purposes, we evaluate estimates 𝜷̂(𝑡) by taking average values over eight

different functional networks in the brain. This was achieved by first parcellating the brain into

the 268 regions of the Shen atlas (Shen et al., 2013). These regions were thereafter further

combined into eight functional networks (Finn et al., 2015): medial frontal, frontoparietal, default

mode, subcortical-cerebellum, motor, visual I, visual II, and visual association. Figures 4.5, 4.6, 4.7

represent the average estimated coefficient function corresponding to three visual features (distance,

angle of eye-gaze, and pupil area) over all the time-points for each network respectively. Vertical

lines represent scene changes in the movie. The first segment, consisting of approximately 84

time-points corresponds to the opening sequence, which shows a feather floating through the sky

as credits are shown. The second segment consists of the famous scene where the protagonist

of the movie sits on a bench at a bus stop and begins discussing the story of his life. During

this scene, there is heightened activation in several brain networks in reaction to different visual

features. Throughout the time course, the changes in visual features have the greatest impact on

activation in “visual I”, which is depicted using purple lines and is consistent with what we should

expect. Moreover, subsequent segments represent scene changes alternating between interior and

exterior settings; see Häusler and Hanke (2016) for more details.
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Figure 4.5 ForrestGump-data results: Estimate of the coefficient 𝜷1(𝑡) corresponding to visual
feature distance of eye-gaze for different location. Legends for different parcellation as mentioned
in Shen et al. (2013) are also provided.
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Figure 4.6 ForrestGump-data results: Estimate of the coefficient 𝜷2(𝑡) corresponding to visual
feature angle of eye-gaze for different location. Legends for different parcellation as mentioned in
Shen et al. (2013) are also provided.
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Figure 4.7 ForrestGump-data results: Estimate of the coefficient 𝜷3(𝑡) corresponding to visual
feature pupil area for different location. Legends for different parcellation as mentioned in Shen
et al. (2013) are also provided.
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4.7 Discussion

In this chapter, we have proposed a time-varying tensor-on-tensor regression model and a method

to estimate the coefficient tensors which belong to an infinite-dimensional space. We believe that

the method provides an efficient approach towards performing multi-modal data analysis using

neuroimaging data. Regression coefficients are expressed using the B-spline technique, and the

coefficients of the B-spline bases are estimated using low-rank tensor decomposition. This method

reduces the vastness of the parameters of interest and computational complexity. We have provided

a meaningful simulation study as well as performed real data analysis combining fMRI and eye-

tracking data. The results of our data analysis suggest that the approach has promise for identifying

brain regions responding to an external stimulus, which in this case is movie-watching.

Although our tensor data can be compactly represented by a CP model, it is NP hard to determine

the rank of the low-rank decomposition (Johan, 1990). To determine the tuning parameters, one

can perform the cross-validation technique. However, our main objective is not to choose the

optimal rank of the low-rank decomposition in the algorithm, and we leave this for future research.

Furthermore, the tensor train representation (Liu et al., 2020) could be an alternative representation

of the multi-dimensional array. In conclusion, our work provides an important direction for dealing

with massive structured data such as time-varying tensors for analysis in multi-modal neuroimaging

studies.

4.8 Technical details

4.8.1 Technical lemmas

Lemma 4.8.1. For any positive definite matrices A and B we have

𝜆min(A)trace{B} ≤ trace{AB} ≤ 𝜆max(A)trace{B} (4.24)

where 𝜆max(A) is the largest eigen-value of A and 𝜆min(A) is the smallest eigen-value of A.

Proof. See Fang et al. (1994) for the proof in detail.
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Before introducing the next lemma, define a 𝑃-dimensional vector u = (𝑢1, · · · 𝑢𝑃)T which is

sub-Gaussian with some parameters 𝜎, then for all 𝜶 ∈ R𝑃,

E{exp𝜶Tu} ≤ exp(∥𝜶∥2𝜎2/2) (4.25)

Define the locally stationary time series 𝑢 𝑗 = G( 𝑗/𝐽,F𝑗 ) where F𝑗 = (· · · , 𝜂 𝑗−1, 𝜂 𝑗 , · · · ), 𝜂 𝑗s are

i.i.d. random variables andG : [0, 1]×R∞ → R is a measurable function such that 𝜉 𝑗 (𝑡) = G(𝑡,F𝑗 ).

