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ABSTRACT

EFFICIENT TRANSFER LEARNING FOR HETEROGENEOUS MACHINE
LEARNING DOMAINS

By

Zhuangdi Zhu

Recent advances in deep machine learning hinge on a large amount of labeled data. Such

heavy dependence on supervision data impedes the broader application of deep learning in

more practical scenarios, where data annotation and labeling can be expensive (e.g. high-

frequency trading) or even dangerous (e.g. training autonomous-driving models.) Transfer

Learning (TL), equivalently referred to as knowledge transfer, is an effective strategy to

confront such challenges. TL, by its definition, distills the external knowledge from relevant

domains into the target learning domain, hence requiring fewer supervision resources than

learning-from-scratch. TL is beneficial for learning tasks for which the supervision data is

limited or even unavailable. It is also an essential property to realize Generalized Artificial

Intelligence.

In this thesis, we propose sample-efficient TL approaches using limited, sometimes unre-

liable resources. We take a deep look into the setting of Reinforcement Learning (RL) and

Supervised Learning, and derive solutions for the two domains respectively. Especially, for

RL, we focus on a problem setting called imitation learning, where the supervision from the

environment is either non-available or scarcely provided, and the learning agent must transfer

knowledge from exterior resources, such as demonstration examples of a previously trained

expert, to learn a good policy. For supervised learning, we consider a distributed machine

learning scheme called Federated Learning (FL), which is a more challenging scenario than

traditional machine learning, since the training data is distributed and non-sharable during

the learning process. Under this distributed setting, it is imperative to enable TL among

distributed learning clients to reach a satisfiable generalization performance. We prove by

both theoretical support and extensive experiments that our proposed algorithms can fa-



cilitate the machine learning process with knowledge transfer to achieve higher asymptotic

performance, in a principled and more efficient manner than the prior arts.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Recent advances in deep machine learning hinges on a large amount of labeled data. Such

heavy dependence on supervision data impedes the broader application of deep learning in

more practical scenarios, where data annotation and labeling can be expensive (e.g. high-

frequency trading) or even dangerous (e.g. training autonomous-driving models.) Transfer

Learning (TL), which is equivalently referred to as knowledge transfer , serves as an effective

strategy to confront such challenges. TL, by its definition, distills the external knowledge

from relevant domains into the target learning domain, hence requiring fewer supervision

resources than learning-from-scratch. It is beneficial for learning tasks for which the super-

vision data is limited or even unavailable. For example, assisted with knowledge transfer, an

auto-driving model trained in a simulation system can be readily deployed to the real world.

The performance of such models might be otherwise mitigated due to the distribution drift

from simulation to reality.

In fact, the ability to transfer knowledge is essential to realize Generalized Artificial Intel-

ligence. Learning from external expertise has been widely observed among humankind. For

instance, toddlers learn to wobble around from following their parents [92], and a beginner

player in video gaming may grow into an expert by watching footage of senior players. Such

inherent ability, however, can be challenging for AI models to acquire. An AI model that is

well trained on a source domain may perform poorly in a target domain of interest, given

only a slight change in the data distribution [92]. Therefore, enabling knowledge transfer

across different learning scenarios remains an intriguing research topic in machine learning.

Observing the merits of transfer learning, we tackle knowledge transfer in two major

machine learning settings: Reinforcement Learning (RL) and Supervised Learning. Pio-
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neer efforts in knowledge transfer have been made for both problem settings. For example,

transferring knowledge from external demonstrations to perform imitation learning is shown

effective to realize plenty of RL tasks, including robot navigation [90, 85] and game playing

[107, 156]. On the other hand, learning domain-transferrable feature representations has

enabled domain adaptation in various supervised learning tasks, such as computer vision

[179, 120] and natural language processing [37].

Along with their promising results, we notice some non-negligible limitations of prior

efforts in transfer learning, mainly in fwo-folds: First, most transfer learning approaches

hinges on sufficient data from the source domain or a relevant domain. For instance,

when transferring the knowledge from a teacher model to the student model, prior approaches

usually require a large set of data from the source domain, or from a domain with resemblant

data distribution. Otherwise, the process of TL is non-feasible due to the lack of such a proxy

dataset. Similarly, in the domain of RL, previous TL approaches usually require a large

bunch of teacher demonstrations [151], or frequent feedbacks from the teacher policy [145],

in order to provide enough guidance for the learning agent. Second, the learning efficiency

(in the context of supervised learning), or sampling efficiency (in the context of RL), can

be further improved for existing TL approaches. Low sampling efficiency can be a crucial

problem for RL, which means a learning agent may take a prohibitively long time, exploring

trajectories randomly with low returns. Especially, existing TL approaches in RL may still

require on-policy learning, which is a costly sampling strategy. Analogously, in supervised

learning, low learning efficiency could lead to more training iterations before convergence,

which are computationally costly, or even incur extra communication burdens to distributed

machine learning applications, such as Federated Learning [116].

Observing the potential limitations of prior arts, in this thesis, we propose sample-efficient

TL approaches using limited, sometimes unreliable resources in a principled manner. We take

a deep look into the setting of RL and Supervised Learning, and derive solutions for the two

domains respectively. Especially, for RL, we focus on a problem setting called imitation
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learning, where the supervision from the environment is either non-available or scarcely

provided, and the learning agent must transfer knowledge from exterior resources, such as

demonstration examples of a previously trained expert, to learn a good policy. For supervised

learning, we consider a distributed machine learning scheme called Federated Learning

(FL) [116], which is a more challenging scenario than traditional machine learning, since

the training data is distributed and non-sharable during the learning process. Under this

distributed setting, it is therefore imperative to enable TL among distributed learning clients

to reach a satisfiable generalization performance.

1.2 Overview of Thesis Structure

This section summarizes each of the chapters in this thesis.

In Section 1.3, we present the preliminaries about two different problem settings, i.e.

RL and supervised federated learning, under which we proposed our transfer learning ap-

proaches. We also introduce the principle of generative adversarial learning which provides

indispensable foundations of our work. In Section 2.1, we clarify the definition of TL in

the related machine learning scenarios, then list the terminologies that will be frequently

used through this thesis. We also briefly review the recent advances of TL in both RL and

supervised learning domains, and point out the distinction between our proposed work and

the prior arts before introducing our techniques.

Chapter 3 elaborates the approach SAIL , which is an imitation learning approach in a

RL problem setting. It realizes knowledge transfer from limited, suboptimal demonstrations

to assist the agent learning to achieve expert-level performance with high sample efficiency.

In Chapter 4, we present the work of OPOLO , which extends the idea of TL from demon-

stration to a more challenging yet practical setting in RL, i.e. to transfer knowledge from

incomplete observations of expert behavior. In Chapter 5, we shift our focus from RL to an

intriguing supervised learning scenario and introduce our work dubbed as FedGen , which

enables knowledge transfer in FL without the need of accessing training data from the knowl-
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edge source. In Chapter 6, we continue the TL study in the context of FL and introduce

FedResCuE, which enables self-knowledge distillation in FL to tackle a systematic heteroge-

neous FL system with unstable network connections. During FL, knowledge is transferred

and preserved in arbitrarily prunable sub-networks of the global model.

In Section 7, we summarize the connection between each of our work, by looking into the

following key questions: 1) under which problem setting the proposed approach is applicable,

2) what are the teacher and student regarding the TL process, 3) what kind of knowledge

has been transferred, and 4) what can be achieved upon TL is complete. Next, we explore

the potential challenges faced by our TL approaches, point out the open questions that await

future research progress, and briefly discuss our ongoing and future work.

1.3 Background and Preliminaries

In this section, we introduce the basic concepts in RL, (supervised) FL, and adversarial

generative learning, which composed the cornerstones of our transfer learning research.

1.3.1 Reinforcement Learning (RL)

A typical RL problem can be considered as training an agent to interact with an environment

that follows a Markov Decision Process (MPD) [15]. In an MDP, the agent starts with

an initial state and performs an action accordingly, which yields a reward to guide the

agent actions. Once the action is taken, the MDP transits to the next state by following

the underlying transition dynamics of the MDP. The agent accumulates the time-discounted

rewards along with its interactions with the MDP. A subsequence of interactions is referred

to as an episode. For MDPs with infinite horizons, one can assume that there are absorbing

states, such that any action taken upon an absorbing state will only lead to itself and yield

zero rewards. All above-mentioned components in the MDP can be represented using a tuple

M = (µ0,S,A,P , γ,R,S0), in which:

• µ0 is the set of initial states.
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• S is the state space.

• A is the action space.

• P : S × A × S → R is the transition probability distribution, where P(s′|s, a)

specifies the probability of the state transitioning to s′ upon taking action a from state

s.

• R : S × A × S → R is the reward distribution, where R(s, a, s′) is the reward an

agent can get by taking action a from state s with the next state being s′.

• γ is a discounted factor, with γ ∈ (0, 1].

• S0 is the set of absorbing states.

Figure 1.1 illustrates the above components, and Figure 1.2 is an example of trajectories

in an infinite-horizon MDP. An RL agent behaves inM by following its policy π, which is

a mapping from states to actions: π : S → A. For stochastic policies, π(a|s) denotes the

probability for agent to take action a from state s. Given an MDPM and a policy π, one

can derive a value function V π
M(s), which is defined over the state space:

V π
M(s) = E

[
r0 + γr1 + γ2r2 + . . . ; π, s

]
,

where ri = R(si, ai, si+1) is the reward that an agent receives by taking action ai in the i-th

state si, and the next state transits to si+1. The expectation E is taken over the following

distriubtion:

s0 ∼ µ0, ai ∼ π(·|si), si+1 ∼ T (·|si, ai).

The value-function estimates the quality of being in state s, by evaluating the expected

rewards that an agent can get from s, given that the agent follows policy π in the environment

M afterward. Similar to the value-function, each policy also carries a Q-function, which is

defined over the state-action space to estimate the quality of taking action a from state s:

Qπ
M(s, a) = Es′∼P(·|s,a) [R(s, a, s′) + γV π

M(s′)] .
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The objective of RL is to learn an optimal policy π∗M to maximize the expectation of

accumulated rewards, so that: ∀s ∈ S, π∗M(s) = arg max
a∈A

Q∗M(s, a), where Q∗M(s, a) =

sup
π

Qπ
M(s, a).

Figure 1.1: Overview of RL.

Figure 1.2: An absorbing state (sT−1) denotes
the termination of a task in an infinite-horizon
MDP.

1.3.2 Federated Learning (FL)

Without ambiguity, in this section, we present a typical FL setting for supervised learning,

i.e., the general problem of multi-class classification. Let X ⊂ Rp be an instance space,

Z ⊂ Rd be a latent feature space with d < p, and Y ⊂ R be an output space. T denotes a

domain which consists of a data distribution D over X and a ground-truth labeling function

c∗ : X → Y , i.e. T := 〈D, c∗〉. Note that we will use the term domain and task equivalently.

A model parameterized by θ := [θg;θp] consists of two components: a representation learning

module g : X → Z parametrized by θg, and a predictor h : Z → 4Y parameterized

by θh, where 4Y is the simplex over Y . Given a non-negative, convex loss function l :

4Y ×Y → R, the risk of a model parameterized by θ on domain T is defined as LT (θ) :=

Ex∼D
[
l
(
h(g(x;θg);θh), c∗(x)

)]
.

The objective of FL is to learn a global model parameterized by θ that minimizes its risk

on each of the user tasks Tk [116]:

minθ ETk∈T [Lk(θ)] , (1.1)
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where T = {Tk}Kk=1 is the collection of user tasks. We consider all tasks sharing the same

labeling rules c∗ and loss function l, i.e., Tk = 〈Dk, c∗〉. In practice, Equation 5.1 is empiri-

cally optimized by minθ
1
K

∑K
k=1 L̂k(θ), where L̂k(θ) := 1

|D̂k|

∑
xi∈D̂k [l(h(g(xi;θ

g);θp), c∗(xi))]

is the empirical risk over an observable dataset D̂k. An implied assumption for FL is that

the global data D̂ is distributed to each of the local domains, with D̂ = ∪{D̂k}Kk=1.

1.3.3 Generative Adversarial Learning

Generative Adversarial learning can be traced back to the work of Generative Adversarial

Network (GAN) [56], which is a representative solution to generative learning. The goal of

GAN is to learn an unknown distribution p(x) using a set of samples from such distribution.

More concretly, GAN learns two modules: a discriminator D and a generator G, to jointly

optimize the following objective J(G,D):

min
G

max
D

J(G,D) := Ex∼p(x)[logD(x)] + Ez∼G(z)[log(1−D(G(z)))]. (1.2)

The generator G can be later used to synthesize samples to assist downstream model train-

ing tasks. GAN performs minimax-optimization on the Jesen-Shannon divergence between

the ground-truth distribution p(x) and the generated distribution G(z). Recent extensions

of GAN have explored other forms of distributional-discrepancy measure, such as the f -

divergences [129] or Wasserstain divergence [9]. Among different adversarial generative

learning approaches, distribution matching and game theory is at the heart of their founda-

tion. Generative adversarial learning has been applied to solve a variety of problems, such as

synthetic data generation [204], adversarial attacks and defenses [192], domain adaptatoin

[174], imitation learning [68], etc.

1.3.4 Notations and Terminologies

We list the following terminologies which will be frequently used in this thesis:

1. Domain : we will refer domain and task equivalently. In the context of RL, a domain

denotes a Markov Decision Process M = (µ0,S,A,P , γ,R,S0). In the context of
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supervised learning, a domain T = 〈D, c∗〉 is a composition of a data distribution D(x)

in the input space X and its target labeling function c∗ : X → 4Y , where 4Y is the

simplex of label space Y . Without ambiguity, in this dissertation, we consider a typical

supervised learning problem of multi-class classification.

2. Teacher (Source) and Student (Target): We will refer teacher and source equiv-

alently, and refer student and target equivalently as well. transfer learning is all about

transferring knolwedge from the teachers (source) domains to the student (target) do-

mains. In the contex of RL, a teacher (student) denotes a policy π : X → A. In

the context of supervised learning, a teacher (student) denotes a predictive model

f = h ◦ g : X → 4Y .

Abbreviation Definition
TL Transfer Learning
RL Reinforcement Learning
SL Supervised Learning
KD Knowledge Distillation
FL Federated Learning

Table 1.1: Overview of Abbreviations.

We also present the abbrevations and key notations used in this thesis in Table 1.1 and

1.2.
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Symbol Definition Context
p Dimension of input space SL
d Dimension of latent space SL
X Input Space, X ⊂ Rp SL
x A vector of input variables, x ∼ X SL
Z Latent Space, Z ⊂ Rd SL
z A vector of latent variables, z ∼ Z SL
Y Output Space, Y ⊂ R SL
y An output variable, y ∼ Y SL
D Data Distribution SL
c∗ Labeling function, c∗ : X → Y SL
T Task, T := 〈D, c∗〉 SL
g Representation learning module SL
h Prediction module SL
θ Network paraemeter set SL & RL
K Number of (source) domains SL & RL
M Markov Decision Process RL
π Policy, π : S → A RL
τπ A trajectory by following policy π, τ := {s0, a0, s1, a1, · · · |sat = π(st)} RL

Table 1.2: An overview of mathematical notations. A notation can be applicable to either
the context Supervised Learning (SL) or Reinforcement Learning (RL).
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CHAPTER 2

PROBLEM OVERVIEW: TRANSFER LEARNING

In this chapter, we first present definitions of transfer learning (TL) in two different contexts:

reinforcement learning (RL) and supervised learning, respectively. Next, we briefly overview

the recent advances of transfer learning approaches in both settings.

2.1 Defitinion of Transfer Learning

2.1.1 Transfer Learning in the Context of Reinforcement Learning

In the context of reinforcement learning, we use Ms = {Mi
s}Ki=1 to denote a set of source

domains, and Mt to denote the target domain. For a minimalistic case, knowledge can

transfer between two agents within the same domain, resulting in |Ms| = 1, andMs =Mt.

Definition 1. [Transfer Learning in the Context of Reinforcement Learning] Given

a set of source domains Ms = {Mi
s}Ki=1 and a target domain Mt, where each domain is

a Markov decision process, transfer learning occurs when an lgorithm A leverages exterior

information Is from Ms and interior information It fromMt as inputs to generate a policy

π
St→At

= A(Is ∼ Ms, It ∼ Mt), which achieves higher performance in the target domain

Mt, compared with not utilizing the source-domain knowledge Is.

In the above definition, we use A(Is; It) to denote the output of a transfer learning

algorithm, i.e. the learned policy based on information Is and It. One can consider regular

RL without transfer learning as an extreme case of the above definition by treating Ms = ∅

and Is = ∅, so that a policy π is learned purely on the feedback provided by the target

domain, i.e. π = A(It). TL is beneficial in improving the RL performance, especially when

the supervision from a target domain It is lacking or sub-optimal.

We illustrate some eligible types of source-domain knowledge in Figure 2.1, although

knowledge from the source domain Is can also take other forms of supervision.
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Figure 2.1: TL approaches in RL organized by the format of transferred knowledge.

2.1.2 Transfer Learning in the Context of Supervised Learning

In the context of supervised learning (SL), We use T s = {T is }Ki=1 to denote a set of source

domains, and Tt to denote the target domain. Below we provide a high-level definition of

TL for a supervised learning problem setting:

Definition 2. [Transfer Learning in the Context of Supervised Learning] Given

a set of source domains T s = {T is }Ki=1 and a target domain Tt, where each domain is a

supervised learning task, with T is = 〈Di
s, c

s∗
i 〉 and Tt = 〈Dt, c

t∗〉, transfer learning occurs when

an lgorithm A leverages exterior information Is from T s and interior information It from Tt

as inputs to generate a predictive model h ◦ g
X t→∆Y

= A(Is ∼ T s, It ∼ Tt), which achieves lower

risk in the target domain Tt, compared with not utilizing the source-domain knowledge Is.

Remark 1 (Domain of Multi-Class Classification). Without losing generality, we also

consider that each domain is a multi-class classification problem, although the proposed ap-

proaches in this dissertation have the potential to be extended to other scenarios, including

regression or multi-label classification.
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2.2 A Glance of Prior Arts

Transfer learning in RL has gained ever-increasing attention due to the recent success of

RL in various applications, such as game playing [14] and robotics learning [85]. Traditional

transfer learning for RL traces back to a scenario called behavior cloning, in which a target

policy is trained in a supervised learning manner by leveraging state-action samples from a

pretrained teacher [138]. Later approaches are developed to involve the transferred knowledge

into the RL learning loop. For instance, in a knowledge transfer approach called reward

shaping [125], the exterior knowledge can be distilled as a synthetic reward function, which

provides extra guidance besides the reward signal from the environment. Based on the

form of transferred knowledge, approaches along this line can be mainly categorized into the

following: reward shaping [182, 38], learning from demonstrations [105, 25, 175, 123, 68, 79]

policy transfer [146, 191, 168, 12], inter-domain mapping [60, 7], representations transfer [20],

etc. There have been prior efforts in summarizing the knowledge transfer techniques in RL

[167, 91]. Interested readers are referred to our survey [206] for more recent advances along

this line. Our proposed knowledge transfer approaches outstand pior arts in the following

aspects: i) our approaches improve the sample efficiency in RL by learning from the exterior

knowledge in an off-policy manner, and ii) we enable knowledge transfer from accessible

resources, such as sub-optimal or limited teacher demonstrations.

Transfer learning in Supervised Learning is an important machine learning problem

that has been studied extensively [132, 207]. This technique has benefited practical super-

vised learning applications in computer vision, auto-navigation, natural language processing

[19, 104], healthcare, etc. While a comprehensive overview of TL in the SL domain requires

multi-fold criteria, one angle to investigate TL approaches is to answer the key question of

what knowledge to transfer. Specifically, appraoches along this line can be mainly organized

into three categories: 1) instance based transfer [76, 101, 180, 152], 2) feature representation

transfer [174, 203], and 3) model parameter transfer [193, 117]. In instance-based transfer,

the training data from the source domain can directly help to learn the target domain by
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re-weighting the training samples. In feature representation transfer, the core idea is to learn

and leverage latent features that are robust across different domains. For model parameter

transfer, the knowledge is conveyed by the parameter set of a teacher model, which is usually

more complex in structure than the student model. In Chapter 5, we introduce one of our

FL proposed approaches, which can be considered as a hybrid scheme that transfers both

model parameters and latent representations. Moreover, in Chapter 6, we investigate how to

transfer and preserve knowledge in different model channels of the same model architecture.

As a specific supervised learning scenario, FL has achieved wide success in practical

applications such as mobile computing and healthcare. As a result, TL learning in FL has

recently emerged as an effective approach to tackle user heterogeneity brought by FL. Most

existing work along this line is data-dependent [103, 159, 58, 30]. Particularly, [103] proposed

FedDFusion, which performs TL to refine the global model, assuming that an unlabeled

dataset is available with samples from the same or similar domains. Complementary TL

efforts have been made to confront data heterogeneity [96, 150]. Specifically, [96] transmits

the proxy dataset instead of the model parameters. FedAUX [150] performs data-dependent

distillation by leveraging an auxiliary dataset to initialize the server model and to weighted-

ensemble user models, while FeDGen performs knowledge distillation in a data-free manner.

FedMix [194] is a data-augmented FL framework, where users share their batch-averaged

data among others to assist local training. On the contrary, in Chapter 5, we proposed

FedGen , which extracts knowledge from the existing user model parameters and hence

faces fewer privacy risks. From a different yet practical perspective, in Chapter 6, we also

investigate the role of self-knowledge distillation in achieving robust and efficient FL that

confronts heterogeneous systems and faulty network connections.
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CHAPTER 3

KNOWLEDGE TRANSFER IN REINFORCEMENT LEARNING FROM
SUBOPTIMAL DEMONSTRATIONS

This chapter is based on the following work:

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Self Adaptive Imitation Learning:

Learning Delayed Rewarded Tasks from Suboptimal Demonstrations. Proceedings of the

Thirty-Sixth AAAI Conference on Artificial Intelligence, 2022.

3.1 Introduction

Reinforcement Learning (RL) is notably advantageous in learning sequential decision-making

problems in simulated environments, such as game-playing [119, 156], where massive samples

with dense rewards can be accessed at a negligible cost. However, it is challenging to upscale

RL to real-world scenarios due to its dependence on immediate reward feedback. For practical

applications where rewards are usually delayed in time and sparse in value, RL agents may

struggle with high sample complexity, facing difficulties of connecting a long sequence of

actions to the feedback received in the far future.

In fact, the ability to learn from delayed feedback is crucial for realizing advanced ar-

tificial intelligence [34, 142]. On the one hand, reducing the frequency of reward sampling

contributes to a lower interaction complexity for practical applications, such as autonomous-

driving [137] and UAV navigation [84]. On the other hand, learning from coarse-grained

supervision, such as human preference [90], is rather useful when it is easy to recognize

the desired behavior but difficult to explain its rationale by designing delicate reward func-

tions [131].

Recent advances of Imitation Learning (IL) can effectively provide remedies when the

environment feedbacks are delayed or even unavailable, by referencing expert demonstra-

tions [68, 87, 88] or policies [145, 162]. In spite of their success, a major limitation of such IL
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approaches is that the learned performance is bounded by the given expert. Consequently,

when the provided demonstrations are sub-optimal, which is a practical yet more challeng-

ing scenario, the IL approaches will induce a sub-optimal policy. In the meantime, some

work has been proposed for learning from sub-optimal guidance in delayed rewarded tasks

[79, 160, 185, 202, 54]. A shared rationale among them is to augment the environment re-

wards with synthetic rewards derived from the demonstrations, after which an actor-critic

algorithm can take over the policy learning. Although technically effective, these approaches

are inherent with twofold limitations. First, the sub-optimality of teacher demonstrations

has not been fully resolved. Once the learning agent reaches a reasonable performance, the

demonstrations will become a bottleneck, leading to negative guidance that contradicts en-

vironment feedbacks [112]. Second, the environment feedback is not well leveraged. Learning

a critic function relying on delayed environment rewards can be sample costly, which may

provide weak signals to compensate for the sub-optimal demonstrations.

In this paper, we formally consider a problem setting, where an RL agent only has

access to a limited number of sub-optimal demonstrations in a task with highly delayed

rewards. Our goal hence is to combine the merits of RL and IL, by exploring the sub-

optimal demonstrations that are easier to access in practice, while preserving the chance to

explore for better policies guided by the coarse-grained environment feedbacks.

Noticing the challenges of the proposed problem and limitations in prior arts, we pro-

pose Self-Adaptive Imitation Learning (SAIL), an off-policy imitation learning approach that

strikes a balance between exploitation and exploration to reach high performance. More con-

cretely, we formulate our objective as exploration-driven IL. On the one hand, our approach

minimizes the discrepancy between the teacher and the learning policy; on the other hand, it

encourages the learning policy to deviate from its previously learned predecessors for better

exploration. Specifically, we leverage the delayed feedback from the environment to ex-

plore superior self-generated trajectories that surpass the teacher’s performance. Those self-

generated trajectories are used to replace the suboptimal teachers to constructs a dynamic
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target distribution that gradually converges to optimality. An overview of our proposed ap-

proach is provided in Figure 3.1. Extensive empirical studies have shown that SAIL achieves

significant improvement regarding both sample efficiency and asymptotic performance on

various popular benchmarks.

Figure 3.1: Illustraion of SAIL: Navigations in red arrows follow the exploration driven IL
objective, which approaches to teacher’s density distribution while deviating from previous
learned ones. It explores more efficiently to reach expertise, compared with random explo-
rations (green arrows).

3.2 Background

Markov Decision Process (MDP) is an ideal environment to formulate RL, which can

be defined by a tuple M = (S,A, T , r, γ, µ0,S0), where S and A are the state and action

space, T (s′|s, a) denotes the probability of the environment transitioning from state s to

s′ upon action a is taken, r(s, a) is the environment reward received by taking action a on

state s, γ ∈ (0, 1]) is a discounted factor, µ0 is the initial state distribution, and S0 is the

set of terminal states or absorbing states. Any absorbing state always transits to itself and

yields a reward of zero [164]. Given a trajectory τ = {(st, at)}∞t=0, we define its return as

R(τ) =
∑∞

k=0 γ
kr(sk, ak). For an episodic task with a finite horizon, its return can be written

as R(τ) =
∑T

k=0 γ
kr(sk, ak), where T is the number of steps to reach an absorbing state.

The objective of RL is to learn a policy π : S → A that maximizes the expected return

of its trajectories. Equivalently, this objective can be rephrased as finding a distribution

dπ(s, a):

maxπ η(π) := E(s,a)∼dπ(s,a)

[
r(s, a)

]
, (3.1)
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in which dπ(s, a) is the normalized stationary state-action distribution of π: dπ(s, a) = (1−

γ)µπ(s, a), and µπ(s, a) is the occupancy measure of a policy π, defined as:

µπ(s, a) =
∞∑
t=0

γtPr
(
st = s, at = a|s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at)

)
[68].

Without ambiguity, we use density and normalized stationary state-action distribution in-

terchangeably to refer dπ(s, a) in this chapter.

Adversarial Imitation Learning addresses IL from the perspective of distribution match-

ing. A representative work along this line is Generative Adversarial Imitation Learning

(GAIL) [68]. Given a set of demonstrations from an unknown expert policy πE, GAIL aims

to learn a policy π that minimizes the Jensen-Shannon divergence between dπ and dE:

minπ DJS[dπ(s, a)||dE(s, a)]− λH(π),

where dπ and dE are the densities derived from the learning policy π and the expert policy

πE, and H(π) is an entropy regularization term [209, 208].

GAIL applies a saddle-point optimization strategy: it jointly trains a discriminator D

and a policy π to optimize the following minimax objective:

minπ maxD Edπ(s,a)[log(1−D(s, a))] + EdE(s,a)[log(D(s, a))].

In practice, a fixed set of demonstrations from expert densities dE are given, while samples

from dπ are obtained by on-policy interactions with the environment.

3.3 Problem Setting

In this chapter, we address the problem of learning in an MDP with highly delayed feedbacks.

More concretely, in this MDP, an agent learns from the trajectory-wise reward re, which

is only non-zero upon reaching an absorbing (terminal) state:

re(st, at, st+1) 6= 0⇔ st /∈ S0, st+1 ∈ S0.

