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ABSTRACT

ENVIRONMENTAL MICROBIAL SURVEILLANCE: FROM SOURCE TRACKING IN
WATERSHEDS TO PATHOGEN MONITORING IN SEWERSHEDS

By
Matthew Thomas Flood

Understanding of the connections between water and health, through the use of water
quality monitoring, surveys and surveillance, can help to address the impacts of anthropomorphic
changes on the environment. This study sought to understand these connections through the
water quality monitoring within watershed basins as well as pathogen surveillance within
sewersheds. Specifically, this dissertation sought to 1) understand the sources of pollution and
their connections with land use in the various subsections of watersheds; 2) to find a cost-
effective way to surveil the spread of SARS-CoV-2 using wastewater surveillance; and 3) to
understand the differences in wastewater surveillance between communities.

Water quality monitoring using microbial source tracking (MST) was performed with a
survey of five mixed-use watersheds in Michigan. Through the use of spatial clustering, it was
found that temporal contamination was primarily driven by precipitation and its associated
variables (e.g., streamflow, turbidity, overland flow), while spatial contamination is driven by
land uses (e.g., septic tank density, tile drain proportions, and tillage). Additionally, porcine fecal
contamination was more often correlated with nutrients in streams than either bovine or human
contamination.

The development of a cost-effective workflow for the detection and quantification of
SARS-COV-2 in wastewater was undertaken. Wastewater from communities around Michigan
were collected and analyzed along with viral surrogates for SARS-CoV-2 to investigate different

workflow options. The Pseudomonas phage Phi6 was seeded in different wastewater matrices to



test concentration and recovery by ultrafiltration-based method and polyethylene glycol (PEG)
precipitation. The PEG method provided better virus recovery than the ultrafiltration-based
methods as measured using RT-ddPCR.

The comparison of two communities (A and B) wastewater results for SARS-CoV-2
analyzed against case data was undertaken. These results were significantly correlated with cases
in both communites, but the level of correlation differed based on spatial (e.g., zipcode vs county
level cases) and temporal (e.g., date of symptom(s) onset vs. the referral date for cases)
resolution. Wastewater surveillance was more representative of higher spatial resolution (zipcode
data) of cases in both communities. When examining the temporal resolution of the
communities, community B’s wastewater results were more closely tied to the onset of
symptoms and not the case referral date.

The ability to monitor indicators of pollution in watersheds and surveil etiological agents
of disease in sewersheds provide non-intrusive methods for evaluating the potential risks and
current burdens to community health. The first part of the work could be considered
“downstream” monitoring identifying sources and potential exposures with the goal of reducing
waterborne disease. While “upstream” monitoring was used for identifying the disease trends in
the community and was focused on public health measures to prevent transmission. This project
contributed novel methods, results and analysis providing valuable knowledge ultimately

addressing the role of monitoring strategies to protect public health.
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1.0 Introduction and Literature Review



1.1 Water Quality, Monitoring and Health

Water quality monitoring is essential to understanding the connections between water and
human health. This can be used to address the impact of anthropomorphic changes on the
environment and used to address the human condition. According to the World Health
Organization (WHO), monitoring can be differentiated and conducted at three different levels.
The first of which is monitoring as a long-term systemic review of water quality in order to
define the status and trends through standardized measurements and observations (WHO, 1998).
The second level is that of an intensive survey of water quality over a finite duration for a
specific purpose (WHO, 1998). The final level is that of water quality surveillance. This level
involves close examination of specific measurements and observations continuously in order to
inform management and operational activities (WHO, 1998). The second and third levels are
particularly important in their roles in disease surveillance which not only aim to collect specific
measurements and observations but ensure that information and any conclusions drawn from
these approaches are disseminated. Specifically, regarding the occurrence of disease(s) in pre-
defined populations, this will inform public health actions for the purpose of the reduction of
morbidity and mortality (CDC, 2012; Orenstein and Bernier, 1990).

Most long-term microbial water quality monitoring programs focus on surrogates and
indicator organisms, such as the bacteria Escherichia coli or enterococci (Scott et al., 2002). This
is in part due to their ease of use and ubiquitous prevalence in the gastrointestinal tracts and
subsequently the fecal matter of mammals and birds. One of the other reasons for the widespread
use of microbial surrogates is due to the difficulty in testing and monitoring specific pathogens,
yet this is changing because of new technology. As there are many different pathogens of

interest, conducting individual tests for each on a routine basis is complicated and can be



expensive especially when disease incidences in the surrounding populations are low. Other new
targets used for what is now known as Microbial Source Tracking (MST) identifies species-
specific sources of fecal contamination and has developed as a response to this issue for both
long-term monitoring and surveys. The idea is that when the source of the fecal
pollution/contamination is known then both hazard identification for risk assessment and
management of that source can be undertaken (Scott et al., 2002; Heymann and Rodier, 2001).
Both long-term monitoring, surveys and surveillance approaches allow for the
examination of the impact on the health of entire populations instead of individuals. For
example, the monitoring of waters using appropriate transects for microbial (e.g., indicators,
MST markers, and pathogens), chemical (e.g., nutrients such as phosphorus and nitrogen) and
physiochemical (e.g., soil runoff) contamination combined with information from global
information systems (GIS) on land use and land cover change allows for the evaluation of the
whole watershed with regards to human impact on water quality (Nnane et al., 2011; Heaney et
al., 2015; Verhougstraete et al., 2015; Sowah et al., 2017; Pascual-Benito et al., 2020; Ballesté et
al., 2020). Additionally, intensive surveys can help to understand the effects and impacts of
disturbances which need special diagnostics and generally take a snapshot of the water quality.
These results in turn can be assessed in regard to how the water pollution could pose a risk to
human health. This same design of intensive surveys evaluating an entire watershed, can also be
applied to human wastewater and the constructed environment of sewersheds (Sinclair et al.,
2008; Xagoraraki and O’Brien, 2020). The surveillance of wastewater and sewersheds for
surrogates and pathogens in order to determine the disease-burden in a population has been
referred to as wastewater-based epidemiology (WBE) (Kitajima et al., 2020; Orive et al., 2020).

WBE is employed through the indirect surveillance of pathogens which are excreted from



infected individuals providing an estimate of the disease prevalence in the population. This in
turn helps to drive more rapid decision making in the form of policy, regulations, and public
health orders, for the protection of the public. This has proved especially useful during the
current COVID-19 pandemic, where infected individuals excrete the virus independent of the
wide variety of symptoms and asymptomatic infections (Kitajima et al., 2020; Orive et al.,
2020).

The development of new affordable detection assays using recent advancements in
molecular technologies, which provide more accurate and precise measurements of low-level
targets in complex matrices, has proved essential in the implementation of monitoring strategies
for MST markers and the surveillance of pathogens (Carlson, 2003; Roslev and Bukh, 2011). In
particular, the development of digital polymerase chain reaction (dPCR) has been shown to be
indispensable in monitoring environmental waters for MST markers and surveilling the complex
matrices of human wastewater for pathogens such as SARS-CoV-2, the etiological agent of
COVID-19. While the term digital PCR (dPCR) was first used in 1999 and the technique had
been independently developed multiple times in 1990 and 1991, the development of quantitative
PCR (qPCR) in 1996 overshadowed dPCR until 2007 when new instrumentation allowed for the
more widespread use of the technology (Vogelstein and Kinzler, 1999; Morley, 2014). The
multitude of variable sources, both point and non-point sources, and the significant impacts of
fecal contamination on water and health drove the ongoing development of advanced molecular
techniques and assays. These are now crucial in the protection of public health through water
quality monitoring and surveillance.

While indicator organisms allow for the standardized determination of the general sense

(comparing one water way to another) of contamination in water sources their presence and



abundance is not always correlated with increased risk from waterborne pathogens. The ongoing
contamination of surface waters from non-point sources of pollution, namely failed septic tanks
and agricultural run-off, in Michigan were the major drivers for taking on an MST study
(Dubrovsky et al., 2010; Yang et al., 2016; Verhougstraete et al., 2015; Nshimyimana et al.,
2018). This was done in order to understand how land use and human impacts are linked to fecal
pollution. While these studies were conducted to understand the connections between the land
use and human health, the 2020 worldwide Coronavirus pandemic drove the need to examine
and understand the overall health and risk at a community level as initially testing was not
meeting the demand for protecting community health. The presence of asymptomatic infected
persons complicated the estimation of the disease burdens in communities. Human surveillance
conducted by state and federal epidemiologist and the health departments remains difficult.
Determining a suitable processing and concentration method for SARS-CoV-2 in wastewater
along with a matching robust detection assay which is inhibitor resistant and able to consistently
detect low levels of the virus are critical research needs. Furthermore, determining the levels of
SARS-CoV-2 present in Michigan wastewaters and how those levels are correlated with known
cases of COVID-19 is essential in understanding the value of WBE during the Coronavirus

pandemic.

1.2 Long-term Monitoring Using Water Quality Indicators
1.2.1 Fecal Indicator Bacteria (FIB)

Fecal indicator bacteria (FIB) are one of the most broadly used targets for the detection
and assessment of water pollution associated with fecal inputs including wastewater. Due to the

abundance of diverse waterborne pathogens, FIB are used as surrogates due to their greater



abundance and correspondingly easier detection, while also providing a noticeably lower cost of
analysis (Griffin et al., 2001; Horan, 2003). While over the years a set of criteria for an
ideal/optimal FIB have been proposed and refined, no single FIB has been able to meet all of
them (Bonde, 1966; WHO, 1993; Grabow, 1996; Godfree et al., 1997; Colford et al., 2007).
These criteria include 1) the FIB is suitable for use in all waters (e.g., freshwater, marine,
streams, lakes, oceans); 2) there is cooccurrence of the FIB and the pathogen(s) of interest; 3)
there is a greater abundance of FIB than pathogens; 4) the FIB has greater or equal survivability
as pathogens in environmental waters, and also through wastewater and water treatment
processes; 5) the FIB do not regrow in the environment (e.g., water and/or sediments); 6) the FIB
is easily and reliably detected; 7) the FIB is non-pathogenic; and 8) the method of detection is
relatively low cost. While FIB are certainly useful and represent standards used around the
world, there are several issues when trying to relate them to the presence and concentration of
pathogens. The ability of most bacteria used as FIB to potentially regrow in the environment, the
lack of source identification, relatively long incubation times (18-26 hours), and inconclusive
relationships between the presence of FIB and pathogens, limit the usefulness of FIB (Schwab,
2007; McLellan et al., 2007). Due to these limitations of individual FIB, approaches using
multiple FIB or the combination of FIB with other methods of fecal pollution detection, such as
microbial source tracking allows for source identification of pollution sources (McLellan, 2004).
Two of the current most commonly used FIB are Escherichia coli (E. coli) and
enterococci, which were adopted as the leading indicators for fecal pollution in fresh and marine
waters in 1986 (USEPA, 1986; USEPA, 2012). These FIB are used to evaluate the recreational
water quality of surface waters in the United States. The US EPA has suggested recreational

water quality limits based off of three epidemiological studies conducted in 1982 and 1984 in



marine and fresh waters which correlated enterococci and E. coli densities with cases of
gastroenteritis (Cabelli et al., 1982; Dufour et al., 1984). The US national water quality criteria
are 104 enterococci per 100 ml of marine water, a single sample maximum of 61 enterococci per
100 ml in freshwater, and a mean of 235 E. coli per 100 ml in freshwater (USEPA, 1986; Wade
et al., 2008). While the US EPA set these criteria under the Clean Water Act (1972) each state is
responsible for setting their own recreational water quality standard based off of these criteria.
While many states chose to directly adopt the criteria set for by the US EPA, Michigan set its
recreational water quality standard to a daily maximum as a geometric mean of three individual
samples taken from the recreational area which spatially represent that area, of 300 colony
forming units (CFUs) of E. coli per 100 ml. Additionally, surface waters are also subject to a

partial body contact maximum of 1,000 E. coli per 100 ml.

1.2.1.1 Escherichia coli

Escherichia coli are gram-negative rod-shaped bacteria which are facultative anaerobes
and fecal coliforms. These bacteria are distinguished from other fecal coliforms by their ability
to grow at 45°C in conjunction with their lack of urease, and their ability to catalyze B-D-
glucopyranosiduronic acid through the presence of B-D glucuronidase (Toranzoes and McFeters,
1997). E. coli are commonly found in the lower intestines of warm-blooded animals including
mammals and birds (Winfield and Groisman, 2003). While most strains of E. coli are non-
pathogenic there are several infectious strains which do cause disease with the primary exposure
route being the fecal-oral route (Rice, 2003; Bischoff et al., 2005). The main advantages of using
E. coli as FIB include its wide adoption and continued use, relative low cost, and its previous use

in epidemiological studies where it was correlated with incidences of gastroenteritis recreational



waters in fresh and marine waters (Dufour et al., 1984; Priiss, 1998; Rompr¢ et al., 2002; Wade
et al., 2003; Zmirou et al., 2003; Wade et al., 2006; USEPA, 2009). While E. coli has several
disadvantages (e.g., long incubation time, uneven distribution in the water column), its main
disadvantage is that it has been shown to replicate outside of its natural hosts (McLellan et al.,
2001; Winfield and Groisman, 2003; Whitman and Nevers, 2004; Vital et al., 2008; Thupaki et

al., 2010).

1.2.1.2 Enterococci

Enterococci are gram positive non-spore forming cocci consisting of species from two
genera (Enterococcus and Streptococcus) which are found in the feces of warm-blooded animals.
Similar to E. coli, enterococci are generally non-pathogenic and are primarily spread through the
fecal-oral exposure route. One of the main differences between enterococci and E. coli which
may determine which is best used as the FIB of choice is enterococci’s greater resistance to
chlorination and ability to persist longer in the environment, which provides a more protective
estimation of water quality compared to E. coli (Gleeson and Gray, 1997). Enterococci also
share the same disadvantage as E. coli in that they are unable to distinguish the sources of fecal
contamination. This means while we can use these FIB to quantify pollution, they are limited in
providing further information which may help to identify and remediate sources.

While FIB, such as E. coli and enterococci, are able to help identify and quantify fecal

contamination in water they lack the ability to distinguish specific sources of pollution.



1.2.2 Microbial Source Tracking

Microbial source tracking (MST) markers provide a much-needed approach to distinguish
and quantify specific sources of fecal pollution. Microbial source tracking is a field that has
matured over the last 20 some years (Scott et al, 2002; Boehm et al., 2013; Steinbacher et al.,
2021). MST has been accomplished with two different analysis schemes, library-dependent and
library-independent methods. Library-dependent methods rely on a reference library of known
gene targets to match sample DNA, while library-independent methods target a single known
gene associated with a specific source of pollution and look only for that gene. Library-
dependent methods are less widely used than -independent methods due to their limitations
including their use of a reference library, complicated analysis of the data, and lack of
quantification. Whereas library-independent methods also return less false positive and false-
negatives (Griffith et al., 2003).

Using polymerase chain reaction (PCR) assays, MST can be applied with host-specific
markers associated with a single species or type of animal to identify sources of pollution (Scott
et al., 2002; Santo Domingo et al., 2007). MST molecular approaches have a few distinct
advantages over cultivation-based methods including higher target sensitivity and specificity,
faster results (4 hours vs 18-24 hours for cultivation), and the potential for a more automated
processing of samples (Girones et al., 2010). However, current molecular MST methods do not
have the ability to distinguish between viable and non-viable cells/organisms (Girones et al.,
2010). This can lead to an over estimation of associated risk due to non-viable organisms or
legacy pollution effects being detected. However, the advantages that MST offers make these
assays useful diagnostic tools allowing for pollution source identification versus routine

monitoring for using indicator organisms.



The development of MST markers starts with the identification of potential target genes
followed by, primer and probe development, and finally validation testing to evaluate the
specificity of the target sequence for a particular species along with the sensitivity of the assay to
detect that target in the environment (Walters and Fields, 2006; Santo Domingo et al., 2007).
Validation of each marker is limited by the study design used during the evaluation. The greater
the number of fecal samples from different species the assay is tested against along with the
number of unique target species fecal samples provide more or less confidence in a new marker.
For example, two bovine markers CowM2 and BacCow-UCD were both reported as having
>50% host specificity in their initial publications, but while the CowM2 marker was tested
against 204 samples for its evaluation the BacCow-UCD marker was only tested against 73
samples (Shanks et al., 2008; Kildare et al., 2007). Additionally, the CowM?2 marker was tested
against 17 different types of animal feces while the BacCow-UCD was only tested against 7
different species of animals. These differences in initial evaluations of MST markers led to
uncertainty in the accuracy of reported sensitivities and specificities. The need for more robust
review and testing of new markers across different species, laboratories, and locals were called
for. In 2013, Boehm et al. performed a round robin study with 27 laboratories to evaluate and
validate 41 different MST markers. The authors used nine different species of animal feces,
individual human feces, septage, and wastewater fecal sources (fecal samples were collected
from 12 individual animals of each species, nine sewage treatment plants, and six septage
collection trucks) to provide single and mixed blinded challenge samples to all participating
laboratories to test. Of the 41 different MST markers tested, only 15 (2 human, 2 ruminant, 2
bovine, 1 canine, 2 gull, 2 porcine, 1 horse, 1 deer, and 2 multitarget techniques) were found to

be sufficiently sensitive and specific (> 80% sensitivity and specificity) when evaluating by
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presence/absence by the majority of the laboratories involved. When the markers were evaluated
quantitatively six markers were identified with higher concentrations in their target host feces.
These included two human markers (HF183Tagman and BacH), two ruminant (Rum2bac and
BacR), one gull (LeeSeaGull), and 1 porcine (Pig2Bac). This study was limited in two ways.
First in that the fecal samples and wastewater used for the study were all sourced from a
relatively small geographic region (California). Secondly, some of the markers were only tested
by a single laboratory during the study. This second limitation was recognized by the authors and
further evaluation of these markers was recommended.

Even after markers are evaluated, laboratories need to consider where the marker has
been developed and tested to examine broad use geographically (e.g., in the Americas, Europe,
tropics, and sub-tropics). Thus, successful microbial source tracking has relied not only on highly
sensitive and specific MST markers, but on the selection of the most appropriate marker for the
goal of the study and the area in which the study is being conducted. The evaluation of more than
a handful of MST markers at a time is rare due to the amount of time, resources, and number of
samples required for appropriate comparisons. At the time of this review there have been over
100 different MST markers developed for 15 different targets including human, ruminant,
bovine, deer, canine, equine, avian, waterfowl, gull, goose, chicken, porcine, sheep, possum, and
universal fecal markers. Human markers are the most prevalent (>35 markers), followed by
livestock (>30 markers) (cows, pigs, chickens, ruminant, sheep, horses), then non-chicken avian
markers (>20 markers) (general avian, waterfowl, ducks, geese), and finally wildlife markers
having the fewest available markers (deer, possum, etc.). This distribution of available MST
markers is unsurprising as human fecal contamination is more likely to be associated with

increased health risks compared to wildlife feces. While there are over 100 published MST
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markers not all are currently and/or widely used. Additionally, some markers have been modified
and/or updated since their original publications. For example, the HF183 human marker was
originally published as an endpoint PCR reaction MST marker by Scott et al. in 2002 then later
updated to a SYBR green qPCR assay by Seurinck et al. in 2005. Then in 2010 Haugland et al.
developed a Tagman qPCR version of the HF183 marker which was again modified in 2014 by

Green et al. (2014).

1.2.2.1 Application of MST markers

The applications of MST include characterization of pollution sources in watersheds, the
quantification of different sources, confirmation of suspected pollution sources, evaluation of
large-scale areas for fecal pollution, connecting fecal pollution with pathogens, contamination
source identification during outbreaks, and identification of failing sewer infrastructures and
illicit connections in urban areas (see the discussion below). The application of MST has
increased since its inception and it continues to be a useful tool for water quality monitoring.

A few key papers have been selected and reviewed here which represent these different
applications of microbial source tracking. The first two papers that have been selected to
represent the characterization of pollution sources in watersheds were published in 2006 and
2007 respectively. Shanks et al. (2006) used five MST markers (two human, two ruminant, and
one elk) to analyze fecal contamination from 30 sites totaling nearly 3,000 samples (n=2,912) in
an Oregon watershed (150,000 ha) over a two year period. This study found that within this
watershed the fecal pollution was more closely linked to ruminant sources than human across the
whole basin with ruminant markers being detected 75% of the time and rising to a 90% detection

rate during spring and fall when precipitation increased. While human markers were found less
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frequently than the ruminant markers they were able to be used to identify “hotspots” along
waterways where normal sampling had only shown low concentrations due to dilution effects.
These results highlight the benefits of characterizing a watershed as a whole, allowing for
identification of sources which would otherwise be masked by previous sampling and testing
strategies.

Graves et al. (2007) performed a similar study at a smaller scale (n=60 samples) over the
course of a year in a smaller Virginia watershed (3,767 ha) which was also dominated by cattle.
Graves et al. used a library-dependent MST approach which included fecal samples from
humans, cattle, horses, waterfowl, geese (domestic and wild), wood ducks, deer, muskrats, and
racoons. While this study used less-specific markers than the library-independent markers used
by Shanks et al. (2006), their use of a library dependent method allowed for a wider range of
sources to be tested against and identified. Similar to Shanks et al. (2006), Graves et al. (2007)
also found that cattle were the most abundant source of fecal pollution in the watershed with
60% of samples found to be positive for cattle feces. With the help of their MST markers. this
study also found an unexpectedly high human pollution area but were unable to identify the
specific source. This application of MST at the watershed scale provided useful information on
the happenings within the watershed but was limited in geographic scope.

