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ABSTRACT 

 

ALGAL CULTIVATION AND BIOMASS UTILIZATION FOR SUSTAINABLE CARBON 

CAPTURE FROM THE POWER INDUSTRY 

 

By 

 

Ashley Cutshaw 

 Anthropogenic climate change is a critical issue that must be addressed with a systems 

approach. Greenhouse gas (GHG) emissions, like carbon dioxide (CO2), are key contributors to 

the climate crisis and originate from several different sources. Namely, the power industry is 

responsible for approximately 30% of U.S. CO2 emissions and 45% of global CO2 emissions. 

These emissions result from the combustion of carbon-based fuels, like coal and natural gas, and 

are emitted into the atmosphere in the form of flue gas. Being a large contributor of CO2 

emissions has made the power industry the focus of research efforts to develop post-combustion 

carbon capture technologies. This work represents a comprehensive examination of microalgal 

cultivation and biomass utilization as methods for post-combustion carbon capture and 

replacement of fossil-dependent technologies and products.  

Optimized pilot-scale cultivation represents a sustainable post-combustion carbon capture 

technology with downstream economic value. An initial study of a 100 L photobioreactor (PBR) 

within a 100 MW power plant was conducted to optimize the long-term, continuous cultivation 

of the green microalgae Chlorella sorokiniana. The culture utilized flue gas as a source of CO2 

and successfully operated continuously over a year long period. Insights from this study include 

the growth kinetics of C. sorokiniana, optimal cultivation conditions of the PBR, and an in-depth 

analysis of the microbial-microalgal assemblage throughout the study. The biomass produced 

during the 12-month study was stored and subsequently utilized to develop methods for cell 

disruption and protein recovery. This work investigated a mechanochemical method, using ball 



milling technology and chemically induced pH changes, to efficiently extract and recover 

microalgal proteins. The results of this study indicate that the mechanochemical method requires 

less energy than existing mechanical methods, while achieving similar levels of cell disruption. 

In addition to protein extraction and recovery, an alternate pathway for biomass utilization 

was explored. Microalgal biomass and microalgal proteins contain the foundational building 

blocks required for synthesis of chemicals like polyols. Polyols, used for polyurethane (PU) 

foam production, represent another value-added product that could provide the economic 

incentive to invest in microalgal cultivation for post-combustion carbon capture. Using biomass 

and recovered proteins as feedstocks, polyols were synthesized using a one-pot, two step method. 

Two microalgal polyols were selected based on their characterization and were evaluated using 

life cycle and techno-economic frameworks. The results elucidated the environmental and 

economic advantages when using microalgal biomass as an alternative to petrochemicals as a 

feedstock for polyol synthesis. Finally, this work evaluated a combined biological and chemical 

post-combustion carbon capture system using microalgal cultivation and a novel microalgal 

amino acid salt solution (MAASS). Life cycle and techno-economic frameworks were used to 

compare the MAASS to a standard amine-based solvent. The results of these assessments show 

that the MAASS capture system performs significantly better than an amine capture system, both 

in terms of environmental impacts and the cost of capture. This comprehensive collection of data 

and analysis represents advances in the field, as well as innovative methods and technologies that 

further demonstrate the viability of microalgal cultivation and biomass utilization for carbon 

capture from the power industry. 
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INTRODUCTION



2 

Problem background 

High atmospheric carbon dioxide (CO2) levels continue to pose a threat to our climate and 

planet. In 2018, carbon dioxide (CO2) emissions totaled nearly 5,500 million metric tons, 

accounting for 81% of all greenhouse gas (GHG) emissions [1]. The energy sector is responsible 

for nearly one-third of all CO2 emissions and is therefore the focus of post-combustion carbon 

capture research efforts. Current technologies for post-combustion carbon capture include 

adsorption, membrane absorption and separation, and chemical absorption [2]. While there is 

ongoing investigation into the advance of these currently implemented technologies, there are 

also alternatives that have garnered continued interest, such as microalgal cultivation.  

 Microalgal cultivation continues to be a desirable carbon capture method due to its CO2 

fixation capabilities and the downstream potential of high value metabolites [3, 4]. Decades of 

research on lab-scale microalgal cultivation have demonstrated both the possibilities and the 

limitations of microalgal cultivation as a carbon capture method [5, 6]. The challenges with 

microalgal cultivation as a method for post-combustion carbon capture are primarily economic in 

nature [7]. However, the economic potential of co-product biorefineries and efficient 

development value-added products has elucidated emerging pathways to sustainable and 

economically viable microalgal systems [8-10]. While there are several reports demonstrating the 

feasibility of large-scale cultivation systems, very few studies have demonstrated the practicality 

of a co-located biorefinery [11-14]. Cultivation on flue gas has many advantages, most notably 

the sequestration of carbon emissions and the delivery of a low-cost, concentrated stream of CO2. 

However, operating conditions and emissions profiles vary considerably between power plants 

and co-located cultivation should be evaluated on a case-by-case basis. Establishing protocols for 

long term, continuous cultivation is critical for establishing co-located cultivation as a practical 



3 

post-combustion carbon capture method with downstream benefits.  

Additional challenges to implementation include the lack of standard procedures for 

efficient cell disruption, and subsequent protein recovery, and the need to establish microalgal 

biotechnology as a viable alternative to existing products [15]. Decades of research have been 

dedicated to the development and optimization of lipid synthesis and extraction, and microalgal 

biofuels continue to be of interest [16]. However, this resulted in under-developed research on 

protein extraction, until recently, when microalgal proteins became a topic of interest. Protein 

extraction methods have been evaluated, however, yields are low relative to energy demand, 

energy data is scarce, and process scale analysis is limited [17]. Another under-developed area of 

research is the production of chemicals from microalgal biomass. Recent studies have presented 

microalgal proteins and oil as substitutes for petrochemicals like ethylene glycol, polyols for 

polyurethane (PU) foams, and thermoplastics [18-23]. However, there are no available studies on 

the use of whole microalgal biomass for chemical synthesis and additional research is necessary 

to establish the feasibility of existing methods at a process scale. 

Current post-combustion carbon capture techniques primarily use alkanolamines, like 

monoethanolamine (MEA), for chemical capture [24, 25]. However, a recent study proved that 

microalgal biomass, once it’s been hydrolyzed to release free amino acids, can achieve efficient 

carbon capture with high CO2 loading (paper under review). This novel solvent has elicited 

interest due to its non-toxic nature, recyclability, and sustainability. Life cycle and techno-

economic assessment are essential frameworks for appraising the sustainability of emerging 

technologies, and the microalgal solvent should be evaluated as such.  

The purpose of this work was to address the identified knowledge and data gaps in 

microalgal biotechnology. The primary goal was to collect empirical data and perform analyses 
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that would validate the viability of co-located microalgal cultivation and biorefineries, and 

advance microalgal biorefinery research. A secondary goal of this work was to identify current 

limitations in this area of research and opportunities for future work. 

 

Literature Review 

Long-term and pilot-scale cultivation systems 

Reactor type, culture stability, nutrients and operating conditions are the main factors that 

affect large cultivation systems in the long-term. When deciding between using an open pond 

system or a photobioreactor (PBR), there are several factors to consider. Open pond systems are 

much less costly, both in capital costs and operating costs, as they require little infrastructure and 

use only sunlight to drive photosynthesis [26]. However, because pond cultures are inherently 

open to their environment, they are much more susceptible to their local climate and 

contamination by heterotrophic bacteria and other algal species. Although PBRs have higher 

capital and operating costs, their infrastructure allows for better growth and higher productivity 

[27].  

Culture stability is another challenge when it comes to maintaining long-term cultivation 

systems. Two factors have been identified that can greatly impact the stability and long-term 

success of an algal culture: pH and biological contamination. Although there are several 

microalgal species that are resilient under different culture conditions, most species have very 

specific pH ranges that are required for successful growth [28]. Culture systems often achieve a 

stable pH through the addition of a strong acid or base, using acid-base chemistry to cause a 

direct and immediate change in the pH. Unfortunately, this method requires the addition of a 

chemical that would not otherwise be added to a culture, adding further cost to the cultivation 
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system. An alternative to directly manipulating the pH is creating different formulations of 

nutrients that can indirectly create steady pH conditions [29]. These unique formulations take 

advantage of the nutrient assimilation processes of selected microalgal species and result in 

biochemical pH stabilization [30]. Although biological contamination often carries a negative 

connotation, there is evidence of positive bacterial-microalgal interactions in microalgal-

dominant cultures [31]. More specifically, bacterial respiration can elicit changes to O2 and CO2 

levels and substrate exchange between bacteria and microalgae can improve productivity and 

growth [32]. Considering these important factors that affect culture stability, the ideal microalgal 

species is one that demonstrates compatibility with evolving culture conditions, while 

maintaining high growth and productivity rates.  

Culture media and the subsequent delivery of sufficient nutrients are critical components of 

any culture system, lab- or pilot-scale. Carbon, nitrogen, and phosphorous make up the major 

nutrients and sodium, potassium and calcium are among several other (Mg, S, Fe, Mo, Sr, Mn, 

Ba, Zn, and Al) minor nutrients [33]. In photoautotrophic cultures, carbon is introduced into the 

system as CO2. An advantageous source of CO2, both economically and environmentally, is flue 

gas that is expelled from natural gas and coal fired power plants. While co-locating PBRs with 

power plants is advantageous, flue gas can also contain other components, such as sulfur oxides 

(SOx), that may negatively impact an algal culture [34]. This inadvertent addition of SOx into the 

culture could impact the growth and composition of a microalgal culture and these conditions 

need to be investigated in a long-term culture. 

Although photobioreactors are more efficient and customizable, the energy inputs regarding 

water and light are problematic when it comes to scale-up and commercial applications. To 

determine how reliant microalgal growth and productivity are on light exposure, a light/dark 



6 

cycle (X hours on, X hours off) can be applied in order to compare with continuous light (24 

hours on). Harvesting amount, or harvesting rate, is another parameter that is critical to 

successful algal cultivation.  Choosing an optimal harvesting rate is a balance between 

productivity (g/L/day) and biomass concentration (g/L). Ultimately, the growth rate of the 

selected algal species will determine the appropriate harvesting rate and residence time that 

optimizes both productivity and biomass concentration in the PBR [35]. 

There are decades of research on lab scale microalgal cultivation and its optimization, 

however, data demonstrating the stability and productivity of a large, pilot-scale PBR over 

extended periods of time are inadequate. A majority of the focus has been on standalone, open 

pond operations and theoretical scales as large as 5,000 acres [36]. While these studies are 

critical for establishing the feasibility of future large-scale operations, co-located pilot and 

process scale systems are more practical and achievable in the short term, and should be 

investigated further. 

Microalgal protein extraction and isolation techniques 

Despite its capacity for CO2 fixation, microalgal cultivation has significant energy and cost 

demands, leading to economic disparities between the cost to grow and the financial benefits of 

harvested biomass [26]. Although microalgal lipids and biofuels have been thoroughly 

investigated for decades, microalgal biofuels remain uncompetitive with fossil fuels when it 

comes to price, and have yet to be accepted as a viable alternative fuel source [37, 38]. In 

addition to lipids, microalgae are a rich source of protein, often making up more than 50% of the 

dry matter [39, 40]. In 2019 the global market for microalgal protein exceeded $700 million and 

is expected to increase over 6% by 2026, reaching over $1 billion [41]. The Chlorella species in 
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particular has become a popular alternative nutrition source and interest in its use as a plant-

based protein source for human consumption continues to grow [17]. 

Once microalgal biomass has been harvested and dewatered, the next step in converting 

biomass into value-added products is cell disruption. Downstream products receive their value 

from intracellular components, like lipids and proteins, that are transformed into goods like 

biofuels or nutraceuticals. Several different techniques have been tested to achieve different 

degrees of disruption, such that the integrity of the target component is not compromised during 

the process. These techniques include alkali/acid treatment, enzymatic treatment, microwave, 

sonication, high pressure homogenizers, thermochemical conversion, pulsed electric field 

treatment, and milling with beads or balls [37, 42, 43]. Several reports indicate that despite the 

high energy demands of mechanical methods, like homogenizers and mills, they are the most 

efficient techniques for cell disruption and offer the best opportunities for scalability [43].  

 High pressure or high speed homogenizers can be very effective methods for total cell 

disruption as the intense conditions works in combination with inertia, shear, and cavitation to 

quickly rupture cells [44]. Despite the effectiveness of these homogenizers, analysis of the 

required energy input and the resulting energy and economic outputs of the microalgal biomass 

show that there is a discrepancy between the two [45].  Bead milling, or ball milling, are similar 

mechanical disruption processes that require less energy. Both use the help of beads/balls to 

enhance an induced agitation for fractionation of a material. Bead and ball mills either have a 

stirring mechanism (i.e., discs on a rotor) that assist the beads in their disruption through transfer 

of kinetic energy, or centrifugal and inertial energy is created through movement of the vessel 

itself [46]. Bead mills and ball mills come in varying sizes (i.e., 0.5-26 L) and are widely used in 

industrial applications, thus making them an attractive scalable method for microalgal cell 
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disruption [47].  

 Once the biomass has been disrupted or homogenized, the component of interest can be 

extracted. There are several techniques for extraction of microalgal metabolites, including the 

use of alkali or organic solvents, ionic liquids, and aqueous two-phase extraction [15, 48]. Most 

research on the extraction of components from microalgal biomass is concerned with lipid 

extraction and the subsequent development of biofuels. Only recently did protein become of 

widespread interest, and thus, the methods for protein recovery from processed biomass are 

scarce and under-developed. An established procedure for efficient cell disruption and 

subsequent protein recovery has yet to be determined [15]. 

Biobased polyol production 

A polyol is a liquid substance that will react with isocyanate and are generally classified as 

hydroxyl-terminated or amino-terminated [49]. Polyols are a major component of PU foams, and 

can yield either a rigid or flexible foam that can have several different applications from 

mattresses to home insulation. The hydroxyl number, given in units of mg KOH equivalent for 

every 1 g of sample (mg KOH/g), is a key characteristic of polyols that indicate the type of PU 

foam it will form [50]. This number represents how many hydroxyl groups are present in the 

sample to react with isocyanate and can range from 28-160 for flexible PU foams and from 300-

800 for rigid PU foams [49, 50]. The polyurethane market is expected to grow significantly in 

coming years due to its continued use in adhesives and foams. This growth is expected to be 

accompanied by a shift towards using renewable and sustainable sources of nitrogen and carbon 

to produce biobased polyols [22, 51].  

There are several established biobased feedstocks currently being used and researched for 

polyol synthesis, ranging from natural sugars like sucrose and glucose to lignin [50]. One of the 
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most common starting materials is vegetable oil. Unsaturated vegetable oils, like soybean and 

castor oil, have characteristic double bonds that can be chemically transformed into hydroxyl 

groups, a key component of a reactive polyol. While these polyols are well documented and even 

commercially utilized, continued demand for vegetable oils in the food industry and the 

additional cost required for oil extraction pose some challenges [52]. Emerging research is 

showing the potential of protein as a starting material for polyols and as a filler in polyurethane 

production, namely from protein-rich sources such as microalgal biomass [22, 50]. Further 

research is needed to evaluate the performance of protein polyols and explore the use of whole 

biomass as a polyol feedstock. Life cycle and techno-economic assessment frameworks are 

excellent tools for evaluating emerging technologies like those that need to be developed for 

biobased polyols. 

Post-combustion carbon capture solvents  

Chemical post-combustion carbon capture technologies are based on the principal that 

CO2 can readily react with amines or amino groups. The general reaction mechanisms have been 

studied extensively and summarized [25, 53]. Due to the diversity of molecules containing amine 

or amino groups, there are several different compounds that can react with CO2. An 

alkanolamine (OHRNH2) is a compound that contains a hydroxyl group and an amino group that 

are attached by an alkane chain.  Both hydroxyl and amine functional groups make an 

alkanolamine a good reagent to bind and capture CO2. Alkanolamine scrubbing systems have 

been implemented in power plants for post-combustion carbon capture for decades [54]. Despite 

the success of alkanolamine solutions for CO2 capture, there are concerns with the cost of the 

energy input needed for the capture process [55]. In addition, some alkanolamines have very 
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high volatility and are sensitive to oxygen, which can lead to loss of the amine solvent and 

degradation to harmful chemicals with may have environmental impacts [56].   

Due to the disadvantages of alkanolamine capture systems, research efforts have been 

focused on developing alternative solvents. Amino acids (COOHRHCNH2) are a class of 

compounds that have a carboxyl group and an amino group attached by an alpha carbon atom 

that has an attached hydrogen atom and a unique side chain, R. Unlike amines, amino acid 

solutions have very low volatility and can absorb CO2 at much higher temperatures [57].  This is 

an important characteristic for a post-combustion capture solvent being used in a power plant 

where operating temperatures are high. This low volatility is due to the addition of chemicals 

such as potassium or sodium, making the amino acid solutions salt solutions, which prevents 

evaporation from happening during the absorption process [58]. In addition to their low 

volatility, amino acid salt solutions (AASS) are less susceptible to oxidative degradation and are 

more environmentally friendly [59, 60]. Analysis of both capture systems show that the capital 

costs, operating costs, and energy consumption for an AASS system are less than those for an 

amine-based system [61].   

Despite the success of these bench-scale and modelling studies, there has not been 

widespread adoption of AASS for post-combustion carbon capture. Issues such as the reactivity 

of single amino acid and mixed amino acid solutions, corrosivity, solubility, and general lack of 

data, must be addressed before extensive implementation [60]. Currently, amino acids used for 

carbon capture are purchased at technical or lab grade from chemical companies, or at food grade 

in the form of nutritional supplements. Finding biological sources of amino acids may further 

reduce the cost of capture while being more sustainable than using synthetic amino acids. One 

candidate for sourcing amino acids is microalgae, as it has high protein content and thus, high 
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amino acid content [62]. Developing efficient techniques for total hydrolysis and solvent 

preparation represent challenges to making microalgal biomass a feasible source of amino acids. 

A recent study developed a method for hydrolysis of microalgal biomass and explored the 

use of hydrolyzed microalgal biomass as a CO2 capture solvent (paper under review). Results 

from this study showed that the microalgal amino acid salt solution (MAASS) has an absorption 

capacity of 1.27 mol CO2/mol amine, which is significantly higher than the absorption capacity 

of conventional amine solvents and synthetic AASS [25, 63]. This notable result suggests that 

the complex mixture within the MAASS may create synergistically enhanced capture conditions. 

Data from a mass and energy balance indicate that the recyclability of the MAASS is a critical 

indicator of the process scale feasibility of this technology. The results of this study warrant 

further investigation of the MAASS. Life cycle and techno-economic assessments could provide 

additional rationale and support for continued research on a MAASS capture system. 
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CHAPTER 1: A LONG-TERM PILOT-SCALE ALGAL CULTIVATION ON POWER 

PLANT FLUE GAS – CULTIVATION STABILITY AND BIOMASS ACCUMULATION 
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Introduction 

Carbon dioxide (CO2) accounts for 82% of greenhouse gas emissions in the U.S., with 

electricity and power generation totaling 33% of total U.S. CO2 emissions [1]. Net CO2 

emissions from coal fired power plants are nearly 770 kg/MWh, while emissions from natural 

gas power plants are approximately 340 kg/MWh [64]. As a result, power generation has become 

a point of interest with regards to reducing greenhouse gas and CO2 emissions. The search for a 

sustainable, post-combustion carbon capture method is ongoing, and microalgal cultivation 

continues to be a preferable solution due to its capacity for CO2 fixation and the possibility for 

downstream revenue from value-added products [3, 4]. Decades of valuable lab-scale research 

has been done on microalgal cultivation, identifying growth limitations and optimal conditions, 

techniques for growing and harvesting, and the possibilities for downstream processes [5, 6]. 

However, data on long-term, pilot-scale cultivation are still inadequate to determine feasible 

solutions for commercial applications. Reactor configuration, cultivation stability, nutrient 

selection, and operational conditions are the main factors that long-term, pilot-scale cultivation 

studies need to focus on.  

The debate between using photobioreactors (PBRs) or open pond systems for cultivation is 

ongoing, as they both have their respective advantages and disadvantages. Open ponds require 

low capital cost and less energy input as they rely solely on sunlight to drive photosynthesis [26]. 

However, open ponds are very susceptible to their climate (i.e. temperature, weather and 

sunlight), making location an important consideration. In addition, open ponds are inherently 

vulnerable to contamination by other algae and heterotrophic bacteria, and consequently only 

certain, robust algal species are suitable for outdoor open pond systems [26]. In contrast, PBRs 

are suitable for a range of algal species as contamination is much easier to control. Light 
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intensity can be enhanced by using high efficiency light emitting diodes (LEDs) as supplemental 

light source to the sunlight. Unlike open pond systems, where light penetration is a known 

limitation, PBR’s have a considerably shorter and manipulatable length of light path, which 

results in better growth and higher efficiency and productivity [27]. In addition, PBRs require a 

relatively smaller footprint, creating several opportunities for placement. 

Besides reactor types, another challenge regarding long-term cultivation of microalgae is 

maintaining culture stability. In order to ensure successful culture growth, the selected algal 

species should be robust. When comparing algal species, Chlorella were found to have higher 

rates of production and carbon fixation, making them an ideal species for PBR cultivation and 

carbon capture [4]. The long-term cultivation of a Chlorella species, C. vulgaris, was previously 

demonstrated over a 6-month period in an PBR, with productivity reaching 0.40 g/L/day [65]. 

Microalgae strains, like Chlorella species, have very specific pH ranges that lead to optimal 

growth [28]. Thus, pH stability and control are major challenges associated with microalgal 

cultivation. This is often realized by the addition of pH stabilizers (i.e. acid or base) and 

unfortunately leads to inescapable additional costs on both chemicals and equipment. One way to 

avoid this complication is to control the pH of a culture using different formulations of nutrients 

that inherently create steady pH conditions [29]. Biological contamination is another major 

factor influencing culture stability. Microalgae growth should be maintained at the desired level 

despite the existence of other biological agents, typically heterotrophic bacteria, by controlling 

their metabolic activities, via mutual symbiotic relationships, microalgae growth prevails during 

operational cycles [66]. Despite negative perceptions of biological contamination, microalgal-

bacterial interactions can be beneficial for an algal-dominant cultivation system [31]. Algal 

growth and productivity can be enhanced via substrate exchange from bacteria to algae and by 
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modification of O2/CO2 levels as a result of bacterial respiration [32]. Although bacteria in the 

culture of algal assemblage is not always intentional, the inherent contamination could result in 

enhanced growth conditions for an algal culture. 

Cultivation medium is also critical to large-scale algal cultivation systems. The mass 

production media should be cost effective while providing the major (C, N, P) and minor (Na, K, 

Ca, Mg, S, Fe, Mo, Sr, Mn, Ba, Zn, and Al) nutrients essential for the microalgae growth [33].  

When implementing an PBR in an operating power plant using flue gas as a source of CO2, other 

components present in the flue gas, such as sulfur oxides (SOx), can be introduced into the PBR 

simultaneously [34]. Although concentrations of such impurities from flue gas are low, they may 

still impact an algal culture. Thus, the robustness of microalgae is critical to overcome the 

inhibitory effects of impurities [67].  

In addition, the mass production of microalgae and its commercialization are directly related 

to the operation of PBRs. To maximize and stabilize algal biomass accumulation rate, light cycle 

(continuous light versus light/dark cycles) and harvesting rate (hydraulic retention time) are two 

major parameters which must be optimized for continuous, large-scale cultivations. Lighting 

condition can be controlled relatively easily in PBRs, wherein light limitation can be alleviated 

and microalgae growth can be enhanced [68]. Harvesting rate is inherently linked with 

microalgae residence time in PBRs and should be adjusted based on growth rate of the selected 

microalgae species [35]. Optimization of lighting condition and harvesting rate can be 

determined using traditional microalgae cultivation metrics, including biomass concentration and 

biomass productivity.  

This study aimed to evaluate the long-term culture of the selected freshwater microalgal 

assemblage from Great Lakes region in a pilot-scale PBR located in the T.B. Simon Power Plant 



16 

(East Lansing, MI) using flue gas as the CO2 source. Biomass composition (major and minor 

components of biomass) and biological diversity (relative abundance at different taxa) of the 

culture, biomass production and algal assemblage stability were investigated under different 

culture conditions: light cycle, harvesting amount, pH stabilization, and SOx content in the 

culture medium. The results were analyzed to obtain an in-depth understanding of a long-term 

cultivation of an PBR in a power plant.  

 

Materials and methods 

Algal assemblage and culture medium 

The microalgae Chlorella sorokiniana MSU was selected from the Great Lakes region and 

was stored on Tris-Acetate-Phosphate (TAP) agar medium at room temperature under constant 

fluorescent light until it was used to seed the algae photobioreactor (PBR) [69]. Modified liquid 

TAP media (without agar) was used for photoautotrophic cultures. The modified medium 

contained the following substances: 3.75 mmol/L of NH4NO3 or 7.5 mmol/L of NH4Cl, 0.34 

mmol/L of CaCl2 ∙ 2H2O, 0.4 mmol/L of MgSO4 ∙ 7H2O, 0.68 mmol/L of K2HPO4 (anhydrous), 

0.45 mmol/L of KH2PO4 (anhydrous), and 0.09 mmol/L FeCl3 ∙ 6H2O. In the medium, NH4NO3 

and NH4Cl were both used as nitrogen sources but were not used simultaneously. When NH4NO3 

was used in the medium, it acted as the nitrogen source and its ability to independently balance 

the pH was tested [29]. As a comparison, when NH4Cl was used as the nitrogen source, NaOH 

solution (100 g/L) was used for pH stabilization. FeCl3 ∙ 6H2O was added to increase cell density 

and growth rate [70]. The potential effect of sulfur oxides was tested with the addition of SO2 in 

the form of Na2SO3 at a concentration of 0.23 mmol/L. The stock solutions of nutrients and trace 
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elements were prepared using deionized water. The water used for the culture was fresh water 

from the power plant tap. All media, water, and equipment were unsterilized.  

 Pilot photobioreactor system 

The PHYCO2 PBR unit previously installed in the T.B. Simon Power Plant was used in this 

study (Figure 1). The operating mechanism of the PBR has been previously described [65]. 

Briefly, the 118 L PBR (100 L working volume) includes a vertical up-tube, helical coil, and 

light source. A gas sparger at the bottom of the up-tube delivers natural gas fired flue gas to the 

unit, where medium is driven upward through the up-tube. The medium is then gravitationally 

circulated back down through the helical coil to the bottom of the PBR and is then pushed 

vertically upward once again by the gas sparger. The unit was updated with 12, 8-foot LED light 

bars (Independence LED Lighting LLC, USA) containing forty-four red and twelve blue diodes 

each. The red and blue diodes provided light at 660 nm and 450 nm, respectively. The LED bars 

were arranged such that there were 4 equally distributed bars in the center of the coil and 8 

around the up-tube, providing a continuous photosynthetic photon flux density (PPFD) of 

approximately 407 mol/m2/s to support algae growth. PPFD was measured using a LI-190R 

Quantum Sensor paired with a LI-250A light meter (LI-COR, Lincoln, Nebraska). The natural 

gas fired flue gas, containing 7.2 ± 0.06% v/v of CO2, and 76.9 ± 0.4 ppmv of NOx, was directly 

pumped from the stack into the PBR at a flow rate of 120 L/min. The emissions of CO2 and NOx 

were determined using a continuous emissions monitoring system (CEMS) as regulated by the 

United States Environmental Protection Agency (EPA).  
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 (a)      (b) 

Figure 1. PHYCO2 PBR unit [65]. (a) Diagram of the photobioreactor; (b) The photobioreactor 

at the MSU. T.B. Simon power plant. 

 Kinetic study of the algal assemblage 

Cultivation of the microalgae species for the growth kinetics study was carried out in the 

PBR unit with inoculum of 1% v/v. The kinetic study was run at 20 ± 2 °C under a continuous 

light of 407 mol/m2/s with flue gas rate of 120 L/min. A total of 18 samples were collected over 

a period of 5 days, resulting in a total cultivation time of approximately 108 h. Temperature 

(PHH-257 Micro pH Meter, Omega Engineering™, USA) and pH (Pocket Pro pH, HACH 

Company, Loveland, Colorado) were monitored daily to ensure stability and thus, proper growth 

conditions. Nutrient concentrations, biomass concentration, and algal assemblage were 

monitored during the kinetic study. 
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 Semi-continuous algal cultivation in the pilot photobioreactor 

The PBR has been running in a semi-continuous mode since April 2018. Cultivation data was 

collected from April 2018 to March 2019. The twelve case scenarios in Table 1correspond to 

optimization tests conducted during this time period. The following cultivation conditions were 

modified during the study: harvest amount (30%, 40%, 50%, 60%, 70% or 100% of the PBR 

volume), light cycle (12 h and 24 h illumination), and with and without the addition of NaOH 

and SO2. The 100% harvesting amount refers to 50% harvesting performed twice in a 24 h 

period. Liquid broth was collected daily at the specified amount (30, 40, 50, 60, 70 or 100% v/v). 

Algal biomass concentrations were left to stabilize for at least 2 days and the data collected from 

this point on were used for analysis. The culture temperature was kept at 20 ± 2 °C. Fresh water 

was used to refill the PBR reactor after harvesting and nutrients and trace metals were added 

according to the modified TAP medium to maintain N/P molar ratio at 6.65. Among the twelve 

case scenarios, three scenarios (1, 8, and 9) were first selected to study the effects of sulfur 

supplement and pH adjustment on algae cultivation. Consequently, eleven scenarios (2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, and 12) were compared to elucidate the effects of harvesting amount and light 

cycle on algae cultivation. In addition, data from the eleven scenarios were also used to study the 

effects of cultivation on the stability of algae assemblage.  

Table 1. Twelve case scenarios during the test period. 

Scenarios 

Harvesting 

amount 

(L/day) 

Sulfur 

supplement 
a 

Light 

cycle b 

pH 

stabilization c 
Data collection period 

1d 30 No No NaOH April 12 – April 20, 2018 

2 50 No No NaOH May 9 – May 20, 2018 

3 100 No No NaOH May 26 – June 15, 2018 

4 50 Yes No NaOH June 16 – July 5, 2018 

5 60 Yes No NH4NO3 July 6 – August 6, 2018 

6 70 Yes No NH4NO3 August 10 – September 5, 2018 

7 30 Yes Yes NH4NO3 September 25 – October 31, 2018 
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Table 1 (cont’d) 

8 30 Yes No NH4NO3 November 4 – November 17, 2018 

9 30 No No NH4NO3 November 21 – December 10, 2018 

10 50 No Yes NH4NO3 December 14 – December 30, 2018 

11 40 No Yes NH4NO3 January 5 – January 20, 2019 

12 40 Yes Yes NH4NO3 January 25 – March 9, 2019 
a. 15-20 mg/L Na2SO3 were maintained in the cultivation medium for the “Yes” sulfur supplement. 

b. The “Yes” light cycle was run on 12-hour light on and 12-hour light off. The “No” light cycle was run on 

24-hour light on.  

c. pH stabilization of “NaOH” was that NaOH was used to adjust pH and NH4Cl was used as the nitrogen 

source. pH stabilization of “NH4NO3” was that NH4NO3 was used for both pH adjustment and nitrogen 

source.   

d. The culture was from a pre-test before the long-term continuous cultivation.  

 

 Chemical analysis 

Samples were analyzed for dry biomass weight, pH and nutrient (total nitrogen (TN), total 

phosphorus (TP), nitrate (NO3-N) and ammonia (NH3-N)) concentrations. Consumption data is 

calculated as the difference in nutrients over 24 h using concentration data measured before and 

after harvesting. Algal biomass was concentrated for dry weight measurement using a Thermo 

Electron Corporation IEC Centra CL2 Centrifuge at 3800 rpm for 5 m. Biomass was washed 

once and resuspended using deionized water, and then dried at 105C for 24 hours. Sample pH 

was measured using a pH meter (Fisherbrand accumet AB15 + Basic, Fisher Scientific Co., 

Pittsburgh, PA). Nutrient concentrations were tested in the liquid supernatant using nutrient test 

kits (HACH Company, Loveland, Colorado) equivalent to EPA methods [71]. Algal biomass 

composition was analyzed using the standard forage analysis method [72].  

 Microbial analysis 

DNA extraction 

Samples (1 mL) collected for DNA analysis were kept frozen at -20C until their use. To 

remove nutrient media, algae sample was centrifuged using an Eppendorf 5416R centrifuge at 

10,000 rpm for 5 min and the supernatant was discarded. The remaining pellet was used for 



21 

DNA extraction using the DNeasy PowerSoil Kit (Qiagen, Germany). DNA was eluted with 

100 L of 10 mM Tris-HCl (pH 8.5) and the concentration and purity determined using a 

NanoDrop Lite spectrophotometer (Thermo Fisher Scientific, USA). The DNA extracts were 

stored at -80C and then used for polymerase chain reaction (PCR) and Illumina DNA 

sequencing.  

Illumina preparation and sequencing 

Illumina sequencing was performed for the 16S rRNA gene region to assess the bacterial 

community. Prior to PCR, extracted DNA samples were diluted 10x due to high DNA 

concentrations. The PCR conditions were as follows: 1.0 mL DNA template (10x diluted), 0.5 

mL of 100 mM forward primer (IDT, Pro341F 5’-CCTACGGGNBGCASCAG-3’), 0.5 mL of 

100 mM reverse primer (IDT, Pro805R 3’-GACTACNVGGGTATCTAATCC-5’), 12.5 mL 2x 

Supermix (Invitrogen, USA), and 10.5 mL PCR grade water. The PCR program used for all 

assays is as follows: 96°C for 2 min, followed by 30 cycles of 95°C for 20 s, 52°C for 30 s, and 

72°C for 1 min, and a final elongation period of 72°C for 10 min. After PCR, samples were 

diluted to normalize DNA concentrations within a range of 5-10 ng mL-1. DNA concentration 

was determined using the PicoGreen dsDNA quantitation assay (Invitrogen, USA) and Fluostar 

Optima microplate reader (BMG Labtech, Germany). The PicoGreen conditions were as follows: 

95 mL 1x TE buffer solution, 100 mL 1:200 diluted PicoGreen reagent, 5 mL DNA template. 

