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ABSTRACT

IRIS RECOGNITION: ENHANCING SECURITY AND IMPROVING PERFORMANCE

By

Renu Sharma

Biometric systems recognize individuals based on their physical or behavioral traits, viz., face, iris,

and voice. Iris (the colored annular region around the pupil) is one of the most popular biometric

traits due to its uniqueness, accuracy, and stability. However, its widespread usage raises security

concerns against various adversarial attacks. Another challenge is to match iris images with other

compatible biometricmodalities (i.e., face) to increase the scope of human identification. Therefore,

the focus of this thesis is two-fold: firstly, enhance the security of the iris recognition system by

detecting adversarial attacks, and secondly, accentuate its performance in iris-face matching.

To enhance the security of the iris biometric system, we work over two types of adversarial

attacks - presentation and morph attacks. A presentation attack (PA) occurs when an adversary

presents a fake or altered biometric sample (plastic eye, cosmetic contact lens, etc.) to a biometric

system to obfuscate their own identity or impersonate another identity. We propose three deep

learning-based iris PA detection frameworks corresponding to three different imaging modalities,

namely NIR spectrum, visible spectrum, and Optical Coherence Tomography (OCT) imaging

inputting a NIR image, visible-spectrum video, and cross-sectional OCT image, respectively.

The techniques perform effectively to detect known iris PAs as well as generalize well across

unseen attacks, unseen sensors, and multiple datasets. We also presented the explainability and

interpretability of the results from the techniques. Our other focuses are robustness analysis

and continuous update (retraining) of the trained iris PA detection models. Another burgeoning

security threat to biometric systems is morph attacks. A morph attack entails the generation of an

image (morphed image) that embodies multiple different identities. Typically, a biometric image

is associated with a single identity. In this work, we first demonstrate the vulnerability of iris

recognition techniques to morph attacks and then develop techniques to detect the morphed iris



images.

The second focus of the thesis is to improve the performance of a cross-modal system where iris

images arematched against face images. Cross-modalitymatching involves various challenges, such

as cross-spectral, cross-resolution, cross-pose, and cross-temporal. To address these challenges,

we extract common features present in both images using a multi-channel convolutional network

and also generate synthetic data to augment insufficient training data using a dual-variational

autoencoder framework. The two focus areas of this thesis improve the acceptance and widespread

usage of the iris biometric system.
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CHAPTER 1

INTRODUCTION

1.1 Biometrics

Human authentication is very much required in our day-to-day activities, for instance, log in to

a laptop, computer, or mobile; access control to a building; attendance system; ATM transactions,

credit card payment; or border crossing through airports. Traditional ways of human authentication

- knowledge-based (personal identification number (PIN) or secret pattern) and token-based (card)-

are not able to keep pace with the increasing demands of authentication. The traditional ways

require remembering a large number of passwords or carrying a lot many cards or keys, which is

inconvenient for users and also limits the security. Biometrics, which refers to the measurement

and calculation of body characteristics, meet the high demands of authentication requirement as

users need not remember the password or carry the token. It recognizes humans based on their

physical (face, fingerprint, iris), behavioral (signature, gait), and psychophysiological (ECG, EEG)

traits [126]. These traits should be unique, universal, permanent, and measurable. Iris, the annular

region around the pupil, is one of the most popular biometric traits due to its high accuracy, fast

matching, and great stability.

1.2 Anatomy of Iris

Iris is an anterior part of the uveal tract covered by the cornea from the front and supported

by the lens from the back [40]. It separates the anterior and posterior chambers of the eye. At

its base, it is connected to the eye’s ciliary body and another end leads to the pupil. The frontal

view of the iris is a colored annular region surrounding the pupil of an eye and surrounded by

the sclera of an eye (Figure 1.1 (a)). The diameter of the iris is approximately 12 mm and the

circumference is 38mm. The frontal iris pattern ((Figure 1.1 (b)) consists of two zones - pupillary

and ciliary zone - separated by collarette. The pupillary zone (Figure 1.1 (c)) lies in the proximity
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of the pupil and contains sphincter muscles, connecting crests, and pigment or pupillary ruff. The

sphincter muscles encircle the pupil and controlled by parasympathetic nerve endings. It constricts

the pupil in the presence of high illumination (miosis). The ciliary zone (Figure 1.1 (c)) consists

of crypts, contraction furrows, dilator muscles. The dilator muscle fibers run radially and control

by sympathetic nerve ending. It dilates the pupil in low illumination (mydriasis). Figure 1.2 shows

the frontal view of the iris captured by different imaging techniques.

Figure 1.1: Frontal view of the iris: (a) ocular image, (b) focused view of the iris pattern, and (c)
frontal anatomy of the iris [40].

The cross-sectional view of captured using Optical Coherence Tomography (OCT) imaging

is shown in Figure 1.3 (a). The arc-like structure is the cornea, whereas the cloud-like structure

corresponds to the iris tissue structure. Figure 1.3 (b) shows iris cross-sectional anatomical view.

It consists of four layers from anterior to posterior: (a) anterior border layer, (b) stroma layer,
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Figure 1.2: Iris images captured using different imaging techniques: (a) captured in the visible
spectrum illumination, and (b) captured in the near-infrared spectrum illumination.

(c) anterior epithelium layer, and (d) posterior pigmented epithelium layer. The anterior border

layer contains interconnected connective tissues (fibroblasts) and beneath them, pigment cells

(melanocytes) derived from the anterior stroma. The border layer is absent in the crypts and

contraction furrows. It is thickest in the pupillary zone and at the periphery of the ciliary zone.

The stroma layer consists of a loose collagenous network of sphincter pupillae muscles, blood

vessels, nerves, fibroblasts, melanocytes, clump cells, and mast cells. Melanocytes present in the

anterior border and stroma layer mainly contribute to the color of the iris. Dark-colored iris (brown,

black) are profuse in melanocytes, whereas light-colored iris (blue, green, or gray) are sparse in

melanocytes. The anterior epithelium layer is about 12.4 `m in thickness and mainly consists of

dilator pupillae muscle. The last posterior pigment epithelium is a layer of cells derived from the

internal layer of the optic cup. It mainly consists of pigmented cells.

1.3 Automated Iris Recognition System

The complex structure of the iris results in randomness in the iris pattern, which in turn supports

the uniqueness at the planetary scale of the global human population [68]. Iris patterns of left and

right eyes of an individual and iris patterns of monozygotic twins are also not similar. Due to its

uniqueness and universality, it is considered as a suitable and reliable biometric trait employed for

authentication.

Biometric authentication occurs in two stages — enrollment and recognition [126]. During

3



Figure 1.3: Cross-sectional view of the iris: (a) image captured from optical coherence tomography
imaging and (b) transverse anatomy of the iris [295].

the enrollment stage, an individual presents their biometric sample (iris) to the acquisition unit.

The sample is then transformed into a biometric template which gets stored in the enrollment

database (also known as reference or gallery set). Each enrolled template is associated with a

unique identifier. During the recognition stage, an individual again presents their biometric sample

for authentication, which gets transformed into a biometric template. The query template is then

matched against enrolled templates either in identification or verification mode. In identification,

the query template is matched against all enrolled templates (one-to-many matching) and returns

an identifier associated with it. In verification, the query template is input along with a claimed

identity. Hence, the query template is matched against the claimed identity enrolled template

(one-to-one matching) and returns the boolean value (verified or not verified). The brief of iris

recognition pipeline (Figure 1.4) is provided in the following steps:

• Acquisition: The acquisition module acquired an iris image from an individual using a

specialized iris sensor. Most commercial iris sensors capture iris images in near-infrared

(NIR) illumination range (700–900 nm), though most smartphones capture in visible spec-

trum (VIS) range (400-700 nm). Different spectral bands can potentially be used to capture

different components of the iris. NIR illumination predominantly captures the stromal fea-

tures (fibrovascular layer) of the iris, whereas VIS captures information about the pigment

melanin.
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• Iris Segmentation: The iris segmentation module locates the iris region from the acquired

image. It involves the detection of pupillary (the inner boundary between the pupil and the

iris) and limbic (the outer boundary between the iris and the sclera) boundaries. However,

researchers also include detection of occlusions to the iris region, such as specular reflections,

upper and lower eyelashes, upper and lower eyelids. Iris segmentation techniques in the

literature can be categorized as edge-based, region growing-based, active contour-based,

and learning-based (machine learning and deep learning). The edge-based approaches first

detect edge points in an iris image and then fit circular or elliptical models to detect pupillary

and limbic boundaries. Most popular edge-based methods used for segmenting iris region

are integrodifferential operators [69], Hough transforms [295]. Tan et al. [264] proposed

a combination method of region clustering, semantic refinements, and integrodifferential

operators. These techniques assume the circular inner and outer boundaries for the iris region.

Other researchers fitted elliptical models [80, 158, 183, 196, 236, 319]. The region growing

approaches detect various regions in the entire image and perform semantic refinements

to obtain the iris region. Various works that fall under this category are [8, 87, 131, 307,

316]. Later, the boundaries shape assumption is relaxed in active contour-based approaches

by fitting irregular boundaries. Various research works based on active contour to detect

iris boundaries are [24, 31, 67, 127, 134, 147, 187, 247, 247, 282]. The last learning-based

approaches of segmentation aim to classify image pixels into iris and non-iris categories

using machine learning techniques, such as SVM classifier [231, 263], AdaBoost [157],

triplet Markov fields (TMF) [27], fast-structured random forest [103] and graph-cuts [209].

With the success of deep learning techniques in other computer vision tasks, it has also been

utilized in iris segmentation [19, 104, 112, 160,238,275].

Researchers also focus on segmenting the iris region in visible spectrum images [20, 207].

NICE I [4] presented a competition of iris segmentation techniques for the visible spectrum

images. A detailed description of iris segmentation techniques are included in [35,130,218].

• Iris Normalization: After the iris segmentation, the circular iris region is mapped to a
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fixed dimension region by the iris normalization module. Typically, the rubber sheet model

proposed by Daugman [62] is used for iris normalization. It maps the segmented circular iris

region defined in cartesian coordinates (x, y) to rectangular polar coordinates (r, \). It helps

in minimizing variations in the area of the iris region due to the dilation and contraction of

the pupil.

• Feature Extraction: The feature extraction module is responsible for extracting salient or

discriminative features from the normalized or unnormalized iris images and represents the

images in a compressed form (template), commonly known as IrisCode. Daugman [69]

utilized phase information from normalized iris using quadrature 2D-Gabor wavelets to cre-

ate a feature template of 2,048 phase bits. Iris feature extraction techniques defined in the

literature can be categorized as texture filtering approaches, texture analysis approaches,

patch-based approaches, sparse coding, and deep learning representation techniques. Tex-

ture filtering approaches extract iris texture using standard texture filters, such as Gabor

filters [12, 62, 69, 173], wavelet transform [30, 32, 184, 283], ordinal features, [257], dis-

crete cosine transform (DCT) [179], local intensity variation [151, 169], phase correla-

tion approach [177, 320], Zernike moments [261], and binarized statistical image features

(BSIF) [59, 226]. Texture analysis approaches explore underlying iris texture representation

using different methods, such as gray-level co-occurrence matrices (GLCM) [77], local-

global graph methodology [310], probabilistic graphical models [139], SURF features [175],

dynamic programming [210], SIFT features [15, 200, 258], geometric key-based iris en-

coding [262], bayesian estimation [268, 291], and shape-based features [48]. However,

the performance of these methods is not showing much improvement over the traditional

texture filtering approaches. Another category of feature extraction techniques is patch-

based. The patch-based approaches tessellate an iris image into smaller patches, extract

features from patches, and combine them. The research works that fall under this category

are [25,162,179,205]. The patch-based encoding helps in handling occlusion and non-linear

deformations. The sparse coding-based techniques are useful in handling iris images cap-
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tured in non-ideal conditions (low resolution, blur and defocus) [148,149,202,317]. Recently,

deep learning-based techniques are applied to extract discriminative features from the iris

images [38,91,92,164,189,208]. A detailed description of iris feature extraction techniques

is included in [35, 37, 188].

• Comparator: The comparator module performs matching of two iris templates (query

template and enrolled template) to establish an identity of an individual and outputs a match

score. The match score could be a similarity measure or dissimilarity measure. However,

in iris biometrics, hamming distance [62] is generally used to calculate the match score. It

is an XOR operation between the two IrisCodes after masking the non-iris bits (eyelids or

eyelashes). Hamming distance of two different irides should be equal to 0.5, whereas the

hamming distance of two IrisCodes from the same iris should be 0.

Figure 1.4: Various steps of the automated iris recognition process. It consists of the acquisition of
an iris image from an individual, segmentation of iris region, iris region normalization, extraction
of features from the iris image, and then the matching of the iris template against the enrolled
templates.

1.3.1 Applications

Iris recognition systems have been deployed in a wide range of applications around the world. Few

prominent applications of iris recognition are listed below:

7



• The United Arab Emirates implemented an iris biometric system for border control.1 Entry

through any means land, air, or seaports is now through iris biometrics. There are 1.2 million

records in the database and 14 billion matches per day.

• The Amsterdam Schiphol Airport, Netherlands, also implemented iris recognition to expe-

dited, passport-free border security checks since 2001.2

• TheHashemite Kingdom of Jordan deployed an iris-enabled automated teller machine (ATM)

at Cairo Amman Bank in 2009.3 In June 2012, UNHCR registered Syrian refugees in Jordan

onCairoAmmanBankATMs.4 The system is used to provide financial assistance to refugees.

• India’sAadhaar project is theworld’s largest biometrics-based identification systemwithmore

than 1.28 billion enrollments (April 2021) [6]. The project is to assign a 12-digit unique

identification (UID) number to all the residents of India. The UID number is associated with

an individual’s demographic and biometric information such as a photograph, ten fingerprints,

and two iris scans. Various services are also linked with the UID number: electronic-Know

Your Client (e-KYC) service, government subsidies distribution, telecom services, income

tax services, and financial services.

• Biometric e-passport has been endorsed by 120 countries (since June 2017) [1]. It supports

facial, fingerprint, and iris recognition.

• Various mobile platforms also implemented iris recognition for locking and unlocking the

mobile devices5: Samsung Galaxy S8 and S9 series, Microsoft 950 XL, Fujitsu NX F-04G,

Vivo X5Pro, ZTE Grand S3, Alcatel Idol 3, and UMI Iron.

1https://www.cl.cam.ac.uk/ jgd1000/UAEdeployment.pdf
2https://www.schiphol.nl/en/privium/how-the-iris-scan-works/
3https://www.cab.jo/services/IRIS%20Recognition
4https://www.unhcr.org/innovation/using-biometrics-bring-assistance-refugees-jordan/
5https://webcusp.com/list-of-all-eye-scanner-iris-retina-recognition-smartphones/
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Figure 1.5: Various applications of iris recognition system: (a) UAE border control system, (b)
India’s national ID project, (c) Hashemite Kingdom of Jordan’s iris-enabled ATM, (d) Biometric
e-passport, and (e) Mobile access control.

1.3.2 Challenges

Despite the wide deployment of iris recognition systems, there are various open challenges in iris

recognition systems as listed below:

1. Low-quality Images: Iris recognition performs considerably well when iris images are

captured in a controlled environment. However, when the iris images are captured in non-

ideal conditions, it negatively impacts the performance of recognition. Non-ideal scenarios

result in degradation of image quality in various ways, such as occlusion by eyelids, occlusion

by eyelashes, specular reflections, motion blur, off-angle gaze, low resolution, illumination

variations, eyeglasses, or contact lenses. Figure 1.6 shows a good quality iris image along

with few low-quality iris images. Various works showed the impact of low-quality images on

the performance and also proposed mitigation measures [21,36,128,159,209,235,237,243,

271]. The NIST IREX II-IQCE report [260] evaluated various iris image quality assessment

algorithms.

Figure 1.6: Samples of a good quality iris image and few low-quality iris images.

2. Pupil Dilation: Generally, pupil diameter lies in the range of 1.5 mm to 8 mm and can be

dilated to over 9 mm. Visual features also get affected on dilation, pupillary ruff become
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thinner or even disappear, crypts become oblique, vessels become more tortuous, and the

contraction and peripheral furrows deepen [40]. Pupil dilation occurs due to light intensity

change, alcohol consumption, drug usage, age, disease, eye drops, a person’s emotional state,

and perceptual events. Several studies [18, 36, 100, 115, 270] show the negative impact of

pupil dilation on iris recognition.

3. Iris Aging: The resting pupil size decreases with age due to fibrotic changes in the sphincter

and atrophy of the dilator muscles [40]. However, iris recognition is considered relatively

stable despite these changes [99,177,179,268]. On the contrary, in [36,84,269], the authors

observed the decrease in iris recognition performance. Later, the works by [29,111,239,273,

294] analyzed various other covariates along with time-lapse responsible for the degradation

of iris recognition performance, such as sensor aging (commonly denoted as pixel defects),

segmentation errors, quality measures (blur, illumination variation, noise, occlusion), and

geometrical factors (pupil dilation). The maximum time span used in the experiments to

validate the influence of aging on iris recognition is nine years. Therefore, there is a need

to perform experiments on a larger dataset with a longer time span to validate the effect of

aging on automated iris recognition.

4. Iris Diseases: Ophthalmic disorders not only degrade the iris recognition performance but

also increase the failure to enroll rate. These disorders may include cataract, glaucoma, iridis,

rubeosis iridis, acute anterior uveitis, aniridia, ciliary body leiomyoma, lisch nodules, iris

melanoma, heterochromia synechiae, hyphema, iris cysts, iris prolapse, corneal pathologies,

and iridodialysis. American Academy of Ophthalmology6 reported 24.4 million cataract

patients, 7.7 million diabetic retinopathy patients, 2.7 million glaucoma patients, and more

than 2.1 million age-related macular patients. There occur more than 7.63 million cataract

surgeries (aged 50+ years) in India [101] in the year 2020. Various research works focus on

the impact of these disorders on iris recognition in [28, 142, 190, 274].

6https://www.aao.org/newsroom/eye-health-statistics
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5. Sensor Interoperability: The challenge of sensor interoperability arises with the use of

different iris sensors where users enrolled using one model of iris sensor and probe images

are acquired using another new iris sensor. The situation of cross-sensor matching also arises

when the iris image of one application (e.g., national ID) matches with iris images of another

application (e.g., law enforcement) where capturing sensors are different. Bowyer et al. [36]

showed higher false non-matches when images of different sensors are matched compared

with the images of the same sensor. The cross-sensor matching accounts for the differences

in the relative position of illumination sources and human eyes, camera characteristics, and

spectrums (visible or near-infrared). Various research works focus on cross-sensor matching

in [91, 186, 201].

6. Security: In [90], researchers reconstructed iris images from iris templates and used them to

attack commercial iris recognition systems, with a success rate of around 80%. Samsung’s

new Galaxy S8 smartphone has also been defeated by German hackers using dummy eyes. In

another case, eye dropswere used to cause excessivemydriasis and bypass the iris recognition-

based border control in UAE. Biometrics considers an integral part of the human body, so the

compromise in the individual biometric template compromises his/her identity. Therefore, it

is essential to maintain the integrity of the biometric system and protect it from various types

of attacks. Section 1.4 provides details of different attacks employed on biometric systems.

7. Cross-modal Matching: Cross-modal matching associates data of one biometric modality

to another modality. It is required when the legacy database or enrolled template of query

identity is not available. It is also beneficial when we need to map genomic data to phenotypic

traits [163]. However, the matching involves various challenges due to the difference in

modalities, sensors, spectrums, and resolutions. Matching of iris images with face images

is discussed in Section 1.5.he challenge of sensor interoperability arises with the use of

different iris sensors where users enrolled using one model of iris sensor and probe images

are acquired using another new iris sensor.
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The focus of this thesis is on the last two (security and cross-modal matching) challenges of the

iris recognition system.

1.4 Security of Iris Recognition System

In [3,224], authors identified nine points of attack in the generic biometric system (Figure 1.7):

(1) at the acquisition unit (presentation of a plastic eye to the iris sensor); (2) at the communication

channel between the acquisition channel and feature extraction unit (modification of captured

biometric sample); (3) at the feature extraction unit (trojan horse attack on feature extractor); (4) at

the communication channel between feature extraction unit and comparison unit (attack on TCP/IP

protocol and alteration of feature template); (5) at the data storage unit (tampering of enrolled

templates); (6) at the communication channel between the data storage unit and comparison unit

(attack on TCP/IP protocol and alteration of an enrolled template); (7) at the comparison unit

(modification of matching algorithm or match score); (8) at the communication channel between

comparison unit and decision unit (attack on TCP/IP protocol and modification of match score); (9)

at the decision unit (change or flip of the decision). Cryptography or encryption techniques could

prevent attacks at the communication channels (4, 6, 8 attack points). The attacks on the feature

extraction (3 attack point), data storage (5 attack point), and comparison (7 attack point) units can

be mitigated by keeping these units at a secure location. The attacks before feature extraction (1,

2 attack points) can be resolved by the implementation of additional modules for the detection of

fake presentation or modification of a biometric sample. The focus of the thesis is on the attacks

employed at attack points 1 (sensor-level) and 2 (image-level) shown in orange boxes of Figure 1.7.

These attacks are easier to deploy as they do not require any internal knowledge of the system. The

two significant attacks fall in these categories are presentation attacks and morph attacks.

1.4.1 Iris Presentation Attacks

According to ISO/IEC 30107-1:2016 [3], a Presentation Attack (PA) is a “presentation to the

biometric data capture subsystem with the goal of interfering with the operation of the biometric
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Figure 1.7: Generic biometric system and the various points of attacks launched on the system [224].
The attacks shown in orange boxes (presentation and morph attacks) are our focused research area.

system". The biometric characteristics or materials used to launch a presentation attack are termed

Presentation Attack Instruments (PAIs). Examples of iris PAIs are printed iris images [57,64,113,

211], artificial eyes (plastic, glass, or doll eyes) [113,152], cosmetic contacts [123,212,300], video

display of an eye image [58, 214], cadaver eyes [58, 172], robotic eye models [143], holographic

eye images [193], mannequin eye, and eye presentation under coercion. Figure 1.8 shows few

samples of iris PAIs. In [3], iris PAIs are categorized as artificial, human-based, and other natural

(animal or plant-based). The artificial PAIs are further categorized as complete (print or plastic

eye) and partial (cosmetic contacts). The human-based PAIs are categorized as lifeless (cadaver

eyes), altered (iris surgeries), non-conformant (off-gaze iris or occlusion by eyelids), coerced

(unconscious or under duress), and conformant (zero effort impostor attempt). The objective is to

detect the aforementioned presentation attacks along with future unknown attacks.

Typically, presentation attack detection (PAD) techniques follow are similar procedures as used

by the biometric recognition system. It consists of capturing raw data from the sensor (additional

or same recognition sensor), feature extraction from the raw data, and classification of features

into detection or not detection classes based on pre-specified decision criteria. The PAD process

can be performed simultaneously (additional sensor) or sequential (biometric recognition sensor).
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In the literature, existing iris PAD techniques are categorized as hardware-based or software-

based. The software-based techniques utilize the iris image captured from the conventional iris

sensors, whereas the hardware-based techniques employ additional hardware to detect the liveness

characteristics (eye blinking, pupil dilation or contraction, etc.). Czajka and Bowyer [58] proposed

another categorization based on the type of input (image or video) and type of response (active or

passive). The categorization includes four categories: static iris passively imaged (static features

from still iris image), static iris actively imaged (features from multi-spectral iris images), dynamic

iris passively imaged (features from pupil hippus), and dynamic iris actively imaged (dynamic

features from stimulated pupil reflex). Various competitions and assessments of these iris PAD

techniques can be found in [58, 61, 304–306].

Figure 1.8: Various iris presentation attacks instruments.

1.4.2 Morph Attacks

Morph attack is another focus of our thesis. It is generally employed at the image-level on

the raw biometric image captured from the acquisition sensor and before the image transfer to

the feature extraction module. Though, it can also be performed at feature-level [85, 225], but

requires knowledge of the feature extraction module. The morph attack at the image-level can be

directed by presenting the modified biometric image to the sensor or by digitally uploading it to

the biometric system. The morph attack entails the generation of an image (morphed image) that

embodies multiple different identities. Typically, a biometric image is associated with a single

identity; however, the morphed image can successfully match with multiple identities (Figure

1.9). It violates the fundamental uniqueness property of the biometric system. Morph attack is
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mainly studied in the context of face recognition, where a single passport with a morphed face

image allowed two individuals to pass through the border control security. It has not been widely

investigated in iris recognition.

The morphed biometric images are generated using morphing techniques. In general, morphing

[26] involves the creation of seamless transformation from one image into another. It creates

intermediary morphed images by combining the two images in different proportions. It is a well-

known field of research for the entertainment, education, or medical industry. However, in the

context of biometric systems, it is recently being used to generate morphed biometric image that

has the potential to attack the biometric system [86].

Figure 1.9: Pictorial diagram of iris morph attack. A single morphed iris image can authenticate
two or more individuals, which violates the fundamental uniqueness characteristics of the biometric
system.

1.5 Cross-modal Biometrics

Typically, a biometric system matches samples of the same modality for human recognition.

However, cross-modal biometrics refers to the matching of different modalities to establish the

identity of an individual. For instance, matching of iris images with face images [129], deducing

phenotypic traits from genomic data [163], or mapping face image with voice signal [168, 185].

Figure 1.10 shows some of the examples of cross-model matching. The motivation of performing

cross-modal matching comes from the various scenarios: (a) identify an individual when the legacy
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database or corresponding enrolled template is not available, (b) improve recognition confidence

even if the legacy dataset is available, (c) match noisy probe image when it cannot be matched

with its legacy database, i.e., masked face image, and (d) connect databases of different biometric

modalities to identify an individual globally.

Our focus is on the matching iris images with face images which constitutes the following

challenges:

1. Cross-Modality: This involves matching iris modality images to face modality images.

Though the ocular region is common in both the modalities, but the focus while acquisition

is different in different modalities. In iris image acquisition, the focus is on the iris pattern,

whereas in face image acquisition, the focus is on the entire face.

2. Cross-Sensor: Different sensors are used to capture the face and iris images. Sensors add

various noises to the images, for instance, fixed pattern noise, pixel response non-uniformity

(PRNU), random noise, etc.

3. Cross-Spectrum: Generally, face images are acquired using sensors typically operating in

the visible spectrum (VIS) in contrast to iris images acquired using sensors operating in

the near-infrared (NIR) spectrum. When considering the iris region only, NIR illumination

(700-900nm) captures the stromal features (fibrovascular layer) of the iris, whereas VIS

illumination (400-700nm) captures melanin pigment and a meshwork of ligament features.

4. Cross-Resolution: Iris or ocular regions of the face images are generally of very low resolution

as compared to iris images.

1.6 Thesis Contributions

The main contributions of this proposal are as follows:

1. We propose an effective and robust software-based iris presentation attack (PA) detector

called D-NetPAD using a single near-infrared (NIR) iris image (Figure 1.11 (a)). It is
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Figure 1.10: Examples of cross-modal matching: (a) iris modality matches with face, (b) deducing
phenotypic traits from genomic data, and (c) mapping face image with the voice signal.

based on the densely connected convolutional neural network architecture. It demonstrates

generalizability across PA artifacts, sensors, and datasets. We conduct experiments on a

proprietary dataset and two publicly available datasets (LivDet-Iris 2017 and LivDet-Iris

2020) that substantiate the effectiveness of the proposed method for iris PA detection. The

proposed method results in a true detection rate of 98.58% at a false detection rate of 0.2%

on the proprietary dataset and outperforms state-of-the-art methods on the LivDet-Iris 2017

and LivDet-Iris 2020 datasets. We also explore the explainability and interpretability of our

method using t-SNE plots and Grad-CAM which help in visualizing intermediate feature

distributions and fixation heatmaps, respectively. Further, we conduct a frequency analysis

to explain the nature of features being extracted by the network.

2. We design a hybrid (a combination of hardware and software-based) iris presentation attack

detector utilizing short videos (approx. 4 secs) captured from a webcam (Figure 1.11 (b)).

The videos are in the visible spectrum focusing on the user interaction with the iris sensor. To

extract discriminative features from the scene, we develop various spatial-temporal feature

extraction techniques. Evaluation is performed on a proprietary dataset (IPV dataset) of

121 subjects. We also extend it for detecting PAs in face modality. For the face modality,

experiments are performed on three publicly available datasets (SiW, SiW-M, and OULU-

NPU). The proposed approach generalizes well across different environments (e.g., changes

in illumination or background), presentation attacks, and modalities.
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3. We propose a hardware-based iris PA detector utilizing Optical Coherence Tomography

(OCT) imaging (Figure 1.11 (c)). The OCT imaging provides a cross-sectional view (internal

structure) of an eye, whereas traditional imaging provides 2D iris textural information. Its

viability is assessed by comparing its performance with respect to traditional iris imaging

modalities, viz., near-infrared (NIR), and visible spectrum. PA detection is performed

using three state-of-the-art deep architectures (VGG19, ResNet50, and DenseNet121) to

differentiate between bonafide and PA samples for each of the three imaging modalities.

Experiments are performed on a proprietary dataset of 2,169 bonafide, 177 Van Dyke eyes,

and 360 cosmetic contact images acquired using all three imaging modalities under intra-

attack (knownPAs) and cross-attack (unknownPAs) scenarios. Promising results demonstrate

OCT as a viable solution for iris presentation attack detection.

4. We assess the robustness of the iris PA detector against architectural parameter perturbations.

The robustness analysis involves three state-of-the-art architectures (VGG, ResNet, and D-

NetPAD), three types of parameter perturbations (Gaussian noise, weight zeroing, and weight

scaling), and two settings (entire network and layer-wise). We conduct evaluations on

the LivDet-Iris-2017 and LivDet-Iris-2020 datasets. Based on the robustness analysis, we

propose improved models simply by perturbing parameters of the network without further

training. Then we combine these perturbed models to improve performance over the original

model. The ensemble models show a 47.59% average improvement on LivDet-Iris-2017

dataset and 5.44% on the LivDet-Iris-2020 dataset.

5. We propose a retrain methodology to maintain the performance of iris PAD in non-stationary

environment. The methodology involves building a new expert model using new oncoming

training data, and makes a final decision for a probe sample by a weighted sum of old and

new iris PAD models scores. We assign the weights dynamically at the run-time for each

probe sample using in-domain models (separate from iris PAD models). The in-domain

model provides information about the membership of a probe sample to the training data. To
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evaluate the proposed method, we experiment with three setups. The first two setups are in

the application of detecting presentation attacks in iris biometric modality. The third setup

compares the proposed method against state-of-the-art continual learning methods on the

split MNIST dataset.

6. We investigate the other adversary attack calledmorph attacks in the context of iris biometrics.

We perform iris morphing at the image level and generate morphed iris images from two

available datasets (IIITD and WVU-Multimodal). We then demonstrate the vulnerability of

three different iris recognition methods (VeriEye, USITv3.0, and CNN-Pairwise) to morph

attacks with a success rate of over 90% at a false match rate of 0.01%. Finally, we provide

preliminary results on the detection of morphed iris images.

7. We propose learning-based methods to perform cross-modal matching (iris modality images

match against face modality images). Cross-modal recognition mainly encounters two chal-

lenges: (i) a large domain gap due to different sensors, spectra, and resolutions, and (ii)

an imbalance in the training data. We propose three deep learning approaches to address

these two challenges. The first approach is at the feature-level, where we jointly extract

discriminative features from two modality images to reduce their domain gap and termed it

Multi-channel CNN. The second approach is at the image-level, where one domain image

is transformed into another utilizing various GAN architectures. The third approach is at

the training-level that resolves the imbalanced training data by generating samples of under-

represented class using the Dual Variational Generation (DVG) framework. We conduct

experiments on BioCop-2008, BioCop-2009, WVU multi-modal, and cross-spectrum PolyU

datasets to substantiate the effectiveness of the proposed approaches.

1.7 Thesis Organization

The remaining document is organized as follows:
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Figure 1.11: Different categories of techniques applied to detect iris presentation attacks: (a)
technique utilizing a single NIR iris image captured from conventional iris recognition sensor and
(b) technique utilizing a video captured from webcam (c) technique utilizing a single iris OCT
image. All these techniques generate a Presentation Attack (PA) score between 0 and 1, where ‘0’
corresponds to bonafide input sample and ‘1’ corresponds to PA input.

• Chapter 2 describes the software-based iris PA detector (D-NetPAD) which utilizes a single

NIR iris image. This chapter covers the first contribution.

• Chapter 3 entails the hybrid iris PA detector which utilizes a scene video captured from a

webcam. This chapter covers the second contribution.

• Chapter 4 describes the hardware-based iris PA detector which utilizes OCT imaging. This

chapter covers the third contribution.

• Chapter 5 assess the robustness of the iris PA detector along with other deep neural networks.

This chapter covers the fourth contribution.

• Chapter 6 explores the retraining strategies for iris PA detectors to keep the performance over

time. This chapter covers the fifth contribution.

• Chapter 7 introduces the iris morph attacks, their potential to attack iris biometric systems,

and their detection technique. This chapter covers the sixth contribution.
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• Chapter 8 provides insight into cross-modality matching of iris images with face images.

This chapter covers the seventh contribution.

• Chapter 9 concludes the thesis and provides some directions for future work.
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CHAPTER 2

IRIS PRESENTATION ATTACK DETECTION USING A SINGLE NIR IMAGE

Parts of this chapter appeared in the following publications:

R. Sharma and A. Ross, “D-NetPAD: An Explainable and Interpretable Iris Presentation At-

tack Detector,” International Joint Conference on Biometrics (ĲCB), September 2020.

P. Das et al., "Iris Liveness Detection Competition (LivDet-Iris) - The 2020 Edition," Interna-

tional Joint Conference on Biometrics (ĲCB), September 2020.

2.1 Introduction

In this chapter, we present a iris presentation attack detection (PAD) method which utilizes a

near-infrared (NIR) iris image captured from the conventional iris sensor. Therefore, the method

does not impose additional overhead when integrated with the existing iris recognition system. The

method is based on a densely connected convolutional neural network (DenseNet). The DenseNet

architecture has a unique property that each layer is connected to every other layer in a feed-

forward fashion and the features across different layers correspond to different resolutions. The

aggregation of these multi-resolution features efficiently characterizes the iris pattern as the iris

pattern is arguably stochastic in nature and the intricate features of the iris stroma are manifested in

multiple resolutions [63]. The source code and trained model of the proposed method are available

at https://github.com/iPRoBe-lab/D-NetPAD.

The main contributions of the work are as follows:

1. We propose an effective and robust iris PA detector named as D-NetPAD that is based on

the DenseNet architecture [122]. We also demonstrate that the proposed detector exhibits

generalizability across different PAs, sensors, and datasets.
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2. We evaluate the performance ofD-NetPADon a proprietary dataset and two publicly available

dataset (LivDet-2017 and LivDet-2020).

3. We perform visualizations using t-SNE plots [280] and Grad-CAM [245] to explain the

performance of the proposed method. The t-SNE plots provide visualization of features

obtained from the intermediate layers of the model. The Grad-CAM produces heatmaps

emphasizing the salient regions in an iris image that are used by the network to detect iris

PAs.

4. We also conduct a frequency analysis to understand the frequencies learned by the model

and, based on that, interpret its performance.

