
DEVELOPMENT AND ASSESSMENT OF PREDICTIVE

MODELS FOR IMPROVED SWINE FARMING

By

Junjie Han

A DISSERTATION

Submitted to

Michigan State University

in partial fulfillment of the requirements

for the degree of

Animal Science––Doctor of Philosophy

Computational Mathematics, Science and Engineering––Dual Major

2022

ABSTRACT

DEVELOPMENT AND ASSESSMENT OF PREDICTIVE MODELS FOR IMPROVED

SWINE FARMING

By

Junjie Han

Prediction of outcomes is critical in both swine breeding and management. This

necessitates the development of predictive models that address challenges in swine farming. For

predictive modeling, there have been significant advances in deep learning. Nevertheless, there

are needs to adapt deep learning-based models for specific swine farming problems including

genomic prediction and behavior analysis. Furthermore, there is not yet a clear guideline on how

to validate a model in this field. The overarching goal of this dissertation was to validate a

collection of predictive models for improved swine farming with applications to precision

management, phenotyping, and breeding. The first study addressed the pig genomic prediction

problem. Differential evolution was utilized to optimize deep learning (DL) hyperparameters that

affected the predictive performance of DL models. Performance of optimized DL was compared

with “best practice” DL architectures selected from literature and baseline DL models with

randomly specified hyperparameters. Optimized models showed clear improvement. Further,

differential evolution saved considerable time compared to traditional optimization approaches

e.g., grid search. Despite the success of genomic prediction, phenotyping has become a

bottleneck in breeding programs as it is still time-consuming and labor-intensive. Computer

vision (CV) can be used to automate the phenotyping process. Nonetheless, there are limited

amount of public data for CV development in livestock farming. Most published CV applications

to livestock farming were developed using rather small datasets, and their broader validity

remained unknown. Therefore, the second study aimed at reviewing publicly available image

datasets that were used for CV algorithms in livestock farming and the validation methods in the

related work. Through the review, we could not find public datasets that addressed pigs’

agonistic behaviors (negative social behaviors), which is an important topic in swine farming.

Given this, the third study aimed at collecting a video dataset to study pig’s agonistic behavior

and adapting a state-of-the-art DL pipeline to classify pigs’ agonistic behaviors through video

analysis. The pipeline was validated through various training-validation data partitions, where

the training data were used for model development and the validation data were used for model

evaluation. Results showed that splitting the training and validation sets at random led to over-

optimistic estimates of model performance. The last study focused on developing and validating

a statistical model for the analysis of pigs’ social interactions. Generalized linear mixed models

were fitted, and a Bayesian framework was used for parameter estimation and posterior

predictive model checking. The predictive performance of the models varied depending on the

validation strategy, where three strategies were defined: random cross-validation, block-by-

social-group cross-validation, and block-by-focal-animals validation. In conclusion, this

dissertation provides information about how state-of-the-art models can be adapted for and

validated in swine farming applications. Future directions of this research could aim at creating

reference imagery datasets in swine farming that provides a platform for CV applications and

developing integrated computer vision systems, which eventually assists in prediction tasks for

improved pig management and breeding.

Copyright by

JUNJIE HAN

2022

v

To my wife, my mother, and my father.

vi

ACKNOWLEDGEMENTS

I sincerely appreciate my family, my dissertation committee members, MSU faculty

and staff, and friends. Without their support, it would not be possible for me to accomplish my

doctoral dissertation. Furthermore, my interactions with colleagues, professors, and students, and

my personal positive experience on being mentored gave me the opportunity to understand and

appreciate the beauty of both science and humankind.

To my major advisor, Dr. Juan P. Steibel. Juan has patiently and selflessly guided me

to be a qualified PhD student in many aspects- critical thinking, scientific writing, presentation

skills, and attitude, etc. He has always supported my decisions and given his wholehearted

advice on every single question I asked. He was always approachable and has spent so much

time mentoring me. In personal life, I am grateful that he treated me as a friend and gave me

advice beyond academic scope. Great thanks to Juan!

To my dissertation committee members: Dr. Janice Siegford, Dr. Cedric Gondro, Dr.

Robert Tempelman, Dr. Tami Brown-Brandl, and Dr. Dirk Colbry. The high standard they have

set and expected for me motivated myself to push the limit. Their encouragement and

constructive suggestions guided me to become a better student. They are academic role models

for me, and they have influenced me to set up my career goals as a scientist. It was my honor to

be mentored by these great people.

I would not be able to finish my PhD program without the support from my family.

My father, Hongming Han, and my mother, Zhenai Piao, have always solidly got my back no

matter what happened. Special thanks to my wife, Jinhua Qian. She has been incredibly

supportive and inspired me to overcome challenges. She has always been there to share my

vii

happiness and low morale. She was understanding and considering throughout my PhD journey,

and she always cheered me up.

I thank my collaborators and researchers from whom I learned different aspects to

think of problems. Dr. Kenneth Reid, Dr. Joao Dorea, Dr. Tomas Norton, Andrea Parmiggiani,

Dr. Daniel Morris, Raymond Lesiyon, Anna Bosgraaf, Chen Chen, and Dr. Gustavo de los

Campos have provided valuable suggestions and help in my research projects. It was my

pleasure to work with my collaborators. Also, I thank Kevin Turner and Chris Rozeboom for

their assistance in my experiments at MSU Swine Teaching & Research Center.

Finally, thanks to my fellow students from departments of animal science &

computational mathematics, science and engineering at MSU. Special thanks to my great friends

Lingkun Li, Xing Lu, Daoyang Chen, Mingzhe Li, Fei Zhang, Kangxu Wang, and Zinan Wang

for their company during my PhD journey. They shared valuable thoughts with me and

comforted me when I was in low morale.

“I’m a million miles ahead of where I’m from, but I still have another million miles to

go.”

Tim Bergling

viii

PREFACE

Chapter 2 was formatted for publication in G3: Genes|Genomes|Genetics and

corresponds to the peer-reviewed version of Han, J., C. Gondro, K. Reid, and J. P. Steibel. 2021.

Heuristic hyperparameter optimization of deep learning models for genomic prediction. G3

Genes|Genomes|Genetics. 11. doi:10.1093/g3journal/jkab032.

Chapter 3 was formatted for the preprint version of Han, J., J. R. Dorea, T. Norton, A.

Parmiggiani, D. Morris, J. Siegford, and J. P. Steibel. Publicly Available Datasets for Computer

Vision in Precision Livestock Farming: A Review.

Chapter 4 was formatted for publication in Computers and Electronics in Agriculture and

corresponds to the pending review version of Han, J., J. Siegford, D. Colbry, R. Lesiyon, A.

Bosgraaf, C. Chen, T. Norton, and J. P. Steibel. 2022. Under review. Evaluation of Computer

Vision for Detecting Agonistic Behavior of Pigs in a Single-Space Feeding Stall Through

Blocked Cross-Validation Strategies.

Chapter 5 was formatted for publication in Applied Animal Behaviour Science.

ix

TABLE OF CONTENTS

LIST OF TABLES………………………………………………………………………….……xii

LIST OF FIGURES………………………………………………………………………...……xvi

KEY TO ABBREVIATIONS………………………………………………………………..….xxi

CHAPTER 1: GENERAL INTRODUCTION………………………………………………….…1

1. INTRODUCTION………………………………………………………………...………1

1.1 Deep learning for genomic prediction……………………………………….………3

1.2 Deep learning for phenotyping………………………………………………………4

1.3 Deep learning and statistical learning for animal-animal interaction………………..5

2. OBJECTIVES …………………………………………………………...……………….6

REFERENCES …………………………………………………………………………………....8

CHAPTER 2: HEURISTIC HYPERPARAMETER OPTIMIZATION OF DEEP LEARNING

MODELS FOR GENOMIC PREDICTION……………………………………………….…..…13

1. ABSTRACT……………………………………………….………………………….…13

2. INTRODUCTION……………..……………………….…………….……………….…14

3. MATERIAL AND METHODS……….………………………………………...…….…17

3.1 Datasets……….…...……………………………………………….……...…….…17

3.1.1 Simulated datasets………………………………………….……...…….…17

3.1.2 Real dataset………………………………………….………….....…….…17

 3.2 Deep learning and genomic prediction………………………………………….…18

3.2.1 Multilayer perceptron………………………………………….…………...18

3.2.2 Convolutional neural network……………………………………………...20

3.2.3 DL model training…………………………………………….....................22

3.2.4 Hyperparameter optimization………………..……………….....................22

3.3 Differential evolution algorithm for deep learning……………...............................23

3.3.1 Random key………………..………………..24

3.3.2 Initialization………………..………………..25

3.3.3 Mutation………………..………………..26

3.3.4 Crossover………………..………………..27

3.3.5 Selection………………..………………..27

3.3.6 Top model selection………………..………………....................................28

3.4 Optimized model assessment through external validation……………...……….....29

3.5 Hardware and software………………..………………...29

3.6 Data availability………………..………………..30

4. RESULTS AND DISCUSSION………………..……………….....................................30

4.1 Optimization runtime profiles………………..……………….................................31

4.2 Characteristics of selected hyperparameters………………..………………...........36

4.3 Performance of optimized models under validation………………..………….......40

5. CONCLUSIONS………………..…………...………....………....………....…….….....44

x

6. ACKNOWLEDGEMENTS ………………..…………...……....…………...……….....44

APPENDICES ………………..…………...………....…………....………………..……............46

APPENDIX A: SUPPLEMENTAL MATERIAL…...………………..……………..…......47

APPENDIX B: FILE S2.1………...………..…………...………....………………...…......55

REFERENCES ………………..…………...………....…………....……………...…..................63

CHAPTER 3: PUBLICLY AVAILABLE DATASETS FOR COMPUTER VISION IN

PRECISION LIVESTOCK FARMING: A REVIEW ……………………………...…….…..…68

1. ABSTRACT………...………....………...………...………...………...……...................68

2. INTRODUCTION………...………....…………………...………...…….......................69

3. METHODOLOGY………...………....…………………...………...……......................71

3.1 Literature search parameters………...………....…………………...………….......71

3.2 Eligibility criteria………...………....…………………...………...…….................71

3.3 Data extraction………...………....…………………...………...…….....................71

4. RESULTS………...………....…………………...………...……....................................72

4.1 Animal subjects………...………....…………………...………...……....................73

4.2 Recording setup………...………....…………………...………...……...................75

4.3 Review of selected datasets by computer vision task………...………....................77

4.3.1 Entire body detection………...………..........………………………...........78

4.3.2 Body part detection………...………..........………………………..............80

4.3.3 Segmentation………...………..........………………………........................81

4.3.4 Behavior recognition………...………..........………………………............81

4.3.5 Identification………...………..........………………………........................83

4.3.6 Tracking………...………..........………………………...............................85

4.4 Validation strategy………...………..........………………………...........................86

5. DISCUSSION………...………..........………………………...………………...............90

6. CONCLUSION ……...………..........………………………...………………................94

APPENDIX………...………..........…………………………….………………..........................96

REFERENCES ………...………..........………………………...………………..........................99

CHAPTER 4: EVALUATION OF COMPUTER VISION FOR DETECTING AGONISTIC

BEHAVIOR OF PIGS IN A SINGLE-SPACE FEEDING STALL THROUGH BLOCKED

CROSS-VALIDATION STRATEGIES………...………..........………………………...……..105

1. ABSTRACT………...………..........…………………..........………………….……..105

2. INTRODUCTION………...………..........…………………..........……………….…..106

3. MATERIAL AND METHODS………...………..........…………………..........….…..108

3.1 Experimental design………...………..........…………………......................….….108

3.1.1 Recording schedule and specifications………...……….................….…..108

3.1.2 Behavior ethogram and dataset………...………............................…..…..110

3.1.3 Validation strategies………...………............................……………...…..113

 3.2 Computer vision algorithm………...………...........................…...……...….……..114

3.2.1 Deep learning pipeline for video classification…………………………..114

3.2.2 Feature extraction with convolutional neural network……………….…..115

3.2.3 Long short-term memory………………………………………………....116

3.2.4 Hyperparameters………………………………………………….……....117

3.2.5 Region of interest………………………………………………………....118

xi

3.2.6 Deep learning training accounting for class-imbalance…………………..119

3.2.7 Evaluation matrices…………………………………………………….....120

4. RESULTS AND DISCUSSION…………………………………………………….....120

5. CONCLUSION…………………………………………………………………….......129

6. DECLARATION OF COMPETING INTEREST……………………...………………130

7. ACKNOWLEDGEMENTS…………………………………………………………....130

8. DATA AVAILABILITY……………………………………………………………....130

APPENDIX…...…………………………………………………..……………….………........131

REFERENCES …………………………………………………..……………….….................139

CHAPTER 5: ANALYSIS OF SOCIAL INTERACTIONS IN GROUP-HOUSED ANIMALS

USING DYADIC LINEAR MODELS…………………………………………………..…......145

1. ABSTRACT……………………………………………………………………….....145

2. INTRODUCTION……………………………………………………………..…........146

3. METHODS AND MATERIALS………………………………………………………148

3.1 Data from social interactions should be analyzed as dyadic data……………...…148

3.1.1 Social interaction data……………...…………...………...………...…….149

3.1.2 Analysis of dyadic data from directional social interactions…………..…149

3.2. Experimental data analysis: attacking time in group-housed pigs…………..…...150

3.2.1 Experiment setup…………..…………..…………..…………..…….…...150

3.2.2 Analysis model…………..…………..…………..…………..…….……...151

3.2.3 Modeling of (co)variances…………..…………..…………..…………....153

3.2.4 Estimation…………..…………..……..…………………...…..………....154

3.2.5 Validation strategies and posterior predictive checks: how well does the

model fit the data? …………..…………..……..………………….....………....155

3.3 Ethical approval…………..…………..……..………………………....………....156

4. RESULTS…………..…………..……..………………………....………………….....157

4.1 Estimation of animal-specific effects, dyad-specific effects, and (co)variance

components…………..…………..……..………………………....……………….....157

4.2 Predictive performance in different validation strategies………….…………......158

5. DISCUSSION………….…………….………….………….………….…………........161

6. CONCLUSION………….…………….………….………….………….…………......168

7. ACKNOWLEDGEMENTS………….…………….………….………….…………....168

APPENDIX…..………….…………….………….………….…………....................................169

REFERENCES ………….…………….………….………….…………...................................175

CHAPTER 6: GENERAL DISCUSSION ………….…………….………………….................179

1. DISCUSSION………….…………….…………………...179

2. FUTURE DIRECTIONS………….…………….………………..................................182

REFERENCES ………….…………….………………..184

xii

LIST OF TABLES

Table 2.1 Parameter space for optimized hyperparameters. Hyperparameter space and range (see

details in File S2.1). N represents sample size. 𝛼1=0.001 for the simulated datasets and 𝛼1=0.01

for the real pig dataset. 𝛼2=0.01 for the simulated datasets and 𝛼2=0.1 for the real pig dataset ….23

Table 2.2 Runtime profile for the DE approach. MLP, multilayer perceptron; CNN, convolutional

neural network; Avg. runtime, average runtime for one DE iteration (each iteration fits two

models); Num. iterations, the total number of iterations used in DE; min, minutes; hr,

hours ……………………………………………………………………………………………..31

Table 2.3 Hyperparameters of selected MLP models from each population. SP, simulated pig

dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of

different data partition; No. layer(s), number of hidden layers; No. neurons, number of neurons

according to the number of hidden layers …...……………….…………………………………..38

Table 2.4 Hyperparameters of selected CNN models from each population. SP, simulated pig

dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of

different data partitions; No. layers, number of convolutional layers; No. filters, number of filters

applied based on No. layers; FCL, size (number of neurons) of the fully connected layer after

flatten layer ...……………………………………………………………………………….……39

Table S2.1 Adaptive hyperparameter space for the number of neurons. Number of neurons (nodes)

given the depth of network (number of hidden layers, HL) in multilayer perceptron

models …………………………………………………………………………………………...47

Table S2.2 Adaptive hyperparameter space for number of filters. Number of filters (kernels) given

the depth (number of convolutional layers) of convolutional neural

network …………………………………………………………………………………………..47

Table S2.3 Minimum length of feature maps applied to each layer of convolutional neural network.

Conv: Convolutional layer ……………………………………………………………………….47

Table S2.4 Distributions of optimized hyperparameters related to multilayer perceptron

architectures for simulated pig data. Pop 1-5: MLP solutions to five data partitions (five differential

evolution runs) …………………………………………………………………………………...48

Table S2.5 Distributions of optimized hyperparameters related to CNN architectures for simulated

pig data. Pop 1-5: CNN solution populations of five differential evolutions runs. Size of fully

connected layer: the number of neurons applied in the fully connected layer (after flatten layer).

Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………................……..48

Table S2.6 Distributions of optimized hyperparameters related to multilayer perceptron

architectures for the simulated cattle data. Pop 1-5: MLP solutions to five data partitions (five

differential evolution runs) ………………………………………………………………………48

xiii

Table S2.7 Distributions of optimized hyperparameters related to CNN architectures for simulated

cattle data. Pop 1-5: CNN populations of five differential evolutions runs. Size of fully connected

layer: the number of neurons applied in the fully connected layer (after flatten layer). Q0.05, 5%

quantile; Q0.95, 95% quantile …………………………………………………………………...49

Table S2.8 Distributions of optimized hyperparameters related to multilayer perceptron

architectures for the real pig data. Pop 1-5: MLP solutions to five data partitions (five differential

evolution runs) …………………………………………………………………………………...49

Table S2.9 Distributions of optimized hyperparameters related to CNN architectures for real pig

data. Pop 1-5: CNN populations of five differential evolutions runs. Size of fully connected layer:

the number of neurons applied in the fully connected layer (after flatten layer). Q0.05, 5% quantile;

Q0.95, 95% quantile ……………………………………………………………………………..49

Table S2.10 Distributions of optimized hyperparameters related to MLP model compilation and

fitting for simulated pig data. Pop 1-5: MLP solution populations of five differential evolution runs.

Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………………………..50

Table S2.11 Distributions of optimized hyperparameters related to CNN model compilation and

fitting for simulated pig data. Pop 1-5: CNN solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………………….50

Table S2.12 Distributions of optimized hyperparameters related to MLP model compilation and

fitting for simulated cattle data. Pop 1-5: MLP solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………………….50

Table S2.13 Distributions of optimized hyperparameters related to CNN model compilation and

fitting for simulated cattle data. Pop 1-5: CNN solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………………….51

Table S2.14 Distributions of optimized hyperparameters related to MLP model compilation and

fitting for real pig data. Pop 1-5: MLP solution populations of five differential evolution runs.

Q0.05, 5% quantile; Q0.95, 95% quantile …………………………………………………..……51

Table S2.15 Distributions of optimized hyperparameters related to CNN model compilation and

fitting for real pig data. Pop 1-5: CNN solution populations of five differential evolution runs.

Q0.05, 5% quantile; Q0.95, 95% quantile ………………………………………………………..51

Table S2.16 Selected MLP and CNN architecture derived from other studies. No. layers, the

number of fully connected layers or convolutional layers; No. neurons (filters), the number of

neurons or filters adaptive based on the number of layers. In the No. layers column, 1+1 means

one convolutional layer plus one fully connected layer …………………………………………..52

Table 3.1 Description of extracted data ...……………………………………………………..….72

Table 3.2 Overview of public pig and cattle datasets utilized for computer vision tasks in precision

livestock farming ………………………………………………………………………………...73

xiv

Table 3.3 Characteristics of animal subjects. *: to specify an exhaustive list of units/ranges if

applicable. Multiple pens mean that the number of pens is more than two while the exact number

remains unknown ………………………………………………………………………………..75

Table 3.4 Recording setup and schedule of publicly available datasets for computer vision in

livestock farming. RGB, red-green-blue; RGB-D, RGB and depth. Multiple weeks/days mean that

the experiment lasted more than two weeks/days while the exact number remained unknown.

Varying resolutions represent that more than two resolutions are involved ……………………...77

Table 3.5 Identified public datasets for animal entire body detection via computer vision. Code

availability: whether computer code is available for entire body detection. *: an annotated image

is considered as an image paired with an external file that includes manually annotated bounding

box coordinates. Varying resolutions mean that there are more than two resolutions in the

dataset ……………………………………………………………………………………………79

Table 3.6 Identified public datasets for animal body part detection via computer vision. *: an

annotated image is considered as an image paired with an external annotation file. Code

availability: whether computer code is available for body part detection ………………………...80

Table 3.7 Identified public datasets for animal behavior recognition via computer vision. i: an

annotated file is considered as an imagery file paired with an external annotation file. ii: the classes

were not explicitly defined. Code availability: whether computer code is available for behavior

recognition ……………………………………………………………………………………….83

Table 3.8 Public datasets for animal identification via computer vision. i: if an individual as the

ROI means that the individual animal is first localized and then identified; otherwise, an ID class

label is assigned to the entire image. ii: an annotated image is considered as an image assigned with

an ID label. Code availability: whether computer code is available for identification ……………84

Table 3.9 Validation strategies used for reviewed datasets in their original applications ……..….87

Table 3.10 Evaluation metrics by computer vision tasks and validation strategies. A range is

provided if more than one point estimate were reported for the specific validation strategy …..…89

Table S3.1 Website or URLs of publicly available animal datasets for computer vision ………...97

Table S3.2 Metrics for performance evaluation in different validation strategies ………………..98

Table 4.1 Rotation schedule of social groups for the two experimental pens. SG, social group ...109

Table 4.2 Ethogram for the agonistic behaviors in pigs. *: ear-to-body was merged into head-to-

body …………………………………………………………………………………………….111

Table 4.3 Explored hyperparameters and related work. CNN, convolutional neural network; LSTM,

long short-term memory ……………………………………………………………………..…118

xv

Table S4.1 Hyperparameters configuration …………………………………………………….132

Table S4.2 Overall accuracy for different regions of interest …………………………………...132

Table S4.3 Available sample size by validation strategies. *: the training set and the testing set

were interchangeable depending on which feeder was used for training/testing. #: once a training

set size N1 was determined, the remaining N2=15,679 - N1 samples were considered as the testing

set ……………………………………………………………………………………………....132

Table 5.1 Estimated posterior statistics for fixed effects and (co)variance components explained

on total attacking duration between the giver animal and the receiver animal. Q: quantile ..…....158

Table 5.2 Metrics for evaluating predictive performance of the model under different validation

strategies. AUC, area under ROC (Receiver Operating Characteristics) curve; RMSE, root mean

square error; CV, cross-validation ………………………………………………………….......160

Table S5.1 Summary of MCMC samples. Q, quantile; n_eff, effective sample size ……………174

xvi

LIST OF FIGURES

Figure 2.1 Multilayer Perceptron (MLP) for genomic prediction of a single trait with M SNP

markers. The network has an input layer, two fully connected hidden layers and an output layer.

Each node’s input in the hidden layers is a transformation of the weighted sum of the output from

the previous layer. The number of nodes in hidden layers decrease as the depth of the MLP

increases, to facilitate representation learning …………………………………………………...19

Figure 2.2 1-d Convolutional neural network (CNN) for genomic prediction of a single trait with

M SNP markers. The network has an input layer, two convolutional layers with their corresponding

pooling layers, a fully connected hidden layer and an output layer. Each convolutional layer applies

a number of filters to the output of the previous layer and its output is subsequently summarized

by a pooling layer ……………………………………………….………………………………..20

Figure 2.3 Pseudocode for differential evolution algorithm ……………………………………...24

Figure 2.4 Summary of the random key (mapping function) used to transform numeric vectors into

discrete levels of hyperparameters. The numeric vector can be subject to mutation and

recombination. The mapping is used to transform the result into a meaningful set of

hyperparameters that can be used to fit a model and obtain a fitness to select numeric vectors26

Figure 2.5 History of differential evolution by algorithm and data partition in the simulated pig

dataset over 2,000 iterations. Mean and standard deviation of the fitness (correlation between the

predicted and true phenotype) were computed given each population. (A) Mean fitness of five

populations by fitting multilayer perceptron (MLP) models. (B) Standard deviation of fitness

within each population (MLPs). (C) Mean fitness of five populations by fitting convolutional

neural network (CNN) models. (D) Standard deviation of fitness within each population

(CNNs) …………………………………………………………………………………………..33

Figure 2.6 History of differential evolution by algorithm and data partition in the simulated cattle

dataset over 2,000 iterations. Mean and standard deviation were computed given each population.

(A) Mean fitness of five populations by fitting multilayer perceptron (MLP) models. (B) Standard

deviation of fitness within each population (MLPs). (C) Mean fitness of five populations by fitting

convolutional neural network (CNN). (D) Standard deviation of fitness within each population

(CNNs) …………………………………………………………………………………………..35

Figure 2.7 History of differential evolution by algorithm and data partition in the real pig dataset

over 10,000 iterations. Mean and standard deviation were computed given each population. (A)

Mean fitness of five populations by fitting multilayer perceptron (MLP) models. (B) Standard

deviation of fitness within each population (MLPs). (C) Mean fitness of five populations by fitting

convolutional neural network (CNN) models. (D) Standard deviation of fitness within each

population (CNNs) ………………………………………………………………………………36

Figure 2.8 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (simulated pig dataset). Models were tested on five data partitions of the

simulated pig dataset. Statistics represent external (cross) validations by fitting the same model 30

xvii

times. The left three boxes are for MLP models and the right three boxes are for CNN models.

Null box means the model did not converge. Random, random hyperparameters; Perez,

hyperparameters recommended by Pérez-Enciso and Zingaretti (2019); Opt, optimized

hyperparameters using DE. Abbreviations stand for the same meaning in Figure 2.9 and Figure

2.1 ………………………………………………………………………………………………..42

Figure 2.9 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (simulated cattle dataset). Models were tested on five data partitions of the

simulated cattle dataset. Statistics represent external (cross) validations by fitting the same model

30 times. The left three boxes are for MLP models and the right three boxes are for CNN

models …………………………………………………………………………………………...43

Figure 2.10 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (real pig dataset). Models were tested on five data partitions of the real pig dataset.

Statistics represent external (cross) validations by fitting the same model 30 times. The left three

boxes are for MLP models and the right three boxes are for CNN models. Null box means the

model did not converge …………………………………………………………………………..45

Figure S2.1 Pseudocode for adaptive filter size. Conv, convolutional layer; int(x), convert x into

the nearest integer; floor(x), get the largest integer that is smaller or equal to x ………………..53

Figure S2.2 Mean predictive performance and error bars across datasets and data partitions. The

error bar represents the mean ± standard deviation of cross validation by fitting the same model 30

times. Pink, green, and blue bars correspond to GBLUP, MLP, and CNN models, respectively.

MLP, multilayer perceptron; CNN, convolutional neural network; GBLUP, genomic best linear

unbiased prediction ………………………………………………………………………………54

Figure 3.1 Examples of image data and key annotations for different computer vision tasks. Panel

a) shows an example for entire body detection where each pig is enclosed in a bounding box. Panel

b) presents an instance for body part detection, where heads of pigs are marked in red and rear

parts of pigs are marked in blue. Panel c) shows an example of segmentation where each pig has a

polygon mask. Panel d) presents an example of behavior recognition through an individual image,

where lying pigs are enclosed in red bounding boxes and blue bounding boxes indicate pigs that

are not lying. Panel e) is an example of behavior recognition by assigning a label to an image

sequence. Panel f) shows an example of animal identification where each individual is assigned

with a bounding box and a unique ID label. Panel g) displays an example of a tracklet across three

consecutive frames ………………………………………………………………………………79

Figure 4.1 Top-down views of pens and feeding stalls. Panels A and B (infrared images) show the

center views of Pen 1 and Pen 2, respectively. Panels C and D are top-down views of the feeding

stalls for Pen 1 and Pen 2, respectively …………………………………………….……………110

Figure 4.2 Examples for generating episodes for no-contact, head-to-body, levering, and mounting

events ………………………………………………………………………………...................113

Figure 4.3 Deep learning pipeline for pig’s aggressive behavior detection based on videos. Graph

for ResNet-50 Architecture was obtained from Talo (2019) ………………………………....…115

xviii

Figure 4.4 Diagram of long short-term memory. The figure was redrawn, and the original figure

was obtained from https://colah.github.io/posts/2015-08-Understanding-LSTMs/ ………...….117

Figure 4.5 Explored regions of interest …………………………………………………...…….119

Figure 4.6 Bar plots of recall and precision for random, block-by-time, and block-by-feeder cross-

validations. HB, head-to-body; L, levering; M, mounting; NC, no-contact ……...……………..122

Figure 4.7 Confusion tables of three validation strategies. Tables were based on the result by

merging statistics over 5 replicates. Each validation strategy has five reps. Prediction means

classified result from our model and Target means ground-truth labels. Panel A, random validation;

Panel B, block-by-time validation; Panel C, block-by-feeder validation (Feeder 1 as testing set);

Panel D, block-by-feeder validation (Feeder 2 as testing set). NC, no-contact; M, mounting; L,

levering; HB, head-to-body …………………………………………….………………………126

Figure 4.8 Error patterns for misclassification. The 1st, 10th, 20th, and 30th frames of example

episodes were selected for display purpose. a), head-to-body and no-contact confused by no-

contact and head-to-body, respectively; b), head-to-body misclassified as levering; c-d), head-to-

body false predicted as mounting; e), levering confused by mounting. Panels a) and b) were

common misclassification patterns across all three validation scenarios. Panels c-e) only represent

block-by-time validation ……………………………………………………………………….127

Figure 4.9 Error patterns for misclassification in block-by-feeder validation. The 1st, 10th, 20th,

and 30th frames of example episodes were selected for display purpose. a), head-to-body

misclassified as mounting, respectively; b-c), levering misclassified as head-to-body; d), levering

false predicted as mounting; e), mounting confused by levering; f), mounting confused by head-

to-body; g-h), levering false classified as mounting ……………………………………….……128

Figure S4.1 Average accuracy of different hyperparameter sets. Units, number of hidden units in

long short-term memory module; bi-direct, bi-directional long short-term memory; standard,

standard one-way long short-term memory …………………………………………….………133

Figure S4.2 Training history of three validation strategies. Solid lines are for training curves and

dashed lines show the testing curve. Each validation strategy has five reps. Panel A, random

validation; Panel B, block-by-time validation; Panel C, block-by-feeder validation (Feeder 1 as

testing set); Panel D, block-by-feeder validation (Feeder 2 as testing set) ……………………...134

Figure S4.3 Scatter plots of individual score for each episode given the first six principal

components (grouped by feeder). Blue dots represent Feeder 1 and green dots are for Feeder 2.

Principle component analysis was done using feature vectors extracted from ResNet-50 ……...135

Figure S4.4 Testing sets breakdown (on the left of panels) and misclassification breakdown (on

the right of panels) by social group (A), week (B), feeder (C), mark (D), and behavior category (E)

in random cross-validation (five replicates). Marked pigs meant back-marked pigs with Arabic

numerals; Unmarked pigs were pigs without artifactual marks on their backs ………………….136

Figure S4.5 Testing set breakdown (on the left of panels) and misclassification breakdown (on the

right of panels) by social group (A), week (B), feeder (C), mark (D), and behavior category (E) in

xix

block-by-time validation. Plots on the left of panels show the proportion/count for a single dataset,

while plots on the right of panels stand for the statistics across 5 replicates. Marked pigs meant

back-marked pigs with Arabic numerals; Unmarked pigs were pigs without artifactual marks on

their backs ………………………………………………………………………………………136

Figure S4.6 Testing set breakdown (on the left of panels) and misclassification breakdown (on the

right of panels) by social group (A), week (B), mark (C), and behavior category (D) in block-by-

feeder validation, whereas Feeder 1 was the testing set. Plots on the left of panels show the

proportion/count for a single dataset, while plots on the right of panels stand for the statistics across

5 replicates. Marked pigs meant back-marked pigs with Arabic numerals; Unmarked pigs were

pigs without artifactual marks on their backs …………………………………………………...137

Figure S4.7 Testing set breakdown (on the left of panels) and misclassification breakdown (on the

right of panels) by social group (A), week (B), mark (C), and behavior category (D) in block-by-

feeder validation, whereas Feeder 2 was the testing set. Plots on the left of panels show the

proportion/count for a single dataset, while plots on the right of panels stand for the statistics across

5 replicates. Marked pigs meant back-marked pigs with Arabic numerals; Unmarked pigs were

pigs without artifactual marks on their backs …………………………………………………...138

Figure 5.1 Panel a), directional dyadic interaction intensity matrix (elements in the matrix represent

attacking duration); row sums and column sums are shown in the margins of the matrix. Panel b),

a truncated long-format table that is re-arranged from the interaction matrix; each row represents

a record that is the attacking duration from a giver animal to a receiver animal. 0.00 means

observed zero while 0 means structural zero that we do not consider as an actual

interaction …………………………………………………………………………………..…..147

Figure 5.2 Illustration of a dyadic interaction model as an example that partitions the response into

giver effects, receiver effects, and dyad-specific effects. Blue lines/arrows mean fixed effects, and

red represents random effects, e stands for the residual term ...………………………………....153

Figure 5.3 Proportion of zeros of validation set y (dark lines), with proportions of zeros for 500

simulated datasets �̃� drawn from the posterior predictive distribution (lighter bins). A), the model

that used all data points for model training to predict the same dataset; B) 5-fold cross-validation;

C) Block-by-social-group cross-validation; D) 5 replicates of block-by-focal-animal

validation ……………………………………………………………………………………….159

Figure 5.4 Distribution for the mean value of all observations across replicates. Mean of the

validation set y (dark solid line) is compared with the means of 500 simulated datasets ỹ drawn

from the posterior predictive distribution (lighter bins). We compared the logarithm of the

observed and the simulated variables i.e. log(y+1) and log(�̃� +1). A), the model that used all data

points for model training to predict the same dataset; B) 5-fold cross-validation; C) Block-by-

social-group cross-validation; D) 5 replicates of block-by-focal-animal validation .…………...160

Figure S5.1 Trace plots of posterior estimates of effects and variance components …………….171

Figure S5.2. Autocorrelation plots by chain and by parameters ………………………………...172

xx

Figure S5.3 Trace plots of variance components when the random dyad effect is included in the

model …………………………………………………………………………………………...172

Figure S5.4 Autocorrelation plots by chain and by variance components when the random dyad

effect is included in the model ………………………………………………………………….173

xxi

KEY TO ABBREVIATIONS

adam = Adaptive moment estimation

adj = Adjusted

AUC = Area under receiver operating characteristics curve

CNN = Convolutional neural network

CPU = Central processing unit

CV = Computer vision

DE = Differential evolution

DL = Deep learning

DOI = Digital object identifier

EB = Ear-to-body

elu = Exponential linear unit

Eq = Equation

GBLUP = Genomic best linear unbiased prediction

GLMM = Generalized linear mixed models

GPU = Graphics processing unit

h2 = Heritability

HB = Head-to-body

hr = Hour

ID = Identification

L = Levering

LSTM = Long short-term memory

M = Mounting

mAP = mean average precision

MCMC = Markov chain Monte Carlo

MLP = Multilayer perceptron

MOTA = Multiple objects tracking accuracy

xxii

MSE/mse = Mean squared error

N = Number of samples

nadam = Nesterov-accelerated adaptive moment estimation

NC = No-contact

obs = Observed

Opt = Optimized

OSF = Open science framework

P = P-value

PLF = Precision livestock farming

QTL = Quantitative trait loci

R2 = R squared

relu = Rectified linear unit

RGB = Red-green-blue

RGB-D = Red-green-blue and depth

RMSE = Root mean square error

rmsprop = Root mean square propagation

ROC = Receiver operating characteristics

ROI = Region of interest

SD = Standard deviation

selu = Scaled exponential linear unit

SG = Social group

sgd = Stochastic gradient descent

SNP = Single nucleotide polymorphism

softmax = Normalized exponential function

US = United States

US = United States of America

USDA = United States Department of Agriculture

1

CHAPTER 1: GENERAL INTRODUCTION

1. INTRODUCTION

Currently, the United States (US) is the world’s third-largest producer and consumer of

pork products, exporting over 20% of commercial pork produced (USDA, 2019). Such success is

partially due to structural and organizational changes to the US swine industry (Pairis-Garcia et

al., 2016). In the past decades, the US swine industry has transitioned from small and private

farms into larger and integrated systems (Pairis-Garcia et al., 2016).

Swine farmers are interested in stable and predictable conditions for pig production and

marketing, which helps achieve acceptable margins between costs and profits (Commandeur,

2006). To improve profitability in swine farming, a common strategy is to scale up the

production (Öhlund et al., 2017). Nevertheless, current internal migration trends from rural to

urban areas are leading to decreasing number of farmers (Berckmans, 2017), resulting in

increased workload per farmer. Furthermore, as both the population and income increase

globally, there are ever growing demand for pork products (Alexandratos and Bruinsma, 2012).

Production systems need to continue to adapt to meet these challenges.

Breeding is a powerful tool to improve swine farming efficiency (Oliviero et al., 2019).

In livestock farming, breeding refers to the selection of individuals as parents to produce better

performing offspring (Hill, 2001). Livestock breeding has enabled great increase in efficiency

and economic benefit of swine farming (Hayes et al., 2013). An important prediction problem in

livestock breeding is how to estimate animals’ breeding values. Traditional breeding programs

simply relied on the animal pedigree and phenotypic values that are quantifiable traits e.g.,

weight in pounds and feed intake in grams. Modern breeding programs use genomic prediction,

2

which refers to the prediction of individual phenotypic/breeding value using genomic

information. To implement genomic prediction, advanced prediction models are needed that

relate animal genomics to phenotypic values.

Management is another powerful tool for improved swine farming efficiency (Peltoniemi

et al., 2019). Daily management contributes to the optimization of costs and benefits, leading to

increased profitability in swine farming (Agostini et al., 2014). An important fact is that, to

manage pigs, farmers need to predict the status of pigs (e.g., predicting whether the pigs are fed

well and predicting pigs’ health condition). However, especially in large-scale pig farms, it is

challenging to predict and manage pigs at individual levels. Therefore, prediction models for

individual animals will positively assist in pig management.

Prediction of outcomes is critical in both swine breeding and management. As result,

researchers, swine breeders and swine farmers are increasingly interested in predictive modeling

that assists on-farm decision making (Tzanidakis et al., 2021). Predictive modeling refers to the

process of developing a statistical or computational tool that forecasts future outcomes with the

aid of existing data (Kuhn and Johnson, 2013). Although the goal of developing predictive

modeling is to predict future outcomes, relatively few models are developed and validated in

depth to match the goal. Validating a prediction model essentially means comparing predicted

values to the actual observed outcomes in a population (Ramspek et al., 2021). For validation

purposes, data are split into two parts: a training set that is used for model development and a

validation set that is used for model assessment. The common practice is to split data at random,

i.e., random validation. The underlying assumption of random validation is that the training set

and validation set are independent. However, dependence structures may exist in the data e.g.,

temporal and spatial structures which violates the assumption of independence between the

3

training set and validation set and leads to overoptimistic results (Roberts et al., 2017).

Unfortunately, data structures are often overlooked when splitting the data for validation

purposes. Therefore, proper designs of validation strategy i.e., the training-validation data split,

is necessary to determine a prediction model’s generalizability and reproducibility to new

farming environments and pigs (Ramspek et al., 2021).

Despite the substantial advancement in predictive modeling methods (Putka et al., 2018),

few attempts have been made to introduce the advanced predictive modeling to practical swine

farming. There are needs to adapt state-of-the-art predictive models for swine farming, as the

predictive ability of advanced methods e.g., deep learning is less well studied on swine breeding

and behavior recognition problems. Further, there is not yet a clear guideline on how to properly

split the data when developing and validating a novel predictive model in the field. Therefore,

collectively, this study aims at filling this gap by investigating and assessing several state-of-the-

art predictive models that fit into the swine farming context.

1.1 Deep learning for genomic prediction

Deep learning, a part of statistical learning toolboxes, has dramatically improved state-of-

the-art applications in computer vision, speech recognition and genomics (Lecun et al., 2015).

Deep learning (DL) is a set of representation learning methods, where a machine can be fed with

raw data and automatically discover the representations needed for prediction or classification,

with multiple levels of simple but non-linear modules transforming the representation at one

level into a representation at a higher, slightly more abstract level (Lecun et al., 2015). Its

flexibility allows researchers to apply DL in several contexts of prediction problems. For

instance, DL has already been applied to the genomic and phenotypic prediction in plants

(Crossa et al., 2019; Montesinos-López et al., 2018), human traits (Bellot et al., 2018), and

4

breeding values of bulls (Abdollahi-Arpanahi et al., 2020). Nevertheless, the potential of DL-

based genomic prediction remains unknown in swine farming. Thus, a better understanding of

DL applications in swine genomic prediction will bring valuable information to the swine

industry.

1.2 Deep learning for phenotyping

Genomic prediction tools have made great contributions to swine breeding programs.

Thanks to the technological developments in genomic studies, genotyping costs have decreased

significantly in the past years. However, phenotyping, the process of determining an individual’s

observable trait(s), has become a bottleneck in breeding programs, as it is still time consuming

and labor intensive, which may be even more costly than genotyping (Watanabe et al., 2017).

