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ABSTRACT

SPARSE GRID DISCONTINUOUS GALERKIN METHODS FOR NONLINEAR OPTICS
AND MATHEMATICAL MODELING OF ASYNCHRONOUS DATA FLOW IN

PARALLEL COMPUTERS

By

Kai Huang

This thesis consists of two parts: the first part discusses the Sparse Grid Discontinuous

Galerkin (SGDG) method and its adaptive version, and their applications in Maxwell

equations in nonlinear optical media [1, 2]; the second part discusses a Hamilton-Jacobi

model of asynchronous data flow in parallel computers, and corresponding numerical

simulation using Weighted Essentially Non-Oscillatory (WENO) method.

SGDG method and its adaptive version were developed in recent years [3, 4, 5, 6, 7], to

numerically solve different linear or nonlinear PDE problems, reducing degrees of free-

dom and computational cost. Compared to the previous works, this thesis mainly focuses

on fully implicit SGDG method of nonlinear equations, which broadens the applications

of the method. To achieve this goal, the existing SGDG package [8] is coupled with nonlin-

ear solvers in PETSc [9]. Numerical simulations of several model equations and physical

relevant problems are presented to demonstrate accuracy and robustness of the method.

Presented in second part of the thesis are models of data flow on processors in a high

performance computing framework involving computations necessitating inter-processor

communications [10]. First comes an ordinary differential model, and its asymptotic limit

results in a model which treats the computer as a continuum of processors and data flow

as an Eulerian fluid governed by a conservation law. We derive a Hamilton-Jacobi equa-

tion associated with this conservation law for which the existence and uniqueness of so-

lutions can be proved. High order WENO interpolation [11, 12], together with strong

stability preserving (SSP) method for time discretization, is applied to simulation of the

Hamilton-Jacobi model. We then present the results of numerical experiments for both



discrete and continuum models; these show a qualitative agreement between the two

and the effect of variations in the computing environment’s processing capabilities on the

progress of the modeled computation.
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CHAPTER 1

INTRODUCTION

In this chapter, we briefly introduce several numerical methods, which are the focus of our

research projects: Discontinuous Galerkin (DG) Method, its variant: Sparse Grid Discon-

tinuous Galerkin (SGDG) Method, and Weighted Essentially Non-Oscillatory (WENO)

Method.

1.1 Discontinuous Galerkin (DG) Method

Discontinuous Galerkin (DG) Method is a specific kind of finite element methods. Com-

paring to traditional finite element method, basis functions of DG Methods are chosen

to be discontinuous on element interfaces, such as piecewise polynomials, which leads

to the introduction of numerical flux. By properly choosing numerical flux, the resulting

numerical method is stable and convergent.

The DG Method for transport equation was first introduced by Reed and Hill in 1973,

and discussed in a report [13] of Los Alamos National Laboratory. The method was

to solve the neuron transport equations, which are time-independent linear hyperbolic

equations. In late 1980s and early 90s, a major development, namely Runge-Kutta DG

Methods, was established by Cockburn and Shu in a series of paper [14, 15, 16, 17, 18],

which is a framework to solve nonlinear time-dependent hyperbolic equations, e.g. Eu-

ler equations of compressible gas dynamics [19]. Under this framework, the DG dis-

cretization is used only for spatial variables, while explicit, nonlinearly stable high order

Runge-Kutta methods [20, 21] are used to discretize the time variable. To avoid oscillation

of numerical solutions when strong shock occurs, exact or approximate Riemann solvers

as interface fluxes and total variation bounded (TVB) nonlinear limiters [22, 23] are in-

troduced from finite volume methods. DG methodology was also generalized to treat

viscous terms as well, and thus the DG methods were designed to solve Navier-Stokes
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equations [24, 25].

Comparing to classical finite volume and finite difference methods, DG Methods have

certain advantages [26]. By choosing polynomials of high degree, the corresponding DG

Methods can achieve high order of accuracy; the mass matrix is sparse so the DG Meth-

ods are parallelizable. In addition, DG Methods can handle h-p adaptivity; due to the

discontinuous basis functions, the continuity restrictions for conforming finite element

methods need not be considered, and grid refinement or unrefinement is easy to handle.

Adaptivity is of particular interest for hyperbolic systems and can potentially advance

computational efficiency [27, 28].

In 1970s, independent research of Galerkin Methods applying to elliptic and parabolic

equations emerged, as discussed in [29], which are now called interior penalty (IP) meth-

ods. The idea of penalty formulation could be traced back to 1960s, e.g. [30]. In 1971,

Nitsche [31] developed the first penalty method, where a penalty term inversely propor-

tional to mesh size was introduced to guarantee stability and optimal order of conver-

gence for smooth exact solution. Instead, Babuska’s approach [32] used a more flexible

penalty term, with consistency error and sub-optimal convergence rate. The method was

further analyzed and generalized to nonlinear elliptic and parabolic problems by Arnold

[33], which were summarized in [34]. After all, a unified framework is proposed [29, 35],

for both primal formulation inspired by original interior penalty method, and methods

inspired by finite volume methods of hyperbolic problems with proper numerical flux.

We also refer to textbooks like [36] for further reference.

Since the DG Methods were introduced, they have found rapid applications in such

diverse areas as aeroacoustics, electro-magnetism, gas dynamics, granular flows, magne-

tohydrodynamics, meteorology, modeling of shallow water, oceanography, oil recovery

simulation, semiconductor device simulation, transport of contaminant in porous me-

dia, turbomachinery, turbulent flows, viscoelastic flows and weather forecasting, among

many others. For further discussions of this, we refer to review papers e.g. [26, 27, 37, 28].
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For earlier works on DG methods, we refer to the survey paper [26], and other papers

in the same Springer volume. The lecture notes [38] is a good reference for many de-

tails, as well as the extensive review paper [39]. There are several special journal issues

devoted to the DG method [40, 41, 42, 43, 44], which contain many interesting papers

on DG method in all aspects including algorithm design, analysis, implementation and

applications. There are also a few books and lecture notes [45, 46, 47, 36, 48, 49] on DG

methods.

DG methods have also grown to be broadly adopted for electromagnetic simulations

in the past two decades. They have been developed and analyzed for time dependent

linear models, including Maxwell’s equations in free space (e.g., [50, 51, 52]), dispersive

media (e.g., [53, 54, 55, 56]), as well as meta-materials (e.g., [57, 58, 59, 60]). However,

there exists only limited study for DG methods for nonlinear Maxwell models. For ex-

ample, in [61, 62], Kerr nonlinearity was investigated, where the entire Maxwell PDE-

ODE system was cast as a nonlinear hyperbolic conservation law, for which DG methods

have long been known for their success. A relaxed version of the Kerr model, called the

Kerr–Debye model, was examined in [63], where a second-order asymptotic-preserving

and positivity-preserving DG scheme is designed and analyzed; [64] also devised and

analyzed asymptotic-preserving and positivity-preserving methods for the Kerr-Debye-

Lorentz model.

1.2 Sparse Grid Discontinuous Galerkin (SGDG) Method

As discussed above, DG methods have overall good performance for different kinds of

problems like hyperbolic or elliptic equations, and they admit flexibility in choosing the

discretization meshes and the approximation spaces. However, the methods are often

considered too costly due to the large degrees of freedom of the approximation space,

especially for problems on high dimension, due to curse of dimensionality [65]. Such

drawback is more prominent when dealing with high-dimensional equations arising from

3



real-world applications, such as kinetic simulations, stochastic analysis, and mathemati-

cal modeling in finance or statistics.

The sparse grid techniques [66, 67] was introduced by Zenger [68], and later becomes

a major tool to break the curse of dimensionality of grid-based approaches. The idea re-

lies on a tensor product hierarchical basis representation, which can reduce the degrees of

freedom without compromising too much on accuracy. The fundamentals of sparse grid

techniques can further date back to Smolyak [69] for numerical integration, and they are

closely related to hyperbolic cross [70, 71], boolean method [72], discrete blending method

[73], and splitting extrapolation method [74]. The construction of the scheme is to seek a

proper truncation of the tensor product hierarchical basis, which can be formally derived

by solving an optimization problem of cost-benefit ratios [75]. Sparse grid techniques

have been incorporated in collocation methods for high-dimensional stochastic differen-

tial equations, Galerkin finite element methods, finite difference methods, finite volume

methods, and spectral methods for high-dimensional PDEs [3].

Employing the similar sparse grid techniques as above, Sparse Grid Discontinuous

Galerkin (SGDG) Methods are a specific class of DG Methods. Instead of choosing piece-

wise polynomials for basis functions as in typical DG Methods, as introduced in [3, 4, 5],

SGDG uses basis functions derived from Alpert’s multiwavlet basis functions [76, 77]

and multiresolution analysis (MRA) [78]. In one dimension, SGDG Methods would be

an equivalent reformulation of traditional DG Methods; however for higher dimension

case, to break the curse of dimensionality, we use a subset of tensor product approxi-

mation space for DG approximation, based on the hierarchial structure of multiwavelet

basis functions. SGDG Methods efficiently reduce the number of degrees of freedom

(DoF) of the unknowns from O(h−d) to O(h−1| log2 h|d−1) for d-dimensional problems [3],

where h is the uniform mesh size in each dimension. Stability and conservation can

be maintained, while error is only slightly deteriorated for sufficiently smooth solutions

[4]. SGDG Methods have been applied to elliptic equations [3], transport equations [4],
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reaction-diffusion equations [79], Helmholtz equation [80], Vlasov–Maxwell equations

[81], radioactive transfer equation [82], etc.

Success of SGDG Methods is encouraging, but several improvement comes afterwards.

The main bottleneck is that the previous method can only treat some kind of linear equa-

tions with given variable coefficients, or coefficients with specified dependence to un-

knowns. To compute of nonlinear terms in nonlinear equations, interpolatory multi-

wavelets for MRA quadrature and sparse grid collocation method [7, 83] were developed,

where new multiwavelets called interpolatory multiwavelets were associated to interpo-

lation on the hierarchial grid. Besides, since the Alpert’s and interpolatory multiwavelet

basis functions are global, it is essential to find efficient implementation to make sure

computational cost comparable to traditional DG Methods, so a fast algorithm regarding

matrix-vector multiplication based on [84, 85] was also introduced into SGDG method.

In addition, if the exact solution is not smooth enough, the standard SGDG Methods

might not be a good choice, since it requires fine mesh to capture the non-smooth solution.

In order to overcome this, a family of adaptive SGDG Methods for linear transport equa-

tions were developed [5], by using fully tensorized basis functions, with hierarchial sur-

plus as refinement or coarsening indicator automatically capturing the local structures.

The adaptive method has also been applied to kinetic equations [5], hyperbolic conser-

vation laws [6], wave equations [83, 86], Hamilton-Jacobi equation [87], and nonlinear

Schrodinger equation [88].

1.3 Weighted Essentially Non-Oscillatory (WENO) Method

WENO (Weighted Essentially Non-Oscillatory) Methods, together with ENO (Essentially

Non-Oscillatory) Methods, are high order accurate finite difference or finite volume schemes

designed for solving hyperbolic and convection-diffusion equations with possibly dis-

continuous solutions or solutions with sharp gradient regions. The key idea of ENO and

WENO Methods is an nonlinear adaptive approximation procedure that achieves high
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order accuracy on smooth region of function, while resolving shock or other discontinu-

ities sharply without substantial oscillations. Because the main idea of the methods is not

necessarily related to PDEs, ENO or WENO Methods have several non-PDE applications,

too [89].

High order finite difference and finite volume methods are based on interpolations of

discrete data, mostly by using algebraic polynomials. Approximation theory guarantees

that a wider interpolation stencil yields higher order accuracy for smooth function. Fixed

stencils are usually applied in these methods, and perform well in smooth problems; how-

ever, fixed stencil interpolation causes unavoidable oscillation called Gibbs phenomena

near discontinuity, which cannot be eliminated by mesh refinement, leading to numerical

instability in nonlinear problems involving discontinuities [90]. In applications such as

hyperbolic conservation laws, Hamilton-Jacobi Equations, or convection-diffusion equa-

tions, etc. the exact solution might contain discontinuities on either the solution itself

or its derivative, regardless of smoothness of initial or boundary conditions [89, 11], and

fixed stencil interpolation is a less appealing choice in these cases.

ENO schemes were first introduced by Harten, Engquist, Osher and Chakravarthy in

1987 [91] in the finite volume framework, which in the first time successfully attempting

to obtain a self-similar, uniformly high order accurate, and essentially non-oscillatory in-

terpolation. In this paper, they used Newton divided differences to determine the local

smoothness of the function to be approximated, which indicates the relatively smooth

stencil to be chosen among candidate stencils for interpolation. Later, ENO methods in fi-

nite difference framework, together with TVD Runge-Kutta time integration, were shown

save significant amount of computational cost in higher dimension [92, 93].

Based on ENO, WENO methods were developed using convex combination of all can-

didates stencils instead of only one stencil as in ENO. The crucial ingredient is choice of

the combination coefficients, also called nonlinear weights, to fulfill the following [89]: (1)

when the solution is sufficiently smooth, the nonlinear weight should be close to so-called
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"linear weight", which guarantees high order accuracy in combined stencil; (2) when some

candidate stencils contain discontinuity while others don’t, the stencils containing discon-

tinuities should be associated with smaller nonlinear weight.

The first WENO Method [94] was the one dimension case for hyperbolic conserva-

tion laws, under finite volume framework, while [95] provided the multidimensional

version, and in addition, [96, 97] improved accuracy. [98] offered 1D finite volume for-

mulation based on a staggered grid and Lax-Friedrichs formulation. [99] developed the

multidimensional finite difference formulation with improved accuracy, and a general

framework in forming a (2k + 1)-order WENO approximation from a k-th order ENO

stencil was established. The fifth order WENO in [99] becomes the most commonly used

WENO method. Higher order ((2k+1)-th order, with k = 3, 4, 5, ...) WENO reconstruction

procedures were developed in [100]. WENO improves upon ENO in robustness, better

smoothness of fluxes, better steady state convergence, better provable convergence prop-

erties, and more efficiency. We refer to lecture notes and review papers [11, 101, 89, 12]

for further details.

Among the applications of WENO methods, we consider Hamilton-Jacobi equations

ϕt +H(ϕx1 , ..., ϕxd
) = 0, ϕ(x, 0) = ϕ0(x),

where H is usually nonlinear but at least Lipschitz continuous. It is widely known that

global C1 solution does not exist for this equation, regardless of smoothness of initial

condition. This is a direct implication, at least for one dimension case, from the fact that

if we take u = ϕx, the Hamilton-Jacobi equation is equivalent to hyperbolic conservation

law of function u. Singularities of u are discontinuities, so u is bounded with bounded

variation, and so is derivative of ϕ. The idea of viscosity solution, a specific kind of weak

solution, is then introduced to theory of Hamilton-Jacobi equation, to describe the unique

physical relevant solution. More details are discussed in e.g. [102, 103, 104].

Because of the relation between Hamilton-Jacobi equation and hyperbolic conserva-

tion law, ENO and WENO method applied in conservation law would be similarly ap-
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plied to Hamilton-Jacobi equation. High order ENO schemes for solving Hamilton-Jacobi

equations were developed in [105] for the second order case and in [106] for the more gen-

eral cases, based on ENO schemes for solving conservation laws [91, 92, 93]. High order

WENO schemes for solving Hamilton-Jacobi equations were developed in [107], based

on WENO schemes for solving conservation laws [94, 99]. The framework of WENO

schemes for solving Hamilton-Jacobi equations is again similar to that of ENO schemes

described in the previous section. The key ingredient in designing a nonlinear weight, as

discussed in [107], is similar to that in [99] for conservation laws, namely the smoothness

indicator is a scaled sum of the squares of the L2 norms of the second and higher deriva-

tives of the interpolation polynomial on the target interval. We refer to the lecture notes

of Shu [12] for more details of ENO and WENO schemes.

To couple with ENO and WENO spatially semi-discrete methods above, a popular

time discretization method to choose is the class of strong stability preserving (SSP),

which is also referred to as total variation diminishing (TVD) or high order Runge-Kutta

time discretizations; see [92, 108, 109, 110].

1.4 Organization of Thesis

In Chapter 2, we consider the Maxwell equations with nonlinear optical media, where

the nonlinearity comes from cubic Kerr effect and Raman scattering [111, 112]. The nu-

merical simulation of such equations is considered to be computationally intensive but

substantially more robust and physically relevant compared with Nonlinear Schrodinger

Equation (NLSE) models. A semi-discrete energy-stable DG method was applied to such

equations in one dimension [1] or higher dimension [2], while fully implicit method or

trapezoidal method was used for time discretization. We construct the method under

adaptive SGDG framework [5, 6, 83], with L2 indicator norm on each element for coars-

ening and refinement. Sparse grid collocation method with interpolatory multiwavelet

basis functions are required to deal with nonlinear problems, and its adaptive version
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reduces computational cost [7]. Fast wavelet transform is applied to transform between

point values or derivatives of numerical solution at interpolation points, and coefficients

of hierarchial multiwavelet basis functions; the fast transform computes results dimen-

sion by dimension after proper decomposition of one dimension matrix operator into

upper and lower triangular part, so computational cost is further reduced [6, 7]. A C++

package is developed by a group of colleagues, for general numerical simulation using

SGDG framework [8], incorporating the standard SGDG implementation [3] with Alpert’s

multiwavelet basis [76], Lagrangian and Hermite interpolatory multiwavelet [7] for non-

linear problems, adaptivity [5], fast matrix-vector multiplication [6], etc. Several time

integration method, including IMEX-RK [6] was implemented in the package, and data

structures, linear solvers, and multi-thread parallelism in Eigen package [113] of numer-

ical linear algebra is integrated to the SGDG package. In our work, we further apply

PETSc package [114] to implement the adaptive SGDG method. PETSc offers a whole set-

ting of advanced data structures, which are designed for multi-core parallel computing;

its rich library of nonlinear solvers [115], including a group of matrix-free method e.g.

Jacobian-free Newton–Krylov methods [116], is vital for general simulations for nonlin-

ear problems when Jacobian is not attainable. Several examples are made to test accuracy

and to show efficiency of the implementation of the presented algorithm.

In Chapter 3, we present a simplified ordinary differential model of data flow on pro-

cessors in a high performance computing framework, which involves computations ne-

cessitating inter-processor communications. The asymptotic limit of this model treats the

computer as a continuum of processors and data flow as an Eulerian fluid governed by

a conservation law, which implies a Hamilton-Jacobi equation [103, 104] for which the

existence and uniqueness of solutions can be proven. We choose WENO method for nu-

merical simulation of the continuum Hamilton-Jacobi model; WENO interpolation uses

a convex combination of candidate stencils, and by assigning each stencil a nonlinear

weight based on local smoothness of numerical solution on the stencil, WENO interpola-
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tion has high order accuracy [11]. Comparing to other numerical methods like artificial

viscosity or TVD method, there is no problem-dependent parameter in WENO method,

and no accuracy degeneration occurs in smooth region of numerical solution [12]. Thus

numerical experiments for the continuum model are calculated using a spatially fifth or-

der WENO interpolation coupling with optimal third order SSP Runge-Kutta time inte-

gration [12, 11], and compared with results from discrete model. A qualitative agreement

is shown between the simulations on discrete and continuum models, and we investi-

gate the effect of variations in the computing environment’s processing capabilities on

the progress of the modeled computation. The major contents of this chapter was already

published in [10].
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CHAPTER 2

APPLICATION OF SGDG METHOD TO MAXWELL’S EQUATION IN
NONLINEAR OPTICS

2.1 Maxwell’s Equation in Nonlinear Optics

The propagation of electromagnetic waves in general media is modeled by the time-

dependent Maxwell’s partial differential equations (PDEs), coupled with constitutive laws

that describe the response of the media. Particularly, in nonlinear media, the material

response depends nonlinearly on the optical field, and many interesting physical phe-

nomena, such as frequency mixing and second/third-harmonic generation have been ob-

served and harnessed for practical applications. We refer to classical textbooks [117, 118,

119] for a more detailed review of the field of nonlinear optics.

When Maxwell’s equations are considered to model the electromagnetic waves propa-

gating through a nonlinear optical medium, the medium response is described by consti-

tutive laws that relate the electric field E and the electric flux density D through the polar-

ization P of the medium. Here we focus on a macroscopic phenomenological description

of the polarization, which comprises both linear and nonlinear responses. Specifically,

the linear response is modeled by a single resonance Lorentz dispersion, while the non-

linear response is cubic and incorporates the instantaneous Kerr effect and the delayed

nonlinear Lorentz dispersion called Raman scattering. Within this description, we will

follow the auxiliary differential equation (ADE) approach, where the linear and nonlin-

ear Lorentz dispersion is represented through a set of ODEs, describing the time evolution

of P (hence of D) forced by E, appended to Maxwell’s equations. An alternative repre-

sentation is via a recursive convolution method, where D is computed from E through a

time convolution integral [120, 1].

We begin with the Maxwell’s equations, which govern the time evolution of the elec-
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tric field E and magnetic field H in a non-magnetic nonlinear optical medium, on time

domain (0, T ) and spatial domain Ω:

∂tB+∇× E = 0 (2.1)

∂tD+ Js −∇×H = 0 (2.2)

∇ ·B = 0 (2.3)

∇ ·D = ρ (2.4)

along with initial and boundary data in the domain Ω ⊂ Rd, d = 1, 2, 3. The variable Js is

the source current density, and ρ is the charge density. The electric flux density D and the

magnetic induction B are related to the electric and magnetic field, respectively, via the

constitutive laws

D = ϵ0(ϵ∞E+P) (2.5)

B = µ0H (2.6)

where P is the polarization. The dielectric parameter is ϵ0, the electric permittivity of free

space, ϵ∞, the relative electric permittivity in the limit of the infinite frequency, and µ0,

the magnetic permeability of free space. We will assume here that all model parameters

are constant, and the material is isotropic.

