
EMERGENT COORDINATION: ADAPTATION, OPEN-ENDEDNESS,  
AND COLLECTIVE INTELLIGENCE 

By 

Honglin Bao 
 
 
 
 
 
 
 

 
 
 
 

A THESIS 

Submitted to 
Michigan State University 

in partial fulfillment of the requirements 
for the degree of 

Computer Science – Master of Science 

2022 

 

 

 
 
 
 
 
 
 



ii 
 

ABSTRACT 

EMERGENT COORDINATION: ADAPTATION, OPEN-ENDEDNESS, 
AND COLLECTIVE INTELLIGENCE 

By 

Honglin Bao 

Agent-based modeling is a widely used computational method for studying the micro-macro 

bridge issue by simulating the microscopic interactions and observing the macroscopic 

emergence. This thesis begins with the fundamental methodology of agent-based models: how 

agents are represented, how agents interact, and how the agent population is structured. Two 

vital topics, the evolution of cooperation and opinion dynamics are used to illustrate 

methodological innovation. For the first topic, we study the equilibrium selection in a 

coordination game in multi-agent systems. In particular, we focus on the characteristics of agents 

(supervisors and subordinates versus representative agents), the interactions of agents 

(reinforcement learning in the games with fixed versus adaptive learning rates according to the 

supervision and time-varying versus supervision-guided exploration rates), the network of agents 

(single-layer versus multi-layer networks), and their impact on the emergent behaviors. 

Regarding the second topic, we examine how opinions evolve and spread in a cognitively 

heterogeneous agent population with sparse interactions and how the opinion dynamics co-

evolve with the open-ended society's structural change. We then discuss the rich insights into 

collective intelligence in the two proposed models viewed from the interaction-based adaptation 

and open-ended network structure. We finally link collective emergent intelligence to diverse 

applications in the realm of computing and other scientific fields in a cross-multidisciplinary 

manner. 
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INTRODUCTION 1 
 

An agent-based model is a computational method that simulates the characteristics, behaviors, 

and interactions of entities (the smallest units) in a system to comprehend the system's dynamics 

and the factors that govern such dynamics. At the macroscopic level, we can observe the rich 

emergence of "novelties" by assigning basic behavioral rules or communication protocols to 

agents to represent individual behaviors and interactions, e.g., game-theoretic, reinforcement 

learning-based, and behavioral science-inspired interactions. We cannot fully predict these 

novelties using "reductive" analysis of microscopic rules, such as differential equation-based 

analysis, due to their emergent nature. These novelties can be viewed as the collective behavior 

of simple-rule-following intelligence. This "bottom-up" modeling methodology is referred to as 

agent-based modeling, which has been widely applied in a variety of fields, most notably biology 

and social science. 

The idea of "bottom-up emergence" has a long history in computer science. An early 

work is the von Neumann Machine (Aspray, 1989). The machine creates a replica of itself based 

on simple rules. John Conway, a British mathematician, was inspired by this and created Game 

of Life by introducing simple interactions between agents and their neighbors in a two-

dimensional lattice environment. We can observe novel dynamics emerging in the Game of Life 

continuously: A disordered agent population gradually evolves into a structure with multiple 

delicate and tangible shapes under various rules and initialized states. Several of them maintain 

symmetry while undergoing continuous shape changes. Certain well-formed shapes are disrupted 

 
1 This section is based in part on the ongoing paper coauthored with Wolfgang Banzhaf, "Social Inspiration in 
Computational Models: A Survey." 
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and destroyed when disordered agents "invade." Several of them remain stable over time. 

Generally, we frequently observe that "order" emerges from "chaos."  

In the 1980s, Craig Reynolds used agent-based simulation to model the group behavior of 

social organisms and animals (Reynolds, 1987). Christopher Langton then coined the term 

"artificial life" or "ALife" to refer to this methodology in order to emphasize its significance in 

the study of the evolution of digital organisms (Langton, 1997). Artificial life now is a growing 

field at the intersection of evolutionary biology, complex systems, and computational cognitive 

science (Attenberg, 2005). Sociologists have modeled humans and their behavior as a collection 

of autonomous agents that operate in parallel and communicate with one another for the purpose 

of simulating real-world social phenomena. Schelling's segregation model is a pioneering social 

simulation model (Schelling, 1971), which states that people's "mild" preference for group 

membership can result in a highly segregated society. Epstein and Axtell have coined the term 

"bottom-up" social science or generative social science to refer to this simulation methodology 

(Epstein & Axtell, 1996). Agent-based models have thriving commercial applications in the real 

world, notably for robotics and self-driving cars, accompanied by the rapid advancement of 

artificial intelligence and machine learning. They have a profound theoretical influence on task 

allocation and coordination in real-world e-Commerce robotic picking systems (Barbati et al., 

2012; Yuan et al., 2021; Wang et al., 2018). Waymo has proposed Carcraft, an agent-based 

platform for testing self-driving algorithms. It models the complex interactions between self-

driving cars, pedestrians, and humans in traffic by creating different agents and calibrates the 

simulated human interactions with cars using massive real-world human behavioral data 

(Connors et al., 2018). 
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The purpose of this thesis is to study agent-based models, with a focus on their 

computational characteristics and multidisciplinary applications. The rest of the thesis is 

organized as follows. Section I gives an overview of the methodology. Section II and III use two 

examples, the evolution of cooperation and opinion dynamics, to illustrate how to incorporate the 

methodology into the computational model design. Section IV reflects two proposed models and 

their insights into collective intelligence. Section V concludes the thesis with final remarks. 
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I. METHODOLOGY 2 

What is the critical methodology for incorporating agent-based models into multidisciplinary 

applications via advanced computing techniques? To answer this question, we must first examine 

the foundations of a "system." A system is, in brief, the sum of the relationships between entities 

within the system and the structure within which they exist (Burns & Helena, 1987). In agent-

based models, an agent acts on behalf of an entity. As are composed of numerous agents to 

simulate human-made or natural systems by simulating both entities and their interactions and 

structures. We divide the methodology into three perspectives mirroring how a system operates: 

how agents are represented, how agents interact, and how agent populations are structured. 

The agent property is a critical concept in agent-based models. Economists refer to the 

model that contains identical agents of the same type as a representative agent model. More 

broadly, the agents in a representative model may be distinct. Nonetheless, their respective 

characteristics are irrelevant to the problem at hand, i.e., the agent behaves in such a way that the 

overall decision is practically the same as the decision of a single agent or a group of similar 

agents. Thus, we can simplify this to a model of representative agents. On the other hand, if 

distinct agent characteristics are relevant to the problem, we must consider agent heterogeneity, 

i.e., the differences between agents. The heterogeneity of agents is a fascinating subject. The 

majority of existing research assigns distinct functions or roles to agents to capture real-world 

behaviors, such as opinion leaders and followers in social networks (Zhao & Kou, 2014), 

ethnically diverse agents in studies of residential segregation (Fossett & Waren, 2005), different 

species in ecological systems (Filatova et al., 2013), and trustworthy and untrustworthy agents in 

 
2 This section is based in part on the ongoing paper coauthored with Wolfgang Banzhaf, "Social Inspiration in 
Computational Models: A Survey." 
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reputation computing, a sub-field of computer security (Wang et al., 2010). Numerous elements 

in agent property design are inspired by psychological and behavioral studies. The most well-

known example is the BDI (belief-desire-intention) agent model (Georgeff, 1998). It is inspired 

by Michael Bratman's theory of reasoning about human practices (Bratman, 1987). A BDI agent 

is defined by executing programmed beliefs, desires, and intentions and utilizes these concepts to 

design and evolve "smarter" agents. It has been widely used in planning and scheduling 

problems in software engineering (Rao & Georgeff, 1995). 

 A critical aspect of the agent-based computing model is microscopic mechanisms of 

interaction and their impact on global emergence. Numerous perspectives are studied in the 

design of interaction protocols. For instance, game-theoretic interactions are used to simulate 

human strategic reasoning and behaviors (Adami et al., 2016). Reinforcement learning is used to 

model the interaction of agents with their environments (e.g., other agents) by maximizing 

cumulative rewards (Barbati et al., 2012). The concept of feedback in reinforcement learning, 

i.e., receiving rewards for good behaviors and punishments for creating problems, is fundamental 

to the study of decision-making. It is critical guidance for animals and humans acting and 

surviving in unknown environments. This concept permeates computational and experimental 

models in psychology, neuroscience, behavioral science, and ethology (Dayan & Daw, 2008). 

Learning and game theory are two widely used means of interaction with other agents or the 

environment. Agents gradually adapt to the environment in the process of interaction. In Section 

IV, we will examine systematically how the interaction among agents affects their adaptation and 

the macroscopic evolutionary dynamics. 

           Some work takes a structural view of the holistic-level patterns. It conceptualizes the 

population as a social network, with each node representing an individual and each edge 
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representing an interaction between individuals. We can study the macroscopic patterns, network 

statistics, and dynamics of social networks using graph theoretic approaches. An example is 

social network-inspired optimization and its wide applications, e.g., information retrieval 

(Nasution & Noah, 2012; Matsuo et al., 2007). Improving the recall and precision rates in the 

retrieval process can be modeled by detecting increasingly segregated communities in the 

document population represented as a network. In addition, when the agent population is 

structured as a network, the statistical characteristics of the network, such as connectivity and 

open-endedness, will have a significant effect on the macroscopic emergent patterns. This issue 

will be discussed systematically in Section IV based on the models proposed in the thesis. 

