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ABSTRACT 

TOWARD A RESILIENT HEALTHCARE SUPPLY CHAIN – ESSAYS ON MANAGING 
HEALTH SYSTEMS, HOSPITALS, AND VACCINE DISTRIBUTION CHANNEL DURING 

PANDEMIC 
 

By 

Sukrit Pal 

Hospitals across the country struggled to deliver care services in the context of increasing 

demand due to pandemic. Consequently, they struggled to manage the uncertainties of providing 

care services or to manage the vaccine distribution. This dissertation is structured into three essays 

to address these aspects. 

When the pandemic started, healthcare practitioners struggled with uncertainties regarding 

the choice of correct treatment procedures and understanding the factors that determine the 

outcomes of such procedures. In the first essay, we consider the impact of health systems’ choice 

of adopting service innovation (SI), their participation in community-based health information 

exchanges, and the geographical proximity of affiliated hospitals on their ability to lower ICU bed 

utilization. We found that adoption of the SI may help health systems to marginally decrease bed 

utilization. However, such benefit strengthens when these systems participate in a community HIE. 

Interestingly, our study finds that when a health system adopts SI, proximity of affiliated hospitals 

increases the health system’s intensive care bed utilization. 

During a pandemic, availability of vaccines is critical to combat adverse health 

consequences. Since December 14th, 2020, the policymakers scaled up the last-mile vaccine 

distribution to increase vaccine access to wider population. Vaccines are administered in facilities 

that differ in their capacity and the level of accessibility. New facilities are introduced over the 

course of time to provide the requisite capacity for vaccination. The second essay examines how 



 

additions of such new facilities in a region impact the number of vaccines administered by existing 

facilities in that region. The essay also investigates the impact of the proximity of a vaccine 

provider to a vaccine hub on the number of vaccines administered by the provider. Our 

econometric results seem to suggest that addition of new vaccine providers contributes to the 

vaccination rates of existing providers in an area. We find that more accessible providers tend to 

distribute more vaccines in the population with the burgeoning vaccine provider ecosystem as 

compared to their less accessible peers.  

As we moved past the first and second phase of the pandemic, the supply of medical and 

personal protection equipment (PPE) began to stabilize. However, bigger hospitals started bulking 

up their PPE inventory in the anticipation of uncertain future demand. The biggest healthcare 

supply chain concern is that the health systems may need to write off the excess inventory in case 

the demand never materialized, which entails higher inventory management costs and higher 

opportunity costs due to unused PPE. In the third essay, we look beyond health systems and 

examine how higher hospital bed occupancy increases PPE inventory levels. Further, based on our 

interviews with both supply chain and clinical professionals across several health systems, we 

investigate the effectiveness of the creation of the isolation wards in controlling the demand for 

PPE while informing on the trade-offs in hospital capacity management and clinical care. We 

conducted experiments using empirically grounded agent-based model of a typical Midwestern 

hospital operations during the recent pandemic to propose a framework that will help the hospitals 

to better manage the tradeoff of managing PPE inventory, providing faster care services and 

offering sufficient care capacity in the community. 
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1. Chapter 1: Introduction and Research Motivation 

“Uncertainty creeps into medical practice through every pore. Whether a physician is 

defining a disease, making a diagnosis, selecting a procedure, observing outcomes, 

assessing probabilities, assigning preferences, or putting it all together, he (or she) is 

walking on very slippery terrain” ~ Eddy (1984) 

Amid an already complex healthcare environment undergoing significant transformation, the 

public health emergency ushered in by COVID-19 pandemic upended care delivery and limited 

the speed at which organizations could transition toward value-based care models, digitization and 

enhance consumer experience. Care services were trying to make sense of emerging and 

incomplete data to guide resources required by patients, confused by the additional uncertainty as 

to whether subsequent peaks in COVID-19 patient hospitalization may be expected. Unfortunately, 

this is not the last pandemic that we have survived. Marani et. al. (2021) suggests a 38% probability 

that a person will experience an extreme novel pandemic in their lifetime. On the other hand, on a 

much smaller scale, the advent of epidemics from new viruses in different parts of the world is 

extremely common. Hence, it is required to develop a body of knowledge that may help us to 

remain better prepared and to develop a more resilient healthcare supply chain on the face of the 

uncertainties that the next pandemic/epidemic may bring. My dissertation aims to contribute 

toward developing that body of knowledge by better understanding the changing landscape of care 

processes that healthcare industry had experienced as it evolved through different phases of the 

pandemic. 

 The evolution of healthcare services through the pandemic can be broadly categorized into 

three distinct but sometimes overlapping phases as depicted in Figure 1.1. Each of the three essays 

in the dissertation cater to uncover the challenges that each phase brings in. The first phase is when 
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the pandemic had just begun, and healthcare industry started to grapple with overwhelming 

demand of care services. It quickly became evident to the healthcare practitioners that their daily 

operations had become unsustainable, and they needed quick and fundamental changes to the care 

processes to accommodate the surging care demand. The objective of the healthcare industry 

quickly evolved from providing value-based care to hedging the risks of denying the sick patient 

the required care services. During this period, the healthcare practitioners started to adopt different 

care processes with little clinical evidence that those novel processes might work to heal patients 

quicker and enable the health providers to manage their service capacity better. In the first essay, 

my objective is to provide an operational framework that seeks to connect disparate healthcare 

practitioners from different organizations or across different institutions of the same organization 

so that information flow may improve. Our baseline research question seeks to understand whether 

adoption of the novel service procedure enables the healthcare organizations to provide care 

capacity in the community. Henceforth, the study has considered two distinct information streams 

– an external collaboration mechanism modeled by the intervention of participation in community 

health information exchange initiatives and an internal information and resource sharing 

mechanism modeled by the geographical structure of the health systems.  
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Figure 1.1 Phases of the Evolution of Healthcare Services during the COVID-19 Pandemic 

 

Results from the econometric analysis offer implications for both theory and practice. The 

first essay seeks to contribute to three distinct streams of literatures. First, the study informs the 

service innovation literature that relates to implementation of the novel procedure. The results of 

the study suggest that health systems that adopted the novel procedure during the uncertain times 

presented by the pandemic may be able to lower the intensive care bed utilization due to pandemic 

related hospitalizations. Second, we contribute to the understanding of the impact of health 

information exchange on hospital resource utilization. The results of the study show that by 

participating in an information exchange coalition, health systems were able to reduce the intensive 

care bed occupancy. The study uses tenets of organizational information processing theory (OIPT) 

to further understand the level of uncertainties that a novel service procedure. Consequently, we 

find that information sharing coalitions provide the health systems the required structure for 

learning spillovers which aid healthcare organizations to manage the uncertainties around the 

novel procedure more efficiently and hence enhance the impact of adoption of novel procedure on 
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the bed occupancy. Third the study contributes to the geographical proximity literature within an 

overarching theoretical framework provided by OIPT. Our results show that health systems that 

have affiliated hospitals in proximity tend to manage their bed occupancy poorly when novel 

service procedures are implemented. The essay also provides a more robust understanding of the 

novel processes that the healthcare administrators may pursue during a pandemic and enables them 

to develop policies that may make the new care processes more efficient. 

 The second phase of the pandemic has been characterized by introduction of the COVID-

19 vaccines and by the definition of the mass vaccination process. The initial phase of the 

pandemic entails a lot of uncertainties. However, after about 8 months into the pandemic the quick 

invention of the m-RNA vaccines provided a moment of relief to the humankind and medical 

fraternity alike. However, the definition and establishment of the supply chain to distribute the 

vaccines in public proved to be the nightmarish experience for the policymakers and healthcare 

community. When the distribution started, people were waiting in line for hours to get their jabs 

or driving hundreds of miles to get their first vaccines1. However, as the vaccine yield gradually 

stabilized, the policymakers started to increase the vaccine provider infrastructure with a goal to 

inoculate 70% of the population by July 4, 2021. Such rapid vaccine infrastructure scale-up in a 

region may impact the vaccination rates of the incumbent providers in that region. This is an 

important consideration since it provides information on the effectiveness of the expansion plan 

for administering vaccines. On one hand, if addition of new vaccine providers reduces vaccines 

administered by incumbent facilities, there is a substitution effect as also evidenced in the retail 

context. From a policy perspective this reduces the efficacy of newly added facilities in increasing 

the overall vaccination levels in a region. In the second essay of the dissertation, I investigate how 

 
1 https://www.washingtonpost.com/lifestyle/travel/covid-get-vaccine-road-travel-/2021/04/08/5675e0f8-9631-11eb-
b28d-bfa7bb5cb2a5_story.html  
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additions of new facilities in a region impact the number of vaccines administered by existing 

facilities in that region. Given the diversity of the vaccine providers that range from those with 

higher capacity (e.g., hospitals) to those with lower capacity (e.g., pharmacies), it is also important 

to understand if these vaccine providers differ in terms of the relative impact on their vaccine 

administration levels with the introduction of new facilities in the region. Hence, in this study, we 

further investigate whether relative accessibility of the different vaccine providers enables them to 

accrue additional benefits from the systemic vaccine infrastructure ramp-up process.  

The study and results provide significant contributions to the theory. The findings 

contribute to the OM literature related to the downstream vaccine supply chains that has primarily 

looked at the allocation and administration of vaccines in the context of external uncertainties 

caused by an ongoing pandemic. The study provides novel empirical evidence that addition of new 

providers in the area increases the inoculation rate of the incumbent provider as it contributes to 

the collaborative vaccine provider ecosystem. The study also makes significant contribution to the 

stream of literature that has investigated the role of service accessibility in the health care context. 

The findings contribute to the extant research by showing that higher accessibility of health care 

providers often comes with a tradeoff of not having enough infrastructure to treat a high volume 

of patients. However, in the context of uncertainties introduced by a raging pandemic, accessibility 

of vaccine providers enables them to appropriate maximum leverage from collaborative vaccine 

ecosystem to inoculate more people. To the best of my knowledge, this is a novel finding that 

provides empirical evidence of how different providers offering varying levels of healthcare 

service accessibility achieve different positive externalities of a burgeoning vaccine provider 

ecosystem, and how this affects the inoculation rate of a vaccine provider. 
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The third phase of the pandemic is characterized by the efforts that hospital put to return 

to normalcy. After grappling with uncertainties over a period of 7 months hospitals gained a lot of 

knowledge how to manage their care processes. Gradually they evolved and learned to co-exist 

with the pandemic. Over the time the supply of critical medical equipment has also stabilized. 

Quickly, the hospitals started to experience another challenge. They realize over the initial phase 

of the pandemic that they have amassed huge inventories of PPE equipment of limited shelf-life 

in the anticipation of surging demand. Bigger and more powerful hospitals and health systems tend 

to bulk up on such inventories leaving the smaller health providers like nursing homes, long term 

care facilities and smaller hospitals struggling to procure this critical equipment. They tend to bulk 

up on more PPE inventories as their bed occupancy level increases, which leads to a very 

unsustainable situation for the hospitals. To control the demand of these equipment, these hospitals 

implement different policies. In my third dissertation essay, I investigate the effect of creation of 

the isolation wards on the way the hospital manages the demand of PPE inventory. However, such 

effect may come at a cost of deteriorating clinical performance. The study further investigates the 

tradeoffs of creating such isolation wards on the clinical performance and the capacity of care 

services that the hospital intends to offer in the population. 

This essay contributes to the resource “de-pooling” literature. The effects of 

resource/capacity de-pooling on organization performances are ambiguous. Though the consensus 

suggests that resource de-pooling decreases resource utilization some studies in the healthcare 

management domain has demonstrated that de-pooling of resource has increased the service 

capacity of the organization. However, understanding of how resource de-pooling impacts 

different aspects of hospital performance is not well known. Our study informs that capacity de-

pooling by means of creation of isolation wards enables the hospital to provide care service by 
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holding lower inventory levels. However, that comes at a tradeoff. The hospitals end up rejecting 

more patients due to the de-pooling of the hospital beds.  
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2. Chapter 2: Managing Intensive Care Capacity with Service Innovation, Information 

Exchange Coalition, and Geographical Proximity of Affiliated Hospitals 

2.1. Introduction 

 SARS-CoV-2 has wreaked havoc on human life infecting 219 million people and killing 

more than 4.55 million people worldwide by 25th September 2021. Health systems responding to 

the pandemic struggled to manage intensive care unit (ICU) beds. A New York Times article 

(Conlen et. al., 2021) reports that over 20% of the hospitals in the country experienced at least 

95% ICU bed utilization in the week ending 31 December 2020 and, on average, 77% ICU beds 

were occupied nationwide as compared to 67% ICU bed occupancy in 20102. Hospitals are 

struggling to manage their ICU bed capacity even after 20 months of the onset of the COVID-19 

pandemic3. As ICU beds were critical to treat not only patients suffering from acute post COVID-

19 complications but also for patients needing other emergency acute care services (e.g., cancer, 

stroke, cardiac arrhythmia), the pandemic has severely restricted the capacity of hospitals to deliver 

intensive care services to patients. Health care practitioners (HCPs) had to make hard choices 

regarding whom to allocate services (Mack, 2020). Besides, the number of usable ICU beds are 

limited by the number of nursing staff members available to tend to intensive-care patients (Conlen 

et. al., 2021), which further constricts the intensive care capacity of health systems.  Hence, it is 

immensely important for health systems to manage their capacity to provide intensive care services 

to patients in need and effectively manage ICU bed utilization. In this study we consider the 

COVID-19 pandemic as a context of extreme uncertainty in demand and examine factors that can 

help health systems manage their intensive care bed capacity.   

 
2 https://www.sccm.org/Blog/March-2020/United-States-Resource-Availability-for-COVID-19 
3 https://www.nytimes.com/interactive/2021/09/14/us/covid-hospital-icu-south.html 
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In the context of increasing demand of COVID-19 related hospitalizations and chances of 

the spread of virulent infections, hospitals would want to keep pandemic related ICU bed 

utilization as low as possible to ensure that ICU beds are available for patients admitted with 

COVID-19 related complications. To manage both patient care quality and capacity, health 

systems have been introducing service innovations. The convalescent plasma therapy (CPT) is one 

such service innovation that has been adopted and implemented by health care organizations in the 

aftermath of COVID-19 after the Food and Drug Administration (FDA) cleared the path for the 

treatment on 3rd April 2020 under extended access programs (EAP). In this study, we consider the 

CPT as a service innovation in which people who’ve recovered from COVID-19 donate blood, 

which is then processed to remove blood cells leaving behind plasma and antibodies to the virus. 

The plasma is then administered to people with the virus to boost their ability to fight the virus4. 

The therapy calls attention to operational and logistical considerations, such as choosing the right 

donor who is willing to donate plasma, apheresis5 center capacity, storage and transportation of 

plasma concentrate, and testing for adequate antibody concentration (Sahu et. al., 2020). An 

effective service delivery process is needed that is contingent upon the operational decisions taken 

by different health systems.  

The extant literature on service innovation offers mixed results of the impact of service 

innovation on organizational performance (Fang et al., 2008; Neely, 2008; Suarez et al., 2013). 

Existing literature cites several implementation obstacles including lack of attention from top 

management, deficiencies in organizational design and information technology, the lack of an 

appropriate culture, and insufficient capabilities for service management (Tong et. al., 2016; 

 
4 https://www.mayoclinic.org/tests-procedures/convalescent-plasma-therapy/about/pac-20486440 
5 Apheresis is the medical procedure that encompasses collection of whole blood from donor/patient and separation 
of the blood into individual components – red and white blood cells, platelets, and plasma – so that physicians can 
extract the required component/s 
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Kastalli and Looy, 2013; Gebauer et al., 2008). These operational and strategic challenges are due 

to the uncertainties associated with every step of administering the service innovation. The fact 

that very few health care practitioners have experience with managing the processes required for 

successfully administering service innovation associated with a newly introduced therapy during 

a pandemic adds to the uncertainties and risks of adopting service innovation such as the CPT. 

Organizational information processing theory (OIPT) suggests that under such circumstances, an 

organization will need more information to deliver the therapy successfully (Tatikonda and 

Rosenthal, 2000). Our research question caters to a baseline understanding of whether health 

organizations were able to work through the uncertainties to leverage the benefit of a potentially 

life-saving therapy. The first research objective of this study is to uncover the effect of the newly 

adopted service innovation (CPT), characterized by successful limited small-scale clinical trials 

and operational and logistical uncertainties, on the ICU bed utilizations due to COVID-19 

hospitalizations, as measured by ICU COVID-19 patients to beds ratio.  

 As health systems continue to work through environmental uncertainties inflicted by the 

pandemic, they often rely on different information sharing structures. Adopting OIPT, we argue 

that health systems need more information to deliver innovative health care services during 

uncertainties and such information sharing structures enable them to acquire external and internal 

information to develop a knowledge-base that can be homogenously utilized across organizational 

units (Galbraith, 1973; Tatikonda and Rosenthal, 2000). In this study we explore how health 

systems leverage two information structures - participation in an information exchange coalition 

(external information sharing structure) and the geographical proximity of affiliated hospitals of a 

health system (internal information sharing structure) – to assuage uncertainties in delivering 

health care service. 
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 Previous studies in health care operations management have stressed the importance of 

information exchanges among different entities in the health care industry (Ayer et. al., 2019; 

Dobrzykowski and Tarafdar, 2015). Most of the studies in OM consider health information 

exchange (HIE) initiatives within a health system or a hospital (e.g., Ayer et. al. 2019, Walker 

2018, Dobrzykowski and Tarafdar 2015). During the COVID-19 pandemic, to combat the high 

health care demand, peer organizations connected with each other to understand the best practices 

of delivering health services. Consequently, to share clinical and procedural information, they 

organically came together and created information exchange coalitions that are similar to 

community HIEs. Institutionalization of such external information sharing structures is often 

strongly encouraged, incentivized (e.g., by CMS), or even mandated by the federal government. 

Extant literature focusing on HIEs comprising of multiple health systems has reported ambiguous 

effect on patient outcome (Everson, 2017). Some studies have shown a positive impact on the 

number of procedures performed (e.g., Atasoy et al. 2021) and financial performance (Frisse and 

Holmes 2007; Frisse et. al. 2012). On the other hand, studies have also reported that community 

HIEs do not significantly transform patient care and hospital capacity utilization (Vest 2009).   

 The need for information exchange coalitions gains prominence during a pandemic when 

health systems implement novel treatment procedures that lack suitable clinical evidence of 

effectiveness and has many operational and logistical uncertainties associated with execution. For 

example, during the second half of 2020, blood banks across the U.S. faced severe plasma 

shortages6. In such circumstances, an information exchange coalition may enable hospitals to 

locate reliable source to procure the plasma in order to continue offering the service innovation. 

Besides, such a coalition provides important process related information that can help participating 

 
6 https://www.nbcnews.com/health/health-news/desperate-scramble-covid-19-families-vie-access-plasma-therapy-
n1183946 
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hospitals to improve clinical treatment (Tucker et. al., 2007). OIPT suggests that availability of 

information, as provided by an information exchange coalition, can ameliorate the risks and 

uncertainties of organizational tasks related to new service implementation (Galbraith, 1973). A 

coalition provide information about best practices to all participating organizations, which enables 

“organic” organizational approaches for the successful execution of uncertain tasks (Tatikonda 

and Rosenthal, 2000). These external information sharing structures, however, require resource 

deployment on the part of health systems to an address tasks such as routine data uploads, 

participating in knowledge sharing sessions and developing the right skillsets to analyze data from 

the information exchange initiative. These activities can put constraints on health systems’ 

resources, especially during a pandemic. Building on extant literature and the precepts of OIPT, 

our second objective is to examine the direct effect of information exchange coalition on ICU bed 

utilization as well as its moderating role on the relationship between service innovation and ICU 

bed utilization.    

 Our third research objective is to examine the role played by the internal information 

sharing structure provided by the proximity of organizational units. Geographic proximity of 

affiliated units of an organization is known to play an important role in determining how 

organizations manage their resources and how it impacts performance (Howells, 2002; Knoben 

and Oerlemans, 2006; Letaifa and Rabeau, 2013). Studies report positive effect of geographic 

proximity, including information and resource sharing (Howells 2002), achieving economies of 

scope (Alcácer and Delgado 2016), and facilitating coordination and productivity (Giroud 2013). 

In the health care context, proximity enhances the spillover effect of patient health information 

exchanges for managing regional health care costs (Atasoy et. al. 2018) and mitigating inventory 

accumulation in hospitals (Zepeda et. al. 2016). Research has also pointed to the drawbacks of 
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proximity of organizational units including increased competitive practices (e.g., refusal to share 

resources), interpersonal conflicts (Letaifa and Rabeau 2013), reduced interactive learning and 

innovation due to increased organizational control (Boschma 2005).  

 OIPT suggests that when organizations implement service innovation, especially during 

highly uncertain times, the internal information sharing structure provided by geographic 

proximity can help in managing informational needs associated with innovative service offerings 

(Tatikonda and Rosenthal, 2000). Nevertheless, to administer service innovation across multiple 

facilities of a health care system, geographic proximity can also induce frequent transfers of 

patients or physicians resulting in multiple handoffs in which process and clinical information may 

get either distorted or lost (Batt et. al., 2019) during pandemic. Such uncertainties may negatively 

impact the outcome of the service innovation as it increases the constraints associated with 

information processing (Tatikonda and Rosenthal, 2000). We investigate the effect of geographic 

proximity between affiliated hospitals in a health system on the system’s ICU bed utilization as 

well as its moderating role on the relationship between service innovation and ICU bed utilization. 

A panel dataset of 735 observations is carefully compiled to undertake this research 

investigation. We analyze the data using the difference-in-differences (DiD) approach with 

propensity score matching. The results show that health systems that adopted the service 

innovation were able to better manage their ICU bed capacity. Information exchange coalition and 

geographic proximity of affiliated hospitals in a health system also help with managing ICU bed 

utilization. We find that external information sharing structure provided by information exchange 

coalition helps health systems to better manage their ICU bed utilization when they administer 

service innovation. However, internal information sharing structures presented by geographic 
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proximity coupled with administration of service innovation reduces the ability of health systems 

to manage ICU bed capacity.  

The rest of the paper is organized as follows. In section 2 we review the literature and 

develop our hypotheses. We present our empirical strategy in section 3 that details the data 

collection efforts, intervention setting, and variables considered for this study. In section 4 we 

present our econometric approach, including the identification strategy and description of the 

quasi-experimental design using propensity score matching. The results and the robustness checks 

are presented in section 5 and in section 6 we discuss the implications of our study, limitations, 

and directions for future research.  

 

2.2. Background and Hypothesis Development 

2.2.1. Background 

2.2.1.1. Service Innovation: The Case of the Convalescent Plasma Therapy 

 To understand what constitutes service innovation in the OM literature, we define service 

innovation as “an offering not previously available to a firm’s customers resulting from the 

addition of a service offering or changes in the service concept that allow for the service offering 

to be made available” (Menor et. al. 2002; pg 138). More recent literature extends the definition 

and note that service innovation, in addition to the inherent newness, should provide benefit to the 

organization in the form of added value to its customers (Witell et. al., 2016; Toivonen and 

Tuominen, 2009). To characterize a new service offering as an innovation, we need to understand 

the process life cycle of how a service is developed and implemented. Fitzsimmons and 

Fitzsimmons (1999) and Menor et. al. (2002) suggest that the process steps following which a 

service innovation materializes can be broadly categorized into the planning and execution phases. 
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The planning phase encompasses design and analysis stages where decisions about market 

viability, internal resources and capabilities are considered. The execution phase includes 

development and launch stages that involve employing cross-functional efforts and key enablers, 

such as people, systems, and technology, to bring the service to fruition. The steps involve 

feedback mechanisms to improve the process and enhance the effectiveness of the service 

innovation.  

 Though the CPT is not new, and it has been used for decades to cure different viremia in 

patients, with new virus the effectiveness of the procedure and the related operational and logistical 

requirements may be different. Mayo clinic has been studying the CPT for many years and has 

used the therapy to treat infectious diseases. After the FDA cleared the path for the treatment of 

coronavirus disease (COVID-19) on 3rd April 2020 under extended access programs (EAP), Mayo 

Clinic coordinated the CPT across participating hospital systems to enable larger number of 

clinical studies. Health systems took autonomous decisions regarding whether to participate in 

such an initiative. It is important to note that the CPT is not merely a clinical innovation; 

participating in the initiative and adopting the CPT call for several operational decisions and 

coordination efforts among the team members engaged in the process. At the outset, health care 

system administrators are responsible for defining the financial requirements to introduce the 

treatment procedure. Tulchinshy and Varavikova (2014) notes that when new services are 

introduced in a health system, managers are responsible for developing the required processes, and 

defining the goals, priorities, and objectives of new services. As per the service life cycle model 

presented in Tulchinsky and Varavikova (2014), initially there is the process design phase that 

defines the economic and operational feasibility of the service and provides the service blueprints. 

The required resources, participants, partners and responsibilities are defined in this phase. After 
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determining the process flow, health systems proceed to test the feasibility of the process and make 

necessary improvements. They generally start administering the procedure to a few patients and 

make changes along the way. Within the context of adoption of the CPT for treating COVID-19, 

as an example, Munson Health system initially administered the procedure to three patients at its 

affiliated hospitals. The health system sent patient reports to Mayo clinic to analyze the therapy’s 

efficacy seven days after the patients had been treated7. Similar approach was adopted by other 

health systems as well. Depending on the results of the analysis at Mayo Clinic, hospital systems 

may make necessary changes before enrolling more patients in the program. This step is crucial as 

it is akin to the development and testing phase in the service innovation lifecycle where the service 

blueprint is implemented for the first time in practice (albeit at a small scale) to test the processes 

involved and to make any necessary changes for larger scale implementation.  

 After the service development phase, health systems launch the therapy for their patients. 

For example, by December 2020 Munson Health System had administered the CPT to more than 

300 patients8. Hospital systems are entirely responsible for the execution of the novel therapy. The 

service blueprint of the procedure is presented in Figure 2.1. Health systems enrolled patients with 

severe cases of COVID-19 to receive the CPT. This required innovative ways in which health 

systems managed their service operations associated with delivering this therapy. The enrolled 

patients were screened for eligibility to receive the CPT transfusion under the criteria established 

by FDA EAP. The set of criteria established that the CPT can be administered to patients, at least 

18 years old, with severe or immediate life-threatening COVID-19 disease and who have the 

ability or proxy ability to provide informed consent (Liu et al. 2020). Once patients were found fit 

 
7 https://www.record-eagle.com/collections/convalescent-plasma-study-underway-at-munson-
hospitals/article_427854ee-8af9-11ea-896c-dbfcd46db45e.html  
8 https://www.record-eagle.com/collections/plasma-donations-still-sought-from-recovered-covid-19-
patients/article_da6a118e-4aed-11eb-98ac-1f4f434971fe.html  



 17 

for the CPT, as required by federal law (Code of Federal Regulations; 21CFR312.305 and 

21CFR312.310), they met the expanded access use requirements as documented on FDA form 

3926. The form was then submitted for each individual patient and reviewed and approved by 

FDA. Physicians then ordered suitable plasma. Due to the scarcity of plasma with required 

COVID-19 antibodies in the blood banks, hospital systems often invited their own patients, who 

were once treated for COVID-19 but were now cured of the viremia, to donate blood9. The liquid 

plasma extracted from the blood was then administered to a patient. Administering this process 

requires continuous improvement to address delays associated with various steps. In their 

continuous improvement efforts, health systems use several sources of information, such as 

feedback from Mayo clinic and best practices shared by the information exchange coalitions. 

 The inherent novelty of the CPT for treating COVID-19 and multiple steps to administer 

the process render the therapy to uncertainties and, consequently, require carefully coordinated 

operations and supply chain management practices to manage the service delivery process. Sahu 

et. al. (2020) notes that significant procurement related uncertainties exist in choosing the right 

donor willing to donate plasma as some donors may not have developed sufficient antibody titers 

in their blood. To make the matter worse, during the time when Mayo Clinic launched the 

expanded access program of the CPT, the blood banks in the country witnessed shortage in plasma 

supply, which severely constricted hospitals’ ability to procure plasma. Apheresis center capacity 

may form a bottleneck due to the increasing demand for administering the CPT. During the 

apheresis process, safety precautions are required as there are additional risks of collateral 

infections such as allergic reaction, HIV, and hepatitis B and C10. To address these issues, prudent 

sourcing, operational and logistical decisions are needed. Additionally, the degree of immunity 

 
9 https://www.henryford.com/coronavirus/covid19-symptoms-testing-treatment/covid-plasma  
10 https://www.mayoclinic.org/tests-procedures/convalescent-plasma-therapy/about/pac-20486440 
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often may depend on the amount and type of infused antibody (Sahu et. al., 2020). All these aspects 

require a broader perspective of considering the CPT as a service innovation. 

Figure 2.1 Convalescent Plasma Therapy Administration Process 

 

 

2.2.1.2. Information Exchange Coalition: The Case of the Mi-COVID19 Initiative 

 For fighting the COVID-19 pandemic, health systems required access to external 

information structures to gain insights into best practices in treating virulent patients across 

geographic, economic and demographic boundaries. Towards this end, on 2nd April 2020, 

Michigan Hospital Medicine and Safety Consortium launched Mi-COVID19 registry (HMS, 

2020) in collaboration with Blue Cross Blue Shield of Michigan that involved more than 40 

hospitals from different health systems across the state of Michigan. According to HMS (2020) 
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the purpose of the registry was to identify factors leading to critical COVID-19 occurrences and 

outcome; to identify patient characteristics, care practices and treatment regimens associated with 

improved outcomes; to understand long-term complications for hospitalized patients; to identify 

variability in care processes in order to identify processes associated with better outcomes; and to 

provide HCPs with operational models and frameworks to facilitate improved care across 

Michigan hospitals. 

Mi-COVID19 required participating hospitals to upload anonymized patient level data. 

The participating health systems get an exclusive right to access the patient data across state so 

that they can analyze the data and identify patient characteristics as well as treatment regimens 

associated with improved outcomes. Additionally, the exchange held webinars to share findings 

and inferences by analyzing the shared data. These health systems were then able to use the 

knowledge to treat patients better and faster11. Our study empirically examines if participation in 

this information exchange coalition helped health systems manage their intensive care capacity. 

Additionally, our study investigates whether HIE participants were able to gain benefits from 

administering the service innovation.  

2.2.2. Hypotheses Development 

2.2.2.1. Effect of service innovation on ICU bed utilization 

 Miles (1995) argues that service innovation generates competitive advantage for 

organizations. In the health care context, service innovation may manifest in the form of new ways 

of offering patient care, which have been shown to decrease the length of stay of the patients (Tong 

et. al., 2016). In the acute care context, Tong et. al. (2016) suggests that decrease in the length of 

stay frees up bed capacity and reduces ICU bed utilization. During a pandemic, this reduction in 

 
11 https://www.uofmhealth.org/news/archive/202004/michigan-medicine-teams-blue-cross-blue-shield-michigan-and 
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ICU bed utilization helps health systems to become more responsive to the high demand. Service 

innovation, however, requires associated operational and logistical planning activities to 

administer new therapy effectively. Burgis et. al. (2011) notes that whether patient experience and 

outcomes of a treatment will materialize depends on the amount of planning, preparation, and 

coordination within the health system delivering the treatment. Tong et. al. (2016) presents the 

case of a medical innovation tPA (tissue plasminogen activator), which significantly reduces the 

average acute care treatment time of cerebral infraction. tPA is a weight-based dosing regimen 

which requires standard infusion rate. The procedure is prone to administrative error unless it is 

supported by systematic operational and logistical plan (Tong et al., 2016). Chung (2016) asserts 

the need to consider tacit and codified knowledge flow when implementing service innovation. In 

the absence of a well-coordinated operational plan, tPA administration may be fatal and may 

increase the need for intensive patient care post tPA administration and increase the intensive care 

bed utilization.  

