LEVEL STRUCTURES ON FINITE GROUP SCHEMES AND APPLICATIONS By Chuangtian Guan A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Mathematics โ€“ Doctor of Philosophy 2022 ABSTRACT LEVEL STRUCTURES ON FINITE GROUP SCHEMES AND APPLICATIONS By Chuangtian Guan The notion of level structures originates from the study of the moduli of elliptic curves. In this thesis, we consider generalizing the notion of level structures and make explicit calculations on different moduli spaces. The first moduli space we consider is the moduli of finite flat (commutative) group schemes. We give a definition of ฮ“(๐‘)-level structure (also called the โ€œfull level structureโ€) over group schemes of the form ๐บ ร— ๐บ, where ๐บ is a group scheme or rank ๐‘ over a โ„ค๐‘ - scheme. The full level structure over ๐บ ร— ๐บ is flat over the base of rank | GL2 (๐”ฝ๐‘ )|. We also observe that there is no natural notion of full level structures over the stack of all finite flat commutative group schemes. The second moduli space we consider is the moduli of principally polarized abelian sur- faces in characteristic ๐‘ > 0 with symplectic level-๐‘› structure (๐‘› โ‰ฅ 3), which is known as the Siegel threefold. By decomposing the Siegel threefold using the Ekedahlโ€“Oort stratification, we analyze the ๐‘-torsion group scheme of the universal abelian surface over each stratum. To do this, we establish a machinery to produce group schemes from their Dieudonnรฉ mod- ules using a version of Dieudonnรฉ theory due to de Jong. By using this machinery, we give explicit local equations of the Hopf algebras over the superspecial locus, the supersingular locus and ordinary locus. Using these local equations, we calculate explicit equations of the ฮ“1 (๐‘)-covers over these strata using Kottwitzโ€“Wake primitive elements. These equations can be used to prove geometric and arithmetic properties of the ฮ“1 (๐‘)-cover over the Siegel threefold. In particular, we prove that the ฮ“1 (๐‘)-cover over the Siegel threefold is not normal. Copyright by CHUANGTIAN GUAN 2022 ACKNOWLEDGEMENTS It has been a long journey through my six-year study at Michigan State University. I would not have been able to finish it without the tremendous help I received. I want to thank everyone who supported me along this trip. First and foremost, I want to thank my advisor George Pappas. Thank you for teaching me hour after hour, supporting me when I struggle, and encouraging me when I want to give up. Thank you for all the helpful and productive meetings we have together. It is always relaxing and enjoyable to meet with you. Your wisdom and work ethic continue to inspire me in my life. I am very grateful to Preston Wake for extremely helpful conversations on my projects, papers and statements. Without your help, my paper and thesis will not exist in current form. I want to thank Rajesh Kulkarni for all the courses I took with you and your helpful comments on my statements. I also want to thank Aaron Levin and Michael Shapiro for being in my committee and the guidance through different stages of my Ph.D. career. Teaching is an important part of my experience at Michigan State University and I want to thank all the faculty, staff and students that I meet during my teaching. I want to especially thank Tsveta Sendova for consistent help on my teaching and life in all aspects these years, and Shiv Karunakaran for bringing me to the wonderful teaching experience in MTH 299. I also want to thank all my friends accompanying me in this journey. I especially want to thank Nick Rekuski, Joshua Ruiter, Zheng Xiao, Ioannis Zachos, Yizhen Zhao and Zhihao Zhao for countless interesting conversations on math and life. I want to thank all fellow coorganizers and participants of Student Algebra Seminar and Student Arithmetic Geometry Seminar, from whom I learn so much. I want to thank my friends Keping Huang, Mihalis Paparizos, Jian Song, Zhixin Wang, Kang Yu, Chen Zhang, Rui Zhang, Zhe Zhang, Yunlu Zhang for the great time we have together. I want to thank Jeanne Wald for your amazing iv new year parties and your heartwarming concerns that make me feel home. Last, I thank a lot to my parents for all the encourage and support behind. My special thanks goes to my girlfriend Junnuo Yu, who is always next to me. v TABLE OF CONTENTS LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 2 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Group Schemes and Classification Theorems . . . . . . . . . . . . . . . . . . 10 2.2 Siegel Modular Varieties and Ekedahlโ€“Oort Stratification . . . . . . . . . . . 14 2.3 Kottwitz-Wake Primitive Elements . . . . . . . . . . . . . . . . . . . . . . . 17 CHAPTER 3 FULL LEVEL STRUCTURE ON FINITE GROUP SCHEMES . . . 23 3.1 Full level structure on ๐บ ร— ๐บ . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Proof of Theorem 3.1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Nonexistence of full level structure over the stack . . . . . . . . . . . . . . . 33 3.4 Full level structure on ๐บ ร— ๐บ ร— ๐บ . . . . . . . . . . . . . . . . . . . . . . . . 35 CHAPTER 4 CONSTRUCTIONS OF GROUP SCHEMES USING DIEUDONNร‰ MODULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.1 A Version of Dieudonnรฉ Theory by De Jong . . . . . . . . . . . . . . . . . . 38 4.2 Group Schemes Annihilated by ๐‘‰ . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Group Schemes Annihilated by ๐‘‰ 2 . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 Group Schemes Annihilated by ๐‘‰ 3 . . . . . . . . . . . . . . . . . . . . . . . 45 CHAPTER 5 ฮ“1 (๐‘) -COVER OVER THE SIEGEL THREEFOLD . . . . . . . . . 55 5.1 ฮ“1 (๐‘) -cover over the Superspecial Locus . . . . . . . . . . . . . . . . . . . . 55 5.2 ฮ“1 (๐‘) -cover over the Supersingular Locus . . . . . . . . . . . . . . . . . . . 57 5.3 ฮ“1 (๐‘) -cover over ๐‘-rank-1 Locus . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.1 Mixed extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 Calculations on extensions . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4 ฮ“1 (๐‘) -cover over the Ordinary Locus . . . . . . . . . . . . . . . . . . . . . . 70 5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 vi LIST OF TABLES Table 1.1 Regularity Properties of the ฮ“1 (๐‘)-cover over the Siegel Threefold . . . . . 9 vii CHAPTER 1 INTRODUCTION Let โ„‹ be the complex upper half plane. The special linear group SL2 (โ„ค) and its subgroups act on โ„‹ by Mรถbius transformations: ๐‘Ž ๐‘ ๐‘Ž๐‘ง + ๐‘ ( )โ‹…๐‘ง โ‰” . (1.1) ๐‘ ๐‘‘ ๐‘๐‘ง + ๐‘‘ Let ๐‘ โ‰ฅ 1 be an integer. Let ฮ“0 (๐‘ ), ฮ“1 (๐‘ ) and ฮ“(๐‘ ) be subgroups of SL2 (โ„ค) defined as follows: ๐‘Ž ๐‘ โˆ— 0 ฮ“0 (๐‘ ) โ‰” {( )โ‰ก( ) mod ๐‘ } , (1.2) ๐‘ ๐‘‘ โˆ— โˆ— ๐‘Ž ๐‘ 1 0 ฮ“1 (๐‘ ) โ‰” {( )โ‰ก( ) mod ๐‘ } , (1.3) ๐‘ ๐‘‘ โˆ— 1 ๐‘Ž ๐‘ 1 0 ฮ“(๐‘ ) โ‰” {( )โ‰ก( ) mod ๐‘ } . (1.4) ๐‘ ๐‘‘ 0 1 In general, we call a subgroup ฮ“ a congruence subgroup (of SL2 (โ„ค)) if ฮ“ contains ฮ“(๐‘ ) for some integer ๐‘ โ‰ฅ 1. The subgroups ฮ“0 (๐‘ ), ฮ“1 (๐‘ ) and ฮ“(๐‘ ) are the most interest- ing congruence subgroups. In particular, the quotients of the upper half plane by these congruence subgroups have the following moduli interpretations: โŽง isomorphism class of pairs (๐ธ, ๐บ), where ๐ธ is an elliptic curve โŽซ { } ฮ“0 (๐‘ )\โ„‹ = โŽจ โŽฌ, { over โ„‚ and ๐บ โŠ‚ ๐ธ a subgroup of order ๐‘ } โŽฉ โŽญ โŽง isomorphism class of pairs (๐ธ, ๐‘ƒ ), where ๐ธ is an elliptic curve โŽซ { } ฮ“1 (๐‘ )\โ„‹ = , โŽจ โŽฌ { over โ„‚ and ๐‘ƒ โˆˆ ๐ธ generates a subgroup of order ๐‘ } โŽฉ โŽญ โŽง isomorphism class of triples (๐ธ, ๐‘ƒ , ๐‘„), where ๐ธ is an elliptic โŽซ { } { } ฮ“(๐‘ )\โ„‹ = โŽจ curve over โ„‚ and ๐‘ƒ , ๐‘„ โˆˆ ๐ธ generate the ๐‘ -torsion points ๐ธ[๐‘ ] โŽฌ. { } { with โŸจ๐‘ƒ , ๐‘„โŸฉ = ๐‘’2๐œ‹๐‘–/๐‘ for the Weil pairing โŸจโ‹…, โ‹…โŸฉ } โŽฉ โŽญ These quotients are denoted by ๐‘Œ0 (๐‘ ) (resp. ๐‘Œ1 (๐‘ ), ๐‘Œ (๐‘ )). The modular curves ๐‘‹0 (๐‘ ) (resp. ๐‘‹1 (๐‘ ), ๐‘‹(๐‘ )) are constructed by compactifying ๐‘Œ0 (๐‘ ) (resp. ๐‘Œ1 (๐‘ ), ๐‘Œ (๐‘ )). These modular curves are known to admit smooth models over โ„ค[1/๐‘ ]. 1 As we can see above, modular curves arise as the moduli spaces of elliptic curves with some extra structures. These extra structures are called level structures. In particular, the extra structures that appear in the moduli description of ๐‘Œ0 (๐‘ ) (resp. ๐‘Œ1 (๐‘ ), ๐‘Œ (๐‘ )) are called ฮ“0 (๐‘ ) (resp. ฮ“1 (๐‘ ), ฮ“(๐‘ ))-level structures. The first systematic study of integral models of modular curves over โ„ค was done by Deligneโ€“Rapoport [8], who construct models of ๐‘‹0 (๐‘) and ๐‘‹1 (๐‘) over the ๐‘-adic integers โ„ค๐‘ . In [19], Katz and Mazur construct integral models of ๐‘‹0 (๐‘ ), ๐‘‹1 (๐‘ ) and ๐‘‹(๐‘ ), by carefully defining the moduli problems of elliptic curves with level structures. For example, following an idea of Drinfeld in [10], Katz and Mazur define a set of sections {๐‘ƒ1 , โ€ฆ , ๐‘ƒ๐‘ 2 } of ๐ธ[๐‘ ] to be a โ€œfull set of sectionsโ€, if the points generate the group scheme ๐ธ[๐‘ ] as Cartier divisors. Using this notion, the ฮ“(๐‘ )-level structure on ๐ธ[๐‘ ], also called โ€œfull level structureโ€, is defined to be the maps in Hom((โ„ค/๐‘ โ„ค)2 , ๐ธ[๐‘ ]) whose images form a full set of sections. Katz and Mazur use this notion of full level structure to construct integral models of ๐‘‹(๐‘ ). In Chapter 2, we review some preliminaries such as the Oortโ€“Tate and Raynaud theory of group schemes of order ๐‘, the Ekedahlโ€“Oort stratification and the definition of primitive elements of group schemes due to Kottwitzโ€“Wake. Throughout the rest of this thesis, the central questions we consider are to generalize these notions of level structures, and make ex- plicit calculations on different moduli spaces. Particularly, we consider ฮ“(๐‘)-level structures on moduli of finite flat group schemes and ฮ“1 (๐‘)-level structures on the moduli of principally polarized abelian surfaces with symplectic level structure. For each of the case, we consider the following questions: (A) How to define a good notion of level structures over the moduli space? (B) Given a good notion of level structure over the moduli, find equations that describe the universal covers, at first locally. (C) What arithmetic/geometric properties can we obtain from the above descriptions? 2 First we consider the moduli of finite flat group schemes (over โ„ค๐‘ ) and consider Question (A) for ฮ“(๐‘)-level structures (also called โ€œfull level structureโ€) on it. Note that although there is no โ€œmoduli spaceโ€ of finite flat group schemes, we can still consider the โ€œmoduli stackโ€ instead. Here by a stack, we simply mean a category fibered in groupoids over Schโ„ค๐‘ as in [6]. More precisely, let C be a stack of group schemes ๐บ/๐‘† of certain type (for example, finite flat commutative so that ๐บ[1/๐‘] is รฉtale locally isomorphic to (โ„ค/๐‘๐‘› โ„ค)๐‘” ) over Schโ„ค๐‘ . The objects in C are group schemes ๐บ/๐‘† of the fixed type and the morphisms are Cartesian squares. By a โ€œgoodโ€ ฮ“(๐‘)-level structure over C, we mean a fibered functor โ„ฑ โˆถ C โ†’ Sch, such that โ„ฑ(๐บ/๐‘†) is a closed subscheme of Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ) and such that for ๐‘“ โˆถ ๐บ/๐‘† โ†’ ๐บโ€ฒ /๐‘† โ€ฒ , the morphism โ„ฑ(๐‘“) โˆถ โ„ฑ(๐บ/๐‘†) โ†’ โ„ฑ(๐บโ€ฒ /๐‘† โ€ฒ ) is the restriction of the morphism Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ) โ†’ Hom๐‘†โ€ฒ ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บโ€ฒ ) induced by ๐‘“, and satisfies the following conditions: (1) โ„ฑ(๐บ/๐‘†) is flat over ๐‘† and of rank |GL๐‘” (โ„ค/๐‘๐‘› โ„ค)|. (2) โ„ฑ(๐บ/๐‘†) is invariant under the right GL๐‘” (โ„ค/๐‘๐‘› โ„ค)-action on Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ). When inverting ๐‘, we have an identification โ„ฑ(๐บ[ ๐‘1 ]/๐‘†[ ๐‘1 ]) = Isom๐‘†[ ๐‘1 ] ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ[ ๐‘1 ]) as closed subschemes of Hom๐‘†[ 1 ] ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ[ ๐‘1 ]). ๐‘ (3) When identifying Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ) ร—๐‘† ๐‘‡ = Hom๐‘‡ ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ๐‘‡ ) in the natural way, we have โ„ฑ(๐บ/๐‘†) ร—๐‘† ๐‘‡ = โ„ฑ(๐บ๐‘‡ /๐‘‡ ) as closed subschemes, for any ๐‘†-scheme ๐‘‡ . โˆผ (4) For any group scheme isomorphism ๐บ โˆ’ โ†’ ๐บโ€ฒ , the induced isomorphism โˆผ Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บ) โˆ’ โ†’ Hom๐‘† ((โ„ค/๐‘๐‘› โ„ค)๐‘” , ๐บโ€ฒ ) 3 restricts to an isomorphism โˆผ โ„ฑ(๐บ/๐‘†) โˆ’ โ†’ โ„ฑ(๐บโ€ฒ /๐‘†). The condition (4) is automatic from being a functor. There have been many attempts by other mathematicians to give such a construction. In [19], Katz and Mazur suggest a construction of full level structures for general group schemes. Unfortunately, this is shown to be badly behaved (for example, not flat) by Chai and Norman in [3]. In [42], Wake gives a good notion of full level structure for ๐œ‡๐‘ ร— ๐œ‡๐‘ . In his paper, Wake also gives an alternative description of his full level structure on ๐œ‡๐‘ ร— ๐œ‡๐‘ that can be defined for general group schemes. However, this alternative description still fails to behave well for general group schemes. In [21], Kottwitz and Wake construct a general notion of ฮ“1 (๐‘)-level structure on finite flat group schemes, given by so-called primitive elements (see Section 2.3). In [13], we extend the result of Wake and give a definition of full level structure on all group schemes of the form ๐บ ร— ๐บ using the notion of Kottwitz-Wake primitive elements. Here is the main theorem in Chapter 3: Theorem 1.0.1. Let ๐‘† be a โ„ค๐‘ -scheme and let ๐บ be a finite flat commutative group scheme of rank ๐‘ over S. The full level structure on ๐บ ร— ๐บ defined in Definition 3.1.2 satisfies condition (1)-(3). Back to the language of stacks, Theorem 1.0.1 implies that we defined a well-behaved notion of full level structure over the stack ๐‘‚๐‘‡ , whose objects are group schemes of the form ๐บ ร— ๐บ where ๐บ is an Oortโ€“Tate scheme (see Section 2.1) over a โ„ค๐‘ -scheme ๐‘†, and morphisms are diagonal group scheme isomorphisms ๐บ ร— ๐บ โ†’ ๐บโ€ฒ ร— ๐บโ€ฒ induced by two identical isomorphisms of Oortโ€“Tate group schemes ๐บ โ†’ ๐บโ€ฒ . One might hope to extend this result over the stack of finite flat commutative group schemes. Unfortunately, we record the following negative result in Chapter 4: 4 Theorem 1.0.2. There is no โ€œnaturalโ€ notion of full level structure over group schemes which is flat of the expected rank over the base. Here, by โ€œnaturalโ€, we mean one is actually defined over the stack, i.e. satisfying con- dition (4) as above. In fact, we observe that there is no good notion of full level structure even over the substack ๐‘‚๐‘‡ ร— ๐‘‚๐‘‡ , whose objects are ๐บ ร— ๐บโ€ฒ where ๐บ, ๐บโ€ฒ are Oortโ€“Tate group schemes. We show that the full level structure defined in Theorem 1.0.1 is the only possible definition that gives a flat model. The full level structure we define is preserved by the diagonal group scheme isomorphisms ๐บ ร— ๐บ โ†’ ๐บโ€ฒ ร— ๐บโ€ฒ induced by two identical isomorphisms of Oortโ€“Tate group schemes ๐บ โ†’ ๐บโ€ฒ . However, there exists group schemes for which the full level structure scheme is not preserved by all automorphisms. It is notable that the counterexamples come from non-๐‘-divisible groups. So there is still a possibility of a positive result for truncated ๐‘-divisible groups. Next, we consider ฮ“1 (๐‘)-level structures over the moduli of principally polarized abelian surface with symplectic level-๐‘ structure. For ๐‘ โ‰ฅ 3, this is a fine moduli space by [28]. This moduli space is called the Siegel threefold and is denoted by ๐’œ โ‰” ๐’œ2,1,๐‘ . We are particularly interested in the level structures over the special fiber ๐’œ ฬ„ โ‰” ๐’œ โŠ— ๐”ฝ๐‘ . There is already a well-behaved notion of ฮ“1 (๐‘)-level structure defined by taking Kottwitzโ€“Wake primitive elements on the ๐‘-torsion of the universal abelian surface ๐’ณ. The ฮ“1 (๐‘)-cover is then given by ๐’ณร— [๐‘] โ‰” (๐’ณ[๐‘])ร— over ๐’œ. (Some mathematicians use the name โ€œฮ“1 (๐‘)-coverโ€ differently. For example, Haines and Rapoport use โ€œฮ“1 (๐‘)-coverโ€ for the pro-๐‘ Iwahori structure in [16].) So in this case, Question (A) has already been resolved. Consider Question (B). In [30], Oort defines a stratification of ๐’œ (for general dimension ๐‘”), now called the Ekedahlโ€“Oort stratification. The Ekedahlโ€“Oort stratification is parametrized by โ€œelementary sequencesโ€. For each elementary sequence ๐œ‘, we denote the associated stra- tum by ๐‘†๐œ‘ . We want to give the local equations of the ฮ“1 (๐‘)-cover ๐’ณร— [๐‘] over each stratum ๐‘†๐œ‘ . To do this, we need some machinery to systematically produce group schemes. This machinery is built in Chapter 4. The tool we use is a version of Dieudonnรฉ theory 5 due to de Jong [4]. We review this version of Dieudonnรฉ theory and compare it with the crystalline Dieudonnรฉ theory. Although this version of Dieudonnรฉ theory does not establish an antiequivalence of categories, there are still bijections between morphisms and extensions. Using these bijections, we construct group schemes killed by ๐‘ whose Dieudonnรฉ modules have nilpotent Verschiebung. These group schemes are constructed by taking consecutive extensions of group schemes with trivial Verschiebung, and their Hopf algebras are given explicitly in terms of their Dieudonnรฉ modules. Here is a sample of such result: Theorem 1.0.3. Let ๐‘† = Spec ๐‘…, where ๐‘… is a local ring in characteristic ๐‘. Assume that ๐‘† and its Frobenius lift modulo ๐‘2 . (This is true, for example, when ๐‘† is smooth.) Let ๐บ/๐‘† be a (finite flat commutative) group scheme of rank ๐‘4 and killed by ๐‘. Suppose that the Frobenius and Verschiebung on the Dieudonnรฉ module are given by matrices of the following form: 0 ๐‘Ž 1 ๐‘Ž2 ๐‘ 0 ๐‘ 1 ๐‘2 ๐‘‘ โŽ› โŽœ0 0 0 ๐‘’1 โŽŸ โŽž โŽ› โŽœ0 0 0 ๐‘“1 โŽž โŽŸ ๐น =โŽœ โŽœ โŽŸ โŽŸ ,๐‘‰ = โŽœ โŽœ โŽŸ, (1.5) โŽœ0 0 0 ๐‘’2 โŽŸ โŽœ0 0 0 ๐‘“2 โŽŸ โŽŸ โŽ0 0 0 0 โŽ  โŽ0 0 0 0 โŽ  where ๐‘Ž1 , ๐‘Ž2 , ๐‘1 , ๐‘2 , ๐‘, ๐‘‘, ๐‘’1 , ๐‘’2 , ๐‘“1 , ๐‘“2 โˆˆ ๐‘…. Then ๐บ โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/ (๐‘ฅ๐‘ , ๐‘ฆ1๐‘ โˆ’ ๐‘Ž1 ๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘Ž2 ๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘’1 ๐‘ฆ1 โˆ’ ๐‘’2 ๐‘ฆ2 ) (1.6) and there are also explicit formulas for the coalgebra structure (see Equation (4.12)). In Chapter 6, we give some explicit calculations of the ฮ“1 (๐‘)-cover ๐’ณร— [๐‘] over each stratum ๐‘†๐œ‘ of the Siegel threefold ๐’œ.ฬ„ There are 4 Ekedahlโ€“Oort strata. They are: the superspecial locus, the supersingular (but not superspecial) locus, the ๐‘-rank-1 locus and the ordinary locus. The loci have dimensions 0,1,2,3 respectively. Over each stratum, there is a canonical group scheme filtration of the ๐‘-torsion of the universal abelian surface ๐’ณ. Let ๐’ณ๐œ‘ be the restriction of ๐’ณ over ๐‘†๐œ‘ . The ฮ“1 (๐‘)-cover ๐’ณร— [๐‘] โ†’ ๐’œ restricts to ๐’ณร— ร— ๐œ‘ [๐‘] โ‰” (๐’ณ๐œ‘ [๐‘]) over ๐‘†๐œ‘ . We want to calculate explicit descriptions of the ฮ“1 (๐‘)-cover 6 ๐’ณร—๐œ‘ [๐‘]/๐‘†๐œ‘ by finding (local) equations. To do this, we first want to get a (local) description of the Hopf algebras of ๐’ณ๐œ‘ [๐‘]/๐‘†๐œ‘ for each stratum. The superspecial locus is a union of discrete points corresponding to products of super- singular elliptic curves. The Hopf algebra of ๐’ณ๐œ‘ [๐‘] over this locus can be easily calculated using classical Dieudonnรฉ theory over perfect fields. Now consider the supersingular locus. Theorem 1.0.3 applies in this situation and it shows that the group scheme ๐’ณ๐œ‘ [๐‘] over ๐‘†๐œ‘ , where ๐‘†๐œ‘ is the supersingular locus, is (Zariski-locally) of the form (1.6). To make the Hopf algebra description of ๐’ณ๐œ‘ [๐‘]/๐‘†๐œ‘ more precise, we will use some specific constructions of the supersingular locus. Following an idea of Moret-Bailly [25] and Oort [32], one can form families of supersingular abelian surfaces ๐’ด over โ„™1 . It is shown in [18] that for any irreducible component ๐‘Š of the supersingular locus, ๐’ณ๐‘Š /๐‘Š pulls back to ๐’ด/โ„™1 via some surjective morphism โ„™1 โ†’ ๐‘Š and the morphism is generically an immersion. In [22], Kudla and Rapoport give nice descriptions of the Dieudonnรฉ modules of ๐’ด/โ„™1 , whose ๐น and ๐‘‰ modulo ๐‘ are of the shape (1.5) in Theorem 1.0.3. Using the construction in Theorem 1.0.3, we can explicitly write down the Hopf algebra of ๐’ด[๐‘]. For the ๐‘-rank-1 locus, we are not able to obtain explicit descriptions of the Hopf algebras. However, we give some partial results using the theory of mixed extensions in Theorem 5.3.7 due to Grothendieck. In particular, we explicitly calculate all extensions and ext groups that are ingredients of the theory of mixed extensions. The only obstruction is to construct an explicit mixed extension using the calculated data. Once we have one explicit mixed extension, we can get all mixed extensions by applying all calculated ingredients to Proposition 5.3.2. For the ordinary locus, Serreโ€“Tate theory applies and we can get explicit expressions of the Hopf algebras using Serreโ€“Tate coordinates. All these group schemes that we construct over the three Ekedahlโ€“Oort strata are written explicitly as complete intersections. In this case, one can obtain explicit generators of the 7 defining ideal of Kottwitz-Wake primitive elements as certain determinants. Putting all these results together, we have the following result: Theorem 1.0.4. Over each Ekedahlโ€“Oort stratum ๐‘†๐œ‘ , the ฮ“1 (๐‘)-cover ๐’ณร— ๐œ‘ [๐‘]/๐‘†๐œ‘ has the following description: 1. Let ๐‘†๐œ‘ be the superspecial locus. Over each point of ๐‘†๐œ‘ , the ฮ“1 (๐‘)-cover ๐’ณร— ๐œ‘ [๐‘]/๐‘†๐œ‘ is given by Spec ๐”ฝฬ„๐‘ [๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ , ๐‘ฅ๐‘ โˆ’1 ๐‘ฆ๐‘ โˆ’1 ) 2 2 2 2 over Spec ๐”ฝฬ„๐‘ . 