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ABSTRACT

DATA-DRIVEN MODELING AND CONTROL OF NONLINEAR AND COMPLEX
SYSTEMS WITH APPLICATION ON AUTOMOTIVE SYSTEMS

By

Kaian Chen

As data is becoming more readily accessible from various systems, data-driven modeling and

control approaches have gained increased popularity among both researchers and practition-

ers. Compared to its first-principle counterparts, data-driven approaches require minimal

domain knowledge and calibration efforts, which is especially appealing to nonlinear and

complex systems. In this thesis, two efficient data-driven frameworks, indirect and direct,

for the control of nonlinear and complex systems are presented.

The indirect method first involves an efficient online system identification approach with

a composite local model structure. We introduce the concept of evolving Spatial-Temporal

Filters (eSTF) that dynamically transforms an incoming input-output data stream into a

nonlinear combination of local models. Each local model is assigned with an ellipsoid-

shaped cluster that is used to define its validity zone, and a distance metric that combines

the Mahalanobis distance to the clusters and the scaled local model prediction error is

exploited to compute the local model composition weights. The cluster and model parameters

are efficiently updated online using input-output data stream, enabling adaptive system

identification with efficient computations.

With the identified eSTF model structure, we then develop an efficient quasi linear pa-

rameter varying (qLPV) based stochastic model predictive controller (SMPC) for a class of

nonlinear systems subject to chance constraints and additive disturbance. The qLPV form

is established with the scheduling variable and a set of linear time-invariant models obtained

from the eSTF system identification approach. To handle chance constraints, probabilistic

reachable sets – the probabilistic analogy of robust reachable sets – are exploited to tighten



the constraints to robustly guarantee constraint satisfaction despite model uncertainties and

additive disturbances.

A shifted scheduling variable strategy is designed such that the resultant MPC opti-

mization can be efficiently solved by solving a series of quadratic programming problems.

The indirect data-driven modeling and control pipeline is successfully applied to automotive

powertrain systems with great system identification and control performance demonstrated.

On the other hand, we further develop a direct data-driven control paradigm that lever-

ages behavioural system theory, and directly generates control commands from input/output

data without the need of a parametric model. We exploit singular value decomposition

(SVD)-based order reduction to significantly reduce the online computation complexity with-

out degrading the control performance. This control paradigm is successfully applied to

battery fast charging, which has complex dynamics and is difficult to model. Furthermore,

the direct data-driven approach heavily relies on the intensive collection and sharing of data,

which raises serious privacy concerns, especially for systems with multiple agents. Therefore,

we develop a privacy-preserving data-enabled predictive control scheme where we exploit

affine-masking to protect the privacy of shared input/output data. It is then applied to the

control of connected and automated vehicles (CAVs) in a mixed traffic environment with

promising results demonstrated through comprehensive simulations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Modern industrial systems are getting increasingly complex and often evolve over time with

dynamics changing. Therefore, controlling such systems is a challenging task. One exam-

ple is modern automotive systems [1], whose development is driven by the advancement of

electrical control units, coupled mechanical structure, and all kinds of software, making it

highly complex and nonlinear. The classical approach to control such systems is to first ob-

tain a physical model by using physics-based modeling methods [2], e.g., thermodynamics,

Newton’s law, and hydromechanics, followed by extensive experiments for model validation.

The controller design and synthesis are then performed based on the calibrated model. This

model-based process provides a good system understanding, however, much expert efforts,

tedious parameters tuning and model reduction/simplification are needed for practical appli-

cation. Unmodeled dynamics sometimes can also cause practical issues. As such, data-driven

control strategies [3] are getting more attention and research interests, which circumvent the

aforementioned cost and efforts in physics-based approaches and only require data collection

that is relatively easy in most cases. The increasing system complexity in modern engineering

systems also motivates the development of data-driven control approaches.

1.2 Indirect Method vs. Direct Method

Two forms of data-driven methods for controller design are presented in this thesis, the

indirect method and the direct method, while data plays the central role in both methods.

For the indirect method, a data-driven modeling [4], [5] step is conducted first to identify

a dynamical model, based on which a controller is synthesized. Its advantage is that the

minimal domain knowledge is required, because all processes are only based on measurable
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system data, no intricate physics are involved for both system modeling and controller design.

However, this method leads to the lack of physical understanding of the underlying model and

good system identification algorithm is critical to guarantee the accuracy of the developed

model. With the same advantage, but in contrast to the indirect method, the direct method

does not rely on any parametric or explicit models [3], the input-output data is directly

used for controller design. The intermediate system identification step is avoided in the

direct method by leveraging the behavioral system theory [6] and considering the system

trajectories implicitly. Both methods can be used towards an optimization-based problem

for real-world applications.

1.3 Research Goals

The principal objective of this thesis is to develop data-driven control approaches that can

efficiently control systems while satisfying system constraints, e.g., physical limitation, and

actuator dynamics. Based on the indirect and direct methods, the objective is accomplished

with the following two research aims.

The first research aim is to design an indirect method based optimal control framework.

Specifically, a data-driven online/offline nonlinear system identification method is developed

to obtain an accurate description of the underlying system in a simple, efficient and stable

manner. Then with the developed system model, a model-based predictive control strategy

is designed for a general class of nonlinear system with chance constraints and stochastic

system uncertainties, i.e., modeling mis-match, estimation error and external disturbances.

In contrast to the indirect method, the second research aim is to utilize a direct method for

controller design to achieve the aforementioned objective. To facilitate its online application,

approaches are developed to improve its efficiency. In addition, to protect its privacy in data

sharing, a privacy-preserving strategy is developed for privacy-sensitive applications.
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1.4 Contributions

The main contributions of this thesis are listed as follows:

1. A novel data-driven nonlinear system identification framework capable of online adap-

tation is developed for identifying system dynamics [7], [8]. An evolving clustering

strategy is developed for model updating and new model generation. A versatile struc-

ture of the algorithm can work with arbitrary local interpolation, e.g. focal point,

linear model, Markov chain, neural network.

2. The proposed system identification method is applied to Ford testing vehicle for online

engine dynamic system modeling [8], [9]. The algorithm works in an online fashion

where it simultaneously updates the clusters and the local models with a training data

stream.

3. Based on the identified mathematical description of the target nonlinear system, a

stochastic MPC in linear parameter varying structure is developed with explicit con-

sideration of system uncertainty, subject to chance constraints on both system state

and control input [10].

4. A pilot demonstration of the proposed stochastic MPC on automotive powertrain

system for multi-objective control proves its online efficiency and promising result is

achieved.

5. A direct control method, data-enabled predictive control (DeePC), is formulated for

lithium-ion (Li-ion) battery fast charging application and its online computational effi-

ciency is improved by a singular value decomposition (SVD) based dimension reduction

method [11].

6. A privacy-preserving DeePC framework is developed for privacy protection, demon-

stration is conducted via Leading Cruise Control (LCC) application [12].
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1.5 Organization of Thesis

The subsequent chapters of this thesis are organized as follows:

Chapter 2: Nonlinear System Identification with Evolving Spatial-Temporal

Filters [8]

This chapter introduces the proposed data-driven nonlinear system identification method

- evolving Spatial-Temporal Filters (eSTF). A problem formulation of this method is intro-

duced that is capable of online adaptation. An implementation on real vehicle engine system

is demonstrated with promising results.

Chapter 3: Stochastic Model Predictive Control for Quasi Linear Parameter

Varying Systems [10]

In this chapter, the considered target system is nonlinear with unknown system dynamics.

A quasi Linear Parameter Varying (qLPV) structure with respect to this nonlinear system

is transformed into the proposed eSTF method. Based on this structure, an efficient qLPV-

MPC is developed and formulated with explicit consideration of additive stochastic system

disturbance, and subject to system chance constraints on both state and control input. A

pilot demonstration of qLPV-SMPC is applied on a high-fidelity engine simulation platform.

Chapter 4: Efficient and Privacy-Preserving Data-EnablED Predictive Control

[11], [12]

In this chapter, an efficient data-enabled predictive control (DeePC) method is intro-

duced. In addition, as data sharing is privacy sensitive, a privacy-preserving method is also

developed on DeePC for privacy protection without impacting the controller performance.

Two real-world applications are described in details, including Li-ion battery fast charging

control and fleet control of connected and automated vehicles in a mixed traffic.
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CHAPTER 2

NONLINEAR SYSTEM IDENTIFICATION WITH AN EVOLVING
SPATIAL-TEMPORAL FILTERS

2.1 Background - Internal Combustion Engine

Compressor Turbine

Air cooler

Cylinder

Filtered
air

Exhaust

ICAM ECAM

Spark timing

Throttle

Wastegate
Injection 
timing

Fuel pulse 
width

Green text

Intake flow

Exhaust flow

Actuator

Figure 2.1 Schematic diagram of turbo-charged internal combustion engine.

The schematic diagram of the internal combustion (IC1) engine is illustrated in Figure 2.1

where a turbine is equipped to increase the system efficiency and power output by forcing

more air into the combustion chamber. This type of engine is referred to as turbo-charged

engines. If the engine system is not boosted by a turbine and aspirates air into the combus-

tion chamber naturally, it is called naturally-aspirated (NA) engine. The biggest difference

between the two types of engines lies in whether a turbine exists or not. Either has its own

advantages and disadvantages. Turbo-changed engine enables smaller size and higher effi-

ciency. However, compared to NA engine, the lag between turbine spooling up and throttle

response causes noncontinuous power delivering, and therefore generally leading to jerky ac-

celerations. Here we take the turbo-charged engine as an introduction example, the working

1This thesis only focuses on IC engine system, without any confusion, ‘IC’ will be omitted.
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principle of NA engine is basically the same except for no turbine system existed, i.e., an

exhaust re-circulation system, including wastegate valve as shown in fig. 2.1.

For turbo-charge engine system, there are seven main actuators: throttle position, fuel

pulse width, intake cam position (ICAM), exhaust cam position (ECAM), fuel injection

timing, spark timing, and wastegate position. The throttle and wastegate control the air

charge to engine intake manifold. More specifically, the throttle controls the air flow to intake

manifold; larger throttle opening leads to more air into manifold. The wastegate controls the

bypass exhaust flow to regulate the turbine speed, which subsequently regulates the boost

pressure. The smaller opening of wastegate valve, the more exhaust flow driving the turbine,

and the higher the boost pressure, and therefore the more power the engine can generate

(note that NA engine does not contain the boosting step). The intake cam (ICAM) and

exhaust cam (ECAM) are used to control the gas exchange between the intake and exhaust

with the cylinders and have significant (and complicated) impacts on the engine operations.

Other than air charge, another important ingredient to generate engine torque is fuel. The

fuel can be injected to the intake manifold, (see Figure 1) or can be injected directly into the

combustion chamber. The mass ratio of the air over fuel, the so called air-to-fuel ratio, is

critical to combustion process and therefore the engine efficiency and emission. The amount

of fuel injection is controlled by the fuel pulse width and fuel pressure. The fuel pulse width is

defined as the amount of time the fuel injector stays open during an intake cycle. Higher fuel

pulse width corresponds to longer fuel injection and consequently more fuel. The injection

timing is the piston position at which the injector starts to inject fuel. It also has great

impact on the engine operation but the relationship to power and emission is challenging

to quantify [13]. Another important factor to engine combustion is the spark timing, which

refers to the piston position at which the spark ignites the mixed air and fuel.
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2.2 Introduction

In this chapter, we develop a data-driven system identification method that exploits observed

input-output data to develop mathematical models of the underlying dynamic system. This

method is appealing as engine data can be conveniently and cost-effectively collected from

engine dynometers and/or experimental vehicles. While theories, methodologies, and al-

gorithms for linear system identification have been well established [14], nonlinear system

identification is still a demanding topic to be addressed for many real-world nonlinear and

complex systems such as powertrain system [15], chemical process [16], and mechanical sys-

tems [17].

Nonlinear system identification of turbo-charged engines using black box models such

as artificial neural network (ANN) have found some success, see e.g., [18]–[21]. The main

drawback of ANN models is the lack of transparency, that is, they provide little physical

knowledge of the underlying system. Furthermore, ANN models are typically incapable of

extrapolating, requiring a comprehensive training dataset that covers the entire input-output

space. In addition, their applicability to real time system identifications is rather limited.

Alternatively, composite local model approaches have been developed to deal with system

nonlinearities [22]–[24]. The idea is to build local models that are good approximations in

different operating regimes, and then compose a global model by appropriately interpolating

these local models. It is worth noting that the well-known Takagi-Sugeno fuzzy model [25]

is a special case of composite local model where the local models are linear and local models

are interpolated based on fuzzy membership functions.

The main challenge in composite local model approaches lies in choosing an adequate

model structure, which specifies the validity regime of each local model and an interpolation

scheme to compose the global model. For instance, in the case of Takagi-Sugeno fuzzy system,

the model structure refers to the design and placement of membership functions, which

typically requires in-depth system insights and great tuning efforts. Several studies have

been conducted to identify appropriate model structures. For example, in [26], a clustering
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algorithm is exploited to identify the focal points in fuzzy membership functions. However,

the use of Euclidean distance metric has limited capability of dealing with multi-dimensional

skewed data sets. In [22], a logistic discriminant tree is used to partition the input space and

compose the local models. However, this partition scheme provides little system insights and

local model prediction accuracy is not considered in the partition. An optimization-based

multicategory discrimination approach is developed in [27] to partition the input space for

piecewise linear modeling. However, only input space is considered in the partitioning.

In this chapter, we develop a novel Spatial-Temporal Filter (STF) approach for engine

modeling that dynamically maps input-output data to a vector of weights on local models.

An evolving ellipsoidal-shape clustering algorithm is exploited to identify the filters where

the proposed dissimilarity metric consists of a Mahalanobis distance and the scaled local

model prediction error, similar to the idea in [28] that defines dissimilarity metric using both

prediction error and parameter similarity. The Mahalanobis distance captures the spatial

distance between a new data point and the existing clusters, while the scaled prediction

error quantifies the prediction performance of local models. The combination of these two

terms provides insights on how close the new data point is to the existing cluster/model

combos and determine which cluster the new data point should be used to update or a

new cluster should be created. A softmax-like function is applied on the dissimilarities to

generate the interpolating weights that can be used to produce the composite model as a

weighted sum of local models. Filter parameters and local model parameters are identi-

fied simultaneously online with great efficiency. The proposed algorithm is applied to the

multiple-input-multiple-output turbo-charged engine modeling with promising performance

demonstrated with vehicle data. Compared to our conference paper [7], the work presented

here focuses on the application to the engine system, with experimental data for identifi-

cation and validation. Furthermore, we have also added detailed discussions on practical

implementation of the algorithm, such as the parameter interpretation and selection.

The contributions presented in this chapter include the following. Firstly, we develop
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an online nonlinear system identification algorithm with composite local model structure by

using spatial-temporal filters. The spatial-temporal filters integrate unsupervised learning

(evolving clustering) and supervised learning (recursive least squares), and map input-output

data to a vector of local model weights. Secondly, a dissimilarity metric that combines Maha-

lanobis distance and scaled model error is proposed with meaningful stochastic interpretation.

The χ2 distribution interpretation provides theoretical foundation and guideline for the cali-

bration of the main parameters. Last but not least, the nonlinear system identification with

linear local models is developed and applied to the turbo-charged engine modeling. Promis-

ing results are demonstrated on vehicle field test data. The proposed algorithm requires no

prior system knowledge and very little calibration efforts.

2.3 Problem Statement

Composite local model system identification approaches exploit multiple local models to

approximate system nonlinearities where each model has certain valid operating regime. The

global model is composed of the local models with an interpolation scheme. This divide-

and-conquer scheme is similar to the linearization of nonlinear models at different operating

points.

Formally, the nonlinear system we want to identify is represented as follows:

y(k) = F (x(k); Θ, Z) =
K∑
i=1

γi(x(k); ζi)fi(x(k); θi), (2.1)

where x(k) ∈ Rnx is the system states at time instant k, fi(·) is the ith local model that can

take the form of a point, linear model, Markov chain, neural network, etc. Each model fi(·)

is parameterized by θi. For example, θi represents the probability transition matrix if fi(·)

is represented as a Markov chain and θi represents the regression coefficients and biases if

fi(·) is a linear model. K is the number of local models and γi(·) is a weighting function that

interpolates the local models and is parameterized by ζi. Θ = [θ1, · · · , θK ] is the collection

of all local model parameters and Z = [ζ1, · · · , ζK ] is the collection of all parameters in

the interpolating functions. Note that the composite local model (2.1) includes the Takagi-
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Sugeno fuzzy system as a special case where γi(x) = µi(x)∑K
j=1 µj(x)

with µj(x) being the fuzzy

membership function and fi(x; θi) = Aix+ bi with Ai and bi being the parameters.

Given a series of input-output data pairs {x(k), y(k)}Nk=1, the tasks of identifying the

composite local model (2.1) involve the following:

1. Determine the type of model fi(·) for all local models;

2. Design the interpolation function γi(·);

3. Decide the number of local models K;

4. Identify parameters Θ and Z.

While Task 1) is important and interesting, we later consider local linear models due to

its practical usefulness and simplicity in control synthesis. In the following sections, we focus

on Task 2)- Task 4) where we develop an evolving STF to obtain the interpolation functions;

we develop efficient algorithms to update parameters Θ and Z online; and we determine the

number of local models K.

Before we describe the main results, we introduce the following definition and lemma

that will be used in later developments.

Definition 2.3.1. Let Z1, · · · , Zk be independent, standard normal random variables. The

following sum of their squares,

Q =
k∑

i=1

Z2
i , (2.2)

is distributed according to the chi-square (χ2) distribution with k degrees of freedom, i.e.,

Q ∼ χ2
k.

Lemma 2.3.2. ([29]): Let A, B, C, D be matrices of appropriate dimensions. Suppose

matrices A, C, and C−1 +DA−1B are nonsingular, then

(A+BCD)−1 = A−1 − A−1B(C−1 +DA−1B)−1DA−1. (2.3)
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2.4 Spatial-Temporal Filtering for Local Model Interpolation

In this section, we introduce a STF scheme to interpolate local models. The STF uses el-

lipsoidal clusters as function bases. Specifically, we associate each local model fi(·) with a

cluster Ci = {vi,Σi}, i = 1, 2, · · · , K with vi and Σi being, respectively, the cluster centroid

and covariance matrix, and K being the number of clusters. Each cluster defines a valid-

ity zone for its corresponding local interpolation model. The whole input/output space is

separated into subspaces on which a local model is defined and updated.

In order to obtain clusters that characterize the input-output relation, our clustering

algorithm considers the extended input-output vector space. When a new input-output

data pair (x(k), y(k)) comes in, we creat the input-output vector xa(k) = [x(k), y(k)] and

the distance between the vector xa(k) and cluster Ci is computed using the Mahalanobis

distance,

M(xa(k), Ci) =
√
(xa(k)− vi)⊤Σ−1

i (xa(k)− vi). (2.4)

For each local model fi(x; θi) with θi being the local model parameter vector, the model

residual can be computed from the input-output data pair (x(k), y(k)) and the model pa-

rameter at time step k as,

ei(k) = y(k)− fi(x(k); θi(k)). (2.5)

We denote Λi, i = 1, · · · , K, the residual covariance matrix of local model i. In practice, Λi

is typically not available as a priori. A possible choice is Λi = Iny ,∀i = 1, · · · , K; ny is the

dimension of system output, that is, the residuals are not weighted. Alternatively, if we have

a data batch of size N and we run our clustering algorithm described later on, an estimate

of Λi, Λ̂i, can be computed as,

Λ̂i =
N∑
k=1

1

N − 1
ei(k)ei(k)

⊤. (2.6)

When the error covariance needs to be estimated online, the following recursive update can

be used:

Λ̂i(k + 1) = (1− α) · Λ̂i(k) + α · ei(k)ei(k)⊤, (2.7)
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with α ∈ (0, 1) being the update rate. This update is known as the exponential moving

average that assigns more weights to recent data [30], [31]. It is advantageous for applications

that emphasize recent data points.