Samples with known DNA concentrations were also prepared for standard curve generation. The 

normalized PCR products were then sequenced at the Michigan State University (MSU) 

Research Technology Support Facility (RTSF). Illumina MiSeq (pair-end 250 bp) targeting on 

V3_V4 hypervariable regions was used to carry out the sequencing. Fastq files from the high-
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throughput sequencing were analyzed using QIIME2 database to generate the taxonomic and 

phylogenetic data for statistical analysis [73]. 

 Statistical analysis 

All data collected were analyzed using the statistical tools of R (version 3.6.3). In order to 

determine whether a parametric or non-parametric test was necessary, the data were first tested 

for normality and equal variance using a Shapiro-Wilk’s test and an F-test, respectively. Those 

data that were normal with equal variance were tested using a one-way analysis of variance 

(ANOVA) and a Tukey test was used when applicable to compare individual factors. Data with 

non-normal distribution and unequal variance were tested using the Kruskal-Wallis test by ranks. 

All tests were performed with a significance value of α=0.05. Microbial community analysis was 

completed using Vegan, ggplot2, phyloseq, and MASS R libraries. Taxonomic/phylogenetic data 

was analyzed in order to graph relative abundances of algae and bacteria in the sample. 

 

Results and discussion 

 Kinetics of the algal assemblage 

The growth kinetics of algal assemblage is important to determine harvesting rate, which 

inherently controls substrate loading rate and pH stability, under the fixed CO2 (g) and light 

supply. The kinetics of algae growth has been studied in the PBR (100 L) operated in a batch 

mode. During the 108-hour cultivation, 18 samples were taken in order to monitor biomass 

concentration (g dry weight algae/L), nutrient concentration and pH were monitored. The initial 

concentration of microalgae in PBR was 0.081 g/L after adding a 1% v/v inoculum. The results 

from the measurements during the kinetics study are depicted in Figure 2 (a, b, c, and d). In 
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addition, the changes in relative abundance of microbial communities in PBR over the course 

growth kinetics experiment are shown at domain, phylum, and class levels in Figure 3 

 
           (a)                (b) 

 
      (c)              (d) 

Figure 2. Kinetics of the algal assemblage growth in the pilot unit. (a) Biomass concentration; 

(b) TN, NH3-N, and NO3-N concentrations; (c) PO4-P concentration; (d) pH. Data are the 

mean of two replicates with standard deviation. 

Biomass concentration increased from 0.081 g/L to 0.500 g/L over the course of the 

experiment (Figure 2a). The observed increase in dry biomass correlates with TN and TP uptake 

as shown in Figure 2b and c, respectively, indicating none was limiting the growth at 7.5% CO2 

(g). The nutrient concentrations were measured as 2.88 ± 0.37 mg N/L and 3.2 ± 0.04 mg P/L at 

the end of kinetics study. The observed increase in dry biomass concentration in PBR can be 

modeled as the log (exponential) growth (1st order) since there are no limiting nutrients and CO2 

was supplied continuously. The equation for the log phase growth is as follows, where 
𝑑𝑋

𝑑𝑡
= 
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growth rate of algae assemblage (g/L/hr), X=concentration of dry biomass (g/L), and µ=specific 

growth rate constant (hr-1) [74]: 

           
𝑑𝑋

𝑑𝑡
= 𝜇𝑋                                 Equation 1 

The Matlab® curve fitting toolbox was used to calculate the specific growth rate constants 

(µ) of the algal assemblage based on the 𝑑𝑋𝑑𝑡= 𝜇𝑋                                 Equation 1 

and the data in Figure 2a. The overall specific growth rate constant was 0.01782/hr (0.43/day) 

with R2 = 0.9408, which is similar to growth rate constants observed in a range of 0.2-0.9/day in 

autotrophic, heterotrophic, and mixotrophic algae cultivation studies [75]. A closer examination 

of changes in biomass concentration over time reveals that there are potentially two different 

growth rates. These growth rates correspond to the use of NH4-N (between 0 and 30 hr) and 

NO3-N (between 40 and 108 hr) as a nitrogen source by the algal culture (Figure 2a and b). The 

growth rate constant when NH4-N consumption was dominant was higher (0.53/day, R2 = 

0.8294) than the growth rate when NO3-N consumption took over (0.34/day, R2 = 0.9364). This 

is an expected result as NH4-N can be used directly as the nitrogen source, where NO3-N must 

first be reduced to NH4-N in order to be assimilated by the algal culture [76]. Despite this 

difference in growth rate, using NH4-N as the sole nitrogen source is undesirable since it will 

decrease the pH over time and put the culture stability at risk (Figure 2d).  

Different consumption patterns of NH4
+ and NO3

- also enlightened that both forms of 

nitrogen can be used to stabilize the pH without the use of acid/base. Analysis of Figure 2b and d 

detail the relationship between nitrogen consumption and pH stabilization. Figure 2b shows that 

NH4-N was first to be consumed, followed by NO3-N approximately 40 hours after inoculation. 

The consumption pattern of NH4-N and NO3-N helped to maintain the pH above 6.5 (Figure 2d). 

At hour 40, the pH begins to recover from its initial decrease. This increase in pH, from hour 40 



25 

until approximately hour 90, corresponds to the decrease in NO3-N concentration during the 

same period (Figure 2d). Thus, it is confirmed that NH4NO3 is an effective pH stabilization agent 

to prevent the low pH inhibition in addition to providing sufficient nitrogen for algal growth. 

DNAs from all 18 samples collected during the 5-day period were extracted to determine the 

bacterial-algal assemblage. The results from amplicon sequencing show a high abundance of 

cyanobacteria, which is known to have 85-93% of 16s rRNA gene sequence similarity with C. 

sorokiniana [77]. Microscopic imaging analysis of the samples did not indicate the presence of 

cyanobacteria, which are characterized by blue-green color and various shape and size, unlike C. 

sorokiniana [78]. Thus, the cyanobacteria sequence was interpreted as microalga C. sorokiniana 

for all samples.  

The relative abundance (ratio of frequency of a gene or a group of genes to total frequency of 

all genes in a community) was first determined at the domain and phylum levels. The dominating 

domain and phylum are Eukarya and Chlorophyta, which correspond to the C. sorokiniana 

inoculum (Figure 3a and b) [77]. This is complemented by a relatively stable bacterial 

abundance. However, at the phylum and class level, there are changes in the relative abundance 

of certain bacteria. 
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(a)                                                         (b) 

 
             (c)                                                       (d) 

Figure 3. Relative abundance of microbial communities in the algal assemblage during the 

kinetic study. (a). Relative abundance at the domain level; (b). Relative abundance at the phylum 

level; (c). Bacteroidetes relative abundance at the class level; (d). Proteobacteria relative 

abundance at the class level. Relative abundance data are from a sample at each time point 

during the kinetics study. 

Proteobacteria and Bacteroidetes are the dominating bacterial phyla in the microalgae co-

culture system (Figure 3b). This is consistent with literature on large-scale microalgae cultivation 

systems [79]. At the class level, communities within the Bacteroidetes phylum remained stable 

throughout the kinetics study (Figure 3c), while communities within Proteobacteria changed 

over increasing time (Figure 3d). Many species belonging to the β subdivision of Proteobacteria 

(Nitrosomonas, Nitrosospira, Nitrococcus) are ammonium oxidizing bacteria (AOB), capable of 
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oxidizing ammonium to nitrite, and their prevalence in NH4
+ rich culture medium is expected, 

especially in freshwater systems [80-82]. The relative abundance of Betaproteobacteria 

decreased as algal assemblage growth continued exponentially (Figure 3d). The observed 

population dynamics of Betaproteobacteria follow a trend similar to NH4
+ concentration (Figure 

2b), addressing their role as AOB in the PBR. On the other hand, certain species of the α 

subdivision of Proteobacteria, such as those in the Nitrobacter genus, are able to oxidize nitrite 

to nitrate and are therefore referred to as nitrite oxidizing bacteria (NOB) [83]. During the first 

30 hours of growth, Alphaproteobacteria abundance was stable and ammonia was still present 

within the system, however, increasing NO3
- levels were observed (Figure 2b). This observation 

confirms the role of the Alphaproteobacteria as NOB in the algal-bacterial assemblage. Another 

noteworthy observation regarding the presence of Alphaproteobacteria, is their ability to non-

photoautotrophically fix nitrogen (N2 (g)) in symbiosis with plants [84-86]. The significant, and 

stable, relative abundance of Alphaproteobacteria may indicate an established mechanism to use 

N2 (g) as a nutrient in microalgae growth reactors, which needs to be further studied. Overall, 

microbial community analysis suggests that Proteobacteria played an important role in 

nitrification and fixation within the algal assemblage, thus influencing nitrogen consumption and 

pH patterns of the cultivation.  

 Effects of culture conditions on algal biomass accumulation and nutrient consumption 

Figure 4 shows all the data that was collected from April 2018 to March 2019. Figure 4a and 

c indicate both biomass concentration and total phosphorous concentration respond to the 

changes introduced during the different case scenarios. Figure 4b and d show the stability of total 

nitrogen concentration and pH throughout the year-long study. 
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(a) 

 
(b) 

 
(c) 

Figure 4. Long-term algal cultivation on the flue gas from a power plant. (a). Biomass 

concentration before and after harvesting and operational conditions; (b). TN content in the 

medium before and after harvesting (adding the nutrient after harvesting): (c). TP content in the 

medium before and after harvesting; (d). pH of the medium before and after harvesting. Data are 

the mean of two technical replicates. 
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Figure 4 (cont’d) 

 
(d) 

 

Effects of sulfur addition and pH stabilization 

Case scenarios (1, 8, 9) were used to demonstrate the effects of sulfur addition and pH 

stabilization on the algal biomass production and nutrient consumption (Table 2). Figures 

corresponding to Table 2 can be found in Appendix B (Figure 28, Figure 29). 

Table 2. Effects of sulfur addition and pH stabilization on cultivation parameters. 

Factors and levels 
Sulfur addition pH stabilization 

Yes a No b NaOH c NH4NO3 
d 

Biomass 

concentration 

Biomass concentration 

(g/L) 
1.22±0.17 1.10±0.33 1.05±0.20 1.10±0.33 

Influence on biomass 

concentration 
P=0.433  P=0.655  

Biomass 

productivity 

Biomass productivity 

(g/L/day) 
0.29±0.02 0.34±0.08 0.31±0.08 0.33±0.08 

Influence on biomass 

productivity 
P=0.061  P=0.556  

pH 
pH 6.81±0.08 6.81±0.15 6.62±0.10 6.81±0.15 

Influence on pH P=0.920  P=0.005  

TN consumed 

TN consumed (mg/L) 36.38±6.51 37.09±8.47 27.59±6.68 37.09±8.47 

Influence on TN 

consumed 
P=0.873  P=0.387  

TP consumed 

TP consumed (mg/L) 3.50±3.97 3.50±1.72 3.06±2.43 3.50±1.72 

Influence on TP 

consumed 
P=0.999  P=0.672  

a. Data are reported as the mean of 6 replicates with standard deviation. 

b. Data are reported as the mean of 9 replicates with standard deviation. 

c. Data are reported as the mean of 9 replicates with standard deviation. 
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Table 2 (cont’d) 
d. Data are reported as the mean of 10 replicates with standard deviation. 

 

Sulfur addition was achieved by supplementing sodium sulfite (Na2SO3) in the culture 

medium, since SO2, the most dominant and harmful form of sulfur oxide in flue gas, is soluble in 

water and forms sulfite under alkaline conditions [87]. To determine the cultures response to 

sulfur addition, the sulfur content in the algal biomass (% w/w) was measured during each case 

scenario (Table 31). Under the condition of no light-cycle, average sulfur content of the algal 

biomass with sulfur addition (0.54 ± 0.06%) is slightly higher than the average sulfur content 

without sulfur supplement (0.50 ± 0.03%), which shows capability of the algal assemblage to 

utilize sulfur originating from the supplemented SO2. However, the sulfur addition had no 

significant impact on the biomass concentration or stability of the culture (Table 2). These results 

indicate that the studied algal assemblage cultured in the PBR is able to capture CO2 without 

adverse effects from potential SO2 present in flue gas.  

When comparing pH stabilization of the culture using NaOH or NH4NO3, pH was the only 

parameter among the five (biomass concentration, biomass productivity, pH, TN consumed, and 

TP consumed) that was significantly (P = 0.005) influenced. This is an expected outcome and is 

a result of the mechanism through which each chemical stabilizes the pH. As seen in Figure 2b 

and d, NH4NO3 does not force an immediate pH change but gradually shifts the pH as a result of 

algal metabolism of nitrogen. On the other hand, NaOH forced pH change via acid-base 

chemistry. Although NaOH and NH4NO3 had a significant impact on pH, both chemicals were 

able to maintain a desirable pH range of 6-7.5 for C. sorokiniana growth. This result indicates 

that NH4NO3 can be used to replace NaOH and stabilize pH of the algal cultivation. In addition, 

the lack of significance of the pH stabilization on all other parameters indicates that NH4NO3 can 

effectively stabilize the culture pH while not significantly impacting any other growth outcomes. 
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Effects of harvesting amount and light-cycle 

Figure 5 compares the effects of different harvesting amounts on the five cultivation 

parameters. In addition, the effects of a 12-hour light-cycle can be seen across three harvesting 

amounts (30%, 40% and 50%). To determine the effects of different culture conditions on the 

cultivation parameters, three comparisons were made: different harvesting amounts with no light 

cycle, different harvesting amounts with light cycle, and matching harvesting amounts with light-

cycle and without light-cycle. A complete summary of the statistical analysis is presented in 

Table 28, Table 29, and Table 30 in Appendix B. 

 
 

(a) (b) 

 

Figure 5. Effects of harvesting amount and light cycle on algal cultivation*. (a). Biomass 

concentration; (b). Biomass productivity; (c). pH; (d). TN consumed; (e). TP consumed. 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 

Figure 5 (cont’d) 

  
 

(c)       (d)

 
(e) 

*: Data for 30% harvesting amount and light cycle off are the mean of 25 replicates with standard deviation. Data 

for 30% harvesting amount and light cycle on are the mean of 18 replicates with standard deviation. Data for 40% 

harvesting amount and light cycle on are the mean of 27 replicates with standard deviation. Data for 50% harvesting 

amount and light cycle off are the mean of 25 replicates with standard deviation. Data for 50% harvesting amount 

and light cycle on are the mean of 7 replicates with standard deviation. Data for 60% harvesting amount and light 

cycle off are the mean of 14 replicates with standard deviation. Data for 70% harvesting amount and light cycle off 

are the mean of 15 replicates with standard deviation. Data for 100% harvesting amount and light cycle off are the 

mean of 20 replicates with standard deviation. 

 

Statistical analysis of the data collected under no light-cycle condition was applied such that 

all harvesting amounts were compared pairwise. A collection of 10 comparisons are presented in 

Table 28 in Appendix B. The harvesting amounts of 30%, 50%, and 60% had biomass 

concentrations of 1.11 ± 0.26, 1.28 ± 0.28, and 1.07 ± 0.23 g/L, respectively (Figure 5a) and a 

pair-wise comparison concluded that there were no significant (P > 0.05) differences between the 

three harvesting amounts. However, these three harvesting amounts had significantly (P < 0.05) 
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higher biomass concentrations than the harvesting amounts of 70% and 100% (0.86 ± 0.12 and 

0.72 ± 0.12 g/L). As for the biomass productivity, the harvesting amount of 70% showed the best 

performance at 0.56 ± 0.09 g/L/day (Figure 5b), with significant (P < 0.05) differences from the 

harvesting amounts of 30%, 50%, and 100%. Biomass productivity of the harvesting amount of 

60% (0.43 ± 0.14 g/L/day) showed no significant differences (P > 0.05) from the harvesting 

amounts of 50%, 70%, and 100%, likely due to its large standard deviation. Generally, with 

increasing harvesting amount, biomass concentration decreased and biomass productivity 

increased. For example, a 70% harvesting amount resulted in the highest productivity but led to 

one of the lowest biomass concentrations when compared to 30%, 50%, and 60%. When the 

culture is diluted to a higher degree (70% harvested versus 30% harvested), it is able to respond 

with a higher productivity level but it is unable to regrow and replenish to a high biomass 

concentration.  

As for pH, the harvesting amounts of 30%, 50%, 60%, and 70% were in a narrow range 

around 6.7 even though most of them had significant (P < 0.05) differences between each other 

except two pairs of 30%/60% and 50%/70% (Figure 5c). The harvesting amount of 100% had the 

lowest pH of 5.20 ± 0.55, which was significantly (P < 0.05) different from all other harvesting 

amounts. TN and TP consumption further show the effects of different harvesting amounts on 

the cultivation. The harvesting amounts of 60% and 70% had similar (P > 0.05) TN consumption 

(59.80 ± 3.64 and 60.02 ± 7.29 g/L/day, respectively), which were significantly (P < 0.05) higher 

than other harvesting amounts (Figure 5d). The harvesting amount of 70% had the highest TP 

consumption of 7.99 ± 1.51 g/L/day, which are significantly (P < 0.05) different from other 

harvesting amounts except 100%. The harvesting amounts of 50%, 60%, and 100% had TP 
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consumption of 5.03 ± 2.19, 5.88 ± 1.58, and 6.50 ± 1.85 mg/L/day, respectively, with no 

significant (P > 0.05) difference among each other.  

When comparing all harvesting amounts with a 12-hour on/off light-cycle, there were 

significant (P < 0.05) differences in biomass concentration when comparing 30% harvesting to 

40% and 50%, where 30% harvesting resulted in a higher biomass concentration (0.67 ± 0.14 

g/L) (Figure 5 and Table 29). Biomass productivity of the three harvesting amounts (30%, 40%, 

and 50%) were 0.20 ± 0.05, 0.18 ± 0.05, and 0.17 ± 0.02 g/L/day respectively (Figure 5), none of 

which were significantly (P > 0.05) different from each other. In addition, pH of the three 

harvesting amounts were in a narrow range around 6.5. Nutrient consumptions (TN and TP) were 

not significantly (P > 0.05) different among the three harvesting amounts (30%, 40% and 50%). 

Unlike the results when no light-cycle condition was applied, the biomass productivity remained 

fairly stable across the three harvesting amounts, indicating biomass productivity is limited by 

light exposure. This can be confirmed in current literature, where C. sorokiniana showed 

decreased specific growth rates with intermittent lighting [88]. Lower growth rates and 

productivity are thought to be a result of inability to store ample light energy to maintain 

productivity and respiration losses during subsequent dark periods. These statistics confirm that, 

although there were significant differences in biomass concentration, the algae maintained 

consistent productivity and nutrient consumption across different harvesting amounts under a 12-

hour on/off light-cycle.  

The analysis comparing light cycle to no light cycle confirms that the 12-hour light-cycle has 

significant (P < 0.05) effects on all factors measured, and led to inferior cultivation performance 

(Figure 5 and Table 30). The only exception is TP consumption for 30% harvesting; there is no 

significance for this factor when comparing light cycle to no light cycle for the same harvesting 
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amount (P = 0.470). This may be a result of the spread of the data (30% average = 2.74 ± 2.01, 

40% average = 3.34 ± 2.48) and its non-normal distribution.  

Overall, the harvesting amount of 60% with no light-cycle proved to be the preferred 

operational conditions, resulting in the highest average biomass concentration, sustainable pH 

levels and good nutrient consumption. With an average biomass concentration of 1.07 ± 0.23 

g/L, 60% harvesting results in a starting concentration of approximately 0.64 g/L. The increase 

of approximately 0.43 g/L/day reflects the calculated growth rate constant of 0.43/day.  

 Effects of cultivation conditions on algal biomass composition 

Microalgae can adapt to cultivation conditions with varying nutrient concentrations, light 

intensity, and duration [89]. This behavior is reflected in the composition of microalgal biomass 

at the elemental (C, H, N, P, S) and macromolecular (carbohydrates, protein, lipid) levels. 

Elemental analysis of microalgal biomass collected during individual case scenarios tested in this 

study was conducted to show changes in biomass composition between different culture 

conditions (Table 31). The statistical analysis concluded that there was not a significant (P > 

0.05) variance in the composition of biomass in terms of their C, H, N, S, and P contents (% dry 

matter). This confirms the robustness of algae assemblage and demonstrates its ability to adapt to 

different cultivation conditions. The average contents of elements are given in Table 3 along 

with coefficient of variation (COV) values. Major elements in the algae assemblage are 

measured as C (48.4%), H (7.29%), and N (9.08%), with S and P contents in trace amounts. The 

slightly higher COV values (greater than 0.10) for S and P contents of the biomass were 

attributed to their low concentrations resulting in higher variance in measurements. This 

composition is typical for chlorophyte alga, such as Chlorella species that are composed of 

44.33%, 7.09%, 8.53%, 0.84% dry matter of C, H, N, and S respectively [90].  
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Table 3. Element contents of algal biomass and corresponding coefficients of variation a,b,c. 

 
C (% dry 

matter) 

H (% dry 

matter) 

N (% dry 

matter) 

S (% dry 

matter) 

P (% dry 

matter) 

Algal biomass 48.40±1.56 7.29±0.15 9.08±0.42 0.56±0.09 1.53±0.21 

Coefficient of variation b 0.03 0.02 0.05 0.15 0.13 
a. Element contents of individual algal biomass under different cultivation conditions are listed in Table 31. 

b. Element contents are reported as the mean of 15 replicates with standard deviation. 

c. Coefficient of variation is the ratio of the standard deviation to the mean. It shows the extent of variability 

regarding the mean of the sample population. 

 

There are four major types of biochemical molecules in microalgae: carbohydrates, proteins, 

lipids and nucleic acids [91]. Nucleic acids make up a relatively small amount of the total 

biomass and were thus excluded from the biochemical analysis in this study. Carbohydrate, 

protein, and lipid contents of the algae assemblage cultivated in NH4NO3 containing culture 

media without S are listed in Table 4 under the operation conditions of 50% harvesting amount 

and no light-cycle. The Chlorophyte alga has been reported as a rich source of protein, between 

40% to 51.45%, which agrees with the results obtained in this study [39, 40].  The protein 

content (58.60% dry matter) was much higher than that of carbohydrates (19.70%) and lipids 

(9.70%) of dry algal biomass. 

Table 4. Macromolecules in algal biomass a,c. 

 
Carbohydrate b 

(% dry matter) 

Lipid (% dry 

matter) 

Protein (% dry 

matter) 

Ash (% dry 

matter) 

Algal biomass 19.5±2.44 9.70±1.68 58.60±2.41 12.20±1.52 

a. The data is from the cultivation with 50% harvesting amount, NH4NO3 as pH 

stabilization, light-cycle off, and no sulfur addition. 

b. Carbohydrates includes NFC (non-fiber carbohydrate) and NDF (neutral detergent fiber), 

i.e. lignin, hemicellulose and cellulose. 

c. Data are reported as the mean of 3 replicates with standard deviation. 

 

 Changes of microbial communities during the long-term algal cultivation 

Microbial community analysis was also conducted on the eleven samples (scenarios 2, 3, 4, 

5, 6, 7, 8, 9, 10, 11 and 12) to elucidate the interaction between algae and bacteria during 

different operational conditions. The dataset of 16S rRNA gene sequences was rarified at 25,000 
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reads. The rarefaction analysis indicates sufficient sample coverage (Figure 30a). A rank 

abundance curve with a relatively gentle slope between 10 and 160 species shows that the gene 

sequences were evenly distributed (Figure 30b). Shannon’s (H) and Pielou’s (J) indices were 

determined to assess alpha-diversity and evenness, respectively, within the microbial community 

of the case scenarios (Table 32). Microbial communities were stable within samples, as 

harvesting amount, SO2 supplement, light cycle and pH stabilization did not significantly (P > 

0.05) affect alpha-diversity or evenness (P > 0.05) (Table 5). However, light cycle and pH 

stabilization were shown to significantly (P < 0.05) affect beta-diversity, which is an indicator of 

microbial community differences between samples (Table 6). Light-cycle had a significant effect 

on biomass accumulation and may have created an opportunity for the microbial component of 

the assemblage to flourish.  In addition, different methods of pH stabilization, and consequently 

nitrogen sources, may have influenced microbial growth. Other factors (harvesting amount and 

SO2 supplement) showed no effect (P > 0.05) on beta-diversity. 

Table 5. One-way analysis of variance of harvesting amount, SO2 supplement, light cycle, and 

pH stabilization on alpha-diversity and evenness of microbial communities. 

Parameter Statistic 
Harvesting 

amount 

SO2 

supplement 

Light 

cycle 

pH 

stabilization 

H a 

Degree of freedom 4 1 1 1 

Sum squared 0.0896 0.0267 0.0082 0.0052 

P 0.34 0.254 0.542 0.627 

J b 

Degree of freedom 4 1 1 1 

Sum squared 0.00756 0.00258 0.00038 0.00188 

P 0.502 0.27 0.684 0.353 
a. H: Shannon's index which indicates the diversity of the microbial community. 

b. J: Pielou's index which indicates the evenness of the microbial community. 

 

Table 6. Permutational analysis of variance of harvesting amount, SO2 supplement, light cycle, 

and pH stabilization on beta-diversity of microbial communities. 

Parameter Statistic 
Harvesting 

amount 

SO2 

supplement 

Light 

cycle 

pH 

stabilization 

Beta-

diversity 

Degree of freedom 4 1 1 1 

Sum squared 0.16619 0.01622 0.1098 0.14096 
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Table 6 (cont’d) 

Beta-

diversity 
P 0.34 0.7811 0.04478 0.01493 

 

The average relative abundances of algae and bacteria at the domain level were 88 ± 4% and 

12 ± 4%, respectively, with no significant (P > 0.05) differences between individual case 

scenarios at either the domain or phylum level (Figure 6a and b). The result demonstrates the 

robustness of C. sorokiniana over a wide range of culturing conditions. However, several 

bacterial communities (Betaproteobacteria and Alphaproteobacteria) were significantly (P < 

0.05) affected by culture condition at the class level (Figure 6c). Light-cycle significantly 

affected several microbial classes within the Proteobacteria phylum. The Proteobacteria phylum 

is a large and physiologically diverse group and includes many phototrophic bacteria [92]. Both 

Alphaproteobacteria and Betaproteobacteria classes were affected by light-cycle conditions. 

Although, whereas Alphaproteobacteria comprise numerous phototrophic genera, 

Betaproteobacteria is composed of many chemolithotrophic genera, which may better suit 

Betaproteobacteria for survival under periods of darkness [93].  
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          (a)                                                                  (b) 

           
(c) 

Figure 6. Relative abundance of microbial communities in the algal assemblage during the long-

term pilot cultivation. (a). Relative abundance at the domain level; (b). Relative abundance at 

the phylum level; (c). Proteobacteria relative abundance at the class level. Relative abundance 

data are from a sample during each scenario. 

Additionally, Alphaproteobacteria and Betaproteobacteria were significantly influenced by 

pH stabilization and harvesting ratio, respectively. Both Alphaproteobacteria and 

Betaproteobacteria are frequently reported in proximity to microalgae, therefore the observed 

differences in their abundance may be related to microalgal productivity and concentration [31, 

94-96]. As previously discussed, Alphaproteobacteria and Betaproteobacteria are known to play 

key roles in nitrogen cycles, thus the nitrogen source under various conditions may also 

influence their abundance. However, due to limited knowledge on microalgae-bacteria 
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relationships under specific culturing conditions, only generalized statements can be inferred 

from the obtained results. In-depth analysis of microbial community such as functioning genome 

is an important research topic on large-scale microalgae cultivation and requires future work. 

Overall, microbial community of the long-term pilot-scale operation under different operational 

conditions was stable, with only some differences detected at the class level. Additional 

information on the effects of culturing conditions on key microbial communities are presented in 

Table 33. 

 

Conclusion 

The culture performance and microbial community analyses concluded that a long-term, 

stable culture on power plant flow gas was achieved using a selected freshwater microalgal 

assemblage. The assemblage was stable with average relative abundances of 88 ± 4% and 12 ± 

4% for algae and bacteria domains during a 12-month continuous operation despite different 

operational conditions. The daily harvesting amount of 60% with no light-cycle and NH4NO3 as 

the nitrogen source and pH stabilization reagent resulted in optimal cultivation performance. The 

tested operational conditions had no significant influence on algal biomass composition. A 

protein-rich biomass was produced from the long-term pilot-scale operation.  

 

This chapter represents published work: 

Cutshaw, A., et al., A long-term pilot-scale algal cultivation on power plant flue gas – 

Cultivation stability and biomass accumulation. Algal Research, 2020. 52: p. 102115.
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CHAPTER 2: PROTEIN EXTRACTION, PRECIPITATION, AND RECOVERY FROM 

CHLORELLA SOROKINIANA USING MECHANOCHEMICAL METHODS 
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Introduction 

Atmospheric carbon dioxide emissions reached 4.75 million metric tons (Gt) in the U.S. and 

36.4 Gt globally in 2018 [97]. More than 85% of all global CO2 emissions are from energy-

related processes, such as construction, transportation, and electricity. Of these energy-related 

processes, electricity generation accounts for approximately 45% of all energy-related global 

CO2 emissions. Thus, comprehensive carbon capture technologies and mitigation strategies are 

critical for reducing CO2 emissions from the electricity sector. Co-located microalgal cultivation 

is an attractive post-combustion carbon capture strategy. The biological sequestration of CO2 

using microalgae yields profitable biomass, rich in valuable metabolites, with the potential for 

low environmental and economic burdens. Chlorella sorokiniana, a freshwater species of green 

microalgae, is a good candidate for this application due to its demonstrated resilience against 

acidifying gases, such as SOx and NOx, that can be present in flue gas [98]. In addition, C. 

sorokiniana have a high protein content, recorded as being 58.6% of the dry matter [30]. 

Despite the potential of biological CO2 sequestration, there are ongoing challenges that must 

be addressed before its widespread implementation and successful adoption. Namely, the cost 

and energy demands associated with cultivation must be offset during downstream processing. 

The manufacture of products from high-value cellular components and development of co-

product systems has the potential to address these challenges. However, current microalgal 

processing technologies demand improvements that will lower the overall cost and energy 

required to obtain value-added products. Developing low-energy, low-cost processing 

technologies is a critical step towards the success of microalgal technologies.  

Following the cultivation of microalgae, biomass in suspension must be harvested from the 

reactor or pond, and dewatered. Once the biomass has been harvested and dewatered, the next 
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step in converting biomass into value-added products is typically cell disruption. Downstream 

products receive their value from intracellular components, like lipids, proteins, and pigments, 

that are transformed into goods like biofuels or nutraceuticals. Several different techniques have 

been explored to achieve different degrees of disruption, including alkali/acid treatment, 

enzymatic treatment, microwave, sonication, high pressure homogenizers, thermochemical 

conversion, pulsed electric field treatment, and milling with beads or balls [37, 42, 43]. Several 

reports indicate that despite the high energy demands of mechanical methods, like homogenizers 

and mills, they are the most efficient techniques for cell disruption and offer the best 

opportunities for scalability [43]. Notably, reports of imbalances in the energy and cost of these 

techniques are based on data from microalgal suspensions that have low biomass concentrations 

(w/w) [43]. Increasing the solids content of the microalgal suspensions and scaling up the cell 

disruption process has been shown to reduce the overall energy demand [44]. Research efforts 

should be focused on developing methods capable of handling suspensions with high biomass 

concentrations and evaluating these techniques on a process scale.  

 Following cell disruption, the component, or components, of interest can be isolated and 

recovered. There are several techniques for recovery of microalgal metabolites, including the use 

of alkali or organic solvents, ionic liquids, and aqueous two-phase extraction [15, 48]. Until 

recently, component recovery from microalgal biomass was focused on lipids and, subsequently, 

the development of biofuels. However, efforts have started to shift towards other valuable 

cellular components such as protein, pigments, and antioxidants. Protein is especially valuable 

for its use in nutraceuticals and food products, however, methods for protein extraction and 

recovery from microalgal biomass are scarce and under-developed [15]. 
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The goal of this study was to develop a low energy, mechanochemical cell disruption process 

for protein extraction from concentrated microalgal biomass suspensions. Chlorella sorokiniana 

biomass was first characterized using gel electrophoresis and macromolecular analysis. 

Dewatered biomass was used for cell disruption using ball mills and, to increase the efficiency of 

cell disruption and reduce the overall energy demand, simultaneous alkali treatment was 

performed. Additionally, this study developed a protocol for protein recovery from fractionated 

biomass using the isoelectric point of microalgal proteins. Finally, a mass balance and energy 

analysis were performed to demonstrate the scalable nature and energetic viability of these 

processing technologies.   

 

Methods and Materials 

Microalgal strain and cultivation techniques 

Chlorella sorokiniana MSU biomass was collected from an indoor photobioreactor (PBR) at 

the T.B. Simon Power Plant on Michigan State University’s campus. C. sorokiniana MSU is a 

microalgal strain native to the Great Lakes region [69]. The PBR used in this study was installed 

by PHYCO2 LLC in the T.B. Simon Power Plant and has been described previously [65]. The 

118 L PBR (100 L working volume) is comprised of a helical coil accompanied by a vertical up-

tube and LED light sources. Light is provided to the PBR with 12, 8-foot LED light bars 

(Independence LED Lighting LLC, USA), with 4 bars in the center of the coil and 8 around the 

up-tube. Each light bar contains forty-four red and twelve blue diodes, providing light at 660 nm 

and 450 nm, respectively. Combined, the light bars deliver a continuous photosynthetic photon 

flux density (PPFD) of approximately 407 mol m2/s, as measured by a LI-190R Quantum 

Sensor paired with a LI-250A light meter (LI-COR, Lincoln, Nebraska).  



