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ABSTRACT 

CROP BIOTECHNOLOGY: ECONOMICS, ENVIRONMENT, AND POLICY 

 

By 

Ziwei Ye 

Crop biotechnology has been one of the most prominent technological advances in agriculture in 

recent decades. The first generation of biotech crops since the mid-1990s has protected plants from 

biotic stresses such as insects (insect-resistant crops) and weeds (herbicide-tolerant crops), while 

the newly emerged second-generation aims to protect crops from abiotic stress like drought, and 

improves quality, among other things. A central theme of this dissertation is the economic and 

environmental implications of crop biotechnology, whether direct or indirect through associated 

markets, as well as the role of policy in balancing the benefits and risks to effectively accommodate 

these innovations. The dissertation comprises three essays on three representative biotech crops in 

maize production in the United States: (the herbicide glyphosate complementary to) the glypho-

sate-tolerant (GT) crop, the rootworm-resistant Bt crop, and the drought-tolerant (DT) crop.  

The first essay investigates the economic and environmental consequences of legislation 

restricting the use of glyphosate, the most commonly used herbicide in U.S. corn production be-

cause of its complementarity with glyphosate-tolerant crops. A monetary framework comprising 

economic, human health, and environmental welfare analysis is developed to examine the welfare 

consequence of a hypothetical glyphosate tax, given the currently available alternative herbicides. 

The results suggest substantial economic loss with only minor gains in human health and environ-

mental welfare. 

The second essay evaluates the regulatory needs for balancing short-term rootworm control 

benefits with long-term costs of lost pest susceptibility in rootworm-Bt corn planting. Changes in 



 

Bt efficacy are related to historical Bt planting to determine the empirical long-term cost, which is 

then incorporated into a dynamic game of Bt planting to align it with current pest damage and risk 

of Bt efficacy erosion and propose counterfactual changes for sustainable use to benefit producers. 

Our findings indicate the necessity for region-specific regulation strategies, with the East signifi-

cantly lowering rootworm Bt planting and the West adopting a more integrated management strat-

egy. 

The third essay assesses the climate adaptation value of drought-tolerant corn in the context 

of crop insurance. Using a county-level panel dataset in the Corn Belt of the United States, we 

found that yield implications of DT crops differ by region: drought-related yield risks, measured 

using insurance claims data, are found to be lower with higher DT planting rates for Western Corn 

Belt but not the Eastern counties. Further quantile analysis and simulations for the rainfed Western 

Corn Belt counties suggest that insurance premiums need to be reduced to reflect the yield protec-

tion value of DT innovation and be actuarially fair.
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CHAPTER 1 Introduction 

 

Crop biotechnology, which emerged in the late 1980s, has been a game-changer in human food 

production history. Unlike traditional breeding, which involves more randomness and uncertainty, 

biotech crops are purposefully designed to confer desirable qualities in a much shorter breeding 

time. The main impetus has been advancements in molecular genetic technologies, particularly 

molecular breeding and genetic engineering. The first generation of biotech crops deals with biotic 

stresses like insects (insect-resistant traits) and weeds (herbicide-tolerant traits), whereas the cur-

rent second-generation – some commercialized, more in the pipeline – focuses on abiotic stresses 

like drought (drought-tolerant traits), quality, and nutrition. 

The biotech story for maize production in the United States, which we focus on in this 

dissertation due to its economic importance to the world food supply, began with the introduction 

of insect-resistant Bt hybrids in 1996. This was quickly followed by the development of herbicide-

tolerant corn resistant to the herbicide glyphosate. These first-generation crops, which are increas-

ingly being stacked, have had enormous market success, with adoption rates above 90% since 2013. 

Second-generation hybrids, particularly drought-tolerant (DT) hybrids, have emerged on the mar-

ket in recent years. Unlike its genetically modified predecessors, conventionally bred hybrids ac-

count for the vast majority of the DT market. Nonetheless, this newcomer is experiencing a com-

parable adoption rate. More traits are predicted to emerge in the future as breeding technology 

advances and computational power improves to support long-term food security for the world's 

rising population under climate change (Zaidi et al. 2019; Steinwand and Ronald 2020). 

These unprecedented innovations have improved productivity and lowered commodity 

prices while also providing major environmental and health benefits, including reducing food con-

tamination (Huang et al. 2005; Wu 2006; Yu et al. 2020; see Barrows et al. 2014 for a review). 
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The policy is also an indispensable aspect of the biotechnology story. Unlike in the past, the ma-

jority of modern biotech crops are produced and commercialized by the private sector, with public 

sector efforts focusing on early-stage R&D. The continuing biotech controversy is accompanied 

by public resistance as well as government regulations (Wu 2004; Potrykus 2010). Before com-

mercialization, the benefits and risks of biotech crops are evaluated in field trials, and regulatory 

approvals are required to import or use these crops, particularly for the genetically engineered 

hybrids. 

However, the role of policy and regulations is not confined to premarket authorization and 

sometimes concerns related markets, resulting in significant economic and environmental impli-

cations. The value of biotechnology innovations is not solely a scientific issue; rather, it involves 

trade-offs between benefits and risks, economic and environmental aspects, and today versus to-

morrow – and thus is dependent in part on regulatory efforts to strike a balance and accommodate 

the technology within the agronomic system and agricultural policy environments, such as the 

federal crop insurance program. This is what the three essays in this dissertation seek to demon-

strate.  

The first essay concerns the restrictive policy on glyphosate, an herbicide complementary 

to glyphosate-tolerant (GT) crops. Since the commercialization of transgenic glyphosate-tolerant 

(GT) crops, glyphosate has become the dominant herbicide for weed management in corn in the 

United States and elsewhere. Recent public concerns over its potential carcinogenicity in humans 

have generated calls for glyphosate-restricting policies. Should a policy to restrict glyphosate use, 

such as a glyphosate tax, be implemented? The decision involves two types of trade-offs: human 

health and environmental (HH-E) impacts versus market economic impacts, as well as the use of 

glyphosate versus alternative herbicides, where the alternatives potentially have more serious 
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adverse HH-E effects. Accounting for farmers’ weed management choices, we provide the first 

empirical evaluation of the HH-E welfare and market economic welfare effects of a glyphosate 

use restriction policy on US corn production. Under a glyphosate tax, farmers would substitute 

glyphosate for a combination of other herbicides. Should a 10% glyphosate tax be imposed, then 

the most conservative welfare estimate is a net HH-E welfare gain with a monetized value of $6 

million US per annum; but also a net market economic loss of $98 million US per annum in the 

United States, which translates into a net loss in social welfare. This result of overall welfare loss 

is robust to a wide range of tax rates considered, from 10% to 50%, and to multiple scenarios of 

glyphosate’s HH-E effects, which are the primary sources of uncertainties about glyphosate’s ef-

fects.  

In the second essay, we investigated whether a paradigm shift in rootworm-targeting Bt 

corn planting is needed. Corn rootworm is a prominent pest in the Corn Belt of the United States. 

Larvae feed below-ground on corn roots, lowering grain output and causing over one billion dollars 

in losses each year.  The rootworm-active Bt corn expressing insecticidal protein was first released 

in 2003 and has since gained widespread adoption. Although non-Bt host refuges are planted to 

delay resistance, Bt efficacy has been declining as the pest evolves resistance, incurring the long-

term cost of lost pest susceptibility. To empirically assess the cost of Bt efficacy erosion in the 

context of rootworm control, we link root damage data from Bt and non-Bt experimental fields 

with regional Bt planting data in 10 Corn Belt states from 2005 to 2016. The Bt treatment reduces 

root injury by around 1.3 nodes on average, but much of the Bt efficacy is lost if the cornfield had 

a history of Bt planting in the preceding year. Intertemporal suppression can somewhat offset the 

efficacy loss induced by Bt history, but the net cost is still equivalent to a 12% reduction in Bt 

efficacy. A dynamic game analysis of Bt planting that considers the long-term cost suggests that 
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states in the West and East require different regulatory strategies. Because the East has low pest 

incidence, a low Bt planting level will benefit the region while also conserving the technology, or 

the susceptibility resource, for the future, whereas the West has higher pest pressure, which results 

in relatively high short-term benefits and justifies a high Bt planting level, so a more integrated 

management strategy synthesizing different technologies may be warranted. 

The final essay evaluates the climate adaptation value of drought-tolerance (DT) technol-

ogy in the context of the federal crop insurance program. Drought-related crop insurance claims 

account for about half of all indemnity payments in the United States, owing to an increase in the 

frequency and severity of drought incidents. Drought-resistant crops are seen as a promising tech-

nology for reducing drought sensitivity and adapting to warmer climates. Tolerance to abiotic con-

ditions such as drought, in contrast to biotic stresses, involves more physiological processes and 

genes. Despite promising field trial findings, the use of this second-generation biotech maize in 

large-scale commercial production is still unknown. Using a unique panel dataset on seed use in 

U.S. Corn Belt from 2001 to 2016, we empirically assess the yield implications of commercially 

marketed DT crops, characterizing the technology across the entire continuum of environmental 

stress. We found that counties in the Western Corn Belt with higher DT planting rates have lower 

drought-related yield risk, as measured by indemnified payments divided by total liability, but 

otherwise for the Eastern counties, likely due to seed companies prioritizing the western market in 

research and development and selecting hybrids suitable for growing conditions in the region. 

Further investigations in the rainfed Western Corn Belt show no yield penalty but a slight yield 

advantage under favorable conditions, and that the DT innovations qualify as a climate adaptation 

technology with greater benefits in a more stressful environment. Simulations of actuarially fair 
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crop insurance premiums suggest that large reductions are needed to accommodate the new tech-

nology in the existing Western Corn Belt farming system. 



6 

REFERENCES



7 

REFERENCES 

 

Barrows, Geoffrey, Steven Sexton, and David Zilberman. "Agricultural biotechnology: the prom-

ise and prospects of genetically modified crops." Journal of Economic Perspectives 28.1 

(2014): 99-120. 

Huang, Jikun, et al. "Insect-resistant GM rice in farmers' fields: assessing productivity and health 

effects in China." Science 308.5722 (2005): 688-690. 

Potrykus, Ingo. "Regulation must be revolutionized." Nature 466.7306 (2010): 561-561. 

Steinwand, Michael A., and Pamela C. Ronald. "Crop biotechnology and the future of food." Na-

ture Food 1.5 (2020): 273-283. 

Wu, Felicia. "Explaining public resistance to genetically modified corn: An analysis of the distri-

bution of benefits and risks." Risk Analysis: An International Journal 24.3 (2004): 715-

726. 

Wu, Felicia. "Mycotoxin reduction in Bt corn: potential economic, health, and regulatory im-

pacts." Transgenic research 15.3 (2006): 277-289. 

Yu, Jina, David A. Hennessy, and Felicia Wu. "The impact of Bt corn on aflatoxin-related insur-

ance claims in the United States." Scientific reports 10.1 (2020): 1-10. 

Zaidi, Syed Shan-e-Ali, et al. "New plant breeding technologies for food security." Sci-

ence 363.6434 (2019): 1390-1391. 

 

 

 

 

 



8 

CHAPTER 2 Environmental and Economic Concerns Surrounding Restrictions on 

Glyphosate Use in Corn 

Published in Proceedings of the National Academy of Sciences 

(co-authored with Felicia Wu and David A. Hennessy) 

 

Introduction 

Glyphosate, the most commonly used herbicide to control weeds worldwide, has until recently 

been assumed to pose low risks to human health and the environment. Recently, however, the 

International Agency for Research on Cancer (IARC) has classified glyphosate as a Group 2A 

probable human carcinogen (IARC 2015), linking glyphosate exposure to increased risk of certain 

blood cancers. Although IARC’s hazard assessment had produced different results from those con-

ducted by other institutions (NTP 1992; JECFA 1998; EFSA 2015; JMPR 2016; EPA 2017; An-

dreotti 2018), the economic consequences of the IARC evaluation have been severe. In 2020, 

Bayer, the company that in 2018 purchased the longtime glyphosate patent holder Monsanto at 

$63 billion US, consented to pay $10 billion US to settle tens of thousands of lawsuits linking its 

glyphosate-containing herbicide Roundup to non-Hodgkin’s lymphoma (NHL) among applicators 

(Cohen 2020). Despite the lack of scientific consensus on the actual carcinogenicity of glyphosate, 

three trials in 2018-2019 favored plaintiffs who had attributed glyphosate exposure to non-Hodg-

kin's lymphoma. 

Concerns regarding IARC’s scientific evaluation have been discussed extensively in EPA 

(2017), Andreotti et al. (2018), and elsewhere. We focus, instead, on potential behavioral, envi-

ronmental, and market economic impacts if farmers choose not to use glyphosate; whether because 

they are concerned about health risk, or because a tax or other type of regulatory constraint is 
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imposed on glyphosate use. Indeed, many countries have already banned glyphosate or imposed 

restrictions since the 2015 classification (BHAG 2020), while a critical question remains largely 

unaddressed: Would the substitutions for glyphosate be preferable; from health, environmental, or 

market economic standpoints?  

In this paper, we use economics models to evaluate the effects of a “proxy” regulation 

implemented in the United States: imposing taxes of various sizes on glyphosate use so that farm-

ers may be incentivized to substitute glyphosate for alternative herbicides to control weeds. While 

command-and-control type regulations are still common in practice, market-based incentive poli-

cies are increasingly being applied in the human health and environmental policy arena, such as 

the pesticide and fertilizer taxes implemented in some of the European countries (Böcker and Fin-

ger 2016; Anderson 2017), and the animal product tax proposed to account for antibiotic use ex-

ternalities (Giubilini et al. 2017). In economics terms, taxes can be considered as having similar 

effects to restrictive regulations, except that the decisions to use products are decentralized: it is 

up to farmers to determine their choice set based on different prices for glyphosate vs. other herb-

icides. In addition to estimating direct market economic impacts, we also estimate human health 

and environmental (HH-E) impacts in a pecuniary framework, thereby evaluating the overall wel-

fare effects of glyphosate regulation given the set of currently available alternative herbicides. 

 

Glyphosate and Weed Control: Background 

Glyphosate is a broad-spectrum phosphonate herbicide that acts by inhibiting a plant phosphate 

synthase enzyme. It is used widely in agriculture to kill broadleaf weeds and grasses that compete 

with crop plants for soil and water nutrients. First commercialized in 1974 under the name 

Roundup® by Monsanto Company, it is used extensively in agriculture worldwide, particularly 
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since the introduction of Roundup Ready® (glyphosate-tolerant or GT) transgenic crops, especially 

corn and soybean in the 1990s. Because these GT crops could tolerate glyphosate application while 

the adjacent weeds could not, glyphosate has been applied broadly and efficiently to corn and 

soybean fields without harming the crops. However, extensive use of glyphosate has now led to 

glyphosate-resistant weeds in the United States and elsewhere, further threatening the effective-

ness of other herbicides such as glufosinate (Barber et al. 2021). 

Although glyphosate and other herbicides have allowed growers to reduce their reliance on 

tilling fields when controlling weeds (Carpenter and LP Gianessi 1999; Swinton and Deynze 2017), 

tillage remains an important means of weed control. In brief: tillage is the practice of digging, 

stirring, or overturning soil on fields for several purposes, including weed burial and mechanical 

disruption. Therefore, seed type (GT or conventional) and tillage decisions (conventional or oth-

erwise) are expected to be key drivers of substitution between glyphosate and alternative herbi-

cides. Additionally, chemical efficiency alters the relative economic benefits from alternative herb-

icide choices and thereby affects the substitution. One major determinant of chemical efficiency is 

weed resistance, which is reshaping equilibrium herbicide (Livingston et al. 2015) and tillage use 

(Deynze et al. 2018) choices. 

Over the period 1998-2016, the US corn herbicide market has experienced significant 

changes. Glyphosate treatment grew dramatically to become the most applied herbicide in corn in 

2008, while other herbicides fell from use. Specifically, during 2010-2016, the market has been 

dominated by four chemicals - glyphosate, atrazine, acetochlor, and S-metolachlor - with a total 

market share of approximately 90%, and more than 50 chemicals accounting for the residual 10% 

(Figure 2.1 A). Therefore, we restrict our study period to 2010-2016 and construct a “composite” 

herbicide composed of the latter three as the only alternative herbicide to glyphosate.  
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Glyphosate application grew almost in lockstep with the GT seed adoption rate since the 

commercialization of GT corn in 1998 in the United States (Figure 2.1 B). As of 2016, only about 

10% of corn acres were planted with non-GT seed. In contrast, composite herbicide applications 

have been decreasing since 2003, until a reversal in trend commenced about 2011. A similar time 

trend is observed for conventional tillage, likely due to the onset of weeds that have evolved re-

sistance to glyphosate (Deynze et al. 2018) (Figure 2.1 C). While the last twenty years have seen 

minimal changes in documented weed resistance to the composite herbicide, documented re-

sistance to glyphosate has increased steadily. Over the study period, the composite herbicide price 

index has remained stable, but fluctuations have been observed for the glyphosate price index 

(Figure 2.1 D). 
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Figure 2.1 Time trend of herbicide use, seed choice, tillage practice, weed resistance, and 

herbicide prices in U.S. corn production, 1998-2016.  

Panel: (A) Chemical share, calculated as individual chemical use (kg/ha) divided by total herbicide 

chemical use (kg/ha); (B) Herbicide use, GT seed adoption, and conventional tillage adoption. 

Adoption rates are calculated as the percentage of planted acres; (C) Weed resistance, calculated 

as the cumulative count of documented resistant weed species summed across all U.S. states. 
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“Resist” is calculated as the count difference between glyphosate and the composite herbicide; (D) 

Herbicide prices, measured by the Fisher price index. The indexes are constructed for the study 

period 2010-2016 using the mean of the entire study period as the base. For comparison, the in-

dexes are rescaled to equal 1 for the year 2010. (Data source: International Survey of Herbicide 

Resistant Weeds for panel C, and AgroTrak®, GfK Kynetec for other panels.) 

 

Contentions on Health and Environmental Effects of Glyphosate 

Until recently, it was generally accepted that glyphosate toxicity was low; hence, minimal HH-E 

effects were expected from glyphosate exposure. In 2015, however, IARC classified glyphosate 

as “probably carcinogenic to humans” (Group 2A), based on “sufficient evidence” in animal ex-

periments and “limited evidence” for human carcinogenicity; specifically, non-Hodgkin’s lym-

phoma (NHL) (IARC 2015; Guyton et al. 2015a; Guyton et al. 2015b).  

The paucity of data on individual-level glyphosate exposure has resulted in limited human 

evidence on the association (Gillezeau et al. 2019); however, more recent comprehensive cohort 

studies have provided little support for IARC’s determination of probable human carcinogenicity 

(Andreotti et al. 2018; Leon et al. 2019). The Agricultural Health Study, a collaboration between 

the US National Institutes of Health (NIH) and Environmental Protection Agency (EPA) with 

farmworker data over decades, has shown that glyphosate exposure is associated with increased 

risks of these cancers only among farmworkers in the highest exposure group. Nevertheless, these 

associations are not statistically significant, and glyphosate carcinogenicity remains controversial 

(Andreotti et al. 2018; Tarazona et al. 2017).  

Although much remains unresolved about how glyphosate interacts with insect physiology 

(Motta et al. 2018; Farina et al. 2019; Vázquez et al. 2020), it is considered to have low 
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environmental toxicity (Meftaul et al. 2020). The main environmental concern related to glypho-

sate does not arise from any direct effect, but rather from its indirect impact on monarch butterfly 

populations; through the loss of milkweed (a common weed in US agricultural fields), on which 

monarchs lay their eggs and its larvae feed. Brower et al. (Brower et al. 2012), among others, 

observed that the monarch butterfly population at the overwintering site in Mexico is in decline. 

Several studies have linked the decline with milkweed loss in the Midwest caused by glyphosate-

tolerant seed adoption and correspondingly extensive glyphosate use (Pleasants and Oberhauser 

2013; Pleasants 2017; Saunders et al. 2018). Using museum collection data of monarch specimens, 

however, a more recent PNAS study (Boyle et al. 2019) provides evidence that the observed de-

cline in recent years is part of a long-term trend that had already begun in the 1950s, long prior to 

commerce in glyphosate and glyphosate-tolerant crops. A lively debate has ensued regarding the 

merits of the museum data collection methodology (Wepprich 2019; Ries et al. 2019; Boyle et al. 

2019).  

 

Modeling Approach 

From the social welfare perspective of pesticide regulation (Cropper et al. 1992), inconclusiveness 

in the policy debate around glyphosate pertains to primarily two issues. First, there is a lack of 

understanding regarding how farmers would substitute between glyphosate and other herbicides. 

When using municipal-level data, previous papers modeling glyphosate ban effects in Germany 

have suggested modest substitution towards alternative herbicides (Böcker et al. 2018; Böcker et 

al. 2020). However, glyphosate is more ubiquitous in the US context. More importantly, given the 

nature of herbicide substitution, the matter is best studied at the farm level so as to sufficiently 

control for the effects of other interrelated farm-level weed management decisions, especially of 
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seed and tillage. Second, despite accumulating scientific studies, links between glyphosate appli-

cation and suspected HH-E effects are not well-established, which complicates the evaluation.  

To quantify HH-E and market economic welfare impacts of a glyphosate tax as a policy 

decision (Zilberman and Millock 1997; Böcker and Finger 2016), we first develop a herbicide 

demand model. The model will allow us to estimate the empirical Allen-Uzawa elasticity of sub-

stitution (AES), a measure of substitutability, between glyphosate and alternative herbicides, i.e., 

the composite herbicide. The herbicide demand model is estimated using a unique, large farm-

level dataset on US corn production spanning 2010-2016. Our model controls for weed manage-

ment decisions related to herbicide options, as well as factors that shape the decision-making en-

vironment through affecting chemical efficacy, such as weed resistance; thereby allowing for more 

accurate characterization of herbicide substitution. Specifically, we estimate the following frac-

tional probit model for glyphosate demand specified as a cost-share: 

𝐸(𝑠𝑖,𝑡|𝑥𝑖) = Φ(𝑏0 + 𝑏1 ln 𝑃𝑐[𝑖],𝑡 + 𝑏2𝑅𝑒𝑠𝑖𝑠𝑡𝑠[𝑖],𝑡 + 𝑏3𝐺𝑇𝑖,𝑡

+𝑏4𝑇𝑖𝑙𝑙𝑖,𝑡 + 𝜉𝑡 + 𝜍𝑠 + 𝛼𝑠𝑇𝑟𝑒𝑛𝑑) (1)
 

where Φ(∙) denotes a probit function, s𝑖,𝑡 is the cost-share of glyphosate for farm 𝑖 in year 𝑡, de-

fined as glyphosate expenditures divided by the total expenditures on glyphosate and the compo-

site herbicide, and 𝑥𝑖  represent the set of conditioned covariates in the equation, includ-

ing: ln 𝑃𝑐[𝑖],𝑡, which denotes the ratio of glyphosate price index to the composite herbicide price 

index in Crop Reporting District 𝑐 associated with farm 𝑖 in year 𝑡; 𝑅𝑒𝑠𝑖𝑠𝑡𝑠[𝑖],𝑡, which represents 

the weed resistance to glyphosate that varies at the state level represented by 𝑠[𝑖], and year; 

𝑇𝑖𝑙𝑙𝑖,𝑡 and 𝐺𝑇𝑖,𝑡, which denote conventional tillage rate and GT adoption rate at farm level; and 

lastly 𝜉𝑡, 𝜍𝑠 and 𝑎𝑠𝑇𝑟𝑒𝑛𝑑, which represents year dummies, state dummies, and state-specific time 

trends capturing general technical changes across time and states.  



16 

Second, we combine the Pesticide Environmental Accounting (PEA) and Environmental 

Impact Quotient (EIQ) approaches to assess herbicide-related HH-E risks in a pecuniary frame-

work and then translate HH-E damage into a ‘damage price’ monetary measure. We further adjust 

the damage prices under alternative damage scenarios to capture uncertainties in the contentious 

HH-E effects associated with glyphosate.  

Finally, we develop an equilibrium displacement model (EDM) in the herbicide-corn mar-

ket setting, and then apply the AES parameter and damage prices to estimate welfare effects. While 

the herbicide demand model admits the characterization of herbicide substitution at a fixed corn 

production level, the EDM allows for changes in corn production in response to the glyphosate tax. 

Specifically, the solutions to the EDM, i.e., the percentage changes in market variables induced by 

the tax, are applied to compute the net HH-E and market economic welfare changes; with the last 

being the sum of consumer surplus change, producer surplus change, and tax transfer. The model-

ing approach is illustrated in Figure 2.2. 

Figure 2.2 Model schematic for quantifying welfare effects of glyphosate policies.  
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Regarding notation, 𝐿(∙) denotes a set of linear functions governing welfare effects under different 

farmer uses of glyphosate or alternative herbicides, 𝑬𝑽 = 𝑑𝑙𝑛(𝑽) is the percentage changes in V, 

a vector of the six market variables: 𝑄, 𝑋1, 𝑋2 denote quantities of corn, glyphosate, and the com-

posite herbicide, and 𝑀, 𝑃1, 𝑃2 denote prices correspondingly. Vector 𝚯 represents market param-

eters other than the Allen-Uzawa elasticity of substitution (AES), while the operator Δ denotes the 

after-tax change, and 𝑤𝑗(∙) (𝑗 ∊ {𝑒, 𝑐, 𝑝, 𝑡}) denote the welfare effects as functions of the argument 

for human health and environmental (HH-E) welfare, consumer surplus, producer surplus, and tax 

transfer, respectively. 

 

Results 

Weed Control: Seed and Tillage Choices, and Herbicide Substitution 

In estimating the glyphosate demand equation (eq. (1)), we hypothesize that 𝐺𝑇 and 𝑇𝑖𝑙𝑙 are cor-

related with omitted factors in the equation. This correlation is also referred to as ‘endogeneity’ in 

economic terms because the tillage and seed variables are endogenously determined by the system, 

as opposed to being exogenous to the system. A prominent source of omitted factors is unobserved 

farm-specific weed pressure, which potentially affects tillage, seed, and herbicide decisions, sim-

ultaneously. Ignoring endogeneity would lead to bias in the effect estimates. To address this con-

cern, a two-step control function approach is taken. In the first step, the suspected endogenous 

variable is regressed on all exogenous variables to isolate the endogenous variations captured by 

the residual term 𝑣̂, and in the second step, we extend eq. (1) to directly control for 𝑣̂ by including 

it as a covariate. Consequently, an endogeneity test is obtained from assessing the test statistics on 

𝑣̂ (Papke and Wooldridge 2008).  

In our analysis, we estimate a set of models with various endogeneity hypotheses. For 
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Models 1-3, we assume, respectively, that both variables, only 𝐺𝑇, and only 𝑇𝑖𝑙𝑙 is endogenous. 

The residual term for 𝐺𝑇 and 𝑇𝑖𝑙𝑙 is denoted by 𝑣̂1 and 𝑣̂2, respectively. For comparison, we also 

estimate Model 4 which assumes exogeneity for 𝐺𝑇 and 𝑇𝑖𝑙𝑙, and Model 5 which excludes control 

variables. Table 2.1 presents the second-step coefficient estimation results for the glyphosate de-

mand equation (see Appendix, Table 2.A4 for the first-step regression results, and Table 2.A5 for 

the full estimates of the second-step regressions). The Models 2 and 3 results show that both vari-

ables are endogenous when they are tested separately because the coefficient estimates for 𝑣̂1 and 

𝑣̂2 are statistically different from zero in the two models, respectively. However, when the two 

variables are tested simultaneously in Model 1, the coefficient estimate for 𝑣̂2 becomes insignifi-

cant even at the 10% level, although that for 𝑣̂1 remains statistically significant. A possible reason 

is that, GT and conservation tillage are themselves complements in weed control and so are corre-

lated, and the source of endogeneity for the two factors are also concordant, so the correlation 

between 𝑣̂1 and 𝑣̂2 results in a lower level of significance. Therefore, we choose Model 1 for our 

analysis. 
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Table 2.1 Second-step estimation results for the glyphosate demand equation 

 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

Coeff. APEs Coeff. APEs Coeff. APEs Coeff. APEs Coeff. APEs 

ln 𝑃   0.151a 0.058a 0.152a 0.058a 0.177a 0.062a 0.176a 0.062a 0.148a 0.057a 

 (2.76) (2.80) (3.14) (3.17) (3.60) (3.64) (3.32) (3.34) (2.98) (3.00) 

𝑅𝑒𝑠𝑖𝑠𝑡  -0.028 -0.011 -0.027c -0.010c -0.034b -0.012b -0.032c -0.011c   

 (-1.62) (-1.63) (-1.70) (-1.72) (-2.38) (-2.40) (-1.85) (-1.85)   

𝐺𝑇  0.424a 0.162a 0.439a 0.168a 1.074a 0.376a 1.072a 0.377a   

 (3.82) (3.79) (4.29) (4.28) (22.40) (25.73) (19.00) (22.91)   

𝑇𝑖𝑙𝑙  -0.374 -0.143 -0.083a -0.032a -0.426a -0.149a -0.097a -0.034a   

 (-1.42) (-1.42) (-5.03) (-5.12) (-2.79) (-2.78) (-5.35) (-5.43)   

𝑣̂1  1.052a  1.037a        

 (8.68)  (9.02)        

𝑣̂2  0.285    0.332b      

 (1.08)    (2.17)      

CRE Yes  Yes  Yes  Yes  Yes  

CF Yes  Yes  Yes  No  No  

F-statistic 

GT 50.27  100.6        

Till 16.59    31.77      

Overidentification test 

    0.805  0.861      
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Notes: N × 𝑇=29,711. z statistics in parentheses. Statistical significance is marked with super-

scripts a-c (a p < 0.01, b p < 0.05, c p < 0.10). Time dummies, state dummies, and state-specific 

trends are included. Residual terms 𝑣̂1 and 𝑣̂2 correspond to 𝐺𝑇 and 𝑇𝑖𝑙𝑙, respectively. Standard 

errors are obtained by panel bootstrapping with 1,000 replications and clustered at CRD level. 

Year dummies, state dummies, and state-specific time trends are included. Farm heterogeneity is 

controlled for using the correlated random effects method. The first-stage F-statistics reported in 

the table are cluster-robust and are all above the corresponding critical values for 5% estimation 

bias for which we conventionally follow Stock and Yogo (Stock and Yogo 2005), and the F-sta-

tistic for 𝐺𝑇 in Model 2 is also close to the threshold of 104.7 suggested in more recent research 

(Lee et al. 2020), addressing the weak instrument concerns. The p-values for the overidentification 

test are reported in the last row of the table. The results show that the null hypothesis cannot be 

rejected, so the concern for instrument endogeneity is mitigated from a statistical standpoint. 