To model the linear and nonlinear dispersion in the material we use the auxiliary dif-

ferential equation (ADE) approach as presented in [121, 120]. A thorough discussion of

the modeling of Raman and Kerr effects in optical (silica) fibers can be found in [111].

The linear (L) delayed or retarded response of the material to the electromagnetic field is

captured in the polarization, P, via a linear single resonance Lorentz response, which, in

the form of a second order ODE, is provided as,

∂2PL
Delay

∂t2
+

1

τ

∂PL
Delay

∂t
+ ω2

0P
L
Delay = ω2

pE,

which could be split into first order system

∂PL
Delay

∂t
= J,

∂J

∂t
= −1

τ
J− ω2

0P
L
Delay + ω2

pE.
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Here ω0 and ωp are the resonance and plasma frequencies of the medium, respectively, and

τ−1 is a damping constant. In addition, ω2
p = (ϵs−ϵ0)ω2

0 , with ϵs as the relative permittivity

at zero frequency.

For pulse widths that are sufficiently short (for e.g., shorter than 1 pico-second (ps) for

Silica) [122], the nonlinear response has an instantaneous as well as a delayed component.

For the nonlinear (NL) response of the medium, we will consider a cubic Kerr-type instan-

taneous response, and a retarded Raman molecular vibrational response called Raman

scattering. The Kerr effect is a phenomenon in which the refractive index of a material

changes proportionally to the square of the applied electric field. Raman scattering arises

from the electric field induced changes in the internal nuclear vibrations on time scales

about 1 to 100 femto-seconds (fs) [112], and is modeled by a nonlinear single resonance

Lorentz delayed response. The two nonlinear responses are given as

PNL
Kerr = a(1− θ)E|E|2,

and

PNL
Delay = aθQE,

while the total nonlinear response is PNL = PNL
Kerr+PNL

Delay.Here a is a third order coupling

constant, θ parameterizes the relative strength of the instantaneous electronic Kerr and

retarded Raman molecular vibrational responses, and Q describes the natural molecular

vibrations within the dielectric material that has frequency many orders of magnitude

less than the optical wave frequency, responding to the field intensity. The time evolution

of Q is given by the following ODE,

∂2Q

∂t2
+

1

τv

∂Q

∂t
+ ω2

vQ = ω2
v |E|2,

where ωv is the resonance frequency of the vibration, and τ−1
v a damping constant. This

is essentially a model for a simple linear oscillator, but coupled to the nonlinear field

intensity |E|2.
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At the end we obtain the following system, on (0, T )× Ω,

µ0∂tH = −∇× E (2.7a)

∂tD = ∇×H (2.7b)

∂tP = J (2.7c)

∂tJ = −1

τ
J− ω2

0P+ ω2
pE (2.7d)

∂tQ = σ (2.7e)

∂tσ = − 1

τv
σ − ω2

vQ+ ω2
v |E|2 (2.7f)

with constitutive law

D = ϵ0(ϵ∞E+P+ a(1− θ)|E|2E+ aθQE). (2.8)

Note that here P is essentially PL
Delay, the linear delayed response. As demonstrated in

[1, 2], under the assumption of periodic boundary conditions, the energy of the system is

E(t) =

∫
Ω

µ0

2
|H|2 + ϵ0ϵ∞

2
|E|2 + ϵ0

2ω2
p

|J|2 + ϵ0ω
2
0

2ω2
p

|P|2 + ϵ0aθ

4ω2
v

σ2 +
ϵ0aθ

2
Q|E|2

+
3ϵ0a(1− θ)

4
|E|4 + ϵ0aθ

4
Q2 dΩ, (2.9)

satisfying
d

dt
E = − ϵ0

ω2
pτ

∫
Ω

|J|2dx− ϵ0aθ

2ω2
vτv

∫
Ω

σ2dx ≤ 0. (2.10)

Besides, E ≥ 0 if θ ∈ [0, 3/4].

The one dimensional case is as following:

µ0∂tH = ∂xE (2.11a)

∂tD = ∂xH (2.11b)

∂tP = J (2.11c)

∂tJ = −1

τ
J − ω2

0P + ω2
pE (2.11d)

∂tQ = σ (2.11e)

∂tσ = − 1

τv
σ − ω2

vQ+ ω2
vE

2 (2.11f)

D = ϵ0(ϵ∞E + P + a(1− θ)E3 + aθQE) (2.11g)
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Note that here we assume uniformity of all the vector fields in the y and z directions.

Thus, all derivatives with respect to y and z in the curl and divergence operators are set

to zero. All field quantities are represented by a single scalar component. The scalar mag-

netic field H (hence B) represents the 2nd (or the 3rd) component of the vector magnetic

field H, and the scalar electric flux density D (hence E) represents the 3rd (or the 2nd)

component of D (hence E). Gauss’s laws (2.3) (2.4) only involve the x derivatives of the

first components of B and D, and therefore they are decoupled from the one-dimensional

model and become irrelevant. Numerical simulation later depends on dimensionless ver-

sion [1]

∂tH = ∂xE (2.12a)

∂tD = ∂xH (2.12b)

∂tP = J (2.12c)

∂tJ = −1

τ
J − ω2

0P + ω2
pE (2.12d)

∂tQ = σ (2.12e)

∂tσ = − 1

τv
σ − ω2

vQ+ ω2
vE

2 (2.12f)

D = ϵ∞E + P + a(1− θ)E3 + aθQE (2.12g)

2.2 Formulation of Energy Stable Adaptive SGDG Method in One Di-
mension

In this section, we describe the energy-stable adaptive SGDG method in one dimension.

We start from general formulation of SGDG method, and how it is applied to the nonlin-

ear Maxwell equation as we specified above. Adaptive scheme based on SGDG formula-

tion will also be discussed in the end of the section.
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2.2.1 SGDG Method and Alpert’s Multiwavelets

We first define the one-dimension spatial domain and its SGDG basis functions [3]. Con-

sider Ω = [0, 1] as our spatial domain, and define a set of nested grids, where the n-th

level grid Ωn consists of 2n uniform cells

Ijn = (2−nj, 2−n(j + 1)], j = 0, 1, . . . , 2n − 1

for any n ≥ 0. For notation convenience, we also denote I−1 = [0, 1]. Define

V k
n = {v : v ∈ P k(Ijn), j = 0, 1, . . . , 2n − 1},

the piecewise polynomial space, of degree at most k, on n-th level grid Ωn, and we have

the nested structure

V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ . . . .

Define W k
n the orthogonal complement of V k

n−1 in V k
n , with respect to L2 inner product in

[0, 1], i.e.

V k
n−1

⊕
W k

n = V k
n , V k

n−1 ⊥ W k
n .

Again for notation convenience, let W k
0 = V k

0 ; then for any natural number N ,

V k
N =

⊕
0≤n≤N

W k
n .

As discussed in [76], we define a set of orthonormal basis functions for each W k
n ,

n = 0, . . . , N and they form a basis of V k
N . The case of grid level n = 0 is trivial; the

normalized shifted Legendre polynomials in [0, 1] will be proper choice for such purpose.

Denote these Legendre polynomials by v0i,0 for i = 0, . . . , k. When n > 0, we consider the

orthonormal basis of W k
1 ; basis of general W k

n , n ≥ 1 will turn out to be a scaling version

of basis of W k
1 . In particular, orthonormal basis of W k

1 is defined as

hi(x) =
√
2fi(2x− 1), i = 0, 1, . . . , k,

where for fixed integer k ≥ 0, f0, f1, . . . , fk are a sequence of functions supported on

[−1, 1], satisfying
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1. fi on (0, 1) is a polynomial with degree k;

2. each fi extends evenly or oddly to (−1, 0), as in the following formula

fi(x) = (−1)i+k+1fi(−x), (2.13)

for any x ∈ (−1, 0);

3. f0, f1, . . . , fk are orthonormal i.e.∫ 1

−1

fi(x)fj(x)dx = δij

for all 0 ≤ i, j ≤ k, where δij equals to 1 if i = j and 0 otherwise;

4. fj has vanishing moments ∫ 1

−1

fj(x)x
idx = 0,

with i = 0, ..., j + k, for each 0 ≤ j ≤ k.

It was shown [76] that we can compute all fi through a Gram-Schmidt procedure. The

particular form of fi up to k = 4 are provided in Table 1 of [76], and for completeness we

offer these results here. For simplicity, we only provide definition of fi on (0, 1), and its

values on (−1, 0) are obtained by proper extension as described in equation (2.13).

• k = 0

f0(x) =

√
1

2
;

• k = 1

f0(x) =

√
3

2
(−1 + 2x), f1(x) =

√
1

2
(−2 + 3x);

• k = 2

f0(x) =
1

3

√
1

2
(1− 24x+ 30x2), f1(x) =

1

2

√
3

2
(3− 16x+ 15x2),

f2(x) =
1

3

√
5

2
(4− 15x+ 12x2);
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• k = 3:

f0(x) =

√
15

34
(1 + 4x− 30x2 + 28x3), f1(x) =

√
1

42
(−4 + 105x− 300x2 + 210x3),

f2(x) =
1

2

√
35

34
(−5+48x−105x2+64x3), f3(x) =

1

2

√
5

42
(−16+105x−192x2+105x3);

• k = 4:

f0(x) =

√
1

186
(1 + 30x+ 210x2 − 840x3 + 630x4),

f1(x) =
1

2

√
1

38
(−5− 144x+ 1155x2 − 2240x3 + 1260x4),

f2(x) =

√
35

14694
(22− 735x+ 3504x2 − 5460x3 + 2700x4),

f3(x) =
1

8

√
21

38
(35− 512x+ 1890x2 − 2560x3 + 1155x4),

f4(x) =
1

2

√
7

158
(32− 315x+ 960x2 − 1155x3 + 480x4).

These multiwavelet functions retain orthonormal properties of wavelet bases for different

hierarchical levels. More precisely, W k
n with n ≥ 1 has basis

vji,n(x) = 2(n−1)/2hi(2
n−1x− j) = 2n/2fi(2

nx− 2j − 1), i = 0, ..., k, j = 0, ..., 2n−1 − 1.

Each vji,n is supported on Ijn−1, with discontinuity on x = 2−nw, w = 2j, 2j+1, 2j+2. Note

that {vji,n}0≤j≤2n−1−1
0≤i≤k,n≥1

⋃{v0i,0}0≤i≤k is an orthonormal set in L2([0, 1]), i.e.∫ 1

0

vji,n(x)v
j′

i′,n′(x)dx = δii′δjj′δnn′ ,

while {vji,n}0≤j≤2n−1−1
0≤i≤k, 1≤n≤N

⋃{v0i,0}0≤i≤k is an orthonormal basis of V k
N .

2.2.2 Semi-Discrete DG Method for the Maxwell’s Equation

To formulate semi-discrete DG method [1, 27] for system (2.11), we need some more no-

tations. Recall that we use N to represent the finest level of nested grid. Define

xi+1/2 =
i

2N
, i = 0, 1, . . . , 2N ,
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the discrete points on Ω = [0, 1] containing discontinuities for functions in V k
N . As defined

above, IjN = (xj−1/2, xj+1/2] for j = 1, 2, . . . , 2N ; h = 2−N is mesh size. We also denote

v+, v− the right and left limit on discontinuities, and [v] = v+ − v− the jump, {v} =

(v+ + v−)/2 the average. They can be evaluated at each cell boundary xj±1/2, denoted

by e.g (v+)j±1/2. Then on each cell IjN , we can formulate the standard semi-discrete DG

method of system (2.11) following [27, 1]: find functions Hh(t, ·), Dh(t, ·), Eh(t, ·), Ph(t, ·),

Jh(t, ·), Qh(t, ·), σh(t, ·), on space V k
N , such that for each j = 0, 1, . . . , 2N − 1 and each cell

IjN ,

µ0

∫
IjN

∂tHhϕdx+

∫
IjN

Eh∂xϕdx− (Êhϕ
−)j+1/2 + (Êhϕ

+)j−1/2 = 0, ∀ϕ ∈ V k
N (2.14a)∫

IjN

∂tDhϕdx+

∫
IjN

Hh∂xϕdx− (H̃hϕ
−)j+1/2 + (H̃hϕ

+)j−1/2 = 0, ∀ϕ ∈ V k
N (2.14b)

∂tPh = Jh (2.14c)

∂tJh = −1

τ
Jh − ω2

0Ph + ω2
pEh (2.14d)

∂tQh = σh (2.14e)∫
IjN

∂tσhϕdx = −
∫
IjN

(
1

τv
σh − ω2

vQh + ω2
vE

2
h

)
ϕdx, ∀ϕ ∈ V k

N (2.14f)

with constitutive law∫
IjN

Dhϕdx =

∫
IjN

ϵ0(ϵ∞Eh + Ph + a(1− θ)E3
h + aθQhEh)ϕdx, ∀ϕ ∈ V k

N . (2.15)

Both terms Êh and H̃h are numerical fluxes. In our numerical experiments, we pick one

of the following as our numerical flux [1]:

central flux

Êh = {Eh}, H̃h = {Hh}; (2.16)

alternating flux either alternating flux I

Êh = E+
h , H̃h = H−

h (2.17a)

or alternating flux II

Êh = E−
h , H̃h = H+

h (2.17b)
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dissipative flux, or upwind flux, inspired by the upwind flux for the Maxwell system

without Kerr, linear Lorentz and Raman effects

Êh = {Eh}+
1

2

√
µ0

ϵ0ϵ∞
[Hh], H̃h = {Hh}+

1

2

√
ϵ0ϵ∞
µ0

[Eh]. (2.18)

Recall that under the assumption of periodic boundary condition, energy E = E(t) of

system (2.11) is

E =

∫
Ω

(
µ0

2
H2 +

ϵ0ϵ∞
2

E2 +
ϵ0
2ω2

p

J2 +
ϵ0ω

2
0

2ω2
p

P 2 (2.19a)

+
ϵ0aθ

4ω2
v

σ2 +
ϵ0aθ

4
Q2 +

ϵ0aθ

2
QE2 +

3ϵ0a(1− θ)

4
E4

)
dx (2.19b)

and its derivative
d

dt
E = − ϵ0

ω2
pτ

∫
Ω

J2dx− ϵ0aθ

2ω2
vτv

∫
Ω

σ2dx ≤ 0, (2.20)

indicates that energy E is non-increasing. Besides, energy E is non-negative if θ ∈ [0, 3/4].

Similar results could be obtained for semi-discrete DG method:

Theorem 2.2.1 (Semi-Discrete Stability [1]) Under periodic boundary condition and the three

fluxes (2.16)(2.17)(2.18) above, the semi-discrete numerical method (2.14) and the discrete energy

Eh satisfies
d

dt
Eh ≤ 0. In addition, Eh ≥ 0 if θ ∈ [0, 3/4]. The discrete energy Eh is

Eh =

∫
Ω

(
µ0

2
H2

h +
ϵ0ϵ∞
2

E2
h +

ϵ0
2ω2

p

J2
h +

ϵ0ω
2
0

2ω2
p

P 2
h (2.21a)

+
ϵ0aθ

4ω2
v

σ2
h +

ϵ0aθ

4
Q2

h +
ϵ0aθ

2
QhE

2
h +

3ϵ0a(1− θ)

4
E4

h

)
dx (2.21b)

With proper assumption of regularity of exact solution, using argument of certain L2 pro-

jection or Gauss-Ladau projection, it was proved that the semi-discrete method converges

to exact solution, and optimal convergence rate is obtained for alternating and upwind

flux.

Theorem 2.2.2 (Error estimates of semi-discrete method [1]) Under periodic boundary con-

dition, assume the following regularity of exact solution of system (2.11)

E,H, P,Q, J, σ ∈ W 1,∞([0, T ];Hk+1(Ω)),
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E ∈ W 1,∞([0, T ];W 1,∞(Ω)), Q ∈ W 1,∞([0, T ];L∞(Ω)),

with sufficiently small a and θ, for numerical scheme (2.14), we have

||u− uh|| ≤ Chr, u = E,H, P,Q, J, σ, (2.22)

where r = k for central flux (2.16), and r = k + 1 for alternating (2.17) or upwind flux (2.18).

2.2.3 Energy-Stable DG Method of the Maxwell Equation

On temporal discretization, a main focus is provable energy stability of fully discrete

method. This turns out to be a nontrivial task for the nonlinear Maxwell equation. Com-

mon choices, such as the second order leap-frog or implicit trapezoidal method, may not

yield provable stability results as for the linear models [1], while the main difficulties arise

from the nonlinear Kerr and Raman terms. Here we introduce two fully discrete meth-

ods: one can be understood as novel modifications of leap-frog or implicit trapezoidal

method, and the other is a fully implicit method. These temporal discretizations are of

formal second order accuracy.

The leap-frog style method [1] is as following: given functions unh ∈ V k
N at time t = tn,

with u = H,D,E, P, J,Q, σ, find un+1
h ∈ V k

N of all u at tn+1 = tn +∆t, so that for any j and
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each cell IjN , and any ϕ ∈ V k
N ,

µ0

∫
IjN

H
n+1/2
h −Hn

h

∆t/2
ϕdx+

∫
IjN

En
h∂xϕdx− (Ên

hϕ
−)j+1/2 + (Ên

hϕ
+)j−1/2 = 0 (2.23a)∫

IjN

Dn+1
h −Dn

h

∆t
ϕdx+

∫
IjN

H
n+1/2
h ∂xϕdx− (H̃

n+1/2
h ϕ−)j+1/2 + (H̃

n+1/2
h ϕ+)j−1/2 = 0 (2.23b)∫

IjN

Dn+1
h ϕdx =

∫
IjN

ϵ0(ϵ∞E
n+1
h + P n+1

h + a(1− θ)Y n+1
h + aθQn+1

h En+1
h )ϕdx (2.23c)∫

IjN

Y n+1
h ϕdx =

∫
IjN

(
Y n
h +

3

2
[(En+1

h )2 + (En
h )

2](En+1
h − En

h )

)
ϕdx (2.23d)

P n+1
h − P n

h

∆t
=
Jn+1
h + Jn

h

2
(2.23e)

Jn+1
h − Jn

h

∆t
= −1

τ

Jn+1
h + Jn

h

2
− ω2

0

P n+1
h + P n

h

2
+ ω2

p

En+1
h + En

h

2
(2.23f)

Qn+1
h −Qn

h

∆t
=
σn+1
h + σn

h

2
(2.23g)∫

IjN

σn+1
h − σn

h

∆t
ϕdx = −

∫
IjN

(
1

τv

σn+1
h + σn

h

2
− ω2

v

Qn+1
h +Qn

h

2
+ ω2

vE
n
hE

n+1
h

)
ϕdx (2.23h)

µ0

∫
IjN

Hn+1
h −H

n+1/2
h

∆t/2
ϕdx+

∫
IjN

En+1
h ∂xϕdx− (

̂̂
En+1

h ϕ−)j+1/2 + (
̂̂
En+1

h ϕ+)j−1/2 = 0 (2.23i)

Be aware that the flux
̂̂
En+1 is similar to Ên, or the same as Ên+1, for central and alternat-

ing fluxes; for upwind flux, we have

̂̂
En+1 = {En+1

h }+ 1

2

√
µ0

ϵ0ϵ∞
[H

n+1/2
h ].

The fully implicit method [1] is as following, with the same set-up as the leap-frog
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method above:

µ0

∫
IjN

Hn+1
h −Hn

h

∆t
ϕdx+

∫
IjN

En+1
h + En

h

2
∂xϕdx

− (
̂En+1

h + En
h

2
ϕ−)j+1/2 + (

̂En+1
h + En

h

2
ϕ+)j−1/2 = 0 (2.24a)∫

IjN

Dn+1
h −Dn

h

∆t
ϕdx+

∫
IjN

Hn+1
h +Hn

h

2
∂xϕdx

− (
˜Hn+1

h +Hn
h

2
ϕ−)j+1/2 + (

˜Hn+1
h +Hn

h

2
ϕ+)j−1/2 = 0 (2.24b)∫

IjN

Dn+1
h ϕdx =

∫
IjN

ϵ0(ϵ∞E
n+1
h + P n+1

h + a(1− θ)Y n+1
h + aθQn+1

h En+1
h )ϕdx (2.24c)∫

IjN

Y n+1
h ϕdx =

∫
IjN

(
Y n
h +

3

2
[(En+1

h )2 + (En
h )

2](En+1
h − En

h )

)
ϕdx (2.24d)

P n+1
h − P n

h

∆t
=
Jn+1
h + Jn

h

2
(2.24e)

Jn+1
h − Jn

h

∆t
= −1

τ

Jn+1
h + Jn

h

2
− ω2

0

P n+1
h + P n

h

2
+ ω2

p

En+1
h + En

h

2
(2.24f)

Qn+1
h −Qn

h

∆t
=
σn+1
h + σn

h

2
(2.24g)∫

IjN

σn+1
h − σn

h

∆t
ϕdx = −

∫
IjN

(
1

τv

σn+1
h + σn

h

2
− ω2

v

Qn+1
h +Qn

h

2
+ ω2

vE
n
hE

n+1
h

)
ϕdx (2.24h)

We can establish the energy stability for the resulting fully discrete methods as following.

