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ABSTRACT

SEMI-ANALYTICAL METHOD FOR THE ANALYSIS AND DESIGN OF CYLINDERS
WITH CONTROLLABLE ELASTIC POST-BUCKLING RESPONSE

By
Ali Imani Azad

Research over the past ten years has generated an increased interest in studying elastic
structural instabilities as a useful response for smart applications rather than a failure. Buckling
under axial compression is a type of structural instability that can be used for rapid geometric
switching and energy harvesting if the resulting deformations are properly controlled, which
usually implies the need of external constraints. Short thin-walled cylinders are able to experience
multiple buckling events without the need of additional constraints. However, predicting their
post-buckling response is challenging due to their high sensitivity to initial imperfections.

Cylinders with non-uniform stiffness distribution (NSD), which feature wall regions with
varying elastic modulus or thickness, allow controlling the number of elastic buckling events, their
location, and the sequence at which they occur. However, designing NSD cylinders for smart
applications requires predicting, for each buckling event, the corresponding compressive force and
end shortening, the resulting drop in force and strain energy, and the post-buckling stiffness.

This dissertation presents a semi-analytical model developed to predict the elastic post-
buckling response of NSD cylinders under compression. The model follows three general steps:
1) separate the NSD cylinder into parallel segments, 2) simplify and predict the response of each
segment, and 3) integrate the response of individual segments.

The first step in predicting the elastic post-buckling response of a cylindrical segment was to
simplify its geometry into a cylindrical panel with uniform thickness. Linear springs are connected

to the top and bottom of the uniform cylinder to match the stiffness of the simplified segment to



the actual one. Based on classical shell theory, the elastic post-buckling response of a cylindrical
panel is solved as a boundary value differential equation using the pseudo-arclength method. The
analytical model was validated by comparing the predicted post-buckling responses of four
cylinders with those from experiments and finite element analyses.

The response of cylindrical panels of various dimensions is needed to design NSD cylinders
for targeted post-buckling behavior. Thus, the differential equation for a cylindrical panel under
axial compression was solved independently of the cylinder’s radius and elastic modulus. These
allowed the development of design maps for several parameters, including axial strain and stresses
corresponding to the first buckling event. Predictive equations generated by using genetic
programming were then used to relate each design parameter to the geometry of the panels.

Three NSD cylinders were designed using the developed design maps to validate the proposed
approach. One was designed to undergo multiple buckling events under compression at pre-
defined end shortenings. A second cylinder was designed to feature a post-buckling force-
deformation response that plateaus at a constant force level. The third cylinder was designed to
experience the same force drop at each buckling event and for equal axial end shortenings after
the first event. Finite element analyses verified that the proposed design procedure yielded NSD
cylinders with a post-buckling response close to the desired one, and the ultimate design goal can
be achieved by slight modifications to the cylinder geometry.

This study advances the knowledge on the elastic buckling and post-buckling response of
slender cylindrical shells under axial compression and provides an approach to analyze and design
them for a desired far post-buckling response. This work expands the harnessing of elastic
instabilities to the area of thin shells buckling under compression, which has received less attention

in comparison to other forms of achieving controllable structural instabilities.
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Chapter 1. Introduction

1.1. Motivation

The viewpoint shift of considering elastic instabilities in thin-walled structural elements to be
sources for productive behavior rather than failure is relatively recent [1], [2]. Applications for
elastic instabilities in thin-walled elements include stress sensing, smart switches, deployable
structures, energy harvesting, and energy dissipation [3], [4], [13]-[16], [5]-[12]. Buckling under
axial compression is an unstable response with the potential for switching applications if the
structure's deformations are adequately limited. A constrained slender strip between rigid walls is
an example of such behavior that was recently used to harvest energy from multiple buckling
events [3], [7], [17] (See Figure 1-1). However, it is advantageous to eliminate the need for external
constraints and obtain numerous buckling events in the structure. Short thin-walled cylinders can
experience several elastic buckling events under axial compression without additional limitations
because of their self-confined configuration [18]-[21]. However, thin-walled cylindrical shells are
infamous for their unpredictable response to axial compression due to their high sensitivity to
minor initial imperfections [22]-[27]. Cylindrical shells have been the subject of numerous studies

which tried to predict an acceptable design load to avoid undesirable buckling events.
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Figure 1-1: (a) Slender beam under compression buckles and deflection keeps growing until
damage occurs, (b) the same slender beam under compression but constraint between rigid
wall shows several buckling events, (C) axially compressed cylindrical shells with uniform
thickness show several buckling events
More recently, the concept of cylinders with non-uniform stiffness distribution (NSD) was
developed to limit the buckling events in the cylinder to specifically targeted panels [28](See

Figure 1-2). This strategy was shown as an effective way of defining the number, location, and

order of local buckling events. Yet, no analytical or semi-analytical method were proposed to



predict the post-buckling response of NSD cylinders, let alone designing them for a targeted post-
buckling response. An example of targeted post-buckling responses is the pre-defined spacing of

the buckling events, and the size of the load or energy drop in each buckling event.
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o

Figure 1-2: Cylindrical shells with nonuniform stiffness distribution (NSD cylinder) limits the
buckling in the cylinder to specific areas
The main goal of this research is the development of an analytical framework to predict the
post-buckling response of NSD cylinders and to design them for a desirable post-buckling response

The analytical framework is based on three steps: 1) dividing the cylinder into individual panels



assumed to be connected in parallel and series, 1) predicting and designing the response of each
panel, and I11) integrating the response of individual panels. The predictive model and design
procedure are expected to be effective for the cylinders which are providing strong boundary
conditions for independent panel response. In addition, the proposed semi-analytical model can be
used to design novel cylinders, such as cylinders with non-uniform cylindrical stiffeners. Such a
cylinder follows the rules of NSD cylinders while increasing the number of buckling events and

potentially taking care of the cylinder's post-buckling stiffness.

1.2. Hypothesis

The proposed analytical framework in this study predicts the post-buckling response of
cylinders by considering three integrated steps: 1) dividing the cylinder into individual panels
connected in parallel and series, 11) predicting and designing the response of the individual panel,
and I1I) integrating the response of individual panels. Cylindrical shells with a targeted post-

buckling response can be designed using the analytical framework.

1.3. Research significance

The elastic post-buckling response of short thin-walled cylindrical shells is not a commonly
considered structure for smart applications because of its unpredictability. This research will
provide a powerful tool for I) predicting the elastic post-buckling response of NSD cylinders and
I1) designing NSD cylinders with a targeted elastic post-buckling response. Being able to design
cylinders with predictable elastic post-buckling responses will open new opportunities to develop

devices with switchable applications that do not rely on external constraints.



1.4. Background

1.4.1. Buckling in cylinders

Structural instability is a well-studied field due to the resulting catastrophic effects on
traditional structures. However, unstable response in structures has recently regained increased
attention due to newly emerged smart applications, such as vibration control, smart switches,
additive manufacturing, deployable structures, energy dissipation, and energy harvesting [3], [4],
[13]-[16], [5]-12].

Buckling under axial compression is an unstable response that releases energy with high-rate
motion. If this fast deformation is not adequately limited, the large deformations will result in
sudden failure of the structure [29]. Axial compression may lead to global buckling for some
structures like slender beams and columns. However, controlled buckling, or instability, could be
a desired feature rather than a failure limit for specific elements or device design. Managing post-
buckling response, which is always associated with a rapid increase of deformations perpendicular
to the loading axis, requires external constraints [30], [31]. These constraints confine the
unrestrained increase of transverse deformations and allow the formation of new stable states for
the buckled structure. For example, constraining the global buckling of slender beams permits
novel use of the dynamic unstable transition events to harvest electrical energy for self-powered
sensors [3], [7], [17].

It is advantageous to eliminate the need for external constraints when aiming to obtain a post-
buckling response with multiple buckling events. Due to their self-confined geometry, short, thin-
walled cylindrical shells can experience numerous local elastic buckling events when subjected to
axial compression [18]-[21]. Shell structures are widely used in different engineering fields, such

as offshore structures and aerospace vehicles. However, their response to axial compression is well



known to be highly sensitive to initial imperfections, and their buckling strength never reaches the
theoretical limit [22]-[27]. Two approaches are taken to avoid consequences from this uncertainty
for traditional uses of cylindrical shells where the buckling is a catastrophic event. The first
approach is to lower the design load to the point that there is no chance for the cylinder to buckle
in the design forces. A second approach consists of stiffening the cylinder through hoops and
stringers, which improves the axial strength of the cylinder and postpones its global buckling to
higher demands. These approaches have been taken individually or simultaneously in several
studies for different materials, from aluminum to composite materials produced in different ways.
However, none of these approaches try to eliminate the sensitivity of the post-buckling response
to initial imperfections.
1.4.2. Hoop and string stiffeners

One standard method is to stiffen the shell using hoop and string stiffeners to avoid buckling
in the cylinder before the expected design load. Most studies smear the stiffeners onto the surface
of the cylinder and treat the structure as a cylinder with orthotropic material properties to simplify
the calculation [32], [33]. Yet, local buckling in the areas between stiffeners still takes place. The
buckling events in the stiffened panels are still sensitive to initial imperfections [34]-[36]. Several
studies have proposed semi-analytical models to predict the axial response of a single panels in
stiffened cylinders considering flexible boundary conditions [34], [37]. These models showed
good accuracy in predicting the pos-buckling response of stiffened panels for a specific initial
imperfection. Results from these models were compared to finite element simulations with the
same imperfections. However, this is not what happens in stiffened panels, as several researchers
have warned about the impact of local buckling events in the stiffened panels on the global

buckling of the cylinder [38]-[40]. Although stiffening of a cylinder with hoop and stringers



increases its axial load capacity, it does not eliminate the uncertainty in the load capacity regarding
the impact of initial imperfections. For several applications, this uncertainty in post-buckling
response is accepted, and guidelines address this issue for design purposes.
1.4.3. Buckling capacity knockdown factors

To deal with the uncertainty in determining the buckling capacity of cylinders, a knockdown
factor (KDF) is defined to decrease their design strength to a reliable level [41]-[44]. The
definition of early KDF values was primarily empirical and very conservative [41], [45], [46].
Among these studies, the recommendations by NASA SP-8007 [41] have been used as the design
guideline for many years. The knockdown factor in this guideline is based on the lower-bound

axial strength from numerous experiments from the 1950s (Figure 1-3).
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Figure 1-3: Empirical knockdown factors for the design of cylindrical shells
Many research studies urged to update NASA’s guideline for modern cylindrical structures
manufactured with more accurate technology. NASA launched the SBKF (Shell Buckling

Knockdown Factor) project [47]-[50] to adjust cylinder designs with new materials and



manufacturing methods. Yet, to the author's knowledge, no design guidelines from this project are
available.

Finite element analysis is another way to define reliable KDFs for axially compressed
cylindrical shells. Since there are infinite possible initial imperfections for cylinders, this approach
aims to find the best regime of applying imperfections to develop reliable KDFs using imperfection
patterns. The Single Perturbation Load Approach (SPLA), Multi Perturbation Load Approach
(MPLA), Geometric Dimple Imperfection (GDI), and Linear Buckling Mode-shaped Imperfection
(LBMI) are the most well-known approaches to define imperfection patterns [51], [52]. In an
endeavor to design optimum cylinders with desired buckling load, Hao et al. developed a repetitive
algorithm [53]. Their algorithm divides the stiffened cylinder into several connected panels,
replaces the hoop and spring stiffened panels with equivalent uniform thickness panels, and
optimizes the cylinder's weight for specific collapse load. Their results showed promise to decrease
the mass of the hardened cylinder while keeping the knockdown factor the same. However, they
did not address the boundary condition between panels, and they did not decrease the sensitivity
of the cylinder to initial imperfections.

The methods mentioned above provide acceptable confidence that the cylinder will not buckle
before a specific force. However, thin-walled cylinders for smart applications require knowledge
of the exact force, displacement, and location of the multiple local buckling events generated on
their surface.

During the last century, numerous studies have been conducted to determine methods to predict
the post-buckling response of axially compressed short thin-walled cylindrical shells for a given
initial imperfection. The approaches can be considered of two kinds. One kind consists of semi-

analytical models based on classical shell theory, where two partial differential equations express



equilibrium and compatibility conditions in the cylinder [54]. In this approach, radial deformation
is simplified as the sum of trigonometric functions that satisfy the boundary conditions of the
cylindrical shell. Then, the partial differential equations are transformed into nonlinear algebraic
equations using Galerkin's approximation method. The second kind uses the finite element
formulation to develop nonlinear equations for the system directly. From this point, both
approaches use numerical techniques to solve the corresponding equations. Some researchers have
used Newton's method and solved the equations for increments of maximum deflection of the shell
or deflection of the shell at its center (only for cylindrical panels). However, this method does not
accurately predict the snap-back part of the response. In 1979 Riks [55] developed the arc-length
method where the force and axial deformation vary at the same time along a circular arc from the
previous step's solution. The original arc-length method had some deficiencies when the structure
had a snap-back response [56], [57]. The biggest issue is the possibility of going back instead of
going forward. Since the development of the Riks method, several modifications have been
developed to solve the problem mentioned above [58], [59].
1.4.4. Imperfection insensitive cylinders

Despite the increased ability to predict the response of an axially compressed cylindrical shell
for given initial imperfections, the control of buckling and the post-buckling response of such
structures remains unsolved. Researchers have recently tried to control cylindrical shells' buckling
and post-buckling response by manipulating the cylinder's shape to trigger specific buckling
modes. Jullien and Araar patented Aster shells (Figure 1-4(a)), which consist of the inclusion of
multiple arches on the circumference of the cylinder uniformly distributed over the height of the
cylinder [60]. Their primary goal was to improve the strength of cylindrical shells under external

pressure.



(b)
Figure 1-4: (a) section and 3D shape of Aster cylinder, (b) section and 3D face of the

corrugated cylinder by Ning and Pellegrino

Ning and Pellegrino optimized Aster shells by varying the size of the arches to design a
cylinder that is insensitive to initial imperfections under axial compression[61], [62]. They showed
that increasing the amplitude of the waves boosts the critical buckling load while also decreasing
the effect of initial imperfections (Figure 1-4(b)). Yadav and Grasimidis expanded the study on
the imperfection insensitivity of the cylinders with wavy sections to the combination of bending
and compression [63]. Using finite element analyses, they showed that the buckling force in wavy
sections is not changed significantly for several scenarios of initial imperfections. Such a method
is an excellent tool to improve the strength of cylinders for structural purposes. For example,
Yadav and Grasimidis studied the effectiveness of this type of imperfection insensitivity in wind
turbine towers [64]. Their study on two wind turbine towers showed significant insensitivity to
initial imperfection for the cylindrical segments of the towers and the conical shells that connect

cylindrical pieces. However, none of these studies investigate the post-buckling response of such
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cylinders, and in several cases material nonlinearity occurred before buckling events [61]. Results
from finite element analyses showed that the wavy section of the cylinder is not capable of multi-
stable response while it increases the axial strength significantly.

