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ABSTRACT

LEVEL STRUCTURES ON FINITE GROUP SCHEMES AND APPLICATIONS

By

Chuangtian Guan

The notion of level structures originates from the study of the moduli of elliptic curves. In this

thesis, we consider generalizing the notion of level structures and make explicit calculations

on different moduli spaces.

The first moduli space we consider is the moduli of finite flat (commutative) group

schemes. We give a definition of Γ(𝑝)-level structure (also called the “full level structure”)

over group schemes of the form 𝐺 × 𝐺, where 𝐺 is a group scheme or rank 𝑝 over a ℤ𝑝-

scheme. The full level structure over 𝐺 × 𝐺 is flat over the base of rank | GL2(𝔽𝑝)|. We also

observe that there is no natural notion of full level structures over the stack of all finite flat

commutative group schemes.

The second moduli space we consider is the moduli of principally polarized abelian sur-

faces in characteristic 𝑝 > 0 with symplectic level-𝑛 structure (𝑛 ≥ 3), which is known as the

Siegel threefold. By decomposing the Siegel threefold using the Ekedahl–Oort stratification,

we analyze the 𝑝-torsion group scheme of the universal abelian surface over each stratum.

To do this, we establish a machinery to produce group schemes from their Dieudonné mod-

ules using a version of Dieudonné theory due to de Jong. By using this machinery, we give

explicit local equations of the Hopf algebras over the superspecial locus, the supersingular

locus and ordinary locus. Using these local equations, we calculate explicit equations of the

Γ1(𝑝)-covers over these strata using Kottwitz–Wake primitive elements. These equations

can be used to prove geometric and arithmetic properties of the Γ1(𝑝)-cover over the Siegel

threefold. In particular, we prove that the Γ1(𝑝)-cover over the Siegel threefold is not normal.
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CHAPTER 1

INTRODUCTION

Let ℋ be the complex upper half plane. The special linear group SL2(ℤ) and its subgroups

act on ℋ by Möbius transformations:

(𝑎 𝑏
𝑐 𝑑) ⋅ 𝑧 ≔ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑. (1.1)

Let 𝑁 ≥ 1 be an integer. Let Γ0(𝑁), Γ1(𝑁) and Γ(𝑁) be subgroups of SL2(ℤ) defined as

follows:

Γ0(𝑁) ≔ {(𝑎 𝑏
𝑐 𝑑) ≡ (∗ 0

∗ ∗) mod 𝑁} , (1.2)

Γ1(𝑁) ≔ {(𝑎 𝑏
𝑐 𝑑) ≡ (1 0

∗ 1) mod 𝑁} , (1.3)

Γ(𝑁) ≔ {(𝑎 𝑏
𝑐 𝑑) ≡ (1 0

0 1) mod 𝑁} . (1.4)

In general, we call a subgroup Γ a congruence subgroup (of SL2(ℤ)) if Γ contains Γ(𝑁)
for some integer 𝑁 ≥ 1. The subgroups Γ0(𝑁), Γ1(𝑁) and Γ(𝑁) are the most interest-

ing congruence subgroups. In particular, the quotients of the upper half plane by these

congruence subgroups have the following moduli interpretations:

Γ0(𝑁)\ℋ =
⎧{
⎨{⎩

isomorphism class of pairs (𝐸, 𝐺), where 𝐸 is an elliptic curve

over ℂ and 𝐺 ⊂ 𝐸 a subgroup of order 𝑁

⎫}
⎬}⎭

,

Γ1(𝑁)\ℋ =
⎧{
⎨{⎩

isomorphism class of pairs (𝐸, 𝑃 ), where 𝐸 is an elliptic curve

over ℂ and 𝑃 ∈ 𝐸 generates a subgroup of order 𝑁

⎫}
⎬}⎭

,

Γ(𝑁)\ℋ =

⎧{{
⎨{{⎩

isomorphism class of triples (𝐸, 𝑃 , 𝑄), where 𝐸 is an elliptic

curve over ℂ and 𝑃 , 𝑄 ∈ 𝐸 generate the 𝑁 -torsion points 𝐸[𝑁]
with ⟨𝑃 , 𝑄⟩ = 𝑒2𝜋𝑖/𝑁 for the Weil pairing ⟨⋅, ⋅⟩

⎫}}
⎬}}⎭

.

These quotients are denoted by 𝑌0(𝑁) (resp. 𝑌1(𝑁), 𝑌 (𝑁)). The modular curves 𝑋0(𝑁)
(resp. 𝑋1(𝑁), 𝑋(𝑁)) are constructed by compactifying 𝑌0(𝑁) (resp. 𝑌1(𝑁), 𝑌 (𝑁)). These

modular curves are known to admit smooth models over ℤ[1/𝑁].
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As we can see above, modular curves arise as the moduli spaces of elliptic curves with

some extra structures. These extra structures are called level structures. In particular, the

extra structures that appear in the moduli description of 𝑌0(𝑁) (resp. 𝑌1(𝑁), 𝑌 (𝑁)) are

called Γ0(𝑁) (resp. Γ1(𝑁), Γ(𝑁))-level structures.

The first systematic study of integral models of modular curves over ℤ was done by

Deligne–Rapoport [8], who construct models of 𝑋0(𝑝) and 𝑋1(𝑝) over the 𝑝-adic integers

ℤ𝑝. In [19], Katz and Mazur construct integral models of 𝑋0(𝑁), 𝑋1(𝑁) and 𝑋(𝑁), by

carefully defining the moduli problems of elliptic curves with level structures. For example,

following an idea of Drinfeld in [10], Katz and Mazur define a set of sections {𝑃1, … , 𝑃𝑁2}
of 𝐸[𝑁] to be a “full set of sections”, if the points generate the group scheme 𝐸[𝑁] as

Cartier divisors. Using this notion, the Γ(𝑁)-level structure on 𝐸[𝑁], also called “full level

structure”, is defined to be the maps in Hom((ℤ/𝑁ℤ)2, 𝐸[𝑁]) whose images form a full set of

sections. Katz and Mazur use this notion of full level structure to construct integral models

of 𝑋(𝑁).
In Chapter 2, we review some preliminaries such as the Oort–Tate and Raynaud theory

of group schemes of order 𝑝, the Ekedahl–Oort stratification and the definition of primitive

elements of group schemes due to Kottwitz–Wake. Throughout the rest of this thesis, the

central questions we consider are to generalize these notions of level structures, and make ex-

plicit calculations on different moduli spaces. Particularly, we consider Γ(𝑝)-level structures

on moduli of finite flat group schemes and Γ1(𝑝)-level structures on the moduli of principally

polarized abelian surfaces with symplectic level structure. For each of the case, we consider

the following questions:

(A) How to define a good notion of level structures over the moduli space?

(B) Given a good notion of level structure over the moduli, find equations that describe the

universal covers, at first locally.

(C) What arithmetic/geometric properties can we obtain from the above descriptions?
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First we consider the moduli of finite flat group schemes (over ℤ𝑝) and consider Question

(A) for Γ(𝑝)-level structures (also called “full level structure”) on it. Note that although

there is no “moduli space” of finite flat group schemes, we can still consider the “moduli

stack” instead. Here by a stack, we simply mean a category fibered in groupoids over

Schℤ𝑝
as in [6]. More precisely, let C be a stack of group schemes 𝐺/𝑆 of certain type

(for example, finite flat commutative so that 𝐺[1/𝑝] is étale locally isomorphic to (ℤ/𝑝𝑛ℤ)𝑔)

over Schℤ𝑝
. The objects in C are group schemes 𝐺/𝑆 of the fixed type and the morphisms

are Cartesian squares. By a “good” Γ(𝑝)-level structure over C, we mean a fibered functor

ℱ∶ C → Sch, such that ℱ(𝐺/𝑆) is a closed subscheme of Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺) and such

that for 𝑓 ∶ 𝐺/𝑆 → 𝐺′/𝑆′, the morphism ℱ(𝑓)∶ ℱ(𝐺/𝑆) → ℱ(𝐺′/𝑆′) is the restriction of

the morphism Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺) → Hom𝑆′((ℤ/𝑝𝑛ℤ)𝑔, 𝐺′) induced by 𝑓 , and satisfies the

following conditions:

(1) ℱ(𝐺/𝑆) is flat over 𝑆 and of rank |GL𝑔(ℤ/𝑝𝑛ℤ)|.

(2) ℱ(𝐺/𝑆) is invariant under the right GL𝑔(ℤ/𝑝𝑛ℤ)-action on Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺). When

inverting 𝑝, we have an identification

ℱ(𝐺[1
𝑝 ]/𝑆[1

𝑝 ]) = Isom𝑆[ 1
𝑝 ]((ℤ/𝑝𝑛ℤ)𝑔, 𝐺[1

𝑝 ])

as closed subschemes of Hom𝑆[ 1
𝑝 ]((ℤ/𝑝𝑛ℤ)𝑔, 𝐺[1

𝑝 ]).

(3) When identifying

Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺) ×𝑆 𝑇 = Hom𝑇 ((ℤ/𝑝𝑛ℤ)𝑔, 𝐺𝑇 )

in the natural way, we have

ℱ(𝐺/𝑆) ×𝑆 𝑇 = ℱ(𝐺𝑇 /𝑇 )

as closed subschemes, for any 𝑆-scheme 𝑇 .

(4) For any group scheme isomorphism 𝐺 ∼−→ 𝐺′, the induced isomorphism

Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺) ∼−→ Hom𝑆((ℤ/𝑝𝑛ℤ)𝑔, 𝐺′)
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restricts to an isomorphism

ℱ(𝐺/𝑆) ∼−→ ℱ(𝐺′/𝑆).

The condition (4) is automatic from being a functor.

There have been many attempts by other mathematicians to give such a construction.

In [19], Katz and Mazur suggest a construction of full level structures for general group

schemes. Unfortunately, this is shown to be badly behaved (for example, not flat) by Chai

and Norman in [3]. In [42], Wake gives a good notion of full level structure for 𝜇𝑝 × 𝜇𝑝. In

his paper, Wake also gives an alternative description of his full level structure on 𝜇𝑝 × 𝜇𝑝

that can be defined for general group schemes. However, this alternative description still

fails to behave well for general group schemes.

In [21], Kottwitz and Wake construct a general notion of Γ1(𝑝)-level structure on finite

flat group schemes, given by so-called primitive elements (see Section 2.3). In [13], we extend

the result of Wake and give a definition of full level structure on all group schemes of the

form 𝐺×𝐺 using the notion of Kottwitz-Wake primitive elements. Here is the main theorem

in Chapter 3:

Theorem 1.0.1. Let 𝑆 be a ℤ𝑝-scheme and let 𝐺 be a finite flat commutative group scheme

of rank 𝑝 over S. The full level structure on 𝐺 × 𝐺 defined in Definition 3.1.2 satisfies

condition (1)-(3).

Back to the language of stacks, Theorem 1.0.1 implies that we defined a well-behaved

notion of full level structure over the stack 𝑂𝑇 , whose objects are group schemes of the

form 𝐺 × 𝐺 where 𝐺 is an Oort–Tate scheme (see Section 2.1) over a ℤ𝑝-scheme 𝑆, and

morphisms are diagonal group scheme isomorphisms 𝐺 × 𝐺 → 𝐺′ × 𝐺′ induced by two

identical isomorphisms of Oort–Tate group schemes 𝐺 → 𝐺′.

One might hope to extend this result over the stack of finite flat commutative group

schemes. Unfortunately, we record the following negative result in Chapter 4:
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Theorem 1.0.2. There is no “natural” notion of full level structure over group schemes

which is flat of the expected rank over the base.

Here, by “natural”, we mean one is actually defined over the stack, i.e. satisfying con-

dition (4) as above. In fact, we observe that there is no good notion of full level structure

even over the substack 𝑂𝑇 × 𝑂𝑇 , whose objects are 𝐺 × 𝐺′ where 𝐺, 𝐺′ are Oort–Tate

group schemes. We show that the full level structure defined in Theorem 1.0.1 is the only

possible definition that gives a flat model. The full level structure we define is preserved

by the diagonal group scheme isomorphisms 𝐺 × 𝐺 → 𝐺′ × 𝐺′ induced by two identical

isomorphisms of Oort–Tate group schemes 𝐺 → 𝐺′. However, there exists group schemes

for which the full level structure scheme is not preserved by all automorphisms. It is notable

that the counterexamples come from non-𝑝-divisible groups. So there is still a possibility of

a positive result for truncated 𝑝-divisible groups.

Next, we consider Γ1(𝑝)-level structures over the moduli of principally polarized abelian

surface with symplectic level-𝑁 structure. For 𝑁 ≥ 3, this is a fine moduli space by [28].

This moduli space is called the Siegel threefold and is denoted by 𝒜 ≔ 𝒜2,1,𝑁 . We are

particularly interested in the level structures over the special fiber ̄𝒜 ≔ 𝒜 ⊗ 𝔽𝑝. There

is already a well-behaved notion of Γ1(𝑝)-level structure defined by taking Kottwitz–Wake

primitive elements on the 𝑝-torsion of the universal abelian surface 𝒳. The Γ1(𝑝)-cover is

then given by 𝒳×[𝑝] ≔ (𝒳[𝑝])× over 𝒜. (Some mathematicians use the name “Γ1(𝑝)-cover”

differently. For example, Haines and Rapoport use “Γ1(𝑝)-cover” for the pro-𝑝 Iwahori

structure in [16].) So in this case, Question (A) has already been resolved.

Consider Question (B). In [30], Oort defines a stratification of 𝒜 (for general dimension 𝑔),

now called the Ekedahl–Oort stratification. The Ekedahl–Oort stratification is parametrized

by “elementary sequences”. For each elementary sequence 𝜑, we denote the associated stra-

tum by 𝑆𝜑. We want to give the local equations of the Γ1(𝑝)-cover 𝒳×[𝑝] over each stratum

𝑆𝜑. To do this, we need some machinery to systematically produce group schemes.

This machinery is built in Chapter 4. The tool we use is a version of Dieudonné theory
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due to de Jong [4]. We review this version of Dieudonné theory and compare it with the

crystalline Dieudonné theory. Although this version of Dieudonné theory does not establish

an antiequivalence of categories, there are still bijections between morphisms and extensions.

Using these bijections, we construct group schemes killed by 𝑝 whose Dieudonné modules

have nilpotent Verschiebung. These group schemes are constructed by taking consecutive

extensions of group schemes with trivial Verschiebung, and their Hopf algebras are given

explicitly in terms of their Dieudonné modules. Here is a sample of such result:

Theorem 1.0.3. Let 𝑆 = Spec 𝑅, where 𝑅 is a local ring in characteristic 𝑝. Assume that

𝑆 and its Frobenius lift modulo 𝑝2. (This is true, for example, when 𝑆 is smooth.) Let 𝐺/𝑆
be a (finite flat commutative) group scheme of rank 𝑝4 and killed by 𝑝. Suppose that the

Frobenius and Verschiebung on the Dieudonné module are given by matrices of the following

form:

𝐹 =
⎛⎜⎜⎜⎜
⎝

0 𝑎1 𝑎2 𝑐
0 0 0 𝑒1
0 0 0 𝑒2
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑉 =
⎛⎜⎜⎜⎜
⎝

0 𝑏1 𝑏2 𝑑
0 0 0 𝑓1
0 0 0 𝑓2
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, (1.5)

where 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑, 𝑒1, 𝑒2, 𝑓1, 𝑓2 ∈ 𝑅. Then

𝐺 ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2, 𝑧]/ (𝑥𝑝, 𝑦𝑝
1 − 𝑎1𝑥, 𝑦𝑝

2 − 𝑎2𝑥, 𝑧𝑝 − 𝑐𝑥 − 𝑒1𝑦1 − 𝑒2𝑦2) (1.6)

and there are also explicit formulas for the coalgebra structure (see Equation (4.12)).

In Chapter 6, we give some explicit calculations of the Γ1(𝑝)-cover 𝒳×[𝑝] over each

stratum 𝑆𝜑 of the Siegel threefold ̄𝒜. There are 4 Ekedahl–Oort strata. They are: the

superspecial locus, the supersingular (but not superspecial) locus, the 𝑝-rank-1 locus and

the ordinary locus. The loci have dimensions 0,1,2,3 respectively. Over each stratum, there

is a canonical group scheme filtration of the 𝑝-torsion of the universal abelian surface 𝒳.

Let 𝒳𝜑 be the restriction of 𝒳 over 𝑆𝜑. The Γ1(𝑝)-cover 𝒳×[𝑝] → 𝒜 restricts to

𝒳×
𝜑[𝑝] ≔ (𝒳𝜑[𝑝])× over 𝑆𝜑. We want to calculate explicit descriptions of the Γ1(𝑝)-cover

6



𝒳×
𝜑[𝑝]/𝑆𝜑 by finding (local) equations. To do this, we first want to get a (local) description

of the Hopf algebras of 𝒳𝜑[𝑝]/𝑆𝜑 for each stratum.

The superspecial locus is a union of discrete points corresponding to products of super-

singular elliptic curves. The Hopf algebra of 𝒳𝜑[𝑝] over this locus can be easily calculated

using classical Dieudonné theory over perfect fields.

Now consider the supersingular locus. Theorem 1.0.3 applies in this situation and it shows

that the group scheme 𝒳𝜑[𝑝] over 𝑆𝜑, where 𝑆𝜑 is the supersingular locus, is (Zariski-locally)

of the form (1.6).

To make the Hopf algebra description of 𝒳𝜑[𝑝]/𝑆𝜑 more precise, we will use some specific

constructions of the supersingular locus. Following an idea of Moret-Bailly [25] and Oort

[32], one can form families of supersingular abelian surfaces 𝒴 over ℙ1. It is shown in [18]

that for any irreducible component 𝑊 of the supersingular locus, 𝒳𝑊 /𝑊 pulls back to 𝒴/ℙ1

via some surjective morphism ℙ1 → 𝑊 and the morphism is generically an immersion. In

[22], Kudla and Rapoport give nice descriptions of the Dieudonné modules of 𝒴/ℙ1, whose 𝐹
and 𝑉 modulo 𝑝 are of the shape (1.5) in Theorem 1.0.3. Using the construction in Theorem

1.0.3, we can explicitly write down the Hopf algebra of 𝒴[𝑝].
For the 𝑝-rank-1 locus, we are not able to obtain explicit descriptions of the Hopf algebras.

However, we give some partial results using the theory of mixed extensions in Theorem

5.3.7 due to Grothendieck. In particular, we explicitly calculate all extensions and ext

groups that are ingredients of the theory of mixed extensions. The only obstruction is to

construct an explicit mixed extension using the calculated data. Once we have one explicit

mixed extension, we can get all mixed extensions by applying all calculated ingredients to

Proposition 5.3.2.

For the ordinary locus, Serre–Tate theory applies and we can get explicit expressions of

the Hopf algebras using Serre–Tate coordinates.

All these group schemes that we construct over the three Ekedahl–Oort strata are written

explicitly as complete intersections. In this case, one can obtain explicit generators of the
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defining ideal of Kottwitz-Wake primitive elements as certain determinants. Putting all these

results together, we have the following result:

Theorem 1.0.4. Over each Ekedahl–Oort stratum 𝑆𝜑, the Γ1(𝑝)-cover 𝒳×
𝜑[𝑝]/𝑆𝜑 has the

following description:

1. Let 𝑆𝜑 be the superspecial locus. Over each point of 𝑆𝜑, the Γ1(𝑝)-cover 𝒳×
𝜑[𝑝]/𝑆𝜑 is

given by

Spec 𝔽̄𝑝[𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2, 𝑥𝑝2−1𝑦𝑝2−1)

over Spec 𝔽̄𝑝.

2. Let 𝑆𝜑 be the supersingular stratum and let 𝑊 be an irreducible component of 𝑆𝜑.

The Γ1(𝑝)-cover 𝒳̄×
𝑊 [𝑝]/𝑊 is the pullback of 𝒴×[𝑝]/ℙ1

𝔽̄𝑝
via some open immersion

𝑊 → ℙ1
𝔽̄𝑝

. Over each affine chart of the standard cover ℙ1
𝔽̄𝑝

= 𝔸1
0 ∪ 𝔸1

∞, the restricted

Γ1(𝑝)-cover 𝒴×[𝑝]|𝔸1
𝔽̄𝑝

/𝔸1
𝔽̄𝑝

is isomorphic to

Spec 𝔽̄𝑝[𝜇, 𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2 − (𝜇𝑝 − 𝜇)𝑥𝑝, 𝑥𝑝2−1𝑦𝑝2−1)

over Spec (𝔽̄𝑝[𝜇]).

3. Let 𝑆𝜑 be the ordinary locus. Let 𝑆𝜑 be the ordinary locus and 𝑥 be a closed point of

𝑆𝜑. Let ̂𝒪𝑆𝜑,𝑥 be the completion of the local ring of 𝑆𝜑 at 𝑥. Then the base change of

𝒳×
𝜑[𝑝]/𝑆𝜑 to Spec ̂𝒪𝑆𝜑,𝑥 is isomorphic to

Spec 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K[𝑥1, 𝑥2, 𝑦1, 𝑦2]/ (
𝑥𝑝

1−𝑃1(𝑦1,𝑦2),𝑥𝑝
2−𝑃2(𝑦1,𝑦2),

𝑦𝑝
1−𝑦1,𝑦𝑝

2−𝑦2,
(𝑦𝑝−1

1 −1)(𝑦𝑝−1
2 −1)Φ𝑝(𝑥1)Φ𝑝(𝑥2)

)

over Spec 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K. Here, Φ𝑝 denotes the cyclotomic polynomial, the polynomials

𝑃1, 𝑃2 ∈ 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K[𝑦1, 𝑦2] are certain interpolation polynomials and the variables

𝑡1, 𝑡2, 𝑡3 are the Serre-Tate coordinates.

Next, we consider Question (C), the geometric and arithmetic properties of the Γ1(𝑝)-
cover over each stratum 𝑆𝜑 and over the whole moduli space 𝒜2,1,𝑁 in mixed characteristics.
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The first property we consider is the normality. Using the descriptions given in Theorem

(1.0.4), we prove that the Γ1(𝑝)-cover 𝒳×
𝜑[𝑝] is not normal in all three cases of Theorem 1.0.4

and the whole integral model 𝒳×[𝑝]/𝒜2,1,𝑁 is not normal as well.

Next, we consider the regularity properties. The whole integral model 𝒳×[𝑝] is Cohen–

Macaulay since it is finite flat over a Cohen–Macaulay base. Over the superspecial and

ordinary locus, we prove that 𝒳×
𝜑[𝑝] is Cohen–Macaulay, but not Gorenstein using the Hopf

algebra descriptions. Using computer programs like Macaulay2, we can check the same prop-

erties hold over the supersingular locus for fixed primes. In particular, over the supersingular

locus, the Γ1(𝑝)-cover 𝒳×
𝜑[𝑝] is also Cohen–Macaulay, but not Gorenstein. We summarize

these results in the following table:

Table 1.1 Regularity Properties of the Γ1(𝑝)-cover over the Siegel Threefold

superspecial supersingular ordinary whole
locus locuss locus integral model

Normal No No No No
Cohen–Macaulay Yes Yes (for fixed primes) Yes Yes

Gorenstein No No (for fixed primes) No

9



CHAPTER 2

PRELIMINARIES

In this chapter, we will review some important tools that will be used later.

2.1 Group Schemes and Classification Theorems

Let 𝑆 be a scheme. A group scheme 𝐺 over 𝑆 is a representable functor from the category

of 𝑆-schemes to the category of groups. Equivalently, a group scheme 𝐺 is an 𝑆-scheme

together with scheme morphisms 𝑚 ∶ 𝐺 ×𝑆 𝐺 → 𝐺, inv ∶ 𝐺 → 𝐺 and 𝜖 ∶ 𝑆 → 𝐺 so that the

following diagrams commute:

𝐺 ×
𝑆

𝐺 ×
𝑆

𝐺 𝐺 ×
𝑆

𝐺

𝐺 ×
𝑆

𝐺 𝐺

(𝑚,Id)

(Id,𝑚) 𝑚
𝑚

(2.1)

𝑆 ×
𝑆

𝐺 𝐺 ×
𝑆

𝐺

𝐺 𝐺

(𝜖,Id)

pr2 𝑚 (2.2)

𝐺 ×
𝑆

𝐺 𝐺 ×
𝑆

𝐺

𝑆 𝐺

(inv,Id)

𝑚
𝜖

(2.3)

A group scheme 𝐺/𝑆 is called commutative if the points 𝐺(𝑇 ) are commutative groups,

for all 𝑆-schemes 𝑇 . Equivalently, this means the diagram

𝐺 ×
𝑆

𝐺 𝐺 ×
𝑆

𝐺

𝐺
𝑚

(pr2,pr1)

𝑚
(2.4)

commutes.
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We say a group scheme 𝐺/𝑆 is locally free (resp. flat, finite) if 𝐺 → 𝑆 is a locally free

(resp. flat, finite) morphism. For a finite, locally free group scheme 𝐺/𝑆, we call the rank

of 𝒪𝐺 as a locally free 𝒪𝑆-module “the rank of the group scheme 𝐺/𝑆” (suppose that 𝑆 is

connected).

Throughout this paper, all base schemes are noetherian and all group schemes are as-

sumed to be commutative and flat over the base. Note that being flat and locally free are

the same when the morphism is locally of finite presentation. Therefore all group schemes

are locally free and commutative over the base.

Let 𝑆 be a scheme over Spec ℤ𝑝 and let 𝐺 be a finite flat commutative group scheme over

𝑆 of rank 𝑝. In [33], Oort and Tate give a classification theorem for all group schemes 𝐺/𝑆
of this type. They define an anti-equivalence of categories as following:

⎧{{
⎨{{⎩

triples (ℒ, 𝑢, 𝑣), where ℒ is a line bundle over

𝑆, 𝑢 ∈ Γ(𝑆, ℒ⊗(𝑝−1)), 𝑣 ∈ Γ(𝑆, ℒ⊗(1−𝑝)) so

that 𝑢 ⊗ 𝑣 = 𝑤𝑝

⎫}}
⎬}}⎭

⟶
⎧{
⎨{⎩

𝐺/𝑆, finite flat commutative

group schemes of rank 𝑝

⎫}
⎬}⎭

Here 𝑤𝑝 is a constant in 𝑝ℤ×
𝑝 ⊂ ℤ𝑝. Specifically, when 𝑆 = Spec 𝑅 where 𝑅 is a local ring,

the line bundle ℒ is trivial. Therefore to give a rank 𝑝 group scheme over such 𝑆, it suffices

to give two elements 𝑢, 𝑣 ∈ 𝑅 satisfying 𝑢𝑣 = 𝑤𝑝. For such a pair (𝑢, 𝑣), the corresponding

Hopf algebra is

Spec 𝑅[𝑥]/(𝑥𝑝 − 𝑢𝑥),

where the coalgebra operations are given by

𝑚∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑣𝑥𝑖 ⊗ 𝑥𝑝−𝑖

𝑤𝑖𝑤𝑝−𝑖
,

inv∗(𝑥) = −𝑥,

𝜖∗(𝑥) = 0.