The rest of the chapter is organized as follows: Section 2.2 provides the brief description of the

related work. Section 2.3 discusses the architecture of the proposed method. Section 2.4 describes

the experimental setup and results on all the datasets. Section 2.5 provides a detailed analysis of

the results obtained from the D-NetPAD. Section 2.7 concludes the chapter.

2.2 Related Work

Existing techniques in the literature used to counter iris PAs can be categorized as being

either hardware-based or software-based. Hardware-based techniques typically require physical

devices in addition to the conventional iris sensor to aid in PA detection. The additional hardware

assists in capturing intrinsic properties of the eye (e.g., corneal reflection, red-eye effect, etc.),

involuntary behavioral characteristics (pupil hippus, eye blinking, etc.), or challenge-response

behavior which could be voluntary (eye-tracking) or involuntary (pupil dynamics with external

light). Daugman [66] suggested the use of spectrographic properties of the eye (tissue, blood) and

four Purkinje images generated by the reflection from the outer and inner surface of the cornea and

lens. Further, Lee et al. [152] analyzed the changes in the reflectance ratio between the iris and

sclera under multi-spectral illumination. Czajka et al. [56] utilized IrisCUBE camera to capture

pupil dynamics, whereas Kanematsu et al. [135] used CCD camera with two white LEDs to initiate
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and record pupillary reflex. Hughes et al. [123] created 3D structural modeling of an eye using

stereo imaging. Raghavendra and Busch [219] explored the inherent characteristics of Light Field

Camera (LFC) in the VIS spectrum for iris detection. Komogortsev and Karpov [144] used the

EyeLink II eye tracker to capture Oculomotor Plant Characteristics as a cue for detecting PA.

Sharma and Ross [250] introduced the use of Optical Coherence Tomography (OCT) imaging for

iris PA detection.

On the other hand, software-based techniques extract salient features from the digital iris image

in order to classify it as a bonafide or a PA.1 Daugman [65] distinguished patterned contacts from

real iris images using the amplitude spectrum of the 2-D Fourier Transform. Other researchers

also analyzed frequency spectrum using 2-D Fourier spectra [108], Wavelet Transform [109] and

Laplacian pyramids [217]. Various handcrafted features are used to detect the iris PA, for instance,

HVC [315], LBP [119], BSIF [220], and SID [97]. However, more recently, a number of deep-

learning based methods have been proposed [46, 114, 176, 194, 301, 302]. Menotti et al. [176]

proposed a deep architecture for PA detection called SpoofNet. Pala and Bhanu [194] developed

a deep framework built upon triplet convolutional networks. Hoffman et al. [113] focused on

detecting iris PAs utilizing a patch-batch convolutional neural network (CNN) that is observed

to perform well in the cross-sensor and cross-dataset scenarios. They extend their work [114] by

analyzing the importance of utilizing the periocular region in detecting iris PAs. Chen and Ross [46]

proposed a multi-task CNN for first detecting the iris region and then classifying it. In their other

work [45], they explored IrisCodes for PA detection, so that commercially used IrisCodes could be

authenticated. Yadav et al. [302] utilized a Relativistic Average Standard Generative Adversarial

Network (RaSGAN) as a one-class classifier to detect unseen or unknown iris PAs. In another work,

Yadav and Ross [303] proposed Cyclic Image Translation Generative Adversarial Network (CIT-

GAN) for augmenting under-represented iris PAs in the training set. Chen and Ross [47] worked

in the direction of explaining the model predictions by incorporating attention mechanisms in the

CNN network which provides visual explanations to the predictions. The Liveness Detection-Iris

1A “bonafide" image is sometimes referred to as a “live" image in the literature.
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Competition (LivDet-Iris) held in 2013 [305], 2015 [306], 2017 [304] and 2020 [61] provided a

comprehensive comparative report of different iris PAdetection techniques. Czajka andBowyer [58]

also presented a detailed assessment of various state-of-the-art iris PA detection (PAD) algorithms.

While most of these methods resulted in very high PA detection rates, generalizability across PAs,

sensors, and datasets is still a challenging problem [79,212,300].

2.3 D-NetPAD: Description and Rationale

Dense Network Presentation Attack Detection (D-NetPAD) is based on the Densely Connected

Convolutional Network 121 (DenseNet121) [122] architecture. The architecture consists of 121

convolutional layers of kernel size 7 × 7, followed by a max-pooling layer and a series of Dense

blocks and Transition layers. There are four Dense blocks, and three Transition layers lie between

successive Dense blocks. Each Dense block consists of two convolutional layers of kernel size 1

× 1 and 3 × 3. Both convolutional layers are followed by a non-linear ReLU activation layer. The

Transition layer consists of one convolutional layer of kernel size 1 × 1 and an average pooling

layer. It reduces the size of feature-maps, which is kept constant within a Dense block. The last

layer is a fully connected layer. The work in [301] exploits the DenseNet architecture of depth 22

with three densely connected blocks.

The most notable characteristic of DenseNet is that each layer connects to every other layer

in a feed-forward fashion. In other words, each layer obtains feature-maps from preceding layers

and passes its feature-maps to subsequent layers. The features from preceding layers are combined

by concatenation as opposed to the summation performed in the ResNet [105] architecture. The

concatenation removes the constraint of having the same dimension across the feature-maps. In

this way, the architecture ensures the maximum flow of information in the forward direction

and also resolves the most prevalent challenge of vanishing gradient in the backward direction.

Another major advantage of DenseNet121 is that it supports such densely and deeply connected

network with fewer trainable parameters (7,978,856) as compared to its counterpart ResNet50

(35,610,216) [105] or VGG19 (143,667,240) [255]. This is because DenseNet uses a small set of
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filters in each layer (e.g., 12 filters/layer) compared to the traditional convolutional networks (∼128

or 256 filters/layer). DenseNet preserves the feature-maps and reuses it in the subsequent layers

instead of relearning feature-maps every time. The reusability of feature-maps helps in alleviating

the over-fitting problem, especially in the case of limited training data. These architectural tweaks

help in generating an efficient feature representation for the highly textured iris pattern. Feature-

maps at each layer capture specific spatial and frequency information and consolidation of these

feature-maps result in the extraction of multi-resolution features. These features are efficient in

characterizing the stochastic nature of the iris pattern. The intricacy of a bonafide iris pattern is

not present in the spoofed iris (print eye, artificial eye, or cosmetic contact), and this difference is

efficiently captured by the features generated from DenseNet. The consolidation of feature-maps at

the last layer also smoothens the decision boundaries, resulting in better generalization across PA

artifacts, sensors, and datasets.

Figure 2.1 shows the flowchart of the proposed architecture. The iris sensor acquires an ocular

image which is input to the iris detection module. In our implementation, we use the VeriEye iris

detector, which outputs the centers of the iris and pupil along with their radii. The iris region is

cropped from the ocular image using the center and radius of the iris. The cropped iris region

is then resized to 224 × 224 and input to the pre-trained DenseNet121 network. The ImageNet

dataset [72] is used to pre-train the network. The network produces a single presentation attack

(PA) score, which lies between 0 and 1. A score approaching ‘1’ indicates that the input sample is

a PA, whereas a score approaching ‘0’ indicates that the input sample is a bonafide. We determine

the threshold by fixing the False Detection Rate to 0.2% in order to get the final classification. If the

PA score is less than the specified threshold, the input sample is labeled as a bonafide; otherwise,

it is a PA. During training, the learning rate used is 0.005, the batch size is 20, the optimization

algorithm used is the stochastic gradient descent with a momentum of 0.9, the number of epochs is

50, and the loss function is cross-entropy.
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Figure 2.1: Flowchart of the D-NetPAD algorithm. Iris region (red box) is detected and cropped
from the ocular image and input to the D-NetPAD architecture. The base architecture used in
D-NetPAD is DenseNet121 [122]. It produces a single PA score within a range of 0-1, which
determines whether an input image is a bonafide (value towards 0) or a PA (value towards 1).

2.4 Evaluation and Results

We performed experiments on a proprietary dataset as well as two publicly available benchmark

dataset (LivDet-2017, LivDet-2020) to evaluate the performance of D-NetPAD. The proprietary

dataset has several subsets and is, therefore, referred to as the “Combined Dataset" in the rest of

the document. The Combined and the LivDet2020 datasets correspond to the cross-PA scenario,

whereas the LivDet-2017 dataset creates a test-bed for cross-PA, cross-sensor, and cross-dataset

testing scenarios. In the cross-PA scenario, we use PA instruments (PAIs) that were not used during

the training. In the cross-sensor scenario, we evaluate images from different sensors than those

used during the training. The cross-dataset scenario incorporates testing under different PAIs,

sensors, data acquisition environments (indoor/outdoor, varying illumination conditions), subject

populations, and platforms (desktop and mobile). The cross-dataset scenario accounts for large

variations, making it the most challenging test scenario.

2.4.1 Combined Dataset: Description and Results

The Combined Dataset was collected under the IARPA Odin program (Presentation Attack De-

tection) [2]. The IrisAccess iCAM7000 sensor was used to collect the data. The dataset is a

combination of various component datasets collected at different locations and times using differ-

ent units of the same sensor. Table 2.1 provides the description of the component datasets. There

are a total of 13,851 iris images out of which 9,660 are bonafide and 4,291 are PAs. The PA samples

in the dataset correspond to the following attack instruments: print, artificial eye, cosmetic contacts,

kindle replay, and transparent dome on print. Figure 2.2 shows sample images from the dataset.
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The test set JHU-APL03 (Table 2.1) comprises two types of artificial eyes and 10 different types

of cosmetic contacts. It corresponds to the cross-PA scenario as it contains six additional cosmetic

contacts that are not used during training. As the process of collecting cosmetic contact images

is a tedious and time-consuming process, its quantity is limited in the training set. Therefore,

we utilize cosmetic contact images from NDCLD-2015 [267] to overcome the shortcoming. The

bonafide images in the NDCLD-2015 dataset are not used as the Combined dataset has a large

number of bonafide images. The NDCLD-2015 dataset was collected using the IrisGuard AD100

and IrisAccess LG4000 sensors.

Figure 2.2: Sample images of bonafide and different types of PAs (print, artificial eye, cosmetic
contact, kindle replay, and transparent dome on print) taken from the Combined dataset. The last
cosmetic contact image is taken from the NDCLD-2015 dataset.

Table 2.1: Description of different components of the Combined Dataset. Details of the train and
test set of the Combined and NDCLD 2015 datasets are also provided in terms of the number of
bonafide and PA images. Here, MSU stands for Michigan State University, CU stands for Clarkson
University, and JHU-APL stands for Johns Hopkins University-Applied Physics Laboratory.

Dataset Train Test
MSU IrisPA01 CU IrisPA01 CU IrisPA02 PB IrisPA01 PB IrisPA02 PB IrisPA03 JHU-APL01 JHU-APL02 NDCLD 2015 JHU-APL03

Bonafide 381 962 1,107 446 518 518 1,394 1,371 - 2,963
Print 991 660 415 14 - - - - - -
Artificial Eye 318 34 - 21 9 12 49 111 - 175
Cosmetic Contacts - - 208 - 21 94 78 120 2,236 177
Kindle Replay 51 79 - - - - - - - -
Transparent Dome - - 503 9 - - 42 - - -
Acquisition Time Period Nov 2017 Nov 2017 Dec 2018 April 2018 Feb 2019 Sept 2019 May 2018 May 2019 2015 Nov 2019

We evaluate the performance of the D-NetPAD in terms of True Detection Rate (TDR) at a False

Detection Rate (FDR) of 0.2%. TDR is the percentage of PA samples correctly detected, whereas

FDR is a percentage of bonafide samples incorrectly classified as PA.2 The D-NetPAD is compared

against two deep learning-based methods ( [46] and [114]) as these are state-of-the-art (SoTA)

methods. It is also compared with VGG19 [255] and ResNet101 [105] deep architectures. Table

2Other commonly used evaluation measures for presentation attack detection are Attack Pre-
sentation Classification Error Rate (APCER) and Bonafide Presentation Classification Error Rate
(BPCER). TDR is 1−APCER, and FDR is the same as BPCER.
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2.2 presents the results of all five algorithms. The D-NetPAD results in a TDR of 98.58% and

outperforms the SoTAmethods [114], [46], VGG19 and ResNet101 by 25.27%, 6.44%, 2.41%

and 1.75%, respectively. Low performance of [114] (a network of eight convolutional layers)

substantiates the use of deeper architectures. We also experiment to emphasize the importance

of iris localization in the proposed method. When we input the entire ocular image into the

DenseNet121 network, it resulted in a lower TDR of 94.59% at 0.2% FDR. Next, we analyze

the failure cases (misclassified cases) of our method. At 0.2% FDR, there are four bonafide

samples misclassified as PAs and five PAs samples misclassified as bonafide. Figure 2.3 shows the

misclassified images. In the case of misclassified bonafide images, subjects wearing transparent

contact lenses and glare of the light reflected from the glasses, resulting in misclassification. In

the case of misclassified PA images, the D-NetPAD fails for a particular type of cosmetic contact

lens (Halloween-style Extreme contact lens), where the pattern appears only at the periphery of the

cosmetic contact. Segmentation ignores the outer region of the iris containing some artifacts of

these cosmetic contacts. This resulted in a smaller region of the artifact being fed into the DenseNet

for PA detection, leading to a misclassification.

Table 2.2: The results of D-NetPAD in term of TDR (%) at 0.2% FDR on the Combined dataset.
The method is compared with four other algorithms.

Algorithms [114] [46] VGG19 ResNet101 D-NetPAD
TDR (%) @ 0.2% FDR 78.69 92.61 96.26 96.88 98.58

2.4.2 LivDet-2017 Dataset: Description and Results

Another dataset used for evaluation is the LivDet-2017 [304] dataset. The LivDet-2017 dataset is

a combination of four datasets: Clarkson, Warsaw, Notre Dame, and IIITD-WVU datasets. Figure

2.4 shows few samples of LivDet-2017 dataset. Table 2.3 describes the types of PAs present in the

datasets, and the number of images in the train and test sets of all four datasets. The Clarkson dataset

represents the cross-PA testing scenario. The test set consists of 5 additional cosmetic contacts and

prints of visible spectrum iris images captured using an iPhone 5. The Warsaw dataset helps in
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Figure 2.3: Misclassified images by the D-NetPAD algorithm on the JHU-APL03 test set. The first
row shows bonafide images that are misclassified as PA. The second row shows PA images that are
misclassified as bonafide. The PA score is displayed at the bottom of each image. The threshold
for classification is 0.40, where a PA score below the threshold is considered to be a bonafide.

evaluating the cross-sensor testing scenario. It consists of two test sets: a “known" sensor and an

“unknown" sensor. The IrisGuard AD100 sensor is used to capture the images of the training set

and the “known" component of the test set. Images of the “unknown" component of the test set

are captured by a setup composed of Aritech ARX-3M3C camera, SONY EX-View CCD sensor,

Fujinon DV10X7.5A-SA2 lens, and B+W 092 NIR filter. The Notre Dame dataset corresponds to

the cross-PA scenario. It also contains two test sets (“known" and “unknown"). The “unknown" test

set includes cosmetic contacts not used in the training set. The IIITD-WVU dataset consists of data

collected by IIITD and WVU. The IIITD data is used for training, whereas the WVU data is used

for testing. The dataset corresponds to the cross-dataset scenario, where the test set incorporates

variations in the sensors, data acquisition environment, subject population, and PA generation

procedures. The training set is captured in a controlled environment using two iris sensors: Cogent

dual iris sensor (CIS 202) and VistaFA2E single iris sensor. The test set is captured using the

IriShield MK2120U mobile iris sensor at two different locations: indoors (controlled illumination)

and outdoors (varying environmental conditions). The cross-dataset testing scenario represents the

most difficult case.

For a detailed evaluation of the D-NetPAD, we created three models of the D-NetPAD network,
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Table 2.3: Description of the train and test sets of all four subsets of the LivDet-2017 dataset along
with the number of bonafide and PA images present in the datasets. The information about the
sensors is also provided. Each subset represents different testing scenarios. The Clarkson and
Notre Dame test sets correspond to the cross-PA scenario, whereas the Warsaw data corresponds
to the cross-sensor scenario. The IIITD-WVU represents a cross-dataset scenario. Here, “K. Test"
means a known test set of the dataset, and “U. Test" means an unknown test set.

Dataset
Clarkson
(Cross-PA)

Warsaw
(Cross-Sensor)

Notre Dame
(Cross-PA)

IIITD-WVU
(Cross-Dataset)

Train Test Train K. Test U. Test Train K. Test U. Test Train Test
Bonafide 2,469 1,485 1,844 974 2,350 600 900 900 2,250 702
Print 1,346 908 2,669 2,016 2,160 - - - 3,000 2,806
Cosmetic Contacts 1,122 765 - - - 600 900 900 1,000 701

Sensor IrisAccess
EOU2200

IrisGuard
AD100

Aritech ARX-3M3C,
Fujinon DV10X7.5A,
DV10X7.5A-SA2 lens
B+W 092 NIR filter

IrisGuard AD100,
IrisAccess LG4000

Cogent
CIS 202,
VistaFA2E

IriShield
MK2120U

Figure 2.4: Sample images of bonafide and different types of PAs (print, cosmetic contact) taken
from each subset of the LivDet-2017 dataset.

which differ in their training process: (i) Pre-trained D-NetPAD: The model trained on the

Combined dataset is directly used; (ii) Scratch D-NetPAD: The model is trained from scratch on

the LivDet-2017 train sets; and (iii) Fine-tuned D-NetPAD: The model that is pre-trained on the

Combined dataset is fine-tuned using the LivDet-2017 train sets. The performance measure used

is the same as used in [304]: Attack Presentation Classification Error Rate (APCER) and Bonafide

Presentation Classification Error Rate (BPCER). The APCER is the proportion of PA samples

misclassified as bonafide, whereas the BPCER is a proportion of bonafide samples misclassified as

PAs. The D-NetPAD is compared against the top three winners of the LivDet-2017 competition.

Table 2.4 summarizes the results of all algorithms. While the pre-trained D-NetPAD model and

the model trained from scratch perform at par with the state-of-the-art methods, the fine-tuned

D-NetPAD model outperforms the other methods.

We also measured the performance of D-NetPAD in terms of its TDR at 0.2% FDR on the

LivDet-2017 dataset. Table 2.5 compiles the results of D-NetPAD on all four datasets of the
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LivDet-2017 [1] dataset. A summary of the results is provided below:

Clarkson Test Dataset: The pre-trained D-NetPAD fails on the test set of Clarkson. The

Clarkson dataset corresponds to the cross-sensor and cross-PA scenarios. The images captured

from IrisAccess EOU2200 is visually quite different from the images captured by the iCAM

7000 iris sensor, which results in poor performance (28.63%). But, the result improves (92.05%

and 93.51%) when the training set (scratch or fine-tuned) includes the Clarkson train set (sensor

information).

Warsaw Test Dataset: The pre-trained D-NetPAD achieves competent performance on the

Warsaw dataset. The sensors and types of PA used in the Warsaw dataset are different from the one

used in the training, but the images captured by the test sensors are visually similar, which results

in comparable TDR. Fine-tuning the pre-trained D-NetPAD using the train set of Warsaw dataset

results in 100% TDR.

Notre Dame Test Dataset: The dataset represents the cross-PA scenario, where the test set

uses additional cosmetic contacts. The pre-trained D-NetPAD model trained on diverse cosmetic

contacts generalizes well across previously unseen cosmetic contacts (93.55% and 91%). Its

performance drops on the unknown test set (66.55%) when the model is trained from scratch as the

diversity of cosmetic contacts is limited in the Notre Dame train set. Fine-tuning the model with

the Notre Dame train set achieves 100% TDR.

IIIT-WVU Test Dataset: The dataset is the most challenging dataset where the test set images

are captured using the IriShield MK2120U mobile iris sensor and under different capturing envi-

ronments (indoor and outdoor). The dataset also included unseen PAs, resulting in very low TDRs

for all three models (42.91%, 29.30%, and 48.85%). We further analyze the results of IIIT-WVU

by plotting the PA score distributions of the bonafide and PAs, and estimating the d-prime distance

between them (Figure 2.5). Though the TDR is quite low in the case of fine-tuned D-NetPAD, its

histogram shows a better separation (d′ = 2.64) between the score distributions of bonafide and

PAs.

The D-NetPAD algorithm demonstrates robustness across PAs and sensors testing scenarios
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after the fine-tuning but fails in the case of cross-dataset which is a combination of cross-PA, cross-

sensor, cross-environment, and cross-platform scenarios. Here, cross-platform implies training on

images of iris sensor meant for desktop (e.g., IrisAccess iCAM7000) and testing on images of iris

sensor meant for mobile devices (e.g., IriShield MK2120U).

Table 2.4: D-NetPAD performance reported in terms of APCER and BPCER on all subsets of
the LivDet-2017 dataset. The method is compared with three state-of-the-art algorithms in [304],
which are the winners of the LivDet-2017 competition.

Algorithm Clarkson Warsaw IIITD-WVU Notre-Dame Averaged
APCER BPCER APCER BPCER APCER BPCER APCER BPCER APCER BPCER

CASIA 9.61 5.65 3.4 8.6 23.16 16.1 11.33 7.56 11.88 9.48
Anon1 15.54 3.64 6.11 5.51 29.4 3.99 7.78 0.28 14.71 3.36
UNINA 13.39 0.81 0.05 14.77 23.18 35.75 25.44 0.33 15.52 12.92
Pre-Trained D-NetPAD 16.73 19.46 1.66 0.83 16.05 15.24 1.00 2.22 8.86 9.43
Scratch D-NetPAD 5.78 0.94 0 0.04 36.41 10.12 10.38 3.23 13.14 3.58
Fine-tuned D-NetPAD 2.99 2.97 0 0.54 1.88 8.84 0.33 0.27 1.3 3.15

Table 2.5: D-NetPAD performance reported in terms of the TDR (%) @ 0.2% FDR on different
subsets of the LivDet-2017 dataset. Three models of D-NetPAD are generated by varying their
training data.

Algorithm Clarkson Warsaw Notre-Dame IIITD-WVU
Test K. Test U. Test K. Test U. Test Test

Pre-Trained D-NetPAD 28.63 92.95 98.56 93.55 91.00 42.91
Scratch D-NetPAD 92.05 100 100 100 66.55 29.30
Fine-tuned D-NetPAD 93.51 100 100 100 99.77 48.85

Figure 2.5: Histograms of the three trained models of D-NetPAD on the IIITD-WVU test set.
For accurate classification, there should be minimal overlap between the two (red and green)
distributions. This plot indicates the efficacy of the fine-tuned D-NetPAD.
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2.4.3 LivDet-2020 Dataset: Description and Results

The last dataset used for evaluation is the LivDet-2020 dataset [61]. The dataset is from the

LivDet-Iris-2020 competition launched in May 2020 by five organizations: Clarkson University

(USA), University of Notre Dame (USA), Warsaw University of Technology (Poland), IDIAP

Research Institute (Switzerland), and Medical University of Warsaw (Poland). The LivDet-2020

dataset is different from previous editions ( [304–306]) in that the organizers did not announce any

official training set, only a testing set is provided. The testing set employed in the competition is

a combination of data from all three organizers: Clarkson University, University of Notre Dame,

and Warsaw University of Technology. The dataset consists of 12,432 images (5,331 bonafide and

7,101 PA samples). Five presentation attack instruments (PAI) categories included in the dataset

are printed eyes (1,049), cosmetic contact lenses (4,336), kindle/electronic displayed eyes (81),

fake/prosthetic/printed eyes with add-ons (541), and cadaver eyes (1,094). The fake eyes with

add-ons include five subcategories: cosmetic contacts on printed eyes, cosmetic contacts on doll

eyes, clear contacts on printed eyes, eye dome on printed eyes, and doll eyes. Table 2.6 provides

the number of images in each category of PAIs along with the sensor information used to capture

those images. Figure 2.6 shows few samples of the LivDet-2020 dataset.

For the evaluation of the D-NetPAD on the LivDet-Iris-2020 dataset, D-NetPAD is trained on

the Combined Dataset along with the partial data from the Warsaw PostMortem v3 dataset [275]

(1,200 cadaver iris images from the first 37 cadavers). The base architecture used is DensetNet161,

which consists of 4 dense blocks and 161 convolutional layers. The evaluation measures used

are APCER and BPCER. The APCER is calculated for the individual PA types as well as for

overall PAs. The proposed method is compared with the top three winners of the LivDet-2020

competition. Table 2.7 summarizes the results of all algorithms. The D-NetPAD outperforms

the other methods by a large margin. D-NetPAD resulted in a weighted APCER of 2.76% at

a BPCER of 1.61%, whereas the winner of the competition shows 59.10% weighted APCER at

0.46% BPCER. When considering individual PAs ACPER, attacks by cadaver eyes and fake eyes

are easier to detect, whereas attacks by cosmetic contacts are challenging attacks to detect. The
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Table 2.6: Description of the test set of the LivDet-iris-2020 dataset. It includes the number of
images in each category and the sensor used to capture them.

Classes Presentation Attack Instruments Sample Count Sensor
Bonafide - 5,331 LG 4000, AD 100, Iris ID iCAM7000
PA Printed Eyes 1,049 Iris ID iCAM7000
PA Cosmetic Contact Lens 4,336 LG 4000, AD 100, Iris ID iCAM7000
PA Kindle Display 81 Iris ID iCAM7000
PA Fake/Prosthetic/Printed Eyes with Add-ons 541 Iris ID iCAM7000
PA Cadaver Iris 1,094 IriTech IriShield

Table 2.7: D-NetPAD performance reported in terms of APCER and BPCER on the LivDet-2020
dataset. The results also include APCER on the individual type of PAs. The method is compared
with the winners of the LivDet-2020 competition. Here, PE is Printed Eyes; CL is Cosmetic
Contact Lens; ED is Electronic Display; F/P is Fake/Prosthetic/Printed Eyes with Add-ons; and CI
is Cadaver Iris.

Algorithms APCER Overall Performance ACERPE CL ED F/P CI APCER0E6. BPCER
USACH/TOC 23.64 66.01 9.87 25.69 86.10 59.10 0.46 29.78
FraunhoferIGD 14.87 72.80 53.08 19.04 0 48.68 11.59 30.14
Competitor-3 72.64 43.68 83.95 73.19 89.85 57.8 40.31 49.06
D-NetPAD 2.38 3.85 1.23 0.18 0.18 2.76 1.61 2.18

high ACPER in cosmetic contact PAs is also due to the unseen types of cosmetic contact used in

the testing set.

Figure 2.6: Sample images of bonafide and PAs (print, kindle display, artificial eye, cosmetic
contact, and cadaver eyes) from the LivDet-2020 dataset.

2.4.4 GCT5 and GCT6 Datasets: Description and Results

The Government Control Test (GCT) 5 and 6 are also proprietary datasets collected under the

IARPA Odin program (Presentation Attack Detection) [2]. Table 2.8 provides the performance

of D-NetPAD on both datasets along with the number of bonafide and PA images present in the
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Table 2.8: D-NetPAD performance in terms of TDR at 0.2% FDR on the GCT5 and GCT6 datasets.
Table also provides information about training and testing data along with base architecture used
in both models.

Model
(Base Architecture) DenseNet161 DenseNet201

Train

Combined Dataset,
GCT3 (2,963 Bonafide, 352 PAs),
Cross-sensor (9,606 Bonafide, 922 PAs),
Warsaw Postmortem (2,400 PAs)

Combined Dataset, GCT3 (2,963 Bonafide, 352 PAs),
Cross-sensor (9,606 Bonafide, 922 PAs),
Warsaw Postmortem (2,400 PAs),
GCT4 (337 Bonafide, 332 PAs),
LivDet-2020 (5,315 Bonafide, 7,101 PAs),
GCT6 Train (1,457 Bonafide, 598 PAs)

Test GCT5 (1,354 Bonafide, 206 PAs) GCT6 Test (3,112 Bonafide, 392 PAs)
TDR (%)
@ 0.2% FDR 95.63 99.23

Threshold 0.3839 0.4671

training and testing sets. The base architecture of the GCT5 model is DenseNet161, whereas, for

GCT6, it is DenseNet201.

2.4.4.1 Failure Analysis

Subsequently, we analyze the failure cases that occurred on the GCT5 data. There are ten misclas-

sifications, one in bonafide and nine in case of PA images. Figure 2.7 shows all the failure cases

along with their Grad-CAM heatmaps. The Grad-CAM heatmaps provide information about the

correctness of the iris segmentation and high priority regions network utilize to make the decision.

There occur no segmentation errors in the failure cases. The misclassified bonafide image contains

circular artifacts in the iris regionmay be due to a soft transparent contact lens or positioning of light

sources. The circular artifact resembles cosmetic contact images and results in misclassification.

In the case of PAmisclassifications, three types of cosmetic contacts contribute to the misclassifica-

tion, two are unknown cosmetic contacts (m6-009-0007-A77-1 and m6-009-0011-F40-1), and one

is known cosmetic contact Extreme-SFX-Intrigue Brown (m6-009-0005-B44-1). The Extreme-

SFX-Intrigue Brown cosmetic contacts are misclassified in the GCT3 results as well. The training

of the GCT5 model contains only a few images of the specified contact lens. In two misclassified

PA images (m6-009-0011-F40-1), artifacts due to the face mask cause misclassification.

We also perform matching of entire PA images with their corresponding bonafide to understand
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Figure 2.7: Failure cases on the GCT5 dataset. The first image is a bonafide misclassified bonafide
image, and the other images are misclassified PA images. Three types of cosmetic contacts get
misclassified: m6-009-0007-A77-1, m6-009-0011-F40-1, and m6-009-0005-B44-1. The threshold
is 0.38.

the portion of the underlying bonafide pattern present in the PA samples. We use a commercially

available high-performing iris matcher called VeriEye. Its threshold is 60 for 0.001% FMR. We

observe that 82.52% (170/206) of PA images are higher than the 60 revealing an underlying iris

pattern helpful for matching. Figure 2.8 shows a histogram of VeriEye match scores correspond-

ing to correctly classified and misclassified PA images. Match scores of misclassified PA images

are high (more than 100) and lie in the right-sided tail of the histogram. It indicates that these

cosmetic contacts do not obscure underlying iris patterns and result in misclassification. Figure
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2.9 shows misclassified PA images along with their bonafide and corresponding match scores. All

misclassified PA images show higher match scores. We also plot the histogram of match scores

(VeriEye) corresponding to different types of cosmetic contacts (Figure 2.10). Most misclassifi-

cations occurred on m6-009-0005-B44 cosmetic contact PA images (3/6) show in brown color in

Figure 2.10, second major misclassifications occur on m6-009-0007-A77 cosmetic contacts (4/28)

show in lime green color, and another cosmetic contact m6-009-0011-F40 (2/32) is next misclas-

sified cosmetic contact show in orange color. All these cosmetic contacts have high match scores

revealing underlying iris patterns.

Figure 2.8: Histogram of VeriEye match scores corresponding to correctly classified and misclas-
sified PA images when match with their bonafide images on the GCT5 data.

We perform a similar analysis on the Combined dataset test data. Figure 2.11 shows a histogram

of VeriEye match scores corresponding to correctly classified and misclassified PA images. Here,

we observe that 47.16% (75/159) of PA images are higher than the 60 (0.001% FMR). There are five
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Figure 2.9: Misclassified PA images (bottom row) along with their bonafide images (top row) and
their matching score using VeriEye commercial iris matcher.

misclassifications on PA images, and 4 out of 5 match scores are higher than the 60 threshold. We

also plot a histogram of match scores corresponding to different types of cosmetic contacts (Figure

2.12), and misclassifications mainly occur on m60090005B44 cosmetic contact (5/23) shown in

brown color in Figure 2.12.

2.5 Explainability analysis

2.5.1 Visualization Analysis

We visualize the results of the D-NetPAD using t-Distributed Stochastic Neighbor Embedding

(t-SNE) [280] plots and Gradient-weighted Class Activation Mapping (Grad-CAM) heatmaps. We

39



Figure 2.10: Histogram of VeriEye match scores corresponding to different cosmetic contact PA
types on the GCT5 data.

utilize the D-NetPAD model trained on the training set of the Combined dataset for this purpose,

and use the samples in the JHU-APL03 test set to generate these visualizations. The t-SNE helps

in visualizing the features extracted from the D-NetPAD. It reduces the high-dimensional features

extracted from the D-NetPAD to a lower dimension (two in our case), which are then used to

construct a scatter plot. The architecture of the D-NetPAD consists of four Dense blocks. We

capture the high-dimensional features at the end of each Dense block for visualization (Figure

2.13). For instance, the feature set captured at the end of Dense block 4 has a size of 1 × 1024 ×

7 × 7, which is flattened to 1 × 50,176. The 50,176-dimensional row vector is then reduced to a

two-dimension vector. We draw three key observations from these plots:

1. The distributions of bonafide, artificial eye and cosmetic contact features overlap after the initial

Dense blocks, but separate for the later Dense blocks. As the depth of the network increases, the
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Figure 2.11: Histogram of VeriEye match scores corresponding to correctly classified and misclas-
sified PA images when match with their bonafide images on the GCT3 data.

features of different categories are better separated. This substantiates the high performance of

D-NetPAD (Table 2.2).

2. The features of different categories are sufficiently discriminated at the end of Dense Block 4,

which justifies the use of four Dense blocks in the architecture as opposed to three in [301].

3. The plots shows two bonafide clusters which correspond to the left and right eyes. The left

and right irides exhibit differences due to the orientation of upper and lower eyelids, location of

specular reflection, the relative position of pupil center to iris center, and background illumination

variation. The D-NetPAD captures these variations in its features.

We further visualize the CNN activations using the Grad-CAM [245] heatmaps. The Grad-

CAM produces a coarse localization map highlighting the salient regions in an image that were

used by the network to generate its inference. These are regions that produce high activations in
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Figure 2.12: Histogram of VeriEye match scores corresponding to different cosmetic contact PA
types on the GCT3 data.

the neural network. It is estimated using the gradient of a loss function, which backpropagates

through the convolutional layers to the input image [245]. Figure 2.14 presents the CNN activation

heatmaps on bonafide, artificial eye, and cosmetic contact images taken from the JHU-APL03 test

set. The last column represents the average heatmaps of each category considering the entire test

set. The red regions indicate high activation, whereas the blue regions represent low activation.

The first row of Figure 2.14 shows the heatmap of bonafide sample images along with the average

bonafide heatmap, where the high activation region is at the pupillary zone of the iris pattern.

The second row of Figure 2.14 corresponds to the heatmap of artificial eye images, where the

focus seems to be mainly on the left and right sub-regions of the iris. The last row shows the

heatmaps of cosmetic contact images, where the lower sub-region of the iris pattern is focused.

The average heatmaps show the distinctive regions of focus in each category, which helps in
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Figure 2.13: The architecture of D-NetPAD consists of four Dense blocks. We capture the features
at the end of eachDense block, which are then visualized using t-sne plots (shown below eachDense
block). The two-dimensional features of bonafide, artificial eyes, and cosmetic contacts overlap
in the initial layers, but get separated in the last layer. The two blue clusters in each category
correspond to the left and right eyes.

discriminating bonafide from PAs. We quantify the results of Grad-CAM by training a network

with Grad-CAM heatmaps corresponding to three categories to show the region’s distinctiveness

in each category. We utilize DenseNet121 architecture as a backbone architecture and perform

training on randomly selected 60% of the JHU-APL03 heatmaps from the Combined dataset. We

repeated the experiments five times, and the top-1 accuracy is 97.90% ± 0.001. The performance

validates our claim that D-NetPAD focuses on distinctive regions for each category.