In another approach, Cox et al. [65] proposed to "nudge™ the cylindrical shell to control the
post-buckling response of their cylindrical panels. Using finite element analyses, they showed that
nudging the cylindrical shells with the combination of the first few buckling modes has a
remarkable positive effect on controlling the post-buckling response of the cylindrical panels
without a significant increase in the mass of the shell. Manipulating the stiffness to control the
buckling and post-buckling response of cylindrical shells is not limited to cylinders with isotropic
materials. As the application of fiber-reinforced composite materials increases, these materials are
being used in cylindrical elements. However, the orthotropic nature of composite materials does
not banish the sensitivity of the post-buckling response to initial imperfections, just as for thin-
walled cylinders from homogenous materials

Recently, Lincoln et al. [66] reduced the imperfection sensitivity of a cylinder's axial strength
by using the continuous tow shearing (CTS) method to manufacture variable angle composites.
The CTS manufacturing method enhances the thickness of the composite cylinder by gradually
increasing the fiber angle (Figure 1-5). Thickness variation is the main reason for the observed

decline in the sensitivity to initial imperfections.
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Figure 1-5: The thickness of the wall varies in CTS cylinders

1.4.5. Cylindrical shells with non-uniform stiffness distribution

Despite the extensive research on predicting and controlling the strength of axially compressed
cylinders (first buckling event), controlling the far post-buckling response of such structures was
not appropriately studied. Recently, Hu and Burguefio, motivated by smart applications of
structural instabilities, endeavored to manage the post-buckling response of axially compressed
cylindrical shells by tailoring the stiffness of the cylinder. They proposed different types of seeded
imperfections on cylindrical shells to manipulate stiffness in the desired way [28], [67]-[70]. The
approaches included the seeding of sinusoidal geometric imperfections to the cylinder's wall
(Figure 1-6(a)), changing the pattern of the shell's wall stiffness Figure 1-6 (b)), and the provision
of external and internal radial constraints (Figure 1-6(c)). These approaches were studied using
finite element analysis (FEA) and experiments on 3D printed specimens.

Results from the experiment and FEA showed that seeding modal imperfections or providing
a patterned non-uniform wall stiffness distribution decreased the sensitivity of the post-buckling
response to initial imperfections significantly. On the other hand, cylinders with external
constraints, internal constraints, or both did not show any advantage over ordinary cylinders

regarding the predictability of the buckling events unless one of the other two methods was used
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to seed imperfection in the cylinder's surface. However, constraints for transverse deformations

can increase the number of buckling events due to mode switches in the cylinder [71].

Figure 1-6: Seeding imperfections by Hu and Burguefio; (a) sinusoidal seeded imperfection,
(b) changing the pattern of shell's wall thickness, and (c) radial constraints [60]

Among the methods for seeding imperfections, changing the shell's wall stiffness showed the
most promise over the control of local buckling areas. Hu and Burguefio showed that different
patterns of stiffening the shell's wall lead to localized buckling in pre-defined slender regions [71].
However, the stiffening pattern in some of the tailored cylinders allowed deformation continuity
between the slender areas, which caused the local buckling events to affect each other. Further,
their work showed that providing a specific tailored non-uniform stiffness distribution to the
cylinder's wall (NSD cylinder), achieved by different thickening regions of the cylinder, allowed

control of the number, location, and sequence of local buckling events in the cylindrical shell [28].
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Figure 1-7: Buckling areas in cylinders with non-uniform stiffness distribution and load drops
in the axial response of the cylinders [60]

Figure 1-7 shows the primary proof that using an NSD cylinder makes it is possible to relate
the drops in the axial force to the buckling in thin regions. Also, the response from loading and
unloading in Figure 1-7 looks very promising for energy dissipation applications.

In a follow-up study, Burguefio and Guo presented a model describing the effect of localized
wall thickening on the strain energy released due to the localized buckling events, manifested as
load drops in the cylinder's global force-deformation response [72]. The distribution of stiffness in
their study divided the cylinder into parallel segments and stiffened areas at the top and bottom of
each segment. Also, they showed it does not matter which segments are neighbors, and the post-

buckling response will be the same for all the NSD cylinders composed of specific segments.
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The study by Burguefio and Guo showed promising results regarding the sequence of buckling
events and the likely area of buckling in each segment. However, the approach did not permit
predicting the exact force, displacement, and force drop for a given thickening pattern. Such a
prediction will open the door for many smart applications that require knowing in detail the
buckling events in the cylinder.

Harvesting electrical energy from the post-buckling response of cylindrical shells is a potential
application that recently received more attention [73]-[77]. Several studies tried to formulate and
predict the post-buckling response of functionally graded (FG) with piezoelectric layer thin
cylindrical shells for energy harvesting. However, their endeavor still lacks predictability since the
response of FG cylindrical shells is highly dependent on initial imperfections. NSD cylinders look
promising in that area since they provide some degrees of predictability for the FG cylinders [78].

More recently, M. Nazar et al. [79] tried to harvest electrical energy from cylindrical shells
with specific stiffness distribution. They attached the piezoelectric coated PVDF film to the surface
of the cylinder. Their results showed some jump in voltage during the buckling process, while the
post-buckling response from the experiment was far from the predicted response from FE and the
experiment on the cylinder without piezoelectric film. They did not study the effect of attached
piezoelectric film on a cylinder's body while using finite element analysis to predict the mechanical
response of the cylinder. However, it also shows the sensitivity of the cylinder's response to initial
imperfections.

1.4.6. Research gap

The presented background shows that the buckling capacity of axially compressed cylindrical

shells has been studied extensively for structural and mechanical structures. However, the

endeavor has concentrated on delaying global buckling or designing cylinders that do not buckle
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before a particular load. Recently, studies have tailored the cylinder's geometry to eliminate, or
reduce, imperfection sensitivity. However, the aim has been to increase the maximum possible
axial strength of the cylinder, and thus these efforts did not consider the cylinder's response beyond
the first buckling event.

Only a few research projects have been conducted to control the post-buckling response of
cylinders for smart applications. Among these studies, non-uniformly stiffness distributed (NSD)
cylinders are very promising based on previous studies in our research group. We understood that
it is possible to treat buckling segments of an NSD cylinder separately since the segments do not
affect each other. Yet, there is not an established framework to predict the post-buckling response
of an NSD cylinder without modeling the entire cylinder and using the finite element method.
More importantly, there is no design procedure for an NSD cylinder with a desirable far post-
buckling response.

1.5. Research plan

This study aims to develop analysis and design methods that allow gaining control of the post-
buckling response of axially compressed NSD cylindrical shells. This control is two-fold: 1) predict
the response of any given NSD cylinder, and I1) design NSD cylinders for a given post-buckling
response. The current NSD cylinder concept is based on thickening areas non-uniformly to limit
buckling events to specific zones on the cylinder. The following steps will be followed to achieve
the objectives of the proposed research:

Task 1. Develop a semi-analytical framework to predict the post-buckling response of axially

compressed NSD cylinders. (Figure 1-8 left)
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- Developing the framework's structure: outline the steps of the analysis framework to
separate the NSD shell into segments, simplify the segments into equivalent panels with
uniform thickness, and reintegrate the response of the NSD cylinder.

- Use finite-element analysis to predict the post-buckling response of every individual
cylindrical panel.

Task Il. Develop a procedure to design an NSD cylinder for favorite post-buckling responses.

(Figure 1-8, right)

- Developing design maps that lets the designer select appropriate geometries for equivalent
panels in each segment.

- Develop a procedure to design an NSD cylinder from design maps.

Task I11. Design NSD cylinders with a desired post-buckling response. (Figure 1-8, right)

- Design NSD cylinders: to show the validity of the design process and study the post-
buckling capabilities of NSD cylinders.

- Design an NSD cylinder for a targeted post-buckling stiffness.

- Design an NSD cylinder for targeted load drops in specific end shortenings in the buckling

events.
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Figure 1-8: Schematic research plan (a) predict the post-buckling response of any given NSD
cylinder and (b) design an NSD cylinder for a given post-buckling response
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Chapter 2. A framework to predict the post-buckling response of NSD cylinders

Nan Hu and Burguefio [71] showed that seeding imperfection could force thin-walled
cylindrical shells to buckle in a certain way. As one of the strategies, they introduced the concept
of cylindrical shells with non-uniformly distributed stiffness (NSD cylinders) to control the post-
buckling response. Here, a semi-analytical framework to predict the axial response of NSD
cylinders is presented. The framework has three main steps: 1) dividing the cylinder into individual
panels assumed to be connected in parallel and series, 2) predicting the axial response of an
individual panel with a semi-analytical model, and 3) integrating the response of the individual

panels.
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Figure 2-1: Wall-thickness pattern along the surface of a cylinder with Non-uniform Stiffness
Distribution (NSD); h is the cylinder height, and t is the wall thickness of each area

2.1. Dividing NSD cylinder into parallel segments

The buckling events in NSD cylinders are limited to slender zones (areas with a thickness equal
to t;, in Figure 2-1), where thicker zones (areas with a thickness equal to ¢, in Figure 2-1) impede
interaction between the slender zones. It is assumed that the parallel zones of NSD cylinders are
isolated from each other, and thus the cylinder can be divided into parallel panels. Figure 2-2 shows
the separated parts of the cylinder and their boundary conditions. These assumptions are based on

observations from experiments on NSD cylinders where the deformation on the divider area were

19



visibly negligible and from a detailed study on finite element simulations for a sample NSD

cylinder.
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2.1.1. Boundary conditions

As the cylinder is divided into parallel segments, their boundaries must be restrained in a way
that resembles the behavior of the segments in the actual cylinder. The top and bottom boundaries
of an individual segment are equal to the boundaries of the actual cylinder. However, the sides of
each segment are now experiencing a new condition that must be addressed. There is no concern
about the boundaries of segment D in Figure 2-2, as its axial response remains linear during the
loading period. On the other hand, the side boundaries of the segments subjected to buckling (A,
B, and C in Figure 9) are connected to the thick areas in segment D. Connection to the thicker area
provides some degree of rigidity. Here, it is assumed that the thicker area in zone D is at least two

times thicker than the body of the cylinder. Doubling the thickness increases the moment of inertia
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of the section by 8 times and the bending moment from the thin zone during the buckling event
has a negligible bending effect on zone D compared to the deformation that would be generated in
this zone if it had the same the thickness as the thinner segments. Thus, it is assumed that side

boundaries are clamped but can move along the axial direction.
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Figure 2-3: ée;c;tions in the Iongiit;uc;iinal and circum;fe;réntial direction of the cylinder to
investigate the boundary conditions in buckling segments
A finite element model for an NSD cylinder was developed to examine the assumption of rigid
boundaries. The cylinder’s radial deformations during compression were investigated in several
sections from the FE model. Figure 2-4 shows the radial deformation at the cylinder’s mid-section.
The obtained responses supported the assumption of rigid boundaries on the sides since the radial
deformations and rotations at the edge of the stiff regions are both nearly zero. The investigation
on boundaries considered the deformations from several sections in the cylinder. These
deformations, in addition to details of the finite element model, are shown in Appendix of this

document.
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Figure 2-4: Sequence of radial deformation in the circumference of 50 mm
To load the cylinder uniformly during experiments, the top and bottom edges are connected to
a thick surface inserted into a stiff grooved plate. This configuration leads to clamped boundary
conditions for the top and bottom cylinder edges. Also, the top and bottom of segments A, B, and
C are thickened by nature of the NSD cylinder design. Therefore, applying the same displacement

on the surface means avoiding bending at the ends, which means that naturally clamped boundary

conditions are provided at the top and bottom edges of the cylinder.

2.1.2. Divider segments

The cylinder is divided into parallel segments and compressive loading is applied in their
longitudinal direction. Segments D, which have a small thin region at their top and bottom ends,
are not expected to buckle and, as a result, can be considered as linear axial springs. Since a
uniform deformation is applied to the cylinder’s top edge, all the segments experience the same

deformation at the top. The total axial load in the cylinder is therefore the sum of forces in the

22



segments, and they can be modeled as parallel springs. The stiffness of the linear spring of segment
D is calculated with Equation (1)
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2.1.3. Equivalent Panels

Segments with potential buckling regions (A, B, and C in Figure 2-2) have two thick zones at
the top and bottom, and a thin zone at the center — the targeted buckling region. Thus, the main
problem is to predict/design the post-buckling response of a cylindrical panel with non-uniform
thickness under compression. Since there is no fully established model for the panels with non-
uniform stiffness distribution, the only way to accurately predict the post-buckling response of
such a cylindrical panel is using the finite element method (FEM).

Although it is helpful to use the FEM to predict the post-buckling response of the NSD panels,
a finite element (FE) model of the exact panel will not help with the design process where the
panel is yet to be determined. Also, finite element analysis (FEA) is inefficient for functionally
graded cylinders, and the amount of computational time required to deal with contact between
material layers is significant. It was thus decided to simplify the NSD segment, which has non-
uniform stiffness, with a uniform stiffness panel and then use a semi-analytical model to predict
its post-buckling response under compression.

Replacing the NSD segment with an equivalent panel with uniform thickness facilitates using
FEA for post-buckling response prediction. However, the special geometry of stiffness distribution
in the segment makes it totally different from a uniform panel with a regular distribution of radial
displacements. The shape of the segment forces the buckling event to occur at the center of the
segment even without the explicit definition of an initial imperfection. This is beyond considering

larger initial imperfections at the center of the cylindrical panel. Increasing the amplitude of
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imperfection at the center of the panel smoothens the force-displacement curve of the segment to
the point that the force drop due to buckling disappears.

Given the considerations noted above, a semi-analytical model that addresses the simulation
needs of NSD segments of a cylinder was developed. The proposed method applies to regular
panels by considering some adjustments. The special treatment for NSD segments is discussed
later in this chapter.

First, the NSD segment with an equivalent panel is replaced with one of uniform thickness.
The equivalent length of the panel is calculated with the assumption of constant width. The

approach to determine the equivalent width of the panel is presented in Chapter 3.
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Figure 2-5: Replacing thick zones (t=t1;) in the panel with an equivalent length of the shell
with identical thickness to mid-section (t=ty)

The wall thickness of the top and bottom zones is set equal to the wall thickness of the center
zone by modifying its length to simplify the panel with non-uniform thickness. This idea has been
used by others to determine the buckling capacity of cylinders with stepwise wall thickness under

pressure [80]-[82].
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The equivalent length of the thick-walled regions at the top and bottom of the panel should be
determined so that the transverse stiffness at the edge of the thin area is unchanged. The equivalent
length of the shell with the transformed thickness (top and bottom regions) is calculated in two
general steps. First, the ticker regions at the top and bottom of the panels are assumed as one-way
cantilevers and their transverse tip displacement, A, under an applied tip moment, M, is determined
(see Figure 2-5). Second, the length of a cantilever shell with a thickness of the mid-section of the
panel (t, in Figure 2-5) that yields the same deformation A under an equal bending moment M is
determined.

The bending moment and deformation at the edge of the cantilever elements are related by

Equation (2):

_3EL, _ 3El,

2 - 12
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where i indicates the segment’s name (A, B, or C), E is the modulus of elasticity, Iy, is the initial
length of thicker areas at the top or bottom, I, is the equivalent length of the same area, t;, and ¢,

are the thicknesses of the segment’s mid-section and the thicker areas; M is the boundary's bending
moment and A is the edge’s deformation in the radial direction. The equivalent length of the thicker

zones is then calculated with Equation (3).
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Equation (3) shows a simple solution for finding the equivalent length for the NSD cylindrical
segments. NSD cylindrical segments do not fulfill the assumption of uniform thicker areas at the
top and bottom of a cantilever beam behavior. However, these assumptions were considered

acceptable to develop the proposed framework. Chapter 3 presents a detailed discussion on the

calculation of the panel’s equivalent length.
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2.2. Composition axial responses of separated segments

The geometrical modifications described in Section2.1 permit modeling cylindrical NSD
segments as uniform cylindrical panels under compression, which simplifies determining an
analytical solution to their post-buckling response. However, the equivalent shell panel has a
different axial stiffness than the original one. To correct the axial stiffness deviation, springs are
added in series to the equivalent panel to match the initial panel stiffness. This spring is to respond
linearly under axial compression since the equivalent panel is responsible for the nonlinear part of
the response. The stiffness of this spring is calculated by matching the axial stiffness of the original
NSD cylinder. Considering the dimensions of the cylinder from Figure 2-2 and the length of the
equivalent panel as 3, , the stiffness of the linear spring is calculated with Equation (4):

1 1 1

i1 ksegmenti kpaneli

1 h - 2l1i 2111' - 2l2 + 2[2
ksegmenti B Etbb Etlib Etlibl + Etb (b - bl)
4
Et,b “)
panel; — T
1

. bEty ty(byty, + bty — byty)
" btb ((l:lll - lZ)tli - llitb) - bl(tli - tb)(l:,litli + llitb)

The total axial displacement in an individual panel is equal to the sum of the displacements
from the linear springs and the displacement from the nonlinear response of the panel. Similarly,
the axial force corresponding to a given displacement in the cylinder is the sum of axial forces in
all segments (A, B, C, and three D panels) at that displacement. In other words, the segments

contribute to the response of the cylinder as resisting elements in parallel, while different regions
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(i.e., different thicknesses) within an individual segment behave like elements in series. Figure 2-6
shows the framework followed to predict the elastic post-buckling response of the NSD cylindrical
shell in Figure 2-1.

