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ABSTRACT

EFFICIENT AND SECURE MESSAGE PASSING FOR MACHINE LEARNING

By

Xiaorui Liu

Machine learning (ML) techniques have brought revolutionary impact to human society, and they

will continue to act as technological innovators in the future. To broaden its impact, it is urgent to

solve the emerging and critical challenges in machine learning, such as efficiency and security issues.

On the one hand, ML models have become increasingly powerful due to big data and models, but it

also brings tremendous challenges in designing efficient optimization algorithms to train the big ML

models from big data. The most effective way for large-scale ML is to parallelize the computation

tasks on distributed systems composed of many computational devices. However, in practice, the

scalability and efficiency of the systems are greatly limited by information synchronization since the

message passing between the devices dominates the total running time. In other words, the major

bottleneck lies in the high communication cost between devices, especially when the scale of the

system and the models becomes larger while the communication bandwidth is relatively limited.

This communication bottleneck often limits the practical speedup of distributed ML systems.

On the other hand, recent research has generally revealed that many ML models suffer from

security vulnerabilities. In particular, deep learning models can be easily deceived by the unnoticeable

perturbations in data. Meanwhile, graph is a kind of prevalent data structure for many real-world data

that encodes pairwise relations between entities such as social networks, transportation networks,

and chemical molecules. Graph neural networks (GNNs) generalize and extend the representation

learning power of traditional deep neural networks (DNNs) from regular grids, such as image,

video, and text, to irregular graph-structured data through message passing frameworks. Therefore,

many important applications on these data can be treated as computational tasks on graphs, such as

recommender systems, social network analysis, traffic prediction, etc. Unfortunately, the vulnerability

of deep learning models also translates to GNNs, which raises significant concerns about their



applications, especially in safety-critical areas. Therefore, it is critical to design intrinsically secure

ML models for graph-structured data.

The primary objective of this dissertation is to figure out the solutions to solve these challenges

via innovative research and principled methods. In particular, we propose multiple distributed

optimization algorithms with efficient message passing to mitigate the communication bottleneck

and speed up ML model training in distributed ML systems. We also propose multiple secure

message passing schemes as the building blocks of graph neural networks aiming to significantly

improve the security and robustness of ML models.
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CHAPTER 1

INTRODUCTION

Machine learning (ML) techniques have brought revolutionary impact to human society, and they

will continue to act as technological innovators in the future. In recent years, critical challenges

in machine learning such as efficiency and security issues broadly emerge. These issues greatly

limit the applications of ML techniques in many scientific and application domains. To broaden the

impact of ML techniques, it is urgent to solve these emerging and critical research challenges.

On the one hand, ML models have become increasingly powerful due to big data and models,

but it also brings tremendous challenges in designing efficient optimization algorithms to train

the big ML models from big data. The most effective way for large-scale ML is to parallelize

the computation tasks on distributed systems composed of many computational devices. There

are two mainstream trends of distributed and parallel ML systems: (1) large-scale ML models

trained by powerful distributed computing systems in data centers; and (2) on-device distributed

training by resourced-limited edge devices (e.g., smartphones, AR/VR headsets, drones, billions of

Internet of Things) as well as the massive amount of data they generate on a daily basis. In both

cases, the scalability and efficiency of the systems are greatly limited since the slow information

synchronization between the devices dominates the total running time. In other words, the major

bottleneck lies in the high communication cost between devices, especially when the scale of the

system and the models becomes larger while the communication bandwidth is relatively limited.

For instance, in centralized distributed ML systems as shown in Figure 1.1a, every computing

node needs to frequently synchronize information with other nodes through the central server

by passing the message (e.g., model or gradient information) [4, 92, 114, 68]. But this message

passing process becomes dominating when the communication network bandwidth is limited and

the number of computing nodes is massive. In decentralized distributed ML systems as shown

in Figure 1.1b, every computing node only needs to synchronize information with the one-hope

neighbors by passing the message (e.g., the model information). Although it is more scalable in
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terms of the number of computing nodes, the communication bottleneck still exists under limited

network bandwidth [101, 51, 50, 75]. The communication bottleneck often limits the theoretical

speedup of distributed ML systems. Therefore, how to design distributed learning algorithms and

systems with efficient message passing becomes a promising and key research direction for solving

the efficiency challenge in ML.

(a) Centralized Learning (b) Decentralized Learning

Figure 1.1: Distributed ML systems.

On the other hand, recent research has generally revealed that many ML models suffer from

security vulnerabilities. In particular, deep learning models can be easily deceived by the unnoticeable

perturbations in data [30, 99, 21]. Meanwhile, graph is a kind of prevalent data structure for many real-

world data that encodes pairwise relations between entities such as social networks, transportation

networks, and chemical molecules. Graph neural networks (GNNs) generalize and extend the

representation learning power of traditional deep neural networks (DNNs) from regular grids, such

as image, video, and text, to irregular graph-structured data as shown in Figure 1.2. Therefore, many

important applications on these data can be treated as computational tasks on graphs [74, 32]. For

instance, product recommendation in e-commerce and friend recommendation in social network

analysis can be formulated as link prediction tasks on graphs; Traffic prediction in transportation

systems can be formulated as node classification or regression on graphs. The key building

block for such generalization is the message passing framework that propagates features from

neighboring nodes in the graph. The message passing layer offers the node permutation invariance
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and the support for arbitrary neighboring sizes in graphs. Despite the promising performance

of GNNs in clean data settings, unfortunately, the vulnerability of deep learning models also

translates to GNNs [134, 135, 37, 41] when the data contains adversarial perturbations. For

instance, the performance greatly degrades when the node features or graph structure are modified

by adversaries [41]. These raise significant concerns about the applications of GNNs, especially

in safety-critical areas. Therefore, it is critical to design intrinsically secure ML models for

graph-structured data.

Node representations

Representation 
Learning

Node-focus 
Tasks

Figure 1.2: Graph representation learning for node-focus tasks.

1.1 Research Challenges

From the above research background, we can summarize the research challenges as follows:

• How to design scalable distributed ML systems and algorithms with efficient message passing

between computing devices such that the communication bottleneck can be largely mitigated?

• How to maintain the convergence behaviors of the optimization algorithm when communication

efficiency is improved both theoretically and empirically?

• How to design intrinsically secure ML models that are more robust to potential threats such as

feature or graph structure attacks by adversaries?

• How to bypass the tradeoff between the performance under clean and adversarial settings?

In other words, can we maintain good performance when the data are clean while providing

strong security when the data are adversarially perturbed?
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1.2 Contributions

The primary objective of this dissertation is to figure out the solutions to solve these challenges

via innovative research and principled methods. In particular, we propose multiple distributed

optimization algorithms with efficient message passing to mitigate the communication bottleneck

and speed up ML model training in distributed ML systems. We also propose multiple secure

message passing schemes as the building blocks of graph neural networks aiming to significantly

improve the security and robustness of ML models. The contributions of this dissertation are

summarized as:

• To fundamentally improve the efficiency of distributed ML systems, I proposed a series of

innovative algorithms to break through the communication bottleneck. In particular, when the

communication network is a start network as shown in Figure 1.1a, I proposed DORE [68], a

double residual compression algorithm, to compress the bi-directional communication between

client devices and the server such that over 95% of the communication bits can be reduced.

This is the first algorithm that reduces that much communication cost while maintaining the

superior convergence complexities (e.g., linear convergence) as the uncompressed counterpart,

both theoretically and numerically.

• When the communication network is of any general topology (as long as it is connected)

as shown in Figure 1.1b, I proposed LEAD [69], the first linear convergent decentralized

optimization algorithm with communication compression, which only requires point-to-point

compressed communication between neighboring devices over communication networks.

Theoretically, we prove that under certain compression ratios, the convergence complexity

of the proposed algorithm does not depend on the compression operator. In other words, it

achieves better communication efficiency for free.

• To design intrinsically secure ML models against feature attacks, I investigate to denoise the

hidden features in neural network layers caused by the adversarial perturbation using the graph

structural information. This is achieved by the proposed AirGNN [66] in which the adaptive
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message passing denoises perturbed features by feature aggregations and maintains feature

separability by adaptive residuals. The proposed algorithm has a clear design principle and

interpretation as well strong as performance both in the clean and adversarial data settings.

• To design intrinsically secure ML models against graph structure attacks, I investigate a new

prior knowledge of smoothness in the design of graph neural networks. In particular, we

derive an elastic message passing scheme to model the piecewise constant signal in graph

data. We demonstrate its stronger resilience to adversarial structure attacks and superior

performance when the data is clean through a comprehensive empirical study on the proposed

model ElasticGNN [67].

1.3 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we introduce DORE, a

centralized distributed optimization algorithm with communication compression. In Chapter 3,

we introduce LEAD, the first linear convergent decentralized distributed optimization algorithm

with communication compression. In these two chapters, we demonstrate how to significantly

improve the efficiency and scalability of distributed ML systems by the co-design of efficient

message passing and optimization algorithms. In Chapter 4, we investigate the possibility to utilize

the graph structural information in defending against abnormal features with noise or adversarial

perturbations. We derive a novel adaptive message passing scheme from a principled graph signal

denoising perspective. In Chapter 5, we study a new smoothness prior knowledge, i.e., piecewise

constant signal, for graph representation learning. We derive the elastic message passing to model

the adaptive local smoothness in graph data. In these two chapters, we demonstrate how these

secure message passing algorithms can be used as fundamental building blocks in the design of

graph neural networks to defend against feature and graph structure attacks through the examples

of AirGNN and ElasticGNN, respectively. We conclude the dissertation and discuss the broader

impact and promising research directions in Chapter 6.
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CHAPTER 2

A DOUBLE RESIDUAL COMPRESSION ALGORITHM FOR DISTRIBUTED LEARNING

Large-scale machine learning models are often trained by parallel stochastic gradient descent

algorithms. However, the message passing cost of gradient aggregation and model synchronization

between the master and worker nodes becomes the major obstacle for efficient learning as the

number of workers and the dimension of the model increase. In this chapter, we propose DORE, a

DOuble REsidual compression stochastic gradient descent algorithm, to reduce over 95% of the

overall communication in message passing such that the obstacle can be immensely mitigated. Our

theoretical analyses demonstrate that the proposed strategy has superior convergence properties for

both strongly convex and nonconvex objective functions. The experimental results validate that

DORE achieves the best communication efficiency while maintaining similar model accuracy and

convergence speed in comparison with start-of-the-art baselines.

2.1 Introduction

Stochastic gradient algorithms [8] are efficient at minimizing the objective function 𝑓 : R𝑑 → R

which is usually defined as 𝑓 (x) := E𝜉∼D [ℓ(x, 𝜉)], where ℓ(x, 𝜉) is the objective function defined

on data sample 𝜉 and model parameter x. A basic stochastic gradient descent (SGD) repeats the

gradient “descent” step x𝑘+1 = x𝑘 − 𝛾g(x𝑘 ) where x𝑘 is the current iteration and 𝛾 is the step

size. The stochastic gradient g(x𝑘 ) is computed based on an i.i.d. sampled mini-batch from the

distribution of the training data D and serves as the estimator of the full gradient ∇ 𝑓 (x𝑘 ). In the

context of large-scale machine learning, the number of data samples and the model size are usually

very large. Distributed learning utilizes a large number of computers/cores to perform the stochastic

algorithms aiming at reducing the training time. It has attracted extensive attention due to the

demand for highly efficient model training [1, 17, 54, 122].

In this work, we focus on the data-parallel SGD [22, 61, 133], which provides a scalable solution

to speed up the training process by distributing the whole data to multiple computing nodes. The
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objective can be written as:

minimize
x∈R𝑑

𝑓 (x) + 𝑅(x) = 1
𝑛

𝑛∑
𝑖=1
E𝜉∼D𝑖

[ℓ(x, 𝜉)]︸            ︷︷            ︸
B 𝑓𝑖 (x)

+𝑅(x),

where each 𝑓𝑖 (x) is a local objective function of the worker node 𝑖 defined based on the allocated

data under distribution D𝑖 and 𝑅 : R𝑑 → R is usually a closed convex regularizer.

In the well-known parameter server framework [54, 133], during each iteration, each worker

node evaluates its own stochastic gradient {∇̃ 𝑓𝑖 (x𝑘 )}𝑛𝑖=1 and send it to the master node, which

collects all gradients and calculates their average (1/𝑛)∑𝑛
𝑖=1 ∇̃ 𝑓𝑖 (x𝑘 ). Then the master node further

takes the gradient descent step with the averaged gradient and broadcasts the new model parameter

x𝑘+1 to all worker nodes. It makes use of the computational resources from all nodes. In reality, the

network bandwidth is often limited. Thus, the communication cost for the gradient transmission and

model synchronization becomes the dominating bottlenecks as the number of nodes and the model

size increase, which hinders the scalability and efficiency of SGD.

One common way to reduce the communication cost is to compress the gradient information

by either gradient sparsification or quantization [4, 92, 97, 98, 110, 112, 114, 116] such that many

fewer bits of information are needed to be transmitted. However, little attention has been paid on

how to reduce the communication cost for model synchronization and the corresponding theoretical

guarantees. Obviously, the model shares the same size as the gradient, so does the communication

cost. Thus, merely compressing the gradient can reduce at most 50% of the communication cost,

which suggests the importance of model compression. Notably, the compression of model parameters

is much more challenging than gradient compression. One key obstacle is that its compression error

cannot be well controlled by the step size 𝛾 and thus it cannot diminish like that in the gradient

compression [101]. In this work, we aim to bridge this gap by investigating algorithms to compress

the full communication in the optimization process and understanding their theoretical properties.

Our contributions can be summarized as:

• We proposed DORE, which can compress both the gradient and the model information such

that more than 95% of the communication cost can be reduced.
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• We provided theoretical analyses to guarantee the convergence of DORE under strongly

convex and nonconvex assumptions without the bounded gradient assumption.

• Our experiments demonstrate the superior efficiency of DORE comparing with the state-of-art

baselines without degrading the convergence speed and the model accuracy.

2.2 Related Work

Recently, many works try to reduce the communication cost to speed up the distributed learning,

especially for deep learning applications, where the size of the model is typically very large (so is

the size of the gradient) while the network bandwidth is relatively limited. Below we briefly review

relevant papers.

Gradient quantization and sparsification. Recent works [4, 92, 114, 77, 7] have shown that

the information of the gradient can be quantized into a lower-precision vector such that fewer bits

are needed in communication without loss of accuracy. [92] proposed 1Bit SGD that keeps the sign

of each element in the gradient only. It empirically works well, and [7] provided theoretical analysis

systematically. QSGD [4] utilizes an unbiased multi-level random quantization to compress the

gradient while Terngrad [114] quantizes the gradient into ternary numbers {0,±1}. In DIANA [77],

the gradient difference is compressed and communicated contributing to the estimator of the gradient

in the master node.

Another effective strategy to reduce the communication cost is sparsification. [112] proposed a

convex optimization formulation to minimize the coding length of stochastic gradients. A more

aggressive sparsification method is to keep the elements with relatively larger magnitude in gradients,

such as top-k sparsification [97, 98, 3].

Model synchronization. The typical way for model synchronization is to broadcast model

parameters to all worker nodes. Some works [110, 42] have been proposed to reduce model size by

enforcing sparsity, but it cannot be applied to general optimization problems. Some alternatives

including QSGD [4] and ECQ-SGD [116] choose to broadcast all quantized gradients to all other

workers such that every worker can perform model update independently. However, all-to-all
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communication is not efficient since the number of transmitted bits increases dramatically in

large-scale networks. DoubleSqueeze [104] applies compression on the averaged gradient with error

compensation to speed up model synchronization.

Error compensation. [92] applied error compensation on 1Bit-SGD and achieved negligible

loss of accuracy empirically. Recently, error compensation was further studied [116, 97, 45] to

mitigate the error caused by compression. The general idea is to add the compressed error to the

next compression step:

ĝ = 𝑄(g + e), e = (g + e) − ĝ.

However, to the best of our knowledge, most of the algorithms with error compensation [116, 97,

45, 104] need to assume bounded gradient, i.e., E∥g∥2 ≤ 𝐵, and the convergence rate depends on

this bound.

Contributions of DORE. The most related papers to DORE are DIANA [77] and Doub-

leSqueeze [104]. Similarly, DIANA compresses gradient difference on the worker side and achieves

good convergence rate. However, it doesn’t consider the compression in model synchronization, so

at most 50% of the communication cost can be saved. DoubleSqueeze applies compression with

error compensation on both worker and server sides, but it only considers non-convex objective

functions. Moreover, its analysis relies on a bounded gradient assumption, i.e., E∥g∥2 ≤ 𝐵, and the

convergence error has a dependency on the gradient bound like most existed error compensation

works.

In general, the uniform bound on the norm of the stochastic gradient is a strong assumption

which might not hold in some cases. For example, it is violated in the strongly convex case [82, 31].

In this work, we design DORE, the first algorithm which utilizes gradient and model compression

with error compensation without assuming bounded gradients. Unlike existing error compensation

works, we provide a linear convergence rate to the O(𝜎) neighborhood of the optimal solution for

strongly convex functions and a sublinear rate to the stationary point for nonconvex functions with

linear speedup. In Table 2.1, we compare the asymptotic convergence rates of different quantized

SGDs with DORE.
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2.3 Algorithm

In this section, we introduce the proposed DOuble REsidual compression SGD (DORE) algorithm.

Before that, we introduce a common assumption for the compression operator.

In this work, we adopt an assumption from [4, 114, 77] that the compression variance is linearly

proportional to the magnitude.

Assumption 1. The stochastic compression operator 𝑄 : R𝑑 → R𝑑 is unbiased, i.e., E𝑄(x) = x

and satisfies

E∥𝑄(x) − x∥2 ≤ 𝐶∥x∥2, (2.1)

for a nonnegative constant 𝐶 that is independent of x. We use x̂ to denote the compressed x, i.e.,

x̂ ∼ 𝑄(x).

Many feasible compression operators can be applied to our algorithm since our theoretical

analyses are built on this common assumption. Some examples of feasible stochastic compression

operators include:

• No Compression: 𝐶 = 0 when there is no compression.

• Stochastic Quantization: A real number 𝑥 ∈ [𝑎, 𝑏], (𝑎 < 𝑏) is set to be 𝑎 with probability 𝑏−𝑥
𝑏−𝑎

and 𝑏 with probability 𝑥−𝑎
𝑏−𝑎 , where 𝑎 and 𝑏 are predefined quantization levels [4]. It satisfies

Assumption 1 when 𝑎𝑏 > 0 and 𝑎 < 𝑏.

• Stochastic Sparsification: A real number 𝑥 is set to be 0 with probability 1 − 𝑝 and 𝑥
𝑝

with

probability 𝑝 [114]. It satisfies Assumption 1 with 𝐶 = (1/𝑝) − 1.

• 𝑝-norm Quantization: A vector x is quantized element-wisely by𝑄𝑝 (x) = ∥x∥𝑝 sign(x)◦𝜉, where

◦ is the Hadamard product and 𝜉 is a Bernoulli random vector satisfying 𝜉𝑖 ∼ Bernoulli( |𝑥𝑖 |
∥x∥𝑝 ).

It satisfies Assumption 1 with 𝐶 = maxx∈R𝑑
∥x∥1∥x∥𝑝

∥x∥2
2

− 1 [77]. To decrease the constant 𝐶

for a higher accuracy, a vector x ∈ R𝑑 can be further decomposed into blocks, i.e., x =

(x(1)⊤, x(2)⊤, · · · , x(𝑚)⊤)⊤ with x(𝑙) ∈ R𝑑𝑙 and
∑𝑚
𝑙=1 𝑑𝑙 = 𝑑, and the blocks can be compressed

independently.

10



Model residualMod
el r

esi
du
al

Gr
adi

ent
res
idu

al Gradient residual

Master

…

…

WorkerWorker Worker Worker

Figure 2.1: An Illustration of DORE.

2.3.1 Proposed Algorithm

Many previous works [4, 92, 114] reduce the communication cost of P-SGD by quantizing the

stochastic gradient before sending it to the master node, but there are several intrinsic issues.

First, these algorithms will incur extra optimization error intrinsically. Let’s consider the case

when the algorithm converges to the optimal point x∗ where we have (1/𝑛)∑𝑛
𝑖=1 ∇ 𝑓𝑖 (x∗) = 0.

However, the data distributions may be different for different worker nodes in general, and thus we

may have ∇ 𝑓𝑖 (x∗) ≠ ∇ 𝑓 𝑗 (x∗),∀𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 ≠ 𝑗 . In other words, each individual ∇ 𝑓𝑖 (x∗)

may be far away from zero. This will cause large compression variance according to Assumption 1,

which indicates that the upper bound of compression variance E∥𝑄(x) − x∥2 is linearly proportional

to the magnitude of x.

Second, most existing algorithms [92, 4, 114, 7, 116, 77] need to broadcast the model or gradient

to all worker nodes in each iteration. It is a considerable bottleneck for efficient optimization since

the amount of bits to transmit is the same as the uncompressed gradient. DoubleSqueeze [104] is

able to apply compression on both worker and server sides. However, its analysis depends on a

strong assumption on bounded gradient. Meanwhile, no theoretical guarantees are provided for the

convex problems.

We proposed DORE to address all aforementioned issues. Our motivation is that the gradient

should change smoothly for smooth functions so that each worker node can keep a state variable h𝑘
𝑖

to track its previous gradient information. As a result, the residual between new gradient and the
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Algorithm 1 DORE
1: Input: Stepsize 𝛼, 𝛽, 𝛾, 𝜂, initialize h0 = h0

𝑖
= 0𝑑 , x̂0

𝑖
= x̂0, ∀𝑖 ∈ {1, . . . , 𝑛}.

2: for 𝑘 = 1, 2, · · · , 𝐾 − 1 do

3: For each worker 𝑖 ∈ {1, 2, · · · , 𝑛}:
4: Sample g𝑘

𝑖
such that E[g𝑘

𝑖
|x̂𝑘
𝑖
] = ∇ 𝑓𝑖 (x̂𝑘𝑖 )

5: Gradient residual: Δ𝑘
𝑖
= g𝑘

𝑖
− h𝑘

𝑖

6: Compression: Δ̂𝑘
𝑖
= 𝑄(Δ𝑘

𝑖
)

7: h𝑘+1
𝑖

= h𝑘
𝑖
+ 𝛼Δ̂𝑘

𝑖

8: { ĝ𝑘
𝑖
= h𝑘

𝑖
+ Δ̂𝑘

𝑖
}

9: Send Δ̂𝑘
𝑖

to the master
10: Receive q̂𝑘 from the master
11: x̂𝑘+1

𝑖
= x̂𝑘

𝑖
+ 𝛽q̂𝑘

12: For the master:
13: Receive {Δ̂𝑘

𝑖
} from workers

14: Δ̂𝑘 = 1/𝑛∑𝑛
𝑖 Δ̂

𝑘
𝑖

15: ĝ𝑘 = h𝑘 + Δ̂𝑘 {= 1/𝑛∑𝑛
𝑖 ĝ𝑘

𝑖
}

16: x𝑘+1 = prox𝛾𝑅 (x̂𝑘 − 𝛾ĝ𝑘 )
17: h𝑘+1 = h𝑘 + 𝛼Δ̂𝑘
18: Model residual: q𝑘 = x𝑘+1 − x̂𝑘 + 𝜂e𝑘
19: Compression: q̂𝑘 = 𝑄(q𝑘 )
20: e𝑘+1 = q𝑘 − q̂𝑘
21: x̂𝑘+1 = x̂𝑘 + 𝛽q̂𝑘
22: Broadcast q̂𝑘 to workers23: end for

24: Output: x̂𝐾 or any x̂𝐾
𝑖

state h𝑘
𝑖

should decrease, and the compression variance of the residual can be well bounded. On

the other hand, as the algorithm converges, the model would only change slightly. Therefore, we

propose to compress the model residual such that the compression variance can be minimized and

also well bounded. We also compensate the model residual compression error into next iteration to

achieve a better convergence. Due to the advantages of the proposed double residual compression

scheme, we can derive the fastest convergence rate through analyses without the bounded gradient

assumption. Note that in Algorithm 1, equations in the curly bracket are just notations for the proof

but does not need to computed actually. Below are some key steps of our algorithm as showed in

Algorithm 1 and Figure 2.1:

[lines 4-9]: each worker node sends the compressed gradient residual (Δ̂𝑘
𝑖
) to the master node

and updates its state h𝑘
𝑖

with Δ̂𝑘
𝑖
;

[lines 13-15]: the master node gathers the compressed gradient residual ({Δ̂𝑘
𝑖
)} from all

worker nodes and recovers the averaged gradient ĝ𝑘 based on its state h𝑘 ;

[lines 16]: the master node applies gradient descent algorithms (possibly with the proximal

operator);

12



[lines 18-22]: the master node broadcasts the compressed model residual with error compen-

sation (q̂𝑘 ) to all worker nodes and updates the model;

[lines 10-11]: each worker node receives the compressed model residual (q̂𝑘 ) and updates its

model x𝑘
𝑖
.

In the algorithm, the state h𝑘
𝑖

serves as an exponential moving average of the local gradient in

expectation, i.e., E𝑄h𝑘+1
𝑖

= (1 − 𝛼)h𝑘
𝑖
+ 𝛼g𝑘

𝑖
, as proved in Lemma 7. Therefore, as the iteration

approaches the optimum, h𝑘
𝑖

will also approach the local gradient ∇ 𝑓𝑖 (x∗) rapidly which contributes

to small gradient residual and consequently small compression variance. Similar difference

compression techniques are also proposed in DIANA and its variance-reduced variant [77, 36].

2.3.2 Discussion

In this subsection, we provide more detailed discussions about DORE including model initialization,

model update, the special smooth case as well as the compression rate of communication.

Initialization. It is important to take the identical initialization x̂0 for all worker and master

nodes. It is easy to be ensured by either setting the same random seed or broadcasting the model

once at the beginning. In this way, although we don’t need to broadcast the model parameters

directly, every worker node updates the model x̂𝑘 in the same way. Thus we can keep their model

parameters identical. Otherwise, the model inconsistency needs to be considered.

Model update. It is worth noting that although we can choose an accurate model x𝑘+1 as the

next iteration in the master node, we use x̂𝑘+1 instead. In this way, we can ensure that the gradient

descent algorithm is applied based on the exact stochastic gradient which is evaluated on x̂𝑘
𝑖

at each

worker node. This dispels the intricacy to deal with inexact gradient evaluated on x𝑘 and thus it

simplifies the convergence analysis.

Smooth case. In the smooth case, i.e., 𝑅 = 0, Algorithm 1 can be simplified. The master node

quantizes the recovered averaged gradient with error compensation and broadcasts it to all worker

nodes. This simplified algorithm is shown in Algorithm 2.
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Algorithm 2 DORE with 𝑅(x) = 0
1: Input: Stepsize 𝛼, 𝛽, 𝛾, 𝜂, initialize h0 = h0

𝑖
= 0𝑑 , x̂0

𝑖
= x̂0, ∀𝑖 ∈ {1, . . . , 𝑛}.

2: for 𝑘 = 1, 2, · · · , 𝐾 − 1 do

3: For each worker {𝑖 = 1, 2, · · · , 𝑛}:
4: Sample g𝑘

𝑖
such that E[g𝑘

𝑖
|x̂𝑘
𝑖
] = ∇ 𝑓𝑖 (x̂𝑘𝑖 )

5: Gradient residual: Δ𝑘
𝑖
= g𝑘

𝑖
− h𝑘

𝑖

6: Compression: Δ̂𝑘
𝑖
= 𝑄(Δ𝑘

𝑖
)

7: h𝑘+1
𝑖

= h𝑘
𝑖
+ 𝛼Δ̂𝑘

𝑖

8: { ĝ𝑘
𝑖
= h𝑘

𝑖
+ Δ̂𝑘

𝑖
}

9: Sent Δ̂𝑘
𝑖

to the master
10: Receive q̂𝑘 from the master
11: x̂𝑘+1

𝑖
= x̂𝑘

𝑖
+ 𝛽q̂𝑘

12: For the master:
13: Receive Δ̂𝑘

𝑖
s from workers

14: Δ̂𝑘 = 1/𝑛∑𝑛
𝑖 Δ̂

𝑘
𝑖

15: ĝ𝑘 = h𝑘 + Δ̂𝑘 {= 1/𝑛∑𝑛
𝑖 ĝ𝑘

𝑖
}

16: h𝑘+1 = h𝑘 + 𝛼Δ̂𝑘
17: q𝑘 = −𝛾ĝ𝑘 + 𝜂e𝑘
18: Compression: q̂𝑘 = 𝑄(q𝑘 )
19: e𝑘+1 = q𝑘 − q̂𝑘
20: Broadcast q̂𝑘 to workers

21: end for
22: Output: any x̂𝐾

𝑖

Compression rate. The compression of the gradient information can reduce at most 50% of

the communication cost since it only considers compression during gradient aggregation while

ignoring the model synchronization. However, DORE can further cut down the remaining 50%

communication.

Taking the blockwise 𝑝-norm quantization as an example, every element of x can be represented

by 3
2 bits using the simple ternary coding {0,±1}, along with one magnitude for each block. For

example, if we consider the uniform block size 𝑏, the number of bits to represent a 𝑑-dimension

vector of 32 bit float-point numbers can be reduced from 32𝑑 bits to 32 𝑑
𝑏
+ 3

2𝑑 bits. As long as the

block size 𝑏 is relatively large with respect to the constant 32, the cost 32 𝑑
𝑏

for storing the float-point

number is relatively small such that the compression rate is close to 32𝑑/( 3
2𝑑) ≈ 21.3 times (for

example, 19.7 times when 𝑏 = 256).

Applying this quantization, QSGD, Terngrad, MEM-SGD, and DIANA need to transmit

(32𝑑 + 32 𝑑
𝑏
+ 3

2𝑑) bits per iteration and thus they are able to cut down 47% of the overall 2× 32𝑑 bits

per iteration through gradient compression when 𝑏 = 256. But with DORE, we only need to transmit

2(32 𝑑
𝑏
+ 3

2𝑑) bits per iteration. Thus DORE can reduce over 95% of the total communication by

compressing both the gradient and model transmission. More efficient coding techniques such as
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Elias coding [26] can be applied to further reduce the number of bits per iteration.

2.4 Convergence Analysis

To show the convergence of DORE, we will make the following commonly used assumptions when

needed.

Assumption 2. Each worker node samples an unbiased estimator of the gradient stochastically with

bounded variance, i.e., for 𝑖 = 1, 2, · · · , 𝑛 and ∀x ∈ R𝑑 ,

E[g𝑖 |x] = ∇ 𝑓𝑖 (x), E∥g𝑖 − ∇ 𝑓𝑖 (x)∥2 ≤ 𝜎2
𝑖 , (2.2)

where g𝑖 is the estimator of ∇ 𝑓𝑖 at x. In addition, we define 𝜎2 = 1
𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖
.

Assumption 3. Each 𝑓𝑖 is 𝐿-Lipschitz differentiable, i.e., for 𝑖 = 1, 2, · · · , 𝑛 and ∀x, y ∈ R𝑑 ,

𝑓𝑖 (x) ≤ 𝑓𝑖 (y) + ⟨∇ 𝑓𝑖 (y), x − y⟩ + 𝐿
2 ∥x − y∥2. (2.3)

Assumption 4. Each 𝑓𝑖 is 𝜇-strongly convex (𝜇 ≥ 0), i.e., for 𝑖 = 1, 2, · · · , 𝑛 and ∀x, y ∈ R𝑑 ,

𝑓𝑖 (x) ≥ 𝑓𝑖 (y) + ⟨∇ 𝑓𝑖 (y), x − y⟩ + 𝜇

2 ∥x − y∥2. (2.4)

For simplicity, we use the same compression operator for all worker nodes, and the master node

can apply a different compression operator. We denote the constants in Assumption 1 as 𝐶𝑞 and 𝐶𝑚𝑞

for the worker and master nodes, respectively. Then we set 𝛼 and 𝛽 in both algorithms to satisfy

1−
√︃

1− 4𝐶𝑞 (𝐶𝑞+1)
𝑛𝑐

2(𝐶𝑞+1) ≤ 𝛼 ≤ 1+
√︃

1− 4𝐶𝑞 (𝐶𝑞+1)
𝑛𝑐

2(𝐶𝑞+1) ,

0 < 𝛽 ≤ 1
𝐶𝑚𝑞 +1 , (2.5)

with 𝑐 ≥ 4𝐶𝑞 (𝐶𝑞+1)
𝑛

. We consider two scenarios in the following two subsections: 𝑓 is strongly

convex with a convex regularizer 𝑅 and 𝑓 is non-convex with 𝑅 = 0.