2. Let ๐‘†๐œ‘ be the supersingular stratum and let ๐‘Š be an irreducible component of ๐‘†๐œ‘ . The ฮ“1 (๐‘)-cover ๐’ณฬ„ ร— ร— 1 ๐‘Š [๐‘]/๐‘Š is the pullback of ๐’ด [๐‘]/โ„™๐”ฝฬ„ via some open immersion ๐‘ ๐‘Š โ†’ โ„™1๐”ฝฬ„ . Over each a๏ฌ€ine chart of the standard cover โ„™1๐”ฝฬ„ = ๐”ธ10 โˆช ๐”ธ1โˆž , the restricted ๐‘ ๐‘ ร— ฮ“1 (๐‘)-cover ๐’ด [๐‘]|๐”ธ1ฬ„ /๐”ธ1๐”ฝฬ„ is isomorphic to ๐”ฝ๐‘ ๐‘ Spec ๐”ฝฬ„๐‘ [๐œ‡, ๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ โˆ’ (๐œ‡๐‘ โˆ’ ๐œ‡)๐‘ฅ๐‘ , ๐‘ฅ๐‘ โˆ’1 ๐‘ฆ๐‘ โˆ’1 ) 2 2 2 2 over Spec (๐”ฝฬ„๐‘ [๐œ‡]). 3. Let ๐‘†๐œ‘ be the ordinary locus. Let ๐‘†๐œ‘ be the ordinary locus and ๐‘ฅ be a closed point of ๐‘†๐œ‘ . Let ๐’ช๐‘†ฬ‚ ๐œ‘ ,๐‘ฅ be the completion of the local ring of ๐‘†๐œ‘ at ๐‘ฅ. Then the base change of ๐’ณร— ฬ‚ ๐œ‘ [๐‘]/๐‘†๐œ‘ to Spec ๐’ช๐‘†๐œ‘ ,๐‘ฅ is isomorphic to ๐‘ฅ๐‘ ๐‘ 1 โˆ’๐‘ƒ1 (๐‘ฆ1 ,๐‘ฆ2 ),๐‘ฅ2 โˆ’๐‘ƒ2 (๐‘ฆ1 ,๐‘ฆ2 ), Spec ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 , ๐‘ฆ2 ]/ ( ๐‘ฆ1๐‘ โˆ’๐‘ฆ1 ,๐‘ฆ2๐‘ โˆ’๐‘ฆ2 , ) (๐‘ฆ1๐‘โˆ’1 โˆ’1)(๐‘ฆ2๐‘โˆ’1 โˆ’1)ฮฆ๐‘ (๐‘ฅ1 )ฮฆ๐‘ (๐‘ฅ2 ) over Spec ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K. Here, ฮฆ๐‘ denotes the cyclotomic polynomial, the polynomials ๐‘ƒ1 , ๐‘ƒ2 โˆˆ ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฆ1 , ๐‘ฆ2 ] are certain interpolation polynomials and the variables ๐‘ก1 , ๐‘ก2 , ๐‘ก3 are the Serre-Tate coordinates. Next, we consider Question (C), the geometric and arithmetic properties of the ฮ“1 (๐‘)- cover over each stratum ๐‘†๐œ‘ and over the whole moduli space ๐’œ2,1,๐‘ in mixed characteristics. 8 The first property we consider is the normality. Using the descriptions given in Theorem (1.0.4), we prove that the ฮ“1 (๐‘)-cover ๐’ณร— ๐œ‘ [๐‘] is not normal in all three cases of Theorem 1.0.4 and the whole integral model ๐’ณร— [๐‘]/๐’œ2,1,๐‘ is not normal as well. Next, we consider the regularity properties. The whole integral model ๐’ณร— [๐‘] is Cohenโ€“ Macaulay since it is finite flat over a Cohenโ€“Macaulay base. Over the superspecial and ordinary locus, we prove that ๐’ณร— ๐œ‘ [๐‘] is Cohenโ€“Macaulay, but not Gorenstein using the Hopf algebra descriptions. Using computer programs like Macaulay2, we can check the same prop- erties hold over the supersingular locus for fixed primes. In particular, over the supersingular locus, the ฮ“1 (๐‘)-cover ๐’ณร— ๐œ‘ [๐‘] is also Cohenโ€“Macaulay, but not Gorenstein. We summarize these results in the following table: Table 1.1 Regularity Properties of the ฮ“1 (๐‘)-cover over the Siegel Threefold superspecial supersingular ordinary whole locus locuss locus integral model Normal No No No No Cohenโ€“Macaulay Yes Yes (for fixed primes) Yes Yes Gorenstein No No (for fixed primes) No 9 CHAPTER 2 PRELIMINARIES In this chapter, we will review some important tools that will be used later. 2.1 Group Schemes and Classification Theorems Let ๐‘† be a scheme. A group scheme ๐บ over ๐‘† is a representable functor from the category of ๐‘†-schemes to the category of groups. Equivalently, a group scheme ๐บ is an ๐‘†-scheme together with scheme morphisms ๐‘š โˆถ ๐บ ร—๐‘† ๐บ โ†’ ๐บ, inv โˆถ ๐บ โ†’ ๐บ and ๐œ– โˆถ ๐‘† โ†’ ๐บ so that the following diagrams commute: (๐‘š,Id) ๐บร—๐บร—๐บ ๐บร—๐บ ๐‘† ๐‘† ๐‘† (Id,๐‘š) ๐‘š (2.1) ๐‘š ๐บร—๐บ ๐บ ๐‘† (๐œ–,Id) ๐‘†ร—๐บ ๐บร—๐บ ๐‘† ๐‘† pr2 (2.2) ๐‘š ๐บ ๐บ (inv,Id) ๐บร—๐บ ๐บร—๐บ ๐‘† ๐‘† (2.3) ๐‘š ๐œ– ๐‘† ๐บ A group scheme ๐บ/๐‘† is called commutative if the points ๐บ(๐‘‡ ) are commutative groups, for all ๐‘†-schemes ๐‘‡ . Equivalently, this means the diagram (pr2 ,pr1 ) ๐บร—๐บ ๐บร—๐บ ๐‘† ๐‘† (2.4) ๐‘š ๐‘š ๐บ commutes. 10 We say a group scheme ๐บ/๐‘† is locally free (resp. flat, finite) if ๐บ โ†’ ๐‘† is a locally free (resp. flat, finite) morphism. For a finite, locally free group scheme ๐บ/๐‘†, we call the rank of ๐’ช๐บ as a locally free ๐’ช๐‘† -module โ€œthe rank of the group scheme ๐บ/๐‘†โ€ (suppose that ๐‘† is connected). Throughout this paper, all base schemes are noetherian and all group schemes are as- sumed to be commutative and flat over the base. Note that being flat and locally free are the same when the morphism is locally of finite presentation. Therefore all group schemes are locally free and commutative over the base. Let ๐‘† be a scheme over Spec โ„ค๐‘ and let ๐บ be a finite flat commutative group scheme over ๐‘† of rank ๐‘. In [33], Oort and Tate give a classification theorem for all group schemes ๐บ/๐‘† of this type. They define an anti-equivalence of categories as following: โŽงtriples (โ„’, ๐‘ข, ๐‘ฃ), where โ„’ is a line bundle overโŽซ { } โŽง๐บ/๐‘†, finite flat commutativeโŽซ { } { } โŽจ ๐‘†, ๐‘ข โˆˆ ฮ“(๐‘†, โ„’ โŠ—(๐‘โˆ’1) ), ๐‘ฃ โˆˆ ฮ“(๐‘†, โ„’ โŠ—(1โˆ’๐‘) ) so โŽฌ โŸถ โŽจ โŽฌ { } {group schemes of rank ๐‘ } {that ๐‘ข โŠ— ๐‘ฃ = ๐‘ค } โŽฉ โŽญ โŽฉ ๐‘ โŽญ Here ๐‘ค๐‘ is a constant in ๐‘โ„คร— ๐‘ โŠ‚ โ„ค๐‘ . Specifically, when ๐‘† = Spec ๐‘… where ๐‘… is a local ring, the line bundle โ„’ is trivial. Therefore to give a rank ๐‘ group scheme over such ๐‘†, it su๏ฌ€ices to give two elements ๐‘ข, ๐‘ฃ โˆˆ ๐‘… satisfying ๐‘ข๐‘ฃ = ๐‘ค๐‘ . For such a pair (๐‘ข, ๐‘ฃ), the corresponding Hopf algebra is Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ข๐‘ฅ), where the coalgebra operations are given by ๐‘โˆ’1 โˆ— 1 ๐‘ฃ๐‘ฅ๐‘– โŠ— ๐‘ฅ๐‘โˆ’๐‘– ๐‘š (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1 + โˆ‘ , 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– invโˆ— (๐‘ฅ) = โˆ’๐‘ฅ, ๐œ–โˆ— (๐‘ฅ) = 0. Here ๐‘ค๐‘– โ€™s are also constants in โ„ค๐‘ with ๐‘ค1 , โ€ฆ , ๐‘ค๐‘โˆ’1 โˆˆ โ„คร— ๐‘ and ๐‘ค๐‘ = ๐‘๐‘ค๐‘โˆ’1 . The constants ๐‘ค1 , โ€ฆ , ๐‘ค๐‘โˆ’1 satisfy that ๐‘ค๐‘– โ‰ก ๐‘–! mod ๐‘. For more details on the ๐‘ค๐‘– โ€™s, see [33, page 10]. 11 Haines and Rapoport express this result using stack language in [16, Theorem 3.3.1]. For convenience, we give the result here: Theorem 2.1.1 ([16]). The โ„ค๐‘ -stack ๐‘‚๐‘‡ of finite flat commutative group schemes of rank ๐‘, satisfies the following properties: (i) ๐‘‚๐‘‡ is an Artin stack isomorphic to [(Spec โ„ค๐‘ [๐‘ , ๐‘ก]/(๐‘ ๐‘ก โˆ’ ๐‘ค๐‘ ))/๐”พ๐‘š ]. The action of ๐”พ๐‘š is given by ๐œ† โ‹… (๐‘ , ๐‘ก) = (๐œ†๐‘โˆ’1 ๐‘ , ๐œ†1โˆ’๐‘ ๐‘ก) with ๐‘ค๐‘ โˆˆ ๐‘โ„คร— ๐‘ as above. (ii) The universal group scheme ๐’ข over ๐‘‚๐‘‡ is ๐’ข = [(Spec๐‘‚๐‘‡ ๐’ช[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ก๐‘ฅ))/๐”พ๐‘š ]. The action of ๐”พ๐‘š is given by ๐œ† โ‹… ๐‘ฅ = ๐œ†๐‘ฅ. In [38], Raynaud generalizes the notion of Oortโ€“Tate group schemes to higher ranks. In particular, let ๐”ฝ๐‘ž be a finite field, where ๐‘ž = ๐‘๐‘› . Raynaud consider ๐”ฝ๐‘ž -vector space schemes of rank 1, which are the same as group schemes of rank ๐‘ž = ๐‘๐‘› together with a ๐”ฝ๐‘ž -action on it. Let โ„š๐‘ž โ‰” โ„š๐‘ (๐œ๐‘žโˆ’1 ) be the unique unramified extension of โ„š๐‘ of degree ๐‘›, and let โ„ค๐‘ž be the ring of integers of โ„š๐‘ž . The character group of ๐”ฝร— ๐‘ž is a cyclic group of order ๐‘ž โˆ’ 1. ๐‘–โˆ’1 ๐‘ Let ๐œ’1 โˆถ ๐”ฝร— ๐‘ž โ†’ โ„ค๐‘ž be the generator of the character group and we let ๐œ’๐‘– โ‰” ๐œ’1 . Therefore ๐‘› ๐‘’ ๐œ’๐‘›+1 = ๐œ’1 and any character ๐œ’ can be written as โˆ๐‘–=1 ๐œ’๐‘– ๐‘– with 0 โ‰ค ๐‘’๐‘– < ๐‘. A character ๐œ’ acts on the vector space scheme by 1 [๐œ’] โ‰” โˆ‘ ๐œ’โˆ’1 (๐œ†)[๐œ†]. ๐‘ž โˆ’ 1 ๐œ†โˆˆ๐”ฝร— ๐‘ž Let the base scheme ๐‘† be a โ„ค๐‘ž -scheme. Raynaud shows that there is an anti-equivalence of categories โŽงn triples (โ„’ , ๐‘ข , ๐‘ฃ ), where โ„’ โ€™s are line bun-โŽซ โŽง๐บ/๐‘†, finite flat ๐”ฝ -vector spaceโŽซ { ๐‘– ๐‘– ๐‘– ๐‘– } { ๐‘ž } { } { } โŠ—๐‘ โŠ—๐‘ โŸถ โŽจ dles over ๐‘†, ๐‘ข ๐‘– โˆถ โ„’ ๐‘–+1 โ†’ โ„’ ๐‘– , ๐‘ฃ๐‘– โˆถ โ„’ ๐‘– โ†’ โŽฌ โŽจ schemes whose eigenspaces of โŽฌ { } { } {โ„’ so that ๐‘ข โŠ— ๐‘ฃ = ๐‘ค } {๐œ’ are of rank 1 } โŽฉ ๐‘–+1 โŽญ โŽฉ ๐‘– โŽญ 12 Here ๐‘ค โˆˆ โ„ค๐‘ž is a constant. As in the Oortโ€“Tate case, when ๐‘† = Spec ๐‘… with ๐‘… a local ring, the line bundles โ„’๐‘– are trivial and ๐‘ข๐‘– , ๐‘ฃ๐‘– are given by elements in ๐‘…. Given ๐‘› pairs (๐‘ข๐‘– , ๐‘ฃ๐‘– ) with ๐‘ข๐‘– ๐‘ฃ๐‘– = ๐‘ค, the associated ๐”ฝ๐‘ž -vector space scheme is given by Spec ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ]/ (๐‘ฅ๐‘1 โˆ’ ๐‘ข1 ๐‘ฅ2 , ๐‘ฅ๐‘2 โˆ’ ๐‘ข2 ๐‘ฅ3 , โ€ฆ , ๐‘ฅ๐‘๐‘› โˆ’ ๐‘ข๐‘› ๐‘ฅ1 ) with coalgebra operations ๐‘Ÿ ๐‘Ÿ โˆ— ๐‘ฃ๐‘–โˆ’โ„Ž โ‹ฏ ๐‘ฃ๐‘–โˆ’1 ๐‘’โ€ฒ๐‘— ๐‘’โ€ฒโ€ฒ ๐‘š (๐‘ฅ๐‘– ) = ๐‘ฅ๐‘– โŠ— 1 + 1 โŠ— ๐‘ฅ๐‘– + โˆ‘ (โˆ ๐‘ฅ๐‘— ) โŠ— (โˆ ๐‘ฅ๐‘— ๐‘— ) , ๐œ’โ€ฒ ๐œ’โ€ฒโ€ฒ =๐œ’๐‘– ๐‘ค๐œ’โ€ฒ ๐‘ค๐œ’โ€ฒโ€ฒ ๐‘—=1 ๐‘—=1 invโˆ— (๐‘ฅ๐‘– ) = โˆ’๐‘ฅ๐‘– , ๐œ–โˆ— (๐‘ฅ๐‘– ) = 0. ๐‘Ÿ ๐‘’โ€ฒ ๐‘Ÿ ๐‘’โ€ฒโ€ฒ Here we write ๐œ’โ€ฒ = โˆ๐‘–=1 ๐œ’๐‘– ๐‘– and ๐œ’โ€ฒโ€ฒ = โˆ๐‘–=1 ๐œ’๐‘– ๐‘– and ๐‘ค๐œ’ โˆˆ โ„ค๐‘ž are constants. The index 0 < โ„Ž โ‰ค ๐‘› is uniquely characterized by ๐‘’โ€ฒ๐‘–โˆ’โ„Ž + ๐‘’โ€ฒโ€ฒ ๐‘–โˆ’โ„Ž = ๐‘. Oortโ€“Tate group schemes and Raynaud group schemes have explicit descriptions that are locally quotients of polynomials rings as complete intersections. This fact holds for group schemes more generally: for any group scheme ๐บ/๐‘† with ๐‘† Noetherian, the morphism ๐บ โ†’ ๐‘† is a local complete intersection morphism, i.e. all fibers are locally complete intersections (see [23, Lemma 31.14]). When further assuming that ๐‘† = Spec ๐‘… with ๐‘… a local complete Noetherian ring, the group schemes ๐บ/๐‘† have the following form: Proposition 2.1.2. ([41, Page 28, Corollary]) Let (๐‘…, ๐‘š) be a complete local noetherian ring with the residue field ๐‘…/๐‘š perfect of characteristic ๐‘. Let ๐บ = Spec ๐ด be a local group scheme over Spec ๐‘…. Then ๐ด โ‰… ๐‘…J๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› K/(๐‘“1 , โ€ฆ , ๐‘“๐‘› ) ๐‘’๐‘– where ๐‘“๐‘– = ๐‘ฅ๐‘๐‘– + ๐‘”๐‘– and ๐‘”๐‘– โ€™s are polynomials with coe๏ฌ€icients in ๐‘š and degree < ๐‘๐‘’๐‘– . In particular, when ๐‘… is a perfect field in characteristic ๐‘, then ๐‘’1 ๐ด โ‰… ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ]/(๐‘ฅ๐‘1 , โ€ฆ , ๐‘ฅ๐‘๐‘› ๐‘› ). ๐‘’ 13 2.2 Siegel Modular Varieties and Ekedahlโ€“Oort Stratification Siegel modular varieties are generalizations of modular curves. In particular, over the com- plex numbers โ„‚, the Siegel modular variety ๐’œ๐‘”,1,๐‘ (โ„‚) is the moduli spaces of isomorphism classes of triples (๐ด, ๐œ†, ๐œ‚), where ๐ด is an abelian variety over โ„‚, ๐œ† โˆถ ๐ด โ†’ ๐ดโˆจ is a principal polarization on ๐ด, and ๐œ‚ โˆถ ๐ด[๐‘ ] โ†’ (โ„ค/๐‘ โ„ค)2๐‘” is an isomorphism compatible with the Weil pairing on ๐ด[๐‘ ] and the symplectic pairing on (โ„ค/๐‘ โ„ค)2๐‘” . In [28], Mumford shows that ๐’œ๐‘”,1,๐‘ is a fine moduli space when ๐‘ โ‰ฅ 3. Similar to the case of modular curves, the Siegel modular variety ๐’œ๐‘”,1,๐‘ also has a โ€œmodelโ€ over โ„ค[1/๐‘ ]. This is in fact a smooth scheme of relative dimension ๐‘”(๐‘” + 1)/2 over โ„ค[1/๐‘ ] (see [28]). We are particularly interested in the geometry of Siegel modular variety in characteristic ๐‘, i.e. the scheme ๐’œ โ‰” ๐’œ๐‘”,1,๐‘ ร—Spec โ„ค[1/๐‘] Spec ๐”ฝ๐‘ where ๐‘ is prime to ๐‘ . In [30], Oort defines a stratification on ๐’œ by the isomorphism class of the ๐‘-torsion (๐ด, ๐œ†)[๐‘]. This stratification is now called the โ€œEkedahlโ€“Oort stratificationโ€. The stratification is constructed as follows. Let (๐ด, ๐œ†) be an principally polarized abelian variety of dimension ๐‘” over a base scheme ๐‘† of characteristic ๐‘ > 0. Consider the ๐‘-torsion group scheme ๐บ โ‰” ๐ด[๐‘]. Let ๐น๐บ โˆถ ๐บ โ†’ ๐บ(๐‘) and ๐‘‰๐บ โˆถ ๐บ(๐‘) โ†’ ๐บ be the Frobenius and Verschiebung respectively. Note that ๐บ is a truncated ๐‘-divisible group. Therefore ker ๐น๐บ = Im ๐‘‰๐บ . The principal polarization on ๐ด gives a group scheme isomorphism ๐œ โˆถ ๐บ โ†’ ๐บ๐ท of ๐บ with its Cartier dual. For any subgroup scheme ๐ป of ๐บ, we define ๐‘‰ (๐ป) โ‰” Im ๐‘‰๐ป and ๐น โˆ’1 (๐ป) as the fiber product: ๐น โˆ’1 (๐ป) ๐ป (๐‘) โ–ก ๐บ ๐น๐บ ๐บ(๐‘) where the bottom arrow is the Frobenius. We also define ๐œ ๐‘–๐ท ๐ป โŸ‚ โ‰” ker(๐บ โˆ’ โ†’ ๐บ๐ท โˆ’โ†’ ๐ป ๐ท ). 14 Note that by identifying ๐บ with ๐บ๐ท via ๐œ, we get a non-degenerate pairing โŸจโ‹…, โ‹…โŸฉ๐บ โˆถ ๐บ ร— ๐บ โ†’ ๐œ‡๐‘ . The notation โ€œโŸ‚โ€ comes from the fact that ๐‘ฅ โˆˆ ๐ป โŸ‚ (๐‘†) โŸบ โŸจ๐‘ฅ, ๐‘ฆโŸฉ๐บ = 0 for all ๐‘ฆ โˆˆ ๐ป. Consider the points (๐ด, ๐œ†, ๐œ‚) of ๐’œ. The Ekedahlโ€“Oort stratification of ๐’œ is defined by the isomorphism classes of (๐ด, ๐œ†)[๐‘]. For each isomorphism class of (๐ด, ๐œ†)[๐‘], one can associate it with an โ€œelementary sequenceโ€ ๐œ‘, which is an increasing sequence of integers of length ๐‘” + 1 with initial term 0 and increments less than or equal to 1, i.e. ๐œ‘(๐‘–) โ‰ค ๐œ‘(๐‘– + 1) โ‰ค ๐œ‘(๐‘–) + 1. These sequences are called elementary sequences and it is easy to see that there are 2๐‘” elementary sequences. The Ekedahlโ€“Oort strata are parametrized by elementary sequences; we denote the stratum corresponding to ๐œ‘ by ๐‘†๐œ‘ . The stratification has the following properties: (i) Every stratum ๐‘†๐œ‘ is non-empty, smooth, quasi-a๏ฌ€ine and equi-dimensional of dimension ๐‘” โˆ‘ ๐œ‘(๐‘–). ๐‘–=0 (ii) Let ๐’ณ be the universal abelian surface over ๐’œ and let ๐’ณ๐œ‘ โ‰” ๐’ณ ร—๐’œ ๐‘†๐œ‘ . Over each strata ๐‘†๐œ‘ , there is a so-called โ€œcanonical filtrationโ€ of group schemes 0 = ๐บ0 โŠ‚ โ‹ฏ โŠ‚ ๐บ๐‘Ÿ = ๐‘‰ (๐บ) โŠ‚ โ‹ฏ โŠ‚ ๐บ2๐‘Ÿ = ๐บ, of ๐บ = ๐’ณ๐œ‘ [๐‘] satisfying Rank ๐บ๐‘– = ๐‘๐œŒ(๐‘–) (2.5) ๐‘‰ (๐บ๐‘– ) = ๐บ๐‘ฃ(๐‘–) (2.6) ๐น โˆ’1 (๐บ๐‘– ) = ๐บ๐‘“(๐‘–) (2.7) ๐บโŸ‚๐‘– = ๐บ2๐‘Ÿโˆ’๐‘– (2.8) (๐บ๐‘– /๐บ๐‘— )๐ท โ‰… ๐บ2๐‘Ÿโˆ’๐‘— /๐บ2๐‘Ÿโˆ’๐‘– (2.9) 15 Here the index ๐‘Ÿ and maps ๐œŒ โˆถ {0, โ€ฆ , 2๐‘Ÿ} โ†’ โ„ค, ๐‘ฃ โˆถ {0, โ€ฆ , 2๐‘Ÿ} โ†’ {0, โ€ฆ , ๐‘Ÿ}, ๐‘“ โˆถ {0, โ€ฆ , 2๐‘Ÿ} โ†’ {๐‘Ÿ, โ€ฆ , 2๐‘Ÿ} are determined and can be easily calculated from ๐œ‘. For a given ๐œ‘, set ๐œŒ(0) = 0 and define ๐œŒ(๐‘–) to be the maximum index > ๐œŒ(๐‘–โˆ’1) so that ๐œ‘(๐œŒ(๐‘–)) = ๐œ‘(๐œŒ(๐‘–โˆ’1)) or ๐œ‘(๐œŒ(๐‘–)) โˆ’ ๐œ‘(๐œŒ(๐‘– โˆ’ 1)) = ๐œŒ(๐‘–) โˆ’ ๐œŒ(๐‘– โˆ’ 1). In other words, ๐œŒ(๐‘–) is the maximal index after ๐œŒ(๐‘– โˆ’ 1) so that ๐œ‘ keeps increasing or stationary from ๐œŒ(๐‘– โˆ’ 1) to ๐œŒ(๐‘–). In this way, we form a ๐œŒ โˆถ {0, โ€ฆ , ๐‘Ÿ} โ†’ โ„ค (note that ๐‘Ÿ is the highest index in ๐œŒ). We define ๐‘ฃ โˆถ {0, โ€ฆ , ๐‘Ÿ} โ†’ โ„ค and ๐‘“ โˆถ {0, โ€ฆ , ๐‘Ÿ} โ†’ โ„ค by setting ๐‘ฃ(0) = 0, ๐‘“(0) = ๐‘Ÿ and define ๐‘ฃ(๐‘–) and ๐‘“(๐‘–) by ๐‘ฃ(๐‘–) = ๐‘ฃ(๐‘– โˆ’ 1) โ‡” ๐‘“(๐‘–) = ๐‘“(๐‘– โˆ’ 1) + 1 โ‡” ๐œ‘(๐œŒ(๐‘–)) = ๐œ‘(๐œŒ(๐‘– โˆ’ 1)), ๐‘ฃ(๐‘–) = ๐‘ฃ(๐‘– โˆ’ 1) + 1 โ‡” ๐‘“(๐‘–) = ๐‘“(๐‘– โˆ’ 1) โ‡” ๐œ‘(๐œŒ(๐‘–)) โˆ’ ๐œ‘(๐œŒ(๐‘– โˆ’ 1)) = ๐œŒ(๐‘–) โˆ’ ๐œŒ(๐‘– โˆ’ 1). We then expand ๐œŒ, ๐‘ฃ, ๐‘“ to {0, โ€ฆ , 2๐‘Ÿ} by defining ๐œŒ(๐‘Ÿ + ๐‘–) = 2๐œŒ(๐‘Ÿ) โˆ’ ๐œŒ(๐‘Ÿ โˆ’ ๐‘–) ๐‘ฃ(๐‘Ÿ + ๐‘–) = 2๐‘Ÿ โˆ’ ๐‘“(๐‘Ÿ โˆ’ ๐‘–) ๐‘“(๐‘Ÿ + ๐‘–) = 2๐‘Ÿ โˆ’ ๐‘ฃ(๐‘Ÿ โˆ’ ๐‘–) for all 1 โ‰ค ๐‘– โ‰ค ๐‘Ÿ. Example 2.2.1. Let ๐‘” = 2. We consider pricipally polarized abelian surfaces. We have 4 elementary sequences. For each ๐œ‘, let ๐’ณ๐œ‘ be the universal abelian surface over the associated stratum ๐‘†๐œ‘ and ๐บ = ๐’ณ๐œ‘ [๐‘] as before. For any geometric point (๐ด, ๐œ†, ๐œ‚) of ๐‘†๐œ‘ , we define the ๐‘-rank ๐‘˜ and ๐‘Ž-number of ๐ด by ๐ด[๐‘](๐”ฝฬ„๐‘ ) = (โ„ค/๐‘โ„ค)๐‘˜ (2.10) ๐‘Ž(๐ด) โ‰” dim๐”ฝฬ„๐‘ Hom(๐›ผ๐‘ , ๐ด) (2.11) For each elementary sequence ๐œ‘, the stratum ๐‘†๐œ‘ has the following data: (i) Let ๐œ‘ = (0, 0, 0). In this case, the canonical filtration is 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 = ๐บ. 16 The corresponding canonical type is ๐œŒ = (0, 2, 4), ๐‘ฃ = (0, 0, 1) and ๐‘“ = (1, 2, 2). In this case, ๐ด is of ๐‘-rank 0 and ๐‘Ž-number 2, corresponding to superspecial abelian surfaces. (ii) Let ๐œ‘ = (0, 0, 1). In this case, the canonical filtration is 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 โŠ‚ ๐บ3 โŠ‚ ๐บ4 = ๐บ. The corresponding canonical type is ๐œŒ = (0, 1, 2, 3, 4), ๐‘ฃ = (0, 0, 1, 1, 2) and ๐‘“ = (2, 3, 3, 4, 4). In this case, ๐ด is of ๐‘-rank 0 and ๐‘Ž-number 1, corresponding to su- persingular but not superspecial (sometimes called supergeneral) abelian surfaces. (iii) Let ๐œ‘ = (0, 1, 1). In this case, the canonical filtration is 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 โŠ‚ ๐บ3 โŠ‚ ๐บ4 = ๐บ. The corresponding canonical type is ๐œŒ = (0, 1, 2, 3, 4), ๐‘ฃ = (0, 1, 1, 2, 2) and ๐‘“ = (2, 2, 3, 3, 4). In this case ๐ด is of ๐‘-rank 1 and ๐‘Ž-number 1. (iv) Let ๐œ‘ = (0, 1, 2). In this case, the canonical filtration is 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 = ๐บ. The corresponding canonical type is ๐œŒ = (0, 2, 4), ๐‘ฃ = (0, 1, 1) and ๐‘“ = (1, 1, 2). In this case ๐ด is of ๐‘-rank 2 and ๐‘Ž-number 0. This corresponds to ordinary abelian surfaces. 2.3 Kottwitz-Wake Primitive Elements Recall that all base schemes are assumed to be locally of finite presentation and all group schemes are assumed to be commutative and flat over the base. Let ๐บ/๐‘† be a finite group scheme. In [21], Kottwitz and Wake define a subscheme of โ€œnon-nullityโ€ of ๐บ. This sub- scheme is denoted by ๐บร— . Definition 2.3.1 ([21]). Let ๐บ be a finite group scheme over a base scheme ๐‘†. Let โ„ โŠ‚ ๐’ช๐บ be the augmentation ideal of ๐บ. We define the scheme of โ€œnon-nullโ€ elements ๐บร— to be the 17 closed subscheme of ๐บ with the defining ideal sheaf given by Ann(โ„), the annihilator of the augmentation ideal sheaf. A key property of โ€œnon-nullityโ€ is that the scheme of โ€œnon-nullโ€ elements ๐บร— is locally free of rank |๐บ| โˆ’ 1 over ๐‘† (see [21]). This notion of โ€œnon-nullityโ€ is used to describe the subscheme of โ€œnon-zeroโ€ points. But one needs to be careful with this analogy. When ๐บ/๐‘† is not รฉtale, the group scheme ๐บ may have no points other than the unit, but ๐บร— can still have points. Here is a concrete example: Example 2.3.2. Consider the additive group ๐”พ๐‘Ž /๐”ฝ๐‘ . Let ๐›ผ๐‘ be the kernel of the Frobenius of ๐”พ๐‘Ž /๐”ฝ๐‘ . In particular, the group scheme ๐›ผ๐‘ can be written as Spec ๐”ฝ๐‘ [๐‘ฅ]/(๐‘ฅ๐‘ ) with aug- mentation ideal (๐‘ฅ) and additive group operation. The annihilator of the augmentation ideal (๐‘ฅ) is generated by ๐‘ฅ๐‘โˆ’1 and therefore ๐›ผร— ๐‘ = Spec ๐”ฝ๐‘ [๐‘ฅ]/(๐‘ฅ ๐‘โˆ’1 ). Note that for any reduced ring ๐‘… in characteristic ๐‘, we have ๐›ผ๐‘ (๐‘…) = {0} and ๐›ผร— ๐‘ (๐‘…) = {0}. The unit section can still be non-null. Using โ€œnon-nullityโ€, Kottwitz and Wake define primitive elements for truncated ๐‘-divisible groups. More precisely, let ๐’ข/๐‘† be a truncated ๐‘-divisible group of height โ„Ž and level ๐‘Ÿ (i.e. the smallest exponent such that ๐‘๐‘Ÿ kills ๐’ข). This happens, for example, when ๐’ข/๐‘† is the ๐‘๐‘› -torsion of a ๐‘-divisible group over ๐‘†. In this case, the (scheme of) primitive elements ๐’ขร— is defined to be the fiber product ๐’ขร— (๐’ข[๐‘])ร— โ–ก ๐’ข ๐’ข[๐‘] ๐‘๐‘Ÿโˆ’1 where (๐’ข[๐‘])ร— is the subscheme of โ€œnon-nullityโ€. The scheme of primitive elements ๐’ขร— /๐‘† is flat of rank ๐‘๐‘Ÿโˆ’1 (๐‘โ„Ž โˆ’1) and describes the points โ€œof exact order ๐‘๐‘Ÿ โ€. Note that for truncated ๐‘-divisible groups of level 1, primitive elements are the same as โ€œnon-nullโ€ elements. For simplicity, on general group schemes killed by ๐‘, we will abuse the name of primitive elements for โ€œnon-nullโ€ elements. 