Here 𝑤𝑖’s are also constants in ℤ𝑝 with 𝑤1, … , 𝑤𝑝−1 ∈ ℤ×
𝑝 and 𝑤𝑝 = 𝑝𝑤𝑝−1. The constants

𝑤1, … , 𝑤𝑝−1 satisfy that 𝑤𝑖 ≡ 𝑖! mod 𝑝. For more details on the 𝑤𝑖’s, see [33, page 10].

11



Haines and Rapoport express this result using stack language in [16, Theorem 3.3.1]. For

convenience, we give the result here:

Theorem 2.1.1 ([16]). The ℤ𝑝-stack 𝑂𝑇 of finite flat commutative group schemes of rank

𝑝, satisfies the following properties:

(i) 𝑂𝑇 is an Artin stack isomorphic to

[(Spec ℤ𝑝[𝑠, 𝑡]/(𝑠𝑡 − 𝑤𝑝))/𝔾𝑚].

The action of 𝔾𝑚 is given by 𝜆 ⋅ (𝑠, 𝑡) = (𝜆𝑝−1𝑠, 𝜆1−𝑝𝑡) with 𝑤𝑝 ∈ 𝑝ℤ×
𝑝 as above.

(ii) The universal group scheme 𝒢 over 𝑂𝑇 is

𝒢 = [(Spec𝑂𝑇 𝒪[𝑥]/(𝑥𝑝 − 𝑡𝑥))/𝔾𝑚].

The action of 𝔾𝑚 is given by 𝜆 ⋅ 𝑥 = 𝜆𝑥.

In [38], Raynaud generalizes the notion of Oort–Tate group schemes to higher ranks. In

particular, let 𝔽𝑞 be a finite field, where 𝑞 = 𝑝𝑛. Raynaud consider 𝔽𝑞-vector space schemes

of rank 1, which are the same as group schemes of rank 𝑞 = 𝑝𝑛 together with a 𝔽𝑞-action

on it. Let ℚ𝑞 ≔ ℚ𝑝(𝜁𝑞−1) be the unique unramified extension of ℚ𝑝 of degree 𝑛, and let ℤ𝑞

be the ring of integers of ℚ𝑞. The character group of 𝔽×
𝑞 is a cyclic group of order 𝑞 − 1.

Let 𝜒1 ∶ 𝔽×
𝑞 → ℤ𝑞 be the generator of the character group and we let 𝜒𝑖 ≔ 𝜒𝑝𝑖−1

1 . Therefore

𝜒𝑛+1 = 𝜒1 and any character 𝜒 can be written as ∏𝑛
𝑖=1 𝜒𝑒𝑖

𝑖 with 0 ≤ 𝑒𝑖 < 𝑝. A character 𝜒
acts on the vector space scheme by

[𝜒] ≔ 1
𝑞 − 1 ∑

𝜆∈𝔽×𝑞

𝜒−1(𝜆)[𝜆].

Let the base scheme 𝑆 be a ℤ𝑞-scheme. Raynaud shows that there is an anti-equivalence

of categories

⎧{{
⎨{{⎩

n triples (ℒ𝑖, 𝑢𝑖, 𝑣𝑖), where ℒ𝑖’s are line bun-

dles over 𝑆, 𝑢𝑖 ∶ ℒ𝑖+1 → ℒ⊗𝑝
𝑖 , 𝑣𝑖 ∶ ℒ⊗𝑝

𝑖 →
ℒ𝑖+1 so that 𝑢 ⊗ 𝑣 = 𝑤

⎫}}
⎬}}⎭

⟶

⎧{{
⎨{{⎩

𝐺/𝑆, finite flat 𝔽𝑞-vector space

schemes whose eigenspaces of

𝜒𝑖 are of rank 1

⎫}}
⎬}}⎭
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Here 𝑤 ∈ ℤ𝑞 is a constant.

As in the Oort–Tate case, when 𝑆 = Spec 𝑅 with 𝑅 a local ring, the line bundles ℒ𝑖

are trivial and 𝑢𝑖, 𝑣𝑖 are given by elements in 𝑅. Given 𝑛 pairs (𝑢𝑖, 𝑣𝑖) with 𝑢𝑖𝑣𝑖 = 𝑤, the

associated 𝔽𝑞-vector space scheme is given by

Spec 𝑅[𝑥1, … , 𝑥𝑛]/ (𝑥𝑝
1 − 𝑢1𝑥2, 𝑥𝑝

2 − 𝑢2𝑥3, … , 𝑥𝑝
𝑛 − 𝑢𝑛𝑥1)

with coalgebra operations

𝑚∗(𝑥𝑖) = 𝑥𝑖 ⊗ 1 + 1 ⊗ 𝑥𝑖 + ∑
𝜒′𝜒′′=𝜒𝑖

𝑣𝑖−ℎ ⋯ 𝑣𝑖−1
𝑤𝜒′𝑤𝜒′′

(
𝑟

∏
𝑗=1

𝑥𝑒′
𝑗

𝑗 ) ⊗ (
𝑟

∏
𝑗=1

𝑥𝑒′′
𝑗

𝑗 ) ,

inv∗(𝑥𝑖) = −𝑥𝑖,

𝜖∗(𝑥𝑖) = 0.

Here we write 𝜒′ = ∏𝑟
𝑖=1 𝜒𝑒′

𝑖
𝑖 and 𝜒′′ = ∏𝑟

𝑖=1 𝜒𝑒′′
𝑖

𝑖 and 𝑤𝜒 ∈ ℤ𝑞 are constants. The index

0 < ℎ ≤ 𝑛 is uniquely characterized by 𝑒′
𝑖−ℎ + 𝑒′′

𝑖−ℎ = 𝑝.

Oort–Tate group schemes and Raynaud group schemes have explicit descriptions that are

locally quotients of polynomials rings as complete intersections. This fact holds for group

schemes more generally: for any group scheme 𝐺/𝑆 with 𝑆 Noetherian, the morphism 𝐺 → 𝑆
is a local complete intersection morphism, i.e. all fibers are locally complete intersections

(see [23, Lemma 31.14]). When further assuming that 𝑆 = Spec 𝑅 with 𝑅 a local complete

Noetherian ring, the group schemes 𝐺/𝑆 have the following form:

Proposition 2.1.2. ([41, Page 28, Corollary]) Let (𝑅, 𝑚) be a complete local noetherian

ring with the residue field 𝑅/𝑚 perfect of characteristic 𝑝. Let 𝐺 = Spec 𝐴 be a local group

scheme over Spec 𝑅. Then

𝐴 ≅ 𝑅J𝑥1, … , 𝑥𝑛K/(𝑓1, … , 𝑓𝑛)

where 𝑓𝑖 = 𝑥𝑝𝑒𝑖
𝑖 + 𝑔𝑖 and 𝑔𝑖’s are polynomials with coefficients in 𝑚 and degree < 𝑝𝑒𝑖. In

particular, when 𝑅 is a perfect field in characteristic 𝑝, then

𝐴 ≅ 𝑅[𝑥1, … , 𝑥𝑛]/(𝑥𝑝𝑒1
1 , … , 𝑥𝑝𝑒𝑛

𝑛 ).
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2.2 Siegel Modular Varieties and Ekedahl–Oort Stratification

Siegel modular varieties are generalizations of modular curves. In particular, over the com-

plex numbers ℂ, the Siegel modular variety 𝒜𝑔,1,𝑁(ℂ) is the moduli spaces of isomorphism

classes of triples (𝐴, 𝜆, 𝜂), where 𝐴 is an abelian variety over ℂ, 𝜆 ∶ 𝐴 → 𝐴∨ is a principal

polarization on 𝐴, and 𝜂 ∶ 𝐴[𝑁] → (ℤ/𝑁ℤ)2𝑔 is an isomorphism compatible with the Weil

pairing on 𝐴[𝑁] and the symplectic pairing on (ℤ/𝑁ℤ)2𝑔. In [28], Mumford shows that

𝒜𝑔,1,𝑁 is a fine moduli space when 𝑁 ≥ 3. Similar to the case of modular curves, the Siegel

modular variety 𝒜𝑔,1,𝑁 also has a “model” over ℤ[1/𝑁]. This is in fact a smooth scheme of

relative dimension 𝑔(𝑔 + 1)/2 over ℤ[1/𝑁] (see [28]).

We are particularly interested in the geometry of Siegel modular variety in characteristic

𝑝, i.e. the scheme 𝒜 ≔ 𝒜𝑔,1,𝑁 ×Spec ℤ[1/𝑁]Spec 𝔽𝑝 where 𝑝 is prime to 𝑁 . In [30], Oort defines

a stratification on 𝒜 by the isomorphism class of the 𝑝-torsion (𝐴, 𝜆)[𝑝]. This stratification

is now called the “Ekedahl–Oort stratification”. The stratification is constructed as follows.

Let (𝐴, 𝜆) be an principally polarized abelian variety of dimension 𝑔 over a base scheme 𝑆
of characteristic 𝑝 > 0. Consider the 𝑝-torsion group scheme 𝐺 ≔ 𝐴[𝑝]. Let 𝐹𝐺 ∶ 𝐺 → 𝐺(𝑝)

and 𝑉𝐺 ∶ 𝐺(𝑝) → 𝐺 be the Frobenius and Verschiebung respectively. Note that 𝐺 is a

truncated 𝑝-divisible group. Therefore ker 𝐹𝐺 = Im 𝑉𝐺. The principal polarization on 𝐴
gives a group scheme isomorphism 𝜁 ∶ 𝐺 → 𝐺𝐷 of 𝐺 with its Cartier dual. For any subgroup

scheme 𝐻 of 𝐺, we define 𝑉 (𝐻) ≔ Im 𝑉𝐻 and 𝐹 −1(𝐻) as the fiber product:

𝐹 −1(𝐻) 𝐻(𝑝)

𝐺 𝐺(𝑝)
□

𝐹𝐺

where the bottom arrow is the Frobenius. We also define

𝐻⟂ ≔ ker(𝐺
𝜁
−→ 𝐺𝐷 𝑖𝐷

−→ 𝐻𝐷).
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Note that by identifying 𝐺 with 𝐺𝐷 via 𝜁, we get a non-degenerate pairing ⟨⋅, ⋅⟩𝐺 ∶ 𝐺×𝐺 →
𝜇𝑝. The notation “⟂” comes from the fact that

𝑥 ∈ 𝐻⟂(𝑆) ⟺ ⟨𝑥, 𝑦⟩𝐺 = 0

for all 𝑦 ∈ 𝐻.

Consider the points (𝐴, 𝜆, 𝜂) of 𝒜. The Ekedahl–Oort stratification of 𝒜 is defined by the

isomorphism classes of (𝐴, 𝜆)[𝑝]. For each isomorphism class of (𝐴, 𝜆)[𝑝], one can associate it

with an “elementary sequence” 𝜑, which is an increasing sequence of integers of length 𝑔 + 1
with initial term 0 and increments less than or equal to 1, i.e. 𝜑(𝑖) ≤ 𝜑(𝑖 + 1) ≤ 𝜑(𝑖) + 1.

These sequences are called elementary sequences and it is easy to see that there are 2𝑔

elementary sequences. The Ekedahl–Oort strata are parametrized by elementary sequences;

we denote the stratum corresponding to 𝜑 by 𝑆𝜑. The stratification has the following

properties:

(i) Every stratum 𝑆𝜑 is non-empty, smooth, quasi-affine and equi-dimensional of dimension
𝑔

∑
𝑖=0

𝜑(𝑖).

(ii) Let 𝒳 be the universal abelian surface over 𝒜 and let 𝒳𝜑 ≔ 𝒳 ×𝒜 𝑆𝜑. Over each

strata 𝑆𝜑, there is a so-called “canonical filtration” of group schemes

0 = 𝐺0 ⊂ ⋯ ⊂ 𝐺𝑟 = 𝑉 (𝐺) ⊂ ⋯ ⊂ 𝐺2𝑟 = 𝐺,

of 𝐺 = 𝒳𝜑[𝑝] satisfying

Rank 𝐺𝑖 = 𝑝𝜌(𝑖) (2.5)

𝑉 (𝐺𝑖) = 𝐺𝑣(𝑖) (2.6)

𝐹 −1(𝐺𝑖) = 𝐺𝑓(𝑖) (2.7)

𝐺⟂
𝑖 = 𝐺2𝑟−𝑖 (2.8)

(𝐺𝑖/𝐺𝑗)𝐷 ≅ 𝐺2𝑟−𝑗/𝐺2𝑟−𝑖 (2.9)
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Here the index 𝑟 and maps 𝜌 ∶ {0, … , 2𝑟} → ℤ, 𝑣 ∶ {0, … , 2𝑟} → {0, … , 𝑟}, 𝑓 ∶
{0, … , 2𝑟} → {𝑟, … , 2𝑟} are determined and can be easily calculated from 𝜑. For a given 𝜑,

set 𝜌(0) = 0 and define 𝜌(𝑖) to be the maximum index > 𝜌(𝑖−1) so that 𝜑(𝜌(𝑖)) = 𝜑(𝜌(𝑖−1))
or 𝜑(𝜌(𝑖)) − 𝜑(𝜌(𝑖 − 1)) = 𝜌(𝑖) − 𝜌(𝑖 − 1). In other words, 𝜌(𝑖) is the maximal index after

𝜌(𝑖 − 1) so that 𝜑 keeps increasing or stationary from 𝜌(𝑖 − 1) to 𝜌(𝑖). In this way, we form

a 𝜌 ∶ {0, … , 𝑟} → ℤ (note that 𝑟 is the highest index in 𝜌). We define 𝑣 ∶ {0, … , 𝑟} → ℤ and

𝑓 ∶ {0, … , 𝑟} → ℤ by setting 𝑣(0) = 0, 𝑓(0) = 𝑟 and define 𝑣(𝑖) and 𝑓(𝑖) by

𝑣(𝑖) = 𝑣(𝑖 − 1) ⇔ 𝑓(𝑖) = 𝑓(𝑖 − 1) + 1 ⇔ 𝜑(𝜌(𝑖)) = 𝜑(𝜌(𝑖 − 1)),

𝑣(𝑖) = 𝑣(𝑖 − 1) + 1 ⇔ 𝑓(𝑖) = 𝑓(𝑖 − 1) ⇔ 𝜑(𝜌(𝑖)) − 𝜑(𝜌(𝑖 − 1)) = 𝜌(𝑖) − 𝜌(𝑖 − 1).

We then expand 𝜌, 𝑣, 𝑓 to {0, … , 2𝑟} by defining

𝜌(𝑟 + 𝑖) = 2𝜌(𝑟) − 𝜌(𝑟 − 𝑖)

𝑣(𝑟 + 𝑖) = 2𝑟 − 𝑓(𝑟 − 𝑖)

𝑓(𝑟 + 𝑖) = 2𝑟 − 𝑣(𝑟 − 𝑖)

for all 1 ≤ 𝑖 ≤ 𝑟.

Example 2.2.1. Let 𝑔 = 2. We consider pricipally polarized abelian surfaces. We have 4

elementary sequences. For each 𝜑, let 𝒳𝜑 be the universal abelian surface over the associated

stratum 𝑆𝜑 and 𝐺 = 𝒳𝜑[𝑝] as before. For any geometric point (𝐴, 𝜆, 𝜂) of 𝑆𝜑, we define the

𝑝-rank 𝑘 and 𝑎-number of 𝐴 by

𝐴[𝑝](𝔽̄𝑝) = (ℤ/𝑝ℤ)𝑘 (2.10)

𝑎(𝐴) ≔ dim𝔽̄𝑝
Hom(𝛼𝑝, 𝐴) (2.11)

For each elementary sequence 𝜑, the stratum 𝑆𝜑 has the following data:

(i) Let 𝜑 = (0, 0, 0). In this case, the canonical filtration is

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 = 𝐺.
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The corresponding canonical type is 𝜌 = (0, 2, 4), 𝑣 = (0, 0, 1) and 𝑓 = (1, 2, 2). In this

case, 𝐴 is of 𝑝-rank 0 and 𝑎-number 2, corresponding to superspecial abelian surfaces.

(ii) Let 𝜑 = (0, 0, 1). In this case, the canonical filtration is

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ 𝐺3 ⊂ 𝐺4 = 𝐺.

The corresponding canonical type is 𝜌 = (0, 1, 2, 3, 4), 𝑣 = (0, 0, 1, 1, 2) and 𝑓 =
(2, 3, 3, 4, 4). In this case, 𝐴 is of 𝑝-rank 0 and 𝑎-number 1, corresponding to su-

persingular but not superspecial (sometimes called supergeneral) abelian surfaces.

(iii) Let 𝜑 = (0, 1, 1). In this case, the canonical filtration is

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ 𝐺3 ⊂ 𝐺4 = 𝐺.

The corresponding canonical type is 𝜌 = (0, 1, 2, 3, 4), 𝑣 = (0, 1, 1, 2, 2) and 𝑓 =
(2, 2, 3, 3, 4). In this case 𝐴 is of 𝑝-rank 1 and 𝑎-number 1.

(iv) Let 𝜑 = (0, 1, 2). In this case, the canonical filtration is

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 = 𝐺.

The corresponding canonical type is 𝜌 = (0, 2, 4), 𝑣 = (0, 1, 1) and 𝑓 = (1, 1, 2). In this

case 𝐴 is of 𝑝-rank 2 and 𝑎-number 0. This corresponds to ordinary abelian surfaces.

2.3 Kottwitz-Wake Primitive Elements

Recall that all base schemes are assumed to be locally of finite presentation and all group

schemes are assumed to be commutative and flat over the base. Let 𝐺/𝑆 be a finite group

scheme. In [21], Kottwitz and Wake define a subscheme of “non-nullity” of 𝐺. This sub-

scheme is denoted by 𝐺×.

Definition 2.3.1 ([21]). Let 𝐺 be a finite group scheme over a base scheme 𝑆. Let ℐ ⊂ 𝒪𝐺

be the augmentation ideal of 𝐺. We define the scheme of “non-null” elements 𝐺× to be the
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closed subscheme of 𝐺 with the defining ideal sheaf given by Ann(ℐ), the annihilator of the

augmentation ideal sheaf.

A key property of “non-nullity” is that the scheme of “non-null” elements 𝐺× is locally

free of rank |𝐺| − 1 over 𝑆 (see [21]).

This notion of “non-nullity” is used to describe the subscheme of “non-zero” points. But

one needs to be careful with this analogy. When 𝐺/𝑆 is not étale, the group scheme 𝐺 may

have no points other than the unit, but 𝐺× can still have points. Here is a concrete example:

Example 2.3.2. Consider the additive group 𝔾𝑎/𝔽𝑝. Let 𝛼𝑝 be the kernel of the Frobenius

of 𝔾𝑎/𝔽𝑝. In particular, the group scheme 𝛼𝑝 can be written as Spec 𝔽𝑝[𝑥]/(𝑥𝑝) with aug-

mentation ideal (𝑥) and additive group operation. The annihilator of the augmentation ideal

(𝑥) is generated by 𝑥𝑝−1 and therefore 𝛼×
𝑝 = Spec 𝔽𝑝[𝑥]/(𝑥𝑝−1).

Note that for any reduced ring 𝑅 in characteristic 𝑝, we have 𝛼𝑝(𝑅) = {0} and 𝛼×
𝑝 (𝑅) =

{0}. The unit section can still be non-null.

Using “non-nullity”, Kottwitz and Wake define primitive elements for truncated 𝑝-divisible

groups. More precisely, let 𝒢/𝑆 be a truncated 𝑝-divisible group of height ℎ and level 𝑟 (i.e.

the smallest exponent such that 𝑝𝑟 kills 𝒢). This happens, for example, when 𝒢/𝑆 is the

𝑝𝑛-torsion of a 𝑝-divisible group over 𝑆. In this case, the (scheme of) primitive elements 𝒢×

is defined to be the fiber product

𝒢× (𝒢[𝑝])×

𝒢 𝒢[𝑝]
□

𝑝𝑟−1

where (𝒢[𝑝])× is the subscheme of “non-nullity”. The scheme of primitive elements 𝒢×/𝑆 is

flat of rank 𝑝𝑟−1(𝑝ℎ −1) and describes the points “of exact order 𝑝𝑟”. Note that for truncated

𝑝-divisible groups of level 1, primitive elements are the same as “non-null” elements. For

simplicity, on general group schemes killed by 𝑝, we will abuse the name of primitive elements

for “non-null” elements.
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In general, it may not be easy to calculate an annihilator ideal in a ring. However, by

Proposition 2.1.2, many group schemes are quotients of polynomial rings or power series

rings as complete intersections. In these cases, we have the following lemma:

Lemma 2.3.3. Let 𝑅 be a Noetherian ring and let (𝑅′, 𝜖) be an augmented 𝑅-algebra, i.e.

an 𝑅-algebra 𝑅′ together with a ring homomorphism 𝜖 ∶ 𝑅′ → 𝑅 such that the composition

𝑅 → 𝑅′ 𝜖−→ 𝑅 is identity. Assume that the augmentation ideal 𝐼 ≔ ker 𝜖 = (𝑥1, … , 𝑥𝑛) is

generated by a regular sequence 𝑥1, … , 𝑥𝑛. Let 𝐽 = (𝑓1, … , 𝑓𝑛) ⊂ 𝐼 be a subideal generated

by a regular sequence 𝑓1, … , 𝑓𝑛 in 𝑅′. Write

𝑓𝑖 = 𝑀𝑖1𝑥1 + ⋯ + 𝑀𝑖𝑛𝑥𝑛, 𝑖 = 1, … , 𝑛

with 𝑀𝑖𝑗 ∈ 𝑅′ and set 𝑀 = (𝑀𝑖𝑗) ∈ Mat𝑛×𝑛(𝑅′). Then we have

(𝐽 ∶ 𝐼) = (det(𝑀)) + 𝐽 (2.12)

where (𝐽 ∶ 𝐼) ≔ {𝑥 ∈ 𝑅′|𝑥𝐼 ⊂ 𝐽}. Let 𝐴 ≔ 𝑅′/𝐽 . Let 𝐼𝐴 = 𝐼/𝐽 be the corresponding ideal

of 𝐴 and let 𝑑 be the image of det(𝑀) in 𝐴. Then we have

Ann(𝐼𝐴) ≔ (𝑑) (2.13)

Proof. The proof follows from [9, Proposition 2.1]. We sketch the argument here.

The equivalence of Equation (2.12) and Equation (2.13) is immediate from the definition.

We will prove Equation (2.13).

Consider the Koszul resolutions 𝐾((𝑥𝑖), 𝑅′) and 𝐾((𝑓𝑖), 𝑅′). They are complexes of

𝑅′-modules defined by 𝐾𝑚(−, 𝑅′) = Hom𝑅′(∧𝑚
𝑅′(𝑅′)𝑛, 𝑅′). For 𝜙 ∈ 𝐾𝑚((𝑥𝑖), 𝑅′), the

boundary map is defined by 𝑑𝜙(𝑦) = 𝜙(𝑥 ∧ 𝑦) and 𝐾𝑚((𝑓𝑖), 𝑅′) is similarly defined. It is a

standard fact that 𝐾((𝑥𝑖), 𝑅′) and 𝐾((𝑓𝑖), 𝑅′) are exact from the regularity of the sequences

(see [24, Section 6]). There is a map 𝐾((𝑓𝑖), 𝑅′) → 𝐾((𝑥𝑖), 𝑅′) given as follows:

𝐾((𝑓𝑖), 𝑅′) ∶ 0 𝑅′ (𝑅′)𝑛 ⋯ (𝑅′)𝑛 𝑅′ 𝐴 = 𝑅′/𝐽 0

𝐾((𝑥𝑖), 𝑅′) ∶ 0 𝑅′ (𝑅′)𝑛 ⋯ (𝑅′)𝑛 𝑅′ 𝑅 = 𝑅′/𝐼 0

𝑓𝑡

det(𝑀)

𝑓

(𝑀𝑖𝑗) 𝜋
𝑥𝑡 𝑥

(2.14)
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Note that the exact rows are free resolutions of 𝐴 and 𝑅 respectively. By tensoring the

diagram with 𝐴 over 𝑅′ and consider the 𝑛-th homology, we get a commutative diagram

with exact rows:
0 Tor𝑛

𝑅′(𝐴, 𝐴) 𝐴 𝐴𝑛

0 Tor𝑛
𝑅′(𝑅, 𝐴) 𝐴 𝐴𝑛

𝜋∗ 𝑑

0

𝑥

(2.15)

From the bottom row, we have Tor𝑛(𝑅, 𝐴) = Ann(𝐼𝐴). On the other hand, consider

𝐾((𝑓𝑖), 𝑅′) ⊗𝑅′ 𝐴 → 𝐾((𝑓𝑖), 𝑅′) ⊗𝑅′ 𝑅 given by 𝐴 = 𝑅′/𝐽 𝜋−→ 𝑅 = 𝑅′/𝐼 as in the right

colomn of Diagram (2.14). We get another commutative diagram with exact rows

0 Tor𝑛(𝐴, 𝐴) 𝐴 𝐴𝑛

0 Tor𝑛(𝑅, 𝐴) 𝑅 𝑅𝑛

𝜋∗ 𝜋

0

0

(2.16)

This implies that 𝜋∗ is surjective and therefore by Equation (2.15), the image (𝑑) ⊂ 𝐴
coincides with Tor𝑛(𝑅, 𝐴) = Ann(𝐼𝐴), as claimed.

Lemma 2.3.3 is a very powerful tool to calculate primitive elements on finite group

schemes. In many cases, a group scheme killed by 𝑝 over Spec 𝑅 can be written in the

form

𝐺 ≅ Spec 𝑅[𝑥]/(𝑥𝑝 − 𝐴 ⋅ 𝑥) ≔ 𝑅[𝑥1, … , 𝑥𝑛]/ ({𝑥𝑝
𝑖 − ∑𝑛

𝑗=1 𝑎𝑖𝑗𝑥𝑗}1≤𝑖≤𝑛
) , (2.17)

where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑡 and 𝐴 is an 𝑛 × 𝑛 matrix over 𝑅. Pappas gives the following lemma

in [36]:

Lemma 2.3.4. Let 𝐺 be a group scheme over Spec 𝑅 killed by 𝑝 as given in Equation (2.17)

with augmentation ideal (𝑥) = (𝑥1, … , 𝑥𝑛). Then the defining ideal of the primitive elements

𝐺× is generated by

det(𝐷(𝑥𝑝−1) − 𝐴) = ∑
𝐽⊂{1,…,𝑛}

(−1)|𝐽𝑐| det(𝐴𝐽𝑐×𝐽𝑐) ∏
𝑗∈𝐽

𝑥𝑝−1
𝑗 . (2.18)

Here the 𝐴𝐽𝑐×𝐽𝑐 is the minor of 𝐴 with rows and columns in 𝐽𝑐, the complement of 𝐽 in

{1, … , 𝑛}.
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Proof. By Lemma 2.3.3, the generator of the primitive elements in 𝐺 is generated by

det(𝐷(𝑥𝑝−1) − 𝐴). Expand the determinant det(𝐷(𝑥𝑝−1) − 𝐴) and consider the coefficient

of ∏𝑗∈𝐽 𝑥𝑝−1
𝑗 . Note that the sign sgn(𝜎) of a permutation 𝜎 on {1, … , 𝑛} fixing a subset

𝐽 ⊂ {1, … , 𝑛} is the same as the sign sgn(𝜎̄) of the induced permutation 𝜎̄ on 𝐽𝑐. Therefore

the coefficient of ∏𝑗∈𝐽 𝑥𝑝−1
𝑗 in det(𝐷(𝑥𝑝−1) − 𝐴) is the determinant det(−𝐴𝐽𝑐×𝐽𝑐), which is

equal to (−1)|𝐽𝑐| det(𝐴𝐽𝑐×𝐽𝑐) as claimed in Equation (2.18).

