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ABSTRACT

NETWORK EMBEDDINGS FOR DATA CLUSTERING, TRANSITION STATE
IDENTIFICATION, AND ENERGY LANDSCAPE ANALYSIS

By

Paula Mercurio

Many chemical and biochemical systems can be intuitively modeled using networks. Due to the size

and complexity of many biochemical networks, we require tools for efficient network analysis. Of

particular interest are techniques that embed network vertices into vector spaces while preserving

important properties of the original graph. In this article, we investigate several aspects of node

embedding, propose a novel method of generating node embeddings, and explore applications to

biochemical systems. We introduce a new method for generating low-dimensional node embeddings

for directed graphs using random walk sampling and demonstrate the usefulness of this method for

identifying transition states of stochastic chemical reaction systems, detecting relationships between

nodes, and studying the structure of the original network.

In addition, we propose an efficient scheme for numerical implementation of network embedding

based on deterministic computations of commute times rather than random walk trials. We develop

a novel implementation of stochastic gradient descent (SGD) based on a low-dimensional sparse

approximation of the original random walk on the graph, and show that this approach can improve

the performance of node embeddings.

This method can be further extended for entropy-sensitive adaptive network embedding by

incorporating principles from metadynamics and hierarchical network embedding, allowing for

applications to the analysis of molecular structures. By adjusting the edge weights of the network by

a Gaussian term, similarly to the metadynamics approach, we ensure that areas that have already

been explored extensively by the random walk (i.e., the edges with the largest weights) will be

de-emphasized over time, allowing additional iterations of the embedding process to reveal details

about other areas of the graph. We show that this approach lends itself well to systems that are

influenced by entropy or temperature effects and biochemical systems where the potential energy



landscape depends on the system’s configuration at a given time, either by itself or in conjunction

with transition path theory. We demonstrate the effectiveness and performance of each of our

methods on several datasets and biochemical examples.
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CHAPTER 1

IDENTIFYING TRANSITION STATES OF CHEMICAL KINETIC SYSTEMS USING
NETWORK EMBEDDING TECHNIQUES

1.1 Introduction

Networks provide a natural framework for many chemical and biochemical systems, including

chemical kinetics and dynamical interactions between biomolecules. The possible stages of a

reaction, for example, can be viewed as vertices in a directed graph. Frequently, real-world networks

are high-dimensional and complex in structure, which leads to difficulties in interpretation and

analysis. In order to take full advantage of the structural information contained in such networks,

efficient and robust methods of effective network analysis are essential to produce low dimensional

representations while retaining key information about the nodes of the graph.

Network analysis is especially useful for understanding behaviors of nonlinear chemical processes

such as biochemical switches. Biochemical switches are systems of chemical reactions with multiple

lower-energy steady states, or metastable states. Without stochastic perturbations, the system

will spend all its time at the metastable states, where energy is minimized, while the presence of

stochastic noise in the dynamics can lead to transitions between metastable states. Difficulties arise

in the simulation of such systems as a result of the multiple time scales at work; transitions between

steady states are typically rare, but occur rapidly.

The different possible states of the reaction, given by the varying concentrations of reactant and

product species, can be viewed as the vertices of a weighted directed graph. For example, we may

have an ‘initial’ state where only reactant species exist, a ‘final’ state where only product species

remain, and any number of transitional states each representing a particular concentration of the

different species. The edge weights of the graph can then be determined from the likelihoods of

transitioning between any given pair of states. The progression of the reaction over time can then be

viewed as a Markov jump process, where the jump probabilities are represented by the weights on

the edges between each pair of nodes. Then, methods for network analysis can be used to identify
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interactions and pathways between the components of the biochemical switch. One objective of

this paper is to suggest a method to analyze this Markov process using node embedding techniques.

This paper will focus on the A → B problem: A and B are taken as the reactant and product states,

respectively. The aim of this paper is to investigate the mechanism by which this transition occurs.

Recently, methods for analyzing networks through feature representation and graph embedding

have received increasing attention. For an overview on this subject, a number of recent review

papers are available [17, 5]. While much of this research has been focused on undirected graphs, the

directed case has also been investigated, for example [9, 7, 51]. In particular, several methods have

been proposed that utilize random walks for node embedding.

Node embedding (or feature learning) methods aim to represent each node of a given network

as a vector in a low-dimensional continuous vector space, in such a way that information about

the nodes and relationships between them are retained. Specifically, nodes that are similar to each

other according to some measure in the original graph will also have similar representations in the

embedding space. Usually, this means that the embedding will be chosen in a way that maximizes the

inner products of embedding vectors for embedded nodes that are similar to each other. Compared

with the original complex high-dimensional networks, these low dimensional continuous node

representations have the benefit of being convenient to work with for downstream machine learning

techniques.

Compared with alternative methods that embed edges or entire graphs instead of nodes, node

embeddings are more adaptive for numerous tasks, including node classification, clustering, and link

prediction [5]. Node classification is a process by which class labels are assigned to nodes based on

a small sample of labeled nodes, where similar nodes have the same labels. Clustering algorithms

group the representations of similar nodes together in the target vector space. Link prediction seeks

to predict missing edges in an incomplete graph.

The recent interest in feature learning has led to a collection of different node embedding

methods, which can be broadly classified [17] by the analytical and computational techniques

employed such as matrix factorization, random walk sampling, and deep learning network. The
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matrix factorization based methods generate embeddings by first using a matrix to represent the

relationships between nodes, which include the Laplacian matrix as in the Laplacian eigenmaps

[3], the adjacency matrix as in locally linear embedding (LLE) [33] or graph factorization (GF) [1],

etc. Though the above methods focus on the case of undirected methods, similar techniques for

the directed case have also been suggested [9], where the development of the Laplacian matrix, a

combinatorial Laplacian matrix, and Cheeger inequality allow the above approaches to be extended

for directed graphs. Factorization based methods such as eigenvalue decomposition can apply for

certain matrices (e.g., positive semidefinite), and additional difficulties may arise with scaling for

large data sets.

Random walk methods are often used for large graphs, or graphs that cannot be observed in their

entirety. The general idea involves first simulating random walks on a network, then using the output

to infer relationships between nodes. Random walk methods can be used to study either undirected

or directed graphs, although much of the previous work has focused on the undirected case. For

example, DeepWalk [29] uses short unbiased random walks to find similarities between nodes, with

node pairs that tend to co-occur in the same random walks having higher similarities. This method

performs well for detecting homophily – similarity based on node adjacency and shared neighbors.

Similar methods, such as node2vec [18], use biased random walks to capture similarity based on

both homophily and structural equivalence – similarities in the nodes’ structural roles in the graph.

Both of these methods specifically address undirected graphs. A similar approach designed for the

directed case is proposed in [7], which uses Markov random walks with transition probabilities

given by ratios of edge weights to nodes’ out degrees, together with the stationary distribution of the

walks, to measure local relationships between nodes.

Theoretical frameworks for the study of transition events of biochemical processes include

Transition State Theory (TST), Transition Path Sampling (TPS), Transition Path Theory (TPT) and

Forward Flux Sampling (FFS). The main idea of TST is that in order for the system to move from

the reactant state to the product state, the system must pass through a saddle point on the potential

energy surface, known as a Transition State [48]. The TPS technique uses Monte Carlo sampling of
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transition paths to study the full collection of transition paths of a given Markov process [4]. The

basic idea, similar to importance sampling, is to perform a random walk in trajectory space, biased

so that important regions are visited more often. Transition Path Theory (TPT) studies reactive

trajectories of a system by considering statistical properties such as rate functions and probability

currents, which measure the average rates of transitions between states [47]. Forward flux sampling

[2], designed specifically to capture rare switching events in biochemical networks, uses a series

of interfaces between the initial and final states to calculate rate constants and generate transition

paths. This method has the advantage that knowledge of the phase space density is not required. For

the purpose of this paper, we will be using TPT, but other such techniques can fit into the method

presented here as well.

The contributions of this paper are a method of using a random walk network embedding

approach for node classification and clustering on directed graphs, as well as identification of

transition states for the specific case of entropy effects. The method presented reduces the dimension

of networks, thereby allowing analysis and interpretation of the system.

The remainder of this paper will be organized as follows. First, in Section 2 we will introduce

some background regarding feature learning on networks, and provide a brief overview of some

basic principles from TPT. Then Section 3 will introduce a method for node classification for

directed graphs, based on random walk node embedding. Finally, in Section 4, we will study

several examples, showing the effectiveness of the method on identifying transition states of entropic

systems.

1.2 Background

In this paper, we focus on the mechanism by which a system such as a biochemical switch passes

through its energy landscape following a reactive trajectory. A trajectory is said to be reactive if it

leaves the reactant state A and later arrives at the product state B without first returning to state

A. Such a trajectory can be viewed as a sequence of transitions between metastable states where

the energy is locally minimized. In particular, we treat these sequences as Markov jump processes,

and study the probability space of these reactive trajectories in order to identify and understand
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the transition events of the system. Though this paper will be utilizing the techniques of Transition

Path Theory for this purpose, it is also possible to adopt other frameworks, such as Transition Path

sampling, Forward Flux sampling, etc., to investigate the transition events of a system.

Consider a Markov jump process on a countable state space S. Let L represent the infinitesimal

generator of the process, as defined in [24]. In other words, L is an |S| × |S| matrix with entries

Luv such that for u, v ∈ S, u ̸= v, Luv∆t+ o(∆t) represents the probability that a process that is in

state u at time t will jump to state v during the time interval [t, t+ ∆t]. Then the entries of L are

transition rates, satisfying 
Luv ≥ 0 ∀ u, v ∈ S, u ̸= v,

∑
v∈S Luv = 0, ∀ u ∈ S.

(1.1)

Let {X(t)}t∈R represent an equilibrium sample trajectory of the Markov process, such that {X(t)}t∈R

is right-continuous with left limits. At time t, let the probability distribution of this process be

denoted by µ(t) := (P(X(t) = u))T
u∈S . Then the time evolution of µ(t) follows the forward

kolmogorov equation (or master equation)

dµ

dt
= µTL, t ≥ 0.

Denote the time-reversed process by {X̃(t)}t∈R, and the infinitesimal generator of this process

by L̃. The stationary probability distribution π = (πv)v∈S of both {X(t)}t∈R and {X̃(t)}t∈R is

given by the solution to

0 = πTL .

1.2.1 Network embedding for directed graphs

Networks can have large numbers of vertices and complex structures, which can lead to challenges

in network analysis. To overcome these difficulties and improve understanding of these networks,

the nodes of a given network can be embedded into a low-dimensional vector space, a process called

feature learning. The techniques used in this paper to investigate transition states and pathways

combine neural network-based and random walk-based methods for learning latent representations
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of a network’s nodes, as discussed in [18, 29, 7]. The idea behind these methods is that the nodes

in a given network G = G(V,E) can be embedded into a low-dimensional vector space in such a

way that nodes similar to each other according to some measure in the original graph will also have

embeddings similar to each other in the embedding space.

Feature learning, or node embedding, requires three main components: an encoder function, a

definition of node similarity and a loss function. The encoder function is the function that maps

each node to a vector in the embedding space. To find the optimal embeddings, the encoder function

can be chosen by minimizing the loss function so that the similarity between nodes in the original

network corresponds as closely as possible to the similarity between their vector representations in

the continuous space. Node similarity can have different interpretations, depending on the network

and the task to be accomplished. For example, nodes that are connected, share neighbors, or share

a common structural role in the original graph can be claimed to be similar, and to be embedded

in the vector space by representations of close similarity. For the embedded vectors, a common

approach is to use inner products as the similarity measure in the feature space–that is, if u and v are

two nodes in a graph with representations e(u) and e(v) in a low-dimensional vector space, then

e(u)T e(v) should approximate the similarity between representations e(u) and e(v).

1.2.1.1 Random walk approaches

One technique for finding node embeddings is through the use of random walks. This technique has

been applied to undirected graphs in methods such as DeepWalk and node2vec [29, 18]. In these

methods, the general approach is to use short random walks to determine similarities for each pair of

nodes. The notion of node similarity is co-occurence within a random walk; two nodes are similar

if there is a higher probability that a walk containing one node will also contain the other. The

various methods using this approach differ in the implementation of this general idea: DeepWalk,

for example, uses straightforward unbiased walks, while node2vec uses adjustable parameters to bias

random walks toward breadth-first or depth-first sampling for a more flexible notion of similarity.

The first stage in the feature learning process is to simulate a certain number of random walks
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starting from each vertex. Using the results of these random walks, the neighbors of each node can

be determined. The objective is to maximize the probability of observing the neighborhood of each

node, conditioned on the vector representation of the node. In several of the random walk-based

feature representation methods for undirected graphs, this is achieved through optimization of a

Loss function of the form:

max
e
J(e) =

∑
u∈V

logPr(NS(u)|e(u)), (1.2)

where V is the set of all vertices in the graph, NS(u) is the neighborhood of the node u, and e(u)

is the encoder function representing the embedded vector. If we assume that the probabilities of

observing a particular neighbor are independent, we can have

Pr(NS(u)|e(u)) =
∏

ni∈NS(u)
Pr(ni|e(u)). (1.3)

Since these methods typically aim to maximize the inner products for neighboring nodes, they often

utilize a softmax function to model each conditional probability:

Pr(ni|e(u)) =
exp

(
e(ni) · e(u)

)
∑

v∈V exp
(
e(v) · e(u)

) .
For networks where |V | is large, techniques such as hierarchical softmax [29] or negative sampling

[26] can be used to increase efficiency. To determine the optimal embedding function e(u), the Loss

function can be optimized using gradient descent with respect to the parameters of e(u).

In [7], a random walk-based method specifically intended for directed graphs is proposed. The

function to be optimized in this method, when embedding into R1, is

I =
∑

u

πu

∑
v,u→v

p(u, v)(yu − yv)2,

where yu is the one-dimensional embedding of u, πu is the stationary probability for the node u and

p(u, v) represents the random walk’s transition probability from u to v. The transition probabilities

are calculated according to

p(u, v) = w(u, v)/
∑

k,u→k

w(u, k),
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where w(u, v) is the weight on the edge (u, v). Note that this method, though it uses transition

probabilities of a random walk, does not actually require simulation of random walks, since all the

summations can be done deterministically.

According to the spectral graph theory [9], a circulation on a directed graph is a function F

such that, for each u ∈ V , ∑u,u→v F (u, v) = ∑
w,v→w F (v, w). The Laplacian of a directed graph

is therefore defined as

L = I − Φ1/2PΦ−1/2 + Φ−1/2PΦ1/2

2 ,

where Φ is a diagonal matrix with diagonal entries given by Φv,v = ϕ(v) = ∑
u,u→v F (u, v) for

some circulation function F . The following definition of the combinatorial Laplacian is also due to

Chung [9]:

L = Φ − ΦP + PT Φ
2 ,

where P is the transition matrix, i.e., its elements are given by Puv = p(u, v), and Φ is the diagonal

matrix of the stationary distribution, i.e., Φ = diag(π1, . . . , πn). Note that the combinatorial

Laplacian is symmetric and semi-positive definite. It is shown in [7] that

∑
u

πu

∑
v,u→v

p(u, v)(yu − yv)2 = 2yTLy

where y = (y1, y2, . . . , yn)T . This result demonstrates that this method is analogous to the

Laplacian-based methods for undirected graphs, e.g., Laplacian eigenmaps [17].

Random walk methods have been shown to perform well compared to other methods, and can be

useful for a variety of different notions of node similarity. Previous work has shown them to be

robust, efficient, and capable of completing a diverse range of tasks, including node classification,

link prediction, clustering, and more [17, 5, 29, 18]. Because they do not examine the entire graph

at once, these methods are also useful for very large networks and networks that cannot be observed

in their entirety.
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1.2.1.2 Neural network approaches

A third class of graph embedding methods involves the use of deep learning techniques, including

neural networks [5, 17], e.g., Graph Neural Network (GNN) [5, 35]. Such methods have been

shown to perform well, particularly for dimension reduction and identifying nonlinear relationships

among data. Random walk based methods, such as DeepWalk, can incorporate deep learning

algorithms like SkipGram for graph embedding, where random walks serve to provide neighborhood

information as input.