2.4.1 Strongly Convex Case

Theorem 1. Under Assumptions 1-4, if 𝛼 and 𝛽 in Algorithm 1 satisfy (2.5), 𝜂 and 𝛾 satisfy

𝜂 < min
(
−𝐶𝑚𝑞 +

√
(𝐶𝑚𝑞 )2+4(1−(𝐶𝑚𝑞 +1)𝛽)

2𝐶𝑚𝑞
,
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4𝜇𝐿
(𝜇+𝐿)2 (1+𝑐𝛼)−4𝜇𝐿

)
, (2.6)

𝜂(𝜇+𝐿)
2(1+𝜂)𝜇𝐿 ≤𝛾 ≤ 2

(1+𝑐𝛼) (𝜇+𝐿) , (2.7)

then we have

V𝑘+1 ≤ 𝜌𝑘V1 + (1+𝜂) (1+𝑛𝑐𝛼)
𝑛(1−𝜌) 𝛽𝛾2𝜎2, (2.8)

with

V𝑘 =𝛽(1 − (𝐶𝑚𝑞 + 1)𝛽)E∥q𝑘−1∥2 + E∥x̂𝑘 − x∗∥2

+ (1+𝜂)𝑐𝛽𝛾2

𝑛

∑𝑛
𝑖=1 E∥h𝑘𝑖 − ∇ 𝑓𝑖 (x∗)∥2,

𝜌 =max
( (𝜂2+𝜂)𝐶𝑚𝑞

1−(𝐶𝑚𝑞 +1)𝛽 , 1 + 𝜂𝛽 − 2(1+𝜂)𝛽𝛾𝜇𝐿
𝜇+𝐿 , 1 − 𝛼

)
< 1.

Corollary 1. When there is no error compensation and we set 𝜂 = 0, then 𝜌 = max(1− 2𝛽𝛾𝜇𝐿
𝜇+𝐿 , 1−𝛼).

If we further set

𝛼 = 1
2(𝐶𝑞+1) , 𝛽 = 1

𝐶𝑚𝑞 +1 , 𝑐 =
4𝐶𝑞 (𝐶𝑞+1)

𝑛
, (2.9)

and choose the largest step-size 𝛾 = 2
(𝜇+𝐿) (1+2𝐶𝑞/𝑛) , the convergent factor is

(1 − 𝜌)−1 = max
(
2(𝐶𝑞 + 1), (𝐶𝑚𝑞 + 1) (𝜇+𝐿)

2

2𝜇𝐿

(
1
2 + 𝐶𝑞

𝑛

))
. (2.10)

Remark 1. In particular, suppose {Δ𝑖}𝑛𝑖=1 are compressed using the Bernoulli 𝑝-norm quantization

with the largest block size 𝑑max, then 𝐶𝑞 = 1
𝛼𝑤

− 1, with 𝛼𝑤 = min0≠x∈R𝑑max
∥x∥2

2
∥x∥1∥x∥𝑝 ≤ 1. Similarly,

q is compressed using the Bernoulli 𝑝-norm quantization with 𝐶𝑚𝑞 = 1
𝛼𝑚

− 1. Then the linear

convergent factor is

(1 − 𝜌)−1 = max
{

2
𝛼𝑤
, 1
𝛼𝑚

(𝜇+𝐿)2

𝜇𝐿

(
1
2 − 2

𝑛
+ 2
𝑛𝛼𝑤

)}
. (2.11)

While the result of DIANA in [77] is max
{

2
𝛼𝑤
,
𝜇+𝐿
𝜇

(
1
2 − 1

𝑛
+ 1
𝑛𝛼𝑤

)}
, which is better than (2.11) with

𝛼𝑚 = 1 (no compression for the model). When there is no compression for Δ𝑖, i.e., 𝛼𝑤 = 1, the

algorithm reduces to the gradient descent, and the linear convergent factor is the same as that of the

gradient descent for strongly convex functions.
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Remark 2. Although error compensation often improves the convergence empirically, in theory, no

compensation, i.e., 𝜂 = 0, provides the best convergence rate. This is because we don’t have much

information of the error being compensated. Filling this gap will be an interesting future direction.

2.4.2 Nonconvex Case

Theorem 2. Under Assumptions 1-3 and the additional assumption that each worker samples the

gradient from the full dataset, we set 𝛼 and 𝛽 according to (2.5). By choosing

𝛾 ≤ min
{−1+

√︂
1+

48𝐿2𝛽2 (𝐶𝑚𝑞 +1)2

𝐶𝑚𝑞

12𝐿𝛽(𝐶𝑚𝑞 +1) , 1
6𝐿𝛽(1+𝑐𝛼) (𝐶𝑚𝑞 +1)

}
,

we have
𝛽

2 − 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾

𝐾

𝐾∑︁
𝑘=1
E∥∇ 𝑓 (x̂𝑘 )∥2

≤Λ1 − Λ𝐾+1

𝛾𝐾
+

3(𝐶𝑚𝑞 + 1) (1 + 𝑛𝑐𝛼)𝐿𝛽2𝜎2𝛾

𝑛
, (2.12)

where

Λ𝑘 =(𝐶𝑚𝑞 + 1)𝐿𝛽2∥q𝑘−1∥2 + 𝑓 (x̂𝑘 ) − 𝑓 ∗

+ 3𝑐(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2 1
𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 ∥2. (2.13)

Corollary 2. Let 𝛼 = 1
2(𝐶𝑞+1) , 𝛽 = 1

𝐶𝑚𝑞 +1 , and 𝑐 =
4𝐶𝑞 (𝐶𝑞+1)

𝑛
, then 1 + 𝑛𝑐𝛼 is a fixed constant. If

𝛾 = 1
12𝐿 (1+𝑐𝛼) (1+

√
𝐾/𝑛)

, when K is relatively large, we have

1
𝐾

𝐾∑︁
𝑘=1
E∥∇ 𝑓 (x̂𝑘 )∥2 ≲

1
𝐾

+ 1
√
𝐾𝑛

. (2.14)

Remark 3. The dominant term in (2.14) is 𝑂 (1/
√
𝐾𝑛), which implies that the sample complexity of

each worker node is𝑂 (1/(𝑛𝜖2)) in average to achieve an 𝜖-accurate solution. It shows that, same as

DoubleSqueeze in [104], DORE is able to perform linear speedup. Furthermore, this convergence

result is the same as the P-SGD without compression. Note that DoubleSqueeze has an extra term

(1/𝐾) 2
3 , and its convergence requires the bounded variance of the compression operator.
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Algorithm Compression Compression Assumed Linear rate Nonconvex Rate
QSGD Grad 2-norm Quantization N/A 1

𝐾
+ 𝐵

DIANA Grad 𝑝-norm Quantization ✓ 1√
𝐾𝑛

+ 1
𝐾

DoubleSqueeze Grad+Model Bounded Variance N/A 1√
𝐾𝑛

+ 1
𝐾2/3 + 1

𝐾

DORE Grad+Model Assumption 1 ✓ 1√
𝐾𝑛

+ 1
𝐾

Table 2.1: A comparison between related algorithms. DORE is able to converges linearly to the
O(𝜎) neighborhood of optimal point like full-precision SGD and DIANA in the strongly convex
case while achieving much better communication efficiency. DORE also admits linear speedup in
the nonconvex case like DoubleSqueeze but DORE doesn’t require the assumptions of bounded
compression error or bounded gradient.

2.5 Experiment

In this section, we validate the theoretical results and demonstrate the superior performance of

DORE. Our experimental results demonstrate that (1) DORE achieves similar convergence speed

as full-precision SGD and state-of-art quantized SGD baselines and (2) its iteration time is much

smaller than most existing algorithms, supporting the superior communication efficiency of DORE.

To make a fair comparison, we choose the same Bernoulli ∞-norm quantization as described in

Section 2.3 and the quantization block size is 256 for all experiments if not being explicitly stated

because ∞-norm quantization is unbiased and commonly used. The parameters 𝛼, 𝛽, 𝜂 for DORE

are chosen to be 0.1, 1 and 1, respectively.

The baselines we choose to compare include SGD, QSGD [4], MEM-SGD [97], DIANA [77],

DoubleSqueeze and DoubleSqueeze (topk) [104]. SGD is the vanilla SGD without any compression

and QSGD quantizes the gradient directly. MEM-SGD is the QSGD with error compensation.

DIANA, which only compresses and transmits the gradient difference, is a special case of the

proposed DORE. DoubleSqueeze quantizes both the gradient on the workers and the averaged

gradient on the server with error compensation. Although DoubleSqueeze is claimed to work well

with both biased and unbiased compression, in our experiment it converges much slower and suffers

the loss of accuracy with unbiased compression. Thus, we also compare with DoubleSqueeze using

the Top-k compression as presented in [104].
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2.5.1 Strongly Convex

To verify the convergence for strongly convex and smooth objective functions, we conduct the

experiment on a linear regression problem: 𝑓 (x) = ∥Ax−b∥2+𝜆∥x∥2. The data matrix A ∈ R1200×500

and optimal solution x∗ ∈ R500 are randomly synthesized. Then we generate the prediction b

by sampling from a Gaussian distribution whose mean is Ax∗. The rows of the data matrix A

are allocated evenly to 20 worker nodes. To better verify the linear convergence to the O(𝜎)

neighborhood around the optimal solution, we take the full gradient in each node for all algorithms

to exclude the effect of the gradient variance (𝜎 = 0).

As showed in Figure 2.2, with full gradient and a constant learning rate, DORE converges linearly,

same as SGD and DIANA, but QSGD, MEM-SGD, DoubleSqueeze, as well as DoubleSqueeze

(topk) converge to a neighborhood of the optimal point. This is because these algorithms assume

the bounded gradient and their convergence errors depend on that bound. Although they converge to

the optimal solution using a diminishing step size, their converge rates will be much slower.
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(b) Learning rate=0.025

Figure 2.2: Linear regression on synthetic data. When the learning rate is 0.05, DoubleSqueeze
diverges. In both cases, DORE, SGD, and DIANA converge linearly to the optimal point, while
QSGD, MEM-SGD, DoubleSqueeze, and DoubleSqueeze (topk) only converge to the neighborhood
even when full gradient is available.

Compression error The property of the compression operator indicates that the compression

error is linearly proportional to the norm of the variable being compressed: E∥𝑄(x) − x∥2 ≤ 𝐶∥x∥2.
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We visualize the norm of the variables being compressed, i.e., the gradient residual (the worker

side) and model residual (the master side) for DORE as well as error compensated gradient (the

worker side) and averaged gradient (the master side) for DoubleSqueeze. As showed in Figure 2.3,

the gradient and model residual of DORE decrease exponentially and the compression errors vanish.

However, for DoubleSqueeze, their norms only decrease to some certain value and the compression

error doesn’t vanish. It explains why algorithms without residual compression cannot converge

linearly to the O(𝜎) neighborhood of the optimal solution in the strongly convex case.
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(b) Master side

Figure 2.3: The norm of variable being compressed in the linear regression experiment.

2.5.2 Nonconvex

To verify the convergence in the nonconvex case, we test the proposed DORE with two classical

deep neural networks on two representative datasets, respectively, i.e., LeNet [52] on MNIST and

Resnet18 [35] on CIFAR10. In the experiment, we use 1 parameter server and 10 workers, each of

which is equipped with an NVIDIA Tesla K80 GPU. The batch size for each worker node is 256.

We use 0.1 and 0.01 as the initial learning rates for LeNet and Resnet18, and decrease them by a

factor of 0.1 after every 25 and 100 epochs, respectively. All parameter settings are the same for all

algorithms.
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Figure 2.4: LeNet trained on MNIST. DORE converges similarly as most baselines. It outperforms
DoubleSqueeze using the same compression method while has similar performance as DoubleSqueeze
(topk).
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Figure 2.5: Resnet18 trained on CIFAR10. DORE achieves similar convergence and accuracy as
most baselines. DoubeSuqeeze converges slower and suffers from the higher loss but it works well
with topk compression.

Figures 2.4 and 2.5 show the training loss and test loss for each epoch during the training

of LeNet on the MNIST dataset and Resnet18 on CIFAR10 dataset. The results indicate that in

the nonconvex case, even with both compressed gradient and model information, DORE can still

achieve similar convergence speed as full-precision SGD and other quantized SGD variants. DORE

achieves much better convergence speed than DoubleSqueeze using the same compression method
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Figure 2.6: Per iteration time cost on Resnet18 for SGD, QSGD, and DORE. It is tested in a shared
cluster environment connected by Gigabit Ethernet interface. DORE speeds up the training process
significantly by mitigating the communication bottleneck.

and converges similarly with DoubleSqueeze with Topk compression as presented in [104]. We also

validate via parameter sensitivity in Appendix A.1.2 that DORE performs consistently well under

different parameter settings such as compression block size, 𝛼, 𝛽 and 𝜂.

2.5.3 Communication Efficiency

In terms of communication cost, DORE enjoys the benefit of extremely efficient communication.

As one example, under the same setting as the Resnet18 experiment described in the previous

section, we test the time cost per iteration for SGD, QSGD, and DORE under varied network

bandwidth. We didn’t test MEM-SGD, DIANA, and DoubleSqueeze because MEM-SGD, DIANA

have similar time cost as QSGD while DoubleSqueeze has similar time cost as DORE. The result

showed in Figure 2.6 indicates that as the bandwidth becomes worse, with both gradient and model

compression, the advantage of DORE becomes more remarkable compared to the baselines that

don’t apply compression for model synchronization. In Appendix A.1.1, we also demonstrate the

communication efficiency in terms of communication bits and running time, which clearly suggests

the benefit of the proposed algorithm.
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2.6 Conclusion

Message passing is the dominating bottleneck for distributed training of modern large-scale machine

learning models. Extensive works have compressed the gradient information to be transferred during

the training process, but model compression is rather limited due to its intrinsic difficulty. In this

work, we proposed the Double Residual Compression SGD named DORE to compress both gradient

and model communication that can mitigate this bottleneck prominently. The theoretical analyses

suggest good convergence rate of DORE under weak assumptions. Furthermore, DORE is able to

reduce 95% of the communication cost in message passing while maintaining similar convergence

rate and model accuracy compared with the full-precision SGD.
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CHAPTER 3

LINEAR CONVERGENT DECENTRALIZED OPTIMIZATION WITH COMPRESSION

Communication compression has become a key strategy to speed up the message passing in

distributed optimization. However, existing decentralized algorithms with compression mainly

focus on compressing DGD-type algorithms. They are unsatisfactory in terms of convergence rate,

stability, and the capability to handle heterogeneous data. Motivated by primal-dual algorithms, in

this chapter, we propose the first LinEAr convergent Decentralized algorithm with compression,

LEAD. Our theory describes the coupled dynamics of the inexact primal and dual update as well

as compression error, and we provide the first consensus error bound in such settings without

assuming bounded gradients. This is also the first work that proves in certain compression regime,

the message compression in message passing do not hurt the convergence, which means it achieves

better communication efficiency for free. Experiments on convex problems validate our theoretical

analysis, and empirical study on deep neural nets shows that LEAD is applicable to non-convex

problems as well.

3.1 Introduction

Distributed optimization solves the following optimization problem

x∗ := arg min
x∈R𝑑

[
𝑓 (x) :=

1
𝑛

𝑛∑︁
𝑖=1

𝑓𝑖 (x)
]

(3.1)

with 𝑛 computing agents and a communication network. Each 𝑓𝑖 (x) : R𝑑 → R is a local objective

function of agent 𝑖 and typically defined on the data D𝑖 settled at that agent. The data distributions

{D𝑖} can be heterogeneous depending on the applications such as in federated learning. The variable

x ∈ R𝑑 often represents model parameters in machine learning. A distributed optimization algorithm

seeks an optimal solution that minimizes the overall objective function 𝑓 (x) collectively. According

to the communication topology, existing algorithms can be conceptually categorized into centralized

and decentralized ones. Specifically, centralized algorithms require global communication between

24



agents (through central agents or parameter servers). While decentralized algorithms only require

local communication between connected agents and are more widely applicable than centralized

ones. In both paradigms, the computation can be relatively fast with powerful computing devices;

efficient communication is the key to improve algorithm efficiency and system scalability, especially

when the network bandwidth is limited.

In recent years, various communication compression techniques, such as quantization and

sparsification, have been developed to reduce communication costs. Notably, extensive studies [92,

4, 7, 97, 45, 77, 104, 68] have utilized gradient compression to significantly boost communication

efficiency for centralized optimization. They enable efficient large-scale optimization while

maintaining comparable convergence rates and practical performance with their non-compressed

counterparts. This great success has suggested the potential and significance of communication

compression in decentralized algorithms.

While extensive attention has been paid to centralized optimization, communication compression

is relatively less studied in decentralized algorithms because the algorithm design and analysis are

more challenging in order to cover general communication topologies. There are recent efforts trying

to push this research direction. For instance, DCD-SGD and ECD-SGD [101] introduce difference

compression and extrapolation compression to reduce model compression error. [88, 89] introduce

QDGD and QuanTimed-DSGD to achieve exact convergence with small stepsize. DeepSqueeze [102]

directly compresses the local model and compensates the compression error in the next iteration.

CHOCO-SGD [51, 50] presents a novel quantized gossip algorithm that reduces compression error

by difference compression and preserves the model average. Nevertheless, most existing works focus

on the compression of primal-only algorithms, i.e., reduce to DGD [80, 123] or P-DSGD [62]. They

are unsatisfying in terms of convergence rate, stability, and the capability to handle heterogeneous

data. Part of the reason is that they inherit the drawback of DGD-type algorithms, whose convergence

rate is slow in heterogeneous data scenarios where the data distributions are significantly different

from agent to agent.

In the literature of decentralized optimization, it has been proved that primal-dual algorithms
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can achieve faster converge rates and better support heterogeneous data [63, 96, 59, 124]. However,

it is unknown whether communication compression is feasible for primal-dual algorithms and how

fast the convergence can be with compression. In this work, we attempt to bridge this gap by

investigating the communication compression for primal-dual decentralized algorithms. Our major

contributions can be summarized as:

• We delineate two key challenges in the algorithm design for communication compression in

decentralized optimization, i.e., data heterogeneity and compression error, and motivated by

primal-dual algorithms, we propose a novel decentralized algorithm with compression, LEAD.

• We prove that for LEAD, a constant stepsize in the range (0, 2/(𝜇+𝐿)] is sufficient to ensure linear

convergence for strongly convex and smooth objective functions. To the best of our knowledge,

LEAD is the first linear convergent decentralized algorithm with compression. Moreover, LEAD

provably works with unbiased compression of arbitrary precision.

• We further prove that if the stochastic gradient is used, LEAD converges linearly to the 𝑂 (𝜎2)

neighborhood of the optimum with constant stepsize. LEAD is also able to achieve exact

convergence to the optimum with diminishing stepsize.

• Extensive experiments on convex problems validate our theoretical analyses, and the empirical

study on training deep neural nets shows that LEAD is applicable for nonconvex problems.

LEAD achieves state-of-art computation and communication efficiency in all experiments and

significantly outperforms the baselines on heterogeneous data. Moreover, LEAD is robust to

parameter settings and needs minor effort for parameter tuning.

3.2 Related Work

Decentralized optimization can be traced back to the work by [107]. DGD [80] is the most classical

decentralized algorithm. It is intuitive and simple but converges slowly due to the diminishing

stepsize that is needed to obtain the optimal solution [123]. Its stochastic version D-PSGD [62] has

been shown effective for training nonconvex deep learning models. Algorithms based on primal-dual
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formulations or gradient tracking are proposed to eliminate the convergence bias in DGD-type

algorithms and improve the convergence rate, such as D-ADMM [78], DLM [63], EXTRA [96],

NIDS [59], 𝐷2 [103], Exact Diffusion [125], OPTRA [120], DIGing [79], GSGT [87], etc.

Recently, communication compression is applied to decentralized settings by [101]. It proposes

two algorithms, i.e., DCD-SGD and ECD-SGD, which require compression of high accuracy and

are not stable with aggressive compression. [88, 89] introduce QDGD and QuanTimed-DSGD to

achieve exact convergence with small stepsize and the convergence is slow. DeepSqueeze [102]

compensates the compression error to the compression in the next iteration. Motivated by the

quantized average consensus algorithms, such as [13], the quantized gossip algorithm CHOCO-

Gossip [51] converges linearly to the consensual solution. Combining CHOCO-Gossip and D-PSGD

leads to a decentralized algorithm with compression, CHOCO-SGD, which converges sublinearly

under the strong convexity and gradient boundedness assumptions. Its nonconvex variant is further

analyzed in [50]. A new compression scheme using the modulo operation is introduced in [71]

for decentralized optimization. A general algorithmic framework aiming to maintain the linear

convergence of distributed optimization under compressed communication is considered in [75]. It

requires a contractive property that is not satisfied by many decentralized algorithms including the

algorithm in this work.

3.3 Algorithm

We first introduce notations and definitions used in this work. We use bold upper-case letters such

as X to define matrices and bold lower-case letters such as x to define vectors. Let 1 and 0 be

vectors with all ones and zeros, respectively. Their dimensions will be provided when necessary.

Given two matrices X, Y ∈ R𝑛×𝑑 , we define their inner product as ⟨X,Y⟩ = tr(X⊤Y) and the norm

as ∥X∥ =
√︁
⟨X,X⟩. We further define ⟨X,Y⟩P = tr(X⊤PY) and ∥X∥P =

√︁
⟨X,X⟩P for any given

symmetric positive semidefinite matrix P ∈ R𝑛×𝑛. For simplicity, we will majorly use the matrix

notation in this work. For instance, each agent 𝑖 holds an individual estimate x𝑖 ∈ R𝑑 of the global

variable x ∈ R𝑑 . Let X𝑘 and ∇F(X𝑘 ) be the collections of {x𝑘
𝑖
}𝑛
𝑖=1 and {∇ 𝑓𝑖 (x𝑘𝑖 )}𝑛𝑖=1 which are
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defined below:

X𝑘 =
[
x𝑘1 , . . . , x

𝑘
𝑛

]⊤ ∈ R𝑛×𝑑 , ∇F(X𝑘 ) =
[
∇ 𝑓1(x𝑘1), . . . ,∇ 𝑓𝑛 (x

𝑘
𝑛)

]⊤ ∈ R𝑛×𝑑 . (3.2)

We use ∇F(X𝑘 ; 𝜉𝑘 ) to denote the stochastic approximation of ∇F(X𝑘 ). With these notations,

the update X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) means that x𝑘+1
𝑖

= x𝑘
𝑖
− 𝜂∇ 𝑓𝑖 (x𝑘𝑖 ; 𝜉𝑘

𝑖
) for all 𝑖. In this

work, we need the average of all rows in X𝑘 and ∇F(X𝑘 ), so we define X𝑘 = (1⊤X𝑘 )/𝑛 and

∇F(X𝑘 ) = (1⊤∇F(X𝑘 ))/𝑛. They are row vectors, and we will take a transpose if we need a column

vector. The pseudoinverse of a matrix M is denoted as M†. The largest, 𝑖th-largest, and smallest

nonzero eigenvalues of a symmetric matrix M are 𝜆max(M), 𝜆𝑖 (M), and 𝜆min(M).

Assumption 5 (Mixing matrix). The connected network G = {V, E} consists of a node set

V = {1, 2, . . . , 𝑛} and an undirected edge set E. The primitive symmetric doubly-stochastic matrix

W = [𝑤𝑖 𝑗 ] ∈ R𝑛×𝑛 encodes the network structure such that 𝑤𝑖 𝑗 = 0 if nodes 𝑖 and 𝑗 are not connected

and cannot exchange information.

Assumption 5 implies that −1 < 𝜆𝑛 (W) ≤ 𝜆𝑛−1(W) ≤ · · · 𝜆2(W) < 𝜆1(W) = 1 and W1 =

1 [118, 96]. The matrix multiplication X𝑘+1 = WX𝑘 describes that agent 𝑖 takes a weighted sum

from its neighbors and itself, i.e., x𝑘+1
𝑖

=
∑
𝑗∈N𝑖∪{𝑖} 𝑤𝑖 𝑗x

𝑘
𝑗
, where N𝑖 denotes the neighbors of agent 𝑖.

The proposed algorithm LEAD to solve problem (3.1) is showed in Alg. 3 with matrix notations

for conciseness. We will refer to the line number in the analysis. A complete algorithm description

from the agent’s perspective can be found in Algorithm 4. The motivation behind Alg. 3 is to achieve

two goals: (a) consensus (x𝑘
𝑖
− (X𝑘 )⊤ → 0) and (b) convergence ((X𝑘 )⊤ → x∗). We first discuss

how goal (a) leads to goal (b) and then explain how LEAD fulfills goal (a).

In essence, LEAD runs the approximate SGD globally and reduces to the exact SGD under

consensus. One key property for LEAD is 1⊤
𝑛×1D𝑘 = 0, regardless of the compression error in Ŷ𝑘 .

It holds because that for the initialization, we require D1 = (I − W)Z for some Z ∈ R𝑛×𝑑 , e.g.,

D1 = 0𝑛×𝑑 , and that the update of D𝑘 ensures D𝑘 ∈ Range(I − W) for all 𝑘 and 1⊤
𝑛×1(I − W) = 0 as

we will explain later. Therefore, multiplying (1/𝑛)1⊤
𝑛×1 on both sides of Line 7 leads to a global
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Algorithm 3 LEAD
Input: Stepsize 𝜂, parameter (𝛼, 𝛾), X0, H1, D1 = (I − W)Z for any Z
Output: X𝐾 or 1/𝑛∑𝑛

𝑖=1 X𝐾
𝑖

1: H1
𝑤 = WH1

2: X1 = X0 − 𝜂∇F(X0; 𝜉0)
3: for 𝑘 = 1, 2, · · · , 𝐾 − 1 do
4: Y𝑘 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘

5: Ŷ𝑘 , Ŷ𝑘
𝑤,H𝑘+1,H𝑘+1

𝑤 = COMM(Y𝑘 ,H𝑘 ,H𝑘
𝑤)

6: D𝑘+1 = D𝑘 + 𝛾

2𝜂 (Ŷ
𝑘 − Ŷ𝑘

𝑤)
7: X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘+1

8: end for

9: procedure COMM(Y,H,H𝑤):
10: Q = Compress(Y − H)
11: Ŷ = H + Q
12: Ŷ𝑤 = H𝑤 + WQ
13: H = (1 − 𝛼)H + 𝛼Ŷ
14: H𝑤 = (1 − 𝛼)H𝑤 + 𝛼Ŷ𝑤

15: return: Ŷ, Ŷ𝑤,H,H𝑤

16: end procedure

average view of Alg. 3:

X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ), (3.3)

which doesn’t contain the compression error. Note that this is an approximate SGD step because,

as shown in (3.2), the gradient ∇F(X𝑘 ; 𝜉𝑘 ) is not evaluated on a global synchronized model

X𝑘 . However, if the solution converges to the consensus solution, i.e., x𝑘
𝑖
− (X𝑘 )⊤ → 0, then

E𝜉𝑘 [∇F(X𝑘 ; 𝜉𝑘 ) − ∇ 𝑓 (X𝑘 ; 𝜉𝑘 )] → 0 and (3.3) gradually reduces to exact SGD.

With the establishment of how consensus leads to convergence, the obstacle becomes how to

achieve consensus under local communication and compression challenges. It requires addressing

two issues, i.e., data heterogeneity and compression error. To deal with these issues, existing

algorithms, such as DCD-SGD, ECD-SGD, QDGD, DeepSqueeze, Moniqua, and CHOCO-SGD,

need a diminishing or constant but small stepsize depending on the total number of iterations.

However, these choices unavoidably cause slower convergence and bring in the difficulty of parameter

tuning. In contrast, LEAD takes a different way to solve these issues, as explained below.

Data heterogeneity. It is common in distributed settings that there exists data heterogeneity

among agents, especially in real-world applications where different agents collect data from different

scenarios. In other words, we generally have 𝑓𝑖 (x) ≠ 𝑓 𝑗 (x) for 𝑖 ≠ 𝑗 . The optimality condition of

problem (3.1) gives 1⊤
𝑛×1∇F(X∗) = 0, where X∗ = [x∗, · · · , x∗] is a consensual and optimal solution.

The data heterogeneity and optimality condition imply that there exist at least two agents 𝑖 and 𝑗
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such that ∇ 𝑓𝑖 (x∗) ≠ 0 and ∇ 𝑓 𝑗 (x∗) ≠ 0. As a result, a simple D-PSGD algorithm cannot converge

to the consensual and optimal solution as X∗ ≠ WX∗ − 𝜂E𝜉∇F(X∗; 𝜉) even when the stochastic

gradient variance is zero.

Gradient correction. Primal-dual algorithms or gradient tracking algorithms are able to

convergence much faster than DGD-type algorithms by handling the data heterogeneity issue, as

introduced in Section 3.2. Specifically, LEAD is motivated by the design of primal-dual algorithm

NIDS [59] and the relation becomes clear if we consider the two-step reformulation of NIDS adopted

in [57]:

D𝑘+1 = D𝑘 + I − W
2𝜂

(X𝑘 − 𝜂∇F(X𝑘 ) − 𝜂D𝑘 ), (3.4)

X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ) − 𝜂D𝑘+1, (3.5)

where X𝑘 and D𝑘 represent the primal and dual variables respectively. The dual variable D𝑘 plays the

role of gradient correction. As 𝑘 → ∞, we expect D𝑘 → −∇F(X∗) and X𝑘 will converge to X∗ via

the update in (3.5) since D𝑘+1 corrects the nonzero gradient ∇F(X𝑘 ) asymptotically. The key design

of Alg. 3 is to provide compression for the auxiliary variable defined as Y𝑘 = X𝑘 − 𝜂∇F(X𝑘 ) − 𝜂D𝑘 .

Such design ensures that the dual variable D𝑘 lies in Range(I−W), which is essential for convergence.

Moreover, it achieves the implicit error compression as we will explain later. To stabilize the

algorithm with inexact dual update, we introduce a parameter 𝛾 to control the stepsize in the dual

update. Therefore, if we ignore the details of the compression, Alg. 3 can be concisely written as

Y𝑘 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘 (3.6)

D𝑘+1 = D𝑘 + 𝛾

2𝜂
(I − W)Ŷ𝑘 (3.7)

X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘+1 (3.8)

where Ŷ𝑘 represents the compression of Y𝑘 and F(X𝑘 ; 𝜉𝑘 ) denote the stochastic gradients.

Nevertheless, how to compress the communication and how fast the convergence we can

attain with compression error are unknown. In the following, we propose to carefully control

the compression error by difference compression and error compensation such that the inexact
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dual update (Line 6) and primal update (Line 7) can still guarantee the convergence as proved in

Section 3.4.

Compression error. Different from existing works, which typically compress the primal variable

X𝑘 or its difference, LEAD first construct an intermediate variable Y𝑘 and apply compression to

obtain its coarse representation Ŷ𝑘 as shown in the procedure 𝐶𝑜𝑚𝑚Y,H,H𝑤:

• Compress the difference between Y and the state variable H as Q;

• Q is encoded into the low-bit representation, which enables the efficient local communication

step Ŷ𝑤 = H𝑤 + WQ. It is the only communication step in each iteration.

• Each agent recovers its estimate Ŷ by Ŷ = H + Q and we have Ŷ𝑤 = WŶ.

• States H and H𝑤 are updated based on Ŷ and Ŷ𝑤, respectively. We have H𝑤 = WH.

By this procedure, we expect when both Y𝑘 and H𝑘 converge to X∗, the compression error vanishes

asymptotically due to the assumption we make for the compression operator in Assumption 6.

Remark 4. Note that difference compression is also applied in DCD-PSGD [101] and CHOCO-

SGD [51], but their state update is the simple integration of the compressed difference. We find this

update is usually too aggressive and cause instability as showed in our experiments. Therefore, we

adopt a momentum update H = (1 − 𝛼)H + 𝛼Ŷ motivated from DIANA [77], which reduces the

compression error for gradient compression in centralized optimization.

Implicit error compensation. On the other hand, even if the compression error exists, LEAD

essentially compensates for the error in the inexact dual update (Line 6), making the algorithm more

stable and robust. To illustrate how it works, let E𝑘 = Ŷ𝑘 − Y𝑘 denote the compression error and e𝑘
𝑖

be its 𝑖-th row. The update of D𝑘 gives

D𝑘+1 = D𝑘 + 𝛾

2𝜂
(Ŷ𝑘 − Ŷ𝑘

𝑤) = D𝑘 + 𝛾

2𝜂
(I − W)Y𝑘 + 𝛾

2𝜂
(E𝑘 − WE𝑘 )

where −WE𝑘 indicates that agent 𝑖 spreads total compression error −∑
𝑗∈N𝑖∪{𝑖} 𝑤 𝑗𝑖e𝑘𝑖 = −e𝑘

𝑖
to all

agents and E𝑘 indicates that each agent compensates this error locally by adding e𝑘
𝑖

back. This error

compensation also explains why the global view in (3.3) doesn’t involve compression error.
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Remark 5. Note that in LEAD, the compression error is compensated into the model X𝑘+1 through

Line 6 and Line 7 such that the gradient computation in the next iteration is aware of the compression

error. This has some subtle but important difference from the error compensation or error feedback

in [92, 116, 97, 45, 104, 68, 102], where the error is stored in the memory and only compensated

after gradient computation and before the compression.

LEAD in agent’s perspective In Algorithm 3, we described the algorithm with matrix notations

for concision. Here we further provide a complete algorithm description from the agents’ perspective.