45 

Flue gas, generated by natural gas fired combustion, is pumped directly from the stack into 

the PBR. A gas sparger at the bottom of the up-tube delivers the flue gas at a rate of 12 L/min 

and drives flow throughout the reactor. A continuous emissions monitoring system (CEMS), as 

regulated by the United States Environmental Protection Agency (EPA), was used to determine 

the CO2 and NOx emissions in the flue gas to be 7.2 ± 0.06% v/v and 76.9 ± 0.4 ppmv, 

respectively. Modified Tris-Acetate-Phosphate media containing the following nutrients was 

used for cultivation: 3.75 mmol/L of NH4NO3, 0.34 mmol/L of CaCl2 ∙ 2H2O, 0.4 mmol/L of 

MgSO4 ∙ 7H2O, 0.68 mmol/L of K2HPO4 (anhydrous), 0.45 mmol/L of KH2PO4 (anhydrous), and 

0.09 mmol/L FeCl3 ∙ 6H2O. All nutrient solutions and media were prepared using deionized 

water and tap water (fresh water) from the power plant was used for cultivation. No sterilization 

was performed. 

Microalgal biomass and protein characterization 

Untreated, whole C. sorokiniana biomass was characterized using standard forage analysis 

methods [72]. In addition, gel electrophoresis was performed to characterize the proteins present 

in the untreated biomass. The Mini-PROTEAN Tetra Cell System (Bio-Rad Laboratories Inc., 

Hercules, CA) was used to perform SDS-PAGE. 2x Laemmli sample buffer, 10x 

Tris/Glycine/SDS buffer and Bio-Safe Coomassie stain were also obtained from Bio-Rad 

Laboratories. A working 2x Laemmli sample buffer was obtained by adding 50 uL of 2-

mercaptoethanol per 950 uL of sample buffer. A sample of biomass, previously frozen at 4C, 

was thawed and the microalgal cells were lysed using a mortar and pestle. The sample was 

ground for approximately 5 minutes to achieve total lysis. To maintain protein integrity, liquid 

nitrogen was added incrementally during grinding and the lysed cells were immediately put in 

pre-chilled 2x Laemmli buffer. Lysed cells were then heated at 80C for 10 min and allowed to 
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cool to room temperature. Proteins were then precipitated using acetone following a protocol 

adapted from Pierce Protein Biology TR0049.0 (Thermo Fisher Scientific Inc., Waltham, MA). 

Samples were incubated overnight at -20C and a centrifuge speed of 14,000 rpm was used to 

collect the precipitated proteins. Following precipitation, residual acetone was allowed to 

evaporate off and all samples were resuspended in 2x Laemmli sample buffer. To encourage 

solubilization, samples were then heated for another 10 min at 80C. Any lingering insoluble 

material was isolated with a final centrifuge step for 5 min at 14,000 rpm. All samples were 

loaded onto 10% polyacrylamide, 10-well Mini-PROTEAN TGX Precast Protein Gels and 

run at 150V for approximately 40 min. Empty wells were loaded with 2x Laemmli sample buffer 

Mechanochemical protein extraction and recovery 

Ball milling optimization 

Microalgal biomass was harvested from the PBR previously described and dewatered using 

centrifugation. The dewatered microalgal biomass had a total solids content of 20% w/w (0.2 g 

dry biomass/g wet biomass) and was frozen at 0C immediately after harvest. For cell disruption, 

biomass was thawed and used directly without additional drying. Optimization of the ball milling 

process was completed in a lab-scale planetary ball mill with a power rating of 100W (Figure 7) 

(Tencan, China). Five milling parameters were varied to induce different cell disruption 

conditions, including the type of milling media, rotational speed, run time, ball to biomass ratio, 

and the amount of potassium hydroxide (KOH) added. Agate (SiO2) and zirconia (ZrO2 and 

Y2O3) milling media were selected to evaluate the effectiveness of the two characteristically 

different materials. Agate is relatively soft, according to Mohs scale, while zirconia is quite hard. 

Additionally, agate is, on average, much less expensive than zirconia. The agate media was a 

heterogeneous mix of four 12 mm, ten 10 mm, and ten 8 mm balls. Likewise, the zirconia media 
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was made up of two 12 mm, three 10 mm, and four 8 mm balls. Ball sizes and quantity were 

determined based on mass, therefore, the denser media (zirconia) had fewer overall balls. The 

ball to biomass ratio was varied between 2:1 and 4:1 to determine the most effective mass 

loading conditions of the planetary ball mill.  

The selected milling vessels can hold approximately 25 mL and are made of the 

corresponding milling material. The rotational speed of the ball mill was varied between 400, 

500, and 600 rpm, and run time was varied between 30 and 60 minutes. The milling speed and 

milling time, and their respective values, represent the mechanical intensity of the cell disruption. 

Finally, the KOH to algae ratio was based on mole ratio of KOH and nitrogen (N), and varied 

between 1 mol KOH/2 mol N (1:2) and 1 mol KOH/1 mol N (1:1) to determine the preferred 

chemical intensity of the cell disruption (Equation 1). A protein content of 58.6% w/w for C. 

sorokiniana biomass was previously determined using standard forage analysis methods [30]. A 

protein-to-nitrogen conversion factor of 6.25 was selected for this study [99]. Equation 1 was 

used with the molecular weight of KOH (56.11 g/mol KOH) to determine the KOH loading 

required for each ratio.   

Dry biomass

mol N
=

 1 g dry biomass

0.586 g protein
×

6.25 g protein

1 g N
×

14 g N

1 mol N
=

149 g dry biomass

1 mol N
 

Eq. 1 

The metric used to compare treatments and to determine the most effective milling 

conditions was the percent of protein extracted. This was calculated as the amount of protein in 

the fractionated biomass, or microalgal slurry, divided by the expected protein the untreated 

biomass. The expected protein was calculated using a previously determined protein content of 

58.6% of the dry matter. The protein content of the microalgal slurry was determined by 

measuring the total nitrogen and converting the nitrogen to protein. Total nitrogen was used in 

place of a protein assay due to its ease of measurement and conversion, and thus, measurements 
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were completed in duplicate. The total nitrogen concentration (mg/L) of the microalgal slurry 

was measured using nutrient test kits (HACH Company, Loveland, Colorado) following an 

appropriate dilution and in reference to EPA methods [71]. The minimum data point from each 

data pair was selected to use for statistical analysis to underestimate the protein extraction 

efficacy of the milling process. The milling conditions that yielded the highest percentage of 

protein extracted were used for all scaled up experiments. 

           

Figure 7. Left & middle: Lab scale planetary ball mill used for the optimization of milling for 

microalgal biomass. Zirconia (white) and agate (grey) milling vessels are pictured next to the 

ball mill. Right: Microalgal slurry after cell disruption in the planetary ball mill using agate 

milling media. 

Protein precipitation by pH shifting 

Following the optimization of cell disruption, the process was scaled up to a 2 L (1.5 working 

volume), 100 W stirred ball mill (Tencan, China) (Figure 8). Because of its larger capacity, the 

amount of microalgal slurry acquired from the 2 L ball mill will be sufficient to evaluate the 

efficacy of pH shifting to the isoelectric point to precipitate the extracted proteins. To remove 

insoluble cell matter and isolate a protein-rich supernatant prior to pH adjustment, the microalgal 

slurry was centrifuged at 3,000 rpm for 15 min in 50 mL centrifuge tubes (Alkali Scientific, Fort 

Lauderdale, FL) using an Allegra X-12R centrifuge (Beckman Coulter, Brea, CA). This 

centrifugation step was identified as key pre-treatment to obtain a protein-rich supernatant, thus 
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this separation process needed to be optimized. The total solids content of the microalgal slurry 

was ~20% w/w, which can lead to poor separation during centrifuging. Therefore, dilution 

factors of 0 (no dilution), 2, 5, and 10 were applied to the microalgal slurry prior to 

centrifugation to optimize the total solids content of the slurry. 

 

Figure 8. Stirred 2 L ball mill for cell disruption and protein recovery. 

Following the initial centrifugation, the microalgal slurry was separated into protein-rich 

supernatant and settled solids. The protein-rich supernatant was removed from the settled solids 

for pH adjustment to the isoelectric point of microalgal proteins which, according to previous 

examination, is approximately a pH of 4 [100, 101].  The pH of the protein-rich supernatant was 

adjusted using 1M sulfuric acid (H2SO4) in 1 mL intervals and 0.1 mL intervals close to the pI 

while being stirred consistently. Once the pI was reached, the protein-rich supernatant was 

centrifuged at 3,000 rpm for 15 min to obtain a supernatant and precipitated proteins. The 

supernatant, containing mostly K2SO4 as a result of the reaction between KOH added for cell 

disruption and H2SO4 added for pH adjustment, was referred to as the salt supernatant.  
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The applied dilution factors were evaluated based on net recovered protein isolate (dry, g), 

percent recovered protein (w/w %) and relative protein content (w/w %). The protein content 

(g/L) of all samples were determined by measuring the TN, using nutrient test kits (HACH 

Company, Loveland, Colorado) in duplicate, and the stoichiometric conversion. The net 

recovered protein was determined by calculating the dry weight of the protein in a sample using 

the protein content measurements. Percent recovered protein was calculated as the mass of 

recovered protein per mass of expected protein. The net mass of recovered protein was 

determined as previously mentioned and expected protein was estimated using the protein 

content of the untreated dry biomass and the calculated protein extraction following optimization 

of cell disruption. Relative protein content was calculated as the dry mass of recovered protein 

divided by the total dry mass of the sample. The relative protein content was used as an indicator 

of the purity of the protein isolate.  The dry mass of the samples was determined by drying in 

duplicate at 105C for 24 hours.  

Mass balance and energy analysis 

Mass and energy balances of the mechanochemical process (mechanochemical cell 

disruption and protein recovery) at a process scale were completed to identify key mass flows 

and estimate the energy intensity. The current mechanochemical cell disruption was scaled to 

process 10,000 kg of wet biomass (2,000 kg dry biomass) per batch. An envisioned cylindrical 

ball mill with a diameter and height of 1.2 m and 2.4 m, respectively, and an effective volume of 

10 m3 was assumed to carry out the mechanochemical cell disruption. The agitation power was 

calculated according to Equation 2 [102].  

𝑃 = 𝑁𝑃
′ 𝜌𝑁𝑖

3𝐷𝑖
5          Eq. 2 
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The agitation power P (W) was calculated based on the following coefficients and values: 𝑁𝑃
′  

is the power number (0.35) for rod impeller in the turbulent regime, ρ is the density of the 

biomass slurry (kg/m3), Ni is the agitator speed (rotation per second), and Di is the impeller 

diameter of 1.18 m. Centrifugation is used to remove solids from the protein-rich supernatant and 

to recover the isolated proteins (Alfa Laval WHPX 513 TGD 24-60, Dolphin Centrifuge, 

Warren, MI). The selected centrifuge has a processing capacity of 14 m3/hr with a power 

requirement of 11.24 kW. The resulting protein yield was based on a 58.6% protein content of 

the dry biomass, and the calculated protein extraction and protein recovery efficiencies. Finally, 

it was assumed that 5% of the total microalgal slurry would be lost during the cell disruption 

process due to the high solids content and resulting high viscosity. 

Statistical analysis 

 R (version 4.0.3) and R Studio were used to analyze the data collected for this study. A 

Shapiro-Wilk’s test was applied to check for normality and an F-test was applied to confirm 

equal variances. Data with normal distributions and equal variances were tested using 

parametric, analysis of variance (ANOVA) statistical tests. To determine if there were any 

statistically significant interactions between treatments during milling optimization, a factorial 

ANOVA was used followed by Tukey’s test for post hoc multiple comparison. A one-way 

ANOVA and Tukey’s test were used to determine optimal pH shifting conditions. Data with 

non-normal distributions and unequal variances were tested using the non-parametric Kruskal-

Wallis test. All tests were performed with α=0.05 and statistical significance was determined as a 

p-value  0.05. 
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Results and discussion 

 C. sorokiniana characterization 

The results from forage analysis of the original biomass used for cell disruption and protein 

recovery are shown in Table 7. The crude protein content of the untreated biomass, at 58.3  

1.84%, is expected based on a previously recorded value of 58.6% [30]. Lipid, carbohydrate, and 

ash contents are also consistent with previous analysis.  

Table 7. Forage analysis characterization of C. sorokiniana biomass. Samples were freeze dried 

prior to analysis. Values represent the average of two samples. 

Component Value (% dry matter) 

Crude Protein 58.3  1.84  

ADF 3.70  0.141 

NDF 6.70  2.55 

Lignin 2.45  0.0707 

Starch 2.60  1.98 

ESC  4.95  0.636 

TFA 9.42  0.184 

Ash 9.52  1.05 

TDN 82.5  0.707 

 

SDS-PAGE was performed to characterize the proteins present in the untreated biomass. 

Figure 9 shows the proteins present in untreated biomass loaded at 10, 20, 25, 30, 40, and 50 uL. 

The observed bands A-I, and their estimated molecular weights, are detailed in Table 8. Bands C, 

G, and I, at approximately 50, 25, and 15 kD, were observed to have the darkest staining and 

thus, the highest protein concentration. A related study of Chlorella sorokiniana identified 

proteins with similar molecular weights [103]. Using nanoLC-nanoESI MS/MS, researchers 

were able to accurately characterize proteins such as Phosphoglycerate Kinase (49.13 kD), ATP 

Synthase Subunit Beta (Chloroplast) (51.83 kD), 50S Ribosomal Protein L7/L12 (Chloroplast) 

(13.58 kD), and Fe-superoxide Dismutase (26.41 kD). Although these observed bands may be 
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used to estimate the identity of the proteins observed in bands C, G and I, further analysis with a 

method such as MS/MS is needed to confirm.  

 

Figure 9. SDS-PAGE characterization of untreated biomass under different loading volumes. 

Table 8. Observed molecular weights of the proteins present in C. sorokiniana biomass. 

ID Observed MW (kD) 

A 75 

B 55 

C 50 

D 37 

E 30 

F 29 

G 25 

H 22 

I 19 

 

Mechanochemical cell disruption 

A total of 48 experiments were conducted in duplicate, producing 96 data points that were 

analyzed with a factorial ANOVA (Table 9). These results indicate that milling speed and ball to 

biomass ratio have no significant effect on protein extraction as measured by percent of protein 

extracted. However, the milling time, milling media, and KOH to biomass ratio have a 
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significant effect on protein extraction. Due to the complexity created by having several 

independent variables, the results from the factorial ANOVA also show multiple significant 

interactions between variables. Notably, there is no significant interaction between all five 

parameters, indicating that there is a synergistic effect resulting in similar protein extraction 

efficiencies. A post-hoc comparison with Tukey’s test detailed nearly 1,400 significant 

interactions between factors and the levels within those factors. A summary of the results from 

the factorial ANOVA can be seen in Table 9.  

Table 9. Results of the factorial ANOVA for optimization of mechanochemical cell disruption. 

More than one variable indicates the presence of a significant interaction between variables. 

Variable df 
Sum 

Squared 

Mean 

Squared 
Statistic 

P 

Value 

Milling media 1 3355 3355 162.7 0.0000 

Ball to biomass ratio 1 4.402 4.402 0.2135 0.6461 

Milling speed 2 39.36 19.68 0.9546 0.3923 

Milling time 1 422.4 422.4 20.49 0.0000 

KOH to biomass ratio 1 14545 14545 705.5 0.0000 

Milling media x Ball to biomass ratio 1 20.93 20.93 1.015 0.3189 

Milling media x Milling speed 2 170.9 85.47 4.146 0.0220 

Ball to biomass ratio x Milling speed 2 232.0 116.0 5.627 0.0064 

Milling media x Milling time 1 2.991 2.991 0.1451 0.7050 

Ball to biomass ratio x Milling time 1 0.1044 0.1044 0.0051 0.9436 

Milling speed x Milling time 2 34.28 17.14 0.8312 0.4418 

Milling media x KOH to biomass ratio 1 578.1 578.1 28.04 0.0000 

Ball to biomass ratio x KOH to biomass 

ratio 
1 121.9 121.9 5.912 0.0189 

Milling speed x KOH to biomass ratio 2 66.51 33.26 1.613 0.2101 

Milling time x KOH to biomass ratio 1 212.5 212.5 10.31 0.0024 

Milling media x Ball to biomass ratio x 

Milling speed 
2 18.88 9.440 0.4578 0.6354 

Milling media x Ball to biomass ratio x 

Milling time 
1 34.34 34.34 1.666 0.2032 

Milling media x Milling speed x Milling 

time 
2 44.38 22.19 1.076 0.3491 

Ball to biomass ratio x Milling speed x 

Milling time 
2 309.4 154.7 7.504 0.0015 
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Table 9 (cont’d) 

Milling media x Ball to biomass ratio x 

KOH to biomass ratio 
1 20.77 20.77 1.008 0.3206 

Milling media x Milling speed x KOH to 

biomass ratio 
2 217.8 108.9 5.281 0.0085 

Ball to biomass ratio x Milling speed x KOH 

to biomass ratio 
2 193.9 96.95 4.702 0.0138 

Milling media x Milling time x KOH to 

biomass ratio 
1 8.764 8.764 0.4251 0.5176 

Ball to biomass ratio x Milling time x KOH 

to biomass ratio 
1 114.5 114.5 5.552 0.0227 

Milling speed x Milling time x KOH to 

biomass ratio 
2 38.35 19.17 0.9300 0.4017 

Milling media x Ball to biomass ratio x 

Milling speed x Milling time 
2 16.63 8.313 0.4032 0.6705 

Milling media x Ball to biomass ratio x 

Milling speed x KOH to biomass ratio 
2 4.721 2.361 0.1145 0.8921 

Milling media x Ball to biomass ratio x 

Milling time x KOH to biomass ratio 
1 7.546 7.546 0.3660 0.5481 

Milling media x Milling speed x Milling 

time x KOH to biomass ratio 
2 32.38 16.19 0.7853 0.4619 

Ball to biomass ratio x Milling speed x 

Milling time x KOH to biomass ratio 
2 283.4 141.7 6.873 0.0024 

Milling media x Ball to biomass ratio x 

Milling speed x Milling time x KOH to 

biomass ratio 

2 6.848 3.424 0.1661 0.8475 

 

There are only three significant individual factors: milling media, milling time and KOH 

to biomass ratio. The optimal milling conditions for these factors are 60 minutes, zirconia media 

and a 1:1 ratio. It’s clear that the most significant parameter is the KOH to biomass ratio (Figure 

10a), with the 1:1 ratio resulting in better protein extraction at 54.0  11.1% compared to 31.0  

4.63% with the 1:2 ratio. This is followed by milling media (Figure 10b), where zirconia 

performed better than agate, extracting 48.0  15.1% of protein compared to 36.9  11.2%. 

Finally, Figure 10c shows mean protein extraction grouped by milling times of 30 and 60 

minutes. The data seem to indicate that there is no significant difference between 30 and 60 

minutes, with protein extraction of 40.3  13.2% and 44.4  15.2%, respectively. However, the 
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results from the factorial ANOVA indicate a significant difference between the two milling 

times. This significance is likely due to the statistical test’s ability to detect the dependent nature 

of seemingly independent variables, such as milling time. The complexity of the system, its 

variables, and their interactions is further confirmed with the results from the Tukey’s test.  

 

             

Figure 10. Average protein extraction based on KOH to biomass ratio (a), milling media (b), 

milling time (c), KOH to biomass ratio and milling time for zirconia media (d), and KOH to 

biomass ratio and milling time for agate media. Error bars are equal to the standard deviation. 

Figure 10d and e show the means of these factors when grouped together and separated by 

milling media. The data clearly show that there is a significant interaction between milling media 

and KOH to biomass ratio, and KOH to biomass ratio and milling time. The 1:1 KOH to biomass 

ratio results in significantly higher protein extraction across milling medias and milling times. 

Looking at the means with a 1:1 KOH to biomass ratio and zirconia for milling media, 30 

minutes resulted in 59.1  7.75% and 60 minutes resulted in 65.1  4.83% protein extracted. 
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Comparatively, agate media with a 1:1 KOH to biomass ratio resulted in 42.8  8.01% and 49.5 

 7.37% protein extracted from 30- and 60-minute milling times, respectively.  

Due to the complexity of the results from the factorial ANOVA and corresponding Tukey’s 

test, decisions regarding milling conditions for scale up were made based on both statistical 

significance and practical considerations. A KOH to biomass ratio of 1:1 proved to be 

significantly more effective for protein extraction on several levels, and thus was used for scaled 

up experiments. Although there was no significant difference between the ball to biomass ratios, 

a 4:1 ratio is preferred for scaling purposes to address clogging and cleaning issues. Additionally, 

a rotational speed of 400 rpm will require less energy and is thus the optimal speed. Due to the 

significance resulting from interactions between milling time and other factors, a 60-minute 

milling time was selected. The results from the factorial ANOVA revealed that zirconia was 

significantly better than agate in terms of protein extraction efficiency using the planetary ball 

mill. However, the density of zirconia (5.68 g/cm3) is much higher than agate (2.62 g/cm3) and it 

has been observed that microalgal biomass and zirconia media do not mix well in a stirred tank 

ball mill. This can cause high energy demand and may impact protein extraction efficiency as 

well. This reason, in addition to the cost difference between the two materials, resulted in agate 

being the selected milling media for scale up. Under these selected milling the conditions, the 

mean protein extraction was 52.7  6.45%. 

 Protein precipitation 

Following cell disruption, a total of 18 samples were produced using the precipitation 

protocol. The samples were then tested for total nitrogen to determine the protein content. A total 

of 18 data points were collected for statistical analysis using the three metrics previously 

described: net recovered protein, percent protein recovered, and relative protein content. Figure 
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11 shows the mean of each metric for 0 (no dilution), 2, 5, and 10 times diluted microalgal 

slurry.  

 

Figure 11. Mean protein recovery (a), relative protein content (b), and net recovered protein (c) 

and are representative of 5, 4, 6, and 3 replicates for 0, 2, 5, and 10 times dilution factors, 

respectively. Error bars are equal to the standard deviation. 

Percent of protein recovered, shown in Figure 11a, was calculated using the net mass of 

protein recovered and the starting mass of protein in the microalgal slurry after 

mechanochemical cell disruption. The starting mass of protein was determined using the dry 

mass of the microalgal slurry used for precipitation, a mean protein extraction of 52.7%, and a 

protein content of 58.6% of the dry matter. The sample that received no dilution performed 

significantly better than those samples that were diluted 2, 5, and 10 times, with a mean protein 

recovery of 98.7  9.40%. The lower recovery for the 2, 5, and 10 times diluted samples is likely 

due to the lower starting mass and the larger effect that any mass losses had on recovery. Figure 

11b shows the relative protein content, or the purity, of the samples. The 10 times diluted 

samples had a significantly higher relative protein content than all other dilution factors, with a 

mean of 59.3  6.13%. The samples that received no dilution had a mean relative protein content 

of 41.4  4.97%, which was significantly higher than the samples diluted 5 times but not 

significantly higher than those that were only diluted 2 times.  
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Figure 11c shows the net dry mass of recovered protein, which was significantly higher for 

the samples that received no dilution when compared to all other dilution factors, with means 

equal to 3.07  0.292 g, 0.910  0.077 g, 0.224  0.034 g, and 0.179  0.013 g for the 0, 2, 5, and 

10 times diluted samples, respectively. This result is expected due to the fact that the starting 

biomass for the 2 times diluted sample is half that of the sample that was not diluted, and 

likewise for the 5 and 10 times diluted samples. The descending order of net recovered protein 

correlating with the increasing dilution factors indicates that, though not exact, the precipitation 

method can recover protein that is proportional to the starting biomass. The results detailed in 

Figure 11 indicate that while the precipitation method is successful at recovering nearly all the 

protein extracting during the milling process, its unable to successfully remove all non-protein 

solids. 

Mass balance and energy analysis 

The mass and energy balance analyses were based on processing 2,000 kg dry microalgal 

biomass for protein production (Table 10). Parameters used to calculate the power required for 

cell disruption were based on the optimal milling conditions selected in this study. The ball mill 

was assumed to have a zirconia vessel and rod impeller, however, agate balls were selected as 

the milling media. Using a 1:4 mass ratio of wet biomass to agate, the density of the microalgal 

slurry was estimated to be 1,857 kg/m3. The agitator speed was set as 6.67 rps (400 rpm) and 

milling time was set to 60 min.  The extraction efficiency of cell disruption was assumed to be 

52.7%, a dilution factor of 0, and corresponding protein recovery of 97.8% were used for this 

analysis.  

The consumption of 5,959 kg of 1M H2SO4 is equivalent to the consumption of 540 kg of 

99.9% H2SO4 and 5,419 kg of water. The mechanochemical cell disruption and protein recovery 
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process generated 618 kg dry protein isolate from 2,000 kg dry algal biomass per batch. 

Meanwhile, the energy demands for the ball mill and centrifuge were 0.79 and 0.036 MJ/kg dry 

algal biomass. The energy required for centrifugation reflects the two stages in the protein 

recovery method and a processing capacity of 14 m3/hr. Yap et al. found that Nannochloropsis 

sp. suspensions with 25% w/w solids can be processed by high-pressure homogenization with an 

energy consumption of about 1.00 MJ/kg dry [44]. Safi et al. achieved 49% protein yield from 

10% w/w solids suspensions of Nannochloropsis sp. with an energy input of 1.58 MJ/kg dry 

[104]. The total energy consumed by the mechanochemical process was 0.83 MJ/kg dry biomass 

at the envisioned commercial scale in this study. With a solids content of approximately 20% 

w/w and a 52.7% protein extraction efficiency, this study was able to achieve protein recovery 

from a high total solids biomass with a much lower energy consumption than other reported 

mechanical disruption methods. 

Table 10. Key mass and energy flows from the mass and energy balance analyses.  

Parameter Value 

Microalgal biomass (wet, kg) 10,000 

Microalgal biomass (dry, kg) 2,000 

KOH (kg) 760 

1M H2SO4 (kg) 5,959 

Protein (kg) 618 

Ball mill (MJ/kg dry biomass) 0.79 

Centrifuge (MJ/kg dry biomass) 0.036 

Total energy demand (MJ/kg dry algal biomass) 0.83 

 

Conclusion  

The goal of this study was to evaluate the developed protein extraction, precipitation, and 

recovery methods. Optimization of the ball milling process resulted in a set of milling conditions 

that achieved protein extraction of 52.7  6.45%. These conditions were successfully scaled up 

from a bench-top planetary mill to a standing stirred mill, which represents a 100-fold increase in 
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scale. The acid precipitation method was optimized to determine that 98.7% recovery of proteins 

from the microalgal slurry can be achieved at a solids content of 20% w/w. However, the 

measured protein content of the protein isolate remained relatively low, at 41.4% w/w for the 

same solids concentration. These results indicate that the precipitation method is successful at 

recovering the extracted proteins in the algal slurry, however, the removal of non-protein solids 

during centrifugation and pH adjustment is not complete. Future work should address these 

challenges by modifying the method for removal of solids. The energy analysis elucidated that 

the energy demand of the protein extraction and recovery operation, at 0.83 MJ/kg dry algal 

biomass, is much lower than previous studies using high-pressure homogenization and 

membrane filtration.  Collectively, this study suggests that mechanochemical protein extraction 

and recovery is an effective, low-energy processing method. The goal of future work should be 

to improve the richness and integrity of the protein isolate, and to further evaluate the viability of 

this method on a process scale. 
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CHAPTER 3: EVALUATION OF BIOBASED POLYOLS FROM MICROALGAL 

BIOMASS USING TECHNO-ECONOMIC AND LIFE CYCLE FRAMEWORKS 
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Introduction 

Global production of plastics totaled 367 million metric tons (Mt) in 2020 [105]. This 

includes the production of thermoplastics, including polyethylene (PE) and polypropylene (PP), 

and thermosets like polyurethane (PU) and epoxy resin. While thermoplastics like PP and PE 

make up a majority of the global plastics market, nearly 10% of all plastics are PU polymers 

[106]. Polyurethanes are chemically defined as a polymer whose monomer units are joined by 

urethane linkages [49]. All polyurethanes are created using the same chemical reaction between 

an organic isocyanate and a polyol. A polyol is a liquid substance that will react with isocyanate 

and is generally classified as hydroxyl-terminated or amino-terminated [49]. Although global 

production of plastics saw a slight decrease in recent years, the polyurethane market is expected 

to grow significantly in coming years due to its continuing use in adhesives and foams [22, 51, 

105]. This growth is expected to be accompanied by a shift towards using renewable sources of 

nitrogen and carbon, namely to alleviate the reliance on petrochemicals for polyol production 

[50].  

There are several feedstocks currently being researched for use in biobased polyols, ranging 

from natural sugars, like sucrose and glucose, to lignin [50]. One of the most common starting 

materials is unsaturated oils, like those found in soybean and castor plants, that have 

characteristic double bonds that can be chemically transformed into hydroxyl groups. While 

these polyols are well documented and even commercially utilized, competition with vegetable 

oils used in the food industry and the use of arable land for non-food products represent 

challenges for long-term sustainability [52]. More recently, microalgae oil has been explored as 

an alternative that does not currently compete as a food source [19-21]. Although these oil 

feedstocks have established themselves as viable alternatives, other feedstocks still need to be 
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explored. Amino acids and proteins represent an alternate polyol synthesis pathway [50]. Studies 

using proteins extracted from microalgae biomass and soymeal, after oil extraction, have 

demonstrated the feasibility of these protein polyols [22, 107]. Biomass feedstocks, that require 

little to no additional processing after harvest, have the potential to be more energy efficient and 

thus, have better environmental and economic outcomes. However, no work has been done to 

evaluate microalgal biomass as a polyol feedstock. 

The goal of this work is to evaluate the use of whole microalgal biomass and extracted 

protein for polyol synthesis. A previously established one-pot method was adapted to microalgae 

feedstocks and synthesized microalgal polyols were characterized by amine value, hydroxyl 

value, viscosity, and specific gravity [107]. Further characterization was completed using ATR-

FTIR and TGA methodologies, and results were compared to similar biomass polyols. While the 

physical and chemical properties of the synthesized polyols may demonstrate their feasibility, the 

environmental and economic benefits, or tradeoffs, are critical to evaluating any sustainable 

alternative. Thus, the most viable microalgal polyols, as determined through characterization, 

were selected to perform gate-to-gate life cycle and techno-economic assessments. A 

comparative life cycle assessment (LCA) was used to determine the environmental impacts of 

these microalgal polyols in contrast to conventional polyols. A techno-economic assessment 

(TEA) was conducted to determine the minimum polyol selling price (MPSP) using a discounted 

cash flow rate of return (DCFROR). 
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Methods and Materials 

Feedstocks and Chemicals 

The green microalgae Chlorella sorokiniana MSU was cultivated in a 100 L indoor 

photobioreactor (PBR) under previously studied conditions [30]. The biomass used in this study 

was harvested from the PBR using 50% (50 L) or 60% (60 L) daily harvesting and the resulting 

protein, lipid and carbohydrate contents were 58.60 ± 2.41%, 9.70 ± 1.68%, and 19.5 ± 2.44%, 

respectively. The microalgal polyols in this study were synthesized using whole, untreated 

biomass or a protein isolate. The extraction and isolation method to prepare the protein isolate 

has been previously described in Chapter 3. Both biomass and protein feedstocks averaged 20% 

w/w solids content. Monoethanolamine (98%) and propylene carbonate (anhydrous, 99.7%) 

were obtained from Sigma Aldrich (MilliporeSigma, Burlington, MA).  

Polyol synthesis 

 A one-pot, two-step polyol synthesis method, previously tested on de-oiled soymeal, was 

adapted for this study [107]. The previously described method consists of a transamidation 

reaction using monoethanolamine (MEA) (Figure 12a), followed by a ring-opening reaction with 

propylene carbonate (PC) for polyol synthesis (Figure 12b). Both MEA and PC exhibit desirable 

qualities, such as existing as liquids at room temperature and having high solubility in water.  

The microalgae-MEA mixture was combined in a round bottom flask, purged with nitrogen gas, 

and reacted at 100C for 2 hours, forming amine derivatives (AD) (Step 1). When applied to 

soymeal, a 1:3 feedstock to MEA mass ratio produced the best performing polyols [107]. Thus, 

based on the similarity between soymeal and microalgae biomass, a 1:3 MEA ratio was also used 

in this study. The AD were then reacted in the same round bottom flask with PC at 10% molar 

excess for 2 hours at 70C (Step 2).  
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Figure 12. Chemical synthesis of amine derivatives (a) and microalgal polyols (b). 

 Microalgae and soymeal have similar biomass compositions, making microalgae a good 

candidate for adapting this synthesis method (Figure 13). However, compared to soymeal with a 

water content of ~20% w/w, the microalgae feedstocks in this study have a much higher water 

content at ~80% w/w. Thus, to provide a basis for comparison, biomass and protein feedstocks 

were dried to reach a water content of 20% w/w. The feedstocks were also used in their “wet” 

form (80% w/w water) to determine the difference in characteristics when no additional energy 

for drying is used. Biomass and protein feedstocks will be referred to as such, while feedstocks 

with a 20% water content will be referred to as “dry” and 80% as “wet”.  
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Figure 13. Soymeal (de-oiled) and microalgal biomass cell composition. Numbers represent the 

percent of dry weight. 