The stiffness of all the equivalent linear springs in the cylinder are known, except the axial
nonlinear response of the equivalent cylindrical panels Ky, Kp . Kc - I Section 0, a classical
method is used to develop a relationship for the nonlinear response of an individual cylindrical

panel with all-clamped boundary conditions.
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K, ,=Axial Stiffness of nonlinear panel j (j=A.B, or C)

A D B D C D
Kj, =Axial Stiffness of linear panels on top and bottom of panel j
Kj =Axial Stiffness of panel j (j=A,B,C, or D) A " C

— chlac»c thicker £ Add equivalent linear
Divide to shells in panels . i axial springs
vertical panels B C AB and C with at top and bottom(K;)
3:\:\[}: - - quivalent thin shells - <. -
a- e Key K, K |
E - - Apl
K
Replace each zone Al K¢,
With K{"nl
a linear axial spring K.
1
K, KDy =Axial linear stiffness of top KBl
1l and bottom zones in panel D Add forces form each
Ky
K ; nl
Dy KDjp=Axial linear stiffness of N ) P‘HECI to _ﬁnd € . K
KDH Mid zone in panel D final force in each By Y
displacement

: . Add deformartions
Add demn?‘)amons % % from linear and
from.lmea.r K, #### K, Kg K¢ nonlinear
Springs in series 3xKyp springs in series

Figure 2-6: Framework to obtain the post-buckling response of axially compressed NSD cylinders through a semi-analytical
solution
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Two aforementioned simplifications are the basis for the proposed framework: 1) diving the
NSD cylinder into parallel isolated panels, and 2) replacing the non-uniformly stiffened segments
with an equivalent uniform panel.

The first assumption was validated for several NSD cylindrical shells by Guo et al. [72], while
the second simplification had not been evaluated before this work. It seems inevitable to simplify
a non-uniform stiffened cylindrical segment with one with uniform stiffness. However, the
stiffened parts of the segments have several variables that could affect the length of the equivalent
uniform panel. For instance, the ratio of b, /b , and [, /1, in Figure 2-1 are two geometric factors
that potentially affect the length of equivalent panel. A study of the geometry of the stiffened area

and its impact on the post-buckling response of the segment is presented in Chapter 3.

2.3. A semi-analytical model for axially compressed cylindrical panels

In Section 2.1 the concept of separating panels and transforming them into equivalent ones
with uniform thickness was discussed. This section presents the analytical solution for the elastic
post-buckling response of a single panel with clamped boundaries at the top and bottom edges and
a guided roller on the sides. The resulting force-displacement curves are compared to FEA results
for individual panels with equal boundary conditions. The final results from the semi-analytical
model and FEA are compared to experimental results for several cases. The similarity between all
three results validates the idea of separating panels of the NSD cylinder and recomposing the
response from that obtained for individual panels.

At first, the semi-analytical model for the cylindrical panel looks impractical when there is
access to FEA programs like ABAQUS or ANSYS [87]. Nevertheless, in reality, because of the

specific shape of the thickened areas in NSD cylinders, specific buckling deformations are being
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dictated to the individual panels, which are very hard to predict by an FEA software. Also, the
semi-analytical model is very useful for situations without access to commercial FEA programs.
But as mentioned in Section 0, most importantly, the semi-analytical solution is a better option
when we are dealing with a functionally graded cylindrical panel where FEA programs need

significant time to solve contact between layers.

2.3.1.1. Analytical Solution for cylindrical panel with all edges clamped

The semi-analytical model assumes that the lateral deformation of the cylindrical panel is a
combination of pre-defined shapes that are compatible with the boundary conditions. Figure 2-7
(left) shows the panel, the boundary conditions, and the direction of the applied compressive
displacement. Notations for the coordinate system, deformations, and stresses in each direction for

the analytical and FE models are shown in Figure 2-7 (right).
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Figure 2-7: (left) Schematics of a cylindrical panel with all edges clamped, (right) Notation for
the deformations and stresses in the cylindrical coordinate system [axis, deformation
(analytical model), deformation (FE), stress (FE)]
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According to classical shell theory, the deformation of cylindrical shells should satisfy the

following equilibrium and compatibility equations based on von Karman’s theory [21]:

f: * * *
DViw — % - [f.yy (W.xx + W,xx) - foy(W,xy + W,xy) + fax (W.yy + W.yy)] =0
% 0% 0%

V4=——+2 + 5

( 0%x 0%2x0d%y = d*y ) ©)
0 ) Et3
' ( X T 9x’ Y T 5)’ b= 12(1-v2)
w

Vif —Et (W.gcy ~WaxxWyy — % T 2Waey Wiy = WaxWyy — W,yyW,*xx) =0 (6)

In these equations, R is the radius of the panel, w is the radial deformation, w = is the initial
radial imperfection, and f is the Airy stress function. The Airy stress function definition considers

the stresses in the x-direction, y-direction, and x-y plane to be given by:

N, = f:yy Ny = fxx ny = _f:xy (7)

The in-plane deformations u and v are related to out-of-plane deformation w and * , and the

airy stress function is the following way:

Et 1, ) w1 )
fyy = 12 [u,x + EW’X +w,wy +v (vw Rz + Ew_y + W_ywly)]
Et 1, ) w1 )
fax = 7 [v (u,x + S Wi + W_xw_x) + v, — 7 + Wy + W’yW’y] (8)

Et

—fxy = 2(1+v) [u.y T Ux FWeWy +wew, + W,xW,;/]

2.3.1.1.1. The radial deformation functions

The solution for Equations.(5) and (6) is based on taking the radial deformation w and the
radial initial imperfection w* as functions of coordinates x and y with unknown coefficients in a

way that they satisfy the boundary conditions of the panel. It is then possible to find the unknown

31



coefficients by minimizing the integration of Equations.(5) and (6) with respect to them.
Considering a clamped boundary condition in all edges with the panel sides allowed to move
axially, w and w*should satisfy Equation (9).

w=w"=0 (fory=0&b), f =0 (fory=0&Db) 9)

Any equation with the following shape can be applied to the Equation (9).

LTXN [ X\ (. 1T\ (. JaTy
W= ZZZZ 11121112<Sm l )(Sn l )(S b )(Sm b)

i2 J1 J2

zzzz LIX\ (. LEX\ ( ATy ( . JoTy

w* = Hijinjijat (sm i )(sm i )(sm 0 )(sm o )
i2 Jj1 J2

The above equations can be transformed into a cosine form as:

v = YYD G eos () cos ()

(10)

iz J1 J2
~ cos ((iz - lil) nx) cos ((iz + é'l) ny)
~ cos ((iz + lil) nx) cos ((/2 - ;'1) ny)
+ cos ((iz + ;1) nx) cos ((fz +£1) 7T3’>)
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= TET Tt (C7) s (4522)

2 J1 ]2

((iz - i1)7fx) <(12 +j1)”3’>
— COS f .COS T

(iz +imx U2 —Jjomy (i +iy)mx
— COS <f) .COS <T> + cos <f) .C

os ((]2 +£1) ”Y))

=C

One more transformation of the equations gives us the following equations for radial

deformation and initial imperfections.

w = ZZZZ Qi (COS <(lz - ll)nx Gy — ]1)7ty>
g liiz2jij2

i Jj1 J2

(i — i1)7Tx ]1)7TJ’> <(12 - 11)7Tx Ua +j1)7TY>
b

b

(iz +iy) mx ]1)”3’) ((12 + i) mx + U2 +J1) 7TY>

+ cos
b

<(i2 - i1)7fx Uz +Jj1) 7T3’> <(lz + 11)7Tx Uz _j1)7TY>
— cos ] —C

(z +i)mx (2 +J1) 7T)’>
s )
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V= Z ZZ Z g Hirizjnjp t(COS ((12 W, o) ﬂy>

PR
+ cos ((lz —l)mx (2 —Jj1) ny) ((lz —mx Gzt ;1) ny)
~ cos ((lz —wmx (s +11) ny) ((lz +i)mx Uz = l])'l) ny)
_ cos ((zz ti) mx ]1)7Ty> + cos ((lz +h) mx Uzt ;‘1) ny)
+ vos ((iz + lil) mx (o 21) ny))

In the literature, there are only a few research studies that considered clamped boundaries and
tried to solve the fundamental shell equations using pre-defined radial deformations. Even those

studies oversimplified the problem by considering the deformation equation as follows [34], [83].

R [17TX . Ipmy 2 (11)
= Z as, (sm_) (522
i1= =

This equation implies that i; and i, and j;, and j, are identical, respectively. If we reshape

Equation (11) based on this assumption, w can be written as follow:

m n
1 2i, Ty 20X 2iimx  2i,my
W=ZZB Qyip (2= ( b )_2C°S< l >+COS< . T )

204 X ZiZny)
l b )

+cos(

By considering the deformation as Equation (11), we lose the chance of having both negative
and positive deformations in a panel in one deformation mode, which is not necessarily a correct
deformed shape. The other problem with this assumption is that we have only one multiplying
factor for any of the cosine expressions. For instance, if we consider cos(2nx/l + 10wy /b), it only

appears in the expression of a;s. These two limitations make the response inaccurate, and we need
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a large number of expressions to find a decent post-buckling response. However, we can assume
the radial deformation in a way that covers the old assumption. The following expression for the

radial displacement and initial imperfections can satisfy the boundary conditions.

A
_ i XN (o TTHTTX . TYN (L TUTTY
w Z, a; (sm ; )(sm ] )(sm b ) (sm—b )

(12)

it (Sin ﬂl_x) (Sin milnx) (Sin %) (Sin nil:y)

s')P
I
INgl

~
Il
Juy

Here, x and y are the in-plane coordinates of the panel, m;, n; are the number of the waves in
the x and y directions (respectively), a; is the unknown coefficient for the radial deformation, y;
is the known coefficient for the initial imperfection, and t is the panel thickness. A larger number
of modes m;,, and n; considered in the solution is expected to provide a more accurate force-
displacement response. However, increasing the number of modes in the deformation functions

increases the computational cost of the solution.

In Equation (12), we can write:

(505 3 45 s () s (2 )

(sin %) (sin ni;fy) = %(cos (—(ni _bl) ny) — cos (—ni +bl) ny))

Then we can write w as follows:
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a;(cos (M) _cos (W) — cos ((mi —ll) 7Tx> os ((nl +b1) Ty

B

i=1

~ cos ((mi +l 1) nx) cos ((ni —bl) ny)

(m;+1) nx) cos ((ni +1) ny))

+cos< i A

Again, considering

cos(a).cos(B) = %(cos(a + B) + cos(a —p))

the function for w ca be reconfigured as follows:

W= zA:% a;(cos ((mi —ll) nx (n; —bl) ny) + cos ((mi —l Dmx  (my —b1) ny)

i=1

(mi—Dnmx (m+1)my (mi—Dnmx (m;+1) my
_COS( A )_COS< . b )

_ cos ((ml- +ll) X N (n; —bl) ny) ~ cos ((mi +ll) X (n; —bl)ny>

(m;+1) nx N n;+1) ny) + cos ((mi + 1) nx B (n;+1) ny))

+COS( l b l b

The same procedure is applied to w*
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(m; — 1) mx 4 (n;—1) 7T3’) + cos ((mi —Dmx (n;—1) 7T)’>

1 b B

1
w* = guit(cos ( ; 5

A
i=1

mi—Dnmx (m+1)my mi—Dnx m;+1) my
_COS< l A )_COS( l T b )

mi+)nmx (n;—1)my (mi+1) ix (n; — Dmy
_COS< l A )_COS( z T b )

(m; +1) nx N (n;+1) ny) + cos ((mi +tDmx (i +1) ny))

+COS< l b I b

Having w and w* in the above forms, their second derivatives follow the same form with

different coefficients.

A2
i (mi—Dnx ;-1 my (mi—Dnx ;-1 my
Wx = ;W‘li <_(mi - 1)° (cos( l + > ) + cos( l — p )

mi—Dnx (m;+1) my (mi—Dnrnx m;+1) my
_COS( I T )‘COS( . b ))

+ (m; +1)° <COS ((mi +ll) g ( _bl)ﬂ}I) + cos ((mi +l1) mx  (n —bl) ny)

mi+Dnx (m;+1)my mi+Dnx (n;+1D)my
_COS( I T b >_C°S< I b )))

A 2 i i ;i - . —
Wyy = Zn_ai <_(ni - 1)? <cos ((ml ll) mx bl) ”y) + cos <(mt 11) mx  (n bl)ny>

(mi+1)nx (n;—Dmy (mi+Dnx (n;— 1wy
_COS< T b )_COS( [ b ))

(m; — Dnx N (n; + l)ny) + cos ((mi — Dnx 3 (n; + 1)7Ty)

) 2
+(n;+1) (cos( ; b i 5

(m;+Dnx (n; + Dmy (m;+Dnx (n; + Dmy
_COS< T T % )_COS( I b )))
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— N m* 1 1 (m; — Dnx  (n; — Dmy
Wy = ;%ai(—(mi - 1D(n; — )(cos< l + p )

~ cos <(’"i ‘l Dmx _ (o _bl)”y )) + (my = D)y

(m; — Drnx  (n; + 1)ny> ((mi —Dax (n; + 1)7ry>
+ — cos — )

+ 1)(cos ( 7 5 ] 5

(m; + Dmx N (n; — 1)ny>

+ (m;+1)(n; — 1)(cos< i 5

— cos <(mi +l Dmx - (n, —bl)ny>) —(m;+ 1Dy

(m; +1) mx 4 (n; +1) ny) ~ cos ((mi tDmx (i +1) ny)))

+ 1)(cos ( ; 5 l 5

As we put these expressions in Equation (5), it is obvious that V*f becomes the product of
several (cos((ml-l + Dmx/l+ (n;; + 1)7Ty/b) x cos((m;; £ V)mx/1 + (n;, £ 1) my/b)) which

can be written as follow:

2mp+22npa+2 2

Py D fweos () (13)
i=0  j=0 k=1

where m, and n, are the maximum number of contributed modes in Equation (12) for the x and y
directions, and f; . is the multiplier for the cosine function in If. A computer code developed in
the software Mathematica to solve Equation (13). The result is the function F, which has similar

cosine expressions as V*f but different multipliers to the cosine terms (Fij).

