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ABSTRACT 
 

ENVIRONMENTAL MICROBIAL SURVEILLANCE: FROM SOURCE TRACKING IN 
WATERSHEDS TO PATHOGEN MONITORING IN SEWERSHEDS  

 
By 

Matthew Thomas Flood 

Understanding of the connections between water and health, through the use of water 

quality monitoring, surveys and surveillance, can help to address the impacts of anthropomorphic 

changes on the environment. This study sought to understand these connections through the 

water quality monitoring within watershed basins as well as pathogen surveillance within 

sewersheds. Specifically, this dissertation sought to 1) understand the sources of pollution and 

their connections with land use in the various subsections of watersheds; 2) to find a cost-

effective way to surveil the spread of SARS-CoV-2 using wastewater surveillance; and 3) to 

understand the differences in wastewater surveillance between communities.  

Water quality monitoring using microbial source tracking (MST) was performed with a 

survey of five mixed-use watersheds in Michigan. Through the use of spatial clustering, it was 

found that temporal contamination was primarily driven by precipitation and its associated 

variables (e.g., streamflow, turbidity, overland flow), while spatial contamination is driven by 

land uses (e.g., septic tank density, tile drain proportions, and tillage). Additionally, porcine fecal 

contamination was more often correlated with nutrients in streams than either bovine or human 

contamination. 

The development of a cost-effective workflow for the detection and quantification of 

SARS-COV-2 in wastewater was undertaken. Wastewater from communities around Michigan 

were collected and analyzed along with viral surrogates for SARS-CoV-2 to investigate different 

workflow options. The Pseudomonas phage Phi6 was seeded in different wastewater matrices to 



test concentration and recovery by ultrafiltration-based method and polyethylene glycol (PEG) 

precipitation. The PEG method provided better virus recovery than the ultrafiltration-based 

methods as measured using RT-ddPCR.  

The comparison of two communities (A and B) wastewater results for SARS-CoV-2 

analyzed against case data was undertaken. These results were significantly correlated with cases 

in both communites, but the level of correlation differed based on spatial (e.g., zipcode vs county 

level cases) and temporal (e.g., date of symptom(s) onset vs. the referral date for cases) 

resolution. Wastewater surveillance was more representative of higher spatial resolution (zipcode 

data) of cases in both communities. When examining the temporal resolution of the 

communities, community B’s wastewater results were more closely tied to the onset of 

symptoms and not the case referral date. 

 The ability to monitor indicators of pollution in watersheds and surveil etiological agents 

of disease in sewersheds provide non-intrusive methods for evaluating the potential risks and 

current burdens to community health. The first part of the work could be considered 

“downstream” monitoring identifying sources and potential exposures with the goal of reducing 

waterborne disease.  While “upstream” monitoring was used for identifying the disease trends in 

the community and was focused on public health measures to prevent transmission.  This project 

contributed novel methods, results and analysis providing valuable knowledge ultimately 

addressing the role of monitoring strategies to protect public health. 
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1.0 Introduction and Literature Review 
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1.1 Water Quality, Monitoring and Health 

Water quality monitoring is essential to understanding the connections between water and 

human health. This can be used to address the impact of anthropomorphic changes on the 

environment and used to address the human condition. According to the World Health 

Organization (WHO), monitoring can be differentiated and conducted at three different levels. 

The first of which is monitoring as a long-term systemic review of water quality in order to 

define the status and trends through standardized measurements and observations (WHO, 1998). 

The second level is that of an intensive survey of water quality over a finite duration for a 

specific purpose (WHO, 1998). The final level is that of water quality surveillance. This level 

involves close examination of specific measurements and observations continuously in order to 

inform management and operational activities (WHO, 1998). The second and third levels are 

particularly important in their roles in disease surveillance which not only aim to collect specific 

measurements and observations but ensure that information and any conclusions drawn from 

these approaches are disseminated. Specifically, regarding the occurrence of disease(s) in pre-

defined populations, this will inform public health actions for the purpose of the reduction of 

morbidity and mortality (CDC, 2012; Orenstein and Bernier, 1990). 

Most long-term microbial water quality monitoring programs focus on surrogates and 

indicator organisms, such as the bacteria Escherichia coli or enterococci (Scott et al., 2002). This 

is in part due to their ease of use and ubiquitous prevalence in the gastrointestinal tracts and 

subsequently the fecal matter of mammals and birds. One of the other reasons for the widespread 

use of microbial surrogates is due to the difficulty in testing and monitoring specific pathogens, 

yet this is changing because of new technology. As there are many different pathogens of 

interest, conducting individual tests for each on a routine basis is complicated and can be 
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expensive especially when disease incidences in the surrounding populations are low. Other new 

targets used for what is now known as Microbial Source Tracking (MST) identifies species-

specific sources of fecal contamination and has developed as a response to this issue for both 

long-term monitoring and surveys. The idea is that when the source of the fecal 

pollution/contamination is known then both hazard identification for risk assessment and 

management of that source can be undertaken (Scott et al., 2002; Heymann and Rodier, 2001). 

Both long-term monitoring, surveys and surveillance approaches allow for the 

examination of the impact on the health of entire populations instead of individuals. For 

example, the monitoring of waters using appropriate transects for microbial (e.g., indicators, 

MST markers, and pathogens), chemical (e.g., nutrients such as phosphorus and nitrogen) and 

physiochemical (e.g., soil runoff) contamination combined with information from global 

information systems (GIS) on land use and land cover change allows for the evaluation of the 

whole watershed with regards to human impact on water quality (Nnane et al., 2011; Heaney et 

al., 2015; Verhougstraete et al., 2015; Sowah et al., 2017; Pascual-Benito et al., 2020; Ballesté et 

al., 2020). Additionally, intensive surveys can help to understand the effects and impacts of 

disturbances which need special diagnostics and generally take a snapshot of the water quality. 

These results in turn can be assessed in regard to how the water pollution could pose a risk to 

human health. This same design of intensive surveys evaluating an entire watershed, can also be 

applied to human wastewater and the constructed environment of sewersheds (Sinclair et al., 

2008; Xagoraraki and O’Brien, 2020). The surveillance of wastewater and sewersheds for 

surrogates and pathogens in order to determine the disease-burden in a population has been 

referred to as wastewater-based epidemiology (WBE) (Kitajima et al., 2020; Orive et al., 2020). 

WBE is employed through the indirect surveillance of pathogens which are excreted from 
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infected individuals providing an estimate of the disease prevalence in the population. This in 

turn helps to drive more rapid decision making in the form of policy, regulations, and public 

health orders, for the protection of the public. This has proved especially useful during the 

current COVID-19 pandemic, where infected individuals excrete the virus independent of the 

wide variety of symptoms and asymptomatic infections (Kitajima et al., 2020; Orive et al., 

2020).  

The development of new affordable detection assays using recent advancements in 

molecular technologies, which provide more accurate and precise measurements of low-level 

targets in complex matrices, has proved essential in the implementation of monitoring strategies 

for MST markers and the surveillance of pathogens (Carlson, 2003; Roslev and Bukh, 2011). In 

particular, the development of digital polymerase chain reaction (dPCR) has been shown to be 

indispensable in monitoring environmental waters for MST markers and surveilling the complex 

matrices of human wastewater for pathogens such as SARS-CoV-2, the etiological agent of 

COVID-19. While the term digital PCR (dPCR) was first used in 1999 and the technique had 

been independently developed multiple times in 1990 and 1991, the development of quantitative 

PCR (qPCR) in 1996 overshadowed dPCR until 2007 when new instrumentation allowed for the 

more widespread use of the technology (Vogelstein and Kinzler, 1999; Morley, 2014). The 

multitude of variable sources, both point and non-point sources, and the significant impacts of 

fecal contamination on water and health drove the ongoing development of advanced molecular 

techniques and assays. These are now crucial in the protection of public health through water 

quality monitoring and surveillance.  

While indicator organisms allow for the standardized determination of the general sense 

(comparing one water way to another) of contamination in water sources their presence and 
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abundance is not always correlated with increased risk from waterborne pathogens. The ongoing 

contamination of surface waters from non-point sources of pollution, namely failed septic tanks 

and agricultural run-off, in Michigan were the major drivers for taking on an MST study 

(Dubrovsky et al., 2010; Yang et al., 2016; Verhougstraete et al., 2015; Nshimyimana et al., 

2018). This was done in order to understand how land use and human impacts are linked to fecal 

pollution. While these studies were conducted to understand the connections between the land 

use and human health, the 2020 worldwide Coronavirus pandemic drove the need to examine 

and understand the overall health and risk at a community level as initially testing was not 

meeting the demand for protecting community health. The presence of asymptomatic infected 

persons complicated the estimation of the disease burdens in communities. Human surveillance 

conducted by state and federal epidemiologist and the health departments remains difficult. 

Determining a suitable processing and concentration method for SARS-CoV-2 in wastewater 

along with a matching robust detection assay which is inhibitor resistant and able to consistently 

detect low levels of the virus are critical research needs. Furthermore, determining the levels of 

SARS-CoV-2 present in Michigan wastewaters and how those levels are correlated with known 

cases of COVID-19 is essential in understanding the value of WBE during the Coronavirus 

pandemic.  

  

1.2 Long-term Monitoring Using Water Quality Indicators 

1.2.1 Fecal Indicator Bacteria (FIB) 

Fecal indicator bacteria (FIB) are one of the most broadly used targets for the detection 

and assessment of water pollution associated with fecal inputs including wastewater. Due to the 

abundance of diverse waterborne pathogens, FIB are used as surrogates due to their greater 
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abundance and correspondingly easier detection, while also providing a noticeably lower cost of 

analysis (Griffin et al., 2001; Horan, 2003). While over the years a set of criteria for an 

ideal/optimal FIB have been proposed and refined, no single FIB has been able to meet all of 

them (Bonde, 1966; WHO, 1993; Grabow, 1996; Godfree et al., 1997; Colford et al., 2007). 

These criteria include 1) the FIB is suitable for use in all waters (e.g., freshwater, marine, 

streams, lakes, oceans); 2) there is cooccurrence of the FIB and the pathogen(s) of interest; 3) 

there is a greater abundance of FIB than pathogens; 4) the FIB has greater or equal survivability 

as pathogens in environmental waters, and also through wastewater and water treatment 

processes; 5) the FIB do not regrow in the environment (e.g., water and/or sediments); 6) the FIB 

is easily and reliably detected; 7) the FIB is non-pathogenic; and 8) the method of detection is 

relatively low cost. While FIB are certainly useful and represent standards used around the 

world, there are several issues when trying to relate them to the presence and concentration of 

pathogens. The ability of most bacteria used as FIB to potentially regrow in the environment, the 

lack of source identification, relatively long incubation times (18-26 hours), and inconclusive 

relationships between the presence of FIB and pathogens, limit the usefulness of FIB (Schwab, 

2007; McLellan et al., 2007). Due to these limitations of individual FIB, approaches using 

multiple FIB or the combination of FIB with other methods of fecal pollution detection, such as 

microbial source tracking allows for source identification of pollution sources (McLellan, 2004).  

Two of the current most commonly used FIB are Escherichia coli (E. coli) and 

enterococci, which were adopted as the leading indicators for fecal pollution in fresh and marine 

waters in 1986 (USEPA, 1986; USEPA, 2012). These FIB are used to evaluate the recreational 

water quality of surface waters in the United States. The US EPA has suggested recreational 

water quality limits based off of three epidemiological studies conducted in 1982 and 1984 in 
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marine and fresh waters which correlated enterococci and E. coli densities with cases of 

gastroenteritis (Cabelli et al., 1982; Dufour et al., 1984). The US national water quality criteria 

are 104 enterococci per 100 ml of marine water, a single sample maximum of 61 enterococci per 

100 ml in freshwater, and a mean of 235 E. coli per 100 ml in freshwater (USEPA, 1986; Wade 

et al., 2008). While the US EPA set these criteria under the Clean Water Act (1972) each state is 

responsible for setting their own recreational water quality standard based off of these criteria. 

While many states chose to directly adopt the criteria set for by the US EPA, Michigan set its 

recreational water quality standard to a daily maximum as a geometric mean of three individual 

samples taken from the recreational area which spatially represent that area, of 300 colony 

forming units (CFUs) of E. coli per 100 ml. Additionally, surface waters are also subject to a 

partial body contact maximum of 1,000 E. coli per 100 ml.  

 

1.2.1.1 Escherichia coli  

Escherichia coli are gram-negative rod-shaped bacteria which are facultative anaerobes 

and fecal coliforms. These bacteria are distinguished from other fecal coliforms by their ability 

to grow at 45°C in conjunction with their lack of urease, and their ability to catalyze B-D-

glucopyranosiduronic acid through the presence of B-D glucuronidase (Toranzoes and McFeters, 

1997). E. coli are commonly found in the lower intestines of warm-blooded animals including 

mammals and birds (Winfield and Groisman, 2003). While most strains of E. coli are non-

pathogenic there are several infectious strains which do cause disease with the primary exposure 

route being the fecal-oral route (Rice, 2003; Bischoff et al., 2005). The main advantages of using 

E. coli as FIB include its wide adoption and continued use, relative low cost, and its previous use 

in epidemiological studies where it was correlated with incidences of gastroenteritis recreational 
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waters in fresh and marine waters (Dufour et al., 1984; Prüss, 1998; Rompré et al., 2002; Wade 

et al., 2003; Zmirou et al., 2003; Wade et al., 2006; USEPA, 2009). While E. coli has several 

disadvantages (e.g., long incubation time, uneven distribution in the water column), its main 

disadvantage is that it has been shown to replicate outside of its natural hosts (McLellan et al., 

2001; Winfield and Groisman, 2003; Whitman and Nevers, 2004; Vital et al., 2008; Thupaki et 

al., 2010).  

 

1.2.1.2 Enterococci 

Enterococci are gram positive non-spore forming cocci consisting of species from two 

genera (Enterococcus and Streptococcus) which are found in the feces of warm-blooded animals. 

Similar to E. coli, enterococci are generally non-pathogenic and are primarily spread through the 

fecal-oral exposure route. One of the main differences between enterococci and E. coli which 

may determine which is best used as the FIB of choice is enterococci’s greater resistance to 

chlorination and ability to persist longer in the environment, which provides a more protective 

estimation of water quality compared to E. coli (Gleeson and Gray, 1997).  Enterococci also 

share the same disadvantage as E. coli in that they are unable to distinguish the sources of fecal 

contamination. This means while we can use these FIB to quantify pollution, they are limited in 

providing further information which may help to identify and remediate sources. 

While FIB, such as E. coli and enterococci, are able to help identify and quantify fecal 

contamination in water they lack the ability to distinguish specific sources of pollution. 
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1.2.2 Microbial Source Tracking 

Microbial source tracking (MST) markers provide a much-needed approach to distinguish 

and quantify specific sources of fecal pollution. Microbial source tracking is a field that has 

matured over the last 20 some years (Scott et al, 2002; Boehm et al., 2013; Steinbacher et al., 

2021). MST has been accomplished with two different analysis schemes, library-dependent and 

library-independent methods. Library-dependent methods rely on a reference library of known 

gene targets to match sample DNA, while library-independent methods target a single known 

gene associated with a specific source of pollution and look only for that gene. Library-

dependent methods are less widely used than -independent methods due to their limitations 

including their use of a reference library, complicated analysis of the data, and lack of 

quantification. Whereas library-independent methods also return less false positive and false-

negatives (Griffith et al., 2003). 

 Using polymerase chain reaction (PCR) assays, MST can be applied with host-specific 

markers associated with a single species or type of animal to identify sources of pollution (Scott 

et al., 2002; Santo Domingo et al., 2007). MST molecular approaches have a few distinct 

advantages over cultivation-based methods including higher target sensitivity and specificity, 

faster results (4 hours vs 18-24 hours for cultivation), and the potential for a more automated 

processing of samples (Girones et al., 2010). However, current molecular MST methods do not 

have the ability to distinguish between viable and non-viable cells/organisms (Girones et al., 

2010). This can lead to an over estimation of associated risk due to non-viable organisms or 

legacy pollution effects being detected. However, the advantages that MST offers make these 

assays useful diagnostic tools allowing for pollution source identification versus routine 

monitoring for using indicator organisms. 
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 The development of MST markers starts with the identification of potential target genes 

followed by, primer and probe development, and finally validation testing to evaluate the 

specificity of the target sequence for a particular species along with the sensitivity of the assay to 

detect that target in the environment (Walters and Fields, 2006; Santo Domingo et al., 2007). 

Validation of each marker is limited by the study design used during the evaluation. The greater 

the number of fecal samples from different species the assay is tested against along with the 

number of unique target species fecal samples provide more or less confidence in a new marker. 

For example, two bovine markers CowM2 and BacCow-UCD were both reported as having 

>50% host specificity in their initial publications, but while the CowM2 marker was tested 

against 204 samples for its evaluation the BacCow-UCD marker was only tested against 73 

samples (Shanks et al., 2008; Kildare et al., 2007). Additionally, the CowM2 marker was tested 

against 17 different types of animal feces while the BacCow-UCD was only tested against 7 

different species of animals. These differences in initial evaluations of MST markers led to 

uncertainty in the accuracy of reported sensitivities and specificities. The need for more robust 

review and testing of new markers across different species, laboratories, and locals were called 

for. In 2013, Boehm et al. performed a round robin study with 27 laboratories to evaluate and 

validate 41 different MST markers. The authors used nine different species of animal feces, 

individual human feces, septage, and wastewater fecal sources (fecal samples were collected 

from 12 individual animals of each species, nine sewage treatment plants, and six septage 

collection trucks) to provide single and mixed blinded challenge samples to all participating 

laboratories to test. Of the 41 different MST markers tested, only 15 (2 human, 2 ruminant, 2 

bovine, 1 canine, 2 gull, 2 porcine, 1 horse, 1 deer, and 2 multitarget techniques) were found to 

be sufficiently sensitive and specific (> 80% sensitivity and specificity) when evaluating by 
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presence/absence by the majority of the laboratories involved. When the markers were evaluated 

quantitatively six markers were identified with higher concentrations in their target host feces. 

These included two human markers (HF183Taqman and BacH), two ruminant (Rum2bac and 

BacR), one gull (LeeSeaGull), and 1 porcine (Pig2Bac). This study was limited in two ways. 

First in that the fecal samples and wastewater used for the study were all sourced from a 

relatively small geographic region (California). Secondly, some of the markers were only tested 

by a single laboratory during the study. This second limitation was recognized by the authors and 

further evaluation of these markers was recommended.  

Even after markers are evaluated, laboratories need to consider where the marker has 

been developed and tested to examine broad use geographically (e.g., in the Americas, Europe, 

tropics, and sub-tropics). Thus, successful microbial source tracking has relied not only on highly 

sensitive and specific MST markers, but on the selection of the most appropriate marker for the 

goal of the study and the area in which the study is being conducted. The evaluation of more than 

a handful of MST markers at a time is rare due to the amount of time, resources, and number of 

samples required for appropriate comparisons. At the time of this review there have been over 

100 different MST markers developed for 15 different targets including human, ruminant, 

bovine, deer, canine, equine, avian, waterfowl, gull, goose, chicken, porcine, sheep, possum, and 

universal fecal markers. Human markers are the most prevalent (>35 markers), followed by 

livestock (>30 markers) (cows, pigs, chickens, ruminant, sheep, horses), then non-chicken avian 

markers (>20 markers) (general avian, waterfowl, ducks, geese), and finally wildlife markers 

having the fewest available markers (deer, possum, etc.). This distribution of available MST 

markers is unsurprising as human fecal contamination is more likely to be associated with 

increased health risks compared to wildlife feces. While there are over 100 published MST 



 
12 

markers not all are currently and/or widely used. Additionally, some markers have been modified 

and/or updated since their original publications. For example, the HF183 human marker was 

originally published as an endpoint PCR reaction MST marker by Scott et al. in 2002 then later 

updated to a SYBR green qPCR assay by Seurinck et al. in 2005. Then in 2010 Haugland et al. 

developed a Taqman qPCR version of the HF183 marker which was again modified in 2014 by 

Green et al. (2014). 

 

1.2.2.1 Application of MST markers  

The applications of MST include characterization of pollution sources in watersheds, the 

quantification of different sources, confirmation of suspected pollution sources, evaluation of 

large-scale areas for fecal pollution, connecting fecal pollution with pathogens, contamination 

source identification during outbreaks, and identification of failing sewer infrastructures and 

illicit connections in urban areas (see the discussion below). The application of MST has 

increased since its inception and it continues to be a useful tool for water quality monitoring. 

A few key papers have been selected and reviewed here which represent these different 

applications of microbial source tracking. The first two papers that have been selected to 

represent the characterization of pollution sources in watersheds were published in 2006 and 

2007 respectively. Shanks et al. (2006) used five MST markers (two human, two ruminant, and 

one elk) to analyze fecal contamination from 30 sites totaling nearly 3,000 samples (n=2,912) in 

an Oregon watershed (150,000 ha) over a two year period. This study found that within this 

watershed the fecal pollution was more closely linked to ruminant sources than human across the 

whole basin with ruminant markers being detected 75% of the time and rising to a 90% detection 

rate during spring and fall when precipitation increased. While human markers were found less 
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frequently than the ruminant markers they were able to be used to identify “hotspots” along 

waterways where normal sampling had only shown low concentrations due to dilution effects. 

These results highlight the benefits of characterizing a watershed as a whole, allowing for 

identification of sources which would otherwise be masked by previous sampling and testing 

strategies.  

Graves et al. (2007) performed a similar study at a smaller scale (n=60 samples) over the 

course of a year in a smaller Virginia watershed (3,767 ha) which was also dominated by cattle. 

Graves et al. used a library-dependent MST approach which included fecal samples from 

humans, cattle, horses, waterfowl, geese (domestic and wild), wood ducks, deer, muskrats, and 

racoons. While this study used less-specific markers than the library-independent markers used 

by Shanks et al. (2006), their use of a library dependent method allowed for a wider range of 

sources to be tested against and identified. Similar to Shanks et al. (2006), Graves et al. (2007) 

also found that cattle were the most abundant source of fecal pollution in the watershed with 

60% of samples found to be positive for cattle feces. With the help of their MST markers. this 

study also found an unexpectedly high human pollution area but were unable to identify the 

specific source. This application of MST at the watershed scale provided useful information on 

the happenings within the watershed but was limited in geographic scope. 

