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ABSTRACT 

MANAGING BIOLOGICAL RESISTANCE IN AGRICULTURE: INVESTIGATING THE 

ROLES OF INFORMATION AND DATA ANALYSIS IN DECISION MAKING 

By 

Yanan Jia 

Damage control tactics have been widely applied to control organisms that are detrimental to 

agriculture. Due to natural selection, the targeted organisms will inevitably become less susceptible 

and in time develop resistance to these control tactics. Resistance development is a widespread 

problem and has had large adverse consequences for agricultural productivity and even for human 

health. My dissertation investigates damage control input decisions in agricultural production which 

have important implications for biological resistance management. The dissertation consists of 

three essays on the consequences of and management approaches to decisions regarding an 

infection control input in livestock and a pest control input in crop production. 

Essay One presents a decision model of a farmer’s disease management decision problem 

under uncertainty. In response to the concerns about antibiotic resistance development, 

prescriptions are now required in the USA for medically important antibiotic use in animals. We 

investigate determinants of farmers' demand for tests, veterinary services, and antibiotics and how 

they will change in light of increasing oversight. We show that although the prescription 

requirement (PR) may reduce farmer therapeutic antibiotic use it may not achieve the social 

optimum. PR may cause knock-on distortions in test and service markets such as excessive 

demand for veterinary services. 

Essay Two develops on the work in Essay One. PR places stewardship of antibiotics 

susceptibility largely into the hands of veterinarians. We investigate how effectively veterinarians 

manage information when making diagnostic and antibiotic treatment decisions. In a survey sent to 



 

 

veterinarians in practice across the United States, we asked for probabilistic assessments in stylized 

disease diagnosis settings. Combining the findings that information management biases exist in 

diagnosis decisions and that diagnosis affects treatment choices, we conclude that the veterinary 

oversight requirement as an approach to relying on veterinarians for promoting judicious antibiotic 

use may fail to manage on-farm antibiotic consumption efficiently. Training programs for 

veterinarians to improve their information management capabilities may complement the 

veterinary oversight requirement. 

Essay Three investigates the impact of Bt corn adoption on substituting out applied 

insecticide use as well as the seed trait’s environmental and health implications in the United 

States. Bt resistance management policies have expanded across countries over years, aiming at 

conserving the effectiveness of Bt crops. However, optimal regulation of Bt crops should also 

consider the external benefits of Bt crops when compared to other control tactics. Therefore it is 

important to justify and evaluate externalities associated with Bt crops. Using a panel dataset, we 

investigate how Bt corn can affect insecticide use by adopters and non-adopters over years in a 

generalized difference-in-difference framework. We found insecticide use reduction among both 

adopters and non-adopters as a result of Bt adoption. 
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CHAPTER 1: ESSAY ONE: ECONOMICS OF INFORMED ANTIBIOTIC 

MANAGEMENT AND JUDICIOUS USE POLICIES IN ANIMAL AGRICULTURE  

1.1. INTRODUCTION 

Since the 1950s antibiotics have been widely applied in food animal production to prevent and 

control disease and to promote growth (Marshall and Levy 2011; Finlay 2004; Kirchhelle 2018). 

Globally, food-producing animals consume the lion’s share of antibiotics, and consumption in this 

sector has been projected to increase significantly through to 2030 (van Boeckel et al. 2015; Tiseo 

et al. 2020). For example, over 10 million kilograms of antibiotics are sold or distributed for use 

among food-producing animals in the United States (U.S. Food and Drug Administration [US 

FDA] 2021b). These drugs have drawn attention because of consequences external to the business 

administering them.  

Microbe selection pressure from antibiotic use in one environment is considered to be the 

major contributor to emergence and development of antibiotic resistance within that environment 

(Chang et al. 2015). While, to date, no consistent quantitative assessments of how antibiotic use in 

agriculture production impact human health have emerged (Marshall and Levy 2011; Hollis and 

Ahmed 2013; Hoelzer et al. 2017; Koch, Hungate and Price 2017; Chatterjee et al. 2018) and 

some research even suggests that the channel may not be important (Adda 2020), the fact that the 

largest fraction of antibiotics is consumed in livestock production generates a variety of concerns 

about threats posed for human health. Resistance arising in animals might transmit to humans 

directly through food or animal contact, or indirectly through environment routes, such as 

contaminated water, soil, or wildlife (Marshall and Levy 2011; Laxminarayan et al. 2013; Robinson 

et al. 2016; Chatterjee et al. 2018). Researchers estimate that more than 35,000 deaths in the 

United States (U.S. Center for Disease Control and Prevention [US CDC] 2019) and about 33,000 

deaths in European Union (EU) countries ((European Centre for Disease Prevention and Control 
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[ECDC] and Organisation for Economic Co-operation and Development [OECD] 2019) are 

caused by antibiotic-resistant infections annually.  

In addition to external effects, poor historical incentive structures have led to wasteful 

antibiotic treatment. From food animal producers’ perspective, these medications have historically 

been inexpensive in comparison with expected benefits from use. In many contexts, benefits are 

uncertain, and especially so for those untrained in disease management as similar symptoms can 

have a wide variety of alternative causes. Farmers may use antibiotics abundantly regardless of 

whether antibiotic treatment brings benefits, i.e., use antibiotics precautiously with respect to 

achieving profit goals. This is because the additional private cost of precautious applications may 

be lower than that of clarification through expensive professional advice. Information that lessens 

uncertainty may reduce wasteful antibiotic use and therefore promote antibiotic stewardship. How 

disease management is complicated by uncertainty and how a regulation mandating information 

purchase impacts therapeutic antibiotic use are our paper’s main research questions. 

In response to apprehensions about external effects caused by inappropriate antibiotic 

administrations, across much of the world regulations promoting antibiotic stewardship have 

expanded over recent decades, where pressure for regulatory oversight dates as far back as the 

U.K. Parliament’s Swann Committee (1969) report. EU countries have placed the most stringent 

controls in use, having proposed a ban on using penicillin and tetracycline as growth promoters in 

the early 1970s and having banned all antibiotics used as growth promoters in 2006. In the EU all 

antibiotic use for therapeutic purposes is on prescription only. The Netherlands mandated a 50 

percent reduction in livestock antibiotic use during 2009-2013 (Sneeringer, Bowman and Clancy 

2019). Introduced in 2010, Denmark’s Yellow Card initiative requires that antibiotic consumption 

by food-producing animals be by prescription only and that usage be reported to the Danish 

system for surveillance of veterinary drug consumption. In addition, cattle and pork producers 
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whose herds consume antibiotics at a per animal level above twice the sector average will receive a 

yellow card (Sneeringer et al. 2019; Belay and Jensen 2021). These recipients will be fined and 

placed under additional supervision. Circumscribing on-farm antibiotic use in EU countries is an 

ongoing process and, commencing in 2022, all forms of routine antibiotic use will be banned in the 

area. Since 2020, and with intent to reduce antibiotic use for promoting growth, China, the largest 

antibiotic consuming country, has prohibited antibiotic inclusions into animal feed. In addition, 

China has initiated endeavors to bring antibiotic used for food producing animals under veterinary 

oversight. 

While U.S. government agencies try to promote public health through multi-layered 

protections, such as adhering to a rigorous process of antibiotic approvals for use in animal 

agriculture, monitoring antibiotic residue and antibiotic resistance in meat and milk and requiring 

the labeling of antibiotic use in meat and dairy product, the U.S. has not engaged as enthusiastically 

in regulatory curtailing of antibiotic use. That said, starting from 1997, the U.S. restricted use of 

some antibiotics classes as growth promoters and restrictions expanded over subsequent years. In 

2012, the U.S. Food and Drug Administration proposed principles of “judicious use of medically 

important antibiotics in food-producing animals” and issued a series of command-and-control 

(CAC) judicious use policies (JUP) including Veterinary Feed Directive (VFD) and prescription 

regulation (PR). Effective since 2017, the U.S. VFD regulation bans medically important
1

 

antibiotic use for growth promotion purposes and requires veterinarian oversight of use for disease 

treatment and prevention through feed or water (U.S. Food and Drug Administration [US FDA] 

2013). Initiated in 2021, PR requires veterinary prescriptions for the remaining approved over-the-

counter (OTC) medically important antibiotics that are used in the other forms (e.g., injectable) 

 
1 All antibiotics and their associated classes listed in Appendix A of FDA’s Guidance for Industry 

#152 are considered to be “medically important” in human medical therapy. 
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(U.S. Food and Drug Administration [US FDA] 2021a). When PR is fully launched in 2023, all 

medically important antibiotics applied to animals will be under veterinary oversight.  

Concerns related to inappropriate antibiotic use and antibiotic resistance have also generated 

extensive discussions on policy options intended to achieve optimal antibiotic use. The crux of the 

regulatory problem is that regulators lack knowledge about case-specific needs for the drug. As 

optimal policy on antibiotic use is inconclusive due to the complicated dynamics involved 

(Herrmann and Gaudet 2009), various CAC and incentive-based regulations have been proposed. 

CAC regulatory instruments have been proposed, such as simultaneous use of multiple antibiotics 

(Laxminarayan and Weitzman 2002) and using antibiotics with greater effectiveness before those 

with lesser effectiveness (Laxminarayan and Brown 2001). Secchi and Babcock (2020) specify 

conditions under which a ban on sub-therapeutic antibiotic use in animals is justified. Others favor 

incentive policy tools, such as Pigouvian taxes, that are intended to correct for overuse by 

introducing the external marginal cost of antibiotic resistance into the use cost. These policy tools 

have the advantage of requiring limited resources for implementation and can result in a significant 

reduction in antibiotic use (Hollis and Ahmed 2013; van Boeckel et al. 2017). Belay, Abate, and 

Jensen (2020) propose an efficient, incentive-compatible policy for antibiotic use in the livestock 

sector based on the Montero auction mechanism. They argue that this mechanism outperforms 

Pigouvian taxes since it does not require regulators to have full information about antibiotic 

abatement costs. Rather it incentivizes individual farmers to truthfully reveal their abatement cost.  

There is a growing empirical research literature on assessments of implemented policies. 

While bans on growth promoters may result in a short-run increase in therapeutic use, long-term 

lasting negative effects have not been detected (Marshall and Levy 2011). This is consistent with 

findings that antibiotic use for growth promotion in the United States has a small positive impact 

on hog and broiler farmers’ economic performances (Key and Mcbride 2014; Sneeringer et al. 
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2015), suggesting that improved farm practices and feeding programs may compensate for the 

absence of growth promoters (Marshall and Levy 2011). Dennis et al. (2018) point out that a ban 

on antibiotic use that directly impacts animal mortality risk is costlier than a ban on antibiotic use 

that targets production efficiency, implying that purpose-specific understandings of the tradeoffs 

arising from eliminating antibiotic use are essential for making informed policy decisions. Belay 

and Jensen (2021) argue that the Yellow Card initiative reduces gross profit and increases farmers’ 

operating expenses. On the other hand, disclosure of high-consumption farms by media outlets 

during the preparation period preceding the Yellow Card initiative may have nudged farmers 

towards better compliance with the public standards (Belay and Jensen 2020), replacing antibiotics 

with substitutes such as vaccines. Empirical evidence to evaluate the impact of VFD on antibiotic 

consumption is only beginning to emerge (Rademacher, Pudenz and Schulz 2019; Dillon and 

Jackson-Smith 2021). These findings suggest that the impact of VFD on antibiotic use and other 

knock-on effects of VFD vary with industries and farm practices. Väänänen, Pietilä , and Airaksinen 

(2006) argued that prescription requirement changes antibiotic use behavior but its impact on total 

consumption is inconclusive. Another study suggests that prescription requirement reduces 

analgesics use in Australia and overdose cases (Elphinston et al. 2021).  

Our research addresses disease management decisions, especially antibiotic administrations on 

an individual basis, under farm-level uncertainty about their effectiveness. When a disease is 

suspected, the farmer is uncertain about whether antibiotics will be effective. On-farm self-testing 

or purchasing veterinary services can reveal information about the suspected disease as well as the 

susceptibility of any causative bacteria to antibiotic treatment. Herd owners can be viewed as 

countenancing several linked decision problems: they choose whether to administer without 

information, to purchase more certainty by way of a self-test, or to procure both additional 



6 

 

certainty and reduced loss by way of a veterinary visit. This paper works through a decision model 

to examine this nexus of decisions and their interactions.  

Furthermore, we examine the impact of various policy tools on the farmer’s choices, with a 

focus on JUP. VFD mainly regulates antibiotic use for growth promotion and disease prevention 

while PR mainly targets therapeutic use. This study assesses the impact of PR on antibiotic 

administrations for disease treatment. By increasing to infinity the cost of antibiotics when used 

without prescriptions, we study how PR, through mandating a prescription for antibiotic use, has 

changed the farmer’s disease management decisions. We show that PR can reduce antibiotic 

demand; however, it does not guarantee that farmers apply antibiotics at socially optimal levels. In 

particular, when the resistance cost is large then antibiotic treatment under veterinary oversight may 

increase farmer profits but fail to improve social welfare. When resistance cost is not high relative 

to veterinary service cost, PR may over-reduce antibiotic use compared with social optimum. In 

addition, PR may cause knock-on distortions in test choices since antibiotic administrations and 

testing choices interact. PR-constrained farmers demand excessive veterinary services while there 

may be overuse or underuse of self-tests depending on context. Our simulations suggest that PR 

results in excessive veterinary service demand but no reduction in antibiotic use among typical U.S. 

dairy farms. In practice, antibiotic treatment comes with a great loss in the form of discarded milk 

but also, if effective, brings great benefits. Since self-testing is inexpensive relative to costs and 

benefits associated with antibiotic treatment, using antibiotics according to test information is in the 

best interest of dairy farmers. For the same reason, while PR does not reduce antibiotic use it does 

substitute veterinary services for less expensive self-tests in obtaining information. Of course 

simulation results may differ in other livestock industry settings, where parameters take different 

values. 
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Our analytical framework highlights the interlinked nature of diagnostic testing decisions and 

antibiotic use decisions and the critical role of the costs in each decision type. Such interlinkages 

not only affect the impact of PR, but also the impact of other policies such as testing subsidies. We 

explain why the way in which a self-test subsidy affects antibiotic consumption should depend on 

antibiotic cost. Antibiotic demand decreases (increases) with a self-test subsidy given low (high) 

antibiotic cost. This is because inexpensive antibiotics incentivize farmers’ precautionary antibiotic 

use without purchasing costly information. A self-test subsidy encourages more information 

acquisition and therefore reduces inappropriate antibiotic use. Conversely, expensive antibiotics 

may prevent any antibiotic use under uncertainty about antibiotic effectiveness. A self-test subsidy 

removes this uncertainty and therefore supports antibiotic use when needed. The context-

dependent effect of this subsidy arises because tests are information goods, and the economics of 

such goods are not trivial. For example, although veterinary services are also information goods, we 

show that because veterinary services comprise a bundle of goods a subsidy will unambiguously 

decrease antibiotic demand. 

The main body of this paper is organized into six sections. Section 2 introduces detailed 

background information on the research question. The basic model, which is preparatory for but 

does not address PR, and optimal solutions are provided in Section 3. Section 1.4 discusses social-

economic efficient outcomes and also several policy tools. Section 5 analyzes the effect of PR on 

farmers’ choices and it is followed by a brief concluding section. 

1.2. BACKGROUND TO THE RESEARCH QUESTION 

US FDA (2012) recommended two principles for promoting “judicious use” of antibiotics in 

livestock production: 

“Principle 1: The use of medically important antimicrobial drugs in food-producing animals 

should be limited to those uses that are considered necessary for assuring animal health. 
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Principle 2: The use of medically important antimicrobial drugs in food-producing animals should 

be limited to those uses that include veterinary oversight or consultation.” 

Commencing 2017, VFD regulation has been enforced with intent to meet these principles of 

judicious use. It has eliminated medically important antibiotic use for growth promotion and 

requires veterinarian oversight of medically important antibiotic administrations in feed or water. 

Starting from June 2021, the PR complements VFD by changing from OTC to prescription the 

market status of remaining medically important antibiotics that are used in the other forms. VFD 

and PR outline a framework within which veterinarians prescribe medically important antibiotic 

administrations when needed. The authorization should always be made in the context of a 

veterinarian-client-patient-relationship (VCPR), ensuring that veterinarians have sufficient 

knowledge of the herd and assume responsibility for treatment recommendations.  

JUP are very important for promoting antibiotic stewardship. In addition to avoiding 

completely inappropriate antibiotic use (Krö mker and Leimbach 2017), by requiring veterinary 

oversight, the regulations promote “judicious use” through in effect placing stewardship of food 

animal antibiotic inputs largely into the hands of veterinarians who are trained and experienced in 

understanding animal disease, resistance biology and implications for animal welfare. The 

regulations also seek to foster holistic approaches to disease management so that antibiotics 

become an infrequent recourse of last resort. The intent is that more informed decisions and an 

emphasis on stewardship will lower overall use.  

In this paper, we focus on farmer’s disease management decision-making in the context of a 

dairy farm, which we consider an ideal setting for studying the impacts of PR. Cattle production 

consumes 41% of medically important antibiotics used by U.S. food-producing animals (U.S. Food 

and Drug Administration [US FDA] 2021b). On dairy farms, in contrast with the aquaculture, 

swine, poultry and beef sectors, most uses are therapeutic. As with humans, there are many 
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reasons why antibiotic therapy in the dairy industry can arise. Although lameness and respiratory 

problems are important reasons for treatment with antibiotics, the primary ailment treated with 

antibiotics is clinical mastitis (Laxminarayan et al. 2013; Ruegg 2019; Redding, Bender and Baker 

2019). The antibiotics are used to restore, as best as possible, milk yield and quality by eliminating 

bacterial infections of mammary tissue. Antibiotics can be injected directly into the teat when the 

cow is not lactating so as to reduce the risk of udder inflammation. Alternatively, a lactating cow 

suspected of having mastitis may be treated with intramammary antibiotic tubes or systemic 

antibiotics and the milk discarded until it is free of antibiotics. Without effective antibiotic 

treatment, the infections may lead to further pain and permanently scarred, non-producing tissue 

as well as possible slaughter and infection of other animals.  

The benefits of antibiotic treatment are uncertain for a livestock producer, but can be 

potentially very large. First of all, separate from the cause, inflammation can be difficult to detect so 

that inexperienced personnel may perceive a potential issue when one does not exist. Besides 

bacterial infections, inflammation can be caused by chemical, thermal or mechanical injury, where 

antibiotic treatment won’t improve the condition. Even for bacterial infections, antibiotic 

effectiveness depends on how the bacteria respond to the administered antibiotics, the clinical 

manifestations, the cow’s gestation status and the treatment program (Amer et al. 2018). It has 

been argued that a high proportion of cows with mastitis do not respond to antibiotic treatment 

(Cecchini, Langer and Slawomirski 2015; Krö mker and Leimbach 2017). Finally, bacteria-

originated mastitis is contagious where antibiotics can serve the purposes of reducing the rate of 

contagion and securing earlier eradication at the herd level. 

Imperfect on-farm self-tests to detect mastitis are available at a cost (Merriman et al. 2014), 

where the California test (CT), a simple indicator of Somatic Cell Count (SCC) in milk, is perhaps 

the best known. High SCC suggests a bacterial infection. More accurate laboratory tests are also 
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available and all tests can be conducted at udder quarter, cow, or herd levels. Table 1 lists 

intramammary antibiotic tubes that are approved for mastitis treatment in the U.S. market (Ruegg 

2020; U.S. Department of Agriculture [USDA] 2016). OTC antibiotic drugs are available for dairy 

farmers to use with or without self-test information. Once PR is fully implemented, farmers need 

to call a veterinarian for permission before antibiotic administrations. 

Table 1 Intramammary antibiotic tubes that approved for mastitis treatment in the U.S. market
2

 

Product name Label claims for efficacy Prescription status Percentage 

operations 

Amoxi-Mast
TM

 62.5 mg 

amoxicillin 

Str. agalactiae, Sta. aureus Prescription 1.4 

DairClox
TM

 200 mg 

cloxacillin 

Str. agalactiae, Sta. aureus Prescription 0.0 

Msti-Clear
TM

 100,000 IU 

Penicillin G 

Str. agalactiae, Str. 

Dysgalactiae, Str. uberis 

OTC→Prescripti

on 

0.8 

Pirsue
TM

 50 mg 

pirlimycin 

Sta. aureus, Str. Dysgalactiae, 

Str. uberis 

Prescription 6.5 

Polymast
TM

 62.5 mg 

ampicillin 

Str. agalactiae, Str. 

Dysgalactiae, Sta. aureus, E. 

coli 

Prescription 0.8 

SpectramastLC
TM

 125 

mg ceftiofur 

CNS, Str. Dysgalactiae, E. coli Prescription   34.4 

 

 
2

 Notes: (1) The status of Msti-ClearTM 100,000 IU Penicillin G and TodayTM 200 mg 

cephapirin will change from OTC to prescription when PR is fully implemented in Jun. 2023. 

(2) The data for Product name, Label claims for efficacy and Prescription status are from 

“Understanding the economic impact of mastitis. The role of duration and drug selection,” by 

Ruegg, Pamela L, 2020, in: Third Am Assoc Bov Pract Annual Recent Graduate Conference, 

Columbus OH: American Association of Bovine Practitioners Proceedings 53(1): 84–91. 

https://doi.org/10.21423/aabppro20207976  

(3) The data for percentage of operations using intramammary antibiotic tubes (Percentage 

operation) are from “Milk Quality, Milking Procedures, and Mastitis on U.S. Dairies,” United 

States Department of Agriculture, 2016. 

https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.p

df 

https://doi.org/10.21423/aabppro20207976
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf
https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf
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Table 1 (cont’d) 

Today
TM

 200 mg 

cephapirin 

Str. agalactiae, Sta. aureus OTC→Prescripti

on 

32.2 

 

Compared with self-tests, veterinary services provide more accurate diagnoses and reduce loss 

through professional advice. Veterinarians can use bacteriological diagnostics which help identify 

the causative pathogens. They may culture the milk sample at their own laboratory and then send 

the sample to an external laboratory if needed (Persson Waller et al. 2016). Identification of the 

pathogen would facilitate “judicious” antibiotic use (Merriman et al. 2014). When antibiotic 

treatment is preferable, a veterinarian could prescribe antibiotic regimes that are most effective for 

treating the mastitis case at hand. In addition to antibiotic treatment, veterinarians can recommend 

alternative courses of action. Common alternative treatment strategies include frequent milking, 

fluid therapy, massage and heat therapy, as well as drug courses with Oxytocin, Nonsteroidal anti-

inflammatory drugs, Corticosteroids or intravenous Calcium (Persson Waller et al. 2016).  

1.3. THEORETICAL MODEL AND OPTIMAL STRATEGIES WITHOUT POLICY 

INTERVENTIONS 

Figure 1 shows the sequence of events in infection management that incorporates antibiotic 

use and related testing and veterinary call decisions. We assume two types of infections, namely 

where antibiotic treatment is i) effective, denoted as E; and ii) ineffective, denoted as I. 
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The farmer can be viewed as facing three sequentially linked decisions:  

1) whether to self-test (denoted as Te) on farm or call a veterinarian (denoted as C) at some cost 

and receive full information about infection types. The farmer can choose neither approach 

(denoted as NTe, NC) and receive no information;  

2) if a self-test is chosen in the first decision, whether or not to call a veterinarian (denoted as C) to 

acquire extra services (denoted as NC);  

3) whether to treat (denoted as Tr) with antibiotics or not (denoted as NTr). Note that calling a 

veterinarian after self-testing, instead of before, is a strategy available to the farmer since we assume 

that veterinary services provide both the information that can be obtained from a self-test and 

additionally reduce loss through pertinent professional advice. In practice, the farmer thinks 

through the linked decisions before taking any actions. For analytic reasons, we regard the three 

decisions in sequence. The overall problem is characterized as a game against nature where the 

extensive form game tree is provided in Figure 2.  

 

Figure 1 The sequence of events in infection management 

Animal appears sick. 

• May have infections: type E/type I  

• May not have infections. 

Test decision:  

• Do Self-test (Te),  

• Call a vet (C),  

• Do Neither (NTe, 

NC) 

Antibiotic decision:  

• Treat (Tr)  

• Not Treat (NTr) 

 

 

 

• Infections effectively treated  

• Infections spread with a 

positive probability because 

treatment not used or not 

effective. 

 
time 

 

Veterinary service 

decision:  

• Call (C)  

• Not Call (NC) 

If Te is 

chosen 
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Figure 2 Decision tree for the test and treatment decisions 
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Nature plays first and determines the infection types, E or I. Then the farmer makes the three 

linked decisions where the decisions taken can enrich the information sets available for subsequent 

choices. First, the farmer decides whether to purchase information about infection type at 

information set ①. She can self-test (Te) to obtain information, call a veterinarian (C) to obtain 

information and other services, or do neither (NTe, NC). Second, whenever a self-test is chosen to 

reveal information then the farmer decides whether to purchase other services from a veterinarian 

at information sets ②-③ knowing the infection type. Third, treatment decisions are made at 

information sets ④-⑩. After obtaining information, antibiotic treatment decisions at information 

sets ④, ⑤, ⑧ and ⑩ are made under veterinarian oversight while those at information sets ⑥ 

and ⑨ are made without veterinarian oversight. At information set ⑦, the antibiotic treatment 

decision is made under total uncertainty about antibiotic effectiveness.  

Consider an instance where nature chooses a type E infection. Information set ① involves 

information acquisition. Supposing that a self-test (Te) is chosen, the farmer learns that the 

infection is curable by antibiotics and then decides whether to call a veterinarian to acquire extra 

services at information set ②. At subsequent information sets, knowing that antibiotics are 

effective, the farmer makes antibiotic administration decisions under veterinarian oversight at 

information set ⑤ but without veterinarian oversight at information set ⑥. Supposing that the 

farmer calls a veterinarian for information and other services at information set ①, the farmer then 

faces antibiotic treatment decisions under veterinarian oversight at information set ④. However, 

the farmer won’t acquire information about infection type when she does not purchase any 

information (through C or Te) at information set ①. The farmer then faces antibiotic 

administration decisions under uncertainty about the infection type at information set ⑦. The 

decision tree’s type E side is symmetric with the type I side and explanations about the farmer’s 

decisions in type I infection cases are similar. 
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The farmer’s payoff   is determined both by infection types and the farmer’s actions. 

Subscripts on   denote infection types and superscripts denote farmer’s actions. For example, 

, ,NTe C Tr

E  is the payoff when the farmer does not self-test (NTe), but calls a veterinarian (C) instead 

and treats (Tr) with antibiotics in a type E infection case.  

The farmer maximizes expected payoff by making decisions related to purchasing information 

and antibiotic administrations. The standard approach to deriving optimal strategies for the game 

in Figure 2 is backward induction. First, we solve for optimal decisions pertaining to antibiotic 

administrations. There are essentially seven problems, ④-⑩, to solve where different types of 

infections occur, and different self-test and veterinary service choices have been made. Then we 

solve for optimal veterinary service decisions where a self-test has revealed E and where a self-test 

has revealed converse results, information sets ②-③. Finally, we solve for optimal testing decisions 

just after observing suspected infection cases, information set ①. See formulated optimization 

problem in Supplemental Materials (SM) A1. 