The CPT represented a new way of treating COVID-19 patients during the pandemic, 

which was similar to tPA in terms of the associated administrative and operational coordination 

challenges. Due to the novelty of the COVID-19 virus, use of the service innovation was associated 

with a significant level of uncertainty related to donor selection, patient eligibility, and 

consideration of related side effects (Sahu et al., 2020). To address these issues, the service 

innovation required significant planning and judgement on the part of administrators and 

clinicians. The physicians need to decide on the amount and type of infused antibody, which 

determines the length of immunity of the treatment lasting from weeks to months (Sahu et. al., 

2020). These decisions may impact the effect of the service innovation on the antibody levels 

(Chen et. al., 2020). Recent studies show that, if administrative processes are executed correctly, 
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the innovation has potential to suppress the viremia and enhance the recovery rate of the patients 

suffering from COVID-19 (Chen et. al., 2020; Duan et. al., 2020; Ye et. al., 2020). This should 

result in the occupancy of ICU beds for a shorter duration, thereby making more ICU beds 

available for patients. Hence, we hypothesize that adoption of the service innovation (CPT) is 

associated with lower ICU bed utilization as measured by the ratio of the number of COVID-19 

patients in the ICU to the number of ICU beds.    

 Hypothesis 1: Service innovation introduced during a pandemic is negatively 

associated with ICU bed utilization. 

2.2.2.2. Effect of participation in information exchange coalition on ICU bed utilization 

 Voluntary participation in health information exchange provides health systems the 

requisite knowledge that can help in strengthening the processes aimed at providing high quality 

patient care in an efficient manner (Li et. al., 2020). OIPT posits that as organizations operate 

under uncertainties they require to access and to process more information (Galbraith, 1973; 

Sharma et. al., 2019). As an example, Burgis et. al. (2011) provides evidence of the impact of the 

National Surgical Quality Improvement Program (NSQIP) that was implemented by the American 

College of Surgeons (ACS) to collect data to track surgical quality and its impact on patient 

outcomes undergoing major surgical procedures. The enrollee hospitals submitted their data on a 

continuous basis and the program provided benchmark reports about hospital’s risk profiles and 

outcomes as compared to other hospitals and national averages. Hospitals used this information to 

re-engineer their workflows, improved internal education of staff members and developed clinical 

performance improvement initiatives. The participating hospitals reported over 7% to 13% 

reduction in surgical site infections and a decreased length of stay.  



 22 

To address the pandemic of COVID-19, health systems participating in Mi-COVID19 

shared patient level data and outcomes of various process undertaken to manage the rising COVID-

19 cases. Such privileged access of information enabled participating health systems to be aware 

of the best practices for treating COVID-19, which as per OIPT should enable the provision of 

better quality and faster care to patients admitted in the ICU (Fontaine et. al., 2010; Everson, 2017). 

The registry provided critical knowledge asset to participating health systems that was not 

available for non-participating health systems. Participating health systems were able to access the 

common knowledge repository, which facilitated the activities performed by their HCPs and 

improved their ability to address demand placed by the pandemic. We hypothesize that the 

knowledge exchange and learning facilitated by the information exchange coalition such as the 

Mi-COVID19 initiative would translate into better and faster patient care, which should enable 

health systems to reduce ICU bed utilization due to COVID-19 hospitalizations. 

Hypothesis 2: Participation of a health system in information exchange coalition 

during a pandemic is negatively associated with ICU bed utilization. 

2.2.2.3. Effect of geographic proximity among hospitals in a health system on ICU bed utilization 

 Reliable and evidence-based clinical knowledge is necessary to treat patients effectively 

and quickly. Employees working in organizations rely on codified and shared information to 

establish organizational routines (Howells, 2002).  Consistent adoption of these routines among 

hospitals in a health system goes a long way in ensuring that everyone is following prescribed 

guidelines of care and administrative processes.  In this regard, geographic proximity of 

organizational units can help in sharing these routines and organizational practices (Howells, 2002) 

since proximity enables interactions among people at different sites and reduces search costs and 

acquisition barriers that are created by geographical distance (Howells, 2002; Knoben and 
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Oerlemans, 2006). Interactions among HCPs may manifest in the form of physical interaction or 

via internet enabled communications. Though internet-enabled communication enables physically 

dispersed group members to work together, Cramton (2001) attributes interpersonal 

communication problems like uneven distribution of information, relative differences in the speed 

of access to information, differences in the salience of information and misinterpretation of silence 

in communication in internet enabled communications to the lack of geographic proximity. Hence, 

based on prior research and in accord with the OIPT, we contend that the flow of information 

between hospitals within a health system would be smoother when hospitals in the health system 

are located closer to each other, which in turn may improve the speed and quality of care.  

Along with an even distribution of information and organizational routines, in the health 

care context, proximity also enables health systems to move patients and HCPs depending on the 

need at different sites. During pandemic, this flexibility becomes critically important for health 

systems to manage their capacity. In the event of increasing demand due to a pandemic, hospital 

systems can effectively balance capacity utilization by moving patients from overcrowded 

hospitals to hospitals with lower bed utilization. There have been instances where a hospital moved 

patients to another hospital, preferably within the same health system, when ICU capacity is 

constrained12. Hospital systems have also moved HCPs between hospitals based on patient demand 

so as to effectively utilize its dispersed resources13. Such transfers are more feasible and less 

expensive when affiliated hospitals in a health system are in close proximity, which can help 

manage ICU bed utilization levels better. Hence, we hypothesize that greater average distance 

among affiliated hospitals in a health system will be associated with higher ICU bed utilizattion.  

 
12 https://www.stignacenews.com/articles/covid-19-cases-up-by-four-in-mackinac-county-this-week/ 
13 https://www.detroitnews.com/story/business/2020/04/05/help-coronavirus-patients-lose-job-beaumont-tells-
workers/2948002001/ 
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Hypothesis 3a: Shorter average distance among hospitals in a health system is 

associated with lower ICU bed utilization during a pandemic. 

Transfer of patients and movement of HCPs between hospitals within a health system are 

not devoid of ill consequences. Mueller et. al. (2019) provides empirical evidence that inter-

hospital transfer of acute care patients can result in longer length of stay and consume more 

resources than the non-transferred group of patients. Hernandez-Boussard et.al. (2017) reports that 

inter-hospital transfer of patients, on average, result in about 9 days longer length of stay. To 

explain such findings, Germack et. al. (2020) reports that during patient transfers often there are 

conflict of interest between the sending and receiving groups which can interrupt the flow of 

communication. A seamless communication is important for an effective transfer of patients in the 

new care setting. Mueller et. al. (2019) argues that inter-hospital transfers, and care transitions in 

general, add certain risks of discontinuity of care (e.g., gaps in information transfers) and increase 

the chances of infection during the transfers. This added risk of patient transfers may result in 

higher patients to beds ratio as transferred intensive care unit patients may need longer care. 

Similar inefficiencies can also manifest when health systems transfer HCPs among 

affiliated hospitals. Typically, the outgoing HCP has to handover responsibilities to the incoming 

one for proper continuation of care. Rabøl et. al. (2011) reports that instances of communication 

error in relation to handovers was the most frequent type of communication error between care 

professionals. The study notes that hospitals often did not have procedures for communication 

during the transfer of responsibilities. Given that the likelihood of transfers of patients and HCPs 

among affiliated hospitals is expected to be more frequent in health systems that have lower 

average distance among affiliated hospitals, one could expect such systems to have higher 

inefficiencies related to communication and handoffs. This points to a counter argument linking 
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geographic proximity to ICU patients to beds ratio.  In light of competing theoretical arguments, 

we offer the following alternative hypothesis linking: 

Hypothesis 3b:  Shorter average distance among hospitals in a health system is 

associated with higher ICU bed utilization during a pandemic. 

2.2.2.4. The moderating effect of information exchange coalition  

 The foremost concern regarding service innovations involving new treatment procedures 

is to have sufficient level of published evidence, which suggests that the treatment will have the 

intended effect on patient outcome (Tucker et. al., 2007). Baker (2001) states that medical training 

emphasizes using practices supported by strong research evidence. However, the strength of such 

evidence ranges from meta-analyses of randomized clinical trials at the highest and strongest form 

of evidence to anecdote or opinion which is the lowest form of evidence. Tucker et. al. (2007) 

states that non-experimental and qualitative studies exist in between these extremes. The Mi-

COVID19 initiative aimed to collect patient level and treatment data from the participating 

hospitals (HMS 2020) and provided a participating health system information about activities 

carried out by other health systems who were part of the information exchange coalition. In 

essence, it is an example of non-experimental descriptive and qualitative sharing of information as 

can be noted by considering the goals of the initiative. Participating health systems learn about 

best practices (Horbar et. al., 2001) that are being adopted by health systems to administer the 

service innovation. According to the OIPT, such “organic” information sharing approaches are 

required to successfully execute uncertain tasks within innovative service offerings (Tatikonda and 

Rosenthal, 2000). This is consistent with the evidence from NSQIP program in which access to 

information on surgical quality and efficiency appropriated from the program helped participating 
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health systems to develop evidence-based management approach and healthcare practitioners to 

make necessary changes to the treatment procedure (Burgis et. al. 2011).  

We contend that health care professionals of participating health systems in the health 

information exchange initiative will be able to similarly implement the service innovation 

effectively by utilizing evidence from others who have implemented the procedure. This should 

help in improving clinical care provided by health systems that are part of the initiative as 

compared to those that are not part of it. This, in turn, will help in strengthening the ability of 

participating health systems to increase the effectiveness of service innovation and help in 

managing their ICU bed capacity. Hence, we present the following hypothesize:  

Hypothesis 4: Participation of a health system in an information exchange 

coalition during a pandemic will strengthen the negative association between 

service innovation and ICU bed utilization. 

2.2.2.5. The moderating effect of geographic proximity 

 Internal information sharing structures (e.g., the use of health information technology) aid 

in connecting different organizational units and thereby enable smoother information flow 

(Sharma et. al. 2019). Such structures mitigate cognitive load and improves performance. 

Geographic proximity among organizational units helps in the exchange of tacit and rich 

information (Shaw and Gilly, 2000; Knoben and Oerlemans, 2006). At a health system level, when 

the affiliated hospitals are in close proximity, the constraints and associated costs of moving HCPs 

among hospitals is lower. Avby et. al. (2019) argues that a culture of mobilizing human resources 

among organizational units improves outcomes obtained from innovative service offerings due to 

a seamless flow of tacit knowledge. Due to the novelty of the CPT service innovation for treating 

COVID-19 patients, physicians had to rely on the tacit knowledge related to the underlying 
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processes for administering the treatment effectively. When hospitals in a health system are closely 

located, there will be a more even distribution of such tacit knowledge among hospitals in the 

system and, hence, we hypothesize:   

Hypothesis 5a:  During a pandemic, shorter average distance among hospitals in 

a health system will strengthen the negative association between service innovation 

and ICU bed utilization. 

An alternative perspective is offered by the literature pertaining to the continuity of care. 

By means of a systematic literature review, Van Walraven et. al. (2010) highlights the importance 

of provider continuity on improved quality of care and better resource utilization. When hospitals 

in a health system are closely located, they can more easily share HCPs and patients, thereby 

enabling the system to become more responsive in the context of higher demand for intensive care. 

However, this could potentially compromise clinical relationship between a physician and patient 

(Van Walraven et. al., 2010), which can adversely affect the continuity of care. For example, a 

physician treating a patient with the service innovation when transferred to a different hospital 

may not be able to continue providing the required clinical care and may have to handoff the 

treatment to another physician. Such handoffs may introduce discontinuity of case, risks of 

miscommunication and poor transfer of relevant information (Batt et. al., 2019), particularly when 

the treatment is new, and the corresponding outcomes are uncertain. Such gaps in communication 

may lead to missed actions and delayed care (Batt et. al., 2019). The new physician may take more 

time to connect to the patient specific treatment and may need the patient to stay longer in the ICU. 

Given the higher likelihood of compromised continuity of care in closely located hospitals within 

health systems, we put forth the alternative hypothesis as follows: 
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Hypothesis 5b:  During a pandemic, shorter average distance among hospitals in 

a health system will weaken the negative association between service innovation 

and ICU bed utilization. 

 

2.3. Empirical Strategy 

2.3.1. Data 

 The empirical setting of our study is the delivery of intensive care required for COVID-19 

patient hospitalizations in all hospital systems across the state of Michigan. Hence, our unit of 

analysis is a health system operating in Michigan. To ensure timely reporting of critical resources 

and needs, in pursuant to Michigan Compiled law (MCL 333.2253), Michigan Department of 

Health and Human Services (MDHHS) made it mandatory for the health systems in Michigan to 

report data pertaining to personal protective equipment (PPE) inventory, laboratory testing 

capacity, number of ventilated patients, number of ventilators, patient census, staffing shortages, 

and units or areas dedicated to COVID-19 treatment. PPE inventory data and patient census data 

were reported at the health system level. The data on patient census were updated twice every 

week on Mondays and Thursdays.  

On 1st May 2020 CDC announced its practical guidance for health systems to protect 

healthcare personnel, patients, and communities from the impact of COVID-19. The guideline has 

five categories namely Worker Safety and Support, Patient Service Delivery, Data Streams for 

Situational Awareness, Facility Practices and Communications which further have subcategories 

(CDC, 2020). We started our data collection effort from 7th May 2020, a week after the 

announcement. We collected the data on health systems until 12th November 2020 since after that 

(starting from November 16, 2020) MDHHS stopped reporting the health system level data. Since 
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our study focuses on service innovation, information exchange coalition and structural 

characteristics (geographic proximity of affiliated hospitals) at the health system level, the data 

provided by MDHHS after 12th November 2020 does not fulfill our research objectives. Overall, 

we captured data twice every week for 49 time periods for all the 19 health systems in Michigan. 

The data included information about ICU bed utilization, the number of COVID-19 patients 

admitted, and the number of COVID-19 patients admitted to intensive care units.  

 Definitive Healthcare LLC collaborated with Esri’s geospatial cloud to develop a 

dashboard to report current levels of hospitalizations, hospital capacities and county level 

demographic data across the nation. We downloaded this contextual data for 6090 hospitals using 

Esri provided API and filtered out the data for Michigan hospitals. The database contains variables 

such as the number of licensed staffed beds and the number of ICU beds for each of the 106 

hospitals in Michigan that are affiliated to the 19 health systems. It also provides information 

regarding the demographics of respective counties where each of the hospitals belong. We 

identified the affiliated hospitals in each health system and calculated the total number of ICU 

beds in the health system. Further, we calculated average staffed beds per health system and the 

mean values for the demographic data across the counties where the health system has its presence. 

To understand the geospatial distribution of hospitals in a healthcare system, in concert with 

literature (Zepeda et. al., 2016), we consider the average distance among a health system’s 

affiliated hospitals. we collected the address for each of the 106 hospitals, used Google Map API 

to obtain distance between any possible pairs of hospitals, and calculated the average distance 

between any two hospitals in a system. Among the health systems considered for this study, four 

systems have one affiliated hospital in Michigan. As we intend to evaluate the effect of 

geographical dispersion among affiliated hospitals in a health system, we omitted observations 
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related to those health systems from the dataset. This data is combined with the data on health 

systems as reported by the MDHHS.  

 To clearly discern the effect of the service innovation, health information exchange 

coalition and average distance of hospitals affiliated to a health system on ICU bed utilization due 

to COVID-19 hospitalizations, we control for several variables that can influence ICU bed 

utilization. We considered two sources to collect data on various initiatives pursued by health 

systems. First, we collected news articles from 1st January 2020 until 20th November 2020 for the 

15 health systems. Second, we collected data from the newsroom announcements and publications 

on each health system’s website. To provide structure to this data collection effort we considered 

the set of practices included in the CDC guidelines that were announced on 1st May 2020. We 

provide details regarding CDC guidelines in the Online Supplement. In this study we particularly 

considered “infection prevention and control practices” that formed part of the “Worker Safety 

and Support” category and “facility response mechanisms” that was part of the “Facility Practices” 

category developed by CDC.   

 To collect data from news articles, we first used a generic search code “hospital covid 

michigan [system name]” to search any news related to the health system in Google News. We 

used a Python script and GoogleNews API to download the content of the news. We downloaded 

more than 7000 news items relating to the health systems considered in this study. ParseHub was 

used to scrape news from health systems’ newsrooms. As a part of this step, we downloaded about 

700 additional news items. We filtered the news containing any of the words like “pandemic”, 

“COVID”, “corona”, “virus”. We went through each of the filtered items and collected news of 

activities by the systems. In the next step we merged these two sets of news to have a combined 

list of activities by each of the health systems. To extract activities of each of the health systems 
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we first used the Bert Extractive Summarizer (BERT) (Miller, 2019). However, since BERT 

algorithm utilizes word frequency as the basis for summarizing text, it doesn’t capture actions 

taken by health systems appropriately. Often times, words that are most frequently found in the 

news article do not correspond with the actions taken by the health systems. Hence, we develop 

our own algorithm that extracts the sentence in which the name of the health system appears along 

with two following sentences. Details pertaining to our text summarization strategy and the 

algorithm are presented in the Appendix A. Using the summarized text, we systematically went 

through the activity list for each health system to categorize each text into activities specified in 

the CDC guidelines. The co-authors of this study brainstormed to reach a consensus on the 

inclusion of a text within a category.  

For each activity a timeline of initiation and conclusion (if applicable) were identified from 

the news items. As we do not know the exact start date of the activities, we consider date of the 

new article reporting the activity as the date of initiation. If there were multiple instances of same 

activity, we considered the earliest reporting date as the start date and omitted repetitions. 

Depending on the activity it may either be a single day activity (e.g., “Ascension Michigan will 

host a Community Flu Immunization Fair on Monday afternoon”) or an intervention which started 

on a date and then potentially continued for some time after that. We observe two types of 

interventions in our dataset. The first type of intervention are the ones that started on a date and 

there is an explicit mention in news articles that the activity ended on another date. For example, 

Ascension Health System, one of the healthcare systems considered in this study, planned to defer 

the elective procedures from 18th March 2020 to 28th May 2020 as it was reported that the health 

system had planned to resume elective procedures from 29th May 2020. The system continued with 

elective surgeries until 15th October 2020 as there were reports that Ascension had decided to stop 
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elective surgeries again from 16th October 2020 due to the second wave of infections and its status 

did not change until the end of data collection. The second intervention are the ones that started 

and continued ever after (e.g., “Ascension Michigan looks forward to safely providing additional 

non-emergent surgical and medical procedures as appropriate across all of our facilities”).  

Depending on the presence or absence of an activity reference within a news article, we 

code the activity as 1 or 0, respectively. For a given date, each CDC prescribed activity or approach 

may have multiple 1s and a summation of these values is considered as the extent to which the 

health system has undertaken a specific activity on a given date. For example, the Sparrow Health 

System undertook eight different preparedness checklist related activities on 20th July 2020, one 

activity related to cohorting of COVID-19 patients, and fifteen different activities related to 

development and implementation of plans to reduce staffing shortages and assessment of need for 

alternative care sites. Hence, in total, the health system undertook 24 different facility practices 

related activities on that date. Additionally, on the same date the health system exercised one 

activity related to PPE optimization, five different activities related to implementation of COVID-

19 source control and two activities in order to track PPE supplies. Hence, in total, the system also 

enacted 8 infection prevention and control practices. We merged this dataset with our original 

dataset to get a panel dataset for each of the 15 healthcare systems with hospitalization, geospatial 

distribution, extent of infection prevention and control practices and facility response mechanisms 

as specified in the CDC guidelines, and county (where the health system is located) demographics 

data from 7th May 2020 until 12th November 2020. The flowchart in Figure 2.2 summarizes our 

data collection process to facilitate replication. 
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Figure 2.2 Flowchart of data collection process
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2.3.2. Intervention Setting 

 To effectively manage the spread of the virus and a faster recovery of the infected patients, 

health systems have been introducing new treatments and procedures to manage the pandemic. 

Most of them have little clinical evidence of effectiveness and experiments are underway. As we 

stated earlier in the paper, Mayo Clinic developed the CPT for COVID-19 infected people and 

facilitated the use of the treatment through Expanded Access Program (EAP) after FDA approved 

EAP on 3rd April 2020 (U.S. Food and Drug Administration, 2020). It started to enroll physicians 

and patients willing to adopt the therapy. EAP enabled patients with serious or life-threatening 

COVID-19 to access investigational convalescent plasma outside of clinical trials due to the lack 

of alternative treatments (Gallagher, 2020). Subsequently, FDA issued Emergency Use 

Authorization (EUA) on 23rd August 2020 which permitted physicians to use the CPT without 

being enrolled in Mayo Clinic’s EAP Program (Kadlec, 2020). Mayo Clinic stopped the EAP 

eventually after FDA published EUA. Between 3rd April 2020 and 23rd August 2020, several health 

systems in Michigan started administering the CPT to enrolled patients with COVID-19 symptoms 

who were admitted in intensive care units (Joyner et. al., 2020). To understand the date when a 

health system started using the CPT, we went through the health system’s newsroom reports. 

Whenever a health system reported using the CPT, we considered the date of reporting to be the 

intervention date. We used the news articles to triangulate and check the validity of the 

information. We found that four health systems started using the CPT before 7th May 2020, four 

health systems started using the service innovation after 7th May 2020, and the remaining health 

systems did not consider the CPT as part of their therapy plan for COVID-19. The introduction of 

the service innovation in a health system at different time points provides us a unique opportunity 
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to study how the variance in the service innovation adoption impacts intensive care capacity 

between the adopting and non-adopting health systems.  

 As noted earlier, on 2nd April 2020, Michigan Hospital Medicine Safety Consortium 

launched a registry (Mi-COVID19) to disseminate knowledge about practice of different 

treatments, including the CPT. More that 40 hospitals representing 10 health systems participated 

in the registry. As all these systems participated in the information exchange coalition by 24th April 

2020 (HMS, 2020), we consider the initiative as a unique treatment to study the impact of 

information sharing initiative on the ICU bed utilization related to COVID-19 hospitalizations. Six 

of the 10 health systems had over 50% of their affiliated hospitals participating in the registry. For 

others it was less 50% participation. For our main analysis we assume that if a hospital in the health 

system participates in such an initiative and acquire some knowledge from the alliance, it will 

share this knowledge with other hospitals in the same health system. This is a reasonable 

assumption since most health systems have set up technologies to share information across all 

hospitals within a system14. These IT systems enable physicians to broadcast information to their 

colleagues within the health system (Vest et. al. 2019). Additionally, organizations such as 

American Hospital Association have provided guidelines for health systems to communicate with 

affiliated hospitals information about plans and procedures15. In our study we do not focus on the 

extent of participation. Nevertheless, we check for the robustness of our results by considering the 

percentage of hospitals in a health system that participated in the registry as an alternative measure.  

 

 

 

 
14 https://www.uofmhealth.org/provider/care-everywhere 
15 https://www.aha.org/system/files/media/file/2020/07/aha-covid19-pathways-comms-internal-external.pdf  
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2.3.3. Measures 

2.3.3.1. ICU Bed Utilization related to COVID-19 patient hospitalization 

 In this study we consider ICU bed utilization related to COVID-19 patient hospitalizations 

(BedUtilizationit). We note that this variable is not the overall ICU bed utilization. The variable is 

developed by considering the ratio of the total number of COVID-19 patients admitted to ICU and 

the total number of ICU beds in the system. The variable, BedUtilizationit, has high dispersion 

ranging from a low of 0% to a high of 69% with a mean and standard deviation of 10.4% and 

9.7%, respectively. A high proportion of ICU beds utilized by COVID-19 patient hospitalizations 

results in the availability of a small proportion of ICU beds for other patients. This can also increase 

the probability of infection in the ICU from patients with the viremia. From a health system’s 

perspective, a lower value of BedUtilizationit would help in providing the intensive care needed 

by all patients, while keeping the hospital infections low. 

2.3.3.2. Service Innovation 

 The service innovation associated with the CPT is a binary variable (ServiceInnovationit) 

that captures whether a system has adopted convalescent plasma therapy at a certain point in time 

during the COVID-19 pandemic. ServiceInnovationit is equal to 0 if a system i did not adopt plasma 

therapy at time t and is set to 1 if a system i starts using plasma therapy at time t. In our study, we 

have four health systems that have ServiceInnovationit = 1 through all 49 time periods, four health 

systems that have ServiceInnovationit = 1 for some time periods and seven health systems that did 

not administer the service innovation for all 49 time periods under consideration.  

2.3.3.3. Participation in the Information Exchange Coalition 

 The Mi-COVID19 information exchange coalition is a binary variable 

(InfoExchCoalitioni) that indicates whether a health system has participated in the information 
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echange coalition registry that was developed by HMS. We set this variable to 1 if a health system 

has participated in the registry and 0 otherwise. We find that 10 out of 15 (66.67%) health systems 

have participated in the registry. 

2.3.3.4. Average Distance between hospitals in a health system 

 We used GoogleMap API to measure the distance (in miles) between any two hospitals in 

a system. Subsequently, we create a variable AvgDisti by calculating the average distance between 

all the hospitals that are part of a health system. On average, hospitals within a health system in 

Michigan are 104.41 miles apart (S.D = 47.33). We also create a binary variable BinAvgDisti which 

is equal to 1 if the average distance between hospitals in a health system is greater than 104.41 

miles, and 0 otherwise. This helps in separating out health systems in which hospitals are more 

closely located from those in which hospitals are further apart. We have 60% of all the health 

systems (i.e., 9 health systems) with BinAvgDisti=1.  

2.3.3.5. Control Variables 

 As a part of this research investigation, we considered several control variables. We 

controlled for health system specific time variant infection prevention and control (IPCit) practices 

and facility response mechanisms (Facilityit) that we collected from the news articles. These 

variables account for the extent of systematic effort that a health system had put toward delivering 

care services to hospitalized patients. These practices and mechanisms may be instrumental in 

explaining care capacity of the system. The values for IPCit range from 0 to 20 with a mean and 

standard deviation of 7.38 and 4.78, respectively. The values of Facilityit range from 0 to 39 with 

a mean and standard deviation of 16.48 and 9.55, respectively.  

To account for system level fixed effects, we controlled for health system time invariant 

variables. Specifically, we controlled for AvgStaffedBedsi (Mean = 163.09; S.D. = 86.52) and 
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AffiliatedHospitalsi (Mean = 6.8; S.D. = 3.41) to account for average number of staffed beds in 

hospitals of a system and total number of affiliated hospitals in a system, respectively. The average 

number of staffed beds ranged from a minimum of 25 to a maximum of 380. The minimum and 

maximum numbers of affiliated hospitals in a health system are 2 and 14, respectively. For each 

health system i and time-period t, we accounted for new COVID-19 cases (AvgDemandit) in the 

county where the health system is located. If hospitals within a health system are spread across 

multiple counties, we considered the average COVID-19 cases on the date of observation in those 

counties. The mean and standard deviation of AvgDemandit are 189.54 and 297.52 cases each day, 

respectively. We accounted for demographic characteristics of counties in which a health system 

has its presence by controlling for average population of the counties (AvgPopulationi). The mean 

and standard deviation of AvgPopulationi  are 486,261 and 540,946 respectvely. The variable has 

highest and lowest values at 1,653,949 and 17,730 people, respectively. Correlations for the 

variables have been provided in Table 2.1. 
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Table 2.1 Correlation Table 

# Variables Mean S.D. 1 2 3 4 5 6 7 9 10 12 

1 BedUtilizationit 0.10 0.10 1.00          

2 BinAvgDisti 0.60 0.49 -0.02 1.00         

3 InfoExchCoalitioni 0.67 0.47 0.08* -0.29* 1.00        

4 ServiceInnovationit 0.44 0.50 0.05 -0.40* 0.18* 1.00       

5 AvgDemandit 189.54 297.52 0.26* -0.29* 0.16* 0.26* 1.00      

6 IPCit 7.38 4.78 0.07 -0.24* 0.42* 0.29* 0.04 1.00     

7 Facilityit 16.48 9.55 -0.01 -0.20* 0.54* 0.25* 0.03 0.63* 1.00    

9 AvgStaffedBedsi 163.09 86.52 0.26* -0.43* 0.42* 0.47* 0.56* 0.24* 0.20* 1.00   

10 AffiiliatedHospitalsi 6.80 3.41 0.14* 0.27* 0.29* 0.34* 0.02 0.50* 0.34* 0.33* 1.00  

12 AvgPopulationi 486261 540946 0.30* -0.43* 0.22* 0.29* 0.67* -0.04 -0.08* 0.81* 0.00 1.00 
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2.4. Econometric Approach 

 We chose our estimation approach to address two potential issues in our data. First, there 

may always be a possibility of unconditional heteroskedasticity across health systems which needs 

to be explicitly modeled. Second, differences in care capacity of health systems in a region and 

their competing objectives can induce correlations in error terms. We use generalized least squares 

(GLS) panel regression as the estimation methodology since it allows us to model 

heteroskedasticity and correlation across different health systems in an unrestricted way 

(Wooldridge, 2010; Gao and Hitt, 2012). Additionally, we include controls for time so that our 

results are robust to specification errors that could be created by time dependent effects common 

to all health systems. We performed our estimation using the xtgls command in STATA 15. 

 We ran two different models with GLS: first with inter-system error heteroskedasticity and 

second with both inter-system error heteroskedasticity and correlation. We consider the first GLS 

model as our main model based on its better fit with the data (i.e., lower Wald statistic). However, 

we also run the second GLS model as a robustness check and present those results. We followed 

Hu and Hoover (2018) methodology to perform power analysis. The result of our tests suggests 

that our sample provides sufficient power to reject the null findings at standard power threshold of 

80% (Hu and Hoover, 2018). Our estimation models consider robust inference clustered around 

unique health system id to address health system level heteroskedasticity (Wooldridge, 2010). 

 

2.4.1. Identification Strategy: Treatment Effect of Service Innovation on ICU Bed Utilization 

 We use the difference-in-differences (DiD) approach with propensity score matching. The 

approach addresses potential endogeneity issues associated with the service innovation adoption 

by a health system (say, a purposive choice of adopting the service innovation due to the 
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demographics of its location of operation).  Angrist and Pischke (2008) provide an exhaustive 

discussion of social science applications of DiD. Instances of recent application of DiD can also 

be found in operations management literature (Scott et. al., 2020; Xue et. al., 2019; Dhanorkar and 

Muthulingam, 2020). To implement the DiD method in our research, we divided the data into 

treatment group and control group. The treatment group consists of health systems that have opted 

for the service innovation whereas health systems that have not reported an adoption of the service 

innovation are part of the control group. There are 8 health systems in the treatment group and 7 

health systems in the control group. Four health systems were already using the CPT service 

innovation all along during the period of analysis and four additional health systems started using 

the therapy at some time during the data analysis period. Our identification process is enabled by 

the interventions created by unique variation in the treatment and control groups.  

We ascertained that there is no significant difference of trend in the intensive bed utilization 

across treatment and control groups in the pre-treatment period (Bell et. al., 2018). Table 2.2 

presents the summary statistics of illustrative variables used in the analysis. A cursory glance at 

Table 2.2 indicates that the adoption of the service innovation by health systems may be 

endogenous to the demand and demographics. For example, the average population of counties 

where the system in treatment group is present is 660,507 whereas the average population of the 

counties where the system in control group is present is 348,139. The system may choose to adopt 

the therapy in response to the fact that higher population may place higher critical care demand on 

the hospital system. 
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Table 2.2 Illustrative Health System Level Summary Statistics 

Variables Treatment Group Control Group Total 

BedUtilizationit 

0.109 

(0.079) 

0.09 

(0.11) 

0.104 

(0.097) 

AvgDemandit 
275.98 

(375.9) 

121.01 

(190.47) 

189.54 

(297.52) 

IPCit 
8.95 

(2.95) 

6.12 

(5.53) 

7.37 

(4.78) 

Facilityit 
19.15 

(8.97) 

14.37 

(9.47) 

16.48 

(9.55) 

AvgStaffedBedsi 

208.83 

(93.69) 

126.83 

(59.14) 

163.09 

(86.52) 

AffiliatedHospitalsi 

8.09 

(3.54) 

5.78 

(2.92) 

6.8 

(3.41) 

AvgPopulationi 

660507.1 

(604629.7) 

348139.8 

(438515.5) 

486261.4 

(540946.4) 

 

2.4.2. Identification Strategy: Treatment Effect of Geographical Proximity on ICU Bed Utilization  

 Imbens and Wooldridge (2009) note that two key assumptions must be met in order to find 

unbiased estimate of the treatment effect. The first assumption is that, beyond the covariates that 

we considered, there should be no other unobserved characteristics of the health systems that are 

associated with BedUtilizationit and BinAvgDisti (unconfoundedness) (Rosenbaum and Rubin, 

1983). Though such unconfoundedness assumption is untestable, we can perform some tests to 

assess the plausibility of the assumption. It relies on the presence of two or more control groups 

(Rosenbaum, 1987). The method suggests that we find a ‘pseudo’ treatment that further divides 
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the control group into ‘pseudo’ treatment and control groups. Given the fact that control group 

observations should have zero effect on BedUtilizationit, if we find that the ‘pseudo’ treatment 

does not reject the null hypothesis of zero impact on BedUtilizationit, it makes the unfoundedness 

assumption more plausible. In our study, we find a ‘pseudo’ treatment in the control group 

(BinAvgDisti = 0) depending on the average population of the county where a health system is 

located. We considered ‘pseudo’ treatment and control groups that consist of observations above 

and below average population of about 625,686 residents. We estimate the average ‘pseudo’ 

treatment effect after controlling for AvgDemandit and time invariant fixed effects. The chi-square 

statistic (!! = 445.09; p <0.001) suggests that the model fit is good. We find that the treatment 

effect (" = -0.04, p>0.05) is insignificant. Hence, as we cannot reject the hypothesis that ‘pseudo’ 

treatment effect has zero effect on BedUtilizationit at 5% level of significance, it seems plausible 

that unconfoundedness assumption holds.  