2mp+22np+2 2

. s k
F(x,y) = Z Z Z Fijkcos <# +](1¥> (14)
i=0 j=0 k=1
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For any given set of {{my,n,}, ..., {mx, n,}} all the multipliers F;;, are known. However, the

Airy stress function can also contain functions A(y) and &x) with V*i(y) = V*@x) = 0. Then, it

should be expressed as follows:

f=40)+6(x) +F(x,y) (15)

Since the side edges of the panel are movable in the direction of the applied axial force (see
Figure 2-7(a)), the integration of Ny over the width of the panel should be equal to the applied force

(P). Thus,
+= [ty =100 =-(3)(F) =

Also, the moveable edges on the sides of the panel only can move parallel to the x-direction,
and as a result the change in distance between these edges should be zero during the loading

process. This condition is fulfilled in an average sense as [84]:

I (b
V= f f vydydx =0
0 Jo

N, —vN w 1
— Yy X 2 *
Vy = Ft + R EW,y —WyWy

(17)

Thus &x) can be expressed as:

0(x) =v G) (g) x?% — %fol fob(fxx —vfyy) +E.t (% — %W?, = W,yW,;,) dydx (18)

Having the Airy stress function related to the radial deformation allows solving Equation (5)
numerically for any axial deformation. The axial deformation itself is calculated from Equation

(16).

l
d= j U, dx (29)
0
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Ny—vN, 1 , )
—__W,x_W,xW,x

Y = T Ft 2

By replacing f and w in Equation (5) and using Galerkin’s approximation method for each
unknown in Equation (12), an equation is produced. It means that any m;, between 1 and m, and

any n; between 1 and n,:

f f Sln— sm milnx) (sin %) (sm i ) (DV*w %

- [ﬁyy (W.xx + W;cx) —2fxy (W,xy + chy)

(20)

+ frx(Wyy + w3y )dxdy = 0

The number of equations is equal to A, which is one equation less than the number of unknowns
in Equation (12). The unknowns are a, to a, and P. Axial deformation d can be calculated from
having these unknown variables. Thus, we have A + 1 unknowns and A equations. The last
equation comes from assuming that all the unknown variables are function of the curve length (s).
a; = a,(s),...,ap = ax(s), P = P(s)
As a result, the axial end shortening d is a function of s. Then, based on general continuation
theory, these variables should be continuous with respect to s, which means:
4 211 =v?) 6p S5d\2
> (5 (2) () - @
- Etb  és ds

In Equation (21), 8p/&s is multiplied by the factor of [(1 — v2)/Etb to scale it to a reasonable
range close to other variables. Without this scaling factor the solution process will be very slow or
will not converge.

These equations are solved using the pseudo arclength method [85]. The method is simply
Newton’s method with consideration of Equation (21). Since Equation (21) requires a solution for

specific ds at each increment, this solution is called pseudo arclength method.
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Figure 2-8: Steps of semi-analytical solution for the post-buckling response of a cylindrical
shell under compression

Now we know how to solve equations for any given combination of mode shapes, but the
question is which modes we should consider in the calculation. We previously used Equation (10)
to introduce radial deformation and changed iy, i,, j; , and j, from 1 to 4 [86]. This left us with
100 equations to solve, which still did not match the post-buckling response of panels and cylinders
captured from FE analysis very well. In addition, the resulting response from such an assumption
did not solve the imperfection sensitivity of the cylindrical panels. However, by taking a deeper
look into the stress distribution in the NSD segments, we can see that only certain modes can be

activated during axial loading.
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(@) (b)

Figure 2-9: (a) Schematics of NSD cylindrical segments, (b) schematic distribution of stress

prior to buckling event

Figure 2-9 shows a representative stress distribution in the NSD panels prior to the buckling
event. It shows significant stress concentrations in the middle part of the panel, which is the result
of a shorter thin part in the mid-width of the NSD segment. The big difference between stresses in
the mid-section and edges ensures that buckling modes with the maximum radial deformation
occur at the center of the panel. Therefore, it is reasonable to consider only the modes with the
potential of maximum deformation at the panel center. All the modes with m; and n; as odd
numbers in Equation (9) fulfill this requirement.

The semi-analytical model was implemented in three programs in Mathematica Wolfram
software. The first program finds the Airy stress function by assuming the form of radial
deformation. The second program develops nonlinear equations from Equation (6) by using
Galerkin’s method. The third program solves these equations and finds the axial force and

deformation, radial deformation in the center of the panel, and external energy of the panel.
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In the rest of this study, the semi-analytical model uses Equation (12) for the radial deformation
of the panel with only 49 deformations modes (m; &n; € {1,3,5,7,9,11,13}). Also, since the
compression at the center of the panel is very high, the first buckling mode looks very probable,
and thus a large initial imperfection coefficient (0.001h) is applied to the first mode, and other
modes are kept to 10% of that coefficient. This way, the first mode dominates the response over
the others, which based on Figure 2-9 looks reasonable. To continue, we find out about the validity
of such an assumption. To better show how the current semi-analytical model improves the
prediction of post-buckling response of NSD segments, the model’s results are compared with the
responses obtained from FE analyses, experiments, and a semi-analytical model previously
developed by the author [86].

Using the semi-analytical model with the pseudo-arc length method (Equation (21)) provides
the path for the panel’s force-displacement response. If buckling occurs in the panel, the force-
displacement curve shows snap-back behavior. It means that after buckling both the force and
displacement decrease to take the force-deformation response to a new equilibrium position. FEA
and experiments cannot capture this behavior since it is only a mathematical explanation. Rather,
these methods show a force plateau or a drop in force at a constant displacement for load control
and displacement control, respectively.

In this study, the experiments and finite element analyses were conducted in displacement
control. Using displacement-controlled loading helps to capture the load-deformation of the
system even when the slope of the force-displacement response of the cylindrical panel is zero or

negative after buckling in the panel.
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Figure 2-10: Equilibrium path in snap-back behavior compared to force-displacement from
force control and deformation control loading

2.3.1.2. Model verification for post-buckling response

Four finite element models with different geometries were prepared using the software
ABAQUS [87] to verify the semi-analytical model. The geometry of the panels is shown in Table
2-1. Four node SR4 shell elements represent the cylindrical panels, and a linear elastic material
was assigned with an elastic modulus of 1300 N/mm? and Poisson’s ratio of 0.2. The top and
bottom edges of the panels are clamped, while the side boundaries are fixed for radial and
circumferential deformations and outward rotations but deform in the axial direction. Loading was
in the form of a uniform axial displacement, equal to 1.5% of the panel’s length, applied to one
end of the panel. To eliminate the effect of vibrations from the buckling events, a dynamic implicit
solver with the quasi-static application was used with a maximum time step of 0.01 s.

Results of finite element analyses were compared to the semi-analytical model using the
general equation for w and w* (see Equation (10)) [86]. To have an acceptable response from a

panel, numerous cosine modes are needed. However, as described in Section 0, the model for w
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and w* were improved as given in Equation (11). For the NSD cylinders, where stresses
concentrate in the center of the panel, m; and n; are odd numbers (in this case 1,3,5,7,9,11,13).
However, for the panels without stiffened areas concentrated in the center, radial deformations
from Equation (11) will not necessarily match with correct answer. Thus, comparisons between
FE analyses and the semi-analytical model are only done for the radial deformation from Equation
(10). To validate the efficiency of Equation (11) for predicting the behavior of an NSD segment,
results from the semi-analytical model to FEA solutions and experimental results are provided in
Chapter 3.

In the semi-analytical model, the initial imperfections follow Equation (10), while in the FE
model two options are available to apply the initial imperfection: 1) conducting a linear eigenvalue
analysis and importing modes of interest to the post-buckling model, or 2) considering the
imperfection at the node’s coordinates. In this study, the initial imperfections were applied at the
coordinates of the nodes based on the first buckling mode with p;1,; = 0.05 and all other
Hiyinjij in Equation (10) equal to zero. The panel side edges were clamped but with the ability of
axial motion alongy = 0, y = b, and x = | (see Figure 2-7). A uniform axial compressive
displacement equal to 0.015h was applied to the top edge of the panel.

For each panel in Table 2-1, four semi-analytical models were developed for (A= w=1) to

(A= w=4) in Equation (12). The material properties and initial imperfections in the semi-

analytical models are identical to those in the FE models.
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Table 2-1: Dimensions of cylindrical panels for verification of the analytical model

Length Width Radius Thickne
Cases () (b) (R) ss (1)
mm mm mm mm
(a) 80 80 50 0.5
(b) 80 40 50 0.5
(© 40 60 50 0.5
(d) 60 40 50 0.5

Figure 2-11 shows that the analytical model’s accuracy improves as the number of modes
contributing to the radial deformation equation increases, especially for larger cylindrical panels.
That is, more modes should be used in the analytical model when evaluating bigger panels in order
to obtain an accurate prediction of the post-buckling response. For all cases, the analytical model
with A = yw= 4 accurately predicts the displacement corresponding to the first buckling event.
However, the panel’s post-buckling stiffness predicted by the analytical model is higher than the
response calculated by FEA.

While increasing the number of involved modes in the radial deformation (A and ) leads to
improved accuracy, it also increases analysis time since the number of nonlinear equations
escalates significantly. For example, by increasing A and y from 4 to 5, the number of nonlinear

equations to solve rises from 100 to 225, which significantly increases computational time.
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Figure 2-11: Comparison of force-deformation curves from FE and analytical models for four
cylindrical panels with all-clamped boundary conditions
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Chapter 3. NSD buckling segment discussions

Chapter 2 presented the concept of replacing the parallel segments of the NSD cylinder with
equivalent panels and then matching the stiffness of the equivalent system with the original
segment by adding linear springs at the top and bottom of the equivalent panel. The equivalent
panel was previously defined as a cylindrical panel with a uniform thickness that had the same
width as the original segment but a different height. However, this simplification neglects the
effect of other dimensions of the stiffened area in the NSD segment.

In this Chapter, the effect of those dimensions is discussed, and the equivalent panel
dimensions are modified to consider the width and the depth of the stiffened zones in a simplified
way. Then, relations between the force and deformation in the segment and the equivalent panel
are developed for later use in designing NSD cylinders with a desired post-buckling response.
Finally, the validity of the assumptions in this section is examined against FE analyses for several

given NSD segments.

3.1. Thickened area and equivalent panel

The stiffened areas in NSD cylinders in previous works of Hu and Burguefio and Guo, Liu and
Burguefio are assumed as two rectangular areas on top of each other[2], [70], [72], [86], [88]. This
approach was taken to 1) concentrate the axial stresses in the center of the thin zone, and 2) avoid
modeling and production complications. For the first reason, it is sound to have the shortest thin
zone in the mid area of the segment. When the thin area is shorter, it attracts more stress, and
therefore buckling more likely starts there. However, the second reason (simplicity) is responsible
for the rectangular shape of the stiffened areas since a triangular shape or curve with a peak at the

center also fulfills the goal of concentrating axial stresses in the mid buckling zone.
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Here, for the same very valid reasons, the shape of the thickened areas is kept the same as in
previous works. In the proposed framework, an equivalent panel has replaced the thickened area.
However, the effect on other dimensions of the thickened area, such as the width of the thickened
area in comparison to the width of the segment or the height of the thickened area in the bottom
and top of the cylinder, were not considered.

For instance, the framework takes the same equivalent length for all the thick/stiff segments in
Figure 3-1 since there is no impact in the definition of the equivalent length from the width of the
thickened area [86]. Having the same equivalent length for equivalent panels means that these
segments share the same buckling force and drop in force after buckling. The end shortening
corresponding to the buckling event and drop in energy of the panel is not independent of the linear
springs at the top and bottom of the panel, and thus they can be different for the segments with the

same equivalent panel length.

(@ () | ©
Figure 3-1: Cylindrical segments from NSD cylinder in which the stiff area gets bigger from
(@) to (c)

A finite element model for cylindrical segments like that shown in Figure 3-1 was developed
using the software ABAQUS to show how the cylindrical segments with the same equivalent

length behave differently under axial compression. The length, width, radius, thickness of thin and
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thick parts, and the maximum length of the thick area are the same for both segments. The only
difference is the width of the thick area. Dimensions of the cylindrical segments are presented in
Table 3-1. The material is acrylonitrile butadiene styrene (ABS) with an elastic modulus (E) equal
to 1300 N/mm? and Poison’s (v) ratio of 0.3.

The equivalent length of the panel (el) using Equation (2) in the framework for all the panels

is calculated as follows:

3

t, 3 0.5\2
l'y, = (t_)2l1"': (1—5) X 60 =11.54mm - el =11.54 + 40 = 51.54 mm
li :

Table 3-1: Geometry of NSD cylinder segments (all dimensions are in mm)
R h h1 |b bl(a) |bi(b) |bi(c) |11 |I1b) |I11(c) |tb t1
50 100 40 65 24 32 40 25 20 15 0.5 1.5

The comparison of results in Figure 3-1 shows that despite the proposed model considering all
these segments as equal (with the exception of deformation corresponding to buckling event and
energy drop), the dimensions of the thick area has a significant role in the desired design factors
from buckling of the segment such as energy drop, force drop, and radial deformation of the

segment right after buckling.
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Figure 3-2: Comparing the response of 3 cylindrical segments with the stiffened pattern in Figure
3-1and dimensions in the Table 3-1 (a)the difference in radial deformation of the segment, (b)
the difference in force-displacement response, (c) the difference in energy dissipation in the
buckling event of each segment, (d) the variation of axial deformation corresponding to the
buckling event, and (e) the difference in force drops from buckling in each of the segments
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In the following, the response of the equivalent cylindrical panel using the semi-analytical
model is developed. Comparing the results of segments (a), (b), and (c) with the response from the
semi-analytical model for the equivalent panel shows that Case (c) is very close to the assumption
of the equivalent panel. The buckling load from the semi-analytical model for Case (c) is 222 N,
while the FEA for the same case gives a force of 214.4 N right before the buckling event. The
semi-analytical model shows the biggest difference for Case (a). Also, the radial deformation of
Cases (a), (b), and (c) in Figure 3-2 shows that Case (c) has a wider deformed area than Case (b);
and Case (b) has a bigger deformed area than Case (a). The differences in the cases with equal
equivalent length raise the idea of considering an equivalent width for the buckling panel as well
as equivalent length. This way, the effect of size of the thickened region on the segment will show
up in the equivalent panel.

This panel response is responsible for all the nonlinear behavior in the segment. However, we
should consider the additional linear springs surrounding this buckling panel to match the linear
stiffness of the segment, like what is shown in Figure 3-3. To simplify the system, it is assumed
that: 1) the top and bottom of the equivalent panel deform uniformly, and 2) the remaining width
of the segment is modeled as a linear spring. Here, the stiffness of the linear springs is calculated
for any given dimensions of the cylindrical segment and any possible equivalent panel. These

calculations are necessary for the design of NSD cylinders for a given post-buckling response.