Microbial source tracking has been applied at larger geographic scopes as demonstrated
by Verhougstraete et al. (2015) and Nshimyimana et al. (2018). These two studies though
published three years apart worked off of the same set of samples collected between 2010-2011
from 63 watersheds in Michigan. Samples were collected at single outflow points for each
watershed during the fall baseflow (n=63), spring snowmelt (n=63), and a summer rain event

(n=63, total n= 189). While Verhougstraete et al. (2015) focused on human sources of pollution
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for their analysis, Nshimyimana et al. (2018) focused on animal fecal sources (bovine and
porcine) effecting each watershed. These two studies showed the viability of broad-scale
approach to the application of MST markers. By taking a step back and looking at single outflow
points from each watershed Verhougstraete et al. (2015) was able to correlate human fecal
pollution with septic tank numbers across these watersheds. Thus, demonstrating that on-site
wastewater treatment not wastewater treatment plants were greater contributors to human fecal
pollution across the state of Michigan. Nshimyimana et al. (2018) on the other hand were able to
identify relationships between porcine and bovine markers and nutrients (nitrogen and
phosphorus) only during baseflow conditions (versus their two other sampling events spring
snow melt and summer rain) which suggested that nutrients and the animal markers had different
mechanisms of transport during periods of increased streamflow.

The ability to use surrogates to determine the potential risk to human health from
pathogens in water is desirable due to the high cost of individual pathogen testing and the
potential for multiple pathogens to be present. The use of MST to help identify areas of increased
risk and potential pathogen presence is shown in Bradshaw et al. (2016) and Korajkic et al.
(2018). Bradshaw et al. (2016) chose to examine the relationship between pathogens and
indicators (including MST markers; human, bovine and ruminant) in a mixed-use watershed.
While they hypothesized that sediment would be an important source of pathogens and
indicators, due to the possibility of resuspension, their study showed that while indicators were
found in both sediments and the water column, pathogens were more likely to be found in the
water column more often than in the sediments. They also found that there was no consistent
relationship between indicators and pathogens, but that using a combination of FIB and MST

markers helped to improve the ability to predict pathogen presence/absence. Korajkic et al.
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(2018) performed a review of the currently available literature (73 papers) which had attempted
to connect microbial indicators (e.g., FIB, MST markers) and pathogens in recreational waters.
This review highlighted that while most connections between indicators and pathogens were
tenuous at best, under certain conditions relationships could be discerned (after wet weather
events or at sites where recent fecal pollution had occurred). Relationships were also more often
reported in freshwater environments compared to marine and between bacterial indicators and
bacterial or protozoa pathogens.

While direct relationships between pathogens and MST markers are difficult, the use of
MST during known outbreaks provides valuable information on the source and quantity of fecal
pollution which may be significant factors in the spread of the disease and the health-risk posed.
A recent example of this was published by Mattioli et al. in 2021. Mattioli et al. (2021) were able
to provide assistance using MST during the 2017 norovirus outbreaks in Pennsylvania when
epidemiological investigations were unable to identify a specific source and exposure route for
the outbreaks which resulted in 179 illnesses. Using a human MST marker (HF183), Mattioli et
al. (2021) were able to demonstrate that a malfunctioning septic system was hydrologically
connected to the drinking water well and recreational waters where the outbreaks occurred. This
study highlighted the ability of MST to help with outbreak scenarios where traditional
epidemiological studies were unable to effectively determine the exposure routes and main
source(s) of contamination.

Lastly MST can be applied to human-made water systems as well as environmental areas.
This has recently been highlighted best by the work of Gonzalez et al.’s (2020) collection system
investigation microbial source tracking (CSI-MST) and Hachad et al.’s (2022) identification of

illicit discharges using MST. Gonzalez et al. (2020) CSI-MST used a human MST (HF183)
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marker along with extensive sewer collection system information (e.g., sewer line locations,
service areas, and storm water systems locations) to survey multiple points within the storm
water systems and track down any potential leaks from the sewer systems. The study presented
three case studies where MST marker concentrations were used to identify leaks from the sewer
systems into the storm water lines which allowed for the local municipality to remediate these
failing infrastructure points with minimal disruption to the surrounding areas. This study has
acted as proof of concept that with sufficient knowledge of the infrastructure in an urban area
contamination from leaking sewer lines can be accurately identified and remediated. While
Gonzalez et al (2020) used MST to identify and remediate failing infrastructure, Hachad et al.
(2022) used MST to identify and remediate illicit wastewater connections to stormwater systems.
MST was used along with other markers of wastewater pollution with a toolbox approach to
identify cross connections. By using an index approach with multiple indicators of contamination
eight misconnected houses were able to be identified and their connections were corrected. In
complex urban settings the use of multiple indicators allowed for the reduction in false positive
identification of cross connections.

The application of MST in watersheds, across watersheds, with pathogens, and within
sewersheds show how useful these tools are for assessing and correcting water pollution in
natural and anthropomorphic settings. Knowledge of the currently available tools available

allows for the best results to be obtained for the chosen study.

1.2.3 Surveys for Sources of Fecal Pollution and Their Impact on Water Quality
The 1972 amendment of the Federal Water Pollution Control Act of 1948, also known as

the Clean Water Act (CWA), marked a turning point in water quality in the United States. The
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ability to regulate and implement pollution control measures resulted in an improvement of water
quality across the country. In particular, section 303(d) of the CWA allowed for the development
of total maximum daily loads (TMDLs) for waterbodies. These TMDLs set the maximum
amount of specific pollutants that were allowed to enter waterbodies. By defining TMDLs for
waterbodies, government agencies were able to start regulating the source of pollution impacting
water quality. Point sources of pollution, such as wastewater treatment plant outfalls, sanitary
sewer outfalls (SSOs), and combined sewer overflows (CSOs), were identified and regulated
through the National Pollutant Discharge Elimination System (NPDES) resulting in an overall
decrease in the impact of wastewater discharges on water quality. While point sources still
contribute to the pollution of water bodies, since 2009 non-point sources of pollution have
become the leading contributors to impaired waters (USEPA, 2009). In recent years, point source
pollution discharges tend to be cross contamination events between sewage and storm water
outfalls or urban runoff into storm water sewers (Kapoor et al., 2014; Staley et al., 2016).

For non-point sources of pollution, land use decisions have significant impacts on the sources
and transport of microbial pathogens into and through environments (Dreelin et al., 2007). This
has shown the importance of land use and land cover (LULC) management. The alteration of
natural environments for agriculture in particular can alter the natural percolation and runoff
patterns of a watershed. This is problematic in the Great Lakes region where contaminated runoff
can lead to nutrient accumulation in waterways and sediments where legacy pollutants can
remain (Kinzelman et al., 2004; Smart and Barko 1978; Mortimer 1971; Marvin-DiPasquale and
Agee 2003; Weller et al., 2020). In one study, it was found that between 33 and 58% of all
nitrogen and phosphorus pollution in the study area was contributed from agricultural land uses

(Robertson and Saad, 2011). In recent years, studies have been conducted to determine the
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sources and pathways of nutrients and microbes from non-point sources of pollution in
watersheds at the regional scale (Verhougstraete et al., 2015; Luscz et al., 2017; Nshimyimana et
al., 2018).

As mentioned in section 1.2.1 above, water quality standards were determined around
recreational exposure to contaminated waters. Throughout the Great Lakes a significant amount
of recreational water exposure occurs at beaches. Michigan alone has 1,232 public and 575
private beaches which are required to be monitored regularly to make sure pollution level are
below recreational standards. Elevated pollution levels at recreational water access points (e.g.,
beaches) are a risk to public health and require intervention (either remediation or closures) to
mitigate that risk. In the last 10 years there have been 2,268 beach closures in Michigan with a
combined total of 14,299 days of beach closures (MI EGLE, 2022).

Monitoring water quality is further complicated with the ability of pollutants to be
retained and accumulate in sediments and beach sand. This retention and accumulation of
pollutants has been observed in fresh and marine waters where E. coli levels were highest in sand
and sediments compared to the surrounding waters (Alm et al., 2003; Whitman and Nevers,
2003; Zehms et al., 2008; Cloutier and McLellan 2017). These legacy pollution sources
complicate the ability of traditional FIB to determine the current levels of bacterial pollution and

risk as well as how to remediate the water quality problems.

1.2.4 Wastewater Surveillance and Human Health

1.2.4.1 COVID-19 (Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2))
In December 2019, a novel coronavirus was identified as the cause of a pneumonia

outbreak in the Wuhan Province of China (WHO, 2020a; Zhu et al., 2020; Coronaviridae Study
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Group of the International Committee on Taxonomy of Viruses, 2020). Through genetic
sequencing this novel coronavirus was determined to be highly similar to severe acute
respiratory syndrome coronavirus (SARS-CoV) and was thus named SARS-CoV-2 (Zhu et al.,
2020). Coronaviruses are spherical enveloped positive-strand RNA viruses with diameters of
approximately 120 nm and genomes ranging in size between 27 and 32 kb. Their lipid envelopes
are embedded with spiked glycoproteins.

The disease resulting from infection by SARS-CoV-2 was named coronavirus disease
2019 (COVID-19) and includes symptoms of fever, fatigue, myalgia, dry cough, dyspnea and 2-
10% of patients exhibit gastrointestinal symptoms (e.g., diarrhea) (Gu et al., 2020; Chen et al.,
2020, Guan et al., 2020; Huang et al., 2020; Wang et al., 2020a; Wang et al., 2020b). While this
virus primarily infects the respiratory system, it is also known to infect glandular epithelial cells
in the intestinal tract and is subsequently shed in feces of both symptomatic and asymptomatic
individuals (Xiao et al., 2020; Gu et al., 2020; Holshue et al., 2020; Song et al., 2020; Park et al.,
2020; Wu et al., 2020a). The World Health Organization declared a global pandemic of COVID-
19 on March 11, 2020 (WHO, 2020b). In the subsequent two years the pandemic has continued
spreading to nearly all countries worldwide resulting in >440,000,000 confirmed cases and
nearly 6,000,000 deaths (WHO, 2022). The tracking and surveillance of COVID-19 has become
a priority for ensuring public health.

During the start of the pandemic surveillance of SARS-CoV-2 was limited to testing of
clinical samples taken from symptomatic individuals. Several genetic markers targeting viral
nucleocapsid and envelope genes were developed (CDC, 2020; Corman et al., 2020) However,
due to the presence of asymptomatic cases of COVID-19 clinical level surveillance measures

were inadequate. The shedding of SARS-CoV-2 in the feces of infected individuals presented an
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opportunity to non-intrusively track the spread of COVID-19 at the community level (Kitijima et
al., 2020). Early studies testing for the SARS-CoV-2 genes in wastewater showed the ability to
consistently detect the genetic signal at concentrations of 10% to 10° gene copies per liter of
wastewater and were able to predict the trends in COVID-19 cases over time (Medema et al.,
2020; Ahmed et al., 2020).

Since the beginning of the COVID-19 pandemic there have been several SARS-COV-2
variants of concern that have emerged. The most significant of these variants have been the
Alpha variant, the Delta variant, and the Omicron variant (WHO, 2021). These variants have
been seen in waves of cases with the Alpha variant first being reported during the fall of 2020 in
the United Kingdom, then the Delta variant in India in May 2021, and lastly the Omicron variant
in multiple countries during November of 2021 (WHO, 2022). These variants have been
monitored clinically as well as by wastewater surveillance. In Michigan the first confirmed case
of the Alpha variant was in January 2021, with the Delta variant being detected in June of 2021,
and the Omicron variant being detected on December 3™ 2021 (Michigan.gov/Coronavirus,
2022).

Early in the COVID-19 pandemic researchers began to test for SARS-CoV-2 in
wastewater. One of the first studies was conducted in the Netherlands where wastewater
surveillance was conducted with sewage samples from six cities and an airport (Medema et al.,
2020). The authors were able to detect the SARS-CoV-2 genetic signal in wastewater up to six
days prior to the first reported cases in the Netherlands. These results showed that wastewater
surveillance is able to detect the levels of SARS-CoV-2 in a community and provide an early

warning of increasing cases prior to clinical detection methods. Other studies early in the
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pandemic were able monitor the spread of the pandemic in their countries with similar results to
Medema et al. (Wu et al., 2020b; Ahmed et al., 2020; Lodder et al., 2020).

As the pandemic continued research shifted from proof of concept (e.g., can SARS-CoV-
2 be detected in wastewater) to surveillance of the virus as a method of non-intrusive monitoring
of community health. These studies ranged from monitoring a single wastewater treatment plant
wastewater monitoring (Haramoto et al., 2020) to more widespread surveillance of multiple sites
across large geographic regions (e.g., Hata et al., 2021). Hata et al. (2021) were able to monitor
their wastewater sites prior to and during the outbreak of SARS-CoV-2 in two Japanese
prefectures. They monitored five wastewater treatment plants in two prefectures collecting a total
of 45 wastewater samples between March 5% and May 29" 2020. The authors were able to detect
SARS-CoV-2 in the wastewater even when cases were less than one in 100,000 persons which
was in line with what Medema et al. (2020) saw in the Netherlands. This study also determined
that wastewater surveillance was able to detect cases of COVID-19 in communities prior to an
increase in accompanying clinical case data. This suggested that in the initial stages of an
outbreak or pandemic wastewater surveillance is able to more accurately determine the rate of
disease spread in a community. This is particularly important because as cases decline during the
pandemic wastewater monitoring may be able to provide an early warning for a resurgence of
cases in different communities.

Wastewater surveillance of SARS-CoV-2 has also been used at the building level to help
to contain the spread of the disease in close populations. This was performed by Betancourt et al.
(2021) for the student dormitories on the campus of the University of Arizona. Betancourt et al.
monitored wastewater from 13 dormitories between August 24" and November 20" 2020. When

a positive RNA signal for SARS-CoV-2 was detected clinical testing of the individuals living in
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the dormitory was performed followed by isolation of infected individuals. The authors were
able to observe an 82.0% positive sample predictive value from their monitoring. While this
monitoring and intervention plan is unfeasible at larger scales it does provide a methodology to
help contain potential outbreaks of COVID-19 in defined populations.

The proliferation of wastewater surveillance of SARS-CoV-2 and its accompanying data
has provided the ability to evaluate the efficacy of wastewater-based epidemiology (WBE) on
larger scales which have been limited. For example, Morvan et al. (2021) used wastewater
surveillance data from multiple studies across 44 sites in England to estimate the prevalence of
SARS-CoV-2 to help alleviate some of the shortcoming of isolated clinical case monitoring.
Morvan et al. showed that the wastewater results were within 1.1% of prevalence estimates based
on case data and preceded clinical testing data by 4-5 days suggesting that wastewater
monitoring is a leading indicator of asymptomatic COVID-19 infections. These results show the
value of WBE as an additional form of disease surveillance and subsequently an useful tool to
preserve public health.

While tragic, the COVID-19 pandemic has served to highlight the usefulness of WBE
and the ability for community health to be monitored and observed unobtrusively.
Underreporting and asymptomatic cases of disease complicate clinical disease surveillance. The
addition of WBE can allow for a more robust surveillance of public health and potentially

provide early warnings of disease outbreaks.

1.3 Scientific Needs
There are several areas in water quality monitoring and pathogen surveillance that are in

need of further study. Currently, water pollution is more greatly influenced by non-point sources
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compared to point sources thus it is essential that source identification be implemented to make
progress on remediation of water systems. The identification and testing of locally appropriate
genetic markers and understanding the relationships between microbial markers and
environmental variables within watersheds are essential. While current strategies using fecal
indicators is sufficient to meet many regulatory standards, they are insufficient in addressing
water quality associated public health risks (Evans et al., 2019). Pathogen monitoring is now
being undertaken to support community strategies for disease control and this is particularly true
in response to the COVID-19 pandemic. The development and implementation of methods and
monitoring strategies are necessary to promote WBE as an effective means for furtherance of
community health (Kitajima et al., 2020). Finally understanding how community structure and
diversity effects the efficacy of WBE is necessary to determine the best strategies for future

community level pathogen monitoring.

1.4 Research Objectives

Specialized surveys using MST technology for Michigan watersheds were of great
interest to examine the major contributors influencing degraded water quality. The use of MST
markers and nutrient analysis in various watersheds and their subsections could be further
examined over seasonal/temporal scales to provide a better understanding of what was happening
within the variety of Michigan watersheds. This was in contrast to previous studies conducted
which only looked at a single outflow point from each of the watersheds (Verhougstraete et al.,
2015).

In addition, as the COVID pandemic raged on the use of surveillance monitoring

approaches around the world exploded. It was hypothesized that SARS-CoV-2 would be able to
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be detected from wastewater using molecular methods, specifically ddPCR with greater accuracy
and precision than qPCR. Additionally, since enveloped viruses tend to attach to particulate
matter, a relatively cheap and easy to use wastewater concentration method like polyethylene
glycol (PEG) precipitation would likely be effective at concentrating the SARS-CoV-2 virus to
detectable levels with good recovery efficiencies. Unique methodologies for the recovery of a
respiratory virus from wastewater needed to be developed and compared with other proposed
methods. Also, it was suggested that the detection of SARS-CoV-2 RNA from wastewater would
be able to help predict increases in cases across different communities in Michigan.

Four chapters follow this introduction. The first three detail the main studies conducted
for this dissertation, and the final chapter provides a summary and a look at future work. The
first of these studies focused on microbial source tracking markers and their connections to
nutrients in mixed-use watersheds. This chapter has been published in the journal Water
Research in 2022. The second study focused on the development and evaluation of a method for
the concentration and detection of SARS-CoV-2 from wastewater. This chapter has also been
published in the Journal of Food and Environmental Virology in 2021. Citations for these studies
is provided on the cover page of each chapter. The final chapter addressed the surveillance of
SARS-CoV-2 in wastewater in two disparate communities. This will be submitted for

publication in the near future.

Goal 1
The increased relative input of non-point sources of pollution in watersheds has increased
the importance of source identification and the determination of co-occurring contaminants. A

survey of five mixed-use watersheds in Michigan was undertaken to investigate the sources of
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pollution in the various subsections of each watershed and quantitively and qualitatively
determine which variables correlate.

The objectives of this study were to: 1) determine the spatial and temporal trends in
microbial contamination and nutrients in five mixed-use watersheds; 2) to determine if
MST markers could be significantly correlated with nutrient levels (e.g., phosphorus and
nitrogen); 3) to determine which watershed variables (e.g., nutrient levels, land use,
management practices, etc.) within a watershed would be useful in predicting microbial

contamination levels.

Goal 2

The onset of the COVID-19 global pandemic left countries and communities scrambling
to not only respond to the global health emergency but also to find cost-effective ways to surveil
the spread of SARS-CoV-2. The development of a relatively simple workflow for the detection
and quantification of SARS-COV-2 in wastewater was undertaken to meet this need. Wastewater
from communities around Michigan were collected and analyzed along with viral surrogates for
SARS-CoV-2 to investigate different workflow options.

The objectives of this study were to 1) evaluate the efficiencies of polyethylene glycol
(PEG) precipitation and ultrafiltration methods to recover Pseudomonas phage Phi6,
coronavirus OC43, and SARS-CoV-2 from different wastewater matrices; 2) compare two
PCR-based methods, reverse transcription quantitative PCR (RT-qPCR) and reverse
transcription droplet digital PCR (RT-ddPCR) for the detection of SARS-CoV-2 in
different wastewater matrices; 3) develop a rapid, cost-effective, and precise quantification

workflow for SARS-CoV-2 in wastewater.
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Goal 3

Wastewater-based epidemiology may provide a better method for the surveillance of
pathogens in communities of varying sizes. Due to the costly nature of clinical testing and the
presence of asymptomatic carries of SARS-CoV-2, monitoring communities as a whole may be
able to more accurately determine the incidence of disease and provide a warning when the
disease is spreading, prior to an increase in clinical cases.

This study had three main objectives: 1) to evaluate the efficacy of wastewater
monitoring of SARS-CoV-2 in two communities with diverse characteristics; 2) to
determine if county or zipcode level case data are necessary to successfully correlate with
wastewater surveillance results; 2) to compare the spatial resolution of cases (county vs
zipcode) and the relationship to SARS-CoV-2 wastewater surveillance data 3) to determine
the impact of vaccination rates on SARS-CoV-2 wastewater signals compared to case

numbers.
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2.1 Abstract

As non-point sources of pollution begin to overtake point sources in watersheds, source
identification and complicating variables such as rainfall are growing in importance. Microbial
source tracking (MST) allows for identification of fecal contamination sources in watersheds;
when combined with data on land use and co-occurring variables (e.g., nutrients, sediment
runoff) MST can provide a basis for understanding how to effectively remediate water quality.
To determine spatial and temporal trends in microbial contamination and correlations between
MST and nutrients, water samples (n=136) were collected between April 2017 and May of 2018
during eight sampling events from 17 sites in 5 mixed-use watersheds. These samples were
analyzed for three MST markers (human — B. theta; bovine — CowM2; porcine — Pig2Bac) along
with E. coli, nutrients (nitrogen and phosphorus species), and physiochemical parameters. These
water quality variables were then paired with data on land use, streamflow, precipitation and
management practices (e.g., tile drainage, septic tank density, tillage practices) to determine if
any significant relationships existed between the observed microbial contamination and these
variables. The porcine marker was the only marker that was highly correlated (p value <0.05)
with nitrogen and phosphorus species in multiple clustering schemes. Significant relationships
were also identified between MST markers and variables that demonstrated temporal trends
driven by precipitation and spatial trends driven by septic tanks and management practices

(tillage and drainage) when spatial clustering was employed.

2.2 Introduction
Non-point sources of pollution have significant impacts on water quality and create

health risks through a variety of hazards, including the spread of pathogens, eutrophication,
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harmful algal blooms, and increased sedimentation (Bullerjahn et al., 2016; Smith et al., 2015;
Vermeulen et al., 2015; Sharpley et al., 2015; Wen et al., 2017; Mateo-Sagasta et al., 2018;
Zandaryaa and Mateo-Sagasta, 2018). Overland agricultural runoff is being recognized around
the world as having increased impacts on water quality, overtaking known urban and industrial
sources as the most prominent contributors to eutrophication of coastal and inland waters
particularly in some high-income nations (OECD, 2012; USEPA, 2012; Bonsch et al., 2015;
OECD, 2017; Mateo-Sagasta et al., 2018). For example, agricultural runoff has been found to
contribute up to 44 and 58% of the phosphorus and nitrogen, respectively entering the Laurentian
Great Lakes (Robertson and Saad, 2011). Understanding these impacts on water quality is
important in areas such as the state of Michigan, which has three times more agricultural than
urban land cover, and has seen an increase in manure application, irrigated land, and the use of
organic fertilizers (Michigan Land Use Leadership Council, 2003; USDA, 2019). This increasing
trend in organic agricultural practices and their corresponding increase in economic importance
for states and local farmers, along with their known impacts on water quality, represent a
growing area of uncertainty (USDA, 2019).