Algorithm 4 LEAD in Agent’s Perspective
input: stepsize 𝜂, compression parameters (𝛼, 𝛾), initial values x0

𝑖
, h1

𝑖
, z𝑖, ∀𝑖 ∈ {1, 2, . . . , 𝑛}

output: x𝐾
𝑖
, ∀𝑖 ∈ {1, 2, . . . , 𝑛} or

∑𝑛
𝑖=1 x𝐾

𝑖

𝑛

1: for each agent 𝑖 ∈ {1, 2, . . . , 𝑛} do
2: d1

𝑖
= z𝑖 −

∑
𝑗∈N𝑖∪{𝑖} 𝑤𝑖 𝑗z 𝑗

3: (h𝑤)1
𝑖
=

∑
𝑗∈N𝑖∪{𝑖} 𝑤𝑖 𝑗 (h𝑤)1

𝑗

4: x1
𝑖
= x0

𝑖
− 𝜂∇ 𝑓𝑖 (x0

𝑖
; 𝜉0
𝑖
)

5: end for
6: for 𝑘 = 1, 2, . . . , 𝐾 − 1 (in parallel for all agents 𝑖 ∈ {1, 2, . . . , 𝑛}) do
7: compute ∇ 𝑓𝑖 (x𝑘𝑖 ; 𝜉𝑘

𝑖
) ▷ Gradient computation

8: y𝑘
𝑖
= x𝑘

𝑖
− 𝜂∇ 𝑓𝑖 (x𝑘𝑖 ; 𝜉𝑘

𝑖
) − 𝜂d𝑘

𝑖

9: q𝑘
𝑖
= Compress(y𝑘

𝑖
− h𝑘

𝑖
) ▷ Compression

10: ŷ𝑘
𝑖
= h𝑘

𝑖
+ q𝑘

𝑖

11: for neighbors 𝑗 ∈ N𝑖 do
12: Send q𝑘

𝑖
and receive q𝑘

𝑗
▷ Communication

13: end for
14: (ŷ𝑤)𝑘𝑖 = (h𝑤)𝑘𝑖 +

∑
𝑗∈N𝑖∪{𝑖} 𝑤𝑖 𝑗q

𝑘
𝑗

15: h𝑘+1
𝑖

= (1 − 𝛼)h𝑘
𝑖
+ 𝛼ŷ𝑘

𝑖

16: (h𝑤)𝑘+1
𝑖 = (1 − 𝛼) (h𝑤)𝑘𝑖 + 𝛼(ŷ𝑤)𝑘𝑖

17: d𝑘+1
𝑖

= d𝑘
𝑖
+ 𝛾

2𝜂
(
ŷ𝑘
𝑖
− (ŷ𝑤)𝑘𝑖

)
18: x𝑘+1

𝑖
= x𝑘

𝑖
− 𝜂∇ 𝑓𝑖 (x𝑘𝑖 ; 𝜉𝑘

𝑖
) − 𝜂d𝑘+1

𝑖
▷ Model update

19: end for

Connections with exiting algorithms The non-compressed variant of LEAD in Alg. 3 recovers

NIDS [59], 𝐷2 [103] and Exact Diffusion [125] as shown in Proposition 1. In Corollary 3, we show

that the convergence rate of LEAD exactly recovers the rate of NIDS when 𝐶 = 0, 𝛾 = 1 and 𝜎 = 0.
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Proposition 1 (Connection to NIDS, 𝐷2 and Exact Diffusion). When there is no communication

compression (i.e., Ŷ𝑘 = Y𝑘 ) and 𝛾 = 1, Alg. 3 recovers 𝐷2:

X𝑘+1 =
I + W

2

(
2X𝑘 − X𝑘−1 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) + 𝜂∇F(X𝑘−1; 𝜉𝑘−1)

)
. (3.9)

Furthermore, if the stochastic estimator of the gradient ∇F(X𝑘 ; 𝜉𝑘 ) is replaced by the full gradient,

it recovers NIDS and Exact Diffusion with specific settings.

Corollary 3 (Consistency with NIDS). When 𝐶 = 0 (no communication compression), 𝛾 = 1 and

𝜎 = 0 (full gradient), LEAD has the convergence consistent with NIDS with 𝜂 ∈ (0, 2/(𝜇 + 𝐿)]:

L𝑘+1 ≤ max
{
1 − 𝜇(2𝜂 − 𝜇𝜂2), 1 − 1

2𝜆max((I − W)†)

}
L𝑘 . (3.10)

See the proof in B.3.5.

Proof of Proposition 1. Let 𝛾 = 1 and Ŷ𝑘 = Y𝑘 . Combing Lines 4 and 6 of Alg. 3 gives

D𝑘+1 = D𝑘 + I − W
2𝜂

(X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘 ). (3.11)

Based on Line 7, we can represent 𝜂D𝑘 from the previous iteration as

𝜂D𝑘 = X𝑘−1 − X𝑘 − 𝜂∇F(X𝑘−1; 𝜉𝑘−1). (3.12)

Eliminating both D𝑘 and D𝑘+1 by substituting (3.11)-(3.12) into Line 7, we obtain

X𝑘+1 = X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) −
(
𝜂D𝑘 + I − W

2
(X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘 )

)
(from (3.11))

=
I + W

2
(X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 )) − I + W

2
𝜂D𝑘

=
I + W

2
(X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 )) − I + W

2
(X𝑘−1 − X𝑘 − 𝜂∇F(X𝑘−1; 𝜉𝑘−1)) (from (3.12))

=
I + W

2
(2X𝑘 − X𝑘−1 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) + 𝜂∇F(X𝑘−1; 𝜉𝑘−1)), (3.13)

which is exactly 𝐷2. It also recovers Exact Diffusion with A = I+W
2 and M = 𝜂I in Eq. (97)

of [125].
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3.4 Theoretical Analysis

In this section, we show the convergence rate for the proposed algorithm LEAD. Before showing

the main theorem, we make some assumptions, which are commonly used for the analysis of

decentralized optimization algorithms. All proofs are provided in Appendix B.3.

Assumption 6 (Unbiased and 𝐶-contracted operator). The compression operator 𝑄 : R𝑑 → R𝑑 is

unbiased, i.e., E𝑄(x) = x, and there exists 𝐶 ≥ 0 such that E∥x −𝑄(x)∥2
2 ≤ 𝐶∥x∥2

2 for all x ∈ R𝑑 .

Assumption 7 (Stochastic gradient). The stochastic gradient∇ 𝑓𝑖 (x; 𝜉) is unbiased, i.e.,E𝜉∇ 𝑓𝑖 (x; 𝜉) =

∇ 𝑓𝑖 (x), and the stochastic gradient variance is bounded: E𝜉 ∥∇ 𝑓𝑖 (x; 𝜉) − ∇ 𝑓𝑖 (x)∥2
2 ≤ 𝜎2

𝑖
for all

𝑖 ∈ [𝑛]. Denote 𝜎2 = 1
𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖
.

Assumption 8. Each 𝑓𝑖 is 𝐿-smooth and 𝜇-strongly convex with 𝐿 ≥ 𝜇 > 0, i.e., for 𝑖 = 1, 2, . . . , 𝑛

and ∀x, y ∈ R𝑑 , we have

𝑓𝑖 (y) + ⟨∇ 𝑓𝑖 (y), x − y⟩ + 𝜇
2
∥x − y∥2 ≤ 𝑓𝑖 (x) ≤ 𝑓𝑖 (y) + ⟨∇ 𝑓𝑖 (y), x − y⟩ + 𝐿

2
∥x − y∥2.

Theorem 3 (Constant stepsize). Let {X𝑘 ,H𝑘 ,D𝑘 } be the sequence generated from Alg. 3 and X∗

is the optimal solution with D∗ = −∇F(X∗). Under Assumptions 5-8, for any constant stepsize

𝜂 ∈ (0, 2/(𝜇 + 𝐿)], if the compression parameters 𝛼 and 𝛾 satisfy

𝛾 ∈
(
0,min

{ 2
(3𝐶 + 1)𝛽 ,

2𝜇𝜂(2 − 𝜇𝜂)
[2 − 𝜇𝜂(2 − 𝜇𝜂)]𝐶𝛽

})
, (3.14)

𝛼 ∈
[
𝐶𝛽𝛾

2(1 + 𝐶) ,
1
𝑎1

min
{2 − 𝛽𝛾

4 − 𝛽𝛾 , 𝜇𝜂(2 − 𝜇𝜂)
}]
, (3.15)

with 𝛽 B 𝜆max(I − W). Then, in total expectation we have

1
𝑛
EL𝑘+1 ≤ 𝜌

1
𝑛
EL𝑘 + 𝜂2𝜎2, (3.16)

where

L𝑘 B (1 − 𝑎1𝛼)∥X𝑘 − X∗∥2 + (2𝜂2/𝛾)E∥D𝑘 − D∗∥2
(I−W)† + 𝑎1∥H𝑘 − X∗∥2, (3.17)

𝜌 B max
{

1 − 𝜇𝜂(2 − 𝜇𝜂)
1 − 𝑎1𝛼

, 1 − 𝛾

2𝜆max((I − W)†)
, 1 − 𝛼

}
< 1, 𝑎1 B

4(1 + 𝐶)
𝐶𝛽𝛾 + 2

(3.18)

The result holds for 𝐶 → 0.
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Corollary 4 (Complexity bounds). Define the condition numbers of the objective function and

communication graph as 𝜅 𝑓 = 𝐿
𝜇

and 𝜅𝑔 =
𝜆max (I−W)
𝜆+min (I−W) , respectively. Under the same setting in

Theorem 3, we can choose 𝜂 = 1
𝐿
, 𝛾 = min{ 1

𝐶𝛽𝜅 𝑓
, 1
(1+3𝐶)𝛽 }, and 𝛼 = O( 1

(1+𝐶)𝜅 𝑓 ) such that

𝜌 = max
{
1 − O

( 1
(1 + 𝐶)𝜅 𝑓

)
, 1 − O

( 1
(1 + 𝐶)𝜅𝑔

)
, 1 − O

( 1
𝐶𝜅 𝑓 𝜅𝑔

)}
.

With full-gradient (i.e., 𝜎 = 0), we obtain the following complexity bounds:

• LEAD converges to the 𝜖-accurate solution with the iteration complexity

O
( (
(1 + 𝐶) (𝜅 𝑓 + 𝜅𝑔) + 𝐶𝜅 𝑓 𝜅𝑔

)
log

1
𝜖

)
.

• When 𝐶 = 0 (i.e., there is no compression), we obtain 𝜌 = max{1 − O( 1
𝜅 𝑓
), 1 − O( 1

𝜅𝑔
)}, and

the iteration complexity O
(
(𝜅 𝑓 + 𝜅𝑔) log 1

𝜖

)
. This exactly recovers the convergence rate of

NIDS [59].

• When 𝐶 ≤ 𝜅 𝑓 +𝜅𝑔
𝜅 𝑓 𝜅𝑔+𝜅 𝑓 +𝜅𝑔 , the asymptotical complexity is O

(
(𝜅 𝑓 + 𝜅𝑔) log 1

𝜖

)
, which also recovers

that of NIDS [59] and indicates that the compression doesn’t harm the convergence in this

case.

• With 𝐶 = 0 (or 𝐶 ≤ 𝜅 𝑓 +𝜅𝑔
𝜅 𝑓 𝜅𝑔+𝜅 𝑓 +𝜅𝑔 ) and fully connected communication graph (i.e., W = 11⊤

𝑛
),

we have 𝛽 = 1 and 𝜅𝑔 = 1. Therefore, we obtain 𝜌 = 1 − O( 1
𝜅 𝑓
) and the complexity bound

O(𝜅 𝑓 𝑙𝑜𝑔 1
𝜖
). This recovers the convergence rate of gradient descent [81].

Remark 6. Under the setting in Theorem 3, LEAD converges linearly to the O(𝜎2) neighborhood

of the optimum and converges linearly exactly to the optimum if full gradient is used, e.g., 𝜎 = 0.

The linear convergence of LEAD holds when 𝜂 < 2/𝐿, but we omit the proof.

Remark 7 (Arbitrary compression precision). Pick any 𝜂 ∈ (0, 2/(𝜇 + 𝐿)], based on the compression-

related constant 𝐶 and the network-related constant 𝛽, we can select 𝛾 and 𝛼 in certain ranges

to achieve the convergence. It suggests that LEAD supports unbiased compression with arbitrary

precision, i.e., any 𝐶 > 0.

35



Corollary 5 (Consensus error). Under the same setting in Theorem 3 , let x𝑘 = 1
𝑛

∑𝑛
𝑖=1 x𝑘

𝑖
be the

averaged model and H0 = H1, then all agents achieve consensus at the rate

1
𝑛

𝑛∑︁
𝑖=1
E



x𝑘𝑖 − x𝑘


2 ≤ 2L0

𝑛
𝜌𝑘 + 2𝜎2

1 − 𝜌𝜂
2. (3.19)

where 𝜌 is defined as in Corollary 4 with appropriate parameter settings.

Theorem 4 (Diminishing stepsize). Let {X𝑘 ,H𝑘 ,D𝑘 } be the sequence generated from Alg. 3 and

X∗ is the optimal solution with D∗ = −∇F(X∗). Under Assumptions 5-8, if 𝜂𝑘 =
2𝜃5

𝜃3𝜃4𝜃5𝑘+2 and

𝛾𝑘 = 𝜃4𝜂𝑘 , by taking 𝛼𝑘 = 𝐶𝛽𝛾𝑘
2(1+𝐶) , in total expectation we have

1
𝑛

𝑛∑︁
𝑖=1
E



x𝑘𝑖 − x∗


2

≲ O
(

1
𝑘

)
(3.20)

where 𝜃1, 𝜃2, 𝜃3, 𝜃4 and 𝜃5 are constants defined in the proof. The complexity bound for arriving at

the 𝜖-accurate solution is O( 1
𝜖
).

Remark 8. Compared with CHOCO-SGD, LEAD requires unbiased compression and the conver-

gence under biased compression is not investigated yet. The analysis of CHOCO-SGD relies on

the bounded gradient assumptions, i.e., ∥∇ 𝑓𝑖 (x)∥2 ≤ 𝐺, which is restrictive because it conflicts

with the strong convexity while LEAD doesn’t need this assumption. Moreover, in the theorem of

CHOCO-SGD, it requires a specific point set of 𝛾 while LEAD only requires 𝛾 to be within a rather

large range. This may explain the advantages of LEAD over CHOCO-SGD in terms of robustness to

parameter setting.

3.5 Numerical Experiment

We consider three machine learning problems – ℓ2-regularized linear regression, logistic regression,

and deep neural network. The proposed LEAD is compared with QDGD [88], DeepSqueeze [102],

CHOCO-SGD [51], and two non-compressed algorithms DGD [123] and NIDS [59].

Setup. We consider eight machines connected in a ring topology network. Each agent can only

exchange information with its two 1-hop neighbors. The mixing weight is simply set as 1/3. For
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compression, we use the unbiased 𝑏-bits quantization method with ∞-norm

𝑄∞(x) :=
(
∥x∥∞2−(𝑏−1)sign(x)

)
·
⌊
2(𝑏−1) |x|
∥x∥∞

+ u
⌋
, (3.21)

where · is the Hadamard product, |x| is the elementwise absolute value of x, and u is a random vector

uniformly distributed in [0, 1]𝑑 . Only sign(x), norm ∥x∥∞, and integers in the bracket need to be

transmitted. Note that this quantization method is similar to the quantization used in QSGD [4] and

CHOCO-SGD [51], but we use the ∞-norm scaling instead of the 2-norm. This small change brings

significant improvement on compression precision as justified both theoretically and empirically in

Appendix B.1. In this section, we choose 2-bit quantization and quantize the data blockwise (block

size = 512).

For all experiments, we tune the stepsize 𝜂 from {0.01, 0.05, 0.1, 0.5}. For QDGD, CHOCO-SGD

and Deepsqueeze, 𝛾 is tuned from {0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. Note that different notations

are used in their original papers. Here we uniformly denote the stepsize as 𝜂 and the additional

parameter in these algorithms as 𝛾 for simplicity. For LEAD, we simply fix 𝛼 = 0.5 and 𝛾 = 1.0 for

all experiments since we find LEAD is robust to parameter settings as we validate in the parameter

sensitivity analysis in the below. This indicates the minor effort needed for tuning LEAD. Detailed

parameter settings for all experiments are summarized in Appendix B.2.2.

Linear regression. We consider the problem: 𝑓 (x) = ∑𝑛
𝑖=1(∥A𝑖x−b𝑖∥2+𝜆∥x∥2). Data matrices

A𝑖 ∈ R200×200 and the true solution x′ is randomly synthesized. The values b𝑖 are generated by adding

Gaussian noise to A𝑖x′. We let 𝜆 = 0.1 and the optimal solution of the linear regression problem

be x∗. We use full-batch gradient to exclude the impact of gradient variance. The performance is

showed in Fig. 3.1. The distance to x∗ in Fig. 3.1a and the consensus error in Fig. 3.1c verify that

LEAD converges exponentially to the optimal consensual solution. It significantly outperforms

most baselines and matches NIDS well under the same number of iterations. Fig. 3.1b demonstrates

the benefit of compression when considering the communication bits. Fig. 3.1d shows that the

compression error vanishes for both LEAD and CHOCO-SGD while the compression error is pretty

large for QDGD and DeepSqueeze because they directly compress the local models.
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Figure 3.1: Linear regression problem.

Logistic regression. We further consider a logistic regression problem on the MNIST dataset.

The regularization parameter is 10−4. We consider both homogeneous and heterogeneous data

settings. In the homogeneous setting, the data samples are randomly shuffled before being uniformly

partitioned among all agents such that the data distribution from each agent is very similar. In

the heterogeneous setting, the samples are first sorted by their labels and then partitioned among

agents. Due to the space limit, we mainly present the results in heterogeneous setting here and defer

the homogeneous setting to Appendix B.2.1. The results using full-batch gradient and mini-batch

gradient (the mini-batch size is 512 for each agent) are showed in Fig. 3.2 and Fig. 3.3 respectively

and both settings shows the faster convergence and higher precision of LEAD.

Neural network. We empirically study the performance of LEAD in optimizing deep neural

network by training AlexNet (240 MB) on CIFAR10 dataset. The mini-batch size is 64 for each

agents. Both the homogeneous and heterogeneous case are showed in Fig. 3.4. In the homogeneous
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Figure 3.2: Logistic regression problem in the heterogeneous case (full-batch gradient).
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Figure 3.3: Logistic regression in the heterogeneous case (mini-batch gradient).
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Figure 3.4: Stochastic optimization on deep neural network (∗ means divergence).

case, CHOCO-SGD, DeepSqueeze and LEAD perform similarly and outperform the non-compressed

variants in terms of communication efficiency, but CHOCO-SGD and DeepSqueeze need more

efforts for parameter tuning because their convergence is sensitive to the setting of 𝛾. In the
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heterogeneous cases, LEAD achieves the fastest and most stable convergence. Note that in this

setting, sufficient information exchange is more important for convergence because models from

different agents are moving to significantly diverse directions. In such case, DGD only converges

with smaller stepsize and its communication compressed variants, including QDGD, DeepSqueeze

and CHOCO-SGD, diverge in all parameter settings we try.

Parameter sensitivity. In the linear regression problem, the convergence of LEAD under

different parameter settings of 𝛼 and 𝛾 are tested. The result showed in Figure 3.5 indicates that

LEAD performs well in most settings and is robust to the parameter setting. Therefore, in this work,

we simply set 𝛼 = 0.5 and 𝛾 = 1.0 for LEAD in all experiment, which indicates the minor effort

needed for parameter tuning.
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Figure 3.5: Parameter analysis on linear regression problem.

In summary, our experiments verify our theoretical analysis and show that LEAD is able to

handle data heterogeneity very well. Furthermore, the performance of LEAD is robust to parameter
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settings and needs less effort for parameter tuning, which is critical in real-world applications.

3.6 Conclusion

In this work, we investigate the communication compression in message passing for decentralized op-

timization. Motivated by primal-dual algorithms, a novel decentralized algorithm with compression,

LEAD, is proposed to achieve faster convergence rate and to better handle heterogeneous data while

enjoying the benefit of efficient communication. The nontrivial analyses on the coupled dynamics

of inexact primal and dual updates as well as compression error establish the linear convergence

of LEAD when full gradient is used and the linear convergence to the O(𝜎2) neighborhood of the

optimum when stochastic gradient is used. Extensive experiments validate the theoretical analysis

and demonstrate the state-of-the-art efficiency and robustness of LEAD. LEAD is also applicable to

non-convex problems as empirically verified in the neural network experiments. In addition, we also

proposed a linear convergent decentralized algorithm with compression (ProxLEAD) for composite

optimization problems [56].
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CHAPTER 4

GRAPH NEURAL NETWORKS WITH ADAPTIVE RESIDUAL

Graph neural networks (GNNs) have shown the power in graph representation learning for numerous

tasks. In this chapter, we discover an interesting phenomenon that although residual connections

in the message passing of GNNs help improve the performance, they immensely amplify GNNs’

vulnerability against abnormal node features. This is undesirable because in real-world applications,

node features in graphs could often be abnormal such as being naturally noisy or adversarially

manipulated. We analyze possible reasons to understand this phenomenon and aim to design GNNs

with stronger resilience to abnormal features. Our understandings motivate us to propose and

derive a simple, efficient, interpretable, and adaptive message passing scheme, leading to a novel

GNN with Adaptive residual, AirGNN. Extensive experiments under various abnormal feature

scenarios demonstrate the effectiveness of the proposed algorithm. The implementation is available

at https://github.com/lxiaorui/AirGNN.

4.1 Introduction

Recent years have witnessed the great success of graph neural networks (GNNs) in representation

learning for graph structure data [74]. Essentially, GNNs generalize deep neural networks (DNNs)

from regular grids, such as image, video and text, to irregular data such as social, energy,

transportation, citation, and biological networks. Such data can be naturally represented as graphs

with nodes and edges. The key building block for such generalization is the neural message passing

framework [29]:

x(𝑘+1)
𝑢 = UPDATE(𝑘) (x(𝑘)

𝑢 ,m(𝑘)
N (𝑢)

)
(4.1)

where x(𝑘)
𝑢 ∈ R𝑑 denotes the feature vector of node 𝑢 in the 𝑘-th iteration of message passing, and

m(𝑘)
N (𝑢) is the message aggregated from 𝑢’s neighborhood N(𝑢). The specific design of message

passing scheme can be motivated from spectral domain [48, 23] or spatial domain [33, 109, 91, 29].
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It usually linearly smooths the features in a local neighborhood on the graph.

GNNs have achieved superior performance in a large number of benchmark datasets [117] where

the node features are assumed to be complete and informative. However, in real-world applications,

some node features could be abnormal from various aspects. For instance, in social networks,

new users might not have complete profile before they make connections with others, leading to

missing user features. In transportation networks, node features can be noisy since there exist certain

uncertainty and dynamics in the observation of the traffic information. What is worse, node features

can be adversarially chosen by the attacker to maliciously manipulate the prediction made by GNNs.

Therefore, it is greatly desired to design GNN models with stronger resilience to abnormal node

features.

In this work, we first perform empirical investigations on how representative GNN models

behave on graphs with abnormal features. Specifically, based upon standard benchmark datasets,

we simulate the abnormal features by replacing the features of randomly selected nodes with

random Gaussian noise. Then the performance of node classification on abnormal features and

normal features are examined separately. From our preliminary study in Section 4.2, we reveal

two interesting observations: (1) Feature aggregation can boost the resilience to abnormal features,

but too many aggregations could hurt the performance on both normal and abnormal features; and

(2) Residual connection helps GNNs benefit from more layers for normal features, while making

GNNs more fragile to abnormal features. We then provide possible explanations to understand these

observed phenomena from the perspective of graph Laplacian smoothing. Our analyses imply that

there might exist an intrinsic tension between feature aggregation and residual connection, which

results in a performance tradeoff between normal features and abnormal features.

Motivated by these findings and understandings, we aim to design new GNNs with stronger

resilience to abnormal features while largely maintaining the performance on normal features. Our

contributions can be summarized as follows:

• We discover an intrinsic tension between feature aggregation and residual connection in

GNNs, and the corresponding performance tradeoff between abnormal and normal features.
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We also analyze possible reasons to explain and understand these findings.

• We propose a simple, efficient, principled and adaptive message passing scheme, which leads

to a novel GNN model with adaptive residual, named as AirGNN.

• Extensive experiments under various abnormal feature scenarios demonstrate the superiority

of the proposed algorithm. The ablation study demonstrates how the adaptive residuals

mitigate the impact of abnormal features.

4.2 Preliminary

Before introducing the preliminary study, we first define the notations used throughout the paper.

Notations. We use bold upper-case letters such as X to denote matrices. Given a matrix

X ∈ R𝑛×𝑑 , we use X𝑖 to denote its 𝑖-th row and X𝑖 𝑗 to denote its element in 𝑖-th row and 𝑗-th

column. The Frobenius norm and ℓ21 norm of a matrix X are defined as ∥X∥𝐹 =

√︃∑
𝑖 𝑗 X2

𝑖 𝑗
and

∥X∥21 =
∑
𝑖 ∥X𝑖∥2 =

∑
𝑖

√︃∑
𝑗 X2

𝑖 𝑗
, respectively. We define ∥X∥2 = 𝜎max(X) where 𝜎max(X) is the

largest singular value of X.

Let G = {V, E} be a graph with the node set V = {𝑣1, . . . , 𝑣𝑛} and the undirected edge set

E = {𝑒1, . . . , 𝑒𝑚}. We use N(𝑣𝑖) to denote the neighboring nodes of node 𝑣𝑖, including 𝑣𝑖 itself.

Suppose that each node is associated with a 𝑑-dimensional feature vector, and the features for all

nodes are denoted as Xfea ∈ R𝑛×𝑑 . The graph structure G can be represented as an adjacent matrix

A ∈ R𝑛×𝑛, where A𝑖 𝑗 = 1 when there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 , and A𝑖 𝑗 = 0 otherwise.

The graph Laplacian matrix is defined as L = D − A, where D is the diagonal degree matrix. Let

us denote the commonly used feature aggregation matrix in GNNs [48] as Ã = D̂− 1
2 ÂD̂− 1

2 where

Â = A + I is the adjacent matrix with self-loop and its degree matrix is D̂. The corresponding

Laplacian matrix is defined as L̃ = I − Ã.

In this work, we focus on the setting where a subset of nodes in the graph contain abnormal

features, while the remaining nodes have normal features. In the remaining of this chapter, we use

abnormal/normal features to denote nodes with abnormal/normal features, for simplicity.
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4.2.1 Preliminary Study

Experimental setup. To investigate how GNNs behave on abnormal and normal node features,

we design semi-supervised node classification experiments on three common datasets (i.e., Cora,

CiteSeer and PubMed), following the data splits in the work [48]. Moreover, we simulate the

abnormal features by assigning 10% of the nodes with random features sampled from a standard

Gaussian distribution. The experiments are performed on representative GNN models covering

coupled and decoupled architectures, including GCN [48], GCNII [14], APPNP [49], and their

variants with or without residual connections in feature aggregations, denoted as w/Res and wo/Res.

All methods follow the hyperparameter settings in their original papers. We examine how these

models perform when the number of layers increases. Note that for the decoupled architectures such

as APPNP, we fix the 2-layer MLP and increase the number of propagation layers. While for the

coupled architectures such as GCN and GCNII, we increase the number of feature transformation

and propagation layers simultaneously. We report the average performance over 10 times of random

selection of the noise node sets. The node classification accuracy (mean and standard variance) on

nodes with abnormal and normal features is illustrated in Figure 4.1 and Figure. 4.2, separately.
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Figure 4.1: Node classification accuracy on abnormal nodes (Cora).

Observations. From Figure 4.1 and Figure 4.2, we can make the following observations: (1)

Without residual connection, more layers (e.g., > 2 for GCN and GCNII, > 10 for APPNP) hurt the

accuracy on nodes with normal features. However, more layers boost the accuracy on nodes with

abnormal features significantly, before finally starting to decrease; (2) With residual connection, the
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Figure 4.2: Node classification accuracy on normal nodes (Cora).

accuracy on nodes with normal features keeps increasing with more layers1. However, the accuracy

on nodes with abnormal features only increases marginally when stacking more layers, and then

starts to decrease. While we only present the experiments on Cora, we defer the results on other

datasets to Appendix C.1, which provide similar observations. To conclude, we can summarize

these observations into two major findings:

• Finding I: Feature aggregation can boost the resilience to abnormal features, but too many

aggregations could hurt the performance on both normal and abnormal nodes;

• Finding II: Residual connection helps GNNs benefit from more layers for nodes with normal

features, while making GNNs more fragile to abnormal features.

4.2.2 Understandings

In this subsection, we provide the understanding and explanation for aforementioned findings, from

the perspective of graph Laplacian smoothing.

Understanding Finding I: Feature aggregation as Laplacian smoothing

The message passing in GCN [48], GCNII wo/ residual and APPNP wo/ residual (as well as

many popular GNN models), follows the feature aggregation

Xout = ÃXin, (4.2)

1GCN w/Res is an exception because its residual is not appropriate, which is consistent with the experiments in the
work [48].
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where Xin and Xout represent the features before and after message passing layer, respectively. It can

be interpreted as one gradient descent step for the Laplacian smoothing problem [73]

arg min
X∈R𝑛×𝑑

L1(X) B 1
2

tr
(
X⊤(I − Ã)X

)
=

1
2

∑︁
(𝑣𝑖 ,𝑣 𝑗 )∈E

∥ X𝑖√
𝑑𝑖 + 1

−
X 𝑗√︁
𝑑 𝑗 + 1

∥2
2, (4.3)

where 𝑑𝑖 is the node degree of node 𝑣𝑖. Eq. (4.2) can be derived from Xout = Xin− (I−Ã)Xin = ÃXin,

with the initialization X = Xin and stepsize 𝛾 = 1. The Laplacian smoothing problem penalizes

the feature difference between neighboring nodes. To reduce this penalty, the feature aggregation

in Eq. (4.2) smooths the node features by taking the average of local neighbors, and thus can be

considered as low-pass filter which gradually filters out high-frequency signals [84, 126]. Therefore,

it increases the resilience to abnormal features which are likely to be high-frequency signals. In

other words, the local neighboring nodes help to correct the abnormal features. Unfortunately, if

applied too many times, these low-pass filters could overly smooth the features (well-known as

oversmoothing [55, 85]) such that nodes are not distinguishable enough, providing an explanation to

the degraded performance on both abnormal and normal features when stacking too many layers.

Understanding Finding II: Residual connection maintains feature proximity

To adjust the feature smoothness for better performance, APPNP [49] utilizes residual connections

in message passing as follows

X𝑘+1 = (1 − 𝛼)ÃX𝑘 + 𝛼Xin, (4.4)

where X0 = Xin. It can be considered as an iterative solution for the regularized Laplacian smoothing

problem [73]

arg min
X∈R𝑛×𝑑

L2(X) B 𝛼

2(1 − 𝛼) ∥X − Xin∥2
𝐹 + 1

2
tr
(
X⊤(I − Ã)X

)
, (4.5)

with initialization X = Xin and stepsize 𝛾 = 1 − 𝛼 due to

X𝑘+1 = X𝑘 − (1 − 𝛼)
( 𝛼

1 − 𝛼 (X
𝑘 − Xin) + (I − Ã)X𝑘

)
= (1 − 𝛼)ÃX𝑘 + 𝛼Xin.

GCNII [14] adopts a similar message passing but further combines a feature transformation layer

in each message passing step, which leads to a coupled architecture, as contrast to the decoupled
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architecture of APPNP. The residual connection naturally arises when regularizing the proximity

between input and output features, as showed in the first term of L2(X). Such proximity can

help avoid the trivial solution for the problem in Eq. (4.3), i.e., totally oversmoothed features only

depending on node degrees, and consequently mitigates the oversmoothing issue. More intuitively,

residual connections in GNNs provide direct information flows between layers that can preserve

some necessary high-frequency signals for better discrimination between classes. More layers

with residual provide a more accurate solution to Eq. (4.5), which explains the performance gain

from deeper GNNs. Unfortunately, these residual connections also undesirably carry on abnormal

features which are detrimental, leading to the inferior performance on abnormal features.

4.3 Algorithm

In this section, we first motivate the proposed adaptive message passing scheme (AMP) with further

discussions on our preliminary study. We then introduce more details about AMP, its interpretations,

convergence guarantee and computation complexity, as well as the model architecture of AirGNN.

4.3.1 Design Motivation

Our preliminary study in Section 4.2 reveals an intrinsic tension between feature aggregation and

residual connection: (1) feature aggregation helps smooth out abnormal features, while it could

cause inappropriate smoothing for normal features; (2) residual connection is essential for adjusting

the feature smoothness, but it could be detrimental for abnormal features. Although this conflict

can be partially mitigated by adjusting the residual connection such as the residual weight 𝛼 in

GCNII [14] and APPNP [49], such global adjustment cannot be adaptive to a subset of the nodes,

e.g., the nodes with abnormal features. This is crucial because in practice we often encounter the

scenario where only a subset of nodes contain abnormal features. Therefore, how to reconcile this

dilemma still desires dedicated efforts. We then naturally ask a question: Can we design a better

message passing scheme with node-wise adaptive feature aggregation and residual connection?

The motivation of the proposed idea builds upon the following intuition: while it is important to
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maintain the proximity between input and output features as in Eq. (4.5), it could be over aggressive

to penalize their deviations by the square of Frobenius norm, i.e., ∥X−Xin∥2
𝐹
=

∑𝑛
𝑖=1 ∥X𝑖 − (Xin)𝑖∥2

2.