52



Figure 3-3: Replacing the segment with equivalent panel plus linear springs

The stiffness of the linear springs on top and bottom of the equivalent panel are calculated to
provide the same axial stress in the center of the panel. Thus,

2 U h—h, h
—+ = +
k,  Eb't, Eb't,  Eb't,

(22)
2Eb't t,

(hy =101 + (h — hy)ty

k1:

The width of the panel is calculated in a way that the total axial force in the section of the
equivalent panel becomes identical to the axial force in the section of the segment. It is worth
noting that this assumption is a simplification of the situation in the segment. Of course, this
assumption neglects several complexities in the behavior of the segment. To define the width of

equivalence, the following assumptions were made:
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e The axial stress under the central b; width of the segment is constant and equal to g, (stress
in the center).

e The axial stress in the remaining b — b, width of the segment is constant and equal to o,
(stress on the side).

e The slope of change in the stiffness is 1/1;.

e The width of the equivalent panel is calculated in a way that the axial force in the panel
and segment match each other.

e If the width of the segment is larger than b; + 21, then the panel's width is calculated for
the segment with b; + 21, width, and the remaining part of the segment is treated as
segments with a linear response (segments D)

For the case of b > b; + 214, the stiffness of the remaining part is calculated as follows:

1 h, + 214 h—(hy +2l)  2hity + 4Lty + hty — byt — 2118,

k, E(G-bDt, . EMB-bDt; E(b — b)tyt,
2 2

~ E(b — bty
N Zhltl + 4‘[1t1 + thb - Zhltb - 4lltb

ks (23)

The stress at the center of the panel is calculated as follows:

B df B 0
"~ dbt, dbty | 2dbt, (24)
kla klb

Oc

The stress at b, /2 + [, from the center of the panel is calculated as:

__f 6
T (b—bt, dbty L 2dbty (25)
1c kld

Os

The stiffness of springs in Equations (24) and (25) are expressed as follows:
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_Edbt,

_2Edbt, Edbt,

=27 g =7 h
la hl ) 1b h— hl ) 1c (hl + le) )
. __2Edbt,
M= h—h, —21
Then:
_af 5 ~ 5 ~ Et,8
%~ dbt, dbt, 2dbt, Ry L =hDb  hyty + (h—hyty
_daf § 3 5
%= dbt, dbt,  2dbt, Thr2h =k 2Lt
kic kia E Et,
Et,8

= (hy + 21t + (h—hy — 218,

hit; + (h— hyty

Os

=% hy + 21Dt + (h— hy — 218,

For the case when b < 21, + by, b’ can be calculated as follow:

b’tbO'C = bltbo-c + (b - bl)tbO'S

+
b'tyo, = bytyo, + (b — bl)tb(asz;”)
_ b+b1 (b_bl) h’ltl + (h_hl)tb

bl

2 2

b’ = b, + (b—by)

(hy + 21t + (h— hy — 21t

hity + (h— hy)ty

(hl + le)tl + (h - hl - ZIl)tb
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3.2. Segment radial deformation after the buckling event

In Section 3.1 the buckling segment has been simplified to three springs in series, two linear
at top and bottom with a stiffness of k;, and one nonlinear spring in the middle, which has the
stiffness of kg prior to buckling and k,’ after buckling. It is assumed that a deformation & is applied
at the end of the system and that it increases to the point that the middle spring “buckles.” At that
point, the system loses some force since the middle spring cannot resist more force. If there were
no other springs in the system, the force drop would happen at the exact same end shortening as
for the equivalent panel. However, having the spring k; makes the problem more complex. Now,
the system of springs is not in balance as the force in the k; spring dropped and then the
deformation must change to produce the corresponding balancing force. The spring k,; must then
extend, and considering the constant total deformation, the spring in the middle should compress
more. Only then will both springs be able to balance the force P,,. Figure 3-4 illustrates this process
in detail. Total end shortening and the portion of the deformation in parallel springs are shown in
Equation (31):

§; =06,/ +81 85=6:—Py /kq (31)

If 8’ < 6, then §g = 65’

When the middle spring (equivalent panel) buckles, then:

, 6t - 65
(65 — 6p)ks’ + (P — APy) = k1T
k126t + ks6o — (Py — APy)
05 = " (33)
5 + k¢
5t - 55
6 ==
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Also, the force decline in the buckling event instead of AP, should be calculate as

following.
AP1:PO_Pb:AP0+(6S_60)kS, (32)
Pk buckling k,
A panel : :
(a) Stable
P,-AP,
(b) Unstable
(c) Stable

Figure 3-4: The deformation of the system of the springs in series when the middle spring
buckles. (a) right before buckling, the system is in balance and force in the springs are equal,
(b) right after buckling, the total deformation does not change, force in the buckled panel and
linear springs in series are not in balance, and (c) the axial deformation in linear springs and

buckled panel are adjusted to keep the force in balance
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3.3. Segment energy drop from buckling

The force-deformation response of the equivalent panel shows a drop in the internal energy
when it snaps back. The extra applied work transforms into kinetic energy and causes rapid
deformation in the panel [89],[90]. The amount of energy drop in the equivalent panel is calculated
by multiplying the difference in the deformation by the average of the force in each step of the
incremental numerical solution, which is equal to the area under the snapback part of the force-

displacement curve (Figure 3-5).

- Dissipated work

Figure 3-5: The work lost in the snapback behavior

The solid red area in Figure 3-5 schematically shows the amount of work lost during the
snapback response. However, this is not the only energy loss in the segment. Since the force in the
segment drops suddenly due to buckling, the linear springs at the top and bottom of the panel lose
some energy while the equivalent panel is in stable mode and use some of this energy for more
deformation. The total energy fall in the segment is calculated as follows:

AE =AE;+2AE, —AE (34)
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where A E; is the dissipated energy in the panel, and it is calculated using the presented semi-
analytical model. A E; is the dissipated energy in the top and bottom linear springs. and A EJ’
represents the work done by the equivalent panel after buckling to keep the balance of force and

displacement. (See Figure 3-6)

P

AE,
s

o EXIE“ i

Figure 3-6: The energy dissipated, and the work done in the NSD segment in the moment of
buckling
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The values of A E; and A E’are calculated as follows:

1 5, — 5.\°
2= (3)k (M)

aES = (L) ki, - 8,2
S 2 S( N 0)

(35)

where §,, and k’g are found from the presented semi-analytical model, and &, is calculated from

Equation (33).
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3.4. Verification of the assumptions

To examine the validity of the proposed modeling approach, the equivalent widths for panels
(@), (b), and (c) in Figure 3-1 were determined. To do so, five analytical models for the same
equivalent length but different panel widths (5’= 40 mm, 5°’=45 mm, °’=50 mm, 5°=55 mm, and
b’=60 mm) were developed. Then, for cases (a), (b), and (c), the response of the segment was
calculated to see which equivalent width gave the closest response to results to the FEA, which is
presented in Figure 3-2.

For Case (a): ' = 51.54 mm,b = 65 mm, b; = 24 mm,l; = 25 mm,E = 1300 MPa, then

using Equation (30), we find b’ equal to 50.35 mm.

200 1
~ At
é 150 F 7 .- l
O /'

8 4
o /,
~ 100 } / ]
s
Z

50F ——Case (a)-FEA l

- - =Case (a)-Semi-analytical
0 . . , :
0 0.1 0.2 0.3 0.4 0.5

d(mm)
Figure 3-7: The force-displacement curve of segment (a) from finite element analysis
compared to the semi-analytical model
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Figure 3-8: The fall in the internal energy of segment (a) from finite element analysis
compared to the semi-analytical model

For Case (b): ' = 51.54 mm,b = 65 mm,b; = 32 mm,l; = 20 mm,E = 1300 MPa, then

using Equation (30) we find b’ equal to 54.84 mm.

200 | ]
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~~ ’ I - ==
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o ‘4
~ 100} ’ ]
=
Z
50 —Case (b)-FEA 1
= = =Case (b)-Semi-analytical
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0 0.1 0.2 0.3 04 0.5
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Figure 3-9: The force-displacement curve of segment (b) from finite element analysis
compared to the semi-analytical model
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Figure 3-10: The fall in the internal energy of segment (b) from finite element analysis
compared to the semi-analytical model

For Case (c): I' = 51.54 mm, b = 65 mm, b, = 40 mm,l; = 15 mm, E = 1300 MPa, then

using Equation (30) b’ is equal to 58.75 mm.

200 f 7!
S|
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) 2
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=
Z
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Figure 3-11: The force-displacement curve of segment (c) from finite element analysis
compared to semi-analytical model
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Figure 3-12: The fall in the internal energy of segment (c) from finite element analysis
compared to the semi-analytical model

By interpolation, it can be said that the length of the equivalent panel for Case (a) should be
(54.54 mm), and for Case (b) it can be (52.54 mm). First, these differences are not very significant.
Then, in the process of design, we can use the previously proposed relation for the equivalent
panel’s length. Second, the equivalent length was determined based on the buckling force. The
reason is that the analytical model is known to be accurate when it comes to predicting the axial

strain and force corresponding to the buckling event, while the level of accuracy is not the same
for the drop in force.
3.4.1. Verification of modeling framework

Four non-uniform stiffness (NSD) cylinders were 3D printed and axially compressed to verify
the predictive model for post-buckling response presented in Chapter 2. The geometry of the

cylinders, with reference to Figure 2-1, is presented in Table 3-2.
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Table 3-2: Geometry of NSD cylinders tested under uniform axial compression

Test | o | tia | g | tic | T2 li [ la | s | e | |s b1 | by
Unit (mm)
CYL-1 | 05 1 1.3 4 1 30 |1056| 7.15 | 1.33 60 35 65
CYL-2 | 05 1 15 4 1 30 | 1056 | 5.75 | 1.33 60 35 65
CYL-3 | 05 1 2 4 1 30 | 1056 | 3.75 | 1.33 60 35 65
CYL-4 | 05 1 2.5 4 1 30 | 1056 | 2.65 | 1.33 60 35 65

The NSD cylinders were 3D printed from acrylonitrile butadiene styrene (ABS+) material

using a Fortus 250MC printer (Stratasys Ltd., MN). All cylinders had an effective length of 100

mm and an inner radius of 50 mm. The cylinders were provided with 10 mm wide thickened edges

at the top and bottom for connection to test platens to approximate clamped boundary conditions

(the platens had grooves to fit the cylinder’s edges and constrain rotation and radial displacements.)

Also, to avoid stress concentrations at the interfaces between thicker and thinner areas in the main

cylinder body, the thickened areas had a stepwise change in thickness. The tests were conducted

on a universal testing frame (Instron 5982) under displacement control. Loading consisted of a

uniform quasi-static ramp of axial shortening up to 0.5 mm.
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For each of the cylinders in Table 3-2, a finite element model was prepared using the software
ABAQUS. The modeling details were as described in Section 2.3.1.2, with two differences. First,
the initial imperfection was simulated by using the cylinder’s first buckling mode with an
amplitude of 0.05t. Second, the elastic modulus for the analytical model was determined by

matching the initial stiffness of the experiment and finite element models, which resulted in an

The force-deformation post-buckling response for each cylinder in Table 3-2 was predicted by
using the proposed semi-analytical model presented in Chapter 2 for two cases: 1) by using
Equation (10) for radial deformation and 2) by using Equation (12) for radial deformation . The

framework presented in Figure 2-6 was followed whereby the NSD cylinder is separated into
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panels, the equivalent length of each panel is calculated from Equation (3), and the post-buckling
response of the A, B, and C equivalent panels is calculated as presented in Section 0. The response
of a parallel system of linear and nonlinear springs is determined by adding the forces from all
springs for equal displacement increments to the system. The axial post-buckling responses of the
cylinders from experiments, finite element models, and the proposed semi-analytical model are
plotted in Figure 3-14.

A comparison of the responses in Figure 3-14 shows that the difference between corresponding
displacements to the buckling events between the analytical model, FE model, and experiment is
smaller than 0.02 mm, which is less than 4% of the total deformation. Interestingly, in general, the
analytical model better matches the experimental data for the displacement at buckling events. For
all cases, the response from the analytical model is stiffer than the experimental response and finite
element solution. This is consistent with the results presented in Figure 2-11, which also shows
the analytical post-buckling response of cylindrical panels being stiffer than that obtained from the
FE model.

It can be observed that the experimental traces in Figure 3-14 initially show a lower stiffness
with a stiffening response after approximately 0.1 mm of total deformation. This behavior is
primarily attributed to settlement effects of the test set up; that is, the imperfect contact between
the interacting surfaces during loading. Another source of discrepancy for this response can be
manufacturing imperfections, particularly at the transitions between thin and thick regions in the

cylinder wall.
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Figure 3-14: Force-deformation response of axially compressed NSD cylinders as predicted by
FE and analytical models compared to experiments
It can also be observed that the finite element analyses predict the magnitude of the force drops
at the buckling events much better than the analytical model. The differences between the
analytical and experimental responses can have several sources. The first and most important
reason is the extensive level of assumptions made in the analytical model, and the second reason
is that the initial imperfections in the 3D printed cylinder are different from what was assumed in

the analytical model.
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Chapter 4. Design of NSD cylinders with favored post-buckling response

The main goal of this dissertation is to design NSD cylinders for a predefined elastic post-
buckling response. This goal can be accomplished by following some backward steps in the
proposed framework in Chapter 2. However, it is necessary to formulate the desired elastic post-
buckling responses and then approach the design procedure as an optimization problem. The
formulation for linear springs involved in the cylinder’s response is presented in Chapters 2 and 3
of this dissertation. Also, the equivalent length and width of the buckling panels are formulated
based on the assumption presented in Chapter 3. Considering that the post-buckling responses of
the panels are formulated as a function of their length, width, and thickness, it then becomes
possible to mathematically connect the dimensions of the cylinder to its post-buckling response.
As a result, a series of equations will represent the NSD cylinder behavior. Of course, the segment
dimensions should add up to the geometry of the cylinder, which leads to several constraints for
the optimization problem of designing the NSD cylinder.

The only missing part of the design procedure is developing equations for the post-buckling
response using a statistical approach. A pool of responses for numerous panels with varying
geometry is needed to provide an empirical predictive model for any post-buckling response that
enables the selection of panels that fulfill the design goal. Of course, the selected panels from
design maps represent the equivalent panels described in the framework in Figure 2-6. It must be
noted that the dimensions of the thickened areas on the top and bottom of the buckling panels
affect some design factors, such as its stiffness and the axial shortening corresponding to the
buckling event. After developing design maps, designing the cylinder with any desired elastic post-

buckling response becomes an optimization problem that can be solved in different ways. The
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optimization methods for each design parameter are not part of this study, and for each of these
goals available routines in MATLAB were used.

The design method just outlined was used in a recent study to obtain NSD cylinders with a
specific radius and wall thickness [86]. In that study, the post-buckling responses were presented
in contour maps that related each post-buckling response to the panel’s geometry. Here, such

contour plots are called design maps.

4.1.1. Design maps for cylindrical panels with specific radius and thickness

Design maps for buckling panels for different response parameters of NSD cylinders with a
particular radius, elastic modulus, and body thickness were developed. They are:

- The deformation corresponding to the buckling event in the panel.

- The force corresponding to the buckling event.

- The secondary stiffness of the panel.

- Size of the force drop due to the buckling event.

The availability of design maps for the characteristic features enables a designer to find panels
with a desirable post-buckling response, such as a panel that buckles at a specific deformation or
releases a particular amount of force from the buckling event. Due to the potential use of the NSD
cylinders in energy dissipation systems, another valuable characteristic of a cylindrical panel is the
dissipated hysteretic energy from the multi-buckling response.

The semi-analytical model for cylindrical panels presented in Section 2.3 was used in this
design. Design maps for cylindrical panels in a minimal range of dimensions and specific materials
were developed. A parametric evaluation was conducted first, considering the post-buckling
response of 16 cylindrical panels with changes in width and length from 20 mm to 80 mm. The

radius and thickness of all panels are 50 mm and 0.5 mm, respectively. The material is ABS+ with
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an elastic modulus (E) of 1300 N/mm?2and Poisson’s ratio (v) of 0.3. The simulation was conducted

by considering the contribution of 64 coupled modes (m, = n, = 13).

The axial stress-strain responses for these cases are provided in Figure 4-1. As it can be seen

in the figure, the post-buckling response of the panels does not follow a linear pattern. However,

after buckling, it is assumed that it is linear to simplify the response.
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Figure 4-1: Axial response of cylindrical panels from ABS material with R =50 mm and t = 0.5
mm for varying length (I) and height (b); o and ¢ are the global axial stress and strain of the

panel, respectively

Design contours were developed for four response parameters: a) buckling strain, b) buckling

stress, c) stress drop, and d) secondary stiffness based on information from figure 4-1. The contour
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curves were created by fitting a surface plot to the 16 data points from the parametric evaluation
(for each design parameter). These plots can help select the buckling panels' dimensions based on

the desired response parameter.
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Figure 4-2: Contour plot s for cylindrical panels from ABS material witht =0.5 mm and R = 50
mm for varying length (I) and width (b): (a) buckling strain (o), (b) buckling stress (co), (c)
stress drop (As), and (d) post-buckling stiffness (y)
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4.1.2. NSD cylinder with known end shortenings for each buckling event

The design of an NSD cylinder with a targeted elastic post-buckling response under uniform
axial compression using the design maps in Section 0 was showcased in a preliminary study [86].
The cylinder is to have an inner radius of 50 mm, a height of 100 mm, and the thickness of the
buckling areas equal to 0.5 mm. The material is linear elastic with a modulus of 1300 N/mm? and
Poisson’s ratio of 0.2. The cylinder must experience three local buckling events when the global
axial shortening reaches 0.24 mm, 0.32 mm, and 0.4 mm. Also, b, |1, I2, and bs (see Figure 1-1) in
all three segments are 60 mm, 30 mm, 10 mm, and 30 mm, respectively.