Theorem 2.2.3 (Fully Discrete Stability [1]) Under periodic boundary condition and any of

the three numerical fluxes, the discrete energy is non-increasing, i.e. En+1
h ≤ En

h . In addition,

En
h ≥ 0, if θ ∈ [0, 3/4] and CFL condition ∆t ≤ Ch are satisfied. Here C is a constant depending

on constants µ0, ϵ0, ϵ∞ of the Maxwell equation, polynomial degree k, and choice of numerical

flux. The discrete energy Eh at t = tn is

En
h =

∫
Ω

(
µ0

2
(Hn

h )
2 +

ϵ0ϵ∞
2

E2
h +

ϵ0
2ω2

p

J2
h

+
ϵ0ω

2
0

2ω2
p

P 2
h +

ϵ0aθ

4ω2
v

σ2
h +

ϵ0aθ

4
Q2

h +
ϵ0aθ

2
QhE

2
h +

3ϵ0a(1− θ)

4
E4

h

)
dx (2.25)
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for fully implicit method, and

En
h =

∫
Ω

(
µ0

2
H

n+1/2
h H

n−1/2
h +

ϵ0ϵ∞
2

E2
h +

ϵ0
2ω2

p

J2
h

+
ϵ0ω

2
0

2ω2
p

P 2
h +

ϵ0aθ

4ω2
v

σ2
h +

ϵ0aθ

4
Q2

h +
ϵ0aθ

2
QhE

2
h +

3ϵ0a(1− θ)

4
E4

h

)
dx (2.26)

for leap-frog method.

2.2.4 Interpolatory Multiwavelets

In addition to Alpert’s basis for SGDG space V k
N , we need interpolatory multiwavelets to

obtain a second set of basis, to deal with nonlinear terms, e.g. f(uh) when uh ∈ V k
N and f

is nonlinear [7, 5, 6].

Alpert’s multiwavelets and the space W k
n are constructed, corresponding to the dif-

ference of the L2 projection on adjacent levels. Instead, the sparse grid collocation basis

proposed in [7] corresponds to interpolation on nested grids. Denote the set of interpola-

tion points in the interval I = [0, 1] at mesh level 0 byX0 = {xi}Pi=0 ⊂ I , where the number

of interpolation points in X0 is P + 1. Then the interpolation points at mesh level n ≥ 1,

Xn, can be obtained in the following manner:

Xn = {xji,n := 2−n(xi + j), i = 0, . . . , P, j = 0, . . . , 2n − 1}.

In order to save computational cost, the points on different level of Xn should be nested,

i.e.,

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · ·,

which can be achieved by requiring X0 ⊂ X1.

Given the interpolation points, we define the basis functions on the 0-th level grid as

Lagrange (K = 0) or Hermite (K ≥ 1) interpolation polynomials of degree less than or

equal to M := (P + 1)(K + 1)− 1 which satisfy the property

ϕ
(l′)
i,l (xi′) = δii′δll′ .
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for i, i′ = 0, ..., P and l, l′ = 0, ..., K. It is easy to see that span{ϕi,l : i = 0, . . . , P, l =

0, . . . , K} = V M
0 . The constants P,K,M will be specified later, depending on the Alpert’s

multiwavelets that the interpolatory multiwavelets relate to and the problem to solve.

With the basis function at mesh level 0, we can define basis function at mesh level n ≥ 1:

ϕj
i,l,n := 2−nlϕi,l(2

nx− j), i = 0, . . . , P, l = 0, . . . , K, j = 0, . . . , 2n − 1,

which is a complete basis set for V M
n .

Now we introduce the hierarchical representations based on the nested structure of

interpolation points. Define X̃0 := X0 and X̃n := Xn \ Xn−1 for n ≥ 1; then we have the

decomposition

Xn =
n⋃

i=0

X̃i.

Denote the points in X̃1 by X̃1 = {x̃i}Pi=0. Then the points in X̃n for n ≥ 1 can be repre-

sented by

X̃n = {x̃ji,n := 2−(n−1)(x̃i + j) : i = 0, . . . , P, j = 0, . . . , 2n − 1}.

For notational convenience, we let W̃M
0 = V M

0 . The increment function space W̃M
n for

n ≥ 1 is introduced as a function space that satisfies

V M
n = V M

n−1

⊕
W̃M

n ,

and is defined through the multiwavelets ψi,l ∈ V M
1 that satisfy

ψ
(l′)
i,l (xi′) = 0, ψ

(l′)
i,l (x̃i′) = δii′δll′

for i, i′ = 0, ..., P and l, l′ = 0, ..., K. Here the superscript l′ denotes the l′-th order deriva-

tive. Then W̃M
n is given by

W̃M
n = span{ψj

i,l,n, i = 0, ..., P, l = 0, ..., K, j = 0, ..., 2n−1 − 1},

where

ψj
i,l,n(x) := 2−(n−1)lψi,l(2

n−1x− j).
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For completeness, we list the basis functions used in this thesis in the following, and

we focus on Hermite interpolation here [6]; for more possible choices of basis, see [6, 7].

The basis functions in W̃1 are piecewise polynomials on Il = (0, 1/2) and Ir = (1/2, 1).

Note that the functions may be discontinuous at the interface x = 1/2; thus Il and Ir are

both defined to be open intervals. The basis functions in W̃1 here are all supported on

one half interval Il or Ir and vanish on the other half. For simplicity, we will only declare

the function on its support. For example, ψ0(x)|Ir gives the definition of ψ0 on Ir while

vanishing on Il. The interpolation points are put at the cell interface

X̃0 = {0+, 1−}, X̃1 = {
(
1

2

)+

,

(
1

2

)−

}

Here and below, we use superscripts +,− to emphasize the left and right limits of a func-

tion at that point, which is a feature of the discontinuous piecewise polynomial space.

The basis functions in W̃ 3
0 and W̃ 3

1 are, when P = 1, K = 1,

ϕ0,0(x) = (x− 1)2(2x+ 1), ϕ1,0(x) = −x2(2x− 3),

ϕ0,1(x) = x(x− 1)2, ϕ1,1(x) = x2(x− 1),

and

ψ0,0(x)|Il = −4x2(4x− 3), ψ1,0(x)|Ir = 4(x− 1)2(4x− 1),

ψ0,1(x)|Il = 2x2(2x− 1), ψ1,1(x)|Ir = 2(x− 1)2(2x− 1).

When P = 1, K = 2, the basis functions in W̃ 5
0 and W̃ 5

1 are

ϕ0,0(x) = −(x− 1)3(6x2 + 3x+ 1), ϕ0,1(x) = −x(x− 1)3(3x+ 1),

ϕ0,2(x) = −1

2
x2(x− 1)3, ϕ1,0(x) = x3(6x2 − 15x+ 10),

ϕ1,1(x) = −x3(x− 1)(3x− 4), ϕ1,2(x) =
1

2
x3(x− 1)2,

and

ψ0,0(x)|Il = 16x3(12x2 − 15x+ 5), ψ1,0(x)|Ir = −16(x− 1)3(12x2 − 9x+ 2),
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ψ0,1(x)|Il = −8x3(2x− 1)(3x− 2), ψ1,1(x)|Ir = −8(x− 1)3(2x− 1)(3x− 1),

ψ0,2(x)|Il = x3(2x− 1)2, ψ1,2(x)|Ir = −(x− 1)3(2x− 1)2.

The construction above has close connection with interpolation operators. For a given

function f(x) ∈ CK+1(I), we define IP,KN [f ] as the standard Hermite interpolation on V M
N ,

and we have the representation

IP,KN [f ](x) =
N∑

n=0

max(2n−1−1,0)∑
j=0

K∑
l=0

P∑
i=0

bji,l,nψ
j
i,l,n(x).

Clearly, (IP,KN − IP,KN−1)[f ](x) is in W̃M
N . The algorithm converting between the point values

and the derivatives {f (l)(xji,n)} to hierarchical coefficients {bji,l,n} is given in [7], and by a

standard argument in fast wavelet transform, can be performed in O(M2n) flops.

2.2.5 SGDG Method with Multiresolution Interpolation in One Dimension

As discussed in section (2.2.3), we derive the energy stable DG method. To corporate it

with multiresolution interpolation [6], we need to decide how to numerically calculate

terms ∫ 1

0

f(Un+1
h , Un

h )ϕdx, ∀ϕ ∈ V k
N , (2.27)

in fully discrete numerical scheme (2.23) and (2.24), where

U = (H,D,E, P, J,Q, σ)

and f(Un+1
h , Un

h ) takes one of the following up to some constants:

[(En+1
h )2 + (En

h )
2](En+1

h − En
h ), En

hE
n+1
h , Qn+1

h En+1
h .

Notice that nonlinear terms of the Maxwell equation discussed in the thesis occur as part

of integrand of integrals over spatial domain. The fully discrete SGDG schemes with

interpolation are to replace nonlinear term in form of (2.27) to∫ 1

0

I
[
f(Un+1

h , Un
h )
]
ϕdx (2.28)
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where I[·] is a multiresolution interpolation operator IP,K
N as described in previous sec-

tion, onto finite element space V M
N with the same multiresolution structure as V k

N , but of

polynomial degree M = (P + 1)(K + 1)− 1, as we discuss above.

To elaborate the implementation of such algorithm regarding treatment to nonlinear

terms, assume we know both Un+1
h and Un

h for an implicit scheme. We first read the

(derivative) values of Un+1
h and Un

h , each component of which is a linear combination of

Alpert’s basis functions at the chosen interpolation points. We then calculate the (deriva-

tive) values of f at interpolation points of interpolatory multiwavelet basis. Last, we

transform the (derivative) values back to coefficients of (Alpert’s or interpolatory) multi-

wavelet basis, by using the algorithm introduced in [7]. Such numerical algorithm can be

performed through a fast matrix-vector product as in [6, 84]. As stated in [6], we remark

that the computational cost does not increase too much compared to the multiresolution

DG schemes for linear equations [5]. The cost of the transformation from the (derivative)

values to hierarchical coefficients is only linearly dependent on the dimension d [7].

2.3 Formulation of Energy Stable Adaptive SGDG Method in Higher
Dimension

2.3.1 Semi-Discrete and Fully-Discrete Energy Stable DG Method

As mentioned before in (2.7) and (2.8), we consider the following Maxwell system for

vector-valued H,D,E,P,J and scalar Q, σ, on (0, T )× Ω,

µ0∂tH = −∇× E (2.29a)

∂tD = ∇×H (2.29b)

∂tP = J (2.29c)

∂tJ = −γJ− ω2
0P+ ω2

pE (2.29d)

∂tQ = σ (2.29e)

∂tσ = −γvσ − ω2
vQ+ ω2

v |E|2 (2.29f)
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with constitutive law

D = ϵ0(ϵ∞E+P+ a(1− θ)|E|2E+ aθQE). (2.30)

Here

γ =
1

τ
, γv =

1

τv
.

For simplicity, we consider the method only for the two-dimension transverse electric

(TE) mode. Extension to the full three-dimension model is straightforward [2]. Thus, we

consider the two-dimension system of equations

µ0∂tHz = ∂yEx − ∂xEy (2.31a)

∂tDx = ∂yHz (2.31b)

∂tDy = −∂xHz (2.31c)

D = ϵ0(ϵ∞E+P+ a(1− θ)|E|2E+ aθQE) (2.31d)

∂tP = J (2.31e)

∂tJ = −γJ− ω2
0P+ ω2

pE (2.31f)

∂tQ = σ (2.31g)

∂tσ = −γvσ − ω2
vQ+ ω2

v |E|2 (2.31h)

Here, all vector fields have two components polarized in the x-y plane, e.g. D = (Dx, Dy),

E = (Ex, Ey), P = (Px, Py), and J = (Jx, Jy), except H = Hz. Q and σ are scalar compo-

nents.

Assume computational domain, now on x-y plane, is Ω = [0, 1] × [0, 1], and consider

the uniform mesh for Sparse Grid DG purpose. Define

xi+ 1
2
=

i

2N
, yj+ 1

2
=

j

2N
, i, j = 0, 1, . . . , 2N .

Then {xi+1/2} and {yj+1/2} divide [0, 1] on x and y direction uniformly into 2N many cells.

Let

Ii = [xi− 1
2
, xi+ 1

2
], Jj = [yj− 1

2
, yj+ 1

2
], Kij = Ii × Jj, ∀i, j,
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and {Kij}i,j is a partition or mesh of Ω. Each cell Kij has cell center

(xi, yj) = (
xi− 1

2
+ xi+ 1

2

2
,
yj− 1

2
+ yj+ 1

2

2
) = (

i− 1/2

2N
,
j − 1/2

2N
),

and grid size is ∆x = ∆y = 2−N .

Regarding the mesh, we define

V k
h =

{
v ∈ L2(Ω) : v|Kij

∈ Qk(Kij), ∀i, j
}
,

where Qk(Kij) consists of polynomials with degree up to k in each variable on Kij . With-

out confusion, V k
h is also used to represent its vector version in the following. For any

function v ∈ V k
h , we write

v(x±
i+ 1

2

, y) = lim
ϵ→0±

v(xi+ 1
2
+ ϵ, y), v(x, y±

j+ 1
2

) = lim
ϵ→0±

v(x, yj+ 1
2
+ ϵ),

which are left or right limit on cell boundary of x or y direction. Average and jump on

cell interface x = xi+1/2 is

{v}x
i+1

2

=
1

2

(
v(x+

i+ 1
2

, y) + v(x−
i+ 1

2

, y)
)
, [v]x

i+1
2

= v(x+
i+ 1

2

, y)− v(x−
i+ 1

2

, y),

and on cell interface y = yj+1/2 is

{v}y
j+1

2

=
1

2

(
v(x, y+

j+ 1
2

) + v(x, y−
j+ 1

2

)
)
, [v]y

j+1
2

= v(x, y+
j+ 1

2

)− v(x, y−
j+ 1

2

).

A typical semi-discrete DG method is as following [2]: find each component of Hzh, Dh,

Eh, Ph, Jh, Qh and σh in V k
h , under periodic boundary condition, such that,

µ0(∂tHzh, ϕ) + BE
h (Exh, Eyh, ϕ) = 0, ∀ϕ ∈ V k

h (2.32a)

(∂tDxh, ϕ) + BH
xh(Hzh, ϕ) = 0, ∀ϕ ∈ V k

h , (2.32b)

(∂tDyh, ϕ) + BH
yh(Hzh, ϕ) = 0, ∀ϕ ∈ V k

h , (2.32c)

Dh = ϵ0

(
ϵ∞Eh +Ph + a(1− θ)Ih

(
|Eh|2Eh

)
+ aθIh(QhEh)

)
, (2.32d)

∂tPh = Jh (2.32e)

∂tJh = −γJh − ω2
0Ph + ω2

pEh (2.32f)

∂tQh = σh (2.32g)

∂tσh = −γvσh − ω2
vQh + ω2

vIh(|Eh|2) (2.32h)
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where Ih is interpolation on Gauss-Legendre points, projecting nonlinear terms to DG

space, (·, ·) the inner product on Ω = [0, 1]2, and

BE
h (Exh, Eyh, ϕ) = −(Eyh, ∂xϕ) + (Exh, ∂yϕ)−

2N∑
i=1

∫ 1

0

Êyh(xi+ 1
2
, y)[ϕ]x

i+1
2

dy

+
2N∑
j=1

∫ 1

0

̂̂
Exh(x, yj+ 1

2
)[ϕ]y

j+1
2

dx, (2.33a)

BH
xh(Hzh, ϕ) =

2N∑
j=1

∫ 1

0

˜̃
Hzh(x, yj+ 1

2
)[ϕ]y

j+1
2

dx+ (Hzh, ∂yϕ), (2.33b)

BH
yh(Hzh, ϕ) = −

2N∑
i=1

∫ 1

0

H̃zh(xi+ 1
2
, y)[ϕ]x

i+1
2

dy − (Hzh, ∂xϕ). (2.33c)

We choose the fluxes to be central flux

Êyh(xi+ 1
2
, y) = {Eyh}x

i+1
2

,
̂̂
Exh(x, yj+ 1

2
) = {Exh}y

j+1
2

, (2.34a)

H̃zh(xi+ 1
2
, y) = {Hzh}x

i+1
2

,
˜̃
Hzh(x, yj+ 1

2
) = {Hzh}y

j+1
2

, (2.34b)

or alternating flux

Êyh(xi+ 1
2
, y) = Eyh(x

†
i+ 1

2

, y),
̂̂
Exh(x, yj+ 1

2
) = Exh(x, y

♮

j+ 1
2

), (2.35a)

H̃zh(xi+ 1
2
, y) = Hzh(x

‡
i+ 1

2

, y),
˜̃
Hzh(x, yj+ 1

2
) = Hzh(x, y

♯

j+ 1
2

), (2.35b)

where

(†, ‡), (♮, ♯) = (+,−) or (−,+).

For the semi-discrete in space methods with the central or alternating numerical fluxes,

one can establish an energy relation similar as for the continuous model. Additionally,

error estimates can be proved and they are optimal with respect to the approximation

property of the discrete space V k
h when the numerical fluxes are alternating.

Theorem 2.3.1 (Semi-discrete in space energy stability [2]) Under the assumption of peri-

odic boundary conditions, the semi-discrete in space methods (2.32), with either central flux (2.34)

or alternating flux (2.35), satisfy

dEh(t)
dt

= −ϵ0γ
ω2
p

∫
Ω

|Jh|2dΩ− ϵ0aθγv
2ω2

v

∫
Ω

σ2
hdΩ ≤ 0, (2.36)
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with the discrete energy defined as

Eh =

∫
Ω

(
µ0

2
H2

zh +
ϵ0ϵ∞
2

|Eh|2 +
ϵ0
2ω2

p

|Jh|2 +
ϵ0ω

2
0

2ω2
p

|Ph|2 +
ϵ0aθ

4ω2
v

σ2
h

+
ϵ0aθ

2
Ih

(
Qh|Eh|2

)
+

3ϵ0a(1− θ)

4
Ih

(
|Eh|4

)
+
ϵ0aθ

4
Q2

h

)
dΩ. (2.37)

Meanwhile, when θ ∈ [0, 3/4], Eh ≥ 0.

Theorem 2.3.2 (Semi-discrete in space error estimates [2]) Let T > 0 be given. Let κerr, ρerr ∈

(0, 1) be arbitrary constants, then under periodic boundary conditions and

1. θ ∈
[
0,

1

1 + 3(1− ρerr)−2

]
,

2. aθCk∥Q∥∞ ≤ ϵ∞(1− κerr), and

3. a
(
12(1− θ)C2

k∥E∥∞∥∂tE∥∞ + (12− 11θ)
C2

k

ρerr
∥∂tE∥2∞ + 2θCk∥∂tQ∥∞

)
≤ ϵ∞κerr,

as well as the exact solution being sufficiently smooth, the numerical solution uh given by 2.32

with suitable initialization admits the following error estimate at time T

∥u− uh∥L2(Ω) ≤ CC(κerr, ρerr)h
r, u = Hz,E,P,J, σ,Q, (2.38)

where r = k for central flux (2.34), and r = k + 1 for alternating flux (2.35). Here C is a

generic constant independent of mesh size h, but may depend on k, the mesh parameter δ, the

model parameters, and some Sobolev norm of the exact solutions up to time T .

Following the semi-discrete method, the fully-discrete leap-frog DG scheme is, given

Hn
zh, En

h, Dn
h, Jn

h, Pn
h, σn

h and Qh
n in V k

h at time tn, we find Hn+1
zh , En+1

h , Dn+1
h , Jn+1

h , Pn+1
h ,
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σn+1
h and Qh

n+1 ∈ V k
h at time tn+1 = tn +∆t, satisfying

µ0

(
H

n+1/2
zh −Hn

zh

∆t/2
, ϕ

)
+ BE

h (E
n
xh, E

n
yh, ϕ) = 0, ∀ϕ ∈ V k

h , (2.39a)(
Dn+1

xh −Dn
xh

∆t
, ϕ

)
+ BH

xh(H
n+1/2
zh , ϕ) = 0, ∀ϕ ∈ V k

h , (2.39b)(
Dn+1

yh −Dn
yh

∆t
, ϕ

)
+ BH

yh(H
n+1/2
zh , ϕ) = 0, ∀ϕ ∈ V k

h , (2.39c)

Dn+1
h = ϵ0

(
ϵ∞En+1

h +Pn+1
h + a(1− θ)Yn+1

h + aθIh

(
Qn+1

h En+1
h

))
, (2.39d)

Yn+1
h = Yn

h + Ih

((
|En+1

h |2 + |En
h|2 − En+1

h ·En
h

) (
En+1

h − En
h

))
+
1

2
Ih

(
(En+1

h + En
h)·(En+1

h − En
h)(E

n+1
h + En

h)
)
, (2.39e)

Pn+1
h −Pn

h

∆t
=

Jn+1
h + Jn

h

2
, (2.39f)

Jn+1
h − Jn

h

∆t
+ γ

Jn+1
h + Jn

h

2
+ ω2

0

Pn+1
h +Pn

h

2
= ω2

p

En+1
h + En

h

2
, (2.39g)

Qn+1
h −Qn

h

∆t
=
σn+1
h + σn

h

2
, (2.39h)

σn+1
h − σn

h

∆t
+ γv

σn+1
h + σn

h

2
+ ω2

v

Qn+1
h +Qn

h

2
= ω2

vIh(E
n+1
h ·En

h), (2.39i)

µ0

(
Hn+1

zh −H
n+1/2
zh

∆t/2
, ϕ

)
+ BE

h (E
n+1
xh , En+1

yh , ϕ) = 0, ∀ϕ ∈ V k
h (2.39j)

The terms of BE
h , BH

xh, and BH
yh are defined in (2.33), with either the central fluxes (2.34) or

alternating fluxes in (2.35). Energy stability result for fully discrete scheme follows:

Theorem 2.3.3 (Fully-discrete energy stability [2]) Under the assumption of periodic bound-

ary conditions, the fully-discrete leap-frog nodal DG schemes (2.39) satisfy

En+1
h − En

h = −ϵ0γ∆t
4ω2

p

∫
Ω

|Jn+1
h + Jn

h|2dΩ− ϵ0aθγv∆t

8ω2
v

∫
Ω

(σn+1
h + σn

h)
2dΩ ≤ 0, (2.40)

with the discrete energy En
h defined as

En
h =

∫
Ω

(µ0

2
H

n+1/2
zh H

n−1/2
zh +

ϵ0ϵ∞
2

|En
h|2 +

ϵ0
2ω2

p

|Jn
h|2 +

ϵ0ω
2
0

2ω2
p

|Pn
h|2 +

ϵ0aθ

4ω2
v

(σn
h)

2

+
ϵ0aθ

2
Ih

(
Qn

h|En
h|2
)
+

3ϵ0a(1− θ)

4
Ih

(
|En

h|4
)
+
ϵ0aθ

4
(Qn

h)
2
)
dΩ. (2.41)

In addition, En
h ≥ 0 if θ ∈ [0, 3/4] and ∆t ≤ Ch for some constant C.
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Similarly, we can formulate fully implicit scheme as in (2.39); however, update of Hzh

at intermediate time step n+1/2 is unnecessary, so in fully implicit scheme, (2.39j) should

be removed, while (2.39a),(2.39b),and (2.39c) should be replaced by

µ0

(
Hn+1

zh −Hn
zh

∆t
, ϕ

)
+ BE

h (
En+1

xh + En
xh

2
,
En+1

yh + En
yh

2
, ϕ) = 0, ∀ϕ ∈ V k

h (2.42a)(
Dn+1

xh −Dn
xh

∆t
, ϕ

)
+ BH

xh(
Hn+1

zh +Hn
zh

2
, ϕ) = 0, ∀ϕ ∈ V k

h , (2.42b)(
Dn+1

yh −Dn
yh

∆t
, ϕ

)
+ BH

yh(
Hn+1

zh +Hn
zh

2
, ϕ) = 0, ∀ϕ ∈ V k

h , (2.42c)

All simulations of two dimension in Section 2.6 use fully implicit scheme (2.39d)-(2.39i)

and (2.42).

