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ABSTRACT

ASPECTS OF COMPUTATIONAL TOPOLOGY AND MATHEMATICAL VIROLOGY

By

Rui Wang

Being able to describe the shape of data is of paramount importance to the fields of biol-
ogy, physics, chemistry, pharmaceutics, etc. Therefore, in recent years, scientists from
the TDA community have been applying advanced mathematical tools to decode the
topological structures of data. Methods such as persistent homology, path homology,
and de Rham-Hodge theory have become the main workhorse of TDA, which pioneered
new branches in algebraic topology and differential geometry. Later, various topolog-
ical Laplacians such as graph Laplacian, Hodge Laplacian, sheaf Laplacian, and Dirac
Laplacian are proposed to preserve topological invariants and geometric shapes simul-
taneously. However, such Laplacians fail to extract the topological and geometric de-
formations when one introduces the filtration parameters in. Therefore, we proposed a
new topological Laplacians called persistent Laplacians to fully recover the topological
persistence and homotopic shape evolution during filtration.

It is worth mentioning that persistent Laplacians are insensitive to asymmetry or di-
rected relations, which limits their power to preserve the directional information of struc-
tures in practical applications. Therefore, we proposed persistent path Laplacians to over-
come this issue. Similar to the persistent Laplacians, one can also extract the topological
persistence and geometric deformations during filtration from the persistent path Lapla-
cians by calculating their harmonic and non-harmonic spectra. In addition, the persistent
path Laplacians are constructed on the directed graphs or network, which address the
importance of directional representation in datasets such as gene regulation datasets in
biology.

Versatile mathematical tools have been playing an essential role in various biological



applications. Since the first COVID-19 case was reported in December 2019, researchers
worldwide have been pursuing scientific endeavors in the SARS-CoV-2 projects. Instead
of designing promising vaccines and antibody therapies that required wet lab resources,
we proposed a new mathematical-Al model called TopNetmAb to systematically ana-
lyze the mutation-induced impacts on the SARS-CoV-2 infectivity, vaccines, and antibody
drugs. In this dissertation, the topological data analysis (including the persistent Lapla-
cians mentioned above), artificial intelligence, various network models, and genomics
analysis are all included in our SARS-CoV-2-related projects to provide comprehensive

representations for the understanding of the transmission and evolution of SARS-CoV-2.
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CHAPTER 1

INTRODUCTION

1.1 Topological Laplacian

Persistent homology (PH) is one of the most popular tools in topological data analysis
(TDA), which is constrained to purely topological persistence obtained from its persis-
tent betti numbers. PH has had tremendous success in various fields such as biology
[4], chemistry [5], drug discovery [6], and 3D shape analysis [7]. Inspired by the suc-
cess of PH, multiple advanced mathematical tools in TDA have emerged, and one of
the new rising stars in TDA is the de Rham-Hodge theory in differential geometry. De
Rham-Hodge theory aims to use the differential forms to represent the cohomology of an
oriented closed Riemannian manifold with boundary in terms of a topological Laplacian
named Hodge Laplacian [8]. Similar to homology, the de Rham-Hodge theory fails to
give an in-depth analysis of data through Hodge Laplacians. Therefore, the evolutionary
de Rham-Hodge theory [9] was introduced to alleviate or heal problems arising in the de
Rham-Hodge. A persistent Hodge Laplacian was developed to offer a multiscale-level
analysis on a family of evolutionary manifolds. Such a method provides an answer to
the old question “can one hear the shape of a drum" [10]. One can decode the topological
persistence and the homotopic shape evolution of data during filtration by calculating the
harmonic and non-harmonic spectra of persistent Hodge Laplacians.

Nonetheless, one main concern we should address in evolutionary de Rham-Hodge
theory is that it is set up on the Riemannian manifold, which is quite computational-
consuming in real applications. Therefore, seeking a method that can reduce the compu-
tational complexity is indeed needed. One natural idea to overcome this issue is to set
up a similar system on the discrete points instead of the Riemannian manifold. Hence,

a multiscaled-based topological Laplacian, namely persistent spectral graph (PSG) [11],



was introduced by creating low-dimensional multiscale representations (i.e., persistent
combinatorial graph Laplacians, , persistent Laplacians) on graphs. In PSG theory, fami-
lies of persistent Laplacian matrices (PLMs) corresponding to various topological dimen-
sions are constructed via filtration to sample a given dataset at multiple scales. The har-
monic spectra from the null spaces of PLMs offer the same topological invariants, namely
persistent Betti numbers, at various dimensions as those provided by PH, while the non-
harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the
data. Meanwhile, we developed an open-source software package called highly efficient
robust multidimensional evolutionary spectra (HERMES), to enable broad applications
of PSGs in science, engineering, and technology. To ensure the reliability and robustness
of HERMES, we have validated the software with simple geometric shapes and complex
datasets from three-dimensional (3D) protein structures. We found that the smallest non-
zero eigenvalues are very sensitive to data abnormality.

It is noticed that the persistent Laplacians are insensitive to asymmetry or directed
relations (i.e, they treat all data points equally). That is to say, each point does not carry
any labeled information such as the type, mass, color, etc. Therefore, they fail to represent
the structures that have directional information. Undoubtedly, we need a method that
has a flavor to deal with asymmetry structures. Notably, the path homology [12] pro-
posed by Grigor’yan, Yong Lin, Yuri Muranov, and S.-T.Yau provides a powerful tool to
analyze datasets with asymmetric structures. To encode richer information, Chowdhury
and Mémoli extended path homology to a persistent framework on a directed network
[13] call persistent path homology (PPH). Such methods are perfect tools for us to fix the
aforementioned issue in the persistent Laplacian. Similar to the PH, PPH also decodes
purely topological persistence and cannot track the homotopic shape evolution of data
during filtration. To overcome the limitation of PPH, persistent path Laplacian (PPL) is
introduced to capture the shape evolution of data. PPL’s harmonic spectra fully recover

PPH'’s topological persistence and its non-harmonic spectra reveal the homotopic shape



evolution of data during filtration.

Topological Laplacians are powerful tools to extract both topological invariants and
geometric deformation of a given system. In this dissertation, we mainly discuss two
new multiscale-based topological Laplacians: persistent Laplacians and persistent path

Laplacians, and their applications in life science, especially in the fields of molecular bi-

ology.

1.2 Mathematical Modeling of Virology

Since its first case was identified in Wuhan, China, in December 2019, coronavirus disease
2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) has expeditiously spread to as many as 226 countries and territories worldwide and
led to over 541 million confirmed cases and over 6.3 million fatalities as of June 2022.
This pandemic has also brought a massive economic recession globally. The countries all
around the world have implemented a variety of policies to tackle the COVID-19 pan-
demic.

Many SARS-CoV-2 vaccines and monoclonal antibodies (mAbs) have already obtained
the use authorization worldwide (See Coronavirus Vaccine Tracker). Additionally, U.S.
Food and Drug Administration (FDA) has given the emergency use authorization to the
oral SARS-CoV-2 Mpro inhibitor PAXLOVID (PF-07321332) developed by Pfizer[14, 15].
However, COVID-19 has a high infection rate, high prevalence, long incubation period
[16], asymptomatic transmission [17, 18, 19], and potential seasonal pattern [20]. SARS-
CoV-2 keeps involving into new infectious and antibody resistant variants [21, 22, 23].
Therefore, it is imperative to understand its viral molecular mechanism [24], track its
genetic evolution [25], and continuously improve the efficacy of antiviral drugs and anti-
body therapies.

Belonging to the -coronavirus genus and coronaviridae family, SARS-CoV-2 is an un-

segmented positive-sense single-stranded RNA (+ssRNA) virus with a compact 29,903
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Figure 1.1: Genomics organization of SARS-CoV-2.

nucleotide-long genome and the diameter of each SARS-CoV-2 virion is about 50-200
nm [26]. In the first 20 years of the 21st century, S-coronaviruses have triggered three
major outbreaks of deadly pneumonia: SARS-CoV (2002), Middle East respiratory syn-
drome coronavirus (MERS-CoV) (2012), and SARS-CoV-2 (2019) [27]. Like SARS-CoV
and MERS-CoV, SARS-CoV-2 also causes respiratory infections, but at a much higher in-
fection rate [28, 29]. The complete genome of SARS-CoV-2 comprises 15 open reading
frames (ORFs), which encodes 29 structural and non-structural proteins (nsps). The 16
non-structural proteins nspl-nspl6 get expressed by protein-coding genes ORFla and
ORF1b, while four canonical 3’ structural proteins: spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins, as well as accessory factors, are encoded by other
four major ORFs, namely ORF2, ORF4, ORF5, and ORF9 (see Figure 1.1) [30, 31, 32, 33].

The viral structure of SARS-CoV-2 can be found in Figure 1.1. This structure is formed
by the four structural proteins: the N protein holds the RNA genome, the S protein helps
virus enter into the host cell, and M and E proteins define the shape of the viral envelope
[34]. The studies on SARS-CoV-2 as well as previous SARS-CoV and other coronaviruses
have mostly identified the functions of these structural proteins, nonstructural proteins as
well as accessory proteins. Their 3D structures are also largely known from experiments
or predictions.

With these SARS-CoV-2 proteins, the intracellular viral life cycle of SARS-CoV-2 can
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Figure 1.2: Six stages of the SARS-CoV-2 life cycle. Stage I: Virus entry. I(a) Virus can
enter the host cell via plasma membrane fusion. I(b) Virus can enter the host cell via
endosomes. Stage II: Translation of viral replication. Stage III: Replication. Here, nsp12
(RdRp) and nsp13 (helicase) cooperate to perform the replication of the viral genome.
Stage IV: Translation of viral structure proteins. Stage V: Virion assembly. Stage VI:
Release of a virus.

be realized [35]. This life cycle has six stages as shown in Figure 1.2. The first stage is
the entry of the virus. SARS-CoV-2 enters the host cell either via endosomes or plasma
membrane fusion. In both ways, the S protein of SARS-CoV-2 first attaches to the host
cell-surface protein, angiotensin-converting enzyme 2 (ACE2). Then, the cell’s protease,
TMPRSS2, cuts and opens the S protein of the virus, exposing a fusion peptide in the S2
subunit of the S protein [36]. After fusion, an endosome forms around the virion, sepa-
rating it from the rest of the host cell. The virion escapes when the pH of the endosome
drops or when cathepsin, a host cysteine protease, cleaves it. The virion then releases its
RNA into the cell [37]. After the RNA release, polyproteins ppla and pplab are trans-
lated. Notably, facilitated by viral papain-like protease (PLpro), nsp1l, nsp2, nsp3, and the



amino terminus of nsp4 from the ppla and pplab are released. Moreover, nsp5-nsp16 are
also cleaved proteolytically by the main protease [38]. The next stage of the life cycle is
the replication process, where nsp12 (RdRp) and nsp13 (helicase) cooperate to perform
the replication of the viral genome. Stages IV and V are the translation of viral structural
proteins and the virion assembly process. In these stages, structural proteins S, E, and M
are translated by ribosomes and then present on the surface of the endoplasmic reticulum
(ER), which is transported from the ER through the Golgi apparatus for the preparation
of virion assembly. Meanwhile, multiple copies of N protein package the genomics RNA
in cytoplasm, which interacts with other 3 structural proteins to direct the assembly of
virions. Finally, virions will be secreted from the infected cell through exocytosis.

Since the initial outbreak of the COVID-19, the raging pandemic caused by SARS-
CoV-2 has lasted over two years. We do have many promising vaccines, but they might
have side effects and their full side effects, particularly, long-term side effects, remain
unknown. To make things worse, near 29260 unique mutations have been recorded for
SARS-CoV-2 as shown by Mutation Tracker ( https://users.math.msu.edu/users/weig/
SARS-CoV-2_Mutation_Tracker.html). All of these reveal the sad reality that our cur-
rent understanding of life science, virology, epidemiology, and medicine is severely lim-
ited. Ultimately, the core of challenges is the lack of molecular mechanistic understand-
ings of many aspects, namely coronavirus RNA proofreading, virus-host cell interactions,
antibody-antigen interactions, protein-protein interactions, protein-drug interactions, vi-
ral regulation of host cell functions, including autophagocytosis and apoptosis, and ir-
regular host immune response behavior such as cytokine storm and antibody-dependent
enhancement. Molecular-level experiments on SARS-CoV-2 are both expensive and time-
consuming and require to take heavy safety measures. Moreover, disparities among re-
ported experimental binding affinities can be more than 100 fold for the receptor-binding
domain (RBD) of S protein binding to ACE2 or antibodies (see Table 1 of Ref. [39]). All

these complicated realities make the understanding of viral evolution and transmission
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mechanism some of the most challenging tasks.

On the other hand, computational tools provide alternative approaches in understand-
ing viral evolution and transmission with higher efficiency and lower costs. The increas-
ing computer power, the accumulation of molecular data, the availability of artificial in-
telligence (Al) algorithms, and the development of new mathematical tools have paved
the road for mechanistic understanding from molecular modeling, simulations, and pre-
dictions.

In May 2020, we developed an intensively validated topology-based neural network
model [40] called TopNetmAb to predict certain RBD mutations. It showed that RBD
residues 452 and 501 were predicted to “have very high chances to mutate into signifi-
cantly more infectious COVID-19 strains” in summer 2020 [41] and were later confirmed
in prevailing SARS-CoV-2 variants Alpha, Beta, Gamma, Delta, Theta, Epsilon, Kappa,
Lambda, Mu, and Omicron. These predictions [41], achieved via the integration of deep
learning, biophysics, genotyping, and advanced mathematics, are some of the most re-
markable events.

Additionally, 3,696 possible RBD mutations were classified into three categories with
different appearance likelihoods, namely, 1149 most likely, 1912 likely, and 625 unlikely
[41]. The predicted “most likely” partition successfully contained all the newly observed
RBD mutations, until the recent appearance of S371L from Omicron BA.1. Most remark-
ably, the mechanism governing SARS-CoV-2 evolution and transmission, i.e., natural se-
lection via mutation-strengthened infectivity, was discovered in July 2020 [41] when there
were only 89 RBD mutations with the highest observed frequency of merely 50 globally
[41].

In April 2021, this mechanism was confirmed beyond any doubt. By using 506,768
sequences isolated from patients, the authors demonstrated that the predicted binding
free energy (BFE) changes of the 100 most observed RBD mutations out of 651 existing

RBD mutations are all above the BFE change of -0.28 kcal/mol, indicating evolution fa-


https://github.com/WeilabMSU/TopNetmAb

vors variants having higher infectivity [2]. Moreover, using network-based modeling for
drug repurposing, it was found out Baricitinib as a potential treatment for COVID-19[42].
These extraordinary results prove that mathematical modeling of virology spearhead the

discovery of new drugs and the mechanisms of SARS-CoV-2 evolution and transmission.

1.3 Outline

In Chapter 2, we provide a mathematical background in two topological Laplacians: per-
sistent Laplacians and persistent path Laplacians. Also, vital examples are involved to
illustrate how we construct two types of topological Laplacians on a given point-cloud
dataset. In Chapter 3, we review the theoretically details in the mathematical modeling of
virology, including the methods in the genomics analysis and the structure of the math-
Al models that we used in the SARS-CoV-2 studies. In Chapter 4, we mainly discuss
the applications in the PL and PPL, and their advantages compared to other topologi-
cal Laplacians. We further introduce an open-source package called HERMES, which is
designed to extract the harmonic and non-harmonic spectra of persistent Laplacians. In
addition, the validation of the HERMES is also discussed in the Chapter 5 to show its ac-
curacy, robustness, and reliability on standard test datasets and multiple complex protein
structures. Chapter 6 includes several applications in the study of SARS-CoV-2, including
the mutational impacts on the SARS-CoV-2 diagnostic targets, vaccines, antibodies, along
with the discussion about the mechanisms of SARS-CoV-2 evolution and transmission.

The dissertation contribution is summarized in Chapter 7.



CHAPTER 2

METHODS ON TOPOLOGICAL LAPLACIANS

2.1 Persistent Laplacians

211 Simplex
q
Let {vg,v1,--- ,v,} be a set of points in R". A point v = Z)\m, A; € R is an affine
. 1=0

combination of v; if ZA" = 1. An affine hull is the set of affine combinations. Here,
q+ 1 points vy, vy, - - - :?;3 are affinely independent if v; — vy, v3 —vg, - - - , v, — Vg are linearly
independent. A g-plane is well-defined if the ¢ + 1 points are affinely independent. In R",
one can have at most n linearly independent vectors. Therefore, there are at most n + 1
affinely independent points. An affine combination v = zq:)\ivi is a convex combination
if all \; are non-negative. The convex hull is the set of coni\:/gx combinations.

A (geometric) g-simplex denoted as o, is the convex hull of g + 1 affinely independent
points in R? with dimension dim(o,) = ¢. A 0-simplex is a vertex, a 1-simplex is an edge,
a 2-simplex is a triangle, and a 3-simplex is a tetrahedron, as shown in Figure 2.1. The
convex hull of each nonempty subset of ¢ + 1 points forms a subsimplex and is regraded

as a face of o, denoted 7. The p-face of a ¢-simplex is the subset {v;1,--- ,v;,} of the ¢-

simplex.

(@) ®) © )

Figure 2.1: Illustration of simplices. (a) 0-simplex (a vertex), (b) 1-simplex (an edge), (c)
2-simplex (a triangle), and (d) 3-simplex (a tetrahedron).



2.1.2 Simplicial Complex

A simplicial complex is a powerful algebraic topology tool that has wide applications in
graph theory, topological data analysis [43], and many physical fields [44]. We briefly
review simplicial complexes to generate notation and provide essential preparation for
introducing persistent spectral graphs. A (finite) simplicial complex K is a (finite) collec-

tion of simplices in R" satisfying the following conditions
(1) If o, € K and o, is a face of o, then 0, € K.

(2) The non-empty intersection of any two simplices o, 0, € K is a face of both of o,

and o,,.

Each element 0, € K is a ¢g-simplex of K. The dimension of K is defined as dim(K) =
max{dim(o,) : 0, € K}. To distinguish topological spaces based on the connectivity of
simplicial complexes, one uses Betti numbers. The k-th Betti number, ), counts the num-
ber of k-dimensional holes on a topological surface. The geometric meaning of Betti num-
bers in R? is the following: /3, represents the number of connected components, 5, counts
the number of one-dimensional loops or circles, and S, describes the number of two-
dimensional voids or holes. In a nutshell, the Betti number sequence {3y, 61, 2, - - - } re-
veals the intrinsic topological property of the system. To illustrate the simplicial complex
and its corresponding Betti number, we have designed two simple models as is shown in

Figure 2.2. !

@ () © Q) @ G

Figure 2.2: Illustrations of simplicial complexes.

!These examples show an intuitive way to count Betti numbers. However, it is impossible to generate
structures (b), (e), and (f) in Rips complex.
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Table 2.1: The Betti number of simplicial complexes in Figure 2.2. Each color represents
different faces. The tetrahedron-shaped simplicial complexes are demonstrated in (a)-(c),
and the cube-shaped simplicial complexes are depicted in (d) - (f). (a) and (d) only has
0-simplices and 1-simplices, (b) has four 2-simplices, and (c) has one more 4-simplex. (e)
and (f) do not have any 2-simplex.

Bettinumber Fig. 3(a) Fig. 3(b) Fig.3(c) Fig.3(d) Fig.3(e) Fig. 3 (f)

Bo 1 1 1 1 1 1
Bi 3 0 0 5 0 0
B2 0 1 0 0 1 0

Recall that in graph theory, the degree of a vertex (0-simplex) v is the number of edges
that are adjacent to the vertex, denoted as deg(v). However, once we generalize this
notion to g-simplex, problem arouse since a g-simplex can have (¢ — 1)-simplices and
(¢ + 1)-simplices adjacent to it at the same time. Therefore, the upper adjacency and

lower adjacency are required to define the degree of a g-simplex for ¢ > 0 [45, 46].

Defination 2.1.1 Two g-simplices o, and o} of a simplicial complex K are lower adjacent if they
share a common (q — 1)-face, denoted o, X oJ. The lower degree of g-simplex, denoted degy (o),

is the number of nonempty (q — 1)-simplices in K that are faces of o,, which is always q + 1.

Defination 2.1.2 Two g-simplices o, and o of a simplicial complex K are upper adjacent if they
share a common (q + 1)-face, denoted o, £ ol. The upper degree of q-simplex, denoted degy (o),

is the number of (q + 1)-simplices in K of which o, is a face.
Then, the degree of a g-simplex (¢ > 0) is defined as:

deg(o,) = deg, (0,) + deg,,(0,) = deg,;(o,) + ¢+ 1. (2.1)

2.1.2.1 Delaunay Triangulation and Alpha Shapes

In this section, we provide the details on a practical construction of filtration for persistent
spectral graph theory based on the alpha complex. The alpha complex can be regarded
as a simplicial complex, which is a homotopy equivalent to the nerve of balls around

data points. Its geometric realization built as the union of convex hulls of points in each
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simplex is called the alpha shape. First proposed in 1983, t he alpha shape defined the
shape associated with a finite set of points in the plane controlled by one parameter [47].

In the following, we first describe how to construct the alpha shape, and then provide
some necessary concepts for the implementation of the alpha complex in PSG theory. Let
P be a finite set of points in ¢D Euclidean space R? (¢ = 2 or 3 in most applications), and
a be a positive real number. Denote an open ball with radius « as an alpha ball («-ball).
We say that an a-ball is empty if it contains no point of P, and the alpha hull (a-hull) of
P is the set of points that do not belong to any empty a-ball. For any subset 7" C P with
size |T| = k+ 1,0 < k < g, the geometric realization of k-simplex or is the convex hull
of T'. We say that a k-simplex o is a-exposed if there exists an empty a-ball b such that
T =0bNPtor 0 <k < q— 1. Denoting the collection of a-exposed k-simplices as F}, , for
0 < k < g — 1, the alpha shape (a-shape) of P is the polytope whose boundary consists
of the k-simplices in F} ,. The alpha complex is just the simplicial complex that is the
collection of the simplices in the alpha shape.

There are two structures that are closely related to the alpha shape and helpful in
efficient implementation of alpha shape and alpha complex. One is the Voronoi diagram
[48] and the other is its dual structure, the Delaunay tessellation [49]. The latter is the
alpha complex for sufficiently large a, e.g.,, when « is greater than the diameter of P.
Thus, the Delaunay tessellation is the final complete simplicial complex in the filtration
that we use.

For a given set of points P = {py, pa,--- ,pn} C RY, the Voronoi cell V; of a point p; € P

contains all of the points for which p; is the closest among all the points in P,
Vi={z eRY| |z —pil < llz =psll,  Vp; € P}, (2.2)
The Voronoi diagram of P is the set of Voronoi cells, which is defined as
VorP = {V; | Vi€ {1,2,--- ,|P|}}. (2.3)
The Delaunay tessellation for a given set P in general position (i.e., no ¢ + 1 ponits are in
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a (¢—1)-D linear subspace, and no ¢ + 2 points share the same circumsphere) is the dual
simplicial complex to the Voronoi diagrams. For instance, a Delaunay tessellation for a
given set P in 2D is a triangulation DT (P) such that no point in P is inside the circumcircle
of any triangle in DT(P) [50, 51]. A formal way to define the Delaunay tessellation is to
use the nerve of the collection of Voronoi cells (Nrv(VorP)), which can be expressed as
DT(P) = Nrv(VorP) = {J C {1,2,...|P|} | (Vi #0}, (2.4)
ieJ
under the condition that the points in P are general position. Note that, in practice, a
set of points that are not in general position can be symbolically perturbed to general

position.

Figure 2.3: Illustration of Voronoi diagram, Delaunay triangulation, and Non-Delaunay
triangulation. Left chart: The Voronoi diagram and its dual Delaunay triangulation. The
points set is P = {A,B,C,D,E} and the Delaunay is defined as DT(P). The blue lines tessel-
late the plane into Voronoi cells. The red circle are the circumcircles of triangles in DT(P).
Right chart: A Non-Delaunay triangulation. Vertices E and D are in the green circumcir-
cles, implying the right chart is an example of Non-Delaunay triangulation.

Next, we introduce the mathematical description of the construction of alpha complex
through the union of balls centered at points in P, which is essentially a van der Waals
surface for atoms positioned at P with the same radius «. For a given set of points P =
{p1,p2,- -+ ,pn} iIn R? and a positive real number «, we can denote the closed ball centered

at p; as B;(a) = p; + aB?, where B? is a ¢D unit ball around the origin. The union of these
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balls can be expressed as
U(a) ={z € R?|3p; € Ps.t. ||z —pi| <a}. (2.5)

To ensure that we obtain a subcomplex of the Delaunay tessellation, we intersect B;(«)

with its corresponding Voronoi cell,
Ri(a) = Bi(a) N V. (2.6)

It can be observed that U(a) = U,,cpRi(«), so the R;’s is a covering of U(«). The alpha
complex K, is the simplicial complex representing the nerve of this covering,
Ko={JC{L,2, [P} | [|Rie) #0}. 2.7)
ieJ
The equivalence to the original definition can be readily checked. The union of all sim-
plices in the alpha complex forms the alpha shape. Figure 2.3 illustrates the Voronoi
diagram, Delaunay triangulation, and non-Delaunay triangulation. The point set is P =
{A,B,C,D,E}, and the blue lines in the left chart of Figure 2.3 separate the plane into the
Voronoi cells. The red circles are the empty circumcircles for triples of points in P. We
can notice that no four points are on the same red circle, which satisfies the uniqueness
condition for constructing the Delaunay triangulation. In the right chart of Figure 2.3,
the green circumcircle of ACD contains E and the green circumcirlce of AEC contains D,
indicating that those two triangles do not belong to the Delaunay triangulation.

Figure 2.4 illustrates the standard filtration of alpha complexes. The top left figure is
the Delaunay triangulation of six 2D points A, B, C, D, E, and F. With an ever-growing
radius o centered at these points, a family of sub-complexes of the Delaunay triangulation
can be constructed. Figure 2.5 shows the persistence barcode of these 6 points. It can
be seen that when o = 0.2, all six points are disconnected, indicating that 6 O-cycles
(connected components) existed, which matches with Figure 2.5, where there are a total
of 6 bars when a = 0.2. With the radius a continually increasing, a 1-cycle will be formed,

and the associated alpha shape are shown in the bottom left chart of Figure 2.4. One
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can notice that in Figure 2.5, when o = 0.6, 6?’0 = 1. When « reaches 0.83, the 1-cycle
disappears and 3{"° = 0 as shown in the bottom left panel of Figure 2.4. Table 2.2 and
Table 2.3 show how we construct the gth-order persistent Laplacian £ and calculate the
harmonic (5,?) and non-harmonic persistent spectra of £” from the simplicial complexes

KO,Q to Ko.ﬁ and KO.G to KO.G‘

Delaunay Alpha = 0.20
3 3

25 25

2 2

15 15 8
1 g S 1 H £
05 05 F
c D
0 0 : .

-0.5 -0.5
-1 -1

Alpha = 0.60 Alpha = 1.00
3 31

Ko.6
25 25
2 2

A
15 A 15
1 B8 E 1 B E
0.5 0.5
o]
0 > 0
0 1 2

-0.5 -0.5

-1 T T T T T -1
-1 0 1 2 3 -1

Figure 2.4: Illustration of 2D Delaunay triangulation, alpha shapes, and alpha complexes
for a set of 6 points A, B, C, D, E, and F. Top left: The 2D Delaunay triangulation. Top
right: The alpha shape and alpha complex at filtration value o = 0.2. Bottom left : The
alpha shape and alpha complex at filtration value o = 0.6. Bottom right: The alpha shape
and alpha complex at filtration value o = 1.0. Here, we use dark blue color to fill the
alpha shape.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 2.5: The persistent barcode for a set of points as illustrated in Figure 2.4 that are
generated from Gudhi and DioDe.
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Table 2.2: The matrix representation of g-boundary operator and its gth-order persistent
Laplacian with corresponding dimension, rank, nullity, and spectra from alpha complex
Kos = Ko

q 9=0 g=1 9=2
AB BC CD DE EF DF AE AB D(})EF
Ar—-1 0 0 0 0 0 -1 BC 0
B 1 -1 0 0 0 0 0 o | o
By P clo 1 -1 0 0 0 0 DE | 1 /
D| o 0o 1 -1 0 -1 0 p 1
E o 0 o0 1 -1 0 1 oF | 1
F 0o 0o 0 o0 1 1 o0 AE | o
AB BC CD DE EF DF AE AB DgF
Ar-1 0 0 0 0 0 -1 BC 0
08 ABCDEF g é _11 01 8 8 g g c | o
q [000 0 0 0 0] B DE 1
D|lo o0 1 -1 0 -1 0 EF 1
E 0 0 o0 1 -1 0 1 oF | 1
F 00 0 o0 1 1 0 e | o
5 1 0 o0 -1 o 2 -1 0 0 0 0 1
-1 2 -1 0 0 0 O
-1 2 -1 0 0 0
o 1 2 -1 0 o 0 -1 2 -1 0 -1 0
£9-6:0 . 0o 0o -1 3 0 0 1 [3]
0 0 -1 3 -1 -1 )
0o 0o 0 0 3 0 -1
-1 0 0 -1 3 -1 .
o o o0 1 g 0 0 -1 0 0 3 0
1 0 0 1 -1 0 2
8y 80 1 1 0
dim(£95%) 6 7 1
rank([lg'ﬁ’o) 5 6 1
nullity (£ %) 1 1 0
Spec(£9%0) {0,1,1.5858,3,4,4.4142} {0,1,1.5858,3,3,4,4.4142} {3}

2.1.2.2 Vietoris-Rips Complex

Vietoris-Rips complex is an abstract simplicial complex. It is commonly used in various
applications. For a given set of points P = {p;.ps,--- ,p,} in a metric space and a real
value r > 0, a k-simplex o, = [pio, - - - , pix] is in the Vietoris-Rips complex if and only if

B(pij,r) N B<pij’7r> 7& Q)ij7j, € [07 k]

2.1.3 Chain Complex

Chain complex is an important concept in topology, geometry, and algebra. A g-chain is
a formal sum of ¢-simplices in simplicial complex K with Z, coefficients. The set of all
g-chains has a basis which the set of ¢g-simplices in K, thus forming a finitely generated

free abelian group denoted as C,(K'). The boundary operator is a group homomorphism
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Table 2.3: The matrix representation of g-boundary operator and its gth-order persistent
Laplacian with corresponding dimension, rank, nullity, and spectra from alpha complex
Koo = Ko

q 9=0 g=1 q=2
AB BC CD DE EF DF AE
A[-1 0 0 0 0 0 -1
B 1 -1 0 0 0 0 0
B0 c|lo 1 -1 0 0 0 0 / /
D|o0O o0 1 -1 0 -1 0
E|0 O 0 1 -1 0 1
F 0O 0 0 0 1 1 o0
0.2 A B CDE F
B [000 00 0 0] / /
2 -1 0 0 -1 0
-1 2 -1 0 0 0
0.2,0.4 o -1 2 -1 0 0
£q 0 0 -1 3 -1 -1 / /
-1 0 0 -1 3 -1
0 0 0 -1 -1 2
2.2,04 1 / /
dim(£g>4) 6 / /
rank (L) >04) 5 / /
nullity(£5204) 1 / /
Spec(L£9204) {0,1,1.5858,3,4,4.4142} / /

defined by 0, : C,(K) — Cy_1(K) to relate the chain groups. More specifically, denoting ¢-
simplex as 0, = [vg, v1, - - - ,v,] by its vertices v;, the boundary operator is defined through

its action on the basis,

0,04 = Z(—l)iaéfl. (2.8)
i=0
Here, o) _; = [vo,- -+ ,¥;, - -+ ,v,] is the (¢—1)-simplex with v; omitted. The following se-

quence of chain groups connected by boundary operators is a chain complex (defined as a
set of abelian groups connected by homomorphisms such that the composite of any two

consecutive homomorphisms is zero, 9,0,+1 = 0.)

1

O (K) 2 O (R) 2 O () 25
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2.1.4 Combinatorial Laplacians

Combinatorial Laplacians[52] offer both spectral analysis and topological analysis [53].
One central role played by the chain complex associated with a simplicial complex is to
define its ¢g-th homology group (H, = ker d,/ im J,+1), which is a topological invariant of
the simplicial complex. The dimension of H, is denoted by 3, = dim H,, the ¢-th Betti
number, which, roughly speaking, measures the number of g-dimensional holes in the
simplicial complex, or the geometric object tessellated into the simplicial complex.

A dual chain complex can be defined on any chain complex through the adjoint op-
erator of 0, defined on the dual spaces C(K) = Cy(K). The g-coboundary operator
9y : C7H(K) — C9(K) is defined as:

O*wi™(e,) = wi(dey), (2.9)

where wi™! € CTY(K) is a (q—1)-cochain, which is a homomorphism mapping a chain
to the coefficient group, and ¢, € C,(K) is a ¢g-chain. The homology of the dual chain
complex is often called cohomology.

If we denote by B, the matrix representation of a ¢g-boundary operator with respect
to the standard basis for C,(K) and C,_;(K), the number of rows and the number of
columns in B, correspond to the number of (¢ — 1)-simplices and that of ¢g-simplices in X,
respectively. Moreover, the matrix representation of g-coboundary operator is denoted
B!

In de Rham-Hodge theory, homology and cohomology are often studied through their
correspondences to the g-combinatorial Laplacian operator, defined as the linear operator

A, : CYK) — C1K) as follows,
Ay = 0g10;,1 + 0,0y, (2.10)

[a¥)

where the isomorphism CY(K) = C,(K) is assumed, where each ¢-simplex is mapped to

its own dual, i.e., the isomorphism keeps the coefficients of chains and cochains in the
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standard simplicial basis. Correspondingly, the matrix representation of A, is the gth-

order Laplacian, which is denoted £,(K),
Ly(K) = ByBL, + Bl B, (2.11)

Assume the number of g-simplices existing in K to be N,, then £,(K) is an N x/V,-matrix.
Since the gth-order Laplacian £, (k) is symmetric and positive semi-definite, its spectrum

consists of only real and non-negative eigenvalues. We denote the spectrum of £,(K) as
Spec(Ly(K)) = {A1g: Az 5 Ay}

The multiplicity of zero in the spectrum (also called the harmonic spectrum) reveals the
topological information f3,, whereas the non-harmonic spectrum encodes further geomet-
ric information. The correspondence between the multiplicity of zero spectra of L,(K)
and the ¢th Betti number defined in the homology is an important result in de Rham-

Hodge theory, [54, 55, 56]
B, = dimker J, — dimim 9,4, = dimker £,(K) = #0 eigenvalues of £,(K). (2.12)

Intuitively, 3, represents the number of connected components in K, 3; reveals the num-
ber of 1D noncontractible loops or circles in K, and ; shows the number of 2D voids or

cavities in K.