In general, neural network methods typically work by assigning a weight to each node represen-

tation, and then combining those terms via a transfer function. This result is then used as the input

for an activation function, such as a sigmoid function, i.e., σ(x) = 1/(1 + exp(−x)). This process

may then repeat for multiple layers. In a neural network method, the parameters to be optimized are

the weights, which are updated after each layer, typically by gradient descent. In the GNN [35], the

objective function to be minimized is of the form

W =
∑

i

∑
j

(ti,j − φw(Gi, ni,j))2,

whereGi is the learning set, the ni,j and ti,j are the nodes and target outputs, and the goal is to choose

the parameter w in such a way that φ closely approximates the target outputs. This optimization

occurs through gradient descent, where the gradient is computed with respect to the weights w.

1.2.2 Transition path theory

In order to identify the transition paths of a given Markov process, we will adopt the framework of

Transition Path Theory (TPT). The following notations are mostly from [24]. Consider a state space

S, for an initial state A ∈ S and final state B ∈ S, a trajectory X(t) is said to be reactive if it begins

from state A and reaches state B before returning to state A.

To determine whether a given reaction path is reactive, we will need the following forward

and backward committor functions. For each i ∈ S, the forward committor q+
i is the probability

that a process initially at state i will reach state B before it reaches state A. Similarly, the discrete
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backward committor q−
i denotes the probability that a process arriving at state i was more recently

in state A rather than in state B. The forward committors satisfy the following Dirichlet equation

∑
j∈S

Lijq
+
j = 0 ∀i ∈ (A ∪B)C

q+
i = 0 ∀i ∈ A

q+
i = 1 ∀i ∈ B,

and similar equations are satisfied by backward committors.

The probability current, or flux, of reactive trajectories gives the average rate at which reactive

paths transition from state to state. For trajectories from A to B, the probability current is defined

for all i ̸= j such that

fAB
ij = lim

s→0+

1
s

lim
T →∞

1
2T

∫ T

−T
1{i}(X(t))1{j}(X(t+ s)) ×

∑
n∈Z

1(−∞,tB
n ](t)1[tA

n ,∞)(t+ s)dt

= fAB
ij ,

where 1(a,b) denotes the indicator function on the interval (a, b). Also, for all i ∈ S, fAB
ii = 0. It

can be shown that

fAB
ij =


πiq

−
i Lijq

+
j , if i ̸= j

0 if i = j.

Since we are primarily interested in the flow from A to B, and the process can move in either

direction between two adjacent nodes on the path, the following effective current accounts for the

net average number of reactive paths that jump from i to j per time unit:

f+
ij = max(fAB

ij − fAB
ji , 0).

We can also define the total effective current for a node i:

C+
i =

∑
j:(i,j)∈E

f+
ij .
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In [14], the effective current is generalized to a connected subnetwork of nodes Ω such that

C+(Ω) =
∑

i∈∂Ω
C+

i ,

which leads to the following definition of transition states of a time reversible process as subsets of

the state space:

TS = lim
σ→0

argmax
Ω

{C+(Ω) exp
(
−(q+ − 0.5)2/σ2

)
}

For the non-time reversible case, transition states can be identified similarly, replacing the exponential

argument (−(q+ − 0.5)2/σ2) with (−(q+ − 0.5)2 + (q− − 0.5)2)/σ2. The above definition gives

the flexibility of identifying transition states as subsets of the state space, which will be very useful

when dealing with complex dynamics such as entropy effects.

1.3 Identifying transition states using network embedding

We now introduce a method to identify transition states and paths of Markov processes, by random

walk based network embedding techniques for directed networks. Consider a Markov jump process

in a countable state space S. Using the infinitesimal generator L for the process, we can calculate

the stationary probability distribution π and the forward and backward committors, based on which

probability current and effective currents fAB
ij and f+

ij can then be computed. Once these quantities

have been obtained, the discretized state space can be viewed as a weighted, directed graph G(V,E).

The nodes v ∈ V are the grid points representing states of the system, and each pair of adjacent

nodes are connected by an edge (u, v) ∈ E with weights given by the effective probability current,

such that the direction of the edge will be determined by the sign of the effective current.

Once G is constructed, we can apply feature learning techniques for node classification to

identify transition states. Random walk trials for similarities between nodes will start from each

node in the space, using the edge weights as transition probabilities. The outputs of the random

walks can then be used to compute experimental “neighbor probabilities", i.e., the probability that a

random walk of length d starting at node u will contain node v. If the neighbor probability for a

node pair (u, v) is sufficiently high, then the node v is claimed as a neighbor of u. Note that this is a

directed process; v can be a neighbor of u even if u is not a neighbor of v.
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After finding these conditional probabilities and identifying the neighborhoods of each node, the

next step is to maximize an objective function in order to solve for the node embeddings. As in the

node2vec and DeepWalk methods for the undirected case, the conditional probabilities are modeled

using softmax functions. In order to adapt this technique for the case of directed graphs, we will use

a modified version of the objective function:

V [e] =
∑

u

πu

∑
v∈N(u)

Pr(v|e(u)). (1.4)

Optimizing this function will give the encoder function eopt that maximizes the probability of the

neighborhood of each node, with the most relevant nodes having the most influence on the feature

representations.

In the original form of the objective function (1.4) for the undirected graph methods described

above, the softmax functions depend only on whether nodes are neighbors, and is independent

of the probability (frequency) that a particular neighbor will show up in a random walk trial. In

other words, all neighbors are treated equally, while in reality some node pairs are more likely to

co-occur than others. To address this, the objective function used here incorporates the neighboring

probabilities, denoted NP (·, ·) such that

Pr(n|e(u)) = exp(e(n) · e(u))NP (n, u)∑
v∈V exp(e(v) · e(u))NP (v, u) .

Assuming e(u) = E2u, for E2 being a 2 × d matrix, the objective defined above can then be

maximized using gradient ascent to obtain the matrix E2
opt and therefore the feature embeddings.

In practice, the linear assumption on the map from nodes to embeddings appears to be insufficiently

flexible, particularly for higher-dimensional problems. To improve upon this, a neural network can be

incorporated into the feature learning process, with the sigmoid function σ(u) = 1/(1+exp(−e(u)))

where e(u) is the representation in the embedding space of the node u. The current algorithm uses

a relatively small number of layers; raising this number results in node representations that are

clustered more closely to their neighbors.
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Algorithm 1.1 A random walk simulation method for directed graphs, given the transition matrix T .

for u ∈ V do
walk(1) = u
for step = 1 : walklength do

for k = 2 : d do
total = ∑

v,walk(k−1)→v t(walk(k − 1), v)
for v : walk(k − 1) → v do
P (walk(k − 1), v) = t(walk(k − 1), v)/total

end for
Use probabilityP (walk(k−1), ·) to choose walk(k) = v for some neighbor of walk(k−1).
Set counter(walk(k), u) = counter(walk(k), u) + 1.

end for
end for

end for
for u, v ∈ V do

neighborprobability(u, v) = counter(u, v)/∑k counter(u, k)
end for

To obtain transition states for a particular process, we will examine the similarities between

the node representations of each state and the representation of metastable state A. Here, by

“similarities" we mean the conditional probabilities given by the softmax units discussed previously.

By construction, these values will naturally be small for nodes that are further from node A, due to

hopping distances that are longer than the length of the random walks. So, to find the transition

states, we combine similarities of node pairs with shorter hopping distances via matrix propagation,

e.g.,

sim(A, u) =
∑

A→v,v→u

sim(A, v)sim(v, u). (1.5)

Note that a node u for which this value is high is a higher-order neighbor of the reactant node A;

therefore, such a node will have a higher probability of lying along a transition path. We then define

transition states as nodes with high probability of lying on a transition path, which are not direct

neighbors of the reactant or product states.

1.4 Examples and results

Next, we will illustrate the suggested method on several simple examples. In the examples presented

here, we have used 100 random walk trials, each of length 9 steps. Smaller numbers of trials increase
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Figure 1.1 Diffusion process with energy barrier: plot assigning colors to each node in the
discretized domain Ω, according to each node’s similarity to the starting node A. Higher similarity
values correspond to higher dot products between the two-dimensional embeddings of the nodes.
The left plot corresponds to a parameter value of ε = 0.01, and the right plot corresponds to ε = 1.
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Figure 1.2 Feature representations of nodes with high similarity to the reactant state A for the 2D
diffusion process with energy barrier, with ε = 0.01.

the impact of noise in the results. Due to the matrix propagation technique described above, changes

to the walk length parameter do not have a noticeable affect.
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1.4.1 Diffusion process with energy barrier

First we will consider a two-dimensional diffusion process (x(t), y(t)) representing the position of a

particle traversing a potential field with potential V . This process follows the SDE

dx

dt
= −dV

dx
+ dW1(t)

dt
,

dy

dt
= −dV

dy
+ dW2(t)

dt
,

where V is the potential

V = (x2 − 1)2 + εy4, (1.6)

and W1(t) and W2(t) are independent Brownian motion processes.

This potential V has two local minima at (-1,0) and (1,0), as well as a saddle point at the origin.

As a result, the diffusion process (x(t), y(t)) will have metastable states at these energy minima.

Here I will take (-1,0) to be the reactant state A, and (1,0) to be the product state B. The diffusion

process can be approximated using a Markov (birth-death) jump process on a discrete state space.

For this example, we will study the diffusion process on the domain Ω = [−1, 1] × [−0.75, 0.75]

by examining the Markov jump process on a grid D = ((−1 + hZ) × (−0.75 + hZ)) ∩ Ω, with

h = 0.05.

In order to examine the behavior of this Markov process, we should first compute the probability

currents for the process. The infinitesimal transition matrix L can be found by using the jump rates

for the birth-death process Luv for each pair of adjacent nodes u, v [15]. We define the following

constants for a state (x, y) with x ∈ (−1, 1):

k+
x (x, y) = 1

2h2 − 1
2h
dV

dx
(x− h),

k−
x (x, y) = 1

2h2 + 1
2h
dV

dx
(x+ h),

k+
y (x, y) = 1

2h2 − 1
2h
dV

dy
(y − h),

k−
y (x, y) = 1

2h2 + 1
2h
dV

dy
(y + h).
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Also let k+
x (x + h, y) = 1/h if x = −1, k+

x (x + h, y) = 0 if x = 1, and k−
x (x − h, y) =

0, k−
x (x − h, y) = 1/h if x = −1 or x = 1 respectively, and similarly for k+

y and k−
y . Then the

infinitesimal generator can be expressed in terms of its action on a test function f such that

(Lf)(x, y) =k+
x (x+ h, y)(f(x+ h, y) − f(x, y)) + k−

x (x− h, y)(f(x− h, y) − f(x, y))

+ k+
y (x, y + h)(f(x, y + h) − f(x, y)) + k−

y (x, y − h)(f(x, y − h) − f(x, y)).

Figure 1.1 assigns each point in the grid a color based on its similarity to the node ofA = (−1, 0),

for epsilon values ε = .01 and ε = 1 in Eq (1.6), respectively. To account for the fact that nodes

with greater hopping distances from A will have lower similarities to this node, we propagate the

similarity matrix according to (1.5) in order to assign similarities to more distant nodes. The red

area passing from A to B represents the region that reactive trajectories will pass through with the

highest probability for each value of epsilon.

In Figure 1.2, the node embeddings (u, v) = eopt(x, y) corresponding to a subset of nodes with

higher similarity values to A are shown, for the case where ε = 0.01, where eopt is the optimal

linear encoding. Notice that in this figure, the embeddings for nodes with the highest probability of

occurring in a reactive trajectory are clustered together, while nodes with lower probabilities tend

to be grouped with other nodes with similar probabilities; more specifically, nodes with similarity

values in the range 0.5 − 0.6 have embeddings clustered near the upper left or lower right of the

figure, while nodes with values from 0.7–0.8 will have embeddings which appear in one of the two

orange clusters.

In the context of the diffusion process with the potential V , the entropy effect refers to changes

in the system’s observed dynamics in response to the change of the parameter ε. That is, as ε is

decreased, dV/dy shrinks and therefore the negative term of dy/dt becomes small. As a result, the

shape and size of the saddle point located at the origin is altered, and we can expect the y-coordinate

to take on a greater variety of values with higher probabilities in this case. In particular, around the

origin, smaller values of ε should result in higher similarities between the nodes above and below

the origin, since in this case the process is more likely to move up and down. For larger values of ε,

the process is expected to move straight forward from A to B, with a smaller probability of moving
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up or down.

Figure 1.3 Diffusion process with entropic bottleneck: surface plot of the similarity function
between the reactant state A and nodes in Ω. Here, the discretization with h = 0.1 is used.

1.4.2 Diffusion process with barriers

Next we consider a pure diffusion process (V (x, y) = 0) on the domain Ω = [−1, 1] × [−1, 1]

with two barriers as depicted in Figure 3. This example was also discussed in [25]. Here we take

the node at (0.6, 0.6) to be the initial state A, and (−0.6,−0.6) as the final state B. The particle

spends most of its time between the reactant and product states, in the region between the barriers

([−1, 1] × [−0.4, 0.4]). The only factor affecting the probability that the particle will reach B before

returning to A is its current distance to B, since there are no energetic obstacles to overcome. In

order to travel from A to B, the process must find its way past the obstacles by chance, thereby

overcoming an entropic barrier.

Figure 4 shows the node embeddings for a subset of nodes with high similarity values to reactant

A. Note that the color scheme used in this figure corresponds to the color scheme in Figure 3; node

embeddings that are colored red in the scatter plot correspond to red areas in the surface plot. In

Figure 4, node embeddings again tend to be grouped by the corresponding values of the similarity

function: nodes that are very similar to the initial state A (similarity function value > 0.9) appear in

the red cluster toward the lower right. Other clusters of different colors correspond to groups of
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Figure 1.4 Feature representations of nodes with high similarity to the reactant state A for the
entropic diffusion process.

nodes with lower probabilities of appearing in a reactive trajectory. The yellow cluster contains

embeddings of nodes with similarity function values approximately 0.7–0.8, while the blue cluster

corresponds to nodes with similarity values near 0.5–0.6.

1.4.3 Three-dimensional toggle switch

Now we will consider a higher-dimension example, a stochastic model of a 3D genetic toggle switch

consisting of three genes that each inhibit the others’ expression [14]. We consider the production

and degradation of the three gene products, S1, S2, and S3:

∗
α1
⇌
α4
S1, ∗

α2
⇌
α5
S2, ∗

α3
⇌
α6
S3,

where the parameters αi are defined:

α1 = c11

(65 + x2
2)(65 + x2

3)
, α2 = c12

(65 + x2
1)(65 + x2

3)
,

α3 = c13

(65 + x2
1)(65 + x2

2)
, α4 = c4x1 ,

α5 = c5x2, α6 = c6x3,
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Figure 1.5 Surface plot of the similarities to A of grid points in the domain Ω for the 3-D Toggle
switch model. Results are for a 15 × 15 × 15 discretization (h = 3).

with c11 = 2112.5, c12 = 845, c13 = 4225, c4 = 0.0125, c5 = 0.005, and c6 = 0.025. From the

stationary probability distribution, it can be seen that this model has three metastable states:

A = {x ∈ S|35 ≤ x1 ≤ 45, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ 4},

B = {x ∈ S|35 ≤ x2 ≤ 45, 0 ≤ x1 ≤ 4, 0 ≤ x3 ≤ 4},

C = {x ∈ S|35 ≤ x3 ≤ 45, 0 ≤ x2 ≤ 4, 0 ≤ x1 ≤ 4}.

Here we will choose A to be the reactant state and B to be the product state.

Figure 5 assigns colors to each node in Ω = {ih, jh, kh|i, j, k ∈ Z} ∩ [0, 45] × [0, 45] × [0, 45]

based on their similarity to nodes in A, propagating the similarity matrix for nodes with larger

hopping distance from A as described previously. This figure shows two potential transition states

for this system. A reactive trajectory from A to B will be most likely to pass directly from A to B

along the higher-probability trajectory, represented in red. However, such a trajectory may instead

reach B after travelling through state C, as indicated by the fainter region connecting A and B via

C.