Polyol characterization 

The resulting AD, from Step 1 of synthesis, and polyols, from Step 2 of synthesis, were 

characterized for amine value using ASTM D2073-92. Polyols were also characterized for 

hydroxyl value using ASTM E1899-16. In addition, viscosity was measured using a HAAKE 

Viscotester 550 and the MV/MV DIN cup/sensor system (DIN 53019) (Thermo Fisher 

Scientific, Waltham, MA). Tests were performed in duplicate and at room temperature (22C). 

Thermogravimetric analysis (TGA) was performed using a TGA/DSC 1 STARe System 

(Mettler Toledo, Columbus, OH). To determine the degradation temperatures of the original 

feedstock, amine derivatives, and polyol, the weight loss (%) was recorded as the temperature of 

the samples was increased from 37C to 550C using a heating rate of 10C/min. Finally, 

attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR) was 

performed on the original feedstocks, amine derivatives, and polyols using a Spectrum One FTIR 

with a single reflection ATR accessory (PerkinElmer, Waltham, MA). Spectra for the original 

biomass, amine derivatives, and polyol were each collected from 4 accumulated scans in a range 
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of 4000 cm-1 to 550 cm-1. The transmittance (%) per wave number (cm-1) was used to identify 

characteristic bonds in each sample. 

Life cycle assessment 

Scope 

The goal of this LCA was to compare the environmental impacts of microalgal polyols to 

petrochemical, or polyether, polyols. To evaluate the life cycle impacts of the synthesized 

microalgal polyols, a wet and dry version of the same feedstock were selected based on 

characteristics. A functional unit of 1 kg of polyol was selected and allocation was avoided 

during the inventory phase. The process model for microalgal polyol production is shown in 

Figure 14 and the system boundary for this analysis is represented by the dark grey box. The unit 

processes within this system boundary are identical for the two polyols, however the dry biomass 

feedstock requires the use of a dryer to reach a lower water content. This results in additional 

material and energy flows for the harvesting and dewatering step, specifically. Outside of this 

unit process, the material and energy flows through the wet and dry systems differ only in values 

due to the requirements needed to produce 1 kg of polyol from wet versus dry biomass.  In 

particular, the different amine values of each polyol indicate varying amounts of PC are needed 

to achieve a 10% molar excess, thus changing the mass requirements for polyol synthesis.  
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Figure 14. System flow diagram of the microalgal polyol production system. *: The dry feedstock 

requires additional energy and equipment to reach the desired water content. 

Inventory 

The inventories for the unit processes in Figure 14 (represented in blue) were constructed 

using empirical data that underwent mass and energy balances. A process scale cultivation 

system was modelled for the purposes of this study using productivity and water recycle data 

from previous reports on C. sorokiniana cultivation using flue gas [30, 108]. A summary of the 

PBR operation and assumptions is represented in Table 11. The envisioned 1000 m3 PBR uses a 

horizontal tubular PBR set up that has been previously characterized [14, 109, 110]. The details 

of this configuration have been summarized such that the PBR area per volume ratio was 

calculated to be 4.13 m2/m3, meaning the 1000 m3 PBR would occupy 4,130 m2 or 

approximately 1 acre of land. The PBR was modelled using a harvest rate of 50% daily (500 

m3/day) and a water recycle system that has been previously studied [108]. Due to the scope of 

this analysis, the impacts of a system without water and nutrient recycle were not evaluated.  
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Table 11. Assumptions made for microalgal cultivation using a horizontal tubular PBR 

configuration. 

Assumption Value Unit 

PBR volume 1,000 m3 

PBR area 4,130 m2 

Biomass productivity 0.17 g/L/day 

Density (at harvest) 0.50 g/L 

Harvest rate 50 % 

CO2 consumption 0.30 kg/kg wet biomass 

 

Nitrogen and phosphorous addition, in the form of NH4NO3 and K2HPO4, were modeled 

using data from the recirculation study. Micronutrients were assumed to have a negligible effect 

on life cycle and techno-economic outcomes and were therefore not included in this study. The 

co-located nature of the production facility means CO2 is delivered to the PBR in the form of 

flue gas. The natural gas combustion required to produce the flue gas that’s used for cultivation 

was considered outside the system boundary. The process scale reactor for polyol synthesis was 

assumed to be the same configuration used for a similar synthesis method at process scale [12].  

Nitrogen and phosphorous emissions from the system were calculated using a mass balance 

and previously collected empirical data [108]. MEA and PC air emissions were calculated as 

0.2% of the total input, in addition to a 5% operational loss. Any waterborne emissions were 

assumed to be treated by the power plant’s water treatment system prior to exiting the facility. 

The co-located nature of the system under study negated the use of transportation between 

cultivation, harvesting, and polyol synthesis. Commercial polyol production relies solely on 

fossil-derived materials, and while the production of microalgal polyols uses biomass, a 

renewable source of carbon, this method of synthesis still requires the use of petrochemicals. To 

determine the impact of this reliance, and the replacement of fossil carbon, the renewable carbon 

content was determined from the results of the mass balance.  
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A complete life cycle inventory for polyether polyol, including a detailed description of the 

data and its sources, was completed by a third party and published in the U.S. Life Cycle 

Inventory (USLCI) Database provided by the National Renewable Energy Laboratory (NREL) 

[111, 112]. In addition to the full cradle-to-gate life cycle inventory, this report also provided 

data for a gate-to-gate life cycle inventory. To directly compare the microalgal polyols to the 

polyether polyol, the gate-to-gate data was used for this LCA. Transport for the delivery of raw 

materials, transport of the polyol product from the facility, and end use of the polyols was 

considered outside the scope of this assessment.   

Data quality 

Data quality goals and indicators were set using guidelines published by the U.S. 

Environmental Protection Agency [113]. These guidelines suggest goals for temporal and 

geographical scale, as well as technological representativeness and data completeness. Because 

this LCA uses both empirical and secondary data, the temporal and geographical data quality 

goals should reflect this. The temporal data quality goal was set at 5 years to include more 

sources for secondary data collection, and the United States was selected as the geographical 

scale for this study. The EPA has subdivided technological representativeness into four 

categories: process design, operating conditions, material quality, and process scale. This study 

aims to fulfill these goals by providing as much transparency as possible regarding modelling, 

assumptions, and data sourcing. Finally, the data completeness goal aims to include all flows 

entering and exiting the system boundary. However, this study recognizes there are limitations 

present when evaluating an emerging technology. While the goal is to identify every flow into 

and out of the system, we recognize that future investigation will be required to elucidate all 
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system flows. The updated data quality indicators and scoring matrix provided by the EPA will 

be used to evaluate the data quality of the two microalgal polyol inventories [113]. 

Impact assessment 

The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts 

(TRACI) (v2.1, 2014) was selected for impact assessment. This impact assessment method was 

chosen over ReCiPe, a popular method in the field of LCA, because of the availability of 

characterization factors for chemicals like MEA and PC. The characterization factors were used 

to quantify the impacts in the following categories: ecotoxicity (urban air, CTUeco), freshwater 

eutrophication (kg N eq.), global warming (kg CO2 eq.), and smog formation (kg O3 eq.). 

Greenhouse gas emissions from electricity use were characterized using the Greenhouse Gas 

Equivalencies Calculator provided by the U.S. Environmental Protection Agency (EPA) [114].  

The energy demand (kWh) and water consumption (m3) of each system were also evaluated for 

each polyol. 

Techno-economic assessment 

The cost per unit volume for the horizontal tubular PBR, calculated using the area per 

volume ratio of 4.13 m2/m3, was $44.65/m3 in 2021 dollars [14, 109, 110]. Based on the small 

cultivation area of approximately 1 acre, it was assumed that the land requirements would be met 

by the existing power plant, thus land purchase costs were not considered in this analysis. The 

energy requirements of this PBR configuration have also been previously summarized and were 

adapted for this study [14]. The purchase price of the centrifuge and dryer models were obtained 

from a previous report and linearly scaled [65]. Ten cone bottom plastic tanks were selected for 

short term storage of the algal suspension and recycle water [115]. The equipment costs 

associated with polyol synthesis were obtained from a recent report that evaluated the cost of a 
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similar reactor system [12]. The processing capacity of this reactor unit is approximately 1,200 

kg/hr, thus only one unit was required, and the associated energy demand was calculated to be 

0.54 MWh/metric ton (t) [12]. The capital cost of all required equipment was reported in 2018 

dollars and was indexed to 2021 dollars for this study using the Plant Cost Index from Chemical 

Engineering [116]. Based on reports from NREL and Pacific Northwest National Laboratory 

(PNNL), an installation factor of 1.2 was applied to the PBR and an installation factor of 3 was 

used for the plastic storage tanks [14, 117, 118]. The installation factors for the centrifuge, dryer, 

and polyol synthesis reactor represent average values from a range of installation factors, at 1.5, 

1.7 and 1.7, respectively [119].  

The microalgal polyol production system is assumed to be co-located with a natural gas fired 

power plant and a portion of the flue gas emissions are directed to the PBR as a source of CO2. 

Using previously determined estimates, the cost of CO2 delivery was assumed to be $45/t [14]. 

The cost of the infrastructure required for CO2 delivery, including piping and storage, is included 

in the unit cost of the PBR. Nitrogen and phosphorous were assumed to be purchased as bulk 

fertilizer and prices were obtained from the USDA Economic Research Service Fertilizer Use 

and Price dataset [120]. This dataset only provided purchase price up to the year 2014, thus the 

BLS Data Finder provided by the U.S. Bureau of Labor Statistics was used to identify price 

indexes for the two chemicals.  

The most up to date prices for monoethanolamine were obtained from ICIS Chemical 

Business for the region of Europe and it was assumed that U.S. prices would be comparable 

[121]. A price range of 1,240-1,270 EUR/t was obtained for the year 2020 and, in order to 

overestimate the cost of the system, 1,270 EUR/t was selected as the purchase price of MEA. 

The price was adjusted to 2021 dollars using the average exchange rate in 2021 of 0.8458 
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EUR/USD. Prices for PC varied significantly based on quantity and a representative value was 

difficult to obtain. An average price of $1.00/kg was obtained from a bulk chemical distributor 

[122]. Based on the scale of the system, it was assumed that a lead chemical engineer and four 

technicians would manage the operation. Salary data was collected from the U.S. Bureau of 

Labor Statistics Occupational Outlook Handbook [123]. 

Table 12. Assumptions made based on nth plant economics for a DFROR analysis. 

Assumptions 

Working Capital (% of FCI) 5% 

Equity 40% 

Loan Interest 8% 

Loan Term (Years) 10 

Salvage Value  $0 

Depreciation Period (Years) 7 

Construction Period (Years) 1 

Start-up Time (Years) 0.5 

Revenue (% of Normal) 50% 

Variable Costs (% of Normal) 75% 

Fixed Cost (% of Normal) 100% 

Discount Rate (Internal Rate of Return) 10% 

Income Tax Rate 35% 

Cost Year for Analysis 2021 

 

A discounted cash flow rate of return (DCFROR) analysis was selected to determine the 

minimum polyol selling price (MPSP). The assumptions for this analysis were based on nth plant 

economics (Table 12) [36]. In addition to the assumptions listed in Table 12, it was assumed that 

a year of operation was 329 days, or 90% of a full year. The calculated minimum selling price 

will be compared to the average price of polyether polyols, which was $1,931/t ($1.93/kg) in 

2018 dollars or $2.19/kg in 2021 dollars [124].  
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Sensitivity analysis 

A sensitivity analysis of each microalgal system, for both LCA and TEA, was completed to 

determine the most sensitive material and energy flows. Each flow was varied by  30%, while 

all other flows were held constant, and the subsequent change in impact was recorded.  

 

Results and discussion 

Polyol characterization 

The characteristics of amine derivatives and polyols are reported in Table 13. The dry 

feedstocks were found to have higher amine values than the wet feedstocks, likely due to the 

total biomass content of the starting biomass, with the dry feedstocks containing more biomass 

(w/w) than the wet feedstocks. Amine values were measured for the final polyol product to 

confirm 100% of the amine derivatives were reacted. This is verified by the negligible amine 

values for all microalgal polyols. The hydroxyl values of the microalgal polyols were slightly 

elevated compared to the reference feedstock, soymeal. This may be due to the higher protein 

content of microalgae and subsequently, more available hydroxyl groups. Higher hydroxyl 

values, greater than 360 mg KOH/g polyol, represent polyols that will form rigid PU foams [50]. 

Thus, all the evaluated microalgal polyols would form rigid PU foams. The dry feedstocks 

resulted in significantly higher viscosities than the wet feedstocks. The higher water content of 

80%, compared to 20% in the dry feedstocks, caused the final polyol products to have viscosities 

much closer to that of water at 1 centipoise (cP). Viscosity of a polyol is a key characteristic 

because of the mixing that is required to achieve a homogenous blend of polyol and additives 

before reacting with an isocyanate. The lower viscosity values of the wet feedstocks would allow 
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for better mixing and homogeneity would be more easily achievable. Finally, the specific gravity 

of the microalgal polyols is comparable to the soymeal polyol and water at a value of 1. 

Table 13. Amine derivative and polyol characterization of dry biomass (DB), dry protein (DP), 

wet biomass (WB), wet protein (WP). Soymeal polyol (SP) and Jeffol SG-360 characteristics 

were obtained from literature reports [107, 125]. 

Polyol 

Amine Value-

AD 

(mg KOH/g) 

Amine Value-

Polyol 

(mg KOH/g) 

Hydroxyl 

Value 

(mg KOH/g) 

Viscosity 

(cP) 

Specific 

Gravity 

DB 1099 - 628 826 1.23 

DP 1077 - 558 1404 1.05 

WB 481 - 601 275 1.26 

WP 573 - 620 314 1.19 

SP 772 6 568 37000 1.18 

Jeffol SG-

360 
NA NA 360 3500 NA 

 

The results of TGA analysis of microalgal biomass, amine derivatives (WB) and microalgal 

polyol (WB) are shown in Figure 15 as the percent of original weight as a function of 

temperature. All phases are marked on the figure with grey dotted lines for clarity. The amine 

derivatives appear to have three distinct degradation phases at 37-75C, 75-130C and 130-

550C. These three stages are likely due to loss of water and volatile MEA, followed by low and 

high molecular weight amines, respectively [107]. The microalgal polyol sample appeared to 

have two distinct phases, from 37-200C and 200-260C. These two phases may represent the 

existence of two different polymers that can form as a result of this unique synthesis pathway. At 

approximately 260C the untreated biomass sample slows a slight change in degradation, likely 

reflecting the torrefaction of cellulose and hemicellulose present in the microalgal cell wall. 

Future analysis should include the explicit determination of the identities of off gases using mass 

spectrometry. 
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Figure 15. Weight (w/w) from microalgal samples at a heating rate of 10C/min to reach 550C. 

Microalgae have documented, characteristic wavenumbers for bonds within compounds like 

proteins (1650 cm-1), carbohydrates (1010 cm-1), and lipids (1745 cm-1) [126]. The spectrum 

collected from the sample of untreated biomass shows the presence of proteins and 

carbohydrates (Figure 16). The lack of a bond corresponding to the presence of lipids is likely 

due to the low lipid content of the microalgae strain relative to the protein and carbohydrate 

content. The ATR-FTIR spectra of all three samples show a characteristic OH stretch at 

approximately 3300 cm-1 [127]. In the AD spectrum, the OH stretch is followed closely by the 

NH stretch at 3200 cm-1 that is present in amines, like MEA. All three spectra show a -C-H 

stretch from ~2900 to 3000 cm-1. The urethane linkages, characterized by a C=O bond, can be 

seen in the microalgal polyol spectrum at approximately 1750 cm-1. A summary of all identified 

bonds and wavenumbers can be found in Table 14. The complexity of the spectra can be 

attributed to the biological nature of the samples. Both TGA and ATR-FTIR data show close 

similarity to the reference feedstock of soymeal [107]. Based on the summary of all microalgal 
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polyol characteristics and taking into consideration the energy and cost implications of protein 

extraction (detailed in Chapter 3), the wet and dry biomass feedstocks were selected for life cycle 

and techno-economic assessment. 

Table 14. Bonds and corresponding wavenumbers identified in the ATR-FTIR spectra of 

microalgal biomass, amine derivatives (WB), and microalgal polyol (WB). 

Bond/Compound Wavenumber (cm-1) 

OH stretch 3300 

NH stretch 3200 

-C-H stretch 2900-3000 

C=O bond 1750 

Proteins 1650 

Carbohydrates 1010 

 

 

Figure 16. ATR-FTIR spectra of microalgal biomass, amine derivatives (WB), and microalgal 

polyol (WB) from four accumulated scans. 

Life cycle assessment 

Data quality  

Data quality was assessed for each unit process in the microalgal polyol production systems 

and Table 15 shows the scores for each data quality category as defined by the EPA’s pedigree 
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matrix [113]. Scores of 1 and 2 represent high quality data and make up most of the scores for 

the microalgal systems. However, to address those less satisfactory scores of 3 and 4, rationale 

will be provided. A flow reliability score of 3 was given to the polyol synthesis unit process 

because the data used in the mass and energy balances, and subsequently in the inventories, were 

based primarily on calculations. This was due to the scaling required to use the empirical data 

collected in this study at a process scale. A technological score of 3 for cultivation and polyol 

synthesis indicates that two of the four sub-categories previously mentioned were equivalent. 

The adopted PBR configuration maintained its original process design and material quality, 

while the process scale and operating conditions were modified for this assessment. Compared to 

the original configuration, the scale was decreased, and the operating conditions were varied to 

match the selected algal strain. The polyol reactor unit selected for analysis shared the same 

process design and process scale as the unit modelled for this LCA, however, the operating 

conditions and material quality differ. The operating conditions of the model reactor unit were 

selected for production of microalgal oil instead of microalgal biomass, thus the operation was 

modified to account for the change in material being processed. The data collection methods of 

all three unit processes received lower scores because of the narrow scope of the selected studies 

and their lack of representativeness of the total market. Finally, process review scores of 3 were 

given to all unit processes due to their lack of additional third-party reviews. Overall, the quality 

of the data collected for this LCA was considered satisfactory despite the identified data gaps. 

Table 15. Data quality indicators and scores for the unit processes within the microalgal polyol 

system boundary. These scores are representative of both dry and wet feedstocks. 

Data Quality Indicator Cultivation Harvest & Dewatering Polyol Synthesis 

Flow reliability 2 2 3 

Temporal correlation 1 1 2 

Geographical correlation 1 1 1 

Technological correlation 3 2 3 
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Table 15 (cont’d) 

Data collection methods 4 4 3 

Process review 3 3 3 

Process completeness 1 2 1 

 

Inventory 

The key inputs and outputs from the mass and energy balances of the microalgal polyol 

production systems can be seen in Table 16. Because the cultivation systems for the two 

microalgal polyols are identical, their daily inputs are identical as well. However, the daily 

production of biomass differs between the two systems due to the water content goals. The dry 

biomass feedstock is dried after dewatering to reach moisture content of ~20%, while the wet 

biomass has a moisture content of ~80% after dewatering and receives no additional drying. 

Therefore, although the inputs to each PBR are identical, the daily production of the dry biomass 

feedstock is less than that of the wet biomass feedstock. Downstream, this leads to a significantly 

lower daily production of polyol than the wet biomass system. This effect is compounded by the 

different amine values of each polyol’s amine derivatives and the resulting difference in PC 

requirements. Based on a 10% molar excess, the mass ratios of PC to biomass are approximately 

8:1 and 4:1 for dry and wet feedstocks, respectively.   

Table 16. Key flows for microalgal polyol inventories, including the daily production of biomass 

that is ultimately consumed during polyol synthesis. All -e notations represent electricity 

consumption. 

Input Flow Dry Wet Unit 

Freshwater 3 3 m3/day 

Nitrogen 28 28 kg/day 

Phosphorous 7 7 kg/day 

Carbon dioxide 375 375 kg/day 

Cultivation  77 77 kWh-e/day 

Centrifuge 280 280 kWh-e/day 

Dryer 503 - kWh-e/day 

Monoethanolamine 938 3750 kg/day 
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Table 16 (cont’d) 

Propylene carbonate 2523 5045 kg/day 

Polyol reactor 2129 5670 kWh-e/day 

Output Flow Dry Wet Unit 

Microalgal biomass 313 1250 kg/day 

Microalgal polyol 3577 9525 kg/day 

 

For both biomass polyols, all the carbon in the original biomass, less the losses experienced 

during production, is retained in the final product. However, based on the mass ratios in the final 

polyol product and the carbon content of each component, the renewable carbon content is 7% 

and 3% for dry and wet microalgal polyols, respectively. The majority of the carbon in the final 

polyol product is from PC, which is derived from propylene, a common petrochemical. Although 

this is a relatively small amount of fossil carbon being replaced, it is not insignificant and should 

still be regarded as a reduction in fossil reliance. 

Impact assessment 

Figure 17 shows a summary of the impacts from the dry microalgal, wet microalgal and 

polyether polyols. The ecotoxicity impacts of the microalgal polyols were significantly higher 

compared to the polyether polyol. This difference is likely due to the emissions assumptions 

made for the mass balance and the resulting inventory. This is also likely the case for freshwater 

eutrophication, where the assumption was made that the emissions of nitrogen and phosphorous 

were equal to 100% of the nitrogen and phosphorous present in the wastewater that did not get 

recycled during cultivation. In addition to a slightly higher ecotoxicity impact than the wet 

feedstock, the dry feedstock also resulted in much higher eutrophication. As was previously 

noted, these differences are due to each polyols characteristics, and biomass and polyol 

production rates. While the eutrophication impact of the microalgal systems was anticipated to 
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be higher, the significant difference for both eutrophication and ecotoxicity could be reduced 

with more accurate assumptions and more data. 

 

Figure 17. Impact assessment summary of dry and wet microalgal polyols compared to a 

conventional polyether polyol. Results are shown relative to the production of a functional unit 

(1 kg polyol). 

The global warming impacts of the dry and wet microalgal polyols were 2-3 times less than 

the polyether polyol. This result directly coincides with the energy demand of the polyether 

system being 2-3 times higher than the microalgal systems. This difference in energy demand is 

substantial when considering the cultivation and production of biomass carbon is included in the 

microalgal systems. When comparing the microalgal polyols, the dry feedstock resulted in a 

higher energy demand and global warming impact than the wet feedstock. On the other hand, the 

smog formation impact from the wet polyol was slightly higher than the impact from the dry 

polyol. This is a result of the differences in MEA and PC inputs. The polyether polyols smog 

formation impact was also 2-3 times higher than dry and wet microalgal polyols. Finally, the 

water consumption of the microalgal polyols was found to be significantly larger than the 
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polyether polyol. This result was to be expected, considering the water requirements of 

microalgal cultivation.  

 

Figure 18. Life cycle impact sensitivity analysis of dry and wet microalgal polyols. Results show 

the percent change in each impact category when the original flows were varied  30%. 

Figure 18 shows the sensitivity analysis of the impact results for the microalgal polyols. For 

all categories and flows, a -30% change corresponds to a negative change in impact and a +30% 

corresponds to a positive change. For both polyols, the ecotoxicity impacts were more sensitive 

to changes in the flow MEA than the flow of PC. The wet feedstock was more sensitive to 

changes in the flows of MEA and PC than the dry feedstock. The eutrophication impacts of both 

microalgal polyols showed the same response to changes in nitrogen and phosphorous flows. 

This is a result of the identical operating conditions during cultivation, despite different daily 

production values for each feedstock. These large responses in eutrophication impacts only 

reiterate the importance of the emission assumptions made during the mass balance of the 

cultivation system. 

Despite having a lower energy demand per kg of polyol, the wet polyol was found to be more 

sensitive to a change in the polyol reactor electricity consumption, and associated greenhouse gas 

emissions, than the dry polyol. Varying the cultivation and harvest electricity consumption 
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resulted in larger changes in the global warming impact for the dry polyol than the wet polyol. 

Both microalgal polyols resulted in a much lower impact when compared to the polyether polyol 

and improvements in the overall electricity consumption of microalgal polyol production would 

further reduce the global warming impact. While this reliance on grid electricity should still be of 

concern, recent shifts towards renewable energy sources, such as wind, suggest the global 

warming impacts from electricity generation will be reduced in the near future. Finally, both 

microalgal polyols showed similar changes in smog formation when varying MEA and PC. 

Notably, the sensitivity of PC was slightly larger in the dry polyol than in the wet. This is another 

demonstration of the effects that varying amine values and feedstocks can have on the overall 

life cycle impacts of the microalgal polyols. 

Techno-economic assessment  

Using nth plant economic assumptions and a DCFROR analysis on the polyol production 

process based on 1,000 m3 horizontal tubular PBR, the MPSP was estimated to be $1.73/kg and 

$1.39/kg for dry and wet microalgal polyols, respectively (Table 17). The difference in capital 

investment between the two polyols is due to the addition of drying during the harvest and 

dewatering process of the dry polyol. The two systems were assumed to require the same amount 

of labor for operation and thus, share the same fixed operational expenses. The significant 

increase in variable operational expenses for the wet polyol is a result of the higher annual polyol 

production and the associated increase in chemical inputs.  Both MPSP’s were found to be lower 

than the price of polyether polyol at $2.19/kg. This result is noteworthy when considering the 

cultivation, harvest, and dewatering unit processes were included in both microalgal system 

boundaries. On the other hand, the equivalent feedstock production and processing steps were 

not considered in the system boundary for the polyether polyol. While both microalgal polyols 
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have the potential to compete with current petrochemical-based polyols based on their respective 

MPSP’s, the wet feedstock would be the preferable selection for a process scale facility. The low 

annual production rate and higher selling price make the dry feedstock less advantageous. 

Table 17. TEA results and MPSP as determined through DCFROR analysis. 

Metric Microalgal (Dry) Microalgal (Wet) 

Total capital investment $2,164,904 $1,688,106 

Fixed operational expenses $307,820 $307,820 

Variable operational expenses $1,433,067 $3,774,372 

Annual loan payment $184,363 $143,759 

Polyol production rate (t/year) 1,177 3,133 

Minimum polyol selling price ($/kg) $1.73 $1.39 

 

 

Figure 19 shows the results of the sensitivity analysis where each variable was varied  

30%. PC was found to be more sensitive for the dry feedstock and this is likely due to the lower 

polyol production rate and the higher PC to biomass ratio compared to the wet feedstock. on the 

other hand, MEA was found to be the most sensitive variable for the wet feedstock. While both 

polyols were synthesized with a 1:3 MEA to biomass ratio, the lower PC to biomass ratio for the 

wet feedstock resulted in a higher proportion of MEA per kg of synthesized polyol when 

compared to the dry feedstock. This higher MEA to synthesized polyol ratio is likely the cause of 

the sensitivity of the flow of MEA for the wet feedstock.  MEA and PC were found to be the 

second most sensitive variables for the dry and wet feedstocks, respectively. Overall, these 

chemical inputs were most sensitive due to the baseline magnitude of the flows accounting for 

over 90% of the final mass of synthesized polyol. The fixed capital investment was the next 

sensitive flow for the dry polyol and this is due to the higher capital investment, compared to the 

wet polyol. Alternatively, the next sensitive flow for the wet polyol was the total electricity 
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demand of the production process. Again, this can be owed to the higher production rate and 

subsequently, the higher energy consumption during polyol synthesis. 

 

Figure 19. Techno-economic sensitivity analysis of dry and wet microalgal polyols. Results show 

the percent change in each polyols MPSP when the original flows were varied  30%. 

 

Conclusion  

Polyols were successfully synthesized from microalgal biomass using a one-pot synthesis 

method. The characterization of the polyols from biomass and protein feedstocks, at 20% and 

80% water content, show a close similarity to the characteristics from reference polyols. These 

likenesses strongly suggest that microalgal polyols have the potential to be a viable alternative to 

polyether polyols to produce rigid polyurethane foams. The results of the LCA indicate that 

microalgal polyols have environmental benefits, including lower global warming and smog 

formation impacts, and less energy demand compared to polyether polyols. On the other hand, 

the ecotoxicity, freshwater eutrophication and water consumption impacts of the microalgal 

polyols were greater than those from the polyether polyol. Notably, the results of the TEA 

conclude that the MPSP’s of both dry and wet microalgal polyols were lower than the polyether 

polyol at $1.73/kg and $1.39/kg, respectively. Sensitivity analyses of both life cycle and techno-

economic flows indicate that reducing the flow of MEA and PC would have the biggest impact 
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on both the overall environmental impact and the MPSP. Decreasing the flows of MEA and PC 

has the potential to reduce the MPSP by up to $0.36 and $0.42, respectively. This would increase 

the gap in selling prices between the microalgal polyols and polyether polyol, and further 

incentivize the use of microalgal biomass as a sustainable, renewable feedstock for polyol 

production. Despite these significant results, future work should focus on developing microalgal 

polyols with lower MEA to biomass ratios. The MEA to biomass ratio should be varied to 

optimize both hydroxyl value and viscosity, while prioritizing lower amine values which will 

result in a decreased flow of PC. Ultimately, decreasing reliance on MEA and PC will lead to 

better life cycle outcomes and will further reduce the MPSP of microalgal polyols. 
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CHAPTER 4: TECHNO-ECONOMIC AND LIFE CYCLE ASSESSMENT OF A 

COMBINED BIOLOGICAL AND CHEMICAL CARBON CAPTURE SYSTEM FOR 

THE POWER INDUSTRY 
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Introduction 

Despite a recent dip in global greenhouse gas emissions, atmospheric carbon dioxide (CO2) 

levels remain high and continue to pose a threat to our climate and planet [97].  With nearly 45% 

of global CO2 emissions originating from power generation, there is an ongoing focus on the 

development of post-combustion carbon capture technologies. Technologies such as adsorption, 

membrane absorption and separation, and chemical absorption have long histories and have been 

studied extensively [2]. In particular, chemical absorption with alkanolamines, or amines, is a 

commercially accepted technology that has become the standard post-combustion capture 

method for electricity generation [24]. Of this class of chemical, monoethanolamine (MEA) is 

the most commonly used solvent for this application due to its ability to react readily with CO2, 

with an absorption capacity of approximately 0.5 mol CO2/mol amine and its low cost [25]. 

However, the primary amine has a limited capture, or loading, capacity and requires significant 

energy for regeneration that ultimately puts a strain on the host plants energy generation [128]. 

Regeneration, and the associated energy demands, are key factors when considering post-

combustion carbon capture. To avoid unnecessary consumption and waste, a solvent must be 

regenerated and recycled for multiple capture cycles. If the regeneration energy of the solvent is 

too high, the solvent cannot be considered viable. Thus, recent research efforts on amine-based 

capture have been focused on the development of highly reactive, low-cost solvents that have 

low regeneration energy requirements. 

In addition to concerns regarding the energy demand of conventional amines, there are 

also issues with corrosion, volatility, and oxidative degradation during scrubbing [2]. Amino acid 

salt solutions (AASS) have been explored as an alternative to amines because of their resistance 

to thermal and oxidative degradation, low volatility, low corrosion rates, and low toxicity [63, 
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129]. Although precipitation of amino acid salts may occur at high CO2 loading, studies indicate 

that this may increase the overall loading capacity and will lead to lower regeneration energies 

[60]. There are limited studies evaluating the economics of AASS scrubbing systems, however, 

recent data indicate that they have the potential to be more cost effective than MEA scrubbing 

[130]. In particular, the initial cost of the AASS was found to be significantly higher compared to 

MEA, despite the annualized total makeup cost of the MEA solvent being larger overall. This 

difference in initial cost represents an opportunity to improve the overall economics of AASS 

capture systems. 

In an effort to reduce the reliance on synthetic amino acids and decrease the initial 

solvent cost, biological sources should be explored. It has been reported that certain strains of 

microalgae have high protein content and, in some cases, protein accounts for over 50% of the 

dry matter [30]. Some of these protein-rich strains have complete amino acid profiles and 

represent a good source of amino acids [131]. However, microalgae have resilient cell walls that 

make cell disruption and total hydrolysis energy intensive processes [17, 132]. A recent study 

investigated the hydrolysis of the green microalgae Chlorella sorokiniana using a 

thermochemical treatment (paper under review). In addition, this study evaluated the 

effectiveness of the hydrolyzed biomass, or slurry, to act as a microalgal amino acid salt solution 

(MAASS). Results indicated that the MAASS had a cyclic absorption capacity of 1.27 mol 

CO2/mol amine, which is over twice the capacity of conventional MEA solvents and synthetic 

AASS [25, 63]. A preliminary mass and energy balance indicated that the recyclability of the 

MAASS will be critical to the feasibility of this technology on a process scale.  

The goal of this study was to evaluate this novel MAASS as a solvent and its’ ability to 

capture 90% of the CO2 emissions from a 100 MW, natural gas fired power plant. Life cycle and 
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techno-economic frameworks were applied to assess the viability of this technology. To compare 

the MAASS to commercial systems, an MEA post-combustion carbon capture system was also 

modelled for the same reference plant.  