The second assumption relates to the overlap restriction. In an ideal experimental setup, 

we would have randomly assigned the health systems to the control and treatment groups. In that 

way, we would have made sure that correlation between the treatment and covariates do not exist. 

However, such random assignment is not possible as health systems may choose to opt the service 

innovation based on contextual parameters. To estimate average treatment effect, Rosenbaum and 

Rubin (1983) states that the estimation methodology must have all possible values of covariates 

with both treated and control units. However, due to systematic differences in the values of 

covariates in treatment and control groups, this overlap assumption is often violated. Propensity 

score adjustment is an effective way to account for the imbalances in values of characteristics for 

treatment and control groups (Rosenbaum and Rubin, 1983; Imbens and Woolridge, 2009). We 

discuss about the assumption and our weighting process in the next section.  
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2.4.3. Quasi-Experimental Design: Propensity Scores Weighting 

 Propensity score is the probability that an observation unit receives treatment conditional 

on the observed covariates. If our analysis considers the subpopulation of the observations with 

same propensity score, the overlap assumption is satisfied which eliminates the bias in the 

estimation of average treatment effect. The propensity scores can be used as sampling weights in 

such a way that it reweights the treatment and control observations so that overlap restriction is 

satisfied (Imbens and Woolridge, 2009; Hirano and Imbens, 2001; Bell et. al., 2018; Rosenbaum 

and Rubin, 1983b). Following the suggestions of Imbens and Woolridge (2009), we use inverse 

propensity weights (IPW) as our weights. We define, #(%, ') = 	
"
#(%)' +	

()"
()	#(%)' , where W = 1 

indicates a treated health system and ,(')- is the estimated probability of being treated. To compute 

,(')- we used IPCit, Facilityit, AvgStaffedBedsi, AffiliatedHospitalsi, AvgPopulationi. We use a 

binary logit model to estimate the required probability of a system’s participation in the treatment 

group. After obtaining these weights, we estimate both DiD and treatment effects models by 

including these weights in the estimation. 

 Next, we verify whether the weights appropriately balance the treatment and control 

groups. We adopt the strategy suggested by Guo and Fraser (2014) to simply compare estimates 

from a set of weighted and unweighted regressions. In these regressions we consider one of the 

covariates (AvgPopulationi) as the dependent variable and treatment indicator (e.g., systems that 

adopted the service innovation) as the independent variable. When we use linear regression 

estimation method with IPCit, Facilityit, AvgStaffedBedsi and AffiliatedHospitalsi as control 

variables, the estimate of treatment in the unweighted regression is statistically significant (b = -

0.104; p<0.05). This indicates that health systems belonging to denser population region are more 

likely to adopt the service innovation, an endogeneity that needs to be accounted for. We find that 
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the estimate of treatment in the weighted regression is statistically non-significant (b = -1.82; p > 

0.1). Hence, weighted regressions eliminate all these significant differences between two groups 

and provides evidence that propensity score method appropriately balances the data. We 

considered a different covariate (AvgStaffedBedsi) as dependent variable and ran both weighted 

and unweighted regression. We found similar results which further support that propensity score 

method helps in balancing the data. 

2.4.4. Identification Strategy: Treatment Effect of Information Exchange Coalition on ICU Bed 

Utilization 

2.4.4.1. Estimation of Direct Effect 

 Whether a health system will participate in a health information exchange may depend on 

multiple time-invariant and time-varying factors that we may not have exclusively captured. This 

could potentially violate the unconfoundedness assumption (Rosenbaum and Rubin, 1983; Imbens, 

2004) and may bias the treatment effect. For example, we do not have a standard econometric 

treatment to capture patient level variances of each health system which may confound the 

relationship between the choice to participate in a health information exchange coalition and 

intensive care bed utilization. To account for the endogeneity of the HIE participation, we run an 

instrumental variable (IV) analysis where we use the number of academic articles that a health 

system has published from 1900 until Nov 12, 2020. We collected data from the SCOPUS database 

where we searched by each health system’s name. The average and standard deviation of the 

variable are 5493.73 and 10795.98 articles, respectively. To address the wide dispersion in the 

values of this variable, we considered the natural logarithm transformation of the variable after 

adding 1 to all the observations so as to avoid dropping of data for systems with 0 publications. 

We considered two stage least square regression where our first-stage equation is given by,  
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./012'3ℎ51678981/+ =	:+, +	;(ln	(>?;78@ℎ+) +	;!ABCDEF6/G+, + ;-.H5+, +

	;.A0087869EGI1@>8967@+ +	;/ABCJ9600EGKEG@+ +	;0ABCH1>?76981/+ +	;1L638789M+, +

	N, +	O+,                             (1) 

 

The variable, publishi, measures the number of academic articles published by health 

system I during the time-period and Tt represents the time trend. We could not control for system 

level indicator variable since the set of variables are collinear with InfoExchCoalitioni and fully 

explain the variance in the variable, thereby making publishi redundant. However, we considered 

AffiliatedHospitalsi and StaffedBedsi to control for system level fixed effects. As the standard 2SLS 

estimator requires a linear first stage regression, we use linear probability model despite the binary 

endogenous variable (Bavafa et. al., 2018). Next, we use the predicted value, 

./012'3ℎ5167P9P1/2- , from Equation 1 in Equation 4 as a substitute for InfoExchCoalitioni. We 

present the results in columns 1 and 2 of Table 2.4. 

 A valid instrument should satisfy relevance and exclusion restrictions (Wooldridge, 2010). 

Generally, publishing academic research papers requires active collaboration among multiple 

authors. Hence, physicians in a health system that published higher number of academic articles 

may realize the value of collaboration and are potentially engaged in active information sharing. 

Often, these collaborations help them to come up with solutions to novel problems. To a group of 

physicians, treating COVID-19 patients with unproven treatments and unknown processes is 

nothing short of solving novel problems, which requires information sharing with other physicians 

in different health system to locate best practices that the latter group might be using. Hence, health 

systems’ propensity to publish may explain the likelihood of them participating in a information 

exchange coalition registry. The assumption is validated as b1= 0.05 (p < 0.001) is significant and 
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F-statistic associated with first stage regression (equation 1) is greater than 10 (F = 38.92, p < 

0.001) (Stock and Yogo, 2005).  

 Exclusion restriction assumption cannot be directly tested, but we can conduct auxiliary 

analyses that rule out some plausible ways in which the assumption could be violated (Bavafa, 

2018). One possibility is that systems with higher propensity of publishing academic research may 

enforce stricter hospital preparedness which may influence bed utilization. We considered the 

extent to which a health system used preparedness checklist, a sub-activity within the facility 

practices guidelines provided by CDC (activity 9a of Table A1 in the Appendix). We had collected 

this information from the news articles as discussed earlier. We found no significant relationship 

between this variable and bed utilization. Another possibility is that systems with higher academic 

output may understand guidance-based discharge better and may practice policies that lower 

patient readmission chances, which reduces bed utilization. We considered the data from news 

articles that was used to operationalize the extent to which a health system follows CDC guidelines 

for patient service delivery by providing guidance to COVID-19 patients discharged to home or 

long-term care facility (activity 5 of Table A1 in the Appendix). This patient service delivery 

activity is also not significantly associated with bed utilization.  

2.4.4.2. Estimation of the Moderation Effect 

 We understand that InfoExchCoalitioni may introduce endogeneity in estimation of its 

moderation effect on the relationship between ServiceInnovationit and BedUtilizationit via its first 

order term and cross product with ServiceInnovationit. Hence, we use ln(publishi) and 

ln(publishi)*ServiceInnovationit as instrumental variables for InfoExchCoalitioni and 

InfoExchCoalitioni*ServiceInnovationit respectively. To address the endogeneity, we considered 

two stage least square regression where our first-stage equations are given by equations 2 and 3, 
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./012'3ℎ51678981/+ =	;3 +	;( ln(>?;78@ℎ+) + ;! ln(>?;78@ℎ+) ∗ JERB83E.//1B6981/+, +

;-JERB83E.//1B6981/+, +	;.K8/ABCD8@9+ +	;/JERB83E.//1B6981/+, ∗ K8/ABCD8@9+ +

	;0ABCDEF6/G+, +	N, +	O+,               (2) 

 

./012'3ℎ51678981/+ ∗ JERB83E.//1B6981/+, =	;3 +	;( ln(>?;78@ℎ+) + ;! ln(>?;78@ℎ+) ∗

JERB83E.//1B6981/+, + ;-JERB83E.//1B6981/+, +	;.K8/ABCD8@9+ +

	;/JERB83E.//1B6981/+, ∗ K8/ABCD8@9+ +	;0ABCDEF6/G+, +	N, +	O+,               (3) 

 

AvgDemandit represents the propensity score weighted new COVID-19 cases in the county, 

where the health system i is located, at t time and Tt represents the time trend. Next, we use the 

predicted values, ./012'3ℎ5167P9P1/2- , from Equation 2 and ./012'3ℎ5167P9P1/2 ∗ H76@F62,-  

from Equation 3 in Equation 8 as a substitute for InfoExchCoalitioni and 

InfoExchCoalitioni*ServiceInnovationit respectively. We present the results in Table 2.6. The F-

statistics associated with first stage regressions (equations 1 and 2) are (F = 240.85, p < 0.001) and 

(F = 142.96, p < 0.001), respectively. As these statistics are greater than 10, the relevance of the 

instrument assumptions are validated (Stock and Yogo, 2005). 

 

2.5. Results 

2.5.1. Impact of Service Innovation on ICU Bed Utilization 

 To ensure normality, we took the natural logarithm transformation of BedUtilizationit. We 

added 1 to the variable to ensure that values of 0 bed utilization do not drop out. Similarly, natural 

logarithm transformation of AvgDemandit was taken after adding 1 to the variable. The following 
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regression equation captures the effect of the introduction of service innovation on the intensive 

care bed utilization: 

								ln(KEGS9878T6981/+,) = U3 + U(JERB83E.//1B6981/+, + U!ln	(ABCDEF6/G+,) + N, +	O+,, (4) 

where KEGS9878T6981/+, captures intensive care bed utilization in system i at time t and 

JERB83E.//1B6981/+, = 1 indicates the system i has opted the service innovation at time t, and 0 

otherwise. Health systems have opted the service innovation at different points in time, hence 

JERB83E.//1B6981/+, captures the variation not only across different health systems but also 

within a health system across different time. ABCDEF6/G+, denotes the number of new virus 

infected patients in the vicinity of health system i at time t. We control for the total number of new 

infections as it partially explains variation in ICU bed utilization due to virulent patient 

hospitalization. N, is a time dummy for each time period, which captures any trend in overall bed 

utilization over time. The coefficient of JERB83E.//1B6981/+,, U(, captures the change in 

KEGS9878T6981/+, relative to the baseline ICU bed utilization for a given system and the 

seasonality patterns. If U( is negative and significant, then adoption of the service innovation 

indeed reduces the intensive care bed utilization of the health system. 

 Table 2.3 shows the result without (column 1) and with (column 2) propensity score 

adjustment, where the latter is our preferred specification. The effect of the service innovation 

adoption is negative and significant (U( = -0.025, p<0.001) which suggest that the new therapy 

helps to reduce BedUtilizationit by 0.025. Hence, the result provides support for hypothesis 1. As 

the dependent variable is ICU bed utilization, the result is economically meaningful. The adoption 

of the service innovation helps the health system to reduce intensive care bed utilization due to 

COVID-19 patient hospitalizations by 2.5%. In Table 2.3 we have also provided additional 

robustness checks. Column 3 depicts result of the model after controlling for system level fixed 
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effects. In column 4, we provide the results for unrestricted correlations across systems. Both the 

robustness results support the main result.  

Table 2.3 Impact of Service Innovation on ICU Bed Utilization 

Variables 
(1) 

ln(BedUtilization) 

(2) 

ln(BedUtilization) 

(3) 

ln(BedUtilization) 

(4) 

ln(BedUtilization) 

ServiceInnovationit 

-0.011** 

(0.0035) 

-.025*** 

(0.006) 

-.079** 

(0.023) 

-.016** 

(0.004) 

ln(AvgDemandit) 
.022*** 

(0.001) 

.027*** 

(0.001) 

.046*** 

(0.004) 

.024*** 

(0.001) 

Time Controls Day-Week Day-Week Day-Week Day-Week 

System Fixed Effects No No Yes No 

Prop. Score Weighting No Yes Yes Yes 

Observations 735 735 735 735 

Wald chi-square 1282.79 1089.36 1470.19 372881.88 

Number of systems 15 15 15 15 

 

 

2.5.2. Impact of participation in the Information Exchange Coalition on ICU Bed Utilization 

 The following regression equation captures the effect of participation in the information 

exchange coalition on the intensive care bed utilization relating to COVID-19 patient 

hospitalization: 

ln	(KEGS9878T6981/+,) = 	:+, +	;(./012'3ℎ5167P9P1/2- +	;! ln(ABCDEF6/G+,) + ;-.H5+, +

	;.A0087869EGI1@>8967@+ +	;/ABCJ9600EGKEG@+ + ;0 ln(ABCH1>?76981/+) +

	;1L638789M+, +	N, +	O+,,  (5) 

 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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where ./012'3ℎ5167P9P1/2-  is the predicted value of InfoExchCoalitioni from equation 1. 

We controlled for trend in time. We used FacilityResponseit, AffiliatedHospitalsi and StaffedBedsi 

to control for system level effects.  

 Column 1 in Table 2.4 depicts the first stage equation of the 2SLS. We find that the number 

of research article published by health systems explains their likelihood of participating in an 

information exchange coalition like Mi-COVID19. Column 2 shows the result for second stage 

model represented in equation 3. The effect of participation in the information exchange coalition 

is negative and significant (;( = -0.065, p<0.001). Hence, hypothesis 2 is supported. The result is 

economically meaningful as the result suggests that by participating in the information exchange 

coalition initiative the health systems were able to decrease intensive care bed utilization related 

to COVID-19 patient admission by 6.49%.  

 For robustness check, we provide Column 3 and Column 4 with the result with propensity 

score matching and with unrestricted correlations across systems (panels(corr)) respectively. We 

find the results supporting hypothesis 2 are robust to alternative specifications. We also conducted 

a robustness check by considering the extent of participation by hospitals in a health system. We 

define a variable, PercentParticipationi, as the percentage of hospitals in a health system that has 

participated in the Mi-COVID19 initiative. The mean and standard deviation of the variable is 

0.279 and 0.364. We normalized the variable so that it follows the normal distribution. Similar to 

our variable, InfoExchCoalitioni, we consider PercentParticipationi to be an endogenous variable 

and consider publishi as a suitable instrumental variable. To estimate the direct effect, we perform 

the 2SLS regression. The 1st stage regression is performed using model 1. We have provided the 

results of the first stage regression in Table 2.4 column 5. We find that publishi is highly significant 

(b1= 0.03, p < 0.001) and the F-statistic is greater than 10 (F = 79.62, p<0.001), which satisfies the 
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relevance assumption (Stock and Yogo 2005). We provide the results from the second stage in 

Table 2.4, column 6. We find that the results accord with our original findings. In fact, the direct 

effects of InfoExchCoalitioni (b1 = -0.07, p<0.001) and PercentParticipationi (b1 = -0.1, p<0.001) 

on ICU bed utilization, are very close in magnitude, ascertaining our central argument of 

information sharing within the health system by a health system participating in the information 

echange coalition initiative. 
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Table 2.4 Impact of Participation in Information Exchange Coalition on ICU Bed Utilization 

Variables 
(1) 

InfoExchCo
alitioni 

(2) 
ln(BedUtilizat

ion) 

(3) 
ln(BedUtilizat

ion) 

(4) 
ln(BedUtilization) 

(5) 
PercentPartic

ipation 

(6) 
ln(BedUtiliz

ation) 

ln(publishi) 0.051*** 
(0.0049) 

 

 
 

 0.031*** 
(0.002) 

- 

!"#$%&'ℎ)$*+,-,$"!.  - 
-0.065*** 

(0.019) 
-.013* 

(0.006)) 
-0.033+ 
(0.019) 

- 
 

/01'0"-/*1-,',2*-,$"!.  - - 
- - 

- 
-0.1*** 
(0.03) 

IPCit 
0.006+ 
(.003) 

0.0005 
(0.0005) 

- 0.0008* 
(0.0003) 

-0.001* 
(.002) 

0.000004 
(0.0005) 

ln(AvgDemandit) 
(weighted in case of 

propensity score matching) 

-0.117*** 
(0.027) 

0.034*** 
(0.005) 

0.029*** 
(0.00004) 

0.029*** 
(0.003) 

-0.005 
(0.01) 

0.042*** 
(0.004) 

AvgStaffedBedsi 
0.0004 

(0.0003) 
0.0001+ 

(0.00005) 

- 0.00005 
(0.00003) 

0.003*** 
(0.0001) 

0.0004*** 
(0.0001) 

AffiliatedHospitalsi 
-0.011+ 
(0.006) 

0.0012* 
(0.0005) 

- 0.0012* 
(0.0006) 

-0.027*** 
(0.002) 

-0.001 
(0.0009) 

ln(AvgPopulationi) 
0.154*** 
(0.034) 

-0.017** 
(0.007) 

- -0.012* 
(0.004) 

-0.045*** 
(0.0104) 

-0.032*** 
(0.006) 

Facilityi 
0.021*** 
(0.002) 

-0.0011* 
(0.0005) 

- 0.0004 
(0.0005) 0.001 

(0.001) 
-0.0001 
(0.0003) 

Time Fixed Effects Yes Yes Yes Yes Yes Yes 
Prop. Score Weighting No No Yes No No No 

Observations 735 735 735 735 735 735 

R-squared 0.48 - -  0.75 - 
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Table 2.4 (cont’d) 
 

Wald chi-square - 1290.42 497989.33 128225.67 - 1290.42 
F-value 38.92 - -  79.62 - 

Number of systems 15 15 15 15 15 15 

The standard error has been reported in the parenthesis. 
+.     p < 0.1  *      p < 0.05  **.   p < 0.005  ***. p < 0.001 



 55 

2.5.3.Impact of Geographic Proximity on ICU Bed Utilization 

 The following regression equation captures the effect of average distance between 

affiliated hospitals in a system on the system’s intensive care bed utilization due to COVID-19 

patient hospitalizations: 

ln	(%&'()*+*,-)*./!") = 	2# +	2$%*/4567*8)! +	2%ln	(4567&9-/'!") +	:" +	;!",          (6) 

where %&'()*+*,-)*./!" captures intensive care bed utilization in system i at time t. 

4567&9-/'!" denotes the number of new virus infected patients in the vicinity of health system 

i at time t. :" is a time dummy for each time period which captures any trend in overall bed 

utilization over time. The coefficient on %*/4567*8)!, 2$, captures the change in 

%&'()*+*,-)*./!" relative to baseline ICU bed utilization. If 2$ is positive and significant, then a 

health system with sparser distribution of affiliated hospitals indeed sees an increase in the 

intensive care bed utilization due to COVID-19 patient hospitalizations. 

 Table 2.5 shows the result without (column 1) and with (column 2) propensity score 

adjustment. The results presented in column (2) is our preferred specification. The effect of average 

distance is positive and significant (2$ = 0.0253, p<0.001), which suggests that an increase in the 

geographical distance between affiliated hospitals in a system increases the intensive care bed 

utilization. Hence, the result provides support for hypothesis 3. The result is economically 

meaningful as a health system that is part of the treatment group experiences an increase in 

intensive care bed utilization due to COVID-19 patient hospitalization by 2.53%. 

For robustness check, we provide Column 3 and 4 that reflects results with propensity score 

matching and considering unrestricted correlations across systems (panels(corr)) and the system 

fixed effects, respectively. We find that hypothesis 3 still holds. In the results we provided in 

Column 5 of Table 2.5, we specified AvgDisti as a continuous variable. We used equation 7 to 
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capture the effect of continuous specification of AvgDisti on bed utilization. The variable has been 

normalized before including in the equation. 

ln	(%&'()*+*,-)*./!") = 	<!" +	=$4567*8)! +	=% ln(4567&9-/'!") + =&>?@!" +

	='4AA*+*-)&'B.8C*)-+8! +	=(456D)-AA&'%&'8! + =) ln(456?.CE+-)*./!) +

	=*F-G*+*)H!" +	:" +	;!"     (7) 

In column 5 we present the results of the estimation. We find that the robustness checks 

support the main result. Until now, we consider the average distance between any two hospitals in 

the health system network as the operational measure of the geo-spatial distribution of a health 

system. Such a measure is often biased by the geographic dispersion of the health system affiliated 

hospitals. In the next robustness check, we alternatively operationalize geographic proximity as 

the median distance between all possible pairs of hospitals in a health system so we can control 

for any outliers. We note that the average of the medians of the 15 health systems is 63.34 mi. We 

created a variable BinMedDisti that takes the value of 1 when the median distance of all the health 

system hospital pairs is greater than (or equal to) 63.34 mi and a value of 0 otherwise. In the results 

that we present in Table 2.5 column 6 we accounted for propensity score adjustment and 

heteroskedasticity in standard errors across panels. The effect of average distance is positive and 

significant (21 = 0.02, p<0.05) which accords well with our results. Further, in Table 2.5 column 

7 we present results after controlling for the system fixed effects. The results are consistent with 

our original findings. 

 

 

 

 



 57 

Table 2.5 Impact of Geographic Proximity on ICU Bed Utilization 

Variables 
(1) 

ln(BedUtil
izationit) 

(2) 
ln(BedUtil
izationit) 

(3) 
lnBedUtili

zationit) 

(4) 
ln(BedUtil
izationit) 

(5) 
ln(BedUtilizationit) 

(distance as continuous) 

(6) 
ln(BedUtil
izationit) 

(7) 
ln(BedUtil
izationit) 

BinAvgDisti 
0.0225*** 
(0.0038) 

0.0253*** 
(0.0043) 

0.02*** 
(0.003) 

0.0719*** 
(0.0103) 

0.0089* 
(0.0038) 

- - 

BinMedDisti - - - - - 0.02* 
(0.008) 

0.039* 
(0.018) 

ln(AvgDemandit) 0.0248*** 
(0.0014) 

0.0253*** 
(0.0012) 

0.021*** 
(0.001) 

0.0321*** 
(0.0015) 

0.0409*** 
(0.0042) 

0.042*** 
(0.002) 

0.058*** 
(0.0029) 

Time Controls Day-Week Day-Week Day-Week Day-Week Day-Week Day-Week Day-Week 
System Fixed Effects No No No Yes No No Yes 

Prop. Score 
Weighting No Yes Yes Yes No Yes Yes 

Observations 735 735 735 735 735 735 735 
Wald chi-square 1176.27 1286.73 347460.41 1792.67 1220.05 697.3 1302.94 

Number of systems 15 15 15 15 15 15 15 

	

 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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2.5.4. Moderating effects of Information Exchange Coalition and Geographic Proximity  

 The following regression equation captures the moderating effects of a health system’s 

inter-hospital average distance and its participation in the information exchange coalition on the 

relationship between the service innovation adoption and intensive care bed utilization due to 

COVID-19 patient hospitalization: 

ln	(%&'()*+*,-)*./!") = 	2# +	4$5&67*8&9//.7-)*./!" +	4%9/:.;<8ℎ>.-+?)?./@ +

	4&%*/A7BC*D)! +	4'5&67?8&9//.7-)?./(" ∗ 9/:.;<8ℎ>.-+?)?./(@ +

	4)5&67*8&9//.7-)*./!" ∗ %*/A7BC*D)! +		4* ln(A7BC&F-/'!") +	G" +	H!",   (8) 

where 9/:.;<8ℎ>.-+?)?./(@  is the predicted value of InfoExchCoalitioni from equation 2 

and 5&67?8&9//.7-)?./(" ∗ 9/:.;<8ℎ>.-+?)?./(@  is the predicted value of  

5&67*8&9//.7-)*./!" ∗ 9/:.;<8ℎ>.-+*)*./! from equation 3. We controlled for trend in time 

and the effects of new COVID-19 infections. 

 Columns 1 and 2 in Table 2.6 depicts the first stage equations of the 2SLS. We find 

evidence of the strength of instrumental variable used (F>100; p<0.001), which satisfies Stock and 

Yogo (2005) test of instrumental variable relevance. Column 3 shows the result for the second 

stage equation. We find that the coefficient of the interaction term, 

ServiceInnovationit*InfoExchCoalitioni, is negative and significant (4' = -0.237, p<0.01). Hence, 

hypothesis 4 is supported. The result suggests that participation in the information exchange 

coalition helps in decreasing intensive care bed utilization due to COVID-19 patient 

hospitalization by 23.7%. Further, we find that the coefficient of interaction term, 

ServiceInnovationit*BinAvgDisti, is negative and significant (4) = -0.089, p<0.005). Hence, 

hypothesis 5b is supported. The results suggest that a health system may be able to reduce intensive 

care bed utilization by 8.9% when the affiliated hospitals are sparsely located. In columns 4 and 5 
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we treat moderation terms separately. We find results are in congruence with the results from 

earlier model. 

 Table 2.7 contains results of robustness checks for the moderation terms. In columns 1 and 

2 we provide results with propensity score matching, considering unrestricted correlations across 

systems (panels(corr)), and AvgDisti as a continuous variable. We find support for hypotheses 4 

and 5b. In column 3, we explicitly model the auto correlation in the unobserved error terms within 

a panel structure across the cross-sectional units since it is plausible that some of the unobserved 

variables, that we couldn’t control, may be correlated across time. We estimated the random effects 

model with AR(1) correlation between the disturbances using the xtregar command. The results 

lend further support for hypotheses 4 and 5b. We undertook robustness checks by alternatively 

operationalizing InfoExchCoalitioni as PercentParticipationi. The results considering propensity 

score matching and controlling for heterogeneity across health systems in the unobserved error 

terms are presented in columns 4 of Table 2.7. The results lend further support for hypotheses 4 

and 5b. Next, we introduce a robustness check by alternatively operationalizing geographic 

proximity as the median distance between all possible pairs of hospitals in a health system 

(BinMedDisti) as discussed before. We present the results in Table 2.7 column 5. The results 

consider propensity score adjustments and control for heterogeneity across health systems in the 

unobserved error terms. The results lend further support for hypotheses 4 and 5b. In the next 

robustness check, we introduce alternative operationalization of both the independent variables, 

PercentParticipationi and BinMedDisti. We present results from the propensity score adjusted and 

endogeneity corrected (in PercentParticipationi) estimation model in Table 2.7 column 6. We find 

the results lend further support for the hypotheses 4 and 5b. 
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Table 2.6 Moderating Effects 

Variables 
(1) 

InfoExchCoalit
ioni 

(2) 
ServiceInnovationit 

X 
InfoExchCoalitioni 

(3) 
ln(BedUtilizat

ionit) 

(4) 
ln(BedUtilizati

onit) 

(5) 
ln(BedUtilizatio

nit) 

ln(publishi) 0.148*** 
(0.006) 

0.013*** 
(0.0025) 

- - - 

ServiceInnovationit 
0.954*** 
(0.141) 

0.71*** 
(0.1211) 

0.206* 
(0.1002) 

0.094* 
(0.044) 

0.011 
(0.012) 

ServiceInnovationit* 
ln(publishi) 

-0.118*** 
(0.014) 

0.016 
(0.0121) 

- - - 

!"#$%&'ℎ)$*+,-,$"!.  - - 
0.054** 
(0.019) 

0.024 
(0.018) 

- 

/012,'0!""$2*-,$"!" ∗	.  
!"#$%&'ℎ)$*+5-5$"# - - 

 
-0.237* 
(0.115) 

 
-0.159** 
(0.058) 

- 

BinAvgDisti 0.303*** 
(0.059) 

0.047*** 
(0.011) 

0.058*** 
(0.014) 

 -0.05*** 
(0.014) 

ServiceInnovationit 
*BinAvgDisti 

-0.532*** 
(0.083) 

-0.284*** 
(0.056) 

-0.089** 
(0.034) 

 -0.033* 
(0.016) 

ln(AvgDemandit) -0.006 
(0.004) 

-0.012*** 
(0.002) 

 

0.025*** 
(0.002) 

0.025*** 
(0.0015) 

0.028**
* 

(0.001) 

Time Controls Day-Week Day-Week Day-Week Day-Week Day-
Week 

Prop. Score Weighting Yes Yes Yes Yes Yes 

Observations 735 735 735 735 735 

F-statistic 240.85 142.96 - - - 

R2 0.414 0.686 - - - 

Wald chi-square - - 982.68 1046.79 1035.92 
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Table 2.6 (cont’d) 
 

Number of systems - - 15 15 15 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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Table 2.7 Robustness Checks for Moderating Effects 

Variables 
(1) 

ln(BedUtiliz
ationit) 

(2) 
ln(BedUtilizationit) 

(AvgDisti as 
continuous) 

(3) 
ln(BedUtiliz

ationit) 

(4) 
ln(BedUtiliza

tionit) 

(5) 
ln(BedUtiliz

ationit) 

(6) 
ln(BedUtiliz

ationit) 

ServiceInnovationit 
0.464*** 

(0.04) 
0.411* 
(0.176) 

0.628*** 
(0.147) 

0.063* 
(0.028) 

0.354*** 
(0.096) 

0.113*** 
(0.032) 

!"#$%&'ℎ*"60)$*+,-,$". # 
0.109*** 
(0.014) 

0.076* 
(0.03) 

0.232*** 
(0.064) 

- 0.176*** 
(0.043) 

- 

701'0"-7*1-,',8*-,$". # - - - 0.099* 
(0.042) 

- 0.265** 
(0.08) 

/012,'0!""$2*-,$"!" ∗
9,):;!<!"#$%&'ℎ)$*+,-,$"!	

.
 -0.771*** 

(0.065) 
-0.524* 
(0.215) 

-1.063*** 
(0.238) 

- -0.396*** 
(0.102) 

- 

/012,'0!""$2*-,$"!" ∗
701'0"-7*1-,',8*-,$"!

.
 - - - -0.171** 

(0.063) 
- -0.356*** 

(0.088) 

BinAvgDisti 
0.043*** 
(0.007) 

0.049** 
(0.015) 

0.101* 
(0.047) 

0.045*** 
(0.013) 

- - 

BinMedDisti - - - - 0.136*** 
(0.029) 

0.068*** 
(0.016) 

ServiceInnovationit 
*BinAvgDisti 

-0.167*** 
(0.017) 

-0.191** 
(0.074) 

-0.251** 
(0.083) 

-0.061* 
(0.025) 

- - 

ServiceInnovationit 
*BinMedDisti - - - - -0.228*** 

(0.054) 
-0.113*** 

(0.026) 

ln(AvgDemandit) 
0.014*** 
(0.001) 

 

0.019*** 
(0.004) 

0.005+ 
(0.003) 

0.025*** 
(0.002) 

0.018*** 
(0.003) 

0.019*** 
(0.003) 

Time Controls Day-Week Day-Week Day-Week Day-Week Day-Week Day-Week 

Prop. Score Weighting Yes Yes Yes Yes Yes Yes 

Observations 735 735 735 735 735 735 

Wald chi-square 197211.62 1024.78 58.42 982.68 1101.25 1101.25 

Number of systems 15 15 15 15 15 15 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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2.5.5.Additional robustness checks 

 It is possible that there may be within health system heterogeneity that may explain the 

variance in the dependent variable. Hence, we conduct additional robustness check to account for 

potential within health system differences. We collected data on the number of staffed beds in each 

of the hospital in a health system. Varying number of beds in the affiliated hospitals of a health 

system can introduce within health system heterogeneity. Additionally, the number of COVID-19 

cases handled by different affiliated hospitals can also introduce heterogeneity. To account for 

these within health system heterogeneity, we control for the standard deviation of these variables. 