Several key agricultural water pollution research needs and knowledge gaps have been
identified, including: the need for pollution source identification, identification and testing of
locally appropriate markers, and the need to model the pathways of microbial contaminants
(Evans et al., 2019). Current strategies using simply E.coli to understand fecal and nutrient
pollution and monitor large complex watersheds are insufficient to address the most important
water quality risks (Evans et al., 2019). Periodic sampling may provide a temporal “snapshot” of

water quality, but the ability to sufficiently sample frequently enough is restricted due to the
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substantial costs in per sample analysis, in particular when monitoring for multiple water quality
variables (e.g., microbial markers, nutrients, streamflow, etc.) (Luscz et al., 2017).

Current routine fecal indicator bacteria (FIB), such as Escherichia coli (E. coli), limit the
ability to address microbial non-point sources of pollution because they cannot be used to
determine the contamination sources. This is because E. coli has a ubiquitous presence in the
feces of warm-blooded animals and regrows in aquatic environments (Reischer et al., 2013;
Mayer et al., 2018; Zhang et al., 2018). Molecular source tracking (MST) markers allow for
differentiation of fecal contamination from different hosts, and their presence in environmental
waters allows for the identification of pollution sources (Boehm et al., 2013; Harwood et al.,
2014; Ahmed et al., 2019).

Previous studies have begun to examine links between land use at various scales with
water quality variables, however few studies have attempted to analyze and integrate of MST
data with the chemistry, hydrology, geology, and spatial ecology of the system (Strayer et al.,
2003; Floyd et al., 2009; Martin et al., 2017). Instream monitoring for microbes and nutrient
contaminants and their relationships may be necessary to better understand how non-point
sources of pollution within watersheds impact water quality. This study examined the impacts of
non-point source pollution, including fecal contamination and nutrient loading within five mixed
use Michigan watersheds that were experiencing high nutrient, E. coli, and MST levels from
multiple sources (e.g., human, animal, chemical fertilizer) (Verhoughstraete et al., 2015,
Nshimyimana et al., 2018). This study had three main objectives: i) to determine the spatial and
temporal trends in microbial contamination and nutrients in five mixed-use watersheds, ii) to
determine if MST markers could be significantly correlated with nutrient levels (e.g., phosphorus

and nitrogen) and iii) to determine which watershed variables (e.g., nutrient levels, land use,
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management practices, etc.) within a watershed would be useful in predicting microbial

contamination levels.
2.3 Materials and methods

2.3.1 Study area and sample collection

Water samples were collected from five watersheds in Michigan’s Lower Peninsula,
ranging in area from 14 km? to 2,683 km? (Figure 1). Grab samples (n=136) were collected from
17 sites [Little Pigeon (LPR, n=1), Sandy Creek (SC, n=2), Kawkawlin (KAW, n=3), Macatawa
(MAC, n=4), and River Raisin (RR, n=7)] during eight sampling events, between April 2017 and
May of 2018, representing the growing season (April — August 2017), fall/winter baseflow
(November 2017) and spring snowmelt (March and May 2018). Sandy Creek (SC) is a very
small watershed adjacent and just east of the RR. Individual sampling sites were selected based
on the ability to subdivide watersheds into distinct land use areas that had adequate streamflow at
bridge crossings and lack of interference from lake effects. Due to limited streamflow and small
geographic size, the LPR watershed was assigned a single sampling site draining a 13 km? area.
The SC watershed had two sampling sites, SC1 and SC2, draining 78 and 13 km?, respectively.
The MAC watershed was subdivided into four areas with the sampling sites MAC1, MAC?2,
MACS3, and MAC4 draining 31, 298, 77, and 50 km?, respectively. The KAW watershed was
subdivided into three areas with sampling sites KAW1, KAW2, and KAW3 draining 213, 567,
and 238 km?, respectively. The RR watershed was significantly larger than the other four
watersheds and was thus subdivided into seven areas, including sites RR1, RR2, RR3, RR4,
RRS5, RR6, and RR7 draining 2682, 281, 240, 1755, 1205, 210, 348 km?, respectively. The

sampling sites SC1, MAC2, KAW2, and RR1 were the sampling points at the outlet of the
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watersheds downstream of all other sites.

e) f"j
Da) é‘
o =
b) of
a) Little Pigeon p) Macatawa Sandy Creek /,/"ﬁtﬁ ~ 4
Watershed ) Watershed °) Watershed Legend
0 125 25 5 0 375 75 15 0 4 8 16 N
e e — e — ., ) Sampling sites