 

Materials and Methods 

Microalgal amino acid salt solution preparation 

Chlorella sorokiniana, a strain of green microalgae, was cultivated in a 100 L 

photobioreactor (PBR) under previously studied conditions [30, 108]. The biomass used for 

MAASS synthesis had a protein, lipid and carbohydrate content of 58.60 ± 2.41%, 9.70 ± 1.68%, 

and 19.5 ± 2.44%, respectively. The full methodology of solvent optimization and preparation 

has been previously reported (paper under review). Potassium hydroxide (KOH) is added to 

microalgal biomass with 20% solids (w/w) at a protein to KOH mole ratio of 1:5 using a 

stoichiometric relationship between nitrogen, protein and KOH. The mixture is then reacted at 

134C for 3 hours at atmospheric pressure to hydrolyze proteins, yielding an amino acid 

concentration of 67.19 g/L as detected by liquid chromatography mass spectrometry-mass 

spectrometry (LC/MS/MS). The hydrolyzed solution must be further processed to remove 

impurities and improve the final performance of the MAASS. Solids in the solution are first 

removed with centrifugation, followed by acidification with CO2 to neutralize additional KOH 

and avoid the formation of potassium carbonate during absorption. Finally, the solution 

undergoes desorption and, subsequently, activation of the microalgal amino acids. The prepared 

solvent was found to have a cyclic absorption capacity of 1.27 mol CO2/mol amine with a CO2 

concentration of 10% v/v. The time for absorption and desorption were recorded to be 120 and 

100 minutes, respectively.  
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MAASS system operation 

The studied system includes microalgal cultivation, MAASS production, and MAASS post-

combustion CO2 capture from flue gas (Figure 20). The T.B. Simon power plant on Michigan 

State University’s campus was selected as the reference plant for this study. T.B. Simon is a 

natural gas fired system that generates approximately 100 MW of power and 1,000 metric tons 

(t) of CO2 daily. Operating parameters of the capture system were based on the bench-scale 

MAASS study and then scaled to capture the daily CO2 emissions from the reference power 

plant. Due to the co-located production facility, there is dual carbon capture by the microalgal 

cultivation system and MAASS scrubbing. The original bench-scale MAASS study tested 

recirculation of the MAASS up to 10 cycles and the data showed no degradation or decrease in 

absorption over that time. Additional analysis from this study showed that there is a log-like 

relationship between the number of cycles the MAASS can be used and the size of the PBR 

required to produce the solvent. That analysis indicates that the PBR required when the MAASS 

is recycled 2,000 or more times is of a realistic scale. Thus, this study assumes the maximum 

recyclability to be 2,000 cycles. Because the MAASS is non-volatile, it was assumed that any 

losses from the system would be negligible.  
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Figure 20. Process flow diagram of the MAASS production and capture system. 

In addition to the empirical data and assumptions mentioned above, a calculated CO2 

consumption of 0.3 kg per kg wet biomass (20% solids w/w), a MAASS conversion efficiency of 

0.44 kg MAASS per kg wet biomass and a CO2 content of 10% v/v were all used in this analysis. 

To maintain the high productivity seen in previous studies cultivating C. sorokiniana in PBRs, an 

outdoor PBR system was selected for this study [30, 108]. The envisioned PBR uses a horizontal 

tubular set up that has been previously described [14, 109, 110]. The PBR was modelled using a 

productivity of 0.17 g/L/day, a harvest rate of 50% daily, and a water recycle system [30, 108]. 

This PBR configuration is estimated to have an area per volume ratio of 4.13 m2/m3. 

Collectively, these parameters were used to calculate the scale of the cultivation and production 

processes, as well as the scrubbing operation. A summary of the data and assumptions used can 

be seen in Table 18.
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Table 18. Data and assumptions used to determine the scale and capacity of the MAASS 

production and capture system. 

Parameter Value Unit 

Absorption time 120 min 

MAASS recyclability 2,000 cycles 

Operating/production cycle 167 days 

Microalgae CO2 consumption 0.30 kg CO2/kg biomass 

Biomass to MAASS conversion 0.44 kg MAASS/kg biomass 

CO2 content of flue gas 10 % v/v 

CO2 flow 1,000,000 kg/day 

Absorption capacity 1.27 mol CO2/mol amine 

Biomass productivity 0.17 g/L/day 

Daily harvest  50 % v/v 

PBR area to volume ratio 4.13 m2/m3 

 

Based on the bench-scale MAASS study, the temperature required for hydrolysis of 

microalgal biomass is 134C and the starting temperature is assumed to be room temperature, or 

25C. The energy required for hydrolysis was calculated as heat energy using the heat equation 

(Equation 2) and then converted to electricity equivalents using a conversion factor of 3.6 

MJ/kWh.  

   𝑄 = 𝑐𝑝𝑚∆𝑇          Equation 2 

The specific heat capacity of the hydrolyzed biomass, or microalgal slurry (biomass + 

KOH), was estimated to be 3.6 kJ/kgK. Following solvent preparation and the removal of excess 

potassium salts, the heat capacity was assumed to increase to 3.8 kJ/kgK. Heat is assumed to be 

supplied by the reference plant in the form of low-pressure steam. The density of the MAASS is 

1,230 kg/m3. The desorption required for MAASS preparation after acidification is assumed to 

be completed with a run of desorption in the stripper prior to the first cycle through the capture 

system.  
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MEA control system operation  

A control system using MEA as a solvent was studied to evaluate the performance of the 

MAASS system. The capture process can be seen in the green boundary seen in Figure 20. A 

30% w/w MEA solvent was selected for this study as it is one of the most commonly used 

concentrations [24].  A liquid solvent to flue gas (L/G) ratio of 3.7 kg/m3 and an absorption 

capacity of 0.5 mol CO2/mol amine were used for modelling [133-135]. A loading capacity of 

0.5 mol CO2/mol is based on both the theoretical chemical reaction between CO2 and MEA, and 

empirical capture data for a 30% MEA solvent. Like the MAASS system, the MEA system was 

also modelled for 90% CO2 capture at a 10% w/w CO2 concentration in the flue gas. The density 

of a 30% MEA solvent is 1,003 kg/m3 at 40C and the specific heat capacity was assumed to be 

3.734 kJ/kgK before CO2 capture and 3.359 kJ/kgK after capture at 0.5 mol CO2/mol amine 

loading [136, 137]. A degradation rate of 1.6 kg MEA/t CO2 was used to model MEA loss from 

the system [55]. Unlike the MAASS system, where the number and time of each capture cycle 

was used, the MEA system used the degradation rate to determine the recyclability and addition 

of fresh solvent. A summary of the emissions produced because of the oxidative and thermal 

degradation of MEA can be seen in Table 19 [138-141]. Disposal of solid, hazardous reclaimer 

bottoms has been shown to account for a large portion of the waste and emissions created by 

MEA degradation and can cause significant negative impacts in human toxicity and ecotoxicity 

LCA impact categories [140, 142]. Although this study did not evaluate the impact of waste 

disposal practices, this finding is an important consideration when comparing the MAAS and 

MEA systems. Additional studies will be required to investigate the degradation and waste 

products of the MAASS under realistic flue gas flow and operating conditions. 
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Table 19. Emissions from the MEA capture system from degradation of the MEA solvent. 

Emission Value (kg/t CO2) 

Acetaldehyde 0.167 

Ammonia 0.035 

Formaldehyde 0.262 

MEA 0.063 

 

CO2 capture parameters  

The operational parameters of CO2 scrubbing systems using amines have been previously 

documented and studied in detail [133, 138, 143, 144]. Due to the novelty of a MAASS capture 

system and the limited data on process parameters, the standard operating conditions of an MEA 

capture system were adopted for this study. The L/G ratio of the MAASS system was determined 

using a ratio of the absorption capacities of the two solvents, and the L/G ratio of 3.7 kg/m3 for 

the MEA system. This resulted in a L/G ratio of 1.46 kg/m3 for the MAASS system. The 

scrubbing operation is based on 90% carbon capture from the 100 MW reference plant that emits 

1000 t CO2 daily. The energy lost to heat was assumed to be 65% of the total energy capacity of 

the plant, yielding 2,400 MWh of electricity and 4,457 MWh-e of heat daily. The flue gas inlet 

temperature to absorber column and CO2 rich MAASS outlet temperature from the absorber 

column were set at 40C. Flue gas desulphurization and pre-cooling was not considered within 

the scope of this assessment. The CO2 rich MAASS temperature exiting the plate and frame heat 

exchanger to desorption was set to 90C and the temperature required for regeneration was set at 

100C and 110C for MAASS and MEA solvents, respectively [133, 138] (paper under review). 

Finally, the CO2 lean MAASS exiting the desorption column was assumed to be 100C entering 

the heat exchanger and 40C exiting the heat exchanger back to the absorption column. The 

energy required by the heat exchanger was determined by first calculating the heat loss from the 

lean-hot stream as the temperature decreased from 90C to 60C. The calculated heat energy was 
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used to find the resulting temperature increase in the rich-cool stream from a starting temperature 

of 40C. Finally, the additional heat energy required to take the rich-cool stream from the 

calculated temperature to 90C was determined and assigned as the energy demand of the 

counter flow, plate and frame heat exchanger. 

The size and dimensions of the absorber, stripper and compression equipment can be 

determined using operating conditions and design equations in concert with mass and energy 

balance results [145]. However, due to the limitations of this study and cost data availability, 

equipment sizing was based on a similar report assessing the economic implications of different 

system configurations for the promising water-lean solvent technology [146]. The absorber 

diameter and height were assumed to be 20 m and 21 m, respectively, with an approximate 

volume of 6,600 m3. Stripper height and diameter were assumed to be 10 m and 21 m, 

respectively, with an approximate volume of 1,650 m3. Sulzer Mellapak 250Y (Winterthur, 

Switzerland) were used for packing the absorber and Koch-Glitsch Cascade Mini Rings were 

used in the stripper. These dimensions were not considered in the performance analysis for this 

study, however the cost data for the capture system equipment was scaled accordingly for the 

TEA. The energy required for regeneration was calculated using the heat equation (Equation 2) 

and then converted to electricity equivalents. It is well known that using steam from the host 

plant for regeneration significantly reduces the efficiency of power generation and it’s important 

to note that the steam required by the hydrolysis process will put additional strain on power 

generation.  

Cooling water used during the capture and compression processes is estimated to be 

consumed at a rate of 0.8 m3/t CO2 for an MEA system [54]. Due to the lower temperature 

required for regeneration, the rate of water consumption for the MAASS system was assumed to 
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be 90% of that for the MEA system, or 0.72 m3/t CO2. The purpose of this study was not to 

optimize the process parameters and performance, but rather to provide a foundation for those 

future studies on the MAASS by evaluating its feasibility in a preliminary manner. Thus, despite 

the assumptions made to conduct this analysis, the results will provide rationale for further 

research projects in this area of study. 

Life cycle assessment 

Goal and scope 

An LCA was conducted to compare the environmental impacts of a novel MAASS post-

combustion carbon capture system to a conventional MEA system. A functional unit of 1 t CO2 

captured was selected to evaluate the two systems. The process flow diagram for the MAASS 

system is shown in Figure 20, with the capture process outlined in green. This green boundary 

represents the entirety of the MEA system is and fresh solvent is assumed to be added to the 

system with a pump to the lean-cool stream. Although the MAASS system has mass flows 

exiting the system that potentially have value-added components, further studies are needed to 

evaluate their economic value. Thus, no co-products were considered in this study and allocation 

was avoided.  

The impacts of installing an MEA capture system at an operating power plant have been 

previously characterized [54, 138, 140, 147]. The data from these studies indicate that there are 

several tradeoffs to using amine solvents for carbon capture. While these carbon capture systems 

reduce the overall greenhouse gas emissions, and subsequently the global warming potential, 

they may cause greater impacts in categories such as acidification and ecotoxicity. The goal of 

this LCA was not to compare the impacts of a MAASS capture system and a reference plant with 

no capture system, but rather to identify the differences between MAASS and MEA solvents. A 
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functional unit of 1 t CO2 captured will allow more cohesion between LCA and TEA results, and 

will highlight the environmental impact and economic cost of capture. Once the feasibility of this 

technology is established, future work should investigate the penalties associated with 

implementation compared to a no-capture scenario. 

Data quality 

Guidelines for data quality published by the U.S. Environmental Protection Agency were 

used to inform the data quality goals of this study [113]. Based on these guidelines, goals for 

temporal and geographical scale, as well as technological representativeness and data 

completeness, were chosen. The temporal data quality goal was set at 10 years due to the age of 

amine capture technologies, and the United States was selected as the geographical scale. These 

temporal and geographical targets were set to reflect the use of both primary and secondary data 

sources from locations around the U.S. The four categories within technological 

representativeness (process design, operating conditions, material quality, and process scale) 

allow the LCA practitioner to be diligent about process modelling, scale up, and assumptions. 

This study set goals in regards to technological representativeness based on transparency and 

clear data sourcing. Lastly, data completeness goals are based on an effort to include all flows 

within and crossing the system boundary. Due to the innovative nature of this study, and its 

foundation, accounting for 100% of the system flows becomes more challenging. Future work 

will be required to complete an analysis that fully meets this data completeness goal. In addition 

to the guidelines, updated data quality indicators and a scoring matrix were provided by the EPA 

[113]. 
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Impact assessment 

Although impact assessment methods such as ReCiPe are popular in the field of LCA, it does 

not contain characterization factors for chemicals like MEA. Therefore, the Tool for the 

Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) (v2.1, 2014) 

was selected for impact assessment. The following categories were used to evaluate the two 

systems: acidification (kg SO2 eq.), ecotoxicity (CTUeco), freshwater eutrophication (kg N eq.), 

and smog formation (kg O3 eq.). The upstream and downstream processes associated with each 

system have been identified as key contributors to the total global warming impact and should be 

assessed in future work. On the other hand, the processes within the system boundary were 

hypothesized to only contribute to the global warming impact in the form of energy use and were 

characterized as such. In lieu of evaluating the global warming impacts of the two systems, a 

carbon balance was performed by characterizing the electricity usage as CO2 equivalent 

emissions. Greenhouse gas emissions from electricity use were characterized using the 

Greenhouse Gas Equivalencies Calculator provided by the U.S. Environmental Protection 

Agency (EPA) [114].  The energy demand (kWh) and water consumption (m3) of each system 

were also evaluated. 

Techno-economic assessment 

In several amine-based capture reports, the Aspen Process Economic Analyzer, or similar 

software, is used to estimate the capital cost of the required equipment. Despite the validity of 

these results, there is little transparency associated with this type of software-based estimation 

and, without identical software access, repeatability may be an issue. Cost data used in this study 

will be explicitly cited and, where assumptions had to be made, rationale will be provided. It is 

important to acknowledge the limitations of techno-economic analysis in general, and even more 
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so in the case of innovative technologies like the foundational study that motivated this work. 

Cost data not reported in 2021 dollars were converted using the Plant Cost Index from Chemical 

Engineering [116]. Installation factors were applied to the purchase cost of all equipment to 

determine the final installed cost [119]. 

The capital cost of the horizontal tubular PBR was calculated in 2014 dollars using an area 

per volume ratio of 4.13 m2/m3 and a cost per volume ratio of $44.65/m3 [14, 109, 110]. The 

energy requirements of this PBR configuration were adapted for this study [14]. Cost data for the 

solvent storage tank, absorber, stripper, plate and frame heat exchanger, and flue gas blower 

were obtained from a previous report with similar operational parameters [146]. The cost data for 

all capture equipment was used directly for the MEA system, after converting to 2021 dollars, 

while the costs of the absorber, stripper, and plate and frame heat exchanger were scaled based 

on the reduced flow rate of the MAASS system. Capital cost scaling was done using a cost to 

capacity scaling method and an exponent of 0.61 [148]. All other equipment costs were 

estimated using current vendor prices and cost estimation curves [149]. Facility and site 

development costs were assumed to be 4% and 9% of the installed equipment cost, respectively. 

Indirect costs included construction fees, proratable expenses, field expenses, and project 

contingency. Construction fees were set at 20% of the total direct cost and the remaining 

expenses were set at 10% of the total direct cost. Finally, working capital was assumed to be 5% 

of the fixed capital investment.  

The CO2 used to feed the PBR was presumed to be provided at no additional cost, 

however, the delivery of the flue gas to the reactor was assumed to have a cost of $45/t [14]. The 

capital cost of the infrastructure required for CO2 delivery was included in the cost of the PBR. 

Nitrogen and phosphorous for cultivation were assumed to be purchased as bulk fertilizer. Prices 
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were obtained from the USDA Economic Research Service Fertilizer Use and Price dataset, 

however, purchase prices were only available up to 2014 [120]. Price indexes for the two 

chemicals were obtained from the BLS Data Finder, provided by the U.S. Bureau of Labor 

Statistics, and applied to the 2014 prices to determine the price in 2021 dollars. The cost of KOH 

was obtained from Chemical Weekly as $0.04/kg [150]. For the MEA system, the cost of MEA 

was obtained from ICIS Chemical Business [121]. For both solvent systems, the cost of 

electricity was assumed to be $0.12/kWh.  

Labor costs for the MAASS system included the salaries of two chemical engineers, ten 

power plant operators, and four chemical technicians. The MEA system retained the same 

number of power plant operators and chemical technicians. The chemical engineers employed 

for the MAASS system were assumed to handle microalgal cultivation and solvent production 

and were therefore not needed for the operation of the MEA capture system. Salary data was 

obtained from the U.S. Bureau of Labor Statistics Occupational Outlook Handbook [123]. The 

analysis selected for this study was discounted cash flow rate of return (DCFROR). The 

DCFROR analysis used nth plant economics assumptions to determine the cost of capture for 

both MAASS and MEA systems (Table 20) [36]. An annual operating time of 329 days was 

applied to calculate the annual carbon capture for each system. 

Table 20. Assumptions made based on nth plant economics for a DFROR analysis. 

Assumptions 

Working Capital (% of FCI) 5% 

Equity 40% 

Loan Interest 8% 

Loan Term (Years) 10 

Salvage Value  $0 

Depreciation Period (Years) 7 

Construction Period (Years) 2 

Capital Spent in Year -1 (% of Total) 50% 
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Table 20 (cont’d) 

Capital Spent in Year 0 (% of Total) 50% 

Start-up Time (Years) 0.5 

Revenue (% of Normal) 50% 

Variable Costs (% of Normal) 75% 

Fixed Cost (% of Normal) 100% 

Discount Rate (Internal Rate of Return) 10% 

Income Tax Rate 35% 

Cost Year for Analysis 2021 

 

Current policies, such as Cap-and-Trade and carbon credits, have the potential to improve the 

economic feasibility of post-combustion carbon capture. To evaluate the efficacy of these 

programs, a policy scenario was applied and reductions in the cost of carbon capture were 

analyzed. The policy scenario included an assumed carbon credit of $31/t CO2 abated (captured) 

based on the most recent data from California’s Air Resources Board Cap-and-Trade program 

[151]. In addition, it was assumed that a capital grant of $25,000,000 was received and applied to 

the capital costs during the first year of construction for each capture system.  

Sensitivity analysis 

The results from the LCA and TEA were used to perform a sensitivity analysis. 

Individual flows were varied by  30%, while all other flows were kept constant, and the 

resulting change in LCA or TEA indicators was recorded. Key mass and energy flows were 

identified by comparing the magnitude of change across all flows.  

 

Results and Discussion  

Capture system operation 

The analysis completed for the production and implementation of the MAASS was 

unique due to the need to balance the biological and chemical capture components in the system. 
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Using the recorded time for absorption and 2000 cycles, a batch of MAASS can be used for 167 

days before it needs to be replaced with fresh solvent. Likewise, the production system has 167 

days to produce the volume required to replace the wasted solvent. Based on this production 

cycle and the calculated solvent flow rate, approximately 38 kg of MAASS solvent would need 

to be produced daily. Applying a 0.43 kg MAASS/kg wet biomass conversion efficiency, daily 

biomass production was calculated to be 87.16 kg wet (17.43 kg dry). The microalgal culture 

was estimated to consume 26.15 kg CO2/day and the MAASS solvent was estimated to capture 

899,976 kg CO2/day under 90% capture efficiency. As hypothesized, the biological capture 

makes up a small fraction, less than 0.01%, of the total carbon capture. Table 21 shows the key 

parameters of the MAASS system. 

Table 21. MAASS system parameters. 

Parameter Value Unit 

Biomass production 
87.16 wet kg/day 

17.43 dry kg/day 

MAASS production 37.91 kg/day 

MAASS flow 7,786 t/day 

Flue gas flow 5,347,453 m3/day 

Biological CO2 capture 26.15 kg/day 

Chemical CO2 capture (90% eff.) 899,976 kg/day 

 

 The operating conditions of the MEA system are quite different from the MAASS system 

as a result of the increased absorption capacity and the lower L/G ratio for the MAASS solvent. 

In addition, the analysis of the two systems differs due to the assumed degradation of the MEA 

solvent. In contrast to the batch-style and cyclic operation of the MAASS system, the MEA 

system experiences solvent loss that requires daily replacement. Using the estimated degradation 

rate of 1.6 kg MEA/t CO2 produced, the system loses, and thus needs to replace, 1,600 kg of 

MEA daily. This difference in the stability of the two solvents will be a key variable in the life 
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cycle and techno-economic comparisons. Overall, the flow of MEA is over 2.5 times higher than 

MAASS when both systems are operating at 90% efficiency. 

Table 22. MEA system parameters. 

Parameter Value Unit 

Fresh MEA 1,600 kg/day 

MEA flow 19,778 t/day 

Flue gas flow 5,347,594 m3/day 

Chemical CO2 capture (90% eff.) 900,000 kg/day 

 

Using the heat equation and the respective heat capacities of the two solvents, the 

regeneration energy was calculated to be 33.4 MWh-e/day and 154 MWh-e/day for MAASS and 

MEA, respectively. This significant difference in the regeneration energy was due to the lower 

flow rate of the MAASS solvent and the elevated stripper temperature of 110C versus 100 C 

for the MAASS solvent. This is a clear demonstration of the advantage of using the MAASS as 

an alternative to MEA. The temperature conditions of solvent heat exchange were identical for 

the two systems, however, the heat energy demand of the plate and frame heat exchanger to heat 

the rich MAASS was significantly lower than for MEA, at 187 MWh-e/day and 345 MWh-e/day, 

respectively. In addition to heat transfer and regeneration, the MAASS required further heat 

energy for hydrolysis of the microalgal biomass during solvent preparation. However, at 0.66 

kWh-e/day, the additional energy demand was negligible. Overall, the total heat demand of the 

MEA system was found to be significantly higher than the MAASS system. Based on the total 

heat energy requirements of the two systems, it was assumed that the thermal energy from 

electricity generation at the natural gas-fired power plant would be more than sufficient to supply 

heat to the two system. Thus, no additional natural gas was required to provide heat energy for 

hydrolysis or stripping. A summary of the energy demands of the two systems can be seen in 
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Table 23. Although several assumptions were made during the course of this analysis in the 

absence of more specific data, the results are of reasonable accuracy for the purposes of 

comparing the MAASS and MEA systems. 

Table 23. Energy demand of the unit processes for the MAASS and MEA systems. 

Process MAASS (MWh-e/day) MEA (MWh-e/day) 

Cultivation 8.14x10-3 - 

Solvent preparation 3.80x10-3 - 

Absorptiona 3.72 4.53 

Solvent heat exchange 187 345 

Desorptionb 33.9 155 

Compression 41.7 41.7 

Total energy demand 266 546 
a. Absorption is the sum of the energy required for the flue gas blower and solvent pumping. 

b. Desorption is the sum of the regeneration energy and the energy required for solvent pumping. 

 

Life cycle assessment 

Data quality 

Data quality was assessed for each unit process in the microalgal and MEA capture systems 

and Table 24 shows the scores for each data quality category [113]. Scores of 1 and 2 represent 

quality data and were accepted as satisfactory. However, in order to address those less 

satisfactory scores of 3 and 4, rationale will be provided. A flow reliability score of 3 was given 

to MAASS production and carbon capture because the data used in the inventories were based on 

assumptions and calculations, rather than empirical data and measurements. A technological 

score of 3 for cultivation and carbon capture shows that two of the four sub-categories were 

equivalent, while the remaining two were modified. The modelled PBR maintained the original 

process design and material quality, however, the process scale and operating conditions were 

modified for this assessment. The carbon capture process modelled for analysis shared the same 

process design and process scale as the original system, however, the operating conditions and 

material quality varied. The MAASS production unit process received a technological correlation 
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score of 4 because 3 of the 4 sub-categories, process scale, process design, and operating 

conditions, were not equivalent. The data collection methods of cultivation and MAASS 

production unit processes received lower scores because of the scope of the selected studies was 

not representative of the market majority. Process review scores of 3 were given to all unit 

processes due to their lack of additional third-party reviews. Finally, MAASS production and 

carbon capture received process completeness scores of 3 due to the scarcity of data regarding 

the degradation products of the MAASS solvent. Overall, the quality of the data collected for this 

LCA was considered satisfactory considering the novelty of the MAASS production and capture 

process. 

Table 24. Data quality indicators and scores for the unit processes within the MAASS and MEA 

system boundaries.  

Data Quality Indicator Cultivation MAASS Production Carbon Capture 

Flow reliability 2 3 3 

Temporal correlation 1 1 2 

Geographical correlation 1 1 2 

Technological correlation 3 4 3 

Data collection methods 4 4 2 

Process review 3 3 3 

Process completeness 1 3 3 

 

Impact assessment 

Based on the results of mass and energy analysis, and the TRACI characterization 

factors, life cycle impacts were evaluated. Due to the scope of this assessment, the global 

warming impacts from both systems were exclusively the result of electricity usage and capture 

efficiency, and the resulting carbon emissions. Thus, the CO2 emissions from the reference 

power plant, with and without a capture system, were evaluated using a carbon balance approach 

(Figure 21). Without carbon capture, emissions from the reference plant are 1,000 t CO2/day. 
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Both MAASS and MEA solvents capture approximately 90% of the daily emissions, with the 

MAASS capturing an additional 2.62 kg CO2/day. This additional capture is a result of the 

biological capture during microalgal cultivation, and it represents another slight advantage the 

MAASS system has over the traditional amine system. While both systems captured nearly the 

same amount of carbon, it’s important to note that the MEA system “generated” slightly more 

native system emissions than the MAASS system due to a higher electricity demand. Additional 

value could be garnered from a cradle-to-grave LCA of the MAASS system that can more 

comprehensively evaluate the global warming impact of this alternative solvent.  

 

Figure 21. Carbon balance of the reference plant without carbon capture, and MAASS and MEA 

capture systems.  

The life cycle impacts of a reference plant without capture and with capture using MEA 

have been previously studied [138, 140, 141, 147]. These studies represent a foundation for 

which the life cycle impacts of the MAASS solvent can be compared, hence the lack of 

comparison to a reference plant without capture in this LCA. While the degradation products and 

emissions profile of the MEA solvent have been previously studied and characterized, future 

studies are needed to investigate the degradation of the MAASS over 2,000 cycles and determine 
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if there are any harmful byproducts formed during this process. This lack of data for the MAASS 

is a limitation of this assessment and should be considered when comparing the two solvent 

systems. 

The summary of life cycle impacts is a clear demonstration of the benefits of using 

MAASS instead of MEA for post-combustion carbon capture (Figure 22). Due to the observed 

stability and non-toxicity of the MAASS, and in the absence of more specific data, there were no 

life cycle impacts for acidification, ecotoxicity, and smog formation. The degradation of MEA 

resulted in daily air emissions of 31.5 kg ammonia, 0.150 kg acetaldehyde, 0.236 kg 

formaldehyde, and 56.7 kg MEA. Acidification and eutrophication impacts were solely the result 

of the daily ammonia emissions, while smog formation and ecotoxicity impacts were the result 

of contributions from acetaldehyde, formaldehyde, and MEA (Table 25). These impact results 

are comparable to other studies assessing the life cycle impacts of an MEA capture system [140].  

Table 25. Life cycle impacts of the MAASS and MEA systems. 

Impact Category MAASS MEA 

Acidification (kg SO2 eq./t CO2 captured) - 0.0658 

Ecotoxicity (CTUeco/t CO2 captured) - 0.268 

Eutrophication (kg N eq./t CO2 captured) 1.56x10-4 4.51x10-3 

Smog formation (kg O3 eq./t CO2 captured) - 0.433 

 

The small scale of cultivation resulted in relatively small mass flows of nutrients into the 

system, and thus, resulted in minor waterborne nitrogen and phosphorous emissions of less than 

1 kg/day. On the other hand, the MEA system produced considerable amounts of airborne 

ammonia emissions every day. These mass flows resulted in significantly difference life cycle 

impacts, with the MEA system having much greater eutrophication than the MAASS system. 

This result is notable because of the common assumption that microalgal cultivation, and other 

cultivation systems, can result in significant local eutrophication. On the contrary, the ammonia 
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from MEA degradation led to much more impactful emissions and made a much larger 

contribution to eutrophication.  

As previously noted, the MEA system required much more energy than the MAASS 

system (Table 23). The water consumption of the two systems was relatively similar, however, 

the MEA system consumed more water than the MAASS system at 720 m3/day and 648 m3/day. 

This difference is the result of the cooling water required for each solvent and the assumption 

that the MAASS capture process would only require 90% of the water consumed by the MEA 

process due to the lower regeneration temperature. While this result is significant considering the 

cultivation and preparation processes were included in the MAASS system assessment, further 

investigation is warranted to determine the exact water consumption. 

 

Figure 22. Impact assessment summary of MAASS and MEA solvents. Results are shown relative 

to the production of a functional unit (1 t captured CO2). 

Sensitivity analysis of the two systems impact results only confirm the conclusions made 

from the impact assessment. The MAASS system only resulted in eutrophication impacts, thus, 
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the sensitivity analysis was done only for this category. Figure 23 shows resulting change in 

eutrophication when the nitrogen and phosphorous flows were varied  30% while holding all 

other flows constant. Sensitivity analysis shows that the phosphorous flow, and the resulting 

impact, are much more sensitive to change than the nitrogen flow. This is caused by the 

magnitude of the mass flow and the characterization factors associated with the two chemicals.  

 

Figure 23. Life cycle impact sensitivity analysis of the MAASS solvent. Results show the percent 

change in each impact category when the original flows were varied  30%. 

For the MEA system, sensitivity analysis was carried out for all four life cycle impact 

categories (Figure 24). Ammonia was the only contributor to acidification and eutrophication 

impacts, and this is represented by one mass flow for each category. This also resulted in a 

change in impact that was proportional to the change in flow of ammonia. The result of the 

sensitivity analysis for ecotoxicity and smog formation impacts indicate that a similar 

relationship exists with these impact categories and MEA. This seemingly proportional change in 

impact is a result of the large flow of MEA, compared to acetaldehyde and formaldehyde. 

Although acetaldehyde and formaldehyde have similar, or larger, characterization factors for 
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these impact categories, they are present in much smaller amounts and contribute significantly 

less than MEA to the overall impact.  

Despite the straightforward nature of these results, it’s still important to note that the 

harmful degradation products of MEA should be strongly considered when searching for 

alternative solvents. In summary, the sensitivity analysis identified mass flows in each system 

that garner further examination and future research efforts should be dedicated to the reduction 

of these emissions.  

 

Figure 24. Life cycle impact sensitivity analysis of the MEA solvent. Results show the percent 

change in each impact category when the original flows were varied  30%. 

Techno-economic assessment 

The capital costs for the capture system equipment were obtained from a previous report 

and applied for the MEA system, while the costs for the MAASS system were determined using 

the ratio of mass flow rates from each system and a cost-to-capacity method. In addition, the 

MAASS system cost was calculated with the equipment required for cultivation and harvesting 

of the microalgal biomass, as well as the production of the MAASS solvent. A complete list of 

equipment, indirect costs, and the total capital investment for both capture systems is provided in 
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Table 26. Due to the significant difference in solvent mass flows, the total capital investment for 

the MAASS system was considerably lower than for the MEA system, at $234,175,493 and 

$342,960,188, respectively. Based on a wet biomass production of 87.16 kg/day, the cultivation 

area was estimated to be 424 m2 or approximately 0.10 acres. Thus, land purchase costs were not 

included in this analysis and it was assumed that the land requirements would be met by the 

existing infrastructure of the reference power plant. The low requirements for daily biomass and 

MAASS production resulted in minimal capital costs for cultivation and solvent preparation 

equipment, contributing approximately 1% to the overall capital investment.  

Table 26. Capital costs of the MAASS and MEA carbon capture systems. 

Item MAASS MEA 

PBR $6,549 - 

Tank mixers (2) $10,321 - 

Mixing tank $19,870 - 

Hydrolysis reactor $13,598 - 

Centrifuge $53,900 - 

Acidification column $118,112 - 

Storage tank 
$7,529,994 $7,529,994 

Absorber 
$57,786,583 $102,042,834 

Stripper 
$1,1051,067 $19,514,602 

Plate heat exchanger 
$14,992,595 $26,474,776 

Compressor 
$30,695,490 $30,695,490 

Small blowers (2)  $1,365,160 - 

Large blower 
$13,149,200 $13,149,200 

Production pumps (2) $11,960 - 

Solvent pumps (3) $488,244 $488,244 

Total equipment cost $137,292,643 $199,895,140 

Facility $5,491,706 $7,995,806 

Site development $5,898,504 $9,861,555 

Total direct cost $148,682,852 $217,752,500 

Construction fees, permits, start-up $29,736,570 $43,550,500 

Proratable expenses $14,868,285 $21,775,250 

Field expenses $14,868,285 $21,775,250 
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Table 26 (cont’d) 

Project contingency $14,868,285 $21,775,250 

Total indirect cost $74,341,426 $108,876,250 

Fixed capital investment $223,024,279 $326,628,750 

Working capital $11,151,214 $16,331,438 

Total capital investment $234,175,493 $342,960,188 

 

The annual fixed operational expenses of the MAASS and MEA systems were 

$1,364,260 and $1,147,180, respectively. The labor cost of the MAASS system was slightly 

higher because of the two chemical engineers tasked with solvent production. The annual 

variable operational expenses for the MAASS included the cost of CO2 delivery, nitrogen, 

phosphorous, KOH, and electricity, totaling $1,844,818. Although the variable expenses for the 

amine system only included MEA and electricity, the price of MEA and the daily degradation 

rates of the solvent resulted in $2,697,999 in annual expenses. Collectively, the total capital 

investment and annual expenses resulted in a carbon capture cost of $113.53/t CO2 and $163.31/t 

CO2 for MAASS and MEA systems, respectively. This result is significant considering the scope 

of the MAASS system. A 30% lower cost of capture was achieved despite including microalgal 

cultivation and solvent production in the system boundary of the TEA. This means that the 

MAASS system is capable of producing the biobased solvent to be used for post-combustion 

carbon capture with a sustainable co-located operation, whereas MEA is produced off site using 

petrochemicals.  