Without losing clarity, we use re(τ) to denote the trajectory-wise reward obtained by a

trajectory τ . For arbitrary two trajectories τi, τj, their relative ranking of re should align

with the task objective:
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Assumption 1 (Legitimacy of the Trajectory Rewards). ∀ τi, τj, re(τi) ≥ re(τj) =⇒ Pπ∗(τi) ≥

Pπ∗(τj), where

Pπ∗(τ) =
T∑
i=0

(
γi log π∗(ai|si)|τ := {(s0, a0), (s1, a2), · · · , (sT , aT )}

)
is the extent to which an oracle policy π∗ agrees with a trajectory τ .

Our problem setting provides a generalized framework for a variety of prior arts, including

preference-based RL [51, 183] and learning from human feedbacks [119]. Prior work of

learning sparse-rewarded tasks with K-step feedbacks [160, 79, 175, 112] can also be reduced

to our problem setting, with the advantage that their reward signals are finer-grained and

more frequently provided. Compared with an elaborate reward function, trajectory-wise

rewards are easier to access and more intuitive to human perception [34, 51], which, however,

makes regular RL more challenging.

To alleviate the learning difficulty, we assume that an agent learning a policy π is allowed

to leverage external demonstrations RT from an unknown teacher policy πT , which are sub-

optimal but more accessible than expert demonstrations. For the following of this chapter,

we use dπ(s, a) and dT (s, a) to denote the density distribution derived from policy π and

πT , respectively. In practice, dT is usually approximated from the demonstration data RT

[209, 49, 68]. Moreover, the learning agent can also access its self-generated transitions

cached in a replay buffer RB, whose density distribution is dB(s, a).

3.4 Methodology

3.4.1 Exploration-Driven Objective

We propose an exploration-driven IL objective to learn from sub-optimal demonstrations,

which is formulated as below:

Objective 1 (Exploration-Driven Imitation Learning).

max
π

J(π) := −DKL[dπ(s, a)||dT (s, a)]︸ ︷︷ ︸
Imitation

+DKL[dπ(s, a)||dB(s, a)]︸ ︷︷ ︸
Exploration

,
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in which DKL denotes the KL-divergence between two distributions:

DKL[p||q] = Ep(x) log
p(x)

q(x)
.

Objective (1) can be interpreted as joint motivations for imitation and exploration. The first

term−DKL[dπ(s, a)||dT (s, a)] encourages distribution matching between dπ(s, a) and dT (s, a).

The second term DKL[dπ(s, a)||dB(s, a)], though counter-intuitive at first sight, serves as an

objective for self-exploration. Since dB(s, a) is the density derived from previously-learned

policies, maximizing DKL[dπ(s, a)||dB(s, a)] is in favor of visiting state-actions that are rarely

seen by previously learned policies, which acts as a repulsive force from dB(s, a).

Specifically, the proposed objective encourages exploration, which is opposed to a con-

ventional IL objective that solely pursues distribution matching between dπ and dT :

maxπ JIL(π) := −DKL[dπ(s, a)||dT (s, a)]. (3.2)

An optimal solution to Eq (3.2) is a policy that exactly recovers the teacher’s density distri-

bution, with dπ(s, a) = dT (s, a) [209]. Given this objective, π is restricted from further ex-

ploring density distributions that deviate from dT , which impedes its potential of generating

more superior trajectories. We will verify by empirical studies that optimizing Objective (1)

achieves more efficient exploration compared with a pure imitation-driven objective.

3.4.2 Adaptive Learning Target

Following Objective (1), the learning policy has obtained the potential to yield trajecto-

ries with performance surpassing the teacher. To fully utilize this self-generated resource,

SAIL adaptively adjusts the teacher’s buffer to replace teacher demonstrations with more

superior trajectories sampled from the learning agent, by leveraging the trajectory-wise feed-

back from the environment. This strategy dynamically improves the lower bound of the

teacher’s performance. As a result, the density dT (s, a) of the teacher buffer is approaching

an oracle distribution:
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Theorem 1. For a deterministic policy, rewards of its generated trajectories indicate the

policy’ agreement with an oracle:

∀πi, πj, Eτ∼πi [re(τ)] > Eτ∼πj [re(τ)] =⇒

DKL [πi(a|s)||π∗(a|s)] < DKL [πj(a|s)||π∗(a|s)] .

Proof. Given arbitrary deterministic policies πi and πj, s.t. Eτ∼πi [re(τ)] > Eτ∼πj [re(τ)].

Based on Assumption 1, one can derive that:

Eτ∼πi [Pπ∗(τ)]− Eτ∼πj [Pπ∗(τ)] > 0. (3.3)

Next, one can derive that:

DKL[πi(a|s)||π∗(a|s)]− DKL[πj(a|s)||π∗(a|s)]

=Edπi (s)πi(a|s)[log
πi(a|s)
π∗(a|s)

]− Edπj (s)πj(a|s)[log
πj(a|s)
π∗(a|s)

]

= −H[πi(a|s)]︸ ︷︷ ︸
0 for deterministic πi

−Edπi [log π∗(a|s)] +H[πj(a|s)]︸ ︷︷ ︸
0

+Edπj [log π∗(a|s)]

=− (1− γ)
∑
t

Est∼µ
πi
t ,at∼πi(st)

[γt log π∗(at|st)]

+ (1− γ)
∑
t

E
st∼µ

πj
t ,at∼πj(st)

[γt log π∗(at|st)]

=− (1− γ)
(
Eτ∼πi [Pπi(τ)]− Eτ∼πj [Pπj (τ)]

)
< 0︸ ︷︷ ︸

based on Eq equation 3.3

.

Therefore, when the teacher buffer is updated with more superior trajectories generated

by a deterministic policy over time, as in our case, the distribution derived by the teacher

buffer is approaching to optimality. Unlike prior art that bundles their critic learning process

with environment rewards, we leverage this delayed and coarse-grained feedback to construct

a dynamic learning target with increasing superiority, which relieves the bottleneck brought

by sub-optimal demonstrations.

20



3.4.3 Off-Policy Adversarial TD Learning

While our proposed approach is appealing in combining the merits of exploitation and explo-

ration, it is challenging to directly optimize Objective (1). To make it more approachable,

we draw a connection from Objective (1) to a conventional RL problem:

Remark 2. Objective (1) can be rephrased as the following, which is equivalent to a max-

return RL objective with log dT (s,a)
dB(s,a)

in place of the environment rewards:

max
π

J(π) := Edπ(s,a)

[
log

dT (s, a)

dB(s, a)

]
, (3.4)

One can consider the optimization of Equation equation 3.4 as a process of policy se-

lection: for the support of (s, a) where the teacher has visited more frequently than the

previously-learned policies, π is encouraged to build positive densities on those state-actions,

leading to dπ(s, a) > 0 wherever dT (s, a) > dB(s, a). Intuitively, this process implies that

the agent trusts the teacher more than the previously learned policies.

Based on this insight, we can relate Objective (1) to Temporal-Difference (TD) learning,

and solve it under an actor-critic framework. To obtain the reward function log dT (s,a)
dB(s,a)

, we

build upon prior arts [68] to learn a discriminator D that optimizes the following:

max
D:S×A→(0,1)

EdB(s,a)[log(1−D(s, a))] + EdT (s,a)[log(D(s, a))]. (3.5)

D aims to distinguish between the self-generated data from dB and the teacher demon-

strations from dT . A well-learned discriminator shall satisfy the following [56]:

D∗(s, a) =
dT (s, a)

dT (s, a) + dB(s, a)
.

The output of D with a constant shift, which we found to be more empirically effective, is

used to render synthetic rewards to the agent:

r′(s, a) = − log(1−D(s, a)) ≈ log( dT (s,a)
dB(s,a)

+ 1).
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In the initial training stage, a well-trained discriminator renders higher rewards to teacher

demonstrations withD(s, a)→ 1, and lower rewards for self-generated samples withD(s, a)→

0. The learning policy is therefore designed to confuse the discriminator by maximizing the

shaped accumulated rewards.

To improve sample efficiency, we adopt an off-policy learning framework. Our objective

is accordingly rephrased to maximize the expectation of Q-values over distributions of a

behavior policy β [155, 102]:

maxθ Jβ(πθ) :=

∫
s
dβ(s)Q(s, πθ(s))ds = Edβ(s)[Q(s, πθ(s))], (3.6)

where dβ(s) is the normalized stationary state distribution of β, analogous to the state-

action distribution. The Q-function is a fixed point solution to the Bellman operation based

on the shaped rewards:

Q(s, a) = r′(s, a) + γEs′∼T (s′|s,a),a′∼π(s′)[Q(s′, a′)]. (3.7)

Accordingly, the policy-gradient for the actor can be derived as [102]:

∇θJβ(πθ) ≈ Es∼dβ [∇θπθ(s)∇aQ(s, a)|a=πθ(s)]. (3.8)

In the next section, we introduce an algorithm that realizes our objective via the above-

mentioned off-policy TD learning. It adopts an even more effective sampling approach that

further accelerates the learning procedure.

3.4.4 Self-Adaptive Imitation Learning

Combing all the building blocks, we now introduce our approach, dubbed as Self-Adaptive

Imitation Learning (SAIL), as described in Algorithm 3.1. SAIL maintains two replay-buffers

RT and RB, for caching teacher demonstrations and self-generated transitions, respectively.

It jointly learns three components: a discriminator D that serves as a reward provider,

a critic Q that minimizes the Bellman error based on the shaped rewards, and an actor

π that maximizes the shaped returns. During iterative training, high-quality trajectories
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Algorithm 3.1: Self-Adaptive Imitation Learning
1: Input: teacher replay buffer RT with demonstrations,
2: self-replay-buffer RB with random transitions.
3: policy πθ, discriminator Dw, critic Qφ, batch size N > 0, coefficient α > 0
4: for n = 1, . . . do
5: sample trajectory τ ∼ πθ
6: if re(τ) > minτ ′{(re(τ ′) | τ ′ ∈ RT} ) then
7: RT ← RT ∪ τ ; α← 0
8: else
9: RB ← RB ∪ τ
10: if n mod discriminator-update = 0 then
11:

{
(si, ai, · · · )

}N
i=1
∼ RB,

{
(sTi , a

T
i , · · · )

}N
i=1
∼ RT

12: update Dw by ascending gradient :
13: Ow

1
N

∑N
i=1

[
logD

(
sTi , a

T
i

)
+ log

(
1−D

(
si, ai

))]
14: if n mod Q-update = 0 then
15: {si, ai, s′i}Ni=1 ∼ RB, {sTi , aTi , s

′T
i }Ni=1 ∼ RT

16: yi ← − log(1−D(si, ai)) + γQ̄(s′i, π(s′i))
17: y

′T
i ← − log(1−D(sTi , a

T
i )) + γQ̄(s

′T
i , π(s

′T
i ))

18: update Qφ by minimizing critic loss:
19: J(Qφ) = 1−α

N

∑
i[(Qφ(si, ai)− yi)2] + α

N

∑
i[(Qφ(sTi , a

T
i )− y′Ti )2]

20: if n mod policy-update = 0 then
21:

{
(si, ., ., ., .)

}N
i=1
∼ RB,

{
(sTi , ., ., ., .)

}N
i=1
∼ RT

22: update π by sampled policy gradient:
23: OθJ(πθ) ≈ 1−α

N

∑
i[Oθπθ(si)OaQ(si, ai)|ai=πθ(si)] +

α
N

∑
i[Oθπθ(s

T
i )OaQ(sTi , a

T
i )|aTi =πθ(sTi )]

generated by the actor are selected to refill the teacher demonstration buffer RT , while other

trajectories are cached in the self-replay buffer RB. We highlight three key aspects of SAIL:

(1) Leveraging delayed environment feedback to update teacher buffer RT : High-quality

trajectories with reward re above a threshold CdT are selected to update the teacher buffer

RT . In practice, CdT is simultaneously updated as the lowest reward in the teacher buffer

RT : CdT = minτ ′{re(τ ′)|τ ′ ∈ RT}, which guarantees the increasing quality of trajectories in

the teacher’s buffer.

(2) Realizing exploration-driven IL with an off-policy discriminator : Prior art such as

GAIL relies on on-policy training of a discriminator to estimate the ratio of dT (s,a)
dπ(s,a)

. On the

contrary, we learn an off-policy discriminator D that aligns with our proposed objective and
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encourages efficient exploration, whose effectiveness will be elaborated in the Experiment

section.

(3) Sampling from teacher demonstrations for boosted learning efficiency : In the initial

learning step, we sample from both the teacher dataset RT and the self-generated dataset

RB to construct a mixed density distribution, which plays the role of dβ in Eq (3.8). More

concretely, we derive a mixture distribution: dmix = αdT + (1−α)dB, where α is the ratio of

samples from teacher demonstrations. In practice, we initialize α = 0.5. Once the learning

policy generates trajectories with performance comparable to the teacher, we anneal the

value of α to zero.

3.4.4.1 Reasoning of sampling from a mixture of distributions:

Sampling from teacher demonstrations has been studied by other prior arts [175, 142]. Along

with the same spirit, the mixture sampling distribution in our case accelerates the IL process

by a behavior-cloning strategy. To see the rationale, one can rephrase the objective in

Equation 3.6 as the following:

maxθ Jβ(πθ) := αEdT (s)[Q(s, πθ(s))]︸ ︷︷ ︸
Behavior Cloning

+(1− α)EdB(s) [Q(s, πθ(s))] .

In the early training stage, the discriminator will favor teacher trajectories by assigning

them with highest rewards:

EdT (s)[max
a

Q(s, a)] = EdT (s,a) [Q(s, a)] ≡ EdT (s) [Q(s, πT (s))] ,

which encourages the learning policy to imitate πT on teacher-visted states dT (s). We

will verify by ablation study that sampling from teacher demonstrations accelerates the

process of IL. Given a problem-setting with sub-optimal demonstrations, once the learning

agent reaches the teacher-level performance, we relieve this behavior-cloning regularization

by annealing α to zero, in order to reinforce the effects of exploration as proposed in our

objective.
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3.5 Related Work

Our work shares close connections with the following topics:

Imitation Learning (IL) aims to learn from expert demonstrations without accessing

environment feedbacks, among which representative examples include GAIL [68] and its on-

policy extensions [79, 185, 49]. Later IL favors off-policy RL frameworks [148, 88]. Especially,

DAC learns a discriminator by off-policy learning and corrects the distribution shifts by

importance sampling [87]. In contrast to our approach, the above prior arts are motivated

to exactly recover the teacher policy. Our work also draws a subtle connection to Self-

Imitation Learning (SIL) [130, 59], in that they both utilize self-generated trajectories to

build a learning target. However, SIL requires timely feedbacks from the environment to

learn a delicate critic, which is in essence on-policy RL, while SAIL addresses a different

setting by performing exploration-driven IL in an off-policy manner.

Learning from Demonstrations (LfD) facilitates RL by augmenting environment feed-

backs with external demonstrations. Prior work relies on demonstrations that are sufficient

and optimal [66, 175]. Especially, DDPGfD leverages a DDPG framework [102] to enable

off-policy LfD in continuous spaces [175]. Later approaches, such as POfD [79], learn from

sub-optimal demonstrations and trust the environment rewards to learn a critic, whereas

demonstrations are only used as auxiliary guidance [160, 202, 54]. In contrast, our approach

learns a critic without using environmental rewards, which is more robust especially when

environment feedbacks are highly delayed. Some leverage the suboptimal guidance to en-

force a policy regularization term, whose effects are gradually decayed to tackle the imperfect

guidance [112]. The above problem settings can be considered as relaxed versions of ours

with finer-grained feedbacks.

Preference-based RL is a problem setting where the agent learns from the preference

of an expert, which saves the necessity of designing elaborated numeric rewards [181, 183].

The preference relations can be over state-actions pairs [51] or over a pair of trajectories

τi � τj [23], while the former provides more supervision information than the later. Few
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prior arts address IL in preference-based RL, except for [23, 21], which tackle IL in an

MDP provided with only trajectory-ranked demonstrations but no environment feedbacks.

Focusing on a different problem setting, SAIL utilizes the self-generated trajectories to build

an increasing teacher distribution, which therefore requires fewer teacher demonstrations.

Exploration itself is an independent topic in RL. Classical exploration approaches work by

involving randomness into its learning loop [47, 163, 61]. More recent approaches propose to

use intrinsic rewards for exploration [13, 133]. Especially, [133] proposed curiosity-driven

exploration, a model-based approach which leverages the prediction loss of a transition model

as a reward bonus to encourage surprising behavior. Another exploration approach pursues

a maximized information gain about the agent’s belief of the environment [70]. Readers are

referred to [115] for a comprehensive discussion on the exploration techniques in RL.

3.6 Experiments

In this section, we study how SAIL achieves the objective of imitation learning and explo-

ration in an environment with delayed rewards. Extensive experiments have been conducted

to answer the following key questions:

Q1. Is SAIL sample-efficient?

Q2. Can SAIL surpass the demonstration performance via off-policy exploration?

Q3. Which components in SAIL contribute to the exploration or sample efficiency?

Q4: Is SAIL robust against different sub-optimal teachers?

3.6.1 Setup

We built SAIL on a TD3 framework [50] based on stable-baselines1 implementations. It is

tested on 4 popular MuJoCo2 tasks: Walker2d-v2, Hopper-v2, HalfCheetah-v2, and Swimmer-

v2. For each task, we generate teacher demonstrations from a deterministic policy that was

pre-trained to be sub-optimal. All experiments are conducted using one imperfect demon-

1https://stable-baselines.readthedocs.io/en/master/
2https://github.com/openai/mujoco-py
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stration trajectory on 5 random seeds, with each trajectory containing no more than 1000

transitions. Models are evaluated after training using 106 interaction samples. We defer

more details and additional experimental results to the Supplementary.

Note that the original benchmarks are all in dense-reward settings. To construct the

delayed rewarded environment as proposed in our chapter, we omit the original rewards

such that only episodic feedback is provided upon the completion of a trajectory. To align

with Assumption 1, we cache the original return of each trajectory R(τ) =
∑

i r(si, ai), and

downscale it to get a coarser grained supervision, with re(τ) = b0.1 ∗R(τ)c.

We compare SAIL with 5 popular baselines that are mostly applicable to our problem

setting: DAC, GAIL, POfD, DDPGfD, and BC, as discussed in the Related Work. For

baselines that utilize environment rewards, such as POfD and DDPGfD, we provide them

with modified rewards re(s, a) upon the completion of each trajectory, instead of the original

dense reward r(s, a).
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Figure 3.2: Learning curves of SAIL and other previous work using one suboptimal demon-
stration trajectory.
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Figure 3.3: Comparing SAIL with other on-policy baselines using one suboptimal demon-
stration trajectory.

3.6.2 Performance on Continuous Action-Space Tasks

Sample efficiency: As the results shown in Figure 3.2, SAIL is the only method that

performs consistently better in all tasks in terms of both sample efficiency and asymptotic
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Benchmark HalfCheetah Swimmer Hopper Walker
SAIL 10660.59±105.53 309.47±3.0 3302.06±14.22 5868.53±108.82

Curiosity Explore 9043.07± 165.97 30.87± 6.52 3075.46± 15.61 5361.78± 58.24
Entropy Explore 8839.32 + 280.47 65.04± 7.66 3079.29± 53.25 2792.76± 830.20

Teacher Demonstration 5646.71 121.16 1480.69 1675.01

Table 3.1: Off-policy exploration (SAIL) achieves higher performance than other exploration
approaches.

performance. At the initial stage of the learning, SAIL can quickly exploit the suboptimal

demonstrations and approach to the demonstration’s performance with significantly fewer

samples.

Exploration ability: Besides sample efficiency, another advantage of SAIL is that it can

effectively explore the environment to achieves expert-level performance, even with highly

sparse rewards. We observe that prior solutions of learning from environment rewards for

exploration, such as POfD and DDPGfD, cannot effectively address our proposed problem

setting, as it is sample-costly to learn a meaningful critic from the delayed feedback. Un-

like other imitation learning baselines whose performance is limited by the demonstrations,

SAIL can rapidly surpass the imperfect teacher via constructing a better demonstration

buffer.

3.6.3 Effects of Off-Policy Exploration in SAIL

Comparison with IL without Exploration: In order to illustrate the benefits of max-

imizing Objective (1) over a conventional IL objective, such as DKL[dπ(s, a)||dT (s, a)], we

conducted a comparison study where we trained the discriminator using teacher demonstra-

tions τT and on-policy self-generated samples τπ, instead of off-policy samples. This on-policy

training scheme is the same as proposed in GAIL [68]. In this way, the discriminator can get

approximations of log(dT
dπ

) instead of log( dT
dB

). We use the output of this on-policy discrimi-

nator to shape rewards, whereas Q and π are still updated in the same off-policy fashion as

our proposed approach.

As illustrated in Figure 3.3, compared to GAIL (green) which is an on-policy baseline,
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SAIL-OnPolicy (orange) still enjoys the benefits of an off-policy learning scheme in general.

However, it is less effective compared with our proposed approach. Even when π and Q are

learned off-policy, SAIL-OnPolicy is slower to surpass the teacher demonstration (dashed

gray line), due to its pure imitation-driven objective. SAIL enjoys fast improvement in

performance not only because of an adaptive teacher demonstration buffer but also because

it realizes the exploration-driven optimization.
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Figure 3.4: Ablation study by removing different algorithmic components from SAIL. Only
one teacher trajectory is used as demonstration.

Benchmark Evaluated Performance / Demonstration Performance
HalfCheetah 10660.59± 105.53 / 5646.71 10217.00± 104.08 / 3598.90 9264.1± 163.45 / 875.39
Swimmer 309.47± 3.0 / 121.16 367.02± 1.11 / 46.82 361.17± 1.37 / 33.61
Hopper 3302.06± 14.22 / 1480.69 3814.07± 10.32 / 665.16 3589.92± 12.24 / 282.91
Walker 5868.53± 108.82 / 1675.01 4819.20± 1240.84 / 484.96 4574.61± 71.22 / 255.73

Table 3.2: Using 106 interaction samples, performance of SAIL is robust regardless of the
quality of sub-optimal teacher demonstrations.

Comparison with Other Exploration Approaches: We also compared SAIL with

its two variants to evaluate the effects of different exploration approaches. In particular,

we integrated SAIL with a soft-actor-critic [61] RL framework to enable an entropy-based

exploration. For the other variant, we adopted the idea of random-distillation [27] to create

a curiosity reward in addition to the reward provided by the discriminator. For both variant

versions, we train the discriminator with on-policy samples in order to remove the effects

of off-policy exploration. Comparison results in Table 3.1 indicate that, adopting an off-

policy exploration approach (SAIL) is more effective given a fixed number of environment

interactions. Entropy-based exploration is prone to high variance, while curiosity-based
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exploration, on the other hand, requires learning a forward transition model, and achieves

lower final performance.

3.6.4 Ablation Study

We further evaluate SAIL by ablation and sensitivity studies to analyze the following aspects:

Effects of learning from expert demonstrations : As shown in Figure 3.4, we ob-

served that sampling from a mixture of teacher data and self-generated data accelerates the

learning performance in early training stages. Specifically, the SAIL-Dynamic (blue) refers

our proposed approach, and SAIL-without-LfD (orange) only uses self-generated data to

learn policy by setting α = 0 constantly. We see that the SAIL is superior to SAIL-without-

LfD in terms of initial performance, which is ascribed to a learning strategy resemblant to

behavior-cloning when sampling from teacher demonstrations.

Effects of updating teacher demonstration buffers : As shown in Figure 3.4, SAIL-

without-Expert-Adaptation (green) refers to a variant of SAIL which never update the teacher’s

replay buffer, even when a better trajectory is collected . We can observe that its asymptotic

performance is bounded by the teacher’s demonstration, which reveals the limitation of most

existing IL approaches. One key insight from these results is that, instead of learning critics

based on sparse rewards, leveraging the sparse guidance to improve the quality of the teacher

can be much more effective in improving the ultimate performance.

Robustness of SAIL on different teacher qualities: To evaluate the robustness of

SAIL against different teacher performance, we pre-trained a group of teacher policies with

varying qualities, ranging from near-randomness to sub-optimality, then used their generated

trajectories as demonstrations. For each experiment, we only used one teacher trajectory as

demonstrations. Results in Table 3.2 show that SAIL can achieve robust performance no

matter how sub-optimal the teacher behaves. Powered by both an exploration-driven objec-

tive and a self-adaptive learning strategy, SAIL can constantly explore with more superior
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trajectories to improve its learning target, which results in improving learning performance.

3.7 Summary

In this chapter, we address the problem of reinforcement learning in environments with highly

delayed rewards given sub-optimal demonstrations. To address this challenging problem, we

propose a novel objective that encourages exploration-based imitation learning. Towards this

objective, we design an effective algorithm called Self Adaptive Imitation Learning (SAIL).

The proposed approach is validated to (1) accelerate the agent learning process by fully utiliz-

ing teacher demonstration for knowledge transfer, (2) address sample efficiency by off-policy

imitation learning, and (3) surpass the imperfect teacher with a large margin by iteratively

performing imitation and exploration. Experimental results on challenging locomotion tasks

indicate that SAIL significantly surpasses state-of-the-arts in terms of both sample efficiency

and asymptotic performance.
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CHAPTER 4

OFF-POLICY LEARNING FROM OBSERVATIONS:
KNOWLEDGE TRANSFER IN REINFORCEMENT LEARNING FROM

INCOMPLETE SUPERVISION

Proposed approach in this chapter is based on the following paper:

Zhuangdi Zhu, Kaixiang Lin, Bo Dai, and Jiayu Zhou. Off-Policy Imitation Learning

from Observations. Advances in Neural Information Processing Systems 33 (2020).

4.1 Introduction

Imitation Learning (IL) has been widely studied in the reinforcement learning (RL) domain

to assist in learning complex tasks by leveraging the experience from expertise [145, 68, 88,

87, 136]. Unlike conventional RL that depends on environment reward feedbacks, IL can

purely learn from expert guidance and is therefore crucial for realizing robotic intelligence

in practical applications, where demonstrations are usually easier to access than a delicate

reward function [156, 119].

Classical IL, or more concretely, Learning from Demonstrations (LfD), assumes that

both states and actions are available as expert demonstrations [1, 68, 88]. Although expert

actions can benefit IL by providing elaborated guidance, requiring such information for IL

may not always accord with the real world. Actually, collecting demonstrated actions can

sometimes be costly or impractical, whereas observations without actions are more accessible

resources, such as the camera or sensory logs. Consequently, Learning from Observations

(LfO) has been proposed to address the scenario without expert actions [171, 189, 172].

On one hand, LfO is more challenging compared with conventional IL, due to missing finer-

grained guidance from actions. On the other hand, LfO is a more practical setting for IL, not

only because it capitalizes on previously unusable resources, but also because it reveals the

potential to realize advanced artificial intelligence. In fact, learning without action guidance

is an inherent ability for human beings. For instance, a novice game player can improve his
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skill purely by watching video records of an expert, without knowing what actions have been

taken [10].

Among popular LfD and LfO approaches, distribution matching has served as a principled

solution [68, 88, 171, 189, 49], which works by interactively estimating and minimizing the

discrepancy between two stationary distributions: one generated by the expert, and the

other generated by the learning agent. To correctly estimate the distribution discrepancy,

traditional approaches require on-policy interactions with the environment whenever the

agent policy gets updated. This inefficient sampling strategy impedes wide applications of

IL to scenarios where accessing transitions are expensive [147, 118]. The same challenge is

aggravated in LfO, as more explorations by the agent are needed to cope with the lack of

action guidance.

Towards sample efficiency, some off-policy IL solutions have been proposed to leverage

transitions cached in a replay buffer. Mostly designed for LfD, these methods either lack

theoretical guarantee by ignoring a potential distribution drift [87, 149, 169], or hinge on

the knowledge of expert actions to enable off-policy distribution matching [88], which makes

their approach inapplicable to LfO.