We refer to these variables as StdStaffedBedsi, and StdDemandit, respectively. We normalized 

StdDemandit by taking a natural log transformation of the variable.  

The results of our analysis are presented in Table 2.8. In column 1 we present the result 

from the propensity score weighted difference-in-difference analysis. The effect of the service 

innovation adoption is negative and significant (α1 = -0.017, p<0.05) which is in accord with our 

main result. Column 2 presents the direct effect of endogeneity corrected InfoExchCoalitioni 

variable that captures the community health information exchange. The effect of 

InfoExchCoalitioni is negative and significant (b1 = -0.065, p<0.001), which is similar to our main 

results. In column 3 we present the propensity score weighted treatment effect of BinAvgDisti. The 

effect of average distance is positive and significant (α1 = 0.0253, p<0.001) in concert with our 

main results. In column 4 we provide the results from propensity score weighted difference-in-

difference analysis of the service innovation adoption (i.e., the variable ServiceInnovationit) that 

involves both the interaction terms. Please note that we consider InfoExchCoalitioni and 

InfoExchCoalitioni*ServiceInnovationit as endogenous variables and undertake endogeneity 

correction by using instrumental variables similar to the main results presented in the paper. As 
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before the instruments are strong and relevant. We present the results from the two stage panel-

data linear model by using feasible generalized least squares (xtgls) regression in column 4. We 

find that the coefficient of the interaction term, ServiceInnovationit * InfoExchCoalitioni, is 

negative and significant (b4 = -0.237, p<0.01). Further, we find that the coefficient of the 

interaction term, ServiceInnovationit*BinAvgDisti, is negative and significant (b5 = -0.107, 

p<0.05). These results are consistent with our main results. 
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Table 2.8 Controlling for within health system heterogeneity in the models 

Variables 

(1) 

ln(BedUtilizati

on) 

(2) 

ln(BedUtilizati

on) 

(IV corrected) 

(3) 

ln(BedUtilizati

on) 

(4) 

ln(BedUtilization) 

(With moderators; 

IV corrected) 

ServiceInnovationit 
-0.017* 

(0.007) 
- 

- 0.209** 

(0.068) 

BinAvgDisti - - 
0.025*** 

(0.005) 

0.052*** 

(0.014) 

InfoExchCoalitioni - 
-0.052** 

(0.018) 

- 0.029 

(0.031) 

InfoExchCoalitioni 
XServiceInnovationit 

- - 
- -0.237** 

(0.075) 

ServiceInnovationit 

XBinAvgDisti 
- - 

- -0.107* 

(0.049) 
ln(AvgDemandit) 

(weighted in case of propensity score 
matching) 

0.022*** 

(0.003) 

0.033*** 

(0.007) 

0.027*** 

(0.004) 

0.021*** 

(0.005) 

IPCit - 
0.0006 

(0.0006) 

- - 

Facilityit - 
0.001** 

(0.0004) 

- - 

AvgStaffedBedsi - 
0.0001* 

(0.00005) 

- - 

AffiiliatedHospitalsi - 
0.002+ 

(0.001) 

- - 

ln(AvgPopulationi) - 
-0.019** 

(0.007)) 

- - 

StdStaffedBedsi 
-0.0001+ 

(0.00003) 

-0.0001 

(0.00006) 

--0.0001*** 

(0.00003) 

0.0001 

(0.0001) 

ln(StdDemandi) 0.006* 

(0.003) 

0.003 

(0.003) 

-0.0010 

(0.0035) 

0.002 

(0.0035) 

Time Fixed Effects Yes Yes Yes Yes 

Prop. Score Weighting Yes No Yes Yes 

Observations 735 735 735 735 

Wald chi-square 1087 1403.41 1292.13 1056.22 

p-value 0.00 0.000 0.00 0.00 
Number of systems 15 15 15 15 

 

2.6. Discussion 

2.6.1. Theoretical Contribution and Implications 

 The results of our study contribute to three distinct streams of literatures. First, we inform 

the service innovation literature (Fang et al., 2008; Neely, 2008; Kastalli and Looy, 2013; Tong 

et. al., 2016; Witell et. al., 2016; Berry, 2019), particularly to the stream of research that considers 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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service innovation in health care context involving novel procedures (Sahu et. al., 2020; Tong et. 

al., 2016; Tucker et. al., 2007). In the context of the ongoing pandemic, our research uses 

propensity score weighting approach to create a quasi-experimental setup that takes into account 

multiple endogeneity issues and provides an unbiased estimation of the effect of service innovation 

on ICU bed capacity utilization. Different health systems adopted the CPT service innovation at 

different times, which enables us to study the variance of the impact of the service innovation on 

intensive care bed utilization related to virulent patient hospitalization. The results of the study 

suggest that health systems that adopted the service innovation during the uncertain times 

presented by the pandemic were able to lower the ICU bed utilization due to COVID-19 

hospitalization.  

Second, we contribute to the understanding of the impact of community-based HIE 

(Fontaine et. al., 2010; Everson, 2017) on intensive care bed utilization directly as well as its 

moderating role on the relationship between service innovation and intensive care bed utilization. 

The results of the study show that by participating in an information exchange coalition, health 

systems were able to reduce the ICU bed utilization due to virulent patient admission. Additionally, 

we found that the effect of adoption of the service innovation in reducing bed utilization is stronger 

when a health system, that adopted the service innovation, also participated in Mi-COVID19 

registry.  

Third, add to the geographic proximity literature (Howells, 2002; Letaifa and Rabeau, 

2013; Knoben and Oerlemans, 2006) and show that while, in general, closer proximity of affiliated 

hospitals within a health system reduces intensive care bed utilization, this effect is reversed when 

a health system also introduces service innovation. We find that health systems with less distance 

among associated hospitals observed an increase in ICU bed capacity utilization due to the service 
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innovation. These are novel findings and provide additional understanding of how geographic 

proximity of affiliated hospitals of a health system can have both positive and negative impact on 

outcome.  

By integrating service innovation, information sharing coalition, and geographic proximity 

within an overarching theoretical framework provided by OIPT, we critically examine the roles 

played by external and internal information sharing structures in strengthening the outcome of 

innovation efforts. Consideration of these distinct information sharing structures help in extending 

the underlying predictions of OIPT. A coalition of peer organizations provide the external 

information sharing structure that can help with managing uncertain times. Environmental 

uncertainty, such as a pandemic, impacts all organizations and having access to external 

information sharing structures enables access to a wide range of information that an organization 

can process to distill the requisite insights for handling the situation. Innovative service offerings 

aimed at addressing environmental uncertainty are characterized by complexities pertaining to 

overall planning as well as process management. Information sharing coalitions provide the 

required structure for learning spillovers (Thornton and Thompson, 2001)  

Although dense network structure and the associated distribution of information is valuable 

for accomplishing routine tasks, the complexity and uncertainty brought about by a new service 

offering add constraints to the ease and quality of information sharing. Clinical handoffs when 

administering health service innovation require smooth transfer of patient information and 

knowledge, along with a transfer of authority and responsibility between two clinical care team 

(Batt et. al., 2019). These smooth transfers are often difficult, especially when the uncertainty of 

external environment combines with the complexity and uncertainty associated with offering a 
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new service. In such situations, information can get lost during handoffs, thereby impacting the 

information processing capability of the organizations.  

 The results of our study are generalizable to contexts beyond health care and inform theory 

about managing tasks with uncertain steps or tasks performed in uncertain environment. Such 

situations can result in various settings. As an example, in humanitarian relief operations disaster 

response could entail new service delivery mechanisms that would depend on the quality of 

information shared among the participants in a cluster (Altay and Pal 2014; McGuire and Silvia 

2010; Koliba et al. 2011). Similarly, studies focusing on manufacturing plants (Wiengarten and 

Longoni 2018), retail organizations (Ramanathan, 2012; Li and Zhang, 2008), and projects 

(Grewal et al. 2006) that are embedded in a network can also leverage lateral communication to 

manage innovation efforts by sharing relevant information.  

2.6.2. Managerial and Policy Implications 

 Our study offers important insights to health system administrators. The results show that 

by adopting the service innovation, a health system can reduce COVID-19 related intensive care 

bed utilization by about 2.57% (Table 2.3, Column 2). This effect is of great significance to a 

health system. For instance, one of the largest health systems in Michigan that was part of our 

dataset and didn’t adopt the CPT during the time-frame of our data collection, has made available 

169 beds for intensive care delivery. On 12th Nov 2020, the bed utilization due to COVID-19 

patient hospitalization in the system was 46.15%, which translates to 78 COVID-19 patients 

admitted to ICU. If the system had adopted the service innovation, then on the same day the system 

would have registered 2 less intensive care beds along with required critical care staffing which 

the system could have made available for critical care delivery that is not aimed at COVID-19 

patients. However, health care managers should be aware that the decision to implement such 
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novel services often comes with multiple administrative challenges, and the outcome of a therapy 

often depends on the decision making ability of HCPs.  

Our study considered the role played by a health system’s participation in health 

information exchange initiative and informs practitioners how to leverage such initiatives. We 

show that participation of health systems in the HIE initiative is associated with 6.49% lower ICU 

bed utilization as compared to those who did not participate (Table 2.4, Column 2). This 

information is of great relevance to another big health care system within our dataset that never 

participated in the information echange coalition initiative. For example, on 2nd Nov 2020 this 

health system reported COVID-19 patient hospitalization related ICU bed utilization at 19.92%. 

Given that the health system has a total of 271 beds, the total number of COVID-19 patients 

admitted to ICU on that day was 54 patients. Participation in the information echange coalition 

would have enabled the health system to free up at least 3 beds allocated to treating COVID 

patients. 

Practitioners should realize that participation of health system in HIE initiatives, like Mi-

COVID19, provides the system an opportunity to look beyond its boundary and learn from other 

health systems. An information exchange coalition provides a structure for acquiring external 

information that a health system can leverage. Such information may enable health systems to 

develop more robust procedures to offer innovative services. Our results show that the effect of 

adopting service innovation associated with the CPT on decreasing ICU bed utilization is stronger 

when a system has participated in the information exchange coalition (Table 2.6, Column 3). A 

health system that has adopted the service innovation at some point in time and has participated in 

the health information exchange coalition initiative would be able to reduce bed utilization by 

23.71%, ceteris paribus, as compared to a health system that has not participated in the initiative. 
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If the health system in our dataset with 271 beds had adopted the service innovation on 19th April 

2020, participation in the information exchange coalition by this health system would have freed 

up at least 12 more ICU beds.  

The positive moderating effect of the participation in the health information exchange 

coalition on the relationship is evident in the interaction plot in Figure 2.3. The figure shows that 

if a health system does not participate in such initiatives over time, it may lose the advantage of 

using service innovation. Our findings suggest that to reap the benefits of a service innovation, 

health systems should develop mechanisms to connect with multiple outside entities and learn how 

they can continue to improve their processes. For example, health system managers may want to 

build relationships with blood banks across the country to ensure steady supply of plasma 

necessary for the therapy. The health systems may also want to touch base with patients, who were 

once admitted to the system due to COVID-19 complications but are now virus-free, to solicitate 

plasma donation. Our study motivates health systems to incentivize active participation or HCPs 

in information sharing coalitions to learn best practices so as to treat virulent patients better and 

faster 

Figure 2.3 Moderation Effect of Information Exchange Coalition on the relationship between 
Service Innovation and ICU Bed Utilization 
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Our study informs healthcare administrators about the ways to leverage the geographical 

distribution of the affiliated hospitals. Results suggest that health systems in which affliliated 

hospitals are more closely located, on average, have 2.53% lower COVID-19 patient 

hospitalization related ICU bed utilization (Table 2.5, Column 2). To understand how the bed 

utilization increases due to per mile increase in average distance between affiliated hospitals in a 

system, we consider column 5 of Table 2.5 that reports the average distance between affiliated 

hospitals of a health system as a continuous variable. We find that if the average distance increases 

by one mile, it increases bed utilization by 0.89%, ceteris paribus. Health systems with closely 

located affiliated hospitals may share HCPs among these hospitals, which creates an opportunity 

for even distribution of knowledge across the system. They can also transfer patients, which 

enables a hospital to create homogeneity in capacity utilization across the system. As such the 

entire system can come together to offer better and faster treatment against the infection and reduce 

the intensive care bed utilization in the process. 

However, we also show that when health systems with close proximity of affiliated 

hospitals implement the CPT service innovation, the effectiveness of the procedure decreases by 

8.9% (Table 2.6, Column 3). The interaction plot in Figure 2.4 depicts the negative moderating 

effect of the geographic proximity.  This implies that when a system decides on administering 

service innovation, it should enhance provider continuity of care to avoid miscommunication and 

other issues related to handoffs. The likelihood of patient and HCP transfers are higher when 

affiliated hospitals are closely located, and this can impede the continuity of care that is particularly 

needed when new services are introduced (Van Walraven et. al., 2010). 
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Figure 2.4 Moderation Effect of Geographic Proximity on the relationship between Service 
Innovation and ICU Bed Utilization 

 

The interesting fact that Figure 2.4 depicts is that, overall, a health system is better off 

having affiliated hospitals closeby. However, such advantage wanes when the hospital decides to 

introduce additional complexity in the form of new service innovation. It is plausible that when a 

health system decides to adopt a new therapy, it sets guidelines and associated processes that the 

affiliated hospitals need to follow when administering the treatment. Our study suggests that the 

marginal increase in risks due to incorrect handoffs of responsibility and information about patients 

undergoing a new therapy tend to outweigh the gains of even distribution of clinical and 

administrative information across the system. The findings motivate health systems to invest in 

and leverage internal IT systems like electronic health record to update patient records in a 

comprehensive manner, especially when they adopt and administer a service innovation.  

 Our study also provides some policy implications. First, the results of this study motivate 

policymakers to develop statewide policy of pooling information when a service innovation is 

introduced during uncertain times such as a pandemic. For instance, information about plasma 

inventory at the blood banks and apheresis centers across the states could help health systems to 



 73 

reap benefit from the CPT service innovation. One of main challenges of administering the CPT 

is to ensure steady supply of liquid plasma. During the timeframe of this research, the country 

witnessed severe scarcity of plasma. To ensure steady supply of plasma, health systems have been 

collecting plasma from COVID-19 patients who have been treated for the disease. Hospitals and 

blood banks managed their own inventories, and this decentralized setup potentially increases the 

likelihood of mismatch of demand and supply. Setting up an information registry that keeps track 

of inventory levels of plasma across facilities in a state would help in mitigating this issue. Such a 

registry can enable health systems experiencing high COVID-19 patient admissions to procure 

plasma from hospitals that may have excess plasma inventory. Policymakers should proactively 

establish such information exchange initiatives and encourage competing health systems to share 

information. Additionally, policymakers should consider forming an analytics team whose task is 

to uncover best practices that participating health systems have been pursuing to effectively 

manage their care capacity.  

2.6.3. Limitations and Directions for Future Research  

 This study has few limitations that provide opportunities for future research. First, our 

study focuses on health systems in the state of Michigan, which limits us from capturing locational 

heterogeneity. Future research should study the relationships across multiple states or even 

countries. A second limitation is that we had to rely on news articles to inform us about different 

operational variables that we had controlled for. We provide transparency regarding our data 

collection approach and ensured that the data was carefully collated and analyzed so that we do 

not miss any important operational aspects. We were unable to capture specific instances of patient 

and HCP transfers within and outside of health systems. Understanding of such instances would 

have allowed us to shed further light on our research objectives. Given the paucity of such data, 
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future research could undertake in-depth case-studies to understand the activities that health 

systems have undertaken and how these activities impacted their intensive care capacity. Although 

the effects of service innovation, information exchange and geographic proximity on capacity are 

not limited to healthcare, the third limitation of our study stems from the fact that the data 

considered in our study focuses on critical health care services. Future research should investigate 

how these relationships hold in a different industry context. Fourth, our research objectives aimed 

at clearly discerning the differential role of external (the information exchange coalition) and 

internal (geographic proximity) information sharing structures on increasing the effectiveness of 

service innovation. We do not investigate the joint effect of these information sharing structures 

due to the lack of a clear theoretical foundation. Theory development and empirical investigation 

of the joint effect present promising avenues for future research.  

 In conclusion, this study undertakes an integrated investigation of factors influencing 

intensive care bed capacity in health systems. Since new service innovations, such as the CPT. 

come with a set of challenges that can be attributed to a lack of evidence of benefits, scarce 

organizational knowledge and multiple operational and logistical considerations, our study 

presents directions to strengthen the effect of service innovations. Our findings advance theory 

and practice of managing capacity in situations when organizations are faced by disruptions that 

are characterized by long-term uncertain demand and where there is a lack of capabilities and 

resources to address the demand.
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3. Chapter 3: Growing the Vaccine Distribution Network During a Pandemic: Implications for 

Increasing Access  

 
3.1. Introduction 

 “Let’s be clear, we are at war with the virus (SARS-CoV-2). And if you are at war 

with the virus, we need to deal with our weapons with rules of a war economy, and we 

are not yet there. And this is true for vaccines.....” ~ António Guterres, UN Secretary-

General16. 

  

Indeed, vaccines are one of the important interventions to manage a pandemic like the one 

caused by SARS-CoV-2 (henceforth, COVID-19) (Duijzer et. al., 2018). After the COVID-19 

pandemic struck, medical researchers rapidly developed vaccines to control the pandemic. On 11th 

December 2020 the Food and Drug Administration (FDA) granted emergency use authorization 

(EUA) to BNT162b2, the vaccine developed by Pfizer, Inc. and BioNTech17. Eventually, two more 

vaccine candidates, aka mRNA-1273 by Moderna, Inc and JNJ-78436735 by Janssen 

Pharmaceuticals Companies of Johnson & Johnson (JnJ), were granted EUA by FDA. The 

vaccination campaign involving federal, state, and local governments entities and private providers 

began in the U.S. on December 14, 2020.  Depending on vaccine manufacturing capacity, the 

federal government procured and allocated vaccines throughout the country by states and 

territories (Bushwick, 2021). Each of these jurisdictions, in turn, decided how to distribute 

vaccines to each vaccine provider by considering existing infrastructure and several provider 

specific parameters such as the vaccine inventory status at a facility. Vaccine providers estimate 

 
16 https://www.un.org/sg/en/content/sg/statement/2021-05-21/secretary-generals-statement-the-global-health-

summit-delivered  
17 https://www.ajmc.com/view/fda-agrees-to-eua-for-covid-19-vaccine-from-pfizer-biontech  
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the demand and place orders to planning authorities in the state or territory on an ongoing basis. 

These authorities compile and submit orders to a federal vaccine management system from where 

this information is passed on to the vaccine manufacturers (i.e., Pfizer, Moderna, JnJ) or the 

distributor (i.e., McKesson). These organizations proceed to fulfill orders to each of the providers 

so that they can inoculate people in the region. The information about vaccinations administered 

by these providers is then updated in the CDC vaccine tracking system (Bushwick, 2021).  

As supplies gradually caught up with the demand, policymakers started to make vaccines 

more accessible. On March 11, 2021, the federal government instructed states to make vaccines 

available to all adults 18 years and older by May 1, 202118. To increase the availability of vaccines 

and to make it more convenient for people to get inoculated, many states introduced two major 

infrastructural changes. First, state governments increased their vaccine provider network. For 

example, on March 2021 Blue Shield of California announced that the state’s enhanced COVID-

19 provider network would continue to expand as the state policymakers plan to double the number 

of vaccine providers in the coming weeks19. This raises the question of how the introduction of 

new vaccine providers in a region impact the vaccination rates of incumbent providers in that 

region. This is an important consideration since it provides information on the effectiveness of the 

expansion plan for administering vaccines. On one hand, if addition of new vaccine providers 

reduces vaccines administered by incumbent facilities, there is a substitution effect as also 

evidenced in the retail context (Pancras et. al., 2012). For example, Arcidiacono et. al. (2019) has 

shown that with the introduction of a Walmart supermarket within one mile of an incumbent 

supermarket, the market experienced a 16% drop in revenue due to the substitution effect. From a 

 
18 https://www.ajmc.com/view/a-timeline-of-covid-19-vaccine-developments-in-2021  
19 https://www.prnewswire.com/news-releases/californias-enhanced-covid-19-vaccine-provider-network-managed-

by-blue-shield-of-california-expands-enrolled-providers-reach-and-capacity-301251317.html  
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policy perspective this reduces the efficacy of newly added facilities in increasing the overall 

vaccination levels in a region. On the other hand, it is also possible that the addition of new 

facilities can enhance the capacity of the incumbent facilities (Landon et. al., 2018) to meet the 

increasing vaccine demand as these facilities can collaborate to understand demand (Rahal and 

Bouffard, 2020) or pool their resources (Murphy, 2021). Given the diversity of vaccine providers 

that range from those with higher capacity (e.g., hospitals) to those with lower capacity (e.g., 

pharmacies), it is also important to understand if these vaccine providers differ in terms of the 

relative impact on their vaccine administration levels with the introduction of new facilities in the 

region. Our research examines this issue and contributes to the literature of infrastructure scaling 

in health care (Mills et. al., 2018; Aanestad et. al., 2014) with a particular focus on pandemic 

(Gutierrez and Rubli, 2021). Further understanding of this issue can help policymakers to 

effectively allocate vaccines to providers to avoid wastages. It can also help vaccine providers to 

estimate demand better and to allocate resources more effectively towards the inoculation 

campaign. 

In addition to existing infrastructure provided by hospitals, local health departments, 

community clinics, medical practices, and pharmacies, several states have also opened vaccine 

‘super sites’ (vaccine hubs) with a goal to vaccinate thousands of people each day. These vaccine 

hubs substantially increase vaccination capacity of a region, but also raise the importance of 

carefully considering the location of these hubs when introducing new facilities in a region. The 

geo spatial distribution of vaccine hubs, with their extremely high vaccination capacity and 

dedicated infrastructure support, may impact the inoculation rates of smaller providers as it may 

share its infrastructure with the smaller providers to generate positive externality in the vaccine 

administration ecosystem. As a part of this research, we investigate how the number of vaccines 
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administered by a facility is impacted by its proximity to a vaccine hub. Addressing this issue can 

offer insights into how to geo-spatially structure vaccination sites by considering the distance from 

vaccine hubs. 

 To inform our research we carefully compiled a panel data from the Texas vaccination 

campaign for 1627 vaccine providing facilities. To examine the impact of the introduction of new 

facilities on vaccine administration levels of incumbent facilities, we performed a difference-in-

difference analysis by considering the introduction of new providers in a zip code as an exogenous 

intervention introduced by policymakers. To understand the effect of geo-spatial distance between 

a vaccine hub and a vaccine provider, we performed an instrumental variable analysis by 

considering the geo-spatial distance as an endogenous variable.  Our analysis indicates that with 

the introduction of one new provider in the zip code of the incumbent vaccine provider, the 

vaccination rate of the incumbent provider increases by about 7.5%. Further, vaccine providers 

that offer greater accessibility due to their relative proximity to the general population in a region, 

such as the pharmacies and medical clinics, benefit the most from the introduction of new providers 

in their zip code of operation. 

Our findings contribute to two distinct streams of literatures. First, we demonstrate that in 

the context of pandemic-induced uncertainty, a burgeoning ecosystem of vaccine providers does 

not have a substitution effect on the incumbent providers and does not negatively impact their 

vaccine administration abilities. Hence, our study shows that the mechanism in the healthcare 

context is distinct from that in the retailing context. We speculate that, unlike the retailing context 

where competition among retailers result in a substitutive effect on store sales, in the context of 

public health during a pandemic vaccine providers collaborate with each other and enhance their 

service capability to address the demand. This collaborative mechanism results in a 
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complementing effect, thereby increasing the vaccine administration rates of providers. In this 

regard, our research contributes to prior operations management (OM) research that deals with 

streamlining the downstream vaccine supply chains for better vaccine accessibility (Arifoğlu and 

Tang, 2021; Dai et. al., 2016; Araz et. al., 2012; Westerink-Duijzer et. al., 2020; Duijzer et. al., 

2018; Stamm et. al., 2017). Second, the finding regarding relatively higher benefits accrued by the 

pharmacies and medical clinics contributes to the literature on health care access (Ostermann and 

Vincent, 2019; Vahidnia et. al., 2009; Singh et. al., 2015).  

The rest of the paper is organized as follows. In section 2 we review the literature and develop 

our hypotheses. We present our research design in section 3 that details the data collection efforts, 

intervention setting, variables considered for this study, and the econometric approach including 

the identification strategy and description of the quasi-experimental design using propensity score 

matching. The results and robustness checks are presented in section 4 and in section 5 we discuss 

the implications of our study, limitations, and directions for future research. 

 

3.2. Literature Review and Hypothesis Development 

3.2.1. Literature Review 

 Existing OM literature on vaccine supply chain has primarily dealt with issues of vaccine 

shortages (e.g., Arifoğlu and Tang, 2021; Martin et. al., 2020) and vaccine yield uncertainty 

challenges (e.g., Deo and Corbett, 2009; Jansen and Özaltın, 2016). Studies focusing on vaccine 

allocation and last mile distribution issues within this stream of research is relatively sparse (e.g., 

Westerink-Duijzer et. al., 2020; Stamm et. al., 2017). Stamm et. al. (2017) report that there are 

significant geographical differences in vaccine accessibility across U.S. states. Araz et. al. (2012) 

suggests that demographic and spatial structures of communities should be factored in vaccination 
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policies. Duijzer et. al. (2018) studies effective allocation of vaccines in the context of a pandemic 

and limited vaccine stockpile. Our study extends this stream of research by… 

A stream of research that accords with our study relates to infrastructure scale-up. A significant 

portion of this literature base has investigated factors that determine the location of new facilities 

(He et. al., 2021; Holmes, 2008; Jia, 2008; Ellickson et. al., 2010; Luo and Sun, 2016; Liu et. al., 

2021). Some studies (e.g., Yu and Bayram 2021) have investigated how organizations plan scaling 

up of infrastructure. A set of studies have also examined the effects of infrastructure scale-up on 

organization performance. In the retail context, Arcidiacono et. al. (2019) demonstrates that 

introduction of a supermarket within a mile of an incumbent supermarket results in a 16% drop in 

revenue of the later. Ellickson et. al. (2010) shows the existence of differential competitive 

pressures depending on the type of discount retailer introduced in the area of operation of the 

incumbent retailers. In the healthcare context, Atasoy et. al. (2018) report that a positive spillover 

of demand from a hospital that has adopted electronic health record system to the neighboring 

hospitals that get introduced to the same health information exchange networks. Due to the ease 

of information flow and patient exchanges, the cost of care of these hospitals are lower. These 

studies investigate the impact of infrastructure scale-up in an environment of competition. Studies 

focusing on infrastructure scale-up have primarily considered competitive environment. We 

extend this literature base by considering the non-competing environment of vaccine 

administration by various facilities during a pandemic.    

Unlike for-profit retailers, vaccine providers forfeit economic gains in pursuit of promoting 

social welfare by administering vaccines to the population. In the presence of uncertainties of 

vaccine supply and demand, these providers often collaborate with each other autonomously to 

better manage the vaccine administration process and to make more vaccines available to the 
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community. For example, vaccine providers in Chapel Hill, North Carolina have been reported to 

share ultra-cold freezer space with each other to store doses of vaccines to vaccinate North 

Carolina population (Murphy, 2021). These collaborative practices create an ecosystem with 

positive externalities. Westerink-Duijzer et. al. (2020) analytically investigates the conditions in 

which autonomous cooperation among vaccine providers is possible. The study alludes to the 

formation of a sustainable vaccine provider ecosystem and reports cooperative arrangements 

between providers in the presence of supply and demand mismatch (e.g., by means of re-

distribution of vaccines). Our study further develops on this concept to understand how 

introduction of new vaccine providers boost the ecosystem in its goal of distributing more 

vaccines. 

Additionally, it is important to examine how positive externalities in a burgeoning vaccine 

provider ecosystem is shared among the providers depending on vaccine providers’ characteristics. 

In our study we examine two specific characteristics, namely the accessibility of the provider to 

the population and its distance from the vaccine hub. Accessibility of facilities has been a topic of 

research in extant literature. Leng et. al. (2013) develops a game-theoretic framework to determine 

the optimal pricing strategy that enables retailers share spaces under space-exchange strategy to 

increase accessibility of their products. To define spatial accessibility in health care context, 

Guagliardo (2004) suggests that the concept of spatial accessibility encompasses both the number 

of service providers in an area and travel impedance between patient location and service points. 

Travel impedance relates to the distance a patient must travel to reach a provider. We adopt the 

concept of travel impedance to define spatial accessibility of a vaccine provider. Groenewegen et. 

al. (2021) studies accessibility of primary care in 31 countries and identifies significant differences 

in accessibility across different countries and across general practices of varied characteristics. 
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Studies have examined the variance in the accessibility of endocrinologists in the US (Lu et. al., 

2015; Lu et. al. 2012) and how accessibility affects the probability of utilization of different health 

care services (Fortney et. al. 1995; Fortney et. al. 1999). However, to the best of our understanding, 

no study has investigated how spatial accessibility of a health care provider impacts the benefit 

that the provider derives from scaling up of vaccine provider ecosystem. This is an important area 

of investigation that is particularly relevant during a pandemic when policy makers take decisions 

to scale the infrastructure of vaccine distribution and create a vaccine provider ecosystem. Our 

study examines how a provider’s ability to administer vaccines in a region is influenced by the 

provider’s accessibility as the vaccine ecosystem evolves with the introduction of new providers 

in the region.  

In addition to the issue of access, geographic proximity of a facility to another relatively 

larger facility is also an important consideration for establishing a service delivery network. The 

retail literature has examined the impact of the proximity of a smaller organization with lower 

service capability to a larger competitor. In the seminal article, Reilly (1931) discusses the 

importance of distance to provide a framework that guides the distribution of consumers between 

two competing retailers. Converse (1949) refined the framework by accounting for the service 

capacity of the competing providers and suggests that consumers’ likelihood of visiting a provider 

is proportional to the service capacity of the provider. More recent literatures (Kabra et. al., 2020; 

Lim et. al., 2021) provides evidence that the distance between service providers with various 

capacity and consumers affects consumers’ choice. These studies suggest that the proximity of a 

smaller service provider to a larger provider can reduce its ability to service more consumers and 

lower its service rate. Ellickson et. al. (2020) shows that supermarkets (e.g., Walmart) draw 

demand away from the smaller grocery stores (e.g., Albertson’s) as compared to a big club retailer 
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(e.g., Costco). Arcidiacono et. al. (2019) demonstrate that with increasing distance between two 

supermarket retailers the substitution effect quickly decreases. Much of this research stream 

focuses on a competitive context where the providers vie for the same set of consumers. However, 

very few research studies have investigated how smaller provider may be affected by its proximity 

to larger providers in a non-competing environment (e.g., vaccine distribution, food redistribution 

effort) where providers might actively collaborate with each other. Mousa and Freeland-Graves 

(2017) provides evidence that a major food bank had collaborated with churches and government 

agencies to distribute food to food insecure population. Efficient food redistribution is enabled by 

the proximity of the agencies to the food bank. Facchini et. al. (2018) offers similar example to 

demonstrate that bigger charities enable smaller local charities to extend the social welfare through 

active resource redistribution. In the context of vaccine distribution, our study extends this stream 

of research by investigating whether the proximity of a larger provider to a smaller one enables 

the latter to appropriate positive externalities of a burgeoning vaccine provider ecosystem and help 

the smaller provider inoculate more people.  