The fact that this penalty does not tolerate large deviations weakens the capability to remove

abnormal features through Laplacian smoothing. This motivates us to consider an alternative

proximity penalty

∥X − Xin∥21 B
𝑛∑︁
𝑖=1

∥X𝑖 − (Xin)𝑖∥2, (4.6)

which instead penalizes the deviations by the ℓ1 norm of row-wise ℓ2 norms, namely ℓ21 norm. The

ℓ21 norm promotes row sparsity in X − Xin, and it also allows large deviations because the penalty

on large values is less aggressive, leading to the potential removal of abnormal features. Therefore,

we propose the following Laplacian smoothing problem regularized by ℓ21 norm proximity control:

arg min
X∈R𝑛×𝑑

𝜆∥X − Xin∥21 +
1
2

tr(X⊤(I − Ã)X), (4.7)

where 𝜆 ∈ [0,∞) is a parameter to adjust the balance between proximity and Laplacian smoothing.

In order to easy the tuning of 𝜆, we made a modification of Eq. (4.7):

arg min
X∈R𝑛×𝑑

L(X) B 𝜆∥X − Xin∥21 + (1 − 𝜆)tr(X⊤(I − Ã)X), (4.8)

where 𝜆 ∈ [0, 1] controls the balance.

4.3.2 Adaptive Message Passing

Figure 4.3: Diagram of Adaptive Message Passing.

L(X) is a composite objective with non-smooth and smooth components. We optimize it by

proximal gradient descent [9] and obtain the following iterations as the adaptive message passing
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(AMP):

Y𝑘 = X𝑘 − 2𝛾(1 − 𝜆) (I − Ã)X𝑘 =
(
1 − 2𝛾(1 − 𝜆)

)
X𝑘 + 2𝛾(1 − 𝜆)ÃX𝑘 (4.9)

X𝑘+1 = arg min
X

{
𝜆∥X − Xin∥21 +

1
2𝛾

∥X − Y𝑘 ∥2
𝐹

}
(4.10)

where X0 = Xin and 𝛾 is the stepsize to be specified later. Let Z = X − Xin, and Eq. (4.10) can be

rewritten as:

Z𝑘+1 = arg min
Z

{
𝜆∥Z∥21 +

1
2𝛾

∥Z − (Y𝑘 − Xin)∥2
𝐹

}
= prox𝛾𝜆∥·∥21 (Y

𝑘 − Xin) (4.11)

X𝑘+1 = Xin + Z𝑘+1. (4.12)

The 𝑖-th row of the proximal operator in Eq. (4.11) can be computed analytically(
prox𝛾𝜆∥·∥21 (X)

)
𝑖
=

X𝑖

∥X𝑖∥2
max(∥X𝑖∥2 − 𝛾𝜆, 0) = max(1 − 𝛾𝜆

∥X𝑖∥2
, 0) · X𝑖 . (4.13)

Note that the proximal operator returns 0 if the input vector is 0. Substituting X in Eq. (4.13) with

Y𝑘 − Xin and combining Eq. (4.11) and Eq. (4.12), then Eq. (4.12) becomes

X𝑘+1
𝑖 = (Xin)𝑖 + 𝛽𝑖 (Y𝑘

𝑖 − (Xin)𝑖) = (1 − 𝛽𝑖) (Xin)𝑖 + 𝛽𝑖Y𝑘
𝑖 , ∀𝑖 ∈ [𝑛], (4.14)

where 𝛽𝑖 B max(1 − 𝛾𝜆

∥Y𝑘
𝑖
−(Xin)𝑖 ∥2

, 0). To summarize, the proposed adaptive message passing (AMP)

scheme is showed in Figure 4.4, and a diagram is showed in Figure 4.3. In detail, AMP works as

follows:

• The first step takes a feature aggregation within the local neighbors with a self-loop weighted

by 1 − 2𝛾(1 − 𝜆);

• The second step computes a weight 𝛽𝑖 ∈ [0, 1] for each node 𝑣𝑖 depending on the local deviation

∥Y𝑘
𝑖
− (Xin)𝑖∥2.

• The final step takes a linear combination of input features Xin and the aggregated features Y𝑘 ,

where the node-wise residual is adaptively weighted by 1 − 𝛽𝑖 for each node 𝑣𝑖.
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Y𝑘 =
(
1 − 2𝛾(1 − 𝜆)

)
X𝑘 + 2𝛾(1 − 𝜆)ÃX𝑘

𝛽𝑖 = max(1 − 𝛾𝜆

∥Y𝑘
𝑖
− (Xin)𝑖∥2

, 0) ∀𝑖 ∈ [𝑛]

X𝑘+1
𝑖 = (1 − 𝛽𝑖) (Xin)𝑖 + 𝛽𝑖Y𝑘

𝑖 ∀𝑖 ∈ [𝑛]

Figure 4.4: Adaptive Message Passing (AMP).

The convergence guarantee of AMP and parameter setting for the stepsize 𝛾 are illustrated in

Theorem 5. According to Theorem 5, if we set 𝛾 = 1
4(1−𝜆) or 𝛾 = 1

2(1−𝜆) , then the first step of AMP

can be simplified as Y𝑘 = 1
2X𝑘 + 1

2ÃX𝑘 and Y𝑘 = ÃX𝑘 , respectively. The choice of stepsize will

only impact the convergence speed but not the ultimate effect of AMP when it convergences to the

fixed point solution. We also discuss the computation complexity per iteration of AMP in Remark 9.

Theorem 5 (Convergence of AMP). Under the stepsize setting 𝛾 < 1
(1−𝜆)∥L̃∥2

, the proposed adaptive

message passing scheme (AMP) in Eq. (4.9) and Eq. (4.10) converges to the optimal solution of the

problem defined in Eq. (4.8). In practice, it is sufficient to choose any 𝛾 < 1
2(1−𝜆) since ∥L̃∥2 ≤ 2.

Moreover, if the connected components of the graph G are not bipartite graphs, it is sufficient to

choose 𝛾 = 1
2(1−𝜆) since ∥L̃∥2 < 2.

Proof. The objective that the iterations in AMP try to optimize is

arg min
X∈R𝑛×𝑑

L(X) B 𝜆∥X − Xin∥21︸           ︷︷           ︸
𝑔(X)

+ (1 − 𝜆)tr(X⊤(I − Ã)X)︸                        ︷︷                        ︸
𝑓 (X)

, (4.15)

where 𝑓 and 𝑔 are both convex functions. Moreover, 𝑔 is a non-smooth function, while 𝑓 is a smooth

function. In particular, 𝑓 is 𝐿-smoothness where 𝐿 = 2(1 − 𝜆)∥L̃∥2 = 2(1 − 𝜆)∥I − Ã∥2 due to

∥∇ 𝑓 (X1) − ∇ 𝑓 (X2)∥𝐹 = ∥2(1 − 𝜆)L̃(X1 − X2)∥𝐹 ≤ 2(1 − 𝜆)∥L̃∥2 ∥X1 − X2∥𝐹 . (4.16)

AMP essentially applies a forward-backward splitting on the composite objective 𝑔(X) + 𝑓 (X):

X𝑘+1 = (I + 𝛾𝜕𝑔)−1(X𝑘 − 𝛾∇ 𝑓 (X𝑘 )) (4.17)
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= arg min
X

1
2
∥X − (X𝑘 − 𝛾∇ 𝑓 (X𝑘 ))∥2

𝐹 + 𝛾𝑔(X), (4.18)

which is known as proximal gradient method. The convergence of this forward-backward splitting is

ensured if the stepsize satifies 𝛾 < 2
𝐿

according to Lemma 4.4 in [20]. Therefore, AMP provably

converges to the optimal solution under the setting 𝛾 < 1
(1−𝜆)∥L̃∥2

. For the symmetrically normalized

Laplacian matrix, we have ∥L̃∥2 ≤ 2 [19] and thus 1
2(1−𝜆) ≤

1
(1−𝜆)∥L̃∥2

. Therefore, any 𝛾 < 1
2(1−𝜆)

will be sufficient. Moreover, according to [19], if the connected components of the graph G are not

bipartite graphs, we have ∥L̃∥2 < 2 and thus 𝛾 = 1
2(1−𝜆) <

1
(1−𝜆)∥L̃∥2

is sufficient.

Remark 9 (Computation complexity). AMP is as efficient as simple feature aggregation Xout = ÃXin

because the additional computation cost from the second and third steps in Figure 4.4 is in the order

O(𝑛𝑑), where 𝑛 is the number of nodes and 𝑑 is the feature dimension. This is negligible compared

with the computation cost O(𝑚𝑑) in feature aggregation, where 𝑚 is the number of edges, due to

the fact that usually there are many more edges than nodes in real-world graphs, i.e., 𝑚 ≫ 𝑛.

4.3.3 Interpretation of AMP

Interestingly, the proposed AMP has a simple and intuitive interpretation as adaptive residual

connection, which aligns well with our design motivation:

• If the feature of node 𝑣𝑖, i.e., (Xin)𝑖, is significantly inconsistent with its local neighbors, i.e., the

aggregated feature Y𝑘
𝑖
, then the local deviation ∥Y𝑘

𝑖
− (Xin)𝑖∥2 will be large, which leads to a 𝛽𝑖

close to 1. Therefore, the final step will assign a small weight to the residual, i.e., (1 − 𝛽𝑖) (Xin)𝑖,

and the aggregated feature Y𝑘
𝑖

will dominate.

• On the contrary, if (Xin)𝑖 is already consistent with its local neighbors, ∥Y𝑘
𝑖
− (Xin)𝑖∥2 will be

small, which leads to a 𝛽𝑖 close to 0. Thus, the residual will dominate, which is reasonable since

there is less need to aggregate features in this case.
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• To summarize, the local deviation ∥Y𝑘
𝑖
− (Xin)𝑖∥2 provides a natural transition from 𝛽𝑖 → 1 to

𝛽𝑖 → 0, and the transition can be modulated by 𝜆 which can be either learned or tuned as a

hyperparameter through cross-validation. This transition provides an node-wise adaptive residual

connection for the message passing scheme.

Adaptivity for abnormal & normal features. According to the homophily assumption on

graph structure data [76, 130, 127, 48], the feature representations of normal features should be

more consistent with local neighbors than abnormal features. As a result, AMP will assign more

residual (i.e., smaller 𝛽) to normal features but less residual (i.e., larger 𝛽) to abnormal features,

providing a customized tradeoff between feature aggregation and residual connection. Consequently,

it can promote both the resilience to abnormal features and the performance on normal features.

Above discussion also implies a clear physical meaning for 𝛽 in AMP, and we formally define it as

the adaptive score.

Definition 1 (Adaptive score). The variables {𝛽1, · · · , 𝛽𝑛} in the adaptive message passing scheme

(AMP) are defined as the adaptive scores for nodes {𝑣1, · · · , 𝑣𝑛} respectively in graph G. In

particular, the larger 𝛽𝑖 is, the more likely the feature of node 𝑣𝑖 is abnormal.

Remark 10 (Nonlinear smoother). Different from most existing message passing scheme which are

linear smoothers, AMP is a nonlinear smoother because the weights {𝛽𝑖} are computed from Y𝑘

and Xin. This nonlinearity is the key to achieve adaptive residual connection for different nodes.

4.3.4 Model Architecture

The proposed adaptive message passing (AMP) can be used as a building block in many GNN models

to improve the resilience to abnormal node features. In this work, we choose the the decoupled

architectures as APPNP [49] and DAGNN [65], and propose the Adaptive residual GNN (AirGNN):

Xin = ℎ𝜃 (Xfea), (4.19)

Ypre = AMP (Xin, 𝐾, 𝜆). (4.20)
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ℎ𝜃 (·) is any machine learning model parameterized by learnable parameters 𝜃, such as multilayer

perceptrons (MLPs). Xfea ∈ R𝑛×𝑑 denotes the initial node features. The model ℎ𝜃 (·) will first

transform the initial node features as Xin = ℎ𝜃 (Xfea). AMP takes ℎ𝜃 (Xfea) as input, and performs

𝐾 steps of AMP with the hyperparameter 𝜆. Similar to the majority of existing GNN models, the

training objective is the cross-entropy classification loss on the labeled nodes, and the whole model

is trained in an end-to-end way. Note that AirGNN is very efficient as explained in Remark 9, and

it only requires two hyperparameters 𝐾 and 𝜆 without introducing additional parameters to learn,

which could reduce the risk of overfitting.

4.4 Experiment

In this section, we aim to verify the effective of the proposed adaptive message passing scheme

(AMP) and the AirGNN model through the semi-supervised node classification tasks. Specifically,

we try to answer the following questions: (1) How does AirGNN perform on abnormal and normal

features? (Section 4.4.2 and 4.4.3) and (2) How does AirGNN work by adjusting the adaptive

residual? (Section 4.4.4)

4.4.1 Experimental Settings

Datasets and baselines. We conduct experiments on 8 real-world datasets including three citation

graphs, i.e., Cora, Citeseer, Pubmed [93], two co-authorship graphs, i.e., Coauthor CS and Coauthor

Physics [95], two co-purchase graphs, i.e., Amazon Computers and Amazon Photo [95], and one

OGB dataset, i.e., ogbn-arxiv [113]. Due to the space limit, we only present the results on Cora,

Citeseer, and Pubmed in this section, but defer the results on other datasets to Appendix C.2.1.

In the experiments, the data statistics (full graphs) used in Section 4.4.2 are summarized in

Table 4.1. The data statistics (largest connected components) used in Section 4.4.3 are summarized

in Table 4.2. We use fixed data splits for Cora, CiteSeer, PubMed and ogbn-arxiv datasets, and

random data split for other datasets.

The proposed AirGNN is compared with representative GNNs, including GCN [48], GAT [109],
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Table 4.1: Data statistics on benchmark datasets.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes

Cora 7 2708 5278 1433 20 per class 500 1000
CiteSeer 6 3327 4552 3703 20 per class 500 1000
PubMed 3 19717 44324 500 20 per class 500 1000
Coauthor CS 15 18333 81894 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 745 20 per class 30 per class Rest nodes
obgn-arxiv 40 169343 1166243 128 54% 18% 28%

Table 4.2: Dataset statistics for adversarially attacked datasets.
Dataset NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
CiteSeer 2,110 3,668 6 3,703
PubMed 19,717 44,338 3 500

APPNP [49] and GCNII [14]. We defer the comparison with the variants of APPNP and Robust

GCN [128] to Appendix C.2.3 and C.2.4 respectively.

Parameter settings. For all baselines, we follow the best hyperparameter settings in their

original papers. Additionally, we tune a best residual weight 𝛼 for APPNP and GCNII in the range

[0, 1]. For AirGNN, we use a two-layer MLP as the base model ℎ𝜃 (·), following APPNP. We fix the

learning rate 0.01, dropout 0.8, and weight decay 0.0005. Moreover, we set 𝛾 = 1
2(1−𝜆) as suggested

by Theorem 5. We choose 𝐾 = 10 and tune 𝜆 in the range [0, 1]. Adam optimizer [47] is used in all

experiments. We run all experiments by 10 times, and report the mean and variance.

Evaluation setting. We assess the performance of all models under two types of abnormal

feature scenarios, including noisy features and adversarial features. The abnormal features are

injected to randomly selected test nodes after model training. By default, all hyperparameters are

tuned according to the performance on validation sets when the dataset is clean. If tuning the

hyperparameter 𝜆 of AirGNN according to the validation sets after injecting abnormal features, the

performance will be even better, as discussed in Appendix C.2.2. The performance on clean data

are showed in Appendix 4.4.5 to demonstrate that AirGNN doesn’t need to sacrifice accuracy for

better robustness against abnormal features.
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4.4.2 Performance Comparison with Noisy Features

In this subsection, we consider the abnormal features in the noisy feature scenario. Specifically,

we simulate the noisy features by assigning a subset of the nodes with random features sampled

from a multivariate standard Gaussian distribution. Note that the selection of noise subsets has a

apparent impact on the performance since some nodes are less vulnerable to abnormal features

while others are more vulnerable. To reduce such variance, we report the average performance over

10 times of random selection of the noise node sets, similar to the settings in the preliminary study

in Section 4.2. We report the node classification test accuracy on abnormal (noisy) features and

normal features in Figure 4.5 and Figure 4.6, separately, under varying noisy ratio. From these

figures, we can observe:

• Figure 4.5 shows that AirGNN significantly outperforms all baselines on all datasets in terms

of the performance on noisy nodes. This verifies that AMP is able to improve the resilience to

noisy features, aligning well with the design motivation.

• Figure 4.6 shows that AirGNN promotes the performance on normal nodes when abnormal

nodes exist. This is because AMP can remove some abnormal features which are detrimental to

normal nodes.
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Figure 4.5: Node classification accuracy on abnormal (noisy) nodes.
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Figure 4.6: Node classification accuracy on normal nodes.

4.4.3 Performance Comparison with Adversarial Features

In this subsection, we consider the abnormal feature scenario when the node features are maliciously

attacked by the attacker to manipulate the prediction of GNNs. We use the Nettack [134] implemented

in DeepRobust2 [58], a PyTorch library for adversarial attacks and defenses, to generate the adversarial

features. We randomly choose 40 test nodes as the targeted nodes, and assess the performance

under increasing perturbation budgets {0, 5, 10, 20, 50, 80}, where the perturbation numbers denote

the number of feature dimensions that can be manipulated. The node classification accuracy on

these attacked nodes are showed in Figure 4.7. From these figures, we can make the following

observations:

• AirGNN is significantly more robust against adversarially attacked features than all baselines.

MLP is the most vulnerable model, which demonstrates the usefulness of graph structure

information in combating against abnormal node features.

• The advantages of AirGNN over the baselines become much stronger with larger perturbation

budgets. This suggests that AMP can significantly improve the resilience to abnormal features.

2https://github.com/DSE-MSU/DeepRobust

57



0 1 2 5 10 20 50 80
Perturbation Number

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

GAT
GCN
GCNII
APPNP
AirGNN
MLP

(a) Cora

0 1 2 5 10 20 50 80
Perturbation Number

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN
MLP

(b) CiteSeer

0 1 2 5 10 20 50 80
Perturbation Number

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN
MLP

(c) PubMed

Figure 4.7: Node classification accuracy on adversarial nodes.

4.4.4 Adaptive Residual for Abnormal & Normal Nodes

To further understand and verify how AMP and AirGNN work, we investigate the adaptive score 𝛽𝑖

for each node 𝑣𝑖. Specifically, the average adaptive scores for abnormal nodes and normal nodes in

the last layer of AMP are computed separately. In the noisy feature scenario, we fix ratio of noisy

nodes as 10%. In the adversarial feature scenario, we choose 40 target nodes and fix the perturbation

number as 80. The results in noisy and adversarial feature scenarios are showed in Table 4.3 and

Table 4.4, respectively. From these tables, we can observe:

• On the one hand, it can be clearly observed that in both scenarios, the average adaptive scores

for abnormal nodes are significantly higher than those for normal nodes. Therefore, it verifies

our intuition that large adaptive scores are strongly related to abnormal features.

• On the other hand, it also implies that the residual weights (i.e., 1 − 𝛽𝑖) for abnormal nodes are

much lower than those of normal nodes. This perfectly aligns with our motivation to remove

abnormal features by reducing their residual connections.

The study on adaptive scores verifies how the adaptive residuals in AMP and AirGNN work as

designed. It corroborates that AirGNN not only tremendously boosts the resilience to abnormal

features but also provides interpretable information for anomaly detection that will be useful in many

security-critical scenarios since the adaptive score serves as a good indicator of abnormal nodes.

Morever, it is expected that APPNP without residual will perform well on abnormal nodes but it will
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sacrifice the performance on normal nodes. We provide detailed comparison with APPNP w/Res

and APPNP wo/Res in Appendix C.2.3 to show the advantages of adaptive residual of AirGNN.

Table 4.3: Average adaptive score (𝛽) and residual weight (1 − 𝛽) in the noisy feature scenario.

Measure Cora CiteSeer PubMed

Average adaptive score for abnormal nodes 0.998 ± 0.000 0.988 ± 0.000 0.996 ± 0.000
Average adaptive score for normal nodes 0.924 ± 0.002 0.807 ± 0.005 0.869 ± 0.006

Average residual weight for abnormal nodes 0.002 ± 0.000 0.012 ± 0.000 0.004 ± 0.000
Average residual weight for normal nodes 0.076 ± 0.002 0.193 ± 0.005 0.131 ± 0.006

Table 4.4: Average adaptive score (𝛽) and residual weight (1 − 𝛽) in the adversarial feature scenario.

Measure Cora CiteSeer PubMed

Average adaptive score for abnormal nodes 0.987 ± 0.000 0.930 ± 0.007 0.959 ± 0.005
Average adaptive score for normal nodes 0.922 ± 0.004 0.689 ± 0.024 0.826 ± 0.016

Average residual weight for abnormal nodes 0.013 ± 0.000 0.070 ± 0.007 0.041 ± 0.005
Average residual weight for normal nodes 0.078 ± 0.004 0.311 ± 0.024 0.174 ± 0.016

4.4.5 Performance in the Clean Setting

Table 4.5 shows the overall performance when the dataset does not contain abnormal node features.

The performance of APPNP and AirGNN are comparable, which supports that AirGNN doesn’t

need to sacrifice clean performance for better robustness. AirGNN also outperforms Robust GCN in

the clean data setting.

Table 4.5: Comparison between AirGNN, APPNP, and Robust GCN in the clean setting.

Dataset Cora CiteSeer PubMed

Robust GCN 0.817 ± 0.005 0.710 ± 0.005 0.791 ± 0.003
APPNP 0.842 ± 0.004 0.719 ± 0.004 0.804 ± 0.003
AirGNN 0.839 ± 0.004 0.726 ± 0.004 0.806 ± 0.003

4.5 Related Work

GNNs generalize convolutional neural networks (CNN) to graph structure data through the message

passing framework [74, 29, 91]. The design of message passing and GNN architectures are majorly
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motivated in spectral domain [48, 23] and spatial domain [33, 109, 91, 29, 24]. Recent works have

shown that the message passing in GNNs can be regarded as low-pass graph filters [84, 126]. More

generally, it has been proven that message passing in many GNNs can be uniformly derived from

graph signal denoising [73, 86, 129, 16]. Classic GNNs such as GCN [48] and GAT [109] achieve

their best performance with shallow models, but their performance degrades when stacking more

layers, which can be partially explained through oversmoothing analyses [55, 85]. Recent works

propose to use residual connections or skip connections to mitigate the oversmoothing issues, and

they demonstrate the potential benefits from more feature aggregations. Examples include but not

limited to DeepGCNs [53], JKNet [121], GCNII [14], APPNP [49] and DeeperGNN [65]. These

models use global residual connection that can not be adaptive for each node, which significantly

differ from the proposed AirGNN. Graph-level, neighborhood-wise and pair-level smoothness are

studied in the framework of graph feature gating networks [39]. Beyond oversmoothing, feature

over-correlation in GNNs [38] and automated self-supervised learning for graphs [40] are studied.

Recently, there are growing interests in reducing GNNs’ vulnerability to the graph structure

noise, such as Robust GCN [128], GCN-SVD [27], Pro-GNN [41], IDGL [18], ElasticGNN [67],

etc. Please refer to the comprehensive surveys [37, 132] for more details. However, how to design

GNNs with strong resilience to abnormal node features remains to be developed. To the best of our

knowledge, AirGNN is the first GNN model that is intrinsically robust to many types of abnormal

node features by design. It improves the performance in various kinds of abnormal scenarios without

needing to sacrifice clean accuracy in normal settings.

4.6 Conclusion

In this work, we discover an intrinsic tension between feature aggregation and residual connection in

the message passing scheme of GNNs, as well as the corresponding performance tradeoff between

nodes with abnormal and normal features. We analyze possible reasons to explain these findings

from the perspective of graph Laplacian smoothing. Our understandings further motivate us to

propose a simple, efficient, interpretable and adaptive message passing scheme as well as a new GNN
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model with adaptive residual, named AirGNN. AirGNN provides a node-wise adaptive transition

between feature aggregation and residual connection, and the significant advantages of AirGNN are

demonstrated through extensive experiments. In the future, it is promising to study the interaction

between multiple perspectives of trustworthy AI [64] such as robustness and fairness [119].
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CHAPTER 5

ELASTIC GRAPH NEURAL NETWORKS

In this chapter, we discuss a severe limitation of the message passing schemes in existing graph

neural networks (GNNs) – they are proven to perform ℓ2-based graph smoothing that enforces

smoothness globally and such a global smoothness property might lead to the lack of robustness

under adversarial graph attacks. In this work, we propose to design a more robust message passing

algorithm for GNNs by enhancing the local smoothness adaptivity of GNNs via ℓ1-based graph

smoothing. To this end, we introduce a family of GNNs (Elastic GNNs) based on ℓ1 and ℓ2-based

graph smoothing. In particular, we propose a novel and general message passing scheme into

GNNs. This message passing algorithm is not only friendly to back-propagation training but also

achieves the desired smoothing properties with a theoretical convergence guarantee. Experiments on

semi-supervised learning tasks demonstrate that the proposed Elastic GNNs obtain better adaptivity

on benchmark datasets and are significantly robust to graph adversarial attacks. The implementation

of Elastic GNNs is available at https://github.com/lxiaorui/ElasticGNN.

5.1 Introduction

Graph neural networks (GNNs) generalize traditional deep neural networks (DNNs) from regular

grids, such as image, video, and text, to irregular data such as social networks, transportation

networks, and biological networks, which are typically denoted as graphs [23, 48]. One popular

such generalization is the neural message passing framework [29]:

x(𝑘+1)
𝑢 = UPDATE(𝑘) (x(𝑘)

𝑢 ,m(𝑘)
N (𝑢)

)
(5.1)

where x(𝑘)𝑢 ∈ R𝑑 denotes the feature vector of node 𝑢 in 𝑘-th iteration of message passing and m(𝑘)
N (𝑢)

is the message aggregated from 𝑢’s neighborhood N(𝑢). The specific architecture design has been

motivated from spectral domain [48, 23] and spatial domain [33, 109, 91, 29]. Recent study [73] has

proven that the message passing schemes in numerous popular GNNs, such as GCN, GAT, PPNP,
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and APPNP, intrinsically perform the ℓ2-based graph smoothing to the graph signal, and they can be

considered as solving the graph signal denoising problem:

arg min
F

L(F) := ∥F − Xin∥2
𝐹 + 𝜆 tr(F⊤LF), (5.2)

where Xin ∈ R𝑛×𝑑 is the input signal and L ∈ R𝑛×𝑛 is the graph Laplacian matrix encoding the

graph structure. The first term guides F to be close to input signal Xin, while the second term

enforces global smoothness to the filtered signal F. The resulted message passing schemes can be

derived by different optimization solvers, and they typically entail the aggregation of node features

from neighboring nodes, which intuitively coincides with the cluster or consistency assumption

that neighboring nodes should be similar [130, 127]. While existing GNNs are prominently driven

by ℓ2-based graph smoothing, ℓ2-based methods enforce smoothness globally and the level of

smoothness is usually shared across the whole graph. However, the level of smoothness over

different regions of the graph can be different. For instance, node features or labels can change

significantly between clusters but smoothly within the cluster [131]. Therefore, it is desired to

enhance the local smoothness adaptivity of GNNs.

Motivated by the idea of trend filtering [46, 106, 111], we aim to achieve the goal via ℓ1-based

graph smoothing. Intuitively, compared with ℓ2-based methods, ℓ1-based methods penalize large

values less and thus preserve discontinuity or non-smooth signal better. Theoretically, ℓ1-based

methods tend to promote signal sparsity to trade for discontinuity [90, 105, 94]. Owning to

these advantages, trend filtering [106] and graph trend filter [111, 108] demonstrate that ℓ1-based

graph smoothing can adapt to inhomogenous level of smoothness of signals and yield estimators

with k-th order piecewise polynomial functions, such as piecewise constant, linear and quadratic

functions, depending on the order of the graph difference operator. While ℓ1-based methods exhibit

various appealing properties and have been extensively studied in different domains such as signal

processing [25], statistics and machine learning [34], it has rarely been investigated in the design of

GNNs. In this work, we attempt to bridge this gap and enhance the local smoothnesss adaptivity of

GNNs via ℓ1-based graph smoothing.
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Incorporating ℓ1-based graph smoothing in the design of GNNs faces tremendous challenges.

First, since the message passing schemes in GNNs can be derived from the optimization iteration

of the graph signal denoising problem, a fast, efficient and scalable optimization solver is desired.

Unfortunately, to solve the associated optimization problem involving ℓ1 norm is challenging since

the objective function is composed by smooth and non-smooth components and the decision variable

is further coupled by the discrete graph difference operator. Second, to integrate the derived

messaging passing scheme into GNNs, it has to be composed by simple operations that are friendly

to the back-propagation training of the whole GNNs. Third, it requires an appropriate normalization

step to deal with diverse node degrees, which is often overlooked by existing graph total variation

and graph trend filtering methods. Our attempt to address these challenges leads to a family of novel

GNNs, i.e., Elastic GNNs. Our key contributions can be summarized as follows:

• We introduce ℓ1-based graph smoothing in the design of GNNs to further enhance the local

smoothness adaptivity, for the first time;

• We derive a novel and general message passing scheme, i.e., Elastic Message Passing (EMP),

and develop a family of GNN architectures, i.e., Elastic GNNs, by integrating the proposed

message passing scheme into deep neural nets;

• Extensive experiments demonstrate that Elastic GNNs obtain better adaptivity on various

real-world datasets, and they are significantly robust to graph adversarial attacks. The study

on different variants of Elastic GNNs suggests that ℓ1 and ℓ2-based graph smoothing are

complementary and Elastic GNNs are more versatile.

5.2 Preliminary

We use bold upper-case letters such as X to denote matrices and bold lower-case letters such as x

to define vectors. Given a matrix X ∈ R𝑛×𝑑 , we use X𝑖 to denote its 𝑖-th row and X𝑖 𝑗 to denote its

element in 𝑖-th row and 𝑗-th column. We define the Frobenius norm, ℓ1 norm, and ℓ21 norm of matrix

X as ∥X∥𝐹 =

√︃∑
𝑖 𝑗 X2

𝑖 𝑗
, ∥X∥1 =

∑
𝑖 𝑗 |X𝑖 𝑗 |, and ∥X∥21 =

∑
𝑖 ∥X𝑖∥2 =

∑
𝑖

√︃∑
𝑗 X2

𝑖 𝑗
, respectively. We
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define ∥X∥2 = 𝜎max(X) where 𝜎max(X) is the largest singular value of X. Given two matrices

X,Y ∈ R𝑛×𝑑 , we define the inner product as ⟨X,Y⟩ = tr(X⊤Y).

Let G = {V, E} be a graph with the node set V = {𝑣1, . . . , 𝑣𝑛} and the undirected edge set

E = {𝑒1, . . . , 𝑒𝑚}. We use N(𝑣𝑖) to denote the neighboring nodes of node 𝑣𝑖, including 𝑣𝑖 itself.

Suppose that each node is associated with a 𝑑-dimensional feature vector, and the features for all

nodes are denoted as Xfea ∈ R𝑛×𝑑 . The graph structure G can be represented as an adjacent matrix

A ∈ R𝑛×𝑛, where A𝑖 𝑗 = 1 when there exists an edge between nodes 𝑣𝑖 and 𝑣 𝑗 . The graph Laplacian

matrix is defined as L = D − A, where D is the diagonal degree matrix. Let Δ ∈ {−1, 0, 1}𝑚×𝑛 be

the oriented incident matrix, which contains one row for each edge. If 𝑒ℓ = (𝑖, 𝑗), then Δ has ℓ-th

row as:

Δℓ = (0, . . . , −1︸︷︷︸
𝑖

, . . . , 1︸︷︷︸
𝑗

, . . . , 0)

where the edge orientation can be arbitrary. Note that the incident matrix and unnormalized

Laplacian matrix have the equivalence L = Δ⊤Δ. Next, we briefly introduce some necessary

background about the graph signal denoising perspective of GNNs and the graph trend filtering

methods.

5.2.1 GNNs as Graph Signal Denoising

It is evident from recent work [73] that many popular GNNs can be uniformly understood as

graph signal denoising with Laplacian smoothing regularization. Here we briefly describe several

representative examples.

GCN. The message passing scheme in Graph Convolutional Networks (GCN) [48],

Xout = ÃXin,

is equivalent to one gradient descent step to minimize tr(F⊤(I − Ã)F) with the initial F = Xin and

stepsize 1/2. Here Ã = D̂− 1
2 ÂD̂− 1

2 with Â = A + I being the adjacent matrix with self-loop, whose

degree matrix is D̂.

65



PPNP & APPNP. The message passing scheme in PPNP and APPNP [49] follow the aggregation

rules

Xout = 𝛼
(
I − (1 − 𝛼)Ã

)−1Xin,

and

X(𝑘+1) = (1 − 𝛼)ÃX(𝑘) + 𝛼Xin.

They are shown to be the exact solution and one gradient descent step with stepsize 𝛼/2 for the

following problem

min
F

∥F − Xin∥2
𝐹 + (1/𝛼 − 1) tr(F⊤(I − Ã)F). (5.3)

For more comprehensive illustration, please refer to [73]. We point out that all these message

passing schemes adopt ℓ2-based graph smoothing as the signal differences between neighboring

nodes are penalized by the square of ℓ2 norm, e.g.,
∑

(𝑣𝑖 ,𝑣 𝑗 )∈E ∥ F𝑖√
𝑑𝑖+1 − F 𝑗√

𝑑 𝑗+1
∥2

2 with 𝑑𝑖 being the

node degree of node 𝑣𝑖. The resulted message passing schemes are usually linear smoothers which

smooth the input signal by their linear transformation.