To address the aforementioned limitations, in this work, we propose a LfO approach that

improves sample efficiency in a principled manner. Specifically, we derive an upper bound of

the LfO objective which dispenses with the need of knowing expert actions and can be fully

optimized with off-policy learning. To further accelerate the learning procedure, we combine

our objective with a regularization term, which is validated to pursue distribution matching

between the expert and the agent from a mode-covering perspective. Under a mild assump-

tion of a deterministic environment, we show that the regularization can be enforced by

learning an inverse action model. We call our approach OPOLO (Off PO licy Learning from

Observations). Extensive experiments on popular benchmarks show that OPOLO achieves

state-of-the-art in terms of both asymptotic performance and sample efficiency.
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4.2 Background

We consider learning an agent in an environment of Markov Decision Process (MDP) [164],

which can be defined as a tuple: M = (S,A, P, r, γ, p0). Particularly, S and A are the

state and action spaces; P is the state transition probability, with P (s′|s, a) indicating the

probability of transitioning from s to s′ upon action a; r is the reward function, with r(s, a)

the immediate reward for taking action a on state s; Without ambiguity, we consider an

MDP with infinite horizons, with 0 < γ < 1 as a discounted factor; p0 is the initial state

distribution. An agent follows its policy π : S → A to interact with this MDP with an

objective of maximizing its expected return:

max JRL(π) := Es0∼p0,ai∼π(·|si),si+1∼P (·|si,ai),∀0≤i≤t

[ ∞∑
t=0

γtr(st, at)
]

= E(s,a)∼µπ(s,a)

[
r(s, a)

]
,

in which µπ(s, a) is the stationary state-action distribution induced by π, as defined in

Table 4.1.

Learning from demonstrations (LfD) is a problem setting in which an agent is pro-

vided with a fixed dataset of expert demonstrations as guidance, without accessing the envi-

ronment rewards. The demonstrations RE contain sequences of both states and actions gen-

erated by an expert policy πE: RE = {(s0, a0), (s1, a1), · · · |ai ∼ πE(·|si), si+1 ∼ P (·|si, ai)}.

Without ambiguity, we assume that the expert and agent are from the same MDP.

Among LfD approaches, distribution matching has been a popular choice, which min-

imizes the discrepancy between two stationary state-action distributions: one is µE(s, a)

induced by the expert, and the other is µπ(s, a) induced by the agent. Without loss of

generality, we consider KL-divergence as the discrepancy measure for distribution matching,

although any f -divergences can serve as a legitimate choice [68, 186, 129] :

min JLfD(π) := DKL[µπ(s, a)||µE(s, a)]. (4.1)

Learning from observations (LfO) is a more challenging scenario where expert guid-

ance RE contains only states. Accordingly, applying distribution matching to solve LfO
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yields a different objective that involves state-transition distributions [189, 105, 171]:

min JLfO(π) := DKL[µπ(s, s′)||µE(s, s′)]. (4.2)

There exists a close connection between LfO and LfD objectives. In particular, the

discrepancy between two objectives can be derived precisely as follows:

DKL[µπ(a|s, s′)||µE(a|s, s′)] = DKL[µπ(s, a)||µE(s, a)]− DKL[µπ(s, s′)||µE(s, s′)]. (4.3)

Remark 3. In a non-injective MDP, the discrepancy of DKL[µπ(a|s, s′)||µE(a|s, s′)] cannot be

optimized without knowing expert actions. In a deterministic and injective MDP, it satisfies

that ∀ π : S → A, DKL[µπ(a|s, s′)||µE(a|s, s′)] = 0.

Despite the potential gap between these two objectives, the LfO objective in Eq (4.2)

is still intuitive and valid, as it emphasizes on recovering the expert’s influence on the en-

vironment by encouraging the agent to yield the desired state-transitions, regardless of the

immediate behavior that leads to those transitions. In this work, we follow this rationale

and consider Eq (4.2) as our learning objective, which has also been widely adopted by prior

art [171, 170, 161, 22]. We will show later that pursuing this objective is sufficient to recover

expertise for various challenging tasks.

A common limitation of existing LfO and LfD approaches relies in their inefficient op-

timization. Work along this line usually adopts a GAN-style strategy [56] to perform dis-

tribution matching. Take the representative work of GAIL [68] as an example, in which a

discriminator x : S × A → R and a generator π : S → A are jointly learned to optimize a

dual form of the original LfD objective:

min
π

max
x

JGAIL(π, x) := EµE(s,a)[log(x(s, a))] + Eµπ(s,a)[log(1− x(s, a))].

During optimization, on-policy transitions in the MDP are used to estimate expectations

over µπ. It requires new environment interactions whenever π gets updated and is thus

sample inefficient. This inconvenience is echoed in the work of LfO, which inherits the same

spirit of on-policy learning [189, 171]. In pursuit of sample efficiency, some off-policy solutions
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State Distribution State-Action
Distribution Joint Distribution Transition

Distribution
Inverse-Action
Distribution

Notation µπ(s) µπ(s, a) µπ(s, a, s′) µπ(s, s′) µπ(a|s, s′)
Support S S ×A S ×A× S S × S A× S × S
Definition (1− γ)

∑∞
t=1 γ

tµπt (s) µπ(s)π(a|s) µπ(s, a)P (s′|s, a)
∫
A µ

π(s, a, s′)da µπ(s,a)P (s′|s,a)
µπ(s,s′)

Table 4.1: Summarization on different stationary distributions, with µπt (s) = p(st = s|s0 ∼
p0(·), ai ∼ π(·|si), si+1 ∼ P (·|si, ai)), ∀i < t).

have been proposed. These methods, however, either lack theoretical guarantee [169, 87], or

rely on the expert actions [87, 88], which makes them inapplicable to LfO.

To improve the sample efficiency of LfO with a principled solution, in the next section

we show how we explicitly introduce an off-policy distribution into the LfO objective, from

which we derive a feasible upper-bound that enables off-policy optimization without the need

of accessing expert actions.

4.3 OPOLO: Off-Policy Learning from Observations

4.3.1 Surrogate Objective

The idea of re-using cached transitions to improve sample efficiency has been adopted by

many RL algorithms [119, 61, 50, 102]. In the same spirit, we start by introducing an

off-policy distribution µR(s, a), which is induced by a dataset R of historical transitions.

Choosing KL-divergence as a discrepancy measure, we obtain an upper-bound of the LfO

objective by involving µR(s, a):

DKL

[
µπ(s, s′)||µE(s, s′)

]
≤ Eµπ(s,s′)

[
log

µR(s, s′)

µE(s, s′)

]
+ DKL

[
µπ(s, a)||µR(s, a)

]
. (4.4)

As a result, the LfO objective can be optimized by minimizing the RHS of Eq (4.4).

Although widely adopted for its interpretability, KL divergence can be tricky to estimate

due to issues of biased gradients [41, 88]. To avoid the potential difficulty in optimization,

we further substitute the term DKL[µπ(s, a)||µR(s, a)] in Eq (4.4) by a more aggressive f -
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divergence, with f(x) = 1
2
x2, which serves as an upper-bound of the KL-divergence:

DKL[P ||Q] ≤ Df [P ||Q]. (4.5)

Our choice of f -divergence can be considered as a variant of Pearson χ2-divergence with

a constant shift, which has also been adopted as a valid measure of distribution discrepan-

cies [121, 122]. Compared with KL-divergence, this f -divergence enables unbiased estimation

without deteriorating the optimality, whose advantages will become increasingly visible in

Section 4.3.2.

Built upon the above transformations, we reach an objective that serves as an effective

upper-bound of DKL[µπ(s, s′)||µE(s, s′)]:

min
π
Jopolo(π) := Eµπ(s,s′)

[
log

µR(s, s′)

µE(s, s′)

]
+Df [µπ(s, a)||µR(s, a)]. (4.6)

4.3.2 Off-Policy Transformation

Optimization Eq (4.6) is still on-policy and induces additional challenges through the term

Df [µπ(s, a)||µR(s, a)]. However, we show that it can be readily transformed into off-policy

learning. We first leverage the dual-form of an f -divergence [127]:

−Df [µπ(s, a)||µR(s, a)] = inf
x:S×A→R

E(s,a)∼µπ [−x(s, a)] + E(s,a)∼µR [f∗(x(s, a))],

and use this dual transformation to rewrite Eq (4.6):

min
π
Jopolo(π) ≡ max

π
Eµπ(s,s′)

[
− log

µR(s, s′)

µE(s, s′)

]
−Df [µπ(s, a)||µR(s, a)]

≡max
π

min
x:S×A→R

Jopolo(π, x) := Eµπ(s,a,s′)

[
log

µE(s, s′)

µR(s, s′)
− x(s, a)

]
+ EµR(s,a)[f∗(x(s, a))]. (4.7)

If we consider a synthetic reward as r(s, a, s′) = log µE(s,s′)
µR(s,s′)

− x(s, a), the first term in

Eq (4.7) resembles an RL return function: Ĵ(π) = E(s,a,s′)∼µπ(s,a,s′)[r(s, a, s
′)]. Observing this

similarity, we turn to learn a Q-function by applying a change of variables:

Q(s, a) = Es′∼P (·|s,a),a′∼π(·|s′)

[
−x(s, a) + log

µE(s, s′)

µR(s, s′)
+ γQ(s′, a′)

]
.
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Equivalently, this Q function is a fixed point of a variant Bellman operator BπQ:

Q(s, a) = −x(s, a) + Es′∼P (·|s,a),a′∼π(·|s′)

[
log

µE(s, s′)

µR(s, s′)
+ γQ(s′, a′)

]
= −x(s, a) + BπQ(s, a).

Rewriting x(s, a) = (BπQ−Q)(s, a) and applying it back to Eq (4.7), we finally remove

the on-policy expectation by a series of telescoping:

max
π

min
x:S×A→R

Jopolo(π, x) ≡ max
π

min
Q:S×A→R

Jopolo(π,Q)

:= E(s,a,s′)∼µπ(s,a,s′)[log
µE(s, s′)

µR(s, s′)
− (BπQ−Q)(s, a)] + E(s,a)∼µR(s,a)[f∗((BπQ−Q)(s, a))]

= (1− γ)Es0∼p0,a0∼π(·|s0)[Q(s0, a0)] + E(s,a)∼µR(s,a)[f∗((BπQ−Q)(s, a))]. (4.8)

A similar rationale has also been the key component of distribution error correction

(DICE) [121, 122, 201]. Based on the above transformation, we propose our main objective:

max
π

min
Q:S×A→R

Jopolo(π,Q) := (1− γ)Es0∼p0,a0∼π(·|s0)[Q(s0, a0)] + EµR(s,a)[f∗((BπQ−Q)(s, a))].

(4.9)
Specifically, when f(x) = f ∗(x) = 1

2
x2, the second term EµR(s,a)[f∗((BπQ − Q)(s, a))] is

reminiscent of an Bellman error, for which we can have unbiased estimation by mini-batch

gradients.

Given access to the off-policy distribution µR(s, a) and the initial distribution p0, opti-

mization equation 4.9 can be efficiently realized once we resolve the term log µE(s,s′)
µR(s,s′)

contained

in BπQ(s, a).

4.3.3 Adversarial Training with Off-Policy Experience

We can take the advantage of GAN training [56] to estimate the term log µE(s,s′)
µR(s,s′)

inside

BπQ(s, a), by learning a discriminator D:

max
D:S×S→R

E(s,s′)∼µE(s,s′)

[
log(D(s, s′))

]
+ E(s,s′)∼µR(s,s′)

[
log(1−D(s, s′))

]
,

which upon training to optimality, satisfies log(µE(s,s′)
µR(s,s′)

) = logD∗(s, s′)−log(1−D∗(s, s′)).

Unlike prior art [68, 171, 87] that requires estimating the ratio of log µE

µπ
, the discriminator
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in our case is designed to be off-policy in accordance with our proposed objective. Up to

this step, optimization equation 4.9 can be achieved by interactively optimizing Q, π, and

D with pure off-policy learning.

4.3.4 Policy Regularization as Forward Distribution Matching

Optimization 4.9 essentially minimizes an upper-bound of the inverse KL divergence:

DKL[µπ(s, s′)||µE(s, s′)],

which is known to encourage a mode-seeking behavior [55]. Although mode-seeking is more

robust to covariate-drift than mode-covering (such as behavior cloning), it requires sufficient

explorations to find a reasonable state-distribution, especially at early learning stages. On

the other hand, a mode-covering strategy has merits in quickly minimizing discrepancies on

the expert distribution, by optimizing a forward KL-divergence such as DKL[πE(a|s)||π(a|s)].

To combine the advantages of both, in this section we show how we further speed up the

learning procedure from a mode-covering perspective, without deteriorating the efficacy of

our main objective. To achieve this goal, we first derive an optimizable lower-bound from a

mode-covering objective:

DKL[πE(a|s)||π(a|s)] = DKL[µE(s′|s)||µπ(s′|s)] + DKL[µE(a|s, s′)||µπ(a|s, s′)], (4.10)

in which we define µπ(s′|s) =
∫
A π(a|s)P (s′|s, a)da as the conditional state transition dis-

tribution induced by π, likewise for µE(s′|s).

Similar to Remark 3, the discrepancy DKL[µE(a|s, s′)||µπ(a|s, s′)] is not optimizable with-

out knowing expert actions. However, under some mild assumptions, we found it feasible to

optimize the other term DKL[µE(s′|s)||µπ(s′|s)] by enforcing a policy regularization:

Remark 4. In a deterministic MDP, assuming the support of µE(s, s′) is covered by µR(s, s′),

s.t. µE(s, s′) > 0 =⇒ µR(s, s′) > 0, then regulating policy using µR(·|s, s′) minimizes the

forward distributional divergence DKL[µE(s′|s)||µπ(s′|s)]:

∃π̃ : S → A, s.t. ∀(s, s′) ∼ µE(s, s′), π̃(·|s) ∝ µR(·|s, s′) =⇒ π̃ = arg min
π

DKL[µE(s′|s)||µπ(s′|s)].
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Intuitively, when expert labels are unavailable, this regularization can be considered as

performing states matching, by encouraging the policy to yield actions that lead to desired

footprints. Given a transition s→ s′ from the expert observations, a conditional distribution

µR(·|s, s′) only has support on actions that yield this transition s→ s′. Therefore, following

this regularization avoids the policy from drifting to undesired states.

In practice, we can estimate µR(·|s, s′) by learning an inverse action model PI using

off-policy transitions from µR(s, a, s′) to optimize the following:

max
PI :S×S→A

−DKL[µR(a|s, s′)||PI(a|s, s′)] ≡ max
PI :S×S→A

E(s,a,s′)∼µR(s,a,s′)[logPI(a|s, s′)]. (4.11)

4.3.5 Algorithm

Based on all the abovementioned building blocks, we now introduce OPOLO in Algorithm

4.1. OPOLO involves learning a policy π, a critic Q, a discriminator D, and an inverse

action regularizer PI , all of which can be done through off-policy training.

In particular, π and Q is jointly learned to find a saddle-point solution to optimiza-

tion equation 4.9. The discriminator D assists this process by estimating a density ratio

log µE(s,s′)
µR(s,s′)

. For better empirical performance, we adopt − log(1 − D(s, s′)) as the discrim-

inator’s output, which corresponds to a constant shift inside the logarithm term, in that

log(µ
E(s,s′)
µR(s,s′)

+ 1) = − log(1 −D∗(s, s′)). The inverse action model PI serves as a regularizer

to infer proper actions on the expert observation distribution to encourage mode-covering .

4.4 Related Work

The recent development on imitation learning can be divided into two categories:

Learning from Demonstrations (LfD) traces back to behavior cloning (BC ) [138],

in which a policy is pre-trained to minimize the prediction error on expert demonstrations.

This approach is inherent with issues such as distribution shift and regret propagations.

To address these limitations, [145] proposed a no-regret IL approach called DAgger, which

however requires online access to oracle corrections. More recent LfD approaches favor

Inverse reinforcement learning (IRL) [1], which work by seeking a reward function that
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Algorithm 4.1: Off-Policy Learning from Observations
1: Input: expert observations RT , off-policy-transitions R, initial states S0, f - function,
2: policy πθ, critic Qφ, discriminator Dw, inverse action model PIϕ, learning rate
α.

3: for n = 1, . . . do
4: sample trajectory τ ∼ πθ, R ← R∪ τ
5: update Dw: w ← w+αÊ(s,s′)∼RE [Ow log(Dw(s, s′)]+ Ê(s,s′)∼R[Ow log(1−Dw(s, s′))].
6: set r(s, s′) = − log(1−Dw(s, s′)).
7: update PIϕ: ϕ← ϕ+ αÊ(s,a,s′)∼R[Oϕ log(PIϕ(a|s, s′))].
8: update πθ and Qφ :
9: J(πθ, Qφ) = (1 − γ)Ês∼S0 [Qφ(s, πθ(s))] + Ê(s,a,s′)∼R

[
f∗
(
r(s, s′) + γQφ(s′, πθ(s

′)) −

Qφ(s, a)
)]
.

10: JReg(πθ) = E(s,s′)∼RE ,a∼PIϕ(·|s,s′)[log πθ(a|s)].
11: φ← φ− αJOφ(πθ, Qφ); θ ← θ + α

(
JOθ(πθ, Qφ) + JOθJReg(πθ)

)
.

guarantees the superiority of expert demonstrations, based on which regular RL algorithms

can be used to learn a policy [165, 209]. A representative instantiation of IRL is Generative

Adversarial Imitation Learning (GAIL) [68]. It defines IL as a distribution matching problem

and leverages the GAN technique [56] to minimize the Jensen-Shannon divergence between

distributions induced by the expert and the learning policy. The success of GAIL has inspired

a variety of other work, including those adopting different RL frameworks [87], or choosing

different divergence measures [49, 136, 9] to enhance the effectiveness of imitation learning.

Most work along this line focuses on on-policy learning, which is a sample-costly strategy.

As an off-policy extension of GAIL , DAC [87] improves the sample efficiency by re-using

previous samples stored in a relay buffer rather than on-policy transitions. Similar ideas of

reusing cached transitions can be found in [149]. One limitation of these approaches is that

they neglected the discrepancy induced when replacing the on-policy distribution with off-

policy approximations, which results in a deviation from their proposed objective. Another

off-policy imitation learning approach is ValueDICE [88], which inherits the idea of DICE

[121] to transform an on-policy LfD objective to an off-policy one. This approach, however,

requires the information of expert actions, which otherwise makes off-policy estimation un-

reachable in a model-free setting. Therefore, their approach is not directly applicable to
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LfO.

Learning from Observations (LfO) tackles a more challenging scenario where ex-

pert actions are unavailable. Work alone this line falls into model-free and model-based

approaches. GAIfO [171] is a model-free solution that applies the principle of GAIL to

learn a discriminator with state-only inputs. IDDM [189] further analyzed the theoretical

gap between the LfD and LfO objectives, and proved that a lower-bound of this gap can

be somewhat alleviated by maximizing the mutual-information between (s, (a, s′)), given an

on-policy distribution µπ(s, a, s′). Its performance is comparable to GAIL. [22] assumed that

the given observation sequences are ranked by superiority, based on which a reward function

is designed for policy learning. Similar to GAIL, the sample efficiency of these approaches

is suboptimal due to their on-policy strategy.

Model-based LfO can be further organized into learning a forward [161, 44] dynamics

model or an inverse action model [169, 105]. Especially, [161] proposed a forward model

solution to learn time-dependent policies for finite-horizon tasks, in which the number of

policies to be learned equals the number of transition steps. This approach may not be suit-

able for tasks with long or infinite horizons. Behavior cloning from observations (BCO) [169]

learns an inverse model to infer actions missing from the expert dataset, after which behavior

cloning is applied to learn a policy. Besides the common issues faced by BC, this strategy

does not guarantee that the ground-truth expert actions can be recovered, unless is a deter-

ministic and injective MDP is assumed. Some other recent work focused on different problem

settings than ours, in which the expert observations are collected with different transition

dynamics [52] or from different viewpoints [105, 107, 157]. Readers are referred to [172] for

further discussions of LfO.

4.5 Experiments

We compare OPOLO against state-of-the-art LfD and LfO approaches on MuJuCo bench-

marks, which are locomotion tasks in continuous state-action space. In accordance with our

assumption in Sec 4.3.4, these tasks have deterministic dynamics. Original rewards are re-
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moved from all benchmarks to fit into an IL scenario. For each task, we collect 4 trajectories

from a pre-trained expert policy. All illustrated results are evaluated across 5 random seeds.

Baselines: We compared SAIL against 7 baselines. We first selected 5 representative

approaches from prior work: GAIL (on-policy LfD), DAC (off-policy LfD), ValueDICE (off-

policy LfD), GAIfO (on-policy LfO), and BCO (off-policy LfO). We further designed two

strong off-policy approaches, Specifically, we built DACfO, which is a variation of DAC that

learns the discriminator on (s, s′) instead of (s, a), and ValueDICEfO, which is built based

on ValueDICE. Instead of using ground-truth expert actions, ValueDICEfO learns an inverse

model by optimizing Eq (4.11), and uses the approximated actions generated by the inverse

model to fit an LfO problem setting. To the best of our knowledge, DACfO and ValueDICEfO

have not been investigated by any prior art. Among these baselines, GAIL, DAC, and

ValueDICE are provided with both expert states and actions, while all other approaches only

have access to expert states. More experimental details can be found in the supplementary

material.

Our experiments focus on answering the following important questions:

1. Asymptotic performance: Is OPOLO able to achieve expert-level performance given a

limited number of expert observations?

2. Sample efficiency : Can OPOLO recover expert policy using less interactions with the

environment, compared with the state-of-the-art?

3. Effects of the inverse action regularization: Does the inverse action regularization

useful in speeding up the imitation learning process?

4. Sensitivity of the choice of f -divergence: Can OPOLO perform well given different f

functions?

4.5.1 Performance Comparison

OPOLO can recover expert performance given a fixed budget of expert observations. As

shown in Figure 4.1, OPOLO reaches (near) optimal performance in all benchmarks. For
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simpler tasks such as Swimmer and InvertedPendulum, most baselines can successfully re-

cover expertise. For other complex tasks with high state-action space, on-policy baselines,

such as GAIL and GAIfO, are struggling to reach their asymptotic performance within a

limited number of interactions, As shown in Figure 4.2, the off-policy baseline BCO is prone

to sub-optimality due to its behavior cloning-like strategy, On the other hand, the perfor-

mance of ValueDICEfO can be deteriorated by potential action-drifts, as the inferred actions

are not guaranteed to recover expertise. For fair comparison, performance of all off-policy

approaches are summarized in Table 4.2 given a fixed number of interaction steps.

The asymptotic performance of OPOLO is 1) superior to DACfO and ValueDICEfO, 2)

comparable to DAC, and 3) is more robust against overfitting compared with ValueDICE,

whereas both DAC and ValueDICE enjoy the advantage of off-policy learning and extra

action guidance.

Env HalfCheetah Hopper Walker Swimmer Ant
BCO 3881.10±938.81 1845.66±628.41 421.24±135.18 256.88±4.52 1529.54±980.86
OPOLO-x 7632.80±128.88 3581.85±19.08 3947.72±97.88 246.62±1.56 5112.04±321.42
OPOLO 7336.96±117.89 3517.39±25.16 3803.00±979.85 257.38±4.28 5783.57±651.98
DAC 6900.00±131.24 3534.42±10.27 4131.05±174.13 232.12±2.04 5424.28±594.82
DACfO 7035.63±444.14 3522.95±93.15 3033.02±207.63 185.28±2.67 4920.76±872.66
ValueDICE 5696.94±2116.94 3591.37±8.60 1641.58±1230.73 262.73±7.76 3486.87±1232.25
ValueDICEfO 4770.37±644.49 3579.51±10.23 431.00±140.87 265.05±3.45 75.08±400.87
Expert 7561.78±181.41 3589.88±2.43 3752.67±192.80 259.52±1.92 5544.65±76.11
(S,A) (17, 6) (11, 3) (17, 6)) (8, 2) (111, 8)

Table 4.2: Evaluated performance of off-policy approaches. Results are averaged over 50
trajectories.

4.5.2 Sample Efficiency

OPOLO is comparable with and sometimes superior to DAC in all evaluated tasks, and is

much more sample-efficient than on-policy baselines. As shown in Figure 4.1, the sample-

efficiency of OPOLO is emphasized by benchmarks with high state-action dimensions. In

particular, for tasks such as Ant or HalfCheetah, the performance curves of on-policy base-

lines are barely improved at early learning stages. One intuition is that they need more

explorations to build the current support of the learning policy, which cannot benefit from
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cached transitions. For these challenging tasks, OPOLO is even more sample-efficient than

DAC that has the guidance of expert actions. We ascribe this improvement to the mode-

covering regularization of OPOLO enforced by its inverse action model, whose effect will be

further analyzed in Sec 6.5.6. Meanwhile, other off-policy approaches such as BCO and Val-

ueDICEfO, are prone to overfitting and performance degradation (as shown in Figure 4.2),

which indicates that the effect of the inverse model alone is not sufficient to recover exper-

tise. On the other hand, the ValueDICE algorithm, although being sample-efficient, is not

designed to address LfO and requires expert actions.
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Figure 4.1: Interaction steps versus learning performance. Compared with others, our pro-
posed approach (OPOLO) is the most sample-efficient to reach expert-level performance
(Grey horizontal line).

4.5.3 Ablation Study
In this section, we further analyze the effects of the inverse action regularization by a group

of ablation studies. Especially, we implement a variant of OPOLO that does not learn an

inverse action model to regulate the policy update. We compare this approach, dubbed as

OPOLO-x, against our original approach as well as the DAC algorithm.

Effects on Sample efficiency: Performance curves in Figure 4.3 show that removing

the inverse action regularization from OPOLO slightly affects its sample-efficiency, although

the degraded version is still comparable to DAC. This impact is more visible in challeng-
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Figure 4.2: Compared with strong off-policy baselines, OPOLO is the only one that consis-
tently achieves competitive performance across all tasks, without accessing expert actions.
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Figure 4.3: Removing the inverse action regularization (OPOLO-x ) results in slight efficiency
drop, although its performance is still comparable to DAC and OPOLO.
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ing tasks such as HalfCheetah and Ant. From another perspective, the same phenomenon

indicates that an inverse action regularization is beneficial for accelerating the IL process,

especially for games with high observation spaces. An intuitive exploration is that, while

our main objective serves as a driving force for mode-seeking, a regularization term assists

by encouraging the policy to perform mode-covering. Combing these two motivations leads

to a more efficient learning strategy.

Effects on Performance: Given a reasonable number of transition steps, the effects

of an inverse-action model are less obvious regarding the asymptotic performance. As shown

in Table 4.2, OPOLO-x is mostly comparable to OPOLO and DAC. This implies that the

effect of the state-covering regularization will gradually fade out once the policy learns a

reasonable state distribution. From another perspective, it indicates that following our main

objective alone is sufficient to recover expert-level performance. Comparing with BCO which

uses the inverse model solely for behavior cloning, we find it more effective when serving as

a regularization to assist distribution matching from a forward direction.

4.5.4 Sensitivity Analysis
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Figure 4.4: Performance

given different f -functions.

To analyze the effects of different f -functions on the perfor-

mance of the proposed approach, we explored a family of f -

divergence where f(x) = 1
p
|x|p, f ∗(y) = 1

q
|y|q, s.t. 1

p
+ 1

q
=

1, p, q > 1, as adopted by DualDICE [121]. Evaluation re-

sults show that OPOLO yields reasonable performance across

different f -functions, although our choice (q = p = 2 ) turns

out to be most stable. Results using the Ant task is illustrated in Figure 4.

4.6 Summary

Towards sample-efficient imitation learning from observations (LfO), we proposed a princi-

pled approach that performs imitation learning by accessing only a limited number of expert

observations. We derived an upper bound of the original LfO objective to enable efficient

off-policy optimization, and augment the objective with an inverse action model regulariza-
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tion to speeds up the learning procedure. Extensive empirical studies are done to validate

the proposed approach.
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CHAPTER 5

DATA FREE KNOWLEDGE TRANSFER FOR HETEROGENEOUS
FEDERATED LEARNING

This chapter is based on the work accompanying the following paper:

Zhu, Zhuangdi, Junyuan Hong, and Jiayu Zhou. Data-Free Knowledge Distillation for

Heterogeneous Federated Learning. Proceedings of the 38th International Conference on

Machine Learning, PMLR 139, 2021.

5.1 Introduction

Federated Learning (FL) is an effective machine learning approach that enables the decen-

tralization of computing and data resources. Classical FL, represented by FedAvg [116],

obtains an aggregated model by iteratively averaging the parameters of distributed local

user models, therefore omits the need of accessing their data. Serving as a communication-

efficient and privacy-preserving learning scheme, FL has shown its potential to facilitate

real-world applications, including healthcare [154], biometrics [3], and natural language pro-

cessing [63, 6], to name just a few.

Along with its promising prospect, FL faces practical challenges from data heterogene-

ity [98], in that user data from real-world is usually non-iid distributed, which inherently

induces deflected local optimum [80]. Moreover, the permutation-invariant property of deep

neural networks has further increased the heterogeneity among user models [198, 178]. Thus,

performing element-wise averaging of local models, as adopted by most existing FL ap-

proaches, may not induce an ideal global model [99, 98].