2.5.2 Spatial Frequency Analysis

The iris is a highly textured pattern exhibiting numerous spatial frequencies. To understand what

frequencies the D-NetPAD model has learned and how it impacts iris PAD performance, we

perform a spatial frequency analysis on the D-NetPAD model. We attain the objective with the

assumption that the performance of the model only gets affected by the manipulation of learned

frequencies. We start by manipulating higher frequencies for two reasons. First, when we visually

examine low- and high-pass filtered images (Figure 2.15), it is observed that a high-pass filter

(suppression of low frequencies) considerably obscures the iris pattern. Second, deep learning-
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Figure 2.14: Grad-CAM [245] heatmaps corresponding to bonafide (first row), artificial eye (second
row), and cosmetic contact (last row). The last column represents the average heatmaps of each
category. The heatmaps represent focused regions of the image by the D-NetPAD algorithm. Red-
colored regions represent highly focused regions by the D-NetPAD, whereas blue regions represent
low priority ones.

based models learn low frequencies first (initial epochs) and then high frequencies (later epochs)

in the training process [213, 299]. In other words, the number of weight parameters contributing

towards expressing low frequencies is larger than the one expressing high frequencies [213]. Due

to this, a small manipulation in low frequencies results in large shifts in performance. In the case of

high frequencies, the more the architecture learns high frequencies, the more it tunes its parameters

towards learning the intricacies of the training images, which may cause overfitting. So, learning of

high frequencies determines the effectiveness of model-fitting on the training data (i.e., efficiently

fit or overfit).

For high frequency suppression, we use a low-pass filter with various cutoff frequencies. Cutoff

frequency represents a radius from the center in the Fourier transforms (second row of Figure 2.15).

A low-pass filter allows frequencies below the cutoff frequency and attenuates higher frequencies.

Figure 2.17 shows the performance of the D-NetPAD model as well as the VGG19 and ResNet101

models on various low-pass filter cutoff frequencies. We use the train and test set of the Combined
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Figure 2.15: Frequency analysis of an input iris (bonafide or PA) image. In the first row, the
left-most image is the original image, the center image is a low-pass filtered image with a cutoff
frequency of 20 (higher frequencies are suppressed), and the right-most is a high-pass filtered image
with a cutoff frequency of 5 (lower frequencies are suppressed). The second row represents their
corresponding fourier transforms.

dataset for the experiments. The manipulation is only applied over the test images. There are

two noteworthy observations. First, D-NetPAD shows a relatively lower drop in performance

compared to VGG19 and ResNet101 models. Second, the performance of the D-NetPAD model

becomes steady beyond the 30 cutoff frequency, which implies that the model has not overfitted to

higher frequencies beyond 30. Beyond a cutoff frequency of 60, the performance becomes constant

implying that it has not learned from frequencies beyond 60. Another way of manipulating high

frequencies is their addition to the input images, which we did by contaminating input images with

salt and pepper noise. We also analyze the models when Gaussian noise (noise values are Gaussian-

distributed) is added to the input images. Figure 2.16 shows an example of an input image subject

to high-frequency manipulation, (b) - (e), and the addition of Gaussian noise, (f). The performance

is measured using a relative decrease in TDR (%) at 0.2% FDR. Table 2.9 provides the results of

VGG19, ResNet101, and D-NetPAD architectures when input images are manipulated.

TheD-NetPADmodel shows a lower decrease inTDRs compared toVGG19 andResNet101
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Figure 2.16: Different manipulations applied over the original input image (first image): low-pass
filtered images with 20, 30, and 50 cutoff frequencies, additive salt and pepper noise, and additive
Gaussian noise. Only test images are subject to these manipulations.

models when higher frequencies in input images are manipulated (either by suppression or

addition). The VGG19 and ResNet101 models have a large number of trainable parameters that

result in the overfitting of these models to the training data. The overfitted models learn higher

frequencies considerably well and, therefore, are more sensitive towards them. On the contrary,

efficient learning of frequencies by the D-NetPAD makes it more robust towards manipulations to

the high frequencies and also substantiates its generalizability across PAs, sensors, and datasets.

Gaussian noise randomly affects both lower and higher frequencies, resulting in a higher drop in

performance of all the networks, including D-NetPAD.

2.6 Deployment of D-NetPAD on Desktop and Mobile

We deploy the proposed D-NetPAD model on desktop as well as mobile platforms. In the

desktop version, we are capturing iris images from the iCAM7000 iris sensor. The configuration of

the GPU used in the desktop is Nvidia GeForce GTX 1070 with 8GB RAM. The D-NetPAD took

0.037 sec to process a single image. Figure 2.18 shows screenshots of the desktop application.
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Figure 2.17: The plot of TDR (%) @ 0.2% FDR against low-pass filter cutoff frequencies. Note
the cutoff frequency beyond which the performance of D-NetPAD becomes stable (30 in this case).
This cutoff frequency indicates that the D-NetPAD has not learned frequencies beyond this cutoff
frequency. The performance steadiness of D-NetPAD is better than VGG19 and ResNet101.

Table 2.9: Results (TDR and a relative decrease in TDR) for VGG19, ResNet101, and D-NetPAD
models, when high frequencies are manipulated or Gaussian noise is applied to the input test
images.

Input Test Images VGG19 ResNet101 D-NetPAD

TDR(%)@
0.2% FDR

Relative
Decrease
TDR (%)

TDR(%)@
0.2% FDR

Relative
Decrease
TDR (%)

TDR(%)@
0.2% FDR

Relative
Decrease
TDR (%)

Original Images 96.26 - 96.88 - 98.58 -
LowPass20
(Suppess high freq.) 52.33 45.63 71.65 26.04 81.61 17.21

LowPass30
(Suppress high freq.) 86.60 10.03 88.47 8.68 94.39 4.25

LowPass50
(Suppress high freq.) 94.08 2.26 93.45 3.54 96.88 1.72

Salt & Pepper
(Add high freq.) 74.14 22.97 68.22 29.58 80.99 17.84

Gaussian Noise 56.07 41.75 62.61 35.37 59.19 39.95

For mobile version, we capture both iris images (left and right) from the IriShield BK2121U

binocular sensor. We utilize DenseNet201 and MobileNetv2 architectures for mobile deployment.
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Table 2.10: Description of two architectures used to detect iris PAs at the mobile platform along
with their training data and computational efficiency.

Training Data Architecture Input Sensor Time
Taken (secs)

Deploy
Environment

Clarkson: 283 Bonafide,
183 Cosmetic Contacts,
1,131 Print
ST5: 216 Bonafide,
ST6: 524 Bonafide,
LivDet-2017_WVU: 702 Bonafide,
2,806 Print, 701 Cosmetic Contacts

DenseNet201 IriShield BK2121U 0.52
Google Pixel 2
Octa-core,
4GB RAMMobileNetv2 IriShield BK2121U 0.05

The training data use to train the models are collected by Clarkson University, taken from Self-test5

and Self-test6 collection, and from the LivDet-Iris-2017 WVU subset. The training images are

from the IriShield BK2121U iris sensor except for the images from the LivDet-Iris-2017 WVU

subset, which is from IriShield MK2120U sensor. Table 2.10 provides the details of the training

data. There are three options for the model compression for mobile devices in PyTorch library:

1. Dynamic quantization: weights are quantized ahead of time, but the activations are dynami-

cally quantized during inference

2. Static quantization: weights quantized, activations quantized, calibration required post-

training

3. Quantization aware training: weights quantized, activations quantized, quantization numeric

modeled during training

Dynamic quantization reduces the time complexity by a small margin without affecting the per-

formance. The static quantization reduces the time complexity but also reduces the performance.

It also requires a calibration using the training data. The third solution requires re-training of the

model. Currently, we are using dynamic quantization for compression of the model to deploy at

mobile platform. The mobile platform we use is Google Pixel 2 and the time taken by DenseNet201

is 0.52 sec and by MobileNetv2 is 0.05 sec for processing a single image. The loading time on the

mobile platform is 0.67 secs. Figure 2.19 shows screenshots of the mobile application developed.
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Figure 2.18: Graphical User Interface (GUI) for three iris PA detectors developed by MSU which
includes TL-PAD [46], Fusion Method [114] and D-NetPAD [249]. Patch-wise heatmap and
filter-maps shown at the bottom of GUI are corresponds to the Fusion Method.

2.7 Conclusion

We propose an effective and robust software-based iris PA detector called D-NetPAD. The

D-NetPAD exploits the architectural benefits of DenseNet121. Experiments are performed on five

datasets to help assess its effectiveness. The test sets of these datasets correspond to cross-PA,

cross-sensor, and cross-dataset scenarios which measure the robustness of the D-NetPAD. We

further explained the performance of the D-NetPAD using t-SNE plots, Grad-CAM heatmaps and

frequency analysis.
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Figure 2.19: Screenshots of Iris PA Detector app on Google Pixel 2. The first image shows the
screen on the opening of the app. The second image shows the results after capturing iris images
from IriShield USB BK2021U sensor.
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CHAPTER 3

IRIS PRESENTATION ATTACK DETECTION USING VISIBLE SPECTRUM VIDEO

3.1 Introduction

In this chapter, we present another iris presentation attack detection (PAD) method which

utilizes visible (VIS) spectrum scene video captured from a webcam. Here, the scene refers to the

field-of-view of the webcam mounted over the iris sensor (Figure 3.3) capturing user interaction

with the sensor. The scene video provides ancillary information such as human posture, actions,

objects, human-object interactions, and their temporal changes. Our aim is to extract some of these

cues from the multiple frames of the scene video using deep learning techniques. The capturing

of the video in the VIS spectrum provides complementary information to the iris image captured

in the NIR spectrum (conventionally used in iris recognition). The use of a simple webcam makes

the acquisition process cheaper and convenient for users.

The key contributions of the work are:

1. We propose a multi-frame analysis approach for detecting iris PAs from the scene video (VIS

spectrum) which seamlessly incorporated into the existing NIR image-based iris recognition

systems.

2. We develop various spatial-temporal feature extraction techniques for analyzing the scene.

3. We collect a dataset, Iris Presentation Attacks Video (IPV), consists of 672 iris bonafide

and PA videos from 121 subjects and experiments are performed under three scenarios

(intra-session, cross-session, and cross-attack).

4. We extend the multi-frame analysis approach for the detection of face PAs and experiments

are performed on three publicly available face PA datasets: SiW [165], SiW-M [166] and

OULU-NPU [33]. Cross-modality experiments are also performed.
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Table 3.1: Description of video-based passive iris PA detection techniques.

Authors Hardware and Imaging Algorithmic Details
Villalbos-Castaldi and
Suaste-Góme, 2014 [285]

IR video from custom
imaging apparatus Pupil dynamic features (hippus)

Kiran et al., 2015 [217]
VIS video from iPhone 5S
and Nokia Lumia 1020
and NIR images

Laplacian pyramids decomposition
followed by frequency responses
at different orientations

Kiran et al., 2015 [214] VIS video from iPhone 5S
and Nokia Lumia 1020

Enhanced eulerian video magnification
(EVM)

Thavalengal et al.,
2016 [265]

VIS and NIR videos from
custom mobile device

Multi-spectral features and
multi-frame pupil localization

Our Method VIS video from
webcam and NIR images

Various variant of deep features to
capture spatial-temporal information

5. We also interpret the PA detection results using Grad-CAM [245] heatmaps. The Grad-CAM

heatmap highlights the salient regions in the video that were used by the network to generate

the inference.

The rest of the chapter is organized as follows. Section 3.2 discusses the existing work for

detecting iris and face PAs. Section 3.3 gives the details of the proposed approach. Section 3.4

describes the datasets used for the experiments. Section 3.5 provides the experimental setup and

results. Section 3.6 provides a detailed analysis of the results. Finally, Section 3.7 concludes the

chapter.

3.2 Related Work

A brief survey on software and hardware-based iris presentation attack detection (PAD) tech-

niques is provided in Section 2.2. Table 3.1 describes various video-based iris PA detection

techniques which requires no stimulation (passive). These techniques are closely related to our

acquisition setup.

In the face modality, there are several existing methods that focus on cues from the scene or

context. Kim et al. [140] detect liveness of a face by combining similarity score of background

between reference and input image (region without a face and upper body) and background motion

index which indicates the amount of motion in the background compared to the foreground.
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Anjos and Marcel [17] measure the correlations between the total amount of movement in the

face and background regions. Later on, Anjos et al. [16] utilize optical flow for estimating

foreground/background motion correlation. Pan et al. [195] estimate the context information by

comparing the difference of regions around fiducial points between a reference scene image and

the input image using local binary pattern (LBP) descriptors. The context information is then

combined with blinking information for liveness detection. Yan et al. [308] combine three cues

namely non-rigid motion, face-background consistency, and imaging banding effect for face PAs

detection. The non-rigid motion of a face (i.e., blinking) is estimated using low-rank matrix

decomposition. Face-background consistency (motion of face with respect to the background)

is calculated using GMM-based motion detection, and imaging banding effect (imaging quality

defects) is estimated usingwavelet decomposition. Komulainen et al. [146] detect face PAs by fusing

temporal (using MLP classifier) and texture information (using LBP) at the score level using linear

logistic regression. In another work, Komulainen et al. [145] utilize a cascade of an upper-body

and spoofing medium detectors based on the histogram of oriented gradients (HOG) descriptors

and linear support vector machines (SVM). Patel et al. [199] integrate deep texture features and

face movement cues (eye-blinking) for liveness detection. Deep texture features are learned from

both aligned facial regions and the entire frame. Apart from these context information based face

PA detection algorithms, other techniques can be found in [89, 221]. Various competitions and

assessment reports are [34,52,178]. A detailed description of various iris and face PAD techniques

are published in [172].

The proposed approach is advantageous over the existing solutions in the followingways: (a) use

of the entire frame discards the pre-processing routine (iris segmentation, or iris or face detection)

and the error introduce by them; (b) generally, the devices used in hardware-based techniques are

expensive or inconvenient for users, whereas the webcam used in the proposed approach is cost-

effective and non-obtrusive. In contrast with software-based techniques which detect PAs after

the acquisition of an image from the sensor, the proposed approach detects anomalies present in

the scene simultaneously with the image acquisition; (c) the approach can easily extend to other
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Figure 3.1: Scene video (VIS) and iris image (NIR) of bonafide and PA biometric samples captured
by a simple webcam and an iris sensor simultaneously.

Figure 3.2: Different ways of presenting the same attack instrument (paper print) constitute different
scenes. These scenes provide different cues for detecting PAs.

modalities (e.g., face or fingerprint) due to the similarities of the way the attacks present (e.g., print

attack of the face and iris modalities) as the results show for face PA detection. The approach

has a limitation in detecting certain types of presentation attacks, e.g., cosmetic contact lens (iris

modality) and face makeup (face modality). It also fails in those acquisition scenarios where scene

information is not provided, for instance, OULU-NPU [33] dataset.
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Figure 3.3: The end-to-end architecture of the proposed framework.

3.3 Proposed Method

Figure 3.3 shows the architecture of the proposed framework. Hardware setup consists of a

webcam mounted over a standard iris sensor. The webcam captures the scene video, and the

iris sensor captures a NIR iris image. Iris image (I) and scene video (V) then undergo different

techniques to compute the individual PA scores. A PA score is a confidence score that the given

input is a PA. It is in the range [0, 1], where 1 represents high confidence that the input is a PA. To

generate a PA score from the iris image (B� ), we adopt the CNN architecture proposed by Hoffman

et al. [113], though other PA detection techniques can also be used. For computing PA score from

the scene video (B+ ), we utilize several deep learning techniques (details are given below). Both

PA scores are normalized and then averaged to obtain a final PA score by:

5 (B+ , B� ) =


Bonafide, if

( B+ + B�
2

)
≤ )

PA, otherwise

where, T is the threshold. We propose six different deep learning techniques to extract spatio-

temporal information contained in the multiple frames of a scene video and generate a PA (B+ )

score. We describe these techniques in the following subsections.
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3.3.1 MLP

Firstly, we capture only spatial information from the scene as some of the PAs are strongly associated

with the objects present in the scene such as paper print, kindle display, artificial eye, etc. We resize

video frames to 80 × 80 and select 30 equally spaced frames per video. Resized video frames are

input into a pre-trained model of Inception-v3 (pre-trained on ImageNet Dataset [73]) to extract

CNN features. CNN features are then fed into a multi-layer perceptron (MLP) consisting of two

hidden layers with 512 hidden units each and one softmax layer. We also use two dropout layers

following each hidden layer with a dropout value of 0.5. The training mini-batch size used is 20.

Training stops when there is no further reduction in training loss. During testing, we estimate a

final PA score for a video by summing softmax scores obtained from 30 equally spaced frames. The

method considers video as a collection of independent frames, exploring only spatial information

and ignores the temporal information.

3.3.2 LSTM

To capture temporal information, we feed the same CNN features (Inception-v3) into a two-layered

long short-term memory (LSTM) network instead of an MLP network. The first layer has 2048

hidden units, and the second layer is a fully-connected layer with 512 nodes. There is a dropout of

0.5 following the fully connected layer. The mini-batch size and stopping criteria are the same as

the previous method. Temporal information is considered in the method, but only at the very end

of the network.

3.3.3 LRCN

To capture spatial and temporal information simultaneously, we use a long-term recurrent convolu-

tional network (LRCN) [76], which is an end-to-end trainable architecture. The architecture has a

small VGG-16 style network followed by one LSTM layer having 256 nodes and the final softmax

layer. The training mini-batch size is 15, and stopping criteria is the same as the previous method.
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The method performs training from scratch, which requires a large amount of training data.

3.3.4 C3D

Another way to capture the spatial-temporal information is 3D ConvNet, where the third dimension

corresponds to the temporal dynamics. To implement this, we use the architecture (C3D) proposed

in [272], which consists of five 3D convolutional layers followed by 3D max-pooling layers, two

fully connected layers, and a softmax layer. Unlike [272], we also use two dropout layers following

each fully connected layer with a value of 0.5 to prevent over-fitting due to the small training data.

The number of filters used for five convolutional layers is 64, 128, 256, 512, and 512 having the

same filter size 3 × 3 × 3. Fully connected layers have 4096 hidden units. All max-pooling layers

have a kernel size of 2 × 2 × 2 except the first one which has a kernel of size 1 × 2 × 2. The

mini-batch size is 15, and stopping criteria is the same as the previous method. Again, due to a

large number of parameters and training from scratch, it requires a large amount of training data.

3.3.5 3D ResNeXt-101

This architecture [298] also utilizes 3D convolutional layers, but it is a comparative large architec-

ture pre-trained on Kinetics action recognition dataset [138]. The architecture introduces a new

dimension called “cardinality” (the size of the set of transformations), in addition to the depth and

width. It consists of 101 convolutional layers depthwise and 32 cardinalities. The input fed into

the architecture is 16 equally spaced frames per video resized to 112 × 112. The mini-batch size is

10, the number of epochs is 100, and the learning rate is 5 × 10−4.

3.3.6 Two-stream CNN Network

Due to the lack of large training data, we apply another architecture that captures spatial and temporal

information separately, but in parallel. The architecture called Two-stream CNN [254] decoupled

the scene videos into spatial and temporal information by inputting them into two separate streams
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of ConvNets. The final score obtains by averaging softmax scores outputs from the two streams.

Details of these two ConvNets are as follows:

3.3.6.1 Spatial ConvNet

The spatial stream performs PA detection utilizing RGB video frames. The backbone architecture

is ResNet-101 pre-trained on the ImageNet dataset [73]. Simonyan and Zisserman [254] use a

single RGB frame, whereas we select : equally spaced frames from the video and resize them to

size 224 × 224. We then input these frames are into : separate ResNet-101 networks and combine

their scores using an aggregation function (S) as:

( =

:∑
8=1

'(�8; %) (3.3.1)

where, '(�8; %) is the softmax score generated by the network with parameters % and frame �8

as input. The same parameters % are used in all : networks. Subsequently, cross entropy loss is

calculated as

! (H, () = −
�∑
8=1

H8 ((8 − log
�∑
9=1
exp ( 9 ) (3.3.2)

where, � is the total number of classes and H8 is the true label of class 8. The loss back-propagates

through the network and updates the parameters %. Though spatial ConvNet is intended to capture

the spatial information, its loss calculation also captures a long-range temporal structure. It is

motivated by the concept of Temporal Segment Networks (TSNs) [288] though the TSNs use a

sequence of : snippets (set of consecutive frames), we use : frames. The backbone architecture

in [288] is the Inception network with Batch Normalization [124], whereas we employ ResNet-101

as a backbone network. Aggregation functions used in [288] aremaximum, averaging, andweighted

averaging, whereas we use sum as an aggregation function. We aggregate the loss estimated from

all the selected frames and then update the parameters. We can update the parameters by using

a single frame at a time, which also increases the data used for training but loses the temporal

information. This concept is already utilized in the MLP method. We utilize separate networks

for individual frames. An alternative option is to feed the frames as multiple channels into the

58



network, but it increases the number of trainable parameters. C3D and ResNeXt-101 methods used

this concept.

We experiment with different numbers of frames per video (:) for training and empirically

select : = 3. During testing, we select 20 equally spaced frames and combine their corresponding

softmax scores to get the final score.

3.3.6.2 Temporal ConvNet

The temporal stream utilizes a stack of optical flows [41] for PA detection. During training, we

input 20 optical flow frames from a video into a single ResNet-101 network as multiple channels,

where 10 frames correspond to the X-direction, and 10 correspond to the Y-direction [254]. Figure

3.4 shows RGB (first row), X-direction optical flow (middle row), and Y-direction optical flow (last

row) frames corresponding to bonafide and PA samples. The optical flow frames are also resized

to 224 × 224. During testing, we randomly select 10 frames and calculate their 10 X-direction and

10 Y-direction optical flow frames to fed into the network. We average 20 softmax scores to get the

final decision about the video.

The architecture helped in workingwith small-sized training data but has a high time complexity

to compute the optical flow frames and memory requirement to store them on disk. Both the

streams use mini-batch of size 15, the number of epochs is 100, and the learning rate is 0.0005. We

empirically select all hyperparameters.

3.4 Datasets

To evaluate iris PA detection, we introduce a proprietary dataset called Iris Presentation Attack

Videos (IPV). Existing iris PA video datasets focus solely on the iris region only and does not

capture the scene information. This necessitates the collection of a new iris video dataset containing

scene information. For face PA detection, we utilize three publicly available datasets: SiW [165],

SiW-M [166], and OULU-NPU [33]. Details for all these four datasets are as follows.
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Figure 3.4: Inputs given to the Two-stream CNN network. The top row shows spatial frames, the
middle row represents optical flow frames in the X-direction and the bottom row shows optical flow
frames in the Y-direction. (a) corresponds to bonafide video frames, and (b) corresponds to PA
video frames.

3.4.1 IPV Dataset

We collect the dataset in three sessions with different locations, operators, environments, and timing

using a Logitech C920 webcam. Figure 3.3 shows the acquisition setup where a webcam mounts

on an IrisID iCAM 7000 sensor. Recording of a video from the webcam starts automatically when

the IrisID sensor gives instructions to the user to align the eyes with the IrisID sensor and stops

on the capture of an iris image from the IrisID sensor. Videos are approximately 4-5 seconds long

with a frame rate of 30 frames/sec. The first session of the dataset collected in lab1 and termed

as IPV1. The second session collected in lab2 after five months of the first collection and termed

as IPV2. The two labs (lab1 and lab2) are at different locations, thus having different acquisition

environments. The third session data collection conducted in the lab1 again after three months

and termed as IPV3. Subjects of IPV2 are disjoint from the subjects of IPV1 and IPV3. The

IPV1 session data contains videos of only one subject to ensure that PA detection techniques focus

on characteristics of bonafide or PA rather than identity information of a user. Different types

of PAs and their corresponding number of video collections are paper print (74), artificial eye

(156), kindle display (51), funny glasses (166), and mannequin attacks (28). Table 3.2 provides

further description of the collected dataset. The dataset has large variations in terms of different PA

materials, and different ways to present the PAs. For paper print PAs, we use two different paper

types (glossy and matte), and two different types of prints (with and without pupil cut out). We also
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Figure 3.5: Columns show intra-variations among different PAs using a single frame. Paper
print PA variations: uses one or both eyes for presenting iris PA. Artificial eye PAs variations:
use different materials, e.g., glass, plastic, prosthetic, or rubber eye. Kindle PAs variations: use
different sizes and locations of an iris image on the Kindle display. Funny glasses PAs variations:
uses plastic or paper print to mount over the funny glasses. Mannequin PAs: use two different
materials and print/plastic to mount over them.

use a transparent dome in some paper print PAs to mimic the shape and specular reflections from an

eye. Artificial eye PAs contains four different materials (plastic, glass, prosthetic, and rubber). We

also create funny glasses PAs, where artificial eye and paper printed PAs mounted over the funny

glasses. Mannequin PAs contains two different materials (plastic and polystyrene), mounted with

paper print and artificial eyes. More variations introduced in the dataset by alternating the use of

one or another eye or both eyes to present a PA. Figure 3.5 shows few variations of the dataset.

3.4.2 SiW Dataset

The Spoof-in-the-Wild (SiW) [165] dataset contains bonafide and spoof videos of 165 subjects.

There are 8 bonafide and up to 20 spoof videos from each subject. The dataset is collected in four

sessions with different PIE variations. The videos are captured using two high-quality cameras:

Canon EOS T6 and Logitech C920 webcam. The videos are 15 seconds in length, 30 fps frame

rate, and 1080p HD resolution. The dataset provides two print and four replay video attacks for
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Table 3.2: Description of the dataset collected for multi-frame analysis on scene videos captured
from a regular webcam.

Session IPV1 IPV2 IPV3
No. of Bonafide Videos 17 69 111
No. of PA Videos 67 20 388
No. of Subjects 1 80 42

Type of PAs
Collected

Paper print,
Artificial eye,
Kindle display,
Mannequin

Funny glasses

Funny glasses,
Paper print,
Artificial eye,
Kindle display

Acquisition
Time Period October 2017 April 2018 August 2018

each subject. For print attack, two quality images (5184 × 3456 and 1920 × 1080) are printed

using an HP Color LaserJet M652 printer. To generate replay video attacks, four spoof mediums

(Samsung Galaxy S8, Apple iPhone 7, Apple iPad Pro, and PC Asus MB168B) are used. Figure

3.7 (second block) shows few samples of the dataset.

3.4.3 SiW-M Dataset

The Spoof-in-the-Wild database with Multiple Attack Types (SiW-M) dataset [166] is built to

benchmark the face PA detection algorithms for detecting unseen attacks (cross-attack). There are

a total of 1,630 videos of 493 subjects with 13 different spoof attacks. The videos are 5-7 seconds

in length, 30 fps frame rate, and 1080p HD resolution. The videos are recorded using a Logitech

C920 webcam and a Canon EOS T6 in three sessions. The spoof attacks included in the dataset

are 5 3D mask attacks, 3 partial attacks, 3 makeup, one replay, and one print attack. The 3D mask

attacks include half mask, silicone, transparent, paper-craft, and mannequin masks. The makeup

attacks constitute obfuscation, impersonation, and cosmetic makeup. The partial attacks include

funny eye, paper glasses, and partial paper. Figure 3.7 (first block) shows a few samples of the

dataset.
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3.4.4 OULU-NPU dataset

TheOULU-NPU [33] dataset is built to assess the generalizability of face PAD techniques in mobile

scenarios. The dataset consists of a total of 4,950 bonafide and PA videos of 55 subjects. The

videos were recorded using the front cameras of six mobile devices (Samsung Galaxy S6 edge,

HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA C5 Ultra Dual, and OPPO

N3) in three sessions with different illumination and locations. The presentation attacks included

in the dataset are print and replay attacks. Print and replay attacks are created using two different

printers and display devices respectively. During the capture, special attention is given to avoid the

background scene difference between the bonafide and PA videos. So, the print and replay attack

videos do not contain the bezels of the screens or edges of the prints. Figure 3.7 (third block) shows

few video frame samples of the dataset.

3.5 Experimental Results and Analysis

To analyze the effectiveness of the proposed approaches, we have performed various experiments

to detect PAs in iris and face modalities. For the iris modality, we conduct experiments in intra-

session, cross-session, and cross-attack scenarios on the IPV dataset. We also conduct a baseline

experiment in iris modality, where the complementary nature of the scene cues evaluates with cues

obtained from the iris region. For the face modality, we perform face PA detection experiments

on SiW [165], SiW-M [166], and OULU-NPU [33] datasets. Finally, we perform cross-modality

PA detection experiments where training is on iris PAs and testing on face PAs and vice versa.

We reported results in the Average Classification Error Rate (ACER), which is an average of

Attack Presentation Classification Error Rate (APCER) and Bonafide Presentation Classification

Error Rate (BPCER). APCER is the proportion of PAs samples misclassified as bonafide, whereas

BPCER is the proportion of bonafide samples misclassified as PAs.
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3.5.1 Iris Modality

To evaluate the proposed approaches, we perform 12 experiments on the IPV dataset in three

settings: intra-session, cross-session, and cross-attack scenario. Experiments 01-05 correspond

to intra-session, 06 to cross-session, and 07-11 correspond to a cross-attack scenario. One more

experiment (exp. 12) performs where the PA score generated from a scene video is fused with the

one proposed in [113] (which uses only the iris image) to show the complementary nature of both

the cues.

3.5.1.1 Intra-session

In experiments 01-05, we select training and testing data from all three sessions to analyze the

intra-session scenario. So, there are 150 videos from each category for training, and the rest used

for testing. Table 3.3 provides the details of the selection of videos in each session. Table 3.5

(columns 02-06) presents results of all intra-session experiments. Two-stream CNN is an average

fusion of Spatial and Temporal ConvNets. Spatial ConvNet performs the best. LSTM andMLP are

also producing comparable ACER. These three methods capture spatial information and work on a

pre-trained model. Other methods (LRCN, C3D, and Temporal ConvNet) are not performing well.

These models are trained from scratch except Temporal ConvNet, which uses a pre-trained model

trained on RGB images instead of optical flow frames. Due to the small size of collected data,

training of these methods are prone to over-fitting as there is a large number of trainable parameters

in the networks. 3D ResNeXt-101 has the same concept as C3D, except it is a large pre-trained

model. As a result, it performs better than the C3D.

3.5.1.2 Cross-session

Experiment 06 aims to analyze the cross-session scenario. In the experiment, training performs on

the data collected during IPV03 session, and testing performs on the data collected during IPV01

and IPV02 sessions. Table 3.3 provides further details about the experiment 06. Table 3.5 (columns
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07) presents the results of cross-session experiment. This is a difficult test condition as one must

account for the variations in data acquisition environment, subject population, and PA generation

procedures. The ACER increases for every method. However, MLP, LSTM, 3D ResNeXt-101,

and Spatial ConvNet methods manage to perform reasonably well. On the other hand, the lack

of training data and adverse test scenario drop the ACER of C3D, LRCN, and Temporal ConvNet

methods drastically.

3.5.1.3 Cross-attack

To further evaluate the proposed approaches in a cross-attack scenario, we conduct five more

experiments (Exps. 08-12) based on a leave-one-out strategy. The strategy allows methods to train

on all types of PAs except one for testing as an unseen attack. Table 3.4 provides the training

and testing setup of these experiments. It is an even more difficult testing condition than the

cross-session scenario. However, Table 3.5 (columns 08-12) shows reasonably good ACER for

alomst all methods except the C3Dmethod and a few PAs. The proposed approaches reliably detect

unseen PAs as the method not only captures the characteristics of PA material, but also focus on

its presentation, and other contextual information. The 3D ResNeXt-101 method fails to detect

unseen artificial eyes and funny glasses attacks, and the LSTM method fails to detect unseen funny

glasses attacks. It could be due to the presence of bonafide videos where users wear corrective

eyeglasses. The mannequin attack is a difficult unseen attack for the majority of the techniques,

whereas paper print is the simplest attack. Overall, Two-stream CNN method performs the

best in the cross-attack scenario. In another observation, temporal information modeled better

in this scenario (compared to intra-session and cross-session), as can be seen from the results of

LRCN and Temporal ConvNet. In the leave-one-out strategy, there are more samples for training

compared to intra-session and cross-session experimental setup. This also supports our over-fitting

hypothesis with C3D, LRCN, and Temporal ConvNet methods for poor results under intra-session

and cross-session scenarios.
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Table 3.3: Training and testing setup for intra-session (Exp. 01-05) and cross-session (Exp. 06)
experiments on the IPV dataset.

Experiments Category IPV1 IPV2 IPV3
Train Test Train Test Train Test

Exp. 01-05 Bonafide 10 7 50 19 90 21
PA 15 17 10 10 125 219

Exp. 06 Bonafide 0 17 0 69 111 0
PA 0 32 0 20 111 0

3.5.1.4 Baseline Experiments

From the results obtained from all three scenarios, one can deduce that video of a scene does contain

cues for detecting PAs in iris modality and it can generalize across unseen attacks. We perform

another experiment (Exp. 12) to examine the complementary nature of scene cues regarding cues

from iris region. We perform the score-level fusion of cues obtained from the iris region and scene

video. The one PA score is obtained from the existing iris PA detection technique [113] trained on

BERC-IF dataset [154] using a single iris image and the other PA score from the proposed methods

applied over the corresponding scene video. For testing, there are 89 bonafide videos along with

their corresponding 178 bonafide iris images (89 × 2) and 136 PA videos along with their 177 iris

images (41 × 2 + 95) where both or either iris image is PA. Table 3.5 (the last column) shows results

of the fusion. The ACER calculated using only iris region for PA detection [113] is 10.9%, whereas

when combined with scene cues, it reaches 0% (fusion with MLP method), thus demonstrating the

complementary nature of the cues provided by the scene video. Figure 3.6 shows ACER of all

methods across all experiments for better visualization.

3.5.2 Face Modality

After the successful detection of iris PAs from scene video, we extend its use for detecting face PAs

on three publicly available datasets SiW [165], SiW-M [166], and OULU-NPU [33]. SiW [165]

and SiW-M [166] datasets do contain scene (contextual) information, whereas in OULU-NPU

[33] dataset special attention is given to avoid the scene information. Due to the computational
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(a) (b)

(c) (d)

Figure 3.6: Comparison of ACERs of (a) Intra-session experiments (Exp.01-05), (b) Cross-session
experiments (Exp.06), (c) Cross-attack experiments (Exp.07-11), and (d) Baseline experiment
(Exp.12) on the IPV dataset.
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Table 3.4: Training and testing setup for cross-attack (Exp. 07-11) and baseline (Exp. 12)
experiments on the IPV dataset.

Experiments Unseen PA Category Train Test

Exp. 07 Paper print Bonafide 197 35
PA 401 74

Exp. 08 Artificial eye Bonafide 197 35
PA 319 156

Exp. 09 Kindle display Bonafide 197 35
PA 424 51

Exp. 10 Funny glasses Bonafide 197 35
PA 309 166

Exp. 11 Mannequin Bonafide 197 35
PA 447 28

Exp. 12 N/A Bonafide 99 89
PA 280 136

Table 3.5: ACER (%) of proposed methods across all experiments (Exp. 01-12) on the IPV dataset.