The displacement corresponding to the buckling in segment A (Figure 2-2) is calculated as

follows:

O'Obtb
ki,

80, = €oli, +2 = 0.24 mm (36)

where do, is the end shortening corresponding to buckling in segment A. Also, U1, and kq, are
expressed in Equations (3) and (4). In Equation (36), « is a function of I (/'1,), and b; /"1, is a
function of |1, t;, and t1,; ov is a function of | (1°1,) and b; and ki, is a function of b, b, s, Iz, ¢,
and t1,. Thus, o6v, is a function of six independent variables, from which five are predefined here

and only t;, remains unknown.

One can design a cylindrical panel that buckles under a 0.24 mm axial shortening by following
a trial-and-error process. However, this is time-consuming. Thus, a numerical minimization
problem using a genetic algorithm method was formulated using the software Mathematica [91].

The objective was to minimize (do,- 0.24)2. The same process was used to find tip and ti.
numerically minimize (8o, 0.32)? and (00 0.40)2. The obtained solutions were: t1,= 3.89 mm,

t1; = 1.30 mm, and t;. =0.9 mm.
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In this case, segments D do not affect the design objective, and they just should be stiff enough
to separate the buckling events in segments A, B, and C. A thickness of 1.0 mm for t> and a length
of 60 mm for I3 separated the buckling segments well in previous experiments (Section 3.4.1), and
thus the same values were used here.

A finite element model for the NSD cylinder with the designed dimensions was developed in
ABAQUS to evaluate the design. The axial response of the designed NSD cylinder from the finite
element analysis is shown in Figure 4-3(a), and contour maps of the radial deformations are shown
in Figure 4-3(b). The buckling events happen in the designed order, and the axial shortening
corresponding to the buckling events matches well the design target and the analysis results. This
example shows that it is possible to design NSD cylinders with a targeted post-buckling response

using the presented analytical model.
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Figure 4-3: (a) Axial response of designed NSD cylinder for local buckling at the axial
shortening of 0.24, 0.32, and 0.4 mm, (b) radial deformation of the cylinder at each buckling
event
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4.2. General Design maps

Design maps provided in the previous section can help design an NSD cylinder with a desired
post-buckling response of a cylinder with a specific radius and elastic modulus. However, the
problem is that the dimensions of a cylindrical panel and cylinders (thickness, width, and length)
have no limitations. It is beneficial to find the response of a cylindrical panel to compression in a
closed-form solution for Equations (4) and (5). This is impossible for w (radial deformation) with
more than one sinusoidal mode. However, it is possible to solve those equations independently
from the radius (R) of the cylindrical panel if we know the ratios of length, width, and thickness
to the radius. Thus, if I/R=¢;, b/R= &2, and t/R= &3 are defined, R and E can be removed from the

shell governing equations. Then, the ratio of radial deformation w to R can be expressed as follows:

w=R ; i (sin?j > <sin m?lrx ) <sin %) <sin ngy )
37)
A ) . ’ .
w* =R ; Kis3 (sin %) <Sin m::ltx > (Sin %) (sin nl;:y >

where ¢; is a;/R. We can further define w = Rw and w* = RWw"*. Expressing the radial

deformations this way leads to:

W xrxr W.X’Y’ W,fzfz
Waxx = R Wxy = R ' vy = R’
a4 4 4 4
. 7w .0 9 9
Viw = 4 (V=4I+22121+4I)

R d"x o°x'0°y" a7y

~ % ~ 5 ~ %

x va'x’x’ x RW,x,y, * R‘/V’y,y,
Waxx = R ' Wxy = R ’ Wyy = R

Rewriting Equation (5) results in:
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PN

— ~2 ~ ~ ~ ~ ~ ~ ~ ~ ~
V'fE EE.R Waryr WareWyryr W | 2Wary Wiy WoanaWyryr Wy Wi —0
R $3R | g2 R2 R2 R? R2 R2 B

~s2 VR . . .
where |74f = Tf Then, Equation (5) now can be written for variables &, &,, &5 as follows:

54 7 ~2 ~ ~ ~ ~ ~ ~ ~ ~ ~ _
VA = (Wi = Wi Wy = Warzr + 2W i W 3y = Wocrs W sy = Wy Wieres) = 0 (38)

By solving Equation (38), we can say:

R . . Ed E&ESR?
foe = RE [z fay = REfxryn fyy = REfyrys , D = 12(1-3) 121 -

Then by replacing these expressions in Equation (6), we have:

EESR?
12(13— v2) Viw R
R3 - ERf,x’x’
ERf,y’y’(W,X’X’ + W'*x,x, ZERf\'xlyl (W’xlyl -|- ﬂ\/';,y,) ERf’x’x’ (W,y’y’ + W’;/y/)
- — + =0
R R R
Factoring out E and R, the equation turns to be:
533 S 4~ il
2a—vy" W e
(39)

- [fylyl(w,xlxl + W;{le) - Zf:xlyl(w,xly/ + ﬁ\/:;(lyl) + fjxlxl (Wylyl + W;Iyl)]
=0
Instead of solving Equations (5) and (6), we can solve equations (38) and (39), which are

independent of R and E. Solving these equations, we can find ¢; in Equation (37)

and §/E = P/Etb' Using these, we see the axial deformation ratio to the radius (§ /R). This form

responds to any given cylindrical panel in the format of 6 /E vs. §/1. The next step for designing
an NSD cylinder for a desired post-buckling response is to define a numerical range for variables

&1, &, & that cover most of the possible design cases.
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4.2.1. Determining acceptable range for panel parameters

Cylinders with a wall thickness of less than 10% of the inner diameter are considered thin
walled. The term “thin-walled” refers to the activation of the hoop and longitudinal stress under
internal pressure, which is not the case for this research. This research focuses on thin cylinders
under compression. In 1968 NASA conducted a series of experiments to define knockdown factor
for buckling in cylinders [41]. They concentrated most of their experiments with &; between 0.01
and 0.001. However, they had some experiments for &;around 0.0003. This small ratio makes
more sense for use in aerospace structures where the radius is significantly large, and thus a value
of £;=0.0003 can be a realistic thickness. Further, in the NASA report there are several studies that
concentrated on &5 between 0.02 and 0.001 in their experiments on isotropic cylindrical shells
under compression [92]-[101].

The goal here is to cover an as large area as possible for NSD cylinders that are not expected
to have a large radius. A value of 0.001 for &; means that a cylinder with a radius of 200 mm will
have a thickness of 0.1 mm, which is the current limit for commercial polymer 3D printers. Thus,
the minimum value of &; was set to 0.001 based on manufacturing limitations. The largest &5 in
the NASA study was 0.01. To cover the possibility of having a cylinder with a slightly larger value
of &5, the maximum number in this study is fixed to 0.013.

Defining b/R (£¢,) does not need further discussion since the circumference of a cylinder is at
most 2tR, which is approximately 6.28R. Then, considering that NSD cylinders have at least two
NSD segments and two dividing segments, with the width of the dividing segment being half the

width of the buckling segment, it leads to a width of approximately 2R for the buckling segment.
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For the smallest ratio here, 0.4R is selected. The ratio of I/R (&;) is defined based on its ratio with
&, from 0.1 to 10, and thus it is between 0.4R and 2R.

Based on these limits, a set of 125 semi-analytical models was developed for five thicknesses
of the panels in Table 4-1. All cases considered a Poison’s ratio of 0.3. Poison’s ratio has a minor
effect on the response of the cylindrical panels under compression, and 0.3 is a reasonable value
for any material unless we are dealing with incompressible material, which is beyond the scope of

this study.
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Table 4-1: Dimensions of cylindrical

anels to develop empirical models

0.001 A-1-1 A-1-2 A-1-3 A-1-4 A-1-5
0004 | A21 | A2-2 A-2-3 A-2-4 A-2-5
0007 | A31 | A32 | A33 | A34 | A3S5
0010 | A41 | A42 | A43 | A44 | A4S
0013 | A51 | A52 | A53 | A54 | A5S5
0001 | pg-1 B-1-2 B-1-3 B-1-4 B-1-5
0004 | B21 | B22 | B23 | B-24 | B25
0.007 B-3-1 B-3-2 B-3-3 B-3-4 B-3-5
0010 | p41 | B-42 B-4-3 B-4-4 B-4-5
0.013 B-5-1 B-5-2 B-5-3 B-5-4 B-5-5
0001 | ca1 | c1-2 Cc-1-3 C-1-4 C-1-5
0.004 C-2-1 C-2-2 C-2-3 C-2-4 C-2-5
0007 | c31 | c-32 C-3-3 C-3-4 C-35
0.010 C-4-1 C-4-2 C-4-3 C-4-4 C-4-5
0013 | ¢cs51 | c52 C-5-3 C-5-4 C-5-5
0.001 D-1-1 D-1-2 D-1-3 D-1-4 D-1-5
0004 | po21 | D-222 D-2-3 D-2-4 D-2-5
0007 | p31 | D-32 D-3-3 D-3-4 D-3-5
0010 | p41 | D42 | D43 | D-44 | D45
0013 | ps51 | D-5-2 D-5-3 D-5-4 D-5-5
0.001 E-1-1 E-1-2 E-1-3 E-1-4 E-1-5
0.004 E-2-1 E-2-2 E-2-3 E-2-4 E-2-5
0007 | g3 E-3-2 E-3-3 E-3-4 E-3-5
0010 | g4 E-4-2 E-4-3 E-4-4 E-4-5
0013 | Es51 | E-52 E-5-3 E-5-4 E-5-5
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4.2.2. Design Maps

For all the cases in Table 4-1 loading increases at a constant rate until a change in stiffness is
observed. The stiffness difference does not mean that the panel experienced a buckling event, and
buckling is recognized only if there is a significant force drop in a single deformation increment.
The results from the semi-analytical model show several snap-back responses similar to the
response that has been shown in Figure 2-10 (equilibrium path). However, knowing that the
loading process is controlled by deformation, we can change the responses to Figure 2-10
(deformation control).

Four types of responses were obtained for a given panel:

e Force-displacement

e Applied energy

e Radial deformation ate the panel center

e Maximum von-mises stress.

Obtaining the force and displacement of the panel provides the ability to design a cylinder for
three types of behavior: 1) the end shortening regarding the buckling event, 2) the drop in force
during the buckling event, and 3) the post-buckling stiffness. From recording applied energy to the
panel, one can find the drop in the energy from each buckling event. The radial deformation in the
center of the panel is of interest to possibly make contact between a shell and a rigid wall or make
contact between two different cylindrical panels. The maximum von-Mises stress provides three
essential design factors that are seldom talked about in the literature about buckling in cylindrical
shells; these are: 1) the von-Mises stress before the buckling event, 2) the jump in the von-Mises
stress after the buckling event, and 3) the rate of stress after buckling. Considering these essential

factors lead to design maps for nine desired responses:
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Axial strain corresponding to the buckling event

Normalized axial force corresponding to buckling

Normalized force-drop due to buckling

Normalized stiffness of the panel after buckling

Maximum normalized von-Mises stress in the panel after the buckling event
Strain energy reduction in the buckling event

Normalized radial deformation at the panel center in the buckling event.
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4.2.2.1. Axial Strain corresponding to the buckling
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Figure 4-4: Axial strain corresponding to the first buckling event for the panels with t/R varies
from 0.001to 0.013
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4.2.2.2. Axial stress corresponding to the buckling
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Figure 4-5: Axial stress corresponding to the first buckling event for the panels with t/R varies
from 0.001to 0.013
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4.2.2.3. Normalized force drop corresponding to the buckling
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Figure 4-6: Normalized drop in stress corresponding to the first buckling event for the panels

with t/R varies from 0.001to 0.013
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4.2.2.4. Normalized energy drop corresponding to the buckling
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Figure 4-7: Normalized drop in the strain energy corresponding to the first buckling event for
the panels with t/R varies from 0.001to 0.013
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4.2.2.5. Normalized secondary stiffness of the panel after buckling
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Figure 4-8: Normalized secondary stiffness after the first buckling event for the panels with t/R
varies from 0.001to 0.013
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4.2.2.6. Normalized radial deformation after the buckling
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Figure 4-9: Normalized radial deformation in the center of the panel after the first buckling
event for the panels with t/R varies from 0.001to 0.013
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4.2.2.7. Normalized change in the radial deformation after the buckling
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Figure 4-10: Normalized slope of radial deformation after the first buckling event for the

panels with t/R varies from 0.001to 0.013
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4.2.2.8. Normalized von mises stress after the buckling
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Figure 4-11: Normalized von-mises stress after the first buckling event for the panels with t/R
varies from 0.001to 0.013
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4.2.2.9. Normalized slope of the von mises stress after the buckling
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Figure 4-12: Normalized slope of von-mises stress after the first buckling event for the panels
with t/R varies from 0.001to 0.013
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4.2.3. Discussion

The colorful design maps in the previous section show the distribution of design parameters in
the defined range. These maps can be directly used to prepare equations for design, which are
provided in the next section, and they provide constructive insight into the design process, which
is discussed here.

The strain maps for t,,/R = 0.001 and 0.004 do not show a pattern of change regarding the
length and width of the panels. However, the difference between the maximum and minimum
buckling strain values is very close to each other and the average buckling strain. This difference
does not exceed 10% of the buckling strain in the worst case (t, /R = 0.001). For thicker panels,
the buckling strain shows an inverse relation with the length and width of the panel. However, the
higher buckling strain or normalized buckling stress for shorter and narrower panels is not clear
since there is no significant load or energy drop. Thus, the points of buckling for these panels were
judged by the author, and a slight difference can be a consequence from this judgment.

Equal buckling strain and normalized stress in the panels with the same initial imperfections
were experienced before by the author for a minimal set of data for specific radius and elastic
modulus [86]. Figure 4-13 indicates the similarity between buckling stresses and strains for the
125 studied cases. This figure shows how increased thickness-to-radius ratio increases the average
buckling strain and normalized stress. It also indicates that the gap between maximum and

minimum buckling strain increases with panel thickness.
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Figure 4-13: Normalized stress vs. strain response of the equivalent panels

Such a similarity in the results is not observed for the force and energy drop regarding the

buckling events. However, the design maps for these two parameters suggest that to see a sudden
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load decrease in the NSD cylinder, one should avoid narrow, thick, and short equivalent panels.
The design maps also suggest that the thicker the panel is, the range of the width and height with
energy or force drop reduces.

The design maps for force and energy drop answer the question about the number of buckling
events in one NSD cylinder. The narrowest equivalent panel with force-drop has b/R = 0.5 for
t/R = 0.001, which is the best case for force-drop. Also, to keep the buckling panels separated
we assume the narrowest D zone with b, /R is equal to 0.3. Then one buckling panel takes the
width of the cylinder equal to 0.8 times the radius. Knowing that the circumference of a cylinder
is 2mR, or roughly 6.28R, then, at best, only eight buckling events are possible with force drops in
the segment. However, even in that case, since the load drop magnitude is small, a force drop in
the total cylinder response is not observable. Thus, it can be confirmed that there are no NSD
cylinders with nine buckling events without the buckling occurring in the divider regions.

The secondary stiffness of the panels was harder to define since there is no clear distance after
the first buckling to measure the force and displacement, and thus identifying the secondary
stiffness relies heavily on visual judgment. In this study, the post-buckling (i.e., secondary)
stiffness was obtained by recording the force at a displacement that was twice of the value at which
the buckling event occurred. In some cases, other buckling events can occur between these two
points. Also, the response after buckling is not linear, particularly for cases without additional
buckling events and large end shortenings. These last two noted issues can cause errors in the
design process.

The normalized radial deformation follows a similar pattern to the force and energy drops due
to buckling. This deformation is captured in the center of the panel right after buckling occurs. The

goal of capturing the central deformation of the panels is to potentially design NSD cylinders that
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can interact, via contact, with each lateral constraints such as concentric cylinders, additional
panels, or rigid walls.

The radial deformation of the already buckled panel keeps changing in the far post-buckling
response. This far post-buckling radial deformation can be necessary for the design of cylinders
with maximum deformation is needed. This situation can be experienced when the goal is to design
a cylinder that touches another surface at its end after shortening. This can be a design objective
for application like a smart switch or making contact between the surfaces of two close cylindrical
panels.