A variety of efforts have been made to tackle user heterogeneity, mainly from two comple-

mentary perspectives: one focuses on stabilizing local training, by regulating the deviation

of local models from a global model over the parameter space [98, 40, 80]. This approach

may not fully leverage the underlying knowledge across user models, whose diversity suggests
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informative structural differences of their local data and thus deserves more investigation.

Another aims to improve the efficacy of model aggregation [198, 30], among which knowledge

distillation has emerged as an effective solution [103, 96]. Provided with an unlabeled dataset

as the proxy, knowledge distillation alleviates the model drift issue induced by heterogene-

ity, by enriching the global model with the ensemble knowledge from local models, which is

shown to be more effective than simple parameter-averaging. However, the prerequisite of

a proxy data can leave such an approach infeasible for many applications, where a carefully

engineered dataset may not always be available on the server. Moreover, by only refining the

global model, the inherent heterogeneity among user models is not fully addressed, which

may in turn affect the quality of the knowledge ensemble, especially if they are biased due

to limited local data [82], which is a typical case for FL.

Observing the challenge in the presence of user heterogeneity and the limitations of prior

art, in this work, we propose a data-free knowledge distillation approach for FL, dubbed as

FeDGen (Federated D istillation via Generative Learning). Specifically, FeDGen learns

a generative model derived solely from the prediction rules of user models, which, given

a target label, can yield feature representations that are consistent with the ensemble of

user predictions. This generator is later broadcasted to users, escorting their model training

with augmented samples over the latent space, which embodies the distilled knowledge from

other peer users. Given a latent space with a dimension much smaller than the input space,

the generator learned by FeDGen can be lightweight, introducing minimal overhead to the

current FL framework.

The proposed FeDGen enjoys multifold benefits: i) It extracts the knowledge out of users

which was otherwise mitigated after model averaging, without depending on any external

data. ii) Contrary to certain prior work that only refines the global model, our approach

directly regulates local model updating using the extracted knowledge. We show that such

knowledge imposes an inductive bias to local models, leading to better generalization perfor-

mance under non-iid data distributions. iii) Furthermore, the proposed approach is ready to

50



address more challenging FL scenarios, where sharing entire model parameters is impractical

due to privacy or communication constraints, since the proposed approach only requires the

prediction layer of local models for knowledge extraction.

Extensive empirical studies echoed by theoretical elaborations show that, our proposed

approach yields a global model with better generalization performance using fewer commu-

nication rounds, compared with the state-of-the-art.

5.2 Notations and Preliminaries

Without ambiguity, in this work, we discuss a typical FL setting for supervised learning,

i.e., the general problem of multi-class classification. Let X ⊂ Rp be an instance space,

Z ⊂ Rd be a latent feature space with d < p, and Y ⊂ R be an output space. T denotes a

domain which consists of a data distribution D over X and a ground-truth labeling function

c∗ : X → Y , i.e. T := 〈D, c∗〉. Note that we will use the term domain and task equivalently.

A model parameterized by θ := [θf ;θp] consists of two components: a feature extractor

f : X → Z parametrized by θf , and a predictor h : Z → 4Y parameterized by θp,

where 4Y is the simplex over Y . Given a non-negative, convex loss function l : 4Y ×

Y → R, the risk of a model parameterized by θ on domain T is defined as LT (θ) :=

Ex∼D
[
l
(
h(f(x;θf );θp), c∗(x)

)]
.

Federated Learning aims to learn a global model parameterized by θ that minimizes

its risk on each of the user tasks Tk [116]:

minθ ETk∈T [Lk(θ)] , (5.1)

where T = {Tk}Kk=1 is the collection of user tasks. We consider all tasks sharing the same la-

beling rules c∗ and loss function l, i.e., Tk = 〈Dk, c∗〉. In practice, Equation 5.1 is empirically

optimized by minθ
1
K

∑K
k=1 L̂k(θ), where L̂k(θ) := 1

|D̂k|

∑
xi∈D̂k

[
l(h(f(xi;θ

f );θp), c∗(xi))
]

is

the empirical risk over an observable dataset D̂k. An implied assumption for FL is that the

global data D̂ is distributed to each of the local domains, with D̂ = ∪{D̂k}Kk=1.
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Knowledge Distillation (KD) is also referred as a teacher-student paradigm, with the

goal of learning a lightweight student model using knowledge distilled from one or more

powerful teachers [26, 11]. Typical KD leverages a proxy dataset D̂P to minimize the

discrepancy between the logits outputs from the teacher model θT and the student model

θS, respectively. A representative choice is to use Kullback-Leibler divergence to measure

such discrepancy [67]:

minθS Ex∼D̂P

[
DKL

[
σ(g(f(x;θfT );θpT )‖σ(g(f(x;θfS);θpS)

]]
,

where g(·) is the logits output of an predictor h, and σ(·) is the non-linear activation applied

to such logits, i.e. h(z;θp) = σ(g(z;θp)).

The idea of KD has been extended to FL to tackle user heterogeneity [103, 30], by

treating each user model θk as the teacher, whose information is aggregated into the student

(global) model θ to improve its generalization performance:

min
θ

E
x∼D̂P

[
DKL[σ(

1

K

K∑
k=1

g(f(x;θfk );θpk))‖σ(g(f(x;θf );θp)]

]
.

One primary limitation of the above approach resides in its dependence on a proxy dataset

D̂P, the choice of which needs delicate consideration and plays a key role in the distillation

performance [103]. Next, we show how we make KD feasible for FL in a data-free manner.

Generator

Local Data

Feature 
Extractor

Predictor

...

Figure 5.1: Overview of FeDGen: a generator Gw(·|y) is learned by the server to aggregate
information from different local clients without observing their data. The generator is then
sent to local users, whose knowledge is distilled to user models to adjust their interpretations
of a good feature distribution.
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Algorithm 5.1: Data Free Federated Distillation via Generalized Learning
1: Require: Tasks {Tk}Kk=1;
2: Global parameters θ, local parameters {θk}Kk=1;
3: Generator parameter w; p̂(y) uniformly initialized;
4: Learning rate α, β, local steps T , batch size B, local label counter ck.
5: repeat
6: Server selects active users A uniformly at random, then broadcast w,θ, p̂(y) to A.
7: for all user k ∈ A in parallel do
8: θk ← θ,
9: for t = 1, . . . , T do
10: {xi, yi}Bi=1 ∼ Tk, {ẑi ∼ Gw(·|ŷi), ŷi ∼ p̂(y)}Bi=1.
11: Update label counter ck.
12: θk ← θk − β∇θkJ(θk). . Optimize Equation 5.5
13: User sends θk, ck back to server.
14: Server updates θ ← 1

|A|
∑

k∈A θk, and p̂(y) based on {ck}k∈A.
15: w ← w − α∇wJ(w). . Optimize Equation 5.4
16: until training stop

5.3 FeDGen: Data Free Federated Distillation via Generative Learn-
ing

In this section, we elaborate our proposed approach with a summary shown in Algorithm 5.1.

An overview of its learning procedure in illustrated in Figure 5.1.

5.3.1 Knowledge Extraction

Our core idea is to extract knowledge about the global view of data distribution, which is

otherwise non-observable by conventional FL, and distill such knowledge to local models to

guide their learning. We first consider learning a conditional distribution Q∗ : Y → X to

characterize such knowledge, which is consistent with the ground-truth data distributions:

Q∗ = arg max
Q:Y→X

Ey∼p(y)Ex∼Q(x|y)[log p(y|x)], (5.2)

where p(y) and p(y|x) are the ground-truth prior and posterior distributions of the target

labels, respectively, both of which are unknown. To make Equation 5.2 optimizable w.r.t Q,

we replace p(y) and p(x|y) with their empirical approximations. First, we estimate p(y) as:

p̂(y) ∝
∑

k
Ex∼D̂k [I(c

∗(x) = y)],
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where I(·) is an indicator function, and D̂k is the observable data for domain Tk. In practice,

p̂(y) can be obtained by requiring the training label counts from users during the model

uploading phase. Next, we approximate p(y|x) using the ensemble wisdom from user models:

log p̂(y|x) ∝ 1

K

∑K

k=1
log p(y|x;θk).

Equipped with the above approximations, directly optimizing Equation 5.2 over the input

space X can still be prohibitive: it brings computation overloads when X is of high dimension,

and may also leak information about the user data profile. A more approachable idea is hence

to recover an induced distribution G∗ : Y → Z over a latent space, which is more compact

than the raw data space and can alleviate certain privacy-related concerns:

G∗ = arg max
G:Y→Z

Ey∼p̂(y)Ez∼G(z|y)

[
K∑
k=1

log p(y|z;θpk)

]
. (5.3)

Following the above reasoning, we aim to perform knowledge extraction by learning a

conditional generator G, parameterized by w to optimize the following objective:

min
w

J(w) := Ey∼p̂(y)Ez∼Gw(z|y)

[
l(σ(

1

K

K∑
k=1

g(z;θpk)), y)

]
, (5.4)

where g and σ are the logit-output and the activation function as defined in Section 5.2.

Given an arbitrary sample y, optimizing Equation 5.4 only requires access to the predic-

tor modules θpk of user models. Specifically, to enable diversified outputs from G(·|y),

we introduce a noise vector ε ∼ N (0, I) to the generator, which is resemblant to the re-

parameterization technique proposed by prior art [83], so that z ∼ Gw(·|y) ≡ Gw(y, ε|ε ∼

N (0, I)). We discuss more implementation details in the supplementary.

Given arbitrary target labels y, the proposed generator can yield feature representations

z ∼ Gw(·|y) that induce ideal predictions from the ensemble of user models. In other

words, the generator approximates an induced image of a consensual distribution, which is

consistent with the user data from a global view.
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5.3.2 Knowledge Distillation

The learned generator Gw is then broadcasted to local users, so that each user model can

sample from Gw to obtain augmented representations z ∼ Gw(·|y) over the feature space.

As a result, the objective of a local model θk is altered to maximize the probability that it

yields ideal predictions for the augmented samples:

min
θk

J(θk) := L̂k(θk) + Êy∼p̂(y),z∼Gw(z|y)

[
l(h(z;θpk); y)

]
, (5.5)

where L̂k(θk) := 1
|D̂k|

∑
xi∈D̂k

[
l(h(f(xi;θ

f
k );θpk), c

∗(xi))
]

is the empirical risk given local data

D̂k. We show later that the augmented samples can introduce inductive bias to local users,

reinforcing their model learning with a better generalization performance.

Up to this end, our proposed approach has realized data-free knowledge distillation, by

interactively learning a lightweight generator that primarily depends on the prediction rule

of local models, and leveraging the generator to convey consensual knowledge to local users.

We justify in Section 5.6.2 that our approach can effectively handle user heterogeneity in

FL, which also enjoys theoretical advantages as analyzed in Section 5.4.

5.3.3 Extensions for Flexible Parameter Sharing

In addition to tackling data heterogeneity, FeDGen can also handle a challenging FL sce-

nario where sharing the entire model is against communication or privacy prerequisites. On

one hand, advanced networks with deep feature extraction layers typically contain millions of

parameters [65, 24], which bring significant burdens to communication. On the other hand,

it has been shown feasible to backdoor regular FL approaches [177]. For practical FL ap-

plications such as healthcare or finance, sharing entire model parameters may be associated

with considerable privacy risks, as discussed in prior work [64].

FeDGen is ready to alleviate those problems, by sharing only the prediction layer θpk

of local models, which is the primary information needed to optimizing Equation 5.4, while

keeping the feature extractor θfk localized. This partial sharing paradigm is more efficient,

and at the same time less vulnerable to data leakage, as compared with a strategy that shares
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the entire model. Empirical study in Section 5.6.4 shows that, FeDGen significantly benefits

local users, even without sharing feature extraction modules. We defer the algorithmic

summary of this variant approach to the supplementary.

(a) Decision bound-
ary before KD.

(b) Decision bound-
ary after KD.

(c) Global model
decision boundary.

(d) Oracle decision
boundary.

Figure 5.2: After KD, accuracy has improved from 81.2% to 98.4% for one user ( Fig 5.2a
- Fig 5.2b), while a global model obtained by parameter-averaging (without KD) has 93.2%
accuracy (Fig 5.2c), compared with an oracle model with 98.6% accuracy (Fig 5.2d).

(a) Randomly ini-
tialized r(x|y).

(b) r(x|y) learned
after 50 batches.

(c) r(x|y) learned
after 150 batches.

(d) r(x|y) learned
after 250 batches.

Figure 5.3: Samples from the generator gradually approaches to real distribution, where each
user model (teacher) sees limited, disjoint local data. The background color indicates oracle
decision boundaries learned over the global data.

5.4 FeDGen Analysis

In this section, we provide multiple perspectives to understand our proposed approach. We

first visualize what knowledge is learned and distilled by FeDGen, then analyze why the

distilled knowledge is favorable, from the viewpoint of distribution matching and domain

adaptation, respectively. We primarily focus on interpreting the rationale behind FeDGen

and leave detailed discussion and derivations to the supplementary.
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5.4.1 Knowledge Distillation for Inductive Bias

We illustrate the KD process in FeDGen on a FL prototype, which contains three users,

each assigned with a disjoint dataset D̂k, k ∈ {1, 2, 3}. When trained using only the local

data, a user model is prone to learn biased decision boundaries (See Figure 5.2a).

Next, a generator Gw(·|y) is learned based on the prediction rule of user models. For clear

visualizations, we learn Gw(·|y) on the raw feature space Y → X ⊂ R2 instead of a latent

space. As shown in Figure 5.3, r(x|y), which denotes the distribution derived from Gw(x|y),

gradually coincides with the ground-truth p(x|y) (Figure 5.2d), even when the individual

local models are biased. In other words, Gw(x|y) can fuse the aggregated information from

user models to approximate a global data distribution.

We then let users sample from Gw(x|y), which serves as an inductive bias for users with

limited data. As a result, each user can observe beyond its own training data and adjust

their decision boundaries to approach to the ensemble wisdom (Figure 5.2b).

5.4.2 Knowledge Distillation for Distribution Matching

A notable difference between FeDGen and prior work is that the knowledge is distilled

to user models instead of the global model. As a result, the distilled knowledge, which

conveys inductive bias to users, can directly regulate their learning by performing distribution

matching over the latent space Z:

Remark 5. Let p(y) be the prior distribution of labels, and r(z|y) : Y → Z be the conditional

distribution derived from generator Gw. Then regulating a user model θk using samples from

r(z|y) can minimize the conditional KL-divergence between two distributions, derived from

the generator and the user, respectively:

max
θk

Ey∼p(y),z∼r(z|y) [log p(y|z;θk)] ≡ min
θk

DKL[r(z|y)‖p(z|y;θk)], (5.6)

where we define p(z|y;θk) as the probability that the input feature to the predictor θk

is z given that it yields a label y. In practice, Equation 5.6 is optimized by using empirical

samples from the generator: {(z, y)|y ∼ p̂(y), z ∼ Gw(z|y)}, which is consistent with the
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second term of the local model objective (Equation 5.5), in that ∀ y ∈ Y :

max
θk

Ez∼r(z|y) [log p(y|z;θk)] ≈ min
θk

Ez∼Gw(z|y)

[
l(h(z;θpk); y)

]
.

Distinguished from prior work that applies weight regularization to local models [98, 40],

FeDGen can serve as an alternative and compatible solution to address user heterogeneity,

which inherently bridges the gap among user models w.r.t their interpretations of an ideal

feature distribution.

5.4.3 Knowledge Distillation for Improved Generalization

One can also draw a theoretical connection from the knowledge learned by FeDGen to an

improved generalization bound. To see this, we first present a performance bound for the

aggregated model in FL, which is built upon prior arts from domain adaptation [17, 16]:

Theorem 2. (Generalization Bounds for FL) Consider an FL system with K users. Let

Tk = 〈Dk, c∗〉 and T = 〈D, c∗〉 be the k-th local domain and the global domain, respectively. Let

R : X → Z be a feature extraction function that is simultaneously shared among users. Denote hk

the hypothesis learned on domain Tk, and h = 1
K

∑K
k=1 hk the global ensemble of user hypotheses.

Then with probability at least 1− δ:

LT (h) ≡ LT

(
1

K

∑
k

hk

)

≤ 1

K

∑
k

L̂Tk(hk) +
1

K

∑
k

(
dH4H(D̃k, D̃) + λk

)
+

√
4

m

(
d log

2em

d
+ log

4K

δ

)
,

where L̂Tk(hk) is the empirical risk on Tk, λk := minh(LTk(h) + LT (h)) denotes an oracle per-

formance. dH4H(D̃k, D̃) denotes the divergence measured over a symmetric-difference hypothesis

space. D̃k and D̃ is the induced image of Dk and D over R, respectively, s.t. Ez∼D̃k [B(z)] =

Ex∼Dk [B(R(x))] given a probability event B, and so for D̃.

Specifically, LT (h) is usually considered as an ideal upper-bound for the global model

in FL [135, 103]. Two key implications can be derived from Theorem 2: i) Large user

heterogeneity leads to high distribution divergence (dH4H(D̃k, D̃)), which undermines the

58



quality of the global model; ii) More empirical samples (m) are favorable to the generalization

performance, which softens the numerical constraints.

In other words, the generalization performance can be improved by enriching local users

with augmented data that aligns with the global distribution:

Corollary 1. Let T , Tk, R defined as in Theorem 2. DA denotes an augmented distribution, and

D′k = 1
2(Dk + DA) is a mixture of distributions. Accordingly, D̃A, D̃′k denotes the induced image

of DA, D′k over R, respectively. Let D̂′k = D̂k ∪ D̂A be an empirical dataset of D′k, with |D̂k| = m,

|D̂′k| = m′ > m. If dH4H(D̃A, D̃) is bounded, s.t ∃ ε > 0, dH4H(D̃A, D̃) ≤ ε, then with probability

1− δ:

LT (h) ≤ 1

K

∑
k

LT ′k (hk) +
1

K

∑
k

(dH4H(D̃′k, D̃) + λ′k) +

√
4

m′

(
d log

2em′

d
+ log

4K

δ

)
, (5.7)

where T ′k = {D′k, c∗} is the updated local domain, dH4H(D̃′k, D̃) ≤ dH4H(D̃k, D̃) when ε is small,

and
√

4
m′ (d log 2em′

d + log 4K
δ ) <

√
4
m(d log 2em

d + log 4K
δ ).

Such an augmented distribution DA can facilitate FL from multiple aspects: not only

does it relax the numerical constraints with more empirical samples (m′ > m), but it also

reduces the discrepancy between the local and global feature distributions (dH4H(D̃′k, D̃)).

This finding coincides the merits of FeDGen: since the generator Gw(z|y) is learned to

recover an aggregated distribution over the feature space, one can treat samples from the

generator {z|y ∼ p̂(y), z ∼ Gw(z|y)} as the augmented data from D̃A, which naturally has

a small deviation from the global induced distribution D̃. More rigorous analysis along this

line is left to our future work. We elaborate the role of such an augmentation distribution

DA in the supplementary.

5.5 Related Work

Federated Learning (FL) is first proposed by [116] as a decentralized machine learning

paradigm. Subsequent work along this line tackles different challenges faced by FL, including

heterogeneity [80, 98, 113], privacy [43, 2], communication efficiency [58, 86], and conver-

gence analysis [77, 139, 197]. Specifically, a wealth of work has been proposed to handle
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user heterogeneity, by regularizing model weight updates [98], allowing personalized user

models [45, 40], or introducing new model aggregation schemes [198, 113]. We refer readers

to [97] for an organized discussion of recent progress on FL.

Knowledge Distillation (KD) is a technique to compress knowledge from one or more

teacher models into an empty student [67, 26, 11, 74]. Conventional KD hinges on a proxy

dataset [67]. More recent work enables KD with fewer data involved, such as dataset distil-

lation [180], or core-data selection [173, 152]. Later there emerges data-free KD approaches

which aim to reconstruct samples used for training the teacher [193, 117]. Particularly, [110]

extracts the meta-data from the teacher’s activation layers. [193] learns a conditional genera-

tor that yields samples which maximize the teacher’s prediction probability of a target label.

Along with the same spirit, [117] learns a generator by adversarial training. Different from

prior work, we learn a generative model that is tailored for FL, by ensembling the knowledge

of multiple user models over the latent space, which is more lightweight for learning and

communication.

Knowledge Distillation in Federated Learning has recently emerged as an effective

approach to tackle user heterogeneity. Most existing work is data-dependent [103, 159, 58,

30]. Particularly, [103] proposed FedDFusion, which performs KD to refine the global

model, assuming that an unlabeled dataset is available with samples from the same or sim-

ilar domains. Complementary KD efforts have been made to confront data heterogeneity

[96, 150]. Specifically, [96] transmits the proxy dataset instead of the model parameters.

FedAUX [150] performs data-dependent distillation by leveraging an auxiliary dataset to

initialize the server model and to weighted-ensemble user models, while FeDGen performs

knowledge distillation in a data-free manner. FedMix [194] is a data-augmented FL frame-

work, where users share their batch-averaged data among others to assist local training. On

the country, FeDGen extracts knowledge from the existing user model parameters, which

faces fewer privacy risks. FedDistill (Federated Distillation) is proposed by [153] which

extracts from user models the statistics of the logit-vector outputs, and shares this meta-data

60



to users for KD. We provide detailed comparisons with work along this line in Section 5.6.

5.6 Experiments

In this section, we compare the performance of our proposed approach with other key related

work. We leave implementation details and extended experimental results to the supplemen-

tary.
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Figure 5.4: Visualization of statistical heterogeneity among users on Mnist dataset, where
the x-axis indicates user IDs, the y-axis indicates class labels, and the size of scattered points
indicates the number of training samples for a label available to that user.

Top-1 Test Accuracy.
Dataset Setting FedAvg FedProx FedEnsemble FedDistill FedDistill+ FedDFusion FeDGen

Mnist,
T=20

α = 0.05 87.70±2.07 87.49±2.05 88.85±0.68 70.56±1.24 86.70±2.27 90.02±0.96 91.30±0.74
α = 0.1 90.16±0.59 90.10±0.39 90.78±0.39 64.11± 1.36 90.28±0.89 91.11±0.43 93.03±0.32
α = 1 93.84±0.25 93.83 ± 0.29 93.91±0.28 79.88±0.66 94.73±0.15 93.37±0.40 95.52±0.07

CelebA,
T=20

r = 5/10 87.48±0.39 87.67±0.39 88.48±0.23 76.68±1.23 86.37±0.41 87.01±1.00 89.70±0.32
r = 5/25 89.13±0.25 88.84±0.19 90.22±0.31 74.99±1.57 88.05± 0.43 88.93±0.79 89.62±0.34
r = 10/25 89.12±0.20 89.01±0.33 90.08±0.24 75.88±1.17 88.14±0.37 89.25±0.56 90.29±0.47

EMnist,
T=20

α = 0.05 62.25±2.82 61.93±2.31 64.99±0.35 60.49±1.27 61.56±2.15 70.40±0.79 68.53±1.17
α = 0.1 66.21±2.43 65.29±2.94 67.53±1.19 50.32±1.39 66.06±3.18 70.94±0.76 72.15±0.21
α = 10 74.83± 0.69 74.24±0.81 74.90±0.80 54.77±0.33 75.55 ±0.94 74.36±0.40 78.43±0.74

EMnist,
α=1

T = 20 74.83±0.99 74.12±0.88 75.12±1.07 46.19±0.70 75.41±1.05 75.43±0.37 78.48±1.04
T = 40 77.02±1.09 75.93 ±0.95 77.68±0.98 46.72±0.73 78.12±0.90 77.58±0.37 78.92± 0.73

Table 5.1: Performance overview. For Mnist and EMnist, a smaller α indicates higher
heterogeneity. For CelebA, r denotes the ratio between active users and total users. T
denotes the number of local training steps.

5.6.1 Setup

Baselines: In addition to FedAvg [116], FedProx regularizes the local model train-

ing with a proximal term in the model objective [98]. FedEnsemble extends FedAvg
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Figure 5.5: Visualized performance w.r.t data heterogeneity.
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(b) CelebA, r = 0.5.
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(c) EMnist, α = 1.
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(d) Mnist, α = 1.

Figure 5.6: Selected learning curves, averaged over 3 random seeds.
to ensemble the prediction output of all user models. FedDFusion is a data-based KD

approach [103], for which we provide unlabeled training samples as the proxy dataset. Fed-

Distill [75] is a data-free KD approach which shares label-wise average of logit-vectors

among users. It does not share network parameters and therefore experiences non-negligible

performance drops compared with other baselines. For a fair comparison, we derive a base-

line from FedDistill, which shares both model parameters and the label-wise logit vectors.

We name this stronger baseline as FedDistill+.

Dataset: We conduct experiments on three image datasets: Mnist [94], EMnist [35],

and CelebA [109], as suggested by the Leaf FL benchmark [29]. Among them, Mnist and

EMnist dataset is for digit and character image classifications, and CelebA is a celebrity-

face dataset which is used to learn a binary-classification task, i.e. to predict whether the

celebrity in the picture is smiling.

Configurations: Unless otherwise mentioned, we run 200 global communication rounds,

with 20 user models in total and an active-user ratio r = 50%. We adopt a local updating

step T = 20, and each step uses a mini batch with size B = 32. We use at most 50% of
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the total training dataset and distribute it to user models, and use all testing dataset for

performance evaluation. For the classifier, we follow the network architecture of [116], and

treat the last MLP layer as the predictor θpk and all previous layers as the feature extractor

θfk . The generator Gw is MLP based. It takes a noise vector ε and an one-hot label vector y

as the input, which, after a hidden layer with dimension dh, outputs a feature representation

with dimension d. To further increase the diversity of the generator output, we also leverage

the idea of diversity loss from prior work [114] to train the generator model.

User heterogeneity: for Mnist and EMnist dataset, we follow prior arts [103, 71] to

model non-iid data distributions using a Dirichlet distribution Dir(α), in which a smaller α

indicates higher data heterogeneity, as it makes the distribution of pk(y) more biased for a

user k. We visualize the effects of adopting different α on the statistical heterogeneity for the

Mnist dataset in Figure 5.4. For CelebA, the raw data is naturally non-iid distributed.

We further increase the data heterogeneity by aggregating pictures belonging to different

celebrities into disjoint groups, with each group assigned to one user.

5.6.2 Performance Overview:

From Table 6.2, we can observe that FeDGen outperforms other baselines with a consider-

able margin.

Impacts of data heterogeneity: FeDGen is the only algorithm that is robust against

different levels of user heterogeneity while consistently performs well. As shown in Figure 5.5,

the gain of FeDGen is more notable when the data distributions are highly heterogeneous

(with a small α). This result verifies our motivations, since the advantage of FeDGen is

induced from the knowledge distilled to local users, which mitigates the discrepancy of latent

distributions across users. This knowledge is otherwise not accessible by baselines such as

FedAvg or FedProx.

As one of the most competitive baselines, the advantage of FedDFusion vanishes as

data heterogeneity becomes mitigated, which gradually becomes comparable to FedAvg, as

shown in Figure 5.5a and Figure 5.5c. Unlike FedDFusion, the performance gain of our
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approach is consistently significant, which outperforms FedDFusion in most cases. This

discrepancy implies that our proposed approach, which directly distills the knowledge to

user models, can be more effective than fine-tuning the global model using a proxy dataset,

especially when the distilled knowledge contains inductive bias to guide local model learning.

As a data-free KD baseline, FedDistill experiences non-negligible performance drops,

which implies the importance of parameter sharing in FL. FedDistill+, on the other

hand, is vulnerable to data heterogeneities. As shown in Table 6.2, it can outperform Fe-

dAvg when data distributions are near-iid (e.g. when α ≥ 1 ), thanks to the shared logit

statistics as the distilled knowledge, but performs worse than FedAvg when α gets smaller,

which indicates that sharing such meta-data alone may not be effective enough to confront

user heterogeneity.

FedEnsemble enjoys the benefit of ensemble predictions from all user models, although

its gain is less significant compared with FeDGen. We ascribe the leading performance of

our approach to the better-generalized performance of local models. Guided by the distilled

knowledge, a user model in FeDGen can quickly jump out of its local optimum, whose ag-

gregation can be better than the ensemble of potentially biased models as in FedEnsemble.