Below, Figure 6 shows the two-dimensional node embeddings in R2, with the embeddings of

nodes with zero similarity to A omitted for clarity. There are several distinct clusters present in

Figure 6, each representing a cluster of similar nodes. The nodes with the highest similarities to A
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after propagation of the similarity matrix (represented in red) are shown in the cluster to the lower

left of the figure. Hence, the nodes in this cluster represent the nodes expected to appear in the

transition path.

Reactant State A

Product State B

Transition State

Figure 1.6 Feature representations of nodes with high similarity to the reactant state A for the 3D
toggle switch.

1.4.4 Stochastic virus model

Now we will consider a higher-dimension example, a 3D stochastic model for virus propagation

consisting of three species which are necessary for virus production [38]. The three species involved

in this system are the template (tem), viral genome (gen), and structural (struct) proteins of the virus.

The cellular concentrations of these proteins are controlled by six reactions: producing tem from

gen, using tem as a catalyst to produce struct and gen, degradation of tem and struct, and propagation

of the virus using struct and gen such that

[gen] k1−→ [tem] , [tem] k2−→ ∅,

[tem] k3−→ [gen] , [gen] + [struct] k4−→ ∅,

[tem] k5−→ [struct] , [struct] k6−→ ∅,

where we adopt k1 = 0.25, k2 = 0.25, k3 = 1.0, k4 = 7.5 × 10−6, k5 = 1000, and k6 = 1.99.

From [38] we know there are two steady states for this system: an unstable trivial solution at

20



0.63 0.635 0.64 0.645 0.65 0.655 0.66 0.665 0.67 0.675 0.68

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57
Product State B

Reactant State A

Transition States

Figure 1.7 Feature representations of nodes with high similarity to the initial state A = (0, 0, 0) for
the virus propagation example.
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Figure 1.8 Feature representations for the virus propagation example, with a logarithmic scale on
the x-axis.

tem = gen = struct = 0, and a stable steady state, which with the given parameter values is

tem = 30, gen = 100, struct = 12000. Ignoring the stochastic effects, as a macro scale limit, this
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system can be modeled by the ODEs:

d[tem]
dt

= k1[gen] − k2[tem],

d[gen]
dt

= k3[tem] − k4[gen][struct] − k1[gen],

d[struct]
dt

= k5[tem] − k6[struct] − k4[gen][struct].

For a stochastic perspective, we model the system by a Markov process, where we follow the First

Reactions method of the Gillespie algorithm[16], which at each time step assumes that the reaction

that could take place in the shortest amount of time will occur next.

From the upper left to the lower right, these clusters contain the representations for nodes near

approximately (15, 0, 1000), (30, 66.7, 4000) and (30, 100, 8000). Direct simulations confirm that

these are transition states: reactive trajectories will tend to pass through nodes in each of these

clusters. Applying the feature learning method to this system produces a two-dimensional feature

representation for each three-dimensional node (tem, gen, struct). Here, we take state A to be the

origin and B = (30, 100, 12000). Figure 7 plots the two-dimensional feature representations for this

system. In this figure, the nodes with higher similarities to the initial state (represented in red) and

those with lower such similarities (represented in blue) appear in separate clusters. Figure 8 plots

these feature representations with a logarithmic scale on the x-axis to better display the clusters.

Five distinct clusters are discernible in Figure 1.8: the red node in the top left is the feature

representation for the reactant state, the red node at the bottom right is the representation of the

product state, and the three clusters between each represent a transition state that reactive trajectories

pass through while traveling from A to B. From the upper left to the lower right, these three

clusters contain the representations for nodes near approximately (15, 0, 1000), (30, 66.7, 4000) and

(30, 100, 8000). Direct simulations confirm that these are transition states: reactive trajectories will

tend to pass through nodes in each of these clusters.

22



1.4.5 E. Coli σ-32 heat response circuit

Finally we will address a higher-dimension example, to illustrate the effectiveness of the method on

reducing the dimension of a graph. Consider the E. coli σ-32 stress circuit, a network of regulatory

pathways controlling the σ-32 protein, which is essential in the E. coli response to heat shock [37].

The systems consists of 10 processes:

FtsH
k1−→ ∅, Eσ32 k2−→ FtsH,

GroEL
k3−→ ∅, Eσ32 k4−→ GroEL,

σ32 + Jcomp
k5−→ σ32-Jcomp, σ32-Jcomp

k6−→ Jcomp + σ32,

σ32-Jcomp
k7−→ FtsH, ∅ k8−→ σ32,

E + σ32 k9−→ E-σ32, E-σ32 k10−−→ E + σ32.

In this context, FtsH and GroEL are stress response proteins, E is a holoenzyme, and Jcomp (or

J-complex) represents several chaperone proteins that are lumped as a simplification. Then E-σ32

denotes the protein complex formed when E binds to σ32, which catalyzes downstream synthesis

reactions. σ32 is a product of translation, which we assume to occur at a rate corresponding to

k8 = 0.007. It can also associate and dissociate of the J-complex. In accordance with [37] the

other rate constants are taken to be: k1 = 7.4 × 10−11, k2 = 4.41 × 106, k3 = 1.80 × 10−8, k4 =

5.69 × 106, k5 = 3.27 × 105, k6 = 4.4 × 10−4, k7 = 1.28 × 103, k9 = 0.7, and k10 = 0.13.

For the above reaction rates, this system has a metastable state where the concentrations of

FtsH, GroEL, σ32, and Jcomp are approximately 600, and the concentrations of the other three

species are approximately 1500. Another metastable state occurs when the concentrations of FtsH,

GroEL,σ32, and Jcomp are approximately 800. Here we take the former to be initial state A and the

latter to be the product state B. Following a procedure similar to that in the above virus propagation

example, three-dimensional representations are generated for each node. The plot of these node

representations is given in Figure 9. The color scale in this figure is determined by the value of the

similarity function between each node and the node A, with the most similar nodes shown in red.
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Nodes with lower similarities have been omitted for clarity. Four distinct clusters can be seen in

Figure 9.

Figure 1.9 Feature representations of nodes with high similarity to the initial state, when initial state
is taken to be A = (600, 600, 600, 600, 1500, 1500, 1500), for the E. Coli heat response circuit
model.

1.5 Conclusions

In this paper, we presented a method for analyzing metastable chemical reaction systems via feature

learning on directed networks using random walk sampling. We have shown how this method may

be used to identify transition states of Markov jump processes by interpreting such processes in

terms of directed networks and taking advantage of Transition Path Theory. We have illustrated

the efficacy of this method through several low-dimensional examples involving various energetic

and entropic barriers. As noted above, for more complex, realistic examples, the method can be

used for dimensional reduction, enabling the extraction and analysis of high-dimensional graph

information. Further work will be necessary to fully understand this approach from a probabilistic

standpoint. Another direction for future work is improving efficiency and development of faster
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algorithms. However, this method still forms the groundwork for a potential new way of analyzing

directed networks and jump processes, particularly in the context of chemical kinetics.
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CHAPTER 2

EFFICIENT NETWORK EMBEDDING BASED ON SPARSE APPROXIMATION OF A
RANDOM WALK

2.1 Introduction

Graphs provide a versatile and intuitive representation for many real world situations. A wide variety

of relational data, e.g., social networks, protein-protein interaction networks, biochemical systems,

citation networks, and many others, can be interpreted as graphs. As a result, methods for analyzing

these networks have consistently garnered much interest.

Network embedding, or feature learning, which provides a major framework for network analysis,

seeks to map each node in a given graph to a point in a low-dimensional vector space such that

relational information from the original graph is preserved. In particular, the embeddings of nodes

that are closely related in the original graph (e.g., those connected by an edge, or with mutual

neighbors) will be close together in the embedding space. In many machine learning applications,

the lower-dimensional vectors are much easier and more convenient than the original network

representations.

Although there also exist methods for embedding edges or whole networks, here we focus on

node embedding methods. These frequently have the benefit of being more adaptive and useful

for a variety of applications, such as node classification, clustering, and link prediction [5]. Node

classification assigns class labels to unlabeled nodes based on a small sample of labeled nodes, while

clustering algorithms group the representations of similar nodes together in the target vector space,

and link prediction is used to predict edges based on a sample of data containing edge information.

Most node embedding methods can be classified based on the general techniques used to

compute representations. As seen in [17], the three major categories are methods based on matrix

factorization, random walk sampling, and deep learning techniques. Matrix factorization methods

involve representing network information in a matrix (e.g. an adjacency matrix or Laplacian),

then factoring or decomposing that matrix to determine embeddings. Examples include Laplacian
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eigenmaps [3], locally linear embedding (LLE) [33], and graph factorization [1]. Factorization

methods are deterministic and often perform well on small graphs, but may be impractical on

very large graphs. Some factorization methods can only be applied to matrices with specific

properties; methods involving eigenvalue decompositions, for instance, require the matrix to be

positive semidefinite.

A benefit of random walk methods is that these methods are not typically subject to these

restrictions, and can easily be applied to large networks. In general, these methods involve collecting

information about node-node relationships by running short random walk trials on the network, then

encoding this information into embeddings via gradient descent. DeepWalk [29] and node2vec [18]

are two well-known methods of this type for undirected graphs, and a random walk approach for

the directed case is proposed in [7]. In DeepWalk [29], closely-related nodes are embedded near

each other based on the frequency of co-occurrence within unbiased, fixed length random walks

on the graph. One method that builds on this idea is node2vec [18], which replaces the simple

unbiased random walks with walks influenced by parameters that control the walks’ tendency to

either backtrack and stay near the starting node, or explore higher-degree neighbors of the starting

node.

Here, we propose another improved implementation of SGD-based random walk methods,

based instead upon a sparse approximation of the random walk on the graph. We use this sparse

approximation to deterministically find embeddings optimizing the commute time [19], then finally

apply SGD to minimize cross-entropy loss. This approach achieves efficiency by avoiding Monte

Carlo simulations of random walks, instead leveraging commute time, which takes into account all

paths of arbitrary length between nodes.

The commute time is defined as the expected time for a random walk to travel from one node

u to another v, and then back to the starting node u. It can also be viewed as an integration over

time t of the diffusion distance introduced in [10], which is defined through the probability of the

random walk traveling from u to v in fixed time t. Hence, the diffusion distance sums over all paths

of finite time t between the pair of nodes (u, v). One advantage of utilizing commute time rather
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than diffusion distance is that it removes the need to choose an appropriate value for the parameter

of time t.

Numerically, the commute time between two nodes can be computed from the Green function.

Through the Schultz method, one can compute an efficient approximation of the Green function

via a short product involving dyadic powers of the random walk’s transition matrix. The diffusion

wavelets algorithm, introduced in [11], offers one way to compute increasingly low-dimensional,

compressed representations for these dyadic powers. Diffusion wavelets can also be used for network

embedding, as discussed in [44]. By construction, at each scale represented by a dyadic power

of the diffusion operator, the diffusion wavelets algorithm produces a basis of scaling functions

that span the same space as the eigenvectors corresponding to the largest eigenvalues. As a result,

these scaling functions can be used to produce embeddings that are equivalent up to a rotation to

those produced by kernel methods. Alternatively, the low-dimensional approximations of the dyadic

powers (and subsequently the Green function) can be computed from the Markov matrix’s largest

singular values and corresponding singular vectors. From these singular vectors, we can produce

multiscale embeddings analogous to the scaling functions of diffusion wavelets.

In this paper, we propose a random walk method for learning node embeddings for networks

that preserves commute time distances between nodes. Rather than applying the SkipGram model

directly to the random walk, we begin by finding a sparse, low-dimensional approximation of the

random walk. Specifically, we take inspiration from diffusion wavelets [11] to compute compressed

versions of the random walk and its dyadic powers. We then produce commute time-preserving node

embeddings from the Green function G(u, v) associated with the sparse approximation. Finally,

we use SGD to optimally weight each dimension of the embeddings so that cross-entropy loss

is minimized. We show that these embeddings compare favorably to those produced by existing

methods such as node2vec, LINE, and GraRep, with classification accuracy measured by F1 Macro

scores. Additionally, we show that this truncated SVD algorithm allows for faster dimensional

reduction than the original diffusion wavelet algorithm, leading to improved performance and

accuracy on larger graphs.
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Section 2 of this paper provides some necessary background on random walk and SkipGram-

based node embeddings, commute time embeddings and an introduction to random walk sparse

approximation techniques. In Section 3, we introduce the proposed new method for learning network

embeddings, and discuss its implementation and its relationship to other kernel-based embeddings.

In Section 4, we elaborate on the numerical aspects of two possible choices of algorithm (diffusion

wavelets and SVD) for computing the sparse approximation of the random walk. Finally, Section 5

provides numerical experiments on several graphs, comparing the proposed method to some existing

feature learning methods from the literature.

2.2 Background

Before presenting the implementation details of our method, we will first discuss in more depth

the tools used at each stage. Our embeddings are based on the application of SGD to a commute

time-preserving embedding of a compressed representation of the random walk on the graph.

We will elaborate on these topics below, beginning with SGD, the SkipGram model, and some

SkipGram-based embedding methods. Then, we will discuss commute times and their embeddings

as introduced in [19], and finally the sparse approximation of the random walk.

2.2.1 The Skipgram algorithm and Skipgram-based embeddings

The SkipGram algorithm optimizes vector embeddings by minimizing the loss function

L =
∑

i

∑
j∈walk(i)

− log (P (j|i)) .

Here, i, j are nodes in the network, walk(i) denotes a random walk trial starting at node i, and

P (j|i) denotes the conditional probability that a random walk starting at node i will include node j.

In the SkipGram model, these conditional probabilities are modeled using softmax units as follows:

P (j|i) = exp(vi · vj)∑
k exp(vi · vk) ,

where vk denotes the vector embedding for node k. For large networks with many nodes, this

denominator becomes impractical to compute. To overcome this, negative sampling [26] may be
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used instead. This replaces the softmax units with

P (j|i) = σ(vi · vj)
M∏

m=1
σ(−vi · vkm),

where σ(x) = 1/(1 + e−x) and M is the chosen number of negative samples (sampled from a

uniform or unigram distribution).

The simplest SkipGram-based method for network embedding is DeepWalk [29]. In DeepWalk,

an unbiased random walk is simulated on the graph. Essentially, the walk has an equal chance of

stepping to any node which is connected by an edge to the current node, so the transition matrix is a

row-normalized adjacency matrix. If the graph is weighted, the weighted adjacency matrix (with

entries given by edge weights) may be used instead. Stochastic gradient descent is then used to

minimize the above SkipGram objective based on the random walk simulations; that is, at each data

point from the random walk trials, the gradient of the loss function with respect to the parameters θ

of the embedding function is computed, and the parameters are updated by αdL
dθ

for some learning

rate α (see Algorithm 2.1).

Algorithm 2.1 SkipGram Model (stochastic gradient descent).

for i do
for j ∈ walk(i) do
L(θ) = − logP (vj(θ)|i)
θ = θ − αdL

dθ

end for
end for

The node2vec [18] method follows a similar outline, but with a slightly more complex choice of

random walk. In particular, two parameters p and q are used to bias the random walk simulations.

The return parameter p is used to control the probability that a random walk will backtrack to

immediately revisit the previous node (e.g., by stepping from node A to B, then immediately back

to A). The in-out parameter q controls the likelihood that the walk will step to a node which is

close to the previous node. That is, for smaller q, the random walk will be more likely to explore

parts of the graph that are further away from the starting node. The resulting random walk’s

transition probabilities are defined as follows, where the current state of the random walk is n0 and
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the previous state was n−1. If n0 is connected to M other nodes m1, m2, ...,mM , one assigns each

mj an unnormalized probability β(j):

β(j) =


1/p if mj = n−1

1 if mj shares an edge with n−1

1/q if mj does not share an edge with n−1.

To get the transition probabilities for the next step of the random walk, the β(j) are normalized so

that they sum to one. Notice that this random walk depends on the two previous steps, and so is

not a Markov chain. These parameters can be used to find the ideal balance between breadth-first

sampling, which tends to stay nearer to the source node and get a more accurate picture of its

immediate neighborhood, and depth-first sampling, which tends to visit parts of the graph further

from the source. By finding optimal values of p and q, then, one can engineer a new random walk

that will provide superior node embeddings.