Now let’s define a set, Fi, as,

Fi =
{
(x, y)|xa ∼ N (vi,Σi), and y = fi(x; θi) + ϵi, ϵi ∼ N (0,Λi)

}
, (2.8)

where xa = [x; y] is the extended input-output vector. Intuitively, Fi represents the set of

input-output data pair such that the input-output vector xa is normally distributed with

mean vi and covariance Σi, and the residual of local model i is normally distributed with

zero mean and covariance Λi. The dissimilarity metric between the data point (x(k), y(k))

and the set Fi is then defined as,

D
(
(x(k), y(k)),Fi

)
:=

1

2
M2(xa(k), Ci) +

1

2
ei(k)

⊤Λ−1
i ei(k)

=
1

2
(xa(k)− vi)⊤Σ−1

i (xa(k)− vi)

+
1

2
(y(k)− fi(x(k); θi))⊤Λ−1

i (y(k)− fi(x(k); θi)).

(2.9)

The dissimilarity metric defined in (2.9) combines the Mahalanobis distance, which char-

acterizes the distance between the point and the cluster, and a scaled model error that

characterizes how the new data matches the current local model. The following proposition

provides further insights on the proposed dissimilarity metric.

Proposition 2.4.1. Assume the multivariate normal distribution defined by the cluster

(mean and covariance) and its associated local model error distribution are independent.

Then for (X, Y ) ∈ Fi, the proposed dissimilarity metric in (2.9) multiplied by 2 is chi-square

distributed with degree of freedom nx + 2ny.

Proof. Let (X, Y ) ∈ Fi be a pair of random variables and Xa = [X;Y ]. Define

Z = Σ
− 1

2
i (Xa − vi) = [Z1, Z2, · · · , Znx+ny ], (2.10)
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Q = Λ
− 1

2
i (Y − fi(X; θi)) = [Q1, Q2, · · · , Qny ]. (2.11)

It is straightforward to show that Z ∼ N (0nx+ny , Inx+ny) and Q ∼ N (0ny , Iny), where

nx and ny are the dimensions of the input and output vectors, respectively. As a result, the

dissimilarity metric between the input-output pair (X, Y ) and the set Fi defined in (2.9) is:

2 · D
(
(X, Y ),Fi

)
= (Xa − vi)⊤Σ−1

i (Xa − vi) + (Y − fi(X; θi))
⊤Λ−1

i (Y − fi(X; θi))

= Z2
1 + · · ·+ Z2

nx+ny
+Q2

1 + · · ·+Q2
ny
.

(2.12)

With the assumption that the cluster distribution and the error distribution are independent,

from Definition 2.3.1 it follows that 2 · D
(
(X, Y ),Fi

)
is chi-square distributed with degrees

of freedom nx + 2ny, i.e., 2 · D
(
(X, Y ),Fi

)
∼ χ2

nx+2ny
.

Now define the unnormalized weights of data point (x(k), y(k)) to set Fi, µi(k), i =

1, · · · , K as,

µi(k) = exp
{
−D

(
(x(k), y(k)),Fi

)}
, (2.13)

whose stochastic interpretation is given in the following Lemma.

Lemma 2.4.2. Let Fi be the set defined in (2.8). The unnormalized weighting function

µi(k) defined in (2.13) satisfies:

µi(k) ∝ Pr
[
(x(k), y(k)) ∈ Fi

]
; (2.14)

Proof. From the definition in (2.8), we have,

Pr[(x(k),y(k)) ∈ Fi] = Pr[xa(k) ∼ N (vi,Σi), y(k) = fi(x(k); θi) + ϵi]

= Pr[xa(k) ∼ N (vi,Σi)] · Pr[y(k) = fi(x(k); θi) + ϵi|xa(k) ∼ N (vi,Σi)].

(2.15)

Note that

Pr[xa(k) ∼ N (vi,Σi)] ∝ exp
{
− 1

2

(
xa(k)− vi

)⊤
Σ−1

i

(
xa(k)− vi

)}
(2.16)
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and from the assumption that the residual ei(k) is Gaussian distributed with zero mean and

covariance Λi, we have,

Pr[y(k)|x(k), xa(k) ∼ N (vi,Σi)] ∝ exp
{
− 1

2

(
y(k)− fi(x(k); θi)

)⊤
Λ−1

i

(
y(k)− fi(x(k); θi)

)}
(2.17)

Combining Equations (2.15) ∼ (2.17), we have,

Pr[(x(k), y(k)) ∈ Fi] ∝ exp
{
− 1

2

(
xa(k)− vi

)⊤
Λ−1

i

(
xa(k)− vi

)
−

1

2

(
y(k)− fi(x(k); θi)

)⊤
Λ−1

i

(
y(k)− fi(x(k); θi)

)}
∝ exp

{
−D

(
(x(k), y(k)),Fi

)}
= µi(k),

(2.18)

where the equation in the last step comes from the definition in (2.13). This completes the

proof.

It is worth noting that Lemma 2.4.2 bridges the proposed dissimilarity (2.9) to the prob-

ability of belonging to the cluster/model combo set, which further justifies the dissimilarity

metric. The model interpolating weights can be obtained by normalizing µi(k) which resem-

bles the softmax-like function:

γi(k) =
µi(k)∑K
j=1 µj(k)

=
exp

{
−D

(
(x(k), y(k)),Fi

)}∑K
j=1 exp

{
−D

(
(x(k), y(k)),Fj

)} . (2.19)

Remark 2.4.3. Using (2.9), (2.13), and (2.19) presents a process that transforms the time-

series data (x(k), y(k)) to a vector of weights that interpolate the local models. On the other

hand, as we see later in Algorithm 1, the data points will be used to update the clusters and

local models. By virtue of transforming the data vector (x(k), y(k)) to the model interpolating

weights and the fact that the filtering parameters (cluster features and local model parameters)

are evolving over time, we call this process spatial-temporal filtering.

With the above dissimilarity and interpolating weights, the proposed evolving clustering

algorithm recursively updates the cluster features from the data stream as described in the
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first section of Algorithm 1. When a new data pair (x(k), y(k)) comes in, if there is no

existing cluster, we first create and initialize a cluster with xa = [x(k); y(k)] as the centroid

and an identity matrix Σ−1
1 = βInx+ny as the inverse of the covariance matrix, where β is

an initialization parameter. As shown later, the recursive computation of the inverse of the

covariance matrix instead of the covariance matrix itself is more computationally efficient.

For this first cluster, we also initialize the model parameters as zeros, i.e., θ1 = 0.

For all existing clusters, we compute the dissimilarities of (x(k), y(k)) from all existing

clusters using (2.9). We then find the cluster i∗ with minimum dissimilarity metric, i.e.,

i∗ ← argminiD
(
(x(k), y(k)),Fi

)
. If the minimum dissimilarity is greater than the threshold

parameter D0, then we create a new cluster (K ← K + 1) with vK = [x(k); y(k)], Σ−1
K =

βInx+ny . The model parameters are also initialized as zeros.

Note that Proposition 2.4.1 casts light on the choice of the dissimilarity threshold D0

for the creation of new clusters. With the chi-square distribution interpolation, one can

use the cumulative distribution function (CDF) to choose the threshold. If the minimum

dissimilarity is less than the threshold parameter D0, then the centroid and covariance matrix

of the closest cluster i∗ can be updated with α ∈ (0, 1) as the updating rate,

Σi∗(k) = (1− α)Σi∗(k − 1) + α(xa(k)− vi∗)(xa(k)− vi∗)⊤, (2.20)

vi∗(k) = (1− α)vi∗(k − 1) + αxa(k), (2.21)
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Algorithm 2.1 Online nonlinear system identification with spatial-temporal filters.

Parameter: Cluster learning rate α, initial residual covariance Λ0, maximum number of

clusters Kmax, inverse cluster covariance initialization parameter β, dissimilar-

ity threshold D0.

Input : {x(k), y(k)}Nk=1.

Output : vi, Σ−1
i , Λi, θi, i = 1, · · · , K.

initialize K ← 0, P ← empty matrix;

for k = 1→ N do

/* Evolving clustering */

if K = 0 then
initialize v1 ← [x(k); y(k)], Σ1 ← βInx+ny, θ1 ← 0, D⃗ ← 1

2
y⊤(k)Λ−1y(k);

increment K ← K + 1;
else

initialize D⃗ ← 0K×1;

for i = 1→ K do
compute D((x(k), y(k)),Fi) using (2.4), (2.5), and (2.9);

assign D⃗[i]← D((x(k), y(k)),Fi);
end

find i∗ ← argminiD⃗[i], Dmin ← min D⃗;

if Dmin > D0 && K < Kmax then
increment K ← K + 1;

initialize vK ← [x(k); y(k)], ΣK ← βInx+ny , θK ← 0;

augment D⃗ ←
[
D⃗; 1

2
y⊤(k)Λ−1y(k)

]
;

else
update Σ−1

i∗ using (2.22);

update vi∗ using (2.21);

update Λi∗ using (2.7);
end

end

compute γi(k), i = 1, · · · , K using (2.19);

/* Model parameter update */

update model parameters Θ

end
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Note that we need the inverse of Σi, i = 1, · · · , K to compute the dissimilarity, so instead

of using (2.20) to update Σi∗ and then compute its inversion, we exploit Lemma 2.3.2 to

recursively compute the inverse to facilitate the computation with A = (1 − α)Σi∗(k − 1),

B = xa(k)− vi∗ , C = αInx , and D = (xa(k)− vi∗)⊤:

Σ−1
i∗ (k) =

[
(1− α)Σi∗(k − 1) + α(xa(k)− vi∗)(xa(k)− vi∗)⊤

]−1

=
1

1− α
Σ−1

i∗ (k − 1)− 1

(1− α)2
Σ−1

i∗ (k − 1)×

× (xa(k)− vi∗)ψ−1
i∗ (k)(xa(k)− vi∗)⊤Σ−1

i∗ (k − 1),

(2.22)

where ψi∗(k) =
1
α
+ 1

1−α
(xa(k) − vi∗)⊤Σ−1

i∗ (k − 1)(xa(k) − vi∗) is a scalar. By using (2.22),

only a scalar inversion is needed. With the updated cluster, the interpolation weights,

γi(k), i = 1, · · ·K, are computed using (2.19), which is used to update model parameters.

The model parameters update depends on the local model types. We next present the

parameter update algorithm for linear local models.

2.5 Online Identification of Composite Linear Local Models

2.5.1 System Reformulation

In Section 2.4, we introduced STFs that use evolving clusters as basis functions to compute

the interpolation weights and a nonlinear system identification algorithm with a general

local model is presented. Since practical control designs are predominately based on linear

systems, in this section, we treat the local models of linear form as follows:

y(k) = a
(1)
i y(k − 1) + a

(2)
i y(k − 2) + · · ·+ a

(dy)
i y(k − dy)

+ b
(1)
i u(k − 1) + b

(2)
i u(k − 2) + · · ·+ bdui u(k − du) + ci,

(2.23)

where du and dy are again the input delay and output delay, respectively; a(1)i , · · · , a(dy)i , b
(1)
i ,

b
(du)
i , ci are system matrices to be determined for local model i. Define Ai = [a

(1)
i , · · · , a(dy)i ,

, b
(1)
i , · · · , b(du)i ] and x(k) = [y(k − 1); · · · ; y(k − dy);u(k − 1); · · · ;u(k − du)]. Then (2.23)

can be written as:

y(k) = Aix(k) + ci. (2.24)
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The nonlinear model can now be represented by the following composite model:

y(j)(k) =
K∑
i=1

γiA
(j)
i x(k) +

K∑
i=1

γic
(j)
i , j = 1, · · · , ny, (2.25)

where the superscript j represents the jth row. Instead of estimating matrices Ai, ci as

an entire matrix, we prefer to recursively identify each row of these matrices. Let θ(j) =[
A

(j)
1 , c

(j)
1 , · · ·A(j)

K , c
(j)
K

]⊤
and ϕ⊤(k) =

[
γ1(k)x

⊤(k), γ1(k), · · · γK(k)x⊤(k), γK(k)
]
, then (2.25)

becomes,

y(j)(k) = ϕ⊤(k)θ(j). (2.26)

Given a batch of dataset {x(k), y(k)}Nk=1, the system (2.26) can be augmented as

Y
(j)
N = Φ⊤

Nθ
(j), (2.27)

where Y (j)
N =

[
y(j)(1), · · · , y(j)(N)

]⊤ and ΦN = [ϕ(1) · · ·ϕ(N)]. The least square estimate of

θ(j), θ̂(j), is

θ̂(j)(N) =
[
ΦNΦ

⊤
N

]−1
ΦNY

(j)
N . (2.28)

2.5.2 Recursive Least Squares

For the proposed method, we estimate the parameters recursively, i.e., update the parame-

ters online with continuously received data pair (x(k), y(k)). Towards that end, we exploit

the recursive least square (RLS) approach. The following are key RLS parameter update

equations:

ϵ(j)(k) = y(j)(k)− ϕ⊤(k)θ̂k−1, (2.29a)

θ̂(j)(k) = θ̂k−1 + Pkϕ(k)ϵ
(j)(k), (2.29b)

Pk =
1

λ

(
Pk−1 −

Pk−1ϕ(k)ϕ
⊤(k)Pk−1

λ+ ϕ⊤(k)Pk−1ϕ(k)

)
. (2.29c)

Readers can refer to [14] for detailed RLS derivations. With RLS, the following algorithm

block can replace Line 24 in Algorithm 1 for a complete nonlinear system identification

algorithm.
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Algorithm 2.2 RLS model parameter update.

form ϕ←
[
γ1(k)x

⊤(k), γ1(k), · · · γK(k)x⊤(k), γK(k)
]⊤;

/* Check if a new cluster is created */

if size(P, 1) < K ∗ (nx + 1) then
P = diag{P, βInx+1};

end

update P using (2.29c);

for j = 0→ ny do

form θ(j) ←
[
A

(j)
1 , c

(j)
1 , · · ·A(j)

K , c
(j)
K

]⊤
;

compute the model residual ϵ = y(j)(k)− ϕ⊤θ(j);

update the parameters θ(j) using (2.29b);

/* Unroll the parameter vector into system matrices */

for i = 1→ K do
Ai [j, :]← θ(j) [(i− 1) ∗ (nx + 1) + 1 : i ∗ (nx + 1)− 1];

ci [j]← θ(j) [i ∗ (nx + 1)];
end

end

2.5.3 Towards Implementation

Note we use input-output pairs in the training process to define interpolation weights based

on cluster features and system matrices. When predicting, only input data x is available.

To obtain the interpolating weights, we first use the identified system matrices to predict

the output from each local model, i.e., ŷi = Aix + ci and then compute the dissimilarity

D((x, ŷi),Fi), ∀i = 1, · · · , K. Then the degree of membership is computed as

γi =
exp

{
−D

(
(x, ŷi),Fi

)}∑K
j=1 exp

{
−D

(
(x, ŷj),Fj

)} , (2.30)

where we use the local predicted output ŷi, i = 1, · · · , K. Note that due to the nonlinearity

of the interpolating weights (2.30), the overall composed model produced by the STF is

nonlinear even when the local models are linear.
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The proposed online system identification algorithm tracks the cluster covariance using

(2.22) and model error covariance using (2.7). These covariance matrices characterize the

accuracy of the model and dispersion of the cluster. Therefore, for online prediction, one can

set thresholds on these two matrices and only use local models/clusters with small enough

covariance. We refer the readers to our conference paper [7] for a numerical example.

2.6 Application to Turbo-Charged Engine System Identification

2.6.1 Simulation-based Validation

In this subsection, we validate the proposed system identification algorithm on a high-fidelity

engine simulator from Ford. The inputs we use are engine breathing related signals, i.e.

throttle, CAMs, fuel pulse width, fuel injection timing, spark time and wastegate. The

output we use is the fuel consumption rate. The training data is generated using the pseudo-

random multilevel (PRML) method [32] and the trained model is validated on three standard

driving cycles including FTP75, FTP-Highway and NEDC. The data sampling rate is 100

milliseconds.

Table 2.1 Parameters for engine system identification with a high-fidelity engine simulator.

α Λ0 Kmax β D0 λ dy du
0.001 I 10 1 12.2421 0.98 1 1

The parameters of the proposed nonlinear online system identification algorithm are listed

in Table 2.1. The choices of input delay du and output delay dy are mainly constrained by the

memory and computational resources available. Note that increasing du by m will increase

the dimension of matrices of Σi by m·nx, where nx is the dimension of inputs (7 in the engine

system). Therefore, one may want to keep du small (e.g., less than 3). Since the dimension

of ny is low, one can choose a larger dy if the onboard computing resources are sufficient.

We would like to keep them low so we choose du = 1 and dy = 1 to facilitate further real-

time vehicle implementation. However, one can run cross-validations to determine the best
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combinations of permissible du and dy.

The parameter β used to specify the inverse of the cluster covariance should not be too

small, because a small β will generate a wide-range cluster to cover incoming data points,

this may include data points that are far away. Similarly, the parameter Λi that initializes

the error covariance should not be too large, it is better to be set at the same level as

cluster covariance. If a larger or smaller initial value is picked for cluster covariance or error

covariance, the dissimilarity metric will have high possibility to be dominated by either the

scaled error term or the Mahalanobis distance term. So we set Λi = I and β = 1 according

to the normalized input-output dataset.

The learning rate α is chosen as 0.001 based on 10-fold cross-validation. Large α may

make the algorithm diverge but if α is too small, the learning process can be slow. Note

that we use α = 0.001 other than 0.01 used in the numerical example in our conference

paper [7] as the underlying engine system is higher-dimensional and more complex than the

sinusoidal function. For the choice of forgetting factor λ, we pick λ = 0.98 based on our

personal experience and 10-fold cross-validation.

The maximum number of models, Kmax, is generally constrained by the available re-

sources since more local models require more memory and computational resources for im-

plementation. Last but not least, the dissimilarity threshold D0 controls when to start a new

model and the chi-square distribution interpretation by Proposition 2.4.1 provides a good

reference range.

We compare the performance with a well-trained neural network model from a Ford sup-

plier. The network has a single hidden layer with ten neurons. The performance comparison

is shown in Figure 2.2, where the performance metric Best Fit Rate (BFR) is defined as

BFR = max
{
1− ||y−ŷ||

||y−ȳ|| , 0
}
∗ 100%. Here y is the vector of true output; ŷ is the vector of

estimated output; and ȳ is the mean of the true output. Six local models are generated with

our STF method and the performance of the STF method is superior to the neural network

model as shown in Fig. 2.2.
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Figure 2.2 Performance comparison between STF and Neural Network model (one-step
prediction).

2.6.2 Experimental Vehicle Data Validation

In this subsection, we present results of application of the proposed online nonlinear system

identification to the turbo-charged engine system described in Section II. The system has

seven inputs and we use fuel consumption as the output. The data is collected in a field

test drive from an experimental vehicle with a 3.5L turbo-charged prototype engine at 50

millisecond sampling rate.

