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ABSTRACT

CAUSAL INFERENCE WITH MENDELIAN RANDOMIZATION FOR LONGITUDINAL
DATA

By

Jialin Qu

Mendelian Randomization (MR) uses genetic variants as instrumental variables (IVs) to examine

the causal relationship between an exposure and an outcome in observational studies. When

confounding factors exist, the correlation between a predictor variable and an outcome variable

does not imply causation. IV regression has been a popular method to control the confounding

effect for causal inference. According to Mendel’s first and second laws of inheritance, genetic

variants can be considered as valid IVs. Popular MR methods include the ratio estimator, the

inverse-variance weighted estimator and the two stage estimator. However, all these methods are

based on cross-sectional data. In practice, data in the observational studies can be collected over

time, the so-called longitudinal data. Longitudinal data makes it possible to capture changes within

subjects over time and thus offers advantages to causal modeling to establish causal relationships.

However, causal inference method that can control the time-varying confounding effect is largely

lacking in literature. In this dissertation, we explore MR analysis for longitudinal data by proposing

different causal models and assuming different casual mechanisms. The proposed methods are

strongly motivated by a real study to examine the causal relationship between hormone secretion

and emotional eating disorder in teen girls.

We start with a concurrent model which assumes current outcome is only affected by current

exposure. Coefficients of both genetic variants (i.e., IVs) and exposure are considered as time-

varying effects. We apply the quadratic inference function approach in a two-step IV regression

framework and focus on statistical testing to infer causality. Through extensive simulation studies,

we show that the proposed method can well protect type I error and has reasonable testing power.

In Chapter 3, we generalize the concurrent model to a more complex case and propose a time

lag model to investigate time delayed causal effects. In the time lag model, we assume current



outcome at time 𝑡 is affected by previous exposures measured up to 𝑡− 𝑠 time points, where the time

lag △𝑡 can be determined by a rigorous model selection procedure based on data. Similar to the

concurrent model, we assume the effects of genetic variants on exposure and the effects of exposure

on outcome both are time-varying. We propose different tests for point-wise and simultaneous

testing to assess the causal relationship.

In Chapter 4, We further generalize the time lag model to the case where the cumulative

effect of previous 𝑡 exposures contributes to the outcome at time 𝑡, under a sparse functional data

analysis framework. The causal relationship is examined under the functional principal component

regression framework with sparse functional data. Simulation results show that the type I error is

well controlled.

We apply our models to the emotional eating disorder data to examine if hormone secretion

during the menstrual cycle in teen girls has a causal effect on emotional eating behavior and

identify interesting results. This thesis work represents the very first exploration in MR analysis

with longitudinal data.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this dissertation, we studied the causal relationship between an exposure and a response variable

with repeated measurements. By experimenting with pea plant breeding, Mendel developed three

principles of inheritance that described the transmission of genetic traits, before anyone knew

genes existed in the nineteenth century[56]. Mendel’s insight greatly expanded the understanding

of genetic inheritance, and researchers have been fascinated with the role of genetics played in our

lives. Using genetic variants as instrumental variables, Mendelian Randomization is a research

method that aims to investigate the causal relationship between modifiable risk factors and disease.

The increasing use of Mendelian Randomization has prompted a huge number of research.

The general aim of the Mendelian Randomization approach is the estimation of a causal effect

of an exposure on an outcome using (one or more) genetic instruments for the exposure. Ratio

estimator[79], inverse-variance weighted estimator[52], weighted median estimator[8], two stage

estimator and some nonparametric estimators, etc. are developed for this purpose. Another

popular direction is discussing the validity of Mendelian Randomization since its validity is based

on three key assumptions: 1) the instrument variable is associated with the exposure, 2) the

association between the instrument variable and the outcome is unconfounded, and 3) the instrument

variable only affects the outcome via the exposure, known as the exclusion restriction criterion.

A primary cause of violation of the exclusion restriction criterion, pleiotropy, where a genetic

variant affects the exposure and the outcome through independent pathways and without being

mediated by another is fully discussed[7][39][77][41]. Besides, pleiotropy, estimation bias may

be also caused by weak instruments[13][22][11]. Most of the Mendelian Randomization focus

on one-time measurement, while longitudinal observations capture change within subjects over

time and contain more information. Thus, incorporating the time information into the analysis can
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potentially improve the causal inference.

In this chapter, we first provided some background information on causal inference and

Mendelian Randomization in section 1.2. The commonly used IV estimation methods for MR

is then reviewed in section 1.3. In section 1.4, we discussed causal modeling methods for longitu-

dinal data. The goal and organization of this dissertation are offered in section 1.5.

1.2 Causal Inference and Mendelian Randomization

The gold standard method to address both confounding and causality is a randomised controlled

trial (RCT). RCT is a trial in which subjects are randomly assigned to one of two groups: one (the

experimental group) receiving the intervention that is being tested, and the other (the comparison

group or control) receiving an alternative (conventional) treatment[47]. The two groups are then

followed up to see if there are any differences between them in outcome. RCTs are the most

stringent way of determining whether a cause-effect relation exists between the intervention and the

outcome. However, for many research questions, it is impossible or unethical to randomly assign

the treatment. For example, it would not be possible nor acceptable to randomly allocate obesity.

Even if we could randomly assign the treatment, there are still several challenges in conducting

a good quality RCT. RCTs are time consuming and it may take many years before the results are

available for analysis. RCTs need a large number of participants in a trial to ensure sufficient

statistical power. The general orthodontic trials that look at data from start to the end of orthodontic

treatment will run for at least five years. For these reasons, RCTs usually have expensive cost.

Moreover, it is hard to generalize RCTs’ result due to its low external validity. The intervention

may only work for a particular group of people in that context instead of working in the same way

for a different group in a different context.

Compared with RCTs, observational studies are more common and becoming a key part of

research. In an observational study, no intervention takes place. Observational studies are ones

where researchers are looking at the effect of some type of risk factor, diagnostic test, treatment or

other intervention, without trying to manipulate who is, or who is not exposed to it. Observational
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studies are generally used in hard science, medical, and social science fields. There are two main

types of observational studies: cohort studies and case control studies. A cohort is a group of

people who are linked in a particular way, for example, a birth cohort would include people who

were born within a specific period of time. Cohort studies enroll a population at risk and follow

them for a period of time. Individuals who develop the disease in that time are then compared with

individuals who remain disease-free[72]. Researchers in case control studies identify individuals

with an existing health issue or condition, or “cases”, along with a similar group without the

condition, or “controls”. The two groups are then compared, to see if the case group exhibits a

particular characteristic more than the control group. The main challenge in case-control studies

is to identify an appropriate control group with characteristics similar to those of the general

population at risk for the disease. However, when studies lack control and treatment groups, this

will result in the difficulty of inferences, and confounding variables may further complicate the

results.

A confounder has long been defined as any third variable that is associated with the exposure of

interest, is a cause of the outcome of interest, and does not reside in the causal pathway between the

exposure and outcome[53]. When confounders exist, correlation does not mean causation and we

cannot conclusively say that any difference observed in mortality (or any other outcome of interest)

between the two groups is due solely to the treatment. To remove the influence of confounding

factors, there exist many well-developed causal inference methods. Matching is employed to make

the multivariate distribution of all covariates X as similar as possible by selecting appropriate

control observation(s) for each treatment observation[55]. There are, at least, four primary ways

to define the distance measures between individuals for matching: exact, Mahalanobis distance

and the propensity score or the linear logits predicted by the logit-model. In many ways, the ideal

matching is exact matching, however, the primary difficulty with the exact and Mahalanobis distance

measures is that neither works very well when X is high dimensional[45]. Another drawback of

exact matches is that it can result in larger bias compared with the matches that are not exact,

because requiring exact matches often leads to many individuals not being matched, on the other

3



hand, inexact matches often make more individuals remain in the analysis[67].

Propensity score (PS) methods are among the most popular approaches for causal inference

in clinical and epidemiologic research. A PS is a conditional probability of receiving a treat-

ment/exposure given a set of covariates: 𝑃𝑆 = 𝑃𝑟 (𝐴 = 1|𝐿). PS is estimated by specifying a

propensity model (ie, a model for an exposure), typically via logistic regression. After estimating

PS, there are several alternative approaches to control for the estimated PS. These approaches in-

clude stratification, regression adjustment, matching, and inverse probability weighting (IPW)[70].

With similar estimated PS, PS matching creates pairs of exposed and unexposed subjects. By

excluding observations from individuals with extremely large or small PS if they lack correspond-

ing pairs, the exposed and unexposed groups in the remaining sample of the matched pairs are

expected to have comparable distributions of PS and observed confounders that are used in PS esti-

mation. Then the corresponding causal effect can be calculated by the difference in the conditional

expectations: 𝐸 [𝑌 𝑎=1 − 𝑌 𝑎=0] under the identifiability assumptions.

Besides matching, weighting is another popular technique to remove the influence of measured

confounding factors. Propensity scores can also be used directly as inverse weights in estimates

of the average treatment effect, known as inverse probability of treatment weighting (IPTW)[20].

Weights for IPTW are typically defined as a function of PS. The average treatment effect weights

for the groups are defined as 𝑤(𝐴, 𝑋) = 𝐴
𝑃(𝑋) +

1−𝐴
1−𝑃(𝑋) which result in 1

𝑃(𝑋) for the exposed

individuals with 𝐴 = 1 and 1
1−𝑃(𝑋) for the unexposed individuals with 𝐴 = 0. IPTW essentially

duplicates observations from individuals with large weights to create a pseudo-population in which

probabilities of receiving the exposure A do not depend on the covariates L included in the PS

estimation[70]. This weighting serves to weight both the treated and control groups up to the full

sample, in the same way that survey sampling weights weight a sample up to a population[43].

However, even when we know about a confounder, we are unlikely to measure it perfectly,

especially for complex situations such as in socioeconomic circumstances. The above mentioned

methods can only control measured confounding factors. There will also be confounders we do not

know about, have not measured and have not considered. This means there is still some confounding
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Figure 1.1 Diagram of instrumental variable assumptions.

(residual confounding) in most observational studies. Instrumental variable regression approach is

developed to deal with both measured and unmeasured confounding factors.

An Instrumental Variable (IV) is used to control for confounding and measurement error in

observational studies so that causal inferences can be made. Specifically, an instrumental variable

𝑍 is an additional variable used to estimate the causal effect of variable 𝑋 on 𝑌 . The variable

𝑍 is qualified as an instrumental variable (relative to the pair (𝑋 , 𝑌 )) if it satisfied the following

three conditions shown in Figure 1.1: (i) 𝑍 is not independent of 𝑋 . (ii) 𝑍 does not have a direct

influence on𝑌 which is referred to as the exclusion restriction. (iii) 𝑍 is independent of all variables

(including error terms) that have an influence on 𝑌 that is not mediated by 𝑋 . Therefore, the effects

of the instrumental variable 𝑍 on 𝑌 only work through its effect on 𝑋 . Consequently, variable 𝑍 is

unrelated to the outcome (𝑌 ) but is related to the predictor (𝑋) and is not causally affected (directly

or indirectly) by 𝑋 , 𝑌 , or the error term 𝑈. In this approach, not only one but also multiple IVs

and/or causal paths could be used. The instrumental variable approach for controlling unobserved

sources of variability is the mirror opposite of the propensity score method for controlling observed

variables[2].

Mendelian Randomization (MR) can be regarded as an application of instrumental variable

approach to find causal inference. As we discussed before, there are many different options of

valid instrument variable as long as it satisfies the above mentioned three conditions. Mendelian
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Randomization specifies genetic variants as instrument variables to address causal questions about

how modifiable exposures influence different outcomes. Genetic variants are small parts of the

genome which can be closely related to human characteristics (e.g. height, weight, blood pressure)

and health conditions (e.g. diabetes, coronary heart disease, asthma). According to Mendel’s first

and second laws of inheritance, genetic variants can be considered as valid instrument variables.

Mendel’s first law describes that the two alleles at a gene locus segregate from each other during

gamete formation and each gamete has an equal probability of containing either allele. Mendel’s

second law describes the independent segregation of a pair of traits and another pair during gamete

formation. Together, the two laws imply that offspring have an equal chance of inheriting an

allele from either parent, and that these alleles are inherited independently from one another[40].

Nevertheless, specific assumptions still need to be fulfilled to ensure the validity of the genetic

variant as an instrument.

1. The genetic variant is associated with the exposure.

2. The genetic variant is independent of the outcome given the exposure and all confounders

(measured and unmeasured) of the exposure-outcome association.

3. The genetic variant is independent of factors (measured and unmeasured) that confound the

exposure-outcome relationship.

The most important decision to be made in designing a Mendelian randomization investigation

is which genetic variants to include in the analysis[76]. One traditional SNPs selection method of

Mendelian randomization studies are implemented using independent genetic variants from across

the whole genome. This genome-wide analyses rely on published results from large-scale GWAS

studies and genetic variants in each region are pruned for independence. The selected variants

are those with the smallest p-value, or a small number of weakly correlated variants with small

p-values. To improve the power of the analysis, researchers combine variants from different regions

to create a genome-wide set of instruments for MR. Conversely to the more traditional type of

genome-wide MR described above, Cis-MR studies have grown in popularity. Genetic variants for
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cis-MR are selected from a region containing the protein-encoding gene. The selection of genetic

variants is usually performed based on the strength of their associations with the risk factor, while

accounting for LD correlation to reduce numerical approximation errors. To include all variants

that are associated with the exposure of interest, a given level of statistical significance (typically,

a genome-wide significance threshold, such as 𝑝 < 5 × 10−8) is applied. After selecting valid

genetic variants, those instrumental variables are then used for further study. There are several

well-developed methods available for MR using instrumental variable estimation.

1.3 A Review of Instrumental Variable Estimation

There are several methods available for instrumental variable estimation. We give brief introduction

of those Mendelian Randomization investigations in this section.

1.3.1 Ratio Estimator

The Wald ratio method is the easiest way to calculate the causative effect of an exposure (𝑋) on an

outcome (𝑌 ). Assume a continuous outcome𝑌 and an dichotomous IV 𝑍 which takes values 0 or 1,

dividing the population into two genetic subgroups. We define 𝑦̄ 𝑗 for 𝑗 = 0, 1 as the average value

of outcome for all individuals with genotype 𝑍 = 𝑗 and define 𝑥 𝑗 similarly for the exposure. Then

an average difference in the exposure between the two subgroups is calculated as △𝑋 = 𝑋̄1 − 𝑋̄0 and

an average difference in the outcome can be computed by △𝑌 = 𝑌1 − 𝑌0. IV estimates are usually

expressed as the change in the outcome resulting from a unit change in the exposure, although

changes in the outcome corresponding to different magnitudes of change in the exposure could be

quoted instead[12]. If we assume the linear relationship between the exposure and the outcome,

the ratio estimator simplifies to

Ratio method estimate (dichotomous IV) =
△𝑌
△𝑋 =

𝑌1 − 𝑌0

𝑋̄1 − 𝑋̄0
.

Alternatively, the IV may not be dichotomous, but continuous. Suppose the coefficient of the IV in

the regression of exposure 𝑋 on the IV 𝑍 is written as 𝛽𝑋 |𝑍 , and represents the change in 𝑋 for a
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unit change in 𝑍 . Similarly, the coefficient of the IV 𝑍 in the regression of outcome 𝑌 on the IV 𝑍

is written as 𝛽𝑌 |𝑍 . Then the ratio estimate of the causal effect is

Ratio estimate =
𝛽𝑌 |𝑍

𝛽𝑋 |𝑍
.

This ratio estimator can be explained by saying that the change in 𝑌 for a unit increase in 𝑋 is equal

to the change in 𝑌 for a unit increase in 𝑍 , scaled by the change in 𝑋 for a unit increase in 𝑍 . The

ratio estimator has been named the linear IV average effect[25] since the validity of ratio estimator

is restricted to the assumption of monotonicity of the genetic effect on the exposure and linearity

of the causal 𝑋 → 𝑌 association[1].

We next consider the situation where outcome variable 𝑌 is binary instead of continuous. This

is very common in epidemiology, where the outcome of interest is disease status and is often

dichotomous. In reality, people often use 𝑌 = 1 to refer an individual who has an outcome of

interest or disease, and use 𝑌 = 0 to describe an individual who does not show the particular

phenotypic trait or disease. Similar to the continuous case, the ratio estimate simplifies as with a

continuous outcome when the IV 𝑍 is dichotomous:

Ratio method log relative risk estimate (dichotomous IV) =
△𝑌
△𝑋 =

𝑌1 − 𝑌0

𝑋̄1 − 𝑋̄0
.

However, things become a little complicated under the continuous IV condition. In this case,

instead of fitting a linear regression model, a log-linear model or a logistic regression model is

generally preferred to estimate the coefficient 𝛽𝑌 |𝑍 in the regression of outcome𝑌 on the IV 𝑍 . The

ratio estimate is also commonly quoted in its exponentiated form as:

Ratio method risk ratio estimate (dichotomous IV) = 𝑅1/△𝑋

where 𝑅 is the estimated risk ratio between the two genetic subgroups.

1.3.2 Inverse-variance Weighted Estimator

For genetic variant 𝑗 , the Wald ratio estimate is consistent asymptotically if the IV assumptions

are satisfied. Furthermore, if the genetic variants are uncorrelated (i.e., in linkage equilibrium)
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then the ratio estimates from each genetic variant can be combined into an overall estimate using

a formula[46]. We can then generalize the Wald ratio estimator through a meta-analysis process

if several genetic variants are correlated with a specific exposure. Burgess et al.[9] proposed the

inverse-Variance Weighted estimator shown as follows:

Inverse-variance weighted estimate =

∑
𝑗 𝛽𝑋 |𝑍 𝑗

𝜎−2
𝑌 𝑗
𝛽 𝑗∑

𝑗 𝛽𝑋 |𝑍 𝑗
𝜎−2
𝑌 𝑗

,

where 𝛽𝑋 |𝑍 𝑗
is the coefficient of the genetic variant 𝑗 in the regression of exposure 𝑋 on the IV

𝑍 𝑗 ; 𝜎𝑌 𝑗 is the standard error of the gene-outcome association estimate for variant 𝑗 and 𝛽 𝑗 defines

the causal effect of the exposure on the outcome which is estimated using the 𝑗 th variant as the

ratio of the gene-outcome association and the gene-exposure association estimates. If all genetic

variants satisfy the IV assumptions, then the IVW estimate is a consistent estimate of the causal

effect (i.e., it converges to the true value as the sample size increases), as it is a weighted mean of

the individual ratio estimates[8].

1.3.3 Weighted Median Estimator

The inverse-variance weighted estimator is efficient when all genetic variants are valid IVs, but it

will be biased under the invalid IVs situation. The median ratio estimator suggested by Han [38]

aims to deal with this challenge. The median ratio estimator can guarantee a consistent causal

effect estimate when up to (but not including) 50% of genetic variants are invalid. Similar to the

construction of inverse-variance weighted estimator, if we assume 𝛽 𝑗 denote the 𝑗 th ordered ratio

estimate of the causal effect (arranged from smallest to largest) of the exposure on the outcome

which is estimated using the 𝑗 th variant as the ratio of the gene-outcome association and the

gene-exposure association estimates. The simple median estimator is defined as the middle ratio

estimate. Thus, if the total number of genetic variants is odd (𝐽 = 2𝑘 + 1), then simple median

estimator is 𝛽𝑘+1; if the total number of genetic variants is even (𝐽 = 2𝑘), the median is interpolated

between the two middle estimates, i.e. 1
2 (𝛽𝑘 + 𝛽𝑘+1).
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However, when the precision of the individual estimates varies considerably, the simple median

estimator is inefficient. Bowden et al.[8] considered a weighted median estimator to account for

this situation. We define the weight given to the 𝑗 th ordered ratio estimate be 𝑤 𝑗 , then the sum of

weights up to and including the weight of the jth ordered ratio estimate is denoted as 𝑠 𝑗 =
∑ 𝑗

𝑘=1 𝑤𝑘 .

In order to make the sum of the weights be equal to 1, all weights are standardized. The weighted

median estimator is the median of a distribution having estimate 𝛽 𝑗 as its 𝑝 𝑗 = 100(𝑠 𝑗 −
𝑤 𝑗

2 )th

percentile. The simple median estimator can be thought of as a weighted median estimator with

equal weights. The weighted median will provide a consistent estimate if at least 50% of the weight

comes from valid IVs.

1.3.4 Two-stage Estimator

Two regression stages are included to construct the two-stage estimator: in the first step, by

calculating the fitted values from the regression of the exposure 𝑋 on the IVs 𝑍 , the fitted values

of exposure 𝑋̂ is estimated via the genotypes of the instruments. This fitted values of exposure

𝑋̂ is independent of the confounders. In the second step, the causal effect estimate is obtained by

regressing the outcome on the fitted values of the exposure from the first stage. The causal estimate

is this second-stage regression coefficient for the change in the outcome caused by a unit change in

the exposure. The models are written as follows:

𝑋 = 𝛼0 + 𝛼1𝑍 + 𝜖1

𝑌 = 𝛽0 + 𝛽1 𝑋̂ + 𝜖2

When the outcome variable 𝑌 is binary, the second-stage regression uses a log-linear or logistic

regression model. However, if we apply the non-linear model in the second step regression, the

model can not guarantee that residuals from the second-stage regression are uncorrelated with the

instrument[33].

The two-stage estimator is consistent for the causal effect when all relationships are linear and

there are no interactions between the instrument and unmeasured confounders and between the
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exposure and unmeasured confounders. Provided that the genetic variants are uncorrelated, the

IVW estimate is asymptotically equal to the two-stage least squares estimate commonly used with

individual-level data.

1.3.5 Control Function Estimator

Another method for estimating the causal effect is provided through the control function estimator

which is also a two-step approach. The first step is the same as the first step in the two-stage

estimator. The exposure 𝑋 is regressed on the IVs 𝑍 . In the second step, When the residuals of

the first step are included as an additive covariate, these estimators have been referred to as 2-stage

residual inclusion (TSRI) estimators. The models can be constructed as follows:

𝑋 = 𝛼0 + 𝛼1𝑍 + 𝜖1

ℎ(𝐸 (𝑌 )) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝜖1

where ℎ(·) is the link function for an appropriate generalized linear model. Linear regression is

used at the second stage when outcome 𝑌 is continuous, while logistic regression is applied for the

binary outcome 𝑌 .

The standard errors of the second-stage parameter estimates are not correct when calculating

two-stage estimator by fitting the 2-stage least square regressions sequentially. The standard error

of the coefficient on the first-stage residuals is correct when we apply linear regression to construct

control function estimator[83]. It is well known that when using linear regression function ℎ(·),

the control function estimator produces an estimate of the causal effect equivalent to the two-

stage estimator[23]. Newey[57] developed a correction to the standard errors of the second-stage

intercept and causal effect of the probit control function estimator for a binary outcome. The

following algorithm is described by Newey[59]:

1. Perform the first-stage linear regression of 𝑋 on 𝑍 to compile matrix 𝐷̂ and 𝜖1, where 𝐷̂ is

defined as


𝛼̂1 0

𝛼̂0 0

 .
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2. Perform a probit regression of 𝑌 on 𝑍 and 𝜖1. Define 𝛾̂ be the coefficients of 𝑍 and the

estimated intercept; 𝐽−1
1 be the variance-covariance matrix of these coefficients. 𝜆̂ be the

coefficient on 𝜖1.

