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ABSTRACT

ASPECTS OF COMPUTATIONAL TOPOLOGY AND MATHEMATICAL VIROLOGY

By

Rui Wang

Being able to describe the shape of data is of paramount importance to the fields of biol-

ogy, physics, chemistry, pharmaceutics, etc. Therefore, in recent years, scientists from

the TDA community have been applying advanced mathematical tools to decode the

topological structures of data. Methods such as persistent homology, path homology,

and de Rham-Hodge theory have become the main workhorse of TDA, which pioneered

new branches in algebraic topology and differential geometry. Later, various topolog-

ical Laplacians such as graph Laplacian, Hodge Laplacian, sheaf Laplacian, and Dirac

Laplacian are proposed to preserve topological invariants and geometric shapes simul-

taneously. However, such Laplacians fail to extract the topological and geometric de-

formations when one introduces the filtration parameters in. Therefore, we proposed a

new topological Laplacians called persistent Laplacians to fully recover the topological

persistence and homotopic shape evolution during filtration.

It is worth mentioning that persistent Laplacians are insensitive to asymmetry or di-

rected relations, which limits their power to preserve the directional information of struc-

tures in practical applications. Therefore, we proposed persistent path Laplacians to over-

come this issue. Similar to the persistent Laplacians, one can also extract the topological

persistence and geometric deformations during filtration from the persistent path Lapla-

cians by calculating their harmonic and non-harmonic spectra. In addition, the persistent

path Laplacians are constructed on the directed graphs or network, which address the

importance of directional representation in datasets such as gene regulation datasets in

biology.

Versatile mathematical tools have been playing an essential role in various biological



applications. Since the first COVID-19 case was reported in December 2019, researchers

worldwide have been pursuing scientific endeavors in the SARS-CoV-2 projects. Instead

of designing promising vaccines and antibody therapies that required wet lab resources,

we proposed a new mathematical-AI model called TopNetmAb to systematically ana-

lyze the mutation-induced impacts on the SARS-CoV-2 infectivity, vaccines, and antibody

drugs. In this dissertation, the topological data analysis (including the persistent Lapla-

cians mentioned above), artificial intelligence, various network models, and genomics

analysis are all included in our SARS-CoV-2-related projects to provide comprehensive

representations for the understanding of the transmission and evolution of SARS-CoV-2.
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Figure 6.13: The 3D structure of SARS-CoV-2 S protein RBD bound with ACE2
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Figure 6.17: a 2D histograms of antibody disruption count and total BFE changes
for RBD 2 co-mutations (unit: kcal/mol). b 2D histograms of anti-
body disruption count and total BFE changes (unit: kcal/mol) for
RBD 3 co-mutations. c 2D histograms of antibody disruption count
and total BFE changes (unit: kcal/mol) for RBD 4 co-mutations. d
The histograms of total BFE changes (unit: kcal/mol) for RBD co-
mutations. e The histograms of the natural log of frequency for RBD
co-mutations. f The histograms of antibody disruption count for RBD
co-mutations. In figures a, b, and c, the color bar represents the num-
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CHAPTER 1

INTRODUCTION

1.1 Topological Laplacian

Persistent homology (PH) is one of the most popular tools in topological data analysis

(TDA), which is constrained to purely topological persistence obtained from its persis-

tent betti numbers. PH has had tremendous success in various fields such as biology

[4], chemistry [5], drug discovery [6], and 3D shape analysis [7]. Inspired by the suc-

cess of PH, multiple advanced mathematical tools in TDA have emerged, and one of

the new rising stars in TDA is the de Rham-Hodge theory in differential geometry. De

Rham-Hodge theory aims to use the differential forms to represent the cohomology of an

oriented closed Riemannian manifold with boundary in terms of a topological Laplacian

named Hodge Laplacian [8]. Similar to homology, the de Rham-Hodge theory fails to

give an in-depth analysis of data through Hodge Laplacians. Therefore, the evolutionary

de Rham-Hodge theory [9] was introduced to alleviate or heal problems arising in the de

Rham-Hodge. A persistent Hodge Laplacian was developed to offer a multiscale-level

analysis on a family of evolutionary manifolds. Such a method provides an answer to

the old question “can one hear the shape of a drum" [10]. One can decode the topological

persistence and the homotopic shape evolution of data during filtration by calculating the

harmonic and non-harmonic spectra of persistent Hodge Laplacians.

Nonetheless, one main concern we should address in evolutionary de Rham-Hodge

theory is that it is set up on the Riemannian manifold, which is quite computational-

consuming in real applications. Therefore, seeking a method that can reduce the compu-

tational complexity is indeed needed. One natural idea to overcome this issue is to set

up a similar system on the discrete points instead of the Riemannian manifold. Hence,

a multiscaled-based topological Laplacian, namely persistent spectral graph (PSG) [11],
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was introduced by creating low-dimensional multiscale representations (i.e., persistent

combinatorial graph Laplacians, , persistent Laplacians) on graphs. In PSG theory, fami-

lies of persistent Laplacian matrices (PLMs) corresponding to various topological dimen-

sions are constructed via filtration to sample a given dataset at multiple scales. The har-

monic spectra from the null spaces of PLMs offer the same topological invariants, namely

persistent Betti numbers, at various dimensions as those provided by PH, while the non-

harmonic spectra of PLMs give rise to additional geometric analysis of the shape of the

data. Meanwhile, we developed an open-source software package called highly efficient

robust multidimensional evolutionary spectra (HERMES), to enable broad applications

of PSGs in science, engineering, and technology. To ensure the reliability and robustness

of HERMES, we have validated the software with simple geometric shapes and complex

datasets from three-dimensional (3D) protein structures. We found that the smallest non-

zero eigenvalues are very sensitive to data abnormality.

It is noticed that the persistent Laplacians are insensitive to asymmetry or directed

relations (i.e, they treat all data points equally). That is to say, each point does not carry

any labeled information such as the type, mass, color, etc. Therefore, they fail to represent

the structures that have directional information. Undoubtedly, we need a method that

has a flavor to deal with asymmetry structures. Notably, the path homology [12] pro-

posed by Grigor’yan, Yong Lin, Yuri Muranov, and S.-T.Yau provides a powerful tool to

analyze datasets with asymmetric structures. To encode richer information, Chowdhury

and Mémoli extended path homology to a persistent framework on a directed network

[13] call persistent path homology (PPH). Such methods are perfect tools for us to fix the

aforementioned issue in the persistent Laplacian. Similar to the PH, PPH also decodes

purely topological persistence and cannot track the homotopic shape evolution of data

during filtration. To overcome the limitation of PPH, persistent path Laplacian (PPL) is

introduced to capture the shape evolution of data. PPL’s harmonic spectra fully recover

PPH’s topological persistence and its non-harmonic spectra reveal the homotopic shape

2



evolution of data during filtration.

Topological Laplacians are powerful tools to extract both topological invariants and

geometric deformation of a given system. In this dissertation, we mainly discuss two

new multiscale-based topological Laplacians: persistent Laplacians and persistent path

Laplacians, and their applications in life science, especially in the fields of molecular bi-

ology.

1.2 Mathematical Modeling of Virology

Since its first case was identified in Wuhan, China, in December 2019, coronavirus disease

2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) has expeditiously spread to as many as 226 countries and territories worldwide and

led to over 541 million confirmed cases and over 6.3 million fatalities as of June 2022.

This pandemic has also brought a massive economic recession globally. The countries all

around the world have implemented a variety of policies to tackle the COVID-19 pan-

demic.

Many SARS-CoV-2 vaccines and monoclonal antibodies (mAbs) have already obtained

the use authorization worldwide (See Coronavirus Vaccine Tracker). Additionally, U.S.

Food and Drug Administration (FDA) has given the emergency use authorization to the

oral SARS-CoV-2 Mpro inhibitor PAXLOVID (PF-07321332) developed by Pfizer[14, 15].

However, COVID-19 has a high infection rate, high prevalence, long incubation period

[16], asymptomatic transmission [17, 18, 19], and potential seasonal pattern [20]. SARS-

CoV-2 keeps involving into new infectious and antibody resistant variants [21, 22, 23].

Therefore, it is imperative to understand its viral molecular mechanism [24], track its

genetic evolution [25], and continuously improve the efficacy of antiviral drugs and anti-

body therapies.

Belonging to the β-coronavirus genus and coronaviridae family, SARS-CoV-2 is an un-

segmented positive-sense single-stranded RNA (+ssRNA) virus with a compact 29,903
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Figure 1.1: Genomics organization of SARS-CoV-2.

nucleotide-long genome and the diameter of each SARS-CoV-2 virion is about 50-200

nm [26]. In the first 20 years of the 21st century, β-coronaviruses have triggered three

major outbreaks of deadly pneumonia: SARS-CoV (2002), Middle East respiratory syn-

drome coronavirus (MERS-CoV) (2012), and SARS-CoV-2 (2019) [27]. Like SARS-CoV

and MERS-CoV, SARS-CoV-2 also causes respiratory infections, but at a much higher in-

fection rate [28, 29]. The complete genome of SARS-CoV-2 comprises 15 open reading

frames (ORFs), which encodes 29 structural and non-structural proteins (nsps). The 16

non-structural proteins nsp1-nsp16 get expressed by protein-coding genes ORF1a and

ORF1b, while four canonical 3’ structural proteins: spike (S), envelope (E), membrane

(M), and nucleocapsid (N) proteins, as well as accessory factors, are encoded by other

four major ORFs, namely ORF2, ORF4, ORF5, and ORF9 (see Figure 1.1) [30, 31, 32, 33].

The viral structure of SARS-CoV-2 can be found in Figure 1.1. This structure is formed

by the four structural proteins: the N protein holds the RNA genome, the S protein helps

virus enter into the host cell, and M and E proteins define the shape of the viral envelope

[34]. The studies on SARS-CoV-2 as well as previous SARS-CoV and other coronaviruses

have mostly identified the functions of these structural proteins, nonstructural proteins as

well as accessory proteins. Their 3D structures are also largely known from experiments

or predictions.

With these SARS-CoV-2 proteins, the intracellular viral life cycle of SARS-CoV-2 can

4



New SARS-CoV-2

SARS-CoV-2

Virus release

Golgi

Nucleus

N in cytoplasm

Endoplasm
ic reticulum

 (ER)

Spike (S)

Membrane (M)

Envelope (E)

Translation

RNA replication and packing

pp1a and pp1b

Mpro/PLpro

Functional nsps Replicase

Transcription

Ribosome

Release of viral genome

I(b) Virus entry 
via endosomes

I(a) Virus entry 

at plasma membrane

Nuclecapsid (N)

5' 3'

3' 5'

II

III

IV

V

I(a)

TMPRSS2

ACE2
VI

E

N
M

S

Figure 1.2: Six stages of the SARS-CoV-2 life cycle. Stage I: Virus entry. I(a) Virus can
enter the host cell via plasma membrane fusion. I(b) Virus can enter the host cell via
endosomes. Stage II: Translation of viral replication. Stage III: Replication. Here, nsp12
(RdRp) and nsp13 (helicase) cooperate to perform the replication of the viral genome.
Stage IV: Translation of viral structure proteins. Stage V: Virion assembly. Stage VI:
Release of a virus.

be realized [35]. This life cycle has six stages as shown in Figure 1.2. The first stage is

the entry of the virus. SARS-CoV-2 enters the host cell either via endosomes or plasma

membrane fusion. In both ways, the S protein of SARS-CoV-2 first attaches to the host

cell-surface protein, angiotensin-converting enzyme 2 (ACE2). Then, the cell’s protease,

TMPRSS2, cuts and opens the S protein of the virus, exposing a fusion peptide in the S2

subunit of the S protein [36]. After fusion, an endosome forms around the virion, sepa-

rating it from the rest of the host cell. The virion escapes when the pH of the endosome

drops or when cathepsin, a host cysteine protease, cleaves it. The virion then releases its

RNA into the cell [37]. After the RNA release, polyproteins pp1a and pp1ab are trans-

lated. Notably, facilitated by viral papain-like protease (PLpro), nsp1, nsp2, nsp3, and the

5



amino terminus of nsp4 from the pp1a and pp1ab are released. Moreover, nsp5-nsp16 are

also cleaved proteolytically by the main protease [38]. The next stage of the life cycle is

the replication process, where nsp12 (RdRp) and nsp13 (helicase) cooperate to perform

the replication of the viral genome. Stages IV and V are the translation of viral structural

proteins and the virion assembly process. In these stages, structural proteins S, E, and M

are translated by ribosomes and then present on the surface of the endoplasmic reticulum

(ER), which is transported from the ER through the Golgi apparatus for the preparation

of virion assembly. Meanwhile, multiple copies of N protein package the genomics RNA

in cytoplasm, which interacts with other 3 structural proteins to direct the assembly of

virions. Finally, virions will be secreted from the infected cell through exocytosis.

Since the initial outbreak of the COVID-19, the raging pandemic caused by SARS-

CoV-2 has lasted over two years. We do have many promising vaccines, but they might

have side effects and their full side effects, particularly, long-term side effects, remain

unknown. To make things worse, near 29260 unique mutations have been recorded for

SARS-CoV-2 as shown by Mutation Tracker ( https://users.math.msu.edu/users/weig/

SARS-CoV-2_Mutation_Tracker.html). All of these reveal the sad reality that our cur-

rent understanding of life science, virology, epidemiology, and medicine is severely lim-

ited. Ultimately, the core of challenges is the lack of molecular mechanistic understand-

ings of many aspects, namely coronavirus RNA proofreading, virus-host cell interactions,

antibody-antigen interactions, protein-protein interactions, protein-drug interactions, vi-

ral regulation of host cell functions, including autophagocytosis and apoptosis, and ir-

regular host immune response behavior such as cytokine storm and antibody-dependent

enhancement. Molecular-level experiments on SARS-CoV-2 are both expensive and time-

consuming and require to take heavy safety measures. Moreover, disparities among re-

ported experimental binding affinities can be more than 100 fold for the receptor-binding

domain (RBD) of S protein binding to ACE2 or antibodies (see Table 1 of Ref. [39]). All

these complicated realities make the understanding of viral evolution and transmission
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mechanism some of the most challenging tasks.

On the other hand, computational tools provide alternative approaches in understand-

ing viral evolution and transmission with higher efficiency and lower costs. The increas-

ing computer power, the accumulation of molecular data, the availability of artificial in-

telligence (AI) algorithms, and the development of new mathematical tools have paved

the road for mechanistic understanding from molecular modeling, simulations, and pre-

dictions.

In May 2020, we developed an intensively validated topology-based neural network

model [40] called TopNetmAb to predict certain RBD mutations. It showed that RBD

residues 452 and 501 were predicted to “have very high chances to mutate into signifi-

cantly more infectious COVID-19 strains” in summer 2020 [41] and were later confirmed

in prevailing SARS-CoV-2 variants Alpha, Beta, Gamma, Delta, Theta, Epsilon, Kappa,

Lambda, Mu, and Omicron. These predictions [41], achieved via the integration of deep

learning, biophysics, genotyping, and advanced mathematics, are some of the most re-

markable events.

Additionally, 3,696 possible RBD mutations were classified into three categories with

different appearance likelihoods, namely, 1149 most likely, 1912 likely, and 625 unlikely

[41]. The predicted “most likely” partition successfully contained all the newly observed

RBD mutations, until the recent appearance of S371L from Omicron BA.1. Most remark-

ably, the mechanism governing SARS-CoV-2 evolution and transmission, i.e., natural se-

lection via mutation-strengthened infectivity, was discovered in July 2020 [41] when there

were only 89 RBD mutations with the highest observed frequency of merely 50 globally

[41].

In April 2021, this mechanism was confirmed beyond any doubt. By using 506,768

sequences isolated from patients, the authors demonstrated that the predicted binding

free energy (BFE) changes of the 100 most observed RBD mutations out of 651 existing

RBD mutations are all above the BFE change of -0.28 kcal/mol, indicating evolution fa-
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vors variants having higher infectivity [2]. Moreover, using network-based modeling for

drug repurposing, it was found out Baricitinib as a potential treatment for COVID-19[42].

These extraordinary results prove that mathematical modeling of virology spearhead the

discovery of new drugs and the mechanisms of SARS-CoV-2 evolution and transmission.

1.3 Outline

In Chapter 2, we provide a mathematical background in two topological Laplacians: per-

sistent Laplacians and persistent path Laplacians. Also, vital examples are involved to

illustrate how we construct two types of topological Laplacians on a given point-cloud

dataset. In Chapter 3, we review the theoretically details in the mathematical modeling of

virology, including the methods in the genomics analysis and the structure of the math-

AI models that we used in the SARS-CoV-2 studies. In Chapter 4, we mainly discuss

the applications in the PL and PPL, and their advantages compared to other topologi-

cal Laplacians. We further introduce an open-source package called HERMES, which is

designed to extract the harmonic and non-harmonic spectra of persistent Laplacians. In

addition, the validation of the HERMES is also discussed in the Chapter 5 to show its ac-

curacy, robustness, and reliability on standard test datasets and multiple complex protein

structures. Chapter 6 includes several applications in the study of SARS-CoV-2, including

the mutational impacts on the SARS-CoV-2 diagnostic targets, vaccines, antibodies, along

with the discussion about the mechanisms of SARS-CoV-2 evolution and transmission.

The dissertation contribution is summarized in Chapter 7.
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CHAPTER 2

METHODS ON TOPOLOGICAL LAPLACIANS

2.1 Persistent Laplacians

2.1.1 Simplex

Let {v0, v1, · · · , vq} be a set of points in Rn. A point v =

q∑
i=0

λivi, λi ∈ R is an affine

combination of vi if
q∑

i=0

λi = 1. An affine hull is the set of affine combinations. Here,

q+1 points v0, v1, · · · , vq are affinely independent if v1− v0, v2− v0, · · · , vq− v0 are linearly

independent. A q-plane is well-defined if the q+1 points are affinely independent. In Rn,

one can have at most n linearly independent vectors. Therefore, there are at most n + 1

affinely independent points. An affine combination v =

q∑
i=0

λivi is a convex combination

if all λi are non-negative. The convex hull is the set of convex combinations.

A (geometric) q-simplex denoted as σq is the convex hull of q+1 affinely independent

points in Rq with dimension dim(σq) = q. A 0-simplex is a vertex, a 1-simplex is an edge,

a 2-simplex is a triangle, and a 3-simplex is a tetrahedron, as shown in Figure 2.1. The

convex hull of each nonempty subset of q + 1 points forms a subsimplex and is regraded

as a face of σq denoted τ . The p-face of a q-simplex is the subset {vi1, · · · , vip} of the q-

simplex.

(a) (b) (c) (d)

Figure 2.1: Illustration of simplices. (a) 0-simplex (a vertex), (b) 1-simplex (an edge), (c)
2-simplex (a triangle), and (d) 3-simplex (a tetrahedron).
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2.1.2 Simplicial Complex

A simplicial complex is a powerful algebraic topology tool that has wide applications in

graph theory, topological data analysis [43], and many physical fields [44]. We briefly

review simplicial complexes to generate notation and provide essential preparation for

introducing persistent spectral graphs. A (finite) simplicial complex K is a (finite) collec-

tion of simplices in Rn satisfying the following conditions

(1) If σq ∈ K and σp is a face of σq, then σp ∈ K.

(2) The non-empty intersection of any two simplices σq, σp ∈ K is a face of both of σq

and σp.

Each element σq ∈ K is a q-simplex of K. The dimension of K is defined as dim(K) =

max{dim(σq) : σq ∈ K}. To distinguish topological spaces based on the connectivity of

simplicial complexes, one uses Betti numbers. The k-th Betti number, βk, counts the num-

ber of k-dimensional holes on a topological surface. The geometric meaning of Betti num-

bers in R3 is the following: β0 represents the number of connected components, β1 counts

the number of one-dimensional loops or circles, and β2 describes the number of two-

dimensional voids or holes. In a nutshell, the Betti number sequence {β0, β1, β2, · · · } re-

veals the intrinsic topological property of the system. To illustrate the simplicial complex

and its corresponding Betti number, we have designed two simple models as is shown in

Figure 2.2. 1

(a) (b) (c) (d) (e) (f)

Figure 2.2: Illustrations of simplicial complexes.

1These examples show an intuitive way to count Betti numbers. However, it is impossible to generate
structures (b), (e), and (f) in Rips complex.
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Table 2.1: The Betti number of simplicial complexes in Figure 2.2. Each color represents
different faces. The tetrahedron-shaped simplicial complexes are demonstrated in (a)-(c),
and the cube-shaped simplicial complexes are depicted in (d) - (f). (a) and (d) only has
0-simplices and 1-simplices, (b) has four 2-simplices, and (c) has one more 4-simplex. (e)
and (f) do not have any 2-simplex.

Betti number Fig. 3 (a) Fig. 3 (b) Fig. 3 (c) Fig. 3 (d) Fig. 3 (e) Fig. 3 (f)
β0 1 1 1 1 1 1
β1 3 0 0 5 0 0
β2 0 1 0 0 1 0

Recall that in graph theory, the degree of a vertex (0-simplex) v is the number of edges

that are adjacent to the vertex, denoted as deg(v). However, once we generalize this

notion to q-simplex, problem arouse since a q-simplex can have (q − 1)-simplices and

(q + 1)-simplices adjacent to it at the same time. Therefore, the upper adjacency and

lower adjacency are required to define the degree of a q-simplex for q > 0 [45, 46].

Defination 2.1.1 Two q-simplices σi
q and σj

q of a simplicial complex K are lower adjacent if they

share a common (q − 1)-face, denoted σi
q

L∼ σj
q . The lower degree of q-simplex, denoted degL(σq),

is the number of nonempty (q − 1)-simplices in K that are faces of σq, which is always q + 1.

Defination 2.1.2 Two q-simplices σi
q and σj

q of a simplicial complex K are upper adjacent if they

share a common (q + 1)-face, denoted σi
q

U∼ σj
q . The upper degree of q-simplex, denoted degU(σq),

is the number of (q + 1)-simplices in K of which σq is a face.

Then, the degree of a q-simplex (q > 0) is defined as:

deg(σq) = degL(σq) + degU(σq) = degU(σq) + q + 1. (2.1)

2.1.2.1 Delaunay Triangulation and Alpha Shapes

In this section, we provide the details on a practical construction of filtration for persistent

spectral graph theory based on the alpha complex. The alpha complex can be regarded

as a simplicial complex, which is a homotopy equivalent to the nerve of balls around

data points. Its geometric realization built as the union of convex hulls of points in each
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simplex is called the alpha shape. First proposed in 1983, t he alpha shape defined the

shape associated with a finite set of points in the plane controlled by one parameter [47].

In the following, we first describe how to construct the alpha shape, and then provide

some necessary concepts for the implementation of the alpha complex in PSG theory. Let

P be a finite set of points in qD Euclidean space Rq (q = 2 or 3 in most applications), and

α be a positive real number. Denote an open ball with radius α as an alpha ball (α-ball).

We say that an α-ball is empty if it contains no point of P , and the alpha hull (α-hull) of

P is the set of points that do not belong to any empty α-ball. For any subset T ⊆ P with

size |T | = k + 1, 0 ≤ k ≤ q, the geometric realization of k-simplex σT is the convex hull

of T . We say that a k-simplex σT is α-exposed if there exists an empty α-ball b such that

T = ∂b∩P for 0 ≤ k ≤ q− 1. Denoting the collection of α-exposed k-simplices as Fk,α for

0 ≤ k ≤ q − 1, the alpha shape (α-shape) of P is the polytope whose boundary consists

of the k-simplices in Fk,α. The alpha complex is just the simplicial complex that is the

collection of the simplices in the alpha shape.

There are two structures that are closely related to the alpha shape and helpful in

efficient implementation of alpha shape and alpha complex. One is the Voronoi diagram

[48] and the other is its dual structure, the Delaunay tessellation [49]. The latter is the

alpha complex for sufficiently large α, e.g., when α is greater than the diameter of P .

Thus, the Delaunay tessellation is the final complete simplicial complex in the filtration

that we use.

For a given set of points P = {p1, p2, · · · , pn} ⊆ Rq, the Voronoi cell Vi of a point pi ∈ P

contains all of the points for which pi is the closest among all the points in P ,

Vi = {x ∈ Rq | ∥x− pi∥ ≤ ∥x− pj∥, ∀pj ∈ P}. (2.2)

The Voronoi diagram of P is the set of Voronoi cells, which is defined as

VorP = {Vi | ∀i ∈ {1, 2, · · · , |P |}}. (2.3)

The Delaunay tessellation for a given set P in general position (i.e., no q + 1 ponits are in
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a (q−1)-D linear subspace, and no q + 2 points share the same circumsphere) is the dual

simplicial complex to the Voronoi diagrams. For instance, a Delaunay tessellation for a

given set P in 2D is a triangulation DT(P ) such that no point in P is inside the circumcircle

of any triangle in DT(P ) [50, 51]. A formal way to define the Delaunay tessellation is to

use the nerve of the collection of Voronoi cells (Nrv(VorP )), which can be expressed as

DT(P ) = Nrv(VorP ) = {J ⊆ {1, 2, ..., |P |} |
⋂
i∈J

Vi ̸= ∅}, (2.4)

under the condition that the points in P are general position. Note that, in practice, a

set of points that are not in general position can be symbolically perturbed to general

position.

Figure 2.3: Illustration of Voronoi diagram, Delaunay triangulation, and Non-Delaunay
triangulation. Left chart: The Voronoi diagram and its dual Delaunay triangulation. The
points set is P = {A,B,C,D,E} and the Delaunay is defined as DT(P ). The blue lines tessel-
late the plane into Voronoi cells. The red circle are the circumcircles of triangles in DT(P ).
Right chart: A Non-Delaunay triangulation. Vertices E and D are in the green circumcir-
cles, implying the right chart is an example of Non-Delaunay triangulation.

Next, we introduce the mathematical description of the construction of alpha complex

through the union of balls centered at points in P , which is essentially a van der Waals

surface for atoms positioned at P with the same radius α. For a given set of points P =

{p1, p2, · · · , pn} in Rq and a positive real number α, we can denote the closed ball centered

at pi as Bi(α) = pi + αBq, where Bq is a qD unit ball around the origin. The union of these
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balls can be expressed as

U(α) = {x ∈ Rq | ∃pi ∈ P s.t. ∥x− pi∥ ≤ α}. (2.5)

To ensure that we obtain a subcomplex of the Delaunay tessellation, we intersect Bi(α)

with its corresponding Voronoi cell,

Ri(α) = Bi(α) ∩ Vi. (2.6)

It can be observed that U(α) = ∪pi∈PRi(α), so the Ri’s is a covering of U(α). The alpha

complex Kα is the simplicial complex representing the nerve of this covering,

Kα = {J ⊆ {1, 2, ..., |P |} |
⋂
i∈J

Ri(α) ̸= ∅}. (2.7)

The equivalence to the original definition can be readily checked. The union of all sim-

plices in the alpha complex forms the alpha shape. Figure 2.3 illustrates the Voronoi

diagram, Delaunay triangulation, and non-Delaunay triangulation. The point set is P =

{A,B,C,D,E}, and the blue lines in the left chart of Figure 2.3 separate the plane into the

Voronoi cells. The red circles are the empty circumcircles for triples of points in P . We

can notice that no four points are on the same red circle, which satisfies the uniqueness

condition for constructing the Delaunay triangulation. In the right chart of Figure 2.3,

the green circumcircle of ACD contains E and the green circumcirlce of AEC contains D,

indicating that those two triangles do not belong to the Delaunay triangulation.

Figure 2.4 illustrates the standard filtration of alpha complexes. The top left figure is

the Delaunay triangulation of six 2D points A, B, C, D, E, and F. With an ever-growing

radius α centered at these points, a family of sub-complexes of the Delaunay triangulation

can be constructed. Figure 2.5 shows the persistence barcode of these 6 points. It can

be seen that when α = 0.2, all six points are disconnected, indicating that 6 0-cycles

(connected components) existed, which matches with Figure 2.5, where there are a total

of 6 bars when α = 0.2. With the radius α continually increasing, a 1-cycle will be formed,

and the associated alpha shape are shown in the bottom left chart of Figure 2.4. One
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can notice that in Figure 2.5, when α = 0.6, βα,0
1 = 1. When α reaches 0.83, the 1-cycle

disappears and βα,0
1 = 0 as shown in the bottom left panel of Figure 2.4. Table 2.2 and

Table 2.3 show how we construct the qth-order persistent Laplacian Lt,p
q and calculate the

harmonic (βt,p
q ) and non-harmonic persistent spectra of Lt,p

q from the simplicial complexes

K0.2 to K0.6 and K0.6 to K0.6.

Figure 2.4: Illustration of 2D Delaunay triangulation, alpha shapes, and alpha complexes
for a set of 6 points A, B, C, D, E, and F. Top left: The 2D Delaunay triangulation. Top
right: The alpha shape and alpha complex at filtration value α = 0.2. Bottom left : The
alpha shape and alpha complex at filtration value α = 0.6. Bottom right: The alpha shape
and alpha complex at filtration value α = 1.0. Here, we use dark blue color to fill the
alpha shape.

Figure 2.5: The persistent barcode for a set of points as illustrated in Figure 2.4 that are
generated from Gudhi and DioDe.
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Table 2.2: The matrix representation of q-boundary operator and its qth-order persistent
Laplacian with corresponding dimension, rank, nullity, and spectra from alpha complex
K0.6 → K0.6.

q q = 0 q = 1 q = 2

B0.6,0
q+1

AB BC CD DE EF DF AE
A
B
C
D
E
F


−1
1
0
0
0
0

0
−1
1
0
0
0

0
0
−1
1
0
0

0
0
0
−1
1
0

0
0
0
0
−1
1

0
0
0
−1
0
1

−1
0
0
0
1
0



DEF
AB
BC
CD
DE
EF
DF
AE



0
0
0
1
1
−1
0


/

B0.6
q

A B C D E F
[ 0 0 0 0 0 0 ]

AB BC CD DE EF DF AE
A
B
C
D
E
F


−1
1
0
0
0
0

0
−1
1
0
0
0

0
0
−1
1
0
0

0
0
0
−1
1
0

0
0
0
0
−1
1

0
0
0
−1
0
1

−1
0
0
0
1
0



DEF
AB
BC
CD
DE
EF
DF
AE



0
0
0
1
1
−1
0



L0.6,0
q


2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 3 −1
0 0 0 −1 −1 2





2 −1 0 0 0 0 1
−1 2 −1 0 0 0 0
0 −1 2 −1 0 −1 0
0 0 −1 3 0 0 1
0 0 0 0 3 0 −1
0 0 −1 0 0 3 0
1 0 0 1 −1 0 2


[3]

β0.6,0
q 1 1 0

dim(L0.6,0
q ) 6 7 1

rank(L0.6,0
q ) 5 6 1

nullity(L0.6,0
q ) 1 1 0

Spec(L0.6,0
q ) {0, 1, 1.5858, 3, 4, 4.4142} {0, 1, 1.5858, 3, 3, 4, 4.4142} {3}

2.1.2.2 Vietoris-Rips Complex

Vietoris-Rips complex is an abstract simplicial complex. It is commonly used in various

applications. For a given set of points P = {p1.p2, · · · , pn} in a metric space and a real

value r > 0, a k-simplex σk = [pi0, · · · , pik] is in the Vietoris-Rips complex if and only if

B(pij,r) ∩ B(pij′ ,r) ̸= ∅,∀j, j
′ ∈ [0, k].

2.1.3 Chain Complex

Chain complex is an important concept in topology, geometry, and algebra. A q-chain is

a formal sum of q-simplices in simplicial complex K with Z2 coefficients. The set of all

q-chains has a basis which the set of q-simplices in K, thus forming a finitely generated

free abelian group denoted as Cq(K). The boundary operator is a group homomorphism
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Table 2.3: The matrix representation of q-boundary operator and its qth-order persistent
Laplacian with corresponding dimension, rank, nullity, and spectra from alpha complex
K0.2 → K0.6.

q q = 0 q = 1 q = 2

B0.2,0.4
q+1

AB BC CD DE EF DF AE
A
B
C
D
E
F


−1
1
0
0
0
0

0
−1
1
0
0
0

0
0
−1
1
0
0

0
0
0
−1
1
0

0
0
0
0
−1
1

0
0
0
−1
0
1

−1
0
0
0
1
0

 / /

B0.2
q

A B C D E F
[ 0 0 0 0 0 0 ]

/ /

L0.2,0.4
q


2 −1 0 0 −1 0
−1 2 −1 0 0 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1
−1 0 0 −1 3 −1
0 0 0 −1 −1 2

 / /

β0.2,0.4
q 1 / /

dim(L0.2,0.4
q ) 6 / /

rank(L0.2,0.4
q ) 5 / /

nullity(L0.2,0.4
q ) 1 / /

Spec(L0.2,0.4
q ) {0, 1, 1.5858, 3, 4, 4.4142} / /

defined by ∂q : Cq(K)→ Cq−1(K) to relate the chain groups. More specifically, denoting q-

simplex as σq = [v0, v1, · · · , vq] by its vertices vi, the boundary operator is defined through

its action on the basis,

∂qσq =

q∑
i=0

(−1)iσi
q−1. (2.8)

Here, σi
q−1 = [v0, · · · , v̂i, · · · , vq] is the (q−1)-simplex with vi omitted. The following se-

quence of chain groups connected by boundary operators is a chain complex (defined as a

set of abelian groups connected by homomorphisms such that the composite of any two

consecutive homomorphisms is zero, ∂q∂q+1 = 0.)

· · · ∂q+2−→ Cq+1(K)
∂q+1−→ Cq(K)

∂q−→ Cq−1(K)
∂q−1−→ · · ·

17



2.1.4 Combinatorial Laplacians

Combinatorial Laplacians[52] offer both spectral analysis and topological analysis [53].

One central role played by the chain complex associated with a simplicial complex is to

define its q-th homology group (Hq = ker ∂q/ im ∂q+1), which is a topological invariant of

the simplicial complex. The dimension of Hq is denoted by βq = dimHq, the q-th Betti

number, which, roughly speaking, measures the number of q-dimensional holes in the

simplicial complex, or the geometric object tessellated into the simplicial complex.

A dual chain complex can be defined on any chain complex through the adjoint op-

erator of ∂q defined on the dual spaces Cq(K) = C∗
q (K). The q-coboundary operator

∂∗
q : Cq−1(K)→ Cq(K) is defined as:

∂∗ωq−1(cq) ≡ ωq−1(∂cq), (2.9)

where ωq−1 ∈ Cq−1(K) is a (q−1)-cochain, which is a homomorphism mapping a chain

to the coefficient group, and cq ∈ Cq(K) is a q-chain. The homology of the dual chain

complex is often called cohomology.

If we denote by Bq the matrix representation of a q-boundary operator with respect

to the standard basis for Cq(K) and Cq−1(K), the number of rows and the number of

columns in Bq correspond to the number of (q− 1)-simplices and that of q-simplices in K,

respectively. Moreover, the matrix representation of q-coboundary operator is denoted

BT
q .

In de Rham-Hodge theory, homology and cohomology are often studied through their

correspondences to the q-combinatorial Laplacian operator, defined as the linear operator

∆q : C
q(K)→ Cq(K) as follows,

∆q := ∂q+1∂
∗
q+1 + ∂∗

q∂q, (2.10)

where the isomorphism Cq(K) ∼= Cq(K) is assumed, where each q-simplex is mapped to

its own dual, i.e., the isomorphism keeps the coefficients of chains and cochains in the
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standard simplicial basis. Correspondingly, the matrix representation of ∆q is the qth-

order Laplacian, which is denoted Lq(K),

Lq(K) = Bq+1BT
q+1 + BT

q Bq. (2.11)

Assume the number of q-simplices existing in K to be Nq, then Lq(K) is an Nq×Nq-matrix.

Since the qth-order Laplacian Lq(K) is symmetric and positive semi-definite, its spectrum

consists of only real and non-negative eigenvalues. We denote the spectrum of Lq(K) as

Spec(Lq(K)) = {λ1,q, λ2,q, · · · , λNq ,q}.