Let {𝜂′} be i.i.d. copies of 𝜂 and assume that for some 𝑎 > 0, define the 𝐿𝑎-norm ∥𝜂∥𝑎 = {E|𝜂 |𝑎}1/𝑎.

Then for 𝑘 ≥ 0 define the physical dependence measure Δ(𝑘, 𝑎) = sup𝑡∈[0,1] max 𝑗 ∥G(𝑡,F𝑗 ) −

G(𝑡,F𝑗 ,𝑘 )∥𝑎 where F𝑗 ,𝑘 = (F𝑗−𝑘−1, 𝜂
′
𝑗−𝑘 , 𝜂 𝑗−𝑘+1, · · · , 𝜂 𝑗 ). Moreover, recall the condition (C4)

where for some large 𝑎, 𝜅0 > 0, there exists a universal constant 𝐶 > 0 such that Δ(𝑘, 𝑎) ≤ 𝐶𝑘−𝜅0

for 𝑘 ≥ 1. Furthermore, let ∥𝜂∥𝑎 be finite for some 𝑎 > 1.

Lemma 4.8.2. Under condition (C4), with the above explanation, for some constant 𝐶𝑎 > 0,

P

{
1
𝑁𝐽

𝜎1(PE) ≤ 𝑄𝜉𝑁
𝜏

√
𝐽

}
≥ 1 − 𝐶𝑎𝑁−𝑎𝜏 (4.26)

where 𝜏 is some small positive real number and 𝜉 = sup1≤ℎ≤𝐻 sup𝑡∈[0,1] |Bℎ (𝑡) |

Proof. See Ding et al. (2021) and the references herein for the proof in detail.

Lemma 4.8.3. DefineS𝑛 be a collection of spline such that the function 𝑔•(𝑡) =
∑𝐾𝑁+𝑣+1
ℎ=1 𝑏ℎ,•𝐵ℎ (𝑡),

where {𝐵ℎ, ℎ = 1, · · · , (𝐾𝑁 + 𝑣 + 1)} is a set of B-spline bases in 𝑆𝑛. Under conditions (C2) and

(C3), there exists a spline function 𝑔•(𝑡) ∈ 𝑆𝑛 such that

sup
𝑡∈T
|𝛽•(𝑡) − 𝑔•(𝑡) | = 𝑂

(
1

𝐾𝑣+1
𝑁

)
(4.27)

Proof. This proof follows from De Boor et al. (1978).

4.8.2 Proof of Theorem 4.3.1

For simplicity, assume Y ∈ R𝑁𝐽×𝑄 and Z ∈ R𝑁𝐽×𝐻×𝑃, thus B ∈ R𝐻×𝑃×𝑄 . The contracted inner

product in this proof is of order 2, i.e., < ·, · >2 , for simplicity, we drop subscript 2 from the inner
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product. By the definition of B̂0, for all matrices C of rank 𝑅0 with order 𝐻𝑁 × 𝑃 ×𝑄, we have

∥Y −
〈
Z, B̂0

〉
∥2F + (𝑁𝐽)∥B̂0∥2F,W𝜔

≤ ∥Y − ⟨Z,C⟩ ∥2F + (𝑁𝐽)∥C∥
2
F,W𝜔

(4.28)

In addition, the following two equations hold for any tensor C,

∥Y − ⟨Z,C⟩ ∥2F = ∥Y − ⟨Z,B0⟩ ∥2F + ∥ ⟨Z, (B0 − C)⟩ ∥2F + 2 ⟨E, ⟨Z, (B0 − C)⟩⟩F

∥Y −
〈
Z, B̂0

〉
∥2F = ∥Y − ⟨Z,B0⟩ ∥2F + ∥

〈
Z, (B0 − B̂0)

〉
∥2F + 2

〈
E,

〈
Z, (B0 − B̂0)

〉〉
F

(4.29)

with ⟨A,B⟩F = trace{ATB} for any matrices A and B such that the matrix product of ATB is

permissible. Define, P = Z(1) (ZT
(1)Z(1))