On the other hand, some works argue that structured methods cannot be used effectively 

to analyze emergent dynamics (Villani et al., 2021). Otherwise, it would not be called 

“emergent.” These scholars employ a bottom-up perspective of macroscopic phenomena, in 

which even if the microscopic structure is chaotic, this has no effect on the emergence of the 

subtle macroscopic structure. A notable example is a large number of self-organized multiagent 

clustering algorithms (Thrun & Ultsch, 2021; Bu et al., 2017).  

Following these three lines of inquiry, Figure 1 illustrates the overview of methodology. 

The following sections will study how agent-based models with novel representations, 

interactions, and structures can be used to address computational problems related to 

coordination, cooperation, opinion dynamics, and collective intelligence. 
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Figure 1: The overall methodology. 
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II. EVOLUTION OF COOPERATION 3 

A. Coordination and Cooperation 

The study of the evolution of cooperation has a long history in the application of game theory 

(Axelrod & Hamilton, 1981). It also assumes great importance in the field of multiagent systems. 

In multiagent societies, cooperation represents an interaction among agents that can be 

evolutionarily advantageous to improve the performance of individual agents or the overall 

behavior of the society they belong to. Therefore, one of the main goals in multiagent societies is 

to achieve efficient cooperation among agents to jointly solve tasks or to maximize a utility 

function. 

In this section, we adopt the “Rules of the Road Game,” a typical coordination game, as 

an example to study the evolution of cooperation (Young, 1996). Consider two carriages meeting 

on a narrow road from opposite directions, having no context to decide on which side of the road 

to pass the other. If they choose differently, it will cause a head-on collision between them, and 

they receive a negative payoff. Only if they choose the same way can they avoid a collision and 

receive a positive payoff. To abstract from this realistic situation to virtual multiagent societies, 

agents are striving to establish a convention/law of coordinated action by choosing from an 

action space without any central controller. The payoff matrix is shown in Table 1. 

 

 

 
 

 
3 This section is based in part on the paper: Honglin Bao, Qiqige Wuyun, Wolfgang Banzhaf; July 23–27, 2018. 
"Evolution of Cooperation through Genetic Collective Learning and Imitation in Multiagent Societies." Proceedings 
of the ALIFE 2018: The 2018 Conference on Artificial Life. ALIFE 2018: The 2018 Conference on Artificial Life. 
Tokyo, Japan. (pp. pp. 436-443). ASME. https://doi.org/10.1162/isal_a_00082 
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Table 1: Payoff matrix of an n-action 2-player coordination game. 
 

 

 

There are multiple Nash-equilibria in this diagonal situation. Both two players choose the 

same action, i.e., coordinated action. However, even purely rational players cannot choose the 

specific coordinated action without negotiation because they have no information to differentiate 

between strictly the same multiple equilibria. In reality, people can survive such social dilemmas 

because there are laws or social norms for them to refer to. Our goal is to train agents of a virtual 

society to choose cooperative action without upper-level steering and regulation. 

 

B. Related Work 

In order to realize such coordination and cooperation, some techniques developed in the field of 

machine learning have been introduced into various multiagent systems (Kapetanakis & 

Kudenko, 2002). Machine learning has been proven to be a popular approach to solving 

multiagent system coordination problems (Savarimuthu et al., 2011). Among machine learning 

techniques, reinforcement learning has gained much attention in the field of multiagent systems 

since it can be used to model agent learning by trial-and-error interaction with the dynamic 

environment. However, several new challenges arise for reinforcement learning in multiagent 

systems. Foremost among these is that the performance of reinforcement learning is 

unsatisfactory in many real-world applications. The learning algorithm may not converge to the 

optimal action. Some researchers showed that an adaptive strategy, called evolutionary 
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reinforcement learning, which combines reinforcement learning with a genetic algorithm, could 

reach a better performance than either strategy alone (Ackley & Littman, 1991). Some new 

forms of learning, e.g., observational, imitational, and communication-based learning (Taylor et 

al., 2006, Savarimuthu et al., 2011), also significantly promote information proliferation (Dittrich 

& Banzhaf, 2002) in more complex environments and can be used to solve complex distributed 

multiagent coordination problems better than pure reinforcement learning approaches. 

Furthermore, ensemble methods are used to combine the advantages of multiple learning 

algorithms to obtain better performance than what could be obtained from any of them alone 

(Polikar, 2006). More recently, Yu and colleagues (Yu et al., 2017) studied the role of 

reinforcement learning, collective decision-making, social structure, and information diffusion in 

the process of the evolution of cooperation in the networked society. 

 

C. The Proposed Model 

Although previous work provided a strong basis to study the mechanisms behind the evolution of 

cooperation, existing work in this area has drawbacks. Individual reinforcement learners often 

fail to develop globally coordinated behavior and can be trapped in local sub-optimal dilemmas. 

Using an evolutionary approach for strategy selection can produce optimal behavior but may 

require significant computational efforts. Behavior imitation always creates weak local 

coordination in society, caused by local interactions between agents. This study is significantly 

different from other frameworks for the evolution of cooperation in previous studies because of 

the hybrid policy of agents' decision-making. Here we design a genetic algorithm-based 

cooperation framework, which takes into account evolutionary selection, collective learning, and 

imitation, in order to solve some particular non-cooperative games in complex multiagent 
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networks, overcome previous shortcomings, and produce an acceptable tradeoff in convergence 

rate and computation effort.  

The final decision of an agent (both parent and offspring agent) is influenced by the three 

kinds of processes shown below. Note that all agents in the model are identical in terms of 

interaction, learning, and decision-making. This kind of model is referred to as the 

“representative agent-based models” in economics (Gallegati & Kirman, 2012). 

• Evolutionary Selection (with inheritance and mutation): A population of agents plays a 

game with their neighbors (i.e., the agents which are directly connected with the focal 

agent) on the network for several iterations. The offspring generation will be reproduced 

from the parent generation according to the cumulative payoff distribution, and the most 

successful agents will pass on action to their offspring. Mutation will occur with a small 

probability during the inheritance process to create novelty. 

• Collective Learning: Agents on the network improve on their parents’ actions and their 

original actions through a collective reinforcement learning algorithm with exploration 

and exploitation. 

• Imitation: Agents update the cumulative payoff, compare their cumulative payoff to 

neighbors, and adopt the actions of more successful agents as their own actions with a 

particular probability. 

These three processes interact with each other and can have a significant influence on the 

evolution of cooperation in the entire society. 

The overview of the proposed algorithmic framework is shown in Algorithm 1. It 

constitutes a genetic algorithm-based cooperation framework for multiagent systems with 

collective decision-making, learning and imitation to facilitate the evolution of cooperation used 
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in some particular coordination games. This framework is set in a network structure such as a 

small-world network (Watts & Strogatz, 1998) or a scale-free network (Barabási & Albert, 

1999). A population of agents plays the coordination game with their neighbors repeatedly and 

simultaneously in the network for several generations. Offspring generation io will be reproduced 

from the parent generation ip according to their cumulative payoff distribution E. That means, the 

probability of reproduction is proportional to the cumulative payoff; The agents with higher 

cumulative payoffs are more likely to reproduce their offspring. The most successful agents pass 

on behavior to their offspring io, and mutation will change this behavior with a small probability 

η during inheritance. The society information regarding nodes and edges will be updated at each 

round with new offspring nodes and parent-offspring edges. Then agents will improve their 

actions through a collective reinforcement learning algorithm with exploration and exploitation 

and a social learning process. 
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Algorithm 1: The proposed cooperation framework. 

 

 

We adopt a widely used reinforcement learning algorithm, Q-learning, to model this 

interaction. Its one-step updating rule is given by Equation 1.  Here α ∈ (0, 1] is a learning rate, 

and λ ∈ [0, 1) is a discount factor. 

             (1) 

As shown in Equation 1, an agent has a set of states and a set of actions. An agent 

performs an action a, transitions from state s to another new state s’ and receives an immediate 
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reward R(s, a). Q(s, a) is the expected reward of choosing action a in state s at time step t. 

During the interaction, agents want to maximize the expected discounted reward Q (s’, a’) to 

make decisions in the new state s’ at time step t + 1. The Q-function is learned during an 

agent’s lifetime inherited to choose a best-response action based on the Q-value regularly. Each 

agent needs to aggregate all the best-response actions regarding its neighbors into an overall 

action. This is inspired by the opinion aggregation process in that people usually have to seek 

suggestions from many other people before making a final decision. The opinion aggregation 

process can be realized by an ensemble learning method which combines multiple single-

learning algorithms to obtain better performance than what could be obtained from any of them 

alone (Polikar, 2006). The foremost method of collective voting is inspired by a simple 

political principle, majority rule. Consider that in a simple society (e.g., an undirected simple 

graph which represents the multiagent network we adopt in this paper), human beings are more 

keen to decide as the majority of their neighbors. So, when agents make final decisions, they 

consider the action which quantitatively dominates in the best-response action pool. More 

complex and realistic methods to make a final decision consider the weight of each neighbors, 

such as performance-based weighted voting method and structure-based weighted voting 

method. For structure-based weighted voting, the weight of each neighbor is related to the 

degree of each neighbor. The focal agent will give higher weight to a neighbor with more 

connections. For performance-based weighted voting, the focal agents will consider previous 

interaction experience and will give higher weight to neighbors they trust. In this study, we 

adopt majority voting as the opinion aggregation method (Bao et al., 2018). 

On the other hand, for the pure greedy processes, such as the reinforcement learning-

based interaction, agents can be trapped easily in local sub-optima, and thus fail to learn the 
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optimal behavior. During learning, an agent needs to strike a balance between exploitation of 

learned knowledge and the exploration of unexplored environments in order to try more 

actions, escape from local sub-optima, and learn optimal behavior. In this paper, we propose 

time-varying exploration inspired by simulated annealing (SA exploration) for dealing with 

exploitation and exploration during learning by treating the exploration rate as temperature. 