Thus, there are needs for phenotyping tools to accelerate swine breeding programs.

Deep learning is also suitable for high-throughput phenotyping through automating the

analysis video recordings. As DL is predominant in computer vision (CV) that refers to the use

of artificial intelligence to automatically extract useful information form computer graphics, DL

can be used to predict traits of animals through digital images. Compared to the traditional

approach that requires manual observation, CV has advantages of being low-cost, objective, and

non-interventional, and to generate information in a continuous scale (Chen et al., 2021; Li et al.,

2021). Researchers have already discovered this promising tool and started to develop DL

models for pig posture/behavior analysis in their experiments (Chen et al., 2020b; Liu et al.,

2020; Nasirahmadi et al., 2019; Zhang et al., 2020).

A limitation of DL centers around the data that are used to develop DL models. Deep

learning is known as a data-hungry approach, and it typically requires a large number of samples

in order to train models with acceptable performance (Lu et al., 2017; Marcus, 2018). For DL-

5

based CV in general, there exist reference datasets e.g., COCO (Lin et al., 2014) and ImageNet

(Jia Deng et al., 2009), which consist thousands of images with millions of instances annotated

by experts that allow developers to test algorithms. To the best of our knowledge, we do not have

such datasets available in livestock farming. Therefore, significant effort is needed to create

public image datasets in livestock farming that is vital to develop DL-based high-throughput

phenotyping. To achieve this, a survey of public resources for the existing animal CV datasets is

a necessary first step to create reference data in the filed.

1.3 Deep learning and statistical learning for animal-animal interaction

Agonistic behaviors are part of the standard repertoire of behaviors in pigs and include

aggressive, submissive, and defensive behaviors in competitive situations (Gasser et al., 2009;

Machado et al., 2017). In swine farming, pigs present agonistic behaviors in forms of fighting

over the control of resources or space and performing shows of force to establish social hierarchy

in the group (Machado et al., 2017). Consequently, pigs receive injures and suffer stress that

affect their welfare and productivity (Ekkel et al., 1995). Therefore, it is necessary to target traits

that are related to pigs’ agonistic behaviors. Understanding this type of traits will bring valuable

information to swine welfare, management, and breeding.

There are two key steps in the analysis of pigs’ agonistic behaviors: 1) measuring the

traits of interest and 2) analyzing the measures. It is noteworthy that animal-animal interaction is

one of the intrinsic components of agonistic behavior. Measuring or recognizing interactive

behaviors requires observing motions of at least two animals simultaneously, which is more

complicated than measuring behaviors that pertain to an individual. To observe and measure

traits about pigs’ agonistic behaviors, the standard approach is through manual annotation of

videos that is laborious and time-consuming. A DL-based CV model seems to be helpful to

6

measure the traits as it automates the behavior recognition. To date, most DL-based CV

applications concentrate on individual pig behaviors, and publicly available imagery datasets in

this field were designed and annotated for studying behaviors of individual pigs. However, none

of the publicly available datasets so far are specifically about pig agonistic interactions. This gap

necessitates creating image datasets that are publicly available for the study of pigs’ agonistic

behaviors and developing a CV algorithm that assists in measuring traits from images/videos.

Once the trait is measured, subsequently, another challenging task is to analyze the traits

that are related to pigs’ interactive behaviors. Researchers are interested in quantifying the

interaction intensity as well as factors affecting the interactions between animals. Interactive

behavior of pigs usually involves two pigs, namely a dyad. Given data on pairwise social

interactions recorded from an experimental or observational study, it is necessary to quantify the

effects of various individual- and group-level factors on social interactions. However, there is

limited research on the models to analyze pairwise social interactions in pigs.

A proper way to model dyadic data is to fit generalized linear mixed models (GLMM)

that include fixed and random effects to account for means and covariances depending on the

actual design of the experiment (Kenny et al., 2020). The potential for using this approach

remains unknown in the analysis of pig’s social behaviors. A conceptualization and

implementation of the GLMM framework will contribute to the better understanding of pigs’

social interactions.

2. OBJECTIVES

The overarching goal of this study is to validate state-of-the-art prediction models and

techniques for improved swine farming. The specific objectives for this research are:

7

Objective 1: to develop deep learning models for genomic prediction and assess model

performance through different training-validation data splits.

Objective 2: to investigate public datasets for computer vision applications in livestock

farming that are useful for phenotyping and behavior studies, and to review the validation

strategies in the related work that utilized the public datasets.

Objective 3: to assess performance of deep learning-based computer vision models

through different data splitting strategies by articulating temporal and spatial independence

between training and validation sets.

Objective 4: to conceptualize, implement, and validate a novel statistical model for the

analysis of social interaction data.

8

REFERENCES

9

REFERENCES

Abdollahi-Arpanahi, R., Gianola, D., Peñagaricano, F., 2020. Deep learning versus parametric

and ensemble methods for genomic prediction of complex phenotypes. Genet. Sel. Evol. 52,

1–15. https://doi.org/10.1186/s12711-020-00531-z

Agostini, P.S., Fahey, A.G., Manzanilla, E.G., O’Doherty, J. V., De Blas, C., Gasa, J., 2014.

Management factors affecting mortality, feed intake and feed conversion ratio of grow-

finishing pigs. Animal 8, 1312–1318. https://doi.org/10.1017/S1751731113001912

Alexandratos, N., Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012 revision.

Bellot, P., de los Campos, G., Pérez-Enciso, M., 2018. Can deep learning improve genomic

prediction of complex human traits? Genetics 210, 809–819.

https://doi.org/10.1534/genetics.118.301298

Berckmans, D., 2017. General introduction to precision livestock farming. Anim. Front. 7, 6–11.

https://doi.org/10.2527/af.2017.0102

Chen, C., Zhu, W., Norton, T., 2021. Behaviour recognition of pigs and cattle: Journey from

computer vision to deep learning. Comput. Electron. Agric. 187, 106255.

https://doi.org/10.1016/j.compag.2021.106255

Chen, C., Zhu, W., Steibel, J., Siegford, J., Wurtz, K., Han, J., Norton, T., 2020. Recognition of

aggressive episodes of pigs based on convolutional neural network and long short-term

memory. Comput. Electron. Agric. 169, 105166.

https://doi.org/10.1016/j.compag.2019.105166

Commandeur, M.A.M., 2006. Diversity of pig farming styles: Understanding how it is

structured. NJAS - Wageningen J. Life Sci. 54, 111–127. https://doi.org/10.1016/S1573-

5214(06)80007-2

Crossa, J., Martini, J.W.R., Gianola, D., Pérez-Rodríguez, P., Jarquin, D., Juliana, P.,

Montesinos-López, O., Cuevas, J., 2019. Deep Kernel and Deep Learning for Genome-

Based Prediction of Single Traits in Multienvironment Breeding Trials. Front. Genet. 10, 1–

13. https://doi.org/10.3389/fgene.2019.01168

Ekkel, E.D., Van Doorn, C.E.A., Hessing, M.J.C., Tielen, M.J.M., 1995. The specific-stress-free

housing system has positive effects on productivity, health, and welfare of pigs. J. Anim.

Sci. 73, 1544–1551.

Gasser, P.J., Lowry, C.A., Orchinik, M., 2009. 41 - Rapid Corticosteroid Actions on Behavior:

Mechanisms and Implications, in: Pfaff, D.W., Arnold, A.P., Etgen, A.M., Fahrbach, S.E.,

Rubin Brain and Behavior (Second Edition), R.T.B.T.-H. (Eds.), . Academic Press, San

Diego, pp. 1365–1397. https://doi.org/https://doi.org/10.1016/B978-008088783-8.00041-3

10

Hayes, B.J., Lewin, H.A., Goddard, M.E., 2013. The future of livestock breeding: Genomic

selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet. 29,

206–214. https://doi.org/10.1016/j.tig.2012.11.009

Hill, W.G., 2001. Selective Breeding, in: Brenner, S., Miller, J.H.B.T.-E. of G. (Eds.), .

Academic Press, New York, pp. 1796–1799.

https://doi.org/https://doi.org/10.1006/rwgn.2001.1167

James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. An introduction to statistical learning.

Springer.

Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, Li Fei-Fei, 2009. ImageNet: A large-scale

hierarchical image database 248–255. https://doi.org/10.1109/cvprw.2009.5206848

Kenny, D.A., Kashy, D.A., Cook, W.L., 2020. Dyadic data analysis. Guilford Publications.

Kuhn, M., Johnson, K., 2013. Applied predictive modeling. Springer.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature.

https://doi.org/10.1038/nature14539

Li, G., Huang, Y., Chen, Z., Chesser, G.D., Purswell, J.L., Linhoss, J., Zhao, Y., 2021. Practices

and applications of convolutional neural network-based computer vision systems in animal

farming: A review. Sensors 21, 1–42. https://doi.org/10.3390/s21041492

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.,

2014. Microsoft coco: Common objects in context, in: European Conference on Computer

Vision. Springer, pp. 740–755.

Liu, D., Oczak, M., Maschat, K., Baumgartner, J., Pletzer, B., He, D., Norton, T., 2020. A

computer vision-based method for spatial-temporal action recognition of tail-biting

behaviour in group-housed pigs. Biosyst. Eng. 195, 27–41.

https://doi.org/10.1016/j.biosystemseng.2020.04.007

Lu, Z., Jiang, X., Kot, A., 2017. Enhance deep learning performance in face recognition. 2017

2nd Int. Conf. Image, Vis. Comput. ICIVC 2017 244–248.

https://doi.org/10.1109/ICIVC.2017.7984554

Machado, S.P., Caldara, F.R., Foppa, L., De Moura, R., Gonçalves, L.M.P., Garcia, R.G., De

Alencar Nääs, I., Dos Santos Nieto, V.M.O., De Oliveira, G.F., 2017. Behavior of pigs

reared in enriched environment: Alternatives to extend pigs attention. PLoS One 12, 1–18.

https://doi.org/10.1371/journal.pone.0168427

Marcus, G., 2018. Deep Learning: A Critical Appraisal 1–27.

Montesinos-López, A., Montesinos-López, O.A., Gianola, D., Crossa, J., Hernández-Suárez,

C.M., 2018. Multi-environment genomic prediction of plant traits using deep learners with

dense architecture. G3 Genes, Genomes, Genet. 8, 3813–3828.

11

https://doi.org/10.1534/g3.118.200740

Nasirahmadi, A., Sturm, B., Edwards, S., Jeppsson, K.H., Olsson, A.C., Müller, S., Hensel, O.,

2019. Deep learning and machine vision approaches for posture detection of individual pigs.

Sensors (Switzerland) 19, 1–16. https://doi.org/10.3390/s19173738

Öhlund, E., Hammer, M., Björklund, J., 2017. Managing conflicting goals in pig farming:

farmers’ strategies and perspectives on sustainable pig farming in Sweden. Int. J. Agric.

Sustain. 15, 693–707. https://doi.org/10.1080/14735903.2017.1399514

Oliviero, C., Junnikkala, S., Peltoniemi, O., 2019. The challenge of large litters on the immune

system of the sow and the piglets. Reprod. Domest. Anim. 54, 12–21.

https://doi.org/10.1111/rda.13463

Pairis-Garcia, M.D., Johnson, A.K., Azarpajouh, S., Colpoys, J.D., Rademacher, C.J., Millman,

S.T., Webb, S.R., 2016. The U.S. swine industry: Historical milestones and the future of on-

farm swine welfare assessments. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour.

https://doi.org/10.1079/PAVSNNR201611025

Peltoniemi, O., Björkman, S., Oropeza-Moe, M., Oliviero, C., 2019. Developments of

reproductive management and biotechnology in the pig. Anim. Reprod. 16, 524–538.

https://doi.org/10.21451/1984-3143-AR2019-0055

Putka, D.J., Beatty, A.S., Reeder, M.C., 2018. Modern Prediction Methods: New Perspectives on

a Common Problem. Organ. Res. Methods 21, 689–732.

https://doi.org/10.1177/1094428117697041

Ramspek, C.L., Jager, K.J., Dekker, F.W., Zoccali, C., Van DIepen, M., 2021. External

validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 14, 49–

58. https://doi.org/10.1093/ckj/sfaa188

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S.,

Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F.,

Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,

hierarchical, or phylogenetic structure. Ecography (Cop.). 40, 913–929.

https://doi.org/10.1111/ecog.02881

Tzanidakis, C., Simitzis, P., Arvanitis, K., Panagakis, P., 2021. An overview of the current trends

in precision pig farming technologies. Livest. Sci. 249, 104530.

https://doi.org/10.1016/j.livsci.2021.104530

USDA, 2019. United States Department of Agriculture. Hogs & Pork.

Watanabe, K., Guo, W., Arai, K., Takanashi, H., Kajiya-Kanegae, H., Kobayashi, M., Yano, K.,

Tokunaga, T., Fujiwara, T., Tsutsumi, N., Iwat, H., 2017. High-throughput phenotyping of

sorghum plant height using an unmanned aerial vehicle and its application to genomic

prediction modeling. Front. Plant Sci. 8, 1–11. https://doi.org/10.3389/fpls.2017.00421

12

Zhang, K., Li, D., Huang, J., Chen, Y., 2020. Automated video behavior recognition of pigs

using two-stream convolutional networks. Sensors (Switzerland) 20.

https://doi.org/10.3390/s20041085

13

CHAPTER 2: HEURISTIC HYPERPARAMETER OPTIMIZATION OF DEEP LEARNING

MODELS FOR GENOMIC PREDICTION

Junjie Han, Cedric Gondro, Kenneth Reid, and Juan P. Steibel

1. ABSTRACT

There is a growing interest among quantitative geneticists and animal breeders in the use

of deep learning (DL) for genomic prediction. However, the performance of DL is affected by

hyperparameters that are typically manually set by users. These hyperparameters do not simply

specify the architecture of the model, they are also critical for the efficacy of the optimization

and model fitting process. To date, most DL approaches used for genomic prediction have

concentrated on identifying suitable hyperparameters by exploring discrete options from a subset

of the hyperparameter space. Enlarging the hyperparameter optimization search space with

continuous hyperparameters is a daunting combinatorial problem. To deal with this problem, we

propose using differential evolution (DE) to perform an efficient search of arbitrarily complex

hyperparameter spaces in DL models and we apply this to the specific case of genomic

prediction of livestock phenotypes. This approach was evaluated on two pig and cattle datasets

with real genotypes and simulated phenotypes (N=7,539 animals and M=48,541 markers) and

one real dataset (N=910 individuals and M=28,916 markers). Hyperparameters were evaluated

using cross validation. We compared the predictive performance of DL models using

hyperparameters optimized by DE against DL models with “best practice” hyperparameters

selected from published studies and baseline DL models with randomly specified

hyperparameters. Optimized models using DE showed clear improvement in predictive

performance across all three datasets. DE optimized hyperparameters also resulted in DL models

14

with less overfitting and less variation in predictive performance over repeated retraining

compared to non-optimized DL models.

2. INTRODUCTION

Over the past decades, there have been enormous gains in the productivity of livestock,

much of which was due to the rapid genetic improvement of quantitative traits e.g. growth rates,

reproductive traits, and feed conversion rates (Hill, 2016). In recent years, with the rise of DNA

sequencing and high throughput genotyping technology as well as with the inception of genomic

prediction models (Meuwissen et al., 2001), single nucleotide polymorphisms (SNP) became

widely used for genomic prediction and genomic selection.

Genomic prediction refers to the use of statistical models to estimate the genetic

component of a phenotype by using data from SNP markers (Meuwissen et al., 2001; VanRaden,

2008). The same models can also be used for phenotypic prediction by associating an

individual’s genotype to its phenotypes which is commonly used to predict complex traits in

humans (Yang et al., 2010). For animal production, both genomic prediction and phenotypic

prediction have resulted in more accurate selection while genomic prediction has been useful for

management decisions (e.g. market allocation). The technology has also provided a platform for

the adoption of novel breeding approaches and has led to new biological insights into the

underpinnings of complex quantitative traits (Hickey et al., 2017). For simplicity we will use

only the term genomic prediction throughout the text.

Several models have been proposed for genomic prediction (Corvin et al., 2010; Gianola,

2013; Habier et al., 2011; VanRaden, 2008), and GBLUP is one of the most commonly used

models (Fragomeni et al., 2017). A common assumption across these models is that genomic

15

effects are strictly additive, i.e. most models do not explicitly consider interactions between

alleles within markers (dominance), nor between markers (epistasis) (Crossa et al., 2019). More

recently, deep learning (Lecun et al., 2015) has been proposed as an alternative to genomic

prediction models that does not depend on the typical assumptions of traditional genomic

prediction methods.

Deep learning (DL) has dramatically improved state-of-the-art applications in computer

vision, speech recognition and genomics (Eraslan et al., 2019; Koumakis, 2020; Lecun et al.,

2015). DL methods are flexible and can potentially learn very cryptic data structures – even

interactions between predictors (Crossa et al., 2019). DL has already been applied to genomic

prediction in plants (Crossa et al., 2019; A. Montesinos-López et al., 2018; Montesinos-López et

al., 2019), human traits (Bellot et al., 2018), and estimation of breeding values in cattle

(Abdollahi-Arpanahi et al., 2020).

DL models in genomic prediction are promising tools (Bellot et al., 2018). However, one

of the critical challenges of implementing DL is selection of appropriate hyperparameters since

they significantly affect the performance of the prediction algorithm. Hyperparameter features

are values or options typically set by users before the model is fitted that impact the algorithm’s

predictive performance by avoiding overfitting and underfitting (Luo, 2016). Each feature that is

part of the hyperparameter set can take a range of values or options and they can interact with

each other to determine the properties of the final fitted model; a properly specified

hyperparameter set is fundamental for a DL model to achieve a high prediction accuracy. But,

unfortunately, there is no one-size-fits-all best way to optimize these hyperparameters.

Several procedures have been used to select DL hyperparameters for genomic prediction

applications; e.g. grid search (Crossa et al., 2019; Pérez-Enciso and Zingaretti, 2019) and genetic

16

algorithms (Bellot et al., 2018). Grid search is only feasible for a limited number of parameters

and levels, which is not the case for most DL applications. On the other side, genetic algorithms

are better suited for optimizing large and complex parametric spaces, but currently available

implementations of genetic algorithms to tune DL hyperparameters for genomic prediction

require that the options of each hyperparameter are either already discrete or discretized before

the optimization process (Bellot et al., 2018).

An alternative to genetic algorithms is differential evolution (DE) which is a population

based evolutionary heuristic well suited for optimization of discrete and continuous search

spaces (Das et al., 2016; Storn and Price, 1997). Differential Evolution lies on the intersection

between real-valued genetic algorithms and evolution strategies. DE uses the conventional

population structure of genetic algorithms and the self-adapting mutation of evolution strategies;

in a sense DE can be loosely viewed as a population based simulated annealing algorithm in

which the mutation rate decreases as the population converges on a solution.

In this study, we propose to adapt DE to optimize the DL hyperparameter set for genomic

prediction and evaluate its effectiveness to improve prediction accuracies in simulated and real

datasets for two classes of DL models: multilayer perceptron (MLP) and convolutional neural

network (CNN). We emphasize that the focus of this paper is on optimization of DL

hyperparameters to identify a set suitable for a given specific genomic prediction problem, rather

than a comparison of DL with GBLUP or other genomic prediction methods. As the predictive

performance depends on the architecture of the trait and the population structure, we demonstrate

the importance and the impact of proper hyperparameter specification on genomic prediction

with DL.

17

3. MATERIAL AND METHODS

3.1 Datasets

3.1.1 Simulated datasets

Real genotypes from two livestock populations – pigs and cattle – were used to create

simulated datasets for testing purposes. Genotypes from both species were edited to be of the

same dimensions, comprising a total of 48,541 SNP genotypes for 7,359 individuals, from which

6,031 (80%) and 1,508 (20%) were randomly assigned to the discovery and validation

populations, respectively. Phenotypes were simulated for both species by randomly assigning

1,000 SNP as quantitative trait loci (QTL) with additive effects for a heritability of 0.4 using the

R simulation package GenEval (Cuyabano, 2020).

3.1.2 Real dataset

The real data came from an experimental F2 cross of Duroc and Pietrain pigs already

previously described (Edwards et al., 2008). Briefly, four Duroc sires were mated to 15 Pietrain

dams to produce 56 F1 individuals (50 females and 6 males). F1 animals were mated to produce

a total of 954 F2 pigs that were phenotyped for 38 meat quality and carcass quality traits. For this

study pH meat records measured 24 hours post-mortem from 910 F2 pigs were used. We

purposely selected this trait as it is moderately heritable (h2=0.19±0.05) and for which we have

mapped putative QTL (Casiró et al., 2017). Two different SNP chips were used to genotype the

F2 pigs, but all SNP were imputed to a common set of approximately 62,000 SNP (Gualdrón

Duarte et al., 2013) with high accuracy (R2>0.97). SNP were pruned by filtering out SNP with:

1) low genotyping rates (less than 90%), 2) lack of segregation, 3) inconsistent Mendelian

inheritance with the pedigree information, 4) low imputation accuracy (R2<0.64; Casiró et al.

18

2017), 5) and high correlation between markers (larger than 0.99). A final set of 28,916 SNP was

used for this study.

Phenotypic records were pre-adjusted for fixed effects:

𝑦𝑎𝑑𝑗 = 𝑦𝑜𝑏𝑠 − 𝑋𝛽,

where 𝑦𝑎𝑑𝑗 is adjusted response, 𝑦𝑜𝑏𝑠 is pH measured 24 hours post-mortem, 𝑋 is the

incidence matrix with the fixed effects of sex, slaughter group and carcass weight, and 𝛽

represents the coefficients of fixed effects.

3.2 Deep learning and genomic prediction

Deep learning (DL) methods are a set of representation learning methods, where a

machine can be fed with raw data and automatically discover the representations needed for

prediction or classification, with multiple levels of simple but non-linear modules that transform

the representation at one level into a representation at a higher, slightly more abstract level

(Lecun et al., 2015). In the context of genomic prediction, we used DL to build a system that

predicts an animal’s phenotypic value given its genotype. DL computes and minimizes a loss

function that measures the error of prediction. In this study, we used mean squared error (mse) as

the loss function:

𝑚𝑠𝑒 =
∑ (𝑦𝑖−�̂�𝑖)

2𝑁
𝑖=1

𝑁
,

where 𝑁 represents the number of individuals in the training dataset, 𝑦𝑖 represents the observed

response of individual 𝑖 and �̂�𝑖 is the predicted response of individual 𝑖. Two types of DL models

were used in this study: multilayer perceptron and convolutional neural network.

3.2.1 Multilayer perceptron

This model is also known as feed-forward artificial neural network. In this paper, MLP

(Figure 2.1) has: an input layer with as many nodes as SNP markers, a variable number of hidden

19

layer(s) with a certain number of nodes, and an output layer representing the response. Since

nodes between layers are fully connected, MLP can potentially model complex and higher order

interactions between predictor variables (Abdollahi-Arpanahi et al., 2020). A detailed

explanation of how MLP models work is presented in the File S2.1 and also available at GitHub

alongside source code (https://github.com/jun-jieh/DE_DL).

Figure 2.1 Multilayer Perceptron (MLP) for genomic prediction of a single trait with M SNP

markers. The network has an input layer, two fully connected hidden layers and an output

layer. Each node’s input in the hidden layers is a transformation of the weighted sum of the

output from the previous layer. The number of nodes in hidden layers decrease as the depth

of the MLP increases, to facilitate representation learning.

As deep learning consists of transforming representations at a previous layer into its next

(more abstract) layer (Lecun et al., 2015), we opted to adaptively set the number of nodes for

each hidden layer based on the depth of the network so that the next hidden layer always has

fewer nodes than the previous one. For instance, in an MLP with two hidden layers (Figure 2.1),

the first layer can only have neurons ranging from 259 to 512 while the second layer can have

any number between 4 and 258. Table S2.1 summarizes the number of nodes search space for

S P 1

S P 2

S P k

S P M

 = (

)

Input

layer
Hidden

layer 1

 = (

)

Hidden

layer 2

Output

layer

https://github.com/jun-jieh/DE_DL

20

MLPs with one, two, and up to five layers. Other researchers may choose different adaptive rules

to impose restrictions on the possible number of neurons per layer, or may even simply choose to

use the same number of nodes for all layers.

3.2.2 Convolutional neural network

CNN is designed to process data that comes as multiple-array format (Lecun et al., 2015)

e.g. 1d for an animal’s genotype, 2d for images and 3d for videos. Typical C models consist

of an input layer, convolutional layer(s), pooling layer(s), a flattened layer, and an output layer

(Figure 2.2). In the context of genomic prediction (Figure 2.2), the input layer for a single

observation in a CNN is a one-dimension array that contains an animal’s genotype and the

number of units in the layer will be equal to the number of markers. The output layer �̂�𝑛

represents the predicted response value for the phenotype or breeding value of the nth individual.

Figure 2.2 1-d Convolutional neural network (CNN) for genomic prediction of a single trait

with M SNP markers. The network has an input layer, two convolutional layers with their

corresponding pooling layers, a fully connected hidden layer and an output layer. Each

convolutional layer applies a number of filters to the output of the previous layer and its

output is subsequently summarized by a pooling layer.

S P M 2

S P M 1

S P 1

S P 2

S P 3

S P M

S P k

 feature maps

with length of

Convolutional

Layer 1

Filter size 1 3,

 filters are applied

Input

layer

 feature maps

with length of

 (

)

Pooling

Layer 1

 feature maps

with length

 feature maps

with length of

Filter size 1 3,

 filters are applied

 = (

)

Convolutional

Layer 2

Pooling

Layer 2
Flattened Hidden

Layer

Output

Layer

 =

21

Between the input and output layers, a CNN contains a variable number of convolutional

layer(s) followed by pooling layer(s). Full details on CNN architecture are given in the File S2.1

and at GitHub along with source code (https://github.com/jun-jieh/DE_DL). In this study each

convolutional layer applied filters of size f (a hyperparameter to be optimized) with the stride

equal to the filter size (non-overlapping convolutions of the input). In CNN, several restrictions

are typically assumed regarding the model architecture. When learning from a global level to a

local level, more details are required to obtain the pattern at the local level (Lecun et al., 2015).

Therefore, the number of filters increases as the depth of the CNN increases, to detect local

motifs. To reflect this expectation we adaptively set the number of filters applied in each

convolutional layer as a function on the depth of the network. Specifically, we limited the

number of filters in any convolutional layer to be between 4 and 128, but this range is partitioned

for each convolutional layer to make sure that the next convolutional layer will always have a

number of filters larger than the previous layer. For example, in a CNN with two convolutional

layers (Figure 2.2), the first convolutional layer can only have between 4 and 65 filters while the

second convolutional layer can have between 66 to 128 filters. Examples of the adaptive number

of filters as a function of the depth of the CNN is presented in Table S2.2. The hyperparameter

space for filter size was set as an integer between 2 and 20. Although the filter size is specified

by the user, the output feature (feature map in Figure 2.2) has to conform to the minimum length

(the length of feature map needs to be equal to or larger than the filter size) of the feature maps in

each convolutional layer and pooling layer, which is illustrated in Table S2.3. If the condition is

not satisfied, instead of fixing the kernel size through all convolutional layers, we set adaptive

kernel size in order to successfully execute the model fitting (see details in Figure S2.1). The

adaptive kernel size is to ensure that CNN generates a valid output.

https://github.com/jun-jieh/DE_DL

22

3.2.3 DL model training

TensorFlow (Abadi et al., 2015) was used to train DL models. At each iteration (epoch; a

detailed description of epoch is presented in File S2.1) of the training process TensorFlow

randomly partitioned the training data into an actual training set (80% of data), that was used for

updating the model weights and a testing set (20% of data), that was used to evaluate the updated

model. The data partition was performed by TensorFlow and we did not have control over the

random partitions. At the end of each epoch, an internal validation was performed by evaluating

the correlation between predicted and observed response in the testing set. A DL training

procedure typically requires multiple epochs, which was one of the hyperparameters optimized

in our DE procedure (see below). We also introduced an early stopping when the correlation did

not change over 0.1 for ten consecutive epochs, as it was assumed that fitness (correlation) could

not be improved and further exploration was unnecessary.

3.2.4 Hyperparameter optimization

Table 2.1 presents the hyperparameters optimized in this study. A plausible range of

values for each hyperparameter was defined based on ranges suggested by the literature for DL

applied to genomic prediction (additional details of each hyperparameter can be found in the File

S2.1). These ranges were then used as constraints for the differential evolution algorithm. It is

important to indicate that users can accordingly extend/reduce/modify the hyperparameter space

described in Table 2.1.

23

Table 2.1 Parameter space for optimized hyperparameters. Hyperparameter space and range

(see details in File S2.1). N represents sample size. 𝛼1=0.001 for the simulated datasets and

𝛼1=0.01 for the real pig dataset. 𝛼2=0.01 for the simulated datasets and 𝛼2=0.1 for the real pig

dataset.
Hyperparameters Parameter space

(MLP)

Parameter space

(CNN)

Value Type

Number of layers [1,2,3,4,5] [1,2,3,4,5] Integer

Number of neurons [8-512] [8-512] Integer

Activation ['relu', 'elu', 'sigmoid',

'selu', 'softplus', 'linear',

'tanh']

['relu', 'elu', 'sigmoid',

'selu', 'softplus', 'linear',

'tanh']

Categorical

Optimizer ['sgd', 'adam', 'adagrad',

'rmsprop',

 'adadelta', 'adamax',

'nadam']

['sgd', 'adam', 'adagrad',

'rmsprop',

 'adadelta', 'adamax',

'nadam']

Categorical

Dropout rate [0-1] [0-1] Continuous

L2 penalty [0-1] [0-1] Continuous

Batch size [N×𝛼1-N×𝛼2] 32 Integer

Epoch [21-50] [21-50] Integer

Number of filters NA [2-128] Integer

Filter size NA [2-20] Integer

Pooling NA ['max', 'average'] Categorical

3.3 Differential evolution algorithm for deep learning

Differential evolution (DE) is an evolutionary algorithm that includes four steps: 1)

initialization, 2) mutation, 3) crossover and 4) selection (Storn and Price, 1997). A generic

version of this algorithm is described in pseudocode format (Figure 2.3). DE was used to evolve

a population of numeric vectors that can be recoded to represent hyperparameter combinations

through random keys. A toy example of the DE approach is provided at GitHub

(https://github.com/jun-jieh/DE_DL).

https://github.com/jun-jieh/DE_DL

24

Figure 2.3 Pseudocode for differential evolution algorithm

3.3.1 Random key

Random key is an encoding mechanism originally used in genetic algorithms by Bean

(1994). The core of this algorithm is a set of d H-dimensional numeric vectors pop1, …, popd as a

population. Each numeric vector represents a solution that is linked or mapped to a set of model

hyperparameters through a mapping function (random key). Suppose that there are K

hyperparameters to optimize, where K=8 for the MLP and K=10 for the CNN (Table 2.1). Within

each hyperparameter k 1…K there are Hk loci, and if the parameter takes continuous values,

then Hk =1. So, the size 𝐻 = ∑ 𝐻𝑘
𝐾
𝑘=1 . Each vector popi is partitioned into K sub-blocks that

25

contain Hk loci, where each single locus in H represents a hyperparameter option or value. For

categorical hyperparameters, there is a mapping performed from the Hk dimensional block of the

numeric vector to an Hk dimensional vector MAPk containing the names of the categories for the

kth hyperparameter as follows: the Hk elements are ranked according to their values and the rank

of the first element is used as an index for the MAPk vector to select the corresponding

categorical value. In this way, the evolutionary operators (mutation, crossover, and selection) can

be applied directly on the numerical vector popi but the results can always still be translated into

a set of categorical (and continuous) hyperparameter values. An example of this with the

hyperparameter number of layers (Hk =5) is presented in Figure 2.4. So, in a nutshell, a random

key is a vector of real numbers that, once sorted, its ranking can be used to map against a set of

statically ordered features. The idea is that better features will evolve to higher values in the key

while worse features will evolve to lower values; the ranking of the sorted key allows sorting the

features from best to worst and provides a smoother fitness surface for the DE to explore.

The main steps for the differential evolution algorithm are:

3.3.2 Initialization

We initialized 𝑑=50 𝐻-dimensional parameter vectors pop1…pop50 as a population 𝑝𝑜𝑝

(line 5 Figure 2.3) from a uniform [0,1] distribution and we mapped the numeric vector to a set

of hyper-parameter values as described before (Table 2.1) to obtain 50 hyperparameter sets.

Then we fitted 50 models using each set of hyperparameters and recorded their correlations

between predicted and observed response values. An individual of the population refers to one of

the 𝐻-dimensional vectors in 𝑝𝑜𝑝 and its encoded hyperparameter set. From now on, we use the

term individual to refer to a hyperparameter solution in DE.

26

3.3.3 Mutation

To generate a mutation, indices of two random individuals are selected from the

population: 𝑟1, 𝑟2, ∈ { … 𝑑 } and the target H-dimensional vectors 𝑝𝑜𝑝𝑟1 and 𝑝𝑜𝑝𝑟2 are

extracted. Then vectors 𝑝 and 𝑝𝑜𝑝𝑟2 are mutated using

𝑚𝑢 = 𝜇 ∙ (𝑝𝑜𝑝𝑟1 − 𝑝𝑜𝑝𝑟2)

where 𝑚𝑢 is the mutant vector and 𝜇 is the mutation parameter (𝜇 ∈ []). Storn and

Price (1997) recommended that 0.5 is usually a good initial choice for the mutation. In this study,

we set 𝜇 = .5.

Figure 2.4 Summary of the random key (mapping function) used to transform numeric

vectors into discrete levels of hyperparameters. The numeric vector can be subject to

mutation and recombination. The mapping is used to transform the result into a meaningful

set of hyperparameters that can be used to fit a model and obtain a fitness to select numeric

vectors.

27

3.3.4 Crossover

To increase the diversity in hyperparameter combinations represented in the population

parameters, crossover function is used to combine the mutant vector 𝑚𝑢 with other individual

vectors. First, an 𝐻-dimensional vector RN with uniformly random numbers ∈ [] is generated.

The crossover rate is defined by parameter 𝛼 (𝛼 ∈ []). Gämperle et al. (2002) suggested that a

good choice for the crossover constant is a value between 0.3 and 0.9. In this study, we set 𝛼 =

 .5. Another 𝐻-dimensional vector (𝐶𝑅) with logical variables (True/False or 1/0) is then

generated according to

𝐶𝑅𝑖 = {
 𝑖𝑓 𝑅𝑁𝑖 < 𝛼
 𝑖𝑓 𝑅𝑁𝑖 ≥ 𝛼

 𝑖 = … 𝐻.

Then, two more individual vectors 𝑝𝑜𝑝𝑟3 and 𝑝𝑜𝑝𝑟4 are selected and crossover generates

a new individual according to

𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟𝑖 = {
𝑝𝑜𝑝𝑟3 𝑖 𝑖𝑓 𝐶𝑅𝑖 =

𝑝𝑜𝑝𝑟4 𝑖 −𝑚𝑢𝑖 𝑖𝑓 𝐶𝑅𝑖 =
, 𝑖 = … 𝐻,

where 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 is the newly generated individual and 𝑖 is the 𝑖𝑡ℎ element of 𝑝𝑜𝑝𝑟3,

𝑝𝑜𝑝𝑟4, 𝑚𝑢, and 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟. For convenience, we name 𝑝𝑜𝑝𝑟3 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟.

3.3.5 Selection

To decide whether or not the 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 should replace the 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 in population

𝑝𝑜𝑝, both vectors of numeric values 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 and 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 were mapped into

hyperparameter sets using the random key. The models were fitted based on mapped

hyperparameters and Pearson correlation coefficient γ between the predicted and the observed

values was computed. We averaged the correlations over epochs, as the testing sets varied in

epochs. The averaged correlation was defined as the fitness of the DL model (given a

hyperparameter set). Additionally, we applied a penalized fitness if any of the following three

28

scenarios happened during model fitting: exhausted memory when fitting a specified model, a

constant generated for all predicted responses, and exploding/vanishing gradient which led to an

unstable model-fitting procedure (convergence issue). A penalized individual had its fitness set

to -1. If γ𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 < γ𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟, we replaced 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 by 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒𝑟 in 𝑝𝑜𝑝; otherwise,

we retained 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 in 𝑝𝑜𝑝. Finally, steps 2)- 4) are repeated for 𝛿 iterations. For the

simulated pig dataset and the simulated cattle dataset, 𝛿 of both datasets was 2,000, while 𝛿 =

 was used for the real pig dataset (after 𝛿 iterations there was no further significant

improvement). It is worth noting that the initial population does not need to be random, it can be

based on prior information or can even be the results from a previous run –in effect, the DE can

continue evolving a population that has already optimized for some iterations if e.g. the run did

not converge.

As shown in the results section, if a DL model is run multiple times with the same dataset

and hyperparameters, the predictive performance differs slightly from run to run. This means that

a model trained once can get a slightly higher/lower prediction accuracy compared to the average

prediction accuracy that would be obtained over multiple re-trainings. This effect is more

pronounced in more complex models, which are more prone overfitting. To mitigate this

problem, we introduced a variation to the traditional DE algorithm by refitting the 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟

each time and updating its fitness value. Specifically, in each iteration, the 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 was

refitted, and if the 𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 won the contest, the updated fitness was retained.

3.3.6 Top model selection

At the end of the DE run, each individual solution in the population was refitted 30 times

to select the best model based on two criteria to evaluate model stability through repeated

training of each DL model. The best model was selected based on two measures obtained from

29

this repeated training: mean fitness and standard deviation (SD) of the fitness obtained by

refitting each model 30 times. This is necessary because as explained above, the refitting of the

selected models resulted in slightly different predictive performance. The details on how this bi-

variate criteria selection was performed can be found in GitHub (https://github.com/jun-

jieh/DE_DL).

3.4 Optimized model assessment through external validation

Each dataset was partitioned into five training sets and five validation sets (80% and 20%

for training and validation, respectively). The DE was applied to each of the training sets to

optimize hyperparameter sets for both, MLPs and CNNs. Note that the training data used for

optimization was not part of the validation set. The final MLP and CNN models (2x5) from the

DE runs were then refitted 30 times (with the training sets only), and each refitted model was

evaluated by predicting the corresponding validation set and computing the correlation between

the predicted and the observed response. The average correlation, also known as external

validation, of the 30 refits as well as the SD of correlations was then calculated. This external

validation is distinct from the internal validation (described in the DL model training) utilized by

the DE to optimize the fitness and should be differentiated. In short, the external validation was

performed using validation sets while the internal validation was performed utilizing testing sets

(described in DL model training). GBLUP was used to estimate the response variable and its

prediction accuracy as a comparison reference to the optimized MLPs and CNNs (GBLUP

details can be found in File S2.1).

3.5 Hardware and software

The computer processor used in this study was Intel(R) Core i7-8750H CPU @ 2.20 GHz

with 16GB of RAM memory and Microsoft(R) Windows 10 operating system. The GPU

https://github.com/jun-jieh/DE_DL
https://github.com/jun-jieh/DE_DL

30

(graphic card) was NVIDIA(R) GeForce GTX 1070 with 8 GB GDDR5 memory. All the

analyses were implemented in R (R Core Team, 2020). For GBLUP we used the gwaR R

package (Steibel, 2015) and for DL the R Keras package (Chollet et al., 2017), which is a high-

level neural networks API on top of TensorFlow (Abadi et al., 2015) with GPU computing

enabled.

3.6 Data availability

The authors state that all data necessary for confirming the conclusions presented in the

article are represented fully within the article. Animal protocols were approved by the Michigan

State University All University Committee on Animal Use and Care (AUF# 09/03-114-00).

Custom R code used to fit MLP/CNN, implement DE, and evaluate models are available at

GitHub (https://github.com/jun-jieh/DE_DL). Genotypes and phenotypes for the animals in the

real pig dataset are available at GitHub (https://github.com/jun-jieh/RealPigData). Supplemental

material contains the constraints for DL architecture, a summary of predictive performance for

GBLUP/MLP/CNN models, the distributions of selected hyperparameters, and the architectures

of DL models derived from other studies.

4. RESULTS AND DISCUSSION

As reported in many published applications of deep learning in genomic predictions

(Abdollahi-Arpanahi et al., 2020; Bellot et al., 2018; Zingaretti et al., 2020), we observed that

retraining of a certain DL model with the same hyperparameter configuration and the same

dataset produced slightly different predictions. This forced us to consider the variation in the

predictive performance under the retraining in DE and post-DE model selection (see methods

section). It also had an impact in the results presented below.

https://github.com/jun-jieh/DE_DL
https://github.com/jun-jieh/RealPigData

31

4.1 Optimization runtime profiles

The DE’s optimization runtime profiles (mean fitness and SD of fitness) for the three

datasets (simulated cattle, simulated pig, and real pig) and the two DL models (MLP and CNN)

are shown in Figures 2.5-2.7 and Table 2.2. The mean fitness increased during the DE run, but it

is important to note that it can – and did – also decrease at some points due to the stochastic

sampling of individual subsets that we used for model testing to avoid overfitting (panels A and

C of Figures 2.5-2.7). A similar short-term decrease in fitness was observed when using DE to

optimize model hyperparameters in the context of emotion recognition (Nakisa et al., 2018). In

our case, the occasional drop in the mean fitness was due to the retraining of the models as the

refitting of the same model could yield a lower fitness. Thus, sometimes, even if a current

𝑇𝑖𝑡𝑙𝑒ℎ𝑜𝑙𝑑𝑒𝑟 won the challenge, its new fitness could be lower than before due to the re-fitting.