1.3.1. KEY FACTORS FOR DECISION-MAKING 

Any factor that affects one decision has indirect impacts on the other two decisions. In this 

study, we especially focus on how self-test, veterinary service and antibiotic cost parameters affect 

choices. Using two examples we will first show how one cost parameter affects multiple choices. In 

one example we will remove the self-test choice from consideration while in the other example we 

will remove the veterinary service call choice.  

Example 1 (Extremely high self-test cost): The farmer does not perform a self-test given an 

extremely high self-test cost. This example can be regarded as an application of our theoretical 

model where self-tests are banned or are very inaccurate. Veterinary services are the only eligible 

or reliable source of information about infections. In this situation the farmer’s problem simplifies 
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to two linked decisions. She has to decide whether to 1) call a veterinarian at information set ①, 

and 2) use antibiotics when the veterinarian reveals E (information set ④), when the veterinarian 

reveals I (information set ⑩) and when no veterinarian is called (information set ⑦).  

When antibiotics are inexpensive compared with veterinary services, the farmer does not call 

her veterinarian. Instead she uses antibiotics directly since the benefit from precautious use 

exceeds judicious use under veterinarian oversight. As veterinary service cost decreases, situations 

may exist in which the farmer substitutes information acquisition, through a veterinary visit, for a 

precautionary course of antibiotics. In that case, the farmer’s optimal strategy changes to judicious 

use according to professional advice. Another possible outcome as a result of a decrease in 

veterinary service cost is that the farmer substitutes alternative treatments from a veterinarian for 

antibiotic treatment. That is, the farmer’s optimal strategy changes to calling a veterinarian and then 

not administering antibiotics at all. Thus a decrease in veterinary service cost may not only increase 

veterinary service demand but also reduce the expected antibiotic use, i.e., veterinary services and 

antibiotics can substitute.  

Example 2 (Extremely high veterinary service cost): This example can be regarded as an 

application of our theoretical model where the veterinary service resource is scarce. Lacking 

veterinary service supply, the only approach to acquiring infection information is by performing a 

self-test. As the farmer does not call a veterinarian given an extremely high veterinary service cost, 

she faces two linked decisions, namely whether to 1) self-test on farm at information set ①, and 

then 2) use antibiotics when the self-test reveals E (information set ⑥), when the self-test reveals I 

(information set ⑨), and when no self-tests reveal information (information set ⑦). 

When antibiotics and self-tests are both sufficiently expensive then of course the farmer 

prefers to apply neither. As self-tests become less expensive, the farmer may prefer to test at little 

cost and then administer antibiotics according to test results. However, when the antibiotics cost is 
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too high then the farmer won’t change her initial decisions regarding self-tests and antibiotics even 

when self-tests become cheaper. Thus a decrease in self-test cost may increase demand for both 

self-tests and antibiotics, i.e., the inputs can complement. 

These two examples show that every cost parameter is essential for determining the farmer’s 

optimal strategies. In addition, the various possible outcomes associated with changes in cost 

parameters suggest complex interactions between the three linked choices. To address those 

interactions but also not render the problem intractable, we assume a linear payoff function for 

further investigation. The payoff consists of three parts: payoff without infections ( a ), costs related 

to managing infections including self-tests, veterinary services and antibiotic administrations ( , ,d v b ) 

and losses incurred by infections ( ( )l  );  

 self-t vet antib ( ).a 1 d 1 v 1 b l = − − − −    (1.1) 

In a suspected infection case, indicator variable antib1  equals one whenever the farmer uses 

antibiotics and zero otherwise. We also include indicator variables self-t1  and vet1  to represent 

choices regarding self-tests and veterinary services. The loss incurred, ( )l  , is a function of farmer’s 

actions and infection types. To define these losses we need assumptions about self-tests and 

veterinary services. Self-tests and veterinarians are assumed to be able to reveal full information 

about infection types, i.e., whether antibiotic treatment is effective for infections. In addition, a 

veterinarian can reduce loss incurred by alternative means (Persson Waller et al. 2016). 

Let functions ( )El   and ( )Il   denote the losses incurred in type E and type I infection cases 

as: 

     

1

2

3

          whenever 1;

( , )           whenever both 1 and 0;

          whenever both 0 and 0;

E

l z

l y z l y z

l y z

=


= = =
 = =

      (1.2) 
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     ( ) 2

3

         whenever 1;

         whenever 0.
I

l y
l y

l y

=
= 

=
          (1.3) 

Let 1l  be a relatively small loss incurred in type E infection cases when treated with antibiotics, 2l  

be a moderate loss incurred under veterinarian oversight but in the absence of effective antibiotic 

treatment, and 3l  be a large loss in the absence of veterinarian oversight and effective antibiotic 

treatment. “The absence of effective antibiotic treatment” refers to two scenarios: 1) type E 

infection cases without antibiotic treatment, and 2) type I infection cases regardless of antibiotic 

administration choices. The large loss 3l  includes not only loss incurred through the sick animal 

but also expected loss incurred by potential in-herd infection spread. Note that 1 2 3   l l l  . 

Therefore, ( )El   is a function of veterinary service ( y ) and antibiotic administration ( z ) decisions,  

while Il  is a function of veterinary service decisions only since type I infections do not 

respond to antibiotic treatment. SM A2 specifies each payoff in Figure 2.  

To simplify
 3

 the optimal strategies, we make an additional assumption, namely 2 1l l−   

3 1( ).l l −  We can rewrite this assumption as  

 2 1

3 2

odds of type  against type .
1

l l
E I

l l





−
 =

− −
 (1.4) 

The left-side numerator measures how much antibiotic treatment outperforms alternative 

treatments in type E infection while the left-side denominator measures how much alternative 

treatments outperform antibiotic treatment in type I infection. Since infection contagion in herds 

can result in a large expected economic loss, 3l  is much greater than the economic loss incurred 

on the sick animal under other strategies, 2l  and 1l . Therefore, the left-side ratio being smaller 

 
3 This assumption allows us to focus on the issue at hand which is the nexus of decisions on 

antibiotic administration and information purchase and their interactions. 
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than the comparative prevalence ratio is a reasonable assumption. Table 2 summarizes the 

notations that appear in the model setup. 

Table 2 Notations in model setup 

 

Our research interests focus on how antibiotic cost, b , self-test cost, d , and veterinary 

service cost, v , affect disease (e.g., mastitis) management decisions and therefore antibiotic use 

and testing demand. Thus, we treat the maximum expected payoff V  as a function of ( , ,b d v ) and 

other factors as parameters when solving for optimal strategies. 

1.3.2. FARMER’S OPTIMAL STRATEGIES WITHOUT POLICY 

INTERVENTIONS 

We present the problem solution process step by step in SM A3. To facilitate further 

explanation and analysis of outcomes, we graph the optimal strategies, holding one cost parameter 

among ( , ,b d v ) fixed. The farmer’s optimal strategy varies with cost parameters. For each optimal 

strategy, ( )E A  is the expected antibiotic use. Expected antibiotic use is one when the farmer 

always administers antibiotics, β when the farmer only administers antibiotics in a type E infection 

case, and 0 when the farmer does not use antibiotics. Figure 3-Figure 5 are sample outputs.
 4

   

 
4 Detailed explanations about Figure 3-Figure 5 are in SM A4 

Notation Explanation 

a  Default payoff without infections 

d  Self-test cost per case  

b  Antibiotic cost per case 

v  Veterinary service cost per case 

  Probability of the occurrence of infection for 

which antibiotics are effective 

1l  Loss per case when antibiotics are effective and 

applied regardless of veterinary service 

decisions. 

2l  Given that a veterinarian is called, loss per case 

when antibiotics are either ineffective or not 

used 
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Figure 3 The farmer’s optimal strategies in the b-d plane given high veterinary service 

cost  
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Figure 4 The farmer’s optimal strategies in the b-v plane given high self-test cost 
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Figure 3 illustrates the farmer’s optimal strategies in the b-d plane when veterinary services are 

sufficiently expensive to outweigh the loss reduction from veterinary services (i.e., 3 2v l l − ). 

Under this condition, it is straightforward to show that the farmer does not prefer veterinary 

services. Figure 3 presents optimal choices regarding self-tests and antibiotic administrations as 

considered in Example 1, Section 1.3.1. Strategy S1 denotes farmer’s precautionary antibiotic use 

without information, strategy S2 denotes judicious antibiotic use according to self-test results, and 

strategy S3 denotes neither antibiotic use nor information purchase.  

Figure 4 presents the farmer’s optimal strategies in the b-v plane when self-testing costs too 

much. Thus our discussion focuses on veterinary service and antibiotic choices. Two new strategies 

become possible: strategy S4 describes judicious antibiotic use according to veterinarians’ 

professional advice, and strategy S5 describes information acquisition and alternative treatment 

application through a veterinarian. Figure 5 illustrates the farmer’s optimal strategies in the d-v 

plane when antibiotics are sufficiently inexpensive that it is profit-increasing to use antibiotics in 

type E infection cases under veterinarian oversight. One further strategy becomes possible: strategy 

 

 

Figure 5 The farmer’s optimal strategies in the d-v plane given lower 

medium antibiotic cost  
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S6 denotes heterogeneous treatment in different types of infection cases after a self-test reveals 

information. The farmer uses antibiotics whenever the self-test reveals E but otherwise uses 

alternative treatments through a veterinarian. 

We summarize optimal strategies including those not presented in Figure 3-Figure 5. In our 

analysis of optimal strategies, we use backward induction. Therefore we will also present optimal 

choice summaries in temporally reversed order. Detailed explanations about Summary 1-3 are in 

SM A4. 

Summary 1. (Optimal antibiotic choices) When purchasing no information is optimal, 

the farmer prefers precautious antibiotic use whenever antibiotics are inexpensive. When 

purchasing information through a self-test is optimal, the farmer prefers to use antibiotics for 

type E infections and to not use for type I infections. When purchasing information through a 

veterinarian is optimal, i) in type E infection cases, the farmer prefers to use antibiotic 

treatment given a low antibiotic cost while replacing antibiotic treatment with alternative 

treatments given a high antibiotic cost, ii) in type I infection cases, the farmer unambiguously 

prefers to not use antibiotics. 

Summary 2. (Optimal choices regarding veterinarian visits and alternative treatments) 

When purchasing information through a self-test is optimal and the self-test has revealed I, i) 

the farmer will call a veterinarian to seek alternative treatments and eliminate contagion risk in 

the herd whenever the cost is low; ii) otherwise, calling a veterinarian cannot be the optimal 

choice. When purchasing information through a self-test is optimal and the self-test has 

revealed E, the farmer prefers to not call a veterinarian. 

Summary 3. (Optimal information acquisition decisions) Self-tests and veterinary services 

substitute in information acquisition decision-making except when antibiotics are too 

expensive. When antibiotics are too expensive, then information is useless since the farmer 
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does not use antibiotics regardless of infection type. In that case, the farmer does not perform 

self-tests, while the farmer calls a veterinarian in order to obtain alternative treatments 

whenever veterinary services are inexpensive. 

1.4. SOCIAL OPTIMUM AND POLICY TOOLS 

In a farmer’s optimal strategy, a social cost that is caused by the use of antibiotics, namely the 

development of resistance to antibiotics and the consequent cost,  , may not be considered by a 

farmer seeking to remain competitive. Therefore we can obtain social payoffs by replacing private 

antibiotic cost b  in the farmer’s payoffs with social antibiotic cost b + . Similar to the farmer’s 

problem, the social planner can either make antibiotic decisions without information or purchase 

certainty at a cost and make antibiotic decisions after that. We derive the socially optimal disease 

management strategies using the same approach as in the farmer’s problem. Here is the summary 

about biases in privately optimal choices relative to social optimum. We explain Summary 4 in 

detail in SM A5. 

Summary 4. (Biases in privately optimal choices) Absent government interventions the 

farmer over-uses antibiotics but under-uses veterinary services compared to the social 

optimum. Whether the farmer demands fewer self-tests depends on antibiotic cost. Given low 

(high) antibiotic cost the farmer underuse (overuse) self-tests compared to the social optimum. 

Divergences from social optimum point to the need for regulations to relieve or eliminate 

distortions in actions. In this subsection we investigate the farmers’ responses to different policies, 

such as i) antibiotic tax, ii) subsidies on self-tests and iii) veterinary services and PR regulation.  

1.4.1. ANTIBIOTIC TAXES 

In theory, the Pigouvian tax  =  restores the farmer’s problem to that of the social planner. 

The taxed farmer faces antibiotic cost b + , instead of b , and therefore internalizes the 

resistance cost. However, obtaining an estimate of   is challenging in practice given how little is 
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known about the risk posed to human health. Discrepancies exist in the estimate of resistance cost 

associated with antibiotic use in agriculture on human health (Hollis and Ahmed 2013; Marshall 

and Levy 2011; Hoelzer et al. 2017; Koch et al. 2017; Chatterjee et al. 2018). There is insufficient 

understanding of two key linkages in cost estimation (Hoelzer et al. 2017). These are 1) linkage 

between on-farm antibiotic use and the emergence of resistance among pathogens, and 2) linkage 

between how farm-sourced resistant bacteria affect human infections. The first linkage is complex 

since antibiotic drug and treatment regimens can be confounded with other external factors, such 

as feed type used on a given operation, in affecting the emergence of resistance (Hoelzer et al. 

2017). The emergence rate may vary with bacteria species. It is difficult to exactly quantify the 

resistance emergence attributed to on-farm antibiotic use because, for example, resistance genes 

can transfer across bacteria in different reservoirs. Failings in the second linkage can arise from our 

limited ability to trace resistance genes back to first breakout (Marshall and Levy 2011). 

Technological advances toward allowing for accurate tracing will likely offset this weak link over 

time (Hoelzer et al. 2017; Koch et al. 2017; Wee, Muloi and van Bunnik 2020). 

1.4.2. SUBSIDIES ON SELF-TESTS/VETERINARY SERVICES  

To assess the impact of testing subsidies on expected antibiotic use, it is essential to 

understand the interactions between antibiotics and self-tests/veterinary services. Summary 5 

characterizes interactions among farmer’s interlinked decisions. Details are in SM 4.  

Summary 5. (Interactions between choices) Antibiotics and veterinary services substitute, 

while the interaction between antibiotics and self-tests varies with antibiotic cost. Antibiotics 

and self-tests complement (substitute) given a high (low) antibiotic cost. The interaction 

between self-tests and veterinary services varies with veterinary service cost: when veterinary 

service cost is i) low then self-tests and veterinary services substitute in regard to purchasing 
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information; ii) high then they complement since veterinary services function as alternative 

treatments. 

Since the interaction between antibiotics and self-tests varies, the effect of self-test information 

on antibiotic demand depends on context. When antibiotics are sufficiently cheap to purchase and 

administer then the farmer without information may over-apply in order to avoid the risk of 

incurring losses due to infections. In this case, more self-test information about whether the 

suspected disease is an antibiotic treatable infection will decrease the expected antibiotic use. 

Alternatively, when antibiotics are sufficiently expensive, then the farmer with low information may 

under-apply. In this case, more self-test information will increase the expected antibiotic use. In 

contrast, when the farmer purchases information through a veterinarian, the expected antibiotic 

use decreases unambiguously since a veterinarian provides alternative treatments bundled with 

information services. Hence, 

Summary 6. (The impact of incentive-based policies) A Pigouvian tax can restore the 

farmer’s private best choices to the social optimum. Deciding the optimal tax rate is difficult in 

practice due to insufficient understanding on the resistance cost associated with antibiotic use in 

agriculture on human health. 

A self-test subsidy potentially decreases (increases) expected antibiotic use when treatment 

cost is low (high). A veterinary service subsidy can only decrease expected antibiotic use. 

1.4.3. PRESCRIPTION REGULATION (PR)  

Following VFD regulating medically important antibiotic use in feed or water, PR changes 

from OTC to prescription the market status of remaining medically important antibiotics that are 

used in other forms. Thus the farmer is not allowed to use antibiotics without a veterinary visit, i.e., 

at information sets ⑥, ⑦ or ⑨, or with veterinary visit but no prescription allowing antibiotic use, 

i.e., at information sets ⑧ and ⑩. There are two antibiotic decisions remaining: 1) when a 
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veterinarian reveals E at information set ④; 2) when a self-test reveals E and a veterinarian is called 

at information set ⑤. Figure 6-Figure 8 are sample outcomes of the optimal strategies under PR 

and are counterparts to the unregulated privately optimal strategies depicted in Figure 3-Figure 5. 
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Figure 6 illustrates the farmer’s optimal strategies under PR when the veterinary cost is 

sufficiently high that veterinary services are not preferred before PR implementation. However, 

under the same cost parameters the PR-constrained farmer may prefer veterinary services since PR 

favors information through a veterinarian and leads farmers to substitute away from self-test 

information. For a similar reason, in Figure 7 self-testing is sufficiently expensive that it is not 

preferred under PR even though it can be optimal absent constraints. Figure 8 illustrates the 

farmer’s optimal choices under PR given low antibiotic cost. The triangle area illustrates how the 

interaction between veterinary services and self-tests can vary with cost parameters. Similar to 

optimal choices without regulations, when the veterinary service cost is relatively low then self-tests 

and veterinary services substitute in regard to purchasing information. When veterinary service cost 

is relatively high, however, then these actions complement. 

In general, consistent with “prudent use” principles, PR removes from the farmer’s optimal 

strategy choices the possibility of precautiously applying antibiotics without information. Also 

antibiotic administrations based on self-test information are not allowed. A strategy now emerges 

Figure 8 The farmer’s optimal strategies under PR in the d-v plane given low antibiotic 

cost  

S3: Neither call nor self-test, never treat 

S4: Call, treat if E, do 

not treat if I 
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that never appeared without regulations. Strategy S7 describes where the farmer self-tests, and then 

calls a veterinarian and administers antibiotics whenever the infection type is found to be E. The 

new optimal strategy S7 is a costly choice where the veterinarian’s only function is to sign the 

prescriptions. Unless compensation is provided, PR cannot increase and may decrease farmer 

welfare. In the next section we evaluate PR in regard to actions and efficiency.  

1.5. ASSESSMENT OF PR  

In this section, we investigate whether and, if so, how PR drives farmer decisions towards 

social optimum.
5

 Since farmer’s decisions on testing, veterinarian use and antibiotic use depend 

on context, the impacts of PR also vary with context. To better illustrate the consequences of PR, 

we compare the farmer’s optimal strategies with and without PR in the same figure. Figure 9 is a 

sample output given low antibiotic cost 2 1b l l − , where we combine the farmer’s optimal 

strategies without PR in Figure 5 and the optimal strategies under PR in Figure 8. Solid lines and 

dashed lines indicate optimal strategies for unregulated farmers and constrained-farmers 

respectively. Those lines divide the d-v plane into 8 areas, named A1-A7 and B. Noteworthy is 

area B. Given high self-test cost but low veterinary service cost, the farmer uses veterinary services 

without government interventions, a strategy that completely complies with the standard 

performance required by PR and so PR has no impact on her disease management. In the A areas, 

PR can either change antibiotic administration decisions or testing decisions. In the sub-sections 

that follow we discuss these changes in different cost parameters scenarios, i.e., different A areas of 

Figure 9.  

 
5 Optimal solutions are given in SM B. 
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Figure 9 Comparison between farmer’s optimal strategies concerning antibiotic use without and 

with PR in the d-v plane given low antibiotic cost 2 1b l l −   

  

 

 Without PR Under PR 

A1 Self-tests, never call, treat if E, do not treat if 

I 

Neither, never treat 

A2 Self-tests, never call, treat if E, do not treat if 

I 

Self-test, call and treat if E, neither call 

nor treat if I 

A3 Self-tests, never call, treat if E, do not treat if 

I 

Call, treat if E, do not treat if I 

A4 Neither, always treat Self-test, call and treat if E, neither call 

nor treat if I 

A5 Neither, always treat Neither, never treat 

A6 Neither, always treat Call, treat if E, do not treat if I 

A7 Self-tests, do not call but treat if E, call but 

not treat if I 

Call, treat if E, do not treat if I 

B Call, treat if E, do not treat if I Same 

 

Notes: Solid lines and dashed lines indicate optimal strategies for farmers without and with 

constraints respectively. Each area represents an optimal strategy given the values of (d, v) either 

with or without the PR constraint. 
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1.5.1. PR’S IMPACTS ON ANTIBIOTIC ADMINISTRATION DECISIONS 

Except for A2, A3 and A7, where PR has no impact on antibiotic administrations, PR 

decreases expected antibiotic use in other A areas. As is required by “Principle 1 of judicious use” 

(U.S. Food and Drug Administration [US FDA] 2012), PR eliminates any antibiotic use for type I 

infections. For example in areas A4 and A6, given high testing cost and low antibiotic cost, without 

PR, the farmer would prefer to remain uninformed and apply antibiotics regardless. PR requires 

the farmer to call a veterinarian before antibiotic administrations. The veterinarian won’t prescribe 

antibiotics for type I infections and therefore no antibiotics are administered in type I cases. For 

these areas PR reduces needless antibiotic use when type I infection occurs. 

PR may, however, eliminate antibiotic use in E type infection cases due to the additional cost 

associated with antibiotic use imposed by PR. OTC antibiotics are no longer available under PR. 

In order to administer antibiotics, the farmer must pay for not only antibiotics but also veterinary 

services. The additional economic burden is the main reason for a reduction in antibiotic use for E 

type infections. Area A1 provides one example of this outcome. Without PR, the farmer applies 

antibiotics in type E infection cases based on self-test information, while under PR the farmer does 

not use antibiotics regardless of drug effectiveness. This is because antibiotic administration costs 

have become too high. These costs consist of two components 1) veterinary service cost to obtain a 

prescription, and 2) antibiotic cost. Another example is area A5. Absent regulations, the farmer 

prefers to use antibiotics without testing. This is because precautious antibiotic use is more 

profitable for the farmer than informed antibiotic use given high testing costs and low antibiotic 

cost. PR prevents antibiotic use since the farmer would rather not call a veterinarian at a high cost 

for a prescription when OTC antibiotics are not allowed.  

Summary 7. PR may have no impact on farmer’s optimal strategies (e.g., when self-tests 

are expensive but veterinary services are cheap). However, PR will not increase antibiotic use 
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and may decrease antibiotic use (e.g., when infection is of the type that cannot be treated with 

antibiotics). By mandating costly veterinary services in order to obtain antibiotics PR may 

prevent antibiotic use for infections that can be cured by antibiotics. 

1.5.2. PR’S IMPACT ON TESTING DECISIONS 

We next examine situations where PR results in some knock-on effects on testing choices. 

These effects arise because, as we showed earlier, decisions regarding antibiotic use are closely 

related to decisions regarding self-testing and veterinary services. PR changes both the de facto cost 

of applying antibiotics and the comparative prices of alternative infection status information 

sources. 

PR may decrease demand for self-testing since self-test information can no longer be applied 

directly to guide antibiotic administrations. For example, in area A3, the unregulated farmer self-

tests to obtain information while the PR-constrained farmer purchases information through a 

veterinarian since a prescription is required for antibiotic purchases under PR. In area A7, the 

unregulated farmer prefers to purchase information through a self-test; in type E infection cases 

she administers antibiotics while in type I infection cases she calls a veterinarian for alternative 

treatments. The PR-constrained farmer has to call a veterinarian for a prescription in type E 

infection cases. In that case, self-tests become redundant and are never performed given the fact 

that the farmer under constraints calls a veterinarian in both infection types. In area A1, absent PR 

the farmer performs a cheap self-test to obtain information. Under PR the high cost of veterinary 

services required for antibiotic administrations makes it less profitable to administer antibiotics for 

type E infections. The farmer with cost parameters located in this area would rather save on 

veterinary service and antibiotic expenditures by leaving the suspected infection untreated. As well 

as reducing demand for self-tests, in areas A3 and A7 PR increases veterinary service demand 

while in A1 PR does not promote veterinary service use due to its high cost. 
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PR may increase veterinary service demand. For example, in area A2, the farmer used to 

administer antibiotics according to self-test information. Under the PR restriction, the farmer has 

to call a veterinarian after a self-test reveals E in order to administer antibiotics. In area A6, the 

unregulated farmer does not purchase any information and substitutes precautious antibiotic use 

for information input. As PR mandates veterinarian use before antibiotic administrations, the 

regulated farmer purchases veterinary services in order to obtain a prescription allowing antibiotic 

use. George Stigler (1971) might be skeptical about veterinary profession advocacy in shaping PR 

and other judicious use policies (U.S. American Veterinary Medical Association 2018). 

Strikingly, PR can raise demands for both self-tests and veterinary services. This outcome will 

occur in situations where self-tests and veterinary services complement. In area A4, without PR the 

farmer performs no tests since precautious antibiotic use is more beneficial than informed 

antibiotic use given low antibiotic cost compared with testing cost. Under PR constraints, antibiotic 

administrations for type E infections are allowed and profitable even when the cost of compulsory 

veterinary services before administrations is taken into account. Therefore farmer uses antibiotics 

under veterinarian oversight in type E infection cases. However, in type I infection cases, it is not 

profit-increasing to use veterinary services. Facing a relatively high veterinary service cost compared 

with self-test cost, the farmer uses veterinary services and self-tests as regulation-induced 

complements. In light of self-test information, the farmer makes distinct veterinary service 

decisions. She calls a veterinarian for type E infections so as to obtain prescriptions. That explains 

why, in favoring veterinary services, PR pushes up both demands for self-tests and veterinary 

services. 

Summary 8. PR may produce knock-on effects which vary by context. On the one hand, 

PR can reduce demand for self-tests since self-test information is no longer sufficient to guide 

antibiotic administrations. However, PR can increase the use of self-tests because self-tests can 
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provide information on the benefit from antibiotic use and so from veterinary services. PR will 

not decrease veterinary service demand for information acquisition or for obtaining a 

prescription to permit antibiotic use. 

1.5.3. COMPARISON OF PR’S OUTCOMES WITH SOCIAL OPTIMUM 

We compare the farmer’s optimal strategies under PR and socially optimal strategies so as to 

better illustrate how PR performs from the perspective of social welfare. For example, Figure 10 

depicts a comparison given low antibiotic cost 2 1b l l −  and some level of antibiotic resistance 

cost. In addition to solid lines and dashed lines indicating optimal strategies for unregulated 

farmers and constrained-farmers respectively, dotted lines indicate how the social optimum varies 

with cost parameters. Thus in Figure 10 the d-v plane is further partitioned relative to Figure 9. For 

example, area A6 is divided into four subareas, namely A6-1, A6-2, A6-3 and A6-4. Although the 

regulated farmer’s choices are common across subareas, social optimum varies and therefore 

assessment of PR efficiency varies. Note that social optimum not only varies with cost parameters 

b, d, and v, but also with antibiotic resistance cost  . Despite the fact that Figure 10 presents an 

example comparison between the farmer’s optimal choices under PR and social optimum, the 

findings showcase how food animal production distortions may arise due to PR.  
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Figure 10 Comparison between farmer’s optimal strategies concerning antibiotic use under PR and 

social optimum in the d-v plane given low antibiotic cost 2 1b l l − .  