3. Fit the second stage of the probit control function estimator by a probit regression of 𝑌 on 𝑋

and 𝜆̂. Then the estimate of the causal effect of interest is the coefficient on 𝑋 , 𝛽1.

4. Generate a new variable equal to 𝑋 (𝜆̂ − 𝛽1). Perform a linear regression of this new variable

on 𝑍 (also including a constant). Define the covariance matrix from this model as Σ2. Let

Ω̂ = 𝐽−1
1 + Σ2.

5. Calculate 𝛽 = (𝐷̂′Ω̂−1𝐷̂)−1𝐷̂′Ω̂−1𝛾̂ and 𝑣𝑎𝑟 (𝛽) = (𝐷̂′Ω̂−1𝐷̂)−1.

Palmer et al. [59] further showed that control function estimators with modified standard errors

had correct type I error under the null. Researchers should report control function estimates

with modified standard errors instead of reporting unadjusted or heteroscedasticity-robust standard

errors.

1.3.6 Likelihood-based Methods

If we assume the following model which is the same as the model for the two-stage estimator:

𝑋 = 𝛼0 + 𝛼1𝑍 + 𝜖1

𝑌 = 𝛽0 + 𝛽1 𝑋̂ + 𝜖2

where the error term 𝜖 = (𝜖1, 𝜖2) has a bivariate normal distribution 𝜖 ∼ 𝑁 (0, Σ) and the correlation

between 𝜖1 and 𝜖2 is caused by confounding factors. Then we can simultaneously calculate the

maximum likelihood estimates of 𝛽1 by full information maximum likelihood method proposed by

Davidson and MacKinnon[21]. This method requires the correctly specified regression equations

at each step to estimate a consistent estimate of 𝛽1, while in reality, only coefficient 𝛽1 is our

interest. To overcome this drawback, the limited information maximum likelihood method is used
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by profiling out each of the parameters except 𝛽1 and only using limited information on the structure

of the model. The causal effect 𝛽1 is estimated by minimizing the residual sum of squares from the

regression of the component of the outcome not caused by the exposure on the IVs.

For a binary outcome 𝑌 , we can assume a linear model of association between the logit-

transformed probability of an event (𝜋𝑖) and the exposure (a logistic-linear model), and a Bernoulli

distribution for the outcome event, as in the following model

𝑥𝑖 ∼ 𝑁 (𝜇𝑖, 𝜎2
𝑋)

𝑦𝑖 ∼ Bernoulli (𝜋𝑖)

𝜇𝑖 = 𝛼0 + 𝛼1𝑍

logit(𝜋𝑖) = 𝛽0 + 𝛽1𝜇𝑖 + 𝛽2(𝑥𝑖 − 𝜇𝑖)

All coefficients are estimated simultaneously by maximizing the joint likelihood 𝐿, which has the

following form:

𝐿 =
∏

𝑖=1,··· ,𝑁
(𝜋𝑦𝑖
𝑖
(1 − 𝜋𝑖)1−𝑦𝑖 1

√
2𝜋𝜎𝑋

{exp(− 1
𝜎2
𝑋

(𝑥𝑖 − 𝜇𝑖)2)})

Alternatively, model parameters can also be estimated in a Bayesian framework, obtaining posterior

distributions from the model by Markov chain Monte Carlo (MCMC) methods[10].

When a single IV is used for analysis, the limited information maximum likelihood method

gives the same causal estimate as the Wald ratio method and the two stage least square method.

Compared with two-stage method, which performs two regressions sequentially and the output

from the first-stage regression is fed into the second-stage regression with no acknowledgement of

uncertainty, the likelihood-based methods perform two stages simultaneously and parameters are

estimated at the same time. The limited information maximum likelihood is strongly recommended

when there exist weak instrument variables, since the median of the distribution of the estimator is

close to unbiased even with weak instruments[3].

However, all above mentioned Mendelian Randomization methods are developed based on

cross-sectional data. In practice, data in the observation studies are often collected through
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longitudinal studies. Unlike in a cross-sectional design, where all measurements are obtained in a

fixed time point, the data in a longitudinal design track the same type of information on the same

subjects over time. Longitudinal data makes it possible to capture changes within subjects over

time and thus gives some advantages to causal modeling in terms of providing more knowledge to

establish causal relationships[34]. Aside from this, more data over longer periods of time will allow

for more concise and better results. Longitudinal data is considered highly valid for identifying

long-term variations and is distinctive in connection with being able to provide useful data about

these individual changes. Another advantage is that they are known to have more power than cross-

sectional studies when it comes to excluding time-invariant and unobserved individual differences

and when it comes to observing a certain event’s temporal order, as they use repeated observations

at individual levels.

1.4 Causal Modeling Methods for Longitudinal Data

A number of causal modeling methods have been developed for longitudinal data. In recent years,

an increasing number of studies have used time-series methods based on the notion of Granger

causality. The first formalization of a practically quantifiable causality definition from time series is

the concept of Granger causality suggested by Granger[36]. The construction of Granger causality

is based on comparing two models: the first one is predicting a stochastic process 𝑌 using all the

information in the universe, denoted with𝑈; the second one is doing the same using all information

in 𝑈 except for some stochastic process 𝑋 , which is denoted with 𝑈\𝑋 . Granger causality defines

𝑋 as the cause of 𝑌 if discarding 𝑋 reduces the predictive power regarding 𝑌 , which shows the

past values of 𝑋 contain helpful information for predicting the future value of 𝑌 . Granger causality

evokes the following two fundamental principles[37]:

1. The effect does not precede its cause in time.

2. The causal series contains unique information about the series being caused that is not

available otherwise.
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The first principle of temporal precedence of causes is commonly accepted and has also been the

basis for other probabilistic theories of causation[35]. By contrast, the second principle is more

subtle, as it requires the separation of the special information provided by the former series 𝑋 from

any other possible information[28].

Granger’s original argument is based on the identifiability of a unique linear model. This model

is known as vector auto-regressive (VAR) model and we state two VAR models here. The first one

is called the restricted model and it assumes that 𝑌 linearly depends only on past values of itself

with linear coefficients 𝛾𝑖 and a time-dependent noise term 𝑒𝑡 :

𝑌𝑡 = 𝛾0 +
𝑝∑︁
𝑖=1

𝛾𝑖𝑌𝑡−𝑖 + 𝑒𝑡 .

Another model to deal with Granger causality is the unrestricted vector auto-regressive model

which assumes that 𝑌 linearly depends on past values of both 𝑋 and 𝑌 , determined by coefficients

𝛼𝑖, 𝛽𝑖 and a time-dependent noise term 𝑢𝑡 :

𝑌𝑡 = 𝛼0 +
𝑝∑︁
𝑖=1

𝛼𝑖𝑌𝑡−𝑖 +
𝑝∑︁
𝑖=1

𝛽𝑖𝑋𝑡−𝑖 + 𝑢𝑡

The unformalized null hypothesis is that the second model does not add information, or provides a

better model of 𝑌 , when comparing it to the first model. This needs to be formalized into a testable

null hypothesis; a common approach to state that the null hypothesis 𝐻0 is that 𝛽𝑖 = 0 for every 𝑖.

According to Shojaie and Fox[71], there are a number of implicit and explicit restrictive

assumptions required for the VAR model to be an appropriate framework for identifying Granger

causal relationships:

• Continuous-valued series. All series are assumed to have continuous-valued observations.

However, many interesting data sources—such as social media posts or health states of an

individual—are discrete-valued.

• Linearity. The true data generating process, and correspondingly the causal effects of

variables on each other, is assumed to be linear. In reality, many real-world processes are

non-linear.
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• Discrete-time. The sampling frequency is assumed to be on a discrete, regular grid matching

the true causal time lag. If the data acquisition rate is slower or otherwise irregular, causal

effects may not be identifiable. Likewise, the analysis of point processes or other continuous-

time processes is precluded.

• Known lag. The (linear) dependency on a history of lagged observations is assumed to have

a known order. Classically, the order was not estimated and taken to be uniform across all

series.

• Stationarity. The statistics of the process are assumed time-invariant, whereas many complex

processes have evolving relationships (e.g., brain networks vary by stimuli and user activity

varies over time and context).

• Perfectly observed. The variables need to be observed without measurement errors.

• Complete system. All relevant variables are assumed to be observed and included in the

analysis, i.e., there are no unmeasured confounders. This is a stringent requirement, especially

given that early approaches for Granger causality focused on the bivariate case—that is, they

did not account for any potential confounders.

The Granger causality can be tested by SSR-based F-test.

𝐹 =
(𝑅𝑆𝑆𝑅 − 𝑅𝑆𝑆𝑈𝑅)/𝑝
𝑅𝑆𝑆𝑈𝑅/(𝑇 − 2𝑝 − 1) ∼ 𝐹𝑝,𝑇−2𝑝−1

where 𝑅𝑆𝑆𝑅 and 𝑅𝑆𝑆𝑈𝑅 are the residual sum of squares for the restricted model and unrestricted

model respectively; 𝑇 is time series length and 𝑝 is the number of lags. Alternatively, one can also

use a 𝜒2 statistic based on likelihood ratio or Wald statistics[19].

There also exist some limitations for Granger causality. For example, it does not provide any

insight on the relationship between the variable, hence it is not true causality unlike ’cause and effect’

analysis. Besides, Granger causality fails to forecast when there is an interdependency between two

or more variables. Moreover, Granger causality test cannot be performed on non-stationary data.
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Besides VAR model, Structural Equation Model (SEM) is another popular method to analyze

causal relationship for longitudinal data. SEM refers to the complex of multivariate statistical

methods aiming to specify, estimate and fit a system of linear equations to a dataset[5]. The SEM

consists of two major parts: the first part is a set of equations that give the causal relations between

the substantive variables of interest and the second part ties the observed variables or measures to

the substantive latent variables. The model can be described as follows:

𝜂𝑖 = 𝛼𝜂 + 𝐵𝜂𝑖 + Γ𝜉𝑖 + 𝜁𝑖

𝑦𝑖 = 𝛼𝑦 + Λ𝑦𝜂𝑖 + 𝜖𝑖

𝑥𝑖 = 𝛼𝑥 + Λ𝑥𝜉𝑖 + 𝛿𝑖

where 𝑖 stands for the 𝑖th case, 𝜂𝑖 is a vector of the latent endogenous variables, 𝛼𝜂 is a vector of

intercepts, 𝐵 is a matrix of coefficients that gives the expected effect of the 𝜂𝑖 on 𝜂𝑖 where its main

diagonal is zero, 𝜉𝑖 is the vector of latent exogenous variables, Γ is the matrix of coefficients that

gives the expected effects of 𝜉𝑖 on 𝜂𝑖, and 𝜁𝑖 is the vector of equation disturbances that consists of

all other influences of 𝜂𝑖 that are not included in the equation, 𝑦𝑖 is the vector of indicators of 𝜂𝑖

and 𝑥𝑖 is the vector of indicators of 𝜉𝑖[6]. Rahmadi et al.[65] further proposed stable specification

search in constrained structural equation modeling to investigate causality on longitudinal data.

This approach used exploratory search but allowed incorporation of prior knowledge, e.g., the

absence of a particular causal relationship between two specific variables. They represented causal

relationships using structural equation models and applied a multi-objective evolutionary algorithm

to search for Pareto optimal models.

VAR and SEM framework assume a linear system and independent Gaussian noise. Some

other methods, interestingly, take advantage of nonlinearity or non-Gaussian noise to gain even

more causal information. Chu et al. [17] considered an additive non-linear time series model by

imposing linear constraints only among contemporaneous variables. They showed that for data

generated from stationary models of this type, two classes of conditional independence relations

among time series variables and their lags could be tested efficiently and consistently using tests
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Figure 1.2 Unit Causal Graph.

based on additive model regression.The model is defined as follows:

𝑋𝑡𝑖 =
∑︁

1≤ 𝑗≤𝑝, 𝑗≠𝑖
𝑐 𝑗 ,𝑖𝑋𝑡, 𝑗 +

∑︁
1≤𝑘≤𝑝,1≤𝑙≤𝑇

𝑓𝑘,𝑖,𝑙 (𝑋𝑡−𝑙,𝑘 ) +
𝑞∑︁
𝑚=1

𝑏𝑚,𝑖𝑈𝑡,𝑚 + 𝜖𝑡,𝑖

where 𝑋𝑡 is a 𝑝-dimensional observed time series, 𝑈𝑡 is a 𝑞-dimensional unobserved time series,

𝑏𝑚,𝑖’s and 𝑐 𝑗 ,𝑖’s are constants, and 𝑓𝑘,𝑖,𝑙’s are smooth univariate functions. This non-linear model

can be represented by a directed graph consisting of nodes for 𝑋𝑇+1,1, · · · , 𝑋𝑇+1,𝑝 and their direct

causes, and directed edges between nodes for the direct influences between the corresponding

variables. The directed graph is called a unit causal graph and is shown in Fig 1.2. Additive

non-linear time series models make it possible to use the additive regression method, which is not

subject to the curse of dimensionality, to test conditional independence for nonlinear time series.

Hyv̈arinen et al.[44] considered the general case where causal influences could occur either

instantaneously or with considerable time lags and combined the non-Gaussian instantaneous model

with autoregressive models. The causal dynamics model are a combination of autoregressive and

structural-equation models and is defined as

𝑥(𝑡) =
𝑘∑︁
𝜏=0

𝐵𝜏𝑥(𝑡 − 𝜏) + 𝑒(𝑡)

Here, 𝑥(𝑡) is a single vector collecting the observed time series for all the variables, 𝐵𝜏 denotes

the 𝑛 × 𝑛 matrix of the causal effects between the variables with time lag 𝜏 and 𝑒𝑖 (𝑡) are random
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processes modelling the external influences or “disturbances” and are assumed to be mutually

independent, and temporally uncorrelated nonGaussian process. To estimate the defined model,

they further proposed method which combined classic least-squares estimation of an autoregressive

(AR) model with linear non-Gaussian acyclic model (LiNGAM) estimation. They showed that this

variant of the non-Gaussian model was identifiable without any other restrictions than acyclicity.

1.5 Motivation and Organization

Although several studies have been done to investigate causal inference for longitudinal data, hardly

any of them consider using instrumental variable methods. One advantage of using instrumental

variable regression to deal with causal inference analysis is that it can not only remove the effects

of measured confounding factors, but also work for the unmeasured confounding factors. While

the existence of time-varying confounding effect may fail many existing methods, using IVs can

well handle such time-varying confounding in causal inference with longitudinal data.

The thesis is well motivated by a real study to investigate the causal effect of hormone level

on emotional eating behavior in teen girls from the Twin Study of Hormones and Behavior across

the Menstrual Cycle project [49] from the Michigan State University Twin Registry (MSUTR)

[48, 14, 15]. Two hormones were measured, namely estradiol and progesterone. The goal was

to evaluate if changes in these two hormones were associated with emotional eating across the

menstrual cycle, and further assess if the relationship was causal. Emotional eating was measured

with the Dutch Eating Behavior Questionnaire (DEBQ) and negative affect was measured with the

Negative Affect scale from the Positive and Negative Affect Schedule (PANAS). The tendency to

eat in response to negative emotions is assessed by DEBQ, while negative emotional states like

sadness and anxiety are measured by PANAS. Each participant was measured for 45 consecutive

days. Data were then grouped into eight menstrual cycle phases, that is, ovulatory phase (1),

transition ovulatory to midluteal (2), midluteal phase (3), transition midluteal to premenstrual (4),

premenstrual phase including the first day of menstrual cycle (5), remaining days of menstrual

cycle, part of follicular phase (6), follicular phase (7) and transition follicular to ovulatory phase
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(8), based on profiles of changes in estrogen and progesterone across the cycle [50]. Within each

phase, we took two averaged measurements, which ended up with a total 16 data points for each

individual. In this project, the exposures will be the two hormone levels measured at 16 time points

and the outcome will be the two eating behaviors (DEBQ and PANAS). The goal is to evaluate if

there exists causal relationship between hormone levels and eating behaviors and if so, what are

the effect mechanisms. The potential effect mechanism may include:

1). concurrent effect, that is, the exposure at time 𝑡 affects the outcome at time 𝑡;

2). time lagged effect, that is, previous 𝑠 exposures up to 𝑡 − 𝑠 time points affect the outcome at

time 𝑡;

3). and cumulative effect, that is, previous 𝑡 exposures cumulatively affect the outcome at time 𝑡.

To disentangle these three different effect mechanisms, we will propose different models and testing

strategies in this thesis under the MR framework. This study represents the very first exploration

in MR analysis with longitudinal data.

The rest of dissertation is organized as follows: In chapter 2, we propose a concurrent Mendelian

Randomization model which assumes current outcome is only affected by current exposure and

linear relation holds at every time points. In chapter 3, we extend concurrent model to time lag model

and further assume not only instantaneous causal influences exist but also past exposure values can

have causal effect on current outcome. We propose an algorithm to select time lags. Pointwise

testing and simultaneous testing are also considered to test the existence of causal relationship. We

further consider the functional model setting to investigate Mendelian Randomization in chapter 4,

followed by conclusions and further work in chapter 5.
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CHAPTER 2

CAUSAL INFERENCE WITH TIME-VARYING CONFOUNDING: A MENDELIAN
RANDOMIZATION APPROACH

Mendelian Randomization uses genetic variants as instrument variables to determine whether an

observational association between a risk factor and an outcome is consistent with a causal effect.

The use of Mendelian Randomization reduces regression bias and provides more reliable estimate of

the likely underlying causal relationship between an exposure and a disease outcome. Most current

Mendelian Randomization methods are focused on cross-sectional phenotypic traits. Longitudinal

studies track the same sample at different time points and have a number of advantages over

cross-sectional studies. It would be possible for researchers to learn more about ’cause and effect’

relationships when incorporating time information. In this work, we propose a two-stage concurrent

Mendelian Randomization analysis under the quadratic inference function (QIF) framework. Our

proposed method assumes current outcome is affected by current exposure and coefficients of both

genetic variants and exposures are time-varying. Through extensive simulation studies, we show

that the proposed method has reasonable type I error control. Application to a real data analysis

shows that one hormone has a causal effect on women’s emotional eating behavior.

2.1 Introduction

Mendelian Randomization (MR) refers to an analytic approach to which genetic epidemiology can

assess the causality of an observed association between a modifiable exposure or risk factor and a

clinically relevant outcome by using genetic variants [68]. The choice of the genetic instrumental

variables is essential to the success of MR analysis. As depicted in Figure 2.1, a valid instrumental

variable must satisfy three core assumptions: 1). it must be associated with exposure of interest;

2). it must not be associated with confounders that confound the relationship between the exposure

variable and the disease outcome; and 3). it only affects the outcome through exposure variable

i.e it indicates the dependence between genetic variant and outcome given exposure and other
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observed confounders in the study. The theoretical underpinnings of the Mendelian randomization

approach are that: the genotype is robustly associated with the modifiable (non-genetic) exposure

of interest (equivalent to assumption 1 above); the genotype is not associated with confounding

factors that bias conventional epidemiological associations between modifiable risk factors and

outcomes (assumption 2); and that the genotype is related to the outcome only via its association

with the modifiable exposure (assumption 3)[52].

There exist several methods available for MR analysis. The Wald method[79], or the ratio

of coefficients method is the simplest way of estimating the causal effect of the exposure (𝑋)

on the outcome (𝑌 ). This method uses summarized data and the causal effect can be estimated

through dividing the effect of the IV on the outcome (𝛽𝑍𝑌 ) by the effect of the IV on the exposure

(𝛽𝑍𝑋):𝛽𝑋𝑌 = 𝛽𝑍𝑌/𝛽𝑍𝑋 . Another popular method is two-stage least squares method. In the first-

stage regression, the exposure is estimated by calculating the fitted value of the exposure on the

IVs, and in the second-stage, the outcome is regressed on the fitted values of the exposure from the

first stage.

With a single IV, the 2SLS estimate is the same as the ratio estimate when the outcome is

continuous or binary. With multiple IVs, the 2SLS estimator may be viewed as a weighted average

of the ratio estimates calculated using the instruments one at the time, where the weights are

determined by the relative strengths of the instruments in the first-stage regression[1, 3].

Figure 2.1 Instrument Variable.

However, all the above mentioned methods only use data from a single arbitrary time and assess
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cross-sectional causal inference. The existed literature shows single nucleotide polymorphisms

(SNPs) may have time-varied effects or the exposure variable may have time-varying effects on the

outcome. In the work of Ning et al. [58], the author modeled the time-varied SNP effect for the

GWAS analysis based on random regression model and had successfully found some SNPs related

with blood pressure for the GWA18 workshop dataset. In these cases, a single measurement is

not adequate to capture these time-varying information. In observational studies, researchers often

collect longitudinal data, which involves a collection of data at different time points for many study

subjects. Since longitudinal data follows changes over time in particular individuals, it would be

possible for researchers to learn more about ’cause and effect’ relationships. Incorporating this

time information can potentially lead to meaningful biological findings. Hogan and Lancaster

[42] reviewed and compared two moment-based methods: inverse probability weighting (IPW) and

instrumental variables (IV) for estimating causal treatment effects from longitudinal data, where the

treatment might vary with time. VanderWeele et al. [78] reviewed some basic principles for causal

inference from longitudinal data and discussed the complexities of analysis and interpretation when

exposures could vary over time. Newer classes of causal models, including marginal structural

models, were considered, which could assess questions of the joint effects of time-varying exposures

and could take into account feedback between the exposure and outcome over time.

However, the above mentioned causal models did not consider the time-varying confounding

effects. Cao et al. [16] proposed two functional data analysis-based methods to incorporate

longitudinal data of a time-varying exposure variable in the MR analysis when the disease outcome

was binary. However, instead of selecting valid genetic variants as instrumental variables, they only

used genetic variants identified from other research to conduct the first-stage regression. Another

limitation of their work is that their proposed new methods are only aimed for hypothesis testing

purpose, not for causal effect size estimation.

In this work, we assume the current exposure at time 𝑡 affects the current outcome at time

𝑡. We develop a concurrent causal inference model under a two-stage IV regression framework

to assess the causal relationship. The quadratic inference function (QIF) framework proposed by
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Qu et al.[63] uses marginal models for the estimation and inference in longitudinal data analysis,

and has been popular in longitudinal data analysis. This approach takes into account correlation

within subjects and deals directly with both continuous and discrete longitudinal data under the

framework of generalized linear models [62]. Qu and Li [62] further extended QIF to varying-

coefficient models and proposed a unified and efficient nonparametric hypothesis testing procedure

to test whether coefficient functions were time-varying or time invariant. Our concurrent model is

built upon the QIF framework, to assess the causal effect between an exposure and an outcome at

a particular time point.

The rest of the paper is structured as follows. Section 2.2 describes our time-varying IV methods

for Mendelian Randomization. The simulation studies are reported in Section 2.3. In Section 2.4,

we apply the model to the eating behavior study. Section 2.5 summarizes the main concludes and

discussions.