One step of SA exploration is given by Equation 2. 

                                                  (2) 

In Equation 2, µt is the exploration rate in the tth round of simulation, and µ0 is the initial 

exploration rate. At the beginning (t is small), exploration should be given higher weight to 

explore the unknown environment. As the algorithm continues (t increases), the probability of 

exploitation (i.e., 1- µt) increases determining that the agent will focus more on exploitation of 

learnt knowledge.  

The collective learning framework is illustrated in Algorithm 2: during the interaction 

with neighbors, agents need to find a best-response action regarding each neighbor with a Q-

learning method. At each time step t, regarding each neighbor j, agent i chooses the best-

response action with the highest Q-value with a probability of 1- µt (i.e., exploitation), or 

chooses an action randomly with a probability of µt (i.e., exploration). This occurs in the 

process of local interaction with neighbors. We call this process Local SA Exploration. When 

agents use specific ensemble methods to aggregate all the best-response actions into an overall 

action, agents choose the overall action under ensemble methods with a probability of 1- µt 

(i.e., exploitation), or choose an action randomly with a probability of µt (i.e., exploration). 

This occurs in the process of overall aggregation. We call this process Global SA Exploration. 
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In general, a small exploration rate (such as 10%) is kept throughout to conserve a small 

probability to explore. 

Algorithm 2: The collective learning framework. 

 

 

Social learning theory is connected with social behavior and learning and proposes that 

new behavior can be obtained by observing and imitating others’ behavior (Bandura and 

Walters, 1977). In real life, people not only can learn through their individual trial-and-error 

experiences (i.e., individual Q-learning to determine best-response actions), but also seek 

suggestions or advice from others in a society (as mentioned in opinion aggregation). 

Furthermore, they can also learn from the information directly provided by others through 

communication, observation, and imitation (Polikar, 2006). We are inspired by social learning 



17 
 

theory to add an imitation process after learning to promote the evolution of cooperation. After 

reproduction and learning, there is a new population with better performance in multiagent 

societies. In every time step, when agent i updates the cumulative payoff Ei, agent i in this new 

population adopts neighbor agent j’s behavior, replacing its heritable behavior, with a 

probability W. Following Szabo and Toke (Szabo & Toke, 1998), we set: 

                                              (3) 

Here, E’i and E’j are the cumulative payoff of agent i and neighbor j after updating 

actions and payoffs. K represents some noise which is introduced to consider irrational choices. 

For K = 0 agent i adopts neighbor j’s strategy if E’j > E’i. Here we set K = 0.1. 

 

D. Model Performance  

To test the model, we use the Watts-Strogatz model (Watts & Strogatz, 1998) to generate a 

small-world network, and use the Barabasi-Albert model (Albert & Barabasi, 2002) to generate 

a scale-free network. In order to use the Barabasi-Albert model, we start with 2 agents and add 

a new agent with 1 edge to the network at every step. Because of the rewiring probability ρ, 

this approach generates a scale-free network following a power law distribution with an 

exponent γ = 3. We set the maximum number of edges to 1,000,000 for network evolution. 

Mutation rate η in inheritance is 0.01. Individual Q-learning rate α is 0.1. Average exploration 

rate in SA exploration is 0.1 for 100 time steps, so the initialized exploration rate µ0 is 0.144 

after a simple mathematical calculation. Noise in imitation is set to 0.1. In this study, unless 

stated otherwise, we use the small-world network as the default network topology because it 

can evolve into many kinds of networks, and local SA exploration as the exploration mode. 

Experiments will be run in 100 time steps. 
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1. Comparison of Mutation and Two Types of Exploration  

We test the situation under 4-action space, i.e., action 0,..., action 3 respectively. Figure 2 

shows the asymptotic percentage of cooperative actions (action 0) adopted by the agents 

when cooperation evolves in the entire society. Initially, each agent randomly chooses an 

action from action space, so there are about 25% of all agents to choose each action 

respectively. As our framework moves on, the number of agents who choose action 0 as the 

cooperative action finally reaches more than 90% in the situation with SA exploration (both 

local and global). This result means that more and more agents have reached a consensus 

on that action 0 should be the cooperative action. From Figure 2, we can see that the 

fraction of cooperators in the society using collective learning with local SA exploration 

mode is almost 100% which means that almost all the agents have reached a consensus on 

which action should be the cooperative action. The framework works in the entire society. 

 

Figure 2: Fraction of cooperators under different exploration and mutation methods. 
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We further study Figure 2 and we can draw these conclusions: 

1). Local exploration is better than global exploration. The fraction of cooperators using 

collective learning with the global exploration mode is lower than that using collective learning 

with the local exploration mode. This is because agents explore the environment with a 

probability of 0.1. However, as agents using local exploration to explore the environment 

locally (i.e., choosing irrational action during local interaction) and aggregate to an overall 

action collectively, the randomness caused by the exploration can be removed. In global 

exploration, agents explore globally when they aggregate all best-response actions into an 

overall action, the randomness will be kept. 

2). Mutation is necessary. The fraction of cooperators with mutation is higher than that 

without mutation. Although sometimes mutation has a bad influence, indeed, it is the source of 

novelty. 

 

2. Comparison with Previous Work  

We mainly compare the performance of our model with Yu et al., 2017. Yu’s work is mainly 

based on collective reinforcement learning and information diffusion (i.e., communication-based 

social learning, agents sharing Q table to communicate). As shown in Figure 3, we set the action 

space as Na = 10 and follow all other parameter settings. Our framework has better performance 

than the previous study. We additionally test other situations with different action spaces; the 

results show the same trends. It indicates that our model works for the evolution of cooperation 

in the entire society. It is indeed effective for robust evolution by combining evolutionary 

selection, individual learning, collective voting, and social imitation. 
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                          Figure 3: Comparison with Yu et al., 2017. 
 

Through our experimental analysis, we find that there is not much difference in the 

efficiency of the evolution of cooperation in different sizes of agent population, different 

opinion aggregation methods, and different network structures. We additionally test models 

with separated mechanisms. We find: 1). Collective decision-making (opinion aggregation) and 

imitation will significantly facilitate the evolution of cooperation, especially collective 

decision-making; 2). Evolutionary selection does cause influence both on the convergence 

speed and convergence rate, but not as dramatic as collective decision-making or imitation; 3). 

We could not get any convergence curves in 100 generations during experiments without 

reinforcement learning-based interactions. 

To summarize, for robust cooperation evolving in networked agent systems, the potential 

key factors are: 
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• the way how agents interact with each other. This is also called interaction protocol. For 

instance, interacting randomly in a population or interacting with neighbors in a network; 

what game-theoretical situations the interaction is based on. 

• the way how agents update their learning information through interaction, i.e., what 

learning strategies (e.g., collective Q-learning (Yu et al., 2017), WoLF-PHC (Win or 

Learn Fast Policy Hill-Climbing, Bowling & Veloso, 2001), and fictitious play 

(Monderer & Shapley, 1996)) do agents use to update their learning information? 

• the way how agents diffuse their learnt information, e.g., communication-based social 

learning, imitation-based social learning, and observation-based social learning. 

• whether the entire population evolves in a better direction. Evolving to improve the 

entire fitness (e.g., reproducing offspring with better performance to increase the entire 

average fitness) represents an enhancement in the evolution of cooperation. 

 

E. Multilayer Networks 

Our previous model is built on a single-layer social network with representative agents. Let us 

further consider a variant of the basic model: how does the multilayer structure, for instance, 

supervisor and subordinates, shape the emergent dynamics of cooperation? Multilayer networks 

are networks composed of multiple layers of sub-networks, which can be widely found in nature 

and man-made systems. Each layer represents a distinct interaction, social circle, or timestamp. 

The analysis of modern networked social and physical systems like online social networks, 

transportation systems, metabolic and regulatory networks can all benefit from this new 

paradigm of network science. It can better distinguish and deal with heterogeneous relationships 
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between levels like supervisor/subordinate, opinion leader/follower, and hierarchical ecosystems 

than the previous flattening paradigms. 

The formalized social structure is a multilayered networked structure with dominance 

between higher and lower layers. This networked structure is divided into multiple small groups 

Gx ∈ (1, ..., X), where X indicates the number of small groups in the society, and x indicates the 

supervisor of a particular group. Supervisors of lower-level subordinates can also be 

subordinates of higher-level supervisors. Notice that supervisor agents are not global controllers. 

They make decisions based on local information reported by subordinates. So, we combine up-

level supervision with bottom-level individual learning in the model. 

An agent i interacts with its rivals who connect with it directly and uses Q-learning with 

an exploration algorithm with the SA exploration rate µt, which have been documented in the 

original model, to choose a best-response action ai. Then agent i receives the corresponding 

payoff ri according to Table 1. After action-selection, focal agent i stores action ai, cumulative 

payoff Ri (calculated by the sum of corresponding payoffs interacting with all rivals) and 

learning parameters in a table. Agent i then reports all of them to agent i’s supervisor x and 

recognizes the rivals’ previous actions to determine whether to withdraw with a defector with a 

small probability of 10%. Supervisor x combines all reported best-response actions of its 

subordinate agents into an overall action ax through the collective learning methods, which has 

been documented in the original model (Algorithm 2). Supervisor x then interacts with a 

randomly selected rival in the same cluster of the supervisor layer, and imitates to update ax into 

a’x according to the performance difference between the overall actions of supervisor x and this 

rival (e.g., average cumulative payoff), following Equation 3 (Szabo & Toke, 1998). After 

aggregating the subordinates’ actions and imitation, supervisor x has a final action a’x which will 
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be used as guidance to teach its subordinate agents to act better. Two basic parameters of the 

learning process, i.e., learning rate α and SA exploration probability µt, will be adjusted based on 

supervisor x’s steering information among subordinate agent i and the peers within the same 

subordinate cluster. Finally, all agents update their learning information using the new learning 

rate and exploration rate. This closed-loop process is iterated for T time steps. The entire picture 

of the overall algorithmic framework is shown in Figure 4. 