Experiments
(unseen)

Intra-session Cross-session Cross-attack Baseline

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6
(IPV01-02)

Exp. 7
(Print)

Exp. 8
(Artificial)

Exp. 9
(Kindle)

Exp. 10
(Funny Glasses)

Exp. 11
(Mannequin) Exp. 12

MLP 0.61 0.61 0.61 0.20 0.20 3.66 0.0 3.01 2.85 20.00 18.57 0.0
LSTM 0.20 0.61 1.47 0.20 3.67 6.35 0.0 5.12 6.77 30.73 10.00 1.29
LRCN 15.57 10.94 29.87 13.93 14.68 40.78 4.10 3.52 8.82 0.30 20.71 11.10
C3D 16.66 23.68 5.81 25.49 6.93 37.90 14.67 46.31 10.70 13.20 24.28 10.50
3D ResNeXt-101 3.50 0.81 4.41 03.09 3.75 7.93 0.0 18.56 5.79 35.22 23.57 13.63
Spatial ConvNet 0.0 0.20 0.0 0.0 0.20 0.96 0.0 3.20 0.0 10.54 12.50 0.55
Temporal ConvNet 10.49 10.94 5.47 5.67 4.97 21.62 0.0 12.76 22.12 18.07 11.78 26.31
Two-stream CNN 3.25 6.08 1.26 3.14 1.62 2.12 0.0 4.31 0.0 10.54 6.07 6.41
Cross-Modality 5.88 3.75 4.16 9.63 10.90 11.78 6.15 19.84 3.38 26.95 24.64 -

complexity incurred in estimating optical flows for such large datasets, we did not analyze the

Temporal ConvNet method for detecting face PAs.

3.5.2.1 Results on SiW dataset

The SiW [165] dataset provides three evaluation protocols along with a baseline method. Training

and testing performed on the disjoint set of subjects in all three protocols. Training performs on 90

subjects and testing on rest (75 subjects). Protocol 1 evaluates the generalizability of algorithms

under different face poses and expressions by considering only the first 60 frames for training

(frontal view) and rest for testing. Protocol 2 represents the scenario of cross-medium of the

same spoof type (replay attack). Training is on three replay attack media and tested on the fourth
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Table 3.6: ACER (%) for all methods on the SiW [165] dataset. The ACER values outperforms the
baseline [165] are shown in bold.

Protocol Subset Subject# Attack Auxiliary [165] MLP LSTM LRCN C3D 3D ResNeXt-101 Spatial ConvNet

1 Train 90 First 60 Frames 3.58 0.034 0.0835 0.569 0.725 1.412 0Test 75 All

2 Train 90 3 display 0.57 ± 0.69 0.083 ± 0.118 2.216 ± 3.620 2.031 ± 2.873 0.523 ± 0.574 0.208 ± 0.259 0 ± 0Test 75 1 display

3 Train 90 print (display) 8.31 ± 3.81 11.38 ± 15.98 9.865 ± 13.951 1.063 ± 0.363 0.1849 ± 0.081 22.561 ± 0.241 2.0399 ± 0.246Test 75 display (print)

medium. The protocol uses a leave-one-out strategy and reports the mean and standard deviation

of four experiments. Protocol 3 represents the scenario of cross-attack, where training is on print

attacks and testing on replay attacks and vice versa. Table 3.6 presents results (ACER) on all three

protocols.

The proposed methods compared with the algorithm specified in the work [165]. For protocol

1, all scene-based methods outperform the baseline [165]. Scene information is invariant to the

variations of face pose and expression when used for detecting PAs. For protocols 2 and 3 as well,

cues from the entire scene are more crucial than cues from just facial region in detecting face PAs.

The C3D and Spatial ConvNet methods perform the best on this dataset. The issue of limited

training data gets resolved for the C3D method on this dataset.

3.5.2.2 Results on SiW-M dataset

To further analyze the role of scene information in detecting the face PAs in the unseen attack

scenario, we perform experiments on the SiW-M dataset [166]. The dataset specified 13 experi-

mental splits for evaluating the performance on each presentation attack following the leave-one-out

strategy. For each experiment split, training performed on 12 types of spoof attacks and 80% of

the bonafide videos and testing on one left attack type and 20% of bonafide videos. There is no

overlapping of subjects between the training and testing sets of bonafide videos. Table 3.7 presents

the results (ACER) of all 13 experimental splits.

The proposed scene-based methods compared with SVM-RBF + LBP [33], Auxiliary [165],

and Deep Tree Learning [166] algorithms. All scene-based methods outperform methods proposed

in [165] and [33] when looking at the average (last column). Except for the C3D and LRCN
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Table 3.7: ACER (%) for all methods on the SiW-M [166] dataset.

Methods Replay Print Mask Attacks Makeup Attacks Partial Attacks AverageHalf Silicone Trans. Paper Manne Obfusc. Imperson. Cosmetic Funny Eye Paper Glasses Partial Paper
SVM-RBF + LBP [33] 20.6 18.4 31.3 21.4 45.5 11.6 13.8 59.3 23.9 16.7 35.9 39.2 11.7 26.9 ± 14.5
Auxiliary [165] 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6 ± 18.5
Deep Tree Learning [166] 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8 ± 11.1
MLP 6.77 4.35 8.24 16.03 11.66 0.76 1.53 26.75 2.35 10.84 2.23 5.43 1.15 7.54 ± 7.13
LSTM 5.24 5.0 13.79 20.44 12.18 0.76 1.92 26.88 4.04 14.61 3.17 9.73 1.15 9.14 ± 7.76
LRCN 7.92 17.39 12.61 31.66 34.5 4.86 18.65 45.11 5.58 23.92 16.25 31.58 1.15 19.32 ± 2.81
C3D 9.85 16.7 11.47 37.74 27.73 4.86 13.46 41.27 6.45 22.15 15.62 30.1 0.38 18.29 ± 12.22
3D ResNeXt-101 13.38 10.71 10.58 21.57 29.11 2.94 8.15 45.95 5.89 27.61 23.59 27.24 9.55 13.38 ± 1.75
Spatial ConvNet 5.61 1.61 11.59 18.51 24.58 0.00 0.00 28.89 0.81 6.76 17.45 14.32 0.00 10.01 ± 9.62
Cross-Modality 24.32 10.94 28.70 19.72 36.26 11.83 3.05 46.56 24.94 34.32 10.30 16.62 1.14 20.66 ± 12.96

methods, all other scene-based methods also outperform [166]. Considering individual unknown

attacks,MLP and Spatial ConvNetmethods showpromising results under a cross-attack or unknown

attack scenario. Results on SiW [165] and SiW-M [166] datasets show that cues from the entire

image are more effective in detecting face PAs as it contains cues from the facial region as well as

background region.

3.5.2.3 Results on OULU-NPU dataset

The OULU-NPU dataset specified four evaluation protocols. Data is divided into three subject-

disjoint subsets named training, development, and testing. Protocol 1 assesses the face PA detection

algorithms under unseen illumination and location. The training uses data of Sessions 1 and 2,

and testing is on data of session 3. Protocol 2 evaluates the effect of using different presentation

attack instruments (PAI) in print and replay attacks. Training is on one type of print and replay

attack and testing on another type of print and replay attacks. Protocol 3 analyses the effect of the

input sensor variations on PA detection algorithms using the leave-one-out strategy. There are six

sensors used to capture the data. The training performs on videos of five sensors and testing on the

remaining one. Protocol 4 combines all three challenges and evaluates the generalizability of face

PA detection methods under unseen environmental conditions, PAIs, and input sensors. Table 3.8

presents results (ACER) on all four protocols.

The proposed scene-based methods are compared with SVM-RBF + LBP [33], Auxiliary [165],

and De-spoofing [133]. For protocols 2 and 3, the Spatial ConvNet method performs the best. For

all four protocols, 3D ResNeXt-101 and Spatial ConvNet methods are more effective than the
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Table 3.8: ACER (%) for all methods on the OULU-NPU [33] dataset.

Methods Protocol 1 Protocol 2 Protocol 3 Protocol 4
SVM-RBF + LBP [33] 13.5 14.2 12.1 ± 3.7 27.2 ± 14.3
Auxiliary [166] 1.6 2.7 2.9 ± 1.5 9.5 ± 6.0
De-spoofing [133] 1.5 4.3 3.6 ± 1.6 5.6 ± 5.7
MLP 22.29 16.25 18.68 ± 4.83 23.33 ± 8.97
LSTM 26.45 16.52 20.83 ± 7.49 23.75 ±5.72
LRCN 46.45 30.55 30.34 ± 7.01 48.75 ± 1.90
C3D 48.75 26.52 27.77 ± 7.24 49.16 ± 1.86
3D ResNeXt-101 5.83 5.13 4.72 ± 1.03 23.33 ± 8.97
Spatial ConvNet 3.54 2.5 2.84 ± 1.77 24.16 ± 16.62

baseline methods [33] even though the contextual information is deliberately kept out of the videos.

Other scene-based methods perform poorly on this dataset. We anticipate these results on this

dataset as the proposed approaches focus on cues from the entire frame (spatial) or along the

temporal dimension. The dataset suppresses scene cues, which result in poor performance. Hence,

the capture contextual information is advantageous for PA detection.

3.5.3 Cross-modality

We also perform two more experiments to evaluate the usefulness of scene cues in PA detection

across modalities. In the first experiment, training performs on face PAs taken from SiW-M [166]

dataset, and evaluation is on all test splits of the iris IPV dataset. Table 3.5 (last row) shows all

results (ACER). Though the results show the inferior performance of the cross-modality model

over the intra-modality model, the cues learned from the face PAs are worthwhile in distinguishing

bonafide and PA samples in iris modality.

In the second cross-modality experiment, training performs on iris PAs (IPV dataset) and testing

on the experimental splits of SiW-M [166] dataset. The last row of Table 3.7 presents its results.

Surprisingly, it performs better than the SVM-RBF + LBP [33] and Auxiliary [165] techniques

when examining the overall average (last column of table 3.7). Reasonable results of scene-based

techniques under the cross-modality scenario validate the presence of common scene cues across

PAs of different modalities.
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Figure 3.7: Sample video frames from various face PAD datasets: the first block shows frames
from the SiW-M [166] dataset, the second block represents examples from the SiW [165] dataset
and the third block shows samples from the OULU-NPU [33] dataset.

The key findings observed from all the experiments conducted in this work are as follows:

1. The scene provides useful information for detecting iris PAs under different (intra-session,

cross-session, and cross-attack) scenarios (refer Iris Modality results).

2. The cues obtained from the scene video are complementary to the one obtained from the NIR

iris region (refer to the last column of Table 3.5).

3. Scene analysis could be extended to other modalities. Outperforming results on the face

modality (refer Face Modality results) validate the hypothesis.

4. Scene-based techniques utilize the common cues of presentation attacks across biometric

modalities (refer to Cross-modality results).

5. Spatial ConvNet performs best in the majority of the experiments.
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3.6 Analysis Using Heatmaps

Figure 3.8: Frames of bonafide (first row), artificial eye (second row), and paper print (third row)
videos overlaid with their corresponding Grad-CAM heatmaps. The columns correspond to the
different frames of a video. Heatmap represents the focused region of a frame by the trained
model (Spatial ConvNet). Red gradient regions in the heatmaps represent high focused regions
considered by the trained model, whereas the blue-colored regions represent low focused regions.
On the bonafide frames, the focus is mainly over the center of a face. On artificial eye frames, the
focus is on the artificial eye mounted over the glasses. In the case of paper print video, the focus
is on the print of the eyes. Different regions of focus in different categories help in differentiating
bonafide videos from spoof one.

We further visually analyze the result by generating “heatmaps" using Gradient-weighted Class

Activation Mapping (Grad-CAM) [245]. Grad-CAM produces a coarse localization map highlight-

ing the salient regions in an image that were used by the network to generate its inference. It is

generated by estimating the gradient of the loss function and backpropagates it through the hidden

layers to the input frame. We use the Spatial ConvNet model trained using experiment 11 (Iris

Modality cross-attack) setup for generating heatmaps of bonafide, artificial eye, and paper print

videos (most commonly used PAs). Figure 3.8 exhibits sample frames of bonafide, artificial eye,

and paper print videos along with their heatmaps. The first row of Figure 3.8 shows the heatmaps

of bonafide frames, where the high activation regions are at the center of a face. The other two

rows of Figure 3.8 correspond to artificial and print PA frames, where high activation regions are

around the artificial eye and print paper respectively. The presence of spoof artifacts in the video

frames shifted the salient region towards the artifacts. Distinct region of focus aids the models to

discriminate bonafide from PAs videos.
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3.7 Conclusion and Future work

We proposed an approach that utilizes multiple frames of a scene video for detecting the

presentation attacks in iris and face biometric modalities. Experimental results validated the

presence of significant cues in the scene video for detecting the PAs. In the case of iris modality,

scene video cues are also complementary to the cues obtained from the NIR iris image. It has the

generalizable capability as it produces reasonably good results with unseen attacks and modalities.

We extended the approach for the face modality, but it could also be extended for other modalities

such as fingerprint, where holding a fake fingerprint can be evidence for detecting the presentation

attack.
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CHAPTER 4

IRIS PRESENTATION ATTACK DETECTION USING A OCT IMAGE

Parts of this chapter appeared in the following publication:

R. Sharma and A. Ross, “Viability of Optical Coherence Tomography for Iris Presentation At-

tack Detection,” International Conference on Pattern Recognition (ICPR), Milan, Italy, January

2021.

4.1 Introduction

In this chapter, we present another iris presentation detection (PAD) method utilizing Optical

Coherence Tomography (OCT) imaging. Existing PAD methods utilize NIR or VIS imaging

which captures the stromal textural patterns of the iris, whereas OCT1 images capture the internal

structure of the eye and the iris (Figure 4.1). The OCT imaging has been utilized for fingerprint

PA detection [180]. But the unavailability of an OCT iris dataset and the high hardware costs

associated with OCT has traditionally prevented its exploration for iris PA detection. However, the

development of cost-effective OCT hardware [256] motivates us to consider it for iris PA detection.

The main contributions of the work are as follows:

1. We propose a hardware-based iris PA detection technique based on OCT imaging technology.

We also assess its viability by comparing its performance against traditional NIR and VIS

imaging modalities.

2. We implement OCT-based iris PA detection using three state-of-the-art deep CNN mod-

els which significantly differ in their architectures: VGG19 [255], ResNet50 [106] and

DenseNet121 [121].

1OCT also employs NIR illumination but obtains cross-sectional views, not textural details.
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3. We evaluate PA detection performance on a dataset of 2,169 bonafide, 177 Van Dyke eyes

and 360 cosmetic contact lens images under intra-attack and cross-attack scenarios. Each

input sample is captured in all three imaging modalities.

4. We also generate CNN visualizations (heatmaps [245] and t-SNE plots [280]) to further

analyze the results on OCT, NIR andVIS images. Heatmaps are used to identify salient image

regions that the deep architectures utilize to detect PAs. t-SNE plots aid in visualization of

features extracted by the CNN architectures.

The rest of the chapter is organized as follows. Section 4.2 discusses the existing work for

detecting hardware-bsed iris PAs. Section 4.3 discusses background of the imaging modalities.

Section 4.4 describes the proposed approach. Section 4.5 provides a description of the dataset.

Section 4.6 describes the experimental setup and reports the results. Section 4.7 provides a detailed

analysis of the results obtained from the proposed approach. Finally, Section 4.8 concludes the

chapter.

4.2 Related Work

Various presentation attack detection techniques in iris modality utilize different imaging tech-

niques. Commonly used imaging technique is near-infrared (NIR) imaging [46,114,176,249,315].

Zhang et al. [315] utilized texture-based features, whereas works in [46, 114, 176, 249] used deep

features to detect iris PAs. The authors in [98, 211] operated on visible spectrum (VIS) imaging

utilizing LBP [98] and BSIF [211] features. Menotti et al. [176] showed results on both NIR and

VIS iris images. Raghavendra and Busch [219] exploited characteristics of the Light Field Camera

(LFC) for iris PA detection in the VIS spectrum. Sequeira et al. [246] suggested the use of a

one-class classifier on VIS images for generalization across unseen attacks, i.e., attacks that were

not used in the training phase. In [214], the authors utilized Eulerian Video Magnification (EVM)

to detect PAs in VIS videos. Park and Kang [198] utilized a specialized tunable filter to capture iris

images at different spectral bands ranging from 650nm to 1100nm. These multi-spectral images are

then fused at the image level to detect PAs. Lee et al. [152] analyzed the reflectance properties of the
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Figure 4.1: Components of the eye and iris sensed using OCT, NIR and VIS imaging. The
anatomical image (https://www.vecteezy.com/vector-art/431288-parts-of-human-eye-with-name) is
also shown. The red line in the VIS image shows the traverse scanning direction of the OCT scanner.

iris and sclera in multi-spectral illumination. Chen et al. [49] captured images at the near-infrared

(860nm) and blue (480nm) wavelengths, and then analyzed the conjunctival vasculature patterns

and the iris textural patterns for liveness detection.2 Connell et al. [54] exploited the anatomy and

geometry of the human eye using structured light to detect cosmetic contact lens. Thavalengal

et al. [266] used both VIS and NIR images for iris liveness detection in smartphones. Hsieh et

al. [117] utilized dual-band imaging hardware (VIS and NIR) to distinguish between the textured

pattern of contact lens from real iris patterns using independent component analysis.

4.3 Background of Iris Imaging Modalities

The complex texture of the iris is characterized by its components, including, pigments (chro-

mophore), blood vessels, muscles, crypts, contractile furrows, freckles, collarette and pupillary

2Early literature used the term “liveness detection" to refer to the problem of PA detection.
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frills. Different spectral bands can potentially be used to capture different components of the iris.

NIR illumination, which operates in the 700-900nm range, predominantly captures the stromal

features (fibrovascular layer) of the iris, whereas VIS (400-700nm) captures information about the

pigment melanin. Optical Coherence Tomography (OCT) [120] is a non-invasive, micrometer-

resolution imaging modality, that can be used to capture 2-D cross-sectional or 3-D volumetric

images of an eye. It is mainly used for biomedical and clinical purposes, such as ophthalmology,

optometry, cardiology and dermatology. It works with a low-coherence near-infrared (800nm-

1325nm) light source. OCT imaging captures cornea (circular arc), iris tissue structure, anterior

humor (the space between iris and cornea) and the ciliary muscles (next to the iris tissues) of the

eye as shown in Figure 4.1. OCT images are captured by shining the light source over a beam

splitter, which splits the light into two beams, one directed to the sample arm (human eye) and

another to the reference arm (mirror). The time delay and intensity of the back-reflected light from

both the arms are estimated to create an axial back-scattering profile called A-Scan. Combination

of A-Scans along transverse axis forms a 2-D cross-sectional image called B-Scan. The imaging

setup of an OCT sensor is shown in Figure 4.2. OCT imaging primarily captures the structure and

morphology of the eye as opposed to texture information that is typically observed in NIR and VIS

images.

A majority of commercial iris recognition systems and iris PA detection algorithms utilize NIR

images for the following reasons. Firstly, NIR illumination penetrates deeper into the iris and

elicits the textural pattern of both light and dark irides; in contrast, majority of VIS illumination

is absorbed by higher levels of melanin in dark-colored irides resulting in poorly discernible iris

texture. Secondly, background illumination variations and corneal reflections do not affect NIR

imaging as much as RGB imagers. However, some iris recognition and PA detection algorithms

have started using VIS imaging due to inexpensive hardware and a wide range of applications

(mobile devices, surveillance, etc.) [98, 286]. Due to expensive hardware, OCT imaging has not

been traditionally discussed in the literature for either iris recognition or PA detection.
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Figure 4.2: Typical optical setup of an OCT scanner. Low-coherence light is incident over the beam
splitter, which splits the light into sample and reference arms. Back-reflected light from sample
and reference arms are then collected by the photodetector. Cross-sectional OCT image (B-scan)
is formed by combining a number of A-scans along the transverse direction.

4.4 Proposed Approach

In this work, we discuss the use of OCT imaging for iris PA detection. For classification

of iris OCT images as bonafide or PA, we used three state-of-the-art deep CNN architectures:

VGG19 [255], ResNet50 [106] and DenseNet121 [121]. These architectures output a single PA

score in the range [0, 1], with a ‘1’ indicating a PA and ‘0’ indicating a bonafide. Using the same

CNN architectures, we compare the PA detection capability of OCT images against NIR and VIS

images. Overview of the approach is depicted in Figure 4.3. In the subsequent sub-section, we

provide implementation details of all three network architectures.

To classify bonafide and PA iris images acquired fromall three imagingmodalities, we used three

state-of-the-art deep architectures: VGG19 [255], ResNet50 [106] and DenseNet121 [121]. These

three networks differ by the number of the convolutional layers, the number of trainable parameters

and the connection type. VGG19 [255] has 19 convolutional layers with kernels of fixed size 3

× 3 throughout the network. It has 143,667,240 trainable parameters. ResNet50 [106] has 50

79



Figure 4.3: Comparative analysis of OCT, NIR and VIS imaging in detecting iris PAs. Three
architectures, viz., VGG19, ResNet50, DenseNet121, are used for distinguishing between bonafides
and PAs by emitting a PA score. A higher PA score indicates the input is a “PA" and a lower score
indicates the input is a “bonafide" image.

convolutional layers with residual connections (skip connections) to moderate gradient flow and

allow the training of a large network. It has 35,610,216 trainable parameters. DenseNet121 [121]

consists of 121 convolutional layers, where each layer is connected to every other layer resulting

in a much reduced set of trainable parameters (7,978,856). Three different sized architectures are

utilized in the study to eliminate the bias created due to the network architecture (under-fitting

or over-fitting) in the comparison results. As the dataset used in the study is insufficient to train

these deep architectures, we utilize pre-trained models on ImageNet dataset. Pre-trained models

also help in faster convergence during the training process. ImageNet is a large dataset used for

object classification containing 1.2 million images of 1000 classes. The images in ImageNet dataset

are visible spectrum images, i.e., RGB. To preserve the usefulness of pre-trained weights for the

OCT and NIR spectrum images, we normalize OCT, NIR and VIS images using the mean and the

standard deviation calculated from the ImageNet dataset images. The photometrically normalized

images are then re-sized to 224 × 224 and input to the aforementioned architectures. All three

models are then fine-tuned using OCT, NIR and VIS iris images resulting in nine trained models.
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Table 4.1: Number of bonafide and PA samples corresponding to each imaging modality.

Classes Sub-Classes Imaging Modality
OCT RGB NIR

Bonafide 844 844 1371

Artificial Eyes
Van Dyke Eye (Brown) 30 30 51
Van Dyke Eye (Blue) 29 29 56
Face Mask 2 2 4

Cosmetic Contacts
Acuvue Accent Vivid 37 37 43
Air Optix Sterling Grey 41 41 43
Extreme FXS Halloween Blackout 42 42 34

The learning rate used in the training is 0.005, the batch size is 20, the optimization algorithm

is stochastic gradient descent with momentum of 0.9, the number of epochs is 50, and the loss

function is cross-entropy. During test and evaluation, each of these networks produce a single PA

score which is used along with a threshold to determine if the input image is a PA or a bonafide.

4.5 Dataset

The dataset is collected under the Odin program of IARPA [2] from 740 eyes (370 subjects).

Figure 4.4 provides age distribution of subjects. The number of male and female subjects are

136 and 243, respectively. OCT, NIR and VIS images are collected sequentially for a subject

using an RGB camera, iCAM7000 NIR sensor and THORLabs Telesto series (TEL1325LV2)

OCT sensor [5], respectively. The OCT images are acquired at 1325nm wavelength having 7mm

imaging depth and 12`m axial imaging resolution. For a single sample, 50 cross-sectional frames

are captured by the OCT sensor. However, temporal information is not significant among frames,

so we use only the first frame. Iris PAs considered in this study are artificial eyes (Van Dyke eyes)

and cosmetic contact lenses. For OCT and VIS, the dataset contains 844 bonafide images, 61

artificial eyes and 120 cosmetic contact lens images, whereas, for NIR, there are 1,371 bonafide

images, 111 artificial eyes and 120 cosmetic contact lens images. Further sub-categorization of PA

images is provided in Table 4.1. Figure 4.5 shows examples of bonafide and PA images acquired

in all three spectra (OCT, NIR and VIS).
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Figure 4.4: Age distribution of subjects in the dataset.

Figure 4.5: Samples of bonafide, artificial eyes and cosmetic contact lens images captured using
(a) OCT, (b) NIR and (c) VIS imaging modalities.
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Table 4.2: APCER (%) and BPCER (%) of all algorithms on LivDet-Iris 2017 Dataset [304].
Results are presented by averaging APCER and BPCER of all test sets in the dataset.

Algo. CASIA [304] Anon1 [304] UNINA [304] VGG19 ResNet50 DenseNet121
APCER 11.88 14.71 15.52 15.80 11.71 6.25
BPCER 9.48 3.36 12.92 1.20 3.24 10.39

4.6 Experimental Setup and Results

Before evaluating the three imaging modalities (OCT, NIR and VIS), we assess the performance

of three fine-tuned architectures (VGG19, ResNet50 and DenseNet121) on the LivDet-iris 2017

[304] dataset for iris PA detection. The dataset is an amalgamation of Clarkson, Warsaw, Notre

Dame and IIITD-WVU datasets. Print and cosmetic contact lens PAs are included in the dataset.

The experimental setup is kept the same as specified in the competition [304]. Evaluation measures

areAttack PresentationClassification Error Rate (APCER) andBonafide PresentationClassification

Error Rate (BPCER), where APCER is the proportion of PA samples misclassified as bonafide and

BPCER is the proportion of bonafide samples misclassified as PAs. All three architectures either

outperform or are comparable to the state-of-the-art algorithms (CASIA, Anon1 and UNINA) on

the LivDet-iris 2017 competition as shown in Table 4.2.

Utilizing the three architectures, we perform comparative evaluation of OCT, NIR and VIS

images in detecting iris PAs. Experiments are performed under intra- and cross-attack scenarios.

Samples that were successfully captured in all three imagingmodalities are selected for experiments.

The dataset used for evaluation eventually has 723 bonafide samples, 59 artificial eyes and 120

cosmetic contact lens images captured in all three imaging modalities. The train, validation and

test sets are eye-disjoint, i.e., they have data from different eyes and samples in the three sets are

mutually exclusive. Intra-attack experiments examine which imaging modality performs best with

known PAs (used during training), whereas cross-attack experiments analyze the generalizability

across unknown PAs (not used in training). The evaluation measures used are True Detection

Rate (TDR) at 0.2% False Detection Rate (FDR), and Average Classification Error Rate (ACER).

TDR is the percentage of PA samples that were correctly detected, whereas FDR is a percentage
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of bonafide samples that were misclassified as PA. ACER is the average of APCER and BPCER.

Receiver operating characteristic (ROC) curves are also provided for a comprehensive overview.

For successful detection, TDR should be comparatively higher and ACER should be comparatively

lower.

4.6.1 Intra-attack Setup and Results

In the intra-attack setup, three experiments are performed: Intra-EXP 1, Intra-EXP 2 and Intra-EXP

3. Intra-EXP 1 includes both the PAs (artificial eyes and cosmetic contact lens) and bonafide images

in the training and test sets, whereas Intra-EXP 2 and Intra-EXP 3 include images from only one PA

along with bonafide images for training and testing. Intra-EXP 2 and Intra-EXP 3 experiments are

performed to test the difficulty level of differentiating a specific PA from bonafide samples. Details

about the train, validation and test sets of all three experimental setups are provided in Table 4.3.

In the first experiment (Intra-EXP 1), the data are split in a 70:30 ratio, where 70% of eyes is used

for training and the remaining for testing (30%). Thereafter, five-fold cross-validation is employed

on the training set, where 4 folds are used for training and one for validation. The validation set is

used to estimate the threshold to be used on the test set for calculating ACER. The TDR at 0.2%

FDR and the ACER for VGG19, ResNet50 and DenseNet121 architectures are provided in Table

4.4. ROC curves of Intra-EXP 1 for all three architectures are shown in Figures 4.6(a), 4.7(a) and

4.8(a).

In the Intra-EXP 1 experiment, the best results are observed on OCT images, second-best on

NIR images, and then on VIS images. All trained models (five) obtained from cross-validation

show low standard deviation in the results when tested on OCT images (Figures 4.7(a) and 4.8(a))

compared toNIR andVIS images. Similar results are observed across all three network architectures

(VGG19, ResNet50 and DenseNet121). This validates the robustness of PA detection when using

OCT images. Considering individual PAs in Intra-EXP 2 and Intra-EXP 3 experiments, it is found

that both types of PAs are perfectly classified (100% TDR) by the OCT and NIR modalities. There

are a few errors when detecting cosmetic contact PAs using the VIS modality (98.63% TDR). So,
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Table 4.3: Data distribution among train, validation and test sets for all experiments (intra-attack
and cross-attack scenarios). Here, CC is Cosmetic Contacts.

Experiments Train Set Validation Set Test Set
Bonafide PAs Bonafide PAs Bonafide PAs

Intra-EXP 1
(Both Artificial Eyes & CC) 404 100 101 25 218 54

Intra-EXP 2
(Only Artificial Eyes) 435 35 145 12 146 12

Intra-EXP 3
(Only CC) 435 72 145 24 146 24

Cross-EXP 1
(CC are unknown) 435 41 145 18 146 120

Cross-EXP 2
(Artificial eyes are unknown) 435 84 145 36 146 59

in the intra-attack scenario, where attacks are known and used during training, the OCT modality

perfectly separates (100% TDR at 0.2% FDR) bonafide and PA iris images by a higher margin

compared to the NIR and VIS modalities.

4.6.2 Cross-attack Setup and Results

To perform the cross-attack (generalization to unknown attacks) analysis, two experiments are

conducted: Cross-EXP 1 and Cross-EXP 2. In the first experiment (Cross-EXP 1), training is

performed on bonafide and artificial eye images, and testing is done on bonafide and cosmetic

contact lens images. Bonafide images are split in a 60:20:20 ratio for the training, validation and

test sets, respectively. Artificial eye images are split in a 70:30 ratio for the training and validation

sets, respectively. All cosmetic contact images constitute the test set. In the second experiment

(Cross-EXP 2), training is performed on bonafide and cosmetic contact lens images, and testing is

done on bonafide and artificial eye images. Bonafide images are split in the same way as Cross-EXP

1. Cosmetic contact lens images are split in a 70:30 proportion for the training and validation sets,

respectively. All artificial eye images are used in the test set. Further details of both the experimental

setups are given in Table 4.3. The TDR at 0.2% FDR and the ACER for VGG19, ResNet50 and

DenseNet121 architectures are provided in Table 4.4. ROC curves of all three architectures for the
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Table 4.4: TDR (%) at 0.2% FDR and ACER of all experiments (intra-attack and cross-attack)
when using VGG19, ResNet50 and DenseNet121 architectures.

VGG19 ResNet50 DenseNet121Experiments Evaluation
Measure OCT NIR RGB OCT NIR RGB OCT NIR RGB
ACER 0.08 ± 0.15 0.02 ± 0.01 0.09 ± 0.03 0.00 ± 0.00 0.00 ± 0.01 0.08 ± 0.00 0.02 ± 0.03 0.02 ± 0.02 0.07 ± 0.02Intra-EXP 1

(Both Artificial & CC) TDR 100 ± 0.00 97.99 ± 2.66 82.58 ± 6.88 100 ± 0.00 97.33 ± 3.88 89.62 ± 3.62 100 ± 0.00 97.66 ± 3.26 86.66 ± 3.59
ACER 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00Intra-EXP 2

(Only Artificial Eyes) TDR 100 100 100 100 100 100 100 100 100
ACER 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.03Intra-EXP 3

(Only CC) TDR 100 100 95.83 100 100 100 100 100 100
ACER 0.39 0.01 0.19 0.20 0.01 0.27 0.16 0.01 0.30Cross-EXP 1

(CC are unknown) TDR 21.66 97.58 26.66 92.50 98.38 15.00 84.16 98.38 11.66
ACER 0.06 0.03 0.04 0.01 0.02 0.07 0.05 0.01 0.04Cross-EXP 2

(Artificial eyes are unknown) TDR 86.44 98.38 93.22 94.91 96.77 81.35 94.91 96.77 91.52

two experiments are shown in Figures 4.6(b) and 4.6(c), 4.7(b) and 4.7(c), and 4.8(b) and 4.8(c),

respectively.

In the cross-attack scenario, the best results are observed on NIR images, followed by OCT

images and then VIS images. Basically, the OCT and VIS modalities failed in detecting cosmetic

contact images when training is performed using artificial eye PAs (see Figures 4.6(b), 4.7(b) and

4.8(b)). The feature sub-spaces of bonafide samples and cosmetic contact lens seem to overlap

(middle column of Figure 4.10). However, when classifiers are trained on cosmetic contact images

(Figure 4.6(c), 4.7(c) and 4.8(c)), they can detect artificial eye PAs as feature sub-space of artificial

eyes seems to be well separated from that of bonafide samples (last column of Figure 4.10).

Difficulty in detecting cosmetic contact PAs is also reflected in the Intra-EXP 2 and Intra-EXP

3 experiments. ResNet50 and DenseNet121 architectures are better suited for the cross-attack

scenario than the VGG19 network, as a higher number of trainable parameters are present in

VGG19 and the training data is insufficient. As the networks are pre-trained on the ImageNet

dataset (containing VIS images), trainable parameters converge in the case of VIS and NIR images,

but fail to converge for OCT images due to the fundamentally different image modality (Figure

5(a)).

The main findings of the comparative analysis are:

1. In the intra-attack scenario, when PAs are known and used during training, OCT images

providemore discriminative information for distinguishing between bonafide and PA samples.

However, NIR imaging provides better generalizability across unknown iris PA attacks.
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Figure 4.6: ROC curves of (a) Intra-EXP 1, (b) Cross-EXP 1 and (c) Cross-EXP 2 experiments
using VGG19 architecture. The first ROC plot (a) also shows the confidence interval of 95%. NIR
imaging is more efficient in discriminating bonafide and PA samples on this network.

Figure 4.7: ROC curves of (a) Intra-EXP 1, (b) Cross-EXP 1 and (c) Cross-EXP 2 experiments
usingResNet50 architecture. OCT imaging results in better performance in distinguishing bonafide
and PA images in the intra-attack scenario (a), whereas NIR imaging performs the best in the cross-
attack scenario (b and c).

Figure 4.8: ROC curves of (a) Intra-EXP 1, (b) Cross-EXP 1 and (c) Cross-EXP 2 experiments
using DenseNet121 architecture. OCT imaging results in better performance in distinguishing
bonafide and PA images in the intra-attack scenario (a), whereas NIR imaging performs the best in
the cross-attack scenario (b and c).
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2. Cosmetic contact PAs are difficult to detect compared to artificial eyes, especially on VIS

images.

3. ResNet50 and DenseNet121 architectures are well-suited for iris PA detection in the OCT

imaging modality possibly due to the smaller number of trainable parameters compared to

VGG-19.

4.7 CNN Visualization

The performance of all three architectures is nearly perfect on OCT and NIR images. To further

analyze the results, we generate heatmaps [245] and t-SNE plots [280]. Heatmaps provide the

salient regions in OCT, NIR and VIS images where the classifier (ResNet50) focused on, in order

to discriminate PAs from bonafide samples. Heatmaps are generated using Grad-CAM [245].