In this article, our goal is similar to that of node2vec: we aim to find a choice of random walk

that will lead to better node embeddings.

2.2.2 Network Embeddings with Commute times

For a given network Γ, let S denote the set of nodes, E the set of edges, and let A be the

adjacency matrix with entries given by the weights aij . Let D be the diagonal matrix with

D(i, i) = di = ∑
j aij . The volume of the graph will be given by vol = ∑

i di, and the random walk

Laplacian is defined as L = I −D−1A. The normalized Laplacian has the form L = D−1/2LD−1/2

with eigendecomposition L = ΦΛΦT , where Λ denotes the diagonal matrix of eigenvalues ordered

so that 0 = λ1 ≤ λ2 ≤ ... ≤ λ|S|, and the eigenvectors are given by columns of Φ = (ϕ1, ϕ2, ....ϕ|S|).

The discrete Green function is the left inverse of the operator L and can be given as

G(i, j) =
|S|∑

k=2

1
λk

(
dj

di

)1/2

ϕk(i)ϕk(j).

Here, we assume that the graph is connected. Otherwise λk = 0 for some k ≥ 2, and we can instead

consider the Moore-Penrose pseudoinverse, L+ = (LTL)−1LT , to which the methods and results

can be easily extended.
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We can further define the commute time CT (i, j) to be the mean time for the Markov process

on the graph prescribed by L to travel from i to j and back, which also satisfies

CT (i, j) = vol

(
G(i, i)
di

+ G(j, j)
dj

− G(i, j)
di

− G(j, i)
dj

)
. (2.1)

It is shown in [19] that the coordinate matrix for embeddings that preserve commute time is then

given by Θ =
√
volΛ−1/2ΦTD−1/2, so ΘT Θ = vol ·GD−1. Thus, commute time embeddings are

equivalent to those produced by kernel PCA on a constant multiple of the matrix GD−1.

2.2.3 Computing sparse approximations of Green functions via Schultz method

As we will see, one key component of our method will involve computing an approximate, compressed

version of the Green function corresponding to the random walk on the network. Here we use the

Schultz method for this purpose. The Schultz method iteratively computes the Green function (or

Moore-Pembrose pseudoinverse) associated with L through Gk+1 = Gk(2I − LGk). The Green

function G can be associated with a diffusion process (i.e., a Markov random walk) defined by the

transition matrix T = I − L = D−1A. Using the fact that L = I − T , and taking G0 = I + T , we

obtain:

G1 = G0(2I − (I − T )(I + T )) = G0(2I − I + T 2) = (I + T )(I + T 2),

G2 = G1(2I − (I − T )(I + T )(I + T 2)) = G1(2I − (I − T 2)(I + T 2)

= (I + T )(I + T 2)(I + T 4),
...

GK+1 =
K∏

k=0
(I + T 2k).

The Green’s function G then has the following form on the complement of the eigenspace for the

eigenvalue equaling 1, as shown in [11]:

Gf =
∞∑

k=1
T kf =

∞∏
k=0

(I + T 2k)f.

Compressed versions of these dyadic powers T 2k can be computed using either the singular value

decomposition or diffusion wavelets [11], as we will see in Section 4. Since these matrices are all
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sparse under certain assumptions, this product can be approximated quickly, which in turn allows

for the quick computation of the commute times via the formula (2.1).

Diffusion wavelets [11] extends ideas from wavelet theory to a more general setting. In particular,

it extends the descriptions of wavelet bases in [13] for multiscale analysis of networks. The multiscale

analysis includes a sequence of subspaces in L2(R) such that

· · ·V−1 ⊃ V0 ⊃ V1 ⊃ V2 ⊃ · · · ,

⋂
m Vm = ∅, and ⋃m Vm = L2(R). The Vm also have the property that f ∈ Vm ⇔ f(2·) ∈ Vm−1.

Thus larger m correspond to increasingly coarser scales.

Scaling functions are constructed from some Φ ∈ V0 by dilating and scaling according to

Φm,n(x) = 2−m/2Φ(2−mx − n). The scaling functions at scale m, {Φm,n : n ∈ Z}, form an

orthonormal basis of the space Vm.

[13] also shows that a second basis of orthonormal functions Ψm can be constructed for each

scale m. The general construction is as follows: given the scaling function Φ, choose wavelet

coefficients cn, n ∈ Z such that

Φ(x) =
∑

n

cnΦ(2x− n).

Then, we choose

Ψ(x) =
∑

n

(−1)ncn+1Φ(2x+ n).

We can then define wavelet bases at each scale m from dilations and translations of the function Ψ,

similarly to the scaling functions (that is, Ψm,n(x) = 2−m/2Ψ(2−mx−n)). The Ψm,n are orthonormal

and span a space Wm with the properties Wm ⊥ Vm and Wm
⊕
Vm = Vm−1. Furthermore, the

entire collection of Ψm,n∀m,n ∈ Z is an orthonormal wavelet basis for L2(R).

In the diffusion wavelets setting [11], the multiscale analysis includes a sequence of subspaces

V0 ⊃ V1 ⊃ V2 ⊃ · · ·

such that V0 is the range of the operator T , and for m ∈ Z, Vm represents an approximation of

the range of T at scale m. In particular, when {ζi}i∈Z+ and {λi}i∈Z+ denote respectively the
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eigenvectors and eigenvalues of T , Vm is defined as the span of {ζλ : λ2m+1−1 ≥ ε}. Each Wm can

then be defined as the orthogonal complement of Vm in Vm−1, as in the original wavelet setting.

Note that the parts of the spectrum with λ2m+1−1 ≥ ϵ can be viewed as "low-pass," so that the Vm

correspond to the "approximation" or "smoothing" subspaces in classical wavelet theory, and the

Wm correspond to the "detail" components. The scaling functions Φj at each level j then provide a

basis for Vj , approximating a dyadic power of T . We leave the numerical details of the algorithm for

Section 4.

2.3 An implementation of the SkipGram model based on sparse approximation and commute

times

We now propose a method combining ideas from the previous section to produce network embeddings

that preserve commute times while also optimizing the cross entropy loss. Overall, the idea is to

first obtain a sparse approximation of the random walk from a multiscale embedding process, and

produce a commute time-preserving embedding basis from this approximation. Then, the final

embeddings are produced via SGD, optimizing the weights on these basis vectors to minimize the

cross entropy loss.

Let T denote the transition matrix for the random walk on a network with N nodes.. We here

assume that T is local in the sense that its columns have small support, and that high powers of T

will be of low rank. We start by computing the compressed representations of the dyadic powers of

T , and call these representations T1, . . . , Tk, so that Tk denotes the representation of T 2k . To do this,

we apply an orthogonalization procedure (the details of which will be explained in Section 4) to the

columns of T , producing an orthogonal basis U1 = {u1, u2, . . . uK}, {K ≤ N}, that approximates

the range of T . Then, we can write T1 := UT
1 TU1, so that T1 is an approximation of T 2 expressed

in terms of the basis U1. We then repeat the process, orthogonalizing the columns of T1 to produce

an approximate basis U2 for its range, using this new basis to compute a representation of T2 ≈ T 4,

and so on.

More specifically, at each step we compute a truncated SVD of Tk. The singular vectors

associated with the largest singular values then form a basis spanning approximately the range of Tk,
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which we can view as a ”low-pass" approximation subspace analogous to the low-pass subspaces

of classical wavelet theory. We can then use these singular vectors to compute a compressed

representation of the next dyadic power, Tk+1 ≈ T 2k , with respect to the basis Uk. Further details of

this process will be reserved for Section 4.

Using the Schultz method described in Section 2.3, we compute the unnormalized Green function

G from T1, . . . , Tk. From [19], network embeddings that preserve commute time relationships have

the embedding matrix Θ satisfying ΘT Θ = vol ·GD−1. We produce such multiscale embeddings by

repeating the same approximation process to produce compressed representations ofQ = vol ·GD−1.

This process yields at each scale a basis of scaling functions Ũk that spans an approximation

of the range of Qk ≈ Q2k , as described in Section 4. Then, the embeddings for compression level

k (with k = 1 representing the finest scale, and larger k representing increasingly coarse scales)

are constructed from the scaling functions of Qk. Essentially, to obtain the k-level embedding for

node x, we extend the truncated singular value decomposition at the kth level, Qk ≈ ŨkΣ̃kṼ
T

k , to

the original basis and take the matrix Θ = Σ̃1/2
k ŨT

k to be the embedding matrix; that is, the nth

column of Θ will provide the embedding coordinates for the nth node. (For symmetric G, note that

vol ·GD−1 ≈ ΘT Θ, as desired.)

The singular vectors are a sensible choice for the embeddings because, similarly to the scaling

functions in classical wavelet theory, the span of the columns of Uk is a low-pass approximation

space for the range ofQk. Similar multiscale embeddings are also utilized in, for example, [11], [44],

although these embeddings utilize the scaling functions of diffusion wavelets rather than singular

vectors.

It is also possible to replace the truncated SVD algorithm used here with the diffusion wavelet

algorithm of [11]. A more detailed explanation and comparison of the two algorithms is given

in Section 4. In the numerical experiments performed here, the SVD version of this algorithm

outperformed the diffusion wavelet algorithm, so the remainder of the paper will focus on the SVD

version. The same ideas can be implemented for either version.

While the matrix Θ can itself be used as an effective node embedding, we can further improve
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our results by using this sparse approximation as a starting point to obtain node embeddings that

minimize cross entropy. The commute-time-based embedding results in a basis spanning the range

of (a power of) the sparse approximation to the random walk. We can reweight the vectors in this

basis spanning the same space such that cross entropy loss is minimized. Additionally, we will with

some probability reintroduce singular vectors that were removed in the previous truncations. In this

way, we randomly reintroduce some of the information that has been lost in the approximation steps,

without compromising computational efficiency. In particular, since taking powers of a Markov

matrix is equivalent to running the Markov process forward in time, reintroducing columns from

previous steps is analogous to preserving information about different time scales.

Cross-entropy loss is given by the following:

LossCE =
∑

i

∑
j:(i,j)∈E

− log(P (j|i)), (2.2)

where P (j|i) denotes the conditional probability of node j conditioned on i (the probability that a

random walk will move from node i to node j). Here we model the conditional probabilities using

the angular distances between nodes,

AD(i, j) = 1 − 1
π

arccos
(

θT
i θj

||θi||||θj||

)
,

by taking P (i|j) = 1
N
AD(i, j) if i ̸= j and P (j|j) = 1 −∑

i ̸=j P (i|j).

Given the N ×K sparse approximation Θ, where the ith row of Θ, θi, provides an embedding

of node i, we aim to find constants C1, C2, ...CK such that the embedding given by ΘC where

C = diag(C1, C2, ...CK) minimizes cross entropy (2.2). Each basis vector, given by the columns

of Θ, is therefore multiplied by a different weight constant. Using SGD, we choose the optimal

constants so that the role of the more "important" columns (which correspond to particular singular

values of the approximation to the random walk) will be emphasized.

After each step of SGD, with some small probability δ, we also extend the basis θ with one of

the indices from the basis in the previous step. That is, if Θ = Σ̃1/2
k ŨT

k , we randomly select an

index αkN ≤ j ≤ αk−1N . This then corresponds to a column of Uk−1, uj . We can then project

σjuj onto the basis Uk, and append this projection to Θ. This allows for the reintroduction of some
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information from the ”high-pass" subspaces, removed during the approximation process, while still

benefiting from the low-dimensional compression given by the low-pass bases.

The overall algorithm is as follows:

1. Produce the sparse approximation of the random walk (e.g. the Green function G and the

commute time embeddings θ) as described above, by computing the first αkN singular values

and left singular vectors at the kth step.

2. Initialize C as the identity matrix, normalized so that its diagonal entries sum to 1.

3. Via stochastic gradient descent, find C optimizing the cross entropy loss function (2.2).

4. During the SGD process, at each step (with probability δ) append to the embedding matrix a

vector corresponding to an index which was previously removed in the truncated SVD. Also

extend C accordingly.

As a visualization aid, we consider the Zachary’s Karate Club network [50]. The scatter plot in

Figure 2.1 (b) shows the two-dimensional embeddings generated by Commute Times with Diffusion

Wavelets for the karate club network. The thirty-four nodes of this graph each represent a member

of the karate club, with edges representing whether or not two people communicate outside of

the club. Each node has been assigned a group label (indicated by the color of that node in the

plot) corresponding to one of four clusters, depicted in Figure 2.1 (a). The above method results in

embeddings that successfully distinguish all four clusters.

Table 2.1 Performance and clustering score for the karate club graph embeddings in Figure 2.3.

Network d Runtime F1 Macro
Karate Club 3 0.85 s 0.9177

2.3.1 Modified Johnson-Lindenstrauss Lemma

It can be shown that the embeddings produced via the proposed method (i.e., Green function-based

commute time methods) satisfy a modified version of the Johnson-Lindenstrauss lemma. In
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Figure 2.1 a) The karate club network (created via [30]). b) Commute time embeddings found via
the proposed method. Colors of points are determined by the true classification of each node.

particular, the Euclidean distances between these embeddings approximate up to ε the commute

time distance (or, for diffusion wavelet-based embeddings, the square root of the commute time

distance) between the original nodes.

The commute time can be approximated with high probability by the product of G1/2 and a

constant multiple of a random matrix with normally distributed entries:

Theorem 1. Let S be the set of all vertices in a network with unnormalized Green function given

by G, degree matrix D, and volume vol, and let CT (·, ·) denote the commute time. There exists

Π ∈ Cm×d where m = O(log(1/δ)/ε2) and ε > 0 such that for all x, y ∈ S,

(1 − ε)CT (x, y) ≤ ||Π(volGD−1)1/2δx − Π(volGD−1)1/2δy||22 ≤ (1 + ε)CT (x, y) (2.3)

with probability 1 − δ.

Next, we give the main result of this section, which demonstrates that our embeddings preserve

commute times between nodes.

Theorem 2. Let S be the set of all vertices in the network, and let CT (·, ·) denote the commute time.
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Figure 2.2 2 and 3-dimensional embeddings of the karate club network, based on the first columns
of the commute time embedding matrix from [19].

Figure 2.3 2 and 3-dimensional embeddings of the karate club network, created with the proposed
method.

1. If Φ(x) := ΦT δx denotes the embedding for node x obtained by applying the diffusion wavelet

algorithm to the matrix volGD−1 with precision constant ε (that is, Φ is the orthonormal

basis of scaling functions and Φ(x) is the xth row of Φ), then for all x, y ∈ S,

−ε+
√
CT (x, y) ≤ ||ΦT (δx − δy)|| ≤ ε+

√
CT (x, y). (2.4)
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2. Let UΣV T ≈ volGD−1 represent the truncated SVD using the αN leading singular values

σ1 ≥ ... ≥ σαN , for some α ≤ 1. Let Θ denote the embedding matrix obtained from the

αN leading left singular vectors U , such that Θ = (Σ1/2)TUT . Then for all x, y ∈ S, and

ε = O(σαN+1),

−ε+ CT (x, y) ≤ ||ΘT (δx − δy)|| ≤ ε+ CT (x, y). (2.5)

See the Appendix for proofs.

2.3.2 Relationship with diffusion maps

We here show that embeddings given by diffusion wavelet scaling functions are equivalent up

to a rotation to the embeddings produced from a given kernel eigenmap method. In particular,

the embeddings produced via the application of diffusion wavelets to the matrix vol · GD−1 are

equivalent up to a rotation to the embeddings given by kernel PCA on vol ·GD−1, and so they are

also equivalent up to a rotation to the commute time embeddings from [19].

In [10], it is shown that any kernel eigenmap method can be viewed as solving

min
Q2(f)=1

Q1(f), where Q1(f) =
∑

x

Qx(f),

where Q2, Qx are symmetric positive semi-definite quadratic forms with Qx local. For example, for

a kernel k, we can take

Q1(f) =
∑

x

∑
y

k(x, y)(f(x) − f(y))2

Q2(f) =
∑

x

v(x)f(x)2.