We can apply Lemma 2.3.4 to the Oort–Tate group schemes and Raynaud group schemes

in Section 2.1:

Example 2.3.5. Let 𝑆 = Spec 𝑅 where 𝑅 is a local ring. Consider an Oort–Tate group

scheme given by Spec 𝑅[𝑥]/(𝑥𝑝 −𝑢𝑥) with augmentation ideal given generated by (𝑥). In this

case, the 1 × 1 matrix in Lemma 2.3.3 is given by 𝑥𝑝−1 − 𝑢, implying the primitive elements

are defined by the ideal (𝑥𝑝−1 − 𝑢).
The Raynaud case is slightly more complicated. Using the notation in Equation (2.17),

the Raynaud group scheme over 𝑆 is given by

𝐺 = Spec 𝑅[𝑥]/(𝑥𝑝 − 𝑈 ⋅ 𝑥)

where 𝑥 = (𝑥1, … , 𝑥𝑛)𝑡 and

𝑈 =
⎛⎜⎜⎜⎜
⎝

0 ⋯ 0 𝑢𝑟
𝑢1 ⋯ 0 0
⋮ ⋱ ⋮ ⋮
0 ⋯ 𝑢𝑟−1 0

⎞⎟⎟⎟⎟
⎠

,

with augmentation ideal given by (𝑥1, … , 𝑥𝑛). Note that det(𝑈) = (−1)𝑟−1𝑢1 ⋯ 𝑢𝑟 and the

only principal minor of 𝑈 with nonzero determinant is the whole matrix 𝑈 . Therefore by

Lemma 2.3.4, the primitive elements 𝐺× ⊂ 𝐺 is defined by (𝑥𝑝−1
1 ⋯ 𝑥𝑝−1

𝑟 − 𝑢1 ⋯ 𝑢𝑟).

We will use the following special case of Lemma 2.3.4 later:

Example 2.3.6. Let 𝐺/ Spec 𝑅 be a group scheme as given in Equation (2.17). Suppose the

matrix 𝐴 is upper triangular, i.e. 𝑎𝑖𝑗 = 0 if 𝑖 > 𝑗. Then 𝐷(𝑥𝑝−1) − 𝐴 is an upper triangular
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matrix with diagonal elements 𝑥𝑝−1
𝑖 − 𝑎𝑖𝑖. Therefore by Lemma 2.3.4, the defining ideal of

𝐺× ⊂ 𝐺 is generated by ∏𝑛
𝑖=1(𝑥𝑝−1

𝑖 − 𝑎𝑖𝑖).
In particular, suppose 𝐴 is strictly upper triangular, i.e. assume further that 𝑎𝑖𝑖 = 0.

Then the defining ideal of 𝐺× ⊂ 𝐺 is generated by 𝑥𝑝−1
1 ⋯ 𝑥𝑝−1

𝑛 .
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CHAPTER 3

FULL LEVEL STRUCTURE ON FINITE GROUP SCHEMES

In this chapter, we consider the Γ(𝑝)-level structure, also called “full level structure”, on

finite flat commutative group schemes.

Suppose that 𝐻 is annihilated by 𝑝𝑟 and 𝐻[1
𝑝 ] ≔ 𝐻 ×𝑆 𝑆[1

𝑝 ] is étale-locally isomorphic

to the constant group scheme (ℤ/𝑝𝑟ℤ)𝑔 for some 𝑟 and 𝑔. This happens, for example, when

𝐻 is the 𝑝𝑟-torsion of some abelian variety of dimension 𝑔/2.

Let Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) be the functor from the category of 𝑆-schemes Sch𝑆 to the

category of abelian groups Ab, defined by

Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻)(𝑇 ) ≔ Hom𝑔𝑝((ℤ/𝑝𝑟ℤ)𝑔, 𝐻(𝑇 )).

We will use Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) to denote the representing scheme. Since 𝐻 is annihilated

by 𝑝𝑟, the representing scheme is just 𝐻𝑔. The general linear group GL𝑔(ℤ/𝑝𝑟ℤ) has a

natural right action on Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) by acting on (ℤ/𝑝𝑟ℤ)𝑔 by precomposition.

The problem we consider is to give a notion of full level structure on 𝐻. We expect it

to be a closed subscheme of Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻), which we denote by Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻),

satisfying:

1. Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) is flat over 𝑆 and of rank |GL𝑔(ℤ/𝑝𝑟ℤ)|.

2. Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) is GL𝑔(ℤ/𝑝𝑟ℤ)-invariant under the right GL𝑔(ℤ/𝑝𝑟ℤ)-action on

Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻). When inverting 𝑝, we have an identification

Hom∗
𝑆[ 1

𝑝 ]((ℤ/𝑝𝑟ℤ)𝑔, 𝐻[1𝑝 ]) = Isom𝑆[ 1
𝑝 ]((ℤ/𝑝𝑟ℤ)𝑔, 𝐻[1𝑝 ])

as closed subschemes of Hom𝑆[ 1
𝑝 ]((ℤ/𝑝𝑟ℤ)𝑔, 𝐻[1

𝑝 ]).

3. When identifying Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) ×𝑆 𝑇 with Hom𝑇 ((ℤ/𝑝𝑟ℤ)𝑔, 𝐻𝑇 ) in the natural

way, we have Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻)×𝑆 𝑇 = Hom∗

𝑇 ((ℤ/𝑝𝑟ℤ)𝑔, 𝐻𝑇 ) as closed subschemes,

for any 𝑆-scheme 𝑇 .
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We also expect our definition to coincide with the intuitive definition for some familiar

group schemes. For example, for 𝐻 = 𝜇𝑝𝑟 , we expect Hom∗
ℤ(ℤ/𝑝𝑟ℤ, 𝐻) to be the closed

subscheme of 𝜇𝑝𝑟 defined by the cyclotomic polynomial

Φ𝑝𝑟(𝑥) ≔ 𝑥𝑝𝑟 − 1
𝑥𝑝𝑟−1 − 1 = 𝑥(𝑝−1)𝑝𝑟−1 + 𝑥(𝑝−2)𝑝𝑟−1 + ⋯ + 1.

When 𝐻 is the constant group scheme (ℤ/𝑝𝑟ℤ)𝑔, the resulting full level structure on 𝐻 given

by Hom∗
ℤ((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) should be GL𝑔(ℤ/𝑝𝑟ℤ) ⊂ Mat𝑔(ℤ/𝑝𝑟ℤ).

The motivation for giving a well-behaved notion of full level structure comes from the

study of integral models of Shimura varieties. For example, for modular curves, finding an

integral model of the modular curve 𝑋(𝑝𝑟) essentially amounts to finding a flat model of full

level structure on the 𝑝𝑟-torsion of elliptic curves. This is done by Katz and Mazur in their

book [19]: following an idea of Drinfeld in [10], Katz and Mazur consider the case when 𝐻
can be embedded into a curve. In this case a set of sections {𝑃1, … , 𝑃𝑛} of 𝐻 is defined to

be a “full set of sections”, if the points generate the group 𝐻 as Cartier divisors. Using this

notion, the full level structure on 𝐻 is defined to be the maps in Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) whose

image forms a full set of sections. As a scheme, Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) can be also described

as the closed subscheme of Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) cut out by the Cartier divisor equation

𝐻 = ∑
𝑥∈(ℤ/𝑝𝑟ℤ)𝑔

[ℎ(𝑥)]

where ℎ is the universal homomorphism. Katz and Mazur’s construction, for example,

gives a definition of full level structure on ℤ/𝑝ℤ × 𝜇𝑝, as it is the 𝑝-torsion of an ordinary

elliptic curve. They also suggest a natural generalization of their construction, given by

“×-homomorphisms” [19, Appendix of Chapter 1], that can be defined for general group

schemes. Unfortunately, the notion of ×-homomorphisms is deficient because the resulting

closed subscheme is generally not flat over the base. Such a negative result has been observed

by Chai and Norman in [3, Appendix 2]. For example, the nonflatness for ×-homomorphisms

even happens on 𝜇𝑝 × 𝜇𝑝.

24



As an improvement, Wake gives in [42] a good definition in the case of 𝐻 = 𝜇𝑝 × 𝜇𝑝

over Spec ℤ. By using a notion of “primitive elements”, he defines the full level structure,

called “scheme of full homomorphisms”, to be cut out by the condition that all nontrivial

linear combinations of rows and columns of the universal homomorphism are primitive.

Alternatively, Wake also gives another level structure, called “KM+D” level structure, short

for Katz-Mazur + Dual. The notion of KM+D level structure is defined by requiring both

universal homomorphism and its dual being ×-homomorphisms as defined by Katz and

Mazur. Wake proves that in the case 𝜇𝑝 × 𝜇𝑝, the KM+D level structure coincides with

his original notion of full homomorphisms. Unfortunately, in general the “KM+D” level

structure does not give a flat scheme over the base. For example, it is observed in [42,

Example 4.8] that HomKM+D
𝔽2

((ℤ/2ℤ)2, (𝛼2)2) has larger rank than expected.

In this chapter, we give a definition of full level structure for 𝐻 of the form 𝐻 = 𝐺 × 𝐺,

where 𝐺 is a rank 𝑝 group scheme over a ℤ𝑝-scheme 𝑆. When 𝐺 is 𝜇𝑝, our definition

coincides with the one in [42]. The idea of our construction is to generalize Wake’s “rows-

and-columns” construction to a general group scheme 𝐺 using Kottwitz-Wake’s notion of

primitive elements [21]. In [21] the authors give a notion of primitive elements which is

well-behaved, even for general 𝑝-divisible groups. Using this notion, our full level structure

will be cut out by the condition that rows and columns of the universal homomorphism are

linearly independent, as in Wake’s construction. The precise description and properties are

discussed in Section 3. The main point is that this construction gives a flat model. We show

this by using Oort–Tate theory to reduce to Wake’s result.

One might also expect the following naturality condition:

4. For any group scheme isomorphism 𝐻 ∼−→ 𝐻′, the induced isomorphism

Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) → Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻′)

restricts to an isomorphism Hom∗
𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻) → Hom∗

𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐻′).
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This condition (4) can be interpreted as saying the notion of full level structure is defined

over the stack. Unfortunately, it turns out that in general there is no level structure on

𝐻 satisfying all conditions (1) − (4). Wake pointed out to us that the construction cannot

extend to the stack. We discuss this negative result in Section 3.3 and include their example

there. We thank Wake for the communication.

3.1 Full level structure on 𝐺 × 𝐺

The fundamental tool in defining the full level structure on 𝐺×𝐺 is the notion of “primitive

elements” (see Section 2.3). An important example of the primitive elements is the Oort–Tate

group scheme 𝐺 = Spec 𝐴[𝑥]/(𝑥𝑝 − 𝑡𝑥), where 𝐴 is a ℤ𝑝-algebra. The augmentation ideal

is (𝑥). Thus 𝐺× is defined by the ideal (𝑥𝑝−1 − 𝑡), coinciding with the scheme of generators

defined in [16]. Another example is 𝐺×𝐺. Its underlying algebra is 𝐴[𝑥, 𝑦]/(𝑥𝑝 −𝑡𝑥, 𝑦𝑝 −𝑡𝑦)
with the augmentation ideal (𝑥, 𝑦). By a direct calculation or using Lemma 2.3.3, we can

see that the scheme of primitive elements in 𝐺2 is

(𝐺2)× = Spec 𝐴[𝑥, 𝑦]/ ((𝑥𝑝−1 − 𝑡)(𝑦𝑝−1 − 𝑡)) .

See also [21, Section 3.8].

Now we consider the operation on the points of Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2) = 𝐺4 (as functors).

We will identify 𝐺4(𝑇 ) with Mat2(𝐺(𝑇 )), the additive group of 2×2 matrices with entries in

𝐺(𝑇 ). On each entry Hom𝑆(ℤ/𝑝ℤ, 𝐺)(𝑇 ) = 𝐺(𝑇 ), there is a natural addition arising from

the group structure of 𝐺. We denote this addition by +̇, to distinguish it from the addition

on 𝒪𝐺. For simplicity, for any 𝑓 ∈ 𝐺(𝑇 ), let [𝑚]𝑓 be 𝑓+̇𝑓+̇ ⋯ +̇𝑓 , the sum of 𝑚 copies of

𝑓 . Since the Oort–Tate Group is annihilated by 𝑝, the operation [𝑚] only depends on 𝑚
modulo 𝑝.

Example 3.1.1. Let 𝑆 = Spec ℤ𝑝 and 𝐺 = Spec ℤ𝑝[𝑥]/(𝑥𝑝 − 𝑥) with comultiplication

𝑚∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑤𝑝𝑥𝑖 ⊗ 𝑥𝑝−𝑖

𝑤𝑖𝑤𝑝−𝑖
.
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This is obtained by taking 𝑢 = 1 and 𝑣 = 𝑤𝑝 from Section 2. Let 𝑇 = Spec ℤ𝑝. In 𝐺(𝑇 ), let

𝜒(𝑗) ∈ Hom𝑆(ℤ/𝑝ℤ, 𝐺)(𝑇 ) = 𝐺(𝑇 ) be the map sending 𝑥 to 𝜒(𝑗), where 𝜒 is the Teichmüller

character and let 𝜒(0) = 0. Since the elements in 𝐺(𝑇 ) are closed under the group action,

we have ([𝑗](1))𝑝 − [𝑗](1) = 0. On the other hand, by the definition of the comultiplication

of 𝐺, we have [𝑗](1) ≡ 𝑗 mod 𝑝. Therefore [𝑗](1) = 𝜒(𝑗). From [𝑗](1)+̇[𝑘](1) = [𝑗 + 𝑘](1),
we get a useful equation:

𝜒(𝑗 + 𝑘) = 𝜒(𝑗) + 𝜒(𝑘) + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑤𝑝𝜒(𝑗𝑖)𝜒(𝑘𝑝−𝑖)
𝑤𝑖𝑤𝑝−𝑖

. (3.1)

In fact, 𝐺 is isomorphic to the constant group scheme ℤ/𝑝ℤ
𝑆

= Spec ℤℤ/𝑝ℤ
𝑝 . The Hopf

algebra isomorphism between ℤ𝑝[𝑥]/(𝑥𝑝 − 𝑥) and ℤℤ/𝑝ℤ
𝑝 is given by 𝑥 ↦ ∑ 𝜒(𝑖)𝑒𝑖 and

𝑒𝑖 ↦ 𝜆(𝑖) ∏𝑗≠𝑖(𝑥 − 𝜒(𝑗)), where 𝜆(0) = −1 and 𝜆(𝑖) = 1
𝑝−1 otherwise. To see this, we

first easily observe that the maps give algebra isomorphisms. To see that it preserves the

comultiplication, we can check straightforwardly using Equation (3.1). We will skip the

detailed calculation here.

Now we define Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) to be the subfunctor of Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2)� which

is given as follows:

Definition 3.1.2. Define Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) to be the functor whose 𝑇 -valued points are

the elements in Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2)(𝑇 ) = Mat2(𝐺(𝑇 )) so that all nonzero 𝔽𝑝-linear com-

binations of rows and columns are in (𝐺2)×(𝑇 ). For nonzero 𝔽𝑝-linear combinations, we

mean elements like [𝑚]𝑓+̇[𝑛]𝑔 where 𝑚 and 𝑛 are not both zero in 𝔽𝑝.

Remark 3.1.3. It is easy to see that the functor Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) we defined above is

representable. Indeed, each linear combination being primitive is a closed condition and thus

gives a subscheme of Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) = 𝐺4. Therefore the functor Hom∗

𝑆((ℤ/𝑝ℤ)2, 𝐺2)
is represented by the scheme-theoretical intersection of those subschemes. We will use

Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) for the representing scheme.

Here are some elementary properties of Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2):
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Proposition 3.1.4. Let 𝑆 be a ℤ𝑝-scheme and let 𝐺, 𝐺′ be finite flat commutative group

schemes of rank 𝑝 over S. Let GL2(𝔽𝑝) act on Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2) by acting on (ℤ/𝑝ℤ)2 by

precomposition. Then Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) satisfies:

(i) By identifying Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2) ×𝑆 𝑇 = Hom𝑇 ((ℤ/𝑝ℤ)2, 𝐺2
𝑇 ) for any 𝑆-scheme 𝑇 ,

we have

Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) ×𝑆 𝑇 = Hom∗

𝑇 ((ℤ/𝑝ℤ)2, 𝐺2
𝑇 )

as closed subschemes.

(ii) The full level structure Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) is GL2(𝔽𝑝)-invariant. Away from charac-

teristic 𝑝, we have

Hom∗
𝑆[ 1

𝑝 ]((ℤ/𝑝ℤ)2, 𝐺[1
𝑝 ]2) = Isom𝑆[ 1

𝑝 ]((ℤ/𝑝ℤ)2, 𝐺[1
𝑝 ]2)

as closed subschemes of Hom𝑆[ 1
𝑝 ]((ℤ/𝑝ℤ)2, 𝐺[1

𝑝 ]2).

(iii) Let 𝜙 ∶ 𝐺 → 𝐺′ be an isomorphism and let Φ ∶ 𝐺2 → (𝐺′)2 be the isomorphism given

by (𝜙 0
0 𝜙) . Then the isomorphism Hom𝑆((ℤ/𝑝ℤ)2, 𝐺2) → Hom𝑆((ℤ/𝑝ℤ)2, (𝐺′)2) in-

duced by Φ restricts to an isomorphism on the full level structures Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) →

Hom∗
𝑆((ℤ/𝑝ℤ)2, (𝐺′)2).

Proof.

(i) It follows straightforwardly from Definition 3.1.2 and the fact that the notion of prim-

itive elements is compatible with base change [21, 3.5].

(ii) Let 𝑓 ∈ Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2), regarded as a 2 × 2 matrix in 𝐺(𝑆). Let 𝑔 ∈ GL2(𝔽𝑝).

Then 𝑔 acts on 𝑓 by 𝑓 ↦ 𝑔𝑡𝑓 , where the scalar multiplication is [⋅] and the addition is +̇.

By an elementary calculation, one can see that it suffices to show that if (𝑢, 𝑣) ∈ (𝐺2)×

then (𝑢, 𝑣)𝑔 ∈ (𝐺2)× for all 𝑔 ∈ GL2(𝔽𝑝). Note that since 𝐺 is annihilated by 𝑝, every

𝑚 ∈ 𝔽𝑝 defines an endomorphism of 𝐺 and therefore every 2×2 matrix over 𝔽𝑝 defines

an endomorphism of 𝐺2 and invertible matrices induce automorphisms of 𝐺2. In fact,
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(𝑢, 𝑣)𝑔 is the image of (𝑢, 𝑣) under the automorphism induced by 𝑔. Since group scheme

automorphisms preserve the augmentation ideal sheaf, they also preserve the primitive

elements by Definition 2.3.1. Therefore (𝑢, 𝑣)𝑔 ∈ (𝐺2)× and we are done.

For the second half of (ii), note that 𝐺[1
𝑝 ] is étale locally isomorphic to ℤ/𝑝ℤ and by

definition Hom∗((ℤ/𝑝ℤ)2, (ℤ/𝑝ℤ)2) = Isom((ℤ/𝑝ℤ)2, (ℤ/𝑝ℤ)2). Then the statement is

an immediate result of (i).

(iii) As in (ii), since every group scheme isomorphism preserves the augmentation ideal

sheaf, by Definition 2.3.1 it also preserves the primitive elements. Then it is straight-

forward to check that (iii) holds by Definition 3.1.2.

Now here is the main theorem in this chapter:

Theorem 3.1.5. Let 𝑆 be a ℤ𝑝-scheme and let 𝐺 be a finite flat commutative group scheme

of rank 𝑝 over S. Let Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) be as defined in Definition 3.1.2. Then the full

level structure Hom∗
𝑆((ℤ/𝑝ℤ)2, 𝐺2) is flat over 𝑆 of rank |GL2(𝔽𝑝)|.

3.2 Proof of Theorem 3.1.5

By Proposition 3.1.4 (i), since being flat is a local property, we can reduce to the case where

𝑆 = Spec 𝐴 with 𝐴 being a local ℤ𝑝-algebra. Recall from Section 2 that the group scheme

𝐺/𝑆 is determined by a triple (ℒ, 𝑢, 𝑣). Since 𝐴 is local, the line bundle ℒ on 𝑆 is trivial.

Let 𝒜 = ℤ𝑝[𝑠, 𝑡]/(𝑠𝑡 − 𝑤𝑝) and 𝒮 = Spec 𝒜. Let 𝒢 = Spec 𝒜[𝑥]/(𝑥𝑝 − 𝑡𝑥) be the group

scheme over 𝒮 with comultiplication

𝑚∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑠𝑥𝑖 ⊗ 𝑥𝑝−𝑖

𝑤𝑖𝑤𝑝−𝑖
. (3.2)

Then 𝐺/𝑆 will be the pull back of 𝒢/𝒮 through a morphism 𝑆 → 𝒮 determined by 𝑢 and 𝑣.

Applying Proposition 3.1.4 (i) again, we can see that it suffices to show the flatness of the

full level structure for 𝒢2/𝒮.
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We first look at Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2) over the two open subschemes Spec ℤ𝑝[𝑠, 𝑠−1] and

Spec ℤ𝑝[𝑡, 𝑡−1] of 𝒮. It is easy to check that after applying étale base changes by adding the 𝑝−
1th root of 𝑠, 𝑠−1, 𝑡, 𝑡−1, we get 𝒢×𝒮Spec ℤ𝑝[𝑠 1

𝑝−1 , 𝑠− 1
𝑝−1 ] ≅ 𝜇𝑝 and 𝒢×𝒮Spec ℤ𝑝[𝑡 1

𝑝−1 , 𝑡− 1
𝑝−1 ] ≅

ℤ/𝑝ℤ. In these cases, the following lemma is as expected:

Lemma 3.2.1. We have the following two isomorphisms of group schemes:

(i) Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2) ×𝒮 Spec ℤ𝑝[𝑠 1

𝑝−1 , 𝑠− 1
𝑝−1 ] ≅ Homfull

Spec ℤ𝑝[𝑠
1

𝑝−1 ,𝑠− 1
𝑝−1 ]

((ℤ/𝑝ℤ)2, 𝜇2
𝑝).

Here the Homfull is the full level structure for 𝜇𝑝 × 𝜇𝑝 defined by Wake in [42].

(ii) Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2) ×𝒮 Spec ℤ𝑝[𝑡 1

𝑝−1 , 𝑡− 1
𝑝−1 ] ≅ GL2(ℤ/𝑝ℤ).

Proof. Note that from the definition of Hom∗, we have

Hom∗((ℤ/𝑝ℤ)2, 𝜇2
𝑝) = Homfull((ℤ/𝑝ℤ)2, 𝜇2

𝑝)

as they are defined in the same way. For the étale part, note that sections of constant group

schemes being primitive exactly means being nonzero. So Hom∗((ℤ/𝑝ℤ)2, (ℤ/𝑝ℤ)2) consists

of the matrices satisfying that nonzero linear combinations of rows and columns are nonzero,

thus invertible matrices. Hence Hom∗((ℤ/𝑝ℤ)2, (ℤ/𝑝ℤ)2) = GL2(ℤ/𝑝ℤ) and the claim is

immediate from Proposition 3.1.4 (i).

To make the full level structure explicit for 𝒢2/𝒮, it is helpful to use the universal ho-

momorphism for description. Consider the universal base 𝒮univ = Spec 𝒜univ where 𝒜univ =
𝒜[𝑎, 𝑏, 𝑐, 𝑑]/(𝑎𝑝 − 𝑡𝑎, 𝑏𝑝 − 𝑡𝑏, 𝑐𝑝 − 𝑡𝑐, 𝑑𝑝 − 𝑡𝑑). Then we have 𝒮univ = Hom𝒮((ℤ/𝑝ℤ)2, 𝒢2).
Let ℎ ∈ Hom𝒮univ((ℤ/𝑝ℤ)2, 𝒢2

𝒮univ) be the universal homomorphism defined over 𝒮univ, given

by (1, 0) ↦ (𝑎, 𝑏), (0, 1) ↦ (𝑐, 𝑑). Then Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2), as a subscheme of the uni-

versal base 𝒮univ, is cut out by the condition ℎ ∈ Hom∗
𝒮univ((ℤ/𝑝ℤ)2, 𝒢2

𝒮univ). Therefore, by

definition, Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2) is given by the ideal 𝐼 ⊂ 𝒜univ generated by

{(([𝑚]𝑎+̇[𝑛]𝑏)𝑝−1 − 𝑡) (([𝑚]𝑐+̇[𝑛]𝑑)𝑝−1 − 𝑡) ,

(([𝑚]𝑎+̇[𝑛]𝑐)𝑝−1 − 𝑡) (([𝑚]𝑏+̇[𝑛]𝑑)𝑝−1 − 𝑡)}
(𝑚,𝑛)∈𝔽2𝑝�{(0,0)}

.
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Recall that in the notion [𝑚]𝑎+̇[𝑛]𝑏, we are regarding 𝑎, 𝑏, 𝑐, 𝑑 as elements in 𝒢(𝒮univ),
corresponding to the homomorphisms

𝐴[𝑥]/(𝑥𝑝 − 𝑡𝑥) → 𝒜[𝑎, 𝑏, 𝑐, 𝑑]/(𝑎𝑝 − 𝑡𝑎, 𝑏𝑝 − 𝑡𝑏, 𝑐𝑝 − 𝑡𝑐, 𝑑𝑝 − 𝑡𝑑)

sending 𝑥 to 𝑎, 𝑏, 𝑐, 𝑑. As an abstract group, 𝒢(𝒮univ) is given by

{𝑥 ∈ 𝒜[𝑎, 𝑏, 𝑐, 𝑑]/(𝑎𝑝 − 𝑡𝑎, 𝑏𝑝 − 𝑡𝑏, 𝑐𝑝 − 𝑡𝑐, 𝑑𝑝 − 𝑡𝑑)∣𝑥𝑝 = 𝑡𝑥}

with the group structure given by 𝑥+̇𝑦 = 𝑥 + 𝑦 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑠𝑥𝑖𝑦𝑝−𝑖

𝑤𝑖𝑤𝑝−𝑖
. Therefore

[2]𝑎 = 2𝑎 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑠𝑎𝑝

𝑤𝑖𝑤𝑝−𝑖
= 2𝑎 + 1

1 − 𝑝
𝑝−1
∑
𝑖=1

𝑠𝑡𝑎
𝑤𝑖𝑤𝑝−𝑖

= (2 + 1
1 − 𝑝

𝑝−1
∑
𝑖=1

𝑤𝑝
𝑤𝑖𝑤𝑝−𝑖

) 𝑎.