2.1.5 Persistent Laplacian

Both topological and geometric information can be derived from analyzing the spectra of
gth-order Laplacian. However, the information is restricted to those pieces contained in
the connectivity of the simplicial complex. A single simplicial complex produces insuffi-
cient information for practical problems such as feature extraction for machine learning
analysis. To enrich the spectral information, persistent spectral graph (PSG) is proposed

by creating a sequence of simplicial complexes induced by varying a filtration parameter,
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which is inspired by persistent homology as well as our earlier multiscale graph Lapla-
cians [57].
First, we consider a filtration of simplicial complex K which is a nested sequence of

subcomplexes (K;);~, of the final complex K:
)= Ko C K CKyCo C Ky =K. (2.13)

For each subcomplex K;, we denote its corresponding chain group to be C,(kK;), and the
g-boundary operator will be denoted by 0, : C,(kK;) — Cy_1(k;). As conventionally done,
we define Cy(K;) for ¢ < 0 as the zero group {0} and &/ as a zero map. * If 0 < ¢ < dim K,

then
q

Oh(og) =Y (=)o, Vo, €Ky, (2.14)

with o = [vg, - -+ ,v] being any ¢-simplex, and ¢, ; = [vo, -+ ,¥;," - ,v,] being the (¢—
1)-simplex constructed by removing v; . The adjoint operator of 9} is the coboundary
operator 0! : C97'(K;) — C%(K,;), which can be regarded as a map from C,_;(k;) to
Cy(K) through the isomorphisms C%(K;) = C,(K,) between cochain groups and chain
groups.

Similar to the persistent homology, a sequence of chain complexes can be defined as

below:
L % I I I S
_\ —\ ——\ ——\ —\ —\ —
oLty Ry a3 o3 ] A}
N N N IN IN
324 % % 3 o %
02 —_— CQ — .. = 02 — CQ — 02 — CQ — {0}
g+l . a o . 2 Y I (VN -1
921, 92 92 02 92 a2
N N N IN IN
w2y, X o m 20 w0 e B
C’q+1 N Cq v TS Cz N 01 S Co S Cfl = {0}
oy om o o oy o

(2.15)

2We define the boundary matrix B, for the boundary operator 9% as a zero matrix. The number of
columns of B is the number of 0-simplices in K, the number of rows will be 1.
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For simplicity, we use C! to denote the chain group C,(K,).
Next, we introduce persistence to the Laplacian spectra. We define the subset of C}*?

whose boundary is in C!_, as C,?, assuming the natural inclusion map from C_, to C’t+p
Cyr={BeC |0, (B) e Cy_,}. (2.16)

On this subset, one may define the p-persistent g-boundary operator denoted by 9" :
C.» — Ci_,. Its corresponding adjoint operator is (9;7)* : C._; — C?, again through the
identification of cochains with chains. We then define the g-order p-persistent Laplacian

operator A’? : C! — C! associated with the filtration as
AP =7, (9.7)) + 0L oL (2.17)
The matrix representation of A’? in the simplicial basis is
Ly =B (B1)" + (BB, (2.18)

. . t’p
where Bq V1 is the matrix representation of 9,1, .

We denote the spectrum of £? as

Spec(LhP) = {A[2, NP, - -

t,p
1,90 '2,q> 7>\N(§7q

where N/ = dim C} is the number of ¢-simplices in K}, and the eigenvalues are listed in
the ascending order. Thus, the smallest non-zero eigenvalue of £%? is denoted as A;”. We
may recognize the multiplicity of zero in the spectrum of £ as the gth order p-persistent
Betti number 634’, which counts the number of (independent) g-dimensional holes in K;

that still exists in K;,. The relation can be observed in
ﬁt’p = dim ker 8 — dimim 5q+1 = dim ker EZ’p = #0 eigenvalues of L’Z’p. (2.19)

In this paper, we focus on the 0, 1, 2th-order persistent Laplacians, which depict the rela-
tions among vertices, edges, triangles, and tetrahedra, as we target 3D real-world appli-

cations.
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For instance, given a set of vertices V' = {vg,v1,- - ,vn,-1} , No embedded in R3, we
consider a nested family of simplicial complexes that may be created for a positive real
number a. Denoting the simplicial complex generated for a by K|, the traditional gth-

order Laplacian is just a special case of gth-order 0-persistent Laplacian at &,

a0 _ a,0 a,0 @ %
L0 =By (Bey)" + (B2 B (2.20)

q+1\Pg+1

The spectrum of L is simply associated with a snapshot of the filtration,

1,7 72,q>

Spec(Lg ) = {ATys Aogs - ARa o) (2.21)

Correspondingly, the ¢-th 0-persistent Betti number 35° = (. In addition to the tradi-
tional homology information, and persistent homology information, our proposed per-
sistent spectral graph theory, through the nonzero eigenvalues in the spectrum of the per-
sistent Laplacian operator, provide richer spatial information induced by varying the fil-
tration parameters. Thus it provides a powerful tool to encode high-dimensional datasets
into various topological and geometric features in a coherent fashion.?

Figure 2.6 demonstrates an example of a standard filtration process. Here the initial
setup K, consists of five O0-simplices (vertices). We construct Vietoris-Rips complexes by
using an ever-growing circle centered at each vertex with radius r. Once two circles over-
lapped with each other, an 1-simplex (edge) is formed. A 2-simplex (triangle) will be
created when 3 circles contact with one another, and a 3-simplex will be generated once
4 circles get overlapped one another. As Figure 2.6 shows, we can attain a series of sim-
plicial complexes from K, to K with the radius of circles increasing. To fully illustrate
how to construct p-persistent g-combinatorial Laplacian matrices by the boundary oper-
ator and determine persistent Betti numbers, we analyze 6 p-persistent g-combinatorial
Laplacian matrices and their corresponding harmonic persistent spectra (i.e., persistent
Betti numbers) and non-harmonic persistent spectra. Additional matrices are analyzed in

Appendix Section A.1.

*In this work, we use notations CL?, 057, ALP, £1P, and BLP instead of CLtP, 05P, ALTP £1FP, and 17
used in Ref. [11].
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. @Pe dpe

% é K, % % K, % % K,
Figure 2.6: Illustration of filtration. We use 0,1,2,3, and 4 to stand for 0-simplices,
01,12,23,03, 24,02, and 13 for 1-simplices, 012,023, 013, and 123 for 2-simplices, and 0123

for the 3-simplex. Here, K; has five O-cycles, K> has four 0-cycles, K3 has two 0-cycles
and a 1-cycle, K, has a 0-cycle and a 1-cycle, K5 has one 0-cycle, and K¢ has a 0-cycle.

Table 2.4: The number of g-cycles of simplicial complexes demonstrated in Figure 2.6.

# of q-cycles K1 K2 K3 K4 K5 K@
=0 5 4 2 1 1 1
qg=1 0 0 1 1 0 0
q=2 0 0 0 0 0 0

Case 1.

In this case, the initial setup is K; and the end status is K3. Therefore,
t = 1and p = 2 in Eq. (2.18). We will calculate £3*?, £;72, and £3*?

first and find out their corresponding persistent spectra.

The 2-persistent 0, 1, 2-combinatorial Laplacian operators are:
AGT2 =01 (817%)" + 05 0,
AP =057 (057%)" + 01 0y,
AL = 872 (3°2) 1 0} a),

Since 2-simplex and 3-simplex do not existin K, and K3, 35", 91, 532,

and 0} do not exist and 9} is a zero map. Then, there is only one per-
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sistent combinatorial Laplacian matrix
£ = BIBI)T + (BB

It can be seen in Figure 2.6 that two 0-cycles (connected components)
in K are still alive in K35, while no 1-cycle and 2-cycle exist in the

initial set up K, which perfectly match the calculations in Table 2.5:

3= 2.
Table 2.5: K — Kg.
q q=0 qg=1 q=2
01 12 23 03
0 -1 0 0 -1
1 1 -1 0 0
1+2
Bq+1 2 0 1 -1 0 / /
3 0 0 1 1
4 0 0 0 0
01 2 3 4
1
5, /10000 0] / /
2 -1 0 -1 0
-1 2 -1 0 O
Li+? 0 -1 2 —-10 / /
-1 0 -1 2 0
0 0 0 0 0
s 2 / /
dim(£, ) 5 / /
rank(L£;?) 3 / /
nullity (£;2) 2 / /
Spectrum(L}*?) {0,0,2,2,4} / /

Case 2. The initial setup is K3 and the end status is K,. The 1-persistent
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0,1, 2-combinatorial Laplacian operators are
A =B @) + o
AT =3t (95T + 07 01®,
A = a7 (@) + o o
Since 2-simplex and 3-simplex do not exist in Ky, 93,95, and 95 do
not exist, then
T
£ = B (B + (BB
Lt = (B})"BY.
From Table 2.6, one can see that 35" = 0 and ;™ = 1, which reveals

only one 0-cycle and one 1-cycle in K33 are still alive in K.

Table 2.6: K3 — Ky.

q 9=0 g=1 q=2
01 12 23 03 24
or-1 o 0 -1 0
341 1 1 -1 0 0 0
Byt 2 o 1 -1 0 -1 / /
3 0 0 1 1 o0
4 0 0 0 1
01 12 23 03
or-1r o o0 -1
53 0 1 2 3 4 1 1 -1 0 o0 /
7 [0 0 0 0 0] 2 0 1 -1 0
3 o o0 1 1
4 0 0 0 0
2 -1 0 -1 0 s 1 o0 1
-1 2 -1 0 0 e 1o
Lt 0 -1 3 -1 -1 /
0 -1 2 1
-1 0 -1 2 0 T o 1 2
0 0 -1 0 1
3+1
qJr 1 1 /
dim(£311) 5 4 /
rank(£311) 4 3 /
nullity(£5T1) 1 1 /
Spectra(£3T!) {0,0.8299, 2, 2.6889, 4.4812} {0,2,2,4} /
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Case 3.

Case 4.

Case 5.

The initial setup is K4 and the end status is K. Similarly,

570 = BIY (BI*)" + (57)" B,

Ly = (B)'B;,
and £57 does not exist. In this case, the O-persistent g-combinatorial
Laplacian matrix is actually the g-combinatorial Laplacian matrix de-
fined in Eq. (2.11). Therefore, 33, {1, and 8,7 actually represent
the number of 0, 1, 2-cycles in K,. With the filtration parameter r in-
creasing, all the circles overlapped with at least another circle in K},

which results in BSHO = 1. Since only one 1-cycle formed in K4, one

has 8170 = 1.

The initial setup is Ky and the end status is K. Using similar analysis

as in previous cases, we have

Lot =B (B + (8))" B,

Lt =B (B + (B)"BY,
and £3™ does not exist. Notice that two 2-simplices 012 and 023 are
created under the filtration process. The appearance of these two
newborns results in the 1-cycle that was alive in K, being killed.

Therefore 3,7 = 0 and ;1" = 1 because only one connected compo-

nent keeps alive until K.

The initial setup is K5 and the end status is K. The 1-persistent
0, 1, 2-combinatorial Laplacian matrices are

5t =B (Br) + (B3) B,

£y =B (B3 + (BY) B,

T
L3 =BT (BY) +(By)' B,
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Table 2.7: K, — K.

q q=0 g=1 q=2
01 12 23 03 24
of-1 0 0 -1 0
1{1 -1 0 0 0
440
B 21 0 1 -1 0 -1 / /
310 0 1 1 0
410 0 0 0 1
01 12 23 03 24
of-1 0 0 -1 0
Bt 012 3 4 1|1 -1 0 0 O /
e /[0 000 0] 210 1 -1 0 -1
310 0 1 1 0
410 0 0 0 1
2 -1 0 -1 0 2 -1 0 1 0
-1 2 -1 0 0 -1 2 -1 0 -1
L0 0 -1 3 -1 -1 0o -1 2 1 1 /
-1 0 -1 2 0 1 0 1 2 0
0O 0 -1 0 1 0 -1 1 0 2
/B;H—O 1 1 /
dim(£370) 5 5 /
rank(£;1) 4 4 /
nullity (£;°) 1 1 /
Spectra(L;"°) {0,0.8299, 2, 2.6889, 4.4812} {0,0.8299, 2, 2.6889, 4.4812} /

In this situation, a new 3-simplex is formed in Kg, which means that
B3 is no long a non-zero matrix. From Table 2.9, we can see that

57! = 0 because K5 does not own any 2-cycle and thus, there is no 2-

cycle keeping alive up to K. 337! implies only one 0-cycle preserved

along the filtration process.

Case 6. The initial setup is K¢ and the end status is K4. The 0-persistent
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Table 2.8: Ky — K5.

q q=0 qg=1 q=2
01 12 23 03 24 02 012 023
of[-1 0 0 -1 0 -1 o1 [1 0
B+ 1|1 -1 0 0 0 O 1211 0 /
g+l 210 1 -1 0 -1 1 23 1 0 1
310 0 1 1 0 030 —1
400 0 0 0 1 0 24 1 0 0
01 12 23 03 24
0of-1 0 0 -1 0
5t 01234 1|1 -1 0 0 0 /
e /[0 000 0] 210 1 -1 0 -1
310 0 1 1 0
410 0 0 0 1
3 -1 -1 -1 0 3.0 0 1 0
-1 2 -1 0 0 0 3 -1 0 -1
Lt -1 -1 4 -1 -1 0 -1 3 0 1 /
-1 0 -1 2 0 1 0 0 3 0
0 0 -1 0 1 0 -1 1 0 2
/B;LH 1 0 /
dim(LH") 5 5 /
rank (L") 4 5 /
nullity(£;) 1 0 /
Spectra(L2t!) {0,1,2,4,5} {1.2677,2,2,4,4.7321} /
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Table 2.9: K5 — K.

q q=0 q=1 q=2
012 023 013 123
T T
vl S 0 0 o o 121 0 0 1 0123
By ol 0 1 -1 0 -1 1 2210 1 0 1 012 [ —1
slo o 1 1 o0 o 03| 0 -1 -1 0 023 | -1
410 0 0 0 1 0 2400000
02]-1 1 0 0
01 12 23 03 24 02 o1 012 033
of-1 0 0 -1 0 -1 el 1 o
5 01234 11 -1 0 0 0 0 03 | 0 1
e /[0 000 0] 210 1 -1 0 -1 1
03| 0 -1
3 6 0 1 1 0 0 924 0 0
4100 0 0 0 1 0 P
4 0 00 0 0
_31_21:1_018 04 00 -1 0
ot 4 1 00 40 1 0 40
e 10 -1 2 o0 00 04 0 0 0 4
0 0 -1 0 1 0 -1 10 2 -1
00 00 -1 4
gt 1 0 0
dim(£3+) 5 6 2
rank (L") 4 6 2
nullity (£7H) 1 0 0
Spectra(L;™) {0,1,2,4,5} {1,4,4,4,4,5} {4,4}
0, 1, 2-combinatorial Laplacian operators are
6+0 __ 126+0/1264+0\T 6\T 126
Lo =B (B + (By)" By,
6+0 __ 126+0/1264+0\T 6\T 126
L7 = BB )" + (BY) By,
6+0 __ 126+0/1264+0\T 6\T 126
Ly =B (By)" + (By)" By,
6+0 __ 6+0 __ 6+0 __ :
= 1,87 = 0,and ;7 = 0 imply that only one 0-cycle (con-

nected component) exists in K.
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Table 2.10: K¢ — K.

q q=0 q=1 q=2
012 023 013 123
01 12 23 03 24 02 13 oL 1 0 1 0]
of[-1 0 0 -1 0 -1 0 211 0 0 1
640 1|1 -1 0 0 0 0 -1 221 0 1 0 1 6+0
a+1 210 1 -1 0 -1 1 0 03| 0 -1 -1 0 3
310 0 1 1 0 1 241 0 0 0 0
410 0 0 1 0 0 02|-1 1 0 0
310 0 1 —1]
01 12 23 03 24 02 13
of[-1 0 0 -1 0 -1 0
56 0123 4 111 -1 0 0 0 0 -1 56
e /[0 000 0] 210 1 -1 0 -1 1 0 2
3]0 0 1 1 0 0 1
410 0 0 0 1 0 0
4 0 00 0 0 0]
3 -1 -1 -1 0 0 4 00 -1 0 0
-1 2 -1 0 0 0 0 40 1 0 0
L0 -1 -1 4 -1 -1 000 04 0 0 0 L5
-1 0 -1 2 0 0 -1 10 2 —-10
0 0 -1 0 1 0 0 00 -1 4 0
(00 00 0 0 4|
/3§+0 1 0 0
dim(L£5+0) 5 7 4
rank(L5H0) 4 7 4
nullity (£57°) 1 0 0
Spectra(L5t0) {0,1,4,4,5} {1,4,4,4,4,4,5} {4,4,4,4}
with
012 023 013 123
01 10 1 0
0123
- . 12 1 0 0 1
012 | —1
23 o 1 0 1
Byf'= 023 | -1 | .BS=
03 0O -1 -1 0
013 1
24 O 0 0 o0
123 1
B B 02 -1 1 0 0
13 o 0 1 -1
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and

6+0 _
LT =

(@)
W~
(@]
- o O O

2.1.6 Variants of Persistent Laplacians

The traditional approach in defining the ¢g-boundary operator 9, : Cy(K) — Cy_1(K) can

be expressed as:

9q04 = Z(_l)iaf}u

i=0
which leads to the corresponding elements in the boundary matrices being either 1 or

—1. However, to encode more geometric information into the Laplacian operator, we add
volume information of g-simplex o, to the expression of ¢g-boundary operator.

Givena vertexset V = {vp, vy, - - ,v,} with ¢g+1 isolated points (0-simplices) randomly
arranged in the n-dimensional Euclidean space R", often with n > ¢. Set d;; to be the
distances between v; and v; with 0 < i < j < ¢ and obviously, d;; = dj;. The Cayley-

Menger determinant can be expressed as [58]

d%o 0 d%? T d%q 1
a2, d?, 0 - di 1

Detem(vo, v1, -+ ,vq) = _20 .21 . ‘ .2q . (2.22)
1 1 1 1 1 0

The ¢-dimensional volume of ¢-simplex o, with vertices {vg, vy, - -- ,v,} is defined by
(—1)2+1
V01<0'q> = (q!)—QQqDetCM(UO’ (T ,Uq). (223)
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In trivial cases, Vol(oy) = 1, meaning the 0-dimensional volume of 0-simplex is 1, i.e.,
there is only 1 vertex in a 0-simplex. Also, the 1-dimensional volume of 1-simplex o; =
[v;, v;] is the distance between v; and v;, and the 2-dimensional volume of 2-simplex is the
area of a triangle [v;, vj, v].

The weighted boundary operator equipped with volume, denoted 9, is given by

q

0,04 =Y (~1)'Vol(a})ai ;. (2.24)

i=0
Employed the same concept to the persistent spectral theory, we have the volume-weighted
p-persistent g-combinatorial Laplacian operator. We also define

. 97 (0,), if o, € CP
o) =4 " " B (2.25)

0, ifo, € C’];*p \ CZ“’
with

CL? = {0, € CLP | Ol™(0,) € C!_, }.

Similarly, an inverse-volume weighted boundary operator, denoted J,, is given by
3 g 1 .
Dg0q = Z(—Ulma;_l. (2.26)
i=0 q
To define an inverse-volume weighted p-persistent g-combinatorial Laplacian operator.

We define

. otr(o,), ifo, € CHP
3r(o) =4 ¢ " B (2.27)

q
0, ifo, € C’};ﬂ’ \ (CZ’LP
with

CL? = {0, € CI*" | 0t*P(a,) € CL_,}.

Then volume-weighted and inverse-volume-weighted p-persistent g-combinatorial Lapla-

cian operators defined along the filtration can be expressed as

A sttp (At+p T | AtF A
s o) < o
A = 85 (8)" + 3,4,
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t+p

The corresponding weighted matrix representations of boundary operators égﬁ, 8;, 0 ey

and 52 are denoted B;f{, Bg, B;ff{, and Bg, respectively. Therefore, volume-weighted
and inverse-volume-weighted p-persistent g-combinatorial Laplacian matrices can be ex-
pressed as
L7 = BB + (B)(B,). 229
£ = BLR(BLA)T + (B (B)) |
Although the expressions of the weighted persistent Laplacian matrices are different from
the original persistent Laplacian matrices, some properties of L£"? are preserved. The
weighted persistent Laplacian operators are still symmetric and positive semi-defined.
Additionally, their ranks are the same as £L**. With the embedded volume information,
weighted PSGs can provide richer topological and geometric information through the as-
sociated persistent Betti numbers and non-harmonic spectra (i.e., non-zero eigenvalues).
In real applications, we are more interested in the 0, 1, 2-combinatorial Laplacian ma-
trices because its more intuitive to depict the relation among vertex, edges, and faces.
Given a set of vertices V' = {vg, va,--- ,vn} with N + 1 isolated points (0-simplices) ran-
domly arranged in R". By varying the radius r of the (n — 1)-sphere centered at each
vertex, a variety of simplicial complexes is created. We denote the simplicial complex
generated at radius r to be K,, then the 0-persistent ¢g-combinatorial Laplacian operator

and matrix at initial set up K, is
L0 =B (B + (B)" B (2.30)

The volume of any 1-simplex o1 = [v;, v;] is Vol(oy) is actually the distance between v; and

v; denoted d;;. Then the 0-persistent 0-combinatorial Laplacian matrix based on filtration
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r can be expressed explicitly as

p

(L5+)i; =

\

=) L5y, ifi=j
J

1 (2.31)

1f7,7éjandd”—27’<0

0, otherwise.

Correspondingly, we can denote the 0-persistent 1-combinatorial Laplacian matrix based

on filtration r by £7*?, and the 0-persistent 2-combinatorial Laplacian matrix based on

filtration r by £57°.

Alternatively, variants of persistent O-combinatorial Laplacian matrices can be de-

fined by adding the Euclidean

distance information. The distance-weight persistent 0-

combinatorial Laplacian matrix based on filtration r can be expressed explicitly as

(L5+)i; =

\

Moreover, the inverse-distance-

=Y Ly, ifi=j
i

—d if i # j and d;; — 2r < 0 (2.32)

R
0, otherwise.

weight persistent 0-combinatorial Laplacian matrix based

on filtration r can also be implemented:

¢

(L6 =

_Z<£6+O)ija ifi=j

otherwise.

The spectra of the aforementioned O-persistent O-combinatorial Laplacian matrices

based on filtration are given by

Spectra(L;t?) = {(\1)
Spectra(£50) = {(\y)

Spectra(L™) = {(\1)

6+0a (>‘2)6+0’ T (AN)S—H)}?
6+0a (5‘2)6+0? IR (S‘N)S—H)}?
6+0’ (5‘2)6+07 T (}‘N>6+0}7
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where N is the dimension of persistent Laplacian matrices, (\;)5™ and (};)5° are the j-th
eigenvalues of £;° and £;*°, respectively. We denote B;"*O and B;"’LO the ¢th Betti for /fg“)
and L7, respectively.

The smallest non-zero eigenvalue of £;t°, denoted (\;);*°, is particularly useful in
many applications. Similarly, the smallest non-zero eigenvalues of £; and £;*° are
denoted as (/:\2)6+0 and (5\2)7(;*0, respectively.

Finally, it is mentioned that using the present procedure, more general weights, such
as the radial basis function of the Euclidean distance, can be employed to construct weighted

boundary operators and associated persistent combinatorial Laplacian matrices.

2.2 Persistent Path Laplacian

2.2.1 Paths on a Finite Set

Denote set V' an arbitrary nonempty finite set, and elements in V" are called vertices. For
p € Z§ (i.e., a set with integers p > 0), an elementary p-path on V is any sequence i . . . i, of
p+ 1vertices in V. An elementary p-path is an empty set () for p = —1. For a fixed field K,
a vector space that consists of all formal linear combinations of elementary p-paths with
its coefficients in K is called the space generated by the elementary paths, denoted as
A, = A, (V.K) = Ay(V). One says the elements in A, are p-paths on V, and an elementary
p-path iy ...7, € A, is denoted by ¢;, ;,. By definition, Vv € A, its unique representation
can be given by the basis in A:

v = Z cio“""’eio_._ip, (2.34)

i0,0ensip €V

where o is the coefficient in K. For instance, Ay contains all linear combination of e;
with ¢ € V, A; has all linear combination of e;; with (¢, j) € V' x V, and so on so forth.
Since A_; consists of all multiples of e, one has A_; = K.

Additionally, Vp € Z{, the linear boundary operator from A, to A,_; that acts on ele-
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mentary paths can be defined as

d: N, — Ay (2.35)
with
P
Oiyiy = > (—1)0e; 5, | (2.36)
q=0

where Eq denotes the omission of index i, from the elementary p-path e;, ;,. One sets
A_, = {0}, and for p = —1, defines 0 : A_; — A_, to be a zero map. Following Lemma
2.1in [59], one has 9* = 0, which indicates that the collection of boundary operator 9 and

space A, can form a chain complex of V' denoted as A, = {A,} as
VL NS W () (2.37)

Next, the concepts of regular path and non-regular path are introduced according to
[59]. An elementary path e, ;, onasetV is reqularifi,_, # iy, and non-regularif i, = iy,
fork =1,...,p. Forany p € ZJ U{—1}, let R, be the subspace of A, spanned by all regular
elementary paths, and N, be the subspace of A, spanned by all non-regular elementary

paths. Therefore, one has

R, = span{e;,.., : o . - . ip is regular}

N, = span{e;, i, : io . . .1, is non-regular}.

Note that R, = A, for integers p = —1,0.
Then Vp € Z§ U{-1}, A, = R, ® N,. Therefore,

Rp = AP/M

According to Section 2.4 in [59], the boundary operator 0 is well-defined on the quotient
space A,/N,. Moreover, 9> = 0 and the product rules are satisfied in the quotient space

A, /N, as well. One has an induced regular boundary operator:

0:R,— Ry 1, (2.38)
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where the regular boundary operator J satisfies (2.36) except that all non-regular terms
on the right hand side should be treated as 0. Then a chain complex of V, denoted as

R.(V) = (R,), and equipped with 9, can be expressed as:
Ry LR, D LR K D0, (2.39)

It can be verified that R, = A,/N, is an isomorphism of chain complexes [60]. In the
following sections, for simplicity, we use 0 to denote the boundary operator of Eq. (2.39)

unless specified differently.

2.2.2 Path Complex

A path complex over set V' is a nonempty collection P of elementary paths on V' for any
n €7z,

ifig...1, € P, theniy...i,_1 € P, and 4y ...1, € P. (2.40)

For a fixed path complex, all the paths from P are called allowed (i.e. i;_; — i) for any
k =1,...,n), while the elementary paths on V that are not in P are non-allowed. We say a
path complex P is perfect if any subsequence of any path from P is also in P. We choose
P, to denote all n-paths from P. Then the set P_; has a single empty path e, the set £,
consists of all the vertices of P, and clearly, V = F,. To be noted, a path complex P is a
collection { P, }2° _, satisfying Eq. (2.40). Let K be an abstract simplicial complex defined

over a finite vertex set V/, satisfying
if o € K, then any subset of ¢ is also in K.

The collection of elementary paths on V' is denoted by P(K). Follows from [59] (cf. Ex-

ample 3.2), the family P(K) is a path complex, and the allowed n-paths are n-simplices.
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2.2.3 Path Homology

For any n € Z7, the K-linear space A, is spanned by all the elementary n-paths from a

given path complex P = {P,}>° , over a finite set V, i.e.,
A, = A, (P) =span{e;, i, :io...1n € Py}

We call the elements of A, the allowed n-paths. By the definition of A,, A, C A,, and
A, = A, for n < 0. It is natural that the boundary operator 0 defined on R, can be
introduced to A, under certain condition: A, C A,,_;. For example, for perfect path

complexes, we can obtain a chain complex:
9 d d d d
oA, — A, — - — Ay — K —0.

Next, we consider a general path complex P (i.e., 9.4, does not have to be a subspace

of A,_). For any n € Z{ U {—1}, we define a subspace of A,:
Q,=Q,(P)={veA,:0ve A, 1} (2.41)

The elements of (2, are called 0-invariant n-paths. To be noted, 052, C €2,_; always sat-
isfies. Moreover, 9> = 0 has been established in the previous section. Therefore, the

augmented chain complex of d-invariant paths can be denoted as
-y — Q. — - —= Q) — K —=0, (2.42)

whose homology group H,,(P) of the chain complex in Eq. (2.42) are called the reduced
path homology groups of the path complex P for n € Z$ U {—1}. The truncated version of

the chain complex in Eq. (2.42) for n € Z{ is:
o, — Q. — - —= Qg — 0, (2.43)

whose homology group H,(P) of the chain complex in Eq. (2.43) are called the path
homology groups of the path complex P.
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2.2.4 Path Homology on Directed Graphs

A directed graph is an ordered pair G = (V, E), where V is a set of all vertices and F
is a set of ordered pairs of vertices (i.e. directed edges that satisfy £ C V x V). If G =
(V, E') does not contain any loop and multiple edge, then it is called simple directed graph.
Moreover, for the path homology of multigraph or quiver, one can refer to Ref. [61]. In
the following section of this work, we use G(V, E) to represent the simple directed graphs
unless specified differently.

The path complex P(G) is regular if G = (V. E) is a simple directed graph. In this
section, we mainly discuss the regular spaces 2, (G) = Q,(P(G)) and their associated
regular homology groups H(G) = H,(P(G)). Similar to the discussion in Subsection 2.2.3,
given a simple digraph G(V, E), for any n € ZJ U {—1}, the space of d-invariant n-paths
on G is defined by the subspace of A4,,(G) = A,(V, E; K):

Qn — Qn(G) — {U c _An v € An—l}a

withQ ;=A@ Kand Q_ 5, = A 5 = {0}. Since 9(2,,) C 2,1 (as 9> = 0), then we have

the following chain complex of V' denoted as Q.(V) = {Q,},
0y 0, 00, %0, K 2y,
and the associated n- dimensional path homology groups of G = (V, E) are defined as:

H,(G) = H,(V, E;K) := ker(9|g, )/ im(0|q (2.44)

n+1)'

To be noted, the elements of ker(9|n,, ) are called n-cycles, and the elements of im(J|q,,)
are referred to as n-boundaries. For simplicity, we define 0,, = J|q,,, and the chain complex

of 0-invariant paths is written as

On+1 On On—1
"'Qn+1 —>Qn —>an1 —>an2"' .

Notably, the path cohomology, introduced in Refs. [60, 62], is isomorphic to the dual

space of path homology when the coefficient ring is a field. The associated n- dimensional
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path homology groups of digraphs are defined as:
H"(G) = H"(V, E;K) := ker(d,+1)/im(d,), (2.45)

where d is called coboundary operator.

Given two simple digraphs G = (V, E) and G’ = (V’, E’). According to the Definition
2.2in [63], a morphism of digraphs/digraphs map from G to G’ isamap f : V' — V' such that
for any directed edge ¢ — j in E, one has either f(i) — f(j) is a directed edge on E’ or
f@) = f0)-

Let f be a digraph map from G to G'. For n € ZJ U {—1}, one defines a map (f..)» :
A, (V) = A, (V') such that:

(fes)n(€ig.in) = €f(ig)...f(in)- (2.46)

Assume 0 and 0’ are the boundary operators of chain complexes A.(V') and A.(V’), then

fore;, s, € A, one has

(fern-100)(€ip..0) = D (=) (fudnalesy 5. 2. (2.47)
q=0

= 2 (DM€ so)... i) i) (2.48)
q=0

= (0" o (f)n)(€ig.in)- (2.49)

Hence f.. is a chain map. By the definition of digraph map, (f..), maps non-regular
elementary n-paths on V' to non-regular elementary n-paths on V'. Therefore, one has
(fe)nNR (V) C N, (V'), and then (f..), descends to a quotient homomorphism of chain
complexes:

(fedn : Ap (V)N (V) = Ap(V) N (V). (2.50)

It can be verified that R, = A,/N, is an isomorphism of chain complexes [60], then the

map in (2.50) induces a morphism of chain complexes:

(fo)n : Ra(V) = R,(V'). (2.51)
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Since (f.«)» maps non-regular paths to non-regular, then similarly to what Eq. (2.47)
shows, (f.), is also a chain map that follows:

€f(io)f(in) I €fig)...f(i) 1 TEgUIaTL,

(fdn(eig..in) = (2.52)

0 otherwise.

Following the Theorem 2.10 in [63], the induced map (f.), induces a morphism of chain
complexes:

(fon : (G K) = Q,(G; K) (2.53)

and consequently induces a homomorphism between the path homology groups:

(fo)n : Ho(G;K) = H, (G, K), n>0. (2.54)

2.2.5 Homologies of Directed Subgraphs

Some interesting propositions on the homologies of subgraphs provide a way to simplify
complicated digraphs to relatively simple ones. Following the Section 4.2 in [59], three

propositions are discussed.

Proposition 2.2.1 Given a simple digraph G that has a vertex v with n outcoming arrows v —
v, v — Vi, ..., v = v,_,. Note that v does not have any incoming arrows. Assume that for all
i > 1, one has v, — v;. Denote G" be the subgraph of G by removing the vertex v with all adjacent
edges (ie. V' = V\{v} and E' = E\{vv}}}2)). Then, one has H,(G) = H,(G") (See Figure 2.7

a).

Proposition 2.2.2 Given a simple digraph G = (V, E) that has a vertex v with n incoming
arrows v, — v, vy — v,...,v,_; — v. Note that v does not have any outcoming arrows. Assume
that for all i > 1, one has v; — vj. Denote G' = (V', E') be the subgraph of G by removing
the vertex v with all adjacent edges (i.e. V' = V\{v} and E' = E\{vv}!~). Then, one has
H.(G) = H.(G") (See Figure 2.7 b).
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Figure 2.7: Homologies of directed subgraphs. a, b, and c illustrate three subgraphs
whose homology groups or homology group dimensions are related to the original di-
graphs.

Proposition 2.2.3 Given a simple digraph G = (V, E) that has a vertex v with only one outcom-
ing arrow v — v; and only one incoming arrow v; — v, where i # j. Denote G' = (V', E') be
the subgraph of G (See Figure 2.7 c) by removing the vertex v and the adjacent edges v — v} and
v = v (ie. V' =V\{v}and E' = E\{vv], viv}). Then,

(i) dim H,(G) = dim H,(G") for p # 2 or for p = 0, 1 if v}v; is an edge/semi-edge in G'.