Learning efficiency: As shown in Figure 5.6, FeDGen has the most rapid learning

curves to reach a performance and outperforms other baselines. Although FedDFusion en-

joys a learning efficiency higher than other baselines under certain data settings, due to the

advantages induced from proxy data, our approach can directly benefit each local user with

actively learned knowledge, whose effect is more explicit and consistent (More illustrations

in supplementary).

Comments on sharing generative model: Given a compact latent space, the gener-

ative model can be lightweight for learning or downloading. In practice, we use a generator

network with 2 compact MLP layers, whose parameter size is small compared with the user

classification model. The above empirical results also indicate that the leading performance

gain combined with a faster convergence rate can trade off the communication load brought
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by sharing a generative model.
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Figure 5.7: Effects of synthetic samples.

Effects of the Generator Network Structure.
[dε, dh] [64, 256] [32, 256] [32, 128] [16, 128] [32, 64]

Accuracy(%) FedAvg=66.22±2.58
FeDGen 71.61±0.25 72.09±0.46 72.43±0.57 72.01±0.76 70.98±0.85

Table 5.2: Effects of the generator’s network structure, using EMnist dataset with α = 0.1.

Performance w.r.t synthetic sample sizes.
G sampling size BG = 8 BG = 16 BG = 32 BG = 64 BG = 128

Training time (ms) FedAvg= 47.66± 1.68
FeDGen 57.20±2.22 57.39±2.21 58.17±2.24 58.91±2.29 60.06±2.32

Table 5.3: Effects of the number of synthetic samples, using EMnist dataset with α = 0.1.

5.6.3 Sensitivity Analysis

Impacts of straggler users: We explore different numbers of total users versus active

users on the CelebA dataset, with the active ratios r ranging from 0.2 to 0.9. Figure 5.5b

shows that our approach is next to FedEnsemble when the number of straggler users are

high (r = 0.2, with 5 out 25 active users per learning round), and is consistently better than

all baselines w.r.t to the asymptotic performance given a moderate number of active users.

Combined with Figure 5.6a and Figure 5.6b, one can observe that our approach requires
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much less communication rounds to reach high performance, regardless of the setting of

straggler users.

Effects of different network architectures: we conduct analysis on the Mnist

dataset, using both CNN and MLP network architectures. As shown in Figure 5.5d and

Figure 5.5c, the outstanding performance of FeDGen is consistent across two different

network settings, although the overall performance trained with CNN networks is noticeably

higher than those with MLP networks.

Effects of communication frequency: We explore different local updating steps T

on the EMnist, so that a higher T means longer communication delays before the global

communication. Results in Table 6.2 indicates that our approach is robust against different

levels of communication delays (See supplementary for more results).
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Figure 5.8: Learning curves on Mnist with limited parameter sharing.

Top 1 Accuracy (%)
Algorithms FedAvg FedDistill+ FedDFusion FeDGen

α = 0.05 59.67±0.76 58.83±0.62 59.62±0.84 63.60±0.63
α = 0.1 58.39±0.74 56.25±0.98 58.38±0.81 65.42±0.29
α = 1 74.49± 0.57 74.24±0.60 74.51±0.55 79.72±0.52
α = 10 86.35±0.60 86.89±0.26 86.28±0.69 87.92±0.46

Table 5.4: Performance overview on the Mnist dataset, by only sharing the last prediction
layer.

Effects of the generator’s network architecture and sampling size: Extended

analysis has verified that FeDGen is robust across different generator network architectures

(Table 5.2). Moreover, sampling synthetic data from the generator only adds minor training
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workload to local users (Table 5.2). The gain of FeDGen over FedAvg is consistently

remarkable given different synthetic sample sizes, whereas a sufficient number of synthetic

samples brings even better performance (Figure 5.7). Especially, in Table 5.2, we explored

different dimensions for the input noise (dε) and the hidden layer (dh) of the generator while

keeping its output layer dimension fixed (i.e. the dimension of the feature space Z). Table 5.3

shows the training time for one local update, averaged across users and the communication

rounds. BG denotes the number of synthetic samples used for each mini-batch optimization.

By default, we set BG = B, and B is the number of real samples drawn from the local

dataset (see Algorithm 1).

5.6.4 Extensions to Flexible Parameter Sharing

Motivated to alleviate privacy and communication concerns, FeDGen is ready to benefit

distributed learning without sharing entire model parameters. To explore this potential, we

conduct a case study on FedAvg, FedDistill+, and FeDGen, where user models share

only the last prediction layer and keep their feature extraction layers localized. Note that

FedDFusion is not designed to address FL with partial parameter sharing, which requires

entire user models for KD. For a fair comparison, we modify FedDFusion to let it upload

entire user models during the model aggregation phase, but disable the downloading of

feature extractors, so that the server model can still be fine-tuned using the proxy data.

Results in Table 5.4 show that our approach consistently outperforms other baselines by a

remarkable margin, the trend of which is more significant given high data heterogeneity (Fig-

ure 5.8). Its distinguished performance from FedDFusion verifies the efficacy of data-free

distillation under this challenging scenario. These promising results show that FeDGen has

the potential to further reduce communication workload, not only by fast convergence but

also by a flexible parameter sharing strategy.
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5.7 Summary

In this chapter, we propose an FL paradigm that enables efficient knowledge distillation

to address user heterogeneity without requiring any external data. Extensive empirical

experiments, guided by theoretical implications, have shown that our proposed approach can

benefit federated learning with better generalization performance using fewer communication

rounds, compared with the state-of-the-art.
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CHAPTER 6

FEDRESCUE: SELF-KNOWLEDGE DISTILLATION FOR RESILIENT AND
COMMUNICATION EFFICIENT FEDERATED LEARNING

This chapter is based on our research accompanied by the following paper:

Zhu, Zhuangdi, Junyuan Hong, Steve Drew, and Jiayu Zhou. Resilient and Commu-

nication Efficient Learning for Heterogeneous Federated Learning. Proceedings of the 39th

International Conference on Machine Learning, 2022.

6.1 Introduction

Federated Learning (FL) is a decentralized machine learning scheme that eliminates private

data sharing on participating devices. Recent years witnessed effervescent development of

FL in varied domains, including healthcare [144], computer vision [106], natural language

processing [63, 116], and Internet of things (IoT) [81, 42], to name just a few. The rapid

adoption and deployment of edge computing have enabled computing to be even closer to

the source of the data and users. The growing demand for privacy-aware and low-latency

machine learning at the edge makes FL a natural fit.

The diversities among participating devices and their network topologies are phenome-

nal, which imposed significant challenges of statistical and system heterogeneity to FL. The

statistical heterogeneity in FL has been extensively tackled by techniques such as regular-

ized optimization [40], customized model aggregation [178], and data augmentation [205].

In comparison, system heterogeneity is induced by significant gaps in memory capacities

and transmission bandwidth among edge devices, the impact of which is under-explored.

Moreover, traditional FL hinges on reliable connections, where model parameters are trans-

mitted between edge devices and a central server without packet loss. This prerequisite can

be prohibitive for practical edge-based applications, including autonomous driving and IoT,

where devices such as wearable devices and vehicles can frequently opt-in, opt-out, or move
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around. Under faulty network connections, prior FL solutions may become fragile when the

model parameters fail to be intactly shared among active users due to transmission interrup-

tions. This connection uncertainty is bidirectional, which exists either when a participant

downloads or uploads parameter updates, leading to nonnegligible information loss of the

participating devices. To the best of our knowledge, few pioneer efforts have been made to

address the transmission uncertainty in FL, leaving most FL learning schemes at potential

risk of undermined performance.

Observing the system heterogeneity and connection uncertainty in FL, in this

paper, we propose an FL framework that addresses both challenges simultaneously. In

our approach, edge devices learn a prunable neural network by self-distillation , such

that a model can be structurally pruned to submodels that contain adequate knowledge of

the learning domain. Towards effective optimization, we propose progressive learning ,

which articulates the knowledge representation in the model in a nested and progressive

structure. This strategy enables FL participants with diverging model architectures to fully

devote their knowledge to model aggregation. Furthermore, powered with a sequential

model transmission paradigm, our approach is especially beneficial in amortizing the

risk of connection interruptions, since the partially transmitted model parameters before

interruption can still contribute self-contained domain knowledge to the recipient.

To the best of our knowledge, we are the first to address both system heterogeneity

and connection uncertainty in FL by progressively learning self-distilled networks. Exten-

sive empirical studies have verified that, our proposed approach, dubbed as FedResCuE ,

is Res ilient to unstable transmission connections while Communication Efficient under

system heterogeneity, which achieves high asymptotic performance compared with the state-

of-the-art.
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6.2 Problem Setting

6.2.1 Prelimnaries of Federated Learning

Without loss of generality, we consider a learning setting that addresses a representative

problem of multi-class classification. Let T = {Tk}Kk=1 denote the learning domains of

edge devices, where a domain Tk = 〈Xk × Yk〉 is defined by a joint input and output

distribution. Let θk represent local model parameters, and w global model parameters,

which are usually obtained via parameter-wise averaging on {θk}Kk=1 [116]. Denote L :

∇Y × Y → R+ the loss function recgonized by all domains, where ∇Y is a simplex over

Y . The objective of FL is to learn a global model that generalizes well on all devices:

w∗ = arg min
w

ETk∼T [L(f(Xk;w),Yk)], which is approximated by empirical data in practice:

ŵ∗ = arg min
w

1

K

∑K

k=1

[
1

nk

∑nk

i=1
L(f(xik;w), yik)

]
,

where {xik, yik}
nk
i=1 ⊂ Tk. A FL system typically involves four iterative phases: i) the down-

loading phase, when the server broadcasts a global model to active users; ii) the local learning

phase, when active users update their local model parameters; iii) the uploading phase, when

active users send parameters back to the server, and iv) the aggregation phase, when the

server derives a global model using user-uploaded parameters.

6.2.2 Learning with System Heterogeneity

In this paper, we tackle FL under system heterogeneity, where edge devices can learn local

models θk with various network architectures due to different capacities in memory and

transmission bandwidth [69, 39]. To enable FL with system heterogeneity, participants will

first agree on the largest model architecture (i.e. a ×1 network), while smaller models in this

system are treated as the pruned versions (i.e. a ×p network) with a pruning ratio p < 1.

In Deep Neural Networks (DNNs), such pruning is manifested as reducing the number of
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channels or filters. For instance, the weight matrix w ∈ Rm×n in a Convolution or Linear

layer l will be pruned to w[: m× p, : n× p] by ratio p. 1

This strategy leaves one potential drawback to model aggregation, in that the global

model is obtained via parameter-wise averaging on edge models with heterogeneous sizes.

Naively learning and aggregating such model parameters may ignore the divergence in their

feature extraction patterns induced by architecture heterogeneity, leading to impaired global

model performance. Consequently, the knowledge uploaded by users with diverging model

sizes might not be absorbed well by their peers.

6.2.3 Learning with Unstable Network Connection

Another challenge tackled in this paper is the connection instability in FL, which differs

from the straggler issue as discussed in prior art [143, 98]. The former refers to active users

transmitting partial instead of complete model parameters due to connection interruption,

while the latter results from inactive users that did not participate in model learning. Con-

nection interruption may occur bidirectionally either during the downloading phase or the

uploading phase. It is a common issue that can be induced by multiple factors, including

bandwidth, transmission power, noisy density, and interference [31, 126], yet enough effort

has been made to address it. A naive solution to connection interruption is to ignore the

faulty connected devices and treat them as stragglers [32, 98], which may waste the local

learning of those devices that could otherwise be leveraged to improve the global model.

6.3 Resilient and Communication Efficient FL

Towards addressing the challenges of system heterogeneity and unstable network connections,

we aim to learn neural networks that can be structurally decomposed for learning, inference,

and transmission. Observing the natural property of deep neural networks, we propose

to vertically decompose a model as a sequence of columns, while a column can be one or

1Without losing generality, in this paper, we unify the pruning ratio p for all layers in a model, although
such pruning can be extended to choose different ratios pl for different layers l.
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more model channels described in Section 6.2.2, depending on the desired granularity. This

proposed paradigm enjoys twofold benefits:

• During local learning, the predictive knowledge is progressively captured in model columns

and can be incrementally enriched with more column connections, which benefits FL

with system heterogeneity , in that the knowledge from heterogeneous models can be

structurally aligned in the global model.

• During FL synchronization, model columns are sequentially transmitted between the server

and the edge device. It makes FL resilient to unstable connections , since losing parts

of the tailing columns upon interruption does not lead to a catastrophic undermining

of domain representations, and a lightweight submodel that is successfully transmitted

still contains intact predictive knowledge. Moreover, this divided-and-transmit strategy

is also in accord with lower-level transmission protocols. We demonstrate this process in

Figure 6.1.

Orthogonal to our work, there are personalized FL approaches, which either divide a

model horizontally then transmit the feature extraction layers [8], or selectively transmit

parameters with unordered structures [158]. Contrarily, in our FL paradigm, the received

columns can be readily assembled for learning and inference. Therefore, instead of discard-

ing the partially received parameters upon connection interruption, they can be effectively

utilized for global aggregation or local model initialization.

6.3.1 Learning Self-Distilled Local Models

We aim to learn a model that can be structurally decomposed, arbitrarily prunable with

reduced columns, and dispenses with the need for fine-tuning. We name such a model self-

distilled, which more concretely, shall satisfy the following objective:

θ∗ = arg min
θ∈Θ

L(f(X ;θ),Y) + E
p∼P

[L(f(X ;θ×p),Y) + DKL[f(X ;θ)‖f(X ;θ×p)]] , (6.1)
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Figure 6.1: Model parameters are divided and learned as columns, which are then transmitted
sequentially between the server and clients, until than an interruption occurs to one column,
or when all columns are transmitted successfully.

where Θ denotes the parameter space; X × Y is the learning domain; P = {p|p ≤ 1,∀θ ∈

Θ f(X ;θ×p) ⊆ ∇Y} is the set of legitimate pruning ratios; DKL[p‖q] denotes the KL-

divergence between distribution p and q.

The notion of self-distillation is embodied by two components in Equation 6.1: The first

is L(f(X ;θ×p),Y), which induces the largest model θ to maintain arbitrary submodels θ×p

that are effective for the learning domain. The other is DKL[f(X ;θ)‖f(X ;θ×p)], in that it

encourages the predictive knowledge captured by θ (teacher), which is manifested as the

learned posterior p(·|X ;θ) ∝ f(X ;θ), to be distilled to the submodel θ×p (student) by

distribution matching. We verify in Section 6.5.6 that, the DKL term is especially beneficial

when a submodel itself is not representative enough to capture sophisticated features due

to a limited number of channels. Hence the posterior distribution from the teacher serves

as finer-grained guidance in addition to the label supervision. Moreover, not only is the

learned self-distilled network robust against connection loss, it also benefits FL under system

heterogeneity, as the knowledge of an edge model with a larger structure can be adequately

conveyed by its submodels, which will be aggregated by the server in the next round and

shared with users of smaller model capacities as inductive bias.
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6.3.2 Effective Optimization via Progressive Learning

Optimizing Equation 6.1 might be prohibitive at first sight, as multiple submodels are bun-

dled within the same network structure, while updating θ×pi may interfere with its nested

submodels θ×pj when pj < pi. Towards effective optimization, we propose an approach

that learns a self-distilled model that incrementally builds up its feature representation by

involving more model columns.

Specifically, we first sample a batch of ordered pruning ratios P̂ = [pi|pi ∈ P , pi <

pi+1 ∀i < S, pS = 1]Si=1, then adaptively optimize each sampled submodel towards its objec-

tive function. Once a smaller submodel is updated (e.g. θ×p1), we fix its parameters and

update parameters in the subsequent model columns (e.g. θ×p2\θ×p1). This learning scheme

leverages the idea of coordinate descent [184], which works by successively optimizing one co-

ordinate while fixing the others. As illustrated in Figure 6.2, predictive knowledge is learned

progressively by adding more lateral connections. More concretely, we update a sampled

θ×pi as the following:

θ×pi ← θ×pi − η∇{θ×pi\θ×pi−1}J(x;θ×pi), (6.2)

where J(x;θ×pi) is the objective function for the current submodel θ×pi ; η is the learning

rate, and ∇{θpi\θ×pi−1
} denotes the gradients w.r.t. parameters that are included in θ×pi but

not in θ×pi−1
. In particular, we tailor the objective for each submodel θ×pi as the following:

J(x;θ×pi) = L(f(x;θ×pi), y) + αiDKL[f(x; θ̄)‖f(x;θ×pi)], (6.3)

where θ̄ is a constant cache of the largest network learned from the last iteration, which

serves as the teacher; αi := I[pi < 1] indicates the necessity of knowledge distillation, which

renders 0 if the tail of the model columns is sampled (i.e. pi = 1), and 1 otherwise. Once all

sampled submodels have been visited, we perform an one-time back-propagation to update

the teacher. We summarize this model learning approach in Algorithm 6.1.

Besides being readily prunable, the merits of progressive learning are multifold. First,

it accelerates training by adaptively reaching a good initialization, which resembles meta-
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learning techniques [46]. Second, it alleviates the overfitting issue especially when the teacher

model structure is surplus given insufficient training data, which we verify in Section 6.5.4.

Furthermore, it also alleviates the permutation-invariant issue in deep neural networks [178]

by inducing nested and ordered domain representations captured in submodels.

Figure 6.2: A self-distilled network is learned via progressively updating columns of param-
eters.

Algorithm 6.1: Progressive Self-Distillation
1: Inputs: Training dataset D ⊂ X × Y ; model with parameter set θ ∈ Θ; pruning ratios
P , learning rate η, loss function L, constant S ≤ |P|.

2: repeat
3: Sample batch of x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P , pi < pi+1 ∀i < S, pS = 1]Si=1

5: θ̄ ← stop_gradient(θ), θ×0 = ∅.
6: for pi ∼ P̂ do
7: gi ← ∇{θ×pi\θ×pi−1}J(x;θ×pi) .(Equation 6.3)
8: θ×pi ← θ×pi − η ∗ gi.
9: θ ← θ − η ∗ ∇θL(f(x;θ), y).
10: until training stop
11: Return θ

Case Study on the Effects of Progressive Learning: We illustrate with a prelimi-

nary study that, progressively learning a model enjoys the benefits of (1) finding a good

initialization for the learning domain and (2) alleviating knowledge forgetting.

In this prototype, we divide a convolution model evenly into two columns and use the

first half θ×0.5 to learn on a small subset of the Mnist image data. Next, we learn on the

Synthetic images with a same data size, by updating θ×1.0\θ×0.5 while keeping parame-
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ters in θ×0.5 fixed. This approach is compared with another variant (overwriting), which

learns Mnist using θ×0.5 then learns Synthetic using the entire model θ×1.0. As shown in

Table 6.1, where results are averaged over 6 random seeds, the progressively learned ×1.0

model outperforms its counterpart on both domains. Overwriting θ×0.5, on the other hand,

may disrupt such initialization brought by learning on the Mnist domain. This also leads

to non-negligible forgetting of previously learned representations.

Accuracy (%) on Mnist and Synthetic.
Domain Progressive learning Overwriting
Mnist 77.95±7.93 38.17±28.19
Synthetic 69.48±1.93 42.30±32.30

Table 6.1: Progressive vs. overwriting learning.

6.3.3 Proposed Federated Algorithm: FedResCuE

Before introducing our FL paradigm, we refine our algorithm with two more techniques to

further tackle system heterogeneity and connection instability.

Heterogeneous Model Aggregation: In our FL system, edge users will initially agree

on the maximal network architecture and the legitimate pruning ratios P . Next, edge users

can choose their maximal local model size with a capacity ratio pk ∈ P . During downloading

(uploading) phases, user k with ratio pk will receive (send) at most ×pk of model parameters,

depending on the network connection. During the aggregation phase, active users will only

contribute to global parameters that are within their uploading ratios. Accordingly, in the

next learning round t+ 1, ∀ pi ∈ P , the global model parameters are derived as follows:

wt+1
×pi\w

t+1
×pi−1

=
1

|Atpi |
∑
k∈Atpi

θk,t×pi\θ
k,t
×pi−1

, (6.4)

where Atpi = {k|k ∈ At, I[R(θk,t) > pi]}; At denotes the active users from the last round,

and R(θk,t) is the uploaded network size of user k.
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Local Model Padding: Due to unstable network connections, the local device is prone

to receiving only partial of the global model during the downloading phase. To compensate

for the missing global parameters, we leverage the local parameters cached from the last

round to pad the initialized model to avoid catastrophic information loss. More concretely,

at learning round t, we initialize the local model for the k-th user as follows:

θk,t ← wt

×pd,tk
∪ {θk,t−1

×pk \θ
k,t−1

×pd,tk
}, (6.5)

where wt

×pd,tk
denotes the global parameters downloaded by user, and pd,tk is the downloading

ratio, which is possibly smaller than pk.

Built upon the above techniques, we now present the proposed FedResCuE in Algo-

rithm 6.2. In our algorithm, the workload introduced by progressive learning is lightweight,

since the column-wise gradient update has omitted the need for repeated calculation for small

submodels, as opposed to some prior arts [196]. Moreover, as elaborated in Section 6.5.6.2,

FedResCuE can obtain superior performance with a small sampling frequency (S). Our

approach is also communication efficient, which not only provides flexibility for users to se-

lect affordable model architectures but also requires much fewer communication rounds than

prior work to reach the predefined performance, as verified in Section 6.5.5.

Algorithm 6.2: Resilient and Communication-Efficient Federated Learning
1: Inputs: Tasks {Dk}Kk=1; global model w with parameter space Θ; legit pruning ratios
P , user capacity ratios {pk}Kk=1, models initialized as {θk,0 := w×pk}Kk=1. learning rate η,
loss function L, sampling frequency S, epochs T .

2: for t ∈ [T ] do
3: Aggregate global parameters wt via Equation 6.4.
4: Broadcast wt to active users At.
5: for user k ∈ At in parallel do
6: Download wt with downloading ratio pd,tk ≤ pk depending on the connection

quality.
7: θk,t = wt

×pd,tk
∪ {θk,t−1

×pk \θ
k,t−1

×pd,tk
} (. model initialization via Equation 6.5)

8: θk,t ← Algorithm 6.1 (Dk,θ
k,t,P , η,L, S )

9: Upload θk,t, with uploading ratio pu,tk ≤ pk depending on the connection quality.
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6.4 Related Work

Systematic Heterogeneity in FL is a rising challenge induced by the emergence of FL

applications to wireless communications and IoT, where participating devices have vary-

ing capacities in computation and transmission. Some work enables heterogeneous model

architectures by sharing model predictions on a public dataset instead of sharing model pa-

rameters [166, 75], at the cost of non-negligible performance degradation. Some approaches

allow users to share partial network layers, leaving potential opportunities for adopting differ-

ent architectures for unshared layers [205, 8]. In general, yet enough efforts have been made

to effectively tackle FL with heterogeneous model architectures, except for a few pioneers

such as FedHetero [39] and FjORD [69], which are extensively analyzed in Section 6.5.

Network Pruning has long been studied in non-FL scenarios, which aims to prune a

lightweight model from a larger one with the maximal knowledge reserved. Prior approaches

usually require fine-tuning using label supervisions [62, 95, 111, 36], Later there emerge

zero-short pruning [196, 28]. Approaches include structured pruning that reduces model

channels [190, 196, 195, 28]. Orthogonal approaches include early exit [199, 200], which

learns horizontally pruned networks with reduced number of neural layers. Other pruning

strategies follow the lottery ticket hypothesis [48, 140, 108]. Most prior work derives one

submodel after pruning, whereas the slimmable learning [196] and [28] makes arbitrarily

submodels prunable. The idea of prunable models has been applied to FL to tackle system

heterogeneity by FjORD [69]. To the best of our knowledge, we are the first to apply

progressive learning to address both system heterogeneity and connection instability in FL.

Resilient and Communication Efficient FL addresses FL under restricted or unstable

connection bandwidths [143, 57, 69]. FedProx [98] tackles stragglers via a regularized objec-

tive. Other scheduling-based approaches assume that the server has control over the active

users [143, 32, 128]. Not much work has mentioned the faulty connections issues. Some

chooses to naively drop the faulty connected edge devices [32, 143]. [57] and [188] suggest to

use stale model parameters for the disconnected users. Meanwhile, there are complementary
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efforts that compress transmitted model parameters by quantization [4, 5] or sketching [73].

Some approaches focus on asynchronous communication [33, 187]. Our algorithm can be

potentially combined with related work to further improve resiliency and communication

efficiency in FL.

6.5 Evaluation

In this section, we conduct extensive experiments to answer the following key questions,

leaving more experimental details to the supplementary:

1. Is FedResCuE resilient to system heterogeneity and unstable network connections?

2. Is FedResCuE communication-efficient to reach satisfactory performance with fewer syn-

chronization rounds, compared with the state-of-the-art?

3. Which components of FedResCuE have contributed to its resiliency and communication

efficiency?

Results: Experiments below show that FedResCuE notably outperforms related work in

communication efficiency and asymptotic performance. Its superiority is consistent across

different FL settings, and become more prominent under insufficient training data, hetero-

geneous model architectures, and unstable network connections.

6.5.1 Experiment Setup

Dataset: We use CelebA [89] to simulate edge users with i.i.d. data distributions. We

also apply DigitsFive [134] to simulate users with statistical heterogeneity, which is a

multi-domain benchmark with five image datasets: MNIST [93], SVHN [124], USPS [72],

Synthetic, and MNIST-M [53].

Models: We build a ResNet neural network [65] for learning the CelebA domain, and

build a model consisting of 3 Conv2d layers followed by 3 Linear layers for learning
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DigitsFive domains. To enable effective model aggregation under system heterogeneity,

we perform careful treatments on the BatchNorm layers.

Compared Approaches: In addition to FedAvg [116], we compare FedResCuE against

the following approaches that tackle system heterogeneity: i) FedHetero [39] extended

FedAvg to allow edge devices with different model sizes; ii) FjORD [69] learns prunable

local models without progressive learning ; iii) FedSlim is a proposed baseline in this paper,

in which models are locally updated by following the slimmable training [196] and globally

aggregated as FedAvg.

Training: Active users will sync with the server after a complete epoch of local training.

For faulty connection settings (Section 6.5.3), the local padding strategy is applied to all

evaluated algorithms for fair comparisons. For the CelebA domain, training data is i.i.d.

sampled and assigned to 20 total users. For the DigitsFive domains, we assign each domain

data to 2 unique users. For both types of experiments, 5 active users are randomly selected

per communication round. We also evaluate the algorithmic performance given different

sizes of training data in Section 6.5.4.

Evaluation: Unless otherwise specified, the performance is reported using the global model

on all available testing data, which is evaluated every 2 communication rounds. Results are

averaged over 3 random seeds. Asymptotic performance is reported after 300 rounds for

CelebA, and 100 rounds for DigitsFive.

Global Model Accuracy (%) Evaluated on CelebA, Stable Network Connection.
Training
Data User Capacity Evaluated

Model FedAvg FedHetero FjORD FedSlim FedResCuE

100%
∀k pk = 1 (uniform) w×1 81.06±0.63 - 80.57±0.91 81.14±0.76 81.39±0.20

w×0.25 18.57±0.64 - 69.94±0.65 70.47±0.61 71.19±0.19

∀k pk ∼ PC (cluster)
w×1 - 76.80±0.53 75.71±0.47 77.49±0.40 78.22±0.41
w×0.25 - 68.56±0.51 70.98±0.75 73.22±0.34 73.25±0.47

20%
∀k pk = 1 (uniform) w×1 68.03±0.50 - 67.89±1.47 67.96±0.72 71.27±0.27

w×0.25 16.47±2.24 - 61.38±1.69 59.56±1.39 61.12±1.35

∀k pk ∼ PC (cluster) w×1 - 59.38±0.41 62.43±1.65 59.53±0.86 64.53±1.06
w×0.25 - 55.41±0.39 61.86±1.21 58.31±0.23 61.98±0.85

Table 6.2: We report best performance from different S for applicable approaches (See
Section 6.5.6.2).
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6.5.2 Performance Under System Heterogeneity

We apply CelebA data to explore two system settings: 1) the uniform setting, where all

edge devices maintain the same network architecture; and 2) the cluster setting, where user

model capacities are randomly sampled from a set PC ⊂ P to represent system heterogeneity.