The multiplicity of zero in the spectrum (also called the harmonic spectrum) reveals the

topological information βq, whereas the non-harmonic spectrum encodes further geomet-

ric information. The correspondence between the multiplicity of zero spectra of Lq(K)

and the qth Betti number defined in the homology is an important result in de Rham-

Hodge theory, [54, 55, 56]

βq = dimker ∂q − dim im ∂q+1 = dimkerLq(K) = #0 eigenvalues of Lq(K). (2.12)

Intuitively, β0 represents the number of connected components in K, β1 reveals the num-

ber of 1D noncontractible loops or circles in K, and β2 shows the number of 2D voids or

cavities in K.

2.1.5 Persistent Laplacian

Both topological and geometric information can be derived from analyzing the spectra of

qth-order Laplacian. However, the information is restricted to those pieces contained in

the connectivity of the simplicial complex. A single simplicial complex produces insuffi-

cient information for practical problems such as feature extraction for machine learning

analysis. To enrich the spectral information, persistent spectral graph (PSG) is proposed

by creating a sequence of simplicial complexes induced by varying a filtration parameter,
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which is inspired by persistent homology as well as our earlier multiscale graph Lapla-

cians [57].

First, we consider a filtration of simplicial complex K which is a nested sequence of

subcomplexes (Kt)
m
t=0 of the final complex K:

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K. (2.13)

For each subcomplex Kt, we denote its corresponding chain group to be Cq(Kt), and the

q-boundary operator will be denoted by ∂t
q : Cq(Kt)→ Cq−1(Kt). As conventionally done,

we define Cq(Kt) for q < 0 as the zero group {0} and ∂t
q as a zero map. 2 If 0 < q ≤ dimKt,

then

∂t
q(σq) =

q∑
i

(−1)iσi
q−1, ∀σq ∈ Kt, (2.14)

with σq = [v0, · · · , vq] being any q-simplex, and σi
q−1 = [v0, · · · , v̂i, · · · , vq] being the (q−

1)-simplex constructed by removing vi . The adjoint operator of ∂t
q is the coboundary

operator ∂t∗
q : Cq−1(Kt) → Cq(Kt), which can be regarded as a map from Cq−1(Kt) to

Cq(Kt) through the isomorphisms Cq(Kt) ∼= Cq(Kt) between cochain groups and chain

groups.

Similar to the persistent homology, a sequence of chain complexes can be defined as

below:

· · · C1
q+1

∂1
q+1−−⇀↽−−
∂1∗
q+1

C1
q

∂1
q−−⇀↽−−

∂1∗
q

· · ·
∂1
3−−⇀↽−−

∂1∗
3

C1
2

∂1
2−−⇀↽−−

∂1∗
2

C1
1

∂1
1−−⇀↽−−

∂1∗
1

C1
0

∂1
0−−⇀↽−−

∂1∗
0

C1
−1 = {0}

⊆ ⊆ ⊆ ⊆ ⊆

· · · C2
q+1

∂2
q+1−−⇀↽−−
∂2∗
q+1

C2
q

∂2
q−−⇀↽−−

∂2∗
q

· · ·
∂2
3−−⇀↽−−

∂2∗
3

C2
2

∂2
2−−⇀↽−−

∂2∗
2

C2
1

∂2
1−−⇀↽−−

∂2∗
1

C2
0

∂2
0−−⇀↽−−

∂2∗
0

C2
−1 = {0}

...
...

...
...

...
...

⊆ ⊆ ⊆ ⊆ ⊆

· · · Cm
q+1

∂m
q+1−−⇀↽−−
∂m∗
q+1

Cm
q

∂m
q−−⇀↽−−

∂m∗
q

· · ·
∂m
3−−⇀↽−−

∂m∗
3

Cm
2

∂m
2−−⇀↽−−

∂m∗
2

Cm
1

∂m
1−−⇀↽−−

∂m∗
1

Cm
0

∂m
0−−⇀↽−−

∂m∗
0

Cm
−1 = {0}

(2.15)
2We define the boundary matrix Bt0 for the boundary operator ∂t

0 as a zero matrix. The number of
columns of Bt0 is the number of 0-simplices in Kt, the number of rows will be 1.
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For simplicity, we use Ct
q to denote the chain group Cq(Kt).

Next, we introduce persistence to the Laplacian spectra. We define the subset of Ct+p
q

whose boundary is in Ct
q−1 as Ct,p

q , assuming the natural inclusion map from Ct
q−1 to Ct+p

q−1,

Ct,p
q := {β ∈ Ct+p

q | ∂t+p
q (β) ∈ Ct

q−1}. (2.16)

On this subset, one may define the p-persistent q-boundary operator denoted by ðt,p
q :

Ct,p
q → Ct

q−1. Its corresponding adjoint operator is (ðt,p
q )∗ : Ct

q−1 → Ct,p
q , again through the

identification of cochains with chains. We then define the q-order p-persistent Laplacian

operator ∆t,p
q : Ct

q → Ct
q associated with the filtration as

∆t,p
q = ðt,p

q+1

(
ðt,p
q+1

)∗
+ ∂t∗

q ∂t
q. (2.17)

The matrix representation of ∆t,p
q in the simplicial basis is

Lt,p
q = Bt,p

q+1(B
t,p
q+1)

T + (Bt
q)

TBt
q, (2.18)

where Bt,p
q+1 is the matrix representation of ðt,p

q+1.

We denote the spectrum of Lt,p
q as

Spec(Lt,p
q ) = {λt,p

1,q, λ
t,p
2,q, · · · , λ

t,p
Nt

q ,q
},

where N t
q = dimCt

q is the number of q-simplices in Kt, and the eigenvalues are listed in

the ascending order. Thus, the smallest non-zero eigenvalue of Lt,p
q is denoted as λt,p

2,q. We

may recognize the multiplicity of zero in the spectrum of Lt,p
q as the qth order p-persistent

Betti number βt,p
q , which counts the number of (independent) q-dimensional holes in Kt

that still exists in Kt+p. The relation can be observed in

βt,p
q = dimker ∂t

q − dim imðt,p
q+1 = dimkerLt,p

q = #0 eigenvalues of Lt,p
q . (2.19)

In this paper, we focus on the 0, 1, 2th-order persistent Laplacians, which depict the rela-

tions among vertices, edges, triangles, and tetrahedra, as we target 3D real-world appli-

cations.
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For instance, given a set of vertices V = {v0, v1, · · · , vN0−1} , N0 embedded in R3, we

consider a nested family of simplicial complexes that may be created for a positive real

number α. Denoting the simplicial complex generated for α by Kα, the traditional qth-

order Laplacian is just a special case of qth-order 0-persistent Laplacian at Kα

Lα,0
q = Bα,0

q+1(B
α,0
q+1)

T + (Bα
q )

TBα
q . (2.20)

The spectrum of Lα,0
q is simply associated with a snapshot of the filtration,

Spec(Lα,0
q ) = {λα,0

1,q , λ
α,0
2,q , · · · , λ

α,0
Nα

q ,q}. (2.21)

Correspondingly, the q-th 0-persistent Betti number βα,0
q = βα

q . In addition to the tradi-

tional homology information, and persistent homology information, our proposed per-

sistent spectral graph theory, through the nonzero eigenvalues in the spectrum of the per-

sistent Laplacian operator, provide richer spatial information induced by varying the fil-

tration parameters. Thus it provides a powerful tool to encode high-dimensional datasets

into various topological and geometric features in a coherent fashion.3

Figure 2.6 demonstrates an example of a standard filtration process. Here the initial

setup K1 consists of five 0-simplices (vertices). We construct Vietoris-Rips complexes by

using an ever-growing circle centered at each vertex with radius r. Once two circles over-

lapped with each other, an 1-simplex (edge) is formed. A 2-simplex (triangle) will be

created when 3 circles contact with one another, and a 3-simplex will be generated once

4 circles get overlapped one another. As Figure 2.6 shows, we can attain a series of sim-

plicial complexes from K1 to K6 with the radius of circles increasing. To fully illustrate

how to construct p-persistent q-combinatorial Laplacian matrices by the boundary oper-

ator and determine persistent Betti numbers, we analyze 6 p-persistent q-combinatorial

Laplacian matrices and their corresponding harmonic persistent spectra (i.e., persistent

Betti numbers) and non-harmonic persistent spectra. Additional matrices are analyzed in

Appendix Section A.1.
3In this work, we use notations Ct,p

q ,ðt,pq ,∆t,p
q ,Lt,p

q , and βt,p
q instead of Ct+p

q ,ðt+p
q ,∆t+p

q ,Lt+p
q , and βt+p

q

used in Ref. [11].
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K1
K2

K3

K4
K5

K6

0

1

2
4

3

Figure 2.6: Illustration of filtration. We use 0, 1, 2, 3, and 4 to stand for 0-simplices,
01, 12, 23, 03, 24, 02, and 13 for 1-simplices, 012, 023, 013, and 123 for 2-simplices, and 0123
for the 3-simplex. Here, K1 has five 0-cycles, K2 has four 0-cycles, K3 has two 0-cycles
and a 1-cycle, K4 has a 0-cycle and a 1-cycle, K5 has one 0-cycle, and K6 has a 0-cycle.

Table 2.4: The number of q-cycles of simplicial complexes demonstrated in Figure 2.6.

# of q-cycles K1 K2 K3 K4 K5 K6

q = 0 5 4 2 1 1 1
q = 1 0 0 1 1 0 0
q = 2 0 0 0 0 0 0

Case 1. In this case, the initial setup is K1 and the end status is K3. Therefore,

t = 1 and p = 2 in Eq. (2.18). We will calculate L1+2
0 ,L1+2

1 , and L1+2
2

first and find out their corresponding persistent spectra.

The 2-persistent 0, 1, 2-combinatorial Laplacian operators are:

∆1+2
0 = ð1+2

1

(
ð1+2
1

)∗
+ ∂1∗

0 ∂1
0 ,

∆1+2
1 = ð1+2

2

(
ð1+2
2

)∗
+ ∂1∗

1 ∂1
1 ,

∆1+2
2 = ð1+2

3

(
ð1+2
3

)∗
+ ∂1∗

2 ∂1
2 ,

Since 2-simplex and 3-simplex do not exist in K1 and K3, ð1+2
2 , ∂1

1 ,ð1+2
3 ,

and ∂1
2 do not exist and ∂1

0 is a zero map. Then, there is only one per-
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sistent combinatorial Laplacian matrix

L1+2
0 = B1+2

1 (B1+2
1 )T + (B1

0)
TB1

0.

It can be seen in Figure 2.6 that two 0-cycles (connected components)

in K1 are still alive in K3, while no 1-cycle and 2-cycle exist in the

initial set up K1, which perfectly match the calculations in Table 2.5:

β1+2
0 = 2.

Table 2.5: K1 → K3.

q q = 0 q = 1 q = 2

B1+2
q+1

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 / /

B1
q

0 1 2 3 4
/
[
0 0 0 0 0

] / /

L1+2
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 0 0

 / /

β1+2
q 2 / /

dim(L1+2
q ) 5 / /

rank(L1+2
q ) 3 / /

nullity(L1+2
q ) 2 / /

Spectrum(L1+2
q ) {0, 0, 2, 2, 4} / /

Case 2. The initial setup is K3 and the end status is K4. The 1-persistent
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0, 1, 2-combinatorial Laplacian operators are

∆3+1
0 = ð3+1

1

(
ð3+1
1

)∗
+ ∂3∗

0 ∂3
0 ,

∆3+1
1 = ð3+1

2

(
ð3+1
2

)∗
+ ∂3∗

1 ∂13,

∆3+1
2 = ð3+1

3

(
ð3+1
3

)∗
+ ∂3∗

2 ∂3
2 ,

Since 2-simplex and 3-simplex do not exist in K4, ∂3
2 , ∂

3+1
2 , and ∂3

2 do

not exist, then

L3+1
0 = B3+1

1

(
B3+1
1

)T
+ (B3

0)
TB3

0,

L3+1
1 = (B3

1)
TB3

1.

From Table 2.6, one can see that β3+1
0 = 0 and β3+1

1 = 1, which reveals

only one 0-cycle and one 1-cycle in K3 are still alive in K4.

Table 2.6: K3 → K4.

q q = 0 q = 1 q = 2

B3+1
q+1

01 12 23 03 24
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 / /

B3
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 /

L3+1
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 3 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




2 −1 0 1
−1 2 −1 0
0 −1 2 1
1 0 1 2

 /

β3+1
q 1 1 /

dim(L3+1
q ) 5 4 /

rank(L3+1
q ) 4 3 /

nullity(L3+1
q ) 1 1 /

Spectra(L3+1
q ) {0, 0.8299, 2, 2.6889, 4.4812} {0, 2, 2, 4} /
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Case 3. The initial setup is K4 and the end status is K4. Similarly,

L4+0
0 = B4+0

1

(
B4+0
1

)T
+ (B4

0)
TB4

0,

L4+0
1 = (B4

1)
TB4

1,

and L4+0
2 does not exist. In this case, the 0-persistent q-combinatorial

Laplacian matrix is actually the q-combinatorial Laplacian matrix de-

fined in Eq. (2.11). Therefore, β4+0
0 , β4+0

1 , and β4+0
2 actually represent

the number of 0, 1, 2-cycles in K4. With the filtration parameter r in-

creasing, all the circles overlapped with at least another circle in K4,

which results in β4+0
0 = 1. Since only one 1-cycle formed in K4, one

has β4+0
1 = 1.

Case 4. The initial setup is K4 and the end status is K5. Using similar analysis

as in previous cases, we have

L4+1
0 = B4+1

1

(
B4+1
1

)T
+ (B4

0)
TB4

0,

L4+1
1 = B4+1

2

(
B4+1
2

)T
+ (B4

1)
TB4

1,

and L4+1
2 does not exist. Notice that two 2-simplices 012 and 023 are

created under the filtration process. The appearance of these two

newborns results in the 1-cycle that was alive in K4 being killed.

Therefore β4+1
1 = 0 and β4+1

0 = 1 because only one connected compo-

nent keeps alive until K5.

Case 5. The initial setup is K5 and the end status is K6. The 1-persistent

0, 1, 2-combinatorial Laplacian matrices are

L5+1
0 = B5+1

1

(
B5+1
1

)T
+ (B5

0)
TB5

0,

L5+1
1 = B5+1

2

(
B5+1
2

)T
+ (B5

1)
TB5

1,

L5+1
2 = B5+1

3

(
B5+1
3

)T
+ (B5

2)
TB5

2.
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Table 2.7: K4 → K4.

q q = 0 q = 1 q = 2

B4+0
q+1

01 12 23 03 24
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 / /

B4
q

0 1 2 3 4
/
[
0 0 0 0 0

]
01 12 23 03 24

0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 /

L4+0
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 3 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




2 −1 0 1 0
−1 2 −1 0 −1
0 −1 2 1 1
1 0 1 2 0
0 −1 1 0 2

 /

β4+0
q 1 1 /

dim(L4+0
q ) 5 5 /

rank(L4+0
q ) 4 4 /

nullity(L4+0
q ) 1 1 /

Spectra(L4+0
q ) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /

In this situation, a new 3-simplex is formed in K6, which means that

B5+1
3 is no long a non-zero matrix. From Table 2.9, we can see that

β5+1
2 = 0 because K5 does not own any 2-cycle and thus, there is no 2-

cycle keeping alive up to K6. β5+1
0 implies only one 0-cycle preserved

along the filtration process.

Case 6. The initial setup is K6 and the end status is K6. The 0-persistent
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Table 2.8: K4 → K5.

q q = 0 q = 1 q = 2

B4+1
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0


012 023

01
12
23
03
24


1
1
0
0
0

0
0
1
−1
0

 /

B4
q

0 1 2 3 4
/
[
0 0 0 0 0

]
01 12 23 03 24

0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 /

L4+1
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




3 0 0 1 0
0 3 −1 0 −1
0 −1 3 0 1
1 0 0 3 0
0 −1 1 0 2

 /

β4+1
q 1 0 /

dim(L4+1
q ) 5 5 /

rank(L4+1
q ) 4 5 /

nullity(L4+1
q ) 1 0 /

Spectra(L4+1
q ) {0, 1, 2, 4, 5} {1.2677, 2, 2, 4, 4.7321} /
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Table 2.9: K5 → K6.

q q = 0 q = 1 q = 2

B5+1
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0



012 023 013 123
01
12
23
03
24
02


1
1
0
0
0
−1

0
0
1
−1
0
1

1
0
0
−1
0
0

0
1
1
0
0
0


0123

012
023

[
−1
−1

]

B5
q

0 1 2 3 4
/
[
0 0 0 0 0

]
01 12 23 03 24 02

0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0



012 023
01
12
23
03
24
02


1
1
0
0
0
−1

0
0
1
−1
0
1



L5+1
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




4 0 0 0 0 0
0 4 0 0 −1 0
0 0 4 0 1 0
0 0 0 4 0 0
0 −1 1 0 2 −1
0 0 0 0 −1 4


[
4 0
0 4

]

β5+1
q 1 0 0

dim(L5+1
q ) 5 6 2

rank(L5+1
q ) 4 6 2

nullity(L5+1
q ) 1 0 0

Spectra(L5+1
q ) {0, 1, 2, 4, 5} {1, 4, 4, 4, 4, 5} {4, 4}

0, 1, 2-combinatorial Laplacian operators are

L6+0
0 = B6+0

1 (B6+0
1 )T + (B6

0)
TB6

0,

L6+0
1 = B6+0

2 (B6+0
2 )T + (B6

1)
TB6

1,

L6+0
2 = B6+0

3 (B6+0
3 )T + (B6

2)
TB6

2,

β6+0
0 = 1, β6+0

1 = 0, and β6+0
2 = 0 imply that only one 0-cycle (con-

nected component) exists in K6.
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Table 2.10: K6 → K6.

q q = 0 q = 1 q = 2

B6+0
q+1

01 12 23 03 24 02 13
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0



012 023 013 123
01
12
23
03
24
02
13



1
1
0
0
0
−1
0

0
0
1
−1
0
1
0

1
0
0
−1
0
0
1

0
1
1
0
0
0
−1


B6+0
3

B6
q

0 1 2 3 4
/
[
0 0 0 0 0

]
01 12 23 03 24 02 13

0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0

 B6
2

L6+0
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1





4 0 0 0 0 0 0
0 4 0 0 −1 0 0
0 0 4 0 1 0 0
0 0 0 4 0 0 0
0 −1 1 0 2 −1 0
0 0 0 0 −1 4 0
0 0 0 0 0 0 4


L6+0

3

β6+0
q 1 0 0

dim(L6+0
q ) 5 7 4

rank(L6+0
q ) 4 7 4

nullity(L6+0
q ) 1 0 0

Spectra(L6+0
q ) {0, 1, 4, 4, 5} {1, 4, 4, 4, 4, 4, 5} {4, 4, 4, 4}

with

B6+0
3 =

0123

012

023

013

123



−1

−1

1

1


,B6

2 =

012 023 013 123

01

12

23

03

24

02

13



1

1

0

0

0

−1

0

0

0

1

−1

0

1

0

1

0

0

−1

0

0

1

0

1

1

0

0

0

−1


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and

L6+0
3 =



4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4


.

2.1.6 Variants of Persistent Laplacians

The traditional approach in defining the q-boundary operator ∂q : Cq(K) → Cq−1(K) can

be expressed as:

∂qσq =

q∑
i=0

(−1)iσi
q−1,

which leads to the corresponding elements in the boundary matrices being either 1 or

−1. However, to encode more geometric information into the Laplacian operator, we add

volume information of q-simplex σq to the expression of q-boundary operator.

Given a vertex set V = {v0, v1, · · · , vq}with q+1 isolated points (0-simplices) randomly

arranged in the n-dimensional Euclidean space Rn, often with n ≥ q. Set dij to be the

distances between vi and vj with 0 ≤ i ≤ j ≤ q and obviously, dij = dji. The Cayley-

Menger determinant can be expressed as [58]

DetCM(v0, v1, · · · , vq) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d201 d202 · · · d20q 1

d210 0 d212 · · · d21q 1

d220 d221 0 · · · d22q 1

...
...

...
... . . . ...

d2q0 d2q1 d2q2 · · · 0 1

1 1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.22)

The q-dimensional volume of q-simplex σq with vertices {v0, v1, · · · , vq} is defined by

Vol(σq) =

√
(−1)q+1

(q!)22q
DetCM(v0, v1, · · · , vq). (2.23)
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In trivial cases, Vol(σ0) = 1, meaning the 0-dimensional volume of 0-simplex is 1, i.e.,

there is only 1 vertex in a 0-simplex. Also, the 1-dimensional volume of 1-simplex σ1 =

[vi, vj] is the distance between vi and vj , and the 2-dimensional volume of 2-simplex is the

area of a triangle [vi, vj, vk].

The weighted boundary operator equipped with volume, denoted ∂̂q, is given by

∂̂qσq =

q∑
i=0

(−1)iVol(σi
q)σ

i
q−1. (2.24)

Employed the same concept to the persistent spectral theory, we have the volume-weighted

p-persistent q-combinatorial Laplacian operator. We also define

ð̂t+p
q (σq) :=


∂̂t+p
q (σq), if σq ∈ Ct+p

q

0, if σq ∈ Ct+p
q \ Ct+p

q

(2.25)

with

Ct+p
q := {σq ∈ Ct+p

q | ∂̂t+p
q (σq) ∈ Ct

q−1}.

Similarly, an inverse-volume weighted boundary operator, denoted ∂̌q, is given by

∂̌qσq =

q∑
i=0

(−1)i 1

Vol(σi
q)
σi
q−1. (2.26)

To define an inverse-volume weighted p-persistent q-combinatorial Laplacian operator.

We define

ð̌t+p
q (σq) :=


∂̌t+p
q (σq), if σq ∈ Ct+p

q

0, if σq ∈ Ct+p
q \ Ct+p

q

(2.27)

with

Ct+p
q := {σq ∈ Ct+p

q | ∂̌t+p
q (σq) ∈ Ct

q−1}.

Then volume-weighted and inverse-volume-weighted p-persistent q-combinatorial Lapla-

cian operators defined along the filtration can be expressed as

∆̂t+p
q = ð̂t+p

q+1

(
ð̂t+p
q+1

)∗
+ ∂̂t∗

q ∂̂t
q,

∆̌t+p
q = ð̌t+p

q+1

(
ð̌t+p
q+1

)∗
+ ∂̌t∗

q ∂̌t
q.

(2.28)
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The corresponding weighted matrix representations of boundary operators ð̂t+p
q+1, ð̂t

q, ð̌
t+p
q+1,

and ð̌t
q are denoted B̂t+p

q+1, B̂t
q, B̌

t+p
q+1, and B̌t

q, respectively. Therefore, volume-weighted

and inverse-volume-weighted p-persistent q-combinatorial Laplacian matrices can be ex-

pressed as

L̂t+p
q = B̂t+p

q+1(B̂
t+p
q+1)

T + (B̂t
q)

T (B̂t
q),

Ľt+p
q = B̌t+p

q+1(B̌
t+p
q+1)

T + (B̌t
q)

T (B̌t
q).

(2.29)

Although the expressions of the weighted persistent Laplacian matrices are different from

the original persistent Laplacian matrices, some properties of Lt+p
q are preserved. The

weighted persistent Laplacian operators are still symmetric and positive semi-defined.

Additionally, their ranks are the same as Lt+p
q . With the embedded volume information,

weighted PSGs can provide richer topological and geometric information through the as-

sociated persistent Betti numbers and non-harmonic spectra (i.e., non-zero eigenvalues).

In real applications, we are more interested in the 0, 1, 2-combinatorial Laplacian ma-

trices because its more intuitive to depict the relation among vertex, edges, and faces.

Given a set of vertices V = {v0, v2, · · · , vN} with N + 1 isolated points (0-simplices) ran-

domly arranged in Rn. By varying the radius r of the (n − 1)-sphere centered at each

vertex, a variety of simplicial complexes is created. We denote the simplicial complex

generated at radius r to be Kr, then the 0-persistent q-combinatorial Laplacian operator

and matrix at initial set up Kr is

Lr+0
q = Br+0

q+1(Br+0
q+1)

T + (Br
q)

TBr
q . (2.30)

The volume of any 1-simplex σ1 = [vi, vj] is Vol(σ1) is actually the distance between vi and

vj denoted dij . Then the 0-persistent 0-combinatorial Laplacian matrix based on filtration
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r can be expressed explicitly as

(Lr+0
0 )ij =



−
∑
j

(Lr+0
0 )ij, if i = j

−1, if i ̸= j and dij − 2r < 0

0, otherwise.

(2.31)

Correspondingly, we can denote the 0-persistent 1-combinatorial Laplacian matrix based

on filtration r by Lr+0
1 , and the 0-persistent 2-combinatorial Laplacian matrix based on

filtration r by Lr+0
2 .

Alternatively, variants of persistent 0-combinatorial Laplacian matrices can be de-

fined by adding the Euclidean distance information. The distance-weight persistent 0-

combinatorial Laplacian matrix based on filtration r can be expressed explicitly as

(L̂r+0
0 )ij =



−
∑
j

(L̂r+0
0 )ij, if i = j

−dij, if i ̸= j and dij − 2r < 0

0, otherwise.

(2.32)

Moreover, the inverse-distance-weight persistent 0-combinatorial Laplacian matrix based

on filtration r can also be implemented:

(Ľr+0
0 )ij =



−
∑
j

(Ľr+0
0 )ij, if i = j

− 1

dij
, if i ̸= j and dij − 2r < 0

0, otherwise.

(2.33)

The spectra of the aforementioned 0-persistent 0-combinatorial Laplacian matrices

based on filtration are given by

Spectra(Lr+0
0 ) = {(λ1)

r+0
0 , (λ2)

r+0
0 , · · · , (λN)

r+0
0 },

Spectra(L̂r+0
0 ) = {(λ̂1)

r+0
0 , (λ̂2)

r+0
0 , · · · , (λ̂N)

r+0
0 },

Spectra(Ľr+0
0 ) = {(λ̌1)

r+0
0 , (λ̌2)

r+0
0 , · · · , (λ̌N)

r+0
0 },
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where N is the dimension of persistent Laplacian matrices, (λ̂j)
r+0
0 and (λ̌j)

r+0
0 are the j-th

eigenvalues of L̂r+0
0 and Ľr+0

0 , respectively. We denote β̂r+0
q and β̌r+0

q the qth Betti for L̂r+0
q

and Ľr+0
q , respectively.

The smallest non-zero eigenvalue of Lr+0
0 , denoted (λ̃2)

r+0
0 , is particularly useful in

many applications. Similarly, the smallest non-zero eigenvalues of L̂r+0
0 and Ľr+0

0 are

denoted as (˜̂λ2)
r+0
0 and (˜̌λ2)

r+0
0 , respectively.

Finally, it is mentioned that using the present procedure, more general weights, such

as the radial basis function of the Euclidean distance, can be employed to construct weighted

boundary operators and associated persistent combinatorial Laplacian matrices.

2.2 Persistent Path Laplacian

2.2.1 Paths on a Finite Set

Denote set V an arbitrary nonempty finite set, and elements in V are called vertices. For

p ∈ Z+
0 (i.e., a set with integers p ≥ 0), an elementary p-path on V is any sequence i0 . . . ip of

p+1 vertices in V . An elementary p-path is an empty set ∅ for p = −1. For a fixed field K,

a vector space that consists of all formal linear combinations of elementary p-paths with

its coefficients in K is called the space generated by the elementary paths, denoted as

Λp = Λp(V,K) = Λp(V ). One says the elements in Λp are p-paths on V , and an elementary

p-path i0 . . . ip ∈ Λp is denoted by ei0...ip . By definition, ∀v ∈ Λp, its unique representation

can be given by the basis in Λp:

v =
∑

i0,...,ip∈V

ci0...ipei0...ip , (2.34)

where ci0...ip is the coefficient in K. For instance, Λ0 contains all linear combination of ei

with i ∈ V , Λ1 has all linear combination of eij with (i, j) ∈ V × V , and so on so forth.

Since Λ−1 consists of all multiples of e, one has Λ−1
∼= K.

Additionally, ∀p ∈ Z+
0 , the linear boundary operator from Λp to Λp−1 that acts on ele-
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mentary paths can be defined as

∂ : Λp → Λp−1 (2.35)

with

∂ei0...ip =

p∑
q=0

(−1)qei0...̂iq ...ip , (2.36)

where îq denotes the omission of index iq from the elementary p-path ei0...ip . One sets

Λ−2 = {0}, and for p = −1, defines ∂ : Λ−1 → Λ−2 to be a zero map. Following Lemma

2.1 in [59], one has ∂2 = 0, which indicates that the collection of boundary operator ∂ and

space Λp can form a chain complex of V denoted as Λ∗ = {Λp} as

· · ·Λp
∂−→ Λp−1

∂−→ · · · ∂−→ Λ0
∂−→ K ∂−→ 0. (2.37)

Next, the concepts of regular path and non-regular path are introduced according to

[59]. An elementary path ei0...ip on a set V is regular if ik−1 ̸= ik, and non-regular if ik−1 = ik

for k = 1, . . . , p. For any p ∈ Z+
0 ∪{−1}, letRp be the subspace of Λp spanned by all regular

elementary paths, and Np be the subspace of Λp spanned by all non-regular elementary

paths. Therefore, one has

Rp = span{ei0...ip : i0 . . . ip is regular}

Np = span{ei0...ip : i0 . . . ip is non-regular}.

Note thatRp = Λp for integers p = −1, 0.

Then ∀p ∈ Z+
0 ∪ {−1}, Λp = Rp ⊕Np. Therefore,

Rp
∼= Λp/Np.

According to Section 2.4 in [59], the boundary operator ∂ is well-defined on the quotient

space Λp/Np. Moreover, ∂2 = 0 and the product rules are satisfied in the quotient space

Λp/Np as well. One has an induced regular boundary operator:

∂̄ : Rp → Rp−1, (2.38)
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where the regular boundary operator ∂̄ satisfies (2.36) except that all non-regular terms

on the right hand side should be treated as 0. Then a chain complex of V , denoted as

R∗(V ) = (Rp)p and equipped with ∂̄, can be expressed as:

· · ·Rp
∂̄−→ Rp−1

∂̄−→ · · · ∂̄−→ R0
∂̄−→ K ∂̄−→ 0. (2.39)

It can be verified that Rp
∼= Λp/Np is an isomorphism of chain complexes [60]. In the

following sections, for simplicity, we use ∂ to denote the boundary operator of Eq. (2.39)

unless specified differently.

2.2.2 Path Complex

A path complex over set V is a nonempty collection P of elementary paths on V for any

n ∈ Z+
0 ,

if i0 . . . in ∈ P , then i0 . . . in−1 ∈ P, and i1 . . . in ∈ P. (2.40)

For a fixed path complex, all the paths from P are called allowed (i.e. ik−1 → ik for any

k = 1, . . . , n), while the elementary paths on V that are not in P are non-allowed. We say a

path complex P is perfect if any subsequence of any path from P is also in P . We choose

Pn to denote all n-paths from P . Then the set P−1 has a single empty path e, the set P0

consists of all the vertices of P , and clearly, V = P0. To be noted, a path complex P is a

collection {Pn}∞n=−1 satisfying Eq. (2.40). Let K be an abstract simplicial complex defined

over a finite vertex set V , satisfying

if σ ∈ K, then any subset of σ is also in K.

The collection of elementary paths on V is denoted by P (K). Follows from [59] (cf. Ex-

ample 3.2), the family P (K) is a path complex, and the allowed n-paths are n-simplices.
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2.2.3 Path Homology

For any n ∈ Z+
0 , the K-linear space An is spanned by all the elementary n-paths from a

given path complex P = {Pn}∞n=0 over a finite set V , i.e.,

An = An(P ) = span{ei0...in : i0 . . . in ∈ Pn}.

We call the elements of An the allowed n-paths. By the definition of An, An ⊂ Λn, and

An = Λn for n ≤ 0. It is natural that the boundary operator ∂ defined on Rn can be

introduced to An under certain condition: ∂An ⊆ An−1. For example, for perfect path

complexes, we can obtain a chain complex:

· · · An
∂−→ An−1

∂−→ · · · ∂−→ A0
∂−→ K ∂−→ 0.

Next, we consider a general path complex P (i.e., ∂An does not have to be a subspace

of An−1). For any n ∈ Z+
0 ∪ {−1}, we define a subspace of An:

Ωn = Ωn(P ) = {v ∈ An : ∂v ∈ An−1}. (2.41)

The elements of Ωn are called ∂-invariant n-paths. To be noted, ∂Ωn ⊂ Ωn−1 always sat-

isfies. Moreover, ∂2 = 0 has been established in the previous section. Therefore, the

augmented chain complex of ∂-invariant paths can be denoted as

· · ·Ωn
∂−→ Ωn−1

∂−→ · · · ∂−→ Ω0
∂−→ K ∂−→ 0, (2.42)

whose homology group H̃n(P ) of the chain complex in Eq. (2.42) are called the reduced

path homology groups of the path complex P for n ∈ Z+
0 ∪ {−1}. The truncated version of

the chain complex in Eq. (2.42) for n ∈ Z+
0 is:

· · ·Ωn
∂−→ Ωn−1

∂−→ · · · ∂−→ Ω0
∂−→ 0, (2.43)

whose homology group Hn(P ) of the chain complex in Eq. (2.43) are called the path

homology groups of the path complex P .
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2.2.4 Path Homology on Directed Graphs

A directed graph is an ordered pair G = (V,E), where V is a set of all vertices and E

is a set of ordered pairs of vertices (i.e. directed edges that satisfy E ⊆ V × V ). If G =

(V,E) does not contain any loop and multiple edge, then it is called simple directed graph.

Moreover, for the path homology of multigraph or quiver, one can refer to Ref. [61]. In

the following section of this work, we use G(V,E) to represent the simple directed graphs

unless specified differently.

The path complex P (G) is regular if G = (V,E) is a simple directed graph. In this

section, we mainly discuss the regular spaces Ωn(G) = Ωn(P (G)) and their associated

regular homology groups H(G) = Hn(P (G)). Similar to the discussion in Subsection 2.2.3,

given a simple digraph G(V,E), for any n ∈ Z+
0 ∪ {−1}, the space of ∂-invariant n-paths

on G is defined by the subspace of An(G) = An(V,E;K):

Ωn = Ωn(G) = {v ∈ An : ∂v ∈ An−1},

with Ω−1 = A−1
∼= K and Ω−2 = A−2 = {0}. Since ∂(Ωn) ⊆ Ωn−1 (as ∂2 = 0), then we have

the following chain complex of V denoted as Ω∗(V ) = {Ωn},

· · · ∂−→ Ω3
∂−→ Ω2

∂−→ Ω1
∂−→ Ω0

∂−→ K ∂−→ 0,

and the associated n- dimensional path homology groups of G = (V,E) are defined as:

Hn(G) = Hn(V,E;K) := ker(∂|Ωn)/ im(∂|Ωn+1). (2.44)

To be noted, the elements of ker(∂|Ωn) are called n-cycles, and the elements of im(∂|Ωn+1)

are referred to as n-boundaries. For simplicity, we define ∂n = ∂|Ωn , and the chain complex

of ∂-invariant paths is written as

· · ·Ωn+1
∂n+1−→ Ωn

∂n−→ Ωn−1
∂n−1−→ Ωn−2 · · · .

Notably, the path cohomology, introduced in Refs. [60, 62], is isomorphic to the dual

space of path homology when the coefficient ring is a field. The associated n- dimensional
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path homology groups of digraphs are defined as:

Hn(G) = Hn(V,E;K) := ker(dn+1)/ im(dn), (2.45)

where d is called coboundary operator.

Given two simple digraphs G = (V,E) and G′ = (V ′, E ′). According to the Definition

2.2 in [63], a morphism of digraphs/digraphs map from G to G′ is a map f : V → V ′ such that

for any directed edge i → j in E, one has either f(i) → f(j) is a directed edge on E ′ or

f(i) = f(j).