5.2.2 Graph Trend Filtering

In the univariate case, the 𝑘-th order graph trend filtering (GTF) estimator [111] is given by

arg min
f∈R𝑛

=
1
2
∥f − x∥2

2 + 𝜆∥Δ
(𝑘+1)f∥1 (5.4)

where x ∈ R𝑛 is the 1-dimensional input signal of 𝑛 nodes and Δ(𝑘+1) is a 𝑘-th order graph difference

operator. When 𝑘 = 0, it penalizes the absolute difference across neighboring nodes in graph G:

∥Δ(1)f∥1 =
∑︁

(𝑣𝑖 ,𝑣 𝑗 )∈E
|f𝑖 − f 𝑗 |

where Δ(1) is equivalent to the incident matrix Δ. Generally, 𝑘-th order graph difference operators

can be defined recursively:

Δ(𝑘+1) =


Δ⊤Δ(𝑘) = L 𝑘+1

2 ∈ R𝑛×𝑛 for odd k

ΔΔ(𝑘) = ΔL 𝑘
2 ∈ R𝑚×𝑛 for even k.
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It is demonstrated that GTF can adapt to inhomogeneity in the level of smoothness of signal and

tends to provide piecewise polynomials over graphs [111]. For instance, when 𝑘 = 0, the sparsity

induced by the ℓ1-based penalty ∥Δ(1)f∥1 implies that many of the differences f𝑖 − f 𝑗 are zeros

across edges (𝑣𝑖, 𝑣 𝑗 ) ∈ E in G. The piecewise property originates from the discontinuity of signal

allowed by less aggressive ℓ1 penalty, with adaptively chosen knot nodes or knot edges. Note that

the smoothers induced by GTF are not linear smoothers and cannot be simply represented by linear

transformation of the input signal.

5.3 Algorithm

In this section, we first propose a new graph signal denoising estimator. Then we develop an efficient

optimization algorithm for solving the denoising problem and introduce a novel, general and efficient

message passing scheme, i.e., Elastic Message Passing (EMP), for graph signal smoothing. Finally,

the integration of the proposed message passing scheme and deep neural networks leads to Elastic

GNNs.

5.3.1 Elastic Graph Signal Estimator

To combine the advantages of ℓ1 and ℓ2-based graph smoothing, we propose the following elastic

graph signal estimator:

arg min
F∈R𝑛×𝑑

𝜆1∥ΔF∥1︸    ︷︷    ︸
𝑔1 (ΔF)

+ 𝜆2
2

tr(F⊤LF) + 1
2
∥F − Xin∥2

𝐹︸                               ︷︷                               ︸
𝑓 (F)

(5.5)

where Xin ∈ R𝑛×𝑑 is the 𝑑-dimensional input signal of 𝑛 nodes. The first term can be written in an

edge-centric way: ∥Δ(1)F∥1 =
∑

(𝑣𝑖 ,𝑣 𝑗 )∈E ∥F𝑖 − F 𝑗 ∥1, which penalizes the absolute difference across

connected nodes in graph G. Similarly, the second term penalizes the difference quadratically via

tr(F⊤LF) = ∑
(𝑣𝑖 ,𝑣 𝑗 )∈E ∥F𝑖 − F 𝑗 ∥2

2. The last term is the fidelity term which preserves the similarity

with the input signal. The regularization coefficients 𝜆1 and 𝜆2 control the balance between ℓ1 and

ℓ2-based graph smoothing.
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Remark 11. It is potential to consider higher-order graph differences in both the ℓ1-based and

ℓ2-based smoothers. But, in this work, we focus on the 0-th order graph difference operator Δ, since

we assume the piecewise constant prior for graph representation learning.

Normalization. In existing GNNs, it is beneficial to normalize the Laplacian matrix for better

numerical stability, and the normalization trick is also crucial for achieving superior performance.

Therefore, for the ℓ2-based graph smoothing, we follow the common normalization trick in GNNs:

L̃ = I − Ã, where Ã = D̂− 1
2 ÂD̂− 1

2 , Â = A + I and D̂𝑖𝑖 = 𝑑𝑖 =
∑
𝑗 Â𝑖 𝑗 . It leads to a degree normalized

penalty

tr(F⊤L̃F) =
∑︁

(𝑣𝑖 ,𝑣 𝑗 )∈E






 F𝑖√
𝑑𝑖 + 1

−
F 𝑗√︁
𝑑 𝑗 + 1






2

2

.

In the literature of graph total variation and graph trend filtering, the normalization step is often

overlooked and the graph difference operator is directly used as in GTF [111, 108]. To achieve

better numerical stability and handle diverse node degrees in real-world graphs, we propose to

normalize each column of the incident matrix by the square root of node degrees for the ℓ1-based

graph smoothing as follows1:

Δ̃ = ΔD̂− 1
2 .

It leads to a degree normalized total variation penalty 2

∥Δ̃F∥1 =
∑︁

(𝑣𝑖 ,𝑣 𝑗 )∈E






 F𝑖√
𝑑𝑖 + 1

−
F 𝑗√︁
𝑑 𝑗 + 1







1

.

Note that this normalized incident matrix maintains the relation with the normalized Laplacian

matrix as in the unnormalized case

L̃ = Δ̃⊤Δ̃ (5.6)

given that

L̃ = D̂− 1
2 (D̂ − Â)D̂− 1

2 = D̂− 1
2 LD̂− 1

2 = D̂− 1
2Δ⊤ΔD̂− 1

2 .

1It naturally supports read-value edge weights if the edge weights are set in the incident matrix Δ.
2With the normalization, the piecewise constant prior is up to the degree scaling, i.e., sparsity in Δ̃F.
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With the normalization, the estimator defined in (5.5) becomes:

arg min
F∈R𝑛×𝑑

𝜆1∥Δ̃F∥1︸    ︷︷    ︸
𝑔1 (Δ̃F)

+ 𝜆2
2

tr(F⊤L̃F) + 1
2
∥F − Xin∥2

𝐹︸                               ︷︷                               ︸
𝑓 (F)

. (5.7)

Capture correlation among dimensions. The node features in real-world graphs are usually

multi-dimensional. Although the estimator defined in (5.7) is able to handle multi-dimensional

data since the signal from different dimensions are separable under ℓ1 and ℓ2 norm, such estimator

treats each feature dimension independently and does not exploit the potential relation between

feature dimensions. However, the sparsity patterns of node difference across edges could be shared

among feature dimensions. To better exploit this potential correlation, we propose to couple the

multi-dimensional features by ℓ21 norm, which penalizes the summation of ℓ2 norm of the node

difference

∥Δ̃F∥21 =
∑︁

(𝑣𝑖 ,𝑣 𝑗 )∈E






 F𝑖√
𝑑𝑖 + 1

−
F 𝑗√︁
𝑑 𝑗 + 1







2

.

This penalty promotes the row sparsity of Δ̃F and enforces similar sparsity patterns among feature

dimensions. In other words, if two nodes are similar, all their feature dimensions should be similar.

Therefore, we define the ℓ21-based estimator as

arg min
F∈R𝑛×𝑑

𝜆1∥Δ̃F∥21︸     ︷︷     ︸
𝑔21 (Δ̃F)

+ 𝜆2
2

tr(F⊤L̃F) + 1
2
∥F − Xin∥2

𝐹︸                               ︷︷                               ︸
𝑓 (F)

(5.8)

where 𝑔21(·) = 𝜆1∥ · ∥21. In the following subsections, we will use 𝑔(·) to represent both 𝑔1(·) and

𝑔21(·). We use ℓ1 to represent both ℓ1 and ℓ21 if not specified.

5.3.2 Elastic Message Passing

For the ℓ2-based graph smoother, message passing schemes can be derived from the gradient

descent iterations of the graph signal denoising problem, as in the case of GCN and APPNP [73].

However, computing the estimators defined by (5.7) and (5.8) is much more challenging because of

the nonsmoothness, and the two components, i.e., 𝑓 (F) and 𝑔(Δ̃F), are non-separable as they are

coupled by the graph difference operator Δ̃. In the literature, researchers have developed optimization
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algorithms for the graph trend filtering problem (5.4) such as Alternating Direction Method of

Multipliers (ADMM) and Newton type algorithms [111, 108]. However, these algorithms require

to solve the minimization of a non-trivial sub-problem in each single iteration, which incurs high

computation complexity. Moreover, it is unclear how to make these iterations compatible with the

back-propagation training of deep learning models. This motivates us to design an algorithm which

is not only efficient but also friendly to back-propagation training. To this end, we propose to solve

an equivalent saddle point problem using a primal-dual algorithm with efficient computations.

Saddle point reformulation. For a general convex function 𝑔(·), its conjugate function is

defined as

𝑔∗(Z) := sup
X
⟨Z,X⟩ − 𝑔(X).

By using 𝑔(Δ̃F) = sup
Z
⟨Δ̃F,Z⟩ − 𝑔∗(Z), the problem (5.7) and (5.8) can be equivalently written as

the following saddle point problem:

min
F

max
Z

𝑓 (F) + ⟨Δ̃F,Z⟩ − 𝑔∗(Z). (5.9)

where Z ∈ R𝑚×𝑑 . Motivated by Proximal Alternating Predictor-Corrector (PAPC) [70, 15], we

propose an efficient algorithm with per iteration low computation complexity and convergence

guarantee:

F̄𝑘+1 = F𝑘 − 𝛾∇ 𝑓 (F𝑘 ) − 𝛾Δ̃⊤Z𝑘 , (5.10)

Z𝑘+1 = prox𝛽𝑔∗ (Z𝑘 + 𝛽Δ̃F̄𝑘+1), (5.11)

F𝑘+1 = F𝑘 − 𝛾∇ 𝑓 (F𝑘 ) − 𝛾Δ̃⊤Z𝑘+1, (5.12)

where prox𝛽𝑔∗ (X) = arg min
Y

1
2 ∥Y − X∥2

𝐹
+ 𝛽𝑔∗(Y). The stepsizes, 𝛾 and 𝛽, will be specified

later. The first step (5.10) obtains a prediction of F𝑘+1, i.e., F̄𝑘+1, by a gradient descent step on

primal variable F𝑘 . The second step (5.11) is a proximal dual ascent step on the dual variable Z𝑘

based on the predicted F̄𝑘+1. Finally, another gradient descent step on the primal variable based

on (F𝑘 ,Z𝑘+1) gives next iteration F𝑘+1 (5.12). Algorithm (5.10)–(5.12) can be interpreted as a

“predict-correct” algorithm for the saddle point problem (5.9). Next we demonstrate how to compute

the proximal operator in Eq. (5.11).
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Proximal operators. Using the Moreau’s decomposition principle [6]

X = prox𝛽𝑔∗ (X) + 𝛽prox𝛽−1𝑔 (X/𝛽),

we can rewrite the step (5.11) using the proximal operator of 𝑔(·), that is,

prox𝛽𝑔∗ (X) = X − 𝛽prox 1
𝛽
𝑔 (

1
𝛽

X). (5.13)

Y𝑘+1 = 𝛾Xin + (1 − 𝛾)ÃF𝑘
F̄𝑘+1 = Y𝑘 − 𝛾Δ̃⊤Z𝑘

Z̄𝑘+1 = Z𝑘 + 𝛽Δ̃F̄𝑘+1
Z𝑘+1 = min( |Z̄𝑘+1 |, 𝜆1) · sign(Z̄𝑘+1) (Option I: ℓ1 norm)

Z𝑘+1
𝑖

= min(∥Z̄𝑘+1
𝑖

∥2, 𝜆1) ·
Z̄𝑘+1
𝑖

∥Z̄𝑘+1
𝑖

∥2
,∀𝑖 ∈ [𝑚] (Option II: ℓ21 norm)

F𝑘+1 = Y𝑘 − 𝛾Δ̃⊤Z𝑘+1

Figure 5.1: Elastic Message Passing (EMP). F0 = Xin and Z0 = 0𝑚×𝑑 .

We discuss the two options for the function 𝑔(·) corresponding to the objectives (5.7) and (5.8).

• Option I (ℓ1 norm): 𝑔1(X) = 𝜆1∥X∥1

By definition, the proximal operator of 1
𝛽
𝑔1(X) is

prox 1
𝛽
𝑔1
(X) = arg min

Y

1
2
∥Y − X∥2

𝐹 + 1
𝛽
𝜆1∥Y∥1,

which is equivalent to the soft-thresholding operator (component-wise):

(𝑆 1
𝛽
𝜆1
(X))𝑖 𝑗 =sign(X𝑖 𝑗 ) max( |X𝑖 𝑗 | −

1
𝛽
𝜆1, 0)

=X𝑖 𝑗 − sign(X𝑖 𝑗 ) min( |X𝑖 𝑗 |,
1
𝛽
𝜆1).

Therefore, using (5.13), we have

(prox𝛽𝑔∗1 (X))𝑖 𝑗 = sign(X𝑖 𝑗 ) min( |X𝑖 𝑗 |, 𝜆1). (5.14)

which is a component-wise projection onto the ℓ∞ ball of radius 𝜆1.
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• Option II (ℓ21 norm): 𝑔21(X) = 𝜆1∥X∥21

By definition, the proximal operator of 1
𝛽
𝑔21(X) is

prox 1
𝛽
𝑔21

(X) = arg min
Y

1
2
∥Y − X∥2

𝐹 + 1
𝛽
𝜆1∥Y∥21

with the 𝑖-th row being (
prox 1

𝛽
𝑔21

(X)
)
𝑖
=

X𝑖

∥X𝑖∥2
max(∥X𝑖∥2 −

1
𝛽
𝜆1, 0).

Similarly, using (5.13), we have the 𝑖-th row of prox𝛽𝑔∗21
(X) being

(prox𝛽𝑔∗21
(X))𝑖

= X𝑖 − 𝛽prox 1
𝛽
𝑔21

(X𝑖/𝛽)

= X𝑖 − 𝛽
X𝑖/𝛽

∥X𝑖/𝛽∥2
max(∥X𝑖/𝛽∥2 − 𝜆1/𝛽, 0)

= X𝑖 −
X𝑖

∥X𝑖∥2
max(∥X𝑖∥2 − 𝜆1, 0)

=
X𝑖

∥X𝑖∥2
(∥X𝑖∥2 − max(∥X𝑖∥2 − 𝜆1, 0))

=
X𝑖

∥X𝑖∥2
min(∥X𝑖∥2, 𝜆1), (5.15)

which is a row-wise projection on the ℓ2 ball of radius 𝜆1. Note that the proximal operator in the

ℓ1 norm case treats each feature dimension independently, while in the ℓ21 norm case, it couples

the multi-dimensional features, which is consistent with the motivation to exploit the correlation

among feature dimensions.

The Algorithm (5.10)–(5.12) and the proximal operators (5.14) and (5.15) enable us to derive the

final message passing scheme. Note that the computation F𝑘 − 𝛾∇ 𝑓 (F𝑘 ) in steps (5.10) and (5.12)

can be shared to save computation. Therefore, we decompose the step (5.10) into two steps:

Y𝑘 = F𝑘 − 𝛾∇ 𝑓 (F𝑘 )

=
(
(1 − 𝛾)I − 𝛾𝜆2L̃

)
F𝑘 + 𝛾Xin, (5.16)

F̄𝑘+1 = Y𝑘 − 𝛾Δ̃⊤Z𝑘 . (5.17)
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In this work, we choose 𝛾 = 1
1+𝜆2

and 𝛽 = 1
2𝛾 . Therefore, with L̃ = I− Ã, Eq. (5.16) can be simplified

as

Y𝑘+1 = 𝛾Xin + (1 − 𝛾)ÃF𝑘 . (5.18)

Let Z̄𝑘+1 := Z𝑘 + 𝛽Δ̃F̄𝑘+1, then steps (5.11) and (5.12) become

Z𝑘+1 = prox𝛽𝑔∗ (Z̄𝑘+1), (5.19)

F𝑘+1 = F𝑘 − 𝛾∇ 𝑓 (F𝑘 ) − 𝛾Δ̃Z𝑘+1

= Y𝑘 − 𝛾Δ̃⊤Z𝑘+1. (5.20)

Substituting the proximal operators in (5.19) with (5.14) and (5.15), we obtain the complete elastic

message passing scheme (EMP) as summarized in Figure 5.1.

Interpretation of EMP. EMP can be interpreted as the standard message passing (MP) (Y in

Fig. 1) with extra operations (the following steps). The extra operations compute Δ̃⊤Z to adjust the

standard MP such that sparsity in Δ̃F is promoted and some large node differences can be preserved.

EMP is general and covers some existing propagation rules as special cases as demonstrated in

Remark 12.

Remark 12 (Special cases). If there is only ℓ2-based regularization, i.e., 𝜆1 = 0, then according

to the projection operator, we have Z𝑘 = 0𝑚×𝑛. Therefore, with 𝛾 = 1
1+𝜆2

, the proposed message

passing scheme reduces to

F𝑘+1 =
1

1 + 𝜆2
Xin +

𝜆2
1 + 𝜆2

ÃF𝑘 .

If 𝜆2 = 1
𝛼
− 1, it recovers the message passing in APPNP:

F𝑘+1 = 𝛼Xin + (1 − 𝛼)ÃF𝑘 .

If 𝜆2 = ∞, it recovers the simple aggregation operation in many GNNs:

F𝑘+1 = ÃF𝑘 .
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Computation Complexity. EMP is efficient and composed by simple operations. The major

computation cost comes from four sparse matrix multiplications, include ÃF𝑘 , Δ̃⊤Z𝑘 , Δ̃F̄𝑘+1 and

Δ̃⊤Z𝑘+1. The computation complexity is in the order 𝑂 (𝑚𝑑) where 𝑚 is the number of edges in

graph G and 𝑑 is the feature dimension of input signal Xin. Other operations are simple matrix

additions and projection.

The convergence of EMP and the parameter settings are justified by Theorem 6.

Theorem 6 (Convergence of EMP). Under the stepsize setting 𝛾 < 2
1+𝜆2∥L̃∥2

and 𝛽 ≤ 4
3𝛾∥Δ̃Δ̃⊤∥2

, the

elastic message passing scheme (EMP) in Figure 5.1 converges to the optimal solution of the elastic

graph signal estimator defined in (5.7) (Option I) or (5.8) (Option II). It is sufficient to choose any

𝛾 < 2
1+2𝜆2

and 𝛽 ≤ 2
3𝛾 since ∥L̃∥2 = ∥Δ̃⊤Δ̃∥2 = ∥Δ̃Δ̃⊤∥2 ≤ 2.

Proof. We first consider the general problem

min
F

𝑓 (F) + 𝑔(BF) (5.21)

where 𝑓 and 𝑔 are convex functions and B is a bounded linear operator. It is proved in [70, 15]

that the iterations in (5.10)–(5.12) guarantee the convergence of F𝑘 to the optimal solution of the

minimization problem (5.21) if the parameters satisfy 𝛾 < 2
𝐿

and 𝛽 ≤ 1
𝛾𝜆max (BB⊤) , where 𝐿 is the

Lipschitz constant of ∇ 𝑓 (F). These conditions are further relaxed to 𝛾 < 2
𝐿

and 𝛽 ≤ 4
3𝛾𝜆max (BB⊤)

in [60].

For the specific problems defined in (5.7) and (5.8), the two function components 𝑓 and 𝑔

are both convex, and the linear operator Δ is bounded. The Lipschitz constant of ∇ 𝑓 (F) can be

computed by the largest eigenvalue of the Hessian matrix of 𝑓 (F):

𝐿 = 𝜆max(∇2 𝑓 (F)) = 𝜆max(I + 𝜆2L̃) = 1 + 𝜆2∥L̃∥2.

Therefore, the elastic message passing scheme derived from iterations (5.10)–(5.12) is guaranteed

to converge to the optimal solution of problem (5.7) (Option I) or problem (5.8) (Option II) if the

stepsizes satisfy 𝛾 < 2
1+𝜆2∥L̃∥2

and 𝛽 ≤ 4
3𝛾∥Δ̃Δ̃⊤∥2

.
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Let Δ̃ = UΣV⊤ be the singular value decomposition of Δ̃ and we derive

∥Δ̃Δ̃⊤∥2 = ∥UΣV⊤VΣU⊤∥2 = ∥UΣ2U⊤∥2 = ∥VΣ2V⊤∥2 = ∥VΣU⊤UΣV⊤∥2 = ∥Δ̃⊤Δ̃∥2.

The equivalence L̃ = Δ̃⊤Δ̃ in (5.6) further gives

∥L̃∥2 = ∥Δ̃⊤Δ̃∥2 = ∥Δ̃Δ̃⊤∥2.

Since ∥L̃∥2 ≤ 2 [19], we have 2
1+2𝜆2

≤ 2
1+𝜆2∥L̃∥2

and 2
3𝛾 ≤ 4

3𝛾∥Δ̃Δ̃⊤∥2
. Therefore, 𝛾 < 2

1+2𝜆2
𝛽 ≤ 2

3𝛾

are sufficient for the convergence of EMP.

5.3.3 Elastic GNNs

Incorporating the elastic message passing scheme from the elastic graph signal estimator (5.7)

and (5.8) into deep neural networks, we introduce a family of GNNs, namely Elastic GNNs. In this

work, we follow the decoupled way as proposed in APPNP [49], where we first make predictions

from node features and aggregate the prediction through the proposed EMP:

Ypre = EMP
(
ℎ𝜃 (Xfea), 𝐾, 𝜆1, 𝜆2

)
. (5.22)

Xfea ∈ R𝑛×𝑑 denotes the node features, ℎ𝜃 (·) is any machine learning model, such as multilayer

perceptrons (MLPs), 𝜃 is the learnable parameters in the model, and 𝐾 is the number of message

passing steps. The training objective is the cross entropy loss defined by the final prediction Ypre

and labels for training data. Elastic GNNs also have the following nice properties:

• In addition to the backbone neural network model, Elastic GNNs only require to set up three

hyperparameters including two coefficients 𝜆1, 𝜆2 and the propagation step 𝐾 , but they do not

introduce any learnable parameters. Therefore, it reduces the risk of overfitting.

• The hyperparameters 𝜆1 and 𝜆2 provide better smoothness adaptivity to Elastic GNNs

depending on the smoothness properties of the graph data.

• The message passing scheme only entails simple and efficient operations, which makes it

friendly to the efficient and end-to-end back-propagation training of the whole GNN model.
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5.4 Experiment

In this section, we conduct experiments to validate the effectiveness of the proposed Elastic GNNs.

We first introduce the experimental settings. Then we assess the performance of Elastic GNNs and

investigate the benefits of introducing ℓ1-based graph smoothing into GNNs with semi-supervised

learning tasks under normal and adversarial settings. In the ablation study, we validate the local

adaptive smoothness, sparsity pattern, and convergence of EMP.

5.4.1 Experimental Settings

Datasets. We conduct experiments on 8 real-world datasets including three citation graphs, i.e.,

Cora, Citeseer, Pubmed [93], two co-authorship graphs, i.e., Coauthor CS and Coauthor Physics [95],

two co-purchase graphs, i.e., Amazon Computers and Amazon Photo [95], and one blog graph, i.e.,

Polblogs [2]. In Polblogs graph, node features are not available so we set the feature matrix to be

a 𝑛 × 𝑛 identity matrix. The data statistics for the benchmark datasets used in Section 5.4.2 are

summarized in Table 5.1. The data statistics for the adversarially attacked graph used in Section 5.4.3

are summarized in Table 5.2.

Table 5.1: Statistics of benchmark datasets.

Dataset Classes Nodes Edges Features Training Nodes Validation Nodes Test Nodes

Cora 7 2708 5278 1433 20 per class 500 1000
CiteSeer 6 3327 4552 3703 20 per class 500 1000
PubMed 3 19717 44324 500 20 per class 500 1000
Coauthor CS 15 18333 81894 6805 20 per class 30 per class Rest nodes
Coauthor Physics 5 34493 247962 8415 20 per class 30 per class Rest nodes
Amazon Computers 10 13381 245778 767 20 per class 30 per class Rest nodes
Amazon Photo 8 7487 119043 745 20 per class 30 per class Rest nodes

Table 5.2: Dataset Statistics for adversarially attacked graph.

NLCC ELCC Classes Features

Cora 2,485 5,069 7 1,433
CiteSeer 2,110 3,668 6 3,703
Polblogs 1,222 16,714 2 /
PubMed 19,717 44,338 3 500
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Baselines. We compare the proposed Elastic GNNs with representative GNNs including

GCN [48], GAT [109], ChebNet [23], GraphSAGE [33], APPNP [49] and SGC [115]. For all

models, we use 2 layer neural networks with 64 hidden units.

Parameter settings. For each experiment, we report the average performance and the standard

variance of 10 runs. For all methods, hyperparameters are tuned from the following search space:

1) learning rate: {0.05, 0.01, 0.005}; 2) weight decay: {5e-4, 5e-5, 5e-6}; 3) dropout rate: {0.5,

0.8}. For APPNP, the propagation step 𝐾 is tuned from {5, 10} and the parameter 𝛼 is tuned from

{0, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0}. For Elastic GNNs, the propagation step 𝐾 is tuned from {5, 10} and

parameters 𝜆1 and 𝜆2 are tuned from {0, 3, 6, 9}. As suggested by Theorem 1, we set 𝛾 = 1
1+𝜆2

and 𝛽 = 1
2𝛾 in the proposed elastic message passing scheme. Adam optimizer [47] is used in all

experiments.

5.4.2 Performance on Benchmark Datasets

On commonly used datasets including Cora, CiteSeer, PubMed, Coauthor CS, Coauthor Physics,

Amazon Computers and Amazon Photo, we compare the performance of the proposed Elastic GNN

(ℓ21 + ℓ2) with representative GNN baselines on the semi-supervised learning task. The classification

accuracy are showed in Table 5.3. From these results, we can make the following observations:

• Elastic GNN outperforms GCN, GAT, ChebNet, GraphSAGE and SGC by significant margins

on all datasets. For instance, Elastic GNN improves over GCN by 3.1%, 2.0% and 1.8% on

Cora, CiteSeer and PubMed datasets. The improvement comes from the global and local

smoothness adaptivity of Elastic GNN.

• Elastic GNN (ℓ21 + ℓ2) consistently achieves higher performance than APPNP on all datasets.

Essentially, Elastic GNN covers APPNP as a special case when there is only ℓ2 regularization,

i.e., 𝜆1 = 0. Beyond the ℓ2-based graph smoothing, the ℓ21-based graph smoothing further

enhances the local smoothness adaptivity. This comparison verifies the benefits of introducing

ℓ21-based graph smoothing in GNNs.
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Table 5.3: Classification accuracy (%) on benchmark datasets with 10 times random data splits.

Model Cora CiteSeer PubMed CS Physics Computers Photo

ChebNet 76.3 ± 1.5 67.4 ± 1.5 75.0 ± 2.0 91.8 ± 0.4 OOM 81.0 ± 2.0 90.4 ± 1.0
GCN 79.6 ± 1.1 68.9 ± 1.2 77.6 ± 2.3 91.6 ± 0.6 93.3 ± 0.8 79.8 ± 1.6 90.3 ± 1.2
GAT 80.1 ± 1.2 68.9 ± 1.8 77.6 ± 2.2 91.1 ± 0.5 93.3 ± 0.7 79.3 ± 2.4 89.6 ± 1.6
SGC 80.2 ± 1.5 68.9 ± 1.3 75.5 ± 2.9 90.1 ± 1.3 93.1 ± 0.6 73.0 ± 2.0 83.5 ± 2.9
APPNP 82.2 ± 1.3 70.4 ± 1.2 78.9 ± 2.2 92.5 ± 0.3 93.7 ± 0.7 80.1 ± 2.1 90.8 ± 1.3
GraphSAGE 79.0 ± 1.1 67.5 ± 2.0 77.6 ± 2.0 91.7 ± 0.5 92.5 ± 0.8 80.7 ± 1.7 90.9 ± 1.0
ElasticGNN 82.7 ± 1.0 70.9 ± 1.4 79.4 ± 1.8 92.5 ± 0.3 94.2 ± 0.5 80.7 ± 1.8 91.3 ± 1.3

Table 5.4: Classification accuracy (%) under different perturbation rates of adversarial graph attack.

Dataset Ptb Rate Basic GNN Elastic GNN
GCN GAT ℓ2 ℓ1 ℓ21 ℓ1 + ℓ2 ℓ21 + ℓ2

Cora

0% 83.5±0.4 84.0±0.7 85.8±0.4 85.1±0.5 85.3±0.4 85.8±0.4 85.8±0.4
5% 76.6±0.8 80.4±0.7 81.0±1.0 82.3±1.1 81.6±1.1 81.9±1.4 82.2±0.9
10% 70.4±1.3 75.6±0.6 76.3±1.5 76.2±1.4 77.9±0.9 78.2±1.6 78.8±1.7
15% 65.1±0.7 69.8±1.3 72.2±0.9 73.3±1.3 75.7±1.2 76.9±0.9 77.2±1.6
20% 60.0±2.7 59.9±0.6 67.7±0.7 63.7±0.9 70.3±1.1 67.2±5.3 70.5±1.3

Citeseer

0% 72.0±0.6 73.3±0.8 73.6±0.9 73.2±0.6 73.2±0.5 73.6±0.6 73.8±0.6
5% 70.9±0.6 72.9±0.8 72.8±0.5 72.8±0.5 72.8±0.5 73.3±0.6 72.9±0.5
10% 67.6±0.9 70.6±0.5 70.2±0.6 70.8±0.6 70.7±1.2 72.4±0.9 72.6±0.4
15% 64.5±1.1 69.0±1.1 70.2±0.6 68.1±1.4 68.2±1.1 71.3±1.5 71.9±0.7
20% 62.0±3.5 61.0±1.5 64.9±1.0 64.7±0.8 64.7±0.8 64.7±0.8 64.7±0.8

Polblogs

0% 95.7±0.4 95.4±0.2 95.4±0.2 95.8±0.3 95.8±0.3 95.8±0.3 95.8±0.3
5% 73.1±0.8 83.7±1.5 82.8±0.3 78.7±0.6 78.7±0.7 82.8±0.4 83.0±0.3
10% 70.7±1.1 76.3±0.9 73.7±0.3 75.2±0.4 75.3±0.7 81.5±0.2 81.6±0.3
15% 65.0±1.9 68.8±1.1 68.9±0.9 72.1±0.9 71.5±1.1 77.8±0.9 78.7±0.5
20% 51.3±1.2 51.5±1.6 65.5±0.7 68.1±0.6 68.7±0.7 77.4±0.2 77.5±0.2

Pubmed

0% 87.2±0.1 83.7±0.4 88.1±0.1 86.7±0.1 87.3±0.1 88.1±0.1 88.1±0.1
5% 83.1±0.1 78.0±0.4 87.1±0.2 86.2±0.1 87.0±0.1 87.1±0.2 87.1±0.2
10% 81.2±0.1 74.9±0.4 86.6±0.1 86.0±0.2 86.9±0.2 86.3±0.1 87.0±0.1
15% 78.7±0.1 71.1±0.5 85.7±0.2 85.4±0.2 86.4±0.2 85.5±0.1 86.4±0.2
20% 77.4±0.2 68.2±1.0 85.8±0.1 85.4±0.1 86.4±0.1 85.4±0.1 86.4±0.1

5.4.3 Robustness Under Adversarial Attack

Locally adaptive smoothness makes Elastic GNNs more robust to adversarial attack on graph

structure. This is because the attack tends to connect nodes with different labels, which fuzzes the

cluster structure in the graph. But EMP can tolerate large node differences along these wrong edges,

78



and maintain the smoothness along correct edges.

To validate this, we evaluate the performance of Elastic GNNs under untargeted adversarial

graph attack, which tries to degrade GNN models’ overall performance by deliberately modifying

the graph structure. We use the MetaAttack [135] implemented in DeepRobust [58]3, a PyTorch

library for adversarial attacks and defenses, to generate the adversarially attacked graphs based on

four datasets including Cora, CiteSeer, Polblogs and PubMed. We randomly split 10%/10%/80%

of nodes for training, validation and test. Note that following the works [134, 135, 27, 41], we only

consider the largest connected component (LCC) in the adversarial graphs. Therefore, the results

in Table 5.4 are not directly comparable with the results in Table 5.3. We focus on investigating

the robustness introduced by ℓ1-based graph smoothing but not on adversarial defense so we don’t

compare with defense strategies. Existing defense strategies can be applied on Elastic GNNs to

further improve the robustness against attacks.

Variants of Elastic GNNs. To make a deeper investigation of Elastic GNNs, we consider

the following variants: (1) ℓ2 (𝜆1 = 0); (2) ℓ1 (𝜆2 = 0,Option I); (3) ℓ21 (𝜆2 = 0,Option II); (4)

ℓ1 + ℓ2 (Option I); (5) ℓ21 + ℓ2 (Option II). To save computation, we fix the learning rate as 0.01,

weight decay as 0.0005, dropout rate as 0.5 and 𝐾 = 10 since this setting works well for the

chosen datasets and models. Only 𝜆1 and 𝜆2 are tuned. The classification accuracy under different

perturbation rates ranging from 0% to 20% is summarized in Table 5.4. From the results, we can

make the following observations:

• All variants of Elastic GNNs outperforms GCN and GAT by significant margins under all

perturbation rates. For instance, when the pertubation rate is 15%, Elastic GNN (ℓ21 + ℓ2)

improves over GCN by 12.1%, 7.4%, 13.7% and 7.7% on the four datasets being considered.