Results: As shown in Table 6.2 and Table 6.3, FedResCuE consistently exceeds other ap-

proaches in asymptotic performance, especially under a heterogeneous (cluster) system. In

particular, the advantage of FedResCuE on the ×0.25 global model demonstrates its bene-

fits to small-capacity users compared to related work, in that FedResCuE helps predictive

knowledge be distilled from larger models into their nested sub-models, which will be even-

tually shared by users with smaller model sizes. In the meantime, FedResCuE is also more

effective than FjORD and FedSlim, which is largely ascribed to the benefit of its progressive

learning, as opposed to a batch-gradient update scheme in prior art.

Moreover, when system heterogeneity is bundled with connection instability (Table 6.3),

enabling system heterogeneity in FL naturally introduces resiliency to connection instability,

which can be revealed by the performance gain of FedHetero over FedAvg in Table 6.3. In fact,

FedHetero can be treated as macro-level prunable training, although the resiliency brought

by diversified model architectures is less effective than learning self-distilled networks.

Global Model Accuracy (%) Evaluated on CelebA Under Connection Loss.
User

Capacity
Evaluated
Model FedAvg FedHetero FjORD FedSlim FedResCuE

uniform w×1 50.36±2.17 - 61.79±1.62 57.31±1.27 70.02±0.40
w×0.25 12.58±0.51 - 60.20±1.67 55.33±0.89 67.40±0.84

cluster w×1 - 60.92±1.33 64.52±0.60 62.35±1.76 69.78±0.74
w×0.25 - 59.70±0.64 64.11±0.41 61.77±1.62 68.83±1.00

Table 6.3: Performance under faulty connections, given 100% of training data and 0.1 ≤
er ≤ 0.2.
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Accuracy(%) on DigitsFive, Given 5% Training Data.
Domain SVHN Syn USPS MNIST MNIST-M
Local 45.88 62.04 89.95 85.84 61.99
FedAvg 69.54 80.17 94.38 93.61 75.22
FedSlim 66.77 78.95 94.00 93.80 73.95
FjORD 49.72 57.12 68.60 68.01 56.29

FedResCuE 69.32 80.57 95.17 95.05 76.89

Table 6.4: FedResCuE is the most robust algorithm given heterogeneous data and domain-
dependent connection error.

6.5.3 Performance Under Unstable Connections

To simulate the unstable connection scenario, a connection error rate er is generated dynam-

ically to denote the probability that the current column transmission is interrupted. When

transmitting one network, we traverse all columns until one column is interrupted based

on probability er, or when all columns have been successfully transmitted. Note that the

connection loss occurs bidirectionally. Hence an edge device may receive or upload models

with a smaller size than its assigned architecture. In practice, we set the size of a transmis-

sion column to be 0.125× of the global network. We apply both CelebA and DigitsFive

to explore unstable connection scenarios. For experiments on the CelebA domain, er is

dynamically sampled, with er ∼ [0.1, 0.2]. For experiments on DigitsFive domains, er is

set to be a constant depending on the specific domain.

Results: Under faulty network connections, FedResCuE consistently outperforms other ap-

proaches under both i.i.d. and heterogeneous data distributions. Given the CelebA domain

(Table 6.3), FedResCuE achieves higher accuracy than FedSlim and FjORD with a signifi-

cant margin, which we ascribe to both its progressive learning procedure and the proposed

optimization objective. In fact, given unstable connections, a smaller network architecture

turns out to be more reliable, whose transmission is less likely to be interrupted. FedRes-

CuE can facilitate FL in this scenario, as it follows a progressive scheme to gradually learn

the larger network, which captures the complementary representation built upon its nested

smaller submodels. On the other hand, both FedResCuE and FjORD are more competent

than FedSlim, which indicates that solely performing distillation from the teacher (×1.0
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model) to student (submodel), as FedSlim performs, may be insufficient to deliver reliable

submodels, especially given a model with information staleness caused by transmission loss.

Contrarily, the optimization of FedResCuE (Equation 6.1), which encourages both knowledge

distillation and submodel-learning with label supervision, is a more robust strategy.

As shown in Table 6.4, under domain-dependent connection errors, FedResCuE also

shows consistent robustness against heterogeneous statistical distributions. Note that a

small training dataset from DigitsFive is applied to ensure the necessity of FL. Hence Local

learning without sharing parameters yields worse performance than FL. The performance

gain of FedResCuE resides in both the small (×0.25 ) and the large (×1.0) model. Contrarily,

FjORD and FedSlim may underperform FedAvg when evaluated using the ×1.0 model,

indicating their potential drawback given insufficient data, which we investigate more in

Section 6.5.4.

6.5.4 Performance Given Insufficient Training Data

To analyze the impacts of data sufficiency, we assign 100% and 20% of the CelebA to users

for training, respectively, assuming a stable network connection (er = 0).

Results: As shown in Table 6.2, when training data is sufficient with i.i.d. distributions,

all algorithms perform comparably well. However, given only 20% of the training data, both

FjORD and FedSlim slightly underperform FedAvg when evaluated using the ×1.0 model,

while FedResCuE remarkably outperforms all others. In fact, the progressive parameter

update in FedResCuE can make a subnetwork a good initialization for the encompassing

larger submodel, which is analogous to meta-learning that delivers an effective model with

fewer shots of training. This is especially beneficial in the lack of training data. Contrarily,

FjORD and FedSlim, which adopt batch-gradient updates for learning prunable models,

may struggle with the interference of noisy gradients, which can be further amplified in a

potentially overfit model.
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6.5.5 Evaluation of Communication Efficiency

We analyze the communication efficiency via the number of FL synchronization rounds for

the global model to reach a reasonable performance. As shown in Table 6.5, under sys-

tem heterogeneity (i.e. the cluster setting), FedResCuE constantly learns faster to obtain a

predefined accuracy, requiring fewer communication rounds than all its peers. The commu-

nication efficiency of FedResCuE also resides in its flexibility in user model architectures, in

that devices that choose a small model architecture can be further benefited by transmit-

ting fewer parameters per communication round. Although other baselines e.g. FedHetero

also enable system heterogeneity, they require non-negligible more communication rounds to

perform comparably to FedResCuE. Accompanying performance curves of the ×1.0 model

are visualized in Figure 6.3.

Communication Efficiency on CelebA dataset.
Acc Model

Size
FedHeteroFjORD FedSlim FedResCuE

100 % training data, 0.1 ≤ er ≤ 0.2.
60% w×0.5 256.7 218.0 253.3 124.7

20 % training data, er = 0
55% w×0.5 180.7 156.0 192.0 96.0

Table 6.5: FedResCuE requires notably fewer communication rounds to reach the predefined
accuracy (Acc).

Figure 6.3: Evaluation curves for the ×1.0 model, with 0.1 ≤ er ≤ 0.2 (left) and 20% training
data (right).
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6.5.6 Sensitivity Analysis

6.5.6.1 Effects of Knowledge Distillation

To analyze the role of knowledge distillation in our model learning, we design a variant of

our approach called FedSeq to compare against FedResCuE. Particularly, the optimization

objective of FedSeq does not require minimizing the KL-divergence between the teacher θ̄

and a student θ×pi , i.e. it always sets the term αi to 0 in Equation 6.3.

Results: Knowledge distillation is especially beneficial to smaller submodels, whereas the

gap between FedSeq and FedResCuE gradually diminishes when evaluating using larger sub-

models. As illustrated in Figure 6.4, where 20% of the CelebA training data is given,

both approaches are learning comparably well in initial training stages, while FedResCuE

converges to higher asymptotic performance. The learning curves demonstrate that it is ben-

eficial to distill representation knowledge from a large, complete model to smaller submodels,

in that the larger model has more channels to capture refined domain knowledge.

6.5.6.2 Impacts of Submodel Sampling

Sampling frequency, denoted as S = |P̂ | in Algorithm 6.1, is the number of submodels

sampled per batch update. A key question regarding FedResCuE is: how does S affect the

learning performance? This question is equally intriguing to FedSlim and FjORD, both of

which require submodel sampling. To answer this question, we traverse different choices of

S, while the sampling granularity is set to be ×0.05 of the largest model width.

Results: As shown in Figure 6.5, FedResCuE is constantly the most robust under different

S. In the meantime, a moderate number of ratio sampling (e.g. S = 4) benefit most evaluated

algorithms, while oversampling with a large S causes non-negligible performance degradation

on FedSlim and FjORD. Their over-sensitivity to S can be induced by their batch-gradient

update scheme, which may cause the gradients w.r.t. larger submodels to interfere with

those of smaller ones when aggregating all gradients in one batch, hence undermining model

performance. On the contrary, FedResCuE alleviates such issues by using a progressive
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(a) ×0.25 model. (b) ×0.5 model.

Figure 6.4: KD in FedResCuE benefits smaller submodels.

Figure 6.5: Impacts of sampling frequency S. Figure 6.6: Effects of progressive learning.

learning scheme that decouples such mutual impacts.

6.5.6.3 Effects of Progressive Learning

To evaluate the efficacy of the progressive learning scheme, we compare FedResCuE against

an intuitive alternative named FedRush, which directly updates the sampled submodel with-

out freezing the preceding parameters.

Results: As shown in Figure 6.6, a rush gradient update as in FedRush leads to notably

undermined performance. Particularly, when updating the θ×pi+1
model, FedRush overwrites

the parameters in θ×pi , which could otherwise serve as a good initialization to support

the subsequent submodels. Contrarily, FedResCuE learns more effectively by avoiding the

potential information forgetting.
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6.6 Summary

In this chapter, we propose a self-distillation approach which enables resilient knowledge

sharing in heterogeneous federated learning setting. Our proposed, dubbed as FedResCuE,

addresses both system heterogeneity and unstable network connections, by learning self-

distilled networks in a progressive manner, which proves to be communication-efficient with

higher performance in the proposed FL settings compared with the state-of-the-art.
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CHAPTER 7

OVERVIEW AND OPEN QUESTIONS

In this chapter, we first present a systematic comparison of the proposed transfer learning

approaches, discuss their contributions as well as potential limitations. We also provide a

few thoughts on the limitations of our transfer learning and list a few research directions

that are worth more effort in the near future.

We compare the recipes of each of our TL works in Table 7.1. Although these approaches

are proposed to address heterogeneous machine learning problems, they share the same core

idea of TL from accessible, usually limited or unreliable knowledge source to assist target

domain learning in a sample-efficient manner.

In spite of their promising results, one limitation of the proposed approaches is that they

are not designed to assist learning for unseen domains . In fact, for the RL approaches

OPOLO and SAIL , we assume that the source and target Markov decision process share the

same underlying components, such as reward logics and state transition probabilities. This

problem setting is analogous to the one where the child learns to walk by imitating adults in

a world that follows the same physical rules. For FedGen which tackles a Federated Learn-

ing setting, each client task is served as the source and the target domain simultaneously.

The data distributions of different clients are heterogeneous but remain stable through the

learning process.

Another limitation of our work is that our approach might be vulnerable to negative

transfer . By now we assume that the knowledge source is beneficial and relevant to the

target domain learning. Effective schemes to detect irrelevant or even adversarial source

domains remain to be proposed to improve the robustness of our transfer learning approaches.
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Algorithm: OPOLO SAIL FedGen FedResCuE
Problem
setting:

RL without exter-
nal rewards.

RL with sparse and
delayed rewards.

Federated Super-
vised Learning
without extra
training data on
the server.

Federated Super-
vised Learning,
with system het-
erogeneity and
unstable network
connections.

Difference
between
source and
target do-
mains

|Ms| = 1,Ms =
Mt.

|Ms| = 1,Ms =
Mt.

Each FL client Tk ∈
{Ts}Ki=1 is a source
and target domain
at the same time.
Ti 6= Tj ∀i, j ∈
[K], i 6= j

Similar to Fed-
Gen , with Ti not
necessarily equal
Tj ∀i, j ∈ [K], i 6=
j.

Carrier of
transferred
knowledge

Examples of ex-
pert visited states
without expert
actions: RT =
(s0, s1, s2, · · · ).

Examples of
sub-optimal
demonstrations
of both states
and actions :
RT = (s0, a0, s1,
a1, s2, a2, · · · ).

a conditional gen-
erator G : Y → Z
learned from the
network param-
eters of client
models.

Parameter of sub-
model θp learned
by self-distillation,
with p ≤ 1.

Challenges
of transfer-
ring such
knowledge

No action guid-
ance is available;
Inefficient sampling
due to on-policy
learning.

Teacher demon-
strations are
suboptimal , hence
traditional ap-
praoches lead to
suboptimal perfor-
mance.

Local user data
distribution is het-
erogeneous and
unavailable to
the server.

1) FL clients learn
models with dif-
ferent architectures.
2) Unstable Net-
work connection.

Solutions Optimizing to-
wards an off-
policy objective
that omits the need
of knowing expert
actions.

An iterative
process of ex-
ploitation and
exploration : ex-
ploiting teacher
dmonstrations to
reach reasonable
performance; ex-
ploring for better
self-generated
demonstrations to
repalce the teacher.

Learning and
transmitting a
generator purely
out of the client
model parameters
to approximate
p(z|y), i.e. the
global latent fea-
ture distribution.

1) Model chan-
nels are vertically
decomposed and
sequentailly trans-
mitted. 2) Learn
self-distilled models
that are knowledge
preserving, and ro-
bust to connection
drop.

Table 7.1: An overview comparison of the proposed TL approaches.
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Table 7.1 (cont’d)

Distilled
knowledge

Near-optimal state-
transisin distribu-
tions of the teacher
domain: µE(s, s′)

Sub-optimal state-
action distributions
of the teacher do-
main µT (s, a).

Latent distribution
p(z|y) of the global
data.

Feature representa-
tions reserved in
the 1.0× model.

Transfer
learning
results

Recover expert-
level performance
via efficient off-
policy learning.

Supass teacher
demonstrations to
reach near-optimal
performance with
high sample effi-
ciency.

Ensemble knowl-
edge from hetero-
geneous user data
distribution to
achieve high global
performance.

Enabled system
heterogeneity in FL
system. Learned
self-distilled mod-
els that are readily
prunable and ro-
bust to connection
loss.

91



APPENDICES

92



APPENDIX A

APPENDIX FOR OPOLO

For all the following derivations, we use DKL[P (X)||Q(X)] to denote the KL-divergence

between two distributions P and Q:

DKL[P (X)||Q(X)] = Ex∼p(x) log
p(x)

q(x)
=

∫
X

p(x) log
p(x)

q(x)
dx.

Accordingly, when P (X|Z) and Q(X|Z) are conditional distributions, DKL[P ||Q] denotes

their conditional KL-divergence:

DKL[P (X|Z)||Q(X|Z)] =

∫
Z×X

p(z)p(x|z) log
p(x|z)

q(x|z)
dxdz.

For simplicity, we will equivalently use Ex∼p(x)[·] and Ep(x)[·] to denote certain expectation

in which x is sampled from the distribution P (X).

A.0.1 Derivation of the Surrogate Objective

We first refer Lemma 1 from [189] for a complete presentation:

Lemma 1.

DKL[µπ(s, a, s′)||µE(s, a, s′)] = DKL[µπ(s, a)||µE(s, a))].

Proof.

DKL[µπ(s, a, s′)||µE(s, a, s′)] =

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a) · P (s′|s, a)

µE(s, a) · P (s′|s, a)
ds′dads

=

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a)

µE(s, a)
ds′dads

=

∫
S×A

µπ(s, a) log
µπ(s, a)

µE(s, a)
dads

= DKL[µπ(s, a)||µE(s, a)].
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Lemma 2.

DKL[µπ(s, s′)||µE(s, s′)] ≤ DKL[µπ(s, a)||µE(s, a)].

Proof. As defined in Table 4.1, µπ(a|s, s′) is the inverse-action transition probability induced

by policy π:

µπ(a|s, s′) =
µπ(s, a, s′)

µπ(s, s′)
=

H
HHµπ(s)π(a|s)P (s′|s, a)∫

A
HHHµπ(s)π(ā|s)P (s′|s, ā)dā

=
π(a|s)P (s′|s, a)∫
A π(ā|s)P (s′|s, ā)dā

.

Based on this notion, we can derive:

DKL[µπ(s, a)||µE(s, a)]

=DKL[µπ(s, a, s′)||µE(s, a, s′)]︸ ︷︷ ︸
Lemma 1

=

∫
S×A×S

µπ(s, a, s′) log
µπ(s, a, s′)

µE(s, a, s′)
ds′dads

=

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(s, s′)× µπ(a|s, s′)
µE(s, s′)× µE(a|s, s′)

ds′dads

=

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(s, s′)

µE(s, s′)
ds′dads

+

∫
S×A×S

µπ(s, s′)µπ(a|s, s′) log
µπ(a|s, s′)
µE(a|s, s′)

ds′dads

=

∫
S×A×S

µπ(s, s′) log
µπ(s, s′)

µE(s, s′)
ds′ds+ DKL[µπ(a|s, s′)||µE(a|s, s′)]

=DKL[µπ(s, s′)||µE(s, s′)] + DKL[µπ(a|s, s′)||µE(a|s, s′)] (A.1)

≥DKL[µπ(s, s′)||µE(s, s′)].

Based on Lemma2, we can derive the upper-bound of our original objective:

Theorem 3 (Surrogate Objective as the Divergence Upper-bound).

DKL[µπ(s, s′)||µE(s, s′)] ≤ Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] + DKL[µπ(s, a)||µR(s, a)].
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Proof.

DKL[µπ(s, s′)||µE(s, s′)] =

∫
S×S

µπ(s, s′) log
µπ(s, s′)

µE(s, s′)
dsds′

=

∫
S×S

µπ(s, s′) log
(µR(s, s′)

µE(s, s′)
× µπ(s, s′)

µR(s, s′)

)
dsds′

=

∫
S×S

µπ(s, s′) log
µR(s, s′)

µE(s, s′)
dsds′

+

∫
S×A

µπ(s, s′) log
µπ(s, s′)

µR(s, s′)
dsds′

= Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] + DKL[µπ(s, s′)||µR(s, s′)]

≤ Eµπ(s,s′)[log
µR(s, s′)

µE(s, s′)
] + DKL[µπ(s, a)||µR(s, a)].︸ ︷︷ ︸

derived from Lemma 2

A.0.2 Connections between LfO and LfD

Theorem 4.

DKL[µπ(a|s, s′)||µE(a|s, s′)] = DKL[µπ(s, a)||µE(s, a)]− DKL[µπ(s, s′)||µE(s, s′)].

Proof. We can refer Eq (A.1) from the proof of Lemma 2:

DKL[µπ(s, a)||µE(s, a)] = DKL[µπ(s, s′)||µE(s, s′)] + DKL[µπ(a|s, s′)||µE(a|s, s′)].

A.0.3 An Unoptimizable Gap Between LfO and LfD

Remark 3: In a non-injective MDP, the discrepancy of DKL[µπ(a|s, s′)||µE(a|s, s′)] cannot

be optimized without knowing expert actions.

Proof. We provide proof with a counter-example. Consider a non-injective MDP in a tabular

case, whose transition dynamics is shown in Table A.1, with |S| = 3, and |A| = 4. Especially,
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P a0 a1 a2 a3

P (s1|s1, ·) 0 1 0 0
P (s2|s1, ·) 1 0 1 0
P (s3|s1, ·) 0 0 0 1
P (s1|s2, ·) 0 1 0 0
P (s2|s2, ·) 0 0 1 0
P (s3|s2, ·) 0 0 0 1
P (s1|s3, ·) 0 1 0 0
P (s2|s3, ·) 0 0 1 0
P (s3|s3, ·) 0 0 0 1

Table A.1: A deterministic but non-injective MDP.
π s1 s2 s3

a0 0.5 0 0
a1 0 0 1
a2 0.5 0 0
a3 0 1 0

Table A.2: Learning Policy π.

πE s1 s2 s3

a0 0 0 0
a1 0 0 1
a2 1 0 0
a3 0 1 0

Table A.3: Expert Policy πE.

there exists two actions which lead to the same deterministic transition, i.e. for s1, s2 ∈ S,

∃ a0, a2 ∈ A, s.t. P (s2|s1, a2) = P (s2|s1, a0) = 1, as illustrated in Figure A.1.

In this MDP, there is an expert policy πE as listed in Table A.3. Trajectories generated

by this expert are illustrated as blue lines in Figure A.1. In a LfO scenario, a learning agent

only has access to sequences of states visited by the expert: RT = {s1, s2, s3, s1, s2, s3, · · · },

without knowing what actions have been taken by the expert.

Based on the given observations RT , a policy π can only satisfy the state distribution

matching with DKL[µπ(s, s′)||µE(s, s′)] = 0, but unable to optimize DKL[µπ(a|s, s)||µE(a|s, s)],

as both a0 and a2 lead to a deterministic transition of s1 → s2. In lack of expert actions, the

best guess for a learning policy is to equally distribute action probabilities with π(a0|s1) =

(a2|s1) = 0.5. which results in µπ(a0|s1, s2) = µπ(a2|s1, s2) = 0.5, whereas µE(a2|s1, s2) = 1,

µE(a0|s0, s1) = 0. Consequently, we reach at DKL[µπ(a|s, s′)||µE(a|s, s′)] > 0.

Remark: In a deterministic and injective MDP, it satisfies that ∀ π : S → A,

DKL[µπ(a|s, s′)||µE(a|s, s′)] = 0.

96



s1

s2s3

a2

a1

a2a3

a0

a3

a1

a2

a3

a1

Figure A.1: Transition of an non-injective MDP.

We provide proof in a finite, discrete state-action space, although the conclusion is valid

to extend to continuous cases.

Proof. In a deterministic and injective MDP, we can interpret the transition dynamics with

a deterministic function g:

∃g : S × A → S, s.t. ∀ (s, a, s′), g(s, a) = s′ ⇐⇒ P (s′|s, a) = 1, and g(s, a) 6= s′ ⇐⇒

P (s′|s, a) = 0.

since this MDP is also injective, given arbitrary policy π and a transition s→ s′, (s, s′) ∼

µπ(s, s′), there exists one and only action a which satisfies g(s, a) = s′, P (s′|s, a) = 1.

Accordingly, µπ(a|s, s′) = π(a|s)P (s′|s,a)
Eā∼π(·|s)[P (s′|s,a)]

= 1[g(s, a) = s′] depends only on the transition

dynamics, where 1(x) is an indicator function. The same conclusion applies to µE(a|s, s′) as

well. Therefore, we reach at:

∀ π : S → A, DKL[µπ(a|s, s′)||µE(a|s, s′)]

=Eµπ(s,a,s′)

[
log

1[g(s, a) = s′]

1[g(s, a) = s′]

]
=Eµπ(s,a,s′)

[
log

1

1

]
= 0.

97



A.0.4 Upper Bound of the KL-Divergence

Theorem 5. For two arbitrary distributions P and Q, and an f -divergence with f(x) = 1
2
x2,

it satisfies that DKL[P ||Q] ≤ Df [P ||Q] .

Proof. Given two distributions P and Q, their density ratio is denoted as wp|q, with wp|q =

p(x)
q(x)
≥ 0. If we consider a function g(w) = w log(w) − 1

2
w2, g(w) is constantly decreasing

when w ∈ (0,∞), as ∂g
∂w

= logw + 1− w ≤ 0 ∀w ≥ 0.

Since KL-Divergence is a special case of f -divergence with fDKL
(x) = x log x, it is sufficient

to show that:

DDKL
[P ||Q]−Df [P ||Q] =

∫
X
q(x)

(
wp/q log(wp/q)−

1

2
(wp/q)

2
)
dx

≤
∫
X
q(x) sup

w∈(0,+∞)

(w log(w)− 1

2
w2)dx

=

∫
X
q(x) lim

w→0+
(w log(w)− 1

2
w2)dx

= 0.

A.0.5 Forward Distribution Matching

A.0.5.1 Lower-bound of the BC Objective

Theorem 6.

DKL[πE(a|s)||π(a|s)] = DKL[µE(s′|s)||µπ(s′|s)] + DKL[µE(a|s, s′)||µπ(a|s, s′)].

Proof. Based on the definition of µπ(a|s, s′) in Table 4.1:

µπ(a|s, s′) =
π(a|s)P (s′|s, a)∫
A π(ā|s)P (s′|s, ā)dā

=
π(a|s)P (s′|s, a)

µπ(s′|s)
, (A.2)
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and similar for µE(a|s, s′), we can derive at the following:

DKL[πE(a|s)||π(a|s)]

=

∫
S×A

µE(s)πE(a|s) log
πE(a|s)
π(a|s)

dads

=

∫
S×A

µE(s, a) log
πE(a|s)
π(a|s)

dads

=

∫
S×A×S

µE(s, a)P (s′|s, a) log
πE(a|s)P (s′|s, a)

π(a|s)P (s′|s, a)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
πE(a|s)P (s′|s, a)

π(a|s)P (s′|s, a)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
µE(a|s, s′)µE(s′|s)
µπ(a|s, s′)µπ(s′|s)︸ ︷︷ ︸

Eq (A.2)

ds′dads

=

∫
S×A×S

µE(s, a, s′)
(

log
µE(a|s, s′)
µπ(a|s, s′)

+ log
µE(s′|s)
µπ(s′|s)

)
ds′dads

=

∫
S×A×S

µE(s, a, s′) log
µE(a|s, s′)
µπ(a|s, s′)

ds′dads+

∫
S×A×S

µE(s, a, s′) log
µE(s′|s)
µπ(s′|s)

ds′dads

=DKL[µE(a|s, s′)||µπ(a|s, s′)] + DKL[µE(s′|s)||µπ(s′|s)].

A.0.5.2 Policy Regularization as A Forward Distribution Matching

Without loss of generality, in this section we provide proof based on a finite, discrete state-

action space.

Assumption 2 (Deterministic MDP). ∃g : S×A → S a deterministic function, s.t. ∀ (s, a, s′),

g(s, a) 6= s′ ⇐⇒ P (s′|s, a) = 0, and g(s, a) = s′ ⇐⇒ P (s′|s, a) = 1.

Based on Assumption 2, we have the following:

Corollary 2. In a deterministic MDP, ∀ π : S → A, µπ(a|s, s′) > 0 =⇒ P (a|s, s′) = 1.

Proof. µπ(a|s, s′) ∝ π(a|s)P (s′|s, a) > 0 =⇒ P (s′|s, a) > 0. Based on Assumption 2, it holds

that g(s, a) = s′, therefore P (s′|s, a) = 1.
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Assumption 3 (Support Coverage). The support of expert transition distribution µE(s, s′)

is covered by µR(s, s′):

µE(s, s′) > 0 =⇒ µR(s, s′) > 0.

Combing Corollary 2 and Assumption 3, we can reach at the following:

Corollary 3. ∀(s, s′) ∼ µE(s, s′), µR(a|s, s′) > 0 =⇒ P (a|s, s′) = 1.

Lemma 3. Given a policy π̂, s.t. ∀(s, s′) ∼ µE(s, s′), π̂(a|s) ∝ µR(a|s, s′), then it satisfies

that:

∀π : S → A, DKL[µE(s′|s)||µπ(s′|s)] ≥ DKL[µE(s′|s)||µπ̂(s′|s)].

Proof. In a discrete state-action space, µπ(s′|s) can be denoted as µπ(s′|s) = Ea∼π(·|s)[P (s′|s, a)],

and the similar for µπ̂(s′|s):

DKL[µE(s′|s)||µπ̂(s′|s)]− DKL[µE(s′|s)||µπ(s′|s)]

=EµE(s,s′)

[
log

µE(s′|s)
µπ̂(s′|s)

− log
µE(s′|s)
µπ(s′|s)

]
=EµE(s,s′)

[
log µπ(s′|s)]− log µπ̂(s′|s)

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼π̂(·|s)[P (s′|s, a)]

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼µR(·|s,s′)[P (s′|s, a)]

]
=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
− EµE(s,s′)

[
logEa∼µR(·|s,s′)[1]

]︸ ︷︷ ︸
Corollary 3

=EµE(s,s′)

[
logEa∼π(·|s)[P (s′|s, a)]

]
≤EµE(s,s′)

[
logEa∼π(·|s)[1]

]
=0.

Remark 4. In a deterministic MDP, assuming the support of µE(s, s′) is covered by

µR(s, s), s.t. µE(s, s′) > 0 =⇒ µR(s, s′) > 0, then regulating policy using µR(·|s, s′) can
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minimize DKL[µE(s′|s)||µπ(s′|s)]:

∃π̃ : S → A, s.t. ∀(s, s′) ∼ µE(s, s′), π̃(·|s) ∝ µR(·|s, s′) =⇒ π̃ = arg min
π

DKL[µE(s′|s)||µπ(s′|s)].

Proof. Based on Lemma 3, we have that:

∀π : S → A, DKL[µE(s′|s)||µπ(s′|s)] ≥ DKL[µE(s′|s)||µπ̃(s′|s)].