−1ZT
(1) , then by the definition of Frobenius inner product,〈

E,
〈
Z, (B̂0 − B)

〉〉
F

=

〈
PE,

〈
Z, (B̂0 − C)

〉〉
F

. Moreover, the inner product norm ⟨·, ·⟩F, operator

norm ∥ · ∥2 = 𝜎1(·) and nuclear norm ∥ · ∥∗ =
∑
𝑖 𝜎𝑖 (·) are related using the inequalities ⟨A,B⟩F ≤

∥A∥2∥B∥∗ and ∥B∥∗ ≤
√
𝑟 ∥B∥F where 𝑟 be the rank of the matrix B and 𝜎𝑖 (·) represents the 𝑖th

largest singular value of a matrix. By subtracting the two Equations in 4.29 and exercising the

properties of different norms mentioned above, we get the following inequalities.

∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤ ∥ ⟨Z, (C − B0)⟩ ∥2F + 2

〈
E,

〈
Z, (B̂0 − C)

〉〉
F
+ (𝑁𝐽)

{
∥C∥2F,W𝜔

− ∥B̂0∥2F,W𝜔

}
= ∥ ⟨Z, (C − B0)⟩ ∥2F + 2

〈
PE,

〈
Z, (B̂0 − C)

〉〉
F

+ (𝑁𝐽)
{
∥C∥2F,W𝜔

− ∥B̂0∥2F,W𝜔

}
≤ ∥ ⟨Z, (C − B0)⟩ ∥2F + 2𝜎1(PE)

√︁
2𝑅0∥

〈
Z, (B̂0 − C)

〉
∥F

+ (𝑁𝐽)
{
∥C∥2F,W𝜔

− ∥B̂0∥2F,W𝜔

}
(4.30)

Define, P = I𝑄⊗I𝑃⊗
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡 and observe the fact that𝜆max(P) = 𝜆max(
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡).

Now consider, for any tensor with C, using Lemma 4.8.1,

vec(C)TP vec(C) − vec(B̂0)TP vec(B̂0)

= trace{P(vec(C) vec(C)T − vec(B̂0) vec(B̂0)T)}

≤ 𝜆max(P)trace{vec(C) vec(C)T − vec(B̂0) vec(B̂0)T}

132



= 𝜆max(
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡){∥C∥2F − ∥B̂0∥2F} (4.31)

As a consequence of the above inequality,

∥C∥2F,W𝜔
− ∥B̂0∥2F,W𝜔

= vec(C)TW𝜔 vec(C) − vec(B̂0)TW𝜔 vec(B̂0)

= 𝜃

(
vec(C)TP vec(C)} − vec(B̂0)TP vec(B̂0)}

)
+ 𝜙

(
vec(C)T vec(C)} − vec(B̂0)T vec(B̂0)}

)
≤ (𝜃𝜆max(P) + 𝜙)

{
∥C∥2F − ∥B̂0∥2F

}
= (𝜃𝜆max(

∫
B′′(𝑡)B′′(𝑡)T𝑑𝑡) + 𝜙)

{
∥C∥2F − ∥B̂0∥2F

}
(4.32)

Then for tensor C with rank(C) ≤ 𝑅0 and 𝐼 = min(𝐻, 𝑃𝑄), we have the following inequalities.

∥C∥2F − ∥B̂0∥2F

=

𝐼∑︁
𝑖=1

𝜎2
𝑖 (C(1)) −

𝐼∑︁
𝑖=1

𝜎2
𝑖 (B̂0(1))

≤
{
𝜎1(C(1)) + 𝜎1(B̂0(1))

} {
𝐼∑︁
𝑖=1

(
𝜎𝑖 (C(1)) − 𝜎𝑖 (B̂0(1))

)}
(𝑖)
≤

{
2𝜎1(C(1)) + 𝜎1(B̂0(1) − C(1))

} {
𝐼∑︁
𝑖=1

𝜎𝑖 (B̂0(1) − C(1))
}

=

{
2𝜎1(C(1)) + 𝜎1(B̂0(1) − C(1))