Then, Q−1
2 Q1 represents a discretization of a differential operator (i.e., a Laplacian).

The following theorem and its proof are a slight generalization of the proof of Theorem 1 from

[44] (see Appendix for proof).

Theorem 3. Suppose we have a kernel-based method (e.g. Q1, Q2 satisfying the properties in

diffusion maps). Then the embeddings obtained from the diffusion wavelet scaling functions for
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Q−1
2 Q1 at level j are equivalent, up to a rotation, to the pj-dimensional embeddings obtained from

the diffusion maps embedding, where pj gives the number of scaling functions at scale j.

In particular, since the commute time embeddings in [19] are equivalent to kernel PCA on

the matrix vol · GD−1, we can apply the above theorem with Q−1
2 Q1 = vol · GD−1 to see that

the embeddings produced via the diffusion wavelet method are equivalent up to a rotation to the

pj-dimensional commute time embeddings, and thus these embeddings will also preserve commute

times between nodes.

2.4 Numerical Details of Sparse Approximation

We now elaborate on two possible algorithms for the sparse approximation of the random walk. We

first give details of the diffusion wavelet algorithm introduced in [11], and then propose an alternate

implementation using an approximate SVD.

2.4.1 Diffusion Wavelets

Diffusion wavelets generalizes the wavelet theory of [13] to diffusionlike operators. We can apply

this theory for random walks on networks by taking the transition matrix T for a Markov process

on the network to be such an operator. In this setting, the scaling functions Φm at level m are

constructed by orthonormalizing the columns of the representation of T at the previous level, Tm−1,

up to precision ε–that is, the vectors Φm ε-span the range of Tm−1, defined as follows in [11].

Definition. Let H be a Hilbert space such that {wj}j∈J ⊂ H. A set of vectors {vi}i∈I ε-spans the

set of vectors {wj}j∈J if

||P⟨{vi}i∈I⟩wj − wj||H ≤ ε,

where P⟨{vi}i∈I⟩ represents orthogonal projection onto the span of {vi}i∈I . We also say that ⟨{vi}i∈I⟩

is an ε-span of ⟨{wj}j∈J⟩.

In fact, the subspace spanned by these scaling functions is an ε-approximation of Vm, which we

will denote Ṽm. As we will see, Tm is a representation of T 2
m−1 by construction, so each step of the

diffusion wavelets algorithm dilates the scale by a factor of 2, as in the original wavelet setting.
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In classical wavelet theory, the localization of wavelet bases can better approximate choppy

signals and signals with different time scales compared to Fourier series, since using Fourier series in

these cases would require one to break up the domain into pieces and analyze each piece separately.

Using the local diffusion wavelet scaling function bases provides a similar advantage over global

eigenvalues, particularly for graphs with irregular structures.

In the following overview of the diffusion wavelet algorithm, we borrow some notation from

[11]: we will use [A]B2
B1 to denote a matrix A that is written with respect to the basis B1 in the

domain, and with respect to the basis B2 in the range.

For an operator T such that the numerical rank of its powers {T k}k=0,1,2,... decreases with k,

the diffusion wavelets algorithm [11] computes compressed representations of the dyadic powers

T 2k , which can then be used to efficiently compute certain functions of T , in particular the Green

function. In addition, when T is an |S| × |S| Markov matrix, taking higher powers of T is equivalent

to running the Markov chain forward in time. Thus, diffusion wavelets allows for the analysis of the

random walk at different time scales.

The diffusion wavelets algorithm DW(T,K, ϵ) is outlined as follows: As inputs, DW takes

the operator T = T0, a parameter K determining the number of iterations to be performed, and a

precision parameter ϵ. The columns of T are originally expressed in the basis {δi}1≤i≤|S| =: Φ0.

First, the columns of T are orthonormalized up to ϵ using a modified QR algorithm (such as

modified Gram-Schmidt with pivoting or rank-revealing QR; [11] elaborates on possible choices of

orthogonalization technique). This results in an orthonormal matrix that gives an ε-span Φ1 of the

columns of T written in terms of the original basis Φ0, which we here denote [Φ1]Φ0 . Φ1 forms a

basis for the subspace Ṽ1, and gives an ϵ-approximation of V1 (that is, the range of T ). Additionally,

the rank-revealing QR algorithm guarantees that the elements of this basis are well localized. We

also obtain from the QR decomposition an upper triangular matrix representation of T , expressed

with respect to Φ0 in the domain and Φ1 in the range, denoted [T ]Φ1
Φ0 .

Then, the product [Φ1]Φ0 [T 2]Φ0
Φ0 [Φ1]∗Φ0 = [T 2]Φ1

Φ1 =: T1 provides a representation of T 2
0 in terms

of Φ1. It is also possible, if desired, to compute a basis of wavelet functions spanning the orthogonal
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complement of Ṽ1 in Ṽ0, denoted W̃1, by orthonormalizing the columns of I − [Φ1]Φ0 [Φ1]∗Φ0 . By

iterating this entire process, we can compute representations of [T 2k ]Φk−1
Φk−1

=: Tk, scaling functions

[Φk]Φk−1 spanning the space Ṽk that ε-approximates Vk (i.e. the range of Tk), and wavelet functions

Ψk for levels k = 1, 2, ...

2.4.2 SVD

In the numerical experiments presented here, we found that an SVD-based multiscale analysis

was in general faster and produced more accurate node classifications compared to the original

diffusion wavelet algorithm. This is demonstrated in Table 2.2 and Figure 2.4; on the butterfly

dataset, three-dimensional embeddings produced via the SVD algorithm perform better than either

the three-dimensional diffusion wavelet embeddings or the first three columns of the commute time

embeddings described in [19]. Additionally, the SVD approach allows more control over the rate of

dimensional reduction, since one can directly choose the proportion of singular values to be retained.

This alternative formulation is as follows:

Table 2.2 Comparisons between three-dimensional diffusion wavelet-based embeddings, truncated
SVD-based embeddings, and the commute time embeddings introduced in [19], on the butterfly
dataset [43, 45]. Runtime represents the time required to compute sparse approximations for powers
of T and G via the given algorithm.

Method Runtime F1 Macro
Diffusion Wavelets 70 s 0.5827
SVD 3.5 s 0.7490
Commute Time Embeddings 0.5 s 0.6051

First, we compute a truncated SVD of T , retaining the j largest singular values and the

corresponding singular vectors, so that T ≈ UΣV where U ∈ R|S|×j , Σ ∈ Rj×j , and V ∈ Rj×|S|.

Then, U1 := U provides an orthogonal basis for approximately the range of T , for some margin of

error determined by the choice of j. To obtain a representation of T 2 with respect to the basis U1, we

use T1 := UT
1 TU1. To justify this, note that the left singular matrix U has orthogonal columns, and

furthermore these columns span the range of T . In particular, the left singular vectors corresponding
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to the largest singular values span an approximation of the range of T , and therefore they play a role

analogous to the diffusion wavelet scaling functions.

To obtain representations for T 2k for k = 2, 3, ..., we can simply iterate this process by finding

the truncated SVD of Tk−1, taking Uk to be the left singular matrix of that decomposition, and

setting Tk = UT
k Tk−1Uk. Additionally, each Uk can be represented in the original basis using the

change-of-basis formula:

[Uj]U0
= [Uj−1]U0

[Uj]Uj−1
= · · · = [U0]U0

[U1]U0
· · · [Uj−1]Uj−2

[Uj]Uj−1
,

where [Uj]Uk
represents Uj expressed in terms of the columns of Uk, and U0 represents the original

basis of the columns of T . (Note that in this notation, [Uj]Uj−1
= Uj .)

In the case where the random walk matrix T is symmetric, the connection to the diffusion

wavelet-based algorithm is obvious; the singular values are the absolute values of the eigenvalues of

T , and therefore the largest singular values are the largest-magnitude eigenvalues. The columns

of the left singular matrix U then give the eigenvectors of T . If we select j such that ∀k ≤ j,

λ2m+1−1
k ≥ ε, then the first j columns of U (when the singular values are ordered from largest to

smallest) must span Vm := ⟨{ζλ : λ2m+1−1 ≥ ϵ}⟩.

In the asymmetric case, the basis given by the first j columns of U approximates the range of T

according to the largest singular values, rather than the eigenvalues. Here, the multiscale analysis

involves a sequence of subspaces

X0 ⊃ X1 ⊃ X2 ⊃ · · ·

such that X0 is the range of the operator T , and for m ∈ Z, Xm represents an approximation of the

range of T at scale m, obtained via the largest singular values and their corresponding singular

vectors. In particular, when {σi}i∈Z+ denotes the singular values of T , and uσi
denotes the singular

vector corresponding to the ith singular value, we can define Xk := ⟨{uσ : σ2k+1−1 ≥ ε}⟩. These

subspaces Xk can, as in the diffusion wavelet construction, be viewed as the "low-pass" portions of

the range of T , corresponding to the "approximation" or "smoothing" subspaces in classical wavelet

theory.
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Algorithm 2.2 Truncated SVD: An approximate singular value decomposition of the N ×N matrix
T using the largest αN singular values.

Input: Matrix T ∈ RN×N , fraction of singular values retained α ∈ (0, 1)
Result: Û , Σ̂, V̂ T = TruncSVD(T , α)

U,Σ, V T = SV D(Tk−1) ; /* Singular values sorted in decreasing order */

Û = first αN columns of U
Σ̂ = first αN columns of Σ
V̂ T = first αN rows of V T .

Algorithm 2.3 Commute Time-based Network Embeddings with Truncated SVD.

Input: T , K, K2, 0 ≤ α ≤ 1
Result: Node embeddings for the network represented by the |S| × |S| Markov matrix T

T0 = T
for 1 ≤ k ≤ K do
U,Σ, V =TruncSVD(Tk−1, α)
Tk = UT

k Tk−1Uk

end for
G = I + T0
G = G

∏K1
k=1 Uk(I + Tk) ; /* Compute G */

for 1 ≤ k ≤ K2 do
Ũ , Σ̃, Ṽ =TruncSVD(vol ·G ·D−1, α)
θT

k = ŨkΣ̃1/2
k ; /* Rows of θT

k give embeddings at level k */

end for
Embedding Matrix= θK2 .

One possible disadvantage of this SVD method is that the orthogonalization here is not as careful

as the orthogonalization step in diffusion wavelets [11], and as a result our bases are not guaranteed

to be localized. While this has no apparent adverse effects on the applications discussed here, this

method may not be suitable for other situations where diffusion wavelets is appropriate, particularly

situations where the localization of the scaling functions is crucial. However, in practice (at least for

the examples discussed here), the SVD basis vectors are "approximately" localized– that is, for any

given basis vector, the majority of the nodes will be clustered near 0. Setting a tolerance such that

these low-magnitude values is replaced with zero may improve performance slightly, in such cases.
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This "approximate localization" property can be seen in Figure 2.4, which shows embeddings based

on 2 and 3 singular vectors. Because this is smaller than the intrinsic dimension of the dataset, most

of the nodes take values near 0 on the first 3 singular vectors.

2.5 Examples and performance comparisons

The following examples illustrate the effectiveness of the method for multi-label classification tasks.

In this setting, each node is assigned a class label. The goal is to correctly predict the nodes’

class labels based on their embeddings. In the following experiments, we record for each trial the

computational time, and compare the F1 macro scores to judge the relative quality of each set of

label predictions.

We compare our method to the following existing methods:

• GraRep [6], which creates multiscale embeddings by using the SVD of the k-step transition

probability matrix to obtain k-step representations, and then concatenating the representations

from each scale. Here we consider both a Matlab implementation [6] and a Python version

available from [34].

• DeepWalk [29], which uses SkipGram to generate random walk-based embeddings from

unbiased random walks. Here we use the code from the original paper, which uses hierarchical

softmax to speed up computation of the conditional probabilities.

• Node2vec [18], a method similar to DeepWalk that uses biased random walks to compute

embeddings, based on parameters for breadth-first and depth-first sampling.

• LINE [39], which uses an edge-sampling algorithm to optimize an objective function that is

designed to preserve both first and second-order relationships.

The Commute Time with SVD embeddings were computed using Algorithm 2.3 from Section 3.

The choice of embedding size d for the commute time-based embeddings varies for each dataset,

depending on both the size of the original network and the number of iterations of the compression

algorithms used. For GraRep, LINE, and DeepWalk, all parameters except embedding size d
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were left at their default values, and the sizes of the embeddings were chosen to match those of

the Commute Time with Diffusion Wavelet embeddings. The F1 Macro scores reported here are

averages based on 10 trials. All computations were performed with an Intel (R) HD Graphics 520

GPU.

The F1 macro scores were computed by generating embeddings based on the data, then using

the embeddings to train a 5-nearest neighbor classification routine. This classification model was

then used to predict a class label for each node based on its embedding. F1 scores for each class

were computed using the formula:

F1class i = TP

TP + 1
2(FP + FN) ,

where TP denotes the number of true positives (nodes which were correctly assigned to class i),

FP denotes the number of false positives (nodes which were correctly assigned to a different class),

and FN denotes the number of false negatives (nodes which should have been assigned to class i,

but were not). The overall F1 macro score is the sum over i of all F1class i.

For every dataset, the embeddings created with the method presented here obtained the highest

or second-highest F1 macro score. The runtime for this method was below or on par with that of

methods with comparable F1 scores, with the exception of the butterfly dataset. The small size

of this dataset allowed the deterministic GraRep method to run efficiently and produce accurate

embeddings. However, on the larger datasets, our method produced higher quality label predictions

(as measured by F1 scores) compared to GraRep.

2.5.1 Butterfly dataset

We first consider a network from [43, 45] consisting of 832 nodes which each represent different

butterflies. Each of the organisms belongs to one of 10 species, and between 55 and 100 pictures of

each species were collected from Google Images [43]. Edges indicate similarity between organisms;

that is, two nodes will be connected by an edge if their respective images share features (such as

wing color and pattern) in common. The data is available from [21]. The commute time with SVD
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embeddings were based on 5 iterations of the algorithm, where 50% of the singular values were

retained at each iteration.

The embeddings that led to the best F1 macro scores for the butterfly network were Commute

Times with SVD and GraRep (see Table 1). The computation time and F1 score of the Commute Time

with SVD method were comparable to those of the Matlab and Python GraRep implementations.

Table 2.3 Butterfly dataset.

Method d Runtime F1 Macro
Commute Times with SVD 27 35 s 0.9212
DeepWalk 27 20 s 0.8692
GraRep (Python) 27 10 s 0.9213
GraRep (Matlab) 27 7 s 0.9103
node2vec (p=0.5, q=2.0) 27 3 min 3 s 0.8739
LINE 27 3.5 min 0.7662

Figure 2.4 plots the three-dimensional and two-dimensional embeddings of this network,

respectively. The coordinates of the embeddings were determined by the first columns of the

embedding matrix obtained above. Each color represents the correct classification of that node,

that is, the butterfly species to which the corresponding image belongs. Although omitting the

rest of the dimensions has decreased the quality of the embeddings (the F1 macro score for the

three-dimensional embeddings pictured here are only 0.6287 and 0.7490), the clusters corresponding

to three of the species are visible. Also note that, for these low-dimensional embeddings, the

localized nature of the embedding vectors has caused the majority of the nodes to be clustered

around the origin. Slightly higher-dimension embeddings (e.g. d = 27, as in Table 2.3) result in

more accurate embeddings, as the majority of nodes will take a larger-magnitude value on at least

one embedding vector.

2.5.2 Cora dataset

The Cora dataset [36] (available from the Deep Graph Library, [46]) is a citation network consisting

of 2708 papers, with edges representing citation relationships. For a given edge, the paper represented
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Figure 2.4 Three-dimensional and two-dimensional node embeddings for the butterfly species
network, generated using the algorithm described in Section 3. Embeddings in the top row use
sparse approximations produced via diffusion wavelets, and those in the bottom row use sparse
approximations produced via truncated SVD. Each color represents the species to which that node
belongs.

by the source node contained a citation of the target node’s paper. The papers are sorted into seven

different topics, corresponding to seven distinct classes (Case Based, Genetic Algorithms, Neural

Networks, Probabilistic Methods, Reinforcement Learning, Rule Learning, and Theory).