 

Figure 4: The overview of the multilayered algorithmic framework. 
 

 
The processes of collective decision-making-based aggregation and imitation have been 

reported in the original model. While how do supervisors utilize the reported information to 

guide behavioral change among subordinates? We apply the Adaptive Learning Method. 

Supervisor x passes down the action ax, after aggregation and imitation, to its subordinate agents 

i. At each time step t, based on this guidance information from supervisor x, agent i adjusts its 
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behavior. “Adaptive learning” means that the subordinate agents adaptively adjust their learning 

information based on the supervised information from supervisors. 

Some previous algorithmic frameworks with high time/space complexity can be used to 

model this supervised process with the adaptive self-adjustment, such as MiniMax-Q Algorithm 

(Littman, 1994), Nash Q-learning Algorithm (Hu & Wellman, 2003), and Friend-or-Foe Q-

learning Algorithm (Littman, 2001). In this thesis, we introduce a simple but insightful 

philosophy, i.e., win stay, lose shift (Nowak & Sigmund, 1993), to build this adaptive 

adjustment method. First, we should define two situations, “win” and “lose,” respectively. If the 

reported action ai of subordinate i is identical with the supervisor x’s final action ax after 

aggregation and imitation, this situation is approved by the supervisor and regarded as “win” and 

“lose” otherwise. The adjustment is conducted in the process of comparison of guidance 

information and the current situation of subordinates. Two primary parameters, i.e., learning 

rate α and SA exploration rate µt in Q-learning-based interactions, will be adjusted by accepting 

guidance. If “win,” the focal agent will decrease both learning rate α and exploration rate µt to 

stay in the winning situation; otherwise, increase these two parameters to escape from sub-

optima, i.e., “shift.” In each step, the degree of adjustment is set to 10%.  

We show how multilayer structure re-shapes the evolution of cooperation. We first study 

the influence of cluster size. We fix the subordinate population to a 32 × 32 grid network and 

vary the cluster size to 2 × 2 (with 16 × 16 supervisors), 4 × 4 (with 8 × 8 supervisors), 8 × 8 

(with 4 × 4 supervisors), and 16 × 16 (with 2 × 2 supervisors), respectively, to study the 

influence of cluster size on the evolution of cooperative hunting, which is shown in Figure 5. We 

also assume there are two layers where supervisors share ½ of the corresponding payoff, but 

subordinates share only ¼, introducing unequal payoff sharing in the hierarchical system.  
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In general, we find that with a larger cluster size, a higher level of cooperation can 

evolve (such as in the cases of cluster size 16 × 16, 8 × 8, and 4 × 4). Both small population size 

and large cluster size will lead to a broader view of a partial system for the focal supervisor, 

which facilitates the evolution of cooperation. Additionally, the smaller cluster size leads to 

more local groups distributed in the entire system and significantly increases the diversity of the 

system. It will take more effort to step across multiple sub-optima to evolve global cooperation. 

This will bring a negative influence on the evolution of global cooperation. It is unusual for the 

case of cluster size 2×2. We find that the curve of cluster size 2 × 2 seems to violate the general 

trends. That is because of the large number of supervisors. In our game-theoretical settings, 

supervisors share a higher fraction of payoff than subordinates, and the number of supervisors is 

fewer than subordinates. In the case of cluster size 2 × 2, there are 256 supervisors and 1024 

subordinates. The number of supervisors is significantly higher than that in other cases. This will 

lead to an increase in average payoff (both initial and convergence value) and compensate for 

the negative influence caused by the small cluster size.  

 

Figure 5: Influence of cluster size on the evolution of cooperation. 
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We then study the dynamics of learning rate and exploration rate. In our model, dynamics 

in both learning rate and exploration rate are introduced by the “win stay, loose shift” rule and 

SA exploration. Based on a hierarchical grid network with 12×12 subordinates and 3×3 

supervisors, we study parameter dynamics in reinforcement learning-based interactions shown in 

Figure 6. The start of the exploration rate µt is slightly higher than the learning rate α because of 

the difference between initialized values. An initialized increasing but decreasing to almost 0 

afterward can be seen in both learning rate α and exploration rate µt. It indicates that agents 

initially do not know which action they can adopt, then they interact to try (“trial and error”); 

hence both α and µt increase. As the system evolves, agents realize which action they should 

adopt, in turn, both α and µt decrease until almost 0. Notice that the increase at the initial stage is 

more significant for learning rate than the exploration rate. SA exploration introduces a 

continuous decrease in the exploration rate µt as the system evolves. As a result, the difference 

between the learning rate α and exploration rate µt appears. 

 

Figure 6: Evolutionary dynamics of learning rate α and exploration rate µt. 
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Many extensions can be done based on this general framework. For example, more 

layers can be introduced to build a more complex adaptive learning structure. Many network 

structures, e.g., small-world and scale-free networks, can be introduced to represent agent-based 

artificial societies. Some interesting factors, such as kin selection which can be intuitively 

understood that agents have a higher chance to cooperate with kinship, can be investigated based 

on this framework.  
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III. OPINION DYNAMICS AND STRUCTURAL CODYNAMICS 4 

We have shown the dynamics of cooperation. In this section, we study the dynamics of 

coordination within sparse-interaction agents based on an open-ended network. 

A. Opinion Dynamics 

The study of opinion dynamics, i.e., the study of the formation and dynamics of public opinions, 

is a crucial research topic in complex systems and social networks. The topic has been widely 

explored for several decades with theoretical models and real-world applications among different 

disciplines, including social science, control engineering, statistical physics, and computer 

science. Elucidation of the mechanisms behind macro-level opinion dynamics is vital for 

understanding social interactions/dynamics, complexity, distributed control, and decision-

making. It also holds valuable lessons to apply to real-world empirical studies and applications 

like marketing and social media (Mastroeni et al., 2019).  

Many classic agent-based models have been explored under various assumptions to study 

opinion dynamics from different perspectives. For example, the Hegselmann-Krause model 

(Hegselmann & Krause, 2002) studies opinion polarization with the bounded confidence 

assumption, i.e., agents interact only if their opinions are sufficiently close to each other by 

falling within a confidence interval. The Sznajd model and its variations (Sznajd & Jozef, 2000) 

study the evolution of consensus in a closed society through majority voting. In that model, a 

focal agent polls its complete neighborhood (i.e., the group of agents sharing connections with 

the focal agent in the social network) and selects the opinion of the majority. However, some 

 
4 This section is based in part on the paper coauthored with Zachary Neal and Wolfgang Banzhaf, “Coevolutionary 

opinion dynamics with sparse interactions in open-ended societies.” Complex & Intelligent Systems (2022). 

https://doi.org/10.1007/s40747-022-00810-w 
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assumptions in existing models, e.g., polling the complete neighborhood, seem to be no longer 

suitable, notably when people with bounded rationality only have a partial view and cannot 

access the complete neighborhood information in their social networks. Meanwhile, when we 

interact with neighbors, the literature from psychology suggests, we are mainly concerned with 

the overall opinion of neighbors (e.g., a joint opinion through collective decision-making), and 

we adjust our own opinions according to this feedback (Forsyth, 2018). Some other work uses 

the bounded-confidence assumption (Wang & Shang, 2015) applying dense interactions and 

serial opinion updates through interacting with all selected neighbors. While existing models 

thoroughly describe the dynamics of opinions and interactions, they ignore the built-in structural 

dynamics caused by opinion dynamics and open-endedness, e.g., through the effects of 

newcomers, leavers, and their impact on structure-opinion coevolution. 

 

B. The Proposed Model 

We address the limitations of prior works in the proposed SCOOE model, which takes into 

account the bounded rationality (e.g., incomplete information) of agents and the coevolution of 

structure and opinion in an open-ended society, as shown in Figure 7. Opinion dynamics with 

two components of sparse interactions (extrinsic and intrinsic forms): The focal agent with a 

limited view can only access a partial neighborhood. It aggregates a joint opinion of the 

incomplete neighborhood by collective decision-making. Then the focal agent only takes this 

joint opinion from the extrinsic incomplete neighborhood into account by the interaction with the 

joint opinion, rather than by dense interactions with all neighbors or certain neighbors with 

similar opinions selected by polling the neighborhood. Imitation is also introduced to drive 

opinion intrinsic adjustments based on observation of the incomplete neighborhood environment 
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without direct interactions with neighbors. The open-ended structure and opinion coevolve where 

the opinion dynamics affect the leaver exiting society and associated structural dynamics; A 

joiner with a random opinion joins. It changes the structural features and the neighborhood 

settings, and the neighborhood settings in turn affect the opinion dynamics. 

 

Figure 7: The overview of the SCOOE model. 
 
 

For agent i being exposed to a new opinion, we assume that agent i has a built-in 

probability of sticking to its opinion, i.e., a stubbornness probability wi. It describes the degree to 

which an agent relies on its original opinion. In contrast, the complement of stubbornness, i.e., an 

openness probability 1-wi, quantifies the degree to which agent i is willing to adopt a new 

opinion derived from the interaction with other agents. Heterogeneity is produced when agents 

hold different built-in cognitive features represented by different stubbornness (or openness) 

probabilities. We assume that stubbornness wi follows a probability distribution in the 

population, like a Poisson or Gaussian distribution. In the experimental section below, we report 

on the influence of different stubbornness distributions. The opinion Oi of an agent i is 

represented by a real number in the continuous interval [0,1]. It describes the degree to which an 

agent believes the propagated information, e.g., news or rumors. A higher value of opinion Oi 
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means that agent i believes the propagated information more strongly. Initially, each agent is 

assigned a random opinion, i.e., a random number in the range [0,1]. 