(ii) If viv; is neither an edge or a semi-edge in G', but v; and v; are in the same connected

component of G, then dim H,(G) = dim H, (G’ + 1), and dim Hy(G) = dim Hy(G').
(iii) If v} and v; are not in the same connected component of G', then dim H, (G) = dim H,(G")

2.2.6 Path Laplacian
Recall that a chain complex of 0-invariant paths is given by

87171

an«l»l 8n
"'Qn+1 —>Qn —>an1 —>an2"' )

where Q, = Q,(P) = {v € A, : Ov € A,_1} and 0, := Jlq,. Alternatively, assume

Sy, := Sp(P) to be the set of n-th elementary paths in P, then we define an inner product

()1 Sy xSy o R
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such that for any e;, s, ,¢€j,..;. € S, the following satisfies

1 if €ig...in. = €jo...jnrs
<€i0---in’ 6j0---jn> = (2'55)
0 otherwise.
Let M,, be a matrix representation of 0 : A,, — A,,_; with respect to the standard basis
of A, and A,_;. Define an inclusion map ¢, : €2, — A,,, then the matrix representation
of ¢, with respect to the basis of (2, (i.e., the standard basis of A,, with the removal of

generators that are not in €2,,) and the standard basis of A,, is denoted as O,,. Denote the

boundary matrix representation of 9, as B,,, then we have

On_1B, = M,0,,. (2.56)

If O,,_; is a square matrix, then O,, is actually an identity matrix, and we have
B, = 01, M, 0, = M,0,, (2.57)

where M, is M,, with the removal of rows that their basis are not elementary (n — 1)-paths
in P. Otherwise, B, is the least-square solution to Eq. (2.56).

Note that B, is the matrix representation of J,, with respect to the basis of 2, and €2,,_;.
Dual space Q" := Hom((,,K) of Q, is equipped with dual maps d to form a cochain
complex

dn dn — dnf —
___S2n+l é—ilﬂln & 1 é_j;gzn 2 ..

Y

where d,, is called a coboundary operator. The inner product on (2, induces an inner
product < -,- > on Q" such that
< fg>=Y fle)gle), Vf,ge"
eESy
We denote the adjoint operator of 9,, be 9;; : Q,,_1 — ,,. Note that similar inner product

< -,- > on " was defined in the literature [64]. Hence, the coboundary operator d,, is
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consistent with the adjoint operator 9. Then, for integers p > 0, the n-th path Laplacian

operator is a linear operator: A,, : Q,, = Q, given by
Ay = Opg10,, 11 + 0,0, (2.58)
and Ay = 0,0;. The n-th path Laplacian matrix corresponding to A, is expressed by
L,=B,BL.,+B'B,. (2.59)

Since L, is positive semi-definite and symmetric, its eigenvalues are all real and non-

negative. Additionally, recall that the Betti number £, of path complex P satisfies
B, = dimker 0,, — dimim 0,,y; = dim ker A,,. (2.60)
It is easy to show that
Bn = nullity(L,) = the number of zero eigenvalues of L,,. (2.61)

Moreover, assume the dimension of L,, is IV, then the set of spectra of L,, is denoted as

Spectra(L,,) = {(M)n, A2)n, s (AN)n -

Figure 2.8 shows 5 digraphs with multiple vertices and directed edges. Here, we take
them as examples to give a detailed illustration of L, matrix constructions.
Construction of L, — Figure 2.8a Since L, = B, B}, then we first construct B;, where
er ey e3
eef 1 0 O
B, = OglMlOl according to Eq. (2.57), wehave Oy = ¢, | 0 1 0 |, and M; =

es\ 0 0 1
€12 €23 €31 €12 €23 €31
er[ -1 0 1 e[ 1 0 O
eal 1 =1 0 [,and O1 = ey| 0 1 0 |. Since ey, e5, and e3 are all elemen-
es\ O 1 -1 es1\ O 0 1



Figure 2.8: Five digraphs. a and b Digraphs with 3 vertices and 3 directed edges. c and d
Digraphs with 4 vertices and 4 directed edges. e A digraph with 6 vertices and 8 directed
edges. f A digraph with 6 vertices and 8 directed edges.

€12 €23 €31

€1 —1 0 1
tary O-paths (vertices), M; = Ml. We have B; = 00_1]\;./101 = el 1 =1 0 |- Then

es\ 0 1 —1

Ly=BBl'=|_-1 2 —1|,which gives Spectra(L,) = {0, 3,3} and thus, one finally

has 5, = 1.
Construction of L, — Figure 2.8a We have L, = ByBY + B] B;, where B; has been

formed, so we focus on the construction of By = Oy LML 0, according to Eq. (2.57). Since
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€123 €231 €312
en| O 0 0
€12 1 0 1
€12 €23 €31 eis| —1 0 0
e 1 0 0 ear|l O -1 0
O1

eas| 0 1 0 [,and My = ey 0 0 0 |,and Osis a3 x 0 empty
€31 0 0 1 €923 1 1 0
€31 0 1 1

€39 0 0 -1

€33 0 0 0

matrix since 2y = {0}. Therefore, B, = Oy "MyOyisa3 x 0 empty matrix. Additionally,
2 -1 -1

Ly =BBI+BIfBi=| -1 2 —1|,whereSpectra(L,) = {0, 3,3} and thus, one finally

-1 -1 2
has g; = 1.

Construction of L, — Figure 2.8a We have L, = B3 Bl + Bl B,, where B, is an empty
matrix. Hence, we focus on the construction of B; = Oy 'M;50;4 according to Eq. (2.57).
We have A; = span{eias, €231, €312} and A; = span{eis, e23,€31}. Note that d(e123) =
€93 — €13 + €12 where e3 is not in A;. Hence, €123 is not in {25. The same conclusion can be
deduced for ey3; and es12. Therefore, we have Q, = {0}, and it is straightforward to get
that L, is an empty matrix.

Construction of L, — Figure 2.8b Since L, = B, BT, then we should first construct

er ey e3
eqf 1 0 O

By, where B, = Oy 1M101 according to Eq. (2.57). Since Oy = ¢, | 0 1 0 |,
es\ 0 0 1

46



€12 €13 €23 €12 €13 €23

€1 -1 -1 0 €192 1 0 0
My = e 1 0 —1|,and Oy = ¢;5] 0 1 0 |. Since e1,e,, and e3 are
€3 0 1 1 €923 0 0 1

all elementary O-paths (vertices). Therefore, M; = M;, and we have B, = Oy M0, =

€12 €13 €23

eqrl -1 -1 O 2 -1 -1
e 1 0 —1|.ThenLy=BBl=|-1 2 —1|,whichgivestheSpectra(L,) =
es\ 0 1 1 1 -1 2

{0, 3,3} and thus, one finally has g, = 1.

Construction of L, — Figure 2.8b We have L, = B,BI + B! B;, where B, has been
formed, so we focus on the construction of By = Oy "ML 0, according to Eq. (2.57).
First, Ay = span{ejo3} and A; = span{eis, €13, €23}. Note that 0z(e123) = €23 — €13 + €12

where e;5, €23, and e;3 are all in A4;. Hence, 3 = A, = span{e;3}. Note that O; =

€123
€11 0
€12 1
€12 €13 €23 eig| —1
€12 1 0 0 €921 0 €123

eis] O 1 0 |, M €99 0 ,and O, = €123 < 1 ) The e11, 21, €22, €31, €32,

ea3\ O 0 1 €23 1
es1 0
€39 0
es3 0
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€12 1
and eg3 are not elementary 1-paths in P. Hence, M, = eis| =1 |, and then B, =
€93 1
€123
€12 1 3 00

O7 1 M,0, = eis| —1 |. Therefore, L = BoB3+BIB; = |0 3 0|, whereSpectra(L;) =

€923 1 0 0 3
{3, 3,3} and thus, we finally have 3, = 0.

Construction of L, — Figure 2.8b According to Eq. (2.59), we have L, = B3BI + BI B,
and Bz = Oy 'M;0;5. Since there is no 3-path existing, so the M; and O; are both empty
matrix. Hence L, = (3), Spectra(Ls) = {3}, and thus, one has 3, = 0.

In the following section, we will omit the detailed construction steps of boundary
matrix B,. Table 2.11, Table 2.12, Table 2.13, and Table 2.14 list the boundary matrix B,
and the n-th path Laplacian matrix L, for with its corresponding Betti numbers /3, and
spectrum Spectra(L,,) for Figure 2.8 ¢, d, e, and f. It is worth to mention that /5, can
distinguish the same graph with different paths assigned. For example, Figure 2.8 ¢ and
d have the same undirected graph structure with different paths assigned. We have 3, = 0

for Figure 2.8 c and 3, = 1 for Figure 2.8 d.

2.2.7 Persistent Path Laplacian

From Section 2.2.6, the way to calculate both harmonic spectra (topological invariants)
and non-harmonic spectra of n-th path Laplacian matrix is genuinely free of metrics or
coordinates, which contains too little information to fully describe the object. Therefore,
inspired by the idea of the persistent spectral graph (PSG), persistent path Laplacian (PPL)
is proposed to create a sequence of digraphs induced by varying a filtration parameter to

encode more geometric or structural information.
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Table 2.11: Illustration of digraph c in Figure 2.8.

n n=>0 n=1 n =2
Q, Span{€1> €2, €3, 64} Span{€12, €14, €23, 643} Span{6143 - 6123}
€12 €14 €23 €43 €143 — €123
€1 -1 -1 0 0 €12 —1
By €9 1 0O -1 0 €14 1 1 x 0 empty matrix
63 0 0 1 1 623 —1
€4 0 1 0 -1 €43 1
2 -1 0 -1 3 0 0 -1
-1 2 -1 0 0 3 -1 0
Ln 0o -1 2 -1 0 -1 3 0 ( 4 )
-1 0 -1 2 -1 0 0 3
B 1 0 0
Spectra(L,,) {0,2,2,4} {2,2,4,4} {4}
Table 2.12: Illustration of digraph d in Figure 2.8.
n n=20 n=1 n=>2
Q, span{ey, s, €3, €4} span{eis, €14, €30, €34} {0}
€12 €14 €32 €34
el -1 -1 0 0
B es 1 0 1 0 4 x 0 empty matrix (/)
es 0 0o -1 -1
€4 0 1 0 1
2 -1 0 -1 21 10
-1 2 -1 0 1 2 01
Ln o -1 2 -1 1 0 21 ( / )
-1 0 -1 2 011 2
B 1 1 0
Spectra(L,,) {0,2,2,4} {0,2,4,4} /

First, we consider a (filtration of digraphs G : R — D, which is a morphism f, :

Hy(G;K) — H,(Gs; K) from the category of real number R to the category of digraphs

D that satisfies:

G(t) CG(s), vt <s,
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Table 2.13: Illustration of digraph e in Figure 2.8.

n n=>0 n=1 n=2
0y SPan{ﬁ’l-, €2, €3, €4, €5, 66} SPal’l{6127 €13, €24, €25, €34, €35, €64, 665} SPan{€134 — €124, €135 — 6125}
€134 — €124 €135 — €125
€12 €13 €24 €25 €34 €35 €64 €65 €12 -1 -1
e -1 -1 0 0 0 0 0 0 e1s 1 1
e 1 0 -1 -1 0 0 0 0 €94 -1 0
B es3 0 1 0O 0 -1 -1 0 0 €o5 0 —1 2 x 0 empty matrix
es 0 0 0 1 0 1 0 1 €35 0 1
€6 0 0 0 0 0 0 -1 -1 €64 0 0
€65 0 0
4 -1 0 0 -1 -1 0 0
2 -1 -1 0 0 0 -1 4 -1 -1 0 0 00
-1 3 0 -1 -1 0 0 -1 3 1 0 0 10
L -1 0 3 -1 -1 0 0 -1 1 3 0 0 01 < 4 2 )
" 0 -1 -1 3 0 -1 -1 0 0 0 3 1 10 2 4
0 -1 -1 0 3 -1 -1 0 0 0 1 3 01
0 0 0o -1 -1 2 0 0 1 0 1 0 21
0 0 0 1 0 1 1 2
Bn 1 1 0
Spectra(Ln) {0, 1.4384, 3,3, 3, 5} {07 1.4384,2,3,3,3,5.5616, 6} {2,6}
Table 2.14: Illustration of digraph f in Figure 2.8.
n n=20 n=1 n=2
Q, SPan{eh €2, €3, €4, €5, 86} SPaH{em €15, €23, €26, €42, €45, €53, 856} span{el53 — €123,
€156 — €126,
€453 — €423,
€456 — €426}
€153 — €123 €156 — €126 €453 — €423 €456 — €426
€12 €15 €23 €26 €42 €45 €53 €56 €12 -1 -1 0 0
el -1 -1 0 0 O 0 0 O els 1 1 0 0
€ 1 0 -1 -1 1 0 0 o0 €23 -1 0 -1 0
Bpt1 e3 0 0 1 0 0 0 1 0 €26 0 -1 0 -1 4 x 0 empty matrix
N o o0 o o0 -1 -1 0 O €42 0 0 -1 -1
es 0 1 0 0 0 1 -1 -1 e45 0 0 1 1
€6 0 0 0 1 0 0 o0 1 €53 1 0 1 0
€56 0 1 0 1
4 -1 0 O 1 0o -1 -1
2 -1 0 0 -1 0 -1 4 -1 -1 0 1 0 0
-1 4 -1 -1 0 -1 0 -1 4 1 o -1 -1 0 4.2 20
I 0o -1 2 0 -1 0 0o -1 1 4 0 -1 0 -1 2 4 0 2
" 0o -1 0 2 -1 0 1 o o o0 4 -1 -1 -1 2 0 4 2
-1 0 -1 -1 4 -1 0 1 -1 -1 -1 4 0 O 02 2 4
o -1 0 0 -1 2 -1 0 -1 0 -1 0 4 1
-1 0 0 -1 -1 0 1 4
B 1 0 1
Spectra(Ly,) {0,2,2,2,4,6} {2,2,2,4,4,4,6,8} {0,4,4,8}

where G, := G(t) € D and G, := G(s) € D. Consider a sequence of finitely many positive
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integers 1,2, ..., m, we have a sequence of digraphs
G CG, C---CGp.

For each digraph G,, we denote its corresponding chain group to be ©,,(G;), and the n-
boundary operator of G, is denoted by 9!, : Q,,(G;) — Q,,—1(G:),Vn > 0.

Similarly, as in persistent homology, a sequence of chain complexes can be denoted as

o1 ol

9; o1

ol al
QL =5 o o S0l O Q5 = QY
oo I I !

9411 a2 92 032 02 Fors
02, 5 02 s S0 S 0 S 2 S 02

(2.62)

! ! I I !

om am om om om am

q+1 n 3 2 1 0

Qar, — Qr = ... = Qr — Qr — QFr — Q7

For the sake of simplicity, we use €2, to represent 2,,(G;). Suppose a subset of Q2 whose
. . t .

boundary is in 2}, _, as:

Qr={aeQ |0acQ |} (2.63)

The persistent n-boundary operator is denoted as 0%° : Q% — Q! _,, and its corresponding
adjoint operator is (05%)* : Qf _, — QbLs. Therefore, the persistent n-th path Laplacian

operator AL : Qf — Qf defined along the filtration is:
Abs =9bs, (Bl%,) + 05 oL, (2.64)

Since A% inherits the inner product from 3.7 ,, then the adjoint map (52:11)* is well de-

fined. Intuitively, the matrix representation of A%L* is

L = By PTH(B)" + (B,)' By, (2.65)

where P~ is the associated inner product matrix of 2% | with arbitrary basis. Moreover,

assume the dimension of L%* is N, then the spectra of L’;* that are arranged in ascending
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order can be displayed as:
SpeCtra<L£{8) = {(/\1)257 (/\2)257 B (AN)Z’S}-

Note that the smallest non-harmonic spectra of L%* is denoted as (\;)%*. We call the mul-

tiplicity of zero spectra of L);* to be persistent n-th Betti number 3;;* from G, to G..

Bh* = nullity (L*) = the number of zero eigenvalues (i.e., harmonic eigenvalues) of L%*.
(2.66)
Distanced-based filtration Specifically, suppose G(w) = (V, E,w) is a weighted di-
graph, where V' is the set of the vertices and E is the set of the directed edges. Assume w
is a weight function w : £ — R. For example, if V' is in the Euclidean space, then a digraph
G(w) is a geometric digraph (a geometric digraph is a digraph in which the vertices are
embedded as points in the Euclidean space, and the edges are embedded as non-crossing
directed line segments). For any (i,j) € E where ¢,j € V, we define w(i,j) = ||i — j|,
where || - || is a Euclidean metric. Hence, for every 6 € R, a digraph can be described as
G’ = (V,E°) = (V,{e € E : w(e) < §}), and a filtration of digraphs can be described as
{G° = G }sep.

Therefore, the persistent n-th path Laplacian matrix defined on the filtration is
Ly = Byl P (BT + (B)' B, (2.67)
where its corresponding Betti numbers and spectra can be expressed as:

62’6' = nullity(Lff’) = the number of zero eigenvalues (i.e., harmonic eigenvalues) of Lfg‘sl.

(2.68)

Spectra(L3”) = {(A)E7, (A)37 -+, ()37 ). (2.69)

n n

Notably, the Fiedler value (i.e., spectral gap) of L% is widely used in many other areas
such as physics and geography, which is denoted as A%, As shown below, it is sensitive

to both topological and geometric changes.
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Moreover, it is worth to mention that isolated points (vertices) can be either included
in the digraphs (under the distance-based filtration) or removed from the digraphs (under

the distanced-based filtration with removal of isolated points).
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CHAPTER 3

METHODS ON MATHEMATICAL MODELING OF VIROLOGY

3.1 Genomics Analysis

3.1.1 Sequence Alignment

Sequence alignment is a method in which one can arrange DNA, RNA, or amino acid
sequences to identify their similar regions [65]. Such similar regions may arise from func-
tional, structural, geometrical, or evolutionary similarities. Though sequence alignment
offers the best accuracy, it is not practical to be used for a large sample size. There are two
main categories of sequence alignment, namely pair-wise sequence alignment and mul-
tiple sequence alignment. The former only compares two sequences at a time, while the
latter compares many sequences. There are many popular tools for sequence alignment
such as BLAST (Basic Local Alignment Search Tool) for pair-wise alignment and MAFFT,
Clustal Omega, ClustalW, and MUSCLE, for multiple sequence alignment. The following

section describes BLAST first followed by several multiple sequence alignment tools.

3.1.1.1 Pairwise Sequence Alignment

One of the popular pair-wise sequence alignment tools is BLAST. BLAST is a local sim-
ilarity search tool that is commonly used to find similar DNA, RNA, and amino acid
sequences to the sequence in question. BLAST was created in 1990 based on the k-tuple
method, and has since been implemented in the GenBank, and had numerous updates to
increase efficiency and accuracy. k-tuple method [66] is a fast heuristic method for pair-
wise alignment and is commonly used as an initial step for a large sample size. Similarity
score, S;; between sequences i and j is defined as the number of k-tuple matches in the

best pairwise alignment minus a fixed gap penalty term. For DNA and RNA, £ usually
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ranges from 2 to 4, and for amino acids, k is 1 or 2. S;; is calculated as the number of
identities divided by the number of residues compared between ¢ and j. The distance is

defined as,
_ Oy
100°

dij =1 (3.1)

Note that this method does not guarantee optimal alignment, but it is a fast heuristic
method and can be used for the initialization of BLAST and multiple sequence alignment.

BLAST begins by first creating a list of k-letter words. It then searches for possible
matching k-letter words in the databank and scores them, and any words that score above
a threshold are kept. The high-scoring words are kept in a search tree. This process is then
extended to high scoring pairs (HSPs), which also looks for similar words, rather than
only looking at exact matching words. After searching for HSPs, the significance of the
HSPs score is considered by utilizing Gumbel extreme value distribution (EVD). Further
details can be found in the literature [67, 68]. The GenBank tutorial can be found in Ref.
[69]. As a basic tool for sequence alignment, it is utilized to detect, identify, or search
sequences in a database. For example, similar coronavirus strands in other organisms,
such as that of pangolins [70, 71] and bats[72] were found. This tool is also used to detect

SARS-CoV-2 virus in the environment[73, 74] such as waste waters[75, 76].

3.1.1.2 Multiple Sequence Alignment (MSA)

Unlike pair-wise sequence alignment, MSA arranges 3 or more DNA, RNA, or protein
sequences by identical regions. Through multiple sequence alignment, one can further
analyze sequence homology to find evolutionary origins. In many cases, one uses a ref-
erence sequence, which is the first sequenced data, to observe mutation in SARS-CoV-2
genome [77]. There are several popular tools, Clustal[78], MUSCLE[79], MAFFTI80, 81],

etc.
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Clustal Clustal is a series of multiple sequence alignment tools for sequence analysis.
With the first version Clustal released in 1988[78], its package has been developed for
several generations based on different methods. ClustalW is the third generation and
is updated to ClustalW2 currently, which aligns sequences with the best similarity score
tirst, and progressively aligns more distant scores[82, 83]. This is achieved by first ob-
taining a rough pairwise sequence alignment using the k-tuple method [66], followed
by a neighbor-joining method [84], which uses midpoint rooting to create a guided tree.
ClustalW2 is used as the basis for global alignment.

As for Clustal Omega, unlike the ClustalW, it uses a guided tree approach, rather
than a progressive alignment method. Clustal Omega begins with first producing a pair-
wise alignment using the k-tuple method. This, however, does not guarantee finding
optimal alignment, but it is time-efficient. Then, the sequences are clustered using the
mBed method [85], which calculates pairwise distance using the embedding method. Af-
terward, K-means clustering is used to further cluster the sequence. Then, a guided
tree is formed utilizing the UPGMA method [86]. Lastly, MSA is produced using the
HHAIlign package from HH-Suite [86]. Clustal Omega’s advantage comes from the large-
scale MSA. The accuracy and time complexity are average for a low number of samples.
For a large number of samples with a long sequence, Clustal Omega produces high ac-
curacy and is time-efficient. ClustalW is the updated version of the original Clustal MSA

tool.

Multiple alignment using fast Fourier transform (MAFFT) MAFFT is a MSA package
based on fast Fourier transform (FFT). Given two sequences v; and v,, the correlation
cy(s) of volume between the two sequences with positional lag of s sites can be defined as
co(s) = > 1 (n)da(n + s)
1<n<N,1<n4s<M
where 0, and 0, are the FFT of the two sequences. If homologous regions exists, through

Fourier analysis, there will be a peak in similar region. For amino acid sequences, MAFFT
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also calculates correlation between polarity:
cols) = Z p1(n)pa(n + s)
1<n<N,1<n+s<M
where p(s) is the polarity of each amino acid, N is the length of v;, and A/ is the length of

ve. Then, a scoring function can be calculated through the sum of the two correlations

c(s) = cp(8) + cy(s).

To reduce the computational complexity, only peaks above some threshold are consid-
ered. Note that the peak does not tell the location of the homologous region directly,
and only shows the lag. Therefore, neighboring regions at the peak must be analyzed

carefully. Further details of MAFFT can be found in the literature [80, 81].

3.1.2 Single Nucleotide Polymorphism Calling

Single nucleotide polymorphism (SNP) calling measures the genetic variations between
different members of a species. Establishing the SNP calling method to the investigation
of the genotype changes during the transmission and evolution of SARS-CoV-2 is of great
importance [21, 25]. By analyzing the rearranged genome sequences, SNP profiles, which
record all of the SNP positions in teams of the nucleotide changes and their corresponding
positions, can be constructed. The SNP profiles of a given SARS-CoV-2 genome isolated
from a COVID-19 patient capture all the differences from a complete reference genome

sequence and can be considered as the genotype of the individual SARS-CoV-2.

3.1.3 Jaccard Distance of SNP profiles

In this work, we use the Jaccard distance to measure the similarity between SNP profiles

and compare the difference between the SNP variant profiles of SARS-CoV-2 genomes.
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The Jaccard similarity coefficient is defined as the intersection size divided by the

union of two sets A and B [87]:

|AnB| AN B
TAB) = 0B “ AT B [ANB|

(3.2)

The Jaccard distance of two sets A and B is scored as the difference between one and the

Jaccard similarity coefficient and is a metric on the collection of all finite sets:

AUB|—|ANB
(A B)=1— J(AB) = | \Aw‘m | (3.3)

Therefore, the genetic distance of two genomes corresponds to the Jaccard distance of
their SNP profiles.

In principle, the Jaccard distance of SNP profiles takes account of the ordering of
SNP positions, i.e., transmission trajectory, when an appropriate reference sample is se-
lected. However, one may fail to identify the infection pathways from the mutual Jaccard
distances of multiple samples. In this case, the dates of the sample collection provide
key information. Additionally, clustering techniques, such as k-means, UMAP, and t-
distributed stochastic neighbor embedding (t-SNE), enable us to characterize the spread

of COVID-19 onto the communities.

3.1.4 k-nearest Neighbors

The k-nearest neighbors algorithm (k-NN) is a non-parametric technique proposed by
Thomas Cover and P. E. Hart in 1967 [88]. k-NN can be used for solving both regression
and classification problems [89], and it is sensitive to the local structure of the data. The
flowchart of the k-NN algorithm can be found in Figure 3.1. The features of the training
set is {x;}, with x; € R™, k shows the number of the nearest neighbors, and x € R™ is
a feature representation of the training set. Different distance metrics can be employed
in the k-NN algorithm, such as Euclidean distance, Manhattan distance, Minkowski dis-

tance, Chebyshev distance, natural log distance, generalized exponential distance, gener-
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alized Lorentzian distance, Canberra distance, quadratic distance, and Mahalanobis dis-

tance.

—’( Input feature vector x)—>( Set k )1—
¥

( Compute the distance between x and x; )

(Sort the distance values in an ascending ordeD

( Choose the top k& rows from the sorted ma})

( If Classification ) ( If Regression )

Assign the label of x; based Assign the label of x; based
on the most frequent label of k rows on the average label of k rows

\ /
Yes Is the performance of No
- the model satisfying? /
Figure 3.1: The flowchart of k-NN algorithm. The features of the training set is {x;}",

with x; € R™, k shows the number of the nearest neighbors, and x € R™ is a feature
representation of the training set.

3.1.5 k-means Clustering

k-means clustering is an unsupervised learning algorithm, aiming to partition a set of

observations into k subsets or clusters. It typically partitions a given dataset
X = {xlax%”' y Lny w0 7xN})xn € Rd

into k different clusters {C},Cs,--- ,Ci},k < N such that the specific clustering criteria
are optimized. The standard procedure of k-means clustering method aims to obtain the
optimal partition for a fixed number of clusters. First, we randomly pick k£ points as
the cluster centers and then assign each data to its nearest cluster. Next, we calculate
the within-cluster sum of squares (WCSS) defined below to update the cluster centers

iteratively.

K
Z Z 2 — |3, (3.4)

i=1 z;,€C}
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where py, is the mean value of the points located in the k-th cluster C}. Here, || - |2 de-
notes the L, distance. It is noted that the k-mean clustering method described above aims
to find the optimal partition for a fixed number of clusters. However, seeking the best
number of clusters for the SNP profiles is essential as well. In this work, by varying the
number of clusters k, a set of WCSS with its corresponding number of clusters can be
plotted. The location of the elbow in this plot will be taken as the optimal number of
clusters. Such a procedure is called the Elbow method which is frequently applied in the
k-means clustering problem.

Specifically, in this work we apply the k-means clustering with the Elbow method for
the analysis of the optimal number of the subtypes of SARS-CoV-2 SNP profiles. The
pairwise Jaccard distances between different SNP profiles are considered as the input

teatures for the k-means clustering method.

3.2 Mathematical-assisted Machine Learning Models in SARS-CoV-2

In this section, the workflow of the deep learning-based BFE change predictions of protein-
protein interactions induced by mutations for the present SARS-CoV-2 variant analysis
and prediction will be firstly introduced, which includes three steps as shown in Fig-
ure 3.2: (1) Data collection and pre-processing; (2) training data preparation; (3) feature
generations of protein-protein interaction complexes; (4) predictive models of protein-

protein interactions.

3.2.1 Data Collection and Pre-processing

The first step is to pre-process the original SARS-CoV-2 sequences data. In this step, a
total of 1,983,328 complete SARS-CoV-2 genome sequences with high coverage and ex-
act collection date are downloaded from the GISAID database [90] ( https://www.gisa
id.org/) as of August 05, 2021. Complete SARS-CoV-2 genome sequences are available
from the GISAID database [90]. Next, the 1,983,328 complete SARS-CoV-2 genome se-
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Figure 3.2: Illustration of genome sequence data pre-processing and BFE change predic-
tions.

quences were rearranged according to the reference genome downloaded from the Gen-
Bank (NC_045512.2)[91], and multiple sequence alignment (MSA) is applied by using
Cluster Omega with default parameters. Then, single nucleotide polymorphism (SNP)
genotyping is applied to measure the genetic variations between different isolates of
SARS-CoV-2 by analyzing the rearranged sequences [21, 92], which is of paramount im-
portance for tracking the genotype changes during the pandemic. The SNP genotyping
captures all of the differences between patients” sequences and the reference genome,
which decodes a total of 28,865 unique single mutations from 1,983,328 complete SARS-
CoV-2 genome sequences. Among them, 724 non-degenerate mutations on the S protein
RBD (S protein residues from 329 to 530) are detected. In this work, the co-mutation anal-
ysis is more crucial than the unique single mutation analysis. Notably, the SARS-CoV-2
unique single mutations in the world are available at Mutation Tracker. The analysis of

RBD mutations is available at Mutation Analyzer.
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3.2.2 Preparation of Machine learning Datasets

Dataset is important to train accurate machine learning models. Both the BFE changes
and enrichment ratios describe the effects on the binding affinity of protein-protein inter-
actions. Therefore, integrating both kinds of datasets can improve the prediction accu-
racy. Especially, due to the urgency of COVID-19, the BFE changes of SARS-CoV-2 data
are rarely reported, while the enrichment ratio data via high-throughput deep mutations
are relatively easy to obtain. The most important dataset that provides the information for
binding free energy changes upon mutations is the SKEMPI 2.0 dataset [93]. The SKEMPI
2.0 is an updated version of the SKEMPI database, which contains new mutations and
data from other three databases: AB-Bind [94], PROXiMATE[95], and dbMPIKT [96].
There are 7,085 elements, including single- and multi-point mutations in SKEMPI 2.0.
4,169 variants in 319 different protein complexes are filtered as single-point mutations are
used for our TopNetTree model training. Moreover, SARS-CoV-2 related datasets are also
included to improve the prediction accuracy after a label transformation. They are all
deep mutation enrichment ratio data, mutational scanning data of ACE2 binding to the
receptor-binding domain (RBD) of the S protein [97], mutational scanning data of RBD
binding to ACE2 [98, 3], and mutational scanning data of RBD binding to CTC-445.2 and
of CTC-445.2 binding to the RBD [3]. Note that our training datasets used in the valida-
tion do not include the test dataset, which is a mutational scanning data of RBD binding

to ACE2.

3.2.3 Features Generalization

Once the data pre-processing and SNP genotyping are carried out, we will firstly pro-
ceed with the training data preparation process, which plays a key role in reliability and
accuracy. A library of 130 antibodies and RBD complexes, as well as an ACE2-RBD com-
plex, are obtained from Protein Data Bank (PDB). RBD mutation-induced BFE changes of

these complexes are evaluated by the following machine learning model. According to
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the emergency and the rapid change of RNA virus, it is rare to have massive experimental
BFE change data of SARS-CoV-2, while, on the other hand, next-generation sequencing
data is relatively easy to collect. In the training process, the dataset of BFE changes in-
duced by mutations of the SKEMPI 2.0 dataset [93] is used as the basic training set, while
next-generation sequencing datasets are added as assistant training sets. The SKEMPI 2.0
contains 7,085 single- and multi-point mutations and 4,169 elements of that in 319 dif-
ferent protein complexes used for the machine learning model training. The mutational
scanning data consists of experimental data of the binding of ACE2 and RBD induced
mutations on ACE2[97] and RBD[98, 3], and the binding of CTC-445.2 and RBD with
mutations on both protein[3].

Next, the feature generations of protein-protein interaction complexes are performed.
The element-specific algebraic topological analysis on complex structures is implemented
to generate topological bar codes [99, 100, 101, 4]. In addition, biochemistry and bio-
physics features such as Coulomb interactions, surface areas, electrostatics, et al., are

combined with topological features [102].

3.2.3.1 Generation of Topological Features for PPIs

Algebraic topology [100, 101] has had tremendous success in describing biochemical and
biophysical properties [4]. Element-specific and site-specific persistent homology can ef-
fectively simplify the structural complexity of protein-protein complex and extract the ab-
stract properties of the vital biological information in PPIs [40, 41]. The algebraic topologi-
cal analysis on PPIs is constructed based on a series of atom subsets of complex structures,
which are atoms of the mutation sites, A,,,, atoms in the neighborhood of the mutation site
within a cut-off distance 7, Amn(7), antibody atoms within r of the binding site, Aap(7),
antigen atoms within r of the binding site, A Ag(r), and atoms in the system that has atoms
of element type of {C, N, O}, Aqe(E). Additionally, a bipartition graph is introduced to

describe the antibody and antigen in PPIs. Then, molecular atoms construct point clouds
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for simplicial complex, which is a finite collection of sets of linear combinations of points.
We apply the Vietoris-Rips (VR) complex for dimension 0 topology, and alpha complex
for point cloud of dimensions 1 and 2 topology [4]. Overall, element-specific and site-
specific persistent homology is devised to capture the multiscale topological information
over different scales along a filtration [100] and is important for our machine learning

predictions.

Simplex and simplicial complex Given a set of independent i+1 points U = {ug, uy, ..., uy}
in RY, the convex combination is a point u = Zf:o a;u;, where ) . a; = 1 and «; > 0. The
convex hull of U is the collection of convex combinations of U, and a k-simplex ¢ is the
convex hull of k41 independent points U. For example, a 0-simplex is a point, a 1-simplex
is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A proper m-face of
the k-simplex is a subset of the k+1 vertices of a k-simplex with m 41 vertices forms a
convex hull in a lower dimension and m < k. The boundary of a k-simplex ¢ is defined

as a sum of all its (k—1)-faces as

k

8kU: Z(_1>i<u07"'7aia"'7uk>7 (35)

i=1
where (uo, ..., U;, ..., ux) is a convex hull formed by vertices of o excluding u,;. A simpli-
cial complex denotes by K is a collection of finitely many simplices forms a simplicial
complex. Thus, faces of any simplex in K are also simplices in K, and intersections of
any 2 simplices are only faces of both or an empty set. A k-simplex o = (u;, ..., u;,) is in
Vietoris-Rips complex R’ (U) if and only if B(u;;,7) N B(u;,, ) # 0 for j, ;' € [0, k] and is
in alpha complex A"(U) if and only if N, coB(ug,, 1) # 0.

Homology For a simplicial complex K, a k-chain ¢; of K is a formal sum of the k-
simplices in K defined as ¢, = > o0, where o; is the k-simplices and «; is coefficients.
a; can be in different fields such as R, Q, and Z. Typically, «; is chosen to be Z,, which

is {—1,0,1} and forms an Abelian group C (K, Z,). Then, the boundary operator can be
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extended to a k-chain ¢, as
Okcr, = Z a; 00, (3-6)

such that 0, : C, — Ci_; and satisfies 0;_10, = 0, follows from that boundaries are
boundaryless. The chain complex is defined as a sequence of complexes by boundary

maps is called a chain complex

I oK) 2 O (K) 252 ol (k) 2 oK) 2 0., (3.7)

The k-homology group is the quotient group defined by taking k-cycle group module of
k-boundary group as
Hy, = Zy/ By, (3.8)

where Hj, is the k-homology group, and k-cycle group Zj, and the k-boundary group Bj,

are the subgroups of C}, defined as,

Z, = ker 0, = {C e C}, | OpCc = @},
(3.9)
Bk =1im ak+1 = {ak+10 | cE Ck+1}
The Betti numbers are defined by the ranks of kth homology group Hj, as 8, = rank(Hj).