 

3.3. Hypotheses Development 

3.3.1. Introduction of Newer Vaccine Providers and Incumbent Providers’ Vaccination Rate 

 The extant literature reports that vaccine providers increase total health benefits in a region 

by collaborating with each other (Westerink-Duijzer et. al., 2020; McQuillan et al., 2009). Vaccine 

providers generally collaborate in three major ways: by redistributing vaccines (CDC, 2021; 

Westerink-Duijzer et. al., 2020; Chen, 2017; Rahal and Bouffard, 2020), by sharing infrastructural 

resources (Murphy, 2021) and by sharing information (Rahal and Bouffard, 2020). These 

collaborative practices influence supply by making providers more efficient in managing their 



 84 

vaccine supplies. These collaborations form the basis of a networked vaccine provider ecosystem 

in a region that create positive externalities. For example, when hospitals collaborate by sharing 

labor and assets, it creates positive externalities in the form of information spillovers across 

hospitals and enables smoother information flow (Atasoy et. al. 2018). As new providers are 

added, these collaborative ecosystems tend to grow stronger (Coleman, 1988; Landon, 2017). The 

burgeoning ecosystem contributes to the pool of resources that existing providers can leverage to 

manage their vaccination efforts effectively. Consequently, we expect that an increase in the 

number of providers in an area and the consequent higher levels of vaccinations increase the 

average demand of vaccines that each provider in the area experiences. Accordingly, we 

hypothesize: 

H1: As newer providers are introduced in an area, the vaccine administration rate of incumbent 

facilities increases. 

 

3.3.2. Moderation effect of Vaccine Provider’s Accessibility 

 The goal of every health care provider is to provide quality service that is cheap and 

accessible to people. However, health care providers differ in terms of the complexity of the 

services that they provide. For example, hospitals are higher up in the service complexity spectrum 

as they deal with wide range of ailments. On the other hand, medical practices deliver primary care 

services to provide continuous and comprehensive care to patients20 and pharmacies primarily 

have the objective of making medicines, drugs, and vaccines widely available to people. The 

objective of providing high quality and complex services competes with the objective of greater 

access to the population in an area due to inherent tradeoffs. As the complexity of health care 

 
20 https://ccchclinic.com/importance-benefits-primary-health-care/ 
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services increase, there are increased risk of failures (Sharma et. al., 2019) and organizations tend 

to improve their processes by learning from the evidence that emerges from handling high volumes 

of cases (Finks et. al., 2011; Siemens et. al., 2020). To provide wide range of services, health care 

organizations such as hospitals resort to geo-spatial centralization that helps in pulling their 

resources together (Siemens et. al., 2020). Such centralization of services, however, increases the 

distance that patients have to travel to get health care services, thereby decreasing the level of 

accessibility (Ostermann and Vincent, 2019). Hence, we argue that complex health care service 

providers (e.g., hospitals) are more centralized, resource rich but less accessible as compared to 

health care service providers that are on the lower end of the service complexity spectrum such as 

pharmacies and medical practices.  

As an illustration, in the online supplement, we show that in one of the representative zip 

codes in the state of Texas (78550), pharmacies and medical practices are more evenly distributed 

within the region as compared to hospitals. We assert that, within the vaccination context, more 

accessible providers such as pharmacies and medical clinics would benefit more by the addition 

of new facilities in the region due to relative resource augmentation. As argued before, more 

accessible providers such as pharmacies and medical clinics typically have lower resource 

endowments at their disposal, which may lead to inefficient administration of vaccines. This can 

result in wastages of vaccines as has been noted in the popular press that reports that pharmacies 

such as Walgreens and CVS contributed toward 70% of the vaccine wastages in the country due 

to broken syringes and inappropriate cold storage of vaccines21. However, as the number of 

providers in a region increases, these smaller providers can share resources of larger providers in 

the burgeoning ecosystem of vaccine providers. For example, Murphy (2021) note that pharmacies 

 
21 https://www.npr.org/2021/05/09/995264941/cvs-walgreens-are-americas-epicenters-for-covid-19-vaccine-waste  
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and medical clinics in North Carolina accessed the ultra-cold freezer facilities made available by 

the University of North Carolina Health Care System (a large vaccine provider in the area) to 

vaccinate the local population. On the other hand, larger providers already have the required 

infrastructure to manage their vaccine administration efforts.  

Thus, we expect that the relative resource augmentation that these smaller and more 

accessible providers obtain from the positive externalities of an evolving ecosystem of vaccine 

providers is higher as compared to the value that more resourceful providers can derive. Smaller 

but more accessible providers can access the pooled resources to increase their vaccine 

administration capabilities. This enhanced capability may be needed to fulfil the increased demand 

that more accessible vaccine providers may experience as people may try to reach out to a venue 

that offers minimum travel impedance. Hence, we hypothesize that the level of accessibility of a 

provider will positively moderate the relationship between the increase in the number of providers 

in a region and an incumbent provider’s vaccination rate.  

H2: The relationship between the increase in number of vaccine providers in a region and vaccine 

administration rate of an incumbent provider is moderated by the incumbent’s level of 

accessibility. 

 

3.3.3. Moderation Effect of a Vaccine Provider’s Proximity to the Nearest Vaccine Hub 

Vaccine hubs are endowed with a robust infrastructure that enhances their capacity to 

vaccinate more people. Their purpose of establishment is to streamline their operations toward 

vaccinating more people in the community. Their abundant resource pool attracts smaller providers 

to connect to them in order to augment the limited inoculation infrastructure of these providers. 

The basis of this relationship is the need to access inoculation materials and related infrastructure. 
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The vaccine hub may leverage such relationship to assume the role of a relationship broker in the 

vaccine provider ecosystem. In this role, vaccine hubs can access information about these smaller 

providers and facilitate knowledge recombination by bridging the existing gaps (aka., structural 

holes) between these providers depending on their specific requirements (Burt, 1992; Burt, 2017; 

Lan et. al., 2020). 

Though the burgeoning vaccine provider ecosystem provides opportunities to the 

incumbent providers to collaborate with the newer providers and take advantage of their resources 

and infrastructure (as argued in H1), the ecosystem itself starts getting complex as more providers 

are introduced. Consequently, the marginal effort to maintain additional connections by a small 

provider increase. As such, if a vaccine hub in its proximity, the provider may only want to 

coordinate with the hub and exploit their enhanced status in the ecosystem as broker. Such 

preferential bridging of structural hole with another suitable provider by the hub, reduces the 

managerial effort by the provider considerably and it can focus on the inoculation efforts. Hence, 

a provider’s proximity to a vaccine hub enables it to manage its managerial resources better while 

maintaining connection to stronger resource pool in the burgeoning ecosystem when required, 

which may translate to higher inoculation capacity and subsequent inoculation rate. 

 

H3: The relationship between the introduction of new vaccine providers in an area and an 

incumbent provider’s vaccine administration rate strengthens with the incumbent 

provider’s proximity to the nearest vaccine hub. 
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3.4. Research Design 

3.4.1. Data 

The Center for Disease Control and Prevention (CDC) requires each state in the U.S. to report 

their vaccine administration data and the states, in turn, collect vaccine administration data from 

each of the vaccine providers. As shown in Figure S1 (online supplement), the country experienced 

steep vaccine uptake between February 28th and April 8th, 2021, which has been driven by the 

rapid scale-up of the vaccine administration infrastructure. We observe that Texas follows similar 

vaccine distribution curve with identical growth in vaccination rate between February 27th and 

April 10th, 2021, as shown in Figure S2 (online supplement). We identify this growth is attributed 

to the vaccine infrastructure ramp-up in the state. We intend to focus on this initial stage of 

infrastructure ramp-up to investigate the research questions. Hence, in our study we consider data 

from the state of Texas where the vaccination plan drafted by Texas Department of State Health 

Services (DSHS) requires each of the vaccine providers to report the number of vaccines they 

received, their vaccine inventory status, and any wastages that may have happened (DSHS, 2020). 

We started the data collection effort from February 26, 2021 and continued until 29th March 2021 

since after that date the DSHS stopped reporting total shipment of vaccines that a provider had 

received, a measure that is critical toward the estimation of daily vaccine administration by each 

provider. The DSHS portal reports two different datasets. The first dataset provides information 

about the number of vaccines allocated, number of vaccines administered, and the total number of 

people vaccinated in a county (at least one dose as well as fully vaccinated). The dataset also 

reports county demographics namely population above 16, population above 65, population of 

health care workers, population of long-term care residents, population between 16 and 64 with 

any medical condition, and population of education and childcare personnel for each of the 254 
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Texas counties. Daily cumulative data pertaining to the variables, except the demographic 

variables, were reported the next day after 4pm Central Time. We collated daily data indexed by 

date into our first database.  To calculate the number of daily doses of vaccine distributed by a 

county on a given day, we subtracted the cumulative measures of the number of vaccines 

distributed on the previous date from those reported on the given day.  

The second dataset captures vaccine provider level data i.e., the name of the vaccine 

providers, the type of the provider (e.g., pharmacy, hospital, etc.), the address of the provider, the 

zip code and the county of operation, the date of last update provided, the total number of vaccines 

shipped to the provider, and the inventory status of the three vaccines (Pfizer, Moderna and JnJ). 

The data reports the cumulative total number of vaccines that a provider had received on a given 

day. Since a random subset of vaccine providers received shipments each day and updated their 

records on the DSHS portal, we collected the data daily to keep track of these shipments. We 

collated these daily data to create our second database. This results in an unbalanced panel data 

since most of the providers had not received shipments of vaccines on each day in the time period 

considered for the study.  

We considered the address of each provider as the provider identifier since the names of 

some of the providers were not consistent across the periods of data collection. For the providers 

with missing addresses in the database, we searched online to get the information. We estimated 

the shipment that a provider had received on a given date by the difference of the cumulative total 

of vaccine received on that date and the cumulative total of the vaccine that the provider had 

reported on the previous date of updating the portal. The initial observations of all the providers in 

the database was dropped in the process. We use county-date as our level of analysis and merged 

the two databases. The data contains information about the type (Typei) of a provider i namely 
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vaccine hubs, hospitals, local health departments, community clinics, medical practices, 

pharmacies, and ‘others’. Since our study aims to examine how different types of providers are 

influenced by the addition of new providers in their vicinity, we dropped observations where the 

provider type was reported as ‘others’. We used ESRI geospatial cloud API to download additional 

county level demographics data of the state of Texas. Additionally, we used uszipcode module in 

Python to download several zip code specific variables.  

We calculated the number of vaccines administered by a vaccine provider, i, on a given 

date, t, (VacAdministered!") as per the following equation. 

-./012343567871!" =	;<=46>-./012343567871!" ∗ @.63<!"  (1) 

where, ;<=46>-./012343567871!" is the number of vaccines that the county in which i operates 

has administered at time t and @.63<!" is the ratio of total number of vaccine doses that provider i 

has received during a specified time interval. As the providers report their data at different time 

points, it is important to observe the shipments of each provider relative to that of other providers 

across a time interval to estimate @.63<!". Since different counties experience different demand 

for vaccines, it is possible that some providers may have to hold on to their vaccine stockpile 

longer than providers in counties that experience higher vaccine demand. We assumed that a 

provider had to replenish their vaccine inventory in, at least, 21 days which forms the basis of 

considering the time interval to calculate @.63<!" as per the following equation.  

@.63<!" =	
∑ -.//347@7/73B71!("$%&'))'
%*'

∑ ∑ -.//347@7/73B71+("$%&'),
+*'

)'
%*'

 

where VaccineReceivedit is the total number of vaccines that the provider i has received at time t. 

We used GoogleMap API in Python to download the coordinates of each provider 

corresponding to its address. For each provider we calculated the Haversine distance (Robusto, 

1957; Brinck et. al., 2017) between the provider and the nearest vaccine hub (with respect to the 
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provider) listed in the database (NearestHubit). McKesson was responsible for the distribution of 

Moderna and JnJ vaccines and ancillary kits for all the vaccines22. Pfizer vaccines were distributed 

by FedEx and UPS. McKesson also used FedEx and UPS as its logistics partners. Hence, we 

collected the address for all (six) McKesson warehouses and all (three) FedEx hubs, and the UPS 

hub in Texas. We calculated the average distance of each provider from all the McKesson 

warehouses (AvgDistMcKessoni) and the distances between each provider and the nearest FedEx 

hub (NearestFedExi) and UPS hub (DistUPSi) (with respect to the provider).  

During the period of our data collection, state policymakers started adding more providers 

to strengthen the vaccine provider ecosystem. For example, CVS added 74 new vaccination 

locations across Texas during this time period23. For every vaccine provider i in a zip code at time 

t, we calculated the total number of unique providers in a zip code area (ZIPUniqueProvidersit) by 

finding the number of providers within the zip code where i operates in the last 21 days. There 

may be four different scenarios associated with ZIPUniqueProvidersit. First, during the time 

interval considered in the study, a provider i may have witnessed no changes in 

ZIPUniqueProvidersit. We categorize these providers as Cat0. Second, a provider may have 

witnessed only increase in ZIPUniqueProvidersit over time. We categorize these providers as Cat1. 

Third, a provider may have witnessed only decrease in ZIPUniqueProvidersit. We categorize these 

providers as Cat2. Lastly, there may be a group of providers that may see both an increase and a 

decrease in ZIPUniqueProvidersit. We categorize these providers as Cat3.  

For every provider i at time t, we define Jumpit = ZIPUniqueProvidersit - 

ZIPUniqueProvidersit’, where t’ represents the time when we started collecting data on provider i. 

Hence, for a provider i in Cat0, Cat1, Cat2, or Cat3 in the time interval t, Jumpit is respectively 

 
22 https://www.mckesson.com/About-McKesson/COVID-19/Vaccine-Support/  
23 https://www.kxan.com/texas-coronavirus-vaccine/cvs-adding-74-more-covid-19-vaccine-sites-in-texas/  
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zero, an increasing function, a decreasing function or an increasing and decreasing function. It is 

important to note that the time when the jump occurs may vary across the providers which offers 

the required variance to econometrically estimate the effects. As we are estimating the effect of 

NearestHubit for a random provider i, we dropped the observations that relate to vaccine hubs. We 

dropped observations that had no values for county and zip code specific variables. The resulting 

unbalanced panel dataset contains 1639 unique providers spanning 12,950 observations. There are 

4424, 5911, 595 and 2020 observations corresponding to Cat0, Cat1, Cat2 and Cat3, respectively. 

 

3.4.2. Model Identification 

3.4.2.1. Difference-in-Difference Approach 

With the availability of more vaccines, state policymakers started adding new vaccine 

providers to different zip code areas to increase access to these vaccines. These additions are akin 

to exogenous vaccine supply shocks to incumbent providers. Hence, the interventions of 

introduction of new providers in the zip code of incumbent providers at different time points 

provides us a unique opportunity to study how the variance in additional provider introduction 

impacts the vaccination rate of incumbent vaccine providers. We use the difference-in-difference 

(DiD) approach with propensity score matching to estimate the effect size. The approach addresses 

potential endogeneity issues associated with policy makers’ decision to introduce additional 

vaccine providers in a zip code (for example, a purposive choice of introducing additional 

providers in a zip code may be due to the demographics of the location) (Angrist and Pischke, 

2008). Instances of recent application of DiD can be found in operations management literature 

(Scott et. al., 2020; Xue et. al., 2019). In the vaccine manufacturing context, Adbi et. al. (2019) 

studies the H1N1 pandemic response of domestic vaccine manufacturer as compared to that of 
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multi-national vaccine manufacturer by considering a natural quasi-experimental set up. To 

implement the DiD method in our research, we divided the data into the treatment group and the 

control group. The treatment group consists of vaccine providers in Cat1. Providers in Cat0, that 

experienced no provider addition in the zip code area, are part of the control group. The 

identification process was enabled by the intervention created by distinct variations (monotonic 

increasing versus zero) in the treatment and control groups. We do not use providers in Cat2 and 

Cat3 as the treatment group due to fewer observations and, hence, lower statistical power. 

However, we use providers in those categories as alternative operationalization of treatment group 

in the robustness checks. 

3.4.2.2. Quasi-Experimental Design: Propensity Scores Weighting 

Propensity score is the probability that an observation unit receives treatment conditional 

on the observed covariates. If our analysis considers the subpopulation of the observations with 

same propensity score, the overlap assumption is satisfied since it eliminates the bias in the 

estimation of average treatment effect. The propensity scores can be used as sampling weights in 

such a way that it reweights the treatment and control observations so that the overlap restriction 

is satisfied (Imbens and Woolridge, 2009; Hirano and Imbens, 2001; Bell et. al., 2018; Rosenbaum 

and Rubin, 1983). Following Imbens and Woolridge (2009), we use inverse propensity weights 

(IPW). We define, C(E, G) = 	 -.(/)0 +	 '$-
'$	.(/)0, where W = 1 indicates the vaccine providers in the 

treatment group and J(G)K is the estimated probability of being in the treatment group. To compute 

J(G)K we used the zip code population (ZipPopulationi), percentage of the type of provider i with 

respect to the total providers in its zip code at time t (PercentTypeProviderit), AvgDistMcKessoni, 

NearestFedExi, zip code population with full employment (ZipPopulationFulEmpi), zip code 

population that were enrolled in public school (ZipPopulationPublici), and population density 
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(2010 Census report) (ZipPopulationDensityi). We use a probit model to estimate the required 

probability of a vaccine provider being in the treatment group. After obtaining these weights, we 

estimate the DiD model by including these weights in the estimation.   

3.4.3. Estimation of the Direct Effects 

Our estimation approach addresses two potential issues in our data. First, there may always 

be the possibility of unconditional heteroskedasticity across the providers which needs to be 

explicitly modeled. We use panel ordinary least square regression (OLS) with heteroskedasticity 

robust inference clustered around unique vaccine provider id to address heteroskedasticity across 

the providers (Wooldridge, 2010). Second, there may be an average trend in the data that guides 

vaccination rate of a provider toward a certain direction. For example, it is possible that, over time, 

more vaccines become available which may enable each provider to vaccinate more people. Hence, 

we introduced time fixed effects to control for the time trend in the data. We performed our 

estimation using xtreg command in STATA 15. To satisfy the normality assumption, we 

transformed some of the variables by using natural log transformation. In case the lowest value of 

a variable is 0, we added 1 to the variable before normalization. We followed multiple steps before 

running the regression to estimate the hypothesized effects. First, we ran a probit model to obtain 

propensity score weights which is modeled as per the following equation,  

E! 	= L2 +	L'M3NO<N=P.63<4! +	L)O78/746Q>N7O8<B3178!" + L30BRS356T/U755<4! +

	L4V7.8756W71XG! +	L5M3NO<N=P.63<4W=PX2N! +	L6M3NO<N=P.63<4O=YP3/! +

	L7;<=46>O<N=P.63<4S74536>! +	Z!                                (2) 

 

Next, we used C(E, G) to derive the weighted variables to be used to estimate the direct 

effects by means of the following equation: 
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-./012343567871!" =	[!" +	\']=2N!" + \)ZIPUniqueProviders!"’ +

	\3O<N=P.63<40YB65! +	\4h4/<27! +	\5i<27-.P=7! +	\6X1=/066.34! +

	\7-.//347jℎ3NN71!" +	\9S.3P>;l-hS!" +	\:@=8.P! +	\'2j6<82! +

\''O<P363/.P! +	Q" +	Z!"   (3) 

  

where VacAdministeredit is the dependent variable and Jumpit is the independent variable as 

discussed before. We controlled for the zip code fixed effects using the following zip code specific 

demographics data: binary variable whether the zip code belongs to a rural area (Rurali), 

population above 65 years (PopulationAbv65i), median income of the zip code population 

(Incomei), median home value (HomeValuei), population above 25 years that have attained college 

education (EducAttaini). It is likely that there may be heterogeneity in vaccination rate across 

different providers due to the variation in total shipment received by a provider. Hence, we 

controlled for the total vaccine shipment that provider i received at time t (VaccineShippedit). We 

realize that the winter storm in the month of February 2021 may have impeded vaccination efforts 

of providers located in some of the counties. We considered a binary variable, Stormi, to control 

for this effect. Additionally, we controlled for the daily COVID-19 new infection count 

(DailyCOVIDit) in all the counties that the providers in our dataset belong to as well as the 

dominant political affiliations within the zip codes (Politicali).  

3.4.4. Estimation of the Moderation Effects: Two Stage Least Square (2SLS) Approach 

The reason that a vaccine provider will choose to locate near a vaccine hub may depend on 

multiple time-invariant and/or time-varying factors that we may not have exclusively captured. 

Hence, there may be omitted variable bias that may confound our understanding of the moderating 

effect of NearestHubit. To account for the endogeneity in NearestHubit, we run an instrumental 
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variable (IV) analysis where we use the radius of the ZIP code area (ZipRadiusi) in which provider 

i operates as the instrumental variable of the endogenous variable. The mean and standard 

deviation of ZipRadiusi are 10.38 miles and 8.21 miles, respectively. We considered 2SLS 

estimation method where in the first stage we estimate the variance in NearestHubit as explained 

by ZipRadiusi using equation 5. Introduction of a moderation term involving the endogenous 

variable (NearestHubitXJumpit) necessitated another instrumental variable (ZipRadiusiXJumpit) to 

be considered in the analysis. The first stage of the endogenous variable is estimated using equation 

6. In the second stage, we use the estimated variance, V7.8756i=YK !" and NearestHub;"p]=2N;"K , 

in the main model (equation 7) to estimate the unbiased effects of NearestHubit and 

NearestHubitXJumpit. A valid instrument should satisfy the relevance and exclusion restriction 

conditions (Wooldridge, 2010). In a smaller zip code, the population may be clustered in an area 

and to serve them vaccine providers may tend to co-locate. Hence, on average, distance between 

any two vaccine providers will be smaller than that in a bigger zip code area where population may 

be more spread out. As vaccine hub is a specific type of provider, we expect a strong positive 

relationship between NearestHubit and ZipRadiusi. Our assumptions are validated as the 

instrumental variables are highly significant with respect to the endogenous variables NearestHubit 

(b = 0.03, p < 0.001) and NearestHubitXJumpit (b = 0.04, p < 0.001) and the F-statistic associated 

with the first stage regressions are greater than 10 (F=234.19 & F=192.54; p<0.001), which 

satisfies the Stock and Yogo (2005) test.  

As exclusion restriction cannot be established econometrically, we provide logical reasoning 

and auxiliary analyses. The vaccination rate may depend on the following factors - supply of 

vaccines, efficiency of vaccine delivery, and demand. As per CDC and DSHS guidelines, supply 

of vaccines is a function of vaccine provider infrastructure, inventory capacity and highest number 
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of flu vaccines administered during peak flu season, which again relates to the demand of vaccines 

in the area. We do not see the first two criteria are related to the radius of the zip area. Efficiency 

of vaccine management is a provider centric criterion, which should not depend on how big the 

zip code area is. However, demand may depend on the size of the zip code area due to potential 

disproportional distribution of vaccine providers. To establish the fact that distribution of the 

vaccine providers in a zip code area is not a function of zip code radius we regressed 

ZIPUniqueProvidersit on ZipRadiusi after controlling for relevant zip and county specific 

variables. We find that the coefficient is not significant (ß = 0.01; p > 0.1). Hence, we establish, 

ex-ante, that ZipRadiusi do not impact demand that a vaccine provider may witness and thereby its 

rate of inoculation. Thus, we establish that exclusion restriction holds. We use the predicted values 

of NearestHubit and NearestHubitXJumpit	from equations 4 and 5, respectively. 

NearestHub!" =	[!" +	Y']=2N!" +	Y)]=2N!"pM3N@.13=5! 	+ 	Y3Q>N7! +

	Y4]=2N!"pQ>N7! + Y5ZIPUniqueProviders!"’ +	Y6O<N=P.63<40YB65! +

	Y7h4/<27! +	Y9i<27-.P=7! +	Y:X1=/066.34! +	Y'2-.//347jℎ3NN71!" +

	Y''S.3P>;l-hS!" +	Y')@=8.P! +	Y'3j6<82! + Y'4O<P363/.P! +	Y'5M3N@.13=5! +

	Q" +	Z!"  (4) 

 

NearestHub!"p]=2N!" =	[!" +	Y']=2N!" +	Y)]=2N!"pM3N@.13=5! 	+ 	Y3Q>N7! +

	Y4]=2N!"pQ>N7! + Y5ZIPUniqueProviders!"’ +	Y6O<N=P.63<40YB65! +

	Y7h4/<27! +	Y9i<27-.P=7! +	Y:X1=/066.34! +	Y'2-.//347jℎ3NN71!" +

	Y''S.3P>;l-hS!" +	Y')@=8.P! +	Y'3j6<82! + Y'4O<P363/.P! +	Y'5M3N@.13=5! +

	Q" +	Z!"  (5)  
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From these equations, we estimated the predicted variable V7.8756i=YK !" and 

NearestHub;"p]=2N;"K  and used them in second stage regression to estimate the moderation effect. 

Typei, another independent variable, is a categorical variable, and we consider hospital as the 

reference category to which the vaccination rate of providers i in other categories is compared. 

Our second stage equation is as follows:  

-./012343567871!" =	[!" +	Y'V7.8756i=YK !" +	Y)]=2N!" +

	Y3NearestHub;"p]=2N;"K 	+	Y4'Q>N7! . r</.Pi7.P6ℎS7N.862746	 +

	Y4)Q>N7! . ;<22=436>;P343/	 +	Y43Q>N7! . T713/.PO8./63/7	 +

	Y44Q>N7! . Oℎ.82./> +	Y5']=2N!"pQ>N7! . r</.Pi7.P6ℎS7N.862746	 +

	Y5)]=2N!"pQ>N7! . ;<22=436>;P343/ +	Y53]=2N!"pQ>N7! . T713/.PO8./63/7 +

	Y54]=2N!"pQ>N7! . Oℎ.82./> + Y6ZIPUniqueProviders!"’ +	Y7O<N=P.63<40YB65! +

	Y9h4/<27! +	Y:i<27-.P=7! +	Y'2X1=/066.34! +	Y''-.//347jℎ3NN71!" +

	Y')S.3P>;l-hS!" +	Y'3@=8.P! +	Y'4j6<82! + Y'5O<P363/.P! +	Q" +	Z!" (6) 

 

3.5. Results 

 The summary statistics of the variables used in this study is presented in Table 3.1. We 

observe that VacAdministeredit has a significant dispersion in data with mean at 68.89 vaccines 

administered each day and standard deviation of 258.17 vaccines which alludes to the presence of 

different types of vaccine providers with different inoculation capacities. Jumpit has a mean of 

almost 1 which seems to suggest that, on average, any vaccine provider has seen a new vaccine 

provider being introduced in its zip code of operation during the period of data collection.  We 

note that NearestHubit has a significant dispersion in data with a mean of 18.96 mi and a standard 

deviation of 19.51 mi. We find that each zip code in Texas has, on average, about three vaccine 
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providers (ZipUniqueProvideri has a mean value at 2.62). However, we observe significant 

variation in ZipUniqueProvideri (S.D. = 2.52) which suggests that some zip codes may have fewer 

or even no vaccine provider. We observe high correlation between NearestHubit and Rurali (s	= 

0.68) which suggests that, on average, vaccine hubs are situated farther from rural areas in Texas. 

3.5.1. Estimation of Direct Effects 

 In equation 3 if \'is significant and positive, the vaccination rate by a provider increases 

as newer providers are included in the ecosystem. The estimation results of equation 3 with 

propensity score adjustments are provided in Table 3.2(column 1). We find that the effect of 

]=2N!" is positive and significant (\) = 0.0725, p <0.05) which suggests that burgeoning vaccine 

provider ecosystem increases the vaccination rate of an incumbent provider. This lends support for 

hypothesis 1. The result is economically meaningful as it suggests that with each additional 

provider in the ecosystem, -.//347012343567871!" increases, on average, by approximately 

7.25%.  
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Table 3.1 Summary Statistics and Correlation Table 

# Variables Mean S.D 1 2 3 4 5 6 7 8 9 10 11 12 

1 VaccineAdministered 68.89 258.17 -            

2 NearestHub 18.96 19.15 -0.1* -           

3 Jump 0.99 1.5 0.02* -0.2* -          

4 ZIPUniqueProviders 2.62 2.52 0.1* -0.3* 0.24* -         

5 VaccineShipped 151.3 1093.01 0.49* -0.1* -0.01 0.05* -        

6 PopulationAbv65 2835.4 1856.98 -0.01 -0.3* 0.28* 0.45* 0.01 -       

7 Income 50798. 21767.4 0.001 -0.2* 0.2* 0.12* -0.01 0.06* -      

8 HomeValue 128552 82698.8 0.15* -0.3* 0.18* 0.23* 0.06* 0.09* 0.7* -     

9 EducAttain 3220.7 3316.64 -0.02 -0.2* 0.12* 0.22* 0.01 0.61* -0.3* -0.24 -    

10 DailyCOVID 139.35 273.66 0.12* -0.3* 0.01 0.08* 0.06* 0.11* 0.16* 0.26* 0.2* -   

11 Rural 0.36 0.48 -0.1* 0.7* -0.2* -0.3* -0.1* -0.3* -0.3* -0.4* -0.3* -0.4* -  

12 Storm 0.75 0.42 0.06* -0.5* 0.12* 0.14* 0.03* 0.21* 0.3* 0.3* 0.1* 0.3* -0.5* - 

13 Political 0.15 0.36 0.001 -0.1* 0.004 0.08* 0.01 0.16* -0.2* -0.1* 0.3* 0.01 -0.2* 0.1 
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3.5.2.Estimation of Moderation Effects 

The moderation effects of the independent variables have been estimated in equation 6. If b3 is 

significant and negative, !"#$"%&'()!" negatively moderates the relationship between Jumpit and 

*#++,-"./0,-,%&"$"/!". As 123"! is a categorical variable, moderation effect of each category 

needs to be measured with respect to a baseline category, the hospital. The coefficients )#$, )#%, 

)#& and )#' measure the moderation effect of local health departments, community clinics, medical 

practices, and pharmacies, respectively, on the relationship between Jumpit and 

*#++,-"./0,-,%&"$"/!" as compared to the hospital. Hence, for example, if )#' is significant 

and positive, then the effect of Jumpit on *#++,-"./0,-,%&"$"/!" is higher when the provider is 

a pharmacy as compared to the case when the provider is a hospital. Our results provide support 

for H2. 

The estimation results of equation 6 with propensity score adjustments are provided in Table 

3.2 (column 4). We find that the moderation effect of !"#$"%&'()!" on the relationship between 

Jumpit and *#++,-"./0,-,%&"$"/!" is not significant (b3 = -0.08; p > 0.05). Hence, we do not 

find support for hypothesis 3. Next, we find that the moderation effects of more accessible, but 

less resourceful vaccine providers, on the relationship between Jumpit and 

*#++,-"./0,-,%&"$"/!", on average, are higher than that of less accessible but more resourceful 

providers (e.g., hospitals) ()#' = 0.29, p < 0.05;	)#& = 0.21, p < 0.05; )#%= 0.17, p < 0.05). We find 

no significant differences in the moderation effect of local health departments as compared to that 

of a hospital ()#$= 0.09, p > 0.1). Hence, the results support hypothesis 3. Figures 3.1, 3.2 and 3.3 

illustrate these relationships. In Figure 3.1, we can see that when Type = Pharmacy, the relationship 

between Jumpit and *#++,-"./0,-,%&"$"/!" is strongest. However, the relationship is weaker in 

Figures 3.2 and 3.3 when Type = Medical Practice and Type = Community Clinic respectively. 
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However, in all these figures we can see that the relationship between Jumpit and 

*#++,-"./0,-,%&"$"/!" is stronger than when Type = Hospital. 