} {
𝑅0∑︁
𝑖=1

𝜎𝑖 (B̂0(1) − C(1))
}

(𝑖𝑖)
≤

{
2𝜎1(C(1)) + ∥B̂0 − C∥F

} {√︁
2𝑅0∥B̂0 − C∥F

}
≤

√︁
2𝑅0

{
2𝜎1(C(1)) + ∥B̂0 − C∥F

}2
(4.33)

where inequality (i) follows since 𝜎𝑖+ 𝑗−1(A + B) ≤ 𝜎𝑖 (A) + 𝜎𝑗 (B), or in other words due to

Weyl’s additive perturbation theory which states that 𝜎𝑖+ 𝑗−1(A) ≤ 𝜎𝑖 (B) + 𝜎𝑗 (A − B). Inequal-

ity (ii) holds since by definition 𝜎1(A) = ∥A∥2, operator norm. Moreover, ∥A∥2 ≤ ∥A∥F

and due to Cauchy-Schwarz inequality along with the fact that rank(A + B) ≤ 𝑟𝑎𝑛𝑘 (A) +

𝑟𝑎𝑛𝑘 (B). Also, ∥
〈
Z, (B̂0 − C)

〉
∥2
F

= ∥
〈
Z(1) , (B̂0 − C)(3)

〉
∥2
F

= ∥ZT
(1) (B̂0 − C)(3) ∥2F ≥ ∥B̂0 −

C∥2
F
𝜆min(ZT

(1)Z(1)) due to 4.8.1. Therefore, using the inequality (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2) we have for
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𝜇 = (𝑁𝐽) (𝜃𝜆max(
∫

B′′(𝑡)B′′(𝑡)T𝑑𝑡) + 𝜙)
√

2𝑅0

(𝑁𝐽)
{
∥C∥2F,W𝜔

− ∥B̂0∥2F,W𝜔

}
≤ 𝜇

{
2𝜎1(C(1)) + 𝜆−1

min(Z
T
(1)Z(1))∥

〈
Z, (B̂0 − C)

〉
∥F

}2

≤ 𝜇
{
4𝜎2

1 (C(1)) + 𝜆
−2
min(Z

T
(1)Z(1))∥

〈
Z, (B̂0 − C)

〉
∥2F

}
≤ 4𝜇𝜎2

1 (C(1)) + 2𝜇𝜆−2
min(Z

T
(1)Z(1))∥

〈
Z, (B̂0 − B0)

〉
∥2F

+ 2𝜇𝜆−2
min(Z

T
(1)Z(1))∥ ⟨Z, (C − B0)⟩ ∥2F (4.34)

Therefore, we obtain the bound for the prediction error as the following way using the assumption

that 𝜆min(ZT
(1)Z(1)) is bounded below by 𝜆 with high probability and by inequality 2𝑥𝑦 ≤ 𝑥2/𝑎+𝑎𝑦2

in (★), consider the following from Equation (4.30),

∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤ ∥ ⟨Z, (C − B0)⟩ ∥2F + 2𝜎1(PE)

√︁
2𝑅0∥

〈
Z, (B̂0 − C)

〉
∥F

+ 2𝜇𝜆−2∥
〈
Z, (B̂0 − B0)

〉
∥2F + 2𝜇𝜆−2∥ ⟨Z, (C − B0)⟩ ∥2F + 4𝜇𝜎2

1 (C(1))

≤ ∥ ⟨Z, (C − B0)⟩ ∥2F + 2𝜎1(PE)
√︁

2𝑅0∥
〈
Z, (B̂0 − B0)

〉
∥F

+ 2𝜎1(PE)
√︁

2𝑅0∥ ⟨Z, (C − B0)⟩ ∥F

+ 2𝜇𝜆−2∥
〈
Z, (B̂0 − B0)

〉
∥2F + 2𝜇𝜆−2∥ ⟨Z, (C − B0)⟩ ∥2F + 4𝜇𝜎2

1 (C(1))
(★)
≤ 4𝜇𝜎2

1 (C(1)) + ∥ ⟨Z, (C − B0)⟩ ∥2F

+ 2𝑅0𝑎𝜎
2
1 (PE) + ∥

〈
Z, (B̂0 − B0)

〉
∥2F/𝑎 + 2𝜇𝜆−2∥

〈
Z, (B̂0 − B0)