Microbial source tracking has been applied at larger geographic scopes as demonstrated 

by Verhougstraete et al. (2015) and Nshimyimana et al. (2018). These two studies though 

published three years apart worked off of the same set of samples collected between 2010-2011 

from 63 watersheds in Michigan. Samples were collected at single outflow points for each 

watershed during the fall baseflow (n=63), spring snowmelt (n=63), and a summer rain event 

(n=63, total n= 189). While Verhougstraete et al. (2015) focused on human sources of pollution 
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for their analysis, Nshimyimana et al. (2018) focused on animal fecal sources (bovine and 

porcine) effecting each watershed. These two studies showed the viability of broad-scale 

approach to the application of MST markers. By taking a step back and looking at single outflow 

points from each watershed Verhougstraete et al. (2015) was able to correlate human fecal 

pollution with septic tank numbers across these watersheds. Thus, demonstrating that on-site 

wastewater treatment not wastewater treatment plants were greater contributors to human fecal 

pollution across the state of Michigan. Nshimyimana et al. (2018) on the other hand were able to 

identify relationships between porcine and bovine markers and nutrients (nitrogen and 

phosphorus) only during baseflow conditions (versus their two other sampling events spring 

snow melt and summer rain) which suggested that nutrients and the animal markers had different 

mechanisms of transport during periods of increased streamflow.  

The ability to use surrogates to determine the potential risk to human health from 

pathogens in water is desirable due to the high cost of individual pathogen testing and the 

potential for multiple pathogens to be present. The use of MST to help identify areas of increased 

risk and potential pathogen presence is shown in Bradshaw et al. (2016) and Korajkic et al. 

(2018). Bradshaw et al. (2016) chose to examine the relationship between pathogens and 

indicators (including MST markers; human, bovine and ruminant) in a mixed-use watershed. 

While they hypothesized that sediment would be an important source of pathogens and 

indicators, due to the possibility of resuspension, their study showed that while indicators were 

found in both sediments and the water column, pathogens were more likely to be found in the 

water column more often than in the sediments. They also found that there was no consistent 

relationship between indicators and pathogens, but that using a combination of FIB and MST 

markers helped to improve the ability to predict pathogen presence/absence. Korajkic et al. 
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(2018) performed a review of the currently available literature (73 papers) which had attempted 

to connect microbial indicators (e.g., FIB, MST markers) and pathogens in recreational waters. 

This review highlighted that while most connections between indicators and pathogens were 

tenuous at best, under certain conditions relationships could be discerned (after wet weather 

events or at sites where recent fecal pollution had occurred). Relationships were also more often 

reported in freshwater environments compared to marine and between bacterial indicators and 

bacterial or protozoa pathogens.  

While direct relationships between pathogens and MST markers are difficult, the use of 

MST during known outbreaks provides valuable information on the source and quantity of fecal 

pollution which may be significant factors in the spread of the disease and the health-risk posed. 

A recent example of this was published by Mattioli et al. in 2021. Mattioli et al. (2021) were able 

to provide assistance using MST during the 2017 norovirus outbreaks in Pennsylvania when 

epidemiological investigations were unable to identify a specific source and exposure route for 

the outbreaks which resulted in 179 illnesses. Using a human MST marker (HF183), Mattioli et 

al. (2021) were able to demonstrate that a malfunctioning septic system was hydrologically 

connected to the drinking water well and recreational waters where the outbreaks occurred. This 

study highlighted the ability of MST to help with outbreak scenarios where traditional 

epidemiological studies were unable to effectively determine the exposure routes and main 

source(s) of contamination. 

Lastly MST can be applied to human-made water systems as well as environmental areas. 

This has recently been highlighted best by the work of Gonzalez et al.’s (2020) collection system 

investigation microbial source tracking (CSI-MST) and Hachad et al.’s (2022) identification of 

illicit discharges using MST. Gonzalez et al. (2020) CSI-MST used a human MST (HF183) 



 
16 

marker along with extensive sewer collection system information (e.g., sewer line locations, 

service areas, and storm water systems locations) to survey multiple points within the storm 

water systems and track down any potential leaks from the sewer systems. The study presented 

three case studies where MST marker concentrations were used to identify leaks from the sewer 

systems into the storm water lines which allowed for the local municipality to remediate these 

failing infrastructure points with minimal disruption to the surrounding areas. This study has 

acted as proof of concept that with sufficient knowledge of the infrastructure in an urban area 

contamination from leaking sewer lines can be accurately identified and remediated. While 

Gonzalez et al (2020) used MST to identify and remediate failing infrastructure, Hachad et al. 

(2022) used MST to identify and remediate illicit wastewater connections to stormwater systems. 

MST was used along with other markers of wastewater pollution with a toolbox approach to 

identify cross connections. By using an index approach with multiple indicators of contamination 

eight misconnected houses were able to be identified and their connections were corrected.  In 

complex urban settings the use of multiple indicators allowed for the reduction in false positive 

identification of cross connections. 

The application of MST in watersheds, across watersheds, with pathogens, and within 

sewersheds show how useful these tools are for assessing and correcting water pollution in 

natural and anthropomorphic settings. Knowledge of the currently available tools available 

allows for the best results to be obtained for the chosen study. 

  

1.2.3 Surveys for Sources of Fecal Pollution and Their Impact on Water Quality 

The 1972 amendment of the Federal Water Pollution Control Act of 1948, also known as 

the Clean Water Act (CWA), marked a turning point in water quality in the United States. The 
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ability to regulate and implement pollution control measures resulted in an improvement of water 

quality across the country. In particular, section 303(d) of the CWA allowed for the development 

of total maximum daily loads (TMDLs) for waterbodies. These TMDLs set the maximum 

amount of specific pollutants that were allowed to enter waterbodies. By defining TMDLs for 

waterbodies, government agencies were able to start regulating the source of pollution impacting 

water quality. Point sources of pollution, such as wastewater treatment plant outfalls, sanitary 

sewer outfalls (SSOs), and combined sewer overflows (CSOs), were identified and regulated 

through the National Pollutant Discharge Elimination System (NPDES) resulting in an overall 

decrease in the impact of wastewater discharges on water quality. While point sources still 

contribute to the pollution of water bodies, since 2009 non-point sources of pollution have 

become the leading contributors to impaired waters (USEPA, 2009). In recent years, point source 

pollution discharges tend to be cross contamination events between sewage and storm water 

outfalls or urban runoff into storm water sewers (Kapoor et al., 2014; Staley et al., 2016).  

For non-point sources of pollution, land use decisions have significant impacts on the sources 

and transport of microbial pathogens into and through environments (Dreelin et al., 2007). This 

has shown the importance of land use and land cover (LULC) management. The alteration of 

natural environments for agriculture in particular can alter the natural percolation and runoff 

patterns of a watershed. This is problematic in the Great Lakes region where contaminated runoff 

can lead to nutrient accumulation in waterways and sediments where legacy pollutants can 

remain (Kinzelman et al., 2004; Smart and Barko 1978; Mortimer 1971; Marvin-DiPasquale and 

Agee 2003; Weller et al., 2020). In one study, it was found that between 33 and 58% of all 

nitrogen and phosphorus pollution in the study area was contributed from agricultural land uses 

(Robertson and Saad, 2011). In recent years, studies have been conducted to determine the 
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sources and pathways of nutrients and microbes from non-point sources of pollution in 

watersheds at the regional scale (Verhougstraete et al., 2015; Luscz et al., 2017; Nshimyimana et 

al., 2018). 

  As mentioned in section 1.2.1 above, water quality standards were determined around 

recreational exposure to contaminated waters. Throughout the Great Lakes a significant amount 

of recreational water exposure occurs at beaches. Michigan alone has 1,232 public and 575 

private beaches which are required to be monitored regularly to make sure pollution level are 

below recreational standards. Elevated pollution levels at recreational water access points (e.g., 

beaches) are a risk to public health and require intervention (either remediation or closures) to 

mitigate that risk. In the last 10 years there have been 2,268 beach closures in Michigan with a 

combined total of 14,299 days of beach closures (MI EGLE, 2022).  

Monitoring water quality is further complicated with the ability of pollutants to be 

retained and accumulate in sediments and beach sand. This retention and accumulation of 

pollutants has been observed in fresh and marine waters where E. coli levels were highest in sand 

and sediments compared to the surrounding waters (Alm et al., 2003; Whitman and Nevers, 

2003; Zehms et al., 2008; Cloutier and McLellan 2017). These legacy pollution sources 

complicate the ability of traditional FIB to determine the current levels of bacterial pollution and 

risk as well as how to remediate the water quality problems.  

 

1.2.4 Wastewater Surveillance and Human Health 

1.2.4.1 COVID-19 (Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)) 

In December 2019, a novel coronavirus was identified as the cause of a pneumonia 

outbreak in the Wuhan Province of China (WHO, 2020a; Zhu et al., 2020; Coronaviridae Study 
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Group of the International Committee on Taxonomy of Viruses, 2020). Through genetic 

sequencing this novel coronavirus was determined to be highly similar to severe acute 

respiratory syndrome coronavirus (SARS-CoV) and was thus named SARS-CoV-2 (Zhu et al., 

2020). Coronaviruses are spherical enveloped positive-strand RNA viruses with diameters of 

approximately 120 nm and genomes ranging in size between 27 and 32 kb. Their lipid envelopes 

are embedded with spiked glycoproteins.  

The disease resulting from infection by SARS-CoV-2 was named coronavirus disease 

2019 (COVID-19) and includes symptoms of fever, fatigue, myalgia, dry cough, dyspnea and 2-

10% of patients exhibit gastrointestinal symptoms (e.g., diarrhea) (Gu et al., 2020; Chen et al., 

2020, Guan et al., 2020; Huang et al., 2020; Wang et al., 2020a; Wang et al., 2020b). While this 

virus primarily infects the respiratory system, it is also known to infect glandular epithelial cells 

in the intestinal tract and is subsequently shed in feces of both symptomatic and asymptomatic 

individuals (Xiao et al., 2020; Gu et al., 2020; Holshue et al., 2020; Song et al., 2020; Park et al., 

2020; Wu et al., 2020a). The World Health Organization declared a global pandemic of COVID-

19 on March 11, 2020 (WHO, 2020b). In the subsequent two years the pandemic has continued 

spreading to nearly all countries worldwide resulting in >440,000,000 confirmed cases and 

nearly 6,000,000 deaths (WHO, 2022). The tracking and surveillance of COVID-19 has become 

a priority for ensuring public health. 

During the start of the pandemic surveillance of SARS-CoV-2 was limited to testing of 

clinical samples taken from symptomatic individuals. Several genetic markers targeting viral 

nucleocapsid and envelope genes were developed (CDC, 2020; Corman et al., 2020) However, 

due to the presence of asymptomatic cases of COVID-19 clinical level surveillance measures 

were inadequate. The shedding of SARS-CoV-2 in the feces of infected individuals presented an 
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opportunity to non-intrusively track the spread of COVID-19 at the community level (Kitijima et 

al., 2020). Early studies testing for the SARS-CoV-2 genes in wastewater showed the ability to 

consistently detect the genetic signal at concentrations of 102 to 106 gene copies per liter of 

wastewater and were able to predict the trends in COVID-19 cases over time (Medema et al., 

2020; Ahmed et al., 2020).  

Since the beginning of the COVID-19 pandemic there have been several SARS-COV-2 

variants of concern that have emerged. The most significant of these variants have been the 

Alpha variant, the Delta variant, and the Omicron variant (WHO, 2021). These variants have 

been seen in waves of cases with the Alpha variant first being reported during the fall of 2020 in 

the United Kingdom, then the Delta variant in India in May 2021, and lastly the Omicron variant 

in multiple countries during November of 2021 (WHO, 2022). These variants have been 

monitored clinically as well as by wastewater surveillance. In Michigan the first confirmed case 

of the Alpha variant was in January 2021, with the Delta variant being detected in June of 2021, 

and the Omicron variant being detected on December 3rd 2021 (Michigan.gov/Coronavirus, 

2022). 

Early in the COVID-19 pandemic researchers began to test for SARS-CoV-2 in 

wastewater. One of the first studies was conducted in the Netherlands where wastewater 

surveillance was conducted with sewage samples from six cities and an airport (Medema et al., 

2020). The authors were able to detect the SARS-CoV-2 genetic signal in wastewater up to six 

days prior to the first reported cases in the Netherlands. These results showed that wastewater 

surveillance is able to detect the levels of SARS-CoV-2 in a community and provide an early 

warning of increasing cases prior to clinical detection methods. Other studies early in the 
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pandemic were able monitor the spread of the pandemic in their countries with similar results to 

Medema et al. (Wu et al., 2020b; Ahmed et al., 2020; Lodder et al., 2020).  

As the pandemic continued research shifted from proof of concept (e.g., can SARS-CoV-

2 be detected in wastewater) to surveillance of the virus as a method of non-intrusive monitoring 

of community health. These studies ranged from monitoring a single wastewater treatment plant 

wastewater monitoring (Haramoto et al., 2020) to more widespread surveillance of multiple sites 

across large geographic regions (e.g., Hata et al., 2021).  Hata et al. (2021) were able to monitor 

their wastewater sites prior to and during the outbreak of SARS-CoV-2 in two Japanese 

prefectures. They monitored five wastewater treatment plants in two prefectures collecting a total 

of 45 wastewater samples between March 5th and May 29th 2020. The authors were able to detect 

SARS-CoV-2 in the wastewater even when cases were less than one in 100,000 persons which 

was in line with what Medema et al. (2020) saw in the Netherlands. This study also determined 

that wastewater surveillance was able to detect cases of COVID-19 in communities prior to an 

increase in accompanying clinical case data. This suggested that in the initial stages of an 

outbreak or pandemic wastewater surveillance is able to more accurately determine the rate of 

disease spread in a community. This is particularly important because as cases decline during the 

pandemic wastewater monitoring may be able to provide an early warning for a resurgence of 

cases in different communities. 

Wastewater surveillance of SARS-CoV-2 has also been used at the building level to help 

to contain the spread of the disease in close populations. This was performed by Betancourt et al. 

(2021) for the student dormitories on the campus of the University of Arizona. Betancourt et al. 

monitored wastewater from 13 dormitories between August 24th and November 20th 2020. When 

a positive RNA signal for SARS-CoV-2 was detected clinical testing of the individuals living in 
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the dormitory was performed followed by isolation of infected individuals. The authors were 

able to observe an 82.0% positive sample predictive value from their monitoring. While this 

monitoring and intervention plan is unfeasible at larger scales it does provide a methodology to 

help contain potential outbreaks of COVID-19 in defined populations. 

The proliferation of wastewater surveillance of SARS-CoV-2 and its accompanying data 

has provided the ability to evaluate the efficacy of wastewater-based epidemiology (WBE) on 

larger scales which have been limited. For example, Morvan et al. (2021) used wastewater 

surveillance data from multiple studies across 44 sites in England to estimate the prevalence of 

SARS-CoV-2 to help alleviate some of the shortcoming of isolated clinical case monitoring. 

Morvan et al. showed that the wastewater results were within 1.1% of prevalence estimates based 

on case data and preceded clinical testing data by 4-5 days suggesting that wastewater 

monitoring is a leading indicator of asymptomatic COVID-19 infections. These results show the 

value of WBE as an additional form of disease surveillance and subsequently an useful tool to 

preserve public health. 

While tragic, the COVID-19 pandemic has served to highlight the usefulness of WBE 

and the ability for community health to be monitored and observed unobtrusively. 

Underreporting and asymptomatic cases of disease complicate clinical disease surveillance. The 

addition of WBE can allow for a more robust surveillance of public health and potentially 

provide early warnings of disease outbreaks. 

 

1.3 Scientific Needs 

There are several areas in water quality monitoring and pathogen surveillance that are in 

need of further study. Currently, water pollution is more greatly influenced by non-point sources 
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compared to point sources thus it is essential that source identification be implemented to make 

progress on remediation of water systems. The identification and testing of locally appropriate 

genetic markers and understanding the relationships between microbial markers and 

environmental variables within watersheds are essential. While current strategies using fecal 

indicators is sufficient to meet many regulatory standards, they are insufficient in addressing 

water quality associated public health risks (Evans et al., 2019).   Pathogen monitoring is now 

being undertaken to support community strategies for disease control and this is particularly true 

in response to the COVID-19 pandemic. The development and implementation of methods and 

monitoring strategies are necessary to promote WBE as an effective means for furtherance of 

community health (Kitajima et al., 2020). Finally understanding how community structure and 

diversity effects the efficacy of WBE is necessary to determine the best strategies for future 

community level pathogen monitoring. 

 

1.4 Research Objectives 

Specialized surveys using MST technology for Michigan watersheds were of great 

interest to examine the major contributors influencing degraded water quality. The use of MST 

markers and nutrient analysis in various watersheds and their subsections could be further 

examined over seasonal/temporal scales to provide a better understanding of what was happening 

within the variety of Michigan watersheds.  This was in contrast to previous studies conducted 

which only looked at a single outflow point from each of the watersheds (Verhougstraete et al., 

2015). 

In addition, as the COVID pandemic raged on the use of surveillance monitoring 

approaches around the world exploded. It was hypothesized that SARS-CoV-2 would be able to 
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be detected from wastewater using molecular methods, specifically ddPCR with greater accuracy 

and precision than qPCR. Additionally, since enveloped viruses tend to attach to particulate 

matter, a relatively cheap and easy to use wastewater concentration method like polyethylene 

glycol (PEG) precipitation would likely be effective at concentrating the SARS-CoV-2 virus to 

detectable levels with good recovery efficiencies.  Unique methodologies for the recovery of a 

respiratory virus from wastewater needed to be developed and compared with other proposed 

methods. Also, it was suggested that the detection of SARS-CoV-2 RNA from wastewater would 

be able to help predict increases in cases across different communities in Michigan. 

 Four chapters follow this introduction. The first three detail the main studies conducted 

for this dissertation, and the final chapter provides a summary and a look at future work. The 

first of these studies focused on microbial source tracking markers and their connections to 

nutrients in mixed-use watersheds. This chapter has been published in the journal Water 

Research in 2022. The second study focused on the development and evaluation of a method for 

the concentration and detection of SARS-CoV-2 from wastewater. This chapter has also been 

published in the Journal of Food and Environmental Virology in 2021. Citations for these studies 

is provided on the cover page of each chapter. The final chapter addressed the surveillance of 

SARS-CoV-2 in wastewater in two disparate communities. This will be submitted for 

publication in the near future.  

 

Goal 1 

 The increased relative input of non-point sources of pollution in watersheds has increased 

the importance of source identification and the determination of co-occurring contaminants. A 

survey of five mixed-use watersheds in Michigan was undertaken to investigate the sources of 
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pollution in the various subsections of each watershed and quantitively and qualitatively 

determine which variables correlate. 

The objectives of this study were to: 1) determine the spatial and temporal trends in 

microbial contamination and nutrients in five mixed-use watersheds; 2) to determine if 

MST markers could be significantly correlated with nutrient levels (e.g., phosphorus and 

nitrogen); 3) to determine which watershed variables (e.g., nutrient levels, land use, 

management practices, etc.) within a watershed would be useful in predicting microbial 

contamination levels.  

 

Goal 2 

 The onset of the COVID-19 global pandemic left countries and communities scrambling 

to not only respond to the global health emergency but also to find cost-effective ways to surveil 

the spread of SARS-CoV-2. The development of a relatively simple workflow for the detection 

and quantification of SARS-COV-2 in wastewater was undertaken to meet this need. Wastewater 

from communities around Michigan were collected and analyzed along with viral surrogates for 

SARS-CoV-2 to investigate different workflow options. 

The objectives of this study were to 1) evaluate the efficiencies of polyethylene glycol 

(PEG) precipitation and ultrafiltration methods to recover Pseudomonas phage Phi6, 

coronavirus OC43, and SARS-CoV-2 from different wastewater matrices; 2) compare two 

PCR-based methods, reverse transcription quantitative PCR (RT-qPCR) and reverse 

transcription droplet digital PCR (RT-ddPCR) for the detection of SARS-CoV-2 in 

different wastewater matrices; 3) develop a rapid, cost-effective, and precise quantification 

workflow for SARS-CoV-2 in wastewater. 
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Goal 3 

 Wastewater-based epidemiology may provide a better method for the surveillance of 

pathogens in communities of varying sizes. Due to the costly nature of clinical testing and the 

presence of asymptomatic carries of SARS-CoV-2, monitoring communities as a whole may be 

able to more accurately determine the incidence of disease and provide a warning when the 

disease is spreading, prior to an increase in clinical cases. 

This study had three main objectives: 1) to evaluate the efficacy of wastewater 

monitoring of SARS-CoV-2 in two communities with diverse characteristics; 2) to 

determine if county or zipcode level case data are necessary to successfully correlate with 

wastewater surveillance results;  2) to compare the spatial resolution of cases (county vs 

zipcode) and the relationship to SARS-CoV-2 wastewater surveillance data 3) to determine 

the impact of vaccination rates on SARS-CoV-2 wastewater signals compared to case 

numbers. 
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2.0 Connecting microbial, nutrient, physiochemical, and land use variables for the evaluation of 
water quality within five mixed use watersheds 
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2.1 Abstract 

As non-point sources of pollution begin to overtake point sources in watersheds, source 

identification and complicating variables such as rainfall are growing in importance. Microbial 

source tracking (MST) allows for identification of fecal contamination sources in watersheds; 

when combined with data on land use and co-occurring variables (e.g., nutrients, sediment 

runoff) MST can provide a basis for understanding how to effectively remediate water quality. 

To determine spatial and temporal trends in microbial contamination and correlations between 

MST and nutrients, water samples (n=136) were collected between April 2017 and May of 2018 

during eight sampling events from 17 sites in 5 mixed-use watersheds. These samples were 

analyzed for three MST markers (human – B. theta; bovine – CowM2; porcine – Pig2Bac) along 

with E. coli, nutrients (nitrogen and phosphorus species), and physiochemical parameters. These 

water quality variables were then paired with data on land use, streamflow, precipitation and 

management practices (e.g., tile drainage, septic tank density, tillage practices) to determine if 

any significant relationships existed between the observed microbial contamination and these 

variables. The porcine marker was the only marker that was highly correlated (p value <0.05) 

with nitrogen and phosphorus species in multiple clustering schemes. Significant relationships 

were also identified between MST markers and variables that demonstrated temporal trends 

driven by precipitation and spatial trends driven by septic tanks and management practices 

(tillage and drainage) when spatial clustering was employed. 

 

2.2 Introduction 

Non-point sources of pollution have significant impacts on water quality and create 

health risks through a variety of hazards, including the spread of pathogens, eutrophication, 
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harmful algal blooms, and increased sedimentation (Bullerjahn et al., 2016; Smith et al., 2015; 

Vermeulen et al., 2015; Sharpley et al., 2015; Wen et al., 2017; Mateo-Sagasta et al., 2018; 

Zandaryaa and Mateo-Sagasta, 2018). Overland agricultural runoff is being recognized around 

the world as having increased impacts on water quality, overtaking known urban and industrial 

sources as the most prominent contributors to eutrophication of coastal and inland waters 

particularly in some high-income nations (OECD, 2012; USEPA, 2012; Bonsch et al., 2015; 

OECD, 2017; Mateo-Sagasta et al., 2018). For example, agricultural runoff has been found to 

contribute up to 44 and 58% of the phosphorus and nitrogen, respectively entering the Laurentian 

Great Lakes (Robertson and Saad, 2011). Understanding these impacts on water quality is 

important in areas such as the state of Michigan, which has three times more agricultural than 

urban land cover, and has seen an increase in manure application, irrigated land, and the use of 

organic fertilizers (Michigan Land Use Leadership Council, 2003; USDA, 2019). This increasing 

trend in organic agricultural practices and their corresponding increase in economic importance 

for states and local farmers, along with their known impacts on water quality, represent a 

growing area of uncertainty (USDA, 2019). 