2.2 The Concurrent Model

In this section, we propose a concurrent model to deal with the situation where confounding factors

are time-varying in longitudinal studies. Suppose there are 𝑛 subjects measured at multiple time

points {𝑡 𝑗 , 𝑗 = 1, 2, · · · , 𝑇}. Let 𝑌𝑖 (𝑡 𝑗 ) and 𝑋𝑖 (𝑡 𝑗 ) be the time-varying outcome and exposure of

subject 𝑖 recorded at time 𝑡 𝑗 , respectively. 𝐺𝑖 denotes the vector of multiple SNPs of subject 𝑖 and

is time invariant. Denote the data collected as

{𝑌𝑖 (𝑡 𝑗 ), 𝑋𝑖 (𝑡 𝑗 ), 𝐺𝑖}, for 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , 𝑇 .

If we assume a causal relationship with the order of𝐺 → 𝑋 → 𝑌 , i.e., 𝐺 affects𝑌 only through

𝑋 , then the following two-stage sequential models could be fitted to dissect the relationship between

an exposure and an outcome, i.e.,

𝑋 (𝑡 𝑗 ) = 𝛼(𝑡 𝑗 )𝐺 + 𝜖1(𝑡 𝑗 ), (2.1)

𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) + 𝛽1(𝑡 𝑗 )𝑋 (𝑡 𝑗 ) + 𝜖2(𝑡 𝑗 ), (2.2)
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where 𝛼(𝑡) and 𝛽(𝑡) are coefficient functions; and 𝜖1(𝑡) and 𝜖2(𝑡) are model error functions with

mean zero. In this model, we assume the effects of genetic variants on exposure and the effects

of exposure on outcome both are time-varying. When there are time-varying confounding effects,

adjusting the time-varying effect of the genetic effects (i.e., IV effects) can control the time-varying

confounding effects, hence leading to the causal inference using the 𝑋̂ (𝑡) in the 2nd stage regression.

The following two sections introduce how to deal with model (2.1) and model (2.2) in details.

2.2.1 Estimating the time-varying SNP effect

In this step, we select IV variables (i.e., SNP variables) and further estimate their time-varying

effects on the exposure variable. Genome-wide association studies (GWAS) are providing a rich

source of potential instruments for MR analysis. The most common approach for selecting genetic

variants for inclusion is LD-pruning. The threshold 𝜏 is often taken to be the GWAS significance

threshold 𝜏 = 5× 10−8 in order to reduce the number of false-positive associations arising from the

vast number of statistical tests performed. Dudbridge [27] showed using more relaxed threshold

might be beneficial. Varying-coefficients models arise naturally when one wishes to examine how

regression coefficients change over different groups characterized by certain covariates such as

age[32]. Since we assume time-varying coefficients for SNPs and longitudinal exposure measure-

ment is observed, QIF method is a good choice to be applied to estimate and select the IV variables.

We first conduct QIF testing for each genetic variant and apply a relax criteria for IV selection.

P-values are sorted from the smallest to the largest and 100 most significant SNPs are selected to fit

a multiple regression model for further effect estimation and IV selection. Under the assumption

that only a few genetic variants are valid instrumental variables with time varying coefficients,

we apply some basis functions to approximate the varying coefficients 𝜶(𝑡) and insert penalties

to choose SNPs with time-varying effects. Any basis system for function approximation could be

applied and some popular choices include Fourier basis, polynomial basis, or splines.

We assume that the observations from different subjects are independent, but those within the

same subject are correlated. Under the first moment model assumption, the varying-coefficient
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models assume the following mean structure:

𝐸 (𝑋𝑖𝑡) = 𝜇𝑖𝑡 and 𝑔(𝜇𝑖𝑡) = 𝛼(𝑡)𝐺𝑖 (2.3)

where 𝑔(·) is a known link function and 𝛼 represents a q-dimensional regression coefficients vector.

Suppose we have 𝑞 genetic instruments in total. For each 𝑙 = 1, · · · , 𝑞, 𝐵𝑙𝑣 (𝑡) is a set of basis

functions of the functional space to which 𝛼𝑙 (·) belongs. For simplicity, we assume each 𝛼𝑙 (𝑡)

has the basis functions 𝐵(𝑢) = (𝐵1(𝑢), · · · , 𝐵𝑉 (𝑢)) with the same order 𝑀 and knots 𝐾 , where

𝑉 = 𝑀 + 𝐾 + 1. Then 𝛼𝑙 (𝑡) could be approximated by a linear combination of the basis functions,

i.e.

𝛼𝑙 (𝑡) ≈
𝑉∑︁
𝑣=0

𝛾𝑙𝑣𝐵𝑣 (𝑡), for 𝑙 = 0, · · · , 𝑞,

where 𝛾𝑙𝑣’s are spline constants and 𝑉 is associated with the number of basis functions for the

coefficient.

Plugging the approximation of 𝛼𝑙 (𝑡) into the mean structure, equation (2.3) could be defined as

follows:

𝐸 (𝑥𝑖𝑡) = 𝜇𝑖𝑡 and 𝑔(𝜇𝑖𝑡) = 𝛼(𝑡)𝐺𝑖 ≈
𝑞∑︁
𝑙=0

𝑉𝑙∑︁
𝑣=0

{𝐺𝑖𝑙𝐵𝑙𝑣 (𝑡)}𝛾𝑙𝑣 . (2.4)

Qu and Li [62] considered the q-degree truncated power spline basis with knots 𝑘1, · · · , 𝑘𝐾𝑙
, that

was

1, 𝑡, 𝑡𝑞, (𝑡 − 𝑘1)𝑞+, · · · , (𝑡 − 𝑘𝐾𝑙
)𝑞+,

where 𝑧𝑞+ = 𝑧𝑞 𝐼 (𝑧 ≥ 0).

The quasi-likelihood equation for longitudinal data is defined as follows:

𝑛∑︁
𝑖=1

¤𝜇′𝑖𝑉−1
𝑖 (𝑥𝑖 − 𝜇𝑖) = 0,

where 𝑉𝑖 = 𝑣𝑎𝑟 (𝑥𝑖) and is often unknown in practice, ¤𝜇𝑖 = 𝜕𝜇𝑖/𝜕𝛼. If 𝑉𝑖 is known, one might

use empirical estimator to estimate 𝑉𝑖. However, if the size of 𝑉𝑖 is large, there would be many

nuisance parameter estimations, and a high risk of numerical error in the inversion of the empirical

estimator[63]. Liang and Zeger [54] proposed generalised estimating equations (GEE) method

and simplified 𝑉𝑖 using 𝑉𝑖 = 𝐴
1/2
𝑖
𝑅𝐴

1/2
𝑖

, where 𝐴𝑖 was a diagonal marginal variance matrix
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and 𝑅 was a common working correlation. Regardless of whether the working correlation is

correctly specified or not, GEE method enables one to estimate regression parameters consistently

in longitudinal data analysis. However, the GEE estimator is inefficient when the correlation

structure is misspecified. Qu et al.[63] proposed a method of quadratic inference function that did

not require more assumptions than does the generalised estimating equation method, but remained

optimal even if the working correlation structure was misspecified.

The QIF is derived by observing that the inverse of the working correlation matrix could be

approximated by a linear combination of several basis matrices:

𝑅−1 ≈ 𝑎0𝐼 + 𝑎1𝑀1 + · · · 𝑎𝑚𝑀𝑚,

where 𝐼 is the identity matrix and 𝑀𝑖 are symmetric matrices. Plugging expansion into the quasi-

likelihood function leads to a linear combination of the elements of the following extended score

vector:

𝑔̄𝑛 (𝛾) =
1
𝑛

𝑛∑︁
𝑖=1

𝑔𝑖 (𝛾) =

©­­­­­­­­«

∑𝑛
𝑖=1 ¤𝜇′

𝑖
𝐴−1
𝑖
(𝑥𝑖 − 𝜇𝑖)∑𝑛

𝑖=1 ¤𝜇′
𝑖
𝐴
−1/2
𝑖

𝑀1𝐴
−1/2
𝑖

(𝑥𝑖 − 𝜇𝑖)
...∑𝑛

𝑖=1 ¤𝜇′
𝑖
𝐴
−1/2
𝑖

𝑀𝑚𝐴
−1/2
𝑖

(𝑥𝑖 − 𝜇𝑖)

ª®®®®®®®®¬
,

and the quadratic inference with respect to 𝛾 is then defined as

𝑄𝑛 (𝛾) = 𝑛𝑔̄′𝑛𝐶̄−1
𝑛 𝑔̄𝑛. (2.5)

where 𝐶̄𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑔𝑖𝑔

′
𝑖
is the sample covariance matrix.

It is worth noting that the quadratic inference function defined above contains only the regression

parameter 𝛾, and only the basis matrices from the working correlation structure are used to formulate

this function. There is no need to estimate the nuisance correlation parameter to obtain optimal

estimator 𝛾̂ [73]. When we assume an independent working correlation, or exchangeable correlation

for balanced data, the quadratic inference function and the generalised estimating equation have the

same estimating functions, resulting in identical estimators[64].
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When there exists a high-dimensional regression setup and only a subset of those are important

for predicting the response, an overfitted model lowers the efficiency of estimation while an under-

fitted one leads to a biased estimator. One popular approach is to incorporate some "penalty" to

estimate the nonzero parameters and functions simultaneously.

The smoothly clipped absolute deviation (SCAD) penalty is taken into consideration due to its

unbiasedness, sparsity, and continuity properties. The derivative of non-convex SCAD penalty is

defined as:

𝑝′𝜆𝑛 (𝜃) = 𝜆𝑛{𝐼 (𝜃 ≤ 𝜆𝑛) +
(𝑎𝜆𝑛 − 𝜃)+
(𝑎 − 1)𝜆𝑛

𝐼 (𝜃 > 𝜆𝑛)}

where 𝑎 > 2, 𝜃 > 2 and 𝑝′
𝜆𝑛
(0) = 0. In practice, searching the best pair (𝑎, 𝜆𝑛) over the two-

dimensional grids using some criteria, such as cross-validation and generalized cross-validation

is computationally expensive[18]. Fan and Li [29] showed the choice of 𝑎 = 3.7 had a good

performance.

To incorporate the within-cluster correlation and select important SNPs, we apply the QIF to

estimate 𝛾 and exerted group-wise SCAD penalization to equation (2.5) to guarantee that spline

coefficient vector of the same nonparametric component is treated as an entire group in model

selection. The group-wide penalized quadratic inference function is defined as follow:

𝑄
𝑝
𝑛 (𝛾) = 𝑄𝑛 (𝛾) + 𝑛

𝑞∑︁
𝑙=1

𝑝𝜆 ( | |𝛾𝑙 | |𝐻) (2.6)

where | |𝛾𝑙 | |𝐻 = (𝛾𝑇
𝑙
𝐻𝛾𝑙)1/2, 𝐻 = (ℎ𝑖 𝑗 )𝑉×𝑉 , ℎ𝑖 𝑗 =

∫ 1
0 𝐵𝑖 (𝑢)𝐵𝑇𝑗 (𝑢)𝑑𝑢 and 𝑝𝜆 is the SCAD penalty

function.

Minimizing the penalized objective function of (2.6), we could get the penalized estimator 𝛾̂ by

𝛾̂ = arg min𝑄𝑝
𝑛 (𝛾). (2.7)

2.2.2 Estimation and testing of the time-varying exposure effect

In the first step, we obtain an estimate of spline coefficients 𝛾̂ by minimizing penalized quadratic

inference function in (2.6). Then an estimator for 𝛼𝑙 (𝑡) is given by 𝛼̂𝑙 (𝑡) =
∑𝑉
𝑣=0 𝛾̂𝑙𝑣𝐵𝑣 (𝑡). The

fitted value 𝑋̂ (𝑡) = 𝛼̂(𝑡)𝐺 is then used to substitute in the second step.
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In the second step, we assume the current response is only affected by the current exposure.

Since we also consider a time-varying coefficient in the second step, similar to the first step, we

still consider the quadratic inference function for time varying effects. The coefficient 𝛽(𝑡) can be

approximated by a linear combination of the basis functions, i.e.

𝛽𝑙 (𝑡) ≈
𝑆∑︁
𝑠=0

𝜂𝑙𝑠𝐵𝑠 (𝑡), for 𝑙 = 0, 1

where 𝜂𝑠’s are spline constants and 𝑆 is associated with the number of basis functions for the

coefficients. The basis functions we use in the second step can be different from the basis functions

used for 𝛼(𝑡). Minimizing the quadratic inference function with respect to 𝜂, we can get the

estimator 𝜂 by

𝜂 = arg min𝑄𝑛 (𝜂). (2.8)

In Mendelian Randomization, we focus more on testing instead of estimation. For the testing

problem, we are interested in testing 𝐻0 : 𝛽1(𝑡) = 0 versus 𝐻𝑎 : 𝛽1(𝑡) ≠ 0. Since the coefficient

𝛽1(𝑡) was approximated by a linear combination of the truncated power basis, we could test if

time-variant coefficient 𝛽1(𝑡) is zero by the following equivalent hypothesis:

𝐻0 : 𝜂1𝑠 = 0, 𝑠 = 1, 2, · · · , 𝑆 v.s. 𝐻𝑎: At least one 𝜂𝑠 ≠ 0

The test statistic to test𝐻0 against𝐻𝑎 is constructed by𝑇 = 𝑄𝑛 (𝜂)−𝑄𝑛 (𝜂) which asymptotically

follows a chi-squared distribution with 𝑆 degrees of freedom under the null hypothesis, where 𝜂

denotes the estimator under 𝐻0 and 𝜂 be the estimator under 𝐻1.

2.3 Simulation Study

Aim

The aim of the simulation study is to evaluate the performance of the concurrent model. Since

MR mainly focuses on hypothesis testing, the ideal model should well protect the type I error rate

at the 𝛼 = 0.05 significance level and obtain good empirical power performance. In addition,

investigating the properties to influence the type I error or power behavior is also of interest.
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The investigated properties include sample size, confounding effects, within sample correlation.

Besides, the QIF approach is applied to deal with the concurrent model and QIF requires working

correlation assumption. It is also of interest to compare the concurrent model behavior if incorrect

working correlation structure is assumed.

Data-generating Mechanisms

Two different sample size settings were considered: 𝑛 = 200 and 𝑛 = 400. We considered

20 repeated measurements for each subject and the time points 𝑡1, · · · , 𝑡20 were chosen to be

equidistant between 0.1 and 1. In our study, we assumed the effects of genetic variants on exposure

and the effect of exposure on outcome both were time-varying.

In the first-stage regression 𝑋 (𝑡 𝑗 ) = 𝛼(𝑡 𝑗 )𝐺 + 𝜖1(𝑡 𝑗 ), 15 SNPs were generated in total, among

them 5 SNPs were simulated as valid instrumental variables with time-varying effects on exposure

and the rest SNPs had zero coefficients. For each SNP variable𝐺, the SNP allele frequency (𝑝) was

generated from a uniform (0.1, 0.4), then SNP values was sampled from {0, 1, 2} with probability

𝑝2, 2𝑝(1− 𝑝) and (1− 𝑝)2 to obtain homozygous, heterozygous, and other homozygous genotypes,

respectively. We defined the true varying coefficients for the intercept and the five SNPs as follows:

𝛼0(𝑡) = 0.1 cos(2𝜋𝑡) + 0.2, 𝛼3(𝑡) = 0.5 sin(𝜋𝑡) + 0.6,

𝛼1(𝑡) = 2𝑡, 𝛼4(𝑡) = 0.5 cos(𝜋𝑡/2) + 0.6,

𝛼2(𝑡) = (1 − 𝑡)3 + 0.2, 𝛼5(𝑡) = 0.3 sin(𝜋𝑡/3) + 0.5,

𝛼6(𝑡) = · · · = 𝛼15(𝑡) = 0.

where 𝛼0(𝑡) was the intercept function. The simulated 𝑋 values were then applied in the second-

stage regression to generate outcome 𝑌 .

In the second-stage regression 𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) + 𝛽(𝑡 𝑗 )𝑋 (𝑡 𝑗 ) + 𝜖2(𝑡 𝑗 ), we set 𝛽0(𝑡) = 0.2𝑡 + 0.2

and 𝛽1(𝑡) = 0 or 𝛽1(𝑡) = 0.015 + 0.01𝑡 to investigate the type I error and power, respectively.

To include confounding effect, error terms 𝜖1(𝑡) and 𝜖2(𝑡) were generated simultaneously
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by assuming a variance-covariance matrix 𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬. Two scenarios were

considered: the first scenario aimed to investigate the effect of confounding factors, where diagonal

matrixΣ11 andΣ22 were fixed and differentΣ12 andΣ21 settings were generated; the second scenario

aimed to investigate the effect of within sample correlation, where off-diagonal matrix Σ12 and Σ21

were fixed and different Σ11 and Σ22 settings were generated. Under each scenario, two types of

variance-covariance structure were considered in total: exchangeable structure and auto-regressive

with order 1, i.e., AR(1). The details of the variance-covariance matrix simulation were sated as

follows:

1. • The entry in Σ11 and Σ22 was set to be 0.1 × (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20.

• To generate Σ12 and Σ21, the cross-correlation was defined as 𝜌 and two types of

correlation structure were considered:

– If working structure is exchangeable, the off diagonal elements were generated to

be 0.1 × 𝜌 and the diagonal part was 0.1 × (𝜌 + 0.1).

– If working structure is AR(1), the off-diagonal element was generated to be 0.1 ×

𝜌 |𝑖− 𝑗 |, while the diagonal entry was set as 0.1 × (𝜌 + 0.1).

2. • The off-diagonal elements of Σ12 and Σ21 were generated to be 0.1 × (0.3) |𝑖− 𝑗 |, and the

diagonal entry was set as 0.04.

• To generateΣ11 and Σ22, the within sample correlation was defined as 𝛿 and two types

of working structure were considered:

– If correlation is exchangeable, the off diagonal elements were generated to be 0.1×𝛿

and the diagonal part was 0.1 × (𝛿 + 0.1).

– If correlation is AR(1), the entry in Σ11 and Σ22 was set to be 0.1 × 𝛿 |𝑖− 𝑗 |.

In all the simulations, we assumed the AR(1) working correlation when analyzed the data.

Under each setting, the simulation was repeated 1000 times.
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Targets

The concurrent model was evaluated for testing the null hypothesis 𝛽(𝑡) = 0. The testing perfor-

mance was measured by the type I error rate and power.

Analysis Method

In the first stage regression, the QIF method was applied for instrumental variable selection and

exposure estimation. In the second stage regression, the QIF testing was applied to test the existence

of time-varying coefficient 𝛽(𝑡).

Performance Measures

The corresponding simulation results were shown in Table 2.1 and Table 2.2. From Table 2.1, the

type I error rates were well-controlled at the 𝛼 = 0.05 significance level under different simulation

settings. Incorrectly specifying working correlation did not influence the type I error rate. For the

empirical power, although using the wrong working correlation for analysis decreased the power,

the difference was not significant. The empirical power increased with the increase of the sample

size and slightly decreased with the increase of the effects of confounding factors. When the

effects of confounding factors was relatively small (𝜌 = 0.1), using correct working structure and

analyzing with incorrect working correlation had quite similar empirical power performance.

Table 2.1 Effect of confounding on the type I error and power.

𝜌 𝑛
Type I error Power

EXC. AR-1 EXC. AR-1
0.1 200 0.052 0.049 0.632 0.675

400 0.049 0.049 0.930 0.946
0.3 200 0.053 0.052 0.512 0.643

400 0.050 0.047 0.821 0.936
0.5 200 0.049 0.056 0.507 0.641

400 0.053 0.046 0.711 0.921

Similar to Table 2.1, type I error rate could still be well protected at the 𝛼 = 0.05 significance
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level under all different simulation scenarios in Table 2.2. Changing the within sample correlation

and misspecifying the working correlation had no effects on Type I error rate. For the empirical

power simulation, misspecifying the working structure still lowered the power and this influence

was more significant compared to the situations in table 2.2. With the increase of the sample

size, the empirical power also increased. Similar to the results in table 2.1, the lager the effects of

within sample correlation was, the smaller empirical power would be. However, the influence of

within sample correlation on empirical power was more significant compared to the influence of

confounding factors.

Table 2.2 Effect of within sample correlation on the type I error and power.

𝛿 𝑁
Type I error Power

EXC. AR-1 EXC. AR-1
0.3 200 0.048 0.044 0.437 0.824

400 0.050 0.051 0.754 0.994
0.5 200 0.055 0.054 0.413 0.659

400 0.051 0.051 0.669 0.939
0.7 200 0.050 0.049 0.371 0.473

400 0.053 0.052 0.565 0.778

2.4 Case Study: Albert Twin Data

2.4.1 Albert Twin data

The method was applied to the Albert twin data set to investigate the causal relationship between the

hormone level and emotional eating behavior in teen girls. The Albert twin data set came from the

Twin Study of Hormones and Behavior across the Menstrual Cycle project (TSHMBC) [49] within

the Michigan State University Twin Registry (MSUTR; see [14, 48]for MSUTR description). This

project is still in progress. The aim of the project is to investigate systematic changes in ovarian

hormones (e.g., estrogen and progesterone) and emotional eating behavior across the menstrual

cycle in identical and fraternal female twins between the ages of 15-30 years. Emotional eating

was measured with the Dutch Eating Behavior Questionnaire (DEBQ) and negative affect was

measured with the Negative Affect scale from the Positive and Negative Affect Schedule (PANAS).
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The DEBQ assesses the tendency to eat in response to negative emotions while PANAS is used to

measure negative emotional states like sadness and anxiety.

All participants were required to meet the following inclusion criteria: 1) menstruation every

22–32 days for the past 6 months; 2) no hormonal contraceptive use within the past 3 months; 3) no

psychotropic or steroid medications within the past 4 weeks; 4) no pregnancy or lactation within

the past 6 months; and 5) no history of genetic or medical conditions known to influence hormone

functioning or appetite/weight [51]. The data dictionary was reported in Appendix A.2.

Table 2.3 Subject characteristics at baseline n=225.

Variables Summary statistics

Age
Mean (sd): 17.5 (1.7)
Median (quantiles): 17.0 (16.4,18.0)
Range: 15-26

BMI
Mean (sd): 23.6 (5.5)
Median (quantiles): 22.0 (20.2, 24.9)
Range: 15-46

Status MZ: n=124 (55%)
DZ: n=101 (45%)

Estradiol
Mean (sd): 2.4 (1.4)
Median (quantiles): 2.1 (1.6, 2.8)
Range: 0-14

Progesterone
Mean (sd): 80.7 (58.0)
Median (quantiles): 64.3 (40.7, 100.0)
Range: 10-324

PANAS
Mean (sd): 15.0 (4.7)
Median (quantiles): 13.8 (11.8, 17.0)
Range: 10-39

DEBQE
Mean (sd): 1.4 (0.5)
Median (quantiles): 1.2 (1.0, 1.5)
Range: 0-4

Measurements for each participant were collected for 45 consecutive days within one menstrual

cycle, which were then grouped into eight menstrual cycle phases, that is, ovulatory phase (1),

transition ovulatory to midluteal (2), midluteal phase (3), transition midluteal to premenstrual (4),

premenstrual phase including the first day of menstrual cycle (5), remaining days of menstrual cycle,

part of follicular phase (6), follicular phase (7) and transition follicular to ovulatory phase (8). They
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were grouped into these phases based on profiles of changes in progesterone across the cycle (by

ConsensusFIN2). Since each phase contained more than 2 consecutive days measurements, we

took two averaged measurements within each phase, which ended up with a total 16 data points for

each individual for further analysis [80].