〉
∥2F

+ 2𝑅0𝑏𝜎
2
1 (PE) + ∥ ⟨Z, (C − B0)⟩ ∥2F/𝑏 + 2𝜇𝜆−2∥ ⟨Z, (C − B0)⟩ ∥2F

≤ 4𝜇𝜎2
1 (C(1)) + 2(𝑎 + 𝑏)𝑅0𝜎

2
1 (PE)

+
(
𝑏 + 1
𝑏
+ 2𝜇𝜆−2

)
∥ ⟨Z, (C − B0)⟩ ∥2F +

(
1
𝑎
+ 2𝜇𝜆−2

)
∥
〈
Z, (B̂0 − B0)

〉
∥2F

(4.35)

Therefore, by doing some algebra, we have the following.(
𝑎 − 1
𝑎
− 2𝜇𝜆−2

)
∥
〈
Z, (B̂0 − B0

〉
∥2F ≤ 4𝜇𝜎2

1 (C(1)) + 2(𝑎 + 𝑏)𝑅0𝜎
2
1 (PE)

+
(
𝑏 + 1
𝑏
+ 2𝜇𝜆−2

)
∥ ⟨Z, (C − B0)⟩ ∥2F
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∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2(1 + 𝛿)𝑅0𝜎
2
1 (PE)

}
+

(
C(𝛿) + 2𝜇𝜆−2

C(𝛿)−1 − 2𝜇𝜆−2

)
∥ ⟨Z, (C − B)⟩ ∥2F (4.36)

where C(𝛿) = 1 + 2/𝛿 and 𝜎1(C) = max{𝜎1(C(1)), 𝜎1(C(2)), 𝜎1(C(3))}. The last inequality holds

after choosing 𝑎 = 1 + 𝛿/2 and 𝑏 = 𝛿/2. Now, it is enough to provide an upper bound of the largest

singular value of PE. For some positive constant𝐶0, with high probability 1−𝐶0𝑁
−𝑎𝜏, by Lemma

4.8.2,

∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2𝑅0(1 + 𝛿)𝑄2𝜉2𝑁2𝜏+2𝐽
}

+
(
C(𝛿) + 2𝜇𝜆−2

C(𝛿)−1 − 2𝜇𝜆−2

)
∥ ⟨Z, (C − B0)⟩ ∥2F (4.37)

Since C is an arbitrary matrix with rank(B) ≤ 𝑅0, the choosing C = B0, we have,

∥
〈
Z, (B̂0 − B0)

〉
∥2F ≤

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2𝑅0(1 + 𝛿)𝑄2𝜉2𝑁2𝜏+2𝐽
}

(4.38)

The estimation bound can be derived from the above expression under condition 𝜆min(ZT
(1)Z(1)) ≥ 𝜆,

from inequality 4.38, we have

∥B̂0 − B0∥2F ≤ 𝜆
−1

(
C(𝛿)−1 − 2𝜇𝜆−2

)−1 {
4𝜇𝜎2

1 (C) + 2𝑅0(1 + 𝛿)𝑄2𝜉2𝑁2𝜏+2𝐽
}

(4.39)

4.8.3 Proof of Theorem 4.3.2

Observe that, due to Lemma 4.8.3 and the fact that,∫
T

[B(𝑡)T(B̂0−B0)]2 𝑓𝑇 (𝑡)𝑑𝑡 = (B̂0−B0)T
(∫

T

Bℎ (𝑡)Bℎ (𝑡)T 𝑓𝑇 (𝑡)𝑑𝑡
)
(B̂0−B0) ∝ ∥B̂0−B0∥2 = 𝑂𝑃 (𝑎𝑁 )

(4.40)

Therefore, ∫
T

(𝛽•(𝑡) − 𝛽•(𝑡))2 𝑓𝑇 (𝑡)𝑑𝑡

=

∫
T

(
B(𝑡)T(B̂0 − B0) + B(𝑡)TB0 − 𝛽(𝑡)