Table 27. Summary of TEA results, including annual fixed and variable expenses, and the cost of 

carbon capture determined using DCFROR analysis. 

Metric MAASS MEA 

Total capital investment $234,175,493 $342,960,188 

Fixed operational expenses $1,364,260 $1,147,180 

Variable operational expenses $1,844,818 $2,697,999 

Annual loan payment $19,942,317 $26,206,389 
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Table 27 (cont’d) 

Carbon capture (t/year) 296,101 296,100 

Cost of carbon capture ($/t CO2) $113.53 $163.31 

 

Sensitivity analysis of the TEA results for the MAASS system elucidated the lack of 

sensitivity of the material flows into the system. The results for the chemical and nutrient flows 

were not included in Figure 25 as they were negligible compared to the change in cost when the 

total capital investment and electricity demand were varied  30%. Varying the total capital 

investment and electricity demand changed the cost of capture by approximately $45.00 and 

$2.00, respectively. Comparatively, the changes in cost caused by varying the chemical flows 

were all less than $0.01. The absorption column and compressor account for nearly 40% of the 

total capital investment and therefore represent the equipment that should be re-evaluated. The 

cost of these key pieces of equipment could potentially be lowered with more accurate estimates 

or quotes from vendors. The electricity usage of the system was mostly due to the demand of the 

large flue gas blower for absorption and the solvent pumps in the capture system. While these 

operating conditions are difficult to reduce, more efficient equipment could be explored. 

 

Figure 25. Techno-economic sensitivity analysis of the MAASS solvent. Results show the percent 

change in the cost of capture when the original flows were varied  30%. 
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 Unlike the MAASS system, the flow of MEA was not insensitive to changes and resulted 

in a $0.08 change in cost of capture. This indicates that while the MAASS system would be 

resilient to changing chemical prices, the MEA system would be impacted by this variability. 

This is particularly important in the case of MEA as it is a petrochemical and varies with the 

changing oil prices. The response of cost of capture to changes in the total capital investment and 

electricity demand mirrored that of the MAASS system. Varying the electricity usage changed 

the cost of capture by approximately the same dollar amounts as the MAASS system as well. 

These analogous responses are due to the similarity in total capital investment and electricity 

demand of the two systems and support the need for further analysis. 

 

Figure 26. Techno-economic sensitivity analysis of the MEA solvent. Results show the percent 

change in the cost of capture when the original flows were varied  30%. 

The impact of the assumed carbon credits and capital grant can be seen in Figure 27. The 

dotted line represents the average cost of carbon capture from natural gas fired power plants, 

which was estimated to be approximately $74/t CO2 captured [152]. The cost of carbon capture 

for both MEA and MAASS solvents was significantly reduced when applying a $31/t CO2 

carbon credit and assuming the allocation of a $25,000,000 capital grant. The cost of capture for 

both systems were reduced by approximately $14/t CO2 and $32/t CO2 when applying the capital 

grant and carbon credits, respectively. However, due to the lower baseline cost of capture for the 
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MAASS system, these policy-enabled reductions resulted in the cost of carbon capture reaching 

$68.09/t CO2. This is approximately $6/t CO2 lower than the reported average of $74/t CO2 and 

demonstrates the importance of policies when evaluating and implementing emerging 

technologies. 

 

Figure 27. Cost of carbon capture when a policy scenario was considered, including carbon 

credits and a one-time capital grant. 

 

Conclusions  

This study elucidated that the MAASS production and capture processes are environmentally 

friendly, technically feasible, economically viable carbon capture technology that can 

significantly reduce CO2 emissions from the power industry. Mass and energy analysis revealed 

that, due to a higher absorption capacity and lower mass flow rates, the MAASS system required 

significantly less heat energy for regeneration and solvent heat exchange when compared to 

MEA. The life cycle impact assessment revealed that the toxic byproducts of MEA degradation 

result in significantly higher life cycle impacts than the MAASS. The results of the TEA further 

demonstrated the advantages of the MAASS system, with the cost of the CO2 capture being 30% 

lower than the MEA process. Policy plays a key role in the advancement and implementation of 

emerging technologies like the MAASS capture system. This was demonstrated by the results of 



118 

the policy scenario where the application of a realistic carbon credit and capital grant lowered the 

cost of carbon capture from $113.53/t CO2 to $68.09/ t CO2 using a MAASS capture system. 

This significant reduction results in a cost of capture that is less than the average at $74/t CO2. 

Based on these promising results, more studies on the MAASS, such as its potential degradation 

products, associated upstream and downstream impacts, and system optimization, need to be 

conducted to facilitate the technology transfer to the power industry. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 
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The results of the studies conducted herein support the feasibility of co-located microalgal 

cultivation and biomass utilization as a method for post-combustion carbon capture from the 

power industry. A 12-month continuous cultivation using natural gas fired flue gas was achieved 

and the optimal conditions of the culture were determined. A daily harvesting rate of 60% of the 

reactor volume with 24 hours of continuous light and using NH4NO3 as a nitrogen source and pH 

stabilization reagent resulted in optimal cultivation performance. The harvested biomass proved 

to be rich in protein, at 58.6% of the dry matter, despite the varying culture conditions. The 

different operating conditions were found to have no significant effect on culture performance 

and the microbial assemblage remained stable throughout the duration of the study, 

demonstrating the resilience of C. sorokiniana.  

Biomass harvested from the 100 L PBR was used to optimize a mechanochemical protein 

extraction and recovery protocol. A protein extraction of 52.7  6.45% was achieved and the acid 

precipitation method was able to recover 98.7% of proteins from a 20% w/w slurry. The energy 

analysis concluded that the energy demand of the cell disruption operation was 0.83 MJ/kg dry 

biomass. This is much lower than previous reports using high-pressure homogenization, making 

the mechanochemical method the preferred method for protein extraction. Collectively, this 

study suggests that mechanochemical protein extraction and recovery is an effective, low-energy 

processing method. Polyols were successfully synthesized from microalgal biomass harvested 

from the 100 L PBR and show a close similarity to the characteristics from reference polyols, 

indicating that microalgal polyols have the potential to be a viable alternative to petrochemical 

polyols. The results of the LCA indicate that microalgal polyols have some environmental 

tradeoffs, however the results of the TEA show that the MPSPs of the microalgal polyols are 

significantly lower than polyether polyol.  
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The LCA and TEA of the MAASS capture system demonstrated the advantages of using 

a biobased capture solvent as an alternative to amine solvents, like MEA. Mass and energy 

analyses concluded that the high absorption capacity of the MAASS led to significantly lower 

mass flow rates and thus, the MAASS system required significantly less heat energy for 

regeneration and solvent heat exchange when compared to MEA. The toxic byproducts of MEA 

degradation resulted in significantly higher life cycle impacts than the MAASS and the TEA 

concluded that MAASS solvent can achieve the same carbon capture efficiency with a 30% 

lower cost of the CO2 compared to MEA.  

A secondary outcome of this study was to identify the data gaps that still exist and the future 

work that needs to be completed based on the findings discussed herein. Although the protein 

extraction and recovery efficiencies indicate that the mechanochemical method was successful, 

the measured protein content of the protein isolate remained relatively low at 41.4% w/w. This 

suggests that the precipitation method is successful at recovering nearly all extracted proteins but 

is unsuccessful in the removal of non-protein cell matter. Future work needs to address the 

removal of all non-protein solids from the microalgal slurry to increase the purity of the protein 

isolate. In addition, further analysis should be completed to determine whether this method is 

viable on a process scale. 

Sensitivity analyses of LCA and TEA results for the microalgal polyols elucidated that MEA 

and PC flows have the biggest impact on both the overall environmental impact and the MPSP.  

Future work should investigate the impact of modifying the polyol synthesis protocol to reduce 

PC consumption. The reduction of MEA could be achieved by using wet biomass as a feedstock 

with lower MEA mass ratios. Increasing the amount of biomass used while simultaneously 

reducing MEA consumption would increase the biobased content of the polyols and decrease the 
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environmental impacts of microalgal polyols. Finally, a cradle-to-grave LCA should be 

conducted to comprehensively evaluate the environmental impact of microalgal polyols 

compared to petrochemical polyols. 

Despite the promising results of the LCA and TEA of a MAASS post-combustion carbon 

capture system, more studies on its potential degradation products, and the associated upstream 

and downstream impacts, are needed to affirm this result. The outlook on the results from future 

analyses of upstream processes is promising when comparing the two solvents, as MEA is a 

petrochemical and the MAASS does not rely on any petroleum-based products. Additional 

investigation and reassessment of the MAASS capture system is needed to continually prove the 

validity of the findings in this report. 

The data and results reported in this document represent information that can be used by 

policymakers and industry to advance microalgal research and promote the adoption of 

sustainable microalgal technologies. Mass, energy, life cycle, and techno-economic analyses 

provide results that decision-makers can use to advance the implementation of emerging 

technologies. These frameworks are critical tools for communication of research findings and 

should be utilized as such. The results in this document represent the outcomes of collaboration 

between industry and research and demonstrate the actionable solutions that can come from such 

collaborations. Cooperation between industry, government, and research creates opportunities for 

real change to be made. The results of such opportunities have the potential to be policy changes, 

or new policy altogether, that will lead us to a more sustainable future. 
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APPENDIX A: 

 

Original Codes 
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CHAPTER 2 

## Statistical analysis 
## Long Term algal cultivation 
 
# Load libraries ----- 
  library (MASS) 
  library(ggplot2)  
  library(grid) 
  library(gridExtra) 
  library(ggpubr) 
  library(plyr) 
  library(inferr) 
  library(extrafont) 
  font_import()  
  loadfonts(device="win") 
   
# Plot bar chart with standard deviation ----- 
  #data: a data frame 
  #varname: the name of a column containing the variable to be summarized 
  #groupnames: vector of column names to be used as 
  data_summary <- function(data, varname, groupnames){ 
    require(plyr) 
    summary_func <- function(x, col){ 
      c(mean = mean(x[[col]], na.rm=TRUE), 
        sd = sd(x[[col]], na.rm=TRUE)) 
    } 
    data_sum<-ddply(data, groupnames, .fun=summary_func, 
                    varname) 
    data_sum <- rename(data_sum, c("mean" = varname)) 
    return(data_sum) 
  } 
 
# Choose data file metadata_main.txt ----- 
con <-file.choose(new = FALSE) 
mastermetadata <- read.table(con, header = T, row.names = 1, fill = TRUE) 
head(mastermetadata) 
metadata<-mastermetadata[-c(1:9),] # removes data with missing NO3/NH3 measur
ements and places it into the metadata DF 
head(metadata) 
 
# Define factors for metadata and mastermetadata ----- 
metadata$Harvesting_amount <- factor(metadata$Harvesting_amount)  
metadata$SO2_supplement <- factor(metadata$SO2_supplement)  
metadata$Light_cycle <- factor(metadata$Light_cycle)  
metadata$NaOH_addition <- factor(metadata$NaOH_addition)  
 
mastermetadata$Harvesting_amount <- factor(mastermetadata$Harvesting_amount)  
mastermetadata$SO2_supplement <- factor(mastermetadata$SO2_supplement)  
mastermetadata$Light_cycle <- factor(mastermetadata$Light_cycle)  
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mastermetadata$NaOH_addition<-factor(mastermetadata$NaOH_addition) 
 
# Section 1: Effects of dark-light cycle on the cultivation ----- 
  # Select light cycle data; 30% harvesting with SO2 addition and no NaOH 
  data1 <- metadata[which(metadata$Harvesting_amount=="30" & metadata$SO2_sup
plement=="Yes" & metadata$NaOH_addition=="No"),] 
  data1$Light_cycle<-factor(data1$Light_cycle) 
 
  ## Stats ## 
   
  # Each data set is tested for normality 
  # Normal data is tested for equal variance with an f test using var.test 
  # Non-normal data is tested for equal variance with levenes test using infe
r_levene_test 
  # Normal & equal variance-->t test, var.equal=TRUE 
  # Normal & non-equal variance-->t test, var.equal=FALSE 
  # Non-normal & equal variance-->KW test 
  # Non-normal & non-equal varianve-->KW test 
   
  # Biomass concentration  
  # Normality 
  shapiro.test(data1$Biomass_before_harvesting)  
  # Variance 
  infer_levene_test(data1, Light_cycle, Biomass_before_harvesting) 
  # Significance 
  kruskal.test(Biomass_before_harvesting ~ Light_cycle, data = data1) 
   
  # Biomass productivity 
  # Normality 
  shapiro.test(data1$Biomass_productivity) 
  # Variance 
  var.test(Biomass_productivity ~ Light_cycle, data = data1) 
  # Significance 
  t.test(data1$Biomass_productivity ~ data1$Light_cycle,var.equal=FALSE) 
 
  # pH 
  # Normality 
  shapiro.test(data1$pH_before_harvesting) 
  # Variance 
  var.test(pH_before_harvesting ~ Light_cycle, data = data1) 
  # Significance 
  t.test(data1$pH_before_harvesting ~ data1$Light_cycle,var.equal=TRUE) 
 
  # TN reduction 
  # Normality 
  shapiro.test(data1$TN_reduction) 
  # Variance 
  infer_levene_test(data1, Light_cycle, TN_reduction) 
  # Significance  
  kruskal.test(TN_reduction ~ Light_cycle, data = data1) 
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  # TP reduction 
  # Normality 
  shapiro.test(data1$TP_reduction) 
  # Variance 
  infer_levene_test(data1, Light_cycle, TP_reduction) 
  # Significance  
  kruskal.test(TP_reduction ~ Light_cycle, data = data1) 
 
  # NH3 reduction 
  # Normality 
  shapiro.test(data1$NH3_N_reduction) 
  # Variance 
  infer_levene_test(data1, Light_cycle, NH3_N_reduction) 
  # Significance 
  kruskal.test(NH3_N_reduction ~ Light_cycle, data = data1) 
 
  # NO3 reduction 
  # Normality 
  shapiro.test(data1$NO3_N_reduction) 
  # Variance 
  var.test(NO3_N_reduction ~ Light_cycle, data = data1) 
  # Significance 
  t.test(data1$NO3_N_reduction ~ data1$Light_cycle,var.equal=TRUE) 
   
  ## Plots ## 
   
  #Biomass concentration 
  box_1 <- ggplot(data1, aes(x=Light_cycle, y=Biomass_before_harvesting, fill
=Light_cycle)) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("Biomass Concentration (g/L)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_1  
   
  # Biomass productivity 
  box_2 <- ggplot(data1, aes(x=Light_cycle, y=Biomass_productivity, fill=Ligh
t_cycle)) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("Biomass Productivity (g/L/day)") + labs(title = "", subtitle=NULL) 
+  
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    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_2  
   
  # pH 
  box_3 <- ggplot(data1, aes(x=Light_cycle, y=pH_before_harvesting, fill=Ligh
t_cycle)) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("pH") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_3  
   
  # TN reduction 
  box_4 <- ggplot(data1, aes(x=Light_cycle, y=TN_reduction, fill=Light_cycle)
) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("TN Consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_4  
   
  # TP reduction 
  box_5 <- ggplot(data1, aes(x=Light_cycle, y=TP_reduction, fill=Light_cycle)
) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("TP Consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
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          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_5  
   
  # NH3 reduction 
  box_6 <- ggplot(data1, aes(x=Light_cycle, y=NH3_N_reduction, fill=Light_cyc
le)) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("NH3 Consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_6 
   
  # NO3 reduction 
  box_7 <- ggplot(data1, aes(x=Light_cycle, y=NO3_N_reduction, fill=Light_cyc
le)) +  
    geom_boxplot() +  
    xlab("Light-Dark Cycle")+ 
    ylab("NO3 Consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_7 
   
# Section 2: Effects of S on cultivation and biomass composition ----- 
  # Select SO2 data; 30% harvesting with no light cycle and no NaOH 
  data2<-metadata[which(metadata$Harvesting_amount=="30" & metadata$NaOH_addi
tion=="No" & metadata$Light_cycle=="No"),] 
  head(data2) 
 
  ## Stats ## 
   
  # Biomass concentration  
  # Normality 



130 

  shapiro.test(data2$Biomass_before_harvesting)  
  # Variance 
  var.test(Biomass_before_harvesting ~ SO2_supplement, data = data2) 
  # Significance 
  t.test(data2$Biomass_before_harvesting ~ data2$SO2_supplement,var.equal=TRU
E) 
   
  # Biomass productivity 
  # Normality 
  shapiro.test(data2$Biomass_productivity) 
  # Variance 
  infer_levene_test(data2, SO2_supplement, Biomass_productivity) 
  # Significance 
  kruskal.test(Biomass_productivity ~ SO2_supplement, data = data2) 
   
  # pH 
  # Normality 
  shapiro.test(data2$pH_before_harvesting) 
  # Variance 
  var.test(pH_before_harvesting ~ SO2_supplement, data = data2) 
  # Significance 
  t.test(data2$pH_before_harvesting ~ data2$SO2_supplement,var.equal=TRUE) 
   
  # TN reduction 
  # Normality 
  shapiro.test(data2$TN_reduction) 
  # Variance 
  infer_levene_test(data2, SO2_supplement, TN_reduction) 
  # Significance  
  kruskal.test(TN_reduction ~ SO2_supplement, data = data2) 
   
  # TP reduction 
  # Normality 
  shapiro.test(data2$TP_reduction) 
  # Variance 
  infer_levene_test(data2, SO2_supplement, TP_reduction) 
  # Significance  
  kruskal.test(TP_reduction ~ SO2_supplement, data = data2) 
   
  # NH3 reduction 
  # Normality 
  shapiro.test(data2$NH3_N_reduction) 
  # Variance 
  var.test(NH3_N_reduction ~ SO2_supplement, data = data2) 
  # Significance 
  t.test(data2$NH3_N_reduction ~ data2$SO2_supplement,var.equal=TRUE) 
   
  # NO3 reduction 
  # Normality 
  shapiro.test(data2$NO3_N_reduction) 
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  # Variance 
  var.test(NO3_N_reduction ~ SO2_supplement, data = data2) 
  # Significance 
  t.test(data2$NO3_N_reduction ~ data2$SO2_supplement,var.equal=TRUE) 
   
  ## Plots ## 
 
  #Biomass concentration 
  box_8 <- ggplot(data2, aes(x=SO2_supplement, y=Biomass_before_harvesting, f
ill=SO2_supplement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("Biomass Concentration (g/L)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_8 
   
  # Biomass productivity 
  box_9 <- ggplot(data2, aes(x=SO2_supplement, y=Biomass_productivity, fill=S
O2_supplement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("Biomass Productivity (g/L/day)") + labs(title = "", subtitle=NULL) 
+  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_9 
   
  # pH 
  box_10 <- ggplot(data2, aes(x=SO2_supplement, y=pH_before_harvesting, fill=
SO2_supplement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("pH") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
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          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_10 
   
  # TN reduction 
  box_11 <- ggplot(data2, aes(x=SO2_supplement, y=TN_reduction, fill=SO2_supp
lement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("TN consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_11 
   
  # TP reduction 
  box_12 <- ggplot(data2, aes(x=SO2_supplement, y=TP_reduction, fill=SO2_supp
lement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("TP consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_12 
   
  # NH3 reduction 
  box_13 <- ggplot(data2, aes(x=SO2_supplement, y=NH3_N_reduction, fill=SO2_s
upplement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("NH3 consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
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d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_13 
   
  # NO3 reduction 
  box_14 <- ggplot(data2, aes(x=SO2_supplement, y=NO3_N_reduction, fill=SO2_s
upplement)) +  
    geom_boxplot() +  
    xlab("SO2 Supplement")+ 
    ylab("NO3 consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_14 
 
# Section 3: pH stabilization using NH4NO3 and NaOH/NH4Cl ----- 
  # Data will be selected from modified metadata (mastermetadata) that includ
es dates missing NO3/NH3 data aka ph control days 
  # Select pH data; 30% harvesting with no light cycle and no SO2 
  data3<-mastermetadata[which(mastermetadata$Harvesting_amount=="30" & master
metadata$SO2_supplement=="No" & mastermetadata$Light_cycle=="No"),] 
  head(data3) 
   
  ## Stats ## 
 
  # Biomass concentration  
  # Normality 
  shapiro.test(data3$Biomass_before_harvesting)  
  # Variance 
  infer_levene_test(data3, NaOH_addition, Biomass_before_harvesting) 
  # Significance 
  kruskal.test(Biomass_before_harvesting ~ NaOH_addition, data = data3) 
   
  # Biomass productivity 
  # Normality 
  shapiro.test(data3$Biomass_productivity)  
  # Variance 
  infer_levene_test(data3, NaOH_addition, Biomass_productivity) 
  # Significance 
  kruskal.test(Biomass_productivity ~ NaOH_addition, data = data3) 
   
  # pH 
  # Normality 
  shapiro.test(data3$pH_before_harvesting)  
  # Variance 



134 

  var.test(pH_before_harvesting ~ NaOH_addition, data = data3) 
  # Significance 
  t.test(data3$pH_before_harvesting ~ data3$NaOH_addition,var.equal=TRUE) 
   
  # TN reduction 
  # Normality 
  shapiro.test(data3$TN_reduction)  
  # Variance 
  infer_levene_test(data3, NaOH_addition, TN_reduction) 
  # Significance 
  kruskal.test(TN_reduction ~ NaOH_addition, data = data3) 
   
  # TP reduction 
  # Normality 
  shapiro.test(data3$TP_reduction)  
  # Variance 
  var.test(TP_reduction ~ NaOH_addition, data = data3) 
  # Significance 
  t.test(data3$TP_reduction ~ data3$NaOH_addition,var.equal=TRUE) 
   
  # There is no NH3 or NO3 data for the pH control data 
 
  ## Plots ## 
   
  #Biomass concentration 
  box_15 <- ggplot(data3, aes(x=NaOH_addition, y=Biomass_before_harvesting, f
ill=NaOH_addition)) +  
    geom_boxplot() +  
    xlab("NaOH Supplement")+ 
    ylab("Biomass Concentration (g/L)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_15 
   
  # Biomass productivity 
  box_16 <- ggplot(data3, aes(x=NaOH_addition, y=Biomass_productivity, fill=N
aOH_addition)) +  
    geom_boxplot() +  
    xlab("NaOH Supplement")+ 
    ylab("Biomass Productivity (g/L/day)") + labs(title = "", subtitle=NULL) 
+  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
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          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_16 
   
  # pH 
  box_17 <- ggplot(data3, aes(x=NaOH_addition, y=pH_before_harvesting, fill=N
aOH_addition)) +  
    geom_boxplot() +  
    xlab("NaOH Supplement")+ 
    ylab("pH") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_17 
   
  # TN reduction 
  box_18 <- ggplot(data3, aes(x=NaOH_addition, y=TN_reduction, fill=NaOH_addi
tion)) +  
    geom_boxplot() +  
    xlab("NaOH Supplement")+ 
    ylab("TN consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_18 
   
  # TP reduction 
  box_19 <- ggplot(data3, aes(x=NaOH_addition, y=TP_reduction, fill=NaOH_addi
tion)) +  
    geom_boxplot() +  
    xlab("NaOH Supplement")+ 
    ylab("TP consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
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          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1")) 
  box_19 
   
  # There is no NH3 or NO3 data for the pH control data 
 
# Section 4: Effects of cultivation conditions on biomass production and comp
osition   ----- 
  # Select all data without light cycle 
  data4<-metadata[which(metadata$Light_cycle=="No"),] 
  head(data4) 
   
  ## Stats ## 
   
  # Each data set is tested for normality 
  # Levenes test and KW test are used for all variance and significance testi
ng when comparing harvesting amounts 
  # var.test and t.test require grouping on two levels (yes/no) which can't b
e done with different harvesting amounts 
   
  # Biomass concentration 
  # Normality 
  shapiro.test(data4$Biomass_before_harvesting)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, Biomass_before_harvesting) 
  # Significance 
  kruskal.test(Biomass_before_harvesting ~ Harvesting_amount, data = data4) 
   
  # Biomass productivity 
  # Normality 
  shapiro.test(data4$Biomass_productivity)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, Biomass_productivity) 
  # Significance 
  kruskal.test(Biomass_productivity ~ Harvesting_amount, data = data4) 
   
  # pH 
  # Normality 
  shapiro.test(data4$pH_before_harvesting)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, pH_before_harvesting) 
  # Significance 
  kruskal.test(pH_before_harvesting ~ Harvesting_amount, data = data4) 
   
  # TN reduction 
  # Normality 
  shapiro.test(data4$TN_reduction)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, TN_reduction) 
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  # Significance 
  kruskal.test(TN_reduction ~ Harvesting_amount, data = data4) 
 
  # TP reduction 
  # Normality 
  shapiro.test(data4$TP_reduction)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, TP_reduction) 
  # Significance 
  kruskal.test(TP_reduction ~ Harvesting_amount, data = data4) 
   
  # NH3 reduction 
  # Normality 
  shapiro.test(data4$NH3_N_reduction)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, NH3_N_reduction) 
  # Significance 
  kruskal.test(NH3_N_reduction ~ Harvesting_amount, data = data4) 
   
  # NO3 reduction 
  # Normality 
  shapiro.test(data4$NO3_N_reduction)  
  # Variance 
  infer_levene_test(data4, Harvesting_amount, NO3_N_reduction)  
  # Significance 
  kruskal.test(NO3_N_reduction ~ Harvesting_amount, data = data4) 
   
  ## Plots ## 
   
  #Biomass concentration 
  box_20 <- ggplot(data4, aes(x=Harvesting_amount, y=Biomass_before_harvestin
g, fill=Harvesting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("Biomass Concentration (g/L)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_20 
   
  # Biomass productivity 
  box_21 <- ggplot(data4, aes(x=Harvesting_amount, y=Biomass_productivity, fi
ll=Harvesting_amount)) +  
    geom_boxplot() +  
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    xlab("Harvesting Amount (%)")+ 
    ylab("Biomass Productivity (g/L/day)") + labs(title = "", subtitle=NULL) 
+  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_21 
   
  # pH 
  box_22 <- ggplot(data4, aes(x=Harvesting_amount, y=pH_before_harvesting, fi
ll=Harvesting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("pH") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_22 
   
  # TN reduction 
  box_23 <- ggplot(data4, aes(x=Harvesting_amount, y=TN_reduction, fill=Harve
sting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("TN consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_23 
   
  # TP reduction 
  box_24 <- ggplot(data4, aes(x=Harvesting_amount, y=TP_reduction, fill=Harve
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sting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("TP consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_24 
   
  # NH3 reduction 
  box_25 <- ggplot(data4, aes(x=Harvesting_amount, y=NH3_N_reduction, fill=Ha
rvesting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("NH3 consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_25 
   
  # NO3 reduction 
  box_26 <- ggplot(data4, aes(x=Harvesting_amount, y=NO3_N_reduction, fill=Ha
rvesting_amount)) +  
    geom_boxplot() +  
    xlab("Harvesting Amount (%)")+ 
    ylab("NO3 consumed (mg/L/day)") + labs(title = "", subtitle=NULL) +  
    theme_classic() + 
    theme(title=element_text(size=20, family="Times New Roman"),  
          axis.text.x = element_text(size=20, family="Times New Roman"),  
          axis.text.y=element_text(size=20, family="Times New Roman"),  
          axis.title.y = element_text(size = 20, family="Times New Roman"),  
          axis.title.x=element_text(size=20, family="Times New Roman"), legen
d.position = "none") + 
    scale_fill_manual(values=c("seagreen4", "darkgoldenrod1", "indianred", "d
odgerblue", "darkorange")) 
  box_26 
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## Metagenomic analysis part A 
## Alpha diversity, rarefaction, beta diversity 
## Long Term Algal Cultivation 
 
## Load libraries ---------------------------------------------- 
  library(vegan) 
  library(phyloseq) 
  library (MASS) 
  library(ggplot2)  
  library(grid) 
  library(gridExtra) 
  library(ggpubr) 
  #Gene frequency data from QIIME2 
 
## Choose data files ----- 
  
 #Choose the FrequencyTable.txt 
  con <- file.choose(new = FALSE) 
  Frequency_Table <- read.table(con, header = T, row.names = 1) 
  #Choose the FrequencyTable_Taxanomy.txt 
  con1 <-file.choose(new = FALSE) 
  Frequency_Table_taxonomy <- read.delim(con1, header = T, row.names = 1) 
 
## Alpha Diversity ----- 
  #Create a matrix object with the data frame 
  t.Frequency.table <- t(Frequency_Table)  # Transpose the data 
  class(t.Frequency.table) # Check the class of the table 
   
  #Alpha diversity analysis indexes 
  #Shannon 
  H <- diversity(t.Frequency.table, index = "shannon", MARGIN = 1, base = exp
(1)) 
  #Simpson 
  D <- diversity(t.Frequency.table, "simpson", MARGIN = 1, base = exp(1))  
  #Inverse Simpson 
  iD <- diversity(t.Frequency.table, "inv") 
  #Pielou's evenness 
  J<-H/log(specnumber(t.Frequency.table))  
  #List all indexes 
  IN <- cbind(H,D,iD,J) 
  IN 
  write.csv(IN, "diversity.csv") 
   
  #Plot H, D, iD, and J 
  plot(H) 
  plot(D) 
  plot(iD) 
  plot(J) 
   
  #Estimate Chao1 and ACE 
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  estimateR(t.Frequency.table) 
 
## ANOVA for Alpha Diversity ----- 
   
  #Using the H, D, iD, and J data to generate "alphadiversity.txt" to run one 
way ANOVA 
  #Choose alphadiversity.txt  
  con3 <-file.choose(new = FALSE) 
  alphadiversity <- read.table(con3, header = T, row.names = 1) 
   
  #Define factors for alpha diversity 
  alphadiversity$Harvesting_amount <- factor(alphadiversity$Harvesting_amount
) 
  alphadiversity$SO2_supplement <- factor(alphadiversity$SO2_supplement) 
  alphadiversity$NaOH_addition <- factor(alphadiversity$NaOH_addition) 
  #Light cycle is not included because there are no microbial samples for "ye
s" light cycle 
   
  #ANOVA of H index 
  Hfit <- aov(H ~ Harvesting_amount*SO2_supplement*NaOH_addition, data = alph
adiversity) 
  summary(Hfit) 
   
  #ANOVA of D index 
  Dfit <- aov(D ~ Harvesting_amount*SO2_supplement*NaOH_addition, data = alph
adiversity) 
  summary(Dfit) 
   
  #ANOVA of iD index 
  iDfit <- aov(iD ~ Harvesting_amount*SO2_supplement*NaOH_addition, data = al
phadiversity) 
  summary(iDfit) 
 
  #ANOVA of J index 
  Jfit <- aov(J ~ Harvesting_amount*SO2_supplement*NaOH_addition, data = alph
adiversity) 
  summary(Jfit) 
 
## Plots of H and J ----- 
 
  box_1 <- ggboxplot(alphadiversity, x = "Harvesting_amount", y = "H", color=
"Light_cycle")+ ylab("Shannon's Index (H)") +  
    theme(legend.position="right",  
          axis.text.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.x = element_blank(),  
          axis.title.y = element_text(size = 14, family="Times New Roman"),  
          axis.text.y = element_text(size = 12, family="Times New Roman"),  
          legend.text = element_text(size = 12, family="Times New Roman"), 
          legend.title = element_text(size = 14, family="Times New Roman"), 
          plot.title= element_blank()) 
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  box_1 
   
  box_2 <- ggboxplot(alphadiversity, x = "Harvesting_amount", y = "J", color=
"Light_cycle")+ ylab("Pielou's Index (J)") + 
    theme(legend.position="right",  
          axis.text.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.x = element_blank(),  
          axis.title.y = element_text(size = 14, family="Times New Roman"),  
          axis.text.y = element_text(size = 12, family="Times New Roman"),  
          legend.text = element_text(size = 12, family="Times New Roman"), 
          legend.title = element_text(size = 14, family="Times New Roman"), 
          plot.title= element_blank()) 
  box_2 
 
## Rarefaction ----- 
 
  col <- c("black", "darkred", "forestgreen", "orange", "blue", "yellow", "ho
tpink") 
  lty <- c("solid", "dashed", "longdash", "dotdash") 
  pars <- expand.grid(col = col, lty = lty, stringsAsFactors = FALSE) 
  head(pars) 
  ra <- rarecurve(t.Frequency.table, step = 20, col =col,lty = lty, cex = 0.6
) # curve of rarefication 
  rad <- rad.lognormal(t.Frequency.table) # Rank of Abundance 
  rad1 <- plot(rad, xlab = "Rank", ylab = "Abundance") # Plotting the rank 
 
## Beta diversity ----- 
 
  beta <- vegdist(t.Frequency.table, binary = TRUE) 
  pcoa.obj <- capscale(t.Frequency.table ~ 1, distance = "bray")  
  plot(pcoa.obj) #plot the PcoA plot 
  text(scores(pcoa.obj)$sites[,1], scores(pcoa.obj)$sites[,2]) # change of th
e labes 
  labels=row.names(t.Frequency.table) 
 
## Vegan Tools ----- 
   
  #Rank Indexes study 
  rankindex(scale(t.Frequency.table), t.Frequency.table, c("euc", "man", "bra
y", "jac", "kul")) 
   
  #monMDS 
  vare.mds <- metaMDS(t.Frequency.table, trace = FALSE) 
  vare.mds 
  plot(vare.mds, type ="t") 
  stressplot(vare.mds) 
   
  metaNMDS <- metaMDS(t.Frequency.table, distance = "bray",  
                      k = 2, trymax = 20, engine = c("monoMDS"),  
                      wascores = TRUE, expand = TRUE, trace = 1, plot = FALSE
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) #Run the NMDS 
  stressplot(metaNMDS) 
   
  ordiplot(metaNMDS, type = "n") 
  orditorp(metaNMDS, display = "species", choices = c(1,2), air = 1) 
 