We started with 167,509 SNPs. After removing SNPs with a genotyping call rate of less than

90% or a minor allele frequency of less than 5%, there were 166,063 SNPs remained for further

analysis. No subject was removed in this step. Since MZ twins shared all of their genetic variants,

the missing SNPs for MZ twins were replaced with the SNPs in another twin pair. Imputation of

the rest missing SNPs was based on the Wright equilibrium and had the following form:

𝑃(𝐺𝑖 𝑗 ) =


𝑃(𝐺 = 0) = (1 − 𝑝 𝑗 )2 + 𝑝 𝑗 (1 − 𝑝 𝑗 )𝐹𝑖

𝑃(𝐺 = 1) = 2𝑝 𝑗 (1 − 𝑝 𝑗 ) − 2𝑝 𝑗 (1 − 𝑝 𝑗 )

𝑃(𝐺 = 2) = 𝑝2
𝑗
+ 𝑝 𝑗 (1 − 𝑝 𝑗 )𝐹𝑖

(2.9)

where 𝑝 𝑗 was the frequency of the major allele for an SNP 𝑗 , and 𝐹𝑖 was the level of homozygosity

of an individual 𝑖, estimated as a proportion of the amount of homozygous loci relative to the total

of loci. Missing SNPs were then sampled from {0, 1, 2} by 𝑃(𝐺𝑖 𝑗 ).

Figure 2.2 Flow diagram of subject selection.
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Figure 2.3 Diagram of the causal relationship for four models (combinations of hormone levels and
eating behavior).

Albert twin data set had 616 subjects in total, among them 336 subjects were monozygotic(MZ)

twins and 280 subjects were dizygotic(DZ) twins. DZ twins might have different genetic variants

information, and MZ twins share the same genetic variants information. The measurements included

for analysis were genetic variants, hormone levels and emotional eating behavior observations.

There were two files. File 1 has longitudinal hormone level and eating behavior measurements with

444 individuals. File 2 contains SNP information with 582 individuals. Out of 444 individuals in

file 1, 353 individuals are contained in file 2. Out of 582 individuals in file 2, 353 individuals are

contained in file 1. After merging the two files with common IDs, there are 353 left (containing

SNPs, hormones and eating behavior measurements). These 353 subjects belong to 225 unique

families. Some families contain two twins, and some only contain one. For each family, we only

picked one subject for further analysis to meet the sample independence assumption. If a family

only had one subject, then that subject was picked. If family had two subjects, we compared

their time period (by ConsensusFIN2), and subject with less missing values based on the two

measurements (i.e., hormone and eating behavior) was chosen. Finally, 225 subjects from different

families were chosen, including 124 monozygotic subjects and 101 dizygotic subjects. Figure 2.2

described the details of subjects selection steps.

In this project, the exposures were the two hormone levels (estradiol and progesterone) and
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Figure 2.4 The observed hormones levels and eating behaviour measurements for the first 100
subjects.

the outcome was the two emotional eating behaviors (DEBQ and PANAS), both measured at 16

“time" points. The genetic variants were measured with {0, 1, 2} to represent the number of minor

allele. They were time-invariant and were treated as instrumental variables to control the effects

of confounding factors when investigating the causal relationship between exposure and outcome.

The goal was to evaluate if there exists causal relationship between hormone levels and eating

behaviors and if so, what were the effect mechanisms. The characteristics of subjects used for

analysis in the Albert twin data set was reported in Table 2.3. Borrowed the idea of Figure 2.1,

Figure 2.3 was used to describe the diagram of the casual relationship that would be investigated.

Figure 2.4 showed the longitudinal Est, Pro, DEBQ and PANAS data for the first 100 subjects

in the Albert twin data set with the red line representing the average measurements. The indi-

vidual estradiol level was almost flat during the whole menstrual cycle phases. For progesterone

level, most subjects reached their maximum value when the menstrual cycle phase is 10. The

individual progesterone level was approximately flat before phase 7. For the individual emotional

eating measurements DEBQ and PANAS, the individual fluctuation patterns were very different.

While some subjects had relatively stable trajectories over phases, others had substantial changes,
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(a) Distribution of Age (b) Distribution of BMI at baseline

Figure 2.5 Distribution of Age and BMI at baseline.

hence realizing that the time-varying information might not be sufficiently captured by a single

observation.

The average estradiol had bimodal distribution with the first peak at 6 (midluteal phase) and

the second peak at 10 (premenstrual phase including the first day of menstrual cycle). Significant

increase was observed between 2 and 6 followed by a rapid decrease between 6 and 8. After the

second peak, average estradiol values decreased continuously.

The average maximum progesterone level reached at phase 10, which was the premenstrual phase

and the distribution was a unimodal distribution with one clear peak. The average progesterone

increased slowly between phase 1 and phase 8, and then displayed a rapid growth after phase 8.

After reaching the peak at phase 10, it continuously went down. For the majority of the phases, the

average progesterone had measurements less than 100.

We could not observe obvious trends for average DEBQ and PANAS measurements, and both

curves oscillate over time. For DEBQ, it had the maximum value at the beginning of the menstrual

cycle phases and then dramatically decreased. Three peaks existed, which were at phase 1, 3 and

9. After phase 12, the curve became flat. The trend was more complex for PANAS. It also had

significant drop between phase 1 and phase 2. Moreover, it also had evident growth ranging from

phase 2 to phase 4, and from phase 12 to phase 16. The maximum value of the average PANAS

appeared at the last phase. The average PANAS value kept going up after phase 12.

The distribution of covariates (age and BMI) were plotted in Figure 2.5. Both variables had
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unimodal distribution and skewed to the right. The majority of the subjects were between 16-18

with BMI measurements between 15-30.

2.4.2 Concurrent Model Application

We applied the concurrent model to the Albert twin data set to evaluate if there exists causal

relationship between hormone levels and eating behaviors. Time was divided by the maximum of

time, which was 16, to make sure time interval was between 0 and 1. We first conducted marginal

QIF testing for each SNPs and picked the top 100 SNPs which were then used for variable selection

in the first step regression. The spline order and knots were set as 3 and 1, respectively. Then

pQIF with grouped SCAD penalty was applied to estimate hormone value. The predicted hormone

was used in the second step as input variable. In the second step, we fixed the order as 3, and let

knots went from 1 to 5, then used BIC to pick optimal knots. P-value was computed by QIF after

choosing the order and knots.

The DEBQ assessed the tendency to eat in response to negative emotions while PANAS was

used to measure negative emotional states like sadness and anxiety. In this study, we wanted to

examine how hormone (estrogen and progesterone) changes affect emotional eating measured by

DEBQ and PANAS. The p-values of estrogen on both DEBQ and PANAS were 0.1569 and 0.1078,

respectively, showing no significant causal effect. The p-value of progesterone on DEBQ was

0.00008, and on PANAS was 0.1944, indicating a causal relationship between progesterone and

DEBQ. No causal relationship was founded between progesterone and PANAS.

We plotted the point-wise estimator of the coefficients together with their corresponding point-

wise confidence interval. The plots of the coefficients for DEBQ and PANAS were shown in Figure

2.6 and Figure 2.7, respectively. The intercept 𝛽0(𝑡) was always positive no matter the response

variable was DEBQ or PANAS. Moreover, 𝛽0(𝑡) increased when time increased for PANAS and

first decreased then increased for DEBQ. The confidence interval of 𝛽0(𝑡) was wider than that of

𝛽1(𝑡). For both DEBQ and PANAS, the effects of PRO decreased over time, indicating a negative

causal relationship between PRO and DEBQ over time (i.e., menstrual cycle).
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(a) Point-wise estimator of 𝛽0(𝑡) (b) Point-wise estimator of 𝛽1(𝑡)

Figure 2.6 Coefficients estimation for the relationship between PRO and DEBQ.

(a) Point-wise estimator of 𝛽0(𝑡) (b) Point-wise estimator of 𝛽1(𝑡)

Figure 2.7 Coefficients estimation for the relationship between PRO and PANAS.

2.5 Conclusion and Discussion

Mendelian Randomization uses genetic variants as instruments in observational studies. There

are several methods available for instrumental variable estimation using one time measurement.

Building upon the two-stage method, we proposed a new method considering longitudinal informa-

tion and time-varying effects for both instruments and exposures. The proposed concurrent model

assumed current response is only affected by current exposure. We applied the idea of QIF regres-

sions in a two-stage instrumental variable regression. In the first step, we used penalized QIF for

instrumental variables selection and obtained the fitted exposure over time. The estimated exposure
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was applied in the second-step QIF testing to test the causal relationship between the exposure and

response. We demonstrated our proposed method in simulation studies. The simulation results

suggested that our method could correctly control the type I error rate at the 𝛼 = 0.05 level and

detected causal effect when it changed over time. In an application to a Albert twin data set, the

analysis results showed progesterone level had causal relationship with eating behavior measured

by DEBQ but did not have causal effect on PANAS.

For the instrumental variables selection, we used QIF method in the two-stage regression.

However, in traditional Mendelian Randomization, the most popular method is cis-MR, and LD-

pruning is the most common approach for selecting genetic variants for inclusion into a cis-MR

study. In our study, since we assumed the time-varying coefficient of genetic variants on exposure,

the threshold of LD-pruning was not appropriate in this situation. This was the reason why we

used QIF approach. Further investigation is needed to check the validity of the QIF approach for

instruments selection.

It should be noted that specific assumptions need to be assumed for this particular nonparametric

concurrent model and we describe these assumptions as follows:

(a) Past outcomes do not directly affect current outcome.

(b) Past outcomes do not directly affect current exposure.

(c) Past exposures do not directly affect current outcome.

If one of these assumptions is violated, our proposed method might be invalid. This motivated the

work in the next two chapters.

Moreover, the reliability of a MR investigation depends on the validity of the genetic variants

as instrumental variables. Mendelian randomization studies are known to be affected by both weak

instrument bias and the pleiotropic bias that arises when some genetic variants are invalid instrument

variables. Sensitivity analysis is usually conducted to test the existence of weak instruments or

pleiotropy. In the simulation, we assumed all valid instruments had strong effects and satisfied all
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assumptions. We did not investigate situations in the presence of weak instrument variables and

pleiotropy. More simulations need to be done for future studies.

In addition, the concurrent model we constructed did not include other covariates effects due to

the simplicity consideration. How to adjust for other covariates effects is also of great importance

in the model construction. We can simply incorporate the covariates into the two-stage regressions.

However, there exist many situations in reality: the effects of covariates might be time-invariant,

time-varying or both. The interaction effects could also be included in the model. Further

investigations for the more complex cases are our future work.
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CHAPTER 3

MENDELIAN RANDOMIZATION WITH TIME LAG EFFECT

In this chapter, we considered Mendelian Randomization analysis with delayed effects. Previously,

we proposed a concurrent model which assumed that the current response is only affected by the

current exposure. However, there may exist a delay effect for the exposure to have a causal effect

on a disease outcome, due to complicated biological processes. For example, the phenomenon of

delayed effect is often observed in the emerging and important field of immuno-oncology. In this

chapter, we proposed a time lag model to investigate the delayed effects. We assumed that both

the current exposure and the past values of exposure contributed together to the current outcome.

In order to select the duration of delay included in the model, an algorithm was developed for the

variable selection purpose. The point-wise testing and simultaneous testing were developed to test

the existence of causal effects. The method was illustrated in the simulation studies and real data

analysis.

3.1 Introduction

MR analysis is a method to analyze the causal effect of an environmental exposure variable on

an outcome variable from observational studies by using genetic variants as instrumental vari-

ables. There exist many well-developed methods for Mendelian Randomization using instrument

variable estimators, such as ratio method, two-stage methods, likelihood based methods, and semi-

parametric methods. However, all above mentioned methods use cross-functional data, while in

reality, many exposures of interest are time-varying, for example, BMI. Inferring causal effects from

longitudinal repeated measures data has high relevance to a number of areas of research, including

economics, social sciences and epidemiology. Current MR studies only use a single measurement

of a time-varying exposure variable given that longitudinal measurements have been collected in

many cohort studies. One measurement cannot adequately capture information of a time-varying

exposure variable.
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In the previous chapter, we proposed a concurrent model which assumed current outcome was

only affected by current exposure and the effects of genetic variants on exposure and the effects

of exposure on outcome both were time-varying. However, the effect of a specific exposure event

sometimes is not limited to the period when it is observed, but it might delay in time. This introduces

the problem of modelling the relationship between an exposure occurrence and a sequence of future

outcomes, specifying the distribution of the effects at different times after the event (defined lags).

In the previous chapter, the proposed concurrent model failed to allow adequately for time lags.

In reality, it is necessary to take account of time lags for causal models because it takes time for

a cause to exert effect. Organisms sometimes do not respond instantaneously to a change in the

system. For example, proteins considered as predictors may have long half-lives.

A lot of published literature has been focused on taking advantages of time lagged variables for

causal inference analysis. The general problem posed by the use of lagged variables as regressors

using directed acyclic graphs was discussed by Pearl[60]. Reed[66] studied the use of lagged

explanatory variables for causal inference in economics and focused on simultaneity and proposed

the use of lagged explanatory variables as instruments for endogenous explanatory variables.

Bellemare et al.[4] derived analytical results for the biases of lag identification in a common

parametric setting: an ordinary least squares (OLS) regression and described the trade-offs between

ignoring endogeneity and lagging explanatory variable. Du et al.[26] developed a probabilistic

decomposed slab-and-spike (DSS) model to learn the causal relations as well as the lag among

different time series simultaneously from data.

In this chapter, we assumed not only current but also recent past levels of the predictor process

might play a role in predicting a response. Ultimately, this step required the definition of the

additional lag dimension of an exposure–response relationship, describing the time structure of

the effect. We proposed a time lag model to investigate delayed effects and we also constructed

an algorithm to select the time lag △𝑡 which could be determined by data. The rest of chapter is

organized as following. In section 3.2, we introduced the instrument variables model and the two-

step estimation method. Algorithm to select window width and lag was also proposed in section3.2.
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Section 3.3 included two hypothesis testing procedures: point-wise testing and simultaneous testing

to test the existence of time-varying casual effect. Simulation studies and real data analysis were

given in section 3.4 and section 3.5, respectively, followed by conclusion and discussion in section

3.6.

3.2 Time Lag Model

Suppose there are 𝑛 subjects and for each individual, 𝑖, the exposure and the outcome are measured

at multiple time points {𝑡 𝑗 , 𝑗 = 1, 2, · · · , 𝑇}. Let 𝑌𝑖 (𝑡 𝑗 ) and 𝑋𝑖 (𝑡 𝑗 ) be the time-varying outcome

and exposure of subject 𝑖 recorded at time 𝑡 𝑗 respectively. 𝐺𝑖 denotes the vector of multiple SNPs

of subject 𝑖 and is time invariant. The data collected are

{𝑌𝑖 (𝑡 𝑗 ), 𝑋𝑖 (𝑡 𝑗 ), 𝐺𝑖}, for 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , 𝑇 .

The concurrent model assumed current outcome was only affected by current exposure. Al-

though genetic variants are time-invariant, since we assume the effects of genetic variants changed

over time, exposure might change over time as well. In this model, we assume the effects of genetic

variants on exposure and the effects of exposure on outcome both are time-varying. The model

could be formulated as follows:

𝑋 (𝑡 𝑗 ) = 𝛼(𝑡 𝑗 )𝐺 + 𝜖1(𝑡 𝑗 ), (3.1)

𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) + 𝛽1(𝑡 𝑗 )𝑋 (𝑡 𝑗 ) + 𝜖2(𝑡 𝑗 ), (3.2)

where 𝛼(𝑡) and 𝛽(𝑡) are coefficient functions; and 𝜖1(𝑡) and 𝜖2(𝑡) are model error functions with

mean zero.

Model (3.2) assumed that response𝑌 (𝑡 𝑗 ) at current time 𝑡 𝑗 were only affect by current predictor

value 𝑋 (𝑡𝑖). In addition to current values, past predictor values might play a role in predicting a

response. Assuming not only current but also recent past exposures affect the current response at

time 𝑡, then model (3.2) becomes

𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) +
𝑝∑︁
𝑟=1

𝛽𝑟 (𝑡 𝑗 )𝑋 (𝑡 𝑗−𝑞−(𝑟−1)) + 𝜖2(𝑡 𝑗 ) (3.3)
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Here 𝑝 denotes the total number of past time points that is considered to affect the response at the

current time. 𝑞 is a time lag of size, and ( 𝑗 − 𝑞) is the first time point that is included in the model.

Starting from time ( 𝑗 − 𝑞) forward, we continuously insert 𝑝 time points in total. When 𝑞 = 0 and

𝑝 = 1, model (3.3) degenerates to the concurrent model (3.2).

When unobservable latent variables affect both X and 𝑌 , G can be considered as instrumental

variables and the effects of X on 𝑌 can be estimated using G. In the first stage, a penalized variable

selection algorithm is applied to each gene expression, the same as we described in the concurrent

model. Then X is replaced by the fitted values X̂ in the second stage and the model of interest

becomes

𝑋 (𝑡 𝑗 ) = 𝛼(𝑡 𝑗 )𝐺 + 𝜖1(𝑡 𝑗 ),

𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) +
𝑝∑︁
𝑟=1

𝛽𝑟 (𝑡 𝑗 ) 𝑋̂ (𝑡 𝑗−𝑞−(𝑟−1)) + 𝜖2(𝑡 𝑗 ). (3.4)

3.2.1 Estimation of the time-varying SNP effect

Following the idea of chapter 2, we assume varying-coefficients for SNPs and exposure. Here, we

use the idea of variable selection and add penalties to select significant genetic variants. We use

basis functions to approximate the varying coefficient. The choice of basis functions is flexible,

and popular choices include Fourier basis, polynomial basis, or splines. Under the assumption that

only a few genetic variants are valid instrumental variables with time varying coefficients, we use

some basis functions to approximate varying coefficients 𝜶(𝑡).

To solve the first equation in (3.4), we do similar operations as we did in chapter 2. As we

discussed in chapter 2, we used penalized quadratic inference function with group-wised SCAD

penalty to select causal genetic variants. Suppose we have 𝑞 genetic variants in total, among which

only a small number of genetic variants have causal effects on exposure 𝑋 . Since we assume

time-varying effects of SNPS, the first moment assumption has the following form:

𝐸 (𝑋𝑖𝑡) = 𝜇𝑖𝑡 and 𝑔(𝜇𝑖𝑡) = 𝛼(𝑡)𝐺𝑖 (3.5)

where 𝑔(·) is a known link function and 𝛼 represents a q-dimensional regression coefficients vector.
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Similar to Chapter 2, we use basis functions to approximate the varying coefficients 𝛼(𝑡).

Suppose 𝐵𝑙𝑣 (𝑡) is a set of basis functions of the functional space to which 𝛼𝑙 (·) belongs, for each 𝑙 =

0, · · · , 𝑞. For simplicity, we assume each 𝛼𝑙 (𝑡) has the basis functions 𝐵(𝑡) = (𝐵1(𝑡), · · · , 𝐵𝑉 (𝑡))

with the same order M and knots K, where 𝑉 = 𝑀 + 𝐾 + 1. Then 𝛼𝑙 (𝑡) could be approximated by

a linear combination of the basis functions, i.e.

𝛼𝑙 (𝑡) ≈
𝑉∑︁
𝑣=0

𝛾𝑙𝑣𝐵𝑣 (𝑡), for 𝑙 = 0, · · · , 𝑞,

where 𝛾𝑙𝑣’s are spline constants and 𝑉 is associated with the number of basis functions for the

coefficient. The second equation in (3.5) then has the following form:

𝑔(𝜇𝑖𝑡) = 𝛼(𝑡)𝐺𝑖 ≈
𝑞∑︁
𝑙=0

𝑉∑︁
𝑣=0

{𝐺𝑖𝑙𝐵𝑙𝑣 (𝑡)}𝛾𝑙𝑣 . (3.6)

The quasi-likelihood equation for longitudinal data is
𝑛∑︁
𝑖=1

¤𝜇′𝑖𝑉−1
𝑖 (𝑥𝑖 − 𝜇𝑖) = 0,

where 𝜇𝑖 = (𝜇𝑖1, · · · , 𝜇𝑖𝑇𝑖 ), 𝑥𝑖 = (𝑥𝑖1, · · · , 𝑥𝑖𝑇𝑖 ), ¤𝜇𝑖 = 𝜕𝜇𝑖/𝜕𝛾, and 𝑉𝑖 = 𝑣𝑎𝑟 (𝑥𝑖) and is often

unknown in practice. To incorporate the within-cluster correlation, we apply the QIF to estimate

𝛾 and exert group-wise penalization to ensure that the spline coefficient vector of the same non-

parametric component is treated as an entire group in model selection. 𝑉𝑖 could be decomposed

by 𝑉𝑖 = 𝐴
1/2
𝑖
𝑅𝐴

1/2
𝑖

, where 𝐴𝑖 is a diagonal marginal variance matrix and 𝑅 is a common working

correlation. Instead of specifying the working correlation, series of basis matrices are utilized to

estimate working correlation 𝑅 given as follows:

𝑅−1 ≈ 𝑎0𝐼 + 𝑎1𝑀1 + · · · 𝑎𝑚𝑀𝑚,

where 𝐼 is the identity matrix and 𝑀𝑖 are symmetric matrices.

These basis matrices are further used to define the extended score vector as follows:

𝑔̄𝑛 (𝛾) =
1
𝑛

𝑛∑︁
𝑖=1

𝑔𝑖 (𝛾) =

©­­­­­­­­«

∑𝑛
𝑖=1 ¤𝜇′

𝑖
𝐴−1
𝑖
(𝑥𝑖 − 𝜇𝑖)∑𝑛

𝑖=1 ¤𝜇′
𝑖
𝐴
−1/2
𝑖

𝑀1𝐴
−1/2
𝑖

(𝑥𝑖 − 𝜇𝑖)
...∑𝑛

𝑖=1 ¤𝜇′
𝑖
𝐴
−1/2
𝑖

𝑀𝑚𝐴
−1/2
𝑖

(𝑥𝑖 − 𝜇𝑖)

ª®®®®®®®®¬
.
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The quadratic inference with respect to 𝛾 is then defined as

𝑄𝑛 (𝛾) = 𝑛𝑔̄′𝑛𝐶̄−1
𝑛 𝑔̄𝑛. (3.7)

where 𝐶̄𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑔𝑖𝑔

′
𝑖
is the sample covariance matrix.

To select important SNPs, we adopt group-wised SCAD penalty to equation (3.7) to guarantee

that spline coefficient vector of the same nonparametric component is treated as an entire group in

model selection. The group-wide penalized quadratic inference function is defined as follow:

𝑄
𝑝
𝑛 (𝛾) = 𝑄𝑛 (𝛾) + 𝑛

𝑞∑︁
𝑙=1

𝑝𝜆 ( | |𝛾𝑙 | |𝐻) (3.8)

where | |𝛾𝑙 | |𝐻 = (𝛾𝑇
𝑙
𝐻𝛾𝑙)1/2, 𝐻 = (ℎ𝑖 𝑗 )𝑉×𝑉 , ℎ𝑖 𝑗 =

∫ 1
0 𝐵𝑖 (𝑢)𝐵𝑇𝑗 (𝑢)𝑑𝑢 and 𝑝𝜆 is the SCAD penalty

function, the derivative of which is defined as:

𝑝′𝜆𝑛 (𝜃) = 𝜆𝑛{𝐼 (𝜃 ≤ 𝜆𝑛) +
(𝑎𝜆𝑛 − 𝜃)+
(𝑎 − 1)𝜆𝑛

𝐼 (𝜃 > 𝜆𝑛)}

where 𝑎 > 2, 𝜃 > 2 and 𝑝′
𝜆𝑛
(0) = 0.