A1 

 

 Social optimum 

A1 Self-tests, never call, treat if E, do not treat if I 

A2 Self-tests, never call, treat if E, do not treat if I 

A3 Self-tests, never call, treat if E, do not treat if I 

A4 Self-tests, never call, treat if E, do not treat if I 

A5-1 Self-tests, never call, treat if E, do not treat if I 

A5-2 Same 

A6-1 Self-tests, never call, treat if E, do not treat if I 

A6-2 Neither, never treat 

A6-3 Self-tests, do not call but treat if E, call but do not treat if I 

A6-4 Call, never treat 

A7-1 Self-tests, do not call but treat if E, call but do not treat if I 

A7-2 Call, never treat 

B Call, never treat 

Notes: (1) Solid lines and dashed lines indicate optimal strategies for farmers without and with 

constraints respectively. Dotted lines indicate social optimum. Each area represents an optimal 

strategy given the values of (d, v) either with or without the PR constraint. 

(2) In the white areas, the unregulated farmer’s choices realize social optimum while PR changes 

the wedge between actual choices and socially optimal choices. In dark grey areas, PR may change 

sub-optimal private choices but does not produce social optimum. In light grey area, PR improves 

the farmer’s choices and produces social optimum. The farmer’s optimal strategy in each area is 

listed in the table below Figure 9. 
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We use colors to illustrate an assessment of PR efficiency. In the white areas, PR worsens 

outcomes: the unregulated farmer’s choices realize social optimum while PR creates a wedge 

between actual choices and socially optimal choices. In dark grey areas, PR may change sub-

optimal private choices and either improve or worsen welfare but does not produce social 

optimum. Neither farmer’s choices without PR nor choices under PR attain social optimum. In the 

light grey area, PR improves the farmer’s choices and produces social optimum. This is because, 

given high testing cost the regulated farmer would rather not call a veterinarian and therefore 

antibiotic use is not allowed. However it is socially optimal to not use antibiotics due to a large 

antibiotic resistance cost. Were a higher antibiotic resistance cost posited then the light grey area 

expands and could even cover areas A5-1 and A1 while the white areas shrink and could 

disappear. PR may improve upon privately optimal choices given inexpensive antibiotics and 

expensive tests, especially when a large cost of antibiotic resistance to society has been proved by 

science. The table below Figure 10 provides detailed information about farmer’s choices under PR 

and social optimum. We also use different colors shading to match with the figure. 

In the analysis to follow we will focus on how PR causes distortions. These distortions vary 

with antibiotic cost and testing cost as well as expected damage that antibiotics resistance will incur. 

To do so, in the subsections that follow we take white and dark grey areas in Figure 10 as examples 

and discuss the biases in choices regarding antibiotics and tests that these areas support. 

1.5.3.1. Biases in antibiotic decisions 

Except in areas A2-A4, A6-1, and A6-3 where PR attains socially optimal antibiotic use, PR 

biases antibiotic decisions in other white and dark grey areas compared to social optimum. PR may 

result in underuse of antibiotics. One example is where veterinary service cost is high but self-tests 

are inexpensive (e.g., areas A1 and A5-1). In that case, it is socially optimal to purchase 

information through a self-test and then use antibiotics according to the self-test result, while the 
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PR-constrained farmer would rather not call a veterinarian and so leaves the infection without 

antibiotic treatment. However, in reducing antibiotic use for type E infections, PR may give rise to 

more antibiotic use as the infection progresses or spreads to herds. This is a consequence of the 

law of unintended consequences (Hayes and Jensen 2003). Another example is where social cost 

of antibiotic use is low and so is outweighed by testing cost (see areas A4 and A6 in SM Figure C-

32). In that case, it is socially optimal to use antibiotics without purchasing information. However, 

the regulated farmer is not allowed to substitute precautious antibiotic use for information input 

even if the substitution is more cost-effective, and therefore avoids antibiotic use in type I infection 

cases. Interestingly, when we assume a higher antibiotic resistance cost associated with antibiotic 

use, PR outcomes in these examples may become consistent with social optimum since a greater 

antibiotic resistance cost incentivizes the social planner to reduce antibiotic use even further. This 

is likely the implicit assumption underlying the policy of placing tighter restrictions on antibiotics 

viewed as being more important to human medicine (World Health Organization [WHO] 2019; 

European Medicines Agency 2020). 

Conversely, PR may result in overuse of antibiotics compared to social optimum. Given low 

antibiotic and veterinary service costs but high self-test cost, the PR-constrained farmer prefers to 

call a veterinarian and then administer antibiotics according to any ensuing prescription. However, 

the social planner facing an extra resistance cost for antibiotic use does not see any benefit from 

antibiotic treatment for type E infections. That is, it is not socially optimal to use antibiotics 

regardless where areas A6-2, A6-4, A7-2 and B are examples in the d-v plane. PR fails to 

sufficiently restrict antibiotic use since it does not address the antibiotic resistance from antibiotic 

administrations to type E infections. Recall that PR does not even reduce farmer’s antibiotic 

demand in areas A7-2 and B. In area A6-2 PR does restrict antibiotic use, but the reduction is 

socially insufficient. When we posit a higher social cost of antibiotic resistance then the areas where 
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PR results in overuse of antibiotics can expand to everywhere in the d-v plane excluding areas A1 

and A5. Were a large antibiotic resistance cost of on-farm antibiotic use to society demonstrated, 

then more attention should be paid to the possibility that PR may fail to restrict antibiotic demand 

sufficiently. In such situations, just requiring a prescription for antibiotics may be inadequate. More 

stringent policies might be needed. 

Summary 9. The magnitude of the social cost of antibiotic resistance is a key factor in 

determining the social efficiency of PR. If the social cost is low, then PR can cause socially 

excessive reduction of antibiotic use and thus farmers may face a higher operation cost (e.g., 

where social cost of precautious antibiotic use is outweighed by testing cost) or a greater risk of 

infection spread (e.g., where veterinary service cost is sufficiently high to prevent antibiotic use 

even when effective). On the other hand, if the scientific basis for assuming a high antibiotic 

resistance cost is strong then PR may not sufficiently restrict antibiotic use. 

1.5.3.2. Biases in testing decisions 

Except in areas A6-4, A7-2 and B where PR achieves socially optimal testing choices, PR 

results in testing decision biases. PR may result in insufficient self-testing since self-test information 

is insufficient to guide antibiotic administrations. For example in areas A3, A6-1, A6-3 and A7-1, 

calling a veterinarian is the best choice under PR since the veterinarian not only provides 

information but also issues a prescription whenever antibiotics provide effective treatment for the 

case at hand. However there exist more cost-effective choices from the perspective of social 

welfare. In these areas, where the self-test cost is low, it is socially optimal to obtain information 

through a self-test instead of a veterinary visit and then use self-test information to guide the follow-

up decisions. In areas A1 and A5-1, it is socially optimal to obtain information through a self-test 

and then use antibiotics accordingly, while the PR-constrained farmer would rather leave the 

infection untreated since mandatory veterinary services before antibiotic administrations are 
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expensive. In that case, information is useless so that the farmer does not self-test. In addition to 

insufficient self-test use, PR elicits excessive veterinarian use in areas A3, A6-1, A6-3 and A7-1 

since self-tests and veterinary services substitute in information acquisition. Veterinarian use 

distortions do not occur in areas A1 and A5-1. 

PR may cause excessive veterinarian use for information acquisition or for obtaining a 

prescription. Area A6-2 exemplifies the first case. When both self-test and veterinary service costs 

are high, social benefit from informed antibiotic use is lower than information cost. Therefore, it is 

socially optimal to neither use antibiotics nor purchase information. However, informed antibiotic 

use is a profit-increasing choice for the PR-constrained farmer who does not take the resistance 

cost into consideration. Therefore, in area A6-2 the farmer under constraints prefers to call a 

veterinarian and make informed antibiotic treatment decisions. Note that A6-2 is an instance of the 

law of unintended consequences where PR restricts antibiotic demand insufficiently but causes 

excessive veterinary service demand. Areas A2 and A4 exemplify the second case. The farmer 

under PR will call a veterinarian primarily for permission to use antibiotics. Calling a veterinarian is 

not socially optimal; self-testing is sufficient to guide antibiotic use. 

PR may lead to excessive use of both self-tests and veterinary services. Although such cases do 

not arise in Figure 10, the intuition is quite straightforward. The farmer’s privately optimal choices 

under PR in areas A2 and A4 do not change with antibiotic resistance cost, i.e., self-test 

information is used to confirm the need for veterinarian use. Consider now a much higher 

antibiotic resistance cost than depicted in Figure 10 (e.g., SM Figure C-34). It is then socially 

optimal to not use antibiotics due to the high social cost of doing so, thus no information purchase 

is needed. Alternatively, consider a situation where much lower antibiotic resistance cost is 

assumed than is depicted in Figure 10 (e.g., SM Figure C-32). In area A4, antibiotics precautious 

use without information becomes socially optimal due to the low social cost of antibiotic use. In 
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these two examples, the constrained-farmer over-uses veterinary services as well as self-tests since 

they complement.  

Summary 10. The comparison between private choices regarding tests under PR and 

social optimum depends on context. PR can result in overuse of veterinary services compared 

to social optimum since a veterinarian prescription is required for antibiotic use. As self-tests 

and veterinary services can substitute or complement depending on cost parameters, the 

farmer under PR may under-use or over-use self-tests compared to social optimum. 

1.5.4. EMPIRICALLY PARAMETERIZED MODEL AND BROADER RELEVANCE  

Given the conclusion that assessment of PR depends on context, a follow-up question is which 

context best represents the current state of U.S. livestock production. We conduct a simulation in 

a dairy farm disease management setting where we assess the effectiveness and efficiency of PR on 

antibiotic use. A survey about antibiotic administration on dairy farms was sent to producers in 

three U.S. Great Lakes Region states (Wisconsin, Minnesota, Michigan) during Summer 2017. 

This survey asked about costs to producers’ herds for a mastitis case (see descriptive statistics in 

SM D). We set parameters in our model from the survey data or follow values in extant literature 

(Cha et al. 2011; Pinzó n-Sánchez, Cabrera and Ruegg 2011; U.S. Department of Agriculture 

[USDA] 2016; Liang et al. 2017; Kniesner and Viscusi 2019; Ruegg 2020; U.S. Center for Disease 

Control and Prevention [US CDC] 2019; U.S. Food and Drug Administration [US FDA] 2021b; 

U.S. Center for Disease Control and Prevention [US CDC] 2013). See detailed explanations about 

parameter set in SM E. 

In the baseline scenario, we assume $10b = , $5d = , $27.5v = , 1 $95l = , 2 $150l = , 

3 $630l = , 0.35 = , and   is in the range $2.2-$3.9. Under these parameters and without any 

regulations, farmers self-test to obtain information. In revealed type E infection cases, they 
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administer OTC antibiotics, while in revealed type I infection cases, they call a veterinarian but do 

not use antibiotics. These outcomes are consistent with dairy farmers’ perception that they use 

antibiotics only if needed (Wemette et al. 2020). Cephapirin, an OTC antibiotic, is the leading 

treatment for mastitis (U.S. Department of Agriculture [USDA] 2016; Redding et al. 2019). While 

the other OTC antibiotic Penicillin has been less frequently used in recent years (Redding et al. 

2019; U.S. Department of Agriculture [USDA] 2016), well documented resistance to penicillin on 

dairy farms may explain its infrequent use and suggests frequent use before resistance developed 

(Mathew, Cissell and Liamthong 2007).  

Our simulation results suggest that PR does not decrease antibiotic use. In practice, antibiotic 

treatment comes with great private cost in the form of discarded milk but, if effective, also brings 

great private benefits. When information cost is inexpensive relative to costs and benefits 

associated with antibiotic treatment, dairy farmers prefer informed antibiotic administrations. That 

also explains why PR does not reduce therapeutic antibiotic use but instead substitutes veterinary 

services for self-tests in obtaining information. Dairy farmers’ optimal strategy without regulations 

attains the social optimum. Therefore, PR causes excessive demand for veterinary services but 

does not decrease antibiotic use among typical dairy farmers. According to our rough parameter 

estimates, PR moves dairy farmers’ choices from social optimum. The findings are robust when we 

increase or decrease parameter values by 20%. Were accumulated scientific evidence to support a 

higher antibiotic resistance cost in future research, for example, $50 = , then calling a 

veterinarian but not administer antibiotics becomes socially efficient. This is consistent with the 

underlying consideration behind the suggestion that antibiotics classified as critically important for 

human medicine should not be used for animal disease treatment (World Health Organization 

[WHO] 2017).  
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In analysis, we take dairy farm disease management as an example but the modeling 

framework and its analysis can also be applied to other livestock animal and companion animal 

settings. For example, in the poultry sector avian mycoplasmas is a leading cause of large economic 

losses (Elyazeed et al. 2020). Antibiotics can sometimes be effective and sometimes ineffective in 

treating avian mycoplasmas. Before applying antibiotics, poultry farmers can perform simple tests 

using point-of-care testing kits or they can call a veterinarian in order to identify the most effective 

course of treatment. PR also regulates medically important antibiotic use for all non-human 

animals. Absent PR, pet owners who suspect that their pets have infections can administer OTC 

antibiotics directly or use test information to guide their treatment choices. When PR becomes 

effective in 2023, medically important antibiotic use in companion animals also must be under 

veterinary oversight. Although pet owner disease management decisions are not motivated by 

production or profit considerations, our modeling framework also applies to pet owners’ decisions 

by re-specifying payoff functions. The way we consider antibiotic administration in veterinary 

practice may also be extended to human medicine. For instance, people who observe symptoms 

and suspect a urinary tract infection can purchase and administer antibiotics without purchasing 

information, i.e., self-medication, or perform a home test and then use antibiotics whenever tests 

indicate antibiotics, or see a doctor for professional advice and then take treatment if needed. The 

underlying story is similar to that in the veterinary practice setting. 

1.6. CONCLUSION 

Animal agriculture consumes the greatest share of antibiotics while inappropriate use of 

antibiotics in food-producing animals can degrade antibiotic effectiveness and accelerate antibiotic 

resistance development. In light of this concern, various policies have been proposed to promote 

antibiotic stewardship. It is important that we understand the implications of policies aimed at 

promoting judicious use of antibiotics. To assess policy impacts on antibiotic use, we need to 
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understand how a policy will change decisions related to antibiotic use and whether such changes 

will lead us closer to the social optimum.  

In this study, we examine the prescription regulation (PR) that requires prescriptions of 

medically important antibiotic use through non-feed forms in animal agriculture. We set up a 

modeling framework of farmers’ disease management related decisions and show how antibiotic 

use decisions interact with decisions on testing and calling for veterinary services. PR does not 

change the farmer’s choices in cases where farmers are not interested in administering antibiotics 

or where unregulated farmers do call a veterinarian before antibiotic administrations. However, PR 

will not increase, and may reduce, expected antibiotic use. PR prohibits precautious (in regard to 

protecting profits) use without information and eliminates antibiotic treatment for infections which 

can not be cured by antibiotics, realizing the “judicious use” intent of PR. An almost inevitable 

consequence of mandating that veterinary services precede any antibiotic therapy is prevented use 

under some circumstances on infections which can be cured by antibiotics.  

PR can also produce unintended impacts on testing decisions. PR will not decrease veterinary 

service demand for information acquisition and for the right to use antibiotics. As self-tests and 

veterinary services can be substitutes or complements depending on context, PR can decrease or 

increase demand for self-tests. In other words, veterinary service demand for information 

acquisition substitutes for self-tests as a result of PR, while veterinary service demand for 

prescriptions complements self-testing to assess whether a veterinarian call is warranted. Situations 

exist where PR does not have any impact on antibiotic administrations but does change testing 

decisions.  

Efficiency assessment of PR depends on cost parameters pertaining to antibiotics and tests as 

well as antibiotic resistance. PR can make things worse: specifically, when the farmer’s laissez faire 

choices realize social optimum while PR generates action distortions. Situations also exist where 
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the PR changes sub-optimal private choices but still do not procure social optimum, i.e., farmer’s 

choices are not socially optimal either without or with PR and there is no reason to believe that 

efficiency is improved by PR. PR can improve the farmer’s choices and support social optimum 

given inexpensive antibiotics and expensive tests, especially when a large antibiotic resistance cost 

to society has been confirmed by science. To determine whether PR is an unduly stringent control 

on on-farm antibiotic use, further efforts to quantify the adverse effect of antibiotic use in animal 

agriculture on human health are warranted. 

Despite the absence of evidence on an adverse impact on human health due to antibiotic used 

in agriculture production (Marshall and Levy 2011; Hollis and Ahmed 2013; Hoelzer et al. 2017; 

Koch et al. 2017; Chatterjee et al. 2018), concerns about the threats posed for human health arise 

from the fact that the largest fraction of all antibiotics consumed are consumed in livestock 

production. Similar to the belief that actions are needed to address climate change despite 

uncertainties associated with climate change mitigation and adaptation (Schelling 2007; Gray 2011), 

policy decisions have to be made notwithstanding the many uncertainties associated with antibiotic 

restrictions and regulations (Robinson et al. 2016; Larsson et al. 2018). We must weigh different 

policy options and make decisions even when we do not fully understand the benefits, costs, and 

probabilities of different outcomes (Jim O’Neill 2016). In this spirit, a variety of policy scenarios 

need to be considered. We have done so while we have also provided a rather speculative 

assessment of which policy scenarios are most relevant. We find that using antibiotics whenever 

needed in disease management is profit increasing for dairy farmers with and without PR. This is 

because information cost through either a self-test or a veterinarian is inexpensive relative to 

discarded milk cost and potential loss saving associated with antibiotic treatment. PR does not 

decrease therapeutic antibiotic use but raises excessive demand for veterinary services on typical 



44 

 

U.S. dairy farms. However, simulation results will likely differ for other livestock industries (e.g., 

swine), where parameters take different values.  

The interlinked nature of diagnostic testing decisions and antibiotic use decisions highlighted 

in our framework will also affect the best choice of antibiotic incentive policy tools. A test subsidy’s 

implications for antibiotic consumption will depend on context. When antibiotic cost is low 

(respectively, high) then expected antibiotic use decreases (increases) with a self-test subsidy. The 

context-dependent effect of this subsidy arises because self-tests are information goods, where the 

consequence of more information varies with context. The economics of such goods are not self-

evident. For example, although veterinary services are also information goods, we show that a 

veterinary service subsidy will unambiguously decrease expected antibiotic use.  

In practice, medically important antibiotics and non-medically important antibiotics are both 

applied in agricultural production. Under restrictions on medically important antibiotics, 

producers are likely to substitute in non-medically important antibiotics. Despite concerns that 

non-medically important antibiotics may also contribute to resistance, we should be cautious about 

expanding PR to non-medically important antibiotics. Regulations attaining social optimum 

regarding medically important antibiotics may be too stringent for non-medically important 

antibiotics which are prima facie accepted as producing lower resistance costs.  

Regarding opportunities for model development, while tests are assumed to reveal perfect 

information in the model setup, in practice self-test information is less accurate than information 

obtained through a veterinarian. Were we to allow into our model heterogeneous accuracy of 

information obtained through tests, then the conclusions may become more favorable to PR. A 

further limitation is our model’s omission of animal welfare effects. Any accounting for this effect 

will cast PR in a less favorable light as the prescription requirement sometimes leads to untreated 

cases where antibiotics would have been effective. If the benefit to society of avoiding animal pain 
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and suffering exceeds the expected cost to society of human health consequences due to additional 

antibiotic applications then emphasis might be placed on reducing transactions costs for obtaining 

a prescription.  
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CHAPTER 2: ESSAY TWO: WILL TESTS LEAD TO MORE INFORMED 

ANTIBIOTIC USE? AN APPLICATION IN VETERINARIAN DIAGNOSTIC DECISIONS 

2.1. INTRODUCTION 

Antibiotic resistance, which degrades antibiotic effectiveness to kill bacteria, is one of major 

threats to public health (World Health Organisation [WHO] 2020). In addition to additional 

health care cost (Fullybright 2019), infections caused by resistant bacteria lead to staggering 

number of death. A recent study estimate that, in 2019, more than 4.95 million deaths are 

associated with antibiotic resistance around the world, among which 1.27 million deaths are direct 

results of antibiotic resistance (Murray et al. 2022). In other estimations, more than 35,000 deaths 

in the United States and about 33,000 deaths in European Union (EU) countries can be attributed 

to antibiotic resistance annually (U.S. Center for Disease Control and Prevention [US CDC] 2019; 

European Centre for Disease Prevention and Control [ECDC] and Organisation for Economic 

Co-operation and Development [OECD] 2019).  

The wide spread antibiotic resistance problem is a result of millions of tons of antibiotics use 

in past 75 years (Laxminarayan and Herrmann 2015). Under the selection pressure imposed by 

antibiotics, bacteria can become resistant through mutation, inductive expression or genetic 

transferring (Neu 1992). Despite of the warning that antibiotic use inevitably contribute to 

antibiotic resistance, negligent antibiotic use is a leading reason of antibiotic resistance 

development (Chokshi et al. 2019). In developing countries, lack of proper oversight and diagnosis 

causes excessive antibiotic use in human  and therefore accelerate antibiotic resistance 

development. It is common that physicians prescribe antibiotics without utilizing diagnostic 

methods, unskilled health workers prescribe antibiotics for patients, and patients purchase 

antibiotics easily and self-mediate. In developed countries, despite that inappropriate antibiotic use 

in human medicine exists (Cully 2014), overuse in animals is the main contributor to antibiotic 
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resistance(Chokshi et al. 2019). Antibiotics have been applied in food-producing animals mainly 

for growth promotion, disease prevention and disease treatment. Food-producing animal 

production accounts for the greatest share of global antibiotic use (van Boeckel et al. 2017) and 

antibiotic use in food animals has been expected to rise significantly through 2030 (Tiseo et al. 

2020; Van Boeckel et al. 2015). In absence of regulation and oversight, low dose antibiotic use for 

non-therapeutic purpose, which creates a ideal condition for resistance development, were 

prevalence in animal agriculture production (Levy 2014). Most antibiotic administration for 

therapeutic purpose are made without proper oversight and diagnosis (Chan et al. 2020; De Briyne 

et al. 2013). For instance, mastits is the main ailment treated with antibiotics on dairy farms while it 

has been argued that up to 50% antibiotic treatment are needless or inappropriate (Krö mker and 

Leimbach 2017). In this study we investigate how proper oversight and diagnosis affect antibiotic 

therapeutic use and its implication for antibiotic stewardship promotion. Specifically, we study 

antibiotic administration decisions in animal disease management in the United States as a special 

case to answer the research question. 

Before 2017, most antibiotics for food-producing animals were available without veterinary 

prescription in the United States. To address concerns about antibiotic resistance arising from 

animals, the U.S. Food & Drug Administration (FDA) introduced principles of "judicious use" in 

animals (U.S. Food and Drug Administration [US FDA] 2012). "Judicious use" restricts antibiotic 

use to cases objectively assessed as being in real need and requires veterinary oversight before 

antibiotic administrations. Since 2017 the Veterinary Feed Directive (VFD), a command and 

control regulation, has enforced the "judicious use" requirement before medically important (i.e., 

important for human disease treatment) antibiotic application through feed in food producing 

animals. VFD mainly eliminates medicially antibiotic use for growth promotion purpose, 

successfully reducing the sale of antibiotics in food-producing animals by more than 30% (U.S. 
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Food and Drug Administration [US FDA] 2021b). Commencing 2021 veterinary oversight 

requirement was expanded to medically important antibiotic use in other forms (e.g., injection) and 

other animals (i.e., companion animals). Whether this requirement can secure optimal use 

depends on veterinarians' understanding of animal diseases, resistance biology, and implications 

for animal welfare and so the capacity in judgment about whether antibiotics are needed for 

disease treatment or prevention. Our concern is with better understanding an assumption 

underpinning the antibiotics stewardship governance approach that mandates veterinary oversight. 

Specifically, how effectively do veterinarians manage information when making antibiotic 

recommendations in suspected disease cases and how might effectiveness be improved? 

In the literature on medical applications, "evidence-based medicine" (EBM) has attracted 

increasing attention. This approach defines a Bayesian approach to making good decisions in a 

medical context (Ashby and Smith 2000). The American Veterinary Medical Association (2015) 

also asserts that veterinary practices based on the best evidence available can improve animals' 

health conditions and contain antibiotic resistance as much as possible. In a suspected disease case, 

EBM requires veterinarians to assess the probability of the disease based on available evidence and 

incorporate possible benefits and costs as a result of treatment alternatives on animals with and 

without the disease. Therefore, veterinarians face three sequential decisions in a suspected disease 

case. The first is diagnostic decisions: how likely is the animal at hand to have a disease? In 

practice, veterinarians have priors about the diagnosis based on their knowledge, experience, 

observations, and disease history. After obtaining more information from tests, they may update 

their beliefs about animals' health conditions. The second is cost and benefits assessment: how to 

measure costs and benefits associated with treatment alternatives? Should private costs and benefits 

only be considered or should social costs and benefits also be considered? The third is the 
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treatment decision: do benefits outweigh costs of treatment and is this the best treatment 

alternative?  

The three-step decision process implies three possible channels that may lead to different 

antibiotic recommendations. Veterinarians may make different antibiotic recommendations 

depending on how they update information, how they assess the benefits and cost associated with 

antibiotic use, and how they weigh the trade-offs of different treatment options. In this paper, we 

will focus on the first channel, i.e., the effect of information updating on antibiotic treatment 

decisions. We are curious about whether veterinarians are capable of managing test information 

efficiently following Bayes' theorem in diagnosis. If not, are their probability assessments upward 

biased or downward biased when compared with standard probability assessment? How do the 

errors in diagnosis affect assessments of treatment alternatives and final treatment decisions? The 

conclusion will shed light on an important channel affecting antibiotic demand and future 

regulations promoting antibiotic stewardship. 

While various belief updating errors in diagnosis are well documented in literature of human 

medicine (Henriquez and Korpi-Steiner 2016; Elstein 1999; Blumenthal-Barby and Krieger 2015; 

Eddy 1982), economics studies in medical diagnosis setting is very few (Rottman 2017). In this 

study, we setup a framed field experiments which differs from standard lab experiments in 

subjects, incentives and task setting. Most behavioral economics studies on belief updating biases 

recruit university students to participant experiment (Benjamin 2019), while this study focuses on a 

specialized population, veterinarians who received professional training in managing evidence in a 

disease diagnosis context. In addition, instead of describing experiment tasks in an abstract setting 

(Grether 1980; Grether 1978; Benjamin 2019), such as games with balls and urns, we describe 

experiment tasks in veterinary clinical setting. Compared with providing fixed rewards to phycisians 

in diagnosis decision making (Rottman 2017), we incentivize veterinarians to process information 
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carefully and report their beliefs truthfully. Therefore empirical findings from such innovative 

experimental data can complement lab evidence (Grether 1980; Grether 1978; Benjamin 2019) in 

respect to understanding how people behave in the real world. This is because field experiments 

simulate real word and so enhance generalizability of experimental findings (Gangadharan et al. 

2022). Our research disentangles biases due to inefficient use of priors from biases due to 

inefficient use of new information in clinical settings. We found that veterinarians do not use priors 

and new test information properly. They neglect prior information and treat new information as if 

they are less informative than that prescribed by Bayes’ updating. With regard to new information 

underuse, we make novel empirical inquiries about the reason of underuse. In addition, 

veterinarians respond more strongly to test information that agrees with their priors than to test 

information that contradicts their priors. Disagreeing with the typical findings that experience can 

reduce information management biases (Benjamin 2019), we found that experienced veterinarians 

perform worse in managing priors and test information when compared with their less experienced 

colleagues.  