Using Equation (3.1), we get [2]𝑎 = 𝜒(2)𝑎 and in general by induction we have [𝑚]𝑎 =
𝜒(𝑚)𝑎. Therefore the full level structure on 𝒢2/𝒮 has the following expression:

Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2)

≅ Spec ℤ𝑝[𝑠, 𝑡, 𝑎, 𝑏, 𝑐, 𝑑]/ ⎛⎜
⎝

𝑠𝑡−𝑤𝑝,𝑎𝑝−𝑡𝑎,𝑏𝑝−𝑡𝑏,𝑐𝑝−𝑡𝑐,𝑑𝑝−𝑡𝑑,
{((𝜒(𝑚)𝑎+̇𝜒(𝑛)𝑏)𝑝−1−𝑡)((𝜒(𝑚)𝑐+̇𝜒(𝑛)𝑑)𝑝−1−𝑡),
((𝜒(𝑚)𝑎+̇𝜒(𝑛)𝑐)𝑝−1−𝑡)((𝜒(𝑚)𝑏+̇𝜒(𝑛)𝑑)𝑝−1−𝑡)}

⎞⎟
⎠

.
(3.3)

Having all these set up, we will prove the flatness of Hom∗
𝒮((ℤ/𝑝ℤ)2, 𝒢2) over 𝒮 using

the lemma below:

Lemma 3.2.2 ([27] Page 51 Lemma 1). Let 𝑌 be a reduced scheme and ℱ a coherent sheaf

on 𝑌 such that dim𝑘(𝑦) ℱ ⊗𝒪𝑦
𝑘(𝑦) = 𝑟, for all 𝑦 ∈ 𝑌 . Then ℱ is a locally free of rank 𝑟 on

𝑌 .

Apply Lemma 3.2.2 to 𝑌 = 𝒮. Note that for 𝑦 ∈ Spec ℤ𝑝[𝑡, 𝑡−1], we know that

dim𝑘(𝑦) (𝒪Hom∗
𝒮

⊗𝒪𝑦
𝑘(𝑦)) = |GL2(𝔽𝑝)|

from Lemma 3.2.1 (ii) and étale descent. For 𝑦 ∈ Spec ℤ𝑝[𝑠, 𝑠−1], we can get

dim𝑘(𝑦) (𝒪Hom∗
𝒮

⊗𝒪𝑦
𝑘(𝑦)) = |GL2(𝔽𝑝)|
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by combining Lemma 3.2.1 (i) together with Wake’s result on Homfull and étale descent. The

only remaining point is 𝑦0 for 𝑠 = 𝑡 = 𝑝 = 0.

Consider 𝒢/𝒮 modulo 𝑝, denoted by ̄𝒢/ ̄𝒮. The underlying base scheme, which is given

by ̄𝒮 = Spec 𝔽𝑝[𝑠, 𝑡]/(𝑠𝑡), is a union of two affine lines and the concerning point 𝑦0 is the

origin of ̄𝒮. Note that 𝜒(𝑚) ≡ 𝑚 mod 𝑝. Therefore, by setting 𝑝 = 0 from Equation (1.6),

we get

Hom∗
̄𝒮((ℤ/𝑝ℤ)2, ̄𝒢2)

≅ Spec𝒪 ̄𝒮[𝑎, 𝑏, 𝑐, 𝑑]/ (
𝑎𝑝−𝑡𝑎,𝑏𝑝−𝑡𝑏,𝑐𝑝−𝑡𝑐,𝑑𝑝−𝑡𝑑,

{((𝑚𝑎+̇𝑛𝑏)𝑝−1−𝑡)((𝑚𝑐+̇𝑛𝑑)𝑝−1−𝑡),
((𝑚𝑎+̇𝑛𝑐)𝑝−1−𝑡)((𝑚𝑏+̇𝑛𝑑)𝑝−1−𝑡)}

) .
(3.4)

Here the “+̇” operation is given as 𝑥+̇𝑦 = 𝑥 + 𝑦 +
𝑝−1
∑
𝑖=1

𝑠𝑥𝑖𝑦𝑝−𝑖

𝑖! (𝑝 − 𝑖)! (recall that 𝑤𝑖 ≡ 𝑖! mod 𝑝
from Section 2). Now we have a key observation on Equation (3.4).

Theorem 3.2.3. Let ̄𝒢/ ̄𝒮 be the “universal” Oort–Tate group scheme in characteristic 𝑝
as above. Then the ideal defining the full level structure Hom∗

̄𝒮((ℤ/𝑝ℤ)2, ̄𝒢2) as a closed

subscheme of ̄𝒢4 is generated by elements which do not involve the parameter 𝑠.

Proof. We claim that in the coordinate ring (3.4), we have

(𝑚𝑎+̇𝑛𝑏)𝑝−1 − 𝑡 = 𝑢 ((𝑚𝑎 + 𝑛𝑏)𝑝−1 − 𝑡)

for some unit 𝑢. Then it follows that

Hom∗
̄𝒮((ℤ/𝑝ℤ)2, ̄𝒢2)

≅ Spec 𝒪 ̄𝒮[𝑎, 𝑏, 𝑐, 𝑑]/ (
𝑎𝑝−𝑡𝑎,𝑏𝑝−𝑡𝑏,𝑐𝑝−𝑡𝑐,𝑑𝑝−𝑡𝑑,

{((𝑚𝑎+𝑛𝑏)𝑝−1−𝑡)((𝑚𝑐+𝑛𝑑)𝑝−1−𝑡),
((𝑚𝑎+𝑛𝑐)𝑝−1−𝑡)((𝑚𝑏+𝑛𝑑)𝑝−1−𝑡)}

) .
(3.5)

and we are done.

When 𝑝 = 2, since 𝑠𝑡 = 0 and 𝑎2 = 𝑡𝑎, we simply have

𝑚𝑎+̇𝑛𝑏 = 𝑚𝑎 + 𝑛𝑏 + 𝑠𝑚𝑛𝑎𝑏 = (𝑚𝑎 + 𝑛𝑏)(1 + 𝑠𝑚𝑎).

Here 1 + 𝑠𝑚𝑎 is a unit as (1 + 𝑠𝑚𝑎)2 = 1 + 𝑠2𝑚2𝑎2 = 1 + 𝑠2𝑚2𝑎𝑡 = 1.
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Now suppose that 𝑝 > 2. Let 𝑔(𝑥, 𝑦) =
𝑝−1
∑
𝑖=1

𝑥𝑖𝑦𝑝−𝑖

𝑖! (𝑝 − 𝑖)! be a polynomial in 𝔽𝑝[𝑥, 𝑦]. Note

this polynomial 𝑔(𝑥, 𝑦) is divisible by 𝑥 + 𝑦 as 𝑔(𝑥, −𝑥) = 0 (note that 𝑝 is odd). Assume

𝑔(𝑥, 𝑦) = (𝑥 + 𝑦)𝑔′(𝑥, 𝑦). Then 𝑚𝑎+̇𝑛𝑏 = (𝑚𝑎 + 𝑛𝑏)(1 + 𝑠𝑔′(𝑚𝑎, 𝑛𝑏)). Note that 𝑔′ has no

constant term and 𝑠𝑡 = 0. So we have

(1 + 𝑠𝑔′(𝑚𝑎, 𝑛𝑏))𝑝 = 1 + 𝑠𝑝𝑔′(𝑚𝑝𝑎𝑡, 𝑛𝑝𝑏𝑡) = 1.

Therefore 1 + 𝑠𝑔′(𝑚𝑎, 𝑛𝑏) is a unit and we have

(1 + 𝑠𝑔′(𝑚𝑎, 𝑛𝑏))𝑝−1 ((𝑚𝑎 + 𝑛𝑏)𝑝−1 − 𝑡) = (𝑚𝑎+̇𝑛𝑏)𝑝−1 − 𝑡

as claimed.

As a consequence of Theorem 3.2.3, for any point 𝑦 ∈ ̄𝒮 away from 𝑦0, we have

dim𝑘(𝑦0) 𝒪Hom∗
𝒮

⊗𝒪𝑦0
𝑘(𝑦0) = dim𝑘(𝑦) 𝒪Hom∗

𝒮
⊗𝒪𝑦

𝑘(𝑦) = |GL2(𝔽𝑝)|.

Applying Lemma 3.2.2, we finish proving the flatness.

3.3 Nonexistence of full level structure over the stack

Let C be a stack of group schemes of certain type over Schℤp
. (By a stack here we simply

mean a category fibered in groupoids over Schℤp
as in [6].) So, we assume that the objects

in C are group schemes 𝐺/𝑆 of certain fixed type (for example, finite flat commutative and

of certain rank) and the morphisms are Cartesian squares.

Definition 3.3.1. Let C be a stack of group schemes as above. By a full level structure over

C, we mean a fibered functor ℱ∶ C → Sch, such that

(1) For any 𝐺/𝑆, the scheme ℱ(𝐺/𝑆) is a closed subscheme of Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐺).

(2) For any 𝑓 ∶ 𝐺/𝑆 → 𝐺′/𝑆′, the morphism ℱ(𝑓)∶ ℱ(𝐺/𝑆) → ℱ(𝐺′/𝑆′) is the restriction

of the induced morphism Hom𝑆((ℤ/𝑝𝑟ℤ)𝑔, 𝐺) → Hom𝑆′((ℤ/𝑝𝑟ℤ)𝑔, 𝐺′).

(3) The scheme ℱ(𝐺/𝑆) satisfies the conditions (1)-(3) in the beginning of this chapter.
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Note that the condition (4) is automatically satisfied since ℱ is a functor.

Using this terminology of full level structure over the stack, we may briefly summarize

the results in Section 3.1 as that we define a well-behaved notion of full level structure on

the stack 𝑂𝑇 , whose objects are group schemes of the form 𝐺 × 𝐺 where 𝐺 is an Oort–Tate

scheme over a ℤ𝑝-scheme 𝑆, and morphisms are group scheme isomorphisms 𝐺×𝐺 → 𝐺′×𝐺′

of the form Φ = (𝜙 0
0 𝜙) as in Proposition 3.1.4.

However, this full level structure on 𝑂𝑇 cannot be extended to the stack of finite flat

commutative group schemes. In fact, consider the substack 𝑂𝑇 × 𝑂𝑇 , whose objects are

𝐺 × 𝐺′ where 𝐺, 𝐺′ are Oort–Tate schemes with morphisms be arbitrary group scheme

isomorphisms. We will see that even on 𝑂𝑇 × 𝑂𝑇 , there is no good notion of full level

structure:

Theorem 3.3.2. There is no notion of full level structure over the stack 𝑂𝑇 × 𝑂𝑇 in the

sense of Definition 3.3.1�

Proof. Let 𝒢/𝒮 be as in Section 3. Assume there is a full level structure on 𝑂𝑇 × 𝑂𝑇
satisfying (1)-(4). Then the full level structure on 𝒢2/𝒮 must be the one we defined. In fact

over the generic fiber of 𝒮, the full level structure is given by the condition (2). Therefore

the only way to satisfy condition (1) is defining the full level structure over 𝑆 as the Zariski

closure of the corresponding scheme over the generic fiber. Note that any group scheme of

rank 𝑝 over a local ring can be obtained from 𝒢/𝒮 by base change. Because of condition (3),

the full level structure on 𝐺×𝐺 over a local base must be the one we defined above. However,

this only possible structure is not preserved under all group scheme automorphisms. Here is

one example communicated to the author by Wake:

Consider the full level structure on 𝛼𝑝 × 𝛼𝑝 over 𝔽̅𝑝 with 𝑝 > 2. By our definition and

Theorem 3.2.3, we have

Hom∗
𝔽̅𝑝

((ℤ/𝑝ℤ)2, 𝛼2
𝑝) ≅ Spec 𝔽̅𝑝[𝑎, 𝑏, 𝑐, 𝑑]/ (

𝑎𝑝,𝑏𝑝,𝑐𝑝,𝑑𝑝

{(𝑚𝑎+𝑛𝑏)𝑝−1(𝑚𝑐+𝑛𝑑)𝑝−1,
(𝑚𝑎+𝑛𝑐)𝑝−1(𝑚𝑏+𝑛𝑑)𝑝−1}

) .
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Note that Aut𝔽̅𝑝
(𝛼2

𝑝) = GL2(𝔽̅𝑝), with the action given by multiplying (𝑎 𝑏
𝑐 𝑑) by elements

of GL2(𝔽̅𝑝) from the right. Since (𝑚, 𝑛) ∈ 𝔽2
𝑝 � {(0, 0)}, it is not hard to see that the ideal is

not invariant under the action of GL2(𝔽̅𝑝).

Remark 3.3.3. Although as shown, a good notion of full level structure on the stack of all

finite group schemes does not exist, one might still hope to define a full level structure on

truncated 𝑝-divisible groups. However, some new idea is needed.

3.4 Full level structure on 𝐺 × 𝐺 × 𝐺

A natural question we may ask is whether we can have some similar results for group schemes

of the form 𝐺𝑛, where 𝐺 is an Oort–Tate group scheme. We record some partial results here.

However, a full answer to this question requires some new idea.

Let us take 𝐺 = 𝜇𝑝 over Spec ℤ. One intermediate step towards defining a full level struc-

ture on 𝐺3 is defining a “partial level structure” as a subscheme of Homℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)3).
We will still require that the resulting scheme is flat over the base and when inverting 𝑝
we want Hom∗

ℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)3) ≅ Mat∗
2×3(𝔽𝑝), where Mat∗

2×3 denote the set of all 2 × 3
matrices of rank 2. It turns out that this can be done using our result in this paper. Let

ℎ be the universal homomorphism. Then Hom∗
ℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)3) is cut out by the following

conditions:

(i) All nonzero linear combinations of rows and columns are primitive.

(ii) After applying any left GL2(𝔽𝑝)-action and right GL3(𝔽𝑝)-action to ℎ, one of the

three 2 × 2 blocks of the resulting homomorphism lies in the full level structure

Hom∗
ℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)2).

Let us make (ii) clear here. Let

ℎ = (𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

)
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be the universal homomorphism. Let 𝐼1, resp. 𝐼2, 𝐼3, be the ideal defined by requiring that

(𝑎11 𝑎12
𝑎21 𝑎22

) , resp. (𝑎11 𝑎13
𝑎21 𝑎23

) , (𝑎12 𝑎13
𝑎22 𝑎23

) ,

lies in the full level structure subscheme Hom∗((ℤ/𝑝ℤ)2, (𝜇𝑝)2). Then the ideal defining “one

of the three 2×2 blocks lies the full level structure” is the ideal 𝐼1𝐼2 ∩𝐼1𝐼3 ∩𝐼2𝐼3. The closed

subscheme Hom∗
ℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)3) cut out by these conditions is flat of rank |Mat∗

2×3(𝔽𝑝)|
over the base. This result of “partial level structure” Hom∗

ℤ((ℤ/𝑝ℤ)2, (𝜇𝑝)3) can be extended

to Hom∗((ℤ/𝑝ℤ)2, 𝐺3).
One might hope to define Hom∗

ℤ((ℤ/𝑝ℤ)3, (𝜇𝑝)3) using the “partial level structure” above,

by requiring that after applying the left and right GL3(𝔽𝑝)-action and possibly Cartier dual

to the universal homomorphism, the resulting homomorphism is such that any 2 × 3 block

is giving a “partial level structure”. It turns out that this condition is very close to what we

want, but still not enough. Here are some numerical results. Consider 𝜇𝑝 over 𝔽𝑝. For 𝑝 = 2,

the above condition will give a closed subscheme of rank 169 over 𝔽𝑝, while |GL3(𝔽2)| = 168.

For 𝑝 = 3, the obtained subscheme has rank 11473 over 𝔽𝑝, while |GL3(𝔽3)| = 11232
(comparing with 39 = 19683). So, some further conditions need to be discovered.
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CHAPTER 4

CONSTRUCTIONS OF GROUP SCHEMES USING DIEUDONNÉ
MODULES

Dieudonné theory is a powerful tool for studying group schemes, 𝑝-divisible groups and

abelian varieties. The classical Dieudonné theory works over perfect fields in characteristic

𝑝 > 0. There has been many variations of Dieudonné theory over difference bases. In

this chapter, we will use a version of Dieudonné theory due to de Jong to construct group

schemes.

Let 𝐺/𝑆 be a finite group scheme. (Recall that all group schemes are assumed to be

commutative and flat over the base.) We define its Cartier dual 𝐺𝐷 by

𝐺𝐷(𝑇 ) = Hom(𝐺𝑇 , 𝔾𝑚,𝑇 ).

This is a priori a functor but can be shown to be representable. This makes 𝐺𝐷 a finite

group scheme over 𝑆 and there is a canonical isomorphism 𝐺 ∼−→ (𝐺𝐷)𝐷. Furthermore,

for any group scheme homomorphism 𝑓 ∶ 𝐺 → 𝐻, we have an induced homomorphism

𝑓𝐷 ∶ 𝐻𝐷 → 𝐺𝐷 such that (𝑓𝐷)𝐷 = 𝑓 under the canonical isomorphism 𝐺 = (𝐺𝐷)𝐷.

Let 𝐺/𝑆 be a group scheme (not necessarily finite) with the 𝑝𝒪𝒮 = 0. Then there are

Frobenius morphisms 𝜎𝐺 ∶ 𝐺 → 𝐺 and 𝜎𝑆 ∶ 𝑆 → 𝑆 that are defined by Frobenius maps

𝑓𝐺 ∶ 𝒪𝐺 → 𝒪𝐺 and 𝑓𝑆 ∶ 𝒪𝑆 → 𝒪𝑆. This induces a morphism 𝐹𝐺 ∶ 𝐺 → 𝐺(𝑝) ≔ 𝐺 ×𝑆,𝜎𝑆
𝑆,

which turns out to be a homomorphism of group schemes:

𝐺

𝐺(𝑝) 𝐺

𝑆 𝑆

𝜎𝐺

𝐹𝐺

□
𝜎𝑆

We can define another group scheme homomorphism 𝑉𝐺 ∶ 𝐺(𝑝) → 𝐺. Consider the
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following diagram:
𝒪𝐺 (𝒪⊗𝑝

𝐺 )𝑆𝑝 𝒪𝐺 ⊗𝒪𝑆,𝑓𝑆
𝒪𝑆

𝒪⊗𝑝
𝐺

𝑐𝑜𝑚𝑢𝑙𝑡

Here (𝒪⊗𝑝
𝐺 )𝑆𝑝 is the 𝑆𝑝-invariant elements of 𝒪⊗𝑝

𝐺 . Since 𝐺 is commutative, the comultiplica-

tion factors through (𝒪⊗𝑝
𝐺 )𝑆𝑝 . The map (𝒪⊗𝑝

𝐺 )𝑆𝑝 → 𝒪𝐺 ⊗𝒪𝑆,𝑓𝑆
𝒪𝑆 is the unique homomor-

phism such that 𝑎(𝑥⊗⋯⊗𝑥) ↦ 𝑥⊗𝑎. In this way, we get a morphism 𝑉𝐺 ∶ 𝐺 → 𝐺(𝑝) which

also turns out to be a homomorphism of group schemes. This group scheme homomorphism

is called the Verschiebung of 𝐺. When the group scheme 𝐺/𝑆 is finite, the Verschiebung 𝑉𝐺

can also be defined as (𝐹𝐺𝐷)𝐷 ∶ ((𝐺𝐷)(𝑝))𝐷 = 𝐺(𝑝) → (𝐺𝐷)𝐷 = 𝐺. It is a basic fact that

𝐹𝐺 ∘ 𝑉𝐺 = 𝑝 ⋅ Id𝐺(𝑝) and 𝑉𝐺 ∘ 𝐹𝐺 = 𝑝 ⋅ Id𝐺 (see [5, II]).

4.1 A Version of Dieudonné Theory by De Jong

Let 𝑊 be the Witt ring (over ℤ) as in [5, III]. It is a ring scheme over Spec ℤ. Let 𝑘 be a

perfect field in characteristic 𝑝 > 0. The 𝑘-points of 𝑊 are called Witt vectors and 𝑊(𝑘)
is the ring of Witt vectors. The ring 𝑊(𝑘) is a complete discrete valuation ring in mixed

characteristics (0, 𝑝) with uniformizer 𝑝 and residue field 𝑘 (see [5, III. 3]).

Moreover, there is a ring homomorphism 𝜎 ∶ 𝑊(𝑘) → 𝑊(𝑘) which lifts the Frobenius

map on the residue field 𝑘. Let 𝐷𝑘 ≔ 𝑊(𝑘){𝐹 , 𝑉 }/(𝐹𝑉 − 𝑝) be the Dieudonné ring, where

𝑊(𝑘){𝐹 , 𝑉 } is the non-commutative polynomial ring in variables 𝐹, 𝑉 with relations

𝐹𝑉 = 𝑉 𝐹,

𝐹𝑎 = 𝜎(𝑎)𝐹 ,

𝑉 𝑎 = 𝜎−1(𝑎)𝑉 .

The left 𝐷𝑘-modules are called Dieudonné modules. Equivalently, one can think of Dieudonné

modules as 𝑊(𝑘)-modules with actions of 𝐹 and 𝑉 that are subject to the relations above.

Dieudonné modules are powerful tools to study group schemes, 𝑝-divisible groups and

abelian varieties. (Recall that all group schemes are assumed to be commutative and flat over
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the base.) The classical (contravariant) Dieudonné theory gives an anti-equivalence between

the category of finite group schemes over a perfect field 𝑘 with positive characteristics and

the category of Dieudonné modules over 𝑊(𝑘) with finite length (see [5, III. 7]):

{
finite group schemes

𝐺/ Spec 𝑘
} ⟶ {

Dieudonné modules with

finite 𝑊(𝑘)-length
} .

The classical Dieudonné theory also gives an similar anti-equivalence for 𝑝-divisible groups

over a perfect field (see [5, III. 8]):

{
𝑝-divisible groups

𝒢/ Spec 𝑘
} ⟶

⎧{{
⎨{{⎩

Dieudonné modules that are

finitely generated free

𝑊(𝑘)-modules

⎫}}
⎬}}⎭

.

Starting from the classical Dieudonné theory, there has been variations of Dieudonné

theory for different base schemes. Let 𝑆 = Spec 𝑅 with 𝑅 a ring of characteristic 𝑝 > 0
and let Σ ≔ Spec ℤ𝑝. In [2], using the notion of crystals over the crystalline site, Berthelot–

Breen–Messing define the crystalline Dieudonné functor 𝔻 from the category of 𝑝-divisible

groups over 𝑆 to the category of 𝐹 -crystals over the crystalline site CRIS(𝑆/Σ), given by

𝔻(𝒢) ≔ ℰ𝑥𝑡1
𝑆/Σ (𝒢, 𝒪𝑆/Σ) . (4.1)

Here 𝒪𝑆/Σ is the structure sheaf defined by

𝒪𝑆/Σ(𝑈, 𝑇 , 𝛿) ≔ 𝒪𝑇 . (4.2)

and 𝒢 is regarded as an abelian sheaf on CRIS(𝑆/Σ). It is shown in [1] and [2] that when 𝑅
is a perfect field or more generally a perfect valuation ring, the Dieudonné functor 𝔻 defines

an anti-equivalence of categories. Moreover, let 𝑓 ∶ 𝐴 → Spec 𝑅 be an abelian scheme, then

we have

𝔻(𝐴[𝑝∞])𝑆 = 𝑅1𝑓∗𝒪𝐴/Σ.

In [4], de Jong established a version of Dieudonné theory for group schemes 𝐺/𝑆 satisfying

𝑝𝒪𝒮 = 0 and 𝑆 and its Frobenius 𝑓𝑆 lift modulo 𝑝2. More precisely, let 𝑆 = Spec 𝑅 be as

above. Assume that 𝑆 admits a lift to ℤ/𝑝2ℤ, i.e. a scheme 𝑆′ flat over Spec ℤ/𝑝2ℤ with

𝑆′ ×Spec ℤ/𝑝2ℤ Spec 𝔽𝑝 ≅ 𝑆:
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𝑆 𝑆′

Spec 𝔽𝑝 Spec ℤ/𝑝2ℤ
□

Then the divided power on ℤ𝑝 extends to a unique divided power 𝛾 on 𝑝𝒪𝑆′ . In this way,

the triple (𝑆, 𝑆′, 𝛾) forms an object in the Crystalline site CRIS(𝑆/Σ).
Assume further that there is a morphism 𝑓𝑆′ ∶ 𝑆′ → 𝑆′ which lifts the Frobenius map on

𝑆. Let 𝐶(1) denote the category of group schemes over 𝑆 killed by 𝑝 and let 𝑀(1) denote the

category of triples (𝑀, 𝐹 , 𝑉 ), where 𝑀 is a finite locally free 𝒪𝑆-module and 𝐹 ∶ 𝑓∗𝑀 → 𝑀 ,

𝑉 ∶ 𝑀 → 𝑓∗𝑀 are 𝒪𝑆-linear maps such that 𝑉 ∘ 𝐹 = 𝑝 ⋅ Id𝑓∗𝑀 and 𝐹 ∘ 𝑉 = 𝑝 ⋅ Id𝑀 .

Consider the functor 𝑀𝑆 ∶ 𝐶(1) → 𝑀(1) defined by

𝑀𝑆(𝐺) ≔ ℰ𝑥𝑡1
𝑆/Σ (𝐺, ℐ𝑆/Σ)

(𝑆,𝑆′,𝛾)
(4.3)

where 𝐺 is regarded as an abelian sheaf on CRIS(𝑆/Σ) and ℐ𝑆/Σ is the abelian sheaf on

CRIS(𝑆/Σ) defined by

ℐ𝑆/Σ(𝑈, 𝑇 , 𝛿) ≔ ker(𝒪𝑇 → 𝒪𝑈).

Proposition 4.1.1. (de Jong [4, Proposition 8.6]) The functor 𝑀𝑆 ∶ 𝐶(1) → 𝑀(1) induces

the following isomorphisms when 𝑉𝐺 = 0 or 𝐹𝐻 = 0:

Hom𝐶(1)(𝐻, 𝐺) ∼−→ Hom𝑀(1)(𝑀𝑆(𝐺), 𝑀𝑆(𝐻))

and

Ext1
𝐶(1)(𝐻, 𝐺) ∼−→ Ext1

𝑀(1)(𝑀𝑆(𝐺), 𝑀𝑆(𝐻)).

Remark 4.1.2. The conditions in Proposition 4.1.1 are satisfied when 𝑆 is affine and smooth.

In fact, when 𝑆 is smooth, the obstruction class lifting 𝑆 together with the Frobenius lies in

certain cohomology 𝐻1(𝑆, 𝑇𝑆 ⊗ 𝐵1
𝑆) (see [26, Appendix]). When 𝑆 is affine, the cohomology

vanishes. In this case, the lift of 𝑆 together with the Frobenius exists automatically.

Note that this version of Dieudonné theory by de Jong is slightly different from the

crystalline Dieudonné theory of finite group schemes or abelian schemes as in the definitions
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(4.1) and (4.3). In the rest of this section, we will compare these two versions of Dieudonné

theory.

Let 𝔾𝑎 be the abelian sheaf on CRIS(𝑆/Σ) defined by

𝔾𝑎(𝑈, 𝑇 , 𝛿) ≔ 𝒪𝑈 .

Therefore there is a exact sequence of abelian sheaves

0 → 𝒥𝑆/Σ → 𝒪𝑆/Σ → 𝔾𝑎 → 0.