Minimizing the penalized objective function of (3.8), we could get the penalized estimator 𝛾̂ by

𝛾̂ = arg min𝑄𝑝
𝑛 (𝛾). (3.9)

3.2.2 Estimation and testing of the time-varying exposure effect

After obtaining the estimate of spline coefficients 𝛾̂ by minimizing the penalized QIF in (3.8), an

estimator for 𝛼𝑙 (𝑡) can be given by 𝛼̂𝑙 (𝑡) =
∑𝑉
𝑣=0 𝛾̂𝑙𝑣𝐵𝑣 (𝑡). The fitted value 𝑿̂ (𝑡) = 𝜶̂(𝑡)𝑮 is then

used to substitute in the second step for the time-varying exposure effect estimation.

We use the idea of two-step estimation method proposed by Şentürk and Müller [69] for the

varying-coefficient model estimation in the second stage regression that considers delayed time lag

effect. In the first step, the calculation is focused on particular time points. This gives the point-wise

estimation which are then used in the second step to smooth the estimators. In the second step, the

raw estimators are smoothed over all time points to improve the efficiency of the estimators.
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We collect estimated predictors from first-stage regression and observed response into ma-

trix form. Let 𝑋̂𝑞𝑝 𝑗 = ( 𝑋̂1,𝑞,𝑝, 𝑗 , · · · , 𝑋̂𝑛 𝑗 ,𝑞,𝑝, 𝑗 )𝑇 and 𝑌 𝑗 = (𝑦1 𝑗 , · · · , 𝑦𝑛 𝑗 𝑗 ), where 𝑋̂𝑖,𝑞,𝑝, 𝑗 =

{1, 𝑥𝑖 (𝑡 𝑗−𝑞), · · · , 𝑥𝑖 (𝑡 𝑗−𝑞−𝑝+1)}𝑇 and 𝑥𝑖 (𝑡 𝑗−𝑞) is the predicted exposure value for subject 𝑖 estimated

at time 𝑡 𝑗−𝑞, 𝑝 denotes the total number of time-points included in the model, i.e. the window

width into the past, of the predictor process that is considered to affect the response at the current

time and 𝑞 is a time lag included to predict future values of response. Here 𝑛 𝑗 denotes the number

of subjects observed at time 𝑡 𝑗 and (𝑡 𝑗−𝑞, · · · , 𝑡 𝑗−𝑞−𝑝+1), and 𝐶 𝑗 denotes the set of corresponding

subject indices. Then for each time 𝑡 𝑗 , the estimator 𝛽(𝑡 𝑗 ) has the following form:

𝑏𝑝𝑞 (𝑡 𝑗 ) = (𝑏0 𝑗 , 𝑏1 𝑗 , · · · , 𝑏𝑝 𝑗 )𝑇 = ( 𝑋̂𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗 𝑋̂𝑞𝑝 𝑗 )−1 𝑋̂𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑌 𝑗 (3.10)

for 𝑗 = 𝑞 + 2𝑝, · · · , 𝑇 . 𝑀 𝑗−𝑝, 𝑗 is an 𝑛 𝑗−𝑝 × 𝑛 𝑗 matrix for which (𝑎, 𝑏)th entry equals 1 if the 𝑎th

entry of 𝑌 𝑗−𝑝 and the 𝑏th entry of 𝑌 𝑗 comes from the same subject, and equals 0 otherwise.

Equation (3.10) gives the point-wise coefficient estimator. In the second step, the raw estimators

from first step are smoothed over time. For the rth coefficient 𝛽𝑟𝑞𝑝 (𝑡), the following equation is

used to smooth the function:

𝛽𝑟𝑞𝑝 (𝑡) =
𝑇∑︁
𝑗=1
𝑤(𝑡 𝑗 , 𝑡)𝑏𝑟 𝑗 (3.11)

where 𝑤(𝑡 𝑗 , 𝑗) is smoothing weights and could be constructed by various smoothing techniques,

such as local polynomial smoothing, spline smoothing or kernel smoothing. Fan and Zhang [31]

considered local polynomial setting. They defined 𝐷 𝑗 = (1, 𝑡 𝑗 − 𝑡, · · · , (𝑡 𝑗 − 𝑡)𝑝)𝑇 , 𝑗 = 1, 2, · · · , 𝑇

and 𝐾ℎ (𝑡) = 𝐾 (𝑡/ℎ)/ℎ be a kernel function with a bandwidth h. Then smoothing weights for

the qth derivative of an underlying function 𝑤𝑞,𝑝+1(𝑡 𝑗 , 𝑗) = 𝑞!𝑒𝑇
𝑞+1,𝑝+1(𝐷

𝑇𝑊𝐷)−1𝐷 𝑗𝑊 𝑗 , where

𝐷 = (𝐷1, 𝐷2, · · · , 𝐷𝑇 )𝑇 and𝑊 = (𝑊1, · · · ,𝑊𝑇 ) with𝑊 𝑗 = 𝐾ℎ (𝑡 𝑗 − 𝑡).

3.2.3 Time lag selection

Selecting appropriate lag for the model is important, since too many lags inflate the standard

errors of coefficient estimates and thus imply an increase in the mean-square forecast errors while

omitting lags that should be included in the model may generate auto-correlated errors and result
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in an estimation bias. Lag length is frequently selected using an explicit statistical criterion

such as minimizing the Bayes information criterion (BIC) or the Akaike information criterion

(AIC). In our study, we apply the idea backward stepwise deletion technique proposed by Fan et

al. [30] to determine window width 𝑝 and lag 𝑞 simultaneously. An initial group of predictors

{𝑥(𝑡 𝑗−𝑞), · · · , 𝑥(𝑡 𝑗−𝑞−𝑝+1)} for predicting the response at time 𝑡 𝑗 are included at the beginning.

Starting with the smallest and largest time lags 𝑥(𝑡 𝑗−𝑞), 𝑥(𝑡 𝑗−𝑞−𝑝+1), performance of two groups of

predictors without 𝑥(𝑡 𝑗−𝑞) and 𝑥(𝑡 𝑗−𝑞−𝑝+1) respectively are compared to identify the least significant

predictor among the two candidates, and that least significant predictor would be deleted from the

group. Group {𝑥(𝑡 𝑗−𝑞−1), · · · , 𝑥(𝑡 𝑗−𝑞−𝑝+1)} and group {𝑥(𝑡 𝑗−𝑞), · · · , 𝑥(𝑡 𝑗−𝑞−𝑝+2)} are considered

as reduced model and compared with initial full model respectively using F-statistics, which are

calculated at time 𝑡 𝑗 by the following equation:

𝐹𝑟𝑞𝑝 =
{𝑅𝑆𝑆𝑞𝑝 𝑗 (𝑅) − 𝑅𝑆𝑆𝑞𝑝 𝑗 (𝐹)}/1
𝑅𝑆𝑆𝑞𝑝 𝑗 (𝐹)/(𝑛 𝑗 , 𝑗−𝑝 − 𝑝)

,

where RSS stands for the residual sum of squares of the fitted model at time 𝑡 𝑗 , and is defined as

follows:

𝑅𝑆𝑆𝑞𝑝 𝑗 =

𝑛 𝑗 , 𝑗−𝑝∑︁
𝑖=1

{𝑦(𝑡𝑖 𝑗 ) − 𝑏0 𝑗 −
𝑝∑︁
𝑟=1

𝑏𝑟 𝑗𝑥𝑖 (𝑡 𝑗−𝑞−(𝑟−1))}2

Here, p is the number of predictors considered. The group with smaller F-statistic is then selected as

reduced model. Suppose {𝑥(𝑡 𝑗−𝑞−1), · · · , 𝑥(𝑡 𝑗−𝑞−𝑝+1)} have smaller F-statistic, and AIC is applied

to determine whether 𝑥(𝑡 𝑗−𝑞) is finally deleted from initial set of considered predictors. AIC is

defined as 𝐴𝐼𝐶 = log{𝑅𝑆𝑆/(𝑛 𝑗 , 𝑗−𝑝 − 𝑝)} + 2𝑝/𝑛 𝑗 , 𝑗−𝑝. If the AIC of the reduced model is smaller

than that of the full model, we then finally delete 𝑥(𝑡 𝑗−𝑞) to get a new group of predictors and treat=

{𝑥(𝑡 𝑗−𝑞−1), · · · , 𝑥(𝑡 𝑗−𝑞−𝑝+1)} as initial group. This backward stepwise deletion is repeated until we

could not delete any further predictors. However, one problem of this problem is that selection

performance relies on the choice of initial groups of predictors. To solve this shortcoming, we try

different initial settings, and for each setting, we could select corresponding p and q values. The

most often selected p and q values are treated as window width and lag of the final model.
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3.3 Model Testing

In this section, we propose two hypothesis testing procedures to test the existence of time-varying

coefficient 𝛽(𝑡). The pointwise testing is introduced in section 3.3.1 and the simultaneous testing

is discussed in section 3.3.2.

3.3.1 Pointwise Testing

In this section, we consider the pointwise testing for the exposure coefficient 𝛽(𝑡). In section

3.2.2, equation (3.10) gives the pointwise coefficient estimator. From Şentürk and Müller [69], this

estimator follows the asymptotic Gaussian distribution under some conditions and is stated in the

following theorem:

Theorem 3.3.1 (Asymptotic property of Pointwise Estimator). Assuming conditions 𝐴1 − 𝐴3

hold, we have,
√
𝑛 𝑗−𝑝, 𝑗 {𝑏(𝑡 𝑗 ) − 𝛽(𝑡 𝑗 ) → 𝑁 (0𝑝+1, 𝜒

−1
𝑗 Σ 𝑗 𝜒

−1
𝑗 )}

in distribution as 𝑛 𝑗−𝑝, 𝑗 → ∞ for all time-points 𝑡 𝑗 such that 𝑗 = 𝑞 + 2𝑝, · · · , 𝑇 . Here 𝜒 𝑗 and Σ 𝑗

are definded as follows:

𝜒 𝑗 = 𝐸 (𝑛−1
𝑗−𝑝, 𝑗𝑋

𝑇
𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋𝑞𝑝 𝑗 )

(Σ 𝑗 )𝑠,𝑠′ =



𝐸{𝑥(𝑡 𝑗−𝑞−𝑝−𝑠+2)𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′+2)}𝜂𝑞𝑝 𝑗 , 2 ≤ 𝑠, 𝑠′ ≤ 𝑝 + 1,

𝐸{𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′+2)}𝜂𝑞𝑝 𝑗 , 𝑠 = 1, 2 ≤ 𝑠′ ≤ 𝑝 + 1,

𝐸{𝑥(𝑡 𝑗−𝑞−𝑝−𝑠+2)}𝜂𝑞𝑝 𝑗 , 𝑠′ = 1, 2 ≤ 𝑠 ≤ 𝑝 + 1,

𝜂𝑞𝑝 𝑗 , 𝑠 = 𝑠′ = 1,

where 𝜂𝑞𝑝 𝑗 = 𝛿 𝑗 + 𝜎2
𝑦 , and 𝜎2

𝑦 is the variance of the zero-mean additive measurement error of

response 𝑌 𝑗 and 𝛿 𝑗 is the variance function of the zero-mean stochastic process 𝜖2(𝑡).

To test the null hypothesis that the exposure has no effect on the outcome at time 𝑡 𝑗 , i.e.,

𝐻0 : 𝑏(𝑡 𝑗 ) = 0, a Wald test is applied for the pointwise testing.
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Following Şentürk and Müller [69], 𝑐𝑜𝑣(𝑏𝑟 𝑗 , 𝑏𝑟 𝑗 ′) can be calculated by the standard least

squares theory as,

𝑐𝑜𝑣(𝑏𝑟 𝑗 , 𝑏𝑟 𝑗 ′) =



𝛿(𝑡 𝑗 , 𝑡 𝑗 ′)𝑐𝑇𝑟,𝑝 (𝑋𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋𝑞𝑝 𝑗 )−1𝑋𝑇
𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗

⊗𝑀 𝑗 , 𝑗 ′𝑀 𝑗 ′, 𝑗 ′−𝑝𝑋𝑞𝑝 𝑗 ′−𝑝 (𝑋𝑇𝑞𝑝 𝑗 ′−𝑝𝑀 𝑗 ′−𝑝, 𝑗 ′𝑋𝑞𝑝 𝑗 ′)−1𝑐𝑟 𝑝, 𝑗 ≠ 𝑗 ′,

(𝛿 𝑗 + 𝜎2
𝑦 )𝑐𝑇𝑟,𝑝 (𝑋𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋𝑞𝑝 𝑗 )−1𝑋𝑇

𝑞𝑝 𝑗−𝑝

⊗𝑀 𝑗−𝑝, 𝑗𝑀 𝑗 , 𝑗−𝑝𝑋𝑞𝑝 𝑗−𝑝 (𝑋𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋𝑞𝑝 𝑗 )−1𝑐𝑟 𝑝, 𝑗 = 𝑗 ′,

(3.12)

where 𝑐𝑟 𝑝 denotes a 𝑝-dimensional unit vector with 1 at its 𝑟th entry.

Once we obtain estimators for 𝛿(𝑡 𝑗 , 𝑡 𝑗 ′) and 𝛿 𝑗 + 𝜎2
𝑦 , the estimator of 𝑐𝑜𝑣(𝑏𝑟 𝑗 , 𝑏𝑟 𝑗 ′) could be

calculated by equation (3.12). We define 𝑃𝑞𝑝 𝑗 = 𝑋𝑞𝑝 𝑗 (𝑋𝑇𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋𝑞𝑝 𝑗 )−1𝑋𝑇
𝑞𝑝 𝑗−𝑝𝑀 𝑗−𝑝, 𝑗 , and

𝑒𝑞𝑝 𝑗 = (𝐼𝑛 𝑗−𝑃𝑞𝑝 𝑗 )𝑌 𝑗 be the residuals at time 𝑡 𝑗 . If we assume that 𝑡𝑟{(𝐼 𝑗−𝑃𝑞𝑝 𝑗 )𝑀 𝑗 , 𝑗 ′ (𝐼 𝑗 ′−𝑃𝑞𝑝 𝑗 ′)} ≠

0 and 𝑛 𝑗 > 𝑝, then 𝛿(𝑡 𝑗 , 𝑡 𝑗 ′) and 𝛿 𝑗 + 𝜎2
𝑦 could be estimated by the following equations:

𝛿(𝑡 𝑗 , 𝑡 𝑗 ′) = 𝑡𝑟 (𝑒𝑞𝑝 𝑗𝑒𝑇𝑞𝑝 𝑗 ′)/𝑡𝑟{(𝐼 𝑗 − 𝑃𝑞𝑝 𝑗 )𝑀 𝑗 , 𝑗 ′ (𝐼 𝑗 ′ − 𝑃𝑞𝑝 𝑗 ′)𝑇 } (3.13)

△̂ 𝑗 = 𝑒
𝑇
𝑞𝑝 𝑗𝑒𝑞𝑝 𝑗/(𝑛 𝑗 − 𝑝) (3.14)

where △ 𝑗 = 𝛿 𝑗 + 𝜎2
𝑦 .

Plugging in respective estimators of 𝑐𝑜𝑣(𝑏𝑟 𝑗 , 𝑏𝑟 𝑗 ′), we are able to compute the variance of

estimated coefficient using the following function:

𝑣𝑎𝑟 (𝛽𝑟𝑞𝑝 (𝑡)) =
𝑇∑︁
𝑗=1

𝑇∑︁
𝑗 ′=1

𝑤𝑟𝑞𝑝 (𝑡 𝑗 , 𝑡)𝑤𝑟𝑞𝑝 (𝑡 𝑗 ′, 𝑡)𝑐𝑜𝑣(𝑏𝑟𝑞𝑝 𝑗 , 𝑏𝑟𝑞𝑝 𝑗 ′). (3.15)

Then the 95% pointwise confidence interval could be constructed by

𝛽𝑟𝑞𝑝 (𝑡) ± 2𝑣𝑎𝑟 (𝛽𝑟𝑞𝑝 (𝑡))1/2 (3.16)

Here we assume that the smoothers we employ use fixed smoothing windows and bias term is

ignored in constructing confidence intervals.
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3.3.2 Simultaneous Test

In section 3.3.1, we consider test the coefficient at each fixed time point. In this section, we focus

on the overall testing problem and consider the general simultaneous hypothesis testing stated as

follows:

𝐻0 : 𝛽(𝑡) = 0 for all 𝑡, vs. 𝐻𝑎 : 𝛽(𝑡) ≠ 0.

Before introducing the hypothesis testing procedure, we first show the estimated coefficient

function followed asymptotic Gaussian process. The property is stated in theorem 3.3.2.

Theorem 3.3.2 (Asymptotic property of Smoothed Estimator). Assuming conditions 𝐴1 − 𝐴6

hold, we have,

𝛽𝑟 (𝑡) ∼ 𝐺𝑃(𝐸 (𝛽𝑟 (𝑡)), 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ))

where

𝐸 (𝛽𝑟 (𝑡)) =
𝑇∑︁
𝑗=1
𝑤𝑟 (𝑡 𝑗 , 𝑡)𝛽𝑟 (𝑡 𝑗 )

and

𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) = 𝑐𝑜𝑣(𝛽𝑟 (𝑡𝑖), 𝛽𝑟 (𝑡𝑘 )) =
𝑇∑︁
𝑗=1

𝑇∑︁
𝑗 ′=1

𝑤𝑟 (𝑡 𝑗 , 𝑡𝑖)𝑤𝑟 (𝑡 𝑗 ′, 𝑡𝑘 )𝑐𝑜𝑣(𝑏𝑟 (𝑡 𝑗 ), 𝑏𝑟 (𝑡 𝑗 ′))

We here propose the following global test statistic for the general hypothesis testing problem:

𝑇𝑛 =
∑︁
𝑟

∫ 𝑇

0
𝛽𝑟

2(𝑡)𝑑𝑡 (3.17)

To derive the asymptotic random expression of 𝑇𝑛, we assume that 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) has finite trace, that is,

𝑡𝑟 (𝛾𝛽) =
∫
𝛾𝛽 (𝑡, 𝑡)𝑑𝑡 < ∞. We then do eigenvalue decomposition for the 𝛾𝛽. Let 𝜆1, 𝜆2, · · · be the

eigenvalues in decreasing order, and 𝜙1(𝑡), 𝜙2(𝑡), · · · be the associated orthonormal eigenfunctions

of 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ). Let 𝑀 denotes the number of positive eigenvalues. Then 𝜆𝑚 > 0 for 𝑚 ≤ 𝑀 and

𝜆𝑚 = 0 for all 𝑚 > 𝑀 . The covaraince function 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) has the following eigen-decomposition:

𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) =
𝑀∑︁
𝑚=1

𝜆𝑚𝜙𝑚 (𝑡𝑖)𝜙𝑚 (𝑡𝑘 ).

Then the asymptotic distribution of the test statistic could be calculated using the eigenvalue

information and is stated in theorem 3.3.3.
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Theorem 3.3.3 (Asymptotic distribution of test statistic). Under conditions 𝐴1 − 𝐴6, we have

𝑇𝑛
𝑑
=

𝑀∑︁
𝑚=1

𝜆𝑚𝐴𝑚 + 𝑜𝑝 (1), 𝐴𝑚 ∼ 𝜒2
1 (𝑢

2
𝑚)

Under 𝐻0, 𝑢𝑚 = 0.

Simulation approximation is used to approximate the null distribution of 𝑇𝑛 by the 𝜒2-type

mixture 𝑆 =
∑𝑀̂
𝑚=1 𝜆̂𝑚𝐴𝑚, where 𝐴𝑚 ∼ 𝜒2

1 , 𝜆̂𝑚 are the eigenvalues of 𝛾̂𝛽 (𝑡𝑖, 𝑡𝑘 ) and 𝑀̂ is the

corresponding number of positive eigenvalues of 𝛾̂𝛽 (𝑡𝑖, 𝑡𝑘 ). The sampling distribution of 𝑆 is

computed based on a sample of 𝑆 obtained via repeatedly generating (𝐴1, 𝐴2, · · · , 𝐴𝑀̂).

3.4 Simulation Study

In this section, three different simulations were conducted. The goal of the simulation was to assess

the effectiveness of the proposed procedure for dealing with the time lag Mendelian randomization

model and to evaluate the performance of the proposed stepwise deletion algorithm for the choice

of window widths and lags.

3.4.1 Selection Performance for 𝑝 and 𝑞

Aim

The aim of this simulation study was to show the validity of the proposed backward stepwise time

lag selection under different simulation setting.

Data-generating Mechanisms

Five different scenarios were considered in total, which were stated as follows:

1. 𝑝 = 1, 𝑞 = 0. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗 ).

2. 𝑝 = 1, 𝑞 = 1. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗−1).

3. 𝑝 = 1, 𝑞 = 2. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗−2).
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4. 𝑝 = 2, 𝑞 = 0. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗 ) and 𝑋 (𝑡 𝑗−1).

5. 𝑝 = 2, 𝑞 = 1. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗−1) and 𝑋 (𝑡 𝑗−2).

Each subject had 20 repeated measurements and the time points 𝑡1, · · · , 𝑡20 were chosen to be

equidistant between 0.1 and 1. In our study, we assumed the effects of genetic variants on exposure

and the effect of exposure on outcome both were time-varying.

In the first-stage regression 𝑋 (𝑡 𝑗 ) = 𝛼(𝑡)𝐺 + 𝜖1(𝑡 𝑗 ), 15 SNPs were generated in total, among

them 5 SNPs were simulated as valid instrumental variables with time-varying effects on exposure

and the rest SNPs had zero coefficients. For each SNP variable𝐺, the SNP allele frequency (𝑝) was

generated from a uniform (0.1, 0.4), then SNP values was sampled from {0, 1, 2} with probability

𝑝2, 2𝑝(1− 𝑝) and (1− 𝑝)2 to obtain homozygous, heterozygous, and other homozygous genotypes,

respectively. We defined the true varying coefficients for the intercept and the five SNPs as follows:

𝛼0(𝑡) = 0.1 cos(2𝜋𝑡) + 0.2, 𝛼3(𝑡) = 0.5 sin(𝜋𝑡) + 0.6,

𝛼1(𝑡) = 2𝑡, 𝛼4(𝑡) = 0.5 cos(𝜋𝑡/2) + 0.6,

𝛼2(𝑡) = (1 − 𝑡)3 + 0.2, 𝛼5(𝑡) = 0.3 sin(𝜋𝑡/3) + 0.5,

𝛼6(𝑡) = · · · = 𝛼15(𝑡) = 0.

where 𝛼0(𝑡) was the intercept function. The simulated 𝑋 values were then applied in the second-

stage regression to generate outcome 𝑌 .