With the input-output data stream, clusters and local models are generated according to

Algorithms 1 and 2. To examine the physical interpretations of the models, we investigate

the model generation timings. One example is shown in Fig. 2.3, which corresponds to a

transient model generation where the ECAM aggressively advances at open throttle and

retarded ICAM. Similar patterns are found in other model generation timings but we only

show Fig. 2.3 due to space limitations. This analysis shows that the local models can

characterize reasonable engine operation patterns.

Through the training on the experimental vehicle data, six clusters/models are gener-

ated. To validate the model performance, we first run one-step prediction on another set of

experimental vehicle data that is not used in training. As shown in Fig. 2.4, the prediction

gives a BFR rate of 83.39% and the model can capture the transient dynamics reasonably

well as depicted in the zoomed-in window. The contribution of each signal in the identified

linear models is shown in Fig. 2.5. The coefficients of y(k − 1) term in the local models

are around 0.8, which naturally shows its big impact on the predicted y(k). On the other
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Figure 2.3 One model generation timing with aggressive ECAM advancing at open throttle and
retarded ICAM.

Figure 2.4 One-step fuel rate prediction on validation data.

hand, the input signals u also play an important role as can be seen from the weights. Note

that the validation data may contain driving scenarios that are not covered in the training

dataset. Therefore, we believe the performance can be improved with more comprehensive

driving dataset.

As one of the main motivations of identifying the models is for predictive control, we fur-

ther evaluate the multi-step as well as the open-loop simulation performance of the identified
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Figure 2.6 Multi-step prediction performance.

models. The multi-step and open-loop predictions are both performed by using predicted out-

puts from earlier steps along with the control inputs for prediction. The performance from

one-step to twenty-step predictions are illustrated in Fig. 2.6. Not surprisingly, the pre-

diction performance decreases as the prediction horizon increases. However, the open-loop

simulation can still offer a BFR of 70.87%. In our future work, we will investigate techniques

to improve the open-loop prediction performance, including enhancing the training dataset

with improved design of experiments (DOE) and cultivating the RLS to incorporate loss

function for open-loop prediction.

We next investigate the algorithmic robustness by feeding the same training data to the
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algorithm multiple times while using the results from last round as the initial model for

the next round. The algorithmic robustness can then be characterized by the fluctuations

of the parameters. Towards that end, we define the parameter fluctuation index (PFI) as

PFI = ||params(k + 1) − params(k)||, where params(k) represents the parameter vector

at time step k. The PFIs for the local models are all within a very small range 0 ∼ 10−5,

showing the robustness of the proposed algorithm.

The proposed system identification algorithm was embedded in the experimental vehicle

and the execution time is ∼ 10 ms with Kmax = 10 in the engine PCM, which shows the

efficiency of the algorithm and the feasibility for online implementation. We also used the

identified model in a nonlinear model predictive control (MPC) and showed 10% reduction

in fuel consumption with similar speed tracking error as compared to the Ford baseline

controller, which demonstrates the effectiveness of the identified model for control purposes.

Details about the MPC implementation will be reported in our future publications.

2.7 Conclusion

In this chapter, we introduced an online nonlinear system identification methodology with a

composite local model structure for turbo-charged engines. A novel spatial-temporal filtering

method is designed by using evolving clusters as function bases to interpolate local models.

The algorithm works in an online fashion where it simultaneously updates the clusters and

the local models with a training data stream. We applied the online system identification

algorithm to a turbo-charged engine system with seven inputs and two outputs. Promising

results were demonstrated in experimental test data. Although linear local models were used

for the engine application, the proposed method has a versatile structure that can work with

arbitrary combinations of local models for other applications, which we intend to investigate

in the future. We will also extend our clustering method such that the clusters/models

can merge and split based on the covariances and Kullback–Leibler divergence. We will

investigate the MPC designs based on the identified model structure.
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CHAPTER 3

STOCHASTIC MODEL PREDICTIVE CONTROL FOR QUASI LINEAR
PARAMETER VARYING SYSTEMS

3.1 Introduction

Since the last decades, driven by fast technological progress in industrial community, ad-

vanced control strategies have been in demand. Model Predictive Control (MPC) [33] is one

of the most popular methods that get a lot of attention and widely spread. However, with the

development of more and more sophisticated system, nonlinear embedding of MPC design

is imperative. For a standard nonlinear MPC (NMPC), it is actually limited in the indus-

trial application due to its nonlinear programming nature, which is intractable for real-time

optimization, even if it could lead to very elegant solutions.

To alleviate the problem, linear parameter varying (LPV) model [34] emerges as an

alternative to represent the nonlinear systems and can be used for efficient MPC online

application. For a LPV model, the nonlinearities are embedded by prameterized linear

systems with time-varying scheduling variables. Therefore, the LPV model preserves some

advantageous properties of linear time-invariant system, facilitating controller synthesis. In

general, LPV systems can be classified into two categories: 1) general LPV structure, for

which the scheduling variable is exogenous (i.e., independent from system state and control

input), and 2) quasi LPV (qLPV) structure with the scheduling variable being endogenous

(i.e., state- and/or control- dependent).

For the general LPV structure, the scheduling is only measurable at the current time

instant. Hence, the main difficulty of a general LPV-MPC is to deal with the uncertainty

of the scheduling variables during the prediction horizon. The common methods usually

fall to robust MPC (RMPC) scheme with the assumption about the boundedness of the

scheduling variables, i.e., variation within a convex polytope [35]–[37]. Less conservative
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solutions could be achieved by considering the parameter variation rate [38]–[40]. Another

way to handle such uncertainty is given by stochastic MPC (SMPC) formulation where the

scheduling variables and disturbances are modeled as stochastic processes [41], [42]. The

SMPC framework has been developed for linear systems with additive and multiplicative

uncertainties, including stochastic tube MPC [43]–[46] and scenario-based MPC [47]–[49],

which have later been extended to the general LPV framework [50], [51].

Different from the general LPV structure, the scheduling variable under the qLPV form

is a function (possibly nonlinear) of system state and/or control input. Because of the

endogenous scheduling variable, the MPC design for the qLPV model often requires an on-

line solution to a nonlinear optimization problem, resulting in high computation burden.

Several scheduling variable estimation schemes have been proposed to address this problem.

[52], [53] utilize the prediction system states in last step to compute the current scheduling

variable sequence for MPC optimization. In [54], the linear autoregressive model is combined

with least square algorithm to approximate the scheduling variable. These strategies turn

the nonlinear optimization problem into a quadratic programming (QP) one, which is more

tractable for on-line calculation. So far, the qLPV form based MPC has been applied in

many areas such as hydraulic process in chemical industry [55], robotic manipulator set-

point tracking and obstacle avoidance [56], and semi-active suspension control for passenger

comfort [57]. Note that all these works do not consider the system disturbance related to

the modeling error, estimation error, or external noise.

In this chapter, the qLPV form based SMPC for discrete-time nonlinear systems with

stochastic disturbances is studied. By leveraging our prior researches [7], [8], the unknown

nonlinear dynamics is estimated with evolving spatial-temporal filters (eSTF) whose results

is naturally in the qLPV form. We consider chance constraints and exploit the concept

of probabilistic reachable set (PRS) [58] to transform the probabilistic constraints of the

qLPV system to deterministic ones for robust constraint satisfaction. In addition, similar to

the robust tube MPC [59], the actual system is decomposed into a nominal system and an
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error dynamic system to facilitate the MPC formulation. The chance constraints imposed

on the actual system is transferred to a deterministic ones on the nominal system via PRS,

which is functioned as the probabilistic tube to confine the error dynamics with a specified

probability level. After tightening the constraints, a SMPC problem is formulated, and the

recursive feasibility is guaranteed. To ensure the computation tractability of the SMPC

problem, a shifted scheduling variable method is introduced, which exploits the historical

prediction state and input to determine the scheduling variable sequence in the current step.

In summary, the contributions of this research are:

• A comprehensive formulation of the qLPV-SMPC scheme for treating general nonlinear

systems subject to additive disturbance and chance constraints, from model construc-

tion, problem formulation, and algorithm implementation.

• The extension of the probabilistic reachable set-based constraint tightening approach

to deal with stochastic disturbance and chance constraints for qLPV systems with less

conservativeness as compared to [51], [60].

• The development of a shifted scheduling variable approach to efficiently sovle the qLPV-

SMPC problem as a series of QP problems, facilitating its implementaiton in real-time

applications.

• A case study on the automotive engine control problem to demonstrate the promising

performance and computation efficiency in a pseudo-plant generated from real-world

vehicle data.

This chapter is organized as follows: In Section 3.2, the qLPV model and the considered

optimal control problem are introduced. The constraint tightening for qLPV system and

the corresponding MPC formulation are described in Section 3.3. The reformulation of

the SMPC optimization problem into a QP form is discussed in Section 3.4. Section 3.5

demonstrates the qLPV-SMPC method by a case study on an automotive engine model.

The conclusion and future work are summarized in Section 3.6.

28



Nomenclature N/N+ is the set of non-negative/positive integers. Given two sets X and

W of Rn, the notation X ⊖W ≜ {x ∈ X | x + w ∈ X ∀w ∈ W} refers to the Pontrygin

set difference. The Gaussian distribution of a random variable x is specified as x ∼ N . The

expected value and variance of a random variable x are E(x) and var(x), respectively, with

system information (if known) up to current time instant. The probability and conditional

probability are denoted by Pr(A) and Pr(A|B). The weighted 2-norm is ∥x∥P ≜
√
x⊤Px,

where P ≻ (≽)0 means a positive (semi-)definite matrix. We refer to quantities of the system

realized in closed-loop at time instant k using parentheses, e.g., x(k) is the state measured

at time instant k, while quantities used in the MPC prediction are indexed with subscript,

e.g., xi|k is the predicted system state i time-steps ahead of current time instant k. Conv{·}

is the convex hull of the sets included. The symbol ⊗ refers to kronecker product and 1N is

a column vector with ‘1’ in all N rows.

3.2 Problem Formulation

Consider a nonlinear system that can be represented by the following discrete-time nonlinear

dynamics:

x(k + 1) = f(x(k), u(k), δ(k)), (3.1)

where x(k) ∈ Rnx is the state vector; u(k) ∈ Rnu is the control input vector; δ(k) ∈ Rnx is

the disturbance vector; and f : Rnx×Rnu×Rnx → Rnx represents the nonlinear function that

describes the underlying dynamics. To ensure safe and efficient operations under stochastic

disturbance δ(k), the plant is subject to a set of chance constraints on both states and inputs,

which are described by

Pr
(
x(k) ∈ X l | x(0)

)
≥ plx, l = 1, · · · , cx,∀k ∈ N+, (3.2a)

Pr
(
u(k) ∈ U l | x(0)

)
≥ plu, l = 1, · · · , cu,∀k ∈ N+, (3.2b)

where Xl ⊆ Rnx and Ul ⊆ Rnu represent the convex sets with respect to the lth state con-

straint and input constraint, respectively; and plx and plu are the corresponding prescribed
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probability levels of constraint satisfaction. These probability parameters specify the toler-

ance levels of constraint violations; higher probability levels correspond to harder constraints

whereas soft constraints can be specified with lower probability levels.

MPC is known as an effective tool to control dynamic systems with constraints, and

the aim of this chapter is to develop an MPC scheme for the general nonlinear plant (3.1).

Many engineering systems are inherently nonlinear, and their physical models are not al-

ways available. In addition, the nonlinear dynamics leads to a nonlinear MPC (NMPC)

problem that involves solving non-convex optimization problems online, the complexity of

which hinders its real-time implementations. Based on the above observations, we exploit

the evolving spatial-temporal filtering (eSTF)-based system identification method developed

introduced in Chapter 2 to approximate the unknown nonlinear dynamics (3.1) into a qLPV

form. Specifically, given the input-output data of the nonlinear plant, the proposed identifi-

cation method uses evolving clusters as function bases to interpolate local liner models with

nonlinear composition weights. The nonlinear plant can then be represented as:

x(k + 1) =

nγ∑
j=1

γj(k) (Ajx(k) +Bju(k)) + w(k), (3.3)

where the pair (Aj, Bj) represents the jth local model, γj(k) = hj(x(k), u(k)) ∈ (0, 1) is the

nonlinear, softmax-based weighting function, depending on system state and control input,

and
∑nγ

j=1 γj(k) = 1 with nγ being the number of local models. The additive disturbance

w(k) ∈ Rnx , lumping process disturbance δ(k) and modeling mismatch, is assumed to be

independent and identically distributed (i.i.d.) with zero mean and known covariance Σw.

By defining A(γ(k)) =
∑nγ

j=1 γj(k)Aj and B(γ(k)) =
∑nγ

j=1 γj(k)Bj, (3.3) can be written into

a discrete-time LPV form:

x(k + 1) = A(γ(k))x(k) +B(γ(k))u(k) + w(k), (3.4)

where the function γ(k) is the scheduling variable belonging to the following unit simplex:

Λ ≜

{
γ ∈ Rnγ

∣∣ nγ∑
j=1

γj = 1, γj ∈ (0, 1]

}
. (3.5)
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As a result, the system matrices A(γ) and B(γ) are members of the vertice-based polytopic

matrix family

Ω ≜

{(
A(γ), B(γ)

)
=

nγ∑
j=1

γj(Aj, Bj), γ ∈ Λ

}
. (3.6)

After representing the nonlinear plant with a LPV model, the objective now is to design

a stochastic MPC to obtain the optimal control sequence at each time k that minimizes the

following finite-horizon expected cost

JN = E

[
N−1∑
i=0

ℓ(xi|k, ui|k) + Vf (xN |k)

]
, (3.7)

while satisfying the system dynamics (3.4) and chance constraints (3.2). Here N is the

optimization horizon, xi|k and ui|k are the system state and control input predicted i steps

ahead of current time instant k, and ℓ(xi|k, ui|k) and Vf (xN |k) are, respectively, the stage cost

and terminal cost defined as:

ℓ(xi|k, ui|k) ≜ ∥xi|k∥2Q + ∥ui|k∥2R, (3.8a)

Vf (xN |k) ≜ ∥xN |k∥2P , (3.8b)

with Q = Q⊤ ≻ 0, R = R⊤ ≻ 0, and P = P⊤ ≻ 0.

3.3 Stochastic MPC for Quasi LPV Model

In this section, we develop a tube-based stochastic model predictive control (SMPC) frame-

work where we decompose the original system (3.4) into a nominal system and an error

dynamic system as:

x(k) = z(k) + e(k), (3.9a)

u(k) = Ke(k) + v(k), (3.9b)

so that the nominal system state z(k) and error e(k) evolve according to

z(k + 1) = A(γ(k))z(k) +B(γ(k))v(k), (3.10a)

e(k + 1) = AK(γ(k))e(k) + w(k), (3.10b)
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where v(k) is the nominal control input, and AK(γ(k)) = A(γ(k)) + B(γ(k))K with K

being a constant control gain. The nominal system state z(k) is initialized at z(0) = x(0)

(i.e., e(0) = 0). We assume that the polytopic LPV model (3.10a), subject to (3.5) and

(3.6), is quadratically stabilizable [61], i.e., there exists a constant control gain K such that

AK(γ(k)) = A(γ(k))+B(γ(k))K is stable, for all γ(k) ∈ Λ. The control gain K is introduced

to penalize the deviation error between x(k) and z(k), and can be obtained by solving a linear

matrix inequality problem with the inequality set formed simultaneously on each vertex of

the polytopic matrix family Ω [35].

3.3.1 Chance Constraint Handling

The probabilistic reachable set (PRS) for the error system (3.10b) is introduced next to

achieve constraint tightening such that the chance constraints on x and u can be satisfied

through the deterministic constraints on z and v. PRS is the probabilistic analogy of robust

reachable sets and has been used in [58] for stochastic MPC of LTI systems. In the following,

the definition of PRS for the error system (3.10b) is given firstly, and the computational

techniques are then introduced to approximate the PRS of the proposed qLPV system for

efficient computations.

Definition 3.3.1 (Probabilistic Reachable Set [58]). A set R is a probabilistic reachable set

of probability level p for system (3.10b) initialized at e(0) if

Pr
(
e(k) ∈ R | e(0) = 0

)
≥ p, ∀k ∈ N+. (3.11)

Based on Definition 4.2.1, it can be shown that the chance constraints in (3.2) can be

converted to the following deterministic constraints on z(k) and v(k):

z(k) ∈ Z =
cx⋂
l=1

(
X l ⊖Rx,l

)
, (3.12a)

v(k) ∈ V =
cu⋂
l=1

(
U l ⊖Ru,l

)
, (3.12b)
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where Z and V are the state and control input constraint sets in the nominal system, andRx,l

andRu,l are the PRS applied on the state error e(k) and the input error Ke(k) corresponding

to the lth constraint with probability level plx and plu, respectively.

We now introduce how to calculate Rx,l, and the calculation of Ru,l can be performed

via similar procedures. We extend the PRS calculations of LTI systems [58], [62] to the con-

sidered qLPV system. Specifically, we exploit multiple PRS for LTI models to approximate

Rx,l as:

Rx,l = Conv{Rx,l
j , j ∈ {1, · · · , nγ}}, (3.13)

where Rx,l
j is the PRS for the LTI error system e(k) = (Aj +BjK) e(k)+w(k) with the pair

(Aj, Bj) being the vertice of the polytope Ω. Based on e(0) = 0 and the assumption that

w(k) is i.i.d with zero mean and known covariance Σw, it can be concluded that E[e(k+1)] =

(Aj +BjK)E[e(k)] + E[w(k)] = 0. By applying the multivariate Chebyshev inequality [63]

and E(e(k)) = 0, the ellipsoidal PRS for the error system e(k) = (Aj +BjK) e(k) + w(k)

with probability level plx is constructed as

Rx,l
j =

{
e |e⊤Σ−1

j,∞e < p̃lx
}
, (3.14)

where Σj,∞ is the solution to the Lyapunov equation (Aj +BjK) Σj,∞ (Aj +BjK)⊤ −

Σj,∞ = −Σw, and p̃lx = nx

1−plx
. If w(k) satisfies Gaussian distribution, then p̃lx = χ2

nx
(plx),

where χ2
nx
(·) is the quantile function of the chi-square distribution with nx degrees of freedom.

The computation of PRS Ru,l for the input constraints can follow the same procedure by

simply transferring the dynamics from e(k) to Ke(k).