18 In general, it may not be easy to calculate an annihilator ideal in a ring. However, by Proposition 2.1.2, many group schemes are quotients of polynomial rings or power series rings as complete intersections. In these cases, we have the following lemma: Lemma 2.3.3. Let ๐‘… be a Noetherian ring and let (๐‘…โ€ฒ , ๐œ–) be an augmented ๐‘…-algebra, i.e. an ๐‘…-algebra ๐‘…โ€ฒ together with a ring homomorphism ๐œ– โˆถ ๐‘…โ€ฒ โ†’ ๐‘… such that the composition ๐œ– ๐‘… โ†’ ๐‘…โ€ฒ โˆ’ โ†’ ๐‘… is identity. Assume that the augmentation ideal ๐ผ โ‰” ker ๐œ– = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ) is generated by a regular sequence ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› . Let ๐ฝ = (๐‘“1 , โ€ฆ , ๐‘“๐‘› ) โŠ‚ ๐ผ be a subideal generated by a regular sequence ๐‘“1 , โ€ฆ , ๐‘“๐‘› in ๐‘…โ€ฒ . Write ๐‘“๐‘– = ๐‘€๐‘–1 ๐‘ฅ1 + โ‹ฏ + ๐‘€๐‘–๐‘› ๐‘ฅ๐‘› , ๐‘– = 1, โ€ฆ , ๐‘› with ๐‘€๐‘–๐‘— โˆˆ ๐‘…โ€ฒ and set ๐‘€ = (๐‘€๐‘–๐‘— ) โˆˆ Mat๐‘›ร—๐‘› (๐‘…โ€ฒ ). Then we have (๐ฝ โˆถ ๐ผ) = (det(๐‘€ )) + ๐ฝ (2.12) where (๐ฝ โˆถ ๐ผ) โ‰” {๐‘ฅ โˆˆ ๐‘…โ€ฒ |๐‘ฅ๐ผ โŠ‚ ๐ฝ }. Let ๐ด โ‰” ๐‘…โ€ฒ /๐ฝ . Let ๐ผ๐ด = ๐ผ/๐ฝ be the corresponding ideal of ๐ด and let ๐‘‘ be the image of det(๐‘€ ) in ๐ด. Then we have Ann(๐ผ๐ด ) โ‰” (๐‘‘) (2.13) Proof. The proof follows from [9, Proposition 2.1]. We sketch the argument here. The equivalence of Equation (2.12) and Equation (2.13) is immediate from the definition. We will prove Equation (2.13). Consider the Koszul resolutions ๐พ((๐‘ฅ๐‘– ), ๐‘…โ€ฒ ) and ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ). They are complexes of ๐‘…โ€ฒ -modules defined by ๐พ๐‘š (โˆ’, ๐‘…โ€ฒ ) = Hom๐‘…โ€ฒ (โˆง๐‘š โ€ฒ ๐‘› โ€ฒ โ€ฒ ๐‘…โ€ฒ (๐‘… ) , ๐‘… ). For ๐œ™ โˆˆ ๐พ๐‘š ((๐‘ฅ๐‘– ), ๐‘… ), the boundary map is defined by ๐‘‘๐œ™(๐‘ฆ) = ๐œ™(๐‘ฅ โˆง ๐‘ฆ) and ๐พ๐‘š ((๐‘“๐‘– ), ๐‘…โ€ฒ ) is similarly defined. It is a standard fact that ๐พ((๐‘ฅ๐‘– ), ๐‘…โ€ฒ ) and ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ) are exact from the regularity of the sequences (see [24, Section 6]). There is a map ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ) โ†’ ๐พ((๐‘ฅ๐‘– ), ๐‘…โ€ฒ ) given as follows: ๐‘ก ๐‘“ ๐‘“ ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ) โˆถ 0 ๐‘…โ€ฒ (๐‘…โ€ฒ )๐‘› โ‹ฏ (๐‘…โ€ฒ )๐‘› ๐‘…โ€ฒ ๐ด = ๐‘…โ€ฒ /๐ฝ 0 det(๐‘€) (๐‘€๐‘–๐‘— ) ๐œ‹ ๐‘ก ๐‘ฅ ๐‘ฅ ๐พ((๐‘ฅ๐‘– ), ๐‘…โ€ฒ ) โˆถ 0 ๐‘…โ€ฒ (๐‘…โ€ฒ )๐‘› โ‹ฏ (๐‘…โ€ฒ )๐‘› ๐‘…โ€ฒ ๐‘… = ๐‘…โ€ฒ /๐ผ 0 (2.14) 19 Note that the exact rows are free resolutions of ๐ด and ๐‘… respectively. By tensoring the diagram with ๐ด over ๐‘…โ€ฒ and consider the ๐‘›-th homology, we get a commutative diagram with exact rows: ๐‘› 0 0 Tor๐‘…โ€ฒ (๐ด, ๐ด) ๐ด ๐ด๐‘› ๐œ‹โˆ— ๐‘‘ (2.15) ๐‘› ๐‘ฅ 0 Tor๐‘…โ€ฒ (๐‘…, ๐ด) ๐ด ๐ด๐‘› ๐‘› From the bottom row, we have Tor (๐‘…, ๐ด) = Ann(๐ผ๐ด ). On the other hand, consider ๐œ‹ ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ) โŠ—๐‘…โ€ฒ ๐ด โ†’ ๐พ((๐‘“๐‘– ), ๐‘…โ€ฒ ) โŠ—๐‘…โ€ฒ ๐‘… given by ๐ด = ๐‘…โ€ฒ /๐ฝ โˆ’ โ†’ ๐‘… = ๐‘…โ€ฒ /๐ผ as in the right colomn of Diagram (2.14). We get another commutative diagram with exact rows ๐‘› 0 0 Tor (๐ด, ๐ด) ๐ด ๐ด๐‘› ๐œ‹โˆ— ๐œ‹ (2.16) ๐‘› 0 0 Tor (๐‘…, ๐ด) ๐‘… ๐‘…๐‘› This implies that ๐œ‹โˆ— is surjective and therefore by Equation (2.15), the image (๐‘‘) โŠ‚ ๐ด ๐‘› coincides with Tor (๐‘…, ๐ด) = Ann(๐ผ๐ด ), as claimed. Lemma 2.3.3 is a very powerful tool to calculate primitive elements on finite group schemes. In many cases, a group scheme killed by ๐‘ over Spec ๐‘… can be written in the form ๐‘› ๐บ โ‰… Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐ด โ‹… ๐‘ฅ) โ‰” ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ]/ ({๐‘ฅ๐‘๐‘– โˆ’ โˆ‘๐‘—=1 ๐‘Ž๐‘–๐‘— ๐‘ฅ๐‘— } ), (2.17) 1โ‰ค๐‘–โ‰ค๐‘› where ๐‘ฅ = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› )๐‘ก and ๐ด is an ๐‘› ร— ๐‘› matrix over ๐‘…. Pappas gives the following lemma in [36]: Lemma 2.3.4. Let ๐บ be a group scheme over Spec ๐‘… killed by ๐‘ as given in Equation (2.17) with augmentation ideal (๐‘ฅ) = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ). Then the defining ideal of the primitive elements ๐บร— is generated by (โˆ’1)|๐ฝ | det(๐ด๐ฝ ๐‘ ร—๐ฝ ๐‘ ) โˆ ๐‘ฅ๐‘โˆ’1 ๐‘ det(๐ท(๐‘ฅ๐‘โˆ’1 ) โˆ’ ๐ด) = โˆ‘ ๐‘— . (2.18) ๐ฝโŠ‚{1,โ€ฆ,๐‘›} ๐‘—โˆˆ๐ฝ Here the ๐ด๐ฝ ๐‘ ร—๐ฝ ๐‘ is the minor of ๐ด with rows and columns in ๐ฝ ๐‘ , the complement of ๐ฝ in {1, โ€ฆ , ๐‘›}. 20 Proof. By Lemma 2.3.3, the generator of the primitive elements in ๐บ is generated by det(๐ท(๐‘ฅ๐‘โˆ’1 ) โˆ’ ๐ด). Expand the determinant det(๐ท(๐‘ฅ๐‘โˆ’1 ) โˆ’ ๐ด) and consider the coe๏ฌ€icient of โˆ๐‘—โˆˆ๐ฝ ๐‘ฅ๐‘โˆ’1 ๐‘— . Note that the sign sgn(๐œŽ) of a permutation ๐œŽ on {1, โ€ฆ , ๐‘›} fixing a subset ๐ฝ โŠ‚ {1, โ€ฆ , ๐‘›} is the same as the sign sgn(๐œŽ)ฬ„ of the induced permutation ๐œŽฬ„ on ๐ฝ ๐‘ . Therefore the coe๏ฌ€icient of โˆ๐‘—โˆˆ๐ฝ ๐‘ฅ๐‘โˆ’1 ๐‘— in det(๐ท(๐‘ฅ๐‘โˆ’1 ) โˆ’ ๐ด) is the determinant det(โˆ’๐ด๐ฝ ๐‘ ร—๐ฝ ๐‘ ), which is ๐‘ equal to (โˆ’1)|๐ฝ | det(๐ด๐ฝ ๐‘ ร—๐ฝ ๐‘ ) as claimed in Equation (2.18). We can apply Lemma 2.3.4 to the Oortโ€“Tate group schemes and Raynaud group schemes in Section 2.1: Example 2.3.5. Let ๐‘† = Spec ๐‘… where ๐‘… is a local ring. Consider an Oortโ€“Tate group scheme given by Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ข๐‘ฅ) with augmentation ideal given generated by (๐‘ฅ). In this case, the 1 ร— 1 matrix in Lemma 2.3.3 is given by ๐‘ฅ๐‘โˆ’1 โˆ’ ๐‘ข, implying the primitive elements are defined by the ideal (๐‘ฅ๐‘โˆ’1 โˆ’ ๐‘ข). The Raynaud case is slightly more complicated. Using the notation in Equation (2.17), the Raynaud group scheme over ๐‘† is given by ๐บ = Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ˆ โ‹… ๐‘ฅ) where ๐‘ฅ = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› )๐‘ก and 0 โ‹ฏ 0 ๐‘ข๐‘Ÿ โŽ› โŽœ๐‘ข1 โ‹ฏ 0 0โŽžโŽŸ ๐‘ˆ =โŽœ โŽœ โŽŸ , โŽœโ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎโŽŸโŽŸ โŽ 0 โ‹ฏ ๐‘ข๐‘Ÿโˆ’1 0 โŽ  with augmentation ideal given by (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ). Note that det(๐‘ˆ ) = (โˆ’1)๐‘Ÿโˆ’1 ๐‘ข1 โ‹ฏ ๐‘ข๐‘Ÿ and the only principal minor of ๐‘ˆ with nonzero determinant is the whole matrix ๐‘ˆ . Therefore by Lemma 2.3.4, the primitive elements ๐บร— โŠ‚ ๐บ is defined by (๐‘ฅ๐‘โˆ’1 1 โ‹ฏ ๐‘ฅ๐‘โˆ’1 ๐‘Ÿ โˆ’ ๐‘ข1 โ‹ฏ ๐‘ข๐‘Ÿ ). We will use the following special case of Lemma 2.3.4 later: Example 2.3.6. Let ๐บ/ Spec ๐‘… be a group scheme as given in Equation (2.17). Suppose the matrix ๐ด is upper triangular, i.e. ๐‘Ž๐‘–๐‘— = 0 if ๐‘– > ๐‘—. Then ๐ท(๐‘ฅ๐‘โˆ’1 ) โˆ’ ๐ด is an upper triangular 21 matrix with diagonal elements ๐‘ฅ๐‘โˆ’1 ๐‘– โˆ’ ๐‘Ž๐‘–๐‘– . Therefore by Lemma 2.3.4, the defining ideal of ๐‘› ๐บร— โŠ‚ ๐บ is generated by โˆ๐‘–=1 (๐‘ฅ๐‘โˆ’1 ๐‘– โˆ’ ๐‘Ž๐‘–๐‘– ). In particular, suppose ๐ด is strictly upper triangular, i.e. assume further that ๐‘Ž๐‘–๐‘– = 0. Then the defining ideal of ๐บร— โŠ‚ ๐บ is generated by ๐‘ฅ๐‘โˆ’1 1 โ‹ฏ ๐‘ฅ๐‘โˆ’1 ๐‘› . 22 CHAPTER 3 FULL LEVEL STRUCTURE ON FINITE GROUP SCHEMES In this chapter, we consider the ฮ“(๐‘)-level structure, also called โ€œfull level structureโ€, on finite flat commutative group schemes. Suppose that ๐ป is annihilated by ๐‘๐‘Ÿ and ๐ป[ ๐‘1 ] โ‰” ๐ป ร—๐‘† ๐‘†[ ๐‘1 ] is รฉtale-locally isomorphic to the constant group scheme (โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” for some ๐‘Ÿ and ๐‘”. This happens, for example, when ๐ป is the ๐‘๐‘Ÿ -torsion of some abelian variety of dimension ๐‘”/2. Let Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) be the functor from the category of ๐‘†-schemes Sch๐‘† to the category of abelian groups Ab, defined by Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป)(๐‘‡ ) โ‰” Hom๐‘”๐‘ ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป(๐‘‡ )). We will use Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) to denote the representing scheme. Since ๐ป is annihilated by ๐‘๐‘Ÿ , the representing scheme is just ๐ป ๐‘” . The general linear group GL๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค) has a natural right action on Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) by acting on (โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” by precomposition. The problem we consider is to give a notion of full level structure on ๐ป. We expect it โˆ— to be a closed subscheme of Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป), which we denote by Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป), satisfying: โˆ— 1. Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) is flat over ๐‘† and of rank |GL๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค)|. โˆ— 2. Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) is GL๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค)-invariant under the right GL๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค)-action on Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป). When inverting ๐‘, we have an identification โˆ— 1 1 Hom๐‘†[ 1 ] ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป[ ]) = Isom๐‘†[ ๐‘1 ] ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป[ ]) ๐‘ ๐‘ ๐‘ as closed subschemes of Hom๐‘†[ 1 ] ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป[ ๐‘1 ]). ๐‘ 3. When identifying Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) ร—๐‘† ๐‘‡ with Hom๐‘‡ ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป๐‘‡ ) in the natural โˆ— โˆ— way, we have Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป)ร—๐‘† ๐‘‡ = Hom๐‘‡ ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป๐‘‡ ) as closed subschemes, for any ๐‘†-scheme ๐‘‡ . 23 We also expect our definition to coincide with the intuitive definition for some familiar โˆ— group schemes. For example, for ๐ป = ๐œ‡๐‘๐‘Ÿ , we expect Homโ„ค (โ„ค/๐‘๐‘Ÿ โ„ค, ๐ป) to be the closed subscheme of ๐œ‡๐‘๐‘Ÿ defined by the cyclotomic polynomial ๐‘Ÿ ๐‘ฅ๐‘ โˆ’ 1 ๐‘Ÿโˆ’1 ๐‘Ÿโˆ’1 ฮฆ๐‘๐‘Ÿ (๐‘ฅ) โ‰” ๐‘๐‘Ÿโˆ’1 = ๐‘ฅ(๐‘โˆ’1)๐‘ + ๐‘ฅ(๐‘โˆ’2)๐‘ + โ‹ฏ + 1. ๐‘ฅ โˆ’1 When ๐ป is the constant group scheme (โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , the resulting full level structure on ๐ป given โˆ— by Homโ„ค ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) should be GL๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค) โŠ‚ Mat๐‘” (โ„ค/๐‘๐‘Ÿ โ„ค). The motivation for giving a well-behaved notion of full level structure comes from the study of integral models of Shimura varieties. For example, for modular curves, finding an integral model of the modular curve ๐‘‹(๐‘๐‘Ÿ ) essentially amounts to finding a flat model of full level structure on the ๐‘๐‘Ÿ -torsion of elliptic curves. This is done by Katz and Mazur in their book [19]: following an idea of Drinfeld in [10], Katz and Mazur consider the case when ๐ป can be embedded into a curve. In this case a set of sections {๐‘ƒ1 , โ€ฆ , ๐‘ƒ๐‘› } of ๐ป is defined to be a โ€œfull set of sectionsโ€, if the points generate the group ๐ป as Cartier divisors. Using this notion, the full level structure on ๐ป is defined to be the maps in Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) whose โˆ— image forms a full set of sections. As a scheme, Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) can be also described as the closed subscheme of Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) cut out by the Cartier divisor equation ๐ป= โˆ‘ [โ„Ž(๐‘ฅ)] ๐‘ฅโˆˆ(โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” where โ„Ž is the universal homomorphism. Katz and Mazurโ€™s construction, for example, gives a definition of full level structure on โ„ค/๐‘โ„ค ร— ๐œ‡๐‘ , as it is the ๐‘-torsion of an ordinary elliptic curve. They also suggest a natural generalization of their construction, given by โ€œร—-homomorphismsโ€ [19, Appendix of Chapter 1], that can be defined for general group schemes. Unfortunately, the notion of ร—-homomorphisms is deficient because the resulting closed subscheme is generally not flat over the base. Such a negative result has been observed by Chai and Norman in [3, Appendix 2]. For example, the nonflatness for ร—-homomorphisms even happens on ๐œ‡๐‘ ร— ๐œ‡๐‘ . 24 As an improvement, Wake gives in [42] a good definition in the case of ๐ป = ๐œ‡๐‘ ร— ๐œ‡๐‘ over Spec โ„ค. By using a notion of โ€œprimitive elementsโ€, he defines the full level structure, called โ€œscheme of full homomorphismsโ€, to be cut out by the condition that all nontrivial linear combinations of rows and columns of the universal homomorphism are primitive. Alternatively, Wake also gives another level structure, called โ€œKM+Dโ€ level structure, short for Katz-Mazur + Dual. The notion of KM+D level structure is defined by requiring both universal homomorphism and its dual being ร—-homomorphisms as defined by Katz and Mazur. Wake proves that in the case ๐œ‡๐‘ ร— ๐œ‡๐‘ , the KM+D level structure coincides with his original notion of full homomorphisms. Unfortunately, in general the โ€œKM+Dโ€ level structure does not give a flat scheme over the base. For example, it is observed in [42, KM+D Example 4.8] that Hom๐”ฝ ((โ„ค/2โ„ค)2 , (๐›ผ2 )2 ) has larger rank than expected. 2 In this chapter, we give a definition of full level structure for ๐ป of the form ๐ป = ๐บ ร— ๐บ, where ๐บ is a rank ๐‘ group scheme over a โ„ค๐‘ -scheme ๐‘†. When ๐บ is ๐œ‡๐‘ , our definition coincides with the one in [42]. The idea of our construction is to generalize Wakeโ€™s โ€œrows- and-columnsโ€ construction to a general group scheme ๐บ using Kottwitz-Wakeโ€™s notion of primitive elements [21]. In [21] the authors give a notion of primitive elements which is well-behaved, even for general ๐‘-divisible groups. Using this notion, our full level structure will be cut out by the condition that rows and columns of the universal homomorphism are linearly independent, as in Wakeโ€™s construction. The precise description and properties are discussed in Section 3. The main point is that this construction gives a flat model. We show this by using Oortโ€“Tate theory to reduce to Wakeโ€™s result. One might also expect the following naturality condition: โˆผ 4. For any group scheme isomorphism ๐ป โˆ’ โ†’ ๐ป โ€ฒ , the induced isomorphism Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) โ†’ Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป โ€ฒ ) โˆ— โˆ— restricts to an isomorphism Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป) โ†’ Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐ป โ€ฒ ). 25 This condition (4) can be interpreted as saying the notion of full level structure is defined over the stack. Unfortunately, it turns out that in general there is no level structure on ๐ป satisfying all conditions (1) โˆ’ (4). Wake pointed out to us that the construction cannot extend to the stack. We discuss this negative result in Section 3.3 and include their example there. We thank Wake for the communication. 3.1 Full level structure on ๐บ ร— ๐บ The fundamental tool in defining the full level structure on ๐บ ร— ๐บ is the notion of โ€œprimitive elementsโ€ (see Section 2.3). An important example of the primitive elements is the Oortโ€“Tate group scheme ๐บ = Spec ๐ด[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ก๐‘ฅ), where ๐ด is a โ„ค๐‘ -algebra. The augmentation ideal is (๐‘ฅ). Thus ๐บร— is defined by the ideal (๐‘ฅ๐‘โˆ’1 โˆ’ ๐‘ก), coinciding with the scheme of generators defined in [16]. Another example is ๐บร— ๐บ. Its underlying algebra is ๐ด[๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ โˆ’๐‘ก๐‘ฅ, ๐‘ฆ๐‘ โˆ’๐‘ก๐‘ฆ) with the augmentation ideal (๐‘ฅ, ๐‘ฆ). By a direct calculation or using Lemma 2.3.3, we can see that the scheme of primitive elements in ๐บ2 is (๐บ2 )ร— = Spec ๐ด[๐‘ฅ, ๐‘ฆ]/ ((๐‘ฅ๐‘โˆ’1 โˆ’ ๐‘ก)(๐‘ฆ๐‘โˆ’1 โˆ’ ๐‘ก)) . See also [21, Section 3.8]. Now we consider the operation on the points of Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) = ๐บ4 (as functors). We will identify ๐บ4 (๐‘‡ ) with Mat2 (๐บ(๐‘‡ )), the additive group of 2ร—2 matrices with entries in ๐บ(๐‘‡ ). On each entry Hom๐‘† (โ„ค/๐‘โ„ค, ๐บ)(๐‘‡ ) = ๐บ(๐‘‡ ), there is a natural addition arising from the group structure of ๐บ. We denote this addition by +,ฬ‡ to distinguish it from the addition on ๐’ช๐บ . For simplicity, for any ๐‘“ โˆˆ ๐บ(๐‘‡ ), let [๐‘š]๐‘“ be ๐‘“ +๐‘“ ฬ‡ +ฬ‡ โ‹ฏ +๐‘“, ฬ‡ the sum of ๐‘š copies of ๐‘“. Since the Oortโ€“Tate Group is annihilated by ๐‘, the operation [๐‘š] only depends on ๐‘š modulo ๐‘. Example 3.1.1. Let ๐‘† = Spec โ„ค๐‘ and ๐บ = Spec โ„ค๐‘ [๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ) with comultiplication ๐‘โˆ’1 1 ๐‘ค๐‘ ๐‘ฅ๐‘– โŠ— ๐‘ฅ๐‘โˆ’๐‘– ๐‘šโˆ— (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1 + โˆ‘ . 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– 26 This is obtained by taking ๐‘ข = 1 and ๐‘ฃ = ๐‘ค๐‘ from Section 2. Let ๐‘‡ = Spec โ„ค๐‘ . In ๐บ(๐‘‡ ), let ๐œ’(๐‘—) โˆˆ Hom๐‘† (โ„ค/๐‘โ„ค, ๐บ)(๐‘‡ ) = ๐บ(๐‘‡ ) be the map sending ๐‘ฅ to ๐œ’(๐‘—), where ๐œ’ is the Teichmรผller character and let ๐œ’(0) = 0. Since the elements in ๐บ(๐‘‡ ) are closed under the group action, we have ([๐‘—](1))๐‘ โˆ’ [๐‘—](1) = 0. On the other hand, by the definition of the comultiplication of ๐บ, we have [๐‘—](1) โ‰ก ๐‘— mod ๐‘. Therefore [๐‘—](1) = ๐œ’(๐‘—). From [๐‘—](1)+[๐‘˜](1) ฬ‡ = [๐‘— + ๐‘˜](1), we get a useful equation: ๐‘โˆ’1 1 ๐‘ค๐‘ ๐œ’(๐‘—๐‘– )๐œ’(๐‘˜๐‘โˆ’๐‘– ) ๐œ’(๐‘— + ๐‘˜) = ๐œ’(๐‘—) + ๐œ’(๐‘˜) + โˆ‘ . (3.1) 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– โ„ค/๐‘โ„ค In fact, ๐บ is isomorphic to the constant group scheme โ„ค/๐‘โ„ค = Spec โ„ค๐‘ . The Hopf ๐‘† โ„ค/๐‘โ„ค algebra isomorphism between โ„ค๐‘ [๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ) and โ„ค๐‘ is given by ๐‘ฅ โ†ฆ โˆ‘ ๐œ’(๐‘–)๐‘’๐‘– and 1 ๐‘’๐‘– โ†ฆ ๐œ†(๐‘–) โˆ๐‘—โ‰ ๐‘– (๐‘ฅ โˆ’ ๐œ’(๐‘—)), where ๐œ†(0) = โˆ’1 and ๐œ†(๐‘–) = ๐‘โˆ’1 otherwise. To see this, we first easily observe that the maps give algebra isomorphisms. To see that it preserves the comultiplication, we can check straightforwardly using Equation (3.1). We will skip the detailed calculation here. โˆ— Now we define Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) to be the subfunctor of Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 )๏ฟฝ which is given as follows: โˆ— Definition 3.1.2. Define Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) to be the functor whose ๐‘‡ -valued points are the elements in Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 )(๐‘‡ ) = Mat2 (๐บ(๐‘‡ )) so that all nonzero ๐”ฝ๐‘ -linear com- binations of rows and columns are in (๐บ2 )ร— (๐‘‡ ). For nonzero ๐”ฝ๐‘ -linear combinations, we ฬ‡ mean elements like [๐‘š]๐‘“ +[๐‘›]๐‘” where ๐‘š and ๐‘› are not both zero in ๐”ฝ๐‘ . โˆ— Remark 3.1.3. It is easy to see that the functor Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) we defined above is representable. Indeed, each linear combination being primitive is a closed condition and thus โˆ— โˆ— gives a subscheme of Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) = ๐บ4 . Therefore the functor Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) is represented by the scheme-theoretical intersection of those subschemes. We will use โˆ— Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) for the representing scheme. โˆ— Here are some elementary properties of Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ): 27 Proposition 3.1.4. Let ๐‘† be a โ„ค๐‘ -scheme and let ๐บ, ๐บโ€ฒ be finite flat commutative group schemes of rank ๐‘ over S. Let GL2 (๐”ฝ๐‘ ) act on Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) by acting on (โ„ค/๐‘โ„ค)2 by โˆ— precomposition. Then Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) satisfies: (i) By identifying Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) ร—๐‘† ๐‘‡ = Hom๐‘‡ ((โ„ค/๐‘โ„ค)2 , ๐บ2๐‘‡ ) for any ๐‘†-scheme ๐‘‡ , we have โˆ— โˆ— Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) ร—๐‘† ๐‘‡ = Hom๐‘‡ ((โ„ค/๐‘โ„ค)2 , ๐บ2๐‘‡ ) as closed subschemes. โˆ— (ii) The full level structure Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) is GL2 (๐”ฝ๐‘ )-invariant. Away from charac- teristic ๐‘, we have โˆ— Hom๐‘†[ 1 ] ((โ„ค/๐‘โ„ค)2 , ๐บ[ ๐‘1 ]2 ) = Isom๐‘†[ ๐‘1 ] ((โ„ค/๐‘โ„ค)2 , ๐บ[ ๐‘1 ]2 ) ๐‘ as closed subschemes of Hom๐‘†[ 1 ] ((โ„ค/๐‘โ„ค)2 , ๐บ[ ๐‘1 ]2 ). ๐‘ (iii) Let ๐œ™ โˆถ ๐บ โ†’ ๐บโ€ฒ be an isomorphism and let ฮฆ โˆถ ๐บ2 โ†’ (๐บโ€ฒ )2 be the isomorphism given ๐œ™ 0 by ( ) . Then the isomorphism Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) โ†’ Hom๐‘† ((โ„ค/๐‘โ„ค)2 , (๐บโ€ฒ )2 ) in- 0 ๐œ™ โˆ— duced by ฮฆ restricts to an isomorphism on the full level structures Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) โ†’ โˆ— Hom๐‘† ((โ„ค/๐‘โ„ค)2 , (๐บโ€ฒ )2 ). Proof. (i) It follows straightforwardly from Definition 3.1.2 and the fact that the notion of prim- itive elements is compatible with base change [21, 3.5]. โˆ— (ii) Let ๐‘“ โˆˆ Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ), regarded as a 2 ร— 2 matrix in ๐บ(๐‘†). Let ๐‘” โˆˆ GL2 (๐”ฝ๐‘ ). Then ๐‘” acts on ๐‘“ by ๐‘“ โ†ฆ ๐‘”๐‘ก ๐‘“, where the scalar multiplication is [โ‹…] and the addition is +.