In the second-stage regression 𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) +
∑𝑝

𝑟=1 𝛽𝑟 (𝑡 𝑗 )𝑋 (𝑡 𝑗−𝑞−(𝑟−1)) + 𝜖2(𝑡 𝑗 ), two different

values of 𝑝 were considered. When 𝑝 = 1, 𝛽0(𝑡) = 0.2𝑡 + 0.2 and 𝛽1(𝑡) = 0.015 + 0.01𝑡. When

𝑝 = 2, we let 𝛽0(𝑡) = 0.2𝑡 + 0.2, 𝛽1(𝑡) = 0.5 + 𝑠𝑖𝑛(𝜋𝑡) and 𝛽2(𝑡) = 0.3 + 0.5𝑐𝑜𝑠(𝜋(𝑡 − 0.5))

respectively.

To include confounding effects, error terms 𝜖1(𝑡) and 𝜖2(𝑡) were generated together by assuming

a variance-covariance matrix 𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬. The entry in Σ11 and Σ22 was set to

be 0.1× (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20, and for Σ12 and Σ21, the off-diagonal element was generated
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to be 0.1 × (0.1) |𝑖− 𝑗 |, while the diagonal entry was set as 0.02. Under each setting, the simulation

was repeated 1000 times.

Targets

The task of the simulation was to evaluate model selection performance by the proposed time lag

selection algorithm described in section 3.2.3. Under each scenario, the selected 𝑝 and 𝑞 values

were plotted with the boxplot to measure the selection performance.

Analysis Method

In the first stage regression, the QIF with group-wise SCAD penalty was applied for instrumental

variable selection and exposure estimation. In the second stage regression, the time lag selection

algorithm was applied to choose optimal 𝑝 and 𝑞 values used for model construction.

Performance Measures

Since the effectiveness of variable selection depended on the initial set of predictors, we tried

different initial groups setting for each simulation, which might result in different 𝑝 and 𝑞 selected

values. Thus, for each simulation, we might get one or more than one pairs of (𝑝, 𝑞) combination,

and then we selected the most often pair as our final window width and lag. The results were shown

in Figure 3.1 and Figure 3.2. When 𝑝 = 1, 𝑝 and 𝑞 could be correctly selected under different 𝑞

settings (see Figure 3.1). If we looked at all possible values selected for 𝑝 and 𝑞, there existed other

possible 𝑝 and 𝑞 combinations. Since we only focused on the most frequently chosen values, we

could correctly pick window width and lag.
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(a) 𝑝 = 1, 𝑞 = 0 (b) 𝑝 = 1, 𝑞 = 1 (c) 𝑝 = 1, 𝑞 = 2

Figure 3.1 Boxplot of the time lag selection under different true values of 𝑝 and 𝑞.

When 𝑝 = 2, we tried two different scenarios: 𝑞 = 0 and 𝑞 = 1. As displayed in Figure

3.2, 𝑞 could be correctly selected under both scenarios. However, when true 𝑝 value was 2, the

percentage of true 𝑝 being chosen was smaller than the percentage of true 𝑝 being chosen when

𝑝 was 1. Although 𝑝 can be correctly selected in most cases, there were simulation runs that 𝑝

was selected as 1 or 3. Overall, the simulation results showed that our proposed stepwise variable

selection methods could reasonably select the true 𝑝 and 𝑞 values.

(a) 𝑝 = 2, 𝑞 = 0 (b) 𝑝 = 2, 𝑞 = 1

Figure 3.2 Boxplot of the time lag selection under different true values of 𝑝 and 𝑞.

3.4.2 Performance of the Coefficient Estimation

Aim

The aim of this simulation study was to evaluate the performance of the estimation precision for

the time lag model.
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Data-generating Mechanisms

Two different sample size settings were considered: 𝑛 = 200 and 𝑛 = 400. In the first-stage

regression 𝑋 (𝑡 𝑗 ) = 𝛼(𝑡)𝐺 + 𝜖1(𝑡 𝑗 ), simulation setup was the same as the setup introduced in

Section 3.4.1 and the details was omitted here.

In the second-stage regression𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 )+
∑𝑝

𝑟=1 𝛽𝑟 (𝑡 𝑗 )𝑋 (𝑡 𝑗−𝑞−(𝑟−1))+𝜖2(𝑡 𝑗 ), we considered

two different settings: 𝑝 = 1 and 𝑝 = 2. When 𝑝 = 1, we let 𝑞 = 0, which means current 𝑋 (𝑡 𝑗 ) has

a causal effect on current𝑌 (𝑡 𝑗 ) value and𝑌 was simulated by𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) + 𝛽1(𝑡 𝑗 )𝑋 (𝑡 𝑗 ) + 𝜖2(𝑡 𝑗 ).

To define the coefficient functions 𝜷(·) = (𝛽0(·), 𝛽1(·))𝑇 , we set 𝛽0(𝑡) = 0.2𝑡 + 0.2 and 𝛽1(𝑡) =

0.5 + 𝑠𝑖𝑛(𝜋𝑡). When 𝑝 = 2, we also let 𝑞 = 0. In this case, we assumed that both 𝑋 (𝑡 𝑗 ) and

𝑋 (𝑡 𝑗−1) affect𝑌 (𝑡 𝑗 ). 𝑌 was then simulated by𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) + 𝛽1(𝑡 𝑗 )𝑋 (𝑡) + 𝛽2(𝑡 𝑗 )𝑋 (𝑡 𝑗−1) + 𝜖2(𝑡 𝑗 ),

where 𝜷(·) = (𝛽0(·), 𝛽1(·), 𝛽2(·))𝑇 and we let 𝛽0(𝑡) = 0.2𝑡 + 0.2, 𝛽1(𝑡) = 0.5 + 𝑠𝑖𝑛(𝜋𝑡) and

𝛽2(𝑡) = 0.3 + 0.5𝑐𝑜𝑠(𝜋(𝑡 − 0.5)), respectively.

To include confounding effects, error terms 𝜖1(𝑡) and 𝜖2(𝑡) were generated simultaneously by

assuming a variance-covariance matrix 𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬. The setup was the same as

the setup introduced in Section 3.4.1 and the detail was omitted here.

Again, 1000 simulation runs were conducted to obtain the point-wise estimator and the corre-

sponding 95% confidence interval.

Estimands

The estimands of the simulation was the time-varying coefficient 𝛽(𝑡) in the second stage regression.

The point-wise estimator together with the corresponding 95% confidence interval were plotted to

evaluate the estimation performance.

Analysis Method

In the first stage regression, the QIF with group-wise SCAD penalty was applied for instrumental

variable selection and exposure estimation. In the second stage regression, the two-step estimation
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(a) 𝛽0 estimation when 𝑛 = 200 (b) 𝛽0 estimation when 𝑛 = 400

(c) 𝛽1 estimation when 𝑛 = 200 (d) 𝛽1 estimation when 𝑛 = 400

Figure 3.3 Coefficient estimation when 𝑝 = 1. The solid red curve represents the true effect
function. The solid black curve and dashed blue curves in each figure represent the estimated effect
function and the 95% confidence interval, respectively.

method was applied for point-wise estimator estimation and confidence interval construction.

Performance Measures

Simulation results were shown in Figure 3.3 for p=1 and in Figure 3.4 for p=2. In Figure 3.3,

the plots showed our time lag model could correctly estimate the coefficients, since the estimated

black line and the true red line almost exactly coincided for both intercept 𝛽0 and coefficient 𝛽1

when 𝑝 = 1. This happened for both n=200 and n=400 situations. For the estimated point-wise

confidence intervals, they always contained true coefficients under all the situations in Figure 3.3.

It was obvious to see the confidence interval became narrower as the sample size increased.

When 𝑝 = 2, the lag model could also precisely estimate the coefficients. The approximated
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coefficients matched the true coefficients in all subplots in Figure 3.4. The confidence intervals

also always involved the true coefficients for all time points and the confidence interval became

tighter when the sample size increased from 200 to 400. When p=2, the confidence interval for

the intercept 𝛽0 behaved quite similar to the intercept for p=1. However, for the other coefficients,

different performance could be observed. The confidence interval had approximately similar width

at each time points when p=1. When p=2, the confidence interval was narrower in the middle but

became wider at both the beginning and the end.
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(a) 𝛽0 estimation when 𝑛 = 200 (b) 𝛽0 estimation when 𝑛 = 400

(c) 𝛽1 estimation when 𝑛 = 200 (d) 𝛽1 estimation when 𝑛 = 400

(e) 𝛽2 estimation when 𝑛 = 200 (f) 𝛽2 estimation when 𝑛 = 400

Figure 3.4 Coefficient estimation when 𝑝 = 2. The solid red curve represents the true effect
function. The solid black curve and dashed blue curves in each figure represent the estimated effect
function and the 95% confidence interval, respectively.
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3.4.3 Performance of Simultaneous Testing

Aim

The aim of this simulation study was to evaluate the simultaneous testing performance of the

proposed time lag model. The ideal model should well protect the type I error rate at the 𝛼 = 0.05

significance level and obtain good empirical power performance. In addition, investigating the

properties to influence the type I error or power behavior was also of interest. The investigated

properties include sample size and time lag (𝑝 and 𝑞 values).

Data-generating Mechanisms

Similar to the variable selection simulation, We considered the following four situations for both

𝑛 = 200 and 𝑛 = 400 sample size in total:

1. 𝑝 = 1, 𝑞 = 0. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗 ).

2. 𝑝 = 1, 𝑞 = 1. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗−1).

3. 𝑝 = 2, 𝑞 = 0. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗 ) and 𝑋 (𝑡 𝑗−1).

4. 𝑝 = 2, 𝑞 = 1. 𝑌 (𝑡 𝑗 ) was determined by 𝑋 (𝑡 𝑗−1) and 𝑋 (𝑡 𝑗−2).

To simulate the data, we had the similar setting as we did in coefficient estimation simulation for the

first stage regression simulation and confounding effects simulation. To simulate 𝑌 , we considered

two different settings: 𝑝 = 1 and 𝑝 = 2. When 𝑝 = 1, we defined the coefficient functions

𝜷(·) = (𝛽0(·), 𝛽1(·))𝑇 , and we set 𝛽0(𝑡) = 0.2𝑡 + 0.2 and 𝛽1(𝑡) = 0 or 𝛽1(𝑡) = 0.5 + 𝑠𝑖𝑛(𝜋𝑡) for

type I error and power simulation respectively. When 𝑝 = 2, 𝜷(·) = (𝛽0(·), 𝛽1(·), 𝛽2(·))𝑇 and

we defined 𝛽0(𝑡) = 0.2𝑡 + 0.2, 𝛽1(𝑡) = 0 and 𝛽2(𝑡) = 0 to test simultaneous type I error; while

𝛽0(𝑡) = 0.2𝑡 + 0.2, 𝛽1(𝑡) = 0.5 + 𝑠𝑖𝑛(𝜋𝑡) and 𝛽2(𝑡) = 0.3 + 0.5𝑐𝑜𝑠(𝜋(𝑡 − 0.5)) to test simultaneous

power. The only difference from the previous simulation is that we focus on pointwise estimation

in the previous section, but our interest is simultaneous testing in this section.
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Targets

The task of the simulation was to evaluate the time model for testing the null hypothesis 𝛽(𝑡) = 0

for all 𝑡 simultaneously. The testing performance was measured by the type I error rate and power.

Analysis Method

In the first stage regression, the QIF with group-wise SCAD penalty was applied for instrumental

variable selection and exposure estimation. In the second stage regression, the two-step estimation

method was applied to estimate smoothed coefficient 𝛽(𝑡) which was then used for simultaneous

testing.

Performance Measures

The simultaneous testing results were given in Table 3.1. The Type I errors were well controlled at

𝛼 = 0.05 significance level under all simulation situations. The empirical power increased when

the sample size went from 𝑛 = 200 to 𝑛 = 400. Under the same 𝑝, 𝑞 had little impact on the testing

power. This result showed our proposed time lag Mendelian Randomization model could not only

protect type I error but also achieve good power performance.

Table 3.1 Simultaneous testing simulation result.

𝑝 𝑞 𝑛 Type I error power
1 0 200 0.052 0.855

400 0.055 0.994
1 200 0.045 0.861

400 0.054 0.992
2 0 200 0.053 0.578

400 0.052 0.996
1 200 0.050 0.498

400 0.053 0.998
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3.5 Case Study: Albert Twin Data

We used the same data set, the Albert twin data set to investigate the delayed effects of hormones

on teen girl’s eating behavior, specifically, the effect in changes of estradiol and progesterone levels

on emotional eating across the menstrual cycle. The details of data set was described in section

2.4.1 and was omitted here.

We first conducted marginal QIF testing for each SNPs and picked top 100 SNPs which were

then used for variable selection in the first step regression. We defined the spline order to be 3

and knots to be 1 to calculate the spline basis function. Then pQIF with group SCAD penalty was

applied to estimate the hormone values. The predicted hormone was used in the second step as input

variable. In the second step, we first applied time lag selection algorithm to select optimal window

width 𝑝 and lag 𝑞. This algorithm gave us 𝑝 = 2 and 𝑞 = 0, which meant the current value 𝑌𝑡 was

caused by the the current value 𝑋𝑡 and the previous value 𝑋𝑡−1. We then used the two-step estimation

to estimate the coefficient of progesterone on DEBQ and PANAS respectively. The simultaneous

test was then conducted to test if progesterone was causally related to the emotional eating. When

we used 𝑝 = 2 and 𝑞 = 0, the simultaneous test led to a p-value be equal to 0.02 for emotional

eating DEBQ and 0.638 for PANAS. Thus, we focused on the analysis of progesterone level and

emotional eating DEBQ across the menstrual cycle. We could conclude that the progesterone level

had delayed causal effect on emotional eating DEBQ.
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Figure 3.5 Relationship between pro and DEBQE.

We plotted the coefficients estimation together with corresponding point-wise confidence inter-

val for 𝛽0, 𝛽1 and 𝛽2 in Figure 3.5, Figure 3.6 and Figure 3.7, respectively. As shown in Figure

3.5, 𝛽0 fluctuated slightly over time and all estimated 𝛽0 values after smoothing were positive. The

point-wise confidence interval was bigger at the beginning and shrank as the growth of phases.

For 𝛽1, it was negative during the majority of the phases, and showed an unapparent unimodal

distribution. The estimated 𝛽1 value climbed before point 7, reaching the peak at point 7 and kept

decreasing slowly after the peak. The coefficient was approximately flat between point 5 and point

12, with significant growth only at the beginning. The point-wise confidence intervals at the start

and at the final did not include 0, while 0 was contained in the confidence interval in the middle

stages. For the coefficient 𝛽2 of 𝑋𝑡−1, the approximated values were almost 0 between point 1 and

point 3. The rest of the smoothed 𝛽2 values were all around half negative and half positive during

the remaining menstrual cycle phases. Similarly, the point-wise confidence interval was wider at

the beginning. The main part of the confidence intervals involved 0.
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Figure 3.6 Relationship between Pro and DEBQE.

Figure 3.7 Relationship between Pro and DEBQE.

Besides simultaneous testing, we also conducted point-wise testing for the correlation between

progesterone and DEBQ and plotted the corresponding point-wise −𝑙𝑜𝑔10(P value) in Figure 3.8.

As shown in the bar plot, the red dotted line represented 𝛼 = 0.05 significance level, and we

found significant p-values at phase 6, 7, 10 and 15. Although not all menstrual cycle phases

had significant p-values for the point-wise testing, we could still achieve significant p-value when

conducting simultaneous test.
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Figure 3.8 Pointwise p-value for DEBQE.

3.6 Conclusion and Discussion

One important problem in scientific fields is the identification of causal effects from observational

study. For two series of longitudinal measurements X and Y, the most basic approach to inferring

causal relationship is to use the correspondence measure between a lagged version of the potentially-

causing X to the non-lagged potentially-caused Y. The notion of X-causing-Y can be inferred if a

high degree of correspondence is founded between a k-lag of X and Y.

In this chapter, we proposed a time lag model and considered delayed effects situation. We

assumed the current outcome Y was not only affected by current exposure but also might be affected

by the previous value of exposure. We used two-stage instrumental variable regression to solve the

proposed model. In the first step, we applied penalized QIF to estimate and select causal genetic

variants which had time-varying effects on exposure. In the second step, our proposed model had

similar formula to a finite distributed lag model which was a common model to analyze time series

data in statistics and econometrics. The fitted exposure was then used to substitute in the second

step regression. To select appropriate lag period included in the model, we proposed the algorithm

based on the idea of backward stepwise deletion. The simulation results suggested our proposed

algorithm could select the true lag period under different settings with reasonable accuracy. After

selecting appropriate time lag, we considered two hypothesis testing problems: point-wise testing
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and simultaneous testing to test the existence of the time-varying causal effect. From the real data

analysis, we found one causal relationship between hormone progesterone and emotional eating

DEBQ. And no casual relationship was found between progesterone level and PANAS. These

findings are similar to the findings in chapter 2. However, only contemporary causal effect of

progesterone level on DEBQ was observed in chapter 2. The using of time lag model contributed to

the findings of not only current causal effect but also delayed causal effect of hormone progesterone

on emotional eating DEBQ.

Although the proposed time model included the delayed effects of exposure variables, other

covariates effects were not considered in the regression models due to the simplicity consideration.

How to adjust for other covariates effects is also of great importance in the model construction. We

can simply incorporate the covariates into the two-stage regressions. However, there exists many

situations in reality: the effects of covariates might be time-invariant, time-varying or both. The

interaction effects could also be included in the model.

For the second stage regression model, distributed lag model can involve using one or more

lagged values of response variables as determinants of the current response value, such as the

autoregressive lag model. Besides the autocorrelated response variables, there also exist possibility

for model errors to be autocorrelated. However, we did not consider the autoregressive situations in

time lag model. We actually assumed current response value was not affected by the past values of

response but was only determined by exposure measurements. Further investigations for the more

complex cases are our future work.

The correct MR results depend on three critical assumptions of the valid instruments variables,

which are difficult to verify. Therefore, sensitivity analysis methods are necessary for evaluating

results and making plausible conclusions. Weak instrument bias and the pleiotropic bias are two

common challenges arise in MR due to invalid instrumental variables. Since we assumed time-

varying coefficients for SNPs, QIF method was applied to select the IV variables instead of using

common GWAS study with LD-pruning. In this study, we did not conduct sensitivity analysis to

further investigate the pleiotropy and weak instruments situation. Further investigation is needed
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to confirm the validity of the selected instrumental variables.
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CHAPTER 4

MENDELIAN RANDOMIZATION FOR LONGITUDINAL DATA WITH CUMULATIVE
EFFECT

The motivation of this chapter is to investigate the cumulative effect of exposure on an outcome

at time 𝑡. For an outcome measured at time 𝑡, we would like to test if the cumulative effect

of an exposure up to 𝑡 exerts a causal effect on the outcome at time 𝑡. The concurrent model

described in chapter 2 assumed the current response was only affected by the current exposure.

In the real data analysis in Chapter 2, we found the contemporary casual relationship between

hormone progesterone and emotional eating DEBQ, and the current DEBQ was affected by current

progesterone level. One may further be interested in the cumulative effect of progesterone on DEBQ

and would like to answer the question: "Does past value of hormone progesterone cumulatively

contribute to the current emotional eating behaviour?" To address this problem, we consider a

functional model which includes all information of the exposure up to time 𝑡 in this chapter. We

demonstrate our model in the simulation study with well protected type I error control.

4.1 Introduction

Functional data analysis (FDA) focuses on data that is on infinite-dimensional such as curves,

shapes, images, or anything else varying over a continuum. In FDA, there are two typical types

of data: dense functional data and sparse functional data. Dense functional data consists of a

large number of regularly observed measurements for each subject. Sparse functional data contains

irregularly-spaced measurements on some small number of time points over the time domain.

Sparse functional data is common in many real-world applications such as longitudinal studies.

There exists substantial literature on modeling and estimation for sparse functional data. For

the testing purpose, most of the functional testings require the individual curves from each subject

being observed at the same dense regular grid. Pre-smoothing methods are applied for each curve

if observing times are not the same for all the subjects. However, this technique based on individual
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curves is not reliable for sparse functional data because of the limited number of observations for

each subject. Wang [82] developed an asymptotic 𝜒2 test for detecting the differences among the

mean functions of two independent stochastic process with homogeneous covaraince functions when

only a few irregularly spaced measurements were given for each subject. The pseudo likelihood

ratio test was proposed by Staicu et al. [74] and aimed to testing the structure of the mean function

of complex functional processes and was applicable to sparsely sampled functional data. Pomann

et al. [61] used marginal functional principal component analysis to decompose the curves and

developed the nonparametric distribution test for testing the null hypothesis that two samples of

curves observed at discrete grids and with noise had the same underlying distribution. Wang et

al. [81] proposed unified empirical likelihood ratio tests to make pointwise and simultaneous

inferences on functional concurrent linear models, treating sparse and dense functional data in a

unified framework.

Another popular direction of sparse functional data analysis is to investigate dimensionality

reduction. Staniswalis and Lee [75] used kernels to smooth the covariance surface from which

the functional principal components were estimated, using quadrature to estimate the functional

principal component scores when functions were sampled on sparse, irregular grids that varied

across functions. Yao et al. [84] developed a version of functional principal components (FPCs)

analysis, in which the FPC scores were framed as conditional expectations, to handle sparse and

irregular longitudinal data for which the pooled time points were sufficiently dense. Di et al. [24]

considered analysis of sparsely sampled multilevel functional data, where the basic observational

unit was a function and data had a natural hierarchy of basic units. He proposed sparse multilevel

FPCA (MFPCA) which generalized the MFPCA method he developed before from densely sampled

functions to sparsely observed functions.

In this chapter, we consider the functional model for Mendelian Randomization analysis and

assume the exposure has cumulative effects on the outcome. To solve this functional Mendelian

Randomization model, we develop a two-stage instrumental variable regression. In the first step, the

penalized QIF method is applied for causal instrumental variable selection and exposure prediction.
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The estimated exposure is then applied in the second step. We treat the time series exposure as

sparse functional data and construct FPC analysis using the PACE method proposed by Yao et al.

[84]. The FPCs are then inserted in the regression model in the second step to investigate the causal

relationship.

The rest of paper is organized as follows: Section 2 introduces the functional Mendelian

Randomization models and the corresponding methods to deal with each regression. In section 3,

we evaluate the performance of our model via simulation. We apply our approach to the Albert

twin data set in section 4, followed by conclusion and discussion.

4.2 Functional Model

Suppose there are 𝑛 subjects in total. For each individual, 𝑖, the exposure and the outcome are

measured at multiple time points {𝑡 𝑗 , 𝑗 = 1, 2, · · · , 𝑇}. Let 𝑌𝑖 (𝑡 𝑗 ) and 𝑋𝑖 (𝑡 𝑗 ) be the time-varying

outcome and exposure of subject 𝑖 recorded at time 𝑡 𝑗 respectively. 𝐺𝑖 denotes the vector of multiple

SNPs of subject 𝑖 and is time invariant. The data collected are denoted as,

{𝑌𝑖 (𝑡 𝑗 ), 𝑋𝑖 (𝑡 𝑗 ), 𝐺𝑖}, for 𝑖 = 1, 2, · · · , 𝑛, 𝑗 = 1, 2, · · · , 𝑇 .