Let f be a digraph map from G to G′. For n ∈ Z+
0 ∪ {−1}, one defines a map (f∗∗)n :

Λn(V )→ Λn(V
′) such that:

(f∗∗)n(ei0...in) = ef(i0)...f(in). (2.46)

Assume ∂ and ∂′ are the boundary operators of chain complexes Λ∗(V ) and Λ∗(V
′), then

for ei0...in ∈ Λn, one has

((f∗∗)n−1 ◦ ∂)(ei0...in) =
n∑

q=0

(−1)q(f∗∗)n−1(ei0...̂iq ...in) (2.47)

=
n∑

q=0

(−1)q(ef(i0)...f̂(iq)...f(in)) (2.48)

= (∂′ ◦ (f∗)n)(ei0...in). (2.49)

Hence f∗∗ is a chain map. By the definition of digraph map, (f∗∗)n maps non-regular

elementary n-paths on V to non-regular elementary n-paths on V ′. Therefore, one has

(f∗∗)n(Nn(V )) ⊆ Nn(V
′), and then (f∗∗)n descends to a quotient homomorphism of chain

complexes:

(f̃∗∗)n : Λn(V )/Nn(V )→ Λn(V
′)/Nn(V

′). (2.50)

It can be verified that Rp
∼= Λp/Np is an isomorphism of chain complexes [60], then the

map in (2.50) induces a morphism of chain complexes:

(f∗)n : Rn(V )→ Rn(V
′). (2.51)
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Since (f∗∗)n maps non-regular paths to non-regular, then similarly to what Eq. (2.47)

shows, (f∗)n is also a chain map that follows:

(f∗)n(ei0...in) :=


ef(i0)...f(in) if ef(i0)...f(in) is regular,

0 otherwise.
(2.52)

Following the Theorem 2.10 in [63], the induced map (f∗)n induces a morphism of chain

complexes:

(f∗)n : Ωn(G;K)→ Ωn(G
′;K) (2.53)

and consequently induces a homomorphism between the path homology groups:

(f∗)n : Hn(G;K)→ Hn(G
′;K), n ≥ 0. (2.54)

2.2.5 Homologies of Directed Subgraphs

Some interesting propositions on the homologies of subgraphs provide a way to simplify

complicated digraphs to relatively simple ones. Following the Section 4.2 in [59], three

propositions are discussed.

Proposition 2.2.1 Given a simple digraph G that has a vertex v with n outcoming arrows v →

v′0, v → v′1, . . . , v → v′n−1. Note that v does not have any incoming arrows. Assume that for all

i ≥ 1, one has v′0 → v′i. Denote G′ be the subgraph of G by removing the vertex v with all adjacent

edges (i.e. V ′ = V \{v} and E ′ = E\{vv′i}n−1
i=0 ). Then, one has H∗(G) ∼= H∗(G

′) (See Figure 2.7

a).

Proposition 2.2.2 Given a simple digraph G = (V,E) that has a vertex v with n incoming

arrows v′0 → v, v′1 → v, . . . , v′n−1 → v. Note that v does not have any outcoming arrows. Assume

that for all i ≥ 1, one has v′i → v′0. Denote G′ = (V ′, E ′) be the subgraph of G by removing

the vertex v with all adjacent edges (i.e. V ′ = V \{v} and E ′ = E\{v′iv}n−1
i=0 ). Then, one has

H∗(G) ∼= H∗(G
′) (See Figure 2.7 b).
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a b c

Figure 2.7: Homologies of directed subgraphs. a, b, and c illustrate three subgraphs
whose homology groups or homology group dimensions are related to the original di-
graphs.

Proposition 2.2.3 Given a simple digraph G = (V,E) that has a vertex v with only one outcom-

ing arrow v → v′i and only one incoming arrow v′j → v, where i ̸= j. Denote G′ = (V ′, E ′) be

the subgraph of G (See Figure 2.7 c) by removing the vertex v and the adjacent edges v → v′i and

v′j → v (i.e. V ′ = V \{v} and E ′ = E\{vv′i, v′jv}). Then,

(i) dimHp(G) = dimHp(G
′) for p ̸= 2 or for p = 0, 1 if v′jv′i is an edge/semi-edge in G′.

(ii) If v′jv′i is neither an edge or a semi-edge in G′, but v′j and v′i are in the same connected

component of G′, then dimH1(G) = dimH1(G
′ + 1), and dimH0(G) = dimH0(G

′).

(iii) If v′j and v′i are not in the same connected component of G′, then dimH1(G) = dimH1(G
′)

and dimH0(G) = dimH0(G
′)− 1.

2.2.6 Path Laplacian

Recall that a chain complex of ∂-invariant paths is given by

· · ·Ωn+1
∂n+1−→ Ωn

∂n−→ Ωn−1
∂n−1−→ Ωn−2 · · · ,

where Ωn = Ωn(P ) = {v ∈ An : ∂v ∈ An−1} and ∂n := ∂|Ωn . Alternatively, assume

Sn := Sn(P ) to be the set of n-th elementary paths in P , then we define an inner product

⟨·, ·⟩ : Sn × Sn → R
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such that for any ei0...in , ej0...jn ∈ Sn, the following satisfies

⟨ei0...in , ej0...jn⟩ =


1 if ei0...in = ej0...jn ,

0 otherwise.
(2.55)

Let Mn be a matrix representation of ∂ : An → An−1 with respect to the standard basis

of An and An−1. Define an inclusion map ιn : Ωn ↪→ An, then the matrix representation

of ιn with respect to the basis of Ωn (i.e., the standard basis of An with the removal of

generators that are not in Ωn) and the standard basis of An is denoted as On. Denote the

boundary matrix representation of ∂n as Bn, then we have

On−1Bn = M̃nOn. (2.56)

If On−1 is a square matrix, then On is actually an identity matrix, and we have

Bn = O−1
n−1M̃nOn = M̃nOn, (2.57)

where M̃n is Mn with the removal of rows that their basis are not elementary (n−1)-paths

in P . Otherwise, Bn is the least-square solution to Eq. (2.56).

Note that Bn is the matrix representation of ∂n with respect to the basis of Ωn and Ωn−1.

Dual space Ωn := Hom(Ωn,K) of Ωn is equipped with dual maps d to form a cochain

complex

· · ·Ωn+1 dn+1←− Ωn dn←− Ωn−1 dn−1←− Ωn−2 · · · ,

where dn is called a coboundary operator. The inner product on Ωn induces an inner

product≪ ·, · ≫ on Ωn such that

≪ f, g ≫=
∑
e∈Sn

f(e)g(e), ∀f, g ∈ Ωn.

We denote the adjoint operator of ∂n be ∂∗
n : Ωn−1 → Ωn. Note that similar inner product

≪ ·, · ≫ on Ωn was defined in the literature [64]. Hence, the coboundary operator dn is
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consistent with the adjoint operator ∂∗
n. Then, for integers p ≥ 0, the n-th path Laplacian

operator is a linear operator: ∆n : Ωn → Ωn given by

∆n = ∂n+1∂
∗
n+1 + ∂∗

n∂n, (2.58)

and ∆0 = ∂1∂
∗
1 . The n-th path Laplacian matrix corresponding to ∆n is expressed by

Ln = Bn+1B
T
n+1 +BT

nBn. (2.59)

Since Ln is positive semi-definite and symmetric, its eigenvalues are all real and non-

negative. Additionally, recall that the Betti number βn of path complex P satisfies

βn = dimker ∂n − dim im ∂n+1 = dimker∆n. (2.60)

It is easy to show that

βn = nullity(Ln) = the number of zero eigenvalues of Ln. (2.61)

Moreover, assume the dimension of Ln is N , then the set of spectra of Ln is denoted as

Spectra(Ln) = {(λ1)n, (λ2)n, · · · , (λN)n}.

Figure 2.8 shows 5 digraphs with multiple vertices and directed edges. Here, we take

them as examples to give a detailed illustration of Ln matrix constructions.

Construction of L0 – Figure 2.8a Since L0 = B1B
T
1 , then we first construct B1, where

B1 = O−1
0 M̃1O1 according to Eq. (2.57), we have O0 =



e1 e2 e3

e1 1 0 0

e2 0 1 0

e3 0 0 1

, and M1 =



e12 e23 e31

e1 −1 0 1

e2 1 −1 0

e3 0 1 −1

, and O1 =



e12 e23 e31

e12 1 0 0

e23 0 1 0

e31 0 0 1

. Since e1, e2, and e3 are all elemen-
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a b

c d

e f

Figure 2.8: Five digraphs. a and b Digraphs with 3 vertices and 3 directed edges. c and d
Digraphs with 4 vertices and 4 directed edges. e A digraph with 6 vertices and 8 directed
edges. f A digraph with 6 vertices and 8 directed edges.

tary 0-paths (vertices), M1 = M̃1. We have B1 = O−1
0 M̃1O1 =



e12 e23 e31

e1 −1 0 1

e2 1 −1 0

e3 0 1 −1

. Then

L0 = B1B
T
1 =


2 −1 −1

−1 2 −1

−1 −1 2

, which gives Spectra(L0) = {0, 3, 3} and thus, one finally

has β0 = 1.

Construction of L1 – Figure 2.8a We have L1 = B2B
T
2 + BT

1 B1, where B1 has been

formed, so we focus on the construction of B2 = O−1
1 M̃2O2 according to Eq. (2.57). Since
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O1 =



e12 e23 e31

e12 1 0 0

e23 0 1 0

e31 0 0 1

, and M2 =



e123 e231 e312

e11 0 0 0

e12 1 0 1

e13 −1 0 0

e21 0 −1 0

e22 0 0 0

e23 1 1 0

e31 0 1 1

e32 0 0 −1

e33 0 0 0



, and O2 is a 3 × 0 empty

matrix since Ω2 = {0}. Therefore, B2 = O−1
1 M̃2O2 is a 3 × 0 empty matrix. Additionally,

L1 = B2B
T
2 +BT

1 B1 =


2 −1 −1

−1 2 −1

−1 −1 2

, where Spectra(L1) = {0, 3, 3} and thus, one finally

has β1 = 1.

Construction of L2 – Figure 2.8a We have L2 = B3B
T
3 + BT

2 B2, where B2 is an empty

matrix. Hence, we focus on the construction of B3 = O−1
2 M̃3O3 according to Eq. (2.57).

We have A2 = span{e123, e231, e312} and A1 = span{e12, e23, e31}. Note that ∂2(e123) =

e23 − e13 + e12 where e13 is not in A1. Hence, e123 is not in Ω2. The same conclusion can be

deduced for e231 and e312. Therefore, we have Ω2 = {0}, and it is straightforward to get

that L2 is an empty matrix.

Construction of L0 – Figure 2.8b Since L0 = B1B
T
1 , then we should first construct

B1, where B1 = O−1
0 M̃1O1 according to Eq. (2.57). Since O0 =



e1 e2 e3

e1 1 0 0

e2 0 1 0

e3 0 0 1

,
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M1 =



e12 e13 e23

e1 −1 −1 0

e2 1 0 −1

e3 0 1 1

, and O1 =



e12 e13 e23

e12 1 0 0

e13 0 1 0

e23 0 0 1

. Since e1, e2, and e3 are

all elementary 0-paths (vertices). Therefore, M1 = M̃1, and we have B1 = O−1
0 M̃1O1 =



e12 e13 e23

e1 −1 −1 0

e2 1 0 −1

e3 0 1 1

. Then L0 = B1B
T
1 =


2 −1 −1

−1 2 −1

−1 −1 2

, which gives the Spectra(L0) =

{0, 3, 3} and thus, one finally has β0 = 1.

Construction of L1 – Figure 2.8b We have L1 = B2B
T
2 + BT

1 B1, where B1 has been

formed, so we focus on the construction of B2 = O−1
1 M̃2O2 according to Eq. (2.57).

First, A2 = span{e123} and A1 = span{e12, e13, e23}. Note that ∂2(e123) = e23 − e13 + e12

where e12, e23, and e13 are all in A1. Hence, Ω2 = A2 = span{e123}. Note that O1 =



e12 e13 e23

e12 1 0 0

e13 0 1 0

e23 0 0 1

, M2 =



e123

e11 0

e12 1

e13 −1

e21 0

e22 0

e23 1

e31 0

e32 0

e33 0



, and O2 =

( e123

e123 1

)
. The e11, e21, e22, e31, e32,
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and e33 are not elementary 1-paths in P . Hence, M̃2 =



e123

e12 1

e13 −1

e23 1

, and then B2 =

O−1
1 M̃2O2 =



e123

e12 1

e13 −1

e23 1

. Therefore, L1 = B2B
T
2 +BT

1 B1 =


3 0 0

0 3 0

0 0 3

, where Spectra(L1) =

{3, 3, 3} and thus, we finally have β1 = 0.

Construction of L2 – Figure 2.8b According to Eq. (2.59), we have L2 = B3B
T
3 +BT

2 B2

and B3 = O−1
2 M̃3O3. Since there is no 3-path existing, so the M3 and O3 are both empty

matrix. Hence L2 = (3), Spectra(L2) = {3}, and thus, one has β2 = 0.

In the following section, we will omit the detailed construction steps of boundary

matrix Bn. Table 2.11, Table 2.12, Table 2.13, and Table 2.14 list the boundary matrix Bn

and the n-th path Laplacian matrix Ln for with its corresponding Betti numbers βn and

spectrum Spectra(Ln) for Figure 2.8 c, d, e, and f. It is worth to mention that βn can

distinguish the same graph with different paths assigned. For example, Figure 2.8 c and

d have the same undirected graph structure with different paths assigned. We have β1 = 0

for Figure 2.8 c and β1 = 1 for Figure 2.8 d.

2.2.7 Persistent Path Laplacian

From Section 2.2.6, the way to calculate both harmonic spectra (topological invariants)

and non-harmonic spectra of n-th path Laplacian matrix is genuinely free of metrics or

coordinates, which contains too little information to fully describe the object. Therefore,

inspired by the idea of the persistent spectral graph (PSG), persistent path Laplacian (PPL)

is proposed to create a sequence of digraphs induced by varying a filtration parameter to

encode more geometric or structural information.
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Table 2.11: Illustration of digraph c in Figure 2.8.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4} span{e12, e14, e23, e43} span{e143 − e123}

Bn+1

e12 e14 e23 e43
e1
e2
e3
e4


−1
1
0
0

−1
0
0
1

0
−1
1
0

0
0
1
−1


e143 − e123

e12
e14
e23
e43


−1
1
−1
1

 1× 0 empty matrix

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




3 0 0 −1
0 3 −1 0
0 −1 3 0
−1 0 0 3

 (
4
)

βn 1 0 0

Spectra(Ln) {0, 2, 2, 4} {2, 2, 4, 4} {4}

Table 2.12: Illustration of digraph d in Figure 2.8.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4} span{e12, e14, e32, e34} {0}

Bn+1

e12 e14 e32 e34
e1
e2
e3
e4


−1
1
0
0

−1
0
0
1

0
1
−1
0

0
0
−1
1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 1 1 0
1 2 0 1
1 0 2 1
0 1 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 4, 4} /

First, we consider a filtration of digraphs G : R → D, which is a morphism fs,t :

Hp(Gt;K) → Hp(Gs;K) from the category of real number R to the category of digraphs

D that satisfies:

G(t) ⊆ G(s),∀t ≤ s,
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Table 2.13: Illustration of digraph e in Figure 2.8.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5, e6} span{e12, e13, e24, e25, e34, e35, e64, e65} span{e134 − e124, e135 − e125}

Bn+1

e12 e13 e24 e25 e34 e35 e64 e65
e1
e2
e3
e4
e5
e6


−1
1
0
0
0
0

−1
0
1
0
0
0

0
−1
0
1
0
0

0
−1
0
0
1
0

0
0
−1
1
0
0

0
0
−1
0
1
0

0
0
0
1
0
−1

0
0
0
0
1
−1



e134 − e124 e135 − e125
e12
e13
e24
e25
e34
e35
e64
e65



−1
1
−1
0
1
0
0
0

−1
1
0
−1
0
1
0
0


2× 0 empty matrix

Ln


2 −1 −1 0 0 0
−1 3 0 −1 −1 0
−1 0 3 −1 −1 0
0 −1 −1 3 0 −1
0 −1 −1 0 3 −1
0 0 0 −1 −1 2





4 −1 0 0 −1 −1 0 0
−1 4 −1 −1 0 0 0 0
0 −1 3 1 0 0 1 0
0 −1 1 3 0 0 0 1
−1 0 0 0 3 1 1 0
−1 0 0 0 1 3 0 1
0 0 1 0 1 0 2 1
0 0 0 1 0 1 1 2


(

4 2
2 4

)

βn 1 1 0

Spectra(Ln) {0, 1.4384, 3, 3, 3, 5} {0, 1.4384, 2, 3, 3, 3, 5.5616, 6} {2,6}

Table 2.14: Illustration of digraph f in Figure 2.8.
n n = 0 n = 1 n = 2

Ωn span{e1, e2, e3, e4, e5, e6} span{e12, e15, e23, e26, e42, e45, e53, e56} span{e153 − e123,
e156 − e126,
e453 − e423,
e456 − e426}

Bn+1

e12 e15 e23 e26 e42 e45 e53 e56
e1
e2
e3
e4
e5
e6



−1
1
0
0
0
0

−1
0
0
0
1
0

0
−1
1
0
0
0

0
−1
0
0
0
1

0
1
0
−1
0
0

0
0
0
−1
1
0

0
0
1
0
−1
0

0
0
0
0
−1
1



e153 − e123 e156 − e126 e453 − e423 e456 − e426
e12
e15
e23
e26
e42
e45
e53
e56



−1
1
−1
0
0
0
1
0

−1
1
0
−1
0
0
0
1

0
0
−1
0
−1
1
1
0

0
0
0
−1
−1
1
0
1


4× 0 empty matrix

Ln



2 −1 0 0 −1 0
−1 4 −1 −1 0 −1
0 −1 2 0 −1 0
0 −1 0 2 −1 0
−1 0 −1 −1 4 −1
0 −1 0 0 −1 2





4 −1 0 0 1 0 −1 −1
−1 4 −1 −1 0 1 0 0
0 −1 4 1 0 −1 −1 0
0 −1 1 4 0 −1 0 −1
1 0 0 0 4 −1 −1 −1
0 1 −1 −1 −1 4 0 0
−1 0 −1 0 −1 0 4 1
−1 0 0 −1 −1 0 1 4




4 2 2 0
2 4 0 2
2 0 4 2
0 2 2 4



βn 1 0 1

Spectra(Ln) {0, 2, 2, 2, 4, 6} {2, 2, 2, 4, 4, 4, 6, 8} {0,4,4,8}

where Gt := G(t) ∈ D and Gs := G(s) ∈ D. Consider a sequence of finitely many positive
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integers 1, 2, . . . ,m, we have a sequence of digraphs

G1 ⊆ G2 ⊆ · · · ⊆ Gm.

For each digraph Gt, we denote its corresponding chain group to be Ωn(Gt), and the n-

boundary operator of Gt is denoted by ∂t
n : Ωn(Gt)→ Ωn−1(Gt), ∀n ≥ 0 .

Similarly, as in persistent homology, a sequence of chain complexes can be denoted as

· · · Ω1
n+1

∂1
n+1−−−→ Ω1

n

∂1
n−→ · · ·

∂1
3−→ Ω1

2

∂1
2−→ Ω1

1

∂1
1−→ Ω1

0

∂1
0−→ Ω1

−1

↪→ ↪→ ↪→ ↪→ ↪→

· · · Ω2
n+1

∂2
q+1−−→ Ω2

n

∂2
n−→ · · ·

∂2
3−→ Ω2

2

∂2
2−→ Ω2

1

∂2
1−→ Ω2

0

∂2
0−→ Ω2

−1

···

···

···

···

···

↪→ ↪→ ↪→ ↪→ ↪→

· · · Ωm
n+1

∂m
q+1−−→ Ωm

n

∂m
n−→ · · ·

∂m
3−→ Ωm

2

∂m
2−→ Ωm

1

∂m
1−→ Ωm

0

∂m
0−→ Ωm

−1

(2.62)

For the sake of simplicity, we use Ωt
n to represent Ωn(Gt). Suppose a subset of Ωs

n whose

boundary is in Ωt
n−1 as:

Ωt,s
n := {α ∈ Ωs

n | ∂s
nα ∈ Ωt

n−1}. (2.63)

The persistent n-boundary operator is denoted as ðt,s
n : Ωt,s

n → Ωt
n−1, and its corresponding

adjoint operator is (ðt,s
n )∗ : Ωt

n−1 → Ωt,s
n . Therefore, the persistent n-th path Laplacian

operator ∆t,s
n : Ωt

n → Ωt
n defined along the filtration is:

∆t,s
n = ðt,s

n+1

(
ðt,s
n+1

)∗
+ ∂t∗

n ∂t
n. (2.64)

Since ∆t,s
n inherits the inner product from ðt,s

n+1, then the adjoint map
(
ðt,s
n+1

)∗
is well de-

fined. Intuitively, the matrix representation of ∆t,s
n is

Lt,s
n = Bt,s

n+1P
−1(Bt,s

n+1)
T + (Bt

n)
TBt

n, (2.65)

where P−1 is the associated inner product matrix of Ωt,s
n+1 with arbitrary basis. Moreover,

assume the dimension of Lt,s
n is N , then the spectra of Lt,s

n that are arranged in ascending
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order can be displayed as:

Spectra(Lt,s
n ) = {(λ1)

t,s
n , (λ2)

t,s
n , · · · , (λN)

t,s
n }.

Note that the smallest non-harmonic spectra of Lt,s
n is denoted as (λ̃2)

t,s
n . We call the mul-

tiplicity of zero spectra of Lt,s
q to be persistent n-th Betti number βt,s

n from Gt to Gs.

βt,s
n = nullity(Lt,s

n ) = the number of zero eigenvalues (i.e., harmonic eigenvalues) of Lt,s
n .

(2.66)

Distanced-based filtration Specifically, suppose G(w) = (V,E,w) is a weighted di-

graph, where V is the set of the vertices and E is the set of the directed edges. Assume w

is a weight function w : E → R. For example, if V is in the Euclidean space, then a digraph

G(w) is a geometric digraph (a geometric digraph is a digraph in which the vertices are

embedded as points in the Euclidean space, and the edges are embedded as non-crossing

directed line segments). For any (i, j) ∈ E where i, j ∈ V , we define w(i, j) = ∥i − j∥,

where ∥ · ∥ is a Euclidean metric. Hence, for every δ ∈ R, a digraph can be described as

Gδ = (V,Eδ) = (V, {e ∈ E : w(e) ≤ δ}), and a filtration of digraphs can be described as

{Gδ ↪→ Gδ′}δ≤δ′ .

Therefore, the persistent n-th path Laplacian matrix defined on the filtration is

Lδ,δ′

n = Bδ,δ′

n+1P
−1(Bδ,δ′

n+1)
T + (Bδ

n)
TBδ

n, (2.67)

where its corresponding Betti numbers and spectra can be expressed as:

βδ,δ′

n = nullity(Lδ,δ′

n ) = the number of zero eigenvalues (i.e., harmonic eigenvalues) of Lδ,δ′

n .

(2.68)

Spectra(Lδ,δ′

n ) = {(λ1)
δ,δ′

n , (λ2)
δ,δ′

n , · · · , (λN)
δ,δ′

n }. (2.69)

Notably, the Fiedler value (i.e., spectral gap) of Lδ,δ′
n is widely used in many other areas

such as physics and geography, which is denoted as λ̃δ,δ′
n . As shown below, it is sensitive

to both topological and geometric changes.
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Moreover, it is worth to mention that isolated points (vertices) can be either included

in the digraphs (under the distance-based filtration) or removed from the digraphs (under

the distanced-based filtration with removal of isolated points).
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CHAPTER 3

METHODS ON MATHEMATICAL MODELING OF VIROLOGY

3.1 Genomics Analysis

3.1.1 Sequence Alignment

Sequence alignment is a method in which one can arrange DNA, RNA, or amino acid

sequences to identify their similar regions [65]. Such similar regions may arise from func-

tional, structural, geometrical, or evolutionary similarities. Though sequence alignment

offers the best accuracy, it is not practical to be used for a large sample size. There are two

main categories of sequence alignment, namely pair-wise sequence alignment and mul-

tiple sequence alignment. The former only compares two sequences at a time, while the

latter compares many sequences. There are many popular tools for sequence alignment

such as BLAST (Basic Local Alignment Search Tool) for pair-wise alignment and MAFFT,

Clustal Omega, ClustalW, and MUSCLE, for multiple sequence alignment. The following

section describes BLAST first followed by several multiple sequence alignment tools.

3.1.1.1 Pairwise Sequence Alignment

One of the popular pair-wise sequence alignment tools is BLAST. BLAST is a local sim-

ilarity search tool that is commonly used to find similar DNA, RNA, and amino acid

sequences to the sequence in question. BLAST was created in 1990 based on the k-tuple

method, and has since been implemented in the GenBank, and had numerous updates to

increase efficiency and accuracy. k-tuple method [66] is a fast heuristic method for pair-

wise alignment and is commonly used as an initial step for a large sample size. Similarity

score, Sij between sequences i and j is defined as the number of k-tuple matches in the

best pairwise alignment minus a fixed gap penalty term. For DNA and RNA, k usually
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ranges from 2 to 4, and for amino acids, k is 1 or 2. Sij is calculated as the number of

identities divided by the number of residues compared between i and j. The distance is

defined as,

dij = 1− Sij

100
. (3.1)

Note that this method does not guarantee optimal alignment, but it is a fast heuristic

method and can be used for the initialization of BLAST and multiple sequence alignment.

BLAST begins by first creating a list of k-letter words. It then searches for possible

matching k-letter words in the databank and scores them, and any words that score above

a threshold are kept. The high-scoring words are kept in a search tree. This process is then

extended to high scoring pairs (HSPs), which also looks for similar words, rather than

only looking at exact matching words. After searching for HSPs, the significance of the

HSPs score is considered by utilizing Gumbel extreme value distribution (EVD). Further

details can be found in the literature [67, 68]. The GenBank tutorial can be found in Ref.

[69]. As a basic tool for sequence alignment, it is utilized to detect, identify, or search

sequences in a database. For example, similar coronavirus strands in other organisms,

such as that of pangolins [70, 71] and bats[72] were found. This tool is also used to detect

SARS-CoV-2 virus in the environment[73, 74] such as waste waters[75, 76].

3.1.1.2 Multiple Sequence Alignment (MSA)

Unlike pair-wise sequence alignment, MSA arranges 3 or more DNA, RNA, or protein

sequences by identical regions. Through multiple sequence alignment, one can further

analyze sequence homology to find evolutionary origins. In many cases, one uses a ref-

erence sequence, which is the first sequenced data, to observe mutation in SARS-CoV-2

genome [77]. There are several popular tools, Clustal[78], MUSCLE[79], MAFFT[80, 81],

etc.
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Clustal Clustal is a series of multiple sequence alignment tools for sequence analysis.

With the first version Clustal released in 1988[78], its package has been developed for

several generations based on different methods. ClustalW is the third generation and

is updated to ClustalW2 currently, which aligns sequences with the best similarity score

first, and progressively aligns more distant scores[82, 83]. This is achieved by first ob-

taining a rough pairwise sequence alignment using the k-tuple method [66], followed

by a neighbor-joining method [84], which uses midpoint rooting to create a guided tree.

ClustalW2 is used as the basis for global alignment.

As for Clustal Omega, unlike the ClustalW, it uses a guided tree approach, rather

than a progressive alignment method. Clustal Omega begins with first producing a pair-

wise alignment using the k-tuple method. This, however, does not guarantee finding

optimal alignment, but it is time-efficient. Then, the sequences are clustered using the

mBed method [85], which calculates pairwise distance using the embedding method. Af-

terward, K-means clustering is used to further cluster the sequence. Then, a guided

tree is formed utilizing the UPGMA method [86]. Lastly, MSA is produced using the

HHAlign package from HH-Suite [86]. Clustal Omega’s advantage comes from the large-

scale MSA. The accuracy and time complexity are average for a low number of samples.

For a large number of samples with a long sequence, Clustal Omega produces high ac-

curacy and is time-efficient. ClustalW is the updated version of the original Clustal MSA

tool.

Multiple alignment using fast Fourier transform (MAFFT) MAFFT is a MSA package

based on fast Fourier transform (FFT). Given two sequences v1 and v2, the correlation

cv(s) of volume between the two sequences with positional lag of s sites can be defined as

cv(s) =
∑

1≤n≤N,1≤n+s≤M

v̂1(n)v̂2(n+ s)

where v̂1 and v̂2 are the FFT of the two sequences. If homologous regions exists, through

Fourier analysis, there will be a peak in similar region. For amino acid sequences, MAFFT
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also calculates correlation between polarity:

cρ(s) =
∑

1≤n≤N,1≤n+s≤M

ρ̂1(n)ρ̂2(n+ s)

where ρ(s) is the polarity of each amino acid, N is the length of v1, and M is the length of

v2. Then, a scoring function can be calculated through the sum of the two correlations

c(s) = cv(s) + cρ(s).

To reduce the computational complexity, only peaks above some threshold are consid-

ered. Note that the peak does not tell the location of the homologous region directly,

and only shows the lag. Therefore, neighboring regions at the peak must be analyzed

carefully. Further details of MAFFT can be found in the literature [80, 81].

3.1.2 Single Nucleotide Polymorphism Calling

Single nucleotide polymorphism (SNP) calling measures the genetic variations between

different members of a species. Establishing the SNP calling method to the investigation

of the genotype changes during the transmission and evolution of SARS-CoV-2 is of great

importance [21, 25]. By analyzing the rearranged genome sequences, SNP profiles, which

record all of the SNP positions in teams of the nucleotide changes and their corresponding

positions, can be constructed. The SNP profiles of a given SARS-CoV-2 genome isolated

from a COVID-19 patient capture all the differences from a complete reference genome

sequence and can be considered as the genotype of the individual SARS-CoV-2.

3.1.3 Jaccard Distance of SNP profiles

In this work, we use the Jaccard distance to measure the similarity between SNP profiles

and compare the difference between the SNP variant profiles of SARS-CoV-2 genomes.
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The Jaccard similarity coefficient is defined as the intersection size divided by the

union of two sets A and B [87]:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
. (3.2)

The Jaccard distance of two sets A and B is scored as the difference between one and the

Jaccard similarity coefficient and is a metric on the collection of all finite sets:

dJ(A,B) = 1− J(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
. (3.3)

Therefore, the genetic distance of two genomes corresponds to the Jaccard distance of

their SNP profiles.

In principle, the Jaccard distance of SNP profiles takes account of the ordering of

SNP positions, i.e., transmission trajectory, when an appropriate reference sample is se-

lected. However, one may fail to identify the infection pathways from the mutual Jaccard

distances of multiple samples. In this case, the dates of the sample collection provide

key information. Additionally, clustering techniques, such as k-means, UMAP, and t-

distributed stochastic neighbor embedding (t-SNE), enable us to characterize the spread

of COVID-19 onto the communities.

3.1.4 k-nearest Neighbors

The k-nearest neighbors algorithm (k-NN) is a non-parametric technique proposed by

Thomas Cover and P. E. Hart in 1967 [88]. k-NN can be used for solving both regression

and classification problems [89], and it is sensitive to the local structure of the data. The

flowchart of the k-NN algorithm can be found in Figure 3.1. The features of the training

set is {xi}ni=1 with xi ∈ Rm, k shows the number of the nearest neighbors, and x ∈ Rm is

a feature representation of the training set. Different distance metrics can be employed

in the k-NN algorithm, such as Euclidean distance, Manhattan distance, Minkowski dis-

tance, Chebyshev distance, natural log distance, generalized exponential distance, gener-
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alized Lorentzian distance, Canberra distance, quadratic distance, and Mahalanobis dis-

tance.

Input feature vector x

Compute the distance between x and xi

Sort the distance values in an ascending order

If Classification

Start

Choose the top k rows from the sorted array

Assign the label of xi based
on the average label of k rows

If Regression

Assign the label of xi based
on the most frequent label of k rows

Is the performance of
the model satisfying?End

Set k

Yes No

Figure 3.1: The flowchart of k-NN algorithm. The features of the training set is {xi}ni=1

with xi ∈ Rm, k shows the number of the nearest neighbors, and x ∈ Rm is a feature
representation of the training set.

3.1.5 k-means Clustering

k-means clustering is an unsupervised learning algorithm, aiming to partition a set of

observations into k subsets or clusters. It typically partitions a given dataset

X = {x1, x2, · · · , xn, · · · , xN}, xn ∈ Rd

into k different clusters {C1, C2, · · · , Ck}, k ≤ N such that the specific clustering criteria

are optimized. The standard procedure of k-means clustering method aims to obtain the

optimal partition for a fixed number of clusters. First, we randomly pick k points as

the cluster centers and then assign each data to its nearest cluster. Next, we calculate

the within-cluster sum of squares (WCSS) defined below to update the cluster centers

iteratively.
k∑

i=1

∑
xi∈Ck

∥xi − µk∥22, (3.4)
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where µk is the mean value of the points located in the k-th cluster Ck. Here, ∥ · ∥2 de-

notes the L2 distance. It is noted that the k-mean clustering method described above aims

to find the optimal partition for a fixed number of clusters. However, seeking the best

number of clusters for the SNP profiles is essential as well. In this work, by varying the

number of clusters k, a set of WCSS with its corresponding number of clusters can be

plotted. The location of the elbow in this plot will be taken as the optimal number of

clusters. Such a procedure is called the Elbow method which is frequently applied in the

k-means clustering problem.

Specifically, in this work we apply the k-means clustering with the Elbow method for

the analysis of the optimal number of the subtypes of SARS-CoV-2 SNP profiles. The

pairwise Jaccard distances between different SNP profiles are considered as the input

features for the k-means clustering method.

3.2 Mathematical-assisted Machine Learning Models in SARS-CoV-2

In this section, the workflow of the deep learning-based BFE change predictions of protein-

protein interactions induced by mutations for the present SARS-CoV-2 variant analysis

and prediction will be firstly introduced, which includes three steps as shown in Fig-

ure 3.2: (1) Data collection and pre-processing; (2) training data preparation; (3) feature

generations of protein-protein interaction complexes; (4) predictive models of protein-

protein interactions.

3.2.1 Data Collection and Pre-processing

The first step is to pre-process the original SARS-CoV-2 sequences data. In this step, a

total of 1,983,328 complete SARS-CoV-2 genome sequences with high coverage and ex-

act collection date are downloaded from the GISAID database [90] ( https://www.gisa

id.org/) as of August 05, 2021. Complete SARS-CoV-2 genome sequences are available

from the GISAID database [90]. Next, the 1,983,328 complete SARS-CoV-2 genome se-
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Figure 3.2: Illustration of genome sequence data pre-processing and BFE change predic-
tions.

quences were rearranged according to the reference genome downloaded from the Gen-

Bank (NC_045512.2)[91], and multiple sequence alignment (MSA) is applied by using

Cluster Omega with default parameters. Then, single nucleotide polymorphism (SNP)

genotyping is applied to measure the genetic variations between different isolates of

SARS-CoV-2 by analyzing the rearranged sequences [21, 92], which is of paramount im-

portance for tracking the genotype changes during the pandemic. The SNP genotyping

captures all of the differences between patients’ sequences and the reference genome,

which decodes a total of 28,865 unique single mutations from 1,983,328 complete SARS-

CoV-2 genome sequences. Among them, 724 non-degenerate mutations on the S protein

RBD (S protein residues from 329 to 530) are detected. In this work, the co-mutation anal-

ysis is more crucial than the unique single mutation analysis. Notably, the SARS-CoV-2

unique single mutations in the world are available at Mutation Tracker. The analysis of

RBD mutations is available at Mutation Analyzer.
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3.2.2 Preparation of Machine learning Datasets

Dataset is important to train accurate machine learning models. Both the BFE changes

and enrichment ratios describe the effects on the binding affinity of protein-protein inter-

actions. Therefore, integrating both kinds of datasets can improve the prediction accu-

racy. Especially, due to the urgency of COVID-19, the BFE changes of SARS-CoV-2 data

are rarely reported, while the enrichment ratio data via high-throughput deep mutations

are relatively easy to obtain. The most important dataset that provides the information for

binding free energy changes upon mutations is the SKEMPI 2.0 dataset [93]. The SKEMPI

2.0 is an updated version of the SKEMPI database, which contains new mutations and

data from other three databases: AB-Bind [94], PROXiMATE[95], and dbMPIKT [96].