Alternatively, when a new Challenger won the contest, its fitness could have been higher that the

refitted fitness of the Titleholder but still lower than the previously estimated fitness for that

Titleholder, which resulted in a new candidate solution in the population but also in a lower

fitness.

Table 2.2 Runtime profile for the DE approach. MLP, multilayer perceptron; CNN,

convolutional neural network; Avg. runtime, average runtime for one DE iteration (each iteration

fits two models); Num. iterations, the total number of iterations used in DE; min, minutes; hr,

hours.
Model type Dataset Avg.

runtime

Num. iterations Total runtime

MLP

Simulated Pig 3.95 min 2,000 131.78 hr

Simulated Cattle 4.01 min 2,000 133.67 hr

Real Pig 0.30 min 10,000 49.81 hr

CNN

Simulated Pig 2.36 min 2,000 77.67 hr

Simulated Cattle 2.73 min 2,000 87.73 hr

Real Pig 0.24 min 10,000 40.15 hr

32

In general, DE for CNNs converged faster (reached the maximum possible average

fitness) compared to DE for MLPs (panels A/C of Figures 2.5-2.7). For CNNs, DE converged

after approximately 600, 700, and 1,500 iterations for the simulated pig, simulated cattle, and

real pig datasets, respectively. For MLPs, DE converged in approximately 1,000, 1,000, and

2,500 iterations for the three datasets, respectively. One possible explanation is that, MLP

disregards spatial information and use each neuron as an independent predictor, while CNN

tends to learn from a global pattern at the beginning and then summarize the features into a local

level (Lecun et al., 2015). In genomic data, linkage disequilibrium is a nonrandom relationship of

alleles at different physical locations, which is a sensitive indicator that structures a genome

(Slatkin, 2008). Also, Tang and Sun (2019) argued that CNN could be utilized to extract motifs

from homologous sequences, where motifs are essential features for distinguishing different

sequence families. Given a dataset with spatial structure, CNN potentially has advantage over

MLP that CNN can deal with local connectivity.

For each dataset, evolved MLPs and CNNs converged to similar mean fitness but varied

across data partitions (panels A/C of Figures 2.5-2.7). The mean fitness in the simulated pig

dataset ranged from 0.27 to 0.31 and the range was (0.31, 0.33) for the simulated cattle dataset,

while the real pig dataset had a range of (0.19, 0.29). Mitchell et al. (2015) trained networks with

permuted datasets and also reported varying predictive performance given different data

partitions.

33

Figure 2.5 History of differential evolution by algorithm and data partition in the simulated

pig dataset over 2,000 iterations. Mean and standard deviation of the fitness (correlation

between the predicted and true phenotype) were computed given each population. (A) Mean

fitness of five populations by fitting multilayer perceptron (MLP) models. (B) Standard

deviation of fitness within each population (MLPs). (C) Mean fitness of five populations by

fitting convolutional neural network (CNN) models. (D) Standard deviation of fitness within

each population (CNNs).

Most evolved populations had a fitness SD smaller than 0.05. However, one exception

was population 5 with CNNs in the simulated cattle dataset (panel D of Figure 2.6). Only this

population had a large SD of 0.19 and the population contained a CNN hyperparameter set with

penalized fitness, indicating its failure to remove a penalized individual in 2,000 iterations. DE

performance is sensitive to the number of iterations set by the user and generally solutions can

evolve further when the iteration number is increased (Gämperle et al., 2002; Kok and

Rajendran, 2016). Thus, the solution with penalized fitness should be removed by introducing

more DE iterations. On the other hand, the post-DE refitting (described in top model selection)

would further exclude this solution. Overall, the within population SDs for both MLP and CNN

34

models were reduced over DE iterations (panels B/D of Figures 2.5-2.7), suggesting evolved

models in each population had similar performance. Kim and Lee (2019) reported that deep

learning models with different hyperparameters could have the same predictive performance,

which indicated that the best solution may not be unique. Zhang et al. (2020) also indicated that

superior solutions would prefer the closest candidates in evolutionary optimization algorithms.

Therefore, we argue that DE evolves a population to where candidate solutions are increasingly

similar to each other. Furthermore, distributions of evolved models showed similarities in

hyperparameter options e.g. activation function, number of layers, filter size, optimizer, dropout,

and pooling, while the hyperparameters were less similar in number of nodes (filters), fully

connected layer in CNN, batch size, and L2 regularization (Tables S2.4-S2.15). Yu and Zhu

(2020) have mentioned that in the process of optimization, hyperparameters with greater

importance received preferential treatment, whereas it was difficult to quantitatively determine

the significance of the hyperparameters. We argue that the heterogeneity/homogeneity in the

hyperparameters resort to the less/more important hyperparameters.

35

Figure 2.6 History of differential evolution by algorithm and data partition in the simulated

cattle dataset over 2,000 iterations. Mean and standard deviation were computed given each

population. (A) Mean fitness of five populations by fitting multilayer perceptron (MLP)

models. (B) Standard deviation of fitness within each population (MLPs). (C) Mean fitness

of five populations by fitting convolutional neural network (CNN). (D) Standard deviation

of fitness within each population (CNNs).

Table 2.2 presents the runtime of DE approach in the three datasets. We observed that the

models fitted with the real pig dataset were approximately 10 times faster compared to the two

simulated datasets as there were fewer SNP loci in the real pig dataset. We also observed that

CNNs fitted faster than MLPs. Depending on the dataset, the average runtime for one iteration

(two DL models) ranged from 0.30-4.01 minutes for MLPs and 0.24-2.73 minutes for CNNs. As

a reference, Montesinos-López et al. (2018) reported that training a DL model with their dataset

required 3.60 hours. It is important to point out that we utilized the GPU computing that

parallelized the computation in DL with thousands of graphic computing units, and this will be

the major impact on computational speedup compared to the default setup (CPU computing). For

comparison, we fitted GBLUP models with gwaR (Steibel, 2015) package, and it required 1.77

36

hours, 1.90 hours, and 19.08 seconds to fit the simulated pig, simulated cattle, and real pig

datasets, respectively. It is important to point out that the runtime increase quadratically with

samples and linearly with markers using gwaR package. Furthermore, we estimated the time

budget for grid searches with GPU computing enabled. An exhaustive search is estimated to cost

9,352,875-404,278,022 hours according to the defined hyperparameter space (Table 2.1) and

dataset, which results in up to 4,594,067 times more computing resource compared to DE

approach used in this study.

Figure 2.7 History of differential evolution by algorithm and data partition in the real pig

dataset over 10,000 iterations. Mean and standard deviation were computed given each

population. (A) Mean fitness of five populations by fitting multilayer perceptron (MLP)

models. (B) Standard deviation of fitness within each population (MLPs). (C) Mean fitness

of five populations by fitting convolutional neural network (CNN) models. (D) Standard

deviation of fitness within each population (CNNs).

4.2 Characteristics of selected hyperparameters

Table 2.3 shows the top MLPs from each population (one hyperparameter solution from

each population, 15 in total). Activation functions of MLPs optimized for the simulated datasets

37

varied in “elu”, “selu”, “relu”, “softplus” and “linear”, while in optimized MLPs for the real pig

dataset, the “sigmoid” function was fixed across all selected individuals. oteworthy: In this

study, the input of the DL model was the allelic count of one of the alleles (coded as 0, 1 and 2),

thus, all the input nodes were non-negative values. Interestingly, “elu”, “selu” and “relu” are

almost identical when the input is a non-negative value, and the “linear” activation is very

similar to those functions too (differing only in the slope). Moreover, “softplus” and “sigmoid”

are the most different activation functions compared to the elu-linear family. The activation

functions of the top models are described by Goodfellow et al. (2016). Our finding agrees with

Bellot et al. (2018) who suggested “elu”, “softplus” and “linear”, and also “relu” recommended

by Pérez-Enciso and Zingaretti (2019). Moreover, as the simulated datasets were generated by

only considering additive genetic effects, we speculate that the optimized DL models for the

simulated datasets unveiled the additive nature of the trait effect by selecting predominantly

linear-like activation functions. For the real dataset, optimized MLPs fixed the non-linear

activation function “sigmoid”. We argue that the selected non-linear activation reflects the

increased complexity of polygenic inheritance in real datasets. Regarding this perspective,

Zingaretti et al. (2020) indicated that in a real dataset, DL could model complex relationships by

employing non-linear functions, and they also observed that sigmoid-like hyperbolic tangent

(“tanh”) was a safer choice overall. In line with these assumptions, our models for the simulated

datasets selected one-layer, two-layer, and three-layer MLPs, while all MLPs for the real pig data

were three-layer models. The optimizers of selected MLPs for the simulated datasets focused on

“adam” and “adamax”, while for the real dataset “sgd” was further included. Dropout rates of

MLPs were between 0 and 0.034 for the simulated datasets and were between 0.182 and 0.617

for the real pig dataset. Compared to the model architectures selected by Bellot et al. (2018) and

38

Pérez-Enciso and Zingaretti (2019), we had similar hyperparameter options in number of layers

and activation function. But we selected different optimizers and the dropout in our case tended

to be larger in the real pig dataset. Penalty weights for L2 regularization of MLPs had a range of

(0.01, 0.16) for the simulated datasets and a range of (0.03, 0.85) for the real pig dataset. We did

not find any suggested L2 weight applied to genomic prediction studies.

Table 2.3 Hyperparameters of selected MLP models from each population. SP, simulated pig

dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of

different data partition; No. layer(s), number of hidden layers; No. neurons, number of

neurons according to the number of hidden layers.

Table 2.4 shows top CNNs. Optimized CNNs had three options for activation function:

“linear”, “elu”, and “relu” (Goodfellow et al., 2016). Similar to our results, top CNNs selected by

Bellot et al. (2018) also included “linear” and “elu”, while Pérez-Enciso and Zingaretti (2019)

used “relu”. The number of convolutional layers varied from one to three while all C s for the

simulated datasets fixed with one. Notably, Bellot et al. (2018) also selected one-layer and three-

layer CNNs. The filter sizes tended to be larger in the selected models. The large filter sizes were

different from other studies that suggested two or three (Bellot et al., 2018; Pérez-Enciso and

Zingaretti, 2019). Optimizers of selected C s were “adamax”, “rmsprop” and “adam” while

Dataset

DE

No. activation

No.

layer(s) No. neurons batch epoch optimizer dropout L2

SP 1 elu 2 [446,87] 51 37 adam 0.006 0.06

SP 2 elu 2 [412,150] 41 45 adam 0.020 0.16

SP 3 elu 2 [470,155] 46 44 adam 0.015 0.06

SP 4 selu 2 [474,145] 54 45 adam 0.032 0.13

SP 5 softplus 2 [397,87] 54 45 adam 0 0.13

SC 1 elu 3 [429,330,57] 44 28 adam 0.030 0.04

SC 2 relu 2 [411,106] 48 41 adamax 0.002 0.06

SC 3 elu 3 [401,269,93] 11 27 adamax 0.001 0.01

SC 4 relu 1 409 56 21 adam 0.034 0.14

SC 5 relu 1 444 47 33 adam 0.020 0.16

RP 1 sigmoid 3 [374,192,25] 10 40 sgd 0.352 0.85

RP 2 sigmoid 3 [476,193,69] 54 42 adam 0.480 0.52

RP 3 sigmoid 3 [483,291,8] 44 46 adamax 0.182 0.12

RP 4 sigmoid 3 [457,234,79] 31 41 adamax 0.465 0.03

RP 5 sigmoid 3 [386,251,148] 8 40 sgd 0.617 0.75

39

C s for the real pig data fixed “adam”, and this finding is different from the “nadam” obtained

by Pérez-Enciso and Zingaretti (2019). Most CNNs across the three datasets used average

pooling for the pooling layer. For genomic prediction studies, we did not find a suggested

pooling option in the literature. Dropout rates of CNNs ranged from 0.008 to 0.827 and the range

was smaller (0.021,0.277) for the real pig dataset. However, our finding in dropout differed from

the small dropout (5-10%) recommended by Pérez-Enciso and Zingaretti (2019). Most L2

penalty weights were smaller than 0.16 while there were three exceptions (0.52, 0.75 and 0.85).

Table 2.4 Hyperparameters of selected CNN models from each population. SP, simulated pig

dataset; SC, simulated cattle dataset; RP, real pig dataset; DE No., differential evolution of

different data partitions; No. layers, number of convolutional layers; No. filters, number of

filters applied based on No. layers; FCL, size (number of neurons) of the fully connected layer

after flatten layer.

Despite our evolved hyperparameter sets being similar to those described in the literature

(Bellot et al., 2018; Pérez-Enciso and Zingaretti, 2019), part of hyperparameter configurations

e.g. number of nodes (filters), optimizer, and dropout differed from those described in the

existing studies. This is likely due to that the optimal hyperparameter configuration depends on

the specific genomic dataset, and a hyperparameter’s relevance may depend on another

Data

DE

No. activation

No.

layers No. filters

filter

size epoch FCL optimizer dropout L2 Pooling

SP 1 linear 1 110 19 25 17 adamax 0.197 0.21 average

SP 2 elu 1 16 15 32 110 rmsprop 0.146 0.03 average

SP 3 elu 1 15 8 44 79 rmsprop 0.692 0.02 average

SP 4 linear 1 59 20 24 49 adamax 0.496 0.23 max

SP 5 linear 1 109 13 27 109 adam 0.827 0.01 average

SC 1 linear 1 116 20 30 16 adam 0.370 0.10 average

SC 2 linear 1 87 12 25 12 adam 0.086 0.13 average

SC 3 linear 1 32 8 42 24 adam 0.250 0.19 average

SC 4 linear 1 79 20 44 27 adamax 0.666 0.06 max

SC 5 linear 1 98 16 40 153 adam 0.151 0.17 average

RP 1 elu 2 [51,113] 18 22 50 adam 0.277 0.67 average

RP 2 relu 3 [24,81,121] 12 27 268 adam 0.067 0.11 average

RP 3 elu 2 [64,112] 13 45 278 adam 0.021 0.87 average

RP 4 relu 3 [44,73,106] 13 47 326 adam 0.008 0.18 average

RP 5 elu 3 [41,71,128] 5 41 238 adam 0.051 0.35 average

40

hyperparameter’s value (Luo, 2016). As Bellot et al. (2018) worked on a human dataset and

Pérez-Enciso and Zingaretti (2019) investigated a wheat dataset, we attribute the variation

among optimized hyperparameters to the specific dataset. It is also possible that our extended

hyperparameter space searched for more instances, which led to the differences in some

hyperparameters compared to other studies. While other researchers optimized hyperparameters

by discretizing the parameter space, we regarded number of neurons (filters), dropout, L2

regularization, batch size, epoch, and filter size as continuous values, which considerably

expanded the hyperparameters search space.

4.3 Performance of optimized models under validation

The objective of this paper is to provide a framework to optimize DL hyperparameters for

genomic prediction and not to compare the optimized DL with GBLUP. It is however still

relevant to use GBLUP as a baseline of reference prediction methods to contextualize our results

(see Figure S2.2). For the simulated datasets, GBLUP was the slightly better than the rest of the

models. A similar result was presented by Abdollahi-Arpanahi et al (2020). This is not surprising

in our study because GBLUP (described in File S2.1) is a model well suited for the simulated

data which is entirely additive and composed of a large number of very small effects that

approximate the infinitesimal model. However, for the real pig dataset, the pattern was somewhat

different, and the best performing model was dependent on the data partition. As explained later

in this section, we attribute this phenomenon to the small sample size of the real pig dataset.

D’souza et al. (2020) argued that for a small dataset (e.g.: N<5000), the presence of substructure

or even a few outliers may have a profound influence on the predictive performance under a

specific data partition, skewing the overall estimate of the predictive performance and affecting

the outcome of any optimization method that is used.

41

As DL is a methodology that relies on a learning process conditioned on the problem that

it is solving (A. Montesinos-López et al., 2018), it is less likely that a DL model can achieve its

best possible prediction accuracy using a hyperparameter set optimized from other independent

studies. To investigate this, we trained MLPs and CNNs with hyperparameters selected for

predicting human traits (Bellot et al., 2018) and for a wheat dataset (Pérez-Enciso and Zingaretti,

2019), across the three datasets in this study. Table S2.16 shows hyperparameters of MLPs and

CNNs obtained from the two studies. Figures 2.8-2.10 shows the predictive performance of

random DL models, optimized DL models, and top DL models selected by Pérez-Enciso and

Zingaretti (2019). These models were applied to all three datasets. Randomly selected DL

models and optimized DL models differed in training data partitions due to independent DE

optimizations performed within each partition, while the models suggested by the two previous

studies (Bellot et al., 2018; Pérez-Enciso and Zingaretti, 2019) were fixed in all partitions.

Prediction accuracy of external (cross) validations was obtained by refitting each model 30

times. The panels in Figures 2.8-2.10 represent the predictive performance of competing DL

models for each data partition within each dataset. Noteworthy, the optimized models using DE

were consistently the best when compared to randomly chosen models or to models taken from

the literature, that have been optimized for other datasets.

Models with hyperparameters chosen by Bellot et al. (2018) did not converge in any data

partition and so they are not shown in Figures 2.8-2.10. This was likely due to exploding

gradients or vanishing gradients (as previously discussed). Another observed case was that the

model predicted every individual with the same value, making it impossible to compute the

correlation between the predicted and observed response. This also confirmed the observation by

Bellot et al. (2018) that convergence problems persisted after reinitializations of the algorithm.

42

Figure 2.8 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (simulated pig dataset). Models were tested on five data partitions of the

simulated pig dataset. Statistics represent external (cross) validations by fitting the same

model 30 times. The left three boxes are for MLP models and the right three boxes are for

CNN models. Null box means the model did not converge. Random, random

hyperparameters; Perez, hyperparameters recommended by Pérez-Enciso and Zingaretti

(2019); Opt, optimized hyperparameters using DE. Abbreviations stand for the same

meaning in Figure 2.9 and Figure 2.10.

For the simulated pig dataset, the MLP and the CNN suggested by Pérez-Enciso and

Zingaretti (2019) was slightly worse than the optimized MLPs and CNNs that we obtained with

DE. However, their performance was much worse in the simulated cattle and the real pig

datasets. Again, the optimal hyperparameter configuration is problem-dependent and thus, it is

important to search for the proper hyperparameters in DL genomic prediction applications given

a specific dataset.

43

Figure 2.9 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (simulated cattle dataset). Models were tested on five data partitions of the

simulated cattle dataset. Statistics represent external (cross) validations by fitting the same

model 30 times. The left three boxes are for MLP models and the right three boxes are for

CNN models.

The variations in the predictive performance under re-training observed in all models

indicated that DL models were likely overfitting the data. Abdollahi-Arpanahi et al. (2020)

showed variance in predictive performance (in terms of accuracy and mean squared error) of

MLPs and CNNs over 10 replicates of cross validation which is in agreement with our results. In

general, the SD of the correlation between predicted and observed phenotypes for the optimized

MLPs/CNNs and those proposed by Pérez-Enciso and Zingaretti (2019) were smaller in the

simulated datasets, while the SD in the real pig dataset was larger (Figure 2.10 compared to

Figures 2.8 and 2.9). We speculate that there are two possible reasons for the variation: DL

models are initialized with random weights at starting points and a relatively small sample size

for training. For the random weights at baseline, Bellot et al. (2018) explained that the

44

performance of MLPs and CNNs depended on initialization values. For the training sample size,

Abdollahi-Arpanahi et al. (2020) indicated that larger sample sizes improved the predictive

ability of DL methods. Furthermore, in the field of image classification, Shahinfar et al. (2020)

showed increased prediction accuracy and reduced variation in the performance of DL models as

the sample size grew. Based on the results in Figures 2.8-2.10, the merit in terms of less variation

over replicates of external (cross) validations was clearer in the simulated datasets that had larger

sample sizes (N=7,539 for both the simulated pig and the simulated cattle datasets). In the real

pig dataset that had a smaller sample size (N=910), SD was larger compared to those in the

simulated datasets. Therefore, we argue that both the predictive ability and variation in the same

DL models are associated with training sample size. Montesinos-López et al. (2018) also

mentioned that DL method may fail to learn a proper generalization of the knowledge contained

in the data, given small datasets.

5. CONCLUSIONS

Overall, DL can be adapted to perform genomic prediction of complex traits, but it

requires some effort to select appropriate hyperparameters. Any hyperparameter optimization

will likely be dataset-specific and characteristics such as population structure and genetic

architecture of the predicted trait may well require different DL model hyperparameters. In this

study, we implemented differential evolution (DE) as a method to simultaneously identify

optimal combinations of multiple hyperparameters. Compared to randomly selected models, our

optimized MLPs and CNNs showed significant improvement in the predictive performance. In

comparison to DL models with hyperparameters selected from other studies, optimized MLPs

and CNNs also yielded better predictive accuracy. DE is an efficient and semi-automatic

45

algorithm that can be used to select an optimal hyperparameter set that leads to a better

predictive performance. Moreover, overparameterization of DL can be mitigated by refitting

models and selecting those that produce more consistent (less variable) prediction accuracies.

We showed that this is more important when working with small datasets.

Figure 2.10 Boxplots for the predictive performance of MLPs and CNNs using different

hyperparameters (real pig dataset). Models were tested on five data partitions of the real pig

dataset. Statistics represent external (cross) validations by fitting the same model 30 times.

The left three boxes are for MLP models and the right three boxes are for CNN models. Null

box means the model did not converge.

6. ACKNOWLEDGEMENTS

This work was supported by Agriculture and Food Research Initiative Awards No. 2017-

67007-26176, No. 2010-65205-20342, the National Institute of Food and Agriculture (AFRI

Project No. 2019-67015-29323), and by funding from the National Pork Board Grant No. 11–

042. Partial funding was also provided by the US Pig Genome Coordinator.

46

APPENDICES

47

APPENDIX A: SUPPLEMENTAL MATERIAL

Table S2.1 Adaptive hyperparameter space for the number of neurons. Number of neurons

(nodes) given the depth of network (number of hidden layers, HL) in multilayer perceptron

models.

Layer One HL Two HLs Three HLs Four HLs Five HLs

1 [4-512] [259-512] [344-512] [386-512] [412-512]

2 [4-258] [175-343] [259-385] [311-411]

3 [4-174] [132-258] [210-310]

4 [4-131] [109-209]

5 [4-108]

Table S2.2 Adaptive hyperparameter space for number of filters. Number of filters (kernels)

given the depth (number of convolutional layers) of convolutional neural network.
Layer One layer Two layers Three layers Four layers Five layers

1 [4-128] [4-65] [4-44] [4-34] [4-28]

2 -- [66-128] [45-85] [35-65] [29-53]

3 -- -- [86-128] [66-96] [54-78]

4 -- -- -- [97-128] [79-103]

5 -- -- -- -- [104-128]

Table S2.3 Minimum length of feature maps applied to each layer of convolutional

neural network. Conv: Convolutional layer.
Layer One layer Two layers Three layers Four layers Five layers

Conv 1 4 16 64 256 1024

Pooling 1 2 8 32 128 512

Conv 2 -- 4 16 64 256

Pooling 2 -- 2 8 32 128

Conv 3 -- -- 4 16 64

Pooling 3 -- -- 2 8 32

Conv 4 -- -- -- 4 16

Pooling 4 -- -- -- 2 8

Conv 5 -- -- -- -- 4

Pooling 5 -- -- -- -- 2

48

Table S2.4 Distributions of optimized hyperparameters related to multilayer

perceptron architectures for simulated pig data. Pop 1-5: MLP solutions to five

data partitions (five differential evolution runs).

Table S2.5 Distributions of optimized hyperparameters related to CNN architectures for

simulated pig data. Pop 1-5: CNN solution populations of five differential evolutions runs. Size

of fully connected layer: the number of neurons applied in the fully connected layer (after flatten

layer). Q0.05, 5% quantile; Q0.95, 95% quantile.
 Activation function Number of layers Filter size Size of fully connected layer

 elu linear selu tanh One Two Three Other Q0.05 Median Q0.95 Q0.05 Median Q0.95

Pop1 13 18 14 5 19 26 5 0 10 16 19 19 73 380

Pop2 20 14 16 0 31 19 0 0 5 10 20 22 149 477

Pop3 13 19 18 0 8 37 4 1 2 8 20 12 53 452

Pop4 16 27 7 0 35 15 0 0 6 11 20 9 36 308

Pop5 8 26 15 1 32 10 8 0 8 13 20 20 39 481

Table S2.6 Distributions of optimized hyperparameters related to multilayer

perceptron architectures for the simulated cattle data. Pop 1-5: MLP solutions

to five data partitions (five differential evolution runs).

 Activation function Number of layers

 linear relu elu selu softplus One Two Three Four

Pop1 43 0 4 2 1 17 17 13 3

Pop2 30 9 1 4 6 25 10 12 3

Pop3 41 1 6 2 0 6 28 14 2

Pop4 44 2 1 1 2 7 33 10 0

Pop5 49 1 0 0 0 19 20 10 1

 Activation function Number of layers

 elu linear selu relu softplus One Two Three Other

Pop1 6 38 4 0 2 3 18 29 0

Pop2 7 11 10 9 13 3 37 6 4

Pop3 11 20 10 6 3 8 33 7 2

Pop4 13 20 8 5 4 8 15 23 4

Pop5 11 1 13 15 10 8 30 7 5

49

Table S2.7 Distributions of optimized hyperparameters related to CNN architectures for

simulated cattle data. Pop 1-5: CNN populations of five differential evolutions runs. Size of

fully connected layer: the number of neurons applied in the fully connected layer (after flatten

layer). Q0.05, 5% quantile; Q0.95, 95% quantile.
 Activation function

Number of layers

Filter size

Size of fully connected layer

 elu linear selu tanh other

One Two Three Other

Q0.05 Median Q0.95

Q0.05 Median Q0.95

Pop1 3 45 0 2 0

34 10 6 0

8 18 20

16 46 354

Pop2 11 27 5 7 0

8 9 33 0

10 17 20

12 195 386

Pop3 0 49 1 0 0

40 8 2 0

6 15 20

24 26 396

Pop4 13 17 19 0 1

9 9 32 0

10 18 18

27 221 485

Pop5 7 37 2 4 0

12 16 21 1

10 18 20

26 148 416

Table S2.8 Distributions of optimized hyperparameters related to

multilayer perceptron architectures for the real pig data. Pop 1-5: MLP

solutions to five data partitions (five differential evolution runs).

 Activation function Number of layers

 sigmoid Other Two Three Four

Pop1 47 3 6 44 0

Pop2 50 0 0 46 4

Pop3 50 0 0 44 6

Pop4 50 0 2 38 10

Pop5 50 0 1 46 3

Table S2.9 Distributions of optimized hyperparameters related to CNN architectures for real

pig data. Pop 1-5: CNN populations of five differential evolutions runs. Size of fully connected

layer: the number of neurons applied in the fully connected layer (after flatten layer). Q0.05,

5% quantile; Q0.95, 95% quantile.
 Activation function

Number of layers

Filter size

Size of fully connected layer

 elu linear tanh other

Two Three Four Other

Q0.05 Median Q0.95

Q0.05 Median Q0.95

Pop1 19 6 25 0 16 24 10 0 12 13 18 22 367 506

Pop2 38 1 5 6 7 30 12 1 12 16 17 50 197 463

Pop3 3 4 40 3 16 26 8 0 8 13 18 60 150 463

Pop4 33 4 1 12 26 11 10 3 9 15 17 50 158 426

Pop5 20 14 16 0 2 25 22 1 5 11 18 12 195 416

50

Table S2.10 Distributions of optimized hyperparameters related to MLP model compilation and

fitting for simulated pig data. Pop 1-5: MLP solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile.

Table S2.11 Distributions of optimized hyperparameters related to CNN model compilation and

fitting for simulated pig data. Pop 1-5: CNN solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile.
 Optimizer

Epochs

Dropout rate

L2 Pooling

 adam adamax adadelta nadam rmsprop

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95 Max Average

Pop1 4 11 8 8 19 24 31 48 0.02 0.36 0.79 0.01 0.10 0.49 27 23

Pop2 10 10 20 0 10 21 34 49 0.04 0.42 0.79 <0.01 0.04 0.25 22 28

Pop3 13 13 11 7 6 22 28 44 0.11 0.56 0.77 0.01 0.11 0.49 42 8

Pop4 10 29 5 3 3 23 31 46 0.05 0.39 0.78 0.01 0.12 0.64 22 28

Pop5 22 1 4 10 13 22 31 49 0.02 0.39 0.79 0.01 0.07 0.44 29 21

Table S2.12 Distributions of optimized hyperparameters related to MLP model compilation

and fitting for simulated cattle data. Pop 1-5: MLP solution populations of five differential

evolution runs. Q0.05, 5% quantile; Q0.95, 95% quantile.
 Optimizer

Epochs

Batch size

Dropout rate

L2

 adam adamax nadam

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Pop1 47 1 2 23 41 47 11 31 57 0.01 0.15 0.52 0.04 0.27 0.81

Pop2 39 10 1 26 38 48 18 40 57 <0.01 0.09 0.45 0.06 0.26 0.85

Pop3 44 4 2 26 33 44 12 26 52 0.01 0.18 0.53 0.03 0.22 0.87

Pop4 40 0 10 21 39 50 10 23 47 0.03 0.21 0.54 0.03 0.39 0.86

Pop5 41 2 7 22 29 48 9 24 52 0.02 0.26 0.72 0.06 0.27 0.91

 Optimizer

Epochs

Batch size

Dropout rate

L2

 adam adamax other

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Pop1 48 0 2 27 35 47 14 30 53 0.03 0.16 0.45 0.03 0.18 0.67

Pop2 43 6 1 23 43 49 12 36 56 0.01 0.05 0.41 0.01 0.16 0.75

Pop3 43 6 1 23 32 48 6 28 52 0.01 0.05 0.57 0.01 0.17 0.69

Pop4 41 8 1 23 36 48 15 40 58 0.01 0.12 0.50 0.02 0.23 0.76

Pop5 35 15 0 22 35 50 19 38 57 0 0.04 0.14 0.01 0.14 0.87

51

Table S2.13 Distributions of optimized hyperparameters related to CNN model compilation and

fitting for simulated cattle data. Pop 1-5: CNN solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile.
 Optimizer

Epochs

Dropout rate

L2 Pooling

 adadelta adam adamax nadam rmsprop

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95 Max Average

Pop1 3 28 11 1 7 23 35 50 0.01 0.30 0.65 0.03 0.24 0.72 20 30

Pop2 17 16 7 2 8 22 33 50 0.06 0.28 0.68 0.02 0.29 0.59 10 40

Pop3 3 21 22 0 4 22 40 44 0.04 0.29 0.78 0.02 0.16 0.50 12 38

Pop4 11 3 29 2 5 23 29 46 0.05 0.35 0.67 0.01 0.23 0.75 17 33

Pop5 4 19 5 1 21 21 34 46 0.02 0.24 0.60 <0.01 0.11 0.52 27 23

Table S2.14 Distributions of optimized hyperparameters related to MLP model compilation and

fitting for real pig data. Pop 1-5: MLP solution populations of five differential evolution runs.

Q0.05, 5% quantile; Q0.95, 95% quantile.

Table S2.15 Distributions of optimized hyperparameters related to CNN model compilation

and fitting for real pig data. Pop 1-5: CNN solution populations of five differential evolution

runs. Q0.05, 5% quantile; Q0.95, 95% quantile.
 Optimizer

Epochs

Dropout rate

L2

Pooling

 adam adamax other

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Max Average

Pop1 36 9 5 22 31 41 0.02 0.32 0.71 0.03 0.54 0.96 1 49

Pop2 34 13 3 25 36 50 0.08 0.41 0.78 0.04 0.51 0.97 2 48

Pop3 45 4 1 22 34 45 0.02 0.41 0.88 0.16 0.49 0.93 13 37

Pop4 40 7 3 29 31 49 0.03 0.33 0.75 0.05 0.60 0.98 8 42

Pop5 44 5 1 24 44 46 0.03 0.38 0.77 0.05 0.55 0.95 0 50

 Optimizer

Epochs

Batch size

Dropout rate

L2

 adam adamax sgd

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Q0.05 median Q0.95

Pop1 1 9 40 25 40 45 7 18 64 0.03 0.38 0.85 0.12 0.66 0.95

Pop2 19 30 1 22 37 45 28 55 64 0.04 0.41 0.82 0.09 0.60 0.92

Pop3 0 47 3 30 44 49 21 44 68 0.05 0.33 0.79 0.05 0.55 0.94

Pop4 2 47 1 31 33 47 30 31 32 0.15 0.56 0.86 0.04 0.37 0.86

Pop5 1 40 9 21 24 41 8 47 63 0.05 0.38 0.84 0.05 0.48 0.90

52

Table S2.16 Selected MLP and CNN architecture derived from other studies. No.

layers, the number of fully connected layers or convolutional layers; No. neurons

(filters), the number of neurons or filters adaptive based on the number of layers.

In the No. layers column, 1+1 means one convolutional layer plus one fully

connected layer.

Study Model Activation

No.

layers

No. neurons

(filters) Dropout

Filter

size

Bellot et al. (2018) MLP elu 1 32 0.0100 NA

Pérez-Enciso and

Zingaretti (2019) MLP relu 4 [64,64,64,64] 0.0005 NA

Bellot et al. (2018) CNN linear 1+1 [16,32] 0.0100 3

Pérez-Enciso and

Zingaretti (2019) CNN relu 4 [64,64,64,64] 0.0005 3

53

Figure S2.1 Pseudocode for adaptive filter size. Conv, convolutional layer; int(x),

convert x into the nearest integer; floor(x), get the largest integer that is smaller or

equal to x.

54

Figure S2.2 Mean predictive performance and error bars across datasets and data partitions.

The error bar represents the mean ± standard deviation of cross validation by fitting the same

model 30 times. Pink, green, and blue bars correspond to GBLUP, MLP, and CNN models,

respectively. MLP, multilayer perceptron; CNN, convolutional neural network; GBLUP,

genomic best linear unbiased prediction.

55

APPENDIX B: FILE S2.1

Genomic best linear unbiased prediction (GBLUP) model

We used GBLUP model to predict the response variable and its prediction accuracy as a

comparison to MLPs and CNNs:

𝑦 = 𝜇 + 𝑔 + 𝑒,

where 𝑦 is the response variable with phenotypes (𝑦 = 𝑦𝑎𝑑𝑗 in the real dataset), 𝜇 is the

population mean, 𝑔 ~ 𝑁(𝐺𝜎𝑔
2) is a vector of random genomic effects, 𝜎𝑔

2 is the genomic

variance, and 𝑒 ~ 𝑁(𝐼𝜎𝑒
2) is a vector of residuals where 𝐼 is an identity matrix with 1s in the

diagonal. The matrix 𝐺 = 𝑍𝑍′ is the genomic relationship matrix and 𝑍 is a matrix with

standardized allelic dosages (VanRaden, 2008):

𝑍𝑖𝑗 =
𝑀𝑖𝑗−2𝑝𝑗

√𝑚(2𝑝𝑗(1−𝑝𝑗))
,

where 𝑀 is a matrix of allelic dosages, 𝑝𝑗
 is the allelic frequency at SNP marker 𝑗, 𝑖 is the 𝑖th

animal, and 𝑚 is the number of markers.

Multilayer perceptron

Typical MLP models (Figure 2.1) consist of an input layer, a variable number of hidden

layer(s), and an output layer. Each layer contains several neurons (also known as nodes).

Depending on the type of layer, the nature of the nodes will change. For instance, the number of

nodes in the input layer is equal to the number of predictor features. In this study, the input layer

represents an individual’s genotype, and thus, the input layer will have as many nodes as SNP

markers. In Figure 2.1, there are M nodes in the input layer, and its kth node will receive input as

the allelic count at the kth SNP for the nth individual (𝑥𝑛 𝑘). The output layer represents the

prediction of the response variable produced by MLP. In this case, the output will contain the

56

prediction of an individual’s phenotypic value (�̂�𝑛), which can be a continuous outcome, an

ordinal outcome, or a categorical outcome.

The nodes in one layer are connected to the nodes in the previous layer by a weighted

sum operator. For instance, in Figure 2.1, the input of the jth node in hidden layer 1 is

𝑧𝑗
1 = 𝑓(∑ 𝑤𝑗𝑘

0 𝑥𝑘
𝑀
𝑘=1), where 𝑥𝑘 represents the kth node from previous layer, the weights 𝑤𝑗𝑘

0 are

unknown and connected to 𝑥𝑘 (SNP k) and need to be determined through a learning process.

𝑓() is the activation function that is specified by the user. It is worth noting that non-linear

functions can be used as 𝑓() and there is no need to assume linearity as with classic genomic

prediction models. Activation functions are detailed in the Hyperparameters section further on.

Likewise, nodes between layers are fully connected, which means that the input sum of each

node in a layer will contain as many terms as there are nodes in the previous layer: 𝑧𝑗′
𝑖 =

𝑓(∑ 𝑤𝑗 𝑗′
𝑖−1𝑧𝑗

𝑖−1𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑖−1
𝑗=1), where 𝑗 represents the nodes from layer 𝑖 − , 𝑛𝑛𝑒𝑢𝑟𝑜𝑛𝑖−1 is the

number of nodes in hidden layer 𝑖 − , 𝑖 is the index of hidden layer 𝑖, 𝑤𝑗 𝑗′
𝑖−1 is a weight

connecting jth node (𝑧𝑗
𝑖−1) in hidden layer 𝑖 − and j’th node in hidden layer 𝑖 (𝑧𝑗′

𝑖).

Convolutional neural network

In the context of genomic prediction, the input layer for a single observation in a CNN is

a one-dimensional array. Similar to MLP, the input layer will contain an animal’s (nth

individual’s) genotype and the number of units will be equal to the number of SNP markers. In

Figure 2.2, there are M units in the input layer and the kth unit represents the allelic count at the

kth SNP for the nth individual (𝑥𝑛 𝑘). The output layer represents the predicted response value �̂�𝑛

for the phenotype or breeding value of the nth individual. After the input layer, a CNN contains a

variable number of convolutional layers followed by pooling layers. For instance, in

Convolutional Layer 1 of Figure 2.2, several filters are applied to the nodes of the input layer,

57

where filters are arrays containing certain number of weights to convolve the input. In this case,

each filter has three weights 𝑤𝑖 1
1 , 𝑤𝑖 2

1 , and 𝑤𝑖 3
1 , where 𝑖 represents the 𝑖th filter defined by the

user. These filters are applied to every three consecutive units of the input layer (filter size equal

to three). Also, the stride of the filter is equal to its length, which means that the filter is applied

to non-overlapping sets of three contiguous SNP. The length of the filter (kernel) is defined by

the number of weights to include i.e. the number of units to be convolved by a filter in the input

data. An arbitrary number of filters 𝑖 1… 𝐼 is applied in each convolution. The output of this

process will be 𝐼 feature maps with length equal to
𝑀−𝐹

𝑆
+ , where 𝑀 represents the number of

SNP markers, 𝐹 is the length of the filter, and 𝑆 is the stride. In our case, because stride is equal

to filter size, the length is simply
𝑀

3
. Moreover, the input of the 𝑗th unit in feature map 1 is 𝑐𝑗

1 =

𝑓(𝑤𝑖 1
1 𝑥𝑛 𝑘 + 𝑤𝑖 2

1 𝑥𝑛 𝑘+1 + 𝑤𝑖 3
1 𝑥𝑛 𝑘+2), where 𝑥𝑛 𝑘, 𝑥𝑛 𝑘+1, and 𝑥𝑛 𝑘+2 are allelic dosages of

individual 𝑛 at three consecutive SNP markers. The weights in the filters are unknown and need

to be determined through a DL optimization process. 𝑓() is the activation function. In

Convolutional Layer 1, the output of each convolution is saved in feature map 1, where the

length of each feature map is 𝑎1 =
𝑀

3
 and the number of feature maps (𝑏1) is equal to the number

of filters (kernels) applied to the input layer (in this case b1=5 in Figure 2.2). A convolutional

layer is followed by a pooling layer for the purposes of dimensionality reduction. In pooling

layer 1 of Figure 2.2, 𝑝1 = (𝑝1
1 𝑝1

2 … 𝑝𝑎1 2
1) are elements that are summarized by every two

consecutive units generated from the previous convolutional layer and the output will be 𝑏1

feature maps with a reduced length equal to
𝑎1

2
 . Likewise, feature map 2 is followed by

convolutional layer 2 where filters with three weights 𝑤𝑖′ 1
2 , 𝑤𝑖′ 2

2 , and 𝑤𝑖′ 3
2 are applied. In feature

map 3, 𝑏2 features with a length of 𝑎2 are summarized into feature map 4 that has 𝑏2 features

58

with length
𝑎2

2
. If any value among

𝑀

3
,
𝑎1

2
,
𝑎1 2

3
, or

𝑎2

2
 has a remainder, the deficit unit(s) in the

input data will be padded with zero(s). The last feature map (feature map 4) is re-arranged into a

single vector that has
𝑏2 × 𝑎2

2
 elements. Each element in the re-arranged vector 𝑧1 =

(𝑧1
1 𝑧2

1 … 𝑧𝑙
1 𝑙 =

𝑏2 × 𝑎2

2
) is fully connected to a hidden layer (like the ones described in the

MLP section of this paper) with 𝑛𝑛𝑒𝑢𝑟𝑜𝑛 nodes, which are predictors for the output layer.