In the chapter 3, we considered a time lag model which assumed not only current predictor

value 𝑋 (𝑡 𝑗 ) had an influence on response 𝑌 (𝑡 𝑗 ) at current time 𝑡 𝑗 but also recent past exposures

played a causal role on an outcome measure at time 𝑡 𝑗 . Although genetic variants are time-invariant,

since we observe longitudinal exposure and outcome, we assume the effects of genetic variants

on exposure change over time, and the effect of exposure on outcome variable might change over

time as well. We assume the effects of genetic variants on exposure and the effects of exposure on

outcome both are time-varying in the time lag model and the model can be formulated as follows:

𝑋 (𝑡 𝑗 ) = 𝛼(𝑡 𝑗 )𝐺 + 𝜖1(𝑡 𝑗 ), (4.1)

𝑌 (𝑡 𝑗 ) = 𝛽0(𝑡 𝑗 ) +
∫ 𝑡 𝑗

0
𝛽1(𝑡)𝑋 (𝑡)𝑑𝑡 + 𝜖2(𝑡 𝑗 ) (4.2)

The time lag model considered the cumulative effect of the previous 𝑝 time points on an

outcome. The total number of past points included in the model is either 2 or 3 in the previous
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chapter. In this chapter, we consider beyond 2 time points of exposures having effects on outcome

and treat the repeated measurements as sparse functional data. We have the same assumption on

the genetic variants that the genetic effect on a time-varying exposure variable changes over time.

For the time-varying exposure, we assume it has cumulative effects on the time-varying outcome

and the dependent variable at time 𝑡 𝑗 can be determined by the independent variables measured up

to time 𝑡 𝑗 .

One major complication that is emphasized is the possibility of inconsistent parameter esti-

mation due to endogenous regressors. The estimated association does not mean causation under

this situation. When unobservable latent variables affect both X and 𝑌 , G can be considered as

instrumental variables to remove the effects of confounding factors and the effects of X on 𝑌 can

be consistently estimated. In the first stage, a penalized variable selection algorithm is applied to

select genetic variants and estimate time-varying exposure simultaneously. Then X is replaced by

the fitted values X̂ in the second stage and X̂ removes the effects of confounding factors on exposure

variable. X̂ is used in the second stage to infer the causal relationship between the cumulative effect

of an exposure variable and an outcome at time 𝑡 𝑗 .

4.2.1 Estimation of the time-varying SNP effect

Similar to chapter 2 and chapter 3, we apply the idea of QIF in the first stage regression. We apply

QIF method to test the significance of each individual genetic variant. To solve the first equation

in (4.1), we do similar operations as we did in previous chapters. We use penalized quadratic

inference function with group-wised SCAD penalty to select causal genetic variants. The detailed

estimation procedure is omitted here.

4.2.2 Estimation and testing of the functional exposure effect

Even though longitudinal data have become more common in observational studies, they are often

sparse and collected at irregular time points. Different number of observations may also be recorded

for different subjects. To recover the curves and characterize the dominant modes of variation of
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a sample of random trajectories, Yao et al. [84] proposed principal components analysis through

conditional expectation (PACE) method to perform functional principal components analysis for

the case of sparse and irregularly spaced longitudinal data by assuming that the longitudinal

measurements are located randomly with a random number of repetitions for each subject and are

sampled from an underlying curve with noise and the curves of all the subjects are independent

with the same mean function and covariance function. We apply PACE method in the second-stage

regression for the dimensionality reduction purpose.

Let mean function be 𝐸𝑋 (𝑡) = 𝜇(𝑡) and covariance function be 𝐺 (𝑠, 𝑡) = 𝑐𝑜𝑣 [𝑋 (𝑠), 𝑋 (𝑡)]

for the collection of curves that are assumed to be independent realizations of a smooth random

function. The domain of 𝑋 (𝑡) is in a closed and bounded time interval T. Eigen decomposition

can be performed to expand the covariance function as

𝐺 (𝑠, 𝑡) =
∑︁
𝑘

𝜆𝑘𝜙𝑘 (𝑠)𝜙𝑘 (𝑡),

where 𝜆𝑘 ’s are nonnegative eigen-values with descending order and 𝜙𝑘 (𝑡)’s are corresponding eigen

functions. The 𝑖th random curve can be expressed as

𝑋𝑖 (𝑡) = 𝜇(𝑡) +
∑︁
𝑘

𝜉𝑘𝜙𝑘 (𝑡)

in classical functional principal component (FPC) analysis. The 𝑘th FPC score of subject 𝑖, 𝜉𝑖𝑘 is

regarded as uncorrelated random variables with mean 0 and variance 𝐸𝜉2
𝑖𝑘
= 𝜆𝑘 . When the density

of the grid of measurements for each subject is sufficiently high, the FPC score is estimated by

𝜉𝑖𝑘 =
∫
(𝑋𝑖 (𝑡) − 𝜇(𝑡))𝜙𝑘 (𝑡)𝑑𝑡.

However, this integration does not provide reasonable approximations for sparse data and will

lead to biased FPC scores if the measurements are contaminated with errors. To overcome the

problem, the PACE method proposed by Yao et al.[84] introduces the best prediction of FPC score

𝜉𝑖𝑘 as the conditional expectation

𝜉𝑖𝑘 = 𝐸 (𝜉𝑖𝑘 |𝑋𝑖) = 𝜆𝑘𝜙𝑇𝑖𝑘Σ
−1
𝑋𝑖
(𝑋𝑖 − 𝜇𝑖),

where 𝜙𝑖𝑘 = (𝜙𝑘 (𝑡𝑖1), · · · , 𝜙𝑘 (𝑡𝑖𝑁𝑖
))𝑇 , Σ𝑋𝑖 = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑖) + 𝜎2𝐼𝑁𝑖

, and 𝜇𝑖 = (𝜇(𝑡𝑖1), · · · , 𝜇(𝑡𝑖𝑁𝑖
))𝑇 .

This conditional expectation is aimed at analyzing the model that incorporated uncorrelated additive
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measurement errors with mean 0 and constant variance 𝜎2 and is defined as

𝑥𝑖 𝑗 = 𝜇(𝑡𝑖 𝑗 ) +
∞∑︁
𝑘=1

𝜉𝑖𝑘𝜙𝑘 (𝑡𝑖 𝑗 ) + 𝜖𝑖 𝑗 ,

where 𝜉𝑖𝑘 and 𝜖 are assumed to follow jointly Gaussian distribution. The mean function 𝜇 is

estimated based on the pooled data from all individuals using a local linear smoother, while the

covariance function 𝐺 (𝑠, 𝑡) also borrows strength from the entire dataset and is estimated by fitting

a local quadratic component along the direction perpendicular to the diagonal and a local linear

component in the direction of the diagonal.

After computing the smooth surface estimator of 𝐺 (𝑠, 𝑡), eigen decomposition is applied to

calculate 𝜆𝑘 and 𝜙𝑘 , which can be plugged in the conditional expectation equation to estimate

FPC score 𝜉𝑖𝑘 . If we assume that the infinite-dimensional processes under consideration are well

approximated by the projection on the function space spanned by the first 𝐾 eigenfunctions, then

the recovered individual curve is predicted using the first 𝐾 eigenfunctions and has the following

form:

𝑥𝑖 (𝑡) = 𝜇̂(𝑡) +
𝐾∑︁
𝑘=1

𝜉𝑖𝑘𝜙𝑘 (𝑡), for 𝑡 ∈ T.

In the first step, we obtain an estimate of spline coefficients 𝛾̂ to get an estimator for 𝛼𝑙 (𝑡) given

by 𝛼̂𝑙 (𝑡) =
∑𝑉
𝑣=0 𝛾̂𝑙𝑣𝐵𝑣 (𝑡). The fitted value 𝑿̂ (𝑡) = 𝜶̂(𝑡)𝑮 is then used to substitute in the second

step for the time-varying exposure effect estimation. We then apply PACE method to perform

functional principal component analysis for the sparse longitudinal data 𝑿̂ (𝑡) from the first step.

After the functional principal component analysis, we next regress response on the the principal

component scores for the functional covariate estimation. Since the random curve 𝑋𝑖 (𝑡) can be

expressed as 𝑋̂𝑖 (𝑡 𝑗 ) = 𝜇(𝑡 𝑗 ) +
∑𝐾
𝑘=1 𝜉𝑖𝑘𝜙𝑘 (𝑡 𝑗 ), the functional slope 𝛽1(𝑡) in model (4.2) can also be

written in terms of 𝜙1, 𝜙2, · · · as

𝛽1(𝑡) =
𝐾∑︁
𝑘=1

𝑏𝑘𝜙𝑘 (𝑡)

Regressing 𝑦𝑖 on the principal component scores gives us the following model:

𝑌𝑖 (𝑡 𝑗 ) = 𝛽0 +
𝐾∑︁
𝑘=1

𝑏𝑘𝜉𝑖𝑘 + 𝜖2(𝑡 𝑗 ) (4.3)
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in which the response is written as an linear combination of FPC score 𝜉𝑖𝑘 . Approximate pointwise

standard errors can be constructed out of the covariance matrix of the 𝑏𝑘 :

𝑣𝑎𝑟 (𝛽1(𝑡)) = (𝜙1(𝑡) · · · 𝜙𝐾 (𝑡))𝑇𝑣𝑎𝑟 (𝑏) (𝜙1(𝑡) · · · 𝜙𝐾 (𝑡)).

In order to test the existence of causal effect 𝐻0 : 𝛽1(𝑡) = 0, we can test the coefficients of

principal component scores instead, i.e. 𝐻0 : 𝑏𝑘 = 0 for all 𝑘 . The Wald test can be applied to

analyze this hypothesis testing problem. Since regressing𝑌 on the infinity predictors is impossible,

one important thing is to select appropriate number of eigenfunctions. We introduce several criteria

for the eigenfunctions selection in section 4.2.3.

4.2.3 Select the number of eigen-functions

Several criteria can be applied to select the number of eigenfunctions that provides a reasonable

approximation to the infinite-dimensional process. We can use the cross-validation score based on

the leave-one-curve-out prediction error which is defined as follows:

𝐶𝑉 (𝐾) =
𝑛∑︁
𝑖=1

𝑁𝑖∑︁
𝑗=1

{𝑥𝑖 𝑗 − 𝑥 (−𝑖)𝑖
(𝑡𝑖 𝑗 )}2

where 𝑥 (−𝑖)
𝑖

is the predicted curve for the 𝑖th subject computed after removing the 𝑖th subject.

Another criteria we can adapt is Akaike information criterion (AIC). A pseudo-Gaussian log-

likelihood, summing the contributions from all subjects, conditional on the estimated FPC scores

𝜉𝑖𝑘 is given by

𝐿̂ =

𝑛∑︁
𝑖=1

{−𝑁𝑖
2

log(2𝜋) − 𝑁𝑖

2
log(𝜎̂2) − 1

2𝜎̂2 (𝑥𝑖 − 𝜇̂𝑖 −
𝐾∑︁
𝑘=1

𝜉𝑖𝑘𝜙𝑖𝑘 )𝑇 (𝑥𝑖 − 𝜇̂𝑖 −
𝐾∑︁
𝑘=1

𝜉𝑖𝑘𝜙𝑖𝑘 )}

AIC is then defined as 𝐴𝐼𝐶 = −𝐿̂ + 𝐾 . Besides cross-validation score and AIC, the fraction of

variance explained (FVE) or Bayesian information criterion (BIC) can also be applied to choose

optimal number of eigenfunctions.
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4.2.4 Functional F test

Since Mendelian Randomization aims to address causal questions about how modifiable exposures

influence different outcomes, hypothesis testing is the primary research of interest instead of

prediction. However, it is difficult to attempt to derive the theoretical null distribution for the test

statistic because of the nature of functional statistics. As we discussed in section 4.2.2, a Wald

test can be applied to test the existence of causal effect. In this section, we introduce an 𝐹 statistic

which is defined as follows:

𝐹 =
𝑉𝑎𝑟 (𝑌 )

1
𝑛

∑(𝑌𝑖 − 𝑌𝑖)2
,

where 𝑌 is the vector of predicted responses. This statistic is different from the classic 𝐹 statistic

in the manner in which it normalizes the numerator and denominator sums of squares. We can

compute a different random permutation each time and use the permutation data to calculate the

test statistic. By repeating it several hundred times, a null distribution from the observed data is

constructed directly. If there is no relationship between the response and the exposure, it should

make no difference if we randomly rearrange the way they are paired. The p-value for the test can

then be calculated by counting the proportion of permutation 𝐹 values that are larger than the 𝐹

statistic for the observed pairing.

4.3 Simulation Study

Aim

The aim of this simulation study was to evaluate the functional testing performance of the proposed

cumulative effect model. The ideal model should well protect the type I error rate at the 𝛼 = 0.05

significance level and obtain good empirical power performance. In addition, investigating the

properties to influence the type I error or power behavior was also of interest. The investigated

properties include sample size and number of time points included for analysis.
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Data-generating Mechanisms

Two different sample size settings were considered in total: 𝑛 = 200 and 𝑛 = 400. Each subject had

20 repeated measurements and the time points 𝑡1, · · · , 𝑡20 were chosen to be equidistant between

0.1 and 1. In our study, we assumed the effects of genetic variants on exposure and the effect of

exposure on outcome both were time-varying.

In the first-stage regression 𝑋 (𝑡 𝑗 ) = 𝛼(𝑡)𝐺 + 𝜖1(𝑡 𝑗 ), 15 SNPs were generated in total, among

them 5 SNPs were simulated as valid instrumental variables with time-varying effects on exposure

and the rest SNPs had zero coefficients. For each SNP variable𝐺, the SNP allele frequency (𝑝) was

generated from a uniform (0.1, 0.4), then SNP values were sampled from {0, 1, 2} with probability

𝑝2, 2𝑝(1− 𝑝) and (1− 𝑝)2 to obtain homozygous, heterozygous, and other homozygous genotypes,

respectively. We defined the true varying coefficients for the intercept and the five SNPs as follows:

𝛼0(𝑡) = 0.1 cos(2𝜋𝑡) + 0.2, 𝛼3(𝑡) = 0.5 sin(𝜋𝑡) + 0.6,

𝛼1(𝑡) = 2𝑡, 𝛼4(𝑡) = 0.5 cos(𝜋𝑡/2) + 0.6,

𝛼2(𝑡) = (1 − 𝑡)3 + 0.2, 𝛼5(𝑡) = 0.3 sin(𝜋𝑡/3) + 0.5,

𝛼6(𝑡) = · · · = 𝛼15(𝑡) = 0.

where 𝛼0(𝑡) was the intercept function. The simulated 𝑋 values were then applied in the second-

stage regression to generate outcome 𝑌 .

To simulate 𝑌 , we used the PACE method to perform functional principal components analysis

on 𝑋 . The PACE results give us the estimated mean function, the eigenfunctions together with

the corresponding eigen values and FPC scores, which will be used to simulate response variable.

The regression function 𝛽(𝑡) was generated using eigenfunctions 𝛽(𝑡) = ∑
𝑏𝑘𝜙𝑘 (𝑡), where 𝜙𝑘 (𝑡)

are eigenfunctions and 𝐾 is the number of eigenfunctions which can be selected using AIC, BIC,

cross-validation score or FVE. In the simulation, we used FVE and the FVE threshold was set to be

0.95 which means 95% of the total variance was explained by chosen FPCs. The response variable

was then simulated by 𝑌 (𝑡 𝑗 ) = 𝛽0 +
∑𝐾
𝑘=1 𝑏𝑘𝜉𝑘 + 𝜖2(𝑡 𝑗 ), where 𝑏𝑘 was the coefficient for FPC score

𝜉𝑘 and was generated between 0.2 and 0.01 if 𝐾 was at least 5, and between 0.3 and 0.1 if 𝐾 was

78



more than 1 but less than 5. When 𝐾 was just one, we set 𝑏𝑘 equaled 0.8. As for the intercept 𝑏0,

we simulated it from a standard normal distribution.

To include confounding effects, error terms 𝜖1(𝑡) and 𝜖2(𝑡) were generated simultaneously by

assuming a variance-covariance matrix𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬. The entry inΣ11 andΣ22 was

set to be (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20, and for Σ12 and Σ21, the off-diagonal element was generated

to be (0.1) |𝑖− 𝑗 |, while the diagonal entry was set as 0.2. Then we simulate (𝝐1, 𝝐2) ∼ 𝑁40(0, Σ).

The same simulation was repeated for sample size 𝑛 = 200 and 𝑛 = 400. Under each setting,

the simulation was repeated 1000 times.

Targets

The task of the simulation was to evaluate the cumulative effect model for testing the null hypothesis

𝛽(𝑡) = 0 at each 𝑡. The testing performance was measured by the type I error rate and power.

Analysis Method

In the first stage regression, the QIF with group-wise SCAD penalty was applied for instrumental

variable selection and exposure estimation. In the second stage regression, PACE method was

applied on the fitted exposure value from step one for the dimensionality reduction purpose. The

FPC score coefficient was estimated by regressing outcome on FPC scores. Testing the functional

coefficient 𝛽(𝑡) was equivalent to test FPC score coefficients.

Performance Measures

The type I error and power measured at three different time points (𝑇 = 5, 10, 15) were reported

in Table 4.1. From the table, we could conclude that Type I error were well-controlled under

all cases. For the power simulation, the empirical power improved with increasing sample size.

However, when we did not have enough time information (𝑇 = 5), the empirical power was

low. The simulation results suggested 10 repeated measurements were large enough to obtain a
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relatively good performance when sample size was 400. With the increasing number of subjects,

the requirement for the number of time points could be appropriately reduced.

Table 4.1 List of Type I error and power under different sample size and time points.

𝑛 𝑇 Type I error power

200
5 0.054 0.428
10 0.055 0.739
20 0.046 0.764

400
5 0.055 0.714
10 0.055 0.964
20 0.051 0.956

We also conducted simulations to test the effects of confounding factors on type I error and

empirical power. The simulation settings and results are introduced in appendix.

4.4 Case Study: Albert Twin Data

We used the same data set, the Albert twin data set to investigate the cumulative effects of hormones

on teen girl’s eating behavior, specifically, the effect in changes of estradiol and progesterone levels

on emotional eating across the menstrual cycle. The details of data set was described in section

2.4.1 and is omitted here.

We first conducted QIF testing method for each SNP and picked SNPs with p-values less

than 10−4. In GWAS, the threshold 𝜏 is often taken to be the GWAS significance threshold

𝜏 = 5 × 10−8 in order to reduce the number of false-positive associations arising from the vast

number of statistical tests performed. Since we assumed varying-coefficients for SNPs and we had

longitudinal measurement for exposure, the QIF results did not provide p-values as small as GWAS.

Thus, using more relaxed threshold might be beneficial in this study. The threshold 10−4 led to 8

SNPs being selected as IVs.

Using 8 genetic variants, we predicted the progesterone levels in the first step. Then the PACE

method was applied to approximate the individual progesterone levels to recover the individual

progesterone curves from the estimated longitudinal data. The smoothed mean progesterone

function was showed in Figure 4.1, which had a sine or cosine distribution trend. The smoothed
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Figure 4.1 Smoothed progesterone mean function.

Figure 4.2 Plot of -log10(p-value) for DEBQ.

mean function decreased at the beginning, then increased after phase 3 and reached the peak at phase

9. The mean function continuously decreased after phase 9. We used the leading eigenfunctions

to explain a total of 95% variation. For most phases, the leading eigenfunctions were chosen to be

two with only phase 3, phase 15 and phase 16 having 3 leading eigenfunctions.

We used Wald test to test the null hypothesis that the cumulative time-varying progesterone

had no effect on the emotional eating outcome. Figure 4.2 and Figure 4.3 showed the −𝑙𝑜𝑔10(p-

value) for DEBQ and PANAS, respectively. For both plots, we could not find any significant

p-values during all menstrual cycle phases. The results indicated that the cumulative time-varying
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Figure 4.3 Plot of -log10(p-value) for PANAS.

progesterone had no effect on either DEBQ or PANAS. Note that the results of cumulative effect

model are quite different from those obtained with the time lag model. When the outcome at time 𝑡

is only affected by exposures at closed time points, including more time points may introduce more

noise, hence dilute the testing signal. This might explain why we observed significant results in the

time lag model but not in the cumulative effect model.

4.5 Conclusion and Discussion

In this chapter, we further investigate the cumulative causal relationship that are beyond two time

points. Instead of using longitudinal analysis approach, we treated the repeated measurements

as sparse functional data and proposed a functional model for Mendelian Randomization analysis

purpose. In the first step, we applied QIF method as we did in the concurrent model and time

lag model. In the second step, the predicted exposure from step one was utilized for functional

principal component analysis. Instead of regressing response on the predicted exposure directly,

we regressed response on FPC scores.

The simulation studies suggested that our proposed method could well protect the type I error

rate at the significance level 𝛼 = 0.05. For the empirical power simulation, the results showed that

5 time points was relatively small for us to obtain good performance, but 10 time points contained

enough information to reach a good power. The real data analysis did not give us any new findings.
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We did not find any new causal relationship between hormone progesterone and emotional eating

behavior using the proposed functional Mendelian Randomization model for the Albert twin data

set analysis.

Compared to the results we found in the previous chapter, where not only current progesterone

level, but also one past progesterone value had cumulative causal effects on DEBQ, we did not

identify any causal relationship using the functional model in this chapter. The reason of the

difference might be that including too many insignificant time points in the model might introduce

more noise when the outcome at time 𝑡 was only affected by exposures at closed time points, hence

diluted the testing signal and leading to insignificant p-values. Thus, even we found significant

effects using two time point in the time lag model, we did not observe significant results after

integrating more observations.

In this chapter, we analyzed the response at a fixed time point. Thus the functional model in

the second stage regression used a scalar response at each time point. Instead of solving functional

regression with scalar response, we could also considered all response information simultaneously

and applied a functional response in the future. However, if the functional response is included in

the model, then the model becomes

𝑌 (𝑡) = 𝛽0(𝑡) +
∫ 𝑡

0
𝛽1(𝑠, 𝑡)𝑋 (𝑠)𝑑 (𝑠) + 𝜖 (𝑡),

where 𝛽1(𝑠, 𝑡) is a vector of unknown two-dimensional functional coefficient. Since the primary

goal of Mendelian Randomization is testing the existence of casual effect, the hypothesis testing

problem becomes complicate under this situation. More investigations are needed in the future

work.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

The main goal of this dissertation is to develop novel Mendelian Randomization analysis methods

to investigate causal relationship when longitudinal measurements are obtained in observational

studies. We considered 3 different models in total. We first proposed a concurrent model in Chapter

2 which assumed contemporary causal relationship, i.e. current response was only affected by

current exposure and the linear relationship held at every time point. The idea of quadratic

inference function was applied to solve the concurrent model. Following the work of Chapter 2, we

extended the current model to a time lag model in Chapter 3. The time lag model considered the

cumulative delayed effects and assumed not only current exposure but also past values of exposure

contributed together to the current response. One important part of time lag model was to select

appropriate number of time points included in the model. To solve this question, we proposed the

algorithm for the variable selection. When only current exposure is selected, the time lag model

degenerates to the concurrent model. We also considered both point-wise testing and simultaneous

testing for the time lag model. The total time points selected for the time lag model in Chapter 3 was

no more than 3. In Chapter 4, we further investigated the cumulative effects and considered more

time points than time lag model. Instead of using longitudinal methods to investigate Mendelian

Randomization, we treated the time series observations as sparse functional data. The functional

model was proposed to investigate the overall cumulative effect.