## Dendogram ----- 
 
  distance <-vegdist(t.Frequency.table, method="euclidean") ## Production of 
Distance Matrix 
  cluster <- hclust(distance, method="complete", members = NULL) ## Productio
n of Hierarchical Cluster Production 
  tree_m <- plot(cluster, xlab = "Samples", sub = NULL, main ="Dendogram") 
   
  range(distance) 
  rect.hclust(cluster, k = 3, border = "red") 
  grp <- cutree(cluster, k = 3) 

 

## Metagenomic analysis part B, ANOVAs 
## Relative abundance 
## Long Term Algal Cultivation 
 
## Load libraries ----- 
  library(vegan) 
  library(phyloseq) 
  library (MASS) 
  library(ggplot2)  
  library(grid) 
  library(gridExtra) 
  library(ggpubr) 
  library(extrafont) 
  font_import() #It may take a few minutes to import.  
  loadfonts(device="win") 
 
## Import data files ----- 
   
  #Choose RelativeFrequencyTable.txt 
  con <- file.choose(new = FALSE) 
  Frequency_Table <- read.table(con, header = T, row.names = 1) 
  #Choose FrequencyTable_Taxanomy.txt 
  con1 <-file.choose(new = FALSE) 
  Frequency_Table_taxonomy <- read.delim(con1, header = T, row.names = 1) 
  #Choose metadata_partb.txt 
  con2 <-file.choose(new = FALSE) 
  metadata <- read.table(con2, header = T, row.names = 1, fill = TRUE) 
 
## Phyloseq -----  
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  Full_Frequency <- cbind.data.frame(Frequency_Table, Frequency_Table_taxonom
y) 
  Frequency <- otu_table(Frequency_Table,taxa_are_rows = TRUE) #Frequency tab
le production for phyloseq 
  TAX <- tax_table(as.matrix(Frequency_Table_taxonomy)) #Taxanomy production 
for phyloseq 
  physeq <- phyloseq(Frequency, TAX) #physeq document production 
  physeq0 <- tax_glom(physeq, taxrank=rank_names(physeq)[7], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tax_table(physeq0) 
 
## Overall abundances for Domain, Phylum, Class, Order, and Family --------- 
  
  #Domain Abundance   
  physeqa <-tax_glom(physeq, taxrank=rank_names(physeq)[1], NArm=TRUE, bad_em
pty=c(NA, "", " ", "\t")) 
  tablea <- otu_table(physeqa) 
  tablea 
  write.csv(tablea, "domain.csv") 
   
  #Phylum Abundance   
  physeqa1 <-tax_glom(physeq, taxrank=rank_names(physeq)[2], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea1 <- otu_table(physeqa1) 
  tablea1 
  write.csv(tablea1, "Phylum.csv") 
   
  #Class Abundance   
  physeqa2 <-tax_glom(physeq, taxrank=rank_names(physeq)[3], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea2 <- otu_table(physeqa2) 
  tablea2 
  write.csv(tablea2, "Class.csv") 
   
  #Order Abundance   
  physeqa3 <-tax_glom(physeq, taxrank=rank_names(physeq)[4], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea3 <- otu_table(physeqa3) 
  tablea3 
  write.csv(tablea3, "Order.csv") 
   
  #Family Abundance   
  physeqa4 <-tax_glom(physeq, taxrank=rank_names(physeq)[5], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea4 <- otu_table(physeqa4) 
  tablea4 
  write.csv(tablea4, "Family.csv") 
   
  #Genus Abundance   
  physeqa5 <-tax_glom(physeq, taxrank=rank_names(physeq)[6], NArm=TRUE, bad_e
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mpty=c(NA, "", " ", "\t")) 
  tablea5 <- otu_table(physeqa5) 
  tablea5 
  write.csv(tablea5, "Genus.csv") 
 
## Abundance Plotbar Bacteria ----- 
  
  #Bacteria Abundance (Phylum) 
  physeq2 <-subset_taxa(physeq, Domain== "Bacteria") 
  physeq2_1 <-tax_glom(physeq2, taxrank=rank_names(physeq2)[2], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table2_1 <- otu_table(physeq2_1) 
  write.csv(table2_1, "bacterialPhylum.csv") 
   
  #Bacteroidetes Abundance (Family) 
  physeq3 <-subset_taxa(physeq, Phylum == "Bacteroidetes") 
  physeq3_1 <-tax_glom(physeq3, taxrank=rank_names(physeq3)[5], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table3_1 <- otu_table(physeq3_1) 
  table3_1 
  write.csv(table3_1, "BacteroidetesFamily.csv") 
   
  #Proteobacteria Abundance (Family) 
  physeq5 <-subset_taxa(physeq, Phylum == "Proteobacteria") 
  physeq5_1 <-tax_glom(physeq5, taxrank=rank_names(physeq5)[5], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table5_1 <- otu_table(physeq5_1) 
  table5_1 
  write.csv(table5_1, "ProteobacteriaFamily.csv") 
 
## ANOVA on abundances of key microbial communities ----- 
  
  #ANOVA Bacteria (Domain) 
  Bacteria <- aov(Bacteria ~ Harvesting_amount*SO2_supplement*NaOH_addition, 
data = metadata) 
  summary(Bacteria) 
   
  #ANOVA Eukarya (Domain) 
  Eukarya <- aov(Eukarya ~ Harvesting_amount*SO2_supplement*NaOH_addition, da
ta = metadata) 
  summary(Eukarya) 
   
  #ANOVA Bacteroidetes (Phylum) 
  Bacteroidetes <- aov(Bacteroidetes ~ Harvesting_amount*SO2_supplement*NaOH_
addition, data = metadata) 
  summary(Bacteroidetes) 
   
  #ANOVA Proteobacteria (Phylum) 
  Proteobacteria <- aov(Proteobacteria ~ Harvesting_amount*SO2_supplement*NaO
H_addition, data = metadata) 
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  summary(Proteobacteria) 
   
  #ANOVA Proteobacteria_unclassified (Class) 
  Proteobacteria_unclassified <- aov(Proteobacteria_unclassified ~ Harvesting
_amount*SO2_supplement*NaOH_addition, data = metadata) 
  summary(Proteobacteria_unclassified) 
   
  #ANOVA Gammaproteobacteria (Class) 
  Gammaproteobacteria <- aov(Gammaproteobacteria ~ Harvesting_amount*SO2_supp
lement*NaOH_addition, data = metadata) 
  summary(Gammaproteobacteria) 
   
  #ANOVA Alphaproteobacteria (Class) 
  Alphaproteobacteria <- aov(Alphaproteobacteria ~ Harvesting_amount*SO2_supp
lement*NaOH_addition, data = metadata) 
  summary(Alphaproteobacteria) 
   
  #ANOVA Betaproteobacteria (Class) 
  Betaproteobacteria <- aov(Betaproteobacteria ~ Harvesting_amount*SO2_supple
ment*NaOH_addition, data = metadata) 
  summary(Betaproteobacteria) 
   
  #ANOVA Actinobacteria (Class) 
  Actinobacteria <- aov(Actinobacteria ~ Harvesting_amount*SO2_supplement*NaO
H_addition, data = metadata) 
  summary(Actinobacteria) 
   
  #ANOVA Bacteroidetes_unclassified (Family) 
  Bacteroidetes_unclassified <- aov(Bacteroidetes_unclassified ~ Harvesting_a
mount*SO2_supplement*NaOH_addition, data = metadata) 
  summary(Bacteroidetes_unclassified) 
   
  #ANOVA Chitinophagaceae (Family) 
  Chitinophagaceae <- aov(Chitinophagaceae ~ Harvesting_amount*SO2_supplement
*NaOH_addition, data = metadata) 
  summary(Chitinophagaceae) 
   
  #ANOVA Cytophagales_unclassified (Family) 
  Cytophagales_unclassified <- aov(Cytophagales_unclassified ~ Harvesting_amo
unt*SO2_supplement*NaOH_addition, data = metadata) 
  summary(Cytophagales_unclassified) 
   
  #ANOVA Gammaproteobacteria_unclassified (Family) 
  Gammaproteobacteria_unclassified <- aov(Gammaproteobacteria_unclassified ~ 
Harvesting_amount*SO2_supplement*NaOH_addition, data = metadata) 
  summary(Gammaproteobacteria_unclassified) 
   
  #ANOVA Proteobacteria_unclassified (Family) 
  Proteobacteria_unclassified <- aov(Proteobacteria_unclassified ~ Harvesting
_amount*SO2_supplement*NaOH_addition, data = metadata) 
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  summary(Proteobacteria_unclassified) 
   
  #ANOVA Rhizobiales_unclassified (Family) 
  Rhizobiales_unclassified <- aov(Rhizobiales_unclassified ~ Harvesting_amoun
t*SO2_supplement*NaOH_addition, data = metadata) 
  summary(Rhizobiales_unclassified) 
 
## Network ----- 
  
  n <- make_network(physeq, max.dist =0.35) 
  plot_network(n, physeq, color = NULL, shape = NULL) 
 
## Beta-diversity analysis ------------------------------------------------ 
   
  t.Frequency.table <- t(Frequency_Table)  #transpose the data 
  class(t.Frequency.table) #check the class of the table 
  View(Frequency_Table) 
  View(t.Frequency.table) 
   
  #Permutational analysis of variance 
  #adonis 
   
  betad <-betadiver(t.Frequency.table, 'z') 
   
  adonis(betad~Archaea, metadata, perm=200) 
  adonis(betad~Bacteria, metadata, perm=200) 
   
  adonis(betad~Euryarchaeota, metadata, perm=200) 
  adonis(betad~Bacteria_unclassified_phylum, metadata, perm=200) 
   
  adonis(betad~Bacteroidetes, metadata, perm=200) 
  adonis(betad~Firmicutes, metadata, perm=200) 
  adonis(betad~Proteobacteria, metadata, perm=200) 
   
  adonis(betad~YC_E6_unclassified_family, metadata, perm=200) 
  adonis(betad~Bacteroidetes_unclassified_family, metadata, perm=200) 
  adonis(betad~Clostridiaceae, metadata, perm=200) 

 

## Metagenomic analysis part B, plots  
## Relative abundance 
## Long Term Algal Cultivation 
 
## Load libraries ----- 
  library(vegan) 
  library(phyloseq) 
  library (MASS) 
  library(ggplot2)  
  library(grid) 
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  library(gridExtra) 
  library(ggpubr) 
  library(extrafont) 
  font_import() #It may take a few minutes to import.  
  loadfonts(device="win") 
 
## Import data files ----- 
  #Choose RelativeFrequencyTable.txt 
  con <- file.choose(new = FALSE) 
  Frequency_Table <- read.table(con, header = T, row.names = 1) 
  #Choose FrequencyTable_Taxanomy.txt 
  con1 <-file.choose(new = FALSE) 
  Frequency_Table_taxonomy <- read.delim(con1, header = T, row.names = 1) 
 
## Phyloseq -----  
  Full_Frequency <- cbind.data.frame(Frequency_Table, Frequency_Table_taxonom
y) 
  Frequency <- otu_table(Frequency_Table,taxa_are_rows = TRUE) #Frequency tab
le production for phyloseq 
  TAX <- tax_table(as.matrix(Frequency_Table_taxonomy)) #Taxanomy production 
for phyloseq 
  physeq <- phyloseq(Frequency, TAX) #physeq document production 
  physeq0 <- tax_glom(physeq, taxrank=rank_names(physeq)[7], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tax_table(physeq0) 
   
  # Plot 
  p = plot_bar(physeq0, fill = "Class", facet_grid=Domain~Phylum) + 
    xlab("Run") + ylab("Relative Frequency (%)") + 
    geom_bar(color = "black", size = .1, stat = "identity", position = "stack
")+ 
    theme(legend.position="right",  
        axis.text.x = element_text(size = 11, family="Times New Roman", angle 
= 45, hjust = 1), 
        axis.text.y = element_text(size = 11, family="Times New Roman"), 
        axis.title.x = element_text(size = 12, family="Times New Roman"),  
        axis.title.y = element_text(size = 12, family="Times New Roman"), 
        legend.text = element_text(size = 11, family="Times New Roman"), 
        legend.title= element_text(size = 12, family="Times New Roman")) 
  p 
 
## Overall abundances for Domain, Phylum, Class, Order, and Family ----- 
  #Abundance Plotbar Domain 
  physeqa <-tax_glom(physeq, taxrank=rank_names(physeq)[1], NArm=TRUE, bad_em
pty=c(NA, "", " ", "\t")) 
  tablea <- otu_table(physeqa) 
   
  a = plot_bar(physeqa, fill = "Domain") + 
    geom_bar(aes(color=Domain, fill=Domain), stat = "identity", position = "s
tack") +  
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    xlab("Run") + ylab("Relative Frequency (%)") + 
    theme(legend.position="right",  
        axis.text.x = element_text(size = 11, family="Times New Roman", angle 
= 45, hjust = 1), 
        axis.text.y = element_text(size = 11, family="Times New Roman"), 
        axis.title.x = element_text(size = 12, family="Times New Roman"),  
        axis.title.y = element_text(size = 12, family="Times New Roman"), 
        legend.text = element_text(size = 11, family="Times New Roman"), 
        legend.title= element_text(size = 12, family="Times New Roman")) 
  a 
   
  #Abundance Plotbar Phylum 
  physeqa1 <-tax_glom(physeq, taxrank=rank_names(physeq)[2], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea1 <- otu_table(physeqa1) 
   
  a1 = plot_bar(physeqa1, fill = "Phylum") + 
    geom_bar(aes(color=Phylum, fill=Phylum), stat = "identity", position = "s
tack") +  
    xlab("Run") + ylab("Relative Frequency (%)")  + 
    theme(legend.position="right",  
          axis.text.x = element_text(size = 11, family="Times New Roman", ang
le = 45, hjust = 1), 
          axis.text.y = element_text(size = 11, family="Times New Roman"), 
          axis.title.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.y = element_text(size = 12, family="Times New Roman"), 
          legend.text = element_text(size = 11, family="Times New Roman"), 
          legend.title= element_text(size = 12, family="Times New Roman")) 
  a1 
   
  #Abundance Plotbar Class 
  physeqa2 <-tax_glom(physeq, taxrank=rank_names(physeq)[3], NArm=TRUE, bad_e
mpty=c(NA, "", " ", "\t")) 
  tablea2 <- otu_table(physeqa2) 
   
  a2 = plot_bar(physeqa2, fill = "Class") + 
    geom_bar(aes(color=Class, fill=Class), stat = "identity", position = "sta
ck") +  
    xlab("Run") + ylab("Relative Frequency (%)") + 
    theme(legend.position="right",  
          axis.text.x = element_text(size = 11, family="Times New Roman", ang
le = 45, hjust = 1), 
          axis.text.y = element_text(size = 11, family="Times New Roman"), 
          axis.title.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.y = element_text(size = 12, family="Times New Roman"), 
          legend.text = element_text(size = 11, family="Times New Roman"), 
          legend.title= element_text(size = 12, family="Times New Roman")) 
  a2 
  ## Stop at the Class level 
  grid.arrange(a,a1,a2, ncol=1) 
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## Abundance Plotbar Bacteria------------ 
  #Abundance Plotbar Bacteria (Phylum) 
  physeq2 <-subset_taxa(physeq, Domain== "Bacteria") 
  physeq2_1 <-tax_glom(physeq2, taxrank=rank_names(physeq2)[2], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table2_1 <- otu_table(physeq2_1) 
   
  c = plot_bar(physeq2_1, fill = "Phylum") +  
    geom_bar(aes(color=Phylum, fill=Phylum), stat = "identity",position = "st
ack") +  
    xlab("Run") + ylab("Relative Frequency (%)") +  
    theme(legend.position="right",  
          axis.text.x = element_text(size = 11, family="Times New Roman", ang
le = 45, hjust = 1), 
          axis.text.y = element_text(size = 11, family="Times New Roman"), 
          axis.title.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.y = element_text(size = 12, family="Times New Roman"), 
          legend.text = element_text(size = 11, family="Times New Roman"), 
          legend.title= element_text(size = 12, family="Times New Roman")) 
  c 
   
  #Abundance Plotbar Bacteroidetes (Family) 
  physeq3 <-subset_taxa(physeq, Phylum == "Bacteroidetes") 
  physeq3_1 <-tax_glom(physeq3, taxrank=rank_names(physeq3)[5], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table3_1 <- otu_table(physeq3_1) 
  table3_1 
   
  d = plot_bar(physeq3_1, fill = "Family")+ geom_bar(aes(color=Family, fill=F
amily), stat = "identity",position = "stack") + 
    xlab("Run") + ylab("Bacteroidetes Relative Frequency (%)") + 
    theme(legend.position="right",  
          axis.text.x = element_text(size = 11, family="Times New Roman", ang
le = 45, hjust = 1), 
          axis.text.y = element_text(size = 11, family="Times New Roman"), 
          axis.title.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.y = element_text(size = 12, family="Times New Roman"), 
          legend.text = element_text(size = 11, family="Times New Roman"), 
          legend.title= element_text(size = 12, family="Times New Roman")) 
  d 
   
  #Abundance Plotbar Proteobacteria (Family) 
  physeq5 <-subset_taxa(physeq, Phylum == "Proteobacteria") 
  physeq5_1 <-tax_glom(physeq5, taxrank=rank_names(physeq5)[5], NArm=TRUE, ba
d_empty=c(NA, "", " ", "\t")) 
  table5_1 <- otu_table(physeq5_1) 
  table5_1 
  # write.csv(table5_1, "ProteobacteriaFamily.csv") 
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  f = plot_bar(physeq5_1, fill = "Family")+ geom_bar(aes(color=Family, fill=F
amily), stat = "identity",position = "stack") + 
    xlab("Run") + ylab("Proteobacteria Relative Frequency (%)") + 
    theme(legend.position="right",  
          axis.text.x = element_text(size = 11, family="Times New Roman", ang
le = 45, hjust = 1), 
          axis.text.y = element_text(size = 11, family="Times New Roman"), 
          axis.title.x = element_text(size = 12, family="Times New Roman"),  
          axis.title.y = element_text(size = 12, family="Times New Roman"), 
          legend.text = element_text(size = 11, family="Times New Roman"), 
          legend.title= element_text(size = 12, family="Times New Roman")) 
  f 
 
  #Put plots d and f next to each other 
  grid.arrange(d, f, ncol=1) 

CHAPTER 3 

## Statistical analysis 
## Mechanochemical cell disruption of algal biomass 
 
## Load libraries and data ---------------------------------------------- 
library(ggplot2)  
library(grid) 
library(gridExtra) 
library(ggpubr) 
library(dplyr) 
library(knitr) 
library(tidyverse) 
library(broom) 
library(extrafont) 
library(RColorBrewer) 
font_import()  
loadfonts(device="win") 
 
# Data file: ballmillTN 
con1 <- file.choose(new = FALSE) 
nitrogendata <- read.table(con1, header = T, row.names = 1) 
 
nitrogendata$Ball.Material<- factor(nitrogendata$Ball.Material)  
nitrogendata$Ball.Biomass.Ratio <- factor(nitrogendata$Ball.Biomass.Ratio) 
nitrogendata$Milling.Speed <- factor(nitrogendata$Milling.Speed) 
nitrogendata$Milling.Time <- factor(nitrogendata$Milling.Time) 
nitrogendata$KOH.Biomass.Ratio <- factor(nitrogendata$KOH.Biomass.Ratio) 
 
## ANOVA and Tukey's ------------------------------------ 
# All sample sizes are equal and large (95 ea), don't need to test for normal
ity or variance, assume normal distribution and equal variance 
# Factorial ANOVA to see interactions of factors 
factorial <- aov(Percent.TN.Recovery ~ Ball.Material*Ball.Biomass.Ratio*Milli
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ng.Speed*Milling.Time*KOH.Biomass.Ratio, nitrogendata) 
csvfactorial <- tidy(factorial) 
write.csv(csvfactorial, "factorial.csv") 
 
factorialtukey <- TukeyHSD(factorial, conf.level=0.95)  
csvfactorialtukey <- tidy(factorialtukey) 
write.csv(csvfactorialtukey, "factorial.tukey.csv") 
 
# One-way ANOVA for ball material 
oneway.ballmaterial <- aov(Percent.TN.Recovery ~ Ball.Material, nitrogendata) 
csvoneway.ballmaterial <- tidy(oneway.ballmaterial) 
# write.csv(csvoneway.ballmaterial, "oneway.ballmaterial.csv") 
 
onewaytukey.ballmaterial <- TukeyHSD(oneway.ballmaterial, conf.level=0.95)  
csvonewaytukey.ballmaterial <- tidy(onewaytukey.ballmaterial) 
# write.csv(csvonewaytukey.ballmaterial, "onewaytukey.ballmaterial.csv") 
 
# One-way ANOVA for ball to biomass ratio 
oneway.ballratio <- aov(Percent.TN.Recovery ~ Ball.Biomass.Ratio, nitrogendat
a) 
csvoneway.ballratio <- tidy(oneway.ballratio) 
# write.csv(csvoneway.ballratio, "oneway.ballratio.csv") 
 
onewaytukey.ballratio <- TukeyHSD(oneway.ballratio, conf.level=0.95)  
csvonewaytukey.ballratio  <- tidy(onewaytukey.ballratio ) 
# write.csv(csvonewaytukey.ballratio , "onewaytukey.ballratio.csv") 
 
# One-way ANOVA for milling speed 
oneway.millingspeed <- aov(Percent.TN.Recovery ~ Milling.Speed, nitrogendata) 
csvoneway.millingspeed <- tidy(oneway.millingspeed) 
# write.csv(csvoneway.millingspeed, "oneway.millingspeed.csv") 
 
onewaytukey.millingspeed <- TukeyHSD(oneway.millingspeed, conf.level=0.95)  
csvonewaytukey.millingspeed  <- tidy(onewaytukey.millingspeed) 
# write.csv(csvonewaytukey.millingspeed, "onewaytukey.millingspeed.csv") 
 
# One-way ANOVA for milling time 
oneway.millingtime <- aov(Percent.TN.Recovery ~ Milling.Time, nitrogendata) 
csvoneway.millingtime <- tidy(oneway.millingtime) 
# write.csv(csvoneway.millingtime, "oneway.millingtime.csv") 
 
onewaytukey.millingtime <- TukeyHSD(oneway.millingtime, conf.level=0.95)  
csvonewaytukey.millingtime <- tidy(onewaytukey.millingtime) 
# write.csv(csvonewaytukey.millingtime, "onewaytukey.millingtime.csv") 
 
# One-way ANOVA for KOH to biomass ratio 
oneway.koh <- aov(Percent.TN.Recovery ~ KOH.Biomass.Ratio, nitrogendata) 
csvoneway.koh<- tidy(oneway.koh) 
# write.csv(csvoneway.koh, "oneway.koh.csv") 
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onewaytukey.koh <- TukeyHSD(oneway.koh, conf.level=0.95)  
csvonewaytukey.koh <- tidy(onewaytukey.koh) 
# write.csv(csvonewaytukey.koh, "onewaytukey.koh.csv") 
 
## Bar charts: TN recovery for all factors individually ---------------------
---------------------- 
# TN recovery by ball material 
ballmaterialrecovery <- nitrogendata %>% group_by(Ball.Material) %>% summaris
e(bmmean = mean(Percent.TN.Recovery),bmsd = sd(Percent.TN.Recovery)) 
 
bar00 <- ggplot(ballmaterialrecovery, aes(x=Ball.Material, y=bmmean, fill=Bal
l.Material)) +  
  geom_bar(stat="identity", position=position_dodge(0.9)) +  
  geom_errorbar(aes(ymin=bmmean-bmsd, ymax=bmmean+bmsd), width=0.2, position=
position_dodge(0.9)) + 
  xlab("Ball Material")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  scale_fill_manual(values=c("#d7191c","#2b83ba")) + 
  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica"),  
        legend.position = "none") 
bar00 
 
# TN recovery by KOH to biomass ratio 
kohrecovery <- nitrogendata %>% group_by(KOH.Biomass.Ratio) %>% summarise(koh
mean = mean(Percent.TN.Recovery),kohsd = sd(Percent.TN.Recovery)) 
 
bar01 <- ggplot(kohrecovery, aes(x=KOH.Biomass.Ratio, y=kohmean, fill=KOH.Bio
mass.Ratio)) +  
  geom_bar(stat="identity", position=position_dodge(0.9))+  
  geom_errorbar(aes(ymin=kohmean-kohsd, ymax=kohmean+kohsd), width=0.2, posit
ion=position_dodge(0.9)) + 
  xlab("KOH to Biomass Ratio")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  scale_fill_manual(values=c("#d7191c","#2b83ba")) + 
  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica"),  
        legend.position = "none") 
bar01 
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# TN recovery by milling time 
millingtimerecovery <- nitrogendata %>% group_by(Milling.Time) %>% summarise(
mtmean = mean(Percent.TN.Recovery),mtsd = sd(Percent.TN.Recovery)) 
 
bar02 <- ggplot(millingtimerecovery, aes(x=Milling.Time, y=mtmean, fill=Milli
ng.Time)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=mtmean-mtsd, ymax=mtmean+mtsd), width=0.2, position=
position_dodge(0.9)) + 
  xlab("Milling Time (min)")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  scale_fill_brewer(palette="Spectral") + 
  theme(title=element_text(size=10, family="Helvetica"), 
        axis.text.x = element_text(size=10, family="Helvetica"), 
        axis.text.y=element_text(size=12, family="Helvetica"), 
        axis.title.y = element_text(size =12, family="Helvetica"), 
        axis.title.x=element_text(size=12, family="Helvetica"), 
        legend.title = element_text(size=12, family="Helvetica"), 
        legend.text = element_text(size=10, family="Helvetica"), 
        legend.position = "none") 
bar02 
 
## Bar charts: TN recovery grouped by ball material -------------------------
------------------ 
# TN recovery by Ball material & Ball-biomass ratio 
bmbbrecovery <- nitrogendata %>% group_by(Ball.Material, Ball.Biomass.Ratio) 
%>% summarise(bmbbmean = mean(Percent.TN.Recovery),bmbbsd = sd(Percent.TN.Rec
overy)) 
 
bar1 <- ggplot(bmbbrecovery, aes(x=Ball.Biomass.Ratio, y=bmbbmean, fill=Ball.
Material)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=bmbbmean-bmbbsd, ymax=bmbbmean+bmbbsd), width=0.2, p
osition=position_dodge(0.9)) + 
  xlab("Ball to Biomass Ratio")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar1 
 
# TN recovery by Ball material & Milling rotation speed 
bmmsrecovery <- nitrogendata %>% group_by(Ball.Material, Milling.Speed) %>% s
ummarise(bmmsmean = mean(Percent.TN.Recovery),bmmssd = sd(Percent.TN.Recovery
)) 
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bar2 <- ggplot(bmmsrecovery, aes(x=Milling.Speed, y=bmmsmean, fill=Ball.Mater
ial)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=bmmsmean-bmmssd, ymax=bmmsmean+bmmssd), width=0.2, p
osition=position_dodge(0.9)) + 
  xlab("MIlling Speed (rpm)")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar2 
 
# TN recovery by Ball material & Milling time 
bmmtrecovery <- nitrogendata %>% group_by(Ball.Material, Milling.Time) %>% su
mmarise(bmmtmean = mean(Percent.TN.Recovery),bmmtsd = sd(Percent.TN.Recovery)
) 
 
bar3 <- ggplot(bmmtrecovery, aes(x=Milling.Time, y=bmmtmean, fill=Ball.Materi
al)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=bmmtmean-bmmtsd, ymax=bmmtmean+bmmtsd), width=0.2, p
osition=position_dodge(0.9)) + 
  xlab("Milling Time (min)")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar3 
 
# TN recovery by Ball material  & KOH biomass ratio 
bmkohrecovery <- nitrogendata %>% group_by(Ball.Material, KOH.Biomass.Ratio) 
%>% summarise(bmkohmean = mean(Percent.TN.Recovery),bmkohsd = sd(Percent.TN.R
ecovery)) 
 
bar4 <- ggplot(bmkohrecovery, aes(x=KOH.Biomass.Ratio, y=bmkohmean, fill=Ball
.Material)) +  
  geom_bar(stat="identity", position=position_dodge(0.9))+  
  geom_errorbar(aes(ymin=bmkohmean-bmkohsd, ymax=bmkohmean+bmkohsd), width=0.
2, position=position_dodge(0.9)) + 
  xlab("KOH to Biomass Ratio")+ ylab("Total Nitrogen Recovery (%)") + 
  ylim(0, 100)  + labs(title = "", subtitle=NULL) + 
  scale_fill_manual(values=c("#d7191c","#2b83ba")) + 
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  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica")) + 
        guides(fill=guide_legend(title="Ball Material")) 
bar4 
 
## Bar charts: ZIRCONIA TN recovery grouped by KOH --------------------------
----------------- 
zirconia <- subset(nitrogendata, Ball.Material == "Zirconia", select = Ball.B
iomass.Ratio:Percent.TN.Recovery) 
 
# TN recovery by KOH-biomass ratio & Ball-biomass ratio 
zkohbbrecovery <- zirconia %>% group_by(KOH.Biomass.Ratio, Ball.Biomass.Ratio
) %>% summarise(zkohbbmean = mean(Percent.TN.Recovery),zkohbbsd = sd(Percent.
TN.Recovery)) 
 
bar5 <- ggplot(zkohbbrecovery, aes(x=Ball.Biomass.Ratio, y=zkohbbmean, fill=K
OH.Biomass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=zkohbbmean-zkohbbsd, ymax=zkohbbmean+zkohbbsd), widt
h=0.2, position=position_dodge(0.9)) + 
  xlab("Ball to Biomass Ratio")+ ylab("Total Nitrogen Recovery (%)")+ ylim(0, 
100) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar5 
 
# TN recovery by KOH-biomass ratio & Milling speed 
zkohmsrecovery <- zirconia %>% group_by(KOH.Biomass.Ratio, Milling.Speed) %>% 
summarise(zkohmsmean = mean(Percent.TN.Recovery),zkohmssd = sd(Percent.TN.Rec
overy)) 
 
bar6 <- ggplot(zkohmsrecovery, aes(x=Milling.Speed, y=zkohmsmean, fill=KOH.Bi
omass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=zkohmsmean-zkohmssd, ymax=zkohmsmean+zkohmssd), widt
h=0.2, position=position_dodge(0.9)) + 
  xlab("Milling Speed (rpm)")+ ylab("Total Nitrogen Recovery (%)") + ylim(0, 
100) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
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        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar6 
 
# TN recovery by KOH-biomass ratio & Milling time 
zkohmtrecovery <- zirconia %>% group_by(KOH.Biomass.Ratio, Milling.Time) %>% 
summarise(zkohmtmean = mean(Percent.TN.Recovery),zkohmtsd = sd(Percent.TN.Rec
overy)) 
 
bar7 <- ggplot(zkohmtrecovery, aes(x=Milling.Time, y=zkohmtmean, fill=KOH.Bio
mass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=zkohmtmean-zkohmtsd, ymax=zkohmtmean+zkohmtsd), widt
h=0.2, position=position_dodge(0.9)) + 
  xlab("Milling Time (min)")+ ylab("Total Nitrogen Recovery (%)") + ylim(0, 1
00) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar7 
 
## Bar charts: AGATE TN recovery grouped by KOH -----------------------------
-------------- 
agate <- subset(nitrogendata, Ball.Material == "Agate", select = Ball.Biomass
.Ratio:Percent.TN.Recovery) 
 
# TN recovery by KOH-biomass ratio & Ball-biomass ratio 
akohbbrecovery <- agate %>% group_by(KOH.Biomass.Ratio, Ball.Biomass.Ratio) %
>% summarise(akohbbmean = mean(Percent.TN.Recovery),akohbbsd = sd(Percent.TN.
Recovery)) 
 
bar8 <- ggplot(akohbbrecovery, aes(x=Ball.Biomass.Ratio, y=akohbbmean, fill=K
OH.Biomass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=akohbbmean-akohbbsd, ymax=akohbbmean+akohbbsd), widt
h=0.2, position=position_dodge(0.9))+ 
  xlab("Ball to Biomass Ratio")+ ylab("Total Nitrogen Recovery (%)") + ylim(0
, 100) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
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        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar8 
 
# TN recovery by KOH-biomass ratio & Mill rotation speed 
akohmsrecovery <- agate %>% group_by(KOH.Biomass.Ratio, Milling.Speed) %>% su
mmarise(akohmsmean = mean(Percent.TN.Recovery),akohmssd = sd(Percent.TN.Recov
ery)) 
 
bar9 <- ggplot(akohmsrecovery, aes(x=Milling.Speed, y=akohmsmean, fill=KOH.Bi
omass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=akohmsmean-akohmssd, ymax=akohmsmean+akohmssd), widt
h=0.2, position=position_dodge(0.9))+ 
  xlab("Milling Speed (rpm)")+ ylab("Total Nitrogen Recovery (%)") + ylim(0, 
100) + 
        theme(title=element_text(size=10,family="Times New Roman"), 
              axis.text.x = element_text(size=10, family="Times New Roman"), 
              axis.text.y=element_text(size=12, family="Times New Roman"), 
              axis.title.y = element_text(size =12, family="Times New Roman")
, 
              axis.title.x=element_text(size=12, family="Times New Roman"), 
              legend.title = element_text(size=12, family="Times New Roman"), 
              legend.text = element_text(size=10, family="Times New Roman")) 
bar9 
 