Furthermore, we frame diagnosis as a context variable in discrete choice experiments and 

investigate the effect of diagnosis errors on veterinarian’s treatment choices. The effect of context 

variables in discrete choice experiments have been examined in other fields (Molin and 

Timmermans 2010; Charoniti, Rasouli and Timmermans 2017; Bujosa, Torres and Riera 2018), 

we are unware of such studies in clinical settings. Our findings support the view that diagnosis 

biases affect treatment choices. We define disease likelihood in treatment decisions as the 

likelihood that the animal has disease. In the presence of lower disease likelihood, veterinarians 

are less likely to use treatment alternatives that comes with higher treatment cost. The disutility of 

treatment cost increases as disease likelihood decreases. The treatment cure rate has positive effect 

on utility and utility decreases as disease likelihood decreases. Economic loss avoided associated 
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with treatment has a similar effect on utility as cure rate. However, veterinarian’s preference 

towards antibiotic resistance cost and animal welfare improvement does not depend on disease 

likelihood. 

The paper unfolds as follows. Section 2 introduces the conceptual framework of diagnosis 

decisions. In section 3, we explain our research method and survey design. Section 4 discusses data 

used and reports descriptive statistics. Section 5 analyzes the respondents' probability belief 

updating behaviors in animal disease management practice. A conclusion section follows.  

2.2. CONCEPTUAL FRAMEWORK 

In animal disease management practice, veterinarians are faced with a sequence of decisions. 

The first involves making a diagnosis based on available information while the second decision 

requires assessing utilities of possible outcomes from treatment alternatives and selecting a socially 

efficient treatment. Therefore, we have two separate parts in the conceptual framework. 

2.2.1. BELIEF UPDATING IN DIAGNOSIS DECISIONS  

When making diagnostic decisions, veterinarians usually first inspect suspected disease cows, 

check their disease history, and learn their management procedures which help form a prior about 

the likelihood that the cow has some disease. To further examine suspected cases, veterinarians 

may conduct tests. Efficient management of test information and priors requires belief updating as 

prescribed by Bayes’ theorem. Suppose that visual inspection of a cow suggests prior probability, 

( )p D , that the animal has a disease. Then a test generates new information { , }I I I− +  where 

( | )p I D  is the likelihood of observing I  given the cow has a disease and ( | )p I ND  is the 

likelihood of observing I  given that the cow does not have a disease.
6

 Test results can be positive 

 
6

 It is naturally to assume that ( | ) 0.5p I D+   and ( | ) 0.5p I ND−   and we make this assumption. 
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I +  or negative I − . Bayes’ theorem then asserts that the posterior belief that the animal has a 

disease is 

 
( | )

( | ) ,
( | ) ( ) ( | ) ( )

B p I D
p D I

p I D p D p I ND p ND
=

+
 (2.1) 

where ND  indicates that the cow does not have the disease and ( ) 1 ( )p ND p D= − . A 

positive test result on disease pushes the updated probability up from ( )p D  toward 1 and a 

negative test result pushes the probability down toward 0. 

 In clinical setting, diagnosis errors may result in asymmetric losses (Rottman 2017). 

Overprediction in diagnosis may lead to unnecessary treatment and so additional healthcare cost, 

while underprediction may rule out life-threatening disease and so cause larger losses than 

overprediction. Therefore following (Bora, Katchova and Kuethe 2021), we assume loss incurred 

when veterinarians’ probabilistic estimate deviate from Bayesian posteriors as 

 2 2( ) sgn( )( ) ,B B BL p p p p p p= − + − −  (2.2) 

where Bp  is Bayesian posteriors, p  is veterinarians’ probabilistic estimates,  ( 0)    is 

asymmetry parameter, sgn( )Bp p−  represent the sign of Bp p− . The relative loss ratio of 

underestimate can be defined as the ratio of loss incurred by underestimate and loss incurred by 

overestimate.  

 
( ) (1 )

  ,
( ) (1 )

B

B

L p p
relative loss ratio

L p p





 +
= =

 −
 (2.3) 

where   [1, )relative loss ratio + . When veterinarians are certain about Bayesian posteriors Bp , it 

is optimal to estimate Bp p= . However, in most cases, veterinarians are uncertain about Bp  but 

have rough estimates. Thus we assume veterinarians believe that Bayesian posteriors is uniform 

distributed with mean Bp  and standard deviation 
3


. 



60 

 

 ( , ).B B Bp U p s p s− +  (2.4) 

As an expected loss minimizer, veterinarians’ problem can be written as 

 2 2min ( ) min[ (1 )( ) ( ) (1 )( ) ( ) ],
B

B B

p p s
B B B B B B

p p s pp p
E L p p f p dp p p f p dp 

+

−
= − − + + −   (2.5) 

where ( )Bf p  is density function of Bp .  

 
1

( ) .
2

Bf p


=  (2.6) 

Therefore, the optimal probabilistic estimate is  

 
  1

.
  1

B relative loss ratio
p p

relative loss ratio


−
= +

+
 (2.7) 

Note that the second component in equation (2.7) is in the range of [0, ) . When losses 

associated with diagnostic errors are asymmetric, veterinarians’ optimal probabilistic estimate p  

deviate from Bayesian posteriors Bp . When underestimate causes greater losses ( 0  ), 

veterinarians are incentivized to report probabilistic estimate p  greater than Bayesian posteriors. 

That said, there are various types of biases in diagnosis, such as incentive induced baises and 

information management biases. It is important to first identify source of biases and then 

implement regulations to correct them. In this study, we provide symmetric incentives in our 

experiments and so incentive induced biases are not a concern. Whenever veterinarians updating 

belief efficiently, veterinarian’s optimal probabilistic estimates and Bayesian posteriors are 

consistent. In symmetric incentive context, people may not use information efficiently in the sense 

that updated probabilistic beliefs do not follow Bayes' theorem. Figure 11 and Figure 12 provide 

schematics of two dominant biases: underinference and base rate neglect biases respectively. Note 

that solid red arrows indicate Bayesian posteriors while dashed purple arrows indicate biased 

posteriors.  
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Figure 12 Base rate neglect bias 
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Figure 11 Underinference bias 
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Underinference bias describes situations where people treat new information as if it is less 

informative (Dave and Wolfe 2003; Ambuehl and Li 2018; Phillips and Edwards 1966). Therefore 

probability update revisions are smaller than those implied by Bayes' theorem; insufficiently 

upward at some ( | )Cp D I +  when probability increasing signals are received and insufficiently 

downward at some ( | )Cp D I −  when probability decreasing signals are received. For example, in a 

suspected case where veterinarians initially believe that the animal has the disease, veterinarians 

with underinference bias may insist on their initial judgment even though new test results suggest 

disease-free.  

Base rate neglect bias defines phenomena where people put less weight on priors than they 

should as prescribed by Bayes’ theorem (Grether 1992; Griffin and Tversky 1992; Bar-Hillel 1980; 

Holt and Smith 2009). When veterinarians initially believe that the animal is likely to have the 

disease (i.e., with prior above 50%), base rate neglect bias results in posterior underestimates 

compared with Bayesian posteriors; in contrast, when they initially believe that the animal is not 

likely to have the disease (i.e., with prior less than 50%), base rate neglect bias results in posterior 

overestimates. For example, consider a situation where one cow has a history of mastitis and severe 

udder inflammation, and another cow has neither disease history nor inflammation. According to 

evidence before tests signals, the former cow is very likely to have recurrent mastitis while we do 

not have reason to believe that the latter cow has mastitis. Given that both tested positive, the 

likelihood of the former cow having mastitis should exceed the latter. Veterinarians who 

completely neglect priors estimate equal posteriors for both cows. In that case, veterinarians 

underestimate the likelihood that the first cow has the disease and overestimate the likelihood that 

the second cow does. 
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To identify probabilistic belief updating biases in veterinarians' diagnostic decisions, we will 

apply a conceptual framework introduced by Grether (1980). The posterior odds in favor of the 

animal having disease against the animal not having the disease can be modeled as 

 
( | ) ( | ) ( )

,
( | ) ( | ) ( )

c d

D I p I D p D
e e

ND I p I ND p ND

 



   
=    

   
 (2.8) 

where ( | ) / ( | )p I D p I ND  is the likelihood ratio of observing I  under alternative true states, 

( ) / ( )p D p ND  is prior odds in favor of the cow having the disease, and   is a random variable 

with mean zero and finite variance. When 0 = , 1c = , 1d = , 0 = , then formula (2.8) 

converges to the standard Bayes’ theorem formula. The biases caused by inappropriate use of 

priors or test results during probabilistic belief updating have been well-documented in the 

literature (Benjamin 2019). Parameters c and d measure, respectively, the magnitudes of these 

biases. When d is less than one, then people put less weight on priors than Bayes' theorem 

prescribed (depicted in Figure 12, defined as base rate neglect bias); on the contrary, when d 

exceeds one then people put more weight on priors, an inference that is very rarely made in 

empirical findings (Grether 1992). When c is less than one, then people treat test results as if they 

are less informative (depicted in Figure 11, defined as underinference bias); conversely, when c 

exceeds one then people over infer from test information (Griffin and Tversky 1992; Grether 

1992; Ambuehl and Li 2018; Charness and Dave 2017; Peterson and Miller 1965). Note that 

inappropriate use of priors and test results can both occur in the same observation. Table 3 lists all 

possible combinations of parameters c and d.  
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Table 3 Summary of biases 

 c<1 (dominant bias) c=1 c>1 

d<1 (dominant bias) Base-rate neglect; 

underinference 

Base-rate neglect Base-rate neglect; 

overinference 

d=1 underinference Standard Bayesian updating Overinference 

d>1 Base-rate over-use; 

underinference 

Base-rate over-use Base-rate over-use; 

overinference 

 

We can derive estimable equation (2.9) from equation (2.8). 

 
( )

( )

( )

( )

( )

( )

| |
ln ln ln .

| |

D I p I D p D
c d

ND I p I ND p ND


 



     
= + + +     

          
 (2.9) 

Therefore, we intend to test hypothesis below in veterinary diagnosis setting.  

Hypothesis I (Bayesian updating): 1c =  & 1d = . 

Hypothesis I assumes that veterinarians manage information following Bayes' theorem. As 

mentioned above, underinference bias ( 1c  ) and base rate neglect bias ( 1d  ) are dominate in 

the literature (Benjamin 2019). Therefore, we may reject the null hypothesis with 1c   and 1d   

in diagnosis decision making experiments as well.  If there were evidence for underinference bias, 

our experiment data allow us to make novel empirical inquiries about where underinference bias 

comes from. In experiments with a single signal (e.g., perform a single test to reveal new 

information in our setting), conservatism and extreme belief aversion are two leading theories to 

explain underinference bias. Conservatism refers to the actual information managing process 

where people underweight the likelihood ratio. In psychological literature, conservatism is 

assumed to be caused by difficulties in aggregating different sources of information (Slovic and 

Lichtenstein 1971). Another explanation for conservatism is that humans don't fully trust the new 

information they receive (Corner, Harris and Hahn 2010). That is, a less reliable information 

source would trigger more conservative belief revision and posterior beliefs deviating from 

standard Bayesian update results. Extreme belief aversion refers to an aversion to holding or 
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expressing probabilistic beliefs that are close to certainty (Benjamin, Rabin and Raymond 2016, 

sec.Appendix C). People with extreme belief aversion would report belief p   (respectively, 

p  ) when a true probability p  is sufficiently close to one (respectively, 0); i.e., they tend to 

distort toward less extreme posteriors. 

In addition to underinference (c < 1) or overinference (c > 1) summarized above, parameter c 

may vary with context. Prior-biased inference is a phenomenon whereby people use new 

information differently based on whether the new information weakens or reinforces priors. Some 

researchers have found stronger inference in response to information that reinforces priors 

compared to information that weakens priors (defined as "confirmatory bias") (Pitz, Downing and 

Reinhold 1967; Scott Geller and Pitz 1968; Pitz 1969; Charness and Dave 2017). Ducharme and 

Peterson (1968) disagree, finding instead that updating is stronger in response to information that 

weakens priors. Researchers do not find prior-biased inferences in some experiments (Mö bius et 

al. 2022; Eil and Rao 2011). In order to test for prior-biased inferences, we interact the log 

likelihood ratio with ConfT , a dummy variable indicating whether the test result confirms priors or 

not. Consider the specificaiton and hypothesis below. 

 
( )

( )

( )

( )

( )

( )

( )

( )
1

| | |
ln ln ln ln * .

| | |

D I p I D p D p I D
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ND I p I ND p ND p I ND


 



       
= + + +  +       

              
 (2.10) 

Hypothesis II (Prior-neutral inference): 1 0c = ; 

Hypothesis II assumes that veterinarians respond to new information that is consistent with 

priors in the same way as to new information that contrasts to priors. When veterinarians have 

confirmatory bias, we expect the coefficient of the interaction to be significantly positive; 

conversely, when veterinarians respond more strongly to test information that weakens priors, we 
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expect the coefficient to be significantly negative. Suppose there are no prior-biased inferences. 

The estimate of 1c  should be insignificantly different from zero. 

Preference-biased inference is a phenomenon where people update asymmetrically when 

receiving good news compared with bad news. The empirical findings are mixed: Some argue that 

people place more weight on good news than bad news (Mö bius et al. 2021; Eil and Rao 2011), 

while some experimental evidence supports the opposite conclusion (Ertac 2011). Other studies 

finding no evidence for preference-biased inference (Barron 2021; Gotthard-Real 2017; Buser, 

Gerhards and van der Weele 2018; Coutts 2019). To examine whether veterinarians perform 

preference-biased inferences, we generate a dummy variable Goodnews  to indicate whether the 

animal tested negative and interact the dummy with the log likelihood ratio. Consider the 

specification and hypothesis are as follows. 
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= + + +  +       

              
 (2.11) 

Hypothesis III (Preference-neutral inference): 2 0c = . 

Hypothesis III assumes that veterinarians do not have prior-biased inferences. When 

veterinarians update their beliefs more after receiving good news, then we expect the coefficient of 

the interaction to be significantly positive. Conversely when veterinarians update more after 

receiving bad news, then the coefficient should be significantly negative. When the coefficient is 

estimated to be insignificantly different from zero, we do not find evidence for preference-biased 

inference. 

2.2.2. TREATMENT DECISIONS 

When making treatment decisions, veterinarians need to assess benefits and costs of treatment 

alternatives based on their diagnoses. Veterinarians are assumed to choose the treatment 

alternative that maximizes utilities. The treatment behavior is modeled as a discrete choice model 
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whereby the utility of veterinarian n  for an treatment alternative j  in a suspected disease case i  

is specified as 

 ,ijn ijn ijn ijnU X = +  (2.12) 

where ijnX  are observed variables pertaining to treatment alternatives, context and decision 

maker, ijn  are coefficients of these variables representing preferences towards these variables and 

the ijn  are i.i.d. and follow an extreme value distribution.  

Veterinarian n  choosing treatment alternative j  in a suspected disease case i  depends on 

whether treatment alternative j  brings utility greater than any other treatment alternatives. 

Therefore the choice can be defined as 

 1[  ],ijn ijn ikny U U k j=     (2.13) 

where 1[ ]  is a indication function. Whenever  ijn iknU U k j   , ijny  euqals one,suggesting 

treatment alternative j  is chosen. Ohterwise ijny  euqals zero,suggesting treatment alternative j  

is not chosen. In multinomial logit model, the probability of choosing treatment alternative j  can 

be written as 

 

1

exp( )
,

exp( )

ijn

ijn J

ikn

k

V
P

V
=

=


 (2.14) 

where there are J  treatment alternatives in the choice set. We apply the mixed logit model 

to analyze discrete choice data on treatment decisions since mixed logit model allows for 

heterogeneous preference among veterinarians and accommodates the panel nature of the data. 

That is, coefficients   can vary across individuals. We assume   are random variables with 

density function ( | )f   , where   are parameters characterizing the density function. Therefore 

the probability of choosing treatment alternative j  can be revised on the basis of (2.14). 
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The log-likelihood function is  

 
1 1

ln( ).
N J

ijn ijn

n j

L y P
= =

=  (2.16) 

The vector ijnX  can include treatment alternative attributes ijx , disease management context 

variables iz , veterinarian characteristics n  and even any functions of these factors ( , , )ij i nx z  . 

Specifically, treatment alternative attributes consist of treatment costs, cure rate and benefits from 

treatment whenever the treatment cures diseases. Treatment costs comprise treatment expenditure 

and potential to increase antibiotic resistance. Veterinarians are responsible for serving healthcare 

needs of animals and working to protect public health. In disease cases that require antibiotic 

treatment, antibiotic treatment poses a private cost to livestock producers as well as potentially 

accelerates antibiotic resistance development and so causes a risk to public health. Therefore the 

potential to increase antibiotic resistance is a social cost component that may affect veterinarian’s 

utility. It is naturally to consider main effect of treatment costs and so include treatment cost 

variables in the utility function.  

We introduce outcome uncertainty associated with treatment, i.e., treatment may be a cure for 

the disease or it may not. The cure rate measures the extent of uncertainty. How individuals 

process the information about uncertainty in discrete choice problems is inconclusive. Extant 

studies explore various approaches to incorporate outcome uncertainty into utility function form 

(Williams and Rolfe 2017; Rolfe and Windle 2015). The utility may be determined by expected 

benefits/losses, i.e., including interactions between outcome uncertainty and benefits/losses 

associated with the realized outcome. In order to capture the direct utility of outcome uncertainty, 
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utility function can also introduce stand-alone uncertainty variables. In addition to weighing 

outcomes linearly by outcome uncertainty (i.e., expected benefits/losses),  researchers examine 

utility functions including outcome non-linearly weighted by probabilities (e.g., include quadratics 

of expected benefits/losses) (Rolfe and Windle 2015; Williams and Rolfe 2017). Therefore we will 

examine different utility forms and let data decide the utility function form that most relevant.  

Whenever the treatment cures the disease, then benefits include economic loss avoided and 

animal welfare improvement. Taking a mastitis case on dairy farms as an example, effective 

antibiotic treatment may prevent the disease from progressing, the infected cow being culled, and 

the infection spreading to other cows. Therefore economic loss avoided includes reduced cost due 

to disease control for a given cow and to the prevention of infection spread. Effective antibiotic 

treatment also relieves suffering and so improves animal welfare. As these benefits occur whenever 

treatment cures the disease, the assumptions on how veterinarians process the information about 

outcome uncertainty also determine the way these benefits affect utility. We consider the utility 

function with interactions of the benefits and cure rate and assume that expected benefits affect 

treatment decisions. Alternatively, we will also explore utility forms with standalone benefits 

variables and with nonlinear function of expected benefits (e.g., quadratic). 

We also take disease management context into account in treatment decisions. The effect of 

context in discrete choices has been documented in other fields of research (Molin and 

Timmermans 2010; Charoniti et al. 2017; Wakefield and Inman 2003; Ariely and Levav 2000), 

however we are unaware of a literature pertaining to medical decisions. Likelihood that the animal 

has disease ( we called “disease likelihood” thereafter) is a key factor in antibiotic recommendation 

decisions: when a veterinarian believes that the animal is unlikely to have a curable infection, she 

may decide to apply no antibiotic treatment, whereas when she believes that the animal is likely to 

have a curable infection, then she may decide to use antibiotics. In that case,  disease likelihood 
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biased estimate will divert antibiotic treatment recommendations from optimal usage. In order to 

estimate the effect of disease likelihood, we need to interact disease likelihood with alternative 

attributes. Significant coefficients for these interactions would indicate that the utility attached to 

the attributes varies across different levels of disease likelihood. 

In modeling of treatment decisions, we focus on understanding how the context variable 

disease likelihood can affect veterinarians’ utilities and treatment choices. Connecting the 

conceptual framework, we intend to analyze the impact of biases in diagnosis decisions on 

subsequent antibiotic recommendations.  

2.3. METHOD AND SURVEY DESIGN 

During November 2020-April 2021, a web survey about animal disease management decisions 

was sent to veterinarians in practice in the United States through veterinary associations as well as a 

first-party data provider named Dynata. While our main interest lies in veterinarians' disease 

management on livestock farms, we recruited veterinarians who specialize in i) large animal health 

or who specialize in ii) companion animal health. The comparisons between large and small 

animal disease management may help us to understand common factors influencing diagnosis and 

treatment decisions and, more importantly, the distinctions that matter between how farmed 

animals and companion animals are treated. In order to accommodate differences in large and 

small animal clinical practice, we prepared distinct survey instruments for these two groups of 

veterinarians. We introduce the large animal disease survey instrument as an example below
7

.  

The survey proceeds in four sections. Section A presents ten simulated cases, giving priors and 

test information, and asks for probability belief estimates. Section B presents six simulated cases, 

giving information about treatment alternatives and diagnoses, and asks for preferred treatment 

 
7

 We provide a survey sample in Appendix D. 
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options. Section C collects ancillary information on veterinarians' views about test reliability, as well 

as on antibiotic resistance issues and animal welfare perspectives. Section D inquires about 

demographics, education, and work experience. Before being formally launched, the survey 

underwent two rounds of pre-tests by several graduate students in the Doctor of Veterinary 

Medicine program at Michigan State University.  

2.3.1. DESIGN OF SECTION A  

We set up diagnosis cases without specifying the disease but only describing some disease 

characteristics as follows: "There is a disease (named "disease D") that is circulating on dairy farms 

in a locality. At the early stages of disease D, there are no clinical signs, while severe signs appear as 

disease D progresses. In order to manage disease D, it's important to detect disease D at early 

stages". In the context of a hypothetical disease, veterinarians must make diagnoses relying on 

information given in each case instead of pre-existing experience. Thus we can observe 

information processing behavior with less disturbance. 

At the early stages of disease D without clinical signs, prevalence rates among populations 

establish priors for veterinarians. A randomly selected cow was tested positive or negative. While 

tests can provide wrong information, they can add new evidence for diagnoses. False positive rates 

and False negative rates describe the accuracy of test information. A false negative (positive) rate is 

the probability of receiving a negative (positive) result when the cow does (does not) have disease 

D. Veterinarians are asked to assess the probability that the cow has disease D given prevalence 

rate, test result, and test information accuracy. Figure 13 shows an example question in section A. 
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We generate 40 diagnosis cases which differ in terms of three factors: prevalence rate, test 

result, false positive rate. The prevalence rate is chosen from {10%, 30%, 50%, 70%, 90%}, and test 

result can be positive or negative. The false positive rate is chosen from {5%,10%, 20%, 30%}. We 

assume the false negative rate to be 10% and constant across diagnosis cases using orthorgonal 

design. Were the false negative rate allow to variant then orthorgonal design would produce many 

more diagnosis cases and so would require a larger sample size to achieve desirable statistical 

power. To reduce the cognitive load placed on veterinarians, we blocked these diagnosis cases into 

four blocks and randomly present one block of diagnosis cases (10 diagnosis cases) to each 

veterinarian. Within each block, these diagnosis cases are in 5 pairs. Questions within a pair 

present the same information except for test result. That is, in each pair of diagnosis cases, one test 

result is positive and another test result is negative, while other information given is the same. On 

each screen, veterinarians answer a pair of diagnosis cases. To address concerns about any order 

effect (Rottman 2017), we randomize the order of 5 pairs of diagnosis cases as well as the order of 

questions within each pair.  

At the end of section A, a confirmation question appears whenever respondents' choices are 

illogical (Hammitt and Herrera-Araujo 2018). In any pair of diagnosis cases, if respondents' 

estimates given negative test results exceed their estimates given positive test results, then a 

confirmation question was displayed asking whether respondents would like to modify their initial 

 

Figure 13 Example question in section A 
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estimates. If they chose "Yes, I would like to revise my initial estimates", then the pair(s) of 

questions with their initial estimates were be presented to modify; otherwise, the survey proceeded 

to the next section.  

2.3.2. DESIGN OF SECTION B 

We present treatment choice questions in the context of suspected mastitis cases on dairy 

farms. In a suspected mastitis case, we introduce disease likelihood as a context variable which is 

measured by the probability that the cow has mastitis (e.g., 60%). Respondents have two treatment 

options which differ across five attributes: treatment cost, potential to increase antibiotic resistance, 

the cure rate of mastitis after treatment, and benefits associated with a cure. The benefits consists 

of animal welfare improvement and economic loss avoided. We provide a “No treatment” option 

so that they can also choose not to treat the cow. We make two assumptions. First, the withdrawal 

times for the treatment options are the same. Second, if the cow does not have mastitis, the signs 

observed will disappear themselves and treatment provides no benefit. Figure 14 shows an 

example question in section B. 

 

Disease likelihood and treatment choice set varies across treatment choice questions. To 

embed a context variable into the discrete choice experiment design, we use a two-step approach 

similar to that in Molin and Timmermans (2010). First, we generate a regular discrete choice 

Figure 14 Example question in Section B 
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experiment using the five attributes associated with treatment alternatives specified above. D-

optimal experiment design generates 24 choice sets where treatment cost, the mastitis cure rate, 

animal welfare improvement, loss avoided, and potential to increase antibiotic resistance varied 

across choice sets. In the second step, instead of generating a set of context descriptions and 

nesting the choice set derived from the first experiment under each context description (Molin and 

Timmermans 2010), we randomly select disease likelihood level from {10%, 20%, 30%, 40%, 50%, 

60%, 70%, 80%, 90%} for each choice set and for each respondent. The adjustment sustains that 

context descriptions are independent of attribute profiles. We consulted veterinarians about 

reasonable levels for attributes and Table 4 lists attributes and context variable disease likelihood 

and the levels varied in the experiment.  

Table 4 Attributes and context variables and levels used in the discrete choice experiment 

 

The treatment cost is chosen from {$20, $80, $140, $200}, and the potential to increase 

antibiotic resistance can be none, low or high. The cure rate of mastitis is chosen from {20%, 50%, 

80%, 100%}, and animal welfare improvement can be low or high. The economic loss avoided is 

chosen from {$250, $450, $650, $850}.  

Variables Levels 

Attributes  

Treatment cost $20, $80, $140, $200 

Potential to increase antibiotic resistance None, Low, High 

Cure rate 20%, 50%, 80%, 100% 

Animal welfare improvement Low, High 

Economic loss avoided $250, $450, $650, $850 

Context variables  

Disease likelihood From 10% to 100% in increments of 10% 



75 

 

In order to reduce the cognitive load placed on respondents, we block 24 discrete choice 

questions into 4 blocks. Therefore each respondent is randomly presented with six treatment 

decision-making cases. Also, the order of the six cases is random within a block. 