 

Coefficient estimates are interpreted through average partial effects (APE), that is, partial 

effects averaged across all observations, to characterize the direction and size of effects (See Ap-

pendix, Section A.4 for the partial effect formula). The APEs for 𝐺𝑇 and 𝑇𝑖𝑙𝑙 are estimated to be 

0.162 and -0.143, respectively. The results suggest that adopting conservation tillage and GT seed 

would increase the share of glyphosate in a farmer’s herbicide portfolio. Moreover, the APE for 

𝑅𝑒𝑠𝑖𝑠𝑡 is negative and statistically significant with a value of -0.011, suggesting that relatively 

more weed resistance to glyphosate would result in reduced use of glyphosate on those fields.  

The ln 𝑃 coefficient estimate carries little economic meaning on its own. It is, however, 

translated into the Allen-Uzawa elasticity of substitution (AES) between glyphosate and other 

commonly used herbicides (“composite”) with a value of 0.739 (See Appendix, Section A.4 for 
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formulas and procedures). Glyphosate and the composite are found to be net substitutes, since the 

AES measures the elasticity of substitution holding output constant and is positive (See Appendix, 

Section C.2 for more discussions). The own-price elasticities for glyphosate and the composite are 

equal to -0.371 and -0.369, respectively. Although the relative inelasticity of herbicides is con-

sistent with previous findings (Fernandez-Cornejo et al. 1998; Böcker and Finger 2017), the elas-

ticities estimated in this paper are somewhat higher than previous estimates. This underscores the 

significance of considering substitution possibilities between individual herbicides when estimat-

ing price elasticities, as has been recognized elsewhere (Just 2006; Popp et al. 2013; Fernandez-

Cornejo et al. 2014).  

 

Herbicide-Related Damage: Scientific Debates and Pecuniary Health and Environmental Ac-

counting 

Since the major controversies around glyphosate focus on its carcinogenicity and the indirect im-

pact on monarch butterfly reduction, in addition to the status quo scenario, more extreme scenarios 

for these two effects are also simulated in order to represent the uncertainties in welfare analysis. 

The four simulated damage scenarios are (A) neither effects; (B) carcinogenic effects only; (C) 

monarch butterfly effects only; and (D) both effects. Using the Pesticide Environment Accounting 

framework (Leach and Mumford 2008; Leach and Mumford 2011) combined with the Environ-

mental Impact Quotient approach (Kovach et al. 1992; Brookes and Barfoot 2012; Beckie et al. 

2014; Perry et al. 2016a) which accounts for a range of HH-E effects, damage prices per gallon of 

herbicide are calculated. See Appendix, Section D for a discussion on methods and Appendix, 

Table 2.A7-2.A8 for the calculation procedure.  

The HH-E externalities due to glyphosate are monetized to equal $2.82, $3.41, $2.91, and 
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$3.51 per kg a.i. (“a.i.” denotes “active ingredient”), respectively, under scenarios (A)-(D). Corre-

spondingly, the damage prices for glyphosate herbicide (𝑑1) are $4.68/gal, $5.66/gal, $4.83/gal, 

and $5.83/gal, respectively, given that its average active ingredient content equals 1.66 kg a.i./gal. 

With the composite herbicide, the average active ingredient contents per gallon herbicide (kg 

a.i./gal) for atrazine, acetochlor, and S-metolachlor are 0.77, 0.42, and 0.33, respectively. The 

monetized HH-E externalities per kilogram active ingredient of the three components are the same 

and equal $3.52/kg a.i., which translates into a damage price of $5.35 per gallon of herbicide (𝑑2).  

The results show that any indirect effects to monarch butterflies have little consequence in 

glyphosate’s damage price, in contrast with the increased cancer risk from exposure to glyphosate, 

which results in much higher damage prices. When both human health effects and monarch but-

terfly effects are assumed, the damage price is about 25% higher than when assuming neither. 

Translating the damage prices in dollars per gallon into aggregate HH-E damages at the national 

level gives a sense of the damage magnitude: the sample averages of herbicide applied per corn 

acre over the period 2010-2016 are 0.27 gal/ac. and 0.39 gal/ac. for glyphosate and the composite 

herbicide, respectively. The annual average corn acreage planted in the United States over the 

period is 92 million acres, so the HH-E damages caused by glyphosate herbicide range from $116 

to $145 million, and amount to $192 million for the composite herbicide.  

 

Social Welfare Analysis 

Finally, we model the total comparative HH-E and market economic effects of glyphosate vs. other 

herbicides corn growers would use if glyphosate use were restricted. A log-linear equilibrium dis-

placement model (EDM) is developed to analyze the effects of a glyphosate tax on HH-E and 

market economic welfare (Muth 1964; Alston and Scobie 1983; Mullen et al. 1988). We calibrate 
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our model by combining various sources of information (See Appendix, Table 2.A11 for sources). 

Most of the parameter calibrations are drawn from previous studies or are computed from data 

sources, except the Allen-Uzawa elasticity of substitution (AES), the damage prices (𝑑1 and 𝑑2), 

and the herbicide supply elasticities. The first two are obtained from the preceding sections while 

the herbicide supply elasticities are assumed to be one following common practice in previous 

studies (Just 2006; Norton et al. 2008). Lower (0.5) and higher (1.5) supply elasticity values are 

also examined to exhaust all possibilities for robustness purposes. We then simulate a wide range 

of tax rates, from 10% to 50% at the US national level. We also compare scenarios in which 

glyphosate carcinogenicity and monarch butterfly effects are assumed, either separately or in com-

bination.  

Figure 2.3  Percentage changes in market variables at 10% glyphosate tax.  

Market variables 𝑄, 𝑋1, 𝑋2 denote quantities of corn, glyphosate, and the composite herbicide, and 

𝑀, 𝑃1, 𝑃2 denote prices correspondingly. E denotes percentage change. Percentage changes in mar-

ket variables are identical across glyphosate damage scenarios and are linear in the tax rate. We 

present three combinations of glyphosate (left) and the composite (right) herbicide supply 
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elasticity; namely, (0.5, 1.5), (1, 1), and (1.5, 0.5). The three combinations are selected because, 

all else equal, the (0.5, 1.5) combination corresponds to the most conservative estimate of welfare 

loss (lower bound), and (1.5, 0.5) corresponds to the most extreme loss (upper bound).  

 

The simulation results for equilibrium solutions and welfare effects are presented in Figure 

2.3-2.4. We find that imposing even a small percentage tax would lead to substantial net market 

economic welfare loss resulting from a combination of corn production decline, higher corn price, 

and a significant decline in glyphosate use. On the contrary, even under scenarios where the com-

posite herbicide is associated with more adverse HH-E effects (i.e., scenarios (A) and (C)), net 

HH-E welfare increases, because the increase in composite herbicide use is small when compared 

to the decrease in glyphosate use. Nevertheless, the HH-E gain is outweighed by the market eco-

nomic loss and thus the overall social welfare is compromised. For example: for the most con-

servative welfare loss estimate where a 10% glyphosate tax is imposed while supply elasticities 

are 0.5 and 1.5 for glyphosate and the composite herbicide, respectively, uses of glyphosate and 

the composite quantity would change by -4.86% and +0.06%, along with a -0.08% change in corn 

quantity, and a +0.15% change in corn price, among other market variables (Figure 2.3).   

Correspondingly, the market economic loss is estimated to be $98 million per annum in 

the United States, and the HH-E gain for the status-quo damage scenario, i.e., scenario (A), is only 

$6 million, about one-sixteenth of the market economic loss. Even when assuming the most ex-

treme damage scenario for glyphosate, which expands the HH-E benefit to $7 million, the tax still 

results in a net social welfare loss of $91 million at the US national level. Due to the non-linear 

nature of the welfare formula in terms of the tax rate, the estimates for a 50% tax rate are also 

informative. Switching to a 50% tax rate while keeping other parameters fixed, the percentage 
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changes in market variables would increase fivefold because these percentage changes are linear 

in the tax rate. This translates into a market economic loss of $516 million, HH-E gains that range 

from $28 to $35 million, and net social welfare loss of $481 million per annum at a minimum 

(Figure 2.4). The ratio of net social welfare loss between the 50% and 10% tax rate cases under 

the same circumstances exceeds the tax ratio of 5, illustrating the non-linearity of glyphosate tax 

consequences on social welfare. The largest social welfare loss, at $1,398 million per annum, oc-

curs when a 50% tax is imposed, status quo damage scenario (a) is assumed, and supply elasticities 

are 1.5 and 0.5, respectively, for glyphosate and the composite herbicide. Thus, the negative social 

welfare result is robust to a wide range of tax rates and alternative glyphosate damage scenarios, 

as well as a reasonable range of supply elasticities. 
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Figure 2.4 Nation-level welfare effects.  

Welfare changes for a glyphosate tax ranging from 10% to 50% in the United States under four 

glyphosate damage scenarios: (A) no carcinogenic effect, and no monarch butterfly effects, (B) 

carcinogenic effects only, (C) monarch butterfly effects only, and (D) both effects are assumed. 

Across scenarios, market economic welfare is identical but human health and environmental (HH-

E) welfare differs. Within each scenario, we present three combinations of glyphosate (left) and 

the composite (right) herbicide supply elasticity; namely, (0.5, 1.5), (1, 1), and (1.5, 0.5). The three 

combinations are selected because, all else equal, the (0.5, 1.5) combination gives the most con-

servative estimate of welfare loss (lower bound), while (1.5, 0.5) gives the most extreme welfare 

loss (upper bound). Market economic welfare change = Consumer surplus change + Producer sur-

plus change + Tax transfer. 
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Discussion 

Following the 2015 IARC Monograph that classified glyphosate as a Group 2A probable human 

carcinogen, political jurisdictions enacted multiple regulations that in effect restricted glyphosate 

use in agriculture, while Bayer/Monsanto faced multiple lawsuits about suspected cancer cases 

linked to glyphosate exposure. Glyphosate use restrictions could come in the form of outright bans 

(Böcker et al. 2018; Böcker et al. 2020) or taxes that reduce farmers’ incentives to use this herbi-

cide (Zilberman and Millock 1997; Böcker and Finger 2016). Hence, farmers who previously used 

glyphosate on corn fields might turn to alternative herbicides, or increase tilling, or follow a com-

bination of these strategies to control weeds; instead of using glyphosate. Ours is the first analysis 

that comprehensively addresses the effects of a glyphosate use restriction policy on food producers, 

consumers, human health, and the environment. 

Our findings show that any level of glyphosate tax is likely to decrease overall social wel-

fare. This is because the market economic loss from restricted weed control outweighs any de-

creased risks to human health and the environment from switching to alternative herbicides. In 

light of the divided scientific evidence on the human carcinogenic and monarch butterfly effects 

of glyphosate, we consider a set of HH-E damage scenarios for glyphosate and evaluate the HH-

E effects in each scenario using a pecuniary framework. We find that the total HH-E damage is 

priced at $5.35/gal for the composite herbicide, and this damage price is exceeded by that of 

glyphosate only if human carcinogenicity is assumed. This finding confirms the overall low envi-

ronmental toxicity for glyphosate but also highlights glyphosate carcinogenicity as a primary 

source of uncertainty in the glyphosate policy debate. Correspondingly, at the current level of 

chemical use (averaged over 2010-2016), the annual HH-E costs associated with glyphosate and 

the composite herbicide applications range from $308 million to $337 million. 
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Critical to evaluating the tradeoffs between glyphosate and the alternative herbicide is their 

substitutability in weed control operations, which is absent from previous studies largely due to 

data limitations. In our estimation, we control for other interrelated farm-level weed management 

decisions to obtain a more appropriate characterization of the substitution relationship. Our results 

show that they substitute on average, indicating a potential increase in the alternative herbicide use 

in response to glyphosate restrictions. However, in calibrating our corn-herbicide market equilib-

rium model we find that the increase is relatively small when compared to glyphosate reduction as 

a result of glyphosate taxation. Consequently, the overall human health and environmental burden 

to society is reduced, albeit rather marginally when compared to the aggregate externality. We 

estimate that the HH-E gain due to a 10% tax ranges from $6 to $7 million per annum. However, 

the HH-E gain comes at a high market economic cost to society. Given current availabilities in the 

corn herbicide market, corn producers will be restricted to more expensive alternatives, and the 

increased production cost is transmitted in part to consumers, resulting in a small but economically 

significant drop in corn quantity at the market equilibrium. Therefore, both consumer welfare and 

producer welfare decline. Our most conservative estimate of the market economic loss caused by 

a 10% tax is $98 million annually, with a higher tax rate causing disproportionately greater loss.  

The estimated social welfare loss from restricting glyphosate would increase were we to 

also consider the possibility of farmers switching back to mechanical weed control alternatives. 

Perry et al. (2016b) have shown that glyphosate, together with the glyphosate tolerance seed trait 

in soybeans, has facilitated reduced tillage cultivation, and so has saved on soil erosion as well as 

on carbon emissions from disturbed soils and fossil fuels consumed during this energy-intensive 

process. In turn, Deines et al. (2019) provide evidence that lower tillage intensity increases yields 

in US Corn Belt corn and soybean production. 
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Our analysis has revealed that the most likely substitutions for reduced glyphosate use 

would be less efficient at weed control in US cornfields from a social welfare standpoint. If glypho-

sate-related inhibition policies are to be enforced in the United States and worldwide, then our 

work points toward the need to translate fundamental research in the biological sciences into weed 

management technologies that have minimal adverse consequences for humans and the environ-

ment so as to ensure that the HH-E gain from restricting glyphosate comes at low cost. 

Induced innovation (Fernandez-Cornejo and Pho 2002; Hanlon 2015) in weed management 

is likely an important feature of our setting, especially if we consider a closely related issue: weed 

resistance to herbicides. Compared to resistance to antimicrobials (Smith et al. 2005) and to insec-

ticides (Gassman et al. 2014; Wan et al. 2017), resistance to herbicides has received less attention 

and has not until recently been viewed as important by researchers and policymakers. Possibly 

because glyphosate’s success left little opening for profit, or because of regulatory burdens and 

cancellation risks, no new classes of herbicides were commercially developed between the middle 

1980s and 2020, and scientific inquiry in the area wilted (Dayan 2019). Yet the development of 

weed resistance to glyphosate has reinvigorated research into weed management, leading to sig-

nificant recent advances (Kahlau et al. 2020). A similar induced innovation impetus should follow 

glyphosate restricting policies. Accounting for resistance might increase the calculated value of a 

glyphosate curtailment intervention even if damage from resistance is eventually tempered by in-

novation. This is because the accounting would recognize a modified rate of resistance develop-

ment. However, the benefit from managing resistance will diminish when the use of the herbicide 

is severely restricted because there is little benefit in reducing resistance to a chemical that is not 

widely used. Further model development will be needed when improved resistance data becomes 

available. Until that time, our analysis serves to highlight the tradeoffs to human health, the 
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environment, and corn productivity in the US if glyphosate use is restricted; and points out coun-

tervailing risks from alternative methods of weed control in US agriculture. 

 

Materials and Methods 

To avoid unnecessary methodological complications, we group atrazine, acetochlor, and S-

metolachlor into a conceptual herbicide - the composite herbicide - and omit chemicals other than 

these three plus glyphosate. This simplification is justified by the almost constant market share of 

the other chemicals (about 10% during our study period 2010-2016) as well as the similarity in 

toxicity properties among the three composition chemicals (atrazine, acetochlor, and S-

metolachlor). Moreover, the three chemicals are commonly mixed to form herbicide products - 

such as Lexar® and Harness® XTRA - while glyphosate is not typically mixed with other chemicals 

for products. Additional analysis is included in the Appendix, Section C.3 to investigate the sen-

sitivity to grouping chemicals.  

 

Herbicide Demand System Estimation 

Following the conceptual model we develop (see Appendix, Section A.1), the herbicide demand 

system is framed as a two-stage decision, where tillage and GT decisions are taken as given and 

thus are modeled as right-hand side variables in herbicide cost-share equations. The equations for 

each herbicide are derived from a Translog cost function (Binswanger 1974). The system consists 

of two cost-share equations, one for glyphosate and the other for the composite herbicide. We drop 

the latter and estimate only the glyphosate equation, as the two shares always sum to one.  

Several econometric issues arise in the estimation. First of all, the glyphosate cost-share, 𝑠, 

is a fractional variable bounded on the unit interval. Response coefficients in a standard linear 
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regression that ignores the nonlinearity are likely to be biased toward zero. Second, farm hetero-

geneity is likely to be present. Like other farm-level decisions, herbicide decisions are also ex-

pected to be conditional on unobserved time-constant farm and farmer characteristics, such as 

farmers’ education level. Third, seed choice 𝐺𝑇 and tillage practice 𝑇𝑖𝑙𝑙 are likely to be endoge-

nous, as discussed in previous sections. Therefore, we adopt the fractional response framework, a 

nonlinear approach, to model the glyphosate cost-share as given in eq. (1), i.e., to specify the con-

ditional mean of glyphosate cost-share as a probit function (Papke and Wooldridge 1996). The 

model is further extended to control for farm heterogeneity using the correlated random effects 

method, and for endogeneity using the control function approach (Papke and Wooldridge 2008; 

Wooldridge 2019). In particular, 𝐺𝑇 is instrumented with the GT seed price and Bt seed adoption 

rate, while 𝑇𝑖𝑙𝑙 is instrumented with the diesel fuel price and soil erodibility. These instruments 

isolate exogenous variations in the endogenous variables, thereby allowing for the identification 

of their causal effects on the cost share in the glyphosate demand equation. The extended final 

model is estimated following a two-step procedure: first, regress the suspected endogenous varia-

ble on all exogenous variables to obtain residuals (denoted by 𝑣̂1 for 𝐺𝑇, and 𝑣̂2 for 𝑇𝑖𝑙𝑙); second, 

estimate a fractional probit model where 𝑣̂1 and 𝑣̂2 are included as covariates. Then the coeffi-

cients for 𝑣̂1 and 𝑣̂2 in the second-step estimation capture the correlation between suspected en-

dogenous variables and the omitted factors in the glyphosate cost-share equation, and thereby pro-

vide a direct test for endogeneity. See Appendix, Section A.3 and B.2 for more details on econo-

metric modeling and a discussion on instrumental variables.  

We compile a farm-level unbalanced panel that spans 2010-2016. The primary data source 

is the AgroTrak® survey, a unique, large field-level survey dataset. This dataset has been collected 

annually by the market research company GfK Kynetec which specializes in the collection of 
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agriculture-related survey data. Data are representative at the Crop Reporting District level across 

the main US corn-growing states and have been used in our previous studies (Perry et al. 2016a; 

Yu et al. 2020). The data contain information on chemical and mechanical weed control practices, 

as well as seed varieties, for about 4,337 farms annually. See the Appendix, Section B.1 for more 

descriptions on the AgroTrak® survey. Weed resistance data are obtained from the International 

Survey of Herbicide Resistant Weeds (ISHRW). Each year, the ISHRW records the weed species 

identified to have become resistant to a certain chemical for the first time in a state. More detailed 

descriptions of data and variables can be found in the Appendix, Section B.  

 

Environmental Accounting and Scenario Simulation 

We combine the Pesticide Environmental Accounting (PEA) framework (47) with the Environ-

mental Impact Quotient (EIQ) approach (49) to compute the damage prices of herbicides and, in 

particular, to simulate the four damage scenarios for glyphosate.  

For each herbicide, the PEA framework provides the monetary external cost (in $/kg a.i.) 

for each of eight HH-E effect categories in the EIQ system, namely applicator, picker, consumer, 

groundwater, aquatic, bird, bee, and beneficial insect effects. Higher EIQ scores indicate more 

adverse effects, and herbicides with higher EIQ are given higher external costs. The damage price 

(in $/gallon) is then obtained by summing over category-specific external costs and multiplying 

by the average kilogram active ingredient per gallon herbicide product. Hence, the value of human 

life and other ecological receptors have been implicitly incorporated into the damage price meas-

ure.  

In simulated scenarios, the hypothesized additional effects of glyphosate, i.e., carcinogenic 

and monarch butterfly effects, are captured by higher EIQ scores and damage prices. Specifically, 
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for scenarios involving human carcinogenicity, the chronic health effect parameter in the EIQ for-

mula is adjusted. It is assigned the smallest value 1 for the status-quo, which corresponds to little 

or no long-term negative health effects, and is adjusted to the largest value 5 for carcinogenic 

scenarios to represent the most extreme human health effects by carcinogenicity. The monarch 

butterfly effects are more problematic because glyphosate is not directly associated with the two 

parameters involved in the beneficial insect effects, namely plant surface half-life and beneficial 

arthropod toxicity. Nevertheless, adjusting the value of the beneficial arthropod toxicity parameter 

from 1 (relatively non-toxic) to 5 (highly toxic) is an equivalent way of accounting for the popu-

lation reduction impact under the most extreme monarch butterfly effects. The damage prices for 

simulated scenarios can then be computed based on the adjusted EIQ scores (see Appendix, Sec-

tion D.2 for details). Original EIQ data are obtained from the framework website (available at 

https://nysipm.cornell.edu/eiq, updated version in 2017). Other relevant data sources include 

Leach and Mumford (47), and the AgroTrak® dataset for computing the sample average active 

ingredient per gallon herbicide. 

 

Equilibrium Displacement Model 

We model equilibrium displacement in a one-output (corn), two-input (glyphosate and the com-

posite herbicide) structure, and competitive industries are assumed where farmers are price-takers 

in the three markets. It is implicitly assumed that prices of inputs other than herbicides do not 

change in response to a glyphosate tax. As a result, the inclusion of non-herbicide inputs would be 

unaffected and so are excluded from the model. In this way, the model is simplified to focus on 

only the herbicide inputs. The model consists of six market variables endogenously determined in 

the system, namely corn quantity (𝑄 ), corn price (𝑀 ), glyphosate herbicide quantity ( 𝑋1 ), 

https://nysipm.cornell.edu/eiq
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glyphosate herbicide price (𝑃1), the composite herbicide quantity (𝑋2), and the composite herbicide 

price (𝑃2). Solving the model gives the percentage changes in these market variables expressed in 

terms of tax rates (linearly) and the set of parameters that characterize the market structure (Ap-

pendix, Table 2.A9). Market economic and HH-E welfare changes can then be computed using 

the percentage changes, baseline values of the market variables, damage prices, and calibrated 

parameters (Appendix, Table 2.A10-2.A11). In general, the parameter calibration uses infor-

mation from periods that largely overlap with our study period 2010-2016.  
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APPENDIX 

 

A Herbicide substitution model: formulation and specification 

A.1 Conceptual model  

A conceptual model of herbicide demand is developed, assuming a cost-minimizing farmer. Sup-

pose there exists a twice differentiable production function for corn production of an individual 

farm as follows: 

𝑌 = 𝐹(𝑋, 𝐾, 𝐴), (1) 

where 𝑌 is output, 𝑋 is a vector of herbicide inputs, 𝐾 is a vector of other inputs that affect weed 

control, and 𝐴 is a vector of all other inputs. If the weed control inputs (𝑋, 𝐾) are homothetically 

weakly separable (Chambers 1988) from all other inputs then, the production function can be writ-

ten as 

𝑌 = 𝐻(𝑊(𝑋, 𝐾), 𝐴), (2) 

where 𝑊(⋅), the aggregate weed control input, is a homothetic function.1 The solutions to (𝑋, 𝐾) 

can be equivalently obtained from solving 

min
𝑋,𝐾

 𝐶 = 𝑋𝑃𝑥 + 𝐾𝑃𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑊̅ = 𝑊(𝑋, 𝐾),
 

where 𝑊̅ denote the weed control target. A farmer is assumed to make weed control decisions in 

two stages where the optimal 𝐾 is decided in the first stage and is denoted by 𝐾. Then, taking 𝐾 

 
1 The validity of this homothetic weak separability assumption is an empirical question. However, 

in our case, data for other inputs are not available. 
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as given, 𝑋 is chosen in the second stage. The minimization problem is hence solved backward as 

follows: 

Stage II: Taking 𝐾‾  as given, a farmer obtains optimal herbicide choice 𝑋∗ = 𝑋(𝑃𝑥 , 𝐾) by solving 

min
𝑋

 𝐶 = 𝑋𝑃𝑥

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑊̅ = 𝑊(𝑋, 𝐾).
 

There exists a minimum cost function dual to the weed control input function 𝑊(⋅): 

𝐶̃∗ = 𝐽(𝑊̅, 𝑃𝑥, 𝐾), (3) 

where 𝐶̃∗ is the total cost of herbicide inputs and 𝑊̅ is the aggregate weed control input. If 𝑊(⋅) 

is a positive, nondecreasing, linear homothetic (constant returns to scale), and concave function 

(Chambers 1988), then the cost function can be written as 

𝐶̃∗ = 𝑊̅𝐺(𝑃𝑥, 𝐾), (4) 

where 𝐺(⋅) is a unit cost function satisfying the same regularity conditions and is a function of 

weed control inputs. The minimum unit cost function for the optimizing farmer is thus written as 

𝐶∗ = 𝐺(𝑃𝑥, 𝐾). (5) 

Stage I: Knowing that 𝑋∗ = 𝑋(𝑃𝑥, 𝐾), a farmer solves the first stage 

min
𝐾̅

 𝐶 = 𝑋(𝑃𝑥, 𝐾)𝑃𝑥 + 𝐾𝑃𝑘

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑊̅ = 𝑊(𝑋(𝑃𝑥, 𝐾), 𝐾),
 

to obtain the optimal choice vector 𝐾∗ = 𝐾(𝑃𝑥, 𝑃𝑘, 𝑊̅). 

 

A.2 Empirical model: the Translog cost function approach  

There are generally two approaches to estimating an input demand system (Thijssen 1992; Chakir 

and Thomas 2003). The primal approach specifies separate factor demand equations and then un-

dertakes joint estimation. The dual approach is more commonly used because it is easier to esti-

mate in a way that complies with theoretical considerations. Furthermore, and directly relevant for 
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our purposes, estimates are more readily used for policy applications. The dual approach specifies 

a flexible functional form for the cost (or profit) function and then derives the associated supply 

and demand factor equations. Following Binswanger (1974), a Translog cost function is employed 

to implement the dual approach. No a priori restrictions are imposed on elasticities of substitution 

in the Translog cost function. The Translog specification provides a second-order approximation 

to an arbitrary functional form. In avoiding a particular production function specification, the 

Translog specification gives more robust results. In our context, there are two herbicide inputs of 

interest: glyphosate and the composite herbicide, i.e., 𝑋 = (𝑥1,  𝑥2), and 𝑃𝑥 = (𝑝1,  𝑝2), with the 

subscripts 1 and 2 corresponding to glyphosate and the composite herbicide, respectively. The 

other weed control inputs that we consider as affecting the control function are GT seed and tillage, 

i.e., 𝐾 = (𝑘̅1, 𝑘̅2), where the subscripts 1 and 2 denote GT seed and tillage, respectively. Rewrite 

the minimum cost function in eq. (5) in natural logarithms: 

ln (𝐶∗) = 𝑓(ln(𝑝1), ln(𝑝2), 𝑘̅1, 𝑘̅2 ). (6) 

Then the Taylor Series expansion is as follows: 

ln𝐶∗ = ∑ 𝛼𝑚
2
𝑚=1 ln(𝑝𝑚) +

1

2
∑ ∑ 𝛽𝑚,𝑗

2
𝑗=1

2
𝑚=1 ln(𝑝𝑚)ln(𝑝𝑗)

+ ∑ 𝜓𝑚
2
𝑚=1 𝑘̅𝑚 +

1

2
∑ ∑ 𝜗𝑚,𝑗

2
𝑗=1

2
𝑚=1 𝑘̅𝑚𝑘̅𝑗

+ ∑ ∑ 𝛾𝑚,𝑗
2
𝑗=1

2
𝑚=1 ln(𝑝𝑚) 𝑘̅𝑗 + 𝛼0 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟.

                                                           (7)  

Note that 

𝜕ln𝐶∗

𝜕 ln(𝑝𝑚)
=

𝜕𝐶∗

𝜕𝑝𝑚
⋅

𝑝𝑚

𝐶∗
=

𝑥𝑚

𝑊̅
⋅

𝑝𝑚

𝐶∗
=

𝑝𝑚𝑥𝑚

𝐶̃∗

=
𝑝𝑚𝑥𝑚

∑ 𝑝𝑘
2
𝑘=1 𝑧𝑘

= 𝑠𝑚 , (8) 

where 𝑥𝑚 (𝑚 ∊{1, 2}) represents the cost-minimizing input demand, 𝑠𝑚 is the cost-share for input 

𝑚, and the second equality holds because by Shepard’s lemma we have 
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𝜕𝐶̃∗

𝜕𝑝𝑚
=

𝜕𝑊̅ ⋅ 𝐶∗

𝜕𝑝𝑚
= 𝑊̅ ⋅

𝜕𝐶∗

𝜕𝑝𝑚
= 𝑥𝑚.

(9) 

Also, note that 

𝜕 ln 𝐶∗

𝜕 ln 𝑝𝑚
= 𝛼𝑚 + ∑ 𝛽𝑚,𝑗

2

𝑗=1

ln(𝑝𝑗) + ∑ 𝛾𝑚,𝑗

2

𝑗=1

𝑘̅𝑗 . (10) 

Hence the system of latent cost shares equations can be obtained as follows 

𝑠𝑚 = 𝛼𝑚 + ∑ 𝛽𝑚,𝑗

2

𝑗=1

ln(𝑝𝑗) + ∑ 𝛾𝑚,𝑗

2

𝑗=1

𝑘̅𝑗 . (11) 

The standard assumed properties of the cost function (symmetry, homogeneity of degree 

one in prices), from neoclassical production theory, require the following parametric restrictions 

to be fulfilled: 

𝛽𝑚,𝑗 = 𝛽𝑗,𝑚;  ∑ 𝛽𝑚,𝑗

2

𝑚=1

= 0. (12) 

The second restriction (homogeneity) is fulfilled by the use of normalized prices. In esti-

mation, the dataset excludes the farms that use neither glyphosate nor the composite. This is a 

simplification to ensure that the two cost-share equations sum to one and so to avoid unnecessary 

complications in econometric treatment. Empirically, the portion of excluded farms is very small, 

consisting of only 641 out of 30,362 observations (Table 2.A1). Following that, we drop the com-

posite herbicide equation, and thus subscript 𝑚 is dropped thereafter for notation simplicity. Then, 

the equation of interest is given by 

𝑠𝑖,𝑡 = 𝛼 + 𝛽1 ln 𝑃𝑐[𝑖],𝑡 + 𝛾1𝑅𝑒𝑠𝑖𝑠𝑡𝑠[𝑖],𝑡 + 𝛾2𝐺𝑇𝑖,𝑡

+𝛾3𝑇𝑖𝑙𝑙𝑖,𝑡 + 𝜒𝑡 + 𝜄𝑠 + 𝜛𝑠𝑇𝑟𝑒𝑛𝑑, (13)
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where s𝑖,𝑡 is the cost-share of glyphosate for farm 𝑖 in year 𝑡. The variable ln 𝑃𝑐[𝑖],𝑡 denotes the 

ratio of glyphosate price to the composite herbicide price in Crop Reporting District (CRD) 𝑐 as-

sociated with farm 𝑖 in year 𝑡. The weed resistance to glyphosate that varies at the state level and 

year is represented as 𝑅𝑒𝑠𝑖𝑠𝑡𝑠[𝑖],𝑡. The variables 𝑇𝑖𝑙𝑙𝑖,𝑡 and 𝐺𝑇𝑖,𝑡 denote the conventional tillage 

rate and GT adoption rate at the farm level. Symbols 𝜉𝑡, 𝜍𝑠 and 𝛼𝑠𝑇𝑟𝑒𝑛𝑑 represents year dummies, 

state dummies, and state-specific time trends capturing general technical changes across time and 

states. 