B reflects the number of connected components, 3, reflects the number of loops, and (3,

reflects the number of cavities.

Filtration and Persistent Homology A filtration of a topology space K is a nested se-
quence of K such that
=Ky CKiC-CK,=K. (3.10)

Then, a sequence of chain complexes and a homology sequence are constructed on the

filtration. The pth persistent of kth homology group of K; are defined as
Hy? = 74 /(BT () 20), (3.11)

and the Betti numbers 3,7 = rank(H,"). These persistent Betti numbers are applied to

represent topological fingerprints.
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3.2.3.2 Generation of Residue-level Features for PPIs

Mutation site neighborhood amino acid composition Neighbor residues are the residues
within 10 A of the mutation site. Distances between residues are calculated based on
residue C,, atoms. Six categories of amino acid residues are counted, which are hydropho-
bic, polar, positively charged, negatively charged, special cases, and pharmacophore changes.
The count and percentage of the 6 amino acid groups in the neighbor site are regrading as
the environment composition features of the mutation site. The sum, average, and vari-
ance of residue volumes, surface areas, weights, and hydropathy scores are used but only

the sum of charges is included.

pKa shifts The pKa values are calculated by the PROPKA software [103], namely the
values of 7 ionizable amino acids, namely, ASP, GLU, ARG, LYS, HIS, CYS, and TYR. The
maximum, minimum, sum, the sum of absolute values, and the minimum of the absolute
value of total pKa shifts are calculated. We also consider the difference of pKa values
between a wild type and its mutant. Additionally, the sum and the sum of the absolute

value of pKa shifts based on ionizable amino acid groups are included.

Position-specific scoring matrix (PSSM) Features are computed from the conservation
scores in the position-specific scoring matrix of the mutation site for the wild type and the
mutant as well as their difference. The conservation scores are generated by PSI-BLAST

[104].

Secondary structure The SPIDER2 software is used to compute the probability scores
for residue torsion angle and residues being in a coil, alpha helix, and beta strand based

on the sequences for the wild type and the mutant [105].
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3.2.3.3 Generation of Atom-level Features for PPIs

Seven groups of atom types, including C, N, O, S, H, all heavy atoms, and all atom:s,
are considered when generating the element-type features. Meanwhile, other three atom
types, i.e., mutation site atoms, all heavy atoms, and all atoms, are used when generating

the general atom-level features.

Surface areas Atom-level solvent excluded surface areas are computed by ESES [106].

Partial changes Partial change of each atom is generated by pdb2pqr software [107]
using the Amber force field [108] for wild type and CHARMM force field [109] for mutant.
The sum of the partial charges and the sum of absolute values of partial charges for each

atomic group are collected.

Atomic pairwise interaction interactions Coulomb energy of the ith single atom is cal-

culated as the sum of pairwise coulomb energy with every other atom as

49
Ci - ke ) 3].2
Z Tij ( )
JJ#
where k. is the Coulomb’s constant, r;; is the distance of ith atom to jth atom, and ¢; is
the charge of ith atom. The van der Waals energy of the ith atom is modeled as the sum
of pairwise Lennard-Jones potentials with other atoms as
Vi, = Z 6[(@)12 _ 2(@)6]7 (3.13)
— Tij Tij
J:J#i
where ¢ is the depth of the potential well, and 7; is van der Waals radii.

In atomic pairwise interaction, 5 groups (C, N, O, S, and all heavy atoms) are counted

both for Coulomb interaction energy and van der Waals interaction energy.

Electrostatic solvation free energy Electrostatic solvation free energy of each atom is
calculated using the Poisson-Boltzmann equation via MIBPB [110] and are summed up

by atom groups.
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3.2.4 Models for the Binding Free Energy Change Prediction of Protein-protein Inter-
action on SARS-CoV-2

3.24.1 TopNet Model

In this section, we illustrate the construction of a topology-based network (TopNet) model
for the BFE change prediction of protein-protein interactions (PPIs) on SARS-CoV-2 stud-
ies. These approaches have been widely applied in studying protein-ligand and protein-
protein binding free energy predictions [41, 102]. Firstly, one ensemble method, gradient
boosting decision tree (GBDT), is studied as baselines in comparison to deep neural net-
work methods. The ensemble methods naturally handle correlation between descriptors
and are robust to redundant features. Therefore, they usually do not depend on a sophisti-
cated feature selection procedure and a complicated grid search of hyper-parameters. The
implemented GBDT is a function from the scikit-learn package (version 0.22.2.post1)[111].
The number of estimators and the learning is optimized for ensemble methods as 20000
and 0.01, respectively. For each set, 10 runs (with different random seeds) were done and
the average result is reported in this work. Considering a large number of features, the
maximum number of features to consider is set to the square root of the given descriptor
length for GBDT methods to accelerate the training process. The parameter setting shows
that the performance of the average of sufficient runs is decent.

A neural network is a network of neurons that maps an input feature layer to an out-
put layer. The neural network simulates a biological brain solves problems with numer-
ous neuron units by backpropagation to update weights on each layer. To reveal the
facts of input features at different levels and abstract more properties, one can construct
more layers and more neurons in each layer, which is known as a deep neural network.
Optimization methods for feedforward neural networks and dropout methods are ap-
plied to prevent overfitting. In 10-fold cross validations, the neural network model has a
slightly better performance than the GBDT model, where Pearson correlations for these

algorithms are 0.864 and 0.838 and root mean square errors are 1.019 kcal/mol and 1.063
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kcal/mol, respectively. Thus, we applied the deep neural network for predictions, vali-
dation, and comparison.

Deep learning algorithms A deep neural network is a neural network methods with
multi-layers (hidden layer) of neurons between the input and output layers. In each layer,
the single neuron gets fully connecting with the neurons in next layer. It should be pre-
serve the consistency of all labels when applying the model for mutation-induced BFE

change predictions. The loss function is constructed as following;:

N

1

argmin L(W, b) = argmin§ E (yi — flzs {W, b}))2 + A[|W]? (3.14)
Wb wb i=1

where N is the number of samples, f is a function of the feature vector x; parameterized
by a weight vector W and bias term b, and ) represents a penalty constant.
Optimization The backpropagation is applied to evaluated the loss function start from
the output layer and propagates backward through the network structure to update the
weight vector W and bias term b. According to that the gradient calculation is required,
we apply the stochastic gradient descent method with momentum which only evaluates
a small part of training data and can be considered as calculating exponentially weighted

averages, which is given as

Vi = BVier + nVw, L(W;, b;)
(3.15)
Wi =W, =V,
where W, is the parameters in the network, L(W;,b;) is the objective function, 7 is the
learning rate, X and y are the input and target of the training set, and § € [0,1] is a
scalar coefficient for the momentum term. The momentum term involved accelerates the
converging speed.
Dropout Fully connected layers possess a large number of degrees of freedom. This

can easily cause an over-fitting issue, while the dropout technique is an easy way of pre-

venting network over-fitting.[112] In the training process, hidden units are randomly set
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zero values to their connected neurons in the next layer. Suppose that a percentage of
neurons at a certain layer is chosen to be dropped during training. The number of com-
puted neurons of this layer is equal to the neuron number multiplied by a coefficient such
as 1-p, where p is the dropout rate. Then, in the testing process, the output of these layers
is computed by randomly dropouts the same rate of neurons, to approximate the network

in each training step.

3.2.4.2 TopNetmAb Model

In this section, the TopNet model trained with additional experimental data was intro-
duced to predict mAb binding free energy changes [99]. Such a model is called Top-
NetmAb model. Persistent homology is the main workhorse for TopNetmAb, but auxil-
iary features inherited from our earlier TopNetTree [40] are utilized. The detailed descrip-
tions of dataset and machine learning model are found in the literature [41, 22, 99] and

are available at TopNetmAb.

3.2.5 Other Models

As mentioned above, we constructed a TopNet model for the BFE change prediction of
protein-protein interactions (PPIs) on SARS-CoV-2 studies. A topology-based GBT model
(TopBGT) is also developed in the present work by replacing Net in the TopNet model
with GBT. Both TopNet and TopGBT include a set of auxiliary features inherited from our
earlier TopNetTree [40] and TopNetmAb [99] to enhance their performance.
Additionally, to evaluate the performance of persistent Laplacian (Lap) for PPIs, we
construct persistent Laplacian-based GBT (LapGBT) and persistent Laplacian-based deep
neural network (LapNet). Note that unlike TopNet and TopGBT, LapGBT and LapNet
employ only persistent Laplacian features extracted from protein structures. Therefore,

their performance depends purely on persistent Laplacian.

70


https://github.com/WeilabMSU/TopNetmAb

Moreover, TopLapGBT and TopLapNet are constructed by adding persistent Lapla-
cian features to TopGBT and TopNet, respectively. Furthermore, the consensus of GBT
and Net predictions are also used for validations, denoted as TopNetGBT and LapNet-
GBT, respectively. Finally, the consensus of TopLapNet and TopLapGBT is called TopLap-
NetGBT.
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CHAPTER 4

APPLICATIONS IN TOPOLOGICAL LAPLACIANS

4.1 Persistent Laplacians

Graph theory, a branch of discrete mathematics, concerns the relationship between ob-
jects. These objects can be either simple vertices, i.e., nodes and/or points (zero sim-
plexes), or high-dimensional simplexes. Here, the relationship refers to connectivity with
possible orientations. Graph theory has many branches, such as geometric graph theory,
algebraic graph theory, and topological graph theory. The study of graph theory draws
on many other areas of mathematics, including algebraic topology, knot theory, algebra,
geometry, group theory, combinatorics, etc. For example, algebraic graph theory can be
investigated by using either linear algebra, group theory, or graph invariants. Among
them, the use of learning algebra in graph study leads to spectral graph theory.
Precursors of the spectral theory have often had a geometric flavor. An interesting
spectral geometry question asked by Mark Kac was “Can one hear the shape of a drum?”
[10]. The Laplace-Beltrami operator on a closed Riemannian manifold has been inten-
sively studied [54]. Additionally, eigenvalues and isoperimetric properties of graphs are
the foundation of the explicit constructions of expander graphs [113]. Moreover, the study
of random walks and rapidly mixing Markov chains utilized the discrete analog of the
Cheeger inequality [114]. The interaction between spectral theory and differential geom-
etry became one of the critical developments [115]. For example, the spectral theory of
the Laplacian on a compact Riemannian manifold is a central object of de Rham-Hodge
theory [54]. Note that the Hodge Laplacian spectrum contains the topological informa-
tion of the underlying manifold. Specifically, the harmonic part of the Hodge Laplacian
spectrum corresponds to topological cycles. Connections between topology and spec-

tral graph theory also play a central role in understanding the connectivity properties
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of graphs [116, 117, 118, 119]. Similarly, as the topological invariants revealing the con-
nectivity of a topological space, the multiplicity of 0 eigenvalues of a 0-combinatorial
Laplacian matrix is the number of connected components of a graph. Indeed, the num-
ber of ¢-dimensional holes can also be unveiled from the number of 0 eigenvalues of the
g-combinatorial Laplacian [45, 53, 46, 120]. Nonetheless, spectral graph theory offers ad-
ditional non-harmonic spectral information beyond topological invariants.

The traditional topology and homology are independent of metrics and coordinates
and thus, retain little geometric information. This obstacle hinders their practical appli-
cability in data analysis. Recently, persistent homology has been introduced to overcome
this difficulty by creating low-dimensional multiscale representations of a given object
of interest [121, 101, 122, 43, 123, 124]. Specifically, a filtration parameter is devised to
induce a family of geometric shapes for a given initial data. Consequently, the study of
the underlying topologies or homology groups of these geometric shapes leads to the
so-called topological persistence. Like the de Rham-Hodge theory which bridges differ-
ential geometry and algebraic topology, persistent homology bridges multiscale analysis
and algebraic topology. Topological persistence is the most important aspect of the pop-
ular topological data analysis (TDA) [125, 126, 127, 128] and has had tremendous success
in computational biology [129, 44] and worldwide competitions in computer-aided drug
design [6].

Graph theory has been applied in various fields [130]. For example, spectral graph the-
ory is applied to the quantum calculation of 7-delocalized systems. The Hiickel method,
or Hiickel molecular orbital theory, describes the quantum molecular orbitals of m-electrons
in m-delocalized systems in terms of a kind of adjacency matrix that contains atomic con-
nectivity information [131, 132]. Additionally, the Gaussian network model (GNM) [133]
and anisotropic network model (ANM) [134] represent protein C, atoms as an elastic
mass-and-spring network by graph Laplacians. These approaches were influenced by

the Flory theory of elasticity and the Rouse model [135]. Like traditional topology, tra-
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ditional graph theory extracts very limited information from data. In our earlier work,
we have proposed multiscale graphs, called multiscale flexibility rigidity index (mFRI),
to describe the multiscale nature of biomolecular interactions [136], such as hydrogen
bonds, electrostatic effects, van der Waals interactions, hydrophilicity, and hydrophobic-
ity. A multiscale spectral graph method has also been proposed as generalized GNM
and generalized ANM [57]. Our essential idea is to create a family of graphs with dif-
ferent characteristic length scales for a given dataset. We have demonstrated that our
multiscale weighted colored graph (MWCG) significantly outperforms traditional spec-
tral graph methods in protein flexibility analysis [137]. More recently, we demonstrate
that our MWCG outperforms other existing approaches in protein-ligand binding scor-
ing, ranking, docking, and screening [138].

The objective of the present work is to introduce persistent spectral graph as a new
paradigm for the multiscale analysis of the topological invariants and geometric shapes
of high-dimensional datasets. Motivated by the success of persistent homology [44] and
multiscale graphs [138] in dealing with complex biomolecular data, we construct a fam-
ily of spectral graphs induced by a filtration parameter. In the present work, we con-
sider the radius filtration via the Vietoris-Rips complex while other filtration methods
can be implemented as well. As the filtration radius is increased, a family of persistent
g-combinatorial Laplacians are constructed for a given point-cloud dataset. The diago-
nalization of these persistent g-combinatorial Laplacian matrices gives rise to persistent
spectra. It is noted that our harmonic persistent spectra of 0-eigenvalues fully recover the
persistent barcode or persistent diagram of persistent homology. Additional information
is generated from non-harmonic persistent spectra, namely, the non-zero eigenvalues and
associated eigenvectors. In a combination with a simple machine learning algorithm, this
additional spectral information is found to provide a powerful new tool for the quantita-

tive analysis of molecular data.
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4.1.1 Benzene Structure Analysis

In the past few years, we have developed a multiscale spectral graph method such as
generalized GNM and generalized ANM [136, 57], to create a family of spectral graphs
with different characteristic length scales for a given dataset. Similarly, in our persis-
tent spectral theory, we can construct a family of spectral graphs induced by a filtration
parameter. Moreover, we can sum over all the multiscale spectral graphs as an accumu-
lated spectral graph. Specifically, a family of £;*° matrices, as well as the accumulated
combinatorial Laplacian matrices, can be generated via the filtration. By analyzing the
persistent spectra of these matrices, the topological invariants and geometric shapes can
be revealed from the given input point-cloud data.

The spectra of £5°, £i*°, and £;*° mentioned above carry similar information on
how the topological structures of a graph are changed during the filtration. Benzene
molecule (CsHp), a typical aromatic hydrocarbon which is composed of six carbon atoms
bonded in a planar regular hexagon ring with one hydrogen joined with each carbon
atom. It provides a good example to demonstrate the proposed PST. Figure 4.1 illustrates
the filtration of the benzene molecule. Here, we label 6 hydrogen atoms by H;, H, Hs,
H,, H;, and Hg, and the carbon adjacent to the labeled hydrogen atoms are labeled by
Cy, Cy, Cs, Cy, C5, and Cg, respectively. Figure Figure 4.1 b depicts that when the radius
of the solid sphere reaches 0.54 A, each carbon atom in the benzene ring is overlapped
with its joined hydrogen atom, resulting in the reduction of 3;*° to 6. Moreover, once
the radius of solid spheres is larger than 0.70 A, all the atoms in the benzene molecule
will connect and constitute a single component which gives rise ;™ = 1. Furthermore,
we can deduce that the C-C bond length of the benzene ring is about 1.40 A, and the C-
H bond length is around 1.08 A, which are the real bond lengths in benzene molecule.
Figure Figure 4.1 ¢ shows that a 1-dimensional hole (1-cycle) is born when the filtration
parameter 7 increase to 0.70 A and dead when r = 1.21 A. In Figures Figure 4.1 b and

Figure 4.1 ¢, it can be seen that variants of O-persistent 0-combinatorial Laplacian and 1
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-combinatorial Laplacian matrices based on filtration give us the identical 35 and g1’

information respectively.
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Figure 4.1: Benzene molecule and its topological changes during the filtration process.

The C-C bond length of benzene is 1.39 A, and the C-H bond length is 1.09A. Due
to the perfect hexagon structure of the benzene ring, we can calculate all of the distances
between atoms. The shortest and longest distances between carbons and the hydrogen
atoms are 1.09 A and 3.87 A. In Figure Figure 4.1a, a total of 10 changes of (\,);*° values
is observed at various radii. Table 4.1 lists all the distances between atoms and the values
of radii when the changes of (\;)5™° occur. It can be seen that the distance between atoms
approximately equals twice of the radius value when a jump of (\;)5"° occurs. Therefore,
we can detect all the possible distances between atoms with the nonzero spectral infor-

mation. Moreover, in Figure Figure 4.1 b, the values of the smallest nonzero eigenvalues

of £i°, £, and L;t? change concurrently.
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Table 4.1: Distances between atoms in the benzene molecule and the radii when the

changes of (A;);™ occur (Values increase from left to right).

Type Cl'Hl Cl'CQ C2'H1 Cl'Cg Hl-Hg Cl-C4 C3-H1 C4-H1 Hl-Hg Hl-H4
Distance (A) 1.09 1.39 2.15 241 248 278 3.39 3.87 430 4.96

r (A) 054 070 1.08 121 124 140 170 194 215 249
1 2 - ......: 1 0 -
25
101 0.8+
20
° &1 0.6
1o 15 2 e
o~ ~o 6 3*‘1 ~
S = 0.4
T
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- 2- ’
0 - 0.0
0 1 2 3 0 1 2 3 0 1 2 3

Figure 4.2: Persistent spectral analysis of the benzene molecule induced by filtration pa-
rameter . Blue line, orange line, and green line represent £5™°, £i*°, and £} respec-
tively. (a) Plot of the smallest non-zero eigenvalues with radius filtration under £{™° (blue
line), ﬁ6+0 (red line), and £ (green line). Total 10 jumps observed in this plot which rep-
resent 10 possible distances between atoms. (b) Plot of the number of zero eigenvalues
(85+0) with radius filtration under £5°, £i+°, and £;*° (three spectra are superimposed).
When r» = 0.00 A, 12 atoms are disconnected with each other. After r = 0.54 A, H atoms
and their adjacent C atoms are connected with one another resulting in 5, = 6. With
r keeps growing, all of the atoms are connected with one another and then 3;™ = 1.
(c) Plot of the number of zero eigenvalues (3] ™) with radius filtration under £;™°. When
r=0.70 A, a 1-cycle created since all of the C atoms are connected and form a hexagon, re-

sulting in 3]0 = 1. After the radius reached 1.21 A, the hexagon disappears and ;+° = 0.

4.1.2 Fullerene Analysis and Prediction

In 1985 Kroto et all discovered the first structure of Cgy [139], which was confirmed by
Kratschmer et al in 1990 [140]. Since then, the quantitative analysis of fullerene molecules
has become an interesting research topic. The understanding of the fullerene structure-
function relationship is important for nanoscience and nanotechnology. Fullerene molecules
are only made of carbon atoms that have various topological shapes, such as the hollow
spheres, ellipsoids, tubes, or rings. Due to the monotony of the atom type and the vari-

ety of geometric shapes, the minor heterogeneity of fullerene structures can be ignored.
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The fullerene system offers a moderately large dataset with relatively simple structures.
Therefore, it is suitable for validating new computational methods because every single
change in the spectra is interpretable. The proposed persistent spectral theory, i.e., per-
sistent spectral analysis, is applied to characterize fullerene structures and predict their
stability.

All the structural data can be downloaded from CCL.NET Webpage. This dataset
gives the coordinates of fullerene carbon atoms. In this section, we will analyze fullerene

structures and predict the heat of formation energy.

4.1.2.1 Fullerene Structure Analysis

The smallest member of the fullerene family is Cy, molecule with a dodecahedral cage
structure. Note that 12 pentagons are required to form a closed fullerene structure. Fol-
lowing the Euler’s formula, the number of vertices, edges, and faces on a polygon have
the relationship V' — E + F' = 2. Therefore, the 20 carbon atoms in the dodecahedral cage
form 30 bonds with the same bond length. The Cy is the only fullerene smaller than Cg
that has the molecular symmetry of the full icosahedral point group 1;,. Ce is a molecule
that consists of 60 carbon atoms arranged as 12 pentagon rings and 20 hexagon rings.
Unlike Cy, Cgp has two types of bonds: 6 : 6 bonds and 6 : 5 bonds. The 6 : 6 bonds
are shorter than 6 : 5 bonds, which can also be considered as “double bond" [141]. Cg is
the most well-know fullerene with geometric symmetry /. Since Cyy and Cg are highly
symmetrical, they are ideal systems for illustrating the persistent spectral analysis.
Figure 4.3 (a) illustrates the radius filtration process built on Cy. As the radius in-
creases, the solid balls corresponding to carbon atoms grow, and a sequence of £’ ma-
trices can be defined through the overlap relations among the set of balls. At the initial
state (r = 0.00 A), all of the atoms are isolated from one another. Therefore, L0 is a zero
matrix with dimension 20 x 20. Since the Cy, molecule has the same bond length which

can be denoted as [(Cy), once the radius of solid balls is greater than [(Cy), all of the
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Figure 4.3: (a) Illustration of filtration built on fullerene Cy. Each carbon atom of Cy is
plotted by its given coordinates, which are associated with an ever-increasing radius r.
The solid balls centered at given coordinates keep growing along with the radius filtration
parameter. (b) The accumulated £;"° matrix for Cy. For clarity, the diagonal terms are
set to 0.

balls are overlapped, which makes the system a singly connected component. Figure 4.3
(b) depicts the accumulated £6+0 for Cyy. For Cg, the accumulated £6+0 is described in
Figure 4.4 (a). Figure 4.4 (b)-(f) are the plots of £;*? under different filtration r values.
The blue cell located at the ith row and jth column means the balls centered at atom i and
atom j connected with each other, i.e., a 1-simplex formed with its vertex to be i and j.
When the radius filtration increases, more and more bluer cells are created. In Figure 4.4
(f), the color of cells, except the cells located in the diagonal, turns to blue, which means
all of the carbon atoms are connected with one another at r = 3.6 A. For clarity, we set the
diagonal terms to 0.

In Figure 4.5, the blue solid line represents Cy properties and the dash orange line
represents Cg, properties. For Figure Figure 4.5 a, the blue line drops at »r = 0.72 A,
which means the bond length of Cy is around 1.44A. The orange line drops at r =
0.68 A and 0.72 A, which means the “double bond" length of Cg is around 1.36 A and the
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Figure 4.4: Illustration of persistent multiscale analysis of Cg, in terms of 0-combinatorial
Laplacian matrices (b)-(f) and their accumulated matrix (a) induced by filtration. As the
value of filtration parameter r increases, high-dimensional simplicial complex forms and
grows accordingly. (b), (c), (d), (e), and (d) demonstrate the 0-combinatorial Laplacian
matrices (i.e., the connectivity among Cg, atoms) at filtration » = 1.0 A, 1.5 A, 25A,3.0A,
and 3.6 A, respectively. The blue cell located at the ith row and jth column represents the
balls centered at atom ¢ and atom j connected with each other. For clarity, the diagonal
terms are set to 0 in all plots.

6 : 5 bond length is around 1.44 A. Moreover, the total number of “double bond" is 30,
yielding 5% = 30 when the radius of solid balls is over 0.68 A. In conclusion, one can
deduce the number of different types of bonds as well as the bond length information
from the number of zero eigenvalues (i.e., 3, ") under the radius filtration. Furthermore,
the geometric information can also be derived from the plot of (\,);*’. Each jump in
Figure Figure 4.5 d at a specific radius represents the change of geometric and topological
structure. The smallest non-zero eigenvalue (\;)5™ of £5+° matrices for Cyy changes 5
times in Figure Figure 4.5 d, which means Cy, has 5 different distances between carbon

atoms. Furthermore, as (;\2)6“) of Cy keeps increasing, the smallest vertex connectivity of

the connected subgraph continues growing and the topological structure becomes steady.
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As can be seen in the right-corner chart of Figure 4.3, the carbon atoms will finally grow
to a solid object with a steady topological structure.

Figure Figure 4.5 b depicts the changes of Betti 1 value 3;*° (i.e., the number of zero
eigenvalues for £7°) under the filtration r. Since Cy has 12 pentagonal rings, 57 jumps
to 11 when radius r equals to the half of the bond length of /(Cy). These eleven 1-cycles
disappear at r = 1.17A. There are 12 pentagons and 20 hexagons in Cg, which results
in 3% = 12atr = 0.72A, ;™" = 31 at r = 1.17A. All of the pentagons and hexagons
disappear at r = 1.22 A.

As the filtration process, even more structure information can be derived from the
number of zero eigenvalues of £5™° (i.e., 35°) in Figure Figure 4.5 c¢. For Cy, 3570 = 1
when r = 1.17 A, which corresponds to the void structure in the center of the dodecahe-
dral cage. The void disappears at r = 1.65 A since a solid structure is generated at this
point. For fullerene Cg, 20 hexagonal cavities and a center void exist from 1.12 Ato1.40A
yielding 8537 = 21. As the filtration goes, hexagonal cavities disappear which results 35+’
decrease to 1. The central void keeps alive until a solid block is formed at » = 3.03A. In a

nutshell, we can deduce the number of different types of bonds, the bond length, and the

topological invariants from the present persistent spectral analysis.

4.1.2.2 Fullerene stability prediction

Having shown that the detailed fullerene structural information can be extracted into
the spectra of £, we further illustrate that fullerene functions can be predicted from
their structures by using our persistent spectral theory in this section. Similar structure-
function analysis has been carried out by using other methods [136, 142, 143]. For small
tullerene molecule series Cy to Cgy, with the increase in the number of atoms, the ground-
state heat of formation energies decrease [144, 1]. The left chart in Figure 4.6 describes
this phenomenon. Similar patterns can also be found in the total energy (STO-3G/SCF

at MM3) per atom and the average binding energy of C,,. To analyze these patterns,
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Figure 4.5: Illustration of persistent spectral analysis of Cyy and Cg using the spectra of

L:0 (¢ = 1,2 and 3). (a) The number of zero eigenvalues of £, i.e., 3;*°, under radius

filtration. (b) The number of zero eigenvalues of £;, i.e., 3;™° under radius filtration. (c)

The number of zero eigenvalues of £57, i.e., 857 under radius filtration. (d) The smallest

non-zero eigenvalue (\;)5° under radius filtration. The radius grid spacing is 0.01 A.

many theories have been proposed. Isolated pentagon rule assumes that the most stable
fullerene molecules are those in which all the pentagons are isolated. Zhang et al. [1]

stated that fullerene stability is related to the ratio between the number of pentagons and

82



the number of carbon atoms. Xia and Wei [142] proposed that the stability of fullerene de-
pends on the average number of hexagons per atom. However, these theories all focused
on the pentagon and hexagon information. More specifically, they use topological infor-
mation to reveal the stability of fullerene. In contrast, we believe that the non-harmonic
persistent spectra can also model the structure-function relationship of fullerenes. We hy-
pothesize that the non-harmonic persistent spectra of £;"" matrices are powerful enough
to model the stability of fullerene molecules. To verify our hypothesis, we compute the
summation, mean, maximal, standard deviation, variance of its eigenvalues, and (;\2)6“)
of the persistent spectra of L™ over various filtration radii 7. We depict a plot with the
horizontal axis represents radius r and the vertical axis represents the particular spectrum

value, which is actually the same as Figure 4.5. Then we define the area under the plot of

spectra with a negative sign as

Ao == Ar, (4.1)

i=1

where 67 is the radius grid spacing, in Figure 4.5, 6r = 0.01 A. Here, a = Sum, Avg, Max,
Std, Var, Sec is the type index and thus, A{ represent the summation, mean, maximal,
standard deviation, variance, and the smallest non-zero eigenvalue (\;);™° of £5t° at i-th
radius step, respectively. The right chart in Figure 4.6 describes the area under the plot
of spectra and closely resembles that of the heat of formation energy. We can see that
generally the left chart and the middle chart show the same pattern. The integration of
(A2)5*0 decreases as the number of carbon atoms increases. However, the structural data
we used might not be the same ground-state data as in Ref. [1], which results in C3s do not
match the corresponding energy perfectly. Limited by the availability of the ground-state
structural data, we are not able to analyze the full set of the fullerene family.

To quantitatively validate our model, we apply one of the simplest machine learning

algorithms, linear least-squares method, to predict the heat of formation energy. The
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Figure 4.6: Persistent spectral analysis and prediction of fullerene heat formation energies.
Left chart: the heat of formation energies of fullerenes obtained from quantum calcula-
tions [1]. Middle chart: PST model using the area under the plot of (\;)5"°. Right chart:
Correlation between the quantum calculation and the PST prediction. The highest corre-
lation coefficient form the least-squares fitting is 0.986 with the type index of a = Max.

Pearson correlation coefficient is defined as

co = —= (4.2)

D (AL — AP (B E)?

i=1 i=1

where A!, represents the theoretically predicted energy of the i-th fullerene molecule, E;
represents the heat of formation energy of the i-th fullerene molecule, and A, and E are
the corresponding mean values. When o« = Max, the Pearson correlation coefficient is
around 0.986. The right chart of Figure 4.6 plots the correlation between predicted ener-
gies and the heat of formation energy of the fullerene molecules computed from quantum

mechanics [1]. These results agree very well.

Table 4.2: The heat of formation energy of fullerenes [1] and its corresponding predicted
energies with a = Max. The unit is EV/atom.

Fullerene type C20 C24 C26 Cgo C32 C36 C50 C60
Heat of formation energy 1.180 1.050 0.989 0.850 0.781 0.706 0.509 0.401
Predicted energy 1.138 1.050 0.964 0.821 0.857 0.766 0.474 0.391

The right chart of Figure 4.6 illustrates the fitting results under different type index a.

Table 4.3 lists the correlation coefficient under different type index «.. The highest corre-
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lation coefficient is close to unity (0.986) obtained with o« = Max. The lowest correlation
coefficient is 0.942 with & = Sum. We can see that all the correlation coefficients are close
to unity, which verifies our hypothesis that the non-harmonic spectra of £;" have the
capacity of modeling the stability of fullerene molecules. Although we ignore the topo-
logical information (Betti numbers), our persistent spectral theory still works extremely
well only with non-harmonic spectra, which means our persistent spectral theory is a

powerful tool for quantitative data analysis and prediction.

Table 4.3: The correlation coefficients under different type index a.

Type index Sum  Avg  Max Std Var Sec
Correlation coefficient ~ 0.942  0.985 0.98  0.969 0.977 0.981

4.1.3 Protein flexibility analysis

As clarified earlier, the number of zero eigenvalues of p-persistent ¢g-Laplacian matrix (p-
persistent gth Betti number) can also be derived from persistent homology. Persistent
homology has been used to model fullerene stability [142]. In this section, we further il-
lustrate the applicability of present persistent spectral theory by a case that non-harmonic
persistent spectra offer a unique theoretical model whereas it may be difficult to come up
with a suitable persistent homology model for this problem.

The protein flexibility is known to correlate with a wide variety of protein functions.
It can be modeled by the beta factors or B-factors, which are also called Debye-Waller
factors. B-factors are a measure of the atomic mean-square displacement or uncertainty
in the X-ray scattering structure determination. Therefore, understanding the protein
structure, flexibility, and function via the accurate protein B-factor prediction is a vital
task in computational biophysics [145]. Over the past few years, quite many methods
are developed to predict protein B-factors, such as GNM, [133], ANM [134], FRI, [146,
147] and MWCG [57, 145]. However, all of the aforementioned methods are based on

a particular matrix derived from the graph network which is constructed using alpha
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carbon as nodes and connections between nodes as edges. In this section, we apply our
persistent spectral theory to create richer geometric information in B-factor prediction.

To illustrate our method, we consider protein 2Y7L whose total number of residues is
N = 319. In this work, we employ the coarse-grained C, representation of 2Y7L. There-
fore, 319 particles are taken into consideration in protein 2Y7L. Similarly, like in the previ-
ous application of fullerene structure analysis, we treat each C, atom as a 0-simplex at the
initial setup and assign it a solid ball with a radius of r. By varying the filtration param-
eter 7, we can obtain a family of £;". For each matrix £, its corresponding ordered
spectrum is given by

A", A2)g ™, -, (g™

Suppose the number of zero eigenvalues is m, then, we have 3;™ = m. Since £{™ is

symmetric, then eigenvectors of £{™ corresponding to different eigenvalues must be or-
thogonal to each other. The Moore-Penrose inverse of £{™ can be calculated by the non-
harmonic spectra of £{t":

N

r+0y—1 _ 1 w0 ()T
(Eo ) k:zm:ﬂ (M)S*“K k)o (( k)o ) ]a

where T is the transpose and (uy,); " is the kth eigenvector of £™. The modeling of ith

B-factor of 2Y7L at filtration parameter r can be expressed as

B{:(‘CS—FO)_l VZ:1,2, 7N7

and the final model of ith B-factor of 2Y7L is given by
BT = "w, B} +wp,¥i=1,2,--- N,

where w, and wy are fitting parameters which can be derived by linearly fitting B-factors
from experimental data B®P. Consider the filtration radius from 2 to 12 with the grid
spacing of 1, then totally 11 different £{™° are created. By calculating all the non-harmonic

spectra together with their eigenvectors, 11 Moore-Penrose inverse matrices (£;™)~! can
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be constructed. Therefore, the predicted ith B-factor is
12
BZPST = Z U)TB: + wp.
r=2

The specific values of w, and wy can be found in Table A.16 and Table A.17 of Appendix
Section A.2. Figure 4.7 (c) shows that the prediction B-factors are in an excellent agree-
ment with the experimental B-factors of protein 2Y7L. The Pearson correlation coefficient

is 0.925 1.