Therefore, π̃ = arg minπ DKL[µE(s′|s)||µπ(s′|s)].

A.0.5.3 Estimating the Inverse Action Distribution

Theorem 7.

max
PI :S×S→A

−DKL[µR(a|s, s′)||PI(a|s, s′)] ≡ max
PI :S×S→A

E(s,a,s′)∼µR(s,a,s′)[logPI(a|s, s′)].

Proof.

− DKL[µR(a|s, s′)||PI(a|s, s′)]

= −
∫
S×S×A

µR(s, s′)µR(a|s, s′) log
µR(a|s, s′)
PI(a|s, s′)

dadsds′

= −
∫
S×S×A

µR(s, s′)µR(a|s, s′)
(

log µR(a|s, s′)− logPI(a|s, s′)
)
dadsds′

= H[µR(a|s, s′)]︸ ︷︷ ︸
fixed w.r.t. PI

+

∫
S×S×A

µR(s, s′)µR(a|s, s′) logPI(a|s, s′)dadsds′

= H[µR(a|s, s′)]︸ ︷︷ ︸
fixed w.r.t. PI

+EµR(s,a,s′)[logPI(a|s, s′)].

Note that we use H[µR(a|s, s′)] to denote the conditional entropy of µR(a|s, s′), with

H[µR(a|s, s′)] = EµR(s,a,s′)[− log µR(a|s, s′)].
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A.0.6 Derivation of Eq (4.8):

Jopolo(π,Q) = E(s,a,s′)∼µπ(s,a,s′)[r(s, s
′)− (BπQ−Q)(s, a)] + E(s,a)∼µR(s,a)[f∗((BπQ−Q)(s, a))],

where BπQ(s, a) = Es′∼P (·|s,a),a′∼π(·|s′)

[
r(s, s′) + γQ(s′, a′)

]
, and r(s, s′) = log µE(s,s′)

µR(s,s′)
.

Proof. The first term in the RHS of the above equation can be reduced to the following:

E(s,a,s′)∼µπ(s,a,s′)[r(s, s
′)− (BπQ−Q)(s, a)]

=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)

[
r(s, s′)−

(
(BπQ−Q)(s, a)

)]]
=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)[r(s, s

′)] +Q(s, a)− Es′∼P (·|s,a)[BπQ(s, a)]
]

=E(s,a)∼µπ(s,a)

[
Es′∼P (·|s,a)

XXXXX[r(s, s′)] +Q(s, a)− Es′∼P (·|s,a),a′∼π(·|s′)[
XXXXr(s, s′) + γQ(s′, a′)]

]
=E(s,a)∼µπ(s,a)

[
Q(s, a)− γEs′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)]

]
= (1− γ)

∞∑
t=0

γtEs∼µπt (s),a∼π(s)︸ ︷︷ ︸
see Table 4.1

[Q(s, a)]− (1− γ)
∞∑
t=0

γt+1Es∼µπt ,a∼π(·|s),s′∼P (·|s,a),a′∼π(·|s′)[Q(s′, a′)]]

=(1− γ)
∞∑
t=0

γtEs∼µπt ,a∼π(s)[Q(s, a)]− (1− γ)
∞∑
t=0

γt+1Es∼µπt+1,a∼π(·|s)[Q(s, a)]]

=(1− γ)Es∼p0,a0∼π(·|s0)[Q(s0, a0)].

Therefore:

Jopolo(π,Q) = (1− γ)Es∼p0,a0∼π(·|s0)[Q(s0, a0)] + E(s,a)∼µR [f∗((BπQ−Q)(s, a))].

A.0.7 Implementation Details of OPOLO

A.0.7.1 Practical Considerations for Algorithm Implementation

We provide some practical considerations to effectively implement our algorithm:
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Initial state sampling: To increase the diversity of initial samples, we use state samples

from an off-policy buffer and treat them as virtual initial states. A similar strategy is adopted

by [88].

Constant shift on synthetic rewards: In practice, we adopt the same strategy of prior

art [189] to use r(s, s′) = − log(1−D(s, s′)), instead of log(D)−log(1−D) as the discriminator

output. A fully optimized discriminator D∗ satisfies − log(1−D∗(s, s′)) = log(1 + µE(s,s′)
µR(s,s′)

),

which corresponds to a constant shift on µE(s,s′)
µR(s,s′)

before the log term.

Q and π network update: We follow the advice of AlgeaDICE [122] by using a

target Q network and policy gradient clipping. Especially, when taking the gradients of

Jopolo(π,Q, α) w.r.t.Q, we use the value from a target Q network to calculate BπQ(s, a) in

order to stabilize training; on the other hand, since an optimal x∗(s, a) = (BπQ∗−Q∗)(s, a) =

µπ(s,a)
µR(s,a)

represents a density ratio and should always be non-negative, we clip (BπQ−Q)(s, a)

to above 0 when taking gradients w.r.t.π.

A.0.7.2 Hyper-parameters

Table A.4 lists the hyper-parameters for GAIL [68], GAIfO [171], BCO [169], DAC [87], and

our proposed approach OPOLO. Specifically, for off-policy approaches, each self-generated

interaction will be stored the replay buffer in a FIFO manner, and update frequency is the

number of interactions sampled from the MDP after which the module is updated. Moreover,

considering the different scales for the gradients of J(πθ, Qφ) and JReg(πθ) in Algorithm 4.1,

we apply a coefficient λ for OPOLO to adjust the regularization strength when calculating

the total policy loss:

θ ← θ + α
(
JOθ(πθ, Qφ) + λJOθJReg(πθ)

)
.

A.0.8 Challenges of DICE without Expert Actions

In this section, we analyze the principle of offline imitation learning using DICE [121, 201,

122] and the reason that impedes its direct application to an LfO setting.
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Hyper-parameters Value
Shared Parameters for Off-Policy Approaches
Buffer size 107

Batch size 100
Learning rate 3e−4

Discount factor γ 0.99
Network architecture MLP [400, 300]
Q, π update frequency / gradient steps 103/103

D update frequency / gradient steps 500/10
Shared Parameters for On-Policy Approaches
Batch size 2048
mini-Batch size 256
Learning rate 3e−4

Discount factor γ 0.99
Network architecture MLP [400, 300]

BCO
PI pre-train gradient steps 104

PI update frequency / gradient steps 103/100
DAC
Number of extra absorbing states 1

OPOLO
PI update frequency / gradient steps 500/50
PI regularization coefficient λ 0.1

Table A.4: Hyper-parameters for Different Algorithms.

In a LfO setting where expert actions are unavailable, the learning objective is to minimize

the discrepancy of state-only distributions induced by the agent and the expert. Without

loss of generality, we consider an arbitrary f-divergence Df as the discrepancy measure:

max
π
−Df [µπ(s, s′)||µE(s, s′)]

= max
π

min
x:S×S→R

Eµπ(s,s′)[−x(s, s′)] + EµE(s,s′)[f
∗(x(s, s′))], (A.3)

in which f ∗(x) is the conjugate of f(x) for the f -divergence. To remove the on-policy

dependence of µπ(s, s′), we follow the rationale of DICE and use a similar change-of-variable

trick mentioned in Sec 4.3.2 to learn a value function v(s, s′):

v(s, s′) := −x(s, s′) + γEa′∼π(.|s′),s′′∼P (.|s′,a′)[v(s′, s′′)] = −x(s, s′) + Bπv(s, s′).
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This value function is a fixed point solution to an variant Bellman operator Bπ, which,

however, is problematic in a model-free setting. To see this, we substitute x(s, s′) by (Bπv−

v)(s, s′) to transform Eq (A.3) into the following:

max
π

min
x:S×S→R

Eµπ(s,s′)[−x(s, s′)] + EµE(s,s′)[f
∗(x(s, s′))]

= max
π

min
v:S×S→R

(1− γ)Es0∼p0,s1∼P (·|s0,π(s0))︸ ︷︷ ︸
term 1

[v(s0, s1)] + EµE(s,s′)[f
∗((Bπv − v)(s, s′))]︸ ︷︷ ︸

term 2

.

where Bπv(s, s′) = γEa′∼π(.|s′),s′′∼P (.|s′,a′)[v(s′, s′′)]. Optimizing this objective is trouble-

some, in that the Bπv(s, s′) in term 2 requires knowledge of P (·|s, π(s)), ∀s ∼ µE(s). In

another word, for any state sampled from the expert distribution, we need to know what

would be the next state if following policy π from this state. A similar issue is echoed in

term 1, where s1 is sampled from P (·|s0, π(s0)). Consequently, directly applying DICE loses

its advantage in a LfO setting, as it incurs a dependence on a forward transition model,

which is costly to estimate and may counteract the efficiency brought by off-policy learning.
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APPENDIX B

APPENDIX FOR FEDGEN

B.0.1 Notations and Preliminaries

Let X ⊂ Rp be the input space, Z ⊂ Rd be the latent feature space, and Y ⊂ R be the output

space. R : X → Z denotes a representation function that maps inputs into features. T

denotes a domain (or task), which consists of a data distribution D over X and a ground-

truth labeling function c∗ : X → Y . Given a domain T := 〈D, c∗〉 and a representation

function R, we use D̃ to denote the induced image of D under R [17], s.t. given a probability

event B,

Ez∼D̃[B(z)] = Ex∼D[B(R(x))].

Accordingly, c̃∗ denotes the induced labeling function under R:

c̃∗(z) := Ex∼D [c∗(x)|R(x) = z] .

Let h : Z → Y denote a hypothesis that maps features to predicted labels, and H ⊆ {h :

Z → Y} denote a hypothesis class. For our analysis, we assume the FL tasks are for binary

classification, i.e. Y = {0, 1}, and the loss function is 0-1 bounded, with l(ŷ, y) = |ŷ − y|.

Same assumptions have been adopted by various prior art [17, 18, 16, 103, 17].

Given two distributions D and D′, dH(D,D′) is defined as the H-divergence between D

and D′, i.e.:

dH(D,D′) := 2 sup
A∈AH

|PrD(A)− PrD′(A)|},

where AH is a set of measurable subsets under D and D′ for certain h ∈ H. Moreover, H4H

is defined as the symmetric difference hypothesis space [18], i.e.:

H4H := {h(z)⊕ h′(z), h, h′ ∈ H}

106



where ⊕ denotes the XOR operator, so that h(z) ⊕ h′(z) indicates that h and h′ disagrees

with each other. Accordingly, AH4H is a set of measurable subsets for ∀ h(z)⊕h′(z) ∈ H4H.

Then dH4H(·, ·) is defined as the distribution divergence induced by the symmetric difference

hypothesis space [18]:

dH4H(D,D′) := 2 sup
A∈AH4H

|PrD(A)− PrD′(A)|}.

Specifically, let D,D′ be two arbitrary distributions on the input space X , and let D̃, D̃′

be their induced images over R. Then based on the definition of dH4H(·, ·), one can have:

dH4H(D̃, D̃′) = 2 sup
A∈AH4H

|Ex∼D [Pr(A(R(x)))]− Ex∼D′ [Pr(A(R(x)))]|

= 2 sup
A∈AH4H

|Ez∼D̃ [Pr(A(x))]− Ez∼D̃′ [Pr(A(z))]|

= 2 sup
A∈AH4H

|PrD̃(A)− PrD̃′(A)|}.

B.0.2 Derivations of Remark 5

Remark. Let p(y) be the prior distribution of labels, and r(z|y) : Y → Z be the conditional

distribution derived from generator Gw. Then regulating a user model θk using samples from

r(z|y) can minimize the conditional KL-divergence between two distributions, derived from

the user and from the generator, respectively:

max
θk

Ey∼p(y),z∼r(z|y) [log p(y|z;θk)] ≡ min
θk

DKL[r(z|y)‖p(z|y;θk)],

Proof. Expanding the KL-divergence, we have

∵ DKL[r(z|y)‖p(z|y;θk)] ≡ Ey∼p(y)

[
Ez∼r(z|y)

[
log

r(z|y)

p(z|y;θ)

]]
= Ey∼p(y)Ez∼r(z|y) [log r(z|y)]− Ey∼p(y)Ez∼r(z|y) [log p(z|y;θ)]

= − H(r(z|y))
constant w.r.t θk

− Ey∼p(y)Ez∼r(z|y)[log p(z|y;θ)].
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where H(r(z|y)) is constant w.r.t θk. Therefore when optimizing θk we have:

min
θk

DKL[r(z|y)‖p(z|y;θk)]

≡min
θk
− Ey∼p(y),z∼r(z|y) [log p(z|y;θk)]

≡max
θk

Ey∼p(y)Ez∼r(z|y)[log
p(y|z;θk)p(z)

p(y)
]

≡max
θk

Ey∼p(y)Ez∼r(z|y)[log p(y|z;θk) + log p(z)− log p(y)]

≡max
θk

Ey∼p(y)Ez∼r(z|y)[log p(y|z;θk)].

where H(r(z|y)) denotes the entropy of the probability distribution r(z|y) which is not

optimizable w.r.t θk, and p(z|y;θk) := p(y|z;θk)p(z)
p(y)

is defined as the probability that the input

representation to the predictor is z if it yields a label y.

B.0.3 Derivations of Theorem 2

Before deriving Theorem 1, we first present an upper-bound for the generalization perfor-

mance from prior art [17], which analyzes the role of a feature representation function in the

context of domain adaptation:

Lemma 4. Generalization Bounds for Domain Adaptation [17, 18]:

Let TS and TT be the source and target domains, whose data distributions are DS and DT .

Let R : X → Z be a feature representation function, and D̃S, D̃T be the induced images of

DS and DT over R, respectively. Let H be a set of hypotheses with VC-dimension d. Then

with probability at least 1− δ, ∀ h ∈ H:

LTT (h) ≤ L̂TS(h) +

√
4

m

(
d log

2em

d
+ log

4

δ

)
+ dH4H(D̃S, D̃T ) + λ, (B.1)

where e is the base of the natural logarithm, L̂TS(h) is the empirical risk of the source

domain given m observable samples, and λ = minh∈H (LTT (h) + LTS(h)) is the optimal risk

on the two domains.
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One insight from Lemma 4 is that a good representation function plays a tradeoff be-

tween minimizing the empirical risk (L̂TS(h)) and the induced distributional discrepancy (

dH4H(D̃S, D̃T )). Based on Lemma 4, one can establish Theorem 1 as the following:

Theorem. (Generalization Bounds for FL) Consider an FL system with K users. Let

Tk = 〈Dk, c∗〉 and T = 〈D, c∗〉 be the k-th local domain and the global domain, respectively.

Let R : X → Z be a feature extraction function that is simultaneously shared among users.

Let hk denote the hypothesis learned on domain Tk, and h = 1
K

∑K
k=1 hk be the global ensemble

of user predictors. Then with probability at least 1− δ:

LT (h) ≤ 1

K

∑
k∈[K]

L̂Tk(hk) +
1

K

∑
k∈[K]

(dH4H(D̃k, D̃) + λk) +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
,

where L̂Tk(hk) is the empirical risk of hk, λk := minh(LTk(h) + LT (h)) denotes an oracle

performance on Tk and T , and D̃k and D̃ is the induced image of Dk and D from R,

respectively, s.t. Ez∼D̃k [B(z)] = Ex∼Dk [B(R(x))] given a probability event B, and so for D̃.

Proof. By treating each one of the local domains k ∈ [K] as the source and the global domain

as the target, one can have that, ∀ δ > 0, with probability 1− δ
K
:

LT (hk) ≤ L̂Tk(hk) + dH4H(D̃k, D̃) + λk +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
.

Also, due to the convexity of risk function and Jesen inequality, one can have:

LT (h) ≡ LT

 1

K

∑
k∈[K]

hk

 ≤ 1

K

∑
k∈[K]

LT (hk).

Therefore,

Pr

LT (h) >
1

K

∑
k∈[K]

L̂Tk(hk) +
∑
k∈[K]

(dH4H(D̃k, D̃) + λk) +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
≤Pr[ 1

K

∑
k∈[K]

LT (hk) >
1

K

∑
k∈[K]

(L̂Tk(hk) +
∑
k∈[K]

(dH4H(D̃k, D̃) + λk) +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
)]

≤Pr

 ∨
k∈[K]

LT (hk) > L̂Tk(hk) + dH4H(D̃k, D̃) + λk +

√
4

m

(
d log

2em

d
+ log

4K

δ

)
≤
∑
k∈[K]

δ

K
= δ.
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Theorem 1 shows that the performance of the aggregated hypothesis is upper-bounded

by: 1) the local performance of each user hypothesis (L̂Tk(hk)), 2) the dissimilarity between

the global and local distributions over the feature space (dH4H(D̃k, D̃)), 3) the oracle per-

formance (λk), and 4) the numerical constraints regarding the number of empirical samples

m and the VC-dimension d.

B.0.4 Derivations of Corollary 1

Corollary. Let T , Tk, R defined as in Theorem 1. DA denotes an augmented data distri-

bution, and D′k = 1
2
(Dk +DA) is a mixture of distributions. Accordingly, D̃A and D̃′k denote

the induced image of DA and D′k over R, respectively. Let D̂′k = D̂k ∪ D̂A be an empirical

dataset of D′k, with |D̂k|=m, |D̂′k| = |D̂k|+ |D̂A| = m′ . Assume the discrepancy between D̃A

and D̃ is bounded, s.t ∃ ε > 0, dH4H(D̃A, D̃) ≤ ε, then with probability 1− δ:

LT (h) ≤ 1

K

∑
k

LT ′k(hk) +
1

K

∑
k

(dH4H(D̃′k, D̃)) +
1

K

∑
k

λ′k +

√
4

m′

(
d log

2em′

d
+ log

4K

δ

)
,

(B.2)

where T ′k = {D′k, c∗} is the updated local domain, λ′k = minh(LT ′k(h) + LT (h)) denotes the

oracle performance, and dH4H(D̃′k, D̃) ≤ dH4H(D̃k, D̃) when ε is small.

Proof. Equation B.2 can be directly derived by Theorem 1. We now focus on analyzing the

relation between dH4H(D̃k, D̃) and dH4H(D̃′k, D̃), which is the data dissimilarity before and

after data augmentation using samples from distribution DA, respectively.
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Based on the definition of dH4H(·, ·), one can derive that:

dH4H(D̃′k, D̃)

=2 sup
A∈AH4H

∣∣∣Ez∼D̃′k [Pr(A(z))]− Ez∼D̃ [Pr(A(z))]
∣∣∣

=2 sup
A∈AH4H

∣∣∣Ez∼ 1
2

(D̃k+D̃A) [Pr(A(z))]− Ez∼D̃ [Pr(A(z))]
∣∣∣

=2 sup
A∈AH4H

∣∣∣∣12Ez∼D̃K [Pr(A(z))] +
1

2
Ez∼D̃A [Pr(A(z))]− Ez∼D̃ [Pr(A(z))]

∣∣∣∣
≤ sup
A∈AH4H

∣∣Ez∼D̃K [Pr(A(z))]− Ez∼D̃ [Pr(A(z))]
∣∣

+ sup
A∈AH4H

∣∣Ez∼D̃A [Pr(A(z))]− Ez∼D̃ [Pr(A(z))]
∣∣

=
1

2
dH4H(D̃k, D̃) +

1

2
dH4H(D̃A, D̃).

It is clear that 1
2
dH4H(D̃A, D̃), which is bounded by ε, affects the dissimilarity between the in-

duced image of local and the global distribution, therefore plays a key role in upper-bounding

the global performance (LT (h) in Equation B.2). Next, we discuss different scenarios when

FL can benefit from such augmented data, and when the quality of augmented distribution

DA can limit the generalization performance of the aggregated model.

DA can benefit local users when ε is small: To see this, one can assume that:

dH4H(D̃A, D̃) = ε ≤ min
k
dH4H(D̃k, D̃),

of which the intuition is that, after feature mapping, the discrepancy between the augmented

distribution and the global distribution is smaller than the discrepancy between an individual

user and the global. Based on this assumption, one can conclude that ∀ Tk ∈ T :

dH4H(D̃′k, D̃) =
1

2
dH4H(D̃k, D̃) +

1

2
dH4H(D̃A, D̃)

≤1

2
dH4H(D̃k, D̃) + min

j
dH4H(D̃j, D̃)

≤dH4H(D̃k, D̃),
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Therefore, a small dH4H(D̃A, D̃) benefits local users w.r.t their generalization performance,

by both reducing the data discrepancy and enriching the empirical samples, in that:

LT (hk) ≤ LT ′k(hk) + λ′k +≤ dH4H(D̃′k, D̃)︸ ︷︷ ︸
≤dH4H(D̃k,D̃)

+

√
4

m′

(
d log

2em′

d
+ log

4

δ

)
︸ ︷︷ ︸

≤
√

4
m

(d log 2em
d

+log 4
δ

)

( Lemma 4).

DA has positive effects on the generalization performance when ε is moderate:

Instead, one might as well assume that

dH4H(D̃A, D̃) = ε ≤ 1

K

K∑
k=1

dH4H(D̃k, D̃),

which implies that, after feature mapping over R, the dissimilarity between DA and the

global distribution D is at least as small as the average dissimilarity between local users and

the global. Based on this assumption, one can derive that:

∑
k

dH4H(D̃′k, D̃) ≤
∑
k

dH4H(D̃k, D̃),

√
4

m′

(
d log

2em′

d
+ log

4

δ

)
≤

√
4

m

(
d log

2em

d
+ log

4

δ

)
,

which can still contribute to a tighter upper-bound for the global performance in Equa-

tion B.2, compared with not using the augmented data.

Conversely, when ε is over-large, which implies that DA is not relevant to the original FL

task, it may have negative impacts on the generalization performance.

B.0.5 Practical Settings of FedGen

We first discuss some practical considerations for implementing our algorithm:

• Weighting user models: User models vary in their ability to predict certain labels

over others due to their statistical heterogeneity. Therefore, we use the number of

training labels available to users to summarize a weight matrix Λ = {λck|c ∈ Y , k ∈

{1, 2, · · · , K}}, s.t. ∀c, i, j, λci
λcj

=
nci
ncj

indicates the ratio of training samples for label c

between two users i and j, and
∑

k λ
c
k = 1 ∀c ∈ Y . We then apply this weight matrix
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to adjust the generator objective as the following:

min
w

J(w) := Ey∼p̂(y)Ez∼Gw(z|y)

[
λykl

(
σ

(
1

K

∑K

k=1
g(z;θpk)

)
, y

)]
.

We found that this weighted objective can further mitigate the impact of negative

ensemble, especially when a teacher model is too weak to predict certain labels due to

lacking training samples of that category.

• Stochastic generative learning: Built upon prior arts on generative learning [83],

we use an auxiliary noise vector with dimension dn to infer the desirable feature rep-

resentation for a given label y, s.t. z ∼ Gw(·|y) ≡ Gw(y, ε|ε ∼ N (0, I)). To further

increase the diversity of the generator output, we also leverage the idea of diversity

loss from prior work [114] to train the generator model.

B.0.6 Prototype Results

User 1 User 2 User 3 Oracle

Before 97.1 81.3 81.2
98.4

After 98.6 98.3 98.2

Table B.1: Accuracy (%) before

and after KD.

We adopt a one-round FL setting for the prototype exper-

iment, for which the dataset distributions of local users,

as well as their model decision boundaries before and af-

ter knowledge distillation, are illustrated in Figure B.1.

Accuracy of user models on the global dataset is also

summarized in Table B.1, from which one can observe

that the generalization performance of user models have

been notably improved by the distilled knowledge.

B.0.7 Experimental Setup

We provide the network architecture for the generator and the classifier in Table B.2 and

Table B.3. For the generator Gw, we adopt a two-MLP layer network. It takes a noise vector

ε and a one-hot label vector y as the input, which, after a hidden layer with dimension dh,

outputs a feature representation with dimension d. For the classifier, we adopt a network
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(a) Local user data distribution and total data distribution.

(b) User models generate biased decision boundaries before KD, provided with incom-
plete local data.

(c) Decision Boundaries of user models are improved after KD.

Figure B.1: Knowledge distillation process for the prototype experiment.

architecture with a CNN module followed by an MLP module. Hyperparameter settings for

the experiments are provided in Table B.2 and B.3.

Dataset Hyperparameter Value
CelebA dn, dh, d 32, 128, 32

Mnist& EMnist dn, dh, d 32, 256, 32

Table B.2: Network architecture for the generator Gw.
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Dataset Hyperparameter Value

CelebA
CNN Module [16, M, 32, M, 64]
MLP Module [784, 32]

Mnist
& EMnist

CNN Module [6, 16]
MLP Module [784, 32]

Table B.3: Network architecture for the classification model.

B.0.8 FedGen with Partial Parameter Sharing

Algorithm B.1 summarizes a variant approach of FeDGen for a specific FL setting, where

only the last prediction layer is shared among users while keeping the feature extraction

layers localized.

Algorithm B.1: FeDGen with Partial Parameter Sharing
1: Require: Tasks Tk, k ∈ {1, · · · , K};
2: Global predictor θp, local parameters {θk = [θfk ;θpk]}Kk=1;
3: Generator parameter w; p̂(y) uniformly initialized;
4: Learning rate α, β, local steps T , batch size B, local label counter ck.
5: repeat
6: Server selects active users A uniformly at random, then broadcast w,θp, p̂(y) to A.
7: for all user k ∈ A in parallel do
8: θpk ← θp,
9: for t = 1, . . . , T do
10: {xi, yi}Bi=1 ∼ Tk, {ẑi ∼ Gw(·|ŷi), ŷi ∼ p̂(y)}Bi=1.
11: Update label counter ck.
12: θk ← θk − β∇θkJ(θk).

13: User sends θpk, ck back to server.
14: Server updates θp ← 1

|A|
∑

k∈A θ
p
k, and p̂(y) based on {ck}k∈A.

15: w ← w − α∇wJ(w).
16: until training stop

B.0.9 Extended Experimental Results

We elaborate the learning curves trained on the Mnist, CelebA, and EMnist dataset in

Figure B.2, Figure B.3, and Figure B.4, respectively, with their performance summarized in

Table B.4.
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(d) α = 10

Figure B.2: Performance curves on Mnist dataset, where a smaller α denotes larger data
heterogeneity.
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(a) r = 9/10.
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(b) r = 5/10.
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(c) r = 5/25.
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(d) r = 0.4.

Figure B.3: Performance curves on CelebA dataset.
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(a) α = 0.05, T = 20

0 50 100 150 200
Communication rounds

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Te
st
 A
cc

ur
ac

y

Test Classification Accuracy.
FedGen
FedAvg
FedProx
Ensemble
FedDistill
FedDistill+
FedFusion

(b) α = 0.1, T = 20

0 50 100 150 200
Communication rounds

0.650

0.675

0.700

0.725

0.750

0.775

Te
st

 A
cc

ur
ac

y

Test Classification Accuracy.

(c) α = 1, T = 20
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(d) α = 10, T = 20

0 25 50 75 100
Communication rounds

0.550

0.575

0.600

0.625

0.650

0.675

0.700

Te
st

 A
cc

ur
ac

y

Test Classification Accuracy.