1. Opinion Dynamics with Sparse Interactions  

We first discuss the opinions dynamics. The critical theme of opinion dynamics is sparse 

interaction and incomplete information. People do not serially poll the neighborhood in their 

social networks to update the opinion but are mainly influenced through considering the joint 

opinion of others as their feedback (Forsyth, 2018). This contrasts with most agent-based models 

which are formulated with such complete information assumptions, e.g., polling the entire 

neighborhood to select neighbors and conduct dense interactions serially to update opinions 

(Forsyth, 2018; Noorazar, 2020). 

The literature from psychology suggests two types of motivations for humans to change 

behavior, extrinsic motivation (people are assimilated into extrinsic environments) and intrinsic 

motivation (people are motivated by internal desire) (Deci et al., 2001). We take inspiration from 

this and assume two types of actions forming the sparse interaction, extrinsic collective 

interactions and an intrinsic observation mechanism. The interplay between these two actions 

enhances group opinion evolution. However, they play different roles in various stages of the 

model dynamics reported in the experimental section. 

We first study the extrinsic collective interaction with incomplete information -- we 

introduce a collective decision-making approach to incorporate the sparse joint opinion 

formation and interaction based on a limited neighborhood (i.e., incomplete information). 

Though several collective decision-making approaches have been proposed in discrete-opinion 

models, e.g., majority voting (Choi & Goh, 2018), this approach in continuous-opinion models 

has not been fully developed so far. Suppose a focal agent i with a connection degree di in its 
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social network is able to only access a random subset of neighbors i1, i2,..., ij, where j is randomly 

chosen and satisfies 1 ≤ j ≤ di. This assumption means incomplete information by a limited view 

and only partial access to neighbors, and it allows more dynamic interactions, e.g., an agent will 

not interact with its entire neighborhood. Agent i generates a joint opinion OiJoint of its random 

partial neighborhood, rather than by interacting with all its neighbors or certain neighbors with 

similar opinions serially. An intuitive way to generate a joint opinion is by taking the weighted 

average of the selected neighbors’ opinions (Friedkin & Johnsen, 1990). The weights assigned to 

different neighbors are proportional to their relative connection degree strength, as shown in 

Equation 4, where 𝑑!! is the degree of neighbor ik, k ∈ [1, j]. 

                                          (4) 

Thus, the more a neighbor is connected in the local network (measured by its relative 

connection strength), the greater its weight and influence on the joint opinion in the collective 

decision-making process. 

Another critical factor in designing an interaction protocol is confirmation bias. That is, 

people collect and interpret information selectively by trying to follow their original bias (e.g., 

their original opinions) (Plous, 1993). The most widely adopted interaction protocol with 

confirmation bias is a bounded confidence model where rational agents owning the perfect 

information poll their entire neighborhoods and select others to interact only if their opinions fall 

within a confidence interval (Deffuant et al., 2000; Gomez-Serrano et al., 2012; Wang & Shang, 

2015). Here we take inspiration from game theory and model this as an opinion interaction game 

with confirmation bias among bounded-rational agents with limited information. So, after 



33 
 

generating a weighted joint opinion based on limited neighborhood information, agent i with 

opinion Oi receives a payoff Ri represented by Equation 5. 

Ri = 1 − |Oi − OiJoint|                                                   (5) 

Equation 5 means that if the opinion Oi of agent i is very different from the joint opinion 

in its selected neighborhood (the local environment), it receives a low payoff. Neighborhoods 

with more similar opinions are considered more trustworthy, thus, resulting in a higher payoff. 

After considering the collective interaction by the game-playing and interaction with the joint 

opinion, the focal agent i adapts to the neighborhood. Suppose the stubbornness of i is ωi and its 

openness is 1-ωi, then the adapted opinion OiAdapted of agent i is calculated by Equation 6. It 

represents a combination of relying on its original opinion and accepting a new opinion (Centola 

& Macy, 2007; Friedkin & Johnsen, 2009). 

  OiAdapted  = Oi × ωi + OiJoint × (1 − ωi)                                               (6) 

We have now seen how agents take advantage of extrinsic collective information within 

their incomplete neighborhoods. Agents also observe the local environment to adjust their 

opinions to seek a higher payoff. This is driven by intrinsic motivation. People sometimes 

engage in an activity just because they are drawn to do it (Golman & Loewenstein, 2018; Ryan 

& Deci, 2000). We apply the imitation rule here that does not need direct interactions but 

transforms information in the population through observation and self- adjustment (Szabo & 

Toke, 1998; Pan et al., 2018). Again, a focal agent i only accesses a random partial neighborhood 

as its observation environment. For these random neighbors, the focal agent i holds a probability 

𝑊!,!" to imitate the local best-performing neighbor ir (i.e., the neighbor with the highest 

cumulative payoff) by adopting ir’s opinion as its own opinion. We still follow Szabo and Toke 

(Szabo & Toke, 1998), as shown in Equation 3, to model the imitation probability, which is 
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proportional to the gap between cumulative payoffs of the focal agent and the selected neighbor, 

and we set the noise to µ = 1.5. Thus, agents observe the environment and keep a close eye on 

the cumulative payoff gap. They then adjust their opinions voluntarily without direct interactions 

to achieve a greater payoff and a better position in society.  

In summary, we introduce (i) sparse opinion updates by taking incomplete information-

based collective decision-making into account, and (ii) observation and self-adjustment of 

opinions without direct interaction with neighbors. Sparse interactions are achieved. 

 

2. Open-ended Structural Dynamics  

This section presents the open-ended structural dynamics with leaving and joining agents and the 

opinion-structure coevolution. 

At each time step, the agent with the lowest cumulative payoff leaves the society, which 

models an intention to exit a society where most individuals have fairly different positions (e.g., 

opinions). The stubbornness and openness of the leaver are recorded. All adjacent edges of this 

agent are removed from the society upon leaving. As society evolves, leaver-driven structural 

dynamics will demonstrate the confirmation bias more strongly because stubborn agents with 

opinions fairly different from others will have a low payoff leading to their removal from the 

model. Opinion dynamics affect the cumulative payoff, influence which agents become leavers, 

and thus drive the structural coevolution of the system. 

At each time step, a newcomer v will join. As society evolves, the community structure 

constantly changes. Agent v has incomplete information about different communities. It detects 

the real-time community structure and attempts to join a random communityv by connecting to 

randomly selected nodes within communityv. We assign a random opinion Ov to v and the 
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recorded stubbornness/openness of the leaver (see above) to v in order to keep the cognitive 

ability distribution stable within the society. Note that the cumulative payoff Ev of the incoming 

agent v is not comparable to that of existing agents when calculating the imitation probability 

and removing leavers, especially for long-term experiments. We accordingly assume that given v 

joining at time step tv, agent v’s initialized cumulative payoff Ev is adjusted by the corresponding 

payoff 𝑅	$# at time tv multiplied by the number of completed interactions tv. After initialization, 

the cumulative payoff Ev is calculated by regularly adding the corresponding payoff 𝑅	$ at each 

time step t until v is removed or the system terminates globally. 

After joining a community, the newcomer v chooses and connects to a node u in another 

community. We apply the preferential attachment principle (i.e., nodes with a higher connection 

degree have a stronger ability to attract new nodes added to the network) because “the rich 

getting richer” phenomenon is widely observed in real-world societies (Barabasi & Albert, 

1999). Thus, the probability pv,u for v choosing u to connect to follows Equation 7. 

∀u ∈ (G − communityv): pu,v ∝ %$∑%$
                                       (7) 

G−communityv represents all of the other communities except for communityv, which the 

new node v joins. du represents the degree of node u. If only one community exists as the society 

evolves, the new node joins by connecting to only one node following preferential attachment. 

An algorithmic view of the SCOOE model is shown in Algorithm 3.  
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Algorithm 3: The SCOOE model 
 

 

 
 

C. Model Performance 

To test the model, we create two small-world networks holding 500 nodes each to model two 

physically separated groups of people interacting to a certain degree. So, randomly chosen edges 

connect the two small-world networks. We apply the Watts–Strogatz model to generate an 

individual small-world network (Watts & Strogatz, 1998). Each node is connected to four nearest 
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neighbors. The rewiring probability is set to 0.05. This structure constitutes the agent society, 

with each node representing an agent. A focal agent will only consider those agents connected by 

edges as neighbors and conduct sparse interactions based on the neighborhood. For initialization, 

we follow prior work from the psychology and computing realms (Das et al., 2014; Meehl, 1992) 

and set the stubbornness distribution to a Gaussian distribution with a mean of 0.5 and a standard 

deviation of 0.25. These parameters are chosen so that most values lie between 0 and 1. In 

addition, we apply a cut-off so that generated random numbers can only lie between 0 and 1, i.e., 

we constrain stubbornness to the interval between 0 to 1, as shown in Figure 8 (a). Imitation 

noise is set to µ = 1.5. The simulation is run for 450 Monte Carlo time steps. 