—— Prediction
3o~ i
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Figure 4.7: Illustration of persistent spectral prediction of protein B-factors. (a) Plot of the
secondary structure of protein 2Y7L. (b) Accumulated persistent Laplacian matrix (For
clarity, the diagonal terms are set to 0.). Note that the accumulated persistent Laplacian
matrix maps out the detailed distance between each pair of residues. (c) Comparison of
experimental B-factors and those predicted by PST for protein 2Y7L.

This example shows that our persistent spectral theory can be used beyond the persis-
tent homology analysis. The number of zero eigenvalues of 0-persistent g-combinatorial
Laplacian matrices fully recover the persistent barcode or persistent diagram of persis-
tent homology. Additional spectral information from non-harmonic persistent spectra
and persistent eigenvectors provides valuable information for data modeling, analysis,

and prediction.

'We carry out feature scaling to make sure all B! are on a similar scale.
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4.1.4 Discussion and Conclusion

Spectral graph theory is a powerful tool for data analysis due to its ability to extract ge-
ometric and topological information. However, its performance can be quite limited for
various reasons. One of them is that the current spectral graph theory does not pro-
vide a multiscale analysis. Motivated by persistent homology and multiscale graphs, we
introduce persistent spectral theory as a unified paradigm to unveil both topological per-
sistence and geometric shape from high-dimensional datasets.

For a point set V. C R" without additional structures, we construct a filtration using
an (n — 1)-sphere of a varying radius r centered at each point. A series of persistent com-
binatorial Laplacian matrices are induced by the filtration. It is noted that our harmonic
persistent spectra (i.e., zero eigenvalues) fully recover the persistent barcode or persistent
diagram of persistent homology. Specifically, the numbers of zero eigenvalues of persis-
tent g-combinatorial Laplacian matrices are the ¢g-dimensional persistent Betti numbers
for the same filtration given filtration. However, additional valuable spectral information
is generated from the non-harmonic persistent spectra. In this work, in addition to per-
sistent Betti numbers and the smallest non-zero eigenvalues, five statistic values, namely,
sum, mean, maximum, standard deviation, and variance, are also constructed for data
analysis. We use a few simple two-dimensional (2D) and three-dimensional (3D) struc-
tures to carry out the proof of principle analysis of the persistent spectral theory. The
detailed structural information can be incorporated into the persistent spectra of. For in-
stant, for the benzene molecule, the approximate C-C bond and C-H bond length can be
intuitively read from the plot of the 0-dimensional persistent Betti numbers. Moreover,
persistent spectral theory also has the capacity to accurately predict the heat of forma-
tion energy of small fullerene molecules. We use the area under the plot of the persistent
spectra to model fullerene stability and apply the linear least-squares method to fit our
prediction with the heat of formation energy. The resulting correlation coefficient is close

to 1, which shows that our persistent spectral theory has an excellent performance on
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molecular data. Furthermore, we have applied our persistent spectral theory to the pro-
tein B-factor prediction. In this case, persistent homology does not give a straightforward
model. This example shows that the additional non-harmonic persistent spectral infor-
mation provides a powerful tool for dealing with molecular data.

It is pointed out that the proposed persistent spectral analysis can be paired with
advanced machine learning algorithms, including various deep learning methods, for
a wide variety of applications in data science. In particular, the further construction of
element-specific persistent spectral theory and its application to protein-ligand binding

affinity prediction and computer-aided drug design will be reported elsewhere.

4.2 Persistent Path Laplacian

Recent years witness the emergence of a variety of advanced mathematical tools in topo-
logical data analysis (TDA) [148]. As the main workhorse of TDA, persistent homology
(PH) [100, 43, 122, 101] pioneered a new branch in algebraic topology, offering a power-
tul tool to decode the topological structures of data during filtration in terms of persistent
Betti numbers. Persistent homology has had tremendous success in many areas of science
and technology, such as biology [4], chemistry [5], drug discovery [6], 3D shape analysis
[7], etc.

Inspired by the success of PH, other mathematical tools have been given due atten-
tion. One of them is de Rham-Hodge theory in differential geometry, which uses the
differential forms to represent the cohomology of an oriented closed Riemannian mani-
fold with boundary in terms of a topological Laplacian, namely Hodge Laplacian [8]. The
de Rham-Hodge theory has been applied to computational biology [55], graphic [149],
and robotics [150]. However, like homology, the de Rham-Hodge theory does not offer
an in-depth analysis of data, which is a famous problem in spectral geometry [10]. To
overcome this drawback, the evolutionary de Rham-Hodge theory [9] was introduced in

terms of persistent Hodge Laplacian to offer a multiscale analysis of the de Rham-Hodge
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theory. Defined on a family of evolutionary manifolds, the evolutionary de Rham-Hodge
theory gives a new answer to, or at least reopens, the famous 55-years old question “can
one hear the shape of a drum". [10] The persistent Hodge Laplacian captures both the
topological persistence and the homotopic shape evolution of data during filtration.
Nevertheless, the evolutionary de Rham-Hodge theory is set up on Riemannian man-
ifolds, which may be computationally demanding for large datasets. Hence, a similar
multiscaled-based topological Laplacian, called persistent spectral graph (PSG) [11], was
proposed by introducing a filtration to combinatorial graph Laplacians. PSG, aka persis-
tent Laplacian (PL) [151], extends persistent homology to non-harmonic analysis of data,
showing much advantage in sophisticated applications [152, 153]. Dealing with point
cloud data instead of manifolds, PL encodes a point cloud to a family of simplicial com-
plexes generated from filtration and analyzes both harmonic and non-harmonic spectra.
It is worthy to notice that the harmonic spectra from the null spaces of PLs reveal the
same topological persistence like that of persistent homology, whereas, the non-harmonic
spectra of PLs capture the homotopic shape evolution of data during the filtration. Mean-
while, open-source software called HERMES [154] was developed for the simultaneous
topological and geometric analysis of data. However, like persistent homology, PSG treats
all data points equally. That is to say, each point does not carry any labeled information
such as the type, mass, color, etc. Therefore, an extension of PSG, called persistent sheaf
Laplacian (PSL), was proposed to generalize cellular sheaves [155, 156] for the multiscale
analysis of point cloud data with attached labeled information [157]. PSL is also a topo-
logical Laplacian that carries topological information in its null space but tracks homo-
topic shape evolution during filtration. Another interesting development is the persistent
Dirac Laplacian (PDL) by Ameneyro, Maroulas, and Siopsis [158]. PDL offers an efficient
quantum computation of persistent Betti numbers across different scales. These new ap-
proaches have great potentials to deal with complex data in science and engineering.

It is noticed that the aforementioned homologies and topological Laplacians are in-
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sensitive to asymmetry or directed relations, which limits their representational power in
encoding structures that have directional information. For example, in gene regulation
data, the directions of gene regulations are indicated by arrowheads or perpendicular
edges in systems biology [159]. Therefore, a technique that can deal with directed graphs
(digraphs) is of vital importance to inferring gene regulation relationships. Notably, the
path homology [12] proposed by Grigor’yan, Lin, Muranov, and Yau provides a powerful
tool to analyze datasets with asymmetric structures using the path complex. Particular
cases of homologies of digraphs and their path cohomology were also discussed [12, 60].
The notion of path homology of digraphs has a richer mathematical structure than the
earlier homology and Laplacian, opening new directions for both pure and applied math-
ematics. For example, path homology theory was extended to various objects such as
quivers, multigraphs, digraphs pairs, cylinder, cone, hypergraphs, etc. [160, 161, 162]
Path homology has drawn much attention from researchers in the TDA community. To
encode richer information, Chowdhury and Mémoli extended path homology to a persis-
tent framework on a directed network [13]. Wang, Ren, and Wu constructed a weighted
path homology for weight digraphs and proved a persistent version of a Kiinneth-type
formula for joins of weighted digraphs [163]. Recently, Dey, Li, and Wang have designed
an efficient algorithm for 1-dimensional persistent path homology [164], which is useful
in real applications.

Similar to persistent homology, persistent path homology cannot track the homotopic
shape evolution of data during filtration. To overcome this limitation, we introduce path
Laplacian as a new topological Laplacian to analyze the spectral geometry of data, in ad-
dition to its topology. Moreover, we introduce a filtration to path Laplacian to obtain a
persistent path Laplacian (PPL), a new framework that captures both the topological per-
sistence and shape evolution of directed graphs and networks. By varying the filtration
parameter, one can construct a series of digraphs, which result in a family of persistent

path Laplacian matrices. The harmonic spectra of the persistent path Laplacian recover
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all the topological invariants of the digraphs, while the non-harmonic spectra provide ad-
ditional geometric information, which can distinguish two systems when they are homo-
topy but geometrically different. PPL has potential applications in science, engineering,
industry, and technology. This work is organized as follows: Section 2 reviews the nec-
essary background on path homology. Section 3 describes path Laplacian and persistent
path Laplacian. Detailed PPL matrix constructions are illustrated with various examples

for the interested readers in Section 3 and Section 4.

4.2.1 Constructions of Persistent Path Laplacian for Tetra and Pyramid

Gy Go G Gy G
2 2 2 2 2 2
/] “ % A 2% T T
3 3@ 3 3 3 3
l o ol o l 1

° 2 2 2
/ /N A m | /|

3 3e 3 3 3 3

Figure 4.8: Illustration of filtration on a tetrahedron. Here, 1,2,3, and 4 represent four

elementary O-paths ey, 5, e3, and e4. The top panel is a tetrahedron that has edge lengths

lera] = |esa| = |eas] = 1 and |ey3] = |ew] = |ess| = V2. The bottom panel is a tetrahedron
that has edge lengths |632| = |624| = 1, |634| = \/5, |€12| = \/g, and |613| = |€14| = 2.

One can get both abstract information (revealed by Betti numbers) and geometric
information (revealed by non-harmonic spectra) from digraphs along filtration. For in-
stance, Figure 4.8 illustrates the filtration on two tetrahedrons. The top panel is a tetrahe-
dron (Tetra 1) with edge lengths |e1o| = |esa| = |e2a| = 1, and |ey3| = |e1s] = |esa] = V2. The
bottom panel is another tetrahedron (Tetra 2) with edge lengths |e1a| = /3, |es2| = |e2s| =
1, and |ejs| = |ens| = 2, and |ess| = V2. Wesay Gy = G°, Gy = G',Gs = GV2,G4 = GV3,
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Figure 4.9: Comparison of Betti numbers and non-harmonic spectra of L2° whenn = 0, 1,
and 2 on tetrahedrons Tetra 1 and Tetra 2. Note that since 3° = 0 and 35° = 0 for Tetra
1 and Tetra 2, topological variants from persistent path homology cannot discriminate

Tetra 1 and Tetra 2. However X and A}’ show the differences between Tetra 1 and Tetra
2.

and G5 = GV°. Figure 4.9 shows the changes of 53° and \3? of persistent n-th path Lapla-
cian L2° along filtration. It can be seen that by varying the filtration parameter ¢ from
0 to 1, the Betti 1 and Betti 2 are always 0. However, the smallest nonzero eigenvalue
A%9 of Tetra 1 and Tetra 2 have changes along filtration parameter . Additionally, when
n = 1,2, the A% can distinguish Tetra 1 and Tetra 2, while 33 cannot. This indicates
that non-harmonic spectra of persistent path Laplacian can reveal more geometric infor-
mation than the persistent Betti numbers in distinguishing similar topological structures.
Notably, we remove all the isolated points from each digraph for the simplicity of calcu-
lation.

Moreover, a more complicated example is also illustrated in Figure 4.10 to describe
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Figure 4.10: Illustration of filtration on a pyramid. Here, 1,2,3,4, and 5 represent five
elementary O-paths ey, €3, 3, €4, and e5. The top panel is a pyramid that has edge lengths
lews| = |eas| = |esa] = |ess| = |esa] = 1, |e1a] = |ers| = V2, and lews| = V3. The bottom panel
is a pyramid that has edge lengths |eas| = |es2| = |esa]| = |esa| = 1, |e12] = |ens] = 2, and
lews| = V/5.

the filtration on two pyramids. The top panel is a pyramid (Pyra 1) with edge lengths
lera| = |es2| = |eas] = 1, and |eis| = |e1s] = |esa| = v/2. The bottom panel is a pyramid (Pyra
2) with edge lengths |ejs| = V/3, |es2, | = |eas] = 1, and |eys| = |ew] = 2, and |ezq| = V2.
Wesay G, = G°, G, = G, G5 = GV2,G4 = GV3, and G5 = GV5. Figure 4.11 depicts the
changes of 3%° and \°? of persistent n-th path Laplacian L%° for objects Pyra 1 and Pyra
2 along filtration. For Pyra 1 and Pyra 2, when n = 0 and § = 1, their corresponding
digraphs form, which result in §;"' = 1 and ;"' = 1 for both Pyra 1 and Pyra 2. When
§ = /3, we have ﬁf/g V3 = 0 for Pyra 1 since the introducing of a new directed edges e;s.
When § = /5, we have B{/“?’ V5 = 0 for Pyra 2 since the introducing of a new directed edges
e15 kills the 1-cycle formed by eys, €32, €34, and e54. Furthermore, although Pyra 1 and Pyra
2 do not have exactly the same geometric structure, their share the same 35° value from
5 = 0tod = /5. However, Pyra 1 and Pyra 2 can be distinguished by the X}’ along
filtration. Therefore, we can see that similar to the PSG, one can use the non-harmonic
spectra from the persistent path laplacian to reveal the intrinsic geometric information of

a givens point-cloud dataset by varying the filtration parameters. In addition, the detailed
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Figure 4.11: Comparison of Betti number and non-harmonic spectra of L3’ when n =
0,1,c and 2 on pyramids Pyra 1 and Pyra 2. Note that since 5° = 0, it cannot distinguish
Pyra 1 and Pyra 2. But A}’ can tell the difference.

calculations of L%? can be found in the Appendix.

4.2.2 Constructions of Persistent Path Laplacian for CB7

In this section, we apply the persistent path Laplacian to the analysis of the curcur-
bit[n]urils system. Cucurbiturils are macrocyclic molecules, which are made of glycoluril
(=CsH2N4O2=) monomers linked by methylene bridges (-CH,-). CBn is commonly used
as an abbreviation of Cucurbiturils. Here, n is the number of glycoluril units. In this
work, we consider CB7 as an example. The molecular formulas of CB7 is C42H14N2gO14.
The molecular structure of CB7 is obtained from the Supporting Information of Ref. [165].

Figure 4.12 illustrates how PPL is employed for a molecular system to extract its rich

topological and geometric information. The first two charts of Figure 4.12a describe the
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three-dimensional (3D) top view and side view of CB7. The green, blue, red, and gray
colors represent C, N, O, and H atoms, respectively. The third chart of Figure 4.12a is
a basic “Octagon-pentagon” unit that consists of two glycolurils. It can be seen that 7
glycolurils exist in CB7. The last chart of Figure 4.12a demonstrates the path direction
assignment to pairs of atoms based on atomic electronegativity. The periodic table of
electronegativity is given by the Pauling scale [166], in which the electronegativities of C,
N, O, and H are 2.55, 3.04, 3.44, and 2.20, respectively. Then, we set the directions of edges
following the order “H — C — N — O".

Figure 4.12b depicts the distance-based filtration of CB7. Here, structures G;(i =
1,2,...,8) were obtained at the filtration radii of 0.200, 0.565, 0.710, 0.745, 0.800, 1.210,
1.315, and 1.800 A, respectively. In our digraph notation, we denote these structures as
Gy = G2 Gy = GO Gy = GOTI0,.Gy = GO, Gy = GO0 Gy = GI210, Gy = G315,
and Gg = G}®. Note that, in the present formulation, all of the isolated points were
removed from these digraphs.

Figure 4.12c¢ illustrates the filtration-induced path complexes in the aforementioned
Gi(i = 1,2,...,8). To clearly show the topological and geometric changes, only the path
complexes in one “Octagon-pentagon” unit (or two glycolurils) are considered and de-
picted for each structure. For simplicity, only edges are presented. However, their path
directions can be easily assigned based on their color map as shown in the last chart of
Figure 4.12a.

Figure 4.12d depicts the PPL spectra of CB7. We can see that at the initial state (G,)
when § = 0.200 A ), total 98 atoms are isolated from one another. When radius § =
0.565 A (Gs), C atoms on each pentagon are connected with their H atom neighborhoods.
Therefore, four isolated components are formed in each glycoluril, which makes 35’ =
4 x 7 =28 AtGy (r = 0.710A), C atoms on each pentagon are connected with their N
and O neighborhoods. At this stage, two more connected components are involved in

one glycoluri structure, which makes B0 =6x7=142. Only one connected structure can
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be formed if all of the atoms get connected with their neighborhood atoms. Therefore,
09 = 1 (see G5 - Gis). Notably, the 57° and A}’ provide rich topological and geometric
information when the filtration parameter ¢ increases.

a Side View Top View 2 glycolurils in Stick 2 glycolurils in StickBall
{

ﬁ 0 I

02 04 0.6 ().861.(] 12 14 16 1.80 02 04 06 0.861.0 1.2 14 16 1.8

Figure 4.12: a The 3D structures of CB7, 2 glycolurils, and path direction assignment.
Here, from left to right, the side view of CB7, top view of CB7, the structure of two
glycoluril units (=C;0H4NgO,=), and electronegativity-based path direction assignment
are depicted as well. b Illustration of filtration-induced geometries G;(i = 1,2,...,8) of
CB7. Eight digraphs G; = G2, Gy = GYP%,G3 = Gy ™, Gy = GY™, G5 = GY¥™°, Gg =
Gy Gy = G315, Gy = G§® are constructed under filtration parameter §. ¢ Illustration
of filtration-induced path complexes within two glycoluril units. Path directions can be
inferred from their colors as shown in the last chart of a. d Betti numbers 3% and non-
harmonic spectra A\3? of persistent path Laplacians (L% when n = 0, 1, and 2) for CB?7.

This example shows that PPL can decode topological persistence and the shape evo-
lution of a given molecular system with chemical- or biological-based directional assign-

ment. Specifically, A}’ can still offer geometric information when 5 does not changes for
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large radii. Therefore, PPL keeps revealing homotopic shape evolution when the topolog-
ical invariant from persistent path homology does not change.

Additionally, unlike persistent Laplacian, high-order PPL operators provide rich topo-
logical information. For instance, when the filtration parameter § increases to 1.68, 55°
from PPL dramatically goes up. Whereas, in persistent Laplacian, the value of Betti 2 is
quite limited since the CB7 system can barely form 2-cycles at a similar filtration param-
eter using either Rips complex or alpha complex. This trait endows PPL with a better

ability to characterize the geometry and topology of an object at large scales.

4.2.3 Discussion and Conclusion

Path homology, a rich mathematical concept introduced by Grigor’yan, Lin, Muranov,
and Yau, has stimulated a variety of new developments in pure and applied mathemat-
ics, including much attention from the topological data analysis (TDA) community. Un-
like original homology or persistent homology, path homology enables the treatment of
directed graphs and networks. Persistent path homology bridges path homology with
multiscale analysis, making it a powerful tool for practical applications. Nonetheless,
these formulations are insensitive to homotopic shape evolution during filtration.
Topological Laplacians, including Hodge Laplacian, graph Laplacian, sheaf Laplacian,
and Dirac Laplacian, are versatile mathematical tools that not only preserve all topolog-
ical invariants but also describe geometric shapes. This work introduces a new topo-
logical Laplacian, namely persistent path Laplacian, as a new mathematical tool for the
multi-scale analysis of directed graphs and networks. For a given data, the proposed per-
sistent path Laplacian fully recovers the topological persistence of persistent homology
in its harmonic spectra and meanwhile, captures homotopic shape evolution of the data

during filtration in its non-harmonic spectra.
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CHAPTER 5

HERMES: AN OPEN-SOURCE SOFTWARE FOR THE SPECTRAL ANALYSIS OF
PERSISTENT LAPLACIANS

5.1 Introduction

As a branch of discrete mathematics, graph theory focuses on the relations among vertices
or nodes (0-simplices), edges (1-simplices), faces (2-simplices), and their high-dimensional
extensions. Benefiting from the capability of graph formulations that encode inter-dependencies
among constituents of versatile data into simple representations, graph theory has been
regarded as the mathematical scaffold in the study of various complex systems in bi-
ology, material science, physical infrastructure, and network science. However, tradi-
tional graphs only represent the pairwise relationships between entries. Therefore, hy-
pergraphs, a generalization of graphs that describe the multi-way relationships of math-
ematical structures have been developed to capture the high-level complexity of data
[167, 168]. Mathematically, graphs and hypergraphs are intrinsically related to the sim-
plicial complexes, which have broader use in computational topology. Moreover, many
other areas such as algebra, group theory, knot theory, spectral graph theory (SGT), al-
gebraic topology (AT), and combinatorics are closely related to graph theory. Among
them, the applications of SGT have been driven by various real-life problems in chem-
istry, physics, and life science in the past few decades [138, 169].

In its early days, spectral graph theory studied the properties of a graph by its graph
Laplacian matrix and adjacency matrix. Later on, developments in spectral graph the-
ory involved some geometric flavor. The explicit constructions of expander graphs rely
on studying eigenvalues and isoperimetric properties of graphs. The discrete analog of
Cheeger’s inequality for graphs in Riemannian geometry is related to the study of man-

ifolds [170]. Specifically, an eigenvalue of the Laplacian of a manifold is related to the

99



isoperimetric constant of the manifold, which motivates the study of graphs by employ-
ing manifolds. Benefiting from increasingly rich connections with differential geometry,
spectral graph theory entered a new era [171]. One of the critical developments is the
Laplacian on a compact Riemannian manifold in the context of the de Rham-Hodge the-
ory [54, 55]. The harmonic part of the Hodge Laplacian spectrum contains the topologi-
cal information, whereas the non-harmonic part of the Hodge Laplacian spectrum offers
additional geometric information for shape analysis [56]. Indeed, the connectivity of a
graph/topological space can be revealed from topological invariants. It is well-known
that the number of eigenvalues in the harmonic spectra of gth-order persistent Laplacian
represents the dimension of persistent g-cohomology of a graph [172, 53, 11], which builds
the connection between spectral graph theory and algebraic topology.

Homology and cohomology are key concepts in the algebraic topology, which were
developed to analyze and classify manifolds according to their cycles. Traditional ho-
mology is genuinely metric-independent, indicating that geometric information is barely
considered [173]. Therefore, for practical computation, a new branch of algebraic topol-
ogy named persistent homology (PH) [122, 124, 43] was implemented to create a sequence
of topological spaces characterized by a filtration parameter, such as the radius of a ball
or the level set of a real-valued function. As the most important realization of topological
data analysis (TDA) [125, 128, 174], topological persistence has had great success in com-
putational chemistry [5, 175] and biology [4, 44, 176, 177, 178]. For instance, the superior
performance of using PH features of protein-drug complexes in the free energy predic-
tion and ranking at D3R Grand Challenges, a worldwide competition series in computer-
aided drug design [6], was a remarkable success for TDA. Additionally, a weighted per-
sistent homology is proposed as a unified paradigm for the analysis of the biomolecular
data system [179].

Recently, we introduced persistent spectral graph (PSG) theory to bridge persistent

homology and spectral graph theory [11, 11]. The PSG theory extends the persistence no-
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tion or multiscale analysis to algebraic graph theory. A family of spectral graphs induced
by a filtration overcomes the difficulty of using traditional spectral graph theory in ana-
lyzing graph structures with a single geometry, giving rise to persistent spectral analysis
(PSA). Additionally, the evolution of the null space dimension of the persistent Laplacian
matrix (PLM) over the filtration offers the topological persistence. Therefore, PSG the-
ory provides simultaneous TDA and PSA. Specifically, by varying a filtration parameter,
a series of gth-order persistent Laplacians (or g-persistent Laplacian) provide persistent
spectra. Notably, the persistent harmonic spectra of 0-eigenvalues span the null space
of the ¢-th order persistent Laplacian and fully recover the persistent ¢-th Betti numbers
or persistent barcodes [180] of the associated persistent homology. Specifically, the num-
ber of 0-eigenvalues of gth-order persistent Laplacian reveals the number of g-cocycles
for a given point-cloud dataset. Moreover, the additional geometric shape information
of the data will be unveiled in the non-harmonic spectra. ~ For example, the spectral
gap (the difference between the moduli of the first two smallest eigenvalues of a Lapla-
cian) reveals the energy difference/density changes between the ground state and first
excited state of a system/dataset. Additionally, the B-factor prediction performance can
be significantly improved by using the non-harmonic spectra involved in the prediction
model, as discussed in [11]. Recently, the theoretical properties and algorithms of PSGs
have been further studied [151] and the application of PSG methods to drug discovery
has been reported [181] . The de Rham-Hodge theory counterpart, called evolutionary de
Rham-Hodge theory, has also been formulated [56].

Currently, many open-source packages have been developed for the applications of
persistent homology, including Ripser [182], Dionysus [183], Gudhi [184], Perseus [123],
DIPHA [185], Javaplex [186], CliqueTop [187], DioDe [188], Hera, Eirene, and “TDA”
package in R [189]. These packages are able to construct a family of complexes with
the point clouds data as input and calculate its corresponding Betti numbers, which are

equivalent to the harmonic spectra of the persistent Laplacian. However, there is no soft-
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ware package for simultaneous TDA and PSA. While we developed the theoretical part
of the persistent spectral graph in 2019, we have not constructed efficient and robust soft-
ware yet.

The objective of present work is to provide the first open-source package, dubbed
highly efficient robust multidimensional evolutionary spectra (HERMES), for evaluating
both the harmonic and non-harmonic spectra of persistent Laplacian matrices, which en-
able broad and convenient applications of the PSG method. In the present release, we
consider an implementation in both alpha complexes [47] and Vietoris—Rips complexes.
To verify the reliability of HERMES, 15 complicated 3D structures of proteins as well as
two fullerene structures are used to calculate the spectra of gth-order persistent Lapla-
cians for ¢ = 0,1, 2. Moreover, as a validation, the persistent harmonic spectra generated
by HERMES are compared with those obtained from Gudhi and DioDe. Furthermore,
with the use of the spectra of PLMs, molecular data abnormality detection is also dis-
cussed.

In a nutshell, HERMES provides a powerful tool in various applications such as drug
discovery, protein flexibility analysis, and complex protein structures analysis. It can be

potentially applied to various fields where persistent homology has had success.

5.2 Implementation

5.2.1 Construction of Alpha Shape

Recall that, given a set of points, the alpha shape with any « value is a subcomplex of De-
launay tessellation. Thus, to construct the filtration of alpha complexes, it is necessary to
tirst compute the complete simplicial complex through the Delaunay tessellation formed
by the set of points. A number of efficient implementations is available in existing soft-
ware packages. Our implementation employs the Computational Geometry Algorithms
Library (CGAL), an efficient and robust software package for many commonly used cal-

culations. We then assign each simplex ¢ with an alpha value a,. Finally, the alpha shape
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given at an a value ay is constructed by union of convex hulls of all the simplices o sat-
isfying o, < ap, which naturally forms the nerve of balls centered at the given points
truncated by the Voronoi regions, i.e., the corresponding alpha complex.

We illustrate our implementation with point sets P in 3D, as it is the most common
use scenario. We also assume that all the points are in general positions, which means
that no 4 points of P lie on the same plane and no 5 points of P lie on the same sphere.
Given a simplex o, which can be a point, an edge, a triangle or a tetrahedron, denote the
open ball bounded by its minimal circumsphere as B,. The simplex ¢ is called Gabriel
([190]) if B, N P = (). Note that for vertices (0-simplices) the circumradius is considered
0. The above discussion can be directly adapted for 2D implementation by replacing
circumsphere with circumcircle and omitting tetrahedra.

The filtration parameter « for every simplex o can be defined as follows. If the simplex
is Gabriel, the filtration value is the corresponding circumradius (for efficiency, we actu-
ally store its square) because the corresponding ball can be considered as an empty a-ball
touching all its vertices. If the simplex is not Gabriel, the filtration value is the minimum
of all the filtration values of the cofaces of o that contain the points making the simplex
non-Gabriel. When o value reaches that number, we will have an empty a-ball making

the simplex a-exposed.

5.2.2 Implementation details for alpha shape

To ensure the valid calculation of the filtration parameter for non-Gabriel simplices, the
filtration values are always computed from the highest dimension (tetrahedra) down to
0 (vertices). We initialize the filtration value for all the simplices to be positive infinity.
For dimension k, we iterate through each k-simplex. If the current filtration value o2 is
positive infinity, we assign the filtration value as the square of the corresponding circum-
radius. Then, we check every (k—1)-dimensional face 7 in do. If the circumsphere of 7

enclosed the other vertex of ¢ in the interior, it is not Gabriel, and does not correspond to
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an empty a-ball. In this case, o2 is assigned to o2 if o, > «;.

With this procedure, we ensure that o, for every simplex o corresponding to the fil-
tration value o is a-exposed to an empty a-ball. In other words, we ensure each simplex
represented by its vertex index set J C {1,2,...,|P|} is in the nerve of the R;’s, which are

the intersections R; = V; N B; of Voronoi cells V;’s and balls B;’s around the points p;’s.

5.2.2.1 Boundary operator construction

With o, assigned, we sort the k-simplices with increasing filtration parameter value. This
allows us to construct a single boundary operator B2° (the matrix representation of 9;°)
for the entire filtration, which is that of the Delaunay tessellation. For any given a, we

can read off the top left block of the full boundary matrix B°, i.e.,

1<) <N, (5.1)

q—1

(Bg)ij: (Bgo)ij’ V1l <i< N

where N is the number of ¢-simplices in the alpha complex with the filtration parameter
a. Alternative, we can consider the N x N2° projection matrix P;* from the Delaunay
tessellation to the alpha complex, (Pa)ij = 4;; (1 on the diagonal and 0 elsewhere), with

q

which we have B = P | B*(P)".

5.2.2.2 Persistent boundary operator

The construction of p-persistent boundary matrix B{"? (the representation of operator
0y°F) is more involved than reading off B.°. We first construct the projection matrix Py
from C¢*P to C;7. Then, the p-persistent boundary matrix can be assembled as B;"* =
P B (Per)T.

To construct the projection matrix, we first note that it is the projection to the kernel
of an operator that measures the difference between the boundary operator mapped onto

C;'7 and the boundary restricted to C

SEEoLp at+p  po,p \T Ra+p a,p
o, Diff)? = (177 — R%)" BS'P, where Ry?P =
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PetP(P)T P (PytP)T is the restriction from C5 P to Cff and 157 is the identity matrix on
cote,

Instead of storing a dense matrix, we propose to use a procedural representation in-
volving the inverse of persistent Laplacians with gauge ([191]) to reduce the storage as
well as speed up the computation. More specifically, we construct the projection matrix

as follows

PP = I3+ — (Diff, )" (Lg ) "' Diff,”, (5.2)

where (Li",)~! can be implemented through rank deficiency fixing in [191], and the re-
stricted operator Diffj’p is defined below. Note that this sparse linear equation solving
approach is essentially the graph version of the harmonic extension described in Ref.
[55].

The reason that the projection matrix can be defined this way is that starting from an
arbitrary element w, € C?, we can modify it into w, — (Diff;")" f,_, € C?, where f,_; is
nonzero only in the difference complex CI(7,,—1,), the closure of the difference between
Toyp and T,. Denoting any chain f on the difference complex as f and any operator
B on it as B*?, and the B>*(Bo?)Tf,_y = BoP@,. Noticing that f,_; is determined up
to a gauge transform f,_; — (BS")"§,_» for some (q — 2)-chain g,_ in CL(Toy, — To),
we introduce the gauge fixing term Bff;pl fq—1 = 0, which leads us to the sparse linear
system ijf{’ fo1 = DNiffZ’pwq where the Diff operator is the above operator projected to
the difference complex. Note that fixing the rank deficiency of persistent Laplacians (in

the difference complex) is computationally efficient as its kernel dimension is far smaller

than that of the corresponding boundary or coboundary operators.

5.2.2.3 Persistent spectrum computation

The g-order p-persistent Laplacian operators can then be implemented by direct eval-
uation of L? = B (By)" + (Bg)" BS. Their spectra can be evaluated through any

off-the-shelf sparse matrix eigensolver.
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Thus, the dimension of the null space of Lg” is the number of p-persistent connected
components. The dimension of the null space of Li"” is the number of p-persistent handles
or tunnels. Similarly, the dimension of the null space of L™ is the number of p-persistent

cavities.

5.2.3 Implementation Details for Rips Complex

The Vietoris—Rips complex at different filtration values is also considered in HERMES.
Following the definition of the Vietoris—Rips complex, the implementation is straightfor-
ward. However, due to the large number of simplices, the calculation of non-harmonic
spectra of PLMs L/ can be resource-intensive. Therefore, we may set a maximum cutoff

distance for the filtration r and an upper limit for persistent p for practical applications.

5.3 Validation

Figure 5.1: The 3D structures of Cyy and Cg. (a) Cyp molecule. A total of 12 pentagon
rings can be found in Cyy. (b) C¢p molecule. 12 pentagon rings and 20 hexagon rings form
the structure of Cg .

We construct the alpha complex at different filtration values from the finite cells of
a Delaunay tessellation from the Computational Geometry Algorithms Library (CGAL).
Moreover, the Vietoris—Rips complex at different filtration values is also constructed in

HERMES. Gudhi and DioDe are two of the most frequently applied open-source libraries
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that are able to compute Betti numbers (harmonic persistent spectra) based on CGAL,
while Ripser is based on the blazing fast C++ Ripser package. As shown in [11], the
O-persistent gth Betti numbers 5° at filtration parameter ¢ is the number of zero eigen-

values of gth-order 0-persistent Laplacian £/°:
By = dim(C}) — rank(L}") = dim ker £, (5.3)

where t = « if we choose to construct the alpha complex, and ¢ = r if we choose to
construct the Vietoris—Rips complex.

In fact, %° counts the number of g-cycles in the alpha complex K, that persists in
K;. Although Gudhi and DioDe can calculate the number of zero eigenvalues, the non-
harmonic persistent spectra also play an important role in applications as shown in our
earlier work [11]. Therefore, we developed an open-source package HERMES, which not
only tracks the topological changes from the persistent Betti numbers but also derives
the geometric changes from the non-harmonic spectra of persistent Laplacians. In the
following, we compare the Betti numbers 3 that are calculated from HERMES with the
Betti numbers that are derived from Gudhi and DioDe on a set of 2D and 3D points,

aiming to validate the robustness and accuracy of HERMES.

5.3.1 Validation on Fullerene structures

In this section, we will validate the correctness of HERMES with simple systems such as
Cyo and Cgp molecules with known persistent Betti numbers [4] for Rips complex. More-
over, the persistent Betti numbers for the alpha complex are also included in this section.