(e) α = 0.05, T = 40
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(f) α = 0.1, T = 40
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(g) α = 1, T = 40
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(h) α = 10, T = 40

Figure B.4: Performance curves on EMnist dataset, under different kinds of data hetero-
geneity and communication frequencies.
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Top-1 Test Accuracy.
Dataset Setting FedAvg FedProx FedEnsemble FedDistill FedDistill+ FedDFusion FeDGen

Mnist

α = 0.05 87.70±2.07 87.49±2.05 88.85±0.68 70.56±1.24 86.70±2.27 90.02±0.96 91.30±0.74
α = 0.1 90.16±0.59 90.10±0.39 90.78±0.39 64.11± 1.36 90.28±0.89 91.11±0.43 93.03±0.32
α = 1 93.84±0.25 93.83 ± 0.29 93.91±0.28 79.88±0.66 94.73±0.15 93.37±0.40 95.52±0.07
α = 10 94.23±0.13 94.06±0.10 94.25±0.11 89.21±0.26 95.04±0.21 93.36±0.45 95.79±0.10

CelebA
r = 5/10 87.48±0.39 87.67±0.39 88.48±0.23 76.68±1.23 86.37±0.41 87.01±1.00 89.70±0.32
r = 5/25 89.13±0.25 88.84±0.19 90.22±0.31 74.99±1.57 88.05± 0.43 88.93±0.79 89.62±0.34
r = 10/25 89.12±0.20 89.01±0.33 90.08±0.24 75.88±1.17 88.14±0.37 89.25±0.56 90.29±0.47

EMnist,
T=20

α = 0.05 62.25±2.82 61.93±2.31 64.99±0.35 60.49±1.27 61.56±2.15 70.40±0.79 68.53±1.17
α = 0.1 66.21±2.43 65.29±2.94 67.53±1.19 50.32±1.39 66.06±3.18 70.94±0.76 72.15±0.21
α = 1 74.83±0.99 74.12±0.88 75.12±1.07 46.19±0.70 75.41±1.05 75.43±0.37 78.48±1.04
α = 10 74.83± 0.69 74.24±0.81 74.90±0.80 54.77±0.33 75.55 ±0.94 74.36±0.40 78.43±0.74

EMnist,
T=40

α = 0.05 64.51±1.13 63.60±0.69 65.74±0.45 60.73±1.62 60.73±1.06 70.46±1.16 67.64 ±0.75
α = 0.1 67.71±1.31 66.79±0.77 68.96±0.66 49.54±1.18 67.01±0.38 71.55±0.43 70.90 ±0.49
α = 1 77.02±1.09 75.93 ±0.95 77.68±0.98 46.72±0.73 78.12±0.90 77.58±0.37 78.92± 0.73
α = 10 77.52±0.66 76.54±0.71 77.92±0.62 54.85±0.44 78.37±0.76 77.31±0.45 79.29±0.53

Table B.4: Performance overview under different data heterogeneity settings. For
Mnist and EMnist, user data follows the Dirichlet distribution with hyperparameter α,
with a smaller α indicating higher heterogeneity. For CelebA, r denotes the ratio between
active users and total users. T denotes the local training steps (communication delay). All
the above experiments use batch size B=32.
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APPENDIX C

APPENDIX FOR FEDRESCUE

C.0.1 Case Study: Effects of Progressive Learning

For this prototype experiment, we apply the same network architecture used for learning

DigitsFive domains, which is presented in Section C.0.6.1. We illustrate the progressive

and overwriting learning approaches in Figure C.1 and Figure C.2, respectively. For progres-

sive learning, parameters in θ×0.5 are updated first for learning the Mnist domain, which

are then frozen when updating parameters in θ×1.0\θ×0.5 for learning the Synthetic do-

main. Contrarily, the overwriting approach updates the entire set of model parameters when

learning on the Synthetic domain. We set the learning rate to 0.01 and train 10 epochs

for learning each domain, with a batch size set to be 32. For the 10% (5%) training data

setting, we apply 743 (371) training samples for learning both Mnist and Synthetic do-

mains. Experimental results are averaged from 6 random seeds, with seed numbers set to be

1, 3, 5, 7, 9, 11, respectively.

As shown in Table C.1 and Table C.2, the overwriting learning procedure leads to drastic

information forgetting on the previously learned domain (Mnist). On the contrary, evalua-

tions on both the ×0.5 model and ×1.0 model indicate that a progressive learning scheme can

adaptively build up knowledge on the new training data without undermining the preced-

ing knowledge representations. In fact, the new collateral connections that are progressively

learned can also improve the overall model performance on the Mnist domain. For instance,

when training using 5% of domain data, model performance on the Mnist domain has been

improved from 66.46% (on the ×0.5 model) to 72.27% (on the ×1.0 model), which verifies

the advantage of our progressive model learning strategy.
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Figure C.1: Illustration of progressive learn-
ing.

Figure C.2: Illustration of overwriting learn-
ing.

Accuracy (%) Evaluated on the × 1.0 Model
Domain Progressive Overwriting

Given 10 % training data
Mnist 77.95±7.93 38.17±28.19
Synthetic 69.48±1.93 42.30±32.30

Given 5 % training data
Mnist 72.27±9.43 19.60±17.53
Synthetic 52.43±5.88 19.03±16.32

Table C.1: Progressive vs. overwrit-
ing learning.

Accuracy (%) of Mnist on the × 0.5 Model
Train data Progressive Overwriting

Given 10 % training data
10% 74.99±11.26 33.51±24.95

Given 5 % training data
5% 66.46±14.20. 19.23±16.21

Table C.2: The overwriting learning
approach leads to severe forgetting
on the previously learned knowledge.

C.0.2 Details of Evaluated Related Work

One related approach to learn prunable models is the slimmable network proposed in [196],

which works by sampling a set of pruning ratios P = {pi|0 < pi ≤ 1}|P |i=1 then performing a

batch gradient update, as summarized in Algorithm C.1. During each learning iteration, a

constant copy of the complete network θ̄ is referred to as teacher, whose prediction distri-

bution p(·|x; θ̄) ∝ f(x;θ) is distilled into the submodel θ×pi , i.e. the student. The gradients

for both teacher and student models are later aggregated to update the network parameter.

Slimmable learning is proposed for non-FL settings, where sufficient data is accessible

on a central machine. There are potential drawbacks of directly applying it to our FL setting.

First is the error propagation issue: when the teacher model is underperforming e.g. given

insufficient training or connection loss, its sub-optimality may be propagated back into the

student. In contrast, we propose an objective (in Equation 6.1) that alleviates this issue by
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introducing minθ×p L(f(X ;θ×p),Y), which allows submodels to receive label supervisions.

Second, the gradients for different submodels may interfere with each other when being

aggregated, which weakens the model’s learning effect, as verified in Section 6.5.6.2.

Another compared related work is FjORD [69], which also learns prunable networks

for a heterogeneous FL system. We summarize its local model updating procedure in Algo-

rithm C.2. In practice, we also apply loss backpropagation through the teacher model (i.e.

line 9 in Algorithm C.2) when optimizing towards the FjORD objectives, which is suggested

in [69] to further improve their model performance. Note that FjORD does not involve pro-

gressive parameter updates, the effects of which will be elaborated more in Section C.0.4.1.

In our experiments, we explore different choices of S and perform evaluations on FjORD

and FedSlim using their optimal S accordingly.

Algorithm C.1: Slimmable-Training ([196])
1: Inputs: training dataset D ⊂ X × Y ; model with parameter set θ; pruning ratios P ,

learning rate η, loss function L, constant S ≤ |P|.
2: repeat
3: Sample batch x, y ∼ D.
4: Sample widths P̂ = [pi|pi ∼ P ]Si=1.
5: θ̄ ← stop_gradient(θ).
6: for pi ∼ P̂ do
7: gi ← ∇θ×piKL[f(x; θ̄)‖f(x;θ×pi)].

8: gθ ← ∇θL(f(x;θ), y)
9: Update parameter θ ← θ − η ∗ (gθ +

∑
i∈|S| gi)

10: until training stop

C.0.3 Experiments

C.0.3.1 Treatments on Batch Normalization Layers

The BatchNorm layers need to be carefully tackled for effectively training prunable mod-

els. Prior arts either make the BatchNorm layers localized on user devices to improve

personalized FL, such as proposed in FedBN[100], or learn individual BatchNorm mod-

ules for each possible submodel [196], which unnecessarily inreases the number of learnable
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Algorithm C.2: Local Model Update for FjORD([69])
1: Inputs: training dataset D ⊂ X × Y ; model with parameter set θ; pruning ratios P ,

learning rate η, loss function L, constant S ≤ |P|.
2: repeat
3: Sample batch x, y ∼ D.
4: Sample widths P̂ = [pi|pi ∼ P ]Si=1. . (S = 1 in [69])
5: θ̄ ← stop_gradient(θ).
6: for pi ∼ P̂ do
7: gi ← ∇θ×pi

{
L(f(X ;θ×pi),Y) + DKL[f(x; θ̄)‖f(x;θ×pi)]

}
.

8: gθ ← ∇θL(f(x;θ), y)
9: Update parameter θ ← θ − η ∗ (gθ +

∑
i∈|S| gi)

10: until training stop

parameters. In our work, we apply a lightweight approach that still shares the trainable pa-

rameters in BatchNorm layers, while disabling tracking the running average and variance

of training batches, which proves to be an effective scheme across different datasets [39]. For

fair comparisons, we apply the same strategy on all baselines, including the FedAvg.

Table C.3 summarizes the impacts of different practices regarding BatchNorm layers on

the FedAvg performance, which indicates that personalizing BN layers, as FedBN applies,

might not be good practice for learning i.i.d. yet complicated domains such as CelebA. On

the contrary, decoupling feature learning from relying on tracking the mean and variance

of training data, proves to be effective on both FedAvg and our proposed self-distillation

approach.

Effects of Different BatchNorm Layer Configurations.

Algorithm Personalized
BN Layers

Tracking
Training Status

Test Accuracy (%)
(Given 100% training)

Test Accuracy (%)
(Given 20% training)

FedAvg∗ × × 81.06±0.63 68.03±0.50
FedAvg × X 79.73±0.22 68.14±0.47
FedBN X X 76.12±0.74 60.41±0.57
Table C.3: We adopted FedAvg∗ as the baseline implementation in the main paper.
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C.0.3.2 Overview of Communication Efficiency

We summarize the communication efficiency of evaluated algorithms on CelebA domain in

Table C.4, where evaluation is performed under a heterogeneous FL system. Results demon-

strate that FedResCuE requires the least communication rounds to reach the predefined

accuracy.

Communication Efficiency on CelebA Dataset, Cluster Setting

Accuracy Model
Size FedHetero FjORD∗ FedSlim∗ FedResCuE

100 % training data, 0.1 ≤ er ≤ 0.2.
65% w×1 - - - 174.7±22.2
60% w×0.5 256.7±19.3 218.0±5.9 253.3±26.5 124.7±11.1
55% w×0.25 222.7±6.8 165.3±5.2 190.7±23.8 85.3±1.9

20 % training data, er = 0
60% w×1 - 244.0±33.5 188.7±133.4 166.0±14.2
55% w×0.5 180.7±14.8 156.0±13.4 192.0±7.1 96.0±2.8
50% w×0.25 163.3±11.5 122.7±4.1 168.7±5.2 76.7±1.9

Table C.4: Communication Efficiency Overview, where ‘-’ indicates that predefined perfor-
mance is not reached before training ends.

C.0.3.3 Performance with System Heterogeneity

In addition to the discussion in Section 6.5.2 of the main paper, we provide two more ob-

servations regarding system heterogeneity: 1) when FL is free from the risk of a connection

interruption, a uniform setting in which the same model architecture is assigned to all the

edge devices, is generally more beneficial than a cluster setting, where heterogeneous and

smaller models are enabled. This result conforms to our perception that larger models can

capture more representative feature maps for the learning domain, while smaller models sac-

rifice such information gain for computation and communication efficiency. 2) Contrarily,

the diversity in model architecture makes FL resilient to connection loss to some extent.

Specifically, performing parameter-wise averaging on heterogeneous models, just as Fed-

Hetero applies, can potentially make submodels within the global model function as well,

in that the submodel parameters are contributed by smaller-capacity users. Therefore, it
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can outperform FedAvg under unpredictable connection losses, although such an advantage

is much less effective than FedResCuE with self-distillation learning. We provide a more

comprehensive summary in Table C.5, with the accompanying learning curves illustrated in

Section C.0.5.

Global Model Accuracy (%) Evaluated on CelebA.
Training
Data

User
Capacity

Evaluated
Model FedAvg FedHetero FjORD∗ FedSlim∗ FedResCuE

100%
uniform w×1 81.06±0.63 - 80.57±0.91 81.14±0.76 81.39±0.20

w×0.5 49.46±1.10 - 77.59±0.31 77.47±0.75 77.82±0.15
w×0.25 18.57±0.64 - 69.94±0.65 70.47±0.61 71.19±0.19

cluster w×1 - 76.80±0.53 75.71±0.47 77.49±0.40 78.22±0.41
w×0.5 - 76.08±0.50 75.35±0.43 77.12±0.40 77.58±0.33
w×0.25 - 68.56±0.51 70.98±0.75 73.22±0.34 73.25±0.47

20%
uniform w×1 68.03±0.50 - 67.89±1.47 67.96±0.72 71.27±0.27

w×0.5 36.56±1.74 - 65.13±1.70 64.80±1.19 68.15±0.39
w×0.25 16.47±2.24 - 61.38±1.69 59.56±1.39 61.12±1.35

cluster w×1 - 59.38±0.41 62.43±1.65 59.53±0.86 64.53±1.06
w×0.5 - 59.95±0.36 63.06±1.61 60.36±0.45 66.37±0.78
w×0.25 - 55.41±0.39 61.86±1.21 58.31±0.23 61.98±0.85

Table C.5: FL Performance with i.i.d. user statistical distributions.

C.0.3.4 Performance Under Connection Loss

In our experiments, we simulate the unpredictable transmission scenarios with connection

loss via a random variable er, which denotes the probability that the current column trans-

mission is interrupted. For experiments on the CelebA domain, er is first uniformly sampled

within an error bound (e.g. er ∈ [0.1, 0.2]). Next, we use er to determine whether the current

column transmission will be interrupted, by comparing it against another uniformly-sampled

random variable ε, which leads to interruption iff ε < er. We perform such random sampling

on er and ε for transmitting each column in a model, while a column for transmission is set

to be ×0.125 of the global model width.

Performance overview on the CelebA domain given different connection loss rates is

presented in Table C.6. For experiments on the DigitsFive domains, we set constant er

that depends on the domain type. Performance on all five domains is provided in Table C.7.
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Note that we applied a small training dataset from DigitsFive to ensure the necessity of

FL, so that Local learning without parameter sharing yields worse performance than FL.

Global Model Accuracy (%) Evaluated on CelebA Under Connection Loss.
Connection

Error
User

Capacity
Evaluated
Model FedAvg FedHetero FjORD FedSlim FedResCuE

er ≤ 0.2
uniform w×1 50.36±2.17 - 61.79±1.62 57.31±1.27 70.02±0.40

w×0.25 12.58±0.51 - 60.20±1.67 55.33±0.89 67.40±0.84

cluster w×1 - 60.92±1.33 64.52±0.60 62.35±1.76 69.78±0.74
w×0.25 - 59.70±0.64 64.11±0.41 61.77±1.62 68.83±1.00

er ≤ 0.3
uniform w×1 41.79±4.33 - 54.91±1.07 48.46±0.73 64.80±0.85

w×0.25 12.27±0.93 - 55.20±1.31 48.42±0.87 64.10±0.26

cluster w×1 - 51.70±1.14 57.60±2.25 56.28±1.61 65.74±0.30
w×0.25 - 51.90±0.33 57.69±2.22 56.34±1.56 65.18±0.57

Table C.6: Performance under faulty connections, given 100% of training data.

Constant Error Rates er for DigitsFive
Domain SVHN Synthetic USPS MNIST MNIST-M
er 0.05 0.05 0.3 0.3 0.05

DigitsFive performance, trained using 5% of data.
Domain SVHN Synthetic USPS MNIST MNIST-M

×1.0 Model.
Local 45.88±0.92 62.04±1.16 89.95±1.93 85.84±3.35 61.99±1.79
FedAvg 69.54±0.15 80.17±0.24 94.38±0.55 93.61±0.38 75.22±0.87
FedSlim 66.77±0.61 78.95±0.82 94.00±0.41 93.80±0.53 73.95±1.02
FjORD 49.72±23.42 57.12±30.11 68.60±36.34 68.01±37.35 56.29±26.48

FedResCuE 69.32±0.78 80.57±0.77 95.17±0.47 95.05±0.44 76.89±0.76

×0.25 Model.
FedAvg 20.00±0.55 19.14±5.64 34.03±14.65 32.16±18.65 20.47±9.28
FedSlim 64.00±0.96 77.15±2.13 93.44±1.26 93.38±0.75 72.16±1.51
FjORD 48.11±22.35 54.58±31.15 68.51±36.28 65.79±39.13 52.75±29.16

FedResCuE 67.11±0.77 79.06±0.41 94.55±0.37 94.64±0.28 75.64±0.37
Table C.7: FedResCuE is the most robust algorithm given heterogeneous data and domain-
dependent connection errors.

C.0.4 Modeling of Connection Uncertainty

In our experiments, we assume that an error rate er is related to each model column trans-

mission between the server and the edge device. This setting is built upon the mechanism of
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downstream wireless connections. Specifically, we present a fine-grained formulation of the

connection error rates in a wireless communication scenario:

Lossy Wireless Connections: Following the wireless model of [141], we can leverage

LTE-A [78], which is a representative model of 4G network, for the wireless links between

the edge server (ES) and edge devices for FL, considering the orthogonal frequency division

multiple access (OFDMA) scheme. The parameter des,k denotes the distance between the

edge server and the kth edge device while the path loss between them can be characterized

by d−σes,k and the white Gaussian noise power N0, where σ is the path loss exponent. The

wireless channel is modeled as a frequency-flat block-fading Rayleigh fading channel, with

the uplink channel fading coefficient h [176]. The uplink data rate of the kth edge device is

defined as:

Rk = Bklog2

(
1 +

Ptd
−σ
es,k |h2|

N0 + I

)
. (C.1)

In the equation above, Bk denotes the channel bandwidth, Pt represents the transmission

power of the ES. I is the inter-cell interference. As Rk fluctuates based on changing wireless

network conditions, we can define a minimum uplink rate Rmin, such that any rate lower

than Rmin will lead to timeouts and packet loss. As a result, the probability that a

packet gets lost over the edge network shall be derived as the following:

Pr {Rk < Rmin} = Pr

{
Bklog2

(
1 +

Ptd
−σ
es,k |h2|

N0 + I

)
< Rmin

}

= Pr

{
dσ >

Pt |h2|

(N0 + I) 2
Rmin
Bk −N0 − I

}

= Pr

d >
(

Pt |h2|

(N0 + I) 2
Rmin
Bk −N0 − I

) 1
σ

 . (C.2)

Suppose in a given LTE-A network, Bk, N0, I, Pt, σ, and h are constants. If the distances

between the edge devices and the ES, i.e., des,k, follow the Poisson distribution, then the

probability of a packet to be lost during transmission can be derived by Equation (C.2).

Macro-Level Simulation of Connection Uncertainty: When conducting experi-

ments for unstable network connection scenarios, we use er, i.e. the connection loss rate for
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each column, as a macro-level modeling to approximate Pr {Rk < Rmin} in Equation (C.2).

This type of modeling is grounded in that an upstream column and a downstream packet

are logically related to each other. Depending on the size limit of a transmission packet and

the granularity of our model decomposition, a column could be further decomposed into one

or multiple packets during wireless transmission.

C.0.4.1 Ablation Study

Impacts of Sampling Frequency: We explored the effects of different sampling fre-

quency S on model learning, where S is the number of submodels sampled per batch update

(e.g.|P̂ | = S in Algorithm 6.1). S = 0 would reduce all algorithms to regular FedAvg without

self distillation. An overlarge S, on the other hand, may bring extra computation workload

to edge devices. In our experiments, the sampling granularity is set to be ×0.05 of the largest

model width, and the smallest model width is set to be ×0.1. Hence there are 19 eligible

pruning ratios, i.e. |P| = 19.

As shown in Figure C.3, FedResCuE can benefit from finer-grained submodel sampling

and maintains a robust performance across different choices of S. On the contrary, the

performance of FjORD is only slightly improved by increasing S from 2 to 4, whose perfor-

mance drops notably when S becomes overlarge, especially given insufficient training data.

FedSlim is the most sensitive to the choice of S, which learns prunable submodels purely

by knowledge distillation and batch-gradient updates. Its performance degrades drastically

with an increasing S and becomes highly unstable under connection interruptions. We as-

cribe the robustness of FedResCuE over others to its progressive learning scheme, rather

than a batch-gradient update strategy as FedSlim and FjORD applies.
Effects of Knowledge Distillation: We compare FedResCuE against its ablated variant

named FedSeq which does not require minimizing the KL-divergence between the largest

model and the sampled submodel. We provide the model learning process of FedSeq in

Algorithm C.3. Table C.8 summarizes their asymptotic performance under different FL
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(a) 20% training data,
×1.0 model.

(b) 20% training data,
×0.5 model.

(c) 0.1 ≤ er ≤ 0.2, ×1.0
model.

(d) 0.1 ≤ er ≤ 0.2,
×0.5 model.

Figure C.3: Impacts of the submodel sampling frequency.

settings, which demonstrates that FedResCuE is more beneficial to smaller submodels. We

present the corresponding evaluation curves in Figure C.4.

Algorithm C.3: Local Model Update for FedSeq
1: Inputs: Training dataset D ⊂ X × Y ; model with parameter set θ ∈ Θ; pruning ratios
P , learning rate η, loss function L, constant S ≤ |P|.

2: repeat
3: Sample batch of x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P , pi < pi+1 ∀i < S, pS = 1]Si=1

5: for pi ∼ P̂ do
6: gi ← ∇{θ×pi\θ×pi−1}L(f(X ;θ×pi),Y)
7: θ×pi ← θ×pi − η ∗ gi.
8: θ ← θ − η ∗ ∇θL(f(x;θ), y).
9: until training stop
10: Return θ

Comparing FedResCuE and FedSeq, on CelebA dataset
Algorithm w×0.25 w×0.5 w×0.75 w×1.0

Given 20 % training data
FedResCuE 61.12±1.35 68.15±0.39 69.98±0.41 71.27±0.27
FedSeq 58.96±1.24 66.39±0.60 69.18±0.28 70.13±0.16

0.1 ≤ er ≤ 0.2
FedResCuE 67.40±0.84. 69.91±0.42. 70.23±0.42. 70.02±0.40
FedSeq 66.47±0.36 69.45±0.41 69.70±0.37 69.67±0.32
Table C.8: Performance with and without knowledge-distillation.

Effects of Progressive Learning: One contributing factor to FedResCuE ’s superior per-

formance is its progressive learning strategy, which adaptively learns gradients by fixing the
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(a) ×0.25 model. (b) ×0.5 model. (c) ×0.75 model. (d) ×1.0 model.

Figure C.4: Compared with FedSeq, knowledge-distillation strategy in FedResCuE can ben-
efit smaller submodels.

parameters of previously learned submodels. To validate the efficacy of progressive learning,

we compared FedResCuE against a variant called FedRushṪhe detailed model learning pro-

cess of FedRush is provided in Algorithm C.4. Learning curves of these two algorithms are

illustrated in Figure C.5, which demonstrate that the progressive parameter update, as Fe-

dResCuE adopts, is necessary to derive reliable models, especially given insufficient training

data or connection interruptions. FedRush, on the other hand, undermines the knowledge

learned by smaller submodels by overwriting parameters during the model update, which

could otherwise serve as a good initialization for the subsequent submodel to build up rep-

resentative domain knowledge.

Algorithm C.4: Local Model Update for FedRush
1: Inputs: training dataset D ⊂ X × Y ; model with parameter set θ; pruning ratios P ,

learning rate η, loss function L, constant S ≤ |P|.
2: repeat
3: Sample batch x, y ∼ D.
4: Sample ordered ratios P̂ = [pi|pi ∈ P , pi < pi+1 ∀i < S, pS = 1]Si=1

5: θ̄ ← stop_gradient(θ), θ×0 = ∅.
6: for pi ∼ P̂ do
7: gi ← ∇θ×pi

{
L(f(X ;θ×pi),Y) + DKL[f(x; θ̄)‖f(x;θ×pi)]

}
.

8: θ×pi ← θ×pi − η ∗ gi. . (Overwrite previously learned θpi−1
.)

9: θ ← θ − η ∗ ∇θL(f(x;θ), y)
10: until training stop
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(a) ×0.25 model. (b) ×0.5 model. (c) ×0.75 model. (d) ×1.0 model.

Figure C.5: Compared to FedRush, FedResCuE maintains a high performance for the ×1.0
model.
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C.0.5 Overview of Model Learning Performance

Performance with Stable Network Connections:

Figure C.6: 100% training data, CelebA, uniform architecture, er = 0.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure C.7: 100% training data, CelebA, cluster architecture, er = 0.

Performance Given Insufficient Training Data:
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Figure C.8: 20% training data, CelebA, uniform architecture, er = 0.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure C.9: 20% training data, CelebA, cluster architecture, er = 0.
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Performance Under Connection Loss:

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model
Figure C.10: 100% training data, CelebA, uniform architecture, 0.1 ≤ er ≤ 0.2.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure C.11: 100% training data, CelebA, cluster architecture, 0.1 ≤ er ≤ 0.2.

C.0.6 Experiment Configurations

C.0.6.1 Model Architecture

For the CelebA domain, we build a ResNet neural network [65] using 4 residual blocks,

while a residual block maintains 1) a convolution module that consits of 3 Conv2d layers,

each followed by a BatchNorm2d layer and a ReLU activation layer; and 2) a shortpath

module to be in parallel with the convolution module. The ResNet model contains 8,036,426

trainable parameters in total, with a model size of 33.09 MB. For the DigitsFive domains,

we build a neural network consiting of 3 Conv2d layers, each followed by a BatchNorm

layer, and 3 Linear layers. It contains 14,214,090 trainable parameters in total, with a

model size of 55.30 MB.
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Network Architecture for Learning CelebA.
Layer Output Shape # of Parameters
Conv2d-1 64 × 14 × 14 9,408
MaxPool2d-4 64 × 7 × 7 0
Conv2d-5 64 × 7 × 7 4,096
Conv2d-8 64 × 7 × 7 36,864
Conv2d-11 256 × 7 × 7 16,384
Conv2d-13 256 × 7 × 7 16,384
Conv2d-17 128 × 7 × 7 32,768
Conv2d-20 128 × 4 × 4 147,456
Conv2d-23 512 × 4 × 4 65,536
Conv2d-25 512 × 4 × 4 131, 072
Conv2d-29 256 ×4 × 4 131,072
Conv2d-32 256 × 2 × 2 589,824
Conv2d-35 1024 × 2 × 2 262,144
Conv2d-37 1024 × 2 × 2 524,288
Conv2d-41 512 × 2, 2 524,288
Conv2d-44 512 × 1 × 1 2,359,296
Conv2d-47 2048 × 1 × 1 1,048,576
Conv2d-49 2048 × 1 × 1 2,097,152
AvgPool2d-53 2048 × 1 × 1 0
Linear-54 10 20,490

Table C.9: ResNet Architecture for Learning CelebA, omitting BatchNorm and ReLU
layers.

Network Architecture for Learning DigitsFive.
Layer Output Shape # of Parameters
Conv2d-1 64 × 28 × 28 4,864
BatchNorm2d-2 64 × 28 × 28 128
Conv2d-3 64 × 14 × 14 102,464
BatchNorm2d-4 64 × 14 × 14 128
Conv2d-5 128 × 7 × 7 204,928
BatchNorm2d-6 128 × 7 × 7 256
Linear-7 2048 12,847,104
Linear-8 512 1,049,088
Linear-9 10 5,130

Table C.10: Model Architecture for Learning DigitsFive.
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(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model
Figure C.12: 100% training data, CelebA, uniform architecture, 0.2 ≤ er ≤ 0.3.

(a) ×0.25 model (b) ×0.5 model (c) ×0.75 model (d) ×1.0 model

Figure C.13: 100% training data, CelebA, cluster architecture, 0.2 ≤ er ≤ 0.3.

C.0.6.2 Optimizer Implementation for Progressive Learning

In practice, we customzie the default SGD optimizer implemented in Pytorch to realize

progressive gradient updates. A trainable neural layer consits of parameter tensors, each of

which can be treated as a weight matrix. When calculating gradients for the neural layer,

we specify the columns to be updated, which corresponds to a set of indices for elements in

the weight matrix. When applying the gradients, we mask out the gradients of parameters

that were not included in the specified columns.

C.0.6.3 Hyper-parameter Configurations

We summarize in Table C.11 the hyper-parameters used in our experiments.
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Hyper-parameter Configurations
Domain Hyper-parameter Value

Shared

Optimizer SGD
learning rate 0.1
Momentum 0.9

Nesterov True
Weight decay 10−4

Track training in BatchNorm False
Share BatchNorm True

Data category 10
# of active users 5

Random seeds for training 3, 5, 7
Batch Size 32

CelebA Training Epoch 300
# of total users 20

Used training data 100%, 20%
Column Granularity for P ×0.05

DigitsFive Training Epoch 100
# of total users 10

# users per domain 2
Used training data 5%

Column Granularity for P ×0.125

Table C.11: Configurations of Hyper-parameters.
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[26] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression.
In Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 535–541, 2006.

[27] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by
random network distillation. ICLR, 2019.

[28] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-
all: Train one network and specialize it for efficient deployment. arXiv preprint
arXiv:1908.09791, 2020.

[29] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
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