3.3.2 qLPV-SMPC with Indirect Feedback

The SMPC method relies on predictions over a finite horizon N by using system models

(3.4) and (3.10). To differentiate the predicted variables and the actual system variables
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with different notations, the prediction model is described by:

xi+1|k = A(γi|k)xi|k +B(γi|k)ui|k + wi|k, (3.15a)

zi+1|k = A(γi|k)zi|k +B(γi|k)vi|k, (3.15b)

ei+1|k = AK(γi|k)ei|k + wi|k, (3.15c)

where wi|k follows the same distribution as w(k + i) for i = 0, · · · , N − 1, and AK(γi|k) =

A(γi|k)+B(γi|k)K with γi|k being the predictive scheduling parameter which depends on zi|k

and vi|k. x0|k and z0|k are selected as x0|k = x(k) and z0|k = z(k), so that e0|k = x(k)− z(k)

is generally not zero and contains the feedback information from x(k). Let the time-varying

scheduling parameter sequence be denoted by Γk =
{
γ0|k, · · · , γN−1|k

}
, and the nominal

control sequence be vk =
{
v0|k, · · · , vN−1|k

}
. With the nominal state initialized at z(0) =

x(0), the qLPV-SMPC problem is formulated:

min
vk

J(x0|k,vk,Γk) = E

[
N−1∑
i=0

ℓ(xi|k, ui|k) + Vf (xN |k)

]
, (3.16a)

s.t. zi+1|k = A(γi|k)zi|k +B(γi|k)vi|k, (3.16b)

ei+1|k = AK(γi|k)ei|k + wi|k, (3.16c)

xi+1|k = zi+1|k + ei+1|k, (3.16d)

ui|k = Kei|k + vi|k, (3.16e)

zi|k ∈ Z, , (3.16f)

vi|k ∈ V , , (3.16g)

zN |k ∈ Zf , (3.16h)

x0|k = x(k), z0|k = z(k), e0|k = x0|k − z0|k, (3.16i)

for all i = 0, · · · , N − 1. Note that for k > 0, z(k) is taken as z1|k−1 rather than resetting

it to the actual system state x(k). Therefore, no direct feedback from x(k) is injected

into the nominal state z(k). Nevertheless, under the relationship x(k) = z(k) + e(k) (i.e.,

x0|k = z0|k + e0|k), indirect feedback on z(k) is provided through the performance index
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(3.16a) of the MPC problem. More details and discussion about the indirect feedback can

be found in [62]. Here, Z and V are the deterministic nominal system state and control input

constraint sets that are obtained according to (3.12), and Zf ⊆ Z is an invariant terminal

constraint set that satisfies the following assumption.

Assumption 3.3.2 (Terminal Invariance). The terminal set Zf ⊆ Z is positively invariant,

that is, for all z ∈ Zf and γ ∈ Λ, there exists v = Kz ∈ V such that AK(γ)z ∈ Zf .

The terminal set is introduced to guarantee the recursive feasibility of (3.16). After

solving the stochastic optimization control problem (3.16), the first element of the optimal

control sequence for nominal system (3.10a) is applied, i.e., v(k) = v∗0|k, whereas the optimal

input for actual system is applied based on (3.9b). The closed-loop state is then set as

z(k + 1) = z1|k for the next MPC iteration. The recursive feasibility is next established in

the following theorem.

theorem 3.3.3 (Recursive Feasibility). Suppose that Assumption 3.3.2 is satisfied. Then

the optimization problem (3.16) is recursively feasible for all k ≥ 0 if it is feasible for z(0) =

x(0).

Proof. Let v∗
k =

{
v∗0|k, · · · , v∗N−1|k

}
be the optimal solution sequence of (3.16) at time instant

k, and the corresponding optimal state sequence is z∗
k =

{
z∗0|k, · · · , z∗N |k

}
. Since v∗

k and z∗
k

are feasible for the optimization problem (3.16), they satisfy the constraints (3.16f), (3.16g),

and (3.16h). For the next time instant k + 1, the candidate solutions vk+1 and zk+1 to the

optimization problem (3.16) are chosen as

vk+1 =
{
v∗1|k, · · · , v∗N−1|k, vN−1|k+1

}
, (3.17a)

zk+1 =
{
z∗1|k, · · · , z∗N−1|k, z

∗
N |k, zN |k+1

}
, (3.17b)

where vN−1|k+1 = Kz∗N |k and zN |k+1 = A(γN−1|k+1)z
∗
N |k +B(γN−1|k+1)Kz

∗
N |k with γN−1|k+1 =

h(z∗N |k, Kz
∗
N |k). It is clear that the first N − 1 elements of vk+1 and the first N elements

of zk+1 satisfy the constraints (3.16f) and (3.16g). Moreover, since z∗N |k ∈ Zf , it follows
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from Assumption 3.3.2 that vN−1|k+1 = Kz∗N |k ∈ V and zN |k+1 = A(γN−1|k+1)z
∗
N |k +

B(γN−1|k+1)Kz
∗
N |k ∈ Zf , i.e., the last elements of vk+1 and zk+1 satisfy the constraints

(3.16g) and (3.16h), respectively. According to the above analysis, it can be concluded that

vk+1 and zk+1 are feasible for the optimization problem (3.16).

Despite being recursive feasible, this stochastic optimization problem above is compu-

tationally very expensive due to the endogenous scheduling variable that has nonlinear re-

lationship with respect to system states and control inputs. To address this challenge and

facilitate real-time implementations, we next present an efficient qLPV-SMPC algorithm via

a shifted scheduling variable method.

3.4 Problem Reformulation for Efficient qLPV-SMPC

In this section, we reformulate the SMPC problem in (3.16) into a quadratic programming

(QP) problem, which can be robustly and efficiently solved by many available solvers. The

essential idea is to pre-calculate the endogenous scheduling variable sequence at each iteration

by utilizing the qLPV system structure and the optimization history information, which will

be detailed next.

As the nominal system (3.16b) does not include the system uncertainty wi|k, we can

directly expand (3.16b) along the prediction horizon as:

z1|k = A(γ0|k)z0|k +B(γ0|k)v0|k,

z2|k = A(γ1|k)A(γ0|k)z0|k

+ A(γ1|k)B(γ0|k)v0|k +B(γ1|k)v1|k,

· · ·

zN |k = Ψ0
N−1z0|k +

N−1∑
i=0

Ψi+1
N−1B(γi|k)vi|k,

(3.18)

where

Ψq
p =


∏q

j=pA(γj|k), p ≥ q,

I, p < q.

36



By stacking the nominal states and the nominal control inputs into vector forms as

Zk = [z⊤1|k, z
⊤
2|k, · · · , z⊤N |k]

⊤ ∈ RN ·nx and Vk = [v⊤0|k, v
⊤
1|k, · · · , v⊤N−1|k]

⊤ ∈ RN ·nu , (3.18) can be

written as:

Zk =M
(
Γk

)
z0|k + S

(
Γk

)
Vk (3.19)

where

M
(
Γk

)
=



A(γ0|k)

A(γ1|k)A(γ0|k)

A(γ2|k)A(γ1|k)A(γ0|k)

...

Φ0
N−1


, (3.20)

and

S
(
Γk

)
=



B(γ0|k) 0 · · · 0

A(γ1|k)B(γ0|k) B(γ1|k) · · · 0

...
... . . . ...

Φ1
N−1B(γ0|k) Φ2

N−1B(γ1|k) · · · B(γN−1|k)


. (3.21)

We similarly stack the expected error signals as Ek =
[
E[e⊤1|k], E[e⊤2|k], · · ·E[e⊤N |k]

]⊤
and E0

k =[
E[e⊤0|k], E[e⊤1|k], · · ·E[e⊤N−1|k]

]⊤
. From (3.16c) and E(wi|k) = 0, it then follows that

Ek =



AK(γ0|k) 0 · · · 0

0 AK(γ1|k) · · · 0

...
... . . . ...

0 0 · · · AK(γN−1|k)


E0

k =MK

(
Γk

)
e0|k, (3.22)

where MK(Γk) has the same vector form as (3.20) with element A(·) replaced by AK(·).

By using (3.19) and (3.22), the performance index (3.16a) can be reformulated into

a compact form with Vk being the optimization variables. Meanwhile, the nominal state

and nominal control input constraints (3.16f)∼(3.16h) can be incorporated as a generalized

matrix inequality constraint. These transformations cast the qLPV-SMPC problem (3.16)
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to a compact matrix form as follows:

min
Vk

J = V ⊤
k L(Γk)Vk + 2q(Γk)

⊤Vk (3.23a)

s.t. G(Γk)Vk ≤ H(Γk), (3.23b)

where L(Γk) = S(Γk)
⊤Q̄S(Γk) + R̄, and q = S(Γk)

⊤(Q̄M(Γk)z0|k + Q̄Ek) + R̄K̄E0
k .

The augmented diagonal weighting matrices R̄, K̄, and Q̄ are given by R̄ = diagN(R),

K̄ = diagN(K) and Q̄ = diag(diagN−1(Q), P ). In (3.23b), G(Γk) and H(Γk) are derived

from the constraints (3.16f)∼(3.16h).
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Figure 3.1 Scheduling variable and qLPV model updating strategy.

Note that if the scheduling variable sequence Γk is known as a prior or can be pre-

dicted, (3.23) then becomes a QP problem that can be efficiently solved, which is much more

advantageous over directly solving a nonlinear optimization problem that has intractably

computational complexity. As such, we develop the following shifted method for iterative

Γk calculation and the qLPV structure updating:

• At the first sampling time, i.e., k = 0:
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1. Initialize the scheduling variable γ(0) based on the initial system state and a

‘guess’ control input according to γ(0) = h(z(0), v(0)).

2. Compute M and S based on Γ0 = γ(0)⊗ 1N .

3. Solve the QP problem (3.23) and construct Γ∗
0 via the obtained optimal nominal

state sequence z∗
0 and optimal nominal control input sequence v∗

0.

• At each sampling time k > 0:

1. Assign γi|k = γ∗i+1|k−1 for i = 0, · · · , N −2. Then according to Assumption 3.3.2

with vN |k−1 = Kz∗N |k−1 ∈ V , construct Γk using γN−1|k = h(z∗N |k−1, vN |k−1). This

strategy is illustrated in Fig. 3.1.

2. Compute M , S, Ek and E0
k based on Γk.

3. Solve the QP problem (3.23) and construct Γ∗
k via the obtained optimal nominal

state sequence z∗
k and optimal nominal control input sequence v∗

k.

This results in solving a QP at each step and the steps are summarized in Algorithm 3.4.

Remark 3.4.1 (Calculation of γN |k). In this strategy, the scheduling variables are computed

as γ∗i|k = h(z∗i|k, v
∗
i|k) for i = 0, · · · , N − 1. Based on Assumption 3.3.2, γ∗N |k is then

approximated by h(z∗N |k, Kz
∗
N |k). In the case that γ only depends on the system state z, i.e.,

γ∗i|k = h(z∗i|k), no approximation is required to obtain γ∗N |k.

Remark 3.4.2 (Iterative Calculation of Γk). If computational capability allows, multi-

iteration method [52] can be applied for iterative correction of the scheduling variable se-

quence, i.e., (3.23) can be solved multiple times as a series of QP sub-problems based on the

updated Γm
k ,m ≥ 1 at every iteration. The convergence of (Zk, Vk,Γk)→ (Z∗

k , V
∗
k ,Γ

∗
k) of the

QP problem can be achieved such that the recursive feasibility is retained.
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Algorithm 3.1 Quasi LPV Stochastic MPC.

Define the simulation length: Nsim

Define the weighting matrices: Q̄ and R̄

Stack the gain matrix K̄;

Calculate the nominal state constraint: Z = X ⊖R, the nominal control input constraint:

V = U ⊖Ru;

Initilize z(0) = x(0) and Γ0 = γ(0)⊗ 1N ;

for k = 0→ Nsim do

/* Stochastic MPC */

z0|k = z(k);

Generate M , S, Ek and E0
k based on Γk;

Solve (3.23a) s.t. (3.23b) for V ∗
k and Z∗

k ;

/* LPV system updating */

Calculate Γ∗
k = h(Z∗

k , V
∗
k ) in element-wise;

Update Γk+1 : γi|k+1 = γ∗i+1|k, i = 0, · · · , N − 2, γN−1|k+1 = h(z∗N |k, Kz
∗
N |k) for next

MPC iteration;
end

3.5 Case Study on Automotive Powertrain Control

This case study is a pilot demonstration of qLPV-SMPC on the engine system. Specifically,

we present the implementation of the proposed qLPV-SMPC on an engine model that is

obtained by eSTF with data collected from a naturally aspirated (NA) engine on a Ford

F150 Truck. The schematic diagram of the NA internal engine is similar to 2.1 without a

turbine (therefore, there is no wastegate actuator). The main actuators are throttle position,

fuel injection port, intake cam position (ICAM), exhaust cam position (ECAM), and spark

timing. To simplify the modeling procedure and inspired by [64], ICAM (u1), ECAM (u2),

and throttle (u3), which directly influence the NA engine breathing, are chosen as the engine

inputs, while fuel consumption rate (x1) and torque (x2) are taken as the engine states.
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3.5.1 Pseudo-Plant Construction From Vehicle Data

Based on the collecting data of the input-state signals, a set of local models (Aj, Bj) for the

NA engine can be identified with eSTF based method [8]. The nonlinearity of the engine

system is embedded in the scheduling variable γj(·), which belongs to a unit simplex Λ. More

precisely, γj(·) is a softmax-like function described by

γj =
exp{D

(
(x, u), Cj

)
}∑nγ

l=1 exp{D
(
(x, u), Cl

)
}
∈ Λ , j = 1, · · · , nγ, (3.24)

where x ≜ [x1 x2]
⊤, u ≜ [u1 u2 u3]

⊤, D(·) is a dissimilarity metric by taking into

account the clustering information (C) with respect to input-output data. For the dynamic

construction of D, readers can refer to [7] for more details. In addition, stochastic disturbance

w in the following form is added to the qLPV model to characterize the lumped model

uncertainty and additive disturbance:

w ∼ N
(
0,

Var(wf ) 0

0 Var(wt)

)
, (3.25)

where Var(wf ) and Var(wt) are the disturbance variance with respect to the fuel consumption

rate and torque signals.

3.5.2 Performance Index and System Constraints

Based on the system structure and fuel economy purpose, we consider the following opti-

mization objectives:

• Objective 1: increase fuel economy (reduce fuel consumption rate (x1)).

• Objective 2: keep engine torque (x2) tracking a desired profile.

The corresponding stage cost and terminal cost functions are defined as

ℓ(xi|k, ui|k) = ∥xi|k − r(k + i)∥2Q + ∥ui|k∥2R, (3.26a)

Vf (xN |k) = ∥xN |k − r(k +N)∥2P , (3.26b)
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where r(k + i) ≜

[
rx1(k + i) rx2(k + i)

]⊤
∈ R2 is the given state reference. For fuel

minimization objective, we set rx1 = 0; while for torque tracking objective, rx2 is a given

ideal torque profile.

Based on the aforementioned definition, the following performance index is adopted by

MPC at each time instant k:

J = E

[
N−1∑
i=0

ℓ(xi|k, ui|k) + Vf (xN |k)

]
+ ρε2k, (3.27)

where εk ∈ R is a slack variable for feasible solution. To ensure safe and efficient operations,

the system constraints for this engine plant are given by

Pr
(
xmin ≤ x(k)

)
> px, (3.28a)

Pr
(
umin ≤ u(k) ≤ umax

)
> pu, (3.28b)

−∆umax − εkI ≤ ∆u(k) ≤∆umax + εkI, (3.28c)

where ∆u(k) = u(k)−u(k−1). The constraints for all states and control inputs are chosen

based on real vehicle testing experience. Here px is tunable for different requirements, while

due to physical actuator limitation, a quite hard chance constraints on the control inputs

(pu = 0.99) is preferred. For the same purpose, we also include an incremental rate constraint

(3.28c).

By using the PRS techniques discussed in Section 3.3.1, the chance constraints (3.28a)

and (3.28b) on the engine model can be transferred to deterministic constraints on the

nominal system state z and input v. The incremental rate constraint on ∆u(k) is applied

on ∆v(k) directly. After handling the state and input constraints, a SMPC problem similar

to (3.16) can be formulated. The slack variable εk is augmented with the nominal control

input vector, i.e.,

Ṽk =

Vk
εk

 . (3.29)
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Following Section 3.4 and the technique used in [65, p.6], the SMPC problem can be rewritten

as a compact matrix form:

min
Ṽk

JQP = Ṽ ⊤
k L̃Ṽk + 2q̃⊤Ṽk,

s.t. G̃Ṽk ≤ H̃,

(3.30)

where matrices L̃, q̃, G̃ and H̃ are modified versions of L, q,G and H in (3.23).

3.5.3 Simulation Results of qLPV-SMPC on NA Engine Model

This subsection discusses the qLPV-SMPC performance on the identified NA engine model.

The penalty matrix Q for the performance of each objective can be tuned and initialized

by pareto front [66] for a purpose that the minimization of fuel consumption should be

guaranteed under a good torque tracking condition. Meanwhile R is usually chosen small

to provide enough freedom for MPC optimization. In this case study, the matrices Q, R, P

and the penalty parameter for slack variable are chosen as:

Q =

0.124 0

0 1.64

 , R = 1e−2I3, P = Q, ρ = 1.

Based on this setting, qLPV-SMPC is solved with px = 0.85 and pu = 0.99. The total

fuel consumed for this period is accumulated up to 54.332, which is a scaled value1, but

reasonable if compared to the scaled real fuel consumption calculated from vehicle data with

the same torque profile. On the other hand, the evolution of the torque trajectory and

the reference one is shown in Fig. 3.2. The normalized root-mean-square-error (NRMSE)

between the torque and the reference is 0.097034, which indicates a good satisfaction of

torque tracking objective.

The PRS for px = 0.85 and the distribution of system error e(k) = x(k)−z(k) during the

whole MPC procedure are presented in Fig. 3.3. The dot markers within the PRS represent

the constraint satisfaction of the actual system state, while the cross markers outside the
1The real value not presented for confidential reason.
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Figure 3.2 Torque tracking performance.

Figure 3.3 State error e(k) distribution during the whole MPC optimization process and the PRS
Rx with px = 0.85.

PRS indicate constraint violation. The percentage of the system error within the PRS is

90.04%, implying the chance constraints are satisfied with the aid of PRS techniques.

The dynamic evolution of the real and nominal system states during a segment of qLPV-

SMPC process (time interval: 148s ∼ 154s) is shown in Fig. 3.4. The cross-section of PRS

tube is centered by the nominal state trajectory, while the actual state is bounded by the
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Figure 3.4 A segment of MPC optimization process. Top: a segment of 3D PRS tube and
corresponding system trajectories; Left-Bottom: Projection onto x1 − t plane; Right-Bottom:
Projection onto x2 − t plane. The blue circle shows a constraint violation point.

PRS tube with pre-defined probability level. A constraint violation point is marked by a

blue circle to indicate the PRS nature. Different from the robust reachable set, the PRS is

used as a probabilistic tube to confine the system dynamics and will lead to less conservatism

on the system operation.

3.5.4 Comparison between qLPV-RMPC and qLPV-SMPC

In this subsection, RMPC is applied to the same qLPV system to facilitate the comparison.

For the RMPC problem, hard constraints on the system state and control input are consid-

ered, and the minimal robust positively invariant set (mRPIS) defined in [60], [67] is used to

tighten the constraints under bounded disturbance. mRPIS is calculated with the method
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Figure 3.5 Comparison of tube size: mRPIS vs. PRS.

introduced in [68].

In Fig. 3.5, mRPIS and PRSs under different probabilities are compared under the frame-

work of RMPC and SMPC, respectively. It is clear that large mRPIS will lead to a restricted

feasible region for the nominal state and input, while small PRSs can alleviate the restric-

tion. The influence of such a region limitation for control performance is shown in Fig. 3.6.

It can be seen that the qLPV-RMPC cannot effectively track the torque reference compared

to qLPV-SMPC with different PRSs. As presented in Fig. 3.7, the control inputs of qLPV-

RMPC (red line) are confined in a smaller region compared to the ones of qLPV-SMPC.

Table 3.1 Comparison of total fuel consumption of qLPV-RMPC and qLPV-SMPC.