Cy molecule. The Cy, molecule is the smallest member of the fullerene family, which
has a dodecahedral cage structure as illustrated in Figure 5.1 (a). Both Cy and Cgy have
the molecular symmetry of the full icosahedral point group ;. Figure 5.2 illustrates the

. . . 0.05 0.05 0.05
persistent Betti numbers for Rips complex 5,7, 877", and 57 (green curves) and

r,0.05
)‘2

the smallest non-zero eigenvalue )\6’0'05, )\1’0'05, and (yellow curves) of C,0 that are
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Figure 5.2: Tllustration of the harmonic spectra (for Rips complex) 5°, 55, and 35 (green
curves from top chart to bottom chart) and the smallest non-zero eigenvalue A\;”, A", and
Ay° (yellow curves from top chart to bottom chart) of Cy molecule (the bottom left chart
in Figure 5.6) at different filtration values « calculated from HERMES. Here, the z-axis
represents the radius filtration value r (unit: A), the left-y-axes represents the number of
zero eigenvalues of £, £°, and £}° from top to bottom, and the right-y-axes represents
the first non-zero eigenvalue of £{°, £}°, and £° from top to bottom.

computed from HERMES. Similarly, Figure 5.3 illustrates the persistent Betti numbers
for the alpha complex 35°°%, 5", and 35°* (green curves) and the smallest non-zero
eigenvalue the /\3’0'05, /\?’0'05, and /\3’0'05 (yellow curves) of C,0 that are computed from
HERMES.

Note that although the Rips complex and the alpha complex have similar Betti-0 and
Betti-1 patterns, their Betti-2 patterns differ from each other over the filtration range. Ad-
ditionally, the non-harmonic spectra of the Rips complex and the alpha complex differ
much from each other. Moreover, the non-harmonic spectra of the Rips complex appear
to carry more information than those of the alpha complex.

Cso molecule. The Cgy molecule is a well-known structure that is also called buck-

minsterfullerene. A total of 12 pentagon rings and 20 hexagon rings consist of Cg. Fig-

ure 5.1 (b) shows the 3D structure of Cg. Figure 5.4 and Figure 5.5 demonstrate the 0.05-
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Figure 5.3: Tllustration of the harmonic spectra (for alpha complex) 35"%, 55*%, and

5% (green curves from top chart to bottom chart) and the smallest non-zero eigen-

value )\8’0'05, /\‘f"O'OS, and )\g’o‘ (yellow curves from top chart to bottom chart) of the Cy
molecule (the bottom left chart in Figure 5.6) at different filtration value o calculated from
HERMES. Here, the z-axis represents the radius filtration value « (unit: A), the left-y-axes
represents the number of zero eigenvalues of £*%, £5*%, and £3*% from top to bot-

tom, and the right-y-axes represents the first non-zero eigenvalue of £5*%, £5°%, and

£5%% from top to bottom.

persistent Betti numbers for rips complex and alpha complex, respectively. Figure 5.2 -
Figure 5.5 indicate the capacity of HERMES for the direct calculation of the persistent
spectra of LY and L3 (p > 0).

5.3.2 Validation on proteins

In this section, we further validate HERMES using 15 proteins. Their Protein Data Bank
(PDB) IDs of these proteins are 1CCR, 1INKO, 1008, 10PD, 1QTO, 1R7], 1V70, 1W2L,
1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT. The 3D structures of these 15 pro-
teins can be downloaded from the PDB ( https:/ /www.rcsb.org/). Here, only the alpha
carbon atoms are considered in our calculations. The harmonic spectra of HERMES are

compared with the persistent Betti numbers of Gudhi and DioDe. Figure 5.6 illustrates
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Figure 5.4: Tllustration of the harmonic spectra 3;°, 3;°, and 35° (blue curves from top
chart to bottom chart) and the smallest non-zero eigenvalue /\6’0, /\71"’0, and X;O (red curves
from top chart to bottom chart) of the Cg, molecule (the bottom left chart in Figure 5.6) at
different filtration value « calculated from HERMES. Here, the z-axis represents the ra-
dius filtration value « (unit: A), the left-y-axes represents the number of zero eigenvalues
of £3°, £3°, and L}" from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of £{°, £}°, and £}° from top to bottom.

the network structures of 15 proteins. For each protein, the color at atomic positions rep-
resents the normalized diagonal values of the accumulated Oth-order 0-persistent Lapla-

cians: ——t=— (£9).., with £ = 3 £o°. Here, the filtration a goes from /1.5 A to

max;(L£]) ig’
V10 A Wiﬂ(l iile step size of 0.01 A. Figure 5.7 depicts the persistent Betti numbers B0
(blue curve) of PDB ID 5CYT that are calculated from Gudhi, DioDe, and HERMES, to-
gether with the smallest non-zero eigenvalue )\2‘70 (red curve) that are obtained only from
HERMES.

It can be seen that all of these three packages return exactly the same persistent Betti
numbers, suggesting that the calculation of our package HERMES is reliable. Addition-
ally, the values of the smallest non-zero eigenvalues ;" and A\¢" increase around 1.86 A,

indicating the dramatic topological changes at this point. Similarly, with the increment

of the a, the curve of A5 also records the topological and geometric changes at a specific

110



,0.05
BS

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

a,0.05
N
o

1
fury
o

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

a,0.05

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Figure 5.5: Tllustration of the harmonic spectra 85*%, 85*%, and 5" (green curves

from top chart to bottom chart) and the smallest non-zero eigenvalue A", \{**%, and
A50% (yellow curves from top chart to bottom chart) of the C4y molecule (the bottom left
chart in Figure 5.6) at different filtration value a calculated from HERMES. Here, the z-
axis represents the radius filtration value « (unit: A), the left-y-axes represents the number
of zero eigenvalues of £5"", £3"?, and L£*” from top to bottom, and the right-y-axes
represents the first non-zero eigenvalue of £5*%, £3*%, and £5°% from top to bottom.

filtration value. The use of non-harmonic spectra for biophysical modeling was described
in our earlier work [11].

To be noted, HERMES can also deal with the gth-order p-persistent Laplacians L.
Figure 5.8 illustrates the persistent Betti numbers 55, 5", and 85°*° (green curves)
and the smallest non-zero eigenvalue \;*°, \{"*, and \3*° (yellow curves) of 5CYT that
are computed from HERMES, demonstrating the capacity of HERMES for the direct cal-
culation of the persistent spectra of £3? (p > 0). Compared with the middle chart of
Figure 5.7, 5" in the middle chart of Figure 5.8 is always smaller than 3{" at the same
filtration o. Moreover, A{""® also goes up around 1.86 A, which has the same behavior
as \("*. Similar behaviors can be also observed from the bottom charts of Figure 5.7 and

Figure 5.8.

Furthermore, HERMES can be used to detect the abnormality of a protein structure.
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Figure 5.6: The alpha carbon network plots of 15 proteins: PDB IDs 1CCR, 1INKO, 1008,
10PD, 1QTO, 1R7], 1V70, 1IW2L, 1IWHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT from
left to right and top to bottom. The color represents the normalized diagonal element of
the accumulated Laplacian at each alpha carbon atom.
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Figure 5.7: Illustration of the harmonic spectra ﬁg“o (blue curve) and the smallest non-zero
eigenvalue )\2"0 (red curve) of PDB ID 5CYT (the bottom left chart in Figure 5.6) at differ-
ent filtration values o when ¢ = 0,1,2. The 55"0 are calculated from Gudhi, DioDe, and
HERMES, and X% are obtained only from HERMES. Here, the z-axis represents the ra-

dius filtration value o (unit: A), the left-y-axis represents the number of zero eigenvalues
of £, and the right-y-axis represents the first non-zero eigenvalue of £J*. Note that the
harmonic spectra from the three methods are indistinguishable.

Figure 5.9 (a) shows a 3D secondary structure of PDB 1008, where the balls represent the
alpha carbon atoms. The light blue, purple, and orange colors represent helix, sheet, and
random coils of PDB ID 1008. Figure 5.9 (b) depicts its harmonic spectra ﬂg’o (blue curve)
and the smallest non-zero eigenvalue \>? (red curve). Notably, two unusual onsets of 3y 0
and ;" are detected when a << 1.9 A, indicating something is wrong with the structure
data. Usually, the distance between the two alpha carbon atoms is around 3.8 A. By
examining the structure of PDB 1008, we found that two pairs of alpha carbon atoms in
PDB 1008 have abnormal distances as marked with black frames. The distance of alpha
carbon atoms in the upper box is 2.914 A and that in the lower box is 2.996 A, which are
too short. The plots of the other proteins can be found in the Appendix. Similar structural
defects were detected for PDB IDs 1V70, 2HQK, 2PKT, and 2VIM.

Although our package provides additional geometric information by calculating the
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Figure 5.8: Tllustration of the harmonic spectra 85*°, 55*°, and 85"*° (green curves from
top chart to bottom chart) and the smallest non-zero eigenvalue \j*°, \{"*°, and \3*?
(yellow curves from top chart to bottom chart) of PDB ID 5CYT (the bottom left chart
in Figure 5.6) at different filtration values « calculated from HERMES. Here, the z-axis
represents the radius filtration value « (unit: A), the left-y-axes represents the number
of zero eigenvalues of £5°°, £$*°, and £""° from top to bottom, and the right-y-axes
represents the first non-zero eigenvalue of £5*°, £8°°, and £3"° from top to bottom.

non-harmonic spectra of gth-order persistent Laplacians, there are two limitations of HER-
MES. First, the construction of the Vietoris—Rips complex is the primary bottleneck in
the calculation of non-harmonic spectra of persistent Laplacian matrices (PLMs). Addi-
tionally, the input format of HERMES is point cloud data. Other input formats, such as
pairwise distances, point cloud with van der Waals radii, and volumetric density are not

supported. These limitations will be addressed in our future implementation.

5.4 Discussion and Conclusion

While spectral graph theory has had tremendous success in data science to capture the
geometric and topological information, it is limited by representing a graph structure at
a given characteristic length scale, which hinders its practical application in data anal-

ysis. Motivated by the persistent (co)homology in dealing with a given initial data by
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Figure 5.9: (a) The 3D secondary structure of PDB ID 1008. The blue, purple, and orange
colors represent helix, sheet, and random coils of PDB ID 1008. The ball represents the
alpha carbon of PDB ID 1008. (b) Illustration of the harmonic spectra 6370 (blue curve)
and the smallest non-zero eigenvalue )\3’0 (red curve) of PDB ID 1008 at different filtration
values a when ¢ = 0,1, 2. The ﬁg’o are calculated from Gudhi, DioDe, and HERMES, and
A2 are calculated only from HERMES. Here, the z-axis represents the radius filtration

value a (unit: A), the left-y-axis represents for the number of zero eigenvalue of E;“’O, and
the right-y-axis represents for the non-zero eigenvalues of £J°. Note that the harmonic
spectra from three methods are indistinguishable.

constructing a family of simplicial complexes to track their topological invariants, and
the multiscale graphs by creating a set of spectral graphs aiming to extract rich geometric
information, we proposed persistent spectral graph (PSG) theory as a unified multiscale
paradigm for simultaneous geometric and topological analysis [192]. PSG theory has
stimulated mathematical analysis and algorithm development [151], as well as applica-
tions to drug discovery [181], and protein flexibility analysis [11].

To enable broad and convenient applications of the PSG method, we present an open-
source software package called highly efficient robust multidimensional evolutionary
spectra (HERMES). For a given point-cloud dataset, HERMES creates persistent Lapla-
cian matrices (PLMs) at various topological dimensions via filtration. The spectrum of
PLMs includes harmonic parts and non-harmonic parts. It turns out that the harmonic

part spans the kernel spaces of PLMs and carries the full topological information of the
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dataset. As a result, HERMES delivers the same topological data analysis (TDA) as does
persistent homology. The non-harmonic part of PLMs provides valuable geometric anal-
ysis of the shape of data at various topological dimensions. The smallest non-zero eigen-
values are found to be very sensitive to data abnormality. In the present HERMES, both
the alpha complex and the Vietoris—Rips complex are implemented. Due to the poten-
tially large number of simplicies, the eigenvalue problem of persistent Laplacian for the
Vietoris—Rips complex becomes memory-intensive for large systems. This difficulty may
be overcome with approximate eigenvalue solvers. We will continue improving the effi-
ciency of HERMES. HERMES has been extensively validated for its accuracy, robustness,
and reliability by standard test datasets and a large number of complex protein structures,

including comparison with Gudhi and DioDe.
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CHAPTER 6

APPLICATIONS IN MATHEMATICAL MODELING OF VIROLOGY

6.1 Mutations on COVID-19 diagnostic targets

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first reported
in Wuhan in December 2019, is an unsegmented positive-sense single-stranded RNA
virus that belongs to the -coronavirus genus and coronaviridae family. Coronaviruses
are some of the most sophisticated viruses with their genome size ranging from 26 to 32
kilobases in length. Caused by SARS-CoV-2, the coronavirus disease 2019 (COVID-19)
pandemic outbreak has spread to more than 200 countries and territories with more than
15,012,731 infection cases and 619,150 fatalities worldwide by July 23, 2020 [193]. Addi-
tionally, travel restrictions, quarantines, and social distancing measures have essentially
put the global economy on hold. Furthermore, we remain without efficacious testing,
medications and vaccines for COVID-19. Undoubtedly, effective and widely available
COVID-19 diagnostic testing, medications and vaccines would not only save lives, but
would play a crucial role in a recovering worldwide economic?.

There are three types of diagnostic tests for COVID-19, namely polymerase chain re-
action (PCR) tests, antibody tests, and antigen tests. PCR tests detect the genetic material
from the virus. Antibody tests, also called serological tests, examine the presence of an-
tibodies produced from immune response to the virus infection. Antigen tests detect the
presence of viral antigens, e.g., parts of the viral spike protein. PCR tests are relatively
more accurate but take time to show the test result. The protein tests based on antibody
or antigen can display test results in minutes but are relatively insensitive and subject to

host immune response.

'This work is published on Nov 2020. No vaccines and medications available for COVID-19 at that
time.
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PCR diagnostic test reagents were designed based on early clinical specimens con-
taining a full spectrum of SARS-CoV-2 [194], particularly the reference genome collected
on January 5, 2020, in Wuhan (SARS-CoV-2, NC004718) [91]. Approved by the United
States (US) Food and Drug Administration (FDA), the US Centers for Disease Control
and Prevention (CDC) has detailed guidelines for COVID-19 diagnostic testing, called
“CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel” ( https:
/ /www.fda.gov/media/134922 /download). The US CDC has designated two oligonu-
cleotide primers from regions of the virus nucleocapsid (N) gene, i.e., N1 and N2, as
probes for the specific detection of SARS-CoV-2. The panel has also selected an addi-
tional primer/probe set, the human RNase P gene (RP), as control samples. Many other
diagnostic primers and probes based on RNA-dependent RNA polymerase (RdRP), en-
velope (E), and nucleocapsid (N) genes have been designed [195] and/or designated by
the World Health Organization (WHO) as shown in Table S1 of the Supporting Material,
which provides the details of 54 commonly used diagnostic primers and probes [196]. The
diagnostic kits are often static over time, yet SARS-CoV-2 is undergoing fast mutations.
Hence, it is reported that different primers and probes show nonuniform performance
[197, 198, 199].

In this study, we genotype 31421 SARS-CoV-2 genome isolates in the globe and reveal
numerous mutations on the COVID-19 diagnostic targets commonly used around the
world, including those designated by the US CDC. We identify and analyze the SARS-
CoV-2 mutation positions, frequencies, and encoded proteins in the global setting. These
mutations may impact the diagnostic sensitivity and specialty, and therefore, they should
be considered in designing new testing kits as the current effort in COVID-19 testing,
prevention, and control. We propose diagnostic target selection and optimization based

on nucleotide-based and gene-based mutation-frequency analysis.

118


https://www.fda.gov/media/134922/download
https://www.fda.gov/media/134922/download

6.1.1 Results and Analysis

Genotyping analysis We first genotype 31421 SARS-CoV-2 genome samples from the
globe as of July 23, 2020. The genotyping results unravel 13402 single mutations among
these virus isolates. Typically, a SARS-CoV-2 isolate can have eight co-mutations on av-
erage. A large number of mutations may occur on all of the SARS-CoV-2 genes and have
broad effects on diagnostic kits, vaccines, and drug developments. Moreover, we cluster
these mutations by k-means methods, resulting in globally at least six distinct subtypes
of the SARS-CoV-2 genomes, from Cluster I to Cluster VI. Table 6.1 shows the mutation
distribution clusters with sample counts (SC) and total single mutation counts (MC) in 20
countries.

Table 6.1: The mutation distribution clusters with sample counts (SC) and total single mu-
tation counts (MC). The listed countries are United States (US), Canada (CA), Australia
(AU), Germany (DE), France (FR), United Kingdom (UK), Italy (IT), Russia (RU), China
(CN), Japan (JP), Korean (KR), India (IN), Iceland (IS), Brazil (BR), Spain (ES), Belgium
(BE), Saudi Arabia (SA), Turkey (TR), Peru(PE), and Chile (CL).

Cluster 1 Cluster II Cluster III Cluster IV Cluster V Cluster VI
Country | SC MC SC MC SC MC SC MC SC MC SC MC
Us 3252 24846 | 2013 14737 | 286 3686 | 2366 27012 | 562 3798 | 304 2706
CA 113 835 80 561 9 106 42 417 84 525 33 290
AU 173 1204 | 587 5048 75 1010 | 195 2127 | 165 885 132 1076
DE 69 504 25 121 5 58 26 209 27 144 43 366
FR 100 718 14 55 2 22 48 523 74 465 10 83
UK 295 2328 | 1927 12777 | 2171 27636 | 1623 16123 | 1890 11835 | 2919 25576
IT 1 8 8 104 33 561 24 308 57 283 24 192
RU 7 52 2 32 19 219 7 53 32 187 119 968
CN 3 22 287 1155 2 32 7 50 8 35 3 26
JP 18 134 243 1001 23 272 9 79 23 139 191 1676
KR 0 0 58 327 0 0 0 0 0 0 0 0
IN 29 212 268 3045 | 200 2703 | 399 4840 | 141 847 51 487
IS 66 446 103 595 30 345 10 89 152 924 59 525
ES 4 33 163 1198 3 33 37 365 170 1103 42 359
BR 3 26 7 51 78 1009 2 10 7 42 63 591
BE 56 411 85 400 66 783 115 1031 | 230 1381 | 141 1239
SA 16 110 9 61 0 0 14 126 17 133 1 7
TR 0 0 28 339 13 158 50 476 4 28 31 273
PE 2 12 5 36 10 124 5 48 9 58 2 17
CL 13 91 27 282 21 285 49 665 32 200 20 169

All of the countries are involved in six clusters except Korean (KR), Saudi Arabia (SA),
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and Turkey (TR). Among them, China initially had samples only in clusters II and its
sample distributions reached to other Clusters after March 2020. Cluster I, II, and IV
dominate in the United States. Germany (DE) and France (FR) samples are mainly in
Cluster I, IV, and VI. Italy (IT) samples are mainly in Clusters III, IV, V, and VI. Samples in
Turkey (TR) are mainly in Cluster II, III, IV, and VI. Japan (JP) samples are dominated in
Cluster II and VI, Korea (KR) samples belong to Cluster II only. Cluster II is common to
all countries. Figure 6.1 depicts the distribution of six distinct clusters in the world. The
light blue, dark blue, green, red, pink, and yellow represent Cluster I, Cluster II, Cluster
II, Cluster IV, Cluster V, and Cluster VI, respectively. The color of the dominated Cluster
decides the base color of each country. To be noted, although some countries have a
lot of confirmed sequences, a very limited number of complete genome sequences are

deposited in the GISAID, which causes the geographical bias in the Table 6.1.
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Figure 6.1: The scatter plot of six distinct clusters in the world in July 2020. The light blue,
dark blue, green, red, pink, and yellow represent Cluster I, Cluster II, Cluster III, Cluster
IV, Cluster V, and Cluster VI, respectively. The base color of each country is decided by
the color of the dominated Cluster.

Mutations on Diagnostic Targets
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Table 6.2: Summary of mutations on COVID-19 diagnostic primers and probes and their
occurrence frequencies in clusters. Here, SC is the sample counts and MC is the mutation
counts.

Primer MC SC ClusterI Cluster II Cluster III Cluster IV Cluster V Cluster VI
RX7038-N1 primer (Fw)* 15 79 5 14 12 28 14 6
RX7038-N1 primer (Rv)* 17 113 1 66 14 9 2 21
RX7038-N2 primer (Fw)* 7 60 3 10 24 21 1 1
RX7038-N2 primer (Rv)* 6 50 2 17 6 15 3 7
RX7038-N3 primer (Fw) [200] 13 287 4 224 13 26 14 6
RX7038-N3 primer (Rv) [200] 12 70 4 10 7 39 6 4
N1-U.S.-P [196] 15 856 4 782 20 31 15 4
N2-U.S.-P [196] 11 70 10 40 4 12 4 0
N3-U.S.-P [196] 16 84 5 27 15 21 10 6
N-Sarbeco-F® [195] 12 63 4 20 10 15 10 4
N-Sarbeco-P*[195] 12 116 1 19 30 42 15 9
N-Sarbeco-R?[195] 17 156 37 26 4 80 5 4
N-China-F [196] 23 26280 38 226 10873 139 17 14987
N-China-R [196] 17 217 5 15 17 157 8 15
N-China-P [196] 7 20 1 4 6 8 1 0
N-HK-F [196] 5 149 1 2 74 7 1 64
N-HK-R [196] 14 84 14 12 14 35 4 5
N-JP-F [196] 10 66 5 10 9 16 26 0
N-JP-P [196] 9 32 0 5 1 16 3 7
N-TL-F [196] 17 149 1 84 14 31 13 6
N-TL-R [196] 17 115 29 7 7 66 3 3
N-TL-P [196] 11 45 1 5 13 5 1 20
E-Sarbeco-F1¢ 5 23 0 0 10 9 2 2
E-Sarbeco-R2¢ 4 18 0 6 5 1 6 0
E-Sarbeco-P1¢ 9 48 1 29 6 9 3 0
nCoV-IP2-12669Fw*¢ 3 50 0 17 12 11 0 10
nCoV-1P2-12759Rv*“ 11 739 123 244 77 168 127 0
nCoV-IP2-12696bProbe(+)° 8 17 2 4 1 6 4 0
nCoV-1P4-14059Fw* 3 9 0 0 7 2 0 0
nCoV-1P4-14146Rv* 11 38 7 7 9 9 1 5
nCoV-1P4-14084Probe(+)° 11 49 3 12 6 19 5 4
RARP-SARSr-F2¢ 5 89 2 1 5 37 44 0
RARP-SARSr-R1%[195] 3 4 2 0 0 2 0 0
RARP-SARSr-P24[195] 4 10 0 6 2 2 0 0
ORF1lab-China-F [196] 4 19 0 4 2 6 5 2
ORF1lab-China-R [196] 0 0 0 0 0 0 0 0
ORF1lab-China-P [196] 14 61 1 6 30 11 3 10
ORF1b-nsp14-HK-F [196] 6 12 2 1 6 3 0 0
ORF1b-nsp14-HK-R[196] 9 89 3 9 52 14 6 5
ORF1b-nsp14-HK-P[196] 6 37 2 1 9 13 0 12
SC2-F¢ 11 88 0 5 34 29 13 7
SC2-R° 0 0 0 0 0 0 0 0
NIID_WH-1_F501[201] 13 255 0 205 25 18 3 4
NIID_WH-1_R913[201] 14 128 1 94 9 18 4 2
NIID_WH-1_F509[201] 10 30 7 5 7 6 3 2
NIID_WH-1_R854[201] 9 261 63 25 33 117 5 18
NIID_WH-1_Seq[201] F519 19 130 8 89 17 11 3 2
NIID_WH-1_Seq R840[201] 12 66 6 9 21 8 3 19
WuhanCoV-spk1-f[201] 14 433 265 22 11 123 8 4
WuhanCoV-spk1-r[201] 4 10 0 2 3 1 2 2
NIID_WH-1_F24381[201] 20 494 275 30 16 153 13 7
NIID_WH-1_R24873[201] 5 15 1 4 3 7 0 0
NIID_WH-1_Seq_F24383[201] 21 503 275 30 22 153 13 10
NIID_WH-1_Seq_R24865[201] 6 17 2 4 5 6 0 0
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Table 6.2 provides all mutations on various primers and probes and their occurring
frequencies in various clusters, where SC is the sample counts and MC is the mutation
counts. More detailed mutation information is given in Tables 54-556 of the Supporting
Material. We plot the mutation position and frequency for 54 primers and probes in this
work in Figure 6.2 - Figure 6.6.

It is noted that N-China-F [196] is the mostly-used reagent among all primers/probes,
but the primer target gene of SARS-CoV-2 has 15 mutations involving thousands of sam-
ples, which may account for low efficacy of certain COVID-19 diagnostic kits in China
according to this website. Note that primers and probes typically have a small length of
around 20 nucleotides.

Currently, most primers and probes used in the US target are the N gene [196]. How-
ever, Table 6.2 shows that a plurality of mutations has been found in all of the targets of
the US CDC designated COVID-19 diagnostic primers. The targets of N gene primers and
probes used in Japan, Thailand, and China, including Hong Kong, have undergone mul-
tiple mutations involving many clusters. Therefore, the N gene may not be an optimal
target for diagnostic kits, and the current test kits targeting the N gene should be updated
accordingly for testing accuracy.

It can be seen that so far, no mutation has been detected on ORFlab-China-R and SC2-
R, showing that they are two relatively reliable diagnostic primers. Notably, the targets
of four E gene primers and probes have only six mutations. Also, no mutation has been
found on the targets of ORFlab-China-R and SC2-R. However, the target of nCoV-1P2-
12759R recommended by Institute Pasteur, Paris has six mutations. Overall, targets of the
envelope and RNA-dependent RNA polymerase based primers and probes have fewer
mutations than the N gene. This observation leads to an assumption that the N gene is

particularly prone to mutations.
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Figure 6.2: Illustration of mutation positions and frequencies on the primer and/or probes
of RX7038-N1 primer (Fw), RX7038-N1 primer (Rv), RX7038-N2 primer (Fw), RX7038-N2
primer (Rv), RX7038-N3 primer (Fw), RX7038-N3 primer (Rv), N1-U.S.-P, N2-U.S.-P, N3-
U.S.-P, N-Sarbeco-F.

6.1.2 Discussions

Mechanisms of mutation and mutation impact on diagnostics The accumulation of the
frequency of virus mutations is due to natural selection, polymerase fidelity, cellular envi-
ronment, features of recent epidemiology, random genetic drift, host immune responses,
gene editing [202], replication mechanism, etc [203, 204]. SARS-CoV-2 has a higher fi-
delity in its transcription and replication process than other single-stranded RNA viruses
because it has a proofreading mechanism regulated by NSP14 [205]. However, 13402 sin-
gle mutations have been detected from 31421 SARS-CoV-2 genome isolates.

Due to technical constraints, genome sequencing is subject to errors. Some “muta-
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Figure 6.3: Illustration of mutation positions and frequencies on the primer and/or probes
of N-Sarbeco-P, N-Sarbeco-R, N-China-F, N-China-R, N-China-P, N-HK-F, N-HK-R, N-JP-
E N-JP-P, N-TL-E.
tions” might result from sequencing errors, instead of actual mutations. Additionally,
mRNA editing, such as APOBEC [202], in defending virus invasion in the human im-
mune system can create fatal mutations. Both cases may lead to single-nucleotide poly-
morphisms (SNPs) without a descendant. We report that among all of 31421 genome
isolates, 13402 individual mutations have at least one descendant.

It is well known that the sensitivity of diagnostic primers and probes depends on their
target positions. Specifically, the beginning part of a primer or probe is not as important as
its ending part. A high-frequency mutation on the right end of a primer or probe position

of a target would possibly produce more false-negatives in diagnostics. Also, importantly,
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Figure 6.4: Illustration of mutation positions and frequencies on the primer and/or probes
of N-TL-R, N-TL-P, E-Sarbeco-F1, E-Sarbeco-R2, E-Sarbeco-P1, nCoV-IP2-12669Fw, nCoV-
[P2-12759Rv, nCoV-1P2-12696bProbe(+), nCoV-1P4-14059Fw, nCoV-1P4-14146Rwv.

for primers involving significant mutations, polymerase chain reaction (PCR) annealing
temperatures are estimated based on correctly matched sequences [206]. Annealing tem-
peratures for primers and probes involving mutations of are given in Tables S4-556 of the
Supporting Material.

Nucleotide-based diagnostic target optimization Table 6.2 shows that the degree of
mutations on various diagnostic targets vary dramatically. Therefore, it is of great im-
portance to know how to select an optimal viral diagnostics target to avoid potential
mutations. We discuss such a target optimization via both nucleotide-based analysis and

gene-based mutation analysis.
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Figure 6.5: Illustration of mutation positions and frequencies on the primer and/or
probes of nCoV-1P4-14084Probe(+), RARP-SARSr-F2, RARP-SARSr-R1, RARP-SARSr-P2,
ORFlab-China-F, ORFlab-China-R, ORFlab-China-P, ORF1b-nsp14-HK-F, ORF1b-nsp14-
HK-R, ORF1b-nsp14-HK-P.

Figure 6.7 illustrates the rates of 12 different types of mutations among 31421 SNP
variants. It is interesting to note that 51.4% mutations on the SARS-CoV-2 are of C>T
type, due to strong host cell mRNA editing knows as APOBEC cytidine deaminase [202].
Therefore, researchers should avoid cytosine bases as much as possible when designing
the diagnostic test kits.

Gene-based diagnostic target optimization

To further understand how to design the most reliable SARS-CoV-2 diagnostic targets,

we carry out gene-level mutation analysis. Figure 6.8 and Table 6.3 present the muta-

tion ratio, i.e., the number of unique single-nucleotide polymorphisms (SNPs) over the
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Figure 6.6: Illustration of mutation positions and frequencies on the primer and /or probes
of SC2-F SC2-RNIID_WH-1_F501,NIID_WH-1_R913, NIID_WH-1_F509, NIID_WH-
1_R85, NIID_WH-1_Seq F519, NIID_WH-1_Seq R840, WuhanCoV-spkl-f, WuhanCoV-
spkl-r, NIID_WH-1_F24381, NIID_WH-1_R24873, NIID_WH-1_Seq F24383, NIID_WH-
1_Seq R24865.

corresponding gene length, for each SARS-CoV-2 gene. A smaller mutation ratio for a
given gene indicates a higher degree of conservativeness. Clearly, the ORF7b gene has
the smallest mutation ratio of 0.155, while the ORF7a gene has the largest mutation ratio
of 0.642. The N gene has the fourth-largest mutation rate of 0.558, which is very close to
the largest ratio of 0.594 for the ORF3a gene and 0.559 for the ORF8 gene. Additionally,
two ends of the SARS-CoV-2 genome, i.e., NSP1, NSP2, ORF10, N gene, ORF8, ORF7a,
and ORF6, exception for ORF7b, have higher mutation ratios. Considering the mutation
frequency, we introduce the mutation h-index, defined as the maximum value of & such
that the given gene section has h single mutations that have each occurred at least / times.
Normally, larger genes tend to have a higher h-index. Figure 6.8 shows that, with a mod-

erate length, the N gene has the second-largest h-index of 44, which is close to the largest
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Figure 6.8: Illustration of SARS-CoV-2 mutation ratio and mutation h-index one various
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unique SNPs is given in the h-index bar.

128



h-index of 47 for NSP3. Therefore, selecting SARS-CoV-2 N gene primers and probes as
diagnostic reagents for combating COVID-19 is not an optimal choice. Moreover, a few
primers and probes used in Japan are designed on the spike and NSP2 gene. However,
the high mutation ratio and h-index of spike and NSP2 gene indicate that these diagnos-
tic reagents may not perform well. Furthermore, we design a website called Mutation
Tracker to track the single mutations on 26 SARS-CoV-2 proteins, which will be an in-
tuitive tool to inform other research on regions to be avoided in future diagnostic test

development.

Table 6.3: Gene-specific statistics of SARS-CoV-2 single mutations on 26 proteins.

Gene type Genesite  Genelength Unique SNPs mutation ratio h-index
NSP1 266:805 540 273 0.506 19
NSP2 806:2719 1914 973 0.508 36
NSP3 2720:8554 5835 2626 0.450 47
NSP4 8555:10054 1500 604 0.403 25
NSP5(3CL) 10055:10972 918 353 0.385 22
NSP6 10973:11842 870 348 0.400 22
NSP7 11843:12091 249 99 0.398 12
NSP8 12092:12685 594 242 0.407 14
NSP9 12686:13024 339 135 0.398 13
NSP10 13025:13441 417 147 0.353 11
NSP11 13442:13480 39 11 0.282 4
RNA-dependent-polymerase  13442:16236 2796 1030 0.368 31
Helicase 16237:18039 1803 653 0.362 29
3’-to-5" exonuclease 18040:19620 1581 706 0.447 27
endoRNAse 19621:20658 1038 476 0.459 19
2’-O-ribose methyltransferase 20659:21552 894 358 0.400 20
Spike protein 21563:25384 3819 1651 0.432 42
ORF3a protein 25393:26220 825 490 0.594 32
Envelope protein 26245:26472 225 95 0.422 13
Membrane glycoprotein 26523:27191 666 271 0.407 23
ORF6 protein 27202:27387 183 101 0.552 12
ORF7a protein 27394:27759 363 233 0.642 16
ORF7b protein 27756:27887 129 20 0.155 5
ORF8 protein 27894:28259 363 203 0.559 18
Nucleocapsid protein 28274:29533 1257 701 0.558 44
ORF10 protein 29558:29674 114 61 0.535 12
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6.1.3 Conclusion

In summary, the targets of currently used COVID-19 diagnostic tests have numerous mu-
tations that impact the diagnostic test accuracy in identifying COVID-19. There is a need
for continued surveillance of viral evolution and diagnostic test performance, as the emer-
gence of viral variants that are no longer detectable by certain diagnostics tests is a real
possibility. A cocktail test kit is needed to mitigate mutations. We propose nucleotide-
based and gene-based diagnostic target optimizations to design the most reliable diag-
nostic targets. We analyze a full list of SNPs for all 31421 genome isolates, including
their positions and mutation types. This information, together with ranking of the de-
gree of the conservativeness of SARS-CoV-2 genes or proteins given in Table 6.3, enables
researchers to avoid non-conservative genes (or their proteins) and mutated nucleotide

segments in designing COVID-19 diagnosis, vaccine, and drugs.

6.2 Mechanisms of SARS-CoV-2 evolution

The mechanism of mutagenesis is driven by various competitive processes [203, 204, 207,
208, 24], which can be categorized into 3 different scales with many factors as illustrated
in Figure 6.9 a: 1) the molecular scale, 2) the organism scale, and 3) the population scale.
From the molecular-scale perspective, the random shifts, replication errors, transcription
errors, translation errors, viral proofreading, and viral recombination are the main driven
sources. Moreover, the host gene editing induced by the adaptive immune response [24]
and the recombination between the host and virus are the key-driven factors at the organ-
ism level. Furthermore, the natural selection popularized by Charles Darwin is a critical
process, which favors mutations that have reproductive advantages for the virus to have
adaptive traits in evolution. Such complicated mechanisms of viral mutagenesis make
the comprehension of viral transmission and evolution a grand challenge.