 

A.3 Econometric model: extending fractional response approach  

The fractional response approach is adopted to estimate the glyphosate cost-share equation, i.e., 

eq. (13). Developed by Papke and Wooldridge (1996), the fractional response approach models 

fractional variables that range from zero to one inclusive, and thus is a natural approach to esti-

mating the glyphosate cost-share equation. Unlike Tobit-type models, the fractional response 

model does not impose a distribution on the dependent variable conditional on the independent 

variables. Instead, it directly specifies the conditional mean function as a probit function, i.e., 

𝐸(s𝑖,𝑡|x𝑖) = Φ(x𝑖,𝑡𝑏), (14)

where  Φ(∙) denotes the standard cumulative density function while x𝑖,𝑡 and 𝑏 represent, respec-

tively, the stacked covariates in eq. (13) and stacked coefficients. Note that the coefficients in eq. 

(13) are not identical to the coefficient vector 𝑏 in eq. (14). The model can then be estimated using 

the quasi-maximum likelihood (QMLE). To the best of our knowledge, there have been few ap-

plications of the fractional response model to cost-share equation estimation, but Kölling (2012; 

2018) has applied this idea in estimating the cost-share equations derived from a Translog cost 

function. 
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Heterogeneity and endogeneity with unbalanced panels. The above basic model is an idealized 

presentation without any econometric complications. However, our data structure gives rise to 

three technical issues: unobserved farm heterogeneity, potential endogeneity in the tillage and GT 

variables, and an unbalanced panel. Therefore, we extend the basic model to accommodate these 

complications.  

We first consider unobserved farm heterogeneity. Letting 𝑐𝑖 represent the farm heteroge-

neity, then we extend the conditional mean model in eq. (14) to become   

𝐸(s𝑖,𝑡|x𝑖 , 𝑐𝑖 ) = Φ(x𝑖,𝑡𝑏 + 𝑐𝑖). (15) 

The time-constant farm heterogeneity is potentially correlated with explanatory variables, 

GT and tillage variables in particular. A common practice to control for such correlations is the 

fixed effect. However, in nonlinear models, it is well-known that cross-sectional fixed effects will 

generally result in the so-called “incidental parameter problem”, that is, with fixed periods and a 

large number of cross-sectional units that goes to infinity, the coefficient and average partial effect 

estimates will be inconsistent (Neyman and Scott 1948; Wooldridge 2010). An alternative ap-

proach is the correlated random effects (CRE) method, implemented through the Chamberlain-

Mundlak device (Mundlak 1978; Chamberlain 1984; Papke and Wooldridge 2008). Concretely, 

assume  

𝑐𝑖|𝑥𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜃 + 𝑥̅𝑖ζ, 𝜎𝑐
2), 

where 𝑥̅𝑖 are the time-averaged variables and unity is excluded from 𝑥𝑖,𝑡. Then we have 

𝐸(s𝑖,𝑡|𝑥𝑖 , 𝜀𝑖 ) = Φ(𝜃 + 𝑥𝑖,𝑡𝑏 + 𝑥̅𝑖ζ + 𝜖𝑖), (16) 

where 𝜖𝑖 ≡ 𝑐𝑖 − (𝜃 + 𝑥̅𝑖ζ) has a conditional normal distribution 𝜖𝑖|𝑥𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑐
2). From the 

law of iterated expectations, the conditional mean model that is extended for farm heterogeneity 

becomes  
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𝐸(s𝑖,𝑡|𝑥𝑖) = 𝐸[(s𝑖,𝑡|𝑥𝑖 , 𝜀𝑖 )|x𝑖] = Φ(𝜃̃ + 𝑥𝑖,𝑡𝑏̃ + 𝑥̅𝑖 ζ̃), (17) 

where the coefficients in eq. (16) are scaled by (1 + 𝜎𝑐
2)−1/2 and become (𝜃̃, 𝑏̃, ζ̃). Intuitively, the 

correlated random effects method is a middle ground between the fixed effects (FE) and random 

effects (RE) methods that are commonly applied to panel data. While the FE allows for arbitrary 

dependence between 𝑐𝑖 and 𝑥𝑖, and the RE assume independence between 𝑐𝑖 and 𝑥𝑖, with the CRE 

we specify a parametric model for the conditional distribution of 𝑐𝑖 to allow for its dependence on 

𝑥𝑖 in a restrictive way. 

Although the CRE approach is commonly seen in nonlinear model applications, extending 

it from balanced to unbalanced panels is a nontrivial matter and needs additional treatment. As-

suming that the unbalancedness, or time period selection, is not systematically associated with 

unobserved errors, Wooldridge (2019) has proposed a strategy to achieve the extension. Con-

cretely, assume that 𝑐𝑖 follows a normal distribution, and model the conditional mean and variance 

of 𝑐𝑖 to depend on the covariates as well as time period selection, i.e.,  

𝐸(𝑐𝑖|𝑤𝑖) = ∑ 𝜃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑥̅𝑖𝜁𝑟

𝑇

𝑟=1

𝑇

𝑟=1
; 

𝑉𝑎𝑟(𝑐𝑖|𝑤𝑖) = exp (𝜔 + ∑ 𝜆𝑖𝑟𝜑𝑟

𝑇−1

𝑟=1
). 

where 𝑤𝑖 denotes the set of conditioning variables, 𝑇 is the maximum number of time periods in 

the panel, 𝑇𝑖 denotes the number of periods some farm 𝑖 is present in the dataset, and  𝜆𝑖𝑟 ≡ 1[𝑇𝑖 =

𝑟] is a time period selection indicator. Here 𝜔 denotes the variance parameter for 𝑇𝑖 = 𝑇, and the 

𝜑𝑟 parameters provide deviation of variance from exp (𝜔) as 𝑇𝑖 varies. Therefore, the distribution 

assumption on c𝑖 for unbalanced panels is analogous to that for balanced panels, but is extended 

such that the coefficients vary with the number of periods indicated by 𝜆𝑖𝑟. Equivalently, we can 

write 𝑐𝑖 as 
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𝑐𝑖 = ∑ 𝜃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑥̅𝑖𝜁𝑟

𝑇

𝑟=1

𝑇

𝑟=1
+ 𝜖𝑖 , 

where 𝜖𝑖|𝑤𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0, exp(𝜔 + ∑ 𝜆𝑖𝑟𝜑𝑟
𝑇−1
𝑟=1 )). Then we obtain the following: 

𝐸(s𝑖,𝑡|𝑥𝑖,𝑡, 𝑤𝑖 ) = Φ (
𝑥𝑖,𝑡1𝑏̃ + ∑ 𝜃̃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑥̅𝑖𝜁𝑟

𝑇
𝑟=1

𝑇
𝑟=1

[exp(∑ 𝜆𝑖𝑟𝜑̃𝑟
𝑇
𝑟=2 )]

1
2

) , (18) 

where we follow Wooldridge (2019) and re-parameterize, analogously to the balanced panel case. 

The new parameters are denoted by re-specifying with the upper tilde notation. 

Now, since our specification involves two potentially endogenous variables, we further 

extend the model to control and explicitly test for endogeneity. We make some necessary notation 

changes: let 𝑧𝑖,𝑡1 denote the exogenous variables in the estimation equation, i.e., the cost-share 

equation, 𝑦𝑖,𝑡1 denote a potentially endogenous variable, zi,t2 denote the excluded exogenous var-

iables as the instrumental variables, and write the complete set of exogenous variables as 𝑧𝑖,𝑡 ≡

(𝑧𝑖,𝑡1, 𝑧𝑖,𝑡2). Similarly, denote the time averages of 𝑧𝑖,𝑡 as 𝑧𝑖̅. The conditional mean model is now 

expressed as  

𝐸(𝑠𝑖,𝑡|𝑧𝑖,𝑡, 𝑦𝑖,𝑡1, 𝑐𝑖, 𝑢𝑖,𝑡 ) = Φ(𝑧𝑖,𝑡1𝜂 + 𝜇1𝑦𝑖,𝑡1 + 𝑐𝑖 + 𝑢𝑖,𝑡), (19) 

where 𝑢𝑖,𝑡 is the time-varying omitted factor that is potentially correlated with 𝑦𝑖,𝑡1. We control 

for the endogeneity by applying the two-step control function approach (Papke and Wooldridge 

2008; Rivers and Vuong 1988; Blundell and Powell 2003; 2004). This can be seen as an extension 

of Papke and Wooldridge (2008) for balanced panels to the unbalanced panels case. In contrast to 

the usual instrumental variables approach (two-stage least squares, in particular), which eliminates 

endogeneity through replacing the endogenous variable term with a linear projection on exogenous 

variables, the control function approach controls for the endogenous variation part of the 
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endogenous variable. Importantly, the first approach will result in inconsistent estimates in non-

linear models in general, so we adopt the latter. Concretely, assume  

𝑦𝑖,𝑡1 = 𝜏1 + 𝑧𝑖,𝑡𝛿1 + ∑ 𝜃̃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑧𝑖̅𝜁𝑟

𝑇

𝑟=2

𝑇

𝑟=2
+ 𝑣𝑖,𝑡1;  (20) 

𝜀𝑖,𝑡 = 𝜌1𝑣𝑖,𝑡1 + 𝑒𝑖,𝑡1; 

where 𝜀𝑖,𝑡 ≡ 𝜖𝑖 + 𝑢𝑖,𝑡, and 𝑒𝑖,𝑡1 is independent of (𝑧𝑖,𝑡, 𝑣𝑖,𝑡1). The correlation between 𝑢𝑖,𝑡 and 𝑦𝑖,𝑡1 

is thus captured by 𝜌1. Then the conditional mean expression in eq. (18) is further extended to: 

𝐸(𝑠𝑖,𝑡|𝑧𝑖,𝑡, 𝑦𝑖,𝑡1, 𝑣𝑖,𝑡1, 𝑤𝑖 ) =

Φ (
𝑧𝑖,𝑡1𝜂̃ + 𝜇̃1𝑦𝑖,𝑡1 + 𝜌̃1𝑣𝑖,𝑡1 + ∑ 𝜃̃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑧𝑖̅𝜁𝑟

𝑇
𝑟=1

𝑇
𝑟=1

[exp(∑ 𝜆𝑖𝑟𝜑̃𝑟
𝑇
𝑟=2 )]

1
2

) . (21)
 

Following that, a two-step procedure is straightforward:  

(1) Step 1: obtain the pooled OLS residuals 𝑣̂𝑖,𝑡1  from regressing 𝑦𝑖,𝑡1  on (1, 𝑧𝑖,𝑡 , 

𝜆𝑖2,…, 𝜆𝑖𝑇, 𝜆𝑖2𝑧𝑖̅,…, 𝜆𝑖𝑇𝑧𝑖̅ ); 

(2) Step 2: estimate the fractional probit model in eq. (21) to obtain estimates for (𝜂̃, 𝜇̃1, 

𝜌̃1 ,  𝜃̃2 ,…,  𝜃̃𝑇 ,  𝜁2 ,…,  𝜁𝑇 ,  𝜑̃2, … , 𝜑̃𝑇 ). Denote the estimates as ( 𝜂̂ , 𝜇̂1 , 𝜌̂1 ,  𝜃2 ,…, 𝜃𝑇 , 

𝜁2,…, 𝜁𝑇, 𝜑̂2,…, 𝜑̂𝑇). 

The control function approach provides a convenient test for endogeneity: the null that 

𝜌1 = 0 corresponds to 𝑦𝑖,𝑡1 being exogenous. Moreover, although one endogenous variable is as-

sumed here for illustration purposes, the model can be easily extended to allow for plural endoge-

nous variables. For example, with an additional endogenous variable 𝑦𝑖,𝑡2, simply add 𝑦𝑖,𝑡2 and 

𝜌2𝑣̂𝑖,𝑡2, where 𝑣̂𝑖,𝑡2 is obtained from a similar first step regression. For identification, there should 

not be perfect linearity among elements of 𝑧𝑖,𝑡, while there should be time variation in 𝑧𝑖,𝑡1 and 

𝑧𝑖,𝑡2. Vector 𝑧𝑖,𝑡 may include time-constant variables, but their partial effect estimates may not be 
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consistently identified. Time dummies may also enter 𝑧𝑖,𝑡. Although for CRE with balanced mod-

els time dummies are excluded from 𝑧𝑖̅, they are included for the unbalanced panel case, because 

the number of time periods varies so that the time dummy averages are no longer constant 

(Wooldridge 2019).  

The asymptotic standard errors obtained from second-stage estimation are incorrect due to 

the two-step procedure, so panel bootstrapping is used, which resamples only the cross-sectional 

units but not years within each unit (Papke and Wooldridge 2008; Wooldridge 2019). The standard 

errors are clustered at CRD (Crop Reporting District) level to capture potential spatial correlation 

among farms within the same CRD because the data are collected to be representative at the CRD 

level. A similar estimation framework and application can be found in Bluhm et al. (2018).  

 

A.4 Coefficient interpretation 

Since the model is nonlinear, the coefficient estimates are interpreted through the Average Partial 

Effects (APE) statistics and through elasticities. Following Papke and Wooldridge (2008), we av-

erage across time and cross-section to estimate the APE. Define  

𝑚𝑖,𝑡 ≡ [exp (∑ 𝜆𝑖𝑟𝜑̂𝑟

𝑇−1

𝑟=2
)]

−
1
2

×

𝜙 (
𝑧𝑖,𝑡1𝛾̂ + 𝛼̂1𝑦𝑖,𝑡1 +  𝜌̂1𝑣̂𝑖,𝑡1 + ∑ 𝜃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑧𝑖̅𝜁𝑟

𝑇
𝑟=1

𝑇
𝑟=1

[exp(∑ 𝜆𝑖𝑟𝜑̂𝑟
𝑇
𝑟=2 )]

1
2

) ; (22)

 

𝑚̅ ≡ (𝑁𝑇)−1 ∑ ∑ 𝑚𝑖,𝑡

𝑇

𝑡=1
; 

𝑁

𝑖=1
(23) 

where 𝜙(∙)  denotes the standard normal density function. Then, for continuous variables 

(𝑧𝑖,𝑡1, 𝑦𝑖,𝑡1), the APE is the coefficient estimate multiplied by 𝑚̅. For example, the APE for 𝑧𝑖,𝑡1 is 

𝑚̅𝛾̂. For elasticities, formulas are given by 
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𝜅𝑚,𝑗 =
𝜕 ln(𝑥𝑚)

𝜕 ln(𝑝𝑗)
=

𝜕ln(𝑠𝑚)

𝜕 ln(𝑝𝑗)
+ 𝑠𝑗 =

1

𝑠𝑚

𝜕𝑠𝑚

𝜕 ln(𝑝𝑗)
+ 𝑠𝑗;

(24) 

𝜅𝑚,𝑚 =
𝜕 ln(𝑥𝑚)

𝜕 ln(𝑝𝑚)
=

𝜕ln(𝑠𝑚)

𝜕 ln(𝑝𝑚)
+ 𝑠𝑚 − 1 =

1

𝑠𝑚

𝜕𝑠𝑚

𝜕 ln(𝑝𝑚)
+ 𝑠𝑚 − 1;

(25) 

𝐴𝐸𝑆𝑚,𝑗 =
𝜂𝑚,𝑗

𝑠𝑗
= 1 +

1

𝑠𝑚𝑠𝑗

𝜕𝑠𝑚

𝜕 ln(𝑝𝑗)
;

(26) 

where 𝜅𝑚,𝑗  is cross-price elasticity between input 𝑚  and 𝑗 , 𝜅𝑚,𝑚  is own-price elasticity, and 

𝐴𝐸𝑆𝑚,𝑗 is the Allen-Uzawa elasticity of substitution (AES) (Berndt and Wood 1975). Then the 

average elasticities are obtained by averaging across the sample (both time and unit) the estimates 

of elasticities using the following formulas: 

(1) glyphosate own-price elasticity = 𝑚𝑖,𝑡𝛾̂1 𝑠̂𝑖,𝑡⁄ − 1 + 𝑠̂𝑖,𝑡; 

(2) composite own-price elasticity = 𝑚𝑖,𝑡𝛾̂1 (1 − 𝑠̂𝑖,𝑡)⁄ − 𝑠̂𝑖,𝑡; 

(3) glyphosate-composite cross-price elasticity = −𝑚𝑖,𝑡𝛾1 𝑠̂𝑖,𝑡⁄ + 1 − 𝑠̂𝑖,𝑡;  

(4) composite-glyphosate cross-price elasticity = −𝑚𝑖,𝑡 𝛾̂1 (1 − 𝑠̂𝑖,𝑡)⁄ + 𝑠̂𝑖,𝑡; 

(5) Allen-Uzawa elasticity of substitution = 1 − 𝑚𝑖,𝑡 𝛾̂1 [𝑠̂𝑖,𝑡⁄ (1 − 𝑠̂𝑖,𝑡)]; 

where the predicted glyphosate cost-share 𝑠̂𝑖,𝑡 is given by 

Φ (
𝑧𝑖,𝑡1𝜂̂ + 𝜇̂1𝑦𝑖,𝑡1 +  𝜌̂1𝑣̂𝑖,𝑡1 + ∑ 𝜃𝑟𝜆𝑖𝑟 + ∑ 𝜆𝑖𝑟𝑧𝑖̅𝜁𝑟

𝑇
𝑟=1

𝑇
𝑟=1

[exp(∑ 𝜆𝑖𝑟𝜑̂𝑟
𝑇
𝑟=2 )]

1
2

) . (27) 
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B Data and Variables 

B.1 The AgroTrak® survey 

The AgroTrak® survey data, on which we primarily rely for the analysis, is a large continuous 

panel dataset that collects plot-level information on crop protection chemical usage in the US on 

an annual basis. The survey is conducted by GfK Kynetec, a market research company that spe-

cializes in agricultural market research, and is representative at the CRD level. Rigorous proce-

dures and extensive quality control measures are taken to ensure representativity. For example, to 

establish a comprehensive sample base, the respondents are obtained from exhaustive sources, 

including government lists from the USDA and the FSA, agricultural publication subscription lists, 

and agricultural association lists. Data collected are reviewed and verified by specially trained 

personnel and Kynetec USA analysts in terms of accuracy, completion level, internal consistency, 

and compatibility with external information. In addition, previous studies that use the AgroTrak® 

survey data have conducted external validation. For instance, Perry et al. (2016a) has cross-vali-

dated the genetically-engineered variety adoption information using the USDA National Agricul-

tural Statistics Service (NASS) survey data. More information regarding the AgroTrak® survey 

data can also be found in the Supplementary text of Perry et al. (2016a). 

The AgroTrak® raw data is at the field level, consisting of 77,802 field-level observations 

during 2010-2016, and each observation is associated with a farm identifier. The survey is de-

signed such that a proportion of farms participating in previous years are followed. As a result, a 

subset of farms is sampled repeatedly across years. Table 2.A2 provides an overview of the re-

peated farm-level sampling. The table shows that around 50% of farms are repeatedly sampled. In 

addition, there are 30,362 farm-year observations and 14,382 unique farms, so a farm is sampled 

for 2.1 years on average. We extract and use for analysis herbicide use and expenditure, seed trait 
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(whether the planted seed contains GT trait), tillage practice, and planting area information for 

each plot. While the AgroTrak® data identifies the same farms across time periods, it does not 

identify whether two plots are identical in different years.  

For the main analysis, we aggregated the plot-level raw data to the farm level in order to 

circumvent further complications in the already-complex econometric model. For example, the 

field-level analysis will involve controlling for discrete, as opposed to continuous, endogenous 

variables. Doing so is challenging for nonlinear models such as the fractional response model in 

Section A.3 (Wooldridge 2010). Analyzing data at the farm level is also reasonable because a 

farmer allocates resources for the entire farm when making production decisions. In total, 30,362 

farm-level observations are available over the 2010-2016 interval. However, as discussed in Sec-

tion A.2 above, we exclude all 641 observations that use neither glyphosate nor the composite 

herbicide. The final sample for analysis drops ten additional observations due to missing covariate 

values. As a result, the final sample for analysis consists of 29,711 observations. Panel A of Figure 

2.A1 illustrates our sample’s geographical distribution. 

 

B.2 Variables 

This section describes the variables in more detail, devoting particular attention to excluded in-

struments.  

 

Excluded instrument variables. For 𝐺𝑇 we use the GT seed price (pgt) and the Bt seed adoption 

rate (Bt) as instruments, while for 𝑇𝑖𝑙𝑙 we use the diesel fuel price (pfuel) and soil erodibility (hel8). 

GT seed price is included because higher price decreases the relative benefit of planting GT seed 

and thus GT varieties become less preferable. The GT seed price is exogenously determined by 
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the market and does not directly relate to herbicide decisions. Similarly, Bt adoption is assumed to 

correlate with GT adoption but does not directly affect herbicide choice. Biotech companies have 

been developing multi-traits seed products (Que et al. 2010), and GT trait has been increasingly 

stacked with other genetically engineered traits such as Bt, a genetic trait that provides crop pro-

tection from pests. As a result, if a farmer adopts Bt, then the marginal cost of adopting GT is 

reduced and so GT is more likely to be adopted. Figure 2.A2 illustrates the trend in trait stacking. 

In recent years, around 95% of planting areas use GT seed where about 10% of plant varieties 

embed only GT traits and the rest are stacked with the Bt trait. Figure 2.A2 also shows that GT 

trait is stacked with other HT (herbicide-tolerant) traits. By the same logic, other-HT seed adoption 

is also presumably correlated with 𝐺𝑇. However, it is unlikely to be exogenous as it directly affects 

the benefits of alternative herbicides and thus of herbicide choice. On the contrary, the Bt adoption 

decision is associated with pest control rather than with weed control choice. 

For tillage, conservation tillage generally requires less fuel (Triplett and Dick 2008), so 

fuel price will directly affect farmers’ tillage decisions. We also include hel8 as an excluded in-

strument for tillage. As is elaborated on in Perry et al. (2016b), a farm that grows crops on highly 

erodible land has stronger incentives to adopt conservation tillage in order to comply with conser-

vation requirements for federal subsidies as laid down in the 1985 Farm Bill. Similarly, fuel price 

and land erodibility are exogenous to a farm and are unlikely to directly relate to herbicide use. A 

schematic for the econometric model specification is presented in Figure 2.A3. 

 

Variable construction. Variables obtained from the AgroTrak® data are glyphosate cost share, 

herbicide prices, seed choices, and tillage choice. For each herbicide, i.e., glyphosate and the com-

posite herbicide, prices are measured by the Fisher price index. For the base, we follow Perry et 
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al. (2016b) and use the mean of the entire study period (2010-2016). The market for each herbicide 

is composed of a large number of subtly differentiated products, and the products available to and 

used in a county vary from county to county. For example, in our sample there are more than one 

hundred glyphosate products with different composition and prices, and a few products are pre-

mixed with non-glyphosate chemicals such as 2, 4-D to enhance its efficacy, resulting in a price 

premium. This is similar for the composite herbicide. Therefore, we choose the fixed basket of 

products for constructing the price index by two criteria: first, the product mustn’t be pre-mixed, 

that is, a glyphosate product will be excluded if it contains non-glyphosate active ingredients, and 

a composite product will be excluded if it contains active ingredients other than the three composite 

chemicals (atrazine, acetochlor, and S-metolachlor); and second, the share of its expenditure in the 

total expenditures should be no less than 5%. This gives us five products for glyphosate and six 

products for the composite herbicide as the basket. Following that, the variable ln 𝑃 is defined as 

the log of the glyphosate price to composite price ratio. Herbicide prices are constructed at the 

CRD level, rather than farm level, to capture price homogeneity within a region.  

For each farm, glyphosate cost-share 𝑠 is calculated as glyphosate herbicide expenditure 

divided by total expenditures on glyphosate and the composite herbicide. For 𝐺𝑇 and 𝐵𝑡, We di-

vide the area on which GT (Bt) seed (varieties that contain GT(Bt) trait) is planted by the farm’s 

total planting area to obtain 𝐺𝑇 (𝐵𝑡). Similarly, we use the conventional tillage acres divide by 

total planting acres of a farm to calculate 𝑇𝑖𝑙𝑙. 

The remaining variables are constructed from various sources. Weed resistance data come 

from the International Survey of Herbicide Resistant Weeds (ISHRW). Resistance is measured by 

the cumulative number of weed species that are identified to be resistant within a state in a year. 

The variable 𝑅𝑒𝑠𝑖𝑠𝑡 is defined as the difference between the glyphosate-resistant weed count and 
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the sum of resistant weed counts across the composite herbicide components. A weed species is 

defined as being resistant to the composite herbicide if it is resistant to at least one of the three 

composite chemicals, namely atrazine, acetochlor, and S-metolachlor. The GT seed price is ob-

tained from the TraitTrakTM, another proprietary data product from GfK Kynetec, and varies at the 

state level. This dataset is also used by Perry et al. (22). The soil erodibility data come from the 

National Reserve Inventory (NRI). Indicator variable ℎ𝑒𝑙8 takes value 1 whenever the county av-

erage soil erodibility index associated with plot 𝑖 is 8 or more (i.e., highly erodible), and value 0 

otherwise. Lastly, diesel fuel prices are obtained from the U.S. Energy Information Administration 

(https://www.eia.gov/) and vary across the Petroleum Administration for Defense Districts 

(PPADs). We follow Perry et al. (2016b) and calculate the variable 𝑝𝑓𝑢𝑒𝑙 by averaging diesel fuel 

prices from the prior September through to May of the year in question. Table 2.A3 summarized 

the variables and data sources as well as providing summary statistics. 

 

Variations in variables. As noted from previous sections that describe the data, identification is 

driven by temporal and spatial dimension variations in variables. Figure 2.1 in the main text has 

provided a way to understand temporal variations in the explanatory variables. State-level maps of 

the main variables are also provided in Figure 2.A1 to illustrate the spatial variations. Since the 

correlated random effect is applied to control for farm heterogeneity, we also present variations in 

the residualized variables in Figure 2.A4. 

 

 

 

 

https://www.eia.gov/
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C Additional results 

C.1 Full regression results 

Table 2.A4 presents the first-step regression results for Models 1-3 in the main text, and the full 

estimates of the second-step regressions for Models 1-5 are provided in Table 2.A5. Both 𝐺𝑇 and 

𝑇𝑖𝑙𝑙 variables are assumed to be endogenous in Model 1. In Models 2 and 3 we assume that only 

𝐺𝑇 and only 𝑇𝑖𝑙𝑙 are endogenous, respectively. Model 4 assumes exogeneity of the two variables, 

and Model 5 excludes the control variables (𝐺𝑇, 𝑇𝑖𝑙𝑙, 𝑅𝑒𝑠𝑖𝑠𝑡). Table 2.A6 presents the complete 

set of average elasticity estimates which are obtained as described in Section A.4. 

 

C.2 Notes on substitution 

In our analysis, a critical step is to estimate the Allen-Uzawa elasticity of substitution (AES) from 

the herbicide demand model. As stated in the main text, the AES measures substitutability when 

holding output constant. Hence it is a metric for net substitution, as opposed to gross substitution 

where output is allowed to change. The AES can be expressed as the share-weighted cross-price 

elasticity for cost-minimizing input demand, thus the greater-than-zero estimate of AES suggests 

that glyphosate and the composite herbicides are net substitutes in the sense that the cost-minimiz-

ing input demand increases as the price of the other input increases. Although it is the AES estimate 

per se that is needed as a parameter for the equilibrium displacement model (EDM), in this section 

we provide additional results to show that the two herbicides are gross substitutes as well. This is 

equivalent to showing that the cross-price elasticities for profit-maximizing input demand are pos-

itive. 

We first define a new set of parameters and variables that differ from those in the previous 

section. Let 𝑥𝑖(𝑝, 𝒘)  denote the profit-maximizing factor demand, and 𝑢𝑖(𝒘, 𝑦)  the cost-
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minimizing factor demand, where 𝑝, 𝒘, and 𝑦 denote output price, input price vector, and output 

quantity. Sakai (1973) has provided decomposition equations of the total price effects into substi-

tution and expansion effect, which connects the gross substitution that involves 𝜕𝑥𝑖(𝑝, 𝒘) 𝜕𝑤𝑗⁄  

and the net substitution that involves 𝜕𝑢𝑖(𝒘, 𝑦) 𝜕𝑤𝑗⁄ . The decomposition is given by  

𝜕𝑥𝑖(𝑝, 𝒘)

𝜕𝑤𝑗
=

𝜕𝑢𝑖(𝒘, 𝑦(𝑝, 𝒘))

𝜕𝑤𝑗
−

𝜕𝑥𝑖(𝑝, 𝒘)

𝜕𝑝

𝜕𝑝

𝜕𝑤𝑗
(28) 

The left-hand side is the gross change in input 𝑖 in response to a change in input 𝑗’s price. The first 

term on the right-hand side is the change in input 𝑖 in response to input 𝑗’s price change holding 

output prices constant, i.e., the substitution effect along the isoquant curve. The second term is the 

expansion effect and shows the response of input 𝑖 to a change in input 𝑗’s price through the effect 

of 𝑗’s price on output price.  