This is because Elastic GNN can adapt to the change of smoothness while GCN and GAT can

not adapt well when the perturbation rate increases.

• ℓ21 outperforms ℓ1 in most cases, and ℓ21 + ℓ2 outperforms ℓ1 + ℓ2 in almost all cases. It

demonstrates the benefits of exploiting the correlation between feature channels by coupling
3https://github.com/DSE-MSU/DeepRobust
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multi-dimensional features via ℓ21 norm.

• ℓ21 outperforms ℓ2 in most cases, which suggests the benefits of local smoothness adaptivity.

When ℓ21 and ℓ2 is combined, the Elastic GNN (ℓ21 + ℓ2) achieves significantly better

performance than solely ℓ2, ℓ21 or ℓ1 variant in almost all cases. It suggests that ℓ1 and ℓ2-based

graph smoothing are complementary to each other, and combining them provides significant

better robustness against adversarial graph attacks.

5.4.4 Ablation Study

We provide ablation study to further investigate the adaptive smoothness, sparsity pattern, and

convergence of EMP in Elastic GNN, based on three datasets including Cora, CiteSeer and PubMed.

In this section, we fix 𝜆1 = 3, 𝜆2 = 3 for Elastic GNN, and 𝛼 = 0.1 for APPNP. We fix learning

rate as 0.01, weight decay as 0.0005 and dropout rate as 0.5 since this setting works well for both

methods.

Adaptive smoothness. It is expected that ℓ1-based smoothing enhances local smoothness

adaptivity by increasing the smoothness along correct edges (connecting nodes with same labels)

while lowering smoothness along wrong edges (connecting nodes with different labels). To validate

this, we compute the average adjacent node differences (based on node features in the last layer)

along wrong and correct edges separately, and use the ratio between these two averages to measure

the smoothness adaptivity. The results are summarized in Table 5.5. It is clearly observed that for

all datasets, the ratio for ElasticGNN is significantly higher than ℓ2 based method such as APPNP,

which validates its better local smoothness adaptivity.

Sparsity pattern. To validate the piecewise constant property enforced by EMP, we also

investigate the sparsity pattern in the adjacent node differences, i.e., Δ̃F, based on node features in the

last layer. Node difference along edge 𝑒𝑖 is defined as sparse if ∥(Δ̃F)𝑖∥2 < 0.1. The sparsity ratios

for ℓ2-based method such as APPNP and ℓ1-based method such as Elastic GNN are summarized

in Table 5.6. It can be observed that in Elastic GNN, a significant portion of Δ̃F are sparse for

all datasets. While in APPNP, this portion is much smaller. This sparsity pattern validates the
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piecewise constant prior as designed.

Table 5.5: Ratio between average node differences along wrong and correct edges.

Model Cora CiteSeer PubMed

ℓ2 (APPNP) 1.57 1.35 1.43
ℓ21+ℓ2 (ElasticGNN) 2.03 1.94 1.79

Table 5.6: Sparsity ratio (i.e., ∥(Δ̃F)𝑖∥2 < 0.1) in node differences Δ̃F.

Model Cora CiteSeer PubMed

ℓ2 (APPNP) 2% 16% 11%
ℓ21+ℓ2 (ElasticGNN) 37% 74% 42%

Convergence of EMP. We provide two additional experiments to demonstrate the impact of

propagation step 𝐾 on classification performance and the convergence of message passing scheme.

Figure 5.2 shows that the increase of classification accuracy when the propagation step 𝐾 increases.

It verifies the effectiveness of EMP in improving graph representation learning. It also shows

that a small number of propagation step can achieve very good performance, and therefore the

computation cost for EMP can be small. Figure 5.3 shows the decreasing of the objective value

defined in Eq. (5.8) during the forward message passing process, and it verifies the convergence of

the proposed EMP as suggested by Theorem 6.

5.5 Related Work

The design of GNN architectures can be majorly motivated in spectral domain [48, 23] and spatial

domain [33, 109, 91, 29]. The message passing scheme [29, 74] for feature aggregation is one

central component of GNNs. Recent works have proven that the message passing in GNNs can be

regarded as low-pass graph filters [84, 126]. Generally, it is recently proved that message passing in

many GNNs can be unified in the graph signal denosing framework [73, 86, 129, 16]. We point out

that they intrinsically perform ℓ2-based graph smoothing and typically can be represented as linear

smoothers.
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Figure 5.2: Classification accuracy under different propagation steps.
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Figure 5.3: Convergence of the objective value for the problem in Eq. (5.8) during message passing.

ℓ1-based graph signal denoising has been explored in graph trend filtering [111, 108] which

tends to provide estimators with 𝑘-th order piecewise polynomials over graphs. Graph total variation

has also been utilized in semi-supervised learning [83, 44, 43, 5], spectral clustering [12, 11] and

graph cut problems [100, 10]. However, it is unclear whether these algorithms can be used to design

GNNs. To the best of our knowledge, we make first such investigation in this work.
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5.6 Conclusion

In this work, we propose to enhance the smoothness adaptivity of GNNs via ℓ1 and ℓ2-based graph

smoothing. Through the proposed elastic graph signal estimator, we derive a novel, efficient and

general message passing scheme, i.e., elastic message passing (EMP). Integrating the proposed

message passing scheme and deep neural networks leads to a family of GNNs, i.e., Elastic GNNs.

Extensitve experiments on benchmark datasets and adversarially attacked graphs demonstrate the

benefits (e.g., intrinsic robustness) of introducing ℓ1-based graph smoothing in the design of GNNs.

The empirical study suggests that ℓ1 and ℓ2-based graph smoothing is complementary to each other,

and the proposed Elastic GNNs has better smoothnesss adaptivity owning to the integration of

ℓ1 and ℓ2-based graph smoothing. We hope the proposed elastic message passing scheme can

inspire more powerful GNN architecture design and more general smoothness assumptions such

as low homophily [72] can be made in the future. In addition, we also demonstrate the significant

advantages of elastic message passing (EMP) in capturing reliable user-item interactions in noisy

recommendation systems through the proposed framework of Graph Trend Filtering Networks [28].
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CHAPTER 6

CONCLUSION

In this chapter, we summarize the research results in this dissertation and their broader impact, and

discuss promising research directions.

6.1 Summary

In this dissertation, we proposed fours solutions to solve the efficiency and security challenges in

machine learning - (1) centralized distributed optimization algorithm with bidirectional commu-

nication compression; (2) decentralized distributed optimization algorithm with communication

compression; (3) graph neural networks with adaptive message passing that is robust to adversarial

features; (4) graph neural networks with elastic message passing that is robust to adversarial graph

structures.

To fundamentally improve the efficiency of distributed ML systems, I proposed a series of

innovative algorithms to break through the communication bottleneck. In particular, when the

communication network is a start network, I proposed DORE [68], a double residual compression

algorithm, to compress the bi-directional communication between client devices and the server such

that over 95% of the communication bits can be reduced. This is the first algorithm that reduces that

much communication cost while maintaining the superior convergence complexities (e.g., linear

convergence) as the uncompressed counterpart, both theoretically and numerically.

When the communication network is of any general topology (as long as it is connected),

I proposed LEAD [69], the first linear convergent decentralized optimization algorithm with

communication compression, which only requires point-to-point compressed communication

between neighboring devices over communication networks. Theoretically, we prove that under

certain compression ratios, the convergence complexity of the proposed algorithm does not depend

on the compression operator. In other words, it achieves better communication efficiency for free.

These algorithms significantly improve the efficiency and scalability of large-scale ML systems
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with solid theoretical guarantees and remarkable empirical performance. They have the great

potential to accelerate scientific discovery through machine learning and data science.

To design intrinsically secure ML models against feature attacks, I investigate to denoise the

hidden features in neural network layers caused by the adversarial perturbation using the graph

structural information. This is achieved by the proposed AirGNN [66] in which the adaptive message

passing denoises perturbed features by feature aggregations and maintains feature separability by

adaptive residuals. The proposed algorithm has a clear design principle and interpretation as well

strong as performance both in the clean and adversarial data settings. This points out a promising

direction of achieving adversarial robustness through feature denoising in hidden layers.

To design intrinsically secure ML models against graph structure attacks, I investigate a new prior

knowledge of smoothness in the design of graph neural networks. In particular, we derive an elastic

message passing scheme to model the piecewise constant signal in graph data. We demonstrate its

stronger resilience to adversarial structure attacks and superior performance when the data is clean

through a comprehensive empirical study on the proposed model ElasticGNN [67].

These secure ML models immensely boost the security of ML models under potential adversarial

threats. They might not only be applied in safety-critical applications but also inspire further research

in this emerging direction.

6.2 Future Direction

Large-scale ML and secure ML are active areas of exploration. Below we discuss some promising

research directions:

• Distributed machine learning under heterogeneous environments: Our study in centralized

learning and decentralized learning suggests that the convergence properties of distributed

optimization algorithms might be sensitive to heterogeneous environments - (1) data hetero-

geneity; (2) network heterogeneity; (3) computation heterogeneity. Due to data heterogeneity,

the data distributions from multiple computation devices might significantly differ from each

other, which causes direction conflict for model updating if synchronization is not timely.
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Due to network heterogeneity, the network bandwidths and conditions are often uneven in

large distributed systems. Therefore, it is critical to take the potential communication decay

into consideration. Due to computation heterogeneity, different computation devices might

have diverse computation power. To fully utilize the computation power, it is vital to design

algorithms that support flexible computation tasks and avoid idle time.

• Secure machine learning for more data types. Our study in designing secure graph neural

networks suggests a new promising direction for designing intrinsically robust ML models

through feature denoising in hidden layers of deep neural networks. Therefore, it is promising

to generalize these ideas to general data types such as images, videos, and text where the

graph structure information is not explicitly available but can be constructed from the data.

Moreover, it is also promising to consider more advanced and flexible smoothing assumptions

beyond homophily graphs in the design of GNN models.
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APPENDIX A

A DOUBLE RESIDUAL COMPRESSION ALGORITHM FOR DISTRIBUTED LEARNING

A.1 Additional Experiments

A.1.1 Communication Efficiency

To make an explicit comparison of communication efficiency, we report the training loss convergence

with respect to communication bits in Figure A.1, A.2 and A.3 for the experiments on synthetic data,

MNIST and CIFAR10 dataset respectively. These results are independent of the system architectures

and network bandwidth. It suggests that the proposed DORE reduce the communication cost

significantly while maintaining good convergence speed.

Furthermore, we also test the running time of ResNet18 trained on CIFAR10 dataset under two

different network bandwidth configurations, i.e. 1Gbps and 200Mbps, as showed in Figure A.4

and A.5. Due to its superior communication efficiency, the proposed DORE runs faster in both

configurations. Moreover, when the network bandwidth reduces from 1Gbps to 200Mbps, the

running time of DORE only increases slightly, which indicates that DORE is more robust to network

bandwidth change and can work more efficiently under limited bandwidth. These results clearly

suggest the advantages of the proposed algorithm.

All the experiments in this section are under the exactly same setting as described in Section 2.5.

The running time is tested in a High Performance Computing Cluster with NVIDIA Tesla K80

GPUs and the computing nodes are connected by Gigabit Ethernet interfaces and we use mpi4py as

the communication backend. All algorithms in this work are implemented with PyTorch.
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Figure A.1: Linear regression on synthetic data.
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Figure A.2: LeNet trained on MNIST dataset.
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Figure A.3: Resnet18 trained on CIFAR10 dataset.
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Figure A.4: Resnet18 trained on CIFAR10
dataset with 1Gbps network bandwidth.
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Figure A.5: Resnet18 trained on CIFAR10
dataset with 200Mbps network bandwidth.
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A.1.2 Parameter sensitivity

Continuing the MNIST experiment in Section 2.5, we further conduct parameter analysis on DORE.

The basic setting for block size, learning rate, 𝛼, 𝛽 and 𝜂 are 256, 0.1, 0.1, 1, 1, respectively.

We change each parameter individually. Figures A.6, A.7, A.8, and A.9 demonstrate that DORE

performs consistently well under different parameter settings.

0 10 20 30 40 50 60 70

Epoch

0.0

0.5

1.0

1.5

2.0

T
ra

in
in

g
 L

o
s
s

(a) Training loss

0 10 20 30 40 50 60 70

Epoch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

T
e

s
t 

L
o

s
s

(b) Test loss

Figure A.6: Training under different compression block sizes.
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Figure A.7: Training under different 𝛼.
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Figure A.8: Training under different 𝛽.
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Figure A.9: Training under different 𝜂.

A.2 Proofs of the theorems

A.2.1 Proof of Theorem 1

We first provide two lemmas. We define E𝑄 , E𝑘 , and E be the expectation taken over the quantization,

the 𝑘th iteration based on x̂𝑘 , and the overall expectation, respectively.

Lemma 7. For every 𝑖, we can estimate the first two moments of h𝑘+1
𝑖

as

E𝑄h𝑘+1
𝑖 =(1 − 𝛼)h𝑘𝑖 + 𝛼g𝑘𝑖 , (A.1)
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E𝑄 ∥h𝑘+1
𝑖 − s𝑖∥2 ≤(1 − 𝛼)∥h𝑘𝑖 − s𝑖∥2 + 𝛼∥g𝑘𝑖 − s𝑖∥2 + 𝛼[(𝐶𝑞 + 1)𝛼 − 1] ∥Δ𝑘𝑖 ∥2. (A.2)

Proof. The first equality follows from lines 5-7 of Algorithm 1 and Assumption 1. For the second

equation, we have the following variance decomposition

E∥𝑋 ∥2 = ∥E𝑋 ∥2 + E∥𝑋 − E𝑋 ∥2 (A.3)

for any random vector 𝑋 . By taking 𝑋 = h𝑘+1
𝑖

− s𝑖, we get

E𝑄 ∥h𝑘+1
𝑖 − s𝑖∥2 = ∥(1 − 𝛼) (h𝑘𝑖 − s𝑖) + 𝛼(g𝑘𝑖 − s𝑖)∥2 + 𝛼2E𝑄 ∥Δ̂𝑘𝑖 − Δ𝑘𝑖 ∥2. (A.4)

Using the basic equality

∥𝜆a + (1 − 𝜆)b∥2 + 𝜆(1 − 𝜆)∥a − b∥2 = 𝜆∥a∥2 + (1 − 𝜆)∥b∥2 (A.5)

for all a, b ∈ R𝑑 and 𝜆 ∈ [0, 1], as well as Assumption 1, we have

E𝑄 ∥h𝑘+1
𝑖 − s𝑖∥2 ≤ (1 − 𝛼)∥h𝑘𝑖 − s𝑖∥2 + 𝛼∥g𝑘𝑖 − s𝑖∥2 − 𝛼(1 − 𝛼)∥Δ𝑘𝑖 ∥2 + 𝛼2𝐶𝑞 ∥Δ𝑘𝑖 ∥2, (A.6)

which is the inequality (A.2).

Next, from the variance decomposition (A.3), we also derive Lemma 8.

Lemma 8. The following inequality holds

E[∥ĝ𝑘 − h∗∥2] ≤ E∥∇ 𝑓 (x̂𝑘 ) − h∗∥2 +
𝐶𝑞

𝑛2

𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2 + 𝜎

2

𝑛
, (A.7)

where h∗ = ∇ 𝑓 (x∗) = 1
𝑛

∑𝑛
𝑖=1 h∗

𝑖
and 𝜎2 = 1

𝑛

∑𝑛
𝑖=1 𝜎

2
𝑖
.

Proof. By taking the expectation over the quantization of g, we have

E∥ĝ𝑘 − h∗∥2 = E∥g𝑘 − h∗∥2 + E∥ĝ𝑘 − g𝑘 ∥2

≤ E∥g𝑘 − h∗∥2 +
𝐶𝑞

𝑛2

𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2, (A.8)

where the inequality is from Assumption 1.
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For ∥g𝑘 − h∗∥, we take the expectation over the sampling of gradients and derive

E∥g𝑘 − h∗∥2 = E∥∇ 𝑓 (x̂𝑘 ) − h∗∥2 + E∥g𝑘 − ∇ 𝑓 (x̂𝑘 )∥2

≤ E∥∇ 𝑓 (x̂𝑘 ) − h∗∥2 + 𝜎
2

𝑛
(A.9)

by Assumption 2.

Combining (A.8) with (A.9) gives (A.7).

Proof of Theorem 1. We consider x𝑘+1 − x∗ first. Since x∗ is the solution of (2.1), it satisfies

x∗ = prox𝛾𝑅 (x∗ − 𝛾h∗). (A.10)

Hence

E∥x𝑘+1 − x∗∥2 =E∥prox𝛾𝑅 (x̂𝑘 − 𝛾ĝ𝑘 ) − prox𝛾𝑅 (x∗ − 𝛾h∗)∥2

≤E∥x̂𝑘 − x∗ − 𝛾(ĝ𝑘 − h∗)∥2

=E∥x̂𝑘 − x∗∥2 − 2𝛾E⟨x̂𝑘 − x∗, ĝ𝑘 − h∗⟩ + 𝛾2E∥ĝ𝑘 − h∗∥2

=E∥x̂𝑘 − x∗∥2 − 2𝛾E⟨x̂𝑘 − x∗,∇ 𝑓 (x̂𝑘 ) − h∗⟩ + 𝛾2E∥ĝ𝑘 − h∗∥2, (A.11)

where the inequality comes from the non-expansiveness of the proximal operator and the last equality

is derived by taking the expectation of the stochastic gradient ĝ𝑘 . Combining (A.7) and (A.11), we

have

E∥x𝑘+1 − x∗∥2 ≤E∥x̂𝑘 − x∗∥2 − 2𝛾E⟨x̂𝑘 − x∗,∇ 𝑓 (x̂𝑘 ) − h∗⟩

+ 𝛾
2

𝑛

𝑛∑︁
𝑖=1
E∥∇ 𝑓𝑖 (x̂𝑘 ) − h∗

𝑖 ∥2 +
𝐶𝑞𝛾

2

𝑛2

𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2 + 𝛾

2

𝑛
𝜎2. (A.12)

Then we consider E∥x̂𝑘+1 − x∗∥2. According to Algorithm 1, we have:

E𝑄 [x̂𝑘+1 − x∗] = x̂𝑘 + 𝛽q𝑘 − x∗

= (1 − 𝛽) (x̂𝑘 − x∗) + 𝛽(x𝑘+1 − x∗ + 𝜂e𝑘 ) (A.13)

where the expectation is taken on the quantization of q𝑘 .
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By variance decomposition (A.3) and the basic equality (A.5),

E∥x̂𝑘+1 − x∗∥2

≤(1 − 𝛽)E∥x̂𝑘 − x∗∥2 + 𝛽E∥x𝑘+1 + 𝜂e𝑘 − x∗∥2 − 𝛽(1 − 𝛽)E∥q𝑘 ∥2 + 𝛽2𝐶𝑚𝑞 E∥q𝑘 ∥2

≤(1 − 𝛽)E∥x̂𝑘 − x∗∥2 + (1 + 𝜂2𝜖)𝛽E∥x𝑘+1 − x∗∥2 − 𝛽(1 − (𝐶𝑚𝑞 + 1)𝛽)E∥q𝑘 ∥2

+ (𝜂2 + 1
𝜖
)𝛽𝐶𝑚𝑞 E∥q𝑘−1∥2, (A.14)

where 𝜖 is generated from Cauchy inequality of inner product. For convenience, we let 𝜖 = 1
𝜂
.

Choose a 𝛽 such that 0 < 𝛽 ≤ 1
1+𝐶𝑚𝑞 . Then we have

𝛽(1 − (𝐶𝑚𝑞 + 1)𝛽)E∥q𝑘 ∥2 + E∥x̂𝑘+1 − x∗∥2

≤(1 − 𝛽)E∥x̂𝑘 − x∗∥2 + (1 + 𝜂)𝛽E∥x𝑘+1 − x∗∥2 + (𝜂2 + 𝜂)𝛽𝐶𝑚𝑞 E∥q𝑘−1∥2. (A.15)

Letting s𝑖 = h∗
𝑖

in (A.2), we have

(1 + 𝜂)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘+1

𝑖 − h∗
𝑖 ∥2

≤ (1 + 𝜂) (1 − 𝛼)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1

∥h𝑘𝑖 − h∗
𝑖 ∥2 + (1 + 𝜂)𝛼𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1

∥g𝑘𝑖 − h∗
𝑖 ∥2

+
(1 + 𝜂)𝛼[(𝐶𝑞 + 1)𝛼 − 1]𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1

∥Δ𝑘𝑖 ∥2. (A.16)

Then we let R𝑘 = 𝛽(1 − (𝐶𝑚𝑞 + 1)𝛽)E∥q𝑘 ∥2 and define

V𝑘 = R𝑘−1 + E∥x̂𝑘 − x∗∥2 + (1 + 𝜂)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 − h∗

𝑖 ∥2.

Thus, we obtain

V𝑘+1 ≤(𝜂2 + 𝜂)𝛽𝐶𝑚𝑞 E∥q𝑘−1∥2 + (1 + 𝜂𝛽)E∥x̂𝑘 − x∗∥2 − 2(1 + 𝜂)𝛽𝛾E⟨x̂𝑘 − x∗,∇ 𝑓 (x̂𝑘 ) − h∗⟩

+ (1 + 𝜂) (1 − 𝛼)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 − h∗

𝑖 ∥2

+ (1 + 𝜂)𝛽𝛾2

𝑛2

[
𝑛𝑐(𝐶𝑞 + 1)𝛼2 − 𝑛𝑐𝛼 + 𝐶𝑞

] 𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2

+ (1 + 𝜂) (1 + 𝑐𝛼)
𝑛

𝛽𝛾2
𝑛∑︁
𝑖=1
E∥∇ 𝑓𝑖 (x̂𝑘 ) − h∗

𝑖 ∥2 + (1 + 𝜂) (1 + 𝑛𝑐𝛼)
𝑛

𝛽𝛾2𝜎2. (A.17)
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The E∥Δ𝑘
𝑖
∥2-term can be ignored if 𝑛𝑐(𝐶𝑞 + 1)𝛼2 − 𝑛𝑐𝛼 + 𝐶𝑞 ≤ 0, which can be guaranteed by

𝑐 ≥ 4𝐶𝑞 (𝐶𝑞+1)
𝑛

and

𝛼 ∈
©­­«

1 −
√︃

1 − 4𝐶𝑞 (𝐶𝑞+1)
𝑛𝑐

2(𝐶𝑞 + 1) ,
1 +

√︃
1 − 4𝐶𝑞 (𝐶𝑞+1)

𝑛𝑐

2(𝐶𝑞 + 1)
ª®®¬ .

Given that each 𝑓𝑖 is 𝐿-Lipschitz differentiable and 𝜇-strongly convex, we have

E⟨∇ 𝑓 (x̂𝑘 ) − h∗, x̂𝑘 − x∗⟩ ≥ 𝜇𝐿

𝜇 + 𝐿E∥x̂
𝑘 − x∗∥2 + 1

𝜇 + 𝐿
1
𝑛

𝑛∑︁
𝑖=1
E∥∇ 𝑓𝑖 (x̂𝑘 ) − h∗

𝑖 ∥2. (A.18)

Hence

V𝑘+1 ≤𝜌1R𝑘−1 + (1 + 𝜂𝛽)E∥x̂𝑘 − x∗∥2 − 2(1 + 𝜂)𝛽𝛾E⟨x̂𝑘 − x∗,∇ 𝑓 (x̂𝑘 ) − h∗⟩

+ (1 + 𝜂) (1 − 𝛼)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 − h∗

𝑖 ∥2 + (1 + 𝜂) (1 + 𝑐𝛼)
𝑛

𝛽𝛾2
𝑛∑︁
𝑖=1
E∥∇ 𝑓𝑖 (x̂𝑘 ) − h∗

𝑖 ∥2

+ (1 + 𝜂) (1 + 𝑛𝑐𝛼)
𝑛

𝛽𝛾2𝜎2

≤𝜌1R𝑘−1 +
[
1 + 𝜂𝛽 − 2(1 + 𝜂)𝛽𝛾𝜇𝐿

𝜇 + 𝐿

]
E∥x̂𝑘 − x∗∥2 + (1 + 𝜂) (1 − 𝛼)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 − h∗

𝑖 ∥2

+
[
(1 + 𝜂) (1 + 𝑐𝛼)𝛽𝛾2 − 2(1 + 𝜂)𝛽𝛾

𝜇 + 𝐿

] 1
𝑛

𝑛∑︁
𝑖=1
E∥∇ 𝑓𝑖 (x̂𝑘 ) − h∗

𝑖 ∥2 + (1 + 𝜂) (1 + 𝑛𝑐𝛼)
𝑛

𝛽𝛾2𝜎2

≤𝜌1R𝑘−1 + 𝜌2E∥x̂𝑘 − x∗∥2 + (1 + 𝜂) (1 − 𝛼)𝑐𝛽𝛾2

𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 − h∗

𝑖 ∥2 + (1 + 𝜂) (1 + 𝑛𝑐𝛼)
𝑛

𝛽𝛾2𝜎2

(A.19)

where

𝜌1 =
(𝜂2 + 𝜂)𝐶𝑚𝑞

1 − (𝐶𝑚𝑞 + 1)𝛽 ,

𝜌2 =1 + 𝜂𝛽 − 2(1 + 𝜂)𝛽𝛾𝜇𝐿
𝜇 + 𝐿 .

Here we let 𝛾 ≤ 2
(1+𝑐𝛼) (𝜇+𝐿) such that (1 + 𝜂) (1 + 𝑐𝛼)𝛽𝛾2 − 2(1+𝜂)𝛽𝛾

𝜇+𝐿 ≤ 0 and the last inequality

holds. In order to get max(𝜌1, 𝜌2, 1 − 𝛼) < 1, we have the following conditions

0 ≤ (𝜂2 + 𝜂)𝐶𝑚𝑞 ≤1 − (𝐶𝑚𝑞 + 1)𝛽,

𝜂 <
2(1 + 𝜂)𝛾𝜇𝐿

𝜇 + 𝐿 .
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Therefore, the condition for 𝛾 is

𝜂(𝜇 + 𝐿)
2(1 + 𝜂)𝜇𝐿 ≤ 𝛾 ≤ 2

(1 + 𝑐𝛼) (𝜇 + 𝐿) ,

which implies an additional condition for 𝜂. Therefore, the condition for 𝜂 is

𝜂 ∈
0,min

©­­«
−𝐶𝑚𝑞 +

√︃
(𝐶𝑚𝑞 )2 + 4(1 − (𝐶𝑚𝑞 + 1)𝛽)

2𝐶𝑚𝑞
,

4𝜇𝐿
(𝜇 + 𝐿)2(1 + 𝑐𝛼) − 4𝜇𝐿

ª®®¬
ª®®¬ .

where 𝜂 ≤ 4𝜇𝐿
(𝜇+𝐿)2 (1+𝑐𝛼)−4𝜇𝐿 is to ensure 𝜂(𝜇+𝐿)

2(1+𝜂)𝜇𝐿 ≤ 2
(1+𝑐𝛼) (𝜇+𝐿) such that we don’t get an empty

set for 𝛾.

If we define 𝜌 = max{𝜌1, 𝜌2, 1 − 𝛼}, we obtain

V𝑘+1 ≤ 𝜌V𝑘 + (1 + 𝜂) (1 + 𝑛𝑐𝛼)
𝑛

𝛽𝛾2𝜎2 (A.20)

and the proof is completed by applying (A.20) recurrently.

A.2.2 Proof of Theorem 2

Proof. In Algorithm 2, we can show

E∥x̂𝑘+1 − x̂𝑘 ∥2 = 𝛽2E∥q̂𝑘 ∥2 = 𝛽2E∥Eq̂𝑘 ∥2 + 𝛽2E∥q̂𝑘 − Eq̂𝑘 ∥2

= 𝛽2E∥q𝑘 ∥2 + 𝛽2E∥q̂𝑘 − q𝑘 ∥2

≤ (1 + 𝐶𝑚𝑞 )𝛽2E∥q𝑘 ∥2.

(A.21)

and

E∥q𝑘 ∥2 = E∥ − 𝛾ĝ𝑘 + 𝜂e𝑘 ∥2 ≤ 2𝛾2E∥ĝ𝑘 ∥2 + 2𝜂2E∥e𝑘 ∥2 ≤ 2𝛾2E∥ĝ𝑘 ∥2 + 2𝐶𝑚𝑞 𝜂2E∥q𝑘−1∥2. (A.22)

Using (A.21)(A.22) and the Lipschitz continuity of ∇ 𝑓 (x), we have

E 𝑓 (x̂𝑘+1) + (𝐶𝑚𝑞 + 1)𝐿𝛽2E∥q𝑘 ∥2

≤E 𝑓 (x̂𝑘 ) + E⟨∇ 𝑓 (x̂𝑘 ), x̂𝑘+1 − x̂𝑘⟩ + 𝐿
2
E∥x̂𝑘+1 − x̂𝑘 ∥2 + (𝐶𝑚𝑞 + 1)𝐿𝛽2E∥q𝑘 ∥2

=E 𝑓 (x̂𝑘 ) + 𝛽E⟨∇ 𝑓 (x̂𝑘 ),−𝛾ĝ𝑘 + 𝜂e𝑘⟩ +
(1 + 𝐶𝑚𝑞 )𝐿𝛽2

2
E∥q𝑘 ∥2 + (𝐶𝑚𝑞 + 1)𝐿𝛽2E∥q𝑘 ∥2
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=E 𝑓 (x̂𝑘 ) + 𝛽E⟨∇ 𝑓 (x̂𝑘 ),−𝛾∇ 𝑓 (x̂𝑘 ) + 𝜂e𝑘⟩ +
3(𝐶𝑚𝑞 + 1)𝐿𝛽2

2
E∥q𝑘 ∥2

≤E 𝑓 (x̂𝑘 ) − 𝛽𝛾E∥∇ 𝑓 (x̂𝑘 )∥2 + 𝛽𝜂
2
E∥∇ 𝑓 (x̂𝑘 )∥2 + 𝛽𝜂

2
E∥e𝑘 ∥2

+ 3(𝐶𝑚𝑞 + 1)𝐿𝛽2
[
𝛾2E∥ĝ𝑘 ∥2 + 𝐶𝑚𝑞 𝜂2E∥q𝑘−1∥2

]
≤E 𝑓 (x̂𝑘 ) −

[
𝛽𝛾 − 𝛽𝜂

2
− 3(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

]
E∥∇ 𝑓 (x̂𝑘 )∥2

+
3𝐶𝑞 (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

𝑛2

𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2 +

3(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

𝑛
𝜎2

+
[ 𝛽𝜂𝐶𝑚𝑞

2
+ (3𝐶𝑚𝑞 + 1)𝐶𝑚𝑞 𝐿𝛽2𝜂2

]
E∥q𝑘−1∥2, (A.23)

where the last inequality is from (A.7) with h∗ = 0.

Letting s𝑖 = 0 in (A.2), we have

E𝑄 ∥h𝑘+1
𝑖 ∥2 ≤(1 − 𝛼)∥h𝑘𝑖 ∥2 + 𝛼∥g𝑘𝑖 ∥2 + 𝛼[(𝐶𝑞 + 1)𝛼 − 1] ∥Δ𝑘𝑖 ∥2. (A.24)

Due to the assumption that each worker samples the gradient from the full dataset, we have

Eg𝑘𝑖 = E∇ 𝑓 (x̂𝑘 ), E∥g𝑘𝑖 ∥2 ≤ E∥∇ 𝑓 (x̂𝑘 )∥2 + 𝜎2
𝑖 . (A.25)

DefineΛ𝑘 = (𝐶𝑚𝑞 +1)𝐿𝛽2∥q𝑘−1∥2+ 𝑓 (x̂𝑘 )− 𝑓 ∗+3𝑐(𝐶𝑚𝑞 +1)𝐿𝛽2𝛾2 1
𝑛

∑𝑛
𝑖=1 E∥h𝑘𝑖 ∥2, and from (A.23),

(A.24), and (A.25), we have

EΛ𝑘+1 ≤E 𝑓 (x̂𝑘 ) − 𝑓 ∗ + 3(1 − 𝛼)𝑐(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2 1
𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 ∥2

−
[
𝛽𝛾 − 𝛽𝜂

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

]
E∥∇ 𝑓 (x̂𝑘 )∥2

+
(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

𝑛2

[
3𝑛𝑐(𝐶𝑞 + 1)𝛼2 − 3𝑛𝑐𝛼 + 3𝐶𝑞

] 𝑛∑︁
𝑖=1
E∥Δ𝑘𝑖 ∥2

+ 3(1 + 𝑛𝑐𝛼)
(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2𝜎2

𝑛

+
[ 𝛽𝜂𝐶𝑚𝑞

2
+ 3(𝐶𝑚𝑞 + 1)𝐶𝑚𝑞 𝐿𝛽2𝜂2

]
E∥q𝑘−1∥2. (A.26)

If we let 𝑐 = 4𝐶𝑞 (𝐶𝑞+1)
𝑛

, then the condition of 𝛼 in (2.5) gives 3𝑛𝑐(𝐶𝑞 + 1)𝛼2 − 3𝑛𝑐𝛼 + 3𝐶𝑞 ≤ 0

and

EΛ𝑘+1 ≤E 𝑓 (x̂𝑘 ) − 𝑓 ∗ + 3(1 − 𝛼)𝑐(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2 1
𝑛

𝑛∑︁
𝑖=1
E∥h𝑘𝑖 ∥2
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−
[
𝛽𝛾 − 𝛽𝜂

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

]
E∥∇ 𝑓 (x̂𝑘 )∥2

+ 3(1 + 𝑛𝑐𝛼)
(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2𝜎2

𝑛

+ [
𝛽𝜂𝐶𝑚𝑞

2
+ 3(𝐶𝑚𝑞 + 1)𝐶𝑚𝑞 𝐿𝛽2𝜂2]E∥q𝑘−1∥2. (A.27)

Let 𝜂 = 𝛾 and 𝛽𝛾 ≤ 1
6(1+𝑐𝛼) (𝐶𝑚𝑞 +1)𝐿 , we have

𝛽𝛾 − 𝛽𝜂

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2 =

𝛽𝛾

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2 ≥ 0.