Although there are 28,780 unique single mutations distributed evenly on the whole

SARS-CoV-2 genome, the mutations on the S gene stand out among all 29 genes on SARS-
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CoV-2 due to the mechanism of viral infection. Under assistant with host transmembrane
protease, serine 2 (TMPRSS2), SARS-CoV-2 enters the host cell by interacting with its
S protein and the host angiotensin-converting enzyme 2 (ACE2) [37] (See Figure 6.9 b).
Later on, antibodies will be generated by the host immune system, aiming to eliminate
the invading virus through direct neutralization or non-neutralizing binding [209, 210],
which makes the S protein the main target for the current vaccines. Specifically, there is
a short immunogenic fragment located on the S protein of SARS-CoV-2 that can facili-
tate the SARS-CoV-2 S protein binding with ACE2, which is called the receptor-binding
domain (RBD) [211]. Studies have shown that the binding free energy (BFE) between
the S RBD and the ACE2 is proportional to the infectivity [212, 213, 214, 37, 28]. There-
fore, tracking and monitoring the RBD mutations and their corresponding BFE changes
will expedite understanding the infectivity, transmission, and evolution of SARS-CoV-2,
especially for the new SARS-CoV-2 variants, such as Alpha, Beta, Gamma, Delta, and
Lambda, etc. [21]

The current prevailing variants Alpha, Beta, Gamma, Delta, Kappa, Theta, Lambda,
and Mu carry at least one vital mutation at residues 452 and 501 on the S RBD 2. Notably,
in July 2020, we successfully predicted that residues 452 and 501 "have high chances to
mutate into significantly more infectious COVID-19 strains" [41]. In the same work, we
hypothesized that “natural selection favors those mutations that enhance the viral trans-
mission" and provided the first evidence for infectivity-based natural selection. In other
words, we revealed the mechanism of SARS-CoV-2 evolution and transmission based on
very limited genome data in July 2020 [41]. Additionally, we predicted three categories
of RBD mutations: 1) most likely (1149 mutations), 2) likely (1912 mutations), and 3) un-
likely (625 mutations) [41]. Up to now, all of the RBD mutations we detected fall into
our first category [102, 2]. Until now, all of the top 100 most observed RBD mutations

have BFE change greater than the average BFE changes of -0.28kcal/mol (the average

2This work was published in 2020
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BFE changes for all RBD mutations[215]). There are extremely low odds (i.e., m)
for 100 RBD mutations to accidentally have BFE changes simultaneously above the av-
erage value. This provides convincing evidence for our hypothesis that the transmission
and evolution of new SARS-CoV-2 variants are governed by infectivity-based natural se-
lection, despite all other competing mechanisms [41]. Our predictions rely on algebraic
topology [100, 101, 4]-assisted deep learning [40, 41], but have been extensively validated
[102, 99].

However, infectivity is not the only transmission pathway that governs viral evolu-
tion. Vaccine-resistant mutations or more precisely, antibody-resistant mutations, that
can disrupt the protection of antibodies has become a viable mechanism for new variants
to transmit among the vaccinated population since the vaccine was put on the market. In
early January 2021, we have predicted that RBD mutations W353R, 1401N, Y449D, Y449S,
P491R, P491L, Q493P, etc., will weaken most antibody bindings to the S protein [102].
Later on, we have provided a list of most likely vaccine escape RBD mutations with high
frequency, including S494P, Q493L, K417N, F490S, F486L, R403K, E484K, L452R, K417T,
F490L, E484Q, and A475S [2]. Moreover, we have pointed out that Y449S and Y449H
are two vaccine-resistant mutations, and “Y449S, S494P, K417N, F490S, 1L452R, E484K,
K417T, E484Q, L452Q), and N501Y" are the top 10 mutations that will disrupt most anti-
bodies with high-frequency [215]. As mentioned in Ref. [216], RBD mutations such as
E484K /A, Y489H, Q493K, and N501Y found in late-stage evolved S variants “confer re-
sistance to a common class of SARS-CoV-2 neutralizing antibodies", which suggests the

viral evolution is also regulated by vaccine-resistant mutations.

6.2.1 Evolutionary trajectories of viral RBD single mutations

Studying the mechanisms of SARS-CoV-2 mutagenesis is beneficial to the understand-
ing of viral transmission and evolution. The mainly driven force of viral evolution is

regulated by natural selection, which is employed by two complementary transmission
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pathways: 1) infectivity-based pathway and 2) vaccine-resistant pathway. We have dis-
cussed the infectivity-based pathways in Ref.[215] and [39]. This section focuses on the
vaccine-resistant pathway and its impact on the transmission and evolution of SARS-
CoV-2. To understand the mechanisms of vaccine-resistant mutations, we first analyze
1,983,328 complete SARS-CoV-2 genomes, and a total of 28,780 unique single mutations
are decoded. Among them, there are 737 non-degenerate RBD mutations. The infectivity
of SARS-CoV-2 is proportional to the BFE between the S RBD and ACE2 [212, 213, 214,
37, 28]. Therefore, the BFE change induced by a specific RBD mutation reveals whether
the RBD mutation is an infectivity-strengthen or an infectivity-weaken mutation. Simi-
larly, the BFE change between S RBD and antibody induced by a given mutation reveals
whether this mutation will strengthen the binding between S and antibody or not.

Up to now, we have collected 130 antibody structures (see the Supporting Informa-
tion 54), which includes Food and Drug Administration (FDA)-approved mAbs from Eli
Lilly and Regeneron. For a specific RBD mutation, its antibody disruption count shows
the number of antibodies that have antibody-S BFE changes smaller than -0.3 kcal/mol.
The ACE2-S and antibody-S BFE changes induced by RBD mutations are predicted from
our TopNetTree model [41], which is available at TopNetmAb. All of the predicted BFE
changes induced by RBD mutations can be found at Mutation Analyzer. Figure 6.9 c
illustrates the top 25 most observed RBD mutations. The height and color of each bar
represent the ACE2-S BFE changes and frequency of each RBD mutation. The number
at the top of each bar shows the antibody disruption count of each mutation. The de-
tailed information can be viewed in Supplementary Information S4. It can be seen that
23 mutations have positive ACE2-S BFE changes, suggesting they are regulated by the
infectivity-based transmission pathway.

Howbeit, 2 RBD mutations D427N and Y449S, have negative BFE changes. Notably,
mutation Y449S has a significantly negative BFE change (-0.8112 kcal/mol) and a pretty

large antibody disruption count (89), revealing a non-typical mechanism of mutagenesis.
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Such a mutation with significantly negative ACE2-S BFE change together with a high an-
tibody disruption count is called a vaccine-resistant or antibody-resistant mutation. Fig-
ure 6.9 d is the illustration of SARS-CoV-2 S protein (blue color) with human ACE2 (pink
color), and the Y449 residue (purple color) is located on the random coil of the S protein.
Among all of the vaccine-resistant mutations, Y449S has the highest frequency (1189). In
addition, at residue 449, mutations Y449H, Y449N, Y449D are all vaccine-resistant muta-
tions that have been observed in more than 20 SARS-CoV-2 genome isolates.

5 14
8 o 112,27
a 13

SARS-CoV-2

Figure 6.9: a The mechanism of mutagenesis. Nine mechanisms are grouped into three
scales: 1) molecular-based mechanism (green color); 2) organism-based mechanism (red
color); 3) population-based mechanism (blue color). The random shifts (Random), repli-
cation error (Rep), Transcription error (Transcr), viral proofreading (Proof), and recom-
bination (Recomb) are the six molecular-based mechanisms. The gene editing and the
host-virus recombination are the organism-based mechanism. In addition, the natural se-
lection (Natural) is the population-based mechanism, which is the mainly driven source
in the transmission of SARS-CoV-2. b A sketch of SARS-CoV-2 and its interaction with
host cell. ¢ Illustration of 25 single-site RBD mutations with top frequencies. The height of
each bar shows the BFE change of each mutation, the color of each bar represents the nat-
ural log of frequency of each mutation, and the number at the top of each bar means the
Al-predicted number of antibody and RBD complexes that may be significantly disrupted
by a single site mutation. d Illustration of SARS-CoV-2 S protein with human ACE2. The
blue chain represents the human ACE2, the pink chain represents the S protein, and the
purple fragment on the S protein points out the two vaccine-resistant mutations Y449S/H.

To track the evolution trajectory of vaccine-resistant mutations, the BFE changes, log?2

enrichment ratios ®, and log10 frequencies of RBD mutations are analyzed from April 30,

3Log2 enrichment ratio is collected from the experimental deep mutation enrichment data in Ref. [3]
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2020, to August 23, 2021, in every 60 days, as illustrated in Figure 6.10. Here, the top 100
most observed RBD mutations are displayed. In Figure 6.10 a, red stars mark the vaccine-
resistant mutations that have negative BFE changes. Although a few vaccine-resistant
mutations S438F, 434K, Y505C, and Q506K were detected before November 2020, they
had relatively low frequencies. However, since December 2020, such vaccine-resistant
mutations were no longer in the top 100 most observed RBD mutation list, suggesting
that in this period, the evolution of SARS-CoV-2 is mainly regulated by natural selection
through the infectivity-based transmission pathway. Notably, in May 2021, two vaccine-
resistant mutations Y449S and Y449H, came back to the top 100 most observed RBD mu-
tation list. In addition, Y449S has a relatively high frequency. Such finding indicates that
natural selection not only favors those mutations that enhance the transmission but also
those mutations that can disrupt plenty of antibodies since SARS-CoV-2 vaccines started
to provide protection among populations in early May. Similarly, patterns can be found
in Figure 6.10 b, suggesting our Al-predicted BFE changes are highly consistent with the

deep mutational enrichment ratio from experiments [3].

6.3 Mutational impacts on SARS-CoV-2 infectivity

Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and
Brazil have received much attention for their increased infectivity, potentially high vir-
ulence, and possible threats to existing vaccines and antibody therapies. The question
remains if there are other more infectious variants transmitted around the world. We
carry out a large-scale study of 506,768 SARS-CoV-2 genome isolates from patients to
identify many other rapidly growing mutations on the spike (S) protein receptor-binding
domain (RBD). We reveal that essentially all 100 most observed mutations strengthen the
binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indi-
cating the virus evolves toward more infectious variants. In particular, we discover new

tast-growing RBD mutations N439K, S477N, S477R, and N501T that also enhance the RBD
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Figure 6.10: Most significant RBD mutations. a Time evolution of RBD mutations with its
mutation-induced BFE changes per 60-day from April 30, 2020, to August 31, 2021. Here,
only the top 100 most observed RBD mutations are displayed. The height and color of
each bar represent the log frequency and ACE-S BFE change induced by a given RBD mu-
tation. The red star marks the vaccine-resistant mutations with significantly negative BFE
changes. b Time evolution of RBD mutations with its experimental mutation-induced
log2 enrichment ratio changes per 60-day from April 30, 2020, to August 31, 2021. The
height and color of each bar represent the log frequency and enrichment ratio change
induced by a given RBD mutation. The red star marks vaccine-resistant mutations with
significantly negative BFE changes.



and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom
(UK), South Africa, and Brazil variants may moderately weaken the binding between the
RBD and many known antibodies, while mutations E484K and K417N found in South
Africa and Brazilian variants, L452R and E484Q found in India variants, can potentially
disrupt the binding between the RBD and many known antibodies. Among these RBD

mutations, L452R is also now known as part of the California variant B.1.427.

6.3.1 Impacts of S RBD single mutation on SARS-CoV-2 Infectivity

The RBD is located on the S1 domain of the S protein, which plays a vital role in binding
with the human ACE2 to get entry into host cells. The mutations that are detected on the
RBD may affect the binding process and lead to the BFE changes. In this section, we ap-
ply the TopNetTree model [217] to predict the mutation-induced BFE changes of RBD and
ACE2. Figure 6.11 illustrates the predicted BFE changes for S protein and human ACE2
induced by single-site mutations on the RBD. Here, we consider 100 most observed mu-
tations. The bar plot of the other mutations on S RBD can be found in the Supporting
Information. In this figure, a total of 100 most observed mutations are displayed. Among
them, 9 mutations induced negligible negative BFE changes, while the other 91 muta-
tions are binding-strengthening mutations. Mutation T478K has the largest BFE change
which is nearly 1 kcal/mol. It may have made the Mexico variant B.1.1.222 the most
infectious observed variant.

To be noted, the residue T478 is not conservative among different species. The N501Y,
S477N, L452R, N439K, and E484K mutations are the top mutations with significant fre-
quencies. Among them, the N501Y and L452R mutations have a relatively high BFE
change of 0.55 kcal/mol and 0.58kcal/mol. Moreover, the frequency and predicted BFE
changes are both at a high level for mutations N501T, Y508H. Figure 6.12 illustrates the
time evolution of 651 binding-strengthening (blue) and binding-weakening mutations

(red) on the S protein RBD. Here, the y-axis reveals the natural log frequency of each mu-
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Figure 6.11: Illustration of SARS-CoV-2 mutation-induced BFE changes for the complexes
of S protein and ACE2. Here, 100 most observed mutations on S RBD are illustrated.
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tation. Based on the our previous findings in [41], at this stage, 651 out of 1149 RBD
mutations that we predicted as "most likely" mutations have been observed, and none
of the 1912 "likely" and 625 "unlikely" mutations are tracked on the S protein RBD, sug-
gesting the reliability of our model for predicting the BFE changes of S protein RBD and
ACE2. Among 651 mutations that are detected on RBD, mutations N501Y, S477N, L452R,
N439K, and E484K have the highest frequency up to April 18, 2021.
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Figure 6.12: Illustration of the time evolution of 424 ACE2 binding-strengthening RBD
mutations (blue) and 227 ACE2 binding-weakening RBD mutations (red) on the S protein
RBD of SARS-CoV-2 from Jan 07, 2020 to April 18, 2021. The z-axis represents date and
y-axis represents the natural log of frequency of each mutation.

It is important to track those mutations that have high frequency since the beginning
of 2021. Table 6.4 gives such information for top 40 mutations in 2021. It can be seen that

mutations N501Y, L452R, T478K, N501T, N550K, F490S, V483F, L452M, and A348S have
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relatively high BFE changes of the binding of S protein and ACE2, suggesting that they

may lead to more infectious variants.

Table 6.4: List of top 40 high-frequency (HF) mutations and their corresponding BFE
changes (unit: kcal/mol) of the binding of S protein and ACE2. Here, count shows the
frequency occurred in 2021.

Rank HF mutation Count BFE Change‘ Rank HF mutation Count BFE change

Top 1 N501Y 168801 0.5499 Top 21 N450K 184 0.3535
Top 2 L452R 9843 0.5752 Top 22 E484Q 182 0.0057
Top 3 E484K 9350 0.0946 Top 23 P330S 182 0.0533
Top 4 S477N 9276 0.018 Top 24 A522V 179 0.0705
Top 5 N439K 6056 0.1792 Top 25 D427N 164 -0.1133
Top 6 T478K 4935 0.9994 Top 26 P479S 153 0.3844
Top 7 K417N 1634 0.1661 Top 27 V382L 151 0.0355
Top 8 K417T 1508 0.0116 Top 28 T385N 151 0.0049
Top 9 5494P 1483 0.0902 Top 29 Q414R 143 0.0708
Top 10 N501T 1295 0.4514 Top 30 R346K 135 0.1234
Top 11 A520S 819 0.1495 Top 31 T3851 127 0.0314
Top 12 A522S 621 0.1283 Top 32 R403K 121 0.1778
Top 13 V367F 536 0.1764 Top 33 L455F 99 -0.0415
Top 14 N440K 432 0.6161 Top 34 V483F 99 0.5428
Top 15 S477R 394 0.082 Top 35 A475V 96 0.3069
Top 16 P384L 389 0.2681 Top 36 G446V 86 0.1583
Top 17 R357K 373 0.1393 Top 37 L452M 83 0.5966
Top 18 F490S 363 0.4406 Top 38 A348S5 82 0.4616
Top 19 P384S 263 0.1151 Top 39 T4781 81 0.1269
Top 20 Q414K 224 0.1234 Top 40 A352S 78 0.2576

Figure 6.13 shows the 3D structure of SARS-CoV-2 S protein RBD bound with ACE2.
Here, we mark 13 mutations with either high frequency or high BFE changes. The blue
and red colors represent the mutations that have positive and negative BFE changes, re-
spectively. The darker the color is, the larger the absolute value of BFE changes is. While
mutations occur everywhere on the spike protein, the ones that are most important to
COVID-19 infectivity and the efficacy of antibodies and vaccines are located at the inter-

face between the spike protein and ACE2 or antibodies.
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N439K P384N

Figure 6.13: The 3D structure of SARS-CoV-2 S protein RBD bound with ACE2 (PDB ID:
6MOJ). We choose blue and red colors to mark the binding-strengthening and binding-

weakening mutations, respectively. Vaccine escape mutations described in Table 6.6 are
labeled.

6.3.2 Impacts of S RBD co-mutations on SARS-CoV-2 Infectivity

To understand the molecular mechanisms of vaccine-escape mutations, we analyze single
nucleotide polymorphisms (SNPs) of 1,489,884 complete SARS-CoV-2 genome sequences,
resulting in 683 non-degenerate RBD mutations and their associated frequencies. A full
set of mutation information is available on our interactive web page Mutation Tracker.
The infectivity of each mutation is mainly determined by the mutation-induced BFE
change to the binding complex of RBD and ACE2. To estimate the impact of each muta-
tion on vaccines, we collect a library of 130 antibody structures (Supporting Information
52.1.2), including Food and Drug Administration (FDA)-approved mAbs from Eli Lilly
and Regeneron. For a given RBD mutation, its number of antibody disruptions is given
by the number of antibodies whose mutation-induced antibody-RBD BFE changes are
smaller than -0.3kcal/mol (A list of names for antibodies that are disrupted by mutations
can be found in the Supporting Information S2.1.1.). BFE changes following mutations are
predicted by our deep learning model, TopNetTree [40]. We have created an interactive
web page, Mutation Analyzer, to list all RBD mutations, their observed frequencies, their
RBD-ACE2 BFE changes following mutations, their number of antibody disruptions, and

various ranks. Figure 6.14 illustrates RBD mutations associated with prevailing SARS-
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CoV-2 variants, time evolution trajectories of all RBD mutations, and the BFE changes of
RBD-ACE2 and 130 RBD-antibodies induced by 75 significant mutations. A summary of

our analysis is given in Table 6.5.

Table 6.5: Top 25 most observed S protein RBD mutations. Here, BFE change refers to
the BFE change for the S protein and human ACE2 complex induced by a single-site S
protein RBD mutation. A positive mutation-induced BFE change strengthens the binding
between S protein and ACE2, which results in more infectious variants. Counts of anti-
body disruption represent the number of antibody and S protein complexes disrupted by
a specific RBD mutation. Here, an antibody and S protein complex is to be disrupted if its
binding affinity is reduced by more than 0.3 kcal/mol [2]. In addition, we calculate the
antibody disruption ratio (%), which is the ratio of the number of disrupted antibody and
S protein complexes over 130 known complexes. Ranks are computed from 683 observed
RBD mutations.

Worldwide | BFE change |Antibody disruption
Count Rank|Change Rank|Count Ratio Rank

N501Y |744354 1 | 0.5499 30 24 1846 160
L452R (259345 2 | 0.5752 28 39 300 98
T478K (239619 3 | 0.9994 2 2 154 557
E484K | 84167 4 |0.0946 272 | 38 29.23 104
K417T 37748 5 |0.0116 433 | 37 2846 107

6

7

8

9

Mutation

S477N | 32673 0.0180 422 0 0.0 650
N439K | 16154 01792 159 | 11 846 272
K417N | 8399 0.1661 176 | 53 40.77 61

F490S | 5617 0.4406 52 51 39.23 67

S5494P | 5119 10 | 0.0902 282 | 62 47.69 46

N440K | 3379 11 | 0.6161 22 0 0.0 645
E484Q | 3229 12 | 0.0057 442 | 30 23.08 130
L452Q | 2858 13 | 09802 3 27 20.77 144
A520S | 2727 14 | 0.1495 199 3 231 497
N501IT | 2054 15 | 0.4514 48 17 13.08 202
R357K | 1973 16 | 0.1393 208 5 385 388
A5225 | 1959 17 | 0.1283 221 2 154 543
R346K | 1686 18 | 0.1234 229 6 462 380
V367F | 1395 19 | 0.1764 161 0 00 637
N440S | 1361 20 | 0.1499 197 2 154 542
P384L | 1155 21 |0.2681 105 | 18 13.85 199
Y449S | 1146 22 |-0.8112 632 | 85 6538 16

D427N | 1106 23 [-0.1133 558 1 077 589
R3465 | 1037 24 |0.0374 386 | 20 15.38 182
A475V | 891 25 | 0.3069 94 10 7.69 289
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Figure 6.14: Most significant RBD mutations. a The 3D structure of SARS-CoV-2 S protein
RBD and ACE2 complex (PDB ID: 6M0]). The RBD mutations in ten variants are marked
with color. b Illustration of the time evolution of 455 ACE2 binding-strengthening RBD
mutations (blue) and 228 ACE2 binding-weakening RBD mutations (red). The z-axis rep-
resents the date and the y-axis represents the natural log of frequency. There has been
a surge in the number of infections since early 2021. ¢ BFE changes of RBD complexes
with ACE2 and 130 antibodies induced by 75 significant RBD mutations. A positive BFE
change (blue) means the mutation strengthens the binding, while a negative BFE change
(red) means the mutation weakens the binding. Most mutations, except for vaccine-
resistant Y449H and Y449S, strengthen the RBD binding with ACE2. Y449S and K417N
are highly disruptive to antibodies.
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First, the 10 most observed or fast-growing RBD mutations are N501Y, L452R, T478K,
E484K, K417T, S477N, N439K, K417N, F490S, and S494P, as shown in Table 6.5. Inclu-
sively, these top mutations strengthen their BFEs and become more infectious, following
the natural selection mechanism [41]. Figure 6.14b shows that the frequencies of the top
three mutations increased dramatically since 2021 due to Alpha, Beta, Gamma, Delta, and
other variants. Second, among the top 25 most observed RBD mutations, T478K, L452Q
N440K, L452R, N501Y, N501T, F490S, A475V, and P384L are the 8 most infectious ones
judged by their ability to strengthen the binding with ACE2, as shown in Figure 6.14c.
The BFE changes of S protein and ACE2 for mutation T478K is nearly 1.00 kcal/mol,
which strongly enhances the binding of the RBD-ACE2 complex [218]. Together with
L452R (BFE change: 0.58kcal/mol), T478K makes Delta the most infectious variant in
VOCs. Third, among the top 25 most observed RBD mutations, Y449S, 5494P, K417N,
F490S, L452R, E484K, K417T, E484Q, L452Q), and N501Y are the 10 most antibody disrup-
tive ones, judged by their interactions with 130 antibodies shown in Figure 6.14c. It can
be seen that mutations L452R, E484K, K417T, K417N, F490S, and S494P disrupt more than
30% of antibody-RBD complexes, while mutations E484K and K417T may disrupt nearly
30% antibody-RBD complexes, indicating their disruptive ability to the efficacy and relia-
bility of antibody therapies and vaccines. The most dangerous mutations are the ones that
are both infectivity-strengthening and antibody disruptive. Four RBD mutations, N501Y,
L452R, F490S, and L452Q), appear in both lists and are key mutations in WHO’s VOC and
VOl lists. Among them, F490S and L452Q) are the key RBD mutations in Lambda, making
Lambda a more dangerous emerging variant than Delta. Note that high-frequency muta-
tion S477N does not significantly weaken any antibody and RBD binding, and thus does

not appear in any prevailing variants.
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6.4 Mutational impacts on SARS-CoV-2 antibodies and vaccines

6.4.1 Impacts of S RBD single mutation on SARS-CoV-2 antibodies and vaccines

It is of paramount importance to track not only ACE2-binding-strengthening RBD muta-
tions and FG mutations but also the antibody-binding-weakening RBD mutations. Our
early work reported nearly 71% mutations on the S protein RBD will weaken the bind-
ing of S protein and antibodies, while 64.9% mutations on the RBD will strengthen the
binding of S protein and ACE2, suggesting that these mutations may potentially enhance
the infectivity of SARS-CoV-2 and make the existing antibodies less effective [217]. We
call those mutations that weaken the binding of the S protein and most SARS-CoV-2 anti-
bodies as antibody disrupting (AD) mutations [217]. Notably, most antibody disrupting
mutations have negative BFE changes, suggesting that they will make the SARS-CoV-2
less infectious and thus, will not frequently occur due to natural selection. As a result,
many of them may not be able to evade the existing vaccines in a population. Therefore,
it is necessary to focus on the BFE changes of S protein and antibodies that are induced
by 100 most observed mutations on S protein RBD.

In this work, we have collected a total of 106 antibodies. The detailed information of
these 106 antibodies can be found in the Supporting Information. Figure 6.15 shows the
BFE changes for the S protein and 106 antibody complexes together with ACE2 following
100 most observed mutations on the S protein RBD. The red color marks the mutation-
induced negative BFE changes for the complexes of S protein and antibodies, which indi-
cates that these mutations may weaken the binding and make the antibody less effective.
Meanwhile, the green color represents the positive BFE changes induced by mutations,
which suggests that these mutations may strengthen the binding of S protein and anti-
bodies. From Figure 6.15, we can see that mutation E484K will disruptively weaken the
binding of S protein with antibodies such as LY-CoV555 and DH1041, which are marked

in dark red. Mutation S494P will disruptively weaken the binding of S protein with an-
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tibodies such as H11-D4, H11-H4, and LY-CoV555. Mutation K417N will disruptively

weaken the binding of S protein with a large number of antibodies. Moreover, muta-

tion N501Y will moderately weaken the binding of S protein with antibodies such as

CC12.1/CR3022, COVOX-88/-45, COVOX-88 etc.
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Figure 6.15: Illustration of SARS-CoV-2 S RBD 100 most observed mutations induced BFE
changes for the complexes of S protein and 106 antibodies or ACE2. Here, red repre-
sents the negative changes that will weaken the binding, while green shows the positive

changes that will strengthen the binding.
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Considering the impact of the possible calculation error, we set -0.3 kcal/mol as the
threshold of the binding of S protein and antibodies induced by AD mutations. Specif-
ically, we say a mutation is an AD mutation to the binding complex of S protein and
antibody if its BFE change for the complex is less than 0.3 kcal /mol.

We hypothesize that RBD mutations that can simultaneously strengthen the infectivity
and disrupt the binding between the S protein and existing antibodies will pose imminent
threats to the current crop of vaccines. We define a vaccine escape (VE) mutation as a
high-frequency mutation that is an AD mutation for at least 24 (23%) different antibodies.
We also define a vaccine-weakening (AW) mutation as a high-frequency mutation and

AD mutation for 11 (10%) to 21 (20%) different antibodies.

Table 6.6: List of vaccine escape (VE) and vaccine weakening (VW) Their corresponding
BFE changes (unit: kcal /mol) of the binding of S protein and ACE2 are provided as well.
Here, the count shows the number of antibodies that will make a specific mutation to be
an AD mutation.

VE Mutation ~ BFE change ~ Count | VW Mutation  BFE change  Count

5494p 0.0902 50 N501Y 0.5499 21

Q493L 0.2279 43 Q493R 0.1271 21
K417N 0.1661 43 R4081 0.1949 19
F490S 0.4406 42 Q493H 0.2385 18

F486L 0.1456 41 P384S 0.1151 18

R403K 0.1778 34 K378N 0.0573 16
E484K 0.0946 31 G4965 0.0187 15
L452R 0.5752 28 L455F -0.0415 15
K417T 0.0116 28 1410V 0.7105 14
F490L 0.5139 25 R346S 0.0374 14
E484Q 0.0057 25 V483A 0.6695 13
A475S -0.0732 24 K444N 0.1024 12
N501T 0.4514 11

P384L 0.2681 11

Table 6.6 lists vaccine-escape (VE) and vaccine-weakening (VW) RBD mutations to-
gether with their corresponding BFE changes (unit: kcal/mol) of the binding of S pro-
tein and ACE2. The count represents the number of antibodies that will make a specific

mutation to be an AD mutation. We can see that VE mutations F490S, L452R, VW muta-
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tions F490L, N501Y, V483A, and N501T have relatively high BFE changes of the binding
of S protein and ACE2, suggesting that they are high-risk mutations. Moreover, L452R,

N501Y, and N501T are also HF mutations, which should receive high attention.

6.4.2 Impacts of S RBD single mutation on SARS-CoV-2 antibodies and vaccines

The recent surge in COVID-19 infections is due to the occurrence of RBD co-mutations
that combine two or more infectivity-strengthening mutations. The most dangerous fu-
ture SARS-CoV-2 variants are highly likely to be RBD co-mutations that combine infectivity-
strengthening mutation(s) with antibody disruptive mutation(s). A list of 1,139,244 RBD
co-mutations that are decoded from 1,489,884 complete SARS-CoV-2 genome sequences
can be found in Section 52.1.3 of the Supporting Information, and all of the non-degenerate
RBD co-mutations with their frequencies, antibody disruption counts, total BFE changes,
and the first detection dates and countries can be found in Section 52.1.4 of the Supporting
Information.

Figure 6.16 illustrates the properties of S protein RBD 2, 3, and 4 co-mutations. The
height of each bar shows the predicted total BFE change of each set of co-mutations on
RBD, the color represents the natural log of frequency for each set of RBD co-mutations,
and the number at the top of each bar is the Al-predicted number of antibody-RBD com-
plexes that each set of RBD co-mutations may disrupt based on a total of 130 RBD and an-
tibody complexes. Notably, for a specific set of co-mutations, the higher the number at the
top of the bar is, the stronger ability to break through vaccines will be. From Figure 6.16,
RBD 2 co-mutation set [L452R, T478K] (Delta variant) has the highest frequency (219,362)
and the highest BFE change (1.575 kcal/mol). Moreover, the Delta variant would disrupt
40 antibody-RBD complexes, suggesting that Delta would not only enhance the infectiv-
ity but also be a vaccine breakthrough variant. Moreover, [L452Q, F490S] (Lambda) is
another co-mutation with high frequency, high BFE changes (1.421 kcal/mol), and high

antibody disruption count (59). In addition, Lambda is considered to be more dangerous
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than Delta due to its higher antibody disruption count. Further, [R346K, E484K, N501Y]

(Mu variant) has a BFE change of 0.768 kcal/mol and high antibody disruption count

(60). It is not as infectious as Delta and Lambda, but has a similar ability as Lambda in

escaping vaccines. Note that among all VOCs and VOlIs, Beta has the highest ability to

break through vaccines, but its infectivity is relatively low (BFE change: 0.656 kcal/mol).
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Figure 6.16: Properties of RBD co-mutations. a Illustration of RBD 2 co-mutations with a

frequency greater than 90. b Illustration of RBD 3 co-mutations with a frequency greater

than 30. ¢ Illustration of RBD 2 co-mutations with a frequency greater than 20. Here, the
z-axis lists RBD co-mutations and the y-axis represents the predicted total BFE change

between S RBD and ACE2 of each set of RBD co-mutations. The number on the top of each

Furthermore, high-frequency 2 co-mutation sets [E484K, N501Y], [F490S, N501Y], and
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disrupted by the set of RBD co-mutations, and the color of each bar represents the natural
tiles in the Supporting Information S2.2.4 for a better view of these plots.)
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[S494P, N501Y] are all considered to be the emerging variants that have the potential
to escape vaccines. From Figure 6.16, three 3 co-mutation sets [R345K, E484K, N501Y]
(Mu), [K417T, E484K, N501Y] (Gamma), and [K417N, E484K, N501Y] (Beta) draw our
attention. They are all the prevailing three co-mutations with moderate BFE changes but
very high antibody disruption count (more than 60). With a BFE change of 1.4 kcal/mol
and antibody disruption count of 82, co-mutation set [K417N, L452R, T478K] (Delta plus)
appears to be more dangerous than all of the current VOCs and VOls.

For 4 co-mutations in Figure 6.16 ¢, [P384L, K417N, E484K, N501Y] (Beta plus) could
penetrate all vaccines due to its highest antibody disruption count of 101. We would
like to address that all of the co-mutations sets, except for [Y449S, N501Y] in Figure 6.16
have positive BFE changes, following natural selection. We anticipate that although co-
mutation sets [V401L, L452R, T478K], [L452R, T478K, N501Y], [A411S, L452R, T478K],
and [L452R, T478K, E484K, N501Y] have relatively low frequencies at this point, they may
become dangerous variants soon due to their large BFE changes and antibody disruption
counts.

It is important to understand the general trend of SARS-CoV-2 evolution. To this end,
we carry out the statistical analysis of RBD co-mutations. Among 1,489,884 SARS-CoV-2
genome isolates, a total of 1,113 distinctive 2 co-mutations, 612 distinctive 3 co-mutations,
and 217 distinctive 4 co-mutations are found. Figures 6.17 a, b, and c illustrate the 2D
histograms of 2, 3, and 4 co-mutations, respectively. The z-axis is the number of antibody
disruption counts, and the y-axis shows the total BFE change. Figure 6.17 a shows that
there are 82 RBD 2 co-mutations that have BFE changes in the range of [0.600, 0.799]
kcal/mol and will disruptive 40 to 49 antibodies. According to Figure 6.17 b, there are
170 unique 3 co-mutations that have large BFE changes of S protein and ACE2 in the range
of [1.500, 1.999] kcal/mol. In Figure 6.17 ¢, it is seen that almost all of the 4 co-mutations
on RBD have the BFE changes greater than 0.5 kcal/mol and weaken the binding of S

protein with at least 60 antibodies. Figures 6.17d, e, and f are the histograms of total BFE
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changes, natural log of frequencies, and antibody disruption counts for RBD 2, 3, and 4
co-mutations. It can be found that most of the 2, 3, and 4 RBD co-mutations have positive
total BFE changes, and the larger number of RBD co-mutations is, the higher number of
antibody disruption count will be. In summary, co-mutations with a larger number of
antibody disruptive counts and high BFE changes will grow faster. We anticipate that
when most of the population is vaccinated, vaccine-resistant mutations will become a

more viable mechanism for viral evolution.
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Figure 6.17: a 2D histograms of antibody disruption count and total BFE changes for RBD
2 co-mutations (unit: kcal/mol). b 2D histograms of antibody disruption count and to-
tal BFE changes (unit: kcal/mol) for RBD 3 co-mutations. ¢ 2D histograms of antibody
disruption count and total BFE changes (unit: kcal/mol) for RBD 4 co-mutations. d The
histograms of total BFE changes (unit: kcal/mol) for RBD co-mutations. e The histograms
of the natural log of frequency for RBD co-mutations. f The histograms of antibody dis-
ruption count for RBD co-mutations. In figures a, b, and ¢, the color bar represents the
number of co-mutations that fall into the restriction of z-axis and y-axis. The reader is
referred to the web version of these plots in the Supporting Information 52.2.2 and 52.2.3.
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6.5 Validation

Here, we present a validation of our BFE change prediction for mutations on S protein
RBD compared to the experimental deep mutational enrichment data [3]. Figure 6.18
presents a comparison between experimental deep mutational enrichment data and BFE
change predictions on SARS-CoV-2 RBD binding to ACE2. In the heatmap of Figure 6.18,
both BFE changes and enrichment ratios describe the affinity changes of the S protein
RBD-ACE2 complex induced by mutations. It is obvious that the predicted BFE changes
are highly correlated to the enrichment ratio data. Pearson correlation is 0.70. It should
be noticed that the deep mutational scanning data from different labs might vary dramat-
ically due to different experimental conditions. For example, the RBD deep mutational
scanning data of the SARS-CoV-2 RBD binding to ACE2 reported by two teams [98, 3]

have a relatively small Pearson correlation of 0.666.
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Figure 6.18: A comparison between experimental RBD deep mutation enrichment data
and predicted BFE changes for SARS-CoV-2 RBD binding to ACE2 (6M0]) [3]. Top left:
deep mutational scanning heatmap showing the average effect on the enrichment for
single-site mutants of RBD when assayed by yeast display for binding to the S protein
RBD [3]. Right: RBD colored by average enrichment at each residue position bound to
the S protein RBD. Bottom left: machine learning predicted BFE changes for single-site
mutants of the S protein RBD.