Hyperparameters

The number of hidden layers describes the depth of the network and DL requires at least

one hidden layer, and it is known as the depth of the network. In the deep learning literature

several studies found that the number of hidden layers, in similar sized problems, can often

provide better results with a maximum upper bound of five (Arifin et al., 2019; Bellot et al.,

2018). Thus, we optimized the number of hidden layers by selecting an integer ranging from one

through five.

The number of neurons decides the number of units in a fully connected hidden layer, and

it is known as the width of the network. Bellot et al. (2018) investigated the influence of neuron

numbers on neural networks by varying neurons per layer in four scenarios: 16, 32, 64 and 128,

and Pérez-Enciso and Zingaretti (2019) estimated the effect of the number of neurons in the first

layer (8, 24, 32, 64, and 128). Both studies used discrete values for the number of neurons. In

this study, we optimized the width of the neural network by selecting integers between 8 and

512. The number of neurons is optimized by the DE algorithm for every hidden layer of the MLP

and the last hidden layer of the CNN.

Activation function is a function to transform the weighted sums from the previous layer.

The aforementioned Pérez-Enciso and Zingaretti (2019) recommended “tanh”, “relu”, “selu” and

59

“sigmoid”. In addition to their reccomendation, we further included “elu”, “softplus” as well as

“linear” as possible activation functions.

In deep learning, an optimizer is an algorithm used to alter the attributes of the model e.g.

weights and learning rates, where learning rates are coefficients applied to altered weights.

Optimizer options included were “sgd”, “adam”, “adagrad”, “rmsprop”, “adadelta”, “adamax”,

and “nadam”.

Dropout is used to avoid overfitting due to the large number of weights that need to be

estimated. Dropout consists of and randomly sets a proportion (dropout rate) of the neurons in a

layer for which their weights are not updated in the current iteration. The dropout rate may affect

the predictive performance of a model and we included it in the hyperparameter optimization as

a continuous parameter in a range of (0,1).

Another way to ease overfitting is to use weight regularization that adds constraints of

weights to the loss function. For instance, in L2 regularization a squared penalty on the values of

the weights is added to the loss function. This parameter also may have an effect on the model’s

predictive performance. We optimized the L2 regularization as a parameter in a range of (0,1).

L2 Regularization is defined as:

𝐿(𝜃 𝑋 𝑦) =
1

𝑛
 ∑ (𝑦𝑖 − 𝑓�̂�(𝑋𝑖))

2
𝑖 + 𝜆∑ 𝜃2𝑝

𝑗=1 ,

where 𝐿() represents loss function, 𝑋 represents input data, 𝑦 is the observed response variable,

𝜃 consists of weights in the deep learning model, 𝑓�̂�() represents the deep learning model, and 𝜆

is the L2 regularization parameter.

Epoch refers to the number of iterations where an entire training dataset is passed through

the DL model to iteratively adjust weights. Within an epoch the training dataset is further divided

into an actual training set for weight adjustment and a testing set that is used for performance

60

evaluation. The number of epochs to be optimized was an integer between 21 and 50. We

introduced an early-stopping rule when there is no improvement of the model training for ten

consecutive epochs.

Batch size is used to determine the number of randomly partitioned training samples

(within an epoch) utilized to update the weights. For the simulated datasets, we first optimized a

continuous value α (Table 2.1) in the range of [0.001-0.01], while the range in the real pig

dataset was [0.01, 0.1]. Then, the batch size was defined as the product of training sample size N

and α. The number of samples utilized in each DL batch varied according to the training size

(N=6539 for the simulated datasets and N=728 for the real pig dataset). This hyperparameter has

a profound influence on the computing time and memory required by TensorFlow (Abadi et al.

2015, https://www.tensorflow.org/) to fit the model. We only optimized batch size in MLP while

the batch size was fixed at 32 in CNN because larger batch sizes became computationally too

onerous to fit CNN with the larger datasets (N=6539 and M=48,541).

The number of filters, filter (also known as kernel) size and pooling function are

hyperparameters exclusive of convolutional neural networks (CNN). A filter is an array of

weights used to convolve the input. Typically, multiple filters can be utilized in each layer.

Pérez-Enciso and Zingaretti (2019) explored CNN architectures with 16, 32 and 64 filters while

Bellot et al. (2018) varied the number of filters with 16, 32, 64 and 128. We optimized the

number of filters in CNN by selecting an integer between 4 and 128.

The filter size of a 1d CNN is the number of weights in the filter. Pérez-Enciso and

Zingaretti (2019) compared the predictive performance using kernel (filter) sizes of three, five

and seven, while Bellot et al. (2018) used filter sizes of two, three, five and ten. In this study, we

defined the sample space for filter size as an integer between two and 20.

61

A pooling layer is used to downsize the feature map that comes from the convolution

operation by computing a summary statistical measure of several elements. The typical options

for a pooling layer are average, minimum and maximum. Bellot et al. (2018) applied a 1×2

pooling to the feature maps. Similarly, we fixed the size of the pooling to two units in the feature

map and optimized the pooling function by selecting between average value or maximum value

of the two units. In other words, our models were optimized by selecting one of the pooling rules

(average pooling or maximum pooling) to downsize the feature map that comes out of the

convolutional operation by half (the two units were summarized into one).

It is necessary to point out that the hyperparameter space for sampling values or options

varies across the literature, and it is up to the user to setup the adaptive architecture of the

network. With differential evolution (DE) users can not only optimize the subset of

hyperparameters used in this study, but can also optimize any other additional hyperparameters

they deem relevant.

Predictive performance of DL models and GBLUP

Figure S2.2 shows the predictive performance (correlation between the predicted and the

observed response variables in the external validation sets) for each method (optimized MLPs,

optimized CNNs, and GBLUP). For the simulated pig dataset, all methods performed similarly,

although GBLUP models were slightly better and CNN models were the worst. For the simulated

cattle dataset, GBLUP models were better in partitions 1 and 5, while optimized MLPs and

CNNs were slightly better in partitions 2, 3 and 4 (with tied performance of MLPs and CNNs).

For the real pig dataset, the pattern was completely different, and the best models depended on

the data partition. We did not notice a clear improvement in prediction accuracy for any of the

models. Since deep learning model fitting results differ even with the same hyperparameters, we

62

ran 30 external (cross) validations using the same hyperparameters and validation sets for all

partitions across the three datasets. Each MLP and CNN was trained 30 times independently and

repeatedly. Models in both the simulated pig and cattle datasets showed little variation through

repetition. However, we observed more variation in the prediction performance for the real pig

dataset.

63

REFERENCES

64

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,

Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M.,

Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar,

K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,

Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine

learning on heterogeneous systems.

Abdollahi-Arpanahi, R., Gianola, D., Peñagaricano, F., 2020. Deep learning versus parametric

and ensemble methods for genomic prediction of complex phenotypes. Genet. Sel. Evol. 52,

1–15. https://doi.org/10.1186/s12711-020-00531-z

Arifin, F., Robbani, H., Annisa, T., Ma’Arof, . .M.I., 2019. Variations in the umber of

Layers and the Number of Neurons in Artificial Neural Networks: Case Study of Pattern

Recognition. J. Phys. Conf. Ser. 1413, 0–6. https://doi.org/10.1088/1742-

6596/1413/1/012016

Bean, J.C., 1994. Genetic Algorithms and Random Keys for Sequencing and Optimization.

ORSA J. Comput. https://doi.org/10.1287/ijoc.6.2.154

Bellot, P., de los Campos, G., Pérez-Enciso, M., 2018. Can deep learning improve genomic

prediction of complex human traits? Genetics 210, 809–819.

https://doi.org/10.1534/genetics.118.301298

Casiró, S., Velez-Irizarry, D., Ernst, C.W., Raney, N.E., Bates, R.O., Charles, M.G., Steibel, J.P.,

2017. Genome-Wide association study in an F2 duroc x pietrain resource population for

economically important meat quality and carcass traits. J. Anim. Sci. 95, 545–558.

https://doi.org/10.2527/jas2016.1003

Chollet, F., Allaire, J., Falbel, D., 2017. R Interface to Keras.

Corvin, A., Craddock, N., Sullivan, P.F., 2010. Genome-Wide Association Studies: A Primer.

Psychol Med. 40, 1063–1077. https://doi.org/10.1017/S0033291709991723

Crossa, J., Martini, J.W.R., Gianola, D., Pérez-Rodríguez, P., Jarquin, D., Juliana, P.,

Montesinos-López, O., Cuevas, J., 2019. Deep Kernel and Deep Learning for Genome-

Based Prediction of Single Traits in Multienvironment Breeding Trials. Front. Genet. 10, 1–

13. https://doi.org/10.3389/fgene.2019.01168

Cuyabano, B., 2020. GenEval.

D’souza, R. ., Huang, P.Y., Yeh, F.C., 2020. Structural Analysis and Optimization of

Convolutional Neural Networks with a Small Sample Size. Sci. Rep. 10, 1–13.

https://doi.org/10.1038/s41598-020-57866-2

65

Das, S., Mullick, S.S., Suganthan, P.N., 2016. Recent advances in differential evolution-An

updated survey. Swarm Evol. Comput. 27, 1–30.

https://doi.org/10.1016/j.swevo.2016.01.004

Edwards, D.B., Ernst, C.W., Raney, N.E., Doumit, M.E., Hoge, M.D., Bates, R.O., 2008.

Quantitative trait locus mapping in an F2 Duroc x Pietrain resource population: II. Carcass

and meat quality traits. J. Anim. Sci. 86, 254–266. https://doi.org/10.2527/jas.2006-626

Eraslan, G., Avsec, Ž., Gagneur, J., Theis, F.J., 2019. Deep learning: new computational

modelling techniques for genomics. Nat. Rev. Genet. 20, 389–403.

https://doi.org/10.1038/s41576-019-0122-6

Fragomeni, B.O., Lourenco, D.A.L., Masuda, Y., Legarra, A., Misztal, I., 2017. Incorporation of

causative quantitative trait nucleotides in single-step GBLUP. Genet. Sel. Evol. 49, 1–11.

https://doi.org/10.1186/s12711-017-0335-0

Gämperle, R., Müller, S.D., Koumoutsakos, P., 2002. A Parameter Study for Differential

Evolution, in: Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation.

Press, pp. 293–298.

Gianola, D., 2013. Priors in whole-genome regression: The Bayesian alphabet returns. Genetics

194, 573–596. https://doi.org/10.1534/genetics.113.151753

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. Cambridge, Massachusetts : The

MIT Press.

Gualdrón Duarte, J.L., Bates, R.O., Ernst, C.W., Raney, N.E., Cantet, R.J.C., Steibel, J.P., 2013.

Genotype imputation accuracy in a F2 pig population using high density and low density

SNP panels. BMC Genet. 14. https://doi.org/10.1186/1471-2156-14-38

Habier, D., Fernando, R.L., Kizilkaya, K., Garrick, D.J., 2011. Extension of the bayesian

alphabet for genomic selection. BMC Bioinformatics 12. https://doi.org/10.1186/1471-

2105-12-186

Hickey, J.M., Chiurugwi, T., Mackay, I., Powell, W., 2017. Genomic prediction unifies animal

and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49,

1297–1303. https://doi.org/10.1038/ng.3920

Hill, W.G., 2016. Is continued denetic improvement of livestock sustainable? Genetics 202, 877–

881. https://doi.org/10.1534/genetics.115.186650

Kim, T., Lee, J.H., 2019. Effects of Hyper-Parameters for Deep Reinforcement Learning in

Robotic Motion Mimicry: A Preliminary Study. 2019 16th Int. Conf. Ubiquitous Robot. UR

2019 228–235. https://doi.org/10.1109/URAI.2019.8768564

Kok, K.Y., Rajendran, P., 2016. Differential-evolution control parameter optimization for

unmanned aerial vehicle path planning. PLoS One 11, 1–12.

https://doi.org/10.1371/journal.pone.0150558

66

Koumakis, L., 2020. Deep learning models in genomics; are we there yet? Comput. Struct.

Biotechnol. J. https://doi.org/10.1016/j.csbj.2020.06.017

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature.

https://doi.org/10.1038/nature14539

Luo, G., 2016. A review of automatic selection methods for machine learning algorithms and

hyper-parameter values. Netw. Model. Anal. Heal. Informatics Bioinforma. 5, 1–15.

https://doi.org/10.1007/s13721-016-0125-6

Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E., 2001. Prediction of total genetic value using

genome-wide dense marker maps. Genetics 157, 1819–1829.

Mitchell, B., Tosun, H., Sheppard, J., 2015. Deep learning using partitioned data vectors. Proc.

Int. Jt. Conf. Neural Networks 2015-Septe. https://doi.org/10.1109/IJCNN.2015.7280484

Montesinos-López, A., Montesinos-López, O.A., Gianola, D., Crossa, J., Hernández-Suárez,

C.M., 2018. Multi-environment genomic prediction of plant traits using deep learners with

dense architecture. G3 Genes, Genomes, Genet. 8, 3813–3828.

https://doi.org/10.1534/g3.118.200740

Montesinos-López, O.A., Martín-Vallejo, J., Crossa, J., Gianola, D., Hernández-Suárez, C.M.,

Montesinos-López, A., Juliana, P., Singh, R., 2019. New deep learning genomic-based

prediction model for multiple traits with binary, ordinal, and continuous phenotypes. G3

Genes, Genomes, Genet. 9, 1545–1556. https://doi.org/10.1534/g3.119.300585

Montesinos-López, O.A., Montesinos-López, A., Crossa, J., Gianola, D., Hernández-Suárez,

C.M., Martín-Vallejo, J., 2018. Multi-trait, multi-environment deep learning modeling for

genomic-enabled prediction of plant traits. G3 Genes, Genomes, Genet.

https://doi.org/10.1534/g3.118.200728

Nakisa, B., Rastgoo, M.N., Rakotonirainy, A., Maire, F., Chandran, V., 2018. Long short term

memory hyperparameter optimization for a neural network based emotion recognition

framework. IEEE Access 6, 49325–49338. https://doi.org/10.1109/ACCESS.2018.2868361

Pérez-Enciso, M., Zingaretti, L.M., 2019. A Guide on Deep Learning for Complex Trait

Genomic Prediction. Genes (Basel). 10, 19.

R Core Team, 2020. R: A Language and Environment for Statistical Computing.

Shahinfar, S., Meek, P., Falzon, G., 2020. “How many images do I need?” Understanding how

sample size per class affects deep learning model performance metrics for balanced designs

in autonomous wildlife monitoring. Ecol. Inform. 57, 101085.

https://doi.org/10.1016/j.ecoinf.2020.101085

Slatkin, M., 2008. Linkage disequilibrium: understanding the genetic past and mapping the

medical future. Nat. Rev. Genet. 9, 477–485. https://doi.org/10.1038/nrg2361.Linkage

67

Steibel, J.P., 2015. gwaR: Functions for performing GWA from GBLUP.

Storn, R., Price, K., 1997. Differential Evolution - A Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. J. Glob. Optim. 11, 341–359.

https://doi.org/10.1023/A:1008202821328

Tang, X., Sun, Y., 2019. Fast and accurate microRNA search using CNN. BMC Bioinformatics

20, 1–14. https://doi.org/10.1186/s12859-019-3279-2

VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91,

4414–4423. https://doi.org/10.3168/jds.2007-0980

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A.,

Heath, A.C., Martin, N.G., Montgomery, G.W., Goddard, M.E., Visscher, P.M., 2010.

Common SNPs explain a large proportion of the heritability for human height. Nat. Genet.

42, 565–569. https://doi.org/10.1038/ng.608

Yu, T., Zhu, H., 2020. Hyper-Parameter Optimization: A Review of Algorithms and

Applications 1–56.

Zhang, S.X., Chan, W.S., Peng, Z.K., Zheng, S.Y., Tang, K.S., 2020. Selective-candidate

framework with similarity selection rule for evolutionary optimization. Swarm Evol.

Comput. 56, 2–28. https://doi.org/10.1016/j.swevo.2020.100696

Zingaretti, L.M., Gezan, S.A., Ferrão, L.F. V., Osorio, L.F., Monfort, A., Muñoz, P.R., Whitaker,

V.M., Pérez-Enciso, M., 2020. Exploring Deep Learning for Complex Trait Genomic

Prediction in Polyploid Outcrossing Species. Front. Plant Sci. 11, 1–14.

https://doi.org/10.3389/fpls.2020.00025

68

CHAPTER 3: PUBLICLY AVAILABLE DATASETS FOR COMPUTER VISION IN

PRECISION LIVESTOCK FARMING: A REVIEW

Junjie Han, Joao R. Dorea, Tomas Norton, Andrea Parmiggiani, Daniel Morris, Janice Siegford,

and Juan P. Steibel

1. ABSTRACT

The livestock sector is increasingly using precision livestock farming (PLF) to assist in

automated and real-time decision making for management purposes. Among the tools used in

PLF, computer vision (CV) is a predominant approach that allows automatic feature extraction

from digital images/videos. Thus, CV is useful for monitoring animals and measuring

phenotypes. A key to developing CV is training models with annotated imagery data. Unlike

general CV, there are limited amount of publicly available PLF imagery data. Furthermore,

despite the potential of CV in PLF, most published CV applications in PLF are developed using

rather small datasets, and their broader validity remains unknown. The goal of this study was to

review public datasets for PLF-CV applications and the validation strategies used in the related

work, which is a necessary step to create reference PLF datasets and to develop standard

evaluation matrices that can be informative in practical animal farming. We focused on pig and

cattle datasets as well as their CV tasks. We identified 20 public datasets, nine of which focused

on pigs and 11 on cattle. The reviewed datasets spanned a wide range of CV tasks: e.g.,

detection, behavior recognition, identification, and tracking of animals, which are useful for

developing CV algorithms without having to record and annotate new videos. Finally, we

provide suggestions to improve CV applications in PLF, perspectives on data reuse, and

suggestions for broader validation of results.

69

2. INTRODUCTION

Livestock farmers face ever-increasing farming pressure due to the growing population

and demands for food. As a result, the livestock sector has become increasingly interested in the

precision livestock farming technology to improve the production efficiency of the livestock

industry (Norton et al., 2019). Precision livestock farming (PLF) refers to automated, continuous,

and real-time monitoring technologies within animal space that assist in decision making at

individual animal level, and PLF brings economic values to farmers as well as to animal breeders

(Berckmans, 2017).

Among PLF technologies, computer vision is predominant (Li et al., 2021). Computer

vision (CV) has advantages in animal farming as it is non-invasive and operatable in a

continuous and large scale (Chen et al., 2021). In the past decade, CV has been revolutionized by

deep learning (Ponti et al., 2017), which is a set of flexible representation learning methods

where a machine can be fed with raw data to automatically discover the representations needed

for prediction or classification (Lecun et al., 2015). Deep learning (DL) has made great

contributions to CV tasks including image classification, object detection, pose estimation,

behavior recognition, semantic/instance segmentation, and tracking (Ponti et al., 2017;

Voulodimos et al., 2018). These CV tasks are also related to certain PLF applications. For

instance, the gender of chicken can be identified through image classification (Yao et al., 2020).

Moreover, for animal behavior studies, several CV models have been proposed to recognize

aggressive behaviors of pigs through video analysis (Chen et al., 2020b; Li et al., 2019).

A key to developing a reliable DL-based CV model is to “feed” a large number of high-

quality training samples to the model i.e., the size and quality of data are vital (Lu et al., 2017;

Marcus, 2018). For general CV applications, there are reference datasets such as COCO (Lin et

70

al., 2014) and ImageNet (Jia Deng et al., 2009), which consist thousands of images with millions

of instances annotated by experts that allow CV developers to benchmark their state-of-the-art

algorithms. The datasets were extremely laborious for image collection and annotation. For

instance, over 70,000 worker hours were utilized to complete the COCO Dataset (Lin et al.,

2014). Unfortunately, we do not have such a dataset available for use in PLF that is specifically

designed for animal farming problems.

As PLF is still an emerging technology, CV applications to animal farming are mostly at

performance evaluation phase with relatively small datasets. Furthermore, a common practice in

recently developed animal CV applications (Chen et al., 2020a; D. Li et al., 2019; Liu et al.,

2020; Nasirahmadi et al., 2019; Zhang et al., 2020) is to use a random validation approach to

evaluate model performance, where the training set (used for model development) and validation

set (used for model assessment) are randomly split from the whole dataset. However, such a

random split might have ignored the underlying temporal, spatial, or hierarchical structures of

the data, leading to overoptimistic results (Roberts et al., 2017). In practical animal farming,

there are underlying structure(s) within the data e.g., time-evolving effects (growing animals)

and environmental factors (e.g., illumination, changing background environment, etc.) that may

not be reflected during model development using a random validation approach. Thus, how

training-validation data are split can significantly affect predictive performance of DL (Han et

al., 2021).

The goals of this paper are to: 1) review publicly available datasets for PLF and their

practical applications focusing on pig and cattle datasets that can be reused for future studies, 2)

review the validation strategies in the mentioned applications, and 3) provide suggestions for

improved CV applications in PLF focusing on data perspectives.

71

3. METHODOLOGY

3.1 Literature search parameters

Publications in the following databases were searched: Web of Science, Google Scholar,

and Google Datasets. Search keywords were the following term combinations: “species term” +

computer vision; “species term” + deep learning; “species term” + image analysis, where

“species term” included pig, swine and cattle.

3.2 Eligibility criteria

To be included in this review, a publication had to fulfill the following criteria: 1) it had

to belong to one of the following categories: conference proceedings, peer-reviewed journal

articles, or datasets assigned with Digital Object Identifiers (DOI); 2) the publication had to be

written in the English language; 3) it had to address a CV application in PLF; and 4) it had to

contain a working link to an accessible dataset.

3.3 Data extraction

Literature was collected in March 2022. From the retrieved datasets and their related

publications, data on several features were extracted and summarized. The full description of

extracted information is given in Table 3.1. Briefly, the features included the objective of the

study, a detailed description of the imagery dataset, camera specifications and settings, software

and code for implementation, a detailed description of annotations tied with the imagery dataset,

metadata of the observed animals, data sampling protocol, and validation strategies.

72

Table 3.1 Description of extracted data.

4. RESULTS

We identified 20 public datasets, nine of which focused on pigs and 11 on cattle. For a

clear overview, the authors, dataset name, species, and addressed CV task(s) of the traces are

shown in Table 3.2. The full URLs to access the datasets are available in Table S3.1.

Information Type of input Description

Study attributes

Author, year, and title Text Citation of the paper

Computer vision tasks Categories Choice(s) of: entire body detection, body part detection, segmentation, behavior

recognition, identification, and tracking

Dataset name Text Name of the publicly available dataset for CV in PLF

Database link URL Link to the website or data repository to download data

Species Categories Animal species: cattle and pig

Image and video attributes

Modality Categories RGB, Depth, grayscale, and thermal images/videos

Resolution Number Number of pixels identified by the height and width of image

Number of files Number Number of files included in the public dataset

Camera attributes

Camera perspective Categories Choice(s) of: Angled-down view, top-down view, side view, and frontal view

Software and code

Code availability Yes/no Whether computer code is available for the CV task

Annotation attributes

Annotation types Categories Choice(s) of: class labels, bounding box, polygon mask, ID, and key point

coordinates

Annotation labels Text Detailed content of annotations e.g., bounding box coordinates and list of class
labels

Analysis unit Text The base analysis unit of the CV model e.g., a single image or a video clip

Bounding box area Number Area in pixel for bounding boxes (this is only available for objected detection

studies)
ROI Text Region of interest

Biological subject attributes

Number of animals Number Number of observed animals in the dataset

Number of instances per image Number A fixed number or a range for the count of visible animals in a single image

Coat color pattern Text Characteristics of the animal coat color and marks

Number of farming units List An exhaustive list of farming units from lower to higher levels e.g., 5 pens from

1 farm

Age or production stage Text Production phase or age of the animal

Sampling protocol

Span of experiment Text The span of experiment for long-term image/video collection

Recording schedule during the day Time range The time when images/videos were collected (this is typically found in the

published paper)

Validation strategies

Validation method Categories The way to split the entire dataset into training, validation, and/or testing sets.

Choices include: random validation, stratified random validation, blocked

validation, and in-sample validation
Evaluation metric Text Brief explanation of the metric and the estimated value

73

Table 3.2 Overview of public pig and cattle datasets utilized for computer vision tasks in

precision livestock farming.

In Table 3.2, the first column indicates the references for the original studies that

analyzed and published the datasets. In addition to the full name of each dataset, we created a

unique shortcut for naming convention that is later used in this section. Noteworthy, some

datasets claimed to address multiple CV tasks in the original studies. The reviewed public animal

datasets for CV focused on six tasks that are covered in Section 3.3.

4.1 Animal subjects

Table 3.3 presents the number of observed animals, number of housing units, age or

production stage, and coat color pattern for the different datasets. These biological characteristics

are important in terms of defining the use of the data for various CV tasks. Deep learning-based

Authors Dataset name Shortcut Species Computer vision task(s)

Alameer et al. (2020) Newcastle Pig Posture D1 Pig Entire body detection, behavior

recognition, and tracking

Bergamini et al. (2021) Edinburgh Pig Behavior D2 Pig Entire body detection, behavior

recognition, and tracking

Riekert et al. (2020) Pig Position and Posture D3 Pig Entire body detection and behavior

recognition

Shirke et al. (2021b) ISRL Multi-Camera Tracking D4 Pig Entire body detection and tracking

Psota et al. (2019) Pig Detection D5 Pig Body part detection

Psota et al. (2020) Pig tracking D6 Pig Body part detection, identification, and

tracking

Shirke et al. (2021a) Pig Novelty Preference D7 Pig Body part detection and behavior

recognition

Wutke et al. (2021) Pig Detection and Tracking D8 Pig Body part detection, tracking and

behavior recognition

Tangirala et al. (2021) PigTrace D9 Pig Segmentation, tracking, behavior

recognition, and identification

Andrew et al. (2017) FriesianCattle2017 D10 Cattle Entire body detection and identification

Andrew et al. (2017) AerialCattle2017 D11 Cattle Entire body detection and identification

Andrew et al. (2021) OpenCows2020 D12 Cattle Entire body detection and identification

Shao et al. (2020) Aerial Pasture D13 Cattle Entire body detection

Gao et al. (2021) Cows2021 D14 Cattle Entire body detection and identification

Han et al. (2019) Aerial Livestock D15 Cattle Entire body detection

Li et al. (2019) NWAFU-Cattle D16 Cattle Body part detection and behavior

recognition

Shojaeipour et al. (2021) 300 Cattle D17 Cattle Body part detection and identification

Andrew et al. (2016) FriesianCattle2015 D18 Cattle Identification

Bhole et al. (2019) Holstein Cattle Recognition D19 Cattle Identification

Pereiet et al. (2020) Cow Behavior D20 Cattle Behavior recognition

https://figshare.com/articles/dataset/Automated_recognition_of_postures_and_drinking_behaviour_for_the_detection_of_compromised_health_in_pigs/13042619/1
https://homepages.inf.ed.ac.uk/rbf/PIGDATA/#:~:text=The%20pig%20behavior%20dataset%20consisting,Most%20frames%20show%208%20pigs.
https://wi2.uni-hohenheim.de/analytics
https://drive.google.com/drive/folders/1E2wW2aRENgy_TqlzfICn58ahbTHVIaK6
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments&ga=1
https://drive.google.com/drive/folders/14XUYxM15NAI-zBrntrmQofhLv5otAw5b
https://github.com/MartinWut/Supp_DetAnIn
https://drive.google.com/file/d/1s-bCnABh2Hef5l5OxydcY-tkPbrUGSjj/view
https://research-information.bris.ac.uk/en/datasets/friesiancattle2017
https://research-information.bris.ac.uk/en/datasets/aerialcattle2017
https://data.bris.ac.uk/data/dataset/10m32xl88x2b61zlkkgz3fml17
http://bird.nae-lab.org/cattle/
https://github.com/Wormgit/Cows2021
https://github.com/hanl2010/Aerial-livestock-dataset/releases
https://github.com/MicaleLee/Database
https://cloud.une.edu.au/index.php/s/eMwaHAPK08dCDru
https://data.bris.ac.uk/data/dataset/eac634de-4b97-4dcc-ab78-66e3c9d09294
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/O1ZBSA
https://zenodo.org/record/3981400#.Yq-ChHbMJD9

74

CV algorithms are known to be data-hungry, requiring very large numbers of training samples

(Marcus, 2018). Thus, explicitly stating how many images are available in a CV dataset is

extremely important. However, the total image count is not enough to characterize a CV dataset

in PLF. Knowing the number of animals is essential too, as a thousand images from one animal

is different from one image from each of a thousand animals. Broadly valid CV applications

need to be trained on a large number of images collected from many animals. Likewise,

identifying the number of farming units (pens, farms, etc.) available in a CV dataset for PLF is as

important as counting individual animals, as datasets comprising several farming units will

support CV applications with a broader scope of validity. Specifying the age and physiological

stage of the animals in the dataset are also important as there may be some ages/stages at which

animals vary more in size and shape, thus introducing extra variation into the datasets (e.g.:

growing pigs vs. gestating sows or milking heifers vs. mature dry cows). Finally, the

performance of CV may be influenced by the coat color of animals. For example, identifying

animals may be easier in breeds exhibiting natural variation in color patterns compared to

animals that show a uniform coat color.

The biological sample size was not available in some datasets, while for those papers that

reported it, the number of observed animals ranged from eight to 430 (Table 3.3). Most studies

specified the farming units e.g., the number of experimental pens and the number of farms. Six

pig datasets (D3, D4, D5, D6, D8, and D9) involved multiple pens, while all cattle datasets

focused on single farms. Information about ages of animals was not available in the cattle

datasets. Among the three pig datasets that have age information (D1, D5, and D6), ages of

animals varied from three weeks to six months. Four studies reported production stages of the

pigs (D2, D3, D4, and D8), which covered farrowing, nursery, and finisher. Most pig datasets

75

contained white pigs, and three datasets had back marks on white pigs. Animals with

heterogeneous coat colors were presented across all cattle datasets.

Table 3.3 Characteristics of animal subjects. *: to specify an exhaustive list of units/ranges if

applicable. Multiple pens mean that the number of pens is more than two while the exact number

remains unknown.

4.2 Recording setup

Camera setups and recording schedules are also known to impact data variability and

system development (Li et al., 2021). Several characteristics of the recording setup were

selected, extracted from all papers and the results are summarized in Table 3.4. The camera

perspective is an important recording characteristic as it determines which visual component(s)

of animals can be observed and used to develop CV. For instance, if an image dataset was

collected using a top-down view, then a CV application would focus on extracting features from

the back part of animals. Image modality indicates the type of image. Common image types

Dataset Species # Animals Farming Unit(s)* Age or production

stage

Coat Color of Animals

D1 Pig 15 1 pen 9-14 weeks Heterogeneous coat colors

D2 Pig 8 1 pen Finisher pigs White pigs with back marks

D3 Pig 430 18 pens from 5

compartments

Fattening and rearing

pigs

White pigs

D4 Pig 33 2 pens from the same

facility

Finisher pigs White pigs

D5 Pig NA 17 pens 1.5-5.5 months White pigs

D6 Pig NA Multiple pens 3-10 weeks; 11-18

weeks; 19-26 weeks

White pigs

D7 Pig NA 1 pen NA White pigs with/without back

marks

D8 Pig NA Multiple pens Farrowing and

rearing pigs

White pigs with/without back

marks

D9 Pig NA Multiple pens from 5

farms

NA White pigs with/without back

marks

D10 Cattle 89 1 farm NA Heterogeneous coat colors

D11 Cattle 23 1 farm Nursery Heterogeneous coat colors

D12 Cattle 46 1 farm NA Heterogeneous coat colors

D13 Cattle 218 1 farm NA Heterogeneous coat colors

D14 Cattle 186 1 farm NA Heterogeneous coat colors

D15 Cattle NA NA NA Heterogeneous coat colors

D16 Cattle 63 1 farm NA Heterogeneous coat colors

D17 Cattle 300 1 farm NA Heterogeneous coat colors

D18 Cattle 40 1 farm NA Heterogeneous coat colors

D19 Cattle 136 1 farm NA Heterogeneous coat colors

D20 Cattle NA 1 farm NA Heterogeneous coat colors

76

include RGB (red-green-blue), grayscale, depth, and thermal. An RGB image refers to color

image and is representative of human vision. A grayscale image is a special type of digital

image, which refers to gray monochrome representing light intensity. RGB images are prevalent

and frequently used for artificial intelligence. Depth images consist of pixels that record the

distance from the object to the camera and are useful for separating objects from background and

for estimating objects’ size and volume. Thermal images allow researchers to observe variations

in temperature of objects. Depending on the CV task, researchers may choose the image

modality that fits better in the particular context. Resolution is typically described as the number

of pixels of an image and is specified as the product of width and height of the image. Higher

resolution provides more details of the objects in the image but requires larger storage space. In

addition, the recording schedule during the day (i.e., the time when images were recorded) is

reviewed for each dataset as it reflects the illumination condition during data collection, and

illumination can greatly affect image quality (Wu and Sun, 2013). Span of the experiment (long-

term recording schedule) is also important, as collecting a hundred images from the same day is

different from obtaining a hundred images across ten days (the latter covers a large temporal

variation).

Top-down view and angled-down view (also known as tilted top-down view) are

predominant camera views (Table 3.4). For datasets collected during daylight hours, RGB

cameras were utilized except for two studies that introduced a depth camera and a thermal

camera in addition to the RGB camera, respectively. The majority of the data were collected

during daylight hours. Five datasets included night recordings (D4, D5, D6, D8, and D20), and

grayscale images were introduced for night recordings. Resolution varied in the datasets. The

span of experiment was unknown for nine datasets. Among the 13 datasets that have a long-term

77

recording schedule available, three were collected within one day, while the remaining ten

datasets were collected from multiple days or even months.

Table 3.4 Recording setup and schedule of publicly available datasets for computer vision in

livestock farming. RGB, red-green-blue; RGB-D, RGB and depth. Multiple weeks/days mean

that the experiment lasted more than two weeks/days while the exact number remained unknown.

Varying resolutions represent that more than two resolutions are involved.

4.3 Review of selected datasets by computer vision task

In this section, we organized and summarized the identified publicly available datasets

into six CV tasks. A dataset was considered suitable for a certain CV task if both images and

annotations were available to accomplish the task at hand. Some datasets were suitable for

Dataset Species Camera

perspective(s)

Modality Resolution(s) Recording schedule

during the day

Span of

experiment

D1 Pig Top-down view RGB 640×360

11AM-3PM 8 days

D2 Pig Angled-down

view

RGB-D 1280×720

7AM-7PM 6 weeks

D3 Pig Angled-down and

top-down views

RGB 1280×720 and

640×480

Daylight hours 8 days between

2017 and 2018

D4 Pig Angled-down and

top-down views

RGB and

grayscale

3840×2160 Daylight and night

hours

NA

D5 Pig Top-down view RGB and

grayscale
1920×1080 and

2688×1520

Daylight and night

hours

Multiple weeks

D6 Pig Top-down view RGB and

grayscale

2688×1520 Daylight and night

hours

Multiple weeks

D7 Pig Top-down view RGB 1920×1080 NA NA

D8 Pig Top-down view RGB and

grayscale

1280×800 Daylight and night

hours

3 months

D9 Pig Angled-down and

top-down views

RGB 1280×720 and

1280×960

Daylight hours NA

D10 Cattle Top-down view RGB 1486×1230 Daylight hours NA

D11 Cattle Top-down view RGB Varying resolutions Daylight hours 1 day

D12 Cattle Top-down view RGB Varying resolutions Daylight hours NA

D13 Cattle Top-down view RGB 3000×4000 Daylight hours Approximately 3

months

D14 Cattle Top-down view RGB Varying resolutions Daylight hours Multiple days

D15 Cattle Top-down view RGB 3000×4000 and

3840×2160

Daylight hours NA

D16 Cattle Side view RGB 1920×1080 9AM-4PM 1 day

D17 Cattle Frontal view RGB 4000×6000 8AM-4PM 1 day

D18 Cattle Top-down view RGB 1486×1230 Daylight hours NA

D19 Cattle Side view RGB and

thermal
640×480 and

320×240

Daylight hours 9 days

D20 Cattle Angled-down

view

RGB and

grayscale

1920×1080 Daylight and night

hours

3 months

78

accomplishing more than one CV task. Datasets with missing components (either images or key

annotations) are not listed in the corresponding subsections.

4.3.1 Entire body detection

The role of object detection is to estimate concepts and locations of objects in each image

(Zhao et al., 2019). Object detection can be further divided into subdomains including entire

body detection and detection of body parts or key points. Entire body detection is to provide

spatial location of individual animals relative to the image (Figure 3.1a). To develop models for

entire body detection, at minimum, a data point includes an image displaying the object(s) of

interest and the coordinates of a rectangular bounding box enclosing each object. Developers

should be aware of the number of instances per image (the count of visible animals in a single

image), as a large number implies a broad view, and the scene can be complex. The bounding

box area (in pixels) implies the size of object relative to the image resolution, and it is

informative especially to anchor-based algorithms in object detection (Liu et al., 2016). The

number of annotated images is important for model development as most DL-based CV

algorithms are data-hungry, and this fact applies to all CV tasks.

Eight datasets (four pig datasets and four cattle datasets) were identified to address the

entire body detection problem (Table 3.5). Most datasets had varying numbers of instances

(animals) per image, and there were up to 181 instances presented in a single image (in D15)

while the minimum number was zero (no instance in the image; D13). For bounding box area

(referred to the size of bounding boxes in pixels), the size varied in datasets. Given a fixed

resolution, a small bounding box area implies that individuals/objects are small relative to the

image, while a larger area means that the animal portion of the image is larger. Bounding box

areas are relatively large in D1, while in D15 objects are extremely small relative to the entire

79

image. Interestingly, D1 has the largest number of annotated images, while D15 has the least

number of images annotated. Computer code for implementation is available for three datasets

(D1, D4, and D12).

Figure 3.1 Examples of image data and key annotations for different computer vision tasks. Panel

a) shows an example for entire body detection where each pig is enclosed in a bounding box. Panel

b) presents an instance for body part detection, where heads of pigs are marked in red and rear

parts of pigs are marked in blue. Panel c) shows an example of segmentation where each pig has a

polygon mask. Panel d) presents an example of behavior recognition through an individual image,

where lying pigs are enclosed in red bounding boxes and blue bounding boxes indicate pigs that

are not lying. Panel e) is an example of behavior recognition by assigning a label to an image

sequence. Panel f) shows an example of animal identification where each individual is assigned

with a bounding box and a unique ID label. Panel g) displays an example of a tracklet across three

consecutive frames.

Table 3.5 Identified public datasets for animal entire body detection via computer vision. Code

availability: whether computer code is available for entire body detection. *: an annotated image

is considered as an image paired with an external file that includes manually annotated bounding

box coordinates. Varying resolutions mean that there are more than two resolutions in the dataset.

Dataset Species # Instances per

image

Bounding box area (in pixels) Image resolution # Annotated

images*

Code availability

(yes/no)

D1 Pig 1-11 Approximately 0-10,000 640×360 113,079 Yes

D2 Pig 8 Approximately 60,000-90,000 1280×720 7,200 No

D3 Pig 1-48 Approximately 1-86,400 1280×720 and

640×480

305 No

D4 Pig 1-30 Approximately 2,200-508,000 3840×2160 380 Yes

D12 Cattle 1-8 Approximately 0-300,000 Varying resolutions 7,043 Yes

D13 Cattle 0-16 Approximately 5,959-7,830 3000×4000 670 No

D14 Cattle 1-5 Approximately 100,000 1280×720 10,402 No

D15 Cattle 10-181 Approximately 400-1,600 3000×4000 and

3840×2160

89 No

80

4.3.2 Body part detection

Another subdomain of object detection is body part detection, where key points of

animals e.g., heads and hips are detected and coordinated (Figure 3.1b). This CV task is also

referred to as landmark detection (Wu and Ji, 2019). Training a model for body part detection

requires that each data point contains an image with the object(s) of interest and annotations have

been made which specify coordinates of all possible key points or landmarks for each visible

object. In general, researchers define repeatable and distinctive key points to extract reliable

features across images and thus, it is important to explicitly list the body parts in a detection

problem.