The compensated change in output price in this decomposition equation is in parallel to the 

compensated income change in Slutsky’s equation in consumer’s theory. Converting the decom-

position equation into elasticity form gives 

𝜖𝑖,𝑗(𝑝, 𝒘) = 𝜖𝑖,𝑗(𝒘, 𝑦) − 𝜖𝑖,𝑝(𝑝, 𝒘)𝜖𝑝,𝑗 (29) 

where 

𝜖𝑖,𝑗(𝑝, 𝒘) =
𝜕 ln 𝑥𝑖(𝑝, 𝒘)

𝜕 ln 𝑤𝑗
 

𝜖𝑖,𝑗(𝒘, 𝑦) =
𝜕 ln 𝑢𝑖(𝒘, 𝑦(𝑝, 𝒘))

𝜕 ln 𝑤𝑗
= 𝐴𝐸𝑆𝑖,𝑗 ∙ 𝑠𝑗 

𝜖𝑖,𝑝(𝑝, 𝒘) =
𝜕 ln 𝑥𝑖(𝑝, 𝒘)

𝜕 ln 𝑝
 

𝜖𝑝,𝑗 =
𝜕 ln 𝑝

𝜕 ln 𝑤𝑗
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Using this formula, we calibrate for 𝜖𝑖,𝑗(𝑝, 𝒘) to investigate whether glyphosate and the 

composite herbicide are also gross substitutes, or equivalently, whether 𝜖𝑖,𝑗(𝑝, 𝒘) is greater than 

zero. The value of the substitution effect, 𝜖𝑖,𝑗(𝒘, 𝑦), is obtained directly based on our estimates 

where AES is estimated to be 0.739. The predicted share of the composite herbicide is 0.501 and 

so 𝜖𝑖,𝑗(𝒘, 𝑦) is 0.370. For the expansion effect, we calibrate using the average herbicide as a rea-

sonable approximation, due to data constraints. Lin et al. (1995) has estimated herbicide demand 

as a function of corn output prices and derived the elasticity to be around 0.55, which is used to 

approximate 𝜖𝑖,𝑝(𝑝, 𝒘). For the output price response to herbicide price, a reference point could 

be established using the results under a perfectly competitive corn market where the total produc-

tion cost should equal to corn price times yield. In that case, how output price changes with herb-

icide price change depend on the proportion of herbicide cost in the total cost. More specifically, 

𝜖𝑝,𝑗 should equal the herbicide cost share of total production cost. The largest proportion of corn 

production cost usually involves land, fertilizer, and equipment while herbicide takes up a rela-

tively very small portion of the production cost. According to the cost estimate for corn production 

in Iowa,2 the minimum and maximum proportions averaged over 2010-2016 are 2.8% and 4.1% 

respectively, so 𝜖𝑝,𝑗  ranges from 0.028 to 0.041. Therefore, according to eq. (28), 𝜖𝑖,𝑗(𝑝, 𝒘) is 

 

2  Iowa State University, https://www.extension.iastate.edu/agdm/crops/html/a1-20.html. Alt-

hough corn production cost estimates are also available from alternative sources such as Purdue 

University and South Dakota State University, Iowa State University uniquely provides a separate 

cost estimate for herbicide instead of only pesticide or chemical cost as a whole, thus providing 

better precision.  

 

https://www.extension.iastate.edu/agdm/crops/html/a1-20.html
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calibrated to range from 0.347 to 0.355 and is positive, indicating a gross substitution relationship 

between glyphosate and the composite herbicide.  

 

C.3 Robustness regressions 

Alternative cost function specification. Various flexible functional forms have been tested that 

approximate cost functions without placing a priori restrictions on the elasticity of substitution. 

The two most commonly used in the literature are the Translog and the Generalized Leontief (GL). 

Evidence is divided on whether the choice of functional form is critical (Chalfant 1984; Borger 

1992). For robustness purposes, we estimate the Generalized Leontief specification in this section. 

While it is ideal to address the econometric issues in estimating the GL as we have done 

for the Translog, we are faced with technical difficulties caused by data availability. Specifically, 

our data do not provide the output information. Therefore, we have to rely on a unit cost function 

and transform the factor demand into shares in order to circumvent the need for the output variable 

in estimation. Recall that the cost-shares are obtained by differentiating the log cost with respect 

to log prices. The advantage of the Translog is that the cost function is in logarithmic form and 

thus the right-hand side expressions of the cost-share equations are linear in parameters. In contrast, 

the right-hand side expressions are generally nonlinear for other functional forms, including the 

GL. Therefore, we provide here the estimation of the GL without special treatment for the potential 

econometric issues, namely unobserved farm heterogeneity, endogeneity, and unbalancedness. 

The results should be viewed as a rough “benchmark” as a robustness check and should be inter-

preted with caution.  

The unit cost function of the Generalized Leontief is given by 

𝐶∗ = 𝑏11𝑝1 + 2𝑏12(𝑝1𝑝1)
1
2 + 𝑏22𝑝2; (30) 
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where 𝑝1 and 𝑝2 are glyphosate and composite herbicide, respectively, and 𝐶∗ is the unit cost. The 

corresponding factor demands are then given by  

𝑥1(𝑝1, 𝑝2) =
𝜕𝐶∗

𝜕𝑝1
= 𝑏11 + 𝑏12 (

𝑝2

𝑝1
)

1
2

;  (31) 

𝑥2(𝑝1, 𝑝2) =
𝜕𝐶∗

𝜕𝑝2
= 𝑏22 + 𝑏12 (

𝑝1

𝑝2
)

1
2

 . (32) 

Then we obtain the glyphosate cost-share equation as the following: 

𝑠1 =
𝑝1𝑥1

𝐶∗
=

𝑏11𝑝1 + 𝑏12(𝑝1𝑝2)
1
2

𝑏11𝑝1 + 2𝑏12(𝑝1𝑝1)
1
2 + 𝑏22𝑝2

. (33) 

Dividing by 𝑏22𝑝2 in both nominator and denominator and transforming into logarithm 

form gives 

ln 𝑠1 = ln (𝑏1

𝑝1

𝑝2
+ 𝑏2 (

𝑝1

𝑝2
)

1
2

) − ln (𝑏1

𝑝1

𝑝2
+ 2𝑏2 (

𝑝1

𝑝2
)

1
2

+ 1) , (34) 

where 𝑏1 ≡ 𝑏11 𝑏22⁄  and 𝑏2 ≡ 𝑏12/𝑏22. Adding the control variables, we estimate the following 

equation: 

ln 𝑠1 = ln (𝑏1

𝑝1

𝑝2
+ 𝑏2 (

𝑝1

𝑝2
)

1
2
) − ln (𝑏1

𝑝1

𝑝2
+ 2𝑏2 (

𝑝1

𝑝2
)

1
2

+ 1)

+𝑟0𝑅𝑒𝑠𝑖𝑠𝑡 + 𝑟1𝐺𝑇 + 𝑟2𝑇𝑖𝑙𝑙. (35)

 

The equation is estimated using nonlinear least-squares. The Allen-Uzawa elasticity of 

substitution (AES) estimate is computed from the estimation results by averaging the value of 

elasticity across the sample. The AES estimate is 0.710, indicating a net substitution relationship 

between glyphosate and the composite herbicide, which is consistent with the economic implica-

tions from a Translog specification. The value is also close to the AES estimate from our main 

results (0.739). 
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Individual versus aggregated herbicide. In our analysis, the three alternative chemicals are ag-

gregated to become the only alternative to glyphosate. One potential concern is that the three al-

ternatives may respond differently to glyphosate reduction. For example, a possibility is that cer-

tain chemicals will decrease while others increase. Therefore, we conduct an additional analysis 

to investigate the sensitivity of our results to disaggregation.  

Specifically, we use GT adoption as a glyphosate-related shock and analyze the response of the 

three individual alternative chemicals as well as the composite herbicide to it. We rely on the 

AgroTrak® data for analysis and estimate at the plot level for the period 2010-2016. The following 

equation is estimated for atrazine, acetochlor, S-metolachlor, and the composite herbicide, sepa-

rately: 

𝑦𝑖 = 𝛼𝑡[𝑖] + 𝛽𝑡[𝑖]𝐺𝑇𝑖 + 𝛿𝑐[𝑖]𝑇𝑡[𝑖] + 𝜃𝑓[𝑖] + 𝑢𝑖 , (36) 

where the dependent variable is the active ingredient weight in pounds per acre applied on plot 𝑖 

when estimating for atrazine, acetochlor, and S-metolachlor, and is the product gallons per acre 

for the composite herbicide. The variable 𝐺𝑇𝑖 is a dummy variable which equals 1 whenever a plot 

is planted to GT corn and equals 0 otherwise. Parameter 𝛽𝑡[𝑖]  is a time-specific coefficient, 

𝛿𝑐[𝑖]𝑇𝑡[𝑖] represents CRD-specific trends, and 𝜃𝑓[𝑖] is the farm-level fixed effect. We are interested 

in the 𝛽𝑡[𝑖] parameter which captures the year-specific impacts of GT adoption on chemical use. 

However, as discussed in Section B.1, although a subset of farms is followed over time the plots 

on a farm are not necessarily identical across years and thus we can’t control for unobserved plot 

heterogeneity through plot fixed effects. Consequently, plot-specific omitted factors that are cor-

related with 𝐺𝑇𝑖, whether time-constant or time-varying, will cause bias. That the GT variable 

remains correlated with omitted factors after controlling for farm fixed effects in the main analysis 

suggests that GT is also highly likely to be endogenous in eq. (36). Therefore, we instrument it 
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with GT seed price and whether Bt seed is used, similar to the approach taken in the main analysis 

(also see more details for the instruments in Section B.2). The tests also show that we can reject 

the exogeneity hypothesis at the 1% level, where the instruments pass the weak instrument and 

overidentification tests. We present the estimation results for 𝛽𝑡[𝑖] in Figure 2.A5. The results in-

dicate that the response patterns are very similar across the three individual alternative chemicals 

as well as the composite herbicide. This provides indirect evidence that our results in the main 

analysis shall not be sensitive to the aggregation of the three alternative chemicals into one com-

posite herbicide.  

 

D Pecuniary environmental assessment model 

D.1 EIQ: environmental damage measure  

This section describes in detail the EIQ and PEA approach we apply in this paper, and the proce-

dure for computing damage prices. This is followed by a discussion of the merits of these ap-

proaches as well as potential limitations as is relevant to the application. EIQ is adopted to measure 

the environmental and human health effects associated with the herbicides, with a higher score 

indicating greater environmental and human health impact. Generally, current pesticide risk as-

sessment methods fall into three categories: the relative scoring method, the risk ratio method, and 

the fuzzy logit expert method. Among these methods, the EIQ approach (a relative scoring method) 

and the hazard quotient approach (a risk ratio method) are most commonly used in herbicide risk 

assessment. EIQ (Kovach 1992) has been widely used in the pesticide literature (Brookes and 

Barfoot 2012; Beckie et al. 2014; Brookes et al. 2017). The EIQ value of an individual pesticide 

is the average of farm-worker (applicator and picker), consumer (consumer and groundwater 

leaching), and ecological (fish, birds, bee, and beneficial insects) effects. In calculating the EIQ 
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scores, the information about toxicity and the chemical’s physical properties (e.g., plant surface 

half-life) are combined and weighted to reflect the risk from exposure. Alternatively, the hazard 

quotient approach (Nelson and Bullock 2003; Peterson and Hulting 2004) captures pesticide risk 

using the estimate of exposure (usually the amount of pesticide applied) divided by the toxicity 

endpoint of a pesticide (LD50 for acute toxicity, and NOAEL for chronic toxicity3) and has a direct 

interpretation as the number of LD50 or NOAEL values applied per unit of area.  

Each of the approaches has its own merits and caveats. Some analysts have criticized scal-

ing and weighting features of the EIQ, as well as its qualitative risk rating (Dushoff et al. 1994; 

Cox et al. 2005; Kniss and Coburn 2015; Leach and Mumford 2008). For example, its linearly 

additive nature implicitly assumes that the environmental damage is proportional to the amount of 

pesticide applied, but this is not fully scientifically grounded given that the dose-response curves 

for non-carcinogenic effects are usually non-linear. Moreover, impacts to only a small number of 

ecosystem species are taken into account, such as birds, fish, bees, and beneficial arthropods. De-

spite these shortcomings, the EIQ approach is more generally applicable and provides a convenient 

means of comprehensively summarizing a pesticide chemical using a single value. While the haz-

ard quotient approach is free from many problems that EIQ has, it is less appropriate for this study 

for mainly two reasons. First, the units are not comparable across ecological receptors (e.g., fish, 

bees). Consequently, the hazard quotient has to be compared for each receptor separately, and 

 
3 LD50 (Lethal dose 50%) is defined as the dose that is lethal to 50% of a tested animal population 

such as rats, and NOAEL (No observed adverse effect level) is defined as the highest expo-

sure/dose level at which there are no statistically or biologically significant increase in adverse 

effects when comparing an exposed to a non-exposed group. 
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monetizing the adverse effects for different receptors is challenging. Second, it uses the absolute 

value of toxicity endpoint, which makes adjustments for each of the carcinogenic and monarch 

butterfly effects more problematic. In contrast, the EIQ approach groups the toxicities into cate-

gories and rates each category on a scale from one to five, which facilitates simulation of the 

debated effects. In conclusion, despite potential limitations, EIQ remains a more appropriate meas-

ure of environmental and human health effects for our purpose. 

 

D.2 PEA: monetary environmental accounting  

To monetize the environmental damage, we adapt the Pesticide Environmental Accounting (PEA) 

framework developed by Leach and Mumford (2008). Essentially, we convert the absolute external 

cost of the average pesticide due to environmental damage into the external cost of an individual 

pesticide, based on its EIQ value. Given our specific study context, namely U.S. corn production, 

the external cost of the average pesticide in the United States is used. The original value presented 

in Pretty et al. (2001) was in pounds sterling, so we convert to US dollars using the average con-

version rates from an online historical exchange rate database, OANDA rate® 

(https://www.oanda.com/) and also inflate to the year 2020 using the U.S. government Consumer 

Price Index (CPI) data (https://www.bls.gov/). Using the EIQ system, Leach and Mumford (2008) 

has distributed the average pesticide external effect across EIQ categories to obtain the external 

effect due to specific health and environmental effects. As shown in Table 2.A7, the externality 

cost per kilogram active ingredient (abbreviated as “a.i.”) for the average pesticide in the U.S. is 

$5.63, where $0.77 is due to applicator effects. 

For each EIQ category, the score is grouped into low, medium, and high to determine the 

weight that applies to the specific pesticide chemical, and the grouping procedure is described in 

https://www.oanda.com/
https://www.bls.gov/
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Leach and Mumford (2008). For example, the EIQ score of applicator effects for glyphosate is 5 

under status-quo, which falls into the “low” range, so a weight of 0.5 is applied to obtain the 

applicator effect cost of glyphosate as $0.77*0.5=$0.39/kg a.i. Similarly, weights of 1 and 1.5 will 

be applied correspondingly for the medium and high ranges (Leach and Mumford 2008). Lastly, 

summing the externality costs of a herbicide across EIQ categories gives the total cost per kilogram 

active ingredient of the particular herbicide, and multiplying it by the average kilogram active 

ingredient per gallon product gives the damage price when measured in US dollar per gallon. 

We recognize that the PEA framework we adopt is only as good as its underlying assump-

tions. First and foremost, it involves transferring the value of a point estimate when making use of 

the absolute external costs of average pesticides in the United States. It is a form of benefit transfer, 

which is a common approach in the environmental accounting literature but is usually considered 

more prone to transfer errors than its alternative, namely the function transfer approach (Rosen-

berger and Loomis 2003; Rosenberger and Stanley 2006; Boyle et al. 2010). Therefore, we have 

made several efforts to investigate the validity of such a transfer. In their original paper, Leach and 

Mumford (Leach and Mumford 2008) chose to transfer the point estimate from the Pretty et al. 

(2001) paper which has estimated the external cost of pesticides in the UK, Germany, and the USA. 

Careful considerations were put into the decision: upon analyzing several approaches, they chose 

that in Pretty et al. (2001) because the monitoring and remediation approach in that study is theo-

retically more robust than others that involve the variability of subjective valuations. The moni-

toring and remediation approach has also been applied in Pretty et al. (2000). Both Pretty et al. 

(2000) and Pretty et al. (2001) have been widely cited, supporting the soundness of the transferred 

study (Pretty et al. 2001). In addition, instead of using the average cost for three countries as is 

done in Leach and Mumford (2008), we transfer based on only the cost estimates in the United 
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States, in order to better match the contexts of the original study with the new application in terms 

of geographical area and population. In summary, the criteria for using a point estimate transfer 

(Rosenberger and Stanley 2006) have been largely met, so the concern over transfer error is miti-

gated.  

Second, the framework is based on the EIQ approach and inevitably inherits the limitations 

of EIQ as discussed above, including its linear nature. Nevertheless, as is emphasized in the orig-

inal Leach and Mumford (Leach and Mumford 2008) paper, the value of this framework is in 

providing a “simple tool that can quickly assess the indirect costs of individual pesticides based 

on their particular toxicological and environmental behavior”. Although several papers have esti-

mated the environmental costs of pesticide application (Pretty et al. 2000; Pimentel 2005; 

Tegtmeier and Duffy 2004), these papers consider only the combined costs of all pesticides. To 

the best of our knowledge, the Leach and Mumford (2008) approach used here is the only tool 

available that provides a unified framework by which to transform the environmental damage into 

monetary measures for an individual pesticide, and it appears to be reasonably valid for conducting 

environmental accounting (Waterplot and Zilberman 2012; Praneetvatakul et al. 2013; Grover-

mann et al. 2013). Tables 2.A7-2.A8 illustrate the procedure for computing damage prices for 

glyphosate and the composite herbicide, respectively. It is noted that the three chemicals in the 

composite herbicide - atrazine, acetochlor, and S-metolachlor - happen to have the same weight 

for each of the EIQ categories. This shows the comparatively similar toxicological properties of 

the three chemicals. 
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E Welfare analysis model 

E.1 Equilibrium displacement model: formulation 

The market equilibrium can be characterized by the following six equations: 

(a) Consumer demand: 𝑄 = 𝑓(𝑀); 

(b) Production: 𝑄 = 𝑄(𝑋1, 𝑋2); 

(c) Factor demand for input 1: 𝑃1 = 𝑀𝑄1(𝑋1, 𝑋2); 

(d) Factor demand for input 2: 𝑃2 = 𝑀𝑄2(𝑋1, 𝑋2); 

(e) Factor supply for input 1: 𝑋1 = 𝑔1(𝑃1); 

(f) Factor supply for input 2: 𝑋2 = 𝑔2(𝑃2); 

where the subscript is equal to 1 for glyphosate, and 2 for the composite herbicide. The system is 

composed of six endogenous variables: 𝑄, the quantity of output corn; 𝑀, the price of corn; 𝑃1 and 

𝑃2, the prices of glyphosate and the composite herbicide; 𝑋1 and 𝑋2, the quantity of glyphosate 

and the composite herbicide. Expressions 𝑔1(∙) and 𝑔2(∙) denote the supply functions for glypho-

sate and the composite herbicide, respectively, while 𝑓(∙) denotes the demand function for corn. 

The production function, as a function of the two inputs, is 𝑄(∙) and is assumed to exhibit constant 

returns to scale so as to be consistent with long-run equilibrium conditions in a competitive indus-

try. Expressions 𝑄1(∙) and 𝑄2(∙) denote the partial derivatives of 𝑄(∙), i.e., the marginal products 

of glyphosate and the composite herbicide.  

Totally differentiating the equations above, converting to elasticities, and adding the exog-

enous shock of a glyphosate tax (modeled in the input supply equation) gives 

(a’) 𝐸𝑄 = 𝜁𝐸𝑀 

(b’) 𝐸𝑄 = 𝜅1𝐸𝑋1 + 𝜅2𝐸𝑋2 

(c’) 𝐸𝑃1 = 𝐸𝑀 − (𝜅2/𝜗)𝐸𝑋1 + (𝜅2/𝜗)𝐸𝑋2 
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(d’) 𝐸𝑃2 = 𝐸𝑀 + (𝜅1/𝜗)𝐸𝑋1 − (𝜅1/𝜗)𝐸𝑋2 

(e’) 𝐸𝑋1 = 𝜖1[𝐸𝑃1 − 𝜏] 

(f’) 𝐸𝑋2 = 𝜖2𝐸𝑃2 

where 𝐸𝑋 denotes 𝑑𝑋/𝑋, or 𝑑𝑙𝑛(𝑋), 𝜁 denotes the price elasticity of consumer demand for corn, 

𝜅𝑚 (𝑚 ∊ {1, 2} for glyphosate and the composite herbicide, respectively) is cost share of input 𝑚, 

and 𝜅𝑚 ≡ 𝑃𝑚𝑋𝑚 /(Total corn production cost), 𝜗  is the Allen-Uzawa elasticity of substitution 

(AES) between glyphosate and the composite herbicide, and 𝜖𝑚 denotes elasticity of supply for 

input 𝑚. Symbol 𝜏 represents a vertical shift in the supply of input 1, i.e., the glyphosate tax rate 

that is imposed. 

 

E.2 Solutions and welfare effects  

Solving the system of logarithmic differential equations yields a set of solutions expressed in terms 

of elasticity parameters and the exogenous supply shifter. The expressions are presented in Table 

2.A9. Following that, welfare effects can be calculated using formulas presented in Table 2.A10. 

In the welfare calculation, other than the parameter calibrations that are given in the paper, baseline 

values for the endogenous variables are also needed. The baseline values and data sources are 

summarized in Table 2.A11. 
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Figures and Tables 

Figure 2.A1 State-level maps of main variables, averaged over 2010-2016.  

Panel: (A) Number of farm-year observations. (B) Glyphosate cost-share, the dependent variables. 

(C)-(F) explanatory variables in the glyphosate cost-share equation. Our sample includes 34 states 

in the United States, and the unsampled states are represented by white color. (Data sources: In-

ternational Survey of Herbicide Resistant Weeds for panel D, AgroTrak®, GfK Kynetic for other 

panels.) 
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Figure 2.A2 Decomposition of GT (glyphosate-tolerant) seed adoption in US corn production 

(% of planted hectares), 1998-2016.  

GT seeds consist of three types of stacking: GT only (“GT”), GT stacked with Bt (“GT-Bt”), and 

GT stacked with Bt and other HT (“GT-Bt-other HT). (Data source: AgroTrak®, GfK Kynetec.)  
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Figure 2.A3 Econometric model schematic for estimating the glyphosate cost-share equation.  

For the main equation, i.e., the second-step fractional probit (eq. (21)), the main explanatory vari-

ables are 𝑧1 = (𝑙𝑛 𝑃 , 𝑅𝑒𝑠𝑖𝑠𝑡), 𝑦1 = 𝐺𝑇, and 𝑦2 = 𝑇𝑖𝑙𝑙. The 𝐺𝑇 and 𝑇𝑖𝑙𝑙 variables are hypothe-

sized to be endogenous and thus are instrumented using first-step auxiliary equations (eq. (20)). 

The excluded instrumental variables for 𝐺𝑇  and  𝑇𝑖𝑙𝑙  are (𝑝𝑔𝑡, 𝐵𝑡) and (𝑝𝑓𝑢𝑒𝑙, ℎ𝑒𝑙8), respec-

tively. The residuals from the first-step regressions are 𝑣̂1 and 𝑣̂2. They enter the second-step re-

gression as covariates. The main equation and auxiliary equations are connected through residual 

coefficients 𝜌̃1 and 𝜌̃2 which capture the correlation between the suspected endogenous variables 

and omitted factors. 
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Figure 2.A4 Visualization of residualized variables. 

Variables are residualized by subtracting the field averages (over the entire study period) from the 

observations to capture the within-field variation. The y-axis represents the inverse normal of the 

residualized glyphosate cost share, 𝛷−1(𝑠𝑟), across the four panels, and the x-axis variable is thus 

the residualized version of: log price ratio, 𝑙𝑛 𝑃𝑟, for Panel (A); relative weed resistance to glypho-

sate, 𝑅𝑒𝑠𝑖𝑠𝑡, for Panel (B); GT seed adoption rate, 𝐺𝑇𝑟, for Panel (C); and conventional tillage 

rate, 𝑇𝑖𝑙𝑙𝑟, for Panel (D). In addition, the curve on the right is the marginal density of the y-axis 

variable, and the upper colored area illustrates the marginal density of the corresponding x-axis 

variable.  
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Figure 2.A5 Estimates for time-specific coefficients 𝜷𝒕[𝒊], 2011-2016.  

The points are coefficient estimates, and the horizontal bars denote the 95% confidence interval.  
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Table 2.A1 Decomposition of sample, by herbicide decisions 

 Full dataset  Dataset after exclusion 

 Frequency Percentage  Frequency Percentage 

Both 16,713 55.0%  16,713 56.2% 

Glyphosate only 8,662 28.5%  8,662 29.1% 

Composite only 4,346 14.3%  4,346 14.6% 

Neither 641 2.1%  0 0.0% 

Total 30,362 100.0%  29,721 100% 

Notes: The dataset after exclusion is the full dataset less observations that use neither glyphosate 

nor the composite herbicide. The final sample further drops 10 observations due to missing covari-

ate values, so the final sample we use in estimation consists of 29,711 farm-level observations.  
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Table 2.A2 Overview of farm-level repeated sampling 

Number of sampled years Number of unique farms Percent 

1 7,518 52.27 

2 2,824 19.64 

3 1,551 10.78 

4 966 6.72 

5 735 5.11 

6 512 3.56 

7 276 1.92 

Total 14,382 100.00 
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Table 2.A3 Variable description, data source, and summary statistics  

Variable Definition Data source Mean Std. 

Dev. 

Min Max 

𝑠  Glyphosate cost share AgroTrak® 0.498 0.376 0.000 1.000 

ln 𝑃  Log price ratio (glyphosate 

divided by the composite 

price) 

AgroTrak® 0.009 0.158 -0.619 0.725 

𝑅𝑒𝑠𝑖𝑠𝑡   Cumulative count of 

glyphosate-resistant weed 

minus composite-resistant 

weed 

ISHRW 0.122 4.095 -11.000 10.000 

𝐺𝑇  GT seed adoption rate AgroTrak® 0.913 0.264 0.000 1.000 

𝑇𝑖𝑙𝑙  Conventional tillage rate AgroTrak® 0.396 0.479 0.000 1.000 

𝑝𝑔𝑡  GT seed price TraitTrak® 103.45 27.26 55.46 256.20 

𝐵𝑡  Bt seed adoption rate AgroTrak® 0.728 0.384 0.000 1.000 

𝑝𝑓𝑢𝑒𝑙  Diesel fuel price USDA-

NASS 

3.18 0.58 1.94 3.99 

ℎ𝑒𝑙8  Whether growing crops on 

highly erodible land 

NRI 0.363 0.481 0.000 1.000 
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Table 2.A4 First-stage regression results 

 (1) (2) (3) (4) 

 Model 1: 𝐺𝑇 Model 1: 𝑇𝑖𝑙𝑙 Model 2: 𝐺𝑇 Model 3: 𝑇𝑖𝑙𝑙 

𝑝𝑔𝑡  -0.0001 0.0000 -0.0001  

 (-0.42) (0.03) (-0.50)  

𝐵𝑡  0.2246*** -0.0026 0.2260***  

 (14.08) (-0.29) (14.16)  

𝑝𝑓𝑢𝑒𝑙  -0.1230 -0.4140  -0.3810 

 (-0.85) (-1.63)  (-1.50) 

ℎ𝑒𝑙8  -0.0087 -0.1691***  -0.1698*** 

 (-1.02) (-7.89)  (-7.89) 

ln 𝑃  -0.0062 0.0004 -0.0066 0.0007 

 (-0.54) (0.01) (-0.58) (0.02) 

𝑅𝑒𝑠𝑖𝑠𝑡  0.0025 -0.0091 0.0023 -0.0091 

 (0.77) (-1.37) (0.71) (-1.38) 

𝑇𝑖𝑙𝑙    -0.0141***  

   (-2.73)  

𝐺𝑇     -0.0521*** 

    (-3.15) 

N 29711 29711 29711 29711 

Notes: t statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered 

at the CRD level. Model 1 assumes both 𝐺𝑇 and 𝑇𝑖𝑙𝑙 variables to be endogenous, and Model 2 and 

3 assume only 𝐺𝑇 and only 𝑇𝑖𝑙𝑙 is endogenous, respectively.  
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Table 2.A5 Full estimates of second-step regression 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

ln 𝑃   0.151*** 0.151*** 0.177*** 0.176*** 0.148*** 

 (3.22) (3.23) (3.30) (3.32) (2.98) 

𝑅𝑒𝑠𝑖𝑠𝑡  -0.028* -0.027* -0.034* -0.032*  

 (-1.71) (-1.68) (-1.88) (-1.85)  

𝐺𝑇  0.424*** 0.438*** 1.057*** 1.072***  

 (4.90) (5.05) (18.53) (19.00)  

𝑇𝑖𝑙𝑙  -0.374* -0.098*** -0.424* -0.097***  

 (-1.76) (-5.92) (-1.94) (-5.35)  

𝑣̂1  1.052*** 1.037***    

 (11.71) (11.60)    

𝑣̂2  0.285  0.330   

 (1.33)  (1.50)   

𝜆2 × ln 𝑃̅̅ ̅̅ ̅   0.098 0.079 0.209 0.188 0.049 

 (0.41) (0.34) (0.82) (0.75) (0.21) 

𝜆3 × ln 𝑃̅̅ ̅̅ ̅  0.415 0.407 0.379 0.382 0.403 

 (1.24) (1.21) (0.98) (0.99) (1.12) 

𝜆4 × ln 𝑃̅̅ ̅̅ ̅  -0.933* -0.978* -0.975 -1.023* -1.004* 

 (-1.74) (-1.85) (-1.61) (-1.71) (-1.95) 
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆5 × ln 𝑃̅̅ ̅̅ ̅  -0.223 -0.366 -0.185 -0.367 -0.234 

 (-0.32) (-0.55) (-0.21) (-0.43) (-0.28) 

𝜆6 × ln 𝑃̅̅ ̅̅ ̅  -0.394 -0.340 0.272 0.269 -0.625 

 (-0.38) (-0.33) (0.24) (0.24) (-0.56) 

𝜆7 × ln 𝑃̅̅ ̅̅ ̅  0.003 -0.218 -0.174 -0.436 0.004 

 (0.00) (-0.12) (-0.09) (-0.23) (0.00) 

𝜆2 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  0.007 0.005 0.004 0.001  

 (1.20) (0.82) (0.70) (0.17)  

𝜆3 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  0.004 0.001 0.005 0.001  

 (0.60) (0.19) (0.70) (0.23)  

𝜆4 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  0.006 0.003 0.008 0.006  

 (0.81) (0.45) (1.18) (0.87)  

𝜆5 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  0.010 0.007 0.011 0.009  

 (1.44) (1.04) (1.51) (1.31)  

𝜆6 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  -0.001 -0.008 -0.004 -0.009  