Table 3.2 Effect of Introduction of New Providers in Incumbent Provider Zip Code on 
Vaccination Rate 

Variables (1) 
VaccineAdministered 

(2) 
NearestHub 

(3) 
NearestHubXJump 

(4) 
VaccineAdministered 

!"#$"%&'()*  - 
- - 0.754+ 

(0.39) 

Jump 
0.0725** 
(0.025) 

-0.003 
(0.011) 

-0.061*** 
(0.012) 

-0.073 
(0.058) 

Type.Local Health 
Department 

- 
0.27* 

(0.136) 
-0.118 
(0.087) 

0.958* 
(0.478) 

Type.Community 
Clinic 

- 
-0.126 
(0.09) 

-0.053 
(0.043) 

-1.123** 
(0.327) 

Type.Medical Practice - 
-0.155+ 

(0.085) 
-0.016 
(0.045) 

-1.067** 
(0.339) 

Type.Pharmacy - 
-0.046 
(0.075) 

-0.023 
(0.039) 

-1.185*** 
(0.303) 

ZipRadius - 
0.026*** 
(0.007) 

-0.005*** 
(0.0012) 

- 

!"#$"%&'()+,(-.*  - 
- - -0.074 

(0.067) 

JumpXZIpRadius - 
-0.005*** 

(0.001) 
0.044*** 
(0.001) 

- 

JumpXType.Local 
Health Department 

- 
0.001 

(0.024) 
-0.049+ 

(0.029) 
0.092 

(0.109) 

JumpXType.Communit
y Clinic 

- 
0.014 

(0.0177) 
-0.096*** 

(0.021) 
0.173* 
(0.075) 

JumpXType.Medical 
Practice 

- 
0.025 

(0.017) 
-0.095*** 

(0.019) 
0.209* 
(0.077) 

JumpXType.Pharmacy - 
0.011 

(0.015) 
-0.07*** 
(0.017) 

0.295*** 
(0.072) 

ZIPUniqueProviders 
-0.361** 
(0.116) 

 

-0.138*** 
(0.03) 

-0.002 
(0.01) 

-0.273* 
(0.113) 

PopulationAbv65 
-0.262 
(0.233) 

0.051 
(0.054) 

-0.002 
(0.032) 

-0.192 
(0.244) 
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Table 3.2 (cont’d) 
 

Income 
-0.791* 
(0.366) 

1.053*** 
(0.117) 

0.002 
(0.053) 

-1.696** 
(0.591) 

HomeValue 
1.071* 
(0.393) 

-0.907*** 
(0.101) 

-0.009 
(0.062) 

1.799*** 
(0.552) 

EducAttain 
0.188 

(0.124) 

-0.154*** 
(0.034) 

0.019 
(0.015) 

0.244+ 
(0.137) 

VaccineShipped 
0.063*** 

(0.01) 

-0.004 
(0.003) 

-0.0004 
(0.001) 

0.067*** 
(0.009) 

DailyCOVID 
-0.04** 
(0.013) 

-0.0004 
(0.004) 

0.006*** 
(0.002) 

-0.027* 
(0.013) 

Rural 
0.325+ 
(0.189) 

1.145*** 
(0.095) 

0.581*** 
(0.045) 

-0.739 
(0.645) 

Storm 
-0.106 
(0.177) 

0.02 
(0.096) 

0.053 
(0.034) 

0.051 
(0.193) 

Political 
-0.344 
(0.214) 

0.334*** 
(0.065) 

-0.067+ 
(0.036) 

-0.534* 
(0.231) 

Time Controls Day Day Day Day 
Observations 10,232 10,232 10,232 10,232 

Number of Providers 1336 1336 1336 1336 

Wald chi-square 2019.75 3415 2747 2093.18 

R2 (within) 0.42 - - 0.4132 

R2 (between) 0.656 - - 0.6203 

R2 (Overall) 0.594 - - 0.6018 

\ 

 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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Figure 3.1 Moderation effect of Type = Pharmacies on the relationship between Jump and 
VaccineAdministered

 
 

Figure 3.2 Moderation effect of Type = Medical Practice on the relationship between Jump and 
VaccineAdministered 
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Figure 3.3 Moderation effect of Type = Community Clinics on the relationship between Jump 
and VaccineAdministered 

 

3.5.3. Robustness 

We conducted several additional analyses to ascertain the robustness of our findings. We 

present four robustness tests in this section and three additional robustness checks in the online 

supplement. 

3.5.3.1. Robustness 1: Setting up a New Treatment Group 

In the main analysis, we set up our pseudo-experiment by considering Cat0 as the control 

group and Cat1 as the treatment group. To test the robustness of the results, we now define the 

treatment group in different way. The treatment group now encompasses providers that belong to 

Cat1, Cat2 and Cat3. The new treatment group, now, offers higher variance in the Jumpit value as 

it includes the providers that experience increase and/or decrease in the total number of providers 

in the zip area of operation. The observations in both the groups have been propensity score 

weighted. Endogeneity in NearestHubit variable has been considered as earlier and instrumental 

variable corrected model has been estimated. The main effect results are reported in Table 3.3 
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column 1 and moderation effect results have been reported in column 2. The 5% statistics are 

significant for both models at 2156.74 and 2154 respectively. There are 1627 unique providers 

spanning about 12,839 observations. We find that the results agree with the main results.  

3.5.3.2. Robustness 2: Considering synthetic matching of zip codes across Treatment and Control 

Groups 

In our main analysis we had used propensity score matching to remove the systematic 

differences between the providers in the control versus providers in the treatment group. We 

considered certain provider specific (e.g., .678,%&9+:"%%;-!), zip code specific (e.g., 

<,3=;3(>#&,;-!) and county specific (e.g., ?;(-&2=;3(>#&,;-8"-%,&2!) variables to match two 

sets of providers synthetically. However, there may be confounding effects due to missing 

variables in our dataset. Hence, in this analysis we consider providers in both the control and 

treatment groups that belong to same zip codes. The providers in control group belong to Cat0 and 

the providers in treatment group belong to Cat1. We understand that the provider set in the pre-

test belonging to a zip code and the provider set in the post-test in the same zip code are disjoint 

sets, however, in all the analyses we control for the time trend in our model that captures any 

differences in time trend across these disjoint sets to give us an unbiased analysis. Endogeneity in 

NearestHubit variable have been addressed as earlier and an instrumental variable corrected model 

has been estimated. The main effect results are reported in Table 3.3 column 3 and moderation 

effect results are reported in column 4 of the same table. The 5% statistics are significant for both 

models at 1550.64 and 1583.42 respectively. We find 894 unique providers spanning 6907 

observations. We find that the results are similar to the main results with one minor differences. 

In column 8, we find that moderation effect of community clinics on effect between Jumpit and 

VaccineAdministeredit is not significant ()#% = 0.084; p > 0.1). 
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3.5.3.3. Robustness 3: Alternative Operationalization of Jump 

In all the previous analyses, we set up Jumpit in such a way that for the providers in the 

treatment group, the variable can assume any integer value once it flips from 0 as policymakers 

start adding new providers in the zip code. In that case, we can capture more variance in Jumpit 

that is necessary to explain the variance in the dependent variable. Now, we cast Jumpit in a more 

traditional quasi-experiment format; we call the new variable binJumpit. At certain point in time 

when new providers are added, binJumpit switches from 0 to 1 and assumes constant value then 

onward regardless of the number of providers being added. The point in time when the switch from 

0 to 1 happens marks the intervention point that may vary across different providers thus providing 

us enough variance in binJumpit to conduct our analysis. We considered providers in Cat1 in the 

treatment group and that in Cat0 in the control group. The observations in both the groups have 

been propensity score weighted. Endogeneity in NearestHubit variable has been considered and 

instrumental variable corrected model has been estimated. The main effect results are reported in 

Table 3.3 column 5 and moderation effect results are reported in column 6 of the same table. The 

5% statistics are significant for both models at 2035.64 and 2145.24 respectively. We find 1336 

unique providers spanning 10,232 observations. We find that the results are similar to the main 

results with one minor differences. In column 2, we find that moderation effect of community 

clinics on effect between Jumpit and VaccineAdministeredit is not significant ()#% = 0.389; p > 

0.1). 

3.5.3.4. Robustness 4: Alternative Estimation Methodology 

In the previous analyses, we used panel OLS to estimate the effects of the independent 

variables as the estimated dependent variable (VaccineAdministeredit) is continuous. It may be 

argued that number of vaccines administered should assume integer values. To this end, we 
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rounded VaccineAdministeredit to the nearest integer values and used panel negative binomial 

regression (xtnbreg in STATA 15.1) to estimate the effects of the independent variables on the 

newly constructed count dependent variable. We used xtnbreg to account for corner solutions in 

count VaccineAdministeredit at 0. The providers in control group belong to Cat0 and the providers 

in treatment group belong to Cat1. In this analysis we matched providers in the same zip codes in 

both the treatment and the control groups. We understand that the provider set in the pre-test 

belonging to a zip code and the provider set in the post-test in the same zip code are disjoint sets, 

however, in all the analyses we control for the time trend in our model that captures any differences 

in time trend across these disjoint sets to give us an unbiased analysis. Endogeneity in NearestHubit 

variable has been addressed as earlier and an instrumental variable corrected model has been 

estimated. The main effect results are reported in Table 3.3 column 7 and moderation effect results 

are reported in column 8 of the same table. The 5% statistics are significant for both models at 

2032.75 and 2180.36 respectively. We find 894 unique providers spanning 6907 observations. We 

find that the results agree with the main results.  
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Table 3.3 Robustness Checks 
 

Variables (1) 
DV 

(2) 
DV 

(3) 
DV 

(4) 
DV 

(5) 
DV 

(6) 
DV 

(7) 
DV 

(8) 
DV 

NearestHub - 1.263* 
(0.466) 

- 0.553+ 
(0.285) 

- 0.726+ 
(0.386) 

- -0.57*** 
(0.138) 

Jump 
0.059* 
(0.023) 

-0.081+ 
(0.042) 

0.075*** 
(0.018) 

-0.013 
(0.037) 

0.257*
* 

(0.095) 

-0.152 
(0.226) 

0.026*** 
(0.031) 

-0.048* 
(0.018) 

Type.Local Health 
Department 

- 
0.556 

(0.564) 
- 0.681* 

(0.256) 
- 0.922+ 

(0.507) 
- 0.201* 

(0.091) 

Type.Community Clinic - 
-1.183** 
(0.385) 

- -0.388* 
(0.157) 

- -1.163** 
(0.359) 

- -0.118+ 
(0.072) 

Type.Medical Practice - 
-1.27*** 
(0.388) 

- -0.491** 
(0.155) 

- -1.152** 
(0.386) 

- -0.038 
(0.062) 

Type.Pharmacy - 
-1.365*** 

(0.346) 
- -0.625*** 

(0.142) 
- -1.27*** 

(0.333) 
- -0.05 

(0.058) 

NearestHubXJump - 
0.013 

(0.078) 
- 0.05 

(0.12) 
- -0.214* 

(0.097) 
- 0.0003 

(0.029) 

JumpXType.Local Health 
Department 

- 
0.052 

(0.096) 
- 0.071 

(0.068) 
- 0.248 

(0.354) 
- -0.009 

(0.027) 

JumpXType.Community 
Clinic 

- 
0.179** 
(0.063) 

- 0.084 
(0.059) 

- 0.389 
(0.321) 

- 0.1*** 
(0.025) 

JumpXType.Medical 
Practice 

- 
0.18** 
(0.61) 

- 0.094+ 
(0.048) 

- 0.586+ 
(0.33) 

- 0.057* 
(0.021) 

JumpXType.Pharmacy - 
0.18*** 
(0.053) 

- 0.163*** 
(0.045) 

- 0.751** 
(0.255) 

- 0.114*** 
(0.021) 

ZIPUniqueProviders 
-0.47** 
(0.139) 

-0.201 
(0.133) 

-0.119+ 
(0.071) 

-0.032 
(0.112) 

-0.366** 
(0.115) 

-0.275* 
(0.11) 

0.146** 
(0.033) 

0.091* 
(0.044) 
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Table 3.3 (cont’d) 
 

PopulationAbv65 
0.134 

(0.199) 
0.225 

(0.234) 
-0.044 
(0.102) 

-0.0001 
(0.1) 

-0.258 
(0.232) 

-0.18 
(0.244) 

0.005 
(0.047) 

-0.05 
(0.048) 

Income 
-0.492 
(0.322) 

-2.055* 
(0.835) 

-0.609** 
(0.202) 

-1.037** 
(0.325) 

-0.788* 
(0.364) 

-1.678** 
(0.584) 

-0.3*** 
(0.066) 

0.128 
(0.139) 

HomeValue 
0.679* 
(0.284) 

2.002* 
(0.723) 

0.482** 
(0.176) 

0.848*** 
(0.231) 

1.068* 
(0.391) 

1.779** 
(0.547) 

0.291** 
(0.068) 

0.031 
(0.102) 

EducAttain 
-0.042 
(0.133) 

-0.006 
(0.148) 

0.066 
(0.069) 

0.065 
(0.076) 

0.185 
(0.123) 

0.237+ 
(0.136) 

-0.029 
(0.034) 

-0.012 
(0.037) 

VaccineShipped 
0.059** 
(0.016) 

0.063*** 
(0.011) 

0.048*** 
(0.005) 

0.046*** 
(0.005) 

0.064*** 
(0.009) 

0.068*** 
(0.009) 

0.04*** 
(0.003) 

0.041*** 
(0.004) 

DailyCOVID 
-0.124 
(0.205) 

-0.036* 
(0.016) 

-0.009 
(0.007) 

-0.01 
(0.008) 

-0.041** 
(0.013) 

-0.027* 
(0.013) 

0.013* 
(0.006) 

0.012+ 
(0.006) 

Rural 
0.115 

(0.184) 
-1.902* 
(0.762) 

0.101 
(0.098) 

-0.459 
(0.339) 

0.302 
(0.189) 

-0.642 
(0.624) 

-0.28*** 
(0.047) 

0.286+ 
(0.165) 

Storm 
-0.124 
(0.205) 

0.063 
(0.252) 

0.215* 
(0.094) 

0.272** 
(0.093) 

-0.109 
(0.177) 

0.024 
(0.191) 

0.36*** 
(0.043) 

0.318*** 
(0.044) 

Political 
-0.23 

(0.232) 
-0.453 
(0.299) 

-0.081 
(0.127) 

-0.075 
(0.125) 

-0.352 
(0.214) 

-0.546* 
(0.227) 

0.081 
(0.05) 

0.078 
(0.051) 

Time Controls Day Day Day Day Day Day Day Day 

Observations 12,839 12,839 6907 6907 10,232 10,232 6907 6907 

Number of Providers 1627 1627 894 894 1336 1336 894 894 

Wald chi-square 2156.74 2154 1550.64 1583.42 2035.64 2145.24 2032.75 2180.36 

R2 (within) 0.317 0.312 0.1912 0.1896 0.419 0.412 - - 

R2 (between) 0.734 0.625 0.0675 0.1343 0.656 0.624 - - 

R2 (Overall) 0.673 0.609 0.1029 0.1662 0.594 0.604 - - 

The standard error has been reported in the parenthesis. 
+.     p < 0.1 *      p < 0.05 **.   p < 0.005 ***. p < 0.001 
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3.6. Discussion 

Addition of vaccine providers in a region is expensive as it entails higher logistics and 

inventory costs and higher chances of wastages. However, having few vaccine providers in a 

region may contribute to low administration of vaccines to the population. Using a unique provider 

level vaccine administration data and treating addition of providers by the policymakers in Texas 

as exogenous shocks, we examine how additional providers in a zip code enhances incumbent 

vaccine providers’ vaccine administration rate as newer providers continue to contribute toward a 

collaborative ecosystem. We find that not all incumbent providers can uniformly appropriate the 

advantage created by additional vaccine providers. More accessible vaccine providers like 

pharmacies and medical practices tend to gain the most out of the burgeoning vaccine provider 

ecosystem. Our results further reveal that the distance between a provider and the nearest hub has 

no bearing on a provider’s ability to appropriate benefits from a burgeoning vaccine provider 

ecosystem. 

3.6.1. Theoretical Contribution 

We make several fundamental contributions to the extant literature. First, our findings 

contribute to the OM literature on downstream vaccine supply chains that has primarily looked at 

the allocation and administration of vaccines (e.g., Duijzer et. al., 2018; Stamm et. al., 2017; 

Westerink-Duijzer et. al., 2020) in the context of external uncertainties caused by an ongoing 

pandemic. Our findings provide novel empirical evidence that addition of new providers in the 

area increases the inoculation rate of the incumbent provider. In our study we explicate the 

underlying mechanism through which such increase in vaccination rate is enabled.  

Second, our study makes significant contribution to the stream of literature that has 

investigated the role of service accessibility in the health care context (e.g., Ikkersheim et. al., 
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2013; Beal et. al., 2020; Siemens et. al., 2020). Our findings inform extant research by showing 

that higher accessibility of health care providers often comes with a tradeoff of not having enough 

infrastructure to treat a high volume of patients. However, in the context of uncertainties 

introduced by a raging pandemic, accessibility of vaccine providers enables them to appropriate 

maximum leverage from collaborative vaccine ecosystem to inoculate more people. To the best of 

our knowledge, this is a novel finding that provides empirical evidence of how different providers 

offering varying levels of health care service accessibility achieve different positive externalities 

of a burgeoning vaccine provider ecosystem, and how this affects the inoculation rate of a vaccine 

provider. Our findings contribute to prior studies that have focused on enhancing the acceptability 

of novel pharmaceutical products when there is a tension between high product demand but higher 

degrees of information asymmetry about the product (e.g., Lenselink et. al., 2008; Henrich and 

Natalie, 2009; Sheldenkar et. al., 2019).  

Third, our study makes significant contribution to the OM and marketing literatures that have 

examined the impact of proximity of a smaller organization with lower service capability to a 

larger organization in a non-competing environment. Most of the studies in competing retail 

context suggest that the proximity of a smaller service provider to a larger provider can reduce its 

ability to service more consumers and lower its service rate (Reilly, 1931; Kabra et. al., 2020; Lim 

et. al., 2021). Our study informs literature that, in a non-competing environment, vaccine providers 

experience higher vaccination rate as they are situated farther from the nearest mass vaccination 

site. The results suggest that, on average, the vaccination rate of a provider increases by 0.75% as 

the provider moves 1% away from the vaccine hub. The finding runs counter to the example 

Facchini et. al. (2018) offers that depicts bigger charities enable smaller local charities to extend 

the social welfare through active resource redistribution. A possible explanation may be the 
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increased reliance of the population on a local vaccine hub (if present) which diminishes the 

importance of a nearby vaccine provider which has much lower vaccine administration capacity 

as compared to the hub. Our study provides no evidence that a vaccine hub helps an incumbent 

vaccine provider to extract positive externality from a burgeoning ecosystem.  

3.6.2. Implications to Policymakers 

The findings from our study have important implications for the public policymakers who 

are responsible for structuring the last-mile vaccine supply chain in the context of high vaccine 

information asymmetry to fight a raging pandemic with a goal of effective and efficient vaccine 

administration. The findings suggest that a burgeoning collaborative vaccine ecosystem helps 

providers to administer, on average, more vaccines every day. For instance, at a random zip code 

if policymakers approve one additional vaccine provider, the activity translates to 7.5% increase 

in vaccine administration rate by the incumbent providers which directly pushes the total national 

vaccination count toward the goal of total inoculation required for herd-immunity. For example, a 

generic vaccine provider (e.g., Memorial Hermann – The Woodlands) in Spring, TX (Zip Code: 

77380) administers, on average, 255 vaccine doses in a day. Following the introduction of a new 

provider in Spring, TX the provider is expected to experience, on average, around 19 more people 

to get vaccination each day which translates to 418 more people to get vaccinated in a month 

(excluding the holidays). Given the population of Spring, TX is 23,136, decision of policy makers 

enables a single incumbent provider to vaccinate about 1.8% of the population in a month. 

Additionally, our findings show that if the incumbent provider is more accessible to general 

population (e.g., medical practice or pharmacy), it experiences, on average, an additional 29.5% 

increase in inoculation rate as compared to what a lesser accessible hospital would have 

experienced, ceteris paribus.  
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Figures 3.4 and 3.5 explicate how the effect size of one new provider in Pearland, TX (Zip 

Code: 77584) on the incumbent providers vaccination levels differs based on the type of the 

provider. Provider vaccination rates have been standardized for easier comparison. Figure 3.4 plots 

the vaccination rates of a HEB pharmacy outlet across time whereas Figure 3.5 depicts the 

vaccination rate by HCA Houston Hospital. The arrow denotes the intervention of addition of new 

provider in Pearland, TX. The figures indicate that the shift in the trend of vaccination by the 

pharmacy is higher than the trend that we can see for the hospital. This finding has significant 

relevance for determining policies for structuring the vaccine administration network. Our findings 

suggest that policy makers should realize the potential of smaller but more accessible providers in 

their ability to mobilize their resources effectively to generate more social welfare by leveraging 

the positive externalities of provider ecosystem. Hence, policy makers should support smaller 

providers so that they can vaccinate more people to help combat the risk of infection from the 

virus. The Federal Retail Pharmacy Program introduced on 11th February 2021 is a step in this 

direction. The purpose of the initiative is to augment the state supply of vaccine to the participating 

pharmacies across the nation so that these pharmacies can have enough supply to vaccinate people. 

The goal of the program is to tap into the expertise of pharmacies to rapidly vaccinate American 

public24. This does not mean that more resourceful and bigger providers like hospitals are less 

important. They tend to provide the infrastructural backbone of the ecosystem that smaller 

providers can leverage to vaccinate more people.  

 

 

 

 
24 https://www.cdc.gov/vaccines/covid-19/retail-pharmacy-program/index.html  
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Figure 3.4 Vaccination Growth curve of a pharmacy in Pearland, TX 

 

Figure 3.5 Vaccination Growth curve of a hospital in Pearland, TX  

 

Our findings show that with a 10% increase in the distance between a generic vaccine provider 

and the nearest vaccine hub, the vaccination rate of the smaller provider increases by 7.54%. 

Hypothetically, if a vaccine provider in Dallas, TX, that is 10 mi away from the nearest vaccine 

hub, vaccinate 100 people every day, another provider in, suppose, Pearland, TX, that is 11 mi 

away from a vaccine hub should be able to vaccinate around 108 people in a day. Hence, in a 

month, the provider in Pearland should be able to get 176 more people inoculated, which is 

approximately 0.76% of Pearland population. The findings highlight the importance of considering 
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geo-spatial distribution of providers in an area in the decision-making process of selecting a 

location for the vaccine hub. Ideally, regional policymakers should select a site for vaccine hubs 

that is farther away from a local provider ecosystem. Our findings indicate that policymakers 

should consider establishing vaccine hubs in locations that are relatively underserved by vaccine 

providers. 

3.6.3. Limitations and Future Research 

There are a few limitations of this study that provide directions for future research. First, we 

calculated daily vaccine administration by assuming that the variable is a function of a county’s 

cumulative vaccine effort, vaccine allocation to the provider, provider infrastructure, and its ability 

to predict demand. However, due to the paucity of data, the estimation process does not account 

for inventory management practices and associated shrinkages. Future research should consider 

operationalizing this variable after accounting for inventory management practices. Second, our 

study focuses on vaccine providers in the state of Texas, which limits us from capturing 

heterogeneity across states as well as across other countries of the world. Future research should 

study the relationships across multiple states or even countries and thereby extend the boundary 

conditions of this research. Third, we used the argument that more vaccine providers enhance the 

positive externalities of the ecosystem as we assume that vaccine providers tend to collaborate 

with each other. We supported the assumption by providing instances of such collaboration across 

the U.S. However, our data does not capture any interaction between these providers explicitly. 

Future research should empirically investigate to what extent addition of providers impact the 

collaboration pattern of the existing network to understand the rise of positive externalities in the 

burgeoning provider ecosystem.  
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4. Chapter 4: Managing Trade-off between PPE Inventory and Patient Care Services: Do 

Isolation Wards Really Help? 

 

4.1. Introduction 

When the COVID-19 pandemic hit the country, personal protective equipment (PPE) quickly 

became critical asset for the hospitals as they struggled to maintain inventory to meet the required 

demand of providing care to the population. Eventually, as the supply of the PPE relatively 

stabilized, hospitals were loading up PPE in preparation of future peaks in hospitalization. Bigger 

hospitals and health systems pivoted to managing PPE inventory in a central warehouse with many 

days of inventory at hand. Due to the shorter shelf life of the PPE and the fact that these are not 

required in procedures that does not involve treating infectious patients, healthcare supply chain 

professionals fear that they might have to write off such inventory when the hospitalization rates 

due to the pandemic subsides. According to the vice president of supply chain at Henry Ford 

Hospital in Michigan: 

"....in five years healthcare would likely be at pre-covid levels. Typically, what will happen 

in lifecycle of healthcare is we will have a pandemic and we would invest in emergency 

preparedness and bulk up inventories and shove everything in the corner and then in 5 

years everything disintegrates when we pull it out ...academia could provide guidance how 

do we prevent the next supply chain shock wave (sic, bulking up of PPE inventory)" 

The opportunity cost of such events is detrimental for smaller independent hospitals. These 

hospitals cannot exercise enough power on the PPE suppliers to fulfill their demand as bigger 

hospitals pile on the PPE25. Consequently, these smaller hospitals are unable to protect their 

 
25 https://www.modernhealthcare.com/supply-chain/hospitals-say-theyre-better-prepared-ppe-spring-supply-chain-
uncertain  
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healthcare workers and the quality of care, eventually, deteriorates for these smaller hospitals. 

Often, these hospitals provide healthcare services that are accessible to the population unlike the 

bigger health systems which are more likely to cater to the urban population. Hence, such 

pandemic response practices by bigger hospitals may negatively impact public health. 

During a pandemic, higher bed occupancy levels are often characterized by high PPE demand 

uncertainties placed on the hospitals. The situation is particularly worse when the COVID-19 

hospitalization cases peaked. For example, Figure 4.1 depicts the relationship in one of the big 

Mid-western hospitals. We find that as the hospital experienced higher bed occupancy levels it 

maintained higher PPE (N95 in the figure) inventory (in days). However, the inventory level tends 

to trend down as the hospital experienced lower bed occupancy levels. As the hospitals witnessed 

higher bed occupancy levels procurement managers led the organization to store higher inventory 

to buffer against potential equipment shortage in case of potential shortage (Zepeda et. al. 2016; 

Fisher and Raman 1996). However, during the pandemic hospitals witnessed PPE supply shortage 

(Furman et. al. 2021). Hence, the hospitals may not load up on PPE inventory as much as they 

would want, and the relationship may not hold true. In fact, recent healthcare literature (Saha and 

Ray 2019) has demonstrated that hospitals that experience higher bed occupancy tend to have 

fewer equipment in their reserve during pandemic. 

Multiple practitioner outlets provide contradictory reports about the state of PPE inventories 

in hospitals as COVID-19 infection rates peaked. For example, Greene (2020) reported that 

multiple hospitals were able to build up their PPE inventories for about 90 days, whereas Jacobs 

(2020) has reported that during high bed occupancy rates in December 2020 healthcare workers 

faced daunting shortage of PPE. Our first research question seeks to answer this ambiguity: 
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RQ1: During a pandemic, do hospitals in a health system tend to build up more PPE inventory 

as their bed utilization rates go up?  

We collected the data on 101 hospitals as reported by Michigan Health and Human Services 

(MDHHS) and conducted an empirical investigation to answer the research question. We 

performed endogeneity corrected regression analysis after controlling for multiple hospital level 

control variables to demonstrate that for a group of hospitals the PPE inventory level indeed 

increases as the bed utilization rates of those hospitals went up. However, our analysis also 

demonstrates that for few hospitals (read, smaller hospitals) in our dataset the burgeoning bed 

occupancy decreases the PPE inventory levels. 

Figure 4.1 N95 Inventory Level and Bed Occupancy 
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The empirical result indicates an unsustainable healthcare practice of managing critical PPE 

inventory during a pandemic. If the healthcare practitioners respond to increasing care demand by 

bulking up the PPE inventory it may create twofold stress on the healthcare system. First, such 

practice may appreciate the price of the PPEs which may make treating patients costlier. Second, 

smaller hospitals may not be able to procure the required PPE inventory to protect their healthcare 

workers. Consequently, these hospitals, which often are more accessible to the marginalized 

communities, may fail to provide required service to the community. This may result in uneven 

distribution of healthcare services within the community. Fortunately, hospitals started adopting 

different practices to reduce the consumption of PPEs, while maintaining high quality care 

services.  

Using the insights gained from the investigation of the data, in the next phase of the study we 

conduct case studies wherein we interview supply managers and clinical practitioners from five of 

the biggest hospitals in Michigan to understand the policies that the hospitals have adopted which 

enabled them to maintain such high inventory levels despite higher care demand during the 

pandemic. The interviews revealed that hospitals adopted two distinct strategies to manage PPE 

inventory. First, the hospital administrators were able to locate alternative sources to procure the 

PPEs. Second, they were able to control the demand for PPE, primarily, by rearranging their 

internal assets. The interviews reveals that one of the ways in which the hospitals rearranged their 

assets is by creating an isolation ward to treat COVID-19 patients. This allows hospitals to de-pool 

existing free beds and resources to create isolation ward to accommodate only COVID-19 patients. 

These wards typically have dedicated beds and set of HCWs to treat COVID-19 patients. Access 

to these wards was controlled to prevent viral transmission among the patients in the isolation and 
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general wards. Depending on the demand and occupancy of the COVID-19 patients in the hospital 

the administration may decide to allocate proportional resources to these wards.  

Existing research on capacity/resource de-pooling offers contrasting view of the way capacity 

de-pooling can help managers to manage capacity and offer quality services. For example, in the 

humanitarian domain capacity de-pooling has led to inconsistent service offering that has increased 

the deprivation costs of the efforts undertaken (Eftekhar et. al. 2018; Natarajan and Swaminathan 

2014). On the other hand, capacity de-pooling has been demonstrated to increase service speed 

during high demand scenarios (Hu and Benjaafar 2009). Our next research objective of this study 

is to seek further insights to understand the conflicting findings in the literature. Specifically, this 

study aims to understand the tradeoff between the way hospitals manage PPE inventory and the 

quality of patient care services that the hospitals aim to achieve. To accomplish this research 

objective, we develop an agent-based simulation, grounded in practice by the feedback we received 

from clinicians, to model the care-giving operations of a generic hospital during the pandemic. We 

model the nosocomial transmission using the SEIR model (Mwalili et. al. 2020; Wan et. al. 2020; 

Pham et. al. 2021). Such a model helps us capture the evolution of quality and speed of patient 

care, and nosocomial propagation of the virus depending on the type of policies implemented by 

the hospital. We then use this model to compare between the scenario in which a hospital has 

established an isolation ward and the base scenario where a hospital has no isolation ward. We 

have four distinct metrics which forms the basis of the comparison – PPE inventory levels, number 

of patient rejections, and nosocomial transmission among patients and healthcare workers. The 

analysis of the simulation data provides some evidence of tradeoffs between the inventory 

management goals and quality of patient care services. 
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The rest of this essay is structured as follows. In section 4.2 we present the literature review of 

the effect of facility utilization on inventory management and resource de-pooling to provide an 

understanding of the state of the current literature about the topics of interest and find gaps in 

literature to position our study. In section 4.3 we explore, empirically, the effect of bed occupancy 

rates of hospitals on their PPE inventory levels. In section 4.4 we conduct case studies to explore 

the ways in which supply chain and clinical practitioners managed PPE inventory during pandemic 

and focus on the policy of establishing isolation wards in the hospitals. In section 4.5 we define 

agent-based simulation to explore the tradeoff among managing PPE inventory, patient care and 

care capacity involved in the creation of isolation wards in the hospital. In section 4.6 we discuss 

the theoretical and managerial implications of the study and conclude by identifying some 

limitations of the study and consequent future research avenues. 

 

4.2. Literature Review 

4.2.1. Facility Utilization and Inventory Management 

Utilization of facilities is a major factor influencing inventory management decisions in 

organizations (Lee et. al., 1997). During a pandemic, higher bed occupancy levels are often 

characterized by high PPE demand uncertainties placed on the hospitals. The situation is 

particularly worse when the COVID-19 hospitalization cases peak. Extant research in healthcare 

OM (Zepeda et. al. 2016; Fisher and Raman 1996) argues that the medical equipment inventory 

level and associated costs increases with increasing bed utilization during the time of uncertain 

demand. The studies suggest that procurement managers tend to lead the organizations to store 

higher inventory to buffer against potential equipment shortage. Sheehan et. al. (2020) provides a 

framework using which healthcare professionals can manage the relationship. The study shows 

that usage of lean methodology in healthcare operations may help mitigate the effect of bed 
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occupancy on the need to keep higher inventory levels. However, these studies assume that there 

is no supply constraint when procuring the items which may not be valid during the times when 

the pandemic was raging though the country. Research informing PPE inventory status report of 

severe PPE supply shortage during the surging COVID-19 hospitalization peaks (Furman et. al. 

2021; Pingol 2021; Cohen and Rodgers 2020; etc.). Hence, clearly the procurement managers may 

not be as free to amass PPE inventory. Using a Markov decision process model, Saha and Ray 

(2019) report that when high bed occupancy rates are characterized by high hospitalization demand 

rates, the inventory level tends to go down. Conditions of depleting inventory levels due to high 

hospital resource utilization has been reported by Bauchner et. al. (2020).  