There are 7,085 elements, including single- and multi-point mutations in SKEMPI 2.0.

4,169 variants in 319 different protein complexes are filtered as single-point mutations are

used for our TopNetTree model training. Moreover, SARS-CoV-2 related datasets are also

included to improve the prediction accuracy after a label transformation. They are all

deep mutation enrichment ratio data, mutational scanning data of ACE2 binding to the

receptor-binding domain (RBD) of the S protein [97], mutational scanning data of RBD

binding to ACE2 [98, 3], and mutational scanning data of RBD binding to CTC-445.2 and

of CTC-445.2 binding to the RBD [3]. Note that our training datasets used in the valida-

tion do not include the test dataset, which is a mutational scanning data of RBD binding

to ACE2.

3.2.3 Features Generalization

Once the data pre-processing and SNP genotyping are carried out, we will firstly pro-

ceed with the training data preparation process, which plays a key role in reliability and

accuracy. A library of 130 antibodies and RBD complexes, as well as an ACE2-RBD com-

plex, are obtained from Protein Data Bank (PDB). RBD mutation-induced BFE changes of

these complexes are evaluated by the following machine learning model. According to
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the emergency and the rapid change of RNA virus, it is rare to have massive experimental

BFE change data of SARS-CoV-2, while, on the other hand, next-generation sequencing

data is relatively easy to collect. In the training process, the dataset of BFE changes in-

duced by mutations of the SKEMPI 2.0 dataset [93] is used as the basic training set, while

next-generation sequencing datasets are added as assistant training sets. The SKEMPI 2.0

contains 7,085 single- and multi-point mutations and 4,169 elements of that in 319 dif-

ferent protein complexes used for the machine learning model training. The mutational

scanning data consists of experimental data of the binding of ACE2 and RBD induced

mutations on ACE2[97] and RBD[98, 3], and the binding of CTC-445.2 and RBD with

mutations on both protein[3].

Next, the feature generations of protein-protein interaction complexes are performed.

The element-specific algebraic topological analysis on complex structures is implemented

to generate topological bar codes [99, 100, 101, 4]. In addition, biochemistry and bio-

physics features such as Coulomb interactions, surface areas, electrostatics, et al., are

combined with topological features [102].

3.2.3.1 Generation of Topological Features for PPIs

Algebraic topology [100, 101] has had tremendous success in describing biochemical and

biophysical properties [4]. Element-specific and site-specific persistent homology can ef-

fectively simplify the structural complexity of protein-protein complex and extract the ab-

stract properties of the vital biological information in PPIs [40, 41]. The algebraic topologi-

cal analysis on PPIs is constructed based on a series of atom subsets of complex structures,

which are atoms of the mutation sites,Am, atoms in the neighborhood of the mutation site

within a cut-off distance r, Amn(r), antibody atoms within r of the binding site, AAb(r),

antigen atoms within r of the binding site,AAg(r), and atoms in the system that has atoms

of element type of {C, N, O}, Aele(E). Additionally, a bipartition graph is introduced to

describe the antibody and antigen in PPIs. Then, molecular atoms construct point clouds
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for simplicial complex, which is a finite collection of sets of linear combinations of points.

We apply the Vietoris-Rips (VR) complex for dimension 0 topology, and alpha complex

for point cloud of dimensions 1 and 2 topology [4]. Overall, element-specific and site-

specific persistent homology is devised to capture the multiscale topological information

over different scales along a filtration [100] and is important for our machine learning

predictions.

Simplex and simplicial complex Given a set of independent k+1 points U = {u0, u1, ..., uk}

in RN , the convex combination is a point u =
∑k

i=0 αiui, where
∑

i αi = 1 and αi ≥ 0. The

convex hull of U is the collection of convex combinations of U , and a k-simplex σ is the

convex hull of k+1 independent points U . For example, a 0-simplex is a point, a 1-simplex

is an edge, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. A proper m-face of

the k-simplex is a subset of the k+1 vertices of a k-simplex with m+1 vertices forms a

convex hull in a lower dimension and m < k. The boundary of a k-simplex σ is defined

as a sum of all its (k−1)–faces as

∂kσ =
k∑

i=1

(−1)i⟨u0, ..., ûi, ..., uk⟩, (3.5)

where ⟨u0, ..., ûi, ..., uk⟩ is a convex hull formed by vertices of σ excluding ui. A simpli-

cial complex denotes by K is a collection of finitely many simplices forms a simplicial

complex. Thus, faces of any simplex in K are also simplices in K, and intersections of

any 2 simplices are only faces of both or an empty set. A k-simplex σ = ⟨ui0 , ..., uik⟩ is in

Vietoris–Rips complex Rr(U) if and only if B(uij , r) ∩ B(uij′
, r) ̸= ∅ for j, j′ ∈ [0, k] and is

in alpha complex Ar(U) if and only if ∩uij
∈σB(uij , r) ̸= ∅.

Homology For a simplicial complex K, a k-chain ck of K is a formal sum of the k-

simplices in K defined as ck =
∑

αiσi, where σi is the k-simplices and αi is coefficients.

αi can be in different fields such as R, Q, and Z. Typically, αi is chosen to be Z2, which

is {−1, 0, 1} and forms an Abelian group Ck(K,Z2). Then, the boundary operator can be
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extended to a k-chain ck as

∂kck =
∑

αi∂kσi, (3.6)

such that ∂k : Ck → Ck−1 and satisfies ∂k−1∂k = ∅, follows from that boundaries are

boundaryless. The chain complex is defined as a sequence of complexes by boundary

maps is called a chain complex

· · · ∂i+1−→ Ci(K)
∂i−→ Ci−1(K)

∂i−1−→ · · · ∂2−→ C1(K)
∂1−→ C0(K)

∂0−→ 0. (3.7)

The k-homology group is the quotient group defined by taking k-cycle group module of

k-boundary group as

Hk = Zk/Bk, (3.8)

where Hk is the k-homology group, and k-cycle group Zk and the k-boundary group Bk

are the subgroups of Ck defined as,

Zk = ker ∂k = {c ∈ Ck | ∂kc = ∅},

Bk = im ∂k+1 = {∂k+1c | c ∈ Ck+1}
(3.9)

The Betti numbers are defined by the ranks of kth homology group Hk as βk = rank(Hk).

β0 reflects the number of connected components, β1 reflects the number of loops, and β2

reflects the number of cavities.

Filtration and Persistent Homology A filtration of a topology space K is a nested se-

quence of K such that

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K. (3.10)

Then, a sequence of chain complexes and a homology sequence are constructed on the

filtration. The pth persistent of kth homology group of Kt are defined as

H t,p
k = Zt

k/(B
t+p
k

⋂
Zt

k), (3.11)

and the Betti numbers βt,p
k = rank(H t,p

k ). These persistent Betti numbers are applied to

represent topological fingerprints.
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3.2.3.2 Generation of Residue-level Features for PPIs

Mutation site neighborhood amino acid composition Neighbor residues are the residues

within 10 Å of the mutation site. Distances between residues are calculated based on

residue Cα atoms. Six categories of amino acid residues are counted, which are hydropho-

bic, polar, positively charged, negatively charged, special cases, and pharmacophore changes.

The count and percentage of the 6 amino acid groups in the neighbor site are regrading as

the environment composition features of the mutation site. The sum, average, and vari-

ance of residue volumes, surface areas, weights, and hydropathy scores are used but only

the sum of charges is included.

pKa shifts The pKa values are calculated by the PROPKA software [103], namely the

values of 7 ionizable amino acids, namely, ASP, GLU, ARG, LYS, HIS, CYS, and TYR. The

maximum, minimum, sum, the sum of absolute values, and the minimum of the absolute

value of total pKa shifts are calculated. We also consider the difference of pKa values

between a wild type and its mutant. Additionally, the sum and the sum of the absolute

value of pKa shifts based on ionizable amino acid groups are included.

Position-specific scoring matrix (PSSM) Features are computed from the conservation

scores in the position-specific scoring matrix of the mutation site for the wild type and the

mutant as well as their difference. The conservation scores are generated by PSI-BLAST

[104].

Secondary structure The SPIDER2 software is used to compute the probability scores

for residue torsion angle and residues being in a coil, alpha helix, and beta strand based

on the sequences for the wild type and the mutant [105].
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3.2.3.3 Generation of Atom-level Features for PPIs

Seven groups of atom types, including C, N, O, S, H, all heavy atoms, and all atoms,

are considered when generating the element-type features. Meanwhile, other three atom

types, i.e., mutation site atoms, all heavy atoms, and all atoms, are used when generating

the general atom-level features.

Surface areas Atom-level solvent excluded surface areas are computed by ESES [106].

Partial changes Partial change of each atom is generated by pdb2pqr software [107]

using the Amber force field [108] for wild type and CHARMM force field [109] for mutant.

The sum of the partial charges and the sum of absolute values of partial charges for each

atomic group are collected.

Atomic pairwise interaction interactions Coulomb energy of the ith single atom is cal-

culated as the sum of pairwise coulomb energy with every other atom as

Ci =
∑
j,j ̸=i

ke
qiqj
rij

, (3.12)

where ke is the Coulomb’s constant, rij is the distance of ith atom to jth atom, and qi is

the charge of ith atom. The van der Waals energy of the ith atom is modeled as the sum

of pairwise Lennard-Jones potentials with other atoms as

Vi =
∑
j,j ̸=i

ϵ
[(ri + rj

rij

)12 − 2
(ri + rj

rij

)6]
, (3.13)

where ϵ is the depth of the potential well, and ri is van der Waals radii.

In atomic pairwise interaction, 5 groups (C, N, O, S, and all heavy atoms) are counted

both for Coulomb interaction energy and van der Waals interaction energy.

Electrostatic solvation free energy Electrostatic solvation free energy of each atom is

calculated using the Poisson-Boltzmann equation via MIBPB [110] and are summed up

by atom groups.
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3.2.4 Models for the Binding Free Energy Change Prediction of Protein-protein Inter-
action on SARS-CoV-2

3.2.4.1 TopNet Model

In this section, we illustrate the construction of a topology-based network (TopNet) model

for the BFE change prediction of protein-protein interactions (PPIs) on SARS-CoV-2 stud-

ies. These approaches have been widely applied in studying protein-ligand and protein-

protein binding free energy predictions [41, 102]. Firstly, one ensemble method, gradient

boosting decision tree (GBDT), is studied as baselines in comparison to deep neural net-

work methods. The ensemble methods naturally handle correlation between descriptors

and are robust to redundant features. Therefore, they usually do not depend on a sophisti-

cated feature selection procedure and a complicated grid search of hyper-parameters. The

implemented GBDT is a function from the scikit-learn package (version 0.22.2.post1)[111].

The number of estimators and the learning is optimized for ensemble methods as 20000

and 0.01, respectively. For each set, 10 runs (with different random seeds) were done and

the average result is reported in this work. Considering a large number of features, the

maximum number of features to consider is set to the square root of the given descriptor

length for GBDT methods to accelerate the training process. The parameter setting shows

that the performance of the average of sufficient runs is decent.

A neural network is a network of neurons that maps an input feature layer to an out-

put layer. The neural network simulates a biological brain solves problems with numer-

ous neuron units by backpropagation to update weights on each layer. To reveal the

facts of input features at different levels and abstract more properties, one can construct

more layers and more neurons in each layer, which is known as a deep neural network.

Optimization methods for feedforward neural networks and dropout methods are ap-

plied to prevent overfitting. In 10-fold cross validations, the neural network model has a

slightly better performance than the GBDT model, where Pearson correlations for these

algorithms are 0.864 and 0.838 and root mean square errors are 1.019 kcal/mol and 1.063
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kcal/mol, respectively. Thus, we applied the deep neural network for predictions, vali-

dation, and comparison.

Deep learning algorithms A deep neural network is a neural network methods with

multi-layers (hidden layer) of neurons between the input and output layers. In each layer,

the single neuron gets fully connecting with the neurons in next layer. It should be pre-

serve the consistency of all labels when applying the model for mutation-induced BFE

change predictions. The loss function is constructed as following:

argmin
W,b

L(W, b) = argmin
W,b

1

2

N∑
i=1

(
yi − f(xi; {W, b})

)2
+ λ∥W∥2 (3.14)

where N is the number of samples, f is a function of the feature vector xi parameterized

by a weight vector W and bias term b, and λ represents a penalty constant.

Optimization The backpropagation is applied to evaluated the loss function start from

the output layer and propagates backward through the network structure to update the

weight vector W and bias term b. According to that the gradient calculation is required,

we apply the stochastic gradient descent method with momentum which only evaluates

a small part of training data and can be considered as calculating exponentially weighted

averages, which is given as

Vi = βVi−1 + η∇Wi
L(Wi, bi)

Wi+1 = Wi − Vi,

(3.15)

where Wi is the parameters in the network, L(Wi, bi) is the objective function, η is the

learning rate, X and y are the input and target of the training set, and β ∈ [0, 1] is a

scalar coefficient for the momentum term. The momentum term involved accelerates the

converging speed.

Dropout Fully connected layers possess a large number of degrees of freedom. This

can easily cause an over-fitting issue, while the dropout technique is an easy way of pre-

venting network over-fitting.[112] In the training process, hidden units are randomly set
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zero values to their connected neurons in the next layer. Suppose that a percentage of

neurons at a certain layer is chosen to be dropped during training. The number of com-

puted neurons of this layer is equal to the neuron number multiplied by a coefficient such

as 1-p, where p is the dropout rate. Then, in the testing process, the output of these layers

is computed by randomly dropouts the same rate of neurons, to approximate the network

in each training step.

3.2.4.2 TopNetmAb Model

In this section, the TopNet model trained with additional experimental data was intro-

duced to predict mAb binding free energy changes [99]. Such a model is called Top-

NetmAb model. Persistent homology is the main workhorse for TopNetmAb, but auxil-

iary features inherited from our earlier TopNetTree [40] are utilized. The detailed descrip-

tions of dataset and machine learning model are found in the literature [41, 22, 99] and

are available at TopNetmAb.

3.2.5 Other Models

As mentioned above, we constructed a TopNet model for the BFE change prediction of

protein-protein interactions (PPIs) on SARS-CoV-2 studies. A topology-based GBT model

(TopBGT) is also developed in the present work by replacing Net in the TopNet model

with GBT. Both TopNet and TopGBT include a set of auxiliary features inherited from our

earlier TopNetTree [40] and TopNetmAb [99] to enhance their performance.

Additionally, to evaluate the performance of persistent Laplacian (Lap) for PPIs, we

construct persistent Laplacian-based GBT (LapGBT) and persistent Laplacian-based deep

neural network (LapNet). Note that unlike TopNet and TopGBT, LapGBT and LapNet

employ only persistent Laplacian features extracted from protein structures. Therefore,

their performance depends purely on persistent Laplacian.
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Moreover, TopLapGBT and TopLapNet are constructed by adding persistent Lapla-

cian features to TopGBT and TopNet, respectively. Furthermore, the consensus of GBT

and Net predictions are also used for validations, denoted as TopNetGBT and LapNet-

GBT, respectively. Finally, the consensus of TopLapNet and TopLapGBT is called TopLap-

NetGBT.
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CHAPTER 4

APPLICATIONS IN TOPOLOGICAL LAPLACIANS

4.1 Persistent Laplacians

Graph theory, a branch of discrete mathematics, concerns the relationship between ob-

jects. These objects can be either simple vertices, i.e., nodes and/or points (zero sim-

plexes), or high-dimensional simplexes. Here, the relationship refers to connectivity with

possible orientations. Graph theory has many branches, such as geometric graph theory,

algebraic graph theory, and topological graph theory. The study of graph theory draws

on many other areas of mathematics, including algebraic topology, knot theory, algebra,

geometry, group theory, combinatorics, etc. For example, algebraic graph theory can be

investigated by using either linear algebra, group theory, or graph invariants. Among

them, the use of learning algebra in graph study leads to spectral graph theory.

Precursors of the spectral theory have often had a geometric flavor. An interesting

spectral geometry question asked by Mark Kac was “Can one hear the shape of a drum?”

[10]. The Laplace-Beltrami operator on a closed Riemannian manifold has been inten-

sively studied [54]. Additionally, eigenvalues and isoperimetric properties of graphs are

the foundation of the explicit constructions of expander graphs [113]. Moreover, the study

of random walks and rapidly mixing Markov chains utilized the discrete analog of the

Cheeger inequality [114]. The interaction between spectral theory and differential geom-

etry became one of the critical developments [115]. For example, the spectral theory of

the Laplacian on a compact Riemannian manifold is a central object of de Rham-Hodge

theory [54]. Note that the Hodge Laplacian spectrum contains the topological informa-

tion of the underlying manifold. Specifically, the harmonic part of the Hodge Laplacian

spectrum corresponds to topological cycles. Connections between topology and spec-

tral graph theory also play a central role in understanding the connectivity properties
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of graphs [116, 117, 118, 119]. Similarly, as the topological invariants revealing the con-

nectivity of a topological space, the multiplicity of 0 eigenvalues of a 0-combinatorial

Laplacian matrix is the number of connected components of a graph. Indeed, the num-

ber of q-dimensional holes can also be unveiled from the number of 0 eigenvalues of the

q-combinatorial Laplacian [45, 53, 46, 120]. Nonetheless, spectral graph theory offers ad-

ditional non-harmonic spectral information beyond topological invariants.

The traditional topology and homology are independent of metrics and coordinates

and thus, retain little geometric information. This obstacle hinders their practical appli-

cability in data analysis. Recently, persistent homology has been introduced to overcome

this difficulty by creating low-dimensional multiscale representations of a given object

of interest [121, 101, 122, 43, 123, 124]. Specifically, a filtration parameter is devised to

induce a family of geometric shapes for a given initial data. Consequently, the study of

the underlying topologies or homology groups of these geometric shapes leads to the

so-called topological persistence. Like the de Rham-Hodge theory which bridges differ-

ential geometry and algebraic topology, persistent homology bridges multiscale analysis

and algebraic topology. Topological persistence is the most important aspect of the pop-

ular topological data analysis (TDA) [125, 126, 127, 128] and has had tremendous success

in computational biology [129, 44] and worldwide competitions in computer-aided drug

design [6].

Graph theory has been applied in various fields [130]. For example, spectral graph the-

ory is applied to the quantum calculation of π-delocalized systems. The Hückel method,

or Hückel molecular orbital theory, describes the quantum molecular orbitals of π-electrons

in π-delocalized systems in terms of a kind of adjacency matrix that contains atomic con-

nectivity information [131, 132]. Additionally, the Gaussian network model (GNM) [133]

and anisotropic network model (ANM) [134] represent protein Cα atoms as an elastic

mass-and-spring network by graph Laplacians. These approaches were influenced by

the Flory theory of elasticity and the Rouse model [135]. Like traditional topology, tra-
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ditional graph theory extracts very limited information from data. In our earlier work,

we have proposed multiscale graphs, called multiscale flexibility rigidity index (mFRI),

to describe the multiscale nature of biomolecular interactions [136], such as hydrogen

bonds, electrostatic effects, van der Waals interactions, hydrophilicity, and hydrophobic-

ity. A multiscale spectral graph method has also been proposed as generalized GNM

and generalized ANM [57]. Our essential idea is to create a family of graphs with dif-

ferent characteristic length scales for a given dataset. We have demonstrated that our

multiscale weighted colored graph (MWCG) significantly outperforms traditional spec-

tral graph methods in protein flexibility analysis [137]. More recently, we demonstrate

that our MWCG outperforms other existing approaches in protein-ligand binding scor-

ing, ranking, docking, and screening [138].

The objective of the present work is to introduce persistent spectral graph as a new

paradigm for the multiscale analysis of the topological invariants and geometric shapes

of high-dimensional datasets. Motivated by the success of persistent homology [44] and

multiscale graphs [138] in dealing with complex biomolecular data, we construct a fam-

ily of spectral graphs induced by a filtration parameter. In the present work, we con-

sider the radius filtration via the Vietoris-Rips complex while other filtration methods

can be implemented as well. As the filtration radius is increased, a family of persistent

q-combinatorial Laplacians are constructed for a given point-cloud dataset. The diago-

nalization of these persistent q-combinatorial Laplacian matrices gives rise to persistent

spectra. It is noted that our harmonic persistent spectra of 0-eigenvalues fully recover the

persistent barcode or persistent diagram of persistent homology. Additional information

is generated from non-harmonic persistent spectra, namely, the non-zero eigenvalues and

associated eigenvectors. In a combination with a simple machine learning algorithm, this

additional spectral information is found to provide a powerful new tool for the quantita-

tive analysis of molecular data.
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4.1.1 Benzene Structure Analysis

In the past few years, we have developed a multiscale spectral graph method such as

generalized GNM and generalized ANM [136, 57], to create a family of spectral graphs

with different characteristic length scales for a given dataset. Similarly, in our persis-

tent spectral theory, we can construct a family of spectral graphs induced by a filtration

parameter. Moreover, we can sum over all the multiscale spectral graphs as an accumu-

lated spectral graph. Specifically, a family of Lr+0
0 matrices, as well as the accumulated

combinatorial Laplacian matrices, can be generated via the filtration. By analyzing the

persistent spectra of these matrices, the topological invariants and geometric shapes can

be revealed from the given input point-cloud data.

The spectra of Lr+0
0 , L̂r+0

0 , and Ľr+0
0 mentioned above carry similar information on

how the topological structures of a graph are changed during the filtration. Benzene

molecule (C6H6), a typical aromatic hydrocarbon which is composed of six carbon atoms

bonded in a planar regular hexagon ring with one hydrogen joined with each carbon

atom. It provides a good example to demonstrate the proposed PST. Figure 4.1 illustrates

the filtration of the benzene molecule. Here, we label 6 hydrogen atoms by H1, H2, H3,

H4, H5, and H6, and the carbon adjacent to the labeled hydrogen atoms are labeled by

C1, C2, C3, C4, C5, and C6, respectively. Figure Figure 4.1 b depicts that when the radius

of the solid sphere reaches 0.54Å, each carbon atom in the benzene ring is overlapped

with its joined hydrogen atom, resulting in the reduction of βr+0
0 to 6. Moreover, once

the radius of solid spheres is larger than 0.70Å, all the atoms in the benzene molecule

will connect and constitute a single component which gives rise βr+0
0 = 1. Furthermore,

we can deduce that the C-C bond length of the benzene ring is about 1.40Å, and the C-

H bond length is around 1.08Å, which are the real bond lengths in benzene molecule.

Figure Figure 4.1 c shows that a 1-dimensional hole (1-cycle) is born when the filtration

parameter r increase to 0.70Å and dead when r = 1.21Å. In Figures Figure 4.1 b and

Figure 4.1 c, it can be seen that variants of 0-persistent 0-combinatorial Laplacian and 1
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-combinatorial Laplacian matrices based on filtration give us the identical βr+0
0 and βr+0

1

information respectively.

H1

H2

H3

H4

H5

H6

Figure 4.1: Benzene molecule and its topological changes during the filtration process.

The C-C bond length of benzene is 1.39Å, and the C-H bond length is 1.09Å. Due

to the perfect hexagon structure of the benzene ring, we can calculate all of the distances

between atoms. The shortest and longest distances between carbons and the hydrogen

atoms are 1.09Å and 3.87Å. In Figure Figure 4.1a, a total of 10 changes of (λ̃2)
r+0
0 values

is observed at various radii. Table 4.1 lists all the distances between atoms and the values

of radii when the changes of (λ̃2)
r+0
0 occur. It can be seen that the distance between atoms

approximately equals twice of the radius value when a jump of (λ̃2)
r+0
0 occurs. Therefore,

we can detect all the possible distances between atoms with the nonzero spectral infor-

mation. Moreover, in Figure Figure 4.1 b, the values of the smallest nonzero eigenvalues

of Lr+0
0 , L̂r+0

0 , and Ľr+0
0 change concurrently.
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Table 4.1: Distances between atoms in the benzene molecule and the radii when the
changes of (λ̃2)

r+0
0 occur (Values increase from left to right).

Type C1-H1 C1-C2 C2-H1 C1-C3 H1-H2 C1-C4 C3-H1 C4-H1 H1-H3 H1-H4

Distance (Å) 1.09 1.39 2.15 2.41 2.48 2.78 3.39 3.87 4.30 4.96

r (Å) 0.54 0.70 1.08 1.21 1.24 1.40 1.70 1.94 2.15 2.49

Figure 4.2: Persistent spectral analysis of the benzene molecule induced by filtration pa-
rameter r. Blue line, orange line, and green line represent Lr+0

0 , L̂r+0
0 , and Ľr+0

0 respec-
tively. (a) Plot of the smallest non-zero eigenvalues with radius filtration under Lr+0

0 (blue
line), L̂r+0

0 (red line), and Ľr+0
0 (green line). Total 10 jumps observed in this plot which rep-

resent 10 possible distances between atoms. (b) Plot of the number of zero eigenvalues
(βr+0

0 ) with radius filtration under Lr+0
0 , L̂r+0

0 , and Ľr+0
0 (three spectra are superimposed).

When r = 0.00Å, 12 atoms are disconnected with each other. After r = 0.54Å, H atoms
and their adjacent C atoms are connected with one another resulting in βr+0

0 = 6. With
r keeps growing, all of the atoms are connected with one another and then βr+0

0 = 1.
(c) Plot of the number of zero eigenvalues (βr+0

1 ) with radius filtration under Lr+0
1 . When

r = 0.70Å, a 1-cycle created since all of the C atoms are connected and form a hexagon, re-
sulting in βr+0

1 = 1. After the radius reached 1.21Å, the hexagon disappears and βr+0
1 = 0.

4.1.2 Fullerene Analysis and Prediction

In 1985 Kroto et all discovered the first structure of C60 [139], which was confirmed by

Kratschmer et al in 1990 [140]. Since then, the quantitative analysis of fullerene molecules

has become an interesting research topic. The understanding of the fullerene structure-

function relationship is important for nanoscience and nanotechnology. Fullerene molecules

are only made of carbon atoms that have various topological shapes, such as the hollow

spheres, ellipsoids, tubes, or rings. Due to the monotony of the atom type and the vari-

ety of geometric shapes, the minor heterogeneity of fullerene structures can be ignored.
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The fullerene system offers a moderately large dataset with relatively simple structures.

Therefore, it is suitable for validating new computational methods because every single

change in the spectra is interpretable. The proposed persistent spectral theory, i.e., per-

sistent spectral analysis, is applied to characterize fullerene structures and predict their

stability.

All the structural data can be downloaded from CCL.NET Webpage. This dataset

gives the coordinates of fullerene carbon atoms. In this section, we will analyze fullerene

structures and predict the heat of formation energy.

4.1.2.1 Fullerene Structure Analysis

The smallest member of the fullerene family is C20 molecule with a dodecahedral cage

structure. Note that 12 pentagons are required to form a closed fullerene structure. Fol-

lowing the Euler’s formula, the number of vertices, edges, and faces on a polygon have

the relationship V −E + F = 2. Therefore, the 20 carbon atoms in the dodecahedral cage

form 30 bonds with the same bond length. The C20 is the only fullerene smaller than C60

that has the molecular symmetry of the full icosahedral point group Ih. C60 is a molecule

that consists of 60 carbon atoms arranged as 12 pentagon rings and 20 hexagon rings.

Unlike C20, C60 has two types of bonds: 6 : 6 bonds and 6 : 5 bonds. The 6 : 6 bonds

are shorter than 6 : 5 bonds, which can also be considered as “double bond" [141]. C60 is

the most well-know fullerene with geometric symmetry Ih. Since C20 and C60 are highly

symmetrical, they are ideal systems for illustrating the persistent spectral analysis.

Figure 4.3 (a) illustrates the radius filtration process built on C20. As the radius in-

creases, the solid balls corresponding to carbon atoms grow, and a sequence of Lr+0
0 ma-

trices can be defined through the overlap relations among the set of balls. At the initial

state (r = 0.00Å), all of the atoms are isolated from one another. Therefore, Lr+0
0 is a zero

matrix with dimension 20 × 20. Since the C20 molecule has the same bond length which

can be denoted as l(C20), once the radius of solid balls is greater than l(C20), all of the
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(a) (b)

Figure 4.3: (a) Illustration of filtration built on fullerene C20. Each carbon atom of C20 is
plotted by its given coordinates, which are associated with an ever-increasing radius r.
The solid balls centered at given coordinates keep growing along with the radius filtration
parameter. (b) The accumulated Lr+0

0 matrix for C20. For clarity, the diagonal terms are
set to 0.

balls are overlapped, which makes the system a singly connected component. Figure 4.3

(b) depicts the accumulated Lr+0
0 for C20. For C60, the accumulated Lr+0

0 is described in

Figure 4.4 (a). Figure 4.4 (b)-(f) are the plots of Lr+0
0 under different filtration r values.

The blue cell located at the ith row and jth column means the balls centered at atom i and

atom j connected with each other, i.e., a 1-simplex formed with its vertex to be i and j.

When the radius filtration increases, more and more bluer cells are created. In Figure 4.4

(f), the color of cells, except the cells located in the diagonal, turns to blue, which means

all of the carbon atoms are connected with one another at r = 3.6Å. For clarity, we set the

diagonal terms to 0.

In Figure 4.5, the blue solid line represents C20 properties and the dash orange line

represents C60 properties. For Figure Figure 4.5 a, the blue line drops at r = 0.72Å,

which means the bond length of C20 is around 1.44Å. The orange line drops at r =

0.68Å and 0.72Å, which means the “double bond" length of C60 is around 1.36Å and the
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Figure 4.4: Illustration of persistent multiscale analysis of C60 in terms of 0-combinatorial
Laplacian matrices (b)-(f) and their accumulated matrix (a) induced by filtration. As the
value of filtration parameter r increases, high-dimensional simplicial complex forms and
grows accordingly. (b), (c), (d), (e), and (d) demonstrate the 0-combinatorial Laplacian
matrices (i.e., the connectivity among C60 atoms) at filtration r = 1.0Å, 1.5Å, 2.5Å, 3.0Å,
and 3.6Å, respectively. The blue cell located at the ith row and jth column represents the
balls centered at atom i and atom j connected with each other. For clarity, the diagonal
terms are set to 0 in all plots.

6 : 5 bond length is around 1.44Å. Moreover, the total number of “double bond" is 30,

yielding βr+0
0 = 30 when the radius of solid balls is over 0.68Å. In conclusion, one can

deduce the number of different types of bonds as well as the bond length information

from the number of zero eigenvalues (i.e., βr+0
0 ) under the radius filtration. Furthermore,

the geometric information can also be derived from the plot of (λ̃2)
r+0
0 . Each jump in

Figure Figure 4.5 d at a specific radius represents the change of geometric and topological

structure. The smallest non-zero eigenvalue (λ̃2)
r+0
0 of Lr+0

0 matrices for C20 changes 5

times in Figure Figure 4.5 d, which means C20 has 5 different distances between carbon

atoms. Furthermore, as (λ̃2)
r+0
0 of C20 keeps increasing, the smallest vertex connectivity of

the connected subgraph continues growing and the topological structure becomes steady.
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As can be seen in the right-corner chart of Figure 4.3, the carbon atoms will finally grow

to a solid object with a steady topological structure.

Figure Figure 4.5 b depicts the changes of Betti 1 value βr+0
1 (i.e., the number of zero

eigenvalues for Lr+0
1 ) under the filtration r. Since C20 has 12 pentagonal rings, βr+0

1 jumps

to 11 when radius r equals to the half of the bond length of l(C20). These eleven 1-cycles

disappear at r = 1.17Å. There are 12 pentagons and 20 hexagons in C60, which results

in βr+0
1 = 12 at r = 0.72Å, βr+0

1 = 31 at r = 1.17Å. All of the pentagons and hexagons

disappear at r = 1.22Å.

As the filtration process, even more structure information can be derived from the

number of zero eigenvalues of Lr+0
2 (i.e., βr+0

2 ) in Figure Figure 4.5 c. For C20, βr+0
2 = 1

when r = 1.17Å, which corresponds to the void structure in the center of the dodecahe-

dral cage. The void disappears at r = 1.65Å since a solid structure is generated at this

point. For fullerene C60, 20 hexagonal cavities and a center void exist from 1.12Å to 1.40Å

yielding βr+0
2 = 21. As the filtration goes, hexagonal cavities disappear which results βr+0

2

decrease to 1. The central void keeps alive until a solid block is formed at r = 3.03Å. In a

nutshell, we can deduce the number of different types of bonds, the bond length, and the

topological invariants from the present persistent spectral analysis.

4.1.2.2 Fullerene stability prediction

Having shown that the detailed fullerene structural information can be extracted into

the spectra of Lr+0
q , we further illustrate that fullerene functions can be predicted from

their structures by using our persistent spectral theory in this section. Similar structure-

function analysis has been carried out by using other methods [136, 142, 143]. For small

fullerene molecule series C20 to C60, with the increase in the number of atoms, the ground-

state heat of formation energies decrease [144, 1]. The left chart in Figure 4.6 describes

this phenomenon. Similar patterns can also be found in the total energy (STO-3G/SCF

at MM3) per atom and the average binding energy of C2n. To analyze these patterns,

81



Figure 4.5: Illustration of persistent spectral analysis of C20 and C60 using the spectra of
Lr+0

q (q = 1, 2 and 3). (a) The number of zero eigenvalues of Lr+0
0 , i.e., βr+0

0 , under radius
filtration. (b) The number of zero eigenvalues of Lr+0

1 , i.e., βr+0
1 under radius filtration. (c)

The number of zero eigenvalues of Lr+0
2 , i.e., βr+0

2 under radius filtration. (d) The smallest
non-zero eigenvalue (λ̃2)

r+0
0 under radius filtration. The radius grid spacing is 0.01Å.

many theories have been proposed. Isolated pentagon rule assumes that the most stable

fullerene molecules are those in which all the pentagons are isolated. Zhang et al. [1]

stated that fullerene stability is related to the ratio between the number of pentagons and
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the number of carbon atoms. Xia and Wei [142] proposed that the stability of fullerene de-

pends on the average number of hexagons per atom. However, these theories all focused

on the pentagon and hexagon information. More specifically, they use topological infor-

mation to reveal the stability of fullerene. In contrast, we believe that the non-harmonic

persistent spectra can also model the structure-function relationship of fullerenes. We hy-

pothesize that the non-harmonic persistent spectra of Lr+0
0 matrices are powerful enough

to model the stability of fullerene molecules. To verify our hypothesis, we compute the

summation, mean, maximal, standard deviation, variance of its eigenvalues, and (λ̃2)
r+0
0

of the persistent spectra of Lr+0
0 over various filtration radii r. We depict a plot with the

horizontal axis represents radius r and the vertical axis represents the particular spectrum

value, which is actually the same as Figure 4.5. Then we define the area under the plot of

spectra with a negative sign as

Aα = −
∑
i=1

Λα
i δr, (4.1)

where δr is the radius grid spacing, in Figure 4.5, δr = 0.01Å. Here, α = Sum, Avg, Max,

Std, Var, Sec is the type index and thus, Λα
i represent the summation, mean, maximal,

standard deviation, variance, and the smallest non-zero eigenvalue (λ̃2)
r+0
0 of Lr+0

0 at i-th

radius step, respectively. The right chart in Figure 4.6 describes the area under the plot

of spectra and closely resembles that of the heat of formation energy. We can see that

generally the left chart and the middle chart show the same pattern. The integration of

(λ̃2)
r+0
0 decreases as the number of carbon atoms increases. However, the structural data

we used might not be the same ground-state data as in Ref. [1], which results in C36 do not

match the corresponding energy perfectly. Limited by the availability of the ground-state

structural data, we are not able to analyze the full set of the fullerene family.