The embedding size of the Commute Time with SVD embeddings is based on 4 iterations of

this algorithm, retaining 50% of the singular values at each iteration.

As shown in Table 2, for this network, the highest F1 score was achieved by LINE, with

node2vec and the SVD-based commute time methods scoring only slightly lower. However, here

the SGD-based methods and LINE had the longest runtimes, while GraRep required less than one
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minute and still maintained F1 scores above 0.8. Overall, the commute time with SVD method,

LINE and node2vec achieved the highest accuracy at the classification task while computing the

embeddings efficiently.

Table 2.4 Cora dataset.

Method d Runtime F1 Macro
Commute Times with SVD (α = 0.1) 170 3 min 0.8787
DeepWalk 170 81 s 0.8061
GraRep (Python) 170 37 s 0.8072
GraRep (Matlab) 170 65 s 0.8333
node2vec (p=0.5, q=2.0) 170 4 min 0.8749
LINE 170 2.5 min 0.8864

2.5.3 Amazon co-purchase photo dataset

We next apply the methods to the Photo segment of the Amazon Co-Purchase network [22], available

from [46]. The network consists of 7650 products for sale, each of which is assigned a label

representing one of eight distinct product categories. Edge relationships are determined by which

products were recommended when viewing the product page for a given node. As discussed in [22],

these edges can therefore imply a variety of relationships: for instance, that customers frequently

view the product pages for both items, or that customers frequently purchase both products, either

simultaneously or one after the other. Depending on which type of relationship a given edge refers to,

then, two connected nodes might be products that serve the same purpose, two different types of the

same product, or products that can be used together. For the commute time with SVD embeddings,

the embedding size is based on 4 iterations of this algorithm, where 50% of the singular values are

retained at each iteration. The average F1 macro score over 10 trials was 0.9383.

Results for each of the methods are outlined in Table 2.5. The Amazon Co-Purchase network is

the largest of the networks considered here, leading to longer computational times for all methods.

In these trials, the commute time with SVD method and node2vec had the best performance in

terms of accurate labeling, with F1 scores of 0.9383 and 0.9335 respectively, but the commute
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time with SVD method required approximately 20 minutes to run. In comparison, node2vec also

had an F1 score above 0.9, but only required around 10 minutes. The Python implementation of

GraRep performed similarly to the SVD-based method, while the Matlab version of GraRep failed

to accurately classify the nodes. This is likely due to the structure of the network; specifically, the

fact that the degree matrix of this network, which is inverted in the GraRep algorithm, is singular to

machine precision.

Table 2.5 Amazon Co-Purchase Dataset.

Method d Runtime F1 Macro
Commute Times with SVD (α = 1) 480 1189 s 0.9383
DeepWalk 480 570 s 0.9167
GraRep (Python) 480 1549 s 0.8972
GraRep (Matlab) 480 920 s 0.0451
node2vec (p=0.5, q=2.0) 480 9.5 min 0.9335
LINE 480 178 s 0.8203

2.5.4 Email database dataset

Finally, we consider a network of email communications from a particular organization [49, 20],

available from [21]. This graph contains 1005 nodes, each corresponding to a member of a certain

European research institution. Edges indicate that a particular pair of members had exchanged

emails during the 18-month data collection time period. Specifically, an edge from X to Y exists

only if at least one email was sent from X to Y, and an email was sent from Y to X. Each person in

the network belongs to one of 41 departments. The commute time with SVD embeddings were

based on 5 iterations of the truncated SVD algorithm, where 75% of the singular values are retained

at each iteration. The entire embedding process took 24 seconds on average, with an average F1

macro score of 0.6573.

For all the methods used, the F1 scores are noticeably lower compared to the other examples,

as indicated in Table 2.6. This may be a result of the structure of the network– the degree matrix

for this graph is nearly singular. In particular, this causes the Matlab implementation of GraRep to
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produce embeddings that lead to inaccurate classifications, similarly to in the Amazon Co-Purchase

example. However, in this case we still see that the commute time-based embeddings predict the

department labels more accurately than most other methods. The SVD algorithm, in particular, had

the highest F1 macro scores of all the methods, while also requiring less time than any other method

except for the Matlab implementation of GraRep, which had a much lower F1 score.

Table 2.6 Email Dataset.

Method d Runtime F1 Macro
Commute Times with SVD (α = 1) 180 24 s 0.6573
DeepWalk 200 633 s 0.5169
GraRep (Python) 200 31.5 s 0.5431
GraRep (Matlab) 200 2.145 s 0.0048
node2vec (p=0.5, q=2.0) 200 2 min 20 s 0.6266
LINE 200 141 s 0.5423

2.5.5 COVID-19 lung image classifier

In this example, we apply the methods to a dataset of chest x-rays, saved as 299 × 299-pixel images.

The dataset contains x-rays from patients with COVID-19, viral pneumonia patients, and healthy

people, and is available from [8, 32]. In the following experiments we use 60 x-rays from each

category. To apply the methods, we reshaped each image into a 2992-dimensional vector, then

treated these vectors as the initial representations of each x-ray. We construct the matrix T using the

Euclidean norm between each two vectors to represent the similarity between those nodes. The

commute time with SVD embeddings were based on 6 iterations of this algorithm, where 50% of

the singular values are retained at each iteration.

For this dataset, we compared the F1 scores, averaged over 10 trials, obtained for this dataset

using different amounts of training data. As shown in Table 2.7, the embeddings obtained from

the method can be used to predict diagnoses on unlabeled data with some degree of accuracy, even

with low amounts of training data. Using 90% of the dataset as training data, the method returns an

F1 macro score of 0.8018 on average, while reducing the dimension of the vector representations
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from 2992 to 3. As the amount of training data is decreased, the F1 macro score also decreases, but

remains near 0.75 on average with only 50% training data. Even when training data is decreased to

10%, the average F1 score is above 0.5, at 0.5519.

Figure 2.5 shows the method’s efficacy for clustering. In each subfigure, the low-dimensional

embeddings show distinct grouping by color (here, yellow points represent images taken from

patients with COVID-19, light blue represents images of healthy patients, and dark blue represents

images from patients with viral pneumonia). The divisions between the clusters are particularly

clear when a smaller dataset, containing only 20 points from each diagnostic category, is used.

Figure 2.6 shows the decrease in cross entropy loss over 10 iterations of SGD, for 10 different

trials. In all trials, cross-entropy loss drops steeply for the first few steps of gradient descent, quickly

converging to low values within 5 iterations.

Table 2.7 Lung X-Ray Dataset.

Method d Runtime F1 Macro
Train % = 10% 30% 50% 70% 90%

CT w/ SVD 3 2.7 s 0.5519 0.6892 0.7441 0.7767 0.8018

Figure 2.5 Three-dimensional node embeddings for the chest x-ray classifier, generated via the
proposed method. Each color represents the diagnosis (normal, COVID-19, or viral pneumonia)
associated with that x-ray.(a) shows the result of the method on a dataset consisting of 60 x-rays
from each category, while (b) shows the result for a smaller dataset (20 from each category).
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Figure 2.6 10 different trials of the embeddings for the chest x-ray classifier dataset. For each trial,
the cross-entropy loss over 10 iterations of SGD is recorded. In all trials, the cross-entropy loss
initially drops steeply, converging in 5 iterations.

2.6 Conclusion

This paper outlined a new method for embedding the vertices of a network while preserving

commute time distances between nodes and optimizing cross-entropy loss. The method involves

using truncated SVDs of a random walk matrix on the network to compute powers of the matrix,

and via the Schultz method an approximate discrete Green’s function, and then obtaining multiscale

network embeddings from the SVD of a constant multiple of the product of the Green’s function and

the degree matrix of the random. As shown in Section 4, this method performs favorably on several

datasets when compared with the existing methods DeepWalk [29], node2vec [18], LINE [39],

and GraRep [6]. Future work could include a more complete analysis of the method, and possibly

further improvements to the algorithm. In particular, a full analysis of the numerical linear algebra

will be the subject of future investigation. Additionally, it is likely possible to improve upon the

stochastic gradient descent used for decreasing cross-entropy loss here. The SGD stage also makes

the largest contribution to computation time. Further improvements could involve incorporating

other randomized algorithms to more efficiently optimize cross-entropy loss.
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CHAPTER 3

ADAPTIVE NETWORK EMBEDDING WITH METADYNAMICS

3.1 Introduction

Many applications in biology and chemistry, including protein folding and chemical reactions,

involve systems which behave according to some potential energy landscape. The potential energy

of the system at any given time depends on its state at that moment–for example, the concentrations

of reactants and products in a chemical reaction, or the arrangement of molecules in a particular

protein’s structure. In general, these systems tend toward the lowest energy states available to them,

but due to the frequently complex nature of these energy landscapes, the behavior of these systems

is not always that simple. Additionally, to fully understand the behavior of such systems, we also

want to identify the mechanisms (e.g. transition states) by which a particular system moves from

one minima to another.

A typical energy landscape for such a system may have many local minima, separated by energy

barriers. In this case, we can view the system as a network of local minima, connected by edges

weighted according to the energy barrier that must be overcome to transition between states. Taking

this viewpoint allows us to utilize techniques for network embedding to analyze the behavior of

these systems. One class of network analysis methods, node embedding methods, can be used to

represent each node of a given network as a vector in a low-dimensional vector space, while retaining

information about the relationships between nodes. Specifically, nodes that tend to co-occur in

random walk simulations ("similar" nodes) will be embedded near each other in the vector space.

Hence, these embeddings can be used to visualize the dynamics of complicated systems, and identify

the transition paths by which systems change from one state to another.

However, another difficulty arises due to the presence of deep potential wells in these landscapes.

While network embedding methods accurately identify energy minima where the system spends

the majority of its time, other techniques are needed to get an improved, more detailed picture of
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the energy landscape. One such technique is metadynamics. Metadynamics uses a non-Markovian

random walk to explore an energy landscape, where the energy landscape (and therefore the transition

probabilities of the random walk) is adjusted by adding a Gaussian term after each step so that over

time, the energy wells in the landscape will be filled up. As this happens, the process is discouraged

from revisiting the lowest-energy states repeatedly, and the random walk spends more time exploring

other areas of the landscape. The end goal is to have a flat landscape, from which we can recreate

the original system by subtracting the additive terms.

In this article, we use network embedding techniques in combination with ideas from metady-

namics to produce hierarchical embeddings that convey information about the system’s behavior at

different scales. Here we adjust the edge weights of the network in a way that parallels the original

metadynamics over time to encourage exploration away from the lowest-energy minima. We show

that these embeddings provide an effective way of visualizing the system’s dynamics, including the

entropy effect and internode relationships that may be obscured in other visualization methods.

The remainder of this article is structured as follows. In Section 2, we provide some background

on network embedding, energy landscapes, and metadynamics. In Section 3, we discuss Lennard-

Jones clusters, and demonstrate our methodology on these test systems. Section 4 contains an

application to a more complicated system: DNA folding in a human telomere.

3.2 Background

3.2.1 Network Embedding

Real-world networks, particularly those representing biological and chemical systems, are often

large and have complex structures, making them difficult to work with. To improve understanding

of these networks, the nodes of a given network can be embedded into a low-dimensional vector

space. There exists a wide variety of methods for network embedding, which may use random walks,

matrix factorization, deep learning, or some combination of the three. The idea behind all these

methods is that the nodes in a given network can be mapped into a low-dimensional vector space in

such a way that closely related nodes have similar embeddings in the embedding space.
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One broad category for node embedding techniques involves the use of a random walk on the

network. This typically means building a random walk such that the possible states of the walk are

the nodes of the network, and the transition rates are determined by the edges and edge weights.

In methods such as DeepWalk and node2vec [29, 18], the general approach is to use short random

walk simulations to determine similarities for each pair of nodes, then encode this information into

embeddings via gradient descent. Two nodes are similar if there is a high probability that a random

walk simulation containing one node will also contain the other. Then, the embeddings are assigned

based on these conditional probabilities using the SkipGram algorithm, optimizing the loss function

Loss =
∑

i

∑
j∈walk(i)

− log (P (j|i)) .

where walk(i) denotes a random walk trial starting at node i, and P (j|i) denotes the conditional

probability that a random walk starting at node i will include node j, modeled by (where vi denotes

the embedding of i)

P (j|i) = exp(vi · vj)∑
k exp(vi · vk) .

The efficiency of this optimization can be greatly improved by using negative sampling [26], which

instead models the probabilities as:

P (j|i) = σ(vi · vj)
M∏

m=1
σ(−vi · vkm),

where σ(x) = 1/(1 + e−x) and M is the chosen number of negative samples (sampled from a

uniform or unigram distribution).

Some other random walk-based methods utilize matrix factorization of a random walk matrix,

rather than performing random walk trials. In this article we use one such method, which we

elaborate on in the next section.

3.2.1.1 Embedding Method

In the examples here, the embeddings are produced via a sparse approximation-based embedding

method introduced in Chapter 2. The algorithm is as follows:
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First, we produce compressed approximations to the dyadic powers of the random walk on the

network using its principal components; taking Uk and Σk to be the top left singular vectors and

singular values of Tk−1 ≈ T 2k−1 , we let Tk := UT
k Tk−1Uk.

From this, we produce a low-rank approximation to the Green function of the random walk,

using the Schultz method:

Gf =
∞∑

k=1
T kf =

∞∏
k=0

(I + T 2k)f

⇒ Ĝ =
K∏

k=0
(I + Tk).

The embedding matrix θ that satisfies θT θ = vGD−1, where v gives the volume of the graph

and D its degree matrix, is a commute time embedding [19]. Denoting the leading singular values

and left singular vectors of the matrix vĜD−1 by ΣG and UG, we take θT := UGΣ1/2
G .

Using this as a starting point, we introduce parameters by multiplying each column j of θ by a

weight Cj , and optimize these weights to minimize crossentropy loss via SGD.

3.2.2 Energy Landscapes

For many biological and chemical applications, the potential energy landscape provides insight into

the dynamics of the system. Statistical analysis of the potential energy surface has been an active

field of research for this reason, leading to results regarding global optimization, characterization

of local minima and transition states, and other ways of gathering information about the energy

landscape. These landscapes can be used to both understand the behavior of a system, and to

improve simulation techniques. Throughout the existing methods for energy landscape analysis,

the central idea is to identify local minima via geometric optimization, and to find transition states

connecting them via steepest-descent pathways [40].

One method for energy landscape exploration is basinhopping, introduced in [42]. Basinhopping

is a Monte Carlo method that produces a database of local minima within an energy landscape. The

basic idea of basinhopping is to simplify the energy landscape by mapping each point in the energy

landscape to the local minimum it is closest to, and then constructing a random walk between these
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basins. In other words, a basinhopping run starts at a point on the energy landscape and performs a

geometric optimization until a local minimum is reached. Then, each coordinate is shifted by a

random amount, and another geometric optimization is done on the new point.

3.2.3 Metadynamics

Metadynamics was introduced in [27] as a technique to aid in the exploration of energy landscapes.

The central idea is to create a non-Markovian (and in a sense, self-avoiding) random walk by

adjusting the gradient of the energy landscape after each step by addition of a Gaussian term. Over

time, these Gaussians eventually fill up the valleys in the enegy potential, which allows the random

walk to explore other areas of the landscape and leads to a more complete picture of the system

dynamics. Specifically, after each step, the parameter ϕi, which represents the derivative of the

energy with respect to the ith parameter − ∂E
∂σi

, is adjusted according to:

ϕt+1
i = ϕt

i − ∂

∂σi

W
∏

i

exp(−|σi − σt
i |2

2δσ2 ),

where W and δσ are the height and width of the Gaussian respectively, to be chosen based on prior

knowledge of the energy landscape.

The main goal of this note is to apply the central idea of metadynamics to network embedding.

In particular, we use an iterative embedding process, adjusting the energy landscape at each iteration,

to get a series of hierarchical embeddings that provide more information about the full energy

landscape than a single embedding by itself. Since the energy landscape is represented by a network

via an adjacency matrix A, at each iteration we update the entries of A according to:

A(i, j) = A(i, j) −W
∏

i

exp(−||θi − θj||2

2δσ2 ). (3.1)

3.3 Lennard-Jones clusters with metadynamics

Lennard-Jones clusters are a test system used to model atomic or molecular dynamics within a fluid.