 (-0.16) (-1.00) (-0.46) (-1.16)  

𝜆7 × 𝑅𝑒𝑠𝑖𝑠𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅  0.022* 0.016 0.025** 0.020*  

 (1.72) (1.20) (2.48) (1.89)  
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆2 × 𝐺𝑇̅̅ ̅̅     0.354** 0.329**  

   (2.56) (2.44)  

𝜆3 × 𝐺𝑇̅̅ ̅̅     0.564*** 0.575***  

   (3.97) (4.04)  

𝜆4 × 𝐺𝑇̅̅ ̅̅     0.319** 0.323**  

   (2.00) (2.04)  

𝜆5 × 𝐺𝑇̅̅ ̅̅     0.738*** 0.742***  

   (3.50) (3.53)  

𝜆6 × 𝐺𝑇̅̅ ̅̅     0.326 0.311  

   (1.60) (1.56)  

𝜆7 × 𝐺𝑇̅̅ ̅̅     0.094 0.109  

   (0.28) (0.34)  

𝜆2 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   0.004  0.010  

  (0.10)  (0.24)  

𝜆3 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   -0.003  0.012  

  (-0.07)  (0.24)  

𝜆4 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   0.047  0.035  

  (0.71)  (0.46)  
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆5 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   0.090  0.115  

  (1.46)  (1.45)  

𝜆6 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   -0.037  -0.020  

  (-0.54)  (-0.26)  

𝜆7 × 𝑇𝑖𝑙𝑙̅̅ ̅̅ ̅   -0.184  -0.219*  

  (-1.50)  (-1.73)  

𝜆2 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  0.002** 0.002**    

 (2.06) (2.17)    

𝜆3 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  0.001 0.001    

 (0.81) (0.94)    

𝜆4 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  -0.000 -0.001    

 (-0.23) (-0.45)    

𝜆5 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  0.000 -0.000    

 (0.24) (-0.39)    

𝜆6 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  0.003** 0.003*    

 (2.35) (1.95)    

𝜆7 × 𝑝𝑔𝑡̅̅ ̅̅ ̅  0.000 0.000    

 (0.10) (0.00)    
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆2 × 𝐵𝑡̅̅ ̅  -0.062 -0.056    

 (-0.97) (-0.89)    

𝜆3 × 𝐵𝑡̅̅ ̅  0.009 0.017    

 (0.11) (0.22)    

𝜆4 × 𝐵𝑡̅̅ ̅  -0.171** -0.146*    

 (-2.19) (-1.88)    

𝜆5 × 𝐵𝑡̅̅ ̅  0.004 0.044    

 (0.04) (0.44)    

𝜆6 × 𝐵𝑡̅̅ ̅  -0.004 -0.014    

 (-0.03) (-0.13)    

𝜆7 × 𝐵𝑡̅̅ ̅  -0.203 -0.217    

 (-0.98) (-1.07)    

𝜆2 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   0.948  1.093   

 (1.45)  (1.54)   

𝜆3 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   1.600**  1.575**   

 (2.13)  (1.96)   

𝜆4 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   0.582  0.710   

 (0.62)  (0.67)   
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆5 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   1.294  0.984   

 (1.48)  (0.95)   

𝜆6 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   2.902**  2.709**   

 (2.27)  (2.07)   

𝜆7 × 𝑝𝑓𝑢𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅   2.402  3.219   

 (0.97)  (1.34)   

𝜆2 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.011  0.011   

 (-0.27)  (0.25)   

𝜆3 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.042  -0.007   

 (-0.86)  (-0.13)   

𝜆4 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.128**  -0.109   

 (-2.06)  (-1.59)   

𝜆5 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.054  -0.045   

 (-1.06)  (-0.74)   

𝜆6 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.107  -0.082   

 (-1.52)  (-1.06)   

𝜆7 × ℎ𝑒𝑙8̅̅ ̅̅ ̅̅   -0.252**  -0.248**   

 (-2.57)  (-2.48)   
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆2  -2.228 0.030 0.108 0.094 -0.147** 

 (-1.64) (-2.28) (-1.85) (1.29) (-1.99) 

𝜆3  -3.368** -0.103* -3.814** -0.603*** -0.061 

 (-2.16) (-1.87) (0.54) (-2.76) (-0.02) 

𝜆4  -1.207 -0.086 0.046 -0.578* -0.101 

 (-0.63) (-0.32) (-0.87) (0.55) (-1.57) 

𝜆5  -2.782 -0.191 0.060 0.053 -0.246 

 (-1.53) (-0.69) (-1.28) (-2.21) (-0.97) 

𝜆6  -6.026** -0.171** -0.059 -0.092 0.304 

 (-2.26) (-2.19) (-2.08) (-0.75) (0.75) 

      

Variance function      

𝜆2  0.032 -0.302** -2.730* -0.462*** 0.048 

 (0.59) (0.56) (1.50) (-2.81) (0.57) 

𝜆3  -0.110** -0.123 0.034 0.036 -0.003 

 (-2.04) (-0.64) (-2.30) (0.55) (-0.76) 

𝜆4  -0.098 -0.105 -1.948 0.043 -0.270 

 (-1.54) (-1.62) (0.58) (-1.96) (-1.19) 
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Table 2.A5 (cont’d) 

Variables 

Model 1: 

Both 

Model 2: 

𝐺𝑇 only 

Model 3: 

𝑇𝑖𝑙𝑙 only 

Model 4: 

Neither 

Model 5: 

No control 

𝜆5  -0.172** -0.178** -2.704 -0.828** -0.035 

 (-2.14) (-2.23) (0.60) (0.53) (-0.32) 

𝜆6  -0.163** -0.003 -5.672** -0.074 -0.126 

 (-2.04) (-0.01) (-0.59) (-0.22) (-1.05) 

CRE Yes Yes Yes Yes Yes 

CF Yes Yes Yes No No 

Time dummies Yes Yes Yes Yes Yes 

State dummies Yes Yes Yes Yes Yes 

State-specific trends Yes Yes Yes Yes Yes 

Notes: Robust z-statistics in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Year dummies, state 

dummies, and state-specific time trends are included. Note that the standard errors in this table are 

not adjusted using bootstrap due to the large number of variables, but the differences between 

bootstrapped standard errors and the directly obtained standard errors are generally small. Model 

1 assumes both 𝐺𝑇 and 𝑇𝑖𝑙𝑙 variables to be endogenous, and Model 2 and 3 assume only 𝐺𝑇 and 

only 𝑇𝑖𝑙𝑙  is endogenous, respectively. Model 4 assumes exogeneity of the two variables, and 

Model 5 excludes the control variables.
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Table 2.A6 Average elasticities across the sample 

 Glyphosate The composite 

Glyphosate price -0.371 0.369 

 (-7.73) (7.71) 

The composite price 0.371 -0.369 

 (7.73) (-7.71) 

𝐴𝐸𝑆  0.739 

 (7.83) 

Notes: t statistics in parentheses. Standard errors are obtained by panel bootstrapping with 1,000 

replications. 
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Table 2.A7 Damage price of glyphosate under four damage scenarios 

EIQ system cate-

gories 

U.S. average 

pesticide cost 

($)/ kg a.i. 

(A) Neither effect  

(B) Carcinogenic 

effect only 

 

(C) Monarch butter-

fly effect only 

 (D) Both effects 

EIQ 

score 

Low/me-

dium 

/high 

weight 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Applicator effects 0.77 5 0.5  25 1  5 0.5  25 1 

Picker effects 0.43 3 0.5  15 1  3 0.5  15 1 

Consumer effects 2.13 2 0.5  10 0.5  2 0.5  10 0.5 

Ground water 0.60 1 0.5  1 0.5  1 0.5  1 0.5 

Aquatic effects 0.80 5 0.5  5 0.5  5 0.5  5 0.5 

Bird effects 0.19 6 0.5  6 0.5  6 0.5  6 0.5 

Bee effects 0.52 9 0.5  9 0.5  9 0.5  9 0.5 

Beneficial insect 

effects 

0.19 15 0.5  15 0.5  75 1  75 1 
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Table 2.A7 (cont’d) 

EIQ system cate-

gories 

U.S. average 

pesticide cost 

($)/ kg a.i. 

(A) Neither effect  

(B) Carcinogenic 

effect only 

 

(C) Monarch butter-

fly effect only 

 (D) Both effects 

Total cost ($)/ kg 

a.i. 

5.63 2.82  3.41  2.91  3.51 

Average a.i. per 

gallon product (kg 

a.i./gallon) 

 1.66 

Damage price per 

gallon ($/gallon) 

 4.68  5.66  4.83  5.83 

Notes: The grey block represents the EIQ categories we adjust for each scenario. Scenario (A) maintains the current EIQ scores for 

glyphosate. For Scenario (B) we adjust for applicator, picker, and consumer effects to account for the carcinogenic effect of glyphosate. 

In Scenario (C) we adjust for insect effects to account for the monarch butterfly effect of glyphosate. In Scenario (D) both effects are 

accounted for by adjusting for applicator, picker, consumer as well as insect effects. 
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Table 2.A8 Damage price of the composite herbicide 

EIQ system 

categories 

U.S. aver-

age pesti-

cide cost 

($)/ kg a.i. 

Atrazine  Acetochlor  S-metolachlor 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

Applicator  

effects 

0.77 5 0.5 0.39  7.50 0.5 0.39  7.50 0.5 0.39 

Picker effects 0.43 3 0.5 0.21  3.15 0.5 0.21  4.50 0.5 0.21 

Consumer  

effects 

2.13 4 0.5 1.06  2.33 0.5 1.06  6.00 0.5 1.06 

Ground water 0.60 3 1 0.60  3.00 1 0.60  3.00 1 0.60 

Aquatic  

effects 

0.80 9 1 0.80  15.00 1 0.80  9.00 1 0.80 

Bird effects 0.19 12 0.5 0.10  4.65 0.5 0.10  12.00 0.5 0.10 

Bee effects 0.52 9 0.5 0.26  6.30 0.5 0.26  9.00 0.5 0.26 
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Table 2.A8 (cont’d) 

EIQ system 

categories 

U.S. aver-

age pesti-

cide cost 

($)/ kg a.i. 

Atrazine  Acetochlor  S-metolachlor 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

 

EIQ 

score 

Low/me-

dium 

/high 

weight 

Cost 

($)/ kg 

a.i. 

Beneficial  

insect effects 

0.19 23.55 0.5 0. 10  17.64 0.5 0.10  15.00 0.5 0. 10 

Total cost ($)/ 

kg a.i. 

5.63 3.52  3.52  3.52 

Average a.i. 

per gallon 

product (kg 

a.i./gallon) 

 0.77  0.42  0.33 
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Table 2.A8 (cont’d) 

Damage price 

per gallon 

($/gallon) 

 5.35 
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Table 2.A9 Expressions for the solutions 

Equations Solutions Signs 

𝐸𝑄  [{𝜗 + 𝜖2(𝜅1 + 𝜅2)}𝜅1𝜖1𝜁𝜏]/𝐷  - 

𝐸𝑀  [{𝜗 + 𝜖2(𝜅1 + 𝜅2)}𝜅1𝜖1𝜏]/𝐷  + 

𝐸𝑋1  −[{−𝜁𝜗 + (𝜅2𝜗 − 𝜅1𝜁)𝜖2}𝜖1𝜏]/𝐷  + 

𝐸𝑋2  [𝜅1(𝜗 + 𝜁)𝜖1𝜖2𝜏]/𝐷  Same sign as 𝜗 + 𝜁 

𝐸𝑃1  [{𝜅1𝜗 − 𝜅2𝜁 + 𝜖2(𝜅1 + 𝜅2)2}𝜖1𝜏]/𝐷  + 

𝐸𝑃2  [𝜅1(𝜗 + 𝜁)𝜖1𝜏]/𝐷  Same sign as 𝜗 + 𝜁 

Notes: Signs given assume that 𝜁 < 0 ,  𝜖1 > 0,  and 𝜖2 > 0.   Denominator 𝐷  abbreviates 𝐷 =

𝜗(−𝜁 + 𝜅1𝜖1 + 𝜅2𝜖2) − 𝜁(𝜅2𝜖1 + 𝜅1𝜖2) + 𝜖1𝜖2(𝜅1 + 𝜅2)2 > 0.  
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Table 2.A10 Formulas for welfare effects 

Equations Solutions Definition 

Δ𝐶𝑆  −𝑀0𝑄0𝐸𝑀(1 + 0.5𝐸𝑄)  Consumer surplus change 

Δ𝑃𝑆1  𝑃1,0𝑋1,0(𝐸𝑃1 − 𝜏)(1 + 0.5𝐸𝑋1)  Producer surplus change for input 1 

Δ𝑃𝑆2  𝑃2,0𝑋2,0𝐸𝑃2(1 + 0.5𝐸𝑋2)  Producer surplus change for input 2 

Δ𝑇𝑎𝑥  𝜏𝑃1,0𝑋1,0(1 + 𝐸𝑋1)  Tax transfer 

Δ𝐸𝑛𝑣  −𝑑1𝑋1,0𝐸𝑋1 − 𝑑2𝑋2,0𝐸𝑋2  Environmental welfare change 

ΔS  

Δ𝐶𝑆 +  Δ𝑃𝑆1 +  Δ𝑃𝑆2 + Δ𝑇𝑎𝑥 +

Δ𝐸𝑛𝑣  

Social welfare change 

Notes: The zeros in the subscripts denote the baseline values of these variables. 
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Table 2.A11 Summary of baseline values for market variables and parameter calibration 

Variable  Definition Value Source 

Market variables 

𝑄0  The baseline value 

of corn quantity 

13,184 USDA NASS, corn production in million bushels, averaged over 

2010-2016. 

𝑀0  The baseline value 

of corn price 

4.85 USDA NASS, corn price received by farmers in dollars per bushel, 

averaged over 2010-2016. 

𝑋𝑚,0  The baseline value 

of herbicide quantity 

𝑋1,0 = 24.89, 

𝑋2,0  = 35.96 

The unit is million gallons. Herbicide quantity used per acre is ob-

tained from AgroTrak, as sample average of herbicide gallons used 

per acre, 2010-2016 (Result: 0.27 for glyphosate, and 0.39 for the 

composite herbicide). 

   Corn acres planted is obtained from USDA NASS, as corn acres 

planted in million, averaged over 2010-2016 (Result: 92.20). 

𝑃𝑚,0  The baseline value 

of herbicide price 

𝑃1,0 = 22.93, 

𝑃2,0 = 28.49 

AgroTrak, sample average of herbicide prices in dollars per gallon, 

2010-2016. 
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Table 2.A11 (cont’d) 

Variable  Definition Value Source 

Market parameters 

𝜗  Elasticity of substi-

tution 

0.739 The Allen-Uzawa elasticity of substitution (AES) estimate from the 

previous section (Table 2.A6). 

𝜅𝑚  Herbicide share in 

corn production cost 

Mean:  

𝜅1  = 0.017,  

𝜅2  = 0.019 

Herbicide cost shares are approximated by multiplying the sample 

averages of herbicide cost share in total herbicide cost (obtained 

from AgroTrak) and the herbicide proportion in corn production 

cost from Iowa’s corn budget estimates between 2010 and 2016 

(available at https://www.extension.iastate.edu/agdm).  

𝜁  Price elasticity of 

corn demand 

Mean = -0.53 Hochman and Zilberman (2018) 

𝜖𝑚  Price elasticity of 

herbicide supply 

𝜖1 ∊{0.5, 1.0, 1.5}, 

𝜖2 ∊{0.5, 1.0, 1.5} 

Norton et al. (2008), Just (2006) 
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Table 2.A11 (cont’d) 

Variable  Definition Value Source 

Environmental parameters 

𝑑𝑚  Herbicide damage 

prices 

𝑑1 =4.68 for status-quo 

scenario, 𝑑2 = 5.35 

The unit is dollars per gallon ($/gal). Obtained from the previous 

section (Table 2.A7-2.A8). 

Notes: 𝑚 equals 1 for glyphosate herbicide, 2 for the composite herbicide. 
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CHAPTER 3 Aligning Bt Maize Planting with Pest Incidence and Efficacy Erosion Risk 

Suggests the Need for Paradigm Shifts 

 

Introduction 

Corn rootworm, Diabrotica virgifera, is a key pest in US maize (Zea mays L.) production, with 

estimates attributing over one billion in losses annually to this pest (Metcalf 1986; Dun et al. 2010). 

Corn rootworm larvae feed underground, wounding or clipping entire roots; this feeding reduces 

the movement of water and nutrients into the plant. Severe damage can reduce grain yield by ap-

proximately 15%-18% for every root node consumed (Oleson et al. 2005; Dun et al. 2010; Tinsley 

et al. 2013).  

In 1996, the first genetically modified maize hybrid expressing an insect-specific Bt (Ba-

cillus thuringiensis) protein was introduced for control of another key maize pest, the European 

corn borer (Ostrinia nubilalis Hübner).  After the success of that technology, the first rootworm-

active Bt maize, expressing the Cry3Bb1 protein, was introduced in 2003. Bt maize has since 

become a vital tool for managing maize insects in the US Corn Belt and Canada (Head and Wald 

2009). Hybrids typically incorporate several toxins that target both above-ground (caterpillars) and 

below-ground(rootworms) pests (Tabashnik et al. 2013). Hybrids expressing multiple rootworm-

active toxins currently comprise the majority of Bt maize planted in the US (See Appendix 3.A1-

3.A2 for a detailed illustration).  In fact, the majority of maize acres in the US are now planted to 

hybrids expressing rootworm-active Bt proteins, regardless of pest presence or pressure (Figure 

3.1). 
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Figure 3.1 Planting percentage (%) of rootworm Bt maize in 2016, at crop reporting dis-

trict level.  

The Bt planting rate is calculated as the percentage of maize area that is planted to varieties con-

taining rootworm-active Bt toxins in a crop reporting district. (Data source: TraitTrak®, GfK 

Kynetec.) 

 

However, none of the currently available rootworm-active toxins are classified as high-

dose toxins that kill at least 99.99% of susceptible pests in the field according to the US EPA 

guidelines (EPA 1998; Meihls et al. 2008; Gassman et al. 2014), and the initial resistance allele 

frequency is high (Onstad and Meinke 2010). High rates of Bt adoption in turn imposed high se-

lection pressure on target insects and shifted insect populations towards reduced susceptibility and 

control. Numerous cases of practical field resistance to multiple Bt traits have sparked concerns 

that non-Bt crops are not being planted at adequate levels to delay resistance (Reviewed in 
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Tabashnik and Carrière 2017; Gassman et al. 2011; Tabashnik and Gould 2012; Gassman et al. 

2014; Jakka et al. 2016; Taylor and Krupke 2018; Calles-Torrez et al. 2019). A paradigm shift in 

how current and future transgenic maize hybrids are deployed may be needed.  

 However, it has been difficult to assess the economic cost of reduced susceptibility of root-

worms to Bt maize or Bt efficacy erosion, and in turn, place a value on preserving susceptibility 

for the future. We attempt to do this here, using Bt efficacy trial data on root injury collected from 

public universities across 10 Corn Belt states, combined with nationally representative farmer-

level data on seed use. Furthermore, we examine how deploying Bt maize in the Corn Belt aligns 

with current pest damage and Bt efficacy erosion risk, and propose policy guidelines for sustaina-

ble use to benefit producers in the long term.   

 

A Biologically Motivated Modeling Approach 

Western corn rootworms are the most widespread rootworm species in the Corn Belt and have one 

generation per year. The life cycle begins the previous season, with eggs laid near the base of 

maize stalks and overwinter in the soil until larvae hatch in the spring (ca. late May-early June) 

and crawl to maize roots to feed; 5-10 days after the larvae pupate in the soil, adults emerge and 

mate typically near the plant where the females emerge (Figure 3.2). Many mated, gravid females 

disperse to different fields to search for optimal oviposition sites with a significant portion engag-

ing in long-distance flight, thereby homogenizing the rootworm population at the local scale (Coats 

et al. 1986; Naranjo 1990; Marquardt and Krupke 2009; Martinez and Caprio 2016; St. Clair et al. 

2020; St. Clair and Gassmann 2021). Therefore, larvae hatched in a given maize field come from 

two sources in the previous season: females emerging and mating in that same field, or migrating 

females from surrounding fields.  
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Figure 3.2 Rootworm Lifecycle, adult dispersal, and Bt effects. 

 

Rootworm larvae are limited to feeding on maize and a few other hosts, so rotation with a 

non-maize crop is an effective way to control this pest (Carrière et al. 2020; St. Clair and Gassmann 

2021). In some production systems, however, the opportunity for crop rotation is limited or less 

attractive from an economic standpoint. Such systems include livestock farms where maize is 

needed for animal feed, as well as production areas in the western plains where maize is intensively 

farmed as the main crop (Figure 3.A3 in the Appendix). Where crop rotation is not practiced, 

insecticides were used for many years to reduce rootworm injury (Cox et al. 2007). Since the 

introduction, transgenic rootworm Bt hybrids, however, have virtually replaced both liquid and 

granular soil insecticides as the major approach for larval damage management, with high-dose 

neonicotinoid seed treatments often provided in conjunction by the seed manufacturers. Besides, 

environmental conditions, rainfall in particular, are also important in altering rootworm densities 

(Tinsley et al. 2018). 

Because rootworm larvae feed only on maize roots, planting Bt hybrids in a maize field will 

reduce root damage not only this year but in the future as the insect population drops. However, 

the selection pressure from using Bt this year will deplete Bt efficacy in subsequent years. As 

illustrated in Figure 3.2, a grower’s Bt planting creates not only intertemporal effects on his or her 

field, or own-field effects, but also broader spillover effects due to the dispersal behavior of adults 
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in the landscape, potentially resulting in areawide suppression, as well as depleting Bt efficacy 

across the neighborhood (Hutchison et al. 2010; Dively et al. 2018).  

To quantify the economic costs of Bt efficacy erosion and determine the sustainable use of 

Bt hybrids, we took advantage of two unique data sources to compile a Corn Belt representative 

dataset spanning 2005-2016. One was the TraitTrak® survey data, which to our knowledge is the 

most comprehensive source of seed use data and representative at the crop reporting district (CRD) 

level and provides field-level information on specific seed varieties planted. This gave us a meas-

ure of the proportion of acres planted to rootworm-specific Bt hybrids in each CRD. The second 

source was a dataset of root injury in Bt and non-Bt trial fields, compiled from 10 public universi-

ties (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, Wisconsin, Illinois, Indiana, Mich-

igan, and Ohio) research trials across the Corn Belt. The trial fields monitor the rootworm pressure 

in the region (more precisely, in the preceding year, due to the one-generation-per-year lifecycle 

described above), and provided a measure of background rootworm pressure on unprotected (non-

Bt) maize, as well as allowed for comparisons of Bt efficacy overtime throughout the region. The 

typical measure of rootworm pressure and associated maize root damage is the ‘root injury scale’ 

(Oleson et al. 2005). This 0-3 scale is the accepted standard for measuring rootworm larval feeding 

on maize roots. The score reflects the cumulative proportion of root nodes pruned to within 3.8 cm 

of the base of the plant. The higher the proportion of roots pruned, the lower the water and nutrients 

moving into the plant, and the lower the yield. For analytical convenience, we rescaled the 0 to 3 

measure to 0 to 1 and use the standardized root injury scale to operationalize root injury hereafter. 

Figure 3.3 shows the spatial distribution of the trial data and the background rootworm pressure 

from 2014 to 2016. Comparing the Eastern Corn Belt (Indiana, Ohio, and Michigan) with the 

Western region (remaining states) reveals a substantial difference in rootworm pressure, with most 
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observations falling below 0.11 in the East, but a large proportion of ratings in the West greater 

than 0.38, which is more than one node injury. 

Figure 3.3 Spatial distribution of trial fields in the sample and rootworm pressure during 

2014-2016. 

The cross symbols represent the site locations in the sample, with a larger size indicating a 

greater number of observations (2005-2016 average) at the site. The colors of the symbol repre-

sent the value of the standardized root injury scale (0-1), averaged over all non-Bt observations 

at the location during 2014-2016, as shown on the right. The data are divided into three catego-

ries by quantile, and sites with no observations during this period are marked as gray (Data 

source: University research trial data.) 

 

Our overall approach is as follows. First, we develop econometric models to estimate own-

field effects. Because root injury in non-Bt trial fields represents rootworm pressure in the CRD in 

the preceding year, the relationship between non-Bt root injury and two-year lagged Bt coverage 

in the CRD serves as proxy measurements of how Bt use reduces rootworm pressure in the next 

year (future benefit); using the differences between root injury data to Bt treatment vs. control 

(non-Bt) maize plots, whereas the relationship between Bt efficacy and the two-year lagged Bt 
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coverage represents how current Bt maize planting may reduce Bt maize efficacy in the subsequent 

year (future cost). Second, we use biological relationships (i.e. the female adult dispersal propor-

tion) to calibrate for the spillover effects into the larger area. Taken together, a dynamic game of 

Bt planting was established to determine the sustainable use of Bt technology, which was then 

evaluated for the West and East to account for the regional heterogeneity in terms of rootworm 

pressure.  

Panel (A) of Figure 3.4 provides an overview of the temporal changes in root injury, Bt 

coverage (two-year lagged), and Bt efficacy during 2005-2016. A general decreasing trend in non-

Bt maize root injury is observed as Bt coverage increases over time, with an exception around 

2012, one of the most droughty years in the past decades. In addition, the root injury difference in 

Bt and non-Bt fields, or Bt efficacy, has generally decreased as well, as a result of increasing 

selection pressure from greater Bt coverage. A closer look at the root injury and Bt protection with 

respect to Bt coverage in Panel (B) suggests the future cost is greater than future benefit for a 

marginal increase in Bt use: the decrease in non-Bt root injury reflects the future suppression, and 

the larger reduction in Bt protection captures the Bt efficacy decline as Bt are more intensively 

used in the area. 
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Figure 3.4 Time trends in rootworm pressure and Bt protection effect, and Bt planting 

rate, 2005-2016.  

Bt planting rate variable is lagged for two years (i.e., the Bt rate value shown in 2005 is that in 

2003), and is calculated as the rate of maize acres planted to rootworm Bt hybrids in the CRD. 

Only fields where soil insecticides or high-level seed treatments were not applied are included.  

States for which all fields were planted to non-Bt maize are excluded for a reasonable comparison. 

Bt protection is calculated as the difference in root injury between non-Bt (Non-Bt injury) and Bt 

fields (Bt injury). The dots in Panel (B) are fitted linearly, with 95% confidence intervals shaded 

in gray; Root injury variables in Panel (A)  share the y-axis from Panel (B) (Data source: University 

trial data; TraitTrak®, GfK Kynetec.)
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Own-field and Spillover Effects 

Own-Field Effects: Regressions 

Since reductions in maize root damage could be a result of other (i.e. abiotic) factors, such as 

precipitation during egg emergence, so we turn to field-level econometric models for further anal-

ysis. Moreover, given the nature of the root injury scale as cumulative proportions of roots eaten, 

the fractional response model is adopted (Wooldridge 2010). Therefore, the econometric model is 

specified as the following: 

𝐸(𝑟𝑤𝑖,𝑡|𝑋) =                                                                                                                                                      

Φ (
𝛼 × 𝑏𝑡𝑖,𝑡 + 𝛾 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑑[𝑖],𝑡−2 + 𝛽 × 𝑏𝑡𝑖,𝑡 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑑[𝑖],𝑡−2

+𝜓𝑚[𝑖] + 𝜃𝑍 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
) (1)

 

where 𝐸(∙) denotes the conditional expectation and Φ(∙) is the cumulative distribution function of 

a standard normal distribution. The notation 𝑖 indexes the trial field, and 𝑡 denotes the trial year in 

which data for field 𝑖 are observed (represents the rootworm pressure in the area for the preceding 

year 𝑡 − 1. The 𝑚[𝑖] identifies the location of the field and 𝑑[𝑖] indicates the CRD of the field. 

The dependent variable  𝑟𝑤𝑖,𝑡 is the standardized root injury scale ranging from 0 to 1, and the two 

critical explanatory variables are 𝑏𝑡𝑖,𝑡 and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑑[𝑖],𝑡−2. The variable 𝑏𝑡𝑖,𝑡 equals 1 if the field 

grows Bt maize hybrids, and 0 if not, and 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝑑[𝑖],𝑡−2 represents the area coverage of Bt, 

namely the ratio of maize acres that grow Bt hybrids in year 𝑡 − 2 in the CRD in which the trial 

field 𝑖 resides (ranges from 0 to 1). While the data do not allow identification of the same field 

over time, the same sites can be identified, and sites are nested within CRD. Therefore, by includ-

ing the site effects 𝜓𝑙[𝑖], we control for the site-specific unobservable confounding factors that are 

time-constant, such as soil properties. The vector 𝑍 is a set of confounding factors that change over 

time and space, including precipitation in April, May, July, and August (in 100 mm); seed treat-

ment rate, a dummy variable assigned 1 if high level (i.e., 1.25 mg a.i.; a.i. is the abbreviation for 
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active ingredient) treatment is applied and 0 otherwise, as 1.25 mg a.i is the only level of the 

neonicotinoid seed treatment that is expected to offer protection against root feeding by RW larvae 

(Tinsley et al. 2016, Alford and Krupke 2018). In addition, trials with soil insecticide treatment 

are excluded from the main analysis, as they are less representative of the situations of interest, 

and the protection already provided by soil insecticides may obscure the extent of realized Bt pro-

tection.   