To quantitatively validate our model, we apply one of the simplest machine learning

algorithms, linear least-squares method, to predict the heat of formation energy. The
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Figure 4.6: Persistent spectral analysis and prediction of fullerene heat formation energies.
Left chart: the heat of formation energies of fullerenes obtained from quantum calcula-
tions [1]. Middle chart: PST model using the area under the plot of (λ̃2)

r+0
0 . Right chart:

Correlation between the quantum calculation and the PST prediction. The highest corre-
lation coefficient form the least-squares fitting is 0.986 with the type index of α = Max.

Pearson correlation coefficient is defined as

Cα
c =

N∑
i=1

(Ai
α − Āα)(Ei − Ē)

[
N∑
i=1

(Ai
α − Āα)

2

N∑
i=1

(Ei − Ē)2

] 1
2

(4.2)

where Ai
α represents the theoretically predicted energy of the i-th fullerene molecule, Ei

represents the heat of formation energy of the i-th fullerene molecule, and Āα and Ē are

the corresponding mean values. When α = Max, the Pearson correlation coefficient is

around 0.986. The right chart of Figure 4.6 plots the correlation between predicted ener-

gies and the heat of formation energy of the fullerene molecules computed from quantum

mechanics [1]. These results agree very well.

Table 4.2: The heat of formation energy of fullerenes [1] and its corresponding predicted
energies with α = Max. The unit is EV/atom.

Fullerene type C20 C24 C26 C30 C32 C36 C50 C60

Heat of formation energy 1.180 1.050 0.989 0.850 0.781 0.706 0.509 0.401
Predicted energy 1.138 1.050 0.964 0.821 0.857 0.766 0.474 0.391

The right chart of Figure 4.6 illustrates the fitting results under different type index α.

Table 4.3 lists the correlation coefficient under different type index α. The highest corre-
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lation coefficient is close to unity (0.986) obtained with α = Max. The lowest correlation

coefficient is 0.942 with α = Sum. We can see that all the correlation coefficients are close

to unity, which verifies our hypothesis that the non-harmonic spectra of Lr+0
0 have the

capacity of modeling the stability of fullerene molecules. Although we ignore the topo-

logical information (Betti numbers), our persistent spectral theory still works extremely

well only with non-harmonic spectra, which means our persistent spectral theory is a

powerful tool for quantitative data analysis and prediction.

Table 4.3: The correlation coefficients under different type index α.

Type index Sum Avg Max Std Var Sec
Correlation coefficient 0.942 0.985 0.986 0.969 0.977 0.981

4.1.3 Protein flexibility analysis

As clarified earlier, the number of zero eigenvalues of p-persistent q-Laplacian matrix (p-

persistent qth Betti number) can also be derived from persistent homology. Persistent

homology has been used to model fullerene stability [142]. In this section, we further il-

lustrate the applicability of present persistent spectral theory by a case that non-harmonic

persistent spectra offer a unique theoretical model whereas it may be difficult to come up

with a suitable persistent homology model for this problem.

The protein flexibility is known to correlate with a wide variety of protein functions.

It can be modeled by the beta factors or B-factors, which are also called Debye-Waller

factors. B-factors are a measure of the atomic mean-square displacement or uncertainty

in the X-ray scattering structure determination. Therefore, understanding the protein

structure, flexibility, and function via the accurate protein B-factor prediction is a vital

task in computational biophysics [145]. Over the past few years, quite many methods

are developed to predict protein B-factors, such as GNM, [133], ANM [134], FRI, [146,

147] and MWCG [57, 145]. However, all of the aforementioned methods are based on

a particular matrix derived from the graph network which is constructed using alpha
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carbon as nodes and connections between nodes as edges. In this section, we apply our

persistent spectral theory to create richer geometric information in B-factor prediction.

To illustrate our method, we consider protein 2Y7L whose total number of residues is

N = 319. In this work, we employ the coarse-grained Cα representation of 2Y7L. There-

fore, 319 particles are taken into consideration in protein 2Y7L. Similarly, like in the previ-

ous application of fullerene structure analysis, we treat each Cα atom as a 0-simplex at the

initial setup and assign it a solid ball with a radius of r. By varying the filtration param-

eter r, we can obtain a family of Lr+0
0 . For each matrix Lr+0

0 , its corresponding ordered

spectrum is given by

(λ1)
r+0
0 , (λ2)

r+0
0 , · · · , (λN)

r+0
0 .

Suppose the number of zero eigenvalues is m, then, we have βr+0
0 = m. Since Lr+0

0 is

symmetric, then eigenvectors of Lr+0
0 corresponding to different eigenvalues must be or-

thogonal to each other. The Moore-Penrose inverse of Lr+0
0 can be calculated by the non-

harmonic spectra of Lr+0
0 :

(Lr+0
0 )−1 =

N∑
k=m+1

1

(λk)
r+0
0

[(uk)
r+0
0 ((uk)

r+0
0 )T ],

where T is the transpose and (uk)
r+0
0 is the kth eigenvector of Lr+0

0 . The modeling of ith

B-factor of 2Y7L at filtration parameter r can be expressed as

Br
i = (Lr+0

0 )−1
ii ,∀i = 1, 2, · · · , N,

and the final model of ith B-factor of 2Y7L is given by

BPST
i =

∑
r

wrB
r
i + w0,∀i = 1, 2, · · · , N,

where wr and w0 are fitting parameters which can be derived by linearly fitting B-factors

from experimental data BExp. Consider the filtration radius from 2 to 12 with the grid

spacing of 1, then totally 11 different Lr+0
0 are created. By calculating all the non-harmonic

spectra together with their eigenvectors, 11 Moore-Penrose inverse matrices (Lr+0
0 )−1 can
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be constructed. Therefore, the predicted ith B-factor is

BPST
i =

12∑
r=2

wrB
r
i + w0.

The specific values of wr and w0 can be found in Table A.16 and Table A.17 of Appendix

Section A.2. Figure 4.7 (c) shows that the prediction B-factors are in an excellent agree-

ment with the experimental B-factors of protein 2Y7L. The Pearson correlation coefficient

is 0.925 1.

(a) (b)

(c)

Figure 4.7: Illustration of persistent spectral prediction of protein B-factors. (a) Plot of the
secondary structure of protein 2Y7L. (b) Accumulated persistent Laplacian matrix (For
clarity, the diagonal terms are set to 0.). Note that the accumulated persistent Laplacian
matrix maps out the detailed distance between each pair of residues. (c) Comparison of
experimental B-factors and those predicted by PST for protein 2Y7L.

This example shows that our persistent spectral theory can be used beyond the persis-

tent homology analysis. The number of zero eigenvalues of 0-persistent q-combinatorial

Laplacian matrices fully recover the persistent barcode or persistent diagram of persis-

tent homology. Additional spectral information from non-harmonic persistent spectra

and persistent eigenvectors provides valuable information for data modeling, analysis,

and prediction.
1We carry out feature scaling to make sure all Br

i are on a similar scale.
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4.1.4 Discussion and Conclusion

Spectral graph theory is a powerful tool for data analysis due to its ability to extract ge-

ometric and topological information. However, its performance can be quite limited for

various reasons. One of them is that the current spectral graph theory does not pro-

vide a multiscale analysis. Motivated by persistent homology and multiscale graphs, we

introduce persistent spectral theory as a unified paradigm to unveil both topological per-

sistence and geometric shape from high-dimensional datasets.

For a point set V ⊂ Rn without additional structures, we construct a filtration using

an (n− 1)-sphere of a varying radius r centered at each point. A series of persistent com-

binatorial Laplacian matrices are induced by the filtration. It is noted that our harmonic

persistent spectra (i.e., zero eigenvalues) fully recover the persistent barcode or persistent

diagram of persistent homology. Specifically, the numbers of zero eigenvalues of persis-

tent q-combinatorial Laplacian matrices are the q-dimensional persistent Betti numbers

for the same filtration given filtration. However, additional valuable spectral information

is generated from the non-harmonic persistent spectra. In this work, in addition to per-

sistent Betti numbers and the smallest non-zero eigenvalues, five statistic values, namely,

sum, mean, maximum, standard deviation, and variance, are also constructed for data

analysis. We use a few simple two-dimensional (2D) and three-dimensional (3D) struc-

tures to carry out the proof of principle analysis of the persistent spectral theory. The

detailed structural information can be incorporated into the persistent spectra of. For in-

stant, for the benzene molecule, the approximate C-C bond and C-H bond length can be

intuitively read from the plot of the 0-dimensional persistent Betti numbers. Moreover,

persistent spectral theory also has the capacity to accurately predict the heat of forma-

tion energy of small fullerene molecules. We use the area under the plot of the persistent

spectra to model fullerene stability and apply the linear least-squares method to fit our

prediction with the heat of formation energy. The resulting correlation coefficient is close

to 1, which shows that our persistent spectral theory has an excellent performance on

88



molecular data. Furthermore, we have applied our persistent spectral theory to the pro-

tein B-factor prediction. In this case, persistent homology does not give a straightforward

model. This example shows that the additional non-harmonic persistent spectral infor-

mation provides a powerful tool for dealing with molecular data.

It is pointed out that the proposed persistent spectral analysis can be paired with

advanced machine learning algorithms, including various deep learning methods, for

a wide variety of applications in data science. In particular, the further construction of

element-specific persistent spectral theory and its application to protein-ligand binding

affinity prediction and computer-aided drug design will be reported elsewhere.

4.2 Persistent Path Laplacian

Recent years witness the emergence of a variety of advanced mathematical tools in topo-

logical data analysis (TDA) [148]. As the main workhorse of TDA, persistent homology

(PH) [100, 43, 122, 101] pioneered a new branch in algebraic topology, offering a power-

ful tool to decode the topological structures of data during filtration in terms of persistent

Betti numbers. Persistent homology has had tremendous success in many areas of science

and technology, such as biology [4], chemistry [5], drug discovery [6], 3D shape analysis

[7], etc.

Inspired by the success of PH, other mathematical tools have been given due atten-

tion. One of them is de Rham-Hodge theory in differential geometry, which uses the

differential forms to represent the cohomology of an oriented closed Riemannian mani-

fold with boundary in terms of a topological Laplacian, namely Hodge Laplacian [8]. The

de Rham-Hodge theory has been applied to computational biology [55], graphic [149],

and robotics [150]. However, like homology, the de Rham-Hodge theory does not offer

an in-depth analysis of data, which is a famous problem in spectral geometry [10]. To

overcome this drawback, the evolutionary de Rham-Hodge theory [9] was introduced in

terms of persistent Hodge Laplacian to offer a multiscale analysis of the de Rham-Hodge
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theory. Defined on a family of evolutionary manifolds, the evolutionary de Rham-Hodge

theory gives a new answer to, or at least reopens, the famous 55-years old question “can

one hear the shape of a drum". [10] The persistent Hodge Laplacian captures both the

topological persistence and the homotopic shape evolution of data during filtration.

Nevertheless, the evolutionary de Rham-Hodge theory is set up on Riemannian man-

ifolds, which may be computationally demanding for large datasets. Hence, a similar

multiscaled-based topological Laplacian, called persistent spectral graph (PSG) [11], was

proposed by introducing a filtration to combinatorial graph Laplacians. PSG, aka persis-

tent Laplacian (PL) [151], extends persistent homology to non-harmonic analysis of data,

showing much advantage in sophisticated applications [152, 153]. Dealing with point

cloud data instead of manifolds, PL encodes a point cloud to a family of simplicial com-

plexes generated from filtration and analyzes both harmonic and non-harmonic spectra.

It is worthy to notice that the harmonic spectra from the null spaces of PLs reveal the

same topological persistence like that of persistent homology, whereas, the non-harmonic

spectra of PLs capture the homotopic shape evolution of data during the filtration. Mean-

while, open-source software called HERMES [154] was developed for the simultaneous

topological and geometric analysis of data. However, like persistent homology, PSG treats

all data points equally. That is to say, each point does not carry any labeled information

such as the type, mass, color, etc. Therefore, an extension of PSG, called persistent sheaf

Laplacian (PSL), was proposed to generalize cellular sheaves [155, 156] for the multiscale

analysis of point cloud data with attached labeled information [157]. PSL is also a topo-

logical Laplacian that carries topological information in its null space but tracks homo-

topic shape evolution during filtration. Another interesting development is the persistent

Dirac Laplacian (PDL) by Ameneyro, Maroulas, and Siopsis [158]. PDL offers an efficient

quantum computation of persistent Betti numbers across different scales. These new ap-

proaches have great potentials to deal with complex data in science and engineering.

It is noticed that the aforementioned homologies and topological Laplacians are in-
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sensitive to asymmetry or directed relations, which limits their representational power in

encoding structures that have directional information. For example, in gene regulation

data, the directions of gene regulations are indicated by arrowheads or perpendicular

edges in systems biology [159]. Therefore, a technique that can deal with directed graphs

(digraphs) is of vital importance to inferring gene regulation relationships. Notably, the

path homology [12] proposed by Grigor’yan, Lin, Muranov, and Yau provides a powerful

tool to analyze datasets with asymmetric structures using the path complex. Particular

cases of homologies of digraphs and their path cohomology were also discussed [12, 60].

The notion of path homology of digraphs has a richer mathematical structure than the

earlier homology and Laplacian, opening new directions for both pure and applied math-

ematics. For example, path homology theory was extended to various objects such as

quivers, multigraphs, digraphs pairs, cylinder, cone, hypergraphs, etc. [160, 161, 162]

Path homology has drawn much attention from researchers in the TDA community. To

encode richer information, Chowdhury and Mémoli extended path homology to a persis-

tent framework on a directed network [13]. Wang, Ren, and Wu constructed a weighted

path homology for weight digraphs and proved a persistent version of a Künneth-type

formula for joins of weighted digraphs [163]. Recently, Dey, Li, and Wang have designed

an efficient algorithm for 1-dimensional persistent path homology [164], which is useful

in real applications.

Similar to persistent homology, persistent path homology cannot track the homotopic

shape evolution of data during filtration. To overcome this limitation, we introduce path

Laplacian as a new topological Laplacian to analyze the spectral geometry of data, in ad-

dition to its topology. Moreover, we introduce a filtration to path Laplacian to obtain a

persistent path Laplacian (PPL), a new framework that captures both the topological per-

sistence and shape evolution of directed graphs and networks. By varying the filtration

parameter, one can construct a series of digraphs, which result in a family of persistent

path Laplacian matrices. The harmonic spectra of the persistent path Laplacian recover
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all the topological invariants of the digraphs, while the non-harmonic spectra provide ad-

ditional geometric information, which can distinguish two systems when they are homo-

topy but geometrically different. PPL has potential applications in science, engineering,

industry, and technology. This work is organized as follows: Section 2 reviews the nec-

essary background on path homology. Section 3 describes path Laplacian and persistent

path Laplacian. Detailed PPL matrix constructions are illustrated with various examples

for the interested readers in Section 3 and Section 4.

4.2.1 Constructions of Persistent Path Laplacian for Tetra and Pyramid

Figure 4.8: Illustration of filtration on a tetrahedron. Here, 1, 2, 3, and 4 represent four
elementary 0-paths e1, e2, e3, and e4. The top panel is a tetrahedron that has edge lengths
|e12| = |e32| = |e24| = 1 and |e13| = |e14| = |e34| =

√
2. The bottom panel is a tetrahedron

that has edge lengths |e32| = |e24| = 1, |e34| =
√
2, |e12| =

√
3, and |e13| = |e14| = 2.

One can get both abstract information (revealed by Betti numbers) and geometric

information (revealed by non-harmonic spectra) from digraphs along filtration. For in-

stance, Figure 4.8 illustrates the filtration on two tetrahedrons. The top panel is a tetrahe-

dron (Tetra 1) with edge lengths |e12| = |e32| = |e24| = 1, and |e13| = |e14| = |e34| =
√
2. The

bottom panel is another tetrahedron (Tetra 2) with edge lengths |e12| =
√
3, |e32| = |e24| =

1, and |e13| = |e14| = 2, and |e34| =
√
2. We say G1 = G0, G2 = G1, G3 = G

√
2, G4 = G

√
3,
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Figure 4.9: Comparison of Betti numbers and non-harmonic spectra of Lδ,δ
n when n = 0, 1,

and 2 on tetrahedrons Tetra 1 and Tetra 2. Note that since βδ,δ
1 = 0 and βδ,δ

2 = 0 for Tetra
1 and Tetra 2, topological variants from persistent path homology cannot discriminate
Tetra 1 and Tetra 2. However λδ,δ

1 and λδ,δ
2 show the differences between Tetra 1 and Tetra

2.

and G5 = G
√
5. Figure 4.9 shows the changes of βδ,δ

n and λδ,δ
n of persistent n-th path Lapla-

cian Lδ,δ
n along filtration. It can be seen that by varying the filtration parameter δ from

0 to 1, the Betti 1 and Betti 2 are always 0. However, the smallest nonzero eigenvalue

λ̃δ,δ
n of Tetra 1 and Tetra 2 have changes along filtration parameter δ. Additionally, when

n = 1, 2, the λ̃δ,δ
n can distinguish Tetra 1 and Tetra 2, while βδ,δ

n cannot. This indicates

that non-harmonic spectra of persistent path Laplacian can reveal more geometric infor-

mation than the persistent Betti numbers in distinguishing similar topological structures.

Notably, we remove all the isolated points from each digraph for the simplicity of calcu-

lation.

Moreover, a more complicated example is also illustrated in Figure 4.10 to describe
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Figure 4.10: Illustration of filtration on a pyramid. Here, 1, 2, 3, 4, and 5 represent five
elementary 0-paths e1, e2, e3, e4, and e5. The top panel is a pyramid that has edge lengths
|e13| = |e25| = |e32| = |e34| = |e54| = 1, |e12| = |e14| =

√
2, and |e15| =

√
3. The bottom panel

is a pyramid that has edge lengths |e25| = |e32| = |e34| = |e54| = 1, |e12| = |e14| = 2, and
|e15| =

√
5.

the filtration on two pyramids. The top panel is a pyramid (Pyra 1) with edge lengths

|e12| = |e32| = |e24| = 1, and |e13| = |e14| = |e34| =
√
2. The bottom panel is a pyramid (Pyra

2) with edge lengths |e12| =
√
3, |e32, | = |e24| = 1, and |e13| = |e14| = 2, and |e34| =

√
2.

We say G1 = G0, G2 = G1, G3 = G
√
2, G4 = G

√
3, and G5 = G

√
5. Figure 4.11 depicts the

changes of βδ,δ
n and λδ,δ

n of persistent n-th path Laplacian Lδ,δ
n for objects Pyra 1 and Pyra

2 along filtration. For Pyra 1 and Pyra 2, when n = 0 and δ = 1, their corresponding

digraphs form, which result in β1,1
0 = 1 and β1,1

1 = 1 for both Pyra 1 and Pyra 2. When

δ =
√
3, we have β

√
3,
√
3

1 = 0 for Pyra 1 since the introducing of a new directed edges e15.

When δ =
√
5, we have β

√
5,
√
5

1 = 0 for Pyra 2 since the introducing of a new directed edges

e15 kills the 1-cycle formed by e25, e32, e34, and e54. Furthermore, although Pyra 1 and Pyra

2 do not have exactly the same geometric structure, their share the same βδ,δ
2 value from

δ = 0 to δ =
√
5. However, Pyra 1 and Pyra 2 can be distinguished by the λ̃δ,δ

2 along

filtration. Therefore, we can see that similar to the PSG, one can use the non-harmonic

spectra from the persistent path laplacian to reveal the intrinsic geometric information of

a givens point-cloud dataset by varying the filtration parameters. In addition, the detailed
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Figure 4.11: Comparison of Betti number and non-harmonic spectra of Lδ,δ
n when n =

0, 1,c and 2 on pyramids Pyra 1 and Pyra 2. Note that since βδ,δ
2 = 0, it cannot distinguish

Pyra 1 and Pyra 2. But λδ,δ
2 can tell the difference.

calculations of Lδ,δ
n can be found in the Appendix.

4.2.2 Constructions of Persistent Path Laplacian for CB7

In this section, we apply the persistent path Laplacian to the analysis of the curcur-

bit[n]urils system. Cucurbiturils are macrocyclic molecules, which are made of glycoluril

(=C6H2N4O2=) monomers linked by methylene bridges (-CH2-). CBn is commonly used

as an abbreviation of Cucurbiturils. Here, n is the number of glycoluril units. In this

work, we consider CB7 as an example. The molecular formulas of CB7 is C42H14N28O14.

The molecular structure of CB7 is obtained from the Supporting Information of Ref. [165].

Figure 4.12 illustrates how PPL is employed for a molecular system to extract its rich

topological and geometric information. The first two charts of Figure 4.12a describe the
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three-dimensional (3D) top view and side view of CB7. The green, blue, red, and gray

colors represent C, N, O, and H atoms, respectively. The third chart of Figure 4.12a is

a basic “Octagon-pentagon” unit that consists of two glycolurils. It can be seen that 7

glycolurils exist in CB7. The last chart of Figure 4.12a demonstrates the path direction

assignment to pairs of atoms based on atomic electronegativity. The periodic table of

electronegativity is given by the Pauling scale [166], in which the electronegativities of C,

N, O, and H are 2.55, 3.04, 3.44, and 2.20, respectively. Then, we set the directions of edges

following the order “H→ C→ N→ O".

Figure 4.12b depicts the distance-based filtration of CB7. Here, structures Gi(i =

1, 2, ..., 8) were obtained at the filtration radii of 0.200, 0.565, 0.710, 0.745, 0.800, 1.210,

1.315, and 1.800 Å, respectively. In our digraph notation, we denote these structures as

G1 = G0.200
0 , G2 = G0.565

0 , G3 = G0.710
0 , G4 = G0.745

0 , G5 = G0.800
0 , G6 = G1.210

0 , G7 = G1.315
0 ,

and G8 = G1.800
0 . Note that, in the present formulation, all of the isolated points were

removed from these digraphs.

Figure 4.12c illustrates the filtration-induced path complexes in the aforementioned

Gi(i = 1, 2, ..., 8). To clearly show the topological and geometric changes, only the path

complexes in one “Octagon-pentagon” unit (or two glycolurils) are considered and de-

picted for each structure. For simplicity, only edges are presented. However, their path

directions can be easily assigned based on their color map as shown in the last chart of

Figure 4.12a.

Figure 4.12d depicts the PPL spectra of CB7. We can see that at the initial state (G1)

when δ = 0.200Å ), total 98 atoms are isolated from one another. When radius δ =

0.565Å (G2), C atoms on each pentagon are connected with their H atom neighborhoods.

Therefore, four isolated components are formed in each glycoluril, which makes βδ,δ
0 =

4 × 7 = 28. At G3 (r = 0.710Å), C atoms on each pentagon are connected with their N

and O neighborhoods. At this stage, two more connected components are involved in

one glycoluri structure, which makes βδ,δ
0 = 6× 7 = 42. Only one connected structure can
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be formed if all of the atoms get connected with their neighborhood atoms. Therefore,

βδ,δ
0 = 1 (see G5 - G8). Notably, the βδ,δ

2 and λ̃δ,δ
2 provide rich topological and geometric

information when the filtration parameter δ increases.

Side View Top View 2 glycolurils in Stick 2 glycolurils in StickBalla

b

c

d

Figure 4.12: a The 3D structures of CB7, 2 glycolurils, and path direction assignment.
Here, from left to right, the side view of CB7, top view of CB7, the structure of two
glycoluril units (=C10H4N8O4=), and electronegativity-based path direction assignment
are depicted as well. b Illustration of filtration-induced geometries Gi(i = 1, 2, . . . , 8) of
CB7. Eight digraphs G1 = G0.200

0 , G2 = G0.565
0 , G3 = G0.710

0 , G4 = G0.745
0 , G5 = G0.800

0 , G6 =
G1.210

0 , G7 = G1.315
0 , G8 = G1.800

0 are constructed under filtration parameter δ. c Illustration
of filtration-induced path complexes within two glycoluril units. Path directions can be
inferred from their colors as shown in the last chart of a. d Betti numbers βδ,δ

n and non-
harmonic spectra λ̃δ,δ

n of persistent path Laplacians (Lδ,δ
n when n = 0, 1, and 2) for CB7.

This example shows that PPL can decode topological persistence and the shape evo-

lution of a given molecular system with chemical- or biological-based directional assign-

ment. Specifically, λ̃δ,δ
0 can still offer geometric information when βδ,δ

0 does not changes for
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large radii. Therefore, PPL keeps revealing homotopic shape evolution when the topolog-

ical invariant from persistent path homology does not change.

Additionally, unlike persistent Laplacian, high-order PPL operators provide rich topo-

logical information. For instance, when the filtration parameter δ increases to 1.68, βδ,δ
2

from PPL dramatically goes up. Whereas, in persistent Laplacian, the value of Betti 2 is

quite limited since the CB7 system can barely form 2-cycles at a similar filtration param-

eter using either Rips complex or alpha complex. This trait endows PPL with a better

ability to characterize the geometry and topology of an object at large scales.

4.2.3 Discussion and Conclusion

Path homology, a rich mathematical concept introduced by Grigor’yan, Lin, Muranov,

and Yau, has stimulated a variety of new developments in pure and applied mathemat-

ics, including much attention from the topological data analysis (TDA) community. Un-

like original homology or persistent homology, path homology enables the treatment of

directed graphs and networks. Persistent path homology bridges path homology with

multiscale analysis, making it a powerful tool for practical applications. Nonetheless,

these formulations are insensitive to homotopic shape evolution during filtration.

Topological Laplacians, including Hodge Laplacian, graph Laplacian, sheaf Laplacian,

and Dirac Laplacian, are versatile mathematical tools that not only preserve all topolog-

ical invariants but also describe geometric shapes. This work introduces a new topo-

logical Laplacian, namely persistent path Laplacian, as a new mathematical tool for the

multi-scale analysis of directed graphs and networks. For a given data, the proposed per-

sistent path Laplacian fully recovers the topological persistence of persistent homology

in its harmonic spectra and meanwhile, captures homotopic shape evolution of the data

during filtration in its non-harmonic spectra.
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CHAPTER 5

HERMES: AN OPEN-SOURCE SOFTWARE FOR THE SPECTRAL ANALYSIS OF
PERSISTENT LAPLACIANS

5.1 Introduction

As a branch of discrete mathematics, graph theory focuses on the relations among vertices

or nodes (0-simplices), edges (1-simplices), faces (2-simplices), and their high-dimensional

extensions. Benefiting from the capability of graph formulations that encode inter-dependencies

among constituents of versatile data into simple representations, graph theory has been

regarded as the mathematical scaffold in the study of various complex systems in bi-

ology, material science, physical infrastructure, and network science. However, tradi-

tional graphs only represent the pairwise relationships between entries. Therefore, hy-

pergraphs, a generalization of graphs that describe the multi-way relationships of math-

ematical structures have been developed to capture the high-level complexity of data

[167, 168]. Mathematically, graphs and hypergraphs are intrinsically related to the sim-

plicial complexes, which have broader use in computational topology. Moreover, many

other areas such as algebra, group theory, knot theory, spectral graph theory (SGT), al-

gebraic topology (AT), and combinatorics are closely related to graph theory. Among

them, the applications of SGT have been driven by various real-life problems in chem-

istry, physics, and life science in the past few decades [138, 169].

In its early days, spectral graph theory studied the properties of a graph by its graph

Laplacian matrix and adjacency matrix. Later on, developments in spectral graph the-

ory involved some geometric flavor. The explicit constructions of expander graphs rely

on studying eigenvalues and isoperimetric properties of graphs. The discrete analog of

Cheeger’s inequality for graphs in Riemannian geometry is related to the study of man-

ifolds [170]. Specifically, an eigenvalue of the Laplacian of a manifold is related to the
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isoperimetric constant of the manifold, which motivates the study of graphs by employ-

ing manifolds. Benefiting from increasingly rich connections with differential geometry,

spectral graph theory entered a new era [171]. One of the critical developments is the

Laplacian on a compact Riemannian manifold in the context of the de Rham-Hodge the-

ory [54, 55]. The harmonic part of the Hodge Laplacian spectrum contains the topologi-

cal information, whereas the non-harmonic part of the Hodge Laplacian spectrum offers

additional geometric information for shape analysis [56]. Indeed, the connectivity of a

graph/topological space can be revealed from topological invariants. It is well-known

that the number of eigenvalues in the harmonic spectra of qth-order persistent Laplacian

represents the dimension of persistent q-cohomology of a graph [172, 53, 11], which builds

the connection between spectral graph theory and algebraic topology.

Homology and cohomology are key concepts in the algebraic topology, which were

developed to analyze and classify manifolds according to their cycles. Traditional ho-

mology is genuinely metric-independent, indicating that geometric information is barely

considered [173]. Therefore, for practical computation, a new branch of algebraic topol-

ogy named persistent homology (PH) [122, 124, 43] was implemented to create a sequence

of topological spaces characterized by a filtration parameter, such as the radius of a ball

or the level set of a real-valued function. As the most important realization of topological

data analysis (TDA) [125, 128, 174], topological persistence has had great success in com-

putational chemistry [5, 175] and biology [4, 44, 176, 177, 178]. For instance, the superior

performance of using PH features of protein-drug complexes in the free energy predic-

tion and ranking at D3R Grand Challenges, a worldwide competition series in computer-

aided drug design [6], was a remarkable success for TDA. Additionally, a weighted per-

sistent homology is proposed as a unified paradigm for the analysis of the biomolecular

data system [179].

Recently, we introduced persistent spectral graph (PSG) theory to bridge persistent

homology and spectral graph theory [11, 11]. The PSG theory extends the persistence no-

100

https://drugdesigndata.org/about/grand-challenge


tion or multiscale analysis to algebraic graph theory. A family of spectral graphs induced

by a filtration overcomes the difficulty of using traditional spectral graph theory in ana-

lyzing graph structures with a single geometry, giving rise to persistent spectral analysis

(PSA). Additionally, the evolution of the null space dimension of the persistent Laplacian

matrix (PLM) over the filtration offers the topological persistence. Therefore, PSG the-

ory provides simultaneous TDA and PSA. Specifically, by varying a filtration parameter,

a series of qth-order persistent Laplacians (or q-persistent Laplacian) provide persistent

spectra. Notably, the persistent harmonic spectra of 0-eigenvalues span the null space

of the q-th order persistent Laplacian and fully recover the persistent q-th Betti numbers

or persistent barcodes [180] of the associated persistent homology. Specifically, the num-

ber of 0-eigenvalues of qth-order persistent Laplacian reveals the number of q-cocycles

for a given point-cloud dataset. Moreover, the additional geometric shape information

of the data will be unveiled in the non-harmonic spectra. For example, the spectral

gap (the difference between the moduli of the first two smallest eigenvalues of a Lapla-

cian) reveals the energy difference/density changes between the ground state and first

excited state of a system/dataset. Additionally, the B-factor prediction performance can

be significantly improved by using the non-harmonic spectra involved in the prediction

model, as discussed in [11]. Recently, the theoretical properties and algorithms of PSGs

have been further studied [151] and the application of PSG methods to drug discovery

has been reported [181] . The de Rham-Hodge theory counterpart, called evolutionary de

Rham-Hodge theory, has also been formulated [56].

Currently, many open-source packages have been developed for the applications of

persistent homology, including Ripser [182], Dionysus [183], Gudhi [184], Perseus [123],

DIPHA [185], Javaplex [186], CliqueTop [187], DioDe [188], Hera, Eirene, and “TDA”

package in R [189]. These packages are able to construct a family of complexes with

the point clouds data as input and calculate its corresponding Betti numbers, which are

equivalent to the harmonic spectra of the persistent Laplacian. However, there is no soft-
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ware package for simultaneous TDA and PSA. While we developed the theoretical part

of the persistent spectral graph in 2019, we have not constructed efficient and robust soft-

ware yet.

The objective of present work is to provide the first open-source package, dubbed

highly efficient robust multidimensional evolutionary spectra (HERMES), for evaluating

both the harmonic and non-harmonic spectra of persistent Laplacian matrices, which en-

able broad and convenient applications of the PSG method. In the present release, we

consider an implementation in both alpha complexes [47] and Vietoris–Rips complexes.

To verify the reliability of HERMES, 15 complicated 3D structures of proteins as well as

two fullerene structures are used to calculate the spectra of qth-order persistent Lapla-

cians for q = 0, 1, 2. Moreover, as a validation, the persistent harmonic spectra generated

by HERMES are compared with those obtained from Gudhi and DioDe. Furthermore,

with the use of the spectra of PLMs, molecular data abnormality detection is also dis-

cussed.

In a nutshell, HERMES provides a powerful tool in various applications such as drug

discovery, protein flexibility analysis, and complex protein structures analysis. It can be

potentially applied to various fields where persistent homology has had success.

5.2 Implementation

5.2.1 Construction of Alpha Shape

Recall that, given a set of points, the alpha shape with any α value is a subcomplex of De-

launay tessellation. Thus, to construct the filtration of alpha complexes, it is necessary to

first compute the complete simplicial complex through the Delaunay tessellation formed

by the set of points. A number of efficient implementations is available in existing soft-

ware packages. Our implementation employs the Computational Geometry Algorithms

Library (CGAL), an efficient and robust software package for many commonly used cal-

culations. We then assign each simplex σ with an alpha value ασ. Finally, the alpha shape
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given at an α value α0 is constructed by union of convex hulls of all the simplices σ sat-

isfying ασ ≤ α0, which naturally forms the nerve of balls centered at the given points

truncated by the Voronoi regions, i.e., the corresponding alpha complex.

We illustrate our implementation with point sets P in 3D, as it is the most common

use scenario. We also assume that all the points are in general positions, which means

that no 4 points of P lie on the same plane and no 5 points of P lie on the same sphere.

Given a simplex σ, which can be a point, an edge, a triangle or a tetrahedron, denote the

open ball bounded by its minimal circumsphere as Bσ. The simplex σ is called Gabriel

([190]) if Bσ ∩ P = ∅. Note that for vertices (0-simplices) the circumradius is considered

0. The above discussion can be directly adapted for 2D implementation by replacing

circumsphere with circumcircle and omitting tetrahedra.

The filtration parameter α for every simplex σ can be defined as follows. If the simplex

is Gabriel, the filtration value is the corresponding circumradius (for efficiency, we actu-

ally store its square) because the corresponding ball can be considered as an empty α-ball

touching all its vertices. If the simplex is not Gabriel, the filtration value is the minimum

of all the filtration values of the cofaces of σ that contain the points making the simplex

non-Gabriel. When α value reaches that number, we will have an empty α-ball making

the simplex α-exposed.

5.2.2 Implementation details for alpha shape

To ensure the valid calculation of the filtration parameter for non-Gabriel simplices, the

filtration values are always computed from the highest dimension (tetrahedra) down to

0 (vertices). We initialize the filtration value for all the simplices to be positive infinity.

For dimension k, we iterate through each k-simplex. If the current filtration value α2
σ is

positive infinity, we assign the filtration value as the square of the corresponding circum-

radius. Then, we check every (k−1)-dimensional face τ in ∂σ. If the circumsphere of τ

enclosed the other vertex of σ in the interior, it is not Gabriel, and does not correspond to
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an empty α-ball. In this case, α2
σ is assigned to α2

τ if ασ > ατ .

With this procedure, we ensure that ασ for every simplex σ corresponding to the fil-

tration value α is α-exposed to an empty α-ball. In other words, we ensure each simplex

represented by its vertex index set J ⊆ {1, 2, ..., |P |} is in the nerve of the Ri’s, which are

the intersections Ri = Vi ∩Bi of Voronoi cells Vi’s and balls Bi’s around the points pi’s.

5.2.2.1 Boundary operator construction

With ασ assigned, we sort the k-simplices with increasing filtration parameter value. This

allows us to construct a single boundary operator B∞
q (the matrix representation of ∂∞

q )

for the entire filtration, which is that of the Delaunay tessellation. For any given α, we

can read off the top left block of the full boundary matrix B∞
q , i.e.,

(
Bα

q

)
ij
=

(
B∞

q

)
ij
, ∀1 ≤ i ≤ Nα

q−1, 1 ≤ j ≤ Nα
q , (5.1)

where Nα
q is the number of q-simplices in the alpha complex with the filtration parameter

α. Alternative, we can consider the Nα
q ×N∞

q projection matrix Pα
q from the Delaunay

tessellation to the alpha complex,
(
Pα
q

)
ij
= δij (1 on the diagonal and 0 elsewhere), with

which we have Bα
q = Pα

q−1B
∞
q (Pα

q )
T .