ฬ‡ By an elementary calculation, one can see that it su๏ฌ€ices to show that if (๐‘ข, ๐‘ฃ) โˆˆ (๐บ2 )ร— then (๐‘ข, ๐‘ฃ)๐‘” โˆˆ (๐บ2 )ร— for all ๐‘” โˆˆ GL2 (๐”ฝ๐‘ ). Note that since ๐บ is annihilated by ๐‘, every ๐‘š โˆˆ ๐”ฝ๐‘ defines an endomorphism of ๐บ and therefore every 2 ร— 2 matrix over ๐”ฝ๐‘ defines an endomorphism of ๐บ2 and invertible matrices induce automorphisms of ๐บ2 . In fact, 28 (๐‘ข, ๐‘ฃ)๐‘” is the image of (๐‘ข, ๐‘ฃ) under the automorphism induced by ๐‘”. Since group scheme automorphisms preserve the augmentation ideal sheaf, they also preserve the primitive elements by Definition 2.3.1. Therefore (๐‘ข, ๐‘ฃ)๐‘” โˆˆ (๐บ2 )ร— and we are done. For the second half of (ii), note that ๐บ[ ๐‘1 ] is รฉtale locally isomorphic to โ„ค/๐‘โ„ค and by โˆ— definition Hom ((โ„ค/๐‘โ„ค)2 , (โ„ค/๐‘โ„ค)2 ) = Isom((โ„ค/๐‘โ„ค)2 , (โ„ค/๐‘โ„ค)2 ). Then the statement is an immediate result of (i). (iii) As in (ii), since every group scheme isomorphism preserves the augmentation ideal sheaf, by Definition 2.3.1 it also preserves the primitive elements. Then it is straight- forward to check that (iii) holds by Definition 3.1.2. Now here is the main theorem in this chapter: Theorem 3.1.5. Let ๐‘† be a โ„ค๐‘ -scheme and let ๐บ be a finite flat commutative group scheme โˆ— of rank ๐‘ over S. Let Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) be as defined in Definition 3.1.2. Then the full โˆ— level structure Hom๐‘† ((โ„ค/๐‘โ„ค)2 , ๐บ2 ) is flat over ๐‘† of rank |GL2 (๐”ฝ๐‘ )|. 3.2 Proof of Theorem 3.1.5 By Proposition 3.1.4 (i), since being flat is a local property, we can reduce to the case where ๐‘† = Spec ๐ด with ๐ด being a local โ„ค๐‘ -algebra. Recall from Section 2 that the group scheme ๐บ/๐‘† is determined by a triple (โ„’, ๐‘ข, ๐‘ฃ). Since ๐ด is local, the line bundle โ„’ on ๐‘† is trivial. Let ๐’œ = โ„ค๐‘ [๐‘ , ๐‘ก]/(๐‘ ๐‘ก โˆ’ ๐‘ค๐‘ ) and ๐’ฎ = Spec ๐’œ. Let ๐’ข = Spec ๐’œ[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ก๐‘ฅ) be the group scheme over ๐’ฎ with comultiplication ๐‘โˆ’1 โˆ— 1 ๐‘ ๐‘ฅ๐‘– โŠ— ๐‘ฅ๐‘โˆ’๐‘– ๐‘š (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1 + โˆ‘ . (3.2) 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– Then ๐บ/๐‘† will be the pull back of ๐’ข/๐’ฎ through a morphism ๐‘† โ†’ ๐’ฎ determined by ๐‘ข and ๐‘ฃ. Applying Proposition 3.1.4 (i) again, we can see that it su๏ฌ€ices to show the flatness of the full level structure for ๐’ข2 /๐’ฎ. 29 โˆ— We first look at Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) over the two open subschemes Spec โ„ค๐‘ [๐‘ , ๐‘ โˆ’1 ] and Spec โ„ค๐‘ [๐‘ก, ๐‘กโˆ’1 ] of ๐’ฎ. It is easy to check that after applying รฉtale base changes by adding the ๐‘โˆ’ 1 1 1 1 1th root of ๐‘ , ๐‘ โˆ’1 , ๐‘ก, ๐‘กโˆ’1 , we get ๐’ขร—๐’ฎ Spec โ„ค๐‘ [๐‘  ๐‘โˆ’1 , ๐‘ โˆ’ ๐‘โˆ’1 ] โ‰… ๐œ‡๐‘ and ๐’ขร—๐’ฎ Spec โ„ค๐‘ [๐‘ก ๐‘โˆ’1 , ๐‘กโˆ’ ๐‘โˆ’1 ] โ‰… โ„ค/๐‘โ„ค. In these cases, the following lemma is as expected: Lemma 3.2.1. We have the following two isomorphisms of group schemes: โˆ— 1 1 full (i) Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) ร—๐’ฎ Spec โ„ค๐‘ [๐‘  ๐‘โˆ’1 , ๐‘ โˆ’ ๐‘โˆ’1 ] โ‰… Hom 1 1 โˆ’ ๐‘โˆ’1 ((โ„ค/๐‘โ„ค)2 , ๐œ‡2๐‘ ). Spec โ„ค๐‘ [๐‘  ๐‘โˆ’1 ,๐‘  ] full Here the Hom is the full level structure for ๐œ‡๐‘ ร— ๐œ‡๐‘ defined by Wake in [42]. โˆ— 1 1 (ii) Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) ร—๐’ฎ Spec โ„ค๐‘ [๐‘ก ๐‘โˆ’1 , ๐‘กโˆ’ ๐‘โˆ’1 ] โ‰… GL2 (โ„ค/๐‘โ„ค). โˆ— Proof. Note that from the definition of Hom , we have โˆ— full Hom ((โ„ค/๐‘โ„ค)2 , ๐œ‡2๐‘ ) = Hom ((โ„ค/๐‘โ„ค)2 , ๐œ‡2๐‘ ) as they are defined in the same way. For the รฉtale part, note that sections of constant group โˆ— schemes being primitive exactly means being nonzero. So Hom ((โ„ค/๐‘โ„ค)2 , (โ„ค/๐‘โ„ค)2 ) consists of the matrices satisfying that nonzero linear combinations of rows and columns are nonzero, โˆ— thus invertible matrices. Hence Hom ((โ„ค/๐‘โ„ค)2 , (โ„ค/๐‘โ„ค)2 ) = GL2 (โ„ค/๐‘โ„ค) and the claim is immediate from Proposition 3.1.4 (i). To make the full level structure explicit for ๐’ข2 /๐’ฎ, it is helpful to use the universal ho- momorphism for description. Consider the universal base ๐’ฎuniv = Spec ๐’œuniv where ๐’œuniv = ๐’œ[๐‘Ž, ๐‘, ๐‘, ๐‘‘]/(๐‘Ž๐‘ โˆ’ ๐‘ก๐‘Ž, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘‘๐‘ โˆ’ ๐‘ก๐‘‘). Then we have ๐’ฎuniv = Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ). Let โ„Ž โˆˆ Hom๐’ฎuniv ((โ„ค/๐‘โ„ค)2 , ๐’ข2๐’ฎuniv ) be the universal homomorphism defined over ๐’ฎuniv , given โˆ— by (1, 0) โ†ฆ (๐‘Ž, ๐‘), (0, 1) โ†ฆ (๐‘, ๐‘‘). Then Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ), as a subscheme of the uni- โˆ— versal base ๐’ฎuniv , is cut out by the condition โ„Ž โˆˆ Hom๐’ฎuniv ((โ„ค/๐‘โ„ค)2 , ๐’ข2๐’ฎuniv ). Therefore, by โˆ— definition, Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) is given by the ideal ๐ผ โŠ‚ ๐’œuniv generated by ๐‘โˆ’1 ๐‘โˆ’1 {(([๐‘š]๐‘Ž+[๐‘›]๐‘) ฬ‡ โˆ’ ๐‘ก) (([๐‘š]๐‘+[๐‘›]๐‘‘)ฬ‡ โˆ’ ๐‘ก) , ๐‘โˆ’1 ๐‘โˆ’1 (([๐‘š]๐‘Ž+[๐‘›]๐‘)ฬ‡ ฬ‡ โˆ’ ๐‘ก) (([๐‘š]๐‘+[๐‘›]๐‘‘) โˆ’ ๐‘ก)} . (๐‘š,๐‘›)โˆˆ๐”ฝ2๐‘ {(0,0)} 30 Recall that in the notion [๐‘š]๐‘Ž+[๐‘›]๐‘,ฬ‡ we are regarding ๐‘Ž, ๐‘, ๐‘, ๐‘‘ as elements in ๐’ข(๐’ฎuniv ), corresponding to the homomorphisms ๐ด[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ก๐‘ฅ) โ†’ ๐’œ[๐‘Ž, ๐‘, ๐‘, ๐‘‘]/(๐‘Ž๐‘ โˆ’ ๐‘ก๐‘Ž, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘‘๐‘ โˆ’ ๐‘ก๐‘‘) sending ๐‘ฅ to ๐‘Ž, ๐‘, ๐‘, ๐‘‘. As an abstract group, ๐’ข(๐’ฎuniv ) is given by {๐‘ฅ โˆˆ ๐’œ[๐‘Ž, ๐‘, ๐‘, ๐‘‘]/(๐‘Ž๐‘ โˆ’ ๐‘ก๐‘Ž, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘๐‘ โˆ’ ๐‘ก๐‘, ๐‘‘๐‘ โˆ’ ๐‘ก๐‘‘)โˆฃ๐‘ฅ๐‘ = ๐‘ก๐‘ฅ} 1 ๐‘โˆ’1 ๐‘ ๐‘ฅ๐‘– ๐‘ฆ๐‘โˆ’๐‘– with the group structure given by ๐‘ฅ+๐‘ฆ ฬ‡ =๐‘ฅ+๐‘ฆ+ โˆ‘ . Therefore 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– ๐‘โˆ’1 ๐‘โˆ’1 ๐‘โˆ’1 1 ๐‘ ๐‘Ž๐‘ 1 ๐‘ ๐‘ก๐‘Ž 1 ๐‘ค๐‘ [2]๐‘Ž = 2๐‘Ž + โˆ‘ = 2๐‘Ž + โˆ‘ = (2 + โˆ‘ ) ๐‘Ž. 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– 1 โˆ’ ๐‘ ๐‘–=1 ๐‘ค๐‘– ๐‘ค๐‘โˆ’๐‘– Using Equation (3.1), we get [2]๐‘Ž = ๐œ’(2)๐‘Ž and in general by induction we have [๐‘š]๐‘Ž = ๐œ’(๐‘š)๐‘Ž. Therefore the full level structure on ๐’ข2 /๐’ฎ has the following expression: โˆ— Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) ๐‘ ๐‘กโˆ’๐‘ค๐‘ ,๐‘Ž๐‘ โˆ’๐‘ก๐‘Ž,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘‘๐‘ โˆ’๐‘ก๐‘‘, (3.3) ๐‘โˆ’1 ๐‘โˆ’1 โ‰… Spec โ„ค๐‘ [๐‘ , ๐‘ก, ๐‘Ž, ๐‘, ๐‘, ๐‘‘]/ โŽ› ฬ‡ โŽœ{((๐œ’(๐‘š)๐‘Ž+๐œ’(๐‘›)๐‘) ฬ‡ โˆ’๐‘ก)((๐œ’(๐‘š)๐‘+๐œ’(๐‘›)๐‘‘) โˆ’๐‘ก), โŽž โŽŸ. ๐‘โˆ’1 ๐‘โˆ’1 ฬ‡ ฬ‡ โŽ ((๐œ’(๐‘š)๐‘Ž+๐œ’(๐‘›)๐‘) โˆ’๐‘ก)((๐œ’(๐‘š)๐‘+๐œ’(๐‘›)๐‘‘) โˆ’๐‘ก)} โŽ  โˆ— Having all these set up, we will prove the flatness of Hom๐’ฎ ((โ„ค/๐‘โ„ค)2 , ๐’ข2 ) over ๐’ฎ using the lemma below: Lemma 3.2.2 ([27] Page 51 Lemma 1). Let ๐‘Œ be a reduced scheme and โ„ฑ a coherent sheaf on ๐‘Œ such that dim๐‘˜(๐‘ฆ) โ„ฑ โŠ—๐’ช๐‘ฆ ๐‘˜(๐‘ฆ) = ๐‘Ÿ, for all ๐‘ฆ โˆˆ ๐‘Œ . Then โ„ฑ is a locally free of rank ๐‘Ÿ on ๐‘Œ. Apply Lemma 3.2.2 to ๐‘Œ = ๐’ฎ. Note that for ๐‘ฆ โˆˆ Spec โ„ค๐‘ [๐‘ก, ๐‘กโˆ’1 ], we know that dim๐‘˜(๐‘ฆ) (๐’ชHomโˆ—๐’ฎ โŠ—๐’ช๐‘ฆ ๐‘˜(๐‘ฆ)) = |GL2 (๐”ฝ๐‘ )| from Lemma 3.2.1 (ii) and รฉtale descent. For ๐‘ฆ โˆˆ Spec โ„ค๐‘ [๐‘ , ๐‘ โˆ’1 ], we can get dim๐‘˜(๐‘ฆ) (๐’ชHomโˆ—๐’ฎ โŠ—๐’ช๐‘ฆ ๐‘˜(๐‘ฆ)) = |GL2 (๐”ฝ๐‘ )| 31 full by combining Lemma 3.2.1 (i) together with Wakeโ€™s result on Hom and รฉtale descent. The only remaining point is ๐‘ฆ0 for ๐‘  = ๐‘ก = ๐‘ = 0. Consider ๐’ข/๐’ฎ modulo ๐‘, denoted by ๐’ข/ฬ„ ๐’ฎ.ฬ„ The underlying base scheme, which is given by ๐’ฎ ฬ„ = Spec ๐”ฝ๐‘ [๐‘ , ๐‘ก]/(๐‘ ๐‘ก), is a union of two a๏ฌ€ine lines and the concerning point ๐‘ฆ0 is the origin of ๐’ฎ.ฬ„ Note that ๐œ’(๐‘š) โ‰ก ๐‘š mod ๐‘. Therefore, by setting ๐‘ = 0 from Equation (1.6), we get โˆ— Hom๐’ฎ ((โ„ค/๐‘โ„ค) ฬ„ 2 , ๐’ข2ฬ„ ) ๐‘Ž๐‘ โˆ’๐‘ก๐‘Ž,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘‘๐‘ โˆ’๐‘ก๐‘‘, (3.4) ๐‘โˆ’1 ๐‘โˆ’1 {((๐‘š๐‘Ž+๐‘›๐‘)ฬ‡ โˆ’๐‘ก)((๐‘š๐‘+๐‘›๐‘‘)ฬ‡ โˆ’๐‘ก), โ‰… Spec ๐’ช๐’ฎ [๐‘Ž, ฬ„ ๐‘, ๐‘, ๐‘‘]/ ( ). ๐‘โˆ’1 ๐‘โˆ’1 ฬ‡ ((๐‘š๐‘Ž+๐‘›๐‘) ฬ‡ โˆ’๐‘ก)((๐‘š๐‘+๐‘›๐‘‘) โˆ’๐‘ก)} ๐‘โˆ’1 ๐‘ ๐‘ฅ๐‘– ๐‘ฆ๐‘โˆ’๐‘– Here the โ€œ+โ€ ฬ‡ operation is given as ๐‘ฅ+๐‘ฆ ฬ‡ = ๐‘ฅ+๐‘ฆ+ โˆ‘ (recall that ๐‘ค๐‘– โ‰ก ๐‘–! mod ๐‘ ๐‘–=1 ๐‘–! (๐‘ โˆ’ ๐‘–)! from Section 2). Now we have a key observation on Equation (3.4). Theorem 3.2.3. Let ๐’ข/ฬ„ ๐’ฎ ฬ„ be the โ€œuniversalโ€ Oortโ€“Tate group scheme in characteristic ๐‘ โˆ— as above. Then the ideal defining the full level structure Hom๐’ฎ ((โ„ค/๐‘โ„ค) ฬ„ 2 , ๐’ข2ฬ„ ) as a closed subscheme of ๐’ข4ฬ„ is generated by elements which do not involve the parameter ๐‘ . Proof. We claim that in the coordinate ring (3.4), we have ฬ‡ (๐‘š๐‘Ž+๐‘›๐‘) ๐‘โˆ’1 โˆ’ ๐‘ก = ๐‘ข ((๐‘š๐‘Ž + ๐‘›๐‘)๐‘โˆ’1 โˆ’ ๐‘ก) for some unit ๐‘ข. Then it follows that โˆ— Hom๐’ฎ ((โ„ค/๐‘โ„ค) ฬ„ 2 , ๐’ข2ฬ„ ) ๐‘Ž๐‘ โˆ’๐‘ก๐‘Ž,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘๐‘ โˆ’๐‘ก๐‘,๐‘‘๐‘ โˆ’๐‘ก๐‘‘, ๐‘โˆ’1 ๐‘โˆ’1 (3.5) โ‰… Spec ๐’ช๐’ฎ [๐‘Ž, ฬ„ ๐‘, ๐‘, ๐‘‘]/ ({((๐‘š๐‘Ž+๐‘›๐‘)๐‘โˆ’1 โˆ’๐‘ก)((๐‘š๐‘+๐‘›๐‘‘)๐‘โˆ’1 โˆ’๐‘ก), ) . ((๐‘š๐‘Ž+๐‘›๐‘) โˆ’๐‘ก)((๐‘š๐‘+๐‘›๐‘‘) โˆ’๐‘ก)} and we are done. When ๐‘ = 2, since ๐‘ ๐‘ก = 0 and ๐‘Ž2 = ๐‘ก๐‘Ž, we simply have ๐‘š๐‘Ž+๐‘›๐‘ ฬ‡ = ๐‘š๐‘Ž + ๐‘›๐‘ + ๐‘ ๐‘š๐‘›๐‘Ž๐‘ = (๐‘š๐‘Ž + ๐‘›๐‘)(1 + ๐‘ ๐‘š๐‘Ž). Here 1 + ๐‘ ๐‘š๐‘Ž is a unit as (1 + ๐‘ ๐‘š๐‘Ž)2 = 1 + ๐‘ 2 ๐‘š2 ๐‘Ž2 = 1 + ๐‘ 2 ๐‘š2 ๐‘Ž๐‘ก = 1. 32 ๐‘โˆ’1 ๐‘ฅ๐‘– ๐‘ฆ๐‘โˆ’๐‘– Now suppose that ๐‘ > 2. Let ๐‘”(๐‘ฅ, ๐‘ฆ) = โˆ‘ be a polynomial in ๐”ฝ๐‘ [๐‘ฅ, ๐‘ฆ]. Note ๐‘–=1 ๐‘–! (๐‘ โˆ’ ๐‘–)! this polynomial ๐‘”(๐‘ฅ, ๐‘ฆ) is divisible by ๐‘ฅ + ๐‘ฆ as ๐‘”(๐‘ฅ, โˆ’๐‘ฅ) = 0 (note that ๐‘ is odd). Assume ๐‘”(๐‘ฅ, ๐‘ฆ) = (๐‘ฅ + ๐‘ฆ)๐‘”โ€ฒ (๐‘ฅ, ๐‘ฆ). Then ๐‘š๐‘Ž+๐‘›๐‘ ฬ‡ = (๐‘š๐‘Ž + ๐‘›๐‘)(1 + ๐‘ ๐‘”โ€ฒ (๐‘š๐‘Ž, ๐‘›๐‘)). Note that ๐‘”โ€ฒ has no constant term and ๐‘ ๐‘ก = 0. So we have ๐‘ (1 + ๐‘ ๐‘”โ€ฒ (๐‘š๐‘Ž, ๐‘›๐‘)) = 1 + ๐‘ ๐‘ ๐‘”โ€ฒ (๐‘š๐‘ ๐‘Ž๐‘ก, ๐‘›๐‘ ๐‘๐‘ก) = 1. Therefore 1 + ๐‘ ๐‘”โ€ฒ (๐‘š๐‘Ž, ๐‘›๐‘) is a unit and we have ๐‘โˆ’1 (1 + ๐‘ ๐‘”โ€ฒ (๐‘š๐‘Ž, ๐‘›๐‘)) ((๐‘š๐‘Ž + ๐‘›๐‘)๐‘โˆ’1 โˆ’ ๐‘ก) = (๐‘š๐‘Ž+๐‘›๐‘) ฬ‡ ๐‘โˆ’1 โˆ’๐‘ก as claimed. As a consequence of Theorem 3.2.3, for any point ๐‘ฆ โˆˆ ๐’ฎ ฬ„ away from ๐‘ฆ0 , we have dim๐‘˜(๐‘ฆ0 ) ๐’ชHomโˆ—๐’ฎ โŠ—๐’ช๐‘ฆ ๐‘˜(๐‘ฆ0 ) = dim๐‘˜(๐‘ฆ) ๐’ชHomโˆ—๐’ฎ โŠ—๐’ช๐‘ฆ ๐‘˜(๐‘ฆ) = |GL2 (๐”ฝ๐‘ )|. 0 Applying Lemma 3.2.2, we finish proving the flatness. 3.3 Nonexistence of full level structure over the stack Let C be a stack of group schemes of certain type over Schโ„คp . (By a stack here we simply mean a category fibered in groupoids over Schโ„คp as in [6].) So, we assume that the objects in C are group schemes ๐บ/๐‘† of certain fixed type (for example, finite flat commutative and of certain rank) and the morphisms are Cartesian squares. Definition 3.3.1. Let C be a stack of group schemes as above. By a full level structure over C, we mean a fibered functor โ„ฑ โˆถ C โ†’ Sch, such that (1) For any ๐บ/๐‘†, the scheme โ„ฑ(๐บ/๐‘†) is a closed subscheme of Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐บ). (2) For any ๐‘“ โˆถ ๐บ/๐‘† โ†’ ๐บโ€ฒ /๐‘† โ€ฒ , the morphism โ„ฑ(๐‘“) โˆถ โ„ฑ(๐บ/๐‘†) โ†’ โ„ฑ(๐บโ€ฒ /๐‘† โ€ฒ ) is the restriction of the induced morphism Hom๐‘† ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐บ) โ†’ Hom๐‘†โ€ฒ ((โ„ค/๐‘๐‘Ÿ โ„ค)๐‘” , ๐บโ€ฒ ). (3) The scheme โ„ฑ(๐บ/๐‘†) satisfies the conditions (1)-(3) in the beginning of this chapter. 33 Note that the condition (4) is automatically satisfied since โ„ฑ is a functor. Using this terminology of full level structure over the stack, we may briefly summarize the results in Section 3.1 as that we define a well-behaved notion of full level structure on the stack ๐‘‚๐‘‡ , whose objects are group schemes of the form ๐บ ร— ๐บ where ๐บ is an Oortโ€“Tate scheme over a โ„ค๐‘ -scheme ๐‘†, and morphisms are group scheme isomorphisms ๐บร—๐บ โ†’ ๐บโ€ฒ ร—๐บโ€ฒ ๐œ™ 0 of the form ฮฆ = ( ) as in Proposition 3.1.4. 0 ๐œ™ However, this full level structure on ๐‘‚๐‘‡ cannot be extended to the stack of finite flat commutative group schemes. In fact, consider the substack ๐‘‚๐‘‡ ร— ๐‘‚๐‘‡ , whose objects are ๐บ ร— ๐บโ€ฒ where ๐บ, ๐บโ€ฒ are Oortโ€“Tate schemes with morphisms be arbitrary group scheme isomorphisms. We will see that even on ๐‘‚๐‘‡ ร— ๐‘‚๐‘‡ , there is no good notion of full level structure: Theorem 3.3.2. There is no notion of full level structure over the stack ๐‘‚๐‘‡ ร— ๐‘‚๐‘‡ in the sense of Definition 3.3.1๏ฟฝ Proof. Let ๐’ข/๐’ฎ be as in Section 3. Assume there is a full level structure on ๐‘‚๐‘‡ ร— ๐‘‚๐‘‡ satisfying (1)-(4). Then the full level structure on ๐’ข2 /๐’ฎ must be the one we defined. In fact over the generic fiber of ๐’ฎ, the full level structure is given by the condition (2). Therefore the only way to satisfy condition (1) is defining the full level structure over ๐‘† as the Zariski closure of the corresponding scheme over the generic fiber. Note that any group scheme of rank ๐‘ over a local ring can be obtained from ๐’ข/๐’ฎ by base change. Because of condition (3), the full level structure on ๐บร—๐บ over a local base must be the one we defined above. However, this only possible structure is not preserved under all group scheme automorphisms. Here is one example communicated to the author by Wake: Consider the full level structure on ๐›ผ๐‘ ร— ๐›ผ๐‘ over ๐”ฝฬ…๐‘ with ๐‘ > 2. By our definition and Theorem 3.2.3, we have ๐‘Ž๐‘ ,๐‘๐‘ ,๐‘๐‘ ,๐‘‘๐‘ โˆ— ๐‘โˆ’1 ๐‘โˆ’1 Hom๐”ฝฬ… ((โ„ค/๐‘โ„ค)2 , ๐›ผ2๐‘ ) โ‰… Spec ๐”ฝฬ…๐‘ [๐‘Ž, ๐‘, ๐‘, ๐‘‘]/ ({(๐‘š๐‘Ž+๐‘›๐‘) (๐‘š๐‘+๐‘›๐‘‘) , ) . ๐‘โˆ’1 ๐‘โˆ’1 ๐‘ (๐‘š๐‘Ž+๐‘›๐‘) (๐‘š๐‘+๐‘›๐‘‘) } 34 ๐‘Ž ๐‘ Note that Aut๐”ฝฬ…๐‘ (๐›ผ2๐‘ ) = GL2 (๐”ฝฬ…๐‘ ), with the action given by multiplying ( ) by elements ๐‘ ๐‘‘ ฬ… 2 of GL2 (๐”ฝ๐‘ ) from the right. Since (๐‘š, ๐‘›) โˆˆ ๐”ฝ๐‘ {(0, 0)}, it is not hard to see that the ideal is not invariant under the action of GL2 (๐”ฝฬ…๐‘ ). Remark 3.3.3. Although as shown, a good notion of full level structure on the stack of all finite group schemes does not exist, one might still hope to define a full level structure on truncated ๐‘-divisible groups. However, some new idea is needed. 3.4 Full level structure on ๐บ ร— ๐บ ร— ๐บ A natural question we may ask is whether we can have some similar results for group schemes of the form ๐บ๐‘› , where ๐บ is an Oortโ€“Tate group scheme. We record some partial results here. However, a full answer to this question requires some new idea. Let us take ๐บ = ๐œ‡๐‘ over Spec โ„ค. One intermediate step towards defining a full level struc- ture on ๐บ3 is defining a โ€œpartial level structureโ€ as a subscheme of Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )3 ). We will still require that the resulting scheme is flat over the base and when inverting ๐‘ โˆ— โˆ— โˆ— we want Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )3 ) โ‰… Mat2ร—3 (๐”ฝ๐‘ ), where Mat2ร—3 denote the set of all 2 ร— 3 matrices of rank 2. It turns out that this can be done using our result in this paper. Let โˆ— โ„Ž be the universal homomorphism. Then Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )3 ) is cut out by the following conditions: (i) All nonzero linear combinations of rows and columns are primitive. (ii) After applying any left GL2 (๐”ฝ๐‘ )-action and right GL3 (๐”ฝ๐‘ )-action to โ„Ž, one of the three 2 ร— 2 blocks of the resulting homomorphism lies in the full level structure โˆ— Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )2 ). Let us make (ii) clear here. Let ๐‘Ž11 ๐‘Ž12 ๐‘Ž13 โ„Ž=( ) ๐‘Ž21 ๐‘Ž22 ๐‘Ž23 35 be the universal homomorphism. Let ๐ผ1 , resp. ๐ผ2 , ๐ผ3 , be the ideal defined by requiring that ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ๐‘Ž ( 11 12 ) , resp. ( 11 13 ) , ( 12 13 ) , ๐‘Ž21 ๐‘Ž22 ๐‘Ž21 ๐‘Ž23 ๐‘Ž22 ๐‘Ž23 โˆ— lies in the full level structure subscheme Hom ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )2 ). Then the ideal defining โ€œone of the three 2 ร— 2 blocks lies the full level structureโ€ is the ideal ๐ผ1 ๐ผ2 โˆฉ ๐ผ1 ๐ผ3 โˆฉ ๐ผ2 ๐ผ3 . The closed โˆ— โˆ— subscheme Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )3 ) cut out by these conditions is flat of rank |Mat2ร—3 (๐”ฝ๐‘ )| โˆ— over the base. This result of โ€œpartial level structureโ€ Homโ„ค ((โ„ค/๐‘โ„ค)2 , (๐œ‡๐‘ )3 ) can be extended โˆ— to Hom ((โ„ค/๐‘โ„ค)2 , ๐บ3 ). โˆ— One might hope to define Homโ„ค ((โ„ค/๐‘โ„ค)3 , (๐œ‡๐‘ )3 ) using the โ€œpartial level structureโ€ above, by requiring that after applying the left and right GL3 (๐”ฝ๐‘ )-action and possibly Cartier dual to the universal homomorphism, the resulting homomorphism is such that any 2 ร— 3 block is giving a โ€œpartial level structureโ€. It turns out that this condition is very close to what we want, but still not enough. Here are some numerical results. Consider ๐œ‡๐‘ over ๐”ฝ๐‘ . For ๐‘ = 2, the above condition will give a closed subscheme of rank 169 over ๐”ฝ๐‘ , while |GL3 (๐”ฝ2 )| = 168. For ๐‘ = 3, the obtained subscheme has rank 11473 over ๐”ฝ๐‘ , while |GL3 (๐”ฝ3 )| = 11232 (comparing with 39 = 19683). So, some further conditions need to be discovered. 36 CHAPTER 4 CONSTRUCTIONS OF GROUP SCHEMES USING DIEUDONNร‰ MODULES Dieudonnรฉ theory is a powerful tool for studying group schemes, ๐‘-divisible groups and abelian varieties. The classical Dieudonnรฉ theory works over perfect fields in characteristic ๐‘ > 0. There has been many variations of Dieudonnรฉ theory over difference bases. In this chapter, we will use a version of Dieudonnรฉ theory due to de Jong to construct group schemes. Let ๐บ/๐‘† be a finite group scheme. (Recall that all group schemes are assumed to be commutative and flat over the base.) We define its Cartier dual ๐บ๐ท by ๐บ๐ท (๐‘‡ ) = Hom(๐บ๐‘‡ , ๐”พ๐‘š,๐‘‡ ). This is a priori a functor but can be shown to be representable. This makes ๐บ๐ท a finite โˆผ group scheme over ๐‘† and there is a canonical isomorphism ๐บ โˆ’ โ†’ (๐บ๐ท )๐ท . Furthermore, for any group scheme homomorphism ๐‘“ โˆถ ๐บ โ†’ ๐ป, we have an induced homomorphism ๐‘“ ๐ท โˆถ ๐ป ๐ท โ†’ ๐บ๐ท such that (๐‘“ ๐ท )๐ท = ๐‘“ under the canonical isomorphism ๐บ = (๐บ๐ท )๐ท . Let ๐บ/๐‘† be a group scheme (not necessarily finite) with the ๐‘๐’ช๐’ฎ = 0. Then there are Frobenius morphisms ๐œŽ๐บ โˆถ ๐บ โ†’ ๐บ and ๐œŽ๐‘† โˆถ ๐‘† โ†’ ๐‘† that are defined by Frobenius maps ๐‘“๐บ โˆถ ๐’ช๐บ โ†’ ๐’ช๐บ and ๐‘“๐‘† โˆถ ๐’ช๐‘† โ†’ ๐’ช๐‘† . This induces a morphism ๐น๐บ โˆถ ๐บ โ†’ ๐บ(๐‘) โ‰” ๐บ ร—๐‘†,๐œŽ๐‘† ๐‘†, which turns out to be a homomorphism of group schemes: ๐œŽ๐บ ๐บ ๐น๐บ ๐บ(๐‘) ๐บ โ–ก ๐œŽ๐‘† ๐‘† ๐‘† We can define another group scheme homomorphism ๐‘‰๐บ โˆถ ๐บ(๐‘) โ†’ ๐บ. Consider the 37 following diagram: ๐’ช๐บ (๐’ชโŠ—๐‘ ๐บ ) ๐‘†๐‘ ๐’ช๐บ โŠ—๐’ช๐‘† ,๐‘“๐‘† ๐’ช๐‘† ๐‘๐‘œ๐‘š๐‘ข๐‘™๐‘ก ๐’ชโŠ—๐‘ ๐บ Here (๐’ชโŠ—๐‘๐บ ) ๐‘†๐‘ is the ๐‘†๐‘ -invariant elements of ๐’ชโŠ—๐‘ ๐บ . Since ๐บ is commutative, the comultiplica- tion factors through (๐’ชโŠ—๐‘ ๐‘†๐‘ ๐บ ) . The map (๐’ช๐บ ) โŠ—๐‘ ๐‘†๐‘ โ†’ ๐’ช๐บ โŠ—๐’ช๐‘† ,๐‘“๐‘† ๐’ช๐‘† is the unique homomor- phism such that ๐‘Ž(๐‘ฅ โŠ— โ‹ฏ โŠ— ๐‘ฅ) โ†ฆ ๐‘ฅ โŠ— ๐‘Ž. In this way, we get a morphism ๐‘‰๐บ โˆถ ๐บ โ†’ ๐บ(๐‘) which also turns out to be a homomorphism of group schemes. This group scheme homomorphism is called the Verschiebung of ๐บ. When the group scheme ๐บ/๐‘† is finite, the Verschiebung ๐‘‰๐บ can also be defined as (๐น๐บ๐ท )๐ท โˆถ ((๐บ๐ท )(๐‘) )๐ท = ๐บ(๐‘) โ†’ (๐บ๐ท )๐ท = ๐บ. It is a basic fact that ๐น๐บ โˆ˜ ๐‘‰๐บ = ๐‘ โ‹… Id๐บ(๐‘) and ๐‘‰๐บ โˆ˜ ๐น๐บ = ๐‘ โ‹… Id๐บ (see [5, II]). 