The coefficients of such models are typically interpreted through Average Partial Effects 

(APE), namely the partial effects averaged across all observations (Wooldridge 2010). Let param-

eters 𝑎, 𝑟, and 𝑏 denote the APEs corresponding to the coefficients 𝛼, 𝛾, and 𝛽 in eq. (1). Therefore, 

parameter 𝑎 is the Bt protection effect absent efficacy reduction caused by historical planting, i.e., 

the reduction (presumably) in standardized root injury scale in Bt fields compared to non-Bt fields 

on average, all else being equal. The parameter r gives the historical suppression effect, i.e., the 

reduction in standardized root injury scale in the current fields – whether planted to Bt or non-Bt 

maize - when planting Bt in the previous year compared to planting non-Bt. Lastly, the parameter 

b captures the pest susceptibility (and control efficacy) erosion associated with historical planting, 

or a measure of long-term cost, which is relevant to Bt fields only (𝑏𝑡 = 1), i.e., the increase in 

root injury for Bt fields for one percent increase in area coverage. 
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Table 3.1 Fractional response model results (APEs) for root damage 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

Bt treatment in the trial 

field (𝑏𝑡) 

-0.43*** -0.45*** -0.39*** 

 (-22.39) (-30.52) (-16.63) 

Bt planting rate 

(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

-0.22*** -0.23*** -0.19*** 

 (-5.27) (-4.50) (-5.07) 

Interaction term 

(𝑏𝑡 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

0.27*** 0.28*** 0.23*** 

 (5.29) (5.83) (5.96) 

Precipitation, April -0.03 -0.02 -0.02 

 (-0.61) (-0.41) (-0.58) 

Precipitation, May -0.02 -0.04 -0.02 

 (-0.40) (-0.79) (-0.55) 

Precipitation, June -0.05*** -0.07*** -0.05*** 

 (-3.44) (-3.01) (-3.39) 

Precipitation, July 0.02 0.03 0.02 

 (0.40) (0.60) (0.59) 

Precipitation, August -0.03 -0.05*** -0.03* 

 (-1.54) (-3.13) (-1.78) 
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Table 3.2 (cont’d) 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

High-level seed treatment -0.09*** -0.10*** -0.07*** 

 (-7.32) (-12.63) (-6.65) 

Ratio of continuous maize 

in total crop land 

 -0.21  

  (-0.98)  

Soil insecticides   -0.15*** 

   (-10.15) 

Observations 1489 1119 1891 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01.  t statistics in parentheses. Standard errors are clustered 

at crop reporting district (CRD) level.  
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The APE estimates of the main variables are presented in Column (1), Table 3.1: 𝑎 =

−0.43, 𝑏 = 0.27, and 𝑟 = −0.22. The estimates imply that if a field was planted to non-Bt maize 

in a year, then growing Bt hybrids in the subsequent year will reduce root injury scale value by 

0.43 compared to growing non-Bt maize. Instead, if Bt hybrids were planted, then the temporal 

suppression will benefit both Bt and non-Bt growers by reducing root injury value by 0.22. How-

ever, for Bt fields, Bt history will also select for resistance and hence lower the Bt effect from 0.43 

to (0.43 - 0.27) = 0.16. Therefore, Bt history will overall has a negative impact on Bt fields by a 

magnitude of -(0.27-0.22) = -0.05, but will be beneficial to non-Bt fields by a magnitude of 0.22.  

For robustness purposes, we also investigated additional specifications. First, we included 

cropping pattern variables, namely the ratio of corn-to-corn acres to total crop acres, to capture the 

effect of continuous maize planting. Results in column (2) show that the effect is not statistically 

significant and the main variable estimates are close to those in column (1). Second, we also in-

cluded the trials with soil insecticides, where the soil insecticide variable is a dummy variable with 

1 indicating soil insecticide being applied in the trial. As expected, the subsample has shown a 

smaller magnitude for the three critical parameters. Third, while the main analysis is conducted 

using CRD-level Bt coverage as an approximation of the area surrounding the trial fields, we also 

present the results using county-level Bt coverage for robustness purposes, and the estimates in 

Table 3.A1 in the Appendix are very close to the main results since the Corn Belt region is typically 

heavily sampled (See Figure 3.A4 in the Appendix). Lastly, for comparison of the standard linear 

model and fractional response model, we also present the estimation results using ordinary least 

square estimation in Table 3.A2-3.A3 in the Appendix, which gives relatively poor estimates.  
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Spillover Effects: Calibrations 

It should again be emphasized that, although we used area coverage in the regression, the estimates 

essentially measure the own-field effects for a cornfield, because the trial fields are representative 

of rootworm pressure in the area. One can think of the area as one large single cornfield. Having 

obtained the own-field effects, we can further calibrate for the spillover effect from adult female 

dispersal correspondingly. The rootworm biology implies that for a cornfield, the ratio between 

reduction in root damage associated with own Bt use and surrounding Bt use is simply the ratio 

between native population and migration population, or the ratio between native females and mi-

grated females (assuming no difference in eggs per female). Specifically, let 𝑢 be the proportion 

of female dispersal in typical cornfields, then the ratio between own field effect and spillover effect 

is given by (1 − 𝑢)/𝑢. Let 𝑏̃ and 𝑟̃ be the corresponding selection and suppression associated with 

spillover effects from 100% regional Bt coverage, then we have 𝑏̃ = 𝑏𝑢/(1 − 𝑢) , and 𝑟̃ =

𝑟𝑢/(1 − 𝑢). Let 𝑃𝑡−1 denote the fraction of regional Bt planting which ranges from 0 to 1, then 

we can add the spillover effects into the profit structure to capture the geographical externalities 

associated with planting Bt.  

The parameter 𝑢 is calibrated using previous literature. Work by Coats et al. (1986) and 

Naranjo (1990) suggest that 15-24% of western rootworm females engage in sustained (long-dis-

tance) flights before they are ca. 2 weeks old. In the simulation work by Martinez and Caprio 

(2016), a 5%-25% range is used to calibrate for female post-mating dispersal proportion. For ro-

bustness purposes, we follow Martinez and Caprio (2016) and use both the lower bound of 5% and 

the upper bound of 25% in the following analysis.  
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The Game of Bt Hybrid Planting 

Maize growers acting according to pure self-interest would seek to maximize their payoffs by 

weighing the avoided yield loss associated with Bt hybrid against the additional cost of the Bt trait, 

or the seed premium, as well as any future cost. However, if growers’ Bt choices are instead mo-

tivated by group interest, then growers would consider spillover effects to the local area and inter-

nalize the spatial externality costs into private payoffs. Because root protection provided by Bt is 

affected and will affect not only one’s field but also the surrounding local area, a grower’s optimal 

choice would depend on the average behavior of the population and therefore can be analyzed as 

a dynamic population game (Smith 1982; Bauch et al. 2003; Bauch and Earn 2004; Milne et al. 

2015; Elokda 2021). Intuitively, very high levels of historical Bt coverage would allow non-Bt 

growers to “freeride” through intertemporal areawide suppression and disincentivize Bt planting, 

thus are difficult to maintain. Similar to this, growers in areas where Bt hybrids have never been 

planted are likely to find it profitable to grow Bt hybrids at full efficacy, making zero coverage 

unstable either. In what follows, we provide an empirical analysis of the Bt planting game to ex-

plore what differences, if any, exist between equilibrium Bt coverage driven by self-interest versus 

group interest.  

 

Description of Game 

Formally, assume a local area of homogeneous cornfields that are managed by a homogenous 

population of maize growers. In the absence of Bt toxin, the grower of field 𝑖 would expect stand-

ardized root injury of 𝑣𝑖 (i.e., background rootworm pressure), and 𝑣𝑖 is independently drawn from 

a distribution 𝐹(𝑣) on the support of [0, 1]. Growers each privately know their expected root injury, 

but the ex-ante distribution 𝐹(𝑣) is identical to all fields and is common knowledge.  
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A grower chooses between two planting strategies - Bt hybrid or non-Bt maize - by com-

paring their payoffs conditional on what s/he and the population have chosen. The payoff per acre 

to a maize grower choosing non-Bt maize (denoted as 𝑠𝑡 = 0) is 

𝜋(𝑠𝑡 = 0|𝑠𝑡−1 , 𝑃𝑡−1 ) = 𝑚 × min{−𝑟 × 𝑠𝑡−1 − 𝑟̃ × 𝑃𝑡−1 , 𝑣𝑡} ≡ 𝑚 × min{𝐵, 𝑣𝑡} . (2) 

where 𝑠𝑡−1 and 𝑃𝑡−1  represent the historical Bt choice in the same field and the historical Bt cov-

erage in the area. The 𝑚 denotes the market value of one unit reduction in standardized root injury; 

𝑚 = $ 3 × 𝜅 × 𝑝𝑦, where 𝜅 is the percentage of yield loss for each node of roots injured, and 𝑝 is 

the maize price ($/bu), The 𝑦 is the yield potential (bu/acre), or the yield that could have been 

realized without rootworm damage. In Figure 3.5, we contrast the actual or realized yield and the 

yield potential to illustrate the yield loss attributed to rootworm damage during the 2014-2016 

periods, and the figure shows that the East states generally suffer less from the pest. See Data and 

Variables for parameter calibrations.  

Figure 3.5 Yield loss associated with rootworm incidence, 2014-2016 average. 

For each region (West and East), two representative states and the region-average are presented. 

The bars represent means, and the error bars represent the 95% confidence intervals.  
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While non-Bt growers do not bear additional seed costs, they potentially take advantage of 

intertemporal suppression from their fields (𝑟 × 𝑠𝑡−1 ) and freeride on the areawide suppression 

(𝑟̃ × 𝑃𝑡−1 ), and 𝐵 ≡ −𝑟 × 𝑠𝑡−1 − 𝑟̃ × 𝑃𝑡−1  represents the potential root injury reduction. Never-

theless, when the background pest pressure 𝑣𝑡 is very low, the actual reduction is constrained by 

𝑣𝑡. 

Bt hybrid growers control the root damage through direct Bt exposure, but the potential 

root injury reduction associated with the Bt trait needs to be adjusted to account for not only inter-

temporal suppression but also efficacy erosion effects, i.e., the potential reduction is 𝐴 ≡ −𝑎 −

(𝑏 + 𝑟) × 𝑠𝑡−1 − (𝑏̃ + 𝑟̃) × 𝑃𝑡−1 . Growing Bt hybrid also incurs additional costs. For growers 

acting according to self-interest, they would consider Bt seed premium ($/acre; denoted by 𝑐), as 

well as the future cost to their fields expressed as 𝑚 × (𝑏 + 𝑟). This future cost expression entails 

two implicit assumptions: one, a maize grower maximizes payoffs of the current year 𝑡 and the 

next year 𝑡 + 1, and no further in time; two, Bt hybrids are presumed to be planted for the next 

year. This would be less computationally demanding on the growers since they do not have to 

predict the future evolution of optimal decisions. Moreover, we would like to take a precautionary 

perspective because rootworm pressure involves a lot of uncertainties due to, for example, sto-

chastic weather, so regardless of the actual choice in the future as future more information arrives, 

the decision-making based on the currently available information presumes the situation where 

growers have to rely on Bt to control the pest infestation.   

We use 𝐶𝑠𝑒𝑙𝑓 to denote the total cost normalized in terms of the standardized root injury 

scale for growers acting according to self-interest, and 𝐶𝑠𝑒𝑙𝑓 ≡ (𝑏 + 𝑟) + 𝑐/𝑚, i.e., they internal-

ize only the intertemporal externality cost to their field through 𝑏 + 𝑟. However, if growers instead 

are motivated by group interest and recognize the spatial (also intertemporal) externality associated 
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with their Bt use in the local area, then their total normalized cost should include the spatial exter-

nality cost 𝑏̃ + 𝑟̃ and is thus given by 

𝐶𝑔𝑟𝑜𝑢𝑝 ≡
𝑐

𝑚
+ (𝑏 + 𝑟) + (𝑏̃ + 𝑟̃). (3) 

Therefore, the payoff to Bt growers is  

𝜋(𝑠𝑡 = 1|𝑠𝑡−1 , 𝑃𝑡−1 ) = 𝑚 × [min{𝐴, 𝑣𝑡} − 𝐶], (4) 

where 𝐶 is 𝐶𝑠𝑒𝑙𝑓 (𝐶𝑔𝑟𝑜𝑢𝑝) for growers motivated by self-interest (group-interest), and we refer to 

the corresponding equilibrium level of Bt coverage as “individual optimum” (“group optimum”). 

 

Characterization of Equilibrium 

Field 𝑖 ’s best choice is to grow Bt hybrids if and only if 𝜋(𝑠𝑡 = 1|𝑠𝑡−1 , 𝑃𝑡−1 ) ≥ 𝜋(𝑠𝑡 =

0|𝑠𝑡−1 , 𝑃𝑡−1 ), or equivalently if its expected root injury 𝑣𝑖 is such that 

min{𝐴, 𝑣𝑡} ≥ 𝐵 + 𝐶, (5) 

that is, the actual root protection by Bt hybrids must be sufficiently high to adjust for the seed 

premium, the future cost, and the foregone freeride benefits. Therefore, all fields in the area have 

an identical threshold value of 𝑣 for choosing Bt hybrids, and the probability of an arbitrary field 

planting Bt hybrids is  

Pr(𝑠𝑡(𝑣𝑡) = 1) = Pr(𝑠𝑡−1 = 0) × Pr(𝑠𝑡 = 1|𝑠𝑡−1 = 0)

+ Pr(𝑠𝑡−1 = 1) × Pr(𝑠𝑡 = 1|𝑠𝑡−1 = 1) . (6)
 

Further, the homogeneity assumption implies that the areawide Bt coverage 𝑃𝑡  is equiva-

lent to the probability of growing Bt hybrids in an individual field, i.e., 𝑃𝑡 = Pr(𝑠𝑡(𝑣𝑡) = 1). Thus 

eq. (6) implies 

𝑃𝑡 = (1 − 𝑃𝑡−1 ) × 1[−𝑎 − 𝑏̃ × 𝑃𝑡−1 ≥ 𝐶] × (1 − 𝐹(𝐶 − 𝑟̃𝑃𝑡−1 ))

+𝑃𝑡−1 × 1[−𝑎 − 𝑏̃ × 𝑃𝑡−1 − 𝑏 ≥ 𝐶] × (1 − 𝐹(𝐶 − 𝑟 − 𝑟̃𝑃𝑡−1 )), (7)
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which can be further rewritten as 

𝑔(𝑃𝑡 ) = 𝑘(𝑃𝑡−1 ), (8) 

where 𝑔(𝑥) = 𝑥.  

Now, we characterize the equilibrium using the solution concept of stationary equilibrium 

strategy. Analogous to the commonly used Nash Equilibrium strategy where the equilibrium is a 

choice of strategies that tend to persist once the players are using it, the stationary equilibrium 

strategy tends to persist over time once it is prevalent in the population. In other words, when all 

individuals play such a strategy, it is the best response for every individual to not deviate from the 

strategy in a single period. Define 𝑃∗ such that 𝑔(𝑃∗) = 𝑘(𝑃∗), then 𝑃∗ is the equilibrium cover-

age of the dynamic game such that if every grower in the population follows the strategy in eq. (5) 

where 𝑃𝑡−1  is replaced with 𝑃∗, then 𝑃∗ is self-sustaining. We used this solution concept for this 

game because it is a practical strategy to be easily followed by growers for policy purposes.    

 

Self-interest versus Group-interest 

we use the period 2014-2016, the most recent three years in our sample, to empirically evaluate 

𝑃∗. The parameter calibrations are summarized in Table A4 (See Methods and Materials for de-

tails), and Figure 3.6 illustrates the equilibrium results for the individual optimum. Panel (A) pre-

sents the empirical CDF function 𝐹(∙), and it shows the East has much lower rootworm pressure 

than the West region. Panel (B) and (C) visualizes eq. (8) using the lower (𝑢 = 0.05) and upper 

(𝑢 = 0.25) bound of 𝑢, respectively. Panel (B) shows the sustainable level 𝑃𝑠𝑒𝑙𝑓
∗  is 0.64, which is 

very close to the status-quo (0.63), resulting from a combination of relatively small cost and high 

rootworm pressure. In contrast, the East has a much smaller intercept due to lower rootworm pres-

sure and a steeper CDF function, thus a substantially lower 𝑃𝑠𝑒𝑙𝑓
∗ = 0.14. Compared to the status-
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quo of 0.68, the 𝑃𝑠𝑒𝑙𝑓
∗  is only one-fifth of it, suggesting a major overplanting behavior in the East. 

Figure 3.A5 in the Appendix provides an overview of data availability and background rootworm 

pressure for each state.  

Figure 3.6 Equilibrium outcome when growers act according to group interest.  

Panel (A) is the empirical cumulative distribution functions (CDF) for the West and East regions, 

respectively. Panel (B) and (C) are the equilibrium results under the smallest and largest spatial 

spillover effects within the reasonable range, where the female adult rootworms' dispersal propor-

tion (𝑢) is assumed to be 5% and 25%, respectively. The equilibrium points are denoted by red 

dots (i.e., where lines cross).  

 

When the upper bound of spillover effects is assumed (Panel (C)), 𝑃𝑠𝑒𝑙𝑓
∗  in the West and 

the East are reduced to 0.44 and 0.13, respectively. This is because as spillover effects increase, 

the indicator function begins to have an impact, as illustrated by the part of the green line with a 

very steep slope in Panel (C). This effectively changes where the two lines intersect. Intuitively, 

greater spillover effects make it easier for the non-Bt benefit to exceed the Bt benefit if Bt was 

planted in the preceding year, thereby disincentivizing Bt planting conditional on Bt history.  
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The empirical difference between group optimum and individual optimum, however, is 

strikingly small (See Figure 3.A6 in the Appendix). Specifically, the equilibrium Bt coverage un-

der 𝑢 = 0.05 is 0.64 and 0.14 for the West and East, respectively, and rounds up to 0.43 and 0.13 

under 𝑢 = 0.25. That is, where individual growers act according to complete self-interest would 

preserve the Bt susceptibility resource to nearly the same extent as where they consider group 

interest. Moreover, the group optimum is usually difficult to achieve, as it requires growers to be 

unselfish and voluntarily act according to the group interest. In practice, the individual optimum 

as the second best would be a more feasible solution, as in many other environmental problems.be-

yond which Bt hybrids are preferred over non-Bt plants, denoted as 𝑣∗. The threshold for the indi-

vidual optimum coverage 𝑃𝑠𝑒𝑙𝑓
∗  will depend on Bt history, i.e., whether Bt was planted in the pre-

ceding year, so a subscript is used (𝑣1
∗ for having Bt history, and 𝑣0

∗ otherwise). Results in Table 

3.2 show that at 𝑢 = 5%, the Bt planting threshold for both regions is 0.13 and 0.35 for fields 

without and with Bt history, respectively. The values are very close before rounding up because 

the seed premium per unit market value gain (𝑐/𝑚) is similar in the two regions (Table 3.A2 in 

the Appendix), and the difference in 𝑃∗ carries little weight given the size of spillover effects. 

However, at 𝑢 = 25%, the policies differentiate: while the thresholds for the East remain close to 

that under 𝑢 = 5% due to a small change in 𝑃∗, for the West it is optimal for maize growers not 

to plant Bt maize at all if the field was planted to Bt maize in the preceding year. That is, at the 

44% regional coverage, planting non-Bt seeds and taking advantage of the suppression benefit 

from own-field Bt history and spatial spillover is more profitable than planting Bt at additional 

cost. The status-quo (𝑃̅) is used as a reference, where we use the regional average of Bt planting 

rate between 2014-2016 as 𝑃∗  (See Table 3.A4 in the Appendix), and 𝑣∗  is such that 𝑃̅  =



123 

100 × (1 − 𝐹(𝑣̅)). We lack information to recover how the threshold is affected by Bt history 

though, so the same threshold is used.  

Table 3.2 Summary of alternative scenarios 

 

West  East 

 𝑃̅ 𝑃𝑠𝑒𝑙𝑓
∗   𝑃̅ 𝑃𝑠𝑒𝑙𝑓

∗  

Spillover effect  

assumption (𝑢) 

 5% 25%   5% 25% 

P 0.63 0.64 0.44  0.68 0.14 0.13 

𝑣̅0   0.26 0.13 0.16  0.00 0.13 0.14 

𝑣̅1 0.26 0.35 /  0.00 0.35 0.36 

 

Discussion 

Currently, resistance mitigation strategies include rotating to a non-host crop (e.g., soybeans), ro-

tating with Bt hybrids expressing different modes of action, and supplementing (or replacing) Bt 

toxins with synthetic insecticides, including granular, liquid, and seed treatment insecticides. 

While evidence of remedial action effectiveness has been accumulating (Carrière et al. 2020), these 

are post-hoc remedial efforts and may not be viable or desirable for all producers due to agronomic 

and economic constraints. Data from most transgenic crops deployed over the last several decades 

indicate that resistance may be best viewed as an inevitable consequence of widespread use, and 

management should therefore focus on strategies that maximize the usable life of each approach.  

Lowering the selection pressure upon pest insects is the single most effective approach to delay 

resistance evolution (i.e., less planting of Bt hybrids) (Tabashnik and Carrière 2017; Tabashnik 

and Gould 2012).  
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However, managing resistance is a technological issue as well as a behavioral one (Hardin 

1968). In essence, achieving the Bt planting level that is optimal for self-interested growers (i.e., 

the individual optimum) requires them to recognize the tradeoffs between current and future inter-

ests arising from intertemporal efficacy erosion and suppression; and achieving what is the best 

for the local group of growers or the community (i.e., the group optimum) further requires growers 

to internalize the spatial spillover externalities and relinquish individual freedom to plant Bt for 

their neighbors.  The extent to which existing Bt planting levels differ from the individual- and 

group optimum is critical to formulating effective and efficient regulations, necessitating a data-

driven approach.   

Combining two sets of unique data - the trial data on Bt efficacy and rootworm pressure, 

as well as survey data on rootworm-specific Bt planting rates - the findings of this paper suggest 

that Bt use comes at a considerable long-term cost of Bt efficacy erosion, reducing Bt efficacy by 

more than half on average across the Corn Belt from 2005 to 2016. Although a fraction of the long-

term cost is offset by the long-term benefit associated with intertemporal suppression, the net fu-

ture cost is still equivalent to around a 12% Bt efficacy reduction. Because rootworm pressure and 

Bt efficacy in a grower’s field are affected by spatial spillover, the grower’s Bt choice (plant Bt or 

non-Bt) is also dependent on past Bt choices made by others in the local area. Therefore, we de-

velop a dynamic game to find the individual and group optimum. 

The empirical game analysis presented in this paper demonstrated that distinctions between 

individual and group optimum are rather trivial. In some circumstances, autonomous or voluntary 

collective actions are observed in managing resources within a small local group or community, 

which essentially utilizes the social capital or social norms (Pretty 2003; Brown 2018), but coop-

eratives remain uncommon and difficult to establish (Gould 2018). Therefore, the individual 
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optimum, as the second-best option, preserves pest susceptibility almost as well as the group opti-

mum, and it is also more feasible for policy purposes. Nevertheless, a discrepancy still exists be-

tween the actual Bt planting rate and the individual optimum. This is especially true for the Eastern 

Corn Belt, where the corresponding Bt rates are 68% and 13%~14% across a reasonable range of 

spatial spillover assumptions.  

Among other things, trait bundling and a lack of information on future costs may play the 

most important role in causing the discrepancy. Below-ground traits have been increasingly 

stacked, or bundled together, with above-ground insect-resistant and herbicide-tolerant traits. As 

illustrated in Figure 3.A7, in recent years the majority of the rootworm-active hybrids contain 

multiple traits. For example, Bayer offers the SmartStax seed product, which confers multiple traits: 

above-ground Bt, below-ground Bt, and tolerance to glyphosate and glufosinate, and it is also the 

only available product that contains the rootworm Bt trait. (https://www.dekalbasgrowdeltap-

ine.com/en-us/seed-finder/corn.html#plid=H72K0968D&territory=C6J&view=national, accessed 

8 August, 2022).  

Bundling is frequently found to increase purchase likelihood and consumers are likely to 

purchase more than they would otherwise if items were sold separately (Drumwright 1992), due 

to reasons such as reduced time and cognitive effort required to make purchase decisions (Harries 

and Blair 2006). Previous research on seed trait bundling has also suggested sub-additive pricing 

instead of component pricing (Shi et al. 2010). Bundling has thus been suggested as a strategy for 

marketing new high-tech products as it reduces perceived risk and increases the perceived benefit 

of the bundled new products (Sarin et al. 2003), and experimental results also provided evidence 

that bundling an innovation with an existing and related product increases adoption intention 

(Reinder et al. 2010). Because the costs and benefits of individual items are decoupled, consumers 

https://www.dekalbasgrowdeltapine.com/en-us/seed-finder/corn.html#plid=H72K0968D&territory=C6J&view=national
https://www.dekalbasgrowdeltapine.com/en-us/seed-finder/corn.html#plid=H72K0968D&territory=C6J&view=national
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are more likely to purchase something that they don’t need (Soman and Gourville 2001) – root-

worm Bt trait in our case.  

In addition to the trait cost obscured as a result of trait stacking, growers are likely under-

informed about the cost of Bt efficacy erosion, or the future cost. Our study contributes to filling 

this knowledge gap, and more extension work is needed to educate growers and disseminate the 

information. The long-term capacity to control the pests could benefit from more informed and 

rational decisions. 

We propose two general policy guidelines for the Bt-rootworm management problem. First, 

we suggest regulators focus on seed suppliers in an effort to reform how seed products are pre-

sented and marketed by breaking down the price for each trait. Individual traits are thus monetarily 

separated to draw farmers’ attention to the individual cost of each trait, recoupling the costs and 

benefits of each trait. Second, collaborative efforts from academic researchers and extension work-

ers are needed to better inform growers in order to achieve the second-best individual optimum, if 

not the group optimum. Furthermore, the problem and policy solution for the Western Corn Belt 

can take slightly different forms. The discrepancy between the individual optimum and actual Bt 

planting level is quite small due to high rootworm pressure in the West. This implies that a more 

integrated management strategy synthesizing different technologies – those expected in the com-

ing years in particular - might be warranted. As an environmentally benign tool of insect manage-

ment (Mendelsohn et al. 2003), delaying resistance and maintaining the Bt efficacy for the future, 

even while new tools are being developed, is in the best interests of sustainable crop production. 

This is especially so under the projections of a warming climate (Deutsch et al. 2018). 

It is also worth emphasizing that these issues we identified and the policy guidelines we 

provided are not limited to this specific problem of rootworm Bt toxins; rather, they apply more 



127 

broadly to managing biological commons or crop biotechnology. The RNAi technology is a 

closely related example. Although recently registered RNAi-expressing maize hybrids are ex-

pected to be planted in 2022, this approach will only be provided in combination with existing Bt 

toxins (e.g., Cry3Bb1), to enhance efficacy and minimize the risk of rapid resistance evolution to 

this novel approach (Fishilevich et al. 2016). Tabashnik and Carrière (2017) comment that “insects 

are remarkably adaptable and are expected to evolve resistance to any control method, including 

transgenic plants with combinations of protective traits as different as Bt toxins and RNAi”. This 

is also demonstrated by the rapid evolution of cross-resistance across the toxins deployed in 

stacked rootworm Bt hybrids (Zukoff et al. 2016), indicating that current pyramids are not com-

posed of truly independent modes of action in terms of resistance management. These policy 

guidelines may also find a wider audience outside of the United States, particularly in countries 

like China that have long restricted crop biotechnology but have begun to change their stance. 

 

Data and Variables 

1. University trial data 

In this study, we have collected university research trial data, which monitor the rootworm pressure 

in the surrounding area. The research fields are generally small (ca. less than 10 ha) in size and are 

designed to maximize female rootworm oviposition by planting maize following maize and plant-

ing maize late in the season compared with background plantings, this serves to attract gravid 

females to a comparatively late and rare source of maize pollen. These research fields, therefore, 

are likely to serve as a “worst-case” scenario for feeding pressure, as they effectively over-repre-

sent damage relative to typical grower practices in the region. Multiple variables were used in the 
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analysis sourced from this dataset, including root injury scale, Bt variety planted in the trial fields, 

soil insecticide use, and seed treatment application in the trial.  

 

2. TraitTrak® survey data 

The TraitTrak® survey is a unique and large plot-level survey dataset that spans the period 1995 

to 2016 and is nationally representative. The survey is conducted annually by Gfk Kynetec, a mar-

ket research company specializing in providing agricultural data services, and has been widely 

used in previous studies (Shi et al. 2010; Perry et al. 2016; Lee and Moschini 2020; Ye et al. 2021). 

For each sampled plot, the dataset provides specific seed information planted to the plot, as well 

as the associated seed price and actual expenditures. This unique feature allows us to distinguish 

rootworm-targeting Bt hybrids from others and thus more precise identification. The Bt coverage 

rates at CRD and county level as well as seed premiums used in the analysis are both obtained 

from this dataset. 

 

3. Complementary data sources 

Aside from the two primary data sources, we also exploit information from multiple other sources. 

For the control variables: site-specific precipitation is obtained by averaging the precipitation at 

the four closest neighboring coordinates in the Parameter-elevation Regression on Independent 

Slopes Model (PRISM) dataset, a fine-scale weather dataset gridded at 2.5 arc-minute (4 km) 

resolution for the contiguous United States; the cropping pattern (continuous maize planting) 

variable is constructed from Cropland Data Layer (CropScape). For the parameter calibrations: 

maize cash price 𝑝 is obtained from maize elevators, compiled to state-year level; parameter 𝜅 is 
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drawn using results from Tinsley (2013) and is calibrated as 15%; actual yield data is obtained 

from National Agricultural Statistics Service (NASS). 

 

4. Calibrations for yield potential.  

The yield potential 𝑦 in the absence of rootworm damage is recovered by adding back the yield 

loss associated with root damage. Specifically, we first calculate the average root injury for Bt and 

non-Bt fields for each county. Then, we obtain the county-average root damage as the weighted 

average of root injury, using the Bt planting rate at CRD level as the weight, and denote it as 𝑙. So 

the yield potential is calculated as the actual yield in the county divided by (1 − 3 × 𝜅 × 𝑙). 
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APPENDIX 

 

Rootworms are targeted by several toxins: Cry3Bb1, registered in 2003 by Monsanto; 

Cry34/35Ab1, registered in 2005 by Dow AgroSciences and DuPont Pioneer; and mCry3A and 

eCry3.1Ab, registered in 2006 and 2014, respectively, by Syngenta. The chronological trends of 

adoptions of maize hybrids possessing each individual trait, as well as the stacking of the traits, is 

depicted in Figure 2.A1-2.A2. 

Figure 3.A1 Time trends of Rootworm Bt trait adoptions in the sample, 2003-2016.  

The Bt planting rate is calculated as the percentage of maize area that plants varieties containing 

each Bt toxin (Data source: TraitTrak®, Kynetec.)
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Figure 3.A2 Time trends of single- and double-trait adoptions in the sample, 2003-2016.  

The Bt planting rate is calculated as the percentage of maize area that plants varieties containing 

one and two Bt toxins, respectively (Data source: TraitTrak®, Kynetec.)
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Figure 3.A3 State-specific time trends in maize cropping patterns, 2000-2016.  

(Data source: Cropland Data Layer, NASS.)
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Figure 3.A4 Planting percentage (%) of rootworm Bt maize in 2016, at the county level.  

The Bt planting rate is calculated as the percentage of maize area that plants varieties containing 

rootworm-active Bt toxins. (Data source: TraitTrak®, Kynetec.)
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Figure 3.A5 State-specific time trends of background (non-Bt trial fields) rootworm pres-

sure and Bt planting rate, 2005-2016.  