Several key agricultural water pollution research needs and knowledge gaps have been 

identified, including: the need for pollution source identification, identification and testing of 

locally appropriate markers, and the need to model the pathways of microbial contaminants 

(Evans et al., 2019).  Current strategies using simply E.coli to understand fecal and nutrient 

pollution and monitor large complex watersheds  are insufficient to address the most important 

water quality risks (Evans et al., 2019). Periodic sampling may provide a temporal “snapshot” of 

water quality, but the ability to sufficiently sample frequently enough is restricted due to the 
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substantial costs in per sample analysis, in particular when monitoring for multiple water quality 

variables (e.g., microbial markers, nutrients, streamflow, etc.) (Luscz et al., 2017). 

Current routine fecal indicator bacteria (FIB), such as Escherichia coli (E. coli), limit the 

ability to address microbial non-point sources of pollution because they cannot be used to 

determine the contamination sources. This is because E. coli has a ubiquitous presence in the 

feces of warm-blooded animals and regrows in aquatic environments (Reischer et al., 2013; 

Mayer et al., 2018; Zhang et al., 2018). Molecular source tracking (MST) markers allow for 

differentiation of fecal contamination from different hosts, and their presence in environmental 

waters allows for the identification of pollution sources (Boehm et al., 2013; Harwood et al., 

2014; Ahmed et al., 2019). 

Previous studies have begun to examine links between land use at various scales with 

water quality variables, however few studies have attempted to analyze and integrate of MST 

data with the chemistry, hydrology, geology, and spatial ecology of the system (Strayer et al., 

2003; Floyd et al., 2009; Martin et al., 2017).  Instream monitoring for microbes and nutrient 

contaminants and their relationships may be necessary to better understand how non-point 

sources of pollution within watersheds impact water quality. This study examined the impacts of 

non-point source pollution, including fecal contamination and nutrient loading within five mixed 

use Michigan watersheds that were experiencing high nutrient, E. coli, and MST levels from 

multiple sources (e.g., human, animal, chemical fertilizer) (Verhoughstraete et al., 2015, 

Nshimyimana et al., 2018). This study had three main objectives: i) to determine the spatial and 

temporal trends in microbial contamination and nutrients in five mixed-use watersheds, ii) to 

determine if MST markers could be significantly correlated with nutrient levels (e.g., phosphorus 

and nitrogen) and iii) to determine which watershed variables (e.g., nutrient levels, land use, 
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management practices, etc.) within a watershed would be useful in predicting microbial 

contamination levels. 

2.3 Materials and methods 

2.3.1 Study area and sample collection  

Water samples were collected from five watersheds in Michigan’s Lower Peninsula, 

ranging in area from 14 km2 to 2,683 km2 (Figure 1). Grab samples (n=136) were collected from 

17 sites [Little Pigeon (LPR, n=1), Sandy Creek (SC, n=2), Kawkawlin (KAW, n=3), Macatawa 

(MAC, n=4), and River Raisin (RR, n=7)] during eight sampling events, between April 2017 and 

May of 2018, representing the growing season (April – August 2017), fall/winter baseflow 

(November 2017) and spring snowmelt (March and May 2018). Sandy Creek (SC) is a very 

small watershed adjacent and just east of the RR. Individual sampling sites were selected based 

on the ability to subdivide watersheds into distinct land use areas that had adequate streamflow at 

bridge crossings and lack of interference from lake effects. Due to limited streamflow and small 

geographic size, the LPR watershed was assigned a single sampling site draining a 13 km2 area. 

The SC watershed had two sampling sites, SC1 and SC2, draining 78 and 13 km2, respectively. 

The MAC watershed was subdivided into four areas with the sampling sites MAC1, MAC2, 

MAC3, and MAC4 draining 31, 298, 77, and 50 km2, respectively. The KAW watershed was 

subdivided into three areas with sampling sites KAW1, KAW2, and KAW3 draining 213, 567, 

and 238 km2, respectively. The RR watershed was significantly larger than the other four 

watersheds and was thus subdivided into seven areas, including sites RR1, RR2, RR3, RR4, 

RR5, RR6, and RR7 draining 2682, 281, 240, 1755, 1205, 210, 348 km2, respectively. The 

sampling sites SC1, MAC2, KAW2, and RR1 were the sampling points at the outlet of the 
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watersheds downstream of all other sites.

 

Figure 2.1 Maps of studied watersheds showing watershed locations in the state of Michigan, 
major streams and waterbodies, general land use, and drainage areas for each sampling location. 
a) Little Pigeon River (LPR) watershed, b) Macatawa (MAC) watershed, c) Sandy Creek (SC) 
watershed, d) River Raisin (RR) watershed, and e) Kawkawlin (KAW) watershed. 

 
Watersheds were selected based on elevated microbial and nutrient results from 

Verhougstraete et al. (2015) and Nshimyimana et al. (2018), with the exception of the 

Kawkawlin Watershed, which was chosen based on known impaired waters of interest in the 

Saginaw Bay area. A total of 2.6 L was collected from each site during each sampling, with two 

1 L volumes collected for microbial analysis and 0.6 L for nutrient and ion analysis. One 

duplicate sample was collected for nutrient and ion analysis on each day of sampling. Grab 
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samples were collected on the upstream side of the center of each stream crossing (e.g., bridges). 

Samples for microbial analysis were then transported on ice to the laboratory at Michigan State 

University (MSU), where they were stored at 4°C until processing and water samples for nutrient 

analysis were transported on dry ice and stored at -20°C until analysis. 

 

2.3.2 Flow, physiochemical, and nutrient methods 

Streamflow was measured during each sampling event (n=136) at the 17 sites (Figure 1) 

using either an acoustic Doppler current profiler or a Marsh McBirney Flo-Mate flow meter 

following US Geological Survery (USGS) protocols (Jarrett, 1991) depending on stream depth 

with the exception of RR sites 1, 5, and 7 where USGS gage flow data were available. For 

physiochemical parameters, a YSI 600R sonde (YSI Inc.) was used onsite to measure water 

temperature (°C), dissolved oxygen (mg L-1), pH, and specific conductance (S/m). Turbidity 

measurements were performed from grab samples at the MSU laboratory after mixing using a 

LaMotte 2020we Turbidimeter (LaMotte Inc.). Nutrients [total dissolved nitrogen (TDN), total 

phosphorus (TP), nitrate (NO3), nitrite (NO2), ammonium (NH4), and soluble reactive 

phosphorus (SRP)] and ions (Na, K, Mg, Ca, Cl, and SO4) concentrations (mg/L) were measured 

in each sample following conventional protocols (Crumpton et al., 1992, Clesceri et al., 1998, 

Wetzel and Likens 2000, Hamilton et al., 2009) as previously described in Verhougstraete et al. 

(2015). Nitrogen and phosphorus were partitioned into their different species before analysis, 

with nitrogen being disaggregated into nitrates (NO2+NO3), NH4, and dissolved organic nitrogen 

(DON) and phosphorus disaggregated into total reactive phosphorus (TRP), filterable reactive 

phosphorus (FRP), total filterable phosphorus (TFP), and total phosphorus (TP). 
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2.3.3 Water sample processing for microbial analysis  

A 100ml subsample of each sample was used for E. coli and coliform testing using Colilert 

18 (IDEXX, ME, USA) according to standard methods, while 900ml was filtered through 

multiple 47 mm 0.4 µm polycarbonate filters (Whatman, NJ, USA) using a sterile magnetic filter 

funnel (PALL Corporation, NY, USA) in 100ml aliquots. Individual filters were folded and 

added to sterile 2.0 ml screw cap tubes (VWR, PA, USA) containing ~0.3 g of 212-300 μm acid 

washed glass beads (Sigma-Aldrich, MO, USA) and stored at for -80°C until DNA extraction. A 

filtration blank of 100 ml of sterile phosphate buffered water was run with each set of samples.  

One 100ml filtered subsample was used for DNA extraction. The samples’ filters were processed 

using a modified version of the Environmental Protection Agency Draft Method C (USEPA, 

2014) crude DNA extraction method. A total of 590 μl of AE buffer (Qiagen, CA, USA) was 

added to each tube containing the sample filter and glass beads. The tubes containing each 

sample filter were then subjected to bead beating for manual cell disruption and DNA extraction 

at maximum speed for 1 min in a BioSpec Mini-Beadbeater (BioSpec, NH, USA). After bead 

beating, sample tubes were centrifuged at 12,000 × g for 1 min to pellet any unwanted debris and 

glass beads. The supernatant (~400 μl) was then transferred to a clean 1.5 ml microcentrifuge 

tube for a 3 min centrifugation at 12,000 × g. The supernatant was then transferred to a final 

1.5ml microcentrifuge tube and analyzed by Nanodrop (ThermoFischer, MA, USA) to confirm 

the presence and estimated concentration of total DNA. Whenever possible, sample DNA was 

analyzed the same day as DNA extraction, with the exception of QA/QC failed runs which were 

rerun within 24 hours. To avoid any unnecessary degradation of the DNA due to multiple 

freeze/thaws, each DNA sample was aliquoted into multiple tubes and stored at -80°C. 
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2.3.4 Microbial molecular analysis methods  

The detection of MST markers was performed using droplet digital PCR™ (ddPCR). 

Three MST markers for this study target human (B. theta α-1-6, mannanase), bovine (CowM2), 

and porcine (Pig2Bac) fecal contamination (Yampara-Iquise et al., 2008; Shanks et al., 2008; 

Mieszkin et al., 2008) (Table 1). Three replicate ddPCR reactions were performed for each 

sample with the human and bovine markers analyzed in duplex, while the porcine marker was 

analyzed alone. Each 22 μl ddPCR reaction setup contained 1X Supermix for Probes (no dutp) 

(Bio-Rad, CA, USA), 900 nmol l-1 of each primer, 250 nmol l-1 of each probe, 0.9 μl of 

molecular grade DNAse-free water, and 5.5 μl of template DNA. Microfluidic droplet generation 

was performed by the Droplet Generator (Bio-Rad, CA, USA) by combining 20 μl of each 

reaction mixture with 70 μl of droplet generation oil resulting in ~20,000 droplets. The resulting 

40 μl oil-reaction mixture emulsions were then transferred to a 96-well PCR plate, heat-sealed 

with foil and placed into a T100 thermocycler (ramp rate of 2°C s-1) (Bio-Rad, CA, USA) for 

PCR amplification using the following parameters: 95°C for 10 min, followed by 40 cycles of 

94°C for 30 s and 60°C for 1 min then a final cycle of 98°C for 10 min. The plate was then 

transferred to a QX200 Droplet Reader (Bio-Rad, CA, USA) for the fluorescent detection of 

positive droplets in each well using the RED (rare event detection) setting.   
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Table 2.1 Primer and probes for ddPCR MST analysis 

aProbe ordered through Roche Universal Probe Library; UPL probe # 62 
bNFQ: Non-fluorescent Quencher 

 

Strict quality control measures were followed for all ddPCR assays. Each assay plate was 

analyzed with three wells of non-template controls (NTC) (molecular grade DNAse-free water), 

filtration blanks for each batch of samples, and three positive control wells for each assay target. 

Assay results were only considered for further analysis if >10,000 accepted droplets were 

achieved in each sample well and within each control well. In addition, any positive NTC wells 

were considered indicative of possible contamination of the reaction master mixture and all 

sample results from that plate were rejected and the samples rerun. Samples were only 

considered true positives if ≥ 3 droplets were positive (above reaction threshold for positive-

negative distinction. Samples were considered as positive if at least one technical replicate (1/3) 

were found to be positive, and close to the calculated detection limit of the assay (354 gene 

copies (GC) 100ml-1). 

 

Assay and 
Sequence 

Type 
Primer or Probe Sequence (5' to 3') Size 

(bp) 
Reference or 

Source 

B. theta  
α-1-6, 

mannanase 

B.theta 4515901F: CATCGTTCGTCAGCAGTAACA 
63 Yampara-Iquise 

et al., 2008 B.theta 4515963R: CCAAGAAAAAGGGACAGTGG  
B.theta Probe: FAM-CAGCAGGT-NFQa,b 

CowM2 

M2F: CGGCCAAATACTCCTGATCGT   

92 Shanks et al., 
2008 

M2R: GCTTGTTGCGTTCCTTGAGATAAT 
M2P: HEX-
AGGCACCTATGTCCTTTACCTCATCAACTACAGACA-
BHQ1 

Pig2Bac 
Pig2Bac41F: GCATGAATTTAGCTTGCTAAATTTGAT 

116 Mieszkin et al., 
2009 Pig2Bac163Rm: ACCTCATACGGTATTAATCCGC 

Pig2Bac113MGB: FAM-TCCACGGGATAGCC-BHQ1 
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2.3.5 Landscape data 

Hourly precipitation time series were obtained at the closest NOAA land-based stations to 

each sampling location (NOAA, 2019). Then, cumulative hourly and multiday precipitation 

totals (mm) were obtained for the period before each sample collection time (e.g., 6 hr, 12 hr, 18 

hr, 24 hr, 2 days, 3 days, 4 days, 6 days, 8 days, 15 days, and 30 days). Land cover proportions 

for each sampling location’s drainage area were obtained by processing the Cropland Data Layer 

(CDL) 2017 (USDA-NASS, 2017) for details, and the National Land Cover Database (NLCD) 

for the general land covers. Tillage practice information was obtained from a national survey 

completed by the USGS spanning 1989 to 2004 (Baker, 2011). The estimated number and 

density of septic systems per watershed area and tile drainage’s proportions were obtained from 

Luscz et al. (2015, 2017). 

 

2.3.6 Statistical analysis  

Multiple methods were utilized to investigate instream variables (e.g., temperature, 

dissolved oxygen (DO), pH, conductivity, streamflow, non-purgeable organic carbon (NPOC), 

TDN, Na, K, Mg, Ca, Cl, SO4, turbidity, NH4, NO3, DON, SRP, and TP) and landscape variables 

(e.g., prior precipitation, land use, tile drainage, septic tank numbers, septic tank density, and 

tillage) to help explain the levels of bacterial indicators of fecal pollution (i.e., MST markers, and 

E. coli) found in the five watersheds. Bacterial markers were considered as the response 

variables in all analyses with the geometric means of the log10 transformed technical replicates of 

each being used for statistical analysis. Non-detect (ND) replicates were included and assigned 

the assay’s detection limit (2.55 log10 GC 100ml -1).  
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To avoid collinearity, redundant variables were identified and removed from the dataset 

prior to analysis by determining the pairwise relationships among all explanatory variables (i.e., 

Temperature, DO, pH, conductivity, streamflow, NPOC, TDN, Na, K, Mg, Ca, Cl, SO4, 

turbidity, NH4, NO3, DON, SRP, TP, prior precipitation, land use, tile drainage, septic tank 

numbers, septic tank density, and tillage) across all sampled locations using Spearman’s rank 

correlations (r > 0.7). The variable that had the lowest average correlation with other predictor 

variables using the ‘findCorrelation’ function from the caret package in R (Kuhn, 2020) was 

retained. Six variables (i.e., TDN, SO4, Ca, Mg, Cl, and SRP) were found to be collinear with 

other variables and were thus removed from the dataset.  

 

2.3.6.1 Spatial clustering  

The clustering analysis consisted of an agglomerative bottom-up hierarchical approach 

using standardized Euclidean distances and the Ward’s minimum variance method, followed by 

a single k-means clustering iteration using up to 3 clusters from the hierarchical approach. This 

analysis was performed to explicitly account for spatial variability using the ‘hclust’ and 

‘kmeans’ functions in R (R Core Team, 2019). To identify the main factors driving this 

variability, clusters of sampling locations were determined using six different criteria; E. coli and 

MST marker concentrations, streamflow, land use, tillage, tile drain proportion, and septic tank 

density. Bacterial (E.coli and MST) marker concentrations and instream variable (i.e., 

temperature, DO, pH, conductivity, streamflow, NPOC, TDN, K, Mg, Cl, turbidity, NH4, DON, 

SRP, and TP) raw data were Box-Cox transformed using the ‘BoxCoxTrans’ function from the 

caret package in R prior to being used for clustering (Kuhn, 2020).  



 
49 

Correlation analysis was performed using pearson correlation (r) analysis using Graphpad 

Prism 8 (GraphPad Software, CA, USA) to ascertain if any significant relationships existed 

between the three MST markers and nutrient species. These analyses were conducted in two 

ways. First by using data from all the sites and samples and secondly by using data from the 

various sampling site clustering configurations (Figure 4).  

 

2.4 Results 

2.4.1 Water quality summary of five watersheds 

Five watersheds from smallest to largest (LPR 14 km2; SC 82 km2; MAC 292 km2; KAW 

582 km2; RR 2,683 km2) were sampled over three seasons (spring, summer, and fall). Selected 

highlights of important water quality variables collected during this study are presented here with 

more information provided in Supplemental Materials. The land uses for each sampling site are 

described in Supplemental Table A1; a detailed land use classification was used for clustering 

and statistical analysis as described in the materials and methods. The areas drained by each 

sampling site ranged from 8.16% (LPR1) to 76.37% (MAC4) agricultural land use 

(Supplemental Table A1).  

Average streamflow for all sites ranged from 0.10 m3/s in the LPR to 8.95 m3/s in the RR 

(Supplemental Table A2). The RR watershed saw the maximum recorded streamflow at 87.50 

m3/s in March 2018 while both the KAW and MAC watersheds had streamflows as low as 0 m3/s 

at multiple sites (KAW1, KAW2, MAC1, MAC4) during June, July, and August 2017 sampling 

dates. Overall streamflow was lowest during the summer sampling of 2017 and the highest 

during the spring sampling in 2017 and 2018.  
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 Septic tank densities varied between and within watersheds. The watersheds (LPR, SC, 

MAC, KAW, and RR) had septic tank density ranges of 14.46, 7.53 to 20.79, 9.10 to 17.14, 6.20 

to 19.39, and 6.87 to 23.85 septic tanks/ km2, respectively.  

 The proportion of land within each watershed with tile drains ranged from 0 at LPR1 On 

average, the proportion of tile drains in LPR, SC, MAC, KAW, and RR were 0, 0.22, 0.30, 0.19, 

and 0.26, respectively. 

Summaries of measured nutrients, MST markers, and physical water quality variables are 

provided in Supplemental Materials (Tables A2-A5). TP concentrations ranged from 14.77 to 

111.24 µg/L, while TDN ranged from 0.66 to 4.90 mg/L across sites. E. coli, B. theta, CowM2, 

and Pig2Bac concentrations ranged from 0.30 to 4.30 Log10 MPN/100ml, 2.71 to 2.83 Log10 

GC/100ml, 2.60 to 2.77 Log10 GC/100ml, 2.96 to 3.23 log10 GC/100ml, respectively.  

 

2.4.2 Spatial and temporal trends in bacterial markers and nutrients 

Individual sample concentrations for the four MST markers, two nitrogen species, and the 

two phosphorus species were plotted on heat maps to visualize spatial or temporal trends in each 

dataset (Figures 2-3). The MST markers primarily revealed temporal trends in their datasets, 

while the nutrient species showed spatial trends and some temporal trends. A few high valued 

data points were omitted from the scaling on the heatmaps to allow for greater visual resolution 

of spatial and temporal trends that would have otherwise been camouflaged by scaling the entire 

range of values. 

up to 0.64 at RR3 with the MAC and RR watersheds having the highest proportions of tile 

drains.  
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Figure 2.2 Microbial heatmaps for all watersheds and sampling months: a) E. coli Log10 
MPN/100ml, b) B. theta Log10 GC/100ml, c) CowM2 Log10 GC/100ml, d) Pig2Bac Log10 
GC/100ml. Cells colored with bright green were above the range depicted on the heatmap. These 
data points were removed from the depicted ranges to increase visibility of spatial and temporal 
patterns in the data. 
 

 

 

 

 



 
52 

 

Figure 2.3 Phosphorus and Nitrogen species’ heatmaps showing spatial and temporal 
distributions. a) total dissolved nitrogen (TDN), b) Ammonium (NH4-N), c) total phosphorus 
(TP), d) total filterable phosphorus (TFP). Individual ranges for each nutrient species are to the 
right of each heatmaps. Cells colored with dark red were above the range depicted on the 
heatmap. These data points were removed from the depicted ranges to increase visibility of 
spatial and temporal patterns in the data. 

 

A general temporal trend was seen for E. coli in Figure 2a, with high concentrations 

during summer (July 2017) and low concentrations in spring (March 2018) across the most of 

sites. The human marker also showed temporal trends with higher concentrations during the 

spring and early summer months (i.e., April, May, June, and July 2017, as well as March 2018), 
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and lower concentrations in the late summer (August 2017), fall (November 2017) and stayed 

low in the spring May of 2018 (Figure 2b). The bovine marker had higher concentrations in June 

and November 2017, with its lowest concentrations in July and August 2017 coinciding with the 

driest (lowest levels of prior precipitation and streamflow) period throughout the study (Figure 

2c). The porcine marker also showed higher concentrations between April, July 2017, and May 

2018, with lower concentrations during August, November 2017, and March 2018 (Figure 2d). 

Spatial and temporal trends were seen for all nitrogen and phosphorus species (Figure 3). 