2.3.2 High Dimensional Sparse Grid DG Method and Interpolatory Multiwavelets

Based on one dimensional Sparse Grid DG Method we discussed before, we are ready

to define it in higher dimension d > 1. First we recall some basic notations about multi-

indexes. For a multi-index α = (α1, . . . , αd) ∈ Nd
0, where N0 denotes the set of nonnegative

integers, the l1 and l∞ norms are defined as

|α|1 =
d∑

i=1

αi, |α|∞ = max
1≤i≤d

αi.

The component-wise arithmetic operations are

α · β = (α1β1, . . . , αdβd), c · α = (cα1, . . . , cαd), 2α = (2α1 , . . . , 2αd),

while and relational operations are defined as

α ≤ β ⇐⇒ αi ≤ βi ∀i; α = β ⇐⇒ α ≤ β and β ≤ α;

α < β ⇐⇒ α ≤ β and β ≤ α.

By making use of the multi-index notation, we denote by l = (l1, . . . , ld) ∈ Nd
0, the

mesh level in a multivariate sense. Define the tensor-product mesh grid

Ωl = Ωl1

⊗
Ωl2

⊗
. . .
⊗

Ωld ,
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as tensor product of one dimensional mesh, and the corresponding mesh size

hl = (hl1 , . . . , hld).

For convenience, we also write hli as hi, for i = 1, 2, . . . , d. Based on grid Ωl, we denote by

I jl = (h1j1, h1(j1 + 1))× (h2j2, h2(j2 + 1))× . . .× (hdjd, hd(jd + 1))

an elementary cell, and

Vk
l = {v : v(x) ∈ Qk(Il)

j, 0 ≤ j ≤ 2l − 1} = V k
l1,x1

× V k
l2,x2

× . . .× V k
ld,xd

the tensor-product piecewise polynomial space, where Qk(I jl ) denotes the collection of

polynomials of degree up to k in each dimension on cell I jl , and V k
li,xi

the piecewise k-

th order polynomial space of variable xi, with x = (x1, . . . , xi, . . . , xd). If we use equal

mesh refinement of size hN = 2−N in each coordinate direction, the grid and space will be

denoted by ΩN and Vk
N , respectively.

Based on a tensor-product construction, the multi-dimensional increment space can

be defined as

Wk
l = W k

l1,x1
×W k

l2,x2
× . . .×W k

ld,xd

Therefore, the standard tensor-product piecewise polynomial space on N can be written

as

Vk
N =

⊕
|l|∞≤N ; l∈Nd

0

Wk
l ,

while the sparse grid approximation space as discussed in e.g. [3] is

V̂k
N =

⊕
|l|1≤N ; l∈Nd

0

Wk
l , (2.43)

a subset of Vk
N . The dimension of V̂k

N scales as O((k + 1)d2NNd−1) [3], which is signif-

icantly less than that of Vk
N with exponential dependence on Nd. The approximation

results for V̂k
N are discussed in e.g. [3], which has a stronger smoothness requirement

than the traditional space Vk
N . However, for adaptive scheme we will discuss later, we
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will not require the numerical solution to be in V̂k
N , but rather in Vk

N , and we can choose

basis functions from Vk
N to solve the PDE problem in each time step adatpively.

Finally, we define the polynomial basis functions of degree k in multi-dimensions as

vj
i,l(x) =

d∏
m=1

vjmim,lm
(xm),

and for all m,

lm ∈ N0, 0 ≤ im ≤ k, 0 ≤ jm ≤ max{0, 2lm−1 − 1}.

The orthonormality of the basis is established in sections before. Furthermore, the support

of vj
i,l of all i are I jl′ , where l′ = (l′1, . . . , l

′
d) and l′m = max{lm − 1, 0}.

Following the same manner, we can construct high-dimensional interpolatory multi-

wavelets. Let

W̃M
l = W̃M

l1,x1
× W̃M

l2,x2
× . . .× W̃M

ld,xd
,

where W̃M
lm,xm

, m = 1, . . . , d are one-dimensional interpolatory multiwavelet spaces of

mesh level lm and m-th dimension variable xm, and M here is degree of polynomials of

interpolatory multiwavelets. Recall that we might choose M as a larger integer than k.

Then

VM
N =

⊕
|l|∞≤N ; l∈Nd

0

W̃M
l ,

while the sparse grid approximation space is

ṼM
N =

⊕
|l|1≤N ; l∈Nd

0

W̃M
l .

2.3.3 Adaptive SGDG Method

In this subsection, we formulate an adaptive multiresolution projection algorithm as dis-

cussed in [123] and [5, 6]. The last two references provide full details of adaptive SGDG

scheme. Define an accuracy threshold or error threshold ϵ > 0; we will use this threshold

throughout this subsection when we demonstrate the adaptive scheme, in both refine-

ment and coarsening procedures. In practice, we choose smaller accuracy threshold for
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coarsening than refinement, usually δ = ε/10, where ε and δ are error threshold for re-

finement and coarsening, respectively.

The backbone of the algorithm is the fact that each hierarchical basis, of space V k
N in

one dimension or of space Vk
N in higher dimension, represents some details of a solution

or a function on a specific mesh scale, which naturally provides an error indicator for

the design of adaptive algorithms. In one dimension, consider u(x) has L2 projection

ũ(x) on V k
N supported on Ω = [0, 1], as linear combination of Alpert’s multiwavelet basis

functions:

ũ(x) =
k∑

i=0

N∑
n=0

max{0,2n−1−1}∑
j=0

uji,nv
j
i,n(x), (2.44)

where

uji,n =

∫ 1

0

u(x)vji,n(x)dx.

It was shown in [4] that

k∑
i=0

max{0,2n−1−1}∑
j=0

|uji,n|2 ≤ C2−(q+1)n|u|Hq+1(Ω),

if u ∈ Hp+1(Ω), where seminorm Hp+1(Ω) is

|u|Hp+1(Ω) =

∣∣∣∣∣∣∣∣dp+1u

dxp+1

∣∣∣∣∣∣∣∣
L2(Ω)

,

and q = min{p, k}. The hierarchial coefficients uji,n here (also called hierarchial surplus)

naturally serves as an indicator for local smoothness of u(x). The main idea of the adap-

tive algorithm is to choose only those basis functions or elements whose coefficients above

a prescribed threshold value ϵ. Here we consider using L2 norm of u as indicator, and

since basis functions vji,n are orthnormal, this is equivalent to(
k∑

i=0

|uji,n|2
)1/2

for each fixed n and fixed 0 ≤ j ≤ max{0, 2n−1 − 1}. In summary, we would flag an

element V j
n if (

k∑
i=0

|uji,n|2
)1/2

≥ ϵ.
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In higher dimension, projection ũ of function u on Vk
N is

ũ(x) =
∑

0≤i≤k

∑
0≤l≤N

∑
0≤j≤max{0,2l−1−1}

uji,lv
j
i,l(x), (2.45)

where

uji,l =

∫
Ω

u(x)vj
i,l(x)dx, (2.46)

with spatial domain Ω = [0, 1]d and dimension d. Here multi-index of constant is simple

duplicate of the constant in d times, where d is dimension of spatial domain, e.g.

1 = (1, . . . , 1), N = (N, . . . , N),

and max function here is component-wise. It is also demonstrated in [4, 5] that ∑
0≤i≤k

∑
0≤j≤max{0,2l−1−1}

|uji,l|2
1/2

≤ C2−(q+1)l|u|Hq+1(Ω), ∀u ∈ Hp+1(Ω),

similar to the one dimension case. So in higher dimension, an element V j
l will be flagged

as important if ( ∑
0≤i≤k

|uji,l|2
)1/2

≥ ϵ. (2.47)

The adaptive scheme is implemented by hash table as the underlying data structure,

which stores active elements of the adaptive scheme, and the numerical solution on these

active elements. The implementation details will be discussed in next section. We now

introduce the concepts of child, parent and leaf elements [6], for better understanding of

the adaptive procedure. Assume Vj
l and Vj′

l′ are two elements, satisfying |l|∞, |l′|∞ ≤ N .

Then element Vj
l ais called child element of Vj

l , if and only if for some 1 ≤ m ≤ d,

l′m = lm + 1, where lm and l′m are m-th component of multi-index l and l′, respectively.

Accordingly, we call Vj
l a father element of Vj′

l′ . If an element does not have any of its

child elements in the hash table, then we call it a leaf element.

To describe the time evolution of adaptive scheme [6], consider now the numerical

solution uh on active elements at time step tn is stored in a hash table H . Information of
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leaf elements is stored in a separate leaf table. The time evolution from time step tn to

tn+1 = tn + ∆t consists of four steps. The first step is the prediction step, which predicts

the location on spatial domain Ω where the details of numerical solution uh become sig-

nificant at the next time step tn+1, to determine in next step where we should add more

elements in order to capture the fine structures. We solve from tn to tn+1 using a cheap

solver, e.g. the forward Euler method in time, to obtain predicted solution u
(p)
h . For spa-

tial discretization in this step, if any nonlinear terms involve, the interpolation operator

I applied here has the same multiresolution structure as determined by the hash table H

corresponding to the numerical solution uh at current time step tn.

The second step is refinement step based on predicted solution u(p)h . An active element

in hash table, satisfying (2.47), is considered as important element. All child elements Vj
l

of an important element will be added to the hash table, to obtain new hash table H(p),

and coefficients uji,l for 0 ≤ i ≤ k associated to newly added multiwavelet basis functions,

as in (2.46), are set to be zeros. Leaf table is also updated accordingly. Now in the third

step, with numerical solution uh at time step tn, and a new hash table H(p), we can solve

numerical solution ũn+1
h for the next step tn+1 before the final coarsening step. Again, the

interpolation operator is now determined by the new hash table H(p).

The last step is coarsening step, to remove leaf elements that are not important. We

traverse elements in the leaf table, and if a leaf element does not satisfy (2.47), it will be

removed from both the leaf table and hash table. Note that the leaf table has to be dynam-

ically updated in this procedure, since the removal of any leaf element may potentially

create one or more new leaf elements. For the same reason, coarsening is done in recur-

sive way, until no more leaf elements are removed and created. Now we obtain the new

hash table and leaf table, and numerical solution un+1
h at time step n+ 1.

The last component of the algorithm is an efficient implementation of the hash table.

As suggested in [124, 75] and further discussed in [4], the hash table approach is easy to

implement, requires little storage overhead, and allows one to conveniently deal with hi-
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erarchical multi-index (l, j) in the implementation. Specifically, by a prescribed hash func-

tion that will be discussed in details in 2.4.2, the hierarchical multi-index (l, j) is mapped

to a hash key (an integer), which serves as an address in the hash table. Then, given a

hierarchical index, the associated data can be easily stored and retrieved by computing

the hash key.

2.4 Adaptive SGDG Package and PETSc Implementation

2.4.1 Overview of Package

Before we take into account full details of the package, we briefly introduce the struc-

ture of the SGDG package [8] here, which is developed using C++ language. The SGDG

package is developed under the same logic as development of SGDG methods and their

adaptive version, together with necessary time integration methods, to solve several dif-

ferent PDEs. Therefore in general, the SGDG pacakge consists significantly of two parts,

regarding spatial and time discretization, together with other supporting classes and files.

The most important part is SGDG spatial discretization, including Alpert’s multi-

wavelet basis, interpolatory multiwavelet basis, formulation of bilinear form, represen-

tation of numerical solutions as linear combination of basis functions, and fast algorithms

for matrix multiplication. Several other features are implemented to support these pur-

poses, including hash table to refer to basis functions, quadrature functions, and trans-

formation of numerical solution under different multiwavelet basis, etc. Besides, several

time integration methods are implemented to corporate with spatial SGDG discretiza-

tion, including several Runge Kutta method or SSP methods [92, 108, 109, 110], and IMEX

method [125, 6], with help of data structures and linear solvers in Eigen package [113]; af-

ter re-implementing several key functions regarding PETSc [9] data structures, generally

fully implicit method with nonlinear terms becomes available in the package. At the end,

several examples regarding different equations are written for further research and users

in future; several unit tests are developed to verify correctness of certain significant and
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complicated C++ classes and functions; makefile is developed to handle compiling and

linking procedure to create executable effectively; doxygen [126] is introduced to generate

documentation for source codes of the package.

2.4.2 Hash Key of SGDG Elements

For implementation of SGDG method, hash key is a key ingredient. After spatial dis-

cretization, each element or cell in SGDG formulation is provided a unique integer as the

hash key, and this element could be identified in the later calculations by the hash key.

To describe the details of hash key, we first notice that each element is uniquely identi-

fied by its levels and support indexes on each dimension. Consider the SGDG formulation

of d dimension and an element Vj
l , then on dimension i, the level of the element is li and

the support is identified as ji, 1 ≤ i ≤ d, which are i-th component of multi-index l and

j, respectively. Assume there are two elements Vj
l and Vj′

l′ , then element Vj
l has smaller

hash key than Vj′

l′ , if and only if

1. |l|1 < |l′|1, i.e.
d∑

i=1

li <
d∑

i=1

l′i;

or

2. |l|1 = |l′|1, and li = l′i for i = p+ 1, p+ 2, . . . , d, but lp < l′p for some 1 ≤ p ≤ d; or

3. li = l′i for all 1 ≤ i ≤ d, and ji < j′i for i = 1, 2, . . . , p − 1, but jp < j′p for some

1 ≤ p ≤ d.

It is clear that under such procedure, two elements, whose level vectors have the same l1

norm, or who have the same level vectors, will have relatively close hash key numbers;

elements with smaller l1 norm of level vector will have smaller hash key numbers. These

requirements are suitable for SGDG scheme, since sparse grid approximation space (2.43)

collects elements with l1 norm of level vector bounded by the maximum mesh level N .
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2.4.3 SGDG Spatial Discretization

A DGSolution class is defined, in general, to represent the SGDG solutions as linear com-

bination of (Alpert’s or interpolatory) multiwavelet basis functions. The class stores sev-

eral important information, including maximum mesh level N = NMAX, dimension d =

DIM, number of components of solutions VEC_NUM, and most importantly, the hash ta-

ble implemented in a C++ standard container map dg. Certain member functions are im-

plemented, which includes initialization by L2 projection of initial functions, copy func-

tion to copy SGDG solutions among realizations, evaluation functions to evaluate SGDG

solutions at different spatial points regarding different basis functions, functions to com-

pute errors, treatments regarding artificial viscosity, etc.

Active elements of SGDG method, together with the numerical solution, as discussed

in last section, is stored in hash table, implemented by a standard C++ container map

called dg. The key values of the map dg are hash key discussed in 2.4.2; the hash key

is mapped to the object of class Element, each of which represents element Vj
l , and nu-

merical solution on the Alpert’s multiwavelet basis {vj
i,l}0≤i≤k. On each element or ob-

ject of Element class, the associated coefficients of numerical solution for Alpert’s basis

functions are stored in ucoe_alpt, while the associated coefficients for other interpolatory

multiwavelet basis are stored in ucoe_intp. Other necessary data, including fucoe_intp

for coefficients of f(u) for interpolatory multiwavelet basis with given nonlinear function

f and numerical solution u, are also declared and stored in Element class. Some basic

information of the element, including the support and discontinuous points of the ba-

sis functions, are also stored explicitly for further use in volume integral etc. Besides,

to compute the volume integral and cell boundary integral more efficiently, we need to

determine whether two basis functions (or two elements) are orthogonal to each other;

several functions in the class play such role. For the purpose of adaptive method, we

need to add or remove elements dynamically twice on each time step, so we need to store

the pointer to children element in hash_ptr_chd and to parent element in hash_ptr_par.
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class DGSolution
{
public:

// constructor and destructor of the class

static int DIM; // dimension of spatial domain
static int VEC_NUM; // number of unknowns

...

// find pointers to elements that are related to current element
void find_ptr_vol_alpt();
void find_ptr_flx_alpt();
void find_ptr_vol_intp();
void find_ptr_flx_intp();

// functions regarding error calculations and copying data between vectors

// key of the map is hash key
// basis functions and associated data store in object of class Element
std::unordered_map<int, Element> dg;

// calculate value of DG solution at a given point
std::vector<double> val(const std::vector<double> & x, \

const std::vector<int> & derivative) const;

// functions for initialization of DG solution

protected:

const bool sparse;
const int NMAX; /// maximum mesh level

Hash hash;
AllBasis<AlptBasis> all_bas;
AllBasis<LagrBasis> all_bas_Lag;
AllBasis<HermBasis> all_bas_Her;

...
};

Algorithm 2.1: DGSolution Class, in DGSolution.h

There are also several classes defined for basis functions, all of which are derived from

the base class Basis. Common features of basis functions are defined here, including level

of mesh, support of basis and discontinuous points, index indicating which multiwavelet

function the current basis function is scaled from, and several functions to compute vol-

ume or edge integrals. The derived classes, including AlptBasis, LagrBasis, HermBa-

sis, represent the corresponding Alpert’s multiwavelet basis functions and Lagrangian or

Hermite interpolatory multiwavelet basis functions. Expression of basis functions and

their derivatives are implemented for further usage in volume and edge integral calcula-
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class Element
{
public:

Element(const std::vector<int> & level_, const std::vector<int> & suppt_, \
AllBasis<AlptBasis> & all_bas, Hash & hash);

~Element() {};

static int DIM; ///< dimension of spatial domain
static int VEC_NUM; ///< number of unknowns
static std::vector<std::vector<bool>> is_intp;

///< specify which components need interpolation

const std::vector<int> level; ///< mesh level in each dimension
const std::vector<int> suppt; ///< support index in each dimension

/// left and right end point of support in multi-dimension
std::vector<double> xl;
std::vector<double> xr;

std::vector<std::vector<double>> dis_point; ///< discontinuous points
std::vector<std::vector<double>> supp_interv; ///< interval of support

std::vector<int> order_elem; ///< order for this element in each dimension
int hash_key; ///< hash key for this element

static int PMAX_alpt; //< polynomial degree for Alpert’s basis
static int PMAX_intp; //< polynomial degree for interpolatory basis

// order of Alpert’s or interpolatory multiwavelet basis in this element, e.g
std::vector<VecMultiD<int>> order_alpt_basis_in_dg;
...

// coefficients of Alpert’s basis, and in fast multiplication e.g.
std::vector<VecMultiD<double>> ucoe_alpt;
...

// coefficients of interpolatory basis for numerical solution u, e.g.
std::vector< VecMultiD<double> > ucoe_intp;
...

// coefficients for interpolatory basis of f(u), e.g.
std::vector< std::vector< VecMultiD<double> > > fucoe_intp;
...

// coefficients of numerical solution on next time step, for fully implicit method
std::vector< VecMultiD<double> > up_intp_next;
std::vector< VecMultiD<double> > ucoe_alpt_next;

// number of total children and parent elements; used in adaptive scheme
int num_total_chd, num_total_par;

// maps that store existing children and parents elements; used in adaptive scheme
std::unordered_map<int,Element*> hash_ptr_chd;
std::unordered_map<int,Element*> hash_ptr_par;

...
};

Algorithm 2.2: Element Class, in Element.h
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tions.

Previous paragraphs discuss the top-down structure from DGSolution class to basis

functions, and these classes are core classes for regular SGDG methods. However, to im-

plement adaptive methods properly, a derived DGAdapt class from DGSolution class is

necessary. The main feature added to DGAdapt is functions refine() and coarsen(), which

conduct the refinement and coarseness procedure in adaptive method. The basic logic

of these two algorithms are to search among elements stored in dg map of DGSolution

class, or through leaf table called leaf and leaf_zero_child that store all leaf elements or

leaf elements with no active child elements, to determine if an element is important, as

discussed in details in Subsection 2.3.3. Note that an element’s importance and whether

an element should be removed are determined by the element and its active children, so

the determination process is local.

The data structures defined above provide a clear picture of how solution is repre-

sented in the SGDG algorithm, but we still need certain data structures or classes of ma-

trix to represent related transformations when time integration is applied. Recall that in

Basis class, we define a general class for all basis, together with operations on basis func-

tions, especially certain inner products between different basis functions or their deriva-

tives. We then define, accordingly, a class template AllBasis<T>, which collects all basis

functions in one dimension, where T represents one of AlptBasis, LagrBasis, HermBasis,

specifying which type of basis is collected in the AllBasis<T>; we employ C++ template

here to provide a generic class among all kinds of basis functions.