Grad-CAM uses a gradient of the loss function and backpropagates it through the convolutional

layers to generate activations on the input image. OCT, NIR and VIS images of a bonafide, artificial

eye and cosmetic contact lens are shown along with their heatmaps in Figure 4.9. In the case of

OCT images (Figure 4.9(a)), the heatmap of the bonafide image highlights the iris regions, which

is the most discriminative region compared to OCT PA images. The heatmap of an artificial eye

image focuses over the outer structure. Cosmetic contact lens conceals the underlying iris pattern

(partially or fully), which causes the focus to shift over to the corneal region corresponding to

the pupil. In the case of NIR and VIS imaging (Figure 4.9(a) and 4.9(b)), heatmaps of bonafide

sample focus over the iris pattern. For an artificial eye image, the heatmap is activated all over the

image, whereas for a textured contact lens more emphasis is given to the circumference of the iris.

Different regions of focus for different categories (bonafide and PA) aid the CNN architecture to

discriminate between them.

After visualizing activations on the input image, we also visualize the CNN features using a

t-SNE plot [280]. The CNN features are extracted from the average pooling layer (penultimate

layer, a layer before the last fully connected layer) of the ResNet50 architecture. The dimensionality

of the features is 2048, which is reduced to two dimensions using t-Distributed Stochastic Neighbor
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Figure 4.9: (a) OCT, (b) NIR and (c) VIS images and their corresponding fixation regions for
bonafide, artificial eyes and cosmetic contact lens samples. Red in the heatmaps represents high
priority (high CNN activations) regions considered by the CNN architecture. Blue represents low
priority regions. Red boxes mark the high priority regions. Different regions of focus help the
CNN architecture to differentiate between bonafide and PA iris images.

Embedding (t-SNE). The t-SNE plots are shown in Figure 4.10. These t-SNE plots correspond to

Intra-EXP 1 (first column), Cross-EXP 1 (second column) and Cross-EXP 2 (third column) test

data. Distribution of bonafide, artificial eyes and cosmetic contact images are observed to be well

separated in OCT imaging in the case of Intra-EXP 1 and Cross-EXP 2 experiments. Separation

of these features is also prominent in NIR imaging under the cross-attack scenario (Cross-EXP 1

and Cross-EXP 2). Features in the case of Cross-EXP 1 experiment overlap for VIS images. These

plots substantiate our observations that OCT imaging works efficiently in the intra-attack scenario

and moderately in the cross-attack scenario, while NIR imaging generalizes well in the cross-attack

scenario.
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Figure 4.10: t-SNE plots of Intra-EXP 1, Cross-EXP 1 andCross-EXP 2 test data pertaining toOCT,
NIR and VIS imaging. 2048 dimensions of features from the average pooling layer (penultimate
layer) of ResNet50 network are reduced to two dimensions for visualization. Features of bonafide
and PAs from OCT images are well separated in Intra-EXP 1 and Cross-EXP 2 experiments. NIR
images show good separation in all three experiments. Features from VIS images are overlapping
between the bonafide and PA categories (especially in the Cross-EXP 2 experiment). More the
separation of features, better the classification.

90



4.8 Conclusion and Future Work

In this chapter, we described the use of the OCT imaging modality for iris PA detection. By

comparative analysis against other imaging modalities (traditional NIR and VIS), we determined

that OCT is a viable solution for iris PA detection. Extensive experiments were conducted both in

the intra-attack and cross-attack scenarios using three state-of-the-art deep architectures, and results

were analyzed using CNN visualizations (heatmaps and t-SNE plots). Future work will involve

collecting OCT data from more subjects and other types of PAs. Hardware cost continues to be a

barrier for the use of OCT in iris recognition applications. However, as sophisticated presentation

attacks are launched in the future, the OCT modality is likely to be of great benefit.
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CHAPTER 5

ROBUSTNESS OF DEEP NEURAL NETWORKS

5.1 Introduction

In this chapter, we empirically analyze the robustness of iris presentation attack detection

(PAD) models by manipulating their architectural parameters. Here, we consider three state-of-the-

art architectures (VGG [255], ResNet [105], and DenseNet [122]) under three types of parameter

perturbations (Gaussian noise, weight zeroing and weight scaling). We apply the perturbations in

two settings: over all the layers of a network simultaneously and over each layer at a time. Our

main contributions are as follows:

1. We perform robustness analysis of three state-of-the-architectures (VGG [255], ResNet [105]

and DenseNet [122]) against parameter perturbations.

2. We apply a large number of parameter perturbations (three types of perturbations and its

variant in two settings) to analyze the robustness of deep neural networks in the context of

iris presentation attack detection.

3. We leverage the robustness analysis to propose better performing ensemble models.

4. We perform experiments using five datasets. Three of the datasets (IARPA, NDCLD-2015,

Warsaw Postmortem v3) are used for training, whereas the others (LivDet-Iris-2017 and

LivDet-Iris-2020) are used for testing. This represents a cross-dataset scenario, where

training and testing are performed on different datasets.

The rest of the chapter is organized as follows: Section 5.2 discusses the existing work related to

the robustness analysis of DNNs, Section 5.3 provides the details of various parameter perturbations

used for the robustness analysis, Section 5.4 describes the application scenario considered in this

work, Section 5.5 explains the dataset and experimental setup, Section 5.6 provides the robustness
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analysis of the three architectures against considered parameter perturbations, and Section 5.7

describes how we leverage the robustness analysis to generate an ensemble of perturbed models for

improving performance. Finally, Section 5.8 summarizes the chapter and provides future directions.

5.2 Related Work

Deep Neural Networks (DNNs) have revolutionized the machine learning field through their

superior performance in various tasks especially in the field of computer vision [105, 122, 255],

natural language processing [75], and speech technology [74]. In essence, a DNN comprises a

sequence of layers containing trainable parameters (weights and bias) to learn a complex mapping

between input signals and output labels. For deployingDNNs in real-world applications, it is crucial

to analyze their robustness or sensitivity to hardware/sensor noise introduction [51], environment

changes [276] and adversarial attacks [94]. Robustness analysis also helps in building a quantized-

weights model with commensurate performance [102,293].

In the literature, robustness analysis of DNNs has been performed by perturbing either the

input signal or the architectural parameters. The work in [83, 96, 137, 181, 191, 259] analyze DNN

robustness by manipulating the input signals, whereas the work in [102,253,276,293,297] perturb

architectural parameters to analyze robustness. Yeung et al. [309] provide a detailed sensitivity

analysis of neural networks over input and parameter perturbations. In this work, we focus on the

robustness analysis of DNNs when architectural parameters are perturbed.

The authors in [253,276,293,297] provide a theoretical robustness analysis based on parameter

perturbations. Shu and Zhu [253] propose an influencemeasuremotivated by information geometry

to quantify the effects of various perturbations to input signals and network parameters on DNN

classifiers. Xiang et al. [297] design an iterative algorithm to compute the sensitivity of a DNN

layer by layer, where sensitivity is defined as “the mathematical expectation of absolute output

variation due to weight perturbation with respect to all possible inputs" [297]. Tsai et al. [276]

study the robustness of the pairwise class margin function against weight perturbations. Weng

et al. [293] compute a certified robustness bound for weight perturbations, within which a neural
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network will not make erroneous outputs. In addition, they also identify a useful connection

between the developed certification and the problem of weight quantization.

Our work is motivated from [51], where they also empirically analyze the robustness of the pre-

trained AlexNet and VGG16 networks to internal architecture and weight perturbations. However,

our work is vastly different. First, we extend the work by evaluating the robustness of more

recent DNN architectures: VGG, ResNet, and DenseNet. Second, we perform additional weight

manipulations (weight scaling and perturbations over the entire network) in the robustness analysis.

Third, we leverage the findings from the robustness analysis and propose an ensemble of perturbed

models for improved performance without any further training.

5.3 Parameter Perturbations

We explore the stability of neural networks by perturbing their architectural parameters (weights

and bias). From now on, we use the terms ‘architectural parameters’, ‘parameters’, and ‘weights’

interchangeably. To measure the stability, we consider the change in the performance of the

DNN when weights are perturbed. Let = input samples be {G1, G2, ..., G=} and their output as

{H1, H2, ..., H=}. Here, we labeled the positive class as ‘1’ and the negative as ‘0’. The predicted

output values from a DNN approximator are { 5 (G1,,>A6), 5 (G2,

,>A6), ..., 5 (G=,,>A6)}, where,>A6 are the learned parameters. We measure the performance of

the DNN in terms of True Detection Rate (TDR). TDR is a percentage of positive samples correctly

classified as

)�'>A6 =

∑=
8
( 5 (G8,,>A6) > ))∑=

8
H8

∗ 100 (5.3.1)

where, ) is the threshold. The input sample with a predicted value above the threshold is considered

a positive class. On weight perturbation, we estimate the output as { 5 (G1,,<>3), 5 (G2,,<>3),

..., 5 (G=,,<>3)}, where,<>3 are the perturbed parameters. We then use these predicted values

to measure the performance of DNN ()�'<>3). The higher the change in the performance, the

lower the robustness of the neural network to the particular perturbation.

We perturb the parameters in two settings: manipulating parameters of all layers simultaneously
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and manipulating parameters one layer at a time. The first setting aims to understand the overall

robustness of DNNs, whereas the second setting examines which layer has more impact on the

stability of the model. We consider three types of perturbations: Gaussian noise manipulation,

weight zeroing, and weight scaling. These perturbations resemble noise introduction due to (a)

defects in hardware implementations of neural networks [174], and (b) adversarial attacks [94].

Details of these perturbations are as follows:

1. Gaussian Noise Manipulation: Here, we manipulate the original parameters of the layers

by adding Gaussian noise sampled from a normal distribution of zero mean and scaled standard

deviation. We control the scaling of the standard deviation by the scalar factor U. The modified

parameters are defined as

,<>3 = ,>A6 + # (0," ∗ f(,>A6)) (5.3.2)

where, ,>A6 are the original parameters, ,<>3 are the modified parameters, and # (`, f) is the

normal distribution. We calculate f(,>A6) for a particular layer by first flattening the parameter

tensor to a 1-D array and then computing the standard deviation. So, the standard deviation and

the Gaussian noise distribution will differ for each layer. Consequently, the absolute perturbations

applied to the different layers also vary. However, relative perturbations are the same across layers.

1. Weight Zeroing: In the second manipulation, we randomly select a certain proportion of

parameters and set them to zero. The portion of parameters is determined by a scalar factor V. The

modified parameters are represented as

,>A6 [A0=3><(#,,>A6)] = 0 (5.3.3)

where, A0=3><(., .) is the function that returns the index of V proportion of randomly selected

parameters from the original set of parameters. We also define another version of weight zeroing,

where weights are first sorted, and then the V proportion of low-magnitude weights is set to zero.

3. Weight Scaling: The third perturbation scales the original parameters by a scalar factor W as

,<>3 = $ ∗,>A6 . (5.3.4)
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5.4 Application Scenario

We perform our robustness analysis in the context of iris presentation attack detection (PAD).

A presentation attack (PA) occurs when an adversary presents a fake or altered biometric sample

such as printed eyes, plastic eyes, or cosmetic contact lenses to circumvent the iris recognition

system [3]. Our application is to detect these PAs launched against an iris system. We formulate

the detection problem as a two-class problem based on DNNs, where the input is a near-infrared

iris image and the output is a PA score that is assigned one of two labels: “bonafide” or “PA”.

5.5 Datasets and Experimental Setup

Table 5.1: Summary of training and test datasets along with the number of bonafide and PA images
present in the datasets. The information about the sensors used to capture images is also provided.
Here, “K. Test” means a known test set of the dataset, and “U. Test” means an unknown test set
(see text for explanation).

Train/Test Train Test
Datasets

IARPA NDCLD
-2015

Warsaw
PostMortem
v3

LivDet-Iris-2017
LivDet-Iris-2020Dataset

Subsets
Clarkson
(Cross-PA)

Warsaw
(Cross-sensor)

Notre Dame
(Cross-PA)

IIITD-WVU
(Cross-Dataset)

Splits Test K. Test U. Test K. Test U. Test Test
Bonafide 19,453 - - 1,485 974 2,350 900 900 702 5,331
Print 1,005 - - 908 2,016 2,160 - - 2,806 1,049
Cosmetic
Contacts 1,187 2,236 - 765 - - 900 900 701 4,336

Artificial
Eyes 1,804 - - - - - - - - 541

Electronic
Display 51 - - - - - - - - 81

Cadaver Eyes - - 1,200 - - - - - - 1,094

Sensor COTS Iris
Sensors x31

IrisGuard
AD100,
IrisAccess
LG4000

IriShield
MK2120U

IrisAccess
EOU2200

IrisGuard
AD100

Aritech ARX-3M3C,
Fujinon DV10X7.5A,
DV10X7.5A-SA2 lens
B+W 092 NIR filter

IrisGuard AD100,
IrisAccess LG4000

IriShield
MK2120U

Iris ID iCAM7000,
IrisGuardAD100,
IrisAccess LG4000,
IriTech IriShield

The training data we use to build our iris PAD models are IARPA [2], NDCLD-2015 [267]

and Warsaw PostMortem v3 [275] datasets. The IARPA dataset is a proprietary dataset collected

under the IARPA Odin program [2]. It consists of 19,453 bonafide irides and 4,047 presentation

attack (PA) samples. From the NDCLD-2015 dataset, we use 2,236 cosmetic contact lens images

for training. From the Warsaw PostMortem v3 dataset, 1,200 cadaver iris images from the first 37

cadavers are used for training. Testing is performed on the LivDet-Iris-2017 [304] and LivDet-

Iris-2020 [61] datasets. Both of these are publicly available competition datasets for evaluating

iris presentation attack detection. The LivDet-Iris-2017 dataset [304] consists of four subsets:
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Clarkson, Warsaw, Notre Dame, and IIITD-WVU. All subsets contain train and test partitions, and

we use only the test partition. Warsaw and Notre Dame subsets further contains two splits in the

test partition: ‘Known’ and ‘Unknown’. The ‘Known’ split corresponds to the scenario, where PAs

of the same type or images from similar sensors are present in both train and test partitions, while

the ‘Unknown’ split contains different types of PAs or images from different types of sensors in the

train and test partitions. Our experimental setup corresponds to a cross-dataset scenario as we use

different datasets for training and testing. In the case of LivDet-Iris-2020 [61], we use the entire

dataset for testing, and this scenario also corresponds to the cross-dataset. Table 5.1 describes all

training and test sets along with the types of PAs and images present in them.

Weuse three iris PAdetectors for stability analysis. Twoof the detectors utilizeVGG19 [255] and

ResNet101 [105] networks as their backbone architecture. The third detector is D-NetPAD [249],

where the backbone architecture is DenseNet161 [122]. The D-NetPAD shows state-of-the-art

performance on both LivDet-Iris-2017 and LivDet-Iris-2020 iris PAD competitions [61,249]. The

input given to these models is a cropped iris region resized to 224 × 224. For training, we initialize

the model with the weights from the ImageNet dataset [72] and then fine-tuned the models using

the training datasets described above. The learning rate was set to 0.005, the batch size was 20,

the number of epochs was 50, the optimization algorithm was stochastic gradient descent with a

momentum of 0.9, and the loss function used was cross-entropy.

We measure the robustness of these DNNs by evaluating their performance as a function of

the weight perturbations. The performance is estimated in terms of TDR (%) at 0.2% False

Detection Rate (FDR). FDR is the percentage of bonafide samples incorrectly classified as PAs.

In Table 5.3, the row corresponding to the ‘Original’ method reports the performance of these

models on the LivDet-Iris-2017 and LivDet-Iris-2020 datasets before weights were perturbed.

On the LivDet-Iris-2017 dataset, ResNet101 performs the best (average 74.55% TDR), whereas

on the LivDet-Iris-2020 dataset, D-NetPAD performs the best (90.22% TDR). We also provide

information about the number of weights and bias parameters present in all three models (Table

5.2). The VGG19 architecture has the highest number of parameters, followed by the ResNet101
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Table 5.2: The number of parameters (weights and bias) present in all convolutional layers of the
VGG19, ResNet101, and D-NetPAD architectures.

Architecture VGG19 ResNet101 D-NetPAD
Weights 139,570,240 42,451,584 26,366,448
Bias 19,202 52,674 109,970
Total 139,589,442 42,504,258 26,476,418

architecture.

5.6 Robustness Analysis

5.6.1 Gaussian Noise Addition

The Gaussian noise manipulation involves the addition of Gaussian noise to the original parameters.

Figure 5.1 (a) shows the performance of all the networks when we perturb parameters of all layers

with the Gaussian noise. The scale factor (U) used to modify the standard deviation is shown on

the x-axis. From a trend standpoint, the performance of all networks decreases with an increase in

the standard deviation. However, this decrease is not linear. In fact, there are some performance

gains at certain scales. These scales are different for different networks. For instance, the VGG19

network shows improvement for U = 0.3, 0.6, and 0.9, ResNet101 for U = 0.1, 0.3, and 0.9, and

D-NetPAD for U = 0.1, 0.4 and 1.0. Surprisingly, certain scales give higher performance than

the original model, such as 0.1 scale for the ResNet101 and D-NetPAD models, and 0.3 scale for

the VGG19 model. It should be noted that all three networks are not robust to Gaussian noise

perturbations, and we cannot conclude which network is comparatively robust under these weight

perturbations.

We further analyze the impact of perturbation at different layers on the performance of the

models. We manipulate the parameters one layer at a time and observe the performance change.

For the layer-wise analysis, we show the results of only the D-NetPAD model since the other

two models also show similar performance trends. In the case of D-NetPAD, we select the first

convolution layer and the last convolution layers of four dense blocks for perturbation. Figure 5.1

1Specific sensor names withheld at sponsor’s request
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(a) (b)

Figure 5.1: Gaussian noise manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19,
ResNet101, and D-NetPAD when weights and bias parameters of the entire network are perturbed.
(b) Performance of D-NetPAD when the individual layer’s parameters (weights and bias) are
perturbed. Here, Conv1 means the first convolution layer of the D-NetPAD, Dense1_LastConv
means the last convolution layer of the first dense block, and so on.

(b) shows the performance of D-NetPAD when the individual layer’s parameters are perturbed. We

observe that the initial layers have more influence on the performance of the D-NetPAD compared

to the later layers. The model is highly robust to the perturbations in the last convolution layer of the

fourth dense block, even at a scale factor of 30. Cheney et al. [51] also observe the higher impact

of perturbations in the initial layers on the performance. This is because the perturbations in the

initial layers impact all the subsequent layers, resulting in a substantial decrease in performance.

Change in middle layers exhibit large fluctuations in performance compared to the initial and later

layers.

5.6.2 Weight Zeroing

The weight zeroing manipulation involves random selection of a particular fraction of weight pa-

rameters and setting them to zero. Figure 5.2 (a) shows the performance of all three architectures

when we manipulate the entire set of network parameters, while Figure 5.2 (b) shows the perfor-

mance of D-NetPAD when we perturb individual layers. Similar conclusions can be drawn from

Figure 5.2 (a) as drawn from Figure 5.1 (a) that the overall performance of all three architectures de-
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creases with an increase in the proportion of weights set to zero. However, certain perturbations

give improved performance. For example zeroing 3% of weights improves the VGG19 network

performance from 76.87% TDR (original) to 92.70% TDR, in the case of ResNet101 zeroing 3%

of weights improves performance from 84.11% TDR (original) to 88.88% TDR. Again, all three

networks are not robust to the zeroing out of randomly selected weights from the entire network.

(a) (b)

Figure 5.2: Weight zeroing manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19,
ResNet101, and D-NetPAD when parameters of the entire network are perturbed. (b) Performance
of D-NetPAD when the individual layer’s parameters are perturbed.

In the layer-wise setup (Figure 5.2 (b)), the performance of D-NetPAD is stable except for the

first convolution layer. This is due to the fact that the original weights of the convolution layers

have zero mean and small standard deviation ranging from 0.10 (first convolution layer) to 0.01

(last convolution layer) as shown in Figure 5.3. A similar performance trend is observed in the

VGG19 and ResNet101 networks as well.

To further analyze the effect of weight zeroing, we assess its three variants - first is to set low-

magnitude weights to zero, second sets high-magnitude weights to zero and in the third randomly

selected weights to make them zero and non-zero weights are scale to factor 5. The details of these

variants are as follows:

1. Since most of the original weights are already close to 0, we set low-magnitude weights

to zero. Figure 5.4 (a) shows the performance of all architectures when we manipulate the
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Conv1
`: 0.0, f: 0.103

Dense1_LastConv
`: 0.0, f: 0.019

Dense2_LastConv
`: 0.0, f: 0.018

Dense3_LastConv
`: 0.0, f: 0.016

Dense4_LastConv
`: -0.0, f: 0.012

Figure 5.3: Weight distribution of different layers of the trained D-NetPAD architecture. Mean (`)
and standard deviation (f) are provided below each distribution.

entire network in this fashion, while Figure 5.4 (b) shows the performance of D-NetPAD on

layer-wise manipulation. ResNet101 and D-NetPAD networks are robust to this manipulation

as zeroing out even 33% of all weights does not affect their performance. VGG19 also shows

robustness with only a 10% drop in performance, though its performance is not as stable as

the ResNet101 and D-NetPAD networks. Figure 5.4 (b) shows the stability of the D-NetPAD

on layer-wise perturbations. Zeroing out even 30% of the first convolution layer weights does

not impact its performance. Remarkably, the manipulation in the last convolution layer of the

first and second dense blocks shows a linear increase in performance. The performance of D-

NetPAD increases from 90.22%TDR to 96.28%TDR uponmanipulating the last convolution

layer of the first dense block. This suggests that we could zero out low-magnitude weights

and reduce the size of the model without affecting its performance.
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(a) (b)

Figure 5.4: Variant of the weight zeroing manipulation (low-magnitude weights are set to zero): (a)
Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when parameters of the
entire network are perturbed. (b) Performance of D-NetPAD when individual layer’s parameters
are perturbed.

2. The second variant make high-magnitude weights to zero. Figure 5.5 (a) shows the perfor-

mance of all architectures when high-magnitude weights are set to zero on the entire network,

while Figure 5.5 (b) shows the performance of D-NetPAD on layer-wise manipulation. There

is a drastic drop in the performance of all three architectures when high-magnitude weights

are set to zero. It shows that high-magnitude weights are high priority parameters. In the

layer-wise analysis, manipulation in the first convolution layer and layers of DenseBlock1

show a drop in the performance, whereas manipulation in other higher layers does not impact

the performance.

3. The third variant mimics the operation of Dropout layer, where randomly selected weights

are set to zero and non-zero weights by scaled to the factor five. Figure 5.6 (a) shows the

performance of D-NetPAD when layer-wise manipulation is applied. The last layer of the

DenseBlock1 layer shows a different trend of increasing performance with an increase in

the manipulation magnitude. To explore it further, we plot the performance against layers

manipulation between the first convolution layer and the last convolution layer ofDenseBlock2

(Figure 5.6 (b)). We found that the layers in DenseBlock1 and DenseBlock2 show a similar
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(a) (b)

Figure 5.5: Variant of the weight zeroing manipulation (high-magnitude weights are set to zero):
(a) Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when parameters of
the entire network are perturbed. (b) Performance of D-NetPADwhen individual layer’s parameters
are perturbed.

pattern. This is due to the scaling of non-zero weights whose impact decreases with an

increase in weight proportion set to zero. The impact of scaling weights is more than the

setting weights to zero.

(a) (b)

Figure 5.6: Variant of the weight zeroing manipulation (randomly selected weights are set to zero
and non-zero weights are scaled by factor 5): (a) Performance of D-NetPADwhen individual layer’s
parameters are perturbed. (b) Closer look at the performance of D-NetPADwhen convolution layers
of DenseBlock1 and DenseBlock2 are perturbed.

4. The fourth variant randomly selected filters from the layers and set their all weights to zero.
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Figure 5.7 (a) shows the performance of all architectures when randomly selected filters are

set to zero on the entire network, while Figure 5.7 (b) shows the performance of D-NetPAD

on layer-wise manipulation. Similar conclusions can be drawn from Figure 5.7 (a) as drawn

from Figure 5.2 (a) that the overall performance of all three architectures decreases with an

increase in the proportion of filters set to zero. However, certain perturbations give improved

performance. Overall, all three networks are not robust to zero out randomly selected filters

from the entire network. Again fromFigure 5.7 (b) performance is robust to themanipulations

in later layers compared to initial layers.

(a) (b)

Figure 5.7: Variant of the weight zeroing manipulation (randomly selected filters are set to zero):
(a) Performance (TDR at 0.2% FDR) of VGG19, ResNet101, and D-NetPAD when filters of the
entire network are perturbed. (b) Performance of D-NetPAD when individual layer’s parameters
are perturbed.

5.6.3 Weight Scaling

This manipulation scales the original parameters with a scalar value. Figure 5.8 (a) shows the

performance of all three architectures when we manipulate the entire set of network parameters,

while Figure 5.8 (b) presents the performance of D-NetPAD when we perturb specific layers. The

performance at scale 1 indicates the original performance without weight perturbations. Weight

perturbations across the entire network resulted in a radical drop in performance even with a
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(a) (b)

Figure 5.8: Weight scaling manipulation: (a) Performance (TDR at 0.2% FDR) of VGG19,
ResNet101, and D-NetPAD when parameters of the entire network are perturbed simultaneously.
(b) Performance of D-NetPAD when the individual layer’s parameters are perturbed.

small scalar factor (0.8 or 1.1). In the layer-wise manipulation, the initial layers show a higher

impact on the performance of D-NetPAD compared to the later layers. The manipulation in the

last convolution layer does not impact the performance even at a scaling factor of 10. A similar

performance trend is observed on the VGG19 and ResNet101 networks as well.

5.6.4 Findings

Here are the main findings from the aforementioned analysis:

1. All three networks decrease in performance when perturbations are applied over the entire

network. However, the networks show stability when low-magnitude weights are set to zero.

The scaling of weights has a major negative impact on the performance of networks.

2. Layer-wise robustness analysis shows that perturbations in initial layers impacted the per-

formance to a greater extent compared to the later layers. Initial layer perturbation impacts

all the subsequent layers, resulting in drop in performance. Gaussian noise perturbations

negatively impacted the performance when applied layer-wise.

3. Certain perturbations improve the performance of network models over the original one.
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This observation indicates that the parameters learned by the models during training are not

optimum. Hence, there is a further scope for optimizing weights.

4. Zeroing out low-magnitude weights results in better performance as well as reduces the size

of the model.

5.7 Performance Improvement

We observe that certain perturbations result in better performance, even higher than that of

the original model. We leverage this observation and obtain better performing models using these

perturbations without any additional training. In this regard, we explore two directions: the first is

to find a single perturbed model which achieves good performance consistently, and the second is

to create an ensemble of perturbed models to obtain high performance.

5.7.1 Single Perturbed Model

Certain perturbations result in higher performance than the original one, for instance, 0.1 scale factor

of Gaussian manipulation for D-NetPAD and ResNet101 architectures, 0.3 scale factor of Gaussian

manipulation for VGG19 architecture, 0.01 proportion of weight zeroing for ResNet101, and 0.03

proportion of weight zeroing for VGG19 architecture. These manipulations involves random

selection, so we repeat these manipulations 100 times and plot the performance distributions.

Figures 5.9 and 5.10 show the performance distributions corresponding to these manipulations.

Approximately 20-40 times, these manipulations result in higher performance than the original

one.

5.7.2 Ensemble of models

The second direction to improve the performance using weight manipulations without further

training is an ensemble of models. Ensemble of models better spans the decision space and

generalize well on the test data [203]. For initial analysis, we ensemble three perturbed models.
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(a) (b) (c)

Figure 5.9: The performance distributions when Gaussian perturbation is applied over the entire
architecture at the specified scale on (a) D-NetPAD, (b) ResNet101, and (c) VGG19 architectures.

(a) (b)

Figure 5.10: The performance distributions when weights are set to zero over the entire architecture
of (a) ResNet101 and (b) VGG19 for the specified proportion. The red vertical line represents the
original performance of the architectures when weights are unperturbed.

Figure 5.11 shows the process of assembling perturbed models. We consider three settings for

ensemble - models having the same manipulation and scalar factor, same manipulation but different

scalar factors, and different manipulations. In each setting, we also consider manipulations applied

on the entire network and to the last convolution layer only.

1. Same parameter manipulations and scalar factor: In the first setting, we use the same

manipulation and scalar factor to manipulate the parameters of component models. The

manipulation is the addition of Gaussian noise sampled from Gaussian distribution having

zero mean and 0.1 scaling factor. All three models have the same manipulation, but their

weights differ as there involve random sampling from the Gaussian distribution. We repeat
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Figure 5.11: Ensemble process of perturbed models to improve the performance of DNN model
without undergoing further training.

the ensemble models 100 times and plot the performance distribution. Figure 5.12 (a)

shows the performance distribution when we manipulate the entire network, whereas Figure

5.12 (b) shows the performance distribution when only last convolution layer manipulated.

There are 29 times when TDR is higher than the original performance on the entire network

manipulation, whereas there are 79 times when TDR improves over the last convolution layer

manipulation. So, ensemble models show a higher chance of improved performance when

we manipulate only the last convolution layer.

(a) (b)

Figure 5.12: Performance distributions when three Gaussian noise manipulated D-NetPADmodels
are ensembled. The Gaussian distribution scaling parameter used in all three models is 0.1.
The red vertical line corresponds to the original performance (without weight perturbations). (a)
Performance distribution when the entire network is manipulated. In this case, 29 times TDR is
higher than the original performance. (b) Performance distribution when only the last convolution
layer of DenseBlock4 is manipulated. In this case, 79 times TDR is higher than the original
performance.
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2. Same parameter manipulations, but different scalar factor:In the second setting, we use

the same manipulation but different scalar factors to manipulate the parameters of component

models. The manipulation used is the addition of Gaussian noise sampled from Gaussian

distribution having zero mean and 0.1, 0.2, and 0.3 scaling factors. Figure 5.13 (a) shows

the performance distribution when we manipulate the entire network, whereas Figure 5.13

(b) presents the performance distribution on only last convolution layer manipulation. Four

times TDR is higher than the original performance when the entire network is manipulated,

whereas TDR improves 69 times when we only manipulate the last layer. We draw similar

conclusion that the ensemble models show a higher chance of improved performance when

we manipulate only the last convolution layer.

(a) (b)

Figure 5.13: Performance distributions when three Gaussian manipulated D-NetPAD models are
ensembled. The Gaussian distribution scaling parameters for the three models are 0.1, 0.2, and
0.3, respectively. The red vertical line corresponds to the original performance (without weight
perturbations). (a) Performance distribution when the entire network is manipulated. In this case,
four times TDR is higher than the original performance. (b) Performance distribution when only
the last convolution layer of DenseBlock4 is manipulated. In this case, 69 times TDR is higher
than the original performance.

3. Different manipulations: In the third setting, we utilize three models undergoing different

parameter manipulations. The manipulations applied to the component models are: (a)

Gaussian noise with a scale factor of 0.1, (b) weight zeroing with 0.01 proportion, and (c)

weight scaling with a scalar factor of 1.1. Figure 5.14 (a) shows the performance distribution
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when we manipulate the entire network, whereas Figure 5.14 (b) presents the performance

distribution we manipulate only the last convolution layer. There are zero times when TDR

is higher than the original performance in the case of entire network manipulation, and there

are 100 times when TDR is higher than the original in the case of last convolution layer

manipulation. Again, ensemble models with only last layer manipulation show a higher

chance of improved performance.

(a) (b)

Figure 5.14: Performance distributions when three parameter-manipulated D-NetPAD models
are fused undergoing three different types of manipulations. The manipulations in the three
models are additive Gaussian Noise (scale factor is 0.1), weight zeroing (proportion is 0.01),
and weight scaling (scale factor is 1.1), respectively. The red vertical line corresponds to the
original performance (without weight perturbations). (a) Performance distribution when the entire
network is manipulated. In this case, zero-times TDR is higher than the original performance. (b)
Performance distribution when only the last convolution layer of DenseBlock4 is manipulated. In
this case, 100 times TDR is higher than the original performance.

5.7.3 Performance validation on other dataset

Until now, we observed the performance increment on the LivDet-Iris-2020 dataset. Here, we

select high-performing models (single and ensemble of models) based on their performance on the

LivDet-Iris-2020 dataset and validate their performance on another dataset, i.e., the LivDet-Iris-

2017 dataset. In the case of ensemble models, we consider two high-performing perturbed models

and fuse their scores using the sum rule. We explore both directions of improved performance

110



(single and ensemble of models) for each architecture and compare their performance with the

original models. Details of these models are given below:

1. Original Model: The model utilizes originally trained parameters without any perturbation of

the parameters.

2. Perturbed Model: In the case of VGG19, we create a perturbed model by setting 80% of

the low-magnitude weights of the seventh convolution layer to zero. For the ResNet101 model, a

perturbed model is formed by setting 40% of low-magnitude weights of the first convolution layer

to zero, while for the D-NetPAD, 90% of the low-magnitude weights of the last convolution layer

of the first dense block are set to zero. The selection of these perturbed models are based on their

performance on the LivDet-Iris-2020 dataset (5.4 (b)).

3. Ensemble Models: To create an ensemble model, we select two perturbed models and fuse

their PA scores by the sum rule. In the case of VGG19, we fuse the perturbed model defined

above and the model created by adding Gaussian noise with U = 0.3 (# (0, 0.3 ∗ f(,>A6)) to the

entire network. In the case of ResNet101, we again use the perturbed model defined above, and the

second model is created by adding Gaussian noise with U = 0.1 to the entire network. Similarly, for

D-NetPAD, we fuse the above specified perturbed model and the model formed by adding Gaussian

noise with U = 0.1 to all layers.

Table 5.3 provides the performance of these three models corresponding to the three archi-

tectures (VGG19, ResNet101, and D-NetPAD). The performance of perturbed and ensemble

models is better than the original model on both datasets. The observation is consistent for

all three architectures. The perturbed models show an average of 30.90% improvement on the

LivDet-Iris-2017 and 3.86% on the LivDet-Iris-2020 dataset, whereas the ensemble models show

an average of 47.59% improvement on the LivDet-Iris-2017 and 5.44% on the LivDet-Iris-2020

dataset. Onemajor advantage of these perturbedmodels is that thesemodels are created without any

further training. Another advantage is that these high-performing perturbed models have reduced

model size.
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Table 5.3: The performance of VGG19, ResNet101, and D-NetPAD models in terms of True
Detection Rate (%, higher the better) at 0.2% False Detection Rate on the LivDet-Iris-2017 and
LivDet-Iris-2020 datasets. The performance is shown on original model (no parameter perturba-
tions), perturbed model and an ensemble of model.