Let 𝐴/𝑆 (resp. 𝐺/𝑆) be an abelian scheme (resp. a finite group scheme). We define

the crystalline Dieudonné crystal of 𝐴/𝑆 (resp. 𝐺/𝑆) as 𝔻(−) ≔ ℰ𝑥𝑡1
𝑆/Σ (−, 𝒪𝑆/Σ) . As a

standard result of crystalline Dieudonné theory, we have the following proposition:

Proposition 4.1.3. ([2, Proposition 2.5.8]) Let 𝐴/𝑆 be an abelian scheme. Then we have

ℰ𝑥𝑡𝑖
𝑆/Σ (𝐴, 𝒥𝑆/Σ) = ℰ𝑥𝑡𝑖

𝑆/Σ (𝐴, 𝔾𝑎) = 0

for 𝑖 = 0 or 𝑖 = 2. In particular, when evaluating at 𝑆, we have the following commutative

diagram that connects with De Rham cohomology:

0 ℰ𝑥𝑡1
𝑆/Σ (𝐴, 𝒥𝑆/Σ)

𝑆
𝔻(𝐴)𝑆 ℰ𝑥𝑡1

𝑆/Σ (𝐴, 𝔾𝑎)
𝑆

0

0 𝜔𝐴 𝐻1
𝐷𝑅(𝐴/𝑆) 𝑅1𝑓∗(𝒪𝐴) 0

≅ ≅ ≅

Here 𝑤𝐴 is the pullback of Ω1
𝐴/𝑆 along the unit section, and 𝐻1

𝐷𝑅(𝐴/𝑆) is the first De Rham

cohomology.

Remark 4.1.4. The identification in Proposition 4.1.3 can also be realized as following:

0 𝑉 (𝔻(𝐴)𝑆) 𝔻(𝐴)𝑆 𝔻(𝐴)𝑆/𝑉 (𝔻(𝐴)𝑆) 0

0 𝜔𝐴 𝐻1
𝐷𝑅(𝐴/𝑆) 𝑅1𝑓∗(𝒪𝐴) 0

≅ ≅ ≅
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where 𝑉 is the induced action of Verschibung on 𝔻(𝐴)𝑆. In particular, ℰ𝑥𝑡1
𝑆/Σ (𝐴, 𝒥𝑆/Σ)

𝑆
⊂

𝔻(𝐴)𝑆 identifies with 𝑉 𝔻(𝐴)𝑆. Similarly, ℰ𝑥𝑡1
𝑆/Σ (𝐴, 𝒥𝑆/Σ)

(𝑆,𝑆′,𝛾)
⊂ 𝔻(𝐴)(𝑆,𝑆′,𝛾) identifies

with 𝑉 𝔻(𝐴)(𝑆,𝑆′,𝛾). This follows from the observation over a field in [29, Corollary 5.11]

and the fact that the Dieudonné crystal functor commutes with base change.

Now we give the following comparison lemma:

Lemma 4.1.5. Let 0 → 𝐺 → 𝐴 → 𝐵 → 0 be an exact sequence, where 𝐺 is a finite group

scheme killed by 𝑝 and 𝐴, 𝐵 are abelian varieties over 𝑆. Then we have

𝑀𝑆(𝐺) ≅ Coker (𝑉 𝔻(𝐵)𝑆 → 𝑉 𝔻(𝐴)𝑆) . (4.4)

In particular, we have

𝑀𝑆(𝐴[𝑝]) ≅ Coker (𝑉 𝔻(𝐴)𝑆/𝑝𝑉 𝔻(𝐴)𝑆) . (4.5)

Proof. By Proposition 4.1.3, we can get a commutative diagram

ℰ𝑥𝑡1
𝑆/Σ (𝐵, 𝒥𝑆/Σ)

(𝑆,𝑆′,𝛾)
→ ℰ𝑥𝑡1

𝑆/Σ (𝐴, 𝒥𝑆/Σ)
(𝑆,𝑆′,𝛾)

→ 𝑀𝑆(𝐺) → 0.

From Remark 4.1.4, we have

𝑀𝑆(𝐺) ≅ Coker (𝑉 𝔻(𝐵)(𝑆,𝑆′,𝛾) → 𝑉 𝔻(𝐴)(𝑆,𝑆′,𝛾)) . (4.6)

Note that 𝐺 is killed by 𝑝. Therefore 𝑀𝑆(𝐺) is also annihilated by 𝑝. Therefore we may

modulo 𝑝 before taking the cokernel in Equation (4.6). Note that the base 𝑆 ⊂ 𝑆′ is defined

by the ideal (𝑝). Therefore we have 𝔻(𝐴)(𝑆,𝑆′,𝛾)⊗𝔽𝑝 = 𝔻(𝐴)𝑆 and the statement follows.

Assume that 𝑆, 𝑆′ are spectra of local rings. From Proposition 4.1.3, by evaluating the

first row at (𝑆, 𝑆′, 𝛾), we get that

0 → ℰ𝑥𝑡1
𝑆/Σ (𝐴, 𝒥𝑆/Σ)

(𝑆,𝑆′,𝛾)
→ 𝔻(𝐴)(𝑆,𝑆′,𝛾) → 𝑖∗(𝑅1𝑓∗(𝒪𝐴)) → 0.

where 𝑖 ∶ 𝑆 → 𝑆′ is the embedding. Let 𝑠1, … , 𝑠2𝑔 ∈ 𝔻(𝐴)(𝑆,𝑆′,𝛾) be a basis so that

the images ̄𝑠1, … , ̄𝑠𝑔 ∈ 𝔻(𝐴)𝑆 generate 𝜔𝐴 and ̄𝑠𝑔+1, … , ̄𝑠2𝑔 ∈ 𝔻(𝐴)𝑆 generates 𝑅1𝑓∗(𝒪𝐴).
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Then ℰ𝑥𝑡1
𝑆/Σ (𝐴, 𝒥𝑆/Σ)

(𝑆,𝑆′,𝛾)
= 𝑉 𝔻(𝐴)(𝑆,𝑆′,𝛾) is generated by 𝑠1, … , 𝑠𝑔, 𝑝𝑠𝑔+1, … , 𝑝𝑠2𝑔.

The Dieudonné module 𝑀𝑆(𝐴[𝑝]), by Equation (4.5), is generated by

𝑠1, … , 𝑠𝑔, 𝑝𝑠𝑔+1, … , 𝑝𝑠2𝑔 mod ⟨𝑝𝑠1, … , 𝑝𝑠𝑔, 𝑝2𝑠𝑔+1, … , 𝑝2𝑠2𝑔⟩.

4.2 Group Schemes Annihilated by 𝑉

Let 𝐺/𝑆 be a group scheme as in Section 4.1. Suppose the rank of 𝐺/𝑆 is 𝑟. From Section 4.1,

the Dieudonné module 𝑀 ≔ 𝑀𝑆(𝐺) is a locally free 𝒪𝑆-module of rank 𝑟. Let 𝑓 ∶ 𝒪𝑆 → 𝒪𝑆

be the Frobenius map. Then 𝑓∗𝑀 = 𝑀 ⊗𝒪𝑆,𝑓 𝒪𝑆 is also a locally free 𝒪𝑆-module of rank

𝑟. Let 𝐹𝐺, 𝑉𝐺 be the Frobenius and Verschiebung on 𝐺 respectively. The Frobenius 𝐹𝐺 and

Verschiebung 𝑉𝐺 induce two linear maps 𝐹𝑀 ∶ 𝑓∗𝑀 → 𝑀 and 𝑉𝑀 ∶ 𝑀 → 𝑓∗𝑀 , so that

𝐹𝑀 ∘ 𝑉𝑀 = 0 and 𝑉𝑀 ∘ 𝐹𝑀 = 0.

The goal of the rest of this chapter is to determine the group scheme 𝐺 when we are given

its Dieudonné module 𝑀𝑆(𝐺). Upon a choice of bases of 𝑀 and 𝑓∗𝑀 , this is equivalent to

the two matrices 𝐹, 𝑉 with 𝐹𝑉 = 𝑉 𝐹 = 0. The first theorem of this type is the following

result of Grothendieck in [12, Exposé VII, Theorem 7.4]:

Proposition 4.2.1. Let 𝑆 be a base scheme over 𝔽𝑝. We have the following anti-equivalence

of categories:

⎧{{
⎨{{⎩

𝐺/𝑆, finite (flat commutative)

group schemes killed by 𝑝 with

𝑉𝐺 = 0

⎫}}
⎬}}⎭

⟶
⎧{{
⎨{{⎩

pairs (𝑀, 𝐹), where 𝑀 is a locally free

𝒪𝑆-module, 𝐹𝑀 ∶ 𝑓∗𝑀 → 𝑀 is a

homomorphism of 𝒪𝑆-modules

⎫}}
⎬}}⎭

In particular, when 𝑆 = Spec 𝑅 where 𝑅 is a local ring, the Dieudonné module 𝑀 is a

free 𝑅-module. Let 𝑥1, … , 𝑥𝑟 be a basis of 𝑀 . Then 𝑥1 ⊗ 1, … , 𝑥𝑟 ⊗ 1 form a basis of 𝑓∗𝑀 .

We write the linear map 𝐹𝑀 ∶ 𝑓∗𝑀 → 𝑀 as

𝐹𝑀 (𝑥1 ⊗ 1, … , 𝑥𝑟 ⊗ 1) = (𝑥1, … , 𝑥𝑟)
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑟
𝑎21 𝑎22 ⋯ 𝑎2𝑟

⋮ ⋮ ⋱ ⋮
𝑎𝑟1 𝑎𝑟2 ⋯ 𝑎𝑟𝑟

⎞⎟⎟⎟⎟
⎠

.
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Then the corresponding group scheme 𝐺/𝑆 is given by

𝐺 = Spec 𝑅[𝑥1, … , 𝑥𝑟]/ ({𝑥𝑝
𝑖 − ∑𝑟

𝑗=1 𝑎𝑗𝑖𝑥𝑗}1≤𝑖≤𝑟
) ,

with additive coalgebra operations

𝑚∗(𝑥𝑖) = 1 ⊗ 𝑥𝑖 + 𝑥𝑖 ⊗ 1,

inv∗(𝑥𝑖) = −𝑥𝑖,

𝜖∗(𝑥𝑖) = 0.

4.3 Group Schemes Annihilated by 𝑉 2

Let 𝐺/𝑆 be a group scheme as in Section 4.1. Suppose that 𝑉 2
𝐺 = 0 and all images and

coimages of Verschiebung are flat over 𝑆. Let 𝐺1 ≔ 𝐺/ Im 𝑉𝐺 and 𝐺2 ≔ Im 𝑉𝐺. Then we

have an exact sequence of group schemes:

0 → 𝐺2 → 𝐺 → 𝐺1 → 0.

By our assumption, 𝐺1 and 𝐺2 are both annihilated by the Verschiebung, i.e. 𝑉𝐺1
= 0

and 𝑉𝐺2
= 0. According to Proposition 4.2.1, we may write

𝐺1 = Spec 𝑅[𝑥1, … , 𝑥𝑛]/ ({𝑥𝑝
𝑖 − ∑𝑛

𝑗=1 𝑎𝑗𝑖𝑥𝑗}1≤𝑖≤𝑛
)

and

𝐺2 = Spec 𝑅[𝑦1, … , 𝑦𝑚]/ ({𝑦𝑝
𝑖 − ∑𝑚

𝑗=1 𝑏𝑗𝑖𝑦𝑗}1≤𝑖≤𝑚
)

The Dieudonné module of 𝐺1 (resp. 𝐺2) is given by 𝑀1 =
𝑛

⨁
𝑖=1

𝑅𝑥𝑖 (resp. 𝑀2 =
𝑚

⨁
𝑖=1

𝑅𝑦𝑖)

with Frobenius matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 (resp. 𝐵 = (𝑏𝑖𝑗)𝑚×𝑚) and Verschibung matrix 0𝑛×𝑛

(resp. 0𝑚×𝑚). Let 𝑀 be a Dieudonné module that is an extension of 𝑀2 by 𝑀1:

0 → 𝑀1 → 𝑀 → 𝑀2 → 0.
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Therefore 𝑀 is a free 𝑅-module of rank 𝑚 + 𝑛 with basis 𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛 and the

Frobenius and Verschiebung of 𝑀 has the description

𝐹 (𝑥1 ⊗ 1, … , 𝑥𝑛 ⊗ 1, 𝑦1 ⊗ 1, … , 𝑦𝑚 ⊗ 1) = (𝑥1, … , 𝑥𝑟, 𝑦1, … , 𝑦𝑚) (𝐴𝑛×𝑛 𝐶𝑛×𝑚
0𝑚×𝑛 𝐵𝑚×𝑚

) ,

𝑉 (𝑥1, … , 𝑥𝑟, 𝑦1, … , 𝑦𝑚) = (𝑥1 ⊗ 1, … , 𝑥𝑛 ⊗ 1, 𝑦1 ⊗ 1, … , 𝑦𝑚 ⊗ 1) (0𝑛×𝑛 𝐷𝑛×𝑚
0𝑚×𝑛 0𝑚×𝑚

) .
(4.7)

so that 𝐹 ∘ 𝑉 = 𝑉 ∘ 𝐹 = 0. This is equivalent to 𝐴𝐷 = 𝐷𝐵 = 0.

By Proposition 4.1.1, there is a bijection between the extensions 𝐺 of 𝐺1 by 𝐺2 and the

extensions 𝑀 of 𝑀1 by 𝑀2. Therefore, to get all group schemes 𝐺 that are extensions of

𝐺1 by 𝐺2, we only need to construct a group scheme of 𝐺1 by 𝐺2 that has 𝐹 and 𝑉 as in

Equation (4.7). Here is the theorem:

Theorem 4.3.1. Let 𝐺/𝑆 be a group scheme as in Section 4.1. Suppose that 𝑆 = Spec 𝑅
where 𝑅 is a local ring. Assume that Im 𝑉 and 𝐺/ Im 𝑉𝐺 are flat over 𝑆. Then 𝐺 can be

written as

Spec 𝑅[𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑚]/ ({𝑥𝑝
𝑖 − ∑𝑛

𝑗=1 𝑎𝑗𝑖𝑥𝑗} , {𝑦𝑝
𝑖 − ∑𝑚

𝑗=1 𝑏𝑗𝑖𝑦𝑗 − ∑𝑛
𝑗=1 𝑐𝑗𝑖𝑥𝑗})

with coalgebra structure given by

𝑚∗
𝐺(𝑥𝑖) = 1 ⊗ 𝑥𝑖 + 𝑥𝑖 ⊗ 1, 𝑚∗

𝐺(𝑦𝑖) = 1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑛
∑
𝑗=1

𝑑𝑗𝑖𝑥𝑘
𝑗 ⊗ 𝑥𝑝−𝑘

𝑗
𝑘! (𝑝 − 𝑘)! ,

𝜖∗
𝐺(𝑥𝑖) = 0, 𝜖∗

𝐺(𝑦𝑖) = 0,
inv∗

𝐺(𝑥𝑖) = −𝑥𝑖, inv∗
𝐺(𝑦𝑖) = −𝑦𝑖.

Proof. Note that the coordinate ring of 𝐺 is a free module of rank 𝑝𝑚+𝑛 generated by

𝑥𝑒1
1 ⋯ 𝑥𝑒𝑛𝑛 𝑦𝑓1

1 ⋯ 𝑦𝑓𝑚𝑚 for 0 ≤ 𝑒𝑖, 𝑓𝑖 < 𝑝. Therefore 𝐺 → 𝑆 is flat. The only thing to check is

that these operations give a group scheme. This is similar to the proof of Theorem 4.4.1 in

the next section but simpler. We will skip the direct calculations here.

4.4 Group Schemes Annihilated by 𝑉 3

Now we consider the next case. Let 𝐺/𝑆 be a finite group scheme that is killed by 𝑝 and

such that 𝑉 3
𝐺 = 0. We will also assume that all kernels and cokernels of 𝑉𝐺 are flat group
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schemes over the base 𝑆. In this case, we have exact sequences

0 → Im 𝑉𝐺/ Im 𝑉 2
𝐺 → 𝐺/ Im 𝑉 2

𝐺 → 𝐺/ Im 𝑉𝐺 → 0

and

0 → Im 𝑉 2
𝐺 → 𝐺 → 𝐺/ Im 𝑉 2

𝐺 → 0.

Both left terms in these two exact sequences are annihilated by 𝑉𝐺 to satisfy the condition

in Proposition 4.1.1. The idea to obtain the explicit expression of 𝐺 is to use the first exact

sequence to get a description of 𝐺/ Im 𝑉 2
𝐺 using the result in Section 5.1. Then we will use

the second exact sequence to construct the group scheme 𝐺.

Since the notation and calculation get very complicated immediately, we will only state

the result in a specific case that we need in Section 6.2. However, note that the theorem can

be stated with more generality.

Theorem 4.4.1. Let 𝐺/𝑆 be a group scheme as in Section 4.1. Assume 𝑆 = Spec 𝑅 with

𝑅 a local ring. Assume the rank of 𝐺 is 𝑝4 and suppose that 𝐺 admits a filtration

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺3 ⊂ 𝐺4 = 𝐺

such that

Rank 𝐺𝑖 = 𝑝𝑖, (4.8)

𝑉 (𝐺𝑖) = 𝐺𝑣(𝑖), (4.9)

𝐹 −1(𝐺𝑖) = 𝐺𝑓(𝑖), (4.10)

(𝐺𝑖/𝐺𝑗)𝐷 ≅ 𝐺4−𝑗/𝐺4−𝑖, (4.11)

where 𝑣 = (0, 0, 1, 2) and 𝑓 = (2, 3, 4, 4). Then there exists a 10-tuple

(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑, 𝑒1, 𝑒2, 𝑓1, 𝑓2)

over 𝑅 such that

𝐺 = 𝐺4 ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2, 𝑧]/ (𝑥𝑝, 𝑦𝑝
1 − 𝑎1𝑥, 𝑦𝑝

2 − 𝑎2𝑥, 𝑧𝑝 − 𝑐𝑥 − 𝑒1𝑦1 − 𝑒2𝑦2)
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where coalgebra operations given by

𝜖∗(𝑥) = 0; inv∗(𝑥) = −𝑥; 𝑚∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝜖∗(𝑦𝑖) = 0; inv∗(𝑦𝑖) = −𝑦𝑖; 𝑚∗(𝑦𝑖) = 1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑏𝑖𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! , (4.12)

𝜖∗(𝑧) = 0; inv∗(𝑧) = −𝑧; 𝑚∗(𝑧) = 1 ⊗ 𝑧 + 𝑧 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑑𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)!

+
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑦𝑘
𝑖 ⊗ 𝑦𝑝−𝑘

𝑖
𝑘! (𝑝 − 𝑘)! −

2
∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑏𝑖 (1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1)𝑝−1 (𝑥𝑘 ⊗ 𝑥𝑝−𝑘)
𝑘! (𝑝 − 𝑘)! .

�

Proof. We start by analyzing 𝐺3/𝐺1. Note that we have 𝐹 −1(𝐺1) = 𝐺3 and 𝑉 (𝐺3) = 𝐺1.

Therefore we have 𝑉𝐺3/𝐺1
= 0 and 𝐹𝐺3/𝐺1

= 0. By Proposition 4.2.1, we have 𝐺3/𝐺1 ≅
𝛼𝑝 × 𝛼𝑝 = Spec 𝑅[𝑦1, 𝑦2]/(𝑦𝑝

1 , 𝑦𝑝
2).

Now consider the exact sequence

0 → 𝐺3/𝐺1 → 𝐺4/𝐺1 → 𝐺4/𝐺3 → 0.

Similarly, we have 𝐹𝐺4/𝐺3
= 0 and 𝑉𝐺4/𝐺3

= 0. Thereofore we can write 𝐺4/𝐺3 ≅ 𝛼𝑝 =
Spec 𝑅[𝑥]/(𝑥𝑝). By Theorem 4.3.1, we have

𝐺4/𝐺1 = Spec 𝑅[𝑥, 𝑦1, 𝑦2]/ (𝑥𝑝, 𝑦𝑝
1 − 𝑎1𝑥, 𝑦𝑝

2 − 𝑎2𝑥)

with

𝑚∗
𝐺4/𝐺1

(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1

𝑚∗
𝐺4/𝐺1

(𝑦𝑖) = 1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑏𝑖𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! .

The Frobenius and Verschebung acts on 𝑀𝑆(𝐺4/𝐺1) by

𝐹(𝑥 ⊗ 1, 𝑦1 ⊗ 1, 𝑦2 ⊗ 1) = (𝑥, 𝑦1, 𝑦2) ⎛⎜
⎝

0 𝑎1 𝑎2
0 0 0
0 0 0

⎞⎟
⎠

,

𝑉 (𝑥, 𝑦1, 𝑦2) = (𝑥 ⊗ 1, 𝑦1 ⊗ 1, 𝑦2 ⊗ 1) ⎛⎜
⎝

0 𝑏1 𝑏2
0 0 0
0 0 0

⎞⎟
⎠

.
(4.13)
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With the Hopf algebra of 𝐺4/𝐺1, now we consider the exact sequence

0 → 𝐺1 → 𝐺4 → 𝐺4/𝐺1 → 0.

Similarly, we have 𝐺1 ≅ 𝛼𝑝 = Spec 𝑅[𝑧]/(𝑧𝑝). Consider the extension of Dieudonné modules

0 → 𝑀𝑆(𝐺4/𝐺1) → 𝑀𝑆(𝐺4) → 𝑀𝑆(𝐺1) → 0.

As an 𝑅 module, 𝑀𝑆(𝐺) ≅ 𝑅4. Using the matrices of the Dieudonné modules in Equations

(4.13), we can calculate that the Frobenius of 𝑀𝑆(𝐺4) acts by

𝐹(𝑥 ⊗ 1, 𝑦1 ⊗ 1, 𝑦2 ⊗ 1, 𝑧 ⊗ 1) = (𝑥, 𝑦1, 𝑦2, 𝑧)
⎛⎜⎜⎜⎜
⎝

0 𝑎1 𝑎2 𝑐
0 0 0 𝑒1
0 0 0 𝑒2
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, (4.14)

and the Verschiebung acts by

𝑉 (𝑥, 𝑦1, 𝑦2, 𝑧) = (𝑥 ⊗ 1, 𝑦1 ⊗ 1, 𝑦2 ⊗ 1, 𝑧 ⊗ 1)
⎛⎜⎜⎜⎜
⎝

0 𝑏1 𝑏2 𝑑
0 0 0 𝑓1
0 0 0 𝑓2
0 0 0 0

⎞⎟⎟⎟⎟
⎠

, (4.15)

so that 𝐹𝑉 = 𝑉 𝐹 = 0. Equivalently, we have the following equations:

𝑎1𝑓1 + 𝑎2𝑓2 = 0 (4.16)

𝑏1𝑒1 + 𝑏2𝑒2 = 0 (4.17)

By Proposition 4.1.1, it suffices to construct a group scheme with Frobenius and Verschiebung

in forms of (4.14) and (4.15). We construct this group scheme explicitly as stated in Theorem

4.4.1. The rest of this proof is devoted to checking that the scheme 𝐺 with operations above

defines a group scheme. We will check the following conditions:

(I) The comultiplication, counit, coinverse defined in Equation (4.12) give well-defined

algebra homomorphisms.

(II) The Hopf algebra axioms are satisfied, i.e.

(Id ⊗𝑚∗) ∘ 𝑚∗ = (𝑚∗ ⊗ Id) ∘ 𝑚∗,

(Id ⊗𝜖∗) ∘ 𝑚∗ = Id,

(Id, inv∗) ∘ 𝑚∗ = 𝜖∗.

(4.18)
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We first check condition (I). We will check that the comultiplication gives a well-defined

algebra homomorphism 𝑚∗ ∶ 𝒪𝐺 → 𝒪𝐺 ⊗ 𝒪𝐺. The well-definedness of the counit and coin-

verse are easy to check.

The well-definedness of the comultiplication amounts to checking that

(𝑚∗(𝑧))𝑝 − 𝑐𝑚∗(𝑥) − 𝑒1𝑚∗(𝑦1) − 𝑒2𝑚∗(𝑦2) = 0. (4.19)

Note that

(𝑚∗(𝑧))𝑝 = 1 ⊗ 𝑧𝑝 + 𝑧𝑝 ⊗ 1 +
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑝
𝑖 (𝑎𝑖𝑥)𝑘 ⊗ (𝑎𝑖𝑥)𝑝−𝑘

𝑘! (𝑝 − 𝑘)!

= 1 ⊗ 𝑧𝑝 + 𝑧𝑝 ⊗ 1 +
𝑝−1
∑
𝑘=1

(
2

∑
𝑖=1

𝑓𝑝
𝑖 𝑎𝑝

𝑖 ) 𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! .
(4.20)

Note that we have 𝑎1𝑓1 + 𝑎2𝑓2 = 0 from Equation (4.16). So we have 𝑎𝑝
1𝑓𝑝

1 + 𝑎𝑝
2𝑓𝑝

2 = 0 and

therefore

(𝑚∗(𝑧))𝑝 = 1 ⊗ 𝑧𝑝 + 𝑧𝑝 ⊗ 1

= 𝑐 (1 ⊗ 𝑥 + 𝑥 ⊗ 1) + 𝑒1 (1 ⊗ 𝑦1 + 𝑦1 ⊗ 1) + 𝑒2 (1 ⊗ 𝑦2 + 𝑦2 ⊗ 1) .
(4.21)

On the other hand, we have

𝑐𝑚∗(𝑥)+𝑒1𝑚∗(𝑦1) + 𝑒2𝑚∗(𝑦2) = 𝑐 (1 ⊗ 𝑥 + 𝑥 ⊗ 1) (4.22)

+ 𝑒1 (1 ⊗ 𝑦1 + 𝑦1 ⊗ 1) + 𝑒2 (1 ⊗ 𝑦2 + 𝑦2 ⊗ 1) +
𝑝−1
∑
𝑘=1

(
2

∑
𝑖=1

𝑒𝑝
𝑖 𝑏𝑝

𝑖 ) 𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! .

Similarly, note that 𝑒1𝑏1 + 𝑒2𝑏2 = 0 from Equation (4.16) and therefore 𝑒𝑝
1𝑏𝑝

1 + 𝑒𝑝
2𝑏𝑝

2 = 0.

Hence we have

𝑐𝑚∗(𝑥) + 𝑒1𝑚∗(𝑦1 + 𝑒2𝑚∗(𝑦2)

=𝑐 (1 ⊗ 𝑥 + 𝑥 ⊗ 1) + 𝑒1 (1 ⊗ 𝑦1 + 𝑦1 ⊗ 1) + 𝑒2 (1 ⊗ 𝑦2 + 𝑦2 ⊗ 1) .
(4.23)

By combining Equation (4.21) and (4.23), Equation (4.19) holds. It follows that the

algebra homomorphism 𝑚∗ ∶ 𝒪𝐺 → 𝒪𝐺 ⊗ 𝒪𝐺 is well-defined.

Now we check condition (II). We will check the equation

(Id ⊗𝑚∗) ∘ 𝑚∗(𝑧) = (𝑚∗ ⊗ Id) ∘ 𝑚∗(𝑧). (4.24)
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The calculation for the other two equations of (4.18) is straightforward and therefore omitted.