C.3 Watersheds
C.:S Sub-watersheds
~~~ Major streams
Land cover

Open water
Developed
Barren

Forest

Shrub
Grassland
Cropland
Wetland

d) River Raisin
Watershed Kawkawlin

e
) Watershed
0 10 20 40 0 5 10 20

Km e ™ e K

ey oY b i 3 iy

Figure 2.1 Maps of studied watersheds showing watershed locations in the state of Michigan,
major streams and waterbodies, general land use, and drainage areas for each sampling location.
a) Little Pigeon River (LPR) watershed, b) Macatawa (MAC) watershed, c) Sandy Creek (SC)
watershed, d) River Raisin (RR) watershed, and e) Kawkawlin (KAW) watershed.

Watersheds were selected based on elevated microbial and nutrient results from
Verhougstraete et al. (2015) and Nshimyimana et al. (2018), with the exception of the
Kawkawlin Watershed, which was chosen based on known impaired waters of interest in the
Saginaw Bay area. A total of 2.6 L was collected from each site during each sampling, with two
1 L volumes collected for microbial analysis and 0.6 L for nutrient and ion analysis. One

duplicate sample was collected for nutrient and ion analysis on each day of sampling. Grab
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samples were collected on the upstream side of the center of each stream crossing (e.g., bridges).
Samples for microbial analysis were then transported on ice to the laboratory at Michigan State
University (MSU), where they were stored at 4°C until processing and water samples for nutrient

analysis were transported on dry ice and stored at -20°C until analysis.

2.3.2 Flow, physiochemical, and nutrient methods

Streamflow was measured during each sampling event (n=136) at the 17 sites (Figure 1)
using either an acoustic Doppler current profiler or a Marsh McBirney Flo-Mate flow meter
following US Geological Survery (USGS) protocols (Jarrett, 1991) depending on stream depth
with the exception of RR sites 1, 5, and 7 where USGS gage flow data were available. For
physiochemical parameters, a YSI 600R sonde (YSI Inc.) was used onsite to measure water
temperature (°C), dissolved oxygen (mg L), pH, and specific conductance (S/m). Turbidity
measurements were performed from grab samples at the MSU laboratory after mixing using a
LaMotte 2020we Turbidimeter (LaMotte Inc.). Nutrients [total dissolved nitrogen (TDN), total
phosphorus (TP), nitrate (NO3), nitrite (NO2), ammonium (NHs), and soluble reactive
phosphorus (SRP)] and ions (Na, K, Mg, Ca, CI, and SO4) concentrations (mg/L) were measured
in each sample following conventional protocols (Crumpton et al., 1992, Clesceri et al., 1998,
Wetzel and Likens 2000, Hamilton et al., 2009) as previously described in Verhougstraete et al.
(2015). Nitrogen and phosphorus were partitioned into their different species before analysis,
with nitrogen being disaggregated into nitrates (NO>+NOs3), NH4, and dissolved organic nitrogen
(DON) and phosphorus disaggregated into total reactive phosphorus (TRP), filterable reactive

phosphorus (FRP), total filterable phosphorus (TFP), and total phosphorus (TP).
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2.3.3 Water sample processing for microbial analysis

A 100ml subsample of each sample was used for E. coli and coliform testing using Colilert
18 (IDEXX, ME, USA) according to standard methods, while 900ml was filtered through
multiple 47 mm 0.4 um polycarbonate filters (Whatman, NJ, USA) using a sterile magnetic filter
funnel (PALL Corporation, NY, USA) in 100ml aliquots. Individual filters were folded and
added to sterile 2.0 ml screw cap tubes (VWR, PA, USA) containing ~0.3 g of 212-300 um acid
washed glass beads (Sigma-Aldrich, MO, USA) and stored at for -80°C until DNA extraction. A
filtration blank of 100 ml of sterile phosphate buffered water was run with each set of samples.
One 100ml filtered subsample was used for DNA extraction. The samples’ filters were processed
using a modified version of the Environmental Protection Agency Draft Method C (USEPA,
2014) crude DNA extraction method. A total of 590 ul of AE buffer (Qiagen, CA, USA) was
added to each tube containing the sample filter and glass beads. The tubes containing each
sample filter were then subjected to bead beating for manual cell disruption and DNA extraction
at maximum speed for 1 min in a BioSpec Mini-Beadbeater (BioSpec, NH, USA). After bead
beating, sample tubes were centrifuged at 12,000 x g for 1 min to pellet any unwanted debris and
glass beads. The supernatant (~400 pl) was then transferred to a clean 1.5 ml microcentrifuge
tube for a 3 min centrifugation at 12,000 x g. The supernatant was then transferred to a final
1.5ml microcentrifuge tube and analyzed by Nanodrop (ThermoFischer, MA, USA) to confirm
the presence and estimated concentration of total DNA. Whenever possible, sample DNA was
analyzed the same day as DNA extraction, with the exception of QA/QC failed runs which were
rerun within 24 hours. To avoid any unnecessary degradation of the DNA due to multiple

freeze/thaws, each DNA sample was aliquoted into multiple tubes and stored at -80°C.
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2.3.4 Microbial molecular analysis methods

The detection of MST markers was performed using droplet digital PCR™ (ddPCR).
Three MST markers for this study target human (B. theta a-1-6, mannanase), bovine (CowM?2),
and porcine (Pig2Bac) fecal contamination (Yampara-Iquise et al., 2008; Shanks et al., 2008;
Mieszkin et al., 2008) (Table 1). Three replicate ddPCR reactions were performed for each
sample with the human and bovine markers analyzed in duplex, while the porcine marker was
analyzed alone. Each 22 ul ddPCR reaction setup contained 1X Supermix for Probes (no dutp)
(Bio-Rad, CA, USA), 900 nmol I'! of each primer, 250 nmol I'! of each probe, 0.9 ul of
molecular grade DNAse-free water, and 5.5 ul of template DNA. Microfluidic droplet generation
was performed by the Droplet Generator (Bio-Rad, CA, USA) by combining 20 pl of each
reaction mixture with 70 pl of droplet generation oil resulting in ~20,000 droplets. The resulting
40 pl oil-reaction mixture emulsions were then transferred to a 96-well PCR plate, heat-sealed
with foil and placed into a T100 thermocycler (ramp rate of 2°C s!) (Bio-Rad, CA, USA) for
PCR amplification using the following parameters: 95°C for 10 min, followed by 40 cycles of
94°C for 30 s and 60°C for 1 min then a final cycle of 98°C for 10 min. The plate was then
transferred to a QX200 Droplet Reader (Bio-Rad, CA, USA) for the fluorescent detection of

positive droplets in each well using the RED (rare event detection) setting.
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Table 2.1 Primer and probes for ddPCR MST analysis

Assay and Size Reference or
Sequence Primer or Probe Sequence (5' to 3'")
Type (bp) Source

B.theta  B.theta 4515901F: CATCGTTCGTCAGCAGTAACA

a-1-6,  B.theta 4515963R: CCAAGAAAAAGGGACAGTGG 63  Yampara-lquise

et al., 2008

mannanase B theta Probe: FAM-CAGCAGGT-NFQ™

M2F: CGGCCAAATACTCCTGATCGT

M2R: GCTTGTTGCGTTCCTTGAGATAAT Shanks et al.
CowM2  M2P: HEX- 92 2008

AGGCACCTATGTCCTTTACCTCATCAACTACAGACA-

BHQI

Pig2Bac41F: GCATGAATTTAGCTTGCTAAATTTGAT o
Pig2Bac  Pig2Bac163Rm: ACCTCATACGGTATTAATCCGC 116~ Mieszkinetal,

2009
Pig2Bac113MGB: FAM-TCCACGGGATAGCC-BHQI

2Probe ordered through Roche Universal Probe Library; UPL probe # 62
PNFQ: Non-fluorescent Quencher

Strict quality control measures were followed for all ddPCR assays. Each assay plate was
analyzed with three wells of non-template controls (NTC) (molecular grade DNAse-free water),
filtration blanks for each batch of samples, and three positive control wells for each assay target.
Assay results were only considered for further analysis if >10,000 accepted droplets were
achieved in each sample well and within each control well. In addition, any positive NTC wells
were considered indicative of possible contamination of the reaction master mixture and all
sample results from that plate were rejected and the samples rerun. Samples were only
considered true positives if > 3 droplets were positive (above reaction threshold for positive-
negative distinction. Samples were considered as positive if at least one technical replicate (1/3)
were found to be positive, and close to the calculated detection limit of the assay (354 gene

copies (GC) 100ml ).
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2.3.5 Landscape data

Hourly precipitation time series were obtained at the closest NOAA land-based stations to
each sampling location (NOAA, 2019). Then, cumulative hourly and multiday precipitation
totals (mm) were obtained for the period before each sample collection time (e.g., 6 hr, 12 hr, 18
hr, 24 hr, 2 days, 3 days, 4 days, 6 days, 8 days, 15 days, and 30 days). Land cover proportions
for each sampling location’s drainage area were obtained by processing the Cropland Data Layer
(CDL) 2017 (USDA-NASS, 2017) for details, and the National Land Cover Database (NLCD)
for the general land covers. Tillage practice information was obtained from a national survey
completed by the USGS spanning 1989 to 2004 (Baker, 2011). The estimated number and
density of septic systems per watershed area and tile drainage’s proportions were obtained from

Luscz et al. (2015, 2017).

2.3.6 Statistical analysis

Multiple methods were utilized to investigate instream variables (e.g., temperature,
dissolved oxygen (DO), pH, conductivity, streamflow, non-purgeable organic carbon (NPOC),
TDN, Na, K, Mg, Ca, Cl, SO, turbidity, NHs4, NO3, DON, SRP, and TP) and landscape variables
(e.g., prior precipitation, land use, tile drainage, septic tank numbers, septic tank density, and
tillage) to help explain the levels of bacterial indicators of fecal pollution (i.e., MST markers, and
E. coli) found in the five watersheds. Bacterial markers were considered as the response
variables in all analyses with the geometric means of the logio transformed technical replicates of
each being used for statistical analysis. Non-detect (ND) replicates were included and assigned

the assay’s detection limit (2.55 logio GC 100ml ).
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To avoid collinearity, redundant variables were identified and removed from the dataset
prior to analysis by determining the pairwise relationships among all explanatory variables (i.e.,
Temperature, DO, pH, conductivity, streamflow, NPOC, TDN, Na, K, Mg, Ca, CI, SO4,
turbidity, NHa, NOs3, DON, SRP, TP, prior precipitation, land use, tile drainage, septic tank
numbers, septic tank density, and tillage) across all sampled locations using Spearman’s rank
correlations (p > 0.7). The variable that had the lowest average correlation with other predictor
variables using the ‘findCorrelation’ function from the caret package in R (Kuhn, 2020) was
retained. Six variables (i.e., TDN, SO4, Ca, Mg, Cl, and SRP) were found to be collinear with

other variables and were thus removed from the dataset.

2.3.6.1 Spatial clustering

The clustering analysis consisted of an agglomerative bottom-up hierarchical approach
using standardized Euclidean distances and the Ward’s minimum variance method, followed by
a single k-means clustering iteration using up to 3 clusters from the hierarchical approach. This
analysis was performed to explicitly account for spatial variability using the ‘hclust’ and
‘kmeans’ functions in R (R Core Team, 2019). To identify the main factors driving this
variability, clusters of sampling locations were determined using six different criteria; E. coli and
MST marker concentrations, streamflow, land use, tillage, tile drain proportion, and septic tank
density. Bacterial (E.coli and MST) marker concentrations and instream variable (i.e.,
temperature, DO, pH, conductivity, streamflow, NPOC, TDN, K, Mg, Cl, turbidity, NH4, DON,
SRP, and TP) raw data were Box-Cox transformed using the ‘BoxCoxTrans’ function from the

caret package in R prior to being used for clustering (Kuhn, 2020).
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Correlation analysis was performed using pearson correlation (r) analysis using Graphpad
Prism 8 (GraphPad Software, CA, USA) to ascertain if any significant relationships existed
between the three MST markers and nutrient species. These analyses were conducted in two
ways. First by using data from all the sites and samples and secondly by using data from the

various sampling site clustering configurations (Figure 4).

2.4 Results

2.4.1 Water quality summary of five watersheds

Five watersheds from smallest to largest (LPR 14 km?; SC 82 km?; MAC 292 km?; KAW
582 km?; RR 2,683 km?) were sampled over three seasons (spring, summer, and fall). Selected
highlights of important water quality variables collected during this study are presented here with
more information provided in Supplemental Materials. The land uses for each sampling site are
described in Supplemental Table Al; a detailed land use classification was used for clustering
and statistical analysis as described in the materials and methods. The areas drained by each
sampling site ranged from 8.16% (LPR1) to 76.37% (MAC4) agricultural land use
(Supplemental Table Al).

Average streamflow for all sites ranged from 0.10 m>/s in the LPR to 8.95 m?/s in the RR
(Supplemental Table A2). The RR watershed saw the maximum recorded streamflow at 8§7.50
m?3/s in March 2018 while both the KAW and MAC watersheds had streamflows as low as 0 m?/s
at multiple sites (KAW1, KAW2, MACI1, MAC4) during June, July, and August 2017 sampling
dates. Overall streamflow was lowest during the summer sampling of 2017 and the highest

during the spring sampling in 2017 and 2018.
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Septic tank densities varied between and within watersheds. The watersheds (LPR, SC,
MAC, KAW, and RR) had septic tank density ranges of 14.46, 7.53 to 20.79, 9.10 to 17.14, 6.20
to 19.39, and 6.87 to 23.85 septic tanks/ km?, respectively.

The proportion of land within each watershed with tile drains ranged from 0 at LPR1 On
average, the proportion of tile drains in LPR, SC, MAC, KAW, and RR were 0, 0.22, 0.30, 0.19,
and 0.26, respectively.

Summaries of measured nutrients, MST markers, and physical water quality variables are
provided in Supplemental Materials (Tables A2-AS5). TP concentrations ranged from 14.77 to
111.24 pg/L, while TDN ranged from 0.66 to 4.90 mg/L across sites. E. coli, B. theta, CowM2,
and Pig2Bac concentrations ranged from 0.30 to 4.30 Logio MPN/100ml, 2.71 to 2.83 Logio

GC/100ml, 2.60 to 2.77 Logio GC/100ml, 2.96 to 3.23 logio GC/100ml, respectively.

2.4.2 Spatial and temporal trends in bacterial markers and nutrients

Individual sample concentrations for the four MST markers, two nitrogen species, and the
two phosphorus species were plotted on heat maps to visualize spatial or temporal trends in each
dataset (Figures 2-3). The MST markers primarily revealed temporal trends in their datasets,
while the nutrient species showed spatial trends and some temporal trends. A few high valued
data points were omitted from the scaling on the heatmaps to allow for greater visual resolution
of spatial and temporal trends that would have otherwise been camouflaged by scaling the entire
range of values.
up to 0.64 at RR3 with the MAC and RR watersheds having the highest proportions of tile

drains.
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Figure 2.2 Microbial heatmaps for all watersheds and sampling months: a) E. coli Logio
MPN/100ml, b) B. theta Logio GC/100ml, ¢c) CowM2 Logio GC/100ml, d) Pig2Bac Logio
GC/100ml. Cells colored with bright green were above the range depicted on the heatmap. These
data points were removed from the depicted ranges to increase visibility of spatial and temporal
patterns in the data.

51



a) TDN (mg/L) b) NH4-N (mg/L)

RR1 1 RR1 0%
RR2 RR2
RR3 RR3 [ 000 0.15
RR4 RR4 ’
RR5 RR5 0.06
RR6 10 RR6
RR7 RR7
SC1 | 591 10.16 7.13  4.91 ScC1 0.10
LPR1 LPR1 0.07
MAC1 813 6.13 MAC1 0.09
MAC2 6.41 498 5 MAC2 - 0.06
MAC3 453 440 MACS3 | 0. 0.05
MAC4 MAC4
KAW1 KAW1
KAW2

KAW3

KAW2 0.07
KAW3 0.08

~ ~ ~ ~ ~ ~ -} -] ~ ~ ~ ~ ~ ~ .-} © 0
- - - - - - - - - - - - - - - -
(=] (=] (=] o o o o o (=] (=] (=] (=] (=] (=] [=] (=]
~N N ~N N N N ~N N N ~N N N N N ~N N
T F L ZEE 5 R T F L 2G5 5B
g = 5 3 2 2 & = s = 5 3 32 &2 & =
< 5 ° 2 E 8 < 5 ° 9 E 8
2 o = 2 o =
< 3 < 3
©) TP (ng/L) = d) TFP (ng/L) =
RR1 [89:44 72.62 250 RR1 6296 | 250
RR2 | 67.02 7117 89.42 RR2
RR3 94.46 RR3
RR4 86.90 200 RR4 200
RR5 [125.97 68.84 RR5
RR6 [67.02 64.12 80 61.70 RR6
RR7 RR7
Sc1 150 sc1 103.14/72.20 150
SC2 SC2 15159
LPR1 > LPR1 [ >
MACH1 100 MAC1 14715 100
MAC2 [113.93 103.56 70.76 74.50 85.64 MAC2 81.97 77.24
MAC3 [148.39 112.69 100.65 80.72 104.54 MAC3
MAC4 |94.01 161.68 97.33 50 MAC4 126.80 94.01 144.24 50
KAW1 6578 94.01 63.80 KAW1
KAW2 74.08 112.69 154.62 146.13 KAW2 70.34 112.69 125.97

KAW3

0 KAW3

~ O~
- -
o o
N |«
T oz
2 =
<

June 2017
July 2017
March 2018
May 2018
May 2017
June 2017
July 2017
May 2018

~
-
o
N
E
[-%
<

August 2017

November 2017
August 2017
November 2017
March 2018

Figure 2.3 Phosphorus and Nitrogen species’ heatmaps showing spatial and temporal
distributions. a) total dissolved nitrogen (TDN), b) Ammonium (NH4-N), c) total phosphorus
(TP), d) total filterable phosphorus (TFP). Individual ranges for each nutrient species are to the
right of each heatmaps. Cells colored with dark red were above the range depicted on the
heatmap. These data points were removed from the depicted ranges to increase visibility of

spatial and temporal patterns in the data.

A general temporal trend was seen for E. coli in Figure 2a, with high concentrations
during summer (July 2017) and low concentrations in spring (March 2018) across the most of
sites. The human marker also showed temporal trends with higher concentrations during the

spring and early summer months (i.e., April, May, June, and July 2017, as well as March 2018),
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and lower concentrations in the late summer (August 2017), fall (November 2017) and stayed
low in the spring May of 2018 (Figure 2b). The bovine marker had higher concentrations in June
and November 2017, with its lowest concentrations in July and August 2017 coinciding with the
driest (lowest levels of prior precipitation and streamflow) period throughout the study (Figure
2¢). The porcine marker also showed higher concentrations between April, July 2017, and May
2018, with lower concentrations during August, November 2017, and March 2018 (Figure 2d).

Spatial and temporal trends were seen for all nitrogen and phosphorus species (Figure 3).
The TDN results showed a temporal trend with lower concentrations during June and August
2017 and higher concentrations in November 2017 and March 2018 (Figure 3a). There were also
spatial trends with sites such as RR5, RR7, LPR1, and KAW1 that consistently had low TDN
concentrations across all sampling events. Ammonium showed a different spatial trend, with
MACS3 having considerably higher NH4-N concentrations than all the other sites through time
(Figure 3b). There was also a spike in ammonium concentrations across all sites in all watersheds
in July 2017. TDN had similar spatial and temporal trends as in the nitrate heatmap, but with
lower average concentrations of ammonium vs. nitrate. The phosphorus species showed a spatial
trend with the highest concentrations found in the MAC sites for all individual species, but when
examining total phosphorus (TP, Figures 3¢ and 3d), most of the RR sites (excluding RR7) had
high phosphorus levels (Figure 3). There were also some temporal trends in the phosphorus

species with higher concentrations of TP found in August 2017 and March 2018 (Figure 3c).
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2.4.3 Statistical analysis

2.4.3.1 Cluster analysis

The data from individual sites in each watershed were separated by cluster analysis to
examine the similarities between watershed sites by six variables, including E. coli/ MST marker
concentrations, streamflow, land use, tillage, tile drain proportion, and septic tank density. The
final cluster analysis resulted in five clustering schemes with land use and tillage producing
identical clusters (Figure 4). Clustering sites based on streamflow resulted in three clusters (1, 2,
and 3) representing low, medium, and high flows. Concentrations from all four markers E.coli
and MST (B. theta, CowM2, Pig2Bac, and E. coli) had 1, 2, and 3 clusters with concentration
ranges of 0.99-4.72, 0.30-4.08, 1.33-5.87 Logio MPN(GC)/100ml, respectively. When cluster
analysis was performed using tile drain proportions, only two clusters were identified
representing 0-0.172 and >0.221 proportion tile drains (clusters 1 and 2). Landuse/tillage resulted
in three clusters with low (25-50 % with no tillage), medium (10 to 25% with no tillage) and
high (0-10% with no tillage) tillage practices. Finally, septic tank density split into three clusters

representing sites with <11, 11-15, and >17 septic tanks/ km?, respectively.
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2 Concentration ranges include values obtained for all four markers (B. theta, CowM2, Pig2bac,
and E. coli).

Figure 2.4 Cluster analysis results for streamflow, markers, land use, tillage, tile drain
proportion, and septic tank density. Sites were clustered into up to three clusters representing

SN 1Y

“low”, “medium”, and “high” relative values for each category. Values for specific variables
ranges of values are listed below each cluster.

2.4.3.2 Correlation Results

The human and bovine markers showed no significant relationships with any of the seven
nutrient species when all of the sites were analyzed together. The porcine marker; however,
showed statistically significant correlations with all four phosphorus species (i.e., TFP, FRP,

TRP, TP) and ammonium with 7 values ranging from 0.22 (p = 0.0091) for FRP, to 0.48 (p =

<0.0001) for ammonium.
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Correlation analysis using the three streamflow clusters showed significant correlations
between bovine and porcine markers with nutrient species (Figure 4). In streamflow cluster 1
(low flow), the porcine marker was correlated with TFP, FRP, TP, and NH4 with » values of 0.26
(p=0.0192), 0.26 (p = 0.0250), 0.31 (p = 0.0072), 0.54 (p = <0.0001), respectively. In cluster 2,
the bovine marker was correlated with nitrate and TDN with » values of 0.37 (p = 0.0372) and
0.37 (p = 0.0376), respectively. In cluster 3, however the porcine marker was negatively
correlated with TFP (r -0.48, p = 0.0166).

Only the porcine marker showed significant relationships with nutrients when clustering
by E.coli/ MST markers or land use/tillage.

Sites were clustered into only two clusters when using land use/tillage. In the first land
use/tillage cluster there were no significant correlations between any of the MST markers and
nutrients. In the second land use/tillage cluster, the porcine marker was correlated with TFP,
FRP, TRP, TP, and NH4 with  values 0.42 (p = 0.0083), 0.42 (p = 0.0073), 0.41 (p = 0.0109),
0.47 (p = 0.0030), and 0.66 (p = <0.0001) respectively.

In the first cluster (low concentrations) for the E.coli/MST markers there were no
significant relationships found between the bacteria and nutrients. In the marker cluster 2, the
porcine maker was correlated with NH4 (r 0.30, p-value 0.0157). In marker cluster 3, the porcine
marker was highly correlated with TFP, FRP, TRP, TP and NH4 with r values of 0.68 (p =
0.0002), 0.67 (p = 0.0003), 0.60 (p = 0.0024), 0.73 (p = 0.0001), and 0.82 (p = <0.0001),
respectively.

The tile drainage clusters showed significant correlations for both the human and porcine
markers. In cluster 1, the human marker was correlated with TFP and FRP with r values of 0.40

(p =0.0062) and 0.35 (p = 0.0187) respectively. The porcine marker was also correlated with
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FRP in cluster 1 with an » value of 0.21 (p = 0.0485). In cluster 2, the porcine marker was
correlated with TFP, TRP, TP and NH4 with R values of 0.21 (p = 0.0467), 0.26 (p = 0.0168),
0.31 (p = 0.0032), and 0.56 (p = <0.0001).

Septic tank density clustering resulted in the most correlations between markers and
nutrient species. The human marker was correlated with TFP, TP, and NHy in cluster 3 (highest
density) with 7 values of 0.4 (p = 0.0037), 0.43 (p = 0.0027), and 0.41 (p = 0.0036) respectively.
The bovine marker was not significantly correlated in any of the septic tank density clusters. The
porcine marker was correlated with TFP, FRP TP, and NHs4 in both cluster 1 and cluster 3. In
cluster 1, the porcine marker was correlated with TFP, FRP, TP, and NH4 had » values of 0.31 (p
=0.0333), 0.29 (p = 0.0475), 0.39 (p-value 0.0068), and 0.68 (p = <0.0001) respectively. In
cluster 3, the porcine marker was correlated with TFP, FRP, TP, and NH4 had  values of 0.34 (p

= 0.0170), 0.29 (p = 0.0492), 0.30 (p = 0.424), 0.32 (p = 0.0247), respectively.

2.5 Discussion

The data in this study show that individual mixed-use watersheds have unique spatial and
temporal trends for both microbial contaminants and nutrients. Our results were in line with
previous research where microbial contamination trends are mainly temporal in nature (Lee et
al., 2014; Sowah et al., 2017; Nshimyimana et al., 2018; Badgley et al., 2019; McKee et al.,