Take 𝛾 ≤ min
{−1+

√︂
1+

48𝐿2𝛽2 (𝐶𝑚𝑞 +1)2

𝐶𝑚𝑞

12𝐿𝛽(𝐶𝑚𝑞 +1) , 1
6𝐿𝛽(1+𝑐𝛼) (𝐶𝑚𝑞 +1)

}
will guarantee[ 𝛽𝜂𝐶𝑚𝑞

2
+ 3(𝐶𝑚𝑞 + 1)𝐶𝑚𝑞 𝐿𝛽2𝜂2

]
≤ (𝐶𝑚𝑞 + 1)𝐿𝛽2.

Hence we obtain

EΛ𝑘+1 ≤ EΛ𝑘 −
[ 𝛽𝛾

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2

]
E∥∇ 𝑓 (x̂𝑘 )∥2 + 3(1 + 𝑛𝑐𝛼)

(𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾2𝜎2

𝑛
.

(A.28)

Taking the telescoping sum and plugging the initial conditions, we derive (2.12).

A.2.3 Proof of Corollary 2

Proof. With 𝛼 = 1
2(𝐶𝑞+1) and 𝑐 = 4𝐶𝑞 (𝐶𝑞+1)

𝑛
, 1 + 𝑛𝑐𝛼 = 1 + 2𝐶𝑞 is a constant. We set 𝛽 = 1

𝐶𝑚𝑞 +1 and

𝛾 = min
{−1+

√︂
1+ 48𝐿2

𝐶𝑚𝑞

12𝐿 , 1
12𝐿 (1+𝑐𝛼) (1+

√
𝐾/𝑛)

}
. In general, 𝐶𝑚𝑞 is bounded which makes the first bound

negligible, i.e., 𝛾 = 1
12𝐿 (1+𝑐𝛼) (1+

√
𝐾/𝑛)

when 𝐾 is large enough. Therefore, we have

𝛽

2
− 3(1 + 𝑐𝛼) (𝐶𝑚𝑞 + 1)𝐿𝛽2𝛾 =

1 − 6(1 + 𝑐𝛼)𝐿𝛾
2(𝐶𝑚𝑞 + 1) ≤ 1

4(𝐶𝑚𝑞 + 1) . (A.29)

From Theorem 2, we derive

1
𝐾

𝐾∑︁
𝑘=1
E∥∇ 𝑓 (x̂𝑘 )∥2

≤
4(𝐶𝑚𝑞 + 1) (EΛ1 − EΛ𝐾+1)

𝛾𝐾
+ 12(1 + 𝑛𝑐𝛼)𝐿𝜎2𝛾

𝑛
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≤48𝐿 (𝐶𝑚𝑞 + 1) (1 + 𝑐𝛼) (EΛ1 − EΛ𝐾+1) ( 1
𝐾

+ 1
√
𝑛𝐾

) + (1 + 𝑛𝑐𝛼)𝜎2

(1 + 𝑐𝛼)
1

√
𝑛𝐾

, (A.30)

which completes the proof.
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APPENDIX B

LINEAR CONVERGENT DECENTRALIZED OPTIMIZATION WITH COMPRESSION

B.1 Compression method

B.1.1 p-norm b-bits quantization

Theorem 9 (p-norm b-bit quantization). Let us define the quantization operator as

𝑄𝑝 (x) :=
(
∥x∥𝑝sign(x)2−(𝑏−1)

)
·
⌊
2𝑏−1 |x|
∥x∥𝑝

+ u
⌋

(B.1)

where · is the Hadamard product, |x| is the elementwise absolute value and u is a random dither

vector uniformly distributed in [0, 1]𝑑 . 𝑄𝑝 (x) is unbiased, i.e., E𝑄𝑝 (x) = x, and the compression

variance is upper bounded by

E∥x −𝑄𝑝 (x)∥2 ≤ 1
4
∥sign(x)2−(𝑏−1) ∥2∥x∥2

𝑝, (B.2)

which suggests that ∞-norm provides the smallest upper bound for the compression variance due to

∥x∥𝑝 ≤ ∥x∥𝑞,∀x if 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞.

Remark 13. For the compressor defined in (B.1), we have the following the compression constant

𝐶 = sup
x

∥sign(x)2−(𝑏−1) ∥2∥x∥2
𝑝

4∥x∥2 .

Proof. Let denote v = ∥x∥𝑝sign(x)2−(𝑏−1) , 𝑠 = 2𝑏−1 |x|
∥x∥𝑝 , 𝑠1 =

⌊
2𝑏−1 |x|
∥x∥𝑝

⌋
and 𝑠2 =

⌈
2𝑏−1 |x|
∥x∥𝑝

⌉
. We can

rewrite x as x = 𝑠 · v.

For any coordinate 𝑖 such that 𝑠𝑖 = (𝑠1)𝑖, we have 𝑄𝑝 (x𝑖) = (𝑠1)𝑖v𝑖 with probability 1. Hence

E𝑄𝑝 (x)𝑖 = 𝑠𝑖v𝑖 = x𝑖 and

E(x𝑖 −𝑄𝑝 (x)𝑖)2 = (x𝑖 − 𝑠𝑖v𝑖)2 = 0.

For any coordinate 𝑖 such that 𝑠𝑖 ≠ (𝑠1)𝑖, we have (𝑠2)𝑖 − (𝑠1)𝑖 = 1 and 𝑄𝑝 (x)𝑖 satisfies

𝑄𝑝 (x)𝑖 =


(𝑠1)𝑖v𝑖, w.p. (𝑠2)𝑖 − 𝑠𝑖,

(𝑠2)𝑖v𝑖, w.p. 𝑠𝑖 − (𝑠1)𝑖 .
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Thus, we derive

E𝑄𝑝 (x)𝑖 = v𝑖 (𝑠1)𝑖 (𝑠2 − 𝑠)𝑖 + v𝑖 (𝑠2)𝑖 (𝑠 − 𝑠1)𝑖 = v𝑖𝑠𝑖 (𝑠2 − 𝑠1)𝑖 = v𝑖𝑠𝑖 = x𝑖,

and

E[x𝑖 −𝑄𝑝 (x)𝑖]2 = (x𝑖 − v𝑖 (𝑠1)𝑖)2(𝑠2 − 𝑠)𝑖 + (x𝑖 − v𝑖 (𝑠2)𝑖)2(𝑠 − 𝑠1)𝑖

= (𝑠2 − 𝑠1)𝑖x2
𝑖 +

(
(𝑠1)𝑖 (𝑠2)𝑖 (𝑠1 − 𝑠2)𝑖 + 𝑠𝑖 ((𝑠2)2

𝑖 − (𝑠1)2
𝑖 )

)
v2
𝑖 − 2𝑠𝑖 (𝑠2 − 𝑠1)𝑖x𝑖v𝑖

= x2
𝑖 +

(
− (𝑠1)𝑖 (𝑠2)𝑖 + 𝑠𝑖 (𝑠2 + 𝑠1)𝑖

)
v2
𝑖 − 2𝑠𝑖x𝑖v𝑖

= (x𝑖 − 𝑠𝑖v𝑖)2 +
(
− (𝑠1)𝑖 (𝑠2)𝑖 + 𝑠𝑖 (𝑠2 + 𝑠1)𝑖 − 𝑠2

𝑖

)
v2
𝑖

= (x𝑖 − 𝑠𝑖v𝑖)2 + (𝑠2 − 𝑠)𝑖 (𝑠 − 𝑠1)𝑖v2
𝑖

= (𝑠2 − 𝑠)𝑖 (𝑠 − 𝑠1)𝑖v2
𝑖

≤ 1
4

v2
𝑖 .

Considering both cases, we have E𝑄(x) = x and

E∥x −𝑄𝑝 (x)∥2 =
∑︁

{𝑠𝑖=(𝑠1)𝑖}
E[x𝑖 −𝑄𝑝 (x)𝑖]2 +

∑︁
{𝑠𝑖≠(𝑠1)𝑖}

E[x𝑖 −𝑄𝑝 (x)𝑖]2

≤ 0 + 1
4

∑︁
{𝑠𝑖≠(𝑠1)𝑖}

v2
𝑖

≤ 1
4
∥v∥2

=
1
4
∥sign(x)2−(𝑏−1) ∥2∥x∥2

𝑝 .

B.1.2 Compression error

To verify Theorem 9, we compare the compression error of the quantization method defined in (B.1)

with different norms (𝑝 = 1, 2, 3, . . . , 6,∞). Specifically, we uniformly generate 100 random vectors

in R10000 and compute the average compression error. The result shown in Figure B.1 verifies our

proof in Theorem 9 that the compression error decreases when 𝑝 increases. This suggests that

∞-norm provides the best compression precision under the same bit constraint.
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Figure B.1: Relative compression error ∥x−𝑄(x)∥2
∥x∥2

for p-norm b-bit quantization.
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Figure B.2: Comparison of compression error ∥x−𝑄(x)∥2
∥x∥2

between different compression methods.

Under similar setting, we also compare the compression error with other popular compression

methods, such as top-k and random-k sparsification. The x-axes represents the average bits needed

to represent each element of the vector. The result is showed in Fig. B.2. Note that intuitively

top-k methods should perform better than random-k method, but the top-k method needs extra bits

to transmitted the index while random-k method can avoid this by using the same random seed.

Therefore, top-k method doesn’t outperform random-k too much under the same communication

budget. The result in Fig. B.2 suggests that ∞-norm b-bits quantization provides significantly better

compression precision than others under the same bit constraint.
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B.2 Experiments

B.2.1 Experiments in homogeneous setting

The experiments on logistic regression problem in homogeneous case are showed in Fig. B.3

and Fig. B.4. It shows that DeepSqueeze, CHOCO-SGD and LEAD converges similarly while

DeepSqueeze and CHOCO-SGD require to tune a smaller 𝛾 for convergence as showed in the

parameter setting in Section B.2.2. Generally, a smaller 𝛾 decreases the model propagation between

agents since 𝛾 changes the effective mixing matrix and this may cause slower convergence. However,

in the setting where data from different agents are very similar, the models move to close directions

such that the convergence is not affected too much.

0 200 400 600 800 1000
Epoch

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Lo
ss

 

DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

(a) Loss 𝑓 (X𝑘)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Bits transmitted 1e10

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Lo
ss

 

DGD (32 bits)
NIDS (32 bits)
QDGD (2 bits)
DeepSqueeze (2 bits)
CHOCO-SGD (2 bits)
LEAD (2 bits)

(b) Loss 𝑓 (X𝑘)

Figure B.3: Logistic regression in the homogeneous case (full-batch gradient).

B.2.2 Parameter settings

The best parameter settings we search for all algorithms and experiments are summarized in

Tables B.1– B.4. QDGD and DeepSqueeze are more sensitive to 𝛾 and CHOCO-SGD is slight more

robust. LEAD is most robust to parameter settings and it works well for the setting 𝛼 = 0.5 and

𝛾 = 1.0 in all experiments in this work.
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Figure B.4: Logistic regression in the homogeneous case (mini-batch gradient).

Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.1 0.2 -

DeepSqueeze 0.1 0.2 -
CHOCO-SGD 0.1 0.8 -

LEAD 0.1 1.0 0.5

Table B.1: Parameter settings for the linear regression problem.

Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.1 0.4 -

DeepSqueeze 0.1 0.4 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.1 0.2 -

DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table B.2: Parameter settings for the logistic regression problem (full-batch gradient).

B.3 Proofs of the theorems

B.3.1 Illustrative flow

The following flow graph depicts the relation between iterative variables and clarifies the range

of conditional expectation. {G𝑘 }∞𝑘=0 and {F𝑘 }∞𝑘=0 are two 𝜎−algebras generated by the gradient
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Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.05 0.2 -

DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.05 0.2 -

DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table B.3: Parameter settings for the logistic regression problem (mini-batch gradient).

Algorithm 𝜂 𝛾 𝛼

DGD 0.1 - -
NIDS 0.1 - -
QDGD 0.05 0.1 -

DeepSqueeze 0.1 0.2 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm 𝜂 𝛾 𝛼

DGD 0.05 - -
NIDS 0.1 - -
QDGD * * -

DeepSqueeze * * -
CHOCO-SGD * * -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table B.4: Parameter settings for the deep neural network. (* means divergence for all options we
try).

sampling and the stochastic compression respectively. They satisfy

G0 ⊂ F0 ⊂ G1 ⊂ F1 ⊂ · · · ⊂ G𝑘 ⊂ F𝑘 ⊂ · · ·

(X1,D1,H1) (X2,D2,H2) (X3,D3,H3) (X𝑘 ,D𝑘 ,H𝑘 ) · · ·

Y1 Y2 Y𝑘−1 Y𝑘

F0 F1 F𝑘−2 F𝑘−1

∇F(X1;𝜉1)∈G0 ∇F(X2;𝜉2)∈G1 ··· ∇F(X𝑘 ;𝜉𝑘)∈G𝑘−1E1

1st round

E2

···

E𝑘−1

(𝑘−1)th round

⊂ ··· ⊂

The solid and dashed arrows in the top flow illustrate the dynamics of the algorithm, while in the

bottom, the arrows stand for the relation between successive F -𝜎-algebras. The downward arrows

determine the range of F -𝜎-algebras. E.g., up to E𝑘 , all random variables are in F𝑘−1 and up to

∇F(X𝑘 ; 𝜉𝑘 ), all random variables are in G𝑘−1 with G𝑘−1 ⊂ F𝑘−1. Throughout the appendix, without

specification, E is the expectation conditioned on the corresponding stochastic estimators given the
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context.

B.3.2 Two central Lemmas

Lemma 10 (Fundamental equality). Let X∗ be the optimal solution, D∗ B −∇F(X∗) and E𝑘 denote

the compression error in the 𝑘th iteration, that is E𝑘 = Q𝑘 − (Y𝑘 − H𝑘 ) = Ŷ𝑘 − Y𝑘 . From Alg. 3,

we have

∥X𝑘+1 − X∗∥2 + (𝜂2/𝛾)∥D𝑘+1 − D∗∥2
M

=∥X𝑘 − X∗∥2 + (𝜂2/𝛾)∥D𝑘 − D∗∥2
M − (𝜂2/𝛾)∥D𝑘+1 − D𝑘 ∥2

M − 𝜂2∥D𝑘+1 − D∗∥2

− 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩ + 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + 2𝜂⟨E𝑘 ,D𝑘+1 − D∗⟩,

where M B 2(I − W)† − 𝛾I and 𝛾 < 2/𝜆max(I − W) ensures the positive definiteness of M over

range(I − W).

Lemma 11 (State inequality). Let the same assumptions in Lemma 10 hold. From Alg. 3, if we take

the expectation over the compression operator conditioned on the 𝑘-th iteration, we have

E∥H𝑘+1 − X∗∥2 ≤ (1 − 𝛼)∥H𝑘 − X∗∥2 + 𝛼E∥X𝑘+1 − X∗∥2 + 𝛼𝜂2E∥D𝑘+1 − D𝑘 ∥2

+ 2𝛼𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M + 𝛼2E∥E𝑘 ∥2 − 𝛼𝛾E∥E𝑘 ∥2
I−W − 𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2.

B.3.3 Proof of Lemma 10

Before proving Lemma 10, we let E𝑘 = Ŷ𝑘 − Y𝑘 and introduce the following three Lemmas.

Lemma 12. Let X∗ be the consensus solution. Then, from Line 4-7 of Alg. 3, we obtain

I − W
2𝜂

(X𝑘+1 − X∗) =
(
𝐼

𝛾
− I − W

2

)
(D𝑘+1 − D𝑘 ) − I − W

2𝜂
E𝑘 . (B.3)

Proof. From the iterations in Alg. 3, we have

D𝑘+1 = D𝑘 + 𝛾

2𝜂
(I − W)Ŷ𝑘 (from Line 6)
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= D𝑘 + 𝛾

2𝜂
(I − W) (Y𝑘 + E𝑘 )

= D𝑘 + 𝛾

2𝜂
(I − W) (X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘 + E𝑘 ) (from Line 4)

= D𝑘 + 𝛾

2𝜂
(I − W) (X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘+1 − X∗ + 𝜂(D𝑘+1 − D𝑘 ) + E𝑘 )

= D𝑘 + 𝛾

2𝜂
(I − W) (X𝑘+1 − X∗) + 𝛾

2
(I − W) (D𝑘+1 − D𝑘 ) + 𝛾

2𝜂
(I − W)E𝑘 ,

where the fourth equality holds due to (I − W)X∗ = 0 and the last equality comes from Line 7 of

Alg. 3. Rewriting this equality, and we obtain (B.3).

Lemma 13. Let D∗ = −∇F(X∗) ∈ span{I − W}, we have

⟨X𝑘+1 − X∗,D𝑘+1 − D𝑘⟩ =𝜂
𝛾
∥D𝑘+1 − D𝑘 ∥2

M − ⟨E𝑘 ,D𝑘+1 − D𝑘⟩, (B.4)

⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩ =𝜂
𝛾
⟨D𝑘+1 − D𝑘 ,D𝑘+1 − D∗⟩M − ⟨E𝑘 ,D𝑘+1 − D∗⟩, (B.5)

where M = 2(I − W)† − 𝛾I and 𝛾 < 2/𝜆max(I − W) ensures the positive definiteness of M over

span{I − W}.

Proof. Since D𝑘+1 ∈ span{I − W} for any 𝑘 , we have

⟨X𝑘+1 − X∗,D𝑘+1 − D𝑘⟩

=⟨(I − W) (X𝑘+1 − X∗), (I − W)†(D𝑘+1 − D𝑘 )⟩

=

〈
𝜂

𝛾
(2I − 𝛾(I − W)) (D𝑘+1 − D𝑘 ) − (I − W)E𝑘 , (I − W)†(D𝑘+1 − D𝑘 )

〉
(from (B.3))

=

〈
𝜂

𝛾
(2(I − W)† − 𝛾I

)
(D𝑘+1 − D𝑘 ) − E𝑘 ,D𝑘+1 − D𝑘

〉
=
𝜂

𝛾
∥D𝑘+1 − D𝑘 ∥2

M − ⟨E𝑘 ,D𝑘+1 − D𝑘⟩.

Similarly, we have

⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩

=⟨(I − W) (X𝑘+1 − X∗), (I − W)†(D𝑘+1 − D∗)⟩

=

〈
𝜂

𝛾
(2I − 𝛾(I − W)) (D𝑘+1 − D𝑘 ) − (I − W)E𝑘 , (I − W)†(D𝑘+1 − D∗)

〉
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=

〈
𝜂

𝛾
(2(I − W)† − I) (D𝑘+1 − D𝑘 ) − E𝑘 ,D𝑘+1 − D∗

〉
=
𝜂

𝛾
⟨D𝑘+1 − D𝑘 ,D𝑘+1 − D∗⟩M − ⟨E𝑘 ,D𝑘+1 − D∗⟩.

To make sure that M is positive definite over span{I − W}, we need 𝛾 < 2/𝜆max(I − W).

Lemma 14. Taking the expectation conditioned on the compression in the 𝑘th iteration, we have

2𝜂E⟨E𝑘 ,D𝑘+1 − D∗⟩ = 2𝜂E
〈
E𝑘 ,D𝑘 + 𝛾

2𝜂
(I − W)Y𝑘 + 𝛾

2𝜂
(I − W)E𝑘 − D∗

〉
= 𝛾E⟨E𝑘 , (I − W)E𝑘⟩ = 𝛾E∥E𝑘 ∥2

I−W,

2𝜂E⟨E𝑘 ,D𝑘+1 − D𝑘⟩ = 2𝜂E
〈
E𝑘 ,

𝛾

2𝜂
(I − W)Y𝑘 + 𝛾

2𝜂
(I − W)E𝑘

〉
= 𝛾E⟨E𝑘 , (I − W)E𝑘⟩ = 𝛾E∥E𝑘 ∥2

I−W.

Proof. The proof is straightforward and omitted here.

Proof of Lemma 10. From Alg. 3, we have

2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩

=2⟨X𝑘 − X∗, 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂∇F(X∗)⟩

=2⟨X𝑘 − X∗,X𝑘 − X𝑘+1 − 𝜂(D𝑘+1 − D∗)⟩ (from Line 7)

=2⟨X𝑘 − X∗,X𝑘 − X𝑘+1⟩ − 2𝜂⟨X𝑘 − X∗,D𝑘+1 − D∗⟩

=2⟨X𝑘 − X∗,X𝑘 − X𝑘+1⟩ − 2𝜂⟨X𝑘 − X𝑘+1,D𝑘+1 − D∗⟩ − 2𝜂⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩

=2⟨X𝑘 − X∗ − 𝜂(D𝑘+1 − D∗),X𝑘 − X𝑘+1⟩ − 2𝜂⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩

=2⟨X𝑘+1 − X∗ + 𝜂(∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)),X𝑘 − X𝑘+1⟩ − 2𝜂⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩ (from Line 7)

=2⟨X𝑘+1 − X∗,X𝑘 − X𝑘+1⟩ + 2𝜂⟨∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗),X𝑘 − X𝑘+1⟩

− 2𝜂⟨X𝑘+1 − X∗,D𝑘+1 − D∗⟩. (B.6)

Then we consider the terms on the right hand side of (B.6) separately. Using 2⟨A − B,B − C⟩ =

∥A − C∥2 − ∥B − C∥2 − ∥A − B∥2, we have

2⟨X𝑘+1 − X∗,X𝑘 − X𝑘+1⟩ =2⟨X∗ − X𝑘+1,X𝑘+1 − X𝑘⟩
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=∥X𝑘 − X∗∥2 − ∥X𝑘+1 − X𝑘 ∥2 − ∥X𝑘+1 − X∗∥2. (B.7)

Using 2⟨A,B⟩ = ∥A∥2 + ∥B∥2 − ∥A − B∥2, we have

2𝜂⟨∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗),X𝑘 − X𝑘+1⟩

=𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + ∥X𝑘 − X𝑘+1∥2 − ∥X𝑘 − X𝑘+1 − 𝜂(∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗))∥2

=𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + ∥X𝑘 − X𝑘+1∥2 − 𝜂2∥D𝑘+1 − D∗∥2. (from Line 7) (B.8)

Combining (B.6), (B.7), (B.8), and (B.4), we obtain

2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩

= ∥X𝑘 − X∗∥2 − ∥X𝑘+1 − X𝑘 ∥2 − ∥X𝑘+1 − X∗∥2︸                                                      ︷︷                                                      ︸
2⟨X𝑘+1−X∗,X𝑘−X𝑘+1⟩

+ 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + ∥X𝑘 − X𝑘+1∥2 − 𝜂2∥D𝑘+1 − D∗∥2︸                                                                                ︷︷                                                                                ︸
2𝜂⟨∇F(X𝑘 ;𝜉𝑘)−∇F(X∗),X𝑘−X𝑘+1⟩

−
(2𝜂2

𝛾
⟨D𝑘+1 − D𝑘 ,D𝑘+1 − D∗⟩M − 2𝜂⟨E𝑘 ,D𝑘+1 − D∗⟩

)
︸                                                                  ︷︷                                                                  ︸

2𝜂⟨X𝑘+1−X∗,D𝑘+1−D∗⟩

=∥X𝑘 − X∗∥2 − ∥X𝑘+1 − X𝑘 ∥2 − ∥X𝑘+1 − X∗∥2

+ 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + ∥X𝑘 − X𝑘+1∥2 − 𝜂2∥D𝑘+1 − D∗∥2

+ 𝜂
2

𝛾

(
∥D𝑘 − D∗∥2

M − ∥D𝑘+1 − D∗∥2
M − ∥D𝑘+1 − D𝑘 ∥2

M

)
︸                                                             ︷︷                                                             ︸

−2⟨D𝑘+1−D𝑘 ,D𝑘+1−D∗⟩M

+2𝜂⟨E𝑘 ,D𝑘+1 − D∗⟩,

where the last equality holds because

2⟨D𝑘 − D𝑘+1,D𝑘+1 − D∗⟩M =∥D𝑘 − D∗∥2
M − ∥D𝑘+1 − D∗∥2

M − ∥D𝑘+1 − D𝑘 ∥2
M.

Thus, we reformulate it as

∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
∥D𝑘+1 − D∗∥2

M

=∥X𝑘 − X∗∥2 + 𝜂
2

𝛾
∥D𝑘 − D∗∥2

M − 𝜂
2

𝛾
∥D𝑘+1 − D𝑘 ∥2

M − 𝜂2∥D𝑘+1 − D∗∥2

− 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩ + 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + 2𝜂⟨E𝑘 ,D𝑘+1 − D∗⟩,

which completes the proof.
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B.3.4 Proof of Lemma 11

Proof of Lemma 11. From Alg. 3, we take the expectation conditioned on 𝑘th compression and

obtain

E∥H𝑘+1 − X∗∥2

=E∥(1 − 𝛼) (H𝑘 − X∗) + 𝛼(Y𝑘 − X∗) + 𝛼E𝑘 ∥2 (from Line 13)

=∥(1 − 𝛼) (H𝑘 − X∗) + 𝛼(Y𝑘 − X∗)∥2 + 𝛼2E∥E𝑘 ∥2

=(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝛼∥Y𝑘 − X∗∥2 − 𝛼(1 − 𝛼)∥H𝑘 − Y𝑘 ∥2 + 𝛼2E∥E𝑘 ∥2. (B.9)

In the second equality, we used the unbiasedness of the compression, i.e., EE𝑘 = 0. The last equality

holds because of

∥(1 − 𝛼)A + 𝛼B∥2 = (1 − 𝛼)∥A∥2 + 𝛼∥B∥2 − 𝛼(1 − 𝛼)∥A − B∥2.

In addition, by taking the conditional expectation on the compression, we have

∥Y𝑘 − X∗∥2 =∥X𝑘 − 𝜂∇F(X𝑘 ; 𝜉𝑘 ) − 𝜂D𝑘 − X∗∥2 (from Line 4)

=E∥X𝑘+1 + 𝜂D𝑘+1 − 𝜂D𝑘 − X∗∥2 (from Line 7)

=E∥X𝑘+1 − X∗∥2 + 𝜂2E∥D𝑘+1 − D𝑘 ∥2 + 2𝜂E⟨X𝑘+1 − X∗,D𝑘+1 − D𝑘⟩

=E∥X𝑘+1 − X∗∥2 + 𝜂2E∥D𝑘+1 − D𝑘 ∥2

+ 2𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M − 2𝜂E⟨E𝑘 ,D𝑘+1 − D𝑘⟩. (from (B.4))

=E∥X𝑘+1 − X∗∥2 + 𝜂2E∥D𝑘+1 − D𝑘 ∥2

+ 2𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M − 𝛾E∥E𝑘 ∥2
I−W. (from Line 6) (B.10)

Combing the above two equations (B.9) and (B.10) together, we have

E∥H𝑘+1 − X∗∥2

≤(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝛼E∥X𝑘+1 − X∗∥2 + 𝛼𝜂2E∥D𝑘+1 − D𝑘 ∥2 + 2𝛼𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M

− 𝛼𝛾E∥E𝑘 ∥2
I−W + 𝛼2E∥E𝑘 ∥2 − 𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2, (B.11)

which completes the proof.
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B.3.5 Proof of Theorem 3

Proof of Theorem 3. Combining Lemmas 10, 11, and 14, we have the expectation conditioned on

the compression satisfying

E∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
E∥D𝑘+1 − D∗∥2

M + 𝑎1E∥H𝑘+1 − X∗∥2

≤∥X𝑘 − X∗∥2 + 𝜂
2

𝛾
∥D𝑘 − D∗∥2

M − 𝜂
2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M − 𝜂2E∥D𝑘+1 − D∗∥2

− 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩ + 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2 + 𝛾E∥E𝑘 ∥2
I−W

+ 𝑎1(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝑎1𝛼E∥X𝑘+1 − X∗∥2 + 𝑎1𝛼𝜂
2E∥D𝑘+1 − D𝑘 ∥2

+ 2𝑎1𝛼𝜂
2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M + 𝑎1𝛼
2E∥E𝑘 ∥2 − 𝑎1𝛼𝛾E∥E𝑘 ∥2

I−W − 𝑎1𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2

= ∥X𝑘 − X∗∥2 − 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩ + 𝜂2∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2︸                                                                                                         ︷︷                                                                                                         ︸
A

+ 𝑎1𝛼E∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
∥D𝑘 − D∗∥2

M − 𝜂2E∥D𝑘+1 − D∗∥2

+ 𝑎1(1 − 𝛼)∥H𝑘 − X∗∥2 −(1 − 2𝑎1𝛼)
𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M + 𝑎1𝛼𝜂
2E∥D𝑘+1 − D𝑘 ∥2︸                                                                      ︷︷                                                                      ︸

B

+ 𝑎1𝛼
2E∥E𝑘 ∥2 + (1 − 𝑎1𝛼)𝛾E∥E𝑘 ∥2

I−W − 𝑎1𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2︸                                                                                ︷︷                                                                                ︸
C

, (B.12)

where 𝑎1 is a non-negative number to be determined. Then we deal with the three terms on the right

hand side separately. We want the terms B and C to be nonpositive. First, we consider B. Note that

D𝑘 ∈ Range(I − W). If we want B ≤ 0, then, we need 1 − 2𝑎1𝛼 > 0, i.e., 𝑎1𝛼 < 1/2. Therefore

we have

B = − (1 − 2𝑎1𝛼)
𝜂2

𝛾
E∥D𝑘+1 − D𝑘 ∥2

M + 𝑎1𝛼𝜂
2E∥D𝑘+1 − D𝑘 ∥2

≤
(
𝑎1𝛼 − (1 − 2𝑎1𝛼)𝜆𝑛−1(M)

𝛾

)
𝜂2E∥D𝑘+1 − D𝑘 ∥2,

where 𝜆𝑛−1(M) > 0 is the second smallest eigenvalue of M. It means that we also need

𝑎1𝛼 + (2𝑎1𝛼 − 1)𝜆𝑛−1(M)
𝛾

≤ 0,
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which is equivalent to

𝑎1𝛼 ≤ 𝜆𝑛−1(M)
𝛾 + 2𝜆𝑛−1(M) < 1/2. (B.13)

Then we look at C. We have

C =𝑎1𝛼
2E∥E𝑘 ∥2 + (1 − 𝑎1𝛼)𝛾E∥E𝑘 ∥2

I−W − 𝑎1𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2

≤((1 − 𝑎1𝛼)𝛽𝛾 + 𝑎1𝛼
2)E∥E𝑘 ∥2 − 𝑎1𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2

≤𝐶 ((1 − 𝑎1𝛼)𝛽𝛾 + 𝑎1𝛼
2)∥Y𝑘 − H𝑘 ∥2 − 𝑎1𝛼(1 − 𝛼)∥Y𝑘 − H𝑘 ∥2

Because we have 1 − 𝑎1𝛼 > 1/2, so we need

𝐶 ((1 − 𝑎1𝛼)𝛽𝛾 + 𝑎1𝛼
2) − 𝑎1𝛼(1 − 𝛼) = (1 + 𝐶)𝑎1𝛼

2 − 𝑎1(𝐶𝛽𝛾 + 1)𝛼 + 𝐶𝛽𝛾 ≤ 0. (B.14)

That is

𝛼 ≥
𝑎1(𝐶𝛽𝛾 + 1) −

√︃
𝑎2

1(𝐶𝛽𝛾 + 1)2 − 4(1 + 𝐶)𝐶𝑎1𝛽𝛾

2(1 + 𝐶)𝑎1
C 𝛼0, (B.15)

𝛼 ≤
𝑎1(𝐶𝛽𝛾 + 1) +

√︃
𝑎2

1(𝐶𝛽𝛾 + 1)2 − 4(1 + 𝐶)𝐶𝑎1𝛽𝛾

2(1 + 𝐶)𝑎1
C 𝛼1. (B.16)

Next, we look at A. Firstly, by the bounded variance assumption, we have the expectation

conditioned on the gradient sampling in 𝑘th iteration satisfying

E∥X𝑘 − X∗∥2 − 2𝜂E⟨X𝑘 − X∗,∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)⟩ + 𝜂2E∥∇F(X𝑘 ; 𝜉𝑘 ) − ∇F(X∗)∥2

≤∥X𝑘 − X∗∥2 − 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩ + 𝜂2∥∇F(X𝑘 ) − ∇F(X∗)∥2 + 𝑛𝜂2𝜎2

Then with the smoothness and strong convexity from Assumptions 8, we have the co-coercivity

of ∇𝑔𝑖 (x) with 𝑔𝑖 (x) := 𝑓𝑖 (x) − 𝑢
2 ∥x∥

2
2, which gives

⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩ ≥ 𝜇𝐿

𝜇 + 𝐿 ∥X
𝑘 − X∗∥2 + 1

𝜇 + 𝐿 ∥∇F(X𝑘 ) − ∇F(X∗)∥2.