On top of the AllBasis class, we define class OperatorMatrix1D, which provides one

dimensional transformation matrix from coefficients of numerical solution. Using the

information provided in OperatorMatrix1D, we are able to assemble and store matrixes

regarding SGDG spatial discretization in class BilinearForm. BilinearForm supports two

sets of data structure: for thread parallelization we could use Eigen package [113] and its

matrixes and vectors; for implicit scheme using nonlinear solver in time stepping, we use
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class DGAdapt :
public DGSolution

{
public:

// constructor and destructor of class DGAdapt

// refine based on reference solution generated by Euler forward
void refine();

// coarsen
void coarsen();

...

protected:

const double eps; // refinement threshold
const double eta; // coarsening threshold

// leaf element that does not have its all children
std::unordered_map<int, Element*> leaf;
// leaf element with no child
std::unordered_map<int, Element*> leaf_zero_child;

// after adding or deleting, check no holes in solution
void check_hole();

// update leaf table DGAdapt::leaf
void update_leaf();

// add a given element into DG solution
void add_elem(Element & elem);

// delete a given element into DG solution
void del_elem(Element & elem);

...

private:

// coarsen based on leaf elements with no child
void coarsen_no_leaf();

// update leaf table DGAdapt::leaf_zero_child
void update_leaf_zero_child();

...
};

Algorithm 2.3: DGAdapt class, in DGAdapt.h

PETSc package [9] and its data structure and solvers.
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2.4.4 Time Integration and PETSc Package

The package uses ODESolver class to deal with time integration, coupling with data struc-

ture from Eigen package. ODESolver class stores matrix and solution vectors together at

the same time, and provide several functions to operate matrix and vector operations.

Several specific time integration methods are defined as derived class of ODESolver, in-

cluding explicit Strong Stability Preserving (SSP) methods, multistep methods, and IMEX

method. Implementations of some of these methods require solving a linear system, in

which case linear solver of Eigen package will be used to solve linear system when evolv-

ing the solution to next time step. This kind of approach made certain implicit method

available in the package, but a fully implicit method involving nonlinearity would not fit

into such framework. To deal with this, we introduce PETSc package [9] for nonlinear

solvers involved.

In order to illustrate how SGDG package couples with PETSc package, we provide the

following linear example. Consider linear PDE

Ut − (AU)x − (BU)y = 0, (t, x, y) ∈ [0, T ]× [0, 1]× [0, 1]

with periodic boundary condition on both x and y direction, whereU(t, x, y) = (U0, U1, U2)
T

is vector-valued with three components, and

A =


0 0 −1

0 0 0

−1 0 0

 , B =


0 1 0

1 0 0

0 0 0

 .
An accurate solution of this system is

U(t, x, y) = ecos(2π(
√
5t+x+2y))(

√
5, 2,−1).

The semi-discrete SGDG scheme of this equation is, to find vector-valued solution U =
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U(t, x, y), for any vector-valued test function V , such that

(Ut, V ) + (AU, Vx) +
2N∑
j=1

∫ 1

0

[
C01U(x

+, y) + C00U(x
−, y)

]
· [V ]

∣∣∣
x=xj+1/2

dy

+ (BU, Vy) +
2N∑
j=1

∫ 1

0

[
C11U(x, y

+) + C10U(x, y
−)
]
· [V ]

∣∣∣
y=yj+1/2

dx = 0 (2.49)

where (·, ·) is inner product on spatial region [0, 1]2 of (x, y). For alternating flux

Û0 = U−
0 , Û1 = U+

1 , Û2 = U+
2 ,

we have

C00 =


0 0 0

0 0 0

−1 0 0

 , C01 =


0 0 −1

0 0 0

0 0 0

 , C10 =


0 0 0

1 0 0

0 0 0

 , C11 =


0 1 0

0 0 0

0 0 0

 .
We can rewrite (2.49) as (Ut, V ) + B(U, V ) = 0 where B(·, ·) is a bilinear form. For fully

implicit method in time, consider numerical solutions at time step tn and tn+1 = tn + ∆t

are Un and Un+1 respectively, then

F (Un+1;Un, V ) := (Un+1 − Un, V ) +
∆t

2
B(Un+1 + Un, V ) = 0. (2.50)

In Algorithm 2.4, we provide an example of solving (2.48), after removing some tech-

nical details, to reveal the main structure of the SGDG package. Maximum mesh level

NMAX and polynomial degree PMAX of Alpert’s multiwavelet basis are provided by

command line arguments. Static variables, hash key in class Hash, collection of all Alpert’s

multiwavelet basis functions in class AllBasis<AlptBasis>, one dimension matrix for lin-

ear operations in class OperatorMarix1D<AlptBasis,AlptBasis>, and numerical solution

and hash table in class DGSolution, are defined in proper order. Functions with name

format assemble_matrix_*_system assemble the matrix corresponding to bilinear form

B(·, ·), using coefficients matrix A,B, and C00, C01, C10, C11, and store the assembled ma-

trix in PETSc matrix mat_petsc of class HyperbolicAlpt, a derived class from class Bilin-

earForm.
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// include header files

typedef struct AppCtx AppCtx;
struct AppCtx
{

HyperbolicAlpt* app_HyperbolicAlpt;
DGSolution* app_DGSolution;
double dt;

};

int main(int argc, char** argv)
{

PetscErrorCode ierr;
ierr = PetscInitialize(&argc,&argv,(char*)0,NULL);if (ierr) return ierr;

int NMAX=6,PMAX=1;
ierr=PetscOptionsGetInt(NULL,NULL,"-NMAX",&NMAX,NULL);CHKERRQ(ierr);
ierr=PetscOptionsGetInt(NULL,NULL,"-PMAX",&PMAX,NULL);CHKERRQ(ierr);

// assign values to static variables
AlptBasis::PMAX = PMAX;
Element::DIM = 2;
Element::VEC_NUM = 3;
...

Hash hash; // hash key
AllBasis<AlptBasis> all_bas_alpt(NMAX);
const std::string boundary_type = "period";
OperatorMatrix1D<AlptBasis, AlptBasis> \

oper_matx_alpt(all_bas_alpt, all_bas_alpt, boundary_type);

DGSolution dg_solu(true, NMAX, NMAX, all_bas_alpt, hash);

// initialize the DGSolution with an initial function

HyperbolicAlpt linear(dg_solu, oper_matx_alpt);
linear.assemble_matrix_vol_system(0,A);
linear.assemble_matrix_vol_system(1,B);
linear.assemble_matrix_flx_system(0,1,C01);
linear.assemble_matrix_flx_system(0,-1,C00);
linear.assemble_matrix_flx_system(1,1,C11);
linear.assemble_matrix_flx_system(1,-1,C10);

double final_time = 1./std::sqrt(5.);
double cfl = 0.9;

AppCtx app_sol;
app_sol.app_HyperbolicAlpt = &linear;
app_sol.app_DGSolution = &dg_solu;

double current_time = 0.;

// while loop to find numerical solution; see below

// calculate errors; print solutions

// Destroy PETSc objects

return ierr;
}

Algorithm 2.4: Example of Linear Equations, in Linear2D.cpp
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In the while loop of finding numerical solutions of each time step, as shown in Al-

gorithm 2.5, a Scalable Nonlinear Equations Solvers (SNES) object of PETSc is created

for solving general linear and nonlinear system. For linear problem, scalable linear equa-

tions solvers (KSP) of PETSc is a better choice, and setting of KSP object is similar to SNES

object.

while (current_time < final_time)
{

double dt = cfl / std::pow(2., NMAX);
dt = std::min( dt , finaltime - curr_time );
app_sol.dt = dt;

// Initialize vectors for residual and next step solution
Vec residual, next_step_solution;
...

SNES snes;
ierr = SNESCreate(PETSC_COMM_WORLD,&snes);
ierr = SNESSetFunction(snes,residual,FormFunction,&app_sol);
ierr = SNESSetFromOptions(snes);

ierr = SNESSolve(snes,NULL,next_step_solution);

// Copy next step solution back to DGSolution class

curr_time += dt;

// Destroy PETSc objects
}

Algorithm 2.5: While Loop to Find Numerical Solution in Algorithm 2.4

As in while loop of Algorithm 2.5, the key functions of SNES nonlinear solver are

SNESSetFunction and SNESSolve. SNESSetFunction provides to the nonlinear solver a

FormFunction, which compute F (x) if the nonlinear problem to be solved is F (x) = 0.

In our example, as in Algorithm 2.6, FormFunction computes F (Un+1;Un, V ) with input

of numerical solution of next time step Un+1, and numerical solution of current time step

Un and other related information are provided through an application context of class

AppCtx. As in Algorithm 2.4, an AppCtx object stores time step dt= ∆t, and the pointer

of DGSolution object of SGDG solution, and HyperbolicAlpt object of bilinear form of the

system.

Nevertheless, SNESSolve uses iterative method to find solution of nonlinear prob-
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PetscErrorCode FormFunction(SNES snes,Vec next_u,Vec f,void* ctx)
{

AppCtx *user = (AppCtx*)ctx;
PetscErrorCode ierr;

Vec now_u;
// Copy current step solution in user->app_DGSolution to now_u
...

Vec sum_, diff_;
// sum_ = 0.5 * (next_u + now_u) * user->dt
...
// diff_ = next_u - now_u
...

// f = diff_ + mat_petsc * sum_
ierr = MatMultAdd(user->app_HyperbolicAlpt->mat_petsc, sum_, diff_, f);

return ierr;
}

Algorithm 2.6: Function FormFunction for Nonlinear Solver in Algorithm 2.4

lem, and SNESSetFromOptions sets various SNES parameters, either from command line

arguments or by default. A typical set of options provided through command line argu-

ments is like

Linear2D -NMAX 6 -PMAX 3 -snes_mf \
-snes_rtol 1e-12 -snes_atol 1e-12 -snes_stol 1e-12

Algorithm 2.7: Command to Run Executable Linear2D

which set maximum mesh level 6 and polynomial degree 3, choose matrix-free method

through option -snes_mf, and set tolerance of nonlinear solvers by options –snes_rtol,

–snes_atol, and –snes_stol.

Before the end of this section, we remark that although the example provided here

is linear, the nonlinear problem can fit into this structure too. In case a FormFunction is

provided, matrix-free method can be applied to solve the numerical solution.
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2.5 Numerical Simulation in One Dimensional Case

2.5.1 Kink Shape Solutions

The first numerical test we consider, as discussed in [1], where a traveling wave solution

was constructed for the instantaneous intensity-dependent Kerr response neglecting the

influence of damping, corresponding to the case of θ = 0 and τ = ∞ in (2.11). This yields

a simplified system from Equations (2.11) as the following:

∂tH = ∂xE (2.51a)

∂tD = ∂xH (2.51b)

∂tP = 6J (2.51c)

∂tJ = 6(−ω2
0P + ω2

pE) (2.51d)

D = ϵ∞E + P + aE3 (2.51e)

where the only nonlinear term comes from constitutive law of D, representing the cubic

Kerr effect. We can find a traveling wave functionE(x, t) = E(ξ) with ξ = 6(x−vt), where

E(ξ) is comprised of a kink and anti-kink wave, and is solved based on the following ODE

of E(ξ) and Φ(ξ):

dE

dξ
= Φ (2.52a)

dΦ

dξ
=

6av2EΦ2 + (ϵ∞ω
2
0 + ω2

p − ω2
0/v

2)E + aω2
0E

3

1− ϵ∞v2 − 3av2E2
(2.52b)

Here the parameters are

ϵ∞ = 2.25, a = 0.75, ω0 = 93.627179982222216, ωp =
√
3ω0, v =

0.6545√
ϵ∞

,

with condition

E(0) = 0, Φ(0) = 0.24919666777865812.

These conditions are carefully chosen, so that the resulting solution of E,Φ are 6-periodic.

The overall solution for all variables, based on E,Φ obtained from the ODE, again with
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ξ = 6(x− vt), is the following:

H(x, t) = −1

v
E(ξ), D(x, t) =

1

v2
E(ξ) (2.53)

P (x, t) = (
1

v2
− ϵ∞)E(ξ)− aE(ξ)3 (2.54)

J(x, t) = (ϵ∞v −
1

v
)Φ(ξ) + 3avE(ξ)2Φ(ξ) (2.55)

Note that allH,D,E, P, J have period 1. The function E and J at t = 0 are given in Figure

2.1.

0 2 4 6
-0.4

-0.2

0

0.2

0.4
Initial E

E

0 2 4 6
-0.4

-0.2

0

0.2

0.4
Initial J

J

Figure 2.1: Function E and J at t = 0

We perform an accuracy test for fully implicit method. We choose the CFL condition

to be

∆t = CFL× h(k+1)/2

where h = 1/2N is mesh size, and k is degree of piecewise polynomial. CFL constant is set

as in Table 2.1. L1, L2 and L∞ errors with order, regarding function E and J , are shown,

k 1 2 3
CFL 1 8 63

Table 2.1: CFL constant for fully implicit method

respectively, in Table 2.2 and 2.3 for k = 1, in Table 2.4 and 2.5 for k = 2, and in Table 2.6

and 2.7 for k = 3. All errors are calculated at final time T = 1/v. It is clear that SGDG
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scheme with P k Alpert’s multiwavelet basis has accuracy order k + 1. This is expected

since SGDG is the same as traditional DG in one dimension.

N L1 Error Order L2 Error Order L∞ Error Order
6 7.915e-04 1.506e-03 5.295e-03
7 2.217e-04 1.836 4.421e-04 1.769 1.708e-03 1.632
8 5.606e-05 1.983 1.143e-04 1.951 4.638e-04 1.881
9 1.399e-05 2.002 2.865e-05 1.996 1.180e-04 1.975

10 3.494e-06 2.001 7.160e-06 2.001 2.948e-05 2.001

Table 2.2: Errors and Orders of Accuracy of E. k = 1, T = 1/v.

N L1 Error Order L2 Error Order L∞ Error Order
6 8.435e-03 1.623e-02 5.124e-02
7 2.604e-03 1.696 5.537e-03 1.551 1.982e-02 1.370
8 6.826e-04 1.931 1.514e-03 1.871 5.793e-03 1.775
9 1.717e-04 1.991 3.836e-04 1.980 1.486e-03 1.963

10 4.292e-05 2.000 9.603e-05 1.998 3.729e-04 1.994

Table 2.3: Errors and Orders of Accuracy of J . k = 1, T = 1/v.

N L1 Error Order L2 Error Order L∞ Error Order
6 8.902e-04 1.718e-03 5.946e-03
7 1.161e-04 2.939 2.359e-04 2.864 9.532e-04 2.641
8 1.452e-05 3.000 2.967e-05 2.991 1.226e-04 2.959
9 1.816e-06 2.999 3.715e-06 2.998 1.541e-05 2.992

10 2.270e-07 3.000 4.643e-07 3.000 1.926e-06 3.000

Table 2.4: Errors and Orders of Accuracy of E. k = 2, T = 1/v.

N L1 Error Order L2 Error Order L∞ Error Order
6 1.078e-02 2.051e-02 6.959e-02
7 1.426e-03 2.919 3.144e-03 2.706 1.200e-02 2.536
8 1.787e-04 2.996 3.992e-04 2.977 1.487e-03 3.013
9 2.236e-05 2.998 5.002e-05 2.997 1.844e-04 3.011

10 2.796e-06 3.000 6.253e-06 3.000 2.305e-05 3.000

Table 2.5: Errors and Orders of Accuracy of J . k = 2, T = 1/v.
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N L1 Error Order L2 Error Order L∞ Error Order
6 8.642e-04 1.665e-03 5.768e-03
7 5.565e-05 3.957 1.134e-04 3.877 4.617e-04 3.643
8 3.473e-06 4.002 7.104e-06 3.996 2.926e-05 3.980
9 2.171e-07 4.000 4.440e-07 4.000 1.830e-06 3.999

10 1.357e-08 4.000 2.775e-08 4.000 1.144e-07 4.000

Table 2.6: Errors and Orders of Accuracy of E. k = 3, T = 1/v.

N L1 Error Order L2 Error Order L∞ Error Order
6 1.058e-02 2.006e-02 6.870e-02
7 6.831e-04 3.953 1.521e-03 3.721 5.726e-03 3.585
8 4.279e-05 3.997 9.565e-05 3.991 3.510e-04 4.028
9 2.674e-06 4.000 5.980e-06 4.000 2.190e-05 4.003

10 1.688e-07 3.986 3.738e-07 4.000 1.371e-06 3.998

Table 2.7: Errors and Orders of Accuracy of J . k = 3, T = 1/v.

Besides, we also use this example to test our adaptive method, and we calculate the

convergence rate with respect to the error threshold Rε and with respect to degree of

freedoms RDOF as following

RDOF =
log(el−1/el)

log(DOFl/DOFl−1)
, Rε =

log(el−1/el)

log(εl/εl−1)
.

where el is the standard L2 error, of either E or J component, with refinement parameter

εl, and DOFl is the associated number of active degrees of freedom at final time after last

coarsening step.

2.5.2 Soliton Propagation

In this example, we will consider the soliton propagation similar to the setup in [1]. The

coefficients in this example (2.12) are chosen as

ϵ∞ = 2.25, ϵs = 5.25, β1 = 3,
1

τ
= 1.168× 10−5,

1

τv
= 29.2/32,

a = 0.07, θ = 0.3,Ω0 = 12.57, ω0 = 5.84, ωv = 1.28, ωp = ω0

√
β1.
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ε DOF E error RDOF Rε J error RDOF Rε

5.00e-05 48 5.57e-05 3.46e-03
2.00e-05 58 3.10e-05 3.09 0.64 2.02e-03 2.86 0.59
1.00e-05 74 1.69e-05 2.50 0.88 1.26e-03 1.92 0.67
5.00e-06 88 9.14e-06 3.54 0.89 7.03e-04 3.38 0.85
2.50e-06 92 5.42e-06 11.73 0.75 3.72e-04 14.31 0.92

Table 2.8: Adaptive Result of P 2 case, using alternating flux

ε DOF E error RDOF Rε J error RDOF Rε

5.00e-05 36 7.84e-05 2.46e-03
2.00e-05 40 3.42e-05 7.89 0.91 1.15e-03 7.23 0.83
1.00e-05 62 2.32e-05 0.88 0.56 8.14e-04 0.79 0.50
5.00e-06 76 8.76e-06 4.78 1.41 3.40e-04 4.28 1.26
2.50e-06 82 6.21e-06 4.54 0.50 1.79e-04 8.44 0.93

Table 2.9: Adaptive Result of P 2 case, using upwind flux

ε DOF E error RDOF Rε J error RDOF Rε

5.00e-05 24 2.77e-05 1.71e-03
2.00e-05 32 1.64e-05 1.82 0.57 9.12e-04 2.18 0.69
1.00e-05 40 1.05e-05 2.01 0.65 5.65e-04 2.15 0.69
5.00e-06 52 6.01e-06 2.12 0.80 3.82e-04 1.49 0.56
2.50e-06 58 3.98e-06 3.76 0.59 2.75e-04 3.01 0.47

Table 2.10: Adaptive Result of P 3 case, using alternating flux

ε DOF E error RDOF Rε J error RDOF Rε

5.00e-05 22 3.24e-05 1.25e-03
2.00e-05 26 1.76e-05 3.63 0.66 4.17e-04 6.55 1.19
1.00e-05 32 8.81e-06 3.35 1.00 2.33e-04 2.80 0.84
5.00e-06 44 6.58e-06 0.92 0.42 2.23e-04 0.14 0.06
2.50e-06 48 4.28e-06 4.94 0.62 1.32e-04 6.00 0.75

Table 2.11: Adaptive Result of P 3 case, using upwind flux

Initially, all fields are zero. The left boundary is injected with an incoming solitary wave,

for which the electric field is prescribed as

E(x = 0, t) = f(t) cos(Ω0t),

where f(t) =M sech(t− 20). M is a constant to be specified later. As in [1], the boundary

condition of H can be approximated from the linearized dispersion relation. Assuming

a space-time harmonic variation ei(wt−kx) of all fields, the exact dispersion relation associ-
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ated with the linear parts of the system implies that

k = ω
√
ϵ∞

√
1− ω2

p/ϵ∞

ω2 − iω/τ − ω2
0

.

The approximate value of H is given by

H(x = 0, t) =

∫ ∞

−∞
Ĥ(ω)eiωtdω ≃ ℜ

{
8∑

m=0

(−i)m
m!

(
1

Z

)(m)
∣∣∣∣∣
ω=Ω0

f (m)(t) exp(iω0t)

}
.

where ℜ is real part of complex number, f (m)(t) is the m-th derivative of f(t), and ( 1
Z
)(m)

is the m-th derivative of Z = −ω/k with respect to ω, where k is considered as a function

of ω as described above. Besides, we consider the absorbing right boundary derived from

the linearized system, which is

Ê =
3

4
E− − 1

4
√
ϵ∞
H−, H̃ =

3

4
H− −

√
ϵ∞
4

E−,

for central flux and alternating flux, and

Ê =
1

2
E− − 1

2
√
ϵ∞
H−, H̃ =

1

2
H− −

√
ϵ∞
2

E−,

for upwind flux; these settings guarantee the energy stability for semi-discrete schemes

as desired and discussed in [1].

We choose maximum mesh level to be N = 11, and the time step ∆t = CFL ×∆x =

CFL/2N . The CFL number is chosen to be CFL = 0.3 for both alternating I/II fluxes and

upwind flux, to eliminate the error from time stepping and to ensure the convergence to

the expected solution. Figure A.1 and A.9 show the adaptive scheme solutions at two

different time T = 40 or T = 80, for different fluxes and different degrees of Alpert’s

multiwavelet basis of SGDG spaces, while the previous figure is for transient fundamental

temporal soliton, and the later for transient second order temporal soliton. We choose

refinement error threshold ε = 10−5, and coarsening error threshold δ = ε/10 = 10−6.