2020; Hinojosa et al., 2020). These trends are likely associated with the timing of manure
applications and microbial transport through the watersheds seen with increased rainfall and
overland flows. Nutrients were spatially segregated based on land use and management practices

such as tillage and tile drainage.
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The MAC watershed, in particular, showed high phosphorus levels at all four sites over
the course of the sampling period. The phosphorus pollution in the MAC watershed is linked to
agricultural non-point sources of pollution (Steinman et al., 2018). Our results showed
correlations between our porcine marker and nutrient species when using the data from the MAC
watershed sites in multiple clustering schemes. These results suggest that at least a portion of the
nutrients entering the MAC watershed are associated with manure application practices. These
high levels of phosphorus are unsurprising as Lake Macatawa, which the watershed drains into,
has been hypereutrophic for over 40 years (MWP, 2012). A TMDL of 50 ug/L was set for TP in
Lake Macatawa in 1999 by the USEPA, with best management practices (BMPs) aimed at runoff
abatement implemented since 2012 to help alleviate nutrient pollution (Walterhouse, 1999;
Holden, 2021; Steinman et al., 2018). However, these BMPs have yet to produce the desired
results, with our study’s finding an average total phosphorus concentration of 58.75 ug/L in the
streams draining into the lake. This is consistent with the effects of land use legacy, where
changes to the landscape can take decades to propagate through the environment to surface water
systems (Martin et al., 2021).

A particularly interesting result of our study is the application of sampling site clustering
to elucidate masked correlations between MST markers and nutrients. This is of significance
because it shows that water quality monitoring by itself without considering similarities and
differences between sampling sites may mask relationships between variables and potential
contamination sources. While we identified correlations between the porcine marker and both
phosphorus and nitrogen species, the human and bovine markers were less frequently connected

to nutrients.
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The cow marker was not correlated with nutrients. Cow manure because of it’s high
solids content and lower water activity may release the cow marker at a much different rate
compared to nutrients, however this is speculative and no data has been generated to support this.
The higher solids content in bovine manure (265 lbs per 1,000 gals) vs. porcine manure (170 lbs
per 1,000 gals) changes the availability and uptake of nutrients by crops from the manure (i.e.,
nitrogen availability in the first year after application from dairy cow manure is 50 to 70% and
only 30 to 50% for swine (Lorimor et al., 1980; Zhang, 2017)). Thus, influencing the difference
between the animal MST markers and nutrients. The diffuse spreading of cow manure on
pastures with grazing livestock or overland spreading of cow manure may have also diluted out
the affect. In addition, fertilizer may be a greater source of nutrients compared to manure in these
rural areas.

The human marker was correlated with nutrient species when sampling sites were
clustered based on septic tank density suggesting that septic tanks are an important source of
nutrients in watersheds that have higher septic tank densities (Figure 4). However, the human
bacterial marker may be transported through soil in a different time frame compared to nutrients.
The input from septic tanks to surface waters was more apparent during low flows, where
groundwater contributions to surface waters compared to overland flow are not masked. This is
in line with observations from previous studies by Verhougstraete et al. (2015) and Sowah et al.
(2017). Additionally, Joseph et al. (2021) showed that human inputs were more highly correlated
with stream contamination than bovine sources even in areas with high numbers of cattle.

Another important aspect to consider when examining correlations between MST
markers and nutrient levels is the persistence of each marker. The persistence of the MST

markers varies and influences the presence (degradation) of the markers. The Pig2Bac marker
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Too (time for 90% decay) ranges from 0.90 to 5.11 days, while the human marker the B. theta and
CowM2 have reported Too’s of 1.8 and 3.14 days, respectively (Korajkic et al., 2018; He et al.,
2016; Brooks et al., 2015; Ballesté et al., 2018). The longer persistence of the porcine marker in
water may allow for higher correlations with nutrient species. This correlation is likely
influenced by both the source, transport, and fate of the contaminants.

In nearly every cluster, the porcine marker showed correlations with ammonium. This
suggests that when porcine manure is applied to the land, a significant portion of the manure and
accompanying nutrients make their way into the waterways. This, in turn, along with the lack of
bovine markers correlated with nutrients, could mean that the method of application or the
physical attributes of the manure sources are significant in the fate of nutrient and microbial
contamination to streams.

The correlations between nutrients and MST markers when sampling sites were clustered
by septic tank density suggest that septic tank density may help predict where higher levels of
fecal pollution will occur. For the human marker, this is in line with a large-scale study
conducted by Verhougstraete et al. (2015), which identified a similar correlation between septic
tank numbers in watersheds and an increase in the human marker. It is not clear why the pig
marker would correlate with nutrients based on septic tank density, but it may be indicative of
greater manure application to the available land in rural areas where septic tanks are more widely
used.

While this study successfully identified relationships between MST markers and nutrient
species, no strong predictive relationships could be determined. This suggests that while MST
can help to identify contamination sources within watersheds, there are too many variables in the

accompanying water quality data to allow for a strong predictive model to be formed. However,
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the abundant correlations between the porcine marker and phosphorus and ammonium show that

porcine manure is likely an important source of pollutants from agricultural land that is

transported into streams that should be monitored more frequently pre- and post- applications.
To reach desired stream water quality, particularly in problematic agriculturally intensive

watersheds, manure and septic tanks both need to be considered for control of microbials and

nutrients.

2.6 Conclusions

e Spatial clustering allows for a more accurate analysis of relationships of water quality
variables in watersheds.

e Temporal contamination is primarily driven by precipitation and its associated variables
(e.g., streamflow, turbidity, overland flow), while spatial contamination is driven by land
uses (e.g., septic tank density, tile drain proportions, and tillage).

e Porcine fecal contamination is more often correlated with nutrients in streams than either

bovine or human contamination.
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Water temperatures varied over the three seasons, but not between watersheds (11.60 to
16.04°C). DO levels on average were 9 mg/L in four (LPR, SC, MAC, RR) of the watersheds,
while KAW sites had an average of 7.97 mg/L. The lowest individual DO measurement was
from MAC (3.12 mg/L). Average pH values varied little between watersheds, with averages
from 7.82 to 8.17. The lowest measured conductivity occurred in July 2017 in the KAW
watershed (212.50 ps/cm), while SC had the highest single sample conductivity (934.60 ps/cm)
in August 2017. Average conductivity for all of the watersheds ranged from 310.65 to 600.93
us/cm. The KAW and LPR watersheds had low average turbidities 2.47 and 2.78 NTU,
respectively, while RR, MAC and SC watersheds had high average turbidities (i.e., 10.02, 8.60,
and 9.60 NTU, respectively). These varied seasonally along with streamflow.

The MAC watershed had the highest concentration of K, Mg, and Na with concentrations
of 6.04 mg/L, 17.82 mg/L, and 28.42 mg/L, respectively (Supplemental Materials Table A3).
The LPR watershed had the lowest concentrations of Mg, Na, and non-purgeable organic carbon
(NPOC) with concentrations of 1.71 mg/L, 12.24 mg/L, and 11.53 mg/L, respectively. The KAW
watershed was found to have the lowest K levels (1.71 mg/L) and the highest NPOC
concentration (20.16 mg/L). The RR and SC watersheds showed similar levels of ions as each
other. Ca concentrations were found to be highest in RR and SC at 76.01 and 77.60 mg/L,
respectively. SO4 concentrations were found to be highest in the SC and RR watersheds (i.e.,

58.72 and 50.24 mg/L respectively) and lowest in the KAW watershed (i.e., 21.02 mg/L).
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Table 2.A1 Land use percentages for each sampling site’s drainage area

gfltmpling Agricultural Developed  Water  Undeveloped®
ite

KAWI 17.60 431 0.57 77.52
KAW2 44.67 10.98 0.45 43.90
KAW3 60.23 11.75 0.32 27.71
LPRI 8.16 13.13 0.22 78.50
MACI 74.58 8.33 0.19 16.90
MAC2 57.09 21.88 0.28 20.75
MAC3 57.02 17.42 0.36 25.20
MAC4 76.37 8.11 0.10 15.42
RR1 55.07 10.84 1.58 32.51
RR2 45.76 19.65 0.70 33.89
RR3 78.48 6.38 0.09 15.06
RR4 49.95 10.16 2.16 37.73
RR5 36.81 11.84 2.93 48.41
RR6 56.05 5.90 0.38 37.68
RR7 24.28 10.63 4.85 60.25
SCl1 52.88 20.58 0.24 26.30
SC2 54.77 6.03 0.15 39.05

aUndeveloped land use includes the following land use categories: barren, forest, herbaceous,

shrubland, and wetland
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Table 2.A2 Physiochemical summary results by watershed

Tenﬁ:‘;‘;we DO o Conductivity  Streamflow  Turbidity
3
Watershed ©C) (mg/L) Average (us/cm) (m/s) (NTU)
Average Average Average Average
Average (Range) (Range) (Range) (Range) (Range)
(Range)
II:;iV;; 16.04 9.69 8.11 600.93 8.95 10.02
ER) (2.14-27.52)  (6.19-13.78) (7.19-8.53) (396.40-875.80)  (0-87.50)  (1.17-36.40)
Kawkawlin 14.88 7.97 7.89 436.66 1.93 2.78
(KAW) (0.78-25.20)  (4.31-13.40) (7.40-9.12) (212.50-750.70)  (0-11.44) (1.05-7.94)
Macatawa 15.61 9.30 8.00 576.34 0.65 8.60
(MAC) (2.75-2531)  (3.12-14.60)  (6.64-8.62) (403.60-729.10)  (0-2.67) (0.97-46.60)
%‘r‘;gl{ 13.98 9.37 7.82 577.01 0.33 9.60
S0) (1.08-22.34)  (3.99-1332) (7.19-8.26) (285.40-934.60)  (0-1.57) (1.90-39.10)
lf;‘t;l)‘; 11.60 9.04 8.17 310.65 0.10 2.47
(LgPR) (3.89-16.80)  (5.65-12.19) (7.54-8.89) (220.50-375.80)  (0.03-0.18)  (1.62-3.35)
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Table 2.A3 Ton summary results by watershed

K Mg Ca Cl Na NPOC
Watershed (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)
Average Average Average Average Average Average
(Range) (Range) (Range) (Range) (Range) (Range)
II:;iV;; 2.34 16.94 76.01 37.08 20.91 13.54
®R) (0.83-4.01) (7.57-33.01) (43.43-115.92)  (0.01-66.99)  (9.31-47.42)  (4.68-50.17)
Kawkawlin 1.71 13.21 53.91 28.44 17.27 20.16
(KAW)  (0.90-3.48) (5.18-24.10)  (32.64-93.59)  (0.04-54.77)  (3.13-35.09)  (7.42-60.91)
Macatawa ("¢ 17.82 58.36 43.49 28.42 14.05
(MAC) logl) ~ (4962579)  (2831-8L18) (1605-6857) (474-5549)  (5.74-41.54)
%‘r‘;gl{ 3.81 13.45 77.60 36.35 19.05 17.38
SO (1.96-8.68)  (4.74-30.89) (37.25-130.10) (20.38-57.71)  (9.03-39.14)  (3.34-55.04)
lf;‘t;l; 2.07 9.07 41.79 28.24 12.24 11.53
(LgPR) (1.55-277)  (5.37-11.55)  (33.71-49.42)  (27.63-29.85) (10.77-13.33)  (4.56-35.69)
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Table 2.A4 Microbial summary results by watershed

Watersheds
Markers RiverRaisin Kawkawlin Macatawa %::gl)(, Pli'lgt;l)en
(RR) (KAW) (MAC) SO (LER)
9% Positive 100 100 100 100 100
o Posve 56/56) (24/24) (32/32)  (16/16) (8/8)
E coli 5 omeant 1.91 1.84 2.41 1.94 2.01
(Range) (0.80-3.91)  (0.99-2.84) (1.21-4.30) (0.30-3.34) (1.15-2.76)
9% Positive 64.29 54.17 59.38 50 &87.5
0 (36/56) (13/24) (19/32) (8/16) (7/8)
B. theta
Geomean® 2.77 2.77 2.83 2.71 2.82
(Range)  (2.55-3.50)  (2.55-3.49) (2.55-3.72) (2.55-3.17) (2.55-3.17)
9% Positive 42 .86 45.83 40.63 25 50
o (24/56) (11/24) (13/23) (4/16) (4/8)
CowM2
Geomean® 2.66 2.69 2.67 2.60 2.77
(Range)  (2.55-3.26) (2.55-3.54) (2.55-3.27) (2.55-2.82) (2.55-3.42)
9% Positive 71.43 66.67 87.5 93.75 62.5
. 0 (40/56) (16/24) (28/32)  (15/16) (5/8)
Pig2Bac
Geomean® 2.96 3.07 3.23 32 3.07
(Range)  (2.55-3.76)  (2.55-4.68) (2.55-5.89) (2.55-4.72) (2.55-4.36)
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Table 2.A5 Nutrient summary results by watershed

TFP FRP TRP TP NO; (nljg}}ﬁ) TDN SOy
Watershed (ng/L) (ng/L) (ng/L) (ng/L) (mg/L) Averag (mg/L) (mg/L)
Average Average Average Average Average o Average Average
(Range) (Range) (Range) (Range) (Range) (Range) (Range) (Range)
River 39.06 29.16 58.72 2.34 50.24
Raisin (11.39- (1.66- . 02.93;33 04) (14.30- (0.06- (0(_)(')0127) © 621'_687 2) (16.26-
(RR) 315.28) 291.47) ' ' 284.14) 8.06) ' Do 100.22)
Kawlll(awll (411461.22_ (353;5220_ (?z;g_ (f;gg 1.80 0.02 2.38 21.02
(KAW) 125.97) 122.00) 139.36) 154.62) (0-5.95)  (0-0.08) (0.74-6.14)  (2.64-50.44)
83.60 66.64 75.04 111.24 3.78 4.34
M(;z‘:’g)va (25.57- (8.99- (24.42- (36.49- (0.03- (0(_"1126) (1L00- SZ;‘& 15)
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Figure 2.A1 Water quality variable heatmaps showing spatial and temporal distributions. a)
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3.0 Methods evaluation for rapid concentration and quantification of SARS-CoV-2 in raw
wastewater using droplet digital and quantitative RT-PCR

Work presented in this chapter has been published as Flood, M.T.?, D’Souza, N.?, Rose, J.B.?2,
and Aw, T.G.? (2021). Methods Evaluation for Rapid Concentration and Quantification of
SARS-CoV-2 in Raw Wastewater Using Droplet Digital and Quantitative RT-PCR. Food
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2 Department of Fisheries and Wildlife, Michigan State University, East Lansing Michigan
48824, USA
® Department of Environmental Health Sciences, School of Public Health and Tropical Medicine,

Tulane University, New Orleans, Louisiana 70112, USA
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3.1 Abstract

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is an emerging public health tool to understand the spread of Coronavirus Disease 2019
(COVID-19) in communities. The performance of different virus concentration methods and
PCR methods needs to be evaluated to ascertain their suitability for use in the detection of
SARS-CoV-2 in wastewater. We evaluated ultrafiltration and polyethylene glycol (PEG)
precipitation methods to concentrate SARS-CoV-2 from sewage in wastewater treatment plants
and upstream in the wastewater network (e.g., manholes, lift stations). Recovery of viruses by
different concentration methods was determined using Phi6 bacteriophage as a surrogate for
enveloped viruses. Additionally, the presence of SARS-CoV-2 in all wastewater samples was
determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription
droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and E). Using spiked
samples, the Phi6 recoveries were estimated at 2.6-11.6% using ultrafiltration-based methods and
22.2-51.5% using PEG precipitation. There was no significant difference in recovery efficiencies
(p <0.05) between the PEG procedure with and without a 16 hr overnight incubation,
demonstrating the feasibility of obtaining same day results. The SARS-CoV-2 genetic markers
were more often detected by RT-ddPCR than RT-qPCR with higher sensitivity and precision.
While all three SARS-CoV-2 genetic markers were detected using RT-ddPCR, the levels of E
gene were almost below the limit of detection using RT-qPCR. Collectively, our study suggested
PEG precipitation is an effective low-cost procedure which allows a large number of samples to
be processed simultaneously in a routine wastewater monitoring for SARS-CoV-2. RT-ddPCR
can be implemented for the absolute quantification of SARS-CoV-2 genetic markers in different

wastewater matrices.
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3.2 Introduction

Since the emergence and spread of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), many cities around
the world have rapidly expanded their viral surveillance systems, including wastewater
monitoring for SARS-CoV-2. This is because SARS-CoV-2 can be shed in the feces of infected
individuals from both symptomatic and asymptomatic cases (Park et al., 2020; Wu et al., 2020).

Coronaviruses are positive-strand RNA enveloped viruses with the largest viral genomes
of all RNA viruses (27 to 32 kb). They have a spherical virion of about 120 nm in diameter
surrounded by a lipid envelope with pronounced spiked glycoproteins (S) embedded. The vast
majority of studies on the presence of viruses in human excreta and municipal wastewater have
been focused on nonenveloped enteric viruses. There are a number of established methods for
the detection of nonenveloped enteric viruses in wastewater, but only fewer evaluated protocols
for human enveloped viruses such as SARS-CoV-2 (Haramoto et al., 2018). Analysis of
environmental matrices for human viruses often require concentration steps due to the low
ambient concentrations of the viruses. Therefore, laboratory methods for the detection of SARS-
CoV-2 in wastewater need to examine both sample concentration and RNA quantification
methods along with optimizing limits of detection.

Globally, there have been over forty reports on the molecular detection of SARS-CoV-2
in wastewater (e.g., Ahmed et al., 2020a; Ahmed et al., 2020b; Ampeuro et al., 2020; Arora et
al., 2020; Balboa et al., 2020; Chavarria-Mir¢ et al., 2020; Curtis et al., 2020; Déhla et al., 2020;
Fernandez de Mera et al., 2020; Fongaro et al., 2020; Green et al., 2020; Haramoto et al., 2020;
Hata et al., 2020; Kocamemi et al., 2020a; Kocamemi et al., 2020b; Kumar et al., 2020; La Rosa

et al., 2020a; La Rosa et al., 2020b; Medema et al., 2020; Miyani et al., 2020; Nemudryi et al.,

79



2020; Bar-Or et al., 2020; Peccia et al., 2020; Prado et al., 2020; Randazzo et al., 2020a;
Randazzo et al., 2020b; Rimoldi et al., 2020; Sharif, 2020; Sherchan et al., 2020; Trottier et al.,
2020; Vallejo et al., 2020; Wang et al., 2020; Weidhaas et al., 2020; Westhaus et al., 2020; Wu et
al., 2020a; Wu et al., 2020b; Wurtzer et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b; Zhou
et al., 2020). These studies have had large variability in the numbers of samples from as few as
10 samples collected to over 120 with SARS-CoV-2 RNA being detected at concentrations
ranging from 10%to 10° copies per liter. These SARS-CoV-2 surveillance studies analyzed
volumes of raw sewage, treated wastewater and sewage sludge ranging from 2.5 mL to 2000 mL,
using various concentration methods such as adsorption-elution based membrane filtration,
precipitation (using polyethylene glycol, aluminum hydroxide), ultracentrifugation and
ultrafiltration prior to RNA extraction in order to recover the virus. The majority of studies
quantified the viral RNA in wastewater using quantitative reverse transcription polymerase chain
reaction (RT-qPCR) with external standard curves. Several gene targets specific to the SARS-
CoV-2 have been used in wastewater surveillance, including the RNA-dependent polymerase
(RdRP), nucleocapsid (N1, N2), envelope protein (E), spike glycoprotein (S), membrane
glycoprotein (M) and ORFlab genes (e.g., Lu et al., 2020; Corman et al., 2020).

Currently, cell culture for SARS-CoV-2 requires a Biosafety Level 3 laboratory and
specially trained personnel. Therefore, surrogate viruses have been used to mimic SARS-CoV-2
to evaluate virus concentration methods for wastewater. These surrogate viruses include F-
specific RNA phages (Balboa et al., 2020; Hata et al., 2020; Medema et al., 2020), mengovirus
(Randazzo et al., 2020a), avian coronavirus of infectious bronchitis virus (Kocamemi et al.,
2020a), Alphacoronavirus HCoV 229E (La Rosa et al., 2020b), bovine coronavirus BCoV

(LaTurner et al., 2021), porcine epidemic diarrhea virus (PEDV) (Randazzo et al., 2020b),
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bovine respiratory syncytial virus (BRSV) (Gonzalez et al., 2020), and murine hepatitis virus
(Ahmed et al., 2020c). Estimated mean recovery efficiencies for these surrogate viruses ranged
from 1% to 73% using different concentration methods originally developed for the detection of
enteric viruses in environmental samples (Randazzo et al., 2020a; Medema et al., 2020).
Pseudomonas phage Phi6 has also been used as a model enveloped virus in recovery and
persistence studies (Aquino de Carvalho et al., 2017; Ye et al., 2016). Similar to coronaviruses,
Phi6 is an enveloped RNA virus, with a segmented genome and glycerophospholipids in its
envelope (Vidaver et al., 1973). Since Phi6 is not pathogenic to humans, it is easier to work with
than other enveloped animal viruses and no special laboratory biosafety is required.

Rapid, cost-effective, and efficient methods are needed to provide precise data to support
public health decision making. This is so that changes in concentrations of SARS-CoV-2 gene
markers in wastewater provide meaningful data to inform COVID-19 surveillance. Therefore,
the objective of this study was to (i) evaluate the efficiencies of polyethylene glycol (PEG)
precipitation and ultrafiltration methods to recover Pseudomonas phage Phi6, coronavirus OC43,
and SARS-CoV-2 from different wastewater matrices; (ii) compare two PCR-based methods,
reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR
(RT-ddPCR) for the detection of SARS-CoV-2 in different wastewater matrices; and (iii)
develop a rapid, cost-effective, and precise quantification workflow for SARS-CoV-2 in

wastewater.
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3.3 Materials and Methods

3.3.1 Wastewater samples and sampling sites

Wastewater samples (500-1000 mL) for this study were collected from 11 sanitary sewer sites
and four wastewater treatment plant (WWTP) influent streams (after grit removal)
(Supplemental materials Table A1 and A2). A total of twenty sanitary sewer samples were
collected as grab samples from the 11 manholes or lift stations. Sanitary sewer samples consisted
of wastewater flowing from university dormitories, local communities, and hospital. Influent
samples (n=11) from four WWTPs were collected as 24-hr composite samples. Samples used for
the comparison of the SARS-CoV-2 surrogates Phi6 and human coronavirus OC43 were
collected from two California wastewater treatment plant influents as previously described by
Pecson et al. (2021). All samples were kept at 4°C for up to 72 hours. If samples were unable to

be processed within 72 hours of collection, then they were frozen at -80°C until analysis.

3.3.2 Virus stocks

Bacteriophage Phi6 and its bacterial host Pseudomonas syringae were kindly provided by
Dr. Krista Wigginton’s lab at University of Michigan. To propagate Phi6, P. syringae was grown
in King’s B medium at 24°C for 6 hours in stationary culture. Phi6 was added to the host and
incubated under the same conditions for 16 to 18 hours. After incubation and observed clearing
of cell suspension due to lysis, cells and debris were removed from the Phi6 suspension by
filtration using 0.22 um membranes. The Phi6 stocks were stored at 4°C and titered using an
overlay method. For the overlay process, 2 ml of host was added to the overlay tube containing

King’s B agar and 0.5 ml of virus suspension, mixed, and poured onto a plate containing King’s
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B agar. Plates were incubated at 24°C for 16-24 hours and plaques were counted. Virus titers of

approximately 10° plaque forming unit (PFU) per ml were routinely obtained.

3.3.3 Virus concentration methods and experiments

Four distinct comparisons were performed in this study. First, three viral concentration
methods were tested for their efficiency in recovering Phi6 phages and SARS-CoV-2 in different
types of wastewater. Methods 1 (CEN1) and 2 (CEN2) are based on the ultrafiltration principle
and used centrifugal filters. Method 3 is a precipitation using polyethylene glycol (PEG). The
second comparison was between RT-ddPCR and qPCR using the three viral concentration
methods. The third comparison was determining if a rapid PEG precipitation approach (without
an overnight incubation) would be able to perform as well or better than PEG precipitation with a
16 hr overnight incubation. Lastly, Phi6 was compared against the human coronavirus OC43
using RT-ddPCR to determine if recovery efficiencies between the two SARS-CoV-2 surrogates
were equivalent.

For each experiment, 350 ml of wastewater sample was inoculated with 1 ml of 10%
plaque forming units (PFU)/ml of Phi6 and homogenized for 10 minutes at 4°C. SARS-CoV-2
was not added to the sample. After homogenization, the sample was subdivided into three 101 ml
of aliquots in 250 ml centrifuge bottles for processing with each concentration method. One
milliliter of sample was removed from each 250 ml bottle containing the subsample for use in