4.1 A Version of Dieudonnรฉ Theory by De Jong Let ๐‘Š be the Witt ring (over โ„ค) as in [5, III]. It is a ring scheme over Spec โ„ค. Let ๐‘˜ be a perfect field in characteristic ๐‘ > 0. The ๐‘˜-points of ๐‘Š are called Witt vectors and ๐‘Š (๐‘˜) is the ring of Witt vectors. The ring ๐‘Š (๐‘˜) is a complete discrete valuation ring in mixed characteristics (0, ๐‘) with uniformizer ๐‘ and residue field ๐‘˜ (see [5, III. 3]). Moreover, there is a ring homomorphism ๐œŽ โˆถ ๐‘Š (๐‘˜) โ†’ ๐‘Š (๐‘˜) which lifts the Frobenius map on the residue field ๐‘˜. Let ๐ท๐‘˜ โ‰” ๐‘Š (๐‘˜){๐น , ๐‘‰ }/(๐น ๐‘‰ โˆ’ ๐‘) be the Dieudonnรฉ ring, where ๐‘Š (๐‘˜){๐น , ๐‘‰ } is the non-commutative polynomial ring in variables ๐น , ๐‘‰ with relations ๐น๐‘‰ = ๐‘‰ ๐น, ๐น ๐‘Ž = ๐œŽ(๐‘Ž)๐น , ๐‘‰ ๐‘Ž = ๐œŽโˆ’1 (๐‘Ž)๐‘‰ . The left ๐ท๐‘˜ -modules are called Dieudonnรฉ modules. Equivalently, one can think of Dieudonnรฉ modules as ๐‘Š (๐‘˜)-modules with actions of ๐น and ๐‘‰ that are subject to the relations above. Dieudonnรฉ modules are powerful tools to study group schemes, ๐‘-divisible groups and abelian varieties. (Recall that all group schemes are assumed to be commutative and flat over 38 the base.) The classical (contravariant) Dieudonnรฉ theory gives an anti-equivalence between the category of finite group schemes over a perfect field ๐‘˜ with positive characteristics and the category of Dieudonnรฉ modules over ๐‘Š (๐‘˜) with finite length (see [5, III. 7]): finite group schemes Dieudonnรฉ modules with { }โŸถ{ }. ๐บ/ Spec ๐‘˜ finite ๐‘Š (๐‘˜)-length The classical Dieudonnรฉ theory also gives an similar anti-equivalence for ๐‘-divisible groups over a perfect field (see [5, III. 8]): โŽง Dieudonnรฉ modules that are โŽซ ๐‘-divisible groups { { } } finitely generated free { ๐’ข/ Spec ๐‘˜ }โŸถโŽจ โŽฌ. { { } } โŽฉ ๐‘Š (๐‘˜)-modules โŽญ Starting from the classical Dieudonnรฉ theory, there has been variations of Dieudonnรฉ theory for different base schemes. Let ๐‘† = Spec ๐‘… with ๐‘… a ring of characteristic ๐‘ > 0 and let ฮฃ โ‰” Spec โ„ค๐‘ . In [2], using the notion of crystals over the crystalline site, Berthelotโ€“ Breenโ€“Messing define the crystalline Dieudonnรฉ functor ๐”ป from the category of ๐‘-divisible groups over ๐‘† to the category of ๐น -crystals over the crystalline site CRIS(๐‘†/ฮฃ), given by ๐”ป(๐’ข) โ‰” โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐’ข, ๐’ช๐‘†/ฮฃ ) . (4.1) Here ๐’ช๐‘†/ฮฃ is the structure sheaf defined by ๐’ช๐‘†/ฮฃ (๐‘ˆ , ๐‘‡ , ๐›ฟ) โ‰” ๐’ช๐‘‡ . (4.2) and ๐’ข is regarded as an abelian sheaf on CRIS(๐‘†/ฮฃ). It is shown in [1] and [2] that when ๐‘… is a perfect field or more generally a perfect valuation ring, the Dieudonnรฉ functor ๐”ป defines an anti-equivalence of categories. Moreover, let ๐‘“ โˆถ ๐ด โ†’ Spec ๐‘… be an abelian scheme, then we have ๐”ป(๐ด[๐‘โˆž ])๐‘† = ๐‘…1 ๐‘“โˆ— ๐’ช๐ด/ฮฃ . In [4], de Jong established a version of Dieudonnรฉ theory for group schemes ๐บ/๐‘† satisfying ๐‘๐’ช๐’ฎ = 0 and ๐‘† and its Frobenius ๐‘“๐‘† lift modulo ๐‘2 . More precisely, let ๐‘† = Spec ๐‘… be as above. Assume that ๐‘† admits a lift to โ„ค/๐‘2 โ„ค, i.e. a scheme ๐‘† โ€ฒ flat over Spec โ„ค/๐‘2 โ„ค with ๐‘† โ€ฒ ร—Spec โ„ค/๐‘2 โ„ค Spec ๐”ฝ๐‘ โ‰… ๐‘†: 39 ๐‘† ๐‘†โ€ฒ โ–ก Spec ๐”ฝ๐‘ Spec โ„ค/๐‘2 โ„ค Then the divided power on โ„ค๐‘ extends to a unique divided power ๐›พ on ๐‘๐’ช๐‘†โ€ฒ . In this way, the triple (๐‘†, ๐‘† โ€ฒ , ๐›พ) forms an object in the Crystalline site CRIS(๐‘†/ฮฃ). Assume further that there is a morphism ๐‘“๐‘†โ€ฒ โˆถ ๐‘† โ€ฒ โ†’ ๐‘† โ€ฒ which lifts the Frobenius map on ๐‘†. Let ๐ถ(1) denote the category of group schemes over ๐‘† killed by ๐‘ and let ๐‘€ (1) denote the category of triples (๐‘€ , ๐น , ๐‘‰ ), where ๐‘€ is a finite locally free ๐’ช๐‘† -module and ๐น โˆถ ๐‘“ โˆ— ๐‘€ โ†’ ๐‘€ , ๐‘‰ โˆถ ๐‘€ โ†’ ๐‘“ โˆ— ๐‘€ are ๐’ช๐‘† -linear maps such that ๐‘‰ โˆ˜ ๐น = ๐‘ โ‹… Id๐‘“ โˆ— ๐‘€ and ๐น โˆ˜ ๐‘‰ = ๐‘ โ‹… Id๐‘€ . Consider the functor ๐‘€๐‘† โˆถ ๐ถ(1) โ†’ ๐‘€ (1) defined by ๐‘€๐‘† (๐บ) โ‰” โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐บ, โ„๐‘†/ฮฃ ) (4.3) (๐‘†,๐‘† โ€ฒ ,๐›พ) where ๐บ is regarded as an abelian sheaf on CRIS(๐‘†/ฮฃ) and โ„๐‘†/ฮฃ is the abelian sheaf on CRIS(๐‘†/ฮฃ) defined by โ„๐‘†/ฮฃ (๐‘ˆ , ๐‘‡ , ๐›ฟ) โ‰” ker(๐’ช๐‘‡ โ†’ ๐’ช๐‘ˆ ). Proposition 4.1.1. (de Jong [4, Proposition 8.6]) The functor ๐‘€๐‘† โˆถ ๐ถ(1) โ†’ ๐‘€ (1) induces the following isomorphisms when ๐‘‰๐บ = 0 or ๐น๐ป = 0: โˆผ Hom๐ถ(1) (๐ป, ๐บ) โˆ’ โ†’ Hom๐‘€(1) (๐‘€๐‘† (๐บ), ๐‘€๐‘† (๐ป)) and 1 โˆผ 1 Ext๐ถ(1) (๐ป, ๐บ) โˆ’โ†’ Ext๐‘€(1) (๐‘€๐‘† (๐บ), ๐‘€๐‘† (๐ป)). Remark 4.1.2. The conditions in Proposition 4.1.1 are satisfied when ๐‘† is a๏ฌ€ine and smooth. In fact, when ๐‘† is smooth, the obstruction class lifting ๐‘† together with the Frobenius lies in certain cohomology ๐ป 1 (๐‘†, ๐‘‡๐‘† โŠ— ๐ต๐‘†1 ) (see [26, Appendix]). When ๐‘† is a๏ฌ€ine, the cohomology vanishes. In this case, the lift of ๐‘† together with the Frobenius exists automatically. Note that this version of Dieudonnรฉ theory by de Jong is slightly different from the crystalline Dieudonnรฉ theory of finite group schemes or abelian schemes as in the definitions 40 (4.1) and (4.3). In the rest of this section, we will compare these two versions of Dieudonnรฉ theory. Let ๐”พ๐‘Ž be the abelian sheaf on CRIS(๐‘†/ฮฃ) defined by ๐”พ๐‘Ž (๐‘ˆ , ๐‘‡ , ๐›ฟ) โ‰” ๐’ช๐‘ˆ . Therefore there is a exact sequence of abelian sheaves 0 โ†’ ๐’ฅ๐‘†/ฮฃ โ†’ ๐’ช๐‘†/ฮฃ โ†’ ๐”พ๐‘Ž โ†’ 0. Let ๐ด/๐‘† (resp. ๐บ/๐‘†) be an abelian scheme (resp. a finite group scheme). We define the crystalline Dieudonnรฉ crystal of ๐ด/๐‘† (resp. ๐บ/๐‘†) as ๐”ป(โˆ’) โ‰” โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (โˆ’, ๐’ช๐‘†/ฮฃ ) . As a standard result of crystalline Dieudonnรฉ theory, we have the following proposition: Proposition 4.1.3. ([2, Proposition 2.5.8]) Let ๐ด/๐‘† be an abelian scheme. Then we have โ„ฐ๐‘ฅ๐‘ก๐‘–๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) = โ„ฐ๐‘ฅ๐‘ก๐‘–๐‘†/ฮฃ (๐ด, ๐”พ๐‘Ž ) = 0 for ๐‘– = 0 or ๐‘– = 2. In particular, when evaluating at ๐‘†, we have the following commutative diagram that connects with De Rham cohomology: 0 โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) ๐”ป(๐ด)๐‘† โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐”พ๐‘Ž ) 0 ๐‘† ๐‘† โ‰… โ‰… โ‰… 1 0 ๐œ”๐ด ๐ป๐ท๐‘… (๐ด/๐‘†) ๐‘…1 ๐‘“โˆ— (๐’ช๐ด ) 0 Here ๐‘ค๐ด is the pullback of ฮฉ1๐ด/๐‘† along the unit section, and ๐ป๐ท๐‘… 1 (๐ด/๐‘†) is the first De Rham cohomology. Remark 4.1.4. The identification in Proposition 4.1.3 can also be realized as following: 0 ๐‘‰ (๐”ป(๐ด)๐‘† ) ๐”ป(๐ด)๐‘† ๐”ป(๐ด)๐‘† /๐‘‰ (๐”ป(๐ด)๐‘† ) 0 โ‰… โ‰… โ‰… 1 0 ๐œ”๐ด ๐ป๐ท๐‘… (๐ด/๐‘†) ๐‘…1 ๐‘“โˆ— (๐’ช๐ด ) 0 41 where ๐‘‰ is the induced action of Verschibung on ๐”ป(๐ด)๐‘† . In particular, โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) โŠ‚ ๐‘† ๐”ป(๐ด)๐‘† identifies with ๐‘‰ ๐”ป(๐ด)๐‘† . Similarly, โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) โŠ‚ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) identifies (๐‘†,๐‘† โ€ฒ ,๐›พ) with ๐‘‰ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) . This follows from the observation over a field in [29, Corollary 5.11] and the fact that the Dieudonnรฉ crystal functor commutes with base change. Now we give the following comparison lemma: Lemma 4.1.5. Let 0 โ†’ ๐บ โ†’ ๐ด โ†’ ๐ต โ†’ 0 be an exact sequence, where ๐บ is a finite group scheme killed by ๐‘ and ๐ด, ๐ต are abelian varieties over ๐‘†. Then we have ๐‘€๐‘† (๐บ) โ‰… Coker (๐‘‰ ๐”ป(๐ต)๐‘† โ†’ ๐‘‰ ๐”ป(๐ด)๐‘† ) . (4.4) In particular, we have ๐‘€๐‘† (๐ด[๐‘]) โ‰… Coker (๐‘‰ ๐”ป(๐ด)๐‘† /๐‘๐‘‰ ๐”ป(๐ด)๐‘† ) . (4.5) Proof. By Proposition 4.1.3, we can get a commutative diagram โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ต, ๐’ฅ๐‘†/ฮฃ ) โ†’ โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) โ†’ ๐‘€๐‘† (๐บ) โ†’ 0. (๐‘†,๐‘† โ€ฒ ,๐›พ) (๐‘†,๐‘† โ€ฒ ,๐›พ) From Remark 4.1.4, we have ๐‘€๐‘† (๐บ) โ‰… Coker (๐‘‰ ๐”ป(๐ต)(๐‘†,๐‘†โ€ฒ ,๐›พ) โ†’ ๐‘‰ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) ) . (4.6) Note that ๐บ is killed by ๐‘. Therefore ๐‘€๐‘† (๐บ) is also annihilated by ๐‘. Therefore we may modulo ๐‘ before taking the cokernel in Equation (4.6). Note that the base ๐‘† โŠ‚ ๐‘† โ€ฒ is defined by the ideal (๐‘). Therefore we have ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) โŠ—๐”ฝ๐‘ = ๐”ป(๐ด)๐‘† and the statement follows. Assume that ๐‘†, ๐‘† โ€ฒ are spectra of local rings. From Proposition 4.1.3, by evaluating the first row at (๐‘†, ๐‘† โ€ฒ , ๐›พ), we get that 0 โ†’ โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) โ†’ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) โ†’ ๐‘–โˆ— (๐‘…1 ๐‘“โˆ— (๐’ช๐ด )) โ†’ 0. (๐‘†,๐‘† โ€ฒ ,๐›พ) where ๐‘– โˆถ ๐‘† โ†’ ๐‘† โ€ฒ is the embedding. Let ๐‘ 1 , โ€ฆ , ๐‘ 2๐‘” โˆˆ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) be a basis so that the images ๐‘ 1ฬ„ , โ€ฆ , ๐‘ ๐‘”ฬ„ โˆˆ ๐”ป(๐ด)๐‘† generate ๐œ”๐ด and ๐‘ ๐‘”+1 ฬ„ โˆˆ ๐”ป(๐ด)๐‘† generates ๐‘…1 ๐‘“โˆ— (๐’ช๐ด ). ฬ„ , โ€ฆ , ๐‘ 2๐‘” 42 Then โ„ฐ๐‘ฅ๐‘ก1๐‘†/ฮฃ (๐ด, ๐’ฅ๐‘†/ฮฃ ) = ๐‘‰ ๐”ป(๐ด)(๐‘†,๐‘†โ€ฒ ,๐›พ) is generated by ๐‘ 1 , โ€ฆ , ๐‘ ๐‘” , ๐‘๐‘ ๐‘”+1 , โ€ฆ , ๐‘๐‘ 2๐‘” . (๐‘†,๐‘† โ€ฒ ,๐›พ) The Dieudonnรฉ module ๐‘€๐‘† (๐ด[๐‘]), by Equation (4.5), is generated by ๐‘ 1 , โ€ฆ , ๐‘ ๐‘” , ๐‘๐‘ ๐‘”+1 , โ€ฆ , ๐‘๐‘ 2๐‘” mod โŸจ๐‘๐‘ 1 , โ€ฆ , ๐‘๐‘ ๐‘” , ๐‘2 ๐‘ ๐‘”+1 , โ€ฆ , ๐‘2 ๐‘ 2๐‘” โŸฉ. 4.2 Group Schemes Annihilated by ๐‘‰ Let ๐บ/๐‘† be a group scheme as in Section 4.1. Suppose the rank of ๐บ/๐‘† is ๐‘Ÿ. From Section 4.1, the Dieudonnรฉ module ๐‘€ โ‰” ๐‘€๐‘† (๐บ) is a locally free ๐’ช๐‘† -module of rank ๐‘Ÿ. Let ๐‘“ โˆถ ๐’ช๐‘† โ†’ ๐’ช๐‘† be the Frobenius map. Then ๐‘“ โˆ— ๐‘€ = ๐‘€ โŠ—๐’ช๐‘† ,๐‘“ ๐’ช๐‘† is also a locally free ๐’ช๐‘† -module of rank ๐‘Ÿ. Let ๐น๐บ , ๐‘‰๐บ be the Frobenius and Verschiebung on ๐บ respectively. The Frobenius ๐น๐บ and Verschiebung ๐‘‰๐บ induce two linear maps ๐น๐‘€ โˆถ ๐‘“ โˆ— ๐‘€ โ†’ ๐‘€ and ๐‘‰๐‘€ โˆถ ๐‘€ โ†’ ๐‘“ โˆ— ๐‘€ , so that ๐น๐‘€ โˆ˜ ๐‘‰๐‘€ = 0 and ๐‘‰๐‘€ โˆ˜ ๐น๐‘€ = 0. The goal of the rest of this chapter is to determine the group scheme ๐บ when we are given its Dieudonnรฉ module ๐‘€๐‘† (๐บ). Upon a choice of bases of ๐‘€ and ๐‘“ โˆ— ๐‘€ , this is equivalent to the two matrices ๐น , ๐‘‰ with ๐น ๐‘‰ = ๐‘‰ ๐น = 0. The first theorem of this type is the following result of Grothendieck in [12, Exposรฉ VII, Theorem 7.4]: Proposition 4.2.1. Let ๐‘† be a base scheme over ๐”ฝ๐‘ . We have the following anti-equivalence of categories: โŽง ๐บ/๐‘†, finite (flat commutative) โŽซ โŽง pairs (๐‘€ , ๐น ), where ๐‘€ is a locally free โŽซ { { } } { { } } group schemes killed by ๐‘ with โŸถ ๐’ช๐‘† -module, ๐น๐‘€ โˆถ ๐‘“ โˆ— ๐‘€ โ†’ ๐‘€ is a โŽจ โŽฌ โŽจ โŽฌ { { } } { { } } โŽฉ ๐‘‰๐บ = 0 โŽญ โŽฉ homomorphism of ๐’ช๐‘† -modules โŽญ In particular, when ๐‘† = Spec ๐‘… where ๐‘… is a local ring, the Dieudonnรฉ module ๐‘€ is a free ๐‘…-module. Let ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘Ÿ be a basis of ๐‘€ . Then ๐‘ฅ1 โŠ— 1, โ€ฆ , ๐‘ฅ๐‘Ÿ โŠ— 1 form a basis of ๐‘“ โˆ— ๐‘€ . We write the linear map ๐น๐‘€ โˆถ ๐‘“ โˆ— ๐‘€ โ†’ ๐‘€ as ๐‘Ž11 ๐‘Ž12 โ‹ฏ ๐‘Ž1๐‘Ÿ โŽ› โŽœ๐‘Ž21 ๐‘Ž22 โ‹ฏ ๐‘Ž2๐‘Ÿ โŽž โŽŸ ๐น๐‘€ (๐‘ฅ1 โŠ— 1, โ€ฆ , ๐‘ฅ๐‘Ÿ โŠ— 1) = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘Ÿ ) โŽœ โŽœ โŽŸ. โŽœ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โŽŸ โŽŸ โŽ๐‘Ž๐‘Ÿ1 ๐‘Ž๐‘Ÿ2 โ‹ฏ ๐‘Ž๐‘Ÿ๐‘Ÿ โŽ  43 Then the corresponding group scheme ๐บ/๐‘† is given by ๐‘Ÿ ๐บ = Spec ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘Ÿ ]/ ({๐‘ฅ๐‘๐‘– โˆ’ โˆ‘๐‘—=1 ๐‘Ž๐‘—๐‘– ๐‘ฅ๐‘— } ), 1โ‰ค๐‘–โ‰ค๐‘Ÿ with additive coalgebra operations ๐‘šโˆ— (๐‘ฅ๐‘– ) = 1 โŠ— ๐‘ฅ๐‘– + ๐‘ฅ๐‘– โŠ— 1, invโˆ— (๐‘ฅ๐‘– ) = โˆ’๐‘ฅ๐‘– , ๐œ–โˆ— (๐‘ฅ๐‘– ) = 0. 4.3 Group Schemes Annihilated by ๐‘‰ 2 Let ๐บ/๐‘† be a group scheme as in Section 4.1. Suppose that ๐‘‰๐บ2 = 0 and all images and coimages of Verschiebung are flat over ๐‘†. Let ๐บ1 โ‰” ๐บ/ Im ๐‘‰๐บ and ๐บ2 โ‰” Im ๐‘‰๐บ . Then we have an exact sequence of group schemes: 0 โ†’ ๐บ2 โ†’ ๐บ โ†’ ๐บ1 โ†’ 0. By our assumption, ๐บ1 and ๐บ2 are both annihilated by the Verschiebung, i.e. ๐‘‰๐บ1 = 0 and ๐‘‰๐บ2 = 0. According to Proposition 4.2.1, we may write ๐‘› ๐บ1 = Spec ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› ]/ ({๐‘ฅ๐‘๐‘– โˆ’ โˆ‘๐‘—=1 ๐‘Ž๐‘—๐‘– ๐‘ฅ๐‘— } ) 1โ‰ค๐‘–โ‰ค๐‘› and ๐‘š ๐บ2 = Spec ๐‘…[๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘š ]/ ({๐‘ฆ๐‘–๐‘ โˆ’ โˆ‘๐‘—=1 ๐‘๐‘—๐‘– ๐‘ฆ๐‘— } ) 1โ‰ค๐‘–โ‰ค๐‘š ๐‘› ๐‘š The Dieudonnรฉ module of ๐บ1 (resp. ๐บ2 ) is given by ๐‘€1 = โจ ๐‘…๐‘ฅ๐‘– (resp. ๐‘€2 = โจ ๐‘…๐‘ฆ๐‘– ) ๐‘–=1 ๐‘–=1 with Frobenius matrix ๐ด = (๐‘Ž๐‘–๐‘— )๐‘›ร—๐‘› (resp. ๐ต = (๐‘๐‘–๐‘— )๐‘šร—๐‘š ) and Verschibung matrix 0๐‘›ร—๐‘› (resp. 0๐‘šร—๐‘š ). Let ๐‘€ be a Dieudonnรฉ module that is an extension of ๐‘€2 by ๐‘€1 : 0 โ†’ ๐‘€1 โ†’ ๐‘€ โ†’ ๐‘€2 โ†’ 0. 44 Therefore ๐‘€ is a free ๐‘…-module of rank ๐‘š + ๐‘› with basis ๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› , ๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘› and the Frobenius and Verschiebung of ๐‘€ has the description ๐ด๐‘›ร—๐‘› ๐ถ๐‘›ร—๐‘š ๐น (๐‘ฅ1 โŠ— 1, โ€ฆ , ๐‘ฅ๐‘› โŠ— 1, ๐‘ฆ1 โŠ— 1, โ€ฆ , ๐‘ฆ๐‘š โŠ— 1) = (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘Ÿ , ๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘š ) ( ), 0๐‘šร—๐‘› ๐ต๐‘šร—๐‘š (4.7) 0 ๐ท๐‘›ร—๐‘š ๐‘‰ (๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘Ÿ , ๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘š ) = (๐‘ฅ1 โŠ— 1, โ€ฆ , ๐‘ฅ๐‘› โŠ— 1, ๐‘ฆ1 โŠ— 1, โ€ฆ , ๐‘ฆ๐‘š โŠ— 1) ( ๐‘›ร—๐‘› ). 0๐‘šร—๐‘› 0๐‘šร—๐‘š so that ๐น โˆ˜ ๐‘‰ = ๐‘‰ โˆ˜ ๐น = 0. This is equivalent to ๐ด๐ท = ๐ท๐ต = 0. By Proposition 4.1.1, there is a bijection between the extensions ๐บ of ๐บ1 by ๐บ2 and the extensions ๐‘€ of ๐‘€1 by ๐‘€2 . Therefore, to get all group schemes ๐บ that are extensions of ๐บ1 by ๐บ2 , we only need to construct a group scheme of ๐บ1 by ๐บ2 that has ๐น and ๐‘‰ as in Equation (4.7). Here is the theorem: Theorem 4.3.1. Let ๐บ/๐‘† be a group scheme as in Section 4.1. Suppose that ๐‘† = Spec ๐‘… where ๐‘… is a local ring. Assume that Im ๐‘‰ and ๐บ/ Im ๐‘‰๐บ are flat over ๐‘†. Then ๐บ can be written as ๐‘› ๐‘š ๐‘› Spec ๐‘…[๐‘ฅ1 , โ€ฆ , ๐‘ฅ๐‘› , ๐‘ฆ1 , โ€ฆ , ๐‘ฆ๐‘š ]/ ({๐‘ฅ๐‘๐‘– โˆ’ โˆ‘๐‘—=1 ๐‘Ž๐‘—๐‘– ๐‘ฅ๐‘— } , {๐‘ฆ๐‘–๐‘ โˆ’ โˆ‘๐‘—=1 ๐‘๐‘—๐‘– ๐‘ฆ๐‘— โˆ’ โˆ‘๐‘—=1 ๐‘๐‘—๐‘– ๐‘ฅ๐‘— }) with coalgebra structure given by ๐‘โˆ’1 ๐‘› ๐‘‘๐‘—๐‘– ๐‘ฅ๐‘˜๐‘— โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘— ๐‘šโˆ—๐บ (๐‘ฅ๐‘– ) = 1 โŠ— ๐‘ฅ๐‘– + ๐‘ฅ๐‘– โŠ— 1, ๐‘šโˆ—๐บ (๐‘ฆ๐‘– ) = 1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ ๐‘– โŠ— 1 + โˆ‘ โˆ‘ , ๐‘˜=1 ๐‘—=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐œ–โˆ—๐บ (๐‘ฅ๐‘– ) = 0, ๐œ–โˆ—๐บ (๐‘ฆ๐‘– ) = 0, invโˆ—๐บ (๐‘ฅ๐‘– ) = โˆ’๐‘ฅ๐‘– , invโˆ—๐บ (๐‘ฆ๐‘– ) = โˆ’๐‘ฆ๐‘– . Proof. Note that the coordinate ring of ๐บ is a free module of rank ๐‘๐‘š+๐‘› generated by ๐‘’ ๐‘’ ๐‘“ ๐‘“ ๐‘ฅ11 โ‹ฏ ๐‘ฅ๐‘›๐‘› ๐‘ฆ11 โ‹ฏ ๐‘ฆ๐‘š๐‘š for 0 โ‰ค ๐‘’๐‘– , ๐‘“๐‘– < ๐‘. Therefore ๐บ โ†’ ๐‘† is flat. The only thing to check is that these operations give a group scheme. This is similar to the proof of Theorem 4.4.1 in the next section but simpler. We will skip the direct calculations here. 4.4 Group Schemes Annihilated by ๐‘‰ 3 Now we consider the next case. Let ๐บ/๐‘† be a finite group scheme that is killed by ๐‘ and such that ๐‘‰๐บ3 = 0. We will also assume that all kernels and cokernels of ๐‘‰๐บ are flat group 45 schemes over the base ๐‘†. In this case, we have exact sequences 0 โ†’ Im ๐‘‰๐บ / Im ๐‘‰๐บ2 โ†’ ๐บ/ Im ๐‘‰๐บ2 โ†’ ๐บ/ Im ๐‘‰๐บ โ†’ 0 and 0 โ†’ Im ๐‘‰๐บ2 โ†’ ๐บ โ†’ ๐บ/ Im ๐‘‰๐บ2 โ†’ 0. Both left terms in these two exact sequences are annihilated by ๐‘‰๐บ to satisfy the condition in Proposition 4.1.1. The idea to obtain the explicit expression of ๐บ is to use the first exact sequence to get a description of ๐บ/ Im ๐‘‰๐บ2 using the result in Section 5.1. Then we will use the second exact sequence to construct the group scheme ๐บ. Since the notation and calculation get very complicated immediately, we will only state the result in a specific case that we need in Section 6.2. However, note that the theorem can be stated with more generality. Theorem 4.4.1. Let ๐บ/๐‘† be a group scheme as in Section 4.1. Assume ๐‘† = Spec ๐‘… with ๐‘… a local ring. Assume the rank of ๐บ is ๐‘4 and suppose that ๐บ admits a filtration 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ3 โŠ‚ ๐บ4 = ๐บ such that Rank ๐บ๐‘– = ๐‘๐‘– , (4.8) ๐‘‰ (๐บ๐‘– ) = ๐บ๐‘ฃ(๐‘–) , (4.9) ๐น โˆ’1 (๐บ๐‘– ) = ๐บ๐‘“(๐‘–) , (4.10) (๐บ๐‘– /๐บ๐‘— )๐ท โ‰… ๐บ4โˆ’๐‘— /๐บ4โˆ’๐‘– , (4.11) where ๐‘ฃ = (0, 0, 1, 2) and ๐‘“ = (2, 3, 4, 4). Then there exists a 10-tuple (๐‘Ž1 , ๐‘Ž2 , ๐‘1 , ๐‘2 , ๐‘, ๐‘‘, ๐‘’1 , ๐‘’2 , ๐‘“1 , ๐‘“2 ) over ๐‘… such that ๐บ = ๐บ4 โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/ (๐‘ฅ๐‘ , ๐‘ฆ1๐‘ โˆ’ ๐‘Ž1 ๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘Ž2 ๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘’1 ๐‘ฆ1 โˆ’ ๐‘’2 ๐‘ฆ2 ) 46 where coalgebra operations given by ๐œ–โˆ— (๐‘ฅ) = 0; invโˆ— (๐‘ฅ) = โˆ’๐‘ฅ; ๐‘šโˆ— (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘โˆ’1 โˆ— โˆ— โˆ— ๐‘๐‘– ๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐œ– (๐‘ฆ๐‘– ) = 0; inv (๐‘ฆ๐‘– ) = โˆ’๐‘ฆ๐‘– ; ๐‘š (๐‘ฆ๐‘– ) = 1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ๐‘– โŠ— 1 + โˆ‘ , (4.12) ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 ๐‘‘๐‘ฅ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘˜ ๐œ–โˆ— (๐‘ง) = 0; invโˆ— (๐‘ง) = โˆ’๐‘ง; ๐‘šโˆ— (๐‘ง) = 1 โŠ— ๐‘ง + ๐‘ง โŠ— 1 + โˆ‘ ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 ๐‘โˆ’1 ๐‘โˆ’1 2 ๐‘“๐‘– ๐‘ฆ๐‘–๐‘˜ โŠ— ๐‘ฆ๐‘–๐‘โˆ’๐‘˜ 2 ๐‘“ ๐‘ (1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ๐‘– โŠ— 1) (๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ) + โˆ‘โˆ‘ โˆ’ โˆ‘โˆ‘ ๐‘– ๐‘– . ๐‘–=1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘–=1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๏ฟฝ Proof. We start by analyzing ๐บ3 /๐บ1 . Note that we have ๐น โˆ’1 (๐บ1 ) = ๐บ3 and ๐‘‰ (๐บ3 ) = ๐บ1 . Therefore we have ๐‘‰๐บ3 /๐บ1 = 0 and ๐น๐บ3 /๐บ1 = 0. By Proposition 4.2.1, we have ๐บ3 /๐บ1 โ‰… ๐›ผ๐‘ ร— ๐›ผ๐‘ = Spec ๐‘…[๐‘ฆ1 , ๐‘ฆ2 ]/(๐‘ฆ1๐‘ , ๐‘ฆ2๐‘ ). Now consider the exact sequence 0 โ†’ ๐บ3 /๐บ1 โ†’ ๐บ4 /๐บ1 โ†’ ๐บ4 /๐บ3 โ†’ 0. Similarly, we have ๐น๐บ4 /๐บ3 = 0 and ๐‘‰๐บ4 /๐บ3 = 0. Thereofore we can write ๐บ4 /๐บ3 โ‰… ๐›ผ๐‘ = Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ ). By Theorem 4.3.1, we have ๐บ4 /๐บ1 = Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 ]/ (๐‘ฅ๐‘ , ๐‘ฆ1๐‘ โˆ’ ๐‘Ž1 ๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘Ž2 ๐‘ฅ) with ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1 ๐‘โˆ’1 ๐‘๐‘– ๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฆ๐‘– ) = 1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ ๐‘– โŠ— 1 + โˆ‘ . ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! The Frobenius and Verschebung acts on ๐‘€๐‘† (๐บ4 /๐บ1 ) by 0 ๐‘Ž1 ๐‘Ž2 โŽ› ๐น (๐‘ฅ โŠ— 1, ๐‘ฆ1 โŠ— 1, ๐‘ฆ2 โŠ— 1) = (๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 ) โŽœ0 0 0โŽž โŽŸ, โŽ0 0 0โŽ  (4.13) 0 ๐‘1 ๐‘2 โŽ› ๐‘‰ (๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 ) = (๐‘ฅ โŠ— 1, ๐‘ฆ1 โŠ— 1, ๐‘ฆ2 โŠ— 1) โŽœ0 0 0โŽžโŽŸ. โŽ0 0 0โŽ  47 With the Hopf algebra of ๐บ4 /๐บ1 , now we consider the exact sequence 0 โ†’ ๐บ1 โ†’ ๐บ4 โ†’ ๐บ4 /๐บ1 โ†’ 0. Similarly, we have ๐บ1 โ‰… ๐›ผ๐‘ = Spec ๐‘…[๐‘ง]/(๐‘ง ๐‘ ). Consider the extension of Dieudonnรฉ modules 0 โ†’ ๐‘€๐‘† (๐บ4 /๐บ1 ) โ†’ ๐‘€๐‘† (๐บ4 ) โ†’ ๐‘€๐‘† (๐บ1 ) โ†’ 0. As an ๐‘… module, ๐‘€๐‘† (๐บ) โ‰… ๐‘…4 . Using the matrices of the Dieudonnรฉ modules in Equations (4.13), we can calculate that the Frobenius of ๐‘€๐‘† (๐บ4 ) acts by 0 ๐‘Ž1 ๐‘Ž2 ๐‘ โŽ› โŽœ0 0 0 ๐‘’1 โŽž โŽŸ ๐น (๐‘ฅ โŠ— 1, ๐‘ฆ1 โŠ— 1, ๐‘ฆ2 โŠ— 1, ๐‘ง โŠ— 1) = (๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง) โŽœ โŽœ โŽŸ, (4.14) โŽœ0 0 0 ๐‘’2 โŽŸ โŽŸ โŽ0 0 0 0 โŽ  and the Verschiebung acts by 0 ๐‘1 ๐‘2 ๐‘‘ โŽ› โŽœ0 0 0 ๐‘“ 1 โŽžโŽŸ ๐‘‰ (๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง) = (๐‘ฅ โŠ— 1, ๐‘ฆ1 โŠ— 1, ๐‘ฆ2 โŠ— 1, ๐‘ง โŠ— 1) โŽœ โŽœ โŽŸ, (4.15) โŽœ0 0 0 ๐‘“ 2 โŽŸโŽŸ โŽ0 0 0 0 โŽ  so that ๐น ๐‘‰ = ๐‘‰ ๐น = 0. Equivalently, we have the following equations: ๐‘Ž1 ๐‘“1 + ๐‘Ž2 ๐‘“2 = 0 (4.16) ๐‘1 ๐‘’1 + ๐‘2 ๐‘’2 = 0 (4.17) By Proposition 4.1.1, it su๏ฌ€ices to construct a group scheme with Frobenius and Verschiebung in forms of (4.14) and (4.15). We construct this group scheme explicitly as stated in Theorem 4.4.1. The rest of this proof is devoted to checking that the scheme ๐บ with operations above defines a group scheme. We will check the following conditions: (I) The comultiplication, counit, coinverse defined in Equation (4.12) give well-defined algebra homomorphisms. (II) The Hopf algebra axioms are satisfied, i.e. (Id โŠ—๐‘šโˆ— ) โˆ˜ ๐‘šโˆ— = (๐‘šโˆ— โŠ— Id) โˆ˜ ๐‘šโˆ— , (Id โŠ—๐œ–โˆ— ) โˆ˜ ๐‘šโˆ— = Id, (4.18) (Id, invโˆ— ) โˆ˜ ๐‘šโˆ— = ๐œ–โˆ— . 