The TDN results showed a temporal trend with lower concentrations during June and August 

2017 and higher concentrations in November 2017 and March 2018 (Figure 3a). There were also 

spatial trends with sites such as RR5, RR7, LPR1, and KAW1 that consistently had low TDN 

concentrations across all sampling events. Ammonium showed a different spatial trend, with 

MAC3 having considerably higher NH4-N concentrations than all the other sites through time 

(Figure 3b). There was also a spike in ammonium concentrations across all sites in all watersheds 

in July 2017. TDN had similar spatial and temporal trends as in the nitrate heatmap, but with 

lower average concentrations of ammonium vs. nitrate. The phosphorus species showed a spatial 

trend with the highest concentrations found in the MAC sites for all individual species, but when 

examining total phosphorus (TP, Figures 3c and 3d), most of the RR sites (excluding RR7) had 

high phosphorus levels (Figure 3). There were also some temporal trends in the phosphorus 

species with higher concentrations of TP found in August 2017 and March 2018 (Figure 3c). 
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2.4.3 Statistical analysis 

2.4.3.1 Cluster analysis 

The data from individual sites in each watershed were separated by cluster analysis to 

examine the similarities between watershed sites by six variables, including E. coli/ MST marker 

concentrations, streamflow, land use, tillage, tile drain proportion, and septic tank density. The 

final cluster analysis resulted in five clustering schemes with land use and tillage producing 

identical clusters (Figure 4). Clustering sites based on streamflow resulted in three clusters (1, 2, 

and 3) representing low, medium, and high flows. Concentrations from all four markers E.coli 

and MST (B. theta, CowM2, Pig2Bac, and E. coli) had 1, 2, and 3 clusters with concentration 

ranges of 0.99-4.72, 0.30-4.08, 1.33-5.87 Log10 MPN(GC)/100ml, respectively. When cluster 

analysis was performed using tile drain proportions, only two clusters were identified 

representing 0-0.172 and >0.221 proportion tile drains (clusters 1 and 2). Landuse/tillage resulted 

in three clusters with low (25-50 % with no tillage), medium (10 to 25% with no tillage) and 

high (0-10% with no tillage) tillage practices.  Finally, septic tank density split into three clusters 

representing sites with <11, 11-15, and >17 septic tanks/ km2, respectively. 
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a Concentration ranges include values obtained for all four markers (B. theta, CowM2, Pig2bac, 
and E. coli). 
 
Figure 2.4 Cluster analysis results for streamflow, markers, land use, tillage, tile drain 
proportion, and septic tank density. Sites were clustered into up to three clusters representing 
“low”, “medium”, and “high” relative values for each category. Values for specific variables 
ranges of values are listed below each cluster. 

 

2.4.3.2 Correlation Results 

The human and bovine markers showed no significant relationships with any of the seven 

nutrient species when all of the sites were analyzed together. The porcine marker; however, 

showed statistically significant correlations with all four phosphorus species (i.e., TFP, FRP, 

TRP, TP) and ammonium with r values ranging from 0.22 (p = 0.0091) for FRP, to 0.48 (p = 

<0.0001) for ammonium.  
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Correlation analysis using the three streamflow clusters showed significant correlations 

between bovine and porcine markers with nutrient species (Figure 4). In streamflow cluster 1 

(low flow), the porcine marker was correlated with TFP, FRP, TP, and NH4 with r values of 0.26 

(p = 0.0192), 0.26 (p = 0.0250), 0.31 (p = 0.0072), 0.54 (p = <0.0001), respectively. In cluster 2, 

the bovine marker was correlated with nitrate and TDN with r values of 0.37 (p = 0.0372) and 

0.37 (p = 0.0376), respectively. In cluster 3, however the porcine marker was negatively 

correlated with TFP (r -0.48, p = 0.0166).  

Only the porcine marker showed significant relationships with nutrients when clustering 

by E.coli/ MST markers or land use/tillage. 

Sites were clustered into only two clusters when using land use/tillage. In the first land 

use/tillage cluster there were no significant correlations between any of the MST markers and 

nutrients. In the second land use/tillage cluster, the porcine marker was correlated with TFP, 

FRP, TRP, TP, and NH4 with r values 0.42 (p = 0.0083), 0.42 (p = 0.0073), 0.41 (p = 0.0109), 

0.47 (p = 0.0030), and 0.66 (p = <0.0001) respectively.   

In the first cluster (low concentrations) for the E.coli/MST markers there were no 

significant relationships found between the bacteria and nutrients. In the marker cluster 2, the 

porcine maker was correlated with NH4 (r 0.30, p-value 0.0157). In marker cluster 3, the porcine 

marker was highly correlated with TFP, FRP, TRP, TP and NH4 with r values of 0.68 (p = 

0.0002), 0.67 (p = 0.0003), 0.60 (p = 0.0024), 0.73 (p = 0.0001), and 0.82 (p = <0.0001), 

respectively.  

The tile drainage clusters showed significant correlations for both the human and porcine 

markers. In cluster 1, the human marker was correlated with TFP and FRP with r values of 0.40 

(p = 0.0062) and 0.35 (p = 0.0187) respectively. The porcine marker was also correlated with 
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FRP in cluster 1 with an r value of 0.21 (p = 0.0485). In cluster 2, the porcine marker was 

correlated with TFP, TRP, TP and NH4 with R values of 0.21 (p = 0.0467), 0.26 (p = 0.0168), 

0.31 (p = 0.0032), and 0.56 (p = <0.0001).  

Septic tank density clustering resulted in the most correlations between markers and 

nutrient species. The human marker was correlated with TFP, TP, and NH4 in cluster 3 (highest 

density) with r values of 0.4 (p = 0.0037), 0.43 (p = 0.0027), and 0.41 (p = 0.0036) respectively. 

The bovine marker was not significantly correlated in any of the septic tank density clusters. The 

porcine marker was correlated with TFP, FRP TP, and NH4 in both cluster 1 and cluster 3. In 

cluster 1, the porcine marker was correlated with TFP, FRP, TP, and NH4 had r values of 0.31 (p 

= 0.0333), 0.29 (p = 0.0475), 0.39 (p-value 0.0068), and 0.68 (p = <0.0001) respectively. In 

cluster 3, the porcine marker was correlated with TFP, FRP, TP, and NH4 had r values of 0.34 (p 

= 0.0170), 0.29 (p = 0.0492), 0.30 (p = 0.424), 0.32 (p = 0.0247), respectively. 

 

2.5 Discussion 

The data in this study show that individual mixed-use watersheds have unique spatial and 

temporal trends for both microbial contaminants and nutrients. Our results were in line with 

previous research where microbial contamination trends are mainly temporal in nature (Lee et 

al., 2014; Sowah et al., 2017; Nshimyimana et al., 2018; Badgley et al., 2019; McKee et al., 

2020; Hinojosa et al., 2020). These trends are likely associated with the timing of manure 

applications and microbial transport through the watersheds seen with increased rainfall and 

overland flows. Nutrients were spatially segregated based on land use and management practices 

such as tillage and tile drainage.  
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 The MAC watershed, in particular, showed high phosphorus levels at all four sites over 

the course of the sampling period. The phosphorus pollution in the MAC watershed is linked to 

agricultural non-point sources of pollution (Steinman et al., 2018). Our results showed 

correlations between our porcine marker and nutrient species when using the data from the MAC 

watershed sites in multiple clustering schemes. These results suggest that at least a portion of the 

nutrients entering the MAC watershed are associated with manure application practices. These 

high levels of phosphorus are unsurprising as Lake Macatawa, which the watershed drains into, 

has been hypereutrophic for over 40 years (MWP, 2012). A TMDL of 50 ug/L was set for TP in 

Lake Macatawa in 1999 by the USEPA, with best management practices (BMPs) aimed at runoff 

abatement implemented since 2012 to help alleviate nutrient pollution (Walterhouse, 1999; 

Holden, 2021; Steinman et al., 2018). However, these BMPs have yet to produce the desired 

results, with our study’s finding an average total phosphorus concentration of 58.75 ug/L in the 

streams draining into the lake. This is consistent with the effects of land use legacy, where 

changes to the landscape can take decades to propagate through the environment to surface water 

systems (Martin et al., 2021).  

A particularly interesting result of our study is the application of sampling site clustering 

to elucidate masked correlations between MST markers and nutrients. This is of significance 

because it shows that water quality monitoring by itself without considering similarities and 

differences between sampling sites may mask relationships between variables and potential 

contamination sources. While we identified correlations between the porcine marker and both 

phosphorus and nitrogen species, the human and bovine markers were less frequently connected 

to nutrients.   
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The cow marker was not correlated with nutrients. Cow manure because of it’s high 

solids content and lower water activity may release the cow marker at a much different rate 

compared to nutrients, however this is speculative and no data has been generated to support this.    

The higher solids content in bovine manure (265 lbs per 1,000 gals) vs. porcine manure (170 lbs 

per 1,000 gals) changes the availability and uptake of nutrients by crops from the manure (i.e., 

nitrogen availability in the first year after application from dairy cow manure is 50 to 70% and 

only 30 to 50% for swine (Lorimor et al., 1980; Zhang, 2017)). Thus, influencing the difference 

between the animal MST markers and nutrients. The diffuse spreading of cow manure on 

pastures with grazing livestock or overland spreading of cow manure may have also diluted out 

the affect. In addition, fertilizer may be a greater source of nutrients compared to manure in these 

rural areas. 

  The human marker was correlated with nutrient species when sampling sites were 

clustered based on septic tank density suggesting that septic tanks are an important source of 

nutrients in watersheds that have higher septic tank densities (Figure 4). However, the human 

bacterial marker may be transported through soil in a different time frame compared to nutrients.  

The input from septic tanks to surface waters was more apparent during low flows, where 

groundwater contributions to surface waters compared to overland flow are not masked. This is 

in line with observations from previous studies by Verhougstraete et al. (2015) and Sowah et al. 

(2017). Additionally, Joseph et al. (2021) showed that human inputs were more highly correlated 

with stream contamination than bovine sources even in areas with high numbers of cattle. 

Another important aspect to consider when examining correlations between MST 

markers and nutrient levels is the persistence of each marker. The persistence of the MST 

markers varies and influences the presence (degradation) of the markers. The Pig2Bac marker 
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T90 (time for 90% decay) ranges from 0.90 to 5.11 days, while the human marker the B. theta and 

CowM2 have reported T90’s of 1.8 and 3.14 days, respectively (Korajkic et al., 2018; He et al., 

2016; Brooks et al., 2015; Ballesté et al., 2018). The longer persistence of the porcine marker in 

water may allow for higher correlations with nutrient species. This correlation is likely 

influenced by both the source, transport, and fate of the contaminants.  

In nearly every cluster, the porcine marker showed correlations with ammonium. This 

suggests that when porcine manure is applied to the land, a significant portion of the manure and 

accompanying nutrients make their way into the waterways. This, in turn, along with the lack of 

bovine markers correlated with nutrients, could mean that the method of application or the 

physical attributes of the manure sources are significant in the fate of nutrient and microbial 

contamination to streams. 

 The correlations between nutrients and MST markers when sampling sites were clustered 

by septic tank density suggest that septic tank density may help predict where higher levels of 

fecal pollution will occur. For the human marker, this is in line with a large-scale study 

conducted by Verhougstraete et al. (2015), which identified a similar correlation between septic 

tank numbers in watersheds and an increase in the human marker.  It is not clear why the pig 

marker would correlate with nutrients based on septic tank density, but it may be indicative of 

greater manure application to the available land in rural areas where septic tanks are more widely 

used.   

While this study successfully identified relationships between MST markers and nutrient 

species, no strong predictive relationships could be determined. This suggests that while MST 

can help to identify contamination sources within watersheds, there are too many variables in the 

accompanying water quality data to allow for a strong predictive model to be formed. However, 
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the abundant correlations between the porcine marker and phosphorus and ammonium show that 

porcine manure is likely an important source of pollutants from agricultural land that is 

transported into streams that should be monitored more frequently pre- and post- applications. 

 To reach desired stream water quality, particularly in problematic agriculturally intensive 

watersheds, manure and septic tanks both need to be considered for control of microbials and 

nutrients.   

2.6 Conclusions 

• Spatial clustering allows for a more accurate analysis of relationships of water quality 

variables in watersheds. 

• Temporal contamination is primarily driven by precipitation and its associated variables 

(e.g., streamflow, turbidity, overland flow), while spatial contamination is driven by land 

uses (e.g., septic tank density, tile drain proportions, and tillage). 

• Porcine fecal contamination is more often correlated with nutrients in streams than either 

bovine or human contamination. 
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Water temperatures varied over the three seasons, but not between watersheds (11.60 to 

16.04°C). DO levels on average were 9 mg/L in four (LPR, SC, MAC, RR) of the watersheds, 

while KAW sites had an average of 7.97 mg/L. The lowest individual DO measurement was 

from MAC (3.12 mg/L). Average pH values varied little between watersheds, with averages 

from 7.82 to 8.17. The lowest measured conductivity occurred in July 2017 in the KAW 

watershed (212.50 µs/cm), while SC had the highest single sample conductivity (934.60 µs/cm) 

in August 2017. Average conductivity for all of the watersheds ranged from 310.65 to 600.93 

µs/cm. The KAW and LPR watersheds had low average turbidities 2.47 and 2.78 NTU, 

respectively, while RR, MAC and SC watersheds had high average turbidities (i.e., 10.02, 8.60, 

and 9.60 NTU, respectively). These varied seasonally along with streamflow.  

The MAC watershed had the highest concentration of K, Mg, and Na with concentrations 

of 6.04 mg/L, 17.82 mg/L, and 28.42 mg/L, respectively (Supplemental Materials Table A3). 

The LPR watershed had the lowest concentrations of Mg, Na, and non-purgeable organic carbon 

(NPOC) with concentrations of 1.71 mg/L, 12.24 mg/L, and 11.53 mg/L, respectively. The KAW 

watershed was found to have the lowest K levels (1.71 mg/L) and the highest NPOC 

concentration (20.16 mg/L). The RR and SC watersheds showed similar levels of ions as each 

other. Ca concentrations were found to be highest in RR and SC at 76.01 and 77.60 mg/L, 

respectively. SO4 concentrations were found to be highest in the SC and RR watersheds (i.e., 

58.72 and 50.24 mg/L respectively) and lowest in the KAW watershed (i.e., 21.02 mg/L). 
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Table 2.A1 Land use percentages for each sampling site’s drainage area 

Sampling 
Site 

Agricultural Developed Water Undevelopeda 

KAW1 17.60 4.31 0.57 77.52 
KAW2 44.67 10.98 0.45 43.90 
KAW3 60.23 11.75 0.32 27.71 
LPR1 8.16 13.13 0.22 78.50 
MAC1 74.58 8.33 0.19 16.90 
MAC2 57.09 21.88 0.28 20.75 
MAC3 57.02 17.42 0.36 25.20 
MAC4 76.37 8.11 0.10 15.42 
RR1 55.07 10.84 1.58 32.51 
RR2 45.76 19.65 0.70 33.89 
RR3 78.48 6.38 0.09 15.06 
RR4 49.95 10.16 2.16 37.73 
RR5 36.81 11.84 2.93 48.41 
RR6 56.05 5.90 0.38 37.68 
RR7 24.28 10.63 4.85 60.25 
SC1 52.88 20.58 0.24 26.30 
SC2 54.77 6.03 0.15 39.05 

aUndeveloped land use includes the following land use categories: barren, forest, herbaceous, 

shrubland, and wetland 
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Table 2.A2 Physiochemical summary results by watershed 

Watershed 

Water 
Temperature 

(°C) 
 Average  
(Range) 

DO  
(mg/L) 

Average 
(Range) 

pH 
Average 
(Range) 

Conductivity 
(µs/cm) 
Average 
(Range) 

Streamflow 
(m3/s) 

Average 
(Range) 

Turbidity 
(NTU) 

Average 
(Range) 

River 
Raisin 
 (RR) 

16.04  
(2.14-27.52) 

9.69  
(6.19-13.78) 

8.11  
(7.19-8.53) 

600.93  
(396.40-875.80) 

8.95 
(0-87.50) 

10.02  
(1.17-36.40) 

Kawkawlin 
(KAW) 

14.88  
(0.78-25.20) 

7.97  
(4.31-13.40) 

7.89  
(7.40-9.12) 

436.66  
(212.50-750.70) 

1.93  
(0-11.44) 

2.78  
(1.05-7.94) 

Macatawa 
(MAC) 

15.61  
(2.75-25.31) 

9.30  
(3.12-14.60) 

8.00  
(6.64-8.62) 

576.34  
(403.60-729.10) 

0.65  
(0-2.67) 

8.60  
(0.97-46.60) 

Sandy 
Creek  
(SC) 

13.98  
(1.08-22.34) 

9.37  
(3.99-13.32) 

7.82  
(7.19-8.26) 

577.01  
(285.40-934.60) 

0.33  
(0-1.57) 

9.60  
(1.90-39.10) 

Little 
Pigeon 
(LPR) 

11.60  
(3.89-16.80) 

9.04  
(5.65-12.19) 

8.17  
(7.54-8.89) 

310.65  
(220.50-375.80) 

0.10  
(0.03-0.18) 

2.47  
(1.62-3.35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
66 

Table 2.A3 Ion summary results by watershed 

Watershed 

K  
(mg/L)  

Average 
(Range) 

Mg  
(mg/L)  

Average 
(Range) 

Ca 
 (mg/L)  
Average 
(Range) 

Cl  
(mg/L)  

Average 
(Range) 

Na  
(mg/L) 

Average 
(Range) 

NPOC  
(mg/L)  

Average 
(Range) 

River 
Raisin  
(RR) 

2.34  
(0.83-4.01) 

16.94  
(7.57-33.01) 

76.01  
(43.43-115.92) 

37.08  
(0.01-66.99) 

20.91  
(9.31-47.42) 

13.54  
(4.68-50.17) 

Kawkawlin  
(KAW) 

1.71  
(0.90-3.48) 

13.21  
(5.18-24.10) 

53.91  
(32.64-93.59) 

28.44  
(0.04-54.77) 

17.27  
(3.13-35.09) 

20.16  
(7.42-60.91) 

Macatawa  
(MAC) 

6.04  
(1.06-
10.81) 

17.82  
(4.96-25.79) 

58.36  
(28.31-81.18) 

43.49  
(16.05-68.57) 

28.42  
(4.74-55.49) 

14.05  
(5.74-41.54) 

Sandy 
Creek  
(SC) 

3.81  
(1.96-8.68) 

13.45  
(4.74-30.89) 

77.60  
(37.25-130.10) 

36.35  
(20.38-57.71) 

19.05 
(9.03-39.14) 

17.38  
(3.34-55.04) 

Little 
Pigeon  
(LPR) 

2.07  
(1.55-2.77) 

9.07  
(5.37-11.55) 

41.79  
(33.71-49.42) 

28.24  
(27.63-29.85) 

12.24  
(10.77-13.33) 

11.53  
(4.56-35.69) 
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Table 2.A4 Microbial summary results by watershed 

Markers 

Watersheds 

RiverRaisin 
(RR) 

Kawkawlin 
(KAW) 

Macatawa 
(MAC) 

Sandy 
Creek 
(SC) 

Little 
Pigeon 
(LPR) 

E. coli   

% Positive 
100  

(56/56) 
100  

(24/24) 
100 

(32/32) 
100 

(16/16) 
100  
(8/8) 

Geomeana 
(Range)  

1.91  
(0.80-3.91) 

1.84  
(0.99-2.84) 

2.41  
(1.21-4.30) 

1.94  
(0.30-3.34) 

2.01 
(1.15-2.76) 

B. theta   

% Positive 
64.29 

(36/56) 
54.17 

(13/24) 
59.38 

(19/32) 
50  

(8/16) 
87.5  
(7/8) 

Geomeanb 
(Range)  

2.77  
(2.55-3.50) 

2.77  
(2.55-3.49) 

2.83  
(2.55-3.72) 

2.71  
(2.55-3.17) 

2.82  
(2.55-3.17) 

CowM2  

% Positive 
42.86 

(24/56) 
45.83 

(11/24) 
40.63 

(13/23) 
25  

(4/16) 
50  

(4/8) 

Geomeanb 
(Range)  

2.66  
(2.55-3.26) 

2.69  
(2.55-3.54) 

2.67  
(2.55-3.27) 

2.60  
(2.55-2.82) 

2.77  
(2.55-3.42) 

Pig2Bac    

% Positive 
71.43 

(40/56) 
66.67 

(16/24) 
87.5 

(28/32) 
93.75 

(15/16) 
62.5  
(5/8) 

Geomeanb 
(Range)  

2.96  
(2.55-3.76) 

3.07  
(2.55-4.68) 

3.23  
(2.55-5.89) 

3.2  
(2.55-4.72) 

3.07  
(2.55-4.36) 
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Table 2.A5 Nutrient summary results by watershed 

Watershed 
TFP  

(µg/L) 
Average 
(Range) 

FRP 
(µg/L) 

Average 
(Range) 

TRP 
(µg/L) 

Average 
(Range) 

TP  
(µg/L) 

Average 
(Range) 

NO3  
(mg/L) 

Average 
(Range) 

NH4  
(mg/L) 
Averag

e 
(Range) 

TDN  
(mg/L) 

Average 
(Range) 

SO4  
(mg/L) 

Average 
(Range) 

River 
Raisin  
(RR) 

39.06  
(11.39-
315.28) 

29.16  
(1.66-

291.47) 

39.80  
(7.06-303.04) 

58.72  
(14.30-
284.14) 

2.34  
(0.06-
8.06) 

0.02  
(0-0.17) 

2.67  
(0.61-8.22) 

50.24  
(16.26-
100.22) 

Kawkawli
n  

(KAW) 

44.03  
(16.38-
125.97) 

33.20  
(5.52-

122.00) 

39.14  
(15.93-
139.36) 

57.98  
(18.85-
154.62) 

1.80 
 (0-5.95) 

0.02  
(0-0.08) 

2.38  
(0.74-6.14) 

21.02  
(2.64-50.44) 

Macatawa  
(MAC) 

83.60  
(25.57-
260.81) 

66.64  
(8.99-

224.99) 

75.04  
(24.42-
235.40) 

111.24  
(36.49-
354.48) 

3.78  
(0.03-
11.58) 

0.10  
(0-1.56) 

4.34  
(1.00-
13.34) 

37.41  
(11.95-64.15) 

Sandy 
Creek 
 (SC) 

48.39  
(13.89-
151.59) 

38.76  
(0.89-

140.90) 

40.51  
(15.55-
165.98) 

58.75  
(26.34-
178.48) 

4.48  
(0.01-
9.59) 

0.01  
(0-0.11) 

4.90  
(0.80-
10.16) 

58.72  
(25.95-
153.92) 

Little 
Pigeon  
(LPR) 

10.83  
(4.34-19.27) 

9.37  
(5.13-12.85) 

9.76  
(5.99-14.00) 

14.77  
(10.56-21.37) 

0.20  
(0.14-
0.37) 

0.03  
(0-0.08) 

0.66  
(0.30-1.05) 

37.43  
(27.65-45.47) 
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Figure 2.A1 Water quality variable heatmaps showing spatial and temporal distributions. a) 
potassium (k) mg/L; b) dissolved oxygen (D) mg/L; c) Conductivity (us/cm). 
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3.1 Abstract 

Wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is an emerging public health tool to understand the spread of Coronavirus Disease 2019 

(COVID-19) in communities. The performance of different virus concentration methods and 

PCR methods needs to be evaluated to ascertain their suitability for use in the detection of 

SARS-CoV-2 in wastewater. We evaluated ultrafiltration and polyethylene glycol (PEG) 

precipitation methods to concentrate SARS-CoV-2 from sewage in wastewater treatment plants 

and upstream in the wastewater network (e.g., manholes, lift stations). Recovery of viruses by 

different concentration methods was determined using Phi6 bacteriophage as a surrogate for 

enveloped viruses. Additionally, the presence of SARS-CoV-2 in all wastewater samples was 

determined using reverse transcription quantitative PCR (RT-qPCR) and reverse transcription 

droplet digital PCR (RT-ddPCR), targeting three genetic markers (N1, N2 and E). Using spiked 

samples, the Phi6 recoveries were estimated at 2.6-11.6% using ultrafiltration-based methods and 

22.2-51.5% using PEG precipitation. There was no significant difference in recovery efficiencies 

(p <0.05) between the PEG procedure with and without a 16 hr overnight incubation, 

demonstrating the feasibility of obtaining same day results. The SARS-CoV-2 genetic markers 

were more often detected by RT-ddPCR than RT-qPCR with higher sensitivity and precision. 