While they are far simpler than more detailed models that portray these dynamics more realistically,

their simplicity makes them an ideal starting point for global optimization and energy landscape
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analysis. Optimization techniques used with Lennard-Jones clusters may eventually provide insight

into more complex optimization problems involving potential energy fields, such as protein folding,

and the dyamics of more accurate fluid models.

In Lennard-Jones clusters, we assume that the potential energy E of a given configuration of

atoms depends only on distances between atoms:

E(r) = 4ϵ
∑( σ

rij

)12

−
(
σ

rij

)6


where rij denotes the distance between atoms i and j, and the parameters σ and ϵ represent pair

equilibrium separation and well depth. In the experiments below, we utilize reduced units (e.g.

σ = ϵ = 1).

3.3.1 Adjacency matrix-based embeddings

To analyze the following Lennard-Jones clusters, we first generated a database of local energy

minima using the Pele software available at [41]. The database was produced using a basinhopping

run of 500 steps, and consists of 8797 local minima connected by 8099 transition states. The

database also contains other thermodynamic information, including the potential energy at each

local minimum. The embeddings here are based on a network we construct with nodes given by

the local minima, and edges located between each pair of nodes where a transition state has been

identified, weighted according to the potential energy.

In the following examples, we used the adjacency matrix for this network to construct the

embeddings, with entries given by the energy barriers between states. Initially, every node is

embedded into the vector space. Since points on the transition path should be near the global

minimum in terms of commute time, this typically results in most of the nodes being clustered

around the global minimum’s embedding. Then, re-embedding only the nodes in that cluster reveals

new, more detailed information about some of the remaining nodes. We do this by creating a new,

smaller adjacency matrix including only those points, and adjusting the edge weights according to

the Gaussian term from Section 2.3. Iterating this process leads to a sequence of embeddings, each

of which provides a visualization of the energy landscape at a different scale. These embeddings can
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also be used to investigate the effects of entropy on a given system, here demonstrated by comparing

embeddings for the same system at different temperatures.

3.3.1.1 8 Atom Lennard-Jones Embeddings

Figures 3.1 (a) and (b) represent the disconnectivity tree and embeddings (before and after applying

the metadynamics adjustment in Equation 3.1) for the 8-atom Lennard-Jones cluster. The colors on

each minimum on the disconnectivity tree are matched to those nodes’ embeddings in Figure 3.1,

with some of the nodes, e.g. those colored red, embedded to the same place. In the embeddings,

nodes with closer dynamic relationships are clustered together, since they will have the smallest

commute time distances between them. However, visual inspection of the embeddings reveals

that they also seem to be clustered according to potential energy levels. Nodes that have similar

energy levels (such as the three highest-energy nodes, for example) have been embedded almost

indistinguishably near to each other. On a larger scale, we can also see how the higher energy

nodes relate to the nodes with the two lowest energies. Specifically, the global minimum (in dark

blue) is nearer to the nodes in the middle of the tree (in orange), while the second-lowest local

minimum is much nearer to the three highest energy nodes. This allows us to draw conclusions

about a lowest-commute-time path through these states: one of the orange-colored states might

transition directly to the global minimum, while one of the higher-energy states would be more

likely to transition to the second-lowest-energy state first, and then either remain there or transition

on to the global minimum.

Just as the temperature of a molecular system affects that system’s behavior, embeddings obtained

by this method will change with the introduction of entropic forces. Figure 3.2 shows the change

resulting from an upward shift in temperature for this 8-atom cluster. The major change seen

between these two temperatures is that at the higher temperature, the nodes’ embeddings are more

spread out–closely related nodes are embedded near each other, but not indistinguishably so, as in

Fig. 3.2 (a). Although the overall groupings are similar in most respects, there are some changes. in

particular, one of the higher-energy nodes (in red) is much more distanced from the others at high
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Figure 3.1 Disconnectivity tree and metadynamics-based embeddings for the Lennard-Jones cluster
with 8 atoms. Left: Disconnectivity tree of all local minima. Right: Embeddings for the local
minima after applying the adjustment in 3.1. Closely related minima here have very similar or
identical embeddings, for example both yellow minima are embedded at the yellow point on the
right. In all figures, color scheme denotes the potential energy of the system at the configuration
represented by that node. Dark blue denotes low energies (e.g. the global minimum), and red
denotes the highest-energy states.

temperatures. At lower temperatures, the higher-energy nodes were all approximately equidistant

from the two lowest-energy configurations, but at higher temperatures, we see that most of the nodes

are much closer to one of the lowest-energy states, and further from the other.

For comparison, we also investigated the inter-node relationships by directly computing the

commute times between each pair of nodes. The commute time between nodes i and j, or mean

time for the Markov process on the graph prescribed by the Laplacian L to travel from i to j and

back, is given by

CT (i, j) = vol
N∑

k=2
λk(ϕk(i) − ϕk(j))2,

where 0 = λ1 ≤ λ2 ≤ λ3 ≤ ... ≤ λN are the eigenvalues of L, and the ϕk are the corresponding
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Figure 3.2 Metadynamics-based embeddings for the 8-atom cluster at the temperatures T = 0.08
(left) and T = 1 (right). Color scheme denotes the potential energy of the system at the
configuration represented by that node. Dark blue denotes low energies (e.g. the global minimum),
and red denotes the highest-energy states.

eigenvectors. The off-diagonal entries for the Laplacian for a Lennard-Jones cluster with κ degrees

of freedom are given by

L(i, j) =
∑

k

O(i)
Ok(k)

v(i)
vk(k)

κ−1

v(i) exp(−β(Ek(k) − E(i))),

where O and Ok represent point group orders of the local minima and transition states, respectively,

and similarly v and vk represent mean vibrational frequencies and E and Ek represent potential

energy levels at each configuration.

3.3.1.2 Lennard-Jones 38 Cluster Embeddings

Figure 3.5 shows the hierarchical embeddings for the 38-atom Lennard-Jones cluster. The

disconnectivity tree [40] for this system is a little more complex, but we can still apply the

same reasoning to compare it to the embeddings.

Here, we used the adjacency matrix for this network to construct the embeddings, with entries

given by the energy barriers between states. The first image shows the initial embeddings, colored
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Table 3.1 Commute times between nodes, 8-atom Lennard-Jones cluster.

Node 1 Node 2

1 2 3 4 5 6 7 8

1 0 25.4 17.7 23.5 29.0 65.2 86.1 88.4
2 0 7.7 13.5 19.0 55.2 60.7 63.0
3 0 5.8 11.3 47.5 68.4 70.7
4 0 17.1 53.3 74.3 76.5
5 0 58.8 79.7 82.0
6 0 115.9 118.2
7 0 123.7

Figure 3.3 The 8-atom Lennard-Jones network of local minima. Edge lengths are proportional to
commute times. Node colors are chosen to match those in Figures 3.1 (a) and (b).

by their commute time distance from the global minimum. We re-embedded the points of interest

(the nodes nearest to the origin) and used two iterations of this process to obtain the second image.

In the first stage embeddings (Figure 3.5 (a)), the nodes are arranged according to commute

time distance from the global minimum, which corresponds loosely to potential energy level. In

particular, the nodes with E > −170 (which correspond to the highest-energy clusters in the tree)

are embedded further from the global minimum. In the next embedding, these nodes are removed

due to their distance from the global minimum, and the more central cluster will be re-embedded.

As we consider the second-stage and later embeddings, this pattern continues: each re-embedding
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reveals a new "layer" of nodes that are embedded further from the global minimum, and which

correspond to nodes on the disconnectivity tree that are lower-energy than the nodes removed in

the previous stage, but higher-energy than the more closely clustered nodes. In particular, at the

second level (Fig. 3.5 (b)), the embeddings have 3 small "spokes" originating from a central cluster

containing the global minimum. However, these embeddings provide additional context: nodes that

are embedded within a particular "spoke" are more closely related, which means the system is more

likely to transition between these states. Since the nodes do not all come from the same group on

the disconnectivity tree, these embeddings can also reveal interactions between nodes that aren’t

indicated on the disconnectivity tree. Additionally, since the spokes are connected to the cluster

containing the global minimum, we can conclude that each spoke represents a potential transition

pathway from the outer edge of the cluster to the center. In other words, if the system is at a state

represented by the outer point of one of the spokes, its most likely path toward the global minimum

will be to travel through the states represented by other nodes in the spoke. We can apply similar

reasoning to higher-level embeddings. Each stage reveals a more detailed picture of the dynamics

of a different part of the system’s energy landscape. The first levels give a coarse-grained picture,

only identifying broad groups of high-energy and low-energy nodes, while later levels give a more

fine-grained visualization of the nodes most closely related to the global minimum.

Often, we want a more detailed, finer-grained visualization of the energy landscape than the

disconnectivity tree in Figure 3.4 can provide. It is informative, therefore, to re-embed the parts

of the network of greatest interest to gain further insight. Here we focus on the lowest-energy

parts of the Lennard-Jones energy landscape. We repeated the above process using the subnetwork

consisting only of the nodes with potential energy < −170.9, that is, the 163 lowest-energy nodes.

Figure 3.6 shows the results of this experiment.

Nodes in these embeddings (both Figure 3.5 and Figure 3.6) are clustered according to their

similarity in terms of commute time. In other words, nodes that can be quickly and frequently

reached from either the global minimum or second lowest energy node will be grouped near them. As

a result, most of the nodes we are most interested in end up in the same cluster, and the embeddings
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Figure 3.4 Disconnectivity tree for the 38-atom Lennard-Jones cluster.

obtained from the first application of the embedding method only give useful clusters for nodes that

are more distant in terms of commute time from the part of the graph of interest. As we progress

through additional iterations, we pull apart the cluster containing the global minimum, positioned

near the origin in the first iteration’s embeddings. The final iteration’s embeddings give us a clear

picture of the dynamics of the process within the subnetwork defined by the nodes within this cluster.

If two nodes share a cluster or are close in the embedding space, this indicates that the system

can easily transition between those nodes, with a relatively low energy barrier. As a result, the

groupings seen in these embeddings correspond to the groupings in the disconnectivity tree for this

system [40, 41]. For instance, one of the clusters in the second-stage embeddings correspond to the

global minimum and its nearest neighbors (pictured directly right of center in the disconnectivity

tree in Figure 3.4). Clusters can be mapped to the disconnectivity tree by comparing the potential

energies of the nodes within the cluster to the tree.

In the third iteration, some of the clusters instead represent combinations of multiple disconnec-
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Figure 3.5 Hierarchical embeddings for the Lennard-Jones cluster with 38 atoms. Pictured are the
embeddings for the local minima originally clustered at the origin (with the global minimum) after
applying metadynamics (equation 3.1). Color scheme denotes commute time from the global
minimum, with dark blue denoting short distances, and red denoting the furthest distances.

tivity tree groups; this is a result of re-embedding the nodes to spread out those nodes that were

previously near the origin–those nodes end up being embedded in or near the clusters they are most

closely related to, although they are not actually members of the respective tree groupings. For

instance, the global minimum is embedded directly next to a node from a neighboring tree group.

So, the first iteration’s embeddings tell us about higher-energy nodes and those that are more

distant from the global minima, and further iterations reveal information about parts of the graph

nearer and nearer to those minima.

Additionally, these embeddings may be useful for identifying transition paths. The structure of

the second-stage embeddings, in particular, reveals four transition paths– if the system is initialized

from a node near the outside of one of these "spokes", its lowest-energy path to the global minima

will involve following the spoke into the center cluster.

Adding up the distinct clusters in Figure 3.6, we see that we have identified about as many clusters

as there are clusters on the disconnectivity tree. However, the clusters in the embeddings do not

map directly onto tree clusters– clusters in the embedding space frequently contain closely-related

nodes from neighboring groups on the tree. To get a better idea of how these embeddings compare
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to the disconnectivity tree, we can consider the potential energy levels of each local minima.

Figure 3.6 Embeddings of the local minima of the 38-atom Lennard-Jones cluster with potential
energies less than -170.9. The left figure shows the original embeddings of all 163 minima; the
right figure shows stage 2 embeddings (embeddings of the nodes clustered around the origin, after
adjusting the adjacency matrix according to the metadynamics adjustment in equation (3.1)). Color
scheme denotes commute time from the global minimum, with dark blue denoting short distances,
and red denoting the furthest distances.

We can also use these embeddings to observe the results of entropic changes to the system. In

Figure 3.7, the embeddings for this cluster under two additional temperature conditions are shown.

The results of the temperature change are comparable to what was observed previously with the

8-atom cluster. Namely, at higher temperatures (Fig. 3.7 (b)) , there is greater variation in the

node embeddings, while at lower temperatures (Fig. 3.7 (a)) closely related nodes are more likely

to embedded much nearer to each other, creating the impression that there are fewer embeddings

pictured.

3.4 Application: Human Telomere Folding

Here we attempt to apply this method to a more complex problem: DNA folding in a human

telomere. Specifically, we consider a sequence of 22 nucleotide basesA(G3TTA)3G3 which repeats

within human telomeres. This sequence is known to form a G-quadruplex, a type of secondary

structure formed by groups of four guanine bases called G-tetrads. Its structure and potential energy
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Figure 3.7 Metadynamics-based embeddings for the 38-atom cluster at the temperatures T = 0.08
(left) and T = 1 (right). Color scheme denotes the commute time distance from the global
minimum. Dark blue denotes low distances (e.g. the global minimum), and red denotes the highest.

landscape were previously investigated in [12].

Figure 3.8 The four-strand G-quadruplex structure (PDB structure 1KF1), with guanine nucleotides
colored green. Image produced with Chimera [31].

In [12], the potential energy landscape was modeled using the HiRE-RNA model for coarse-

grained DNA modeling [28], which involves a summation of energy terms representing three

different types of bonds between atoms: local interactions, non-bonded interactions, and hydrogen

bonds. For each of the 22 nucleotides in the telomere, six or seven atoms are considered by the

model. Discrete path sampling was then used to generate a database of local minima and their

connecting transition states.
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We use this database as a starting point. In particular, we construct a network with nodes given

by the 4000 lowest-energy local minima, and edges between nodes determined by the transition

states connecting them.

For these first experiments, we used a random walk based on the energy barriers between

states, as in Section 3.1. Figure 3.9 shows the results of the initial embeddings and the second,

third, and fourth iterations, based on an energy landscape adjusted by a Gaussian term with width

0.75 and height 1 after each successive embedding. As in the Lennard-Jones cluster example,

the first embedding displays embeddings of all nodes, while each successive embedding shows a

re-embedding of the subnetwork of nodes most closely related to the global minimum (that is, all

nodes whose previous embeddings lie within a small tolerance of the global minimum).

As with the Lennard-Jones clusters, each level of embedding represents "zooming in" on the

part of the network around the global minimum. The first level gives us a global view – the global

minimum and its nearest neighbors (with respect to commute times) are clustered at the origin,

represented by a dark blue dot. The red and orange dots furthest away from the origin represent local

minima which are more distantly related, requiring multiple steps or higher energies to transition to

the global minimum. Potential transition paths can be identified by starting at one of these points,

and moving toward the origin along nearby points. At the second level (and each of the following

levels), the nodes embedded closest to the local minimum are re-embedded to give us a more detailed

insight into the relationships of those nodes. The potential transition paths here can be constructed

similarly.

3.4.1 Combining Metadynamics with Transition Path Theory

For energy landscapes with a large number of local minima, the corresponding networks contain

large numbers of nodes. In fact, for the Lennard-Jones clusters, the number of minima increases

exponentially with the number of atoms. In these situations, as we have seen, it is beneficial to have

a method for network embedding that focuses on locally embedding regions of the graph that are of

particular interest, for example the subnetwork consisting of the global minimum and its nearest
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Figure 3.9 Embeddings of the local minima network for the human telomere sequence, based on the
adjacency matrix as in section 3.1 and the metadynamic adjustment in 3.1. Colors of embeddings
denote distance from the global minimum, with dark blue denoting the shortest distances and red
the furthest.