Bt planting rate variable is lagged for two years, i.e., the Bt rate value shown in 2005 is that in 

2003, and is calculated as the rate of maize acres planted to rootworm Bt hybrids in the CRD. Only 

fields where soil insecticides or high-level seed treatments were not applied are included.   (Data 

source: Trial data; TraitTrak®, Kynetec) 
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Figure 3.A6 Equilibrium outcome when growers act according to group interest.  

Panel (A) is the empirical cumulative distribution functions (CDF) for the West and East regions, 

respectively. Panel (B) and (C) are the equilibrium results under the smallest and largest spatial 

spillover effects within the reasonable range, where the female adult rootworms' dispersal propor-

tion (𝑢) is assumed to be 5% and 25%, respectively. The equilibrium points are denoted by red 

dots (i.e., where lines cross).
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Figure 3.A7 Rootworm Bt trait stacking increases over time.  

“RW”, “CB”, and “HT” are abbreviations for traits protecting against below-ground pests, above-

ground pests, and herbicides. Planting rates are calculated as the percentage of maize acres planted 

to each hybrid at the national level. (Data source: TraitTrak Kynetec.) 
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Table 3.A1 Fractional response model results (APEs) for root damage, using county-level 

Bt planting rate 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

Bt treatment in the trial 

field (𝑏𝑡) 

-0.42*** -0.44*** -0.37*** 

 (-20.43) (-24.83) (-15.28) 

Bt planting rate  

(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

-0.17*** -0.21*** -0.15*** 

 (-4.32) (-3.99) (-4.27) 

Interaction term  

(𝑏𝑡 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

0.22*** 0.23*** 0.19*** 

 (5.26) (5.85) (5.77) 

Precipitation, April -0.02 -0.02 -0.02 

 (-0.54) (-0.39) (-0.53) 

Precipitation, May -0.02 -0.04 -0.03 

 (-0.56) (-0.90) (-0.68) 

Precipitation, June -0.06*** -0.07*** -0.05*** 

 (-3.75) (-3.27) (-3.77) 

Precipitation, July 0.02 0.03 0.03 

 (0.59) (0.66) (0.76) 

Precipitation, August -0.03 -0.06*** -0.03* 

 (-1.61) (-3.44) (-1.85) 
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Table 3.A1 (cont’d) 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

High-level seed treatment  -0.08*** -0.10*** -0.07*** 

 (-6.41) (-9.64) (-5.89) 

Ratio of continuous maize 

in total crop land 

 -0.26  

  (-1.21)  

Soil insecticides   -0.15*** 

   (-10.32) 

Observations 1466 1117 1868 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01.  t statistics in parentheses. Standard errors are clustered 

at crop reporting district (CRD) level.  
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Table 3.A2 Linear regression results for root damage, using CRD-level Bt planting rate 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

Bt treatment in the trial 

field (𝑏𝑡) 

-0.44*** -1.75*** -0.41*** 

 (-12.14) (-23.64) (-10.14) 

Bt planting rate  

(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

-0.28*** -0.93*** -0.29*** 

 (-4.85) (-4.52) (-4.97) 

Interaction term  

(𝑏𝑡 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

0.25*** 1.10*** 0.27*** 

 (4.40) (6.12) (4.52) 

Precipitation, April -0.03 -0.09 -0.03 

 (-0.51) (-0.41) (-0.60) 

Precipitation, May -0.02 -0.16 -0.02 

 (-0.47) (-0.80) (-0.61) 

Precipitation, June -0.05*** -0.26*** -0.05*** 

 (-2.95) (-2.98) (-3.14) 

Precipitation, July 0.02 0.11 0.02 

 (0.45) (0.60) (0.62) 

Precipitation, August -0.03 -0.20*** -0.03** 

 (-1.47) (-3.02) (-2.05) 
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Table 3.A2 (cont’d) 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

High-level seed treatment  -0.10*** -0.47*** -0.09*** 

 (-4.26) (-9.70) (-3.51) 

Ratio of continuous maize 

in total crop land 

 -0.83  

  (-0.97)  

Soil insecticides   -0.12*** 

   (-3.67) 

Observations 1489 1119 1891 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01.  t statistics in parentheses. Standard errors are clustered 

at crop reporting district (CRD) level.  
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Table 3.A3 Linear regression results for root damage, using county-level Bt planting rate 

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

    

Bt treatment in the trial 

field (𝑏𝑡) 

-0.43*** -1.70*** -0.39*** 

 (-10.96) (-19.16) (-8.15) 

Bt planting rate  

(𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

-0.21*** -0.82*** -0.22*** 

 (-3.28) (-3.99) (-3.02) 

Interaction term  

(𝑏𝑡 × 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒) 

0.20*** 0.91*** 0.20*** 

 (3.73) (5.93) (2.90) 

Precipitation, April -0.02 -0.08 -0.02 

 (-0.47) (-0.39) (-0.55) 

Precipitation, May -0.03 -0.17 -0.03 

 (-0.62) (-0.90) (-0.78) 

Precipitation, June -0.06*** -0.27*** -0.06*** 

 (-3.12) (-3.22) (-3.34) 

Precipitation, July 0.02 0.12 0.03 

 (0.64) (0.66) (0.82) 

Precipitation, August -0.03 -0.22*** -0.03** 

 (-1.50) (-3.33) (-2.16) 
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Table 3.A3 (cont’d)    

 Root injury (𝑟𝑤) 

 Model (1) Model (2) Model (3) 

High-level seed treatment  -0.09*** -0.45*** -0.08*** 

 (-3.98) (-7.70) (-3.29) 

Ratio of continuous maize 

in total crop land 

 -1.02  

  (-1.20)  

Soil insecticides   -0.12*** 

   (-3.75) 

Observations 1466 1117 1868 

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01.  t statistics in parentheses. Standard errors are clustered 

at crop reporting district (CRD) level.  
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Table 3.A4 Parameter calibration results.  

Region c m p y c/m Bt planting rate 

West 25.39 330.01 3.46 213.41 0.08 0.63 

East 26.83 302.56 3.71 183.46 0.09 0.68 

 

 

 



145 

REFERENCES



146 

REFERENCES 

 

Alford, A. M., and C. H. Krupke. "A meta-analysis and economic evaluation of neonicotinoid seed 

treatments and other prophylactic insecticides in Indiana maize from 2000–2015 with IPM 

recommendations." Journal of Economic Entomology 111.2 (2018): 689-699. 

Bauch, Chris T., Alison P. Galvani, and David JD Earn. "Group interest versus self-interest in 

smallpox vaccination policy." Proceedings of the National Academy of Sciences 100.18 

(2003): 10564-10567. 

Bauch, Chris T., and David JD Earn. "Vaccination and the theory of games." Proceedings of the 

National Academy of Sciences 101.36 (2004): 13391-13394. 

Brown, Zachary S. "Voluntary programs to encourage refuges for pesticide resistance manage-

ment: Lessons from a quasi‐Experiment." American Journal of Agricultural Econom-

ics 100.3 (2018): 844-867. 

Calles-Torrez, Veronica, et al. "Field-evolved resistance of northern and western corn rootworm 

(Coleoptera: Chrysomelidae) populations to corn hybrids expressing single and pyramided 

Cry3Bb1 and Cry34/35Ab1 Bt proteins in North Dakota." Journal of Economic Entomol-

ogy 112.4 (2019): 1875-1886. 

Carrière, Yves, et al. "Crop rotation mitigates impacts of corn rootworm resistance to transgenic 

Bt corn." Proceedings of the National Academy of Sciences 117.31 (2020): 18385-18392. 

Coats, Susan A., Jon J. Tollefson, and John A. Mutchmor. "Study of migratory flight in the western 

corn rootworm (Coleoptera: Chrysomelidae)." Environmental Entomology 15.3 (1986): 

620-625. 

Cox, William J., et al. "Seed‐applied insecticides inconsistently affect corn forage in continuous 

corn." Agronomy Journal 99.6 (2007): 1640-1644. 

Deutsch, Curtis A., et al. "Increase in crop losses to insect pests in a warming climate." Sci-

ence 361.6405 (2018): 916-919. 

Dively, Galen P., et al. "Regional pest suppression associated with widespread Bt maize adoption 

benefits vegetable growers." Proceedings of the National Academy of Sciences 115.13 

(2018): 3320-3325. 

Drumwright, Minette E. "A demonstration of anomalies in evaluations of bundling." Marketing 

Letters 3.4 (1992): 311-321. 

Dun, Z., P. D. Mitchell, and M. Agosti. "Estimating Diabrotica virgifera virgifera damage func-

tions with field trial data: applying an unbalanced nested error component model." Journal 

of Applied Entomology 134.5 (2010): 409-419. 



147 

Elokda, Ezzat, Andrea Censi, and Saverio Bolognani. "Dynamic population games." arXiv pre-

print arXiv:2104.14662 (2021). 

Fishilevich, Elane, et al. "RNAi as a management tool for the western corn rootworm, Diabrotica 

virgifera virgifera." Pest Management Science 72.9 (2016): 1652-1663. 

Gassmann, Aaron J., et al. "Field-evolved resistance to Bt maize by western corn rootworm." PloS 

one 6.7 (2011): e22629. 

Gassmann, Aaron J., et al. "Field-evolved resistance by western corn rootworm to multiple Bacil-

lus thuringiensis toxins in transgenic maize." Proceedings of the National Academy of Sci-

ences 111.14 (2014): 5141-5146. 

Gould, Fred, Zachary S. Brown, and Jennifer Kuzma. "Wicked evolution: Can we address the 

sociobiological dilemma of pesticide resistance?" Science 360.6390 (2018): 728-732. 

Hardin, Garrett. "The tragedy of the commons: The population problem has no technical solution; 

it requires a fundamental extension in morality." Science 162.3859 (1968): 1243-1248. 

Harris, Judy, and Edward A. Blair. "Consumer preference for product bundles: The role of reduced 

search costs." Journal of the Academy of Marketing Science 34.4 (2006): 506-513. 

Hutchison, William D., et al. "Areawide suppression of European corn borer with Bt maize reaps 

savings to non-Bt maize growers." Science 330.6001 (2010): 222-225. 

Gould, Fred, et al. "Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis vi-

rescens." Proceedings of the National Academy of Sciences 89.17 (1992): 7986-7990. 

Lee, Seungki, and GianCarlo Moschini. "On the value of innovation and extension information: 

SCN‐resistant soybean varieties." American Journal of Agricultural Economics (2022). 

Marquardt, Paul T., and Christian H. Krupke. "Dispersal and mating behavior of Diabrotica vir-

gifera virgifera (Coleoptera: Chrysomelidae) in Bt cornfields." Environmental Entomol-

ogy 38.1 (2009): 176-182. 

Martinez, J. C., and M. A. Caprio. "IPM use with the deployment of a non-high dose Bt pyramid 

and mitigation of resistance for western corn rootworm (Diabrotica virgifera vir-

gifera)." Environmental Entomology 45.3 (2016): 747-761. 

Meihls, Lisa N., et al. "Increased survival of western corn rootworm on transgenic corn within 

three generations of on-plant greenhouse selection." Proceedings of the National Academy 

of Sciences 105.49 (2008): 19177-19182. 

Mendelsohn, Mike, et al. "Are Bt crops safe?." Nature Biotechnology 21.9 (2003): 1003-1009. 

Metcalf, Robert L. “Forward.” Methods for the study of pest Diabrotica. Springer (2012). 

Milne, Alice E., et al. "The effect of farmers’ decisions on pest control with Bt crops: A billion 



148 

dollar game of strategy." PLoS Computational Biology 11.12 (2015): e1004483. 

Naranjo, Steven E. "Movement of corn rootworm beetles, Diabrotica spp.(Coleoptera: Chrysome-

lidae), at cornfield boundaries in relation to sex, reproductive status, and crop phenol-

ogy." Environmental Entomology 20.1 (1991): 230-240. 

Oleson, James D., et al. "Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: 

Chrysomelidae)." Journal of Economic Entomology 98.1 (2005): 1-8. 

Onstad, David W., and Lance J. Meinke. "Modeling evolution of Diabrotica virgifera virgifera 

(Coleoptera: Chrysomelidae) to transgenic corn with two insecticidal traits." Journal of 

Economic Entomology 103.3 (2010): 849-860. 

Perry, Edward D., GianCarlo Moschini, and David A. Hennessy. "Testing for complementarity: 

Glyphosate tolerant soybeans and conservation tillage." American Journal of Agricultural 

Economics 98.3 (2016): 765-784. 

Pretty, Jules. "Social capital and the collective management of resources." Science 302.5652 

(2003): 1912-1914. 

Reinders, Machiel J., Ruud T. Frambach, and Jan PL Schoormans. "Using product bundling to 

facilitate the adoption process of radical innovations." Journal of Product Innovation Man-

agement 27.7 (2010): 1127-1140. 

Sarin, Shikhar, Trina Sego, and Nataporn Chanvarasuth. "Strategic use of bundling for reducing 

consumers’ perceived risk associated with the purchase of new high-tech products." Jour-

nal of Marketing Theory and Practice 11.3 (2003): 71-83. 

Shi, Guanming, Jean-Paul Chavas, and Kyle Stiegert. "An analysis of the pricing of traits in the 

US corn seed market." American Journal of Agricultural Economics 92.5 (2010): 1324-

1338. 

Smith, John Maynard. Evolution and the Theory of Games. Cambridge university press (1982). 

Soman, Dilip, and John T. Gourville. "Transaction decoupling: How price bundling affects the 

decision to consume." Journal of Marketing Research 38.1 (2001): 30-44. 

St. Clair, Coy R., Graham P. Head, and Aaron J. Gassmann. "Western corn rootworm abundance, 

injury to corn, and resistance to Cry3Bb1 in the local landscape of previous problem 

fields." Plos one 15.7 (2020): e0237094. 

St. Clair, Coy R., and Aaron J. Gassmann. "Linking land use patterns and pest outbreaks in Bt 

maize." Ecological Applications 31.4 (2021): e02295. 

Tabashnik, Bruce E., and Fred Gould. "Delaying corn rootworm resistance to Bt corn." Journal of 

Economic Entomology 105.3 (2012): 767-776. 

Tabashnik, Bruce E., Thierry Brévault, and Yves Carrière. "Insect resistance to Bt crops: lessons 



149 

from the first billion acres." Nature Biotechnology 31.6 (2013): 510-521. 

Tabashnik, Bruce E., and Yves Carrière. "Surge in insect resistance to transgenic crops and pro-

spects for sustainability." Nature Biotechnology 35.10 (2017): 926-935. 

Taylor, Sally, and Christian Krupke. "Measuring rootworm refuge function: Diabrotica virgifera 

virgifera emergence and mating in seed blend and strip refuges for Bacillus thuringiensis 

(Bt) maize." Pest Management Science 74.9 (2018): 2195-2203. 

Tinsley, N. A., R. E. Estes, and M. E. Gray. "Validation of a nested error component model to 

estimate damage caused by corn rootworm larvae." Journal of Applied Entomology 137.3 

(2013): 161-169. 

Tinsley, N. A., et al. "Estimation of efficacy functions for products used to manage corn rootworm 

larval injury." Journal of Applied Entomology 140.6 (2016): 414-425. 

Tinsley, Nicholas A., et al. "Multi-year surveys reveal significant decline in western corn root-

worm densities in Illinois soybean fields." American Entomologist 64.2 (2018): 112-119. 

EPA. "Final report of the subpanel on Bacillus thuringiensis (Bt) plant-pesticides and resistance 

management." United States Environmental Protection Agency (1998) https://ar-

chive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf. Accessed 8 August 2022. 

Wooldridge, Jeffrey M. Econometric analysis of cross section and panel data. MIT press (2010). 

Ye, Ziwei, Felicia Wu, and David A. Hennessy. "Environmental and economic concerns surround-

ing restrictions on glyphosate use in corn." Proceedings of the National Academy of Sci-

ences 118.18 (2021): e2017470118. 

Zukoff, Sarah N., et al. "Multiple assays indicate varying levels of cross resistance in Cry3Bb1-

selected field populations of the western corn rootworm to mCry3A, eCry3. 1Ab, and 

Cry34/35Ab1." Journal of Economic Entomology 109.3 (2016): 1387-1398. 

https://archive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf
https://archive.epa.gov/scipoly/sap/meetings/web/pdf/finalfeb.pdf


150 

CHAPTER 4 Climate Adaptation Value of Drought-tolerant Technology in a Crop Insur-

ance Context 

 

Introduction 

As atmospheric carbon dioxide continues to rise at a rate of 2 to 2.5 ppm per year, global warming 

is predicted to continue. While most research on agricultural production has concentrated on tem-

peratures (Schlenker and Roberts 2009; Tack et al. 2015; Kawasaki and Uchida 2016; Gammans 

et al. 2017; Miller et al. 2021), the drought aspect of climate change has received greater attention 

(Mazdiyasni and AghaKouchak 2015; Lesk et al. 2016; Kuwayama 2018; Yu et al. 2022). The 

past decade has seen an increase in the frequency and severity of drought occurrences – the 

catastrophic drought that swept across much of the Western corn production states in 2021 is 

expected to last into 2022 growing seasons and result in another record-dry year since 2012, not 

long ago. Economically, Drought has been the most expensive cause of crop insurance claims in 

the United States, accounting for roughly half of all indemnity payments (Wallander et al. 2017; 

Perry et al. 2020). 

Adaptation measures such as altering planting dates, double cropping, and conservation 

agriculture have contributed to the resilience of agricultural production systems to climate change 

(Kawasaki 2019; Cui 2020; Cui and Xie 2022; Chen and Gong 2022; Gammans et al. 2019). The 

new advent of drought-tolerant (DT) seed technology appears to be bringing new adaptation 

opportunities. Despite its relatively short history, drought-tolerant corn, which was released in 

2012 and has been widely available since 2013, has shown a comparable adoption velocity as its 

famous forerunner, insect-resistant Bt maize (Figure 4.A1 in the Appendix). Field trials with DT 
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hybrids in the Corn Belt region have revealed yield increases in the face of water stress (Mounce 

et al. 2016; Gaffney et al. 2015; Nemali et al. 2015). 

Nonetheless, questions remain about the climate adaptation value of DT technology in 

large-scale corn production, specifically in terms of three areas: one, numerous laboratory and 

empirical studies have suggested yield penalties associated with higher drought tolerance due to 

resource constraints (Lybbert and Bell 2010; Tollefson 2011; Zhao et al. 2015; Lobell et al. 2020; 

Yu et al. 2021); two, the adaptive value of this technology, namely whether the marginal benefit 

increases with increased environmental stress (Lobell 2014b); three, in practical settings, DT 

varieties may perform differently than in laboratory settings due to environmental heterogeneity 

and behavioral differences associated with the planting DT corn, such as increased seeding rate 

(Lobell et al. 2014a). A strand of literature has discussed whether these technological advances 

actually led to increased drought sensitivity, in trade-off to continued rises in mean yield, and 

readers are referred to Goodwin and Piggott (2020) for a detailed discussion.  

The empirical adaptation value of DT will have important implications for the federal crop 

insurance program (FCIP), whose premiums are mandated to be actuarially fair. A good example 

is the Biotech Endorsement (BE) program, which was implemented across the Corn Belt from 

2009 to 2012 and gave an actuarially accurate discount to account for the lower yield risk of 

selected corn hybrids (Goodwin and Piggott 2020). If the insurance premium fails to reflect the 

risk reductions associated with DT, adoption of DT hybrids will likely be disincentivized, 

compromising corn growers’ long-term ability to adapt to drought (Annan and Schlenker 2015; 

Miao 2020). Furthermore, because DT research and development involves significant upfront 

fixed costs, often supported by both private and public research funding (Lybbert and Carter 2015), 
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a lack of market demand will prevent future investments and advances, particularly from the 

private sector.  

To address the central question of DT benefits on county-level yield in commercial corn 

production, we employ primarily a large and unique panel dataset on seed use. Two issues are 

important to discuss and clarify at this time. The first issue that immediately emerges in this setting 

is whether high-DT counties systematically differ from low-DT counties and confounds the yield 

impact. On the demand side, counties with better corn yield potential and/or greater drought risk 

are expected to profit more, making DT technology more likely to be adopted. On the supply side, 

the drought-prone corn-producing areas are prioritized in developing and marketing DT seeds; 

indeed, the majority of field trials in the United States are undertaken in the drought-prone Western 

Corn Belt (Gaffney et al. 2015; McFadden et al. 2019). As a result, as illustrated in Figure 4.1, 

higher DT adoption rates are found in the Western Corn Belt, particularly Nebraska, Kansas, and 

Colorado. Interestingly, Panel (A) in Figure 4.A2 shows that during the DT-available years in our 

sample (2013-2016), DT was almost always stacked with 1st GE seeds (defined as seeds containing 

insect-resistant Bt or herbicide-resistant traits), which were already ubiquitous by 2012 (the pri-

mary reason that BE program ended in 2012, see Goodwin and Piggott 2020); yet Figure 4.A3 

shows that 1st GE-DT stacking seeds cost less than 1st GE only seeds, despite a higher retail price. 

These observations suggest that during the first few years of DT marketing (2013-2016), seed 

companies and/or retailers had a lot of promotions (free units and discounts) on 1st GE-DT stacked 

seeds to help expand the DT market, and as a result, DT came at a low or no cost for corn growers 

during this period, and changes in DT planting were more likely supply-driven. Second, as 

previously mentioned, our analysis intends to capture differences in behavioral reactions to DT 

planting in evaluating the empirical value of DT rather than excluding them. Planting density 
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changes are one example (see Panel (B) in Figure 4.A3). That is, we are interested in how the use 

of DT has affected corn production when these resultant responsive behaviors are taken together, 

rather than a purely technical and agronomic relationship. 

Figure 4.1 Geographical distribution of DT planting (%) during 2013-2016, at the state level.  

Measured as the percentage of corn acres (%) that were planted to DT-containing hybrids. The 

state-level statistics have the highest confidence in the Corn Belt, since it is the most heavily sam-

pled, whereas states like Oklahoma and Texas are only lightly sampled and thus less representative 

at the state level. (Date source: TraitTrak®, GfK Kynetec.) 

 

The remainder of the article is structured as follows. We first outline the biology 

underpinning existing drought-tolerance technologies to set the stage for DT suspicions. Then we 

empirically characterize the DT technology from several perspectives. This is followed by a 
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simulation of the DT value in the crop insurance context. The last section concludes and discusses 

the implications.  

 

Background on Drought-tolerance Biotechnology  

Despite long-standing efforts in human history to select improved varieties against environmental 

stress (Yu and Babcock 2010), this new wave of drought-tolerant corn seeds features 

biotechnology advances since the 2000s. Tools like marker-assisted selection allow for better 

identification of genes associated with drought tolerance to be introduced into DNA molecules for 

analysis. Syngenta, the agri-tech giant, was the first to release such hybrids under the name 

Agrisure Artesian® in 2011, using the molecular breeding process. This was soon followed by the 

launch of another conventionally bred brand, Dupont Pioneer's Optimum AQUAmax®. Monsanto, 

on the other hand, used genetic engineering in partnership with BASF to develop the only 

commercially marketed GE seeds, known as the Genuity DroughtGard®. The GE hybrids were 

first launched in 2012, although they were not widely available until 2013. The plant expresses the 

cold-shock protein B (cspB) to regulate biological functions as a gene from the soil bacterium 

Bacillus subtilis was inserted into it. According to Figure 4.A4 in the Appendix, the market share 

of GE DT has been increasing since its debut but traditionally bred DT, particularly Dupont 

cultivars, still dominates the DT market as of 2016.  

However, technological challenges remain. Unlike traits that target biotic pressures like 

insects and weeds, which might be pinned down to a single gene, tolerance to abiotic stresses such 

as drought often involves several physiological processes and a larger set of genes. However, only 

a few genes can be manipulated at the same time using existing genetic engineering techniques. 

Conventional breeding transfers genes at a comparatively lower cost, but transferring the desired 
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gene to the plant may cause other nearby genes to be transferred as well, causing unexpected 

effects. This is commonly referred to as “yield drag”. Furthermore, genetic approaches – whether 

genetic engineering or conventional breeding – suffer from what is known as pleiotropy in genetics. 

That is, a gene and its products often have multiple and sometimes unpredictable effects on a plant. 

Consequently, any genetic alterations related to drought tolerance are likely to have unanticipated 

negative consequences. 

The two most frequently discussed limitations of DT hybrids concern the lowest and high-

est extremes of the drought severity continuum. That is, whether yield gains under water-limited 

situations come at the expense of reduced yield under normal or ample water conditions; and 

whether crops are protected from severe or extreme droughts (Chang et al. 2013). Some studies 

have documented no statistically significant differences in yields between DT and non-DT seeds - 

and sometimes even higher yields from DT hybrids - under high-yielding conditions, which is 

somewhat counter to expectations (Gaffney et al. 2015; Adee et al. 2016; Zhao et al. 2018; Nemali 

et al. 2015). Gaffney et al. (2005), for example, found an average yield gain of 1.9 percent under 

favorable conditions, and a yield advantage of 6.5 percent under water-limited conditions. 

Syngenta's on-farm testing further reveals that a significant yield boost is retained even in the 

lowest-yielding environment of less than 50 bu/acre. 

Several factors might explain this. Before being selected for commercialization, 

conventionally bred hybrids are often tested for years in field trials and evaluated in terms of yield 

penalties (Heffner et al. 2009; Gaffney et al. 2015). For the genetically engineered products, 

drought-specific gene switches (“promoters”) were being used to control the timing and intensity 

of engineered genes’ expression, so that the genes are effective primarily under drought conditions, 

rather than turned on all the time – including under normal conditions to cause negative growth 
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effects (Gurian-Sherman 2012). Seed producers are also likely to cross-select high-performing 

elite lines or cross drought-tolerant genes into elite commercial varieties which increase overall 

yield. 

Nevertheless, the field-trial evidence is overall divided and inconclusive (Lindsey and 

Thomison 2016). In addition, the ability of laboratory evidence to be precisely replicated in large-

scale commercial production is limited in this case for primarily two reasons. First, the complexity 

of real-world droughts – in terms of timing, duration, and intensity – as well as environmental 

heterogeneity, particularly soil quality, are beyond the capabilities of controlled experiments. 

Given that the majority of the trials in producing the hybrids were conducted in the Western Corn 

Belt, this is predicted to result in variability between the Eastern and Western Corn Belt regions. 

Second, as discussed in previous sections, the application of DT may trigger behavioral responses 

in linked input decisions and farm management practices. 

 

Conditional Mean Analysis of Yield Risk 

Data and Variables 

An initial investigation of the DT protection against adverse environmental stresses can be gar-

nered from a simple conditional mean analysis of yield risk; specifically, we examine the yield 

risk responses to environmental stresses in relation to DT planting. Following previous studies 

(Goodwin and Piggott 2020; Perry et al. 2020), downward yield risk associated with drought can 

be operationalized using the loss-cost ratio (𝐿𝐶𝑅, in %), namely the drought-related indemnified 

amount divided by total liability aggregated at the county level. The data are obtained from the 

Cause of Loss and Summary of Business databases maintained by the USDA Risk Management 

Agency, which provide the cause-specific claims information and total liabilities by crop annually 
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at the county level.  The DT planting rate (𝐷𝑇, in %) is constructed from a large field-level survey 

data called TraitTrak®. It is provided by GfK Kynetec, a market research company specializing in 

the collection of agriculture-related survey data, and is available from 1995 to 2016. The Gfk data 

products have been used in a number of studies, and previous work has verified the validity of the 

data (Perry et al. 2016; Ye et al. 2021). The field-level data are aggregated into the crop reporting 

district (CRD) level, at which the survey data are representative.  

The Drought Severity and Coverage Index (DSCI) given by Drought Monitor is used to 

assess water stress or drought severity. The U.S. Drought Monitor is a collaborative effort by 

several organizations and is frequently used by federal agencies in the United States (Kuwayama 

et al. 2018). The index, which ranges from 0 (no drought) to 500 (severe drought), is a measure 

that takes into account both spatial coverage and drought severity. More information can be found 

at: https://droughtmonitor.unl.edu/data/docs/DSCI_fact_sheet.pdf. Since 2001, daily data have 

been available nationally, and we averaged them from June to August to create the drought variable 

𝐷𝑆𝐶𝐼. In comparison to previous studies' typical measures of water condition, such as precipitation, 

the Palmer Z index, and vapor pressure deficit, this index is a comprehensive "stress" measure that 

takes into account multiple dimensions of drought, such as precipitation, the USDA/NASS Topsoil 

Moisture, the Keetch-Byram Drought Index (KBDI), NOAA/NESDIS satellite Vegetation Health 

Indices, actual local observations, and experts' judgment4. The temperature data comes from the 

Parameter-elevation Regression on Independent Slopes Model (PRISM) dataset, which is a fine-

scale weather dataset for the contiguous United States gridded at 2.5 arc-minute (4 km) resolution. 

At the county level, two temperature variables are created: stress degree days (SDD) and growing 

 
4 Please see https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx.  

https://droughtmonitor.unl.edu/data/docs/DSCI_fact_sheet.pdf
https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx
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degree days (GDD) for temperatures above 29°C and within 10°C-29°C, respectively, and are 

averaged across the corn growing season from April to September (Schlenker and Roberts 2009; 

Perry et al. 2020). 

 

Descriptive Evidence 

Our study area is the Corn Belt of the United States. We include only counties with observations 

from 2001 to 2016 in the sample to create a balanced panel, yielding 758 counties and 105 CRDs 

annually. The sample includes 355 counties in the Eastern Corn Belt and 403 counties in the 

Western Corn Belt, with 347 counties located west of the 100th meridian, i.e. in the rainfed area 

(Table 4.A1). Figure 4.2 depicts the temporal variations in environmental stress and yield risk. It 

demonstrates that yield risk moves in lockstep with water and heat stress, which often change 

direction concurrently. In 2012, an extreme drought episode hit the U.S., causing a significant 

increase in both water and heat stress, accompanied by the worst drought-related yield risk between 

2001 and 2016.  

Figure 4.2 Time trends of water stress, heat stress, and yield risk, 2001-2016.  
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Water and heat stress is measured by the June-August average of Drought Severity and Coverage 

Index (DSCI) and April-September aggregated stress degree days (SDD), and yield risk is measured 

by the drought-related loss-cost ratio (Drought LCR, in %). (Date source: U.S. Drought Monitor; 

PRISM; and TraitTrak®, GfK Kynetec.) 

 

As an intuitive comparison, we divide the counties into two subsamples based on whether 

they grow DT hybrid, for the Western and Eastern Corn Belt respectively. In Figure 4.3, the yield 

risk variable 𝐿𝐶𝑅  is transformed using the inverse standard normal cumulative distribution 

function and is linearly fitted to drought measure 𝐷𝑆𝐶𝐼 for both DT and non-DT subsamples. 