Multiple practitioner outlets also provide contradictory reports about the state of PPE 

inventories in hospitals as COVID-19 infection rates peak. For example, Greene (2020) reported 

that multiple hospitals were able to build up their PPE inventories for about 90 days, whereas 

Jacobs (2020) has reported that during high bed occupancy rates in December 2020 healthcare 

workers faced daunting shortage of PPE. Hence, the understanding of the relationship between bed 

occupancy and PPE inventory level is ambiguous and we need further research on the topic. The 

most interesting aspect to investigate is the relationship between bed occupancy and inventory 

level in the context of an environmental uncertainty, a study that has no precedence.  

4.2.2. Resource De-pooling 

Extant service OM literature has examined capacity/resource de-pooling. The research informs 

that generally as organizations de-pools capacity the resource utilization rates drop. Contrary to 

the belief, in the context of restaurant operations that are often characterized by under-a-rush hour 

regime with many customers arriving at the beginning of the rush hour period, Hu and Benjaafar 

(2009) has shown that partitioning servers to serve specific customer groups enables the restaurant 

to provide faster service to the patrons, which improves the service quality of the restaurant. On 
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the other hand, extant research in the humanitarian context argues that uncertainty in the partition 

in the budget increases the expected deprivation costs of the humanitarian effort where in more 

beneficiaries suffer due to insufficient humanitarian service delivery (Fard et. al. 2019; Eftekhar 

et. al. 2018; Natarajan and Swaminathan 2014). In the healthcare context, Day et. al. (2012) has 

suggested the benefit of de-pooling surgeon OR slot. The study suggests that de-pooling of OR 

slots enable the surgeons to predict their schedules, and better manage clinic, office hours, and 

other aspects of their professional life. The study then extends the idea of a risk pooling strategy 

of sharing the surgeon OR slots that offers a predictable and reliable access to the operating room 

while maintaining high-capacity utilization. Hence, the extant literature provides an ambiguous 

understanding of the benefits of de-pooling of capacity, which we seek to address through our 

research. 

 

4.3. Empirical Investigation 

4.3.1. Empirical Context and Estimation Model 

To investigate the first research question, we collected hospital level data across the state of 

Michigan as published by Michigan Department of Health and Human Services (MDHHS). To 

ensure timely reporting of critical resources, in pursuant to Michigan Compiled law (MCL 

333.2253), MDHHS made it mandatory for the hospitals in Michigan to report data pertaining to 

personal protective equipment (PPE) inventory, and patient census. As our analysis is at individual 

hospital level, we started our data collection since November 16, 2020, as before this date MDHHS 

published data on individual health system in the state. This date fortunately coincided with the 

second peak of COVID-19 new infections that the state experienced (the peak reached on 

December 3, 2020, with the upward and downward inflection points originating on October 15, 

2020, and February 8, 2021, respectively). As the bed utilization rate increases with higher 



 125 

infection rate, it is worthwhile to observe the relationship during this period. We collected data 

until February 8, 2021. Hence, we collected a panel data with 101 unique hospitals that belong to 

a health system in Michigan spanning over 21 time periods. We have 2121 observations in the 

dataset. The data on patient census were updated twice every week on Mondays and Thursdays.  

The data included information about hospital bed utilization (BedUtilizationit), and inventory 

levels (in days) of N95 masks, surgical masks, gloves etc. In our analysis, we accounted for the 

inventory level of N95 masks to represent the PPE inventory levels that the hospital seeks to 

maintain. The reasons we chose the N95 masks as representative of the PPEs are twofold. First, 

N95 masks registers the highest demand of the PPEs that are most often used to control exposures 

to infectious pathogens transmitted via the airborne route26. Second, the N95 masks were 

consistently in short supply in the country27. The inventory level was reported in intervals of days 

of inventory: 4-6 days (lowest), 7-14 days, 15-30 days and >30 days (highest). We considered the 

lowest number in each of these intervals to represent the interval. For example, we considered 31 

days to represent the interval >30 days. This variable, Inventoryit, represents an ordered categorical 

variable. 

Definitive healthcare collaborated with Esri’s geospatial cloud to develop a dashboard to report 

current levels of hospitalizations, hospital capacities and county level demographic data across the 

nation. We downloaded this contextual data for 6090 hospitals using Esri provided API and filtered 

out the data for Michigan hospitals. The database contains variables like number of licensed staffed 

beds (StaffedBedsi) for each of the 101 hospitals in Michigan, that are affiliated to the 19 health 

systems, and the demographics – population of the county (Populationi) and median age of the 

 
26 https://www.maine.gov/dhhs/mecdc/infectious-disease/hai/documents/COVID-
19_Personal%20Protective%20Equipment%20Supply-Strategies-N95_9.27.21.pdf  
27 https://www.npr.org/sections/health-shots/2021/01/27/960336778/why-n95-masks-are-still-in-short-supply-in-the-
u-s  
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population of the county (MedAgei) - of respective counties where each of the hospitals belong. 

We referred to the Rural-Urban Commuting Area Codes database by U.S. Department of 

Agriculture to understand whether the zip code, related to each of the hospital, is a rural zip code. 

We created a binary variable, Rurali, that assumes 1 when the zip code is a rural zip code else it 

assumes 0. We also collected the age of the health systems (SystemAgei) to which each of the 

hospital in the dataset belong. This data is combined with the data on the hospitals reported by 

MDHHS. We collected the data about new COVID-19 cases in a county to which a hospital 

belonged at each time period from the COVID-19 dashboard published by the Johns Hopkins 

University and Medicine. We assume that the hospitalization demand (Demandit) of COVID-19 

patients in hospital at a given time is the product of the new COVID-19 cases in a county at the 

given time and the fraction of total number of staffed beds in the county that the hospital possess.  

The association between Inventoryit and BedUtilizationit could be influenced by several factors. 

To clearly discern the variance of Inventoryit that can be attributed to that of BedUtilizationit we 

controlled for Demandit since hospitals’ inventory management decision may differ depending on 

the COVID-19 patient demand of the county. We control for patient demographics - Populationi 

and MedAgei – as counties with higher and older population may experience higher hospitalization 

demand and, consequently, may carry differing inventory levels. We control for hospital level 

variables - StaffedBedsi and SystemAgei – to account for hospital specific fixed effects that may 

impact inventory management decisions. We controlled for Rurali as a hospital in an urban zip 

code may more easily procure PPE from suppliers located the urbanized regions. We also 

accounted for time fixed effects (Tt) to control for differing conditions during different period of 

data collection that may influence the inventory levels. We consider November 16, 2020, as the 
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base time category. We used the following model to estimate the effect of BedUtilizationit on 

Inventoryit: 

Inventoryit = b0 + b1BedUtilizationit + b2Demandit + b3Populationi + b4MedAgei + 

b5StaffedBedsi + b6SystemAgei + b7Rurali + Tt + eit  (4.1) 

 

We use ordered pooled probit to estimate the model as Inventoryit is an ordered categorical 

variable. To control for heterogeneity and correlation across error variance structure we used 

Huber/White sandwich estimator (Wooldridge 2010).  

As none of the hospitals capture and report exclusive set of variables that we can control in our 

model, there always will be opportunity for omitted variable bias that may confound the 

relationship between the predictor and dependent variable. Besides, we cannot rule out the 

possibility of reverse association between inventory level and bed utilization as the hospital may 

consider more patients as they maintain higher levels of PPE inventory. We adopt instrumental 

variable approach to correct for the endogeneity in the independent variable BedUtilizationit. We 

use lagged values of the endogenous variable (BedUtilizationit) as the respective instrumental 

variables. In the absence of exogenous instrument, usage of lagged values of the endogenous 

variables is common in OM literature (Sharma et. al. 2016; Tan and Netessine 2014; etc.). To 

determine the threshold lag beyond which we need to consider the instruments, we performed the 

Arellano-Bond test for autocorrelation. We find that for the estimation model, the AR(1) is 

significant at 10% level of significance, whereas AR(2) is non-significant at 10% level of 

significance. Hence, we consider three lags of the endogenous variable starting at lag 2. We find 

that the over identification criteria are satisfied. 
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In case of non-linear regression, Wooldridge (2015) suggests that control function approach 

provides more consistent estimates compared to the traditional “plug-in” two stage regression. In 

the first step of this approach, we regress the endogenous variables on the instrumental variables 

following equation 4.2. In the model, Xit denotes all the control variables in model 4.1. We find 

that the instrumental variables are highly significant to the endogenous variable. We also find the 

F-statistic of the model is greater than 10 which satisfies Stock and Yogo (2005) of relevant 

instrument. 

BedUtilizationit = a0 + a1BedUtilizationit-2 + a2BedUtilizationit-3 + a3BedUtilizationit-4 + Xit + Tt + 

eit       (4.2) 

Next, we derive the residuals of the regression. These residuals encompass the variance in the 

predictors that is endogenous to the idiosyncratic error terms. In the second step, we introduce the 

endogenous predictors along with these residuals in the ordered probit regression as depicted in 

equation 4.3. Consequently, we control for endogeneity in the predictors and derive unbiased 

estimation of the coefficients. We use STATA 15.1 for estimation. 

 

Inventoryit = b0 + b1BedUtilizationit + bXit + Tt + !"#$%&  + eit (4.3) 

4.3.2. Empirical Analyses and Results 

We first examined some of the relevant descriptive statistics of the overall dataset. The mean 

and standard deviation of the bed utilization of the hospitals in the dataset are 63.44% and 25.89%, 

respectively. We find that about 45.54% of the hospitals belong to a rural zip code whereas the 

remaining 44.46% of the hospitals belong to the urban zip code. The mean and standard deviation 

of the median age of the population in a county are 39.68 and 4.36 years, respectively. We provide 

the summary statistics and correlation table in Table 4.1. We find that there are 80 distinct hospitals 



 129 

that have maintained N95 inventory>30 days at some point in time consisting of 1645 observations 

in the dataset. Hence, about 80% of the hospitals in the data subset maintained above 30 days of 

N95 inventory. The mean and standard deviation of the bed utilization of the hospitals in this data 

subset are 63.9% and 25.47%, respectively. We find that about 47.17% of the hospitals belong to 

a rural zip code whereas the remaining 52.83% of the hospitals belong to the urban zip code. 

Hence, we find that larger portion of the hospitals that had maintained high N95 inventory levels 

belong to urban zip codes. The mean and standard deviation of the median age of the population 

in a county are 39.52 and 4.68 years, respectively. 

Table 4.1 Summary Statistic and Correlation Table 

# Variables Mean S.D. 1 2 3 4 5 6 7 

1 BedUtilization 0.63 0.26 1.00       

2 Rural 0.46 0.498 -0.6 1.00      

3 Demand 52.67 64.94 0.31 -0.39 1.00     

4 MedAge 39.68 4.36 -0.36 0.38 -0.26 1.00    

5 Population 496484 615329 0.36 -0.65 0.19 -0.28 1.00   

6 SystemAge 72.38 39.63 0.08 -0.11 -0.05 -0.14 0.08 1.00  

7 StaffedBeds 201.54 212.31 0.42 -0.59 0.53 -0.36 0.44 0.09 1.00 

 

We find that there are 19 distinct hospitals that have maintained N95 inventory 15 - 30 days at 

some point in time consisting of 339 observations in the dataset. Hence, about 19% of the hospitals 

in the dataset maintained between 15 and 30 days of N95 inventory. The mean and standard 

deviation of the bed utilization of the hospitals in the data subset are 62.4% and 27.24%, 

respectively. We find that about 40.11% of the hospitals belong to a rural zip code whereas the 

remaining 49.89% of the hospitals belong to the urban zip code. The mean and standard deviation 

of the median age of the population in a county in this subset of the data are 40.31 and 3.32 years, 
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respectively. We find that there are 10 distinct hospitals that have maintained N95 inventory below 

15 days at some point in time consisting of 137 observations in the dataset. Hence, about 9.9% of 

the hospitals in the data subset maintained less than 15 days of N95 inventory. The mean and 

standard deviation of the bed utilization of the hospitals in the dataset are 60.42% and 27.35%, 

respectively. We find that about 39.41% of the hospitals belong to a rural zip code whereas the 

remaining 60.59% of the hospitals belong to the urban zip code. The mean and standard deviation 

of the median age of the population in a county are 40.02 and 1.59 years, respectively. Hence, 

generally, we observe that hospitals that had maintained lower levels of N95 inventory are 

associated with lower bed utilization rates. 

We present the results of endogeneity corrected ordered probit (oprobit) model in column 1 of 

Table 4.2. We considered natural logarithm transformation to control the spread of the variables 

whenever required. To ensure that variables with values equal to zero do not drop out during the 

natural logarithm transformation, we added one to the variables before transforming them. We find 

that BedUtilizationit is significant and positively associated with the Inventoryit. We performed 

average marginal effects analysis to understand how BedUtilizationit impacts hospitals that belong 

to different inventory categories. We find that for the hospitals that maintain N95 inventory level 

> 30 days, the inventory level increases (b = 0.156; p < 0.05) with increasing bed utilization. We 

find that BedUtilizationit does not have a significant effect on Inventoryit for the hospitals in the 

groups 7-14 (b = -0.046; p > 0.05) and 15-30 days (b = -0.09; p > 0.05) at 5% level of significance. 

However, we find that in case of the hospitals in the group 4-6 days of N95 inventory, the 

BedUtilizationit have a significant negative effect on Inventoryit (b = -0.019; p < 0.05).  

In columns 2 and 3 of Table 4.2 we present the results of pooled oProbit and pooled oLogit 

respectively. We find that the results and the average margins effects analyses holds fine. Hence, 
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these analyses exhibit that majority of the hospitals in the dataset tend to accumulate and store 

higher levels of N95 mask inventory when they experience higher bed utilization rates in the 

hospital. Our analysis shows that these set of hospitals primarily belong to urban areas (52.83%) 

which may experience higher COVID-19 hospitalization demand. 

Table 4.2 Panel Regression Analysis 

Variables 

(1) 
Inventoryit 

(Endogeneity 
Corrected) 

(2) 
Inventoryit 

(oProbit Model) 

(2) 
Inventoryit 

(oLogit Model) 

 
 

BedUtilizationit 0.635* 
(0.321) 

0.535* 
(0.238) 

1.013* 
(0.483) 

 

Demandit -0.103 
(0.085) 

-0.102 
(0.081) 

-0.162 
(0.148) 

 

Populationi 
0.081* 
(0.036) 

0.107*** 
(0.03) 

0.091 
(0.061) 

 

MedAgei 
-2.15*** 
(0.341) 

-1.83*** 
(0.314) 

-3.779*** 
(0.583) 

 

StaffedBedsi 
0.583*** 
(0.064) 

0.558*** 
(0.056) 

0.947*** 
(0.112) 

 

SystemAgei 
-0.63*** 
(0.054) 

-0.616*** 
(0.048) 

-1.173*** 
(0.1) 

 

Rurali 
1.059*** 
(0.157) 

1.113*** 
(0.139) 

1.758*** 
(0.284) 

 

Time Controls Day-Week Day-Week Day-Week  
Hospital Fixed Effects Yes Yes Yes  

Observations 1717 2121 2121  

Wald chi-square 278.88 326.85 276.28  
Pseudo-R2 0.1232 0.118 0.1167  

 
 

4.3.3. Discussion of Empirical Findings 

The empirical analysis indicates an unsustainable inventory management practice by hospitals. 

As the hospitals continue to bulk up inventory, they may incur higher inventory management costs 

which may be passed on to the patients as treatment costs. Such practice may increase the PPE 

The standard error has been reported in the parenthesis. 
+.     p < 0.1  *      p < 0.05  **.   p < 0.005  ***. p < 0.001 
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costs which may increase the cost of treating patients and may make these PPEs less accessible to 

the smaller hospitals. Additionally, in case the COVID-19 cases subside, these PPEs may not be 

used and may have to written off due to limited shelf life, incurring huge opportunity costs that 

those wasted PPEs could have been utilized by other hospitals in dire need of PPEs. Hence, we 

need to investigate practical ways which the hospital can use to pivot from such unsustainable 

practices. 

In the remainder of the study, we continue to research about ways that the hospital can adopt 

to attenuate the demand of PPEs and conserve PPEs. However, to investigate such ways we need 

to first understand how these hospitals were able to build PPE stockpile in times when other 

hospitals struggled to procure PPEs. Hence, the empirical results help us define our next research 

question: 

RQ2: How were the hospitals able to maintain such high PPE inventory during pandemic? 

More importantly, how did the hospitals manage their assets to attenuate the demand of 

PPE to treat patients? 

To answer the research question, we conducted field research where we interviewed both 

supply chain professionals and clinicians at five of the biggest hospitals in Michigan to gain 

firsthand insight how these professionals managed the hospital resources successfully to 

circumvent the adversities of the pandemic as they continued to offer critical care services to the 

community. 

 

4.4. Case Studies 

4.4.1. Data Collection 

To investigate into the hospital activities, which enabled them to sustain high inventory levels 

during the pandemic, we enlisted seven of the biggest hospitals in Michigan by number of beds. 
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We wanted to interview both the supply chain and the clinical professionals at the hospitals to get 

an encompassing view of the effectiveness of the policies the hospitals adopted to managing PPE 

inventory. We sent interview requests to both the supply chain and clinical points of contact in 

those hospitals. Five supply chain professionals and two clinical professionals from five hospitals, 

in total, agreed to be interviewed. The seven interviewees enabled us to understand both the supply 

side and clinical side of the policy implementations at those hospitals. The hospitals considered in 

the case study have average of 558 beds and standard deviation of 307 beds. The biggest hospital 

A has 1007 beds. Hospital B has 693 beds. Hospital C has 533 beds, whereas hospital D has 305 

beds. Hospital E is the smallest with 252 staffed beds. Four of the supply chain respondents held 

the position of the vice president of the hospital supply chain and remaining one of them was senior 

vice president of the hospital supply chain. On average they have more than 15 years of experience 

in procurement and supply chain management domain. Both the clinicians were principal resident 

nursing professional with more than 10 years of clinical experience.  

 We collected the data from May 2022 to July 2022 since by this time hospitals were able to 

create more consistent routines to respond to the pandemic and were also able to reflect on their 

management practices during the peak time of the pandemic. We conducted face-to-face 

interviews with these professionals through standard video chat service. We sought respondents’ 

consent to record the interview. We went through each of the interviews afterwards and touched 

base with the interviewee over email in case of any further clarifications. We informed the 

professionals that the interviews were performed solely for research purposes and that they could 

benefit from the outcomes of the research. Hence, the participants were forthcoming in sharing 

their experiences. We designed an interview consisting of open-ended questions to convey a broad 
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discussion led by these questions but not restricted to them. We have provided the questionnaire 

in Appendix B. 

4.4.2. Observations from Field Research: Asset Rearrangement to Manage PPE Demand 

Our meeting with the healthcare professionals revealed that the flexibility in managing the PPE 

inventory enabled the hospitals to conserve PPEs. We learned that the hospitals never really 

stocked out during the peaks of hospitalizations, once they were past the initial phase of COVID-

19. These hospitals were able to leverage its affiliation to a health system to redistribute PPEs and 

other critical equipment to the location of need. Although the hospitals generally manage their 

inventories in house, within a few weeks when COVID-19 hit Michigan they adopted a centralized 

inventory management policy to manage the critical equipment including PPEs. The health 

systems instituted a centralized incident command team who was responsible for monitoring PPE 

inventory across hospitals and the procurement and distribution of the equipment, among many 

other things.  

“When COVID-19 hit in March 2020, we quickly mobilized incident command 

structure. On that there were multiple section leader seats, one of which was logistics 

section seat….All things PPE, equipment etc. would flow though that seat (logistics section 

seat) as well as through my department (supply chain and logistics department). So, we 

had, obviously, very intimate knowledge of everything that had occurred which helped us 

to drive strategy” - Vice President of Supply Chain at case hospital C  

This enabled the supply chain department to gain a system wide view of the PPE usage and 

load balance PPE inventory to the location of highest equipment demand. One of the hospitals was 

able to leverage the vast network of hospitals in the health system, centralized warehousing, and 
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logistics to transfer PPEs and other critical resources between facilities (across state) depending 

on the location of demand. 

“…in the state of Michigan our warehouse is down in Fort Wayne, IN. We have trucks 

going from Fort Wayne to the Michigan facilities (hospitals) every day. So, we had really 

easy means to move product to them on trucks that are already rolling to them every day.” 

- Senior Vice President of Supply Chain at case hospital E. 

There are two factors that contributes to the incident command team’s success in preventing 

hospitals from potential equipment stock-out during the pandemic. First, they were able to lead the 

health system to quickly pivot from procuring PPEs from traditional suppliers to a substitution 

model in which they procured from alternate unorthodox sources. Three hospitals that we 

interviewed reported that they started working with PPE manufacturers directly to formulate a 

contract to establish more stable supply of PPEs. We learned that accommodating and providing 

care services to the patients took precedence over managing the treatment cost. Hence, they 

followed through such ad hoc partnerships even though such contracts increased the equipment 

cost. The hospitals often went one step further in the substitution model in case the manufacturers 

were not able to fill in the demand. These hospitals “would go from manufacturers to third party 

black-market retailers” (Vice President Supply Chain Operations at case hospital B). In case the 

orders were not filled “they (the hospitals) would circle back to non-standard manufacturers”. For 

example, the case hospital B approached an injection molding company, that manufactured plastic 

bags, with a request to manufacture isolation gowns for the hospital. The downside of having 

products manufactured by such non-standardized manufacturers is that the products not always 

passed the PPE fit-testing standards that the hospitals maintained for their healthcare workers. This 

often resulted in wastage and higher opportunity costs. 
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Second, the incident command team was able to rearrange assets internally within the hospitals 

that enabled the hospitals to attenuate the demand for PPEs. For example, most of the hospitals 

that we interviewed established brown bag policy. Such policy enabled healthcare workers to store 

their used facemasks in bags for a certain number of days waiting to decontaminate so that those 

face masks can be reused in future. In another instance, one hospital repurposed a room into a PPE 

sanitization room where the used PPEs were sanitized using UV rays. One of the biggest asset 

rearrangements that the hospitals had undertaken was the creation of isolation wards for COVID-

19 patients. Isolation wards were created when hospitals de-pooled (segregated) their resources 

(infrastructure, equipment, healthcare workers, etc.) and apportioned those resources for COVID-

19 patient admission only. Those rooms were access controlled to avoid inter-mixing among 

virulent and non-virulent patients. General admissions were restricted in those wards. However, 

any patients showing signs of COVID-19 in the general ward were transferred to the isolation 

ward.  

Two of the five hospitals that we interviewed either never established any isolation wards or 

never maintained the restricted access of such wards. As such they often admitted COVID-19 

patients in the general ward and their policies regarding PPE usage were alike that of a hospital 

with no isolation wards – the healthcare workers (HCWs) donned PPEs before seeing a patient and 

doff the set of PPEs after treating the patient. In the next phase of the study, we consider the 

strategy of not establishing any isolation wards as the baseline strategy – a reference strategy 

against which other strategies are compared. The remaining three hospitals that we interviewed 

had established some form of isolation wards on their premises.  

The proportion of resource allocation toward isolation wards varied contingent on the health 

systems. Some health systems chose to dedicate several floors in the hospital complex for the 
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creation of isolation wards. We call these partial COVID-19 hospitals. Few other health systems 

repurposed the entire hospital complex as an isolation unit and would pool in virulent patients from 

other affiliated hospitals28. We called these hospitals dedicated or full COVID-19 hospitals. The 

proportion of resource allocation was contingent on virulent patient hospitalization rates. As per 

our interviews with the clinicians, the hospitals (especially the partial COVID-19 hospitals) chose 

to vary the proportion of resource allocation between 10% and 80% as COVID-19 patient 

hospitalization rates varied from low to high, respectively. 

Such arrangement of the isolation wards enabled the hospitals to focus their PPE inventory on 

to these wards and adequately protect the healthcare workers serving the COVID-19 patients in 

those wards. For example, the hospitals with the isolation wards did not allow the healthcare 

workers (HCWs) serving in the general wards to wear any PPEs (except gloves). However, the 

HCWs in the isolation ward were allowed to don a new set of PPEs before seeing a patient and 

doff the PPEs immediately after treating the patient.  

“.. it (isolation ward) allowed us to focus our pockets of PPE inventory to those units 

rather than having them distributed all over the hospital in a decentralized fashion. The ward 

also helped us to focus where the inventory pockets were held which helped us to conserve 

masks with higher efficiency” ~ Vice President of Supply Chain at case hospital C 

Observation 1: The hospitals that have created the isolation wards, generally, do not let 

the healthcare workers in the general wards use PPE whereas the healthcare workers in 

the isolation wards happen to don and doff PPEs after treating every patient.  

The policy of creating the isolation wards may help the hospital to reduce the internal demand 

for PPE, which, in turn, may attenuate the inclination of the procurement managers to bulk up the 

 
28 https://www.fox2detroit.com/news/detroits-tcf-center-becomes-tcf-regional-care-center-to-treat-covid-19-patients  
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PPE inventory in case of higher bed occupancy. However, whether the policy can prevent the 

nosocomial transmission among patients and healthcare workers is not known. The policy defined 

in observation 1 assumes that the patient COVID-19 testing done prior to the admission procedure 

was sensitive enough to detect minute traces of viremia in patient and, consequently, report no 

false negatives. Unfortunately, this is not always the case. Kucirka and Lauer (2020) reported that 

over the 4 days of COVID-19 infection before symptom onset in a patient the probability that a 

RT-PCR tests, the golden standard of testing in hospitals, reports false negative is higher than 67%. 

In other word, the study suggests that RT-PCR tests can detect the viremia in only one third of 

incoming asymptomatic patients with COVID-19. The healthcare practitioners that we interviewed 

could not deny of the incidents of asymptomatic COVID-19 patients being admitted in the general 

wards. As the hospitals did not maintain any record of such incidents it is increasingly difficult for 

us to understand the severity of such incidents. Hence, healthcare fraternity does not really know 

whether the policy that observation 1 has outlined is effective enough to prevent nosocomial 

transmission. 

Segregation of infrastructure by creating separate isolation wards may restrict the hospital’s 

capacity to accommodate more patients. For example, isolation wards create a separate service 

offering channel with a fraction of hospital resource. Hence, during the peak of infected patient 

hospitalization the hospital with such wards may deny service to COVID-19 patients due to 

unavailability of beds in isolation wards, whereas the beds in general wards may be available. 

Hence, isolation wards may incur higher opportunity costs of patient care that can be life-

threatening during the pandemic. Existing service OM literature on segregation of capacity or 

capacity/infrastructure de-pooling is indicative of such decreasing service capacity (Fard et. al. 

2019; Eftekhar et. al. 2018). However, creation of such specialized isolation wards may enable the 
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caregivers to treat their patients faster. Benjaafar (2009) has shown that partitioning servers to 

serve specific customer groups enables the restaurant to provide faster service to the patrons, which 

improves the service capacity of the restaurant. Currently we do not have any understanding 

whether hospitals were able to use isolation wards to offer better service capacity in the community 

during the ongoing pandemic. The hospitals that we interviewed also do not track the patient 

rejection rates which makes econometric assessment of patient capacity management impossible. 

Hence, establishment of isolation wards in the hospitals is indicative of potential tradeoff 

between the way the hospital administrators manage PPE inventory and patient care quality and 

capacity. Managing such tradeoff may cause administrative overload as the hospitals scramble to 

provide critical care services to the community during the ranging pandemic. Arguably, managing 

such tradeoffs is even more challenging as the hospitals do not track all the required metrices or 

tracking such data is incredibly difficult. However, this finding related to RQ2, brings to the fore 

the following research question:  

RQ3: How do quality and speed of patient care as well as nosocomial propagation of the 

virus evolve depending on the type of isolation ward related policies implemented by 

hospitals? 

In order to investigate the aforementioned research question, we develop an agent-based model 

(AGM) to simulate the interaction between different agents in a generic hospital and to observe 

the evolution of such interactions due to the establishment of isolation wards. The model is 

grounded based on the inputs that we derived from the field research. AGMs have been applied 

extensively to formulate systems characterized by rich and nonlinear dynamics with multiple 

agents involved (Tong et. al. 2018; Chandrasekaran et al., 2015; Rahmandad and Sterman, 2008). 

Application of such simulation is critical when empirical data limitations exist. In this study, we 
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use AGM to develop SEIR model of nosocomial transmission in a hospital to represent the 

landscape of hospital operations during the pandemic (Tong et. al. 2018). The transmission model 

will help us capture the evolution of quality and speed of patient care, and nosocomial propagation 

of the virus depending on the type of policies implemented by the hospital. We discuss the model 

development in the next section. 

 

4.5. The Agent Based Model and Data Analysis 

4.5.1. Model Definition 

Agent-based models have been applied extensively in OM (Tong et. al., 2018; Chandrasekaran 

et. al., 2015) and healthcare (Pham et. al., 2021) literatures to formulate a system characterized by 

rich and nonlinear dynamics with multiple agents involved. Although econometric analysis 

enables us to understand the simple linear relationship between bed utilization rates and inventory 

level drawn from statistically significant results based on the available data, such analysis 

precludes our understanding of the evolution of complex interactions among different hospital 

agents when different configurations of isolation wards are introduced in the hospital. In such 

situation an agent-based simulation will aid in modeling the dynamics in a multi-agent care giving 

system, reminiscent of typical hospital operations, in the context of the introduction of isolation 

wards and in analyzing policy effect on how the hospital manages its PPE inventory and care 

services. The multi-agent simulation is particularly useful in modeling the nosocomial virus 

transmission and how the dynamics evolves over time as the agents’ behavior adapts to the 

introduction of isolation wards. 

The first key component of our ABM is to model a typical hospital operation in the context of 

the pandemic. We followed the ABM modeling presented in Pham et. al. (2021). The study 
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presents the simulation of a hospital in the context of COVID-19 pandemic in UK. We made 

several modifications in the model to ground it in the US healthcare context based on the key 

inputs that we derived from our field research. We have presented the process flowchart in Figure 

4.2. The entire process can be largely categorized into three sections. In section 1 we describe the 

process of patient acceptance into the system and describe the process of how a patient is allocated 

a bed. In section 2 we describe the process of how HCWs interact with PPE inventory and use 

PPEs to treat patients in an isolation ward. In section 3, we describe the similar process to treat 

patients in general wards. We simulate multiple scenarios: four different hospital sizes accounted 

by the number of staffed beds and nurses that the hospital employs, and three different nurse-to-

patient ratios. We created scenarios depending on whether the hospital has isolation wards. In case 

the simulated hospital does not have an isolation ward we define a total of 12 scenarios. The 

hospital that has isolation wards, we consider a range of values for the proportion of resource 

allocation from 10% to 100%. Hence, the hospital with isolation wards has a total of 120 simulated 

scenarios. We iterated each scenario 20 times with different seed values. 

In section 1, we assume two patient pools – patients who have COVID-19 and general patients. 

We assume the stable general patient hospitalization follows Poisson distribution with mean 40 

patients (Pham et. al. 2021). We enumerated the COVID-19 patient hospitalization pattern 

depending on the size of the hospitals. We model the hospital sizes based on different hospitals in 

the Beaumont health system in Michigan, without the loss of generality. We consider Beaumont 

system for the information because of two distinct reasons. First, the health system routinely 

publishes the number of HCWs (nurse practitioners) each hospital employs each year which 

provides us with suitable information to build the model. Second, the sizes of the eight hospitals 

that Beaumont has in Michigan vary from the highest 1131 beds to a lowest of 99 beds. As such, 
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this offers us enough variance to model the interactions among the agents across wide spectrum of 

hospital sizes. We consider four different hospitals in the Beaumont system. We considered the 

largest hospital in the system in Michigan – Beaumont Royal Oak – that has 1131 beds and 2678 

nurse practitioners. Next, we consider a large hospital in the system – Beaumont Dearborn – that 

has 632 staffed beds and 1235 nurse practitioners. We considered another hospital whose size 

correspond to the average of the hospital sizes in Michigan – Beaumont Grosse Pointe – that has 

280 staffed beds and 527 nurse practitioners. Toward the lower end of the hospital size spectrum, 

we consider Beaumont Wayne hospital that has only 99 staffed beds and 344 nurse practitioners. 

Each hospital belongs to either Oakland or Wayne counties in Michigan. These counties 

experienced the largest number of COVID-19 infections in Michigan. Such a setup helps us to 

understand the relationships between agents in the context of high hospitalization demand. We 

collected the daily new COVID-19 cases data for each of the counties to predict the actual demand 

that each of hospitals in the model may face daily. We adopted the estimate by Menachemi et. al. 