48 We first check condition (I). We will check that the comultiplication gives a well-defined algebra homomorphism ๐‘šโˆ— โˆถ ๐’ช๐บ โ†’ ๐’ช๐บ โŠ— ๐’ช๐บ . The well-definedness of the counit and coin- verse are easy to check. The well-definedness of the comultiplication amounts to checking that ๐‘ (๐‘šโˆ— (๐‘ง)) โˆ’ ๐‘๐‘šโˆ— (๐‘ฅ) โˆ’ ๐‘’1 ๐‘šโˆ— (๐‘ฆ1 ) โˆ’ ๐‘’2 ๐‘šโˆ— (๐‘ฆ2 ) = 0. (4.19) Note that ๐‘โˆ’1 โˆ— ๐‘ ๐‘ ๐‘ 2 ๐‘“๐‘–๐‘ (๐‘Ž๐‘– ๐‘ฅ)๐‘˜ โŠ— (๐‘Ž๐‘– ๐‘ฅ)๐‘โˆ’๐‘˜ (๐‘š (๐‘ง)) = 1 โŠ— ๐‘ง + ๐‘ง โŠ— 1 + โˆ‘ โˆ‘ ๐‘–=1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 (4.20) 2 ๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ = 1 โŠ— ๐‘ง ๐‘ + ๐‘ง ๐‘ โŠ— 1 + โˆ‘ (โˆ‘ ๐‘“๐‘–๐‘ ๐‘Ž๐‘๐‘– ) . ๐‘˜=1 ๐‘–=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! Note that we have ๐‘Ž1 ๐‘“1 + ๐‘Ž2 ๐‘“2 = 0 from Equation (4.16). So we have ๐‘Ž๐‘1 ๐‘“1๐‘ + ๐‘Ž๐‘2 ๐‘“2๐‘ = 0 and therefore ๐‘ (๐‘šโˆ— (๐‘ง)) = 1 โŠ— ๐‘ง ๐‘ + ๐‘ง ๐‘ โŠ— 1 (4.21) = ๐‘ (1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1) + ๐‘’1 (1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1) + ๐‘’2 (1 โŠ— ๐‘ฆ2 + ๐‘ฆ2 โŠ— 1) . On the other hand, we have ๐‘๐‘šโˆ— (๐‘ฅ)+๐‘’1 ๐‘šโˆ— (๐‘ฆ1 ) + ๐‘’2 ๐‘šโˆ— (๐‘ฆ2 ) = ๐‘ (1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1) (4.22) ๐‘โˆ’1 2 ๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ + ๐‘’1 (1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1) + ๐‘’2 (1 โŠ— ๐‘ฆ2 + ๐‘ฆ2 โŠ— 1) + โˆ‘ (โˆ‘ ๐‘’๐‘๐‘– ๐‘๐‘–๐‘ ) . ๐‘˜=1 ๐‘–=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! Similarly, note that ๐‘’1 ๐‘1 + ๐‘’2 ๐‘2 = 0 from Equation (4.16) and therefore ๐‘’๐‘1 ๐‘1๐‘ + ๐‘’๐‘2 ๐‘2๐‘ = 0. Hence we have ๐‘๐‘šโˆ— (๐‘ฅ) + ๐‘’1 ๐‘šโˆ— (๐‘ฆ1 + ๐‘’2 ๐‘šโˆ— (๐‘ฆ2 ) (4.23) =๐‘ (1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1) + ๐‘’1 (1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1) + ๐‘’2 (1 โŠ— ๐‘ฆ2 + ๐‘ฆ2 โŠ— 1) . By combining Equation (4.21) and (4.23), Equation (4.19) holds. It follows that the algebra homomorphism ๐‘šโˆ— โˆถ ๐’ช๐บ โ†’ ๐’ช๐บ โŠ— ๐’ช๐บ is well-defined. Now we check condition (II). We will check the equation (Id โŠ—๐‘šโˆ— ) โˆ˜ ๐‘šโˆ— (๐‘ง) = (๐‘šโˆ— โŠ— Id) โˆ˜ ๐‘šโˆ— (๐‘ง). (4.24) 49 The calculation for the other two equations of (4.18) is straightforward and therefore omitted. We first fix some notations. Let ๐‘…โ€ฒ be an ๐‘…-algebra and let ๐‘ฅ, ๐‘ฆ, ๐‘ง be points of ๐บ(๐‘…โ€ฒ ). A (1) (2) point ๐‘ฅ โˆˆ ๐บ(๐‘…โ€ฒ ) is given by ๐‘ฅ = (๐‘ฅ0 , ๐‘ฅ1 , ๐‘ฅ1 , ๐‘ฅ2 ), a quadruple of elements in ๐‘…โ€ฒ satisfying (๐‘–) (1) (2) ๐‘ฅ๐‘0 = 0, (๐‘ฅ1 )๐‘ = ๐‘Ž๐‘– ๐‘ฅ0 and ๐‘ฅ๐‘2 = ๐‘๐‘ฅ0 + ๐‘’1 ๐‘ฅ1 + ๐‘’2 ๐‘ฅ1 . Similar conditions hold for ๐‘ฆ = (1) (2) (1) (2) (๐‘ฆ0 , ๐‘ฆ1 , ๐‘ฆ1 , ๐‘ฆ2 ) and ๐‘ง = (๐‘ง0 , ๐‘ง1 , ๐‘ง1 , ๐‘ง2 ). For any ๐‘Ž, ๐‘, ๐‘ โˆˆ ๐‘…โ€ฒ , we define ๐‘ƒ (๐‘Ž, ๐‘) โˆˆ ๐‘…โ€ฒ as ๐‘โˆ’1 ๐‘Ž๐‘˜ ๐‘๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘Ž, ๐‘) โ‰” โˆ‘ (4.25) ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! and define ๐‘Ž๐‘˜ ๐‘๐‘™ ๐‘๐‘š ๐‘ƒ (๐‘Ž, ๐‘, ๐‘) โ‰” โˆ‘ . (4.26) 0โ‰ค๐‘˜,๐‘™,๐‘šโ‰ค๐‘โˆ’1 ๐‘˜! ๐‘™! ๐‘š! ๐‘˜+๐‘™+๐‘š=๐‘ One basic property of this expression is ๐‘ƒ (๐‘Ž, ๐‘, ๐‘) = ๐‘ƒ (๐‘Ž, ๐‘) + ๐‘ƒ (๐‘Ž + ๐‘, ๐‘) = ๐‘ƒ (๐‘Ž, ๐‘ + ๐‘) + ๐‘ƒ (๐‘, ๐‘). (4.27) Now we define ๐‘ (๐‘ฅ, ๐‘ฆ) to be the sum of ๐‘ฅ and ๐‘ฆ under the group operation defined by the coalgebra operators in Equation (4.12). More explicitly, using the notation ๐‘ƒ (๐‘Ž, ๐‘), we (1) (2) define ๐‘ (๐‘ฅ, ๐‘ฆ) โ‰” (๐‘ 0 , ๐‘ 1 , ๐‘ 1 , ๐‘ 2 ), where ๐‘ 0 (๐‘ฅ, ๐‘ฆ) โ‰” ๐‘ฅ0 + ๐‘ฆ0 (๐‘–) (๐‘–) (๐‘–) ๐‘ 1 (๐‘ฅ, ๐‘ฆ) โ‰” ๐‘ฅ1 + ๐‘ฆ1 + ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) 2 2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘ 2 (๐‘ฅ, ๐‘ฆ) โ‰” ๐‘ฅ2 + ๐‘ฆ2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 ๐‘–=1 By Yonedaโ€™s Lemma, Equation (4.24) is equivalent to the associativity of ๐‘ , i.e. ๐‘ (๐‘ฅ, ๐‘ (๐‘ฆ, ๐‘ง)) = ๐‘ (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) (๐‘–) for any ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐บ(๐‘…โ€ฒ ). Note that ๐‘ 0 (๐‘ฅ, ๐‘ (๐‘ฆ, ๐‘ง)) = ๐‘ 0 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) is trivial and ๐‘ 1 (๐‘ฅ, ๐‘ (๐‘ฆ, ๐‘ง)) = (๐‘–) ๐‘ 1 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) follows from Equation (4.27). The di๏ฌ€icult part is checking ๐‘ 2 (๐‘ฅ, ๐‘ (๐‘ฆ, ๐‘ง)) = ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง). 50 (1) (2) We start with the left side. Denote ๐‘ค = (๐‘ค0 , ๐‘ค1 , ๐‘ค1 , ๐‘ค2 ) = ๐‘ (๐‘ฅ, ๐‘ฆ). Therefore ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) 2 2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) =๐‘ค2 + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ค0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ค1 , ๐‘ง1 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ค1 + ๐‘ง1 )๐‘โˆ’1 ๐‘ƒ (๐‘ค0 , ๐‘ง0 ) ๐‘–=1 ๐‘–=1 2 2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) =๐‘ฅ2 + ๐‘ฆ2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) (4.28) ๐‘–=1 ๐‘–=1 2 (๐‘–) (๐‘–) (๐‘–) + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ฅ0 + ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 + ๐‘ฆ1 + ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ), ๐‘ง1 ) ๐‘–=1 2 (๐‘–) (๐‘–) (๐‘–) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + ๐‘ง1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 + ๐‘ฆ0 , ๐‘ง0 ) ๐‘–=1 Note that ๐‘ฅ๐‘0 = ๐‘ฆ0๐‘ = 0. By definition of ๐‘ƒ in (4.25), we have (๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ))2 = 0. Therefore ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘ฅ1 + ๐‘ฆ1 + ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ))๐‘˜ (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ1 + ๐‘ฆ1 + ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ),๐‘ง1 ) =โˆ‘ ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ((๐‘ฅ1 + ๐‘ฆ1 )๐‘˜ + ๐‘๐‘– ๐‘˜(๐‘ฅ1 + ๐‘ฆ1 )๐‘˜โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 )) (๐‘ง1 )๐‘โˆ’๐‘˜ =โˆ‘ ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘ (๐‘ฅ + ๐‘ฆ1 )๐‘˜โˆ’1 (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) =๐‘ƒ (๐‘ฅ1 + ๐‘ฆ1 , ๐‘ง 1 ) +โˆ‘ ๐‘– 1 ๐‘˜=1 (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! Plugging this into (4.28), we get ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) = 2 2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 ๐‘–=1 2 ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘˜โˆ’1 (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘ ๐‘“๐‘– (๐‘ƒ (๐‘ฅ1 + ๐‘ฆ1 , ๐‘ง1 ) + โˆ‘ ) ๐‘–=1 ๐‘˜=1 (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! 2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– ((๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 )๐‘โˆ’1 โˆ’ ๐‘๐‘– ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 )(๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 )๐‘โˆ’2 ) ๐‘–=1 โ‹… (๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) โˆ’ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 )) 51 After rearranging and simplifying, we get ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) = 2 (๐‘–) (๐‘–) (๐‘–) ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 ) (4.29) ๐‘–=1 2 2 ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘˜โˆ’1 (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘โˆ‘ ๐‘–=1 ๐‘–=1 ๐‘˜=1 (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! 2 2 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 ๐‘–=1 2 (๐‘–) (๐‘–) (๐‘–) + โˆ‘ ๐‘“๐‘– ๐‘๐‘–2 (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 )๐‘โˆ’2 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 )๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 Now we calculate the term ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 )๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ). Note that ๐‘ฅ๐‘0 = ๐‘ฆ0๐‘ = ๐‘ง0๐‘ = 0. Therefore we have ๐‘˜ ๐‘™ ๐‘š ๐‘˜ ๐‘™ ๐‘ฅ01 ๐‘ฆ01 ๐‘ง0 1 ๐‘ฅ02 ๐‘ฆ02 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 )๐‘ƒ (๐‘ฅ0 ,๐‘ฆ0 ) = โˆ‘ โ‹… โˆ‘ ,๐‘™ ,๐‘š โ‰ค๐‘โˆ’1 1 1 0โ‰ค๐‘˜1 1 1 ๐‘˜ ! ๐‘™ ! ๐‘š1 ! 1โ‰ค๐‘˜ ,๐‘™ โ‰ค๐‘โˆ’1 ๐‘˜2 ! ๐‘™2 ! 2 2 ๐‘˜1 +๐‘™1 +๐‘š1 =๐‘ ๐‘˜2 +๐‘™2 =๐‘ ๐‘โˆ’๐‘š 1 = โˆ‘ (โˆ‘ ) ๐‘ฅ๐‘˜0 ๐‘ฆ0๐‘™ ๐‘ง0๐‘š . 2โ‰ค๐‘˜,๐‘™,๐‘šโ‰ค๐‘โˆ’1 ๐‘™1 =0 (๐‘ โˆ’ ๐‘™1 โˆ’ ๐‘š)! ๐‘™1 ! ๐‘š! (๐‘ โˆ’ ๐‘™ + ๐‘™1 )! (๐‘™ โˆ’ ๐‘™1 )! ๐‘˜+๐‘™+๐‘š=2๐‘ Here ๐‘š1 = ๐‘š, ๐‘™2 = ๐‘™ โˆ’ ๐‘™1 , ๐‘˜2 = ๐‘ โˆ’ ๐‘™2 = ๐‘ โˆ’ ๐‘™ + ๐‘™1 , ๐‘˜1 = ๐‘ โˆ’ ๐‘™1 โˆ’ ๐‘š. Note that all ๐‘˜, ๐‘™, ๐‘š are at least 2. Otherwise at least one of the other 2 variables will be greater than or equal to ๐‘. The bounds for ๐‘™1 is from 0 to ๐‘ โˆ’ ๐‘š since ๐‘™ โˆ’ ๐‘ โˆ’ ๐‘š > 0 from ๐‘˜ โ‰ค ๐‘ โˆ’ 1 and ๐‘˜ + ๐‘™ + ๐‘š = 2๐‘. So ๐‘™2 = ๐‘™ โˆ’ ๐‘™1 > 0, as we want. Now we want to calculate the constant in the parenthesis, which is given by the following lemma: Lemma 4.4.2. For any 2 โ‰ค ๐‘˜, ๐‘™, ๐‘š โ‰ค ๐‘ โˆ’ 1 such that ๐‘˜ + ๐‘™ + ๐‘š = 2๐‘, we have ๐‘โˆ’๐‘š 1 1 โˆ‘ โ‰ก mod ๐‘. ๐‘™1 =0 (๐‘ โˆ’ ๐‘™1 โˆ’ ๐‘š)! ๐‘™1 ! ๐‘š! (๐‘ โˆ’ ๐‘™ + ๐‘™1 )! (๐‘™ โˆ’ ๐‘™1 )! ๐‘˜! ๐‘™! ๐‘š! Proof. Note that ๐‘โˆ’๐‘š ๐‘™ 2๐‘ โˆ’ ๐‘™ โˆ’ ๐‘š 2๐‘ โˆ’ ๐‘š ๐‘โˆ’๐‘š โˆ‘ ( )( ) ( ) 1 ๐‘™1 =0 ๐‘™1 ๐‘ โˆ’ ๐‘š โˆ’ ๐‘™1 ๐‘โˆ’๐‘š โˆ‘ = = . ๐‘™1 =0 (๐‘ โˆ’ ๐‘™1 โˆ’ ๐‘š)! ๐‘™1 ! ๐‘š! (๐‘ โˆ’ ๐‘™ + ๐‘™1 )! (๐‘™ โˆ’ ๐‘™1 )! ๐‘š! ๐‘™! (2๐‘ โˆ’ ๐‘™ โˆ’ ๐‘š)! ๐‘˜! ๐‘™! ๐‘š! 52 Now observe that modulo ๐‘, we have 2๐‘ โˆ’ ๐‘š (๐‘ + ๐‘ โˆ’ ๐‘š) โ‹… (๐‘ + ๐‘ โˆ’ ๐‘š โˆ’ 1) โ‹ฏ (๐‘ + 1) (๐‘ โˆ’ ๐‘š)(๐‘ โˆ’ ๐‘š โˆ’ 1) โ‹ฏ 1 ( )= โ‰ก = 1. ๐‘โˆ’๐‘š 1 โ‹… 2 โ‹ฏ (๐‘ โˆ’ ๐‘š) 1 โ‹… 2 โ‹ฏ (๐‘ โˆ’ ๐‘š) This finishes the proof of the lemma. From Lemma 4.4.2, we get 1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 )๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) = โˆ‘ ๐‘ฅ๐‘˜0 ๐‘ฆ0๐‘™ ๐‘ง0๐‘š . (4.30) 2โ‰ค๐‘˜,๐‘™,๐‘šโ‰ค๐‘โˆ’1 ๐‘˜! ๐‘™! ๐‘š! ๐‘˜+๐‘™+๐‘š=2๐‘ Plug it into Equation (4.29), we get ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) = 2 (๐‘–) (๐‘–) (๐‘–) ๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 ) ๐‘–=1 2 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) ๐‘–=1 2 ๐‘“๐‘– ๐‘๐‘–2 (๐‘–) (๐‘–) (๐‘–) (4.31) +โˆ‘ โˆ‘ (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 )๐‘โˆ’2 ๐‘ฅ๐‘˜0 ๐‘ฆ0๐‘™ ๐‘ง0๐‘š ๐‘–=1 2โ‰ค๐‘˜,๐‘™,๐‘šโ‰ค๐‘โˆ’1 ๐‘˜! ๐‘™! ๐‘š! ๐‘˜+๐‘™+๐‘š=2๐‘ 2 2 ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘“ ๐‘ (๐‘ฅ + ๐‘ฆ1 )๐‘˜โˆ’1 (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘โˆ‘ ๐‘– ๐‘– 1 ๐‘–=1 ๐‘–=1 ๐‘˜=1 (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! 2 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 + โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 Now we observe that the last three terms cancel. To see this, we just need to expand the last term using the binomial expansion: 2 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) ๐‘–=1 2 2 ๐‘โˆ’2 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 ๐‘“ ๐‘ (๐‘ฅ + ๐‘ฆ1 )๐‘˜ (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) = โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) + โˆ‘โˆ‘ ๐‘– ๐‘– 1 (4.32) ๐‘–=1 ๐‘–=1 ๐‘˜=0 (๐‘ โˆ’ 1)! (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! 2 2 ๐‘โˆ’1 (๐‘–) (๐‘–) (๐‘–) (๐‘–) (๐‘–) ๐‘“ ๐‘ (๐‘ฅ + ๐‘ฆ1 )๐‘˜โˆ’1 (๐‘ง1 )๐‘โˆ’๐‘˜ ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) = โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 )๐‘โˆ’1 ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 ) โˆ’ โˆ‘โˆ‘ ๐‘– ๐‘– 1 ๐‘–=1 ๐‘–=1 ๐‘˜=1 (๐‘˜ โˆ’ 1)! (๐‘ โˆ’ ๐‘˜)! 53 Here, the last step uses (๐‘ โˆ’ 1)! โ‰ก โˆ’1 mod ๐‘. After canceling the last three terms, we get 2 (๐‘–) (๐‘–) (๐‘–) ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) =๐‘ฅ2 + ๐‘ฆ2 + ๐‘ง2 + ๐‘‘๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) + โˆ‘ ๐‘“๐‘– ๐‘ƒ (๐‘ฅ1 , ๐‘ฆ1 , ๐‘ง1 ) ๐‘–=1 2 (๐‘–) (๐‘–) (๐‘–) ๐‘โˆ’1 โˆ’ โˆ‘ ๐‘“๐‘– ๐‘๐‘– (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 ) ๐‘ƒ (๐‘ฅ0 , ๐‘ฆ0 , ๐‘ง0 ) (4.33) ๐‘–=1 2 ๐‘“๐‘– ๐‘๐‘–2 (๐‘–) (๐‘–) (๐‘–) +โˆ‘ โˆ‘ (๐‘ฅ1 + ๐‘ฆ1 + ๐‘ง1 )๐‘โˆ’2 ๐‘ฅ๐‘˜0 ๐‘ฆ0๐‘™ ๐‘ง0๐‘š ๐‘–=1 2โ‰ค๐‘˜,๐‘™,๐‘šโ‰ค๐‘โˆ’1 ๐‘˜! ๐‘™! ๐‘š! ๐‘˜+๐‘™+๐‘š=2๐‘ By the symmetry of this expression, we can conclude that ๐‘ 2 (๐‘ (๐‘ฅ, ๐‘ฆ), ๐‘ง) = ๐‘ 2 (๐‘ฅ, ๐‘ (๐‘ฆ, ๐‘ง)). This completes the proof that the ๐บ we constructed in Theorem 4.4.1 is a group scheme. 54 CHAPTER 5 ฮ“1 (๐‘) -COVER OVER THE SIEGEL THREEFOLD Let ๐’œ โ‰” ๐’œ2,1,๐‘ , ๐‘ โ‰ฅ 3 be the Siegel threefold, which is the fine moduli scheme of principally polarized abelian surfaces with symplectic level-๐‘ structure as in Section 2.3. For the existence of ๐’œ, see [28]. In this chapter, we consider the special fiber ๐’œ ฬ„ โ‰” ๐’œ ร— Spec ๐”ฝ๐‘ . As in Example 2.2.1, there are 4 Ekedahlโ€“Oort strata of ๐’œ,ฬ„ corresponding to the superspecial locus, supersingular (but not superspecial) locus, ๐‘-rank-1 locus and ordinary locus. The loci have dimensions 0,1,2,3 respectively. On each stratum, there is a canonical group scheme filtration of the ๐‘-torsion of the universal abelian surface as in Example 2.2.1. Let ๐’ณ be the universal abelian surface over ๐’œ and ๐’ณฬ„ โ‰” ๐’ณ ร—๐’œ ๐’œ.ฬ„ Let ๐’ณ[๐‘] ฬ„ be the ๐‘- torsion group scheme of ๐’ณฬ„ and let ๐’ณฬ„ ร— [๐‘] โ‰” (๐’ณ[๐‘]) ฬ„ ร— be its subscheme of primitive elements. We will call the morphism ๐’ณฬ„ ร— [๐‘] โ†’ ๐’œ ฬ„ โ€œthe ฮ“1 (๐‘)-coverโ€ of ๐’œ.ฬ„ (Note that the name โ€œฮ“1 (๐‘)- coverโ€ has different meaning in various papers. For example, Haines and Rapoport use โ€œฮ“1 (๐‘)-coverโ€ for the pro-๐‘ Iwahori structure in [16].) Let ๐‘†๐œ‘ be an Ekedahlโ€“Oort stratum of ๐’œ.ฬ„ Let ๐’ณฬ„ ๐œ‘ be the restriction of ๐’ณฬ„ over ๐‘†๐œ‘ and let ๐’ณฬ„ ร— ๐œ‘ [๐‘] โ†’ ๐‘†๐œ‘ be the restriction of the ฮ“1 (๐‘)-cover. We want to study the geometry of the ฮ“1 (๐‘)-cover ๐’ณ/๐‘†ฬ„ ๐œ‘ on each Ekedahlโ€“Oort stratum by calculating the (local) eqautions. The main tool in this chapter is the machinery of constructing group schemes from their Dieudonnรฉ modules built in Chapter 4 and Lemma 2.3.3 (particularly Example 2.3.6) for calculating primitive elements. 5.1 ฮ“1 (๐‘) -cover over the Superspecial Locus The superspecial locus consists of discrete points. Over each point Spec ๐”ฝฬ„๐‘ , the universal abelian surface ๐’ณฬ„ ๐œ‘ is a product of supersingular elliptic curves. Let ๐ธ be a supersingular elliptic curve over Spec ๐”ฝฬ„๐‘ . Then ๐’ณฬ„ ๐œ‘ โ‰… ๐ธ ร— ๐ธ by a result due to Deligne ([40, Theorem 3.5]). Therefore ๐’ณฬ„ ๐œ‘ [๐‘] โ‰… ๐ธ[๐‘] ร— ๐ธ[๐‘]. 55 Note that ๐ธ[๐‘] is a self-dual group scheme of rank ๐‘2 , killed by ๐‘, of local-local type and has nonzero Frobenius and Verschiebung. By classical Dieudonnรฉ theory over perfect fields, there is a unique group scheme with these properties, given by Spec ๐”ฝฬ„๐‘ [๐‘ฅ]/(๐‘ฅ๐‘ ) 2 with coalgebra operations ๐‘โˆ’1 โˆ— ๐‘ฅ๐‘๐‘˜ โŠ— ๐‘ฅ๐‘(๐‘โˆ’๐‘˜) ๐‘š (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1 + โˆ‘ , ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐œ–โˆ— (๐‘ฅ) = 0, invโˆ— (๐‘ฅ) = โˆ’๐‘ฅ. Therefore, we have ๐’ณฬ„ ๐œ‘ [๐‘] โ‰… ๐ธ[๐‘] ร— ๐ธ[๐‘] โ‰… ๐”ฝฬ„๐‘ [๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ ) with coalgebra operations 2 2 as above. The augmentation ideal is given by (๐‘ฅ, ๐‘ฆ). By Lemma 2.3.3, we can see that ๐’ณฬ„ ร— ฬ„ ๐œ‘ [๐‘] โŠ‚ ๐’ณ๐œ‘ [๐‘] is defined by ideal (๐‘ฅ ๐‘2 โˆ’1 ๐‘2 โˆ’1 ๐‘ฆ ). To conclude, we have the following result: for the ฮ“1 (๐‘)-cover ๐’ณฬ„ ร—๐œ‘ [๐‘]/๐‘†๐œ‘ over the superspecial locus: Theorem 5.1.1. Let ๐‘†๐œ‘ be the superspecial locus of the Sigel threefold ๐’œ.ฬ„ Over each point of ๐‘†๐œ‘ , the ฮ“1 (๐‘)-cover ๐’ณฬ„ ร—๐œ‘ [๐‘]/๐‘†๐œ‘ is given by Spec ๐”ฝฬ„๐‘ [๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ , ๐‘ฅ๐‘ โˆ’1 ๐‘ฆ๐‘ โˆ’1 ) 2 2 2 2 over Spec ๐”ฝฬ„๐‘ . In particular, the scheme ๐’ณฬ„ ร— ๐œ‘ is Cohenโ€“Macaulay, but not Gorenstein. Proof. It only remains to prove the last statement. Note that the expression of ๐’ช๐’ณฬ„ ร—๐œ‘ [๐‘] in Theorem 5.1.1 is an Artin ring. Therefore ๐’ณฬ„ ร— ๐œ‘ [๐‘] is automatically Cohenโ€“Macaulay. Also it is easy to see that the socle of ๐”ฝฬ„๐‘ [๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ , ๐‘ฅ๐‘ โˆ’1 ๐‘ฆ๐‘ โˆ’1 ) has dimension 1 as an ๐”ฝฬ„๐‘ - 2 2 2 2 , while ๐’ช๐’ณฬ„ ร—๐œ‘ [๐‘] has dimension 0. Therefore ๐’ณฬ„ ร— 2 โˆ’1 ๐‘2 โˆ’1 vector space, spanned by ๐‘ฅ๐‘ ๐‘ฆ ๐œ‘ [๐‘] is not Gorenstein. 56 5.2 ฮ“1 (๐‘) -cover over the Supersingular Locus In this section, let ๐‘†๐œ‘ be the supersingular locus of the Siegel threefold and ๐’ณฬ„ ๐œ‘ be the restriction of the universal abelian surface on ๐‘†๐œ‘ . Let ๐บ โ‰” ๐’ณฬ„ ๐œ‘ [๐‘] be the ๐‘-torsion of ๐’ณฬ„ ๐œ‘ . Recall that from Example 2.2.1, the canonical filtration of ๐บ has the form 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 โŠ‚ ๐บ3 โŠ‚ ๐บ4 = ๐บ. The corresponding canonical type is ๐œŒ = (0, 1, 2, 3, 4), ๐‘ฃ = (0, 0, 1, 1, 2) and ๐‘“ = (2, 3, 3, 4, 4). Recall that this means the following: Rank ๐บ๐‘– = ๐‘๐œŒ(๐‘–) , (5.1) ๐‘‰ (๐บ๐‘– ) = ๐บ๐‘ฃ(๐‘–) , (5.2) ๐น โˆ’1 (๐บ๐‘– ) = ๐บ๐‘“(๐‘–) , (5.3) ๐บโŸ‚ ๐‘– = ๐บ4โˆ’๐‘– , (5.4) (๐บ๐‘– /๐บ๐‘— )๐ท โ‰… ๐บ4โˆ’๐‘— /๐บ4โˆ’๐‘– . (5.5) We want to give an explicit description of ๐บ = ๐บ4 . This is precisely the situation in Theorem 4.4.1. From this, we have the following result: Theorem 5.2.1. Let ๐’ณฬ„ ๐œ‘ /๐‘†๐œ‘ be the universal abelian surface over the supersingular locus of the Siegel threefold. Let ๐‘ฅ โˆˆ ๐‘†๐œ‘ be a point and let ๐‘… โ‰” ๐’ช๐‘ฅ,๐‘†๐œ‘ be the local ring at ๐‘ฅ โˆˆ ๐‘†๐œ‘ . Let ๐‘† = Spec ๐‘… and let ๐’ณฬ„ ๐‘† be the pullback of ๐’ณฬ„ ๐œ‘ to ๐‘†. Consider its ๐‘-torsion ๐บ โ‰” ๐’ณฬ„ ๐‘† [๐‘]. Then there exists a 10-tuple (๐‘Ž1 , ๐‘Ž2 , ๐‘1 , ๐‘2 , ๐‘, ๐‘‘, ๐‘’1 , ๐‘’2 , ๐‘“1 , ๐‘“2 ) with entries in ๐‘…, so that ๐บ = ๐บ4 โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/ (๐‘ฅ๐‘ , ๐‘ฆ๐‘–๐‘ โˆ’ ๐‘Ž๐‘– ๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘’1 ๐‘ฆ1 โˆ’ ๐‘’2 ๐‘ฆ2 ) 57 where coalgebra operations given by ๐‘šโˆ— (๐‘ฅ) โ‰”1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘โˆ’1 โˆ— ๐‘๐‘– ๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘š (๐‘ฆ๐‘– ) โ‰”1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ๐‘– โŠ— 1 + โˆ‘ , ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘โˆ’1 ๐‘โˆ’1 ๐‘‘๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ 2 ๐‘“ ๐‘ฆ๐‘˜ โŠ— ๐‘ฆ๐‘–๐‘โˆ’๐‘˜ โˆ— ๐‘š (๐‘ง) โ‰”1 โŠ— ๐‘ง + ๐‘ง โŠ— 1 + โˆ‘ + โˆ‘โˆ‘ ๐‘– ๐‘– ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘–=1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! 