Four public animal datasets (three for pigs and one for cattle) were identified for body

part detection (Table 3.6). All three pig datasets (D5, D6, and D7) were collected using a top-

down view and thus, body parts on back of the pig were annotated (Table 3.6). The annotated

key points of pigs include head, tail, shoulder, ears, and snout. Images for the cattle dataset

(D16) were collected in a side view which had 16 key points annotated for each instance (Table

3.6). The number of annotated images among the four datasets ranged from 668 to 135,000. In

addition, D5 and D6 have multiple pigs per image, and all visible instances were annotated,

while in D7 and D16 only one animal was annotated per image.

Table 3.6 Identified public datasets for animal body part detection via computer vision. *: an

annotated image is considered as an image paired with an external annotation file. Code

availability: whether computer code is available for body part detection.

Dataset Species Camera view Key point(s) # Annotated

images*

Code availability

(yes/no)

D5 Pig Top-down view 1. Tail, 2. Shoulder, 3. Left ear, and 4. Right ear 2,000 No

D6 Pig Top-down view 1. Shoulder and 2. tail 135,000 No

D7 Pig Top-down view 1. Tip of nose, 2. Head, and 3. Tail 668 Yes

D16 Cattle Side view 1. Head, 2. Neck, 3. Spine, 4. Right front thigh root,

5. Right front knee, 6. Right front hoof, 7. Left front
thigh root, 8. Left front knee, 9. Left front hoof, 10.

Coccyx, 11. Right hind thigh root, 12. Right hind

knee, 13. Left hind hoof, 14. Left hind thigh root, 15.
Left hind knee, and 16. Left hind hoof

2,134 No

81

4.3.3 Segmentation

As a natural next step to object detection, segmentation makes prediction inferring labels

(objects) at pixel levels to achieve fine-grained inference (Garcia-Garcia et al., 2017) i.e., the

segmentation distinguishes animals from the background. Development of a segmentation model

requires both images and polygon masks for all instances presented in the image set. Compared

to bounding boxes, polygon masks are generally more precise (Figure 3.1c).

Currently, there is only one public animal dataset available for implementing

segmentation (D9). For D9, Tangirala et al. (2021) added polygon mask annotations to RGB

images, where the polygon was used to define the shape and edges of each instance (pig). Instead

of annotating single image files, Tangirala et al. (2021) selected a set frames from videos with

the frame indices specified. A total of 540 annotated images with multiple pigs across complex

scenes were provided. The count of pigs per image in D9 ranges from 13 to 37, and each instance

has its unique polygon mask. In addition, Tangirala et al. (2021) made the computer code to

automatically segment instances publicly available.

4.3.4 Behavior recognition

In CV, visual components can be used to detect and recognize objects in dynamic scenes,

in order to learn and describe the behavior of object (Popoola and Wang, 2012). Some basic

behaviors (e.g., standing and lying) can be recognized through a single image (Figure 3.1d),

while more complex behaviors (e.g., mounting) require analyzing a set of images or an image

sequence (Figure 3.1e). A particularly complex behavior recognition task is the recognition of

animal interactions that are behavior actions involving at least two animals. Further, regions of

interest (ROI) are necessary when there are multiple objects occurring in the same image and the

action recognition must focus on a specific part of the image. In some cases, the ROI can be the

82

whole image. Collectively, ROI, base analysis unit (single image or image sequence), and the

behavior class/category for each instance are necessary for a behavior recognition dataset.

We identified six public datasets for animal behavior recognition (five for pigs and one

for cattle), which cover a wide range of behaviors in pigs and cattle (Table 3.7). For the original

studies that utilized these datasets, analysis units included both single images and short video

clips. D2, D7, D9, and D20 datasets consist of videos, and for each dataset a fraction of video

frames was selected and annotated. For D1, D2, D3, and D9datasets, the annotated behaviors

include basic behaviors (e.g., standing, lying, and sitting, etc.). Further, D2 and D7 contain

several complex behaviors such as moving, investigating, and exploring. For the cattle dataset

(D20), images were annotated focusing on cows’ activities near a feeding station. In addition,

D20 is provided in video format where each frame was assigned with a label that indicated cows’

behavior near the feeder. In D1, D2, D3, D7, and D9, the ROIs were specified for each instance

(i.e., the instance ROI rather than the entire image was used to analyze animal behavior).

However, D20 specified the entire image as the ROI. Among the behavior recognition datasets,

the number of annotated images has a wide range from 305 to 1,526,473. Four datasets (D1, D7,

D9, and D20) were published along with computer code to implement behavior recognition. No

datasets are available for recognition of animal-animal interactions.

83

Table 3.7 Identified public datasets for animal behavior recognition via computer vision. i: an

annotated file is considered as an imagery file paired with an external annotation file. ii: the

classes were not explicitly defined. Code availability: whether computer code is available for

behavior recognition.

4.3.5 Identification

Animal identification (ID) is an important research topic, as PLF aims to monitor animal

space at individual levels. Identification can be considered as a classification problem where

each individual/instance is assigned with an ID label (Figure 3.1f). To develop CV for ID

classification, a data point should at minimum include an image containing the relevant object

and the ID label for the object. In more complex scenes, an image may include multiple

individuals. In that case, ROI and ID label are required for every visible individual in a given

image. Bounding boxes, body parts, or polygon masks can be used to indicate the ROI of the

individual. In general, a large number of ID classes poses challenges on the predictive ability of

ID models, as identifying an individual animal in a group of two is easier to identifying that

animal in a group of ten. Therefore, we recorded the number of ID classes in the reviewed

datasets.

We found nine public datasets (two for pigs and seven for cattle) for animal identification

(Table 3.8). The two pig datasets (D6 and D9) consist of videos, and selected frames were

Dataset Species Behavior types ROI Analysis unit # Annotated

images/videosi

Code availability

(yes/no)

D1 Pig 1. Standing, 2. Lateral lying, 3.

Sternal lying, 4. Sitting, and 5.

Drinking

Individual Single image 113,079 images Yes

D2 Pig 1. Eating, 2. Drinking, 3.

Lying, 4. Standing, and 5.

Moving

Individual Single image +

image sequence

7,200 images from

12 videos

No

D3 Pig 1. Lying and 2. Not lying Individual Single image 305 images No

D7 Pig 1. Investigating and 2.

Exploring

Individual Image sequence 20 videos Yes

D9 Pig 1. Sitting and 2. Standing Individual Single image 540 images from
29 videos

Yes

D20 Cattle 1. Frontal interaction, 2.

Lateral interaction, 3. Vertical
interaction, 4. Crowding, 5.

Drinking, 6. Exploring, 7.

Queueing, and 8. Normal

Entire image Single image 1,526,473 images

from 253 videos

Yes

https://zenodo.org/record/3981400#.Yq-ChHbMJD9

84

annotated for animal ID. Different from pig ID datasets, all cattle ID datasets provided single

images rather than video frames. We need to point out that the ID applications used a single

image as the base analysis unit and thus, we reviewed the number of annotated images rather

than the number of videos (Table 3.8). Both D6 and D9 contain multiple pigs per image (i.e.,

ROIs of individuals needed to be determined), and each individual was assigned with an ID

label. However, the number of ID classes in D6 and D9 do not represent the total number of

observed pigs in the two datasets. For instance, 16 ID classes in D6 were annotated for all

videos, but the ID classes were repeatedly used across different pig social groups (i.e., the same

ID label was reused for different individuals). Furthermore, in D9, instance ID labels were used

rather than unique pig IDs (i.e., the same individuals might have been assigned with new

instance IDs when annotating a different video). Images in the cattle ID datasets contained one

animal per image (i.e., the entire image was considered as the ROI), and each image was

assigned with an animal ID. For the cattle ID datasets, the number of ID classes equaled the

number of observed animals. Overall, the image sample size of the animal ID datasets ranged

from 294 to 135,000. Only two of the studies (Andrew et al., 2021; Tangirala et al., 2021)

published the computer code needed to reproduce the animal identification model.

Table 3.8 Public datasets for animal identification via computer vision. i: if an individual as the

ROI means that the individual animal is first localized and then identified; otherwise, an ID class

label is assigned to the entire image. ii: an annotated image is considered as an image assigned

with an ID label. Code availability: whether computer code is available for identification.

Dataset Specie

s

Classes Unique ID for each

animal? (yes/no)

ROIi # Annotated imagesii Code availability

(yes/no)

D6 Pig 16 No Individual 135,000 No

D9 Pig NA No Individual 540 Yes

D10 Cattle 89 Yes Entire image 940 No

D11 Cattle 23 Yes Entire image 46,340 No

D12 Cattle 46 Yes Entire image 4,736 Yes

D14 Cattle 182 Yes Entire image 32,020 No

D17 Cattle 300 Yes Entire image 2,899 No

D18 Cattle 40 Yes Entire image 294 No

D19 Cattle 136 Yes Entire image 2,474 No

85

4.3.6 Tracking

In CV, tracking aims to detect and follow objects in image sequences, where a detector

distinguishes the tracked object from local background (Soleimanitaleb et al., 2019; Stalder et

al., 2009). Noteworthy, among all the studies that published animal tracking datasets, researchers

employed tracking-by-detection methods i.e., their published datasets were prepared and

annotated to develop tracking-by-detection models. Thus, in this subsection, we focus on data

that are suitable for tracking-by-detection problems. In a tracking-by-detection approach, objects

are first located in each frame and then formalized by frame-to-frame tracking (Özuysal et al.,

2006). As the tracking-by-detection problem resorts to the object detection or segmentation

problems that are based on single image analysis (see Sections 3.3.1-3.3.3), ROI and instance

label (or ID) of each object are annotated across frames in a video clip. The ROI can be in the

form of bounding box, body parts, or polygon mask for each instance across the images. There is

no inter-frame annotation required to develop a tracking-by-detection model, but frame indices

need to be explicitly specified. In short, an image sequence and the annotated tracklet make up a

data point (Figure 3.1g).

We identified five public datasets (D1, D2, D4, D6, and D9) that were used for animal

tracking purposes. For D1, D2, and D6, ROI and the corresponding class label were assigned to

each instance, and all video frames were annotated using pre-trained object

detection/segmentation models. In D1, there are 4,718 videos, where each video is approximately

9 minutes long. In D2, a total of 3,429,000 frames from 1,891 video clips are available. D6

contains 135,000 annotated frames from 15 videos. D4 and D6 are two datasets that used manual

annotations. Note that Shirke et al. (2021b) annotated every 15th frames in D4 instead of

annotating consecutive frames, resulting in a total of 1,200 manually annotated frames from 10

86

videos available for tracking. In D9, 540 annotated frames from 30 video clips are available.

Two studies (Shirke et al., 2021b; Tangirala et al., 2021) published computer code along with the

datasets (D4 and D9) to implement animal tracking.

4.4 Validation strategy

In CV development, the whole dataset is generally split into a training set and a

validation set. Once data are split, the training set is used for model fitting and the validation set

is used to evaluate the performance of the trained model. Different strategies can be used to split

the entire dataset. In most CV applications to animal farming, the training set and its

corresponding validation set are split at random. However, dependence structures may exist in

the data e.g., temporal and spatial structures, which violates the assumption of independence

between the training set and validation set and leads to overoptimistic results (Roberts et al.,

2017). Therefore, it is reasonable to assume that how data are split can influence algorithm

evaluation (Li et al., 2021). In this section, we review validation strategies of the studies that

originally used the public animal datasets to develop CV. Here, we define the validation strategy

as the way of splitting the training and validation sets.

Overall, there are four types of validation strategies used to split data: random validation,

stratified random validation, blocked validation, and in-sample validation. Random validation

means that the training and validation sets are split at random to achieve a given ratio. An 80-20

split is the common practice (i.e., 80% of data are used for model training and the remaining

20% are used for model evaluation/validation). Stratified random validation means that

researchers may randomly select training and validation samples in the same (or similar)

proportion as the samples appear in the population. For instance, if a pig dataset includes three

production stages: weaning, nursery, and finishing, there are three strata based on the production

87

stages. Within each stratum, a proportion of data are sampled for the training set and the

remaining data are sampled for the validation set. The stratified random validation is different

from random validation as data are stratified in the training and validation sets. Another type of

validation, namely blocked validation, is less common but important to evaluate model

robustness. Blocked validation means that the training and validation sets are split given a

blocking factor such as time or location. For instance, a model can be trained using data collected

from one farm and then tested on data from another farm. In this case, the blocking factor is

farming unit. The last type of validation is in-sample validation, where the same data used for

model training are also used for model validation.

Table 3.9 shows validation strategies used in the studies that originally analyzed and

published the datasets reviewed in this paper. The dataset column uses shortcuts defined in Table

3.2. Note that some datasets may correspond to more than one CV task and more than one

validation strategy. Most applications evaluated their models using random validation and

stratified random validation. A few datasets (D1, D3, D5, D13, D14) were used for blocked

validation. In-sample validation was only used in tracking tasks.

Table 3.9 Validation strategies used for reviewed datasets in their original applications.

Validation strategy

Computer vision task Dataset

Random validation

Entire body detection [D3, D4, D10, D11, D12, D13, D15]

Body part detection [D8, D16, D17]

Segmentation D9

Behavior recognition [D3, D7, D9]

Identification [D9, D10, D12, D18]

Tracking D9

Stratified random validation

Entire body detection [D1, D2, D14]

Behavior recognition [D1, D2]

Identification [D11, D17, D19]

Blocked validation

Entire body detection [D1, D3, D13]

Body part detection D5

Behavior recognition [D1, D3]

Identification D14

In-sample validation Tracking [D1, D2, D4, D6, D8]

88

Evaluation metrics reported by relative publications are summarized in Table 3.10. A few

studies developed object detection models and meanwhile assigned a behavior class to the object,

leading to the similar evaluation metrics for both CV tasks. According to the CV task, the

authors reported different metrics to evaluate the model performance. In Table S3.2, we provide

brief explanation of the evaluation metrics that are addressed in Table 3.10.

It is noted that in three studies, metrics obtained from the blocked validation strategy was

compared with random validation or stratified random validation. In a behavior recognition

application that used D1, Alameer et al. (2020) obtained a mean average precision (mAP; see

Table S3.2) of 98.0% from stratified random validation, and the mAP of blocked by replicate (at

different time points) validation decreased by 1.0% when the training and validation sets were

collected at different experiments and at different time, respectively. Furthermore, Riekert et al.

(2020) collected their data (D3) to a develop entire body detection model, and they used both

blocked-by-pen validation and random validation. The reported mAPs for blocked-by-pen

validations ranged from 76.8% to 87.4%, while mAPs obtained from random validation were

between 67.7% and 87.2%. Using the same dataset, Riekert et al. (2020) also developed behavior

recognition models using the two validation strategies, and the mAPs for blocked-by-pen

validation were between 44.8% and 80.2%, while mAPs for random validation ranged from

49.2% to 80.9%. Moreover, Shao et al. (2020) collected D13 for cattle detection and used both

blocked validation and random validation. In blocked validation of the study (Shao et al., 2020),

the validation set contained data that were collected on a different day and area compared to the

training set. Compared to random validation, precision, recall, and F1 obtained from blocked-by-

time-and-location validation decreased by 16.7%, 28.3%, and 23.0%, respectively (Shao et al.,

2020).

89

Table 3.10 Evaluation metrics by computer vision tasks and validation strategies. A range

is provided if more than one point estimate were reported for the specific validation strategy.

For entire body detection, body part detection, segmentation, and behavior recognition

applications, mAP is the commonly used metric, making it comparable between studies. For the

Computer vision task Validation strategy Dataset Evaluation metrics

Entire body detection

Random validation D3 mAP: 67.7-87.2%

D4 mAP: 99.5%, average IoU: 80.52%

D10 mAP: 99.0-99.6%

D11 mAP: 99.0-99.6%

D12 mAP: 96.6-99.9%

D13 precision: 94.1-95.7%, recall: 94.4-94.6%, F1: 94.3-95.2%,

AUC: 86.9-92.2%

D15 mAP: 83.0-89.3%

Stratified random

validation

D1 mAP: 98.0%

D2 mAP: 84.6-100%, TP: 89.2-100%, FP: 0-10.8%, missing rate:

0-2.2%

D14 mAP: 97.3-98.0%

Blocked validation

D1 mAP: 97.0% (blocked by replicate and time)

D3 mAP: 76.8-87.4% (blocked by pen)

D13 precision: 77.4%, recall: 66.1%, F1: 71.3% (blocked by time

and location)

Body part detection Random validation D8 recall: 94.2%, precision: 95.4%, F1: 95.1%

D16 PCKh@0.5: 83.9-97.2%

D17 TP: 99.1%, FP: 0, TN: 100%, FN: 89.0%, accuracy: 99.13%

Blocked validation D5 recall: 96.0%, precision: 100%, F1: 98.0% (blocked by time);

recall: 66.7%, precision: 91.1%, F1: 77.1% (blocked by pen)

Segmentation Random validation D9 mAP: 69.0-92.0%

Behavior recognition

Random validation D3 mAP: 49.2-80.9%

D7 accuracy: 93.0-95.0%, mAP: 89.0-96.0%

D9 AUC: 98.5%

Stratified random

validation

D1 mAP: 98.0%

D2 accuracy: 63.0-89.0%

Blocked validation D1 mAP: 97.0% (blocked by replicate and time)

D3 mAP: 44.8-80.2% (blocked by pen)

Identification

Random validation D9 CMC-1: 77.1%, CMC-5: 89.5%, CMC-10: 93.9%

D10 accuracy: 84.9-87.2%

D12 accuracy: 90.5%-95.6%

D18 accuracy: 97.0%

Stratified random

validation

D11 accuracy: 98.1%

D17 accuracy: 97.3-99.1%

D19 precision: 98.1%, recall: 97.7%, F1: 97.9%

Blocked validation D14 Top-1: 57.0%, Top-2: 71.8%, Top-4: 76.9%, Top-8: 79.7%,

Top-16: 81.8% (blocked by time)

 Random validation D9 cMOTSA: 75.6-77.8%

Tracking

In-sample validation

D1 MOTA: 94.0%, MOTP: 80.0%

D2 MOTA: 76.8-100%, IDF1: 55.1-100%

D4 IDF1: 53.2-66.1%, IDP: 49.9-61.8%, IDR: 56.9-71.0%,

MOTA: 55.2-80.6%, MOTP: 44.5-61.3%

D6 precision: 82.5%-97.2%

D8 MOTA: 94.4%

90

studies that reported mAP, the metric ranged from 44.8% to 99.9%. Notably, studies that

used blocked validations tended to report lower mAPs, while high mAPs concentrate on those

used random validations and stratified random validations. Most identification applications

reported accuracies that ranged from 57.0% to 99.1%. Again, the lowest accuracy was yielded in

blocked validation. For the tracking task, multiple objects tracking accuracy (MOTA) is the most

frequently reported metric, and it ranged from 55.2% to 94.4% in the examined studies.

5. DISCUSSION

Deep learning-based CV algorithms have made significant progress in PLF-relevant

applications. However, the scarcity of public image data for livestock is still a bottleneck, as DL

applications require a large number of training samples. To the best of our knowledge, this is the

first review that comprehensively investigates publicly available imagery datasets that could be

used in PLF. We believe that this review contributes to the PLF community by presenting a

compilation of public resources.

To date, there are several reviews for state-of-the-art CV applications in PLF (Borges

Oliveira et al., 2021; Chen et al., 2021; Li et al., 2021). Their reviews focused on the

perspectives of algorthims and DL methodology i.e., the literature search logic was algorithm-

oriented and application-oriented. Two of the reviews (Borges Oliveira et al., 2021; Li et al.,

2021) reported public imagery datasets for pigs and cattle, which were subsets of the identified

datasets in this study (except one dataset that did not satisfy the inclusion criteria of this study).

However, this review complement literature as we reviewed a larger collection of public datasets

for pigs and cattle, compared to the studies of Li et al. (2021) and Borges Oliveira et al. (2021).

Li et al. (2021) specifically reviewed convolutional neural network-based CV systems in

91

livestock farming and listed five public datasets for cattle and three for pigs. They specified CV

tasks, resolution, number of images, and annotations for each dataset. Furthermore, Borges

Oliveira et al. (2021) reviewed DL algorithms applied to CV systems in livestock farming and

found seven datasets for cattle and one for pig, among which the CV tasks and image types were

specified. Nevertheless, the details provided in those two reviews are limited, and there are still

gaps about how data can be used in different validation strategies through data split. In this

review, we consider data as the fuel of DL-based CV algorithms. Instead of algorithms, we

deliberately searched public image datasets in PLF and investigated the data structure and how

predictive performance of CV varies in different validation strategies using the available data.

In livestock farming, animals can be categorized based on their functional characteristics

e.g., weaning pigs, growing pigs, and reproductive sows in swine farming (Puppe et al., 2008).

However, few datasets are targeted at addressing the diversity of production stages of animals.

Many PLF tasks such as abnormality detection generally take a time span of several weeks or

months throughout a production cycle, which would require collecting images/videos over

multiple production cycles to fully capture morphological features of the animals. Further, the

reviewed datasets are rather small-scale in terms of environmental factors e.g., different farm

conditions and sites. Therefore, more attention is needed to fill the gap when new datasets are

created to account for the diversity and variation across different farms and production stages.

All the identified 20 public datasets involve RGB images/videos, which indicates the

prevalence of the RGB images in CV for PLF applications. Most datasets contain images in top-

down views or angled-down views, limiting the visual components or feature space to the upper

body part of the animals. However, this prevalence does not necessarily mean that the top-down

view or angled-down view is favorable. Some CV tasks e.g., landmark detection and behavior

92

recognition would require other camera views. For instance, the frontal view is the most useful

view for facial landmark recognition (Shojaeipour et al., 2021). However, there is only one

public dataset available for facial recognition in cattle (D17) and none that are suitable for

developing a pig facial recognition model (as images in all pig datasets are of top-down view

and/or angled-down view).

Across most of the focused CV tasks, ROI is the essential annotation process. In entire

body detection datasets, the ratio of bounding box area relative to the entire image varies

significantly between datasets i.e., the relative size of instances in the image differs. This is

informative to researchers, especially when designing the architecture of anchor-based detectors

e.g., YOLO and Faster R-CNN that are state-of-the-art algorithms for object detection (Liu et al.,

2016; Redmon and Farhadi, 2018; Ren et al., 2015). For other CV tasks that require detecting

objects e.g., simple behavior recognition through individual images and tracking-by-detection,

the object size (relative to the entire image) also matters.

The reviewed datasets contribute to a wide range of CV tasks. Although a dataset might

be originally collected for a given CV task, the same imagery data can be used for other

purposes. As shown in Figure 3.1 (panels a, b, c, and d), the same footage can be annotated in

different ways depending on the purposes. Similarly, if images from a public dataset are found to

be valuable, researchers can create new annotations of the images, regardless of the CV task for

which the dataset was originally collected. Reannotated images will bring additional value to the

public dataset.

Most CV applications in PLF use random validation or stratified random validation for

model assessment. But results from random validations can be overoptimistic, and random

validation is less representative of real-life validation scenarios, as environments for capturing

93

images are quite complex in animal farming (Li et al., 2021). In practice, developers or

researchers are interested in how CV is validated broadly in a way that examines how well the

model can be generalized to other contexts (e.g., across different seasons and different farms),

which is closer to blocked validation. Therefore, when there exist blocking factors e.g., time and

farm unit in an imagery dataset, blocked validation can be utilized. We expect that block

validation will yield a lower, but more realistic estimate, of the predictive performance of the CV

application in practical animal farming contexts.

Lastly, some recommendations are provided for creating/sharing public CV datasets in

PLF and the use/reuse of the datasets.

To create new public image datasets for the development of PLF, we recommend that

both images and ground-truth annotation files be accessible to the community. In addition, we

encourage researchers to share the rubrics or ethograms they used for the annotation process.

Specifying the metadata e.g., recording schedule, long-term temporal design, farming units, and

animal subject attributes (age, weight, and coat color) etc. will bring additional value to the

dataset. To share data, we recommend separating the raw data from the annotated data through

organizing them into different data repositories, as most researchers are more interested in the

annotated set. Furthermore, timestamps or watermarks should be avoided in the shared data.

Although not required, we encourage researchers to share the computer code for implementation

and ethical use and approval obtained for the original experiment.

Current public datasets for animal behavior recognition only involve individual

behaviors, while image datasets dedicated to animal social interactions (along with annotations)

are not yet available. Researchers may revisit the existing public image datasets where groups of

94

animals were recorded (e.g., D2 and D6) and reannotate for animal social behaviors.

Alternatively, more efforts could be made to create new datasets for animal-animal interactions.

Most importantly, blocked validation is recommended as an alternative or additional

strategy to random validation when developing CV applications, as the results obtained from

blocked validation tended to be lower compared to the random validation or stratified random

validation. Blocking factors, that could be utilized to split the training and validation data, may

include but are not are limited to: housing units or pens (Psota et al., 2019), locations (Riekert et

al., 2020), replicates at different time points (Alameer et al., 2020), and/or combinations of

multiple blocking factors (Shao et al., 2020). This will be helpful for the evaluation of

generalizability and reproducibility of the model. Finally, this review will help researchers

combine public datasets if the datasets address the same problem. Furthermore, researchers can

combine multiple datasets for CV model development and perform blocked validation, where the

dataset is the blocking factor.

6. CONCLUSION

In PLF, publicly available image data are valuable, and the reuse of the public datasets is

important as it reduces the effort required to collect and annotate images/videos. This review fills

a gap in PLF literature, as it is the first review that comprehensively investigates publicly

available imagery datasets for CV development in PLF. We identified 20 public datasets, nine of

which focused on pigs and 11 on cattle. The reviewed datasets are related to six CV tasks

including entire body detection, body part detection, segmentation, behavior recognition,

identification, and tracking. Moreover, we reviewed and classified the related CV applications by

validation strategies. We observed a general trend that blocked validation yields lower (but more

95

realistic) performance than the commonly used validation strategies of random validation and

stratified random validation.

96

APPENDIX

97

Table S3.1 Website or URLs of publicly available animal datasets for computer vision.

Dataset name URL (Accessed on May 2022)

Newcastle Pig Posture https://figshare.com/articles/dataset/Automated_recognition_of_postures_and_drinking_behaviour_for_t
he_detection_of_compromised_health_in_pigs/13042619/1

Edinburgh Pig Behavior https://homepages.inf.ed.ac.uk/rbf/PIGDATA/#:~:text=The%20pig%20behavior%20dataset%20consistin

g,Most%20frames%20show%208%20pigs.
Pig Position and Posture https://wi2.uni-hohenheim.de/analytics

ISRL Multi-Camera Tracking https://drive.google.com/drive/folders/1E2wW2aRENgy_TqlzfICn58ahbTHVIaK6

Pig Detection https://uofnelincoln-

my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%

5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpers
onal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1

Pig tracking https://uofnelincoln-

my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%
5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%

5Fedu%2FDocuments&ga=1

Pig Novelty Preference https://drive.google.com/drive/folders/14XUYxM15NAI-zBrntrmQofhLv5otAw5b

Pig Detection and Tracking https://github.com/MartinWut/Supp_DetAnIn

PigTrace https://drive.google.com/file/d/1s-bCnABh2Hef5l5OxydcY-tkPbrUGSjj/view

FriesianCattle2017 https://research-information.bris.ac.uk/en/datasets/friesiancattle2017

AerialCattle2017 https://research-information.bris.ac.uk/en/datasets/aerialcattle2017

OpenCows2020 https://data.bris.ac.uk/data/dataset/10m32xl88x2b61zlkkgz3fml17

Aerial Pasture http://bird.nae-lab.org/cattle/

Cows2021 https://github.com/Wormgit/Cows2021

Aerial Livestock https://github.com/hanl2010/Aerial-livestock-dataset/releases

NWAFU-Cattle https://github.com/MicaleLee/Database

300 Cattle https://cloud.une.edu.au/index.php/s/eMwaHAPK08dCDru

FriesianCattle2015 https://data.bris.ac.uk/data/dataset/eac634de-4b97-4dcc-ab78-66e3c9d09294

Holstein Cattle Recognition https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/O1ZBSA

Cow Behavior https://zenodo.org/record/3981400#.Yq-ChHbMJD9

https://figshare.com/articles/dataset/Automated_recognition_of_postures_and_drinking_behaviour_for_the_detection_of_compromised_health_in_pigs/13042619/1
https://figshare.com/articles/dataset/Automated_recognition_of_postures_and_drinking_behaviour_for_the_detection_of_compromised_health_in_pigs/13042619/1
https://homepages.inf.ed.ac.uk/rbf/PIGDATA/#:~:text=The%20pig%20behavior%20dataset%20consisting,Most%20frames%20show%208%20pigs
https://homepages.inf.ed.ac.uk/rbf/PIGDATA/#:~:text=The%20pig%20behavior%20dataset%20consisting,Most%20frames%20show%208%20pigs
https://wi2.uni-hohenheim.de/analytics
https://drive.google.com/drive/folders/1E2wW2aRENgy_TqlzfICn58ahbTHVIaK6
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets%2FPigDetectionDataset2019%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FMDPIdatasets&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments&ga=1
https://uofnelincoln-my.sharepoint.com/personal/epsota2_unl_edu/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments%2FAnnotatedVideos%2Ezip&parent=%2Fpersonal%2Fepsota2%5Funl%5Fedu%2FDocuments&ga=1
https://drive.google.com/drive/folders/14XUYxM15NAI-zBrntrmQofhLv5otAw5b
https://github.com/MartinWut/Supp_DetAnIn
https://drive.google.com/file/d/1s-bCnABh2Hef5l5OxydcY-tkPbrUGSjj/view
https://research-information.bris.ac.uk/en/datasets/friesiancattle2017
https://research-information.bris.ac.uk/en/datasets/aerialcattle2017
https://data.bris.ac.uk/data/dataset/10m32xl88x2b61zlkkgz3fml17
http://bird.nae-lab.org/cattle/
https://github.com/Wormgit/Cows2021
https://github.com/hanl2010/Aerial-livestock-dataset/releases
https://github.com/MicaleLee/Database
https://cloud.une.edu.au/index.php/s/eMwaHAPK08dCDru
https://data.bris.ac.uk/data/dataset/eac634de-4b97-4dcc-ab78-66e3c9d09294
https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/O1ZBSA
https://zenodo.org/record/3981400#.Yq-ChHbMJD9

98

Table S3.2 Metrics for performance evaluation in different validation strategies.
Metric Full name of the metric Concise explanation

Accuracy - Proportion of correct predictions

TP True positive An outcome where the model correctly predicts the positive

class (in binary classification)

TN True negative An outcome where the model correctly predicts the negative

class (in binary classification)

FP False positive An outcome that a negative class is incorrectly predicted as

positive

FN False negative An outcome that a positive class is incorrectly predicted as

negative

precision (p) - A fraction of relevant instances among the retrieved instances

recall (r) - A fraction of relevant instances that were retrieved

F1 -
𝐹 =

 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

AP Average Precision Area under the precision-recall curve. 𝐴𝑃 = ∫ 𝑝(𝑟)𝑑𝑟
1

0

mAP mean Average Precision over N classes

𝑚𝐴𝑃 =

𝑁
∑𝐴𝑃𝑖

𝑁

𝑖=1

IoU Intersection over Union Given two areas, 𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑢𝑛𝑖𝑜𝑛

AUC Area under ROC curve AUC measures the 2d area under neath the receiver operating

characteristic curve, which is a comprehensive evaluation of

classification performance

missing Missing rate A fraction of missing detections

PCKh@0.5 Percentage of correct key-points when

threshold=0.5

An evaluation metric for pose estimation that a detected joint

is considered correct at the distance between the predicted and

true joint is within a threshold (e.g., 0.5).

CMC-N Cumulative Matching Characteristics A measure of 1:N identification system performance. Detailed

description is provided by Bolle et al. (2005).

Top-N

accuracy

- Model predictions with N highest probabilities. If one of N

labels is a true label, it classifies the prediction as correct.

cMOTSA Constrained multi-object tracking and

segmentation accuracy
𝑐𝑀𝑂𝑇𝑆𝐴 = 𝑇�̃� (|𝑇𝑃| + |𝐹𝑃|)⁄ , where 𝑇�̃� denotes soft TP.

See the study of Tangirala et al. (2021) for details.

MOTA Multiple objects tracking accuracy A metric that measures the overall accuracy of both the tracker

and detection. See the study of Alameer et al. (2020) for

details.

MOTP Multiple objects tracking precision A measure to evaluate multiple object tracking. It is defined in

the study of Alameer et al. (2020).

IDF1 Multi-object identification F1 score Ratio of correctly identified detections over the average

number of ground-truth and computed detections

IDP Multi-object identification precision Fraction of computed detections that are correct.

IDR Multi-object identification recall Correctly identified ground truth detections.

99

REFERENCES

100

REFERENCES

Alameer, A., Kyriazakis, I., Bacardit, J., 2020. Automated recognition of postures and drinking

behaviour for the detection of compromised health in pigs. Sci. Rep. 10, 1–15.

https://doi.org/10.1038/s41598-020-70688-6

Andrew, W., Gao, J., Mullan, S., Campbell, N., Dowsey, A.W., Burghardt, T., 2021. Visual

identification of individual Holstein-Friesian cattle via deep metric learning. Comput.

Electron. Agric. 185, 106133. https://doi.org/10.1016/j.compag.2021.106133

Andrew, W., Greatwood, C., Burghardt, T., 2017. Visual Localisation and Individual

Identification of Holstein Friesian Cattle via Deep Learning. Proc. - 2017 IEEE Int. Conf.

Comput. Vis. Work. ICCVW 2017 2018-Janua, 2850–2859.

https://doi.org/10.1109/ICCVW.2017.336

Andrew, W., Hannuna, S., Campbell, N., Burghardt, T., 2016. Automatic individual holstein

friesian cattle identification via selective local coat pattern matching in RGB-D imagery.

Proc. - Int. Conf. Image Process. ICIP 2016-Augus, 484–488.

https://doi.org/10.1109/ICIP.2016.7532404

Benitez Pereira, L.S., Koskela, O., Pölönen, I., Kunttu, I., 2020. Data set of labeled scenes in a

barn in front of automatic milking system [WWW Document]. Zenodo.

https://doi.org/10.5281/zenodo.3981400

Berckmans, D., 2017. General introduction to precision livestock farming. Anim. Front. 7, 6–11.

https://doi.org/10.2527/af.2017.0102

Bergamini, L., Pini, S., Simoni, A., Vezzani, R., Calderara, S., Eath, R.B.D., Fisher, R.B., 2021.

Extracting accurate long-term behavior changes from a large pig dataset. VISIGRAPP 2021

- Proc. 16th Int. Jt. Conf. Comput. Vision, Imaging Comput. Graph. Theory Appl. 5, 524–

533. https://doi.org/10.5220/0010288405240533

Bhole, A., Falzon, O., Biehl, M., Azzopardi, G., 2019. A Computer Vision Pipeline that Uses

Thermal and RGB Images for the Recognition of Holstein Cattle, Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Springer International Publishing. https://doi.org/10.1007/978-3-

030-29891-3_10

Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W., 2005. The relation between

the ROC curve and the CMC. Proc. - Fourth IEEE Work. Autom. Identif. Adv. Technol.

AUTO ID 2005 2005, 15–20. https://doi.org/10.1109/AUTOID.2005.48

Borges Oliveira, D.A., Ribeiro Pereira, L.G., Bresolin, T., Pontes Ferreira, R.E., Reboucas

Dorea, J.R., 2021. A review of deep learning algorithms for computer vision systems in

livestock. Livest. Sci. 253, 104700. https://doi.org/10.1016/j.livsci.2021.104700

101

Chen, C., Zhu, W., Norton, T., 2021. Behaviour recognition of pigs and cattle: Journey from

computer vision to deep learning. Comput. Electron. Agric. 187, 106255.

https://doi.org/10.1016/j.compag.2021.106255

Chen, C., Zhu, W., Steibel, J., Siegford, J., Han, J., Norton, T., 2020a. Recognition of feeding

behaviour of pigs and determination of feeding time of each pig by a video-based deep

learning method. Comput. Electron. Agric. 176, 105642.

https://doi.org/10.1016/j.compag.2020.105642

Chen, C., Zhu, W., Steibel, J., Siegford, J., Wurtz, K., Han, J., Norton, T., 2020b. Recognition of

aggressive episodes of pigs based on convolutional neural network and long short-term

memory. Comput. Electron. Agric. 169, 105166.

https://doi.org/10.1016/j.compag.2019.105166

Gao, J., Burghardt, T., Andrew, W., Dowsey, A.W., Campbell, N.W., 2021. Towards Self-

Supervision for Video Identification of Individual Holstein-Friesian Cattle: The Cows2021

Dataset.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.,

2017. A Review on Deep Learning Techniques Applied to Semantic Segmentation 1–23.

Han, J., Gondro, C., Reid, K., Steibel, J.P., 2021. Heuristic hyperparameter optimization of deep

learning models for genomic prediction. G3 Genes|Genomes|Genetics 11, jkab032.

https://doi.org/10.1093/g3journal/jkab032

Han, L., Tao, P., Martin, R.R., 2019. Livestock detection in aerial images using a fully

convolutional network. Comput. Vis. Media 5, 221–228. https://doi.org/10.1007/s41095-

019-0132-5

Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, Li Fei-Fei, 2009. ImageNet: A large-scale

hierarchical image database 248–255. https://doi.org/10.1109/cvprw.2009.5206848

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature.

https://doi.org/10.1038/nature14539

Li, D., Chen, Y., Zhang, K., Li, Z., 2019. Mounting behaviour recognition for pigs based on deep

learning. Sensors (Switzerland) 19. https://doi.org/10.3390/s19224924

Li, G., Huang, Y., Chen, Z., Chesser, G.D., Purswell, J.L., Linhoss, J., Zhao, Y., 2021. Practices

and applications of convolutional neural network-based computer vision systems in animal

farming: A review. Sensors 21, 1–42. https://doi.org/10.3390/s21041492

Li, X., Cai, C., Zhang, R., Ju, L., He, J., 2019. Deep cascaded convolutional models for cattle

pose estimation. Comput. Electron. Agric. 164, 104885.

https://doi.org/10.1016/j.compag.2019.104885

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.,

2014. Microsoft coco: Common objects in context, in: European Conference on Computer

102

Vision. Springer, pp. 740–755.

Liu, D., Oczak, M., Maschat, K., Baumgartner, J., Pletzer, B., He, D., Norton, T., 2020. A

computer vision-based method for spatial-temporal action recognition of tail-biting

behaviour in group-housed pigs. Biosyst. Eng. 195, 27–41.

https://doi.org/10.1016/j.biosystemseng.2020.04.007

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016. Ssd:

Single shot multibox detector, in: European Conference on Computer Vision. Springer, pp.

21–37.

Lu, Z., Jiang, X., Kot, A., 2017. Enhance deep learning performance in face recognition. 2017

2nd Int. Conf. Image, Vis. Comput. ICIVC 2017 244–248.

https://doi.org/10.1109/ICIVC.2017.7984554

Marcus, G., 2018. Deep Learning: A Critical Appraisal 1–27.

Nasirahmadi, A., Sturm, B., Edwards, S., Jeppsson, K.H., Olsson, A.C., Müller, S., Hensel, O.,

2019. Deep learning and machine vision approaches for posture detection of individual pigs.

Sensors (Switzerland) 19, 1–16. https://doi.org/10.3390/s19173738

Norton, T., Chen, C., Larsen, M.L.V., Berckmans, D., 2019. Review: Precision livestock

farming: Building “digital representations” to bring the animals closer to the farmer. Animal

13, 3009–3017. https://doi.org/10.1017/S175173111900199X

Özuysal, M., Lepetit, V., Fleuret, F., Fua, P., 2006. Feature harvesting for tracking-by-detection.

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics) 3953 LNCS, 592–605. https://doi.org/10.1007/11744078_46

Ponti, M.A., Ribeiro, L.S.F., Nazare, T.S., Bui, T., Collomosse, J., 2017. Everything You

Wanted to Know about Deep Learning for Computer Vision but Were Afraid to Ask. Proc. -

2017 30th SIBGRAPI Conf. Graph. Patterns Images Tutorials SIBGRAPI-T 2017 2018-

Janua, 17–41. https://doi.org/10.1109/SIBGRAPI-T.2017.12

Popoola, O.P., Wang, K., 2012. Video-based abnormal human behavior recognition—A review.

IEEE Trans. Syst. Man, Cybern. Part C (Applications Rev. 42, 865–878.

Psota, E.T., Mittek, M., Pérez, L.C., Schmidt, T., Mote, B., 2019. Multi-pig part detection and

association with a fully-convolutional network. Sensors (Switzerland) 19, 1–24.

https://doi.org/10.3390/s19040852

Psota, E.T., Schmidt, T., Mote, B., Pérez, L.C., 2020. Long-term tracking of group-housed

livestock using keypoint detection and map estimation for individual animal identification.