2.3.3. INCENTIVES FOR RESPONDENTS  

We made a $30 completion payment to each qualified respondent. In addition, veterinarians 

can be rewarded with an additional $30 based on their answers in one diagnosis case that is drawn 

randomly from all diagnosis cases in Section A (called "the selected case"). In order to incentivize 

veterinarians to form probabilistic estimates with care and report their estimate truthfully, we 

applied an incentive-compatible belief elicitation approach named binarized scoring rules (Hossain 

and Okui 2013). Compared with elicitation approaches that assume risk neutrality, such as 

quadratic scoring rule and outcome matching approaches (Trautmann and van de Kuilen 2015), 

binarized scoring rule allows deviations from risk neutrality. We explicitly state that reporting true 

belief maximizes the probability of winning the additional $30. However we do not include 

quantitative information about binarized scoring rule, such as how their answers determine the 

probability of winning, in the survey instruction. This is because Danz et al. (Danz, Vesterlund and 

Wilson 2020) found that instructions without quantitive information outperform instructions with 

the information (Danz et al. 2020). We provide a link to the detailed payment rule for curious 

respondents
8

. 

2.4. DATA AND SUMMARY STATISTICS 

We received 241 complete qualified responses, of which 119 are to the large animal disease 

management version, and 122 are to the small animal disease management version. To put these 

numbers in perspective, there are 75,349 veterinarians in private clinical practice in the United 

 
8

 We provide payment rule detailed explanation in Appendix D. 
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States. Among these practicing U.S. veterinarians, about 75% specialize in companion animal 

diseases exclusively or predominantly and only 5.6% specialize in food animal disease exclusively 

or predominantly (American Veterinary Medical Association 2021). However, we recruit 

comparable sample sizes from large and small animal veterinarian populations since we are 

interested in comparing disease management decisions across practice areas. Table 5 summarizes 

some sample descriptive statistics.  

Table 5 Mean (standard deviations) values of demographic and attitudinal characteristics of small 

and large animal veterinarian sample 

                               
Large animal vets 

(total obs=119) 

Small animal vets 

(total obs=122) 
Total 

Age 
42.50 

(13.94) 

52.12 

(10.19) 

47.37 

(13.09) 

Working Experience 
14.67 

(11.17) 

23.21 

(7.35) 

19.00 

(10.34) 

Female 
0.47 

(0.50) 

0.59 

(0.49) 

0.53 

(0.50) 

Importance of animal welfare [0-100 

scale: higher number means higher 

importance] 

84.34 

(15.20) 

83.45 

(16.21) 

83.89 

(15.69) 

Acceptance of antibiotic usage [0-100 

scale: higher number means higher 

acceptance] 

65.72 

(19.09) 

81.57 

(17.72) 

73.75 

(20.01) 

 

Mean age is 43 and 52 for large and small animal veterinarians respectively. Consistently, 

average age is 44.3 among veterinarian population (USA Data 2019). Average work experience 

among the large animal veterinarian sample is 8 years lower than that among small animal 

veterinarians sample. Consistent with the fact that male are majorities in large animal veterinarians 

while more than half of small animal veterinarians are female (American Veterinary Medical 

Association 2021), the percentages of female veterinarians are 46% and 59% in our corresponding 
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sub-sample.
 9

 We observe minor differences in the importance placed on animal welfare across 

veterinarian groups. Small animal veterinarians report higher acceptance of antibiotic usage in 

practice compared with large animal veterinarians. 

Given false positive rate is 20% and false negative rate is 10%, Figure 15 depicts differences 

between Bayesian posteriors and veterinarians' posteriors across prevalence rates. Fixed priors at 

50%, Figure 16 illustrates a comparison between Bayesian posteriors and veterinarians' posteriors 

across test information accuracy (i.e., false positive rate in our setting). 

Figure 15 Comparison between Bayesian posteriors and veterinarians' posterior across priors 

  

 

 

 

 

 

 
9

 Large animal practice may place high demands on physical strength. Our recruitment numbers 

are consistent with the prevalence of younger males in large animal practice (Wang, Hennessy and 

Park 2016). 

a. With positive test result 

r 

pr 

b. With negative test result 

pr 

r 
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Figure 16 Comparison between Bayesian posteriors and veterinarians' posteriors across test 

information accuracy 

  

Dashed lines in Figure 15 illustrate that Bayesian posteriors increase non-linearly as 

prevalence rates increase. Solid lines depict the 45º bisector that would result were test information 

ignored. The probabilistic revision in response to new test information can be annotated as "r" 

given prevalence rate "pr". The revision decreases as the prior moves from a moderate level 

towards two extremes, i.e., zero and one. This is because a moderate prior contains less 

information when compared with an extreme prior. The same test result brings a larger 

information shock to the respondents with moderate prior and therefore induces a larger revision. 

That explains the concave Bayesian posteriors line in Figure 15.a and the convex Bayesian 

posteriors line in Figure 15.b.  

The box and whisker plots show statistics of probability estimates by veterinarians. The 

discrepancies between veterinarians' posteriors and Bayesian posteriors vary. In Figure 15, when 

priors are close to zero then median veterinarians' posteriors exceed Bayesian posteriors, while 

when priors are close to one then median veterinarians' posteriors are less than Bayesian 

posteriors. This is consistent with base rate neglect bias as depicted in Figure 12. In both Figure 

16.a and Figure 16.b, after receiving test results, veterinarians' revisions are less than prescribed by 

a. With positive test result b. With negative test result 
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Bayes' theorem. This finding suggests that veterinarians may underuse information from test 

results, as depicted in Figure 11.  

2.5. EMPIRICAL RESULTS 

2.5.1. EMPIRICAL RESULTS REGARDING DIAGNOSIS DECISIONS 

In this section, we will first test three hypotheses proposed in section 2.1, then investigate the 

heterogeneity in belief updating across veterinarian characteristics and finally do robustness check.  

2.5.1.1. Underinference and base rate neglect 

Recall the estimable equation (2.9) which summarizes the biases of probabilistic updating 

biases (Grether 1980). The dependent variable log posterior odds, ln[ ( | ) / ( | )]D I ND I  , can be 

calculated using ln[ / (1 )]v vp p− , where vp  values are respondents' estimates in each diagnosis 

case. The first independent variable log likelihood ratio of observing I, ln[ ( | ) / ( | )]p I D p I ND , is a 

function of test accuracy (i.e., false positive rate fp  and false negative rate fn ). Whenever the 

test result is positive, the log likelihood ratio of observing I equals ln[(1 ) / ]fn fp− ; conversely, the 

log likelihood ratio equals ln[ / (1 )]fn fp−  whenever the test result is negative. The second 

independent variable log prior odds, ln[ ( ) / ( )]p D p ND  can be calculated using ln( /1 )pre prep p− , 

where prep  is the prevalence rate in each diagnosis case. Column (1) in Table 6 shows the 

regression result of the baseline model. 
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Table 6 Underinference and base rate neglect in diagnosis decisions 

 (1) Baseline model (2) Allow heterogeneity across posteriors 

and test accuracy 

Log prior odds 0.447*** 0.137 

 [0.410,0.484] [-0.177,0.450] 

Log likelihood ratio 0.718*** 0.499*** 

 [0.694,0.741] [0.189,0.809] 

Extreme posteriors # 

Log prior odds 

 0.373** 

  [0.058,0.688] 

Extreme posteriors # 

Log likelihood ratio 

 0.213 

  [-0.095,0.521] 

fp=0.05 # Log likelihood 

ratio 

 -0.031 

  [-0.103,0.040] 

fp=0.1 # Log likelihood 

ratio 

 -0.024 

  [-0.099,0.051] 

fp=0.2 # Log likelihood 

ratio 

 -0.033 

  [-0.113,0.048] 

Constant 0.340 0.364 

 [-0.388,1.067] [-0.336,1.064] 

Individual Fixed Effects Yes Yes 

Observations 2396 2396 

   

Notes: (1) 95% confidence intervals in square brackets 

(2) * p<0.05, ** p<0.01, *** p<0.001 

 

The coefficient estimate of log likelihood ratio ĉ  and coefficient estimate of log prior odds 

d̂  are 0.718 and 0.447 respectively, which do not deviate too much from estimates in extant 

experiment evidence. In a meta-analysis of incentivized experiments, mean ĉ  is found to be 0.86 

and the standard error is 0.078; mean d̂  is 0.434 and the standard error is 0.086 (Benjamin 

2019). T-test rejects the null hypothesis H0 that 1c d= =  at 1% level. The regression result shows 

that veterinarians' belief updating treats the test information as if it is less informative and put less 

weight on priors than Bayes’ theorem suggests should be the case. In other words, we find 
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evidence for underinference bias and base rate neglect bias in veterinarians’ diagnostic belief 

updating.  

To provide some insights on which theory (conservatism or extreme belief aversion) is a more 

reasonable explanation for underinference bias in our setting, we investigate heterogeneity across 

posteriors. Dummy variable ExtrmP  indicates whether Bayesian posteriors in a diagnosis case are 

extreme. DuCharme (1970) found that when the log Bayesian posterior odds is between -1 and 1 

people’s posterior odds is virtually consistent with Bayesian posterior odds, while when Bayesian 

posterior odds is more extreme than 1 or -1 people’s posterior odds are less extreme than 

Bayesian posteriors. Therefore we define ExtrmP  to be one whenever Bayesian posterior odds is 

between -1 and 1, and to be zero otherwise. We interact ExtrmP  with log prior odds as well as log 

likelihood ratio to allow heterogeneous updating processes in cases with and without extreme 

posteriors.  

In addition, some argue that underinference is more severe when test information is more 

accurate (Benjamin 2019). Conservatism does not provide a clear reason for this tendency, while 

extreme belief aversion can explain the more severe underinference given more accurate test 

information. We investigate underinference across different test information accuracy. Dummy 

variables 1 2 3,  ,  fp fp fp  indicate whether false positive rate is 5%, 10%, 20% respectively. For 

example, 1fp  equals one when false positive rate is 5%, equals zero otherwise. We interact of log 

likelihood ratio with 1fp , 2fp , and 3fp  to estimate the differences in underinference compared 

with baseline false positive rate 30%.  

We jointly test heterogeneity across posteriors and across test accuracy. Were extreme belief 

aversion to play a role in the information processing, then we expect the coefficient of interactions 
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term to be significantly negative values. Conversely insignificant interaction coefficients support that 

conservatism is a more convincing explanation. 

Column (2) in Table 6 provides the regression result. The interaction between ExtrmP  and 

log likelihood ratio does not have a significant effect, suggesting that underinference parameter c 

does not vary across extreme posterior cases and non-extreme posterior cases. Surprisingly, the 

coefficient of interaction between ExtrmP  and log prior odds is significantly positive, suggesting 

that veterinarians have more severe base rate neglect in cases without extreme Bayesian posteriors. 

The coefficient on interactions between test accuracy dummy variables and log likelihood ratio is 

not significant, suggesting that we do not have evidence supporting increased underinference 

severity due to increased test information accuracy. Therefore, we do not have evidence favoring 

extreme belief aversion theory. Hence, 

Summary 1 Veterinarians underuse their initial beliefs and underinfer from the new test 

information in diagnoses. We have no evidence support that underinference bias varies across 

Bayesian posteriors and test accuracy. Therefore among the two main theories explaining why 

underinference exists, conservatism compared to extreme belief aversion theory is more likely to 

be a possible explanation in our setting. 

2.5.1.2. Prior-biased inference and preference-biased inference  

Following Charness and Dave (2017), we define ConfT  in specification (2.10) as one when 

prevalence rate exceeds 0.5 and the test result is positive, or when prevalence rate is smaller than 

0.5 and the test result is negative; otherwise, ConfT  equals zero. In specification (2.11), 

Goodnews  equals one whenever the animal tested negative, otherwise Goodnews  equals zero. 

Column (1)-(2) in Table 7 presents empirical results regarding prior-biased inference and 

preference-biased inference. 



83 

 

Table 7 Prior-biased inference and preference-biased inference 

 (1)  

Prior-biased 

inference 

(2)  

Preference-biased 

inference 

(3)  

Prior-biased 

inference across 

practice areas 

(4)  

Preference-biased 

inference across 

practice areas 

Log prior odds 0.407*** 0.447*** 0.254*** 0.326*** 

 [0.347,0.466] [0.410,0.485] [0.169,0.339] [0.273,0.378] 

Log likelihood ratio 0.689*** 0.727*** 0.755*** 0.770*** 

 [0.650,0.727] [0.624,0.830] [0.698,0.811] [0.623,0.916] 

Confirming test result * Log 

likelihood ratio 

0.074*  0.132**  

 [-0.003,0.151]  [0.021,0.243]  

Good news * Log likelihood ratio  -0.018  0.075 

  [-0.216,0.180]  [-0.208,0.359] 

Small animal vets * Log prior odds   0.302*** 0.242*** 

   [0.187,0.418] [0.170,0.314] 

Small animal vets * Log likelihood 

ratio 

  -0.132*** -0.096 

   [-0.208,-0.057] [-0.296,0.104] 

Small animal vets with confirming test 

results * Log likelihood ratio 

  -0.113  

   [-0.264,0.038]  

Small animal vets with Good news * 

Log likelihood ratio 

   -0.162 

    [-0.548,0.223] 

Constant 0.329 0.323 0.297 0.220 

 [-0.394,1.052] [-0.429,1.075] [-0.356,0.950] [-0.483,0.922] 

Individual Fixed Effects Yes Yes Yes Yes 

Observations 2396 2396 2396 2396 

Notes: (1) 95% confidence intervals in square brackets 

(2) * p<0.05, ** p<0.01, *** p<0.001 
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Column (1) presents the result of specification (2.10). The interaction between confirming test 

results and log likelihood ratio has a significantly positive effect, suggesting that veterinarians have 

prior-biased inference. Veterinarians treat information that confirms their priors as if it is more 

informative compared with the test information that disconfirms priors. Column (2) presents the 

result of specification (2.11). The effect of interaction between good news and log likelihood ratio 

is not significant, suggesting that veterinarians do not have preference-biased inference. 

Veterinarians do not update asymmetrically in response to positive and negative test results. This is 

consistent with the argument that preference-biased inference may occur in ego-relevant belief 

updating while they may be absent in belief updating about external states (Barron 2021). 

Therefore, 

Summary 2 We have evidence supporting prior-biased inferences. Veterinarians update their 

beliefs more strongly in response to new test information that is consistent with their initial beliefs 

than that contradicts their initial beliefs. We do not find evidence for preference-biased inferences 

in diagnoses. 

2.5.1.3. Heterogeneity across veterinarian groups 

We investigate heterogeneous updating across veterinarian groups. We create a dummy 

variable SAV  to indicate whether veterinarians are specialized in small animal disease 

management. We add SAV and interactions between SAV and the two key variables (i.e., log 

prior odds and log likelihood ratio) on the basis of specification (2.9). We also allow heterogeneity 

across practice areas in terms of confirmatory bias. Column (3) in Table 7 shows the regression 

result. The coefficient of three-way interaction in column (3) is not significant. While for the whole 

sample we find evidence for confirmatory bias, the confirmatory bias is not significantly different 

between small and large animal veterinarians. In column (4), we investigate whether small and large 

animal veterinarians are heterogeneous in terms of preference bias. The findings show that we do 



85 

 

not have evidence for preference-biased inference for overall veterinarians and neither do we 

observe differences between small and large animal veterinarians in preference-biased inference. 

Both large animal veterinarians and small animal veterinarians display underinference bias and 

base rate neglect bias. However, they are different in the extent of being biased. The main effects 

of log prior odds and log likelihood ratio are significantly less than unity. These two coefficients 

measure weights on priors and test information placed by large animal veterinarians. The 

coefficient on interaction between SAV and log likelihood ratio is significantly negative, suggesting 

that small animal veterinarians update less strongly in response to test information compared with 

large animal veterinarians. However, the interaction between SAV and log prior odds has a 

significant positive effect. This evidence illustrates that small animal veterinarians show less severe 

base rate neglect bias than do large animal veterinarians. The findings are robust when we allow 

heterogeneity across posteriors and test accuracy. See Table 11 in appendix B. Furthermore, while 

some two-way interactions that capture overall heterogeneity across posteriors and test accuracy are 

significant, three-way interactions in See Table 11 are insignificant. Therefore the regression results 

show that for the overall veterinarian sample we find evidence for heterogeneity across posteriors 

and test accuracy; however, the heterogeneity is not significantly different between small and large 

animal veterinarians.  

In order to investigate heterogeneity in belief updating across veterinarian characteristics, we 

add to specification in Table 7 column (3) characteristic dummies ( )iD x  and their interactions 

with key explanatory variables (i.e., log prior odds and log likelihood ratio). See detailed 

explanations and regression results in appendix A1 and Table 13. Experienced veterinarians 

perform worse in managing priors and test information when compared with their less experienced 

colleagues. Small animal veterinarians make better use of priors but do update less in response to 

test information than do large animal veterinarians. Veterinarians who care more about animal 
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welfare have less underinference bias. We depicted the explanatory power of priors, test 

information and veterinarians’ characteristics in Figure 17.  

Figure 17 Decomposition of veterinarians’ probabilistic estimates across veterinarian characteristics 

 

We can see how variations in priors or test information can explain the variations in 

veterinarians’ estimates. Across veterinarian populations, test information’s total effects is greatest 

and account for more than 60% of all the explained information in veterinarians’ estimates. Test 

information shows largest importance to small animal veterianrians’s diagnosis while the 

importance of test information decreases in large animal veterinarian sample. Prior is ranked 

second or third in terms of determining veterinarians’ diagnosis probability. Compared with test 

information, veterinarians, especially those specializing in large animal health, treat prior less 

important in diagnosis. To sum up, 

Summary 3 Small animal veterinarians underinfer from test information more severely relative 

to large animal veterinarians, while small animal veterinarians show less severe base rate neglect 
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bias than do large animal veterinarians. More experienced veterinarians perform worse in 

managing priors and test information compared with their less experienced colleagues. Moreover, 

veterinarians who attach higher importance to animal welfare in their practice show less 

underinference bias.  

Recall that we use a confirmation question to inform illogical estimates in diagnosis decisions and 

allow revisions of initial answers. Forty-six out of 241 respondents make illogical estimates and then 26 

out of 46 respondents make revisions. We do robustness check robustness using revised data in 

appendix A2 and the findings remain largely unchanged. 

2.5.2. EMPIRICAL RESULTS REGARDING TREATMENT DECISIONS 

We applied mixed logit model to analyze veterinarian’s treatment choices. We dummy code 

context variable disease likelihood. When veterinarians believe that the probability of the animal 

having disease is no more than 30%, P(disease)_Low equals one, otherwise P(disease)_Low equals 

zero. When veterinarians believe that the probability that the animal has the disease is greater than 

30% but no more than 60% then P(disease)_Medium equals one, otherwise P(disease)_Medium 

equals zero. The baseline disease likelihood level is “greater than 60%”. Note that we estimate the 

effect of disease likelihood by adding its interactions with alternative attributes.  

Among attributes of treatment options, we treat treatment cost, economic loss avoided, and 

cure rate as continuous variables and denote them as Cost, LossAvd, and CRate respectively. 

Other attributes are treated as category variables. There are two approaches to handle category 

variables in discrete choice experiment literature: effects coding or dummy coding. Dummy coding 

creates N-1 dummies for an attribute with N qualitative levels. Each dummy equals one whenever 

the qualitative level is present and equals zero otherwise. All dummies equal zeros for the 

reference qualitative level. Effect coding differs in coding reference qualitative level. For reference 

qualitative level, the N-1 varibales equals -1 rather than 0. According to the discussion in Mariel et 
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al. (2021), effects coding is not superior to dummy coding but it makes results more complex to 

explain in our setting. Therefore we adopted dummy coding for the remaining attributes. For 

attribute potential to increase antibiotic resistance, we generate two dummies AR_low and 

AR_high and set them equal to one whenever the attribute level is “Low” and “High” respectively. 

Naturally the baseline level is “None”. Regarding animal welfare improvement, AW_high indicates 

that the treatment achieves a high level of animal welfare improvement. Low level of animal 

welfare improvement is the corresponding baseline. Table 8 listed all attributes, the corresponding 

variables and expected effection direction. We expected attributes pertaining to cost: Cost, 

AR_low, and AR_high have negative impact on utilities, and attributes pertaining to benefits: 

AW_high, LossAvd and CRate increase utilities. 

Table 8 Attributes, corresponding variables and expected effect directions. 

Attribute Variable Expected effect direction 

Treatment cost Cost - 

Potential to increase antibiotic resistance 

AR_low 

AR_high 

- 

- 

Cure rate CRate + 

Animal welfare improvement AW_high + 

Economic loss avoided LossAvd + 

 

First, we determine how veterinarians process treatment uncertainty in their treatment choices. 

That is, we need to decide whether: (1) attribute cure rate influence treatment choices; (2)  

expected benefits (i.e., interactions between cure rate and benefits) have significant explanatory 

power; (3) attribute cure rate should be treated nonlinearly; and (4) attribute cure rate has direct 
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disutility for veterinarians. Therefore we explore various possible utility function forms. Table 18 

shows our multinomial logit (MNL) estimates.  

Column (1) estimation excludes attribute cure rate and serves as a baseline model for the 

remaining column estimations. The underlying assumption is that attribute cure rate does not 

influence treatment decisions. Column (2) estimation assumes veterinarians use expected benefits 

to make treatment decisions and so includes interactions between cure rate and benefits (LossAvd  

and AW_high). In column (3) in addition to interaction, we add standalone LossAvd and 

AW_high, allowing benefits provide direct utilities that does not depend on uncertainty. In 

columns (4) and (5), we add quadratic of interactions between cure rate and benefits on the basis of 

column (2) and (3) to relax linear effect assumption on uncertainty. In Column (6)-(8), we add 

separate cure rate to allow uncertainty provide direct disutility on the basis of columns (1)-(3). 

According to AIC statistics, probabilistic attribute cure rate indeed have explanatory power for 

veterinarian’s treatment choices. In addition, regression (8) results in smallest AIC, suggesting that 

the corresponding specification fit the data best. The coefficient of interaction between cure rate 

and AW_high is significantly positive, so is the coefficient of cure rate. This suggests that expected 

benefits increase veterinarians’ utility. In addition, certainty of treatment (cure rate) can provide 

utility directly. 

On the basis of specification (8), we apply mixed logit model to allow heterogeneous 

preferences across veterinarians. Table 9 shows the results of Monte Carlo Likelihood estimations 

with Halton draws.  
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Table 9 Mixed logit estimation: treatment utility as a function of treatment characteristics 

 (1) (2) (3) (4) 

Cost -0.005*** -0.004*** -0.004*** -0.004*** 

Cost *P(disease)_Low -0.004*** -0.005*** -0.009*** -0.008*** 

Cost *P(disease)_Medium -0.002 -0.002 -0.004*** -0.004*** 

AR_low 0.222 0.198 0.237 0.224 

AR_low *P(disease)_Low   -0.357 -0.316 -0.388 -0.375 

AR_low * P(disease)_Medium  -0.220 -0.208 -0.303 -0.291 

AR_high -1.347*** -1.432*** -1.291*** -1.332*** 

AR_high * P(disease)_Low  -0.137 -0.077 -0.452 -0.412 

AR_high * P(disease)_Medium  -0.014 0.027 -0.122 -0.093 

CRate 4.598*** 4.440*** 4.644*** 4.624*** 

CRate * P(disease)_Low  -4.434*** -4.366*** -4.735*** -4.743*** 

CRate * P(disease)_Medium -1.749*** -1.602*** -1.429** -1.437*** 

AW_high  0.201 0.307 0.092 0.209 

AW_high * P(disease)_Low  -0.030 -0.136 0.101 -0.025 

AW_high * P(disease)_Medium  0.206 0.101 0.480 0.353 

LossAvd 0.001 0.001*** 0.002* 0.001*** 

LossAvd * P(disease)_Low  -0.003*** -0.003** -0.004*** -0.004*** 

LossAvd * P(disease)_Medium -0.000 -0.000 -0.000 -0.000 

CRate * AW_high 1.163** 1.023* 1.251** 1.116** 

CRate * AW_high * P(disease)_Low -0.500 -0.303 -0.440 -0.287 

CRate * AW_high * P(disease)_Medium -1.009 -0.873 -1.344 -1.188 

CRate * LossAvd 0.000 0.001*** -0.000 0.000 

CRate * LossAvd * P(disease)_Low 0.002 0.001 0.004** 0.003** 

CRate * LossAvd * P(disease)_Medium -0.001 -0.001 -0.000 -0.001 

Treat actively 0.112 0.201 0.525 0.552 

variance(Cost) 0.001*** 0.001*** 0.355*** 0.004*** 

variance(LossAvd)  0.000***  0.000 

variance(CRate * LossAvd)  0.000**  0.000 

variance(Treat actively)   2.255*** 2.207*** 

Observations 4,338 4,338 4,338 4,338 

Log lik. -983.1 -980.4 -957.5 -958.4 

 

As explanatory variables treatment cost (Cost), economic loss avoided (LossAvd) and 

interactions between cure rate and economic loss avoided (LossAvd*Crate) have specific signs in 

MNL estimates, log-normal distributed is an appropriate choice (Mariel et al. 2021). Since the log-

normal distribution coefficient is always positive but treatment cost have obvious negative effect on 

utilities, we multiply treatment cost by (-1) in column(1)-(4) estimation. In column (2), we 
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additionally assume log-normal distribution for coefficients of LossAvd and LossAvd*CRate. In 

the regressions, we include a dummy treat actively which equals one when veterinarians choose 

non-status quo alternatives, and equals zero when veterinarians choose no treatment options. In 

column (3), the coefficient of this dummy is assumed to be uniform distributed on the basis of 

column (1) specification. Column (4) assumes random parameters specified in both column (2) 

and (3) and is the most unrestrictive model estimated in Table 9. When we assume random 

parameters for other explanatory variables, the standard deviations are insignicant or the regression 

cannot converge due to data limitations. According to log likelihood statistics, column (3) model 

show better model fit than others.  

To facilitate further interpretation, we write the specification in column (3) as following. 

 
0 1 2 3 4 5 6

7 8 9

_ _ _

* _ * , ijn

U Cost AR low AR high CRate AW high LossAvd

CRat Treat ace AW high CRate LossA vv ti lyd e

      

   

= + + + + + +

+ + + +
 (2.17) 

where  

 
, ,( )_ ( )_   t 1,2,...,8.t t t low t mediumP disease Low P disease medium   = + + =  (2.18) 

Note that the coefficient mean varies with the magnitude of disease likelihood. When the 

probability that the animal has the disease is low, the coefficient mean is 
,i i low + . When When 

the probability that the animal has the disease is medium, the coefficient mean is 
,i i medium + . 

When the probability of the animal has the disease is high, the coefficient mean is i . The 

willingness to pay (WTP) for one unit improvement in attributes (excluding treatment cost) can be 

obtained by  

 
1

  t 2,...,8.tWTP



= − =  (2.19) 

In Column (3), the treatment cost coefficient is significantly negative and its standard deviation 

is significant. This finding supports the view that the heterogeneity exists in veterinarian’s 
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preferences about treatment cost. Unobserved factors may contribute to the heterogeneity, such as 

veterinarians’ risk attitudes and clients average income. With more risk aversion and higher clients 

average income, veterinarians may attach less disutility to treatment cost. Furthermore, preference 

regarding treatment cost interacts with disease likelihood. As might be expected, the disutility of 

treatment cost is largest when disease likelihood is in the P(disease)_Low category, declines when 

disease likelihood is in the P(disease)_Medium category, and is smallest when veterinarians 

believes that the animal is very likely to have disease.  