2 ๐‘โˆ’1 ๐‘โˆ’1 ๐‘“๐‘– ๐‘๐‘– (1 โŠ— ๐‘ฆ๐‘– + ๐‘ฆ๐‘– โŠ— 1) (๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ) โˆ’ โˆ‘โˆ‘ . ๐‘–=1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! The primitive elements of ๐บ is given by ๐บร— โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/ (๐‘ฅ๐‘ , ๐‘ฆ๐‘–๐‘ โˆ’ ๐‘Ž๐‘– ๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘’1 ๐‘ฆ1 โˆ’ ๐‘’2 ๐‘ฆ2 , ๐‘ฅ๐‘โˆ’1 ๐‘ฆ1๐‘โˆ’1 ๐‘ฆ2๐‘โˆ’1 ๐‘ง ๐‘โˆ’1 ) Proof. This is an immediate corollary of Theorem 4.4.1 and Example 2.3.6. In Theorem 5.2.1, the only property we used about ๐’ณฬ„ ๐‘† [๐‘]/๐‘† is that it allows a canoni- cal filtration that satisfies properties (5.2)-(5.5). It does not use the properties of the base scheme, i.e. the supersingular locus of the Siegel threefold. To make a more precise descrip- tion of the group scheme ๐’ณฬ„ ๐‘† [๐‘]/๐‘†, we can use a construction of the supersingular locus by Moret-Bailly [25] and Oort [32]. This construction is also studied in [18]. Let ๐ธ be a supersingular elliptic curve over ๐”ฝฬ„๐‘ and consider ๐ธ ร— ๐ธ. Note that the kernel of Frobenius on ๐ธ ร— ๐ธ is ๐›ผ๐‘ ร— ๐›ผ๐‘ . For each ๐œ‡ โˆˆ ๐”ฝฬ„๐‘ , we define a group scheme morphism ๐œ‡โˆ— โˆถ ๐›ผ๐‘ โ†’ ๐›ผ๐‘ by sending ๐‘Ž โ†ฆ ๐œ‡๐‘Ž. Let (๐œ‡, ๐œˆ) โŠ‚ ๐”ฝฬ„2๐‘ โˆ’ {0, 0} and consider the embedding (๐œ‡,๐œˆ) ๐‘–๐œ‡,๐œˆ โˆถ ๐›ผ๐‘ โˆ’โˆ’โˆ’โ†’ ๐›ผ๐‘ ร— ๐›ผ๐‘ โŠ‚ ๐ธ ร— ๐ธ. Note that for any ๐œ† โˆˆ ๐”ฝฬ„ร— ๐‘ , the image ๐‘–๐œ†๐œ‡,๐œ†๐œˆ (๐›ผ๐‘ ) is equal to the image ๐‘–๐œ‡,๐œˆ (๐›ผ๐‘ ) (though the maps are not the same). Consider โ„™1 = Proj (๐”ฝฬ„๐‘ [๐œ‡, ๐œˆ]) and write ๐›ผ๐‘ ร— ๐›ผ๐‘ ร— โ„™1 = Spec ๐’ชโ„™1 [๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ ). We define ๐ป โŠ‚ ๐›ผ๐‘ ร— ๐›ผ๐‘ ร— โ„™1 โŠ‚ ๐ธ ร— ๐ธ ร— โ„™1 to be the subgroup scheme defined by ๐œˆ๐‘ฅ โˆ’ ๐œ‡๐‘ฆ = 0. In particular, at each point [๐œ‡, ๐œˆ] โˆˆ โ„™1 , the restriction ๐ป๐œ‡,๐œˆ โŠ‚ ๐›ผ๐‘ ร— ๐›ผ๐‘ is the image ๐‘–๐œ‡,๐œˆ (๐›ผ๐‘ ). Over any a๏ฌ€ine chart ๐‘ˆ โŠ‚ โ„™1 , the restriction of ๐ป on ๐‘ˆ satisfies that ๐ป๐‘ˆ โ‰… ๐›ผ๐‘,๐‘ˆ . Now let ๐’ด โ‰” (๐ธ ร— ๐ธ ร— โ„™1 )/๐ป to be the quotient abelian surface over โ„™1 . This abelian surface ๐’ด/โ„™1 has the following property: 58 Proposition 5.2.2. Let ๐’œ ฬ„ = ๐’œ2,1,๐‘ ร— Spec ๐”ฝ๐‘ be the Siegel threefold in characteristic ๐‘ with ๐‘ โ‰ฅ 3. Consider the supersingular locus ๐’œ๐‘ ๐‘  ฬ„ , which is the union of superspecial stratum and supersingular (but not superspecial) stratum. Then we have (1) The singular points of ๐’œ๐‘ ๐‘  ฬ„ are exactly the points in the superspecial stratum. (2) Each irreducible component of ๐’œ๐‘ ๐‘  ฬ„ is isomorphic to โ„™1 and there are exactly (๐‘ + 1) branches of โ„™1 intersecting transversally at each superspecial point. (3) Let ๐‘‰ โŠ‚ ๐’œ๐‘ ๐‘  ฬ„ be an irreducible component and let ๐’ณฬ„ ๐‘‰ be the restriction of the universal abelian surface on ๐‘‰ . Then there is an isomorphism ๐œ™ โˆถ โ„™1 โ†’ ๐‘‰ so that ๐’ด โ‰… ๐’ณฬ„ ๐‘‰ ร—๐‘‰ โ„™1 . Proof. See [20, Page 193] and [18, Section 2]. Let ๐‘†๐œ‘ be the supersingular stratum and ๐’ณฬ„ ๐œ‘ be the universal abelian surface over ๐‘†๐œ‘ . By Proposition 5.2.2, we have ๐’ณฬ„ ๐œ‘ โ‰… โจ† ๐’ด ร—โ„™1 ๐‘ˆ๐‘– ๐‘– 1 where ๐‘ˆ๐‘– โŠ‚ โ„™ are open subschemes. Therefore, we would want to have a description of ๐’ด[๐‘]ร— /โ„™1 to study the ฮ“1 (๐‘)-cover. Consider the exact sequence 0 โ†’ ๐ป โ†’ ๐ธ ร— ๐ธ โ†’ ๐’ด โ†’ 0 and restrict it to ๐‘ˆ = (๐œ‡,1) Spec ๐”ฝฬ„๐‘ [๐œ‡] โŠ‚ Proj ๐”ฝฬ„๐‘ [๐œ‡, ๐œˆ]. In this case, we have ๐ป๐‘ˆ โ‰… ๐›ผ๐‘ โˆ’โˆ’โˆ’โ†’ ๐›ผ๐‘ ร— ๐›ผ๐‘ โ†ช ๐ธ ร— ๐ธ. The exact sequence above yields an exact sequence of Dieudonnรฉ modules ๐”ป(๐’ด)๐‘ˆ โ†’ ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ โ†’ ๐”ป(๐ป)๐‘ˆ โ†’ 0. Note that ๐ป and ๐ธ ร— ๐ธ are base changed from Spec ๐”ฝฬ„๐‘ and ๐”ป is a crystal. Therefore the Dieudonnรฉ module of ๐”ป(๐ป)๐‘ˆ and ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ can be directly obtained from the Dieudonnรฉ modules of ๐ธ and ๐›ผ๐‘ over ๐”ฝฬ„๐‘ . In particular, we have that ๐”ป(๐ป)๐‘ˆ = ๐”ฝฬ„๐‘ โŠ—๐‘Š (๐”ฝฬ„๐‘ ) ๐’ช๐‘ˆ = ๐’ช๐‘ˆ and 2 ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ = โจ ๐‘Š (๐”ฝฬ„๐‘ ){๐น , ๐‘‰ }/(๐น โˆ’ ๐‘‰ ) โŠ— ๐’ช๐‘ˆ . ๐‘–=1 59 From this, we write ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ as ๐ฟ โ‰” ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ = ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’1 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’2 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’3 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’4 , where ๐น ๐‘’1 = ๐‘’3 , ๐น ๐‘’2 = ๐‘’4 , ๐น ๐‘’3 = ๐‘๐‘’1 , ๐น ๐‘’4 = ๐‘๐‘’2 , and same for ๐‘‰ . Now we want to identify ๐”ป(๐’ด)๐‘ˆ โŠ‚ ๐”ป(๐ธ ร— ๐ธ)๐‘ˆ , which is the kernel of the map ๐œ™ โˆถ ๐”ป(๐ธร—๐ธ)๐‘ˆ โ†’ ๐”ป(๐ป)๐‘ˆ . Since ๐ป is killed by ๐น , the kernel ker ๐œ™ contains ๐น ๐ฟ, and ๐”ป(๐’ด)๐‘ˆ can be identified with a line โ„“ โŠ‚ ๐ฟ/๐น ๐ฟ which generated by ๐œ‡๐‘’1 +๐‘’2 . To sum up, ๐”ป(๐’ด)๐‘ˆ โŠ‚ ๐”ป(๐ธร—๐ธ)๐‘ˆ is generated by ๐‘’3 , ๐‘’4 , ๐‘๐‘’1 , ๐‘๐‘’2 , ๐œ‡๐‘’1 + ๐‘’2 . Note that ๐‘๐‘’2 = ๐‘(๐œ‡๐‘’1 + ๐‘’2 ) โˆ’ ๐œ‡(๐‘๐‘’1 ). Therefore, we have ๐”ป(๐’ด)๐‘ˆ = ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘๐‘’1 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’3 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡]๐‘’4 โŠ• ๐‘Š (๐”ฝฬ„๐‘ )[๐œ‡](๐œ‡๐‘’1 + ๐‘’2 ), with Frobenius given by 0 1 โˆ’๐œ‡ 0 โŽ› โŽœ 0 0 0 ๐œ‡โŽž โŽŸ ๐น (๐‘๐‘’1 โŠ— 1, ๐‘’3 โŠ— 1, ๐‘’4 โŠ— 1, (๐œ‡๐‘’1 + ๐‘’2 ) โŠ— 1) = (๐‘๐‘’1 , ๐‘’3 , ๐‘’4 , ๐œ‡๐‘’1 + ๐‘’2 ) โŽœ โŽœ โŽŸ , (5.6) โŽœ๐‘ 0 0 1 โŽŸ โŽŸ โŽ0 0 ๐‘ 0 โŽ  and the Verschiebung given by 0 1 โˆ’๐œ‡ 0 โŽ› โŽœ 0 0 0 ๐œ‡โŽž โŽŸ ๐‘‰ (๐‘๐‘’1 , ๐‘’3 , ๐‘’4 , ๐œ‡๐‘’1 + ๐‘’2 ) = (๐‘๐‘’1 โŠ— 1, ๐‘’3 โŠ— 1, ๐‘’4 โŠ— 1, (๐œ‡๐‘’1 + ๐‘’2 ) โŠ— 1) โŽœ โŽœ โŽŸ . (5.7) โŽœ๐‘ 0 0 1 โŽŸ โŽŸ โŽ0 0 ๐‘ 0 โŽ  Now we are ready for the following result: Theorem 5.2.3. Let ๐‘†๐œ‘ be the supersingular stratum and let ๐‘Š be an irreducible component of ๐‘†๐œ‘ . The ฮ“1 (๐‘)-cover ๐’ณฬ„ ร— ร— 1 ๐‘Š [๐‘]/๐‘Š is the pullback of ๐’ด [๐‘]/โ„™๐”ฝฬ„ via some open immersion ๐‘ ๐‘Š โ†’ โ„™1๐”ฝฬ„ . Over each a๏ฌ€ine chart of the standard cover โ„™1๐”ฝฬ„ = ๐”ธ10 โˆช ๐”ธ1โˆž , the restricted ๐‘ ๐‘ ฮ“1 (๐‘)-cover ๐’ดร— [๐‘]|๐”ธ1ฬ„ /๐”ธ1๐”ฝฬ„ is isomorphic to ๐”ฝ๐‘ ๐‘ Spec ๐”ฝฬ„๐‘ [๐œ‡, ๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ , ๐‘ฆ๐‘ โˆ’ (๐œ‡๐‘ โˆ’ ๐œ‡)๐‘ฅ๐‘ , ๐‘ฅ๐‘ โˆ’1 ๐‘ฆ๐‘ โˆ’1 ) 2 2 2 2 (5.8) over Spec (๐”ฝฬ„๐‘ [๐œ‡]). 60 Proof. Without loss of generality, consider ๐‘ˆ = Spec ๐”ฝฬ„๐‘ [๐œ‡] โŠ‚ โ„™1 as above. Other a๏ฌ€ine charts are similar. Write ๐บ = ๐’ด[๐‘]. By Section 2.4, we have ๐‘€๐‘† (๐บ) = ๐‘‰ ๐”ป(๐’ด)๐‘ˆ /๐‘๐‘‰ ๐”ป(๐’ด)๐‘ˆ . Following the calculations in (5.6) and (5.7), we can see that ๐‘‰ ๐”ป(๐’ด)๐‘ˆ /๐‘๐‘‰ ๐”ป(๐’ด)๐‘ˆ is a free ๐’ช๐‘ˆ -module with basis ๐‘๐‘’3 , ๐‘๐‘’1 , ๐‘๐‘’2 , ๐œ‡๐‘’3 + ๐‘’4 with Frobenius and Verschiebung given by 0 1 โˆ’๐œ‡ 0 โŽ› โŽœ0 0 0 ๐œ‡ โŽž โŽŸ ๐น (๐‘๐‘’3 โŠ— 1, ๐‘๐‘’1 โŠ— 1, ๐‘๐‘’2 โŠ— 1, (๐œ‡๐‘’3 + ๐‘’4 ) โŠ— 1) = (๐‘๐‘’3 , ๐‘๐‘’1 , ๐‘๐‘’2 , ๐œ‡๐‘’3 + ๐‘’4 ) โŽœ โŽœ โŽŸ, โŽœ0 0 0 1 โŽŸ โŽŸ โŽ0 0 0 0 โŽ  0 1 โˆ’๐œ‡ 0 โŽ› โŽœ 0 0 0 ๐œ‡โŽž โŽŸ ๐‘‰ (๐‘๐‘’3 , ๐‘๐‘’1 , ๐‘๐‘’2 , ๐œ‡๐‘’3 + ๐‘’4 ) = (๐‘๐‘’3 โŠ— 1, ๐‘๐‘’1 โŠ— 1, ๐‘๐‘’2 โŠ— 1, (๐œ‡๐‘’3 + ๐‘’4 ) โŠ— 1) โŽœ โŽœ โŽŸ. โŽœ0 0 0 1 โŽŸ โŽŸ โŽ 0 0 0 0 โŽ  By Theorem 4.4.1, the group scheme ๐บ can be written as Spec ๐”ฝฬ„๐‘ [๐œ‡, ๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/(๐‘ฅ๐‘ , ๐‘ฆ1๐‘ โˆ’ ๐‘ฅ, ๐‘ฆ2๐‘ + ๐œ‡๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐œ‡๐‘ฆ1 โˆ’ ๐‘ฆ2 ). (5.9) After substituting ๐‘ฅ = ๐‘ฆ1๐‘ and ๐‘ฆ2 = ๐‘ง ๐‘ โˆ’ ๐œ‡๐‘ฆ1 and changing the variables, we have the expression (5.8). On the other chart ๐‘‡ = Spec ๐”ฝฬ„๐‘ [๐œˆ] โŠ‚ โ„™1 , we have ๐‘‰ ๐”ป(๐’ด)๐‘‡ /๐‘๐‘‰ ๐”ป(๐’ด)๐‘‡ a free ๐’ช๐‘‡ -module with basis ๐‘๐‘’4 , ๐‘๐‘’1 , ๐‘๐‘’2 , ๐‘’3 +๐œˆ๐‘’4 . A similar calculation follows and we have the group scheme as Spec ๐”ฝฬ„๐‘ [๐œˆ, ๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 , ๐‘ง]/(๐‘ฅ๐‘ , ๐‘ฆ1๐‘ โˆ’ ๐œˆ๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘ฅ, ๐‘ง ๐‘ โˆ’ ๐‘ฆ1 โˆ’ ๐œˆ๐‘ฆ2 ). (5.10) Note that (5.9) and (5.10) are isomorphic by sending ๐œ‡ โ†ฆ ๐œˆ and swapping ๐‘ฆ1 and ๐‘ฆ2 . The calculation of primitive elements is immediate from Example 2.3.6. 5.3 ฮ“1 (๐‘) -cover over ๐‘-rank-1 Locus Let ๐‘†๐œ‘ be the ๐‘-rank-1 stratum and let ๐‘ฅ be a point of ๐‘†๐œ‘ . We set ๐‘… = ๐’ช๐‘ โ„Ž ๐‘†๐œ‘ ,๐‘ฅฬ„ , the strict henselization of the local coordinate ring ๐’ช๐‘†๐œ‘ ,๐‘ฅฬ„ and set ๐‘† = Spec ๐‘…. Recall that in this case, the canonical filtration is 0 = ๐บ0 โŠ‚ ๐บ1 โŠ‚ ๐บ2 โŠ‚ ๐บ3 โŠ‚ ๐บ4 = ๐บ. 61 The corresponding canonical type is ๐œŒ = (0, 1, 2, 3, 4), ๐‘ฃ = (0, 1, 1, 2, 2) and ๐‘“ = (2, 2, 3, 3, 4). We will use the notion mixed extensions in this case, established by Grothendieck. First, we will give a quick review of this theory. For more details, see [11, Exposรฉ IX, 9.3] and [3, 4.2]. 5.3.1 Mixed extensions Let ๐’ž be an abelian category. Suppose that there are two extensions in ๐’ž: (๐น ) โˆถ 0 โ†’ ๐‘ƒ โ†’ ๐น โ†’ ๐‘… โ†’ 0, (5.11) (๐ธ) โˆถ 0 โ†’ ๐‘… โ†’ ๐ธ โ†’ ๐‘„ โ†’ 0. (5.12) Definition 5.3.1. A mixed extension (extension panachรฉe) of ๐ธ by ๐น is an object ๐‘ฅ in ๐’ž together with a filtration 0 โŠ‚ ๐‘‹2 โŠ‚ ๐‘‹1 โŠ‚ ๐‘‹ such that 0 โ†’ ๐‘‹ 2 โ†’ ๐‘‹ 2 โ†’ ๐‘‹ 1 /๐‘‹ 2 โ†’ 0 โ‰… 0 โ†’ ๐‘ƒ โ†’ ๐น โ†’ ๐‘… โ†’ 0, (5.13) 0 โ†’ ๐‘‹ 1 /๐‘‹ 2 โ†’ ๐‘‹/๐‘‹ 2 โ†’ ๐‘‹/๐‘‹ 1 โ†’ 0 โ‰… 0 โ†’ ๐‘… โ†’ ๐ธ โ†’ ๐‘„ โ†’ 0. (5.14) Let Extpan(๐ธ, ๐น ) be the category of all mixed extensions of ๐ธ by ๐น and let Ext(๐‘„, ๐‘ƒ ) be the category of all extensions of ๐‘„ by ๐‘ƒ . We define a functor ๐‘ค โˆถ Ext(๐‘„, ๐‘ƒ )ร—Extpan(๐ธ, ๐น ) โ†’ Extpan(๐ธ, ๐น ) as follows: Let ๐‘‹ be a mixed extension of ๐ธ by ๐น . Regard ๐‘‹ as an ordinary extension of ๐‘„ by ๐น . Let ๐บ be an extension of ๐‘„ by ๐‘ƒ . Let ๐บ ฬ„ be the induced extension of ๐‘„ by ๐น via the injection ๐‘ƒ โ†ช ๐น : 0 ๐‘ƒ ๐บ ๐‘„ 0 0 ๐น ๐บฬ„ ๐‘„ 0 62 Then we define ๐‘ค(๐บ, ๐‘‹) โ‰” ๐บ ฬ„ โˆง ๐‘‹. Here โˆง denotes the Baer sum in the Ext group. Let ๐‘Œ = ๐‘ค(๐บ, ๐‘‹). We need to define the filtration on ๐‘Œ to get an element in Extpan(๐ธ, ๐น ). By the definition of ๐‘Œ , we have an extension in ๐’ž: 0 โ†’ ๐น โ†’ ๐‘Œ โ†’ ๐‘„ โ†’ 0. Let ๐‘Œ 1 be the image of ๐น under the inclusion. Push this exact sequence out along ๐น โ†  ๐‘…: 0 ๐น ๐‘Œ ๐‘„ 0 0 ๐‘… ๐‘Œฬƒ ๐‘„ 0 By ๐‘Œ = ๐‘ค(๐บ, ๐‘‹), one can get ๐‘Œ ฬƒ โ‰… ๐ธ. We take ๐‘Œ 2 = ker(๐‘Œ โ†’ ๐‘Œ ฬƒ ). In this way we form the filtration 0 โŠ‚ ๐‘Œ 2 โŠ‚ ๐‘Œ 1 โŠ‚ ๐‘Œ . The main result of the theory of mixed extensions is the following proposition: Proposition 5.3.2. Let ๐ธ and ๐น be two extensions as above. Consider the category Extpan(๐ธ, ๐น ) of mixed extensions of ๐ธ by ๐น . Let Ext(๐‘„, ๐‘ƒ ) be the category of all ex- tensions of ๐‘„ by ๐‘ƒ . Then the set of all isomorphism classes of objects in Extpan(๐ธ, ๐น ) 1 is either empty, or it is a torsor under Ext (๐‘„, ๐‘ƒ ) (the group of isomorphism classes of extensions) via the functor ๐‘ค โˆถ Ext(๐‘„, ๐‘ƒ ) ร— Extpan(๐ธ, ๐น ) โ†’ Extpan(๐ธ, ๐น ). defined above. 5.3.2 Calculations on extensions Apply the theory of mixed extensions to the filtration 0 โŠ‚ ๐บ1 โŠ‚ ๐บ3 โŠ‚ ๐บ4 . We need to understand the extensions (๐น ) โˆถ 0 โ†’ ๐บ1 โ†’ ๐บ3 โ†’ ๐บ3 /๐บ1 โ†’ 0 (5.15) (๐ธ) โˆถ 0 โ†’ ๐บ3 /๐บ1 โ†’ ๐บ4 /๐บ1 โ†’ ๐บ4 /๐บ3 โ†’ 0 63 and the Ext group Ext(๐บ4 /๐บ3 , ๐บ1 ). We will analyze these groups one by one. We will analyze (๐ธ) first. First, we consider ๐บ3 /๐บ1 . Consider the ๐‘-divisible group ๐’ณฬ„ ๐‘† [๐‘โˆž ]. There is a short exact sequence 0 โ†’ ๐’ณฬ„ ๐‘† [๐‘โˆž ]0 โ†’ ๐’ณฬ„ ๐‘† [๐‘โˆž ] โ†’ ๐’ณฬ„ ๐‘† [๐‘โˆž ]๐‘’๐‘ก โ†’ 0, (5.16) where 0 denotes the identity component and ๐‘’๐‘ก denotes the maximal รฉtale quotient. Let โˆจ denote the Cartier dual of ๐‘-divisible groups, defined by ๐’ณฬ„ ๐‘† [๐‘โˆž ]โˆจ โ‰” (๐’ณฬ„ ๐‘† [๐‘๐‘› ]๐ท )๐‘› , where ๐ท denotes the Cartier dual of finite group schemes. Apply the same exact sequence to (๐’ณฬ„ ๐‘† [๐‘โˆž ]0 )โˆจ and take Cartier dual again: We get 0 โ†’ ๐’ณฬ„ ๐‘† [๐‘โˆž ]๐‘š๐‘ข๐‘™ โ†’ ๐’ณฬ„ ๐‘† [๐‘โˆž ]0 โ†’ (๐’ณฬ„ ๐‘† [๐‘โˆž ]0 )๐‘ข๐‘›๐‘– โ†’ 0. (5.17) Consider ๐’ข = (๐’ณฬ„ ๐‘† [๐‘โˆž ]0 )๐‘ข๐‘›๐‘– . By the construction above, we have ๐’ข[๐‘] = ๐บ3 /๐บ1 and the Newton polygon of each point of ๐’ข is of slope (1/2, 1/2). Now we need the following result by Oort and Zink from [34]: Proposition 5.3.3. ([4, Proposition 8.6]) Let ๐‘… be a strictly henselian reduced local ring over ๐”ฝฬ„๐‘ . Let ๐’ข be an isoclinic ๐‘-divisible group over ๐‘† = Spec ๐‘…. Then there is a ๐‘-divisible group ๐’ข0 over ๐”ฝ๐‘ with an isogeny ๐’ข0 ร—Spec ๐”ฝฬ„๐‘ ๐‘† โ†’ ๐’ข. Applying Proposition 5.3.3 to ๐’ข = (๐’ณฬ„ ๐‘† [๐‘โˆž ]0 )๐‘ข๐‘›๐‘– , we obtain an isogeny ๐’ข0 ร—Spec ๐”ฝฬ„๐‘ ๐‘† โ†’ ๐’ข. By classical Dieudonnรฉ theory ([5, III. 8]), there is a unique ๐‘-divisible group of dimension 1 and height 2 over an algebraically closed field, which is the ๐‘-divisible group associated to a supersingular elliptic curve. Therefore we assume ๐’ข0 = ๐ธ[๐‘โˆž ] for some supersingular elliptic curve over ๐”ฝฬ„๐‘ and we get an isogeny ๐ธ[๐‘โˆž ] ร—Spec ๐”ฝฬ„๐‘ ๐‘† โ†’ ๐’ข. (5.18) 64 Lemma 5.3.4. The isogeny ๐ธ[๐‘โˆž ] ร—Spec ๐”ฝฬ„๐‘ ๐‘† โ†’ ๐’ข is an isomorphism. Proof. Here we use the tool of Rapoportโ€“Zink space โ„ณ of ๐ธ[๐‘โˆž ]. For an ๐”ฝฬ„๐‘ -scheme ๐‘‡ , a ๐‘‡ -point of โ„ณ is given by a pair (๐’ข, ๐œŒ), where ๐’ข is a ๐‘-divisible group over ๐‘‡ and ๐œŒ โˆถ ๐ธ[๐‘โˆž ] ร—Spec ๐”ฝฬ„๐‘ ๐‘‡ โ†’ ๐’ข is a quasi-isogeny of height 0. Two points (๐’ข1 , ๐œŒ1 ) and (๐’ข2 , ๐œŒ2 ) are identified if they are isomorphic. The fundamental result of โ„ณ is that it is represented by the formal scheme Spf ๐‘Š (๐”ฝฬ„๐‘ )J๐‘กK. For more details of this Rapoportโ€“Zink space, see [37, 3.78, 3.79]. The isogeny in (5.18) gives an ๐‘†-point of โ„ณ, which corresponds to a morphism ๐‘† โ†’ Spf ๐‘Š (๐”ฝฬ„๐‘ )J๐‘กK. Note that the only possible map ๐‘† โ†’ Spf ๐‘Š (๐”ฝฬ„๐‘ )J๐‘กK is by sending ๐‘ก โ†ฆ 0 since ๐‘† is smooth (thus integral). So โ„ณ(๐‘†) has only one point and therefore the isogeny ๐ธ[๐‘โˆž ] ร—Spec ๐”ฝฬ„๐‘ ๐‘† โ†’ ๐’ข is in fact an isomorphism. By Lemma 5.3.4 above, we see that ๐บ3 /๐บ1 is isomorphic to the ๐‘-torsion of a supersin- gular elliptic curve base changed from a field. Therefore we have ๐บ3 /๐บ1 โ‰… ๐ธ[๐‘] โ‰… Spec ๐‘…[๐‘ฆ1 , ๐‘ฆ2 ]/(๐‘ฆ1๐‘ , ๐‘ฆ2๐‘ โˆ’ ๐‘ฆ1 ) (5.19) with ๐‘šโˆ—๐บ3 /๐บ1 (๐‘ฆ1 ) = 1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1, ๐‘โˆ’1 ๐‘ฆ1๐‘˜ โŠ— ๐‘ฆ1๐‘โˆ’๐‘˜ ๐‘šโˆ—๐บ3 /๐บ1 (๐‘ฆ2 ) = 1 โŠ— ๐‘ฆ2 + ๐‘ฆ 2 โŠ— 1 + โˆ‘ ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! Now consider ๐บ4 /๐บ3 . From the canonical type of ๐บ, we get that ๐น๐บ4 /๐บ3 is an isomor- phism and ๐‘‰๐บ4 /๐บ3 = 0. Since the base Spec ๐‘… is strictly henselian, we have ๐บ4 /๐บ3 โ‰… โ„ค/๐‘โ„ค. Dually, we also have ๐บ1 โ‰… ๐œ‡๐‘ . We write them as ๐บ4 /๐บ3 โ‰… โ„ค/๐‘โ„ค โ‰… Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ), ๐‘šโˆ—๐บ4 /๐บ3 (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘โˆ’1 ๐‘ง ๐‘– โŠ— ๐‘ง ๐‘โˆ’๐‘– (5.20) ๐‘ ๐บ1 โ‰… ๐œ‡๐‘ โ‰… Spec ๐‘…[๐‘ง]/(๐‘ง ), ๐‘šโˆ—๐บ1 (๐‘ง) =1โŠ—๐‘ง+๐‘งโŠ—1+โˆ‘ . ๐‘–=1 ๐‘–! (๐‘ โˆ’ ๐‘–)! 65 From the discussion above, the two extensions in (5.15) are now given by (๐น ) โˆถ 0 โ†’ ๐œ‡๐‘ โ†’ ๐บ3 โ†’ ๐ธ[๐‘] โ†’ 0 (5.21) (๐ธ) โˆถ 0 โ†’ ๐ธ[๐‘] โ†’ ๐บ4 /๐บ1 โ†’ โ„ค/๐‘โ„ค โ†’ 0 Now we want to give the expression of ๐บ4 /๐บ1 in (๐ธ). Consider ๐บ3 /๐บ2 . By the canonical type, we can see that ๐‘‰๐บ3 /๐บ2 = 0 and ๐น๐บ3 /๐บ2 = 0. Then ๐บ3 /๐บ2 โ‰… ๐›ผ๐‘ and we write ๐บ3 /๐บ2 as ๐บ3 /๐บ2 โ‰… Spec ๐‘…[๐‘ฆ1 ]/(๐‘ฆ1๐‘ ) with ๐‘šโˆ—๐บ3 /๐บ2 (๐‘ฆ1 ) = 1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1. Note that we have ๐บ4 /๐บ3 from (5.20). Consider the extension 0 โ†’ ๐บ3 /๐บ2 โ†’ ๐บ4 /๐บ2 โ†’ ๐บ4 /๐บ3 โ†’ 0 By Theorem 4.3.1, ๐บ4 /๐บ2 is of the form ๐บ4 /๐บ2 โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ, ๐‘ฆ1๐‘ โˆ’ ๐‘Ž๐‘ฅ) (5.22) with ๐‘šโˆ—๐บ4 /๐บ2 (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘šโˆ—๐บ4 /๐บ2 (๐‘ฆ1 ) = 1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1. Then we consider the extension 0 โ†’ ๐บ2 /๐บ1 โ†’ ๐บ4 /๐บ1 โ†’ ๐บ4 /๐บ2 โ†’ 0 Here again ๐บ2 /๐บ1 โ‰… ๐›ผ๐‘ . We write it as ๐บ2 /๐บ1 โ‰… Spec ๐‘…[๐‘ฆ2 ]/(๐‘ฆ2๐‘ ) with ๐‘šโˆ—๐บ2 /๐บ1 (๐‘ฆ2 ) = 1 โŠ— ๐‘ฆ2 + ๐‘ฆ2 โŠ— 1. Again by Theorem 4.3.1, ๐บ4 /๐บ1 is of the form ๐บ4 /๐บ1 โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ, ๐‘ฆ1๐‘ โˆ’ ๐‘Ž๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘๐‘ฆ1 ) (5.23) 66 with ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฆ1 ) = 1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1, ๐‘โˆ’1 ๐‘โˆ’1 โˆ’๐‘Ž๐‘‘๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘‘๐‘ฆ๐‘˜ โŠ— ๐‘ฆ1๐‘โˆ’๐‘˜ ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฆ2 ) = 1 โŠ— ๐‘ฆ2 + ๐‘ฆ 2 โŠ— 1 + โˆ‘ +โˆ‘ 1 . ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! Note that ๐บ3 /๐บ1 = ker ๐น๐บ2 4 /๐บ1 . Comparing with (5.19), we get ๐‘ = ๐‘‘ = 1 and therefore we have the expression of ๐บ4 /๐บ1 as ๐บ4 /๐บ1 โ‰… Spec ๐‘…[๐‘ฅ, ๐‘ฆ1 , ๐‘ฆ2 ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ, ๐‘ฆ1๐‘ โˆ’ ๐‘Ž๐‘ฅ, ๐‘ฆ2๐‘ โˆ’ ๐‘๐‘ฅ โˆ’ ๐‘ฆ1 ) (5.24) with ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฅ) = 1 โŠ— ๐‘ฅ + ๐‘ฅ โŠ— 1, ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฆ1 ) = 1 โŠ— ๐‘ฆ1 + ๐‘ฆ1 โŠ— 1, ๐‘โˆ’1 ๐‘โˆ’1 โˆ’๐‘Ž๐‘ฅ๐‘˜ โŠ— ๐‘ฅ๐‘โˆ’๐‘˜ ๐‘ฆ๐‘˜ โŠ— ๐‘ฆ1๐‘โˆ’๐‘˜ ๐‘šโˆ—๐บ4 /๐บ1 (๐‘ฆ2 ) = 1 โŠ— ๐‘ฆ2 + ๐‘ฆ2 โŠ— 1 + โˆ‘ +โˆ‘ 1 ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! ๐‘˜=1 ๐‘˜! (๐‘ โˆ’ ๐‘˜)! This expression of ๐บ4 /๐บ1 gives the description of all terms in (๐ธ). Now we want to analyze (๐น ). Note that (๐น ) is in fact the Cartier dual of ๐ธ from the information of the canonical type. However, the explicit expressions of the group schemes are complicated and di๏ฌ€icult to directly write down the algebras and coalgebras. Therefore, we will also analyse (๐น ) using another approach based on the fact that ๐บ3 is an extension of the ๐‘-torsion of supersingular elliptic curves by ๐œ‡๐‘ . The result is as follows: 1 Lemma 5.3.5. The extension group Ext๐‘“๐‘๐‘๐‘“,๐‘† (๐ธ[๐‘], ๐œ‡๐‘ ) is isomorphic to ๐ธ(๐‘†)/๐‘๐ธ(๐‘†). Proof. We will be using fppf topology throughout this proof. It is a classical result that 1 for any group scheme ๐บ/๐‘†, we have an isomorphism ๐ป 1 (๐‘†, ๐บ) โ‰… Ext๐‘† (๐บ๐ท , ๐”พ๐‘š ). This isomorphism is explained in many places, for example [43, Theorem 2, Theorem 3]. Apply this isomorphism to ๐ธ[๐‘]. Note that ๐ธ[๐‘] is self-dual. Therefore we get an isomorphism 1 ๐ป 1 (๐‘†, ๐ธ[๐‘]) โ‰… Ext๐‘† (๐ธ[๐‘], ๐”พ๐‘š ) 67 For ๐ป 1 (๐‘†, ๐ธ[๐‘]), consider the long exact sequence associated to ๐‘ 0 โ†’ ๐ธ[๐‘] โ†’ ๐ธ โˆ’ โ†’ ๐ธ โ†’ 0. (5.25) We get ๐‘ ๐ธ(๐‘†) โˆ’โ†’ ๐ธ(๐‘†) โ†’ ๐ป 1 (๐‘†, ๐ธ[๐‘]) โ†’ ๐ป 1 (๐‘†, ๐ธ). (5.26) Note that ๐ป 1 (๐‘†, ๐ธ) = 0 since ๐ธ is smooth over ๐‘† and ๐‘† is strictly henselian. Therefore we have ๐ธ(๐‘†)/๐‘๐ธ(๐‘†) โ‰… ๐ป 1 (๐‘†, ๐ธ[๐‘]). Given any point ๐‘† โ†’ ๐ธ, the ๐ธ[๐‘]-torsor over ๐‘† is obtained by pulling back the short exact sequence (5.25) along ๐‘† โ†’ ๐ธ. 1 For Ext๐‘† (๐ธ[๐‘], ๐”พ๐‘š ), consider the long exact sequence associated to the Kummer sequence 0 โ†’ ๐œ‡๐‘ โ†’ ๐”พ๐‘š โ†’ ๐”พ๐‘š โ†’ 0. (5.27) We get ๐‘ Hom(๐ธ[๐‘], ๐”พ๐‘š ) โ†’ Ext(๐ธ[๐‘], ๐œ‡๐‘ ) โ†’ Ext(๐ธ[๐‘], ๐”พ๐‘š ) โˆ’ โ†’ Ext(๐ธ[๐‘], ๐”พ๐‘š ) (5.28) Since Hom(๐ธ[๐‘], ๐”พ๐‘š ) is a sheaf, we get an exact sequence 0 โ†’ Hom(๐ธ[๐‘], ๐”พ๐‘š ) โ†’ Hom(๐ธ[๐‘], ๐”พ๐‘š )(๐‘†). (5.29) Note that Hom(๐ธ[๐‘], ๐”พ๐‘š )(๐‘†) = ๐ธ[๐‘](๐‘†), which vanishes since ๐ธ is supersingular and ๐‘† is integral. Therefore the first term Hom(๐ธ[๐‘], ๐”พ๐‘š ) in (5.28) vanishes. Note that since ๐ธ[๐‘] ๐‘ is annihilated by ๐‘, the map Ext(๐ธ[๐‘], ๐”พ๐‘š ) โˆ’ โ†’ Ext(๐ธ[๐‘], ๐”พ๐‘š ) in (5.28) is the zero map. Therefore we have Ext(๐ธ[๐‘], ๐œ‡๐‘ ) โ‰… Ext(๐ธ[๐‘], ๐”พ๐‘š ). 1 Combining all the above results, we get Ext๐‘† (๐ธ[๐‘], ๐œ‡๐‘ ) โ‰… ๐ธ(๐‘†)/๐‘๐ธ(๐‘†). The last ingredient from Proposition 5.3.2 is the Ext group Ext(โ„ค/๐‘โ„ค, ๐œ‡๐‘ ). For this, we have the following lemma: 1 ๐‘ Proposition 5.3.6. The Ext group Ext๐‘† (โ„ค/๐‘โ„ค, ๐œ‡๐‘ ) is isomorphic to ๐ป 1 (๐‘†, ๐œ‡๐‘ ) โ‰… ๐’ชโˆ—๐‘† / (๐’ชโˆ—๐‘† ) . 68 Proof. Consider the short exact sequence 0 โ†’ โ„ค โ†’ โ„ค โ†’ โ„ค/๐‘โ„ค โ†’ 0. This gives a long exact sequence: 1 1 Hom(โ„ค, ๐œ‡๐‘ ) โ†’ Ext (โ„ค/๐‘โ„ค, ๐œ‡๐‘ ) โ†’ Ext (โ„ค, ๐œ‡๐‘ ) โ†’ 0. Note that ๐‘† is reduced and of characteristic ๐‘. Therefore ๐’ช๐‘† has no non-trivial ๐‘-th root of unity and Hom(โ„ค, ๐œ‡๐‘ ) = 0. On the other hand, it is easy to see that the extensions of โ„ค by ๐œ‡๐‘ are completely freely determined by the ๐œ‡๐‘ -torsor over 1 โˆˆ โ„ค. Therefore 1 1 Ext๐‘† (โ„ค/๐‘โ„ค, ๐œ‡๐‘ ) โ‰… Ext (โ„ค, ๐œ‡๐‘ ) โ‰… ๐ป 1 (๐‘†, ๐œ‡๐‘ ). ๐‘ The isomorphism ๐’ชโˆ—๐‘† / (๐’ชโˆ—๐‘† ) โ‰… ๐ป 1 (๐‘†, ๐œ‡๐‘ ) is a classical result of Kummer theory. Con- ๐‘ sider the Kummer exact sequence 1 โ†’ ๐œ‡๐‘ โ†’ ๐”พ๐‘š โˆ’ โ†’ ๐”พ๐‘š โ†’ 1. Then we have the associated long exact sequence ๐‘ ๐ป 0 (๐‘†, ๐”พ๐‘š ) โˆ’โ†’ ๐ป 0 (๐‘†, ๐”พ๐‘š ) โ†’ ๐ป 1 (๐‘†, ๐œ‡๐‘ ) โ†’ ๐ป 1 (๐‘†, ๐”พ๐‘š ). Since ๐‘† is local, we have that ๐ป 1 (๐‘†, ๐”พ๐‘š ) = Pic(๐‘†) = 0. Note that ๐ป 0 (๐‘†, ๐”พ๐‘š ) = ๐’ชโˆ—๐‘† , we ๐‘ have that ๐ป 1 (๐‘†, ๐œ‡๐‘ ) โ‰… ๐’ช๐‘†โˆ— / (๐’ชโˆ—๐‘† ) . As a conclusion, we record all previous results as follows: Theorem 5.3.7. The group scheme ๐บ = ๐บ4 is a mixed extension of (๐น ) โˆถ 0 โ†’ ๐œ‡๐‘ โ†’ ๐บ3 โ†’ ๐ธ[๐‘] โ†’ 0 (๐ธ) โˆถ 0 โ†’ ๐ธ[๐‘] โ†’ ๐บ4 /๐บ1 โ†’ โ„ค/๐‘โ„ค โ†’ 0 as in (5.21). Here, the extension (๐ธ) is explicitly given by Equation (5.19), (5.20) and (5.23). The extension (๐น ) is the Cartier dual of (๐ธ) and can alternatively obtained by Lemma 5.3.5. 1 All mixed extensions form a Ext๐‘† (โ„ค/๐‘โ„ค, ๐œ‡๐‘ )-torsor 1 ๐‘ค โˆถ Ext๐‘† (โ„ค/๐‘โ„ค, ๐œ‡๐‘ ) ร— Extpan(๐ธ, ๐น ) โ†’ Extpan(๐ธ, ๐น ), 1 ๐‘ where the ext group Ext๐‘† (โ„ค/๐‘โ„ค, ๐œ‡๐‘ ) โ‰… ๐’ชโˆ—๐‘† / (๐’ชโˆ—๐‘† ) and the map ๐‘ค is described in Proposition 5.3.2. 