When 𝜂 ≤ 2/(𝜇 + 𝐿), we have

⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩
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=

(
1 − 𝜂(𝜇 + 𝐿)

2

)
⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩ + 𝜂(𝜇 + 𝐿)

2
⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩

≥
(
𝜇 − 𝜂𝜇(𝜇 + 𝐿)

2
+ 𝜂𝜇𝐿

2

)
∥X𝑘 − X∗∥2 + 𝜂

2
∥∇F(X𝑘 ) − ∇F(X∗)∥2

=𝜇

(
1 − 𝜂𝜇

2

)
∥X𝑘 − X∗∥2 + 𝜂

2
∥∇F(X𝑘 ) − ∇F(X∗)∥2.

Therefore, we obtain

− 2𝜂⟨X𝑘 − X∗,∇F(X𝑘 ) − ∇F(X∗)⟩

≤ − 𝜂2∥∇F(X𝑘 ) − ∇F(X∗)∥2 − 𝜇(2𝜂 − 𝜇𝜂2)∥X𝑘 − X∗∥2. (B.17)

Conditioned on the 𝑘the iteration, (i.e., conditioned on the gradient sampling in 𝑘th iteration),

the inequality (B.12) becomes

E∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
E∥D𝑘+1 − D∗∥2

M + 𝑎1E∥H𝑘+1 − X∗∥2

≤
(
1 − 𝜇(2𝜂 − 𝜇𝜂2)

)
∥X𝑘 − X∗∥2 + 𝑎1𝛼E∥X𝑘+1 − X∗∥2

+ 𝜂
2

𝛾
∥D𝑘 − D∗∥2

M − 𝜂2E∥D𝑘+1 − D∗∥2 + 𝑎1(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝑛𝜂2𝜎2, (B.18)

if the step size satisfies 𝜂 ≤ 2
𝜇+𝐿 . Rewriting (B.18), we have

(1 − 𝑎1𝛼)E∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
E∥D𝑘+1 − D∗∥2

M + 𝜂2E∥D𝑘+1 − D∗∥2 + 𝑎1E∥H𝑘+1 − X∗∥2

≤
(
1 − 𝜇(2𝜂 − 𝜇𝜂2)

)
∥X𝑘 − X∗∥2 + 𝜂

2

𝛾
∥D𝑘 − D∗∥2

M + 𝑎1(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝑛𝜂2𝜎2, (B.19)

and thus

(1 − 𝑎1𝛼)E∥X𝑘+1 − X∗∥2 + 𝜂
2

𝛾
E∥D𝑘+1 − D∗∥2

M+𝛾I + 𝑎1E∥H𝑘+1 − X∗∥2

≤
(
1 − 𝜇(2𝜂 − 𝜇𝜂2)

)
∥X𝑘 − X∗∥2 + 𝜂

2

𝛾
∥D𝑘 − D∗∥2

M + 𝑎1(1 − 𝛼)∥H𝑘 − X∗∥2 + 𝑛𝜂2𝜎2. (B.20)

With the definition of L𝑘 in (3.17), we have

EL𝑘+1 ≤ 𝜌L𝑘 + 𝑛𝜂2𝜎2, (B.21)

with

𝜌 = max
{

1 − 𝜇(2𝜂 − 𝜇𝜂2)
1 − 𝑎1𝛼

,
𝜆max(M)

𝛾 + 𝜆max(M) , 1 − 𝛼
}
.
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where

𝜆max(M) = 2𝜆max((I − W)†) − 𝛾.

Recall all the conditions on the parameters 𝑎1, 𝛼, and 𝛾 to make sure that 𝜌 < 1:

𝑎1𝛼 ≤ 𝜆𝑛−1(M)
𝛾 + 2𝜆𝑛−1(M) , (B.22)

𝑎1𝛼 ≤ 𝜇(2𝜂 − 𝜇𝜂2), (B.23)

𝛼 ≥
𝑎1(𝐶𝛽𝛾 + 1) −

√︃
𝑎2

1(𝐶𝛽𝛾 + 1)2 − 4(1 + 𝐶)𝐶𝑎1𝛽𝛾

2(1 + 𝐶)𝑎1
C 𝛼0, (B.24)

𝛼 ≤
𝑎1(𝐶𝛽𝛾 + 1) +

√︃
𝑎2

1(𝐶𝛽𝛾 + 1)2 − 4(1 + 𝐶)𝐶𝑎1𝛽𝛾

2(1 + 𝐶)𝑎1
C 𝛼1. (B.25)

In the following, we show that there exist parameters that satisfy these conditions.

Since we can choose any 𝑎1, we let

𝑎1 =
4(1 + 𝐶)
𝐶𝛽𝛾 + 2

,

such that

𝑎2
1(𝐶𝛽𝛾 + 1)2 − 4(1 + 𝐶)𝐶𝑎1𝛽𝛾 = 𝑎2

1.

Then we have

𝛼0 =
𝐶𝛽𝛾

2(1 + 𝐶) → 0, as 𝛾 → 0,

𝛼1 =
𝐶𝛽𝛾 + 2
2(1 + 𝐶) → 1

1 + 𝐶 , as 𝛾 → 0.

Conditions (B.24) and (B.25) show

𝑎1𝛼 ∈
[

2𝐶𝛽𝛾
𝐶𝛽𝛾 + 2

, 2
]
→ [0, 2], if 𝐶 = 0 or 𝛾 → 0.

Hence in order to make (B.22) and (B.23) satisfied, it’s sufficient to make

2𝐶𝛽𝛾
𝐶𝛽𝛾 + 2

≤ min
{

𝜆𝑛−1(M)
𝛾 + 2𝜆𝑛−1(M) , 𝜇(2𝜂 − 𝜇𝜂

2)
}
= min

{ 2
𝛽
− 𝛾

4
𝛽
− 𝛾

, 𝜇(2𝜂 − 𝜇𝜂2)
}
. (B.26)

where we use 𝜆𝑛−1(M) = 2
𝜆max (I−W) − 𝛾 = 2

𝛽
− 𝛾.
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When 𝐶 > 0, the condition (B.26) is equivalent to

𝛾 ≤ min

{
(3𝐶 + 1) −

√︁
(3𝐶 + 1)2 − 4𝐶
𝐶𝛽

,
2𝜇𝜂(2 − 𝜇𝜂)

[2 − 𝜇𝜂(2 − 𝜇𝜂)]𝐶𝛽

}
. (B.27)

The first term can be simplified using

(3𝐶 + 1) −
√︁
(3𝐶 + 1)2 − 4𝐶
𝐶𝛽

≥ 2
(3𝐶 + 1)𝛽

due to
√

1 − 𝑥 ≤ 1 − 𝑥
2 when 𝑥 ∈ (0, 1).

Therefore, for a given stepsize 𝜂, if we choose

𝛾 ∈
(
0,min

{ 2
(3𝐶 + 1)𝛽 ,

2𝜇𝜂(2 − 𝜇𝜂)
[2 − 𝜇𝜂(2 − 𝜇𝜂)]𝐶𝛽

})
and

𝛼 ∈
[
𝐶𝛽𝛾

2(1 + 𝐶) ,min
{𝐶𝛽𝛾 + 2

2(1 + 𝐶) ,
2 − 𝛽𝛾
4 − 𝛽𝛾

𝐶𝛽𝛾 + 2
4(1 + 𝐶) , 𝜇𝜂(2 − 𝜇𝜂) 𝐶𝛽𝛾 + 2

4(1 + 𝐶)

}]
,

then, all conditions (B.22)-(B.25) hold.

Note that 𝛾 < 2
(3𝐶+1)𝛽 implies 𝛾 < 2

𝛽
, which ensures the positive definiteness of M over

span{I − W} in Lemma 13.

Note that 𝜂 ≤ 2
𝜇+𝐿 ensures

𝜇𝜂(2 − 𝜇𝜂) 𝐶𝛽𝛾 + 2
4(1 + 𝐶) ≤ 𝐶𝛽𝛾 + 2

2(1 + 𝐶) . (B.28)

So, we can simplify the bound for 𝛼 as

𝛼 ∈
[
𝐶𝛽𝛾

2(1 + 𝐶) ,min
{2 − 𝛽𝛾

4 − 𝛽𝛾
𝐶𝛽𝛾 + 2
4(1 + 𝐶) , 𝜇𝜂(2 − 𝜇𝜂) 𝐶𝛽𝛾 + 2

4(1 + 𝐶)

}]
.

Lastly, taking the total expectation on both sides of (B.21) and using tower property, we complete

the proof for 𝐶 > 0.

Proof of Corollary 4. Let’s first define 𝜅 𝑓 = 𝐿
𝜇

and 𝜅𝑔 = 𝜆max (I−W)
𝜆+min (I−W) = 𝜆max(I − W)𝜆max((I − W)†).
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We can choose the stepsize 𝜂 = 1
𝐿

such that the upper bound of 𝛾 is

𝛾upper =min
{ 2
(3𝐶 + 1)𝛽 ,

2
𝜅 𝑓

(
2 − 1

𝜅 𝑓

)[
2 − 1

𝜅 𝑓

(
2 − 1

𝜅 𝑓

)]
𝐶𝛽

,
2
𝛽

}
≥ min

{
2

(3𝐶 + 1)𝛽 ,
1

𝜅 𝑓𝐶𝛽

}
,

due to 𝑥(2−𝑥)
2−𝑥(2−𝑥) ≥

𝑥
2−𝑥 ≥ 𝑥 when 𝑥 ∈ (0, 1).

Hence we can take 𝛾 = min{ 1
(3𝐶+1)𝛽 ,

1
𝜅 𝑓𝐶𝛽

}.

The bound of 𝛼 is

𝛼 ∈
[
𝐶𝛽𝛾

2(1 + 𝐶) ,min
{

2 − 𝛽𝛾
4 − 𝛽𝛾

𝐶𝛽𝛾 + 2
4(1 + 𝐶) ,

1
𝜅 𝑓

(2 − 1
𝜅 𝑓

) 𝐶𝛽𝛾 + 2
4(1 + 𝐶)

}]
When 𝛾 is chosen as 1

𝜅 𝑓𝐶𝛽
, pick

𝛼 =
𝐶𝛽𝛾

2(1 + 𝐶) =
1

2(1 + 𝐶)𝜅 𝑓
. (B.29)

When 1
(3𝐶+1)𝛽 ≤ 1

𝜅 𝑓𝐶𝛽
, the upper bound of 𝛼 is

𝛼upper = min
{

2 − 𝛽𝛾
4 − 𝛽𝛾

𝐶𝛽𝛾 + 2
4(1 + 𝐶) ,

1
𝜅 𝑓

(2 − 1
𝜅 𝑓

) 𝐶𝛽𝛾 + 2
4(1 + 𝐶)

}
= min

{
6𝐶 + 1

12𝐶 + 3
,

1
𝜅 𝑓

(2 − 1
𝜅 𝑓

)
}

7𝐶 + 2
4(𝐶 + 1) (3𝐶 + 1)

≥ min
{

6𝐶 + 1
12𝐶 + 3

,
1
𝜅 𝑓

}
7𝐶 + 2

4(𝐶 + 1) (3𝐶 + 1) .

In this case, we pick

𝛼 = min
{

6𝐶 + 1
12𝐶 + 3

,
1
𝜅 𝑓

}
7𝐶 + 2

4(𝐶 + 1) (3𝐶 + 1) . (B.30)

Note 𝛼 = O
(

1
(1+𝐶)𝜅 𝑓

)
since 6𝐶+1

12𝐶+3 is lower bounded by 1
3 . Hence in both cases (Eq. (B.29) and

Eq. (B.30)), 𝛼 = O
(

1
(1+𝐶)𝜅 𝑓

)
, and the third term of 𝜌 is upper bounded by

1 − 𝛼 ≤ max
{
1 − 1

2(1 + 𝐶)𝜅 𝑓
, 1 − min

{
6𝐶 + 1

12𝐶 + 3
,

1
𝜅 𝑓

}
7𝐶 + 2

4(1 + 𝐶) (3𝐶 + 1)

}
In two cases of 𝛾, the second term of 𝜌 becomes

1 − 𝛾

2𝜆max((I − W)†)
= max

{
1 − 1

2𝐶𝜅 𝑓 𝜅𝑔
, 1 − 1

(1 + 3𝐶)𝜅𝑔

}
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Before analysing the first term of 𝜌, we look at 𝑎1𝛼 in two cases of 𝛾.

When 𝛾 = 1
𝜅 𝑓𝐶𝛽

, we have

𝑎1𝛼 =
2𝐶𝛽𝛾
𝐶𝛽𝛾 + 2

=
2

2𝜅 𝑓 + 1
≤ 1
𝜅 𝑓
.

When 𝛾 = 1
(3𝐶+1)𝛽 , we have

𝑎1𝛼 = min
{

6𝐶 + 1
(12𝐶 + 3) ,

1
𝜅 𝑓

}
≤ 1
𝜅 𝑓
.

In both cases, 𝑎1𝛼 ≤ 1
𝜅 𝑓

. Therefore, the first term of 𝜌 becomes

1 − 𝜇𝜂(2 − 𝜇𝜂)
1 − 𝑎1𝛼

≤
1 − 1

𝜅 𝑓
(2 − 1

𝜅 𝑓
)

1 − 1
𝜅 𝑓

= 1 −
1 − 1

𝜅 𝑓

𝜅 𝑓 − 1
= 1 − 1

𝜅 𝑓
.

To summarize, we have

𝜌 ≤ 1 − min
{

1
𝜅 𝑓
,

1
2𝐶𝜅 𝑓 𝜅𝑔

,
1

(1 + 3𝐶)𝜅𝑔
,

1
2(1 + 𝐶)𝜅 𝑓

,min
{

6𝐶 + 1
12𝐶 + 3

,
1
𝜅 𝑓

}
7𝐶 + 2

4(1 + 𝐶) (3𝐶 + 1)

}
and therefore

𝜌 = max
{
1 − O

( 1
(1 + 𝐶)𝜅 𝑓

)
, 1 − O

( 1
(1 + 𝐶)𝜅𝑔

)
, 1 − O

( 1
𝐶𝜅 𝑓 𝜅𝑔

)}
.

With full-gradient (i.e., 𝜎 = 0), we get 𝜖−accuracy solution with the total number of iterations

𝑘 ≥ Õ((1 + 𝐶) (𝜅 𝑓 + 𝜅𝑔) + 𝐶𝜅 𝑓 𝜅𝑔).

When 𝐶 = 0, i.e., there is no compression, the iteration complexity recovers that of NIDS,

Õ
(
𝜅 𝑓 + 𝜅𝑔

)
.

When 𝐶 ≤ 𝜅 𝑓 +𝜅𝑔
𝜅 𝑓 𝜅𝑔+𝜅 𝑓 +𝜅𝑔 , the complexity is improved to that of NIDS, i.e., the compression doesn’t

harm the convergence in terms of the order of the coefficients.
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Proof of Corollary 5. Note that (x𝑘 )⊤ = X𝑘 and 1𝑛×1X∗ = X∗, then
𝑛∑︁
𝑖=1
E∥x𝑘𝑖 − x𝑘 ∥2 = E




X𝑘 − 1𝑛×1X𝑘



2

= E



X𝑘 − X∗ + X∗ − 1𝑛×1X𝑘




2

= E





X𝑘 − X∗ −
1𝑛×11⊤

𝑛×1
𝑛

(
X𝑘 − X∗

)




≤ E∥X𝑘 − X∗∥2

≤ 𝜌EL𝑘−1 + 𝑛𝜂2𝜎2(1 − 𝜌)−1

1 − 𝑎1𝛼

≤ 2𝜌𝑘L0 + 2
𝑛𝜂2𝜎2

1 − 𝜌 . (B.31)

The last inequality holds because we have 𝑎1𝛼 ≤ 1/2.

Proof of Corollary 3. From the proof of Theorem 3, when 𝐶 = 0, we can set 𝛾 = 1, 𝛼 = 1, and

𝑎1 = 0. Plug those values into 𝜌, and we obtain the convergence rate for NIDS.

B.3.6 Proof of Theorem 4

Proof of Theorem 4. In order to get exact convergence, we pick diminishing step-size, set 𝛼 =
𝐶𝛽𝛾

2(1+𝐶) ,

𝑎1𝛼 =
2𝐶𝛽𝛾𝑘
𝐶𝛽𝛾𝑘+2 , 𝜃1 = 1

2𝜆max ((I−W)†) and 𝜃2 =
𝐶𝛽

2(1+𝐶) , then

𝜌𝑘 = max
{
1 − 𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 ) − 𝑎1𝛼

1 − 𝑎1𝛼
, 1 − 𝜃1𝛾𝑘 , 1 − 𝜃2𝛾𝑘

}
If we further pick diminishing 𝜂𝑘 and 𝛾𝑘 such that 𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 ) − 𝑎1𝛼 ≥ 𝑎1𝛼, then

𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 ) − 𝑎1𝛼

1 − 𝑎1𝛼
≥ 𝑎1𝛼

1 − 𝑎1𝛼
=

2𝐶𝛽𝛾𝑘
2 − 𝐶𝛽𝛾𝑘

≥ 𝐶𝛽𝛾𝑘 .

Notice that 𝐶𝛽𝛾 ≤ 2
3 since (3𝐶 + 1) −

√︁
(3𝐶 + 1)2 − 4𝐶 is increasing in 𝐶 > 0 with limit 2

3 at ∞.

In this case we only need,

𝛾𝑘 ∈
(
0,min

{ (3𝐶 + 1) −
√︁
(3𝐶 + 1)2 − 4𝐶
𝐶𝛽

,
2𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 )

[4 − 𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 )]𝐶𝛽
,

2
𝛽

})
. (B.32)

And

𝜌𝑘 ≤ max {1 − 𝐶𝛽𝛾𝑘 , 1 − 𝜃1𝛾𝑘 , 1 − 𝜃2𝛾𝑘 } ≤ 1 − 𝜃3𝛾𝑘
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if 𝜃3 = min{𝜃1, 𝜃2} and note that 𝜃2 ≤ 𝐶𝛽.

We define

L𝑘 B (1 − 𝑎1𝛼𝑘 )∥X𝑘 − X∗∥2 + (2𝜂2
𝑘/𝛾𝑘 )E∥D

𝑘+1 − D∗∥2
(I−W)† + 𝑎1∥H𝑘 − X∗∥2.

Hence

EL𝑘+1 ≤ (1 − 𝜃3𝛾𝑘 )EL𝑘 + 𝑛𝜎2𝜂2
𝑘 .

From 𝑎1𝛼 ≤ 𝜇𝜂𝑘 (2−𝜇𝜂𝑘)
2 , we get

4𝐶𝛽𝛾𝑘
𝐶𝛽𝛾𝑘 + 2

≤ 𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 ).

If we pick 𝛾𝑘 = 𝜃4𝜂𝑘 , then it’s sufficient to let

2𝐶𝛽𝜃4𝜂𝑘 ≤ 𝜇𝜂𝑘 (2 − 𝜇𝜂𝑘 ).

Hence if 𝜃4 <
𝜇

𝐶𝛽
and let 𝜂∗ = 2(𝜇−𝐶𝛽𝜃4)

𝜇2 , then 𝜂𝑘 = 𝛾𝑘
𝜃4

∈ (0, 𝜂∗) guarantees the above discussion and

EL𝑘+1 ≤ (1 − 𝜃3𝜃4𝜂𝑘 )EL𝑘 + 𝑛𝜎2𝜂2
𝑘 .

So far all restrictions for 𝜂𝑘 are

𝜂𝑘 ≤ min
{

2
𝜇 + 𝐿 , 𝜂∗

}
and

𝜂𝑘 ≤
1
𝜃4

min

{
(3𝐶 + 1) −

√︁
(3𝐶 + 1)2 − 4𝐶
𝐶𝛽

,
2
𝛽

}
Let 𝜃5 = min

{
2
𝜇+𝐿 , 𝜂∗,

(3𝐶+1)−
√

(3𝐶+1)2−4𝐶
𝐶𝛽𝜃4

, 2
𝛽𝜃4

}
, 𝜂𝑘 = 1

𝐵𝑘+𝐴 and 𝐷 = max
{
𝐴L0, 2𝑛𝜎2

𝜃3𝜃4

}
, we

claim that if we pick 𝐵 =
𝜃3𝜃4

2 and some 𝐴, by setting 𝜂𝑘 = 2
𝜃3𝜃4𝑘+2𝐴 , we get

EL𝑘 ≤ 𝐷

𝐵𝑘 + 𝐴.

Induction:

When 𝑘 = 0, it’s obvious. Suppose previous 𝑘 inequalities hold. Then

EL𝑘+1 ≤
(
1 − 2𝜃3𝜃4

𝜃3𝜃4𝑘 + 2𝐴

)
2𝐷

𝜃3𝜃4𝑘 + 2𝐴
+ 4𝑛𝜎2

(𝜃3𝜃4𝑘 + 2𝐴)2 .
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Multiply 𝑀 B (𝜃3𝜃4𝑘 + 𝜃3𝜃4 + 2𝐴) (𝜃3𝜃4𝑘 + 2𝐴) (2𝐷)−1 on both sides, we get

𝑀EL𝑘+1 ≤
(
1 − 2𝜃3𝜃4

𝜃3𝜃4𝑘 + 2𝐴

)
(𝜃3𝜃4𝑘 + 𝜃3𝜃4 + 2𝐴) + 4𝑛𝜎2(𝜃3𝜃4𝑘 + 𝜃3𝜃4 + 2𝐴)

2𝐷 (𝜃3𝜃4𝑘 + 2𝐴)

=
2𝐷 (𝜃3𝜃4𝑘 + 2𝐴 − 2𝜃3𝜃4) (𝜃3𝜃4𝑘 + 𝜃3𝜃4 + 2𝐴) + 4𝑛𝜎2(𝜃3𝜃4𝑘 + 𝜃3𝜃4 + 2𝐴)

2𝐷 (𝜃3𝜃4𝑘 + 2𝐴)

=
2𝐷 (𝜃3𝜃4𝑘 + 2𝐴)2 + 4𝑛𝜎2(𝜃3𝜃4𝑘 + 2𝐴) − 4𝐷𝜃3𝜃4(𝜃3𝜃4𝑘 + 2𝐴) + 2𝐷𝜃3𝜃4(𝜃3𝜃4𝑘 + 2𝐴)

2𝐷 (𝜃3𝜃4𝑘 + 2𝐴)

+ −4𝐷 (𝜃3𝜃4)2 + 4𝑛𝜎2𝜃3𝜃4
2𝐷 (𝜃3𝜃4𝑘 + 2𝐴)

≤𝜃3𝜃4𝑘 + 2𝐴.

Hence

EL𝑘+1 ≤ 2𝐷
𝜃3𝜃4(𝑘 + 1) + 2𝐴

This induction holds for any 𝐴 such that 𝜂𝑘 is feasible, i.e.

𝜂0 =
1
𝐴

≤ 𝜃5.

Here we summarize the definition of constant numbers:

𝜃1 =
1

2𝜆max((I − W)†)
, 𝜃2 =

𝐶𝛽

2(1 + 𝐶) , (B.33)

𝜃3 = min{𝜃1, 𝜃2}, 𝜃4 ∈
(
0,

𝜇

𝐶𝛽

)
, 𝜂∗ =

2(𝜇 − 𝐶𝛽𝜃4)
𝜇2 , (B.34)

𝜃5 = min

{
2

𝜇 + 𝐿 , 𝜂∗,
(3𝐶 + 1) −

√︁
(3𝐶 + 1)2 − 4𝐶

𝐶𝛽𝜃4
,

2
𝛽𝜃4

}
. (B.35)

Therefore, let 𝐴 = 1
𝜃5

and 𝜂𝑘 = 2𝜃5
𝜃3𝜃4𝜃5𝑘+2 , we get

1
𝑛
EL𝑘 ≤

2 max
{

1
𝑛
L0, 2𝜎2𝜃5

𝜃3𝜃4

}
𝜃3𝜃4𝜃5𝑘 + 2

.

Since 1 − 𝑎1𝛼𝑘 ≥ 1/2, we complete the proof.
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APPENDIX C

GRAPH NEURAL NETWORKS WITH ADAPTIVE RESIDUAL

C.1 Additional Results for the Preliminary Study

In this section, we provide additional results on CiteSeer and PubMed datasets for the preliminary

study in Section 4.2. The results on these two datasets are showed in Figure C.1, C.2, C.3 and C.4.

It can be observed that residual connection helps obtain better performance on normal features but it

is detrimental to abnormal features, which aligns with the findings in Section 4.2.
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Figure C.1: Node classification accuracy on abnormal nodes (CiteSeer).
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Figure C.2: Node classification accuracy on normal nodes (CiteSeer).
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Figure C.3: Node classification accuracy on abnormal nodes (PubMed).
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Figure C.4: Node classification accuracy on normal nodes (PubMed).

C.2 Additional Experiments for the Proposed Method

In this section, we provide more experiments and ablation study for the proposed AirGNN.

C.2.1 Experiments on More Datasets

In this subsection, we provide additional experiments for Section 4.4. In particular, we conduct the

experiments for the noisy feature scenario on the following 5 datasets: Coauthor CS [95], Coauthor

Physics [95], Amazon Computers [95], Amazon Photo [95], and ogbn-arxiv [113]. The node

classification accuracy are showed in Figures C.5, C.6, C.7, C.8, and C.9, respectively. Specifically,

the accuracy on abnormal nodes and normal nodes are plotted separately in (a) and (b), with respect

to the ratio of noisy nodes.

When the ratios of noisy nodes are within a reasonable range, we can observe that (1) AirGNN

obtains much better accuracy on abnormal nodes on all datasets, which verifies its stronger resilience
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to abnormal features; and (2) AirGNN achieves better or sometimes comparable accuracy on normal

nodes in most cases, which shows its capability to maintain good performance for normal nodes.

However, when the noise ratio is very high, the performance of AirGNN drops quickly. This is

because the modulation hyperparameter 𝜆 is tuned based on the clean dataset such that it is far away

from being optimal for highly noisy dataset. But it can be significantly improved by adjusting the

hyperparameter 𝜆 as discussed in next subsection.

These results suggest the significant advantages of adaptive residual in AirGNN, and confirm the

conclusion in the main paper. The adversarial attack on larger graphs is computationally expensive

so we omit the results on more datasets in the adversarial feature scenario.
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Figure C.5: Node classification accuracy in noisy features scenario (Coauthor CS).
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Figure C.6: Node classification accuracy in noisy features scenario (Coauthor Physics).
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Figure C.7: Node classification accuracy in noisy features scenario (Amazon Computers).

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN

(a) Accuracy on abnormal nodes

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN

(b) Accuracy on normal nodes

Figure C.8: Node classification accuracy in noisy features scenario (Amazon Photo).

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN

(a) Accuracy on abnormal nodes

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

GAT
GCN
GCNII
APPNP
AirGNN

(b) Accuracy on normal nodes

Figure C.9: Node classification accuracy in noisy features scenario (ogbn-arxiv).

C.2.2 AirGNN with Adjusted 𝜆

Note that in Figures C.5, C.6, C.7, C.8, and C.9, the performance of AirGNN drops significantly

when the noise ratio is very large. This is because the modulation hyperparameter 𝜆 is tuned based
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on the clean dataset such that it is far away from being optimal for highly noisy dataset. In fact, the

performance of AirGNN can be significantly improved by adjusting 𝜆 during test time according

to the performance on the validation set. Taking the Coauthor CS [95] dataset as an example, we

compare AirGNN with APPNP and we tune the hyperparameter 𝜆 and 𝛼 for them (denoted as

AirGNN-tuned and APPNP-tuned) for a fair comparison as showed in Figure C.10. The result

verifies that AirGNN-tuned gets tremendous improvement on both abnormal and normal nodes by

adjusting 𝜆. However, APPNP-tuned only focuses on improving global performance and overlooks

the abnormal nodes after adjusting 𝛼 based on validation performance so that the performance on

abnormal node are much worse.
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Figure C.10: Node classification accuracy in noisy features scenario with adjustment (Coauthor CS).

C.2.3 Detailed Comparison with APPNP

Figure 4.1 in Section 4.2 shows that APPNP without residual performs well on the noisy nodes.

Therefore, in order to demonstrate the advantages of AirGNN, it is of interest to make a detailed

comparison between AirGNN and the two variants of APPNP (w/Res and wo/Res). We evaluate

their performance on noisy nodes, normal nodes, and overall nodes on Cora dataset, and the results

under varying noise ratio are summarized in Table C.1, Table C.2, and Table C.3. We can make the

following observations:

• In Table C.1, both AirGNN and APPNP wo/Res significantly outperform APPNP w/Res on

noisy nodes, and AirGNN achieves comparable performance with APPNP wo/Res. This verifies
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that the residual connection in GNN amplifies the vulnarability to abnormal features, and

AirGNN is able to adaptively adjust the residual connections for abnormal nodes to reduce the

vulnerability.

• In Table C.2 and Table C.3, AirGNN consistently outperforms APPNP wo/Res, which verifies

the importance of residual connections in maintaining good performance on normal nodes.

AirGNN exhibits much better performance than APPNP w/Res, which shows the benefits of

removing abnormal features by adaptive residual.

• APPNP wo/Res is a special case of AirGNN with 𝜆 = 0. Moreover, as noted in Section C.2.2,

the performance of AirGNN in Table C.1, Table C.2, and Table C.3 can be further improved

by adjusting the modulation hyperparameter 𝜆 for each noise ratio according to validation

performance.

As discussed in Section 4.3, in existing GNNs such as APPNP and GCNII, the conflict between

feature aggregation and residual connection can only be partially mitigated by adjusting the residual

weight 𝛼. However, such global adjustment cannot be adaptive to a subset of the nodes, which

explains the advantages of AirGNN in above observations. In the adversarial feature setting, we can

make similar observations but here we omit the comparison.

Table C.1: Comparison between APPNP and AirGNN on abnormal (noisy) nodes (Cora).

Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.167 ± 0.034 0.170 ± 0.070 0.170 ± 0.027 0.193 ± 0.031 0.187 ± 0.024 0.178 ± 0.026
APPNP wo/Res 0.469 ± 0.035 0.442 ± 0.062 0.427 ± 0.038 0.381 ± 0.043 0.383 ± 0.045 0.354 ± 0.067

AirGNN 0.474 ± 0.048 0.433 ± 0.055 0.405 ± 0.050 0.362 ± 0.039 0.353 ± 0.050 0.337 ± 0.057

Table C.2: Comparison between APPNP and AirGNN on normal nodes (Cora).

Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.773 ± 0.015 0.712 ± 0.024 0.669 ± 0.019 0.622 ± 0.024 0.580 ± 0.032 0.530 ± 0.029
APPNP wo/Res 0.761 ± 0.014 0.709 ± 0.025 0.664 ± 0.015 0.599 ± 0.025 0.556 ± 0.035 0.497 ± 0.049

AirGNN 0.791 ± 0.015 0.741 ± 0.021 0.688 ± 0.024 0.625 ± 0.034 0.571 ± 0.039 0.527 ± 0.042
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Table C.3: Comparison between APPNP and AirGNN on all nodes (Cora).

Noisy ratio 5% 10% 15% 20% 25% 30%

APPNP w/Res 0.743 ± 0.015 0.657 ± 0.026 0.594 ± 0.017 0.536 ± 0.024 0.482 ± 0.025 0.425 ± 0.025
APPNP wo/Res 0.746 ± 0.013 0.682 ± 0.026 0.628 ± 0.015 0.556 ± 0.027 0.513 ± 0.034 0.455 ± 0.053

AirGNN 0.775 ± 0.015 0.710 ± 0.021 0.646 ± 0.025 0.572 ± 0.033 0.516 ± 0.038 0.470 ± 0.044

C.2.4 Comparison with Robust Model

To further demonstrate the advantages of the proposed AirGNN, we compare it with a representative

robust model, Robust GCN [128]. Tables C.11, C.12 and C.13 show the performance comparison

between Robust GCN and AirGNN on Cora, Citeseer and PubMed, respectively. The accuracy on

abnormal nodes and normal nodes are plotted separately in (a) and (b), with respect to the ratio of

noisy nodes. These figures show that AirGNN achieves significant better performance than Robust

GCN on both abnormal and normal nodes in the noisy feature scenario.
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Figure C.11: Node classification accuracy in noisy features scenario (Cora).

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Robust GCN
AirGNN

(a) Accuracy on abnormal nodes

1 2 3 4 5 8 10 15 20 25 30
Ratio of Noisy Nodes (%)

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Robust GCN
AirGNN

(b) Accuracy on normal nodes

Figure C.12: Node classification accuracy in noisy features scenario (CiteSeer).
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Figure C.13: Node classification accuracy in noisy features scenario (PubMed).
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