A valuable design parameter is the maximum von Mises stress in the panel after the buckling
event. Here, this stress is normalized by the uniform axial stress in the panel right before the
buckling. The reason for providing such a parameter is to avoid designing an NSD cylinder with
the expectation of several elastic buckling events while in reality, the panel that buckled first is not
acting elastic anymore. To design an elastic NSD cylinder, we want to avoid such behavior. The
normalized von Mises stress is not enough to predict the maximum stress far after buckling. To
monitor the cylinder’s strength, the rate of increase in the maximum von Mises stress is given by
another design map (Figure 4-12). This map has low level of accuracy, similar to the secondary
stiffness or even lower than that. Calculating the von Mises stress based on classic shell theory is
based on several simplifications already. These simplifications along with the assumptions of the
radial deformations make reading the von Mises stress far after first buckling more inaccurate.
However, it may be generally said that the rate of increase in von Mises stress decreases with the
thickness of the cylindrical panel. Using this slope from Figure 4-12 helps finding a rough

approximation of the axial compressive strain that causes failure in the cylindrical shell.
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4.2.4. Predictive models

To design an NSD cylinder, each desired post-buckling response should have an equation that
relates it to the dimensions of the equivalent panel. The dimensions of equivalent panels are
formulated in Chapter 3 and the design maps cover the post-buckling of the possible range of panel
size. It then becomes possible to relate the post-buckling response of the cylinder to its geometry.

For any desired post-buckling response, based on the equations provided in Chapter 3, we need a
relation between variables (t, /R, I'/R, b'/R) and several design factors in the maps. Thus, each

of these design factors need to be expressed as a function of the variables. For instance, the
secondary stiffness and force drop from the design maps are needed to predict the force drop in
one segment during the buckling event. Another example is energy loss. To predict the energy loss
in one segment, an energy drop map and secondary stiffness map are needed.

The author could not define any physically meaningful equation that expresses the relation
between variables and the design maps. However, the data set behind the maps cover a very vast
range of responses. It seems logical that if an equation is provided for each map that fits the data
well, then it can predict the response of any panel in the range of the variables with reasonable
accuracy. Empirical models have been used for many years by researchers and engineers by fitting
an equation to a data set when no closed-form solution is available. Several techniques for such
fitting include genetic algorithms, genetic programming, and neural networks. Several software
packages are available for each of these methods. Here, the genetic programming package,
GPTIPS2, under the platform of software MATLAB was used [102]. The genetic programming
package provides equations that we can later apply to the optimization problem when designing

the NSD cylinder.
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In this study, for any of the design parameters there are 125 data points. However, the GPTIPS2
package needs another data set to test the predictive model. Then, the design parameters for another
25 models were developed to serve as a test set. The dimensions of the panels were as given in

Table 4-2.

Table 4-2: Dimensions of the cylindrical panels used for the test in genetic programming

Nafnaese IR b/R R
-1 062 | 0168| 0011
T2 | o0133]| 071 | 0007
T3 | 0129] 085 | 0013
T2 | 0131] 0152| 0005
T5 |  0160] 0124| 0004
T6 | 0136| 0181] 0010
T7 | 0123 0145| 0009
T8 | 0144]| 0128| 0002
To | o0169]| 051 | 0006
T10| 083 | 0190] 0010
TA1| 0130| 095 |  0.009

T-12 0.185 0.179 0.007
T-13 0.185 0.144 0.008
T-14 0.161 0.172 0.003
T-15 0.55 0.123 0.007
T-16 0.89 0.118 0.006
T-17 0.163 0.175 0.001
T-18 0.154 0.198 0.004
T-19 0.123 0.179 0.003

T-20 0.85 0.89 0.002
T-21 0.198 0.75 0.010
T-22 0.185 0.71 0.012

T-23 0.154 0.113 0.002
T-24 0.177 0.156 0.009
T-25 0.173 0.139 0.001

The dimensions in Table 4-2 were randomly generated in the range of the design maps. Thus,

the GPTIPS algorithm was used with 125 training data sets and 25 test data sets. The resulting
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equation for each design parameter is provided in Table 4-3. The table shows the R? the factor for

each of the design parameters and the predictive equation. The R? is one factor that shows how

good a fit is in the predictive equation.

Table 4-3: Relation between design parameters and design variables (I/R, b/R, t/R)

response Predictive equation R?
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Table 4-3 (cont’d)
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The R? factors for the buckling strain and normalized buckling stress are less than 0.01, shy of

1.0. This describes the same point as what has been said in the discussion.

4.3. Design problems

This section presents the design of four cylinders for specific post-buckling responses. Two

examples are provided for controlling the secondary stiffness of the cylinder. This can be used in

structural or mechanical systems to control the behavior of a system from sudden loading. A very
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general example can be a building in which the designer aims to actively manage its stiffness after
certain deformation and redistribute forces in the building’s stories.

The other example is about designing a cylinder for given energy dissipation. This type of
cylinder can be used to dissipate energy from axial loading. One smart application could be to
design devices for specific energy dissipation. Controlling the amount of force drop in the buckling
event can be a purpose for a designer of an NSD cylinder. Finally, a cylinder with a cylindrical
stiffener is another possible design that can increase the number of buckling events.

4.3.1. NSD cylinder with plateau post-buckling response

The goal is to design a cylinder with three buckling events where all the buckling events happen

at the same force by using the design maps provided in the previous section. The schematic force-

displacement of such behavior is shown in Figure 4-14.

o [ ® [ ] o
th thd td tly  tlp t13
Figure 4-14: Schematic plateau post-buckling response of the NSD cylinder
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The plateau post-buckling response means the buckling events should occur at the same force
but at different displacements. The equation to relate the force-displacement at the first buckling

follows the following formulation.

T 1 T 30ko (40)

The stiffnesses of the linear springs in this equation comes from Chapter 3. These stiffnesses

are a function of the geometry of the NSD cylinder.

! ! P
P01 = O-Olbltb and 601 = 601l1 + kL; (41)

Also, using genetic programming (GP) gy is defined as a function of I, b’, and t,.
After the first buckling, the system's stiffness adjusts because the first buckled panel shows

secondary stiffness instead of its primary stiffness.

bop — O, o)
P2:P01_AP1+%+P02 +%+3602kD

[ S _.|__

ksy1 * kia ksiz  kis

, 42
Py = 0¢g2b3tp (42)

POZ

802 = €92l +7—
kqz

the second buckling, the system's stiffness adjusts because the first buckled panel and second

buckled panel show secondary stiffness instead of their primary stiffness.

803 — bo1 803 — 002 o3
P3=P01—Apl+ﬁ+ POZ_AP2+ 1 1 + 1 1 +3603kD
ksy1 ki1 ksy; * kiz  ksiz o ki3

(43)

Py3 = 0p3bsty

P03

803 = €g3l3 +7—
ki3
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These equations define the force at the buckling events. Now, if we decide to design a cylinder
that shows a bilinear post-buckling response, the force and displacement corresponding to buckling

events should be located in a line. This condition mathematically means:

Py—P, P,—P
3 2 _ 12 1, (44)
603 - 602 602 - 601

Then, based on the need of the design, we can define this secondary slope of force-
displacement of the NSD cylinder.

Here, in the first case, we assume that 4 = 0, which means we are looking for a case with a
force plateau after the first buckling event.

Of course, this is not the only restriction for the design. We want the buckling occurs in three
different end shortenings, which means:
801 < 802 < bp3

Since we use an algorithm to find the optimum design, it is probable that the program just
selects very close-end shortenings, which is not desirable for our design purpose. Then, we should
decide how close these buckling events can be close to each other. Here, it is assumed that
892 — 001/h > 0.0005 and 6,5 — 8y, /h > 0.0005. Itis also assumed that the material of the NSD
cylinder is PLA, with E =1300 N/mm? and v = 0.3. The geometry of the cylindrical segments
should be compatible with the dimensions of the cylinder. Then:
bg1 + byy + by3 + 3bp = 21R
0 < b11 < by, 0 < b1y < by, 0 < bi3 < bys
hoyr +2l;; < h, hoy >0andl;; >0
hoz + 211, < h, ho2 >0and l;, >0
hos + 2113 < h, hos >0and l;3 >0

0<l,<h
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There are also restrictions regarding the production of the designed cylinder. For instance, it is
desired to have a radius equal to 50 mm, a height of 120 mm. and a wall thickness of 0.6 mm.
These are due to the available test setup we have for the 3D printed cylinders and the available 3D
printer, which not have adequate quality for thicknesses less than 0.6 mm. Another important
constraint for the dimensions of the cylinder is the size of the equivalent panels, which should
remain in the range of 0.4 and 2.0 times the radius of the cylinder.

Based on these conditions, a Mathematica code was developed to find the geometrical
unknowns to minimize (P; — P,)? + (P, — P;)? + (P; — P;)?. Numerous variables result in
having an unlimited number of designs. Then, the designer should provide some initial input. For
example, using the same process by just changing the thickness of the body and length of the
buckling zone, three cylinders were designed to show a plateau after the first buckling event.

Initial dimensions for the cylinder were as follows:

h =120mm, R =50 mm, t, = 0.6 mm
ho1 = hg1 = hgy =70 mm

lij; =15mm,l;, = 15mm,l;3 = 15 mm,

lg =90mm,t; = 1.2mm, t,; = 0.6 mm

Using the noted optimization algorithm, the dimensions were determined as follows:
by; =90 mm, by, = 70mm, byz; = 55 mm
by, = 67.53 mm, b;, = 54.97 mm, b3 = 37.26 mm
t;1 =3.95mm,t;, = 1.85mm,t;3 = 1.23mm

A finite element model was developed based on these dimensions. The designer expects that
segment one buckles before segment two and segment two buckles before segment three. The

design results expect the buckling force for all these segments to be 1573 N.
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Figure 4-15: Force-displacement response of the designed NSD cylinder for plateau post-
buckling from FEA in comparison to one from the semi-analytical model

The finite element model shows two buckling events in the same load instead of three. The
third buckling occurs right after the second and obviously under a lower axial load. The problem
is that the third segment buckles earlier than expected. The author believes that the reason for this
premature buckling is the boundary conditions of the third segment. In the proposed semi-
analytical model, the side boundaries of the buckling segment are assumed to be free in the axial
direction. It means elements D axially deform in harmony with the center of the buckling segment.

In reality, this assumption is not accurate since the stiffness of segment D and that of the buckling

zone are significantly different.
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8d2

Figure 4-16: The shear resulted from D zones deforming less than the center of the segment

The difference in deformation causes a shear force applied to the stiffened area limits. In the
hardened areas with high thickness and a relatively large distance between the center and the edge,
the effect of this shear is neglected. However, when the thickened area is relatively thin, like
segment three of the current design, this shear generates initial imperfections, and the segment
buckles prematurely.

Figure 4-17 shows the axial deformations in all three segments of the designed NSD cylinder.
Segments one and two are not affected significantly in the center, while segment three shows the
concentration in the middle. This concentration of deformations is the reason for the premature

buckling.
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(a) (b) (c)
Figure 4-17: Axial deformation distribution before the first buckling in three segments of the
designed NSD cylinder

To fix the problem, the D areas surrounding buckling area three were divided in half. The
external half remains the same. For the internal half, the thickness of the top and bottom of zone
D was adjusted to 1.2 mm (the thickest of zone D). This adjustment causes the deformation of zone
D, and the buckling panel to be close to each other. A finite element model based on this adjustment
was developed, and the results are shown in Figure 4-18.

The finite element analysis results for the designed cylinder show an approximately flat post-
buckling response with the following forces for each buckling event:
8y, = 0.475 mm, Fy, = 1472 N
8y, = 0.547 mm, F,, = 1481 N
603 = 0.619 mm, Fo3 = 1454 N

If the first and last buckling force peaks are connected with a line, the slope of the line will be:

X 1454 -1472 . N
seconday ™ ) 619 — 0.475 mm
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The initial stiffness of the cylinder is calculated as:

1472

Kinitial == m == 309895

It makes the secondary stiffness -4% of the initial stiffness, which is close to the design goal.

Ksecondary — 125 -
Kinitiar  3098.95 0.04
1500} —FEA
— Semi-analytical
£
§ 1000}
o
[
=
> !
% 500
0
0 0.2 0.4 0.6

d(mm)

Figure 4-18: Force-displacement response of the designed NSD cylinder for plateau post-
buckling from modified FEA in comparison to one from a semi-analytical model
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(a) (b)
Figure 4-19: Axial deformation distribution before the first buckling in segments three of the
(@) designed NSD cylinder, and (b)modified NSD cylinder

The axial deformation of segment 3 in the model with 0.6 mm at the top and bottom is
compared to axial deformation in the same segment in the adjusted segment. Figure 4-19 confirms
the concentration of axial deformation in the center of the initially designed cylinder and a more
even distribution of axial deformation in the modified NSD cylinder.

The radial deformation of segment three in the modified and originally designed NSD cylinders
are compared. As shown in Figure 4-20, the radial deformation of the primarily designed segment
three is almost twice the radial deformation of the modified cylindrical segment. Of course,

significant initial imperfections result in premature buckling in the segment.
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Figure 4-20: Radial deformation in segment three of (a) primarily designed cylinder, and (b)
modified cylinder, before the first buckling in segment one

The other interesting difference between the force-displacement responses from the FEA and
the designed response using the semi-analytical model is the size of the force drop in the second
and third buckling events. Since the comparison of the semi-analytical model and FEA for the
individual segment showed good agreement, it is believed that the size of this force drop in the FE
model is related to later buckling events in segments one and two. In this example, the width of
segments one and two are very large, and oversized panels are subjected to numerous buckling
events. Considering numerous buckling events and stress, strain, and stress drops for each of those
events does not help the design process. The complication level rises to the extent that, with the
proposed method, it would not be possible to achieve a design. Thus, the assumption of one
buckling event per segment is maintained and therefore the aim is to select the dimensions in a

way consistent with this assumption as much as possible.
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4.3.2. NSD cylinder with equal force drops in buckling events

Control over the deformation corresponding to buckling events and the size of the load drop
could be one desirable response. For instance, an NSD cylinder with a constant spacing between
buckling events and constant load drop is designed here. The schematic force-displacement

response for such a cylinder is demonstrated in Figure 4-21.
P A

dp

dd  dd  dd

[ ® o ® ® [ o

ty tha tl, tl, tl, tl, ty
Figure 4-21: Schematic post-buckling response of the NSD cylinder where identical force

drops occur with the identical difference in end shortening for buckling events
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Considering equations in Chapter 3, the size of the force falls off follows:
APl = APO + (65 - 60)ks’ (45)
In the equation above APy, k; , and &, are calculated from design maps, and J; is calculated

from the following equation:

K19 4 ki — (Po — BPy)
65 = k (46)
- + ki
The requirement of equal force drops in the cylinder is expressed as:
Apll =AP12 =AP13 =AP14_
(47)
Ota — O3 = 63 — 01z = 612 — Og
Such that for any given segment:
2P,
61— = 60 + — (48)
kq

Here, we design an NSD cylinder with four buckling segments with a radius of 65 mm, a height
of 100 mm, and a body thickness of 0.6 mm.
Initial dimensions for the cylinder are as follows:
h = 100mm, R = 65mm, t, = 0.6 mm
ho1 = hoz = hoz = hoq = 50 mm
iy =l = liz =11, =15mm
l;j =90mm,t; = 1.2mm,t,; = 1.2mm
bo1 = boz = bo3 = bpy = 58 mm
Using the optimization algorithm, the final design dimensions are:
b,y = 46.76 mm, b,, = 43.22 mm, b,z = 38.32mm, b1y = 29.27 mm

tll = 3.70 mm, t12 = 2.49 mm, t13 = 1.87 mm, t14 = 151 mm
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Figure 4-22: Force-displacement response of the designed NSD cylinder for similar load falls
in similar distances from FEA in comparison to one from a semi-analytical model

In Figure 4-22, the blue color shows the design using the semi-analytical model. The distance
between buckling events and the size of the drops were designed as:

dé =0.02mm, dp = 40N

The brown line shows the response of the designed cylinder from finite element analysis, which
yielded the following results:
dé; = 0.017mm,  d&,=0.019mm,  db; = 0.034mm
dp; = 58N, dp, = 55N, dp; =54 N , dp, = 61N

In this case, the designed cylinder meets the demand of having identical force drops in the
buckling events. However, the last buckling occurs at a deformation 0.014 mm bigger than desired.
This error can be addressed by slight modification in the fourth segment’s stiffened areas. Here,
we only change the thickness of the thickened areas to the following values.

ti1 =3.70mm, t;, =249 mm, ti3 = 1.85mm, t;,=1.67mm
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Axial response from finite element analysis of an NSD cylinder with these thicknesses was
compared to designed post-buckling response. The distance between buckling events gets much
closer to the design while the drop in force still is higher than the designed force drop. From the
comparisons in Chapter 3 of this document, we expect our model to underestimate the size of the

force drop.
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Figure 4-23: Force-displacement response of the designed NSD cylinder for similar load falls
in similar distances from FEA in comparison to one from a semi-analytical model

Figure 4-23 compares the axial post-buckling response of the modified finite element model
(brown line) and the designed response (blue line). The distance between buckling events and force
drops in the response from the finite element model are measured as follows.
dé, = 0.017mm,  d&,=0.02mm, db; =0.018mm
dp; =53 N, dp, =52 N, dps; =57 N, dp, = 60N

This comparison shows the effectiveness of the proposed design method and design tables.