Datasets LivDet-Iris-2017
LivDet-Iris-2020Subsets Clarkson Warsaw Notre Dame IIITD-WVU

Splits Test K. Test U. Test K. Test U. Test Test
VGG19 Model

Original 51.32 86.25 10.12 100 99.00 1.44 76.87
Perturbed 51.81 73.90 7.71 100 99.00 6.67 78.55
Ensemble 67.64 88.14 21.71 100 99.11 8.49 82.93

ResNet101 Model
Original 15.82 89.93 91.67 100 99.44 50.47 84.11
Perturbed 14.50 95.33 93.18 100 99.55 55.55 86.39
Ensemble 14.71 95.18 94.51 100 99.33 56.26 87.00

D-NetPAD Model
Original 60.04 76.68 35.76 100 99.33 32.01 90.22
Perturbed 69.24 90.72 40.96 100 97.33 48.35 96.28
Ensemble 68.89 89.53 36.94 100 96.88 41.68 94.76

5.8 Summary and Future Work

We analyze the robustness of three DNN architectures (VGG19, ResNet101, and D-NetPAD)

under three types of parameter perturbations (Gaussian noise manipulation, weight zeroing, and

weight scaling). We apply the perturbations in two settings: modifying the weights across all

layers and modifying weights layer-by-layer. We found that DNNs are generally robust to a variant

of weight zeroing, where low-magnitude weights are set to zero. From the layer-wise analysis,

we observe that the DNNs are more stable to perturbations in later layers compared to the initial

layers. Certain manipulations improve the performance over the original one. Based on these

observations, we propose the use of an ensemble of models that consistently perform well on both

LivDet-Iris-2017 and LivDet-Iris-2020 datasets. As future work, we will focus on finding the

theoretical optimum direction for weight perturbations.
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CHAPTER 6

RETRAINING OF DEEP NEURAL NETWORKS

6.1 Introduction

While a great deal of research in machine learning involves achieving higher performance at

various classification/regression tasks, maintenance of that performance in a non-stationary envi-

ronment [182] is a less explored area. The non-stationary environment (change in data capturing

device, change in the deployment location, or change in a population group) degrades the per-

formance of machine learning models. The performance degradation happens due to the dataset

shift [182]. The dataset shift involves a shift in the input or output distributions or a shift in the

relationship between input and output. The focus of this work is a shift in the input distribution. To

maintain the performance of machine learning models under dataset shift, one needs to update the

models with new incoming data. One solution is to fine-tune the model with new data; however,

it results in catastrophic forgetting of the previously learned information [70, 71, 161]. Another

solution is to retrain the model using entire data (old and new), but in the real-world scenario, old

training data is generally unavailable due to security or privacy issues. So, the research problem

arises how we should update the existing model that maintains the previous performance while

improving the performance on new data, given that old training data is unavailable.

Mathematically, we define the problem as – let there is an expert model " trained on old

training data )'>;3 and tested on old test data )(>;3 . It works satisfactorily on )(>;3 . Now, comes

the new training data )'=4F and new test data )(=4F . So, given the existing trained model " and

new training data)'=4F , how we should retain the model " such that it maintains the performance

on )(>;3 and improves the performance on )(=4F . Here, we consider old training )'>;3 and test

data )(>;3 belong to one domain, and new training )'=4F and test data )(=4F belong to another

domain. We further assume following constraints to define the real-world retraining scenario:

1. Sequential learning: Data of different domains are supposed to learn in a sequence.
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2. Unavailability of old training data )'>;3: Training samples from the previous domain

might not be available due to privacy or security concerns.

3. Limited availability of new training data )'=4F: Training samples from new domain are

generally small in number compared to the old training data. There might be an absence of

training samples for certain classes.

4. Memory constraints: Information transfer from one domain to another is also restrained

due to memory limitation.

5. Architectural capacity constraints: Finite capacity of an architecture limits its ability to

learn new domain over time.

6. Knowledge constraints: Generally, a third party performs retraining of the deployed model.

There could be a lack of expertise compared to the original architecture designer or developer.

In this work, we propose a dynamic weight-based fusion retraining strategy, where we train a

new expert model with new incoming training data and make a final decision for a probe sample by

a weighted sum of the predicted scores from the old and new trained models. We assign the weights

individually for each probe sample using in-domain models at the run-time. The in-domain models

provide information about the membership of the probe sample to the old and new training data.

Our main contributions of the work are as follows:

1. We propose a novel retraining methodology which involves dynamic weight-based fusion of

expert models. We allocate dynamic weights at the run-time for each probe sample.

2. We propose an in-domainmodel to assign dynamic weights to the scores of the expert models.

The in-domain model works on the principle of outlier detection.

3. We perform experiments on three setups: LivDet-Iris-2017, LivDet-Iris-2020, and Split

MNIST. These setups illustrate two levels of dataset shift. The first shift is between )'>;3

and )'=4F and the second shift is between )'=4F and )(=4F .
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The rest of the chapter is organized as follows: Section 6.2 discusses the related work on retrain-

ing strategies, Section 6.3 explains the proposed method. Section 6.4 describes the experimental

setup and results. Finally, Section 6.5 concludes the chapter.

6.2 Related Work

Retraining is a process of including new samples in the old prediction pipeline. The ob-

jective is to improve the performance of the deployed model on new test samples )(=4F and

maintain the performance of old test samples )(>;3 . The closest terminology to the retraining

paradigm is continual learning, which involves sequential learning of the number of tasks without

forgetting knowledge obtained from the previous tasks. Continual learning considers three scenar-

ios [118,278]: Task-Incremental Learning (Task-IL), Domain-Incremental Learning (Domain-IL),

and Class-Incremental Learning (Class-IL). Task-IL incrementally learns several independent tasks,

explicitly knowing the task identity. Domain-IL learns tasks of the same output label space but dif-

fers input distribution. Here, task identity is not known. Class-IL incrementally learns new classes

in each task without being given any information on the task identity. The retraining scenario is

close to Domain-IL continual learning scenario.The difference is that Domain-IL assumes no shift

in train and test distributions within a task, whereas the retraining scenario considers no assumption

in this regard (includes both cases shift or no shift). Other synonyms of Domain-IL are lifelong

learning [50], never-ending learning [155].

Other terms that could be confused with the retraining paradigm are multi-domain incremental

learning [93], domain adaptation [289], and transfer learning [197,292]. Multi-domain incremental

learning [93] concerns with sequentially learning a task, say image classification, on multiple

visual domains with possibly different label spaces, whereas we consider the same label spaces.

Domain adaptation involves learning a new task of a different domain without retaining old domain

knowledge. Transfer learning also does not retain the previous task knowledge either.

Two elementary retraining methodologies are: fine-tune the model using new training data

(Fine-Tuned) or retrain the model using entire (old and new) training data (Full-Retrain). The
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Fine-Tuned methodology results in catastrophic forgetting of the previous knowledge [70,71,161],

whereas Full-Retrain is not a practical solution due to the unavailability of the old training data.

Continual learning methodologies could also directly apply to the retraining paradigm, and in the

literature, those are categorized as

1. Regularization-basedApproaches: These approaches add regularization terms in the learn-

ing process to penalize the drastic change in parameters of the mapping function. The regu-

larization helps to prevent catastrophic forgetting of previously learned tasks. Regularisation-

based methods have a limited capacity to learn a large number of the tasks. Some seminal

works based on regularization approaches are elastic weight consolidation (EWC) [141],

online EWC [244], Kronecker factored EWC (KFAC) [229], Synaptic Intelligence (SI) [313],

Memory Aware Synapses (MAS) [13], Learning without Forgetting (LwF) [161], Orthogonal

Weight Modification (OWM) [312], and Natural Continual Learning (NCL) [136]).

2. Dynamic Neural Networks/Parameter-Isolation Approaches: These approaches begin

with a simplified architecture and, when needed, augment the network incrementally with

new components to attain satisfactory performance on subsequent tasks [42,81,156,228,233].

In a practical scenario, a finite capacity of models limits their ability to learn a large number

of tasks over time.

3. Replay-based/Memory/Rehearsal-based Approaches: Replay-based approaches comple-

ment the existing expert models with memory to accommodate information about previously

learned tasks. These approaches involve the usage of a subset of training samples from

the previous tasks [14, 22, 44, 167, 204, 296] or the learning of generative or probabilistic

models to simulate pseudo-samples from previously learned tasks [230,252,277]. However,

as the number of tasks increases, it becomes difficult to maintain additional memory to store

previous tasks information.

We propose a fusion-based methodology that learns a separate expert model using new training

data and makes a final decision by a weighted sum of old and new prediction scores. The work
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Table 6.1: Different methodologies of retraining along with the information about the knowledge
needs to transfer to the next task and the special requirements for the training of the current task.

Approaches Methods
Knowledge
transferred
to next task

Special requirements
for the training of
new model

Baselines Fine-Tuned None None

Full-Retrain Old training data Training includes
old training data

Regularization-based
Approaches [13, 136, 141, 161,229,244,312,313] None Learning constraints

Dynamic Neural
Networks Approaches [42, 81, 156, 228, 233] None Increment architecture

Replay-based
Approaches

[14, 22, 44, 167, 204, 296] Subset of
old training data

Training includes subset
of old training data

[230,252,277] Generative model Generation of synthetic
old training data

Fusion-based
Approaches Proposed Method In-domain Model None

in [153] is close to our work, where they also learned separate expert models with incoming new

training data and measured the marginal likelihood of the expert model using a density estimator,

whereas we assign dynamic weights to expert models using in-domain model.

We also explicitly discuss the information required to transfer to the subsequent tasks (apart

from the expert model) along with special requirements during the training of the current expert

model in all retraining methodologies in Table 6.1. The Fine-Tuned method does not require

anything from the previous task, whereas the Full-Retrain method requires the entire old training

dataset. Regularization-based approaches do not require information from the previous tasks but

apply additional constraints in the learning process. Dynamic Neural Networks approaches require

a change in the architecture with subsequent tasks. Replay-based methods require additional

memory to transfer a generative model or subset of old training data to the subsequent tasks. The

proposed fusion-based approach does not require a change in the learning process or architecture.

The approach also consumes less memory compared to the relay-based approaches. However, there

is an increase in the inference time compared to the other methodologies.
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6.3 Proposed Algorithm

In this work, we propose a dynamic weight-based fusionmethod to update existing expert model

such that it maintains its performance on both )(>;3 and )(=4F data. Figure 6.1 illustrates the

proposed idea. Let’s consider that we have old training data )'>;3 and its corresponding expert

model. We also need to build an in-domain model on )'>;3 , which provides weight information.

When a new training data )'=4F come, we build two separate models (expert and in-domain

models). During testing, we input a probe sample into all four models. Two expert models output

prediction scores ((1 and (2), whereas in-domain models output weights (,1 and ,2) assign to

the prediction scores. We estimate the final prediction score as

( = ,1 × (1 +,2 × (2. (6.3.1)

Figure 6.1: The overall idea of the dynamic weight-based fusion strategy for retraining. We train
two models (expert and in-domain models) on incoming training data, and a final decision is made
based on the weighted sum of their prediction scores. The expert model provides the prediction
score, and the in-domain model assigns weight to the prediction score.

Our main contribution lies in the introduction of the in-domain model to estimate the dynamic

weights. The in-domain model works on the principle of outlier detection, where training data of

one expert model is considered as inliers and for each probe sample, we determine the degree of

being an outlier with respect to the training data of the expert model. To accomplish this, an in-

domain model contains two components: (i) a feature extractor that represents training distribution

in feature space and (ii) a distance measure that provides the outlier score of a probe sample to the

obtained training feature space. Details of these components are as follows
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Feature Extractor (FE): The base architecture we use for feature extraction is Vision Trans-

former (ViT) [78]. The great success of transformers in natural language processing [116, 281]

and computer vision [78] inspired us to use it for representing training data. The input to the ViT

architecture is a sequence of flattened 2D image patches G? ∈ R#×(%
2.�) and 1D positioning vector

(providing position information of image patches), where # is the number of patches, % is the patch

size, and � is the number of channels. We remove the MLP head used for classification from the

ViT original architecture to make it a feature extractor. We use the "Base" version of the ViT,

where there are 12 layers, 768-dimensional hidden latent vector, and 16× 16 input patch. The total

number of learnable parameters in the architecture is 86M. We train the ViT feature extractor using

two losses: center and mean-shifted intra-class loss. The details of these losses are as follows:

1. Center Loss: The objective of the center loss is to extract features from the training samples

such that feature embeddings are close to the center of the embeddings. The center of the

training data embeddings is calculated as

2 = EG∈jCA08= [q(G)] (6.3.2)

where, G is the input image, q(G) is the features embedding from the ViT model and jCA08= is

the train set. We update the center position in every epoch. The center loss is then calculated

as

ℓ24=C4A (G) = ‖q(G) − 2‖2. (6.3.3)

The loss reduces the intra-train set variations among training samples and forms a closer

feature representation of the samples. This helps in detecting outlier samples from other

training set.

2. Mean-Shifted Intra-Class Loss: The objective of this loss is to form a cluster of samples be-

longing to the same class. To accomplish the objective, we first mean-shifted the embeddings

of the training samples as

\ (G) = q(G) − 2
‖q(G) − 2‖2

(6.3.4)
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where, q(G) is the features embedding from the ViT model with G input sample and 2 is the

center of the training samples in the ViT feature space. We then estimate contrastive loss

over the two mean-shifted representations G′ and G′′ belong to the same class �8 as:

ℓ<B82 (G′, G′′){G′,G′′}∈�8 = ℓ2>= (\ (G
′), \ (G′′))

= − log exp((\ (G′).\ (G′′))/g)∑2#
8=1 E[G8 ≠ G

′] . exp((\ (G′).\ (G8))/g)
(6.3.5)

where, \ (.) is the mean-shifted representation, # is the batch size and g is the temperature

hyperparameter. Both losses together form cluster of samples belonging to the same classes

around the center of the training samples. The class cluster formation helps in the detection

of local outliers. By local outlier, we mean those samples whose inter-train set distance is

lower but are outliers to their class distribution. Let consider Figure 6.2, where blue-colored

data points belong to one training set, C is the center of the training set, and red-colored data

point P is a probe sample. There are two classes (Class 1 and Class 2) of different densities.

So, if we consider the global outlier measure, the probe sample would be an inlier to the

blue-colored train set as its distance from Class 1 is less compared to the distance between

data points of Class 1 and Class 2, but according to the local outlier measure, it is an outlier

to the Class 1 as distance among data points of Class 1 are significantly lower the that of

the probe sample and the data points of Class 1. Subsequently, the probe sample is also

considered as an outlier to the blue-colored training set.

The total loss is the sum of center loss and mean-shifted intra-class loss as

ℓC>C0; (G′, G′′) = ℓ24=C4A (G′) + ℓ24=C4A (G′′) + ℓ<B82 (G′, G′′). (6.3.6)

Based on these losses, we train the feature extractor and used their features to represent the training

data.

Distance Measure: After the representation of the training data and a probe sample, we

estimate the distance of the probe sample with respect to the distribution of the training data using
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Figure 6.2: Illustration of a local outlier concept used in the mean-shifted intra-class loss. Blue-
colored data points belong to one training set, C is the center of the training set, and red-colored
data point P is a probe sample. There are two classes (Class 1 and Class 2) in the blue-colored
train set. If we consider the global outlier concept, the red-colored probe sample would be inlier.
However, if the local outlier concept is considered, the probe sample is an outlier to the Class 1 as
well as to the blue-colored training set. The figure is better viewed in color.

Local Outlier Factor (LOF) [39]. The LOF is an unsupervised outlier detection algorithm that

provides a score to each sample using local density deviation to its neighbors. It considers those

samples as outliers whose density is substantially lower than their neighbors. If the LOF score has

approximately a value of one, it suggests that the sample has a similar density as its neighbors,

a value less than one indicates the sample has a higher local density than its neighbors, whereas

a value greater than one presents the sample has a lower density than its neighbors. To assign

weights to the individual expert models, we first inverse LOF scores and then perform SoftMax

normalization to ensure weights lie in the range of [0-1] and weights sum to one.

6.4 Experimental Setup and Results

To evaluate the proposed methodology, we perform experiments on three setups: LivDet-Iris-

2017, LivDet-Iris-2020, and Split MNIST. These setups consider dataset shift at two levels: 1) shift

between training data of old )'>;3 and new )'=4F domain, and 2) shift between training )'=4F

and test )(=4F data within a domain (new domain). The LivDet-Iris-2017 setup represents the
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scenario where dataset shift occurs between )'>;3 and )'=4F , but no shift between )'=4F and

)(=4F (except in one case, explained in Section 6.4.1). The LivDet-Iris-2020 setup illustrates the

scenario where dataset shift occurs both in between )'>;3 and )'=4F and between )'=4F and

)(=4F . The Split MNIST setup depicts the condition where distribution of )'>;3 is disjoint of

)'=4F , however no shift between )'=4F and )(=4F . The LivDet-Iris-2017 and LivDet-Iris-2020

setups are in the application of detecting presentation attacks (PA) in iris biometric modality. We

formulate the PA detection as a binary classification between bonafide and fake (print, cosmetic

contacts, artificial eyes, and electronic display) iris images. The SplitMNIST setup used to compare

the proposed method with existing state-of-the-art continual learning methods.

6.4.1 LivDet-Iris-2017 Setup and Results

In this setup, we utilize two datasets: IARPA dataset [2] and LivDet-Iris-2017 dataset [304]. The

IARPA dataset is a proprietary dataset collected under the IARPAOdin program [2]. We divide the

dataset into two splits which in this setup considered as )'>;3 and )(>;3 data. The LivDet-Iris-

2017 dataset [304] is a publicly available dataset for iris presentation attack detection. It consists

of four subsets: Clarkson, Warsaw, Notre Dame, and IIITD-WVU. All these subsets consist of their

corresponding train and test sets which in this setup considered as )'=4F and )(=4F , respectively.

Details of these subsets are as follows:

1. Clarkson subset: It consists of print and cosmetic contacts PAs. The subset represents

the cross-PA testing scenario, where five additional cosmetic contacts and prints of visible

spectrum iris images captured using an iPhone 5 are included in the test set.

2. Warsaw subset: It consists of only print iris PA. The subset consists of two test sets: “known"

and “unknown". The “unknown" test represents a cross-sensor scenario, where different

sensors are used to capture images of the training and test sets.

3. Notre-Dame subset: It consists of only cosmetic contact iris PA. This subset also contains

two test sets (“known" and “unknown"). The “unknown" test set represents the cross-PA
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Table 6.2: Description of the old and new training/test sets in the LivDet-Iris-2017 setup along
with the number of bonafide and fake iris images present in the datasets. The information about the
sensors used to capture images is also provided. Each test set represents different testing scenarios.
The Clarkson and Notre Dame test sets correspond to the cross-PA scenario, whereas the Warsaw
data corresponds to the cross-sensor scenario. The IIITD-WVU represents a cross-dataset scenario.
Here, “K. Test” means a known test set of the dataset, and “U. Test” means an unknown test set.

Domains Old Train and Test Domains
(IARPA Dataset) New Train and Test Domains (LivDet-Iris-2017 Dataset)

Datasets IARPA
Split I

IARPA
Split II

Clarkson
(Cross-PA)

Warsaw
(Cross-Sensor)

Notre Dame
(Cross-PA)

IIITD-WVU
(Cross-Dataset)

Train/Test Train Test Train Test Train K. Test U. Test Train K. Test U. Test Train Test
Bonafide 9,660 2,963 2,469 1,485 1,844 974 2,350 600 900 900 2,250 702
Print 2,634 - 1,346 908 2,669 2,016 2,160 - - - 3,000 2,806
Cosmetic
Contacts 2,757 177 1,122 765 - - - 600 900 900 1,000 701

Artificial
Eyes 554 175 - - - - - - - - - -

Electronic
Display 130 - - - - - - - - - - -

Sensor
Iris ID iCAM7000,
IrisGuard AD100,
IrisAccess LG4000

Iris ID
iCAM7000

IrisAccess
EOU2200

IrisAccess
EOU2200

IrisGuard
AD100

Aritech ARX-3M3C,
Fujinon DV10X7.5A,
DV10X7.5A-SA2 lens
B+W 092 NIR filter

IrisGuard AD100,
IrisAccess LG4000

Cogent
CIS 202,
VistaFA2E

IriShield
MK2120U

scenario, where different cosmetic contacts introduce in the test set.

4. IIITD-WVU subset: It includes the PA images from both print and cosmetic contacts. The

subset is a combination of data from IIITD and WVU collections. The subset corresponds

to the cross-dataset scenario where training performs on the IIITD collection and testing on

the WVU collection. The training set is captured in a controlled environment using two iris

sensors: Cogent dual iris sensor (CIS 202) and VistaFA2E single iris sensor. The test set is

captured using the IriShield MK2120U mobile iris sensor at two different locations: indoors

(controlled illumination) and outdoors (varying environmental conditions).

The setup represents the scenario where there is a dataset shift between )'>;3 and )'=4F , but

no shift between )'=4F and )(=4F except in the case of the IITD-WVU dataset. In the IITD-

WVU dataset, a shift also exists between )'=4F and )(=4F . Table 6.2 describes all old and new

training/test sets along with types of PAs and images present in all training and test sets.

For evaluation, we compare it with following models: (i) Old Expert Model: trained only on

)'>;3 , (ii) New Expert Model: trained only on )'=4F , (iii) Fine-Tuned: trained on )'>;3 and

then fine-tuned using )'=4F , (iv) Full-Retrain: trained on both )'>;3 and )'=4F , (v) Fusion-

Equal Weights: fusion of scores from two expert models (Old and New Expert Models) with
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equal weights, (vi) Fusion-Pre-trained ViT Features-Dynamic Weights: fusion of scores from

two expert models with dynamic weights where in-domain model uses pre-trained ViT model for

the feature representation, and (vii) Fusion-Dynamic Weights (proposed method): fusion of

scores from two expert models with dynamic weights where proposed feature extractor (FE) model

is used to represent the training data. To train FE model, we initialize weights with pre-trained

model trained on the ImageNet-21k and JFT-300M datasets, the number of epochs used is 100, the

batch size is 15, g is 0.25, and the optimizer is stochastic gradient descent with a learning rate of

1e-5. For the implementation of LOF distance measure, we use default values provided in [39], the

number of neighbors is 20, and the distance metric to estimate neighbors is euclidean distance. As

an expert model, we use the model proposed in [249] for iris presentation attack detection. Table

6.3 presents the performance of all the models in terms of True Detection Rate (TDR (%)) at 0.2%

False Detection Rate (FDR). TDR is the percentage of fake samples correctly detected, whereas

FDR is a percentage of bonafide samples incorrectly detected as fake. The performance scores are

reported individually on both test splits. The objective is to obtain high performance (higher TDR)

on both test splits ()(>;3 and )(=4F). The Full-Retrain model provides a benchmark for evaluating

the performance of retraining methods.

The Old and New Expert models perform better in their respective test splits but fail on other

test splits. The Fine-Tuned model performs better on )(=4F but fails to retain knowledge about the

old (poor performance on )(>;3). The Full-Retrain model performs better on both test splits, but it

is not a practical approach as old training data is generally unavailable. With respect to the fusion

methodologies, we consider providing equal weights as our lower performance benchmark. We

perform one ablation study where a pre-trained ViT model is used for the feature extraction. The

proposed method outperforms both fusion-based methodologies, which validate that the proposed

FE model better represents the training data and the weights are appropriately assigned to their

respective models. We also visualize weight histograms of various test splits (Figure 6.3). The

histograms are generated using weight values given to the New Expert Model for test data (both

old and new). So, weight values toward ‘0’ of the x-axis symbolize higher priority given to the
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Table 6.3: The performance of all retraining methods in terms of True Detection Rate (%, higher
the better) at 0.2% False Detection Rate on old ()(>;3) and new ()(=4F) test sets of the LivDet-
Iris-2017 setup.

Test Domains Old
()(>;3)

New
()(=4F)

Old
()(>;3)

New
()(=4F)

Old
()(>;3)

New
()(=4F)

Old
()(>;3)

New
()(=4F)

Datasets
IARPA
Split II

Clarkson
(Cross-PA)

IARPA
Split II

Warsaw
(Cross-Sensor)

IARPA
Split II

Notre-Dame
(Cross-PA)

IARPA
Test

IIITD-WVU
(Cross-Dataset)

Test Test Test K. Test U. Test Test K. Test U. Test Test Test
Old Expert Model 98.44 28.63 98.44 92.95 98.56 98.44 93.55 91.00 98.44 42.91
New Expert Model 25.54 92.05 0.31 100 100 29.90 100 66.55 0.31 29.30
Fine-Tuned 86.91 93.51 45.48 100 100 98.75 100 99.77 83.17 48.85
Full-Retrain 96.57 91.63 93.76 100 100 96.57 100 100 96.57 66.81

Fusion of Old and New Domain Expert Models
Equal Weights 97.50 89.67 97.81 99.45 100 99.37 99.88 96.22 98.44 43.62
Pre-trained ViT Features-
Dynamic Weights 98.13 72.80 91.27 100 99.38 99.37 100 80.44 88.16 29.27

Fine-tuned ViT Features-
Dynamic Weights 98.44 92.67 98.13 100 100 99.37 100 99.55 98.13 44.94

Old Expert Model, whereas weight values towards ‘1’ of the x-axis denote higher priority given

to the New Expert Model. New test data of the IIIT-WVU subset produces weights around 0.5

as the distribution of IIIT-WVU subset test samples is independent of the training distribution of

both expert models. So, assigning weights around 0.5 is an appropriate step. In all other cases,

)(>;3 receives higher weights for the old expert model and )(=4F receives higher weights for the

new expert model. It is noteworthy that the proposed method outperforms even the Full-Retrain

method except in the case of the IIIT-WVU test split. As specified earlier, the distribution of the

IIIT-WVU test split is different from both training sets, which limits the performance of dynamic

weight-based fusion in this particular case.

6.4.2 LivDet-Iris-2020 Setup and Results

In this setup we utilizes three datasets: IARPA dataset [2], Warsaw PostMortem v3 dataset [7]

and LivDet-Iris-2020 dataset [61]. We divide the IARPA dataset into three splits and consider

them as )'>;3 and two )'=4F sets. Warsaw PostMortem v3 dataset is used as a )'=4F and the

LivDet-Iris-2020 dataset as )(=4F . Description of these datasets are as follows:

1. Old training set ()'>;3): One split of IARPA dataset collected using iCAM7000 iris sensor.

2. New training set ()'=4F):
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(a) (b)

(c) (d)

Figure 6.3: Histogram of weights dynamically allocated for all test samples (old and new) corre-
sponds to (a) Clarkson,(b)Warsaw, (c) Notre-Dame, and (d) IIIT-WVU subsets of LivDet-Iris-2017
setup. In the case of Warsaw and Notre-Dame, ‘Known’ test splits are used for illustration. Weight
values toward ‘0’ of the x-axis symbolize higher priority given to the Old Expert Model, whereas
weight values towards ‘1’ of the x-axis denote higher priority given to the New Expert Model. New
test data of the IIIT-WVU subset estimate weights around 0.5 as the distribution of the IIIT-WVU
subset test set is independent of the training distribution of both expert models. The figure is better
viewed in color.
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a) IARPA split: It is the second split of the IARPA dataset. The type of fake images is

the same as present in )'>;3 . The images are also collected from the same sensor. So,

there is no additional information other than the more varieties of cosmetic contacts.

The total number of images is also limited compared to )'>;3 .

b) Cross-sensor data: This is the third split of the IARPA dataset. The split represents the

cross-sensor scenario, where images of this split are captured usingLGIris andVistaEY2

iris sensors, whereas )'>;3 images are collected from the iCAM7000 sensor. The type

of fake images is the same as )'>;3 . So, the data contains additional information about

the sensors, and the number of images is higher than in )'>;3 .

c) Post-mortem data: It consists of images from the Warsaw PostMortem v3 dataset [7].

It represents the cross-PA scenario where a new type of fake images from cadaver eyes

are present. It does not contain any bonafide images.

d) Combined data: It includes the data from all the above-stated data sets. So, it represents

both cross-sensor and cross-PA scenarios. The total number of images is also higher

than in )'>;3 .

3. New test set ()(>;3 and )(=4F): The test dataset is the LivDet-Iris-2020 [61] competition

data. It is independent of )'>;3 and )'=4F .

The setup considers the scenario where dataset shift occurs both in )'>;3 and )'=4F , and )'=4F

and )(=4F except in the first case of IARPA split (no shift between )'>;3 and )'=4F). Table

6.4 provides the number of bonafide and fake images used in these sets. Implementation details

for the in-domain and expert models are the same as the previous experimental setup. Evaluation

models are also the same: Old ExpertModel, NewExpertModel, Fine-Tuned, Full-Retrain, Fusion-

Equal Weights, Fusion-Pre-trained ViT Features-Dynamic Weights, and Fusion-Dynamic Weights

(proposed method). Table 6.5 presents the performance of all these models in terms of TDR (%)

at 0.2% FDR on the LivDet-Iris-2020 test dataset.
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Table 6.4: Description of the old and new train/test sets in the LivDet-Iris-2020 setup along with
the number of bonafide and fake iris images present in the sets. The information about the sensors
used to capture images is also provided.

Domains Old ()'>;3) New ()'=4F) Old and New ()()
Datasets IARPA Split I IARPA Split II Cross-sensor Post-Mortem Combined LivDet-Iris 2020
Train/Test Train Train Train Train Train Test
Bonafide 9,660 2,963 9,606 - 12,569 5,331
Print 2,634 - - - - 1,049
Cosmetic Contacts 2,757 177 539 - 716 4,336
Artificial Eyes 554 175 383 - 558 541
Electronic Display 130 - - - - 81
Cadaver Eyes - - - 2,400 2,400 1,094

Sensor
Iris ID iCAM7000,
IrisGuard AD100,
IrisAccess LG4000

Iris ID
iCAM7000

LGIris,
VistaEY2

IriShield
M2120U

Iris ID iCAM7000,
LGIris, VistaEY2,
IriShield M2120U

Iris ID iCAM7000,
IrisGuard AD100,
IrisAccess LG4000,
IriTech IriShield

Table 6.5: The performance of all retraining methods in terms of True Detection Rate (%, higher
the better) at 0.2% False Detection Rate on the LivDet-Iris-2020 test set.

Train Dataset IARPA Split I IARPA Split II Cross-Sensor Post-Mortem Combined
Test Dataset LivDet-Iris 2020
Old and New Expert Models 61.86 58.25 75.55 0.94 85.56
Fine-Tuned - 63.18 66.53 0 83.00
Full-Retrain - 77.96 76.96 67.76 94.05

Fusion of Old and New Domain Expert Models
Equal Weights - 72.42 79.04 58.73 87.05
Pre-trained ViT Features-
Dynamic Weights - 69.91 79.03 58.73 89.38

Fine-tuned ViT Features-
Dynamic Weights - 69.27 81.36 61.99 93.62

The Old and New Expert models are not performing well on the test set as the distribution of

the test set is different from )'>;3 and )'=4F training sets. Similar is the case with the Fine-

Tuned model. The Full-Retrain model outperforms the other models, but again it is not a practical

approach due to the unavailability of the old training data. The proposed method outperforms

both fusion-based methods (fusion with equal weights and Pre-trained ViT feature-based dynamic

weight fusion). However, its performance is lower than the Full-Retrain method as the distribution

of the test set does not match any of the training sets, and the proposed methodology depends on

the training sets used by the expert models.
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6.4.3 Split MNIST Setup and Results

We further perform experiments on the MNIST dataset for comparing the proposed retraining

methodology with existing state-of-the-art continual learning strategies. The original dataset

consists of 28 × 28 pixel grey-scale images of ten digits. We use standard train and test split, with

60,000 training images (∼6,000 per digit) and 10,000 test images (∼1,000 per digit). The main task

is to classify even digit images from odd digit images. The main task is subdivided into five binary

sub-tasks, where the first task is to classify ‘0’ and ‘1’ digits, the second task is to classify ‘2’ and

‘3’, and so on. The splitting of the dataset according to the five sub-tasks is referred as Split MNIST

in the literature [118,278]. The tasks are learned sequentially. The class labels are the same for all

tasks, giving labels 0 to odd digit images and 1 to even digit images. Here, distributions of training

data corresponding to different tasks are disjoint, but there is no shift between training and testing

distribution within a task. Figure 6.4 depicts the experimental setup for the Split MNIST dataset.

Figure 6.4: The experimental setup of the Split MNIST dataset for the retraining scenario. The
main task is to classify old and even digit images. The task is divided into five sub-tasks, where the
first task is to classify ‘0’ and ‘1’ digits, the second task is to classify ‘2’ and ‘3’, and so on. The
class labels remain the same for all sub-tasks: 0 for odd digit images and 1 for even digit images.

For the expert model, we usemulti-layer perceptron (MLP) architecture and learning parameters

as used in the [118] for a fair comparison. The MLP architecture consists of two fully connected

layers with 400 nodes each, followed by a softmax output layer. ReLU non-linearity is used in both

fully connected layers. The loss function used is cross-entropy, the number of epochs is four and
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batch size is 128, and the optimizer is stochastic gradient descent with a learning rate of 0.01. For

each task, we build separate expert and in-domain models, which results in a total of ten models

(five expert and five in-domain models). Implementation details of the in-domain model are the

same as the previous experimental setup.

For comparative evaluation, we use the baselinemodels as provided in [118] which include Fine-

tuned and Full-Retrainmodels. We also compare the proposedmethodwith other continual learning

methods: regularization-based (EWC [141], online EWC [244], SI [313], KFAC [229], MAS [13],

LwF [161], OWM [312], NCL [136]) and replay-based (BiC [296], ER [44], GDumb [204],

RM [22], DGR [252], GEM [167], RtF [277]). In the fusion-based approaches, we consider Fusion-

Equal Weights, Fusion-Manual Weights, Fusion-Pre-trained ViT Features-Dynamic Weights, and

Fusion-Dynamic Weights (proposed method). In the Fusion-Manual Weights, we manually assign

one to the correct expert model and zero to other models. Fusion-Equal Weights is our lower per-

formance limit, whereas Fusion-ManualWeights is the upper limit. As training data of all sub-tasks

are disjoint, the manual weight assignment is a reasonable choice for the upper limit. All methods

utilize the same experimental setup and expert models but few methods from regularization-based

and replay-based approaches differ in hyperparameters (batch size, learning rate, and the number

of epochs). Table 6.6 provides the results of all the methods in terms of the accuracy (%).

The proposed method outperforms Fine-Tuned baseline method and all regularization-based

methods. Its performance is lower compared to three replay-based methods (DGR [252] and

RtF [277] and GEM [167]). DGR [252] and RtF [277] are generative-based methods that involve

separate training of a generative model along with an expert model. The generative model is then

used to generate previous task samples and augment the training of the subsequent tasks. The

process increases the training time of the subsequent tasks and makes the training of the expert

model dependent on the generative model. However, the proposed method does not involve any

generation of the samples, and the expert model is independent of additional models. GEM [167]

method requires additionalmemory to store a subset of the previous task samples, which is a concern

in terms of memory as well as privacy. The fusion-based methodology shows the maximum limit
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Table 6.6: The average accuracy (%, higher the better) of the proposed retraining approach with
different state-of-the-art continual learning approaches on the Split MNIST dataset. Methods with
‘+’ superscript are reported from [118], ‘o’ from [136], ‘*’ from [22] and ‘-’ from [153]. All
methods utilize the same experimental setup and expert models but differs in hyperparameters
(batch size, learning rate, and the number of epochs). We use the same hyperparameters as used
in [118]. Each value is an average of ten runs.