Sensors (Switzerland) 20, 1–25. https://doi.org/10.3390/s20133670

Puppe, B., Langbein, J., Bauer, J., Hoy, S., 2008. A comparative view on social hierarchy

formation at different stages of pig production using sociometric measures. Livest. Sci. 113,

155–162. https://doi.org/10.1016/j.livsci.2007.03.004

103

Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv Prepr.

arXiv1804.02767.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection with

region proposal networks. Adv. Neural Inf. Process. Syst. 28.

Riekert, M., Klein, A., Adrion, F., Hoffmann, C., Gallmann, E., 2020. Automatically detecting

pig position and posture by 2D camera imaging and deep learning. Comput. Electron.

Agric. 174. https://doi.org/10.1016/j.compag.2020.105391

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S.,

Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F.,

Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,

hierarchical, or phylogenetic structure. Ecography (Cop.). 40, 913–929.

https://doi.org/10.1111/ecog.02881

Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., Naemura, T., 2020. Cattle

detection and counting in UAV images based on convolutional neural networks. Int. J.

Remote Sens. 41, 31–52. https://doi.org/10.1080/01431161.2019.1624858

Shirke, A., Golden, R., Gautam, M., Green-Miller, A., Caesar, M., Dilger, R.N., 2021a. Vision-

based Behavioral Recognition of Novelty Preference in Pigs 1–5.

Shirke, A., Saifuddin, A., Luthra, A., Li, J., Williams, T., Hu, X., Kotnana, A., Kocabalkanli, O.,

Ahuja, N., Green-Miller, A., Condotta, I., Dilger, R.N., Caesar, M., 2021b. Tracking Grow-

Finish Pigs Across Large Pens Using Multiple Cameras.

Shojaeipour, A., Falzon, G., Kwan, P., Hadavi, N., Cowley, F.C., Paul, D., 2021. Automated

muzzle detection and biometric identification via few-shot deep transfer learning of mixed

breed cattle. Agronomy 11. https://doi.org/10.3390/agronomy11112365

Soleimanitaleb, Z., Keyvanrad, M.A., Jafari, A., 2019. Object tracking methods: A review. 2019

9th Int. Conf. Comput. Knowl. Eng. ICCKE 2019 282–288.

https://doi.org/10.1109/ICCKE48569.2019.8964761

Stalder, S., Grabner, H., Van Gool, L., 2009. Beyond semi-supervised tracking: Tracking should

be as simple as detection, but not simpler than recognition. 2009 IEEE 12th Int. Conf.

Comput. Vis. Work. ICCV Work. 2009 1409–1416.

https://doi.org/10.1109/ICCVW.2009.5457445

Tangirala, B., Bhandari, I., Laszlo, D., Gupta, D.K., Thomas, R.M., Arya, D., 2021. Livestock

Monitoring with Transformer.

Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E., 2018. Deep Learning for

Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018.

https://doi.org/10.1155/2018/7068349

Wu, D., Sun, D.W., 2013. Colour measurements by computer vision for food quality control - A

104

review. Trends Food Sci. Technol. 29, 5–20. https://doi.org/10.1016/j.tifs.2012.08.004

Wu, Y., Ji, Q., 2019. Facial Landmark Detection: A Literature Survey. Int. J. Comput. Vis. 127,

115–142. https://doi.org/10.1007/s11263-018-1097-z

Wutke, M., Heinrich, F., Das, P.P., Lange, A., Gentz, M., Traulsen, I., Warns, F.K., Schmitt,

A.O., Gültas, M., 2021. Detecting animal contacts—A deep learning-based pig detection

and tracking approach for the quantification of social contacts. Sensors 21, 1–16.

https://doi.org/10.3390/s21227512

Yao, Y., Yu, H., Mu, J., Li, J., Pu, H., 2020. Estimation of the gender ratio of chickens based on

computer vision: Dataset and exploration. Entropy 22. https://doi.org/10.3390/e22070719

Zhang, K., Li, D., Huang, J., Chen, Y., 2020. Automated video behavior recognition of pigs

using two-stream convolutional networks. Sensors (Switzerland) 20.

https://doi.org/10.3390/s20041085

Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X., 2019. Object Detection with Deep Learning: A Review.

IEEE Trans. Neural Networks Learn. Syst. 30, 3212–3232.

https://doi.org/10.1109/TNNLS.2018.2876865

105

CHAPTER 4: EVALUATION OF COMPUTER VISION FOR DETECTING AGONISTIC

BEHAVIOR OF PIGS IN A SINGLE-SPACE FEEDING STALL THROUGH BLOCKED

CROSS-VALIDATION STRATEGIES

Junjie Han, Janice Siegford, Dirk Colbry, Raymond Lesiyon, Anna Bosgraaf, Chen Chen, Tomas

Norton, and Juan P. Steibel

1. ABSTRACT

Agonistic behavior at feeding spaces is associated with both welfare and feed intake issues in

swine farming. Studying interactive social behaviors of group-housed pigs provides valuable

information to improve their production and welfare. The aims of this study were to 1) develop a

deep learning pipeline based on convolutional neural network (CNN) and long short-term

memory (LSTM) to classify videos depicting four types of interactive behavior between pigs in a

single-space feeding stall and 2) validate the pipeline through various blocked validation

strategies. Four categories of behaviors were classified in this study: head-to-body contact

(including gentle nosing, casual contact between head/ears of a pig with a feeding pig, head

knocking, tail biting, and pushing); levering where the feeding pig was lifted from behind by

another pig; mounting in which the feeding pig was mounted by another pig; and no-contact

when a second pig entered the feeding stall without physical contact with the feeding pig.

Behavior at the feeding stall was filmed twice, three weeks apart, for two consecutive days each

week using six groups of grow-finish pigs (10 per group) housed in pens equipped with FIRE®

feeders. This resulted in a total of 15,679 30-frame video episodes for classification. The dataset

presented a class-imbalance problem, and our deep learning pipeline addressed the problem by

incorporating focal loss. Random cross-validation, blocking-by-time validation, and blocking-

by-feeder validation were utilized for training-testing data split. The size of training sets was

held constant (N=7,500) through all validation scenarios. The average testing accuracies were

106

0.968(±0.001), 0.860(±0.033), 0.766(±0.026), and 0.860(±0.010) for random cross-validation,

blocking-by-time validation, and blocking-by-feeder validation (at Feeder 1 and Feeder 2),

respectively. The results indicate that the proposed pipeline yielded acceptable predictive

performance in random cross-validation. However, performance was substantially worse in

blocking-by-time and blocking-by-feeder validations. More work is needed for algorithm

generalization to improve its robustness across a variety of application scenarios. We provide

public access to the dataset and the code.

2. INTRODUCTION

Understanding patterns of feeding behavior can be useful for pig management (Brown-

Brandl et al., 2013), breeding (Ding et al., 2018) and research (Brown-Brandl et al., 2018;

Salgado et al., 2021). In pig farming, animals are typically housed in groups and animals often

have to compete for access to feeder space (Georgsson and Svendsen, 2002). Competition for

feeder space may be especially intense with the single-space automatic feeders that are typically

used in pig feed efficiency studies in grow-finish pigs. Moreover, the way pigs interact at the

feeder with their group mates may affect growth and feed intake due to differential competition

for feeder access (Georgsson and Svendsen, 2002; Nielsen et al., 1995). We have demonstrated

previously that accounting for interactions between pigs during feeding events brings important

information into pig research and breeding, because it allows more accurate estimation of social

genetic effects of competition for feeder space (Angarita et al., 2021). Also, quantifying

interactions at the feeder may eventually be used to improve pig’s feeding performance as well

as their welfare (Angarita et al., 2021; Rodenburg and Turner, 2012).

107

The traditional method of analyzing animal behavior is through direct observation or by

filming and later manual decoding of videos (Agha et al., 2020; Csermely and Wood-Gush,

1990; Machado et al., 2017; Nielsen et al., 1995). Direct observation by a human of many pigs

simultaneously and for the length of time needed to generate useful data is not possible on a

commercial farm environment (Martínez-Avilés et al., 2017). On the other hand, manual

decoding of video footage can be laborious, time-consuming, and subject to annotator error

(Chen et al., 2021). Computer vision (Forsyth and Ponce, 2011) applications, where artificial

intelligence is used to process images, are now being developed to detect animal behaviors.

Compared to the traditional approach that involves human effort, computer vision (CV) has

advantages of being low-cost, objective, and non-interventional, and to generate information

continuously (Chen et al., 2021; Li et al., 2021). In most animal farming applications, CV for

behavioral phenotyping is at the performance-evaluation phase. Most studies have primarily

concentrated on the predictive ability of CV while less attention has been paid to validation of

CV algorithms. Livestock farms continue to produce growing amount of CV datasets, reflecting

a variety of information (Bahlo et al., 2019). However, validation studies on the predictive ability

of CV are lacking for an important percentage (Gómez et al., 2021). An assessment of model

generalization is still needed in practical animal farming contexts (Li et al., 2021).

In CV applications for detecting pig posture and behavior where the training set and its

corresponding testing set were randomly split from the whole dataset, accurate results have been

obtained (Chen et al., 2020a; Li et al., 2019; Liu et al., 2020; Nasirahmadi et al., 2019; Zhang et

al., 2020). Most of these studies trained CV models using balanced datasets, manually

constructed to obtain an equal sample size within each category of the classification problem

(Chen et al., 2020a; Liu et al., 2020; Nasirahmadi et al., 2019; Zhang et al., 2020). However, a

108

strategy using balanced training sets sometimes overlooks the long-tail distribution (Zhou et al.,

2018) of the categories under real-world conditions, where the sample sizes within categories of

behavior vary.

The aims of this study were to 1) develop a CV approach to classify pigs’ interactive

behaviors in single-space feeding stalls, and 2) test the algorithm through random cross-

validation and two blocked cross-validation strategies (Roberts et al., 2017), where the data are

split temporally and spatially. We also present the importance of algorithm evaluation as well as

diagnostics through multiple training-testing scenarios that are more practical in animal farming.

3. MATERIAL AND METHODS

3.1 Experimental design

3.1.1 Recording schedule and specifications

The behavior of grow-finish pigs in a single-space feeding stall was observed through

video recordings. Videos were collected from the Swine Teaching and Research Center at

Michigan State University (East Lansing, MI 48824, USA). All animal protocols were approved

by the Michigan State Institutional Animal Care and Use Committee (Animal Use Form number

01/17-007-00). A total of six social groups (SGs) with ten crossbred pigs per group were used for

this study. These groups were rotated through two test pens (Table 4.1). Pig weight at the start of

data collection was 32±3.57 kg and final weight was 72.6±6.6 kg. No remixing of pigs was

performed during the experiment, and thus all pigs remained in the same social group during the

study. We observed six SGs for six consecutive weeks beginning immediately after the pigs were

introduced to grow-finish pens. Each group was observed for a total of four days (7 hours per

109

day) and this took place on two different weeks (three weeks apart) with two consecutive days of

observation being carried out during each selected week.

Table 4.1 Rotation schedule of social groups for the two experimental pens. SG,

social group.

 Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Pen 1 SG 3 SG 4 SG 6 SG 3 SG 4 SG 6

Pen 2 SG 5 SG 2 SG 1 SG 5 SG 2 SG 1

Each SG spent seven days in a test pen before being replaced by another group. Within

each seven-day period, the first five days included no recordings to allow for pigs to

(re)acclimate to the pen. On the fifth day, test recordings were used to check and calibrate

equipment as needed. On the sixth day and seventh day, video recording occurred from 9AM-

4PM (this was typically the time that the barn lights remained with some minor variation).

Both pens were .88 m × . m, and each pen was equipped with a nipple drinker and

a single-space automatic feeder (FIRE® Osborne Industries, KS, USA) with a dimension of

 .78 m × .7 m. Figure 4.1 shows the center views of the pens and the views of the single-

space feeding stalls, respectively. We used Intel® RealSenseTM D435 cameras for RGB video

recording, which were installed on top of the feeders at a height of 2.44 m relative to the floor.

Each pen was equipped with one camera to collect top-down-view videos of the feeding stall.

Cameras were managed through MATLAB (R2018b, The MathWorks Inc., MA), and video

recordings were saved in MP4 format at 30 frames per second. Raw videos were cropped to

create a fixed top-down view of the feeding stall region (Figure 4.1, Panels C and D). In Pen 1,

the cropped videos had a resolution of 98 × 8 pixels, while the resolution for Pen 2 was

96 × 8 pixels. Each camera was connected to an on-site microcomputer that had an Intel®

CoreTM i5-7500T CPU @ 2.7 GHz with 16GB DDR4 RAM and with Microsoft Windows 10 Pro

operating system.

110

Figure 4.1 Top-down views of pens and feeding stalls. Panels A and B (infrared images) show the

center views of Pen 1 and Pen 2, respectively. Panels C and D are top-down views of the feeding

stalls for Pen 1 and Pen 2, respectively.

3.1.2 Behavior ethogram and dataset

Five classes of agonistic behaviors in the feeding stall were observed and defined,

including no-contact (NC), ear-to-body (EB), head-to-body (HB), levering (L), and mounting

(M) between pigs. Behaviors were annotated by trained observers according to the ethogram

described in Table 4.2. After a first analysis, HB and EB were merged into a single category,

HB, for two reasons. First, the two classes shared considerable visual and dynamic similarity.

Second, preliminary results indicated that our prototype CV model could not distinguish EB and

HB.

111

Table 4.2 Ethogram for the agonistic behaviors in pigs. *: ear-to-body was merged into

head-to-body.

Behavior Description Code

No contact Two pigs were in view at the feeding stall. The behind pig

had at least both ears in the feeding stall but there was no

physical contact between the behind pig and the body of front

pig.

NC

Ear-to-body* The behind pig had at least both ears in the feeding stall and

unintentional contact was made. The behind pig might be

nosing the floor or eating displaced feed and making slight,

non-forceful contact with the front pig. This often appeared

as the behind pig’s ears grazing the front pig or the behind

pig’s nose bumping the rear legs of the front pig while

investigating the floor.

EB*

Head-to-body* The behind pig used its head to make intentional contact

(greater than 1 second) with the body of the front pig. Quick

(less than 1 second) bumps/run-ins by the behind pig were

not recorded.

HB*

Levering The behind pig’s snout was under the body of the front pig

and the front pig was lifted from the ground vertically. Any

lifting of the front pig that involved a behind pig was

considered levering. Typically, only the back half of the front

pig was lifted. This often manifested as the behind pig

pushing forward under the front pig, but it could also appear

as the front pig backing up and over the head of the behind

pig.

L

Mounting The behind pig lifted its two front legs and put the two legs

or its breast on the rear part of the front pig. The mounting

pig may sit down during the mounting. Mounting

commenced when the two front legs of or the breast of the

behind pig contacted the front pig and terminated as soon as

the mounting pig was no longer on top of the front pig even

some contact was still maintained.

M

We only focused on video segments when there were at least two pigs present in the

feeding stall. Such events with two or more pigs were passed to the observers. After a

preliminary review of the videos, observers indicated that videos less than 30 frames

(approximately 1 second) long tended to lack information (not enough frames) to make a

classification decision for the video, while longer videos might include more than one behavior.

112

Therefore, 30 consecutive frames were set as a video episode (the base processing unit) to

classify agonistic interactions of pigs at the feeding stall. Prior to further processing, each

segment of video (when there were two or more pigs in the feeding stall) was cut into 30-frame

video episodes labelled with one of the four behavior classes (NC, HB, L or M) following

annotation by a trained human observer. Some behavioral classes (i.e., L and M) were less

common than others (i.e., HB and NC) as they occurred less often or for shorter periods of time,

thus yielding fewer episodes of these behavioral classes. Several attempts were applied to video

data augmentation using temporal perturbation e.g., sub-sampling short video clips from the

whole event sequence (Ji et al., 2019; Kim et al., 2020; Yun et al., 2020). To augment the

instances of minority classes, specifically L and M, we up-sampled episodes by overlapping 25

frames when generating consecutive episodes from a whole video segment (Figure 4.2).

Episodes labelled as HB and NC were cut from the whole video segments without overlapping

frames in consecutive episodes (Figure 4.2). Episodes were created in this way to mitigate the

class imbalance in our dataset.

We obtained a total of 15,679 30-frame episodes. Among them, NC, HB, L, and M

activities made up 3,398 (22%), 10,114 (66%), 925 (6%), and 1,242 (8%) of the dataset,

respectively. The video dataset was then ready to be split into a training set and a testing set

according to various validation strategies, as explained in Section 2.2.5.

113

Figure 4.2 Examples for generating episodes for no-contact, head-to-

body, levering, and mounting events.

3.1.3 Validation strategies

In modelling, dependence structures in the data, such as underlying temporal, spatial, and

hierarchical structures, violate the assumption of independence between the training set and

testing set and leads to overoptimistic results (Roberts et al., 2017). To tackle the temporal

structure e.g. growing sizes of pigs and the spatial structure e.g. varying conditions of the two

pens, we used blocked cross-validation, as proposed by Roberts et al. (2017), to split the whole

dataset into a training set and a testing set given different blocking factors. Specifically, we split

the entire data according to temporal characteristics (blocking by time) and spatial characteristics

114

(blocking by feeder). In addition, we used random cross-validation as a reference for

comparison. The three validation strategies are as followed:

1. Five replicates of random cross-validation were used to evaluate predictive performance

of the CV model. In each replicate, a random subset of the data was used for model

training, while the remaining instances were for model training.

2. A blocking-by-time dataset was then created to study whether a model could be trained

using the footage of younger pigs and then applied to older pigs with acceptable

predictive performance. In this scenario, episodes from the first three weeks were defined

as the training set, while episodes from the last three weeks were for testing purposes.

3. A blocking-by-feeder dataset was generated, where episodes from one of the two feeders

were used for training and episodes from the other feeder was used for testing. This was

done to study whether slight changes in experiment setup including different

illumination, camera position/angle, and social groups affected the predictive

performance of DL.

3.2 Computer vision algorithm

3.2.1 Deep learning pipeline for video classification

Deep learning (DL), a predominant analytical tool used in CV, is a set of representation

learning methods, where a machine can be trained with raw data to discover the representations

needed for prediction or classification without requiring extensive background knowledge

(Lecun et al., 2015). Such advantages have made DL the preferred tool for behavior recognition

applications use videos and images from different animal farming contexts (Chen et al., 2021; Li

et al., 2021). A commonly used pipeline for video segment classification to detect behavior of

pigs consists of coupling a convolutional neural network (CNN) (LeCun and Bengio, 1995) with

115

a long short-term memory (LSTM) model (Hochreiter, 1997). This allows the CNN to extract

relevant spatial features from each individual frame and the LSTM to classify the whole set of

frames while accounting for the temporal dependence in the video. For example, a CNN +

LSTM pipeline has been successfully applied to recognize aggressive/non-aggressive episodes

and tail-biting behavior in group-housed pigs (Chen et al., 2020b; Liu et al., 2020). In this study,

we employed a CNN + LSTM pipeline (Figure 4.3) to classify the 30-frame short videos.

Figure 4.3 Deep learning pipeline for pig’s aggressive behavior detection based on videos.

Graph for ResNet-50 Architecture was obtained from Talo (2019).

3.2.2 Feature extraction with convolutional neural network

In our work, a CNN served as a feature extractor that received an individual frame as

input and generated numerical features as output that were considered spatial representations.

CNNs were designed to process data that has a spatial structure, for example using 2-D images

for object detection (Lecun et al., 2015). We used transfer learning in Stage 1 (Figure 4.3) for

116

spatial feature extraction, where existing knowledge from a related CV application is transferred

to a new context (Torrey and Shavlik, 2010). This is a common practice with CV in livestock

applications (Chen et al., 2020b; Wu et al., 2021; Yin et al., 2020). We compared three pre-

trained CNN models that were well established for computer vision tasks: ResNet-50 (He et al.,

2016), GoogleNet (Szegedy et al., 2015), and VGG-16 (Simonyan and Zisserman, 2014). All

three models required an image input size of × pixels and thus, we resized the raw

episodes before passing them to CNNs. Through transfer learning, for each video frame we

obtained × × 8, × × , and 7 × 7 × 5 feature matrices from ResNet-

50, GoogleNet, and VGG-16, respectively. Note that CNNs deal with individual frames, so each

episode would result in 30 feature sets extracted by the CNN.

3.2.3 Long short-term memory

LSTM, one of the recurrent neural network architectures, was designed to handle data

presenting a sequential or temporal structure, such as texts and videos (Lecun et al., 2015). In

this study, the LSTM consisted of 30 modules, which were the same as the number of frames in

each episode. Each module (except the first module) received two 1-D vectors, 𝐶𝑡−1 and ℎ𝑡−1, as

its input and generated two vectors, 𝐶𝑡 and ℎ𝑡, as its output, where 𝑡 means 𝑡-th frame of the

episode and < 𝑡 < , 𝐶𝑡 is the cell state of 𝑡-th LSTM module, and ℎ𝑡−1 represents the

hidden status of Frame 𝑡 − (Figure 4.4). ℎ𝑡−1 was concatenated with 𝑥𝑡−1, the 1-D feature

vector extracted from CNN given Frame 𝑡 − , and the concatenated vector had four copies with

the length of 𝑑ℎ + 𝑑𝑥, where 𝑑ℎ is the number of hidden units in a LSTM module and 𝑑𝑥

represents the output length from CNN. The four sets of weights (to be optimized through DL

model fitting) were applied to the four copies and then the results were activated by sigmoid

(Han and Moraga, 1995), sigmoid, hyperbolic tangent (Lecun et al., 2015), and sigmoid

117

functions, respectively. Structurally, an LSTM module includes a forget gate, an input gate, and

an output gate (Figure 4.4). Furthermore, an LSTM model could be specified as a unidirectional

LSTM or a bidirectional LSTM (Schuster and Paliwal, 1997). Each module produced an output

ℎ𝑡 (≤ 𝑡 ≤) as the hidden status, whereas ℎ30 (hidden status of the last frame given an

episode) was used for classification of the episode. We trained all the LSTM parameters

ourselves as there was no available pre-trained LSTM to use in this application.

Figure 4.4 Diagram of long short-term memory. The figure was redrawn, and

the original figure was obtained from https://colah.github.io/posts/2015-08-

Understanding-LSTMs/

3.2.4 Hyperparameters

Hyperparameters are a set of values and options of the DL algorithm that are typically

specified by data analysts before training a DL model. Selected hyperparameter values have an

impact on the performance of DL (Han et al., 2021; Luo, 2016). A search of proper

hyperparameter set(s) is recommended (Wu et al., 2021). We explored × × hyperparameter

combinations by considering different CNNs for transfer learning and different LSTM

architectures. The searching space referred to existing literature and is described in Table 4.3.

The remaining hyperparameters were fixed following suggestions from the literature and are

118

described in Table S4.1. The average accuracy (Eq. 1) of five replicates of random cross-

validation was used to select the best hyperparameter solution:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡𝑖𝑛𝑔 𝑠𝑒𝑡
 (Eq. 1)

Table 4.3 Explored hyperparameters and related work. CNN, convolutional neural network;

LSTM, long short-term memory.
Hyperparameter Reference Options

CNN for transfer learning He et al. (2016), Simonyan and Zisserman

(2014), and Szegedy et al. (2015)

[VGG-16, ResNet-50,

GoogleNet]

Dimension of hidden status

(LSTM)

Saurabh (2021), Wu et al. (2021), Xiao et al.

(2020), and Yin et al. (2020)

[50, 256, 512]

LSTM architecture Hochreiter (1997) and Ullah et al. (2017) [Single LSTM,

Bidirectional LSTM]

The selected solution with highest average accuracy was used to train CNN-LSTM

models for all validation strategies described in Section 2.1.3. Predictive performance of all

hyperparameter combinations is presented in Figure S4.1. The selected model configuration is

described in Table S4.1.

3.2.5 Region of interest

Once hyperparameters were selected, three different regions of interest (ROI) were

further investigated to improve performance of the classification algorithm. Raw videos were

cropped given the three ROIs: 1) extended feeding stall that included the whole feeding stall and

the area immediate to its entrance, 2) feeding stall region only, and 3) truncated feeding stall

region consisting of half the stall closer to the entrance, where most interactive behaviors were

initialized (Figure 4.5). It is worth mentioning that 1) was the default ROI when searching for

hyperparameters. Table S4.2 lists the average accuracy of the three ROIs, which suggested that

119

the model utilized the truncated feeding stall region (3) yielded the best performance. Therefore,

we selected the truncated feeding stall region as the ROI in this study.

Figure 4.5 Explored regions of interest.

3.2.6 Deep learning training accounting for class-imbalance

Training a DL model is an optimization process that calculates and minimizes an

objective function, also known as loss function, which measures prediction/classification errors.

Categorical cross entropy is a commonly used loss function for classification problems with DL

(Zhang and Sabuncu, 2018). Related work has implied that tuning the loss function helps address

the class-imbalance problem during DL model fitting (Hossain et al., 2021). Lin et al. (2017)

proposed focal loss function to deal with the imbalance problem for binary classification.

Further, Liu et al. (2018) extended focal loss for multi-class classification. In this study, we used

the multi-class focal loss as the objective function (Eq. 2):

 𝑙𝑜𝑠𝑠𝐹𝐿 = −∑ 𝛼(− 𝑦𝑖)
𝛾𝑡𝑖𝑙𝑜𝑔(𝑦𝑖)

𝑐
𝑖=1 , (Eq. 2)

where 𝑐 is the number of behavior categories, 𝑡𝑖 represents the true probability distribution, 𝑦𝑖

denotes the probability of behavior class 𝑖 from Softmax activation (Goodfellow et al., 2016),

while 𝛼 and 𝛾 are the balancing parameter and the focusing parameter respectively. Lin et al.

(2017) reported that the best-performing model was obtained when 𝛼 = . 5 and 𝛾 = , and

Oksuz et al. (2019) further indicated that the values performed well in practice. Therefore, we

adopted the recommended values. Further, 𝑡𝑖 is defined as:

𝑡𝑖 = {
 𝑖 = 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙
 𝑖 ≠ 𝑡𝑟𝑢𝑒 𝑙𝑎𝑏𝑒𝑙

120

The performance of DL is sensitive to the size of the training set. In this study, the

number of available training episodes differed depending on the blocking strategy (Table S4.3).

A constant training set size was suggested for DL when comparing predictive performance under

different validation scenarios (Fernandes et al., 2020). Thus, we restricted the training set size to

be 7,500 30-frame episodes across all three validation strategies, and for those scenarios with

more training samples, we randomly selected which 7,500 episodes to include in the training set.

For testing, all available episodes were utilized for evaluation.

The training process was executed by MATLAB (R2021a, The MathWorks Inc., MA)

with GPU computing activated. The computer used for DL model training had Intel® CoreTM i7-

8750H CPU @ 2.2 GHz with 16GB RAM, NVIDIA® GTX 1070 GPU with 8GB GDDR5

memory and a Microsoft Windows 10 operating system.

3.2.7 Evaluation matrices

Predictive performance of the DL model given behavior class 𝑖 was evaluated through

three measurements including overall accuracy (Eq. 1), recall (Eq. 3), and precision (Eq. 4):

 𝑟𝑒𝑐𝑎𝑙𝑙𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖
 (Eq. 3)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑐𝑙𝑎𝑠𝑠 𝑖
 (Eq. 4)

4. RESULTS AND DISCUSSION

The model training took 1.8 hours (the training size was N=7,500 episodes), and the

average computing time to classify an episode in the testing set was 1.9 seconds. Figure S4.2

presents the model training history of the four validation scenarios in terms of prediction

accuracy over time (five sets of curves per scenario). After 100 epochs of DL model fitting

process, final testing accuracy was 0.968(±0.001), 0.860(±0.033), 0.766(±0.026), and

121

0.860(±0.010) for random cross-validation, blocking-by-time validation, and blocking-by-feeder

validation (at Feeder 1 and Feeder 2), respectively. In random cross-validation, the testing

accuracy almost agreed with the training accuracy. The remaining three validation scenarios

showed different levels of overfitting. Compared to training accuracy, testing accuracy decreased

by 0.140, 0.214, and 0.140 in blocking-by-time, blocking-by-feeder (Feeder 1 for testing), and

blocking-by-feeder (Feeder 2 for testing) validations, respectively. The result of random cross-

validation indicated that a CNN + LSTM pipeline could be utilized to classify accurately the four

types of agonistic behaviors. However, significant decreases in testing accuracy as well as

overfitting were observed in blocking-by-time and blocking-by-feeder validations. In a previous

study, Li et al. (2020) utilized DL to classify five categories of pigs’ behaviors: feeding, lying,

motoring, scratching, and mounting. They reported an accuracy of 96.35% in random cross-

validation while the prediction accuracy on an independent testing set (a different pigsty) was

84.47%. In another study, Fernandes et al. (Fernandes et al., 2020) applied DL to predict pig

body composition traits and indicated that when testing the trained model on independent genetic

lines of pigs, the accuracy was systematically lower compared to 5-fold and 3-fold random cross-

validations. Our results further confirmed the finding that the predictive performance of DL in

blocked/independent testing sets was worse compared to random cross-validation.

Figure 4.6 shows the average recall and precision of each behavioral category in the four

validation scenarios. As a reference, random CV yielded recall of 0.983, 0.849, 0.964, and 0.956

for HB, L, M, and NC behaviors, respectively. On the other hand, precisions of random CV were

0.971, 0.932, 0.968, and 0.969 for head-to-body, levering, mounting, and no-contact behaviors,

respectively. The encouraging result of random CV implies that the DL pipeline was suitable for

multi-class classification of pig’s aggressive interactions. This may be especially useful in

122

retrospective studies, such as in research applications, where a whole dataset is collected, but

annotated and analyzed after all the video recordings happened. In a study conducted by Li et al.

(2020), they trained a DL model for multi-behavior recognition of pigs that had precisions

ranging from 0.946 to 1 for five categories: feeding, scratching, mounting, lying, and motoring.

According to a more recent study, Wu et al. (2021) fitted a CNN-LSTM model with recalls

ranging from 0.950 to 0.985 and precisions ranging from 0.958 to 0.995 for drinking, ruminating,

walking, standing, and lying behaviors of a single dairy cow. Both studies utilized random cross-

validation, and we obtained similar results in random cross-validation in the present study. The

obvious unique characteristic of our work is to classify interactive behaviors in pigs (rather than

behaviors by a single animal), which is more complicated than the recognition of basic behaviors

that do not necessarily involve two animals.

Figure 4.6 Bar plots of recall and precision for random, block-by-time, and block-by-feeder cross-

validations. HB, head-to-body; L, levering; M, mounting; NC, no-contact.

In blocking-by-time validation, decrease in both recall and precision was observed.

Recall for blocking-by-time validation was 0.855 (HB), 0.875 (L), 0.963 (M), and 0.821 (NC),

while precision was 0.968, 0.362, 0.719, and 0.884, respectively (Figure 4.6). Using episodes

collected from the first three weeks to classify episodes recorded during the final three weeks

resulted in a significant decrease in predictive performance, especially in terms of precision for

levering and mounting. Regarding blocking-by-time validation, Bergmeir and Benítez (2012)

123

raised concerns about data containing time-evolving effects. They indicated that last block

validation tended to cause a less robust predictive performance, where the last block was a subset

taken from the end of a time series. Thus, the decreased predictive performance in our blocking-

by-time validation was possibly the result of time-evolving features i.e. the growing pigs that

could not be picked up or were not present in the training set (episodes from the first three

weeks). This type of validation is potentially useful for time-sensitive applications where model

training is done after minimal or limited initial data collection and then the trained model is used

on the same individuals, but at later time points.

Predictive performance also dropped in blocking-by-feeder validation. Notably, the

model trained with episodes from Feeder 1 showed better performance than the model trained

with Feeder 2. When training with Feeder 1 data and testing on Feeder 2, recall for the four

categories was 0.921 (HB), 0.785 (L), 0.348 (M), and 0.900 (NC), whereas precision for the four

classes was 0.930, 0.452, 0.987, and 0.863, respectively. Meanwhile, training with Feeder 2 and

testing on Feeder 1 led to different results. In this scenario, recall for the four categories was

0.889 (HB), 0.456 (L), 0.955 (M), and 0.411 (NC), while precision rates were 0.804, 0.381,

0.628, and 0.999, respectively. Additionally, patterns of misclassifications differed between the

two scenarios of blocking-by-feeder validation. Compared to random cross-validation, the model

trained with Feeder 1 resulted in significantly lower recall for mounting and precision for

levering, while worse recall for levering and no-contact and precision for levering and mounting

were observed when validating the model trained with Feeder 2. Roberts et al. (2017) argued that

ignoring data structures e.g., spatial and grouping structures may lead to over-optimistic

estimation of the model performance. Furthermore, they reported notably worse predictive

performance when the testing sets were blocked by spatial group and by space, compared to

124

random cross-validation. In another study that employed DL for classification (Lopez-Del Rio et

al., 2019), the authors reported a worse performance when the training/testing sets were split by a

clustering factor. As episodes recorded from Feeder 1 were composed of different social groups

(Table 4.1) and a slightly different experiment setup (e.g., camera angle and illumination)

compared to episodes recorded from Feeder 2, we speculate that the nested structures in the two

feeders led to divergent variabilities between the two datasets. To further investigate this, we

performed a principal component analysis (PCA) of the feature vectors extracted from each

episode that were inputs of LSTM (Figure 4.3). Results of PCA implied that frames from Feeder

1 were more variable than frames of Feeder 2. We included the relationship of the first six

principal components in Figure S4.3.

Figure 4.7 shows the cumulative confusion matrix over five replicates of each validation

scenario. Validation sets and their corresponding misclassified episodes were further clustered by

social group, week, feeder, pig’s back mark (Arabic numerals from 0 to 9), and behavior

category. For random cross-validation, misclassified episodes maintained the same clustering

patterns as in the testing sets, but the pattern was different when accounting for the behavior

category (Figure S4.4). For blocking-by-time validation, misclassified episodes presented

different clustering structure in terms of social group, feeder, mark, and week compared to the

testing set, while the breakdown by behavior category was similar to the testing set (Figure

S4.5). Misclassification of both blocking-by-feeder validation scenarios showed similar patterns

as in the testing set when divided by social group, mark, and week, but the misclassification

breakdown by behavior category disagreed with the corresponding testing sets (Figures S4.6 and

S4.7).

125

Moreover, when studying blocking-by-time validation and blocking-by-feeder validation,

we ranked episodes based on the frequency that they occurred in the misclassification and

selected the top 50 misclassified episodes for each off-diagonal element in of the confusion table.

If the total number of episodes for the misclassification category was fewer than 50, we selected

all episodes for diagnosis. Both blocking-by-time and blocking-by-feeder validations showed

similar patterns in three misclassification categories: HB misclassified as NC, NC misclassified

as HB, and HB confused with L. For HB misclassified as NC and NC episodes confused with

HB, the following pig presented mild contact or almost no contact with the front pig (Figure 4.8

a.). For HB misclassified as L, almost all episodes presented a pattern where the following pig

buried its head underneath the rear part of the front pig and attempted to push/lift the front pig

but did not succeed in doing so (Figure 4.8 b.).

126

Figure 4.7 Confusion tables of three validation strategies. Tables were based on the result by

merging statistics over 5 replicates. Each validation strategy has five reps. Prediction means

classified result from our model and Target means ground-truth labels. Panel A, random

validation; Panel B, block-by-time validation; Panel C, block-by-feeder validation (Feeder 1 as

testing set); Panel D, block-by-feeder validation (Feeder 2 as testing set). NC, no-contact; M,

mounting; L, levering; HB, head-to-body.

In blocking-by-time validation, the major sources of misclassification were HB predicted

as NC, HB predicted as M, HB predicted as L, and L predicted as M. For HB classified as M, it

was frequently observed that the following pig pushed/head-knocked the front pig, and we also

found that the front pig tended to retreat from the feeder which caused contact with the following

pig (Figure 4.8 c. and d.). For L misclassified as M, a common structure across all episodes was

that the two pigs overlapped considerably and their heads were barely visible (Figure 4.8 e.).

127

Figure 4.8 Error patterns for misclassification. The 1st, 10th, 20th, and 30th frames of example

episodes were selected for display purpose. a), head-to-body and no-contact confused by no-

contact and head-to-body, respectively; b), head-to-body misclassified as levering; c-d), head-

to-body false predicted as mounting; e), levering confused by mounting. Panels a) and b) were

common misclassification patterns across all three validation scenarios. Panels c-e) only

represent block-by-time validation.

When testing on Feeder 1 (Feeder 2 as the training set), the main misclassified categories

were: HB predicted as M, HB predicted as L, L predicted as HB, and L predicted as M. For HB

confused with M, no specific behavioral patterns were observed, but most misclassified episodes

involved back-marked pigs (with Arabic numerals) or dirty pigs (Figure 4.9 a.). Episodes that

were labelled as L but classified as HB showed two types of features. In one case, the two pigs

were in the middle of levering behavior, and they were relatively motionless (Figure 4.9 b.). In

the second instance, some episodes contained more than one behavior category; for example, the

following pig was in the transition period between levering and performing another behavior

(Figure 4.9 c.). For L misclassified as M, only a small proportion of the front pig’s body (mostly

the rear part of the pig) was included in the episodes (Figure 4.9 d.), as we set the truncated

feeder area as the ROI.

In the last validation scenario, we trained our model with the data from Feeder 1 and

tested on video episodes from Feeder 2. We then watched misclassified episodes in the testing

set (Feeder 2). Most misclassifications focused on five error categories: HB predicted as L, M

128

predicted as L, M predicted as HB, and L predicted as HB. When M was erroneously confused

with L, commonly the view was almost entirely filled with body of the mounting pig and only a

very small proportion of the front pig was visible (Figure 4.9 e.). For M misclassified as HB, all

episodes presented clear views of the following pig, and the following pig was at very early stage

of mounting (minor overlap with the front pig; Figure 4.9 f.). For L misclassified as HB, there

were two patterns. On the one hand, many episodes included three pigs and both L and HB were

occurring at the same time among the animals. Although we manually labeled the episodes by

prioritizing the interaction related to the front pig (nearest the food trough), there were rare

events that involved a secondary interaction between the 2 follower pigs at the other end of the

feeding stall near the entrance (Figure 4.9 g.). On the other hand, over half of the L misclassified

as HB errors included drastic levering with the follower pig’s head/ears visible (Figure 4.9 h.).

Figure 4.9 Error patterns for misclassification in block-by-feeder validation. The 1st, 10th,

20th, and 30th frames of example episodes were selected for display purpose. a), head-to-

body misclassified as mounting, respectively; b-c), levering misclassified as head-to-body;

d), levering false predicted as mounting; e), mounting confused by levering; f), mounting

confused by head-to-body; g-h), levering false classified as mounting.

This paper classified multiple interactive behaviors of grow-finish pigs in single-space

feeding stalls, which is an original application of computer vision for studying livestock systems.

129

In addition, we employed a state-of-the-art CNN+LSTM pipeline that explicitly accounted for a

class-imbalance problem in the training set. Furthermore, our results suggest that the data

structure matters in the predictive performance of the proposed DL pipeline. Compared to

previous studies that classified aggressive/non-aggressive behaviors of pigs (Chen et al., 2020a,

2019), our study took a further step to distinguish among different interactive agonistic behaviors

in grow-finish pigs in the confines of a single-space feeding stall. Agonistic behavior in pigs

involves complicated motion structure, and thus, it is difficult to handle challenging instances

especially those occurring during the transition between two different activity types. The results

from random cross-validation suggest that the proposed model could be used for classification of

multiple types of pigs’ agonistic behavior. However, such a validation strategy may overlook the

effect of confounds within the dataset itself. Blocked validation strategies are closer to real-world

applications, and results of these validation strategies should be considered when evaluating

models for use on farm. As we observed more errors in blocked validation, it is essential to

identify challenging cases through model diagnosis, which has also been proposed by many other

researchers utilizing DL to study animal behavior (Chen et al., 2020b; Liu et al., 2020; Wu et al.,

2021). Detailed diagnostics such as those we described underlying various misclassifications and

advanced CV algorithms will be helpful to improve the model as well as predict its potential

robustness in real-world situations.

5. CONCLUSION

Our results illustrate the importance of matching validation with application when

evaluating DL models for behavioral classification of videos. We used a state-of-the-art

CNN+LSTM pipeline trained with an imbalanced video dataset to classify four interactive

130

behaviors in grow-finish pigs. While random cross-validation produced an acceptable accuracy

of 96.8%, using validation strategies that blocked data over time or by pen/feeder location had

poorer performance. In the future, more datasets with known structures should be added to

existing datasets to train video classification models under various real-world conditions that will

be relevant to animal phenomics and precision livestock farming uses.

6. DECLARATION OF COMPETING INTEREST

We declare that we have no financial and personal relationships with other people or

organizations which can inappropriately influence our work. There is no professional or other

personal interest of any nature or kind in any product, service, and/or company that could be

construed as influencing the position presented in, or the review of, the manuscript entitled.