While all three SARS-CoV-2 genetic markers were detected using RT-ddPCR, the levels of E 

gene were almost below the limit of detection using RT-qPCR. Collectively, our study suggested 

PEG precipitation is an effective low-cost procedure which allows a large number of samples to 

be processed simultaneously in a routine wastewater monitoring for SARS-CoV-2. RT-ddPCR 

can be implemented for the absolute quantification of SARS-CoV-2 genetic markers in different 

wastewater matrices.  
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3.2 Introduction 

Since the emergence and spread of severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19), many cities around 

the world have rapidly expanded their viral surveillance systems, including wastewater 

monitoring for SARS-CoV-2. This is because SARS-CoV-2 can be shed in the feces of infected 

individuals from both symptomatic and asymptomatic cases (Park et al., 2020; Wu et al., 2020).  

Coronaviruses are positive-strand RNA enveloped viruses with the largest viral genomes 

of all RNA viruses (27 to 32 kb). They have a spherical virion of about 120 nm in diameter 

surrounded by a lipid envelope with pronounced spiked glycoproteins (S) embedded. The vast 

majority of studies on the presence of viruses in human excreta and municipal wastewater have 

been focused on nonenveloped enteric viruses. There are a number of established methods for 

the detection of nonenveloped enteric viruses in wastewater, but only fewer evaluated protocols 

for human enveloped viruses such as SARS-CoV-2 (Haramoto et al., 2018). Analysis of 

environmental matrices for human viruses often require concentration steps due to the low 

ambient concentrations of the viruses. Therefore, laboratory methods for the detection of SARS-

CoV-2 in wastewater need to examine both sample concentration and RNA quantification 

methods along with optimizing limits of detection.   

Globally, there have been over forty reports on the molecular detection of SARS-CoV-2 

in wastewater (e.g., Ahmed et al., 2020a; Ahmed et al., 2020b; Ampeuro et al., 2020; Arora et 

al., 2020; Balboa et al., 2020; Chavarria-Miró et al., 2020; Curtis et al., 2020; Döhla et al., 2020; 

Fernández de Mera et al., 2020; Fongaro et al., 2020; Green et al., 2020; Haramoto et al., 2020; 

Hata et al., 2020; Kocamemi et al., 2020a; Kocamemi et al., 2020b; Kumar et al., 2020; La Rosa 

et al., 2020a; La Rosa et al., 2020b; Medema et al., 2020; Miyani et al., 2020; Nemudryi et al., 
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2020; Bar-Or et al., 2020; Peccia et al., 2020; Prado et al., 2020; Randazzo et al., 2020a; 

Randazzo et al., 2020b; Rimoldi et al., 2020; Sharif, 2020; Sherchan et al., 2020; Trottier et al., 

2020; Vallejo et al., 2020; Wang et al., 2020; Weidhaas et al., 2020; Westhaus et al., 2020; Wu et 

al., 2020a; Wu et al., 2020b; Wurtzer et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b; Zhou 

et al., 2020). These studies have had large variability in the numbers of samples from as few as 

10 samples collected to over 120 with SARS-CoV-2 RNA being detected at concentrations 

ranging from 102 to 106 copies per liter. These SARS-CoV-2 surveillance studies analyzed 

volumes of raw sewage, treated wastewater and sewage sludge ranging from 2.5 mL to 2000 mL, 

using various concentration methods such as adsorption-elution based membrane filtration, 

precipitation (using polyethylene glycol, aluminum hydroxide), ultracentrifugation and 

ultrafiltration prior to RNA extraction in order to recover the virus. The majority of studies 

quantified the viral RNA in wastewater using quantitative reverse transcription polymerase chain 

reaction (RT-qPCR) with external standard curves. Several gene targets specific to the SARS-

CoV-2 have been used in wastewater surveillance, including the RNA-dependent polymerase 

(RdRP), nucleocapsid (N1, N2), envelope protein (E), spike glycoprotein (S), membrane 

glycoprotein (M) and ORF1ab genes (e.g., Lu et al., 2020; Corman et al., 2020).  

Currently, cell culture for SARS-CoV-2 requires a Biosafety Level 3 laboratory and 

specially trained personnel. Therefore, surrogate viruses have been used to mimic SARS-CoV-2 

to evaluate virus concentration methods for wastewater. These surrogate viruses include F-

specific RNA phages (Balboa et al., 2020; Hata et al., 2020; Medema et al., 2020), mengovirus 

(Randazzo et al., 2020a), avian coronavirus of infectious bronchitis virus (Kocamemi et al., 

2020a), Alphacoronavirus HCoV 229E (La Rosa et al., 2020b), bovine coronavirus BCoV 

(LaTurner et al., 2021), porcine epidemic diarrhea virus (PEDV) (Randazzo et al., 2020b),  
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bovine respiratory syncytial virus (BRSV) (Gonzalez et al., 2020), and murine hepatitis virus 

(Ahmed et al., 2020c).  Estimated mean recovery efficiencies for these surrogate viruses ranged 

from 1% to 73% using different concentration methods originally developed for the detection of 

enteric viruses in environmental samples (Randazzo et al., 2020a; Medema et al., 2020). 

Pseudomonas phage Phi6 has also been used as a model enveloped virus in recovery and 

persistence studies (Aquino de Carvalho et al., 2017; Ye et al., 2016). Similar to coronaviruses, 

Phi6 is an enveloped RNA virus, with a segmented genome and glycerophospholipids in its 

envelope (Vidaver et al., 1973). Since Phi6 is not pathogenic to humans, it is easier to work with 

than other enveloped animal viruses and no special laboratory biosafety is required. 

  Rapid, cost-effective, and efficient methods are needed to provide precise data to support 

public health decision making. This is so that changes in concentrations of SARS-CoV-2 gene 

markers in wastewater provide meaningful data to inform COVID-19 surveillance. Therefore, 

the objective of this study was to (i) evaluate the efficiencies of polyethylene glycol (PEG) 

precipitation and ultrafiltration methods to recover Pseudomonas phage Phi6, coronavirus OC43, 

and  SARS-CoV-2 from different wastewater matrices; (ii) compare two PCR-based methods, 

reverse transcription quantitative PCR (RT-qPCR) and reverse transcription droplet digital PCR 

(RT-ddPCR) for the detection of SARS-CoV-2 in different wastewater matrices; and (iii) 

develop a rapid, cost-effective, and precise quantification workflow for SARS-CoV-2 in 

wastewater. 
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3.3 Materials and Methods 

3.3.1 Wastewater samples and sampling sites 

Wastewater samples (500-1000 mL) for this study were collected from 11 sanitary sewer sites 

and four wastewater treatment plant (WWTP) influent streams (after grit removal) 

(Supplemental materials Table A1 and A2). A total of twenty sanitary sewer samples were 

collected as grab samples from the 11 manholes or lift stations. Sanitary sewer samples consisted 

of wastewater flowing from university dormitories, local communities, and hospital. Influent 

samples (n=11) from four WWTPs were collected as 24-hr composite samples. Samples used for 

the comparison of the SARS-CoV-2 surrogates Phi6 and human coronavirus OC43 were 

collected from two California wastewater treatment plant influents as previously described by 

Pecson et al. (2021). All samples were kept at 4°C for up to 72 hours. If samples were unable to 

be processed within 72 hours of collection, then they were frozen at -80°C until analysis.  

 

3.3.2 Virus stocks 

Bacteriophage Phi6 and its bacterial host Pseudomonas syringae were kindly provided by 

Dr. Krista Wigginton’s lab at University of Michigan. To propagate Phi6, P. syringae was grown 

in King’s B medium at 24℃ for 6 hours in stationary culture. Phi6 was added to the host and 

incubated under the same conditions for 16 to 18 hours. After incubation and observed clearing 

of cell suspension due to lysis, cells and debris were removed from the Phi6 suspension by 

filtration using 0.22 µm membranes. The Phi6 stocks were stored at 4°C and titered using an 

overlay method. For the overlay process, 2 ml of host was added to the overlay tube containing 

King’s B agar and 0.5 ml of virus suspension, mixed, and poured onto a plate containing King’s 



 
83 

B agar. Plates were incubated at 24℃ for 16-24 hours and plaques were counted. Virus titers of 

approximately 109 plaque forming unit (PFU) per ml were routinely obtained.     

 

3.3.3 Virus concentration methods and experiments 

Four distinct comparisons were performed in this study. First, three viral concentration 

methods were tested for their efficiency in recovering Phi6 phages and SARS-CoV-2 in different 

types of wastewater. Methods 1 (CEN1) and 2 (CEN2) are based on the ultrafiltration principle 

and used centrifugal filters. Method 3 is a precipitation using polyethylene glycol (PEG).  The 

second comparison was between RT-ddPCR and qPCR using the three viral concentration 

methods. The third comparison was determining if a rapid PEG precipitation approach (without 

an overnight incubation) would be able to perform as well or better than PEG precipitation with a 

16 hr overnight incubation. Lastly, Phi6 was compared against the human coronavirus OC43 

using RT-ddPCR to determine if recovery efficiencies between the two SARS-CoV-2 surrogates 

were equivalent. 

For each experiment, 350 ml of wastewater sample was inoculated with 1 ml of 106 

plaque forming units (PFU)/ml of Phi6 and homogenized for 10 minutes at 4°C. SARS-CoV-2 

was not added to the sample. After homogenization, the sample was subdivided into three 101 ml 

of aliquots in 250 ml centrifuge bottles for processing with each concentration method. One 

milliliter of sample was removed from each 250 ml bottle containing the subsample for use in 

determining the seeded virus level for recovery efficiency of each method. Recovery efficiencies 

were determined by comparing the concentration of the spiked Phi6 bacteriophage in each 

subsample prior to processing with the concentration of Phi6 in their final concentrate using RT-
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ddPCR. All viral concentration experiments, for each method and each type of wastewater, were 

conducted in triplicate.  

Method 1 (CEN1) was adapted from Ye et al. (2016) but modified to include virus 

recovery steps from wastewater solids. Briefly, 100 ml of wastewater sample was first 

centrifuged at 2,500 x g for 5 min at 4°C in order to pellet any solids present in the sample. The 

supernatant was then collected without disturbing the pellet and filtered through a 0.22 µm 

polyethersulfone (PES) membrane filter (MilliporeSigma, St. Louis, MO). The sample was then 

concentrated using a 10 kDa Centricon Plus-70 centrifugal filter unit (MilliporeSigma, St. Louis, 

MO) according to the manufacturer’s protocol. A 1:1 volume of 0.25N glycine buffer was added 

to the pellet and remaining liquid. The pellet was vortexed every 10 min for 30 min while on ice 

to dislodge the viruses from suspended solids. After the 30 min incubation the glycine-processed 

sample was neutralized 1:1 with 2 x PBS. The sample was then centrifuged at 10,000 x g for 30 

min at 4°C. The supernatant was processed with the same centrifugal filter and the resulting 

concentrates were combined.  

Method 2 (CEN2) involved the use of the same centrifugal filter but without a pre-

filtration step (Medema et al., 2020). In this method, 100 ml of sample was centrifuged at 4,654 

x g for 30 min at 4°C without brake. The supernatant was then collected and directly filtered 

through a 10 kDa Centricon Plus-70 centrifugal filter unit (MilliporeSigma, St. Louis, MO) 

according to the manufacturer’s protocol. The pellet was processed using the same protocol as 

described in the Method 1 (CEN1). 

Method 3 (PEG) was adapted from Borchardt et al. (2017) for the detection of avian 

influenza virus RNA in groundwater. The samples were mixed with 8% (w/vol) molecular 

biology grade PEG 8000 (Promega Corporation, Madison WI) and 0.2 M NaCl (w/v). The 
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samples were mixed slowly on magnetic stirrer at 4°C for 2 hours and then held at 4°C for 16 

hours. Following the overnight incubation, samples were centrifuged at 4,700 x g for 45 mins at 

4°C. The supernatant was then removed, and the pellet resuspend in the remaining liquid. All 

sample concentrates were aliquoted and stored at -80°C until further processing. 

 After the initial comparison of two ultrafiltration methods and PEG precipitation, a rapid 

PEG precipitation approach (without an overnight incubation) was evaluated with 19 wastewater 

samples. Each sample was inoculated with Phi6 and homogenized as described above. After 

mixing the sample with 8% (w/vol) PEG 8000 and 0.2 M NaCl for 2 hours at 4°C, the sample 

was immediately centrifuged at 4,700 x g for 45 mins at 4°C.  

 Finally, a comparison between Phi6 and OC43 was performed using wastewater from 

two California wastewater treatment plants split into 5 subsamples each and processed with the 

overnight PEG precipitation method. 

 

3.3.4 RNA extraction and quantification by RT-ddPCR and RT-qPCR 

Viral ribonucleic acid (RNA) was extracted from wastewater concentrates using the 

Qiagen QIAmp Viral RNA Minikit according to the manufacturers protocol with modifications 

(Qiagen, Germany). In this study, a total of 200 µl of concentrate was used for RNA extraction 

resulting in a final elution volume of 80 µl. Extracted RNA was stored at -80°C until analysis. 

 

3.3.4.1 Detection of SARS-CoV-2, Phi6, and coronavirus OC43 using RT-ddPCR 

One-step RT-ddPCR approach was used to quantify the Phi6 RNA to determine the 

recovery efficiencies for each concentration method. All the primers and probes used in this 

study are listed in Table A3. Droplet digital PCR was performed using Bio-Rad’s 1-Step RT-
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ddPCR Advanced kit with a QX200 ddPCR system (Bio-Rad, CA, USA). Each reaction 

contained a final concentration of 1 × Supermix (Bio-Rad, CA, USA), 20 U ul-1 reverse 

transcriptase (RT) (Bio-Rad, CA, USA),  15 mM DTT, 900 nmol l-1 of each primer, 250 nmol l-

1 of each probe, 1 µl of molecular grade RNAse-free water, and 5.5 μl of template RNA for a 

final reaction volume of 22 μl. Droplet generation was performed by microfluidic mixing of 20 

μl of each reaction mixture with 70 μl of droplet generation oil in a droplet generator (Bio-Rad, 

CA, USA) resulting in a final volume of 40 μl of reaction mixture-oil emulsions containing up to 

20,000 droplets with a minimum droplet count of > 9,000. The resulting droplets were then 

transferred to a 96-well PCR plate which was heat-sealed with foil and placed into a C1000 96-

deep well thermocycler (Bio-Rad, CA, USA) for PCR amplification using the following 

parameters: 25°C for 3 min, 50°C for 1 hr, 95°C for 10 min, followed by 40 cycles of 95°C for 

30 s and 60°C for 1 min with ramp rate of 2°C s-1 followed by a final cycle of 98°C for 10 min. 

Following PCR thermocycling, each 96-well plate was transferred to a QX200 Droplet Reader 

(Bio-Rad, CA, USA) for the concentration determination through the detection of positive 

droplets containing each gene target by spectrophotometric detection of the fluorescent probe 

signal. 

SARS-CoV-2 RNA and OC43 in wastewater samples were also quantified using the 

same one-step RT-ddPCR approach except the annealing temperature was set at 55°C. Three 

SARS-CoV-2 markers were chosen for analysis, the nucleocapsid 1 (N1) and nucleocapsid 2 

(N2) gene targets designed by the US Centers for Disease Control and Prevention (CDC) (Lu et 

al., 2020), the envelope (E) gene from Corman et al. (2020), and OC43 (Table A3). The N1 and 

N2 gene targets were analyzed in a duplex assay. All analyses were run in triplicate for each 
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marker. Quality controls were run with every plate including positive and non-template controls, 

extraction controls, and processing blanks for each batch of samples. 

 

3.3.4.2 Detection of SARS-CoV-2 using RT-qPCR 

RT-qPCR approach was also used to quantify SARS-CoV-2 gene markers in wastewater 

samples. All RT-qPCR reactions were performed using a StepOne PlusTM real-time PCR 

sequence detector (Applied Biosystems, Foster City, CA). For each assay, a 10-fold diluted 

standard curve of at least five points, a non-template control, and samples were tested in 

triplicate. The quantitative synthetic SARS-CoV-2 RNA includes fragments from nucleocapsid 

and envelope regions (ATCC VR-3276SD) was used to generate standard curves. Amplification 

reaction mixtures (final total volume of 20 µl) contained 5 µl template RNA, 10 µl of 2 × qScript 

one-step RT-qPCR ToughMix (QuantaBio), 300 nM, 500 nM and 400 nM of forward primer for 

N1, N2 and E gene, respectively, 500 nM, 800 nM and 800 nM of reverse primer for N1, N2 and 

E gene, respectively, and 200 nM of probe. The thermal cycling protocol was as follows: 10 min 

at 50°C for cDNA synthesis, 3 min at 95°C for initial denaturation, followed by 45 cycles of two 

steps consisting of 3 s at 95°C and 30 s at 55°C. qPCR amplification efficiencies for the 

quantification of the N1, N2 and E gene assays were 92.6±4.3%, 95.1±3.4% and 91.6±2.2%, 

respectively, and the correlation coefficients (R2) of the standard curves were  0.968±0.002, 

0.982± 0.004, and 0.988± 0.0006, respectively.   

 

3.3.5 Data analysis 

All SARS-CoV-2, Phi6, and OC43 gene data were converted from gene copies (GC) per 

reaction to GC per 100 ml before analysis. Non-detects (ND) were assigned their individual 
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sample’s limit of detection. The limit of detection was calculated for each individual sample 

based on both the molecular assays’ theoretical detection limits (i.e., 3 positive droplets for RT-

ddPCR; the lowest standard curve concentration for RT-qPCR) and the concentration factor of 

each processing method examined. 

!"#$%	'(	)*#	100-.	 = 	
'(	)*#	#*012"34 

!! × !"	 ×
!$
!%

!&
× 100 

Where: 

Vi = Initial volume of sample concentration in ml 

Vf = Final volume of sample after concentration in ml 

Vr = Volume of RNA template used per PCR reaction in μl 

Ve = Final volume of RNA eluted from RNA extraction in μl 

Vc = Volume of concentrated sample used for RNA extraction in ml 

Recovery efficiency was calculated by dividing the total gene copies (GC) / 100 ml 

concentration of the Phi6 bacteriophage measured in each methods’ final concentrate by the 

concentration (GC/ 100 ml) of Phi6 in each sample before concentration and then multiplying by 

100.   

Statistics and data visualization were performed using Graphpad Prism 8 (Graphpad 

Software, CA, USA). Results for the three methods comparison were analyzed with a two-way 

ANOVA with a Tukey’s multiple comparisons test to determine method significance (p value < 

0.05). A two-way ANOVA (p < 0.05) and a paired t test (p < 0.05) were performed for the 

comparison of “normal” (16 hr hold) vs “rapid” (no hold) PEG precipitation methods. 
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3.4 Results  

3.4.1 Wastewater characteristics 

Wastewater samples from both sanitary sewer systems and treatment plants were 

evaluated in this study. All site-specific details including physiochemical data and sampling 

dates for each sanitary sewer and WWTP site are shown in Table A1 and Table A2, respectively. 

Wastewater collected from sanitary sewer locations had more variations in each parameter than 

wastewater collected from WWTP. For example, while sanitary sewer sites showed a wide range 

of turbidities ranging from 1.87 up to 191 NTU, WWTP influent samples showed less variation 

(e.g., 20.2 to 111 NTU). Sanitary sewer sites showed little variation in pH and temperature with 

each ranging from 6.57-8.58 and 13-26.4°C, respectively (Table A1). Influent samples collected 

from WWTPs had a smaller degree of variation in pH (7.33-7.8) than sanitary sewer sites but had 

greater variation in temperatures which ranged from 1.40 to 21.67°C (Table A2). Total 

suspended solids (TSS) and daily flows for each WWTP were also measured. Specifically, 

samples collected from facility W had the largest range of TSS (48-920 mg L-1) and the highest 

daily flows ranging from 14.6-27.6 million gallons per day (mgd). Facility E had the smallest 

range of TSS (164-208 mg L-1) and the lowest daily flow of 2.87 mgd, but facility M had the 

smallest range of daily flows (3.24-3.86 mgd).  

 

3.4.2 Recovery of Phi6 from wastewater samples using ultrafiltration and PEG methods 

Prior to seeding experiments, ambient concentrations of Pseudomonas phage Phi6 were 

determined using RT-ddPCR. All wastewater samples were negative for Phi6. 

The mean recovery efficiencies of the two ultrafiltration-based and PEG precipitation 

methods for the detection of Phi6 using RT-ddPCR in different types of wastewater are 
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summarized in Table 3.1. For the various wastewater matrices, mean recoveries of ultrafiltration-

based Method 1 ranged from 2.6% to 10.6% and Method 2 ranged from 2.7% to 11.6%. The 

Phi6 virus recovery was statistically higher (p<0.0001) for both sanitary sewers and WWTP 

influent samples using the PEG method compared to the ultrafiltration methods, with mean 

recoveries ranging from 22.19% to 51.47% (Table 3.1). 

 

Table 3.1 Recovery efficiencies of ultrafiltration and PEG methods for the detection of Phi6 in 
seeded wastewater samples. 

Wastewater 
Type 

Sampling Site 
(n=x) 

Phi6 phage recovery as measured by RT-
ddPCR   

Mean ± SD % (range) 
Method 1/ 

CEN1   
Method 2/ 

CEN2   
Method 
3/PEG   

Sanitary 
Sewer 

Hospital Lift 
Station (3) 

9.59±1.14 
(8.90-10.91) 

4.99±0.04 
(4.95-5.02) 

51.47±26.08 
(26.52-78.55) 

Community 
manhole (6) 

10.60±14.58 
(1.98-39.9) 

11.64±6.05 
(5.77-22.07) 

25.49±18.46 
(3.93-47.49) 

Wastewater 
Treatment 

Plant 
Influent 

WWTP A (3) 6.05±4.89 
(0.48-9.64) 

2.73±2.04 
(1.23-5.05) 

36.01±19.41 
(23.03-58.33) 

WWTP E (3) 9.25±15.72 
(0.05-27.41) 

9.21±15.37 
(0.10-26.95) 

31.98±7.52 
(23.57-38.07) 

WWTP M (3) 2.60±1.39 
(1.03-3.64) 

10.37±12.61 
(0.87-24.68) 

22.19±15.72 
(4.67-35.04) 

 

The source of wastewater had no significant impact (two-way anova, n =18, p-value = 

0.4736) on the recovery efficiency of Phi6, regardless of the virus concentration method yet 

more variability was seen when testing sanitary sewer samples using PEG (Table A4).   