1. How Do Group Opinions Evolve? 

We first study how far the group opinions evolve away from their initial states, measured by the 

variance dynamics shown in Figure 8. The opinions of agents are reasonably different at the start 

because agents are assigned random opinions initially. As society evolves, we find two stages of 

evolution: a fast-decay phase (i.e., the variance of group opinions dramatically decreases from 

0.084 to 0.005) and a slow-decrease phase (i.e., the variance slowly continues dropping to 0.003 

at the end of the simulation). It is interesting to find that the final opinions are in a relatively 

narrow band and less polarized without firmly believing or strongly unbelieving the rumors 

among the agent population, even with some agents never changing their opinions (stubbornness 

=1) but being removed by the model. The Gaussian stubbornness distribution is also evenly 

distributed. The majority of the population keeps a balance between maintaining their original 

opinions and accepting a new opinion. Mirroring reality, we find that agents are more likely to 

stay open-minded to propagated news/rumors during in an open-ended society. 
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Figure 8: The opinion dynamics under default Gaussian stubbornness. 
 

2. How Do the Opinion Dynamics Shape the Structural Co-dynamics?  

For this question, we primarily focus on the dynamics of the clustering coefficient, average path 

length, degree distribution, and community structure. For real-time community detection, we use 

the most widely used method, namely the modularity-based method (Clauset et al., 2004). 

The society coevolves to be a holistically dense small-world structure with a heavy-tailed 

degree distribution. As shown in Figures 9 and 10, we find an increase in the clustering 
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coefficient and average degree, as well as a decrease in average path length and the number of 

communities. We initialize the society as two interconnected small-world networks. The random 

edges between them change the initialized small-world features by randomizing them to a certain 

degree. Thus, we find a chaotic society initially with 26 detected tiny communities and a 

coevolved society with nine segregated communities by the modularity-based method (Clauset et 

al., 2004). We also observe that the coevolved society has a small-world feature with a high 

clustering coefficient. It coevolves to be a more tightly knit group with dense connection 

degrees, high information transmission efficiency, and a low average path length due to network 

homophily. That is, the final opinions of the population are relatively consistent, leading to an 

increase in payoff and a decrease in conflicts (e.g., confirmation bias for fairly different 

opinions) in the game-playing upon interactions. This coevolutionary trend of the structure in 

turn boosts the evolution of a global opinion (McPherson et al., 2001) 

Although some small-world generation models, e.g., the Kleinberg model (Kleinberg, 

2002), do not generate heavy-tailed degree distributions, it is not surprising to find a heavy-tailed 

degree distribution appearing in the SCOOE model. The advantages of “the rich” become 

significant eventually because of preferentially added joiners. Specifically, we calculate the 

proportion P(d) of nodes with connection degree d. We find that the relationships between node 

proportion P(d) and node degree d can be approximated by a linear relationship log[P(d)] ~  (-γ) 

* log(d) with a negative slope -γ= -2.758 through linear regression within a 95% confidence 

interval. Note that the data points in Figure 9 (f) represent the average degree and the node 

proportion in different degree ranges. We only study the nodes in these degree ranges because 

they fill most of the network. These nodes are enough to illustrate a linear relationship. 
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Figure 9: The structural dynamics. 
 

We also find an emergent dialectic relationship between community segregation and 

cohesion. Cohesion is a concept of togetherness and connectedness among nodes within a 

network. There is no unified definition of cohesion because it depends on the context. Previous 

literature has referred to it as cliques/communities, clusters, or average degree (Kolaczyk & 

Csardi, 2014). Figure 10 shows our assessment of the community segregation and cohesion. 
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Figure 10: The community structure. 
 

As shown in Figure 10, the initialized society is desegregated and chaotic with a low 

level of cohesion (i.e., with a low average degree and clustering coefficient). As society 

coevolves, we find it has a clear pattern of fewer segregated communities that become densely 

clustered (i.e., with a high average degree and clustering coefficient). Agents have disconnected 

social networks initially but highly cohesive social clusters eventually. It is interesting to note 

that society becomes segregated but dense spontaneously and simultaneously with a global 

consensus and cohesion, but without multiple local-opinion “barycenters” that might emerge 

aligned with segregated communities (Gomez-Serrano et al., 2012) Mirroring reality, as previous 

work suggests (Neal & Neal, 2014), a widely observed example in the real world is policy-

making to reduce detrimental residential segregation. A widely adopted approach to introduce 

desegregated neighborhoods and reduce residential segregation is to improve cohesion, e.g., 

dense connections. However, a paradox exists between community segregation and cohesion. 

The society evolves to be dense with segregated communities, whereas a desegregated society is 

not as cohesive as we would expect. 
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3. What Factors Affect the Evolved Global Opinion?  

It is reasonable to suspect that the degree of stubbornness affects the emergence of a global 

opinion. Additionally, the SCOOE model incorporates multiple types of dynamics. What effect 

do these dynamics have on the evolution of a final opinion? This section will address these 

questions. To study the influence of stubbornness distributions, we also test a Beta distribution 

and a Poisson distribution. We initialize the Beta distribution with two positive shape parameters 

α = 7 and β = 1, and the Poisson distribution with the expected rate of occurrences λ = 1. We 

normalize the two generated distributions with the maximum value representing stubbornness=1. 

The evolved opinions in these two cases are shown in Figure 11. The variance comparison with 

different stubbornness distributions is shown in Figure 12 (a). The variance comparison is 

defined as the ratio of the opinion variance for the Poisson/Beta stubbornness distributions to that 

for the baseline Gaussian stubbornness distribution at each time step t, t in [0, 450]. The variance 

dynamics with different sparse interaction mechanisms in a population with a Gaussian 

stubbornness distribution are shown in Figure 12 (b).  

Stubbornness is generally small in a population with Poisson stubbornness. Agents are 

very flexible to become followers of the propagated news/rumor. As a result, it will be easier to 

pass the fast-decay phase, and we observe an initial lower variance than the baseline shown in 

Figure 12 (a). Because of the flexibility in updating opinions, evolved opinions are still 

inconsistent at the end of 450 time steps, and the final variance is relatively large. In contrast, the 

agent population generally has much higher Beta stubbornness. Accordingly, we find an initial 

increase in the variance ratio to pass the fast-decay phase shown in Figure 12 (a). Because of the 

high stubbornness, final opinions are stable with few changes, and lower final variance than the 

baseline can be observed. 



43 
 

It is challenging to drive the global opinion evolution among a stubborn population, e.g., 

the initially weak emergence of the global opinion in the population with high Beta 

stubbornness. However, it is interesting to find the most unified global consensus in such a 

society with many agents only weakly changing opinions. This unusual phenomenon is due to 

the open-endedness of society. The most stubborn agents will be considered maladapted to the 

environment and removed as society evolves. Agents will be assimilated by agents who surround 

them. No matter the initial opinions they hold in stubborn crowds, they will finally have a 

relatively unified group consensus after the long-term interactions and the slow assimilation of 

opinions crowding out dissidents in an open-ended society. We can say that these high 

stubbornness values serve as a “wall” — newcomers with similar opinions will be accepted, 

while newcomers with opinions out of this range will be removed quickly. 

We additionally test the model without the intrinsic self-adjustment mechanism as shown 

in Figure 12 (b). A widely studied contagion phenomenon in social networks is that the chance to 

adopt a contested “innovation” (e.g., firmly believing a piece of rumor) will be smaller for an 

individual with more neighbors (Centola & Macy, 2007; Granovetter, 1973). When a focal agent 

aggregates the joint opinion by collective decision-making, extreme opinions (e.g., a strong 

endorsement) of selected neighbors are neutralized by weighted averaging. This effect will be 

more significant for high-degree nodes, given the larger share of their neighbors. On the other 

hand, high-degree nodes with a fewer likelihood of being extreme have a more substantial 

impact on the weighted aggregation method and a more extensive influence range. At the same 

time, collective interactions decrease the probability of interacting directly with extreme agents 

and being affected by them. So, the extrinsic collective interaction mechanism boosts the 

emergence of a global consensus, as shown in the similar trends of the fast-decay phase in the 
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two cases in Figure 12 (b). It plays fewer roles when the population rapidly reaches a pre-

consensus (the start of the slow-decrease phase in variance dynamics), given the constantly 

adapted local interaction environment with the randomness to select neighbors, the 

joiners/leavers, and a constant injection of new opinions. The intrinsic adjustment mechanism 

continues to further the emergence of a global consensus and weakens conflicts by direct 

imitation. It can be said that extrinsic collective interactions primarily play a role in the fast-

decay phase of the variance dynamics, whereas intrinsic adjustments mainly play a role in the 

slow-decrease phase. Their interplay works to enhance the evolution of a global opinion. Note 

that when we set the self-adjustment noise µ to a very large value, we can observe similar results 

to the case of removing the self-adjustment mechanism. 

 

Figure 11: The evolved opinions with different stubbornness distributions. 
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Figure 12: Opinion dynamics with different distributions and mechanisms. 
 

D. Discussions 

We revisit and discuss the proposed mechanisms by focusing on their effects on the consensus 

evolution within groups. 

Lean and fast decision strategies can be produced with incomplete information. A broad 

assumption in the widely cited bounded confidence model is that rational agents owning the 

perfect information poll their neighborhood and select neighbors to interact with only if their 

opinions are sufficiently close to their own. This assumption facilitates polarization and global 

conflicts (Gomez-Serrano et al., 2012). It has been widely recognized that it is difficult to evolve 

a global consensus for large population sizes (Iniguez et al., 2009; Kou et al., 2012; Yu et al., 

2015), because local consensus might be distributed in a society. As a result, such a system needs 

more bottom-level interactions to pass the formation of the local consensus. Our results validate 

several earlier findings with different mechanisms and remarkably boost the evolution even in a 

stubborn population (Lim et al., 2014; Semonsen et al., 2018; Weisbuch et al., 2003). Unlike 

some bounded confidence models, e.g., Deffuant et al., 2000 and Gomez-Serrano et al., 2012, 
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here we start by assuming that bounded-rational agents only access a partial neighborhood 

(incomplete information) to aggregate a joint opinion. Confirmation bias is represented by the 

stipulation that adopting more similar opinions will bring a higher payoff. We find that conflicts 

among bounded-rational agents are weakened globally and rapidly. Bounded rationality with 

incomplete information forms lean and fast decision strategies to reduce conflicts under 

uncertainties, whereas complete information weakens group coordination, as suggested by some 

literature from psychology (Gigerenzer & Selten, 2002). 