# TN recovery by KOH-biomass ratio & Milling time 
akohmtrecovery <- agate %>% group_by(KOH.Biomass.Ratio, Milling.Time) %>% sum
marise(akohmtmean = mean(Percent.TN.Recovery),akohmtsd = sd(Percent.TN.Recove
ry)) 
 
bar10 <- ggplot(akohmtrecovery, aes(x=Milling.Time, y=akohmtmean, fill=KOH.Bi
omass.Ratio)) + 
  geom_bar(stat="identity", position=position_dodge(0.9))+ 
  geom_errorbar(aes(ymin=akohmtmean-akohmtsd, ymax=akohmtmean+akohmtsd), widt
h=0.2, position=position_dodge(0.9))+ 
  xlab("Milling Time (min)")+ ylab("Total Nitrogen Recovery (%)") + ylim(0, 1
00) + 
  theme(title=element_text(size=10,family="Times New Roman"), 
        axis.text.x = element_text(size=10, family="Times New Roman"), 
        axis.text.y=element_text(size=12, family="Times New Roman"), 
        axis.title.y = element_text(size =12, family="Times New Roman"), 
        axis.title.x=element_text(size=12, family="Times New Roman"), 
        legend.title = element_text(size=12, family="Times New Roman"), 
        legend.text = element_text(size=10, family="Times New Roman")) 
bar10 
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## Statistical analysis 
## Isoelectric point protein extraction 
 
# Load libraries and data ---------------------------------------------- 
library(ggplot2)  
library(grid) 
library(gridExtra) 
library(ggpubr) 
library(dplyr) 
library(knitr) 
library(tidyverse) 
library(car) 
library(extrafont) 
library(RColorBrewer) 
font_import()  
loadfonts(device="win") 
 
# Data file: IEP FINAL 
con1 <- file.choose(new = FALSE) 
iepdata <- read.table(con1, header = T, row.names = 1) 
 
iepdata$dilution.factor <- factor(iepdata$dilution.factor) 
 
## Normality and variance tests ------------------------------------------- 
shapiro.test(iepdata$net.protein.recovered) #not normal 
leveneTest(iepdata$net.protein.recovered ~ iepdata$dilution.factor, data=iepd
ata) #equal variance 
ggqqplot(iepdata$net.protein.recovered) 
 
shapiro.test(iepdata$percent.protein.recovered) #normal/not normal pvalue=0.0
4992 
leveneTest(iepdata$percent.protein.recovered ~ iepdata$dilution.factor, data=
iepdata) #equal variance 
ggqqplot(iepdata$percent.protein.recovered) 
 
shapiro.test(iepdata$relative.protein.content) #normal 
leveneTest(iepdata$relative.protein.content ~ iepdata$dilution.factor, data=i
epdata) #equal variance 
ggqqplot(iepdata$relative.protein.content) 
 
## ANOVA (assume ANOVA is robust enough for the violation of normality assump
tion) ------------------------------------------- 
fit1<-aov(net.protein.recovered ~ dilution.factor, data=iepdata)  
summary(fit1) 
# csvfit1<-tidy(fit1) 
# write.csv(csvfit1, "fit1.csv") 
 
fit2<-aov(percent.protein.recovered ~ dilution.factor, data=iepdata)  
summary(fit2) 
# csvfit2<-tidy(fit2) 
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# write.csv(csvfit2, "fit2.csv") 
 
fit3<-aov(relative.protein.content ~ dilution.factor, data=iepdata)  
summary(fit3) 
# csvfit3<-tidy(fit3) 
# write.csv(csvfit3, "fit3.csv") 
 
## Tukeys Test ------------------------------------------- 
Tukey1 <- TukeyHSD(fit1, conf.level=0.95)  
Tukey1 
# csvTukey1<-tidy(Tukey1) 
# write.csv(csvTukey1, "Tukey1.csv") 
 
Tukey2 <- TukeyHSD(fit2, conf.level=0.95)  
Tukey2 
# csvTukey2 <-tidy(Tukey2) 
# write.csv(csvTukey2, "Tukey2.csv") 
 
Tukey3 <- TukeyHSD(fit3, conf.level=0.95)  
Tukey3 
# csvTukey3 <-tidy(Tukey3) 
# write.csv(csvTukey3, "Tukey3.csv") 
 
## Bar Charts ------------------------------------------- 
 
# Net protein 
netprotein <- iepdata %>% group_by(dilution.factor) %>% summarise(npmean = me
an(net.protein.recovered),npsd = sd(net.protein.recovered)) 
 
bar1 <- ggplot(netprotein, aes(x=dilution.factor, y=npmean, fill=dilution.fac
tor)) + geom_bar(stat="identity", position=position_dodge(0.9))+  
  geom_errorbar(aes(ymin=npmean-npsd, ymax=npmean+npsd), width=0.2, position=
position_dodge(0.9))+ 
  xlab("Dilution Factor")+ ylab("Recovered Protein (g)") + labs(fill="Dilutio
n Factor")+ 
  ylim(0, 5)  + labs(title = "", subtitle=NULL) + 
  scale_fill_brewer(palette="Spectral") + 
  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica")) 
bar1 
 
# Percent protein 
precentprotein <- iepdata %>% group_by(dilution.factor) %>% summarise(ppmean 
= mean(percent.protein.recovered),ppsd = sd(percent.protein.recovered)) 
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bar2 <- ggplot(precentprotein, aes(x=dilution.factor, y=ppmean, fill=dilution
.factor)) + geom_bar(stat="identity", position=position_dodge(0.9))+  
  geom_errorbar(aes(ymin=ppmean-ppsd, ymax=ppmean+ppsd), width=0.2, position=
position_dodge(0.9))+ 
  xlab("Dilution Factor")+ ylab("Recovered Protein (%)") + labs(fill="Dilutio
n Factor")+ 
  ylim(0, 115)  + labs(title = "", subtitle=NULL) + 
  scale_fill_brewer(palette= "Spectral") + 
  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica")) 
bar2 
 
# Relative protein 
relativeprotein <- iepdata %>% group_by(dilution.factor) %>% summarise(rpmean 
= mean(relative.protein.content),rpsd = sd(relative.protein.content)) 
 
bar3 <- ggplot(relativeprotein, aes(x=dilution.factor, y=rpmean, fill=dilutio
n.factor)) + geom_bar(stat="identity", position=position_dodge(0.9))+  
  geom_errorbar(aes(ymin=rpmean-rpsd, ymax=rpmean+rpsd), width=0.2, position=
position_dodge(0.9))+ 
  xlab("Dilution Factor")+ ylab("Relative Protein Content (%)") + labs(fill="
Dilution Factor")+ 
  ylim(0, 115)  + labs(title = "", subtitle=NULL) + 
  scale_fill_brewer(palette= "Spectral") + 
  theme(title=element_text(size=10, family="Helvetica"),  
        axis.text.x = element_text(size=10, family="Helvetica"),  
        axis.text.y=element_text(size=12, family="Helvetica"),  
        axis.title.y = element_text(size =12, family="Helvetica"),  
        axis.title.x=element_text(size=12, family="Helvetica"),  
        legend.title = element_text(size=12, family="Helvetica"),  
        legend.text = element_text(size=10, family="Helvetica")) 
bar3 
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APPENDIX B: 

 

Supplemental Tables and Figures 
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CHAPTER 2 

  

(a)     (b) 

  

(c)     (d)

 

     (e) 

Figure 28. Effects of sulfur on algal cultivation discussed in Chapter 1, Section 3.2.1. (a) 

Biomass concentration; (b) Biomass Productivity; (c) pH; (d) TN consumed; (e) TP consumed. 
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(a)     (b) 

  

   (c)     (d) 

 

     (e) 

Figure 29. Effects of pH stabilization on algal cultivation discussed in Chapter1, Section 3.2.1. 

(a). Biomass concentration; (b). Biomass Productivity; (c). pH; (d). TN consumed; (e). TP 

consumed.
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Table 28. Pairwise comparison of different harvesting amounts under no light cycle (light cycle OFF). Discussed in Chapter 1, 

Section 3.2.2. 

Factors and levels 
Harvesting Amount 

30% 50% 30% 60% 30% 70% 30% 100% 

Biomass 

concentratio

n 

Biomass concentration 

(g/L) 
1.11±0.26 1.28±0.28 1.11±0.26 1.07±0.23 1.11±0.26 0.86±0.18 1.11±0.26 0.72±0.12 

Influence on biomass 

concentration 
P=0.075 P=0.986 P=0.004 P=0 

Biomass 

productivity 

Biomass productivity 

(g/L/day) 
0.32±0.07 0.39±0.12 0.32±0.07 0.43±0.14 0.32±0.07 0.56±0.09 0.32±0.07 0.49±0.06 

Influence on biomass 

productivity 
P=0.021 P=0.021 P=1.52x10-9 P=1.37x10-9 

pH 
pH 6.74±0.15 6.44±0.23 6.74±0.15 6.70±0.10 6.74±0.15 6.56±0.18 6.74±0.15 5.20±0.55 

Influence on pH P=6.22x10-6 P=0.244 P=0.002 P=5.24x10-11 

TN 

consumed 

TN consumed (mg/L/day) 34.90±8.24 
44.51±12.3

1 
34.90±8.24 59.80±3.64 34.90±8.24 

60.02±7.2

9 

34.90±8.2

4 

50.13±5.9

4 

Influence on TN 

consumed 
P=0.018 P=1.05x10-10 P=1.04x10-9 P=4.79x10-6 

TP 

consumed 

TP consumed (mg/L/day) 3.34±2.48 5.03±2.19 3.34±2.48 5.88±1.58 3.34±2.48 7.99±1.51 3.34±2.48 6.50±1.85 

Influence on TP 

consumed 
P=0.042 P=0.004 P=0 P=2.21x10-5 

 

Factors and levels 
Harvesting Amount 

50% 60% 50% 70% 50% 100% 

Biomass 

concentration 

Biomass concentration 

(g/L) 
1.28±0.28 1.07±0.23 1.28±0.28 0.86±0.18 1.28±0.28 0.72±0.12 

Influence on biomass 

concentration 
P=0.057 P=4.00x10-7 P=0 

Biomass 

productivity 

Biomass productivity 

(g/L/day) 
0.39±0.12 0.43±0.14 0.39±0.12 0.56±0.09 0.39±0.12 0.49±0.06 
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Table 28 (cont’d) 

Biomass 

productivity 

Influence on biomass 

productivity 
P=0.372 P=1.52x10-4 P=0.002 

pH 
pH 6.44±0.23 6.70±0.10 6.44±0.23 6.56±0.18 6.44±0.23 5.20±0.55 

Influence on pH P=8.43x10-5 P=0.074 P=1.23x10-9 

TN consumed 

TN consumed (mg/L/day) 44.51±12.31 59.80±3.64 44.51±12.31 60.02±7.29 44.51±12.31 50.13±5.94 

Influence on TN 

consumed 
P=2.73x10-6 P=1.32x10-5 P=0.053 

TP consumed 

TP consumed (mg/L/day) 5.03±2.19 5.88±1.58 5.03±2.19 7.99±1.51 5.03±2.19 6.50±1.85 

Influence on TP 

consumed 
P=0.708 P=2.02x10-4 P=0.117 

 

Factors and levels 
Harvesting Amount 

60% 70% 60% 100% 70% 100% 

Biomass 

concentration 

Biomass concentration 

(g/L) 
1.07±0.23 0.86±0.18 1.07±0.23 0.72±0.12 0.86±0.18 0.72±0.12 

Influence on biomass 

concentration 
P=0.064 P=1.62x10-5 P=0.131 

Biomass 

productivity 

Biomass productivity 

(g/L/day) 
0.43±0.14 0.56±0.09 0.43±0.14 0.49±0.06 0.56±0.09 0.49±0.06 

Influence on biomass 

productivity 
P=0.135 P=0.214 P=0.015 

pH 
pH 6.70±0.10 6.56±0.18 6.70±0.10 5.20±0.55 6.56±0.18 5.20±0.55 

Influence on pH P=0.017 P=1.01x10-10 P=2.66x10-10 

TN consumed 

TN consumed (mg/L/day) 59.80±3.64 60.02±7.29 59.80±3.64 50.13±5.94 60.02±7.29 50.13±5.94 

Influence on TN 

consumed 
P=0.920 P=4.54x10-6 P=2.27x10-4 

TP consumed 

TP consumed (mg/L/day) 5.88±1.58 7.99±1.51 5.88±1.58 6.50±1.85 7.99±1.51 6.50±1.85 

Influence on TP 

consumed 
P=0.048 P=0.907 P=0.205 
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Table 29. Effects of a 12-hour light cycle (light cycle ON) with different harvesting amounts. Discussed in Chapter 1, Section 3.2.2. 

Factors and levels 
Harvesting Amount 

30% 40% 30% 50% 40% 50% 

Biomass 

concentration 

Biomass concentration (g/L) 0.67±0.14 0.50±0.09 0.67±0.14 0.42±0.07 0.50±0.09 0.42±0.07 

Influence on biomass concentration P=1.36x10-5 P=8.70x10-6 P=0.156 

Biomass 

productivity 

Biomass productivity (g/L/day) 0.20±0.05 0.18±0.05 0.20±0.05 0.17±0.02 0.18±0.05 0.17±0.02 

Influence on biomass productivity P=0.201 P=0.222 P=0.852 

pH 
pH 6.43±0.18 6.69±0.24 6.43±0.18 6.58±0.10 6.69±0.24 6.58±0.10 

Influence on pH P=0.0002951 P=0.2384383 P=0.4175361 

TN consumed 
TN consumed (mg/L/day) 23.98±10.70 21.20±6.82 23.98±10.70 21.30±1.96 21.20±6.82 21.30±1.96 

Influence on TN consumed P=0.369 P=0.402 P=0.957 

TP consumed 
TP consumed (mg/L/day) 2.74±2.01 2.13±1.47 2.74±2.01 2.77±0.24 2.13±1.47 2.77±0.24 

Influence on TP consumed P=0.398 P=0.667 P=0.405 
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Table 30. Effects of different harvesting amounts compared between a 12-hour light cycle and no light cycle (light cycle ON vs light 

cycle OFF). Discussed in Chapter 1, Section 3.2.2. 

Factors and levels 
Harvesting Amount 

30% ON 30% OFF 50% ON 50% OFF 

Biomass 

concentration 

Biomass concentration (g/L) 0.67±0.14 1.11±0.26 0.42±0.07 1.28±0.28 

Influence on biomass concentration P=8.32x10-9 P=2.94x10-12 

Biomass 

productivity 

Biomass productivity (g/L/day) 0.20±0.05 0.32±0.07 0.17±0.02 0.39±0.12 

Influence on biomass productivity P=1.39x10-5 P=1.19x10-9 

pH 
pH 6.43±0.18 6.74±0.15 6.58±0.10 6.44±0.23 

Influence on pH P=7.48x10-8 P=0.045 

TN 

consumed 

TN consumed (mg/L/day) 23.98±10.70 34.90±8.24 21.30±1.96 44.51±12.31 

Influence on TN consumed P=0.003  P=1.32x10-9 

TP 

consumed 

TP consumed (mg/L/day) 2.74±2.01 3.34±2.48 2.77±0.24 5.03±2.19 

Influence on TP consumed P=0.470 P=3.10x10-5 

 

 

Table 31. Element composition of algal biomass from different culture conditions. Discussed in Chapter 1, Section 3.3. 

Harvesting 

amount 

(L/day) 

Sulfur 

supplement 
Light cycle 

pH 

stabilization 

C 

(% dry 

matter) 

H 

(% dry 

matter) 

N 

(% dry 

matter) 

S 

(% dry 

matter) 

P 

(% dry 

matter) 

30 No No NH4NO3 48.50 7.43 8.01 0.52 1.33 

30 Yes No NH4NO3 49.50 7.34 9.30 0.54 1.60 

30 No No NH4NO3 48.54 7.41 9.03 0.52 1.51 

40 No Yes NH4NO3 46.79 6.98 9.40 0.71 1.65 

40 No Yes NH4NO3 47.24 7.24 9.27 0.60 1.63 

40 Yes Yes NH4NO3 47.46 7.28 9.26 0.60 1.56 

40 Yes Yes NH4NO3 46.98 7.21 9.08 0.57 1.22 

50 No No NaOH 48.78 7.11 9.07 0.53 1.43 
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Table 31 (cont’d) 

50 Yes No NaOH 49.81 7.59 8.66 0.51 1.29 

50 Yes No NaOH 52.82 7.33 9.88 0.59 1.41 

50 No Yes NH4NO3 45.84 7.07 9.19 0.75 1.89 

60 Yes No NH4NO3 48.54 7.42 8.87 0.44 1.25 

60 Yes No NH4NO3 48.75 7.26 9.54 0.63 1.51 

100 No No NaOH 48.31 7.39 8.81 0.45 1.83 

100 No No NaOH 48.15 7.31 8.80 0.47 1.83 

 

 

Table 32. Diversity of bacteria and eukarya communities calculated based on their 16S rRNA gene sequencing. Discussed in Chapter 

1, Section 3.4. 

Sample 
Harvesting 

amount  

SO2 

supplement 

Light 

cycle 
pH stabilization Ha Db iDc Jd 

Scenario 2 50 no no NaOH 0.55 0.25 1.33 0.19 

Scenario 3 100 no no NaOH 0.51 0.20 1.25 0.18 

Scenario 4 50 yes no NaOH 0.60 0.23 1.30 0.22 

Scenario 5 60 yes no NH4NO3 0.55 0.20 1.25 0.17 

Scenario 8 30 yes no NH4NO3 0.47 0.18 1.22 0.16 

Scenario 9 30 no no NH4NO3 0.31 0.11 1.12 0.10 

Scenario 10 50 no yes NH4NO3 0.32 0.12 1.14 0.11 

Scenario 11 40 no yes NH4NO3 0.66 0.31 1.44 0.21 

Scenario 12 40 yes yes NH4NO3 0.70 0.33 1.49 0.23 
a. H: Shannon’s index which indicates the diversity of the microbial community. 

b. D: Simpson’s index which indicates the diversity of the microbial community. 

c. iD: Inverse Simpson’s index which indicates the diversity of the microbial community. 

d. J: Pielou’s index which indicates the evenness of the microbial community. 
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(a)       (b) 

Figure 30. Rarefaction and rank abundance discussed in Chapter 1, Section 3.4. (a). Rarefaction curves of all samples; (b). Rank 

abundance 
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Table 33. One-way analysis of variance of harvesting amount, SO2 supplement, light cycle, and 

pH stabilization on key microbial communities. Discussed in Chapter 1, Section 3.4. 

Microbial 

community 
Statistic 

Harvesting 

amount 

SO2 

supplement 

Light 

cycle 

pH 

stabilization 

Eukarya a 

Degree of 

freedom 
4 1 1 1 

Sum squared 125.44 10.74 28.45 1.79 

P 0.167 0.513 0.273 0.792 

Proteobacteria a 

Degree of 

freedom 
4 1 1 1 

Sum squared 130.67 5.44 35.53 1.49 

P 0.145 0.647 0.219 0.812 

Proteobacteria 

unclassified b 

Degree of 

freedom 
4 1 1 1 

Chi squared 4.2 0.06 1.0667 0.26667 

P 0.3796 0.8065 0.3017 0.6056 

Alphaproteobacteria b 

Degree of 

freedom 
4 1 1 1 

Chi squared 4.3778 0.96 5.4 4.2667 

P 0.3573 0.3272 0.02014* 0.03887* 

Betaproteobacteria a 

Degree of 

freedom 
4 1 1 1 

Sum squared 38.57 3.48 17.91 16.29 

P 0.00261* 0.415 0.0477* 0.0632 

Gammaproteobacteria 
b 

Degree of 

freedom 
4 1 1 1 

Chi squared 2.80 0 3.2667 3.2667 

P 0.5918 1 0.0707 0.0707 
a. Data are normally distributed. Regular one-way ANOVA is applied to analyze the data.  

b. Data are not normally distributed. Kruskal-Wallis one-way ANOVA is applied to analyze the data.  

c. “ * ” means significant difference.  
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CHAPTER 3 

Table 34. Mass and energy flows for process scale analysis of mechanochemical protein 

extraction and recovery. 

Cell Disruption 

INPUT Unit Value OUTPUT Unit Value 

Dewatered biomass kg/day 10,000 Losses (media and 

vessel, 5%) 

kg/day 538 

Potassium hydroxide kg/day 760 Algal slurry kg/day 10,222 

Ball mill kWh/day 441 Algal slurry (protein, 

dry) 

kg/day 631 

Centrifugation 

INPUT Unit Value OUTPUT Unit Value 

Algal slurry kg/day 10222 Solids kg/day 1227 

Centrifuge kWh/day 8.21 Protein supernatant kg/day 8995 

Precipitation 

INPUT Unit Value OUTPUT Unit Value 

Protein supernatant kg/day 8,995 Precipitated proteins in 

supernatant 

kg/day 14,954 

1M H2SO4 kg/day 5,959 
   

Centrifugation 

INPUT Unit Value OUTPUT Unit Value 

Precipitated proteins in 

supernatant 

kg/day 14,954 Supernatant kg/day 14,336 

Centrifuge kWh/day 12.0 Protein isolate kg/day 617 

 

CHAPTER 4 

Table 35. Inventory for life cycle and techno-economic assessment of microalgal polyol 

production using a wet microalgal feedstock. 

Cultivation 

INPUT Unit Value OUTPUT Unit Value 

Freshwater m3/day 3.00 Algae suspension  kg/day 500,000 

Nitrogen kg/day 28.1 
   

Phosphorous kg/day 7.29 
   

Carbon dioxide kg/day 375 
   

Cultivation electricity kWh/day 76.5 
   

Harvesting and Dewatering 
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Table 35 (cont’d) 

INPUT Unit Value OUTPUT Unit Value 

Algae suspension kg/day 500,000 Recycle nitrogen kg/day 5.21 

Centrifuge kWh 280 Recycle phosphorous kg/day 11.5    
Recycle water m3/day 496    
Waste nitrogen kg/day 3.13    
Waste phosphorous kg/day 4.79    
Waste water m3/day 3.00    
Dewatered biomass kg/day 1250 

Polyol synthesis 

INPUT Unit Value OUTPUT Unit Value 

Dewatered biomass kg/day 1,250 Biomass losses kg/day 62.5 

MEA kg/day 3,750 MEA losses  kg/day 188 

PC kg/day 5,045 MEA losses (air) kg/day 7.50 

Reactor  kWh 5,670 PC losses kg/day 252    
PC losses (air) kg/day 10.1    
Microalgal polyol kg/day 9,525 

 

Table 36. Inventory for life cycle and techno-economic assessment of microalgal polyol 

production using a dry microalgal feedstock. 

Cultivation 

INPUT Unit Value OUTPUT Unit Value 

Freshwater m3/day 3.00 Algae suspension  kg/day 500,000 

Nitrogen kg/day 28.13 
   

Phosphorous kg/day 7.29 
   

Carbon dioxide kg/day 375 
   

Cultivation electricity kWh/day 76.53 
   

Harvesting and Dewatering 

INPUT Unit Value OUTPUT Unit Value 

Algae suspension kg/day 500,000 Recycle nitrogen kg/day 5.21 

Centrifuge kWh 280 Recycle phosphorous kg/day 11.46 

Drying kWh 503.3 Recycle water m3/day 495.7    
Waste nitrogen kg/day 3.13 

   
Waste phosphorous kg/day 4.79    
Waste water m3/day 3.00    
Dewatered biomass kg/day 1,250 
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Table 36 (cont’d) 

   
Dried biomass (80%) kg/day 312.5 

Polyol synthesis 

INPUT Unit Value OUTPUT Unit Value 

Dried biomass (80%) kg/day 312.5 Biomass losses kg/day 15.63 

MEA kg/day 937.5 MEA losses  kg/day 46.88 

PC kg/day 2,523 MEA losses (air) kg/day 1.88 

Reactor  kWh 2,129 PC losses kg/day 126.1    
PC losses (air) kg/day 5.05    
Microalgal polyol kg/day 3,577 

 

Table 37. Capital costs of process scale microalgal polyol production using a wet microalgal 

feedstock. 

Item Purchase cost Installation factor Installed cost 

PBR $53,221.93 1.2 $63,866.32 

Centrifuge $245,000.00 1.5 $367,500.00 

Water tanks $152,540.00 3 $457,620.00 

Reactor set up $35,012.48 1.7 $59,521.21 

Total equipment cost $948,507.53 

Facility (4% of equipment costs)  $37,940.30 

Site development (9% of equipment costs)  $85,365.68 

 Total direct cost  $1,071,813.51 

Indirect Costs 

Construction fees, permits, start-up 20% of TDC $214,362.70 

Proratable expenses 10% of TDC $107,181.35 

Field expenses 10% of TDC $107,181.35 

Project contingency 10% of TDC $107,181.35 

Total indirect cost $535,906.75 

Fixed Capital Investment $1,607,720.26 

Working capital 5% of FCI $80,386.01 

Total Capital Investment $1,688,106.28 

 

Table 38. Capital costs of process scale microalgal polyol production using a dry microalgal 

feedstock. 

Item Purchase cost Installation factor Installed cost 

PBR $53,221.93 1.2 $63,866.32 

Centrifuge $245,000.00 1.5 $367,500.00 

Water tanks $152,540.00 3 $457,620.00 

Reactor set up $35,012.48 1.7 $59,521.21 
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Table 38 (cont’d) 

Dryer $40,000.00  1.7 $68,000.00 

Total equipment cost 

$1,216,409.1

1  

Facility (4% of equipment costs)   $48,656.36  

Site development (9% of equipment costs)   $109,476.82  

 Total direct cost  

$1,071,813.5

1 

Indirect Costs 

Construction fees, permits, start-up 20% of TDC  $274,908.46  

Proratable expenses 10% of TDC  $137,454.23  

Field expenses 10% of TDC  $137,454.23  

Project contingency 10% of TDC  $137,454.23  

Total indirect cost $687,271.14  

Fixed Capital Investment 
$2,061,813.4

3  

Working capital 5% of FCI $103,090.67  

Total Capital Investment 
$2,164,904.1

1  

 

 

Table 39. Fixed operational expenses for production of microalgal polyols using wet and dry 

feedstocks. 

Employee Salary Number Annual Cost 

Chemical engineer $108,540.00 1 $108,540.00 

Chemical technician $49,820.00 4 $199,280.00 

Total Labor Cost $307,820.00 

Annualized fixed operational expenses $307,820.00 

 

Table 40. Variable operational expenses for production of microalgal polyols using wet 

feedstocks and an operating year of 329 days. 

Item Amount Unit Unit cost Total cost 

Carbon dioxide 375 kg/day $0.05 $16.88 

Nitrogen 28.13 kg/day $1.06 $29.92 

Phosphorous 7.29 kg/day $1.90 $13.88 

MEA 3,750 kg/day $1.50 $5,630.76 

PC 5,045 kg/day $1.00 $5,045.00 

Electricity 6,026 kWh/day $0.12 $735.82 

Daily polyol production  9,525 kg $1.20 $11,472.26 

Annual polyol production 3,133,778 kg  $3,774,372.36 
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Table 40 (cont’d) 

Annualized variable operational expenses $3,774,372.36 

 

Table 41. Variable operational expenses for production of microalgal polyols using dry 

feedstocks and an operating year of 329 days. 

Item Amount Unit Unit cost Total cost 

Carbon dioxide 375 kg/day  $0.05   $16.88  

Nitrogen 28.13 kg/day  $1.06   $29.92  

Phosphorous 7.29 kg/day  $1.90   $13.88  

MEA 938 kg/day  $1.50   $1,407.69  

PC 2,523 kg/day  $1.00   $2,522.50  

Electricity 2,989 kWh/day  $0.12   $364.96  

Daily polyol production  3,577 kg  $1.22 $4,355.83 

Annual polyol production 1,176,818 kg   $1,433,066.88 

Annualized variable operational expenses $1,433,066.88 

 

CHAPTER 5 

Table 42. Mass analysis of biological and chemical carbon capture for the MAASS solvent 

production and capture system. 

Parameter Value Unit 

CO2 flow (to PBR) 1000000 kg/day 

Biomass production 
87.16 wet kg/day 

17.43 dry kg/day 

Microalgae CO2 consumption 0.30 kg CO2/kg wet 

Biomass to MAASS conversion 0.43 kg MAASS/kg wet 

Biological CO2 capture 
26.15 kg/day 

0.00003 % of total capture 

CO2 flow (to capture system) 999974 kg/day 

CO2 content of flue gas 0.10 % (v/v) 

Flue gas flow 
5347454 m3/day 

6684317 kg/day 

Absorption capacity (MEA) 0.50 mol CO2/mol amine 

Absorption capacity (MAASS) 1.27 mol CO2/mol amine 

L/G ratio (MEA) 3.70 kg/m3 

L/G ratio (MAASS) 1.46 kg/m3 

MAASS flow 
6330 m3/day 

7786417 kg/day 
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Table 42 (cont’d) 

Chemical CO2 capture (90% eff.) 899976 kg/day 

CO2 Residual Emission 99997 kg/day 

 

Table 43. Inventory for life cycle and techno-economic assessment of MAASS production and 

carbon capture. 

Cultivation 

INPUT Unit Value OUTPUT Unit Value 

Freshwater m3/day 0.308 Algae suspension  kg/day 51272 

Nitrogen kg/day 1.961    

Phosphorous kg/day 0.508    

CO2 kg/day 26.15    
Cultivation 

electricity kWh/day 
8.140 

   
Harvesting and Dewatering 

INPUT Unit Value OUTPUT Unit Value 

Algae suspension  kg/day 51,272 Recycle nitrogen kg/day 0.36 

   

Recycle 

phosphorous kg/day 0.80 

   Recycle water m3/day 50.88 

   Waste nitrogen kg/day 0.02 

   

Waste 

phosphorous kg/day 0.05 

   Waste water m3/day 0.31 

   

Dewatered 

biomass kg/day 87.16 

Hydrolysis 

INPUT Unit Value OUTPUT Unit Value 

Dewatered biomass kg/day 87.16 

MAASS (pre-

centrifuge) kg/day 121.3 

Potassium hydroxide kg/day 34.17    

Hydrolysis kWh-E/day 2.79    

Feeding pump kWh/day 0.01    

Reactor  kWh-E/day 0.66    
Centrifugation 

INPUT Unit Value OUTPUT Unit Value 

MAASS (pre-

centrifuge) kg/day 121.33 Solid removal kg/day 40.67 
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Table 43 (cont’d) 

Centrifuge kWh/day 0.08 

MAASS (post-

centrifuge) kg/day 80.67 

Feeding pump kWh/day 0.02    
Acidification 

INPUT Unit Value OUTPUT Unit Value 

MAASS (post-

centrifuge) kg/day 80.67 

Precipitated 

carbon salts kg/day 36.48 

CO2 (acidification) kg/day 6.57 Transfer losses kg/day 6.29 

Feeding pump kWh/day 0.01 MAASS (fresh) kg/day 37.91 

Flue gas blower kWh/day 0.02    

Regeneration kWh-E/day 0.21    

Production is separate from absorption and desorption; all are on 167 day cycle 

Absorption 

INPUT Unit Value OUTPUT Unit Value 

MAASS (lean) kg/day 7,786,417 MAASS (rich) kg/day 8,596,396 

CO2 kg/day 899,977 Uncaptured CO2 kg/day 99,997 

Flue gas blower kWh/day 3342    

Pump  kWh/day 379.8    
Desorption 

INPUT Unit Value OUTPUT Unit Value 

MAASS (rich) kg/day 8,596,396 CO2  kg/day 899,977 

Regeneration  kWh-E/day 33430 MAASS (lean) kg/day 7,696,419 

Pump  kWh/day 419.3    

HEX  kWh-E/day 186,988    
Compression 

INPUT Unit Value OUTPUT Unit Value 

CO2 kg/day 899,977 CO2 kg/day 899,977 

Compressor  kWh/day 41,729    
 

Table 44. Mass analysis of chemical carbon capture for the MEA solvent capture system. 

Parameter Unit Value 

CO2 flow 1,000,000 kg/day 

CO2 content of flue gas 0.10 % (v/v) 

Flue gas flow 
5,347,594 m3/day 

6,684,492 kg/day 

MEA absorption capacity 0.50 mol CO2/mol amine 
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Table 44 (cont’d) 

MEA concentration 30 % (w/w) 

MEA solvent flow 
19,719 m3/day 

19,778,016 kg/day 

MEA flow 
5,875 m3/day 

5,933,405 kg/day 

Chemical CO2 capture (90% eff.) 900,000 kg/day 

CO2 Residual Emission 100,000 kg/day 

 

 

Table 45. Inventory for life cycle and techno-economic assessment of MEA carbon capture. 

Solvent Addition 

INPUT Unit Value OUTPUT Unit Value 

Fresh MEA  kg/day 1,600 MEA (lean) kg/day 19,778,016 

Recycled MEA kg/day 19,776,416    

Absorption 

INPUT Unit Value OUTPUT Unit Value 

MEA (lean) kg/day 19,778,016 MEA (rich) kg/day 20,588,016 

CO2 kg/day 900,000 Uncaptured CO2 kg/day 100,000 

Flue gas blower kWh/day 3,342    

Pump  kWh/day 1,183    
Desorption 

INPUT Unit Value OUTPUT Unit Value 

MEA (rich) kg/day 20,588,016 CO2  kg/day 900,000 

Regeneration  kWh-E/day 153,678 Recycled MEA kg/day 19,686,505 

Pump  kWh/day 1,232 MEA degradation kg/day 1,511 

HEX  kWh-E/day 345,062 Ammonia kg/day 31.50 

   Acetaldehyde kg/day 0.150 

   Formaldehyde kg/day 0.236 

   MEA kg/day 56.70 

Compression 

INPUT Unit Value OUTPUT Unit Value 

CO2 kg/day 900,000 CO2 kg/day 900,000 

Compressor  kWh/day 41,730    
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