)2
𝑓𝑇 (𝑡)𝑑𝑡

≤ 2∥B̂0 − B0∥2F + 2
∫
T

[B(𝑡)TB0 − 𝛽(𝑡)]2 𝑓𝑇 (𝑡)𝑑𝑡

≤ 𝑂𝑃 (𝑎𝑁 ) +𝑂 (𝐾−2(𝜈+1)
𝑁

) (4.41)
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CHAPTER 5

EPILOGUE

5.1 Conclusions

In this dissertation, we develop new methods and theories for functional data analysis with depen-

dence and complex structures that are often produced in neuroimaging studies. Classical statistical

approaches either do not adequately take advantage of dependence or are not applicable to data

with complex structures. The first part of this dissertation (Chapters 2 and 3) focuses on improving

existing non-parametric methods via incorporating dependence in functional data. In Chapter 2 we

develop an efficient and robust estimation technique based on quadratic inference for a coefficient

vector in a constant linear effects model with dense functional responses. The proposed method

uses a data-driven approach to construct bases, which avoids the possible mis-specification and

improves estimation efficiency. Then, in Chapter 3 we develop a multi-step estimation procedure

for estimating non-parametric coefficient function in a varying-coefficient linear model with het-

eroskedastic errors. This method incorporates the dependence via a local linear generalized method

of moments based on continuous moment conditions. In the second part of the dissertation (Chapter

4) we develop a new approach for studying neural correlates in the presence of tensor-valued brain

images and tensor-valued predictors. We consider a time-varying tensor regression model where

the inherent structural composition of responses and covariates is preserved. Extensive simulation

studies and real data analyses are conducted to justify the efficacy of the proposed methods.

5.2 Future directions

We would like to provide some possible directions with feasible applications to work on in the

future, which directly follow from this dissertation.

1. Can quadratic inference approach improve the efficiency of parameter estimation for longi-

tudinal tensor data?
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- In many applications, we are convinced that brain images appear as structured data. Therefore,

scientists are often interested in analyzing such complex structured longitudinal data which

are observed at finitely many time-points or clusters due to the number of visits of patients in

the clinic. Zhang et al. (2014) proposed a unifying regression framework with tensor-variate

image predictor with tensor-GEE for longitudinal imaging analysis. The proposed GEE

approach takes into account the intra-subject correlation responses where a low-rank tensor

decomposition of the coefficient array becomes effective during estimation and prediction.

Similarly to the existing problem of GEE in classical longitudinal analysis, the estimation of

the parameter tensor becomes inconsistent when the working correlation structure is miss-

specified. Therefore, a quadratic inference-based method can be developed for tensor-GEE

to improve the efficiency of the tensor-variate regression model.

2. Can a time-varying tensor approach improve FDR control for fMRI data?

- In the statistics and neuroimaging literature, false discovery rate (FDR) is commonly used for

inference. A straightforward application of FDR violates the complex data features, thereby

producing unsatisfactory performance. Brown and Behrmann (2017) correctly observed that

the overstatement of Eklund et al. (2016) regarding FDR cast doubt on fMRI technique for

studying brain function and caused damage to the field of cognitive neuroscience. Subse-

quently, Cox et al. (2017); Kessler et al. (2017) offered several clarifications. Among other

issues, these PNAS papers recognized that accounting for the spatio-temporal aspects is ut-

terly important for fMRI and is a remarkable methodology for understanding brain function

and its relationship to behavioral characteristics. Therefore, based on the model proposed in

Chapter 4, one can propose a new thresholding technique for the multiple hypothesis testing

problem for spatially dependent tests over continuum null hypotheses to identify activated

voxels over time based on a tensor-structured “statistical parametric map”, which can be an

interesting development.

Apart from the above two immediate future directions, the methodologies presented in this
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dissertation will provide essential tools for analysis of such complex structured data not

only in neuroimaging studies, but also in other scientific areas such as network analysis,

recommendation systems and statistical genetics.
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APPENDIX

PRE-PROCESSING OF IMAGING DATA USING R

The main goal of studying fMRI data is to identify brain areas activated by a task. Scanner drift

may occur when the strength of the magnetic field inside the bore changes slowly over time during

a scan session. Therefore, it is not recommended to conduct any statistical analyses using the raw

data coming from the scanner. As a result, an important role is played by the pre-processing steps

of fMRI data, which consist of all required transformations needed to prepare the data for analysis.