(2021) to assess the hospitalization conversion rates of COVID-19 cases, categorized by age 

groups. We collected the population by age groups in the Oakland and Wayne counties in Michigan 

to enumerate the total hospitalization cases in these counties. Next, we assume that a hospital will 

experience total number COVID-19 related patient hospitalization in the county depending on the 

proportion of staffed beds that the hospital has in the county of operation. Consequently, we 

estimate the total number of COVID-19 patient hospitalization demand that a hospital (of certain 

size) may receive. We used 290 days of demand data starting from March 1, 2020, until December 

15, 2020. We did not consider data beyond December 15 because after that period HCWs and 

patients were inoculated which may change the virus reproduction number and hence the overall 

agent dynamics, which we did not account for in the simulation.  
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Figure 4.2 Agent Based Modeling Process Flow Diagram 
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All the patients are tested before the bed allocation process. We assume that the hospital can 

get the testing results instantaneously. If the isolation wards in the hospital have any vacancy a 

staffed bed is allocated to the infected patient else the patient is turned away. We learned from the 

clinicians that patients with the viremia were not accommodated in the general wards in case 

isolation wards were full. In the absence of any isolation wards, hospitals do not differentiate 

between the admission process of infected and the general patient. In case of no vacancies the 

patient is rejected for admission. We record the instances of rejection given any contingencies. We 

record the expected time (LOS) required to treat the patients. The expected LOS for the COVID-

19 patients follows a Gamma distribution with mean and standard deviation of 31.8 days and 30.08 

days respectively (Pham et. al. 2021). It has shape and scale of 1.88 and 0.25 respectively (Pham 

et. al. 2021). The expected throughput time for the general patients follows a Weibull distribution 

with shape and scale of 0.92 and 4.8 respectively and mean of 4.35 days (Pham et. al. 2021). Please 

note that the simulated hospital does not have any intensive care units and we assume the patients 

are low to moderately ill.   

In section 2, we provide information about the HCW assignment process and the PPE don and 

doff patterns by the HCW in the isolation wards. Based on the discussion with the clinicians, we 

assume that the hospital ran three shifts, each lasting for at least 8 hours. We assumed each 

healthcare workers did six rounds of patient visits in each shift (Pham et. al. 2021). Patients are 

randomly assigned to three different HCWs (each belonging to different shifts). We continue to 

assign patients randomly to a HCW until it exceeds the load capacity of the HCW (defined by the 

HCW-to-patient ratio of the scenario). In case a patient cannot be assigned to HCW, the patient 

waits for another cycle to get assigned. This increases the actual LOS of the patient by another 

day. During each round of visit each HCW treats all the patients assigned to her. Before treating a 
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patient, she requests a set of PPEs from the inventory. If the request is fulfilled, she dons the PPE 

and treats patient and doffs PPEs after seeing the patient. After a patient is seen by the assigned 

HCWs we reduce the LOS by one day. We assume that the patient is fully cured when the LOS 

equals 0. At this point the hospital discharges the patient and measures the bed occupancy. The 

process steps in section 3 are identical to that in section 2 with one difference. If the hospital has 

isolation wards, the HCWs in the general wards are not allowed to access PPEs from the inventory. 

These HCWs use surgical masks to treat patients. However, if the hospital has no isolation wards 

the process flow in section 3 is similar to that of section 2. 

In both sections 2 and 3, HCWs places request for PPE and an agent responsible for inventory 

management fulfils the request. We assume the fulfillment happens instantaneously if the 

requested number of PPEs are in stock. The HCWs in the hospital with no isolation wards requests 

for several PPEs in a patient visit round that is equal to the number of patients assigned to her. The 

HCWs in the hospital with isolation wards requests for only one set of PPEs in a patient visit round. 

We assume the initial inventory count is 10,000. There maybe two possible outcomes depending 

on the inventory status. The inventory manager may be able to fulfil the entire order, in which case 

the simulation assigns a factor of 1 to the requesting HCW. The inventory manager may be able 

to fulfil a part of the request. In such case, the simulation assigns a factor equal to the proportion 

of the order met to the requesting HCW during the round. This factor is used to discount the 

effectiveness of the PPE, which simulates the fact that in case of partial fulfilment the HCW must 

reuse PPEs which has lower effectiveness than a sanitized set of PPEs. Besides, the inventory 

manager is responsible for procuring PPEs. Based on the suggestions of the practitioners we 

adopted continuous inventory review process. The inventory manager stores at least 7 days worth 

of PPE demand data. After the end of day, the manager reviews the inventory status. Based on our 
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discussion with the supply chain professionals we adopt an inventory management policy that lets 

the inventory manager place replenishment requisition if the level falls below 7 days worth of 

inventory. The maximum stocking level is 90 days worth of inventory. We adopted exponential 

smoothening demand forecasting methodology to predict the future PPE inventory burn rate based 

on which the inventory status is evaluated by the agent. We used 60% as the value of the 

smoothening constant to capture the uncertainty in the demand for PPEs. 

In the simulation, an agent in the hospital can belong to one of the five disease states – 

Susceptible (S), Asymptomatic (EA), Presymptomatic (EP), Infected (I) or Recovered (R). We did 

not model agent death in the simulation. All susceptible agents have not been infected yet but stand 

a chance to get exposed to the virus. All the asymptomatic and presymptomatic patients have been 

exposed to the virus. The asymptomatic agent may never show symptoms during her stay in the 

hospital. However, a presymptomatic agent, after an incubation period, may start exhibit 

symptoms. The incubation period is idiosyncratic, and we assume the period follows a Gamma 

distribution with mean of 5.5 days and standard deviation of 2.29 days (Evans et. al., 2021). The 

shape and scale of the distribution is 5.807 and 0.948 respectively. An infected agent has the 

viremia and symptoms. An agent is in recovered state when she has tested negative for COVID-

19 and exhibits no symptoms. 

A patient may be infected before he is admitted to the hospital or may eventually become 

infected in the hospital. We model the viral transmission within the hospital using SEIR model 

(Pham et. al., 2021; Mwalili et. al., 2020) which is commonly used to model viral progression in 

healthcare literature. We depict the process flow in Figure 4.3. We assume there is no community 

infection among patients or HCWs. The only difference between transmission patterns in the 

isolation wards and the general wards is that isolation wards do not have any susceptible patient 
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population unlike the general wards. However, the HCWs in those wards are susceptible to 

contract the viremia. Viral transmission in the hospital happens only via HCWs as all the patients 

are assumed to have private room. As such the patients do not encounter another patient. HCWs 

may get infected as they treat an infected patient, who may belong to either of EA, EP and I, and 

then spread the virus as they continue to treat other susceptible patients until the HCW becomes 

symptomatic with COVID-19. 

Figure 4.3 Agent Based Modeling Disease Progression 

 
We model the reproduction of infection from patient to HCW and from HCW to patients 

following a Bernoulli distribution. The probability of transmission is modeled following Pham et. 

al. (2021) with a modification, we assume that the effectiveness of mask usage decreases by a 

factor that is proportional to mask reuse. We assume no used mask sanitization facility in the 

hospital. We model HCW to HCW viral transmission may happen as HCWs meet in the breakout 

rooms. We assume that the HCWs wear normal face masks in the breakout rooms. We characterize 

the effectiveness of the entire PPE set by the effectiveness of N95 masks. We assume the 

effectiveness of N95 masks is 95% and that of normal facemasks (surgical masks) are about 50% 

(Steuart et. al. 2020). We assume that 7.97% and 7.63% of the infected patient population are 

asymptotic and presymptotic, respectively (He et. al. 2020). These population of patients go 

undetected and are allocated general patient beds and become viral source in those wards. After 

the incubation periods the asymptotic and pre-symptotic agents exhibits symptoms and become 
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infected. The infected patients in the general wards are moved to the isolation wards, in case the 

hospital has an isolation ward, and the expected length of stay is updated accordingly. We validated 

from our interviews with clinicians that the physicians quarantine themselves for 7 days upon 

being symptomatic. When a HCW goes to quarantine the hospital clears her patient queue and the 

patients have to wait until they get assigned to a new HCW. Such assignment may take a few days 

depending upon bed occupancy of the hospital which may increase the actual length of stay of the 

patient in the hospital. Consequently, the hospital that witness higher HCWs quarantine rates may 

experience longer LOS, which may increase the bed occupancy rates. After that HCWs makes 

recovery, they return to normal operations. We measure the daily rate of new infection among 

HCWs and patients and the total HCWs in quarantine. We assume that a recovered agent cannot 

be infected again. 

4.5.2. Tradeoffs Associated with the Isolation Wards: Estimation Methodology and Results 

As we reported earlier, the simulation has been run for 290 days from March 1, 2020, until 

December 15, 2020. However, we only consider a subset of the simulation data for subsequent 

analysis that represent the first two peaks of COVID-19 hospitalization in the state of Michigan. 

We consider the data at the peaks of COVID-19 hospitalization in our analysis because we expect 

higher bed occupancy rates during that period and, consequently, higher inventory levels and 

worsening patient care capacity. Hence, we think such time context would be ideal to study the 

intended tradeoff of establishing isolation wards in the simulated hospital environment. Hence, we 

consider simulation data points between April 1, 2020, and May 2, 2020, and between October 1, 

2020, and December 15, 2020. We have a panel data structure of 132 simulated scenarios each 

having 104 days of observations.  
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Before we present the results, we discuss the summary statistics of the data we retrieved 

from the simulation. The mean and standard deviation of the daily hospitalization demand 

(COVID-19 and non-COVID-19 patients) are 50.94 and 13.67, respectively. The mean and 

standard deviation of the N95 masks inventory level (Inventoryit) that the average hospital 

maintains are 159231.2 and 171330.7, respectively. When the hospital does not have isolation 

wards, the mean and standard deviation of the N95 masks inventory level that the simulated 

hospital maintains are 307745.6 and 234677.5, respectively. Conversely, the mean and standard 

deviation of the N95 masks inventory level for an average hospital that has dedicated isolation 

wards are 144379.7 and 156077.1, respectively. The results of the summary statistics indicate that 

the hospitals that has isolation wards indeed require almost half of the inventory level to provide 

care services as compared to its counterpart that has no isolation wards. However, it is critical to 

understand how the hospitals with isolation wards hold up against the hospitals with no isolation 

wards from clinical performance perspective. The mean and standard deviation of the bed 

utilization (BedUtilizationit) of the hospitals considered in the simulation are 64.97% and 22.88% 

respectively. The mean and standard deviation of the bed utilization of the hospitals, that do not 

have an isolation ward, are 75.19% and 19.98% respectively. The mean and standard deviation of 

the bed utilization of the hospitals, that have isolation wards, are 62.84% and 22.85% respectively, 

which implies that hospitals with isolation wards experience lower bed occupancy rates as 

compared to their counterpart. However, such lower bed occupancy may be due to the increasing 

number of patient rejection by the hospital. We find that the mean and standard deviation of the 

patient rejections (Rejectionit) by the hospitals, that do not have an isolation ward, are 12.76 and 

13.39 respectively, whereas the metrics for the hospitals, that have isolation wards are 20.78 and 
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15.08 respectively. This statistic is indicative of lower care capacity that hospitals with no isolation 

wards offer in the community. 

Next, we discuss the summary statistics regarding nosocomial viral transmission in 

healthcare workers and patients. The mean and standard deviation of the number of infected HCWs 

being quarantined (HCWQuarit) in the entire dataset are 33.35 and 111.14, respectively. The mean 

and standard deviation of the number of infected HCWs being quarantined in the hospitals with 

no isolation rooms are 33.28 and 109.23, respectively. The mean and standard deviation of the 

number of infected HCWs being quarantined in the hospitals with isolation wards are 33.35 and 

111.36, respectively. There do not seem to be any observable difference in the metrics. The mean 

and standard deviation of the patient infection rate (PatientInfecit) in the dataset from simulation 

are 0.3585 and 0.484, respectively. The mean and standard deviation of the patient infection rate 

in the hospitals with no isolation rooms are 0.3844 and 0.427, respectively. The mean and standard 

deviation of the patient infection rate in the hospitals with isolation wards are 0.356 and 0.489, 

respectively. We observe that the infection rates in the patients is slightly less in the hospitals with 

isolation wards versus in the hospital with no isolation wards. These summary statistics provide 

initial indication of better inventory and infection prevention performance for the hospitals with 

isolation wards, in lieu of care capacity the hospital can offer. 
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Figure 4.4 Descriptive Analysis (Red: Scenarios with No Isolation Wards; Green: Scenarios with 

Isolation Wards) 

 
 

Figure 4.5 Descriptive Analysis (Red: Scenarios with No Isolation Wards; Green: Scenarios with 

Isolation Wards) 
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Figure 4.6 Descriptive Analysis (Red: Scenarios with No Isolation Wards; Green: Scenarios with 

Isolation Wards) 

 
 

Figure 4.7 Descriptive Analysis (Red: Scenarios with No Isolation Wards; Green: Scenarios with 

Isolation Wards) 
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Figure 4.8 Descriptive Analysis (Red: Scenarios with No Isolation Wards; Green: Scenarios with 

Isolation Wards) 

 
 

To analyze the simulation data, we use feasible generalized least squares (GLS) panel 

regression as the estimation methodology since it allows us to model heteroskedasticity across 

different hospitals and correlation within each hospital panel structure (Wooldridge, 2010; Gao 

and Hitt, 2012). Additionally, we include controls for demand (Demandit) for hospitalization and 

number of staffed beds (StaffedBedi) to account for the only hospital level heterogeneity in the 

data. We performed our estimation using the xtgls command in STATA 15. We report effect of 

the presence of isolation wards (IsolationWardi) on Inventoryit in column 1 of Table 4.3. We report 

that IsolationWardi has a negative and significant effect on Inventoryit (b = -1.3; p < 0.001). We 

find that with the adoption of isolation wards a hospital experiences 130% lower inventory level 

as compared to hospitals with no isolation wards. We report the effect of the presence of 

IsolationWardi on BedUtilizationit in column 2 of Table 4.3. We report that IsolationWardi has a 
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negative and significant effect on BedUtilizationit (b = -0.0607; p < 0.001). We find that with the 

establishment of isolation wards a hospital experiences 6.07% lower bed utilization as compared 

to hospitals with no isolation wards. This may be because of higher rejection rates due to the 

establishment of isolation wards. We report effect of the presence of IsolationWardi on Rejectionit 

in column 3 of Table 4.3. We report that IsolationWardi has a positive and significant effect on 

Rejectionit (b = 0.306; p < 0.001). We find that hospitals with isolation wards experience 30.6% 

higher patient rejection rates as compared to hospitals with no isolation wards. These results 

suggest that the hospital with isolation wards continue to reject patients even though it experiences 

lower bed occupancy rates, which is indicative of empty beds in the system that the hospital cannot 

use toward patient admission. Hence, it seems that having isolation ward in a hospital artificially 

reduces the hospital’s capacity to offer care services to the population. 

We report effect of the presence of IsolationWardi on HCWQuarit in column 4 of Table 4.3. 

We find that IsolationWardi has a non-significant effect on HCWQuarit (b = 0.089; p > 0.1). We 

report effect of the presence of IsolationWardi on PatientInfecit in column 5 of Table 4.3. We find 

that IsolationWardi has a significant and negative effect on PatientInfecit (b = -0.045; p < 0.05). 

We estimate that with the adoption of isolation wards a hospital experiences 4.5% lower within 

hospital patient infection rates as compared to hospitals with no isolation wards. 
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Table 4.3 Regression Analysis of Simulation Data 

Variables 
(1) 

Inventoryit 
(F-GLS Model) 

(2) 
BedUtilizationit 
(F-GLS Model) 

(3) 
Rejectionit 

(F-GLS Model) 

(4) 
HCWQuarit  

(F-GLS Model) 

(5) 
PatientInfecit 

(F-GLS Model) 

IsolationWardi 
-1.3*** 
(0.046) 

-0.061*** 
(0.003) 

0.306*** 
(0.027) 

0.089 
(0.141) 

-0.045*** 
(0.007) 

Demandit 
-0.01 

 (0.007) 
0.015*** 
(0.001) 

1.426*** 
(0.016) 

-0.001 
(0.008) 

0.025*** 
(0.004) 

StaffedBedsi 
0.794*** 
(0.025) 

-0.096*** 
(0.001) 

-0.84*** 
(0.013) 

0.425*** 
(0.049) 

0.166*** 
(0.002) 

Observations 13,728 13,728 13,728 13,728 13,728 
N 132 132 132 132 132 

Wald chi-square 1860.22 12403.75 10770.50 76.32 7096.54 

p-value 0.00 0.00 0.00 0.00 0.00 

The standard error has been reported in the parenthesis. 
+.     p < 0.1  *      p < 0.05  **.   p < 0.005  ***. p < 0.001 
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4.6. Discussion and Conclusions 

4.6.1. Theoretical Implications 

We conduct a multi-method research to explore how different hospitals respond to the growing 

hospitalization demand during an ongoing exogenous health crisis by managing its PPE inventory. 

We found econometric evidence that some of the bigger health systems that witness higher 

hospitalization demand may tend to maintain higher inventory levels. The results are indicative of 

impulsive decisions by the procurement managers to maintain PPE fill rate in the face of 

burgeoning demand for PPEs. This result supports the existing theory in OM literature that has 

investigated inventory management practices in the context of increasing demand (Zepeda et. al. 

2016; Fisher and Raman 1996). This practice is unsustainable as it may inflate the price of PPEs 

or make the equipment even more scarce to procure, making caregiving more expensive service 

during the period of dire need. Also, there is a risk that a significant portion of such inventory may 

need to be written off due to small self-life, the portion that could have been otherwise used by 

hospitals in dire need to such PPEs. Hence, the econometric results indicate toward a more non-

equitable distribution of critical resources during the pandemic. The result is surprising given the 

context of inadequate supply of PPEs. In our opinion, our study is the first of its kind to conduct 

field research to understand how these hospitals were able to bulk-up on PPEs when most of the 

hospitals were struggling to procure required PPEs to keep their HCWs safe while treating patients.  

We observed that ability of the procurement team to pivot to alternative suppliers enabled the 

procurement team to maintain consistent supply of PPEs. We further observed that hospitals were 

able to attenuate the demand for PPEs by internally rearranging assets that enabled them to reduce 

PPE burn rate and conserve PPEs along the way. We identify these to be tenets of operational 

flexibility. Hence, the study upholds the importance of flexibility in the operations and supply 
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chain management practice as the hospital combats the uncertain and burgeoning PPE demand 

patterns. As such our study makes strong contribution to the stream of literature that long debated 

the importance of operational flexibility in managing organizational performance in the context of 

environmental uncertainty (Swamidass and Newell 1987; Pagell and Krause 1999; Badri et. al. 

2000; Pagell and Krause 2004). Our study informs this stream of literature that healthcare 

organizations may better prepare themselves as compared to their competitors to provide for their 

healthcare workers when there is looming crisis of critical equipment because of environmental 

healthcare crisis. 

Going forward we further investigate the impact of the creation of isolation wards in the 

hospitals, which is a type of asset rearrangement, on the way the hospitals manage their PPE 

inventory and patient care. We develop an agent-based model, that is grounded in practice, to 

model the agents – patients, healthcare workers and inventory manager – and to observe the 

evolution of interactions among them, way they provide care and consequent nosocomial viral 

transmission. We then use the simulation to observe multi-faceted performance measures of the 

hospital as we compare different hospital asset rearrangement policies – creation of isolation wards 

versus the baseline policy when the hospital has no isolation wards. We studied the effect of these 

policies on PPE inventory levels, resource utilization and nosocomial transmission to understand 

the tradeoffs among competing priorities of the hospital. The analysis unveils existence of 

tradeoffs among these metrics that calls for the attention of hospitals to manage. The results 

indicate that though the hospital can provide equivalent quality of care services with fewer PPE 

inventory, the hospital experienced lower bed utilization despite higher rejection rates. This is 

indicative of the higher opportunity costs of de-pooling the hospital infrastructure to create 

isolation wards as the hospital cannot use empty beds in a type of ward to admit incoming patients 
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in other wards. Additionally, the results show only marginal difference in rates of nosocomial 

infection under these policies. As such, our study makes strong contribution to the resource de-

pooling literature as it lends support to the existing literature which argues that infrastructure de-

pooling reduces customer accessibility to the system (Fard et. al. 2019; Eftekhar et. al. 2018; 

Natarajan and Swaminathan 2014). 

4.6.2. Managerial Implications 

Our study demonstrates the tradeoff among the objectives of managing PPE inventory levels, 

resource utilization and nosocomial transmission as the hospital decides to implement isolation 

ward and calls for the attention of hospital administrators to actively manage the patient care 

depending on the hospitalization demand. The study serves as a reminder to the administrators to 

reflect on the priorities of the hospital. For example, the goal of a community hospital may be to 

make healthcare accessible to the population in the community and may care less about the 

increasing cost of the care services. In such case, the administrators may consider to not segregate 

hospital infrastructure into isolation wards as our analysis indicates high opportunity costs of such 

strategy as the hospitals experience high rejection rates despite having lower bed occupancy levels. 

On the contrary, a for-profit hospital may consider creating isolation wards as our analysis suggest 

that hospitals with isolation wards may provide equivalent care services while carrying 130% 

lower PPE inventory as compared to a peer hospital without isolation wards. Our study suggests 

that during the start of the pandemic when hospitals experience scarcity of PPEs, the hospitals may 

consider creation of isolation wards as hospitals can continue to provide care services with lower 

number of PPE inventories in stock. However, our study indicates that the administrators should 

have the flexibility to dynamically reserve resource toward isolation wards depending on the 

hospitalization pattern and demand to lower the opportunity costs of empty patient beds due to 
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segregation. For example, during the peak of COVID-19 patient hospitalization the hospital may 

decide to allocate higher proportion of resources toward creating isolation ward. However, the 

hospital may choose to gradually decrease the proportion as the hospital experience lower COVID-

19 patient hospitalization rates. 

First, the study questions the assumptions based on which the policy has been defined: the 

hospitals can accurately identify infected people from the non-infected ones using COVID-19 

testing. We notice that this assumption may not hold true as almost 15% of the infected patients 

admitted to the hospital later shows sign of COVID-19, making it difficult to control the 

nosocomial spread in the general ward. As Kucirka and Lauer (2020) has suggested that the 

probability of COVID-19 tests reporting false negatives decrease as the number of days passed 

since the viremia exposure, our study encourages the hospital clinical administrators to conduct 

ad-hoc testing of the patients in the general wards. As such the hospital will be able to detect 

asymptomatic cases of COVID-19 before the patients turn symptomatic and hopefully before she 

spreads the infection to other patients in the wards. 

As healthcare workers (HCWs) are carriers of the infection within the hospital, the study 

suggests that administrators must protect the HCWs from getting affected, especially in the general 

wards. Currently, the hospitals that have the isolation wards do not let the HCWs use PPEs to treat 

patients in the general ward, which helps the hospital to conserve the PPE. We suggest that HCWs 

should use PPEs to treat patient in the general wards too. However, the usage patterns can be 

different from the HCWs in the isolation wards. The administrators may allocate general ward 

HCWs a set of PPEs to treat all the patients in a round, which she can doff after every round. Given 

the low incidence of COVID-19 patients in the general wards such basic protection level might be 

sufficient to protect the HCWs from contracting the virus. Additionally, the hospitals should 



 160 

consider investing in infrastructure or building partnerships with organizations that can sanitize 

used PPEs. Such collaboration may enable hospitals to reuse PPEs which may attenuate the 

internal demand for PPEs. For example, Sparrow Hospital collaborated with Michigan State 

University to use the university facility of heated forced air to decontaminate used N95 

facemasks29. 

4.6.3. Limitations and Directions for Future Research 

Though our multi-method study provides robust understanding of research questions and 

enables us to control endogeneity issues in analysis, our research is not devoid of limitations which 

opens opportunity for future research. The first limitation of our study is our inability to conduct 

an extensive field research. We conducted interviews with only five hospitals in Michigan. Within 

those five we were able to talk to both supply chain and clinical professionals of two hospitals. 

Though the discussions gave us insight into daily challenges of providing care services during 

pandemic an extensive field research would have opened us to diverse viewpoints of what the other 

hospitals (possibly from other states) have been doing. As such, that might have helped in curating 

the research question more effectively and define the simulation in robust way. Future research 

should consider a robust fieldwork of hospitals across different states in the country as their 

operations might be contingent upon varying state policies. 

 

 

 
29 https://www.lansingstatejournal.com/story/news/2020/04/03/msu-michigan-state-university-baking-masks-covid-
19/5117840002/  
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APPENDIX A 

 
 

CDC Guidelines 
 

As noted in Table A1, the five categories of guidelines provided by CDC (Worker Safety and 

Support, Patient Service Delivery, Data Streams for Situational Awareness, Facility Practices and 

Communications) can be further divided into 10 practical approaches with approach # 1 

(Comprehension and execution of IPC practices) divided into four sub-activities and approach # 9 

(Extent of enhancing facility’s response mechanisms by becoming familiar with pandemic, 

COVID-19 specific, and crisis standards of care) divided into five sub-activities. Any news item 

that resonated with one of the approaches was coded under that heading. These approaches are 

listed in Table A1.  

Table A1 Health System Activities/Approaches 

Approach 
Categories 

Practical Approaches that Health Systems 
can follow Sub-Activities 

A. Worker Safety 
and Support 

1. Comprehension and execution of IPC 
practices 

1a. Extent of HCP training on PPE use 
1b. Extent of PPE optimization 

1c. Extent of implementation of source 
control 

1d. Extent of PPE tracking 

2. Develop protocols for HCP to monitor 
themselves for infection, and extent of 

restricting them from work post exposure, 
and to plan for safely allow return to work 

 

3. Extent of provision of extra support for 
HCP (e.g., support for mental 

health, parenting, meals, and non-punitive 
sick policies.) 

 

B. Patient Service 
Delivery 

4. Extent of help to HCP to become well-
versed in evidence-based care 

 

5. Comprehension of the guidance for 
discharging a patient with suspected or 
confirmed COVID-19 from the hospital 
to home or to a long-term care facility 
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Table A1 (cont’d)  

6. Extent of telehealth usage (e.g., 
implementation of a phone advice line to 

triage patients and to address questions and 
concerns from possible COVID-19 

patients) 

 

C. Data Streams 
for Situational 

Awareness 

7. Extent of maintaining awareness of 
the COVID-19 situation in the state, city, 

and facility 
 

8. Extent of reporting hospital capacity 
data to state administration or registry. 

 

D. Facility 
Practices 

9. Extent of enhancing facility’s response 
mechanisms by becoming familiar with 

pandemic, COVID-19 specific, and crisis 
standards of care 

9a. Extent of using hospital preparedness 
checklist to estimate and respond to the surge 

in demand for hospital-based services 
9b. Extent of cohorting patients with COVID-

19 and assigning dedicated staff. 
9c. Development and implementation of plans 
to reduce staffing shortages and assessment of 

need for alternative care sites, such as 
emergency field hospitals 

9d. Instance of setting up an Emergency 
Operations Center (EOC) if not already 

present 
9e. Extent of work towards 

resuming/maintaining essential healthcare 
services using a risk/benefit analysis 

E. 
Communications 

10. Extent of communication with HCP, 
patients, and the community (e.g., virtual 

town halls, daily huddles with local 
leadership, emails and phone conferences 

for staff) 

 

 

To extract activities of each of the health systems we first used Bert Extractive Summarizer 

(BERT) (Derek, 2019) to summarize the news contents. The summarizer embeds the sentences, 

runs a clustering algorithm, and finds the sentences that are closest to the cluster's centroids. These 

summarization algorithms generally depend on the frequency of words in the news content to form 

clusters and choose sentences with occurrences of those words as ideal candidates in the summary 

(Derek, 2019). There are few drawbacks with using the summarization algorithm. First, instances 

of activities performed by a health system may not have words with the highest frequency and we 

may lose those sentences in the summarization process. Second, if text reports different activities 
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by more than one health systems then the ones identified in the BERT summarization process, we 

may lose the context of such activities. As an example, consider the following news item: 

Michigan Medicine will not open a field hospital as it was initially planned due to the 
curve "significantly flattening." It continues to plan for a potential need, but there is no 
definite date on which the field hospital would open at this time. "It appears from current 
COVID-19 cases and modeling that the curve is significantly flattening," a Michigan 
Medicine spokeswoman said. Michigan Medicine is still in communication with state 
officials to coordinate and determine future need. "Our ongoing focus is on our current 
capacity and readiness to serve patients in our existing hospital facilities." The TCF 
Regional Care Center is accepting its first 25 patients Friday, and will be staffed by Henry 
Ford Health System, McLaren Health Care, Beaumont Health and Detroit Medical Center. 
The Suburban Collection Showplace in Novi has been identified as a second field hospital. 
It is not expected to be running for several days. 

 
The corresponding BERT summarization is as follows:  

Michigan Medicine will not open a field hospital as it was initially planned due to the 
curve "significantly flattening." "It appears from current COVID-19 cases and modeling 
that the curve is significantly flattening," a Michigan Medicine spokeswoman said. 
Michigan Medicine is still in communication with state officials to coordinate and 
determine future need. “Our ongoing focus is on our current capacity and readiness to 
serve patients in our existing hospital facilities. 

 
We notice that the summary drops out the sentence that the hospital system continues to plan 

for potential need, which is an important operational aspect reported in the news. To address this 

drawback, we developed an algorithm that extracts operational aspects more effectively. The 

pseudo code is provided below: 

GET article_text 
GET healthsystem_name 
DO split article_text into sentence list 
SET temporary_list as sentence_list 
INITIALIZE summary_list to NULL list 
IF healthsystem_name found in article_text THEN 
 FOR each sentence in temporary_list 
  IF healthsystem_name found in sentence THEN 
   ADD sentence and next two sentences in summary_list 
ELSE 
 ADD 'Text not found' in summary_list 
MERGE items in summary_list to form text 
RETURN text 
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As the instances of the activities by the health system generally occur in the news item adjacent 

to the sentence where the name of the healthcare system name is mentioned, we extract the 

sentence, where the name of the system appears, along with two following sentences. The resulting 

summarization is provided below.  

Michigan Medicine will not open a field hospital as it was initially planned due to the curve 
"significantly flattening.”  
It continues to plan for a potential need, but there is no definite date on which the field 
hospital would open at this time. 
"It appears from current COVID-19 cases and modeling that the curve is significantly 
flattening," a Michigan Medicine spokeswoman said. 
Michigan Medicine is still in communication with state officials to coordinate and 
determine future need. 
"Our ongoing focus is on our current capacity and readiness to serve patients in our 
existing hospital facilities 

 
The approach adopted in this study preserves all operational activities undertaken by the 

system. As same events are reported by multiple news channel, even if we missed some of the 

operational activities in our summarization process from one news source, consideration of 

multiple channels enables us to ensure that we have captured most of these activities.  
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APPENDIX B 

 
 

Interview Questions Directed to the Supply Chain and Clinical Practitioners 
 

Hospital Profile 
1. How many beds do the hospital have? 
2. How many clinical nurses does the hospital have? 
3. How many physicians does the hospital have on payroll? 
4. What is the nurse-to-patient ratio during pandemic? 
 
Supply Chain Challenges 
1. How did the supply chain department manage PPE inventory during pandemic? 
2. How did the hospital manage PPE suppliers during the pandemic? 
3. Did the hospital receive any state allocation of PPE? 
4. Discuss about the PPE fulfillment policies during the pandemic. What was the maximum 

inventory that was maintained? What was the reorder point? 
5. How did the hospital manage healthcare delivery in case it stock-out on PPEs? 
6. How did creation of isolation ward, if any, help in the management of PPE inventory? 
7. Discuss the policy about mask usage in both isolation ward, if any, and general wards? 
 
Clinical Procedure and Challenges 
1. How many employee shifts did the hospital have during pandemic? How many rounds per shift 

did the hospital have? 
2. Discuss the process of patient admission during the pandemic. 
3. Discuss hospital’s policy about admitting asymptotic patients during the pandemic. 
4.  How did the hospital apportion hospital resources toward the creation of isolation wards? In 

case the reservation is time variant, how was the allocation decided? 
5. What were the challenges that hospital faced regarding nosocomial transmission of the virus? 
6. In case any patient contracted the virus was she moved to isolation wards if present? 
7. Did the hospital perform any ad-hoc COVID-19 testing for the healthcare workers and 

physicians? 
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