determining the seeded virus level for recovery efficiency of each method. Recovery efficiencies
were determined by comparing the concentration of the spiked Phi6 bacteriophage in each

subsample prior to processing with the concentration of Phi6 in their final concentrate using RT-
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ddPCR. All viral concentration experiments, for each method and each type of wastewater, were
conducted in triplicate.

Method 1 (CEN1) was adapted from Ye et al. (2016) but modified to include virus
recovery steps from wastewater solids. Briefly, 100 ml of wastewater sample was first
centrifuged at 2,500 x g for 5 min at 4°C in order to pellet any solids present in the sample. The
supernatant was then collected without disturbing the pellet and filtered through a 0.22 um
polyethersulfone (PES) membrane filter (MilliporeSigma, St. Louis, MO). The sample was then
concentrated using a 10 kDa Centricon Plus-70 centrifugal filter unit (MilliporeSigma, St. Louis,
MO) according to the manufacturer’s protocol. A 1:1 volume of 0.25N glycine buffer was added
to the pellet and remaining liquid. The pellet was vortexed every 10 min for 30 min while on ice
to dislodge the viruses from suspended solids. After the 30 min incubation the glycine-processed
sample was neutralized 1:1 with 2 x PBS. The sample was then centrifuged at 10,000 x g for 30
min at 4°C. The supernatant was processed with the same centrifugal filter and the resulting
concentrates were combined.

Method 2 (CEN2) involved the use of the same centrifugal filter but without a pre-
filtration step (Medema et al., 2020). In this method, 100 ml of sample was centrifuged at 4,654
x g for 30 min at 4°C without brake. The supernatant was then collected and directly filtered
through a 10 kDa Centricon Plus-70 centrifugal filter unit (MilliporeSigma, St. Louis, MO)
according to the manufacturer’s protocol. The pellet was processed using the same protocol as
described in the Method 1 (CEN1).

Method 3 (PEG) was adapted from Borchardt et al. (2017) for the detection of avian
influenza virus RNA in groundwater. The samples were mixed with 8% (w/vol) molecular

biology grade PEG 8000 (Promega Corporation, Madison WI) and 0.2 M NaCl (w/v). The
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samples were mixed slowly on magnetic stirrer at 4°C for 2 hours and then held at 4°C for 16
hours. Following the overnight incubation, samples were centrifuged at 4,700 x g for 45 mins at
4°C. The supernatant was then removed, and the pellet resuspend in the remaining liquid. All
sample concentrates were aliquoted and stored at -80°C until further processing.

After the initial comparison of two ultrafiltration methods and PEG precipitation, a rapid
PEG precipitation approach (without an overnight incubation) was evaluated with 19 wastewater
samples. Each sample was inoculated with Phi6 and homogenized as described above. After
mixing the sample with 8% (w/vol) PEG 8000 and 0.2 M NacCl for 2 hours at 4°C, the sample
was immediately centrifuged at 4,700 x g for 45 mins at 4°C.

Finally, a comparison between Phi6 and OC43 was performed using wastewater from
two California wastewater treatment plants split into 5 subsamples each and processed with the

overnight PEG precipitation method.

3.3.4 RNA extraction and quantification by RT-ddPCR and RT-qPCR

Viral ribonucleic acid (RNA) was extracted from wastewater concentrates using the
Qiagen QIAmp Viral RNA Minikit according to the manufacturers protocol with modifications
(Qiagen, Germany). In this study, a total of 200 pl of concentrate was used for RNA extraction

resulting in a final elution volume of 80 pl. Extracted RNA was stored at -80°C until analysis.

3.3.4.1 Detection of SARS-CoV-2, Phi6, and coronavirus OC43 using RT-ddPCR
One-step RT-ddPCR approach was used to quantify the Phi6 RNA to determine the
recovery efficiencies for each concentration method. All the primers and probes used in this

study are listed in Table A3. Droplet digital PCR was performed using Bio-Rad’s 1-Step RT-

85



ddPCR Advanced kit with a QX200 ddPCR system (Bio-Rad, CA, USA). Each reaction
contained a final concentration of 1 X Supermix (Bio-Rad, CA, USA), 20 U ul-1 reverse
transcriptase (RT) (Bio-Rad, CA, USA), 15 mM DTT, 900 nmol I-1 of each primer, 250 nmol I-
1 of each probe, 1 pl of molecular grade RNAse-free water, and 5.5 pl of template RNA for a
final reaction volume of 22 pl. Droplet generation was performed by microfluidic mixing of 20
ul of each reaction mixture with 70 pl of droplet generation oil in a droplet generator (Bio-Rad,
CA, USA) resulting in a final volume of 40 pl of reaction mixture-oil emulsions containing up to
20,000 droplets with a minimum droplet count of > 9,000. The resulting droplets were then
transferred to a 96-well PCR plate which was heat-sealed with foil and placed into a C1000 96-
deep well thermocycler (Bio-Rad, CA, USA) for PCR amplification using the following
parameters: 25°C for 3 min, 50°C for 1 hr, 95°C for 10 min, followed by 40 cycles of 95°C for
30 s and 60°C for 1 min with ramp rate of 2°C s-1 followed by a final cycle of 98°C for 10 min.
Following PCR thermocycling, each 96-well plate was transferred to a QX200 Droplet Reader
(Bio-Rad, CA, USA) for the concentration determination through the detection of positive
droplets containing each gene target by spectrophotometric detection of the fluorescent probe
signal.

SARS-CoV-2 RNA and OC43 in wastewater samples were also quantified using the
same one-step RT-ddPCR approach except the annealing temperature was set at 55°C. Three
SARS-CoV-2 markers were chosen for analysis, the nucleocapsid 1 (N1) and nucleocapsid 2
(N2) gene targets designed by the US Centers for Disease Control and Prevention (CDC) (Lu et
al., 2020), the envelope (E) gene from Corman et al. (2020), and OC43 (Table A3). The N1 and

N2 gene targets were analyzed in a duplex assay. All analyses were run in triplicate for each
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marker. Quality controls were run with every plate including positive and non-template controls,

extraction controls, and processing blanks for each batch of samples.

3.3.4.2 Detection of SARS-CoV-2 using RT-qPCR

RT-qPCR approach was also used to quantify SARS-CoV-2 gene markers in wastewater
samples. All RT-qPCR reactions were performed using a StepOne Plus™ real-time PCR
sequence detector (Applied Biosystems, Foster City, CA). For each assay, a 10-fold diluted
standard curve of at least five points, a non-template control, and samples were tested in
triplicate. The quantitative synthetic SARS-CoV-2 RNA includes fragments from nucleocapsid
and envelope regions (ATCC VR-3276SD) was used to generate standard curves. Amplification
reaction mixtures (final total volume of 20 pl) contained 5 pl template RNA, 10 pl of 2 x qScript
one-step RT-qPCR ToughMix (QuantaBio), 300 nM, 500 nM and 400 nM of forward primer for
N1, N2 and E gene, respectively, 500 nM, 800 nM and 800 nM of reverse primer for N1, N2 and
E gene, respectively, and 200 nM of probe. The thermal cycling protocol was as follows: 10 min
at 50°C for cDNA synthesis, 3 min at 95°C for initial denaturation, followed by 45 cycles of two
steps consisting of 3 s at 95°C and 30 s at 55°C. qPCR amplification efficiencies for the
quantification of the N1, N2 and E gene assays were 92.6+4.3%, 95.1£3.4% and 91.6+2.2%,
respectively, and the correlation coefficients (R?) of the standard curves were 0.968+0.002,

0.982+ 0.004, and 0.988+ 0.0006, respectively.

3.3.5 Data analysis
All SARS-CoV-2, Phi6, and OC43 gene data were converted from gene copies (GC) per

reaction to GC per 100 ml before analysis. Non-detects (ND) were assigned their individual
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sample’s limit of detection. The limit of detection was calculated for each individual sample
based on both the molecular assays’ theoretical detection limits (i.e., 3 positive droplets for RT-
ddPCR; the lowest standard curve concentration for RT-qPCR) and the concentration factor of
each processing method examined.

GC per reaction
v

RS
|

Virus GC per 100ml = £x 100

Vi
Where:

Vi = Initial volume of sample concentration in ml

V¢ = Final volume of sample after concentration in ml

V: = Volume of RNA template used per PCR reaction in pl

V. = Final volume of RNA eluted from RNA extraction in pl

V.= Volume of concentrated sample used for RNA extraction in ml

Recovery efficiency was calculated by dividing the total gene copies (GC) / 100 ml
concentration of the Phi6 bacteriophage measured in each methods’ final concentrate by the
concentration (GC/ 100 ml) of Phi6 in each sample before concentration and then multiplying by
100.

Statistics and data visualization were performed using Graphpad Prism 8 (Graphpad
Software, CA, USA). Results for the three methods comparison were analyzed with a two-way
ANOVA with a Tukey’s multiple comparisons test to determine method significance (p value <
0.05). A two-way ANOVA (p < 0.05) and a paired t test (p < 0.05) were performed for the

comparison of “normal” (16 hr hold) vs “rapid” (no hold) PEG precipitation methods.
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3.4 Results

3.4.1 Wastewater characteristics

Wastewater samples from both sanitary sewer systems and treatment plants were
evaluated in this study. All site-specific details including physiochemical data and sampling
dates for each sanitary sewer and WWTP site are shown in Table A1 and Table A2, respectively.
Wastewater collected from sanitary sewer locations had more variations in each parameter than
wastewater collected from WWTP. For example, while sanitary sewer sites showed a wide range
of turbidities ranging from 1.87 up to 191 NTU, WWTP influent samples showed less variation
(e.g.,20.2to 111 NTU). Sanitary sewer sites showed little variation in pH and temperature with
each ranging from 6.57-8.58 and 13-26.4°C, respectively (Table Al). Influent samples collected
from WWTPs had a smaller degree of variation in pH (7.33-7.8) than sanitary sewer sites but had
greater variation in temperatures which ranged from 1.40 to 21.67°C (Table A2). Total
suspended solids (TSS) and daily flows for each WWTP were also measured. Specifically,
samples collected from facility W had the largest range of TSS (48-920 mg L) and the highest
daily flows ranging from 14.6-27.6 million gallons per day (mgd). Facility E had the smallest
range of TSS (164-208 mg L!) and the lowest daily flow of 2.87 mgd, but facility M had the

smallest range of daily flows (3.24-3.86 mgd).

3.4.2 Recovery of Phi6 from wastewater samples using ultrafiltration and PEG methods

Prior to seeding experiments, ambient concentrations of Pseudomonas phage Phi6 were
determined using RT-ddPCR. All wastewater samples were negative for Phi6.

The mean recovery efficiencies of the two ultrafiltration-based and PEG precipitation

methods for the detection of Phi6 using RT-ddPCR in different types of wastewater are
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summarized in Table 3.1. For the various wastewater matrices, mean recoveries of ultrafiltration-
based Method 1 ranged from 2.6% to 10.6% and Method 2 ranged from 2.7% to 11.6%. The
Phi6 virus recovery was statistically higher (p<0.0001) for both sanitary sewers and WWTP
influent samples using the PEG method compared to the ultrafiltration methods, with mean

recoveries ranging from 22.19% to 51.47% (Table 3.1).

Table 3.1 Recovery efficiencies of ultrafiltration and PEG methods for the detection of Phi6 in
seeded wastewater samples.

Phi6 phage recovery as measured by RT-

Wastewater Sampling Site Mean idgll)) (0: /?(range)
Type
P Method 1/ Method 2/ Method
CEN1 CEN2 3/PEG
Hospital Lift 9.59+1.14 4.99+0.04 51.47+26.08
Sanitary (8.90-10.91) (4.95-5.02)  (26.52-78.55)
Sewer
10.60+14.58 11.64+6.05 25.49+18.46
manhole (6) (1.98-39.9) (5.77-22.07) (3.93-47.49)
WWTP A (3) 6.05+4.89 2.73+2.04 36.01+19.41
Wastewater (0.48-9.64) (1.23-5.05)  (23.03-58.33)
Trﬁ:ﬁt‘?m WWTPE(3)  925+1572 92141537  31.98+7.52
Influent (0.05-27.41) (0.10-26.95)  (23.57-38.07)
WWTP M (3) 2.60+1.39 10.37+£12.61 22.19+£15.72
(1.03-3.64) (0.87-24.68) (4.67-35.04)

The source of wastewater had no significant impact (two-way anova, n =18, p-value =
0.4736) on the recovery efficiency of Phi6, regardless of the virus concentration method yet

more variability was seen when testing sanitary sewer samples using PEG (Table A4).

3.4.3 Detection of SARS-CoV-2 in wastewater samples using ultrafiltration and PEG methods
All wastewater samples using the three concentration methods were also analyzed for
SARS-CoV-2 using RT-ddPCR and RT-qPCR. The N1 and N2 gene targets showed similar

results between the two PCR methods (Table 2). While the E gene target performed satisfactorily
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on the RT-ddPCR platform, it showed poor results on the RT-qPCR platform with nearly all
samples being identified as non-detects with no detected samples above the lower limit of
quantification (LLOQ) (Table 2). The N2 gene target performed the best overall for the RT-
qPCR assay. Using RT-ddPCR, the N1, N2, and E gene performed similarly with coefficients of
variation for their detection of SARS-CoV-2 of 0.03 and 0.20 for sanitary sewer and WWTP
influent samples, respectively (Table 2). Across three concentration methods RT-ddPCR showed
fairly consistent patterns of SARS-CoV-2 detection, while the RT-qPCR assays relied heavily on
the N2 gene target for SARS-CoV-2 detection (Table 2). Overall RT-ddPCR performed better at
detecting SARS-CoV-2 gene targets than RT-qPCR in the wastewater samples tested with the
exception of the N2 gene target in sanitary sewer samples which performed better with RT-qPCR
(Table 2).

The overall concentrations of SARS-CoV-2 measured by RT-ddPCR for the three gene
targets (N1, N2, E) ranged from < LLOD - 5.71x10* GC/100ml, < LLOD — 1.11x10°
GC/100ml, and < LLOD — 3.94 x10* GC/100ml, respectively (Table A3-A5). The overall
concentrations of SARS-CoV-2 measured by RT-qPCR for the three gene targets (N1, N2, E)
ranged from < LLOD — 1.38x10° GC/100ml, < LLOD — 2.80x10° GC/100ml, and <LLOQ,
respectively (Table A3-AS5). Slightly higher concentrations of N2 gene target in sanitary sewer
and WWTP influent samples were obtained using RT-qPCR as compared to RT-ddPCR (Table

2).

Table 3.2 The detection of SARS-CoV-2 genes (N1, N2, E) using ultrafiltration and PEG
precipitation (with 16-hr incubation) concentration methods.
Concentration % Positive (Mean GC per 100 ml +SD)
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method N1 gene N2 gene E gene
Sample RT RT RT RT
Type  japcr  RT-4PCR - jipcp  RT-GPCR - incR  gPCR
Sanitary 55.6 11.1 66.7 77.8 88.9
Sewer Q44+ (874x10%+  (3.27+ (2.48+ (5.06+ 1.1
(0=9)  2.98x10%)  1.86x10%)  320x10%)  3.86x10%  6.32x10%)
CENI1
IVX f\qu eTri 55.6 ND* 88.9 44.4 55.6 ND®
9) (1.57+ (1484163 (1.38+ (1.93+
2.71x10%) x10%) 1.45%10°)  2.68x10%)
Sanitary 55.6 11.1 55.6 100 66.7
Sewer (3.82+ (1.37+ (1.48+ (4.68+ (3.16+ 1.1
(0=9)  521x10°)  1.56x10°)  3.63x10%)  5.89x10%)  4.95x10%)
CEN2
v f‘qu eTIi 55.6 D 88.9 77.8 444 ND
(=) (6.55+ .01+ (3.92+ (5.01+
8.33x107) 1.94x10°)  8.62x10%)  3.81x10?)
Sanitary 444 333 333 66.7 444
Sewer (1.27+ (1.85+ (1.22+ Q.67  (927x10% 111
, (0=9)  1.98x10%)  4.50x10%)  2.08x10%)  432x10%)  1.31x10%
PEG (with 16-
br incubation) IVX f\qu eTIi 77.8 22 66.7 66.7 66.7 D
9) (6.62+  (1.55<10%1  (6.76% @.17+ (5.87+
7.15x10%)  .64x10%)  7.14x10%)  9.02x10%)  8.10x10%)
Sanitary 519 259 51.9 815 66.7
Sewer  (6.33x10%  (9.53x10%2  (L.0l+  (1.87x10%  (5.83% 1.1
(0=27)  124x10%)  .80x10%)  2.38x10%)  3.39x10%)  8.90x10%)
All Methods
WWTP 63 7.4 81.5 63 55.6 ND
Influent  (2.95+ (2.93+ (3.42+ (1.57+ Q.77+
(0=27)  5.03x10%)  9.73x10°)  4.85x10%)  537x10%  5.27x10%)

“ND: Non-detect; *The detection limit of N1 gene for gPCR is 4.7 GC per reaction; The lower
detection limit of the E gene for qPCR was 47 gene copies per reaction.

Higher precision between gene targets was observed in the sanitary sewer samples versus

the WWTP influent samples for both RT-ddPCR and RT-qPCR (Figure 1). RT-ddPCR showed

significantly lower coefficients of variations for every combination of concentration method and

sample type with the exception of WWTP influents processed by CEN2 and PEG (Figure 1).
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Figure 3.1 Coefficients of variations for SARS-CoV-2 gene targets; a) sanitary sewer samples, b)
WWTP influent samples, c¢) sanitary sewer samples with all concentration methods, d) WWTP
influent samples with all concentration methods. Two-way ANOVA analysis results shown

above each graph; ns: Not-significant, * p-value <0.05, ** p-value <0.01, *** p-value <0.001,
k%% p-value <0.0001
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3.4.4 Evaluation of rapid PEG approach for the detection of Phi6 and SARS-CoV-2 in
wastewater

Based on the comparison between ultrafiltration and PEG methods for wastewater, the
PEG precipitation was evaluated further for the detection of Phi6 and SARS-CoV-2 with and
without 16 hours of incubation. As shown in Table 3, without an overnight incubation, the PEG
method showed an average recovery efficiency of 18.8% for sanitary sewer and of 35% for
WWTP influent samples. In general, this approach produced lower recovery for Phi6 as
compared with the PEG with overnight incubation, regardless of the type of wastewater samples.

However, the difference was not statistically significant (Table 3.3).

Table 3.3 Mean recovery efficiencies of Phi6 in seeded wastewater samples using PEG
precipitation method with and without overnight incubation
Phi6 mean recovery £+ SD (%)

PEG with overnight Rapid PEG without

Wastewater Type ) . ]
(16-hr) incubation overnight
incubation
Sanitary Sewer (n=15) 32.07+23.23 18.80+11.48
WWTP Influent (n=4) 31.31+11.73 34.99+26.38
All Samples (n=19) 31.92421.27° 21.89+15.88?

2 No significant difference (n=19, p = 0.1048) in mean recovery efficiencies between methods.

For the detection of SARS-CoV-2 using RT-ddPCR, comparable results were obtained
for the N1 and N2 gene targets with and without overnight incubation (Table 4). However, the
rapid PEG method produced a lower percentage of WWTP influent samples positive for the E
gene. Average SARS-CoV-2 concentrations varied little between sample types, PEG methods
(i.e., with and without overnight incubation), and gene targets using RT-ddPCR, ranging from

1.8244.55x10° GC/100ml to 8.57x10°+1.12x10* GC/100ml (Table 4).
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Table 3.4 Percent positive and mean concentrations of SARS-CoV-2 gene targets for PEG

method with and without overnight incubation as measured using RT-ddPCR

% Positive (Mean GC per 100 ml £SD)

Wa;t e:)veater With overnight (16-hr) incubation Without overnight incubation
y
N1 N2 E N1 N2 E
Sanitary 333 26.7 26.7 26.7 26.7 20 (1.97+
Sewer (4.36% (4.64+ (3.39+6.70 (4.19+ (3.95+ 4 87X.103)
(n=15) 9.21x10%  9.65x10%) x10%) 9.31x10%)  8.80x10%) ’
75 50 75 75 75 25
(8.57x10°%+ (2.0£2.15 (8.53+1.24 (3.97+ (6.40+ (7.92x10%+
WWTP 1.12x10%) x10%) x10%) 3.71x10%)  7.99x10%)  3.39x10Y
Influent
(n=4)
42.1 31.6 36.8 36.8 36.8 21.1
(5.25¢ (4.08+ (4.47+ 8.06 (4.14+ (4.46x (1.82+
All (n=19) 9.49x10%  8.62x10%) x10%) 8.35x10%  8.48x10%)  4.55x10%)
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3.4.5 Evaluation of PEG precipitation using Phi6 and coronavirus OC43 as potential SARS-
CoV-2 surrogates

When recovery efficiencies of Phi6 and OC43 were compared using five replicate
influent samples from two WWTPs, no significant difference between the two surrogates was
observed (Paired t test P value = 0.6137). These results are in line with recovery efficiencies for
0OC43 as reported by Pecson et al. (2021). However, the Phi6 recovery efficiencies observed in
this study were almost 2 logs higher than the Phi6 recoveries achieved by other laboratories
using the PEG method but with solids removal in the previous interlaboratory method

assessment study (Pecson et al., 2021).

3.5 Discussion

This study demonstrates that Pseudomonas phage Phi6 seeded in different wastewater
matrices can be concentrated and recovered by ultrafiltration-based method and PEG
precipitation. In general, PEG method provided better virus recovery than the ultrafiltration-
based methods as measured using RT-ddPCR. PEG precipitation is usually used as a secondary
step for virus concentration in large volumes of water samples (De Keuckelaere et al., 2013;
Polaczyk et al., 2008; Cuevas-Ferrando et al., 2021), but has also been used in concentrating
enteric viruses directly from sewage as a primary concentration process prior to analysis by cell
culture and molecular detection methods (Aw et al., 2010; Hovi et al., 2001; Myrmel et al., 2015;
Shieh et al., 1995; Thongprachum et al., 2018). Enveloped viruses such as influenza A viruses
and transmissible gastroenteritis virus (TGEV) have been detected in water samples using PEG
precipitation combined with an initial filtration step (Blanco et al., 2019; Borchardt et al., 2017,

Deboosere et al., 2011; Horm et al., 2012). However, only few studies have evaluated PEG
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precipitation as a primary concentration approach for viruses in sewage (e.g., Amdiouni et al.,
2012; Hovi et al., 2001; Ye et al., 2016).

The exact mechanism of PEG precipitation of viruses from suspension is still not well
understood. This could be due to that larger molecular aggregates such as viral particles are
preferentially associated with inter-polymer spaces between PEG molecules and thus
concentrated until their solubility is exceeded and precipitation occurs (Adams, 1973; Atha et al.,
1981). This may also precipitate out viruses attached to other particles in untreated wastewater
which is particularly difficult to filter. Thus, this method may be better for those samples with a
higher range of TSS and turbidities as evidenced by the wider range in SARS-CoV-2 N1 gene
concentrations seen by Pecson et al. (2021) with PEG protocols which removed solids as
compared to PEG protocols which retained solids.

In a previous study comparing three methods to concentrate enveloped murine hepatitis
virus (MHV) from wastewater samples, PEG and ultracentrifugation recovered 5% of the seeded
MHYV, whereas the ultrafiltration produced significantly higher recovery, 25% (Ye et al., 2016).
A possible explanation to lower virus recovery efficiencies obtained with PEG precipitation
could be a high salt (NaCl) concentration (0.5 M) added to the samples. High salt concentrations
may inactivate enveloped viruses during PEG precipitation process. For example, Hamelin et al.,
(1979) showed that infectivity of cytomegalovirus (an enveloped virus) declined from 24.7 to
6.6% as the NaCl concentration was progressively increased from none to 1.0 M NaCl. It has
also been reported that infectivity of retro- and lentiviruses decreases significantly in a high salt
elution buffer (1M NaCl) (Zimmermann et al., 2011). In this study, 0.2 M NaCl was used in the

PEG protocol.
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The choice of PEG precipitation over other concentration methods was also based on the
affordability of the procedure and the shortages of the filtration materials due to the increasing
numbers of laboratories worldwide that monitor SARS-CoV-2 in wastewater. PEG precipitation
is a simple and low-cost alternative (e.g., < $2 USD per sample for PEG method vs. >$34 USD
for ultrafiltration-based method) for the concentration of viruses in wastewater without requiring
any preconditioning of the sample. The PEG method used in this study has also been evaluated
in a recent interlaboratory methods assessment for SARS-CoV-2 genetic signal in raw sewage
using betacoronavirus OC43 as a matrix spike. By comparing 36 standard operating procedures
used by 32 participating laboratories, PEG precipitation has shown a high degree of
reproducibility across laboratories (Pecson et al., 2021).

Although PEG precipitation provided higher recovery efficiencies for Phi6 and SARS-
CoV-2 in wastewater when compared with ultrafiltration, the protocol is slower particularly with
an overnight incubation. However, in this study, the results of PEG precipitation with and
without an overnight incubation for Phi6 and SARS-CoV-2 were not statistically significant.
This is in agreement with other studies that reported a 2-hour precipitation is sufficient for
viruses (Deboosere et al., 2011; Polaczyk et al., 2008). Therefore, the PEG protocol could be
shortened to increase throughput or accommodate existing analysis workflows for rapid results.

In addition to investigating recovery efficiencies of artificially seeded viruses using
different concentration methods, this study compared the detection of SARS-CoV-2 genetic
signals in wastewater using RT-qPCR and RT-ddPCR. Overall, RT-ddPCR showed higher
sensitivity rate compared to RT-qPCR. While RT-qPCR shows equivalent detection rate of the
SARS-CoV-2 N2 gene as RT-ddPCR, RT-ddPCR performed better for the E gene in wastewater.

This may be due to RT-ddPCR allowing for greater PCR efficiency when lower concentrations