In statistics, noise is the fundamental uncertainty, but sometimes it consists of systematic variability

and it is possible to remove the noise from the data. Hence, the main goal of these pre-processing

steps is to remove the systematic variability that can arise due to movement of the head during an

experiment, size of the brain, etc. which are mainly sources of variability due to artifacts.

Pre-processing of the fMRI data is almost similar for all kinds of experiment and typically

involves a number of steps such as aligning the functional and structural scans, correcting the

possible head movements, skull stripping, registration to the template, and smoothing to reduce

noise; although, the type of smoothing depends on the objective of the statistical analysis. In most

of the cases, the fMRIs are in NIfTI (Neuroimaging Informatics Technology Initiative) format with

extension of the file “*.nii” and this can be read as a multi-dimensional array. We read the data in

R and perform all required pre-processing steps using some tools and packages in R such as the fslr

(Jenkinson et al., 2012; Muschelli et al., 2015). Interested readers are encouraged to study Ashby

(2011); Wager and Lindquist (2015) for further details in the pre-processing steps.

The six commonly used pre-processing steps are performed in the order as listed below.

1. Slice timing correction: This method corrects the variability in the BOLD responses that

is due to the fact that data in different voxels are acquired at different times. This step is

performed using the function “slicetimer” where indexing is from top, the order of acquisition

is continuous, and the interpolation using this function is done using “sinc” filter. For example,
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in ForrestGump-data, the brain image consists of 35 slices and the replication time is 2

seconds. Therefore, the time between acquisition of the first and last slices should be almost

the same as 2 seconds. Moreover, the variability in the data due to differences in the times

of slice acquirement can be reduced by this pre-processing step using interpolation and/or

by analyzing task-related activation using the flexible hrf model. Later, the bias_correct

function is used for bias field corrections.

2. Motion correction: This step is performed to correct for variability due to head movement.

Motion correction is a special case of image registration where a series of images are aligned

by considering mean image over all time-points as the target image for each individuals. This

is one of the most important steps of pre-processing. When a subject moves their head, a

specific brain region either moves to a different region or out of the scanning area. This

correction procedure is based on the assumption that the shape and size of the brain remain

intact irrespective of the subject moving their head. Therefore, the rigid body registration

(Ashburner and Friston, 2007) method can be applied. It is easy to visualize that any rigid

body movement can be described by six parameters. When a subject lies inside the scanner,

the center of any voxel in their head occupies a point in space that can be characterized

by the triplet (𝑥, 𝑦, 𝑧). By convention, the 𝑍-axis is parallel to the bore of the magnet, the

𝑋-axis passes through the subject’s ears from left to right side and the 𝑌 -axis is a pole that

enters through the back of the head and exits in the forehead. Based on this coordinate

system, possible rigid body movements are translations and rotations along the 𝑋 , 𝑌 and

𝑍 axes. BOLD responses at the mean over different TR is taken as the standard and then

rigid body transformation is performed for all TRs until each of the data-sets agree as

closely as possible with the mean data. Motion-corrected images have the same dimension,

voxel spacing, origin, and direction as those of images collected from the scanner. Here

we use “antsrMotionCalculation” function which provides an R-wrapper around the Insight

Segmentation and Registration Toolkit (ITK). A rigid body transformation for the calculation

of frame-wise motion parameters is illustrated in Figure 4.3 where first three parameters
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contain the rotation matrix (rotation along the 𝑋 , 𝑌 and 𝑍 axes, respectively) and the other

three parameters are translation vectors (translation along the 𝑋 , 𝑌 and 𝑍 axes, respectively)

at each TR.

3. Co-registration: Since the functional images are collected with low spatial resolution, and

the voxel size is much smaller than the structural images, in this step we align the functional

and structural images of the pre-processing steps. We perform brain extraction of T1-weighted

images (after skull stripping and bias-correction since brain activity is restricted to brain

tissues only; therefore, brain extraction of the anatomical image and inhomogeneity correction

must be performed to remove artifacts). The method of co-registration is similar to motion

correction, rather simpler, since it involves only two images to be aligned, but challenge is

that voxels are no longer one-to-one between two images, and the functional and structural

images are run with different imaging parameters (or modalities), as a result of which their

contrasts are different. In this step, only the structural image (mostly the mean image) and any

one of the functional images must align, since all functional images are already in alignment

after the head movement corrections. We use the function “registration” to register the

average fMRI with spatial resolution of 3.0 × 3.0 × 3.0𝑚𝑚3 to an 0.7 × 0.67 × 0.67𝑚𝑚3

T1-weighted image by applying affine transformation and non-linear registration using the

symmetric normalization (SyN) algorithm in Advance Normalizing Tools (ANTs). Note that

the resulting images have the same dimension, voxel spacing, origin, and direction as those

of the anatomical coordinate systems.