Total Fuel Consumed (scaled values)

qLPV-RMPC qLPV-SMPC
px : 0.99 px : 0.95 px : 0.90 px : 0.85

167.7767 61.1058 57.4073 54.6989 52.0954

On the other hand, the comparison results about the fuel consumption are summarized

in Table 3.1. Compared to SMPC method, RMPC scheme leads to much higher fuel con-

sumption. In addition, for the SMPC method, lower probability px means more constraint

violation but will lead to better fuel economy achievement to some extend.
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Figure 3.6 Comparison between qLPV-RMPC and qLPV-SMPC: torque tracking.
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3.6 Conclusion

To summarize this chapter, based on our previous work for nonlinear system identification,

we proposed an efficient qLPV-SMPC method for nonlinear systems subject to stochastic

disturbance and chance constraints. The probabilistic description of disturbance was sys-

tematically incorporated into the MPC problem formulation after tightening the constraints

with PRS. With the shifted scheduling variable method, the nonlinear optimal control prob-

lem was transformed to a series of computation-tractable QP problems. A case study was

demonstrated by applying the developed qLPV-SMPC scheme to the automotive engine

model. The results showed that the qLPV-SMPC scheme can accomplish the multi-objective

target while satisfying the specified chance constraints. Compared with qLPV-RMPC, the
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less conservative feature further shown the effectiveness of the proposed method in the engine

model case. In the future, we will implement the developed scheme in a real engine system

and conduct a thorough validation.
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CHAPTER 4

EFFICIENT AND PRIVACY-PRESERVING DATA-ENABLED
PREDICTIVE CONTROL FOR AUTOMOTIVE SYSTEMS

4.1 Introduction of Data-EnablEd Predictive Control

Data-EnablEd Predictive Control (DeePC) has recently emerged as a promising model-

free optimal control paradigm that directly uses input-output data for controlling systems

with unknown dynamics [3]. In contrast to traditional model-based control schemes that

rely on an accurate parametric model [65], DeePC leverages behavioral system theory [6]

and Willems’ fundamental lemma [69] to implicitly describe the system trajectories using

previously collected input-output data [3]. Its receding horizon implementation is shown to

be equivalent to a model predictive control (MPC) formulation for linear time-invariant (LTI)

systems [70], while its application to nonlinear and stochastic systems also shows promising

performance via different regularization techniques [71], [72].

Despite its promise, application of DeePC to real-time engineering systems still poses sig-

nificant challenges. First, in order to satisfy the persistent excitation (PE) condition, DeePC

needs to solve an optimization problem with a large dimension of optimization variables (typ-

ically larger than those in its MPC counterpart), making it computationally expensive for

real-time implementation. It is thus crucial to develop efficient approaches to reduce its

computation burden and enable its practical use and wider adoption in real-world engineer-

ing systems. Second, another important factor hindering DeePC’s application in real-world

cyber-physical systems (CPS) is privacy concern due to DeePC’s heavy reliance on the in-

tensive collection and sharing of data, particularly in a networked, multi-agent setting with

close interaction or cooperation. In fact, privacy concerns on data collection and sharing in

CPS have severely hindered networked robot deployment in European urban areas [73] and

government drone use in North America [74]. It is worth noting that conventional privacy
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mechanisms either trade accuracy for privacy (e.g., differential privacy [75]) or incur heavy

computation/communication overhead (e.g., cryption [76]), and hence are inappropriate for

CPS subject to stringent accuracy and real-time constraints (for example, reported homo-

morphic encryption based privacy solutions for self-driving cars incur computation latencies

on the order of seconds [77]–[85] whereas real-time formation control can only afford latency

on the order of milliseconds [86], [87]).

To address the aforementioned challenges, the principal research goal of this chapter is

to develop a comprehensive, unifying framework and corresponding novel methodologies for

efficient and privacy-preserving data-enabled predictive control. To pursue the above goal,

the specific tasks of this chapter include:

• Develop robust dimension reduction method to significantly improve the computational

efficiency while maintaining the PE conditions, enabling DeePC’s practical application

with limited computation and real-time constraints.

• Formalize and synthesize novel algorithm-intrinsic privacy-preserving schemes, to pro-

tect privacy in DeePC without sacrificing accuracy or incurring heavy computation or

communication overhead.

4.2 Preliminaries

DeePC is developed under LTI systems as a model-free optimal control strategy that does

not rely on an explicit parametric model. Instead, it leverages Willems’ fundamental lemma

[69] and generates control inputs (and resultant system outputs) compatible with the pre-

collected system data. Specifically, let ud = [ud1, u
d
2, · · · , udm]T ∈ Rm be the control inputs and

let yd = [yd1 , y
d
2 , · · · , ydr ]T ∈ Rr be the system outputs. As shown in Fig. 4.1, an input/output

data sequence of length T is collected, and the consecutive trajectories of length Tini+N are

extracted to form the following Hankel matrices:

50



Figure 4.1 Schematic diagram of the data-enabled predictive control.

HL(u
d
[1,T ]) =



ud(1) ud(2) · · · ud(T − L+ 1)

ud(2) ud(3) · · · ud(T − L+ 2)

...
... . . . ...

ud(L) ud(L+ 1) · · · ud(T )


=

Up

Uf

 ,

HL(y
d
[1,T ]) =



yd(1) yd(2) · · · yd(T − L+ 1)

yd(2) yd(3) · · · yd(T − L+ 2)

...
... . . . ...

yd(L) yd(L+ 1) · · · yd(T )


=

Yp
Yf

 .
(4.1)

Where L = Tini + N . Up denotes the first Tini block rows of HL(u
d
[1,T ]) and represents

the “past” segment of the input trajectory whereas Uf denotes the last N block rows of

HL(u
d
[1,T ]) and represents the “future” segment of the input trajectory. The matrices Yp

and Yf are similarly defined. Essentially, the columns of HL(u
d
[1,T ]) and HL(y

d
[1,T ]) can be

viewed as libraries of input/output trajectories of length L, which are further partitioned

into segments with length Tini and length N to be compatible with the online optimization

formulation which will be discussed later. Beforehand, a concept needs to be presented:
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Definition 4.2.1 (Persistently Exciting). A signal sequence w[1,T ] is persistently exciting of

order L (L ≤ T ) if the Hankel matrix HL(w[1,T ]) is of full row rank.

Remark 4.2.2 (Minimal Length of T ). In order for w[1,T ] to be persistently exciting of order

L, it must have T ≥ (m+1)L−1, that is, the input signal sequence w[1,T ] should be sufficiently

rich and long as to excite the system yielding an output sequence that is representative for

the system’s behavior.

During the online implementation, at each time step t, input/output trajectory of the

past Tini steps is buffered and used to form uini = u[t−Tini,t−1] and yini = y[t−Tini,t−1]. Let

u = u[t,t+N−1] and y = y[t,t+N−1] be the control inputs and system outputs over the N -step

prediction horizon, respectively. The Willems’ fundamental lemma states that if the pre-

collected input sequence ud[1,T ] is persistently exciting of order Tini +N + n with n being the

dimension of the system states (n can be chosen as an upper bound of state dimension [3]),

then the patched trajectory (uini, yini, u, y) is generated from the system when it is spanned

by (Up, Yp, Uf , Yf), that is, there exists a vector g ∈ RT−Tini−N+1 such that:

Up

Yp

Uf

Yf


g =



uini

yini

u

y


, (4.2)

which is a non-parametric system representation that ensures any consecutive trajectory of

length Tini + N is compatible with those in the trajectory library in (4.1), and the initial

trajectory [u⊤ini, y
⊤
ini]

⊤ can be thought of as setting an initial condition for the unknown future

trajectory [u⊤, y⊤]⊤. The DeePC can then be cast as the following constrained optimization
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problem:

min
g,u,y

J(u, y) =
t+N−1∑
k=t

(
∥y(k)∥2Q + ∥u(k)∥2R

)
s.t. (4.2),

y(k) ∈ Y(k), k = t, . . . , t+N − 1,

u(k) ∈ U(k), k = t, . . . , t+N − 1,

(4.3)

where U(k) and Y(k) represent the input and output constraints at time step k, respectively.

As DeePC bypasses the model identification step and directly optimizes the control from

data, it has found great successes across various domains [3], [88]–[90].

DeePC is developed under deterministic LTI system, beyond which a regularized DeePC

scheme provides insightful extension to nonlinear system control [3], [71], [91], [92].

As the input/output data are collected from nonlinear system, the subspace spanned by

the constructed Hankel matrix may no longer be consistent with the subspace of trajectories

of the underlying system, even if the Hankel matrix is easy to get full rank under such

data sets collected from nonlinear system. A direct consequence is that poor prediction

performance will be achieved by the ill-posed condition of Hankel matrix constraint. In this

case, a penalty term is added for the difference, quantified by a slack variable σy, between

estimated initial condition Ypg and the real-time buffered initial condition yini, which provides

a least-square estimation of the true initial condition. Then with an additional regularization
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term, the corresponding regularized DeePC optimization problem is presernted as:

min
g,u,y

J(u, y) + λy||σy||22 + λg||g||22 (4.4a)

s.t.



Up

Yp

Uf

Yf


g =



uini

yini

u

y


+



0

σy

0

0


, (4.4b)

y(k) ∈ Y(k), k = t, . . . , t+N − 1, (4.4c)

u(k) ∈ U(k), k = t, . . . , t+N − 1, (4.4d)

where λy, λg ∈ R+ are regularization parameters. This problem formulation (4.4) has been

proved to coincide with a distributionally robust problem via the technique of Wasserstein

metric [71], [91].

4.3 Efficient DeePC for Lithium-Ion Battery Fast Charging

4.3.1 Introduction of Lithium-ion Battery Fast Charging Problem

Due to clean and energy-efficient properties [93], lithium-ion (Li-ion) battery has taken

the forefront as power source for electronic vehicles (EVs). However, compared to gasoline

vehicles with quick refueling, long charging time is regarded as the major hurdle to the

widespread commercialization of Li-ion battery-powered EVs. Conventionally, the charging

time of Li-ion battery can be reduced by simply raising the charging rate , which, however,

may intensify the battery’s degradation and shorten its lifespan. Therefore, the development

of fast charging approaches for Li-ion batteries should not only address the charging time

issue but also maintain the battery in a safe and nondestructive charging mode.

Currently, constant-current and constant-voltage (CC/CV) [94] is the most commonly

used charging protocol for Li-ion batteries in industry. It consists of two charging phases:

a CC charging phase in which battery voltage raises to a predetermined value; and a CV

charging phase in which voltage remains constant until current falls below a predetermined
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threshold. In addition, some variants, such as multistage constant current protocols [95], [96]

and pulse charging protocols [97], [98], are designed to achieve faster charging and/or less

battery degradation. However, it is challenging and empirical to determine and design the

charging profiles for these protocols. Moreover, they are unable to explicitly handle system

constraints and not optimal with regard to charging time, safety and degradation.

To overcome the aforementioned difficulties, model-based optimization methods have

been developed. The commonly seen battery models can be roughly classified into elec-

tric equivalent circuit models (EECMs) and electrochemical models (EMs). EECMs are

composed by different electrical components, e.g., voltage source, resistances and capacities.

With parameterization and identification processes, EECMs are able to estimate several

state characteristics of batteries, such as state-of-charge (SOC) [99], [100], electrode voltage

[101], impedance [100] and heat generation [102]. Based on the obtained state character-

istics, the optimization techniques, such as dynamic programming [103], generic algorithm

[102], [104], fuzzy control [105], and min-max strategy [106], can be designed to generate

optimal charging protocols for fast charging, while mitigating battery degradation. How-

ever, EECMs ignore the description about certain internal battery dynamics, especially for

side reactions caused by chemical process, and thus their applications are limited by low

modeling accuracy, particularly at a wide range of operating conditions.

Conversely, the EMs [107] are designed based on first-principle modeling method and

can capture the internal mechanisms, e.g., electrochemical reations, ion diffusion and de-

/intercalation processes. Therefore, it has high fidelity for battery behavior description.

However, EMs are complex to establish and calibrate [108], so that the controller synthesis is

very challenging. Attempts have been made to reduce EM complexity by the simplification of

battery structure [109] and internal dynamics [110]. With the simplified models, many closed-

loop optimal controls are formulated for battery fast charging. For instance, a fast charging

method was developed in [111] based on simplified isothermal EM, side reaction rate model,

and extended Kalman filter-based CC/CV protocol. By incorporating thermal dynamics into
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similar models, a reference governor based nonlinear model predictive control (MPC) [112]

was proposed to reduce charging time and mitigate the impact of temperature variation

on battery degradation. Although model-based approaches provide optimal solutions for

fast charging in theory, robustness and optimality can rarely be accomplished in practice

because the Li-ion battery dynamics are ever-changing due to distinct operation modes and

uncertainties.

These observations, along with improvements in computing and sensing technology, have

motivated a trend toward model-free and data-driven control techniques. In particular, Data-

EnablEd Predictive Control (DeePC) recently emerged as a promising model-free optimal

control paradigm that directly uses input-output data to achieve safe and optimal control of

unknown systems [3]. In contrast to traditional model-based control schemes that rely on an

accurate parametric model [65], DeePC leverages behavioral system theory [6] and Willems’

fundamental lemma [69] to implicitly describe the system trajectories using collected input-

output data [3]. It has been revealed that DeePC is equivalent to an MPC formulation for

linear time-invariant (LTI) systems [70], and its application to nonlinear and stochastic sys-

tems shows promising performance with the aid of different regularization techniques [71],

[72]. The DeePC is especially appealing to systems where the model is difficult or expen-

sive to obtain, and it has been successfully implemented in different applications, including

unmanned aerial vehicles [3], power grids [89], and connected and automated vehicles [90].

However, the huge dimension of optimization variables in DeePC (usually larger than those

in its MPC counterpart) makes it computationally expensive for real-time implementation.

Therefore, it is crucial to develop effective methods to reduce computational cost, enabling

its application and widespread adoption in actual engineering systems.

Considering the aforementioned concerns, this chapter proposes an efficient DeePC ap-

proach for fast charging of Li-ion batteries with constraint handling. Specifically, without

relying on a complex battery model, an optimal charging protocol is designed by utilizing

measurable battery input and output data. Both input current and battery internal state
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constraints are explicitly considered in the DeePC formulation, ensuring a safe charging oper-

ation. Meanwhile, a singular value decomposition (SVD) [113] based method is proposed to

reduce the dimension of optimization variables and thus alleviate the computational burden.

Our main contributions include: 1) To the best of our knowledge, this is the first time the

DeePC framework is used to address the issue of safe and fast charging of Li-ion batteries.

The cumbersome modeling and validation processes of EECMs and EMs are circumvented

by offline data measurement and processing. 2) We propose a novel SVD-based dimension

reduction method for the ease of DeePC online implementation, while still maintaining the

optimal performance of original DeePC. 3) Finally, the efficacy of the proposed scheme on

fast charging of Li-ion batteries with safety related constraints is evaluated by simulations,

showing that the developed method not only achieves safe and fast charging, but is also

lightweight in computation.

The rest of this chapter is organized as follows. Section 4.3.2 introduces the DeePC

algorithm for optimal charging of Li-ion battery systems. Section 4.3.3 presents the SVD-

based dimension reduction method for the optimization variables of DeePC. Section 4.3.4

shows the simulation results, and conclusions are made in Section 4.3.5.

Nomenclature: We denote Z+ and R as the set of positive integers and real numbers,

respectively. 0 used in [·] is denoted as a zero vector with compatible size. The weighted

2-norm of a vector x is denoted by ∥x∥P ≜
√
x⊤Px, where P ≻ (≽)0 is a positive (semi-

)definite matrix. Given a signal ω ∈ Rn and two integers i, j ∈ Z+ with i ≤ j, we denote by

ω[i,j] the restriction of ω to the interval [i, j], namely, ω[i,j] :=

[
ω⊤(i), ω⊤(i+ 1), · · · , ω⊤(j)

]⊤
.

To simplify notation, we will also use ω[i,j] to denote the sequence {ω(i), · · · , ω(j)}. Given

a matrix A ∈ Rn×m, we denote by A[i,j], 1 ≤ i < j ≤ m the restriction of A to the interval

from ith column to jth column. We refer to x(t) the system measurement at time instant t,

while quantity xi|t is a prediction value i time-steps ahead of current time instant t.
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4.3.2 DeePC Formulation for Fast Charging of Lithium-ion Battery

In this section, we first define the working conditions of Li-ion battery to avoid unnecessary

chemical complexity as those in EECMs and EMs for the ease of DeePC implementation.

Then, a non-parametric representation for Li-ion battery charging dynamics will be formed

based on system measurements. Finally, we discuss the objective and system constraints to

formulate the overall DeePC problem for Li-ion battery fast charging.

4.3.2.1 Working Conditions for Lithium-ion Battery Charging

The working mechanism of Li-ion battery is vary complex with combined electrical, chem-

ical and thermal dynamics, and they are interacted to influence the battery performance.

For instance, ion diffusion rate varies under different temperatures, while ion with differ-

ent kinetics consumed by chemical reaction leads to temperature fluctuation. So improper

charging condition may lead a Li-ion battery to unstable and even unsafe region. So for

safely charging purpose, in this research, extreme charging scenarios are not considered, that

is, 1) the charging rate will be maintained under 2C. Because rapid heat generation [111]

will be induced by high charging rate, causing battery degradation, and terminal voltage

will also increase fast [114] to cut-off value, leading to an early termination of battery charg-

ing. 2) The limits of lower and upper cut-off voltages are provided to stop the charging

process to avoid over-powered charging beyond safe charging zone, even if it may be a little

bit conservative [101]. 3) The operating temperature domain is also constrained between

25◦C and 31◦C to neglect the effect of Li-ion plating [111], [112], [115]. All these limits

are geared towards demonstrating the benefits of DeePC for Li-ion battery fast and safe

charging purposes, without considering negligible battery internal side reactions. In the long

run, however, the side reactions may cause irresistible degradation to the Li-ion battery, and

lots of works are focusing on the avoidance and/or alleviation of such side reactions, so the

safe and fast charging of Li-ion battery, with minimized side reaction effect, is still an open

research field till now and in the near future.
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4.3.2.2 Non-Parametric Representation of Lithium-Ion Battery
Charging Dynamics

Conventional Li-ion battery fast charging methods rely on explicit system models [116], i.e.

EECMs and EMs, to facilitate controller design. One typical example refers to MPC [112],

[114], [117], [118] whose performance depends closely on battery model accuracy. Although

there exist many system identification techniques, obtaining a high fidelity model to capture

battery dynamics is still difficult and even impossible without simplifications or assumptions.

DeePC [3], therefore, is a promising model-free paradigm that can be applied on battery

system for fast charging purpose. In particular, this data-driven method can directly describe

the explicit dynamics of batteries in a non-parametric fashion based on Willems’ fundamental

lemma [69] and variable regularization.

Next, the non-parametric representation of battery charging dynamics will be discussed.