However, the proposed model significantly underestimates the force drop in the buckling events.
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Chapter 5. Summary and Conclusion
5.1. Summary

This study developed a semi-analytical model to predict the elastic post-buckling response of
cylinders with non-uniform stiffness distribution (NSD) under compression. NSD cylinders show
promise for predictability of their axial compression response and may find applications to provide
structures or devices with functionalities such as load-limit control, energy dissipation or energy
harvesting. A challenge to realize the potential of NSD cylinders is to adequately understand their
elastic post-buckling response so that it may be controlled and designed for. The developed semi-
analytical model takes three steps to predict the post-buckling response:

e Separate the cylinder into parallel segments,

e Simplify and predict the response of each part, and

e Integrate the response of individual segments.

To predict the post-buckling response of a cylindrical segment, its geometry is simplified to a
cylindrical panel with uniform thickness connected in series with linear springs at the top and
bottom of the panel. The side boundary of the panels is assumed fixed except for the ability to
move in the axial direction. Based on the assumed boundary conditions and classical shell theory,
the elastic post-buckling response of a cylindrical panel is solved as a boundary value differential
equation using the pseudo-arc length method.

The classic differential equation of the axial compression of the cylindrical panels was solved
independent of the cylinder radius and elastic modulus of the material. The results were then
normalized by the radius and elastic modulus for a wide range of the cylinder dimensions. These
results allowed the development of design maps for several post-buckling responses such as axial

strain and stresses corresponding to the first buckling event, force and energy drops from the

112



buckling event, the secondary (or post-buckling) stiffness of the panel, the radial deformation at
the panel center, and the maximum von Mises stress in the panel. Three cylinders were designed,
and finite element analyses validated the targeted post-buckling responses to show the
effectiveness of the design maps and the design procedure. One NSD cylinder was designed to
undergo several buckling events under compression at pre-defined end shortenings. A second NSD
cylinder was designed to feature a post-buckling force-deformation response that plateaus at a
constant force level. The third cylinder was designed to experience the same force drop at each

buckling event and in identical axial end shortenings after the first event.

5.2. Conclusions

The main goal of this dissertation was to predict the elastic post-buckling response NSD
cylinders (cylinder with non-uniform stiffness distribution) and to design NSD cylinders for a
desired elastic post-buckling response. Both goals were achieved, and several validating examples
were provided for each.

In the process of meeting the major goal of designing NSD cylinders, a semi-analytical model
was developed for single cylindrical panel with unique stress distribution conditions. This model
in combination with the idea of linear springs in series provided a very clear understanding about
what happens to an NSD cylindrical segment under axial compression and why the load drops and
energy drops observed from FEA models are different than those from single uniform panel.

In Addition, design maps which provided for the panels independent from elastic modulus and
radius of the cylinder provide useful information about several post-buckle response of an
individual panel. The information includes the geometries that one can expect the buckling occurs
in the panel, the maximum amount of drop in the force during a buckling in the panel, the

maximum drop in the energy for different geometries, and the expected radial deformation in the
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center of the panel. This information are not only useful for designing NSD cylinders but also they
can be used in the process of developing new ideas to use cylindrical panel’s nonlinear response.

The presented research provides an insight into the snap back behavior of slender structures
under axial compression and how to approach designing such a structure for a desired far post-
buckling response. The proposed framework, concept of decomposing NSD cylindrical segments
into linear and nonlinear springs in series, proposed semi-analytical model for NSD equivalent
panels, and idea of developing maps for nonlinear design parameters improve the ability to design
smart structures relying on structural instabilities. This work expands the harnessing of structural
instabilities to the area of thin-shell buckling phenomena which received less attention in
comparison to other instabilities with less imperfection sensitivity.

5.3. Potential future research

The predictive and design models presented in this dissertation paved the road to using NSD
cylinders for smart applications. Future research on this topic could follow three paths.

The first direction is to improve the predictive model and the proposed model's accuracy. The
improvement can be achieved by replacing the fixed boundary conditions with flexible boundaries
and developing design maps for different levels of flexibility along the edges. Other valuable
research could target the dividing panels and investigate their effect on the post-buckling response,
as there is a lack of knowledge on efficient dimensions for the dividing segments in the NSD
cylinders. The numerical solution's efficiency is another area worth of more attention. Research in
this area can help make the solution faster and consider facilitate considering more radial
deformation modes, which improves the quality of the response. The size of the force drop, and

energy drop in the proposed semi-analytical model is less than what finite element analysis
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suggests. Addressing the source of this difference can also be a reasonable extension of this
research.

The second research path can be expanding the NSD cylinders in different ways. For example,
an NSD cylinder with cylindrical stiffeners was preliminarily evaluated in a parallel study for
possible stiffness regain by contact mechanism. It was found that it is impossible to make contact
between the face-to-face cylindrical panels. However, it is worth investigating other possibilities
of making NSD cylinders without manipulating the thickness of the segments. Using different
materials with the same thickness may be as suitable approach worth further research. On the other
hand, the current research only considered isotropic materials, and studying the possibility of
designing cylinders from orthotropic materials can be a valuable future research topic.

The third direction for future research is implementing the proposed NSD cylinder design for
smart applications. One example can be energy harvesting by connecting piezoelectric PVDF film
to the buckling areas of the NSD cylinders. The effect of the PVDF layer should be considered,
which is possible by using equivalent elastic modulus and thickness for functionally graded

materials.
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| prepared a finite element model for the cylinder shown in Figure A-1: Axial force-
displacement from FE model and experiment, the cylinder is assumed to be made from
acrylonitrile butadiene styrene (ABSPlus) with 1.6 GPa Young’s modulus and 0.2 Poisson’s ratio.
The shells were modeled with four-node quadrilateral finite membrane strain elements with
reduced integration (S4R).

The displacement of the edges in the radial direction has been restrained for both ends. The
bottom edge of the cylinder is fixed for axial displacement, while axial displacement has been
applied to the upper edge. Both top and bottom edges are fixed for rotating around the
circumference of the section. All the shell elements are aligned by their internal face.

An Implicit dynamic analysis with Quasi-static application has been conducted to compare the
force-displacement with the results from the experiment.

The force-displacement from FE analysis shows good agreement with the one from the
experiment. (Figure A-1) Similar to the experiment, the sequence of the buckling events is in zones
1, 2, and 3. This sequence shows that buckling first occurs between the stiffest boundary
conditions.

The behavior of the polymers does not follow the simple von misses stress criteria. However,
in the absence of several influential factors, the von misses stress still could be the best option to

estimate the status of material regarding failure.

117



Force (N)

” &
&
Q
A _{/‘3
1000 F
800 | T 3
s
/ 8 o
/! =] e
600 F E
/ —FE model
400 F ---Experiment 30
," Y )
200 + // =
,' 8
O . 1 1 1 : 1 >
0 0.25 0.5 0.75 1
0 (mm)
:@ . @ I @ Base 0.5mm
i . i a8 T M 1.0mm
: } t = 1.0mm
! == -l 1.5mm
L~~L--—“H1 SECET m. 4.0mm

Figure A-1: Axial force-displacement from FE model and experime

material for the first three buckling events.

118

nt

Here, the maximum stress appears around the first buckled zone. After the third buckling event,
the maximum von misses stress turns to 28 MPa, close to ABSPlus maximum tensile strength (32

MPa). This very primary investigation shows that it is reasonable to neglect the damage in the



In contrast, further, loading could damage the material and defy the linear elastic behavior

assumptions in the finite element model. Figure A-2 b-d shows the in-plane at the maximum load

(6 = 0.5mm).
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Figure A-2: Stress distribution in the cylindrical shell for the maximum load (6 = 0.5 mm)

S11 shows the axial stress in the cylinder, S22 shows the stress in circumference of the

cylinder, and S12 shows the shear stress.
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Figure A-3: Deformatgg)n of the cylinder for the maximum load (6 = 0.5 mm) in; () radial
direction, (b) circumferential direction, and (c) longitudinal direction
Figure A-3 indicates the deformations of the cylinder where U1 is radial deformation, U2 is
circumferential deformation, and U3 is axial deformation. Figure A-3 (a) shows the biggest radial
deformations in the center of zones 1, 2, and 3. However, it is hard to understand the function of
the deformations without emphasizing specific sections in the radial plates (h = constant) and
normal to radial plates (8 = constant). Thus, we picked three circumferences (h=40, 50, and 60

mm) and 9 longitudinal sections (A1-A3, B1-B3, C1-C3) and plotted the radial and longitudinal

deformations for six steps of loading (6 = 0.25,0.30, 0.35, 0.40, 0.45, 0.50 mm).
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Figure A-4: Sections in the longitudinal and circumferential direction of the cylinder, which has
been investigated more in the following figures
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Figure A-5: Sequence of radial deformation in the circumference 40 mm
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Figure A-6: Sequence of radial deformation in the circumference of 50 mm
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Figure A-7: Sequence of radial deformation in the circumference of 60 mm
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Figure A-5 to Figure A-7 show that the deformations in the thicker parts of the cylinder are
negligible in comparison to deformations of the thinner areas. In addition, the thicker areas in their
boundary with thin regions do not show significant rotations. Thus, clamped boundary conditions

with the ability to move in the axial direction of the cylinder can be a reasonable assumption.
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Figure A-8: Radial deformation along with section Al
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Figure A-10: Radial deformation along with section A3
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Figure A-12: Radial deformation along section B2
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Figure A-14: Radial deformation along section C1
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Figure A-16: Radial deformation along with section C3

Figure A-8 to Figure A-16 show the continuity in the rotation of the thin and thick areas in

their mutual boundaries. The thicker areas on top and bottom of the thin areas (blue lines in Figure
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A-8 to Figure A-16) show significant rotational flexibility, unlike the thicker areas on
circumferential boundaries of thin zones (blue arcs in Figure A-5 to Figure A-7). Also, comparing
the deformation (rotation and displacement) of blue lines (thicker areas on top and bottom on the
buckling panel) in Figure A-9, Figure A-12, and Figure A-15 shows that the thicker the boundary,
the deformation in the radial direction decreases.

Figure A-17 to Figure A-28 present the longitudinal deformation of the cylinder under the
uniform axial displacement. The first three figures (Figure A-17 to Figure A-19) assumed a circle
with a 1 mm radius and showed the longitudinal deformation in the radial direction of these circles.
There is a small difference between deformations in the axial (longitudinal) direction in different
angular locations. This small dependence of the axial deformation on the circumferential location
could be seen in Figure A-3(c) as well, where the contours of axial deformations are approximately

parallel to each other.
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Figure A-17: The longitudinal displacement showed in the circumferential direction for h=40
mm. The radius of the circle here is 1 mm, and it is just to show the magnitude of changes in
the longitudinal displacement
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Figure A-18: The longitudinal displacement showed in the circumferential direction for h=50
mm. The radius of the circle here is 1 mm, and it is just to show the magnitude of changes in
the longitudinal displacement
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Figure A-19: The longitudinal displacement showed in the circumferential direction for h=60
mm. The radius of the circle here is 1 mm, and it is just to show the magnitude of changes in
the longitudinal displacement
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Figure A-20 to Figure A-28 show the same deformation but in the longitudinal sections. From

these figures, | expect to understand the relation between axial displacement and longitudinal

coordinates.
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Figure A-22: Axial deformation in section A3
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Figure A-23: Axial deformation in section B1
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Figure A-24: Axial deformation in section B2
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Figure A-26: Axial deformation in section C1
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Figure A-27: Axial deformation in section C2
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Figure A-28: Axial deformation in section C3
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Figure A-20 to Figure A-28 indicates that the thinner areas show more deformations than thick
areas, as expected. However, the longitudinal deformation of the thicker area is not negligible.

Also, the deformation in higher levels of loads shows some sinusoidal pattern in thin areas.
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h=40mm
4=0.35mm

180

270 270 270

180

270 270 270

Figure A-29: The longitudinal strain showed in the circumferential direction for h=40 mm.
The radius of the circle here is 0.01, and it is just to show the magnitude of changes in the
longitudinal strain
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Figure A-30: The longitudinal strain showed in the circumferential direction for h=50 mm.
The radius of the circle here is 0.01, and it is just to show the magnitude of changes in the
longitudinal strain
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Figure A-31: The longitudinal strain showed in the circumferential direction for h=60 mm.
The radius of the circle here is 0.01, and it is just to show the magnitude of changes in the
longitudinal strain

136



Strain

Strain

Strain

Strain

Strain

Strain

0.01f Section Al 1
6=0.25 mm
0
[ S
-0.01 . L . L ]
0 20 40 60 80 100
h (mm)
0.01F Sectitlm Al I I 1
4=0.35 mm
0 L 77N a
-0.01 . . . . ]
0 20 40 60 80 100
h (mm)
0.01 Section Al ' ' ' 1
0=0.45 mm

-0.01 \ f 1 .
0 20 40 60 80 100
h (mm) h (mm)
Figure A-32: Axial strain in section Al
0.01 Section A2 ' ' 1 0.0} Section A2 ' ' 1
6=0.25 mm = 4=0.3 mm
0 g o
N——————— ©n
-0.01 \ L L \ b -0.01 L i A L ]
0 20 40 60 80 100 0 20 40 60 80
h (mm) h (mm)
0.01 Section A2 ' ' 1 0.01F  Section A2 ' ' 1
6=0.35 mm = 6=0.4 mm
g o
w
-0.01 . . \ . 7
0 20 40 60 80
h (mm)
0.01 Section A2 ' ' 1 0.01F  Section A2 ' ' 1
6=0.45 mm = §=0.5 mm
0 g o
w2
-0.01 \ L L \ b -0.01 L i A L ]
0 20 40 60 80 100 0 20 40 60 80
h (mm) h (mm)

Strain

Strain

Strain

0.01F Section Al 1
4=0.3 mm
0 W
-0.01 i . . N ]
0 20 40 60 80
h (mm)
0.01F Secti(lm Al ' ' 1
4=0.4 mm
0 5 ’ \ _J
-0.01 . A . . ]
0 20 40 60 80
h (mm)
0.01F  Section Al ' ' 1
4=0.5 mm

Figure A-33: Axial strain in section A2
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Figure A-35: Axial strain in section B1
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Figure A-37: Axial strain in section B3
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Figure A-39: Axial strain in section C2
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Figure A-40: Axial strain in section C3

Figure A-29 to Figure A-40 suggest the longitudinal strain shows approximately sinusoidal

relation with both x and y coordinates.
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