Several things are shown in the top Western Corn Belt panel: one, in the absence of drought (the 

left-end at zero), yield risks in DT and non-DT subsamples are very close; two, the disparities 

between the red and blue lines, or DT benefits, grow larger as drought exposure increases – 

indicating climate adaptation values. Furthermore, drought exposure in the DT subsample spans 

the entire range of 𝐷𝑆𝐶𝐼. The DT counties in the Eastern Corn Belt, on the other hand, have 

experienced drought levels no higher than 152.  As a result, the linear fits of the DT and non-DT 

subsamples are less comparable for the region. The greater densities at lower drought levels for 

the non-DT subsample in the bottom panel also show that the Eastern was less affected by drought 

than the Western Corn Belt.  
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Figure 4.3 Comparison between DT and non-DT subsamples, in Western (top panel) and Eastern 

(bottom panel) Corn Belt.  

The dots represent the observations in the sample, where the inverse normal of yield risk (𝐿𝐶𝑅) is 

fitted linearly to the drought measure (𝐷𝑆𝐶𝐼). The shaded areas show the kernel densities of 𝐷𝑆𝐶𝐼. 

The DT and non-DT subsamples are represented by red and blue colors, respectively. Note that 

DT observations are present only during 2013-2016, while the non-DT subsample covers the year 

2012, resulting in greater densities at higher drought levels. The mean DT planting rate of the DT 

subsample is 17% and 9% for the Western and Eastern panel, respectively. (Data source: USDA 

Risk Management Agency; U.S. Drought Monitor; and TraitTrak®, GfK Kynetec.



161 

Model Specifications 

While Figure 4.3 depicts these relationships intuitively, it should be interpreted with caution 

because other factors may influence both DT planting and yield outcomes. Therefore, a regression 

analysis is warranted to provide a conclusive characterization. Given its proportional nature, the 

yield risk factors are best modeled as a fractional response, as illustrated in Figure 4.3 (Papke and 

Wooldridge 1996). The fractional response model is specified as follows: 

𝐸(𝑦𝑖,𝑡|𝒙𝒊,𝒕) =

Φ (
𝛼𝐷𝑇𝑟[𝑖],𝑡 + 𝛽1𝐷𝑆𝐶𝐼𝑖,𝑡 + 𝛽2𝑆𝐷𝐷𝑖,𝑡

+𝛾1𝐷𝑇𝑟[𝑖],𝑡 × 𝐷𝑆𝐶𝐼𝑖,𝑡 + 𝛾2𝐷𝑇𝑟[𝑖],𝑡 × 𝑆𝐷𝐷𝑖,𝑡 + 𝜃𝐺𝐷𝐷𝑖𝑡
) (1)

 

where the conditional mean of yield risk 𝑦𝑖,𝑡 (𝑖 for county and 𝑡 for year) is specified as a probit 

function, and Φ(∙) denotes the standard normal cumulative distribution function. The explanatory 

variables are defined as above. We also included year-fixed effects 𝛿𝑡 to eliminate year-specific 

unobservable factors affecting yield risk, such as other unobserved climatic factors. The year-fixed 

effects are preferred over time trends because yield risk, unlike yield, fluctuates in nature. In order 

to control for county-specific unobserved heterogeneity, the correlated random effect (CRE) ap-

proach is applied (Papke and Wooldridge 2008). Specifically, rewrite the above equation so that 

the unobserved county effect enters additively, as follows: 

𝐸(𝑦𝑖,𝑡|𝒙𝒊,𝒕, 𝑐𝑖) = Φ(𝒙𝒊,𝒕𝛑 + 𝑐𝑖). (2) 

As commented in Papke and Wooldridge (2008), although alternative functional forms 

such as logistic function in place of the standard normal CDF are possible, the probit function has 

computational advantages when the time-constant unobserved effect is involved. A conditional 

normality assumption is further imposed:  

𝑐𝑖 = 𝜗 + 𝒙̅𝒊𝜹 + 𝑎𝑖 (3) 

𝑎𝑖|𝒙𝒊 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎2), (4) 
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where 𝒙𝒊 ≡ (𝒙𝒊,𝟏, 𝒙𝒊,𝟐, … , 𝒙𝒊,𝑻), and 𝒙̅𝒊 ≡ 𝑇−1 ∑ 𝒙𝒊,𝒕
𝑇
𝑡=1  is time-averages for time-varying covari-

ates. Following that, the conditional mean can be expressed as 

𝐸(𝑦𝑖,𝑡|𝒙𝒊,𝒕, 𝑐𝑖) = Φ(𝜗𝑎 + 𝒙𝒊,𝒕𝛑𝒂 + 𝒙̅𝒊𝜹𝒂), (5) 

where the subscripts denote the corresponding original parameters rescaled by (1 +  𝜎2)−1/2, for 

example,  𝛑𝒂 = (1 +  𝜎2)−1/2𝛑. So the consistent estimates for average partial effects (APEs) can 

be obtained by differentiating the following equation with respect to the covariate of interest: 

𝑁−1 ∑ Φ(𝜗̂𝑎 + 𝒙𝒊,𝒕𝛑̂𝒂 + 𝒙̅𝒊𝜹̂𝒂)
𝑁

𝑖=1
, (6) 

where  𝜗̂𝑎, 𝛑̂𝒂, and 𝜹̂𝒂 denote consistent estimates of parameters. For example, the APE estimates 

for 𝒙𝒊,𝒕 are given by  

(𝑁𝑇)−1 ∑ ∑ 𝛑̂𝒂𝛷(𝜗̂𝑎 + 𝒙𝒊,𝒕𝛑̂𝒂 +  𝒙̅𝒊𝜹̂𝒂)
𝑁

𝑖=1

𝑇

𝑡=1
. (7) 

 

Estimation Results 

We first present the APE estimates for the entire Corn Belt in Table 4.1. Column (1) in Table 4.1 

displays the average partial effects (APEs) estimates for eq. (5). As expected, the results suggest 

that greater drought and more extreme heat exposure increase yield risk significantly, whereas 

more growing degree days have no statistically significant effect. Specifically, holding everything 

else constant, increasing DSCI by 100 raises yield risk by around 1.8 percent, and an increase of 

SDD by 10 increases yield risk by about 1 percent. The SDD impact is qualitatively consistent 

with the temperature-drought LCR findings in Perry et al. (2020), but the magnitude is less, likely 

most likely because the DSCI is a more comprehensive measure of drought and hence better able 

to distinguish between direct heat stress and indirect heat effect through water stress (Lobell et al. 

2013).   
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Table 4.1 Fractional response model estimation results (APEs), the Corn Belt. 

 Corn Belt counties  Corn Belt counties, rainfed only 

 Main speci-

fication 

No 

CRE 

Stacking 

controlled 

 

Main speci-

fication 

No  

CRE 

Stacking 

controlled 

 (1) (2) (3)  (4) (5) (6) 

𝐷𝑇  0.049 0.018 0.045  0.006 -0.003 0.008 

 (1.01) (0.30) (0.91)  (0.13) (-0.05) (0.16) 

𝐷𝑆𝐶𝐼  0.018*** 0.022*** 0.019***  0.015*** 0.024*** 0.016*** 

 (8.16) (5.98) (8.67)  (7.01) (8.90) (7.06) 

𝐷𝑇 × 𝐷𝑆𝐶𝐼  -0.036** -0.059** -0.037**  -0.005 -0.066*** -0.006 

 (-2.15) (-2.36) (-2.29)  (-0.28) (-2.64) (-0.30) 

𝑆𝐷𝐷  0.001*** 0.000*** 0.001***  0.001*** 0.001*** 0.001*** 

 (8.06) (3.31) (7.95)  (8.12) (4.07) (7.90) 

𝐷𝑇 × 𝑆𝐷𝐷  0.001 -0.000 0.001  0.001 -0.000 0.001 

 (1.10) (-0.63) (1.38)  (1.37) (-0.17) (1.54) 

𝐺𝐷𝐷  -0.000 -0.000** 0.000  -0.000 -0.000*** -0.000 

 (-0.10) (-2.41) (0.03)  (-0.58) (-3.14) (-0.33) 

𝐺𝐸1    0.047***    0.033** 

   (2.80)    (1.99) 

Observations 12128 12128 12128  11232 11232 11232 

Pseudo R2 0.24 0.22 0.25  0.25 0.24 0.25 

Notes: t statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Year-fixed effects are included. 

County-level unobserved heterogeneity is controlled except in columns (2) and (4). Standard errors 
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are clustered at the CRD level. In regressions, 𝐷𝑆𝐶𝐼, 𝐷𝑇, and 𝐺𝐸1 are rescaled by 1/100 for better 

presentation.  

 

In terms of DT impacts, the yield risk difference attributable to DT in the absence of 

drought (i.e., DSCI=0) is not statistically different from zero, conditional on the controlled varia-

bles and unobserved effects. However, the marginal risk reduction by DT increases with drought 

level, which provides evidence of the adaptive value of the technology. At the 2012 mean drought 

level (i.e., 𝐷𝑆𝐶𝐼 = 224), a 10% increase in DT planting reduces 𝐿𝐶𝑅 by 0.8%. For comparison, we 

also present results without controlling for the county-level unobservable heterogeneity in column 

(2), which shows qualitatively the same but quantitatively very different outcomes. This demon-

strates the necessity of applying the CRE approach. Despite that the specification in column (1) 

presumably accounts for the most of confounding factors, we included additional control factors 

for trait stacking, namely the planting rate of 1st GE seeds (defined as seeds containing insect-

resistant Bt or herbicide-resistant traits, 𝐺𝐸1 in %), in column (3). The results closely match the 

main specification in (1), confirming that controls in (1) are adequate. 

However, when we restrict the sample to rainfed Corn Belt counties, the DT effects are 

found to be weak. The interaction effects are not statistically significant at the 10% level, whether 

investigated using the main or additionally controlled specifications. One possible explanation is 

that noise from the Eastern Corn Belt is given more weight in the smaller rainfed sample.  There-

fore, we further examine by region, in Table 4.2. The Western Corn Belt states are North Dakota, 

South Dakota, Nebraska, Kansas, Minnesota, Iowa, and Missouri, and the Eastern states are Illi-

nois, Indiana, Michigan, Ohio, Wisconsin, and Kentucky. Column (1) shows that the effects of 

environmental stress, namely drought and extreme heat, are very close to those shown in Table 
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4.1. Moreover, the 𝐷𝑇 × 𝐷𝑆𝐶𝐼 term more than doubled, rising from -0.036 to -0.079. These results 

are consistent across specifications (columns (2)), and similar results are also found when only 

rainfed areas are considered (columns (3)-(4)). For the Eastern Corn Belt, however, the APEs for 

the interaction terms are significantly positive (columns (5)-(6)). This appears odd at first view, 

but it becomes less so if one considers the modern breeding selection process. While the Western 

Corn Belt benefits from the DT hybrids that have been tailor-made to the western cornfields after 

years of field trials, these currently marketed hybrids may not be agronomically as suitable for 

cornfields in the east.  
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Table 4.2 Fractional response model estimation results (APEs), Western and Eastern Corn 

Belt 

 Model (1) Model (2)  Model (3) Model (4)  Model (5) Model (6) 

 Western Corn Belt 

 

 Western Corn Belt, rain-

fed only 

 Eastern Corn Belt 

 Main spec-

ification 

Stacking 

controlled 

 Main spec-

ification 

Stacking 

controlled 

 Main spec-

ification 

Stacking 

controlled 

𝐷𝑇  0.062 0.018  -0.003 -0.040  -0.113 -0.113 

 (0.85) (0.26)  (-0.05) (-0.58)  (-1.25) (-1.27) 

𝐷𝑆𝐶𝐼  0.019*** 0.021***  0.016*** 0.017***  0.011*** 0.011*** 

 (4.66) (5.36)  (3.97) (4.28)  (3.56) (3.53) 

𝐷𝑇 ×

𝐷𝑆𝐶𝐼  

-0.079*** -0.080***  -0.081*** -0.079***  0.311*** 0.311*** 

 (-3.08) (-3.40)  (-2.97) (-3.06)  (3.54) (3.56) 

𝑆𝐷𝐷  0.001*** 0.001***  0.001*** 0.001***  0.002*** 0.002*** 

 (7.40) (7.41)  (7.31) (7.14)  (7.23) (7.22) 

𝐷𝑇 ×

𝑆𝐷𝐷  

0.001 0.001*  0.002** 0.002***  -0.002 -0.002 

 (1.42) (1.79)  (2.50) (2.92)  (-0.61) (-0.62) 

𝐺𝐷𝐷  0.000** 0.000***  0.000 0.000*  -0.000 -0.000 

 (2.20) (2.59)  (1.26) (1.91)  (-1.11) (-1.08) 
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Table 4.2 (cont’d) 

 Model (1) Model (2)  Model (3) Model (4)  Model (5) Model (6) 

𝐺𝐸1   0.089***   0.090***   -0.001 

  (3.41)   (3.55)   (-0.07) 

Observations 6448 6448  5552 5552  5680 5680 

Pseudo R2 0.26 0.27  0.28 0.28  0.25 0.25 

Notes: t statistics in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01. Year-fixed effects are included, 

and county-level unobserved heterogeneity is controlled. Standard errors are clustered at the CRD 

level. In regressions, 𝐷𝑆𝐶𝐼, 𝐷𝑇, and 𝐺𝐸1 are rescaled by 1/100 for better presentation. 
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Yield Quantile Analysis 

The analysis in the previous section reveals that the DT benefit to yield is related to the stress 

environment, with greater protection seen under less favorable conditions on average. For a richer 

characterization of DT technology across the entire distribution of stress conditions, from the least 

to the most favorable environments, quantile analysis is employed. In particular, a yield quantile 

analysis provides a complete picture of how the DT protection changes across the yield distribution, 

which we view as a result of variations in stress environments when conditioned on county-level 

unobserved effects and time trends. More importantly, the yield risk analysis presented above sug-

gests regional heterogeneity, i.e., only the Western Corn Belt benefits from the currently available 

DT hybrids. Therefore, we will restrict our attention to the Western Corn Belt, and further focus 

on the rainfed counties where irrigations are unlikely, and thus comprise a more relevant market 

for DT hybrids.  

 

Model Specifications 

The quantile regression method developed by Koenker and Bassett (1978) generalizes the median 

regression and applies asymmetric weighting across quantiles (Koenker and Hallock 2001). Given 

the panel data structure of our sample, the quantile of yield conditional on covariates and unob-

served county heterogeneity is given by 

𝑄𝑦𝑖,𝑡
(𝜏|𝒙𝒊,𝒕, 𝑐𝑖) = 𝒙𝒊,𝒕𝝅(𝝉) + 𝑐(𝜏)𝑖, (8) 

where 𝑦𝑖,𝑡 denotes yield in county 𝑖 and year 𝑡, the covariate vector 𝒙 consists of DT planting rate 

variable, as well as state-specific cubic time trends. Take the DT variable for an example, the 

coefficient estimate gives the marginal effects of DT on the 𝜏-th conditional yield quantile. The 

term 𝑐(𝜏)𝑖, like the conditional mean analysis, represents the time-invariant county heterogeneity 
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at 𝜏-th quantile. Given the large number of fixed effects, the usual fixed effects model is subject 

to the incidental parameters problem and thus not suitable for the quantile regression (Lancaster 

2000). While methodological progress in this area has been emerging in recent years (Kato et al. 

2012; Machado et al. 2019), they are either computationally difficult to implement, or the con-

sistency of the estimators requires a large number of periods relative to the cross-sectional units. 

For example, the quantiles via moments estimator proposed by Machado et al. (2019) will be bi-

ased for fixed T, and the confidence intervals will have poor coverage where n/T is above 10. 

Therefore, given the relatively large cross-sectional units (347 counties) and short timespan (2001-

2016), we again adopted the Correlated Random Effects (CRE) technique to account for the un-

observed heterogeneity, as we did in the preceding sections for the fractional response model 

(Abrevaya and Dahl 2008).  

 

Estimation Results 

Quantile estimates are depicted in Figure 4.4. The first thing to notice is that the DT coefficients 

remain statistically positive across all quantiles from 1st to 99th, even at the highest-yielding end. 

This adds to the evidence against the yield penalty hypothesis, namely that there are no statistically 

significant negative effects on yield in favorable conditions, but rather a positive - albeit minor - 

benefit is retained. Second, the coefficient generally increases going from higher to lower quantiles, 

or from favorable to unfavorable environments, confirming again the adaptive values of DT tech-

nology.  The findings generally agree with Syngenta’s on-farm strip trial data from 2012, which 

tested yield changes between DT and non-DT maize hybrids from low- to high-yielding environ-

ments and found a generally decreasing difference as the yield environment becomes higher. 
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Under the lowest-yielding environment, i.e., at the 1st quantile, a 10% increase in DT planting rate 

in a county increases yield by 17 bu/acre. 

Figure 4.4 Coefficient estimates of DT planting rate (%) variable, the 1st to 99th quantiles.  

The red line represents point estimates of quantile regression, and the shaded areas represent the 

95% confidence interval. Standard errors are obtained by bootstrapping. 

 

To further understand the results, we illustrate the changes in cumulative density function 

(CDF) and probability density function (PDF) that corresponds to a 10% increase in DT planting 

rate from the status-quo, in Figure 4.5. We chose 10% because it is neither too tiny to notice the 

effect nor too large to be improper given that the coefficient estimates are in the marginal sense. 

Nevertheless, in the Appendix (Figure 4.A5-4.A6) we provide additional figures for larger DT 

changes. The CDF shifts rightward uniformly across the distribution in response to positive coef-

ficients, with the largest shift occurring around the 20th percentile. The changes in the yield dis-

tribution imply an increase in mean yield as well as a decrease in yield risk as measured by variance. 

Specifically, probability densities are lower for yields below around 120 bu/acre and higher for 

yields greater than it. Lastly, as a robustness check, we also provide estimations that control for 1st 
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GE stacking, as shown in Figure 4.A7 in the Appendix. Similar to the conditional mean analysis 

results, the DT coefficient estimates are quite close across the alternative specifications.  

Figure 4.5 Shifts in CDF (left) and PDF (right) under 10% increase in DT planting rate.  

The black lines are the empirical CDF and PDF in the sample, and the red lines are the estimates 

under a 10% increase in DT planting rate. PDF is approximated as CDF(x2)-CDF(x1)/(x2-x1) where 

x1 and x2 are such that CDF(x2)-CDF(x1) is 0.01. For example, at the median, x2 is the yield at the 

50th quantile, and x1 is the yield at the 49th quantile. The approximations (the light black and red 

lines in the right panel) are then fitted using kernel density estimation to obtain smooth PDF func-

tions for illustration purposes in the right panel. 

 

Implications for Crop Insurance Policy 

The multiple analyses in previous sections have provided ample evidence on yield protection by 

drought-tolerance technologies from various perspectives. Following that, we examine the value 

of DT in the context of crop insurance by simulating how increased DT planting rates alter actu-

arially fair premiums. In the United States, there are two types of insurance plans: revenue protec-

tion and yield protection. Yield-protection policies cover yield risks by guaranteeing a base yield 
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depending on the farmer-chosen coverage level and average production history (APH). Revenue-

protection policies, on the other hand, protect against price-based losses as well. As price protec-

tion is not expected from biotechnologies (Goodwin and Piggott 2020) and to focus on the yield 

protection aspect, we will restrict our examination of crop insurance implications to yield insur-

ance policies.  

Let 𝑦 ∈ [0, ∞) denote a random yield with cumulative distribution function 𝐹(𝑦), and 

mean value 𝑦̅ = 𝐸(𝑦). Suppose a representative farmer chooses a coverage level 𝜑 ∈ {0.50, 0.55,

0.60, 0.65, 0.70, 0.75, 0.80, 0.90}, then a yield level of 𝜑𝑦̅ is guaranteed. That is, the paid indem-

nity amount will be 𝜑𝑦̅ − 𝑦 when realized yield 𝑦 is smaller than the yield guarantee 𝜑𝑦̅, and 0 

when the actual yield reaches 𝜑𝑦̅. The indemnity 𝑟 can be expressed as 

𝑟 = max{𝜑𝑦̅ − 𝑦, 0} , (9) 

and the actuarially fair premium 𝑟̅ at coverage level 𝜑 is  

𝑟̅ = ∫ max{𝜑𝑦̅ − 𝑦, 0}
∞

0

𝑑𝐹(𝑦) = ∫ (𝜑𝑦̅ − 𝑦)
𝜑𝑦̅

0

𝑑𝐹(𝑦), (10) 

which can be rewritten as 

𝑟̅ = ∫ 𝐹(𝑦)
𝜑𝑦̅

0

𝑑𝑦 (11) 

using integration by parts. Graphically, the actuarially fair premium is the area below the CDF 

𝐹(𝑦) from 0 to 𝜑𝑦̅. Now we introduce DT technology into yield distribution, i.e., condition yield 

distribution on DT as 𝐹(𝑦|𝐷𝑇) to reflect the distribution-wise effect of DT. Therefore, the effect 

of DT on actuarially fair premium 𝑟̅ can be decomposed as 

𝑑𝑟̅

𝑑𝐷𝑇
= 𝜑𝐹(𝜑𝑦̅)

𝜕𝐸(𝑦|𝐷𝑇)

𝜕𝐷𝑇
+ ∫

𝜕𝐹(𝑦|𝐷𝑇)

𝜕𝐷𝑇

𝜑𝐸(𝑦|𝐷𝑇)

0

𝑑𝑦. (12) 
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DT appears to have two effects on actuarially fair premium or expected indemnity payment. 

The positive first term reflects the DT effects through increasing mean yield. At a higher DT plant-

ing rate, the APH is expected to increase and result in a greater yield guarantee. Consequently, 

given the same realized yield, it becomes easier to trigger indemnity payment. The second term 

represents the effects of shifting distribution while maintaining the same yield guarantee. The sta-

tus-quo yield distribution is first-order dominated by that under increasing DT, as seen in Figure 

4.4, hence the second term is negatively signed. As a result, whether the actuarially fair premium 

increases or decreases with increased DT planting depends on the relative magnitude of the two 

effects. Besides, as coverage level 𝜑 goes up, the first term of the DT effect will be smaller because 

the yield guarantee effect is attenuated, while the second term will increase again because of first-

order dominance, so whether the DT effect is stronger for greater coverage cannot be predeter-

mined either. 

Therefore, we use the distributions retrieved in Figure 4.4 for the two scenarios to simulate 

the actuarially fair premium changes under a 10% DT increase. Table 4.3 shows the simulation 

results. We found only a minor increase in mean yield, 138 bu/acre under the status-quo versus 

140 bu/acre under the 10% DT increase. So, at the highest available coverage level of 0.9, the 

difference in yield guarantee is less than 2 bu/acre, and it is only 1 bu/acre at the lowest coverage 

level – too tiny to be impactful. The comparison between rows 1 and 2 in Table 4.3 clearly shows 

that distribution-shifting, or risk reduction, has a substantially greater empirical effect than higher 

yield guarantee, resulting in large decreases in actuarially fair premium ranging from 36.92 percent 

to 63.47 percent. The reduction percentage generally increases as the coverage level decreases, 

and the average reduction across all levels is 46.21%. The premium simulation results provide 

justifications for insurance policies to offer premium discounts to DT growers.  
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Table 4.3 Simulation results for actuarially fair premium under status-quo and a 10% DT 

increase 

Coverage level 

(𝝋)     
0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 

Premium, status-

quo (𝑟̅0)   

1.00 1.24 1.72 2.33 3.18 4.11 5.54 7.11 9.27 

Premium, 10% in-

crease in DT (𝑟̅1)  

0.36 0.54 0.81 1.24 1.64 2.28 3.16 4.23 5.85 

Reduction percent-

age (%) 

63.47 56.60 52.96 46.84 48.50 44.45 43.00 40.44 36.92 

Yield guarantee, 

status-quo 

69.04 75.95 82.85 89.75 96.66 103.56 110.47 117.37 124.27 

Yield guarantee, 

10% increase in 

DT 

70.09 77.10 84.10 91.11 98.12 105.13 112.14 119.15 126.16 

 

Concluding Remarks 

Advances in seed biotechnology have been accompanied by continuous debates about its yield 

contributions. While some studies have suggested corn yield improvements associated with ge-

netic technology (Xu et al. 2013), a more recent study argued that yield contributions associated 

with genetic improvements are relatively small (13%) when compared to climate factors (48%) 

and agronomic improvements (39%) (Rizzo et al. 2022). However, data in the study was collected 

from fields that were irrigated and in favorable environments. In other words, the findings were 
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more applicable to yield potential under optimal conditions, whereas the emphasis of seed biotech-

nology has been on crop protection in unfavorable conditions. This is especially true for drought-

tolerant technology, which was designed in the first place for water-stressed environments. Using 

data from a cross-section of counties from 2001 to 2016, our analysis demonstrates that DT tech-

nology has only a marginal yield improvement in good circumstances, but the protection value in 

adverse conditions is substantial and more important. While the technology does not offer much 

in terms of increasing yield potential, its main worth comes in stabilizing yield, which is equally 

critical from an economic standpoint.  

Will drought-tolerance technology usher in a new era of climate-resilient agriculture?  This 

article is the first to empirically and thoroughly investigate the yield protection of drought-tolerant 

technology in commercial corn production in the U.S. Corn Belt. Employing both conditional 

mean analysis of drought-related yield risk and yield quantile analysis, our findings would char-

acterize the technology as follows. First and foremost, there is regional heterogeneity.  The DT 

hybrids marketed between 2013 and 2016 have benefited corn growers in the Western Corn Belt 

more than the Eastern Corn Belt, most likely due to seed companies emphasizing the west region 

in developing hybrids. As part of the modern breeding selection process, the selected hybrids are 

suitable to the local growing conditions, but not necessarily elsewhere. Underlying the research 

and marketing strategy is the differential market needs, given that the Western Corn Belt is more 

prone to drought and frequently experiences more severe drought occurrences. 

Focusing on the rainfed Western Corn Belt, we found no evidence of yield penalty; in fact, 

a small yield gain is obtained even in the highest-yielding environment. This feature is crucial 

because this lends confidence to the corn growers to employ DT as a preventative risk management 

tool when the seed cost is no longer as negligible as it was in the early years of commercialization. 
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While the DT advantages arguably involve stochasticity, depending on the random environment, 

this feature will make the learning and technology diffusion process easier than previously be-

lieved (Lybbert and Bell 2010). Furthermore, yield protection from DT is generally enhanced 

where the environment is more stressful. As Lobell (2014) emphasizes, not every agricultural in-

novation has adaptation benefits in the sense that yield gain is stronger under higher degrees of 

stress and thus more beneficial in the future climate. Our findings indicate that the DT innovation 

qualifies as a climate adaptation technology, capable of providing greater benefits in a more stress-

ful climate. The adaptation values of DT hybrids can be evaluated in a crop insurance context. 

Simulation analysis reveals a significant decrease in actuarially fair premium for increased DT 

planting, emphasizing the need for a discount scheme similar to the Biotech Endorsement program 

introduced between 2009 and 2012. Inadequate insurance policy pricing will prevent maize grow-

ers from taking adaption actions to use such technologies, and more research is required in this 

regard.   
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APPENDIX 

 

Figure 4.A1 Time trend of DT planting rate (%) during 2013-2016, at the national level.  

Measured as the percentage of corn acres (%) that are planted to DT-containing hybrids. (Data 

source: TraitTrak®, Kynetec.)
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Figure 4.A2 Time trend of corn planting rate and density by seed varieties, 1995-2016.  

Panel: (A) Planting rate, measured as the percentage of corn acres (%) that plant respective variety. 

(B) Planting density, measured as the seed units per acre of corn planting. Seeds are classified into 

four categories: (1) DT only, containing only DT, namely no insect-resistant Bt or herbicide-re-

sistant (HT) traits; (2) 1st GE only, namely first-generation GE that contains Bt or HT, but no DT 

embedded; (3) 1st GE stacked with DT, containing DT and 1st GE (Bt/HT); and (4) conventional 

seed, not containing Bt, HT, or DT. (Data source: TraitTrak®, Kynetec.)
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Figure 4.A3 Time trend of seed prices by seed varieties, 1996-2016. 

Panel: (A) Retail price ($/unit). (B) Average price per acre ($/acre). (C) Average seed cost per acre 

($/acre), net of discounts, and free units. Seeds are classified into four categories: (1) DT only, 

containing only DT, namely no Bt or HT; (2) 1st GE only, namely first-generation GE that contains 

Bt or HT, but no DT embedded; (3) 1st GE stacked with DT, containing DT and 1st GE (Bt/HT); 

and (4) conventional seed, not containing Bt, HT, or DT. (Data source: TraitTrak®, Kynetec.).
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Figure 4.A4 Market shares (%) of top three companies providing drought-tolerant corn varieties, 

2013-2016.  

Market share is measured as the company share of drought-tolerant corn acreage. (Data source: 

TraitTrak®, Kynetec.)
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Figure 4.A5 Shifts in CDF (left) and PDF (right) under 20% increase in DT planting rate.  

The black lines are the empirical CDF and PDF in the sample, and the red lines are the estimates 

under a 20% increase in DT planting rate. PDF is approximated as CDF(x2)-CDF(x1)/(x2-x1) where 

x1 and x2 are such that CDF(x2)-CDF(x1) is 0.01. For example, at the median, x2 is the yield at the 

50th quantile, and x1 is the yield at the 49th quantile. The approximations (the light black and red 

lines in the right panel) are then fitted using kernel density estimation to obtain smooth PDF func-

tions for illustration purposes in the right panel. 
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Figure 4.A6 Shifts in CDF (left) and PDF (right) under 30% increase in DT planting rate.  

The black lines are the empirical CDF and PDF in the sample, and the red lines are the estimates 

under a 30% increase in DT planting rate. PDF is approximated as CDF(x2)-CDF(x1)/(x2-x1) where 

x1 and x2 are such that CDF(x2)-CDF(x1) is 0.01. For example, at the median, x2 is the yield at the 

50th quantile, and x1 is the yield at the 49th quantile. The approximations (the light black and red 

lines in the right panel) are then fitted using kernel density estimation to obtain smooth PDF func-

tions for illustration purposes in the right panel.
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Figure 4.A7 Coefficient estimates of DT planting rate (%) variable with 1st GE stacking 

controlled, the 1st to 99th quantiles.  

The red line represents point estimates of quantile regression, and the shaded areas represent the 

95% confidence interval. Standard errors are obtained by bootstrapping.   
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Table 4.A1 Sample decomposition 

 The Corn Belt 

  East West Total 

Non-rainfed 0 56 56 

Rainfed 355 347 702 

Total 355 403 758 
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