Open-endedness enables permanently novel opinions. We find that eventually evolved 

opinions are wholly unified in some closed-society models (Semonsen et al., 2018). The 

continuous addition and removal of agents and the structure/opinion dynamics they bring with 

them influence neighbors and their surroundings in a cascading fashion. Though the designed 

mechanisms strongly facilitate the evolution, it is impossible to reach a highly unified global 

consensus. One can only approach it no matter whether the randomness or noise exists, as the 

slow-decrease phase in variance dynamics. It can also be said that the SCOOE model is robust to 

boost and enhance the evolution of a global opinion as it successfully defends against the 

interference of a constant injection of novel opinions. 

The interplay between sparse interaction and open-ended structure reduces the echo 

chamber effect. The echo chamber effect in social media studies describes a situation where local 

opinions are reinforced by repetition inside a closed society and insulated from rebuttal or 

different opinions (confirmation bias). Surprisingly, a substantial body of research indicates that 

people are not as polarized as we would expect in the echo chamber, both empirically (Balietti et 

al., 2021; Bar-Gill et al., 2020; Hosseinmardi et al., 2021; Shore et al., 2016)  and theoretically 

(Lim et al., 2014; Semonsen et al., 2018; Weisbuch et al., 2003). We offer two possible 
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theoretical justifications for this apparent discrepancy between evidence and intuition: From the 

perspective of opinion dynamics, the focal agent considers the collective opinion based on a 

limited view of the neighborhood, which reduces polarization quickly. From a structural dynamic 

perspective, the society in our model (and also in the real world) is open-ended and constantly 

changing. It imparts persistent dynamics on the neighborhood structure, resulting in neighbors 

with whom the focal agent interacts being neither isolated nor static. When we examine previous 

models based on a closed structure, some work has shown global/local polarization and extreme 

opinions (Banisch & Olbrich, 2019; Hegselmann et al., 2002; Mathias et al., 2017). The open-

endedness feature with a constant injection of novel opinions in the SCOOE model helps a 

population defend against the echo chamber effect and stay open-minded. It reduces the chances 

of extreme results because extreme agents are likely to be removed from society. It also mirrors 

the findings of a global consensus formation in a population with high Beta stubbornness. In 

general, we believe that opinion and structural mechanisms are inextricably linked and that their 

interplay helps reduce polarization. 
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IV. TOWARDS COLLECTIVE INTELLIGENCE 

This section provides a thorough analysis of proposed models and relates their insights into 

collective intelligence to widespread applications in other subfields of computer science. 

Our first model focuses on the evolution of cooperation with two variants. The first 

variant discusses a framework based on evolutionary selection: the parent agent produces 

offspring based on its performance in the entire society (cumulative payoff). The offspring 

inherit the parent's behavior with mutation. Additionally, they improve their inherited behavior 

via two methods: collective learning and social learning. Collective learning signifies that the 

focal agent generates an overall best action via collective voting from the set of best actions 

learned through reinforcement learning with different neighbors. For social learning, we employ 

one of the simplest methods, imitation, in which the agent imitates others' actions according to 

the difference in the cumulative payoff. In the second variant, we transfer this evolutionary 

selection framework to a hierarchical network, with the subordinate agent reporting to the 

supervisor after learning the overall best action through collective learning. The supervisor 

obtains the best action of the upper layer by social learning with its upper-layer neighbors and 

communicates this piece of supervised information to the lower-layer subordinates. Subordinates 

then adjust the learning and exploration rates in their reinforcement learning protocols according 

to the supervision. We examine how cooperation emerges from selfish agents using these two 

variants. 

In the second model, we focus on opinion dynamics, i.e., how the agent adjusts its 

opinion in order to better integrate into society. We do not use reinforcement learning as a means 

of agent interaction. The agent's objective in the first model is to learn the optimal action, a 

typical Markov decision-making problem - deciding what action to adopt in the next step based 
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on the action, state, and payoff of the previous step. In contrast, for the study of opinion 

dynamics, the agent attempts to adapt to the environment by evolving and updating the opinion. 

We use a Bayesian method to update the existing opinion of the focal agent by a weighted 

average of existing opinion and the collective opinion from neighbors. Payoffs are lower when 

arguing with those who have the most divergent opinions. The degree to which agents adapt to 

the environment, represented by the cumulative payoff, drives them to leave and join society 

selectively. Opinions and social structure co-evolve, and we examine how coordination emerges 

through the coevolution from initial opinion chaos. 

These two models, despite their different contexts, both focus on a fundamental issue in 

multi-agent systems, artificial life, and complexity science: the emergence of coordination. 

Section I divides principal methodologies in building agent-based computational models into 

three related categories: how agents are represented, how agents interact, and how the agent 

population is structured. Two proposed models introduce rich dynamics in these three aspects. In 

this section, we continue to follow these three lines and discuss two proposed models by 

examining the following three issues: 

• First, we adopt an interaction-based perspective on adaptation, i.e., how agents with 

different representations adapt to the environment through different interaction protocols, 

such as reinforcement learning and opinion evolution, and how different adaptations 

impact the macroscopic evolutionary dynamics.  

• Second, we adopt a structural view to discuss open-endedness and its effect on the robust 

emergence of macroscopic coordination. 
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• Third, we take a broader view of how research on emergent coordination and collective 

intelligence in the fields of artificial life, evolutionary computation, and complex systems 

should be exploited to inspire other subfields of computer science. 

 

A. Adaptation 

Adaptation is an intricate concept. It describes how a species, an individual, or an agent 

gradually becomes fitted to the environment, say, the ecological system, society, and artificial 

system, respectively (Pimm et al., 2016). According to different time scales, adaptation has been 

classified into three categories (Jablonka & Lamb, 2006; Gershenson, 2010; Aguilar et al., 2014). 

According to Aguilar et al. (Aguilar et al., 2014), a slow adaptation that occurs over many 

lifetimes is referred to as evolution. The adaptation that occurs at a moderate rate (one lifetime, 

for example) is referred to as development (including morphogenesis and cognitive 

developments). A very rapid adaptation that requires only a small portion of a lifetime is referred 

to as learning. Note that some forms of adaptation may be counterproductive, hindering the 

population's ability to survive in its environment. Some examples include the behaviors acquired 

through social or normative learning, such as adopting unrelated children or altruistic behaviors 

that do not favor relatives or kin (Staddon, 2016). In our models, agents either "learn" the 

optimal action in a short time (tens of time steps, as shown in Figures 2, 3, 5, and 6 in the 

cooperation models) or adapt to the environment in a relatively slow manner. If we consider the 

time an agent spends in the environment to be its lifetime, it may take a large number of lifetimes 

for the agent population to "evolve" toward the group coordination in an open-ended 

environment, as shown in the open-ended opinion dynamics model (the slowly decreasing but 

non-convergent phase of opinion variance, Figures 8 and 12). 
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The evolutionary dynamics of a system are profoundly influenced by different modes of 

adaptation. In this thesis, we first demonstrate that adaptation through collective interaction 

facilitates evolution. As shown in Figure 2 of model 1, the "bad" effects of individual-level 

mutations (a small probability of not adopting the best action) that lead to suboptimal collective 

decision-making derived from the suboptimal action set are mitigated by voting methods such as 

majority voting. It is also worth noting that agent representation and structure both influence 

adaptation. The former, agent representation, aims to enhance the model's capacity to represent 

reality in the multidisciplinary context. In our models, for instance, we implement cognitively 

heterogeneous agents. This diversity is reflected in agents' capacity to accept and incorporate 

new perspectives from others. The hierarchical system with unequal payoff distribution is also 

introduced to represent the sharing between supervisors and subordinates. Different payoff 

matrices among agents will have an effect on how they learn optimal actions and adapt to 

society. Although the cooperation among subordinates is more challenging to emerge because 

they receive a lower payoff for cooperation than their supervisors, we still observe the global 

cooperation as supervised information influences how subordinates behave. In biology, ecology, 

and social sciences, there is a broad practice of using heterogeneous agents to represent different 

roles and functions of entities within the system (Epstein & Axtell, 1996; Macal & North, 2005). 

The latter is more concerned with the network structure and neighbor composition. When 

considering a focal agent without a global view, different niches in which the focal agent exists 

have different effects on its adaptation. When the number of niches is large (as shown in large 

cluster sizes in the hierarchical cooperation model), it is possible to form some local coordination 

distributed in the whole society. Crossing local coordination to form global coordination will be 

more challenging, as shown in Figure 5. 
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One of the most prominent criticisms of contemporary artificial intelligence and machine 

learning research is its lack of adaptability, as it has sought to predict and control rather than 

adapt (Aguilar et al., 2014; Gershenson, 2013). This is the root cause of numerous problems in 

current deep learning research, ranging from insufficient robustness, inflexible and rigid 

configuration assumptions (say, fixed input and configuration), and inadequate performance in 

adapting to novel task settings (Ha & Tang, 2022). It is evident that combining evolution and 

learning (e.g., Lazaridou & Baroni, 2020) or development and learning (e.g., Chrol-Cannon & 

Jin, 2014) is a promising approach, particularly for programming adaptive agent behaviors. In 

this thesis, an attempt is made to create adaptive learning. In the hierarchical cooperation model, 

we propose that the subordinates' learning and exploration rates are adapted based on their 

supervisors' social learning information (Figures 4 and 6). There is a vast amount of future work 

worthy of further investigation in real-world scenarios. Recent efforts have been made on this 

topic across the fields of machine learning, robotics, and evolutionary computation, especially 

for studying real-time, online, complex strategic interactions, such as automated trading in stock 

markets and real-time team formation/task allocation in multi-robot systems (Bloembergen et al., 

2015). 