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of the target gene are present and its ability to cope with higher levels of inhibitory substances in
wastewater. While a high number of samples in this study were found to be positive for one or
more of the SARS-CoV-2 gene targets, a direct comparison of the virus concentrations between
sanitary sewer and WWTP influent samples would be inaccurate due to the different sampling
methods. For sanitary sewer, grab sampling was used to collect wastewater directly from
manbholes or lift station whereas composite sampling technique was used for the WWTP.
Different wastewater sampling techniques may influence the ability to detect and quantify viral
genetic markers using PCR-based methods. For example, a grab sample taken during low flow
periods may miss detecting the SARS-CoV-2 genetic markers in wastewater. A similar situation
can occur for composite samples particularly for long sampling periods (e.g., 24 hrs) as the viral
signals may be diluted. Therefore, determination of the optimal sampling strategy and timing
will greatly enhance the ability to accurately detect SARS-CoV-2 in wastewater. Heaton et al.
(1992) showed that over 60% of men and women defecated between 5 am and 12 pm each day.
These patterns may have changed since the study, but sample collection time is still an important
factor to consider when conducting a wastewater surveillance for SARS-CoV-2.

The concentration and detection procedures outlined in this study will facilitate rapid and
high-throughput detection of SARS-CoV-2 in wastewater samples. The methods were used
successfully in field studies for the detection of SARS-CoV-2 RNA in various wastewater

samples.
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Figure 3.A1 qPCR standard curves for SARS-CoV-2 gene targets with slope, y intercept and R2.
a) N1 standard curve, b) N2 standard curve, ¢) E gene standard curve.
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Table 3.A1 Individual recovery efficiencies of ultrafiltration and PEG methods for the detection
of Phi6 in seeded wastewater samples.

Wastewater Sample Ultrafiltration Ultrafiltration PEG
Tvpe Site ID Da tep Method 1 %  Method 2 %  Precipitation
yp Recovery Recovery % Recovery
Hospital
Lift  3/25/2020 10.91 5.02 78.55
Station
Hospital
Lift  3/25/2020 8.97 4.99 49.33
Station
‘ Hospital
Sanitary Lift  3/25/2020 8.90 4.95 26.52
Sewer Station
MSUL  5/11/2020 39.90 22.07 8.40
MSU2  5/11/2020 411 11.13 3.93
MSUL  8/3/2020 428 14.73 21.82
MSU2  8/3/2020 1.98 6.57 24.61
MSU3  8/3/2020 3.77 5.77 47.49
MSU4  8/3/2020 9.56 9.55 46.68
W‘ZTP 4/6/2020 8.02 1.90 26.68
W‘ZTP 4/20/2020 9.64 1.23 23.03
W‘ZTP 6/1/2020 0.48 5.05 58.33
WWTP
Wastewater | o 4/13/2020 27.41 26.95 38.07
Treatment — WWTP 65020 0.30 0.57 23.57
Plant E
Influent W“E’TP 6/1/2020 0.05 0.10 3431
W‘;’/ITP 5/6/2020 3.64 24.68 4.67
W‘;’/ITP 4/29/2020 3.14 5.57 26.87
W‘;’/ITP 6/3/2020 1.03 0.87 35.04
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Table 3.A2 Individual sample Phi6 percent recoveries for two PEG viral concentration methods

2-hour Spin

Wastewater Site ID Sampling followed by vzv;:ll?(:llftshl:)lll(ll
Type Date 16 hr hold % Recovery
% Recovery
Hospital Lift Station 3/25/20 18.15 15.56
MSU3 9/8/20 15.12 5.39
MSU3 9/14/20 18.91 35.19
MSU4 9/8/20 12.87 17.65
MSU4 9/14/20 4.93 35.36
MSU5 9/8/20 77.79 29.79
i MSU5 9/14/20 17.88 7.52
Santary MSU6 9/8/20 57.03 32.28
MSU6 9/14/20 34.52 37.95
MSU7 9/8/20 13.65 10.52
MSU7 9/14/20 33.11 9.85
MSU8 9/8/20 49.79 22.41
MSU8 9/14/20 12.06 13.22
LRB2 8/31/20 57.06 15.38
LRB3 8/31/20 77.68 3.49
Wastewater WWTP A 4/6/20 21.92 20.92
Treatment WWTP A 4/20/20 22.69 7.17
Plant Influent WWTP M 8/31/20 33.66 66.85
(Post-Grit) WWTP W 8/31/20 46.96 45.01
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Table 3.A3 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR for centrifugation method 1.

N1 N2 E
rsf;g?le Site ID S;')I:ale GC 100mI GC 100mI! GC 100mI!
RT-ddPCR  RT-qPCR  RT-ddPCR  RT-gPCR  RT-ddPCR  RT gPCR
Hoglt’;?éfﬂ 3/25/2020 7.57E+03 5.67E+04  8.80E+03 1.13E+05 1 22E+04 DNQ?
Hoglt’;?éfﬂ 3/25/2020 6.94E+03 ND 6.27E+03 2.90E+04 1.55E+04 ND
Hoglt’;?éfﬂ 3/25/2020 1.68E+03 1.51E+04  5.62E+03 5.84F-+04 2.76E+03 ND
Sanitary MSU1 5/11/2020  3.95E+03 ND 4.22F+03 ND 1.23E+04 ND
Sewer MSU2 5/11/2020 7.58E+02 ND 3.41E+03 2.07E+04 1.36E+03 ND
MSU1 8/3/2020 ND ND 331E+02 DNQ 5.30E+02 ND
MSU2 8/3/2020 ND ND ND DNQ 2.62E+02 ND
MSU3 8/3/2020 ND ND ND DNQ 3.70E+02 ND
MSU4 8/3/2020 ND ND ND ND ND ND
WWTPA  4/6/2020 2.55E+03 ND 2.80E+03 ND 7.95E+03 ND
WWTPA  4/2012020 1.43E+03 ND 2.20E+03 ND 2.90E+03 ND
WWTPA  6/1/2020 ND ND 2.16E+02 ND ND ND
Wastewater ~ WWTPE  4/13/2020  8.45E+03 ND 5.05E+03 4.59E+03 4.20E+03 ND
Iﬁiﬁ; . WWIPE 412012020 ND ND 1.35E+03 1.46E+03 ND ND
(Post-grity ~ WWTPE  6/1/2020 ND ND ND ND ND ND
WWTPM  5/6/2020 4.99E+02 ND 7.82E+02 ND 1.06E+03 ND
WWTPM 4292020  6.96E+02 ND 2.97E+02 1.46E+03 7.40E+02 ND
WWTIPM  6/3/2020 ND ND 5.20E+02 5.23E+02 ND ND
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Table 3.A4 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR
for centrifugation method 2.

N1 N2 E
Samble Sample _GC100mI! GC 100mI" _ GC 100mI"
P Site ID oWP TRT-  RI- RI- RT- RI-  RI-
yp ddP qPC ddP qPC ddPC qPC
CR R CR R R R
Hospial Lift 32520 6.04E 491E 370E 453E 248E p o
Station 20 403 403 403 +03 403
Hospital Lift  3/2520 158E . 137E 817 1S6E
Station 20 +04 104 403 +04
Hospital Lift 32520 387E 326E L82E 4I16E
Station 20 +03 103 404 +03
5/11/20 6.87E 1.11E 726E 427E
MSU1 20  +03 NDolos 403 +03 P
Sanitary 5/11/20 1.21E 3.17E
Sewer MSU2 0 Np ND O ND 0, ND
8/3/202 733E
MSU1 ; ND  ND  ND TPE OND ND
8/3/202 6.13E
MSU2 ; ND  ND  ND %S NDND
MSU3 8 36202 ND ND ND 4'+9052E ND ND
8/3/202 3.46E 341E 9.52E 3.71E
MSU4 0 +02 NDO Lo oo 402 NP
4/6/202  5.36E 1.69E 7.78E
WWTP A ; o Np UOF Np TRE D
4/2020 5.82F 5.46E 3.04E 5.96E
WWTP A 20 +02 Y L 403 402 NP
6/1/202 488E 3.74E
WWTP A ; ND o Np o PR TR ND ND
4/13/20 936E 2.68E 1.05E
Wastewat W WIPE 20 NDOOND o o4 403 NP
er Plant 4/20/20 1.16E &.58E
Influent WWTP E 0 NDOND oy, NDND
(Post-grit)  wwrpg ¢ 16202 ND ND ND 1 '+%§E ND ND
5/6/202  4.93E 2.96E
WWTP M ; oy ND ZF ND ND  ND
4/29/20 2.82E 5.99E 8.58E 1.06E
WWIPM 20 +03 NP0z s 403 D
6/3/202 1.92E 4.03E 1.14E
WWTP M ; iy np PR TS ND D
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Table 3.A5 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR for PEG precipitation (with 16-hr
hold).

N1 N2 E

Sample Site ID Sample GC 100ml’ GC 100ml” GC 100mlI’
Type Date RT- RT- RT- RT- RT- RT-
ddPCR qPCR ddPCR qPCR  ddPCR  PCR
H";?t’;i?(lnflﬁ 3/25/2020 2.09E+04 138E+05 120E+04 131E+05 3.49E+04 DNQ*
H";f;iil)fﬁ 3/25/2020 5.71E+04 9.49E+03 6.05E+04 5.64E+04 2.05E+04  NDV
H";?t’;i?(lnflﬁ 3/25/2020 2.98E+04 9.83E+03 3.17E+04 236E+04 222E+04  ND

Sanitary MSUI  5/11/2020 2.99E+03  ND ND ND ND ND
Sewer MSU2  5/11/2020  ND ND ND  2.15E+04  ND ND
MSUI 8/3/2020 ND ND ND  158E+03  ND ND

MSU2  8/3/2020 ND ND ND ND ND ND

MSU3  8/3/2020 ND ND ND ND ND ND

MSU4  8/3/2020 ND ND ND  134E+03 6.10E+02  ND

WWTP A 4/6/2020 8.18E+03  ND ND  1.94E+04 595E+03  ND

WWTP A 4/20/2020 246E+04  ND  520E+03 3.63E+04 2.67E+04  ND

WWTP A 6/1/2020 ND ND ND  241E+04  ND ND

Wastewater  WWTPE  4/13/2020 7.67E+03 5.14E+04 227E+03 2.80E+05 6.09E+03  ND
. f&f‘l‘;t WWTPE  4/20/2020 4.61E+03 ~ ND  493E+03  ND  2.53E+03  ND
(Post-grity WWTPE  6/12020 2.66E+03 1.99E+03 8.83E+03 5.12E+03  ND ND
WWTPM  5/6/2020 ND ND  230E+04 5.11E+03 5.90E+03  ND

WWTPM  4/29/2020 3.64E+03 ~ ND  122E+04  ND ND ND

WWTPM  6/3/2020 5.04E+03  ND ND ND  148E+03  ND

“DNQ: Detected Non-quantifiable; °ND: Non-detect.
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Table 3.A6 Individual sample SARS-CoV-2 gene concentrations for PEG precipitation with 16-hour hold and without holding.

16-hour Hold No Hold
Sample . Sample N1 N2 E N1 N2 E
Site ID
Type Date (GC (GC (GC (GC (GC (GC
100ml") 100ml') 100mI") 100mI") 100ml") 100ml™")
Hospital
Lift 3/25/20 2.98E+04 3.17E+04 2.22E+04 2.28E+04 2.02E+04 NA?
Station
MSU3 9/8/20  1.34E+03 1.68E+03 1.17E+03 8.53E+02 7.68E+02 5.63E+02
MSU3 9/14/20 2.39E+04 2.45E+04 1.72E+04 3.08E+04 3.01E+04 1.89E+04
MSU4 9/8/20 ND® ND ND ND ND ND
MSU4 9/14/20  5.60E+02 ND ND 1.34E+03 ND ND
MSU5 9/8/20 ND ND ND ND ND ND
Sanitary MSUS5 9/14/20 ND ND ND ND ND ND
Sewer MSU6 9/8/20 ND ND ND ND ND ND
MSU6 9/14/20  1.12E+03 2.63E+03 1.18E+03 ND 9.43E+02 8.97E+02
MSU7 9/8/20 ND ND ND ND ND ND
MSU7 9/14/20 ND ND ND ND ND ND
MSUS 9/8/20 ND ND ND ND ND ND
MSUS 9/14/20 ND ND ND ND ND ND
LRB2 8/31/20 ND ND ND ND ND ND
LRB3 8/31/20 ND ND ND ND ND ND
Wastewater WWTPA  4/6/20  8.18E+03 ND 5.95E+03 6.45E+03 6.28E+03 NA
. f&i‘;;t WWTP A 4/2020 2.46E+04 520E+03 2.67E+04 7.84E+03 1.77E+04  NA

(Post-grit) WWTPM  9/2/20 ND ND ND ND ND ND
WWTPW  8/31/20 6.72E+02 6.72E+02 6.72E+02 7.68E+02 7.68E+02 7.68E+02
aNA: Not available; "ND: Non-detect

107



Table 3.A7 Individual coefficients of variations for RT-ddPCR and RT-qPCR for three SARS-CoV-2 gene targets.

Coefficient of Variation

Sample . CEN1 CEN2 PEG
T Site ID
ype RT- RT- RT- RT- RT- RT-
ddPCR qPCR ddPCR gPCR ddPCR qPCR
Hospital Lift
Station 0.25 0.73 0.44 0.11 0.51 0.59
Hospital Lift
Station 0.54 1.01 0.08 0.77 0.48 0.87
Hospital Lift
Station 0.61 0.94 0.12 0.84 0.18 0.42
ngtary MSU1 0.70 0.85 1.50 1.08 0.23 1.30
cwWer
MSU2 0.75 0.91 0.11 1.02 0.00 0.74
MSU1 0.35 1.30 0.00 1.20 0.00 1.08
MSU2 0.11 1.30 0.00 1.28 0.00 1.30
MSU3 0.19 1.30 0.00 1.38 0.00 1.30
MSU3 0.00 1.30 0.05 0.99 0.09 1.19
WWTP A 0.69 1.30 0.61 1.30 0.68 0.74
WWTP A 0.34 1.30 0.04 0.79 0.63 0.79
WWTP A 0.43 1.30 0.73 1.21 0.00 0.75
Walsflfl:fter WWTP E 0.38 1.04 0.24 1.03 0.52 1.18
Influent WWTP E 1.24 0.80 1.15 0.99 0.32 1.30
(Post-grit) WWTP E 0.00 1.30 0.00 1.10 0.99 0.99
WWTP M 0.36 1.30 1.21 1.30 1.14 1.05
WWTP M 0.42 0.84 0.76 1.23 1.01 1.30
WWTP M 0.83 1.08 1.54 0.83 0.85 1.30
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Table 3.A8 Individual recovery efficiencies of the SARS-CoV-2 surrogates Phi6 and OC43 at
two WWTPs.

Sample Recovery Efficiency (%)

WWTP

Replicate 0C43 Phi6

1 0.72 1.15

2 14.55 11.85

Hyperion 3 13.00 8.49
4 7.33 5.68

5 491 6.93

All 8.10 6.82

1 6.50 3.71

2 2.53 3.88

3 4.83 6.41

TWPCP 4 5.45 6.48
5 2.03 3.44

All 4.27 4.78
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4.1 Abstract

During the COVID-19 pandemic wastewater-based epidemiology (WBE) has been
shown to be a useful tool for monitoring the spread of disease in communities and the emergence
of new viral variants of concern. As the pandemic enters its third year and clinical testing has
declined, WBE offers a consistent non-intrusive way to monitor community health in the long
term. However, understanding the best method for the application of WBE in different
communities is necessary. This study sought to understand how accurately wastewater
monitoring represented the actual burden of disease between communities. Two communities
varying in size and demographics in Michigan were monitored for SARS-CoV-2 in wastewater
between March of 2020 and February of 2022. Additionally, one community was monitored for
SARS-CoV-2 variants of concern from December 2020 to February 2022. Wastewater results
were compared with zipcode and county level COVID-19 case data to determine which scope of
clinical surveillance was most correlated with wastewater loading. Pearson  correlations were
highest in the smaller of the two communities (» = 0.45-0.81) with the highest correlations with
zipcode level case data. When comparing the date of cases being reported against the date of the
onset of symptoms, the smaller community was more highly correlated with the onset date
(onset: 7 = 0.68-0.81 vs. referral: » =0.38-0.48), while the larger community showed little
variation (r = 0.62-0.68). This study has demonstrated that wastewater surveillance in different

communities are linked to different geographic and temporal scales.

4.2 Introduction
As the COVID-19 global pandemic enters its third year, the surveillance of SARS-CoV-

2, the etiological agent of COVID-19, has begun to shift to less intrusive methods. Wastewater-
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based epidemiology (WBE) in particular, has shown its usefulness as large numbers of viral
particles are shed in the feces of infected individuals including symptomatic, asymptotic, and
pre-symptomatic persons (Parasa et al., 2020; Wang et al., 2020; Zheng et al., 2020; Lee et al.,
2020). The ability of molecular detection techniques to identify and quantify the viral RNA of
SARS-CoV-2 in raw wastewater along with the ability to detect spikes in cases prior to the
identification of clinical cases is invaluable as the pandemic continues (Peccia et al., 2020;
Medema et al., 2020). A number of studies have utilized WBE to track the progress of COVID-
19 in communities, and groups have used the sewer to focus on a single building, local area, or
wastewater at the treatment facility to represent a city or county geographic scale (Fahrnfeld et
al., 2022; Rasero et al., 2022; Lastra et al., 2022).

While previous studies have shown that SARS-CoV-2 levels in wastewater correlate with
COVID-19 cases, there has been very little comparative analysis of the wastewater signal across
the various communities (Gonzalez et al., 2020; Peccia et al., 2020; Gerrity et al., 2021; Graham
et al., 2021). Understanding the how differences in community size and wastewater treatment
impact SARS-CoV-2 wastewater results is necessary to properly apply WBE on a wider scale. It
is important to understand how wastewater SARS levels reflect the disease and address the
impact of new variants and use of vaccinations as clinical testing declines (Martin et al., 2020;
Smith et al., 2021).

The goal of this study was to determine how well wastewater surveillance for SARS-
CoV-2 addresses the cases of disease in different communities. For this purpose, two
communities in Michigan were selected for comparison. These communities vary in population
size, demographics, and total numbers of cases of COVID-19 over the course of the pandemic.

This study had three main objectives: 1) to evaluate the efficacy of wastewater monitoring of
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SARS-CoV-2 in two communities with diverse characteristics; 2) to determine if county or
zipcode level case data are necessary to successfully correlate with wastewater surveillance
results; 3) to determine the impact of vaccination rates on SARS-CoV-2 wastewater signals
compared to case numbers; and 4) examine the occurrence and appearance of new variants in

sewage during the waves of COVID-19 in one community.

4.3 Materials and Methods
4.3.1 Wastewater sampling and site descriptions

4.3.1.1 Wastewater treatment plant descriptions
Two communities and their corresponding wastewater treatment plants were selected for

sampling and comparison. Wastewater treatment plant B treats wastewater from a city and two
surrounding townships within a single county. The WWTP B serves a population of 25,000
persons with an average flow of 2.3 million gallons per day (MGD). Wastewater treatment plant
A serves 31 communities, with 25 within its primary county and six others in surrounding
counties. The WWTP A serves a population of 110,267 persons with an average flow of 27
MGD. While both the WWTP B and WWTP A use conventional activated sludge followed by
disinfection the WWTP A is an approved blending facility which handles wet weather induced

inflow. This potentially increases a dilution factor for wastewater during wet weather events.
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Table 4.1 County level demographics, COVID-19 vaccinations, and total COVID-19 cases/
1,000 persons to date

County A County B
Total Population by County 405,813 66,699
(Total Population by Zipcode?) (110,267) (25,000)
Population Density (People per sq. mile) 637.13 36.87
Household Size 2.41 2.39
Percent Living in Poverty 19.8 16.4
Percent of Population >65 years 17.97 19.62
Ratio of Male to Female Population 48.2:51.8 50.3:49.7
Ratio of White to Non-white persons 75.3:24.7 93.2:6.8
Per Capita Income (2020) $46,152 $44,445
(Thousczjl?ll:llsltgflngll'ei?ll))ollars) 16,121,115 2,787,951
Percent Fully Vaccinated as of (3/1/22) 50.2 63.6

Total Number of COVID-19 Cases/1,000

persons as of 3/1/22 247 235

Total Number of COVID-19 Deaths as
of 3/1/22 1,692 126
Total Number of COVID-19 Deaths/ 49 1.9

1,000 persons as of 3/1/22
aZipcodes served by WWTP; Sources: US CDC, 2022; BEA, 2022; US Census Bureau, 2022

4.3.1.2 Sample Collection Methods
Wastewater samples for this study were collected over a 24 hr period at the inflows after

the primary grit removal of each WWTP. The WWTP B collected composite samples based on
their expected daily flow with approximately 65 ml being collected for every 58,000 gallons of
wastewater entering the plant for a total of ~2500 ml for a 24 hr period. WWTP A collected
composite samples based on a time paced approach collecting 100 ml every 30 mins over a 24 hr
period. A total of 1 L of wastewater was then transported to the processing laboratory on ice. A
total of 186 samples were collected from WWTP A (N=92) and WWTP B (N=94) between April
2020 and February 2022 at a frequency of once per week. Between April 2020 and January 2021,

the samples from WWTP B were shipped overnight on ice to Michigan State University.
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Between February 2021 and December 2021, the samples from WWTP B were driven on to
Northern Michigan University for processing. A gap in sampling occurred for both WWTPs
between January/February and May/July 2021 due to the ending of one project funding and the
start of another. All samples from the ARTP were shipped on ice overnight to Michigan State
University (April 2020- December 2021). Physiological measurements including temperature,
pH, biological oxygen demand (BOD), and total suspended solids (TSS) were taken at the time
of sampling by each WWTP’s onsite laboratory (Table 2). Turbidity was measured upon arrival
at the processing laboratory. Samples collected between April 2020 and October 2020 kept
frozen at -80°C until analysis. All samples collected after October 25™, 2020 were kept at 4°C,
never frozen and were processed within 72 hours of collection. This change between storage
temperatures was due to evidence that the SARS-CoV-2 RNA signal declined in the raw

wastewater samples after they had been frozen.

4.3.2 Viral concentration and processing methods

Wastewater samples were processed, and viral particles were concentrated using the
polyethylene glycol (PEG) workflow published by Flood et al. (2021). Briefly, samples were
inverted to mix 25 times then 100 ml of sample was transferred to a 250 ml polypropylene
centrifuge bottle. A total of 8 g of 8% (w/vol) molecular grade PEG 8000 (Promega Corporation,
Madison Wisconsin) and 1.17 g NaCl (0.2 M w/v) were added to each sample. The samples were
then slowly mixed on magnetic stir plates for 2 hours at 4°C. Samples were either held at 4°C for
16 hrs or immediately transferred to the centrifuge. Samples were centrifuged at 4,700 x g at 4°C
for 45 mins. Following centrifugation, the majority of the supernatant was removed, and the

remaining pellet was resuspending in the remaining supernatant (2-10 ml). Sample concentrates
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were aliquoted and either immediately underwent RNA extraction or were stored at -80°C until
further processing.

Viral ribonucleic acid (RNA) was extracted using the QIAmp Viral RNA Minikit
(Qiagen, Germany) according to the manufacturers protocol. A total of 200 ul of concentrate was

used for each RNA extraction with a final elution volume of 80 pl.

4.3.3 Detection and enumeration of SARS-CoV-2 from wastewater using RT-ddPCR

All genetic targets were analyzed using one-step reverse transcriptase droplet digital
PCR. Two general SARS-CoV-2 nucleocapsid 1 (N1) and nucleocapsid 2 (N2) gene targets were
analyzed for all samples. The Pseudomonas bacteriophage Phi6 was spiked into all samples as
either a recovery efficiency control or an inhibition control. The primer and probe sequences for
the N1, N2, and Phi6 gene targets are shown in Table 1. Samples from WWTP A were analyzed
for genetic markers for SARS-CoV-2 variants of concern starting in December of 2020 using GT
Molecular’s variant assay kits for digital PCR (GT Molecular, Fort Collins, Colorado, USA).
These variants included the Alpha variant (gene targets N501Y and DEL69-70), the Delta variant
(gene targets T478K and L452R), and the Omicron variant (gene targets N501Y, DEL69-70, and
K417N). The variant assays used the same thermocycling setup as the Phi6 assay. All analyses
were run with three technical replicates and a full contingent of quality controls (positive,
negative, extraction negative, and non-template controls) on each assay plate.

Droplet digital PCR was performed with a Bio-Rad QX200 ddPCR (Bio-Rad, CA, USA).
All assays in this study used the 1-step RT-ddPCR Advanced kit for probes (Bio-Rad, CA, USA)
for all ddPCR reaction mixtures. The N1, N2, and Phi6 gene target reaction mixtures all

contained a final concentration of 1x Supermix (Bio-Rad, CA, USA), 20 U ul! of reverse
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transcriptase (RT) (Bio-Rad, CA, USA), 15 mM DTT, 900 nmol of each primer, 250 nmol of
each probe. The N1 and N2 gene targets were run in duplex. A total of 5 ul of sample RNA
template was analyzed in technical triplicates for each assay (including each variant assay). The
variant assays were run per the manufacturer’s protocols.

Droplet generation by microfluidic mixing was performed in a Bio-Rad Automatic
Droplet Generator (ADG) (Bio-Rad, CA, USA). Each 20 pl reaction mixture was combined with
70 ul of droplet generation oil which resulted in a final volume 40 pl of reaction mixture-oil
emulsions. These emulsions contained up to 20,000 individual oil droplets. After droplet
generation the 96-well PCR plates were heat-sealed with foil and placed in a C1000 96-deep well
thermocycler (Bio-Rad, CA, USA) for PCR product amplification. The N1 and N2 assay
followed the following thermocycling parameters: 25°C for 3 min, 50°C for 1 hr, 95°C for 10
min, followed by 40 cycles of 95°C for 30 s and 55°C for 1 min with ramp rate of 2°C s™!
followed by a final cycle of 98°C for 10 min. The Phi6 and variant assays followed the same
thermocycling parameters except their annealing temperature was set to 60°C. After
thermocycling was completed the sealed 96-well plates were transferred to the QX200 droplet
reader (Bio-Rad, CA, USA) for analysis of the samples’ droplets fluorescent probe signals by

spectrophotometric detection.
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Table 4.2 Primer and probe sequences

Target Primer/Probe Primer/Probe Sequence Reference
name
2019-nCoV_NI1-F | 5’-GACCCCAAAATCAGCGAAAT-3’
2019-nCoV_NI1-R | 5’-TCTGGTTACTGCCAGTTGAATCTG-3’ CDC, 2020

SARS | 2019-nCoV_NI1-P | 5’>-FAM-ACCCCGCATTACGTTTGGTGGACC-BHQI1-3’

CoV-2 | 2019-nCoV N2-F | 5-TTACAAACATTGGCCGCAAA-3’

2019-nCoV_N2-R | 5’-GCGCGACATTCCGAAGAA-3’ CDC, 2020

2019-nCoV_N2-P | 5’-HEX-ACAATTTGCCCCCAGCGCTTCAG-BHQ1-3’

O6Tfor 5’-TGGCGGCGGTCAAGAGC-3’ Gendron et al
Phi6 P6Trev 5’-GGATGATTCTCCAGAAGCTGCTG-3’ 2010 ?

®6Tprobe 5’- FAM-CGGTCGTCGCAGGTCTGACACTCGC-BHQ1-3’

4.3.4 COVID-19 case and vaccination data

Data for COVID-19 cases were procured for both zipcode and county levels. Zipcode
level case data were provided through an agreement with the Michigan Department of Health
and Human Services. Zipcodes serviced by each wastewater treatment plant were provided by
plant operators. In the event of missing data for the onset of symptoms, an estimate of onset date
was used based on an average of all data with known information. This was calculated by
averaging the number of days between onset of symptoms and referral dates for paired data
points over the course of the study. The average number of days between onset and referral date
was 6.03 days (N=40,348) for the combined datasets (community A + B). The average number
of days between onset and referral date for each community alone were 6.04 days for A and 5.19
days for B with both ranging from 0 to 100 days.

County level case data were obtained from the US Centers for Disease Control and

Prevention’s (US CDC) COVID Data Tracker website (https://data.cdc.gov/Public-Health-

Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni). COVID-19

vaccination data were obtained from the US CDC’s COVID Data Tracker website
(https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-
amgh).
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4.3.5 Data analysis

All ddPCR results were converted from gene copies (GC) per reaction (5 pl of sample
template) to GC/100 ml prior to analysis as described in Flood et al. 2021. Following conversion
to GC/100 ml wastewater results were then normalized for each community based on daily
wastewater flows and zipcode level population. Non-detects (ND) replicates were included in
statistical analysis results were assigned their lower limits of detection for statistical analysis.

Data visualization and statistical analysis were performed using Graphpad Prism 9
(Graphpad Software, CA, USA). Correlation analyses were performed using pearson correlation
(r) analysis. Correlation analyses were compared for results between both community’s