5.2.2.2 Persistent boundary operator

The construction of p-persistent boundary matrix Bα,p
q (the representation of operator

ðα,p
q ) is more involved than reading off B∞

q . We first construct the projection matrix Pα,p
q

from Cα+p
q to Cα,p

q . Then, the p-persistent boundary matrix can be assembled as Bα,p
q =

Pα
q−1B

∞
q (Pα,p

q )T .

To construct the projection matrix, we first note that it is the projection to the kernel

of an operator that measures the difference between the boundary operator mapped onto

Cα+p
q−1 and the boundary restricted to Cα

q−1, Diffα,pq = (Iα+p
q−1 − Rα,p

q−1)
TBα+p

q , where Rα,p
q =
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Pα+p
q (Pα

q )
TPα

q (P
α+p
q )T is the restriction from Cα+p

q to Cα
q and Iα+p

q is the identity matrix on

Cα+p
q .

Instead of storing a dense matrix, we propose to use a procedural representation in-

volving the inverse of persistent Laplacians with gauge ([191]) to reduce the storage as

well as speed up the computation. More specifically, we construct the projection matrix

as follows

Pα,p
q = Iα+p

q − (D̃iff
α,p

q )T (L̃α,p
q−1)

−1D̃iff
α,p

q , (5.2)

where (L̃α,p
q−1)

−1 can be implemented through rank deficiency fixing in [191], and the re-

stricted operator D̃iff
α,p

q is defined below. Note that this sparse linear equation solving

approach is essentially the graph version of the harmonic extension described in Ref.

[55].

The reason that the projection matrix can be defined this way is that starting from an

arbitrary element ωq ∈ Cα+p
q , we can modify it into ωq−(Diffα,pq )Tfq−1 ∈ Cα,p

q , where fq−1 is

nonzero only in the difference complex Cl(Tα+p−Tα), the closure of the difference between

Tα+p and Tα. Denoting any chain f on the difference complex as f̃ and any operator

B on it as B̃α,p, and the B̃α,p
q (B̃α,p

q )T f̃q−1 = B̃α,p
q ω̃q. Noticing that f̃q−1 is determined up

to a gauge transform fq−1 − (B̃α,p
q−1)

T g̃q−2 for some (q − 2)-chain gq−2 in Cl(Tα+p − Tα),

we introduce the gauge fixing term B̃α,p
q−1fq−1 = 0, which leads us to the sparse linear

system L̃α+p
q−1 f̃q−1 = D̃iff

α,p

q ωq where the D̃iff operator is the above operator projected to

the difference complex. Note that fixing the rank deficiency of persistent Laplacians (in

the difference complex) is computationally efficient as its kernel dimension is far smaller

than that of the corresponding boundary or coboundary operators.

5.2.2.3 Persistent spectrum computation

The q-order p-persistent Laplacian operators can then be implemented by direct eval-

uation of Lα,p
q = Bα,p

q+1(B
α,p
q+1)

T + (Bα
q )

TBα
q . Their spectra can be evaluated through any

off-the-shelf sparse matrix eigensolver.
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Thus, the dimension of the null space of Lα,p
0 is the number of p-persistent connected

components. The dimension of the null space of Lα,p
1 is the number of p-persistent handles

or tunnels. Similarly, the dimension of the null space of Lα,p
2 is the number of p-persistent

cavities.

5.2.3 Implementation Details for Rips Complex

The Vietoris–Rips complex at different filtration values is also considered in HERMES.

Following the definition of the Vietoris–Rips complex, the implementation is straightfor-

ward. However, due to the large number of simplices, the calculation of non-harmonic

spectra of PLMs Lt,p
q can be resource-intensive. Therefore, we may set a maximum cutoff

distance for the filtration r and an upper limit for persistent p for practical applications.

5.3 Validation

Figure 5.1: The 3D structures of C20 and C60. (a) C20 molecule. A total of 12 pentagon
rings can be found in C20. (b) C60 molecule. 12 pentagon rings and 20 hexagon rings form
the structure of C60 .

We construct the alpha complex at different filtration values from the finite cells of

a Delaunay tessellation from the Computational Geometry Algorithms Library (CGAL).

Moreover, the Vietoris–Rips complex at different filtration values is also constructed in

HERMES. Gudhi and DioDe are two of the most frequently applied open-source libraries
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that are able to compute Betti numbers (harmonic persistent spectra) based on CGAL,

while Ripser is based on the blazing fast C++ Ripser package. As shown in [11], the

0-persistent qth Betti numbers βα,0
q at filtration parameter t is the number of zero eigen-

values of qth-order 0-persistent Laplacian Lt,0
q :

βt,0
q = dim(Ct

q)− rank(Lt,0
q ) = dimkerLt,0

q , (5.3)

where t = α if we choose to construct the alpha complex, and t = r if we choose to

construct the Vietoris–Rips complex.

In fact, βt,0
q counts the number of q-cycles in the alpha complex Kt that persists in

Kt. Although Gudhi and DioDe can calculate the number of zero eigenvalues, the non-

harmonic persistent spectra also play an important role in applications as shown in our

earlier work [11]. Therefore, we developed an open-source package HERMES, which not

only tracks the topological changes from the persistent Betti numbers but also derives

the geometric changes from the non-harmonic spectra of persistent Laplacians. In the

following, we compare the Betti numbers βt,p
q that are calculated from HERMES with the

Betti numbers that are derived from Gudhi and DioDe on a set of 2D and 3D points,

aiming to validate the robustness and accuracy of HERMES.

5.3.1 Validation on Fullerene structures

In this section, we will validate the correctness of HERMES with simple systems such as

C20 and C60 molecules with known persistent Betti numbers [4] for Rips complex. More-

over, the persistent Betti numbers for the alpha complex are also included in this section.

C20 molecule. The C20 molecule is the smallest member of the fullerene family, which

has a dodecahedral cage structure as illustrated in Figure 5.1 (a). Both C20 and C60 have

the molecular symmetry of the full icosahedral point group Ih. Figure 5.2 illustrates the

persistent Betti numbers for Rips complex βr,0.05
0 , βr,0.05

1 , and βr,0.05
2 (green curves) and

the smallest non-zero eigenvalue λr,0.05
0 , λr,0.05

1 , and λr,0.05
2 (yellow curves) of C20 that are
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Figure 5.2: Illustration of the harmonic spectra (for Rips complex) βr,0
0 , βr,0

0 , and βr,0
2 (green

curves from top chart to bottom chart) and the smallest non-zero eigenvalue λr,0
0 , λr,0

1 , and
λr,0
2 (yellow curves from top chart to bottom chart) of C20 molecule (the bottom left chart

in Figure 5.6) at different filtration values α calculated from HERMES. Here, the x-axis
represents the radius filtration value r (unit: Å), the left-y-axes represents the number of
zero eigenvalues of Lr,0

0 , Lr,0
1 , and Lr,0

1 from top to bottom, and the right-y-axes represents
the first non-zero eigenvalue of Lr,0

0 , Lr,0
1 , and Lr,0

2 from top to bottom.

computed from HERMES. Similarly, Figure 5.3 illustrates the persistent Betti numbers

for the alpha complex βα,0.05
0 , βα,0.05

1 , and βα,0.05
2 (green curves) and the smallest non-zero

eigenvalue the λα,0.05
0 , λα,0.05

1 , and λα,0.05
2 (yellow curves) of C20 that are computed from

HERMES.

Note that although the Rips complex and the alpha complex have similar Betti-0 and

Betti-1 patterns, their Betti-2 patterns differ from each other over the filtration range. Ad-

ditionally, the non-harmonic spectra of the Rips complex and the alpha complex differ

much from each other. Moreover, the non-harmonic spectra of the Rips complex appear

to carry more information than those of the alpha complex.

C60 molecule. The C60 molecule is a well-known structure that is also called buck-

minsterfullerene. A total of 12 pentagon rings and 20 hexagon rings consist of C60. Fig-

ure 5.1 (b) shows the 3D structure of C60. Figure 5.4 and Figure 5.5 demonstrate the 0.05-
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Figure 5.3: Illustration of the harmonic spectra (for alpha complex) βα,0.05
0 , βα,0.05

0 , and
βα,0.05
2 (green curves from top chart to bottom chart) and the smallest non-zero eigen-

value λα,0.05
0 , λα,0.05

1 , and λα,0.05
2 (yellow curves from top chart to bottom chart) of the C20

molecule (the bottom left chart in Figure 5.6) at different filtration value α calculated from
HERMES. Here, the x-axis represents the radius filtration value α (unit: Å), the left-y-axes
represents the number of zero eigenvalues of Lα,0.05

0 , Lα,0.05
1 , and Lα,0.05

1 from top to bot-
tom, and the right-y-axes represents the first non-zero eigenvalue of Lα,0.05

0 , Lα,0.05
1 , and

Lα,0.05
2 from top to bottom.

persistent Betti numbers for rips complex and alpha complex, respectively. Figure 5.2 -

Figure 5.5 indicate the capacity of HERMES for the direct calculation of the persistent

spectra of Lr,p
q and Lα,p

q (p > 0).

5.3.2 Validation on proteins

In this section, we further validate HERMES using 15 proteins. Their Protein Data Bank

(PDB) IDs of these proteins are 1CCR, 1NKO, 1O08, 1OPD, 1QTO, 1R7J, 1V70, 1W2L,

1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT. The 3D structures of these 15 pro-

teins can be downloaded from the PDB ( https://www.rcsb.org/). Here, only the alpha

carbon atoms are considered in our calculations. The harmonic spectra of HERMES are

compared with the persistent Betti numbers of Gudhi and DioDe. Figure 5.6 illustrates
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Figure 5.4: Illustration of the harmonic spectra βr,0
0 , βr,0

0 , and βr,0
2 (blue curves from top

chart to bottom chart) and the smallest non-zero eigenvalue λr,0
0 , λr,0

1 , and λr,0
2 (red curves

from top chart to bottom chart) of the C60 molecule (the bottom left chart in Figure 5.6) at
different filtration value α calculated from HERMES. Here, the x-axis represents the ra-
dius filtration value α (unit: Å), the left-y-axes represents the number of zero eigenvalues
of Lr,0

0 , Lr,0
1 , and Lr,0

1 from top to bottom, and the right-y-axes represents the first non-zero
eigenvalue of Lr,0

0 , Lr,0
1 , and Lr,0

2 from top to bottom.

the network structures of 15 proteins. For each protein, the color at atomic positions rep-

resents the normalized diagonal values of the accumulated 0th-order 0-persistent Lapla-

cians: 1

maxi(L0
0)ii

(L0
0)jj , with L0

0 =
∑

α L
α,0
0 . Here, the filtration α goes from

√
1.5 Å to

√
10 Å with the step size of 0.01Å. Figure 5.7 depicts the persistent Betti numbers βα,0

q

(blue curve) of PDB ID 5CYT that are calculated from Gudhi, DioDe, and HERMES, to-

gether with the smallest non-zero eigenvalue λα,0
q (red curve) that are obtained only from

HERMES.

It can be seen that all of these three packages return exactly the same persistent Betti

numbers, suggesting that the calculation of our package HERMES is reliable. Addition-

ally, the values of the smallest non-zero eigenvalues λα,0
0 and λα,0

1 increase around 1.86Å,

indicating the dramatic topological changes at this point. Similarly, with the increment

of the α, the curve of λα,0
2 also records the topological and geometric changes at a specific
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Figure 5.5: Illustration of the harmonic spectra βα,0.05
0 , βα,0.05

0 , and βα,0.05
2 (green curves

from top chart to bottom chart) and the smallest non-zero eigenvalue λα,0.05
0 , λα,0.05

1 , and
λα,0.05
2 (yellow curves from top chart to bottom chart) of the C60 molecule (the bottom left

chart in Figure 5.6) at different filtration value α calculated from HERMES. Here, the x-
axis represents the radius filtration value α (unit: Å), the left-y-axes represents the number
of zero eigenvalues of Lα,0.05

0 , Lα,0.05
1 , and Lα,0.05

1 from top to bottom, and the right-y-axes
represents the first non-zero eigenvalue of Lα,0.05

0 , Lα,0.05
1 , and Lα,0.05

2 from top to bottom.

filtration value. The use of non-harmonic spectra for biophysical modeling was described

in our earlier work [11].

To be noted, HERMES can also deal with the qth-order p-persistent Laplacians Lα,p
q .

Figure 5.8 illustrates the persistent Betti numbers βα,0.5
0 , βα,0.05

1 , and βα,0.5
2 (green curves)

and the smallest non-zero eigenvalue λα,0.5
0 , λα,0.5

1 , and λα,0.5
2 (yellow curves) of 5CYT that

are computed from HERMES, demonstrating the capacity of HERMES for the direct cal-

culation of the persistent spectra of Lα,p
q (p > 0). Compared with the middle chart of

Figure 5.7, βα,0.5
1 in the middle chart of Figure 5.8 is always smaller than βα,0

1 at the same

filtration α. Moreover, λα,0.5
1 also goes up around 1.86Å, which has the same behavior

as λα,0
1 . Similar behaviors can be also observed from the bottom charts of Figure 5.7 and

Figure 5.8.

Furthermore, HERMES can be used to detect the abnormality of a protein structure.
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Figure 5.6: The alpha carbon network plots of 15 proteins: PDB IDs 1CCR, 1NKO, 1O08,
1OPD, 1QTO, 1R7J, 1V70, 1W2L, 1WHI, 2CG7, 2FQ3, 2HQK, 2PKT, 2VIM, and 5CYT from
left to right and top to bottom. The color represents the normalized diagonal element of
the accumulated Laplacian at each alpha carbon atom.
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Figure 5.7: Illustration of the harmonic spectra βα,0
q (blue curve) and the smallest non-zero

eigenvalue λα,0
q (red curve) of PDB ID 5CYT (the bottom left chart in Figure 5.6) at differ-

ent filtration values α when q = 0, 1, 2. The βα,0
q are calculated from Gudhi, DioDe, and

HERMES, and λα,0
q are obtained only from HERMES. Here, the x-axis represents the ra-

dius filtration value α (unit: Å), the left-y-axis represents the number of zero eigenvalues
of Lα,0

q , and the right-y-axis represents the first non-zero eigenvalue of Lα,0
q . Note that the

harmonic spectra from the three methods are indistinguishable.

Figure 5.9 (a) shows a 3D secondary structure of PDB 1O08, where the balls represent the

alpha carbon atoms. The light blue, purple, and orange colors represent helix, sheet, and

random coils of PDB ID 1O08. Figure 5.9 (b) depicts its harmonic spectra βα,0
q (blue curve)

and the smallest non-zero eigenvalue λα,0
q (red curve). Notably, two unusual onsets of βα,0

0

and βα,0
1 are detected when α << 1.9Å, indicating something is wrong with the structure

data. Usually, the distance between the two alpha carbon atoms is around 3.8Å. By

examining the structure of PDB 1O08, we found that two pairs of alpha carbon atoms in

PDB 1O08 have abnormal distances as marked with black frames. The distance of alpha

carbon atoms in the upper box is 2.914Å and that in the lower box is 2.996Å, which are

too short. The plots of the other proteins can be found in the Appendix. Similar structural

defects were detected for PDB IDs 1V70, 2HQK, 2PKT, and 2VIM.

Although our package provides additional geometric information by calculating the
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Figure 5.8: Illustration of the harmonic spectra βα,0.5
0 , βα,0.5

0 , and βα,0.5
2 (green curves from

top chart to bottom chart) and the smallest non-zero eigenvalue λα,0.5
0 , λα,0.5

1 , and λα,0.5
2

(yellow curves from top chart to bottom chart) of PDB ID 5CYT (the bottom left chart
in Figure 5.6) at different filtration values α calculated from HERMES. Here, the x-axis
represents the radius filtration value α (unit: Å), the left-y-axes represents the number
of zero eigenvalues of Lα,0.5

0 , Lα,0.5
1 , and Lα,0.5

1 from top to bottom, and the right-y-axes
represents the first non-zero eigenvalue of Lα,0.5

0 , Lα,0.5
1 , and Lα,0.5

2 from top to bottom.

non-harmonic spectra of qth-order persistent Laplacians, there are two limitations of HER-

MES. First, the construction of the Vietoris–Rips complex is the primary bottleneck in

the calculation of non-harmonic spectra of persistent Laplacian matrices (PLMs). Addi-

tionally, the input format of HERMES is point cloud data. Other input formats, such as

pairwise distances, point cloud with van der Waals radii, and volumetric density are not

supported. These limitations will be addressed in our future implementation.

5.4 Discussion and Conclusion

While spectral graph theory has had tremendous success in data science to capture the

geometric and topological information, it is limited by representing a graph structure at

a given characteristic length scale, which hinders its practical application in data anal-

ysis. Motivated by the persistent (co)homology in dealing with a given initial data by
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Figure 5.9: (a) The 3D secondary structure of PDB ID 1O08. The blue, purple, and orange
colors represent helix, sheet, and random coils of PDB ID 1O08. The ball represents the
alpha carbon of PDB ID 1O08. (b) Illustration of the harmonic spectra βα,0

q (blue curve)
and the smallest non-zero eigenvalue λα,0

q (red curve) of PDB ID 1O08 at different filtration
values α when q = 0, 1, 2. The βα,0

q are calculated from Gudhi, DioDe, and HERMES, and
λα,0
q are calculated only from HERMES. Here, the x-axis represents the radius filtration

value α (unit: Å), the left-y-axis represents for the number of zero eigenvalue of Lα,0
q , and

the right-y-axis represents for the non-zero eigenvalues of Lα,0
q . Note that the harmonic

spectra from three methods are indistinguishable.

constructing a family of simplicial complexes to track their topological invariants, and

the multiscale graphs by creating a set of spectral graphs aiming to extract rich geometric

information, we proposed persistent spectral graph (PSG) theory as a unified multiscale

paradigm for simultaneous geometric and topological analysis [192]. PSG theory has

stimulated mathematical analysis and algorithm development [151], as well as applica-

tions to drug discovery [181], and protein flexibility analysis [11].

To enable broad and convenient applications of the PSG method, we present an open-

source software package called highly efficient robust multidimensional evolutionary

spectra (HERMES). For a given point-cloud dataset, HERMES creates persistent Lapla-

cian matrices (PLMs) at various topological dimensions via filtration. The spectrum of

PLMs includes harmonic parts and non-harmonic parts. It turns out that the harmonic

part spans the kernel spaces of PLMs and carries the full topological information of the
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dataset. As a result, HERMES delivers the same topological data analysis (TDA) as does

persistent homology. The non-harmonic part of PLMs provides valuable geometric anal-

ysis of the shape of data at various topological dimensions. The smallest non-zero eigen-

values are found to be very sensitive to data abnormality. In the present HERMES, both

the alpha complex and the Vietoris–Rips complex are implemented. Due to the poten-

tially large number of simplicies, the eigenvalue problem of persistent Laplacian for the

Vietoris–Rips complex becomes memory-intensive for large systems. This difficulty may

be overcome with approximate eigenvalue solvers. We will continue improving the effi-

ciency of HERMES. HERMES has been extensively validated for its accuracy, robustness,

and reliability by standard test datasets and a large number of complex protein structures,

including comparison with Gudhi and DioDe.
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CHAPTER 6

APPLICATIONS IN MATHEMATICAL MODELING OF VIROLOGY

6.1 Mutations on COVID-19 diagnostic targets

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was first reported

in Wuhan in December 2019, is an unsegmented positive-sense single-stranded RNA

virus that belongs to the β-coronavirus genus and coronaviridae family. Coronaviruses

are some of the most sophisticated viruses with their genome size ranging from 26 to 32

kilobases in length. Caused by SARS-CoV-2, the coronavirus disease 2019 (COVID-19)

pandemic outbreak has spread to more than 200 countries and territories with more than

15,012,731 infection cases and 619,150 fatalities worldwide by July 23, 2020 [193]. Addi-

tionally, travel restrictions, quarantines, and social distancing measures have essentially

put the global economy on hold. Furthermore, we remain without efficacious testing,

medications and vaccines for COVID-19. Undoubtedly, effective and widely available

COVID-19 diagnostic testing, medications and vaccines would not only save lives, but

would play a crucial role in a recovering worldwide economic1.

There are three types of diagnostic tests for COVID-19, namely polymerase chain re-

action (PCR) tests, antibody tests, and antigen tests. PCR tests detect the genetic material

from the virus. Antibody tests, also called serological tests, examine the presence of an-

tibodies produced from immune response to the virus infection. Antigen tests detect the

presence of viral antigens, e.g., parts of the viral spike protein. PCR tests are relatively

more accurate but take time to show the test result. The protein tests based on antibody

or antigen can display test results in minutes but are relatively insensitive and subject to

host immune response.

1This work is published on Nov 2020. No vaccines and medications available for COVID-19 at that
time.
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PCR diagnostic test reagents were designed based on early clinical specimens con-

taining a full spectrum of SARS-CoV-2 [194], particularly the reference genome collected

on January 5, 2020, in Wuhan (SARS-CoV-2, NC004718) [91]. Approved by the United

States (US) Food and Drug Administration (FDA), the US Centers for Disease Control

and Prevention (CDC) has detailed guidelines for COVID-19 diagnostic testing, called

“CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel” ( https:

//www.fda.gov/media/134922/download). The US CDC has designated two oligonu-

cleotide primers from regions of the virus nucleocapsid (N) gene, i.e., N1 and N2, as

probes for the specific detection of SARS-CoV-2. The panel has also selected an addi-

tional primer/probe set, the human RNase P gene (RP), as control samples. Many other

diagnostic primers and probes based on RNA-dependent RNA polymerase (RdRP), en-

velope (E), and nucleocapsid (N) genes have been designed [195] and/or designated by

the World Health Organization (WHO) as shown in Table S1 of the Supporting Material,

which provides the details of 54 commonly used diagnostic primers and probes [196]. The

diagnostic kits are often static over time, yet SARS-CoV-2 is undergoing fast mutations.

Hence, it is reported that different primers and probes show nonuniform performance

[197, 198, 199].

In this study, we genotype 31421 SARS-CoV-2 genome isolates in the globe and reveal

numerous mutations on the COVID-19 diagnostic targets commonly used around the

world, including those designated by the US CDC. We identify and analyze the SARS-

CoV-2 mutation positions, frequencies, and encoded proteins in the global setting. These

mutations may impact the diagnostic sensitivity and specialty, and therefore, they should

be considered in designing new testing kits as the current effort in COVID-19 testing,

prevention, and control. We propose diagnostic target selection and optimization based

on nucleotide-based and gene-based mutation-frequency analysis.
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6.1.1 Results and Analysis

Genotyping analysis We first genotype 31421 SARS-CoV-2 genome samples from the

globe as of July 23, 2020. The genotyping results unravel 13402 single mutations among

these virus isolates. Typically, a SARS-CoV-2 isolate can have eight co-mutations on av-

erage. A large number of mutations may occur on all of the SARS-CoV-2 genes and have

broad effects on diagnostic kits, vaccines, and drug developments. Moreover, we cluster

these mutations by k-means methods, resulting in globally at least six distinct subtypes

of the SARS-CoV-2 genomes, from Cluster I to Cluster VI. Table 6.1 shows the mutation

distribution clusters with sample counts (SC) and total single mutation counts (MC) in 20

countries.

Table 6.1: The mutation distribution clusters with sample counts (SC) and total single mu-
tation counts (MC). The listed countries are United States (US), Canada (CA), Australia
(AU), Germany (DE), France (FR), United Kingdom (UK), Italy (IT), Russia (RU), China
(CN), Japan (JP), Korean (KR), India (IN), Iceland (IS), Brazil (BR), Spain (ES), Belgium
(BE), Saudi Arabia (SA), Turkey (TR), Peru(PE), and Chile (CL).

Cluster I Cluster II Cluster III Cluster IV Cluster V Cluster VI
Country SC MC SC MC SC MC SC MC SC MC SC MC

US 3252 24846 2013 14737 286 3686 2366 27012 562 3798 304 2706
CA 113 835 80 561 9 106 42 417 84 525 33 290
AU 173 1204 587 5048 75 1010 195 2127 165 885 132 1076
DE 69 504 25 121 5 58 26 209 27 144 43 366
FR 100 718 14 55 2 22 48 523 74 465 10 83
UK 295 2328 1927 12777 2171 27636 1623 16123 1890 11835 2919 25576
IT 1 8 8 104 33 561 24 308 57 283 24 192
RU 7 52 2 32 19 219 7 53 32 187 119 968
CN 3 22 287 1155 2 32 7 50 8 35 3 26
JP 18 134 243 1001 23 272 9 79 23 139 191 1676
KR 0 0 58 327 0 0 0 0 0 0 0 0
IN 29 212 268 3045 200 2703 399 4840 141 847 51 487
IS 66 446 103 595 30 345 10 89 152 924 59 525
ES 4 33 163 1198 3 33 37 365 170 1103 42 359
BR 3 26 7 51 78 1009 2 10 7 42 63 591
BE 56 411 85 400 66 783 115 1031 230 1381 141 1239
SA 16 110 9 61 0 0 14 126 17 133 1 7
TR 0 0 28 339 13 158 50 476 4 28 31 273
PE 2 12 5 36 10 124 5 48 9 58 2 17
CL 13 91 27 282 21 285 49 665 32 200 20 169

All of the countries are involved in six clusters except Korean (KR), Saudi Arabia (SA),
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and Turkey (TR). Among them, China initially had samples only in clusters II and its

sample distributions reached to other Clusters after March 2020. Cluster I, II, and IV

dominate in the United States. Germany (DE) and France (FR) samples are mainly in

Cluster I, IV, and VI. Italy (IT) samples are mainly in Clusters III, IV, V, and VI. Samples in

Turkey (TR) are mainly in Cluster II, III, IV, and VI. Japan (JP) samples are dominated in

Cluster II and VI, Korea (KR) samples belong to Cluster II only. Cluster II is common to

all countries. Figure 6.1 depicts the distribution of six distinct clusters in the world. The

light blue, dark blue, green, red, pink, and yellow represent Cluster I, Cluster II, Cluster

III, Cluster IV, Cluster V, and Cluster VI, respectively. The color of the dominated Cluster

decides the base color of each country. To be noted, although some countries have a

lot of confirmed sequences, a very limited number of complete genome sequences are

deposited in the GISAID, which causes the geographical bias in the Table 6.1.

Figure 6.1: The scatter plot of six distinct clusters in the world in July 2020. The light blue,
dark blue, green, red, pink, and yellow represent Cluster I, Cluster II, Cluster III, Cluster
IV, Cluster V, and Cluster VI, respectively. The base color of each country is decided by
the color of the dominated Cluster.

Mutations on Diagnostic Targets
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Table 6.2: Summary of mutations on COVID-19 diagnostic primers and probes and their
occurrence frequencies in clusters. Here, SC is the sample counts and MC is the mutation
counts.

Primer MC SC Cluster I Cluster II Cluster III Cluster IV Cluster V Cluster VI
RX7038-N1 primer (Fw)a 15 79 5 14 12 28 14 6
RX7038-N1 primer (Rv)a 17 113 1 66 14 9 2 21
RX7038-N2 primer (Fw)a 7 60 3 10 24 21 1 1
RX7038-N2 primer (Rv)a 6 50 2 17 6 15 3 7
RX7038-N3 primer (Fw) [200] 13 287 4 224 13 26 14 6
RX7038-N3 primer (Rv) [200] 12 70 4 10 7 39 6 4
N1-U.S.-P [196] 15 856 4 782 20 31 15 4
N2-U.S.-P [196] 11 70 10 40 4 12 4 0
N3-U.S.-P [196] 16 84 5 27 15 21 10 6
N-Sarbeco-Fb [195] 12 63 4 20 10 15 10 4
N-Sarbeco-Pb[195] 12 116 1 19 30 42 15 9
N-Sarbeco-Rb[195] 17 156 37 26 4 80 5 4
N-China-F [196] 23 26280 38 226 10873 139 17 14987
N-China-R [196] 17 217 5 15 17 157 8 15
N-China-P [196] 7 20 1 4 6 8 1 0
N-HK-F [196] 5 149 1 2 74 7 1 64
N-HK-R [196] 14 84 14 12 14 35 4 5
N-JP-F [196] 10 66 5 10 9 16 26 0
N-JP-P [196] 9 32 0 5 1 16 3 7
N-TL-F [196] 17 149 1 84 14 31 13 6
N-TL-R [196] 17 115 29 7 7 66 3 3
N-TL-P [196] 11 45 1 5 13 5 1 20
E-Sarbeco-F1c 5 23 0 0 10 9 2 2
E-Sarbeco-R2c 4 18 0 6 5 1 6 0
E-Sarbeco-P1c 9 48 1 29 6 9 3 0
nCoV-IP2-12669Fwc 3 50 0 17 12 11 0 10
nCoV-IP2-12759Rvc 11 739 123 244 77 168 127 0
nCoV-IP2-12696bProbe(+)c 8 17 2 4 1 6 4 0
nCoV-IP4-14059Fwc 3 9 0 0 7 2 0 0
nCoV-IP4-14146Rvc 11 38 7 7 9 9 1 5
nCoV-IP4-14084Probe(+)c 11 49 3 12 6 19 5 4
RdRP-SARSr-F2d 5 89 2 1 5 37 44 0
RdRP-SARSr-R1d[195] 3 4 2 0 0 2 0 0
RdRP-SARSr-P2d[195] 4 10 0 6 2 2 0 0
ORF1ab-China-F [196] 4 19 0 4 2 6 5 2
ORF1ab-China-R [196] 0 0 0 0 0 0 0 0
ORF1ab-China-P [196] 14 61 1 6 30 11 3 10
ORF1b-nsp14-HK-F [196] 6 12 2 1 6 3 0 0
ORF1b-nsp14-HK-R[196] 9 89 3 9 52 14 6 5
ORF1b-nsp14-HK-P[196] 6 37 2 1 9 13 0 12
SC2-Fe 11 88 0 5 34 29 13 7
SC2-Re 0 0 0 0 0 0 0 0
NIID_WH-1_F501[201] 13 255 0 205 25 18 3 4
NIID_WH-1_R913[201] 14 128 1 94 9 18 4 2
NIID_WH-1_F509[201] 10 30 7 5 7 6 3 2
NIID_WH-1_R854[201] 9 261 63 25 33 117 5 18
NIID_WH-1_Seq[201] F519 19 130 8 89 17 11 3 2
NIID_WH-1_Seq R840[201] 12 66 6 9 21 8 3 19
WuhanCoV-spk1-f[201] 14 433 265 22 11 123 8 4
WuhanCoV-spk1-r[201] 4 10 0 2 3 1 2 2
NIID_WH-1_F24381[201] 20 494 275 30 16 153 13 7
NIID_WH-1_R24873[201] 5 15 1 4 3 7 0 0
NIID_WH-1_Seq_F24383[201] 21 503 275 30 22 153 13 10
NIID_WH-1_Seq_R24865[201] 6 17 2 4 5 6 0 0
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Table 6.2 provides all mutations on various primers and probes and their occurring

frequencies in various clusters, where SC is the sample counts and MC is the mutation

counts. More detailed mutation information is given in Tables S4-S56 of the Supporting

Material. We plot the mutation position and frequency for 54 primers and probes in this

work in Figure 6.2 - Figure 6.6.

It is noted that N-China-F [196] is the mostly-used reagent among all primers/probes,

but the primer target gene of SARS-CoV-2 has 15 mutations involving thousands of sam-

ples, which may account for low efficacy of certain COVID-19 diagnostic kits in China

according to this website. Note that primers and probes typically have a small length of

around 20 nucleotides.

Currently, most primers and probes used in the US target are the N gene [196]. How-

ever, Table 6.2 shows that a plurality of mutations has been found in all of the targets of

the US CDC designated COVID-19 diagnostic primers. The targets of N gene primers and

probes used in Japan, Thailand, and China, including Hong Kong, have undergone mul-

tiple mutations involving many clusters. Therefore, the N gene may not be an optimal

target for diagnostic kits, and the current test kits targeting the N gene should be updated

accordingly for testing accuracy.

It can be seen that so far, no mutation has been detected on ORF1ab-China-R and SC2-

R, showing that they are two relatively reliable diagnostic primers. Notably, the targets

of four E gene primers and probes have only six mutations. Also, no mutation has been

found on the targets of ORF1ab-China-R and SC2-R. However, the target of nCoV-IP2-

12759R recommended by Institute Pasteur, Paris has six mutations. Overall, targets of the

envelope and RNA-dependent RNA polymerase based primers and probes have fewer

mutations than the N gene. This observation leads to an assumption that the N gene is

particularly prone to mutations.
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Figure 6.2: Illustration of mutation positions and frequencies on the primer and/or probes
of RX7038-N1 primer (Fw), RX7038-N1 primer (Rv), RX7038-N2 primer (Fw), RX7038-N2
primer (Rv), RX7038-N3 primer (Fw), RX7038-N3 primer (Rv), N1-U.S.-P, N2-U.S.-P, N3-
U.S.-P, N-Sarbeco-F.

6.1.2 Discussions

Mechanisms of mutation and mutation impact on diagnostics The accumulation of the

frequency of virus mutations is due to natural selection, polymerase fidelity, cellular envi-

ronment, features of recent epidemiology, random genetic drift, host immune responses,

gene editing [202], replication mechanism, etc [203, 204]. SARS-CoV-2 has a higher fi-

delity in its transcription and replication process than other single-stranded RNA viruses

because it has a proofreading mechanism regulated by NSP14 [205]. However, 13402 sin-

gle mutations have been detected from 31421 SARS-CoV-2 genome isolates.

Due to technical constraints, genome sequencing is subject to errors. Some “muta-
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Figure 6.3: Illustration of mutation positions and frequencies on the primer and/or probes
of N-Sarbeco-P, N-Sarbeco-R, N-China-F, N-China-R, N-China-P, N-HK-F, N-HK-R, N-JP-
F, N-JP-P, N-TL-F.

tions” might result from sequencing errors, instead of actual mutations. Additionally,

mRNA editing, such as APOBEC [202], in defending virus invasion in the human im-

mune system can create fatal mutations. Both cases may lead to single-nucleotide poly-

morphisms (SNPs) without a descendant. We report that among all of 31421 genome

isolates, 13402 individual mutations have at least one descendant.

It is well known that the sensitivity of diagnostic primers and probes depends on their

target positions. Specifically, the beginning part of a primer or probe is not as important as

its ending part. A high-frequency mutation on the right end of a primer or probe position

of a target would possibly produce more false-negatives in diagnostics. Also, importantly,
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Figure 6.4: Illustration of mutation positions and frequencies on the primer and/or probes
of N-TL-R, N-TL-P, E-Sarbeco-F1, E-Sarbeco-R2, E-Sarbeco-P1, nCoV-IP2-12669Fw, nCoV-
IP2-12759Rv, nCoV-IP2-12696bProbe(+), nCoV-IP4-14059Fw, nCoV-IP4-14146Rv.

for primers involving significant mutations, polymerase chain reaction (PCR) annealing

temperatures are estimated based on correctly matched sequences [206]. Annealing tem-

peratures for primers and probes involving mutations of are given in Tables S4-S56 of the

Supporting Material.

Nucleotide-based diagnostic target optimization Table 6.2 shows that the degree of

mutations on various diagnostic targets vary dramatically. Therefore, it is of great im-

portance to know how to select an optimal viral diagnostics target to avoid potential

mutations. We discuss such a target optimization via both nucleotide-based analysis and

gene-based mutation analysis.
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Figure 6.5: Illustration of mutation positions and frequencies on the primer and/or
probes of nCoV-IP4-14084Probe(+), RdRP-SARSr-F2, RdRP-SARSr-R1, RdRP-SARSr-P2,
ORF1ab-China-F, ORF1ab-China-R, ORF1ab-China-P, ORF1b-nsp14-HK-F, ORF1b-nsp14-
HK-R, ORF1b-nsp14-HK-P.