 

B. Open-endedness 

Evolution is unstable. Much research in evolutionary biology and artificial life indicates that the 

complexity of evolution exhibits an open-ended, limitless expansion (Bedau, 2007). Artificial 

life as a field in nature aims to create an artificial system to demonstrate how unrestricted 

evolutionary progress can be achieved (Bedau, 2007). At the OEE (Open-Ended Evolution) 

workshop in York, Tylar and colleagues provided a summary of the characteristics of open-
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ended evolution: the ongoing generation of adaptive novelty and the ongoing increase in 

complexity (Tylar et al., 2016). Based on how we define "end," Banzhaf et al. provided three 

primary classifications of open-endedness: (1) processes that do not terminate; (2) processes 

without a specific objective; (3) processes that do not terminate and have no specific objective 

(Banzhaf et al., 2016). 

This thesis adopts a structural perspective on open-endedness: In models for the evolution 

of cooperation, complexity and novelty are increased by continuously generating offspring 

agents (new nodes) connected to their parents via newly generated edges in the network. In the 

opinion dynamics model, we introduce joiners and leavers. The joiner detects communities in 

real time and chooses one to join. Dissidents with significantly divergent opinions leave the 

network. Together, they influence the evolution of the structure. In both models, the newcomer's 

new behaviors are subsequently integrated into society. Novelty and complexity are constantly 

introduced in terms of both behavior and structure. As agents with new behaviors join the open-

ended evolutionary system, the new behavior is accompanied by a reorganization of the 

structure, such as a change in edge configuration. Subsequent novelties are not generated solely 

by newly added agents and behaviors but also by the simultaneous structural dynamics. We can 

observe a gradual decrease in the variance of opinions that never converge (Figures 8 and 12). In 

both models, we find that the open-ended structural characteristic does not necessitate a 

coordination disruption. Instead, the dominant norm is stable even if it constantly evolves in an 

open-ended manner. Newcomers actively or passively choose to assimilate into it, which 

somewhat validates prior works from migration acculturation and cultural evolution (see 

Mesoudi, 2018).  
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The interplay between open-endedness and adaptation provides a means to improve the 

model's robustness. Adaptivity of the system enhances the evolution of the global opinion as it 

successfully defends against the interference of a constant injection of novel opinions. The open-

ended society "repairs" the global opinion by expelling dissidents who may disrupt it. Recently, a 

large body of research in artificial life and evolutionary computation (e.g., Mordvintsev et al., 

2020; Sandler et al., 2020) has shown that cellular automata-based neural networks with adaptive 

interactions between neurons can resist the interference of noise and self-repair when damaged. 

These works will be discussed in greater detail in the subsequent section on linking the emergent 

models with other subfields in computer science. 

The open-ended evolution in our models deserves further investigation because it is 

incomplete in its current standing. The ongoing generation of new kinds of entities and their 

behaviors do exist in our models, but they do not result in a new type of adaptation. That is, new 

agents continue to adapt, learn, or evolve in the same manner as their predecessors. 

Simultaneously, new agents select actions from the established action set without generating 

novelty in the strategy complexity. We should not solely focus on evolving particular 

coordination from a given set of behaviors. Rather than that, we expect the emergence with an 

active complexity and boundary adjustment. How to design a comprehensive, open-ended 

evolutionary system with the coexistence of new adaptations, new types of entities, major 

transitions (e.g., emergence), and the evolved open-endedness (open-endedness as a consequence 

of evolution) while keeping the model elegant is a fascinating direction (Tylar et al., 2016; Pattee 

& Sayama, 2019). 
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C. Collective Intelligence 

Our core in this thesis, group coordination as a form of collective intelligence, is one of the 

central issues in complex systems, multi-agent systems, and artificial life. The rational choice for 

an individual agent in the first work is to be uncooperative. The agent population learns to 

cooperate through the processes of learning and evolutionary selection, as cooperation is 

unattractive to the individual but advantageous to the population. In the second work, the agent's 

opinion is very different initially, and there is a constant injection of newcomers with different 

opinions. Through the evolutionary process, the conflict among agents with different opinions is 

diminished across the whole society. In our models, the emergence of collective altruism from 

individual selfishness and the group coordination from initial conflicts are observed frequently, 

benefitting the population. We hope that the insights of collective intelligence presented in this 

thesis will serve as a catalyst for other communities in computer science. We list some potential 

applications below. 

 

• Unsupervised learning: Unsupervised learning is a self-organizing process in nature due 

to the absence of supervision. Artificial life and collective intelligence will 

unquestionably benefit the development of robust and adaptive unsupervised learning 

algorithms (Rand, 2006). Clustering, for instance, is a typical unsupervised learning task. 

A general framework is to model a data instance as an agent in a multi-agent system and 

implement clustering techniques based on agent attribute similarity (say, distance in the 

vector space). The process of data clustering is the emergence of agent communities 

(Chaimontree et al., 2012; Bu et al., 2017). 
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• Robust deep learning: An early idea of this is the Neural Cellular Automata (NCA) 

(Wulff & Hertz, 1992). A unit in the CA lattice is represented by a neuron of a neural 

network. Instead of pre-defined CA rules, the neural network learns local interaction rules 

and updates each neuron’s state based on the interaction with local neighbors. Some 

recent work improves the NCA from different perspectives. Evolutionary algorithms 

have been used to train the learning of neural architecture, weights, and local interaction 

rules (Nichele et al., 2017). Some work is inspired by the NCA and creates noise-resistant 

deep learning algorithms by adaptively learning a coherent representation of features 

(Zhou et al., 2022). Adaptive interactions are introduced between neurons using the 

attention mechanism. The most relevant vectors to the output are shared between neurons 

and can be flexibly attributed to the highest weights in a collaborative manner (Tang & 

Ha, 2021; Jian et al., 2019). High resilience to damage is illustrated when almost the 

entire input image is removed, and the deep learning system is still able to regenerate it 

(Mordvintsev et al., 2020). Ha and Tang developed a systematical survey discussing the 

inspiration on robustness, generalizability, and adaptivity from collective intelligence in 

the current deep learning architectures from four perspectives: (1) image processing, (2) 

deep reinforcement learning, (3) multi-agent learning, and (4) meta-learning (Ha & Tang, 

2022). 

• Collective robotics: The research on collective robotics, sometimes referred to as “hard” 

artificial life, transits a large number of ideas in agent interaction, scheduling, and 

learning to real-world robotic teams (Ferrante et al., 2015). We can program robots for a 

variety of roles and establish a series of interaction protocols to study tasks like team 

formation. The emergent property permits robotic teams to manage real-time, online 



57 
 

tasks more effectively than centralized control (Pitonakova et al., 2014). For instance, 

centralized collaboration can emerge from the information sharing between decentralized 

modules to collaboratively optimize a shared global reward in soft-bodied robot teams 

(Huang et al., 2020). 

• Optimization: When agents are viewed as independent problem solvers, the collaboration 

that emerges between them can solve complex optimization problems that a single agent 

cannot. A relatively early optimization algorithm based on the concept of agents' 

emergent collaboration and communication is the cultural algorithm. It is a collective 

search process in which the agent population and belief space (different knowledge of 

individual agents in the search space) coevolve by generating a more knowledgeable 

population and simultaneously updating individual agents' belief space (Reynolds, 1994). 

The cultural algorithm has inspired substantial research into metaheuristic algorithms and 

numerous real-life applications, particularly in search-based software engineering. Some 

instances include optimally assigning different programmers to different tasks (Harman, 

2007), bug locating and auto-repair with heuristic approaches (Le Goues et al., 2012), 

and the co-evolution of programs (prey) and unit tests (predator) (Arcuri & Yao, 2008). 

Agent-based models are rooted in the fields of artificial life/evolutionary computing and 

fundamentally interplay with learning, behavioral modeling, cognitive science, and network 

science. There is a substantial amount of significant work on these topics that not only provides 

insights into evolutionary, collective intelligence but also inspires other subfields of computer 

science and even other disciplines. As the reader can see, the context of our thesis closely relates 

to a variety of social science topics, including opinion polarization, social networks, cooperative 

behavior, and voting. Since their inception, agent-based models and artificial life have been a 
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natural fit with evolutionary biology. They have produced a large body of classic work (see the 

review paper by Murphy et al., 2020). In studies of human society, another evolutionary, open-

ended, complex adaptive system, similar evolutionary models to artificial life have not received 

the same level of attention (Kim & Cho, 2006; Arthur, 2014). Our thesis ultimately aims to 

contribute to the growth of digital evolution, artificial life, and their integration with other topics, 

such as network science, evolutionary game theory, and machine learning in a cross-disciplinary 

manner. 
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V. CONCLUSION 

This thesis studies the evolution of cooperation and opinion dynamics viewed from agent 

representation, agent interaction, and agent group structure. We are primarily concerned with 

elucidating agent heterogeneity, different modes of interaction, network structure, and their 

profound effects on evolutionary dynamics. In addition, we establish a connection between two 

models and a broader topic, collective intelligence, in terms of interaction-based adaptation and 

structural open-endedness. We hope that the concepts of evolution, emergence, and coordination 

presented in the thesis will be beneficial and closely integrated into other fields in order to 

increase the adaptability, flexibility, and robustness of models. 
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