Approaches Method Accuracy (%)

Baselines Fine-Tuned+ 63.20 ± 0.35
Full-Retrain+ 98.59 ± 0.15

Regularization-based
Approaches

EWC [141]+ 58.85 ± 2.59
Online EWC [244]+ 57.33 ± 1.44
SI [313]+ 64.76 ± 3.09
KFAC [229] 67.86 ± 1.33
MAS [13]+ 68.57 ± 6.85
LwF [161]+ 71.02 ± 1.26
OWM [312]> 87.46 ± 0.74
NCL [136]> 91.48 ± 0.64

Replay-based
Approaches

BiC [296]∗ 77.75 ± 1.27
ER [44]− 85.69
GDumb [204]∗ 88.51 ± 0.52
RM [22]∗ 92.65 ± 0.33
DGR [252]+ 95.74 ± 0.23
GEM [167]+ 96.16 ± 0.35
RtF [277]+ 97.31 ± 0.11

Fusion-based
Approaches

Equal Weights (Lower Limit) 84.20 ± 0.08
Manual Weights (Upper Limit) 98.66 ± 0.008
CN-DPM [153]− 93.23
Pre-trained ViT Features-
Dynamic Weights 81.34 ± 0.005

Fine-tuned ViT Features-
Dynamic Weights
(Proposed Method)

94.32 ± 0.01
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as 98.66% (performance of Fusion-Manual Weights), which outperforms all methods even the

Full-Retrain method. We also experiment with another distance measure (Mahalanobis distance),

and it results in an accuracy of 97.03 ± 0.0001%, which is as par as the replay-based methods

without any generation or storage of additional training data. In this setup, Mahalanobis distance

performs the best as disjoint training distributions are effectively characterize by the mean and

variance, whereas LOF outperforms in other setups.

To understand the importance of training the ViT-based feature extractor with the proposed

losses, we visualize the features extracted from the pre-trained ViT model (Figure 6.5) and our

trained FE model (Figure 6.6). The visualization involves training embeddings corresponding to

all five sub-tasks (shown in different colors). The embeddings are reduced to three dimensions

using t-SNE [279]. The pre-trained model features show significant overlap among different task

embeddings compared to our trained FE model. The performance and visualization both validate

the use of loss functions involved in the training of ViT-based feature extractor.

Figure 6.5: 3-D t-sne plot showing pre-trained ViT embeddings correspond to five sub-tasks of the
Split MNIST dataset. The training samples of different classes are overlapping in the feature space.
The figure is better viewed in color.
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Figure 6.6: 3-D t-sne plot showing fine-tuned ViT embeddings correspond to five sub-tasks of the
Split MNIST dataset. There is a formation of clusters of training samples belonging to the same
class in the feature space. The figure is better viewed in color.

6.4.4 Findings

The main findings from the three experimental setups are as follows:

1. When )(=4F has a similar distribution as )'>;3 or )'=4F data, our proposed approach

outperforms other approaches, even the Full-Retrain method as shown in the LivDet-Iris-

2017 setup (Table 6.3).

2. When )(=4F distribution is independent of )'>;3 and )'=4F training data, the proposed

approach outperforms other approaches, but not the Full-Retrain method as shown in the

IIIT-WVU subset of LivDet-Iris-2017 setup (Table 6.3) and LivDet-Iris-2020 setup (Table

6.5).

3. In the case of disjoint training distribution between )'=4F and )'>;3 , the proposed ap-

proach outperforms baselines, regularization-based, and other fusion-based approaches. Its

performance is lower than some replay-based methods. However, the performance improves

by Mahalanobis distance as an outlier distance measure in this particular scenario.
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4. The proposed in-domain model for dynamic weights allocation is appropriately assigning

weights to their respective expert models, as exhibited by its higher performance compared

to the Fusion-Equal Weights method in Tables 6.3, 6.5 and 6.6. Weight histograms in Figure

6.3 also validate the accurate allocation of the weights.

5. The proposed FE model better represents the training data as shown by comparing its per-

formance with pre-trained ViT model in Tables 6.3, 6.5 and 6.6. Figure 6.6 also visually

validate the finding.

6.5 Summary and Future Work

We propose a dynamic weight-based fusion methodology to update the existing expert models

such that it maintains the performance on old test data alongside improves the performance on new

test data. The method asserts a new expert model on new training data and makes the final decision

by the weighted sum of the prediction scores from all expert models. Evaluation of the proposed

approach in three setups depicting two levels of dataset shift validates its effectiveness. In this work,

by dataset shift, we mean shift in input distribution. As the method does not manipulate the existing

expert models, it motivates the reuse of existing expert models without any manipulation in the

training process or the architecture of the expert models. It also requires less memory as compared

to the replay-based methods. However, there is an increase in the inference time as a probe image

input to another model for estimating weights. Regarding scalability, there involves the addition of

two models with every new incoming task, and hence the number of models linearly increases with

an increase in tasks. The number of models could reduce by applying pre-condition (performance

difference or data distribution difference) before building additional models. In future work, we

will define the pre-condition for improving the scalability of the proposed method.
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CHAPTER 7

IRIS MORPHING ATTACK: CREATION AND DETECTION

Parts of this chapter appeared in the following publication:

R. Sharma and A. Ross, “Image-Level Iris Morph Attack,” IEEE International Conference on

Image Processing (ICIP), 2021.

7.1 Introduction

In this chapter, we investigate the problem of morph attacks in the context of iris biometrics.

We employ a landmark-based iris morphing scheme at the image level which generates morphed

iris images. The potential of generated morphed iris images is then analyzed over the three iris

recognition systems.

The main contributions of the work are as follows:

1. We propose a landmark-based method to perform iris morphing at the image-level.

2. We evaluate vulnerability of three iris recognition techniques (USITv3.0 [227], VeriEye1,

and CNN-Pairwise [206]) to morphed iris images using two publicly available datasets

(IITD [150] and WVU multi-modal2). The attack success rate is over 90% at 0.01% false

match rate.

3. We explore the similarity required between the component images to create a successful

morphed iris image.

4. We provide preliminary results on the detection of image-level morphed iris images.

The rest of the chapter is organized as: Section 7.2 discusses the various morphing techniques

in the context of biometrics, Section 7.3 provides the methodology used to create image-level
1https://www.neurotechnology.com/verieye.html
2https://biic.wvu.edu/data-sets/multimodal-dataset
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morphed iris images, Section 7.4 describes the datasets, Section 7.5 provides the experimental

setup and results on both the datasets, and Section 7.6 concludes the chapter.

7.2 Related Work

Morphing can be performed at the image-level or feature-level. Morphing at the image-level is

relatively simple as it does not require knowledge of the internal working of a biometric system,

whereas morphing at the feature-level requires knowledge of the feature extraction module. The

image-level morphed samples can directly be presented to the sensors or digitally uploaded to the

biometric system.

Commonly used morphing techniques at the image-level are landmark-based [26,86,171,241].

The landmark-based techniques first detect corresponding landmark points in the two images then

warp the images based on the detected landmarks, and finally blend the warped images. Shechtman

et. al [251] posed the morphing as an optimization problem to achieve bidirectional similarity

of each morphed image with its neighboring frames within the morph sequences as well as the

input images. Recently, morphing techniques based on generative adversarial networks have

been proposed [9, 60, 314]. However, their attack success rate at this time is still lower than the

landmark-based techniques. Morphing techniques have also been proposed at the feature-level,

e.g., minutiae-based [85], iris-codes [225]. Detailed surveys on morphing techniques in the context

of morph attacks can be found in [242, 284]. Further, frameworks for evaluating the vulnerability

of biometric systems to morphed samples are presented in [95, 240].

In the case of the iris modality, Rathgeb and Busch [225] proposed morphing at the feature-

level, where iris-codes are morphed using stability-based bit substitution. Erdongan et. al [82]

proposedmorphing on the normalized iris images.3 They created composite normalized iris images

based on the selection of pixels from the two images considering their intensity and phase profiles.

We propose a morphing scheme for generating morphed iris images using two unnormalized iris

images.

3Here, normalization refers to the unwrapping of the iris wherein it is mapped from Cartesian
coordinates to Pseudo-polar coordinates resulting in a fixed-size rectangular entity
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7.3 Algorithmic Details

Wegenerate a synthetic iris image (morphed image) from samples of two different identities such

that the morphed image matches with both of its component identities. We utilize the landmark-

based method to create morphed images. There are generally three steps to such an approach [242]:

correspondence, warping, and blending. In the correspondence step, a set of correlated landmarks

points from both images are detected. In the warping step, two images are non-linearly deformed

to make them geometrically aligned with respect to the detected landmarks. Finally, the warped

images are blended by linearly combining pixel values from both images at each location using a

scalar value (blending factor). The scalar value controls the degree of contribution of each source

image to the morphed image.

1. Correspondence: To establish the correspondence between two iris images, we first obtain

iris segmentation parameters – iris center, iris radius, pupil center, and pupil radius. Using the

segmentation parameters, we estimate equally spaced landmarks on both the inner and outer iris

boundaries. The landmark points are 10 degrees apart with respect to the iris center resulting in

72 landmarks (36 on the inner iris boundary + 36 on the outer iris boundary). We select these

72 landmarks to minimize iris feature distortion during warping. A lower number of landmarks

distorts the iris pattern during warping, and a higher number increases computational complexity.

We also include four extreme corner points of an image (top left, top right, bottom left, and bottom

right) in the landmarks set, creating a total of 76 landmark points. The corner points are required

to align the iris regions of both images.

2. Warping: Given the landmark points, we compute the Delaunay triangulation using the

convex hull method [23]. We average the corresponding triangle coordinates and compute their

affine transformation matrix, ) , as follows:

)3×3 = �3×3-
−1
3×3. (7.3.1)

Here, � is the averaged triangle coordinates arranged column-wise, and - is one of the correspond-

ing triangles coordinates. Using the transformation matrics, triangles from both images are warped

137



Figure 7.1: (a) Three categories of techniques applied to detect iris presentation attacks. (b)
Illustration of the iris morphing at the image-level. It consists of registration of landmark points on
both the images, alignment of images, and then blending into a single image.

to the averaged triangle coordinates. We further interpolate the missing values using bilinear

interpolation.

3. Blending: Finally, we blend the pixels within the warped triangles using linear blending at

each location (8, 9) as follows:

" (8, 9) = U-F (8, 9) + (1 − U).F (8, 9). (7.3.2)

Here, " is the morphed triangle, -F and .F are two corresponding warped triangles, and U is the

blending factor. The blending factor is set to 0.5 to get an equal contribution of identity information

from both the images. Figure 7.1 shows a pictorial representation of these steps.

7.4 Datasets

To demonstrate the vulnerability of iris recognition techniques to morph attacks, we conduct

experiments on the following two publicly available iris datasets:

1. IITD Iris Dataset [150]: The IITD iris dataset consists of 2,240 iris images from 224

subjects. There are ten iris images per subject (5 left and 5 right). The images are acquired using

JIRIS, JPC1000, and digital CMOS sensors. The subjects in the dataset are in the age range of
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14-55 years. There are 176 males and 48 females in the dataset. These images have a resolution of

320 × 240 pixels.

2. WVUMulti-modal Release 1 Dataset: The WVU multi-modal dataset consists of the iris,

face, fingerprint, voice, palmprint, and hand-geometry modalities. We only use the iris modality,

which contains 3,099 iris images from 244 subjects. There is an average of 12 images per subject.

The resolution of these images is 640 × 480 pixels.

7.5 Evaluation and Results

To evaluate the impact of image-level morphed images on iris recognition, we first compute

the baseline performance of three iris recognition techniques (USITv3.0 [227], VeriEye, and CNN-

Pairwise [206]) on the IITD and WVU multi-modal datasets. The two datasets are used to create

morphed iris images. Subsequently, we assess the susceptibility of iris recognition techniques to

the generated morphed iris images. Further, we also analyze the textural similarity of component

images required to create a successful morphed iris image. Finally, we provide preliminary results

on the detection of morphed iris images.

7.5.1 Baseline Recognition Performance

We utilize three iris recognition techniques to assess their vulnerability to morphed iris images.

The first is a best performing technique within the open-source iris recognition software toolkit,

University of Salzburg Iris Toolkit (USIT v3.0) [227]. It extracts iris-code using quadratic spline

wavelet (QSW) [151] and uses hamming distance to measure the dissimilarity between the iris-

codes. The second is a commercially available off-the-shelf technique called VeriEye. The third is

a deep learning-based CNN-Pairwise [206] technique. We utilizes DenseNet121 [122] as the base

architecture. The network inputs two cropped iris images and formats them asmultiple channels and

then outputs a similarity score between 0 (impostor) and 1 (genuine). The iris images are manually

segmented for the USITv3.0 and CNN-Pairwise techniques, whereas VeriEye uses its own iris

segmentation module. The segmentation failures occured in VeriEye are manually corrected.

139



Table 7.1: Performance of three iris recognition techniques in terms of TMR (%) at 0.01%, 0.1%,
and 1% FMRs, on the IITD and WVU datasets. The USITv3.0 is an open-source iris recognition
toolkit, VeriEye is a commercial iris recognition SDK, and CNN-Pairwise is a deep learning-based
technique.

Algorithms IITD Dataset (TMR(%)) WVU Dataset (TMR(%))
FMR
0.01%

FMR
0.1%

FMR
1%

FMR
0.01%

FMR
0.1%

FMR
1%

USITv3.0 99.33 99.55 99.72 94.73 96.40 97.62
VeriEye 99.77 99.77 99.77 98.54 98.78 99.02
CNN-Pairwise 98.16 98.72 99.38 85.70 90.54 93.69

The recognition performance of these three techniques is evaluated on both datasets. As the

CNN-Pairwise method is a deep learning-based, training is performed using 60% of the subjects,

and the rest is used for testing (subject-disjoint strategy). Table 7.1 provides the True Match

Rate (TMR) at 0.01%, 0.1%, and 1% False Match Rate (FMR). The VeriEye algorithm performs

the best followed by the USITv3.0 algorithm. CNN-Pairwise shows relatively lower performance

(presumably) due to insufficient training data, whereas the other two techniques do not require

training.

7.5.2 Morph Attack Setup and Results

We utilize both the datasets to create image-level morphed iris images. In the IITD dataset, there

are 224 left eye classes and 224 right eye classes. We randomly select one image per class for

generating the morphs, which should result in 49,952 (224�2 +224 �2) morphed images. However,

landmarks could not be detected in some images with partial irides, so a total of 49,816 morphs

were created. In the WVU dataset, there are 237 left eye classes and 233 right eye classes, which

should result in a total of 54,994 (237�2 +233 �2) morphs. However, due to landmark detection

problems in partial irides, not all pairs could be considered, resulting in a total of 50,573 morphs.

Figure 7.2 presents few samples of morphed images generated from both datasets along with

their component images. We input the morphed iris images to three iris recognition techniques

(morph attack) and measure their vulnerability in terms of Mated Morph Presentation Match Rate

(MMPMR) [240]. MMPMR is the ratio of successful morph attacks to total morph attacks. The
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Table 7.2: Vulnerability assessment of three iris recognition techniques to iris morph attacks in
terms of MMPMR (%) at different thresholds corresponding to 0.01%, 0.1%, and 1% FMRs on the
IITD and WVU datasets.

Algorithms IITD (MMPMR(%)) WVU (MMPMR(%))
FMR
0.01%

FMR
0.1%

FMR
1%

FMR
0.01%

FMR
0.1%

FMR
1%

USITv3.0 93.8 95.64 96.91 85.96 93.82 97.07
VeriEye 95.77 97.07 97.85 90.22 94.48 97.02
CNN-Pairwise 17.64 24.76 25.32 47.70 54.23 56.76

morph attack succeeds when the morphed image matches with all of its component subjects at a

specified threshold. Table 7.2 provides the performance of morph attacks in terms of MMPMR at

different thresholds corresponding to 0.01%, 0.1%, and 1% FMRs.

TheVeriEye andUSITv3.0 techniques aremore susceptible tomorph attacks (> 90%MMPMR).

CNN-Pairwise shows a relatively lower morph attack success rate as it has been trained on a

relatively small amount of data, and a slight perturbation in the images (due to morphing) results in

non-matches. To evaluate further, we plot a histogram of the genuine, impostor, and morph match

scores on both the datasets (top row of Figure 7.3). The distribution of morph match scores leans

towards the genuine distribution, and a majority of the morph match scores are labeled as genuine

when considering the threshold at 0.01% FMR. We also visualize the morph match scores using

scatter plots (bottom row of Figure 7.3) with component identities along X and Y-axes. Most of

the match scores are in a quadrant that corresponds to successful matches with both component

subjects (top right corner). This shows how well the morphed images match with their component

identities and substantiates the vulnerability of iris recognition techniques to morph attacks.

7.5.3 Analysis of Textural Similarity

Next, we analyze the similarity between the component iris images used to create morphed iris

images. To calculate the similarity, we utilize the Root Mean Square Error (RMSE) and Structural

Similarity Index Measure (SSIM) [290] measures. RMSE calculates the pixel-wise difference

between the two images (higher the value, lower the similarity), while SSIM estimates the structural
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Figure 7.2: Samples of morphed images generated from the IITD and WVU datasets.

similarity between the two images (higher the value, higher the similarity). Figure 7.4 presents the

distribution of similarity scores as calculated by RMSE and SSIM on both the datasets. Distribution

in green corresponds to successful morphs, whereas distribution in red corresponds to unsuccessful

morphs. Match scores and threshold are according to the USITv3.0 iris recognition technique.

The mean SSIM scores corresponding to successful and unsuccessful morphs are 0.49 and 0.45

(the mean difference is 0.029), respectively, on the IITD dataset. The mean difference increases

to 0.032 when using RSME scores. Though distributions of successful and unsuccessful morphs

significantly overlap, we can still conclude that there is a high chance of generating a successful

morph if SSIM between the component images is more than 0.31 (or less than 0.20 in the case

of RSME). A similar conclusion can be made on the WVU dataset that there is a high chance of

obtaining a successful morph when SSIM between the component images is more than 0.49 (or

less than 0.22 in the case of RSME).
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IITD dataset WVU dataset

Figure 7.3: Top: Match score distribution of genuine (green), imposter (red), and morph attacks
(blue) on the IITD and WVU datasets using the USITv3.0 iris recognition technique. Bottom:
Scatter plots of match scores, where morphed images match with their component identities. The
dotted line represents the threshold at 0.01% FMR.

7.5.4 Morph Attack Detection

The next natural step is to address morph attacks by detecting morphed images prior to inputting

them into an iris recognition system. We present preliminary results on the detection of morphed

iris images. Firstly, we perform detection using a pre-trained presentation attack detector [249]4

at a pre-defined threshold (corresponds to 0.2% False Detection Rate (FDR)). It results in 9.06%

True Detection Rate (TDR) on morphed images from the IITD dataset and 16.82% on morphed

images from the WVU dataset. Next, we fine-tune the detector with morphed iris images (60%

from each dataset used for training and the rest for testing). It attains 86.83% TDR on the IITD

4An iris presentation attack detector trained to detect artifacts such as printed iris, cosmetic
contacts, and artificial eyes.
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Figure 7.4: Distributions of similarity scores between the component images corresponding to
successful (green) and unsuccessful (red) morphs using the RMSE (higher the value, lower the
similarity) and SSIM (higher the value, higher the similarity) measures on the IITD and WVU
datasets.

morphed images and 99.55% TDR on the WVU morphed images at 0.2% FDR. In the proposed

morphing technique, we did not perform post-processing on the morphed images due to which

some artifacts are present outside the iris region. We hypothesize that these artifacts aid in the

detection of morphed iris images.

7.6 Summary

We successfully generate image-level morphed iris images, which can be used to denote two

identities thereby posing a security concern. The morphed images show a high morph attack

success rate (> 90%) on three high-performing iris recognition methods (USITv3.0, VeriEye, and
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CNN-Pairwise) when assessed on two datasets (IITD andWVUmulti-modal). We also explore the

textural similarity required between the component samples to create a successful morphed image.

Finally, we present preliminary results on the detection of morphed iris images.
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CHAPTER 8

MATCHING IRIS IMAGES WITH FACE IMAGES

8.1 Introduction

Biometric recognition involvesmatching two biometric samples primarily from the samemodal-

ity, such as the face, iris, fingerprint, or voice to identify an individual. However, cross-modal

recognition implies matching of two biometric samples from different modalities. These two bio-

metric samples are refered as an enrolled and a probe sample, where the enrolled sample exists

in a corresponding legacy database. Cross-modal recognition helps in the case of unavailability

of legacy datasets or where we need to analyze the relationship between two modalities. It also

helps in boosting the recognition confidence even if the legacy dataset is available. Various efforts

made in this direction are [129,163,168,185,234]. In this work, we focus on matching iris images

captured in the near-infrared spectrum against face images captured in the visible (Figure 8.1). It

also helps in recognizing humans when face recognition is not reliable, such as the presence of

occlusions on the face (face mask).

Two main challenges arise from matching a face image to an iris image: (i) a large domain gap

and (ii) imbalanced training data. The domain gap results from the following factors:

1. Cross-Modality: There occurs matching of iris modality images to face modality images.

2. Cross-Sensor: Different sensors are used to capture the face and iris images. Sensors add

various noises to the images, for instance, fixed pattern noise, pixel response non-uniformity

(PRNU), random noise, etc.

3. Cross-Spectrum: Generally, face image captures in the visible spectrum (VIS), whereas

iris image captures in the near-infrared (NIR) spectrum. When considering the iris region

only, NIR illumination (700-900nm) captures the stromal features (fibrovascular layer) of the
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iris, whereas VIS illumination (400-700nm) captures melanin pigment and a meshwork of

ligament features.

4. Cross-Resolution: Iris or ocular regions cropped from face images are of very low resolution

as compared to iris images. For example, in the BioCop-2008 dataset, the ocular or iris

regions cropped from face images are of 0.06 or 0.006 megapixels, whereas it is of 0.3 or

0.03 megapixels on iris images.

Figure 8.1: The objective is to match a visible spectrum face image with the NIR spectrum iris
image, or vice versa.

Previous literature focuses on one or two of these factors. To the best of our knowledge, only

one paper [129] dealt with all four challenges. The authors propose various handcrafted features

(Local Binary Patterns (LBP), Normalized Gradient Correlation (NGC), and Joint Dictionary-

based Sparse Representation (JDSR)) and the score-level fusion of those features. They achieve

a 23% Equal Error Rate (EER), which shows the difficulty of the task. Generally, techniques

used to reduce the domain gap categorize as feature-level or image-level. At the feature-level,

the focus is on the extraction of discriminative features invariant to the factors (cross-spectrum,

cross-sensor, or cross-resolution). For cross-spectral iris recognition, Abdullah et al. [10] propose

three descriptors: Gabor-difference of Gaussian (G-DoG), Gabor-binarized statistical image feature

(G-BSIF), and Gabor-multi-scale Weberface (G-MSW) as well as a fusion of these features at the

decision-level. Oktiana et al. [192] propose phase-based features utilizing phase-only correlation
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(POC) and band-limited phase-only correlation (BLPOC). Wang and Kumar [287] investigate a

range of deep learning architectures: CNN with softmax cross-entropy loss, Siamese network,

and triplet network. Regarding cross-spectral ocular recognition, Sharma et al. [248] propose

combined neural network architecture, which first trains two neural networks separately on each

spectrum and then jointly learns the cross-spectral variability using cross-spectral training data.

Raja et al. [215] utilize Binarized Statistical Image Features (BSIF) and perform matching using

Chi-Square distance. Later, Raja et al. [216] propose another method based on steerable pyramid

features and a multi-class SVM classifier. At the image-level, the domain gap is reduced by

transforming one domain image into another. Burge and Monaco [43] approximate a NIR iris

image using features derived from the color and structure of the VIS iris image. Zuo et al. [319]

generate a NIR iris image from the VIS iris image using a feed-forward neural network. Ramaiah

and Kumar [222,223] synthesize visible texture from the NIR image using Markov Random Fields

(MRF) for both iris and ocular images. More recently, Hernandez-Diaz et al. [110] propose

Conditional Generative Adversarial Networks (cGAN) for synthesizing a NIR ocular image from

the VIS ocular image or vice versa.

Another major challenge in cross-modal recognition is imbalanced train data, where the number

of pairs from different individuals (impostor pairs) is very high compared to pairs from the same

individual (genuine pairs). As far as we know, no work on cross-modal or spectrum iris recognition

focuses on the challenge in this literature.

In this work, we focus on both these challenges and propose three deep learning approaches. The

first is at the feature-level, where the aim is to extract common features from both the images and the

method is called Multi-channel CNN. It is a convolution neural network (CNN) that inputs face and

iris images as different channels and extract common features together. The second strategy is at the

training-level, wherewe generate synthetic training samples to increase the training data for learning

as the number of genuine pairs in the cross-modal setting is insufficient for the training of deep

architecture. We use Dual Variational Generation (DVG) framework [88] to synthesize the genuine

pairs for training. The third strategy is at the image-level, where we transform one modality image
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into anothermodality using the Generative Adversarial Network (GAN) framework. We use various

GAN architectures for image-to-image translation, such as BicycleGAN [318], ESRGAN [289],

Pix2Pix GAN [125], and StarGANv2 [53]. Here, we present the results of Pix2Pix GAN [125],

BicycleGAN [318] and StarGANv2 [53] as these GAN frameworks perform the best. The main

contributions of the work are as follows:

1. We propose deep learning approaches at three different levels (feature-level, image-level,

and training-level) to address the domain gap and imbalanced training data challenges for

cross-modal recognition.

2. We evaluate the performance of the proposed approaches on four cross-modal datasets:

BioCop-2008, BioCop-2009, cross-spectrum PolyU, and WVU datasets.

Section 8.2 explains the architectural details of the proposed approaches. Section 8.3 describes

datasets used in this work. Section 8.4 describes the experimental setup and results on both the

datasets. Section 8.5 reports the impact of eye color on the performance of cross-model matching.

Section 8.6 summarize the chapter.

8.2 Proposed Approaches and Rationale

In this section, we explain the two main challenges of cross-modal matching (domain gap and

imbalanced training data) and the proposed approaches to address them.

To understand the domain gap, we conduct an initial analysis using histograms of ocular images

under the VIS intra-modal, NIR intra-modal, and cross-modal scenarios. The analysis is on the

randomly selected subset (5,000 genuine pairs and 5,000 impostor pairs) of ocular images from the

BioCop-2008 dataset. We crop ocular regions from face images to form VIS ocular images, which

are of low resolution. We generate histograms using similarity scores among genuine and impostor

pairs, where similarity scores are computed using the Structural Similarity (SSIM) index [290].

Figure 8.2 shows the histograms of all three scenarios. Below each histogram statistics are provided

in terms of genuine distribution mean, impostor distribution mean, d-prime (distance between two
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Figure 8.2: Histograms of similarity scores obtained from ocular images under (a) intra-modal
VIS, (b) intra-modal NIR, and (c) cross-modal scenario. Similarity scores are estimated using the
Structural Similarity (SSIM) index on ocular images of the BioCop-2008 dataset. The statistics of
the histograms are given below each figure. There are two observations: first, the similarity between
genuine pairs (Genuine Mean) reduces in the cross-modal scenario as compared to the intra-modal
scenario; second, the overlapping area between two distributions increases dramatically for the
cross-modal. For accurate matching, the overlapping area should be as minimum as possible.

distributions) [170], and overlap area of distributions. There are two noteworthy observations: first,

the similarity between genuine pairs (Genuine Mean) reduces under cross-modal scenario; second,

the overlapping area increases dramatically for cross-modal (genuine and impostor distributions

are almost overlapping). Due to the large domain gap, the similarity of genuine pairs overlaps the

imposter pairs to a significant extent. To reduce the domain gap, we propose two approaches one at

the feature-level and the other at the image-level. The feature-level solution (Multi-channel CNN)

jointly learns discriminative features from a pair of cross-modal images and outputs similarity

score. For image-level solution, we translate one domain image into another using various GAN

architectures (Pix2Pix GAN [125], BicycleGAN [318] and StarGANv2 [53]) before matching.

The second major challenge in cross-modal matching is imbalanced training data or insufficient

genuine pairs training data. For example, if we consider genuine and impostor pairs of BioCop-

2008 and PolyU datasets, BioCop-2008 contains 3,534 genuine pairs and 2,287,398 impostor

pairs, whereas the PolyU dataset contains 6,287 genuine pairs and 10,630,762 impostor pairs.

The genuine-impostor pairs ratio for BioCop-2008 and PolyU datasets are 1:645 and 1:1690,

respectively. This is the case for any biometric dataset in verification mode. A large number of

datasets are available for intra-modal matching, whereas only a few datasets exist for cross-modal
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matching. To address the imbalanced data, we synthesize a large number of genuine pairs using

the DVG framework [88] to augment the training data. A description of all three approaches,

feature-level, image-level, and training-level are as follows:

8.2.1 Feature-level Approach: Multi-channel CNN (MT-CNN)

In the first method, we attempt to reduce the domain gap with a Multi-channel CNN (MT-CNN).

Generally, deep networks input three input channels, namely the Red (R), Green (G), and Blue

(B) channels. In MT-CNN (Figure 8.3), we use six input channels, where three correspond to

the VIS image (R, G, and B channels) and the other three to the NIR image (one NIR channel

repeated thrice). Themotivation comes fromAguilera et al. [11] work, which utilizes a two-channel

architecture for similarity measurement from a pair of natural images and outperforms Siamese

and Pseudo-Siamese networks. We also applied two channels (one for VIS and the other for NIR

image), four channels (three for VIS and one for NIR image), and the Siamese network. We report

the best network (six channels) in the result section. The six-channel network does not compress

the information as in the case of a two-channel CNN, where R, G, and B channels compress into

one gray channel. The six-channel network also has an advantage over the four-channel network as

it equally weights both VIS and NIR images. In contrast to the Siamese network, where weights

are shared in the later layers, the MT-CNN jointly processes information from both images at the

first layer of the network [311].

The backbone architectures used in the MT-CNN is DenseNet201 [122]. The base networks

is pre-trained on the ImageNet dataset [72], and then fine-tuned on iris training data described in

Section 3. The output is a similarity score between 0 and 1, where ‘0’ implies an impostor pair and

‘1’ implies a genuine pair. Training performed using Stochastic Gradient Descent with a learning

rate of 0.005, weight decay of 10−6, and a momentum of 0.9. The batch size is 20 and the number

of epochs is 50.
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Figure 8.3: The architecture of Multi-channel CNN (MT-CNN). The base architecture used in the
MT-CNN is DenseNet201 [122]. It estimates a similarity score between the images of the two
domains.

8.2.2 Image-level Approach

This method aims to transform one modality image (cropped VIS iris image) into another modality

(NIR iris image) image. For image-to-image translation, we utilize three GAN architectures:

Pix2Pix GAN [125], BicycleGAN [318] and StarGANv2 [53]. We translate a low-resolution (301

x 201) visible spectrum (VIS) iris image to a high-resolution (640 x 480) near-infrared spectrum

(NIR) iris image. We are performing VIS to NIR image translation instead of NIR to VIS as: (i)

NIR discerns iris patterns more effectively compared to VIS image, and translation fromNIR to VIS

loses relevant information, and (ii) compression of three channels of VIS image into one channel

of NIR image is easier than an expansion of one channel of NIR image into three channels of VIS

image. After image translation, we calculate similarity score of the GAN-generated NIR image with

the real NIR image usingMulti-channel CNN.We utilize the same losses for BicycleGAN [318] and

StarGANv2 [53] as specified in the original work, whereas for Pix2Pix GAN we include additional

identification loss. Therefore, we only describe the Pix2Pix GAN below.

8.2.2.1 Pix2Pix GAN with Identification Loss (Pix2Pix GAN ID)

We attempt to reduce the domain gap using a deep generative model, Pix2Pix GAN [125]. It is

a conditional Generative Adversarial Network (cGAN) designed for image-to-image translation.

We introduce identification loss into its objective function and term it as Pix2Pix GAN ID. Our
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objective is to synthesize NIR image of the same identity as VIS image and match it against the

real NIR image. Figure 8.4 represents the overall testing setup of cross-modal matching utilizing

Pix2Pix GAN ID and MT-CNN.

Figure 8.4: The overall testing scenario of Pix2PixGANIDandMT-CNNfor cross-modalmatching.
The Pix2Pix GAN ID’s generator synthesizes a NIR image from the VIS image. The MT-CNN
then generates a similarity score from a pair of synthesized NIR and real NIR images.

There are two components of Pix2Pix GAN ID: a generator and a discriminator. The generator

aims to generate a realistic image with a constraint that the image should retain iris biometric

information, whereas the discriminator distinguishes between real and synthesized NIR images.

The base architecture used for the generator is U-Net256 [232] with skip connections. The

discriminator used is PatchGAN [164] classifier. The training of the generator and discriminator is

performed using the following loss terms:

1. Adversarial Loss: It is a classical adversarial loss, where the discriminator and generator

compete with each other until reaching an equilibrium. The adversarial loss is defined as

follows:

!��# (�, �) = �G,H [;>6� (G, H)] + �G [;>6(1 − � (G, � (G)))] (8.2.1)

where, � is the generator function, � is the discriminator function, G is the input VIS image,

and H is the target NIR image. The generator aims to minimize the objective, whereas the

discriminator tries to maximize it. The generator is not directly affecting the ;>6(� (G, H))
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term in the function, so for the generator, minimizing the loss is equivalent to minimizing

�G [;>6(1 − � (G, � (G))]).

2. Per-pixel Loss: Per-pixel loss computes ;1 distance between two images at the pixel level and

reduces the mapping space from the VIS spectrum to the NIR spectrum. The loss formulation

is as follows:

!?4A−?8G4; (�) = �G,H ‖ � (G) − H ‖1 (8.2.2)

where, ‖ ∗ ‖1 is the ;1 norm between synthetic (� (G)) and real (G) images.

3. Perceptual Loss: It is the ;1 distance between deep features extracted from synthetic and real

images. The features are extracted at multiple layers of the VGG19 network and concatenated

to form a single feature descriptor. The VGG19 network is pre-trained on the ImageNet

dataset [73]. The formulation is as follows:

!?4A24?CD0; (�) = �G,H ‖ q% (� (G)) − q% (H) ‖1 (8.2.3)

where, q% (� (G)) and q% (H) are the VGG features extracted from the synthetic NIR image

and the real NIR image, respectively. Perceptual loss [132] helps the generator to minimize

the high-level semantic difference between the images. It ensures the smoothness and visual

similarity of the generated image with the real NIR image.

4. Identity Loss: It is a cross-entropy loss estimated using MT-CNN, where input is a pair of

real and synthetic NIR images, and output is a similarity score (1 for genuine pairs and 0 for

impostor pairs). Its formulation is as follows:

!834=C8CH (�) = −(C log(" (� (G), H)) + (1 − C);>6(1 − " (� (G), H)))) (8.2.4)

where, " (� (G), H) is the similarity score output by MT-CNN when synthetic NIR image

� (G) and real NIR image H are given as input, C is the ground-truth label specifying that input

pair is genuine or an impostor. As we are using only genuine pairs for training Pix2Pix GAN

ID, the identity loss reduced to !834=C8CH (�) = −(log(" (� (G), H)).
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The overall loss function is as follows:

�∗ = 0A6<8=� (!��# + !?4A−?8G4; + !?4A24?CD0; + !834=C8CH)

�∗ = 0A6<0G�!��#
(8.2.5)

8.2.3 Training-level: Dual Variational Generation

Another challenge of cross-modal matching is insufficient genuine training data, which also raises

the imbalance issue between genuine and impostor pairs. To address the challenge, we utilize

another deep generative framework: Dual Variational Generation (DVG) [88]. The DVG network

is an unconditional variational autoencoder (VAE) that generates NIR and VIS paired images of

the same identity from noise sampled from a standard normal distribution. The MT-CNN training

is supplemented with the synthetic samples (i.e., the network is trained using both real VIS-NIR

genuine pairs and synthetic VIS-NIR genuine pairs from the DVG). Figure 8.5 shows the overall

architecture of cross-modal recognition training utilizing the DVG-based method and MT-CNN.