We first fix some notations. Let 𝑅′ be an 𝑅-algebra and let 𝑥, 𝑦, 𝑧 be points of 𝐺(𝑅′). A

point 𝑥 ∈ 𝐺(𝑅′) is given by 𝑥 = (𝑥0, 𝑥(1)
1 , 𝑥(2)

1 , 𝑥2), a quadruple of elements in 𝑅′ satisfying

𝑥𝑝
0 = 0, (𝑥(𝑖)

1 )𝑝 = 𝑎𝑖𝑥0 and 𝑥𝑝
2 = 𝑐𝑥0 + 𝑒1𝑥(1)

1 + 𝑒2𝑥(2)
1 . Similar conditions hold for 𝑦 =

(𝑦0, 𝑦(1)
1 , 𝑦(2)

1 , 𝑦2) and 𝑧 = (𝑧0, 𝑧(1)
1 , 𝑧(2)

1 , 𝑧2). For any 𝑎, 𝑏, 𝑐 ∈ 𝑅′, we define 𝑃(𝑎, 𝑏) ∈ 𝑅′ as

𝑃(𝑎, 𝑏) ≔
𝑝−1
∑
𝑘=1

𝑎𝑘𝑏𝑝−𝑘

𝑘! (𝑝 − 𝑘)! (4.25)

and define

𝑃(𝑎, 𝑏, 𝑐) ≔ ∑
0≤𝑘,𝑙,𝑚≤𝑝−1

𝑘+𝑙+𝑚=𝑝

𝑎𝑘𝑏𝑙𝑐𝑚

𝑘! 𝑙! 𝑚! . (4.26)

One basic property of this expression is

𝑃(𝑎, 𝑏, 𝑐) = 𝑃(𝑎, 𝑏) + 𝑃(𝑎 + 𝑏, 𝑐) = 𝑃(𝑎, 𝑏 + 𝑐) + 𝑃(𝑏, 𝑐). (4.27)

Now we define 𝑠(𝑥, 𝑦) to be the sum of 𝑥 and 𝑦 under the group operation defined by

the coalgebra operators in Equation (4.12). More explicitly, using the notation 𝑃(𝑎, 𝑏), we

define 𝑠(𝑥, 𝑦) ≔ (𝑠0, 𝑠(1)
1 , 𝑠(2)

1 , 𝑠2), where

𝑠0(𝑥, 𝑦) ≔ 𝑥0 + 𝑦0

𝑠(𝑖)
1 (𝑥, 𝑦) ≔ 𝑥(𝑖)

1 + 𝑦(𝑖)
1 + 𝑏𝑖𝑃(𝑥0, 𝑦0)

𝑠2(𝑥, 𝑦) ≔ 𝑥2 + 𝑦2 + 𝑑𝑃(𝑥0, 𝑦0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 ) −
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0)

By Yoneda’s Lemma, Equation (4.24) is equivalent to the associativity of 𝑠, i.e.

𝑠(𝑥, 𝑠(𝑦, 𝑧)) = 𝑠(𝑠(𝑥, 𝑦), 𝑧)

for any 𝑥, 𝑦, 𝑧 ∈ 𝐺(𝑅′). Note that 𝑠0(𝑥, 𝑠(𝑦, 𝑧)) = 𝑠0(𝑠(𝑥, 𝑦), 𝑧) is trivial and 𝑠(𝑖)
1 (𝑥, 𝑠(𝑦, 𝑧)) =

𝑠(𝑖)
1 (𝑠(𝑥, 𝑦), 𝑧) follows from Equation (4.27). The difficult part is checking 𝑠2(𝑥, 𝑠(𝑦, 𝑧)) =

𝑠2(𝑠(𝑥, 𝑦), 𝑧).
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We start with the left side. Denote 𝑤 = (𝑤0, 𝑤(1)
1 , 𝑤(2)

1 , 𝑤2) = 𝑠(𝑥, 𝑦). Therefore

𝑠2(𝑠(𝑥, 𝑦), 𝑧)

=𝑤2 + 𝑧2 + 𝑑𝑃(𝑤0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑤(𝑖)
1 , 𝑧(𝑖)

1 ) −
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑤(𝑖)
1 + 𝑧(𝑖)

1 )𝑝−1𝑃(𝑤0, 𝑧0)

=𝑥2 + 𝑦2 + 𝑑𝑃 (𝑥0, 𝑦0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 ) −
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0)

+ 𝑧2 + 𝑑𝑃(𝑥0 + 𝑦0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑏𝑖𝑃(𝑥0, 𝑦0), 𝑧(𝑖)
1 )

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑏𝑖𝑃(𝑥0, 𝑦0) + 𝑧(𝑖)
1 )𝑝−1𝑃(𝑥0 + 𝑦0, 𝑧0)

(4.28)

Note that 𝑥𝑝
0 = 𝑦𝑝

0 = 0. By definition of 𝑃 in (4.25), we have (𝑃 (𝑥0, 𝑦0))2 = 0. Therefore

𝑃(𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑏𝑖𝑃(𝑥0, 𝑦0),𝑧(𝑖)
1 ) =

𝑝−1
∑
𝑘=1

(𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑏𝑖𝑃(𝑥0, 𝑦0))𝑘(𝑧(𝑖)
1 )𝑝−𝑘

𝑘! (𝑝 − 𝑘)!

=
𝑝−1
∑
𝑘=1

((𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘 + 𝑏𝑖𝑘(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1𝑃(𝑥0, 𝑦0)) (𝑧(𝑖)
1 )𝑝−𝑘

𝑘! (𝑝 − 𝑘)!

=𝑃(𝑥(𝑖)
1 + 𝑦(𝑖)

1 , 𝑧(𝑖)
1 ) +

𝑝−1
∑
𝑘=1

𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑘 − 1)! (𝑝 − 𝑘)!

Plugging this into (4.28), we get

𝑠2(𝑠(𝑥, 𝑦), 𝑧) =

𝑥2 + 𝑦2 + 𝑧2 + 𝑑𝑃(𝑥0, 𝑦0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 ) −
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0)

+
2

∑
𝑖=1

𝑓𝑖 (𝑃(𝑥(𝑖)
1 + 𝑦(𝑖)

1 , 𝑧(𝑖)
1 ) +

𝑝−1
∑
𝑘=1

𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑘 − 1)! (𝑝 − 𝑘)! )

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 ((𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )𝑝−1 − 𝑏𝑖𝑃(𝑥0, 𝑦0)(𝑥(𝑖)

1 + 𝑦(𝑖)
1 + 𝑧(𝑖)

1 )𝑝−2)

⋅ (𝑃 (𝑥0, 𝑦0, 𝑧0) − 𝑃(𝑥0, 𝑦0))
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After rearranging and simplifying, we get

𝑠2(𝑠(𝑥, 𝑦), 𝑧) =

𝑥2 + 𝑦2 + 𝑧2 + 𝑑𝑃 (𝑥0, 𝑦0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 , 𝑧(𝑖)
1 ) (4.29)

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0) +
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑘 − 1)! (𝑝 − 𝑘)!

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0, 𝑧0) +

2
∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0)

+
2

∑
𝑖=1

𝑓𝑖𝑏2
𝑖 (𝑥(𝑖)

1 + 𝑦(𝑖)
1 + 𝑧(𝑖)

1 )𝑝−2𝑃(𝑥0, 𝑦0, 𝑧0)𝑃 (𝑥0, 𝑦0)

Now we calculate the term 𝑃(𝑥0, 𝑦0, 𝑧0)𝑃 (𝑥0, 𝑦0). Note that 𝑥𝑝
0 = 𝑦𝑝

0 = 𝑧𝑝
0 = 0. Therefore

we have

𝑃(𝑥0, 𝑦0, 𝑧0)𝑃 (𝑥0,𝑦0) = ∑
0≤𝑘1,𝑙1,𝑚1≤𝑝−1

𝑘1+𝑙1+𝑚1=𝑝

𝑥𝑘1
0 𝑦𝑙1

0 𝑧𝑚1
0

𝑘1! 𝑙1! 𝑚1! ⋅ ∑
1≤𝑘2,𝑙2≤𝑝−1

𝑘2+𝑙2=𝑝

𝑥𝑘2
0 𝑦𝑙2

0
𝑘2! 𝑙2!

= ∑
2≤𝑘,𝑙,𝑚≤𝑝−1

𝑘+𝑙+𝑚=2𝑝

(
𝑝−𝑚
∑
𝑙1=0

1
(𝑝 − 𝑙1 − 𝑚)! 𝑙1! 𝑚! (𝑝 − 𝑙 + 𝑙1)! (𝑙 − 𝑙1)!) 𝑥𝑘

0𝑦𝑙
0𝑧𝑚

0 .

Here 𝑚1 = 𝑚, 𝑙2 = 𝑙 − 𝑙1, 𝑘2 = 𝑝 − 𝑙2 = 𝑝 − 𝑙 + 𝑙1, 𝑘1 = 𝑝 − 𝑙1 − 𝑚. Note that all 𝑘, 𝑙, 𝑚 are

at least 2. Otherwise at least one of the other 2 variables will be greater than or equal to 𝑝.

The bounds for 𝑙1 is from 0 to 𝑝 − 𝑚 since 𝑙 − 𝑝 − 𝑚 > 0 from 𝑘 ≤ 𝑝 − 1 and 𝑘 + 𝑙 + 𝑚 = 2𝑝.

So 𝑙2 = 𝑙 − 𝑙1 > 0, as we want. Now we want to calculate the constant in the parenthesis,

which is given by the following lemma:

Lemma 4.4.2. For any 2 ≤ 𝑘, 𝑙, 𝑚 ≤ 𝑝 − 1 such that 𝑘 + 𝑙 + 𝑚 = 2𝑝, we have
𝑝−𝑚
∑
𝑙1=0

1
(𝑝 − 𝑙1 − 𝑚)! 𝑙1! 𝑚! (𝑝 − 𝑙 + 𝑙1)! (𝑙 − 𝑙1)! ≡ 1

𝑘! 𝑙! 𝑚! mod 𝑝.

Proof. Note that

𝑝−𝑚
∑
𝑙1=0

1
(𝑝 − 𝑙1 − 𝑚)! 𝑙1! 𝑚! (𝑝 − 𝑙 + 𝑙1)! (𝑙 − 𝑙1)! =

𝑝−𝑚
∑

𝑙1=0
( 𝑙

𝑙1
) (2𝑝 − 𝑙 − 𝑚

𝑝 − 𝑚 − 𝑙1
)

𝑚! 𝑙! (2𝑝 − 𝑙 − 𝑚)! =
(2𝑝 − 𝑚

𝑝 − 𝑚 )

𝑘! 𝑙! 𝑚! .
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Now observe that modulo 𝑝, we have

(2𝑝 − 𝑚
𝑝 − 𝑚 ) = (𝑝 + 𝑝 − 𝑚) ⋅ (𝑝 + 𝑝 − 𝑚 − 1) ⋯ (𝑝 + 1)

1 ⋅ 2 ⋯ (𝑝 − 𝑚) ≡ (𝑝 − 𝑚)(𝑝 − 𝑚 − 1) ⋯ 1
1 ⋅ 2 ⋯ (𝑝 − 𝑚) = 1.

This finishes the proof of the lemma.

From Lemma 4.4.2, we get

𝑃 (𝑥0, 𝑦0, 𝑧0)𝑃 (𝑥0, 𝑦0) = ∑
2≤𝑘,𝑙,𝑚≤𝑝−1

𝑘+𝑙+𝑚=2𝑝

1
𝑘! 𝑙! 𝑚!𝑥

𝑘
0𝑦𝑙

0𝑧𝑚
0 . (4.30)

Plug it into Equation (4.29), we get

𝑠2(𝑠(𝑥, 𝑦), 𝑧) =

𝑥2 + 𝑦2 + 𝑧2 + 𝑑𝑃 (𝑥0, 𝑦0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 , 𝑧(𝑖)
1 )

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0, 𝑧0)

+
2

∑
𝑖=1

∑
2≤𝑘,𝑙,𝑚≤𝑝−1

𝑘+𝑙+𝑚=2𝑝

𝑓𝑖𝑏2
𝑖

𝑘! 𝑙! 𝑚!(𝑥
(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )𝑝−2𝑥𝑘

0𝑦𝑙
0𝑧𝑚

0

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0) +
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑘 − 1)! (𝑝 − 𝑘)!

+
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0)

(4.31)

Now we observe that the last three terms cancel. To see this, we just need to expand the

last term using the binomial expansion:

2
∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0)

=
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 )
𝑝−1

𝑃(𝑥0, 𝑦0) +
2

∑
𝑖=1

𝑝−2
∑
𝑘=0

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑝 − 1)! (𝑘 − 1)! (𝑝 − 𝑘)!

=
2

∑
𝑖=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑝−1𝑃(𝑥0, 𝑦0) −
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑏𝑖(𝑥(𝑖)
1 + 𝑦(𝑖)

1 )𝑘−1(𝑧(𝑖)
1 )𝑝−𝑘𝑃(𝑥0, 𝑦0)

(𝑘 − 1)! (𝑝 − 𝑘)!

(4.32)
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Here, the last step uses (𝑝 − 1)! ≡ −1 mod 𝑝. After canceling the last three terms, we get

𝑠2(𝑠(𝑥, 𝑦), 𝑧) =𝑥2 + 𝑦2 + 𝑧2 + 𝑑𝑃(𝑥0, 𝑦0, 𝑧0) +
2

∑
𝑖=1

𝑓𝑖𝑃(𝑥(𝑖)
1 , 𝑦(𝑖)

1 , 𝑧(𝑖)
1 )

−
2

∑
𝑖=1

𝑓𝑖𝑏𝑖 (𝑥(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )

𝑝−1
𝑃(𝑥0, 𝑦0, 𝑧0)

+
2

∑
𝑖=1

∑
2≤𝑘,𝑙,𝑚≤𝑝−1

𝑘+𝑙+𝑚=2𝑝

𝑓𝑖𝑏2
𝑖

𝑘! 𝑙! 𝑚!(𝑥
(𝑖)
1 + 𝑦(𝑖)

1 + 𝑧(𝑖)
1 )𝑝−2𝑥𝑘

0𝑦𝑙
0𝑧𝑚

0

(4.33)

By the symmetry of this expression, we can conclude that 𝑠2(𝑠(𝑥, 𝑦), 𝑧) = 𝑠2(𝑥, 𝑠(𝑦, 𝑧)).
This completes the proof that the 𝐺 we constructed in Theorem 4.4.1 is a group scheme.
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CHAPTER 5

Γ1(𝑝) -COVER OVER THE SIEGEL THREEFOLD

Let 𝒜 ≔ 𝒜2,1,𝑁 , 𝑁 ≥ 3 be the Siegel threefold, which is the fine moduli scheme of

principally polarized abelian surfaces with symplectic level-𝑁 structure as in Section 2.3. For

the existence of 𝒜, see [28]. In this chapter, we consider the special fiber ̄𝒜 ≔ 𝒜 × Spec 𝔽𝑝.

As in Example 2.2.1, there are 4 Ekedahl–Oort strata of ̄𝒜, corresponding to the superspecial

locus, supersingular (but not superspecial) locus, 𝑝-rank-1 locus and ordinary locus. The loci

have dimensions 0,1,2,3 respectively. On each stratum, there is a canonical group scheme

filtration of the 𝑝-torsion of the universal abelian surface as in Example 2.2.1.

Let 𝒳 be the universal abelian surface over 𝒜 and 𝒳̄ ≔ 𝒳 ×𝒜 ̄𝒜. Let 𝒳̄[𝑝] be the 𝑝-

torsion group scheme of 𝒳̄ and let 𝒳̄×[𝑝] ≔ (𝒳̄[𝑝])× be its subscheme of primitive elements.

We will call the morphism 𝒳̄×[𝑝] → ̄𝒜 “the Γ1(𝑝)-cover” of ̄𝒜. (Note that the name “Γ1(𝑝)-
cover” has different meaning in various papers. For example, Haines and Rapoport use

“Γ1(𝑝)-cover” for the pro-𝑝 Iwahori structure in [16].)

Let 𝑆𝜑 be an Ekedahl–Oort stratum of ̄𝒜. Let 𝒳̄𝜑 be the restriction of 𝒳̄ over 𝑆𝜑 and

let 𝒳̄×
𝜑[𝑝] → 𝑆𝜑 be the restriction of the Γ1(𝑝)-cover. We want to study the geometry of

the Γ1(𝑝)-cover 𝒳̄/𝑆𝜑 on each Ekedahl–Oort stratum by calculating the (local) eqautions.

The main tool in this chapter is the machinery of constructing group schemes from their

Dieudonné modules built in Chapter 4 and Lemma 2.3.3 (particularly Example 2.3.6) for

calculating primitive elements.

5.1 Γ1(𝑝) -cover over the Superspecial Locus

The superspecial locus consists of discrete points. Over each point Spec 𝔽̄𝑝, the universal

abelian surface 𝒳̄𝜑 is a product of supersingular elliptic curves. Let 𝐸 be a supersingular

elliptic curve over Spec 𝔽̄𝑝. Then 𝒳̄𝜑 ≅ 𝐸 × 𝐸 by a result due to Deligne ([40, Theorem

3.5]). Therefore 𝒳̄𝜑[𝑝] ≅ 𝐸[𝑝] × 𝐸[𝑝].
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Note that 𝐸[𝑝] is a self-dual group scheme of rank 𝑝2, killed by 𝑝, of local-local type and

has nonzero Frobenius and Verschiebung. By classical Dieudonné theory over perfect fields,

there is a unique group scheme with these properties, given by

Spec 𝔽̄𝑝[𝑥]/(𝑥𝑝2)

with coalgebra operations

𝑚∗(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑥𝑝𝑘 ⊗ 𝑥𝑝(𝑝−𝑘)

𝑘! (𝑝 − 𝑘)! ,

𝜖∗(𝑥) = 0,

inv∗(𝑥) = −𝑥.

Therefore, we have 𝒳̄𝜑[𝑝] ≅ 𝐸[𝑝] × 𝐸[𝑝] ≅ 𝔽̄𝑝[𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2) with coalgebra operations

as above. The augmentation ideal is given by (𝑥, 𝑦). By Lemma 2.3.3, we can see that

𝒳̄×
𝜑[𝑝] ⊂ 𝒳̄𝜑[𝑝] is defined by ideal (𝑥𝑝2−1𝑦𝑝2−1). To conclude, we have the following result:

for the Γ1(𝑝)-cover 𝒳̄×
𝜑[𝑝]/𝑆𝜑 over the superspecial locus:

Theorem 5.1.1. Let 𝑆𝜑 be the superspecial locus of the Sigel threefold ̄𝒜. Over each point

of 𝑆𝜑, the Γ1(𝑝)-cover 𝒳̄×
𝜑[𝑝]/𝑆𝜑 is given by

Spec 𝔽̄𝑝[𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2, 𝑥𝑝2−1𝑦𝑝2−1)

over Spec 𝔽̄𝑝. In particular, the scheme 𝒳̄×
𝜑 is Cohen–Macaulay, but not Gorenstein.

Proof. It only remains to prove the last statement. Note that the expression of 𝒪𝒳̄×𝜑[𝑝] in

Theorem 5.1.1 is an Artin ring. Therefore 𝒳̄×
𝜑[𝑝] is automatically Cohen–Macaulay. Also

it is easy to see that the socle of 𝔽̄𝑝[𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2, 𝑥𝑝2−1𝑦𝑝2−1) has dimension 1 as an 𝔽̄𝑝-

vector space, spanned by 𝑥𝑝2−1𝑦𝑝2−1, while 𝒪𝒳̄×𝜑[𝑝] has dimension 0. Therefore 𝒳̄×
𝜑[𝑝] is not

Gorenstein.
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5.2 Γ1(𝑝) -cover over the Supersingular Locus

In this section, let 𝑆𝜑 be the supersingular locus of the Siegel threefold and 𝒳̄𝜑 be the

restriction of the universal abelian surface on 𝑆𝜑. Let 𝐺 ≔ 𝒳̄𝜑[𝑝] be the 𝑝-torsion of 𝒳̄𝜑.

Recall that from Example 2.2.1, the canonical filtration of 𝐺 has the form

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ 𝐺3 ⊂ 𝐺4 = 𝐺.

The corresponding canonical type is 𝜌 = (0, 1, 2, 3, 4), 𝑣 = (0, 0, 1, 1, 2) and 𝑓 = (2, 3, 3, 4, 4).
Recall that this means the following:

Rank 𝐺𝑖 = 𝑝𝜌(𝑖), (5.1)

𝑉 (𝐺𝑖) = 𝐺𝑣(𝑖), (5.2)

𝐹 −1(𝐺𝑖) = 𝐺𝑓(𝑖), (5.3)

𝐺⟂
𝑖 = 𝐺4−𝑖, (5.4)

(𝐺𝑖/𝐺𝑗)𝐷 ≅ 𝐺4−𝑗/𝐺4−𝑖. (5.5)

We want to give an explicit description of 𝐺 = 𝐺4. This is precisely the situation in

Theorem 4.4.1. From this, we have the following result:

Theorem 5.2.1. Let 𝒳̄𝜑/𝑆𝜑 be the universal abelian surface over the supersingular locus of

the Siegel threefold. Let 𝑥 ∈ 𝑆𝜑 be a point and let 𝑅 ≔ 𝒪𝑥,𝑆𝜑
be the local ring at 𝑥 ∈ 𝑆𝜑.

Let 𝑆 = Spec 𝑅 and let 𝒳̄𝑆 be the pullback of 𝒳̄𝜑 to 𝑆. Consider its 𝑝-torsion 𝐺 ≔ 𝒳̄𝑆[𝑝].
Then there exists a 10-tuple (𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐, 𝑑, 𝑒1, 𝑒2, 𝑓1, 𝑓2) with entries in 𝑅, so that

𝐺 = 𝐺4 ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2, 𝑧]/ (𝑥𝑝, 𝑦𝑝
𝑖 − 𝑎𝑖𝑥, 𝑧𝑝 − 𝑐𝑥 − 𝑒1𝑦1 − 𝑒2𝑦2)
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where coalgebra operations given by

𝑚∗(𝑥) ≔1 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝑚∗(𝑦𝑖) ≔1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑏𝑖𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! ,

𝑚∗(𝑧) ≔1 ⊗ 𝑧 + 𝑧 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑑𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! +
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑦𝑘
𝑖 ⊗ 𝑦𝑝−𝑘

𝑖
𝑘! (𝑝 − 𝑘)!

−
2

∑
𝑖=1

𝑝−1
∑
𝑘=1

𝑓𝑖𝑏𝑖 (1 ⊗ 𝑦𝑖 + 𝑦𝑖 ⊗ 1)𝑝−1 (𝑥𝑘 ⊗ 𝑥𝑝−𝑘)
𝑘! (𝑝 − 𝑘)! .

The primitive elements of 𝐺 is given by

𝐺× ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2, 𝑧]/ (𝑥𝑝, 𝑦𝑝
𝑖 − 𝑎𝑖𝑥, 𝑧𝑝 − 𝑐𝑥 − 𝑒1𝑦1 − 𝑒2𝑦2, 𝑥𝑝−1𝑦𝑝−1

1 𝑦𝑝−1
2 𝑧𝑝−1)

Proof. This is an immediate corollary of Theorem 4.4.1 and Example 2.3.6.

In Theorem 5.2.1, the only property we used about 𝒳̄𝑆[𝑝]/𝑆 is that it allows a canoni-

cal filtration that satisfies properties (5.2)-(5.5). It does not use the properties of the base

scheme, i.e. the supersingular locus of the Siegel threefold. To make a more precise descrip-

tion of the group scheme 𝒳̄𝑆[𝑝]/𝑆, we can use a construction of the supersingular locus by

Moret-Bailly [25] and Oort [32]. This construction is also studied in [18].

Let 𝐸 be a supersingular elliptic curve over 𝔽̄𝑝 and consider 𝐸 × 𝐸. Note that the kernel

of Frobenius on 𝐸 × 𝐸 is 𝛼𝑝 × 𝛼𝑝. For each 𝜇 ∈ 𝔽̄𝑝, we define a group scheme morphism

𝜇∗ ∶ 𝛼𝑝 → 𝛼𝑝 by sending 𝑎 ↦ 𝜇𝑎. Let (𝜇, 𝜈) ⊂ 𝔽̄2
𝑝 − {0, 0} and consider the embedding

𝑖𝜇,𝜈 ∶ 𝛼𝑝
(𝜇,𝜈)
−−−→ 𝛼𝑝 × 𝛼𝑝 ⊂ 𝐸 × 𝐸. Note that for any 𝜆 ∈ 𝔽̄×

𝑝 , the image 𝑖𝜆𝜇,𝜆𝜈(𝛼𝑝) is equal

to the image 𝑖𝜇,𝜈(𝛼𝑝) (though the maps are not the same).

Consider ℙ1 = Proj (𝔽̄𝑝[𝜇, 𝜈]) and write 𝛼𝑝 × 𝛼𝑝 × ℙ1 = Spec𝒪ℙ1[𝑥, 𝑦]/(𝑥𝑝, 𝑦𝑝). We

define 𝐻 ⊂ 𝛼𝑝 × 𝛼𝑝 × ℙ1 ⊂ 𝐸 × 𝐸 × ℙ1 to be the subgroup scheme defined by 𝜈𝑥 − 𝜇𝑦 = 0.

In particular, at each point [𝜇, 𝜈] ∈ ℙ1, the restriction 𝐻𝜇,𝜈 ⊂ 𝛼𝑝 × 𝛼𝑝 is the image 𝑖𝜇,𝜈(𝛼𝑝).
Over any affine chart 𝑈 ⊂ ℙ1, the restriction of 𝐻 on 𝑈 satisfies that 𝐻𝑈 ≅ 𝛼𝑝,𝑈 .

Now let 𝒴 ≔ (𝐸 × 𝐸 × ℙ1)/𝐻 to be the quotient abelian surface over ℙ1. This abelian

surface 𝒴/ℙ1 has the following property:
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Proposition 5.2.2. Let ̄𝒜 = 𝒜2,1,𝑁 ×Spec 𝔽𝑝 be the Siegel threefold in characteristic 𝑝 with

𝑁 ≥ 3. Consider the supersingular locus ̄𝒜𝑠𝑠, which is the union of superspecial stratum

and supersingular (but not superspecial) stratum. Then we have

(1) The singular points of ̄𝒜𝑠𝑠 are exactly the points in the superspecial stratum.

(2) Each irreducible component of ̄𝒜𝑠𝑠 is isomorphic to ℙ1 and there are exactly (𝑝 + 1)
branches of ℙ1 intersecting transversally at each superspecial point.

(3) Let 𝑉 ⊂ ̄𝒜𝑠𝑠 be an irreducible component and let 𝒳̄𝑉 be the restriction of the universal

abelian surface on 𝑉 . Then there is an isomorphism 𝜙 ∶ ℙ1 → 𝑉 so that 𝒴 ≅ 𝒳̄𝑉 ×𝑉 ℙ1.

Proof. See [20, Page 193] and [18, Section 2].

Let 𝑆𝜑 be the supersingular stratum and 𝒳̄𝜑 be the universal abelian surface over 𝑆𝜑.