7. ACKNOWLEDGEMENTS

This work was funded by NIFA Awards 2017-67007-26176 and 2021-67021-34150 and

the ational atural Science Foundation of China (32102598).

8. DATA AVAILABILITY

Custom MATLAB Code used for (CNN) transfer learning, LSTM model fitting, and

blocked validation strategies are available at GitHub: https://github.com/jun-

jieh/AgonisticPigBehav/. Raw video episodes, video metadata, and extracted features from

transfer learning are available at OSF data repository: https://osf.io/wa732/.

https://github.com/jun-jieh/AgonisticPigBehav
https://github.com/jun-jieh/AgonisticPigBehav
https://osf.io/wa732/

131

APPENDIX

132

Table S4.1 Hyperparameters configuration.

Hyperparameter Option/Value Reference

CNN for transfer learning ResNet-50 Hyperparameter search

LSTM architecture Bi-directional with 50 units Hyperparameter search

𝛼 (Balancing parameter) 0.25 Lin et al. (2017)

𝛾 (Focusing parameter) 2 Lin et al. (2017)

Optimizer Adam Wu et al. (2021)

Initial learning rate 0.0001 Wu et al. (2021)

Batch size 20 Wu et al. (2021)

Dropout rate 0.5 Wu et al. (2021)

Epochs 100 Chen et al. (2020b)

Table S4.2 Overall accuracy for different regions of interest.

Region of interest Mean accuracy (5 reps) Standard deviation (5 reps)

Extended feeder 0.868 0.004

Feeder only 0.875 0.001

Truncated feeder 0.887 0.004

Table S4.3 Available sample size by validation strategies. *: the training set and the testing set

were interchangeable depending on which feeder was used for training/testing. #: once a training

set size N1 was determined, the remaining N2=15,679 - N1 samples were considered as the

testing set.

 Random cross-

validation#

Blocking-by-time Blocking-by-feeder*

Available for Training 15,679 9,907 (Weeks 1-3) 7,700 or 7,979

Available for Testing 15,679 5,772 (Weeks 4-6) 7,979 or 7,700

133

Figure S4.1 Average accuracy of different hyperparameter sets. Units, number of hidden

units in long short-term memory module; bi-direct, bi-directional long short-term memory;

standard, standard one-way long short-term memory.

134

Figure S4.2 Training history of three validation strategies. Solid lines are for training curves and

dashed lines show the testing curve. Each validation strategy has five reps. Panel A, random

validation; Panel B, block-by-time validation; Panel C, block-by-feeder validation (Feeder 1 as

testing set); Panel D, block-by-feeder validation (Feeder 2 as testing set).

135

Figure S4.3 Scatter plots of individual score for each episode given the first six principal

components (grouped by feeder). Blue dots represent Feeder 1 and green dots are for Feeder

2. Principle component analysis was done using feature vectors extracted from ResNet-50.

136

Figure S4.4 Testing sets breakdown (on the left of panels) and misclassification breakdown (on

the right of panels) by social group (A), week (B), feeder (C), mark (D), and behavior category

(E) in random cross-validation (five replicates). Marked pigs meant back-marked pigs with

Arabic numerals; Unmarked pigs were pigs without artifactual marks on their backs.

Figure S4.5 Testing set breakdown (on the left of panels) and misclassification breakdown (on

the right of panels) by social group (A), week (B), feeder (C), mark (D), and behavior category

(E) in block-by-time validation. Plots on the left of panels show the proportion/count for a single

dataset, while plots on the right of panels stand for the statistics across 5 replicates. Marked pigs

meant back-marked pigs with Arabic numerals; Unmarked pigs were pigs without artifactual

marks on their backs.

137

Figure S4.6 Testing set breakdown (on the left of panels) and misclassification breakdown (on

the right of panels) by social group (A), week (B), mark (C), and behavior category (D) in

block-by-feeder validation, whereas Feeder 1 was the testing set. Plots on the left of panels

show the proportion/count for a single dataset, while plots on the right of panels stand for the

statistics across 5 replicates. Marked pigs meant back-marked pigs with Arabic numerals;

Unmarked pigs were pigs without artifactual marks on their backs.

138

Figure S4.7 Testing set breakdown (on the left of panels) and misclassification breakdown (on

the right of panels) by social group (A), week (B), mark (C), and behavior category (D) in block-

by-feeder validation, whereas Feeder 2 was the testing set. Plots on the left of panels show the

proportion/count for a single dataset, while plots on the right of panels stand for the statistics

across 5 replicates. Marked pigs meant back-marked pigs with Arabic numerals; Unmarked pigs

were pigs without artifactual marks on their backs.

139

REFERENCES

140

REFERENCES

Agha, S., Fàbrega, E., Quintanilla, R., Sánchez, J.P., 2020. Social network analysis of agonistic

behaviour and its association with economically important traits in pigs. Animals 10, 1–13.

https://doi.org/10.3390/ani10112123

Angarita, Belcy K., Han, J., Cantet, R.J.C., Chewning, S.K., Wurtz, K.E., Siegford, J.M., Ernst,

C.W., Steibel, J.P., 2021. Estimation of direct and social effects of feeding duration in

growing pigs using records from automatic feeding stations. J. Anim. Sci. 99, 1–8.

https://doi.org/10.1093/jas/skab042

Bahlo, C., Dahlhaus, P., Thompson, H., Trotter, M., 2019. The role of interoperable data

standards in precision livestock farming in extensive livestock systems: A review. Comput.

Electron. Agric. 156, 459–466. https://doi.org/10.1016/j.compag.2018.12.007

Bergmeir, C., Benítez, J.M., 2012. On the use of cross-validation for time series predictor

evaluation. Inf. Sci. (Ny). 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028

Brown-Brandl, T.M., Adrion, F., Gallmann, E., Eigenberg, R., 2018. Development and

Validation of a Low-Frequency RFID System for Monitoring Grow-Finish Pig Feeding and

Drinking Behavior 1–9. https://doi.org/10.13031/iles.18-041

Brown-Brandl, T.M., Rohrer, G.A., Eigenberg, R.A., 2013. Analysis of feeding behavior of

group housed growing-finishing pigs. Comput. Electron. Agric. 96, 246–252.

https://doi.org/10.1016/j.compag.2013.06.002

Chen, C., Zhu, W., Liu, D., Steibel, J., Siegford, J., Wurtz, K., Han, J., Norton, T., 2019.

Detection of aggressive behaviours in pigs using a RealSence depth sensor. Comput.

Electron. Agric. 166, 105003. https://doi.org/10.1016/j.compag.2019.105003

Chen, C., Zhu, W., Norton, T., 2021. Behaviour recognition of pigs and cattle: Journey from

computer vision to deep learning. Comput. Electron. Agric. 187, 106255.

https://doi.org/10.1016/j.compag.2021.106255

Chen, C., Zhu, W., Steibel, J., Siegford, J., Han, J., Norton, T., 2020a. Recognition of feeding

behaviour of pigs and determination of feeding time of each pig by a video-based deep

learning method. Comput. Electron. Agric. 176, 105642.

https://doi.org/10.1016/j.compag.2020.105642

Chen, C., Zhu, W., Steibel, J., Siegford, J., Wurtz, K., Han, J., Norton, T., 2020b. Recognition of

aggressive episodes of pigs based on convolutional neural network and long short-term

memory. Comput. Electron. Agric. 169, 105166.

https://doi.org/10.1016/j.compag.2019.105166

Csermely, D., Wood-Gush, D.G.M., 1990. Agonistic behaviour in grouped sows. Ii. how social

rank affects feeding and drinking behaviour. Bolletino di Zool. 57, 55–58.

141

https://doi.org/10.1080/11250009009355674

Ding, R., Yang, M., Wang, X., Quan, J., Zhuang, Z., Zhou, S., Li, S., Xu, Z., Zheng, E., Cai, G.,

Liu, D., Huang, W., Yang, J., Wu, Z., 2018. Genetic architecture of feeding behavior and

feed efficiency in a Duroc pig population. Front. Genet. 9, 1–11.

https://doi.org/10.3389/fgene.2018.00220

Fernandes, A.F.A., Dórea, J.R.R., Valente, B.D., Fitzgerald, R., Herring, W., Rosa, G.J.M.,

2020. Comparison of data analytics strategies in computer vision systems to predict pig

body composition traits from 3D images. J. Anim. Sci. 98, skaa250.

https://doi.org/10.1093/jas/skaa250

Forsyth, D., Ponce, J., 2011. Computer vision: A modern approach. Prentice hall.

Georgsson, L., Svendsen, J., 2002. Degree of competition at feeding differentially affects

behavior and performance of group-housed growing-finishing pigs of different relative

weights. J. Anim. Sci. 80, 376–383. https://doi.org/10.2527/2002.802376x

Gómez, Y., Stygar, A.H., Boumans, I.J.M.M., Bokkers, E.A.M., Pedersen, L.J., Niemi, J.K.,

Pastell, M., Manteca, X., Llonch, P., 2021. A Systematic Review on Validated Precision

Livestock Farming Technologies for Pig Production and Its Potential to Assess Animal

Welfare. Front. Vet. Sci. 8, 1–20. https://doi.org/10.3389/fvets.2021.660565

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. Cambridge, Massachusetts : The

MIT Press.

Han, J., Gondro, C., Reid, K., Steibel, J.P., 2021. Heuristic hyperparameter optimization of deep

learning models for genomic prediction. G3 Genes|Genomes|Genetics 11.

https://doi.org/10.1093/g3journal/jkab032

Han, J., Moraga, C., 1995. The influence of the sigmoid function parameters on the speed of

backpropagation learning, in: International Workshop on Artificial Neural Networks.

Springer, pp. 195–201.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition, in:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp.

770–778.

Hochreiter, S., 1997. Long Short-Term Memory 1780, 1735–1780.

Hossain, M.S., Betts, J.M., Paplinski, A.P., 2021. Dual Focal Loss to address class imbalance in

semantic segmentation. Neurocomputing 462, 69–87.

https://doi.org/10.1016/j.neucom.2021.07.055

Ji, J., Cao, K., Niebles, J.C., 2019. Learning temporal action proposals with fewer labels. Proc.

IEEE Int. Conf. Comput. Vis. 2019-Octob, 7072–7081.

https://doi.org/10.1109/ICCV.2019.00717

142

Kim, T., Lee, H., Cho, M.A., Lee, H.S., Cho, D.H., Lee, S., 2020. Learning Temporally Invariant

and Localizable Features via Data Augmentation for Video Recognition. Lect. Notes

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 12536

LNCS, 386–403. https://doi.org/10.1007/978-3-030-66096-3_27

LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech, and time series.

Handb. brain theory neural networks 3361, 1995.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature.

https://doi.org/10.1038/nature14539

Li, D., Chen, Y., Zhang, K., Li, Z., 2019. Mounting behaviour recognition for pigs based on deep

learning. Sensors (Switzerland) 19. https://doi.org/10.3390/s19224924

Li, D., Zhang, K., Li, Z., Chen, Y., 2020. A spatiotemporal convolutional network for multi-

behavior recognition of pigs. Sensors (Switzerland) 20. https://doi.org/10.3390/s20082381

Li, G., Huang, Y., Chen, Z., Chesser, G.D., Purswell, J.L., Linhoss, J., Zhao, Y., 2021. Practices

and applications of convolutional neural network-based computer vision systems in animal

farming: A review. Sensors 21, 1–42. https://doi.org/10.3390/s21041492

Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollár, P., 2017. Focal loss for dense object detection,

in: Proceedings of the IEEE International Conference on Computer Vision. pp. 2980–2988.

Liu, D., Oczak, M., Maschat, K., Baumgartner, J., Pletzer, B., He, D., Norton, T., 2020. A

computer vision-based method for spatial-temporal action recognition of tail-biting

behaviour in group-housed pigs. Biosyst. Eng. 195, 27–41.

https://doi.org/10.1016/j.biosystemseng.2020.04.007

Liu, W., Chen, L., Chen, Y., 2018. Age Classification Using Convolutional Neural Networks

with the Multi-class Focal Loss. IOP Conf. Ser. Mater. Sci. Eng. 428.

https://doi.org/10.1088/1757-899X/428/1/012043

Lopez-Del Rio, A., Nonell-Canals, A., Vidal, D., Perera-Lluna, A., 2019. Evaluation of Cross-

Validation Strategies in Sequence-Based Binding Prediction Using Deep Learning. J.

Chem. Inf. Model. 59, 1645–1657. https://doi.org/10.1021/acs.jcim.8b00663

Luo, G., 2016. A review of automatic selection methods for machine learning algorithms and

hyper-parameter values. Netw. Model. Anal. Heal. Informatics Bioinforma. 5, 1–15.

https://doi.org/10.1007/s13721-016-0125-6

Machado, S.P., Caldara, F.R., Foppa, L., De Moura, R., Gonçalves, L.M.P., Garcia, R.G., De

Alencar Nääs, I., Dos Santos Nieto, V.M.O., De Oliveira, G.F., 2017. Behavior of pigs

reared in enriched environment: Alternatives to extend pigs attention. PLoS One 12, 1–18.

https://doi.org/10.1371/journal.pone.0168427

Martínez-Avilés, M., Fernández-Carrión, E., López García-Baones, J.M., Sánchez-Vizcaíno,

J.M., 2017. Early Detection of Infection in Pigs through an Online Monitoring System.

143

Transbound. Emerg. Dis. 64, 364–373. https://doi.org/10.1111/tbed.12372

Nasirahmadi, A., Sturm, B., Edwards, S., Jeppsson, K.H., Olsson, A.C., Müller, S., Hensel, O.,

2019. Deep learning and machine vision approaches for posture detection of individual pigs.

Sensors (Switzerland) 19, 1–16. https://doi.org/10.3390/s19173738

Nielsen, B.L., Lawrence, A.B., Whittemore, C.T., 1995. Effect of group size on feeding

behaviour, social behaviour, and performance of growing pigs using single-space feeders.

Anim. Sci. 61, 575–579. https://doi.org/10.1017/S1357729800014168

Oksuz, I., Clough, J.R., Schnabel, J.A., 2019. Artefact detection in video endoscopy using

retinanet and focal loss function, in: CEUR Workshop Proceedings. CEUR-WS.

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S.,

Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F.,

Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,

hierarchical, or phylogenetic structure. Ecography (Cop.). 40, 913–929.

https://doi.org/10.1111/ecog.02881

Rodenburg, T.B., Turner, S.P., 2012. The role of breeding and genetics in the welfare of farm

animals. Anim. Front. 2, 16–21. https://doi.org/10.2527/af.2012-0044

Salgado, H.H., Méthot, S., Remus, A., Létourneau-Montminy, M.P., Pomar, C., 2021. A novel

feeding behavior index integrating several components of the feeding behavior of finishing

pigs. Animal 15, 100251. https://doi.org/10.1016/j.animal.2021.100251

Saurabh, N., 2021. LSTM -RNN Model to Predict Future Stock Prices using an Efficient

Optimizer LSTM -RNN Model to Predict Future Stock Prices using an Efficient Optimizer

672–677.

Schuster, M., Paliwal, K.K., 1997. Bidirectional recurrent neural networks. IEEE Trans. Signal

Process. 45, 2673–2681. https://doi.org/10.1109/78.650093

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image

recognition. arXiv Prepr. arXiv1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,

Rabinovich, A., 2015. Going deeper with convolutions, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition. pp. 1–9.

Talo, M., 2019. Convolutional Neural Networks for Multi-class Histopathology Image

Classification.

Torrey, L., Shavlik, J., 2010. Transfer learning, in: Handbook of Research on Machine Learning

Applications and Trends: Algorithms, Methods, and Techniques. IGI global, pp. 242–264.

Ullah, A., Ahmad, J., Muhammad, K., Sajjad, M., Baik, S.W., 2017. Action Recognition in

Video Sequences using Deep Bi-Directional LSTM with CNN Features. IEEE Access 6,

144

1155–1166. https://doi.org/10.1109/ACCESS.2017.2778011

Wu, D., Wang, Y., Han, M., Song, L., Shang, Y., Zhang, X., Song, H., 2021. Using a CNN-

LSTM for basic behaviors detection of a single dairy cow in a complex environment.

Comput. Electron. Agric. 182, 106016. https://doi.org/10.1016/j.compag.2021.106016

Xiao, H., Wang, C., Li, Z., Wang, R., Bo, C., Sotelo, M.A., Xu, Y., 2020. UB-LSTM: A

Trajectory Prediction Method Combined with Vehicle Behavior Recognition. J. Adv.

Transp. 2020. https://doi.org/10.1155/2020/8859689

Yin, X., Wu, D., Shang, Y., Jiang, B., Song, H., 2020. Using an EfficientNet-LSTM for the

recognition of single Cow’s motion behaviours in a complicated environment. Comput.

Electron. Agric. 177, 105707. https://doi.org/10.1016/j.compag.2020.105707

Yun, S., Oh, S.J., Heo, B., Han, D., Kim, J., 2020. VideoMix: Rethinking Data Augmentation for

Video Classification.

Zhang, K., Li, D., Huang, J., Chen, Y., 2020. Automated video behavior recognition of pigs

using two-stream convolutional networks. Sensors (Switzerland) 20.

https://doi.org/10.3390/s20041085

Zhang, Z., Sabuncu, M.R., 2018. Generalized cross entropy loss for training deep neural

networks with noisy labels. Adv. Neural Inf. Process. Syst. 2018-Decem, 8778–8788.

Zhou, Y., Hu, Q., Wang, Y., 2018. Deep super-class learning for long-tail distributed image

classification. Pattern Recognit. 80, 118–128. https://doi.org/10.1016/j.patcog.2018.03.003

145

CHAPTER 5: ANALYSIS OF SOCIAL INTERACTIONS IN GROUP-HOUSED ANIMALS

USING DYADIC LINEAR MODELS

Junjie Han, Janice Siegford, Gustavo de los Campos, Robert J. Tempelman, Cedric Gondro, and

Juan P. Steibel

1. ABSTRACT

Understanding factors affecting social interactions among animals is important for

applied animal behavior research. Thus, there is a need to elicit statistical models to analyze data

collected from pairwise behavioral interactions. In this study, we propose treating social

interaction data as dyadic observations and propose a statistical model for their analysis. We

performed posterior predictive checks of the model through different validation strategies:

stratified 5-fold random cross-validation, block-by-social-group cross-validation, and block-by-

focal-animals validation. The proposed model was applied to a pig behavior dataset collected

from 797 growing pigs freshly remixed into 59 social groups that resulted in 10,032 records of

directional dyadic interactions. The response variable was the duration in seconds that each

animal spent delivering attacks on another group mate. Generalized linear mixed models were

fitted. Fixed effects included sex, individual weight, prior nursery mate experience, and prior

littermate experience of the two pigs in the dyad. Random effects included aggression giver,

aggression receiver, dyad, and social group. A Bayesian framework was utilized for parameter

estimation and posterior predictive model checking. Prior nursery mate experience was the only

significant fixed effect. In addition, a weak but significant correlation between the random giver

effect and the random receiver effect was obtained when analyzing the attacking duration. The

predictive performance of the model varied depending on the validation strategy, with

substantially lower performance from the block-by-social-group strategy than other validation

146

strategies. Collectively, this paper demonstrates a statistical model to analyze interactive animal

behaviors, particularly dyadic interactions.

2. INTRODUCTION

The study of social interactions is of paramount importance in applied animal behavior

research (Rodenburg et al., 2010; Silk et al., 2018). Researchers are interested in elucidating the

basis for the observed variation in the intensity and frequency of interactions among pairs of

individuals that are part of a social group. Some of the applications of such study include mate

choice (Andersson and Simmons, 2006; Bierbach et al., 2013), aggression and other damaging

behaviors (Angarita et al., 2019; Oczak et al., 2013; Peden et al., 2018), and competition for

access to feeding space (Angarita et al., 2021; Lu et al., 2017), etc. Thus, given data on pairwise

behavioral interactions recorded from an experimental or observational study, it is necessary to

quantify the effects of various individual- and group-level factors on social interactions.

Data from pairwise social interactions are considered dyadic (Kenny et al., 2020). This is,

the unit of observation is not the individual, but a pair of individuals. In general, dyadic

interaction data can be arranged in square matrices. It can be further re-arranged in the form of a

response vector, which is generally accomplished in two different ways (Figure 5.1): a) The data

are summed row-wise/column-wise to represent an individual level-observation (total duration

that each animal is engaged in a particular behavior regardless of whom the animal interacted

with), or b) the matrix elements are stacked keeping intact their dyadic nature. In the first case,

there is loss of information, and it should be avoided if the aim is to study the dyadic nature of

social interactions. In the second case, however, it is of utmost importance that all sources of

variations are modeled to properly account for group means, variances and covariances between

147

subsets of the data; otherwise, if important factors are ignored, this can adversely affect estimates

and predictions.

Figure 5.1 Panel a), directional dyadic interaction intensity matrix (elements in the matrix

represent attacking duration); row sums and column sums are shown in the margins of the matrix.

Panel b), a truncated long-format table that is re-arranged from the interaction matrix; each row

represents a record that is the attacking duration in seconds from a giver animal to a receiver animal.

0.00 means observed zero while 0 means structural zero that we do not consider as an actual

interaction.

A proper way to model dyadic data is to fit generalized linear mixed models (GLMM)

that include fixed and random effects to account for means and covariances depending on the

actual design of the experiment (Kenny et al., 2020). In this study we describe how GLMM can

be used to analyze dyadic data and illustrate how to use this approach to analyze a pig behavior

dataset. First, we defined the type of social interaction data and how to properly model variation

in the response using GLMM. Second, we applied the proposed GLMM to the experimental data

and illustrated how to elicit, fit, and check the models and how to interpret the results. Finally,

we performed posterior predictive checks of the models through several validation strategies.

The GLMM presented in this paper can be used by applied animal behaviorists to analyze other

pairwise social interaction data to obtain statistically valid and biologically meaningful results,

148

which can be helpful to understand interactive behaviors of animals for practical purposes of

management or improved welfare.

3. METHODS AND MATERIALS

3.1 Data from social interactions should be analyzed as dyadic data

For a social interaction to occur, at least two animals need to be involved. Although

behavioral interactions may involve more than two animals at a time, in this paper we assume

that the data on social interactions is obtained through observations of pairwise/dyadic behaviors

and that it can be arranged in an interaction matrix (Figure 5.1a).

The data may be obtained within a single large social group, in which all the potential

pairwise interactions have been monitored and quantified. Alternatively, the dyadic data can be

collected from several social groups of variable sizes, within which all potential pairwise

interactions have been monitored and quantified, but no between-group relations are possible.

We also assume that in addition to the social interactions per se other variables have been

observed. These variables may be individual-specific or dyad-specific. Examples of individual-

specific variables are those related to each individual’s age, sex, size, and past life experiences

(e.g., early-life social or nutritional stress) and they can be continuous, discrete or categorical in

nature. Dyad-level variables are those that only pertain to the pair of individuals. For instance, a

dyad-level variable can be described as whether they have met each other before the interaction

is observed. It is important to notice that sometimes individual-level variables may be coded as

dyad specific, for instance, the difference in live weight between two animals can be viewed as a

dyadic-level observation, but in fact it arises from a linear combination of two individual-level

variables. In that case, we prefer to keep individual level observations separate.

149

3.1.1 Social interaction data

Social interaction data can be of different types. From a mathematical point of view, the

social interactions could be represented by a binary outcome (0/1=it occurred/it did not occur),

by a discrete outcome (frequency of occurrence of an interaction), by an ordinal outcome

(intensity or severity of interaction on an arbitrary scale), or by a continuous outcome (intensity

of the interaction on a continuous scale, duration of the interaction, etc.). The practical

implications of the different types of responses pertain to the statistical distribution that is used to

model the stochasticity in social interaction data.

From the point of view of the directionality of the behavior, in most cases, we can assume

that the behavior is directional i.e., there is a giver and a receiver. For instance, in the study of

animal aggression, in many cases there is a clear attacker and a victim. In studies of feather

pecking in group-caged chickens (Savory and Mann, 1997) and tail-biting in group-housed pigs

(Angarita et al., 2019; Wurtz et al., 2017), there was one animal that was delivering the behavior

(we will call this animal the giver animal) and another one which was clearly receiving the

behavior (the receiver). In the following subsections we lay out these concepts with the

directional interaction data, and we summarize the model parameterization in a generalized form.

3.1.2 Analysis of dyadic data from directional social interactions

When the social interactions are directional, the data collected from each social group can

be arranged in a matrix as represented in Figure 5.1a. If there are n animals in a certain group,

n(n-1) interactions will be observed within the group. We assume that there is no measurement

error implying that if an interaction was recorded then this interaction did indeed happen as

recorded, and, perhaps more relevant, that a zero entry in the matrix implies that no interaction

occurred for this specific dyad.

150

In the analysis of dyadic interaction, the model is necessarily componential, where the

interaction consists of three major components: a main effect of the giver (giver effect), a main

effect of the receiver (receiver effect), and the relation of the two individuals that is independent

of the giver and receiver effects, referred to as the dyad (Back and Kenny, 2010; Kenny et al.,

2006).

3.2 Experimental data analysis: attacking time in group-housed pigs

3.2.1 Experiment setup

In this study, the experimental data was collected from 797 Yorkshire pigs (409 gilts and

388 barrows) that were strategically mixed into 59 single-sex social groups and housed in grow-

finish pens with 10-15 pigs per pen. In terms of prior social acquaintances, each social group

included pairs or trios of animals that had shared a common nursery pen for seven weeks

immediately before moving into the grow-finish pens. Prior social acquaintances also existed for

some animals that had shared the same litter after farrowing (10 weeks before mixed into the

grow-finish pens; these pigs were previously housed together as a litter before weaning). No

prior social acquaintance was assumed to exist for animals that were housed together for the first

time after being mixed into the grow-finish pens. At the beginning of the experiment the average

weight of the animals was 27.09 kg (SD±4.07). The experiment has been described in detail in

previous studies (Angarita et al., 2019; Wurtz et al., 2017).

Pigs were video recorded five hours after mixing and four hours on the following

morning (no overnight recording was performed). Videos were decoded manually by trained

observers who recorded all attacks, their duration, and the identity of giver and receiver. After

decoding, the total amount of time for each dyadic interaction was computed as described by

Angarita et al. (2019). The directional aggression duration 𝑦𝑖𝑗𝑘 was defined as the total time in

151

seconds that animal 𝑖 spent attacking another group mate animal 𝑗 within social group 𝑘 during

the 9-hour post-mixing period. The final dataset contained 10,032 records consisting of total

attacking duration for all possible dyads. Among those records, 1,100 pairs of animals (2,200

records) shared the same nursery pen prior to being remixed into the grow-finish pens, and 367

pairs of animals (734 records) were from the same litter.

3.2.2 Analysis model

After extensive model assessment and comparison, a hurdle Bernoulli-lognormal model

was adopted. To keep things simple, in this paper it was assumed that a positive continuous

response could be adequately modeled using a lognormal distribution and that a Bernoulli

distribution could model the response when it is zero. However, the general principles presented

here can be easily extended to other types of distributions as mentioned in the discussion. Thus,

in this application, there are two sub-models (Equation 5.1). One sub-model estimates the

probability of observing a zero (no attacks) while the other sub-model represents the duration of

attacks conditional on its occurrence:

{
𝑦𝑖𝑗𝑘 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃𝑖𝑗𝑘) 𝑖𝑓 𝑦𝑖𝑗𝑘 =

𝑦𝑖𝑗𝑘 ~ 𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑖𝑗𝑘 𝜎
2) 𝑖𝑓 𝑦𝑖𝑗𝑘 >

 [5.1]

where, 𝑦𝑖𝑗𝑘 is the total duration of the behavioral interactions between animal i and animal j in

social group k (in 𝑦𝑖𝑗𝑘, the first subindex corresponds to the aggression giver, the second

subindex corresponds to the aggression receiver, and the third subindex indicates the social

group), 𝜃𝑖𝑗𝑘 is the expected probability of the total attacking duration being zero for animals i

and j in social group k. Further, 𝜇𝑖𝑗𝑘 is the expected value (mean) of natural logarithm of 𝑦𝑖𝑗𝑘,

and 𝜎2 is the variance of natural logarithm of 𝑦𝑖𝑗𝑘.

152

The transformed 𝜃𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘 have linear relationships with the explanatory variables

(Equation 5.2):

{
𝑙𝑜𝑔 (

𝜃𝑖𝑗𝑘

1−𝜃𝑖𝑗𝑘
) = 𝜇′𝑖𝑗𝑘 = 𝑏′0 + 𝐹𝐸′𝑖𝑗𝑘 + 𝑔′

𝑖
+ 𝑟′𝑗 + 𝑑′𝑖𝑗 + 𝑠𝑔′𝑘 𝑖𝑓 𝑦𝑖𝑗𝑘 =

𝜇𝑖𝑗𝑘 = 𝑏0 + 𝐹𝐸𝑖𝑗𝑘 + 𝑔𝑖 + 𝑟𝑗 + 𝑑𝑖𝑗 + 𝑠𝑔𝑘 𝑖𝑓 𝑦𝑖𝑗𝑘 >
 [5.2]

where 𝜇′𝑖𝑗𝑘 and 𝜇𝑖𝑗𝑘 are expected values (mean) on an underlying linked scale that can be

modeled as linear combinations of individual-level and dyad-level systematic effects (described

below), 𝑏′0 and 𝑏0 are overall intercepts. Note that 𝑏′0, 𝐹𝐸′𝑖𝑗𝑘, 𝑔′
𝑖
, 𝑟′𝑗, 𝑑′𝑖𝑗, and 𝑠𝑔′𝑘 (notations

with the superscript) represent effects to model the probability of presenting no attacks while 𝑏0,

𝐹𝐸𝑖𝑗𝑘, 𝑔𝑖, 𝑟𝑗, 𝑑𝑖𝑗, and 𝑠𝑔𝑘 (effects without the superscripts) model the attacking duration if the

attack occurred. 𝑑′𝑖𝑗𝑘~𝑁(𝜎′𝑑
2) and 𝑑𝑖𝑗𝑘~𝑁(𝜎𝑑

2) represent random dyad effects.

𝑠𝑔′𝑘~𝑁(𝜎′𝑠𝑔
2) and 𝑠𝑔𝑘~𝑁(𝜎𝑠𝑔

2) are random social group effects. The parameters 𝑔′𝑖, 𝑔𝑖,

𝑟′𝑗, and 𝑟𝑗 are explained in the following section. Further, the fixed effects (overall means) 𝐹𝐸′𝑖𝑗𝑘

and 𝐹𝐸𝑖𝑗𝑘 in Equation 5.2 are defined as:

{
𝐹𝐸′𝑖𝑗𝑘 = 𝑠𝑒𝑥′𝑘 + 𝛼′𝑥𝑗𝑘 + 𝛽′𝑤𝑖𝑘 + 𝛿′1𝑧𝑖𝑗𝑘

1 + 𝛿′2𝑧𝑖𝑗𝑘
2 𝑖𝑓 𝑦𝑖𝑗𝑘 =

𝐹𝐸𝑖𝑗𝑘 = 𝑠𝑒𝑥𝑘 + 𝛼𝑥𝑗𝑘 + 𝛽𝑤𝑖𝑘 + 𝛿1𝑧𝑖𝑗𝑘
1 + 𝛿2𝑧𝑖𝑗𝑘

2 𝑖𝑓 𝑦𝑖𝑗𝑘 >
 [5.3]

where 𝑠𝑒𝑥′𝑘 and 𝑠𝑒𝑥𝑘 are sex effects in social group 𝑘, 𝑥𝑗𝑘 is the (within-group) centered weight

of the receiver animal 𝑗 from social group 𝑘, 𝑤𝑖𝑘 indicates the (within-group) centered weight of

the giver animal 𝑖 from social group 𝑘, 𝑧𝑖𝑗𝑘
1 represents whether animal 𝑖 and animal 𝑗 from social

group 𝑘 shared the same nursery group previously (𝑧𝑖𝑗𝑘
1 = if they did not; otherwise, 𝑧𝑖𝑗𝑘

1 =),

and 𝑧𝑖𝑗𝑘
2 indicates whether animal 𝑖 and animal 𝑗 from social group 𝑘 were previously housed

together in the same litter before weaning (𝑧𝑖𝑗𝑘
2 = if they were not; otherwise, 𝑧𝑖𝑗𝑘

2 =).

Finally, 𝛼′, 𝛼, 𝛽′, 𝛽, 𝛿′1, 𝛿1, 𝛿′2, and 𝛿2 denote the corresponding coefficients of the exploratory

153

variables. Without losing generality, we illustrate a linear model where the response can be

simply decomposed into giver effects, receiver effects, and dyad-specific effects in Figure 5.2.

Figure 5.2 Illustration of a dyadic interaction model as an example that partitions the response

into giver effects, receiver effects, and dyad-specific effects. Blue lines/arrows mean fixed effects,

and red represents random effects, e stands for the residual term.

3.2.3 Modeling of (co)variances

Under the model in Equation 2, effects of the giver and the receiver are modeled for each

animal. Those two effects covary, assuming:

(
𝑔′𝑗
𝑟′𝑗

)~𝑁 ((

) (

𝜎′𝑔
2 𝜎′𝑔𝑟

𝜎′𝑔𝑟 𝜎′𝑟
2)) [4]

(
𝑔𝑗
𝑟𝑗
)~𝑁((

) (

𝜎𝑔
2 𝜎𝑔𝑟

𝜎𝑔𝑟 𝜎𝑟
2)) [5]

where 𝜎′𝑔𝑟 and 𝜎𝑔𝑟 represent the covariance between the receiver and the giver effects of the

same animal. Moreover, 𝜎′𝑔𝑟 or 𝜎𝑔𝑟 could take negative values. For example, 𝜎𝑔𝑟 < if an

154

animal spends more time attacking other animals but receives less aggression (in terms of

duration) from other animals. Contrarily, 𝜎𝑔𝑟 will be positive in those cases where animals that

deliver more aggression also receive more aggression from other animals. A similar analysis

could be done for 𝜎′𝑔𝑟 but related to the probability of not delivering attacks. The magnitude and

sign of these parameters are of importance to behaviorists.

We also derive the estimated giver-receiver correlation as this is easily interpretable to

applied scientists:

𝜌′𝑔𝑟 =
𝜎′𝑔𝑟

𝜎′𝑔𝜎′𝑟
 , 𝜌𝑔𝑟 =

𝜎𝑔𝑟

𝜎𝑔𝜎𝑟
 [6]

The relative magnitude of 𝜎′𝑔
2 𝜎′𝑟

2, 𝜎𝑔
2 and 𝜎𝑟

2 are also important. A relatively small value

for a specific source of variation means that the process is mostly driven by other random

sources.

3.2.4 Estimation

For statistical analysis, the model represented in Equations [1-3] could be fitted using

restricted maximum likelihood or using Bayesian methods. We chose to use a Bayesian approach

(Box and Tiao, 2011). Details for the implementation of model fitting are provided in Appendix.

In the companion GitHub (https://github.com/jun-jieh/DyadAnalysis) we provide examples for

implementation. A total of 4,000 Markov chain Monte Carlo (MCMC) samples were generated

for parameter estimates. The parameter 𝜃 for a fixed effect given the observed data 𝑦 was

considered significant (𝑃<0.05) if

 −𝑚𝑎𝑥 (𝑝(𝜃 < |𝑦) 𝑝(𝜃 > |𝑦)) < 0.05 [7]

where 𝑝(𝜃 < |𝑦) means that the probability of the parameter 𝜃 is smaller than zero while

𝑝(𝜃 > |𝑦) represents the probability of 𝜃 being larger than zero, and the function max() returns

https://github.com/jun-jieh/DyadAnalysis

155

the maximum value of the two elements. In practice, these probabilities are estimated based on

the relative frequencies obtained from the MCMC samples.

3.2.5 Validation strategies and posterior predictive checks: how well does the model fit the

data?

Posterior predictive checking is an important part of model evaluation. For this checking,

new data are simulated conditional on the fitted model and their distribution is compared to

observed data (Gabry et al., 2019). Moreover, this posterior predictive checking can be done with

internal validation (all the data are used for model fitting and for validation) or using external

validations (also known as out-of-sample or hold-out validations) (Vehtari et al., 2017; Vehtari

and Ojanen, 2012), where the data are split into a training set (used for model fitting) and a

validation set (used for the validation/checking). In the case of external validation, the way data

are split is very important. Specifically, we split the entire dataset into a training set and a

validation set using three different strategies:

1. A stratified 5-fold cross-validation (Vehtari and Ojanen, 2012) was used where in each

fold, a random subset of each social group (80% of the data) was utilized for model training,

while the remaining records were for testing purpose. It maintains the same social group ratio

throughout the five folds as the ratio in the original (entire) dataset.

2. A block-by-social-group (5-fold) cross-validation was performed. In each fold, all

records from randomly selected social groups that make up approximately 80% of the entire data

were pooled and used for training purpose, while the remaining (validation data comprising 20%

of the observations) set was from the left-out social groups that were not part of the training data.

3. A block-by-focal-animals validation was proposed and run for five replicates. In this

validation scenario, we selected seven animals from each group and used all their aggression

156

records as both aggression givers and aggression receivers for the training set. The validation set

contained only interactions between non-focal animals. This resembles a common way in which

videos could be decoded; only some animals are followed and all their interactions with

everyone else are decoded. Furthermore, by selecting seven focal animals per group, the

resulting training set size was 78% of the entire data, while the remaining data (approximately

22% of all records) was used for testing. This led to a similar set size for comparison to the other

two model checking strategies.

In each validation strategy, the model was fitted five times (for the five folds or

replicates), and as part of the Bayesian model fit procedure, 500 MCMC samples were generated

from the posterior predictive density. The posterior distribution of the generated samples was

compared to the distribution of the observed dataset, where the response variables were

transformed into a logarithm scale. To evaluate the predictive performance, Pearson correlation

and root mean square error (RMSE) (Chai and Draxler, 2014) between the log-transformed

(observed) response i.e. log(response+1) and the mean of log-transformed predicted response

(linear predictors in Equation 2) in the validation set was computed across all validation

scenarios. In addition, area under the ROC (Receiver Operating Characteristics) curve (Ling et

al., 2003), also known as AUC, was computed to evaluate performance on the prediction of

attack presence/absence.

3.3 Ethical approval

All animal protocols were approved by the Institutional Animal Care and Use Committee

(Animal Use Form number 01/14-003-00).

157

4. RESULTS

4.1 Estimation of animal-specific effects, dyad-specific effects, and (co)variance components

Table 5.1 shows the posterior distributions of the individual animal effects and dyadic

effects. The random dyad effect was not estimable (the model including the dyad effect did not

converge; see Appendix for details). The nursery mate experience (animals in a dyad knew each

other from sharing the same nursery pen prior to being remixed into grow-finish pens) exhibited

significant effects, reducing the probability of presenting attacks and, if attacks happened,

reducing duration of them (𝛿′1 = .5 5 𝑃 < . 5; and 𝛿1 = − .5 𝑃 < . 5; Table 5.1). The

estimates indicated that for the dyads where the pigs had nursery mate experience, we would

expect to see 65.7% increase of the odds of presenting no attacks; on the other hand, if the dyad

did present attacks, pigs with nursery mate experience exhibited a 39.4% decrease in attacking

duration. This means that if animal 𝑖 and animal 𝑗 were housed in the same nursery pen

previously and then are remixed into a grow-finish pen, as might be expected under production

conditions, they are less likely to attack each other and if they do attack each other, the length of

attacking duration will be significantly shorter than the average attacking time of two animals

who had not recently been housed together. The remaining animal-specific properties (weight of

giver, weight of receiver, and sex) and dyad-specific attributes (whether the giver and the

receiver were from the same litter) were not significant.

The giver-receiver correlation was not significant for the Bernoulli sub-model (when

estimating the probability of animal 𝑖 not presenting attacks to animal 𝑗; Table 5.1). On the other

hand, a weak but significant correlation was obtained in the lognormal sub-model to analyze the

attacking duration (𝜌𝑔𝑟 = . 𝑃 < . 5). This means that when one pig spends more time

delivering aggression this same pig will also receive longer attacks.

158

Table 5.1 Estimated posterior statistics for fixed effects and (co)variance components explained

on total attacking duration between the giver animal and the receiver animal. Q: quantile.

4.2 Predictive performance in different validation strategies

We assessed the fitted model through posterior predictive model checks by inspecting

two important aspects of: 1) how well it predicted the probability of not having an attack, and 2)

how well it predicted the mean duration of the attacks when they occur.

Figure 5.3 presents the posterior predictive distribution of the probability of observing no

attacks between animals (relative frequency of zeros). The distribution of the proportion of

predicted zeros across multiple replicates of simulated data (lighter bins in Figure 5.3) was

centered around the proportion of zeros in the observed response (dark solid lines in Figure 5.3).

That is, regardless of training-testing data partitions, the estimated validation proportion fell well

within the posterior predictive density in all validation strategies.