Figure 3.10 Two local minima from the telomere’s energy landscape, with potential energies of
−68.0 and −69.7 respectively. Images produced with Chimera [31].

neighbors. Since the states in this subnetwork are embedded near each other, the commute times

between them are low, so the time required for the system to move between these configurations

is low. The states in these subnetworks often represent molecular configurations that are similar,

differing only by a simple change; therefore these subnetworks can have dramatically fewer degrees

of freedom compared to the full network.

We next present an alternate formulation, which replaces the adjacency matrix with the probability

current matrix from transition path theory (TPT). TPT is a theoretical framework that can be used
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to study transition events (such as a molecule’s transition from one configuration to another). In

particular, TPT characterizes the transition paths of a system based on statistical properties such as

rate functions and probability currents which measure the average rates of transitions between states.

For large networks, particularly those with irregular structures, the committor functions needed

to apply transition path theory to the full network may prove difficult or impractical to compute.

Focusing our application of TPT onto a smaller, localized subnetwork avoids this difficulty, allowing

us to take advantage of the additional information TPT offers. In the following experiments, we first

embed all the local minima using the adjacency matrix, as in the previous section, then construct

a subnetwork representing the telomere energy landscape nearest to the global minimum using a

local transition path theory. Taking S ′ ⊂ S to be the set of all nodes which are embedded within

distance δ from the global minimum, we construct a subnetwork consisting only of the nodes in

S ′ by considering only the relevant portions of the adjacency matrix (adjusted according to the

Gaussian term 3.1). Then, we compute the graph Laplacian L = D−A, and compute the committor

functions and probability currents as follows.

The forward and backward committors q+ and q− solve the system

∑
j∈S Lijq

+
j = 0 ∀i ∈ (A ∪B)C

q+
i = 0 ∀i ∈ A

q+
i = 1 ∀i ∈ B.

In these experiments, I took the global minimum to be the initial state A, and chose the local

minimum with the highest associated potential energy to be B.

To find the probability current f and effective probability current f+,

fij =


πiq

−
i Lijq

+
j , if i ̸= j

0 if i = j,

and

f+
ij = max(fij − fji, 0).
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Finally, each subnetwork is embedded into R3 using the method described in Section 2.1.1, using

the effective probability current in place of the adjacency matrix. Here we apply the hierarchical

embedding procedure to the subnetwork of nodes surrounding the global minimum (as we have

done throughout this paper), but the same process could be used to examine other areas of the graph

aside from the global minimum to obtain a fuller overall picture of the energy landscape.

The distances between nodes within each subnetwork preserve the commute times between those

nodes. Since the cross-entropy loss minimization is applied to the overall network at each step,

we can expect that the distances between nodes correspond to likelihoods of a transition between

those nodes, similarly to the previous examples, and therefore we can interpret the embeddings and

identify possible transition paths in the same way.

Though the main purpose of applying TPT in this way is to analyze larger networks, we can

briefly demonstrate its efficacy on a smaller system–the 8-atom Lennard-Jones cluster from Section

3 (see Figure 3.11). We still see that the two nodes with potential energies near -19.2 (colored

Figure 3.11 Hierarchical embeddings of the local minima network for the 8 atom LJ cluster, based
on a TPT-based subnetwork consisting of the nodes clustered around the global minimum (in dark
blue), and the metadynamic adjustment in 3.1. Colors of embeddings denote potential energy at
each configuration, with dark blue denoting the lowest energies and red the highest.

yellow in Figs 3.1 and 3.3) are closely connected, and the nodes represented in red and orange are

closer to the lowest energy nodes than to each other, but in this case the short distance between the
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2 lowest-energy nodes reflects a higher transition rate between them. The highest-energy nodes,

embedded in red, are also embedded separately in this case, whereas their adjacency matrix-based

embeddings were identical. These embeddings indicate that a transition path (shown in Fig. 3.11)

from the highest-energy node to the slightly lower-energy node labeled 5 might pass through nodes

1 and 2 on the way. Direct simulations of this system confirm this transition path. Hence, these

embeddings can be useful for predicting the mechanisms by which a molecule moves between two

configurations.

Having demonstrated our method on a simpler system, we now return to the human telomere

molecule. Figure 3.12 shows the embeddings produced via the TPT process described above. The

colors of local minima in Figure 3.12 are determined by the commute times between those nodes

and the global minimum, which is embedded in dark blue. It is immediately apparent that the local

minima are grouped according to these commute times, with separate clusters containing most of

the red, yellow, and light blue nodes. Within each of these clusters, the nodes are relatively close

in terms of commute times, indicating that these molecular configurations are similar up to some

simple molecular change. As with the 8-atom Lennard-Jones cluster, these embeddings suggest

possible transition paths. For example, if the system starts at one of the states furthest from the

global minimum (colored in red, clustered in the upper left) one would expect a transition path to the

global minimum to travel through the light blue and yellow clusters to reach the node in dark blue.

3.5 Conclusions

This article presents a novel method for adaptive, hierarchical network embedding that combines

the ideas of metadynamics with node embedding techniques. The usefulness of metadynamics for

analyzing energy landscapes can then be extended to energy landscapes modeled by networks and

other network applications. In this embedding scheme, the network itself – both its edge weights

and the set of nodes under consideration – can be adjusted to more effectively focus on particular

areas of the graph. In the context of energy landscapes, this allows us to focus on important parts of

the graph, such as the lowest-energy minima and the nodes most closely connected to them. The

same idea could be adapted to focus on other features of a given network as well. In some cases,
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Figure 3.12 Hierarchical embeddings of the local minima network for the human telomere
sequence, based on a TPT-based subnetwork consisting of the nodes clustered around the global
minimum (in dark blue), and the metadynamic adjustment in 3.1. Colors of embeddings denote
commute time distance from the global minimum, with dark blue denoting the shortest distances
and red the furthest.

the embeddings illuminate aspects of the system’s dynamics like temperature dependence that are

not explored in other methods, such as disconnectivity graphs. To demonstrate the success of this

method, we present the resulting hierarchical embeddings associated with a Lennard-Jones cluster

of 38 atoms, as well as a more complicated system representing a DNA sequence from a human

telomere. In the future, further work in this direction may lead to a scheme for analyzing larger, more

complex biochemical systems such as protein folding. We also plan to develop a localized form of

TPT, which could be applied to locally parts of a graph in order to make TPT more accessible for

larger-dimension problems.
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APPENDIX

PROOFS OF THEOREMS

Theorem 1

Theorem. Let S be the set of all vertices in a network with unnormalized Green function given

by G, degree matrix D, and volume vol, and let CT (·, ·) denote the commute time. There exists

Π ∈ Cm×d where m = O(log(1/δ)/ε2) and ε > 0 such that for all x, y ∈ S,

(1 − ε)CT (x, y) ≤ ||Π(volGD−1)1/2δx − Π(volGD−1)1/2δy||22 ≤ (1 + ε)CT (x, y) (A.1)

with probability 1 − δ.

Proof. If we let λ0, λ1, ..., λ|S| and ζ0, ζ1, ..., ζ|S| denote the eigenvalues and eigenvectors of a matrix

T , the diffusion distance at time t induced by T is defined by

d(t)(x, y) =
√∑

λ

λt(ζλ(x) − ζλ(y))2 = ||T t/2δx − T t/2δy||2.

Note that G is a left inverse of the random walk Laplacian L (that is, GL = I so long as the graph

is connected), and so the eigenvalues of G are the reciprocals of the eigenvalues of L. (G and L

also have the same eigenvectors.) Let λ0, λ1, ..., λ|S| and ζ0, ζ1, ..., ζ|S| denote the eigenvalues and

eigenvectors of the normalized Laplacian L. Then

CT (x, y) = vol
|S|∑
i=2

1
λ̂i

( ζi(x)√
D(x, x)

− ζi(y)√
D(x, x)

)2 (A.2)

=
|S|∑
i=2

volλi(
ζi(x)√
D(x, x)

− ζi(y)√
D(x, x)

)2 (A.3)

= ||(vol ·GD−1)1/2δx − (vol ·GD−1)1/2δy||22, (A.4)

where the final equality comes from the fact that the eigenvalues of vol ·G are given by volλi for all

i, and by noticing that ∑|S|
i=2 volλ̂i(ζi(x) − ζi(y))2 is equal to the square of the diffusion distance for

t = 1, using the eigendecomposition of vol ·G.
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Then, let Π = 1√
m
H where H has random entries hij ∼ N(0, 1). Fix x, y ∈ V . We can apply

the original Johnson-Lindenstrauss lemma to conclude that

(1 − ε)||(vol ·GD−1)1/2δx − (vol ·GD−1)1/2δy||22 ≤ ||Π(volGD−1)1/2δx − Π(volGD−1)1/2δy||22

(A.5)

≤ (1 + ε)||(vol ·GD−1)1/2δx − (vol ·GD−1)1/2δy||22,

(A.6)

and therefore

(1 − ε)CT (x, y) ≤ ||Π(volGD−1)1/2δx − Π(volGD−1)1/2δy||22 ≤ (1 + ε)CT (x, y) (A.7)

with probability 1 − δ.

Theorem 2

Theorem. Let S be the set of all vertices in the network, |S| = N , and let CT (·, ·) denote the

commute time.

1. If Φ(x) := ΦT δx denotes the embedding for node x obtained by applying the diffusion wavelet

algorithm to the matrix volGD−1 with precision constant ε (that is, Φ is the orthonormal basis

of scaling functions and Φ(x) is the xth row of Φ), then for all x, y ∈ S,

−ε+
√
CT (x, y) ≤ ||ΦT (δx − δy)|| ≤ ε+

√
CT (x, y). (A.8)

2. Let UΣV T ≈ volGD−1 represent the truncated SVD using the αN leading singular values

σ1 ≥ ... ≥ σαN , for some α ≤ 1. Let Θ denote the embedding matrix obtained from the

αN leading left singular vectors U , such that Θ = (Σ1/2)TUT . Then for all x, y ∈ S, and

ε = O(σαN+1),

−ε+ CT (x, y) ≤ ||ΘT (δx − δy)|| ≤ ε+ CT (x, y). (A.9)
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Proof. Proof of (1)

Let Φ := [Φ1]Φ0 be the result of applying an iteration of the diffusion wavelet algorithm to

vol ·GD−1. So the columns of Φ (denoted {ϕj}1≤j≤|S|) are an ε-span of the range of volGD−1.

Let λ0, λ1, ..., λ|S| and ζ0, ζ1, ..., ζ|S| denote the eigenvalues and eigenvectors of the unnormalized

Green function G. Then we can define the subspace:

V0 := ⟨{ζλ : λ ≥ ε}⟩.

The space spanned by the columns of Φ, Ṽ0 := ⟨Φ⟩, is ε-close to V0. In particular, from Definition

12 in [11], we have for all ζ ∈ V0:

||P⟨Φ⟩ζ − ζ|| ≤ ε,

where P⟨Φ⟩ is the orthogonal projection onto Ṽ0.

||P⟨Φ⟩(volGD−1)1/2(δx − δy)|| = ||P⟨Φ⟩(volGD−1)1/2(δx − δy) − (volGD−1)1/2(δx − δy)

+ (volGD−1)1/2(δx − δy)||

≤ ε+ ||(volGD−1)1/2(δx − δy)||

≤ ε+
√
CT (x, y).

Also:

||ΦT (δx − δy)|| = ||ΦT (δx − δy) + (volGD−1)1/2(δx − δy) − (volGD−1)1/2(δx − δy)||

≥ −||ΦT (δx − δy) − (volGD−1)1/2(δx − δy)|| + ||(volGD−1)1/2(δx − δy)||

≥ −ε+
√
CT (x, y).

Therefore:

−ε+
√
CT (x, y) ≤ ||ΦT (δx − δy)|| ≤ ε+

√
CT (x, y).

Proof of (2)

Note that for symmetric G, we have ΘT Θ ≈ volGD−1. In general, using the first αN singular

vectors of volGD−1 leads to an approximation with error σαN+1:

||(volGD−1)1/2 − (Σ1/2)TUT ||2→2 = σαN+1.
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Hence

||ΘT (δx − δy) − (volGD−1)1/2(δx − δy)||2 = O(σαN+1).

||ΘT (δx − δy)||2 ≤ ||ΘT (δx − δy) − (volGD−1)1/2(δx − δy)||2 + ||(volGD−1)1/2(δx − δy)||2

≤ CT (x, y) +O(σαN+1).

Likewise,

||ΘT (δx − δy)|| ≥ −||ΘT (δx − δy) − (volGD−1)1/2(δx − δy)|| + ||(volGD−1)1/2(δx − δy)||

≥ −O(σαN+1) + CT (x, y).

Therefore:

−O(σαN+1) + CT (x, y) ≤ ||ΘT (δx − δy)|| ≤ O(σαN+1) + CT (x, y).

The above proofs assume that the embeddings Φ and Θ are obtained directly from the exact

Green function G, but in the method proposed here, the Green function is approximated using

compressed powers of T . This introduces additional error in the following way:

1. If the Green function is approximated using the diffusion wavelet algorithm with precision ε,

then we have

Ĝ =
K∏

k=0
(I + Tk),

where Tk approximates T 2k up to ε. We have K such approximations, so Ĝ is a Kε-

approximation of ∏K
k=0(I + Tk).

2. If the Green function is instead approximated using truncated SVD, where for α < 1, α|S|

singular values are retained at each step, then for each k, the approximation Tk introduces an

error of magnitude σαkN+1(Tk−1). The total approximation error is then ∏K
k=0 σαkN+1(Tk).

For either approximation, under the ideal assumptions on T from [11], there is some γ < 1 such

that the rank of T 2j up to precision ε is less than γrankε(T 2j−1), for all j > 0. In this case, the tail∏∞
K (I + Tk) is of low rank – specifically, rankε(

∏∞
K (I + Tk) < γrankε(TK).
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Theorem 3

The following theorem and its proof are based on the proof of Theorem 1 from [44].

Theorem. Suppose we have a kernel-based method (e.g. Q1, Q2 satisfying the properties in diffusion

maps). Then the embeddings obtained from the diffusion wavelet scaling functions for Q−1
2 Q1 at

level j are equivalent, up to a rotation, to the pj-dimensional embeddings obtained from the diffusion

maps embedding, where pj gives the number of scaling functions at scale j.

Proof. The diffusion maps algorithm embeds nodes by solving the eigenproblem

Q−1
2 Q1f = λf,

and using Ψt(x) := (λt
1ψ1(x) λt

2ψ2(x) · · ·λt
s(δ,t)ψs(δ,t)(x))T where

s = max{l ∈ N such that |λl|t > δ|λ1|t}

and λk, ψk are the eigenvalues/eigenvectors of the transition matrix P . (With 1 = λ0 > |λ1| ≥ · · · .

Note that P and Q−1
2 Q1 have the same eigenvectors, and the leading eigenvectors of one correspond

to the last eigenvectors of the other.)

Let j = min{k : λtk
0 > ε}. Take the first pj eigenvectors of Q−1

2 Q1, and let that be V1:pj
. Let

[ϕj]ϕ0 represent the scaling functions of Q−1
2 Q1 at level j.

The scaling functions of Q−1
2 Q1 at level j, by construction, give (an ε-approximation of) a

localized base for Vj = ⟨ψλ : λ ∈ σ(T ), λtj ≥ ε⟩. (This is the space corresponding to the pj

eigenvectors associated with the largest eigenvalues of P , or the eigenvectors associated to the pj

least eigenvalues of Q−1
2 Q1).

Note that the columns of V1:pj
and [ϕj]ϕ0 span the same space. Hence

V T
1:pj

V1:pj
= I = [ϕj]Tϕ0 [ϕj]ϕ0 ,

⇒ V1:pj
= V1:pj

V T
1:pj

V1:pj
= [ϕj]ϕ0([ϕj]Tϕ0V1:pj

)
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Call this last matrix in parentheses Q. Then it can be shown that QQT = QTQ = I , so Q is a

rotation matrix. Thus the pj-dimensional diffusion map embeddings are equivalent up to a rotation

to the jth-level scaling function-based embeddings.
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