151



The validation of our machine learning predictions for mutation-induced BFE changes
compared to experimental data has been demonstrated in recently published papers [102,
99]. Firstly, we showed high correlations of experimental deep mutational enrichment
data and predictions for the binding complex of SARS-CoV-2 S protein RBD and pro-
tein CTC-445.2 [102] and the binding complex of SARS-CoV-2 RBD and ACE2 [99]. In
comparison with experimental data on the impacts of emerging variants on antibodies
in clinical trials, our predictions achieve a Pearson correlation at 0.80 [99]. Considering
the BFE changes induced by RBD mutations for ACE2 and RBD complex, predictions
on mutations L452R and N501Y have a highly similar trend with experimental data [99].
Meanwhile, as we presented in [2], high-frequency mutations are all having positive BFE
changes. Moreover, for multi-mutation tests, our BFE change predictions have the same
pattern with experimental data of the impact of SARS-CoV-2 variants on major antibody
therapeutic candidates, where the BFE changes are accumulative for co-mutations [99].

Recent studies on potency of mAb CT-P59 in vitro and in vivo against Delta variants[219]
show that the neutralization of CT-P59 is reduced by L452R (13.22 ng/mL) and is re-
tained against T478K (0.213 ng/mL). In our predictions [99], L452R induces a negative
BFE change (-2.39 kcal/mol), and T478K produces a positive BFE change (0.36 kcal /mol).
In Figure 3.2b, the fold changes for experimental and predicted values are presented.
Additional, Figure 3.2c shows a comparison of the experimental pseudovirus infection
changes and predicted BFE changes of ACE2 and S protein complex induced by muta-
tions L452R and N501Y. The experimental data is obtained in a reference to D614G and
reported in relative luciferase units [220]. It indicates that the binding of RBD and ACE2
dominates the infectivity of SARS-CoV-2. More details can be found in Section S6 of Sup-

porting information.
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6.6 Websites Designed

6.6.1 Mutation Tracker

Since the initial outbreak of the COVID-19, the raging pandemic caused by SARS-CoV-2
has lasted over two years. We do have many promising vaccines, but they might have side
effects and their full side effects, particularly, long-term side effects, remain unknown. To
make things worse, near 28734 unique mutations have been recorded for SARS-CoV-2 as
shown by Mutation Tracker (See Figure 6.19). All of these reveal the sad reality that our

current understanding of life science, virology, epidemiology, and medicine is severely

limited.
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Figure 6.19: Illustration of SARS-CoV-2 mutations given by Mutation Tracker. Interactive
version is available at Mutation Tracker.

6.6.2 Mutation Analyzer

The most observed SARS-CoV-2 RBD mutations are available at Mutation Analyzer (See

Figure 6.20).
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Analysis of observed S protein RBD mutations
Relevant link: Mutation Tracker for genome-wide analysis

10 v .
Worldwide observed BFE change (kcal/mol)* Antibody disruption
Mutation

Counts v Rank ¢ Value ¢ Rank ¢ Counts* ¢ Ratio(%)* ¢ Rank ¢
N501Y 778190 1 0.5499 32 24 18.46 179
L452R 492276 2 0.5752 30 39 30.0 112
T478K 467835 3 0.9994 2 2 1.54 597
E484K 97264 4 0.0946 285 38 29.23 118
K417T 47315 5 0.0116 453 37 28.46 122
S477N 33170 6 0.0180 442 0 0.0 677
N439K 16505 7 0.1792 168 11 8.46 292
K417N 9415 8 0.1661 185 53 40.77 74
F490S 5971 9 0.4406 55 51 39.23 81
S494p 5263 10 0.0902 296 62 47.69 57

08000 QR

Figure 6.20: Illustration of the analysis of SARS-CoV-2 mutations given by interactive
Mutation Analyzer that is available at Mutation Analyzer.

6.7 Discussion and Conclusion

Since the first COVID-19 case was reported in December 2019, this pandemic has led
to four waves of infections, over 400 million reported cases globally, and near 6 million
deaths. Despite the exciting progress in the developments of vaccines and monoclonal
antibodies, their potential side effects, such as allergy reactions to COVID-19 vaccines, are
not very clear. Additionally, the latest Omicron variant is able to evade current vaccines
and compromise essentially all monoclonal antibodies. Although the Omicron variant
may be less deadly than the original virus, there is no guarantee that future variants will
be less virulent. Our present understanding of SARS-CoV-2 and COVID-19 is still quite
poor.

Molecular modeling, simulation, and prediction of SARS-CoV-2 has contributed tremen-
dously to the development of effective vaccines, drugs, and antibody therapies. Their role
in combating COVID-19 is indispensable. For example, thank to an approach that inte-
grates genotyping, biophysics, artificial intelligence, advanced mathematics, and experi-

ment data, it is now well-understood that the SARS-CoV-2 evolution and transmission are
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governed by natural selection [41]. This indicates the next SARS-CoV-2 variant will be in-
creasingly more transmissible through high infectivity, robust vaccine breakthrough, and
strong antibody resistance [221, 222]. This understanding cannot be achieved through
individual experiments. Therefore, it is imperative to provide a literature review for the
study of the molecular modeling, simulation, and prediction of SARS-CoV-2. Since the
related literature is huge and varies in quality, we cannot collect all of the existing liter-
ature for the topic. However, we try to put forward a methodology-centered review in
which we emphasize the methods used in various studies. To this end, we gather the ex-
isting theoretical and computational studies of SARS-CoV-2 concerning the aspects such
as molecular modeling, biophysics, bioinformatics, cheminformatics, machine learning
including deep learning, and mathematical approaches, aiming to provide a comprehen-
sive, systematic, and indispensable component for the understanding of the molecular
mechanism of SARS-CoV-2 and their interactions with host cells. Our review provides a
methodology-centered description of the status of the molecular model, simulation, and
prediction of SARS-CoV-2. We discuss both the traditional molecular theories, models,
and methods and emergent machine learning algorithms and mathematical approaches.
Although various vaccines have been approved and in use, vaccine-breakthrough mu-
tations have become a serious problem. Even with the promising news of new vaccines,
COVID-19 as a global health crisis may still last for years before it is fully stopped glob-
ally. The research on SARS-CoV-2 will also last for many years. It will take researchers
many more years to fully understand the molecular mechanism of coronaviruses, such
as RNA proofreading, virus-host cell interactions, antibody-antigen interactions, protein-
protein interactions, protein-drug interactions, viral regulation of host cell functions, and
immune response. Even if we could control the transmission of SARS-CoV-2 in the future,
newly emergent coronaviruses may still cause similar pandemic outbreaks. Therefore, the
coronaviral studies will continue even after the current pandemic is fully under control.

Currently, epidemiologists, virologists, biologists, medical scientists, pharmacists, phar-
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macologists, chemists, biophysicists, mathematicians, computer scientists, and many oth-
ers are called to investigate various aspects of COVID-19 and SARS-CoV-2. This trend of a
joint effort on COVID-19 investigations will continue beyond the present pandemic. The
urgent need for the molecular mechanistic understanding of SARS-CoV-2 and COVID-
19 will further stimulate the development of computational biophysical, artificial intelli-
gence, and advanced mathematical methods. The theoretical, computational, and mathe-
matical communities will benefit from this endeavor against the pandemic.

The year 2020 has witnessed the birth of human mRNA vaccines for the first time —
a remarkable accomplishment in science and technology. Although there are more dark
days ahead of us, humanity will prevail in a post-COVID-19 world. Science will emerge

stronger against all pathogens and diseases in the future.
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CHAPTER 7

DISSERTATION CONTRIBUTION

The main contributions of this dissertation are listed as follows:

¢ In Chapter 2, we propose two topological Laplacians: persistent Laplacians and
persistent path Laplacians for the multiscale analysis of a given point-cloud dataset.
The detailed construction process of persistent Laplacians and persistent path Lapla-
cians are also included in Chapter 2. Notably, persistent Laplacians can extract rich
topological and geometric information during filtration, and persistent path Lapla-
cians are proposed to deal with asymmetric structures such as digraphs and net-

works.

¢ In Chapter 3, we set up a standard procedure to systematically decode nearly 30k
unique single mutations from more than 2 million complete SARS-CoV-2 genome
sequences in the GISAID database. In addition, we build a mathematical model
called TopNetmADb, to detect the impact of single and co-mutations on the SARS-

CoV-2 variants.

* In Chapter 4, we discuss applications of two new topological Laplacians in several
systems, such as benzene, tetrahedron, pyramid, fullerene, curcurbit[n]urils sys-

tems, etc.

* In Chapter 5, we develop an open-source software package, called highly efficient
robust multidimensional evolutionary spectra (HERMES), to enable broad applica-
tions of persistent Laplacians in science, engineering, and technology. To ensure the
reliability and robustness of HERMES, we also validate the software with simple
geometric shapes and complex datasets from three-dimensional (3D) protein struc-

tures.
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* Chapter 6 shows our findings in the study of SARS-CoV-2, including the mecha-
nisms of SARS-CoV-2 evolution, the mutational impacts on the infectivity, diagnos-
tic targets, vaccines, and antibodies of SARS-CoV-2. Our standard procedures re-
garding date collection, pre-possessing, and model training integrate multiple tech-
niques in computational biophysical, artificial intelligence, and advanced mathe-
matics, which may facilitate the development of next-generation vaccines and anti-

body therapies against future SARS-CoV-2 variants.
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APPENDIX A

SUPPLEMENTARY MATERIALS IN PERSISTENT LAPLACIAN

A.1 Additional Laplacian matrices and their properties

In this section, we give a further description of additional boundary and Laplacian ma-

trices and their properties involved in the filtration process in Figure 2.6.

Table A.1: K1 — Kl.

q q= g=1 q=2
B / / /
01 2 3 4
1
By (000 00 0] / /
00 0O0O0
00 0O00O0
L0 00000 / /
00 00O
00 0O00O0
5{}+0 5 / y
dim (L) 5 / /
rank (L) 0 / /
nullity(£.+°) 5 / /
Spectra(L£;™°) {0,0,0,0,0} / /
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Table A.2: Ky — K.

q q= q=1 q=2
01
0] -1
240 L1
Bq-—:-_l 2 0 / /
3 0
4 0
01
01 -1
012 3 4 1 1
2
5, [00 0 0 O] 2 0 /
3 0
41 0
1 -1 000
-1 1 000
L2+0 0 0 000 [2] /
0 0 000
0 0 000
Bg+0 4 0 /
dim(L£2*) 5 1 /
rank(L£20) 1 1 /
nullity (£210) 4 0 /
Spectra(L2°) {0,0,0,0,2} 2 /
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Table A.3: Kg — K3

01 12 23 03
Oo[-1 0 0 =17
1 1 -1 0 0
340
Bq+1 2 0 1 -1 0 /
3 0 0 1 1
410 0 0 0|
01 12 23 03
0] -1 0 0 -1
5 0123 4 11 -1 0 o0
1 (0000 0] ol 0 1 -1 0
3 0 O 1 1
4 O 0 0 O
2 -1 0 —10 s 1 o0 1
1 2 -1 0 0 Sy 1o
L3+ 0 -1 2 —10
o -1 2 1
-1 0 -1 2 0 1 0 1 9
0 0 0 0 0
Ba+o 2 1
dim(£3*0) 5 4
rank(L}10) 3 3
nullity (£3*°) 2 1
Spectra(L*0) {0,0,2,2,4} {0,2,2,4}
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Table A.4: K5 — K.

q q=0 g=1 q=2
01 12 23 03 24 02 012023
of-1 0 0 -1 0 -1 oy 0
121 1 0 0123
540 11 -1 0 0 0 0
B ol 0 1 -1 o0 -1 1 221 0 1 012 [ -1
03| 0 -1 023 | 1
310 0 1 1 0 0 ot |l 0 o
410 0 0 0 1 0 o | -1 1
01 12 23 03 24 02 012023
oo 1 o0
0f[-1 0 0 -1 0 -1 P
. 01 2 3 4 11 -1 0 0 0 0 o
a 0000 0] 210 1 -1 0 -1 1
03| 0 -1
310 0o 1 1 0 o0 ol 0 o
410 0 0 0 1 0 o | 1 1
30 0 1 0 0
Y _21 j _01 8 0 3 -10 -1 0
540 L 4 4 0 -1 3 0 1 0 40
q 1 0 0 3 0 0 0 4
-1 0 -1 2 0
o o0 1 0 1 0 -1 1 0 2 -1
00 0 0 —1 4
Bato 1 0 0
dim(£3+0) 5 6 2
rank(L£510) 4 6 2
nullity (£37°) 1 0 0
Spectra(£3+°) {0,1,2,4,5} {1,2,2,4,4,5} {4,4}
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Table A.5: Kl — KQ.

q =0
01
0| —1
141 1 1
qul 2 0
3 0
4 0
01 2 3 4
1
5, (0000 0]
1 =100 0
-1 1 0 00
Ll 0 0 000
0O 0 000
0O 0 000
Bl+1 4
q
dim(£;*) 5
rank(£;™") 1
nullity (£, *) 4
Spectra(L£;™") {0,0,0,0,2}
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Table A.6: K1 — K.

q q=0 g=1 g¢=2
01 12 23 03 24
of-1 0o 0 -1 0
1 1 -1 0 0 0
143
Bq'H 2 0 1 -1 0 -1 / /
3 0O 0 1 1 0
4 0O 0 0 0 1
012 3 4
1
B, [00 0 0 0] / /
2 -1 0 -1 0
-1 2 -1 0 O
Ll 0 -1 3 —1 —1 / /
-1 0 -1 2 0
0 0 -1 0 1
pL+3 1 / y
dim(£;*?) 5 / /
rank (L] *?) 4 / /
nullity (£ +?) 1 / /
Spectra(L£;™*) {0,0.8299, 2, 2.6889, 4.4812} / /
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Table A.7: K — K.

q q=20

01 12 23 03 24 02

0 -1 0 0O -1 0 -1
it 111 10 0 0 o
g+l 2 0 1 -1 0 -1 1
3 0 0 1 1 0 0
4 0 0 0 0 1 0
, 0123 4
5, (0000 0]

3 -1 -1 -1 0
-1 2 -1 0 0
L+ -1 -1 4 -1 -1
-1 0 -1 2 0
0 0 -1 0 1

Bl+4 1
q

dim(£; ™) 5

rank (£, ™) 4
nullity (£} ) 1
Spectra(L£; ™) {0,1,2,4,5}
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Table A.8: K| — K.

q qg=20 g=1 q=2
01 12 23 03 24 02 13
o|-1r 0 0 -1 0 -1 0
1 1 -1 0 0 O 0 -1
1+5
Bq"'l 2 0 1 -1 0 -1 1 0 / /
3 0 0 1 1 0 0 1
4 o o0 o0 o0 1 0 0
01 2 3 4
1
& (0000 0] / /
3 -1 -1 -1 0
-1 3 -1 -1 0
Lo 1 -1 4 -1 -1 / /
-1 -1 -1 3 0
0o 0 -1 0 1
B;Jrs 1 / /
dim(£3+) 5 ;o
rank(L£;*°) 4 / /
nullity(£.+°) 1 / /
Spectra(L;™°) {0,1,4,4,5} / /
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Table A.9: K2 — K3

q q=0 q=1 q=2
01 12 23 03
0Ol -1 0 0 -1
1 1 -1 0 O
241
B‘H'l 2 0 1 -1 0 / /
3 0O 0 1 1
4 0 0 0
01
0] -1
012 3 4 1 1
2
B, [00 0 0 0] 2 0 /
3 0
4 0
2 -1 0 -1 0
-1 2 -1 0 0
L2+ 0 -1 2 —1 0 2] /
-1 0 -1 2 0
o o0 0 0 0
Bg+1 2 0 /
dim(£Z) 5 1 /
rank(L£2H) 3 1 /
nullity(£2+1) 2 0 /
Spectra(L£2™') {0,0,2,2,4} 2 /
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Table A.10: Ky — Kj.

q q=0 g=1 q=2
01 12 23 03 24
0| -1 0 0 -1 0
1 1 -1 0 0 O
242
BQ'H 2 0 1 -1 0 -1 / /
3 0 0 1 1 0
4 0O 0 0 0 1
01
0] -1
012 3 4 1 1
2
5, (0000 0] 2| 0 /
3 0
4 0
2 -1 0 -1 O
-1 2 -1 0 O
Ak 0 -1 3 -1 -1 2] /
-1 0 -1 2 0
0o 0 -1 0 1
ﬁ§+2 1 0 /
dim(L£2*?) 5 1 /
rank(ﬁg“) 4 1 /
nullity (£2+?) 1 0 /
Spectra(L2?) {0,0.8299, 2, 2.6889, 4.4812} 2 /
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Table A.11: Ky — K.

q q=0 g=1

01 12 23 03 24 02

of-1 0 0 -1 0 -1
243 1|1 -1 0 0 0 0 012 023
ot 210 1 -1 0 -1 1 011 0]
3/0 0 1 1 0 0
4100 0 0 1 0
01
0 -1
B2 01234 1] 1
‘ [000 00 0] 210
310
410

3 -1 -1 -1 0
-1 3 -1 -1 0
£ -1 -1 4 -1 -1 [3]
-1 -1 -1 3 0
0 0 -1 0 1

B2+ 1 0
dim(£2%) 5 1
rank(L£2H9) 4 1

nullity (£2+?) 1 0
Spectra(L£2?) {0,1,2,4,5} 3
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Table A.12: Ky — K.

q q=0 g=1 q=2
01 12 23 03 24 02 13
of-1 0 0 -1 0 -1 0
R+ 1 1 -1 0 0 0 0 -1 012 023 013 123 /
e+l 210 1 -1 0 -1 1 0 oLfr o 1 0]
3 0o 0 1 1 0 0 1
4 0 0 0 1 0 O
01
0| -1
0123 4 1 1
2
5, [00 0 0 O] 2 0 /
3 0
4 0
3 -1 -1 -1 0
-1 2 -1 0 0
L2+ 1 -1 4 -1 -1 [4] /
-1 0 -1 2 0
0o 0 -1 0 1
3+ 1 0 y
dim(£2+) 5 1 /
rank(L£2t) 4 1 /
nullity(£2+) 1 0 /
Spectra(L2t) {0,1,4,4,5} 4 /
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Table A.13: K3 — K.

q q=0 g=1 qg=2
01 12 23 03 24 02 012 023
of-1 0 0 -1 0 -1 1T 1 o
342 111 -1 0 0 0 0 21 0 /
a+1 210 1 -1 0 -1 1 03 | 0 1
310 0 1 1 0 0 S I
410 0 0 1 0
01 12 23 03
of-1 0 0 -1
5 0123 4 1|1 -1 0 0 /
q [000 00 0] 210 1 -1 0
310 0 1 1
410 0 0 0
3 -1 -1 -1 0 5 0 0 1
-1 2 -1 0 0 003 10
L£3+2 -1 -1 4 -1 -1 /
q 0 -1 3 0
-1 0 -1 2 0 L o0 o0 3
0 0 -1 0 1
5(‘13+2 1 0 y
dim(£3+?) 5 4 /
rank(L£31?) 4 4 /
nullity (£32) 1 0 /
Spectra(L3?) {0,1,2,4,5} {2,2,4,4} /
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Table A.14: K3 — K.

q q=0 g=1 q=2
01 12 23 03 24 02 13 012 023 013 123
o|-1 0o 0 -1 0 -1 0
orf1 0 1 O
. 111 =10 0 0 0 -1 211 0 o 1 y
a1 2 0 1 -1 0 -1 1 0
2310 1 0 1
310 0o 1 1 0 o0 1 el 1 1o
4 0 0 0O 1 0 O
01 12 23 03
0o|]-1 0 0 -1
B3 01 2 3 4 1 1 -1 0 O /
q 0000 O0] 2 o 1 -1 0
3 0 0 1 1
4 0 O 0
3 -1 -1 -1 0 400 0
-1 3 -1 -1 0 040 0
L£3+3 -1 -1 4 -1 -1 /
q 0040
-1 -1 -1 3 0 000 4
0O 0 -1 0 1
B+ 1 0 y
dim(£3+) 5 4 /
rank(L3+?) 4 4 /
nullity (£3+?) 1 0 /
Spectra(L3+?) {0,1,4,4,5} {4,4,4,4} /
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Table A.15: Ky, — K.

q q=0 q=1 q=2
01 12 23 03 24 02 13 012 023 013 123
of-1 0 0 -1 0 -1 0 o1 0 1 0
B2 11 -1 0 0 0 0 -1 211 0 0 1 /
at1 210 1 -1 0 -1 1 0 2210 1 0 1
30 o 1 1 0 0 1 030 -1 -1 0
400 0 0O 0 1 0 0 2410 0 0 0
01 12 23 03 24
of-1 0 0 -1 0
5 01 2 3 4 1/ 1 -1 0 0 0 /
a [000 0 0 0] 210 1 -1 0 -1
310 1 1 0
400 0 0 0 1
3 -1 -1 -1 0 4 0 00 O
-1 3 -1 -1 0 0 4 00 -1
Lyr? -1 -1 4 -1 -1 0 0 4 0 1 /
-1 -1 -1 3 0 0 0 04 0
0 0 -1 0 1 0 -1 10 2
ﬂg+2 1 0 /
dim(L£2+?) 5 5 /
rank(L£77?) 4 5 /
nullity (£572) 1 0 /
Spectra(£;*?) {0,1,4,4,5} {1.2679,4,4,4,4.7321} /

A.2 Parameters in the protein B-factor prediction

Table A.16: Fitting parameters from wy to ws.

r 0 1 2 3 4 5
w, 10.6102 0.2026 —0.0031 0.2169 0.3127 0.2815

Table A.17: Fitting parameters from wg to wy;.

T 6 7 8 9 10 11
w, —0.4623 1.0203 0.6110 —0.6872 —1.0695 4.4257
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APPENDIX B

SUPPLEMENTARY MATERIALS IN PERSISTENT PATH LAPLACIAN

Table B.1 - Table B.14, we present the detailed matrix constructions, Betti numbers, and

spectra for various digraphs as shown in Figure 4.10 top and bottom panels

Table B.1: Matrix construction of graph G, (with isolated points included) in the top panel
of Figure 4.10.

n n=20 n=1 n=2
Q, span{e;, ez, e3,eq4,e5} {0} {0}
B, 5 x 0 empty matrix / /
L, 5 x 5 zero matrix / /
B 5 / /
Spectra(L,) {0,0,0,0,0} / /

Table B.2: Matrix construction of graph G; (without isolated points) in the top panel of
Figure 4.10.

n n=0 n=1 n=2
Q, {op {0} {0}
By / / /
Ly, / / /
Bn / / /
Spectra(L,) | / / /
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Table B.3: Matrix construction of graph G, in the top panel of Figure 4.10.

n n=>0 n=1 n=2
Q, span{el, €9, €3, €4, 65} Span{€13, €25, €32, €34, 645} {0}
€13 €25 €32 €34 €45
e1 -1 0 0 0 0
€9 0 -1 1 0 0 .
By e 1 0 -1 -1 o0 5 x 0 empty matrix (/)
€4 0 0 0 1 1
es 0 1 0 0 -1
1 0 -1 0 0 2 0 -1 -1 0
0 2 -1 0 -1 0 2 -1 0 -1
L, -1 -1 3 -1 0 -1 -1 2 1 0 (/)
0 0o -1 2 -1 -1 0 1 2 1
o -1 0 -1 2 0 -1 0 1 2
Bn 1 1 0
Spectra(L,) {0,0.8299, 2,2.6889,4.4812} {0,0.8299, 2,2.6889,4.4812} /

Table B.4: Matrix construction of graph G in the top panel of Figure 4.10.

n n=0 n=1 n=2
[ span{617 €2, €3, €64, es} Span{em, €13, €14, €25, €32, €34, 654} Span{€132, 6134}
€132 €134
€12 €13 €14 €25 €32 €34 €54 e12 -1 0
€1 —1 —1 —1 0 0 0 0 €13 1 1
e 1 0 0o -1 1 0 0 €14 0o -1 .
Br+1 es 0 1 0 0 -1 -1 0 eos 0 0 2 x 0 empty matrix
€4 0 0 1 0 0 1 1 €32 1 0
es 0 0 0 1 0 0 -1 €34 0 1
€54 0 0
3 01 -1 0 0 O
3 -1 -1 -1 0 0 4 0 O 0o 0 O
-1 3 -1 0 -1 1 0 3 0 0 0 O 3 1
Ly, -1 -1 3 -1 0 -1 0 0 2 -1 0 -1 ( 1 3 )
-1 0 -1 3 -1 o 00 -1 3 1 0
o -1 0o -1 2 0O 0 0 O 1 3 1
o o1 -1 0 1 2
Bn 1 1 0
Spectra(Ly,) {0,2,3,4,5} {0,2,2,3,4,4,5} {2,4}
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Table B.5: Matrix construction of graph G in the top panel of Figure 4.10.

n n=>0 n=1 n=2
Q, Span{61762763-,64-,55} Span{ﬂlm613,8147615,8257632,8347654} Span{ﬂn:,-,81327813475154}
€125 €132 €134 €154
€1 1 -1 0 0
€12 €13 €14 €15 €25 €32 €34 €54 e 0 1 1 0
ev (-1 -1 -1 =1 0 0 0 0 18
e 1 0 0 0 -1 1 0 0 ea [0 0 —1 -1
Bt 2 els -1 0 0 1 4 x 0 empty matrix
es3 0 1 0 0 0o -1 -1 3 1 0 0 0
es | 0 0 1 0 0 0 1 1 225 o 1 o0 o
- 32
es 0 0 0 1 1 0 0 1 ) 0 0 1 0
€54 0 0 0 1
4 0 1 0 O 0o 0 0
0401 O 0o 0 O
_41—31:1—01:1 1040 0 0 0 0 3 -1 0 -1
I 1 -1 3 -1 0 01 0 4 0 0O 0 0 -1 3 1 0
" 10 -1 3 -1 o000 3 —-10 -1 0 1 3 1
1 -1 0 -1 3 o000 -1 3 1 0 -1 0 1 3
00 0 0 O 1 3 1
o00O0 -1 0 1 3
Bn 1 1 0
Spectra(L,) {0,3,3,5,5} {1,3,3,3,3,5,5,5} {1,3,3,5}
Table B.6: Matrix construction of graph G5 in the top panel of Figure 4.10.
n n=>0 n=1 n=2
Q, Span{€1762763,64765} Span{6127613,61476157625763276347654} Span{€125-,61327613476154}
€125 €132 €134 €154
€12 1 -1 0 0
€12 €13 €14 €15 €25 €32 €34 €54 e 0 1 1 0
e1 [-1 -1 =1 =1 0 0 0 0 ;13 0 0 -1 1
P14 1 —
Bt €2 ! 0 0 v 11 0 0 e1s -1 0 0 1 4 x 0 empty matrix
es 0 1 0 0 o -1 -1 0 . 1 0 0 0
e o 0 1 0 0 0 1 1 ;5 o 1 o0 0
_ °32
es 0 0 0 1 1 0 1 eas 0 0 1 0
€54 0 0 0 1
4 0 1 0 O 0o 0 0
0401 O 0o 0 0
741 _31 j _01 j 1040 0 0 0 0 3 -1 0 -1
I 1 -1 3 -1 0 01 0 4 0 0o 0 0 -1 3 1 0
" 10 -1 3 -1 o000 3 —-10 -1 0 1 3 1
1 -1 0 -1 3 o000 -1 3 1 0 -1 0 1 3
00 0 0 O 1 3 1
o000 -1 0 1 3
Spectra(L,) {0,3,3,5,5} {1,3,3,3,3,5,5,5} {1,3,3,5}
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Table B.7: Matrix construction of graph G (with isolated points included) in the bottom
panel of Figure 4.10.

n n=>0 n=1 n=2
Q, span{es, ea, €3, €4, €5} / /
B, 5 x 0 empty matrix / /
L, 5 x 5 zero matrix / /
Bn 5 / /
Spectra(L,,) {0,0,0,0,0} / /

Table B.8: Matrix construction of graph G (without isolated points) in the bottom panel
of Figure 4.10.

n n=0 n=1 n=2
Q. 0
By 11 / / /
Ly / / /
B / / /
Spectra(L,) | /[ /
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Table B.9: Matrix construction of graph G, (with isolated points included) in the bottom

panel of Figure 4.10.

Q, span{ey, ez, €3, €4, €5} span{ess, €32, €34, €54} {0}
€25 €32 €34 €354
el 0 0 0 0
€9 -1 1 0 0 .
By e | 0 -1 -1 o0 4 x 0 empty matrix (/)
ey 0 0 1 1
€5 1 0 0 —1
0O 0 00 O 9 0 1 —9
0 2 00 -2 Coy
L, 00 11 0 (/)
1 -1 2 -1
0O 0 1 2 1 9 0 -1 2
0 -2 01 3
Bn 2 1 0
Spectra(L,) | {0,0,0.6571,2.5293,4.8136}  {0,0.6571,2.5293, 4.8136}  /

Table B.10: Matrix construction of graph G, (without isolated points) in the bottom panel

of Figure 4.10.
n n=>0 n=1 n=2
Q, span{es, 3, €4, €5} span{egs, €32, €34, €54} {0}
€25 €32 €314 €54
€ -1 1 0 0
B es | 0 -1 -1 0 4 x 0 empty matrix (/)
ey 0 0 1 1
es 1 0 0 -1
2 -1 0 -1 2 -1 0 -1
-1 2 -1 0 -1 2 -1 0
L o -1 2 -1 0 1 2 1 ( / )
-1 0 -1 2 -1 0 1 2
B 1 1 0
Spectra(L,,) {0,2,2,4} {0,2,2,4} /
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Table B.11: Matrix construction of graph G3 (with isolated points included) in the bottom

panel of Figure 4.10.

Q, span{ey, ez, €3, €4, €5} span{ess, €32, €34, €54} {0}
€25 €32 €34 €354
el 0 0 0 0
€9 -1 1 0 0 .
By e | 0 -1 -1 o0 4 x 0 empty matrix (/)
ey 0 0 1 1
€5 1 0 0 —1
0O 0 00 O 9 0 1 —9
0 2 00 -2 Coy
L, 00 11 0 (/)
1 -1 2 -1
0O 0 1 2 1 9 0 -1 2
0 -2 01 3
Bn 2 1 0
Spectra(L,) | {0,0,0.6571,2.5293,4.8136}  {0,0.6571,2.5293, 4.8136}  /

Table B.12: Matrix construction of graph G (without isolated points) in the bottom panel

of Figure 4.10.
n n=>0 n=1 n=2
Q, span{es, 3, €4, €5} span{egs, €32, €34, €54} {0}
€25 €32 €314 €54
€ -1 1 0 0
B es | 0 -1 -1 0 4 x 0 empty matrix (/)
ey 0 0 1 1
es 1 0 0 -1
2 -1 0 -1 2 -1 0 -1
-1 2 -1 0 -1 2 -1 0
L o -1 2 -1 0 1 2 1 ( / )
-1 0 -1 2 -1 0 1 2
B 1 1 0
Spectra(L,,) {0,2,2,4} {0,2,2,4} /
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Table B.13: Matrix construction of graph G, in the bottom panel of Figure 4.10.

n n =20 n=1 n=2
Qn span{er, s, €3, €4, €5} span{eis, €ss, €32, €34, €45 } {0}
€13 €25 €32 €34 €45
el -1 0 0 0 0
Boi1 Zz (1) _01 _11 _01 8 5 x 0 empty matrix (/)
ey 0 0 0 1 1
es 0 1 0 0 -1
1 0 —1 0 0 2 0O -1 -1 0
0 2 -1 0 -1 0 2 -1 0 -1
Ly -1 -1 3 -1 0 -1 -1 2 1 0 (/)
0 o -1 2 -1 -1 0 1 2 1
0O -1 0 -1 2 0 -1 0 1 2
B 1 1 0
Spectra(L,,) {0,0.8299, 2,2.6889, 4.4812} {0,0.8299, 2,2.6889, 4.4812} /

Table B.14: Matrix construction of graph G’ in the bottom panel of Figure 4.10.

n n=>0 n=1 n=2
Q, span{e;, ez, €3, e4,€5} span{ej2, €13, €14, €15, €25, €32, €34, €54} Span{eias, €132, €134, €154}
€125 €132 €134 €154
e € € e e €, €, € €12 1 -1 O O
12 13 “14 °15 °25 =32 34 54
er /-1 -1 -1 -1 0 0 0 0 e | 0110
. 1 0 0 0 -1 1 0 0 e | 00 =1l
Bt 2 ers -1 0 0 1 4 x 0 empty matrix
es| 0 1 0 0 0 -1 -1 0 5 Lo o0 o
el 0 01 0o 0 0 1 1 625 o 1 0 o
o _ 32
es \O 0 0 1 1 0 0 -1 el o 0 1 o
ess N\ O 0 0 1
4010 0 0 0 0
0401 0 0 0 0
741’31:}*01:1 1040 0 0 0 0 3 —-10 -1
I 1 s 1o 0104 0 0 0 0 -1 3 1 0
1o 13 4 0000 3 —-10 —1 0 1 3 1
11 0 a1 o3 0000 -1 3 1 0 -1 0 1 3
0000 0 1 3 1
0000 -1 0 1 3
Bn 1 0 0
Spectra(Ly) {0,3,3,5,5} {1,3,3,3,3,5,5,5} {1,3,3,5}
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