Figure 6.7 illustrates the rates of 12 different types of mutations among 31421 SNP

variants. It is interesting to note that 51.4% mutations on the SARS-CoV-2 are of C>T

type, due to strong host cell mRNA editing knows as APOBEC cytidine deaminase [202].

Therefore, researchers should avoid cytosine bases as much as possible when designing

the diagnostic test kits.

Gene-based diagnostic target optimization

To further understand how to design the most reliable SARS-CoV-2 diagnostic targets,

we carry out gene-level mutation analysis. Figure 6.8 and Table 6.3 present the muta-

tion ratio, i.e., the number of unique single-nucleotide polymorphisms (SNPs) over the
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Figure 6.6: Illustration of mutation positions and frequencies on the primer and/or probes
of SC2-F, SC2-R,NIID_WH-1_F501,NIID_WH-1_R913, NIID_WH-1_F509, NIID_WH-
1_R85, NIID_WH-1_Seq F519, NIID_WH-1_Seq R840, WuhanCoV-spk1-f, WuhanCoV-
spk1-r, NIID_WH-1_F24381, NIID_WH-1_R24873, NIID_WH-1_Seq F24383, NIID_WH-
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corresponding gene length, for each SARS-CoV-2 gene. A smaller mutation ratio for a

given gene indicates a higher degree of conservativeness. Clearly, the ORF7b gene has

the smallest mutation ratio of 0.155, while the ORF7a gene has the largest mutation ratio

of 0.642. The N gene has the fourth-largest mutation rate of 0.558, which is very close to

the largest ratio of 0.594 for the ORF3a gene and 0.559 for the ORF8 gene. Additionally,

two ends of the SARS-CoV-2 genome, i.e., NSP1, NSP2, ORF10, N gene, ORF8, ORF7a,

and ORF6, exception for ORF7b, have higher mutation ratios. Considering the mutation

frequency, we introduce the mutation h-index, defined as the maximum value of h such

that the given gene section has h single mutations that have each occurred at least h times.

Normally, larger genes tend to have a higher h-index. Figure 6.8 shows that, with a mod-

erate length, the N gene has the second-largest h-index of 44, which is close to the largest
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Figure 6.7: The pie chart of the distribution of 12 different types of mutations.
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h-index of 47 for NSP3. Therefore, selecting SARS-CoV-2 N gene primers and probes as

diagnostic reagents for combating COVID-19 is not an optimal choice. Moreover, a few

primers and probes used in Japan are designed on the spike and NSP2 gene. However,

the high mutation ratio and h-index of spike and NSP2 gene indicate that these diagnos-

tic reagents may not perform well. Furthermore, we design a website called Mutation

Tracker to track the single mutations on 26 SARS-CoV-2 proteins, which will be an in-

tuitive tool to inform other research on regions to be avoided in future diagnostic test

development.

Table 6.3: Gene-specific statistics of SARS-CoV-2 single mutations on 26 proteins.

Gene type Gene site Gene length Unique SNPs mutation ratio h-index
NSP1 266:805 540 273 0.506 19
NSP2 806:2719 1914 973 0.508 36
NSP3 2720:8554 5835 2626 0.450 47
NSP4 8555:10054 1500 604 0.403 25
NSP5(3CL) 10055:10972 918 353 0.385 22
NSP6 10973:11842 870 348 0.400 22
NSP7 11843:12091 249 99 0.398 12
NSP8 12092:12685 594 242 0.407 14
NSP9 12686:13024 339 135 0.398 13
NSP10 13025:13441 417 147 0.353 11
NSP11 13442:13480 39 11 0.282 4
RNA-dependent-polymerase 13442:16236 2796 1030 0.368 31
Helicase 16237:18039 1803 653 0.362 29
3’-to-5’ exonuclease 18040:19620 1581 706 0.447 27
endoRNAse 19621:20658 1038 476 0.459 19
2’-O-ribose methyltransferase 20659:21552 894 358 0.400 20
Spike protein 21563:25384 3819 1651 0.432 42
ORF3a protein 25393:26220 825 490 0.594 32
Envelope protein 26245:26472 225 95 0.422 13
Membrane glycoprotein 26523:27191 666 271 0.407 23
ORF6 protein 27202:27387 183 101 0.552 12
ORF7a protein 27394:27759 363 233 0.642 16
ORF7b protein 27756:27887 129 20 0.155 5
ORF8 protein 27894:28259 363 203 0.559 18
Nucleocapsid protein 28274:29533 1257 701 0.558 44
ORF10 protein 29558:29674 114 61 0.535 12
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6.1.3 Conclusion

In summary, the targets of currently used COVID-19 diagnostic tests have numerous mu-

tations that impact the diagnostic test accuracy in identifying COVID-19. There is a need

for continued surveillance of viral evolution and diagnostic test performance, as the emer-

gence of viral variants that are no longer detectable by certain diagnostics tests is a real

possibility. A cocktail test kit is needed to mitigate mutations. We propose nucleotide-

based and gene-based diagnostic target optimizations to design the most reliable diag-

nostic targets. We analyze a full list of SNPs for all 31421 genome isolates, including

their positions and mutation types. This information, together with ranking of the de-

gree of the conservativeness of SARS-CoV-2 genes or proteins given in Table 6.3, enables

researchers to avoid non-conservative genes (or their proteins) and mutated nucleotide

segments in designing COVID-19 diagnosis, vaccine, and drugs.

6.2 Mechanisms of SARS-CoV-2 evolution

The mechanism of mutagenesis is driven by various competitive processes [203, 204, 207,

208, 24], which can be categorized into 3 different scales with many factors as illustrated

in Figure 6.9 a: 1) the molecular scale, 2) the organism scale, and 3) the population scale.

From the molecular-scale perspective, the random shifts, replication errors, transcription

errors, translation errors, viral proofreading, and viral recombination are the main driven

sources. Moreover, the host gene editing induced by the adaptive immune response [24]

and the recombination between the host and virus are the key-driven factors at the organ-

ism level. Furthermore, the natural selection popularized by Charles Darwin is a critical

process, which favors mutations that have reproductive advantages for the virus to have

adaptive traits in evolution. Such complicated mechanisms of viral mutagenesis make

the comprehension of viral transmission and evolution a grand challenge.

Although there are 28,780 unique single mutations distributed evenly on the whole

SARS-CoV-2 genome, the mutations on the S gene stand out among all 29 genes on SARS-
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CoV-2 due to the mechanism of viral infection. Under assistant with host transmembrane

protease, serine 2 (TMPRSS2), SARS-CoV-2 enters the host cell by interacting with its

S protein and the host angiotensin-converting enzyme 2 (ACE2) [37] (See Figure 6.9 b).

Later on, antibodies will be generated by the host immune system, aiming to eliminate

the invading virus through direct neutralization or non-neutralizing binding [209, 210],

which makes the S protein the main target for the current vaccines. Specifically, there is

a short immunogenic fragment located on the S protein of SARS-CoV-2 that can facili-

tate the SARS-CoV-2 S protein binding with ACE2, which is called the receptor-binding

domain (RBD) [211]. Studies have shown that the binding free energy (BFE) between

the S RBD and the ACE2 is proportional to the infectivity [212, 213, 214, 37, 28]. There-

fore, tracking and monitoring the RBD mutations and their corresponding BFE changes

will expedite understanding the infectivity, transmission, and evolution of SARS-CoV-2,

especially for the new SARS-CoV-2 variants, such as Alpha, Beta, Gamma, Delta, and

Lambda, etc. [21]

The current prevailing variants Alpha, Beta, Gamma, Delta, Kappa, Theta, Lambda,

and Mu carry at least one vital mutation at residues 452 and 501 on the S RBD 2. Notably,

in July 2020, we successfully predicted that residues 452 and 501 "have high chances to

mutate into significantly more infectious COVID-19 strains" [41]. In the same work, we

hypothesized that “natural selection favors those mutations that enhance the viral trans-

mission" and provided the first evidence for infectivity-based natural selection. In other

words, we revealed the mechanism of SARS-CoV-2 evolution and transmission based on

very limited genome data in July 2020 [41]. Additionally, we predicted three categories

of RBD mutations: 1) most likely (1149 mutations), 2) likely (1912 mutations), and 3) un-

likely (625 mutations) [41]. Up to now, all of the RBD mutations we detected fall into

our first category [102, 2]. Until now, all of the top 100 most observed RBD mutations

have BFE change greater than the average BFE changes of -0.28kcal/mol (the average

2This work was published in 2020
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BFE changes for all RBD mutations[215]). There are extremely low odds (i.e., 1
1.27×1030

)

for 100 RBD mutations to accidentally have BFE changes simultaneously above the av-

erage value. This provides convincing evidence for our hypothesis that the transmission

and evolution of new SARS-CoV-2 variants are governed by infectivity-based natural se-

lection, despite all other competing mechanisms [41]. Our predictions rely on algebraic

topology [100, 101, 4]-assisted deep learning [40, 41], but have been extensively validated

[102, 99].

However, infectivity is not the only transmission pathway that governs viral evolu-

tion. Vaccine-resistant mutations or more precisely, antibody-resistant mutations, that

can disrupt the protection of antibodies has become a viable mechanism for new variants

to transmit among the vaccinated population since the vaccine was put on the market. In

early January 2021, we have predicted that RBD mutations W353R, I401N, Y449D, Y449S,

P491R, P491L, Q493P, etc., will weaken most antibody bindings to the S protein [102].

Later on, we have provided a list of most likely vaccine escape RBD mutations with high

frequency, including S494P, Q493L, K417N, F490S, F486L, R403K, E484K, L452R, K417T,

F490L, E484Q, and A475S [2]. Moreover, we have pointed out that Y449S and Y449H

are two vaccine-resistant mutations, and “Y449S, S494P, K417N, F490S, L452R, E484K,

K417T, E484Q, L452Q, and N501Y" are the top 10 mutations that will disrupt most anti-

bodies with high-frequency [215]. As mentioned in Ref. [216], RBD mutations such as

E484K/A, Y489H, Q493K, and N501Y found in late-stage evolved S variants “confer re-

sistance to a common class of SARS-CoV-2 neutralizing antibodies", which suggests the

viral evolution is also regulated by vaccine-resistant mutations.

6.2.1 Evolutionary trajectories of viral RBD single mutations

Studying the mechanisms of SARS-CoV-2 mutagenesis is beneficial to the understand-

ing of viral transmission and evolution. The mainly driven force of viral evolution is

regulated by natural selection, which is employed by two complementary transmission

132



pathways: 1) infectivity-based pathway and 2) vaccine-resistant pathway. We have dis-

cussed the infectivity-based pathways in Ref.[215] and [39]. This section focuses on the

vaccine-resistant pathway and its impact on the transmission and evolution of SARS-

CoV-2. To understand the mechanisms of vaccine-resistant mutations, we first analyze

1,983,328 complete SARS-CoV-2 genomes, and a total of 28,780 unique single mutations

are decoded. Among them, there are 737 non-degenerate RBD mutations. The infectivity

of SARS-CoV-2 is proportional to the BFE between the S RBD and ACE2 [212, 213, 214,

37, 28]. Therefore, the BFE change induced by a specific RBD mutation reveals whether

the RBD mutation is an infectivity-strengthen or an infectivity-weaken mutation. Simi-

larly, the BFE change between S RBD and antibody induced by a given mutation reveals

whether this mutation will strengthen the binding between S and antibody or not.

Up to now, we have collected 130 antibody structures (see the Supporting Informa-

tion S4), which includes Food and Drug Administration (FDA)-approved mAbs from Eli

Lilly and Regeneron. For a specific RBD mutation, its antibody disruption count shows

the number of antibodies that have antibody-S BFE changes smaller than -0.3 kcal/mol.

The ACE2-S and antibody-S BFE changes induced by RBD mutations are predicted from

our TopNetTree model [41], which is available at TopNetmAb. All of the predicted BFE

changes induced by RBD mutations can be found at Mutation Analyzer. Figure 6.9 c

illustrates the top 25 most observed RBD mutations. The height and color of each bar

represent the ACE2-S BFE changes and frequency of each RBD mutation. The number

at the top of each bar shows the antibody disruption count of each mutation. The de-

tailed information can be viewed in Supplementary Information S4. It can be seen that

23 mutations have positive ACE2-S BFE changes, suggesting they are regulated by the

infectivity-based transmission pathway.

Howbeit, 2 RBD mutations D427N and Y449S, have negative BFE changes. Notably,

mutation Y449S has a significantly negative BFE change (-0.8112 kcal/mol) and a pretty

large antibody disruption count (89), revealing a non-typical mechanism of mutagenesis.
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Such a mutation with significantly negative ACE2-S BFE change together with a high an-

tibody disruption count is called a vaccine-resistant or antibody-resistant mutation. Fig-

ure 6.9 d is the illustration of SARS-CoV-2 S protein (blue color) with human ACE2 (pink

color), and the Y449 residue (purple color) is located on the random coil of the S protein.

Among all of the vaccine-resistant mutations, Y449S has the highest frequency (1189). In

addition, at residue 449, mutations Y449H, Y449N, Y449D are all vaccine-resistant muta-

tions that have been observed in more than 20 SARS-CoV-2 genome isolates.
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Figure 6.9: a The mechanism of mutagenesis. Nine mechanisms are grouped into three
scales: 1) molecular-based mechanism (green color); 2) organism-based mechanism (red
color); 3) population-based mechanism (blue color). The random shifts (Random), repli-
cation error (Rep), Transcription error (Transcr), viral proofreading (Proof), and recom-
bination (Recomb) are the six molecular-based mechanisms. The gene editing and the
host-virus recombination are the organism-based mechanism. In addition, the natural se-
lection (Natural) is the population-based mechanism, which is the mainly driven source
in the transmission of SARS-CoV-2. b A sketch of SARS-CoV-2 and its interaction with
host cell. c Illustration of 25 single-site RBD mutations with top frequencies. The height of
each bar shows the BFE change of each mutation, the color of each bar represents the nat-
ural log of frequency of each mutation, and the number at the top of each bar means the
AI-predicted number of antibody and RBD complexes that may be significantly disrupted
by a single site mutation. d Illustration of SARS-CoV-2 S protein with human ACE2. The
blue chain represents the human ACE2, the pink chain represents the S protein, and the
purple fragment on the S protein points out the two vaccine-resistant mutations Y449S/H.

To track the evolution trajectory of vaccine-resistant mutations, the BFE changes, log2

enrichment ratios 3, and log10 frequencies of RBD mutations are analyzed from April 30,
3Log2 enrichment ratio is collected from the experimental deep mutation enrichment data in Ref. [3]
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2020, to August 23, 2021, in every 60 days, as illustrated in Figure 6.10. Here, the top 100

most observed RBD mutations are displayed. In Figure 6.10 a, red stars mark the vaccine-

resistant mutations that have negative BFE changes. Although a few vaccine-resistant

mutations S438F, I434K, Y505C, and Q506K were detected before November 2020, they

had relatively low frequencies. However, since December 2020, such vaccine-resistant

mutations were no longer in the top 100 most observed RBD mutation list, suggesting

that in this period, the evolution of SARS-CoV-2 is mainly regulated by natural selection

through the infectivity-based transmission pathway. Notably, in May 2021, two vaccine-

resistant mutations Y449S and Y449H, came back to the top 100 most observed RBD mu-

tation list. In addition, Y449S has a relatively high frequency. Such finding indicates that

natural selection not only favors those mutations that enhance the transmission but also

those mutations that can disrupt plenty of antibodies since SARS-CoV-2 vaccines started

to provide protection among populations in early May. Similarly, patterns can be found

in Figure 6.10 b, suggesting our AI-predicted BFE changes are highly consistent with the

deep mutational enrichment ratio from experiments [3].

6.3 Mutational impacts on SARS-CoV-2 infectivity

Recently, the SARS-CoV-2 variants from the United Kingdom (UK), South Africa, and

Brazil have received much attention for their increased infectivity, potentially high vir-

ulence, and possible threats to existing vaccines and antibody therapies. The question

remains if there are other more infectious variants transmitted around the world. We

carry out a large-scale study of 506,768 SARS-CoV-2 genome isolates from patients to

identify many other rapidly growing mutations on the spike (S) protein receptor-binding

domain (RBD). We reveal that essentially all 100 most observed mutations strengthen the

binding between the RBD and the host angiotensin-converting enzyme 2 (ACE2), indi-

cating the virus evolves toward more infectious variants. In particular, we discover new

fast-growing RBD mutations N439K, S477N, S477R, and N501T that also enhance the RBD

135



0

1

2

0
1
2
3
4

0
1
2
3
4

0
1
2
3
4

0

2

4

0

2

4

0

2

4

6

0

2

4

6

04/30/20

08/28/20

02/24/21

04/25/21

06/24/21

08/23/21

BFE change
-2 -1 0 1 Log2 enrichment change

-3 2-1 0 1

Lo
g 10

(F
re

qu
en

cy
)

a b

10/27/20

12/26/20

06/29/20
*

*

*

*

*

*

S
43

8F

I4
34

K

*

Q
50

6K

* *

Y
50

5C

S
43

8F

Y
50

5C

Q
50

6K

*

Y
50

5C

Y449S
Y449H

*

*
Y449S

Y449H

0

1

2

0

2

4
6

* *
Y449S Y449H

10/22/21

04/30/20

08/28/20

02/24/21

04/25/21

06/24/21

08/23/21

10/27/20

12/26/20

06/29/20
*

*

*

*

*

*

S
43

8F

I4
34

K

*

Q
50

6K

* *

Y
50

5C

S
43

8F

Y
50

5C

Q
50

6K

*

Y
50

5C

Y449S
Y449H

*

*
Y449S

Y449H

* *
Y449S

Y449H

10/22/21

Figure 6.10: Most significant RBD mutations. a Time evolution of RBD mutations with its
mutation-induced BFE changes per 60-day from April 30, 2020, to August 31, 2021. Here,
only the top 100 most observed RBD mutations are displayed. The height and color of
each bar represent the log frequency and ACE-S BFE change induced by a given RBD mu-
tation. The red star marks the vaccine-resistant mutations with significantly negative BFE
changes. b Time evolution of RBD mutations with its experimental mutation-induced
log2 enrichment ratio changes per 60-day from April 30, 2020, to August 31, 2021. The
height and color of each bar represent the log frequency and enrichment ratio change
induced by a given RBD mutation. The red star marks vaccine-resistant mutations with
significantly negative BFE changes.
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and ACE2 binding. We further unveil that mutation N501Y involved in United Kingdom

(UK), South Africa, and Brazil variants may moderately weaken the binding between the

RBD and many known antibodies, while mutations E484K and K417N found in South

Africa and Brazilian variants, L452R and E484Q found in India variants, can potentially

disrupt the binding between the RBD and many known antibodies. Among these RBD

mutations, L452R is also now known as part of the California variant B.1.427.

6.3.1 Impacts of S RBD single mutation on SARS-CoV-2 Infectivity

The RBD is located on the S1 domain of the S protein, which plays a vital role in binding

with the human ACE2 to get entry into host cells. The mutations that are detected on the

RBD may affect the binding process and lead to the BFE changes. In this section, we ap-

ply the TopNetTree model [217] to predict the mutation-induced BFE changes of RBD and

ACE2. Figure 6.11 illustrates the predicted BFE changes for S protein and human ACE2

induced by single-site mutations on the RBD. Here, we consider 100 most observed mu-

tations. The bar plot of the other mutations on S RBD can be found in the Supporting

Information. In this figure, a total of 100 most observed mutations are displayed. Among

them, 9 mutations induced negligible negative BFE changes, while the other 91 muta-

tions are binding-strengthening mutations. Mutation T478K has the largest BFE change

which is nearly 1 kcal/mol. It may have made the Mexico variant B.1.1.222 the most

infectious observed variant.

To be noted, the residue T478 is not conservative among different species. The N501Y,

S477N, L452R, N439K, and E484K mutations are the top mutations with significant fre-

quencies. Among them, the N501Y and L452R mutations have a relatively high BFE

change of 0.55 kcal/mol and 0.58kcal/mol. Moreover, the frequency and predicted BFE

changes are both at a high level for mutations N501T, Y508H. Figure 6.12 illustrates the

time evolution of 651 binding-strengthening (blue) and binding-weakening mutations

(red) on the S protein RBD. Here, the y-axis reveals the natural log frequency of each mu-
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Figure 6.11: Illustration of SARS-CoV-2 mutation-induced BFE changes for the complexes
of S protein and ACE2. Here, 100 most observed mutations on S RBD are illustrated.

tation. Based on the our previous findings in [41], at this stage, 651 out of 1149 RBD

mutations that we predicted as "most likely" mutations have been observed, and none

of the 1912 "likely" and 625 "unlikely" mutations are tracked on the S protein RBD, sug-

gesting the reliability of our model for predicting the BFE changes of S protein RBD and

ACE2. Among 651 mutations that are detected on RBD, mutations N501Y, S477N, L452R,

N439K, and E484K have the highest frequency up to April 18, 2021.

Figure 6.12: Illustration of the time evolution of 424 ACE2 binding-strengthening RBD
mutations (blue) and 227 ACE2 binding-weakening RBD mutations (red) on the S protein
RBD of SARS-CoV-2 from Jan 07, 2020 to April 18, 2021. The x-axis represents date and
y-axis represents the natural log of frequency of each mutation.

It is important to track those mutations that have high frequency since the beginning

of 2021. Table 6.4 gives such information for top 40 mutations in 2021. It can be seen that

mutations N501Y, L452R, T478K, N501T, N550K, F490S, V483F, L452M, and A348S have
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relatively high BFE changes of the binding of S protein and ACE2, suggesting that they

may lead to more infectious variants.

Table 6.4: List of top 40 high-frequency (HF) mutations and their corresponding BFE
changes (unit: kcal/mol) of the binding of S protein and ACE2. Here, count shows the
frequency occurred in 2021.

Rank HF mutation Count BFE change Rank HF mutation Count BFE change

Top 1 N501Y 168801 0.5499 Top 21 N450K 184 0.3535
Top 2 L452R 9843 0.5752 Top 22 E484Q 182 0.0057
Top 3 E484K 9350 0.0946 Top 23 P330S 182 0.0533
Top 4 S477N 9276 0.018 Top 24 A522V 179 0.0705
Top 5 N439K 6056 0.1792 Top 25 D427N 164 -0.1133
Top 6 T478K 4935 0.9994 Top 26 P479S 153 0.3844
Top 7 K417N 1634 0.1661 Top 27 V382L 151 0.0355
Top 8 K417T 1508 0.0116 Top 28 T385N 151 0.0049
Top 9 S494P 1483 0.0902 Top 29 Q414R 143 0.0708

Top 10 N501T 1295 0.4514 Top 30 R346K 135 0.1234
Top 11 A520S 819 0.1495 Top 31 T385I 127 0.0314
Top 12 A522S 621 0.1283 Top 32 R403K 121 0.1778
Top 13 V367F 536 0.1764 Top 33 L455F 99 -0.0415
Top 14 N440K 432 0.6161 Top 34 V483F 99 0.5428
Top 15 S477R 394 0.082 Top 35 A475V 96 0.3069
Top 16 P384L 389 0.2681 Top 36 G446V 86 0.1583
Top 17 R357K 373 0.1393 Top 37 L452M 83 0.5966
Top 18 F490S 363 0.4406 Top 38 A348S 82 0.4616
Top 19 P384S 263 0.1151 Top 39 T478I 81 0.1269
Top 20 Q414K 224 0.1234 Top 40 A352S 78 0.2576

Figure 6.13 shows the 3D structure of SARS-CoV-2 S protein RBD bound with ACE2.

Here, we mark 13 mutations with either high frequency or high BFE changes. The blue

and red colors represent the mutations that have positive and negative BFE changes, re-

spectively. The darker the color is, the larger the absolute value of BFE changes is. While

mutations occur everywhere on the spike protein, the ones that are most important to

COVID-19 infectivity and the efficacy of antibodies and vaccines are located at the inter-

face between the spike protein and ACE2 or antibodies.
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Figure 6.13: The 3D structure of SARS-CoV-2 S protein RBD bound with ACE2 (PDB ID:
6M0J). We choose blue and red colors to mark the binding-strengthening and binding-
weakening mutations, respectively. Vaccine escape mutations described in Table 6.6 are
labeled.

6.3.2 Impacts of S RBD co-mutations on SARS-CoV-2 Infectivity

To understand the molecular mechanisms of vaccine-escape mutations, we analyze single

nucleotide polymorphisms (SNPs) of 1,489,884 complete SARS-CoV-2 genome sequences,

resulting in 683 non-degenerate RBD mutations and their associated frequencies. A full

set of mutation information is available on our interactive web page Mutation Tracker.

The infectivity of each mutation is mainly determined by the mutation-induced BFE

change to the binding complex of RBD and ACE2. To estimate the impact of each muta-

tion on vaccines, we collect a library of 130 antibody structures (Supporting Information

S2.1.2), including Food and Drug Administration (FDA)-approved mAbs from Eli Lilly

and Regeneron. For a given RBD mutation, its number of antibody disruptions is given

by the number of antibodies whose mutation-induced antibody-RBD BFE changes are

smaller than -0.3kcal/mol (A list of names for antibodies that are disrupted by mutations

can be found in the Supporting Information S2.1.1.). BFE changes following mutations are

predicted by our deep learning model, TopNetTree [40]. We have created an interactive

web page, Mutation Analyzer, to list all RBD mutations, their observed frequencies, their

RBD-ACE2 BFE changes following mutations, their number of antibody disruptions, and

various ranks. Figure 6.14 illustrates RBD mutations associated with prevailing SARS-
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CoV-2 variants, time evolution trajectories of all RBD mutations, and the BFE changes of

RBD-ACE2 and 130 RBD-antibodies induced by 75 significant mutations. A summary of

our analysis is given in Table 6.5.

Table 6.5: Top 25 most observed S protein RBD mutations. Here, BFE change refers to
the BFE change for the S protein and human ACE2 complex induced by a single-site S
protein RBD mutation. A positive mutation-induced BFE change strengthens the binding
between S protein and ACE2, which results in more infectious variants. Counts of anti-
body disruption represent the number of antibody and S protein complexes disrupted by
a specific RBD mutation. Here, an antibody and S protein complex is to be disrupted if its
binding affinity is reduced by more than 0.3 kcal/mol [2]. In addition, we calculate the
antibody disruption ratio (%), which is the ratio of the number of disrupted antibody and
S protein complexes over 130 known complexes. Ranks are computed from 683 observed
RBD mutations.

Mutation Worldwide BFE change Antibody disruption
Count Rank Change Rank Count Ratio Rank

N501Y 744354 1 0.5499 30 24 18.46 160
L452R 259345 2 0.5752 28 39 30.0 98
T478K 239619 3 0.9994 2 2 1.54 557
E484K 84167 4 0.0946 272 38 29.23 104
K417T 37748 5 0.0116 433 37 28.46 107
S477N 32673 6 0.0180 422 0 0.0 650
N439K 16154 7 0.1792 159 11 8.46 272
K417N 8399 8 0.1661 176 53 40.77 61
F490S 5617 9 0.4406 52 51 39.23 67
S494P 5119 10 0.0902 282 62 47.69 46
N440K 3379 11 0.6161 22 0 0.0 645
E484Q 3229 12 0.0057 442 30 23.08 130
L452Q 2858 13 0.9802 3 27 20.77 144
A520S 2727 14 0.1495 199 3 2.31 497
N501T 2054 15 0.4514 48 17 13.08 202
R357K 1973 16 0.1393 208 5 3.85 388
A522S 1959 17 0.1283 221 2 1.54 543
R346K 1686 18 0.1234 229 6 4.62 380
V367F 1395 19 0.1764 161 0 0.0 637
N440S 1361 20 0.1499 197 2 1.54 542
P384L 1155 21 0.2681 105 18 13.85 199
Y449S 1146 22 -0.8112 632 85 65.38 16
D427N 1106 23 -0.1133 558 1 0.77 589
R346S 1037 24 0.0374 386 20 15.38 182
A475V 891 25 0.3069 94 10 7.69 289
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Figure 6.14: Most significant RBD mutations. a The 3D structure of SARS-CoV-2 S protein
RBD and ACE2 complex (PDB ID: 6M0J). The RBD mutations in ten variants are marked
with color. b Illustration of the time evolution of 455 ACE2 binding-strengthening RBD
mutations (blue) and 228 ACE2 binding-weakening RBD mutations (red). The x-axis rep-
resents the date and the y-axis represents the natural log of frequency. There has been
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First, the 10 most observed or fast-growing RBD mutations are N501Y, L452R, T478K,

E484K, K417T, S477N, N439K, K417N, F490S, and S494P, as shown in Table 6.5. Inclu-

sively, these top mutations strengthen their BFEs and become more infectious, following

the natural selection mechanism [41]. Figure 6.14b shows that the frequencies of the top

three mutations increased dramatically since 2021 due to Alpha, Beta, Gamma, Delta, and

other variants. Second, among the top 25 most observed RBD mutations, T478K, L452Q

N440K, L452R, N501Y, N501T, F490S, A475V, and P384L are the 8 most infectious ones

judged by their ability to strengthen the binding with ACE2, as shown in Figure 6.14c.

The BFE changes of S protein and ACE2 for mutation T478K is nearly 1.00 kcal/mol,

which strongly enhances the binding of the RBD-ACE2 complex [218]. Together with

L452R (BFE change: 0.58kcal/mol), T478K makes Delta the most infectious variant in

VOCs. Third, among the top 25 most observed RBD mutations, Y449S, S494P, K417N,

F490S, L452R, E484K, K417T, E484Q, L452Q, and N501Y are the 10 most antibody disrup-

tive ones, judged by their interactions with 130 antibodies shown in Figure 6.14c. It can

be seen that mutations L452R, E484K, K417T, K417N, F490S, and S494P disrupt more than

30% of antibody-RBD complexes, while mutations E484K and K417T may disrupt nearly

30% antibody-RBD complexes, indicating their disruptive ability to the efficacy and relia-

bility of antibody therapies and vaccines. The most dangerous mutations are the ones that

are both infectivity-strengthening and antibody disruptive. Four RBD mutations, N501Y,

L452R, F490S, and L452Q, appear in both lists and are key mutations in WHO’s VOC and

VOI lists. Among them, F490S and L452Q are the key RBD mutations in Lambda, making

Lambda a more dangerous emerging variant than Delta. Note that high-frequency muta-

tion S477N does not significantly weaken any antibody and RBD binding, and thus does

not appear in any prevailing variants.
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6.4 Mutational impacts on SARS-CoV-2 antibodies and vaccines

6.4.1 Impacts of S RBD single mutation on SARS-CoV-2 antibodies and vaccines

It is of paramount importance to track not only ACE2-binding-strengthening RBD muta-

tions and FG mutations but also the antibody-binding-weakening RBD mutations. Our

early work reported nearly 71% mutations on the S protein RBD will weaken the bind-

ing of S protein and antibodies, while 64.9% mutations on the RBD will strengthen the

binding of S protein and ACE2, suggesting that these mutations may potentially enhance

the infectivity of SARS-CoV-2 and make the existing antibodies less effective [217]. We

call those mutations that weaken the binding of the S protein and most SARS-CoV-2 anti-

bodies as antibody disrupting (AD) mutations [217]. Notably, most antibody disrupting

mutations have negative BFE changes, suggesting that they will make the SARS-CoV-2

less infectious and thus, will not frequently occur due to natural selection. As a result,

many of them may not be able to evade the existing vaccines in a population. Therefore,

it is necessary to focus on the BFE changes of S protein and antibodies that are induced

by 100 most observed mutations on S protein RBD.

In this work, we have collected a total of 106 antibodies. The detailed information of

these 106 antibodies can be found in the Supporting Information. Figure 6.15 shows the

BFE changes for the S protein and 106 antibody complexes together with ACE2 following

100 most observed mutations on the S protein RBD. The red color marks the mutation-

induced negative BFE changes for the complexes of S protein and antibodies, which indi-

cates that these mutations may weaken the binding and make the antibody less effective.

Meanwhile, the green color represents the positive BFE changes induced by mutations,

which suggests that these mutations may strengthen the binding of S protein and anti-

bodies. From Figure 6.15, we can see that mutation E484K will disruptively weaken the

binding of S protein with antibodies such as LY-CoV555 and DH1041, which are marked

in dark red. Mutation S494P will disruptively weaken the binding of S protein with an-
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tibodies such as H11-D4, H11-H4, and LY-CoV555. Mutation K417N will disruptively

weaken the binding of S protein with a large number of antibodies. Moreover, muta-

tion N501Y will moderately weaken the binding of S protein with antibodies such as

CC12.1/CR3022, COVOX-88/-45, COVOX-88 etc.
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Figure 6.15: Illustration of SARS-CoV-2 S RBD 100 most observed mutations induced BFE
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changes that will strengthen the binding.
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Considering the impact of the possible calculation error, we set -0.3 kcal/mol as the

threshold of the binding of S protein and antibodies induced by AD mutations. Specif-

ically, we say a mutation is an AD mutation to the binding complex of S protein and

antibody if its BFE change for the complex is less than 0.3 kcal/mol.

We hypothesize that RBD mutations that can simultaneously strengthen the infectivity

and disrupt the binding between the S protein and existing antibodies will pose imminent

threats to the current crop of vaccines. We define a vaccine escape (VE) mutation as a

high-frequency mutation that is an AD mutation for at least 24 (23%) different antibodies.

We also define a vaccine-weakening (AW) mutation as a high-frequency mutation and

AD mutation for 11 (10%) to 21 (20%) different antibodies.

Table 6.6: List of vaccine escape (VE) and vaccine weakening (VW) Their corresponding
BFE changes (unit: kcal/mol) of the binding of S protein and ACE2 are provided as well.
Here, the count shows the number of antibodies that will make a specific mutation to be
an AD mutation.

VE Mutation BFE change Count VW Mutation BFE change Count

S494P 0.0902 50 N501Y 0.5499 21
Q493L 0.2279 43 Q493R 0.1271 21
K417N 0.1661 43 R408I 0.1949 19
F490S 0.4406 42 Q493H 0.2385 18
F486L 0.1456 41 P384S 0.1151 18
R403K 0.1778 34 K378N 0.0573 16
E484K 0.0946 31 G496S 0.0187 15
L452R 0.5752 28 L455F -0.0415 15
K417T 0.0116 28 I410V 0.7105 14
F490L 0.5139 25 R346S 0.0374 14
E484Q 0.0057 25 V483A 0.6695 13
A475S -0.0732 24 K444N 0.1024 12

N501T 0.4514 11
P384L 0.2681 11

Table 6.6 lists vaccine-escape (VE) and vaccine-weakening (VW) RBD mutations to-

gether with their corresponding BFE changes (unit: kcal/mol) of the binding of S pro-

tein and ACE2. The count represents the number of antibodies that will make a specific

mutation to be an AD mutation. We can see that VE mutations F490S, L452R, VW muta-

146



tions F490L, N501Y, V483A, and N501T have relatively high BFE changes of the binding

of S protein and ACE2, suggesting that they are high-risk mutations. Moreover, L452R,

N501Y, and N501T are also HF mutations, which should receive high attention.

6.4.2 Impacts of S RBD single mutation on SARS-CoV-2 antibodies and vaccines

The recent surge in COVID-19 infections is due to the occurrence of RBD co-mutations

that combine two or more infectivity-strengthening mutations. The most dangerous fu-

ture SARS-CoV-2 variants are highly likely to be RBD co-mutations that combine infectivity-

strengthening mutation(s) with antibody disruptive mutation(s). A list of 1,139,244 RBD

co-mutations that are decoded from 1,489,884 complete SARS-CoV-2 genome sequences

can be found in Section S2.1.3 of the Supporting Information, and all of the non-degenerate

RBD co-mutations with their frequencies, antibody disruption counts, total BFE changes,

and the first detection dates and countries can be found in Section S2.1.4 of the Supporting

Information.