As discussed in [121, 122, 1], a daughter pulse occurs other than the soliton-like pulse,

and travels faster than the soliton-like pulse. Among all cases, the daughter pulse has
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smaller magnitude and higher frequency, comparing to the soliton-like pulse. The daugh-

ter pulse shows up in almost all simulations except in case of upwind flux with polyno-

mial degree 1, since numerical dissipation of upwind flux is stronger than other flux,

damping the magnitude of the pulse significantly.

We also plot at time T = 40 and T = 80, the numerical solutions and active elements

of adaptive scheme, for different fluxes and polynomial degree, in Figure A.2, A.3, A.4

for transient fundamental case, and in Figure A.10, A.11, A.12 for transient second order

case. Among all cases, the active elements of numerical solution sweep from left bound-

ary to right boundary, following the position of the soliton-like pulse. For any fixed flux,

high order method uses fewer active elements on simulation, when the high order and

low order method share the same refinement and coarsening accuracy threshold. It is

also clear that fewer active elements are in the hash table for adaptive scheme with up-

wind flux, especially at time T = 80 comparing to the other alternating fluxes; again this

demonstrates upwind flux is numerically more dissipative than other fluxes, so that it

significantly eliminates any oscillations.

To demonstrate the function of refinement threshold ε, we also compute the transient

fundamental temporal soliton with refinement threshold ε = 10−3 and coarsening thresh-

old δ = 10−4, in Figure A.5, A.6, A.7, and A.8. Spurious oscillations occur on simulations

of alternating flux on the left side of soliton-like pulse; besides, oscillation on alternating

flux II case has larger magnitude than that of alternating I case. There is no oscillation

on upwind flux case, again due to numerical dissipation of upwind flux. Simulations

with upwind flux use fewer active elements than alternating fluxes, which is a similar

result as in ε = 10−5 case. Comparing to ε = 10−5 case, when polynomial degree and flux

are the same, simulations of ε = 10−3 use fewer elements, especially on the right side of

soliton-like pulse, and for this reason, daughter pulse in ε = 10−5 case does not show up

in the ε = 10−3 case. Larger thresholds of refinement and coarsening allow larger error

on numerical solution, so the numerical scheme becomes less sensitive on detecting the
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daughter pulse of small magnitude. Similar to ε = 10−5 case, support of elements sweep

from the left to the right following transport of soliton-like pulse.

2.6 Numerical Simulation in Higher Dimensional Case

2.6.1 Accuracy and Convergence Test of Linear Equation

The following equation of unknown u = u(t, x, y), with (t, x, y) ∈ [0, T ] × Ω and Ω =

[0, 1]× [0, 1], is considered in this test

ut + ux + uy = 0, (2.56)

with periodic boundary condition in both x and y direction. The initial condition is

u(0, x, y) = u0(x, y) =
1

2 + sin(2π(x− y))
, (2.57)

and the accurate solution is

u(t, x, y) = u0(x− t, y − t). (2.58)

Spatially we use Sparse Grid DG method with upwind flux, and trapezoidal discretiza-

tion in time. Since trapezoidal rule is second order in time, we use the following CFL

condition:

∆t ≤ CFL
1

∆x(k+1)/2
+

1

∆y(k+1)/2

(2.59)

if spatial discretization is k + 1 order. The CFL number is chosen as the following:

k 1 2 3
CFL 0.9 4.9 9.9

Table 2.12: CFL numbers

We obtain the following tables of numerical error and order, for end time T = 1. Here

N represent the maximum mesh level on both x, y direction, i.e. ∆x = ∆y =
1

2N
. We also

put together the table at T = 0, i.e. the error of projection of initialization for comparison,

and similar order of accuracy is observed.
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N L1 error order L2 error order L∞ error order
5 4.57312e-02 5.30394e-02 1.15945e-01
6 1.51710e-02 1.592 1.98859e-02 1.415 5.50358e-02 1.075
7 5.14680e-03 1.560 7.43171e-03 1.420 2.41551e-02 1.188
8 1.49080e-03 1.788 2.31736e-03 1.681 9.06915e-03 1.413
9 2.73017e-04 2.449 4.83023e-04 2.262 2.87813e-03 1.656

Table 2.13: Errors and orders of accuracy of u, for k = 1, at T = 1

N L1 error order L2 error order L∞ error order
5 7.89276e-03 1.24346e-02 5.85053e-02
6 2.32947e-03 1.761 3.63022e-03 1.776 2.05560e-02 1.509
7 8.50218e-04 1.454 1.49729e-03 1.278 1.17706e-02 0.804
8 2.33762e-04 1.863 4.21631e-04 1.828 3.97204e-03 1.567
9 6.76643e-05 1.789 1.24259e-04 1.763 1.27171e-03 1.643

Table 2.14: Errors and orders of accuracy of u, for k = 1, at T = 0

N L1 error order L2 error order L∞ error order
5 5.07673e-03 6.88257e-03 2.69062e-02
6 4.97155e-04 3.352 7.57930e-04 3.183 5.93592e-03 2.180
7 1.81276e-04 1.456 2.87770e-04 1.397 2.56533e-03 1.210
8 1.89313e-05 3.259 3.28919e-05 3.129 4.44195e-04 2.530
9 2.79344e-06 2.761 5.14717e-06 2.676 7.21485e-05 2.622

Table 2.15: Errors and orders of accuracy of u, for k = 2, at T = 1

N L1 error order L2 error order L∞ error order
5 1.26846e-03 2.26795e-03 1.55856e-02
6 1.53309e-04 3.049 2.74032e-04 3.049 2.37428e-03 2.715
7 4.71975e-05 1.700 9.17983e-05 1.578 1.04093e-03 1.190
8 6.57529e-06 2.844 1.27438e-05 2.849 1.99676e-04 2.382
9 9.84804e-07 2.739 2.00984e-06 2.665 3.13352e-05 2.672

Table 2.16: Errors and orders of accuracy of u, for k = 2, at T = 0

N L1 error order L2 error order L∞ error order
4 4.45318e-03 5.69848e-03 2.10659e-02
5 1.11115e-03 2.003 1.46891e-03 1.956 7.11292e-03 1.566
6 1.10792e-04 3.326 1.47087e-04 3.320 8.31930e-04 3.096
7 8.05073e-06 3.783 1.70609e-05 3.108 1.51009e-04 2.462
8 1.20156e-06 2.744 1.80771e-06 3.238 1.11994e-05 3.753

Table 2.17: Errors and orders of accuracy of u, for k = 3, at T = 1
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N L1 error order L2 error order L∞ error order
4 1.04154e-03 1.48986e-03 4.86638e-03
5 2.18472e-04 2.253 4.12664e-04 1.852 1.88407e-03 1.369
6 1.81491e-05 3.589 3.27455e-05 3.656 3.26242e-04 2.530
7 2.18507e-06 3.054 5.21414e-06 2.651 7.02091e-05 2.216
8 1.71983e-07 3.667 3.57593e-07 3.866 6.91854e-06 3.343

Table 2.18: Errors and orders of accuracy of u, for k = 3, at T = 0

For the same equation, initial condition, and accurate solution as described above, we

also consider the adaptive scheme. In such case we use CFL condition

∆t ≤ CFL
1

∆x
+

1

∆y

,

with CFL= 0.9. We simulate the case of maximum mesh level N = 7 or N = 8, at

final time T = 1, and different refinement parameter ε; coarsen parameter η is set to be

ε/10.We also compute convergence rate, Rε with respect to refinement parameter or error

threshold, andRDOF with respect to active degree of freedom at final time, with following

formula:

RDOF =
log(el−1/el)

log(DOFl/DOFl−1)
(2.60)

Rε =
log(el−1/el)

log(εl−1/εl)
(2.61)

where el is L2 error, εl the corresponding refinement parameter ε, and DOFl the active

degrees of freedom at final time step. These results are shown in Table 2.19.

In the following Figure 2.2, we plot the accurate solution at T = 1, i.e.

u(t = 1, x, y) =
1

2 + sin(2π(x− y))
,

and the distribution of active elements on computational domain, by showing the center

of active elements, at final time T = 1, for different cases as given in Table 2.19, i.e k = 1

for N = 8 and k = 2, 3 for N = 7, with ε = 10−5. The figures show that more active

elements are needed in the region where the numerical solution has larger magnitude,

which is expected for adaptive scheme.
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ε DOF L2 error RDOF Rε

k = 1, N = 8

1e-03 1216 3.472e-03
5e-04 1848 2.671e-03 0.627 0.378
1e-04 3232 9.350e-04 1.878 0.652
5e-05 5456 3.508e-04 1.872 1.414
1e-05 10976 1.628e-04 1.099 0.477
5e-06 13980 1.286e-04 0.972 0.339

k = 2, N = 7

1e-03 900 1.367e-03
5e-04 1080 5.501e-04 4.993 1.313
1e-04 2268 2.874e-04 0.875 0.403
5e-05 2880 1.808e-04 1.941 0.669
1e-05 5400 4.064e-05 2.374 0.927
5e-06 6930 2.996e-05 1.222 0.440

k = 3, N = 7

1e-03 704 5.249e-04
5e-04 1120 4.092e-04 0.536 0.359
1e-04 1856 8.728e-05 3.059 0.960
5e-05 2112 4.854e-05 4.540 0.846
1e-05 3968 1.858e-05 1.523 0.597
5e-06 4800 6.058e-06 5.888 1.617

Table 2.19: L2 error and order for adaptive scheme, for T = 1

2.6.2 Accuracy and Convergence Test for nonlinear Maxwell Equation

Here we consider the nondimensionlized form of system (2.31), i.e.

∂tHz = ∂yEx − ∂xEy (2.62a)

∂tDx = ∂yHz (2.62b)

∂tDy = −∂xHz (2.62c)

D = ϵ∞E+P+ a(1− θ)|E|2E+ aθQE (2.62d)

∂tP = J (2.62e)

∂tJ = −γJ− ω2
0P+ ω2

pE (2.62f)

∂tQ = σ (2.62g)

∂tσ = −γvσ − ω2
vQ+ ω2

v |E|2 (2.62h)

on spatial domain Ω = [0, 1]2 and time domain [0, T ], and manufactured solution with pe-

riodic boundary condition as specified below, to demonstrate accuracy and convergence
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Figure 2.2: Accurate solution, and active elements at T = 1 for ε = 10−5; red
circles are center of active elements.

of SGDG method. We use following functions as manufactured solution:

Hz(t, x, y) = exp(cos(w(t+ αx+ βy))/q), (2.63)

and

P = D = E = (β,−α)Hz, J = ∂tP, Q = Hz, σ = ∂tHz. (2.64)

We also define parameters as

ϵ∞ = 1, a = 0.01, θ = 0.125, γ0 = γv = 0.05, ω0 = ωp = ωv = 1, (2.65)
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so equations (2.62d), (2.62f), and (2.62h) needs to add extra source for balance of equa-

tions. However, the PDE part of system (2.62) is satisfied, whenever α2 + β2 = 1. In our

example here, to impose periodic boundary condition, we choose

w = 2π
√
5, α =

1√
5
, β =

2√
5
, q = 15. (2.66)

To match the high order accuracy of spatial and time discretization, we first set

∆t = CFL×

 1

2

(
1

∆x
+

1

∆y

)


(k+1)/2

, ∆x = ∆y =
1

2N
, (2.67)

where N is the maximum of mesh level, k is degree of Alpert’s multiwavelet functions,

and we pick the CFL number as following:

CFL =


0.3 k = 1

1 k = 2

2 k = 3

We compute the errors as in Table 2.20 at final time T = 0.25, using Alternating Flux I.

We can observe reduction of order of convergence from k + 1 of regular DG method to

k+1/2 of SGDG method by 1/2, given the property of SGDG method as discussed in e.g.

[4], Theorem 3.4. This verifies the accuracy of the program.
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N Hz Ex Ey

L2 L∞ L2 L∞ L2 L∞

P 1

6 8.08e-04 2.89e-03 1.41e-03 3.97e-03 1.61e-03 5.05e-03
7 2.71e-04 1.58 1.13e-03 1.35 5.19e-04 1.44 2.16e-03 0.88 6.11e-04 1.40 2.42e-03 1.06
8 5.99e-05 2.18 3.64e-04 1.63 2.10e-04 1.30 9.14e-04 1.24 2.33e-04 1.39 1.10e-03 1.14
9 2.16e-05 1.47 1.03e-04 1.82 7.72e-05 1.44 3.55e-04 1.36 8.19e-05 1.51 4.08e-04 1.43

10 6.01e-06 1.85 3.67e-05 1.49 2.78e-05 1.47 1.49e-04 1.25 2.88e-05 1.51 1.63e-04 1.33
P 2

N Hz Ex Ey

L2 L∞ L2 L∞ L2 L∞

5 5.95e-04 1.27e-03 4.34e-04 1.09e-03 2.56e-04 8.53e-04
6 8.23e-05 2.85 2.16e-04 2.55 7.09e-05 2.61 2.92e-04 1.90 5.13e-05 2.32 2.16e-04 1.98
7 1.07e-05 2.94 2.81e-05 2.94 1.09e-05 2.70 4.50e-05 2.70 8.34e-06 2.62 3.84e-05 2.49
8 1.34e-06 3.00 4.83e-06 2.54 1.69e-06 2.69 7.98e-06 2.50 1.45e-06 2.52 8.08e-06 2.25
9 1.69e-07 2.99 5.10e-07 3.24 2.84e-07 2.57 1.48e-06 2.43 2.59e-07 2.49 1.39e-06 2.54
P 3

N Hz Ex Ey

L2 L∞ L2 L∞ L2 L∞

5 8.97e-04 1.39e-03 5.98e-04 9.08e-04 3.00e-04 5.14e-04
6 5.67e-05 3.98 9.02e-05 3.94 3.78e-05 3.98 6.23e-05 3.86 1.90e-05 3.98 4.43e-05 3.54
7 3.65e-06 3.96 5.92e-06 3.93 2.44e-06 3.96 4.52e-06 3.79 1.23e-06 3.95 3.68e-06 3.59
8 2.28e-07 4.00 3.98e-07 3.90 1.53e-07 3.99 3.63e-07 3.64 7.79e-08 3.98 3.24e-07 3.50
9 1.43e-08 3.99 2.56e-08 3.96 9.64e-09 3.99 3.38e-08 3.43 5.06e-09 3.94 2.80e-08 3.53

Table 2.20: L2 and L∞ errors of Hz, Ex, Ey for Alternating Flux I case
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2.6.3 Spatial Optical Soliton Propagation

In this subsection, we present the result of the adaptive SGDG schemes to simulate phys-

ically relevant problem of spatial optical soliton propagation. We start from the setup

of the example in the dimensional form, and show the non-dimensionalized form after-

wards based on which the actual simulation is conducted.

We first consider the spatial optical soliton propagation in realistic glasses, character-

ized by a three-pole Sellmeier linear dispersion, an instantaneous Kerr nonlinearity and

a dispersive Raman nonlinearity as discussed in [2, 127]. The non-dimensionalized form

of the equations is the following:

µ0∂tHz = ∂yEx − ∂xEy (2.68a)

∂tDx = ∂yHz (2.68b)

∂tDy = −∂xHz (2.68c)

D = ϵ0

[
ϵ∞E+ b

3∑
s=1

Ps + a(1− θ)|E|2E+ aθQE

]
(2.68d)

∂tPs = Js, s = 1, 2, 3, (2.68e)

∂tJs = −γJs − ω2
0sPs + ω2

psE, s = 1, 2, 3, (2.68f)

∂tQ = σ (2.68g)

∂tσ = −γvσ − ω2
vQ+ ω2

v |E|2 (2.68h)

with parameters

ω01 = 2.7537× 1016rad/s, ω02 = 1.6205× 1016rad/s, ω03 = 1.9034× 1014rad/s,

a = 1.89× 10−22m2/V 2, γv =
2

τ2
, ωv =

√
τ 21 + τ 22
τ 21 τ

2
2

, τ1 = 12.2fs, τ2 = 32.2fs,

and

β1 = 0.69617, β2 = 0.40794, β3 = 0.89748, ωps =
√
βpsω0s, γs = 0, s = 1, 2, 3,

ϵ∞ = 1, b = 1, θ = 0.3.
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The physical domain is [0, 38] for x and [−3, 3] for y, in unit of µm; however, to reduce

the numerical oscillations from domain boundary, we set the computational domain to

be larger, i.e. [0, 60] × [−4, 4] instead. On the left boundary x = 0, time-dependent hard

source is injected to the magnetic field Hz, namely,

Hz(x = 0, y, t) = H0 sin(ωct)sech(y/w), (2.69)

where, ωc = 4.35 × 1015 rad/s is the carrier frequency, and w = 667 nm, H0 = 4.77 ×

107 A/m are the width and the magnitude of the incident wave, respectively.

To better understand expected behaviour of our numerical tests, recall that in uniform

glasses, the Maxwell’s equations (2.68) with the nonlinear constitutive laws reduce to the

nonlinear Schrödinger equation (NLSE) under paraxial assumption [2]. The pulse pro-

vided by the hard source above has predictable propagation, as indicated by the accurate

solution of NLSE. In fact, the normalized NLSE of u = u(ζ, ξ), i.e.

i
∂u

∂ζ
=

1

2

∂2u

∂2ξ
+ |u|2u, ζ ∈ (0,+∞), ξ ∈ (−∞,+∞), (2.70)

with initial condition u(0, ξ) = g(ξ), ξ ∈ (−∞,+∞) admits bright soliton solutions.

Specifically, regarding our numerical tests, we considered

g(ξ) = g1(ξ) := ηsech (η(ξ − ξ0)) exp(−iΛξ − iϕ)

as initial condition, and the solution is given by

u1(ζ, ξ) = ηsech (η(ξ − ξ0 − Λζ)) exp(−iΛξ − iϕ+ i · Λ
2 − η2

2
),

which is called fundamental soliton; η, Λ, ϕ, ξ0 are parameters. When Λ = 0, |u1(ζ, ξ)|

remains constant for all ζ , and one can see that the fundamental soliton propagates in

the dispersive and weakly nonlinear medium without changing its amplitude, width or

shape. To compare with following case, consider ξ0 = 0 and η = 1. Instead, when

g(ξ) = g2(ξ) := 2sech(ξ),
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the solution becomes

u2(ζ, ξ) := 4 exp(−iζ/2) cosh(3ξ) + 3 exp(−4iζ) cosh(ξ)

cosh(4ξ) + 4 cosh(2ξ) + 3 cos(4ζ)
.

This solution is called second-order soliton, as the result of the interactions between two

fundamental solitons. We present the magnitude of u1 and u2 in the following Figure 2.3.
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Figure 2.3: Magnitude |u1(ζ, ξ)| of Fundamental Soliton and |u2(ζ, ξ)| of Second Order
Soliton, of Solutions of NLSE (2.70).

Before we simulate the fundamental and second order solitons, we need a final step to

non-dimensionalize the Maxwell equation (2.68). Following the procedure desribed in [1],

we choose reference space scale x0 = 8µm, reference time scale t0 = x0/c = 2.6685×10−14s

with c the light speed, and reference value of Hz is H0 = 4.77×107A/m. If reference value

of electric field is E0, then we have rescaled fields and constants defined as follows:

(H/E0)
√
µ0/ϵ0 → H, D/(ϵ0E0) → D, P/E0 → P,

(J/E0)t0 → J, E/E0 → E, Q/E2
0 → Q, (σ/E2

0)t0 → σ,

aE2
0 → a, ω∗t0 → ω∗, ∗ = 0s, ps, v, s = 1, 2, 3, γvt0 → γv.

Note that here we use same notations for scaled and original variables. From the scaling

of H = Hz, we have H0 = E0

√
ϵ0/µ0 = E0ϵ0c, so E0 = 1.797× 1010N/(A · s).
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Spatial computational domain is [0, 60] × [−4, 4] in unit of µm, or [xa, xb] × [ya, yb] =

[0, 7.5]× [0, 1], after nondimensionalization on both x, y direction and shifting on y direc-

tion by 0.5, on x-y plane, and computational domain is large enough in both x and y di-

rection to avoid non-physical oscillation. Initially, all the fields are set to be zero. To make

the best use of boundary condition provided as Hz(x = 0, y, t) in (2.69), we consider the

adaptive SGDG schemes with alternating numerical fluxes (2.35). Note that in these two

cases, we do not need information of E(x = 0, y, t), since the flux regarding E on x = 0

along x direction is chosen to be right limit on x = 0, whose value is evaluated within

the computational domain. We refer the interested readers to [1] for numerical bound-

ary treatments suitable for other alternating fluxes. For simplicity we will only present

the simulation results by the Alternating I numerical flux. And except for the injected

boundary on x = 0, the other three edges of boundary are absorbing boundaries based on

linearized system on characteristic direction, after neglecting the nonlinear effects of Kerr

type and Raman scattering and the linear delayed response. The dimensionless form of

these numerical flux follows as

1. at right boundary x = xb of x direction, (Hz +
√
ϵ∞Ey)

+ = (Hz +
√
ϵ∞Ey)

− and

(Hz −
√
ϵ∞Ey)

+ = 0;

2. at left boundary y = ya of y direction, (Hz +
√
ϵ∞Ex)

+ = (Hz +
√
ϵ∞Ex)

− and (Hz −
√
ϵ∞Ex)

− = 0;

3. at left boundary y = yb of y direction, (Hz −
√
ϵ∞Ex)

+ = (Hz −
√
ϵ∞Ex)

− and (Hz +

√
ϵ∞Ex)

+ = 0.

In our simulation, we use P 2 Alpert’s multiwavlet as basis of numerical solution, cou-

pling with P 3 interpolatory multiwavelet to deal with nonlinearity. The interpolatory

multiwavelet basis is chosen to be one degree higher than Alpert’s, in order to eliminate

numerical error of interpolation. Maximum mesh level is 11, i.e. the most refined ∆x
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and ∆y might be 1/211. Error thresholds for refinement and coarsening are ε = 10−3 and

η = 10−4, respectively. The relative tolerance of nonlinear solver of PETSc is set to be 10−9.