 𝑦𝑖𝑗𝑘 = 𝑦𝑖𝑗𝑘 >

Parameter Mean Q 2.5% Q 50% Q 97.5% Mean Q 2.5% Q 50% Q 97.5%

𝑠𝑒𝑥′ 𝑠𝑒𝑥 -0.083 -0.483 -0.085 0.312 -0.039 -0.162 -0.038 0.085

𝛼′ 𝛼 Receiver weight 0.001 -0.011 0.001 0.013 -0.001 -0.008 -0.001 0.006

𝛽′ 𝛽 Giver weight -0.008 -0.027 -0.008 0.012 -0.007 -0.017 -0.007 0.003

𝜹′𝟏 𝜹𝟏 Nursery mate 0.505 0.392 0.504 0.618 -0.501 -0.573 -0.501 -0.424

𝛿′2 𝛿2 Litter mate -0.170 -0.357 -0.171 0.015 -0.023 -0.139 -0.023 0.087

𝜎′𝑔
2 𝜎𝑔

2 Giver variance 1.050 0.737 1.035 1.443 0.063 0.044 0.062 0.089

𝜎′𝑟
2 𝜎𝑟

2 Receiver variance 0.023 0.008 0.021 0.045 0.002 0.001 0.002 0.005

𝜌′𝑔𝑟 𝝆𝒈𝒓 Giver-receiver correlation 0.155 -0.015 0.155 0.328 0.203 0.009 0.202 0.397

𝜎′𝑠𝑔
2 𝜎𝑠𝑔

2 Social group variance 0.473 0.282 0.460 0.735 0.020 0.001 0.019 0.052

𝜎2 Error variance - - - - 1.076 1.031 1.075 1.123

159

Figure 5.3 Proportion of zeros of validation set y (dark lines), with proportions of zeros for 500

simulated datasets �̃� drawn from the posterior predictive distribution (lighter bins). A), the model

that used all data points for model training to predict the same dataset; B) 5-fold cross-validation;

C) Block-by-social-group cross-validation; D) 5 replicates of block-by-focal-animal validation.

For each of the validation strategies, Figure 5.4 shows the distribution for the means of

the simulated data (light bins) and the observed data (dark solid line). The response variables

were transformed into a logarithm scale i.e., log(response+1). In general, the simulated data were

consistent with the observed data (no systematic lack-of-fit was observed). However, in the

internal validation and block-by-focal-animals validation, the mean duration of attacks was better

approximated compared to when the stratified 5-fold and block-by-social-group cross-validation

approaches were used.

160

Figure 5.4 Distribution for the mean value of all observations across replicates. Mean of the

validation set y (dark solid line) is compared with the means of 500 simulated datasets ỹ drawn

from the posterior predictive distribution (lighter bins). We compared the logarithm of the

observed and the simulated variables i.e. log(y+1) and log(�̃� +1). A), the model that used all data

points for model training to predict the same dataset; B) 5-fold cross-validation; C) Block-by-

social-group cross-validation; D) 5 replicates of block-by-focal-animal validation.

Correlation and RMSE of the log-transformed response and AUC for the prediction of

presence/absence of attacks in the validation set were computed across all validation scenarios

(Table 5.2). The metrics allow for comparison between different validation strategies. Compared

to the internal validation (i.e., all the data were used for model fitting and for validation), the

predictive performance of the stratified 5-fold cross-validation, block-by-social-group cross-

validation, and block-by-focal-animals validation showed much lower correlation and AUC, and

larger RMSE (Table 5.2). Notably, the predictive performance in block-by-social-group

validation was consistently worse than that of the other validation strategies.

Table 5.2 Metrics for evaluating predictive performance of the model under different

validation strategies. AUC, area under ROC (Receiver Operating Characteristics) curve;

RMSE, root mean square error; CV, cross-validation.
 Pearson correlation AUC RMSE

In-sample validation 0.595 0.826 1.173

Stratified 5-fold CV 0.227 (SD±0.014) 0.653 (SD±0.017) 1.391 (SD±0.020)

Block-by-social-group CV 0.115 (SD±0.023) 0.523 (SD±0.017) 1.422 (SD±0.023)

Block-by-focal-animals validation 0.286 (SD±0.020) 0.532 (SD±0.013) 1.362 (SD±0.014)

161

5. DISCUSSION

In this study, we have illustrated how to use GLMMs to analyze dyadic data from animal

behavior studies that record interactions between animals in social groups. Through changing

distributional assumptions and link functions, this approach can be easily adapted to analyses of

categorical, ordinal, count, and continuous response types. Instead of modeling an individual

animal’s response, the proposed model exhibits advantages of analyzing interactive behaviors of

pairs of animals in terms of flexibility and interpretability. Furthermore, the inclusion of random

and fixed effects specific to each giver, receiver, and dyad (when possible) contributes to

partitioning the observed variance into interpretable components.

Several approaches have been used in the analysis of animal behavioral interactions. A

commonly used approach ignores the dyadic nature of the data and sums over rows or columns

of an interaction matrix to simply obtain total time spent by each individual engaged in the

behavior of interest (Figure 5.1a). Following this summation, linear models are used to study

several sources of individual-level effects on the behavior of interest. We call this a ‘marginal

analysis’ as it operates on the margin of the interaction matrix. For example, Savory and Mann

(1997) studied the effects of genetic strain, age, and feeding pattern on aggressive pecking

behavior of pullets, where for each individual the proportion of the aggressive behavior was

computed (i.e., the total time of aggression was summed and divided by the length of observation

period). Similarly, in two other studies (Turner et al., 2009, 2008), the authors recorded and

treated the total duration of nonreciprocal aggression delivered and received by each individual

pig as response variables, and they fitted linear mixed models to estimate additive genetic effects

on the marginal response. In addition, Verdon et al. (2018) studied aggressive behavior of sows

where the unit of analysis was a group of sows. They counted the frequency of aggressive

162

interactions from all possible pairs of animals within each group and fitted generalized mixed

models to analyze the marginal response. A shortcoming of these analyses is that the effect of

dyadic factors cannot be investigated. The proposed approach of this study allows the inclusion

of both animal-level effects (marginal effects) as well as dyadic effects relevant to that particular

pair of animals. For instance, we can add previous group- or littermate experience into the model

for each dyad. In addition, genetics/genomics information of the giver and the receiver, as well

as their genetic relationship, can be further included as an extensive form of our proposed model.

Another common approach analyzes dyadic interactions as independent

observations. Oldham et al. (2020) fitted a linear mixed model to investigate effects of

characteristics of both pigs on the initiating pig’s latency to initiate agonistic behavior in a

dyadic contest. This study was carefully designed and analyzed such that only one observation

per animal and per contest (dyad) was available. This allowed the use of a simple linear model

for the analysis. However, more precisely, dyads refer to relation of two individuals embedded in

a social context (Kenny et al., 2020), while Oldham et al. (2020) manually selected paired pigs

for contests instead of selecting dyads from a social context. In dyadic data extracted from

multiple social groups with more than 2 individuals per group where each pig is exposed to

multiple group mates, the assumption of independence between observations does hold i.e., the

dyad is the fundamental unit of analysis (Kenny et al., 2020), and the proposed approach allows

modeling the variances and co-variances of social groups, dyads, and individuals in a very

straightforward way. For instance: we include the giver and receiver effects and account for their

correlation. Thus, our proposed model is particularly useful for studying social interactions

where animals are housed in multiple social groups over time.

163

In addition to introducing a model for the analysis of dyadic data in studies of social

animal behavior, this study yields valuable results for understanding factors that affect post-

mixing aggression in growing pigs. The results indicate that the giver explained more variation

of the dyadic interaction than the receiver (Table 5.1). To the best of our knowledge, only one

previous publication has used a GLMM to dissect the giver and receiver effects in animal

behavior data (Wang et al., 2022), however, they did not consider the inclusion of dyadic fixed

effects or the inclusion of a dyad-level random effect. A related line of research used bivariate

marginal models to study delivery and reception of non-reciprocal aggression (Turner et al.,

2009, 2008). Interestingly, both studies found that delivery of aggression was more heritable than

reception of aggression. This encourages further analyses with the dyadic model to tease apart

genetic effects from environmental effects.

One application in human behavioral ecology (Koster et al., 2015) proposed using

GLMMs to perform dyadic analysis of food sharing between households and reported that the

meal giver explained 75% of the variance components while the variance ratio of the meal

receiver was 6%, which showed results quantitatively similar to ours. Given more complete

datasets (with more observed variables of the interacting individuals), behaviorists could further

use the proposed dyadic model to dissect factors that may influence delivery of the behavior as

well as the characteristics of the receiver that attract the behavior.

In the context of post-mixing aggression in finishing pigs, we estimated the correlation

between the random giver effect and the random receiver effect of the same individuals (Table

5.1). In a previously published marginal analysis of post-mixing aggression in pigs, the

correlation between delivering and receiving non-reciprocal aggression did not differ

significantly from zero (Turner et al., 2008). However, our model revealed a weak but significant

164

correlation between the giver and receiver effects on the duration of the attacks. This means that

animals which attack for longer duration also receive longer attacks themselves, and this could

be a result of receiver animals defending themselves and striking back (i.e., receivers may use

attacks as a form of defense) (Oldham et al., 2020). The aggregated data used in this study did

not allow investigation of the sequences of attacks (as our dyadic data was defined as the total

aggression duration from a giver to a receiver), thus further work is needed to analyze

heterogeneous and repeated measures of dyadic interactions over time.

Interestingly, our model did not yield a significant effect of the bodyweight of giver or

receiver on the occurrence or duration of attacks. It is worth mentioning that the goal of this

study was not to investigate bodyweight effects of the giver and receiver on attacking duration.

Our result for the bodyweight effect might be due to the limited variation in body size within the

social groups of our study as we had deliberately mixed together animals of similar body size in

the finishing groups. This could result in a non-significant effect of the animal weight given

limited variation in those covariates. The literature on this matter (bodyweight effect) does not

offer a definite conclusion regarding the effect of bodyweight on aggressive behaviors of pigs. In

one study of aggressive contests between pigs (Oldham et al., 2020), neither the weight of the

contest initiating pig nor the weight difference between the contestants significantly influenced

the latency to initiate the aggression. This agrees with our findings on bodyweight effects.

However, in another study of dyadic contests in pigs, the winner pigs were significantly heavier

than the loser pigs (Camerlink et al., 2019). We need to point out that initiating an attack and

winning a contest are different. Our result suggests that pigs might not be good at telling whether

they were going to win or not when they decided to attack. Camerlink et al. (2015) also showed

165

that between pairs of size-matched pigs, pigs which were more likely to be attackers were not

more likely to be winners.

The variance component of random dyad effect (the effect of giver-receiver relation; see

Sections 2.1.2 and 2.2.2) was not estimable in this study; however, we found that having shared

nursery pens immediately before being mixed into grow-finish pens (a dyad-level covariate)

showed a significant effect (𝑃<0.05; Table 5.1). This finding is confirmed in the literature, for

instance, Li and Wang (2011) reported that unfamiliar pigs fought for longer durations and

fought more frequently than familiar pigs when pigs were remixed into new social groups.

However, another dyadic level predictor (whether the two pigs were previously housed together

as a litter before weaning; the pigs were housed as a litter for approximately three weeks before

introduced to nursery pens) was not significantly associated with delivery or duration of

aggression. This hints at the fact that animals who once shared a social group several weeks prior

to the mixing, even if they are related, are unlikely to remember each other. It is unclear how

long pigs remember each other though a possible time range could be three to six weeks (Mendl

et al., 2010). Since pigs in this study spent approximately seven weeks in nursery pens

immediately before being remixed into grow-finish pens, it was possible that pigs did not

recognize their initial littermates when re-introduced to them in grow-finish pens.

In addition to the models presented in this study, we also evaluated other GLMMs,

including log-Poisson, zero-inflated log-Poisson, Gaussian, and zero-inflated Gaussian. The

posterior predictive checks conducted (results not shown) showed that the hurdle-Bernoulli

model was the one that fitted the data better. The hurdle model did so by dissecting the trait into

two components: the tendency of not delivering attacks and a second component of the attacking

duration. The complexity of the model may limit its practical use as there are two correlated

166

traits rather than one per animal that can be used for decision making. However, it is worth

mentioning that other GLMMs may be adequate for other settings. In the companion GitHub

(https://github.com/jun-jieh/DyadAnalysis), we provide simpler GLMMs that are more general

and can be easily adapted. In addition, to check model fitting, the in-sample posterior predictive

checking (predicting the data used for model fitting) suffices, but for studying the model’s ability

to predict future data, out-of-sample validation (predicting observations left out of the model

fitting process) should be used.

Social interaction data has been recently used as predictors of other traits. For

example, Turner et al. (2020) constructed play fighting social networks of pigs using dyadic

interaction data and extracted individual level and network level traits to build prediction models

for lesion score counts. In a different application, Angarita et al. (2019) proposed using the

dyadic matrices of aggression duration between pigs to parametrize social genetic effects of

lesion scores. In these cases, the dyadic data (or its derived social network features) were used as

a predictor rather than as a response variable. Nevertheless, the proposed predictive modeling of

dyadic data could be used to add uncertainty to these applications. For instance, the internal and

external validation (see Section 2.2.5 and Figures 5.3 and 5.4) used for model checking provides

a natural way to resample plausible social interaction matrices that could be then subject to social

network analysis or included in social genetic effects modeling. Moreover, obtaining the

summation of all dyadic interaction of an animal as a giver (or receiver) allows for predicting

individual-level aggressiveness (or vulnerability), for instance, the marginal intensity as shown

in Figure 5.1a. Such individual level phenotypes can be used for management and as traits in

genetic evaluations. Further experiments could be designed to validate the early prediction of

animal social behavior that can be further related to animal welfare and production traits.

https://github.com/jun-jieh/DyadAnalysis

167

In this study, we considered several ways of splitting data for training (model fitting) and

validation. Different validation scenarios (see Section 2.2.5) could be related to possible

situations in real-life applications or relevant prediction problems (Burgueño et al., 2012). The

stratified 5-fold cross-validation was designed for evaluation when the model was used for

predicting unobserved (directional) social behaviors between two animals. The block-by-social-

group mimicked a situation where the effects of giver, receiver, and dyad were evaluated in some

social groups but not in others. Similarly, the block-by-focal-animals validation mimicked a

situation when the giver, receiver, and dyad effects were modeled given records related to the

focal animals but not for non-focal animals.

The predictive performance of the fitted models varies depending on the validation

strategies (Table 5.2). The block-by-social-group cross-validation yielded the lowest correlation.

This could be the result of not accounting for factors affecting social group composition. In fact,

Samarakone and Gonyou (2009) have suggested that pigs may shift their aggressive behaviors

accordingly to the composition of their social groups. Consequently, this could be revisited in

further analyses and experimental setups where more group-specific variables are recorded and

included in the dyadic model. In short, animal behavioral studies may consider introducing

group-specific effects into the proposed model and exploring how these effects influence

interactive behaviors.

The block-by-focal-animal validation yielded a slightly higher correlation and smaller

RMSE compared to the stratified 5-fold cross-validation (Table 5.2). The result suggests that

selecting focal animals and decoding their interactions with all other animals in the group may be

a more efficient way to build predictive models of dyadic interactions than randomly selecting

snippets of video for decoding. This idea has also been suggested by ethologists (Bosholn and

168

Anciães, 2018). Furthermore, a dyadic model could be fitted using preliminary data to determine

which factors better predict animal interactions, and then focal animals could be selected based

on the significant factors to cover a large variation in responses. Such sampling strategies could

be useful for improved manual video decoding efficiency.

6. CONCLUSION

We proposed an approach for the analysis of animals’ social interactions based on

modeling dyadic data. We illustrated its use through fitting a generalized linear model to total

attacking time post-mixing between pairs of grow-finish pigs. Taking advantage of the flexibility

and interpretability of the proposed model, we found that if two pigs had shared a common

nursery pen immediately before being remixed into new social groups, they tended to spend less

time engaging in the agonistic behavior. In addition, the positive correlation between the giver

and receiver suggested that a pig that spent more time attacking was also more likely to be

attacked for more time. The proposed model can be easily extended to incorporate additional

giver-specific, receiver-specific, and dyad-specific effects. Moreover, we pursued alternative

cross-validations and found that overlooking group-specific factors worsened the predictive

performance of the proposed model. We also demonstrated that focusing on a fraction of all

animals and decoding all their interactions with the remaining animals in the group is an

effective way to perform inference and predictions on social interactions in the group while

limiting the amount of time and effort dedicated to decoding video.

7. ACKNOWLEDGEMENTS

This work was funded by NIFA Awards 2017-67007-26176 and 2021-67021-34150.

169

APPENDIX

170

1. Implementation detail of the Bayesian approach

In parameter estimation, marginal posterior distributions of the parameters were obtained using

Markov chain Monte Carlo method through Stan program. We ran four chains of 15,000

iterations, where we set the burn-in (warmup) to 5,000 iterations and every 10th samples were

saved in each chain. Convergence diagnostics and graphical posterior predictive checks were

performed using rstan and bayesplot packages in R (R Core Team, 2020). In the following parts

of Appendix, we first present the prior distributions that were used in this study. We then show

trace plots and autocorrelation plots of the fitted model. In addition, the summary of convergence

diagnostics for the model with random dyad effect are included at the end. In the companion

GitHub (https://github.com/jun-jieh/DyadAnalysis) we provide examples for implementations of

multiple GLMMs and their model fitting that utilized a Bayesian method through rstan package

in R (Carpenter et al., 2017; R Core Team, 2020).

2. Prior distributions of model parameters that are described in Section 2.2

(
𝜎′𝑔

2 𝜎′𝑔𝑟

𝜎′𝑔𝑟 𝜎′𝑟
2)~𝑊𝑖𝑠ℎ𝑎𝑟𝑡 ((

5
 5

))

(
𝜎𝑔
2 𝜎𝑔𝑟

𝜎𝑔𝑟 𝜎𝑟
2)~𝑊𝑖𝑠ℎ𝑎𝑟𝑡 ((

5
 5

))

𝑠𝑔′𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚()

𝑠𝑔𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚()

𝜎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚()

𝑠𝑒𝑥′𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝑠𝑒𝑥𝑘~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛼′~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛼~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

https://github.com/jun-jieh/DyadAnalysis

171

𝛽′~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛽~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛿′1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛿1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛿′2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

𝛿2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−)

Figure S5.1 Trace plots of posterior estimates of effects and variance components.

172

Figure S5.2. Autocorrelation plots by chain and by parameters.

Figure S5.3 Trace plots of variance components when the random dyad effect is included in the

model

173

Figure S5.4 Autocorrelation plots by chain and by variance components when the random dyad

effect is included in the model

174

Table S5.1 Summary of MCMC samples. Q, quantile; n_eff, effective sample size.

Parameter mean sd Q2.5% Q50% Q97.5% n_eff Rhat

𝑠𝑒𝑥 -0.038 0.063 -0.159 -0.038 0.088 3711.37 1.002

𝛿1 -0.502 0.038 -0.574 -0.501 -0.427 4127.503 1

𝛿2 -0.023 0.059 -0.14 -0.023 0.095 3887.644 1

𝛼 -0.001 0.004 -0.009 -0.001 0.006 3316.333 1

𝛽 -0.007 0.005 -0.018 -0.007 0.004 3820.173 1

𝜎 1.006 0.018 0.973 1.005 1.042 35.164 1.102

𝜎𝑠𝑔 0.134 0.048 0.030 0.135 0.223 954.933 1

𝜎𝑑 0.245 0.066 0.076 0.258 0.340 17.19 1.232

𝑠𝑒𝑥′ -0.096 0.218 -0.521 -0.094 0.337 3921.573 1

𝛿′1 0.552 0.068 0.420 0.552 0.684 3572.37 1

𝛿′2 -0.189 0.109 -0.402 -0.19 0.027 3438.372 1.001

𝛼′ 0.001 0.007 -0.012 0.001 0.014 4097.341 1

𝛽′ -0.009 0.011 -0.029 -0.009 0.012 3935.423 1.002

𝜎′𝑠𝑔 0.749 0.094 0.584 0.744 0.954 3759.123 1

𝜎′𝑑 0.697 0.079 0.548 0.697 0.855 266.248 1.004

𝜎𝑟 0.047 0.011 0.026 0.047 0.071 1281.134 1.001

𝜎′𝑟 0.173 0.039 0.103 0.172 0.253 1341.962 0.999

𝜎𝑔 0.251 0.022 0.212 0.250 0.295 3503.677 0.999

𝜎′𝑔 1.216 0.113 1.011 1.209 1.450 1264.305 1.001

𝜌𝑔𝑟 0.147 0.107 -0.066 0.145 0.360 1322.434 1.008

𝜌′𝑔𝑟 0.068 0.093 -0.12 0.071 0.244 2482.093 0.999

lp__ -17317.6 1792.383 -19481.7 -17766.3 -11893.2 15.225 1.27

175

REFERENCES

176

REFERENCES

Andersson, M., Simmons, L.W., 2006. Sexual selection and mate choice. Trends Ecol. Evol. 21,

296–302. https://doi.org/10.1016/j.tree.2006.03.015

Angarita, B.K., Cantet, R.J.C., Wurtz, K.E., O’Malley, C.I., Siegford, J.M., Ernst, C.W., Turner,

S.P., Steibel, J.P., 2019. Estimation of indirect social genetic effects for skin lesion count in

group-housed pigs by quantifying behavioral interactions. J. Anim. Sci. 97, 3658–3668.

https://doi.org/10.1093/jas/skz244

Angarita, B.K., Han, J., Cantet, R.J.C., Chewning, S.K., Wurtz, K.E., Siegford, J.M., Ernst,

C.W., Steibel, J.P., 2021. Estimation of direct and social effects of feeding duration in

growing pigs using records from automatic feeding stations. J. Anim. Sci. 99, 1–8.

https://doi.org/10.1093/jas/skab042

Back, M.D., Kenny, D.A., 2010. The Social Relations Model: How to Understand Dyadic

Processes. Soc. Personal. Psychol. Compass 4, 855–870. https://doi.org/10.1111/j.1751-

9004.2010.00303.x

Bierbach, D., Sassmannshausen, V., Streit, B., Arias-Rodriguez, L., Plath, M., 2013. Females

prefer males with superior fighting abilities but avoid sexually harassing winners when

eavesdropping on male fights. Behav. Ecol. Sociobiol. 67, 675–683.

https://doi.org/10.1007/s00265-013-1487-8

Bosholn, M., Anciães, M., 2018. Focal Animal Sampling. Encycl. Anim. Cogn. Behav. 1–3.

https://doi.org/10.1007/978-3-319-47829-6_262-1

Box, G.E.P., Tiao, G.C., 2011. Bayesian inference in statistical analysis. John Wiley & Sons.

Burgueño, J., de los Campos, G., Weigel, K., Crossa, J., 2012. Genomic prediction of breeding

values when modeling genotype × environment interaction using pedigree and dense

molecular markers. Crop Sci. 52, 707–719. https://doi.org/10.2135/cropsci2011.06.0299

Camerlink, I., Turner, S.P., Farish, M., Arnott, G., 2019. Advantages of social skills for contest

resolution. R. Soc. Open Sci. 6, 1–8. https://doi.org/10.1098/rsos.181456

Camerlink, I., Turner, S.P., Farish, M., Arnott, G., 2015. Aggressiveness as a component of

fighting ability in pigs using a game-theoretical framework. Anim. Behav. 108, 183–191.

https://doi.org/10.1016/j.anbehav.2015.07.032

Carpenter, B., Gelman, A., Hoffman, M.D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,

M., Guo, J., Li, P., Riddell, A., 2017. Stan: A probabilistic programming language. J. Stat.

Softw. 76.

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -

Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250.

177

https://doi.org/10.5194/gmd-7-1247-2014

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., Gelman, A., 2019. Visualization in

Bayesian workflow. J. R. Stat. Soc. Ser. A Stat. Soc. 182, 389–402.

https://doi.org/10.1111/rssa.12378

Kenny, D.A., Kashy, D.A., Cook, W.L., 2020. Dyadic data analysis. Guilford Publications.

Kenny, D.A., West, T. V., Malloy, T.E., Albright, L., 2006. Componential analysis of

interpersonal perception data. Personal. Soc. Psychol. Rev. 10, 282–294.

https://doi.org/10.1207/s15327957pspr1004_1

Koster, J., Leckie, G., Miller, A., Hames, R., 2015. Multilevel modeling analysis of dyadic

network data with an application to Ye’kwana food sharing. Am. J. Phys. Anthropol. 157,

507–512. https://doi.org/10.1002/ajpa.22721

Li, Y., Wang, L., 2011. Effects of previous housing system on agonistic behaviors of growing

pigs at mixing. Appl. Anim. Behav. Sci. 132, 20–26.

https://doi.org/10.1016/j.applanim.2011.03.009

Ling, C.X., Huang, J., Zhang, H., 2003. AUC: A statistically consistent and more discriminating

measure than accuracy. IJCAI Int. Jt. Conf. Artif. Intell. 519–524.

Lu, D., Jiao, S., Tiezzi, F., Knauer, M., Huang, Y., Gray, K.A., Maltecca, C., 2017. The

relationship between different measures of feed efficiency and feeding behavior traits in

Duroc pigs. J. Anim. Sci. 95, 3370. https://doi.org/10.2527/jas2017.1509

Mendl, M., Held, S., Byrne, R.W., 2010. Pig cognition. Curr. Biol. 20, 796–798.

https://doi.org/10.1016/j.cub.2010.07.018

Oczak, M., Ismayilova, G., Costa, A., Viazzi, S., Sonoda, L.T., Fels, M., Bahr, C., Hartung, J.,

Guarino, M., Berckmans, D., Vranken, E., 2013. Analysis of aggressive behaviours of pigs

by automatic video recordings. Comput. Electron. Agric. 99, 209–217.

https://doi.org/10.1016/j.compag.2013.09.015

Oldham, L., Camerlink, I., Arnott, G., Doeschl-Wilson, A., Farish, M., Turner, S.P., 2020.

Winner–loser effects overrule aggressiveness during the early stages of contests between

pigs. Sci. Rep. 10, 1–13. https://doi.org/10.1038/s41598-020-69664-x

Peden, R.S.E., Turner, S.P., Boyle, L.A., Camerlink, I., 2018. The translation of animal welfare

research into practice: The case of mixing aggression between pigs. Appl. Anim. Behav.

Sci. 204, 1–9. https://doi.org/10.1016/j.applanim.2018.03.003

R Core Team, 2020. R: A Language and Environment for Statistical Computing.

Rodenburg, T.B., Bijma, P., Ellen, E.D., Bergsma, R., De Vries, S., Bolhuis, J.E., Kemp, B., Van

Arendonk, J.A.M., 2010. Breeding amiable animals? Improving farm animal welfare by

including social effects in breeding programmes. Anim. Welf. 19, 77–82.

178

Samarakone, T.S., Gonyou, H.W., 2009. Domestic pigs alter their social strategy in response to

social group size. Appl. Anim. Behav. Sci. 121, 8–15.

https://doi.org/10.1016/j.applanim.2009.08.006

Savory, C.J., Mann, J.S., 1997. Behavioural development in groups of pen-housed pullets in

relation to genetic strain, age and food form. Br. Poult. Sci. 38, 38–47.

https://doi.org/10.1080/00071669708417938

Silk, M.J., Finn, K.R., Porter, M.A., Pinter-Wollman, N., 2018. Can Multilayer Networks

Advance Animal Behavior Research? Trends Ecol. Evol. 33, 376–378.

https://doi.org/10.1016/j.tree.2018.03.008

Turner, S.P., Roehe, R., D’Eath, R.B., Ison, S.H., Farish, M., Jack, M.C., Lundeheim, N.,

Rydhmer, L., Lawrence, A.B., 2009. Genetic validation of postmixing skin injuries in pigs

as an indicator of aggressiveness and the relationship with injuries under more stable social

conditions. J. Anim. Sci. 87, 3076–3082. https://doi.org/10.2527/jas.2008-1558

Turner, S.P., Roehe, R., Mekkawy, W., Farnworth, M.J., Knap, P.W., Lawrence, A.B., 2008.

Bayesian analysis of genetic associations of skin lesions and behavioural traits to identify

genetic components of individual aggressiveness in pigs. Behav. Genet. 38, 67–75.

https://doi.org/10.1007/s10519-007-9171-2

Turner, S.P., Weller, J.E., Camerlink, I., Arnott, G., Choi, T., Doeschl-Wilson, A., Farish, M.,

Foister, S., 2020. Play fighting social networks do not predict injuries from later aggression.

Sci. Rep. 10, 1–16. https://doi.org/10.1038/s41598-020-72477-7

Vehtari, A., Gelman, A., Gabry, J., 2017. Practical Bayesian model evaluation using leave-one-

out cross-validation and WAIC. Stat. Comput. 27, 1413–1432.

https://doi.org/10.1007/s11222-016-9696-4

Vehtari, A., Ojanen, J., 2012. A survey of Bayesian predictive methods for model assessment,

selection and comparison. Stat. Surv. 6, 142–228. https://doi.org/10.1214/12-ss102

Verdon, M., Morrison, R.S., Hemsworth, P.H., 2018. Forming groups of aggressive sows based

on a predictive test of aggression does not affect overall sow aggression or welfare. Behav.

Processes 150, 17–24. https://doi.org/10.1016/j.beproc.2018.02.016

Wang, Z, Doekes, H.P. and Bijma P., 2022. Analysis of social behaviors in large groups:

simulation and genetic evaluation. Proceedings of the WCGALP. Rotterdam, July 2022.

Wurtz, K.E., Siegford, J.M., Bates, R.O., Ernst, C.W., Steibel, J.P., 2017. Estimation of genetic

parameters for lesion scores and growth traits in group-housed pigs. J. Anim. Sci. 95, 4310–

4317. https://doi.org/10.2527/jas2017.1757

179

CHAPTER 6: GENERAL DICUSSION

1. DISCUSSION

Predictive modeling has great potential to improve swine farming efficiency in various

contexts. Despite the success of predictive modeling methods (Putka et al., 2018), many of them

are not yet applied to swine farming. Furthermore, the validity of those state-of-the-art prediction

models remains unknown in pig genomic prediction and behavior recognition. Genomic

prediction refers to the prediction of an animal’s measurable trait or genetic value, and it has the

potential for improved animal selection and reduced costs (Hickey et al., 2017). However,

measuring animals’ traits is costly in both time and labor and thus, predictive models for

automated phenotyping (through video analysis) are helpful to obtain more rapid results. In this

dissertation, I explored and adapted deep learning (DL) and generalized linear mixed model

(GLMM) for the studies of animal breeding and behavior. To validate the models, several

strategies were investigated to split data into the training data and validation data, where the

training data was used for model development and the validation data was used for model

evaluation.

Hyperparameter tuning is non-trivial and is a bottleneck for adapting DL into pig

genomic prediction. The common practice is to optimize hyperparameters through grid search or

exhaustive search, but they are costly in terms of time and computational power. In Chapter 2, I

utilized differential evolution to search for hyperparameters that saved considerable time

compared to the traditional approach. During the model development, I found that

hyperparameter tuning was not the only factor that influenced predictive performance of DL.

Different training-validation data splits as well as training dataset size also led to varying

180

performance. Compared to random hyperparameter configurations and the hyperparameters

recommended in literature, the optimized DL models in this study showed significant

performance gains. For the comparison of different genomic prediction methods, the prediction

accuracy of the optimized DL tied to the standard genomic prediction method, genomic best

linear unbiased prediction (VanRaden, 2008), suggesting that DL can be used as an alternative

method for genomic prediction.

As the livestock sector is undergoing data revolution, computer vision (CV) is emerging

as a powerful solution for phenotyping and behavioral studies (Borges Oliveira et al., 2021).

However, to date, there is not yet a reference CV dataset in livestock farming, which poses a

challenge to develop video-based automatic phenotyping systems for animals. In Chapter 3, I

investigated the small number of public imagery datasets that have been used to develop CV

systems in livestock farming, and I reviewed the validation strategies utilized in the related work.

In this review, I considered data as the fuel of DL-based CV algorithms. Most CV applications in

livestock farming used random validation for model assessment, in which the training and

validation sets were split at random. However, results from random validations could be

overoptimistic, and random validation is less representative of real-life validation scenarios, as

environments for capturing images are quite complex in animal farming (Li et al., 2021). I also

found that in the studies which fitted the same model through different validation strategies

(Alameer et al., 2020; Riekert et al., 2020; Shao et al., 2020), the evaluation metrics obtained

from blocked validation strategies (where the training and validation sets are split by a blocking

factor) were lower than the metrics computed for random validations. These results are relevant

to researchers as they are more interested in how CV is validated in a way that examines how

181

well the model can be generalized to other contexts (e.g., across different seasons and different

farms), which is closer to blocked validation strategies.

The traditional method for analyzing pigs’ activities at feeders is through direct

observation or by filming and later manual decoding of videos (Agha et al., 2020; Csermely and

Wood-Gush, 1990; Machado et al., 2017; Nielsen et al., 1995). However, such approaches are

not possible on a commercial farming setup (Martínez-Avilés et al., 2017). In Chapter 4, I

employed a state-of-the-art DL model for behavior recognition that learned both spatial and

temporal features of pigs from videos. Hyperparameter tuning was performed, but little

improvement was achieved in the optimization process. However, I found a major factor that

greatly influenced the predictive performance of the model, which was validation strategies that

split the dataset differently for training and validation purposes. For random validation (the

standard validation approach of CV applications to animal farming), the proposed model yielded

encouraging results. In addition to the random validation, I proposed blocked-by-time validation

and blocked-by-feeder validation to evaluate the same model. As a result, the blocked validations

yieled much lower performance compared to random validation. Through this finding, I

demonstrated that the random validation strategy might neglect temporal structure and spatial

structure, which were also concerned by other researchers (Bergmeir and Benítez, 2012; Roberts

et al., 2017). These results suggest that blocked-by-time and blocked-by-feeder validation shows

much lower yet more reliable estimates of DL model performance.

In Chapter 5, I emphasized that the unit of observation in dyadic interaction was not an

individual, but a pair of individuals. I showed conceptualization, parameterization, and

implementation of GLMMs that can be used to analyze dyadic data. The proposed model

exhibited advantages of analyzing dyadic interactions of pairs of animals in terms of flexibility

182

(as it can be easily adapted to analyses different types of responses) and interpretability (as it

decomposes the dyadic interaction into the giver animal effect, receiver animal effect, and dyad

effect). As expected, predictive performance of the model varied in different validation

strategies. In this study, different validation strategies could be related to possible situations in

real-life applications or relevant prediction problems (Burgueño et al., 2012). The stratified 5-

fold cross-validation was designed for evaluation when the model was used for predicting

unobserved social behaviors between two animals. For block-by-social-group validation, it

mimicked a situation where the effects of giver, receiver, and dyad were evaluated in some social

groups but not in others. Similarly, the block-by-focal-animals validation mimicked a situation

when the giver, receiver, and dyad effects were modeled given records related to the focal

animals but not in non-focal animals. Interestingly, block-by-focal-animal validation yield a

slightly better performance than random validation. This result suggested that focusing on a

fraction of all animals and decoding all their interactions with the remaining animals in the group

was an effective way to perform inference and predictions on social interactions in the group

while limiting the amount of time and effort dedicated to decoding video. This is informative to

ethologists and breeders.

2. FUTURE DIRECTIONS

Deep learning-based CV models are powerful predictive tools in swine farming.

Nevertheless, most published CV applications into animal farming are developed using rather

small datasets, and their broader validity remains unknown. There are needs to create reference

image datasets and standard validation methods depending on the livestock species and

prediction problems, which allows CV developers to benchmark their state-of-the-art algorithms.

183

To date, CV applications are shown to be promising tools to assist in animal behavioral

studies for many challenging tasks e.g., detecting anomalous behaviors and phenotyping

complex traits. However, those applications are currently “technical islands” as each CV model

was developed for very specific problems, while in livestock farming, we are more interested in

a versatile model that address multiple problems simultaneously e.g., behavior recognition and

bodyweight estimation through a single CV system. Thus, there may be a need for developing

integrated systems that pool information for multiple purposes.

Lastly, a key step in livestock farming is animal identification that is useful for both

management and phenotyping. In commercial pig farming, most pigs have white coat color, and

their graphical morphologies vary in images as they move, which poses challenge to CV systems

to identify individuals. To address this problem, interdisciplinary work might be required

between animal scientists and computer scientists to extract reliable visual components of pigs

that contributes to animal identification through CV. Future work could be focused on robust CV

models for pig identification.

184

REFERENCES

185

REFERENCES

Agha, S., Fàbrega, E., Quintanilla, R., Sánchez, J.P., 2020. Social network analysis of agonistic

behaviour and its association with economically important traits in pigs. Animals 10, 1–13.

https://doi.org/10.3390/ani10112123

Alameer, A., Kyriazakis, I., Bacardit, J., 2020. Automated recognition of postures and drinking

behaviour for the detection of compromised health in pigs. Sci. Rep. 10, 1–15.

https://doi.org/10.1038/s41598-020-70688-6

Bergmeir, C., Benítez, J.M., 2012. On the use of cross-validation for time series predictor

evaluation. Inf. Sci. (Ny). 191, 192–213. https://doi.org/10.1016/j.ins.2011.12.028

Borges Oliveira, D.A., Ribeiro Pereira, L.G., Bresolin, T., Pontes Ferreira, R.E., Reboucas

Dorea, J.R., 2021. A review of deep learning algorithms for computer vision systems in

livestock. Livest. Sci. 253, 104700. https://doi.org/10.1016/j.livsci.2021.104700

Burgueño, J., de los Campos, G., Weigel, K., Crossa, J., 2012. Genomic prediction of breeding

values when modeling genotype × environment interaction using pedigree and dense

molecular markers. Crop Sci. 52, 707–719. https://doi.org/10.2135/cropsci2011.06.0299

Csermely, D., Wood-Gush, D.G.M., 1990. Agonistic behaviour in grouped sows. Ii. how social

rank affects feeding and drinking behaviour. Bolletino di Zool. 57, 55–58.

https://doi.org/10.1080/11250009009355674

Hickey, J.M., Chiurugwi, T., Mackay, I., Powell, W., 2017. Genomic prediction unifies animal

and plant breeding programs to form platforms for biological discovery. Nat. Genet. 49,

1297–1303. https://doi.org/10.1038/ng.3920

Li, G., Huang, Y., Chen, Z., Chesser, G.D., Purswell, J.L., Linhoss, J., Zhao, Y., 2021. Practices

and applications of convolutional neural network-based computer vision systems in animal

farming: A review. Sensors 21, 1–42. https://doi.org/10.3390/s21041492

Machado, S.P., Caldara, F.R., Foppa, L., De Moura, R., Gonçalves, L.M.P., Garcia, R.G., De

Alencar Nääs, I., Dos Santos Nieto, V.M.O., De Oliveira, G.F., 2017. Behavior of pigs

reared in enriched environment: Alternatives to extend pigs attention. PLoS One 12, 1–18.

https://doi.org/10.1371/journal.pone.0168427

Martínez-Avilés, M., Fernández-Carrión, E., López García-Baones, J.M., Sánchez-Vizcaíno,

J.M., 2017. Early Detection of Infection in Pigs through an Online Monitoring System.

Transbound. Emerg. Dis. 64, 364–373. https://doi.org/10.1111/tbed.12372

Nielsen, B.L., Lawrence, A.B., Whittemore, C.T., 1995. Effect of group size on feeding

behaviour, social behaviour, and performance of growing pigs using single-space feeders.

Anim. Sci. 61, 575–579. https://doi.org/10.1017/S1357729800014168

186

Psota, E.T., Mittek, M., Pérez, L.C., Schmidt, T., Mote, B., 2019. Multi-pig part detection and

association with a fully-convolutional network. Sensors (Switzerland) 19, 1–24.

https://doi.org/10.3390/s19040852

Putka, D.J., Beatty, A.S., Reeder, M.C., 2018. Modern Prediction Methods: New Perspectives on

a Common Problem. Organ. Res. Methods 21, 689–732.

https://doi.org/10.1177/1094428117697041

Riekert, M., Klein, A., Adrion, F., Hoffmann, C., Gallmann, E., 2020. Automatically detecting

pig position and posture by 2D camera imaging and deep learning. Comput. Electron.

Agric. 174. https://doi.org/10.1016/j.compag.2020.105391

Roberts, D.R., Bahn, V., Ciuti, S., Boyce, M.S., Elith, J., Guillera-Arroita, G., Hauenstein, S.,

Lahoz-Monfort, J.J., Schröder, B., Thuiller, W., Warton, D.I., Wintle, B.A., Hartig, F.,

Dormann, C.F., 2017. Cross-validation strategies for data with temporal, spatial,

hierarchical, or phylogenetic structure. Ecography (Cop.). 40, 913–929.

https://doi.org/10.1111/ecog.02881

Shao, W., Kawakami, R., Yoshihashi, R., You, S., Kawase, H., Naemura, T., 2020. Cattle

detection and counting in UAV images based on convolutional neural networks. Int. J.

Remote Sens. 41, 31–52. https://doi.org/10.1080/01431161.2019.1624858

VanRaden, P.M., 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91,

4414–4423. https://doi.org/10.3168/jds.2007-0980