 

3.4.3 Detection of SARS-CoV-2 in wastewater samples using ultrafiltration and PEG methods 

All wastewater samples using the three concentration methods were also analyzed for 

SARS-CoV-2 using RT-ddPCR and RT-qPCR. The N1 and N2 gene targets showed similar 

results between the two PCR methods (Table 2). While the E gene target performed satisfactorily 
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on the RT-ddPCR platform, it showed poor results on the RT-qPCR platform with nearly all 

samples being identified as non-detects with no detected samples above the lower limit of 

quantification (LLOQ) (Table 2). The N2 gene target performed the best overall for the RT-

qPCR assay. Using RT-ddPCR, the N1, N2, and E gene performed similarly with coefficients of 

variation for their detection of SARS-CoV-2 of 0.03 and 0.20 for sanitary sewer and WWTP 

influent samples, respectively (Table 2). Across three concentration methods RT-ddPCR showed 

fairly consistent patterns of SARS-CoV-2 detection, while the RT-qPCR assays relied heavily on 

the N2 gene target for SARS-CoV-2 detection (Table 2). Overall RT-ddPCR performed better at 

detecting SARS-CoV-2 gene targets than RT-qPCR in the wastewater samples tested with the 

exception of the N2 gene target in sanitary sewer samples which performed better with RT-qPCR 

(Table 2). 

The overall concentrations of SARS-CoV-2 measured by RT-ddPCR for the three gene 

targets (N1, N2, E) ranged from < LLOD – 5.71×104 GC/100ml, < LLOD – 1.11×105 

GC/100ml, and < LLOD – 3.94 ×104 GC/100ml, respectively (Table A3-A5). The overall 

concentrations of SARS-CoV-2 measured by RT-qPCR for the three gene targets (N1, N2, E) 

ranged from < LLOD – 1.38×105 GC/100ml, < LLOD – 2.80×105 GC/100ml, and <LLOQ, 

respectively (Table A3-A5). Slightly higher concentrations of N2 gene target in sanitary sewer 

and WWTP influent samples were obtained using RT-qPCR as compared to RT-ddPCR (Table 

2). 

 

 

 
Table 3.2 The detection of SARS-CoV-2 genes (N1, N2, E) using ultrafiltration and PEG 
precipitation (with 16-hr incubation) concentration methods. 

Concentration % Positive (Mean GC per 100 ml ±SD) 
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method 
Sample 
Type 

N1 gene N2 gene E gene 

RT-
ddPCR RT-qPCR RT-

ddPCR RT-qPCR RT-
ddPCR 

RT-
qPCR 

CEN1 

Sanitary 
Sewer 
(n=9)  

55.6  
(2.44± 

2.98×103) 

11.1  
(8.74×103± 
1.86x104) 

66.7  
(3.27± 

3.20×103) 

77.8 
(2.48± 

3.86×104)  

88.9 
(5.06± 

6.32×103) 
11.1   

WWTP 
Influent 
(n=9) 

 
55.6  

(1.57± 
2.71×103) 

NDa,b 

 
88.9  

(1.48±1.63
×103) 

 
44.4 

(1.38± 
1.45×103) 

 
55.6  

(1.93± 
2.68×103) 

NDc   

CEN2 

Sanitary 
Sewer 
(n=9) 

55.6  
(3.82± 

5.21×103) 

11.1 
(1.37± 

1.56×103)  

55.6 
(1.48± 

3.63×104)  

100  
(4.68± 

5.89×103) 

66.7  
(3.16± 

4.95×103) 
11.1  

WWTP 
Influent 
(n=9) 

 
55.6  

(6.55± 
8.33×102) 

ND  

 
88.9 

(2.01± 
1.94×103)  

 
77.8 

(3.92± 
8.62×103)  

 
44.4 

(5.01± 
3.81×102)  

ND  

PEG (with 16-
hr incubation) 

Sanitary 
Sewer 
(n=9) 

44.4  
(1.27± 

1.98×104) 

33.3 
(1.85± 

4.50×104)  

33.3 
(1.22± 

2.08×104)  

66.7 
(2.67± 

4.32×104)  

44.4 
(9.27×103±
1.31×104)  

11.1  

WWTP 
Influent 
(n=9) 

 
77.8  

(6.62± 
7.15×103) 

 
22.2 

(7.55×103±1
.64×104)  

 
66.7 

(6.76± 
7.14×103)  

 
66.7 

(4.17± 
9.02×104)  

 
66.7 

(5.87± 
8.10×103)  

ND  

All Methods 

Sanitary 
Sewer 
(n=27) 

51.9  
(6.33×103± 
1.24×104) 

25.9 
(9.53×103±2

.80×104)  

51.9 
(1.01± 

2.38×104)  

81.5 
(1.87×104± 
3.39×104)  

66.7 
(5.83± 

8.90×103)  
11.1  

 
WWTP 
Influent 
(n=27) 

 
63  

(2.95± 
5.03×103) 

 
7.4 

(2.93± 
9.73×103)  

 
81.5 

(3.42± 
4.85×103)  

 
63 

(1.57± 
5.37×104)  

 
55.6 

(2.77± 
5.27×103)  

ND  

aND: Non-detect; bThe detection limit of N1 gene for qPCR is 4.7 GC per reaction; The lower 
detection limit of the E gene for qPCR was 47 gene copies per reaction. 

 

Higher precision between gene targets was observed in the sanitary sewer samples versus 

the WWTP influent samples for both RT-ddPCR and RT-qPCR (Figure 1). RT-ddPCR showed 

significantly lower coefficients of variations for every combination of concentration method and 

sample type with the exception of WWTP influents processed by CEN2 and PEG (Figure 1). 
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Figure 3.1 Coefficients of variations for SARS-CoV-2 gene targets; a) sanitary sewer samples, b) 
WWTP influent samples, c) sanitary sewer samples with all concentration methods, d) WWTP 
influent samples with all concentration methods. Two-way ANOVA analysis results shown 
above each graph; ns: Not-significant, * p-value <0.05, ** p-value <0.01, *** p-value <0.001, 
**** p-value <0.0001 
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3.4.4 Evaluation of rapid PEG approach for the detection of Phi6 and SARS-CoV-2 in 

wastewater 

Based on the comparison between ultrafiltration and PEG methods for wastewater, the 

PEG precipitation was evaluated further for the detection of Phi6 and SARS-CoV-2 with and 

without 16 hours of incubation. As shown in Table 3, without an overnight incubation, the PEG 

method showed an average recovery efficiency of 18.8% for sanitary sewer and of 35% for 

WWTP influent samples. In general, this approach produced lower recovery for Phi6 as 

compared with the PEG with overnight incubation, regardless of the type of wastewater samples. 

However, the difference was not statistically significant (Table 3.3).    

 

Table 3.3 Mean recovery efficiencies of Phi6 in seeded wastewater samples using PEG 
precipitation method with and without overnight incubation 

Wastewater Type 

Phi6 mean recovery ± SD (%) 
PEG with overnight 
(16-hr) incubation  

Rapid PEG without 
overnight 
incubation 

Sanitary Sewer (n=15) 32.07±23.23 18.80±11.48 
WWTP Influent (n=4) 31.31±11.73 34.99±26.38 

All Samples (n=19) 31.92±21.27a 21.89±15.88a 

a No significant difference (n=19, p = 0.1048) in mean recovery efficiencies between methods. 

 

For the detection of SARS-CoV-2 using RT-ddPCR, comparable results were obtained 

for the N1 and N2 gene targets with and without overnight incubation (Table 4). However, the 

rapid PEG method produced a lower percentage of WWTP influent samples positive for the E 

gene. Average SARS-CoV-2 concentrations varied little between sample types, PEG methods 

(i.e., with and without overnight incubation), and gene targets using RT-ddPCR, ranging from 

1.82±4.55×103 GC/100ml to 8.57×103±1.12×104 GC/100ml (Table 4). 
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Table 3.4 Percent positive and mean concentrations of SARS-CoV-2 gene targets for PEG 
method with and without overnight incubation as measured using RT-ddPCR 

Wastewater 
Type 

% Positive (Mean GC per 100 ml ±SD) 
With overnight (16-hr) incubation  Without overnight incubation 

N1 N2 E N1 N2 E 

 Sanitary 
Sewer 
(n=15) 

33.3 
(4.36± 

9.21×103) 

26.7 
(4.64± 

9.65×103) 

26.7 
(3.39± 6.70 

×103) 

26.7 
(4.19± 

9.31×103) 

26.7 
(3.95± 

8.80×103) 

20 (1.97± 
4.87×103) 

WWTP 
Influent 
(n=4) 

75 
(8.57×103±
1.12×104) 

50 
(2.0± 2.15 

×103) 

75 
(8.53± 1.24 

×104) 

75 
(3.97± 

3.71×103) 

75 
(6.40± 

7.99×103) 

25 
(7.92×102± 
3.39×101) 

All (n=19) 

42.1 
(5.25± 

9.49×103) 

31.6 
(4.08± 

8.62×103) 

36.8 
(4.47± 8.06 

×103) 

36.8 
(4.14± 

8.35×103) 

36.8 
(4.46± 

8.48×103) 

21.1 
(1.82± 

4.55×103) 
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3.4.5 Evaluation of PEG precipitation using Phi6 and coronavirus OC43 as potential SARS-

CoV-2 surrogates 

When recovery efficiencies of Phi6 and OC43 were compared using five replicate 

influent samples from two WWTPs, no significant difference between the two surrogates was 

observed (Paired t test P value = 0.6137). These results are in line with recovery efficiencies for 

OC43 as reported by Pecson et al. (2021). However, the Phi6 recovery efficiencies observed in 

this study were almost 2 logs higher than the Phi6 recoveries achieved by other laboratories 

using the PEG method but with solids removal in the previous interlaboratory method 

assessment study (Pecson et al., 2021). 

 

3.5 Discussion  

This study demonstrates that Pseudomonas phage Phi6 seeded in different wastewater 

matrices can be concentrated and recovered by ultrafiltration-based method and PEG 

precipitation. In general, PEG method provided better virus recovery than the ultrafiltration-

based methods as measured using RT-ddPCR. PEG precipitation is usually used as a secondary 

step for virus concentration in large volumes of water samples (De Keuckelaere et al., 2013; 

Polaczyk et al., 2008; Cuevas-Ferrando et al., 2021), but has also been used in concentrating 

enteric viruses directly from sewage as a primary concentration process prior to analysis by cell 

culture and molecular detection methods (Aw et al., 2010; Hovi et al., 2001; Myrmel et al., 2015; 

Shieh et al., 1995; Thongprachum et al., 2018). Enveloped viruses such as influenza A viruses 

and transmissible gastroenteritis virus (TGEV) have been detected in water samples using PEG 

precipitation combined with an initial filtration step (Blanco et al., 2019; Borchardt et al., 2017; 

Deboosere et al., 2011; Horm et al., 2012). However, only few studies have evaluated PEG 
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precipitation as a primary concentration approach for viruses in sewage (e.g., Amdiouni et al., 

2012; Hovi et al., 2001; Ye et al., 2016). 

The exact mechanism of PEG precipitation of viruses from suspension is still not well 

understood. This could be due to that larger molecular aggregates such as viral particles are 

preferentially associated with inter-polymer spaces between PEG molecules and thus 

concentrated until their solubility is exceeded and precipitation occurs (Adams, 1973; Atha et al., 

1981). This may also precipitate out viruses attached to other particles in untreated wastewater 

which is particularly difficult to filter. Thus, this method may be better for those samples with a 

higher range of TSS and turbidities as evidenced by the wider range in SARS-CoV-2 N1 gene 

concentrations seen by Pecson et al. (2021) with PEG protocols which removed solids as 

compared to PEG protocols which retained solids. 

In a previous study comparing three methods to concentrate enveloped murine hepatitis 

virus (MHV) from wastewater samples, PEG and ultracentrifugation recovered 5% of the seeded 

MHV, whereas the ultrafiltration produced significantly higher recovery, 25% (Ye et al., 2016). 

A possible explanation to lower virus recovery efficiencies obtained with PEG precipitation 

could be a high salt (NaCl) concentration (0.5 M) added to the samples. High salt concentrations 

may inactivate enveloped viruses during PEG precipitation process. For example, Hamelin et al., 

(1979) showed that infectivity of cytomegalovirus (an enveloped virus) declined from 24.7 to 

6.6% as the NaCl concentration was progressively increased from none to 1.0 M NaCl. It has 

also been reported that infectivity of retro- and lentiviruses decreases significantly in a high salt 

elution buffer (1M NaCl) (Zimmermann et al., 2011). In this study, 0.2 M NaCl was used in the 

PEG protocol.  
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The choice of PEG precipitation over other concentration methods was also based on the 

affordability of the procedure and the shortages of the filtration materials due to the increasing 

numbers of laboratories worldwide that monitor SARS-CoV-2 in wastewater. PEG precipitation 

is a simple and low-cost alternative (e.g., < $2 USD per sample for PEG method vs. >$34 USD 

for ultrafiltration-based method) for the concentration of viruses in wastewater without requiring 

any preconditioning of the sample. The PEG method used in this study has also been evaluated 

in a recent interlaboratory methods assessment for SARS-CoV-2 genetic signal in raw sewage 

using betacoronavirus OC43 as a matrix spike. By comparing 36 standard operating procedures 

used by 32 participating laboratories, PEG precipitation has shown a high degree of 

reproducibility across laboratories (Pecson et al., 2021). 

Although PEG precipitation provided higher recovery efficiencies for Phi6 and SARS-

CoV-2 in wastewater when compared with ultrafiltration, the protocol is slower particularly with 

an overnight incubation. However, in this study, the results of PEG precipitation with and 

without an overnight incubation for Phi6 and SARS-CoV-2 were not statistically significant. 

This is in agreement with other studies that reported a 2-hour precipitation is sufficient for 

viruses (Deboosere et al., 2011; Polaczyk et al., 2008). Therefore, the PEG protocol could be 

shortened to increase throughput or accommodate existing analysis workflows for rapid results. 

In addition to investigating recovery efficiencies of artificially seeded viruses using 

different concentration methods, this study compared the detection of SARS-CoV-2 genetic 

signals in wastewater using RT-qPCR and RT-ddPCR. Overall, RT-ddPCR showed higher 

sensitivity rate compared to RT-qPCR. While RT-qPCR shows equivalent detection rate of the 

SARS-CoV-2 N2 gene as RT-ddPCR, RT-ddPCR performed better for the E gene in wastewater. 

This may be due to RT-ddPCR allowing for greater PCR efficiency when lower concentrations 
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of the target gene are present and its ability to cope with higher levels of inhibitory substances in 

wastewater. While a high number of samples in this study were found to be positive for one or 

more of the SARS-CoV-2 gene targets, a direct comparison of the virus concentrations between 

sanitary sewer and WWTP influent samples would be inaccurate due to the different sampling 

methods. For sanitary sewer, grab sampling was used to collect wastewater directly from 

manholes or lift station whereas composite sampling technique was used for the WWTP. 

Different wastewater sampling techniques may influence the ability to detect and quantify viral 

genetic markers using PCR-based methods. For example, a grab sample taken during low flow 

periods may miss detecting the SARS-CoV-2 genetic markers in wastewater. A similar situation 

can occur for composite samples particularly for long sampling periods (e.g., 24 hrs) as the viral 

signals may be diluted. Therefore, determination of the optimal sampling strategy and timing 

will greatly enhance the ability to accurately detect SARS-CoV-2 in wastewater. Heaton et al. 

(1992) showed that over 60% of men and women defecated between 5 am and 12 pm each day. 

These patterns may have changed since the study, but sample collection time is still an important 

factor to consider when conducting a wastewater surveillance for SARS-CoV-2. 

 The concentration and detection procedures outlined in this study will facilitate rapid and 

high-throughput detection of SARS-CoV-2 in wastewater samples. The methods were used 

successfully in field studies for the detection of SARS-CoV-2 RNA in various wastewater 

samples.  
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Figure 3.A1 qPCR standard curves for SARS-CoV-2 gene targets with slope, y intercept and R2. 
a) N1 standard curve, b) N2 standard curve, c) E gene standard curve. 
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Table 3.A1 Individual recovery efficiencies of ultrafiltration and PEG methods for the detection 
of Phi6 in seeded wastewater samples. 

Wastewater 
Type Site ID Sample 

Date 

Ultrafiltration 
Method 1 % 

Recovery 

Ultrafiltration 
Method 2 % 

Recovery 

PEG 
Precipitation 
% Recovery 

Sanitary 
Sewer 

Hospital 
Lift 

Station 
3/25/2020 10.91 5.02 78.55 

Hospital 
Lift 

Station 
3/25/2020 8.97 4.99 49.33 

Hospital 
Lift 

Station 
3/25/2020 8.90 4.95 26.52 

MSU1 5/11/2020 39.90 22.07 8.40 
MSU2 5/11/2020 4.11 11.13 3.93 
MSU1 8/3/2020 4.28 14.73 21.82 
MSU2 8/3/2020 1.98 6.57 24.61 
MSU3 8/3/2020 3.77 5.77 47.49 
MSU4 8/3/2020 9.56 9.55 46.68 

Wastewater 
Treatment 

Plant 
Influent 

WWTP 
A 4/6/2020 8.02 1.90 26.68 

WWTP 
A 4/20/2020 9.64 1.23 23.03 

WWTP 
A 6/1/2020 0.48 5.05 58.33 

WWTP 
E 4/13/2020 27.41 26.95 38.07 

WWTP 
E 4/20/2020 0.30 0.57 23.57 

WWTP 
E 6/1/2020 0.05 0.10 34.31 

WWTP 
M 5/6/2020 3.64 24.68 4.67 

WWTP 
M 4/29/2020 3.14 5.57 26.87 

WWTP 
M 6/3/2020 1.03 0.87 35.04 
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Table 3.A2 Individual sample Phi6 percent recoveries for two PEG viral concentration methods 

Wastewater 
Type Site ID Sampling 

Date 

2-hour Spin 
followed by 
 16 hr hold 

 % Recovery 

2-hour Spin 
without hold 
% Recovery 

Sanitary 
Sewer 

Hospital Lift Station 3/25/20 18.15 15.56 
MSU3 9/8/20 15.12 5.39 
MSU3 9/14/20 18.91 35.19 
MSU4 9/8/20 12.87 17.65 
MSU4 9/14/20 4.93 35.36 
MSU5 9/8/20 77.79 29.79 
MSU5 9/14/20 17.88 7.52 
MSU6 9/8/20 57.03 32.28 
MSU6 9/14/20 34.52 37.95 
MSU7 9/8/20 13.65 10.52 
MSU7 9/14/20 33.11 9.85 
MSU8 9/8/20 49.79 22.41 
MSU8 9/14/20 12.06 13.22 
LRB2 8/31/20 57.06 15.38 
LRB3 8/31/20 77.68 3.49 

Wastewater 
Treatment 

Plant Influent 
(Post-Grit) 

WWTP A 4/6/20 21.92 20.92 
WWTP A 4/20/20 22.69 7.17 
WWTP M 8/31/20 33.66 66.85 
WWTP W 8/31/20 46.96 45.01 
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Table 3.A3 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR for centrifugation method 1. 

Sample 
Type Site ID Sample 

Date 

N1  
GC 100ml-1 

N2  
GC 100ml-1 

E  
GC 100ml-1 

RT-ddPCR RT-qPCR RT-ddPCR RT-qPCR RT-ddPCR RT_qPCR 

 Sanitary 
Sewer  

Hospital Lift 
Station 

3/25/2020 7.57E+03 5.67E+04 8.80E+03 1.13E+05 1.22E+04 DNQa 

Hospital Lift 
Station 

3/25/2020 6.94E+03 ND 6.27E+03 2.90E+04 1.55E+04 NDb 

Hospital Lift 
Station 

3/25/2020 1.68E+03 1.51E+04 5.62E+03 5.84E+04 2.76E+03 ND 

MSU1 5/11/2020 3.95E+03 ND 4.22E+03 ND 1.23E+04 ND 

MSU2 5/11/2020 7.58E+02 ND 3.41E+03 2.07E+04 1.36E+03 ND 

MSU1 8/3/2020 ND ND 3.31E+02 DNQ 5.30E+02 ND 

MSU2 8/3/2020 ND ND ND DNQ 2.62E+02 ND 

MSU3 8/3/2020 ND ND ND DNQ 3.70E+02 ND 

MSU4 8/3/2020 ND ND ND ND ND ND 

Wastewater 
Plant 

Influent 
(Post-grit) 

WWTP A 4/6/2020 2.55E+03 ND 2.80E+03 ND 7.95E+03 ND 

WWTP A 4/20/2020 1.43E+03 ND 2.20E+03 ND 2.90E+03 ND 

WWTP A 6/1/2020 ND ND 2.16E+02 ND ND ND 

WWTP E 4/13/2020 8.45E+03 ND 5.05E+03 4.59E+03 4.20E+03 ND 

WWTP E 4/20/2020 ND ND 1.35E+03 1.46E+03 ND ND 

WWTP E 6/1/2020 ND ND ND ND ND ND 

WWTP M 5/6/2020 4.99E+02 ND 7.82E+02 ND 1.06E+03 ND 

WWTP M 4/29/2020 6.96E+02 ND 2.97E+02 1.46E+03 7.40E+02 ND 

WWTP M 6/3/2020 ND ND 5.20E+02 5.23E+02 ND ND 
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Table 3.A4 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR 
for centrifugation method 2. 