Figure 6.16 illustrates the properties of S protein RBD 2, 3, and 4 co-mutations. The

height of each bar shows the predicted total BFE change of each set of co-mutations on

RBD, the color represents the natural log of frequency for each set of RBD co-mutations,

and the number at the top of each bar is the AI-predicted number of antibody-RBD com-

plexes that each set of RBD co-mutations may disrupt based on a total of 130 RBD and an-

tibody complexes. Notably, for a specific set of co-mutations, the higher the number at the

top of the bar is, the stronger ability to break through vaccines will be. From Figure 6.16,

RBD 2 co-mutation set [L452R, T478K] (Delta variant) has the highest frequency (219,362)

and the highest BFE change (1.575 kcal/mol). Moreover, the Delta variant would disrupt

40 antibody-RBD complexes, suggesting that Delta would not only enhance the infectiv-

ity but also be a vaccine breakthrough variant. Moreover, [L452Q, F490S] (Lambda) is

another co-mutation with high frequency, high BFE changes (1.421 kcal/mol), and high

antibody disruption count (59). In addition, Lambda is considered to be more dangerous
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than Delta due to its higher antibody disruption count. Further, [R346K, E484K, N501Y]

(Mu variant) has a BFE change of 0.768 kcal/mol and high antibody disruption count

(60). It is not as infectious as Delta and Lambda, but has a similar ability as Lambda in

escaping vaccines. Note that among all VOCs and VOIs, Beta has the highest ability to

break through vaccines, but its infectivity is relatively low (BFE change: 0.656 kcal/mol).
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Figure 6.16: Properties of RBD co-mutations. a Illustration of RBD 2 co-mutations with a
frequency greater than 90. b Illustration of RBD 3 co-mutations with a frequency greater
than 30. c Illustration of RBD 2 co-mutations with a frequency greater than 20. Here, the
x-axis lists RBD co-mutations and the y-axis represents the predicted total BFE change
between S RBD and ACE2 of each set of RBD co-mutations. The number on the top of each
bar is the AI-predicted number of antibody and RBD complexes that may be significantly
disrupted by the set of RBD co-mutations, and the color of each bar represents the natural
log of frequency for each set of RBD co-mutations. (Please check the interactive HTML
files in the Supporting Information S2.2.4 for a better view of these plots.)

Furthermore, high-frequency 2 co-mutation sets [E484K, N501Y], [F490S, N501Y], and
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[S494P, N501Y] are all considered to be the emerging variants that have the potential

to escape vaccines. From Figure 6.16, three 3 co-mutation sets [R345K, E484K, N501Y]

(Mu), [K417T, E484K, N501Y] (Gamma), and [K417N, E484K, N501Y] (Beta) draw our

attention. They are all the prevailing three co-mutations with moderate BFE changes but

very high antibody disruption count (more than 60). With a BFE change of 1.4 kcal/mol

and antibody disruption count of 82, co-mutation set [K417N, L452R, T478K] (Delta plus)

appears to be more dangerous than all of the current VOCs and VOIs.

For 4 co-mutations in Figure 6.16 c, [P384L, K417N, E484K, N501Y] (Beta plus) could

penetrate all vaccines due to its highest antibody disruption count of 101. We would

like to address that all of the co-mutations sets, except for [Y449S, N501Y] in Figure 6.16

have positive BFE changes, following natural selection. We anticipate that although co-

mutation sets [V401L, L452R, T478K], [L452R, T478K, N501Y], [A411S, L452R, T478K],

and [L452R, T478K, E484K, N501Y] have relatively low frequencies at this point, they may

become dangerous variants soon due to their large BFE changes and antibody disruption

counts.

It is important to understand the general trend of SARS-CoV-2 evolution. To this end,

we carry out the statistical analysis of RBD co-mutations. Among 1,489,884 SARS-CoV-2

genome isolates, a total of 1,113 distinctive 2 co-mutations, 612 distinctive 3 co-mutations,

and 217 distinctive 4 co-mutations are found. Figures 6.17 a, b, and c illustrate the 2D

histograms of 2, 3, and 4 co-mutations, respectively. The x-axis is the number of antibody

disruption counts, and the y-axis shows the total BFE change. Figure 6.17 a shows that

there are 82 RBD 2 co-mutations that have BFE changes in the range of [0.600, 0.799]

kcal/mol and will disruptive 40 to 49 antibodies. According to Figure 6.17 b, there are

170 unique 3 co-mutations that have large BFE changes of S protein and ACE2 in the range

of [1.500, 1.999] kcal/mol. In Figure 6.17 c, it is seen that almost all of the 4 co-mutations

on RBD have the BFE changes greater than 0.5 kcal/mol and weaken the binding of S

protein with at least 60 antibodies. Figures 6.17d, e, and f are the histograms of total BFE
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changes, natural log of frequencies, and antibody disruption counts for RBD 2, 3, and 4

co-mutations. It can be found that most of the 2, 3, and 4 RBD co-mutations have positive

total BFE changes, and the larger number of RBD co-mutations is, the higher number of

antibody disruption count will be. In summary, co-mutations with a larger number of

antibody disruptive counts and high BFE changes will grow faster. We anticipate that

when most of the population is vaccinated, vaccine-resistant mutations will become a

more viable mechanism for viral evolution.
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6.5 Validation

Here, we present a validation of our BFE change prediction for mutations on S protein

RBD compared to the experimental deep mutational enrichment data [3]. Figure 6.18

presents a comparison between experimental deep mutational enrichment data and BFE

change predictions on SARS-CoV-2 RBD binding to ACE2. In the heatmap of Figure 6.18,

both BFE changes and enrichment ratios describe the affinity changes of the S protein

RBD-ACE2 complex induced by mutations. It is obvious that the predicted BFE changes

are highly correlated to the enrichment ratio data. Pearson correlation is 0.70. It should

be noticed that the deep mutational scanning data from different labs might vary dramat-

ically due to different experimental conditions. For example, the RBD deep mutational

scanning data of the SARS-CoV-2 RBD binding to ACE2 reported by two teams [98, 3]

have a relatively small Pearson correlation of 0.666.
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Figure 6.18: A comparison between experimental RBD deep mutation enrichment data
and predicted BFE changes for SARS-CoV-2 RBD binding to ACE2 (6M0J) [3]. Top left:
deep mutational scanning heatmap showing the average effect on the enrichment for
single-site mutants of RBD when assayed by yeast display for binding to the S protein
RBD [3]. Right: RBD colored by average enrichment at each residue position bound to
the S protein RBD. Bottom left: machine learning predicted BFE changes for single-site
mutants of the S protein RBD.
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The validation of our machine learning predictions for mutation-induced BFE changes

compared to experimental data has been demonstrated in recently published papers [102,

99]. Firstly, we showed high correlations of experimental deep mutational enrichment

data and predictions for the binding complex of SARS-CoV-2 S protein RBD and pro-

tein CTC-445.2 [102] and the binding complex of SARS-CoV-2 RBD and ACE2 [99]. In

comparison with experimental data on the impacts of emerging variants on antibodies

in clinical trials, our predictions achieve a Pearson correlation at 0.80 [99]. Considering

the BFE changes induced by RBD mutations for ACE2 and RBD complex, predictions

on mutations L452R and N501Y have a highly similar trend with experimental data [99].

Meanwhile, as we presented in [2], high-frequency mutations are all having positive BFE

changes. Moreover, for multi-mutation tests, our BFE change predictions have the same

pattern with experimental data of the impact of SARS-CoV-2 variants on major antibody

therapeutic candidates, where the BFE changes are accumulative for co-mutations [99].

Recent studies on potency of mAb CT-P59 in vitro and in vivo against Delta variants[219]

show that the neutralization of CT-P59 is reduced by L452R (13.22 ng/mL) and is re-

tained against T478K (0.213 ng/mL). In our predictions [99], L452R induces a negative

BFE change (-2.39 kcal/mol), and T478K produces a positive BFE change (0.36 kcal/mol).

In Figure 3.2b, the fold changes for experimental and predicted values are presented.

Additional, Figure 3.2c shows a comparison of the experimental pseudovirus infection

changes and predicted BFE changes of ACE2 and S protein complex induced by muta-

tions L452R and N501Y. The experimental data is obtained in a reference to D614G and

reported in relative luciferase units [220]. It indicates that the binding of RBD and ACE2

dominates the infectivity of SARS-CoV-2. More details can be found in Section S6 of Sup-

porting information.

152



6.6 Websites Designed

6.6.1 Mutation Tracker

Since the initial outbreak of the COVID-19, the raging pandemic caused by SARS-CoV-2

has lasted over two years. We do have many promising vaccines, but they might have side

effects and their full side effects, particularly, long-term side effects, remain unknown. To

make things worse, near 28734 unique mutations have been recorded for SARS-CoV-2 as

shown by Mutation Tracker (See Figure 6.19). All of these reveal the sad reality that our

current understanding of life science, virology, epidemiology, and medicine is severely

limited.

28734 Single Mutations in 1876327 hCoV-19 Genomes
Relevant link: Analysis of S protein RBD mutations
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Figure 6.19: Illustration of SARS-CoV-2 mutations given by Mutation Tracker. Interactive
version is available at Mutation Tracker.

6.6.2 Mutation Analyzer

The most observed SARS-CoV-2 RBD mutations are available at Mutation Analyzer (See

Figure 6.20).
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Figure 6.20: Illustration of the analysis of SARS-CoV-2 mutations given by interactive
Mutation Analyzer that is available at Mutation Analyzer.

6.7 Discussion and Conclusion

Since the first COVID-19 case was reported in December 2019, this pandemic has led

to four waves of infections, over 400 million reported cases globally, and near 6 million

deaths. Despite the exciting progress in the developments of vaccines and monoclonal

antibodies, their potential side effects, such as allergy reactions to COVID-19 vaccines, are

not very clear. Additionally, the latest Omicron variant is able to evade current vaccines

and compromise essentially all monoclonal antibodies. Although the Omicron variant

may be less deadly than the original virus, there is no guarantee that future variants will

be less virulent. Our present understanding of SARS-CoV-2 and COVID-19 is still quite

poor.

Molecular modeling, simulation, and prediction of SARS-CoV-2 has contributed tremen-

dously to the development of effective vaccines, drugs, and antibody therapies. Their role

in combating COVID-19 is indispensable. For example, thank to an approach that inte-

grates genotyping, biophysics, artificial intelligence, advanced mathematics, and experi-

ment data, it is now well-understood that the SARS-CoV-2 evolution and transmission are
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governed by natural selection [41]. This indicates the next SARS-CoV-2 variant will be in-

creasingly more transmissible through high infectivity, robust vaccine breakthrough, and

strong antibody resistance [221, 222]. This understanding cannot be achieved through

individual experiments. Therefore, it is imperative to provide a literature review for the

study of the molecular modeling, simulation, and prediction of SARS-CoV-2. Since the

related literature is huge and varies in quality, we cannot collect all of the existing liter-

ature for the topic. However, we try to put forward a methodology-centered review in

which we emphasize the methods used in various studies. To this end, we gather the ex-

isting theoretical and computational studies of SARS-CoV-2 concerning the aspects such

as molecular modeling, biophysics, bioinformatics, cheminformatics, machine learning

including deep learning, and mathematical approaches, aiming to provide a comprehen-

sive, systematic, and indispensable component for the understanding of the molecular

mechanism of SARS-CoV-2 and their interactions with host cells. Our review provides a

methodology-centered description of the status of the molecular model, simulation, and

prediction of SARS-CoV-2. We discuss both the traditional molecular theories, models,

and methods and emergent machine learning algorithms and mathematical approaches.

Although various vaccines have been approved and in use, vaccine-breakthrough mu-

tations have become a serious problem. Even with the promising news of new vaccines,

COVID-19 as a global health crisis may still last for years before it is fully stopped glob-

ally. The research on SARS-CoV-2 will also last for many years. It will take researchers

many more years to fully understand the molecular mechanism of coronaviruses, such

as RNA proofreading, virus-host cell interactions, antibody-antigen interactions, protein-

protein interactions, protein-drug interactions, viral regulation of host cell functions, and

immune response. Even if we could control the transmission of SARS-CoV-2 in the future,

newly emergent coronaviruses may still cause similar pandemic outbreaks. Therefore, the

coronaviral studies will continue even after the current pandemic is fully under control.

Currently, epidemiologists, virologists, biologists, medical scientists, pharmacists, phar-
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macologists, chemists, biophysicists, mathematicians, computer scientists, and many oth-

ers are called to investigate various aspects of COVID-19 and SARS-CoV-2. This trend of a

joint effort on COVID-19 investigations will continue beyond the present pandemic. The

urgent need for the molecular mechanistic understanding of SARS-CoV-2 and COVID-

19 will further stimulate the development of computational biophysical, artificial intelli-

gence, and advanced mathematical methods. The theoretical, computational, and mathe-

matical communities will benefit from this endeavor against the pandemic.

The year 2020 has witnessed the birth of human mRNA vaccines for the first time —

a remarkable accomplishment in science and technology. Although there are more dark

days ahead of us, humanity will prevail in a post-COVID-19 world. Science will emerge

stronger against all pathogens and diseases in the future.
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CHAPTER 7

DISSERTATION CONTRIBUTION

The main contributions of this dissertation are listed as follows:

• In Chapter 2, we propose two topological Laplacians: persistent Laplacians and

persistent path Laplacians for the multiscale analysis of a given point-cloud dataset.

The detailed construction process of persistent Laplacians and persistent path Lapla-

cians are also included in Chapter 2. Notably, persistent Laplacians can extract rich

topological and geometric information during filtration, and persistent path Lapla-

cians are proposed to deal with asymmetric structures such as digraphs and net-

works.

• In Chapter 3, we set up a standard procedure to systematically decode nearly 30k

unique single mutations from more than 2 million complete SARS-CoV-2 genome

sequences in the GISAID database. In addition, we build a mathematical model

called TopNetmAb, to detect the impact of single and co-mutations on the SARS-

CoV-2 variants.

• In Chapter 4, we discuss applications of two new topological Laplacians in several

systems, such as benzene, tetrahedron, pyramid, fullerene, curcurbit[n]urils sys-

tems, etc.

• In Chapter 5, we develop an open-source software package, called highly efficient

robust multidimensional evolutionary spectra (HERMES), to enable broad applica-

tions of persistent Laplacians in science, engineering, and technology. To ensure the

reliability and robustness of HERMES, we also validate the software with simple

geometric shapes and complex datasets from three-dimensional (3D) protein struc-

tures.
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• Chapter 6 shows our findings in the study of SARS-CoV-2, including the mecha-

nisms of SARS-CoV-2 evolution, the mutational impacts on the infectivity, diagnos-

tic targets, vaccines, and antibodies of SARS-CoV-2. Our standard procedures re-

garding date collection, pre-possessing, and model training integrate multiple tech-

niques in computational biophysical, artificial intelligence, and advanced mathe-

matics, which may facilitate the development of next-generation vaccines and anti-

body therapies against future SARS-CoV-2 variants.

The contents of this dissertation are mostly adopted from the following publications

and preprints1:

• Wang, R., Wei, G., Persistent Path Laplacian, arXiv, (2022)

• Gao, K.∗, Wang, R.∗, Chen, J., Cheng, L., Frishcosy, J., Huzumi, Y., Qiu, Y., Schluck-

bier, T., Wei, X., and Wei, G., Methodology-centered review of molecular modeling,

simulation, and prediction of SARS-CoV-2, Chemical Reviews, in press, (2022).

• Wang, R., Chen, J., Hozumi, Y., Yin, C., and Wei, G., Emerging vaccine-breakthrough

SARS-CoV-2 variants, ACS Infectious Diseases, 8(3), 546-556, (2022).

• Chen, J., Wang, R., and Wei, G., Review of the mechanisms of SARS-CoV-2 evolution

and transmission, (2021).

• Wang, R., Chen, J., and Wei, G., Mechanisms of SARS-CoV-2 evolution revealing

vaccine-resistant mutations in Europe and America, The Journal of Physical Chem-

istry Letters, 12, 11850-11857, (2021)

• Chen, J., Gao, K., Wang, R., and Wei, G., Revealing the threat of emerging SARS-

CoV-2 mutations to antibody therapies, Journal of Molecular Biology, 433(18), (2021)

1(∗ co-first author)
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• Wang, R., Gao, K., Chen, J., and Wei, G., Vaccine-escape and fast-growing mutations

in the United Kingdom, the United States, Singapore, Spain, South Africa, and other
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of Chemical Information and Modeling, 60, 5853-5865 (2020).
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APPENDIX A

SUPPLEMENTARY MATERIALS IN PERSISTENT LAPLACIAN

A.1 Additional Laplacian matrices and their properties

In this section, we give a further description of additional boundary and Laplacian ma-

trices and their properties involved in the filtration process in Figure 2.6.

Table A.1: K1 → K1.

q q = 0 q = 1 q = 2

B1+0
q+1 / / /

B1
q

0 1 2 3 4
[ 0 0 0 0 0

] / /

L1+0
q


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 / /

β1+0
q 5 / /

dim(L1+0
q ) 5 / /

rank(L1+0
q ) 0 / /

nullity(L1+0
q ) 5 / /

Spectra(L1+0
q ) {0, 0, 0, 0, 0} / /
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Table A.2: K2 → K2.

q q = 0 q = 1 q = 2

B2+0
q+1

01
0
1
2
3
4


−1
1
0
0
0

 / /

B2
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01
0
1
2
3
4


−1
1
0
0
0

 /

L2+0
q


1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 [2] /

β2+0
q 4 0 /

dim(L2+0
q ) 5 1 /

rank(L2+0
q ) 1 1 /

nullity(L2+0
q ) 4 0 /

Spectra(L2+0
q ) {0, 0, 0, 0, 2} 2 /
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Table A.3: K3 → K3.

q q = 0 q = 1 q = 2

B3+0
q+1

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 / /

B3
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 /

L3+0
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 0 0




2 −1 0 1
−1 2 −1 0
0 −1 2 1
1 0 1 2

 /

β3+0
q 2 1 /

dim(L3+0
q ) 5 4 /

rank(L3+0
q ) 3 3 /

nullity(L3+0
q ) 2 1 /

Spectra(L3+0
q ) {0, 0, 2, 2, 4} {0, 2, 2, 4} /
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Table A.4: K5 → K5.

q q = 0 q = 1 q = 2

B5+0
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0



012 023
01
12
23
03
24
02


1
1
0
0
0
−1

0
0
1
−1
0
1


0123

012
023

[
−1
1

]

B5q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0



012 023
01
12
23
03
24
02


1
1
0
0
0
−1

0
0
1
−1
0
1



L5+0
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




3 0 0 1 0 0
0 3 −1 0 −1 0
0 −1 3 0 1 0
1 0 0 3 0 0
0 −1 1 0 2 −1
0 0 0 0 −1 4


[

4 0
0 4

]

β5+0
q 1 0 0

dim(L5+0
q ) 5 6 2

rank(L5+0
q ) 4 6 2

nullity(L5+0
q ) 1 0 0

Spectra(L5+0
q ) {0, 1, 2, 4, 5} {1, 2, 2, 4, 4, 5} {4, 4}
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Table A.5: K1 → K2.

q q = 0 q = 1 q = 2

B1+1
q+1

01
0
1
2
3
4


−1
1
0
0
0

 / /

B1
q

0 1 2 3 4
[ 0 0 0 0 0 ]

/ /

L1+1
q


1 −1 0 0 0
−1 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 / /

β1+1
q 4 / /

dim(L1+1
q ) 5 / /

rank(L1+1
q ) 1 / /

nullity(L1+1
q ) 4 / /

Spectra(L1+1
q ) {0, 0, 0, 0, 2} / /
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Table A.6: K1 → K4.

q q = 0 q = 1 q = 2

B1+3
q+1

01 12 23 03 24
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 / /

B1
q

0 1 2 3 4
[ 0 0 0 0 0 ]

/ /

L1+3
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 3 −1 −1
−1 0 −1 2 0
0 0 −1 0 1

 / /

β1+3
q 1 / /

dim(L1+3
q ) 5 / /

rank(L1+3
q ) 4 / /

nullity(L1+3
q ) 1 / /

Spectra(L1+3
q ) {0, 0.8299, 2, 2.6889, 4.4812} / /

168



Table A.7: K1 → K5.

q q = 0 q = 1 q = 2

B1+4
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

 / /

B1
q

0 1 2 3 4
[ 0 0 0 0 0 ]

/ /

L1+4
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1

 / /

β1+4
q 1 / /

dim(L1+4
q ) 5 / /

rank(L1+4
q ) 4 / /

nullity(L1+4
q ) 1 / /

Spectra(L1+4
q ) {0, 1, 2, 4, 5} / /
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Table A.8: K1 → K6.

q q = 0 q = 1 q = 2

B1+5
q+1

01 12 23 03 24 02 13
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0

 / /

B1
q

0 1 2 3 4
[ 0 0 0 0 0 ]

/ /

L1+5
q


3 −1 −1 −1 0
−1 3 −1 −1 0
−1 −1 4 −1 −1
−1 −1 −1 3 0
0 0 −1 0 1

 / /

β1+5
q 1 / /

dim(L1+5
q ) 5 / /

rank(L1+5
q ) 4 / /

nullity(L1+5
q ) 1 / /

Spectra(L1+5
q ) {0, 1, 4, 4, 5} / /
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Table A.9: K2 → K3.

q q = 0 q = 1 q = 2

B2+1
q+1

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 / /

B2
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01
0
1
2
3
4


−1
1
0
0
0

 /

L2+1
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 2 −1 0
−1 0 −1 2 0
0 0 0 0 0

 [2] /

β2+1
q 2 0 /

dim(L2+1
q ) 5 1 /

rank(L2+1
q ) 3 1 /

nullity(L2+1
q ) 2 0 /

Spectra(L2+1
q ) {0, 0, 2, 2, 4} 2 /
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Table A.10: K2 → K4.

q q = 0 q = 1 q = 2

B2+2
q+1

01 12 23 03 24
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 / /

B2
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01
0
1
2
3
4


−1
1
0
0
0

 /

L2+2
q


2 −1 0 −1 0
−1 2 −1 0 0
0 −1 3 −1 −1
−1 0 −1 2 0
0 0 −1 0 1

 [2] /

β2+2
q 1 0 /

dim(L2+2
q ) 5 1 /

rank(L2+2
q ) 4 1 /

nullity(L2+2
q ) 1 0 /

Spectra(L2+2
q ) {0, 0.8299, 2, 2.6889, 4.4812} 2 /
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Table A.11: K2 → K5.

q q = 0 q = 1 q = 2

B2+3
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0


012 023

01
[
1 0

] /

B2
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01
0
1
2
3
4


−1
1
0
0
0

 /

L2+3
q


3 −1 −1 −1 0
−1 3 −1 −1 0
−1 −1 4 −1 −1
−1 −1 −1 3 0
0 0 −1 0 1

 [3] /

β2+3
q 1 0 /

dim(L2+3
q ) 5 1 /

rank(L2+3
q ) 4 1 /

nullity(L2+3
q ) 1 0 /

Spectra(L2+3
q ) {0, 1, 2, 4, 5} 3 /
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Table A.12: K2 → K6.

q q = 0 q = 1 q = 2

B2+4
q+1

01 12 23 03 24 02 13
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0


012 023 013 123

01
[
1 0 1 0

] /

B2
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01
0
1
2
3
4


−1
1
0
0
0

 /

L2+4
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1

 [4] /

β2+4
q 1 0 /

dim(L2+4
q ) 5 1 /

rank(L2+4
q ) 4 1 /

nullity(L2+4
q ) 1 0 /

Spectra(L2+4
q ) {0, 1, 4, 4, 5} 4 /
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Table A.13: K3 → K5.

q q = 0 q = 1 q = 2

B3+2
q+1

01 12 23 03 24 02
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0


012 023

01
12
23
03


1
1
0
0

0
0
1
−1

 /

B3
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 /

L3+2
q


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 4 −1 −1
−1 0 −1 2 0
0 0 −1 0 1




3 0 0 1
0 3 −1 0
0 −1 3 0
1 0 0 3

 /

β3+2
q 1 0 /

dim(L3+2
q ) 5 4 /

rank(L3+2
q ) 4 4 /

nullity(L3+2
q ) 1 0 /

Spectra(L3+2
q ) {0, 1, 2, 4, 5} {2, 2, 4, 4} /
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Table A.14: K3 → K6.

q q = 0 q = 1 q = 2

B3+3
q+1

01 12 23 03 24 02 13
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0


012 023 013 123

01
12
23
03


1
1
0
0

0
0
1
−1

1
0
0
−1

0
1
1
0

 /

B3
q

0 1 2 3 4
[ 0 0 0 0 0 ]

01 12 23 03
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

 /

L3+3
q


3 −1 −1 −1 0
−1 3 −1 −1 0
−1 −1 4 −1 −1
−1 −1 −1 3 0
0 0 −1 0 1




4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4

 /

β3+3
q 1 0 /

dim(L3+3
q ) 5 4 /

rank(L3+3
q ) 4 4 /

nullity(L3+3
q ) 1 0 /

Spectra(L3+3
q ) {0, 1, 4, 4, 5} {4, 4, 4, 4} /
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Table A.15: K4 → K6.

q q = 0 q = 1 q = 2

B4+2
q+1

01 12 23 03 24 02 13
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

−1
0
1
0
0

0
−1
0
1
0



012 023 013 123
01
12
23
03
24


1
1
0
0
0

0
0
1
−1
0

1
0
0
−1
0

0
1
1
0
0

 /

B4q
0 1 2 3 4

[ 0 0 0 0 0 ]

01 12 23 03 24
0
1
2
3
4


−1
1
0
0
0

0
−1
1
0
0

0
0
−1
1
0

−1
0
0
1
0

0
0
−1
0
1

 /

L4+2
q


3 −1 −1 −1 0
−1 3 −1 −1 0
−1 −1 4 −1 −1
−1 −1 −1 3 0
0 0 −1 0 1




4 0 0 0 0
0 4 0 0 −1
0 0 4 0 1
0 0 0 4 0
0 −1 1 0 2

 /

β4+2
q 1 0 /

dim(L4+2
q ) 5 5 /

rank(L4+2
q ) 4 5 /

nullity(L4+2
q ) 1 0 /

Spectra(L4+2
q ) {0, 1, 4, 4, 5} {1.2679, 4, 4, 4, 4.7321} /

A.2 Parameters in the protein B-factor prediction

Table A.16: Fitting parameters from w0 to w5.

r 0 1 2 3 4 5
wr 10.6102 0.2026 −0.0031 0.2169 0.3127 0.2815

Table A.17: Fitting parameters from w6 to w11.

r 6 7 8 9 10 11
wr −0.4623 1.0203 0.6110 −0.6872 −1.0695 4.4257
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APPENDIX B

SUPPLEMENTARY MATERIALS IN PERSISTENT PATH LAPLACIAN

Table B.1 - Table B.14, we present the detailed matrix constructions, Betti numbers, and

spectra for various digraphs as shown in Figure 4.10 top and bottom panels

Table B.1: Matrix construction of graph G1 (with isolated points included) in the top panel
of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} {0} {0}

Bn+1 5× 0 empty matrix / /

Ln 5× 5 zero matrix / /

βn 5 / /

Spectra(Ln) {0, 0, 0, 0, 0} / /

Table B.2: Matrix construction of graph G1 (without isolated points) in the top panel of
Figure 4.10.

n n = 0 n = 1 n = 2
Ωn {0} {0} {0}

Bn+1 / / /

Ln / / /

βn / / /

Spectra(Ln) / / /
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Table B.3: Matrix construction of graph G2 in the top panel of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e13, e25, e32, e34, e45} {0}

Bn+1

e13 e25 e32 e34 e45
e1
e2
e3
e4
e5


−1
0
1
0
0

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 5× 0 empty matrix
(
/
)

Ln


1 0 −1 0 0
0 2 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2




2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 1 0
−1 0 1 2 1
0 −1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /

Table B.4: Matrix construction of graph G3 in the top panel of Figure 4.10.
n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e12, e13, e14, e25, e32, e34, e54} span{e132, e134}

Bn+1

e12 e13 e14 e25 e32 e34 e54
e1
e2
e3
e4
e5


−1
1
0
0
0

−1
0
1
0
0

−1
0
0
1
0

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1



e132 e134
e12
e13
e14
e25
e32
e34
e54



−1
1
0
0
1
0
0

0
1
−1
0
0
1
0


2× 0 empty matrix

Ln


3 −1 −1 −1 0
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
0 −1 0 −1 2





3 0 1 −1 0 0 0
0 4 0 0 0 0 0
1 0 3 0 0 0 0
−1 0 0 2 −1 0 −1
0 0 0 −1 3 1 0
0 0 0 0 1 3 1
0 0 1 −1 0 1 2


(

3 1
1 3

)

βn 1 1 0

Spectra(Ln) {0, 2, 3, 4, 5} {0, 2, 2, 3, 4, 4, 5} {2, 4}
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Table B.5: Matrix construction of graph G4 in the top panel of Figure 4.10.
n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e12, e13, e14, e15, e25, e32, e34, e54} span{e125, e132, e134, e154}

Bn+1

e12 e13 e14 e15 e25 e32 e34 e54
e1
e2
e3
e4
e5


−1
1
0
0
0

−1
0
1
0
0

−1
0
0
1
0

−1
0
0
0
1

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1



e125 e132 e134 e154
e12
e13
e14
e15
e25
e32
e34
e54



1
0
0
−1
1
0
0
0

−1
1
0
0
0
1
0
0

0
1
−1
0
0
0
1
0

0
0
−1
1
0
0
0
1


4× 0 empty matrix

Ln


4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3





4 0 1 0 0 0 0 0
0 4 0 1 0 0 0 0
1 0 4 0 0 0 0 0
0 1 0 4 0 0 0 0
0 0 0 0 3 −1 0 −1
0 0 0 0 −1 3 1 0
0 0 0 0 0 1 3 1
0 0 0 0 −1 0 1 3




3 −1 0 −1
−1 3 1 0
0 1 3 1
−1 0 1 3



βn 1 1 0

Spectra(Ln) {0, 3, 3, 5, 5} {1, 3, 3, 3, 3, 5, 5, 5} {1, 3, 3, 5}

Table B.6: Matrix construction of graph G5 in the top panel of Figure 4.10.
n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e12, e13, e14, e15, e25, e32, e34, e54} span{e125, e132, e134, e154}

Bn+1

e12 e13 e14 e15 e25 e32 e34 e54
e1
e2
e3
e4
e5


−1
1
0
0
0

−1
0
1
0
0

−1
0
0
1
0

−1
0
0
0
1

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1



e125 e132 e134 e154
e12
e13
e14
e15
e25
e32
e34
e54



1
0
0
−1
1
0
0
0

−1
1
0
0
0
1
0
0

0
1
−1
0
0
0
1
0

0
0
−1
1
0
0
0
1


4× 0 empty matrix

Ln


4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3





4 0 1 0 0 0 0 0
0 4 0 1 0 0 0 0
1 0 4 0 0 0 0 0
0 1 0 4 0 0 0 0
0 0 0 0 3 −1 0 −1
0 0 0 0 −1 3 1 0
0 0 0 0 0 1 3 1
0 0 0 0 −1 0 1 3




3 −1 0 −1
−1 3 1 0
0 1 3 1
−1 0 1 3



βn 1 0 0

Spectra(Ln) {0, 3, 3, 5, 5} {1, 3, 3, 3, 3, 5, 5, 5} {1, 3, 3, 5}
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Table B.7: Matrix construction of graph G1 (with isolated points included) in the bottom
panel of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} / /

Bn+1 5× 0 empty matrix / /

Ln 5× 5 zero matrix / /

βn 5 / /

Spectra(Ln) {0, 0, 0, 0, 0} / /

Table B.8: Matrix construction of graph G1 (without isolated points) in the bottom panel
of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn {0} {0} {0}

Bn+1 / / /

Ln / / /

βn / / /

Spectra(Ln) / / /
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Table B.9: Matrix construction of graph G2 (with isolated points included) in the bottom
panel of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54
e1
e2
e3
e4
e5


0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


0 0 0 0 0
0 2 0 0 −2
0 0 1 1 0
0 0 1 2 1
0 −2 0 1 3




2 0 1 −2
0 2 −1 0
1 −1 2 −1
−2 0 −1 2

 (
/
)

βn 2 1 0

Spectra(Ln) {0, 0, 0.6571, 2.5293, 4.8136} {0, 0.6571, 2.5293, 4.8136} /

Table B.10: Matrix construction of graph G2 (without isolated points) in the bottom panel
of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54
e2
e3
e4
e5


−1
0
0
1

1
−1
0
0

0
−1
1
0

0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 −1 0 −1
−1 2 −1 0
0 1 2 1
−1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 2, 4} /
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Table B.11: Matrix construction of graph G3 (with isolated points included) in the bottom
panel of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54
e1
e2
e3
e4
e5


0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


0 0 0 0 0
0 2 0 0 −2
0 0 1 1 0
0 0 1 2 1
0 −2 0 1 3




2 0 1 −2
0 2 −1 0
1 −1 2 −1
−2 0 −1 2

 (
/
)

βn 2 1 0

Spectra(Ln) {0, 0, 0.6571, 2.5293, 4.8136} {0, 0.6571, 2.5293, 4.8136} /

Table B.12: Matrix construction of graph G3 (without isolated points) in the bottom panel
of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e2, e3, e4, e5} span{e25, e32, e34, e54} {0}

Bn+1

e25 e32 e34 e54
e2
e3
e4
e5


−1
0
0
1

1
−1
0
0

0
−1
1
0

0
0
1
−1

 4× 0 empty matrix
(
/
)

Ln


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2




2 −1 0 −1
−1 2 −1 0
0 1 2 1
−1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 2, 2, 4} {0, 2, 2, 4} /
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Table B.13: Matrix construction of graph G4 in the bottom panel of Figure 4.10.

n n = 0 n = 1 n = 2
Ωn span{e1, e2, e3, e4, e5} span{e13, e25, e32, e34, e45} {0}

Bn+1

e13 e25 e32 e34 e45
e1
e2
e3
e4
e5


−1
0
1
0
0

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1

 5× 0 empty matrix
(
/
)

Ln


1 0 −1 0 0
0 2 −1 0 −1
−1 −1 3 −1 0
0 0 −1 2 −1
0 −1 0 −1 2




2 0 −1 −1 0
0 2 −1 0 −1
−1 −1 2 1 0
−1 0 1 2 1
0 −1 0 1 2

 (
/
)

βn 1 1 0

Spectra(Ln) {0, 0.8299, 2, 2.6889, 4.4812} {0, 0.8299, 2, 2.6889, 4.4812} /

Table B.14: Matrix construction of graph G5 in the bottom panel of Figure 4.10.

n n = 0 n = 1 n = 2

Ωn span{e1, e2, e3, e4, e5} span{e12, e13, e14, e15, e25, e32, e34, e54} span{e125, e132, e134, e154}

Bn+1

e12 e13 e14 e15 e25 e32 e34 e54
e1
e2
e3
e4
e5


−1
1
0
0
0

−1
0
1
0
0

−1
0
0
1
0

−1
0
0
0
1

0
−1
0
0
1

0
1
−1
0
0

0
0
−1
1
0

0
0
0
1
−1



e125 e132 e134 e154
e12
e13
e14
e15
e25
e32
e34
e54



1
0
0
−1
1
0
0
0

−1
1
0
0
0
1
0
0

0
1
−1
0
0
0
1
0

0
0
−1
1
0
0
0
1


4× 0 empty matrix

Ln


4 −1 −1 −1 −1
−1 3 −1 0 −1
−1 −1 3 −1 0
−1 0 −1 3 −1
−1 −1 0 −1 3





4 0 1 0 0 0 0 0
0 4 0 1 0 0 0 0
1 0 4 0 0 0 0 0
0 1 0 4 0 0 0 0
0 0 0 0 3 −1 0 −1
0 0 0 0 −1 3 1 0
0 0 0 0 0 1 3 1
0 0 0 0 −1 0 1 3




3 −1 0 −1
−1 3 1 0
0 1 3 1
−1 0 1 3



βn 1 0 0

Spectra(Ln) {0, 3, 3, 5, 5} {1, 3, 3, 3, 3, 5, 5, 5} {1, 3, 3, 5}
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