wastewater results and case data, between wastewater results with zipcode specific and county
level cases data, and vaccination rates and case data. To account for lag time between the
wastewater signal and cases, both the date of symptom onset and the date of case referral were

analyzed against the wastewater signal.

4.4 Results

4.4.1 Comparison of SARS-CoV-2 concentrations found in wastewater against COVID-19 case
data in two communities

The data gathered during this study showed that the two wastewater treatment plants (A
and B) had distinctly different characteristics (Table 4.3). WWTP A had approximately 10 times
the average daily flow (27.39 million gallons per day, MGD) compared to WWTP B which had
an average flow of 2.79 MGD. Sample temperatures ranged from 7.4 to 22.6°C for WWTP A
and samples from WWTP B ranged from 8.90 to 26.67°C. While WWTP A had a slightly lower

average BODS levels than WWTP B (161.90 and 206.17, respectively) higher turbidities were
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observed at WWTP A (WWTP A: 80.83 vs. WWTP B: 59.32). Wastewater N1 and N2 gene
targets average concentrations for SARS-CoV-2 were similar between the two WWTPs (WWTP
A (N=94) N1 3.94, N2 3.86; WWTP B (N=92) N1 3.96, N2 3.94 Logi10GC/ 100ml) (Table 4.4).
However, as expected the loading as calculated by daily average flow at each of the WWTPs and
adjusted for population showed that the larger WWTP A had more than twice as much virus
(84.06 N1 gene copies per person per day) compared to WWTP B (38.93 GC/Person/Day) and

nearly double for the N2 gene as well (69.06 vs. 38.23 GC/Person/Day).

Table 4.3 Physiological measurements for two wastewater treatment plants

Estimated Flow
WWTP Population Rate Temperature pH BODS TSS Turbidity
Served by O (mg/L) (mg/L) (NTU)
. (MGD)
Zipcode
N 110,267 éﬁg 1481 7.61 161.90 194.00 80.83
Sses (4226 (128797) (6403700) (900-5260)  (269-158)
5 25,000 é‘gg_ 14.11 729 206.17 197.52 59.32
433 (B902667)  (L0T7)  (19.03410) (99.03640) (174-1520)

Note: A gap in sampling occurred for both WWTPs between January/February and May/July
2021 due to the ending of one project funding and the start of another
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Table 4.4 Summary of wastewater monitoring results for two wastewater treatment plants

N1 N2 N1 N2
Log10GC/ Log10GC/ GC/Person/ GC/Person/
100 ml 100 ml Day Day
Percent Positive | 10-21% 68.09% 70.21% 68.09%
W‘ZTP (66/94) (64/94) (66/94) (64/94)
(N —94) Mean? 3.94 3.86 84.06 69.06
(Range) (2.70-5.07°)  (2.57-5.00°) (3.83-1160.17)  (3.83-983.20)
Percent Positive  12:82% 77.17% 72.82% 77.17%
WV];’TP (67/92) (71/92) (67/92) (71/92)
(N=92) Mean? 3.96 3.94 38.93 38.23

(Range) (2.78-4.99°) (2.78-4.95°)  (2.82-341.88)  (2.38-319.96)
aArithmetic means; *Date of peak concentration for WWTP A was 11/29/21; °Date of peak

concentration for WWTP B was 1/20/21; Note: A gap in sampling occurred for both WWTPs
between January/February and May/July 2021 due to the ending of one project funding and the
start of another.

Figures 4.1-4.4 show the results of wastewater surveillance of SARS-CoV-2 graphed
with the running 7-day average zipcode level case data comparing the onset of symptoms date
for each community versus the date of referral for WWTP A N1; N2 and WWTP B N1; N2. A
gap in wastewater data between January/February and May/July 2021 was due to the ending of
one project funding and the start of another. Wastewater loading from both communities
followed the same trends in case data consistent with the waves of COVID-19 cases in Michigan
during the pandemic. The N1 gene results for community A had slightly higher correlation with
the referral date (Figure 4.1b: » = 0.68 p<0.0001) compared to the onset date (Figure 4.1a: r =
0.62 p<0.0001). The N2 gene results correlations for community A were almost identical
between the onset and referral dates (Figure 4.2a: onset » = 0.68 p<0.0001; Figure 4.2b: referral »
=0.67 p<0.0001). However, a larger difference in correlations was observed with community B

(Figures 4.3 and 4.4). The N1 gene results were more highly correlated with the onset date

(Figure 4.3a: » = 0.81 p<0.0001) compared to the referral date (Figure 4.3b: = 0.48 p<0.0001).
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This same pattern was seen with the N2 gene results as well with the onset date (Figure 4.4a)

showing a correlation of » = 0.68 while the referral date (Figure 4.4b) was only » = 0.38.
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aZipcode level population data was used for wastewater results normalization; ®A gap in
sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.1 Wastewater surveillance data (N1 gene target) for WWTP A (N=94)
(GC/Person/Day) and COVID-19 zipcode case data over time. a) N1 vs. case onset of symptoms
running 7-day average case data for COVID-19 (r = 0.62 p<0.0001; n =86 paired data points); b)
N1 vs. referral date for running 7-day average case data for COVID-19 (» = 0.68 p<0.0001; n
=85 paired data points).

131



a)

2 1500 —500
[=]
<
&
H =z
a 2
3 o
o o
[ [7
g a
3
2
s
= LI L O L N L B
'w»mmmwm\m\m\m\mommommm\mmm\mmmmmmmm\m\m\mm\mm\qﬁ‘
0 &@b\,a@,\%\%\\,@ Q) q;\ Q) \b,\p 0(&3: ,&& ‘3&-\,\'& “6“"\‘1«,\\'3’&"0' '\Q\,‘:\ e\\,‘p’& q%‘)‘b
- N2 Date -+ Running 7-Day Average Cases
b)
%1500- —500
Q
c
?
o &
o s
3 o
o D
g 2
© (7]
H
j:
=

NN AN NN 9
‘1"1' ‘1'00‘\'0'1'0\’1"\'\'1'\‘1'0\‘1'\’1'\‘\'\‘1'\ 0\‘1'\'\"1"1'0\‘»’1"1"1'\'1'0\‘1'\‘1'\'1'\‘1'
'\, \'19 &,\‘bfﬁt\ '\0 O Q!q' '\‘)q)‘)'\f) “‘ﬁ%&\‘)b}hﬂb‘\hﬁp\w,\\\ q:b\cﬂ'g S 0\,\0\0‘»@ \QW

- N2 Date —+— Running 7-Day Average Cases

aZipcode level population data was used for wastewater results normalization; ®A gap in
sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.2 Wastewater surveillance data (N2 gene target) for WWTP A (N=94)
(GC/Person/Day) and COVID-19 zipcode case data over time. a) N2 vs. case onset of symptoms
running 7-day average case data for COVID-19 (r = 0.68 p<0.0001; n =86 paired data points); b)
N2 vs. referral date for running 7-day average case data for COVID-19 (= 0.67 p<0.0001; n
=85 paired data points).
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aZipcode level population data was used for wastewater results normalization; ®A gap in
sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.3 Wastewater surveillance data (N1 gene target) for WWTP B (N=92) (GC/Person/Day)
and COVID-19 zipcode case data over time. a) N1 vs. case onset of symptoms running 7-day
average case data for COVID-19 (» = 0.81 p<0.0001; n =61 paired data points); b) N1 vs. referral
date for running 7-day average case data for COVID-19 (r = 0.48 p<0.0001; n =61 paired data
points).
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sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.4 Wastewater surveillance data (N2 gene target) for WWTP B (N=92) (GC/Person/Day)
and COVID-19 zipcode case data over time. a) N2 vs. case onset of symptoms running 7-day
average case data for COVID-19 (» = 0.68 p<0.0001; n =61 paired data points); b) N2 vs. referral
date for running 7-day average case data for COVID-19 (= 0.38 p<0.0001; n =61 paired data
points).

4.4.1.2 Zipcode vs county level case data varying spatial resolution

When comparing the two communities with county level case data the two communities
showed similar pearson correlation values of approximately 0.5 (WWTP A: N1 r=0.52
p<0.0001, N2 »=0.53 p<0.0001; n =93 paired data points; WWTP B N1 r=0.52 p<0.0001, N2
r=0.45 p<0.0001; n = 58 paired data points) (Figure 4.5). It is important to note that the

discrepancies in the total paired data points and the paired data points in the county level data
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was due the presence of censored data for multiple dates in the US CDC database. The zipcoode
level case data represented 25% of county level data for community A and 37.5% for community
B.

Correlations between wastewater loading and case data were compared between
communities. The N1 and N2 results for WWTP A with zipcode level referral date case data had
pearson r correlation values of 0.68 (p <0.0001) and 0.67 (p<<0.0001) while the county level case
data had r values of 0.52 (p<0.0001) and 0.53 (p<0.0001) (Figures 4.1b, 4.2b and 4.5a). WWTP
B showed greater differences in correlations between zipcode referral dates and county level case
data. N1 and N2 results had r values of 0.48 (p<<0.0001) and 0.38 (p<0.0001) for zipcode level
referral date data compared to only 0.52 (p<0.0001) and 0.45 (p<0.0001) for county level case

data (Figures 4.3b, 4.4b, and 4.5b).
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aZipcode level population data was used for wastewater results normalization; ®A gap in
sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.5 Wastewater surveillance data (N=94) (adjusted by flow and zipcode level population)
and county level COVID-19 case data over time. a) WWTP A SARS-CoV-2 gene target results
vs. county level case data for COVID-19 (N1 »=0.52 p<0.0001, N2 » = 0.53 p<0.0001; n =93
paired data points); b) WWTP B SARS-CoV-2 gene target results vs. county level COVID-19
case data (N1 = 0.52 p<0.0001, N2 » = 0.45 p<0.0001; n =58 paired data points).

4.4.2 Impact of vaccination rates on SARS-CoV-2 wastewater signals and case numbers
In this study, the percent vaccination rate at the county level were graphed per day.
Vaccination data in this case was for that population fully vaccinated (two doses) for the two

counties served by WWTP A and B. The first reported data point for vaccination rate was in
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December of 2020. Both counties had rapid increases in vaccination over the following six
months (Figure 4.6). However, after June of 2021 vaccination rates drastically declined and has
had not significantly increased since then with both counties almost plateauing near 60% of the
total population fully vaccinated. While Community B had lower cases/ 1000 persons than
Community A vaccinations began there (Community B) almost two months before Community
A (Figure 4.6). Even after the introduction of the full vaccine in Community A cases/ 1000
persons continued to rise. After the vaccination rate plateaued in October and November of 2021
viral loading and overall cases were much higher in community A compared to community B

(Figures 4.6 and 4.7).
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Figure 4.6 Vaccination rates and county level cases per 1,000 persons for communities A and B.
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aZipcode level population data was used for wastewater results normalization; ®A gap in
sampling occurred between January/February and May/July 2021 due to the ending of one
project funding and the start of another.

Figure 4.7 Percent of population fully vaccinated compared with SARS-CoV-2 gene target
loading (GC/Person/Day). a) WWTP A; b) WWTP B.
4.4.3 Detection of SARS-CoV-2 variants in WWTP A over time

Monitoring for SARS-CoV-2 variants of concern for WWTP A began in December of
2020 with testing for the Alpha variant. In June of 2021, samples from WWTP began to be
monitored for mutations associated with the Delta variant and subsequently in January of 2022
samples were monitored for mutations associated with the Omicron variant (Figure 4.8). The

N501Y and DEL 69-70 mutations, which indicate the potential presence of the Alpha variant,
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were first detected in May of 2021. Levels of N501Y and DEL 69-70 declined as the Delta
variant began to spread in Michigan in June of 2021. The Delta variant was first detected in
clinical samples in Michigan and confirmed by genetic sequencing on January 16, 2021.
However, it was not until July 12, 2021 that the Delta variant was detected in samples from
WWTP A. The first detection of the T478K and L452R genes (Delta variant mutations) in
WWTP A was on July 12, 2021. Delta variant mutations remained dominant in wastewater
samples until January 9, 2022. The K417N and DEL 69-70 mutations (indicative of the Omicron
variant) were first detected in wastewater from WWTP A on January 3, 2022 and was first

clinically detected in Michigan on December 1, 2021.
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Figure 4.8 Concentrations of SARS-CoV-2 variant genes for the Alpha, Delta, and Omicron
variants over time. Samples positive for the N501Y and DEL 69-70 gene mutations indicate the
potential presence of the Alpha variant. Samples positive for the T478K and L452R gene
mutations indicate the presence of the Delta variant. Samples positive for the K417N and DEL
69-70 gene mutations indicate the presence of the Omicron variant. Empty squares represent
Non-detects (NDs) and X’s were samples that were not assayed for that marker.

4.5 Discussion
This study demonstrates that the relationship between wastewater surveillance for SARS-

CoV-2 with COVID-19 cases differs between communities. While wastewater results were
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significantly correlated with the cases in both communities, the level of correlation differed
based on spatial (e.g., zipcode vs county level cases) and temporal (e.g., date of symptom(s)
onset vs. the referral date for cases) resolution. Both communities (A and B) had higher
correlations with zipcode level cases (A: = 0.62-0.68, B: » = 0.68-0.81) than county level cases
(A: r=0.52-0.53, B: » = 0.45-0.52) with the smaller community (B) having the highest levels of
correlation overall. However, when the communities’ wastewater results were compared against
date of symptom(s) onset vs. the referral date for cases community A showed little difference in
correlation (onset » = 0.62-0.68 vs. referral: » = 0.67-0.68). Community B showed a decrease in
correlation with cases using the case referral date (onset » = 0.68-0.81 vs. report: » = 0.38-0.48).
These results suggest that for both communities, wastewater surveillance is more representation
of higher spatial resolution of cases. When examining the temporal resolution of the
communities, the wastewater surveillance results for community A were almost equally as good
at representing cases of COVID-19 using either onset or case referral date. However, for
community B the wastewater results were more closely tied to the onset of symptoms. These
results support the idea that the early warning from wastewater monitoring vary between
communities as proposed by Greenwald et al. (2021). These differences between the
communities may be due to the amount of septage accepted by each facility (both WWTPs in
this study accept septage), the amount of dilution occurring due to stormwater (whether through
infiltration or combined treatment), or the percent of the total county population each facility
services (WWTP A services 25% of the population while WWTP B services 37.5% of its
county’s population). Additionally, differences in case “dates” in available datasets may have
caused some variation in the relationships observed between wastewater signals and clinical

cases. While county level case data from the US CDC consisted of only a single date for each
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2 ¢

case, zipcode level datasets provided three dates including “referral date”, “onset date”, and
“diagnosis date” with only the “referral dates” being consistently reported.

This study was somewhat limited in its ability to evaluate the impact of vaccination rates
on wastewater SARS-CoV-2 surveillance results and community COVID-19 cases. While earlier
vaccination rate increases, and lower population levels may have helped curve the increase in
cases in community B compared to community A, this current data set is insufficient to
statistically evaluate this at this time. Measuring case severity may be a better marker such as
hospitalizations or mortality rates, to evaluate the impact of vaccination in communities. The
inability to distinguish whether or not the cases, hospitalization, and mortality rates are for
vaccinated or unvaccinated individuals is also a limiting factor in accurate examination of the
results (Rainey et al., 2022). However, vaccination rates may be able to help in the examination
of variants of concern. In community A the gene targets for the Alpha variant were present
consistently from May 2, 2021 until June 27, 2021 over which time the vaccination rate for the
community increased from 29.3 to 38.4%. After June 27", the Alpha variant genes were mostly
absent from the wastewater samples and were then replaced by the Delta variant mutations.
These results are similar to those seen by Yaniv et al. (2021), where an increase in vaccination
rates was correlated with the decrease in the prevalence of the Alpha variant, but not the more
infectious Delta variant.

Understanding the temporal and geographic resolution of the disease metrics being
estimated by wastewater surveillance is paramount for the proper application of WBE. This
study found that zipcode data should be used whenever possible compared to county data
particularly if the population being served by the wastewater treatment facility is only a

proportion of the county. The use of septic tanks could greatly influence this, even if septage is
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brought to the WWTP for processing. While there is currently only one study that has
investigated SARS-CoV-2 in septic tanks (Zhang et al., 2020) it was focused on treatment and
disinfection of hospital wastewater. There is currently no information on the stability of the
signal in septage as this would greatly influence what might be expected in individual household
wastewater in septic tanks.

Various methods have been used to statistical relate cases of COVID-19 to SARS-CoV-2
concentrations in sewage. Feng et al. (2021) and Ai et al. (2021) have found that use of a fecal
indicator does not necessarily improve the correlations. However, Mazumder et al. (2022) and
Feng et al. (2021) have found that normalization using loading of the virus per day by population
improved the comparisons. In this study this lag was examined by using the onset of symptoms
compared to the date of referral. In the larger community (community A) this did not matter,
perhaps because of both the greater variability in the case data and SARS-CoV-2 signal in the
larger sewer system. Larger complex communities are more difficult to monitor, and detection
limits need to be further investigated.

Community A had a much greater mortality than B (based on county level data) over the
course of this study. This may have been influenced by access to health care in the greater
minority community and as represented by the lower vaccination rates (Alcendor, 2020).
Hospitalization data were not available for download by county temporally from the US CDC
COVID-19 database. This information will be requested for future analysis. It is clear that
increases in COVID-19 as represented by increases in SARS-CoV-2 loading per population in
sewage should be considered a warning signal for these disadvantages communities and should

elicit mobilization of health care resources.
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Overall, this project sought to further the understanding of the connections between water
and health and to help address the impacts of anthropomorphic changes on the environment
through water quality monitoring. This was approached in two ways; the first was an
examination downstream of the fecal contamination using microbial source tracking (MST) to
evaluate exposure and risk and the second was upstream surveillance at the sewage treatment
facility evaluating pathogen excretion and the health of communities as a whole.

The use of MST to evaluate the impact of agricultural practices on water quality in five
mixed use watersheds demonstrated the temporal fecal contamination was primarily driven by
streamflow/precipitation while spatial contamination was driven by land use. These conclusions
were possible through the use of spatial clustering of individual sampling sites allowing for more
robust and accurate evaluation of the relationships between variables. Through these analyses
porcine pollution was identified as the MST marker most often associated with nutrient
contamination. This is of interest as manure for fertilizer use has been increasing in recent years.
Additionally, with the implementation of the Food Safety Modernization Act (FSMA), which
was signed into law in 2011 and began to take effect in 2015, understanding the sources of fecal
contamination in agricultural waters has become even more crucial to protecting food safety and
human health. The provisions within the FSMA stipulating safe levels of fecal microbial
contamination allowed in agricultural waters and requirements around testing for these pollutants
means that source identification and remediation will be even more necessary in the future in
particular for smaller producers who have limited water resources. Protecting water quality for
food production and recreational use requires the collaboration and coordination of all
stakeholders and policymakers. Effective communication between parties, understanding the

needs of stakeholders, knowing the abilities and limitations of detection and remediation
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methods, and the levels of risk associated with varying levels of contamination are all necessary
to protect and preserve water resources. The MST methods allow for a better knowledge on the
source of the contamination thus improving the communication and decision making.

The applications of MST are continuing to expand and demonstrate their value. The use
of MST for the detection of leaking sewer lines by Gonzalez et al. (2020) showed the value of
MST outside of environmental monitoring and led to remediation through infrastructure repairs.
On the other hand, the use of MST for differentiation of fecal sources remains a critical function
for directing remediation efforts within watersheds. This is demonstrated well by Nguyen et al.
(2018) who were able to determine that high levels of FIB found in a Florida watershed were not
coming from human sources as was previously assumed, but from animal sources including birds
and deer. These source identifications in turn allowed for the more accurate implementation of a
TMDL for these impaired waters.

The COVID-19 pandemic presented an abrupt need for virus concentration methods for
wastewater to help monitor the etiological agent SARS-CoV-2 for the surveillance of community
health. The development of a reliable easy to use workflow for the concentration and detection of
SARS-CoV-2 in wastewater was needed. Through the use of a surrogate virus (Phi6
bacteriophage), and field studies polyethylene glycol (PEG) precipitation and RNA detection
using ddPCR were demonstrated to be a viable method for the recovery and detection of SARS-
CoV-2 from wastewater samples. This study showed that when developing a new workflow
and/or method for widespread use across multiple laboratories, accessibility in terms of ease of
use and cost along with sufficient sensitivity and specificity were all necessary.

Following the development of the SARS-CoV-2 PEG precipitation and ddPCR workflow

samples from two unique communities in Michigan were collected, analyzed and compared to
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determine the ability of wastewater surveillance to correlate with cases of COVID-19. This study
has shown that wastewater loading of SARS-CoV-2 more accurately correlate with higher
resolution (zipcode vs. county level cases) case data. Additionally, as the pandemic progressed
the waves of variant strains of SARS-CoV-2 were able to be detected and monitored in one of
the communities. This study allowed us to learn that the resolution of case data analyzed along
with differences in population demographics can change the efficiency and accuracy of
wastewater monitoring across communities.

The ability to monitor indicators of pollution in watersheds and surveil etiological agents
of disease in sewage provide non-intrusive methods for evaluating the potential risks and current
burdens to community health. While this project was able to accomplish both of these tasks and
do so in a way that provided valuable knowledge and methods there still remains many ways to
expand on this work in the future. This includes but is not limited to the expansion of species
specific MST markers, further understanding the connections between MST markers, pathogens,
and nutrients in watersheds. There is always a need for the development of additional methods
and workflows particularly now for the surveillance of other pathogens in wastewater. More
wastewater-based epidemiology will be undertaken in the future and understanding the impacts
of community demographics on the spread and surveillance of disease can be elucidated via
sewage testing. While the work in this dissertation focused mainly on research, expanding the
lines of communication and the knowledge shared between the scientific community, regulators,

and policy makers will be pivotal for the success of any long-term monitoring plan.
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