Sample 
Type Site ID Sample 

Date 

N1  
GC 100ml-1 

N2  
GC 100ml-1 

E  
GC 100ml-1 

RT-
ddP
CR 

RT-
qPC

R 

RT-
ddP
CR 

RT-
qPC

R 

RT-
ddPC

R 

RT-
qPC

R 

 Sanitary 
Sewer  

Hospital Lift 
Station 

3/25/20
20 

6.04E
+03 

4.91E
+03 

3.70E
+03 

4.53E
+03 

2.48E
+03 

DNQa 

Hospital Lift 
Station 

3/25/20
20 

1.58E
+04 NDb 1.37E

+04 
8.17E
+03 

1.56E
+04 ND 

Hospital Lift 
Station 

3/25/20
20 

3.87E
+03 ND 

3.26E
+03 

1.82E
+04 

4.16E
+03 ND 

MSU1 
5/11/20

20 
6.87E
+03 ND 

1.11E
+05 

7.26E
+03 

4.27E
+03 ND 

MSU2 
5/11/20

20 
ND ND ND 

1.21E
+03 

3.17E
+02 

ND 

MSU1 
8/3/202

0 
ND ND ND 

7.33E
+02 

ND ND 

MSU2 
8/3/202

0 
ND ND ND 

6.13E
+02 

ND ND 

MSU3 
8/3/202

0 
ND ND ND 

4.95E
+02 

ND ND 

MSU4 
8/3/202

0 
3.46E
+02 

ND 
3.41E
+02 

9.52E
+02 

3.71E
+02 

ND 

Wastewat
er Plant 
Influent 

(Post-grit) 

WWTP A 
4/6/202

0 
5.36E
+02 

ND 
1.69E
+03 

ND 
7.78E
+02 

ND 

WWTP A 
4/20/20

20 
5.82E
+02 

ND 
5.46E
+02 

3.04E
+03 

5.96E
+02 

ND 

WWTP A 
6/1/202

0 
ND ND 

4.88E
+02 

3.74E
+02 

ND ND 

WWTP E 
4/13/20

20 
ND ND 

9.36E
+02 

2.68E
+04 

1.05E
+03 

ND 

WWTP E 
4/20/20

20 
ND ND 

1.16E
+03 

8.58E
+02 

ND ND 

WWTP E 
6/1/202

0 
ND ND ND 

1.08E
+03 

ND ND 

WWTP M 
5/6/202

0 
4.93E
+02 

ND 
2.96E
+03 

ND ND ND 

WWTP M 
4/29/20

20 
2.82E
+03 

ND 
5.99E
+03 

8.58E
+02 

1.06E
+03 

ND 

WWTP M 
6/3/202

0 
1.92E
+02 

ND 
4.03E
+03 

1.14E
+03 

ND ND 
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Table 3.A5 Mean concentrations for SARS-CoV-2 Gene Targets for RT-ddPCR and RT-qPCR for PEG precipitation (with 16-hr 
hold). 

Sample 
Type Site ID Sample 

Date 

N1  
GC 100ml-1 

N2  
GC 100ml-1 

E  
GC 100ml-1 

RT-
ddPCR 

RT-
qPCR 

RT-
ddPCR 

RT-
qPCR 

RT-
ddPCR 

RT-
qPCR 

 Sanitary 
Sewer  

Hospital Lift 
Station 

3/25/2020 2.09E+04 1.38E+05 1.20E+04 1.31E+05 3.49E+04 DNQa 

Hospital Lift 
Station 

3/25/2020 5.71E+04 9.49E+03 6.05E+04 5.64E+04 2.05E+04 NDb 

Hospital Lift 
Station 

3/25/2020 2.98E+04 9.83E+03 3.17E+04 2.36E+04 2.22E+04 ND 

MSU1 5/11/2020 2.99E+03 ND ND ND ND ND 

MSU2 5/11/2020 ND ND ND 2.15E+04 ND ND 

MSU1 8/3/2020 ND ND ND 1.58E+03 ND ND 

MSU2 8/3/2020 ND ND ND ND ND ND 

MSU3 8/3/2020 ND ND ND ND ND ND 

MSU4 8/3/2020 ND ND ND 1.34E+03 6.10E+02 ND 

Wastewater 
Plant 

Influent 
(Post-grit) 

WWTP A 4/6/2020 8.18E+03 ND ND 1.94E+04 5.95E+03 ND 

WWTP A 4/20/2020 2.46E+04 ND 5.20E+03 3.63E+04 2.67E+04 ND 

WWTP A 6/1/2020 ND ND ND 2.41E+04 ND ND 

WWTP E 4/13/2020 7.67E+03 5.14E+04 2.27E+03 2.80E+05 6.09E+03 ND 

WWTP E 4/20/2020 4.61E+03 ND 4.93E+03 ND 2.53E+03 ND 

WWTP E 6/1/2020 2.66E+03 1.99E+03 8.83E+03 5.12E+03 ND ND 

WWTP M 5/6/2020 ND ND 2.30E+04 5.11E+03 5.90E+03 ND 

WWTP M 4/29/2020 3.64E+03 ND 1.22E+04 ND ND ND 

WWTP M 6/3/2020 5.04E+03 ND ND ND 1.48E+03 ND 
aDNQ: Detected Non-quantifiable; bND: Non-detect. 
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Table 3.A6 Individual sample SARS-CoV-2 gene concentrations for PEG precipitation with 16-hour hold and without holding. 

Sample 
Type Site ID Sample 

Date 

16-hour Hold  No Hold 
N1 
(GC 

100ml-1) 

N2 
(GC 

100ml-1) 

E 
(GC 

100ml-1) 

N1 
(GC 

100ml-1) 

N2 
(GC 

100ml-1) 

E 
(GC 

100ml-1) 

 Sanitary 
Sewer  

Hospital 
Lift 

Station 
3/25/20 2.98E+04 3.17E+04 2.22E+04 2.28E+04 2.02E+04 NAa 

MSU3 9/8/20 1.34E+03 1.68E+03 1.17E+03 8.53E+02 7.68E+02 5.63E+02 

MSU3 9/14/20 2.39E+04 2.45E+04 1.72E+04 3.08E+04 3.01E+04 1.89E+04 

MSU4 9/8/20 NDb ND ND ND ND ND 

MSU4 9/14/20 5.60E+02 ND ND 1.34E+03 ND ND 

MSU5 9/8/20 ND ND ND ND ND ND 

MSU5 9/14/20 ND ND ND ND ND ND 

MSU6 9/8/20 ND ND ND ND ND ND 

MSU6 9/14/20 1.12E+03 2.63E+03 1.18E+03 ND 9.43E+02 8.97E+02 

MSU7 9/8/20 ND ND ND ND ND ND 

MSU7 9/14/20 ND ND ND ND ND ND 

MSU8 9/8/20 ND ND ND ND ND ND 

MSU8 9/14/20 ND ND ND ND ND ND 

LRB2 8/31/20 ND ND ND ND ND ND 

LRB3 8/31/20 ND ND ND ND ND ND 

Wastewater 
Plant 

Influent 
(Post-grit) 

WWTP A 4/6/20 8.18E+03 ND 5.95E+03 6.45E+03 6.28E+03 NA 

WWTP A 4/20/20 2.46E+04 5.20E+03 2.67E+04 7.84E+03 1.77E+04 NA 

WWTP M 9/2/20 ND ND ND ND ND ND 

WWTP W 8/31/20 6.72E+02 6.72E+02 6.72E+02 7.68E+02 7.68E+02 7.68E+02 
aNA: Not available; bND: Non-detect 
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Table 3.A7 Individual coefficients of variations for RT-ddPCR and RT-qPCR for three SARS-CoV-2 gene targets. 

Sample 
Type Site ID 

Coefficient of Variation 
CEN1 CEN2 PEG 

RT-
ddPCR 

RT-
qPCR 

RT-
ddPCR 

RT-
qPCR 

RT-
ddPCR 

RT-
qPCR 

Sanitary 
Sewer 

Hospital Lift 
Station 0.25 0.73 0.44 0.11 0.51 0.59 

Hospital Lift 
Station 0.54 1.01 0.08 0.77 0.48 0.87 

Hospital Lift 
Station 0.61 0.94 0.12 0.84 0.18 0.42 

MSU1 0.70 0.85 1.50 1.08 0.23 1.30 

MSU2 0.75 0.91 0.11 1.02 0.00 0.74 

MSU1 0.35 1.30 0.00 1.20 0.00 1.08 

MSU2 0.11 1.30 0.00 1.28 0.00 1.30 

MSU3 0.19 1.30 0.00 1.38 0.00 1.30 

MSU3 0.00 1.30 0.05 0.99 0.09 1.19 

Wastewater 
Plant 

Influent 
(Post-grit) 

WWTP A 0.69 1.30 0.61 1.30 0.68 0.74 
WWTP A 0.34 1.30 0.04 0.79 0.63 0.79 

WWTP A 0.43 1.30 0.73 1.21 0.00 0.75 
WWTP E 0.38 1.04 0.24 1.03 0.52 1.18 
WWTP E 1.24 0.80 1.15 0.99 0.32 1.30 
WWTP E 0.00 1.30 0.00 1.10 0.99 0.99 
WWTP M 0.36 1.30 1.21 1.30 1.14 1.05 
WWTP M 0.42 0.84 0.76 1.23 1.01 1.30 
WWTP M 0.83 1.08 1.54 0.83 0.85 1.30 
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Table 3.A8 Individual recovery efficiencies of the SARS-CoV-2 surrogates Phi6 and OC43 at 
two WWTPs. 

WWTP 
Sample 

Replicate 

Recovery Efficiency (%) 

OC43 Phi6 

Hyperion  

1 0.72 1.15 
2 14.55 11.85 
3 13.00 8.49 
4 7.33 5.68 
5 4.91 6.93 

All 8.10 6.82 

JWPCP 

1 6.50 3.71 
2 2.53 3.88 
3 4.83 6.41 
4 5.45 6.48 
5 2.03 3.44 

All 4.27 4.78 
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4.0 Understanding the Efficacy of Wastewater Surveillance for SARS-CoV-2 in Two Diverse 
Communities 
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4.1 Abstract 

During the COVID-19 pandemic wastewater-based epidemiology (WBE) has been 

shown to be a useful tool for monitoring the spread of disease in communities and the emergence 

of new viral variants of concern. As the pandemic enters its third year and clinical testing has 

declined, WBE offers a consistent non-intrusive way to monitor community health in the long 

term. However, understanding the best method for the application of WBE in different 

communities is necessary. This study sought to understand how accurately wastewater 

monitoring represented the actual burden of disease between communities. Two communities 

varying in size and demographics in Michigan were monitored for SARS-CoV-2 in wastewater 

between March of 2020 and February of 2022. Additionally, one community was monitored for 

SARS-CoV-2 variants of concern from December 2020 to February 2022. Wastewater results 

were compared with zipcode and county level COVID-19 case data to determine which scope of 

clinical surveillance was most correlated with wastewater loading. Pearson r correlations were 

highest in the smaller of the two communities (r = 0.45-0.81) with the highest correlations with 

zipcode level case data. When comparing the date of cases being reported against the date of the 

onset of symptoms, the smaller community was more highly correlated with the onset date 

(onset: r = 0.68-0.81 vs. referral: r =0.38-0.48), while the larger community showed little 

variation (r = 0.62-0.68). This study has demonstrated that wastewater surveillance in different 

communities are linked to different geographic and temporal scales. 

 

4.2 Introduction 

As the COVID-19 global pandemic enters its third year, the surveillance of SARS-CoV-

2, the etiological agent of COVID-19, has begun to shift to less intrusive methods. Wastewater-
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based epidemiology (WBE) in particular, has shown its usefulness as large numbers of viral 

particles are shed in the feces of infected individuals including symptomatic, asymptotic, and 

pre-symptomatic persons (Parasa et al., 2020; Wang et al., 2020; Zheng et al., 2020; Lee et al., 

2020). The ability of molecular detection techniques to identify and quantify the viral RNA of 

SARS-CoV-2 in raw wastewater along with the ability to detect spikes in cases prior to the 

identification of clinical cases is invaluable as the pandemic continues (Peccia et al., 2020; 

Medema et al., 2020). A number of studies have utilized WBE to track the progress of COVID-

19 in communities, and groups have used the sewer to focus on a single building, local area, or 

wastewater at the treatment facility to represent a city or county geographic scale (Fahrnfeld et 

al., 2022; Rasero et al., 2022; Lastra et al., 2022).  

While previous studies have shown that SARS-CoV-2 levels in wastewater correlate with 

COVID-19 cases, there has been very little comparative analysis of the wastewater signal across 

the various communities (Gonzalez et al., 2020; Peccia et al., 2020; Gerrity et al., 2021; Graham 

et al., 2021). Understanding the how differences in community size and wastewater treatment 

impact SARS-CoV-2 wastewater results is necessary to properly apply WBE on a wider scale. It 

is important to understand how wastewater SARS levels reflect the disease and address the 

impact of new variants and use of vaccinations as clinical testing declines (Martin et al., 2020; 

Smith et al., 2021).  

The goal of this study was to determine how well wastewater surveillance for SARS-

CoV-2 addresses the cases of disease in different communities. For this purpose, two 

communities in Michigan were selected for comparison. These communities vary in population 

size, demographics, and total numbers of cases of COVID-19 over the course of the pandemic. 

This study had three main objectives: 1) to evaluate the efficacy of wastewater monitoring of 



 
122 

SARS-CoV-2 in two communities with diverse characteristics; 2) to determine if county or 

zipcode level case data are necessary to successfully correlate with wastewater surveillance 

results; 3) to determine the impact of vaccination rates on SARS-CoV-2 wastewater signals 

compared to case numbers; and 4) examine the occurrence and appearance of new variants in 

sewage during the waves of COVID-19 in one community.      

 

4.3 Materials and Methods 

4.3.1 Wastewater sampling and site descriptions 

4.3.1.1 Wastewater treatment plant descriptions 
 Two communities and their corresponding wastewater treatment plants were selected for 

sampling and comparison. Wastewater treatment plant B treats wastewater from a city and two 

surrounding townships within a single county. The WWTP B serves a population of 25,000 

persons with an average flow of 2.3 million gallons per day (MGD). Wastewater treatment plant 

A serves 31 communities, with 25 within its primary county and six others in surrounding 

counties. The WWTP A serves a population of 110,267 persons with an average flow of 27 

MGD. While both the WWTP B and WWTP A use conventional activated sludge followed by 

disinfection the WWTP A is an approved blending facility which handles wet weather induced 

inflow. This potentially increases a dilution factor for wastewater during wet weather events. 
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Table 4.1 County level demographics, COVID-19 vaccinations, and total COVID-19 cases/ 
1,000 persons to date 

   County A County B  

Total Population by County 

(Total Population by Zipcodea) 

405,813 
(110,267) 

66,699 
(25,000) 

Population Density (People per sq. mile) 637.13 36.87 
Household Size 2.41 2.39 

Percent Living in Poverty 19.8 16.4 
Percent of Population >65 years 17.97 19.62 

Ratio of Male to Female Population 48.2 : 51.8 50.3 : 49.7 
Ratio of White to Non-white persons 75.3 : 24.7 93.2 : 6.8 

Per Capita Income (2020) $46,152  $44,445  
County Level GDP  

(Thousands of Current Dollars) 
16,121,115 2,787,951 

Percent Fully Vaccinated as of (3/1/22) 50.2 63.6 
Total Number of COVID-19 Cases/1,000 

persons as of 3/1/22 
247 235 

Total Number of COVID-19 Deaths as 

of 3/1/22 

Total Number of COVID-19 Deaths/ 

1,000 persons as of 3/1/22 

1,692 
 

4.2 

126 
 

1.9 
aZipcodes served by WWTP; Sources: US CDC, 2022; BEA, 2022; US Census Bureau, 2022 

 

4.3.1.2 Sample Collection Methods 
 Wastewater samples for this study were collected over a 24 hr period at the inflows after 

the primary grit removal of each WWTP. The WWTP B collected composite samples based on 

their expected daily flow with approximately 65 ml being collected for every 58,000 gallons of 

wastewater entering the plant for a total of ~2500 ml for a 24 hr period. WWTP A collected 

composite samples based on a time paced approach collecting 100 ml every 30 mins over a 24 hr 

period. A total of 1 L of wastewater was then transported to the processing laboratory on ice. A 

total of 186 samples were collected from WWTP A (N=92) and WWTP B (N=94) between April 

2020 and February 2022 at a frequency of once per week. Between April 2020 and January 2021, 

the samples from WWTP B were shipped overnight on ice to Michigan State University. 
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Between February 2021 and December 2021, the samples from WWTP B were driven on to 

Northern Michigan University for processing. A gap in sampling occurred for both WWTPs 

between January/February and May/July 2021 due to the ending of one project funding and the 

start of another. All samples from the ARTP were shipped on ice overnight to Michigan State 

University (April 2020- December 2021). Physiological measurements including temperature, 

pH, biological oxygen demand (BOD), and total suspended solids (TSS) were taken at the time 

of sampling by each WWTP’s onsite laboratory (Table 2). Turbidity was measured upon arrival 

at the processing laboratory. Samples collected between April 2020 and October 2020 kept 

frozen at -80°C until analysis. All samples collected after October 25th, 2020 were kept at 4°C, 

never frozen and were processed within 72 hours of collection. This change between storage 

temperatures was due to evidence that the SARS-CoV-2 RNA signal declined in the raw 

wastewater samples after they had been frozen. 

 

4.3.2 Viral concentration and processing methods 

Wastewater samples were processed, and viral particles were concentrated using the 

polyethylene glycol (PEG) workflow published by Flood et al. (2021). Briefly, samples were 

inverted to mix 25 times then 100 ml of sample was transferred to a 250 ml polypropylene 

centrifuge bottle. A total of 8 g of 8% (w/vol) molecular grade PEG 8000 (Promega Corporation, 

Madison Wisconsin) and 1.17 g NaCl (0.2 M w/v) were added to each sample. The samples were 

then slowly mixed on magnetic stir plates for 2 hours at 4°C. Samples were either held at 4°C for 

16 hrs or immediately transferred to the centrifuge. Samples were centrifuged at 4,700 x g at 4°C 

for 45 mins. Following centrifugation, the majority of the supernatant was removed, and the 

remaining pellet was resuspending in the remaining supernatant (2-10 ml). Sample concentrates 



 
125 

were aliquoted and either immediately underwent RNA extraction or were stored at -80°C until 

further processing. 

Viral ribonucleic acid (RNA) was extracted using the QIAmp Viral RNA Minikit 

(Qiagen, Germany) according to the manufacturers protocol. A total of 200 µl of concentrate was 

used for each RNA extraction with a final elution volume of 80 µl. 

 

4.3.3 Detection and enumeration of SARS-CoV-2 from wastewater using RT-ddPCR 

All genetic targets were analyzed using one-step reverse transcriptase droplet digital 

PCR. Two general SARS-CoV-2 nucleocapsid 1 (N1) and nucleocapsid 2 (N2) gene targets were 

analyzed for all samples. The Pseudomonas bacteriophage Phi6 was spiked into all samples as 

either a recovery efficiency control or an inhibition control. The primer and probe sequences for 

the N1, N2, and Phi6 gene targets are shown in Table 1. Samples from WWTP A were analyzed 

for genetic markers for SARS-CoV-2 variants of concern starting in December of 2020 using GT 

Molecular’s variant assay kits for digital PCR (GT Molecular, Fort Collins, Colorado, USA). 

These variants included the Alpha variant (gene targets N501Y and DEL69-70), the Delta variant 

(gene targets T478K and L452R), and the Omicron variant (gene targets N501Y, DEL69-70, and 

K417N). The variant assays used the same thermocycling setup as the Phi6 assay. All analyses 

were run with three technical replicates and a full contingent of quality controls (positive, 

negative, extraction negative, and non-template controls) on each assay plate.  

Droplet digital PCR was performed with a Bio-Rad QX200 ddPCR (Bio-Rad, CA, USA). 

All assays in this study used the 1-step RT-ddPCR Advanced kit for probes (Bio-Rad, CA, USA) 

for all ddPCR reaction mixtures. The N1, N2, and Phi6 gene target reaction mixtures all 

contained a final concentration of 1x Supermix (Bio-Rad, CA, USA), 20 U µl-1 of reverse 



 
126 

transcriptase (RT) (Bio-Rad, CA, USA), 15 mM DTT, 900 nmol of each primer, 250 nmol of 

each probe. The N1 and N2 gene targets were run in duplex. A total of 5 ul of sample RNA 

template was analyzed in technical triplicates for each assay (including each variant assay). The 

variant assays were run per the manufacturer’s protocols.  

Droplet generation by microfluidic mixing was performed in a Bio-Rad Automatic 

Droplet Generator (ADG) (Bio-Rad, CA, USA). Each 20 µl reaction mixture was combined with 

70 µl of droplet generation oil which resulted in a final volume 40 µl of reaction mixture-oil 

emulsions. These emulsions contained up to 20,000 individual oil droplets. After droplet 

generation the 96-well PCR plates were heat-sealed with foil and placed in a C1000 96-deep well 

thermocycler (Bio-Rad, CA, USA) for PCR product amplification. The N1 and N2 assay 

followed the following thermocycling parameters: 25°C for 3 min, 50°C for 1 hr, 95°C for 10 

min, followed by 40 cycles of 95°C for 30 s and 55°C for 1 min with ramp rate of 2°C s-1 

followed by a final cycle of 98°C for 10 min. The Phi6 and variant assays followed the same 

thermocycling parameters except their annealing temperature was set to 60°C. After 

thermocycling was completed the sealed 96-well plates were transferred to the QX200 droplet 

reader (Bio-Rad, CA, USA) for analysis of the samples’ droplets fluorescent probe signals by 

spectrophotometric detection. 
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Table 4.2 Primer and probe sequences  
Target Primer/Probe 

name Primer/Probe Sequence Reference 

SARS 
CoV-2 

2019-nCoV_N1-F 
2019-nCoV_N1-R 
2019-nCoV_N1-P 

5’-GACCCCAAAATCAGCGAAAT-3’ 
5’-TCTGGTTACTGCCAGTTGAATCTG-3’ 
5’-FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1-3’ 

CDC, 2020 

2019-nCoV_N2-F 
2019-nCoV_N2-R 
2019-nCoV_N2-P 

5’-TTACAAACATTGGCCGCAAA-3’ 
5’-GCGCGACATTCCGAAGAA-3’ 
5’-HEX-ACAATTTGCCCCCAGCGCTTCAG-BHQ1-3’ 

CDC, 2020 

Phi6 
Φ6Tfor 
Φ6Trev 
Φ6Tprobe 

5’-TGGCGGCGGTCAAGAGC-3’ 
5’-GGATGATTCTCCAGAAGCTGCTG-3’ 
5’- FAM-CGGTCGTCGCAGGTCTGACACTCGC-BHQ1-3’ 

Gendron et al., 
2010 

 

4.3.4 COVID-19 case and vaccination data 

Data for COVID-19 cases were procured for both zipcode and county levels. Zipcode 

level case data were provided through an agreement with the Michigan Department of Health 

and Human Services. Zipcodes serviced by each wastewater treatment plant were provided by 

plant operators. In the event of missing data for the onset of symptoms, an estimate of onset date 

was used based on an average of all data with known information. This was calculated by 

averaging the number of days between onset of symptoms and referral dates for paired data 

points over the course of the study. The average number of days between onset and referral date 

was 6.03 days (N= 40,348) for the combined datasets (community A + B). The average number 

of days between onset and referral date for each community alone were 6.04 days for A and 5.19 

days for B with both ranging from 0 to 100 days. 