Data collection is the first step. Specifically, a trajectory of length T ∈ Z+ is collected during

battery charging phase, and the trajectory includes the following two parts:

ud[1,T ] =


ud(1)

...

ud(T )

 ∈ RmT , yd[1,T ] =


yd(1)

...

yd(T )

 ∈ RrT ;

with ud[1,T ] being the input charging current (I) sequence and yd[1,T ] the output sequence

whose element y(i) = [yV (i), yT (i), ysoc(i)]
⊤, i ∈ [1, T ], shown in Fig. ??, representing battery

voltage (V ), battery temperature (T ) and SOC. Note that SOC cannot directly be mea-

sured in reality, however, it is often tracked by means of current integration [108], assuming

precise current measurements and correct initial conditions. So SOC can also be taken as

a measurement through calculation in real plant. These pre-collected data are stored and

re-arranged as the Hankel matrix [3] for non-parametric representation. Then, the Hankel

matrix is further partitioned into two blocks based on (4.1), corresponding to the “past” data
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of length Tini and “future” data of length N data, respectively:Up

Uf

 := HTini+N

(
ud[1,T ]

)
,

Yp
Yf

 := HTini+N

(
yd[1,T ]

)
. (4.5)

Remark 4.3.1 (Construction of Hankel matrix). If a system is undesirable to generate a

long trajectory, e.g. the system has unstable dynamics or expensive to do so. In this case,

multiple short system trajectories can be used instead of a long one to construct the Hankel

matrix, as long as it satisfies a collective persistency of excitation condition [119].

Finally, with the buffered uini = u[t−Tini,t−1] and yini = y[t−Tini,t−1] of length Tini and also the

defined u = u[t,t+N−1] and y = y[t,t+N−1] of length N , the system behavior can be represented

as the form (4.4b) at the given time instant t, based on Willems’ fundamental lemma and

the regularization technique.

4.3.2.3 DeePC Formulation for Battery Fast Charging

The charging strategy proposed in this chapter aims to charge a Li-ion battery as fast

as possible, at the same time, in a safe manner. Specifically, the objective is to design an

optimal charging current profile to complete the charging task with minimum time consumed,

while satisfying the aforementioned working condition constraints. To facilitate the practical

application, instead of using the total time as a cost during the whole charging process, the

objective function is designed by driving SOC to a target value. In addition, to alleviate the

current chattering phenomenon and maintain a smooth charging process, the input variation

in successive optimization steps are penalized. Then, the cost function is designed as,

min
g,u,y

J(u, y) =
t+N−1∑
k=t

(
∥ysoc(k)− rsoc∥2Q + ∥∆u(k)∥2R

)
, (4.6)

whereQ andR are penalty matrices. By adding the regularization terms for DeePC extension

to nonlinear system, the cost function is expanded to be (4.4a). To maintain the battery
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charging problem within a safe region, the following constraints are required to be satisfied:

Imin ≤u(k) ≤ Imax,

∆Imin ≤∆u(k) ≤ ∆Imax,

Vmin ≤yV (k) ≤ Vmax,

Tmin ≤yT (k) ≤ Tmax,

SOCinit ≤ysoc(k) ≤ SOCfinal,

(4.7)

where Imin/max and ∆Imin/max denote the lower and upper bounds of input charging current

and its fluctuation. Vmin/max sets the cut-off voltage for low/high battery voltage condition.

[Tmin, Tmax] is the desired battery working temperature domain. SOCinit and SOCfinal set

the starting point and desired ending point for battery charging, respectively. The specific

values will be shown in Section 4.3.4.

4.3.3 DeePC with Dimension Reduction

Even if the promising performance of (regularized) DeePC has been demonstrated in lots

of applications, its time complexity is still high by solving the optimization problem with

a large dimension of optimization variables g ∈ RT−Tini−N+1, where T is often much larger

than Tini +N to satisfy the persistent excitation (PE) condition. As a preliminary study,

we exploited singular value decomposition (SVD) [113] for dimension reduction to facilitate

the fast optimization while retaining the performance.

We denote the left-side data matrix of (4.2) as A and the right-side date vector of (4.2)

as b:

A :=



Up

Yp

Uf

Yf


, b :=



uini

yini

u

y


. (4.8)

Note that in order to satisfy the PE condition and attain good performance, a large number

of columns in A are generally used [3], [90]. Since the fundamental principle is that the
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columns of A spans the Tini+N input/output trajectories, we employed SVD to identify the

l most important representative trajectories, which we refer to as eigen-trajectories. More

specifically, we perform the following dimension reduction steps:

1. Let p = (m + r)(Tini + N), q = T − Tini − N + 1 and q >> p for PE condition, then

decompose the matrix A into:

A = WΣV ⊤, (4.9)

where matrix Σ ∈ Rp×q is a rectangular diagonal matrix and uniquely determined by

A with all the singular values σi = Σii, i ≤ min{p, q} on the diagonal in descending

order. The columns of matrix W ∈ Rp×p and the columns of matrix V ∈ Rq×q are

called left-singular vectors and right-singular vectors of A, respectively. They also form

two sets of orthonomal bases.

2. Choose the first l columns from V to form a new matrix which is denoted as V[1:l],

where l ≤ q. As the columns of V represent the principle mixture of system modes

[120, p. C. 1] evolving in time, the first l columns of V are the corresponding most

representative trajectories, which we call eigen-trajectories, and they are essentially

utilized for mapping.

3. Define a new vector ḡ with the relationship to g as,

g = V[1:l]ḡ, (4.10)

where ḡ has the dimension l. The matrix V[1:l] here, as mentioned, is a mapping from

ḡ to g.

4. The equation (4.2) in the DeePC problem can be replaced by

Āḡ = b, (4.11)

where Ā = WΣV ⊤V[1,l] = AV[1,l], and the optimization variable changes from g to ḡ

with a lower dimension. The same equation transformation and replacement can be

applied to (4.4b).
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Remark 4.3.2 (Selection of Column Length l). Three methods can be used to choose l for

truncation of right-singular matrix V to get V[1,l],

• Singular value spectrum analysis. Plot the singular value in a descending order, l can

be picked by identifying the ’elbow’ point with steepest slop or some other points with

required energy percentage along the curve.

• Cross-validation. it’s a kind trial-and-error method by evaluating a performance index

defined based on the variation of the length l.

• Optimal Hard Threshold Method [121]. An optimal singular value truncation point can

be calculated by finding the underlying lower rank matrix, especially in the cases under

heavy noise corruption.

4.3.4 Simulations

In this section, the DeePC approach for Li-ion battery fast charging problem with safety

constraints is implemented via simulation to demonstrate its effectiveness. In addition, com-

parison is also made for the proposed SVD-based dimension reduction strategy on DeePC,

showing its advantages of promoting online optimization efficiency and, meanwhile, still

retaining optimal performance of DeePC without dimension reduction.

4.3.4.1 Experimental Setup

A high fidelity battery simulation model - LIONSIMBA [122], is considered as the plant. This

simulator is built based on the first-principle method and can provide all battery dynamics

related signals, so the aforementioned signals, i.e. battery voltage, temperature, SOC and

charging current, are measurable or estimated as those from a real Li-ion battery management

system.

The offline data (ud, yd) are collected with the sampling interval chosen as ∆t = 10s. The

‘past’ data length and ‘future’ data length are Tini = 60 and N = 70, respectively. In the
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Table 4.1 Safety constraint values.

Imin ∆Imin Vmin [V ] Tmin [◦C] SOCinit [%]

0 −0.1667C 2.1 25 5
Imax ∆Imax Vmax [V ] Tmax [◦C] SOCfinal [%]

2C 0.1667C 4.17 31 95

cost function of DeePC problem, only one of the three outputs is penalized, i.e. SOC, with

the corresponding weighting factor in Q ∈ R3×3 is 10, and the weighting factor for charging

current is R = 0.1. The coefficients of regularization terms are set as λg = 105, λysoc,yV = 103

and λyT = 106. The lower and upper bounds for system constraints are listed in Table 4.1.

Simulations are conducted using Matlab R2021b on Windows 10@3.6GHz PC with 8GB

RAM. Before every simulation run, an ambient temperature Tamb = 25◦C is set as the

initial condition of simulator and the charging current I = 0C. Note that, for the chemistry

property of this simulator, 1C value is approximate 30A/m2.

4.3.4.2 Performance of DeePC for Battery Fast Charging

In this simulation, a fast charging target is set to charge the Li-ion battery from SOC 5% to

95%, almost a full cycle charge of the Li-ion battery. The CCCV charging protocol is also

implemented as the comparison set to demonstrate the effectiveness of DeePC for battery fast

charging with safety constraints satisfaction. As shown in Fig. 4.2, three CCCV protocols are

applied for Li-ion battery charging, where the pre-set cut-off voltage value is Vcutoff = 4.15V

and the constant charging currents are taken as 1.2C, 1.5C and 2.0C, respectively. So in

this scheme, the battery is initially charged in CC mode before the battery voltage reaches

the cut-off value, then CV mode begins for the rest of charging work until SOC equals 95%.

As CCCV cannot handle system constraints, so the constraint violations of CCCV-1.5C and

CCCV-2.0C protocols are depicted in Fig. 4.2b. Their temperatures rise above the safe zone

during battery charging, it is hazardous to apply such charging protocols. To potentially

overcome this problem, the CCCV schemes are often conservatively designed at the sacrifice
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Figure 4.2 Simulation results of DeePC and CCCVs.

of charging speed. An typical example is the CCCV-1.2C charging protocol, it is carefully

designed to just satisfy all constraints, but the charging speed is the slowest, SOC takes

2970s to rise from 5% to 95%.

DeePC is an optimal controller with the ability to deal with system constraints, it not

only satisfies all safety constraints, but also has a relatively smooth charging current profile.

The charging speed (2530s) of DeePC is almost the same as CCCV-1.5C (2531s) and has

an approximate 15% increase when compared with CCCV-1.2C. In addition, to illustrate

the prediction accuracy of DeePC for battery fast charging, its prediction performances are

compared with real system measurements at the same time instant. As shown in Fig. 4.3a,

the 1-step prediction performances of the three outputs match well with the system mea-

surements. For the 10-step prediction case, Fig. 4.3b, even if certain deviations between

successive prediction trajectories and the real measured ones, the overall trends of DeePC
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output prediction still have good match to measurements. As a result, DeePC indeed has a

good performance for Li-ion battery fast and safe charging with simple structure.
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Figure 4.3 DeePC prediction vs real system measurement. (a). Comparison between y1|t and
y(t+ 1), t = 0, 1, 2, · · · . (b). Comparison between [y1|t̄, · · · , y10|t̄], t̄ = 0, 10, 20, · · · and
y(t+ 1), t = 0, 1, 2, · · · .

4.3.4.3 Performance of DeePC with Dimension Reduction

The SVD-based dimension reduction method is applied in DeePC problem formulation, the

simulation results in this section will show its ability to retain optimal control performance
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while the computational burden is reduced a lot. Same conditions are set to initialize the Li-

ion battery simulator. According to the steps proposed in section 4.3.3, after decomposition

of matrix A, a truncated right-singular matrix V[1:l] is chosen with l = 700 (the total column

length is lmax = 1791). Figure 4.4 shows the performance comparison between original

DeePC and SVD-bsaed efficient DeePC in the case of battery charging from SOC 49% to 80%.

The closely overlapped system input and outputs directly demonstrate that the performance

of proposed efficient DeePC can be as optimal as that of the original DeePC. Moreover,

the costs of both DeePCs are basically the same, while the time-per-step optimization of

the proposed efficient DeePC is much less. The corresponding results are summarized in

Table 4.2. The average optimization time of efficient DeePC approach is above 4 times less

than that of original DeePC, however, its performance and cost are barely impacted by the

optimization variables with reduced dimension.
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Figure 4.4 Simulation results of original DeePC and SVD-bsaed DeePC.

67



Table 4.2 DeePC performance index based on A vs. Ā.

A ∈ R520×1791 Ā ∈ R520×l (l = 700)

Cost 261813.25 261813.26
Time per Step [sec] 2.2s 0.5s
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Figure 4.5 Cost comparison between SVD-based DeePC and original DeePC in the case of same
Hankel matrix size.

Further simulations are run by varying l to form matrix Ā with different column lengths,

so the dimension of the optimization variables is correspondingly varying. A comparison

is conducted by directly truncating matrix A to make its size exactly the same as that of

Ā so that the computational resource used by these two cases are also the same, and the

results are shown in Fig. 4.5. With the reduction of column length from lmax = 1791, the

cost function value of the optimization problem with SVD approach can still maintain stable

and almost the same within a large range, i.e. l ∈ [240, 1791], details are shown in the

zoom-in window. However, DeePC without SVD approach (direct truncation of matrix A)

shows an overall increasing cost by reducing columns of matrix A. According to the results

shown in Fig. 4.5, if l is chosen to be 240, the computational time can further be reduced to

0.17s compared to the previous case with l = 700, and the cost is 261816, only increasing a

little. So the SVD-based dimension reduction strategy can indeed reduce the computational

complexity while retaining the optimal performance and cost as original DeePC scheme.
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4.3.5 Conclusion

This chapter has presented the DeePC approach for Li-ion battery fast charging problem with

safety consideration. The regularization strategy fits the DeePC scheme to nonlinear system.

Only input/output data are needed for direct controller design without the intermediate

parametric model identification process as those for EMs and EECMs. So the modeling effort

and problem complexity are reduced a lot. In addition, to make DeePC online applicable

for this fast chagring task, a SVD-based dimension reduction approach is utilized to increase

optimization speed. By properly choosing the eigen-trajectory matrix, dimension reduced

optimization variables can still provide an optimal control. The simulation results confirm

that by using the proposed method, the fast charging goal of Li-ion battery can achieved,

while avoiding unsafe charging conditions.

4.4 Privacy-preservation based DeePC for Automated Vehicle
Control in Mixed Traffic Environment

4.4.1 Introduction of DeePC for Automated Vehicle Control
in Mixed Traffic Environment

Advances in wireless communication technologies such as vehicle-to-infrastructure (V2I) or

vehicle-to-vehicle (V2V) offer modern vehicles with enhanced connectivity and new oppor-

tunities for intelligent and integrated vehicle control [123], [124]. One typical example is the

cooperative adaptive cruise control (CACC), which regulates a convoy of vehicles to improve

traffic flow stability, safety, and energy efficiency [124]–[131]. While attracting much research

interest, existing works on CACC predominately focus on effective platooning of pure con-

nected and automated vehicles (CAVs). However, due to the gradual deployment of CAVs,

it is expected that human-driven vehicles (HDVs) and CAVs will coexist for a long period of

time, which raises the demand of developing cooperative control of CAVs in a mixed traffic

flow.

HDVs often exhibit stochastic, uncertain behaviors that are difficult to characterize, mak-
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ing it challenging for the control design of CAVs in a mixed traffic environment. To address

this issue, several approaches have been proposed. For instance, in [132]–[134], feedback con-

trollers of CAVs are designed under the formation of connected cruise control, where CAVs

can receive information from HDVs ahead. Leading cruise control (LCC) is proposed in [135],

where CAVs make decision by utilizing both the preceding and following HDVs’ information.

To handle the prediction uncertainty of HDVs, a robust platoon control framework is designed

in [136] by leveraging tube model predictive control (MPC). Note that existing works mainly

focus on designing model-based approaches for CAVs [132]–[138]. One common strategy is

to utilize car-following models to characterize the behavior of human drivers, e.g., optimal

velocity model (OVM) [139] or intelligent driver model [140], enabling a state-space model

of the mixed traffic system for system analysis and control design. Although model-based

approaches can provide rigorous theoretical analysis and control synthesis when an accu-

rate traffic model is available, it might not be applicable to real-world deployment since the

parameters in human car-following models are non-trivial to identify accurately.

Instead of relying on explicit system models, data-driven approaches have recently emerged

as an alternative to avoid model/parameter identification and directly incorporate collected

data for control designs. For example, reinforcement learning (RL) [141]–[143] and adaptive

dynamic programming (ADP) [144]–[146] have been developed to design optimal control

schemes for CAVs. Although RL-based techniques can use experimental data to learn a

model to simulate uncertain HDV behaviors, they are typically data intensive and have lim-

ited interpretability. On the other hand, data-driven ADP algorithms can provide optimal

control actions with rigorous stability guarantees, but they struggle to handle constraints

that are critical to vehicle safety. Recent advances in data-driven MPC have shown promise

to achieve optimal control with constraint and stability guarantees [91], [147], [148]. In [90],

[149], a Data-EnablEd Predictive Leading Cruise Control (DeeP-LCC ) strategy is developed

for a mixed traffic system, which can efficiently handle safety constraints among multiple

CAVs and HDVs. Specifically, by leveraging the Data-EnablEd Predictive Control (DeePC )
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techniques [3], input/output measurements are collected to first represent the mixed traffic

system in a non-parametric manner, and to subsequently formulate a constrained optimiza-

tion problem [90]. DeePC exploits behavioral system theory [150] and Willems’ fundamen-

tal lemma [69] to implicitly describe the system trajectories without explicitly carrying out

model identification. Its receding horizon implementation is shown to be equivalent to the

MPC formulation for linear time-invariant (LTI) systems, and it has found various successes

in several practical applications [89], [92].

Employing the DeeP-LCC approach for the control of CAVs in the mixed traffic, how-

ever, poses great concerns in privacy. To enable coordinated control, the onboard data of

vehicles, which may contain private information, needs to be extensively collected and shared

via wireless communications (e.g., V2I or V2V), causing potential privacy leakage. Specifi-

cally, in a typical control architecture for a mixed-traffic fleet, each vehicle (both HDVs and

CAVs) first sends its measured/estimated states to a central unit (e.g., a road-side edge or

a remote cloud). The central unit then solves a pre-specified mixed-traffic optimal control

problem and sends optimal control actions back to CAVs. In this setup, system measure-

ments and control actions of CAVs need to be transmitted between the central unit and the

local vehicles, raising concerns that an external eavesdropper or a honest-but-curious central

unit can wiretap the communication channels to get sensitive information. In fact, several

studies have shown that exposing local vehicle’s information to connectivity can lead to se-

curity vulnerabilities and various malicious activities [151]–[153]. Fail to protect privacy can

potentially lead to devastating effects for CAVs and other vehicles sharing the roadway. Fur-

thermore, it is worth noting that conventional privacy mechanisms either trade accuracy for

privacy (e.g., differential privacy [74]) or incur heavy computation/communication overhead

(e.g., cryption [154], [155]), and hence are inappropriate for mixed traffic system subject to

stringent accuracy and real-time constraints.

Considering the aforementioned concerns and the growing awareness of security in cyber-

physical systems, it is imperative to protect the privacy of CAVs in mixed traffic control. In
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this chapter, we develop the first privacy-preserving data-enabled predictive control scheme

for controlling CAVs in mixed traffic. Specifically, we consider the same mixed traffic system

in [90], where multiple CAVs and HDVs cooperate with each other under the LCC frame-

work [135]. We show that if the central unit is an honest-but-curious adversary or there

exists an external eavesdropper, the DeeP-LCC under both Hankel and Page matrix struc-

tures cannot protect the private information of the vehicles. To avoid leaking the state and

input information of the CAVs, a simple yet effective affine masking-based privacy protection

method is designed, which can mask the true state and input signals. After the affine mask-

ing, an extended DeeP-LCC is derived to generate safe and optimal control actions for the

CAVs. We further introduce a privacy notion and show that the proposed affine masking-

based method can protect the private system state and input signals from being inferred by

the attackers. Some preliminary results are summarized in a conference version [156]. The

new contributions of this work are as follows.

First, the non-parametric representations of the mixed traffic system under Hankel and

Page matrix structures are both studied. The previous DeeP-LCC scheme [90] leverages

Hankel matrix to store the collected data for non-parametric system representation. We

extend the DeeP-LCC with the Page matrix which is another effective structure for time-

series data arrangement [157]. Second, we propose a privacy-preserving DeeP-LCC method

for mixed traffic control, which can retain the advances of original DeeP-LCC while avoiding

privacy leakage. We conceal the privacy-sensitive state and input signals of CAVs via affine

masking and reformulate a compatible DeeP-LCC that is equivalent to the original one.