For the simulation perspective, since Mendelian Randomization focuses more on hypothesis

testing problem than regression estimation, we did simulations to compare the type I error and

empirical power performance. The simulation results suggested the three different models we

considered could all well protect Type I error rate at the significance level 𝛼 = 0.05 and achieve

good empirical power performance.
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From the application perspective, our methods development was well motivated by the Albert

twin data set to investigate the causal relationship between hormone measurement and emotional

eating behaviour during menstrual cycle phase. Using our proposed models, we found the timely

causal relationship between progesterone level and emotional eating behaviour measurement DEBQ

when applying concurrent model. For the time lag model, the variable selection algorithm chose

two time points and we concluded that not only current progesterone level but also progesterone

measured at time 𝑡−1 had casual effects on DEBQ. However, when we wanted to further investigate

the cumulative effect of progesterone, the functional model did not give any causality findings. So

far, we could only conclude the emotional eating behavior DEBQ measured at time 𝑡 is determined

by progesterone level measured at time 𝑡 and time 𝑡 − 1 together.

In conclusion, this dissertation considered three different models under the MR framework with

longitudinal data. We proposed new models to deal with three different effect assumptions and

illustrated our developed methods by simulation studies and real data analysis.

5.2 Future Work

As we introduced in the first chapter, the reliability of Mendelian Randomization relies on the

validity of genetic variants as instrumental variables. In order to be valid instrumental variables,

several assumptions need to be satisfied. To test whether those assumptions hold, traditional

Mendelian Randomization analysis usually conduct the sensitivity analysis. Sensitivity analysis

identifies weak instruments and pleiotropy which are two common challenges we might face when

calculating the casual effect. In the dissertation, we assume genetic variants have time-varying

effects on the exposure 𝑋 , since genetic variants are time-invariant but we observe longitudinal

exposure values. The sensitivity analysis can be conducted in the future investigation to evaluate

the impact of weak instruments and pleiotropy effect.

In addition to sensitivity analysis, the approach of selecting instrumental variables also need

further discussion. In the dissertation, we use the idea of quadratic inference function for valid

instrumental variables selection, which is different from the common used variable selection
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methods in Mendelian Randomization, such as cis-MR. LD-pruning is the most common approach

for selecting genetic variants for inclusion into a cis-MR study. Since we use different approach, the

threshold of LD-pruning is not suitable for our studies. Different approaches to deal with genetic

variants with time-varying effects may be developed in the future.

In addition, the three models we constructed did not include other covariates effects due to the

simplicity consideration. How to adjust for other covariates effects is also of great importance in

the model construction. We can simply incorporate the covariates into the two-stage regressions.

However, there exists many situations in reality: the effects of covariates might be time-invariant,

time-varying or both. The interaction effects could also be included in the model. Further

investigations for the more complex cases are our future work.

Currently, there is very limited literature about Mendelian Randomization analysis for longi-

tudinal data due to the lack of appropriate data set. In the dissertation, we applied our proposed

models to the Albert twin data set. It will be helpful to evaluate the method performance in other

real data sets.

Moreover, genetic instrumental variables are traditionally considered to be sufficient if the

corresponding F-statistic is greater than 10 in traditional Mendelian Randomization. This criteria

is often applied to decide the weak instruments and strong instruments. However, there is no

clear criteria for the longitudinal data. Studying the criteria to include instrumental variables in

longitudinal data is also our future work.
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Simulation studies to test the influence of instrumental variables strength

To test the effect of instrumental variables strength, we did additional simulations by changing the

time-varying effects of genetic variants on exposure variable. The total number of subjects was set

as 200. Each subject had 20 repeated measurements and the time points 𝑡1, · · · , 𝑡20 were chosen

to be equidistant between 0.1 and 1. Similarly, we still assumed the effects of genetic variants on

exposure and the effect of exposure on outcome both were time-varying. We generated 5 SNPs in

total in the simulation and assumed all the generated SNPs were valid instrumental variables with

time-varying effects on exposure variable. In Chapter 2, we defined the true varying coefficients of

SNPs having the following forms:

𝛼0(𝑡) = 0.1 cos(2𝜋𝑡) + 0.2, 𝛼3(𝑡) = 0.5 sin(𝜋𝑡) + 0.6,

𝛼1(𝑡) = 2𝑡, 𝛼4(𝑡) = 0.5 cos(𝜋𝑡/2) + 0.6,

𝛼2(𝑡) = (1 − 𝑡)3 + 0.2, 𝛼5(𝑡) = 0.3 sin(𝜋𝑡/3) + 0.5.

where 𝛼0(𝑡) was the intercept function and 𝛼1(𝑡)-𝛼5(𝑡) were SNPs coefficients. We simulated

a total of 5 variables of SNPs 𝐺 and for each SNP, we first randomly picked one value 𝑝 from

uniform (0.1, 0.4) as the frequency of the major allele for an SNP. Then we sampled 0, 1 and 2 with

probability 𝑝2, 2𝑝(1− 𝑝) and (1− 𝑝)2 to obtain homozygous, heterozygous, and other homozygous

genotype respectively.

In order to include confounding effects, we generated 𝝐1 and 𝝐2 simultaneously by assuming a

variance-covariance matrix. In this simulation, we only considered one type of variance-covariance

structure auto-regressive order 1(AR-1). The covariance matrix 𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬ was

specified as follows: The entry in Σ11 and Σ22 was set to be 0.1 × (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20.
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For Σ12 and Σ21, the off-diagonal element was generated to be 0.1 × (0.1) |𝑖− 𝑗 |, while the diagonal

entry was set as 0.02. Then we simulate (𝝐1, 𝝐2) ∼ 𝑁40(0, Σ). 𝑿 was then generated by 𝑿 =

𝜶(𝒕)𝑮 + 𝝐1 and 𝒀 was simulated by 𝒀 = 𝜷(𝒕)𝑿(𝒕) + 𝝐2. To define the coefficient functions

𝜷(·) = (𝛽0(·), 𝛽1(·))𝑇 , we set 𝛽0(𝑡) = 0.2𝑡 + 0.2 and 𝛽1(𝑡) = 0 or 𝛽1(𝑡) = 0.015 + 0.01𝑡 to

investigate type I error and power respectively. Since the main goal of the simulation is to

investigate the influence of instrumental variables strength on the type I error and empirical power,

we considered three different simulation settings in total:

1. {𝛼0(𝑡), 0.5𝛼1(𝑡), 0.5𝛼2(𝑡), 0.5𝛼3(𝑡), 0.5𝛼4(𝑡), 0.5𝛼5(𝑡)},

2. {𝛼0(𝑡), 𝛼1(𝑡), 𝛼2(𝑡), 𝛼3(𝑡), 𝛼4(𝑡), 𝛼5(𝑡)},

3. {𝛼0(𝑡), 2𝛼1(𝑡), 2𝛼2(𝑡), 2𝛼3(𝑡), 2𝛼4(𝑡), 2𝛼5(𝑡)}.

The simulation results are reported in Table A.1.

Table A.1 Simulation Results under different IV strength.

IV strength Type I error power
0.5𝛼(𝑡) 0.049 0.217
𝛼(𝑡) 0.052 0.609
2𝛼(𝑡) 0.047 0.997

From Table A.1, changing the strength of instrumental variables has little impact on the Type I

error which can be well protected at the 𝛼 = 0.05 level under all three simulation settings. For the

empirical power simulation, the strength of genetic variants effects have significant influence on the

simulation results. It is obvious to see the stronger the genetic variants are, the larger the empirical

power. Thus, it is important to select valid and strong genetic variants as instrumental variables

for Mendelian Randomization analysis. In traditional Mendelian Randomization study, sensitivity

analysis is usually conducted to test the validity of the selected instrumental variables. Since we

try longitudinal data in the study, further discussion about how to conduct sensitivity analysis is

needed and will be our future work.
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A.2 Data description of Albert Twin Data Subject

Table A.2 Subject Characteristics.

Characteristics Descriptions
ConsensusFIN2 Describe menstrual cycle phases, ranging from 1-8
est Hormone estradiol level measurements
pro Hormone progesterone level measurements
PANNA Negative emotional eating effect measured with the Neg-

ative Affect scale from the Positive and Negative Affect
Schedule (PANAS).

DEBQE Emotional eating measured with the Dutch Eating Be-
havior Questionnaire (DEBQ)

bmi Describe subjects’ BMI observations
FamID Describe family ID, twins have same FamID
TwinID Describe number of twins in each family: 1 means the

first twin in the family; 2 means the second twin in the
family

zyg Describe types of twins: zyg=1 monozygotic or identical
(MZ) twins; zyg=2 dizygotic, fraternal or non-identical
(DZ) twins

agetwin Describe subjects’ age, ranging between 15-26
StudyDay Describe the day of measurement, ranging from 1-45
FID Describe family ID, twins have same FamID
IID Describe subject ID
SNP(167,509) Genotype encoding 0,1,2 corresponds to the number of

minor allele in the genotype

90



APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proof of Theorem 3.3.2

To prove Theorem 3.3.2, we need the following conditions:

A1 The design time points 𝑡 𝑗 , 𝑗 = 1, · · · , 𝑇𝑖 are independent and identically distributed random

variables following a probability density function 𝑓 (𝑡) and t is a continuous point of f in the

interior of the support of f.

A2 The kernel function 𝐾 (·) is a bounded symmetric probability density function with bounded

support [-1,1].

A3 The variance of 𝑥(𝑡 𝑗−𝑞−𝑠), 𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′), {𝑥(𝑡 𝑗−𝑞−𝑠)𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′)} and the expected values of

𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′), {𝑥(𝑡 𝑗−𝑞−𝑠)𝑥(𝑡 𝑗−𝑞−𝑝−𝑠′)} are finte for all 𝑠, 𝑠′ = 0, · · · , 𝑝 − 1.

A4 𝐸 (𝜖2
𝑖
(𝑡 𝑗 )) and 𝜎2

𝑦 are finite.

A5 {𝜖𝑖 (𝑡 𝑗 )} is a zero-mean strongly mixing sequence of random variables with covariance

function 𝛿(𝑡, 𝑡′) = 𝑐𝑜𝑣{𝜖𝑖 (𝑡), 𝜖𝑖 (𝑡′)}.

A6 𝜌̄∗1 < 1, where 𝜌̄∗1 = sup 𝜌(𝜎(𝜖𝑖 (𝑡 𝑗 ), 𝑗 ∈ 𝐽), 𝜎(𝜖𝑖 (𝑡 𝑗 ′), 𝑗 ′ ∈ 𝐽′)), and 𝐽, 𝐽′ are nonempty

subsets such that 𝑑𝑖𝑠𝑡 (𝐽, 𝐽′) ≥ 1.

Let 𝜉 𝑗 = 𝑏𝑟 𝑗 − 𝛽𝑟 𝑗 , 𝑎 𝑗 = 𝑤(𝑡 𝑗 , 𝑡) = 𝑒𝑇1,𝑝′+1(𝐶
𝑇𝑊𝐶)−1𝐶 𝑗𝑊 𝑗 , where 𝐶 𝑗 = (1, (𝑡 𝑗 − 𝑡), · · · , (𝑡 𝑗 −

𝑡)𝑝′)𝑇 and 𝑊 𝑗 = 𝐾ℎ (𝑡 𝑗 − 𝑡), 𝐶 = (𝐶1, 𝐶2, · · · , 𝐶𝑇 )𝑇 , 𝑊 = 𝑑𝑖𝑎𝑔(𝑊1, · · · ,𝑊𝑇 ). Let 𝜎2
𝑇

=

𝑣𝑎𝑟 (∑𝑇
𝑗=1 𝑎 𝑗𝜉 𝑗 ). 𝜉 𝑗 has the following form:

𝜉 𝑗 = 𝑏𝑟 𝑗 − 𝛽𝑟 𝑗 = 𝑐𝑇𝑟,𝑝 (𝑋𝑇𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋 𝑗 )−1𝑋𝑇𝑗−𝑝𝑀 𝑗−𝑝, 𝑗 {𝜖 𝑗 + 𝑒𝑦 𝑗 }

where 𝑐𝑟,𝑝 denotes a p-dimensional unit vector with 1 at its rth entry.
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From condition A5, {𝜉 𝑗 } is a strongly mixing sequence and it is easy to get 𝐸 (𝜉 𝑗 ) = 0.

In order to show {𝜉2
𝑗
} is a uniformly integrable family, it’s enough to show for a finite collection

T = {1, · · · , 𝑇}, 𝐸 ( |𝜉2
𝑗
|) < ∞ for each 𝑗 ∈ T .

𝐸 ( |𝜉2
𝑗 |) = 𝑐𝑇𝑟,𝑝 (𝑋𝑇𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋 𝑗 )−1𝑋𝑇𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑀 𝑗 , 𝑗−𝑝𝑋 𝑗−𝑝 (𝑋𝑇𝑗−𝑝𝑀 𝑗−𝑝, 𝑗𝑋 𝑗 )−1𝑐𝑟,𝑝{𝐸 (𝜖2

𝑖 (𝑡 𝑗 )) + 𝜎2
𝑦 }

is finite under conditions A3 and A4. Also, it is obvious to see 𝐸 (𝜉2
𝑗
) is always positive, thus

inf 𝑗 𝐸 (𝜉2
𝑗
) > 0.

Suppose conditions A1 and A2 hold. If ℎ → 0 and 𝑇ℎ → ∞ as 𝑇 → ∞, it’s easy to show

|𝑎 𝑗 | = |𝑤(𝑡 𝑗 , 𝑡) | ≤
𝑇∑︁
𝑗=1

|𝑤(𝑡 𝑗 , 𝑡) | ≤ (𝑇ℎ)1/2{
𝑇∑︁
𝑗=1
𝑤2(𝑡 𝑗 , 𝑡)}1/2 = (𝑇ℎ)1/2{𝑂 (𝑇ℎ)−1}1/2 = 𝑂 (1),

then 𝑚𝑎𝑥1≤ 𝑗≤𝑇
|𝑎 𝑗 |
𝜎𝑇

→ 0, as 𝑇 → ∞.

Under Condition A6, applying Magda’s result(On the Asymptotic Normality of Sequences of

Weak Dependent Random Variables), we could get 1
𝜎𝑇

∑𝑇
𝑗=1 𝑎 𝑗𝜉 𝑗

D−→ 𝑁 (0, 1), as 𝑇 → ∞. Thus,

𝛽𝑟 (𝑡) =
∑𝑇
𝑗=1 𝑤𝑟 (𝑡 𝑗 , 𝑡)𝑏𝑟 (𝑡 𝑗 ) is asymptotic Gaussian process with mean function 𝐸 (𝛽𝑟 (𝑡)) and

covariance function 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ). 𝐸 (𝛽𝑟 (𝑡)) and 𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) are defined as follows:

𝐸 (𝛽𝑟 (𝑡)) =
𝑇∑︁
𝑗=1
𝑤𝑟 (𝑡 𝑗 , 𝑡)𝛽𝑟 (𝑡 𝑗 )

and

𝛾𝛽 (𝑡𝑖, 𝑡𝑘 ) = 𝑐𝑜𝑣(𝛽𝑟 (𝑡𝑖), 𝛽𝑟 (𝑡𝑘 )) =
𝑇∑︁
𝑗=1

𝑇∑︁
𝑗 ′=1

𝑤𝑟 (𝑡 𝑗 , 𝑡𝑖)𝑤𝑟 (𝑡 𝑗 ′, 𝑡𝑘 )𝑐𝑜𝑣(𝑏𝑟 (𝑡 𝑗 ), 𝑏𝑟 (𝑡 𝑗 ′)).
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Simulation studies to test the influence of within sample correlation and
confounding factors

To test the effect of confounding factors, we did additional simulations as we did in Chapter 4

but changed the value of confounding effects. In the simulation studies, we generated 𝝐1 and 𝝐2

simultaneously by assuming a variance-covariance matrix to include the effect of confounding

factors. The covariance matrix 𝚺 = 𝑐𝑜𝑣(𝝐1, 𝝐2) =
©­­«
Σ11 Σ12

Σ21 Σ22

ª®®¬ was specified as follows: The entry

in Σ11 and Σ22 was set to be (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20, and for Σ12 and Σ21, the off-diagonal

element was generated to be (0.1) |𝑖− 𝑗 |, while the diagonal entry was set as 0.2. Then we simulated

(𝝐1, 𝝐2) ∼ 𝑁40(0, Σ).

Two different settings were considered in total to change the variance-covariance matrix: in the

first setting, we fixed the off-diagonal matrix Σ12 and Σ21 and changed the structure of diagonal

matrix Σ11 and Σ22; in the second setting, we fixed diagonal matrix Σ11 and Σ22 and changed the

off-diagonal matrix Σ12 and Σ21. In the first setting, Σ12 and Σ21 was generated to be (0.1) |𝑖− 𝑗 |

and the diagonal entry was set as 0.2. For the entry in Σ11 and Σ22, we let it to be 𝛿 |𝑖− 𝑗 | for

𝑖, 𝑗 = 1, · · · , 20, where 𝛿 was chosen as 0.3 and 0.7 respectively. The results were reported in Table

C.1. Type I error rate could still be controlled at the 𝛼 = 0.05 significance level under all cases

in Table C.1. For the empirical power simulation, we did not observe significant difference when

the time points were large enough (𝑇 = 10 or 𝑇 = 20). However, when we only had five repeated

measurements, the empirical power increased with the increase of correlation 𝛿. In addition, the

difference was more obvious when the sample size was 200 compared to the 400 sample size.
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Table C.1 Effect of within sample correlation on Type I error and power for functional MR model.

𝛿 𝑛 𝑇 Type I error power

0.3

200
5 0.055 0.393
10 0.055 0.724
20 0.054 0.752

400
5 0.046 0.694
10 0.055 0.949
20 0.053 0.955

0.5

200
5 0.054 0.428
10 0.055 0.739
20 0.046 0.764

400
5 0.055 0.714
10 0.055 0.964
20 0.051 0.956

0.7

200
5 0.052 0.465
10 0.054 0.761
20 0.053 0.763

400
5 0.050 0.733
10 0.055 0.954
20 0.052 0.972

In the second setting, we fixed diagonal matrix Σ11 and Σ22 and changed the off-diagonal matrix

Σ12 and Σ21. The entry in Σ11 and Σ22 was set to be (0.5) |𝑖− 𝑗 | for 𝑖, 𝑗 = 1, · · · , 20, and for Σ12

and Σ21, the off-diagonal element was generated to be 𝜌 |𝑖− 𝑗 |, while the diagonal entry was set

as (𝜌 + 0.1), where we considered three different 𝜌 values: 0.1, 0.3 and 0.5. We showed the

simulation results in Table C.2. Similar to the previous simulation, Type I error rate could be well

controlled at the 𝛼 = 0.05 significance level under all cases in Table C.2. For the empirical power

simulation, they all had similar performance under different settings. The difference was much

smaller compared to the difference in Table C.1.
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Table C.2 Effect of confounding on Type I error and power for functional MR model.

𝜌 𝑛 𝑇 Type I error power

0.1

200
5 0.054 0.428
10 0.055 0.739
20 0.046 0.764

400
5 0.055 0.714
10 0.055 0.964
20 0.051 0.956

0.3

200
5 0.054 0.468
10 0.055 0.749
20 0.053 0.747

400
5 0.051 0.702
10 0.053 0.961
20 0.054 0.969

0.5

200
5 0.053 0.436
10 0.052 0.731
20 0.055 0.742

400
5 0.052 0.714
10 0.054 0.954
20 0.049 0.956

In summary, the Type I error is well protected under all simulation settings. For the empirical

power, changing the diagonal matrix Σ11 and Σ22 have more significant influence on the power

compared with changing the off-diagonal matrix Σ12 and Σ21.

C.2 Simulation studies for functional 𝐹 test

In this section, we used functional 𝐹 test to test the functional coefficient 𝛽1(𝑡). The functional

𝐹 test was introduced in chapter 4. One advantage of functional 𝐹 test is that we consider the

permutation test and we no longer need to rely on the distributional assumption. The simulation

settings were the same to the settings in section C.1. We still included two different simulations:

changing the structure of diagonal matrixΣ11 andΣ22, and changing the off-diagonal matrixΣ12 and

Σ21. In the first simulation, we generated Σ11 and Σ22 using AR-1 model with different correlation

𝛿 values. The 𝛿 value was assumed to be 0.3, 0.5, 0.7 respectively. In the second simulation, the

off-diagonal matrix Σ12 and Σ21 were also generated using AR-1 model with different correlation

𝜌 values. In this case, we let 𝜌 to be 0.1, 0.3, 0.5 respectively. We reported the simulation results
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under different settings in Table C.3 and Table C.4 respectively.

Table C.3 Effect of within sample correlation on Type I error and power using functional F test.

𝛿 𝑛 𝑇 Type I error power

0.3

200
5 0.043 0.382
10 0.045 0.786
20 0.045 0.773

400
5 0.046 0.689
10 0.051 0.968
20 0.049 0.982

0.5

200
5 0.049 0.397
10 0.050 0.748
20 0.050 0.772

400
5 0.051 0.687
10 0.045 0.925
20 0.047 0.984

0.7

200
5 0.052 0.391
10 0.053 0.735
20 0.055 0.729

400
5 0.049 0.713
10 0.051 0.926
20 0.049 0.974

From Table C.3, Type I error rate could be well controlled at the 𝛼 = 0.05 significance level

under all situations in the first simulation. For the empirical power simulation, we still could not

observe significant difference no matter how many data points were included for analysis and no

matter how many subjects were used for the hypothesis testing. This result is a little different from

the results in section C.1 when using Wald test. In section C.1, the empirical power increased with

the increase of correlation 𝜌 when we only had five repeated measurements, and the difference was

more obvious when the sample size was 200 compared to the 400 sample size. However, the results

from functional F test did not show us obvious difference not only for five repeated measurements

but also for enough time series observations.
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Table C.4 Effect of confounding on Type I error and power using functional F test.

𝜌 𝑛 𝑇 Type I error power

0.1

200
5 0.049 0.397
10 0.050 0.748
20 0.050 0.772

400
5 0.051 0.687
10 0.045 0.925
20 0.047 0.984

0.3

200
5 0.052 0.404
10 0.054 0.736
20 0.052 0.732

400
5 0.055 0.701
10 0.045 0.980
20 0.047 0.993

0.5

200
5 0.049 0.395
10 0.052 0.721
20 0.050 0.697

400
5 0.051 0.704
10 0.046 0.922
20 0.047 0.958

Similar conclusions could be drawn from Table C.4. In this table, Type I error rate could still

be well protected. For the empirical power simulation, we did not observe significant difference

under all different settings, indicating that the inclusion of the IVs can lead to reasonable power for

causal inference regardless of the underlying confounding level. In addition, the empirical power

increased with the increase of sample size. As the results suggested, five data points were not good

enough for the hypothesis testing. Including at least 10 time points could substantially improve the

testing power.
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