69 5.4 ฮ“1 (๐‘) -cover over the Ordinary Locus Now, let ๐‘†๐œ‘ be the ordinary locus. The universal abelian surface ๐’ณฬ„ ๐œ‘ is ordinary. In this case, we have a powerful tool, namely the Serreโ€“Tate theory, to help with analyzing the ฮ“1 (๐‘)-cover. For details about Serreโ€“Tate local moduli, see [17]. Let ๐‘ฅ โˆˆ ๐‘†๐œ‘ be a geometric point which corresponds to a principally polarized abelian variety ๐‘‹ over ๐”ฝฬ„๐‘ . Serreโ€“Tate theory states that the deformation space of ๐‘‹ is canoni- cally pro-represented by Spf ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K. Alternatively, this means there is a compatible system of universal principally polarized abelian schemes ๐‘‹๐‘› / Spec ๐”ฝฬ„๐‘ [๐‘ก1 , ๐‘ก2 , ๐‘ก3 ]/(๐‘ก1 , ๐‘ก2 , ๐‘ก3 )๐‘› . By the definition of the Siegel threefold, this gives canonical isomorphisms ๐’ช๐‘ฅ,๐‘† ฬ‚ /๐‘šฬ‚ ๐‘› โ†’ ๐œ‘ ฬ‚ ๐”ฝฬ„๐‘ [๐‘ก1 , ๐‘ก2 , ๐‘ก3 ]/(๐‘ก1 , ๐‘ก2 , ๐‘ก3 )๐‘› where ๐’ช๐‘ฅ,๐‘† is the completion of the local coordinate ring at ๐‘ฅ and ๐œ‘ ๐‘šฬ‚ is the maximal ideal of ๐’ช๐‘ฅ,๐‘† ฬ‚ . This induces a canonical isomorphism ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K โ‰… ๐’ช๐‘ฅ,๐‘†ฬ‚ . ๐œ‘ ๐œ‘ Consider ๐’ณฬ‚ โ‰” ๐’ณฬ„ ๐œ‘ ร—๐‘†๐œ‘ Spec ๐’ช๐‘ฅ,๐‘† ฬ‚ ๐œ‘ . It is the universal abelian surface over the Serreโ€“Tate local moduli. The goal of this section is to give explicit description of ๐’ณ[๐‘]/ ฬ‚ ฬ‚ Spec ๐’ช๐‘ฅ,๐‘† . To ๐œ‘ do this, we will calculate the universal extension over the Serreโ€“Tate local moduli. We first sketch the idea of Serreโ€“Tate theory. Let ๐‘‹ be the principally polarized ordinary abelian variety corresponding to ๐‘ฅ โˆˆ ๐‘†๐œ‘ . Let ๐‘‡๐‘ ๐‘‹(๐‘˜) be the Tate module of ๐‘‹. By choosing a basis, ๐‘‡๐‘ ๐‘‹(๐‘˜) โ‰… โ„ค2๐‘ . Let ๐‘‹ ๐‘ก be the dual abelian variety of X. We also have ๐‘‡๐‘ ๐‘‹(๐‘˜) โ‰… โ„ค2๐‘ after a choice of basis. The first result is that the deformation theory of ๐‘‹ is the same as the deformation theory of the associated ๐‘-divisible group ๐‘‹[๐‘โˆž ] (see [17, Theorem 1.2.1]). Therefore we only need to work with ๐‘‹[๐‘โˆž ]. Let ๐•[๐‘โˆž ] be a deformation of ๐‘‹[๐‘โˆž ] over an Artin local ring ๐‘…. Let ๐‘‹ ๐‘š๐‘ข๐‘™ the maximal toroidal subgroup of ๐‘‹[๐‘โˆž ] and let ๐•๐‘š๐‘ข๐‘™ be the unique lift of ๐‘‹ ๐‘š๐‘ข๐‘™ . Then there is the canonical decomposition 0 โ†’ ๐•๐‘š๐‘ข๐‘™ โ†’ ๐•[๐‘โˆž ] โ†’ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ /โ„ค๐‘ โ†’ 0. (5.30) It turns out that the extension (5.30) can be obtained from the basic extension 0 โ†’ ๐‘‡๐‘ ๐‘‹(๐‘˜) โ†’ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ โ†’ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ /โ„ค๐‘ โ†’ 0. (5.31) 70 by pushing out along a unique homomorphism ๐œ™๐•/๐‘… โˆถ ๐‘‡๐‘ ๐‘‹(๐‘˜) โ†’ ๐•๐‘š๐‘ข๐‘™ . On the other hand, there is a pairing of group schemes over ๐‘… ๐ธ๐• โˆถ ๐•๐‘š๐‘ข๐‘™ ร— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜) โ†’ ๐”พฬ‚ ๐‘š , (5.32) which is the unique lift of the paring of group schemes over ๐‘˜ ๐ธ๐‘‹ โˆถ ๐‘‹ ๐‘š๐‘ข๐‘™ ร— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜) โ†’ ๐”พฬ‚ ๐‘š (5.33) that is induced from the Weil pairing ๐‘‹ ๐‘š๐‘ข๐‘™ [๐‘] ร— ๐‘‡๐‘ ๐‘‹ ๐‘ก [๐‘](๐‘˜) โ†’ ๐œ‡๐‘๐‘› . By composing the map ๐œ™๐•/๐‘… โˆถ ๐‘‡๐‘ ๐‘‹(๐‘˜) โ†’ ๐•๐‘š๐‘ข๐‘™ with the pairing (5.32), we get a pairing ๐‘ž(๐•/๐‘…; โˆ’, โˆ’) โˆถ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜) โ†’ ๐”พฬ‚ ๐‘š (๐‘…). (5.34) It turns out that this ๐‘ž contains all the information of the deformation ๐•: Proposition 5.4.1. ([17, Theorem 2.1]) The construction ๐•/๐‘… โ†ฆ ๐‘ž(๐•/๐‘…; โˆ’, โˆ’) gives a bijection of the set of isomorphism classes of deformations of ๐‘‹ and the group Homโ„ค๐‘ (๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š (๐‘…)). Now we will calculate the universal extension. Take ๐‘’1 , ๐‘’2 as a basis for ๐‘‡๐‘ ๐‘‹(๐‘˜) and ๐‘“1 , ๐‘“2 for ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜). Over the universal base ๐‘† = Spf ๐”ฝฬ„๐‘ J๐‘ก11 , ๐‘ก12 , ๐‘ก21 , ๐‘ก22 K, let ๐œ™ โˆˆ Hom๐‘† (๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ) = Hom๐‘† (๐‘‡๐‘ ๐‘‹(๐‘˜), Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š )) be the universal homomorphism given by ๐‘’๐‘– โŠ— ๐‘“๐‘— โ†ฆ ๐‘ก๐‘–๐‘— . By the Serreโ€“Tate theory above, the universal extension is the pushout of the basic extension (5.31) along ๐œ™: 0 ๐‘‡๐‘ ๐‘‹(๐‘˜) ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ /โ„ค๐‘ 0 ๐œ™ 0 Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ) ๐‘‹ฬ‚ ๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ /โ„ค๐‘ 0 71 Note that Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ) โ‰… ๐”พฬ‚ ๐‘š ร— ๐”พฬ‚ ๐‘š by taking the images of ๐‘“1 and ๐‘“2 . We will denote the elements in Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ) by their images under this isomorphism. In this way, the generators of Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ) are denoted by (1+๐‘ก11 , 1+๐‘ก12 ) and (1+๐‘ก21 , 1+๐‘ก22 ) and a general element ๐‘Ž๐‘’1 +๐‘๐‘’2 โˆˆ ๐‘‡๐‘ ๐‘‹(๐‘˜) is mapped to ((1+๐‘ก11 )๐‘Ž (1+๐‘ก21 )๐‘ , (1+๐‘ก12 )๐‘Ž (1+๐‘ก22 )๐‘ ) by ๐œ™. Now we consider the ๐‘-torsion ๐‘‹[๐‘] ฬ‚ of the fiber coproduct ๐‘‹ฬ‚ = (๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— โ„š๐‘ ) โŠ”๐‘‡๐‘ ๐‘‹(๐‘˜) Hom(๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ). The points of ๐‘‹[๐‘] ฬ‚ are given by ฬ‚ ๐‘‹[๐‘](๐ด) = {(๐‘Ž, ๐‘, ๐‘ฅ, ๐‘ฆ)|๐‘Ž, ๐‘ โˆˆ {0, โ€ฆ , ๐‘โˆ’1}, ๐‘ฅ๐‘ = (1+๐‘ก11 )๐‘Ž (1+๐‘ก21 )๐‘ , ๐‘ฆ๐‘ = (1+๐‘ก12 )๐‘Ž (1+๐‘ก22 )๐‘ } (5.35) with group multiplication defined by ฬ‡ 2 , ๐‘2 , ๐‘ฅ2 , ๐‘ฆ2 ) = (๐‘Ž1 , ๐‘1 , ๐‘ฅ1 , ๐‘ฆ1 )+(๐‘Ž โŽง (๐‘Ž1 + ๐‘Ž2 , ๐‘1 + ๐‘2 , ๐‘ฅ1 ๐‘ฅ2 , ๐‘ฆ1 ๐‘ฆ2 ) , if ๐‘Ž1 + ๐‘Ž2 , ๐‘1 + ๐‘2 < ๐‘, { { ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 { (๐‘Ž1 + ๐‘Ž2 โˆ’ ๐‘, ๐‘1 + ๐‘2 , , ), if ๐‘1 + ๐‘2 < ๐‘ โ‰ค ๐‘Ž1 + ๐‘Ž2 , { { (1 + ๐‘ก11 ) (1 + ๐‘ก12 )๐‘ ๐‘ { ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 (5.36) โŽจ (๐‘Ž1 + ๐‘Ž2 , ๐‘1 + ๐‘2 โˆ’ ๐‘, , ), if ๐‘Ž1 + ๐‘Ž2 < ๐‘ โ‰ค ๐‘1 + ๐‘2 , (1 + ๐‘ก21 )๐‘ (1 + ๐‘ก22 )๐‘ { { ๐‘ฅ1 ๐‘ฅ2 ๐‘ฆ1 ๐‘ฆ2 { (๐‘Ž1 + ๐‘Ž2 โˆ’ ๐‘, ๐‘1 + ๐‘2 โˆ’ ๐‘, , ), { (1 + ๐‘ก11 )๐‘ (1 + ๐‘ก21 )๐‘ (1 + ๐‘ก12 )๐‘ (1 + ๐‘ก22 )๐‘ { { if ๐‘ โ‰ค ๐‘Ž1 + ๐‘Ž2 , ๐‘1 + ๐‘2 . โŽฉ Note that we havenโ€™t used the polarization structure on ๐ด yet and hence the dimension of the formal moduli is 4. Now we consider the polarization. From [17, Theorem 21. (4)], the principal polarization ๐œ† โˆถ ๐‘‹ โ†’ ๐‘‹ ๐‘ก lifts to ๐• โ†’ ๐•๐‘ก if and only if ๐‘ž(๐•/๐‘…; ๐›ผ, ๐œ†๐‘ก (๐›ฝ)) = ๐‘ž(๐•๐‘ก /๐‘…; ๐œ†(๐›ผ), ๐›ฝ) (5.37) for all ๐›ผ โˆˆ ๐‘‡๐‘ ๐‘‹(๐‘˜) and ๐›ฝ โˆˆ ๐‘‡๐‘ ๐‘‹ ๐‘ก๐‘ก (๐‘˜) = ๐‘‡๐‘ ๐‘‹(๐‘˜). From the symmetry formula in [17, Theorem 21. (3)], we have ๐‘ž(๐•๐‘ก /๐‘…; ๐œ†(๐›ผ), ๐›ฝ) = ๐‘ž(๐•/๐‘…; ๐›ฝ, ๐œ†(๐›ผ)). (5.38) 72 By combining Equation (5.37), (5.38) and since ๐œ† = ๐œ†๐‘ก , we have ๐‘ž(๐•/๐‘…; ๐›ผ, ๐œ†(๐›ฝ)) = ๐‘ž(๐•/๐‘…; ๐›ฝ, ๐œ†(๐›ผ)). (5.39) We choose a basis ๐‘’1 , ๐‘’2 for ๐‘‡๐‘ ๐‘‹(๐‘˜) and let ๐‘“๐‘– = ๐œ†(๐‘’๐‘– ), ๐‘– = 1, 2 be a basis of ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜). Then Equation (5.39) is equivalent to ๐‘ž(๐•/๐‘…; ๐‘’๐‘– , ๐‘“๐‘— ) = ๐‘ž(๐•/๐‘…; ๐‘’๐‘— , ๐‘“๐‘– ). Recall that ๐‘ก๐‘–๐‘— is the image of ๐‘’๐‘– โŠ— ๐‘“๐‘— under the universal homomorphism ๐œ™ โˆˆ Hom๐‘† (๐‘‡๐‘ ๐‘‹(๐‘˜) โŠ— ๐‘‡๐‘ ๐‘‹ ๐‘ก (๐‘˜), ๐”พฬ‚ ๐‘š ). Therefore the Serreโ€“Tate local coordinates for principally polarized abelian surfaces are given by ๐‘ก11 , ๐‘ก12 = ๐‘ก21 , ๐‘ก22 . Now we denote ๐‘ก1 โ‰” ๐‘ก11 , ๐‘ก2 โ‰” ๐‘ก12 = ๐‘ก21 and ๐‘ก3 โ‰” ๐‘ก22 . After changing the variables, we are now ready to state the final result: Theorem 5.4.2. Let ๐‘†๐œ‘ be the ordinary locus. Let ๐‘†๐œ‘ be the ordinary locus and ๐‘ฅ be a closed point of ๐‘†๐œ‘ . Let ๐’ช๐‘†ฬ‚ ๐œ‘ ,๐‘ฅ be the completion of the local ring of ๐‘†๐œ‘ at ๐‘ฅ. Then the base change of ๐’ณร— ฬ‚ ๐œ‘ [๐‘]/๐‘†๐œ‘ to Spec ๐’ช๐‘†๐œ‘ ,๐‘ฅ is isomorphic to ๐‘ฅ๐‘ ๐‘ 1 โˆ’๐‘ƒ1 (๐‘ฆ1 ,๐‘ฆ2 ),๐‘ฅ2 โˆ’๐‘ƒ2 (๐‘ฆ1 ,๐‘ฆ2 ), Spec ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 , ๐‘ฆ2 ]/ ( ๐‘ฆ1๐‘ โˆ’๐‘ฆ1 ,๐‘ฆ2๐‘ โˆ’๐‘ฆ2 , ) (๐‘ฆ1๐‘โˆ’1 โˆ’1)(๐‘ฆ2๐‘โˆ’1 โˆ’1)ฮฆ๐‘ (๐‘ฅ1 )ฮฆ๐‘ (๐‘ฅ2 ) over Spec ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K. Here, ฮฆ๐‘ denotes the cyclotomic polynomial and the polynomials ๐‘ƒ1 , ๐‘ƒ2 โˆˆ ๐”ฝ๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฆ1 , ๐‘ฆ2 ] are interpolation polynomials characterized by ๐‘ƒ1 (๐‘–, ๐‘—) = (1 + ๐‘ก1 )๐‘– (1 + ๐‘ก2 )๐‘— , ๐‘ƒ2 (๐‘–, ๐‘—) = (1 + ๐‘ก2 )๐‘– (1 + ๐‘ก3 )๐‘— for 0 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘ โˆ’ 1. The variables ๐‘ก1 , ๐‘ก2 , ๐‘ก3 are the Serre-Tate coordinates. Proof. From the description of points of ๐‘‹[๐‘], ฬ‚ we can write ฬ‚ = ๐‘‹[๐‘] โจ† ๐‘‹ฬ‚ ๐‘Ž,๐‘ ๐‘Ž,๐‘=0,โ€ฆ,๐‘โˆ’1 where ๐‘‹ฬ‚ ๐‘Ž,๐‘ = Spec ๐‘…[๐‘ฅ, ๐‘ฆ]/(๐‘ฅ๐‘ โˆ’ (1 + ๐‘ก1 )๐‘Ž (1 + ๐‘ก2 )๐‘ , ๐‘ฆ๐‘ โˆ’ (1 + ๐‘ก2 )๐‘Ž (1 + ๐‘ก3 )๐‘ ). 73 Note that in particular, ๐‘‹ฬ‚ 0,0 โ‰… ๐œ‡๐‘ ร— ๐œ‡๐‘ . We want to modify the description of ๐‘‹[๐‘] ฬ‚ to make it consistent with the forms in the previous cases. Note that the constant group scheme can be written as โ„ค/๐‘โ„ค โ‰… Spec ๐‘…[๐‘ฅ]/(๐‘ฅ๐‘ โˆ’ ๐‘ฅ). Using this for the indices ๐‘Ž, ๐‘ โˆˆ 0, โ€ฆ , ๐‘ โˆ’ 1, we can write ๐‘‹[๐‘] ฬ‚ as ฬ‚ โ‰… Spec ๐”ฝJ๐‘ก ๐‘‹[๐‘] ฬ„ 1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 , ๐‘ฆ2 ]/ (๐‘ฅ๐‘ โˆ’ ๐‘ฅ1 , ๐‘ฅ๐‘ โˆ’ ๐‘ฅ2 , ๐‘ฆ๐‘ โˆ’ ๐‘ƒ1 (๐‘ฅ1 , ๐‘ฅ2 ), ๐‘ฆ๐‘ โˆ’ ๐‘ƒ2 (๐‘ฅ1 , ๐‘ฅ2 )) . 1 2 1 2 Here, the polynomials ๐‘ƒ1 , ๐‘ƒ2 โˆˆ ๐”ฝ๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K[๐‘ฅ1 , ๐‘ฅ2 ] are defined by (๐‘ฅ1 โˆ’ ๐‘˜)(๐‘ฅ2 โˆ’ ๐‘™) ๐‘ƒ1 (๐‘ฅ1 , ๐‘ฅ2 ) = โˆ‘ (1 + ๐‘ก11 )๐‘– (1 + ๐‘ก21 )๐‘— ( โˆ ), 0โ‰ค๐‘–,๐‘—โ‰ค๐‘โˆ’1 ๐‘˜โ‰ ๐‘–,๐‘™โ‰ ๐‘— (๐‘– โˆ’ ๐‘˜)(๐‘— โˆ’ ๐‘™) (๐‘ฅ1 โˆ’ ๐‘˜)(๐‘ฅ2 โˆ’ ๐‘™) ๐‘ƒ2 (๐‘ฅ1 , ๐‘ฅ2 ) = โˆ‘ (1 + ๐‘ก12 )๐‘– (1 + ๐‘ก22 )๐‘— ( โˆ ). 0โ‰ค๐‘–,๐‘—โ‰ค๐‘โˆ’1 ๐‘˜โ‰ ๐‘–,๐‘™โ‰ ๐‘— (๐‘– โˆ’ ๐‘˜)(๐‘— โˆ’ ๐‘™) They are interpolation polynomials so that we have ๐‘ƒ1 (๐‘–, ๐‘—) = (1+๐‘ก1 )๐‘– (1+๐‘ก2 )๐‘— and ๐‘ƒ2 (๐‘–, ๐‘—) = (1 + ๐‘ก2 )๐‘– (1 + ๐‘ก3 )๐‘— for 0 โ‰ค ๐‘–, ๐‘— โ‰ค ๐‘ โˆ’ 1. For the primitive elements ๐‘‹ฬ‚ ร— [๐‘], we will use Lemma 2.3.3 again. Note that in this case, the augmentation ideal is generated by ๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 โˆ’ 1, ๐‘ฆ2 โˆ’ 1. Note that the constant terms of ๐‘ƒ๐‘– (๐‘ฅ1 , ๐‘ฅ2 ) are equal to 0 since we have ๐‘ƒ (0, 0) = 1 from interpolation conditions. Denote ๐‘ฅ๐‘ โˆ’ 1 ฮฆ๐‘ (๐‘ฅ) โ‰” for the cyclotomic polynomial. Therefore, using the notation in Lemma ๐‘ฅโˆ’1 2.3.3, the matrix ๐‘€ with respect to generators ๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 โˆ’ 1, ๐‘ฆ2 โˆ’ 1 is ๐‘ฅ๐‘โˆ’1 1 โˆ’1 0 โˆ— โˆ— โŽ› โŽœ ๐‘โˆ’1 โŽž 0 ๐‘ฅ2 โˆ’ 1 โˆ— โˆ— โŽŸ ๐‘€ =โŽœ โŽœ โŽŸ โŽœ 0 0 ฮฆ๐‘ (๐‘ฆ1 ) 0 โŽŸ โŽŸ โŽ 0 0 0 ฮฆ๐‘ (๐‘ฆ2 )โŽ  Therefore the primitive elements ๐‘‹ฬ‚ ร— [๐‘] โŠ‚ ๐‘‹[๐‘] ฬ‚ are defined by (det ๐‘€ ) = (๐‘ฅ๐‘โˆ’1 โˆ’ 1)(๐‘ฅ๐‘โˆ’1 โˆ’ 1 2 1)ฮฆ๐‘ (๐‘ฆ1 )ฮฆ๐‘ (๐‘ฆ2 ). 5.5 Applications In the previous sections, we use the explicit descriptions of the ฮ“1 (๐‘)-cover to prove some geometric properties of the ฮ“1 (๐‘)-cover over each stratum. In fact, these descriptions can 74 also be used to show some geometric properties of the whole integral model ๐’œ in mixed characteristics. In this section, we will use the descriptions in Section 5.4 to prove that the whole ฮ“1 (๐‘)-cover in mixed characteristics is not normal. More precisely, consider the Siegel threefold ๐’œ = ๐’œ2,1,๐‘ in mixed characteristics and let ๐’ณ be the universal abelian surface over ๐’œ. We will prove: Theorem 5.5.1. The universal ฮ“1 (๐‘)-cover (๐’ณ[๐‘])ร— over the Siegel threefold ๐’œ in mixed characteristic is not normal. Proof. By Serreโ€™s criterion for normality, it is enough to prove that (๐’ณ[๐‘])ร— does not satisfy the condition ๐‘…1 , which says ๐’ช๐’ณฬ„ ๐‘ข๐‘› ,๐‘ฅ is regular for any ๐‘ฅ โˆˆ ๐’ณฬ„ ๐‘ข๐‘› with codimension โ‰ค 1. In fact, we will show that the local ring at the generic point of the special fiber, i.e. with respect to the ideal (๐‘), is not regular. Recall our notation that ๐’œ is the Siegel threefold over Spec โ„ค๐‘ and ๐’œ ฬ„ = ๐’œร—Spec โ„ค๐‘ Spec ๐”ฝ๐‘ is the special fiber. Let ๐œ‰ be the generic point of the special fiber ๐’œ and let ๐’ช๐’œ,๐œ‰ to be the local ring of ๐œ‰ in ๐’œ. Let ๐บ๐œ‰ โ‰” ๐’ณ[๐‘] ร—๐’œ Spec ๐’ช๐’œ,๐œ‰ . Then ๐บร— ๐œ‰ is the universal ฮ“1 (๐‘)-cover over Spec ๐’ช๐’œ,๐œ‰ . By Serreโ€™s criterion, it su๏ฌ€ices to prove that ๐’ช๐บร—๐œ‰ is not regular. Let ๐‘˜(๐œ‰) โ‰” ๐’ช๐’œ,๐œ‰ /๐‘๐’ช๐’œ,๐œ‰ be the residue field of ๐’ช๐’œ,๐œ‰ . Note that we also have ๐‘˜(๐œ‰) = Frac(๐’ช๐’œ ).ฬ„ On the other hand, let ๐‘ฅ โˆˆ ๐’œ ฬ„ be a geometric ordinary point. Let ๐’ช๐’œ,๐‘ฅ ฬ„ be the local ring of ๐’œ ฬ„ at ๐‘ฅ and let ๐’ช๐’œ,๐‘ฅ ฬ‚ ฬ„ be its completion. Then we have an inclusion ๐’ช๐’œ ฬ„ โŠ‚ ๐’ช๐’œ,๐‘ฅ ฬ‚ ฬ„ , ฬ„ โŠ‚ ๐’ช๐’œ,๐‘ฅ which induces a field extension ๐‘˜(๐œ‰) = Frac(๐’ช๐’œ )ฬ„ โŠ‚ ๐พฬ‚ โ‰” Frac(๐’ช๐’œ,๐‘ฅฬ‚ ฬ„ ). Note that by Serreโ€“Tate theory, we have a canonical isomorphism ๐’ช๐’œ,๐‘ฅ ฬ‚ ฬ„ โ‰… ๐”ฝฬ„๐‘ J๐‘ก1 , ๐‘ก2 , ๐‘ก3 K. 75 Now consider the following Cartesian diagrams ฬ‚ ๐บร— ๐บร— ฬ„ ๐บร— ๐’ณร— [๐‘] ๐œ‰ ๐œ‰ ๐œ‰ ๐œ‰ โ€ฒโ€ฒโ€ฒ ๐œ‰ โ€ฒโ€ฒ ๐œ‰โ€ฒ โ–ก โ–ก (5.40) โ–ก ๐œ‰ Spec ๐พฬ‚ Spec ๐‘˜(๐œ‰) Spec ๐’ช๐’œ,๐œ‰ ๐’œ By construction, ๐บร— ฬ‚ ฬ‚ ๐œ‰ / Spec ๐พ is the generic fiber of the group scheme in Theorem 5.4.2, given by ๐‘ฅ๐‘ ๐‘ 1 โˆ’๐‘ฅ1 ,๐‘ฅ2 โˆ’๐‘ฅ2 , ๐บร— ฬ‚ โ‰… Spec ๐พ[๐‘ฅ ฬ‚ 1 , ๐‘ฅ2 , ๐‘ฆ1 , ๐‘ฆ2 ]/ ( ๐‘ฆ1๐‘ โˆ’๐‘ƒ1 (๐‘ฅ1 ,๐‘ฅ2 ),๐‘ฆ2๐‘ โˆ’๐‘ƒ2 (๐‘ฅ1 ,๐‘ฅ2 ), ) . (5.41) ๐œ‰ (๐‘ฅ๐‘โˆ’1 1 โˆ’1)(๐‘ฅ๐‘โˆ’1 2 โˆ’1)ฮฆ๐‘ (๐‘ฆ1 )ฮฆ๐‘ (๐‘ฆ2 ) Let ๐œ‰ โ€ฒโ€ฒโ€ฒ be the point of ๐บร— ฬ‚ ๐œ‰ in (5.41) corresponding to the maximal ideal ๐‘š๐œ‰โ€ฒโ€ฒโ€ฒ โ‰” (๐‘ฅ1 , ๐‘ฅ2 , ๐‘ฆ1 โˆ’ 1, ๐‘ฆ2 โˆ’ 1). One can check directly from (5.41) that ๐‘š๐œ‰โ€ฒโ€ฒโ€ฒ /๐‘š2๐œ‰โ€ฒโ€ฒโ€ฒ is a ๐พ-vector ฬ‚ space generated by ๐‘ฆ1 โˆ’ 1, ๐‘ฆ2 โˆ’ 1. This proves dim๐พฬ‚ ๐‘š๐œ‰โ€ฒโ€ฒโ€ฒ /๐‘š2๐œ‰โ€ฒโ€ฒโ€ฒ = 2. (5.42) Let ๐œ‰ โ€ฒ , ๐œ‰ โ€ฒโ€ฒ be the images of ๐œ‰ โ€ฒโ€ฒโ€ฒ as in (5.40). Then we have dim๐‘˜(๐œ‰โ€ฒ ) ๐‘š๐œ‰โ€ฒ /๐‘š2๐œ‰โ€ฒ โ‰ฅ dim๐‘˜(๐œ‰โ€ฒโ€ฒ ) ((๐‘) + ๐‘š๐œ‰โ€ฒ ) / ((๐‘) + ๐‘š2๐œ‰โ€ฒ ) = dim๐‘˜(๐œ‰โ€ฒโ€ฒ ) ๐‘š๐œ‰โ€ฒโ€ฒ /๐‘š2๐œ‰โ€ฒโ€ฒ = ๐‘‘๐‘–๐‘š๐พฬ‚ ๐‘š๐œ‰โ€ฒโ€ฒโ€ฒ /๐‘š2๐œ‰โ€ฒโ€ฒโ€ฒ = 2 Therefore ๐’ช๐บร—๐œ‰ is not regular and we finish the proof by Serreโ€™s criterion. 76 BIBLIOGRAPHY 77 BIBLIOGRAPHY [1] P. Berthelot, Thรฉorie de Dieudonnรฉ sur un anneau de valuation parfait, Ann. Sci. ร‰cole Norm. Sup. (4), Volumn 13, 1980, No.2, 225โ€“268. [2] P. Berthelot, L. Breen and W. Messing, Thรฉorie de Dieudonnรฉ cristalline. II, Lecture Notes in Mathematics, Vol. 930, Springer-Verlag, Berlin, 1982, x+261. [3] C. Chai and P. Norman, Bad reduction of the Siegel moduli scheme of genus two with ฮ“0 (๐‘)-level structure, American Journal of Mathematics, Volume 112, 1990, No.6, 1003โ€“ 1071. [4] A. de Jong, Finite locally free group schemes in characteristic ๐‘ and Dieudonnรฉ modules, Invent. Math. Volume 114, 1993, 89โ€“137. [5] M. Demazure, Lectures on ๐‘-divisible groups, Lecture Notes in Mathematics, Vol. 302, Springer-Verlag, Berlin-New York, 1972, v+98. [6] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes ร‰tudes Sci. Publ. Math. No. 36, 1969, 75โ€“109. [7] P. Deligne and G. Pappas, Les schรฉmas de modules de courbes elliptiques, Compositio Math. Vol. 90, 1994, 59โ€“79. [8] P. Deligne and M. Rapoport, Singularitรฉs des espaces de modules de Hilbert, en les caractรฉristiques divisant le discriminant, Modular functions of one variable, II (Proc. Internat.Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math. Vol. 349, Springer-Verlag, Berlin, 1973, 143โ€“316. [9] B. de Smit, K. Rubin and R. Schoof, Criteria for complete intersections, Modular forms and Fermatโ€™s last theorem (Boston, MA, 1995), 343โ€“356, Springer, New York, 1997. [10] V. Drinfeld, Elliptic modules, Mat. Sb. (N.S.), Volume 94(136), 1974, 594โ€“627, 656. [11] A. Grothendieck, Groupes de monodromie en gรฉomรฉtrie algรฉbrique (SGA 7I), Lecture Notes in Mathematics, Vol. 288, Springer-Verlag, Berlin-New York, 1972, viii+523. [12] A. Grothendieck and M. Demazure, Schรฉmas en groupes I, II, III. (SGA 3), Lect. Notes Math. vols. 151, 152, 153, Berlin, Heidelberg, New York, Springer, 1971. [13] C. Guan, Full level structure on some group schemes, Res. Number Theory, Vol. 7, 2021. [14] H, Hida, Galois representations into GL2 (โ„ค๐‘ [[๐‘‹]]) attached to ordinary cusp forms, Invent. Math., Vol. 85, no.3, 1986. [15] H, Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Sci. ร‰cole Norm. Sup., Vol. 19, no.2, 1986. 78 [16] T. Haines and M. Rapoport, Shimura varieties with ฮ“1 (๐‘)-level via Hecke algebra isomorphisms: the Drinfeld case, Ann. Sci. ร‰c. Norm. Supรฉr. (4), Volume 45, 2012, No.5,719โ€“785 (2013). [17] N. Katz, Serre-Tate local moduli, Algebraic surfaces (Orsay, 1976โ€“78), Lecture Notes in Math., Volumn 868, 138โ€“202, 1981. [18] T. Katsura and F. Oort, Families of supersingular abelian surfaces, Compositio Math. Vol. 62, 1987, 107โ€“167. [19] N. Katz and B. Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, Volume 108, Princeton University Press, Princeton, NJ, 1985, xiv+514. [20] N. Koblitz, ๐‘-adic variation of the zeta-function over families of varieties defined over finite fields, Compositio Math., Vol. 31, 1975, 119โ€“218. [21] R. Kottwitz and P. Wake, Primitive elements for ๐‘-divisible groups, Research in Number Theory, Vol. 3, 2017, Art. 20. [22] S. Kudla and M. Rapoport, Cycles on Siegel threefolds and derivatives of Eisenstein series, Ann. Sci. ร‰cole Norm. Sup. (4), Vol. 33, 2000, 695โ€“756. [23] J. Lipman, Joseph and M. Hashimoto, Foundations of Grothendieck duality for diagrams of schemes, Lecture Notes in Mathematics, Vol. 1960, Springer-Verlag, Berlin, 2009, x+478. [24] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathemat- ics, Vol. 8, Cambridge University Press, Cambridge, 1986, xiv+320. [25] L. Moret-Bailly, Familles de courbes et de variรฉtรฉs abรฉliennes sur โ„™1 , Seminar on Pencils of Curves of Genus at Least Two, Astรฉrisque No. 86, 1981. [26] V. B. Mehta and V. Srinivas, Varieties in positive characteristic with trivial tangent bundle, With an appendix by Srinivas and M. V. Nori, Compositio Math., Vol. 64, 1987, No. 2, 191โ€“212. [27] D. Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, 1970, viii+242. [28] D. Mumford and J. Fogarty and F. Kirwan, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, 3rd Edition, Springer-Verlag, Berlin, 1994, xiv+292. [29] T. Oda, The first de Rham cohomology group and Dieudonnรฉ modules, Ann. Sci. ร‰cole Norm. Sup. (4), Vol. 2, 63โ€“135, 1969. [30] F. Oort, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties (Texel Island, 1999), Progr. Math. Vol. 195, Birkhรคuser, Basel, 2001. 79 [31] F. Oort, A stratification of a moduli space of polarized abelian varieties in positive char- acteristic, Moduli of curves and abelian varieties, Aspects Math., E33, Friedr. Vieweg, Braunschweig, 2001. [32] F. Oort, Which abelian surfaces are products of elliptic curves?, Math. Ann. Vol. 214, 1975, 25โ€“47. [33] J. Tate and F. Oort, Group schemes of prime order, Ann. Sci. ร‰cole Norm. Sup. (4), Volume 3, 1970, 1โ€“21. [34] F. Oort and T. Zink, Families of ๐‘-divisible groups with constant Newton polygon, Doc. Math., Vol. 7, 2002, 183โ€“201. [35] G. Pappas, Arithmetic models for Hilbert modular varieties, Compositio Math., Vol. 98, 1995, 43โ€“76. [36] G. Pappas, Letter to Robert Kottwitz and Preston Wake, 2016. [37] M. Rapoport and T. Zink, Period spaces for ๐‘-divisible groups, Annals of Mathematics Studies, Vol. 141, Princeton University Press, 1996, xxii+324. [38] M. Raynaud, Schรฉmas en groupes de type (๐‘, โ€ฆ , ๐‘), Bull. Soc. Math. France, Vol. 102, 1974, 241โ€“280. [39] J.-P. Serre, Local fields, Graduate Texts in Mathematics, Vol. 67, Springer-Verlag, New York-Berlin, 1979, viii+241. [40] T. Shioda, Supersingular ๐พ3 surfaces, Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math., Vol. 732, 564โ€“591, Springer, Berlin, 1979. [41] J. Voight, Introduction to finite group schemes, Online notes, https://math.dartmouth.edu/~jvoight/notes/274-Schoof.pdf. [42] P. Wake, Full level structures revisited: pairs of roots of unity, Journal of Number Theory, Volume 168, 2016, 81โ€“100. [43] W. Waterhouse, Principal homogeneous spaces and group scheme extensions, Trans. Amer. Math. Soc., Vol. 153, 1971, 181โ€“189. 80