Although the affine masking has been proved powerful to achieve privacy preservation in

cloud-based MPC [158], [159], it has not been discussed for data-driven approaches. In

this research, we successfully incorporate it with data-driven predictive control to enhance

the privacy protection of the mixed traffic system. Furthermore, the affine masking-based

method is light-weight in computation, making it extremely applicable to CAVs’ control.

Finally, extensive traffic simulations are conducted to validate the performance of the privacy-
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preserving DeeP-LCC, which confirms the benefits of the proposed method in terms of not

only improving traffic smoothness and fuel economy, but also protecting privacy against the

attacker.

The remainder of this chapter is organized as follows. Section 4.4.2 formulates the

mixed traffic control problem, and Section 4.4.3 provides an overview of DeeP-LCC method

from [90]. Section 4.4.4 presents the affine masking-based privacy protection method and the

extended DeeP-LCC. Section 4.4.5 analyses the equivalence and privacy-preserving proper-

ties of the developed method. Simulations are shown in Section 4.4.6. Finally, we conclude

the chapter in Section 4.4.7.

4.4.2 System Model of Mixed Traffic

Figure 4.6 Schematic of mixed traffic system with n+ 1 vehicles.

As shown in Fig. 4.6, the considered mixed traffic consists of n + 1 vehicles: one head

vehicle (indexed as 0), m CAVs and n−m HDVs. Let Ω = {1, 2, . . . , n} be the set of vehicle

indices ordered from front to end. The sets of CAV indices and HDV indices are denoted

by ΩC = {i1, i2, . . . , im} ⊆ Ω and ΩH = {j1, j2, . . . , jn−m} = Ω\ΩC , respectively, where

i1 < i2 < . . . < im and j1 < j2 < . . . < jn−m. We use pi(t), vi(t) and ai(t) to denote the

position, velocity and acceleration of the i-th vehicle at time t, respectively.

The car-following dynamics for HDVs are modeled by the following nonlinear processes:

v̇i(t) = F (si(t), ṡi(t), vi(t)) , i ∈ ΩH , (4.12)
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where si(t) = pi−1(t)− pi(t) and ṡi(t) = vi−1(t)− vi(t) are the relative spacing and velocity

between vehicle i and its preceding vehicle i − 1, respectively. Denote s∗ and v∗ as the

equilibrium spacing and equilibrium velocity of the mixed traffic system. Then the spacing

error and velocity error of vehicle i are defined as s̃i(t) = si(t) − s∗ and ṽi(t) = vi(t) −

v∗, respectively. By applying the first-order Taylor expansion on (4.12) at the equilibrium

(s∗, v∗), the linearized model for each HDV can be obtained
˙̃si(t) = ṽi−1(t)− ṽi(t),

˙̃vi(t) = α1s̃i(t)− α2ṽi(t) + α3ṽi−1(t),

i ∈ ΩH , (4.13)

with α1 = ∂F
∂s
, α2 = ∂F

∂ṡ
− ∂F

∂v
, α3 = ∂F

∂ṡ
evaluated at the equilibrium state (s∗, v∗). In this

research, we use the OVM [139] model to describe the HDVs’ car-following dynamics in

(4.12). More details about the linearized model of OVM model can be found in [137], [138].

For the CAV, the acceleration is used as the control input, i.e., v̇i(t) = ui(t), i ∈ ΩC , and its

system model is described by
˙̃si(t) = ṽi−1(t)− ṽi(t),

˙̃vi(t) = ui(t),

i ∈ ΩC . (4.14)

The state of each vehicle is denoted by xi(t) =

[
s̃i, ṽi

]⊤
, and the overall state of the

mixed traffic system is defined as

x(t) =

[
x⊤1 (t), x

⊤
2 (t), · · · , x⊤n (t)

]⊤
∈ R2n.

Based on (4.13) and (4.14), the linearized state-space model for the mixed traffic system can

be derived, as follows:

ẋ(t) = Ax(t) +Bu(t) +Hϵ(t), (4.15)

where u(t) =
[
ui1(t), ui2(t), · · · , uim(t)

]⊤
is the collective control input and ϵ(t) = ṽ0(t) =
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v0(t)− v∗ is the velocity error of the head vehicle. The system matrices in (4.15) are

A =



A1,1

A2,2 A2,1

. . . . . .

An−1,2 An−1,1

An,2 An,1


∈ R2n×2n,

B =

[
e2i12n , e

2i2
2n , . . . , e

2im
2n

]
∈ R2n×m,

H =

[
1, α3, 0

⊤
2n−2

]⊤
∈ R2n,

where 

Ai,1 =

 0 −1

α1 −α2

 , Ai,2 =

0 1

0 α3

 , i ∈ ΩH ;

Ai,1 =

0 −1
0 0

 , Ai,2 =

0 1

0 0

 , i ∈ ΩC .

As discussed in [90], the spacing error of HDVs (i.e., s̃i (i ∈ ΩH)) is impractical to be

observed due to the unknown human driving behavior. Therefore, the output signal of the

mixed traffic system is constructed as

y(t) =

[
x⊤i1(t), . . . , x

⊤
im(t), ṽj1(t), . . . , ṽjn−m(t)

]⊤
,

where y(t) ∈ Rn+m consists of all state measurements of the CAVs, i.e., s̃i, ṽi (i ∈ ΩC), and

the velocity error signal of the HDVs, i.e., ṽi (i ∈ ΩH). The output y(t) can be related to

the overall state x(t) via

y(t) = Cx(t), (4.16)

with

C=

[
e2i1−1
2n , e2i12n , . . . , e

2im−1
2n , e2im2n , e

2j1
2n , e

2j2
2n , . . . , e

2jn−m

2n

]⊤
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being the output matrix. Given the sampling interval ∆t > 0, the continuous-time model in

(4.15) and (4.16) can be transformed into the discrete-time
x(k + 1) = Adx(k) +Bdu(k) +Hdϵ(k),

y(k) = Cdx(k),

(4.17)

where Ad = eA∆t ∈ R2n×2n, Bd =
∫ ∆t

0
eAtBdt ∈ R2n×m, Hd =

∫ ∆t

0
eAtHdt ∈ R2n, Cd = C ∈

R(n+m)×2n. Let û(k) =
[
ϵ(k), u⊤(k)

]⊤
be the combined inputs signal and B̂d =

[
Hd, Bd

]
be

the combined input matrix. Then (4.17) can be rewritten into a compact form as follows:
x(k + 1) = Adx(k) + B̂dû(k),

y(k) = Cdx(k).

(4.18)

In this chapter, we assume that α1−α2α3+α2
3 ̸= 0, which ensures that the mixed traffic

system is stabilizable and observable [135]. Note that the above model is only used for

analysis, and the controller design in Section 4.4.3 does not assume the exact model (4.17).

4.4.3 Data-Enabled Predictive Leading Cruise Control

4.4.3.1 Non-Parametric Representation of Mixed Traffic

Conventional methods rely on explicit system model (4.17) to facilitate controller design.

One typical example is MPC whose performance depends closely on the model accuracy.

Even though there exist many system identification techniques, it is still difficult to obtain

accurate models for complex systems such as the mixed traffic system with stochastic and

uncertain human driving behavior. The DeePC [3] is a promising model-free paradigm and

recently has been leveraged by [90] to design the DeeP-LCC scheme for mixed traffic. In

particular, based on Willems’ fundamental lemma [69], this class of data-driven approaches

can describe the dynamical system in a non-parametric manner.
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We now discuss the non-parametric representation of mixed traffic system (4.17). It

begins with data collection. Specifically, a trajectory of length T ∈ Z+ is collected from the

mixed traffic system (4.17), which includes the following two parts:

• a combined input sequence of the mixed traffic system

ûd[1,T ] =


ûd(1)

...

ûd(T )

 ∈ R(m+1)T ,

which is comprised of CAVs’ acceleration sequence and the velocity error sequence of

the head vehicle, i.e.,

ud[1,T ] =


ud(1)

...

ud(T )

 ∈ RmT , ϵd[1,T ] =


ϵd(1)

...

ϵd(T )

 ∈ RT ;

• the corresponding output sequence

yd[1,T ] =


yd(1)

...

yd(T )

 ∈ R(n+m)T .

After collecting these data sequences, different matrix structures can be used to store them

for non-parametric representation. The Hankel matrix is the commonly used one [3], [90].

Specifically, under the Hankel matrix structure, the data sequences are divided into two

parts, i.e., the “previous data” of length Tini ∈ Z+ and “future data” of length N ∈ Z+, to

construct the following matrices:UH
p

UH
f

 := HTini+N

(
ud[1,T ]

)
,

EH
p

EH
f

 := HTini+N

(
ϵd[1,T ]

)
,

Y H
p

Y H
f

 := HTini+N

(
yd[1,T ]

)
,
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where UH
p denotes the first Tini block rows of HTini+N(u

d
[1,T ]) and UH

f denotes the last N block

rows ofHTini+N(u
d
[1,T ]), respectively (similarly for EH

p , E
H
f and Y H

p , Y
H
f ). Let uini = u[t−Tini,t−1]

be the control input sequence within a past time horizon of length Tini, and u = u[t,t+N−1]

be the control input sequence within a prediction horizon of length N (similarly for ϵini, ϵ

and yini, y). Based on Willems’ fundamental lemma [69] and the DeePC [3], we have the

following proposition.

Proposition 4.4.1. Suppose the combined input sequence ûd[1,T ] is Hankel exciting of order

Tini + N + 2n. Then a trajectory (uini, ϵini, yini, u, ϵ, y) belongs to the mixed traffic system

(4.17) if there exists g ∈ RT−Tini−N+1 such that

UH
p

EH
p

Y H
p

UH
f

EH
f

Y H
f


g =



uini

ϵini

yini

u

ϵ

y


. (4.19)

4.4.3.2 DeeP-LCC Formulation

Proposition 4.4.1 reveals that if sufficiently rich traffic data is collected, the future trajectory

of the mixed traffic system can be directly predicted without relying on explicit system model.

The relations (4.19) is the non-parametric representations of the mixed traffic system, which

are the key in formulating the DeeP-LCC. More precisely, at each time step t, the control

actions of the CAVs are generated by solving the following optimization problem:
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min
g,u,y

J(y, u) =
t+N−1∑
k=t

(
∥y(k)∥2Q + ∥u(k)∥2R

)
s.t. (4.19)

ϵ = 0N ,

ymin ≤ y(k) ≤ ymax, k = t, . . . , t+N − 1,

amin ≤ u(k) ≤ amax, k = t, . . . , t+N − 1.

(4.20)

In (4.20), J(y, u) is a quadratic cost function, and its weighting matrices Q and R are selected

as Q = diag(QC , QH) ∈ R(n+m)×(n+m) with QC = diag(ws, wv, . . . , ws, wv) ∈ R2m×2m, QH =

diag(wv, . . . , wv) ∈ R(n−m)×(n−m) and R = diag(wu, . . . , wu) ∈ Rm×m, where ws, wv, wu are

the weighting factors for the spacing error of CAVs, the velocity error of all vehicles, and

the control input of CAVs, respectively. The second constraint, ϵ = 0N , is used to predict

the future velocity error sequence of the head vehicle. The third and fourth constraints are

applied to the output and input of the mixed traffic system for safety guarantees, where

ymin and ymax denote the lower and upper bounds of output signal, respectively (similarly

for amin, amax). We refer the interested reader to [90] for more details on designing the cost

function and constraints in DeeP-LCC.

4.4.4 Privacy-Preserving DeeP-LCC

In this section, we first introduce the attack models, and then present an affine masking

strategy. Finally, a new privacy-preserving DeeP-LCC is proposed.

4.4.4.1 Attack Model

For the mixed-traffic vehicle fleet discussed above, a central unit (e.g., a road-side edge

compute or a remote cloud) is needed to receive all the vehicle data and solve the optimization

problem (4.20). A feasible architecture is shown in Fig. 4.7 and is described as follows:

• Handshaking Phase: The vehicle system sends
{
Q,R, (ud[1,T ], ϵ

d
[1,T ], y

d
[1,T ]), (ymin, ymax,
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Figure 4.7 Unsecure DeeP-LCC architecture.

amin, amax)

}
to the central unit, which are the necessary information for the central

unit to set up the optimization problem (4.20).

• Execution Phase: At each time step k, each CAV and HDV sends its state xi(k) =[
s̃i(k), ṽi(k)

]⊤
(i ∈ ΩC) and velocity error ṽi(k) (i ∈ ΩH), respectively, to the central

unit. The central unit computes u(k) by solving the optimization problem (4.20) and

sends optimal ui(k) (i ∈ ΩC) to the CAVs. Finally, the CAVs applies ui(k) to the

actuators and the system evolves over one step.

The involved vehicles need to provide the central unit with real-time measurements, pre-

collected data, cost function, and constraints to facilitate the calculation of (4.20). The

data may contain private contents that need to be protected from external attackers. In this

research, we consider two attack models [160]:

• Eavesdropping attacks are attacks in which an external eavesdropper wiretaps commu-

nication channels to intercept exchanged messages in an attempt to learn the informa-

tion about sending parties.

• Honest-but-curious attacks are attacks in which the untrusted central unit follows the

protocol steps correctly but is curious and collects received intermediate data in an

attempt to learn the information about the vehicles.

In particular, we consider the case that the privacy-sensitive information is contained

in the system state and input of CAVs, i.e., xi(k) =

[
s̃i(k), ṽi(k)

]⊤
, ui(k), i ∈ ΩC . It is
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apparent that the attacker can successfully eavesdrop the messages xi(k) and ui(k) when the

DeeP-LCC architecture introduced in Section 4.4.3.2 is adopted.

In the next subsection, we develop a masking mechanism to modify the exchanged in-

formation between the CAVs and the central unit such that an equivalent data-enabled

predictive control problem is solved without affecting system performance while preventing

the attacker from wiretapping the CAVs’ state and input. Although we only consider the

privacy preservation for CAVs, the following proposed approach can also be straightforwardly

adopted by HDVs to mask privacy-sensitive information, e.g., velocity error ṽi(k), i ∈ ΩH .

4.4.4.2 Affine Masking

Affine masking is a class of algebraic transformations and recently has been adopted to

accomplish privacy protection for cloud-based control [158], [159]. In this research, by con-

sidering the characteristics of the mixed traffic system, we introduce affine transformation

maps to design a privacy-preserved DeeP-LCC scheme. Specifically, for each CAV, two in-

vertible affine maps are employed to transform the state xi(k) and input ui(k) to the new

state x̄i(k) and input ūi(k), as follows:
x̄i(k) = Px,ixi(k) + lx,i,

ūi(k) = Pu,iui(k) + lu,i,

∀i ∈ ΩC , (4.21)

where Px,i ∈ R2×2 is an arbitrary invertible matrix, and lx,i ∈ R2, Pu,i ∈ R and lu,i ∈ R are

arbitrary non-zero vector or constant with compatible dimensions. After each CAV masks

its true state and input via (4.21), the new input and output signals of the mixed traffic

system are defined as

ū(k) =

[
ūi1(k), ūi2(k), · · · , ūim(k)

]⊤
, (4.22)

ȳ(k) =

[
x̄⊤i1(k), . . . , x̄

⊤
im(k), ṽj1(k), . . . , ṽjn−m(k)

]⊤
.
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Based on (4.21), (4.22) and the definition of u(k) and y(k), we obtain that

ū(k) = Puu(k) + Lu, ȳ(k) = Pyy(k) + Ly, (4.23)

where
Pu = diag(Pu,i1 , Pu,i2 , . . . , Pu,im) ∈ Rm×m,

Lu =

[
lu,i1 , lu,i2 , . . . , lu,im

]⊤
∈ Rm,

Py = diag(Px,i1 , . . . , Px,im , In−m) ∈ R(n+m)×(n+m),

Ly =

[
l⊤x,i1 , . . . , l

⊤
x,im , 0

⊤
n−m

]⊤
∈ R(n+m).

In (4.23), (Pu, Lu) and (Py, Ly) are two affine maps constructed from the local affine maps of

CAVs, and are used to transform the original input and output of mixed traffic system, i.e.,

(u(k), y(k)), into the new ones (ū(k), ȳ(k)). Given the affine transformation, the discrete-

time model of the mixed traffic system (4.17) can be reformulated as follows:
x(k + 1) = Adx(k) + B̄dū(k) +Hdϵ(k) + L̄u,

ȳ(k) = C̄dx(k) + Ly,

(4.24)

where B̄d = BdP
−1
u , L̄u = −BdP

−1
u Lu, and C̄d = PyCd.

Under the affine transformation mechanism (4.22), the exchanged information between

the CAVs and the central unit changes to x̄i(k), ūi(k), i ∈ ΩC , which can avoid leaking the real

state and input signals to the eavesdropper or the central unit. This affine transformation

mechanism also leads to a new system formulation (4.24), and thus a compatible DeeP-LCC

method needs to be developed.

4.4.4.3 Privacy-Preserving DeeP-LCC Reformulation

Denote ūd[1,T ] =

[
ūd(1), . . . , ūd(T )

]⊤
as the corresponding acceleration sequence of ud[1,T ]

under the affine map (Pu, Lu), and ȳd[1,T ] =

[
ȳd(1), . . . , ȳd(T )

]⊤
as the corresponding output

sequence of yd[1,T ] under the affine map (Py, Ly). Then, similar to ûd[1,T ], the combined input
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sequence ˆ̄ud[1,T ] ∈ R(m+1)T is constructed with ūd[1,T ] and ϵd[1,T ]. The matrices (ŪH
p , Ū

H
f , Ȳ

H
p , Ȳ

H
f )

can be constructed with ūd[1,T ] and ȳd[1,T ] by following the same procedure shown in (4.19).

Motivated by Willems’ fundamental lemma [69], (4.19), we use the data
(
ūd[1,T ], ϵ

d
[1,T ], ȳ

d
[1,T ]

)
to represent the affine masking-based mixed traffic system (4.24) under the Hankel matrix

structures. The results are summarized below.

Proposition 4.4.2. Suppose the data ˆ̄ud[1,T ] is Hankel exciting of order Tini + N + 2n + 1.

Then, (ūini, ϵini, ȳini, ū, ϵ, ȳ) is a trajectory of (4.24) if there exists ḡ ∈ RT−Tini−N+1 such that

ŪH
p

EH
p

Ȳ H
p

ŪH
f

EH
f

Ȳ H
f

1⊤T−Tini−N+1



ḡ =



ūini

ϵini

ȳini

ū

ϵ

ȳ

1



. (4.25)

The affine maps are able to mask the true system state xi(k) and input ui(k) of CAVs

to protect the privacy, and in the central unit, a new optimization problem with respect to

(ȳ, ū) and the new non-parametric representation (4.25) are solved. Specifically, with the

affine maps, one can show that (4.20) can be transformed into the following problem:

min
ḡ,ū,ȳ

J̄(ȳ, ū)

s.t. (4.25)

ϵ = 0N ,

ȳmin ≤ ȳ(k) ≤ ȳmax, k = t, . . . , t+N − 1,

āmin ≤ ū(k) ≤ āmax, k = t, . . . , t+N − 1,

(4.26)

where the cost function is defined as

J̄(ȳ, ū)=
t+N−1∑
k=t

(
∥ȳ(k)∥2Q̄ + q̄⊤ȳ(k) + ∥ū(k)∥2R̄ + r̄⊤ū(k)

)
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with Q̄ ∈ R(n+m)×(n+m), q̄ ∈ Rn, R̄ ∈ Rm×m, r̄ ∈ Rm, Q̄f ∈ Rn×n, and q̄f ∈ Rn given by

Q̄ = P−⊤
y QP−1

y ∈ R(n+m)×(n+m), q̄ = −2Q̄Ly ∈ R(n+m),

R̄ = P−⊤
u RP−1

u ∈ Rm×m, r̄ = −2R̄Lu ∈ Rm. (4.27)

In (4.26), (ȳmin, ȳmax) and (ūmin, ūmax) are the corresponding constraint bounds of (ymin, ymax)

and (umin, umax) under the affine maps (Py, Ly) and (Pu, Lu) given in (4.23), i.e., ȳmin =

Pyymin + Ly, ȳmax = Pyymax + Ly and ūmin = Puymin + Lu, ūmax = Puymax + Lu.