County level case data were obtained from the US Centers for Disease Control and 

Prevention’s (US CDC) COVID Data Tracker website (https://data.cdc.gov/Public-Health-

Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni). COVID-19 

vaccination data were obtained from the US CDC’s COVID Data Tracker website 

(https://data.cdc.gov/Vaccinations/COVID-19-Vaccinations-in-the-United-States-County/8xkx-

amqh). 
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4.3.5 Data analysis  

All ddPCR results were converted from gene copies (GC) per reaction (5 µl of sample 

template) to GC/100 ml prior to analysis as described in Flood et al. 2021. Following conversion 

to GC/100 ml wastewater results were then normalized for each community based on daily 

wastewater flows and zipcode level population. Non-detects (ND) replicates were included in 

statistical analysis results were assigned their lower limits of detection for statistical analysis.  

Data visualization and statistical analysis were performed using Graphpad Prism 9 

(Graphpad Software, CA, USA). Correlation analyses were performed using pearson correlation 

(r) analysis. Correlation analyses were compared for results between both community’s 

wastewater results and case data, between wastewater results with zipcode specific and county 

level cases data, and vaccination rates and case data. To account for lag time between the 

wastewater signal and cases, both the date of symptom onset and the date of case referral were 

analyzed against the wastewater signal. 

 

4.4 Results 

4.4.1 Comparison of SARS-CoV-2 concentrations found in wastewater against COVID-19 case 

data in two communities 

The data gathered during this study showed that the two wastewater treatment plants (A 

and B) had distinctly different characteristics (Table 4.3). WWTP A had approximately 10 times 

the average daily flow (27.39 million gallons per day, MGD) compared to WWTP B which had 

an average flow of 2.79 MGD. Sample temperatures ranged from 7.4 to 22.6°C for WWTP A 

and samples from WWTP B ranged from 8.90 to 26.67°C. While WWTP A had a slightly lower 

average BOD5 levels than WWTP B (161.90 and 206.17, respectively) higher turbidities were 
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observed at WWTP A (WWTP A: 80.83 vs. WWTP B: 59.32). Wastewater N1 and N2 gene 

targets average concentrations for SARS-CoV-2 were similar between the two WWTPs (WWTP 

A (N=94) N1 3.94, N2 3.86; WWTP B (N=92) N1 3.96, N2 3.94 Log10GC/ 100ml) (Table 4.4). 

However, as expected the loading as calculated by daily average flow at each of the WWTPs and 

adjusted for population showed that the larger WWTP A had more than twice as much virus 

(84.06 N1 gene copies per person per day) compared to WWTP B (38.93 GC/Person/Day) and 

nearly double for the N2 gene as well (69.06 vs. 38.23 GC/Person/Day). 

 

Table 4.3 Physiological measurements for two wastewater treatment plants 

WWTP 

Estimated 
Population 
Served by 
Zipcode 

Flow 
Rate 

(MGD) 

Temperature 
(°C) pH BOD5 

(mg/L) 
TSS  

(mg/L) 
Turbidity 

(NTU) 

A 
110,267 27.39  

(21.10-
55.68) 

14.81  
(7.4-22.6) 

7.61  
(7.28-7.97) 

161.90  
(64.0-370.0) 

194.00  
(90.0-526.0) 

80.83  
(26.9-158) 

B 
25,000 2.79 

(2.06-
4.33) 

14.11 
(8.90-26.67) 

7.29 
(7.0-7.7) 

206.17  
(79.0-341.0) 

197.52  
(99.0-364.0) 

59.32  
(17.4-152.0) 

Note: A gap in sampling occurred for both WWTPs between January/February and May/July 
2021 due to the ending of one project funding and the start of another 
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Table 4.4 Summary of wastewater monitoring results for two wastewater treatment plants 

  

N1 

Log10GC/ 

100 ml 

N2 

Log10GC/ 

100 ml 

N1  

GC/Person/ 

Day 

N2 

GC/Person/ 

Day 

WWTP 

A 

(N =94) 

Percent Positive 70.21% 
(66/94) 

68.09% 
(64/94) 

70.21% 
(66/94) 

68.09% 
(64/94) 

Meana 

(Range) 
3.94 

(2.70-5.07b) 
3.86 

(2.57-5.00b) 
84.06 

(3.83-1160.17) 
69.06 

(3.83-983.20) 

WWTP 

B  

(N= 92) 

Percent Positive 72.82% 
(67/92) 

77.17% 
(71/92) 

72.82% 
(67/92) 

77.17% 
(71/92) 

Meana 

(Range) 
3.96 

(2.78-4.99c) 
3.94 

(2.78-4.95c) 
38.93 

(2.82-341.88) 
38.23 

(2.38-319.96) 
aArithmetic means; bDate of peak concentration for WWTP A was 11/29/21; cDate of peak 
concentration for WWTP B was 1/20/21; Note: A gap in sampling occurred for both WWTPs 
between January/February and May/July 2021 due to the ending of one project funding and the 
start of another. 
 
 Figures 4.1-4.4 show the results of wastewater surveillance of SARS-CoV-2 graphed 

with the running 7-day average zipcode level case data comparing the onset of symptoms date 

for each community versus the date of referral for WWTP A N1; N2 and WWTP B N1; N2. A 

gap in wastewater data between January/February and May/July 2021 was due to the ending of 

one project funding and the start of another. Wastewater loading from both communities 

followed the same trends in case data consistent with the waves of COVID-19 cases in Michigan 

during the pandemic. The N1 gene results for community A had slightly higher correlation with 

the referral date (Figure 4.1b: r = 0.68 p<0.0001) compared to the onset date (Figure 4.1a: r = 

0.62 p<0.0001). The N2 gene results correlations for community A were almost identical 

between the onset and referral dates (Figure 4.2a: onset r = 0.68 p<0.0001; Figure 4.2b: referral r 

= 0.67 p<0.0001). However, a larger difference in correlations was observed with community B 

(Figures 4.3 and 4.4). The N1 gene results were more highly correlated with the onset date 

(Figure 4.3a: r = 0.81 p<0.0001) compared to the referral date (Figure 4.3b: r = 0.48 p<0.0001). 
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This same pattern was seen with the N2 gene results as well with the onset date (Figure 4.4a) 

showing a correlation of r = 0.68 while the referral date (Figure 4.4b) was only r = 0.38. 

 

 
aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 

Figure 4.1 Wastewater surveillance data (N1 gene target) for WWTP A (N=94) 
(GC/Person/Day) and COVID-19 zipcode case data over time. a) N1 vs. case onset of symptoms 
running 7-day average case data for COVID-19 (r = 0.62 p<0.0001; n =86 paired data points); b) 
N1 vs. referral date for running 7-day average case data for COVID-19 (r = 0.68 p<0.0001; n 
=85 paired data points).  
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aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 

Figure 4.2 Wastewater surveillance data (N2 gene target) for WWTP A (N=94) 
(GC/Person/Day) and COVID-19 zipcode case data over time. a) N2 vs. case onset of symptoms 
running 7-day average case data for COVID-19 (r = 0.68 p<0.0001; n =86 paired data points); b) 
N2 vs. referral date for running 7-day average case data for COVID-19 (r = 0.67 p<0.0001; n 
=85 paired data points).  
 



 
133 

 
aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 

Figure 4.3 Wastewater surveillance data (N1 gene target) for WWTP B (N=92) (GC/Person/Day) 
and COVID-19 zipcode case data over time. a) N1 vs. case onset of symptoms running 7-day 
average case data for COVID-19 (r = 0.81 p<0.0001; n =61 paired data points); b) N1 vs. referral 
date for running 7-day average case data for COVID-19 (r = 0.48 p<0.0001; n =61 paired data 
points).  
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aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 

Figure 4.4 Wastewater surveillance data (N2 gene target) for WWTP B (N=92) (GC/Person/Day) 
and COVID-19 zipcode case data over time. a) N2 vs. case onset of symptoms running 7-day 
average case data for COVID-19 (r = 0.68 p<0.0001; n =61 paired data points); b) N2 vs. referral 
date for running 7-day average case data for COVID-19 (r = 0.38 p<0.0001; n =61 paired data 
points).  
 

4.4.1.2 Zipcode vs county level case data varying spatial resolution  

When comparing the two communities with county level case data the two communities 

showed similar pearson correlation values of approximately 0.5 (WWTP A: N1 r = 0.52 

p<0.0001, N2 r = 0.53 p<0.0001; n =93 paired data points; WWTP B N1 r = 0.52 p<0.0001, N2 

r = 0.45 p<0.0001; n = 58 paired data points) (Figure 4.5). It is important to note that the 

discrepancies in the total paired data points and the paired data points in the county level data 
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was due the presence of censored data for multiple dates in the US CDC database. The zipcoode 

level case data represented 25% of county level data for community A and 37.5% for community 

B.  

Correlations between wastewater loading and case data were compared between 

communities. The N1 and N2 results for WWTP A with zipcode level referral date case data had 

pearson r correlation values of 0.68 (p <0.0001) and 0.67 (p<0.0001) while the county level case 

data had r values of 0.52 (p<0.0001) and 0.53 (p<0.0001) (Figures 4.1b, 4.2b and 4.5a). WWTP 

B showed greater differences in correlations between zipcode referral dates and county level case 

data. N1 and N2 results had r values of 0.48 (p<0.0001) and 0.38 (p<0.0001) for zipcode level 

referral date data compared to only 0.52 (p<0.0001) and 0.45 (p<0.0001) for county level case 

data (Figures 4.3b, 4.4b, and 4.5b). 
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aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 

Figure 4.5 Wastewater surveillance data (N=94) (adjusted by flow and zipcode level population) 
and county level COVID-19 case data over time. a) WWTP A SARS-CoV-2 gene target results 
vs. county level case data for COVID-19 (N1 r = 0.52 p<0.0001, N2 r = 0.53 p<0.0001; n =93 
paired data points); b) WWTP B SARS-CoV-2 gene target results vs. county level COVID-19 
case data (N1 r = 0.52 p<0.0001, N2 r = 0.45 p<0.0001; n =58 paired data points). 
 

4.4.2 Impact of vaccination rates on SARS-CoV-2 wastewater signals and case numbers  

In this study, the percent vaccination rate at the county level were graphed per day. 

Vaccination data in this case was for that population fully vaccinated (two doses) for the two 

counties served by WWTP A and B. The first reported data point for vaccination rate was in 
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December of 2020. Both counties had rapid increases in vaccination over the following six 

months (Figure 4.6). However, after June of 2021 vaccination rates drastically declined and has 

had not significantly increased since then with both counties almost plateauing near 60% of the 

total population fully vaccinated. While Community B had lower cases/ 1000 persons than 

Community A vaccinations began there (Community B) almost two months before Community 

A (Figure 4.6). Even after the introduction of the full vaccine in Community A cases/ 1000 

persons continued to rise. After the vaccination rate plateaued in October and November of 2021 

viral loading and overall cases were much higher in community A compared to community B 

(Figures 4.6 and 4.7).  

 
 

 
Figure 4.6 Vaccination rates and county level cases per 1,000 persons for communities A and B.  
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aZipcode level population data was used for wastewater results normalization; bA gap in 
sampling occurred between January/February and May/July 2021 due to the ending of one 
project funding and the start of another. 
 
Figure 4.7 Percent of population fully vaccinated compared with SARS-CoV-2 gene target 
loading (GC/Person/Day). a) WWTP A; b) WWTP B. 
 

4.4.3 Detection of SARS-CoV-2 variants in WWTP A over time 

 Monitoring for SARS-CoV-2 variants of concern for WWTP A began in December of 

2020 with testing for the Alpha variant. In June of 2021, samples from WWTP began to be 

monitored for mutations associated with the Delta variant and subsequently in January of 2022 

samples were monitored for mutations associated with the Omicron variant (Figure 4.8).  The 

N501Y and DEL 69-70 mutations, which indicate the potential presence of the Alpha variant, 
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were first detected in May of 2021. Levels of N501Y and DEL 69-70 declined as the Delta 

variant began to spread in Michigan in June of 2021. The Delta variant was first detected in 

clinical samples in Michigan and confirmed by genetic sequencing on January 16, 2021. 

However, it was not until July 12, 2021 that the Delta variant was detected in samples from 

WWTP A. The first detection of the T478K and L452R genes (Delta variant mutations) in 

WWTP A was on July 12, 2021. Delta variant mutations remained dominant in wastewater 

samples until January 9, 2022. The K417N and DEL 69-70 mutations (indicative of the Omicron 

variant) were first detected in wastewater from WWTP A on January 3, 2022 and was first 

clinically detected in Michigan on December 1, 2021.  

 
Figure 4.8 Concentrations of SARS-CoV-2 variant genes for the Alpha, Delta, and Omicron 
variants over time. Samples positive for the N501Y and DEL 69-70 gene mutations indicate the 
potential presence of the Alpha variant. Samples positive for the T478K and L452R gene 
mutations indicate the presence of the Delta variant. Samples positive for the K417N and DEL 
69-70 gene mutations indicate the presence of the Omicron variant. Empty squares represent 
Non-detects (NDs) and X’s were samples that were not assayed for that marker. 
 

4.5 Discussion 

 This study demonstrates that the relationship between wastewater surveillance for SARS-

CoV-2 with COVID-19 cases differs between communities. While wastewater results were 
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significantly correlated with the cases in both communities, the level of correlation differed 

based on spatial (e.g., zipcode vs county level cases) and temporal (e.g., date of symptom(s) 

onset vs. the referral date for cases) resolution. Both communities (A and B) had higher 

correlations with zipcode level cases (A: r = 0.62-0.68, B: r = 0.68-0.81) than county level cases 

(A: r = 0.52-0.53, B: r = 0.45-0.52) with the smaller community (B) having the highest levels of 

correlation overall. However, when the communities’ wastewater results were compared against 

date of symptom(s) onset vs. the referral date for cases community A showed little difference in 

correlation (onset r = 0.62-0.68 vs. referral: r = 0.67-0.68). Community B showed a decrease in 

correlation with cases using the case referral date (onset r = 0.68-0.81 vs. report: r = 0.38-0.48). 

These results suggest that for both communities, wastewater surveillance is more representation 

of higher spatial resolution of cases. When examining the temporal resolution of the 

communities, the wastewater surveillance results for community A were almost equally as good 

at representing cases of COVID-19 using either onset or case referral date. However, for 

community B the wastewater results were more closely tied to the onset of symptoms. These 

results support the idea that the early warning from wastewater monitoring vary between 

communities as proposed by Greenwald et al. (2021). These differences between the 

communities may be due to the amount of septage accepted by each facility (both WWTPs in 

this study accept septage), the amount of dilution occurring due to stormwater (whether through 

infiltration or combined treatment), or the percent of the total county population each facility 

services (WWTP A services 25% of the population while WWTP B services 37.5% of its 

county’s population). Additionally, differences in case “dates” in available datasets may have 

caused some variation in the relationships observed between wastewater signals and clinical 

cases. While county level case data from the US CDC consisted of only a single date for each 
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case, zipcode level datasets provided three dates including “referral date”, “onset date”, and 

“diagnosis date” with only the “referral dates” being consistently reported. 

This study was somewhat limited in its ability to evaluate the impact of vaccination rates 

on wastewater SARS-CoV-2 surveillance results and community COVID-19 cases. While earlier 

vaccination rate increases, and lower population levels may have helped curve the increase in 

cases in community B compared to community A, this current data set is insufficient to 

statistically evaluate this at this time. Measuring case severity may be a better marker such as 

hospitalizations or mortality rates, to evaluate the impact of vaccination in communities. The 

inability to distinguish whether or not the cases, hospitalization, and mortality rates are for 

vaccinated or unvaccinated individuals is also a limiting factor in accurate examination of the 

results (Rainey et al., 2022). However, vaccination rates may be able to help in the examination 

of variants of concern. In community A the gene targets for the Alpha variant were present 

consistently from May 2, 2021 until June 27, 2021 over which time the vaccination rate for the 

community increased from 29.3 to 38.4%. After June 27th, the Alpha variant genes were mostly 

absent from the wastewater samples and were then replaced by the Delta variant mutations. 

These results are similar to those seen by Yaniv et al. (2021), where an increase in vaccination 

rates was correlated with the decrease in the prevalence of the Alpha variant, but not the more 

infectious Delta variant. 

Understanding the temporal and geographic resolution of the disease metrics being 

estimated by wastewater surveillance is paramount for the proper application of WBE. This 

study found that zipcode data should be used whenever possible compared to county data 

particularly if the population being served by the wastewater treatment facility is only a 

proportion of the county. The use of septic tanks could greatly influence this, even if septage is 
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brought to the WWTP for processing. While there is currently only one study that has 

investigated SARS-CoV-2 in septic tanks (Zhang et al., 2020) it was focused on treatment and 

disinfection of hospital wastewater. There is currently no information on the stability of the 

signal in septage as this would greatly influence what might be expected in individual household 

wastewater in septic tanks. 

Various methods have been used to statistical relate cases of COVID-19 to SARS-CoV-2 

concentrations in sewage. Feng et al. (2021) and Ai et al. (2021) have found that use of a fecal 

indicator does not necessarily improve the correlations. However, Mazumder et al. (2022) and 

Feng et al. (2021) have found that normalization using loading of the virus per day by population 

improved the comparisons. In this study this lag was examined by using the onset of symptoms 

compared to the date of referral. In the larger community (community A) this did not matter, 

perhaps because of both the greater variability in the case data and SARS-CoV-2 signal in the 

larger sewer system. Larger complex communities are more difficult to monitor, and detection 

limits need to be further investigated.  

 Community A had a much greater mortality than B (based on county level data) over the 

course of this study. This may have been influenced by access to health care in the greater 

minority community and as represented by the lower vaccination rates (Alcendor, 2020).     

Hospitalization data were not available for download by county temporally from the US CDC 

COVID-19 database. This information will be requested for future analysis. It is clear that 

increases in COVID-19 as represented by increases in SARS-CoV-2 loading per population in 

sewage should be considered a warning signal for these disadvantages communities and should 

elicit mobilization of health care resources.     
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5.0 Synopsis of Monitoring and Surveillance 
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Overall, this project sought to further the understanding of the connections between water 

and health and to help address the impacts of anthropomorphic changes on the environment 

through water quality monitoring. This was approached in two ways; the first was an 

examination downstream of the fecal contamination using microbial source tracking (MST) to 

evaluate exposure and risk and the second was upstream surveillance at the sewage treatment 

facility evaluating pathogen excretion and the health of communities as a whole. 

 The use of MST to evaluate the impact of agricultural practices on water quality in five 

mixed use watersheds demonstrated the temporal fecal contamination was primarily driven by 

streamflow/precipitation while spatial contamination was driven by land use. These conclusions 

were possible through the use of spatial clustering of individual sampling sites allowing for more 

robust and accurate evaluation of the relationships between variables. Through these analyses 

porcine pollution was identified as the MST marker most often associated with nutrient 

contamination. This is of interest as manure for fertilizer use has been increasing in recent years. 

Additionally, with the implementation of the Food Safety Modernization Act (FSMA), which 

was signed into law in 2011 and began to take effect in 2015, understanding the sources of fecal 

contamination in agricultural waters has become even more crucial to protecting food safety and 

human health. The provisions within the FSMA stipulating safe levels of fecal microbial 

contamination allowed in agricultural waters and requirements around testing for these pollutants 

means that source identification and remediation will be even more necessary in the future in 

particular for smaller producers who have limited water resources. Protecting water quality for 

food production and recreational use requires the collaboration and coordination of all 

stakeholders and policymakers. Effective communication between parties, understanding  the 

needs of stakeholders, knowing the abilities and limitations of detection and remediation 
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methods, and the levels of risk associated with varying levels of contamination are all necessary 

to protect and preserve water resources. The MST methods allow for a better knowledge on the 

source of the contamination thus improving the communication and decision making.  

 The applications of MST are continuing to expand and demonstrate their value. The use 

of MST for the detection of leaking sewer lines by Gonzalez et al. (2020) showed the value of 

MST outside of environmental monitoring and led to remediation through infrastructure repairs. 

On the other hand, the use of MST for differentiation of fecal sources remains a critical function 

for directing remediation efforts within watersheds. This is demonstrated well by Nguyen et al. 

(2018) who were able to determine that high levels of FIB found in a Florida watershed were not 

coming from human sources as was previously assumed, but from animal sources including birds 

and deer. These source identifications in turn allowed for the more accurate implementation of a 

TMDL for these impaired waters. 

 The COVID-19 pandemic presented an abrupt need for virus concentration methods for 

wastewater to help monitor the etiological agent SARS-CoV-2 for the surveillance of community 

health. The development of a reliable easy to use workflow for the concentration and detection of 

SARS-CoV-2 in wastewater was needed. Through the use of a surrogate virus (Phi6 

bacteriophage), and field studies polyethylene glycol (PEG) precipitation and RNA detection 

using ddPCR were demonstrated to be a viable method for the recovery and detection of SARS-

CoV-2 from wastewater samples. This study showed that when developing a new workflow 

and/or method for widespread use across multiple laboratories, accessibility in terms of ease of 

use and cost along with sufficient sensitivity and specificity were all necessary. 

 Following the development of the SARS-CoV-2 PEG precipitation and ddPCR workflow 

samples from two unique communities in Michigan were collected, analyzed and compared to 
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determine the ability of wastewater surveillance to correlate with cases of COVID-19. This study 

has shown that wastewater loading of SARS-CoV-2 more accurately correlate with higher 

resolution (zipcode vs. county level cases) case data. Additionally, as the pandemic progressed 

the waves of variant strains of SARS-CoV-2 were able to be detected and monitored in one of 

the communities. This study allowed us to learn that the resolution of case data analyzed along 

with differences in population demographics can change the efficiency and accuracy of 

wastewater monitoring across communities. 

 The ability to monitor indicators of pollution in watersheds and surveil etiological agents 

of disease in sewage provide non-intrusive methods for evaluating the potential risks and current 

burdens to community health. While this project was able to accomplish both of these tasks and 

do so in a way that provided valuable knowledge and methods there still remains many ways to 

expand on this work in the future. This includes but is not limited to the expansion of species 

specific MST markers, further understanding the connections between MST markers, pathogens, 

and nutrients in watersheds. There is always a need for the development of additional methods 

and workflows particularly now for the surveillance of other pathogens in wastewater. More 

wastewater-based epidemiology will be undertaken in the future and understanding the impacts 

of community demographics on the spread and surveillance of disease can be elucidated via 

sewage testing. While the work in this dissertation focused mainly on research, expanding the 

lines of communication and the knowledge shared between the scientific community, regulators, 

and policy makers will be pivotal for the success of any long-term monitoring plan. 
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