By Proposition 5.2.2, we have

𝒳̄𝜑 ≅ ⨆
𝑖

𝒴 ×ℙ1 𝑈𝑖

where 𝑈𝑖 ⊂ ℙ1 are open subschemes. Therefore, we would want to have a description of

𝒴[𝑝]×/ℙ1 to study the Γ1(𝑝)-cover.

Consider the exact sequence 0 → 𝐻 → 𝐸 × 𝐸 → 𝒴 → 0 and restrict it to 𝑈 =
Spec 𝔽̄𝑝[𝜇] ⊂ Proj 𝔽̄𝑝[𝜇, 𝜈]. In this case, we have 𝐻𝑈 ≅ 𝛼𝑝

(𝜇,1)
−−−→ 𝛼𝑝 × 𝛼𝑝 ↪ 𝐸 × 𝐸. The

exact sequence above yields an exact sequence of Dieudonné modules

𝔻(𝒴)𝑈 → 𝔻(𝐸 × 𝐸)𝑈 → 𝔻(𝐻)𝑈 → 0.

Note that 𝐻 and 𝐸 × 𝐸 are base changed from Spec 𝔽̄𝑝 and 𝔻 is a crystal. Therefore the

Dieudonné module of 𝔻(𝐻)𝑈 and 𝔻(𝐸 × 𝐸)𝑈 can be directly obtained from the Dieudonné

modules of 𝐸 and 𝛼𝑝 over 𝔽̄𝑝. In particular, we have that

𝔻(𝐻)𝑈 = 𝔽̄𝑝 ⊗𝑊(𝔽̄𝑝) 𝒪𝑈 = 𝒪𝑈

and

𝔻(𝐸 × 𝐸)𝑈 =
2

⨁
𝑖=1

𝑊(𝔽̄𝑝){𝐹 , 𝑉 }/(𝐹 − 𝑉 ) ⊗ 𝒪𝑈 .
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From this, we write 𝔻(𝐸 × 𝐸)𝑈 as

𝐿 ≔ 𝔻(𝐸 × 𝐸)𝑈 = 𝑊(𝔽̄𝑝)[𝜇]𝑒1 ⊕ 𝑊(𝔽̄𝑝)[𝜇]𝑒2 ⊕ 𝑊(𝔽̄𝑝)[𝜇]𝑒3 ⊕ 𝑊(𝔽̄𝑝)[𝜇]𝑒4,

where 𝐹𝑒1 = 𝑒3, 𝐹𝑒2 = 𝑒4, 𝐹𝑒3 = 𝑝𝑒1, 𝐹𝑒4 = 𝑝𝑒2, and same for 𝑉 .

Now we want to identify 𝔻(𝒴)𝑈 ⊂ 𝔻(𝐸 × 𝐸)𝑈 , which is the kernel of the map 𝜙 ∶
𝔻(𝐸×𝐸)𝑈 → 𝔻(𝐻)𝑈 . Since 𝐻 is killed by 𝐹 , the kernel ker 𝜙 contains 𝐹𝐿, and 𝔻(𝒴)𝑈 can be

identified with a line ℓ ⊂ 𝐿/𝐹𝐿 which generated by 𝜇𝑒1+𝑒2. To sum up, 𝔻(𝒴)𝑈 ⊂ 𝔻(𝐸×𝐸)𝑈

is generated by 𝑒3, 𝑒4, 𝑝𝑒1, 𝑝𝑒2, 𝜇𝑒1 + 𝑒2. Note that 𝑝𝑒2 = 𝑝(𝜇𝑒1 + 𝑒2) − 𝜇(𝑝𝑒1). Therefore,

we have

𝔻(𝒴)𝑈 = 𝑊(𝔽̄𝑝)[𝜇]𝑝𝑒1 ⊕ 𝑊(𝔽̄𝑝)[𝜇]𝑒3 ⊕ 𝑊(𝔽̄𝑝)[𝜇]𝑒4 ⊕ 𝑊(𝔽̄𝑝)[𝜇](𝜇𝑒1 + 𝑒2),

with Frobenius given by

𝐹(𝑝𝑒1 ⊗ 1, 𝑒3 ⊗ 1, 𝑒4 ⊗ 1, (𝜇𝑒1 + 𝑒2) ⊗ 1) = (𝑝𝑒1, 𝑒3, 𝑒4, 𝜇𝑒1 + 𝑒2)
⎛⎜⎜⎜⎜
⎝

0 1 −𝜇 0
0 0 0 𝜇
𝑝 0 0 1
0 0 𝑝 0

⎞⎟⎟⎟⎟
⎠

, (5.6)

and the Verschiebung given by

𝑉 (𝑝𝑒1, 𝑒3, 𝑒4, 𝜇𝑒1 + 𝑒2) = (𝑝𝑒1 ⊗ 1, 𝑒3 ⊗ 1, 𝑒4 ⊗ 1, (𝜇𝑒1 + 𝑒2) ⊗ 1)
⎛⎜⎜⎜⎜
⎝

0 1 −𝜇 0
0 0 0 𝜇
𝑝 0 0 1
0 0 𝑝 0

⎞⎟⎟⎟⎟
⎠

. (5.7)

Now we are ready for the following result:

Theorem 5.2.3. Let 𝑆𝜑 be the supersingular stratum and let 𝑊 be an irreducible component

of 𝑆𝜑. The Γ1(𝑝)-cover 𝒳̄×
𝑊 [𝑝]/𝑊 is the pullback of 𝒴×[𝑝]/ℙ1

𝔽̄𝑝
via some open immersion

𝑊 → ℙ1
𝔽̄𝑝

. Over each affine chart of the standard cover ℙ1
𝔽̄𝑝

= 𝔸1
0 ∪ 𝔸1

∞, the restricted

Γ1(𝑝)-cover 𝒴×[𝑝]|𝔸1
𝔽̄𝑝

/𝔸1
𝔽̄𝑝

is isomorphic to

Spec 𝔽̄𝑝[𝜇, 𝑥, 𝑦]/(𝑥𝑝2, 𝑦𝑝2 − (𝜇𝑝 − 𝜇)𝑥𝑝, 𝑥𝑝2−1𝑦𝑝2−1) (5.8)

over Spec (𝔽̄𝑝[𝜇]).
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Proof. Without loss of generality, consider 𝑈 = Spec 𝔽̄𝑝[𝜇] ⊂ ℙ1 as above. Other affine

charts are similar. Write 𝐺 = 𝒴[𝑝]. By Section 2.4, we have 𝑀𝑆(𝐺) = 𝑉 𝔻(𝒴)𝑈/𝑝𝑉 𝔻(𝒴)𝑈 .

Following the calculations in (5.6) and (5.7), we can see that 𝑉 𝔻(𝒴)𝑈/𝑝𝑉 𝔻(𝒴)𝑈 is a free

𝒪𝑈 -module with basis 𝑝𝑒3, 𝑝𝑒1, 𝑝𝑒2, 𝜇𝑒3 + 𝑒4 with Frobenius and Verschiebung given by

𝐹(𝑝𝑒3 ⊗ 1, 𝑝𝑒1 ⊗ 1, 𝑝𝑒2 ⊗ 1, (𝜇𝑒3 + 𝑒4) ⊗ 1) = (𝑝𝑒3, 𝑝𝑒1, 𝑝𝑒2, 𝜇𝑒3 + 𝑒4)
⎛⎜⎜⎜⎜
⎝

0 1 −𝜇 0
0 0 0 𝜇
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎟
⎠

,

𝑉 (𝑝𝑒3, 𝑝𝑒1, 𝑝𝑒2, 𝜇𝑒3 + 𝑒4) = (𝑝𝑒3 ⊗ 1, 𝑝𝑒1 ⊗ 1, 𝑝𝑒2 ⊗ 1, (𝜇𝑒3 + 𝑒4) ⊗ 1)
⎛⎜⎜⎜⎜
⎝

0 1 −𝜇 0
0 0 0 𝜇
0 0 0 1
0 0 0 0

⎞⎟⎟⎟⎟
⎠

.

By Theorem 4.4.1, the group scheme 𝐺 can be written as

Spec 𝔽̄𝑝[𝜇, 𝑥, 𝑦1, 𝑦2, 𝑧]/(𝑥𝑝, 𝑦𝑝
1 − 𝑥, 𝑦𝑝

2 + 𝜇𝑥, 𝑧𝑝 − 𝜇𝑦1 − 𝑦2). (5.9)

After substituting 𝑥 = 𝑦𝑝
1 and 𝑦2 = 𝑧𝑝 − 𝜇𝑦1 and changing the variables, we have the

expression (5.8).

On the other chart 𝑇 = Spec 𝔽̄𝑝[𝜈] ⊂ ℙ1, we have 𝑉 𝔻(𝒴)𝑇 /𝑝𝑉 𝔻(𝒴)𝑇 a free 𝒪𝑇 -module

with basis 𝑝𝑒4, 𝑝𝑒1, 𝑝𝑒2, 𝑒3 +𝜈𝑒4. A similar calculation follows and we have the group scheme

as

Spec 𝔽̄𝑝[𝜈, 𝑥, 𝑦1, 𝑦2, 𝑧]/(𝑥𝑝, 𝑦𝑝
1 − 𝜈𝑥, 𝑦𝑝

2 − 𝑥, 𝑧𝑝 − 𝑦1 − 𝜈𝑦2). (5.10)

Note that (5.9) and (5.10) are isomorphic by sending 𝜇 ↦ 𝜈 and swapping 𝑦1 and 𝑦2.

The calculation of primitive elements is immediate from Example 2.3.6.

5.3 Γ1(𝑝) -cover over 𝑝-rank-1 Locus

Let 𝑆𝜑 be the 𝑝-rank-1 stratum and let 𝑥 be a point of 𝑆𝜑. We set 𝑅 = 𝒪𝑠ℎ
𝑆𝜑,𝑥̄, the strict

henselization of the local coordinate ring 𝒪𝑆𝜑,𝑥̄ and set 𝑆 = Spec 𝑅. Recall that in this case,

the canonical filtration is

0 = 𝐺0 ⊂ 𝐺1 ⊂ 𝐺2 ⊂ 𝐺3 ⊂ 𝐺4 = 𝐺.
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The corresponding canonical type is 𝜌 = (0, 1, 2, 3, 4), 𝑣 = (0, 1, 1, 2, 2) and 𝑓 = (2, 2, 3, 3, 4).
We will use the notion mixed extensions in this case, established by Grothendieck. First,

we will give a quick review of this theory. For more details, see [11, Exposé IX, 9.3] and [3,

4.2].

5.3.1 Mixed extensions

Let 𝒞 be an abelian category. Suppose that there are two extensions in 𝒞:

(𝐹) ∶ 0 → 𝑃 → 𝐹 → 𝑅 → 0, (5.11)

(𝐸)∶ 0 → 𝑅 → 𝐸 → 𝑄 → 0. (5.12)

Definition 5.3.1. A mixed extension (extension panachée) of 𝐸 by 𝐹 is an object 𝑥 in 𝒞
together with a filtration

0 ⊂ 𝑋2 ⊂ 𝑋1 ⊂ 𝑋

such that

0 → 𝑋2 → 𝑋2 → 𝑋1/𝑋2 → 0 ≅ 0 → 𝑃 → 𝐹 → 𝑅 → 0, (5.13)

0 → 𝑋1/𝑋2 → 𝑋/𝑋2 → 𝑋/𝑋1 → 0 ≅ 0 → 𝑅 → 𝐸 → 𝑄 → 0. (5.14)

Let Extpan(𝐸, 𝐹) be the category of all mixed extensions of 𝐸 by 𝐹 and let Ext(𝑄, 𝑃 ) be

the category of all extensions of 𝑄 by 𝑃 . We define a functor 𝑤 ∶ Ext(𝑄, 𝑃 )×Extpan(𝐸, 𝐹) →
Extpan(𝐸, 𝐹) as follows: Let 𝑋 be a mixed extension of 𝐸 by 𝐹 . Regard 𝑋 as an ordinary

extension of 𝑄 by 𝐹 . Let 𝐺 be an extension of 𝑄 by 𝑃 . Let ̄𝐺 be the induced extension of

𝑄 by 𝐹 via the injection 𝑃 ↪ 𝐹 :

0 𝑃 𝐺 𝑄 0

0 𝐹 ̄𝐺 𝑄 0
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Then we define 𝑤(𝐺, 𝑋) ≔ ̄𝐺 ∧ 𝑋. Here ∧ denotes the Baer sum in the Ext group. Let

𝑌 = 𝑤(𝐺, 𝑋). We need to define the filtration on 𝑌 to get an element in Extpan(𝐸, 𝐹). By

the definition of 𝑌 , we have an extension in 𝒞:

0 → 𝐹 → 𝑌 → 𝑄 → 0.

Let 𝑌 1 be the image of 𝐹 under the inclusion. Push this exact sequence out along 𝐹 ↠ 𝑅:

0 𝐹 𝑌 𝑄 0

0 𝑅 ̃𝑌 𝑄 0

By 𝑌 = 𝑤(𝐺, 𝑋), one can get ̃𝑌 ≅ 𝐸. We take 𝑌 2 = ker(𝑌 → ̃𝑌 ). In this way we form the

filtration 0 ⊂ 𝑌 2 ⊂ 𝑌 1 ⊂ 𝑌 .

The main result of the theory of mixed extensions is the following proposition:

Proposition 5.3.2. Let 𝐸 and 𝐹 be two extensions as above. Consider the category

Extpan(𝐸, 𝐹) of mixed extensions of 𝐸 by 𝐹 . Let Ext(𝑄, 𝑃 ) be the category of all ex-

tensions of 𝑄 by 𝑃 . Then the set of all isomorphism classes of objects in Extpan(𝐸, 𝐹)
is either empty, or it is a torsor under Ext1(𝑄, 𝑃 ) (the group of isomorphism classes of

extensions) via the functor

𝑤 ∶ Ext(𝑄, 𝑃 ) × Extpan(𝐸, 𝐹) → Extpan(𝐸, 𝐹).

defined above.

5.3.2 Calculations on extensions

Apply the theory of mixed extensions to the filtration 0 ⊂ 𝐺1 ⊂ 𝐺3 ⊂ 𝐺4. We need to

understand the extensions

(𝐹) ∶ 0 → 𝐺1 → 𝐺3 → 𝐺3/𝐺1 → 0

(𝐸) ∶ 0 → 𝐺3/𝐺1 → 𝐺4/𝐺1 → 𝐺4/𝐺3 → 0
(5.15)
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and the Ext group Ext(𝐺4/𝐺3, 𝐺1). We will analyze these groups one by one. We will

analyze (𝐸) first.

First, we consider 𝐺3/𝐺1. Consider the 𝑝-divisible group 𝒳̄𝑆[𝑝∞]. There is a short exact

sequence

0 → 𝒳̄𝑆[𝑝∞]0 → 𝒳̄𝑆[𝑝∞] → 𝒳̄𝑆[𝑝∞]𝑒𝑡 → 0, (5.16)

where 0 denotes the identity component and 𝑒𝑡 denotes the maximal étale quotient. Let ∨
denote the Cartier dual of 𝑝-divisible groups, defined by

𝒳̄𝑆[𝑝∞]∨ ≔ (𝒳̄𝑆[𝑝𝑛]𝐷)𝑛,

where 𝐷 denotes the Cartier dual of finite group schemes. Apply the same exact sequence

to (𝒳̄𝑆[𝑝∞]0)∨ and take Cartier dual again: We get

0 → 𝒳̄𝑆[𝑝∞]𝑚𝑢𝑙 → 𝒳̄𝑆[𝑝∞]0 → (𝒳̄𝑆[𝑝∞]0)𝑢𝑛𝑖 → 0. (5.17)

Consider 𝒢 = (𝒳̄𝑆[𝑝∞]0)𝑢𝑛𝑖. By the construction above, we have 𝒢[𝑝] = 𝐺3/𝐺1 and the

Newton polygon of each point of 𝒢 is of slope (1/2, 1/2). Now we need the following result

by Oort and Zink from [34]:

Proposition 5.3.3. ([4, Proposition 8.6]) Let 𝑅 be a strictly henselian reduced local ring

over 𝔽̄𝑝. Let 𝒢 be an isoclinic 𝑝-divisible group over 𝑆 = Spec 𝑅. Then there is a 𝑝-divisible

group 𝒢0 over 𝔽𝑝 with an isogeny 𝒢0 ×Spec 𝔽̄𝑝
𝑆 → 𝒢.

Applying Proposition 5.3.3 to 𝒢 = (𝒳̄𝑆[𝑝∞]0)𝑢𝑛𝑖, we obtain an isogeny 𝒢0×Spec 𝔽̄𝑝
𝑆 → 𝒢.

By classical Dieudonné theory ([5, III. 8]), there is a unique 𝑝-divisible group of dimension

1 and height 2 over an algebraically closed field, which is the 𝑝-divisible group associated

to a supersingular elliptic curve. Therefore we assume 𝒢0 = 𝐸[𝑝∞] for some supersingular

elliptic curve over 𝔽̄𝑝 and we get an isogeny

𝐸[𝑝∞] ×Spec 𝔽̄𝑝
𝑆 → 𝒢. (5.18)
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Lemma 5.3.4. The isogeny 𝐸[𝑝∞] ×Spec 𝔽̄𝑝
𝑆 → 𝒢 is an isomorphism.

Proof. Here we use the tool of Rapoport–Zink space ℳ of 𝐸[𝑝∞]. For an 𝔽̄𝑝-scheme 𝑇 ,

a 𝑇 -point of ℳ is given by a pair (𝒢, 𝜌), where 𝒢 is a 𝑝-divisible group over 𝑇 and 𝜌 ∶
𝐸[𝑝∞] ×Spec 𝔽̄𝑝

𝑇 → 𝒢 is a quasi-isogeny of height 0. Two points (𝒢1, 𝜌1) and (𝒢2, 𝜌2) are

identified if they are isomorphic. The fundamental result of ℳ is that it is represented by

the formal scheme Spf 𝑊(𝔽̄𝑝)J𝑡K. For more details of this Rapoport–Zink space, see [37, 3.78,

3.79].

The isogeny in (5.18) gives an 𝑆-point of ℳ, which corresponds to a morphism 𝑆 →
Spf 𝑊(𝔽̄𝑝)J𝑡K. Note that the only possible map 𝑆 → Spf 𝑊(𝔽̄𝑝)J𝑡K is by sending 𝑡 ↦ 0
since 𝑆 is smooth (thus integral). So ℳ(𝑆) has only one point and therefore the isogeny

𝐸[𝑝∞] ×Spec 𝔽̄𝑝
𝑆 → 𝒢 is in fact an isomorphism.

By Lemma 5.3.4 above, we see that 𝐺3/𝐺1 is isomorphic to the 𝑝-torsion of a supersin-

gular elliptic curve base changed from a field. Therefore we have

𝐺3/𝐺1 ≅ 𝐸[𝑝] ≅ Spec 𝑅[𝑦1, 𝑦2]/(𝑦𝑝
1 , 𝑦𝑝

2 − 𝑦1) (5.19)

with

𝑚∗
𝐺3/𝐺1

(𝑦1) = 1 ⊗ 𝑦1 + 𝑦1 ⊗ 1,

𝑚∗
𝐺3/𝐺1

(𝑦2) = 1 ⊗ 𝑦2 + 𝑦2 ⊗ 1 +
𝑝−1
∑
𝑘=1

𝑦𝑘
1 ⊗ 𝑦𝑝−𝑘

1
𝑘! (𝑝 − 𝑘)!

Now consider 𝐺4/𝐺3. From the canonical type of 𝐺, we get that 𝐹𝐺4/𝐺3
is an isomor-

phism and 𝑉𝐺4/𝐺3
= 0. Since the base Spec 𝑅 is strictly henselian, we have 𝐺4/𝐺3 ≅ ℤ/𝑝ℤ.

Dually, we also have 𝐺1 ≅ 𝜇𝑝. We write them as

𝐺4/𝐺3 ≅ ℤ/𝑝ℤ ≅ Spec 𝑅[𝑥]/(𝑥𝑝 − 𝑥), 𝑚∗
𝐺4/𝐺3

(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝐺1 ≅ 𝜇𝑝 ≅ Spec 𝑅[𝑧]/(𝑧𝑝), 𝑚∗
𝐺1

(𝑧) = 1 ⊗ 𝑧 + 𝑧 ⊗ 1 +
𝑝−1
∑
𝑖=1

𝑧𝑖 ⊗ 𝑧𝑝−𝑖

𝑖! (𝑝 − 𝑖)! .
(5.20)
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From the discussion above, the two extensions in (5.15) are now given by

(𝐹) ∶ 0 → 𝜇𝑝 → 𝐺3 → 𝐸[𝑝] → 0

(𝐸) ∶ 0 → 𝐸[𝑝] → 𝐺4/𝐺1 → ℤ/𝑝ℤ → 0
(5.21)

Now we want to give the expression of 𝐺4/𝐺1 in (𝐸). Consider 𝐺3/𝐺2. By the canonical

type, we can see that 𝑉𝐺3/𝐺2
= 0 and 𝐹𝐺3/𝐺2

= 0. Then 𝐺3/𝐺2 ≅ 𝛼𝑝 and we write 𝐺3/𝐺2

as

𝐺3/𝐺2 ≅ Spec 𝑅[𝑦1]/(𝑦𝑝
1)

with

𝑚∗
𝐺3/𝐺2

(𝑦1) = 1 ⊗ 𝑦1 + 𝑦1 ⊗ 1.

Note that we have 𝐺4/𝐺3 from (5.20). Consider the extension

0 → 𝐺3/𝐺2 → 𝐺4/𝐺2 → 𝐺4/𝐺3 → 0

By Theorem 4.3.1, 𝐺4/𝐺2 is of the form

𝐺4/𝐺2 ≅ Spec 𝑅[𝑥, 𝑦1]/(𝑥𝑝 − 𝑥, 𝑦𝑝
1 − 𝑎𝑥) (5.22)

with

𝑚∗
𝐺4/𝐺2

(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1, 𝑚∗
𝐺4/𝐺2

(𝑦1) = 1 ⊗ 𝑦1 + 𝑦1 ⊗ 1.

Then we consider the extension

0 → 𝐺2/𝐺1 → 𝐺4/𝐺1 → 𝐺4/𝐺2 → 0

Here again 𝐺2/𝐺1 ≅ 𝛼𝑝. We write it as

𝐺2/𝐺1 ≅ Spec 𝑅[𝑦2]/(𝑦𝑝
2)

with

𝑚∗
𝐺2/𝐺1

(𝑦2) = 1 ⊗ 𝑦2 + 𝑦2 ⊗ 1.

Again by Theorem 4.3.1, 𝐺4/𝐺1 is of the form

𝐺4/𝐺1 ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2]/(𝑥𝑝 − 𝑥, 𝑦𝑝
1 − 𝑎𝑥, 𝑦𝑝

2 − 𝑏𝑥 − 𝑐𝑦1) (5.23)
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with

𝑚∗
𝐺4/𝐺1

(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝑚∗
𝐺4/𝐺1

(𝑦1) = 1 ⊗ 𝑦1 + 𝑦1 ⊗ 1,

𝑚∗
𝐺4/𝐺1

(𝑦2) = 1 ⊗ 𝑦2 + 𝑦2 ⊗ 1 +
𝑝−1
∑
𝑘=1

−𝑎𝑑𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! +
𝑝−1
∑
𝑘=1

𝑑𝑦𝑘
1 ⊗ 𝑦𝑝−𝑘

1
𝑘! (𝑝 − 𝑘)! .

Note that 𝐺3/𝐺1 = ker 𝐹 2
𝐺4/𝐺1

. Comparing with (5.19), we get 𝑐 = 𝑑 = 1 and therefore we

have the expression of 𝐺4/𝐺1 as

𝐺4/𝐺1 ≅ Spec 𝑅[𝑥, 𝑦1, 𝑦2]/(𝑥𝑝 − 𝑥, 𝑦𝑝
1 − 𝑎𝑥, 𝑦𝑝

2 − 𝑏𝑥 − 𝑦1) (5.24)

with

𝑚∗
𝐺4/𝐺1

(𝑥) = 1 ⊗ 𝑥 + 𝑥 ⊗ 1,

𝑚∗
𝐺4/𝐺1

(𝑦1) = 1 ⊗ 𝑦1 + 𝑦1 ⊗ 1,

𝑚∗
𝐺4/𝐺1

(𝑦2) = 1 ⊗ 𝑦2 + 𝑦2 ⊗ 1 +
𝑝−1
∑
𝑘=1

−𝑎𝑥𝑘 ⊗ 𝑥𝑝−𝑘

𝑘! (𝑝 − 𝑘)! +
𝑝−1
∑
𝑘=1

𝑦𝑘
1 ⊗ 𝑦𝑝−𝑘

1
𝑘! (𝑝 − 𝑘)!

This expression of 𝐺4/𝐺1 gives the description of all terms in (𝐸). Now we want to

analyze (𝐹). Note that (𝐹) is in fact the Cartier dual of 𝐸 from the information of the

canonical type. However, the explicit expressions of the group schemes are complicated and

difficult to directly write down the algebras and coalgebras. Therefore, we will also analyse

(𝐹) using another approach based on the fact that 𝐺3 is an extension of the 𝑝-torsion of

supersingular elliptic curves by 𝜇𝑝. The result is as follows:

Lemma 5.3.5. The extension group Ext1
𝑓𝑝𝑝𝑓,𝑆(𝐸[𝑝], 𝜇𝑝) is isomorphic to 𝐸(𝑆)/𝑝𝐸(𝑆).

Proof. We will be using fppf topology throughout this proof. It is a classical result that

for any group scheme 𝐺/𝑆, we have an isomorphism 𝐻1(𝑆, 𝐺) ≅ Ext1
𝑆(𝐺𝐷, 𝔾𝑚). This

isomorphism is explained in many places, for example [43, Theorem 2, Theorem 3]. Apply

this isomorphism to 𝐸[𝑝]. Note that 𝐸[𝑝] is self-dual. Therefore we get an isomorphism

𝐻1(𝑆, 𝐸[𝑝]) ≅ Ext1
𝑆(𝐸[𝑝], 𝔾𝑚)
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For 𝐻1(𝑆, 𝐸[𝑝]), consider the long exact sequence associated to

0 → 𝐸[𝑝] → 𝐸
𝑝
−→ 𝐸 → 0. (5.25)

We get

𝐸(𝑆)
𝑝
−→ 𝐸(𝑆) → 𝐻1(𝑆, 𝐸[𝑝]) → 𝐻1(𝑆, 𝐸). (5.26)

Note that 𝐻1(𝑆, 𝐸) = 0 since 𝐸 is smooth over 𝑆 and 𝑆 is strictly henselian. Therefore

we have 𝐸(𝑆)/𝑝𝐸(𝑆) ≅ 𝐻1(𝑆, 𝐸[𝑝]). Given any point 𝑆 → 𝐸, the 𝐸[𝑝]-torsor over 𝑆 is

obtained by pulling back the short exact sequence (5.25) along 𝑆 → 𝐸.