Compared to the unsecure DeeP-LCC in Section 4.4.4.1, our privacy-preserved DeeP-

LCC architecture with the affine maps, shown in Fig. 4.8, is modified as:

• Handshaking Phase: The vehicle system sends

{
Q̄, R̄, q̄, r̄, (ūd[1,T ], ϵ

d
[1,T ], ȳ

d
[1,T ]), (ȳmin, ȳmax, āmin, āmax)

}
to the central unit, that is, the necessary information to set up the optimization problem

(4.26).

• Execution Phase: At each time step k, the CAVs encodes xi(k) (i ∈ ΩC) into x̄i(k)

with (Px,i, lx,i) and sends x̄i(k) to the central unit. Meanwhile, HDVs sends velocity

error ṽi(k) (i ∈ ΩH) to the central unit. After receiving these data, the central unit

computes ū(k) by solving the optimization problem (4.26) and sends the solution ūi(k)

(i ∈ ΩC) to the CAVs. Finally, each CAV uses (Pu,i, lu,i) to decode ūi(k), i.e., ui(k) =

P−1
u,i (ūi(k)− lu,i) and applies ui(k) to the actuators. The system then evolves over one

step.

Remark 4.4.3. The formulations (4.25) is valid for deterministic LTI system (4.24). How-

ever, in practice, the car-following behavior of HDVs is stochastic and has uncertainties,

which leads to a non-deterministic and nonlinear mixed traffic system. Inspired by the reg-

ularization design for standard DeePC [3], slack variable σ̄y ∈ R(n+m)Tini and two-norm
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Figure 4.8 Privacy-preservation DeeP-LCC architecture.

regularization on ḡ can be introduced to handle system uncertainties and nonlinearities. For

instance, the optimization problem (4.26) under the Hankel matrix structure becomes

min
ḡ,ū,ȳ

J̄(ȳ, ū) + λ̄g ∥ḡ∥22 + λ̄σ ∥σ̄y∥22

s.t.



Ūp

Ep

Ȳp

Ūf

Ef

Ȳf

1T−Tini−N+1



ḡ =



ūini

ϵini

ȳini

ū

ϵ

ȳ

1



+



0

0

σ̄y

0

0

0

0



,

ϵ = 0N ,

ȳmin ≤ ȳ(k) ≤ ȳmax, k = t, . . . , t+N − 1,

āmin ≤ ū(k) ≤ āmax, k = t, . . . , t+N − 1,

(4.28)

where λ̄g > 0 and λ̄σ > 0 are weighting coefficients. The slack variable σ̄y for the past output

signal is added to ensure feasibility of the equality constraint, while the regularization on ḡ

is used to avoid overfitting.

4.4.5 Equivalence and Privacy Preservation

As mentioned in Section 4.4.4.1, the attacker aims to infer the system state and input of

CAVs, i.e., xi(k) =

[
s̃i(k), ṽi(k)

]⊤
, ui(k), i ∈ ΩC . Note that under the privacy-preserving
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DeeP-LCC architecture, the exchanged information between CAVs and the central unit

during the execution phase is x̄i(k) and ūi(k) rather than the actual system state and input.

In the section, we first prove that the reformulated DeeP-LCC problem (4.26) is equiva-

lent to the original DeeP-LCC problem (4.20), and then we show that the privacy of CAVs’

state and input is indeed protected.

4.4.5.1 Equivalence with Affine Transformation

The following Lemma establishes that the equivalence of the reformulated DeeP-LCC prob-

lem (4.26) to the original DeeP-LCC problem (4.20).

Lemma 4.4.4. Under the affine transformation mechanism, the optimization problem (4.26)

is equivalent to (4.20).

Proof. With the input and output transformations in (4.23), the cost term transformations

in (4.27), and the definitions of J(·, ·) and J̄(·, ·), it can be shown that

J(y, u) = J̄(ȳ, ū) + ϱ, (4.29)

where ϱ =
∑t+N−1

k=t

(
L⊤
y Q̄Ly + L⊤

u R̄Lu

)
∈ R is a constant. We now use proof by contradic-

tion. Assume that (ȳ∗, ū∗) is the global minimizer of optimization problem (4.26), and (y∗, u∗)

is the corresponding sequence of (ȳ∗, ū∗) under the inverse affine maps (Py, Ly), (Pu, Lu), i.e.,

y∗ =


y∗(t)

...

y∗(t+N − 1)

 =


P−1
y (y∗(t)− Ly)

...

P−1
y (y∗(t+N − 1)− Ly)

 ,

u∗ =


u∗(t)

...

u∗(t+N − 1)

 =


P−1
u (u∗(t)− Lu)

...

P−1
u (u∗(t+N − 1)− Lu)

 .
As (ȳ∗, ū∗) is a trajectory of system (4.24) and satisfies the constraints in (4.26), it can be

confirmed that (y∗, u∗) is a trajectory of system (4.17) and satisfies the constraints in (4.20).
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We also assume that (y∗, u∗) is not the global minimizer of problem (4.20), and thus there

exists an optimal sequence (y∗∗, u∗∗) (other than (y∗, u∗)) such that

J(y∗∗, u∗∗) < J(y∗, u∗). (4.30)

Let (ȳ∗∗, ū∗∗) be the corresponding trajectory of (y∗∗, u∗∗) under the forward affine maps

(Py, Ly), (Pu, Lu). According to (4.29), (4.30) can be rewritten as

J̄(ȳ∗∗, ū∗∗) + ϱ < J̄(ȳ∗, ū∗) + ϱ, (4.31)

which contradicts the assumption that (ȳ∗, ū∗) is the global minimizer of optimization prob-

lem (4.26). Therefore, if (ȳ∗, ū∗) is the global minimizer of problem (4.26), then its inverse

affine transformation, i.e., (y∗, u∗), should be solution to the original problem (4.20), indi-

cating that these two problems are equivalent.

4.4.5.2 Privacy Preservation

We next discuss the privacy notion used in this research. As mentioned in Section 4.4.4.1,

the attacker aims to infer the system state xi(k) and control input ui(k) of CAVs. Under

the privacy-preserving architecture discussed above, the attacker will have access to x̄i(k)

and ūi(k) at each time step k, and we need to show that for any κ ∈ Z+, xi,[1,κ] and ui,[1,κ]

cannot be identified from x̄i,[1,κ] and ūi,[1,κ]. According to (4.21), we use(
xi,[1,κ], ui,[1,κ]

) (Px,i,lx,i,Pu,i,lu,i)
===========⇒

(
x̄i,[1,κ], ūi,[1,κ]

)
, ∀i∈ΩC

to denote that
(
x̄i,[1,κ], ūi,[1,κ]

)
is the transformed trajectory of

(
xi,[1,κ], ui,[1,κ]

)
under the affine

maps (Px,i, lx,i) and (Pu,i, lu,i). For any feasible state sequence x̄i,[1,κ] and input sequence

ūi,[1,κ] received by the attacker, the set ∆(x̄i,[1,κ], ūi,[1,κ]) is defined as

∆(x̄i,[1,κ], ūi,[1,κ]) = {xi,[1,κ], ui,[1,κ] : ∃ (Px,i, lx,i, Pu,i, lu,i)

s.t.
(
xi,[1,κ], ui,[1,κ]

) (Px,i,lx,i,Pu,i,lu,i)
===========⇒

(
x̄i,[1,κ], ūi,[1,κ]

)
}.

Essentially, the set ∆(x̄i,[1,κ], ūi,[1,κ]) includes all possible values of
(
xi,[1,κ], ui,[1,κ]

)
that can be

transformed into
(
x̄i,[1,κ], ūi,[1,κ]

)
with corresponding affine maps (Px,i, lx,i, Pu,i, lu,i).
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Definition 4.4.5 (∞-Diversity). The privacy of the actual system state xi,[1,κ] and input

ui,[1,κ] of CAVs is preserved if the cardinality of the set ∆(x̄i,[1,κ], ūi,[1,κ]) is infinite for any

feasible state sequence x̄i,[1,κ] and input sequence ūi,[1,κ].

The ∞-Diversity privacy definition requires that there are infinite sets of
(
xi,[1,κ], ui,[1,κ]

)
and (Px,i, lx,i, Pu,i, lu,i) that can generate the same

(
x̄i,[1,κ], ūi,[1,κ]

)
received by the attacker.

As a result, it is impossible for the attacker to use
(
x̄i,[1,κ], ūi,[1,κ]

)
to infer the actual system

state and input information.

Remark 4.4.6. Definition 4.4.5 of ∞-Diversity can be viewed as an extension to the l-

diversity [161] that has been widely adopted in formal privacy analysis on attribute privacy

of tabular. Essentially, l-diversity requires that there are at least l different possible values

for the privacy sensitive data attributes, and a greater l indicates greater indistinguishability.

We next show that the proposed affine transformation mechanism can protect the privacy

of CAVs based on Definition 4.4.5.

theorem 4.4.7. Under the affine masking mechanism described in Section 4.4.4.2, the sys-

tem state and control input of CAVs are ∞-Diversity, that is, the attacker cannot infer the

actual system state xi(k) and input ui(k), ∀i ∈ ΩC.

Proof. Based on Definition 4.4.5, we prove Theorem 4.4.7 by showing that under the affine

masking scheme, the cardinality of the set ∆(x̄i,[1,κ], ūi,[1,κ]) is infinite. Specifically, given the

sequence
(
x̄i,[1,κ], ūi,[1,κ]

)
accessible to the attacker, for an arbitrary affine map

(
P ′
x,i, l

′
x,i, P

′
u,i, l

′
u,i

)
such that P ′

x,i and P ′
u,i are invertible, a sequence

(
x′i,[1,κ], u

′
i,[1,κ]

)
can be uniquely determined

based on
(
x̄i,[1,κ], ūi,[1,κ]

)
by using

(
P ′
x,i, l

′
x,i, P

′
u,i, l

′
u,i

)
as an inverse mapping. As there exists in-

finitely many such affine maps
(
P ′
x,i, l

′
x,i, P

′
u,i, l

′
u,i

)
, there exists infinitely many

(
x′i,[1,κ], u

′
i,[1,κ]

)
such that via proper affine transformations, the attacker will receive the same accessed in-

formation:
(
x̄i,[1,κ], ūi,[1,κ]

)
, which indicates that the cardinality of the set ∆(x̄i,[1,κ], ūi,[1,κ]) is

infinite.
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Remark 4.4.8. Different from the conventional encryption based techniques [154], [155],

the proposed affine masking-based privacy-preserved scheme does not involve complicated

encryption and decryption procedure, and thus is light-weight in computation and can be

easily implemented in a mixed traffic system. Furthermore, the affine masking mechanism

can provide strong privacy protection such that the eavesdropper cannot even approximately

estimate the interested information xi(k) and ui(k) via the exchanged information between

the vehicle system and the central unit.

4.4.6 Numerical Experiments

In this section, we perform numerical simulations to validate the efficacy of the proposed

privacy-preserving DeeP-LCC. We consider a mixed traffic system consisting of two CAVs

and four HDVs. The CAV and HDV indices are ΩC = {2, 5} and ΩH = {1, 3, 4, 6}, respec-

tively. The OVM model is used to describe the behavior of HDVs, and a noise with uniform

distribution of U [−0.3, 0.3] is added to the HDVs’ model. Both the original DeeP-LCC and

the proposed privacy-preserving DeeP-LCC are used in the numerical simulations.

We follow the similar procedure introduced in [90] to collect the offline data
(
ud, ϵd, yd

)
with the sampling interval chosen as ∆t = 0.5 s. The time horizons for the previous data

sequence and future data sequence are chosen as Tini = 15 and N = 30, respectively. In

the DeeP-LCC problem (4.20), the weighting factors are selected as ws = 0.5, wv = 1,

and wu = 0.1. The lower and upper bounds of output signal of the CAVs are chose as

ymin =

[
−15,−30

]⊤
, ymax =

[
20, 30

]⊤
, while the acceleration limits of the CAVs are set as

amin = −5, amax = 2. For the proposed privacy-preserving DeeP-LCC, CAVs exploit affine

transformation maps (4.21) to mask their actual state and input. The affine transformation

maps for CAVs (recall that ΩC = {2, 5}) are chosen as

Px,2 =

cos(π4 ) − sin(π
4
)

sin(π
4
) cos(π

4
)

 , lx,2 =
5
3

 ,
Pu,2 = −1.5, lu,2 = 1,

89



and

Px,5 =

cos(8π9 ) − sin(8π
9
)

sin(8π
9
) cos(8π

9
)

 , lx,5 =
5
3

 ,
Pu,5 = 1.5, lu,5 = −1.

Furthermore, based on the aforementioned affine maps and the setup for DeeP-LCC, the

parameters used to formulate the privacy-preserving DeeP-LCC (i.e., problem in 4.26) can

be obtained (see Section 4.4.4.2 and 4.4.4.3).

4.4.6.1 Scenario A: Comprehensive Acceleration and Deceleration

A comprehensive acceleration and deceleration scenario is designed to validate the capa-

bility of the proposed privacy-preserving DeeP-LCC in improving traffic performance. In

this scenario, the head vehicle takes acceleration or deceleration at different time periods.

Both fuel consumption and velocity errors for the vehicles are considered to quantify traffic

performance. More specifically, for the i-th vehicle, the fuel consumption rate fi (mL/s) is

calculated based on an instantaneous model in [162], which is given by

fi =


0.444 + 0.090Rivi + [0.054a2i vi]ai>0 , if Ri > 0,

0.444, if Ri ≤ 0,

with Ri = 0.333+0.00108v2i +1.200ai. Since the first HDV is not influenced by the CAVs, the

total fuel consumption rate f of the mixed traffic system is calculated by summing fi indexed

from 2 to 6, i.e., f =
∑6

i=2 fi. The average absolute velocity error (AAVE) is utilized to

quantify velocity errors and is obtained by computing the average of |vi(t)−v0(t)|
v0(t)

with respect to

the simulation time and the vehicle number. Moreover, the original DeeP-LCC scheme and

the proposed privacy-preserving DeeP-LCC under the Hankel matrix structures are tested

in this scenario. The number of columns in Hankel matrices are selected as 1950. A standard

output-feedback MPC is also tested in this scenario to facilitate a complete comparison.

The simulation results are shown in Fig. 4.9. Note that the velocity response profiles

of MPC matrix based DeeP-LCC schemes are quite similar to the ones of Hankel matrix
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Figure 4.9 Velocity profiles of the mixed traffic system under Scenario A. (a) All the
vehicles are HDVs. (b) DeeP-LCC under the Hankel matrix structure is utilized to
generate the control for CAVs. (b) Privacy-preserving DeeP-LCC under the Hankel matrix
structure is utilized to generate the control for CAVs.

based DeeP-LCC schemes, and hence they are omitted. As shown in Fig. 4.9, compared to

the case with all HDVs, both the original DeeP-LCC and the proposed privacy-preserving

DeeP-LCC can effectively mitigate velocity fluctuations, leading to a smoother mixed traffic

flow. Table 4.3 presents the fuel consumption and AAVE of different schemes. Note that all

DeeP-LCC approaches achieve similar performance with MPC, but they exploit pre-collected

data to generate control inputs rather than relying on an explicit mixed traffic model. In

addition, although affine transformation mechanism is introduced to mask the actual system

state and input signals, the proposed privacy-preserving method still retain the advances of

91



Table 4.3 Fuel Consumption and Average Absolute Velocity Error (AAVE) in Scenario A.

Fuel Consumption [mL] AAVE [10−3]
All HDVs 1569.62 27.34

MPC 1536.98(↓2.08%) 24.50(↓10.38%)
DeeP-LCC 1537.98(↓2.02%) 24.52(↓10.29%)

PP-DeeP-LCC 1538.71(↓1.97%) 24.48(↓10.47%)
1 All the values have been rounded. PP-DeeP-LCC refers to privacy-

preserving DeeP-LCC.

original DeeP-LCC in improving fuel economy and traffic smoothness.

4.4.6.2 Scenario B: Emergency Braking

We now use a braking scenario to show that the proposed method can protect the privacy

of CAVs against the attacker. In this scenario, the head vehicle takes a sudden emergency

brake with maximum deceleration, then maintains the low velocity for a while, and finally

accelerates to the original velocity.

(a) (b) (c)

Figure 4.10 Velocity profiles of the mixed traffic system under Scenario B. (a) All the
vehicles are HDVs. (b) DeeP-LCC under the Hankel matrix structure is utilized to
generate the control for CAVs. (b) Privacy-preserving DeeP-LCC under the Hankel matrix
structure is utilized to generate the control for CAVs.

The simulation results are presented in Figs. 4.10 and 4.11. It can be found from Fig. 4.10

that the CAVs have similar response patterns under the DeeP-LCC strategy and the proposed

privacy-preserving DeeP-LCC. More precisely, when the head vehicle begins to brake (see

the time period before 8 s), the CAVs decelerate immediately to adjust the relative distance

from the preceding vehicle; when the head vehicle starts to return to the original velocity
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(a) (b)

Figure 4.11 Simulation results with privacy-preserving DeeP-LCC under Scenario B: (a)
actual state and input information of CAVs, (b) state and input information exchanged
between the CAVs and the central unit.

(see the time period after 8 s), the CAVs accelerate gradually. The similar motion pattern

under these two methods implies that the affine transformation mechanism can retain the

control performance as the original DeeP-LCC strategy. Meanwhile as shown in Fig. 4.11,

under the privacy-preserving DeeP-LCC, the exchanged information between the CAVs and

the central unit, i.e., x̄i(k) =
[
s̄i(k), v̄i(k)

]⊤
, ūi(k), i ∈ ΩC , is quite different from the actual

one, i.e., xi(k) =

[
s̃i(k), ṽi(k)

]⊤
, ui(k), i ∈ ΩC . This indicates that the proposed affine

transformation mechanism can conceal the actual state and input of CAVs, which makes the

external eavesdropper or the honest-but-curious central unit unable to infer xi(k) and ui(k).
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4.4.7 Conclusion

This sub-chapter presented a privacy-preserving DeeP-LCC for CAVs in a mixed-traffic envi-

ronment. We have considered external eavesdropper and honest-but-curious central unit who

intend to infer the CAVs’ system states and inputs. A simple yet effective affine transforma-

tion mechanism has been designed to enable privacy preservation, and an extended form of

the data-enabled predictive control has been derived to achieve safe and optimal control for

CAVs. The proposed affine transformation mechanism can be seamlessly integrated into the

data-enabled control without affecting the control performance. Theoretical and simulation

results confirm that by using the proposed method, the leading cruise control problem in a

mixed traffic can be addressed while avoiding disclosing private information to the attacker.
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