4. Normalization: This step is performed to wrap the structural images in the standard brain

atlas. There exist huge disparities between two brains in terms of size and shape across

the subjects. Therefore, it is difficult to make decisions regarding task-related activation

in order to figure which voxel/region of the brain is activated in a subject. The common

practice is to map the data onto a “standard brain” for which coordinates of all major brain

areas have already been discovered and henceforth determine the activated region in a brain
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atlas. Here we use an atlas in Section 4.6 proposed by Montreal Neurological Institute (MNI)

where the MNI-atlas was created by averaging the results from high-resolution structural

images taken over 152 different brains with dimension 182× 218× 182 with pixel dimension

1 × 1 × 1mm3 and it is also provided in FSL as MNI152_T1_1mm_brain. Furthermore, the

functional brain atlas provides information about the location of the functional brain region,

obtaining knowledge on the brain functionality. The steps of the normalization process are

the following.

• Co-registering the T1-weighted image into the coordinate system of the MNI space.

• Co-registering functional and T1-weighted structural images.

• Applying the calculated non-linear forward transformation from previous steps to project

fMRI time-series to MNI space.

Here we use “registration” and “antsApplyTransforms” accordingly.

5. Spatial smoothing: This step reduces high-frequency noise that changes rapidly in small

regions of the brain. As a result of local averaging due to spatial smoothing, the resulting

images become blurred due to the reduction of intensity of BOLD responses. The standard

choice of the kernel function in this smoothing method is the Gaussian kernel, which is

centered at the smoothing location and 𝜎2
• is the width of the kernel in “•” direction. In the

context of fMRI data analysis, this is termed as full width at half maximum (FWHM) which

is the width of the interval between the points at which the height of the kernel along “•”

direction is half of the peak height. In our data processing, we take (6, 6, 7) as kernel width

(FWHM).

6. Temporal filtering: This is done to reduce the effect of slow fluctuations in the local magnetic

field properties of the scanner. This pre-processing step smooths the data at each voxel across

neighboring TRs. Like spatial smoothing, the goal here is to reduce noise and, thereafter,

make it easier to identify signal. We perform de-noising by regressing BOLD time-series
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on nuisance regressors including 6 principal component scores (obtained using “compcor”

function (Behzadi et al., 2007)) and motion parameters obtained from motion correction step.

In the final stage, we perform high-pass filtering using the “frequencyFilterfMRI” function

with the lower and the higher frequency limits in band-pass filter 0.01 and 0.1 respectively.

• Additional step - extraction of ROI: This is an additional step that is performed as per

requirement for a given data. It is well-known that functional brain atlases provide infor-

mation about the location of functional brain regions. One of the recent atlases is that of

Shen286 (Shen et al., 2013; Finn et al., 2015) and related website https://sites.google.com/

dartmouth.edu/canlab-brainpatterns/brain-atlases-and-parcellations/ which provides a brain

parcellation into 268 regions that were obtained as a result of a resting-state fMRI study. The

T1-weighted image of Shen268 atlas, with size 181×217×181 and dimensions 1×1×1𝑚𝑚3

is commonly used. This image is then transformed into the MNI space as described in the

normalization step. Symmetric Normalization (SyN) is performed using Advance Normal-

ising Tools (ANTs), furthermore, deformable registration using the “registration” function

in fslr package of R is performed. Estimated transformation is used to wrap the atlas to the

associated MNI space, and labels are created by the nearest-neighbor interpolation method.

In addition, for DTI data, the JHU-ICBM-FA-1mm template with dimension 182×218×182

where the pixel dimension is 1 × 1 × 1 with 50 ROIs is commonly used (Mori et al., 2008).
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