For Ext1
𝑆(𝐸[𝑝], 𝔾𝑚), consider the long exact sequence associated to the Kummer sequence

0 → 𝜇𝑝 → 𝔾𝑚 → 𝔾𝑚 → 0. (5.27)

We get

Hom(𝐸[𝑝], 𝔾𝑚) → Ext(𝐸[𝑝], 𝜇𝑝) → Ext(𝐸[𝑝], 𝔾𝑚)
𝑝
−→ Ext(𝐸[𝑝], 𝔾𝑚) (5.28)

Since Hom(𝐸[𝑝], 𝔾𝑚) is a sheaf, we get an exact sequence

0 → Hom(𝐸[𝑝], 𝔾𝑚) → Hom(𝐸[𝑝], 𝔾𝑚)(𝑆). (5.29)

Note that Hom(𝐸[𝑝], 𝔾𝑚)(𝑆) = 𝐸[𝑝](𝑆), which vanishes since 𝐸 is supersingular and 𝑆 is

integral. Therefore the first term Hom(𝐸[𝑝], 𝔾𝑚) in (5.28) vanishes. Note that since 𝐸[𝑝]
is annihilated by 𝑝, the map Ext(𝐸[𝑝], 𝔾𝑚)

𝑝
−→ Ext(𝐸[𝑝], 𝔾𝑚) in (5.28) is the zero map.

Therefore we have Ext(𝐸[𝑝], 𝜇𝑝) ≅ Ext(𝐸[𝑝], 𝔾𝑚).
Combining all the above results, we get Ext1

𝑆(𝐸[𝑝], 𝜇𝑝) ≅ 𝐸(𝑆)/𝑝𝐸(𝑆).

The last ingredient from Proposition 5.3.2 is the Ext group Ext(ℤ/𝑝ℤ, 𝜇𝑝). For this, we

have the following lemma:

Proposition 5.3.6. The Ext group Ext1
𝑆(ℤ/𝑝ℤ, 𝜇𝑝) is isomorphic to 𝐻1(𝑆, 𝜇𝑝) ≅ 𝒪∗

𝑆/ (𝒪∗
𝑆)𝑝.
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Proof. Consider the short exact sequence 0 → ℤ → ℤ → ℤ/𝑝ℤ → 0. This gives a long exact

sequence:

Hom(ℤ, 𝜇𝑝) → Ext1(ℤ/𝑝ℤ, 𝜇𝑝) → Ext1(ℤ, 𝜇𝑝) → 0.

Note that 𝑆 is reduced and of characteristic 𝑝. Therefore 𝒪𝑆 has no non-trivial 𝑝-th root of

unity and Hom(ℤ, 𝜇𝑝) = 0. On the other hand, it is easy to see that the extensions of ℤ by

𝜇𝑝 are completely freely determined by the 𝜇𝑝-torsor over 1 ∈ ℤ. Therefore

Ext1
𝑆(ℤ/𝑝ℤ, 𝜇𝑝) ≅ Ext1(ℤ, 𝜇𝑝) ≅ 𝐻1(𝑆, 𝜇𝑝).

The isomorphism 𝒪∗
𝑆/ (𝒪∗

𝑆)𝑝 ≅ 𝐻1(𝑆, 𝜇𝑝) is a classical result of Kummer theory. Con-

sider the Kummer exact sequence 1 → 𝜇𝑝 → 𝔾𝑚
𝑝
−→ 𝔾𝑚 → 1. Then we have the associated

long exact sequence

𝐻0(𝑆, 𝔾𝑚)
𝑝
−→ 𝐻0(𝑆, 𝔾𝑚) → 𝐻1(𝑆, 𝜇𝑝) → 𝐻1(𝑆, 𝔾𝑚).

Since 𝑆 is local, we have that 𝐻1(𝑆, 𝔾𝑚) = Pic(𝑆) = 0. Note that 𝐻0(𝑆, 𝔾𝑚) = 𝒪∗
𝑆, we

have that 𝐻1(𝑆, 𝜇𝑝) ≅ 𝒪∗
𝑆/ (𝒪∗

𝑆)𝑝.

As a conclusion, we record all previous results as follows:

Theorem 5.3.7. The group scheme 𝐺 = 𝐺4 is a mixed extension of

(𝐹) ∶ 0 → 𝜇𝑝 → 𝐺3 → 𝐸[𝑝] → 0

(𝐸) ∶ 0 → 𝐸[𝑝] → 𝐺4/𝐺1 → ℤ/𝑝ℤ → 0

as in (5.21). Here, the extension (𝐸) is explicitly given by Equation (5.19), (5.20) and (5.23).

The extension (𝐹) is the Cartier dual of (𝐸) and can alternatively obtained by Lemma 5.3.5.

All mixed extensions form a Ext1
𝑆(ℤ/𝑝ℤ, 𝜇𝑝)-torsor

𝑤 ∶ Ext1
𝑆(ℤ/𝑝ℤ, 𝜇𝑝) × Extpan(𝐸, 𝐹) → Extpan(𝐸, 𝐹),

where the ext group Ext1
𝑆(ℤ/𝑝ℤ, 𝜇𝑝) ≅ 𝒪∗

𝑆/ (𝒪∗
𝑆)𝑝 and the map 𝑤 is described in Proposition

5.3.2.
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5.4 Γ1(𝑝) -cover over the Ordinary Locus

Now, let 𝑆𝜑 be the ordinary locus. The universal abelian surface 𝒳̄𝜑 is ordinary. In this

case, we have a powerful tool, namely the Serre–Tate theory, to help with analyzing the

Γ1(𝑝)-cover. For details about Serre–Tate local moduli, see [17].

Let 𝑥 ∈ 𝑆𝜑 be a geometric point which corresponds to a principally polarized abelian

variety 𝑋 over 𝔽̄𝑝. Serre–Tate theory states that the deformation space of 𝑋 is canoni-

cally pro-represented by Spf 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K. Alternatively, this means there is a compatible

system of universal principally polarized abelian schemes 𝑋𝑛/ Spec 𝔽̄𝑝[𝑡1, 𝑡2, 𝑡3]/(𝑡1, 𝑡2, 𝑡3)𝑛.

By the definition of the Siegel threefold, this gives canonical isomorphisms ̂𝒪𝑥,𝑆𝜑
/𝑚̂𝑛 →

𝔽̄𝑝[𝑡1, 𝑡2, 𝑡3]/(𝑡1, 𝑡2, 𝑡3)𝑛 where ̂𝒪𝑥,𝑆𝜑
is the completion of the local coordinate ring at 𝑥 and

𝑚̂ is the maximal ideal of ̂𝒪𝑥,𝑆𝜑
. This induces a canonical isomorphism 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K ≅ ̂𝒪𝑥,𝑆𝜑

.

Consider 𝒳̂ ≔ 𝒳̄𝜑 ×𝑆𝜑
Spec ̂𝒪𝑥,𝑆𝜑

. It is the universal abelian surface over the Serre–Tate

local moduli. The goal of this section is to give explicit description of 𝒳̂[𝑝]/ Spec ̂𝒪𝑥,𝑆𝜑
. To

do this, we will calculate the universal extension over the Serre–Tate local moduli.

We first sketch the idea of Serre–Tate theory. Let 𝑋 be the principally polarized ordinary

abelian variety corresponding to 𝑥 ∈ 𝑆𝜑. Let 𝑇𝑝𝑋(𝑘) be the Tate module of 𝑋. By choosing

a basis, 𝑇𝑝𝑋(𝑘) ≅ ℤ2
𝑝. Let 𝑋𝑡 be the dual abelian variety of X. We also have 𝑇𝑝𝑋(𝑘) ≅ ℤ2

𝑝

after a choice of basis.

The first result is that the deformation theory of 𝑋 is the same as the deformation theory

of the associated 𝑝-divisible group 𝑋[𝑝∞] (see [17, Theorem 1.2.1]). Therefore we only need

to work with 𝑋[𝑝∞]. Let 𝕏[𝑝∞] be a deformation of 𝑋[𝑝∞] over an Artin local ring 𝑅. Let

𝑋𝑚𝑢𝑙 the maximal toroidal subgroup of 𝑋[𝑝∞] and let 𝕏𝑚𝑢𝑙 be the unique lift of 𝑋𝑚𝑢𝑙.

Then there is the canonical decomposition

0 → 𝕏𝑚𝑢𝑙 → 𝕏[𝑝∞] → 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝/ℤ𝑝 → 0. (5.30)

It turns out that the extension (5.30) can be obtained from the basic extension

0 → 𝑇𝑝𝑋(𝑘) → 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝 → 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝/ℤ𝑝 → 0. (5.31)
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by pushing out along a unique homomorphism 𝜙𝕏/𝑅 ∶ 𝑇𝑝𝑋(𝑘) → 𝕏𝑚𝑢𝑙. On the other hand,

there is a pairing of group schemes over 𝑅

𝐸𝕏 ∶ 𝕏𝑚𝑢𝑙 × 𝑇𝑝𝑋𝑡(𝑘) → 𝔾̂𝑚, (5.32)

which is the unique lift of the paring of group schemes over 𝑘

𝐸𝑋 ∶ 𝑋𝑚𝑢𝑙 × 𝑇𝑝𝑋𝑡(𝑘) → 𝔾̂𝑚 (5.33)

that is induced from the Weil pairing 𝑋𝑚𝑢𝑙[𝑝] × 𝑇𝑝𝑋𝑡[𝑝](𝑘) → 𝜇𝑝𝑛 . By composing the map

𝜙𝕏/𝑅 ∶ 𝑇𝑝𝑋(𝑘) → 𝕏𝑚𝑢𝑙 with the pairing (5.32), we get a pairing

𝑞(𝕏/𝑅; −, −)∶ 𝑇𝑝𝑋(𝑘) ⊗ 𝑇𝑝𝑋𝑡(𝑘) → 𝔾̂𝑚(𝑅). (5.34)

It turns out that this 𝑞 contains all the information of the deformation 𝕏:

Proposition 5.4.1. ([17, Theorem 2.1]) The construction

𝕏/𝑅 ↦ 𝑞(𝕏/𝑅; −, −)

gives a bijection of the set of isomorphism classes of deformations of 𝑋 and the group

Homℤ𝑝
(𝑇𝑝𝑋(𝑘) ⊗ 𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚(𝑅)).

Now we will calculate the universal extension. Take 𝑒1, 𝑒2 as a basis for 𝑇𝑝𝑋(𝑘) and

𝑓1, 𝑓2 for 𝑇𝑝𝑋𝑡(𝑘). Over the universal base 𝑆 = Spf 𝔽̄𝑝J𝑡11, 𝑡12, 𝑡21, 𝑡22K, let

𝜙 ∈ Hom𝑆(𝑇𝑝𝑋(𝑘) ⊗ 𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚) = Hom𝑆(𝑇𝑝𝑋(𝑘), Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚))

be the universal homomorphism given by 𝑒𝑖 ⊗ 𝑓𝑗 ↦ 𝑡𝑖𝑗. By the Serre–Tate theory above, the

universal extension is the pushout of the basic extension (5.31) along 𝜙:

0 𝑇𝑝𝑋(𝑘) 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝/ℤ𝑝 0

0 Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚) 𝑋̂ 𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝/ℤ𝑝 0

𝜙
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Note that Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚) ≅ 𝔾̂𝑚 × 𝔾̂𝑚 by taking the images of 𝑓1 and 𝑓2. We will

denote the elements in Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚) by their images under this isomorphism. In this

way, the generators of Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚) are denoted by (1+𝑡11, 1+𝑡12) and (1+𝑡21, 1+𝑡22)
and a general element 𝑎𝑒1+𝑏𝑒2 ∈ 𝑇𝑝𝑋(𝑘) is mapped to ((1+𝑡11)𝑎(1+𝑡21)𝑏, (1+𝑡12)𝑎(1+𝑡22)𝑏)
by 𝜙.

Now we consider the 𝑝-torsion 𝑋̂[𝑝] of the fiber coproduct

𝑋̂ = (𝑇𝑝𝑋(𝑘) ⊗ ℚ𝑝) ⊔𝑇𝑝𝑋(𝑘) Hom(𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚).

The points of 𝑋̂[𝑝] are given by

𝑋̂[𝑝](𝐴) = {(𝑎, 𝑏, 𝑥, 𝑦)|𝑎, 𝑏 ∈ {0, … , 𝑝−1}, 𝑥𝑝 = (1+𝑡11)𝑎(1+𝑡21)𝑏, 𝑦𝑝 = (1+𝑡12)𝑎(1+𝑡22)𝑏}
(5.35)

with group multiplication defined by

(𝑎1, 𝑏1, 𝑥1, 𝑦1)+̇(𝑎2, 𝑏2, 𝑥2, 𝑦2) =
⎧{{{{{{
⎨{{{{{{⎩

(𝑎1 + 𝑎2, 𝑏1 + 𝑏2, 𝑥1𝑥2, 𝑦1𝑦2) , if 𝑎1 + 𝑎2, 𝑏1 + 𝑏2 < 𝑝,

(𝑎1 + 𝑎2 − 𝑝, 𝑏1 + 𝑏2, 𝑥1𝑥2
(1 + 𝑡11)𝑝 , 𝑦1𝑦2

(1 + 𝑡12)𝑝 ) , if 𝑏1 + 𝑏2 < 𝑝 ≤ 𝑎1 + 𝑎2,

(𝑎1 + 𝑎2, 𝑏1 + 𝑏2 − 𝑝, 𝑥1𝑥2
(1 + 𝑡21)𝑝 , 𝑦1𝑦2

(1 + 𝑡22)𝑝 ) , if 𝑎1 + 𝑎2 < 𝑝 ≤ 𝑏1 + 𝑏2,

(𝑎1 + 𝑎2 − 𝑝, 𝑏1 + 𝑏2 − 𝑝, 𝑥1𝑥2
(1 + 𝑡11)𝑝(1 + 𝑡21)𝑝 , 𝑦1𝑦2

(1 + 𝑡12)𝑝(1 + 𝑡22)𝑝 ) ,

if 𝑝 ≤ 𝑎1 + 𝑎2, 𝑏1 + 𝑏2.

(5.36)

Note that we haven’t used the polarization structure on 𝐴 yet and hence the dimension

of the formal moduli is 4. Now we consider the polarization. From [17, Theorem 21. (4)],

the principal polarization 𝜆∶ 𝑋 → 𝑋𝑡 lifts to 𝕏 → 𝕏𝑡 if and only if

𝑞(𝕏/𝑅; 𝛼, 𝜆𝑡(𝛽)) = 𝑞(𝕏𝑡/𝑅; 𝜆(𝛼), 𝛽) (5.37)

for all 𝛼 ∈ 𝑇𝑝𝑋(𝑘) and 𝛽 ∈ 𝑇𝑝𝑋𝑡𝑡(𝑘) = 𝑇𝑝𝑋(𝑘). From the symmetry formula in [17,

Theorem 21. (3)], we have

𝑞(𝕏𝑡/𝑅; 𝜆(𝛼), 𝛽) = 𝑞(𝕏/𝑅; 𝛽, 𝜆(𝛼)). (5.38)
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By combining Equation (5.37), (5.38) and since 𝜆 = 𝜆𝑡, we have

𝑞(𝕏/𝑅; 𝛼, 𝜆(𝛽)) = 𝑞(𝕏/𝑅; 𝛽, 𝜆(𝛼)). (5.39)

We choose a basis 𝑒1, 𝑒2 for 𝑇𝑝𝑋(𝑘) and let 𝑓𝑖 = 𝜆(𝑒𝑖), 𝑖 = 1, 2 be a basis of 𝑇𝑝𝑋𝑡(𝑘).
Then Equation (5.39) is equivalent to 𝑞(𝕏/𝑅; 𝑒𝑖, 𝑓𝑗) = 𝑞(𝕏/𝑅; 𝑒𝑗, 𝑓𝑖). Recall that 𝑡𝑖𝑗 is

the image of 𝑒𝑖 ⊗ 𝑓𝑗 under the universal homomorphism 𝜙 ∈ Hom𝑆(𝑇𝑝𝑋(𝑘) ⊗ 𝑇𝑝𝑋𝑡(𝑘), 𝔾̂𝑚).
Therefore the Serre–Tate local coordinates for principally polarized abelian surfaces are given

by 𝑡11, 𝑡12 = 𝑡21, 𝑡22.

Now we denote 𝑡1 ≔ 𝑡11, 𝑡2 ≔ 𝑡12 = 𝑡21 and 𝑡3 ≔ 𝑡22. After changing the variables, we

are now ready to state the final result:

Theorem 5.4.2. Let 𝑆𝜑 be the ordinary locus. Let 𝑆𝜑 be the ordinary locus and 𝑥 be a

closed point of 𝑆𝜑. Let ̂𝒪𝑆𝜑,𝑥 be the completion of the local ring of 𝑆𝜑 at 𝑥. Then the base

change of 𝒳×
𝜑[𝑝]/𝑆𝜑 to Spec ̂𝒪𝑆𝜑,𝑥 is isomorphic to

Spec 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K[𝑥1, 𝑥2, 𝑦1, 𝑦2]/ (
𝑥𝑝

1−𝑃1(𝑦1,𝑦2),𝑥𝑝
2−𝑃2(𝑦1,𝑦2),

𝑦𝑝
1−𝑦1,𝑦𝑝

2−𝑦2,
(𝑦𝑝−1

1 −1)(𝑦𝑝−1
2 −1)Φ𝑝(𝑥1)Φ𝑝(𝑥2)

)

over Spec 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K. Here, Φ𝑝 denotes the cyclotomic polynomial and the polynomials

𝑃1, 𝑃2 ∈ 𝔽𝑝J𝑡1, 𝑡2, 𝑡3K[𝑦1, 𝑦2] are interpolation polynomials characterized by

𝑃1(𝑖, 𝑗) = (1 + 𝑡1)𝑖(1 + 𝑡2)𝑗,

𝑃2(𝑖, 𝑗) = (1 + 𝑡2)𝑖(1 + 𝑡3)𝑗

for 0 ≤ 𝑖, 𝑗 ≤ 𝑝 − 1. The variables 𝑡1, 𝑡2, 𝑡3 are the Serre-Tate coordinates.

Proof. From the description of points of 𝑋̂[𝑝], we can write

𝑋̂[𝑝] = ⨆
𝑎,𝑏=0,…,𝑝−1

𝑋̂𝑎,𝑏

where

𝑋̂𝑎,𝑏 = Spec 𝑅[𝑥, 𝑦]/(𝑥𝑝 − (1 + 𝑡1)𝑎(1 + 𝑡2)𝑏, 𝑦𝑝 − (1 + 𝑡2)𝑎(1 + 𝑡3)𝑏).
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Note that in particular, 𝑋̂0,0 ≅ 𝜇𝑝 × 𝜇𝑝.

We want to modify the description of 𝑋̂[𝑝] to make it consistent with the forms in

the previous cases. Note that the constant group scheme can be written as ℤ/𝑝ℤ ≅
Spec 𝑅[𝑥]/(𝑥𝑝 − 𝑥). Using this for the indices 𝑎, 𝑏 ∈ 0, … , 𝑝 − 1, we can write 𝑋̂[𝑝] as

𝑋̂[𝑝] ≅ Spec 𝔽̄J𝑡1, 𝑡2, 𝑡3K[𝑥1, 𝑥2, 𝑦1, 𝑦2]/ (𝑥𝑝
1 − 𝑥1, 𝑥𝑝

2 − 𝑥2, 𝑦𝑝
1 − 𝑃1(𝑥1, 𝑥2), 𝑦𝑝

2 − 𝑃2(𝑥1, 𝑥2)) .

Here, the polynomials 𝑃1, 𝑃2 ∈ 𝔽𝑝J𝑡1, 𝑡2, 𝑡3K[𝑥1, 𝑥2] are defined by

𝑃1(𝑥1, 𝑥2) = ∑
0≤𝑖,𝑗≤𝑝−1

(1 + 𝑡11)𝑖(1 + 𝑡21)𝑗 ( ∏
𝑘≠𝑖,𝑙≠𝑗

(𝑥1 − 𝑘)(𝑥2 − 𝑙)
(𝑖 − 𝑘)(𝑗 − 𝑙) ) ,

𝑃2(𝑥1, 𝑥2) = ∑
0≤𝑖,𝑗≤𝑝−1

(1 + 𝑡12)𝑖(1 + 𝑡22)𝑗 ( ∏
𝑘≠𝑖,𝑙≠𝑗

(𝑥1 − 𝑘)(𝑥2 − 𝑙)
(𝑖 − 𝑘)(𝑗 − 𝑙) ) .

They are interpolation polynomials so that we have 𝑃1(𝑖, 𝑗) = (1+𝑡1)𝑖(1+𝑡2)𝑗 and 𝑃2(𝑖, 𝑗) =
(1 + 𝑡2)𝑖(1 + 𝑡3)𝑗 for 0 ≤ 𝑖, 𝑗 ≤ 𝑝 − 1.

For the primitive elements 𝑋̂×[𝑝], we will use Lemma 2.3.3 again. Note that in this case,

the augmentation ideal is generated by 𝑥1, 𝑥2, 𝑦1 − 1, 𝑦2 − 1. Note that the constant terms

of 𝑃𝑖(𝑥1, 𝑥2) are equal to 0 since we have 𝑃(0, 0) = 1 from interpolation conditions. Denote

Φ𝑝(𝑥) ≔ 𝑥𝑝 − 1
𝑥 − 1 for the cyclotomic polynomial. Therefore, using the notation in Lemma

2.3.3, the matrix 𝑀 with respect to generators 𝑥1, 𝑥2, 𝑦1 − 1, 𝑦2 − 1 is

𝑀 =
⎛⎜⎜⎜⎜
⎝

𝑥𝑝−1
1 − 1 0 ∗ ∗

0 𝑥𝑝−1
2 − 1 ∗ ∗

0 0 Φ𝑝(𝑦1) 0
0 0 0 Φ𝑝(𝑦2)

⎞⎟⎟⎟⎟
⎠

Therefore the primitive elements 𝑋̂×[𝑝] ⊂ 𝑋̂[𝑝] are defined by (det 𝑀) = (𝑥𝑝−1
1 − 1)(𝑥𝑝−1

2 −
1)Φ𝑝(𝑦1)Φ𝑝(𝑦2).

5.5 Applications

In the previous sections, we use the explicit descriptions of the Γ1(𝑝)-cover to prove some

geometric properties of the Γ1(𝑝)-cover over each stratum. In fact, these descriptions can
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also be used to show some geometric properties of the whole integral model 𝒜 in mixed

characteristics. In this section, we will use the descriptions in Section 5.4 to prove that the

whole Γ1(𝑝)-cover in mixed characteristics is not normal. More precisely, consider the Siegel

threefold 𝒜 = 𝒜2,1,𝑁 in mixed characteristics and let 𝒳 be the universal abelian surface

over 𝒜. We will prove:

Theorem 5.5.1. The universal Γ1(𝑝)-cover (𝒳[𝑝])× over the Siegel threefold 𝒜 in mixed

characteristic is not normal.

Proof. By Serre’s criterion for normality, it is enough to prove that (𝒳[𝑝])× does not satisfy

the condition 𝑅1, which says 𝒪𝒳̄𝑢𝑛,𝑥 is regular for any 𝑥 ∈ 𝒳̄𝑢𝑛 with codimension ≤ 1. In

fact, we will show that the local ring at the generic point of the special fiber, i.e. with respect

to the ideal (𝑝), is not regular.

Recall our notation that 𝒜 is the Siegel threefold over Spec ℤ𝑝 and ̄𝒜 = 𝒜×Spec ℤ𝑝
Spec 𝔽𝑝

is the special fiber. Let 𝜉 be the generic point of the special fiber 𝒜 and let 𝒪𝒜,𝜉 to be the

local ring of 𝜉 in 𝒜. Let 𝐺𝜉 ≔ 𝒳[𝑝] ×𝒜 Spec 𝒪𝒜,𝜉. Then 𝐺×
𝜉 is the universal Γ1(𝑝)-cover

over Spec 𝒪𝒜,𝜉. By Serre’s criterion, it suffices to prove that 𝒪𝐺×
𝜉

is not regular.

Let 𝑘(𝜉) ≔ 𝒪𝒜,𝜉/𝑝𝒪𝒜,𝜉 be the residue field of 𝒪𝒜,𝜉. Note that we also have 𝑘(𝜉) =
Frac(𝒪 ̄𝒜). On the other hand, let 𝑥 ∈ ̄𝒜 be a geometric ordinary point. Let 𝒪 ̄𝒜,𝑥 be the

local ring of ̄𝒜 at 𝑥 and let ̂𝒪 ̄𝒜,𝑥 be its completion. Then we have an inclusion

𝒪 ̄𝒜 ⊂ 𝒪 ̄𝒜,𝑥 ⊂ ̂𝒪 ̄𝒜,𝑥,

which induces a field extension

𝑘(𝜉) = Frac(𝒪 ̄𝒜) ⊂ 𝐾̂ ≔ Frac( ̂𝒪 ̄𝒜,𝑥).

Note that by Serre–Tate theory, we have a canonical isomorphism ̂𝒪 ̄𝒜,𝑥 ≅ 𝔽̄𝑝J𝑡1, 𝑡2, 𝑡3K.
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Now consider the following Cartesian diagrams

̂𝐺×
𝜉 ̄𝐺×

𝜉 𝐺×
𝜉 𝒳×[𝑝]

𝜉′′′ 𝜉′′ 𝜉′

𝜉
Spec 𝐾̂ Spec 𝑘(𝜉) Spec 𝒪𝒜,𝜉 𝒜

□ □ □ (5.40)

By construction, ̂𝐺×
𝜉 / Spec 𝐾̂ is the generic fiber of the group scheme in Theorem 5.4.2, given

by
̂𝐺×
𝜉 ≅ Spec 𝐾̂[𝑥1, 𝑥2, 𝑦1, 𝑦2]/ (

𝑥𝑝
1−𝑥1,𝑥𝑝

2−𝑥2,
𝑦𝑝

1−𝑃1(𝑥1,𝑥2),𝑦𝑝
2−𝑃2(𝑥1,𝑥2),

(𝑥𝑝−1
1 −1)(𝑥𝑝−1

2 −1)Φ𝑝(𝑦1)Φ𝑝(𝑦2)
) . (5.41)

Let 𝜉′′′ be the point of ̂𝐺×
𝜉 in (5.41) corresponding to the maximal ideal 𝑚𝜉′′′ ≔

(𝑥1, 𝑥2, 𝑦1 − 1, 𝑦2 − 1). One can check directly from (5.41) that 𝑚𝜉′′′/𝑚2
𝜉′′′ is a 𝐾̂-vector

space generated by 𝑦1 − 1, 𝑦2 − 1. This proves

dim𝐾̂ 𝑚𝜉′′′/𝑚2
𝜉′′′ = 2. (5.42)

Let 𝜉′, 𝜉′′ be the images of 𝜉′′′ as in (5.40). Then we have

dim𝑘(𝜉′) 𝑚𝜉′/𝑚2
𝜉′ ≥ dim𝑘(𝜉′′) ((𝑝) + 𝑚𝜉′) / ((𝑝) + 𝑚2

𝜉′)

= dim𝑘(𝜉′′) 𝑚𝜉′′/𝑚2
𝜉′′

= 𝑑𝑖𝑚𝐾̂𝑚𝜉′′′/𝑚2
𝜉′′′ = 2

Therefore 𝒪𝐺×
𝜉

is not regular and we finish the proof by Serre’s criterion.
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