We consider first the case of fundamental soliton, where the non-dimensionalized

form of initial condition is

Hz(x = 0, y, t) = sin(ωct)sech(y/w),

with rescaled ωc = 116.08 and w = 0.083375. We plot the solutions at different time,

and the centers of corresponding active elements for adaptive scheme in Figure 2.4. Note

that in this case, the soliton during the propagation maintains magnitude and width as in

first picture of Figure 2.3, while the error threshold allows error of specific magnitude to

enter into the soliton solution. The distribution of active elements also provide important

information of the soliton: more active elements accumulate around y = 0.5, where the

magnitude of the magnetic field reaches its maximum, and fewer active elements support

on region away from y = 0.5, since the soliton solution almost vanishes when y is close to

its boundary. Along x direction, active elements and their support move along x direction

as the soliton propagates. The adaptive scheme generates active elements that properly

follow the propagation of the solution.

Next, we present several simulation results of non-dimensionalized initial condition

Hz(x = 0, y, t) = 2 sin(ωct)sech(y/w)

with same ωc and w as in fundamental soliton case; see Figure 2.5. We focus on the region

when x is smaller than 1/3. This solution has changing magnitude and width, which is

different from fundamental soliton. As predicted in NLSE (2.70) and Figure 2.3, this is the

case when two fundamental solitons produce the second order soliton, with focusing and

defocusing effect. Again the support of active elements match the region with larger |Hz|

magnitude, while at the region close to boundary of y direction or of large x, the solution

almost vanishes and fewer elements are needed for good resolution of the solution.
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Figure 2.4: Comparison for fundamental soliton between absolute value |Hz| of magnetic
field (left column) and center of active elements (right column) at different time. First
row: T = 2; Second row: T = 4; Third row: T = 6.
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Figure 2.5: Comparison for second order soliton between absolute value |Hz| of magnetic
field (left column) and center of active elements (right column) at different time. First
row: T = 1.976; Second row: T = 3.024; Third row: T = 3.459.
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CHAPTER 3

APPLICATION OF WENO METHOD IN MATHEMATICAL MODEL OF
ASYNCHRONOUS DATA FLOW IN PARALLEL COMPUTERS

3.1 Models of Extreme Scale Computers

It has been well-established that current and future generations of extreme scale com-

puters have achieved and, for the foreseeable future, are expected to achieve increases in

performance via greater levels of parallelism at multiple levels — e.g., within the proces-

sors as well as increasing the number of processors and nodes —as opposed to increases

in clock speeds, which are expected to remain relatively flat. Additionally, extremely con-

current codes, involving dynamic parallelism and greater degrees of asynchronous paral-

lel executions, are increasingly needed to leverage this large scale parallellism [128, 129].

As machine improvements depend on increasingly complex architectures and as ad-

ditional constraints on system development and planning (such as power consumption

[129]) arise, a need for predictive, quantitative models of computational performance will

grow greater. Previously developed modeling tools such as LogP [130] result in easily

evaluated models which can prove difficult to extend and modify. Alternatively, PRAM

models have been used as abstractions of codes; these however have scalability issues

due to the complexity of simulating them [131]. Other modern tools [132, 133] are sim-

ilarly still limited to fine-grain simulations of at most a few dozen nodes, again due to

their computational complexity during simulations.

Core counts are now in the hundreds of thousands and millions on machines in the

TOP500 list of supercomputers; node counts consistently are in the thousands. Such num-

bers mean that fine-grained simulation tools (such as those listed above) are incapable of

describing large-scale phenomena. Alternative approaches have been proposed to ad-

dress these issues: miniapp codes can mimic key features of the performance of exascale
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codes with a much smaller codebase [134]. Aspen, a framework for performance model-

ing [135, 136], uses a domain specific language which encodes both abstracted features of

machines hardware and specific software applications to provide coarse-grained simula-

tions. However, these suffer from the need to develop specialized simulation codes which

can be problem dependent, resulting in possibly labor-intensive tools. A workflow mod-

eling apporach, Pegasus, has been developed to model workflows using a graph-theoretic

perspective to detect and manage anamolies in the computing environment [137].

We propose developing a macroscopic model of extreme scale computers which views

such computing environments in a continuum framework. Such a model has several po-

tential benefits: in addition to being computationally tractable, it will open up the pos-

sibility of using the theoretical tools of partial differential equations to understand and

control the performance of high-performance computing systems. Specifically, our goal

is to derive a fluid-limit model of data flow — which can be described by a partial differ-

ential equation — from a simplified deterministic model of data processing and flow in

an extreme scale computer with interprocessor communications and asynchronous exe-

cutions. Fluid models, beyond their obvious utility in physical systems, have been used

to model flows in networks, such as vehicular traffic flows [138], supply chains [139], and

gas networks [140, 141]. In particular, as discussed in [142] and [139], such fluid models

lie at the end of a hierarchy of models which begin with microscopic or discrete mod-

els. That is, similar to the derivation of physical fluid laws from many body physics, one

may derive continuum-level flow equations from discrete-level models of the dynamics

of agent interactions. With such a model, standard numerical simulation tools and analyt-

ical methods may be brought to bear for studying large-scale phenomena in extreme-scale

computing.

We begin in section 3.2 with a microscopic model of a network of processors perform-

ing a multi-stage computational task which necessitates inter-processor communications.

In section 3.3, we derive a formal asymptotic limit of this agent-based model as the scale
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of the system increases, resulting in an Eulerian fluid flow model. Along with the re-

sulting nonlinear conservation law, we present a related Hamilton-Jacobi equation and

establish the existence of solutions [103, 104] in section 3.3. In section 3.4, we illustrate the

numerical methods we use to simulate discrete and continuum model, especially WENO

interpolation for solving Hamilton-Jacobi equation [12, 11, 107, 99]. Finally in section 3.5,

we present the results of numerical experiments, to show agreement between the micro-

scopic and fluid models and then illustrate the behavior of solutions under heterogeneous

computing layouts.

This chapter is based on published paper [10].

3.2 The Discrete Model

In this section, we introduce the microscopic model, which is based on a highly simplified,

deterministic, semi-discrete ordinary differential equation (ODE). Imagine the computer

as a network of processors {Pi}imax

i=1 that are arranged in a one-dimensional, periodic lat-

tice. The computer is assigned a computational job involving a sequence of kmax tasks

which are identical in the sense that each one takes the same effort to complete. This

computational job is divided by distributing data within the many processors. Denote by

qi,k(t) the amount of data in Pi that sits in stage k at time t.

The dynamics of qi,k are given by a conservation law of the form

q̇i,k(t) = Fi,k−1(t)− Fi,k(t), k = 1, . . . , kmax, i = 1, . . . imax, (3.1)

where Fi,k (i = 1, . . . , imax, k = 1, . . . , kmax−1) is the rate of data moving in processor i from

stage k to k + 1, referred to as the throughput. At the first stage k = 1, Fi,0 (i = 1, . . . , imax)

is the rate of data being loaded into processor i to be processed, referred to as the inflow,

and at the final stage, Fi,kmax (i = 1, . . . , imax) is the rate of data completing the final stage

of the job, referred to as the outflow. Equation (3.1) implies that the data in each processor

is neither created or destroyed, only moved in and out of the processor or in between
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stages; that is,
d

dt

(
kmax∑
k=1

qi,k

)
= Fi,0 − Fi,kmax . (3.2)

Another fundamental quantity of interest in the discrete model isQi,k(t), which is defined

as the amount of data at time t that has gone through the first k − 1 stages of Pi. For each

t ≥ 0,

Qi,k(t) =
( kmax∑

j=k

qi,j(t)
)
+

∫ t

0

Fi,kmax(s)ds. (3.3)

To determine the form of Fi,k, consider the case of with or without throttling. Without

throttling, assume data can move in one processor Pi between tasks in the rate of a given

maximum throughput ai ≥ 0, which is independent of the task number k. If we consider

throttling, Fi,k(t) does not reach the maximum ai for two reasons considered here: self-

throttling and neighbour-throttling.

1. Self-throttling: Given an amount of data qi,k to be processed at stage k in processor

...

...

...

...

...

...

qi−1,k−1

qi−1,k

qi−1,k+1

qi,k−1

qi,k

qi,k+1

qi+1,k−1

qi+1,k

qi+1,k+1

k − 1

k

k + 1

Pi−1 Pi Pi+1

Figure 3.1: Schematic of network of processors. Dashed lines denote inter-processor com-
munications
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Pi, we define the self-throttling function

v1(qi,k; q∗) = max

{
0,min

{
1,
qi,k
q∗

}}
, (3.4)

in the form of roof-line model. If no data is available to be processed, then Fi,k = 0;

if the amount of data to be processed drops below a certain threshold q∗ > 0, then

Pi cannot maintain the throughput ai and the throughput is reduced.

2. Neighbor throttling: As the computational task is not entirely parallel across pro-

cessors, Pi requires sufficient information from its neighbors to perform task k at full

throughput. The neighbor throttling function v2 models this dependence. It gives

the amount of available data on Pi at stage k

v2(qi,k,∆i+1,k,∆i−1,k; β) = min

{
qi,k,

1

β
max{∆i+1,k, 0},

1

β
max{∆i−1,k, 0}

}
. (3.5)

Here ∆i±1,k denotes the data on the right/left neighbor which is available to be used

by Pi to process qi,k. The parameter β ∈ (0, 1] allows for the possibility that compu-

tations do not rely in a one-to-one fashion upon the availability of data from neigh-

bors. If ∆i±1,k = 0 the processing of data stops due to the absence of a necessary

component of the computational task and so Fi,k = 0. Alternatively, if both ∆i+1,k

and ∆i−1,k exceed βqi,k, then Pi has sufficient data from its neighbors to process qi,k

and no throttling occurs.

The data from the left/right neighbor which is available for processing at stage k is

given by

∆i±1,k = Qi±1,k −Qi,k+1 = Qi±1,k − (Qi,k − qi,k). (3.6)

The data on each neighbor must have completed the same stage for it to be available;

additionally, this data is not reused on Pi for the same stage. This means that the

data available to be used from the neighbors can be written as above and so the

amount of data available to be processed on Pi at stage k is given by

v2
(
qi,k, Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k; β

)
. (3.7)
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The throughput Fi,k is a composition of the throttling functions v1 and v2:

Fi,k = aiv1

(
v2
(
qi,k, Qi+1,k −Qi,k + qi,k, Qi−1,k −Qi,k + qi,k; β

)
; q∗

)
. (3.8)

At first glance, this definition of Fi,k appears circular since it depends on Qi,k, which in

turn depends on Fi,kmax . However, as a consequence of the conservation law (3.2),∫ t

0

Fi,kmax(s)ds =

∫ t

0

Fi,0(s)ds+
kmax∑
j=1

qi,j(0)−
kmax∑
j=1

qi,j(t) (3.9)

Thus to complete the model, we need only prescribe initial data qi,k(0) and the inflow Fi,0.

To prescribe the inflow, we specify qi,0 and then let Fi,0 be evaluated according to (3.8).

Theorem 3.2.1 ([10], Proposition 2.1) The system (3.1) with (i) throughputFi,k defined in (3.8)

for i = 1, . . . , imax and k = 1, . . . , kmax; (ii) prescribed initial data qi,k(0) for i = 1, . . . , imax and

k = 1, . . . , kmax; and (iii) prescribed inflow data Fi,0 for i = 1, . . . , imax and t ≥ 0 has a unique

solution for all t ≥ 0. Moreover, if qi,k(0) ≥ 0 for all i = 1, . . . , imax and k = 1, . . . , kmax, then

qi,k(t) ≥ 0 for all t ≥ 0 and i = 1, . . . , imax and k = 1, . . . , kmax.

3.3 The Continuum Model

In this section, we consider a formally accurate continuum model in the limit as number

of processors imax and number of tasks kmax tend to infinity. So far to our knowledge, there

is no immediate conclusion of existence and uniqueness for such model, so a Hamilton-

Jacobi equation is demonstrated at the end of this section. The extensive theory of vis-

cosity solutions of Hamilton-Jacobi equation leads to promising result of existence and

uniqueness of the model. Higher dimension model can be derived in the similar manner;

for details, see [10] Section 3.3.

For given imax, kmax, we define the quantities:

δ := (kmax)−1, ε := (imax)−1, η :=
ε

δ
=
kmax

imax
. (3.10)
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Here, δ is the fraction of the work done in each stage and ε is the average amount of data

in a processor. In following paragraphs, we provide a brief discussion of derivation of the

continuum model, by imax and kmax tending to infinity. We assume, in taking this limit,

that the job performed by the computer is fixed – that is, the total amount of work does

not change.

To derive such a continuum model, we first express the ODE (3.1) in terms of the

following O(1) quantities:

r∗ :=
q∗
εδ
, ri,k :=

qi,k
εδ

, Ri,k :=
1

ε
Qi,k , D±

i,k := ±Ri±1,k −Ri,k

ε
, αi :=

ai
ε
. (3.11)

Define the rescaled throttling functions

w1(r, r∗) = max

{
0,min

{
1,
r

r∗

}}
. (3.12a)

w2

(
r,D−, D+; η, β

)
= min

{
r,

1

β
max{ηD+ + r, 0}, 1

β
max{ηD− + r, 0}

}
(3.12b)

and the composite function

w
(
r,D−, D+; r∗, α, η, β

)
:= αw1

(
w2(r,D

−, D+; η, β); r∗
)
. (3.13)

The dynamics in (3.8) can now be re-expressed in terms of the O(1) quantities in (3.11),

thereby obtaining an evolution formula for ri,k:

ṙi,k(t) =
fi,k−1(t)− fi,k(t)

δ
(3.14)

fi,k(t) = w
(
ri,k(t),−D−

i,k(t), D
+
i,k(t); r∗, αi, η, β

)
(3.15)

for i = 1, . . . , imax, k = 0, . . . , kmax, and ri,0 is prescribed for i = 1, . . . , imax.

The next step is to interpret (3.14) as a conservative finite-difference formula for a

sufficiently smooth function ρ = ρ(x, y, t), defined on [0, 1)× [0, 1]× [0,∞), such that

ρ(xi, zk, t) = ri,k(t), (3.16)

on grid points

xi = (i− 0.5) ε and zk = kδ, (3.17)
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for i = 1, . . . , imax and k = 0, . . . , kmax. We also let α = α(x) be a continuous function

such that α(xi) = αi. Let the function ϕ = ϕ(x, z, t) interpolate the fluxes on the same grid

points:

ϕ(xi, zk, t) = fi,k(t), (3.18)

for i = 1, . . . , imax, k = 1, . . . , kmax, t ≥ 0, and

P (x, z, t) =

∫ 1

z

ρ(x, ξ, t)dξ +

∫ t

0

ϕ(x, 1, s)ds, (3.19)

and we find that both

Φ(1)(ρ(xi, zk, t), ∂xP (xi, zk, t), ∂
2
xP (xi, zk, t); r∗, a, η, β) (3.20)

and

Φ(0)(ρ(xi, zk, t), ∂xP (xi, zk, t); r∗, a, η, β) (3.21)

approximate

w(ri,k(t), D
−
i,k(t), D

+
i,k(t); r∗, αi, η, β), (3.22)

when 0 ≪ ε, δ ≪ 1, where

Φ(0) (ρ, ∂xP ; r∗, α, η, β) = w (ρ,−∂xP, ∂xP ; r∗, α, η, β) (3.23a)

Φ(1)
(
ρ, ∂xP, ∂

2
xP ; r∗, α, η, β

)
= w

(
ρ,−∂xP +

ε

2
∂2xP, ∂xP +

ε

2
∂2xP ; r∗, α, η, β

)
. (3.23b)

Thus for 0 ≪ ε, δ ≪ 1, with η ∈ (0,∞) fixed, the weak form of (3.14) is formally consistent

with the continuum model

∂tρ+ ∂zΦ
(ℓ)(ρ, ∂xP, ∂

2
xP ; r∗, a, η, β) = 0, (x, z, t) ∈ T1 × (0, 1)× (0,∞), (3.24a)

ρ(x, 0, t) = ρbc(x, t), (x, t) ∈ T1 × (0,∞), (3.24b)

ρ(x, z, 0) = ρ0(x, z), (x, z) ∈ T1 × (0, 1) (3.24c)

where

P (x, z, t) =

∫ 1

z

ρ(x, ξ, t)dξ +

∫ t

0

ϕ(ℓ)(x, 1, s)ds, (3.25a)

ϕ(ℓ)(x, z, t) = Φ(ℓ)
(
ρ(x, z, t), ∂xP (x, z, t), ∂

2
xP (x, z, t); r∗, α, η, β

)
, (3.25b)
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and Φ(ℓ), ℓ ∈ {0, 1}, is given in (3.23). For the sake of compactness, we have slightly

abused notation in (3.24a), as the definition of Φ(0) is independent of ∂2xP . Additionally,

we have identified [0, 1) with the one-dimensional torus T1 in order to reflect the periodic

layout of the processors.

As in the discrete case, it may appear that the model in (3.24) is circular due to the

definition of P in (3.25a). However, as with F in (3.9), Φ(ℓ) can be unwrapped, this time

using the conservation law (3.24a); that is∫ t

0

ϕ(ℓ)(x, 1, s)ds =

∫ t

0

ϕ(x, 0, s)ds+

∫ 1

0

ρ0(x, ξ)dξ −
∫ 1

0

ρ(x, ξ, t)dξ (3.26)

Thus the continuum model is complete once initial condition ρ0 and inflow condition

ϕbc := ϕ(·, 0, ·) are specified. In practice, ρbc is prescribed and then ϕbc is evaluated using

(3.25b) and (3.23).

Furthermore, integrating (3.24a) with respect to z gives

∂t

∫ 1

z

ρ(x, ξ, t)dξ + Φ(ℓ)(x, 1, t)− Φ(ℓ)(x, z, t) = 0 (3.27)

Meanwhile, differentiating (3.25a) gives

∂tP (x, z, t) = ∂t

∫ 1

z

ρ(x, ξ, t)dξ + Φ(ℓ)(x, 1, t) (3.28)

Combining (3.27) and (3.28) and using the fact that ρ = −∂zP gives a closed Hamilton-

Jacobi equation for P with initial and boundary conditions that are derived by applying

the definition of P in (3.25a) to (3.24c) and (3.24b), respectively. The complete model is,

for some T > 0,

∂tP − Φ(ℓ)(−∂zP, ∂xP, ∂2xP ; r∗, α, η, β) = 0, (x, z, t) ∈ T1 × (0, 1)× (0, T ), (3.29a)

P (x, 0, t)−
∫ 1

0

ρ0(x, ξ)dξ −
∫ t

0

ϕbc(x, s)ds = 0, (x, t) ∈ T1 × (0, T ), (3.29b)

P (x, z, 0)−
∫ 1

z

ρ0(x, ξ)dξ = 0, (x, z) ∈ T1 × (0, 1), (3.29c)

where (3.29b) is derived by integrating (3.24b) over z ∈ (0, 1) and applying (3.26).

The existence and uniqueness of viscosity solution follows:
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= r−ηD
1−β

= r

Figure 3.2: Flux Φ(0) defined in (3.30)

Theorem 3.3.1 ([10], Theorem 3.1) Assume that α and ρ0 are (i) non-negative, (ii) uniformly

Lipschitz in their arguments, and (iii) periodic in x (that is, α(0) = α(1) and ρbc(0, t) = ρbc(1, t)

for all t ∈ [0, T ]). Further, assume that there is an M where
∫ T

0
ϕbc(x, s)ds ≤ M for all x ∈ T1.

Then there exists a unique, continuous, viscosity solution (in the sense of [103]) to (3.29).

We use the flux function Φ(0) for all of the numerical simulations in Section 3.5. This

function is a piecewise constant that can be expressed in the following form:

Φ(0)(r,D; r∗, α, β) =



α (r,D) ∈ Ω1,

αr

r∗
(r,D) ∈ Ω2,

α(r + ηD)

βr∗
(r,D) ∈ Ω3,

α(r − ηD)

βr∗
(r,D) ∈ Ω4,

(3.30)

where the subdomains Ωi are depicted in Figure 3.2.

3.4 Numerical Methods for Simulations

In this section, we perform numerical simulations of the one dimensional processor sys-

tem in order to (i) test the ability of the macroscopic model to approximate the discrete

model when ε and δ are small and (ii) explore how model parameters affect the model out-

put. Problem data is specified in terms of continuum models quantities. These quantities

are translated back to discrete model quantities in order to implement ODE simulations.
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3.4.1 ODE Implementation

The explicit two-step Adams-Bashforth (Section III of [143]) is used to simulate the dis-

crete model formed by (3.1), (3.3), and (3.8). Given η, values imax and kmax are chosen

so that kmax/imax = η as in (3.10). We then compute a solution to the discrete model as

follows. Using (3.11) and (3.16), we convert r∗, a, ρ0, ρbc to their discrete counterparts:

q∗ = εδr∗, qi,k(0) = εδρ0(xi, zk), qi,0(t) = ρbc(xi, t), ai = εα(xi). (3.31)

This discrete model data is used to set the time step:

∆t =
q∗

2
(
maxi ai

)√
imaxkmax

. (3.32)

The outflow at Fi,kmax is tracked and accumulated over time in order to compute Qi,k from

(3.3). At the final time T , the result of the explicit time stepping is converted back, via the

formula in (3.11), i.e., ri,k(T ) = (εδ)−1qi,k(T ). In order to compare this against solutions to

the continuum model (see below), we use these point-wise values to generate a piecewise

constant function r over the cells Ci,k = (xi − .5ε, xi + .5ε)× (zk, zk + δ):

r(x, z) =
∑
i,k

ri,kχCi,k
(x, z). (3.33)

3.4.2 Hamilton-Jacobi Implementation

The Hamilton Jacobi equation (3.29) is solved numerically using a fifth-order WENO in-

terpolation in x and z and the optimal third-order SSP Runge-Kutta method for time

integration. Details of these algorithms can be found in Sections 3.2 and 6, respectively,

of [11]. Once a numerical solution for P is computed, we again use WENO interpolation

to approximate ρ via the relation ρ(x, z, t) = −∂zP (x, z, t).