The cure rate coefficient is significantly positive. The effect of cure rate depends on context 

variable disease likelihood. When veterinarians make treatment decisions in the low disease 

likelihood context, cure rate provide smallest direct utility. When disease likelihood increases then 

the direct utility from cure rate increases. The LossAvd coefficient is significantly positive, while 

the interactions between LossAvd and P(disease)_Low is significantly negative. This suggests that 

when animals are very unlikely to have the disease then the utility from potential benefit associated 

with treatment is lower. 

The other coefficient signs are reasonable. For instance, the AR_high coefficient is 

significantly negative. Compared with treatment alternatives that have no potential to increase 

antibiotic resistance, veterinarians are less likely to choose treatment alternatives that have high 

potential to increase antibiotic resistance. The coefficient of benefit variables, AW_high is positive. 

This is consistent with expectation that veterinarians are more likely to prescribe antibiotics when 

treatment comes with more benefits. Preferences pertaining to antibiotic resistance cost and animal 

welfare improvement are not sensitive to disease likelihood since the corresponding interactions 

coefficients are insignificant. Notably, the dummy treat actively coefficient is insignificant but its 

standard deviation is significant. Large heterogeneity among veterinarians exists in the preference 

of treating actively in suspected disease cases.  
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Once proved that disease likelihood affect treatment choices, we calculate the WTP for one 

unit improvement in attributes (excluding treatment cost) following formula (2.19). Table 10 

shows the results. As mentioned above preferences associated with antibiotic resistance cost, 

animal welfare improvement and expected economic loss avoided do not interact with disease 

likelihood, we mainly focus on WTP for improvement in cure rate and economic avoided. The 

WTP for a cure rate increase depends on disease likelihood. The higher the probability that the 

animal has the disease, the higher value assigned to cure rate increase. Similarly, the WTP for a 

economic loss avoided increase increases as disease likelihood increases.  

Table 10 Mean WTP estimates (in US dollars) in different disease likelihood situations 

 Low disease 

likelihood (p<30%) 

Medium disease 

likelihood (30%<p<60%) 

High disease likelihood 

(p>60%) 

AR_low -11.62 -8.25 59.25 

AR_high -134.08 -176.63 -322.75 

CRate -7.00 401.88 1161.00 

AW_high  14.85 71.50 23.00 

LossAvd -0.15 0.25 0.50 

CRate * AW_high 62.38 -11.63 312.75 

CRate * LossAvd 0.31 0.00 0.00 

 

Summary 4 Veterinarians are less likely to use treatment alternatives that comes with higher 

treatment cost. Treatment cost disutility increases as disease likelihood increases. Treatment 

certainty provide separate utility directly. In addition, the directly utility decreases as the disease 

likelihood increases. Similarly, economic loss avoided associated with treatment has positive effects 

on utility and the effect reduces as disease likelihood increases. Veterinarian’s preferences towards 

antibiotic resistance cost and animal welfare improvement do not depend on disease likelihood. 

2.6. CONCLUSION 

Doctors are usually not certain when making a diagnosis of a disease but make probabilistic 

assessments of the disease based on evidence available. How doctors make such probabilistic 
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assessment and how uncertain assessment affects treatment decisions are very important factors in 

efficient disease management which includes the efficient use of antibiotics. However, there is very 

limited study and understanding regarding diagnosis decision making when there is incomplete 

information. We study the issue with veterinarians’ decision making. We model a diagnosis as a belief 

updating process whereby veterinarians form their initial probabilistic beliefs (priors) about animal 

health conditions based on initial inspections and revise their beliefs in response to test results 

(new information). The efficiency of information management by veterinarians directly affects the 

efficiency of antibiotic treatment prescription in subsequent steps.  

In a survey to veterinarians in practice across the United States we asked for probabilistic 

assessments in stylized disease diagnosis settings. Instead of following Bayes' theorem, veterinarians 

deviate from efficient belief updating. Veterinarians make less use of priors and follow-up test 

information than prescribed by Bayes' theorem. These deviations have been documented in 

laboratory experiments, named base rate neglect bias and underinference bias respectively. In 

addition, veterinarians update their beliefs more strongly in response to test information that 

confirms their priors than test information that contradicts their priors.  

Furthermore, we investigate the effect of diagnosis on veterinarian’s treatment choices using 

discrete choice data collected in the survey. The findings support the view that diagnosis biases 

affect treatment choices. We define disease likelihood in treatment decisions as the posteriors in 

diagnosis decisions. Disease likelihood affects veterinarians preferences towards treatment 

attributes, such as treatment cost, cure rate and benefits. The findings that biases exist in diagnosis 

decisions and that diagnosis affects treatment choices jointly imply that antibiotic prescriptions 

based on biased diagnoses is likely to be inefficient. 

Combining the findings that biases exist in diagnosis decisions and that diagnosis affect 

treatment choices, the veterinary oversight requirement as an approach to relying on veterinarians 
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for promoting judicious antibiotic use may fail to manage on-farm antibiotic consumption 

efficiently. Training programs for veterinarians to improve their information management 

capability may complement veterinary oversight requirement. To address heterogeneous updating 

biases across practice areas, training programs should vary. Since large animal veterinarians 

perform better in test information use but worse in the use of priors than small animal 

veterinarians, training should emphasize the importance of priors for large animal veterinarians but 

underline test information use for small animal veterinarians. Furthermore, our findings suggest 

recurrent training may promote efficiency of diagnosis and so antibiotic stewardship. This is 

because, and contrary to the evidence that experience improves information management 

(Camerer 1987), experienced veterinarians are found to deviate more from Bayes’ rule in the use of 

priors and test information than do their less experienced colleagues.  
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APPENDIX A 

 

Additional text content 
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A1. BELIEF UPDATING BIASES ACROSS VETERINARIAN CHARACTERISTICS 

Table 12 lists characteristic dummies including genders, work experience, and attitudes 

towards animal welfare and antibiotic usage. Female equals one whenever veterinarians choose 

“female” in the gender question, and equals 0 otherwise. ExpVets indicates veterinarian’s 

experience. ExpVets equals one whenever a large (small) animal veterinarian's work year is greater 

than median work years among large (small) animal veterinarian sample, otherwise ExpVets is 0. 

Welf indicates veterinarian’s view point about animal welfare. When a large (small) animal 

veterinarian attaches a higher importance to animal welfare than median level of importance 

among large (small) animal veterinarian sample, Welf is 1; otherwise Welf is 0. Ant represent the 

acceptance of antibiotic usage in their practice. When a large (small) animal veterinarian reports a 

higher acceptance of antibiotic usage than median level of acceptance among large (small) animal 

veterinarian sample, Ant is 1, otherwise Ant is 0.  

Table 13 presents the regression results. Column (1) in Table 13 estimates specification 

considering heterogeneity across all characteristics using the whole sample, while columns (2) and 

(3) allow full heterogeneity as column (1) but using large and small animal veterinarian samples 

respectively. The interaction between ExpVet and log likelihood ratio is significantly negative 

across columns (1)-(3), suggesting that veterinarians with more practice experience have more 

severe underinference bias. In column (2) the interaction between ExpVet and log likelihood ratio 

has a significantly negative effect, suggesting that experienced large animal veterinarians place less 

weight on priors than do their less experienced counterparts. In column (3) the coefficient on the 

interaction of Welf and log likelihood ratio is significantly positive, suggesting that small animal 

veterinarians who attached high importance to animal welfare respond to test information more 

strongly than do those who report less importance. Columns (4)-(6) shows that findings in column 

(1)-(3) persist without characteristics that do not have significant coefficients in the full specification.  
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A2. ROBUSTNESS CHECKS FOR BELIEF UPDATING BIASES 

In diagnosis cases where all information given is the same except test results, some 

veterinarians report higher probability estimates given negative test results than probability 

estimates given positive test results. We inform any  veterinarians that make illogical estimates and 

ask whether they would like to revise their initial answers. Forty-six responses triggered 

confirmation questions and twenty-six respondents subsequently revised their initial estimates. 

Therefore, we updated with revised estimates for the fifteen respondents and kept the initial 

estimates for the five respondents who insisted on their initial estimates. Table 14-Table 17 show 

the regression results using revised data. The findings remain largely unchanged compared to when 

using initial data.  
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APPENDIX B 

 

Tables for robustness check 
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Table 11 Belief updating heterogeneity across veterinary practice areas 

 (1)  

Heterogeneity across posteriors 

(2)  

Heterogeneity across test accuracy 

Log prior odds 0.082 0.327*** 

 [-0.342,0.505] [0.274,0.379] 

Log likelihood ratio 0.650*** 0.832*** 

 [0.244,1.057] [0.745,0.919] 

Small animal vets # Log 

prior odds 

0.075 0.240*** 

 [-0.513,0.664] [0.169,0.312] 

Small animal vets # Log 

likelihood ratio 

-0.387 -0.159*** 

 [-0.958,0.184] [-0.278,-0.040] 

Extreme posteriors # 

Log prior odds 

0.330  

 [-0.096,0.755]  

Extreme posteriors # 

Log likelihood ratio 

0.113  

 [-0.296,0.522]  

Small animal vets with 

extreme posteriors # Log 

prior odds 

0.118  

 [-0.473,0.710]  

Small animal vets with 

extreme posteriors # Log 

likelihood ratio 

0.237  

 [-0.337,0.812]  

fp=0.05 # Log likelihood 

ratio 

 -0.030 

  [-0.133,0.073] 

fp=0.1 # Log likelihood 

ratio 

 -0.065 

  [-0.174,0.043] 

fp=0.2 # Log likelihood 

ratio 

 0.028 

  [-0.088,0.145] 

Small animal vets with 

fp=0.05 # Log likelihood 

ratio 

 -0.045 

  [-0.186,0.096] 

Small animal vets with 

fp=0.1 # Log likelihood 

ratio 

 0.065 

  [-0.082,0.213] 
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Table 11 (cont’d) 

Small animal vets with 

fp=0.2 # Log likelihood 

ratio 

 -0.101 

  [-0.260,0.058] 

Constant 0.330 0.306 

 [-0.299,0.959] [-0.343,0.954] 

Individual Fixed Effects Yes Yes 

Observations 2396 2396 

Notes: (1) 95% confidence intervals in square brackets 

(2) * p<0.05, ** p<0.01, *** p<0.001 

 

Table 12 Characteristic dummy variables of veterinarians 

 

Variables explanations 

Female Female: 1; otherwise: 0. 

ExpVets Experienced than median cohort: 1; otherwise: 0. 

Welf Attaching a higher importance to animal welfare than median level: 1; otherwise: 0. 

Ant Attaching a higher acceptance of antibiotic usage than median level: 1; otherwise: 0. 
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Table 13 Heterogeneity in belief updating across individual characteristics 

 (1) Whole 

sample  

(2) Large 

animal vets 

(3) Small animal 

vets 

(4) Whole 

sample 

(5) Large 

animal vets 

(6) Small animal 

vets 

Log prior odds 0.305*** 0.314*** 0.550*** 0.295*** 0.295*** 0.534*** 

 [0.200,0.411] [0.168,0.460] [0.412,0.688] [0.217,0.372] [0.195,0.394] [0.439,0.628] 

Log likelihood ratio 0.821*** 0.827*** 0.644*** 0.797*** 0.802*** 0.625*** 

 [0.753,0.890] [0.734,0.920] [0.552,0.736] [0.739,0.855] [0.725,0.879] [0.552,0.697] 

Confirming test result 

* Log likelihood ratio 

0.063* 0.125** -0.000 0.066* 0.132** 0.001 

 [-0.012,0.139] [0.013,0.237] [-0.101,0.100] [-0.009,0.140] [0.021,0.243] [-0.098,0.100] 

Small animal vets * 

Log prior odds 

0.242***   0.241***   

 [0.169,0.314]   [0.170,0.313]   

Small animal vets * 

Log likelihood ratio 

-0.177***   -0.173***   

 [-0.223,-0.130]   [-0.219,-0.128]   

Experienced vets * 

Log prior odds 

-0.014 -0.086 0.057 -0.009 -0.081 0.063 

 [-0.087,0.060] [-0.195,0.024] [-0.041,0.156] [-0.080,0.063] [-0.185,0.023] [-0.034,0.160] 

Experienced vets * 

Log likelihood ratio 

-0.107*** -0.075** -0.146*** -0.097*** -0.072** -0.129*** 

 [-0.154,-0.059] [-0.146,-0.004] [-0.209,-0.083] [-0.143,-0.051] [-0.139,-0.005] [-0.191,-0.067] 

Female * Log prior 

odds 

-0.013 0.006 -0.042    

 [-0.087,0.061] [-0.103,0.116] [-0.141,0.056]    

Female * Log 

likelihood ratio 

-0.045* -0.046 -0.042    

 [-0.093,0.002] [-0.116,0.025] [-0.107,0.022]    

Ant * Log prior odds 0.028 0.022 0.034    

 [-0.047,0.102] [-0.087,0.130] [-0.064,0.133]    

Ant * Log likelihood 

ratio 

0.020 -0.003 0.040    

 [-0.027,0.067] [-0.071,0.066] [-0.024,0.104]    
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Table 13 (cont’d) 

Welf * Log prior 

odds 

-0.028 -0.051 -0.010    

 [-0.102,0.046] [-0.161,0.059] [-0.107,0.087]    

Welf * Log 

likelihood ratio 

0.057** -0.004 0.118*** 0.059** -0.018 0.137*** 

 [0.009,0.105] [-0.074,0.066] [0.054,0.182] [0.013,0.106] [-0.086,0.050] [0.074,0.200] 

Constant 0.306 -0.659** 0.334 0.307 -0.647** 0.334 

 [-0.325,0.938] [-1.191,-0.127] [-0.326,0.995] [-0.319,0.934] [-1.194,-0.099] [-0.323,0.991] 

Individual Fixed 

Effects 

Yes Yes Yes Yes Yes Yes 

Observations 2346 1168 1178 2396 1188 1208 
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Table 14 Underinference and base rate neglect in diagnosis decisions using revised data 

 (1) Baseline model (2) Allow heterogeneity across 

posteriors and test accuracy 

Log prior odds 0.440*** 0.121 

 [0.404,0.476] [-0.185,0.428] 

Log likelihood ratio 0.735*** 0.538*** 

 [0.712,0.758] [0.235,0.841] 

Extreme posteriors # 

Log prior odds 

 0.389** 

  [0.081,0.698] 

Extreme posteriors # 

Log likelihood ratio 

 0.208 

  [-0.094,0.510] 

fp=0.05 # Log likelihood 

ratio 

 -0.060* 

  [-0.128,0.009] 

fp=0.1 # Log likelihood 

ratio 

 -0.060 

  [-0.132,0.012] 

fp=0.2 # Log likelihood 

ratio 

 -0.034 

  [-0.110,0.042] 

Constant 0.345 0.376 

 [-0.387,1.076] [-0.325,1.076] 

Individual Fixed Effects Yes Yes 

Observations 2395 2395 

Notes: (1) 95% confidence intervals in square brackets 

(2) * p<0.05, ** p<0.01, *** p<0.001 
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Table 15 Prior-biased inference and preference-biased inference using revised data 

 (1) Prior-biased 

inference 

(2) Preference-

biased inference 

(3) Prior-biased 

inference across 

practice areas 

(4) Preference-biased 

inference across 

practice areas 

Log prior odds 0.391*** 0.439*** 0.233*** 0.311*** 

 [0.333,0.449] [0.403,0.476] [0.150,0.315] [0.260,0.361] 

Log likelihood ratio 0.700*** 0.716*** 0.769*** 0.768*** 

 [0.662,0.737] [0.615,0.816] [0.714,0.825] [0.626,0.910] 

Confirming test result * Log 

likelihood ratio 

0.090**  0.144***  

 [0.015,0.164]  [0.036,0.252]  

Good news * Log likelihood ratio  0.039  0.117 

  [-0.154,0.232]  [-0.157,0.390] 

Small animal vets * Log prior odds   0.312*** 0.256*** 

   [0.200,0.424] [0.186,0.325] 

Small animal vets * Log likelihood 

ratio 

  -0.139*** -0.116 

   [-0.213,-0.065] [-0.311,0.079] 

Small animal vets * Confirming test 

result * Log likelihood ratio 

  -0.105  

   [-0.252,0.041]  

Small animal vets * Good news * 

Log likelihood ratio 

   -0.129 

    [-0.504,0.245] 

Constant 0.332 0.380 0.298 0.292 

 [-0.395,1.059] [-0.376,1.136] [-0.349,0.944] [-0.405,0.988] 

Individual Fixed Effects Yes Yes Yes Yes 

Observations 2395 2395 2395 2395 
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Table 16 Belief updating heterogeneity across veterinary practice areas using revised data 

 (1) Heterogeneity across posteriors (2) Heterogeneity across test accuracy 

Log prior odds 0.044 0.312*** 

 [-0.356,0.444] [0.262,0.363] 

Log likelihood ratio 0.660*** 0.885*** 

 [0.276,1.043] [0.803,0.967] 

Small animal vets # Log prior odds 0.079 0.254*** 

 [-0.488,0.647] [0.185,0.323] 

Small animal vets # Log likelihood ratio -0.404 -0.186*** 

 [-0.955,0.147] [-0.298,-0.073] 

Extreme posteriors # Log prior odds 0.365*  

 [-0.037,0.767]  

Extreme posteriors # Log likelihood ratio 0.116  

 [-0.269,0.501]  

Small animal vets with extreme posteriors # 

Log prior odds 

0.124  

 [-0.446,0.694]  

Small animal vets with extreme posteriors # 

Log likelihood ratio 

0.253  

 [-0.301,0.807]  

fp=0.05 # Log likelihood ratio  -0.068 

  [-0.166,0.030] 

fp=0.1 # Log likelihood ratio  -0.114** 

  [-0.218,-0.010] 

fp=0.2 # Log likelihood ratio  0.002 

  [-0.108,0.111] 

Small animal vets with fp=0.05 # Log 

likelihood ratio 

 -0.028 

  [-0.163,0.107] 

Small animal vets with fp=0.1 # Log 

likelihood ratio 

 0.088 

  [-0.054,0.231] 
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Table 16 (cont’d) 

Small animal vets with fp=0.2 # Log 

likelihood ratio 

 -0.049 

  [-0.198,0.100] 

Constant 0.336 0.316 

 [-0.287,0.958] [-0.326,0.957] 

Individual Fixed Effects Yes Yes 

Observations 2395 2395 

 

Table 17 Heterogeneity in belief updating across individual characteristics using revised data 

 (1)  

Whole sample  

(2)  

Large animal 

vets 

(3)  

Small animal 

vets 

(4)  

Whole sample 

(5)  

Large animal 

vets 

(6)  

Small animal 

vets 

Log prior odds 0.283*** 0.306*** 0.530*** 0.277*** 0.283*** 0.524*** 

 [0.180,0.385] [0.166,0.445] [0.395,0.665] [0.201,0.352] [0.186,0.381] [0.434,0.614] 

Log likelihood ratio 0.850*** 0.858*** 0.664*** 0.830*** 0.831*** 0.657*** 

 [0.783,0.916] [0.768,0.947] [0.573,0.754] [0.775,0.885] [0.757,0.904] [0.588,0.727] 

Confirming test result 

* Log likelihood ratio 

0.080** 0.138** 0.019 0.082** 0.145*** 0.021 

[0.007,0.153] [0.029,0.246] [-0.078,0.117] [0.010,0.155] [0.037,0.253] [-0.075,0.116] 

Small animal vets * 

Log prior odds 

0.253***   0.256***   

[0.182,0.323]   [0.187,0.325]   

Small animal vets * 

Log likelihood ratio 

-0.181***   -0.177***   

[-0.226,-0.136]   [-0.221,-0.133]   

Experienced vets * 

Log prior odds 

-0.020 -0.097* 0.056 -0.020 -0.102** 0.061 

[-0.092,0.052] [-0.203,0.010] [-0.041,0.152] [-0.090,0.049] [-0.203,-0.001] [-0.033,0.154] 

Experienced vets * 

Log likelihood ratio 

-0.123*** -0.086** -0.167*** -0.115*** -0.083** -0.154*** 

[-0.169,-0.076] [-0.155,-0.018] [-0.229,-0.105] [-0.159,-0.071] [-0.147,-0.019] [-0.215,-0.094] 

Female * Log prior 

odds 

0.009 0.043 -0.037    

[-0.063,0.081] [-0.063,0.150] [-0.133,0.060]    

Female * Log 

likelihood ratio 

-0.036 -0.044 -0.024    

[-0.083,0.011] [-0.113,0.025] [-0.088,0.039]    
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Table 17 (cont’d) 

Ant * Log prior odds 0.015 -0.004 0.034    

[-0.057,0.088] [-0.109,0.102] [-0.062,0.130]    

Ant * Log likelihood 

ratio 

0.019 -0.008 0.044    

[-0.027,0.065] [-0.075,0.058] [-0.019,0.106]    

Welf * Log prior 

odds 

-0.031 -0.071 0.004    

[-0.102,0.041] [-0.177,0.035] [-0.091,0.098]    

Welf * Log 

likelihood ratio 

0.036 -0.020 0.092*** 0.040* -0.034 0.115*** 

[-0.011,0.082] [-0.088,0.047] [0.030,0.154] [-0.005,0.085] [-0.099,0.031] [0.054,0.176] 

Constant 0.307 -0.656** 0.335 0.307 -0.640** 0.335 

 [-0.317,0.931] [-1.193,-0.119] [-0.317,0.987] [-0.312,0.927] [-1.202,-0.077] [-0.320,0.991] 

Individual Fixed 

Effects 

Yes Yes Yes Yes Yes Yes 

Observations 2,345 1,168 1,177 2,395 1,188 1,207 

 Notes: (1) 95% confidence intervals in square brackets 

(2) * p<0.05, ** p<0.01, *** p<0.001 

 

Table 18 Multinomial logit estimation: treatment utility as a function of treatment characteristics 

 (1) (2) (3) (4) (5) (6) (7) (8) 

AW_high 0.523***  -0.782**  0.806 0.819***  -0.009 

LossAvd 0.001***  -0.002***  -0.003*** 0.001***  0.001 

AW_high *CRate  1.491*** 2.551*** -2.539*** -3.114  1.283*** 1.267** 

LossAvd *CRate  0.004*** 0.005*** 0.005*** 0.011***  0.001** 0.000 

(AW_high*CRate)
2

    4.917*** 4.238**    
(LossAvd *CRate)

2

    -0.000* -0.000***    
CRate      4.562*** 3.616*** 3.941*** 

Observations 4,338 4,338 4,338 4,338 4,338 4,338 4,338 4,338 

AIC 2,485.9 2,236.8 2,175.6 2,198.3 2,155.4 2,081.1 2,084.1 2,080.5 

Notes: (1) Column (1)-(8) regression control other attributes, interactions between disease likelihood with all attribute related variables 

included in the model, and a no treatment option dummy  

(2) 95% confidence intervals in square brackets* p<0.05** p<0.01*** p<0.001 
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APPENDIX C 

 

A survey sample of large animal disease management 
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Survey of Veterinarians Decision Making in Animal Disease Management 

You are being invited to complete this online survey. The purpose of the research is to 

examine veterinarians’ diagnostic and treatment decision-making.  

In addition to your $30 completion payment, you will have a chance to earn an additional $30 

based on your answers. 

This survey proceeds in four sections and takes approximately 25 minutes to complete. In 

sections A and B, we will ask you to make diagnostic and treatment decisions on given disease 

cases and available treatment options. In sections C and D, we will collect ancillary information 

including some basic demographics, views about test reliability, antibiotics resistance, and animal 

welfare.   

Participation in this survey is completely voluntary and you can withdraw at any time. Your 

response and any information you shared with us will be kept strictly confidential. We will not 

disclose any personally identifiable information to the public when we present survey data and 

analysis results.   

You must be 18 or older to participate. If you have any questions, please contact Dr. David 

Hennessy at hennes64@msu.edu or Dr. Angel Abuelo at abuelo@msu.edu. You indicate that you 

voluntarily agree to participate in this research study by submitting the survey. 
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Section A. Diagnostic decisions under different case scenarios 

Background: There is a disease (named “disease D”) that is circulating on cattle farms in a 

locality. At the early stages of disease D, there are no clinical signs, while severe signs appear as 

disease D progresses. To manage disease D, it’s important to detect it at the early stages. 

Make diagnostic decisions: As a veterinarian, you know the prevalence rate of the disease. An 

inexpensive test can also be used. The test result can be positive, suggesting the cow is likely to 

have disease D. Or it can be negative, suggesting the cow is likely not to have disease D. We say 

‘likely’ because there can be false negative or false positive test results. 

You will face ten scenarios which differ in four factors: prevalence rate, test result, false 

positive rate, and false negative rate. The specific meanings of the factors are given on the following 

page. In each scenario that we present you with, you are asked to estimate the probability that a 

randomly drawn cow (named cow X) has disease D based on the information given. Note that cow 

X being considered in one scenario may or may not be the same cow under consideration in 

another scenario. Therefore, please consider each scenario separately. There are no good or bad 

answers. We are only interested in your true beliefs. 

We describe each scenario in terms of four factors. 

1. Prevalence rate measures the proportion of cows among a population that have disease D. 

2. Test result can be positive or negative. A positive test result provides information suggesting that 

the cow is likely to have disease D while a negative test result provides information suggesting that 

the cow is likely not to have the disease. 

3. False positive rate is the percentage of all cows tested who do not have disease D but have tested 

positive. 
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4. False negative rate is the percentage of all cows tested who do have disease D but have tested 

negative. In all scenarios, the false negative rate is fixed at 10%. 

Payment rules: Besides a completion fee of $30, we will pay you earnings based on one of 

your estimates that is drawn randomly from all of the estimates that you make in Section A. All of 

your estimates have an equal chance of being drawn, that is, anyone of your estimates could be the 

one that determines your earnings. We use a payment rule that guarantees that reporting your true 

beliefs leads to the highest chance of receiving $30. If you want to learn about the details of the 

payment rule, you can click here (https://msu.co1.qualtrics.com/jfe/form/SV_1BLU2fQC4fr8ltb). 

However, you don’t need to know payment rule details in order to answer questions in Section A. 

You just need to remember that providing truthful answers maximizes your chance of winning. 

[Please try to take each scenario as a real world situation, and make sure your answers make 

common sense. For example, a positive test result would suggest a higher likelihood of disease 

occurring than would a negative test result.] 

Section A Scenario 1 

Key information: 

(1) Prevalence rate: 70 out of every 100 cows have disease D. 

(2) Cow X tested positive.  

(3) False positive rate is 30%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

https://msu.co1.qualtrics.com/jfe/form/SV_1BLU2fQC4fr8ltb
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Section A Scenario 2 

Key information: 

(1) Prevalence rate: 70 out of every 100 cows have disease D. 

(2) Cow X tested negative.  

(3) False positive rate is 30%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

 

Section A Scenario 3 

Key information: 

(1) Prevalence rate: 90 out of every 100 cows have disease D. 

(2) Cow X tested positive.    

(3) False positive rate is 20%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 
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Section A Scenario 4 

Key information: 

(1) Prevalence rate: 90 out of every 100 cows have disease D. 

(2) Cow X tested negative.    

(3) False positive rate is 20%, and false negative rate is 10%.  

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

Section A Scenario 5 

Key information: 

(1) Prevalence rate: 70 out of every 100 cows have disease D. 

(2) Cow X tested positive.    