Regarding identity constraint, the image-to-image translation focuses on identity preservation,

where the identity of a synthesized image is the same as the input image. On the other hand, the

DVG-based method focuses on the identity consistency of generated pairs, which is anonymous.

Generally, for the image-to-image translation, only a few samples are available for learning identity

preservation, whereas the DVG-based model utilizes entire training genuine pairs for identity

consistency.

The architecture of DVG consists of two encoders that correspond to NIR and VIS input images

and a decoder. Figure 8.6 represents the training architecture of the DVG model. Encoder �# is

responsible for mapping input NIR image G# to latent space I# , whereas encoder �+ is responsible

for mapping input VIS image G+ to latent space I+ . The latent representation of NIR and VIS

images is then concatenated and fed into the decoder, which reconstructs the NIR and VIS images.

Training of DVG-based model is performed using the following loss terms:

1. KL Divergence Loss: The constraint is applied over the encoders �# and �+ which outputs
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Figure 8.5: Training architecture of the DVG-based model. The figure is adapted from [88]. It
consists of two encoders that correspond to NIR and VIS input images and a decoder. The encoder
transforms input image space into latent space. The decoder utilizes the latent space of NIR and
VIS images and reconstructs them back into the image space.

Figure 8.6: Training procedure of the DVG-based method.

posterior distributions @q# (I# | G# ) and @q+ (I+ | G+ ) using Kullback-Leibler divergence:

!>BB ! = � ! (@q# (I# | G# ) ‖ ?(I# )) + � ! (@q+ (I+ | G+ )) ‖ ?(I+ )) (8.2.6)

where G∗ is the NIR or VIS input, I∗ is the NIR or VIS latent output, ?(I∗) is the NIR or VIS

prior distribution, and @q∗ (I∗ | G∗) is the posterior distribution output by the NIR or VIS

encoder. We assume a multivariate standard normal distribution for the prior distributions.

2. Reconstruction Loss: This constraint is applied over the decoder, which reconstructs the
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input images G# and G+ . The formulation is as follows:

!>BBA42 = −�@\# (I# |G# )
⋃
@q+
(I+ |G+ ) [log ?\ (G# , G+ | I� )] (8.2.7)

where I� is the concatenation of I# and I+ latent vectors, and ?\ (G# , G+ | I� ) is the joint

distribution. The reconstruction loss is calculated by the root mean square of input and

reconstructed images.

3. Distribution Alignment Loss: We aim to project both NIR and VIS images to a common

latent space. To achieve this, we minimize the Wasserstein distance [107] between the

posterior distributions of NIR and VIS images. The loss formulation is as follows:

!>BB38BC =
1
2
‖ `# − `+ ‖22 + ‖ f# − f+ ‖

2
2 (8.2.8)

where `# and f# are the mean and standard deviation output by the NIR encoder �# , and

`+ and f+ are the mean and standard deviation output by VIS encoder �+ .

4. Identity Loss: Another constraint is to preserve the biometric content within the domain

and ensure the identity is consistent across the domains. We use MT-CNN for both identity

preservation and consistency.

a) NIR-VIS pair identity loss: A cross-entropy loss is estimated using MT-CNN to keep

the same identity across the reconstructed NIR and VIS images. Its formulation is as

follows:

!>BB83−?08A = −;>6("#+ (Ĝ# , Ĝ+ )) (8.2.9)

where Ĝ# is the DVG reconstructed NIR image, Ĝ+ is the DVG reconstructed VIS image

and " (Ĝ# , Ĝ+ ) is the MT-CNN having NIR and VIS image as input.

b) NIR-NIR and VIS-VIS identity loss: It is a cross-entropy loss to preserve the identity

within the domain. Reconstructed NIR or VIS images should be of the same identity

as the original NIR or VIS images. Its formulation is as follows:

!>BB83−A42 = − log("# (Ĝ# , G# )) − log("+ (Ĝ+ , G+ )) (8.2.10)
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where G# is theNIR input image, G+ is theVIS input image,"# (∗, ∗) is theMT-CNN for

NIR images, and"+ (∗, ∗) is theMT-CNN for VIS images. The original framework [88]

utilizes a ;2 norm over the features extracted from Light-CNN to reserve the identity.

The overall objective for the DVG-based model is as follows:

!>BB$E4A0;; = !>BBA42 + W !!>BB ! + W38BC!>BB38BC

+W83−?08A!>BB83−?08A + W83−A42!>BB83−A42
(8.2.11)

where W∗ are empirically set to 0.1.

During the testing of the DVG-based method (Figure 8.7), we discard both the encoders and

only utilize the decoder. Noise is sampled from the standard normal distribution and the same is

concatenated with itself and fed into the decoder which generates NIR and visible images of the

same identity. The decoder generates genuine pairs that can be included in the training process of

the Multi-channel CNN.

Figure 8.7: The testing procedure of the DVG-based method. Noise is an input to the Decoder � �
which generates a synthesized genuine pair.
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8.3 Dataset Description

8.3.1 BioCop-2008 Dataset

The first dataset we use for our experiments is the FBI Biometric Collection of People (BioCoP-

2008) dataset. The BioCoP-2008 is an extension of the dataset mentioned in [129]. It is a

multi-modal biometric dataset consisting of the face and ocular images collected from two sessions

(SET1 and SET2). Subjects are the same in both sessions. The face images are acquired in

visible illumination by Olympus C8080 camera from 1,135 subjects, whereas the ocular images

are acquired in NIR illumination by Oki IrisPass M iris sensor from 1,097 subjects. The images

are not simultaneously captured, so images are not aligned. There are a total of 3,608 iris images

and 2,270 frontal face images. The dataset also consists of face images with 45 and 90-degree pose

angles, but we utilize only the frontal images.

The original size of VIS face images is 3264 × 2448. We cropped left and right ocular regions

from the face images, which results in the ocular images of size 301 × 201. We further cropped

the left and right iris regions from the left and right ocular images, respectively. The size of the

cropped iris images is 81 × 81. The original size of NIR ocular images is 640 × 480. We cropped

the left and right iris regions from the left and right NIR ocular images, respectively. The size of

the cropped NIR iris images is 180 × 190. Figure 8.8 shows the original VIS face image, cropped

VIS ocular image, cropped VIS iris image, and their corresponding NIR images.

8.3.2 BioCop-2009 Dataset

The second dataset we use for our experiments is the FBI Biometric Collection of People (BioCoP-

2009) dataset. It is dataset is also a multi-modal biometric dataset consisting of images of a face

and iris modalities. Subjects are the same in both the modalities collection. The face images are

collected in two sessions from 1,100 subjects using Canon EOS 5D Mark II camera in the visible

spectrum. Images are provided with different angles (-90, -45, 0, 45, and 90) and scales (raw,

SAP50, and SAP51). We utilize only the frontal face (angle of 0) with SAP51 scale face images,
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Figure 8.8: (a) A sample face image from the BioCop-2008 dataset. The face image is in the VIS
spectrum. (b) Cropped left and right VIS ocular images from the face image. (c) Cropped left
and right iris images from the left and right ocular images, respectively. The size of ocular and
iris VIS images are 301 × 201 and 81 × 81, respectively. (d) Left and right NIR ocular images
from the BioCop-2008 dataset. (e) Cropped left and right iris images from the left and right NIR
ocular images, respectively. The size of ocular and iris NIR images are 640 × 480 and 180 × 190,
respectively.

so it results in a total of 2,199 face images. The resolution of face images is 2400 x 3200. We

manually crop left and right ocular images from the face images. The size of the ocular images

is 402 x 301. We further crop left and right iris regions from the left and right ocular images,

respectively. The size of iris images varies according to the iris region.

The data collected from the iris modality is acquired from 1,098 subjects in the NIR spectrum

using three sensors: Aoptix Insight, CrossMatch I SCAN 2, and LG ICAM 4000. There are five

sessions for each sensor. In each session, there are 2 images (one left and one right) from Aoptix

Insight and CrossMatch I SCAN 2 sensors and 4 images from LG ICAM 4000 sensor. The total

number of images from the Aoptix Insight sensor is 11,000, from CrossMatch I SCAN 2 is 10,910,

and from LG ICAM 4000 is 21,980. The image size of NIR ocular images is 640 x 480. We further

crop left and right iris regions from left and right NIR ocular images, respectively. The size of the

cropped iris images varies according to the iris region.
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8.3.3 PolyU Dataset

The third dataset we use for our experiments is the publicly available PolyU dataset [223]. It is a

bi-spectral dataset used to analyze the cross-spectral iris recognition algorithms. The sensor used

for the data collection is an in-house imaging setup that acquires NIR and VIS iris images simul-

taneously in a single shot. The two spectral images collected have pixel-to-pixel correspondences.

The dataset consists of images from two sessions. In the first session, there are images of 209

subjects. Approximate 15 images are there for each eye (left and right). In the second session,

there are images of 11 subjects. The subjects are the same in both sessions. The total number of

images from both sessions are 12,574. The resolution of both spectral images is 640 × 480. The

first two rows of Figure 8.9 show a few samples of the PolyU dataset.

Figure 8.9: Samples of VIS and NIR ocular images from the PolyU dataset. The first and second
row represents the correspondingVIS andNIR ocular images of four different subjects, respectively.

8.3.4 WVU Dataset

The WVU multimodal dataset [55] is a biometric dataset consists of images from face, iris,

fingerprint, hand geometry, palmprint, and voice modalities. We utilize only face and iris modality

images. The face images are acquired in visible illumination using Sony EVI-D30 and Sony EVI-

D31 cameras from 269 subjects. The iris images are acquired in NIR illumination using the Irispass
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iris sensor from 244 subjects. There are 234 subjects common in both modalities (face and iris).

The total number of iris images is 3,099, and frontal face images is 1,746.

The original size of the VIS face images captured from two sensors are 768 × 576 and 640 ×

480. We crop left and right ocular regions from the face image, which results in the ocular image

of size approx. 51 × 61 (varies as per the size of the ocular region). We further crop left and right

iris regions from the left and right ocular images, respectively. The size of the cropped iris images

is approximately 24 × 24 (varies as per the size of the iris region). The original size of NIR ocular

images is 640 × 480. We crop left and right iris regions from the left and right NIR ocular images,

respectively. The size of the cropped NIR iris images is approximately 300 × 300 (varies as per the

size of the iris region). Figure 8.10 shows the original VIS face image, cropped VIS ocular image,

cropped VIS iris image, and their corresponding NIR images.

Figure 8.10: (a) A sample face image from the WVU dataset. The face image is in the VIS
spectrum. (b) Cropped left and right VIS ocular images from the face image. (c) Cropped left and
right iris images from the left and right ocular images, respectively. The size of ocular and iris
VIS images are 51 × 61 and 24 × 24, respectively. (d) Left and right NIR ocular images from the
WVU dataset. (e) Cropped left and right iris images from the left and right NIR ocular images,
respectively. The size of ocular and iris NIR images are 640 × 480 and 300 × 300, respectively.
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8.4 Experimental Setup and Results

8.4.1 BioCop-2008 and BioCop-2009 Dataset

For the evaluation of cross-modal matching on BioCop-2008 and BioCop-2009 datasets, we con-

sider three matching scenarios and two types of input (iris and ocular). In the first scenario

(Face-Face), the iris or ocular region from the face visible image is matched against the face visible

image. In the second (Iris-Iris), the iris or ocular region from the iris NIR image (original dataset

image) is matched against the iris NIR image. In the last scenario (Iris-Face), the iris or ocular re-

gion from the iris NIR image is matched against the face visible image. In the BioCop-2009 dataset,

there are three experiments in Iris-Iris and Iris-Face scenarios corresponding to iris images captured

from three different iris sensors (Aoptix, CrossMatch, and LG4000). In all experiments, we perform

training on 70% of subjects and testing on the rest (30%) using the subject disjoint protocol. Table

8.1 provides the details on the genuine and impostor pairs used for training and testing in all three

scenarios for the BioCop-2008 dataset. Table 8.2 provides the same details for the BioCop-2009

dataset. We utilize the entire training genuine pairs, but partial impostor pairs (50,000) to reduce

time complexity. However, testing is performed on the entire genuine and impostor pairs. We repeat

the random selection of impostor pairs for training five times and report the cross-validation results.

We perform iris recognition using VeriEye, USITv3.0, MT-CNN techniques, and ocular recognition

using MT-CNN. The VeriEye is a commercially available off-the-shelf technique that performs iris

recognition. It is used as a baseline. The USITv3.0 is an open-source iris recognition software

toolkit from the University of Salzburg Iris Toolkit. We utilize the best-performing technique

from the toolkit. The technique extracts iris-code using quadratic spline wavelet (QSW) and uses

hamming distance to measure the dissimilarity between the iris codes. The technique also performs

iris recognition and is considered a baseline for our cross-modal evaluation. We manually segment

the iris images for USITv3.0, whereas VeriEye utilizes its iris segmentation module. Evaluation

measures used in the experiments are True Match Rate (TMR) at 0.1% False Match Rate (FMR)

and Equal Error Rate (EER). Tables 8.3 and 8.4 present the performance of all methods on the
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Table 8.1: Description of genuine and impostor pairs used in experiments from the BioCop-2008
dataset.

Train Set Test Set
Genuine
Pairs

Impostor
Pairs

Impostor
Pairs Used

Genuine
Pairs

Impostor
Pairs

Face-Face 1,588 629,642 50,000 682 115,940
Iris-Iris 1,044 389,713 50,000 425 67,906
Face-iris 2,448 1,875,168 50,000 1,030 338,870

Table 8.2: Description of genuine and impostor pairs used in experiments from the BioCop-2009
dataset.

Train Set Test Set
Genuine
Pairs

Impostor
Pairs

Impostor
Pairs Used

Genuine
Pairs

Impostor
Pairs

Face-Face 1,538 590,592 50,000 660 109,230
Iris-Iris
(Aoptix) 15,550 587,522 50,000 6,600 107,912

Iris-Iris
(CrossMatch) 15,320 575,322 50,000 6,600 107,912

Iris-Iris
(LG4000) 69,610 587,522 50,000 29,700 107,912

Face-iris
(Aoptix) 15,420 1,178,112 50,000 6,580 215,824

Face-Iris
(CrossMatch) 15,300 1,170,442 50,000 6,520 213,850

Face-Iris
(LG4000) 30,800 1,178,112 50,000 13,160 215,824

BioCop-2008 and BioCop-2009 datasets, respectively. Figure 8.11 shows the ROC curves of four

methods in the Iris-Face matching scenario and the histogram corresponds to the MT-CNN on the

BioCop-2008 dataset. Figures 8.12a, 8.12b, and 8.12c show the ROC curves of four methods in the

Iris-Face matching scenario corresponding to three iris sensors images and 8.12d shows histogram

corresponds to the MT-CNN method on the BioCop-2009 dataset.

TheMT-CNN performs the best in Face-Face and Iris-Facematching scenarios on both datasets.

VeriEye technique performs the best in the case of Iris-Iris matching on the BioCop-2008 dataset

and the MT-CNN on the BioCop-2009 dataset. There occur a few segmentation failures in the
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Table 8.3: Performance of different methods on the BioCop-2008 dataset. MT-CNN with ocular
input outperforms on this dataset.

Experiments VeriEye USITv3.0 MT-CNN(Iris) MT-CNN(Ocular)
TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%) TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%)

Face-Face 47.38 21.84 45.60 20.74 95.74 0.86 98.53 0.84
Iris-Iris 98.80 0.67 95.76 1.64 96.70 1.20 82.58 4.67
Iris-Face 34.84 29.07 14.46 37.01 47.45±1.58 9.05±0.45 50.46±2.48 7.32±0.47

Figure 8.11: ROC curves of different methods and histogram (MT-CNN) in the Iris-Face matching
scenario on the BioCop-2008 dataset. MT-CNN with ocular input outperforms on this dataset.

case of VeriEye, which are provided in Table 8.6. Figures 12 and 13 show a few failure cases

from the BioCop-2008 and BioCop-2009 datasets, respectively. There is no clear winner between

iris and ocular recognition when considering the MT-CNN. The results show the efficiency of the

learning-based method (MT-CNN) over the hand-crafted features-based techniques in the cross-

modal matching scenario.

In another experimental setup, we used a small set of 5,000 impostor pairs for the training and

evaluate the DVG-based method on the BioCop-2008 dataset. Using the DVG-based method, we

generate 50,000 genuine pairs and are included in the training process of the MT-CNN. The testing

set remains the same as in Table 8.1. Only the cross-modal (Iris-Face) scenario is tested. Table 8.6

shows the results of MT-CNN when trained on only real genuine pairs and when trained on both

real and synthetically generated genuine pairs (DVG-based method). As the DVG-based method
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Table 8.4: Performance of different methods on the BioCop-2009 dataset. MT-CNN with iris input
outperforms on Aoptix Insight and CrossMatch sensor images, whereas MT-CNNwith ocular input
outperforms on LG ICAM 4000 sensor images.

Experiments VeriEye USITv3.0 MT-CNN(Iris) MT-CNN(Ocular)
TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%) TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%)

Face-Face 88.86 5.66 82.42 7.13 98.18 0.44 97.87 1.27
Iris-Iris
(Aoptix) 96.40 3.24 94.93 3.97 99.89 0.11 99.83 0.12

Iris-Iris
(CrossMatch) 99.96 0.03 99.89 0.10 99.98 0.02 99.56 0.31

Iris-Iris
(LG4000) 99.85 0.14 99.60 0.34 99.88 0.11 97.04 0.44

Iris-Face
(Aoptix) 51.30 25.38 29.76 32.88 80.48 2.18 46.79 2.36

Iris-Face
(CrossMatch) 58.48 22.34 40.73 27.94 76.13 2.88 70.03 2.99

Iris-Face
(LG4000) 28.05 21.09 39.60 29.39 89.38±0.95 2.16±0.15 91.82±3.26 1.55±0.15

Table 8.5: Number of genuine and impostor pairs excluded from the test set due to the segmentation
errors by the VeriEye technique on both the datasets. The numbers shown in the parenthesis are
the total number of genuine and impostor pairs used in the test set.

BioCop-2008 BioCop-2009
Genuine
Pairs

Impostor
Pairs

Genuine
Pairs

Impostor
Pairs

Face-Face 12 (682) 1,357 (115,940) 17 (660) 3,926 (109,230)
Iris-Iris
(Aoptix) 6 (425) 1,617 (67,906) 4 (6,600) 328 (107,912)

Iris-Iris
(CrossMatch) - - 52 (6,600) 1,302 (107,912)

Iris-Iris
(LG4000) - - 100 (29,700) 655 (107,912)

Face-iris
(Aoptix) 24 (1,030) 7,611 (338,870) 100 (6,580) 2,943 (215,824)

Face-Iris
(CrossMatch) - - 110 (6,520) 4,214 (213,850)

Face-Iris
(LG4000) - - 40 (13,160) 692 (215,824)
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Figure 8.12: ROC curves of different methods in the Iris-Face matching scenario on the BioCop-
2009 dataset corresponding to (a) Aoptix Insight, (b) CrossMatch I SCAN 2, and (c) LG ICAM
4000 iris sensors. MT-CNN with iris input outperforms on Aoptix Insight and CrossMatch sensor
images, whereas MT-CNN with ocular input outperforms on LG ICAM 4000 sensor images. (d)
Histogram corresponds to theMT-CNNmethodwith ocular input on LG ICAM4000 sensor images.

generates the genuine pairs from the distribution of available real genuine pairs, therefore there is

no significant improvement occurred in the performance.

8.4.2 PolyU Dataset

For the evaluation of the cross-spectrum setting on the PolyU dataset, we use the subject-disjoint

strategy in the experiments, where 60% of subjects were present in training and 40% in testing. It

generates 4,067 genuine pairs and 8,199,862 impostor pairs for the training, whereas 2,220 genuine
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Figure 8.13: Failure cases of the MT-CNN in genuine and impostor pairs from the BioCop-2008
dataset. The last row represents the GradCammaps [8] which show regions focused by the network
to make the decision.

Figure 8.14: Failure cases of the MT-CNN in genuine and impostor pairs from the BioCop-2009
dataset. The last row represents the GradCammaps [8] which show regions focused by the network
to make the decision.

pairs and 2,430,900 impostor pairs for the testing. From the train and test sets, we utilize all genuine

pairs, but 10,000 randomly selected impostor pairs to reduce the computational time. Table 8.7

provides the number of genuine and impostor pairs used for training and testing. The evaluation

measures used for the comparison are TMR (%) at 0.1% FMR and EER. The methods used for
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Table 8.6: TMR and EER of ocular and iris recognition methods on the entire test set of BioCop-
2008 dataset when a small set (5,000 impostor pairs) is used for the training. Including additional
training samples generated from the DVG-based method does not improve the performance.

Experiments Ocular Iris
TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%)

Multi-channel
CNN 28.84 ± 3.27 9.69 ± 0.50 29.88 ± 4.07 10.87 ± 0.67

DVG-based
Method 29.15 ± 1.45 9.61 ± 0.41 28.63 ± 3.12 11.02 ± 0.66

Table 8.7: Data distribution among train and test sets from the PolyU dataset.

Train Set Test Set
Genuine
Pairs

Impostor
Pairs

Genuine
Pairs

Impostor
Pairs

PolyU Dataset 4,067 10,000 2,220 2,430,900

comparison on the dataset are VeriEye, MT-CNN, Pix2Pix GAN ID, StarGANv2, and BicycleGAN.

Table 8.8 presents the results of all ocular and iris recognition algorithms. Figure 8.15 shows NIR

ocular samples generated from StarGANv2 given VIS ocular images and Figure 8.16 shows NIR

iris region images generated from StarGANv2 given VIS iris images.

The MT-CNN outperforms the other methods. The StarGANv2 generated images perform

better than the Pix2Pix GAN ID when StarGANv2 is trained on unpaired images, whereas Pix2Pix

GAN ID is trained on paired images. However, there is still scope for improvement as the MT-CNN

is still performing better than GAN-generated images. The ocular recognition is performing better

than iris recognition on this dataset.

8.4.3 WVU Dataset

For the evaluation of the cross-modal setting on the WVU dataset, we again follow the subject-

disjoint strategy, where 60% (140) of subjects utilize in training and 40% (94) in testing. We

perform experiments in three settings as before: the first setting matches VIS face images with

VIS face images (Face-Face), and the second setting matches NIR iris images with NIR iris images
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Table 8.8: TMR (%) at 0.1% FMR and EER of all ocular and iris recognition methods on the entire
test set of the PolyU dataset. MT-CNN outperforms in both ocular and iris recognition.

Experiments Ocular Iris
TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%)

VeriEye - - 56.77 18.19
BicycleGAN 67.19 6.55 3.30 20.56
Pix2Pix GAN ID
+ MT-CNN 94.46 ± 2.82 1.33 ± 0.66 26.30 ± 9.29 14.24 ± 1.88

StarGANv2 [5] +
MT-CNN 98.58 ± 0.41 0.42 ± 0.06 28.24 ± 5.12 8.47 ± 0.44

MT-CNN 99.25 ± 0.29 0.35 ± 0.08 83.54 ± 0.93 2.77 ± 0.32

Figure 8.15: StarGANv2 generated ocular images from VIS domain to NIR domain.

(Iris-Iris), and the third setting matches VIS face images with NIR iris images (Iris-Face). Table

8.10 provides the number of genuine and impostor pairs utilized for training and testing in all three
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Figure 8.16: StarGANv2 generated iris region images from VIS domain to NIR domain.

settings. For training, we randomly select 50,000 impostor pairs from the entire train set. We

perform experiments for both ocular as well as iris recognition, where the input is ocular and iris

image, respectively. The evaluation measures used are TMR at 0.1% and EER. To set the maximum

recognition performance, we perform face recognition using COTS Rank One Computing (ROC),

which produces 99.98% TMR at 0.1% FMR. Table 8.10 provides the ocular and iris recognition

results in all three settings. Figure 8.17 shows the Receiver Operating Characteristic (ROC) curves

correspond to all methods in the Iris-Face scenario and the histogram corresponds to the MT-CNN.

Ocular recognition achieves the best (68.35% TMR@ 0.1% FMR) on VIS images (intra-modal

scenario), and iris recognition achieves the best (92.90% TMR @ 0.1% FMR) on NIR images

(intra-modal scenario). Both ocular and iris recognition drop significantly (1.15% TMR @ 0.1%

FMR) under a cross-modal scenario, where VIS images (very low-resolution images) match with
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Table 8.9: Data distribution among train and test sets for all three settings from the WVU dataset.

Train Set Test Set
Genuine
Pairs

Impostor
Pairs

Genuine
Pairs

Impostor
Pairs

Face-Face 10,164 50,000 9,104 920,890
Iris-Iris 5,668 50,000 4,792 870,882
Face-iris 13,016 50,000 11,296 866,651

Table 8.10: TMRs and EER of ocular and iris recognition techniques on the entire test set of the
WVU dataset. All techniques fail on this dataset.

Experiments VeriEye USITv3.0 MT-CNN(Iris) MT-CNN(Ocular)
TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%) TMR (%) @
0.1% FMR EER (%) TMR (%) @

0.1% FMR EER (%)

Face-Face - - 0.59 42.47 32.96 11.40 68.33 6.91
Iris-Iris 98.95 0.79 96.38 2.15 92.90 3.58 42.94 15.77
Iris-Face - - 0.03 48.91 0.88 36.83 1.07 34.12

NIR images. The failure of the MT-CNN method under the cross-modal scenario is due to the

very low resolution of VIS ocular and iris images. Figure 8.18 shows some failure cases when the

MT-CNN method is used, and Figure 8.19 shows the t-SNE [280] plot of features extracted from

the MT-CNN for the genuine and impostor pairs. There is a large overlap between the features of

genuine pairs and impostor pairs, which results in poor performance on the WVU dataset.

Figure 8.17: ROC curves of iris and ocular recognition techniques and histogram (MT-CNN) on
the entire set of the WVU dataset. All techniques fail on this dataset.
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Figure 8.18: Failure cases of the MT-CNN in genuine and impostor pairs. The last row represents
the GradCam maps [245] which show regions focused by the network to make the decision. The
degraded and very low resolution of ocular images in the VIS spectrum causes the poor performance
of cross-modal matching on the WVU dataset.

Figure 8.19: t-SNE [280] plot of genuine and impostor pairs features obtained from the MT-CNN
network. There is a large overlap between the features of the two distributions. The overlapping
criteria could be used to identify on which dataset cross-modal matching would be feasible.
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Table 8.11: Iris color distribution of genuine scores obtained from Multi-channel CNN in three
settings: face-face, iris-iris and face-iris matching. The region used for the matching is ocular
region.

Eye Colors Blue Gray Green Hazel Brown Black Total
Face-Face 170 8 80 64 296 60 678
Iris-Iris 94 7 42 48 178 39 408
Face-Iris 284 8 163 121 429 85 1090

8.5 Impact of Eye Color on Cross-model Matching

We analyze the influence of eye color on the ocular matching scores. The method used is

MT-CNN, and the dataset is the BioCop2008 dataset. Eye color is the result of the amount of

melanin present in the iris. Dark-colored irides contain more melanin than light-colored irides.

The presence of a high concentration of melanin in the iris absorbs most of the light, causing

dark-colored irides. The lack of melanin causes scattering of the light, resulting in the light-colored

irides. According to the melanin pigment concentration, eye colors from light to dark can be

sequenced as blue, gray, green, hazel, brown, and black. These irides colors can be categorized into

broader categories – light-colored irides (blue, gray, green) and dark-colored irides (hazel, brown,

and black). The BioCop2008 dataset provides the eye color information for each subject. We use

the MT-CNN ocular matching techniques to analyze the effect of eye colors on matching scores.

We used three multi-channel CNNsmodels trainedmatching Face (VIS)-Face (VIS), Iris (NIR)-

Iris (NIR), and for Face (VIS)-Iris (NIR). Genuine scores from all three models are used to analyze

the eye color effect on the matching scores. Table 8.11 provides number of color distribution

of genuine scores obtained in all three-matching scenario. Total number of genuine scores in

each scenario is also provided. Figure 8.20a, 8.20b, and 8.21 is showing histogram of genuine

scores corresponding to different eye colors under three scenarios (face-face, Iris-Iris, Iris-Face)

respectively. Figure 8.20a (face-face matching) shows most of the genuine scores going below the

threshold (0.71) belong to light colored irides (blue, gray and green). Though no such pattern is

noticeable in the Iris-Iris and Face-Iris scenario.
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Figure 8.20: (a) Histogram of genuine scores when ocular region from two face images (VIS) are
matched. The threshold is 0.71 at 0.2% FMR. (b) Histogram of genuine scores when ocular region
from two iris images (NIR) are matched. The threshold is 0.61 at 0.2% FMR.

Figure 8.21: Histogram of genuine scores when ocular region from the face (VIS) and iris images
(NIR) are matched. The threshold is 0.79 at 0.2% FMR. All techniques fail on this dataset.

8.6 Summary

There are two main challenges when face images match against the iris images (cross-modal

recognition): large domain gap and imbalanced training data. We address these challenges with
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three deep learning approaches at feature-level, image-level, and training-level. For the first

approach, we use Multi-channel CNN, for the second we use three GAN-based architectures (Bicy-

cleGAN, Pix2Pix GAN ID, and StarGANv2), and for the third approach, we utilize Dual variation

generation (DVG). The first two approaches (feature-level and image-level) aim to reduce the do-

main gap, whereas the third approach addresses the imbalanced training data issue. Superior results

on a cross-modal (BioCop-2008, BioCop-2009, and WVU) and a cross-spectrum (PolyU dataset)

datasets show their effectiveness. We further analyze the impact of eye color on the performance

of cross-modal performance and it is found that eye color does not impact the performance of

cross-model matching.
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CHAPTER 9

CONCLUSION

9.1 Research Contributions

Iris recognition has been widely used in a number of large-scale or high-security real-world

applications. In this thesis, we focus on some aspects of iris biometrics. Our primary focus is to

provide countermeasures against two adversary attacks: presentation attacks and morph attacks.

The second focus is on cross-modal matching of NIR iris images with RGB face images.

The first adversary attack we attempt to counteract is presentation attacks (PA) which occur

when an adversary presents fake or altered biometric samples to the iris sensor in order to circumvent

the biometric system. We propose three iris PA detection methodologies based on the input signal

available to facilitate PA detection. The first method called D-NetPAD utilizes a near-infrared iris

image for iris PA detection. The method is based on a densely connected convolutional network,

which effectively characterizes the bonafide iris pattern to deflect iris PAs. It generalizes well

across unseen attacks, sensors, and datasets. It emerges as the best performer in the Intelligence

Advanced Research Projects Activity (IARPA) Odin program, LivDet-Iris-2017, and LivDet-Iris-

2020 competitions. The second method we proposed utilizes additional hardware (webcam) to

capture short videos (∼4 secs) depicting the human behavior during their interaction with the

iris sensor. The last proposed method employs additional hardware, namely, Optical Coherence

Tomography (OCT) imaging. The OCT imaging provides a 2D cross-sectional view (internal

structure) of an eye. The iris PA detection using OCT works on the principle that low-coherence

light passes through the cornea of bonafide eyes, whereas it is partially (cosmetic contact lens) or

completely (plastic eye) blocked by iris PAs. The blocking of the light causes voids in the imaged

iris region and aids in the detection of iris PAs. Along with these PA detection methods, we also

explain their performance using t-SNE scatter plots and GradCAM heatmaps.

We not only strive for the high performance of the iris PA detectors but also assess the robustness
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of these models under input image and architectural parameters perturbations. In the case of input

image perturbations, we apply various low and high frequencies manipulations, Gaussian noise,

and salt & pepper noise to the input images. We observe that D-NetPAD is comparatively robust to

these manipulations to the input images. In the case of architectural parameter perturbations, we

apply Gaussian noise, weight zeroing, and weight scaling. We observed that the proposed iris PAD

is only robust to the weight zeroing manipulations. The robustness analysis is not confined to iris

PA detection methods but also can be applied to any deep neural network.

The maintenance of the performance of iris PA detectors in a non-stationary environment is

another required factor in the deployment of the iris PAD in real-world applications. We propose a

retraining methodology, where we build a new PA detector using new oncoming training data, and

make a final decision for a probe sample by a weighted sum of old and new PA detector scores.

We assign the weights dynamically for each probe sample using in-domain models (separate from

iris PA detectors). Each in-domain model provides information about the membership of a probe

sample to the training data.

The second adversary attackwe focus on is morph attacks. Amorph attack entails the generation

of an image (morphed image) that embodies multiple different identities. The morph attack is not

been widely analyzed in iris recognition. To the best of our knowledge, we are the first to report

the vulnerability of the iris biometric system to morphed attacks at the image level. We develop

a landmark-based iris morphing scheme and demonstrate the potential of morphed iris images to

attack the systems. We also develop a deep learning-based network to detect the morphed iris

images.

The last contribution of the thesis is to improve the performance of human recognition when

matching iris images against face images. Such matching of different modalities is called cross-

modal recognition. There are two main challenges: (i) a large domain gap due to different sensors,

spectra, and resolutions, and (ii) an imbalance in the training data. We attempt to resolve these

challenges with three deep learning approaches. The first approach is at the feature-level using a

Multi-channel CNN. It jointly extracts discriminative features from the images of both modalities
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to reduce the domain gap. The second approach is at the image-level, where the image from one

domain is transformed into another utilizing various GAN architectures. The third approach is

training-based which resolves the imbalance of train data by generating samples of the genuine

class using the Dual Variational Generation (DVG) framework.

9.2 Future Work

We identify the following directions that require more attention in the future:

1. We proposed various effective software and hardware-based methods (Chapters 2, 3 and 4)

for iris presentation attack (PA) detection. However, there is still scope for performance

improvement across datasets (Table 2.4). This would entail focusing on the generalizability

of the PA detection solutions by either applying domain transfer techniques or updating the

existing PA detector with new training data. But this must be done in a manner so as to

minimize the data needed from previously unseen domains. Work is also required to provide

generalizability to morph attack detection.

2. We attempted to explain the overall results of iris PA detectors using Grad-CAM, t-sne plots,

and frequency analysis. However, explainability must be imparted at the individual image

level.

3. During sensitivity analysis of deep neural models against weight perturbations, we found that

the weights learned using the stochastic gradient descent algorithm are not optimum. Even

setting randomly selected weights to zero improves the performance of the models. The

observation indicates that there requires additional strategies in finding optimum weights for

the deep neural networks. In our work, we empirically selected high-performing models.

In future work, we could attempt to analytically find the direction of optimum weights.

Another noteworthy observation is that setting low-magnitude weights to zero improves the

performance and reduces the model size. So, leveraging the sensitivity analysis, we could

work in the direction of model compression or quantization.

179



4. In the retraining work, we are introducing two new models with every incoming data (or new

task), which results in a linear increase in the number of models with an increase in tasks.

This raises concern about the scalability of the proposed method. In future work, we could

improve the scalability of the method by applying pre-conditions (performance difference or

data distribution difference with already available models) before building additional models.

5. In cross-modal matching of iris images with face images, we observed the high-performance

of the feature-level method, which involves extraction of common features from both modal-

ities. We also utilized existing generative adversarial networks (GANs) to translate one

domain image to another for matching, though the performance is not on par with the feature-

level method. GAN-based techniques have shown great potential in various computer vision

tasks. Therefore, we could focus on designing a GAN architecture specific to cross-modal

matching with effective loss functions.
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