To condense the notation, let σ = ∂xP , τ = ∂zP and υ = ∂xxP . Then for fixed r∗, α, η, β,

and ℓ, let H(σ, τ, υ) = −Φ(ℓ)(−τ, σ, υ; r∗, a, η, β). The numerical solution for P is computed
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on a grid {xn, zm} where

xn = n∆x, n = 1, 2, . . . , N, ∆x = N−1, (3.34)

zm = m∆z, m = 1, 2, . . . ,M, ∆z =M−1. (3.35)

The semi-discrete method for the grid function Pn,m(t) ≈ P (xn, zm, t) is

d

dt
Pn,m(t) = −Ĥ(σ−

n,m, σ
+
n,m, τ

−
n,m, τ

+
n,m; υn,m), (3.36)

where the numerical approximations σ±
n,m ≈ σ(x±n , zm) and τ±n,m ≈ τ(xn, z

±
m) are obtained

via WENO interpolation and υn,m ≈ υ(xn, zm) is computed by central difference. The

numerical flux function Ĥ , based on the global Lax-Friedrichs flux:

Ĥ(σ−, σ+, τ−, τ+; υ) = H

(
σ− + σ+

2
,
τ− + τ+

2
, υ

)
− 1

2
λx(σ+ − σ−)− 1

2
λz(τ+ − τ−), (3.37)

where

λx = max
σ,τ

|Hσ| =
αη

βr∗
, λz = max

σ,τ
|Hτ | =

α

βr∗
. (3.38)

The time step for the SSP integrator is given by

∆t

(
λx

∆x
+
λz

∆z

)
≤ 0.6. (3.39)

3.4.3 WENO Interpolation

Here we demonstrate how to compute σ± and τ± using fifth order WENO interpolation

[11]. For simplicity, we only consider σ±
i,j for fixed i, j, which approximate ∂xP (x, zj) from

the left or right limit of x = xi, and we consider σ−
i,j first. For fixed i, j, each of stencils

X0 = {xi−3, xi−2, xi−1, xi}, X1 = {xi−2, xi−1, xi, xi+1}, X2 = {xi−1, xi, xi+1, xi+2},

and function values of P (·, zj) evaluated on the stencil, we can find a Lagrangian interpo-

lating polynomial Qk of degree 3, k = 0, 1, 2, i.e.

Qk(xi−3+k+r) = P (xi−3+k+r, zj), r = 0, 1, 2, 3.
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Then

σ−,k
i,j :=

d

dx
Qk(x)

∣∣∣
x=xi

approximate ∂xP (x−i , zj); note that σ−,k
i,j , k = 0, 1, 2 are the three possible interpolations of

third order ENO procedure. Let

∆+
x Pi,j := Pi+1,j − Pi,j = P (xi+1, zj)− P (xi, zj)

denote the standard forward difference operator; here we omit variable t of function P

for convenience. Direct calculations imply

σ−,0
i,j =

1

3

∆+
x Pi−3,j

∆x
− 7

6

∆+
x Pi−2,j

∆x

∆+
x Pi−1,j

∆x
(3.40)

σ−,1
i,j =

−1

6

∆+
x Pi−2,j

∆x
+

5

6

∆+
x Pi−1,j

∆x
+

1

3

∆+
x Pi,j

∆x
(3.41)

σ−,2
i,j =

1

3

∆+
x Pi−1,j

∆x
+

5

6

∆+
x Pi,j

∆x
− 1

6

∆+
x Pi+1,j

∆x
. (3.42)

WENO procedure uses a convex combination of σ−,k
i,j , k = 0, 1, 2 as final approximation

of σ−
i,j , i.e.

σ−
i,j = w0σ

−,0
i,j + w1σ

−,1
i,j + w2σ

−,2
i,j , (3.43)

where w0, w1, w2 ≥ 0 are nonlinear weights whose sum is 1. The key ingredient of WENO

interpolation is to choose these nonlinear weights in the following way:

1. In smooth regions, w0, w1, w2 should be very close to the optimal linear weights:

w0 = 0.1 +O(∆x2), w1 = 0.6 +O(∆x2), w2 = 0.3 +O(∆x2),

which makes σ−
i,j defined by (3.43) fifth order accurate on stencil {xi−3, xi−2, . . . , xi+2}

in approximating ∂xP (xi, zj) in smooth regions of P (·, zj);

2. When stencil Xk contains discontinuity in the x derivative of P , the corresponding

weight wk should be close to zero, so that stencil on non-smooth region has little

contribution to σ−
i,j . The choice of weight in [107] satisfies wk = O(∆x4) in this case.
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To find such nonlinear weight, a smoothness indicator is introduced to measure how

smooth the function being interpolated is inside the interpolation stencil. As illustrated

in [107], the smoothness indicator is a scaled sum of the squares of the L2 norms of the

second and higher derivatives of the interpolation polynomial on the target interval, i.e.

IS0 = 13(a− b)2 + 3(a− 3b)2, (3.44)

IS1 = 13(b− c)2 + 3(b+ c)2, (3.45)

IS2 = 13(c− d)2 + 3(3c− d)2, (3.46)

where

a =
∆2

xPi−2,j

∆x2
, b =

∆2
xPi−1,j

∆x2
, c =

∆2
xPi,j

∆x2
, d =

∆2
xPi+1,j

∆x2
, (3.47)

and ∆2
x represents the central difference, i.e.

∆2
xPi,j = Pi+1,j − 2Pi,j + Pi−1,j.

Then the nonlinear weights are

wk =
w̃k

w̃0 + w̃1 + w̃2

, k = 0, 1, 2,

where we usually choose ε = 10−6, and

w̃0 =
1

(ε+ IS0)2
, w̃1 =

6

(ε+ IS1)2
, w̃2 =

3

(ε+ IS2)2
.

We obtain the fifth order WENO approximation as

σ−
i,j = 12

(
−∆+

x Pi−2,j

∆x
+ 7

∆+
x Pi−1,j

∆x
+ 7

∆+
x Pi,j

∆x
− ∆+

x Pi+1,j

∆x

)
− ΦWENO(a, b, c, d),

with

ΦWENO(a, b, c, d) :=
1

3
w0(a− 2b+ c) +

1

6

(
w2 −

1

2

)
(b− 2c+ d),

and symmetrically, the approximation to the right derivative is

σ+
i,j = 12

(
−∆+

x Pi−2,j

∆x
+ 7

∆+
x Pi−1,j

∆x
+ 7

∆+
x Pi,j

∆x
− ∆+

x Pi+1,j

∆x

)
− ΦWENO(e, d, c, b),

with a, b, c, d in (3.47) and

e =
∆2

xPi+2,j

∆x2
.
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3.5 Numerical Experiments

We perform a sequence of exploratory experiments below, modifying the parameters η

and β, as well as the throughput function α. In all cases, α, ρ0, and ρbc are periodic with

respect to x and the parameter r∗ = 1. Results are presented as two-dimensional color

maps or line-outs in the z direction. In all figures, the horizontal axis corresponds to the

z-axis. Profiles of α for each experiment are depicted in fig. 3.3.
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Figure 3.3: Profiles of the processor speed α used in the numerical experiments. The non-
standard orientation of the graphs is set to match the axes in the numerical results that
follow.

Example 3.5.1 (Agreement between models) The purpose of this example is to demonstrate

that the macroscopic model approximates the microscopic model when ε and δ are sufficiently

small. We set β = 1 and consider η ∈ {0.2, 1, 5}. The initial condition, boundary condition, and

processor speed are given by

ρ0(x, z) = 1.5 (sin(2πz))6 χ[0,0.5](z), ρbc(x, t) = 0, α(x) = 1− 0.4(sin(πx))2, (3.48)

respectively. Both models are simulated up to a final time t = 0.5.

For this example, the Hamilton-Jacobi simulation is performed with a 1000 × 1000 mesh and

a time step chosen according to (3.39) in order to generate a highly resolved numerical solution

of the macroscopic model. For the microscopic model, we use imax = 1000 and kmax = 200 when

η = 0.2, imax = kmax = 500 when η = 1, and imax = 200 and kmax = 1000 when η = 5. These

solutions to the microscopic model are then used to obtain the piecewise-constant function r on the

1000× 1000 mesh from the Hamilton-Jacobi simulation.
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Numerical results for η = 0.2, η = 1.0, and η = 5.0 are shown in fig. B.1, fig. B.2, and

fig. B.3, respectively. While the results demonstrate general qualitative agreement between the

models, discrepancies develop over time, especially for smaller values of η; see figs. B.1i and B.1l.

For the worst case scenario (η = 0.2),we note that the kmax is relatively small, suggesting that the

asymptotic analysis is less relevant. Indeed, in this case the microscopic model displays a diffusive

behavior similar to that encountered with under-resolved advective numerical schemes. In response

to this error, we increase the size of the discrete model by a factor of 2.5 ( giving imax = 2500 and

kmax = 500), at which point the discrepancy between models decreases noticeably; see the first row

of fig. 3.4. It is possible that an increase in the order of the approximation of the model with respect

to z-advection (similar to that used to obtain Φ(0)) may be needed to avoid such cases for low η

models with relatively low kmax. Such a modification remains open.
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Figure 3.4: Comparison of the discrete model with (imax, kmax) = (2500, 500) and the con-
tinuum model for η = 0.2 at time t = 0.5. As expected, the discrete model shows better
agreement with the continuum model than the previous version with only (imax, kmax) =
(1000, 200) processors and stages; cf. fig. B.1

For the remaining examples, the Hamilton-Jacobi simulations are performed on a

coarser mesh of 100× 100.

Example 3.5.2 (Variations in η) In this example, we examine the effect of η on solutions to the

macroscopic model while β = 1.0 is fixed. The initial condition, boundary condition, and processor
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speed are given by

ρ0(x, z) = 1.5χz≤0.2(x, z) ρbc(x, t) = 0, α(x) = 1− 0.4(sin(πx))6, (3.49)

respectively. It is expected that the slower processor speed around x = 0.5 will slow down neigh-

boring processors due to neighbor-based throttling, encoded in the definition of w2 in (3.12b).

Moreover, the effect should become more global in x as η increases, since larger values of η cor-

respond to a larger number of stages per processor. Indeed as the stages increase, interactions

between neighbors begin to have a cumulative global effect. This trend can be observed by compar-

ing results across the first three rows of fig. B.4 and in the line-outs in the final row.

Example 3.5.3 (Variations in β) In this example, we examine the effect of β on solutions to the

macroscopic model, while holding η = 1.0 fixed. The initial condition, boundary condition, and

processor speed are again given by (3.49).

Based on the definition of the function w2 in (3.12b), the expectation is that smaller values of

β will lead to reduced throttling effects. Such behavior is confirmed by the numerical results in

fig. B.5.

Example 3.5.4 (Highly localized slowdown) In this example, we explore the effects of a highly

localized slowdown in processor speed when η = β = 1. The initial and boundary conditions are

given in (3.49), while the processor speed is given by α(x) = 1− 0.4c(x), where

c(x) =



0 |x− .5| > .05

40x− 18 x ∈ [.45, .475]

−40x+ 22 x ∈ [.525, .55]

1 |x− .5| < .025

. (3.50)

In particular, α ̸= 1 only on the interval (0.45, 0.55). Simulation results from this example are

shown in fig. 3.5. At early times, slower processors in the center of the x domain prohibit neigh-

boring processors from moving data to later stages of the calculation (i.e. along the z-direction).
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The result is a buildup of data in the neighboring processors. As time progresses, the build-up

of data spreads as throttled processors near the initial slowdown around x = 0.5 begin to effect

neighbors further away. Eventually these buildups dissipate as the slower processors begin catch

up with their throttled neighbors.
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(c) ρ at t = 0.5

Figure 3.5: The effect of a highly localized slowdown on ρ

Example 3.5.5 (Long-term behavior) In previous examples, we have observed that under some

conditions, solutions eventually resemble a traveling profile of the form

ρ∗(x, z, t) = χ[ζ0(x),ζ1(x)](z − st), (3.51)

where s is a positive constant and the profiles ζ0 and ζ1 are constant in time and satisfy ζ0(x) <

ζ1(x) for all x ∈ [0, 1). Our intuition is that for a wide range of conditions, traveling profiles of

this type will arise after sufficiently long times, if the z domain is extended to (0,∞). Moreover

the shape of ζ1 and ζ2 is closely related to the initial data and the shape of α. A more systematic

study of such profiles in special case can be found in [144]. Rather than make a precise conjecture

at this point, we instead provide an example which further demonstrates our intuition. Initial

and boundary conditions are given in (3.49). Because the domain in z is limited, we introduce

relatively small variations in α, which allow the system to settle faster:

α(x) = 1 + 0.1 cos(4πx). (3.52)

Simulation results for this example are presented in fig. 3.6. When t = 0.5, the solution has

nearly settled to a profile of the form (3.51), with cusps that appear where the waves caused by
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throttling meet, at x = 0.5 and at the periodic boundary. We see then at t = 0.75 that this profile

is maintained, with cusps at the same location, and again at t = 1 (after extending the z domain).

In particular the solution has the periodicity of α.
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(d) ρ at t = 0.75
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Figure 3.6: The effect of small variation in processor speed on ρ. After sufficient time, a
profile emerges with the periodicity of α.
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CHAPTER 4

CONCLUSIONS

In the thesis, we discuss several numerical methods, their applications, and implementa-

tions. For Sparse Grid Discontinuous Galerkin (SGDG) method, we focus on its adaptive

version [3, 4, 5, 6, 7, 8], with Alpert’s multiwavelet as basis for DG space, interpolatory

multiwavelet and collocation method to treat nonlinear terms, fast wavelet transform di-

mension by dimension to reduce computational cost, and nonlinear solver in PETSc [9]

for implicit time stepping. We apply this method on Maxwell equation in one or two

dimension in nonlinear optical media [120, 121, 111, 122]. An energy stable Discontin-

uous Galerkin method [1, 2] is employed for this problem, and in our work, coupling

with adaptive SGDG scheme package [8] using PETSc [9]. Numerical experiments of

model problems show expected accuracy and convergence rate, and adaptive scheme

with proper choice of error threshold can choose a set of active elements in hash table to

represent numerical solutions, without significant degeneration of numerical accuracy or

generating non-physical numerical solutions or oscillations. In future work, data struc-

ture of parallel computation in PETSc, e.g. DMPlex to deal with unstructured mesh, and

IS and PetscSection for indexing, can provide a solution to compute numerical solution of

SGDG method in core parallelism. The usage of PETSc also provides a solution to SGDG

method with fully implicit time stepping, broadening the availability of SGDG method.

We can also explore different standard for refinement and coarsening step of adaptive

method, to better specify active elements in adaptive scheme.

For Weighted Essentially Non-Oscillatory (WENO) method, we consider the fifth or-

der WENO interpolation, which maintains high order accuracy on smooth region, while

any singularity does not significantly affect the numerical interpolation [107, 12]. WENO

interpolation and strong stability preserving (SSP) time stepping provide promising fully

discrete numerical method to solve Hamilton-Jacobi equation [11]. This method is ap-
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plied to solve the Hamilton-Jacobi continuum model of extreme scale parallel computers,

which is derived from a discrete model by taking limits on number of processors and

tasks. Numerical experiments of both models show that this continuum model can cap-

ture the asymptotic behaviour of the discrete model. Additionally, these experiments

provide an initial understanding of solutions’ dependence on parameters associated with

the parallelism of the modelled computation as well as the effects heterogeneities in pro-

cessing capacity [10]. In future work, we can explore control strategies for α that can

alleviate bottlenecks caused by local slowdowns in the processor speed. We can also ex-

tend the model to allow for more complicated interactions, including stochastic effects,

and explore strategies for optimal communication. Finally, the parameters of the model

can be taken from processor components of a real supercomputer, and we can determine

if the macroscopic model predicts the real global behaviour of the supercomputer.
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APPENDIX A

NUMERICAL SIMULATION OF 1D SOLITON PROPAGATION
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Figure A.1: Transient fundamental (M = 1) temporal soliton propagation with the adap-
tive Sparse Grid DG fully implicit scheme, in Subsection 2.5.2. Maximum mesh level
N = 11. Refinement threshold ε = 10−5, and coarsen threshold is η = 10−6. First column:
piecewise polynomial degree k = 1; second column: k = 2; third column: k = 3. First
row: alternating flux I; second row: alternating flux II; third row: upwind flux. Solutions
at time T = 40 and T = 80 are plotted on each case.
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(a) k = 1, Alternating flux I
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Figure A.2: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux I case, as in Figure A.1.
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(c) k = 3, Alternating flux II

Figure A.3: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux II case, as in Figure A.1.
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Figure A.4: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of upwind flux case, as in Figure A.1.
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Figure A.5: Transient fundamental (M = 1) temporal soliton propagation with the adap-
tive Sparse Grid DG fully implicit scheme, in Subsection 2.5.2. Maximum mesh level
N = 11. Refinement threshold ε = 10−3, and coarsen threshold is η = 10−4. First column:
piecewise polynomial degree k = 1; second column: k = 2; third column: k = 3. First
row: alternating flux I; second row: alternating flux II; third row: upwind flux. Solutions
at time T = 40 and T = 80 are plotted on each case.

99



0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 40.0

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 80.0

(a) k = 1, Alternating flux I

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 40.0

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 80.0

(b) k = 2, Alternating flux I

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 40.0

0 0.2 0.4 0.6 0.8 1
0

3

6

9

12

0 0.2 0.4 0.6 0.8 1

x

-1

-0.5

0

0.5

1

E

T = 80.0

(c) k = 3, Alternating flux I

Figure A.6: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux I case, as in Figure A.5.
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Figure A.7: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux II case, as in Figure A.5.
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Figure A.8: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of upwind flux case, as in Figure A.5.
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Figure A.9: Transient second order (M = 2) temporal soliton propagation with the adap-
tive Sparse Grid DG fully implicit scheme, in Subsection 2.5.2. Maximum mesh level
N = 11. Refinement threshold ε = 10−5, and coarsen threshold is η = 10−6. First column:
piecewise polynomial degree k = 1; second column: k = 2; third column: k = 3. First
row: alternating flux I; second row: alternating flux II; third row: upwind flux. Solutions
at time T = 40 and T = 80 are plotted on each case.
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Figure A.10: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux I case, as in Figure A.9.
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Figure A.11: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of alternating flux II case, as in Figure A.9.
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Figure A.12: Comparison of active elements and electric field solutions, at T = 40 and
T = 80, for k = 1, 2, 3, of upwind flux case, as in Figure A.9.
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APPENDIX B

NUMERICAL EXPERIMENTS OF ASYNCHRONOUS DATA FLOW MODELS
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Figure B.1: Discrete solution r and continuum solution ρ of η = 0.2, in Example 3.5.1.
From left to right, columns correspond to solutions at t = 0.1, t = 0.25, and t = 0.5. Dis-
crete solution is computed with (imax, kmax) = (1000, 200). Continuum solution is com-
puted on a 103 × 103 mesh.
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(a) r at t = 0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(b) r at t = 0.25
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(c) r at t = 0.5
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(d) ρ at t = 0.1
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(e) ρ at t = 0.25
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(f) ρ at t = 0.5
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(g) ρ− r at t = 0.1
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(h) ρ− r at t = 0.25
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Figure B.2: Discrete solution r and continuum solution ρ of η = 1 case, in Example 3.5.1.
From left to right, columns correspond to solutions at t = 0.1, t = 0.25, and t = 0.5.
Discrete solution is computed with (imax, kmax) = (500, 500). Continuum solution is com-
puted on a 103 × 103 mesh.
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(a) r at t = 0.1
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(b) r at t = 0.25
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(c) r at t = 0.5
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(d) ρ at t = 0.1
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(e) ρ at t = 0.25
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(f) ρ at t = 0.5
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Figure B.3: Discrete solution r and continuum solution ρ of η = 5 case, in Example 3.5.1.
From left to right, columns correspond to solutions at t = 0.1, t = 0.25, and t = 0.5. Dis-
crete solution is computed with (imax, kmax) = (200, 1000). Continuum solution is com-
puted on a 103 × 103 mesh.
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(a) ρ at t = 0.1, η = 0.2
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(b) ρ at t = 0.25, η = 0.2
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(c) ρ at t = 0.5, η = 0.2
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(d) ρ at t = 0.1, η = 1
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(e) ρ at t = 0.25, η = 1
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(f) ρ at t = 0.5, η = 1
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(g) ρ at t = 0.1, η = 5
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(h) ρ at t = 0.25, η = 5
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(i) ρ at t = 0.5, η = 5
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Figure B.4: The effects on ρ due to variations in η, in Example 3.5.2. As η increases, the
throttling effect of local slowdown spreads more quickly, and data is not processed as
quickly.
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(a) ρ at t = 0.1, β = 0.1
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(b) ρ at t = 0.25, β = 0.1
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(c) ρ at t = 0.5, β = 0.1
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(d) ρ at t = 0.1, β = 0.5

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

z

x

0

0.5

1

1.5

(e) ρ at t = 0.25, β = 0.5
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(f) ρ at t = 0.5, β = 0.5
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(g) ρ at t = 0.1, β = 1
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(h) ρ at t = 0.25, β = 1
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(i) ρ at t = 0.5, β = 1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

z

β = 0.1
β = 0.5
β = 1

(j) ρ(0.3, z, 0.1)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

z

β = 0.1
β = 0.5
β = 1

(k) ρ(0.3, z, 0.25)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

z

β = 0.1
β = 0.5
β = 1

(l) ρ(0.3, z, 0.5)

Figure B.5: The effects on ρ due to variations in β, in Example 3.5.3. Larger values of β
lead to more throttling.
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