(3) False positive rate is 5%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 
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Section A Scenario 6 

Key information: 

(1) Prevalence rate: 70 out of every 100 cows have disease D. 

(2) Cow X tested negative.    

(3) False positive rate is 5%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

 

Section A Scenario 7 

Key information: 

(1) Prevalence rate: 10 out of every 100 cows have disease D. 

(2) Cow X tested positive.    

(3) False positive rate is 30%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 
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Section A Scenario 8 

Key information: 

(1) Prevalence rate: 10 out of every 100 cows have disease D. 

(2) Cow X tested negative.    

(3) False positive rate is 30%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

 

Section A Scenario 9 

Key information: 

(1) Prevalence rate: 30 out of every 100 cows have disease D. 

(2) Cow X tested positive.    

(3) False positive rate is 20%, and false negative rate is 10%. 

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 
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Section A Scenario 10 

Key information: 

(1) Prevalence rate: 30 out of every 100 cows have disease D. 

(2) Cow X tested negative.    

(3) False positive rate is 20%, and false negative rate is 10%. 

  

What is your best estimate of the probability that the cow HAS the disease? Please use the 

cursor to indicate your estimate. 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

 

A.1 In some scenarios you have answered, the only difference is that the cow tested positive in one 

scenario while the cow tested negative in the other scenario for disease D. Your estimate of the 

probability that the cow has disease D is higher given negative test result than your estimate given 

positive test result. Do you wish to adjust your estimates before continuing? Choose "Yes" and 

click on the "Continue" button, you will be presented with the scenarios; choose "No" and click on 

the "Continue" button, you will be presented with the remaining part of the survey. 

o Yes. I will revisit and reconsider my estimate. 

o No. I am content with my initial estimate. 
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A.2 Would you like to modify your probabilistic estimates in the above questions? If so, you can 

click the "Previous" button to modify your answers. Once you confirm your answers by clicking the 

box below and click the "Continue" button, you will not be able to go back to modify your answers. 

o I confirm my answers in the above questions  
 

 

 

Section B. Treatment decisions under different case scenarios 

Rounds: Section B proceeds in six rounds. 

Background: A dairy producer called you about a suspected mastitis case. As requested, you 

visited the farm and conducted a thorough inspection. You inspected the suspected sick cow, 

checked its disease history, tested milk samples from the cow, and learned their management 

procedures.  

Treatment decision-making: Based on information available to you, you believe that the cow 

has mastitis with some probability (e.g., 30%). If the cow has mastitis, you have two treatment 

options which differ in five factors: treatment cost, cure rate of mastitis, animal welfare, loss 

avoided, and potential to increase antibiotic resistance. The specific meanings of the factors are 

given on the following page. Explicitly, the withdrawal times for the two treatment options are the 

same. You can also choose not to treat the cow. If the cow doesn't have mastitis, the signs 

observed will disappear themselves and treatment provides no benefit. The focus of this survey is 

on treatment decisions. There are no right or wrong answers. We are just interested in your point 

of view. 

We describe each treatment alternative in terms of five main factors.  
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Treatment costs: {$20, $80, $140, or $200}, including antibiotic cost, labor cost, and discarded 

milk due to antibiotic residue.        

Potential to increase antibiotic resistance: {none, low, or high}, impacts on the future effectiveness 

of antibiotics in human or animal uses due to the development of antibiotic resistance.        

Cure rate of mastitis: {20%, 50%, 80% or 100%}, the probability that the animal is cured which 

depends on antibiotics used, pathogen susceptibilities to antibiotics, disease history, etc.        

Animal welfare improvement: {low or high}, benefits to the animal if treatment is effective through 

health condition improvement.        

Loss avoided: {$250, $450, $650, or $850}, additional treatment costs that would have occurred 

due to the disease but are avoided if treatments cure the animal.     

Section B Scenario 1 

You believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit. 

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $20 $80 $0 

Potential to increase antibiotic resistance None Low None 

Cure rate of mastitis 20% 50% 0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 

10 }% 

If the cow is cured, animal welfare 

improvement 
Low High None 

If the cow is cured, loss avoided $250 $450 $0 

Explanations for reader: rand1_1 is randomly selected from natural number in the range of 1 to 

10. That is, when rand1_1 is 2, respondents are presented with “You believe the cow has mastitis 

with probability 20%” The same logics apply to random numbers (e.g., rand1_2) in the remaining 

questions in this section. 
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o My decision would be to use Treatment 1 (T1)  

o My decision would be to use Treatment 2 (T2) 

o My decision would be No treatment (NT)  

 

Section B Scenario 2 

You believe the cow has mastitis with probability $e{ e://Field/rand1_2 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit.       

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $20 $80 $0 

Potential to increase antibiotic resistance Low High None 

Cure rate of mastitis 80% 100% 0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 
10 }% 

If the cow is cured, animal welfare 

improvement 

Low High None 

If the cow is cured, loss avoided $450 $650 $0 

  

o My decision would be to use Treatment 1 (T1)  

o My decision would be to use Treatment 2 (T2)  

o My decision would be No treatment (NT)  
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Section B Scenario 3 

You believe the cow has mastitis with probability $e{ e://Field/rand1_3 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit. 

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $200 $20 $0 

Potential to increase antibiotic resistance Low High None 

Cure rate of mastitis 100% 20% 0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 
10 }% 

If the cow is cured, animal welfare 

improvement 
Low High None 

If the cow is cured, loss avoided $850 $250 $0 

   

o My decision would be to use Treatment 1 (T1)  

o My decision would be to use Treatment 2 (T2)   

o My decision would be No treatment (NT)  
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Section B Scenario 4 

You believe the cow has mastitis with probability $e{ e://Field/rand1_4 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit.           

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $140 $200 $0 

Potential to increase antibiotic resistance High None None 

Cure rate of mastitis   0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 
10 }% 

If the cow is cured, animal welfare 

improvement 
50% 80% None 

If the cow is cured, loss avoided $450 $650 $0 

   

o My decision would be to use Treatment 1 (T1)  

o My decision would be to use Treatment 2 (T2)  

o My decision would be No treatment (NT)  
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Section B Scenario 5 

You believe the cow has mastitis with probability $e{ e://Field/rand1_5 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit.           

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $140 $200 $0 

Potential to increase antibiotic resistance High None None 

Cure rate of mastitis 50% 80% 0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 
10 }% 

If the cow is cured, animal welfare 

improvement 
Low High None 

If the cow is cured, loss avoided $650 $850 $0 

   

o My decision would be to use Treatment 1 (T1)  

o My decision would be to use Treatment 2 (T2)   

o My decision would be No treatment (NT)  
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Section B Scenario 6 

You believe the cow has mastitis with probability $e{ e://Field/rand1_6 * 10 }%. If the cow has 

mastitis, treatment options can provide some benefits; otherwise, treatment options provide no 

benefit.           

Which treatment do you prefer? Please check one. (T1= Treatment 1, T2= Treatment 2, NT= No 

treatment) 

 T1 T2 NT 

Treatment cost $80 $140 $0 

Potential to increase antibiotic resistance High None None 

Cure rate of mastitis 80% 100% 0 

Note: you believe the cow has mastitis with probability $e{ e://Field/rand1_1 * 
10 }% 

If the cow is cured, animal welfare 

improvement 
High Low None 

If the cow is cured, loss avoided $850 $250 $0 

   

o My decision would be to use Treatment 1 (T1)   

o My decision would be to use Treatment 2 (T2)  

o My decision would be No treatment (NT)  

 

 
 

 

Section C. Viewpoints 

C.1 Regarding the debate on how to manage antibiotics in production agriculture, what is your 

position concerning whether antibiotics should be used in production agriculture? A larger 

number means higher acceptance of antibiotics in production agriculture. (0 = antibiotics use 
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should not be allowed in production agriculture, 100 = antibiotics use should be allowed in 

production agriculture without restrictions.) 

 should not be allowed should be allowed without 

restrictions 

 

 0 10 20 30 40 50 60 70 80 90 100 

 

1 () 

 

 

 

 

C.2 How important should animal welfare consequences be in decisions concerning antibiotics use 

in production agriculture? A larger number means greater importance. (0 = Not important at all, 

100 = Very important) 

 Not important at all Very important 

 

 0 10 20 30 40 50 60 70 80 90 100 

 

1 () 

 

 

 

 

C.3 What confidence do you have in the accuracy of diagnostic tests in general? A larger number 

indicates greater confidence (1 = None, and 100 = Very high). 

 None Very high 

 

 0 10 20 30 40 50 60 70 80 90 100 

 

1 () 
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C.4 Please identify the most important factors for your antibiotic prescriptions in regard to treating 

suspected mastitis. Please allocate 100 points to the importance you attach to the following factors, 

i.e., points allocated should sum to 100. 

Farmers' profit : _______   

Animal welfare : _______   

Probability that mastitis spreads in the herd : _______  

Veterinary client relationship : _______  

Uncertainty about treatment outcome in the case at hand : _______  

Concerns about the development of antibiotics resistance : _______   

Other (Please specify) : _______  

Total : ________  

 

 

 

Section D. Demographic information and professional experience 

 

D.1 In what year were you born? 

Year (4)  

▼ 1940 (1) ... 1999 (60) 

 



 

 

128 

 

D.2 What is your gender? 

o Male   

o Female   

o Other (Please specify)   ________________________________________________ 

o Prefer not to say   

 

 

D.3 What is your postal code? 

________________________________________________________________ 

 

 

D.4 What is your bachelor's degree? 

o Animal science   

o Other (e.g. biology, please specify)  

________________________________________________ 

 

 

D.5 How well would you self-rate your statistics knowledge? A larger number means better 

knowledge (0 = I'm terrible at statistics, 100 = I'm excellent at statistics). Please use the cursor to 

indicate your answer. 

 Terrible Excellent 

 

 0 10 20 30 40 50 60 70 80 90 100 

 

1 () 
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D.6 Did you use Bayes theorem to calculate answers when you made probabilistic estimations in 

section A? 

o Yes   

o No   

 

This is for our information only. Using or not using the theorem does not imply your answers are 

“good” or “not good,” we are only interested in your earnest assessment. 

 

D.7 In what year did you get your Doctor of Veterinary Medicine (DVM) degree?    

Year  

▼ 1940 (1) ... 2020 (81) 

 

 

D.8 How many years have you worked as a veterinarian making diagnosis and treatment 

decisions? 

I have worked for  

▼ Less than 1 year (1) ... Over 30 years (32) 

 

 

D.9 Do you serve clients who work in production agriculture? 

o Yes   

o No   
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D.10 How often have you visited cattle farms in a professional capacity in the last three years? 

o Daily   

o 1-3 times per week   

o 1-3 times per month   

o Seldom  

o Never  
 

Please record any comments you have concerning veterinarians’ diagnostic and treatment decision-

making related to antibiotics use. 

________________________________________________________________ 

________________________________________________________________ 

 

Thank you for completing the survey! 

Please leave your email address below for payment. Make sure your email address is correct, 

otherwise we won't be able to contact you and make payment.   

We won't disclose any private information to the public. If you have any questions, please contact 

us at hennes64@msu.edu. 

________________________________________________________________ 
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Payment rule explanations: 

This is an extra explanation that you do not need to know to answer the questions in this 

survey. Click here (https://msu.co1.qualtrics.com/jfe/form/SV_0SBIcoJBHiqhrmt) to go back to 

the survey. 

In the following illustration, denote your probability assessment in the drawn scenario as p %. 

 1. The computer will randomly and independently draw two integers in the range of [1, 100]. 

 2. The computer simulates a cow random draw to reveal whether the cow has the disease. 

If the cow is revealed to have the disease: You will earn $30 if your report p is greater than or 

equal to either of the two numbers drawn by the computer in the first step; otherwise you will earn 

$0. If the cow is revealed to not have the disease: You will earn $30 if your report p is less than 

either of the two numbers drawn by the computer in the first step; otherwise you will earn $0. 

You can use the cursor to indicate any probability belief in the following screen. The 

computer will inform you of the corresponding probabilities of earning $3010.  

 

 0 10 20 30 40 50 60 70 80 90 100 

 

The probability that the cow has disease D (%) () 

 

 

Based on your answer above, your probabilities of receiving $30 are described in the following: 

If the cow is revealed to have the disease, then you will receive $30 with probability (%) _____ 

If the cow is revealed to not have the disease, then you will receive $30 with probability (%) __ 

 

 

 
10

 In the online survey, participants can move the cursor and then the corresponding probability of 

$30 will be presented in the underlined areas. 
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CHAPTER 3: ESSAY THREE: BT CORN, INSECTICIDE USE, AND RESISTANCE 

TIME TREND IN THE UNITED STATES 

3.1. INTRODUCTION 

To minimize damage and increase agricultural yield, growers apply efforts to control 

organisms that are detrimental to agriculture, such as (1) spray pesticides to control pests, (2) 

administer antibiotics to fight against bacteria, and (3) use antimalarial drugs to kill malarial 

parasites (Laxminarayan and Herrmann 2015). Whatever control measures are used, nature 

inevitably will fight back. The targeted organisms gradually become less susceptible and develop 

resistance to these control tactics, which used to be highly effective. Nowadays, resistance is a 

widespread problem and causes staggering consequences. For example, in addition to economic 

losses (Fullybright 2019), antibiotic resistance causes over 2.8 million antibiotic resistant infections 

and more than 35,000 deaths annually in the United States (U.S. Center for Disease Control and 

Prevention [US CDC] 2019). It has been argued that antibiotic use in agriculture (e.g., crop 

production, livestock and animal husbandry) is a driving force for antibiotic resistance 

development (Witte 1998). Pesticide resistance is another salient issue which incurs billions of 

additional economic losses annually (Palumbi 2001; Frisvold, Bagavathiannan and Norsworthy 

2017; Davis and Frisvold 2017) and may impose risks on public health as well (Ranson and 

Lissenden 2016). Weed species are found to be resistant to every herbicide class available and 

many insect species are resistant to at least one insecticide (Gould, Brown and Kuzma 2018a; 

Munro 1997). As insect resistant genetically modified crops (GMC) which produce Bt (Bacillus 

thuringiensis) toxins and control pests have been widely adopted, Bt resistance emerges and 

increases, causing productivity damage in the fields (Tabashnik, Brévault and Carriè re 2013; 

Calles-Torrez et al. 2019; Tabashnik, Carriè re and Gassmann 2019). Since the first Bt crops were 

introduced, at least 19 cases of field-evolved resistance have emerged (Tabashnik et al. 2019). Such 
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resistance is a negative externality associated with control tactics use since every use by individual 

farmers may contribute to resistance development and degrade effectiveness for all farmers’ future 

use. Therefore, in response to resistance development, actions need to be taken to conserve the 

control tactics effectiveness for long term use.  

Even though there are high uncertainties in resistance management, it is agreed that reducing 

use can delay resistance development (Gould, Brown and Kuzma 2018b). However, the optimal 

extent of the reduction is not straightforward. This is because, in addition to the resistance issue, 

some control tactics used may cause other external effects. Therefore, optimal resistance 

management should address both the resistance issues and the other external effects. Chemical 

pesticide use is an illustrative example of such situations. When considering resistance (i.e., a 

negative externality) in isolation, growers may use more chemical pesticides than socially optimal 

levels. The adverse health and environmental effects are other negative external effects associated 

with chemical pesticide use and may exacerbate the overuse tendency. In contrast to chemical 

pesticides, Bt toxins, another type of pesticides, brings other external effects that are beneficial. 

The first external benefit is that Bt crops suppress pest populations within a region (Hutchison et 

al. 2010; Dively et al. 2018a; Lu et al. 2022; Wan et al. 2012) so that both insecticide use and pest 

damage decline among non-Bt adopters. Secondly, Bt crops are more environment friendly 

compared to insecticide which may cause adverse health and environmental effects (Bilal, Iqbal 

and Barceló  2019; Rajmohan, Chandrasekaran and Varjani 2020; Samsidar, Siddiquee and 

Shaarani 2018; Rani et al. 2021; Kaur et al. 2019). In order to develop a regulation that balances Bt 

resistance development and external benefits, the first step is to justify and evaluate externalities 

associated with Bt crops. Specifically, in this study we investigate whether and how Bt crops reduce 

insecticide use. Furthermore, we evaluate these effects on insecticide use in terms of health and 

environmental impacts.   
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Western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is one of most 

significant pests in corn in the United States (Gassmann 2021). WCR larva feeds on corn root and 

can cause significant yield losses (Dun, Mitchell and Agosti 2010; Tinsley, Estes and Gray 2013). 

Annual cost pertaining to WCR, including yield loss and control cost, is estimated to be more than 

one billion in the United States (Wechsler and Smith 2018). Before Bt corn was introduced, corn 

rootworm was responsible for the largest single use of insecticides in the United States (Naranjo 

2009). When Bt corn with the rootworm resistance trait becomes available, growers can plant Bt 

corn as an alternative strategy to manage WCR and potentially substitute away soil insecticide use.  

The first Bt corn that controlling WCR was first commercialized in the United States in 2003 

and produced Bt toxin Cry3Bb1 (Gassmann et al. 2011). Afterwards, three other Bt toxins, 

mCry3A, eCry3.1Ab and Cry34/35Ab1, were introduced to manage WCR. To delay resistance 

development, Bt pyramids that can produce multiple Bt toxins against WCR were subsequently 

brought to the market, such as Cry3Bb1 with Cry34/35Ab1, mCry3A with Cry34/35Ab1. There 

exists evidence suggesting that some WCR populations are resistant to all available Bt toxins 

(Gassmann et al. 2020). During 2009 and 2010, WCR was found to be resistant to the Cry3Bb1 

toxin in Iowa (Gassmann et al. 2011) and then evidence of resistance arose in Nebraska, 

Minnesota and Illinois (Gassmann et al. 2020). Furthermore, WCR populations resistant to 

Cry3Bb1 have been documented to be resistant to mCry3A and eCry3.1Ab due to cross resistance 

mechanism (Zukoff et al. 2016; Wangila et al. 2015; Gassmann et al. 2014; Jakka, Shrestha and 

Gassmann 2016). In addition, field resistance to Cry34/35Ab1 was first reported in 2013 in Iowa 

and Minnesota (Ludwick et al. 2017; Gassmann et al. 2016). Therefore, resistance management 

among WCR populations is urgent and significant.  

In this study, we employ farm-level panel data to investigate the impact of Bt corn with 

Cry3Bb1 on insecticide use patterns over time. The findings add farm-level evidence on WCR 
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resistance together with its production and environmental implications. To estimate the net effect 

of Bt crops adoption, we need to address endogeneity caused by selection bias. Farmers decide 

themselves whether to adopt Bt crops or not. There are studies suggesting that adopters and non-

adopters may differ significantly (Liu 2013; Ngcinela et al. 2019; Mal et al. 2015). Analysis without 

controlling for the differences between adopters and non-adopters may produce biased effect 

estimates. Despite studies that do not take account of endogeneity problems (Sisterson et al. 2007; 

Cattaneo et al. 2006; Brookes and Barfoot 2006; Kranthi and Stone 2020), several approaches 

have been used to address self-selection bias. The first approach requires conducting randomized 

controlled trials (RCT). For instance, Huang et al.(2005) conducted RCT of rice in China and 

found that Bt rice increased rice yield and reduced pesticide use. Ahmed et al. (2021) 

implemented an RCT of Bt eggplant in Bangladesh and found that Bt adoption reduces pesticide 

cost significantly. When RCT is not an available option, various approaches have been applied 

depending on observed data structure. When cross sectional data are available, propensity score 

match (PSM) or instrumented approach have been commonly used dealing with cross sectional 

data (Yorobe and Smale 2012; Khonje et al. 2015; Shiferaw et al. 2014; Kouser and Qaim 2013). 

While PSM only controls observed differences among adopters and non-adopters, an 

instrumented approach can address unobserved differences. However, weak instrument variables 

are a main concern when applying an instrumented approach (Huang et al. 2002; Shankar and 

Thirtle 2005). When panel data are available, researchers can use a fixed effect or a difference-in-

difference approach. In earlier studies, a fixed effect approach is commonly used to control within-

farm effect (Kathage and Qaim 2012; Crost et al. 2007; Veettil, Krishna and Qaim 2017). A recent 

study implemented a difference-in-difference approach to estimate the impact of Bt cotton on 

pesticide use in India (Peshin et al. 2021). They argued that Bt cotton reduced insecticide use for 
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the same pests but increased the need for insecticide targeting on other pests as well as fungicides 

and herbicides. 

Utilizing a unique farm-level panel dataset, which contains more than 5,000 corn U.S. growers’ 

information about seed type choices and insecticides uses during 1998-2016, we are able to apply a 

generalized difference-in-difference (DID) approach to address endogeneity and ascertain any 

causal effects. Although studies on Bt cotton in India by Peshin et al (2021) apply a DID approach, 

as far as we know, no extant literature applies DID approach to investigate the impact of Bt corn in 

the United States. In the DID analysis, farmers who ever adopt Cry3Bb1 toxin form a treatment 

group and farmers who never adopt Cry3Bb1 toxin serve as a control group. We compare 

insecticide use of treatment and control group, controlling time variant shocks and static 

differences between regions. The Cry3Bb1 adoption results in a decrease in substituting 

insecticides, justifying environmental benefits induced by Bt adoption. Compared with Peshin et al 

(2021), we also scrutinize the dynamics of the impact after adoption and found that the magnitude 

of this decrease diminishes over time. This trend is consistent with emergence of WCR resistance 

to Cry3Bb1.  

In addition, we examine the pest suppression effect of Cry3Bb1 toxin that brings external 

benefits to non-adopters. There is a downward trend in insecticide use among non-adopters, which 

is consistent with the pest suppression effect of Bt crop documented in the extant literature 

(Hutchison et al. 2010; Dively et al. 2018a; Lu et al. 2022; Wan et al. 2012). Supposing Cry3Bb1 

adoption suppresses pest population within the region but the non-adopters are unaware of the 

magnitudes of Bt suppression effects, non-adopters learn about the pest pressure over years and 

eventually reduce insecticide use. In this study, we use a Bayesian learning model to explain non-

adopters’ beliefs adjustment patterns of pest pressure. By relying on historical data, farmers' prior 

beliefs are likely to exceed the true pest pressure. In that case, we prove that, along with Bayesian 
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learning, insecticide use by risk averters will start from a high level and decrease until farmers’ 

beliefs eventually converge to the true pest pressure. This finding is consistent with the decreasing 

and then sustained low insecticide use trend among non-adopters from empirical analysis. 

The paper is organized into six sections. Section two introduces the dataset analyzed in this 

study. We explain the identification strategy in section three and summarize empirical findings in 

section four. Section five presents a theoretical model for farmer’s Bayesian learning in insecticide 

input choices. Section six concludes the study. 

3.2. DATA 

The data analyzed is from AgroTrak, a farm-level panel data covering 1998 to 2016. 

AgroTrak contains information on farmers’ seed choices (Do farmers plant conventional corn or 

Bt corn? If Bt corn, what is the seed trait?) and chemical input choices (Which insecticides are 

applied? What is the amount of active ingredients? What are the targeted pests?). On average, 

about 5,154 corn farmers and 4,863 soybean farmers are randomly sampled annually. Many 

farmers responded across multiple years. The samples are representative at the Crop Reporting 

Districts (CRD) level and cover the 48 contiguous states. According to the United States 

Department of Agriculture National Agricultural Statistics Service, CRDs are groupings of counties 

in each state which have similar geography, climate and cropping practices.  

We conducted empirical analyses on insecticide and seed choices by US corn farmers during 

1998-2014. Soil insecticide, foliar insecticide and seed treated insecticides (neonicotinoids) are 

alternative insect control options for WCR used by farmers (Meinke, Souza and Siegfried 2021). 

Nowadays, nearly all corn seeds are coated with neonicotinoids in the United States (Stevens and 

Jenkins 2014; Gurian-sherman 2015), meaning that in most cases growers cannot make decisions 

regarding seed-treated insecticide use. Thus, our study focuses on, controlling for neonicotinoids 

use, how Cry3Bb1 adoption affects WCR-targeting insecticide use (excluding seed-treated 
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neonicotinoids). Since neonicotinoids use is missing during 2015-2016 in the AgroTrak dataset, 

our analysis uses data from 1998 to 2014. Table 19 summarizes insecticide active ingredients 

applied for WCR in the dataset.  

Table 19 Active ingredient that control western corn rootworm in the dataset 

Active Ingredient 

Bacillus Thuringiensis 

Bifenthrin 

Carbofuran 

Chlorethoxyfos 

Chlorpyrifos 

Clothianidin 

Cyfluthrin 

Cyhalothrin-Gamma 

Cyhalothrin-Lambda 

Diazinon 

Esfenvalerate 

Fipronil 

Imidacloprid 

Methyl Parathion 

Permethrin 

Phorate 

Tebupirimphos 

Tefluthrin 

Terbufos 

Thiamethoxam 

 

This paper mainly focuses on comparing i) farmers who switch from planting corn with no Bt 

toxins controlling WCR to Cry3Bb1 corn with ii) farmers who plant corn with no Bt toxins 

controlling WCR all the time. These two types of farmers are henceforth called Cry3Bb1 adopter 
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and non-adopters respectively. Corn with no Bt toxins controlling WCR can be conventional corn 

or Bt corn which is not targeted at WCR. Cry3Bb1 corn specifically refers to Bt corn varieties 

which produce Cry3Bb1 toxin specifically but no other WCR-controlling toxins, such as mCry3A 

and eCry3.1Ab. Table 20 lists seed type choices by Cry3Bb1 adopter and non-adopters in the 

dataset. There are 27,521 farmers in total in the control and treatment group, of which 13.46% are 

Cry3Bb1 adopters. Our interest is in investigating the impact of Cry3Bb1 adoption on farmers’ 

insecticides use which controls WCR.  

Table 20 Seed type choices in Cry3Bb1 adopter
11

 

Seed type choice in adopters Bt toxins 

Gen VT3 Pro RIB Cry3Bb1, Cry2Ab2_Cry1A.105 

Genuity DroughtGard VT Triple Pro RIB Cry3Bb1, Cry2Ab2_Cry1A.105 

Genuity VT Triple Pro Cry3Bb1, Cry2Ab2_Cry1A.105 

YG PL Cry1Ab, Cry3Bb1 

YG PL - CLRFLD Cry1Ab, Cry3Bb1 

YG PL - RRC 2 Cry1Ab, Cry3Bb1 

YGRW Cry3Bb1 

YGRW - CLRFLD Cry3Bb1 

YGRW - RR Cry3Bb1 

YGRW - RRC 2 Cry3Bb1 

YGVT RW - RR2 Cry3Bb1 

YGVT3 Cry1Ab, Cry3Bb1 

Seed type choice in non-adopters Bt toxins 

Conventional None 

Agrisure Artesian 3010A Cry1Ab 

Agrisure CB - LL Cry1Ab 

 
11

 Note: Seed types “Agrisure GT”, “CLRFLD”, “CLRFLD – LL”, “LL”, “RR/GT”, “RRC 2”, 

“SR” describe genetically modified seeds that do not produce Bt toxins but have other 

characteristics, such as herbicide resistance, drought resistance, etc. 
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Table 20 (cont’d) 

Agrisure CB - LL - CLRFLD Cry1Ab 

Agrisure GT - CB - LL Cry1Ab 

Agrisure Viptera 3110 Cry1Ab, Vip3A 

Agrisure Viptera 3220 E-Z Refuge Cry1Ab, Cry1F, Vip3A 

Bt (ECB) Cry1Ab 

Bt (ECB) - CLRFLD Cry1Ab 

Bt (ECB) - LL Cry1Ab 

Bt (ECB) - LL - CLRFLD Cry1Ab 

Bt (ECB) - RR Cry1Ab 

Genuity DroughtGard VT Double Pro Cry2Ab2_Cry1A.105 

Genuity DroughtGard VT Double Pro RIB Cry2Ab2_Cry1A.105 

Genuity VT Double PRO RIB Cry2Ab2_Cry1A.105 

Genuity VT Double Pro Cry2Ab2_Cry1A.105 

HX I - LL Cry1F 

HX I - LL - CLRFLD Cry1F 

HX I - LL - RRC 2 Cry1F 

Optimum AcreMax Cry1Ab, Cry1F 

Optimum AcreMax-R Cry1Ab, Cry1F 

Optimum Intrasect Cry1Ab, Cry1F 

Optimum Leptra Cry1Ab, Cry1F, Vip3A 

YGCB Cry1Ab 

YGCB - CLRFLD Cry1Ab 

YGCB - GT Cry1Ab 

YGCB - RRC 2 Cry1Ab 

YieldGard CB-Herculex 1-LL-RR2 Cry1Ab, Cry1F 

Agrisure GT None 

CLRFLD None 

CLRFLD - LL None 

LL None 
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Table 20 (cont’d) 

RR/GT None 

RRC 2 None 

SR None 

 

Farmers may plant on multiple land plots. Some farmers only plant on one plot but some 

others plant on multiple plots. Their seed choices on different plots can be different. For each 

plot, farmers may use more than one insecticide product. In order to calculate a plot-level 

insecticide use, we need to first define “land plot” and add up all insecticides used on each land 

plot. We define a “land plot” as a land unit planted with the same seed trait, tillage type, farmer 

and year. According to Perry et al. (2016), each year, we can measure any farmer’s insecticide use 

by considering the total amount of active ingredients used per acre 
iy .  

 
( ) ( ),

( )

1
.k k

i l i l i j

l i k ji

y Q a
L

=   (3.1) 

Specifically, ( )

k

l iQ  denotes the quantity of insecticide product k  applied on plot ( )l i  by 

farmer i , ( ),

k

l i ja  denotes the quantity of an active ingredient j  contained by per-unit of product 

k  that applied on plot ( )l i , and iL denotes the total acres planted by the farmer i .  

The drawback of measurement in equation (3.1) is that it does not address the fact that 

varied active ingredients have heterogenous impacts on environment and health. Alternatively, we 

used Environmental Impact Quotient (EIQ) to determine the environmental and health impacts of 

each insecticide active ingredient contained within insecticide products (Kovach et al. 1992), and 

then calculate total impacts of insecticide use per acre as  

 
( ) ( ),

( )

.E k k

i l i j l i j

l i k ji

y Q E a
L


=   (3.2) 
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Specifically, jE  denotes the EIQ value pertain to active ingredient ( ),

k

l i ja , and is a constant 

to normalize E

iy  such that E

iy  and 
iy  have the same overall mean. This normalization 

facilitates the comparison of regression results using these two measures of insecticide use.  

Thus, over 17 years, we have 94,956 land plots. For each land plot, crop planting information 

is recorded, including seed trait and crop area. Seed trait information allows us to identify an 

individual farmer as a Cry3Bb1 Bt corn adopters or non-adopters. Plot-level insecticide 

consumption data includes active ingredients, pests controlled, application method, and treated 

area. 

3.3. IDENTIFICATION STRATEGY  

When estimating the impact of Cry3Bb1 adoption on insecticide use, the main issue to 

address is the endogeneity caused by self-selection of Cry3Bb1 adoption. Since we have access to a 

farm-level panel data, we use a generalized difference-in-difference approach to investigate the 

impact Cry3Bb1 adoption on insecticide use and how the impact changes as adopters keep using 

the Bt corn after adoption. Cry3Bb1 adopters form the treatment group and Cry3Bb1 non-

adopters forms the control group. To study the impact of Cry3Bb1 corn, we compare WCR-

targeting insecticide use by farmers from the treatment group and control group. First, we ran a 

linear regression to specify the impact of Cry3Bb1 corn on WCR-targeting insecticide use: 

 
1,

, , 1 , 2 ,

1

* * * * * ,
iJ

i t i T i i T i t i t FPR i t

T

y Tr Tr D x x u      
=

= + + + + + + +  (3.3) 

where 
,i ty  is WCR-targeting insecticide used by farmer i  in year t . Dummy variable iTr  

indicates whether farmer i  belongs to the treatment group (i.e., a Cry3Bb1 adopter), and 
,i TD  

are a series of dummy variables indicate whether it’s T years after the adoption. In other words, 

, 1i TD =  whenever the survey year minus the year preceding the adoption equals T, and 
, 0i TD =  



 

 

150 

 

otherwise. After the adoption, there are 
1,iJ  periods of records for farmer i . The interactions 

between iTr  and 
,i TD  are the key explanatory variables, where coefficient T  is the difference-

in-difference effect in the years of using Cry3Bb1 corn. We also included a vector of control 

variables 
,i tx , including the WCR-targeting neonicotinoids application, pest pressure, and 

operation scale. We controlled farmer i ’s use of WCR-targeting neonicotinoids using variable 

,i tNNIs . Specifically, 
,i tNNIs  is the share of acreage that farmer i  use WCR-targeting 

neonicotinoids. We use one-year lagged at state level of WCR-targeting insecticide use as a proxy 

for pest pressure 
,i tpp . Specifically, we calculate 

,state ty  following equation (3.1). Variable iL  

denotes the total acres planted by the farmer i . We include iL  and its quadratic to allow 

operation scale to have non-linear effects. Table 21 summarizes statistics of dependent variable 

,i ty  and control variables 
,i tx .  

Table 21 Statistics of WCR-targeting insecticide use and other control variables 

Variables Obs Mean Std. Dev. Min Max 

Total amount of WCR-targeting 

active ingredient per acre (lb/acre) 
61433 0.045 0.203 0 13.8 

EIQ measure of WCR-targeting 

active ingredient per acre 

(EIQ/acre) 

61433 0.044 0.222 0 4.807 

Share of NNIs application acreage 61433 0.042 0.197 0 1 

Operation Scale (acres) 61433 14421.689 20548.618 18 697939 

Pest pressure within state (lb/acre) 55101 0.057 0.058 0 0.578 

 

The averages of 
,i tx  across time are included to control fixed effects. In addition, Year 

dummy t  and farm production regions FPR  controls are used. The United States Department 

of Agriculture defines the farm production regions as states with similar production practices and 
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resource characteristics and group these states together. Figure 18 presents ten USDA farm 

production regions. These control variables are intended to remove concerns caused by omitted 

variables (Perry et al. 2016). Error component is 
,i tu .  

Figure 18 USDA Farm Production regions
12

 

  
 

Noteworthy is that there are 54,085 zero WCR-targeting insecticide use observations in our 

sample, which account for 88% of total observations. Since we observe excessive zeros in 

insecticide use, we also construct a Tobit regression: 
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The second term in max function has been explained in the linear model specified in equation 

(3.3). We assume that 
,i tu  is independent of 

,i tx  and its conditional distribution is a normal 

distribution with variance 2 . Therefore, we can write log likelihood maximization problem as 

 
12

 Note: The figure is from Managing Manure to Improve Air and Water Quality by Aillery et al. 

(2005) 
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 (3.5) 

Indication function 
,1[ 0]i ty =  equals one when farmer i  does not use WCR-targeting 

insecticides in year t , otherwise the indication function equals zero. Similarly, indication function 

,1[ 0]i ty   equals one when farmer i  uses WCR-targeting insecticides in year t , otherwise the 

indication function equals zero. Function (.)  is the cumulative distribution function of standard 

normal distribution and (.)  is density distribution of standard normal distribution. In the Tobit 

model, the probability of farmer using WCR-targeting insecticide is  

 ( 0 | ) ( / ),P y X X  =  (3.6) 

where y  denotes insecticide use, and X  denotes all explanatory variables which are specified in 

equation (3.4). In addition,   denotes standard deviation of error term and (.)  is cumulative 

distribution function of standard normal distribution. The conditional mean of WCR-targeting 

insecticide use is 

 
( / )

( | , 0) ,
( / )

X
E y X y X

X

  
 

 

 
 = +  

 
 (3.7) 

where (.)  is density distribution of a standard normal distribution.  

The estimated coefficient indicates the impact of Cry3Bb1 toxin on insecticide use in year T

th after the adoption. Supposing that the Cry3Bb1 toxin effectively controls for WCR and 

substitutes chemical insecticides, T  should be significant negative after adoption ( 0T  ). The 

magnitude of partial effect on probability of a farmer using WCR-targeting insecticide is to 

compare the probabilities at 
,* 1i i TTr D =  and 

,* 0i i TTr D = , which can be written as 
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The vector X −  denotes all explanatory variables except interaction 
,*i i TTr D  and the vector of 

parameters  −  denotes all parameters excluding T , N  is the total number of farm T ers and 

J  is the total number of years. The magnitude of partial effect on conditional mean of farmer 

using WCR-targeting insecticide is to compare the probabilities at 
,* 1i i TTr D =  and 

,* 0i i TTr D = , 

which can be written as 
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X X
E y X y E y X y

X X
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    

− − − −
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   +
 −  = + −   

 +   
 (3.9) 

Also, if Bt resistance emerges over the years of Bt toxins being used, we expect to observe the 

magnitude of T  decreases as T  increases.  

The parallel trend assumption underpins the validity of the causal effect derived from the 

difference-in-difference approach. The parallel trend assumption in our context requires that, in 

the absence of the Cry3Bb1 corn, the treatment and control groups share a common parallel time 

trend in WCR-targeting insecticide use. To test parallel trend assumption, it is conventional to 

perform a “placebo” test specified as 

 
1,
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1

, , , ,

1

* * * * * ,
i
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J

i t i T i i T T i i T t i t

T T J

y Tr Tr D Tr D u    
−

= =

= + + + + +   (3.10) 

where dummy iTr  indicates whether farmer i  eventually adopted Cry3Bb1, 
,i TD  are a series of 

period dummies and t  is year dummies. We included interactions between dummy iTr  and 

,i TD  (
0, ,..., 2, 1iT J= − − ; 

0, 0iJ  ). According to the definition of dummies 
,i TD , 

,i TD  ( 0T  ) 

refers the year that is T  years before the adoption. Therefore, we are estimating the adoption 

effect before adoption took place by adding the interactions between dummy iTr  and 
,i TD  
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( 0T  ). When the coefficients of 
,*i i TTr D  ( 0T  ) are insignificantly different from zeros, we do 

not find violations of parallel trend. 

3.4. IMPACT OF BT CORN ADOPTION ON INSECTICIDE USE  

Our empirical findings are discussed in this section. We will explain the impact of Cry3Bb1 

corn on adopters’ insecticide use and the spill-over effects on non-adopters’ insecticide inputs. 

Table 22 shows the average marginal effects of Cry3Bb1 adoption on adopters’ insecticide use 

estimated by linear and Tobit models. Columns 1-2 show results from the linear model with two 

measures of insecticide use respectively. Columns 3-4 show results from the Tobit model with two 

measures of insecticide use. The average partial effect of Cry3Bb1 corn adoption on insecticide 

use among adopters during the first six years of adoption is estimated to be significantly negative 

throughout all columns. That means during the first several years of adoption, Cry3Bb1 corn 

adoption significantly reduced adopters’ insecticide use. In earlier years of adoption, the average 

partial impact estimated from the Tobit model is greater than that from the linear model. In 

addition, the Tobit model results in a decreasing average partial effect trend, suggesting that the 

insecticide use reduction as a result of Cry3Bb1 corn adoption is diminishing over years.  

Table 22 Average partial effect of Cry3Bb1 corn on adopters’ insecticide use 

  (1) (2) (3) (4) 

Variables Linear (lb/acre) Linear (EIQ) Tobit (lb/acre) 

Tobit 

(EIQ) 

Tr # 𝐷1 -0.0296*** -0.0259*** -0.0430*** -0.0424*** 

 (0.00467) (0.00478) (-10.21) (-10.42) 

Tr # 𝐷2 -0.0284*** -0.0256*** -0.0401*** -0.0397*** 

 (0.00502) (0.00495) (-6.13) (-6.27) 

Tr # 𝐷3 -0.0283*** -0.0234*** -0.0364*** -0.0347*** 

 (0.00541) (0.00584) (-5.03) (-4.82) 

Tr # 𝐷4 -0.0308*** -0.0259*** -0.0407*** -0.0390*** 

 (0.00527) (0.00594) (-4.95) (-4.75) 

Tr # 𝐷5 -0.0334*** -0.0294*** -0.0433*** -0.0421*** 

 (0.00536) (0.00559) (-4.80) (-4.76) 
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Table 22 (cont’d) 

Tr # 𝐷6 -0.0322*** -0.0308*** -0.0313*** -0.0310*** 

 (0.00610) (0.00578) (-3.45) (-3.51) 

Tr # 𝐷7 -0.0298*** -0.0307*** -0.0160 -0.0164 

 (0.00722) (0.00660) (-1.65) (-1.72) 

Tr # 𝐷−1 0.00112 -0.000931 -0.00174 -0.00228 

 (0.00729) (0.00656) (-0.45) (-0.62) 

Tr # 𝐷−2 0.00131 -0.00101 -0.00559 -0.00633 

 (0.00710) (0.00669) (-1.37) (-1.60) 

Tr # 𝐷−3 0.00284 0.00274 -0.00708 -0.00726 

 (0.00787) (0.00718) (-1.63) (-1.74) 

Tr # 𝐷−4 0.00406 0.00708 -0.00369 -0.00331 

 (0.00821) (0.00852) (-0.81) (-0.73) 

N 50649 50649 50649 50649 

t statistics in parentheses
*

 p < 0.05, 
**

 p < 0.01, 
***

 p < 0.001 

 

Figure 19 illustrates the average partial effect of Cry3Bb1 adoption on adopters’ WCR-

targeting insecticide use from the Tobit model. The dark solid line with dots indicates the amount 

of insecticide use per acre patterns and the light dashed line with diamonds indicates the pattern of 

the environmental and health impact caused by insecticide use. The short vertical lines going 

through the dots represent standard errors of the average partial effects estimations. Taking WCR-

targeting insecticide use in the year preceding the adoption (T=0) as the reference level, we see a 

decrease in insecticide use caused by Cry3Bb1 adoption. In addition, the magnitude of the 

reduction decreases as T increases. One explanation for the upward trend after T=0 is the advent 

of WCR resistance (Shrestha, Gassmann and Anderson 2019). We also observe evidence 

suggesting no violations of parallel trend assumption from Figure 19. That is, in the years 

preceding the adoption the average partial effect is insignificantly different from zero. One may 

notice that we included five periods preceding the adoption but more post-adoption years. This is 

because Cry3Bb1 Bt corn was first adopted in 2003 and the records in the dataset are starting from 

1998. We also ran the placebo test. The F-statistics with clustered robust standard errors is 0.03 so 
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that we cannot reject the null hypothesis that the coefficients are zeros at 5% level. Therefore, the 

placebo test result suggests no violation of parallel trend assumption. 

 

Cry3Bb1 adoption also has spill-over effects on non-adopters. Were Bt adoption to suppress 

pest population, then non-adopters would eventually reduce insecticide use. We also graph the 

estimated coefficient of year dummies in Figure 20, enabling a better vision about non-adopters' 

insecticide use patterns.  

 

 

 

 

 

Figure 19 The impact of Cry3Bb1 on insecticide use among adoters 

Note: (1) The dark solid line with dots indicates the amount of insecticide use per acre 

patterns; the light dashed line with diamonds indicates the pattern of the environmental and 

health impact caused by insecticide use. The short vertical lines going through the markers 

represent standard errors of average partial effects estimation. 

(2) The year preceding adoption is defined as , the first year of adoption is defined as 

, the two years preceding adoption is defined as . The same logic applies to 

definition of . 
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Similar to Figure 19, the dark solid line represents the quantity of insecticide use per acre 

patterns and the light dashed line represents the pattern of the environmental and health impact 

caused by insecticide use. The vertical short lines illustrate standard errors of average partial effects 

estimation. There is a downward trend in insecticide use by non-adopters. The reduction in 

insecticide use is generally consistent with the suppression effect mentioned above (Dively et al. 

2018b). To better understand Figure 20, in the section to follow we set up a Bayesian learning 

model.  

3.5. THEORETICAL MODEL 

Farmers are uncertain about pest pressure and therefore, according to available information, 

form beliefs about the amount of insecticide use,  , that maximizes yield. We show that farmers, 

as expected utility maximizers, will adjust their insecticide use decisions based on beliefs about  . 

Bayesian learning takes place over years, and so we modeled after Perry, Hennessy, and 

Moschini’s (2021) but relaxed the risk neutral assumption used in their setting. We show that the 

Figure 20 Year-specific insecticide use trend by non-Bt corn farmers 

Note: The dark solid line represents the quantity of insecticide use per 

acre patterns and the light dashed line represents the pattern of the 

environmental and health impact caused by insecticide use. The short 

vertical lines illustrate standard errors of average partial effects estimation. 
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risk averse farmers' beliefs converge to the true value as information accrues. Bt adoption may 

suppress pest populations (Tinsley et al. 2018), resulting in a lower   when compared with 

historic levels. By relying on historical data, farmers' priors are likely to exceed the true value. In 

that case, we proved that, along with Bayesian learning, insecticide use by risk averters will start 

from a high level and decrease until farmers’ beliefs eventually converge to the true value. This 

finding is consistent with the decreasing trend until it bottoms out at a low level of insecticide use as 

seen in Figure 20. In this section we construct a theoretical model in two parts. We first solve for 

an expected utility maximizing farmer’s optimal insecticide input choice and then investigate how 

Bayesian learning about pest pressure affects optimal insecticide choice. 

3.5.1. OPTIMAL INSECTICIDE DECISIONS 

Farmers choose insecticide use levels to maximize their expected utilities from corn 

production. The analysis in this paper consists of insecticide use by many farmers, each choosing 

over one or more plots, and over several years. For clarification reasons, we will first introduce a 

theoretical model of a single farmer on a given plot with a given level of western corn rootworm 

pressure. We assume a yield function  

 21
( ) ,

2
Q A z= − −  (3.11) 

where   is yield-maximizing insecticide input level, z  is the actual insecticide input level, and 

A  is the maximum yield under ideal conditions. When the actual insecticide input level z = , 

farmers can achieve maximum yield A . Instead of using a damage abatement framework to model 

how insecticide use affects yield (Mutuc, Rejesus and Yorobe 2011; Lichtenberg and Zilberman 

1986; Qaim and de Janvry 2005; Babcock, Lichtenberg and Zilberman 1992), we apply quadratic 

yield functions since: 1) quadratic yield functions can be second order approximations of any 

smooth yield function; 2) their corresponding optimal insecticide input function for risk averse 
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farmers can be solved in analytical closed form (Devilliers and Carpentier 2019). Accordingly, 

profit can be expressed as 

  21
( ) ,

2
profit p A z z 

 
= − − − 

 
 (3.12) 

where p  is output price and   is insecticide price. To account for farmers’ risk aversion, we 

first introduced a constant absolute risk averse (CARA) utility function in insecticide use decisions. 

Specifically, the utility function can be written as 

 ( ) * ,profitU profit e −= −  (3.13) 

with 0  . As a utility maximizer with full information, the optimal insecticide input level is  

 *z
p


= − . (3.14) 

In the case of a lack of complete information, farmers are uncertain about pest pressure in the 

locality, therefore yield-maximizing insecticide input level,  . Yield-maximizing insecticide input 

level is a random variable for farmers, denoted as  . We assume that   has a normal 

distribution as  

 2(~ , ).N    (3.15) 

Mean of the distribution is   and the standard deviation is 2 . Therefore, farmer’s 

expected utility maximization problem is 

 ( )

( )
2

2

2

1
( )

2 2
* 1

max max .
2

p A z z

profit

z z
E e e d

 
  


 

 

 −   
− − − − +    

    −  

−
− = −  (3.16) 

We provide a detailed solution to the utility maximization problem in the appendix. The optimal 

insecticide input level is 

 * 2.z
p


 = − +  (3.17) 
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We show that farmers’ risk parameters ( ) and beliefs about yield-maximizing insecticide 

input level,  , will affect insecticide use decisions. In addition, input and output price ( p  and 

 ) also play a key role in those decisions. Specifically, farmer’s optimal insecticide use increases 

with the expectation and variance of yield maximum insecticide use, i.e.,   and 2 . As 

information about yield-maximizing insecticide input level accrued, farmers will update their 

beliefs about   and adjust their insecticide use accordingly.  

3.5.2. BAYESIAN LEARNING PROCESS 

Suppose the farmer learns about   over time. In each period t , the farmer will receive a 

signal ts  about the true  , as shown in equation (3.18),  

 .t ts  = +  (3.18)  

For adopters, we assume the yield-maximizing insecticide input level, a , increases over years 

due to Bt resistance development in equation (3.19), 

 ( ) ( )1 ;t

a nt re  −= −  (3.19) 

where n  is the yield-maximizing insecticide input level for non-adopters, and r  is a parameter 

for Bt resistance evolution. As t goes to infinity, a n → . The signal is noisy; therefore, we assume 

t  to be an i.i.d. normal across periods, 

 2~ (0, ).t N   (3.20) 

Recall that in equation (3.15) we assume a normal distribution for the farmers’ prior  . 

Then, the posterior t  also follows a normal distribution (Perry et al. 2021) with mean, 
t , and 

variance, 2

t , specified in equations (3.21) and (3.22),  

 
22
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2 2 2

1

1 1 1
.

t t  −

= +  (3.22) 

Therefore, farmers’ belief about the variance of yield-maximizing insecticide input level decreases 

as information accrued. From equation (3.22), we can write variance 2

t  as in equation (3.23), 

suggesting that the variance converges to zero when t  goes to infinity,  

 
2 2

2 0

2 2

0

.t
t

 


 
=

+
 (3.23)  

Then, we transformed equation (3.21) by incorporating equation (3.22) and developed 

equation (3.24),  

 ( )
2 2

02 2 1
0

, {1,2, ... };
tt t

t kk
s t

 
 

  =
= +   (3.24) 

By inserting equation (3.18) and (3.23) into equation (3.24), we have equation (3.25) for non-

adopters,  
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When we inserted equation (3.23) into equation (3.25), we see  
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 (3.26) 

As t  goes to infinity, non-adopters’ beliefs about the expectation of yield-maximizing insecticide 

input 
t  will converge to the true n . Inserting equation (3.18), (3.19) and (3.23) into equation 

(3.24), we have equation (3.27),  
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 (3.27) 

According to Stolz–Cesàro theorem, 1

1
0

t k

k
t re− −

=
→  as t goes infinity. Therefore, adopters’ 
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beliefs about the expectation of yield-maximizing insecticide input will converge to the true   

value as more signals are observed over time. 

Recall from equation (3.17), farmer’s insecticide use increases with her perceived 
t  and 

2

t . The trend of 
t  depends on the relationship between the initial guess, 

0 , and the true 

value,  , while 2

t decreases over periods. Supposing that 
0   then we are likely to observe a 

downward trend in farmer’s insecticide input level, while, when 
0  , the trend of farmer’s 

insecticide input is not straightforward from the theoretical model. This is because, in that case, 

increasing perceived expectation pushes insecticide input upward and shrinking variance pushes 

insecticide input downward. We need more information to tell which dominates the trend of 

insecticide use. 

3.6. CONCLUSION 

Bt crops have been widely used for pest control as a substitute for chemical insecticide use. As 

pest damage to Bt crops emerges and increases, regulations regarding Bt resistance management 

have expanded across countries and over years, focusing on delaying Bt resistance development. 

On the other hand, Bt crops bring external benefits on health and environment through reducing 

insecticide use among adopters and non-adopters. Therefore, it is important to justify and evaluate 

all externalities associated with Bt crops before making regulation decisions. In this study, we 

investigate the long-term impact of Cry3Bb1 corn on insecticide use among adopters and non-

adopters over years. In addition, we measure insecticide use of the same two groups in terms of 

health and environmental impacts. 

In the empirical analysis, we find that the adoption of Cry3Bb1 corn successfully reduces 

farmers’ insecticide input, suggesting that Bt toxins can be substituted for chemical insecticides in 

the suppression of western corn rootworm. The amount of insecticide reduction decreases as 
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Cry3Bb1 corn is planted over the years. This diminishing impact of Cry3Bb1 corn is consistent 

with the emergence of western corn rootworm resistance. We also observe a downward trend in 

insecticide use by non-adopters, which is consistent with the spill-over effects of Bt toxin 

documented in extant literature. Supposing that Cry3Bb1 adoption suppresses pest populations 

within the region, non-adopters initially lack full knowledge of the Bt pest suppression effects but 

eventually learn about the pest pressure over time and ultimately reduced insecticide use. By 

relying on historical data, farmers' prior beliefs are likely to exceed the true pest pressure. In that 

case, following the Bayesian learning process, insecticide use by risk averters will start from a high 

level and decrease until farmers’ beliefs eventually converge with to the true pest pressure. This 

pattern is the same as what is found in our empirical analysis. The findings should be of interest to 

those concerned with the ecosystem services provided by insects, integrated pest management 

(IPM) regulators and practitioners, as well as others interested in the stewardship of biological 

resources. 



 

 

164 

 

APPENDIX
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Inserting farmer’s profit function (3.12) into utility function (3.13) and writing the expected 

utility as an integral of utility with respect to variable  , we have farmer’s utility maximization 

problem  

 
( )

( )
2

2
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1
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2

pA p z z

z
e e d

 
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 
 

− 
− − − − − 

 

−
−  (A.1) 

We transform the objective function into an equivalent form following approach used in finance 

theory under normal random variables and CARA (Cochrane 2005). Rewrite the exponent in 

equation (A.1) to group terms that depend on   and terms that don’t depend on  . 
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 (A.2) 

Then our target is to write 2 2 2 2(1 ) (2 2 )p pz       − − − +  in the form of ( )
2

a b c − + . We 

first define 

 21 ;p  = −  (A.3) 

 22 2 ;pz   = −  (A.4) 

 2. =  (A.5) 

Since  

 2 2 2 2( ) 2 ,a b c a ab b c  − + = − + +  (A.6) 

we can map 

 2 21 ;a p  = = −  (A.7) 

 22 2 2 ;pz ab   = − =  (A.8) 

 2 2 .b c = = +  (A.9) 
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Therefore, we can obtain  

 2 0.5 2(1 )   assuming  1 ;a p p   = −    (A.10) 
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Then maximization problem becomes 2max
2z

c
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After some transformation, we have 
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The integral part embedded in equation (A.15) is the area under the normal distribution density 

function over the entire support when the mean is zero and the standard deviation is  . That 

said, 
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So when we insert equation (A.16) into equation (A.15), maximization problem becomes
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which is equivalent to  
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Now we insert equation (A.12) into maximization problem (A.18) and solve for the first order 

condition: 
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At the end, we can obtain optimal input level 
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